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Abstract  

Assimilable organic carbon (AOC) is the fraction of carbon utilised by heterotrophic organisms, 

potentially leading to (re)growth, loss of biological stability and deterioration of water quality within 

drinking water distribution system (DWDS). This study developed a novel AOC method that combines 

the standardisation of using known strains of bacteria, with the speed of flow cytometric enumeration, 

enabling AOC to be routinely and extensively sampled within operational DWDS. The new AOC 

method was applied to both water treatment works (WTW) and DWDS to successfully validate the 

method and determine how AOC fluctuates on a spatial and temporal basis. AOC analyses provide first 

time evidence of pipes and service reservoirs (SR) exhibiting different AOC and (re)growth behaviour, 

with AOC being found to increase within the majority of pipe only sections of the DWDS, but decrease 

within SR.  

 To ensure a uniquely holistic view of the impact of AOC within DWDS, both the bulk water 

and, critically, the attached biofilm phase were studied. Biofilms were developed for 12 months in three 

purpose-built, full-scale pipe loop test facilities, each supplied by post-treated water containing very 

different AOC concentrations. Each system replicated the hydraulic retention time, water chemistry and 

microbiology of operational DWDS, whilst enabling laboratory level control of bulk water and biofilm 

sampling, thus overcoming limitations of bench scale studies. By following the 12 month growth period 

with a series of flushing steps, it was possible to assess the mobilisation of material and its correlation 

to the AOC concentration. AOC concentration was found to impact the cell count, community 

composition and physical structure of the biofilm during growth, and the amount of material mobilised 

(and therefore discolouration risk) following flushing. This thesis presents original evidence of AOC 

cycling within the biofilm, advancing our understanding of how and why AOC concentration varies 

within DWDS and the impacts this has on microbial (re)growth. A unifying conceptual model is 

presented that describes the complex AOC processes in DWDS, capturing both bulk water and 

previously overlooked, biofilm processes. Ultimately, the information gained in this study will enable 

better management of DWDS environments to maintain the quality of drinking water from source to 

tap, essential in the future management of biological stability.   
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Chapter 1: Introduction 
 

1.1 Microbial Water Quality and Biological Stability 

Drinking water is a fundamental human resource. In 2015, 91% of the global population had 

access to an ‘improved’ (free from faecal and priority chemical contamination) drinking water 

source, compared to 86% in 2010 and 76% in 1990 (United Nations Children’s Fund (UNICEF) 

and World Health Organisation (WHO), 2015). Despite this progress, the threat of inadequate 

quality of drinking water remains an issue of global concern, with waterborne disease being 

estimated to cause more than 2.2 million deaths pear year due to diarrhoea, gastrointestinal 

diseases and systematic illnesses (World Health Organisation, 2015). Waterborne illnesses also 

generate an economic loss of approximately $12 billion per year (Alhamlan et al. 2015).  

Drinking water suppliers are required to produce a sufficient supply of safe drinking 

water to consumers. This means that drinking water should be “free from any microorganisms 

and parasites and from any substances which, in numbers or concentrations, constitute a 

potential danger to human health” (European Council, 1998). Failure to do so will not only 

result in economic sanctions and loss of customer confidence for the water utility, but also 

potentially pose as a risk to public health. To ensure the continuous supply of high quality, safe 

drinking water, water utilities not only have to provide extensive water treatment, but also 

maintain and monitor drinking water quality within the drinking water distribution system 

(DWDS). Between 2000 and 2015, the number of people with access to drinking water supplied 

by distribution pipes increased from 3.5 billion to 4.7 billion (WHO and UNICEF, 2017). 

Although the number is increasing, access to safe and clean drinking water from household 

taps is not universal and is often taken for granted, especially in developed nations. In countries 

such as the UK, drinking water utilities are reliant on ageing infrastructure systems with 

piecemeal design and construction. DWDS are highly complex systems comprising of different 
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pipe materials, dimensions, ages and being subject to variations in source water quality and 

customer demand. In addition, the surface-area-to- volume-ratio of the DWDS is not inert as 

DWDS surfaces interact with the water they supply. Therefore, whilst modern water treatment 

works (WTW) and DWDS have drastically improved water quality, degradation does still 

occur.  

To regulate water quality, a number of international and national quality controls are in 

place. WHO guidelines state that 'water entering the distribution system must be microbially 

safe and ideally should also be biologically stable' (WHO, 2006). Biologically stable water is 

defined as water in which the microbial quality is maintained throughout the DWDS (Prest et 

al. 2016). Uncontrolled growth of microorganisms within DWDS can cause the microbial 

water quality to exceed guideline values. The term (re)growth has previously been used to 

describe the recovery of disinfectant injured cells, whereas aftergrowth has been used to 

describe microbial growth in a distribution system (Characklis, 1988; van der Kooij, 2003). In 

this document (re)growth will be used to include both the recovery of disinfection damaged 

cells which have passed through the treatment works and the multiplication of organisms within 

the DWDS itself. 

Until recently the majority of research regarding the impact of microorganisms on water 

quality, and vice versa, has focused upon planktonic organisms. However, 95% of the overall 

biomass within DWDS is found attached to pipe walls, whilst only 5% resides in the water 

itself (Flemming et al. 2002). Microorganisms are known to exist in microbial communities 

attached to the inner surface of the pipe by self-producing extracellular polymeric substance 

(EPS), forming a biofilm. Microbial assemblages residing in a biofilm have a selective 

advantage over their planktonic counterparts as the biofilm provides protection from 

environmental stress including disinfectants (Schwering, et al. 2013) and the influence of shear 

forces (Flemming and Wingender, 2010). Biofilms are a concern to drinking water utilities, as 
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they can increase the occurrence of biofouling and biocorrosion and act as the transient or long-

term habitat of faecal indicator organisms and potentially pathogenic bacteria, thereby posing 

a threat to human health when they detach (Wingender & Flemming, 2011; Ashbolt, 2015). In 

addition, biofilms act as a source of organics and inorganics which can cause water quality 

concerns if mobilised. The mobilisation of biofilm microorganisms and associated material 

into the bulk water, can lead to aesthetic deterioration such as taste, colour, and odour issues. 

Vreeburg and Boxall, (2007) found that 41% of complaints made by customers to English and 

Welsh drinking water utilities were reporting issues with drinking water aesthetics. 

The determination of biostability or (re)growth potential of water is useful in evaluating 

water quality during treatment and through the distribution system. A number of different 

indicator methods can be used assess the degree of biological stability, including the 

assimilable organic carbon concentration (AOC). Microbial re-growth can also be used to 

assess the degree of organic matter removal during treatment and the efficiency of disinfection 

during distribution. Microorganisms can be classed as either heterotrophic:- utilise organic 

compounds as a source of energy and carbon, or autotrophc:- capable of generating energy 

from inorganic substances. The majority of the microorganisms in drinking water are 

heterotrophic and therefore require organic compounds for energy and growth (Miettnen et al. 

1997). The molar ratio of carbon, nitrogen and phosphorus required for bacterial growth is 

100C:10N:1P (LeChevallier et al. 1991; Chandy & Angles, 2001). The ratio infers that in most 

DWDS carbon is regarded as the main limiting nutrient, being required in the greatest quantity 

for growth.  

Limiting growth supporting substrates in post-treated water is a common technique 

employed to restrict microbial (re)growth within DWDS, especially in the absence of a 

disinfection residual. Although modern treatment systems produce drinking water containing 

low nutrient concentrations, trace amounts remain in the treated water which can  concentrate 
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in biofilms, where lysed cells act as a further nutrient source and nutrient cycling is thought to 

occur. AOC is one of the most important fractions of carbon in drinking water as it is easily 

assimilated by microorganisms. If AOC is not removed during the treatment process, AOC in 

post-treated water can be regarded as one of the main contributors towards microbial re-growth 

in DWDS. The AOC concentration within drinking water can therefore be used as an indicator 

of drinking water biostability. It should be noted that there is currently no universal AOC 

concentration threshold for drinking water stability. 

DWDS are complex systems consisting of pipes and service reservoirs, with varying 

hydraulic retention times (HRT). It is therefore important to understand how the AOC 

concentration varies on a spatial and temporal basis in DWDS. Additionally, it is not known 

how biofilms are influenced by the concentration of AOC, and how these attached 

microorganisms themselves contribute to the nutrient load. This literature review will highlight 

the biotic and abiotic factors (particularly AOC) that govern the growth of microbiota in the 

DWDS, and the management strategies that can be employed by water utilities to produce and 

maintain biologically stable drinking water. Throughout this review key gaps in the literature 

will be highlighted and future research needs suggested. 
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Chapter 2: Literature Review  

2.1 Drinking Water Treatment and Distribution  

Drinking water networks are composed of four main components (a) water source (b) water 

treatment (c) storage of treated water and (d) distribution to the consumer (Figure 2.1). To 

ensure the production and distribution of safe drinking water, water utilities apply a multi-

barrier approach including source water protection, appropriate and well-operated treatment 

steps and management of DWDS. Steps employed to control microbial growth at the WTW 

will lead to better water quality in the DWDS and ultimately at the consumers tap.  

 

 

 

 

 

 

Figure 2.1: An example of a drinking water system from source to tap. Source water may 

be surface water (reservoir or river abstraction) or groundwater. Water is pumped to a water 

treatment works, where specific treatment processes vary depending on source water quality. 

Treated water in the UK is disinfected (in most cases with chlorine or chloramine) before being 

distributed via the DWDS network consisting of pipes and service reservoirs (SR). 

 

2.1.1 Drinking Water Treatment  

Conventional drinking water treatment usually has a similar sequence of processes, though the 

source and hence quality of incoming water will dictate the exact treatment process. Compared 

Source Water Abstraction Treatment Distribution

Ground Water 

Service Reservoir 

DWDS 
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to surface water, groundwater sources generally have higher initial water quality and therefore 

usually require fewer treatment steps than surface water sources. Treatment generally includes 

coagulation, flocculation, sedimentation, filtration and disinfection, although some WTW may 

include additional steps to remove contaminants. Water treatment is designed to remove any 

undesirable chemicals, (micro) biological contaminants and suspended particles prior to 

distribution (Table 2.1). Generally, coagulation, flocculation and sedimentation steps are 

employed to improve the turbidity, taste, odour and colour of the water. Ion exchange or 

activated carbon can also be used during this process to remove inorganic or organic 

contaminants. The treatment steps employed at the WTW can considerably influence a) the 

characteristics of the bacteria (and other microorganisms) in the post-treated water, and b) the 

chemical composition of the post-treated water, including organic matter concentration. The 

AOC removal efficiencies of each treatment step are discussed in detail in Section 2.3.3.5. 

Subsequently, the water is disinfected in a contact tank which aims to inactivate 

(pathogenic) organisms, commonly using a chlorine based agent. The ‘CT’ method is often 

employed to assess the disinfection dosage, using the chlorine residual (mg/L) and contact time  

(mins)  to  give  a  CT  value  (mg.min /L) (a  minimum  CT  of  15 mg.min /L  is  recommended  

(WHO, 2008)). Ultimately, the treatment steps employed at the WTW can ultimately influence 

the degree of microbial (re)growth within the DWDS, thus affecting the biological stability of 

the water.  

Natural organic matter (NOM) not only created problems with taste, colour and odour 

of drinking water but it also reacts with disinfectants, increasing the amount of disinfection by-

products. Removal of NOM to reach compliance with drinking water quality regulations is a 

challenge for many drinking water treatment works (WTW). NOM can be present in a 

particulate or dissolved form, with dissolved organic matter being the most difficult to remove 

from drinking water. NOM is often removed from drinking water using coagulation and 
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flocculation followed by sedimentation/flotation and sand filtration. Most of the NOM can be 

removed by coagulation, although, the hydrophobic fraction and high molar mass compounds 

of NOM are removed more efficiently than hydrophilic fraction and the low molar mass 

compounds (Matilainen, et al. (2010). As a result, total organic carbon (TOC) still remains 

within the mg/L concentration in final treated water. 
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Table 2.1: Water treatment works methods applied to control a number of water 

constituents (data collated from Crittenden et al. 2005; Drinking Water Inspectorate 

(DWI), 2016). 

Parameter / Contaminant Treatment Approach Associated UK 

Regulations 

Bacteria, viruses, protozoa Disinfection  

Membrane filtration (UF, 

NF, RO) 

 Coagulation 

 Sedimentation 

Filtration 

Escherichia coli (E. coli): 0 

per 100 ml 

Total Coliforms 0/100 mlA 

Colonies/ml at 22°C: no 

abnormal changeB 

Colonies/ml at 37°C: no 

abnormal changeB 

Organic carbon Coagulation 

 Biological filtration  

 Membrane filtration (RO, 

NF) 

Total organic carbon 

(TOC): no abnormal change 

Particles / turbidity Flocculation 

 Sedimentation 

 Sand filtration 

 Membrane filtration (MIC-

F, UF) 

Turbidity: 1-4 NTUC 

Metals Aeration, oxidation Iron (Fe): 200µg / L 

Manganese: 50µg/ L 

Lead: 25µg / L 

Copper: 2 mg / L 

Chemical micro-pollutants Coagulation 

Adsorption 

Oxidative treatment  

Arsenic: 5 µg / L 

Ammonia: 0.50 mg / L 

Nitrate: 50 mg / L as NO3 

 Nitrite: 0.5 mg / L as NO2 

Sodium: 200 mg / L 

Sulphate 250 mg / L 

A: 95% of the last 50 samples taken must meet the standard; B: Indicator parameter; C: Max 

values, water leaving a treatment plant must be ≤ 1 nephelometric turbidity units (NTU), end 

point water ≤ 4 NTU. UF = ultrafilration; NF = nanofiltration; RO = reverse osmosis; MIC-F 

= microfiltration.  

 

2.1.2 Drinking Water Distribution Systems (DWDS) 

Treated water is transported to the consumer via a series of trunk mains, district metered areas 

(DMA), disinfection booster stations and service reservoirs. Despite drinking water leaving 

water treatment works (WTW) being of a high standard, the quality of the water deteriorates 
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as it travels through the DWDS. DWDS in England and Wales alone consist of 4,430 service 

reservoirs and over 347,000 km of mains (DWI, 2015). DWDS are a complex system of ageing 

pipes and service reservoirs, varying in hydraulic retention time, surface to volume ratio, 

material, water chemistry, disinfection regime and flow regime. All of these abiotic factors 

have the potential to influence the growth rate and community composition of microorganisms 

in DWDS. Microorganisms can enter the DWDS either by surviving the treatment process or 

through ingress via the pipe network. Bacteria have been found to exist in both the bulk water 

and within biofilms attached to pipe walls, in systems with and without a residual disinfection. 

As DWDS are such complex environments, the management of drinking water microbiology 

throughout DWDS presents a series of challenges.    

DWDS are subject to continuous changes in water demand and water source quality, a 

trend which will be amplified by future pressures including population growth and climate 

change. A growing population will likely significantly increase water demand. Furthermore, 

future variation in climate will not only impact water availability but also accelerate the 

deterioration of water quality due to changes in source water quality and the impact of changing 

temperatures on biological (re)growth and biofilm formation. Understanding the parameters 

that influence (re)growth of bacteria in drinking water supply systems is critical to maintaining 

DWDS water quality now and in the future.  

2.2 The Importance of Biostability within Drinking Water 

2.2.1 Public Health Concerns 

Although modern treatment systems generally provide safe, high quality drinking water, 

microbial failures and waterborne illness outbreaks still occur. This is either a result of 

mismanagement/contamination of fresh water resources, technical failure at the WTW, 

inadequate detection regimes or ingress into the DWDS (WHO, 2003). The microbial content 

of drinking water within DWDS can vary temporally and spatially throughout a network due 
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to largely unknown, complex interactions with environmental parameters such as nutrients, 

disinfection residual, hydraulic regime, temperature, turbidity (Lehtola et al. 2007) and oxygen 

(Vaerewijck et al. 2005). Although considerable efforts have been made to improve or maintain 

the quality of water supplies, bacterial pathogens within drinking water are believed to be an 

increasing threat to human health due to a reduction in the quality and availability of source 

water (Brettar & Höfle, 2008). Even within modern treatment systems, pathogens have been 

identified as the most likely cause of a number of disease outbreaks in recent years. In the USA, 

833 drinking water borne disease outbreaks caused illness among 577,991 persons and were 

linked to 106 deaths during 1971 to 2006 (Craun et al. 2010). In England and Wales, although 

the Communicable Disease Surveillance Centre (CDSC) was established in 1992 to create 

improved reporting of infectious intestinal diseases, there is no obligation to report any 

outbreaks under investigation. Of those reported between 1992 and 2003 Cryptosporidium was 

reported to be responsible for 69% of outbreaks, Campylobacter sp. for 14%, E. coli O157 for 

3%, Giardia for 2%, and Astrovirus for 1% (Smith et al. 2006). The recent Cryptosporidium 

outbreak during August 2015, affected 300,000 homes in Lancashire costing United Utilities 

approximately £25 million as listed in their trading update for the six months ending 30 

September 2015 (Water Briefing, 2015). Utilities also face increasing pressure from emerging 

waterborne pathogens including E. coli O157:H7, Helicobacter sp. and Mycobacterium avium 

complex (MAC) (Medema et al. 2003).  

A large number of waterborne disease outbreaks have been linked to chemical and 

biological contaminants entering the distribution systems (Craun & Calderon, 2001). Ingress 

into the DWDS may have a delayed impact if the intruding organisms seek refuge in the 

biofilm, and are then later released back into the bulk water. Microbial contamination remains 

a universal issue, with over 500 waterborne pathogens having been identified as potential 

concern in drinking waters (US EPA, 2017). In addition, a significant proportion of 
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microorganisms are often in such low concentrations within a DWDS that they may go 

undetected. Whether from contaminant ingress or biofilm mobilisation, these microorganisms 

can potentially cause endemic disease transmission, depending on the number and species of 

microorganisms. Although smaller events may not cause regulatory failures for water utilities, 

they can cause gastrointestinal illness for consumers potentially leading generating a significant 

economic cost if consumers are forced to take leave from their employment (Payment, 1997).  

Public health concerns within drinking water are not due to bacterial pathogens alone. 

Microorganisms within drinking water often consist of prokaryotes (bacteria and archaea), 

eukaryotes (fungi and protozoa) and viruses (Vaerewijck et al. 2005; Denkhaus et al. 2007; 

White et al., 2011; Gall et al. (2015). Water-transmitted viral pathogens that are classified as 

having a moderate to high health significance by the World Health Organization (WHO) 

include adenovirus, astrovirus, hepatitis A and E viruses, rotavirus, norovirus and other 

caliciviruses, and enteroviruses (WHO, 2011). 

2.2.2 Aesthetic Water Quality  

Discoloured water is one of the most common incidents reported to the Drinking Water 

Inspectorate (DWI), being responsible for 33% of incidents in England and Wales (Husband & 

Boxall, 2011). Discoloration events generally occur when material such as clay, silt, 

microorganisms, organics and inorganics accumulate on the pipe wall in the DWDS and 

subsequently become mobilised, creating a reduction in water clarity. The European Union 

(EU) Drinking Water Directive (98/83/EC) states that that the levels of turbidity at the tap must 

be “acceptable to consumers and no abnormal change”. In the UK, water quality regulations 

specify a numeric standard of 1 nephelometric turbidity unit (NTU) in water leaving the 

treatment works and 4 NTU of water at consumers taps (DWI, 2017). The mobilisation of 

microorganisms and associated particles from biofilms can cause discolouration events 

(Husband & Boxall, 2010) and/or microbial regulatory failures depending on the amount and 
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composition of the detached material. Furthermore, suspended particles have the ability to 

transport both nutrients and microorganisms within the DWDS, and to generate a disinfection 

demand resulting in a loss of disinfectant residual. Gauthier et al. (1999) found that bacterial 

biomass represented 1-12% of the organic matter within deposits in a DWDS, acting as both a 

food source for bacteria and creating a reduction in residual disinfectant. 

Although the number of suspended particles within treated drinking water is generally 

low (Brazos & O'Connor, 1996), turbidity has been reported to increase with distance from 

WTW (Capellier et al. 1996). Turbidity was previously thought to be a result of gravity driven 

sedimentation at low flows and subsequent remobilisation when the flow rate increased (Wu 

et al. 2003). However, the particulates responsible for discolouration have been demonstrated 

to remain in suspension even at very low flows (Boxall et al. 2001). Instead it is suggested that 

discolouration is a result of particulate mobilisation from pipe walls in which the shear force 

generated by water flow is greater than the cohesive and adhesive strength with which the 

particles are bound, thus causing the particles to detach  (Boxall et al. 2001; Prince et al. 2003; 

Husband and Boxall, 2010; Cook and Boxall, 2011). The behaviour of particulates within the 

DWDS has been highlighted as being analogous to biofilm behaviour, in which both will detach 

from the pipe wall when the adhesive strength exceeds the self-weight (Husband & Boxall, 

2016). This is known as shear stress driven mobilisation (Husband & Boxall, 2016). 

2.2.3 Drinking Water Regulations  

Drinking water utilities are required by national (e.g. Drinking Water Inspectorate (DWI) 

(England and Wales) & Drinking Water Quality Regulator (DWQR) (Scotland)), and 

international governing bodies (e.g. European Drinking Water Directive) to undertake 

regulatory drinking water sampling to monitor a range of chemical and microbiological 

parameters at WTW, service reservoirs (SR), and at randomised point-of-use locations 

(customer tap). The EU provided the European Drinking Water Directive with specific methods 
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for the enumeration of microbiological parameters in drinking water. According to the Council 

Directive 98/83/EC of 3 November 1998 on the quality of water intended for human 

consumption, only culturable, non-pathogenic bacteria are required to be sampled. 

Microbiological standards require 0 per 100 ml of Escherichia coli and ‘no abnormal change’ 

in indicator organisms including coliform bacteria and colony counts at 22°C (European 

Council, 1998). Although compliance with the regulations by drinking water utilities is 

consistently high (average of 99.96% in 2017 (DWI, 2017)), regulatory sampling includes 

spatially unrepresentative, discrete samples which only sample a minute percentage of the 

volume of real systems. Furthermore, events such as discoloration are sporadic and short lived 

and are therefore not captured by discrete sampling. Water utilities are required to use 

traditional microbiological enumeration techniques, such as heterotrophic plate counts (HPC) 

that underestimate the actual number of microorganisms within drinking water. Culturable 

bacteria within bulk water represent only a small fraction of the total microbial community in 

drinking water (Hammes et al. 2008; Siebel et al. 2008; Prest, 2015). Regulatory samples 

exclude other microorganisms such as fungi and archaea, as well as microorganisms existing 

at the pipe wall within drinking water biofilms. Improved management of DWDS is required 

to ensure water quality does not decline through the network and that the regulations are 

adhered.  

2.2.4 Biofilm Formation  

The majority of new microbial growth in DWDS occurs on the pipe wall, in comparison to the 

bulk water (Lehtola et al. 2004; Moritz et al. 2010). Biofilm formation in the DWDS is a one 

of the main causes of a loss in biostability of distributed water (Manuel et al. 2010). Biofilms, 

originally coined as such in 1978 (Costerton et al. 1978), are defined as a complex arrangement 

of microorganisms bound together in a microbially derived extracellular polymeric substances 

(EPS) adhered to a surface, which may be organic or inorganic. Biofilms mature as more 
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microorganisms attach and replicate, increasing the density and diversity of the biofilm cells 

and expanding the EPS matrix. Biofilm growth and subsequent mobilisation is a successional 

process (Martiny et al. 2003) consisting of 1) primary adhesion to the surface; 2) secondary 

adhesion; 3) growth (maturation and micro-colony formation); and 4) mobilisation 

(Vaerewijck et al. 2005). The community composition will vary throughout the biofilm cycle, 

with initial colonisers being determined by the selection pressures of attachment (Martiny et 

al. 2003). The rate of biofilm maturation is dependent on a host of factors including 

hydrodynamics, rate of oxygen perfusion and nutrient availability (Dunne, 2002). Even when 

nutrient levels are extremely low within DWDS, non-ologotrophs are to survive in this 

environment by residing within biofilms where nutrients are elevated (Volk & LeChevallier 

1999). As the biofilm EPS matrix is often negatively charged a number of nutrients will 

accumulate on the biofilm surface. Water channels can facilitate the mass transfer of nutrients 

to microorganisms residing within the biofilm (de Beer & Stoodley, 1995, de Beer et al. 1996). 

Microorganisms are also able to corrode pipe materials such as iron and steel which may 

provide nutrients for (re)growth including carbon, nitrogen and phosphorus (Morton et al. 

2005). Biofilms can affect water quality by processes they mediate during growth (bio-

corrosion), and from ongoing exchange and mobilisation into the bulk water. Biofilms within 

DWDS can generate a decline in water quality, disinfection residual and pipe infrastructure 

condition, and pose a discolouration risk when they mobilise and release materials, such as 

inorganics, into the bulk water. Therefore, understanding biofilms and how they may impact 

drinking water quality (and similarly how the environmental conditions of the DWDS impacts 

the biofilm), is critical to water biostability and water quality management.  

Due to the difficulty of removing biofilms from operational DWDS, the majority of 

research investigating the various biotic or abiotic parameters that act upon biofilm are based 

in laboratory scale experiments. These include bench-top reactor systems or flow through cells 
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(e.g. Deines et al. 2010; Ginige et al. 2011; Abe et al. 2012). Although these systems offer fine 

scale control of environmental parameters, they do not accurately represent the ever-changing 

conditions in an operational DWDS, including fluctuations in nutrient supply, hydraulic 

conditions and disinfection residual. Furthermore, the majority of studies researching DWDS 

biofilms often focus solely on bacteria, despite other microbial taxa being known to exist in 

drinking water biofilms (Wingender and Flemming, 2011; Fish et al. 2015; Douterelo et al. 

2016). It is therefore important to consider other microbial taxa in addition to bacteria to gain 

a holistic understanding of DWDS microbiology.  

2.2.4.1 Biofilm EPS Matrix 

The EPS matrix has been reported to provide protection from multiple environmental stresses 

in the water column included changes in disinfection, pH, osmotic shock and desiccation 

(Kokare et al. 2009).  The EPS is also able to provide structure and mechanical stability through 

a variety of processes including hydrophobic, electrostatic and dispersive interactions 

(Flemming et al. 2007; Neu and Lawrence, 2009). The amount of EPS produced is dependent 

on the species of organism, biofilm age (Kokare et al. 2009) and hydraulic regime (Fish et al. 

2017). Biofilms are universal in nature due to the ability of microorganisms to develop biofilms 

on the majority of surfaces and in challenging environmental conditions whereby the necessary 

substrates for growth and metabolism are limited (Wingender & Flemming, 2011).  Carbon 

and nutrients concentrate at the pipe wall due to the turbulence of the bulk water. Organic and 

inorganic particles become incorporated within the EPS matrix providing a nutrient source 

(Denkhaus et al. 2007) and therefore selective advantage for biofilm microorganisms over their 

planktonic counterparts (Volk & LeChevallier, 1999). This results in the biofilm environment 

being able to support non-oligotrophic microorganisms (Volk and LeChevallier, 1999). 

Microorganisms within biofilm can obtain organic carbon from the bulk water, disinfection 

degradation or from cells within the biofilm itself. These particles will become mobilised into 
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the bulk water if the biofilm is released from the pipe wall (Section 2.3.2.1 for hydraulic and 

biofilm interactions), potentially leading to a loss of biological stability in the bulk water.  

2.3 Parameters Governing Biological Stability & Biofilms 

2.3.1 Disinfection Regime 

Many drinking water utilities rely on the addition of a chemical disinfection, either free chlorine 

(Cl2) or monochloramine (NH2Cl), to act as a biocide agent to manage planktonic 

microorganisms and drinking water biostability. Chlorination can be performed during the 

treatment process or to disinfect the post-treated water and maintain a chlorine residual in the 

DWDS. Pre-chlorination (when chlorine is applied at the beginning of the treatment process) 

is used to remove taste and odour, control biological growth (including algal growth) in 

subsequent steps such as sedimentation and filtration, and to oxidise any iron, manganese 

and/or hydrogen sulphide, so they can be removed during sedimentation and filtration (Safe 

Drinking Water Foundation (SDWF), 2016). WHO guidelines state that terminal disinfection 

must produce a residual concentration ≤0.5 mg L−1 (after at least 30 min of contact time at pH 

less than 8.0) (WHO, 1993). A free chlorine residual range of 0.2–0.5 mg/L is recommended 

to be maintained throughout the DWDS, with higher concentrations being close to the 

disinfection point, and the lower concentration at the far extremities of networks (WHO, 1997). 

Chlorine has been suggested to be a stronger biocide agent than chloramines against planktonic 

bacteria (Menaia & Mesquita, 2004; De Beer et al. 1994). Previous research has demonstrated 

that the presence of free chlorine reduces biofilm accumulation compared to non-chlorinated 

systems (Butterfield et al. 2002; Van der Wende et al. 2006). However, both studies used bench 

top scale reactors (rotating annual reactors (BAR) and plug flow reactor) and also quantified 

the cellular component of the biofilm, with no quantification of the EPS. It is important to 

quantify the EPS as well as number of cells as the EPS determines the point at which the biofilm 



Page | 41 

 

will detach into the bulk water, therefore impacting water quality (Abe et al. 2012) and 

biological stability.  

Increasing the disinfection residual beyond a certain concentration can also create a 

trade-off between reducing (re)growth and generating potentially harmful disinfection by-

products (DBPs). DBPs are generated when a disinfectant, such as chlorine, reacts with natural 

organic matter (NOM) and/or inorganic substances within the water (Sadiq & Rodriguez, 

2004). In systems containing high organic loads, chlorine has been shown to readily react with 

organic carbon leading to loss of a disinfection residual in the network (Chandy & Angles, 

2001) and production of DBPs (Richardson et al. 2007). DBPs provide a source of AOC 

(LeChevallier et al. 1991; van der Kooij, 1992; Escobar et al. 2001) leading to microbial 

growth and loss of biological stability. DBPs also pose as a potential health risk to consumers 

(Wei et al. 2010), with some epidemiologic studies (International Agency for Research on 

Cancer (IARC), 1991; WHO, 1996; Nieuwenhuijsen et al. 2008) presenting an association 

between long-term exposure to disinfection by-products and increased risk of cancer and 

potential adverse reproductive effects. 

Some water utilities in the UK are opting to use chloramines (rather than chlorine) as a 

residual because chloramines are considered to be more stable and only generate trace amounts 

of trihalomethanes (THM) and haloacetic acid (HAAs) (Bougeard et al. 2010), therefore 

lowering the water quality risk to public health. Chloramine is typically found in drinking water 

supplies at a concentration of 0.5-2 mg/l (WHO, 2008), whether it is used as either a primary 

disinfectant or as a disinfection residual in the DWDS. Chloramination has been demonstrated 

to be more efficient at suppressing planktonic intact cells or (re)growth more efficiently than 

free chlorine even at low residual concentrations (LeChevallier et al. 1996; Gillespie et al. 

2014). This is thought to be a result of chloramines being more effective at being able to 

penetrate biofilms (De Beer, Srinivasan & Stewart, 1994; Chandy & Angles, 2001; 
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LeChevallier et al. 2007). However, these benefits are often counteracted by the ability of 

monochlorines to act as a source of ammonia, providing a nutrient source for ammonia-

oxidising bacteria (AOB). AOB have previously been demonstrated to produce nitrites from 

ammonia (Pryor et al. 2004).  

2.3.1.1 Disinfection and Biofilms 

Although disinfection residuals are able to slow biological growth (Hallam et al. 2011), 

disinfection does not completely prevent biofilm development (White et al. 2011). Disinfection 

has been shown in numerous studies to be more effective on bulk water bacteria than on biofilm 

bacteria (Costerton et al. 1995; Wingender et al. 1999; Gagnon et al. 2004; Hageskal et al. 

2012), however the exact mechanisms of achieving this are unclear. Disinfection molecules are 

thought to bind to the EPS and become neutralised (Menaia & Mesquita, 2004), or enzymes 

found within the EPS matrix degrade the residuals (Mah & O'Toole, 2001). Other proposed 

mechanisms of resistance include increased cell density, slower growth and physiological 

changes to the cell including a activating quorum sensing systems and changing profiles of 

outer membrane proteins (Mah & O'Toole, 2001; Menaia & Mesquita, 2004). Disinfection 

regime (type and dose) also influences microbial community composition and the occurrence 

or persistence of opportunist pathogens (Wang et al. 2012). When subjected to either a chlorine 

or chloramine residual, differences in the bacterial community diversity of biofilms have been 

demonstrated suggesting that biofilm communities can respond to changes in disinfection 

regimes (Williams et al. 2005, Revetta et al. 2007; Mi et al. 2015). Different bacterial groups 

have greater sensitivity to chlorine (McCoy et al. 2012), with Alphaproteobacteria being 

predominant in the bulk water due to their higher resistance to chlorine, and Betaproteobacteria 

being dominant within biofilms (Douterelo et al. 2013). However, when considering the impact 

of disinfection on drinking water biofilms, it is important to understand that other abiotic and 
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biotic factors, such as nutrient concentration, may act in tandem with disinfection in the DWDS 

and therefore influence the response of the biofilm.  

2.3.1.2 Disinfectant Free Drinking Water  

A small number of countries, including The Netherlands, Germany and Switzerland choose not 

to use a disinfectant residual, either due to alternative treatment options (such as filtration, UV 

disinfection or ozone to reduce the organic content of the water) being used, unnecessity or 

customer preference (Smeets et al, 2009). In the Netherlands, a large proportion of the water 

supply originates from deep groundwater aquifers which are generally absent from faecal 

contamination, whilst surface water is filtered in dune systems via artificial recharge or bank 

filtration to remove the pathogen load. Furthermore, in European countries such as Germany, 

consumers would rather receive water free of chlorine due to taste/odour preferences and 

concerns over disinfection by-product formation (Uhl & Schaule, 2004).  In the absence of a 

disinfectant, the most commonly employed method used to limit planktonic (re)growth and 

hence reduce biofilm formation within the DWDS is to limit growth supporting nutrients prior 

to distribution. Physical processes such as sedimentation, filtration and UV-disinfection, which 

are primarily used to control growth limiting substances, are favoured over chemical 

disinfection to produce biologically stable water (Hammes et al. 2008; Smeets et al. 2009). The 

absence of a disinfection residual or use of UV-radiation are only possible in well maintained 

distribution systems in which microbial growth is reduced by the production of high quality 

oligotrophic water, the use of biologically stable materials, low temperatures, minimal ingress 

into the system and short hydraulic retention times (HRT) within the system (Smeets et al. 

2009). Such processes have no residual effect within DWDS (Lehtola et al. 2005) generating 

potential problems such as (re)growth and a reduction in drinking water biostability and water 

quality.  
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2.3.2 Carbon  

Uncontrolled levels of organic matter create significant problems including degradation of 

aesthetic water quality, an increase in microbial growth rate and increased disinfection demand 

potentially forming disinfection by-products (Sadiq & Rodriguez, 2004). The majority of 

natural organic matter (NOM) is removed during treatment (Table 2.1).  Organic carbon in 

water supplies is predominantly a function of the water source, seasonality, treatment 

combinations, and operational practices through the DWDS (Sharp et al. 2006). The 

availability organic carbon has the potential to either limit or promote bacterial (re)growth and 

biofilm formation in DWDS, dependent on the concentration and availability. 

NOM consists of a complex mixture of organic matter that varies in molecular size, 

structure, and chemical composition. Organic matter, in terms of weight, is:  45–55% carbon, 

35–45% oxygen, 3–5% hydrogen, 1–4% nitrogen (Cabaniss et al. 2007). NOM is commonly 

measured as total organic carbon (TOC) or dissolved organic carbon (DOC), as carbon is the 

most abundant element in dissolved organic matter (DOM). Other measures of organic carbon 

include the concentration of assimilable organic carbon (AOC), biodegradable organic carbon 

(BDOC), specific ultraviolet absorbance (SUVA), and bacterial (re)growth potential (BRP). 

SUVA is defined as the UV absorbance of a water sample normalised with respect to the DOC 

concentration. The BRP is a bioassay using a natural microbial inoculum to take into account 

other possibly limiting nutrients (Sathasivan & Ohgaki, 1999). The dissolved organic carbon 

(DOC) fraction of TOC can be divided into two subsets; biodegradable dissolved organic 

carbon (BDOC) and AOC (Figure 2.2). AOC and BDOC are considered as two of the main 

nutrient and energy sources for heterotrophic bacteria. However, it has previously been found 

that BDOC, generally used to quantify higher molecular weight (MW) organics, is not 

significantly correlated with AOC (Charnock and Kjønnø, 2000) or counts of heterotrophic 
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bacteria (Van der Kooij, 1992). More recently, BDOC has instead been used as an indicator of 

chlorine demand and disinfection by-product formation (Escobar and Randall, 2001).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3.2.1 Assimilable Organic Carbon  

AOC is generated either via lysis of bacterial cells or biological and chemical hydrolysis of 

organic matter. AOC is made up of low molecular weight organic molecules (Escobar et al. 

2000), including acaetate, formate and oxalate (Hammes et al. 2006). The exact composition 

of AOC within drinking water is not constant, and will depend on source water quality, the 

treatment process and the disinfection residual applied. It is only the low molecular weight 

fraction of organic carbon that can be assimilated by heterotrphic bacteria (Van der Kooij & 

Hijen, 1984; Polanska et al. 2005). Therefore, AOC is often used as a surrogate to assess the 
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Figure 2.2: Fractions of carbon found within drinking water, including their universal 

acronyms. AOC (dashed box) is investigated in this study as it is the portion available for 

bacterial (re)growth. 
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(re)growth potential of heterotrophic organisms within drinking water. It is important to note 

that as no direct chemical test exists to determine AOC concentrations, AOC must be measured 

indirectly by utilising the linear relationship between the maximum growth of bacteria in a 

water sample and the AOC concentration (American Public Health Association (APHA), 

2005). Given that different organisms, even those used in AOC test, consume different amounts 

of carbon, the AOC test is only an estimate of the (re)growth potential of drinking water, and 

should be used in tandem with other regrowth potential indicators such as flow cytometry.  

2.3.2.2 Assimilable Organic Carbon Measurements  

As the AOC fraction of organics represents a small fraction (<10 %) of the TOC in water 

(Hammes and Egli, 2005), the assay must be sensitive to detect low concentrations. In the AOC 

assay, bacteria are grown in a water sample and enumerated over time to determine the 

maximum cell density. The maximum growth of bacteria is divided by a yield factor, which is 

obtained from growth of the organism on a defined substrate, usually acetate. The principle 

behind AOC analyses assumes that organic carbon is the limiting nutrient within the water 

sample (Escobar et al. 2001; Liu et al. 2002). This is normally assessed using control samples 

to check that other nutrients such as nitrogen and phosphorous are not growth limiting. The 

individual steps involved in the method include: pasteurisation / filtration of the collected water 

sample, inoculation with a known cell density, incubation until maximum cell density is 

reached, enumeration and conversion of cell counts to carbon concentration. Existing AOC 

methodologies can be broadly divided into those that use known bacterial strains known 

bacterial strains (such as Pseudomonas fluorescens strain P-17 and Spirillum strain NOX) as 

an inoculum (proposed by Van der Kooij et al. 1982; van der Kooij and Hijnen, 1984), and 

those that incorporate a natural microbial inoculum (proposed by Hammes & Egli, 2005) 

(Table 2.2). These methods are further divided into those that use different samples preparation 

steps, inoculum volumes, incubation time and temperatures, and enumeration methods. 
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 2.3.2.3 AOC Method Using Known Bacterial Strains, P-17 and NOX 

Van der Kooij et al. (1982) presented the original AOC bioassay which included the use of a 

known bacterial strain: Pseudomonas fluorescens strain P-17, hereafter referred to as P-17. P-

17 is used for AOC analysis as it is ubiquitous in the DWDS and able to cope with low organic 

carbon concentrations by metabolising a range of biodegradable compounds such as amino 

acids, carboxylic acids, hydrocarboxylic acids, alcohols and carbohydrates (excluding 

polysaccharides) (Stanier et al. 1966). More recently, Spirillum strain NOX, hereafter referred 

to as NOX, has been used in tandem with P-17 as it was found that NOX, unlike P-17, can 

degrade ozonation products (Van der Kooij, 2002). Full details of the standardised method can 

be found in APHA, (2005). In summary: once a water sample is collected, the sample is 

pasteurised to inactivate the indigenous bacteria population, before inoculating the sample with 

P-17. Subsequently, samples are incubated at 15 °C for 7-9 days before the maximum growth 

rate (stationary phase) is recorded. This is done using the standard plate count method on R2A 

agar. Plates are incubated at 25 °C for 3 to 5 days before the number of colonies of each strain 

is counted. It is this maximum growth value which is then converted to an AOC value 

(expressed as an acetate carbon concentration), assuming that cell numbers in the stationary 

phase of the two bacteria are linearly correlated to AOC concentration in the water sample. 

Previously derived yield values of 4.1x106 CFU P-17 / µg acetate carbon and 1.2x107 CFU 

NOX / µg acetate carbon can be used (Van der Kooij, 1992). The lengthy incubation period 

required for bacteria in the water sample to reach their maximum growth, followed by the 

incubation of plate counts (3-5 days), can create a sample processing period of up to 14 days 

for one sample. This is often deemed too long for routine industrial analyses.  

Alternative methods used to enumerate the bacteria in a sample have been proposed 

including the use of Adenosine triphosphate (ATP) luminescence (LeChevallier et al. 1993a) 

and bioluminescence (Haddix et al. 2004, Weinrich et al. 2009, 2011). LeChevallier et al. 



Page | 48 

 

(1993a) were able to convert ATP luminescence to AOC concentration using the linear 

relationship between viable cell counts and ATP luminescence units, and the yield factor for 

acetate carbon. The method was able to detect a greater number of bacteria than the plate count 

procedure and was a substantially faster enumeration method. However, it was also evident 

that the different test organisms did not contain the same amount of ATP per cell, consequently 

showing bias towards different strains and therefore not suited for the use of indigenous 

bacterial populations. Aggarwal et al. (2015) assessed the use of flow cytometry, with and 

without SYTO9 staining, to enumerate P-17 and NOX. Aggarwal et al. 2015 found that flow 

cytometry was a rapid and accurate enumeration method of both P-17 and NOX. However, 

when using flow cytometric enumeration, Aggarwal et al. (2015) found the yield of P-17 and 

NOX to be lower than HPC yield factors. The lower yield factor produced when using flow 

cytometric enumeration could have been due to the relatively high incubation temperature of 

23 °C. It is known that the optimum incubation temperature for NOX and P-17 is 15°C 

(LeChevallier et al. 1993). The use of flow cytometric enumeration and an optimum incubation 

temperature of 15 °C in the AOC assay is a knowledge gap that will be addressed in this thesis.  

2.3.2.4 Natural Microbial Community Inoculum 

Modifications to the Van der Kooij AOC bioassay include the use of a natural microbial 

community inoculum in which the bacteria are indigenous to the water sample in question. 

Samples are enumerated using flow cytometry (Hammes & Egli, 2005, Hammes et al. 2010) 

or turbidity measurements (Werner & Hambsch, 1986; Hambsch & Werner, 1990). The use of 

a natural microbial inoculum instead of P-17 and NOX has been demonstrated to result in a 

higher final cell count (Ross et al. 2013), suggesting that a more diverse inoculum is able to 

utilise a wider array for organic compounds. A higher incubation temperature (30 °C) reduces 

the incubation time of the assay, and the use of flow cytometry enables rapid enumeration of 

all cells, including those that are unculturable on conventional media. However, a natural 
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microbial inoculum necessitates the use of a theoretical conversion value (1 μg AOC = 1 x 107 

cells) (Hammes & Egli, 2005) to convert cell concentrations to AOC concentrations. 1 x 107 

cells was determined by assessing the growth of a natural microbial inoculum on acetate carbon 

(Hammes & Egli, 2005). Furthermore, the use a natural microbial inoculum instead of a pure 

culture creates additional complexity in the form of quantifying the microorganisms present 

and understanding the interactions between the various bacterial strains. This can potentially 

create deviations in AOC cell counts and difficulties in standardising the assay  



Page | 50 

 

Table 2.2: AOC methodologies incorporating either known strains of bacteria or a natural microbial inoculum. 

Inoculum 

Type 
Sample Preparation Inoculum Incubation Enumeration 

Yield 

Factors 
Reference 

Known 

strains of 

bacteria 

Pasteurisation 60 °C for 30 

mins 

 

500 CFU P-17 only 

15 °C no shaking 

 

HPC 25 °C 40-

48 hours 

 

4.1x106 P-

17 

Van der Kooij et al. 

1982 

100-300 CFU/mL of strains 

PI 7 and NOX 

4.1 x 106 P-

17, 1.2 x 

107 NOX 

Vander Kooij, 1992 

Either strain P-17 or strain 

NOX  

 

Room temp for 1-

3 days 
ATP * 

LeChevallier et al, 

1993a 

Pasteurisation 70 °C for 1 

hour 
Room temp 3-5 

days 

 

HPC 25 °C for 

7 days 

 

4.1 x 106 P-

17, 1.2 x 

107 NOX 

 

Escobar and Randall, 

1999 

Pasteurisation 70 °C for 30 

min 

 

 
Escobar and Randall, 

2000 

Inoculate with P-17, incubate 

& enumerate, pasteurise 

again, inoculate  NOX, 

incubate & enumerate 

25 °C for 2 days 

for P-17 and 3 

days for NOX HPC 25 °C  3 

days 

 

 Liu et al. 2002 

Pasteurisation 70 °C for 30 

min followed by 15 min at 

70 °C in  heating cabinet 

 

P17, PF-1 or a combined 

inoculum of P17/NOX to 

final concentration 50–500 

CFU/mL 

20 °C with 

shaking 
* 

Charnock & Kjønnø, 

2000 

Pasteurisation 30 min at 60 

°C, rapidly cooled in ice 

bath to 15 °C 

Inoculated with P17 and 

NOX simultaneously, to 

reach 300 cfu/mL of each 

strain 

15 °C 

 

HPC every 2 

days 

4.6 x 106 P-

17, 1.3 x 

107 NOX 

Polanksa et al. 2005 
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Pasteurisation 70 °C for 30 

min 
500 CFU/mL each of P-17 

and NOX 

 

25 °C for 3 to 5 

days 

4.1 x 106 P-

17, 1.2 x 

107 NOX 

 

 American Public 

Health Association 

(APHA), 2005 

Samples filtered through a 

baked 0.3-μm GF-75 glass 

filter, pasteurisation 70 °C 

for 30 min 

HPC R2A agar 

7, 8, and 9 days 
 

Thayanukul et al. 

2013 

Pasteurisation 70 °C for 40 

min 
P-17 and NOX 25 °C  1-8 days 

HPC on 

nutrient agar 
* 

Lou et al. 2011; Han 

et al.  2012; Lou et al. 

2014 

Pasteurisation 75 °C for 30 

min 

Samples inoculated 

simultaneously with P-17 and 

NOX 

20 °C 

 

Pour plating on 

R2A agar 14–

20 days at 20 

°C 

4.53 x 106 

P-17, 1.56 

x 107 NOX 

Ohkouchi et al. 2011; 

Ohkouchi et al. 2013 

* * 22 °C–25 °C 
HPC 1–5 days 

25 °C 
* Zhao et al. 2013 

Pasteurisation 70 °C for 30 

min 
1 mL of either P17 or NOX 23 °C for 5 days 

Flow 

Cytometry 

4.33 x 106 

P-17, 1.03 

x 107 

Aggarwal et al. 2015 

Natural 

microbial 

inoculum 

 

Filtered 0.22 µm (not 

pasteurised) 

Triplicate vials inoculated 

with 100 µL giving a final 

concentration of 5x 103 (±2 x 

102) cells mL-1 

30 °C until 

stationary phase 
Flow cytometry 

1 x 107 

cells µg C 
Hammes & Egli, 2005 

Filtered 0.22 µm (not 

pasteurised) 

Autoclaved (20 min 12 °C), 

filtered 0.22 µm 

Cell concentration of 1 x 104 

cell / mL 
30 °C until 

stationary phase 

* 

Flow cytometry 

Turbidity 

(NTU) 

1 x 107 

cells µg C 

* 

Hammes et al. 2006 

Cell concentration of 1 x 104 

cell / mL 

* 

Hammes & Egli, 2007 

Bazri & Mohseni, 

2013 

Vital et al. 2007 
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Sample pasteurised,  filtered 

0.22 µm 

Hammes et al. 2010; 

Vital et al. 2012; 

Liu et al. 2015 

Filtered 0.2 μm,  

pasteurised 60 °C for 30 

min 

Elhadidy et al. 2016 

* 

Werner & Hambsch, 

1986; Hambsch & 

Werner, & 1990 

*Details not included in reference  
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A yield factor is generated by monitoring the growth of the test organisms on pure solutions of 

acetate-carbon or oxalate-carbon which are used as reference standards. Each of these methods 

uses a different yield factor to convert cell counts to nutrient concentration (Table 2.3), 

potentially leading to large difference in the final AOC concentration. This therefore creates 

difficulties in comparing between studies that employ different AOC methods. 

Table 2.3: Comparison of Yield Factors used in the AOC Bioassay. 

Yield Coefficient P-

17 (cells/μg acetate-

carbon) 

Yield Coefficient 

NOX (cells/μg 

acetate-carbon) 

Yield Coefficient 

Natural Inoculum 

(cells/μg acetate-

carbon) 

Study 

 

 

4.1 x 106 

 

-  

 

- 

Van der Kooij et al. 

1982 

 

1.2 x 107 

 

Van der Kooij, 1990;  

Van der Kooij, 1992; 

Escobar & Randall, 

1999; APHA, 2005 

1 x 107 Ross et al. 2013 

- 1 x 106 Hammes & Egli, 

2005 

 

 

1.8 x 107 

 

 

 

 

 

 

 

- 

 

 

 

Thayanukul et al. 

2013 

 

1.4 x 107 

 

Liu et al. 2002 

Escobar & Randall, 

2000 

2.56 x 106 1.17 x 107 Aggarwal et al. 2015 

4.08 x 106 9.6 x 106 Chang et al. 2002 

4.33 x 106 1.03 x 107 Aggarwal et al. 2015 

(using flow 

cytometry) 

4.53 x 106 1.56 x 107 Ohkouchi et al. 

2011; Ohkouchi et 

al. 2013 

4.6 x 106 1.3 x 107 Polanska et al. 2005 

6.4 x 106 – 8.3 x 106 - Wang et al. 2014 

 

- 

 

- 

1 x 107 Vital et al. 2012; 

Bazri & Mohseni, 

2013; Liu et al. 2015 
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2.3.2.5 AOC within Water Treatment Works 

The amount of AOC in raw water is reduced during treatment to avoid bacterial (re)growth 

through nutrient limitation in the DWDS (Van der Kooij et al. 1992; Ramseier et al. 2011). 

The treatment process can help manage microbial (re)growth in DWDS by limiting nutrient 

availability in post-treated water. Due to the limitations of the current AOC methodology 

(section 2.3.3.2), AOC is not regularly monitored through the WTW, despite AOC measures 

being useful assessments of WTW performance and to help predict the degree of biostability 

in the DWDS. The WTW process is designed to reduce the AOC concentration (see Table 2.4) 

and produce biologically stable water, which contains approximately <100 µg C/L 

(LeChevallier et al. 1996) in DWDS that apply a disinfectant residual, or <10 µg C/L (van der 

Kooij, 1992) in systems without a residual. It should be noted that <100 µg C/L is only an 

estimate and this value is likely to vary of a system by system basis, depending on the DWDS 

conditions (particularly presence and type of disinfectant).  

Treatment processes reported to reduce AOC in drinking water include granular 

activated carbon (GAC) (LeChevallier et al. 1992; Volk & LeChevallier, 2002; Polanska et al. 

2005), slow / rapid sand filtration (SSF / RSF) (Hammes et al. 2006, 2010; Ohkouchi et al. 

2011), biological activated carbon (BAC) (Van der Kooij et al, 1989; Volk & LeChevallier, 

2002), and to a lesser extent conventional treatment processes (including chemical coagulation 

& sedimentation) (Liu et al. 2002). The AOC removal efficiencies of each treatment step are 

listed in Table 2.5. As highlighted in Table 2.5, the AOC removal efficiency has a large range 

and is dependent on the raw water quality and the treatment processes used. Due to the 

complexity of organic carbon, the removal rate of AOC during coagulation & sedimentation is 

thought to vary with the organic molecular weight and hydrophobicity of the source water 

(Volk & Lechevallier, 2002; Klimenko et al. 2012). In contrast, Escobar & Randell, (2001) 

found that nanofiltration (NF) was not effective as reducing the AOC concentration as AOC 
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compounds are small enough to pass through NF membranes. Furthermore, ozonation has been 

found to create a significant increase in AOC concentrations most likely as a result of the 

breakdown of larger-molecular weight compounds into smaller compounds that are measurable 

as AOC (Hu et al. 1999; Escobar & Randall 2001; Lehtola et al. 2001; Hammes et al. 2006; 

Wen et al. 2017).  

The efficiency of AOC removal during the treatment process is not only determined by 

the choice of individual treatment steps, but is also dependent on the incoming raw water 

quality. Ohkouchi et al. (2011) found that the seasonal difference in AOC levels detected in 

the finished water were consistent with the results of AOC in raw water. Therefore, these 

seasonal changes of organic constituents in raw water could directly affect the AOC levels in 

post-treated water. The treatment efficiency of AOC removal is also thought to be dependent 

on seasonality / temperature. Hammes et al. (2010) and Müller et al. (2003) reported higher 

AOC concentrations after ozonation in winter months, as a result of temperature or seasonal 

changes in the raw water composition. Following on from treatment, the AOC concentration 

in final water is also dependent on the type of disinfection. Post-chlorination has been widely 

shown to increase the AOC concentration in final water (Volk & Lechevallier, 2002; Chen et 

al. 2007). However, AOC analysis is often used to assess the efficiency of AOC removal at the 

treatment works, rather than reporting concentrations within the DWDS. Despite WTW 

producing high quality drinking water, microbial growth can occur in the DWDS if there are 

sufficient nutrients to support their growth. 

 

 

 

 

 



 

 

Table 2.4 Assimilable organic carbon concentrations found in drinking water. 

WTW / DWDS Treatment / 

Disinfection 

AOC Concentration (µg 

C/L) 

AOC Method Length of Study Location Study 

WTW NF membrane; Cl2; O3 Raw: 23-120 

Post-treated: 65 - 278 

Van der Kooij et 

al. 1982; 

LeChevallier et 

al. 1993a 

12 month sampling USA Escobar & Randell, 

2001 

WTW Pre-O3; RSF; O3; AC; 

SSF 

Pre-ozonation: ~171 

Post-treated: ~50 

Hammes & Egli March - June Switzerland Hammes, 2006 

WTW CC; MF; UV; O3; BAC; 

ClO2; PAC; FLO 

Raw: 200 ± 242* 

BAC effluent: 5 ± 2.8* 

Van der Kooij et 

al. 1982; Sack et 

al. 2011 

3 years The Netherlands Hijnen et al. 2018 

WTW Biological pre-treatment; 

O3; GAC 

Raw: 265 – 1193 

Post-treated: 15 - 62 

Van der Kooij et 

al. 1982; 

LeChevallier et 

al. 1993a 

March and May 

sampling 

China Hu et al. 1999 

WTW AC; BF; CC; SSF UV; 

O3; Cl2 

Pre-ozonation: ~106 

Post-treated: ~ >200 

Van der Kooij et 

al. 1982; 

Miettinen et al. 

1999 

Spot samples Finland Lehtola et al. 2001 

WTW FL; SED; MF; post-O3; 

BAC; Cl2 

Raw: 83 – 188 

Post-treated: 14 - 48 

Van der Kooij, 

1999; Polanska 

et al. 2005 

March - Oct Taiwan Lou et al. 2009 

WTW FL; RSF; SSF; AC; OX; 

Cl2; UV; DE; A; NaClO 

15 - 255 Van der Kooij et 

al. 1982 

1 year Belgium Polanska et al. 2005 

WTW MF; GAC; CC; Cl2; 

NH2Cl2 

Raw: 92-250 

Post-treated: 90 – 224 

LeChevallier et 

al. 1993 

10 month sampling USA Volk & Lechevallier, 

2002 

WTW & DWDS Pre-O3; RSF; O3; GAC; 

SSF 

WTW: 32 

DWDS: 28 - 30 

Hammes & Egli, 

2005 

18 months Switzerland Hammes et al. 2010 

WTW & DWDS CC; SED; RSF; Cl2; O3; 

BAC 

Raw: 32.2 – 148 

Post-treated: 53 – 151 

Japan Water 

Works 

May, June & Jan Japan Ohkouchi et al. 2011 
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DWDS: 60 – 174 Association 

(JWWA), 2001 

WTW & DWDS Pre-Cl2; CC; SED; SF; 

GAC; Cl2 

Raw: 69 – 350 

Post-treated: 69 – 342 

DWDS: 92 – 482 

Van der Kooij et 

al. 1982 

~ 1 year China Liu et al. 2002 

WTW & DWDS Pre-OX; pre-Cl2; CC; 

SED; SF; O3; BAC; Cl2 

WTW: 62 – 80 

DWDS: 33-149 

Van der Kooij et 

al. 1982; Liu et 

al. 2002 

4 months (Aug, 

Nov, Jan, Mar) 

China Lu et al. 2014 

WTW & DWDS SED; A; CC; Pre-Cl2; 

SF; Pre O3; BIO; BAC; 

O3; MIC-F; RO; GAC; 

UV; Cl2 

Post-treated: 36 - 446 APHA, 2005 Nov & Apr Japan Thayanukul et al. 

2013 

WTW & DWDS A; BF; Cl2; CC; DF; 

GAC; NSF; O3; PAC; 

RSF; SSF 

1.1 - 57 Van der Kooij et 

al. 1982 

2 summer & 

autumn periods 

The Netherlands Van der Kooij et al. 

1992 

WTW & DWDS CC; SED; SF; F- WTW: 110 ±60 

120 ±50 

DWDS: <50 - >200 

APHA, 2005 14 months USA Zhang et al. 2002 

WTW & DWDS FL; SED; FI; NH2Cl WTW: 117 – 195 

DWDS: 117 - 227 

Lechevallier et 

al. 1993a 

July – Dec; Jan - 

Apr 

USA Zhang & DiGiano, 

2002 

WTW & DWDS Pre-O3; CC; FL; FI; O3; 

BAC; Cl2 

41 - 308 Liu et al. 2002 1 year China Zhang et al. 2016 

DWDS Pre-Cl2; CC, SED; RGF; 

AC; NH2Cl 

73 – 995 Stanfield & 

Jago, 1989 

3 years UK Gibbs et al. 1993 

DWDS MF; GAC; O3; Cl2, 

NH2Cl 

18 – 189 LeChevallier et 

al. 1993a 

18 months USA & Canada LeChevallier et al. 

1996 

DWDS Cl2, NH2Cl, O3; BAC 26 - 430 Hammes et al. 

2007 

2 years China Li et al, 2018 

Key: A, aeration; AC, activated carbon filtration; BAC, biological activated carbon; BF, bank filtration; BIO, bio-filtration; CC, chemical coagulation; Cl2, chlorination; ClO2; 

chlorine dioxide; DE; decantation; DF, dune filtration; F-, fluoridation; FL, flocculation; FLO, flotation; FI, filtration; GAC, Granular activated carbon; MF, multi-media 

filtration; MIC-F, micro-filtration; NaClO, sodium hypochlorite; NH2Cl, chloramination; NF, nano-filtration membrane;  OX, oxidation; O3, ozonation; PAC, powdered 

activated carbon; Pre-OX, pre-oxidation; RO, reverse osmosis; RSF, rapid sand filtration; SF, sand filtration; SSF, slow-sand filtration; SED, sedimentation; UV, ultraviolet 

radiation; *standard deviation 



 

 

Table 2.5 Assimilable organic carbon removal efficiencies following individual drinking water treatment processes. 

Raw Water AOC 

Concentration 

(µg C/L) 

Treated Water AOC 

Concentration (µg C/L)  

Change AOC (µg 

C/L) 

Treatment Process Notes Study 

141 

 

 

 

 

- 

 

- 

147 NF 

 

 

 

 

70 (2 – 100) (prior 

ozonation installation) 

148 (65 – 27) (after 

ozonation installation) 

↑ 6% 

 

 

 

 

↑ 112% following 

introduction ozonation  

NF 

 

 

 

 

O3 

Addition of antiscalant & low purity acid 

may ↑ AOC. AOC compounds are small 

enough to pass through NF membranes. 

 

↑ AOC following ozonation is due to 

significant breakdown of larger carbon 

compounds into AOC compounds (Block 

et al. 1993; Volk et al. 1993, 1997; Servais 

et al. 1993). 

Escobar & 

Randall, 2001 

 

- 171 ±57 post ozonation  3 fold ↑ post 

ozonation 

3 fold ↓ after rapid 

sand filtration 

O3 / RSF 3-fold ↑ corresponds to values reported for 

ozonation (Escobar and Randall, 2001; 

Lehtola et al. 2001). 

 

↓ in AOC during RSF reveals good 

efficiency for AOC removal, and it 

suggests the presence of high biological 

activity on the filters. 

Hammes et al. 

2006 

23 ±17 113 pre-O3 

46 RSF 

58 Intermediate O3 

- GAC 

32 SSF 

- 

↓ 59% total AOC 

- 

↓ 31% remaining 

AOC 

↓ 6%  remaining AOC 

O3, RSF, GAC, SSF Pre-O3 ↑ AOC. Amount of AOC formed 

during O3 varied seasonally (range: 50–

311), with typically more AOC formed 

during colder raw water temperature 

periods (Muller et al. 2003).  

Hammes et al. 

2010 

301 

243 

165 

248 conventional 

165 GAC 

198 chlorination 

17.6% removed 

33.5% removed 

+20% 

Conventional 

treatment (CC, SED 

& FI). GAC, Cl2.  

Low removal efficiencies suggested that 

AOC could only be partially removed in a 

Liu et al. 2002 
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329 

275 

205 

 

270 

247 

195 

 

275 conventional 

205 GAC 

342 chlorination 

 

247 conventional 

195 GAC 

247 chlorination 

 

16.4% removed 

25.5% removed 

+66.9 

 

8.5% removed 

21.1% removed 

+26.7 

(Only April, 1998 

values).  

conventional treatment process. GAC 

could attain a much higher AOC removal 

efficiency. The removal mechanisms of 

AOC by GAC could be attributed to GAC 

adsorption and biodegradation by 

microorganisms grown onto the GAC. 

AOC ↑ dramatically from GAC effluent to 

finished water, which might be attributed to 

post-chlorination. 

148 winter 

32.2 summer 

 

151 winter  

52.7 summer 

BAC did not remove 

AOC at all during 

winter 

but removed 50% of 

AOC in the summer. 

BAC, CC, SED, O3, 

RSF  

CC–SED was effective for AOC reduction. 

O3 ↑ NOX component of AOC 

significantly. AOC removed during rapid 

sand filtration (RSF) process. Low 

efficiency of the BAC process during 

winter could be an immature bacterial 

community on the surface of activated 

carbon because of lower water temperature. 

Ohkouchi et al. 

2011 

92 (53-148) 

122 (43-300) 

95 (53-254) 

 

250 (48-869) 

132 (82-937) 

119 (72-208) 

224 (153-337) MF 

156 (110-218) MF 

110 (66-193) MF 

 

158 (114-245) GAC 

156 (68-260) GAC  

90 (58-163) GAC 

↑ 164 (16 to 535) 

↑ 46 (-48 to 74) 

0 (-25 to 42) 

 

↑ 7 (-86 to 222) 

↓ 6 (-177 to 78) 

↓  11 (-104 to 67) 

 

MF  

 

 

 

GAC 

AOC were not removed by mixed-media 

filtration, probably because a continuous 

chlorine residual was maintained through 

the filters.  

 

AOC ↑ during pre-oxidation but ↓ by 40% 

by GAC. Post disinfection ↑ AOC by 20% 

 

 

Volk & 

Lechevallier, 2002 

 

AOC, assimilable organic carbon; BAC, biological activated carbon; CC, chemical coagulation; Cl2, chlorination; FI, filtration; GAC, granular activated carbon; MF, multimedia 

filtration; NF, nanofiltration; O3, ozonation; RSF, rapid sand filtration; SED, sedimentation; SSF, slow sand filtration. 
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2.3.2.6 AOC & HRT within DWDS  

With regards to AOC values reported in distribution, LeChevallier et al. (1987) and Van der 

Kooij et al. (1989) demonstrated that the AOC concentration decreased with distance through 

the DWDS. However, studies that analyse spatial variation in AOC in the DWDS do not 

analyse the impact of DWDS infrastructure on AOC concentration. Where service reservoir 

(SR) inlet and outlet sampling is not undertaken, it is not clear if the DWDS pipes or SR are 

acting as sources or sinks of AOC. LeChevallier et al. (1987) concludes that AOC was 

consumed by heterotrophic organisms within the DWDS. However, Gibbs et al. (1993) did not 

find a statistically significant relationship between the concentration of AOC and hydraulic 

retention time, or AOC and microbial counts in the examined distribution system. This could 

be a result of this study a natural microbial inoculum and adenosine triphosphate (ATP) in the 

AOC test (Gibbs et al. 1993). Different organisms contain a different amount of ATP per cell, 

consequently showing bias towards different strains of bacteria. AOC concentration was found 

to fluctuate throughout the DWDS with no evident decline in the AOC concentration through 

the distribution system. Gibbs et al. (1993) also found no seasonal peaks in AOC 

concentrations in reservoir water, raw water or final treated water. Gibbs et al. (1993) 

acknowledged that a natural inoculum used in this study may not have been representative of 

the bacteria found within the DWDS. Furthermore, it is difficult to compare AOC values 

between studies as they incorporate different steps in the AOC methodology.  

2.3.2.7 AOC & Biological Stability  

Attempts have been made to monitor AOC concentrations within either treatment works or 

DWDS and to correlate this with the degree of (re)growth within these systems. Such 

information is used to assess the degree of biostability within drinking water, where biological 

stability is defined as: 
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“no changes occurring in the concentrations and composition of the microbial community in 

the water during distribution” (Lautenschlager et al. 2013). 

As AOC is easily assimilated by heterotrophic bacteria, it is a significant contributor to 

biological instability within DWDS (Nescerecka et al. 2014). A significant positive correlation 

has been found to exist between the AOC concentration and the density of heterotrophic 

bacteria (van der Kooij et al. 1982; LeChevallier et al. 1987). The AOC concentration within 

raw or post-treated drinking water has been reported at concentrations between 1 – 995 µg C/ 

L, depending on water source and treatment steps (Table 2.4). AOC has been demonstrated to 

limit microbial growth, and therefore constitute biostable water, at concentrations spanning 

(≤10 – 120 µg/L) (Van der Kooij, 1992; LeChevallier et al. 1996; Ohkouchi et al. 2013; Wang, 

Tao & Xin, 2014; LeChevallier et al. 2015) (Table 2.6). These concentrations are thought to 

differ due to the presence or choice of disinfection residual and other (a)biotic parameters in 

the DWDS. There is no global consensus as to the AOC concentration that constitutes biostable 

water. Comparisons between studies is often made difficult as each study applies a different 

AOC method protocol and therefore employs different yield factors to convert cell counts to 

AOC equivalents. Furthermore, water biostability is also dependent on whether a disinfectant 

is applied. Van der Kooij, (1992) reported an AOC range of 1.1 and 57 µg/L, with biostable 

water containing ≤10 µg/L in the absence of a secondary disinfectant. In contrast, Gibbs et al. 

(1993) found the concentration of AOC to be much higher in disinfected water within a UK 

DWDS, ranging from 73 – 995 µg/L. None of the AOC values reported by Gibbs et al. (1993) 

would therefore fall into the biostable water category as defined by Van der Kooij (1992). In 

this study, we conduct an AOC analysis of raw, treated and distributed drinking water to 

quantify AOC within and between different systems. This study will assess if the reported 

threshold of <100 µg/L (Van der Kooij, 1992; LeChevallier et al. 1993a;  LeChevallier et al. 
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1996; Wang, Tao & Xin, 2014; Ohkouchi et al. 2013) constitutes biostable water within these 

systems. 

Table 2.6: Comparison of acceptable assimilable organic carbon levels for biological 

stability. 

AOC 

Concentration 

(µg C/L) 

Parameter 

used to 

reflect water 

biostability 

Disinfection Sample Point Length 

of 

Study 

Study 

<10 HPC Counts None 20 supplies: 

Post-treatment 

& 9 / 10 

locations in 

DWDS 

2 

summer 

& 

autumn 

periods 

van der Kooij, 

1992 

<100 Coliforms Chlorine 

residual 

above 0.1 

mg/L 

31 supplies: 

Post-treatment 

& DWDS 

18 

months 

LeChevallier 

et al. 1996 

≤32 HPC and flow 

cytometry 

TCC 

None 1 WTW & 2 

points in 

DWDS 

18 

months 

Hammes et 

al. 2010 

≤10.9 HPC counts Chlorine 

residual of 

0.05 mg/L 

Bench test - Ohkouchi et 

al. 2013 

≤27.58 – 111.4 ATP - Bench test - Wang, Tao & 

Xin, 2014 

<135 HPC Counts Chlorine < 

0.15 mg/L 

Bench test - Zhang et al. 

2016 

AOC, assimilable organic carbon; HPC, heterotrophic plate counts; DWDS, drinking water distribution systems; 

TCC, total cell count; ATP, adenosine triphosphate. 

 

A significant positive correlation has been found to exist between the AOC concentration in 

post-treated water (essentially free from chlorine (<0.1 mg/L) and the density of heterotrophic 

bacteria within the DWDS (Van der Kooij et al. 1992). Similarly, Escobar et al. (2001) found 

a strong positive correlation between HPC and AOC (r = 0.85–0.98) within distributed water 

containing a disinfection residual. This trend is not observed within all systems; with no clear 

correlation being found between AOC and bacterial concentration (as HPC) within DWDS 
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(Carter et al. 2000; Zhang and DiGiano, 2002). However, the weak negative correlation 

between HPC bacteria and AOC observed by Zhang and DiGiano, (2002) may be due to much 

lower levels of  AOC in water, which might have provided limited support for microbial 

(re)growth in chlorinated water (LeChevallier 2003; Van der kooij 2003). Furthermore, HPC’s 

are not representative of all the bacteria in a water sample. Hammes et al. (2010) used flow 

cytometry to obtain total cell counts (TCC) to assess the biological stability of drinking water 

without a disinfectant residual. A direct correlation was found between changes in TCC and 

the AOC concentration, in which an increase in cell concentration (biomass increase) was 

always associated with a decrease in organic carbon (substrate decrease).  

The relationship between AOC and microbial (re)growth is influenced by the choice of 

disinfectant. Liu et al. (2015) demonstrated that AOC and free chlorine can have contrasting 

effects on bacterial growth. Although free chlorine was able to inhibit the consumption of AOC 

by reducing the microbial growth, chlorination was also found to increase the AOC 

concentration by damaging the structures of organic matters macromolecules and transforming 

them into AOC molecules (Thayanukul et al. 2013). This is similar to Weinrich et al. (2010) 

who found that chlorination of reclaimed water in a distribution system significantly increased 

the level of biodegradable organic matters, including AOC, subsequently increasing the 

microbial (re)growth potential of the water. 

2.3.2.8 AOC & Biofilms  

Although AOC has been demonstrated to contribute towards microbial (re)growth within 

DWDS, the majority of these studies have analysed the effects of AOC on heterotrophic 

bacteria and/or coliforms within the bulk water, and not bacteria within biofilms. It has been 

demonstrated that AOC concentration can impact the bulk water and biofilm differently. 

Despite drinking water containing a disinfect residual and an AOC concentration <50 µg C/l 

being defined as biologically stable (LeChevallier et al. 1993), the formation of biofilms has 
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been observed on pipe surfaces exposed to drinking water containing an AOC concentration of 

39 µg C/L (Okabe et al. 2004). The degree  of  biofilm formation  in  drinking  water  has   been  

shown  to  be sensitive to changes in AOC concentration. Sharp et al. (2001) assessed the 

influence of AOC concentration on biofilm protein production and biofilm HPC counts within 

a biofilm annual reactor (BAR). The BAR was fed by various treated waters, including 

anthracite filtered, GAC and ozonated / GAC water. The relationship between biofilm HPC 

and influent AOC was found to be significant for all water types (Sharp et al. 2001). This infers 

that the numbers of cells within biofilms are higher at elevated AOC concentrations. Okabe et 

al. (2002) assessed the biofilm formation rate (BFR) of drinking water four different advanced 

water treatment processes, including rotating biofilm membrane reactor (RBMR), biological 

activated carbon (BAC) filter, ultrafiltration (UF) and conventional treatment (multi-media 

filtration; MF). The RBMR and BAC filter reduced the AOC concentration by 50% resulting 

in the BFR being reduced by a factor of 5 to 10 (from 3,200–5,100 to 490–710 pg ATP cm–2). 

Similarly the BFR fell from 362 pg ATP/cm2 to 3.9 ATP/cm2 when the AOC concentration in 

drinking water was reduced from 10 µg C/L to 3.2 µg/L C/l (Van der Kooij et al. 1995). 

Consequently, when considering the impact of AOC concentration on biologically stability 

within drinking water it is important to consider both microorganisms in the bulk water and 

within biofilms.  

However, studies that assess the effect of AOC concentration on BFR typically use 

BAR (Van der Kooij et al. 1995; Sharp et al. 2001; Okabe et al. 2002) that typically do not 

accurately represent the conditions within DWDS systems but do allow laboratory scale 

control. Whilst lab based experimental set-ups go some way to understand the impact of AOC 

on biofilms within drinking water, bench scale reactors do not accurately reflect the changes in 

AOC concentration within the DWDS environment. This study will therefore analyse the 
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relationship between AOC and biofilm formation within fully operational drinking water 

supply systems.  

 Biofilm structure / architecture and community composition are thought to be 

determined by environmental conditions such as carbon availability (Karthikeyan et al. 2001). 

However, the impact of AOC on bacterial or fungal community composition within drinking 

water (bulk water or biofilm) have largely been overlooked. The few studies that have analysed 

the impact of AOC on the community structure and composition of microorganisms within 

drinking water environments have done so to analyse the efficiency of individual treatment 

processes such as bio-filtration (Pang et al. 2006; Soonglerdsongpha et al. 2011; Yang et al. 

2011; Liao et al. 2013). Liao et al. (2013) suggested that the concentrations of AOC in influent 

water to the biological activated carbon (BAC) could impact microbial community composition 

(at class level) in biofilters. 

2.3.3 Nutrients (Non-Carbon) 

2.3.3.1 Phosphorous 

Approximately >95% of UK drinking water supplies are dosed with phosphate (CIWEM, 

2012) to reduce the formation of iron and manganese precipitates which can cause deterioration 

in the aesthetic water quality (Kohl and Medlar, 2006). In addition, water can be dosed with 

phosphate or lime to increase the water pH (to 8 – 8.5) and thereby reducing the extent to which 

lead dissolves in water. Inorganic phosphates (including phosphoric acid, zinc phosphate and 

sodium phosphate) can be added to water to form orthophosphate which forms an insoluble 

coating DWDS pipes to limit lead corrosion (EPA, 2018). Phosphorous is required by 

microorganisms for cellular metabolism, particularly for the formation of high-energy 

compounds such as ATP. In countries where drinking water contains a high concentration of 

organic matter, such as boreal regions, phosphorous limits bacterial growth (Miettinen et al. 

1997; Lehtola et al. 2002, 2004). In such situations, an increase in phosphorous has been 
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correlated with an increase in biofilm biomass (Lehtola et al. 2002, Chu et al. 2005). 

Interestingly, bacteria can store phosphorous for future use when the nutrient concentration 

becomes limited, therefore bacterial growth is not directly linked to phosphorous intake. As a 

result it is not conclusive that phosphorus removal from drinking water would ultimately 

control biofilm development within a DWDS (Lehtola et al. 2004). Although heterotrophic 

organisms require inorganic nutrients such as phosphorus, nitrogen or trace elements (iron, 

magnesium, copper, potassium etc.), they are required in much smaller amounts than organic 

carbon (Ihssen and Egli, 2004).  

Phosphorus has not only been found to impact biofilm biomass but also the microbial 

communities within the biofilm (Keinänen et al. 2002) and biofilm structure (Fang et al. 2009). 

Juhna et al. (2007) found that elevated phosphorus concentrations prolonged the survival of 

culturable E. coli in water and biofilms. This therefore poses a public health risk if E. coli 

strains such as O157:H7 (which is an emerging cause of waterborne illnesses), are released into 

the bulk water. Fang et al. (2009) found that whilst phosphorous addition promoted bacterial 

growth within the biofilm, elevated phosphorous levels reduced EPS production and 

homogeneity of the biofilm structure. Fang et al. (2009) concluded that this may reduce the 

stability of the biofilm and its ability to be resistant to disinfectants. Conclusively phosphorous 

availability may affect drinking water biostability indirectly by influencing the biofilm stability 

and subsequently vulnerability to be mobilised into the bulk water.  

2.3.3.2 Nitrogen  

Autotrophic nitrifying bacteria or nitrifiers use nitrogen-based compounds (e.g. ammonia, and 

nitrite) found in DWDS for growth, and are found within both bulk water and biofilms (van 

der Wielen et al. 2009). Ammonia is found in untreated water, released during chloramine 

decay (Vikesland et al. 2001) and generated during reactions between nitrate and metal 

surfaces in DWDS (Alowitz et al. 2002). During the nitrification process, ammonia is oxidisied 
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to nitrite by ammonia oxidising bacteria (AOB), before nitrite is oxidised to nitrate by nitrite-

oxidising bacteria (NOB). Increased nitrite levels not only promote the growth of NOB but can 

also cause the deterioration of water taste and odour, and might increase heterotrophic bacteria, 

including opportunistic pathogens (Wilczak et al. 1996). The concentration of available 

nitrogen also shapes the microbial composition within DWDS, with high nitrogen-to-carbon 

ratios favouring autotrophic bacteria, whereas low nitrogen-to-carbon ratios promote growth 

of heterotrophic bacteria (Ohashi et al. 1995). It is therefore important to consider nitrogen 

availability when quantifying the degree of biological stability within DWDS, particularly in 

drinking water with highly elevated organic carbon concentrations (no carbon limitation).  

2.3.4 Iron and Manganese 

The concentration and bioavailability of metals is dependent on the source of drinking water, 

pipe material, treatment processes and disinfection. The accumulation of metals in the DWDS 

can lead to discoloration when they become mobilised by changes in the hydraulic regime, 

resulting in exceedance of regulatory standards (DWI, 2014). Iron and manganese have been 

identified to be the dominant materials mobilised, irrespective of pipe material (Boxall et al. 

2003; Seth et al. 2004; Boxall & Saul, 2005). Drinking water treatment technologies employed 

to control iron and manganese include ion exchange, filtration, oxidation and the addition of 

phosphate to the water to keep iron and manganese in solution (Minnesota Rural Water 

Association (MRWA), 2009). Two of the main sources of inorganic matter in DWDS include 

carryover from water treatment (Vreeburg and Boxall, 2007; Vreeburg et al. 2008) and 

corrosion by-products within pipes (Peng and Korshin, 2011; Prasad and Danso-Amoako, 

2014).  

The presence of iron and manganese, commonly associated with discoloured water 

events within DWDS (Husband et al. 2008), have also been observed to be positively correlated 

with biofilm activity (Ginige et al. 2011). Ginige et al. (2011) found that during late summer 
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and early autumn increased biofilm activity was associated with increased deposition of iron 

and manganese. Consequently when biofilms detach, due to a change in abiotic conditions (e.g. 

hydraulics), it is likely that the entrapped iron and manganese will be released and cause 

discolouration. Iron and manganese have also been demonstrated to influence microbial 

community composition within bulk water and biofilms (Li et al. 2010, Lϋhrig et al. 2015). Li 

et al. (2010) found a high percentage of iron-oxidising bacteria (Gallionella) within red water. 

Similarly, Lϋhrig et al. (2015) identified Pedomicrobium (manganese-oxidising) within water 

containing iron and manganese. Iron-oxidising gram-negative bacteria such as members of the 

genus Pseudomonas are likely to increase in abundance when iron concentrations are elevated 

(LeChevallier et al. 1993b). However, although there exists a large amount of research 

regarding the impact of nutrients on the bacterial community composition of drinking water 

biofilms, there is a lack of research regarding other taxa.  

Although required in a smaller amount than organic carbon, inorganics trace elements, 

including iron, manganese, copper and potassium are required for heterotrophic growth (Ihssen 

and Egli, 2004). In drinking water containing high levels of organic carbon, very low levels of 

inorganic compounds can limit bacterial growth (Miettinen et al. 1997). Furthermore, drinking 

water contains autotrophic organisms such as iron-oxisding bacteria that are able to synthesize 

organic substances from inorganic materials (Rittmann and Snoeyink, 1984; Pepper et al. 

2004). It is therefore important to consider inorganic nutrients, as well as organic carbon, when 

understanding microbial dynamics in operational DWDS.  

 

2.3.5 Hydraulic Conditions  

DWDS are characterised by variable hydraulic conditions due to variations in customer 

demand, operational changes, and occasional pipe bursts. The varying hydraulic conditions are 

thought to influence the adhesive/cohesive strength of the biofilm, the accumulation or 
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mobilisation of biofilms (Stoianov & Aisopou, 2014) and rate of mass-transfer (including 

nutrients (organic and inorganic), planktonic cells and disinfectant residual) at the pipe wall 

(Fish et al. 2017). The hydraulic residence time (HRT) can also impact water quality, as a long 

HRT can lead to a loss of disinfection residual as the water age increases (Machell et al. 2009). 

A higher HRT has been found to correlate with higher bacterial abundances within the DWDS 

(Uhl and Schaule, 2004; Nescerecka et al. 2014). The HRT also dictates the time that water 

can potentially come into contact with the pipe surface, therefore influencing processes 

occurring at the boundary layer interface. Ellis et al. (2013) analysed the number of bacterial 

failures by sample point at a UK water utility and found that the highest percentage of non-

compliance occurred at customer taps (in comparison to post-treatment or service reservoir 

water), suggesting that water quality had declined with HRT.  

2.3.5.1 Hydraulic and Biofilm Interactions 

Biofilm formation has been found to be limited by elevated flow rates, with the number of 

bacteria negatively correlating with the flow rate of the water (Ragazzo & Nardo, 2002). Cloete 

et al. (2003) found that a flow velocity in the range of 3 m/s and 4 m/s resulted in biofilm 

mobilisation. However, it is established that even when subjected to high shear stresses, a 

biofilm base layer is always present (Park et al. 2002, Abe et al. 2012).The ability of the biofilm 

to resist mobilisation is thought to be a result of the adhesive forces of the EPS matrix (Stoodley 

et al. 2002). It is only when the shear stresses acting upon the biofilm exceed the internal forces 

of the EPS that the biofilm (cells, EPS and associated material) will mobilise into the bulk 

water, therefore impacting water quality (Abe et al. 2012; Mathieu et al. 2014). Biofilm 

mobilisation is thought to be directly analogous to the cohesive-layer theory of discolouration 

(Husband and Boxall, 2016). Material is thought to accumulate at the pipe wall in cohesive-

layers that form at different strengths influenced by the boundary layer hydraulic conditions 

(Boxall and Saul, 2005; Husband et al. 2008; Van Thienen et al. 2011). Disinfection processes 



Page | 70 

 

and temperature (Ginige et al. 2011) or chemical process such as nutrient availability (Ginige 

et al. 2011) change the adhesive properties of the biofilm. Mobilisation is mainly thought to be 

a physical process caused by changes in hydraulic shear stress (Stoodley et al. 2001b). 

Mobilisation events can also cause a deterioration in water biostability, generate 

microbiological regulatory failures, pose a discolouration risk and even be detrimental to 

human health (Vaerewijck et al. 2005).  

Biofilm morphology has been demonstrated to be a function of hydraulic conditions, 

with shear forces impacting the thickness, density, strength and structure of the biofilm (Liu & 

Tay, 2002; Laspidou & Rittmann, 2004; Menaia & Mesquita, 2004; Abe et al. 2012). When 

subject to elevated shear stress the density of the biofilm has been demonstrated to increase 

whilst the biofilm thickness decreased. This is thought to be a result of increased compression 

of the biofilm (Paul et al. 2012), potentially generating a more stable structure (Manuel et al. 

2007). In contrast, Rochex et al. (2008) found that thicker biofilms developed under higher 

shear stresses, which they argue could be a result of increased biomass due to increased mass 

transfer or an increase in the cohesive strength of the biofilm (Stoodley et al. 1999, Horn et al. 

2003). The shear stress required to generate mobilisation is also a function of biofilm volume. 

Larger sized biofilm clusters have been demonstrated to both be able to resist mobilisation due 

to their adhesive properties (Lehtola et al. 2006) and more readily detach than their smaller 

counterparts (Abe et al. 2012). The hydraulic regime is therefore able to influence biofilm 

stability, and potential to be mobilised into the bulk water, by indirectly dictating biofilm 

morphology.  

Although biofilm development has been shown to be limited by high water velocities 

due to the shear stress at the interface (Ragazzo & Nardo, 2002), the velocity can also impact 

the nutrient available for the biofilm (Ollos et al. 2003; Lehtola et al. 2006; Torvinen et al. 

2007). Ollos et al. (2003) found that higher flow velocity of water increased the mass transfer 
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of growth limiting nutrients to the biofilm. Fish et al. (2017) used a full-scale, experimental 

DWDS facility to analyse the impact of flow variation on biofilm growth and subsequent 

mobilisation. The study found that biofilms subjected to high flow variation during growth had 

the largest biomass. The accumulation of greatest biofilm biomass at high varied flow was 

attributed to greater mass-transfer of trace nutrient to the pipe wall during times of greater 

turbulence (Reynolds number >4000 for turbulent flow) (Fish et al. 2017). Therefore, high flow 

rates can lead to greater nutrient uptake by the biofilm, acting as a net sink of nutrients.  

Douterelo et al. 2013 assessed the influence hydrological regime on bacterial 

community structure and composition within biofilms in an experimental DWDS. Bacterial 

community  composition  was found to differ between  biofilms  and  bulk  water  samples, 

with  Gammaproteobacteria  and Betaproteobacteria being the  most  abundant  phyla  in  

biofilms. It has previously been demonstrated that particular bacterial species have selective 

advantage in being able to attach to surfaces and form biofilms due to their ability to express 

cell surface polymers that can increase cell hydrophobicity and promote processes such as co-

aggregation (Rickard et al. 2003; 2004). 

An increasing amount of research has been conducted aiming to understand hydraulic 

and biofilm interactions (Lehtola et al. 2005; 2006; Fish et al. 2017). However, the majority of 

which use idealised laboratory studies that incorporate bench top reactors that do not accurately 

replicate the conditions in operational DWDS (Murga et al. 2001; Simoes et al. 2005). Drinking 

water demands not only vary spatially due to different environmental and socio-economic 

climates, but also temporarily due to diurnal and seasonal changes in customer behaviour. The 

domestic pattern in demand for water for example includes two peak periods at approximately 

7:00-10:00am and 5:00-8:00pm (Beal et al. 2011), and low night time flow. Although it is 

important to replicate diurnal flow within DWDS test facilities, this study chose to adopt a 
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steady state flow to ensure that AOC was the dominant factor influencing biofilm formation, 

rather than changes in hydraulic regime.  

2.3.5.2 Discolouration 

A change in hydraulic conditions, such as a pipe burst or increase in demand, that raises the 

boundary shear stress above the conditioned value, is recognised as the trigger for 

discolouration events (Husband et al. 2008). As the material responsible for generating 

discolouration consists of small particulates approximately ~10μm in size (Gauthier et al. 2001; 

Seth et al. 2004; Verberk et al. 2006), unless DWDS exhibit very low flows for extended 

periods of time, gravitational sedimentation is not the dominant force controlling material 

behaviour (Boxall et al. 2001). Similarly, Fish et al. (2013) found no statistical difference 

between attached microbial assemblages found on high-density polyethylene (HDPE) coupons 

within a pipe loop test facility positioned on the bottom, middle and top of the pipe. This 

suggests that gravitational processes are not the dominant force acting upon biofilms. Greater 

flow rates and shear stresses can re-suspend particles (often containing a high organic matter 

content) (Gauthier et al. 1999, Camper et al. 2003) resulting in a greater degree of chlorine 

residual decay. This can promote microbial growth downstream and lead to a loss of biological 

stability in the DWDS.  

2.3.5.3 Network Cleaning 

Network cleaning programmes are used to remove material from the pipe walls of the DWDS. 

Cleaning programmes include the use of water flushing, water/air scouring, pigging, swabbing 

or scraping. Although methods such as swabbing and pigging are able to remove the greatest 

amount of attached material from the pipe wall, these methods are disruptive and comparatively 

expensive (Vreeburg & Boxall, 2007). Sunny et al. (2017) found that although trunk main 

cleaning using pigging substantially improved the hydraulic capacity and reduced headloss, 

relatively loose material had not been fully removed from the pipe wall and therefore the water 
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quality risk still remained. In general, water flushing programmes are more cost effective 

(Vreeburg and Boxall, 2007), however large volumes of water are required. Furthermore, all 

of the above listed cleaning methods can potentially generate customer complaints due to 

inconvenience or potentially produce a large quantity of mobilised material which can generate 

turbid water. Particularly abrasive cleaning methods can expose underlying ferrous material of 

the pipe surface which was previously protected accumulated deposits (Vreeburg and Boxall, 

2007). Flushing cannot completely remove biofilms from pipe walls due to the cohesive 

properties of the system and their ability to recolonise the pipe wall once detached (Abe et al. 

2012, Paul et al. 2012).  

Prediction of Discolouration in Distribution Systems (PODDS) (Husband & Boxall, 

2010) is an empirically validated model, based upon a ‘cohesive layer theory’, which proposes 

that flows above peak daily demands can lead to mobilisation of material from the pipe walls. 

In this way it is possible to increase the flow rate during standard operation to incrementally 

remove accumulated material layers and hence reduce discolouration risk pro-actively. This 

has been demonstrated for distribution pipes with diameters less than 150 mm (Boxall and 

Saul, 2005; Husband et al. 2008; Husband and Boxall, 2010) and trunk mains (Husband and 

Boxall, 2016). Consequently, hydraulics can be used to manage biofilms within DWDS. In the 

Netherlands, a velocity at which shear stresses reduce the rate of material accumulation has 

been established, termed the self-cleaning velocity (Van den Boomen et al. 2004). At a velocity 

of at least 0.4 m/s material within the DWDS is re-suspended preventing accumulation on pipe 

surfaces. Countries such as the Netherlands are also reliant on very low concentrations of AOC 

(<10 µg / L) to limit microbial (re)growth within drinking water. It has not yet been determined 

if AOC limitation in drinking water can help prevent biofilm accumulation and be used in 

tandem with other DWDS management strategies such as network cleaning. 
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2.3.6 Temperature / Seasonality 

Seasonality can significantly affect the quantity and quality of available raw drinking water, 

and the quantity of water used by consumers. Water companies can experience seasonality in 

customer contacts. For example periods of freezing temperatures followed by a rapid thaw can 

lead to burst pipes in the DWDS, and an increase in customer contacts due to discolouration as 

the supply is recharged (DWI, 2018). Similarly a significant increase in temperature can lead 

to unprecedented levels of customer demand, which can cause a decline in source water levels, 

potentially causes interruptions in supply.  

Increased temperatures within the DWDS has frequently been associated with an 

increase in bacterial abundance (Francisque et al. 2009; Henne et  al. 2012; Liu et al. 2013), 

and an increase in indicator organisms such as coliforms (LeChevallier et al. 1996) within bulk 

water samples. Francisque et al. (2009) found that growth of heterotrophic bacterial was limited 

at lower water temperatures, with no HPC in 75% of collected samples at water temperatures 

≤4°C. Temperature has also been found to have a significant influence on biofilm activity, with 

an increase in temperature often resulting in elevated bacterial numbers and biomass in biofilms 

due to increased growth and replication (Hallam et al. 2001; Lehtola et al. 2004). Hallam et al. 

(2001) reported that biofilm activity decreased by approximately half at a temperature of 7°C 

compared to 17°C. Not only is temperature thought to influence bacterial abundance, but also 

affect bacterial community composition (Prest et al. 2016). Water temperature may provide a 

selective advantage to microorganisms, including pathogenic species, which are better adapted 

to specific temperature ranges (Vital et al. 2007, 2012). Torvinen et al. (2007) found that water 

temperature had the greatest influence on the survival of Mycobacterium avium (assessed using 

culture and fluorescence in situ hybridization methods)  in biofilms, in comparison to changes 

in flow velocity or phosphorous.  
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Elevated temperatures can also generate increased bacteriological activity 

(LeChevallier et al. 1996; Silhan et al. 2006) and accelerate the rate of reactions, such as the 

formation of disinfection by-products (therefore providing a food source for heterotrophic 

organisms) (Toroz & Uyak, 2005; Roccaro et al. 2008). Furthermore, temperature can 

influence the kinetics of chlorine demand in the system. Ndiongue et al. (2005) found that a 

temperature of 12 to 18°C caused the chlorine demand in an annual reactor to almost triple, 

therefore leading to a potential loss of biological stability within the system. Temperature has 

also been found to influence the amount and rate of biofilm mobilisation into the bulk water 

(Sharpe et al. 2012). In a temperature controlled pipe loop facility, Sharpe et al. (2012) found 

that larger quantities of material were mobilised at 16°C, than at 8°C. The biofilm mobilisation 

rate was also influenced by the hydraulic regime, with temperature having the greatest effect 

on turbidity, iron and manganese release at the lowest flow rate with a steady shear stress of 

0.1 (N/m²). Sunny et al. (2018) found a correlation between seasonal temperature, TOC 

concentration and microbial growth within UK DWDS trunk mains. The authors suggest that 

higher temperatures resulted greater accumulation of material on boundary surfaces should it 

be mobilised. Temperature is therefore potential a major influence on biological stability within 

DWDS, particularly when temperatures are elevated.  

2.3.7 DWDS Infrastructure: Pipe material, Diameter and Roughness 

DWDS infrastructure can affect water quality in a number ways through corrosion, ingress 

potential and biofilm forming potential (BFP). Pipe material, diameter and roughness are all 

components that can ultimately impact water quality due to their BFP. The DWI lists a number 

of approved pipe materials for use in public supply in the UK, including polyethylene (PE), 

polyvinyl chloride (PVC), glass reinforced plastic (GRP), cement mortar lined and stainless 

steel (DWI, 2019), although a large number of historical pipes are made of cast iron. Pipe 

materials are able to able to modify biofilm formation through two mechanisms: (1) release of 
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organic and inorganic compounds such as iron or copper which subsequently influence 

microbial (re)growth (Lehtola et al. 2004); (2) affect the decay rate of disinfection residuals, 

in some cases resulting in elevated microbial (re)growth (Hallam et al. 2001).  

Recently, plastic materials have been favoured over traditional metal materials as they 

are more cost-effective (Yu et al. 2010) and provide a smoother surface that can potentially 

reduce biofilm (re)growth (Chang et al. 2003). Distribution pipes with a high surface 

roughness, such as unlined cast iron, can have a high BFP as corroded iron pipes may offer 

numerous bacterial attachment sites (LeChevallier et al. 1993b). Microbially influenced 

corrosion of the pipe surface can also release nutrients from the pipe material and form by-

products that affect surface roughness (Niquette et al. 2000). A large number of studies have 

found that pipes consisting of plastic materials are able to reduce bacteria density and diversity 

in comparison to those made of iron (Kerr et al. 1998; Niquette et al. 2000), steel (Yu et al. 

2010) or cement (Niquette et al. 2000, Camper et al. 2003). Niquette et al. (2000) demonstrated 

the density of fixed bacterial biomass to be lower on PVC and PE in comparison to those 

consisting of iron (bacterial biomass was 10-45 times higher on grey iron than plastic-cased 

materials) or cement-based materials. Furthermore, the quickest rate of biofilm development 

has been demonstrated to occur on iron pipes than other materials (Camper, 1996). Pipe 

material also impacts the microbial diversity of biofilms. In a study of faucet biofilms, Liu et 

al. (2010) used pyrosequencing to find that the bacterial composition was substantially 

influenced by the pipe materials (PVC and cast iron). Similarly, Yu et al. (2010) demonstrated 

that the DGGE profile of bacteria 16S rDNA fragments presented differences between different 

pipe materials. Plastic material can also have affects beyond reducing biofilm formation. 

Particulate material can also accumulate at a slower rate upon plastics than on cast iron pipes 

due to in-situ corrosion of cast iron pipes. However, in some scenarios, biofilm activity has 
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been demonstrated to be more strongly influenced by abiotic factors, such as chlorine (Hallam 

et al. 2001), than pipe material.  

Whilst plastic pipes may have demonstrated to reduce the BFP, they can release 

biodegradable organic compounds and phosphorus potentially trigger microbial (re)growth and 

biofilm formation (Yu et al. 2010). Furthermore, some metals such as copper, have been 

demonstrated to reduce the BFP and bacterial diversity in comparison to plastics (Yu et al. 

2010). Using a pilot DWDS, Lehtola et al. (2004) found that biofilm formation was slower in 

copper pipes than PE pipes, and that pipe material also influenced the bacterial community 

structure within both biofilms and the bulk water. Copper produces corrosion products that 

affect bacterial attachment on the surface by creating an environment that is toxic to most 

microorganisms e.g. Legionella (Kim et al. 2002).  

However, bacteria, such as Pseudomonas aeruginosa, have demonstrated greater 

resistance to the toxic effects of copper when residing within in biofilm than when in the 

planktonic phase (Teitzel & Parsek 2003). Not only does pipe material influence the degree of 

biofilm formation, but the establishment of biofilms also impacts the condition of the pipe 

material via biocorrosion. Biocorrosion (or microbially influenced corrosion - MIC) consists 

of a number of complex interactions between the substrate, corrosion products, bacterial cells 

and the substances generated during metabolism (Beech & Sunner, 2004). The result of 

biocorrosion is twofold, with an increase in nutrient concentration in the area immediate to the 

pipe wall, and an increase in pipe surface roughness as metabolic by-products form (Norton & 

LeChevallier, 2000).  

  Volk et al. (2000) found that iron-oxidising bacteria can precipitate iron oxides where 

iron is converted to ferric iron. It is this increase in surface roughness due to bio-corrosion that 

can subsequently concentrate organic nutrients and promote biofilm development 

(LeChevallier et al. 1993b) by creating an environment more suitable for colonisation e.g. a 
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greater surface area for adhesion. Corrosion has also been demonstrated to generate increased 

protection from free chlorine disinfection (LeChevallier et al. 1993b). During corrosion, the 

released ferrous iron can remove reduce chlorine (Li et al. 2010), subsequently decreasing the 

rate of biofilm mobilisation. It is therefore important to consider pipe material when designing 

experimental pipe loop facilities and ensure it is representative of operational DWDS (Section 

4.5.1 DWDS Pipe Loop Test Facilities).  

2.4 Summary 

One of the main goals of water utilities is to provide the consumer with microbially safe, high 

quality drinking water. In order to achieve this, drinking water in the DWDS should be 

biologically stable and therefore the concentration of bacterial cells and composition of the 

microbial community should not deteriorate from the point of leaving the treatment works to 

reaching the customers tap. The (re)growth of microorganisms within the DWDS is influenced 

by a host of parameters including hydraulic regime, disinfection residual or nutrient 

availability. A disinfectant residual is applied to limit (re)growth of microorganisms within the 

network. However, the maintenance of a chlorine residual alone cannot be relied upon to 

completely eliminate bacterial growth within DWDS as bacteria have been found to grow when 

residual disinfectants are depleted, at remote locations and/or during warm periods 

(LeChevallier et al. 1996; Uhl and Schaule, 2004; Nescerecka et al. 2014). Alternatively, few 

European countries, including the Netherlands, Switzerland, Austria and Germany use 

extensive treatment strategies to limit nutrients in water that can serve as food source for 

bacteria to grow. As AOC is the fraction of carbon most easily consumed by bacteria for 

growth, it is considered one of the most important parameters governing biological stability in 

drinking water systems. Despite this, water utilities do not conduct routine AOC measurements 

due the time required to complete the assay and its lack of reproducibility. Furthermore, studies 

which analyse AOC variation within DWDS do not undertake service reservoir (SR) inlet and 
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outlet sampling, and therefore it is not clear if the DWDS pipes or SR are acting as sources or 

sinks of AOC. The majority of microorganisms found within the DWDS are known to exist in 

communities attached to the inner surface of the pipe forming a biofilm. Although it has been 

demonstrated that microbial communities occur ubiquitously at the DWDS pipe interface, we 

lack understanding of their relationship with AOC and biological stability. To fully understand 

the impact of AOC within DWDS, research into drinking water at the pipeline level is essential. 

Understanding the relationship between drinking water microbiology and AOC will allow 

water utilities to better quantify biological stability, and limit biofilm formation and (re)growth 

within operational DWDS.  
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Chapter 3: Aims & Objectives 

3.1 Introduction  

There is a need to better understand the concentration of AOC within operational DWDS and 

its relationship to biological stability and (re)growth. DWDS are complex environments 

consisting of pipes and SR, varying in hydraulic retention time (HRT), surface to volume ratio, 

material, water chemistry, disinfection regime and flow regime. All of these parameters can 

potentially impact the AOC concentration and subsequently the growth rate and community 

composition of microorganisms, both in the bulk water and within biofilms in DWDS.  

This thesis chapter will set out the aims and objective of this thesis. This research aimed 

to develop a refined AOC method, which could be used to determine AOC removal efficiencies 

at WTW and determine a wide range of AOC concentrations. Furthermore, this study will 

determine the impact of spatial and temporal variation in AOC concentration on the biostability 

of post-treated water, and identify any sources or sinks of AOC within the DWDS. Purpose 

built DWDS pipe loop test facilities will be used to understand the impact of AOC 

concentration on biofilm growth and subsequent mobilisation within the DWDS. This research 

will provide a new understanding of the role that AOC plays within drinking water systems, in 

particularly how AOC impacts biofilm growth, development and mobilisation.  

3.2 Aims & Objectives 

The objectives of this research were: 

i) To develop a rapid, robust AOC method that can be routinely applied to operational 

WTW to gain an insight into AOC removal efficiencies during treatment. 

ii) To quantify AOC concentrations from DWDS supplied by different source waters 

and WTW, ranging from clean borehole to surface water site and different 

disinfection residuals (chlorinated and chloraminated). This work will determine if 
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and how AOC varies within and between different systems, and how AOC is 

impacted upon by the choice and concentration of disinfection residual.  

iii) To quantify the degree of 'biological stability' within DWDS by comparing the AOC 

concentration with routine bulk water quality parameters to provide a greater insight 

the relationship between AOC concentration, microbial cell counts and disinfectant 

within DWDS.  

iv) To understand spatial and temporal fluctuations in AOC within DWDS by 

conducting service reservoir (SR) inlet and outlet sampling. This piece of work aims 

to identify which areas of the DWDS (pipes or service reservoirs) were acting as 

sources and sinks of AOC.   

v) To determine the relationship between AOC concentration and biofilm volume, 

community composition and stability within a DWDS.  

vi) To characterise the effect of elevated shear stress (flushing) upon the biofilms that 

has accumulated under different AOC concentrations, and to quantify how easily 

the material mobilised into the bulk water. The released material will be assessed 

in terms of AOC concentration, cell counts, turbidity and inorganic material. 

Ultimately this research will determine if an elevated AOC concentration in the bulk 

water will affect the microbial and discolouration risk of the biofilm.  
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Chapter 4: Methodology & Methods 

4.1 Introduction  

AOC is considered one of the key parameters governing biological stability within DWDS. 

Understanding the AOC concentration within drinking water and the impact it has on 

planktonic and attached biofilm microbiology, is critical to achieving effective drinking water 

management. This chapter will set out the methods used to answer the aims set out in Chapter 

3, and set out how they will be integrated together. The experimental plan will be divided into 

laboratory method development, fieldwork sampling and finally experimental work (Figure 

4.1).  

 

 

 

 

 

 

 

 

Laboratory: 

- AOC method development to produce a fast, 

reproducible test for routine AOC sampling 

within operational WTW and DWDS.  

Fieldwork: Application at 

WTW 

- Application of developed 

AOC method at 20 WTW 

(raw and treated water) for 

2 months to determine 

AOC removal 

efficiencies. 

 

 

 

Field & Experimental Work: Application at 

DWDS 

- Application of AOC method within four 

DWDS to determine spatial and 

temporal variation in AOC over two 

years.  

- Installation of three full-scale, 

experimental pipe loops at three WTW 

to enable biofilm sampling over one 

year.  
 

 
Figure 4.1: Overview of experimental plan, including laboratory, field and experimental 

work.   



Page | 83 

 

4.2 Aims, Objectives & Experimental Overview  

AOC is not currently routinely sampled in drinking water due to the time-consuming nature of 

the method, and lack of reproducibility between measurements. A series of lab trials were 

conducted to develop novel advancements in the AOC method to improve the speed and 

robustness of the protocol. By developing a quick, standardised AOC method, this study aimed 

to conduct detailed AOC sampling of WTW and DWDS water to reveal new understandings 

of AOC within operational drinking water systems. The developed AOC method was applied 

to raw and post-treated water at twenty Scottish Water WTW to assess the AOC removal 

efficiencies across a range of source water and treatment types. Four of the WTW were then 

selected for further AOC sampling at a number of service reservoirs in their DWDS to reveal 

how AOC varies on both a temporal 0nad spatial scale within the DWDS.  

Current field application of AOC is often limited to laboratory scale systems (Aggarwal 

et al. 2015; Hammes & Egli, 2015; Ross et al. 2013; Wen et al. 2017) or application at WTW 

without consideration of AOC concentrations and behaviour within the DWDS. Although the 

impact of AOC on bulk water microbiology has been studied (Escobar et al. 2001; Zhang and 

DiGiano, 2002), there is a paucity of information regarding the impact of AOC on biofilm 

communities residing on the pipe walls of DWDS. This thesis will determine if AOC varies 

within different components of the DWDS (such as pipes and service reservoirs), which are 

characterised by different surface-area-to-water-volume ratios, thereby impacting the time 

water comes into contact with the infrastructure surface. The successfully validated AOC 

method developed in this study was used to determine the AOC concentration within four 

DWDS (downstream of four Scottish Water WTW) for two years. The second year of bulk 

water sampling corresponded with the one-year experimental pipe loop programme outlined in 

the following section. Unique sampling was conducted at service reservoir (SR) inlets and 

outlets to determine if the AOC concentration changes in service reservoir or pipe dominated 
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areas of the network. Each of the four WTW / DWDS were characterised by different source 

water qualities, treatment practices and choice of secondary disinfectant. 

AOC has previously been shown to contribute towards microbial (re)growth within 

DWDS but the majority of research has focused upon effects of AOC on heterotrophic bacteria 

and/or coliforms within the bulk water, rather than considering bacteria within biofilms. To 

explore the impact of AOC on DWDS biofilms as well as bulk water quality, whilst 

maintaining full-scale hydraulic conditions, three unique pipe loop test facilities were designed 

and installed for the first time at fully operational WTW. Previous biofilm investigations at the 

University of Sheffield pipe loop experimental facility have analysed accumulated material at 

7 days (Husband, et al. 2008), 28 days (Sharpe et al. 2010; Douterelo, et al. 2013, Fish et al. 

2017) and three months (Douterelo et al. 2018). Although short times scales enable weekly 

biofilm sampling, this timeframe only allows insight into the initial development of biofilms 

and not biofilm maturation. The experimental programme consisted of a one year-long study, 

in which biofilm samples were collected every three months during the growth phase, whilst 

the AOC concentration was monitored in the bulk water. The impact of AOC concentration on 

the cell count, community composition and total volume of the biofilm (including organic and 

inorganic components) was assessed. The experimental programme was designed to run for 12 

months to capture biofilm maturation over a long-term timescale and to capture the seasonal 

impacts on AOC concentration and biofilm growth. Following on from the one year-long 

growth period, the pipe loops were flushed to provide an insight into the impact of AOC 

concentration on biofilm mobilisation into the bulk water at different AOC concentrations.  

The pipe loop test facilities were installed at the exit of three WTW, each being fed 

with post-treated water containing contrasting AOC concentrations (high, medium and low). 

The three test pipe loop facilities were purpose built for this study, based on the successful 

designed used by Sharpe et al. (2010), Fish et al. (2017) and Douterelo et al. (2018). This thesis 
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presents the first use of the pipe loops at the outlet of WTW to study the impact of different 

AOC concentrations on biofilm and bulk water quality in down-stream pipes. These unique 

pipe loops accurately represent the real environmental conditions of an operating DWDS, 

whilst enabling quick and controlled biofilm sampling, with laboratory level control. The 

design of the pipe loop is such that it is able to accurately represent biofilm accumulations in 

the networks during the 12 month ‘growth phase’, but also biofilm mobilisation during the 

‘flushing / mobilisation phase’.  

4.3 AOC Method Development 

To develop a quicker but robust AOC method, established methods by van der Kooij et al. 

(1982), LeChevallier et al. (1993a) and Hammes & Egli (2005) were assessed in combination 

with different variations of these protocols and incorporating alternative cell quantification 

approaches (Figure 4.2).  
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Figure 4.2: Overview of AOC methods evaluated in this study. This included AOC methods 

from van der Kooij et al. (1982), LeChevallier et al. (1993a) and Hammes & Egli (2005). 

 

Assessment of the methods included protocols that incorporated different inoculum strains, 

incubation temperatures and enumeration techniques that were varied beyond the variations 

listed in Table 2.2 (Chapter 2). An initial laboratory trial analysed differences in the yield 

values and AOC results obtained when using two known bacterial strains (Pseudomonas 

fluorescens strain P-17 and Spirillum strain NOX), in comparison to using a natural inoculum. 

The results from this test were used to inform further trials to determine the possible options 

for reducing the time and resources required to complete an AOC assay by modifying the: 

incubation temperature, inoculation volume and enumeration technique. The use of an 

indigenous bacterial inoculum assumes that, due to the bacterial community being diverse, the 

organisms would be able to grow on any AOC combination within a water sample. To 
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investigate this, different microbial inoculums were collected from post-treated water and used 

to measure AOC in a number of drinking water and sodium acetate samples.  

4.3.1 Overview of AOC Trials  

The ability of the AOC methods described van der Kooij et al. (1982), LeChevallier et al. 

(1993a) and Hammes & Egli (2005) to quantify AOC within 40 ml sodium acetate standards 

containing 0 (n=3), 100 (n=3), 250 (n=3), 500 (n=3), 750 (n=3) and 1000 µg C / L (n=3) was 

first assessed. In the Van der Kooij et al. (1982) method, sodium acetate standards were first 

sterilised before being inoculated with 500 CFU/mL of each of the pure cultures P-17 and 

NOX. The sodium acetate standards were then incubated at 15 °C for 9 days, with samples 

being removed on days 7, 8 and 9 for enumeration using heterotrophic plate counts (HPC) 

(Section 4.3.5.1). The LeChevallier et al. (1993a) method was performed as listed except 

samples were enumerated using the adenosine triphosphate (ATP) method, instead of HPC. 

Furthermore, 500 CFU/mL of each of the cultures of P-17 and NOX were inoculated into 

separate vials.  

When using the Hammes & Egli (2005) method, a natural microbial inoculum was used 

instead of known bacterial strains. As the inoculum used in this assay was autochonous to the 

water sample in question, pasteurisation was not required. Instead the water samples were 

filtered (0.22 µm pore, Millex-GP, Millipore) to remove bacteria and interfering particles, and 

re-inoculated within 100 µL of the natural microbial inoculum (Section 4.3.4). Samples were 

enumerated at 30 °C until stationary phase is reached (after 2-3 days) and then enumerated 

using flow cytometry (Section 4.3.5.2).  

Although flow cytometry has been demonstrated to be a successful enumeration 

method when using a natural inoculum, it has not yet been used to count P-17 and NOX 

incubated at 15 °C. Using sodium acetate standards containing 0 or 100 µg C/L, samples were 

inoculated with either 500 CFU/mL of either P-17 or NOX, before being incubated at three 
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different temperatures; 15 °C, 23 °C and 30 °C, to determine the effect of incubation 

temperature on the maximum cell yield. To determine the effect of inoculum density in the 

assay the inoculum volume was increased from 500 CFU/mL of each P-17 and NOX to 20,000 

CFU/mL, whilst maintaining the incubation temperature at 15 °C. When using a natural 

microbial inoculum in the AOC method, the exact microbial composition of the inoculum is 

not known, and it is unclear if this can affect the final AOC concentration. To test the influence 

of different natural microbial inoculums, inoculums were collected from four different post-

treatment locations at Scottish Water WTW. The four inoculums were subsequently used to 

calculate the AOC concentration within sodium acetate samples containing 100 µg C /L (n=3). 

 

4.3.2 Glassware Preparation  

For all AOC analysis protocols, all glassware was rendered organic-carbon free using the 

following series of washes and sterilisation. Wash common detergent (30 mins), rinse distilled 

water, soak in 0.2 M hydrochloric acid (HCl) (Fisher Scientific, UK) overnight, rinse distilled 

water, cap in foil and heat in a muffle furnace at 550 °C for 6 h. A Polytetrafluoroethylene 

(PTFE) lined silicone septa was used to cap the carbon-free 45 mL borosilicate glass vials. 

 

4.3.3 Preparation of Pseudomonas fluorescens strain P-17 and Spirillum strain NOX 

Inoculum 

When using the two known strains, cultures of P-17 (ATCC 49642) and NOX (ATCC 49643) 

were acquired from the American Type Culture Collection (ATCC). The cultures were 

rehydrated using Nutrient Broth (made up of 3.0 g/L beef extract (Sigma-Aldrich, UK), 5.0g 

peptone (Sigma-Aldrich, UK)) for P-17 (26 °C for 24 hours) and Trypticase Soy Broth (Sigma-

Aldrich, UK) (30 g/L) for NOX (28 °C for 72-96 hours). The cultures were stored in cryovials 

using 20 % glycerol at -70 °C. Frozen cultures were thawed and streaked out on R2A agar 

(Sigma-Aldrich, UK) (18.1 g/L) and incubated at room temperature for 3-5 days. The 
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preparation of the stock cultures was performed as described in LeChevallier et al. (1993) and 

Aggarwal et al. (2015).  

 

4.3.4 Preparation of Natural Microbial Inoculum 

The natural microbial inoculum was prepared according to the protocol described by Hammes 

& Egli (2005). In short, 40 mL of water was collected from a WTW and filtered using a 0.22 

µm pore filter (Millex-GP, Millipore). The filtered water sample was then inoculated with 100 

µL of unfiltered water and incubated at 30 °C for 14 days. Microbial cells were harvested from 

the water sample by centrifugation (10 min, 3000g (relative centrifugal force)) and re-

suspended in mineral buffer. Mineral buffer consisted of 7.0 mg/L K2HP04 (potassium 

phosphate dibasic)) (Sigma-Aldrich, UK); 3.0 mg/L KH2PO4 (Monopotassium phosphate 

(monobasic potassium phosphate) (Sigma-Aldrich, UK); 0.1mg/L MgSO4 7H2O (Magnesium 

sulphate heptahydrate) (Sigma-Aldrich, UK); 1.0 mg/L NH4SO4 (Ammonium Sulphate) 

(Sigma-Aldrich, UK); 0.1 mg/L NaCl (Sodium chloride) (VWR International, UK); 1.0 µg/L 

FeSO4 (Iron(II) sulphate)) (Sigma-Aldrich, UK) and 1 L HPLC (high performance liquid 

chromatography) water. The resulting solution was incubated for an additional seven days to 

ensure that all residual organic carbon had been degraded.  

4.3.5 Enumeration  

4.3.5.1 Heterotrophic plate counts (HPC) 

Water samples were inoculated with P-17 and NOX and incubated at 15°C for 7-9 days, before 

being enumerated using HPC, flow cytometry (Section 4.3.5.2) and ATP (Section 4.3.5.3). 

HPC were performed by generating a dilution series before plating on nutrient or R2A agar and 

incubating at 25 °C for 3 to 5 days. Samples enumerated using HPC counts were plated at 102, 

103 and 104 dilutions in duplicate. The average net growth of the 3 days was then used to 
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generate a final AOC concentration in acetate-C equivalents using a pre-derived yield value of 

4.1 x106 CFU P-17/µg acetate-C and 1.2 x107 CFU-NOX/µg acetate-C.  

4.3.5.2 Flow Cytometry  

A 500 µL volume of samples are stained with 5 µg/mL of SYBR Green (Life Sciences) and 

enumerated with flow cytometry (Section 4.6.1). Where necessary, samples were diluted after 

staining in filtered (0.22 µm) mineral water, so that counts measured were always less than 3 

x 105 cells/mL. To convert the cell counts to AOC concentrations, a theoretical conversion 

value of 1x107 cells was used:  

AOC (µg/L) = ((netgrowncells) / L)) / ((1 x 107 cells) / (µg/C)) (Hammes & Egli, 2005). 

 

4.3.5.3 Adenosine triphosphate (ATP)  

Samples were enumerated using ATP as described in LeChevallier et al. 1993a. Measurements 

were made using the BacTiter-GloTM Microbial Cell Viability Assay (Promega, UK). Total 

ATP was established using the BacTiter-Glo reagent (G8231; Promega Corporation) and a 

luminometer (Tecan). ATP analysis introduces an additional conversion factor to convert ATP 

to cell concentrations. Relative light units (RLU) were first converted to cell concentrations 

using a calibration curve (LeChevallier et al. (1993a) proposed values of 1.85 fg/cell (P17) and 

0.213 fg/cell (NOX)). The estimated cell concentrations were further converted to AOC 

concentrations using the proposed conversion values of van der Kooij et al. (1982). 

 

4.3.6 Controls 

Controls were included for growth, yield and negative controls for carbon contamination in all 

cases. The blank control consisted of inoculating a carbon free mineral salts solution 

(inorganics) with P-17 and NOX to check for any carbon contamination from glassware.  The 

growth control, consisting of a water sample containing diluted mineral salts (inorganics) and 

diluted acetate (carbon) and was used to determine if samples were limited by nutrients other 

Equation 1 
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than carbon. The yield control was used to check the yield of the organisms by monitoring their 

growth in high-performance liquid chromatography (HPLC) water containing diluted mineral 

salts (inorganics) and diluted acetate (carbon). 

 

4.3.7 Summary 

The developed AOC methodology combined the known strain inoculum approach (using P-17 

and NOX), with a larger inoculum volume (10,000 cells/mL) and flow cytometric enumeration. 

 

4.4 Validation of AOC Method at Water Treatment Works (WTW) 

The developed AOC method was validated via application to water samples collected from 20 

drinking WTW, with water samples being taken from raw (pre-treatment) and treated (post-

treatment) water (Table 4.1); between which an AOC decrease was expected. WTW were 

selected with contrasting source waters, treatment processes and disinfectant types to confirm 

the application of the method to a large array of AOC concentrations. 40 mL water samples 

were collected in 45 ml carbon free glass vials weekly for 2 months (n=3) and analysed for 

AOC in the lab within 24 hours. In addition to AOC, various other water quality parameters 

were also analysed to help correlate expected trends and help assess the degree of drinking 

water biostability.   
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Table 4.1: Twenty WTW selected for AOC method validation, including sampling within 

raw (pre-treatment) and final (post-treatment) water. The twenty WTW were selected to 

represent a range of water sources, treatment stages and disinfectant types. 

Source 

Water 
Treatment Type WTW ID 

Disinfectant 

Residual 
DWDS ID 

Pipe 

Loop 

ID 

Reservoir 

RGF 1, 2, 3, 4, 5 

Cl2 

1 A 

DAF 6 - - 

GAC 7 - - 

Membrane 
8 - - 

9  

NH2Cl 

  

- - 

 

 

River 

Clarification 10 - - 

RGF 11, 12, 13 2 - 

DAF 14 
Cl2 

- - 

Membrane 15 - - 

16 NH2Cl 3 B 

Groundwater Conditioning only 17, 18, 19 Cl2 - - 

Membrane 20 NH2Cl 4 C 

WTW = water treatment works; DWDS = drinking water distribution system, ID = identification 

number / letter. Table includes water source, treatment type (RGF: rapid gravity filter, DAF: dissolved 

air flotation, GAC: granular activated carbon, or membrane), choice of disinfectant (Cl2: chlorine, 

NH2Cl: monochloramine) and number of WTW with each treatment type. The final column represents 

the 4 DWDS selected for further AOC sampling at service reservoirs inlet and outlets. *DWDS 1-4 

were selected for investigation as they contain different AOC concentrations in post-treated water.  

 

4.5 Quantifying AOC Concentration within DWDS 

4.5.1 Four DWDS: Source to Tap Details 

To understand variations in AOC concentration with increasing distance into the distribution 

system, and compare the behaviour of pipes and SR as sources or sinks of AOC, four DWDS 

were selected for in-depth AOC sampling. Each supply system comprised of a WTW and three 

downstream SR at increasing distances into the DWDS. The supply systems were selected from 

the 20 WTW (as highlighted in Table 4.1), included WTW 2 (DWDS 1), WTW 12 (DWDS 2), 

WTW 16 (DWDS 3) and WTW 20 (DWDS 4). The supply systems were characterised by three 

main source water types (groundwater, surface water (river) and surface water (reservoir)), 

differing treatment processes (see Table 4.2) and disinfection residuals (chlorine and 
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chloramine), enabling comparisons of the impact of AOC across different water matrices. An 

outline of the treatment processes applied at each of the four WTW are found in Table 4.2.  

 

Table 4.2: Treatment processes within the four supply systems  

WTW ID WTW 4 WTW 12 WTW 16 WTW 20 

Water 

Source 

Surface: Reservoir Surface: River Surface: River Borehole 

Full 

Treatment 

Process 

pH Adjustment pH Adjustment pH Adjustment pH Adjustment 

Coagulation Coagulation Coagulation Coagulation 

Clarification 

(DAF) 

Clarification 

(DAF) 

Ultrafiltration Clarification  

Gravity Filtration Gravity Filtration Chlorine Gas 

Disinfection 

Hollow Fibre 

Membrane 

 pH adjustment pH adjustment  

Disinfectant 

Residual 

Chlorination Chloramination Chloramination  Chloramination 

DWDS ID DWDS 1 DWDS 2 DWDS 3 DWDS 4 

Pipe Loop A  B C 

WTW = water treatment works; DWDS = drinking water distribution system; DAF = dissolved air 

flotation   

 

The SR within the DWDS were positioned up to 53 km into the network, with both service 

reservoir inlets and outlets being sampled. The four DWDS were each characterised by 

different size of distribution zones and pipe / SR configurations. The aim of this analysis was 

to detect any spatial or temporal trends in AOC concentration within these DWDS by collecting 

samples every two weeks, over a two year period (the second year of sampling was conducted 

simultaneously with the 12 month pipe loop experimental programme – Section 4.6). Water 

samples (n=3) were collected using AOC-free glassware from raw and post-treated water at 

the works, and from each of the three SR inlets and outlets as indicated in Figure 4.1. All water 

samples were transported to the laboratory within 24 hours, and subsequently analysed for 

AOC. Separate water samples were also collected from raw and post-treated water at the works, 

and SR outlets for total (TCC) and intact cell counts (ICC), temperature, turbidity, free and 

total chlorine, HPC and ATP (Section 4.7). Bulk water parameters collected by Scottish Water 
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(including TCC, ICC, temperature, turbidity, free and total chlorine, HPC and ATP) only 

include one biological replicate (n=1) as part of their routine analyses. It should be noted that 

ATP and cell count data were unavailable for DWDS 1 as these parameters were not collected 

as part of routine analyses conducted by Scottish Water. 

4.5.1.1 DWDS 1 (Supplied by WTW 4) 

WTW 4 is supplied by a surface water reservoir. Source water quality is expected to show little 

variability due to the buffering effect of a large reservoir source. After abstraction, raw water 

is dosed with chlorine and sulphuric acid, before entering an ash mixer where it is dosed with 

poly aluminium chloride (PAC) and polymer. Clarification is performed using dissolved air 

flotation (DAF). The treated water then enters a mixer where it is treated with ozone before 

again being dosed with polymer. The water passes into a rapid gravity filter (RGF) before 

entering a chlorine contact tank. In the tank chlorine, orthophosphoric acid and lime are added, 

prior to distribution. The maximum hydraulic retention time (HRT) of the sampled SR within 

DWDS 1 is 371 hrs (SR 1.3) (Table 4.3).  

4.5.1.2 DWDS 2 (Supplied by WTW 12) 

WTW 12 is supplied by a river water source, which is therefore expected to show flashy 

changes in water quality. Raw water in WTW 12 flows into a baffled contact tank in which the 

water is dosed with lime, ferric sulphate (coagulation aid) and polyelectrolyte (flocculation aid) 

before the water travels out of the tank and into six upward flow clarifiers. The effluent then 

passes into four RGF before reaching the disinfection stage. Disinfection is undertaken using 

chlorine gas as a disinfecting agent, along with ammonium sulphate for chloramination. The 

water is finally dosed with lime before entering the DWDS. DWDS 2 consists is heavily SR 

dominated; water passes through a clear water tank (CWT) and six other SR before reaching 

SR 2.2.The outlet of SR 2.3 had the longest hydraulic retention time of the SR (510 hrs) (Table 

4.3).  
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4.5.1.3 DWDS 3 (Supplied by WTW 16) 

The pH of raw water is first adjusted using lime, before being dosed with poly aluminium 

chloride (PAC) coagulant. The treated water is pumped through ultra-filtration stacks. The 

water is again disinfected using a combination of chlorine gas and ammonium sulphate. Lime 

is does for final pH correction.  

4.5.1.4  DWDS 4 (Supplied by WTW 20) 

DWDS 4 is supplied by high quality post-treated water, containing a low concentration of 

organic nutrients. The incoming water to WTW 20 is abstracted from boreholes, before being 

combined in two raw water conditioning tanks in which sodium hypochlorite is injected. The 

water is then filtered using a number of hollow fibre membranes, before being treated with 

orthophosphoric acid and sodium hypochlorite. The water then passes into the chlorine tank 

after which it is dosed with lime (for pH adjustment) and transported to the CWT for 

distribution. DWDS 4 contains a small number of SR with a short HRT (to 126 hours) (Table 

4.3). The SR within DWDS 4 that were selected for sampling in this study consist of SR subject 

to the pipe only effect, as water has not previously passed through a SR (Figure 4.3). 
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Key:  

           = WTW              = SR                    = Pipeline               = Clear Water Tank 

 

  

 

 

 

 

 

4.1* 

* 

4.2* 

4.3* 

1.1* 

1.3 

1.2* 

DWDS 1: reservoir; gravity 

filtration; chlorination 

CWT 

CWT 

DWDS 3: river; membrane; 

chloramination 

DWDS 4; groundwater;  

chloramination 

DWDS 2: river; gravity 

filtration; chloramination 

 

3.3 

3.2 

2.2 

3.1* 

2.3 

CWT 

CWT 

2.1 

Figure 4.3: Schematic of the arrangement of service reservoirs (SR) within the four 

DWDS selected for further sampling (not to scale). The SRs sampled for AOC are 

numbered from one to three in each distribution system, as indicated by the second number 

in each case, with the first number denoting the DWDS to which the SR belongs. Unlabelled 

SRs are not sampled as part of this study and are only drawn to show the pathway of the 

water. SRs labelled with a * are subject to the pipe only effect, as water has not previously 

passed through a SR. Samples analysed included: WTW (raw): AOC, TCC & ICC; WTW 

(post-treatment): AOC, TCC, ICC & total chlorine; SR inlets: AOC; SR outlets: AOC, TCC, 

ICC & total chlorine. 
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Table 4.3: Hydraulic retention time of service reservoirs within DWDS 1, DWDS 2, 

DWDS 3 and DWDS 4.  

Site Location Hydraulic Retention Time 

(Hours) 

DWDS 1 (Supplied by WTW 

4) 

SR 1.1 Inlet 63.77 

SR 1.1 Outlet 76.36 

SR 1.2 Inlet 212.26 

SR 1.2 Outlet 249.70 

SR 1.3 Inlet 338.39 

SR 1.3 Outlet 371.21 

DWDS 2 (Supplied by 

WTW 6) 

SR 2.1 Inlet 135.73 

SR 2.1 Outlet 138.41 

SR 2.2 Inlet 357.59 

SR 2.2 Outlet 359.65 

SR 2.3 Inlet 484.79 

SR 2.3 Outlet 510.45 

DWDS 3 (Supplied by 

WTW 16) 

SR 3.1 Inlet 22.96 

SR 3.1 Outlet 49.62 

SR 3.2 Inlet 72.52 

SR 3.2 Outlet 113.73 

SR 3.3 Inlet 193.94 

SR 3.3 Outlet 243.94 

DWDS 4 (Supplied by WTW 

20) 

SR 4.1 Inlet 65.97 

SR 4.1 Outlet 119.54 

SR 4.2 Inlet 76.24 

SR 4.2 Outlet 121.96 

SR 4.3 Inlet 76.32 

SR 4.3 Outlet 126.32 

 

4.6 The Impact of AOC on Biofilm Growth and Mobilisation  

In order to explore the impact of AOC on biofilms as well as bulk water quality within DWDS, 

whilst maintaining full-scale hydraulic conditions, biofilm investigations were undertaken 

within three test pipe loop facilities at fully operational WTW. Specifically, this research was 

conducted to determine the relationship between AOC concentration and biofilm volume, 

community composition and stability within a DWDS, and to characterise the effect of elevated 
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shear stress (flushing) upon the biofilms that remain attached, and to quantify the material 

mobilised into the bulk water.   

The pipe loop test facility locations were selected to cover a broad range of AOC 

concentrations, to help determine the effect of AOC concentration on biofilm accumulation 

and potentially mobilisation. The pipe loop test facilities (A, B & C) were installed at the outlet 

of WTW 2 (surface, reservoir water, chlorinated) (start of DWDS 1) (PL A), WTW 16 (surface, 

river water, chloraminated) (start of DWDS 3) (PL B) and WTW 20 (ground water, 

chloraminated) (start of DWDS 4) (PL C) (PL = pipe loop) and supplied with post-treated 

drinking water. These three WTW sites were selected to enable comparisons between sites with 

post-treated water containing different AOC concentrations (high, medium and low), to enable 

comparison between sites supplied by ground-water, surface water (reservoir) and surface 

water (river) sites and also sites with different disinfectant (1 site was chlorinated, 2 sites were 

chloraminated). WTW 12 (supplying DWDS 2) was not selected for pipe loop installation due 

to space restrictions at the site.  

Post-treated water supplying PL A generally contained the highest concentration of 

AOC (~300 µg C/L), PL B had a medium range AOC concentration and finally PL C contained 

a generally low concentration of AOC (<100 µg C/L). The bulk water quality within the pipe 

loop was compared to that of post-treated water to check if any changes in water quality 

occurred in the pipe loop. The design of the pipe loop is such that it is able to accurately 

represent biofilm accumulations in the networks during the study ‘growth phase’, but also 

biofilm mobilisation during the ‘flushing / mobilisation phase’. 

4.6.1 DWDS Pipe Loop Test Facilities  

This section will give an overview of the pipe loop test facility; including the pipe loop test 

facility and coupon design, running schedule and sampling procedures. The DWDS test loops 

installed at each of the three sites met the same exact design specifications. Each pipe loop 
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consisted of a 10 m long length of high-density polyethylene (HDPE) PE100 pipe with a 79.3 

mm internal diameter. HDPE was selected as it is frequently used in modern DWDS (Husband 

et al. 2008) and is a high grade plastic with a smooth surface that is stated to have a low biofilm 

forming potential (BFP). Each pipe loop was fed with post-treated water supplied directly from 

the WTW (see Table 4.1 for details of selected field sites).  

Drinking water was re-circulated around the system from an enclosed, 30 L (0.03 m3) 

tank, via a variable speed pump. A system residence time of 24 hours was set using a trickle-

feed and drain to provide representative water quality of each DWDS, and preserve a baseline 

nutrient supply and disinfection residual, among other water quality parameters. Pipe loop 

retention time was a function of the chosen flow regime. During growth phase, the pipe loop 

was run at conditioning flow rate of 0.4 l/s (shear stress 0.03 Nm-2). This flow rate was selected 

as this was the average flow rate in 75-100 mm diameter pipes within UK DWDS, as stated by 

Husband et al. (2008). This flow rate has also been used in previous studies (Fish et al. 2013) 

and so using the same flow rate will allow comparisons with data from previous research. 

The flow rate was monitored using a Siemens Sitrans F M Mag 6000 flow meter. Shear 

stress was calculated theoretically using Equation 2 (Section 4.6.4.1). A Darcy–Weisbach 

roughness (ks) value of 0.075 mm was used, which is representative of the roughness of HDPE 

pipe (Husband et al. 2008) (Appendix 5 for full details). Flow was controlled by adjusting the 

controlled valves at the end of each loop and/or the pump speed. The straight section (~1m 

long) (four in each loop) contained 12 apertures (positioned 75 mm apart) into which 

removable coupons were inserted (Figure 4.4 & Figure 4.5). The coupons were positioned at 

least 10x internal diameter away from a pipe bend to minimise any effect of turbulence 

generated by the pipe bends. A 1 m section of clear polyvinyl chloride (PVC) pipe was also 

included in each loop to enable a visual, qualitative comparison of biofilm development within 

the pipe loops. The water was trickle fed into the tank with a system retention time of 24 hours, 
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preserving a baseline nutrient supply and disinfection residual, among other water quality 

parameters. 
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Key 

- Coupons 

- Pump 

- Flow meter             FM 

- Pressure Gauge      PG 

- Sample tap 

- Manual valve 

 

FM  PG 
Inlet 

Trickle 

drain 

Drain 

B) Coupon pipe sections  C) PWG coupon and 

backing piece 
A) Flow meter 

Drain collector  

Tank (0.03 m3)   

HDPE pipe (79.3 ID)    

2.0 mm 

D) PWG outer coupon and removable insert 

6.5 mm 

4.5 mm 

20.0 mm 

5.5 mm 

Clear PVC pipe 

Figure 4.4: Schematic diagram of DWDS pipe loop facilities including dimensions. The pipe loop contained 4 horizontal coupons sections, with 

each section containing 12 HDPE PWG coupons (48 in total). Online turbidity meters were connected to the sample tap during the mobilisation 

‘flushing’ phase. A) Siemens FM Mag 6000 flow meter was used to control the hydraulics of the system throughout the growth and mobilisation 

phases; B) Coupons inserted into the pipe were secured with brackets; C) HDPE PWG coupon, rubber seal and HDPE backing piece; D) Coupon 

schematic consisting of a curved outer coupon section and flat insert piece. A tipping bucket mechanism was installed on the trickle drain to monitor 

flow and system residence time.   
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Figure 4.5: DWDS pipe loop facility (see Figure 4.3 for schematic). The pipe loops consist 4 horizontal coupons sections, with each section 

containing 12 HDPE PWG coupons (48 in total). Coupons inserted into the pipe were secured with jubilee clips. 

Coupon pipe sections  
Flow meter  Tank (0.03 m3)   

Pump  

Trickle drain    

Clear PVC pipe 
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To monitor flow remotely when not on site, three Wi-Fi enabled micro-controllers were designed 1 

at the University of Sheffield and installed at each of the three pipe loop sites (Figure 4.6). As the 2 

three sites locations were considerable distances from each other, with a wide spread across 3 

Scotland, flow was used as the main indicator to check if the systems were running optimally 4 

during the 12 month experiment. The Wi-Fi enabled micro-controller could log to Google drive 5 

every 10 seconds. The Wi-Fi enabled micro-controller either used existing site Wi-Fi, or in cases 6 

where Wi-Fi was absent a portable Wi-Fi hotspot was installed.  7 

 8 

Figure 4.6: Wi-Fi enabled micro-controller designed by the University of Sheffield. The 9 

micro-controller was connected to the Siemens Sitars FM mag 6000 flow meter. The flow meter 10 
had a 4-20mA analogue signal. 11 

 12 

4.6.2 Coupon Design  13 

Pennine Water Group (PWG) coupons (Deines et al. 2010) were installed in each DWDS test loop 14 

to provide a removable surface for biofilm sampling. The PWG coupon consists of an outer curved 15 

coupon and a removable flat 'insert', which enables dual analysis of the same sample (Figure 4.4 16 

(D)). The PWG coupon has a curved structure that is designed to mimic the pipe curvature, 17 

Micro- 

controller 

SD Card 
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therefore reducing boundary layer flow distortion. Although the PWG has been used within an 18 

DWDS experimental facility (Sheffield University) (Fish et al. 2013; Douterelo et al. 2013) and 19 

within operational DWDS (Douterelo et al. 2017), this presents the first use within field-based 20 

pipe loop test facilities at the outlet of WTW.       21 

The insert piece had a maximum width of 6.5 mm, minimal width of 4.5 mm and flat 22 

surface designed for microscopy analyses (Deines et al. 2010). The insert was specially 23 

manufactured using a dovetail cutter so that the surface finish closely matched that of the main 24 

pipeline and the outer coupon (Sharpe, 2012). Each coupon was secured to a backing piece with a 25 

circular rubber gasket in between to ensure a watertight fit. The majority of coupons were side-26 

positioned to enable efficient coupon sampling. Coupons were positioned along either side of the 27 

pipe length (described as left’ and ‘right’ in Table 4.4), with the exception of nine top or bottom 28 

positioned coupons. Three top and three bottom positioned coupons were used to assess any 29 

difference in biofilm accumulated at either position, following on from 12 months growth (Section 30 

2.3.5.2). A further three bottom coupons were installed to enable a comparison between biofilm 31 

accumulated after 12 months on bottom coupons and biofilm remaining on bottom coupons 32 

following the mobilisation phase (post-flush).  33 

 34 

 35 

 36 

 37 

 38 

 39 

 40 

 41 
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Table 4.4: Coupon layout in each pipe loop. Each pipe loop contains 48 removable coupons 42 

(numbered 1-48), with 12 coupons in each row (1-4). Coupons are positioned on the left or right 43 
side of the pipe, with the exception of the top and bottom coupons. R = row; Tp = top; Btm = 44 

bottom; yellow = coupon present.  45 

R1 1 2 3 4 5 6 7 8 9 10 11 12 

           

Btm Btm            

             

R2 13 14 15 16 17 18 19 20 21 22 23 24 

           Tp 

Btm            

             

R3 25 26 27 28 29 30 31 32 33 34 35 36 

           

Btm 

Tp 

           

             

R4 37 38 39 40 41 42 43 44 45 46 47 48 

          

Btm 

Tp 

Btm           

             

 46 

4.6.3 Growth Phase & Sampling 47 

4.6.3.1 Growth Conditions 48 

At the start of each experiment, each pipe loop was disinfected for 24 hours with a 20 mgl-1 49 

concentration of a sodium hypochlorite solution (VWR International Ltd, UK) (11-14 % free 50 

chlorine), which was re-circulated within the system at a maximum flow rate of 5.0 l/s. After 24 51 

hours, each pipe loop was flushed repeatedly at the maximum flow rate with post-treated water 52 

from each WTW. This was continued until chlorine levels decreased to those of the inlet water. 53 

Before use, the PWG coupons were sterilised via sonication with a 2% (w/v) sodium dodecyl 54 

sulfate (SDS) solution for 45 minutes, then sonicated in distilled deionised water for a further 15 55 

minutes before being autoclaved (Appendix A2.1) (Fish et al. 2013). 56 
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At the beginning of the 12 month growth phase, each of the three pipe loops (A, B & C) 57 

had a staggered start time so that all three experiments had the same number of days. Each loop 58 

start time was staggered by two days, which was deemed to be insignificant as the total length of 59 

the experiment was 12 months. It was not possible to sample all 3 sites on the same due to the 60 

distances between site locations. Although all three pipe loops were operated indoors, room 61 

temperature was subject to seasonal variation. 62 

4.6.3.2 Sampling 63 

Biofilm samples were collected in triplicate at Day 0 (n=3), 3 month (n=3), 6 month (n=3), 9 month 64 

(n=3) and 12 month (n=3) time periods. Each triplicate consisted of at least one ‘right’ and one 65 

‘left’ positioned coupon (Table 4.4). Day 0 samples were defined as coupons which were in the 66 

pipe loop for ≤ 90 minutes (Fish et al. 2015). The outer coupons were used to establish any 67 

variations in community composition by using Ilumina sequencing (Section 4.7.3), and to 68 

determine the number of intact and damaged cells within the biofilm using flow cytometry (Section 69 

4.7.4). The coupon insert pieces were used to assess biofilm volume using scanning electron 70 

microscopy (SEM) (4.6.5). During biofilm sampling the pump was stopped and the relevant 71 

manual valves closed (Figure 4.4). The system was not drained during this time, so that the 72 

biofilms were not allowed to dry out in the loop. The coupons collected were immediately replaced 73 

with sterile coupon, the location of which was recorded so that no further samples were taken from 74 

that location. 75 

 In order to compare the planktonic and biofilm communities, bulk water samples were also 76 

collected from each pipe loop (Table 4.5). Three replicates of bulk water were taken directly from 77 

the sample tap of each loop at Day 0, 6 Months and 12 Months. A total of 27 bulk water samples 78 

were collected from the three loops (9 samples from each loop) and filtered through 0.22 μm pore 79 
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nitrocellulose filter (Millipore, MA, USA) using a Microstat membrane filtration unit (Sartorius, 80 

UK). Filters were then stored in sterile bags at -80 °C ready for DNA extraction. 81 

Throughout the 12 month growth phase, bulk water quality (including AOC (n=3), TOC 82 

(n=3), total chlorine (n=3), turbidity (n=3), iron (n=3) manganese (n=3), temperature (n=3) and 83 

pH (n=3)) was measured every two weeks from the tapping point in the pipe loop (Figure 4.4), to 84 

assess any changes throughout the period (Section 4.6.1). Online flow was logged every 10 85 

seconds throughout the growth and mobilisation phases via the online instrumentation (Figure 4.6). 86 

 87 

Table 4.5: Dates of coupon sampling in each of the three pipe loops. Bulk water quality 88 

samples were also collected on a fortnightly basis during the ‘growth’ phase, and during 89 
every flushing step during the ‘flushing’ phase. PF = Post-flush.  90 

 Biofilm Samples 

Collected 

Bulk water 

Samples Collected 

Months 

 

 

Growth Phase 

Day 0  May 

3 month August 

6 month November  

9 month February 

12 month May 

Flushing ‘mobilisation’ 

Phase 

12 month PF May 

 91 

4.6.4 Mobilisation ‘Flushing’ Phase & Sampling  92 

4.6.4.1 Mobilisation Conditions 93 

Following on from the 12 month period, the pipe loops were ‘flushed’ and the amount of material 94 

mobilised recorded. The aim of the mobilisation phase was primarily to assess if the biofilm 95 

strength differs between the three sites (due to differences in AOC concentration), and if the 96 

biofilm strength was linear or non-linear. A flushing sequence was performed wherein the flow 97 

rate, and subsequently the shear stress was incrementally increased to the rates described in Table 98 

4.6.  99 
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Table 4.6: Details of five flushing steps including flow, velocity, shear stress and turnover 100 

time.  101 

Flushing Step Flow Rate (l/s) Velocity (m/s) Hydraulic 

Gradient 

Shear Stress 

(N/m2) 

Time 5 

Turnovers 

(Mins) 

Mixing 0.4 0.08 0.00016 0.03 10.16 

1 1.5 0.30 0.00170 0.33 2.44 

2 2.5 0.51 0.00429 0.83 1.39 

3 3.5 0.71 0.00799 1.55 1.10 

4 5 1.01 0.01553 3.02 0.49 

 102 

The shear stress for each flushing step was calculated using: 103 

𝜏 =  𝜌𝑔𝑅𝑆 (see table 4.7 for definitions and units)  104 

 105 

Table 4.7: Shear stress calculations.  106 

Component Equation Symbol Units Value 

Diameter  - Ø mm 792 

Hydraulic radius  D/4 R mm 19.8 

Length  - L m 10 

Acceleration due to 

gravity  

- g m/s2 9.81 

Density ρ=m/V ρ g/cm3 1 

 107 

The hydraulic gradient (S) was calculated using the Colebrook-White and Darcy-Weisbach 108 

equations.  109 

Colebrook-White 𝜆 =  [−1.52𝑙𝑜𝑔10 ((
𝑘𝑠

7.21𝐷𝑖
)

1.042

+  (
2.731

𝑅𝑒
)

0.9152

)]
−2.169

 110 

In which, λ = lamda, ks = roughness height (mm) , Di = pipe diameter (mm) , Re = Reynolds 111 

number.  112 

Equation 2 

Equation 3 
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Darcy-Weisbach: Hydraulic gradient: 
ℎ𝑓

𝐿
=  

𝜆

𝐷
 

𝑣2

2𝑔
 113 

In which, hf = frictional head loss (m), L = length (m), λ = lamda, D = pipe diameter (m), V = 114 

velocity (m/s) and g = gravity (m/s2). See section 7.3.4.1 for details regarding how head loss within 115 

the pipe loop was empirically generated. 116 

At the start of the mobilisation phase, the pipe loops were isolated by the closing the entry valve 117 

into the tank and the exit valve on the trickle drain. The two valves remained shut so that that the 118 

same volume of water was maintained throughout the mobilisation phase, ensuring that any water 119 

quality changes were due to the mobilisation of material from the pipe wall and not incoming 120 

water. 121 

When elevating the shear stress, care was taken to slowly open the valve so as to not create 122 

any transients within the systems, which could influence the rate of removal of the attached 123 

material and therefore the discolouration response. Water was then circulated around the pipe 124 

loops at each of the flow rates shown in Table 4.6, for five turnovers. As the time needed to 125 

complete one turnover was relatively short, five turnovers were conducted to enable time for the 126 

bulk water to be thoroughly mixed and for the turbidity to stabilise before the next step up in flow. 127 

Furthermore, five turnovers were selected to allow enough time for sample collection. Following 128 

an increase in the flow rate, the peak increase in turbidity would be expected after one turnover, 129 

following the patterns as described by PODDS (Boxall et al. 2001).  130 

 131 

 132 

 133 

 134 

 135 

Equation 4 
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The flushing sequence and time of biofilm and bulk water sampling are shown in Figure 4.7. 136 

 137 

Figure 4.7: Flushing sequence during the flushing phase. The number indicates the flushing 138 
step (see Table 4.6 for flow rate and shear stress). Coupon removal and bulk water sample 139 

collection points are illustrated.  140 

 141 

4.6.4.2 Sampling 142 

During the mobilisation phase, bulk water quality parameters including AOC (n=3), TOC (n=3), 143 

total chlorine (n=3), turbidity (n=3), iron (n=3) manganese (n=3), temperature (n=3), pH (n=3) 144 

were measured after five turnovers (Table 4.6) from the tapping point in the pipe loop (Figure 4.4), 145 

to assess  initial mobilisation of material into the water column before dilution. Turbidity was also 146 

measured continuously throughout the entire mobilisation phase. Biofilm samples (coupons) were taken 147 

post-flush (after the final flushing step) (Figure 4.7). This process was then repeated for the other 148 

two pipe loops. 149 

Time 

Mixing 

Coupon removal  

2 

3 

4 

Bulk water sample  

1 
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4.7 Sample Analysis 150 

4.7.1 Water Quality Analysis 151 

A summary of the instruments and methods used for measuring discrete bulk water parameters 152 

during both the growth and the mobilisation experimental phases is provided in Table 4.8. AOC 153 

measurements were conducted using the AOC method developed in Chapter 5. In summary, 154 

dechlorinated water samples were collected and pasteurised by heating in a water bath at 70°C for 155 

30 minutes. Water samples are then inoculated with 104 cells / mL of each bacterial strain (P-17 156 

and NOX) into separate vials. Samples are then incubated at 15°C for 6 days before being 157 

enumeration using flow cytometry. 158 

Planktonic TCC and ICC (cells/mL) were measured using the flow cytometry method 159 

detailed in Gillespie et al. (2014). In summary, 500 µl dechlorinated water samples were stained 160 

with 5 µl SYBR Green (Life Sciences, California, USA) for TCC. 500 µl dechlorinated water 161 

samples were stained with 6 µl SYBR Green/ Propidium Iodine mixture (Life Sciences, California, 162 

USA) (with a final concentration of 1x SYBR Green and 3μM PI) for ICC. Samples were analysed 163 

using BD Accuri C6 Flow Cytometer with autosampler (BD Accuri, UK). The proportion of intact 164 

cell counts (%) is defined as intact cell count / total cell count * 100. HPC were performed by 165 

combining a 1 mL water sample mixed with 18 mL molten YEA (Yeast Extract Agar, cat. No. 166 

CM0019B, Oxoid Ltd., ThermoFisher Scientific, Loughborough, U.K.). Plates were incubated at 167 

37 °C for 48 h or at 22 °C for 72 h, then counted. ATP Measurements were made using the 168 

BacTiter-GloTM Microbial Cell Viability Assay (Promega, UK). Total ATP was established using 169 

the BacTiter-Glo reagent (G8231; Promega Corporation) and a luminometer (Tecan). 170 

 171 

 172 
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Table 4.8: Discrete bulk water parameters (n=3) and online turbidity collected during the 173 

growth and flushing phases.  174 

Water Quality 

Parameter 

Instrument / Analysis 

Method 

Range Resolution Accuracy 

AOC C6 Flow Cytometer with 

autosampler (BD Accuri, 

UK). 

The EawagA 

method works 

well for bacterial 

concentrations 

ranging from 

about 102–107 

cells/mL. 

10,000 events / 

second and a 

sample 

concentration 

over 5 x 

106cells / mL 

- 

TCC & ICC C6 Flow Cytometer with 

autosampler (BD Accuri, 

UK). 

The EawagA 

method works 

well for bacterial 

concentrations 

ranging from 

about 102–107 

cells/mL. 

10,000 events / 

second and a 

sample 

concentration 

over 5 x 106cells 

/ mL 

- 

TOCB Formacs high temperature 

catalytic combustion 

system (Skalar Analytical 

B.V., Breda, Netherlands). 

100 ppbC -5000 

ppmD carbon 
- - 

Total and Free 

Chlorine 

Pocket colorimeter (Hach-

Lange, Salford, U.K.)  

0.00 to 5.00 mg/L 0.01 mg/L ± 0.02 

mg/L 

Turbidity Hach handheld 2100Q 

formazine calibrated turbidity 

meter 

0–1000 NTU ±1% of reading 

or 0.01 NTU 

±2% 

Online 

Turbidity 

ATI A15/76 (Analytical 

Technology Inc, UK) 

0.001 NTU - 4000 

NTU 

0.001 NTU ± 5% of 

reading or 

± 0.02 

NTU 

Iron, 

Manganese 

PerkinElmer 

Nexion 300X ICPMS 

Spectrometer 

- - - 

Temperature Sealey THC100 Thermometer -50°C to +70°C - ±1°C 

pH ROSS Ultra pH electrode 

(Thermo Fisher Scientific 

Ltd., 

Loughborough, U.K.) 

0-14 - ± 0.01 

Flow Siemens Sitrans fm mag 6000 

flow meter 

- - ± 0.2% of 

the flow 

rate 



Page | 113 

 

A The Swiss Federal Institute of Aquatic Science and Technology; BTOC = total organic carbon; Cppb – parts 175 
per billion; Dppm – parts per million 176 
 177 

4.7.1.1 Data Analysis of Discrete Water Quality Samples 178 

The mean, median, range and standard deviation were calculated for each of the parameters listed 179 

in Table 4.8 during the growth phase. The normality of the data was analysed using the Shapiro-180 

Wilks test and parametric (ANOVA and Tukey) or non-parametric tests (Kruskal Wallis and two-181 

sample Wilcoxon), as appropriate, to identify any differences in water quality parameters between 182 

experiments. Data collected during the mobilisation phase was plotted against shear stress and a 183 

linear model and regression analysis was performed to identify relative changes (each loop was 184 

analysed separately). The R2 and p values were used to assess the fit of the linear model to the data 185 

and the significance of the gradient, so as to determine which parameters responded significantly 186 

to the elevation in shear stress. All statistical analysis and graphical plots were generated in R 187 

v3.5.2 (R Foundation for Statistical Computing Platform, 2018) with a significance level of <0.05. 188 

A self-organsising map (SOM) analysis was run in MATLAB and used to analyse water quality 189 

data in Chapter 6. SOM analysis allows data to be arranged so that similar data points are clustered 190 

together, enabling non-linear relationships to be visualised.  The cell shading denotes the numerical 191 

value of the vectors and the colour bar shows the mapping between shading and numerical value. 192 

4.7.2 Biofilm Analysis 193 

This study set out to investigate the biofilm volume (cells, EPS and organic / inorganic particles), 194 

cell number and community (bacterial and fungal) composition of the developed biofilms (during 195 

the growth phase) and those that remained attached (following on from the mobilisation phase). 196 

The outer coupons were used to establish any variations in community composition and determine 197 
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the number of intact and damaged cells within the biofilm. The inserts were also used to quantify 198 

the biofilm volume.   199 

4.7.2.1 Biofilm Preparation  200 

During biofilm sampling, coupons were carefully removed from each pipe rig and the outer coupon 201 

and insert separated using sterilised forceps. The outer coupons to be used for analysis of the 202 

microbial community composition were processed as described in Section 4.7.3 and the outer 203 

coupons to be used for TCC and ICC analysis were processed as described in Section 4.7.4. The 204 

inserts, to be used for biofilm volume quantification, were fixed in 5% formaldehyde solution 205 

(Fisher Scientific, UK) (Fish et al. 2013).  206 

4.7.2.2 Biofilm Suspension Preparation  207 

Outer coupon samples were collected on Day 0, Month 3, Month 6, Month 9, Month 12 and Post-208 

flush (for each n=3), therefore 18 samples were collected per loop, 54 in total. The biofilm was 209 

first removed from the coupon by placing the coupon in a petri dish with 30 ml of sterile phosphate 210 

buffer (Appendix A3.1) (as described by Fish, 2013) and repeatedly brushed using a sterile 211 

toothbrush (Appendix A2.2). All tooth brushes were sterilised using the same protocol as for the 212 

coupons (sonication with 2% SDS and distilled deionised water and autoclaving) (see Appendix 213 

A2.1). The same number of strokes and motion were used per coupon (30 horizontal and 30 214 

vertical, rinsing the tooth brush in the solution after every 10 strokes). This 30 ml volume of 215 

biofilm suspension was transferred to a sterile falcon tube and stored at 4 °C for ≤ 30 minutes 216 

before filtering through a 47 mm diameter, 0.22 μm pore nitrocellulose filter (Millipore, MA, 217 

USA) using a Microstat membrane filtration unit (Sartorius, UK). Filters were then stored in sterile 218 

bags at -80 °C ready for DNA extraction. Negative controls were carried out in triplicate during 219 
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each sample collection, at each site. The process as above was performed for negative controls, 220 

but sterile coupons were used.  221 

4.7.3 16s rRNA Sequencing  222 

Biofilm samples were sent to MR DNA (Molecular Research LP), Texas, USA for DNA extraction 223 

and sequencing using Illumina MiSeq technology.  224 

4.7.3.1 DNA Extractions 225 

DNA was extracted from the nitrocellulose filters using the CTAB (hexadecyltmethyl ammonium 226 

bromide) and Proteinase K chemical lysis method (Zhou et al., 1996). Each filter was transferred 227 

into a sterile 15 ml tube to which 720 μl of SET buffer (see Appendix A3.2) and 90 μl of lysozyme 228 

10 mgml-1 (Sigma Aldrich Co.,UK) were added. Samples were incubated at 37 °C for 30 minutes 229 

with rotation in a hybridization oven (Thermoscientific, UK). A 90 μl volume of 10% SDS (w/v) 230 

and 25 μl volume of Proteinase K (Applied Biosystems, Life Technologies Ltd., UK) were then 231 

added and the samples incubated for a further 2 hours (with rotation) at 55 °C. The lysate was 232 

transferred to a sterile tube to which 137 μl of 5 M NaCl and 115 μl of CTAB solution (Appendix 233 

A3) were added before incubation at 65 °C for 30 minutes (with rotation). Subsequently the top 234 

aqueous layer of the sample was removed and the supernatant extracted with an equal volume of 235 

chloroform, centrifuged at 13,000 RPM for 5 minutes. DNA was precipitated at -20 °C, over a 12-236 

14 hour period with 815 μl of 100% isopropanol before centrifugation at 13,000 RPM for 30 237 

minutes. The supernatant was discarded and the DNA pellet washed twice in 1 ml of 70% ethanol 238 

(centrifuge at 13,000 RPM for 10 minutes), dried and then eluted in 30 μl of sterile nuclease free 239 

water (Ambion, Warrington, UK). DNA was visualised via gel electrophoresis and the quantity 240 

and quality of DNA was assessed with a Nanodrop ND-1000 spectrophotometer (Nanodrop, 241 

Wilminton, USA).  In addition to the samples, “biofilm control” filters were also exposed to the 242 
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DNA extraction process and “DNA controls” were run: empty sterile tubes to which all the 243 

solutions were added and all the processes applied. Aliquots of the application ready stock DNA 244 

solution were made to limit the effects of freeze-thawing on DNA quality and were stored at -20 245 

°C.4.7.3.2 Polymerase chain reaction (PCR) amplification and purification 246 

PCR amplifications were carried out, using the DNA extract, to amplify specific genes 247 

from bacteria and fungi. For each gene, a standard was generated by running PCRs using the 248 

primers in Table 4.9 then purifying via gel-purification (Qiagen Gel-Extraction Kit) and combining 249 

the purified amplicons into one “DWDS biofilm” standard per gene. 250 

 251 

Table 4.9: Primer pairs used for PCR amplifications.  252 

Gene Target 

(organisms) 

Primer Pair Primer Sequences (5’-3’) Primer 

References 

16S rRNA 

(bacteria) 

Eub338 ACTCCTACGGGAGGCAGCAG. Lane, 1991 

Eub518 
ATTACCGCGGCTGCTGG 

Muyzer et al., 

1993 

ITS (fungi) ITS1F 

TCCGTAGGTGAACCTGCGG 

Gardes and 

Bruns, 1993 

 

5.8S CGCTGCGTTCTTCATCG Vilgalys and 

Hester 1990 

 253 

A 28 cycle PCR was performed using the HotStarTaq Plus Master Mix Kit (Qiagen, USA). The 254 

following conditions were used: 94°C for 3 minutes, followed by 28 cycles of 94°C for 30 seconds, 255 

53°C for 40 seconds and 72°C for 1 minute, after which a final elongation step at 72°C for 5 256 

minutes was performed. After amplification, PCR products are checked in 2% agarose gel to 257 

determine the success of amplification and the relative intensity of bands. Multiple samples are 258 

pooled together (e.g., 100 samples) in equal proportions based on their molecular weight and DNA 259 

concentrations. Pooled samples are purified using calibrated Ampure XP beads.   260 
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4.7.3.3 Illumina sequencing 261 

Sequencing was performed by Illumina MiSeq technology with the paired-end protocol by Mr 262 

DNA Laboratory (TX, USA). The bacterial 16s region was amplified using primers 28F 263 

(GAGTTTGATCNTGGCTCAG) and 519 (RGTNTTACNGCGGCKGCTG), and the fungal 18S 264 

rRNA gene was amplified using SSUfungiF (TGGAGGGCAAGTCTGGTG)/SSUFungiR 265 

(TCGGCATAGTTTATGGTTAAG) (Hume et al. 2012). Firstly, paired-end reads were merged 266 

and de-noised to remove short sequences, singletons, and noisy reads, before chimeras were 267 

detected using UCHIME and subsequently removed.  Sequences were then clustered in operational 268 

taxonomic units (OTUs) and selected using UPARSE (Edgar, 2013). Taxonomic assignments were 269 

made with USEARCH global alignment program (Edgar, 2013). Biofilm samples for taxonomic 270 

analysis are labelled in which the first letter / number indicates time point, the second letter 271 

indicates the pipe loop, and the third number indicates the triplicate number. 272 

4.7.3.4 Microbial Community Analysis: Data Analysis 273 

Bacteria and Fungi presence / absence and relative abundance data were analysed using PRIMER-274 

6 (v6.1.13, PRIMER-E Ltd, UK). Data was first normalised using a square root transformation 275 

before a Bray Curtis analysis was performed to generate similarity matrices. The similarity of 276 

datasets was assessed first using an analysis of similarities (ANOSIM), before non-metric multi-277 

dimensional scaling (nMDS) plots were generated. All nMDS plots were generated using 400 278 

iterations of the data and the stress values for 2D plots noted (stress <0.05 = excellent 279 

representation of data, <0.1 = good representation, > 0.3 = weak representation). Cluster analysis 280 

was run for 20,000 permutations and a dendrogram plotted. 281 

ANOSIM analyses (one-way and two-way both run with a maximum of 400,000 282 

permutations) detected the similarity between samples, providing a global R value: 0 = same, 1 = 283 

https://www.sciencedirect.com/science/article/pii/S0043135418303531#bib30
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completely different; and the significance level (P value) (<0.05 significant; >0.05 weak evidence). 284 

The p-value percentage produced in the ANOSIM analysis will be expressed as a decimal in this 285 

thesis. The global-R statistic values represent the strength of the impact that the factors analysed 286 

had on the samples, in this case it was the impact due to AOC concentration. The 2D stress value 287 

of each NMDS plot was noted (stress < 0.05 = excellent representation of data, < 0.1 = good 288 

ordination, < 0.2 = potentially useful but check with cluster analysis, > 0.3 = weak representation, 289 

misleading, discard plot) (Fish, 2013). Similarity percentage analysis (SIMPER) was used to 290 

evaluate the similarity and dissimilarity between sample groups (expressed as %). 291 

4.7.3.5 Ecological indices  292 

Ecological indices were used to assess the relative richness , the relative diversity (determined 293 

using the Shannon index as calculated using Equation 5), and relative evenness (generated using 294 

the Pielou index as calculated using Equation 6). The relative diversity indices were exported from 295 

PRIMER 6 and analysed using R v3.5.2 (R Foundation for Statistical Computing Platform, 2018) 296 

to determine similarities/differences (via T-tests or analysis of variance (ANOVA)). 297 

𝐻′ =  − ∑ 𝜌𝑖𝑙𝑛𝜌𝑖
𝑆
𝐼=1  298 

Where H’ is the Shannon diversity index value, s is the total number of T-RFs/fragments and is 299 

the relative abundance of each T-RF (i). 300 

𝐽′ =  
𝐻′

𝑙𝑛𝑠
 301 

Where J' is Pielou’s evenness index value; H’ is diversity according to the Shannon index and s is 302 

the total number of T-RFs/fragments. 303 

Equation 6 

 

 

Equation 5 
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4.7.4 Flow Cytometry 304 

Biofilm samples were collected on Day 0, Month 3, Month 6, Month 9, Month 12 and Post-Flush 305 

(for each n=3 (triplicate samples) (18 samples per loop, 54 in total). Biofilm suspensions were 306 

prepared using the same method as described in Section 4.6.2.2 and Appendix A2.2. 0.5 ml of the 307 

biofilm suspension was stained and analysed in accordance with the flow cytometry protocol 308 

(Section 4.6.1). To convert the cell counts into cell concentrations (ICC / mm2 or TCC / mm2), 309 

Equation 7 was used: 310 

𝐼𝐶𝐶 𝑜𝑟 𝑇𝐶𝐶 =  
(

𝐶𝑜𝑢𝑛𝑡
𝑉𝑜𝑙𝑢𝑚𝑒 𝑎𝑛𝑎𝑙𝑦𝑠𝑒𝑑

𝑥 𝑇𝑜𝑡𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒)

𝑆𝐴
 311 

Where the count is the total or intact cell count, volume analysed is the volume of sample that was 312 

processed in the flow cytometer (50 µl), the total volume of samples in this case was 30 ml (30,000 313 

µl) and SA is the surface area from which the biofilm was removed. All the raw biofilm data were 314 

converted into ICC mm2 or TCC mm2. Both the planktonic (ICC / mL) and biofilm ICC (TCC 315 

mm2) were also expressed as a percentage of the TCC (i.e. as an ICC proportionally relative to the 316 

TCC). Preliminary tests of technical replication showed no difference so only biological reps were 317 

undertaken (n=3). 318 

4.7.5 Microscope Methods 319 

To determine the total volume of biofilm (including cells, EPS and (in)organics) accumulated on 320 

each of the coupons, a number of potentially suitable methods were explored including; optical 321 

coherence tomography (OCT), reflective light microscopy and confocal microscopy (without the 322 

use of stains). Both reflective light microscopy (100x magnitude) and confocal microscopy were 323 

found to be unsuitable as the biofilm was not visible.  324 

Equation 7 
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4.7.5.1 Optical Coherence Tomography  325 

OCT was used to image biofilms on three 12 month HDPE insert samples taken from PWG 326 

coupons installed within the three pipe loops (PL A, PLA B and PLC), and one negative control 327 

blank sample. The Magnetomotive (MM) OCT was made in-house at The University of Sheffield 328 

and uses light of wavelength 890nm. The samples were tilted to reduce reflections at the surface 329 

of the insert, which would interfere with viewing the biofilm. To quantitatively analyse these 330 

structural images, the software ImageJ was used to obtain the reflectivity profile of each image. 331 

For each image, the surface of the plastic insert was first straightened. The average intensity of the 332 

pixels in the horizontal direction was then calculated. 333 

4.7.5.2 Biofilm Visualisation 334 

Scanning Electron Microscopy (SEM) is able to provide a qualitative assessment of biofilm 335 

accumulation, giving an indication surface coverage and the physical structure. In this study SEM 336 

was used to assess biofilm accumulation between different time points at the same site and 337 

compare biofilm accumulation between the three sites.  338 

4.7.5.3 Biofilm Samples Used for SEM 339 

The samples analysed using SEM included six HDPE insert samples, taken from PWG coupons 340 

installed within the three pipe loops (PL), named PL A, PL B and PL C. One 6 month and one 12 341 

month sample were analysed from each loop. Each biofilm sample was imaged at 500x, 1000x and 342 

5000x magnification, with a total of 50 images being taken per sample.  343 

4.7.5.4 SEM Protocol 344 

All SEM sample preparation and imaging was undertaken at the Biomedical Science Electron 345 

Microscopy Unit, The University of Sheffield. Biofilm samples were first fixed with 5% (volume 346 
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/ volume (v/v)) formaldehyde, before being washed 0.1M phosphate buffer, twice with 10min 347 

intervals at 4°C. Biofilm samples then underwent a secondary fixation step in 1% aqueous osmium 348 

tetroxide for 1 hour at room temperature, before being washed again using 0.1m phosphate buffer, 349 

twice with 10min intervals at 4°C. Samples were then dehydrated using the following ethanol 350 

series: 75% ethanol (15 mins); 95% ethanol (15 mins); 100% ethanol (15 mins); 100% ethanol (15 351 

mins); 100% ethanol dried over anhydrous copper sulphate (15 mins). All of the above steps were 352 

carried out at room temperature. Samples were placed in 50/50 mixture of 100% ethanol/100% 353 

Hexamethyldisilazane for 30 mins followed by 30 mins in 100% Hexamethyldisilazane. Biofilm 354 

samples were air-dried overnight. When dry, HDPE inserts were mounted on aluminium stubs, 355 

attached with carbon sticky adhesive tape, and coated with approximately 25nm of gold in an 356 

Edwards S150B sputter coater. Biofilm samples were examined in a TESCAN Vega 3 LMU 357 

scanning electron microscope at an accelerating voltage of 15Kv. 358 

 359 

4.8 Summary Table of Samples 360 

This section presents a summary of all samples collected during the AOC validation trials (Table 361 

4.0), AOC and biological stability DWDS sampling (Table 4.11 and Table 4.12) and samples 362 

obtained from the pipe loop test facility (Table 4.13). Both the biofilm samples obtained from 363 

coupons, and bulk water quality data from the pipe loop test facility, are presented in Table 4.12. 364 

The replication undertaken at each sample point is indicated by the “n” value listed in each table.  365 
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Table 4.10: Summary of samples collected per WTW site during the AOC method validation (for total number of samples analysed across all 

experiments multiply each value by 20). 

Sampling Duration Sampling Frequency 
AOC 

Raw Water Post-treated Water 

2 months Weekly n=3 n=3 

AAOC – assimilable organic carbon 

Table 4.11: Summary of samples collected per water supply system site during the AOC sampling within the network during Year 1 of 

the sampling regime. Four drinking water supply systems WTW 4 DWDS 1; WTW 6 DWDS 2; WTW 16 DWDS 3 and WTW 20 DWDS 4 (for 

total number of samples analysed across all experiments multiply each value by 4 (sites)). 

Parameter 
Sampling 

Duration 

Sampling 

Frequency 

Sample Location 

Raw 

Water 

Post-

treated 

Water 

SR 1 

Inlet 

SR 2 

Outlet 

SR 2 

Inlet 

SR 2 

Outlet 

SR 3 

Inlet 

SR 3 

Outlet 

Total 

chlorineB 

1 year 

2 days - n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 

IronB Bi-monthly n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 

ManganeseB Bi-monthly n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 

ATPBCD Bi-monthly n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 

Colony 

countsB 

Bi-monthly n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 

TemperatureB 2 days n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 

TOCB Bi-monthly n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 

AOCA Bi-

monthlyE 

n=3 n = 3 n = 3 n = 3 n = 3 n = 3 n = 3 n = 3 

TCCBC 2 days n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 
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ICCBC 2 days n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 

AAOC – assimilable organic carbon; Banalysed by Scottish Water not FP; Cno raw water data for WTW 4, DWDS 1; Dno post-treated or service reservoir data for WTW 4, 

DWDS 1; Esamples analysed in triplicate. 

Table 4.12: Summary of samples collected per water supply system site during the AOC sampling within the network during Year 2 of 

the sampling regime. Three drinking water supply systems WTW 4 DWDS 1; WTW 6 DWDS 2 and WTW 20 DWDS 4 (for total number of 

samples analysed across all experiments multiply each value by 3 (sites)).Year 2 of network sampling corresponds with the 12 month sampling 

programme in each of the pipe loops.  

Parameter 
Sampling 

Duration 

Sampling 

Frequency 

Sample Location 

Raw 

Water 

Post-

treated 

Water 

SR 1 

Inlet 

SR 2 

Outlet 

SR 2 

Inlet 

SR 2 

Outlet 

SR 3 

Inlet 

SR 3 

Outlet 

Total 

chlorineB 

1 year 

2 days - n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 

IronB Bi-monthly n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 

ManganeseB Bi-monthly n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 

ATPBCD Bi-monthly n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 

Colony 

countsB 

Bi-monthly n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 

TemperatureB 2 days n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 

TOCB Bi-monthly n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 

AOCA Bi-

monthlyE 

n=3 n = 3 n = 3 n = 3 n = 3 n = 3 n = 3 n = 3 

TCCBC 2 days n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 

ICCBC 2 days n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 

AAOC – assimilable organic carbon; Banalysed by Scottish Water not FP; Cno raw water data for WTW 4, DWDS 1; Dno post-treated or service reservoir data for WTW 4, 

DWDS 1; samples analysed in triplicate 
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Table 4.13 : Summary of samples collected per site during the growth and mobilisation phases of biofilm growth (for total number of 

samples analysed across all experiments multiply each value by 3). The 12 month sampling programme in each of the pipe loops corresponds 

with Year 2 of network sampling. 

Phase Time 
Inserts Outer Coupons 

Microscopy Spare  Flow Cytometry DNA Analysis 

Growth 

Day 0 n=3 n=3 n=3 n=3 

3 month n=3 n=3 n=3 n=3 

6 month n=3 n=3 n=3 n=3 

9 month n=3 n=3 n=3 n=3 

12 month n=3 n=3 n=3 n=3 

12 month bottom n=3 - n=3 - 

12 month top n=3 - n=3 - 

Mobilisation 
Post-flushA n=3 n=3 n=3 n=3 

Post-flush bottomA n=3 - n=3 - 
 

Phase 
Time 

Period 

Water Quality Samples 

AOCB TOCC Chlorine TurbidityD  Manganese pH ORPE TemperatureF 

GrowthE Day 0 – 3 

Month 

n=3 n=3 n=3 n=3 n=3 n=3 n=3 n=3 

3 Month – 6 

Month 

n=3 n=3 n=3 n=3 n=3 n=3 n=3 n=3 

6 Month – 9 

Month 

n=3 n=3 n=3 n=3 n=3 n=3 n=3 n=3 

9 Month – 

12 Months 

n=3 n=3 n=3 n=3 n=3 n=3 n=3 n=3 
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Mobilisation Flush Step 1 n=3 n=3 n=3 n=3 n=3 n=3 n=3 n=3 

Flush Step 2 n=3 n=3 n=3 n=3 n=3 n=3 n=3 n=3 

Flush Step 3 n=3 n=3 n=3 n=3 n=3 n=3 n=3 n=3 

Flush Step 4 n=3 n=3 n=3 n=3 n=3 n=3 n=3 n=3 

Flush Step 5 n=3 n=3 n=3 n=3 n=3 n=3 n=3 n=3 

APost-flush samples taken at the end of the mobilisation phase (after flush step 5); B AOC – assimilable organic carbon; CTOC – total organic carbon; DDiscrete turbidity; 
EORP – oxidising reduction potential; F Temperature – room temperature. 
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4.9 Summary  

This chapter gave an overview of the methods used to develop the bespoke AOC method 

developed and applied in this study. The new AOC method was validated within 20 WTW, 

before being used to monitor the AOC concentration within bulk water at service reservoir 

inlets and outlets of four DWDS, for two years. Details of AOC sampling within the network 

were provided, along with an overview of the other bulk water samples collected. The second 

year of AOC sampling in the bulk water of the DWDS was conducted simultaneously with the 

operation of three state-of the-art pipe loops facilities. The pipe loop facilities were purpose-

built to enable a long-term biofilm sampling programme, in which the impact of AOC 

concentration on biofilm accumulation and subsequent mobilisation could be assessed. An 

experimental overview of the 12 month sampling programme in each pipe loop was provided.  
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Chapter 5: Assimilable Organic Carbon Method Development, 

Validation and Application 
 

5.1 Aims and Objectives 

This chapter will first evaluate existing AOC methods (Section 5.2) before developing of a 

rapid, robust AOC method that can be used for routine analyses within drinking water systems 

(Section 5.3). Current AOC method application is limited due to the time and resources 

required to complete the assay, and the variation in available AOC methods making it difficult 

to compare between applications (as outlined in Table 2.4). The developed AOC method will 

be validated to ensure its reproducibility and test the ability of the method to capture a wide 

range of AOC concentrations in drinking water pre- and post-treatment (Section 5.4). 

5.2 Evaluation of Existing AOC Methods 

To develop a quicker but robust AOC method, established methods by Van der Kooij et al. 

(1982), LeChevallier et al. 1993a and Hammes & Egli (2005) were first evaluated. Assessment 

of the methods included protocols that incorporated different inoculum strains, incubation 

temperatures and enumeration techniques. A comparison of the yield curves produced by using 

bacterial strains Pseudomonas fluorescens P-17 (P-17) and Spirillum sp. strain NOX (NOX) 

enumerated with plate counts (Van der Kooij et al. (1982) and ATP (LeChevallier et al. 1993a), 

compared to a natural microbial inoculum enumerated using flow cytometry (Hammes & Egli, 

2005), can be seen in Figure 5.1. Triplicate sodium acetate standards containing 0 – 1000 µg/L 

were used to assess the ability of both methods to enumerate different carbon concentrations. 

Flow cytometry and HPC enumeration methods showed good reproducibility between 

triplicate measurements. The ATP method generated a higher degree of standard error 

(approximately two-fold) between measurements than flow cytometry and HPC, and 

consistently underestimated cell counts. Using a natural microbial inoculum resulted in a higher 
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final cell count per mL than using known strains, when the NOX and P-17 counts per sample 

were averaged as required in the Van der Kooij et al. (1982) protocol. Additionally, the yield 

curve of the natural microbial inoculum was very different from that of P-17 (Figure 5.1). 

Ultimately the time consuming nature of enumerating known strains with HPC, along with the 

results of the two AOC protocols being statistically different (ANOVA: degrees of freedom 

(df)=2, p = 0.01), demonstrated the need for an improved AOC method. 

 

 

Figure 5.1: Comparison of cell counts enumerated using bacterial strains NOX (NOX 

HPC) and P-17 (P-17 HPC) with heterotrophic plate counts or ATP, or using a natural 

microbial inoculum with flow cytometry (Nat Inoculum FC). The average (n=3) cell counts 

(± standard deviation) at each acetate carbon concentration are plotted. The flow cytometry 

count refers to the total cell count. 

 

5.3 Development of AOC Method 

5.3.1 Inoculum Enumeration  

In order to develop a quick standardised AOC method, each individual step in the AOC 

protocol, including the incubation temperature, inoculum density, inoculum type (known 
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strains or natural microbial inoculum) and enumeration method, were analysed in series of 

laboratory trials. To assess the repeatability and accuracy of two enumeration methods, a 

comparison of flow cytometric enumeration, HPC and ATP to enumerate P-17 was first 

assessed. As demonstrated in Figure 5.2, flow cytometry results showed equal or smaller 

variance between triplicate measurements, with greater consistency than HPC counts. The 

same experiment was performed using NOX (not plotted). 

 

 

Figure 5.2: Comparison of P-17 cell concentrations when enumerated using heterotrophic 

plate counts (HPC) or flow cytometry (FC) over a nine day period (Pick et al. 2018). Cells 

are grown on in solutions containing 0 µg acetate carbon / L (control), and 100 µg acetate 

carbon / L. HPCs are recorded as CFU / mL and total cell counts (TCC) are recorded as cells / 

mL. The average (n=3) cell counts (± one standard deviation) are plotted. 

 

5.3.2 Incubation Temperature and Inoculum Density 

To investigate the effect of incubation temperature on cell growth rate, P-17 cells were grown 

in solutions containing 100 µg acetate carbon / L and enumerated using flow cytometry. When 

using different incubation temperatures for P-17, the stationary phase of growth was reached 
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more quickly with increasing temperature, but the peak number of cells (N-max) was lower at 

23 or 30 °C than that achieved at 15 °C (Figure 5.3A). This demonstrates that each temperature 

will generate a different yield factor, and secondly, confirms that 15 °C is the optimal 

temperature for P-17 growth.  
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Figure 5.3: Comparison of P-17 cell growth when incubated at different temperatures (A) 

and with different inoculum densities (B) during a nine day incubation period. All samples 

were enumerated using flow cytometry and recorded as cells / mL. Cells were grown in 

solutions containing 100 µg acetate carbon/L. (A) Inoculum density was 500 CFU/mL, 

temperature as indicated by the key. (B) Temperature was 15 °C, inoculum density as indicated 

by the key. The average (n=3) cell counts (± one standard deviation) are plotted. 
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When the incubation temperature was kept constant (15 °C) but the inoculum density changed, 

a more concentrated inoculum resulted in the stationary phase of growth (maximum number of 

cells / mL) being reached in a shorter amount of time. This did not affect the maximum growth 

value (Figure 5.3B). A higher inoculum volume of 10,000 CFU/mL will therefore be used for 

subsequent tests.  

5.3.3 Natural Microbial Inoculum   

A further test was conducted to assess the reproducibility of using a natural inoculum in the 

AOC method. As alternate strains of bacteria have different growth rates, it is important to 

assess the consistency of growth rates resulting from different inoculums. Natural inoculums 

were obtained from three separate drinking water sources characterised by different 

conventional treatment processes to obtain a diverse natural inoculum (post-treated / filtered 

water from WTW 6, 13 and 14; see Table 4.1 for site details). 
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Figure 5.4: The effect of sample location on natural inoculum growth rate. The three 

inoculums were collected from three separate treated (post-treatment) water locations and 

prepared according to Hammes & Egli, 2005. Inoculums were added to separate solutions 

containing 100 µg acetate carbon/L and incubated at 30 °C for 9 days. Cell enumeration was 

via flow cytometry. The average (n=3) cell counts (± one standard deviation) are plotted. 

 

Comparison of the three natural microbial inoculum, demonstrated that the growth rate of 

inoculum 1 was statistically significant different (p=0.0015) from inoculums 2 and 3, most 

likely due to differences in their microbial community composition. Using a natural microbial 

inoculum for the AOC assay requires that the inoculum is changed at least every month, this 

would make standardising the method difficult given the variability in the natural microbial 

inoculum. Consequently, it was desirable to create an adapted method that incorporates the use 

of bacterial strains P-17 and NOX to increase the reproducibility of the test, coupled together 

with flow cytometric enumeration to increase the speed and accuracy of the method.  
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5.3.4 Optimised AOC Protocol   

To generate a quicker, robust method for AOC sampling, an optimised AOC protocol was 

developed which combines strains P-17 and NOX, a higher inoculum volume (104 cells / mL) 

and enumeration using flow cytometry. By utilising known bacterial strains it is possible to use 

standardised yield curves to convert the cell count to AOC concentration. The yield factors 

generated by monitoring the growth of the test organisms on pure solutions of acetate-carbon 

(P-17) or oxalate-carbon (NOX) are exhibited in Figure 5.5. These were subsequently used as 

reference standards to convert cell counts to AOC.  

 

Figure 5.5:  Yield factors produced when using NOX and P-17 grown in 0 – 1000 µg/L 

sodium acetate solutions. Samples were inoculated with 1000 cells ml-1, incubated at 15 °C 

until maximum cell growth was achieved and enumerated using flow cytometry. Total cell 

counts are presented as averages ± standard deviation. The average (n=3) cell counts (± one 

standard deviation) are plotted. 
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5.4 Assessment of AOC Removal at the WTW 

5.4.1 AOC at the Treatment Works: Raw vs. Treated Water 

To confirm the ability of the optimised AOC method to capture a wide range of AOC 

concentrations, and quantify treatment efficacy, the developed AOC method was used to 

quantify AOC removal at 20 WTW (Table 4.1), by measuring AOC in raw (pre-treated) and 

post-treated water (Figure 5.6). Application of the method yielded informative, repeatable 

results, confirming the AOC method was able to capture AOC reduction at the WTW. The 

AOC concentration was found to decrease post-treatment at every WTW during the treatment 

process with an average of 45% removal of AOC across the twenty WTW sampled (Figure 

5.6).  

The AOC concentration in post-treated water was found to be more dependent on 

incoming water quality than the specific treatment process employed at the WTW.  It was found 

that WTW supplied from groundwater sources (WTW 1-4) contained, on average, 50% less 

organic carbon in both raw and post-treated water than their surface water counterparts (WTW 

5-20). The AOC concentration within raw surface water (234-403 µg/L) was much higher than 

raw groundwater (117-190 µg/L). Among the water treatment works supplied by groundwater 

water, the AOC concentration in post-treated water ranged from 61-96 µg/L, with all of the 

groundwater WTW having an AOC concentration in treated water below the threshold for 

biostable water (<100 µg/L).  

 TCC and ICC were also measured within raw and post-treated water for the same 20 

WTW to determine the degree of cell removal / inactivation during treatment. When comparing 

the quality of post-treated water to the raw water quality, the post-treated water contained 

93.41-99.73 % fewer TCC and 99.73-99.92 % fewer ICC. A comparison of cells counts and 

AOC concentrations indicate that the WTW containing a large number of total cells in which 
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the proportion of intact cells was small within raw water, exhibited the highest concentration 

of AOC in post-treated water.   
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 1 
Figure 5.6: AOC concentration in raw (light bar) and post-treated (dark bar) water at 20 WTW (See Table 4.1 for details of source water, 2 
treatment type and disinfectant). Data collected weekly over a two month period (samples collected in triplicate) (n=24 at each WTW). Average 3 

± standard deviation is plotted. 4 



Page | 138 
 

5.5 Discussion 

This chapter developed a novel AOC methodology which combined the use of two known 

strains of bacteria, a larger inoculum volume and flow cytometric enumeration to increase the 

speed and reproducibility of AOC concentration. By using P-17 and NOX instead of a natural 

microbial inoculum, there is greater consistency between measurements. Unlike using known 

strains, the diversity of a natural inoculum was shown to depend upon the location and time in 

which the sample is taken. Hammes and Egli, (2005) use a fixed yield value of 1 x 106 bacteria 

(µg of AOC) to convert the maximum growth of the natural microbial consortium to an AOC 

value, but this does not accurately reflect the changing bacterial composition of each water 

sample. This can therefore create difficulties in standardising the AOC method. In contrast, 

using P-17 and NOX facilitated robust replication and repeatability. The analysis presented 

herein showed that increasing the density of P-17 and NOX decreased the time taken for the 

bacteria to reach stationary phase, whilst ensuring the growth yield values will be unaffected. 

Conversely, temperature changes decreased the peak in the bacterial growth rate, therefore 

requiring a different growth yield to be utilised. As the aim of this study was to create a 

standardised AOC it was deemed more suitable to use standardised yield values.  

Comparison of enumeration methods used in the AOC protocol highlighted that flow 

cytometry had equal or better reproducibility between triplicate measurements than standard 

plate counts, and therefore offers a suitable alternative to HCP’s in the AOC method. This is 

possibly a result of the selectivity of HCPs only culturing <1% of the population. Conversely, 

flow cytometry counts all cells present in the sample. ATP showed the most variability between 

measurements, potentially due to the two conversions needed to convert ATP (expressed as 

RLU) to cell counts, and finally cell counts to AOC concentration. The time and resources 

required to complete the assay were reduced significantly (from 14 to 8 days) by using flow 

cytometric enumeration of the water samples, which removes the need for incubation of 
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standard plate counts, hence is a more rapid method (2 minutes per sample compared to 3-4 

days for HPC). Moreover, flow cytometry can detect a greater number of cells per sample (6 × 

104 events per analysis (the total volume analysed is 200 µL) before sample dilution is required 

(Hammes & Egli, 2005). It is only possible to detect up to 300 CFU per plate when using HPC. 

By combining the reproducibility of using two strains of bacteria with known growth rates, 

together with an increased inoculum density and cell enumeration using flow cytometry, this 

study presents a novel, fast and standardised AOC method suitable for application within urban 

water systems.  

The AOC concentration in treated water was predominantly influenced by source water 

quality. Groundwater systems contained a much lower concentration of AOC and produced 

treated water that could be classed as bio-stable (<150 µg/L). The final water AOC 

concentration at the majority of the treatment works supplied by surface water sources was 

found to contain AOC concentrations that exceed the existing criteria for bio-stable drinking 

water (Van der Kooij, 1992). In general, drinking water containing a disinfectant is classed as 

biologically stable when it contains AOC concentrations of <100 µg/L with appropriate level 

of chlorine residual (LeChevallier et al. 1993a). Taking this into account, the majority of the 

treated waters sampled are not classed as biologically stable.  

AOC is made up of small molecular weight particles, which are removed to different 

extents by different treatment processes. In this study an average of 40% AOC removal was 

found. Greatest AOC removal was achieved at WTW’s using rapid gravity filtration (RGF) or 

granular activated carbon (GAC). GAC or biological activated carbon (BAC) is able to remove 

small easily biodegradable compounds. Easton (1993) found coagulation and sedimentation 

(clarification) was able to achieve good removals (up to 57%) of AOC. The degree of AOC 

removal via membrane processes is dependent on the type of membrane. However, Escobar & 

Randall, (1999) found that Nanofiltration had no effect on AOC removal.  
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5.6 Summary 

The AOC assay developed in this chapter incorporates known strains P-17 and NOX, a higher 

inoculum volume and enumeration using flow cytometry to generate a quicker (total test time 

reduced from 14 to 8 days), robust method. By utilising known bacterial strains it is possible 

to use standardised yield curves to convert the cell count to AOC concentration. First 

application of the developed assay has confirmed its suitability for use in the field, capturing 

an extensive range of AOC loading in raw and post-treated water at 20 WTW. In order to assess 

how AOC concentration changes from leaving the WTW to the customers tap, the optimised 

AOC method was applied to fully operational DWDS.  
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Chapter 6: AOC Concentration Variation within DWDS and the 

Impact on Drinking Water Biostability 

 

6.1 Aims and Objectives  

The AOC method developed and validated in Chapter 5 was used to explore the behaviour and 

fate of AOC across four DWDS each with different source waters, treatment steps and 

disinfection residuals (see Table 4.2). AOC concentration was quantified at service reservoir 

(SR) inlet and outlets to evaluate changes in the AOC concentration with time spent in the 

network. The information gained in this chapter will determine if pipes or service reservoirs 

act as sources or sinks of AOC in operational networks. As piped areas of the DWDS are 

characterised by a high surface area to bulk water ratio, it is possible to reveal what impact 

interactions within the pipe wall (and potentially any attached biofilms) has on the AOC 

concentration.  

In order to determine the impact of AOC concentration and other environmental 

parameters on bacterial growth within the DWDS, TCC and ICC and other general water 

quality parameters (including total chlorine and temperature) were sampled within the same 

four DWDS. Bacterial growth within DWDS is traditionally assessed using culture-based 

techniques such as plate counts, which are known to only detect <0.1 % of drinking water 

bacteria and so are not representative of the drinking water bacterial community (Section 

2.2.3). Flow cytometry, on the other hand, enables the quick detection and counting of all 

bacterial cells in water, and will therefore be used to determine the relationship between AOC 

and (re)growth within DWDS. By undertaking in-depth sampling of AOC, cell counts and 

disinfection residual this thesis will provide a holistic understanding of the parameters affecting 

biological stability within operational DWDS. 
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6.2 AOC Concentration within DWDS 

The AOC concentration was analysed at the inlet and outlet of three SR within each of the four 

DWDS (1-4) (Table 6.1).  

 

Table 6.1: Treatment processes within the four supply systems. 

WTW ID WTW 4 WTW 12 WTW 16 WTW 20 

Water 

Source 

Surface: Reservoir Surface: River Surface: River Borehole 

Full 

Treatment 

Process 

pH Adjustment pH Adjustment pH Adjustment pH Adjustment 

Coagulation Coagulation Coagulation Coagulation 

Clarification 

(DAF) 

Clarification 

(DAF) 

Ultrafiltration Clarification  

Gravity Filtration Gravity Filtration Chlorine Gas 

Disinfection 

Hollow Fibre 

Membrane 

 pH adjustment pH adjustment  

Disinfectant 

Residual 

Chlorination Chloramination Chloramination  Chloramination 

DWDS ID DWDS 1 DWDS 2 DWDS 3 DWDS 4 

Pipe Loop A  B C 

WTW = water treatment works; DWDS = drinking water distribution system; DAF = dissolved air 

flotation   

 

Each of the DWDS is characterised by different hydraulic retention times and SR 

configurations (see Figure 6.1 for SR layout within each DWDS). 
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Key:  

           = WTW              = SR                    = Pipeline               = Clear Water Tank 

  

 

 

 

 

 

 

 

DWDS 3; river; membrane; 

chloramination 

DWDS 4: groundwater; 

chloramination   

DWDS 2: river; gravity 

filtration; chloramination 

DWDS 1: reservoir; gravity 

filtration; chlorination 

4.1* 

* 

4.2* 

4.3* 

1.1* 

1.3 

1.2* 

CWT 

CWT 

 

3.3 

3.2 

2.2 

3.1* 

2.3 

CWT 

CWT 

2.1 

Figure 6.1: Schematic of the arrangement of service reservoirs (SR) within the four 

DWDS selected for further sampling (not to scale). The SRs sampled for AOC are numbered 

from one to three in each distribution system, as indicated by the second number in each case, 

with the first number denoting the DWDS to which the SR belongs. Unlabelled SRs are not 

sampled as part of this study and are only drawn to show the pathway of the water. SRs labelled 

with a * are subject to the pipe only effect, as water has not previously passed through a SR. 

Samples analysed included: WTW (raw): AOC, TCC & ICC; WTW (post-treatment): AOC, 

TCC, ICC & total chlorine; SR inlets: AOC; SR outlets: AOC, TCC, ICC & total chlorine. 
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The three SR sampled in each DWDS were selected on the basis of a) suitable location for an 

inlet tap installation b) situated at different distances within the network (different hydraulic 

retention times). The 12 SR sampled for AOC were located 3.35 to 53.26 km into the network. 

It was not possible to sample every SR within each DWDS within the scope of this thesis. The 

various pathways that the water travels to reach each of the 12 SR are shown in Figure 4.1. In 

some cases water passes through a series of pipes and SR to reach the sampled SR, and in some 

cases only pipes. The order of the 3 SR analysed for AOC within each DWDS are not in series, 

but some of the WTW-pipe-service reservoir layouts are comparable (this is taken into account 

in Figure 6.1). 

6.2.1 AOC Concentration, DWDS Infrastructure and Seasonality  

DWDS pipes and SR are characterised by different volume to surface areas. To ensure that 

pipe and SR effects on AOC could be clearly differentiated SR inlet and outlet points were 

sampled. As identified in Figure 4.1, the 12 DWDS consist of 6 DWDS which are pipe only 

(water does not pass through a SR before reaching the final sampled SR). Interestingly, when 

comparing AOC concentration in post-treated water to SR inlet values, the AOC concentration 

was found to increase within all of the pipe only sections during winter and 83% of pipe only 

sections during summer (Figure 6.2). In contrast, the AOC concentration was found to decrease 

within the majority of SRs sampled (75% in summer and 67% in winter) (Figure 6.1). In DWDS 

2, the AOC concentration was found to increase from the WTW to the SR inlet within DWDS 

1.1 and DWDS 1.2; the two DWDS which are dominated by pipe only effects. In contrast, the 

AOC concentration declined from the WTW to the SR inlet of SR 1.3. In DWDS 1.3 water 

passes through multiple SR before reaching the inlet, suggesting a decline in AOC 

concentration during SR residence time. This trend was also identified in DWDS 2 as AOC 

was found to decline from leaving the WTW to reaching SR 2.2. During this time the water 

passes through 6 SR before reaching the final sampled SR.     
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 During winter, AOC was found to decline from leaving the WTW to reaching the inlet 

of both SR 3.2 and SR 3.3. However, in SR 3.1 AOC was found to increase before reaching 

the SR. Water reaching SR 3.1 does not pass through any other SRs before reaching the SR 

and is therefore dominated by pipe only effects. 

6.2.2 AOC Concentration & Hydraulic Retention Time 

Contrasting trends in the relationship between AOC concentration and hydraulic retention time 

(HRT) were observed within the sampled DWDS. The AOC concentration within DWDS 4 

remained low in post-treated water and through the network (62-103 µg/L at all 3 SR inlet / 

outlets within DWDS 4) (Figure 6.2). DWDS 4 is supplied by ground water containing a low 

AOC concentration, and has a much shorter hydraulic retention time than the other three 

DWDS. In contrast, a slight increase in AOC was observed in DWDS 2 with HRT. When 

analysing the SR within the DWDS individually, a sharp increase of 41 µg/L was observed 

within SR 2.2.  

The mean AOC concentration within DWDS 1 and 3 was found to decline significantly 

with increasing hydraulic retention time (34.40% in DWDS 1 and 34.97% in DWDS 3). DWDS 

1 first exhibited an AOC increase suggesting chlorine was reacting with AOC prior to AOC 

consumption during (re)growth, hereafter causing a decline.  
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Figure 6.2: Variation in the AOC concentration along 4 DWDS (see Table 1 for DWDS 

details) with respect to the time that water has spent in the network, i.e. hydraulic 

retention time (HRT), during A) Summer and B) Winter. Hydraulic residence time is 

calculated from the pipe and/or SR volume divided by the flow rate (l/s). Locations of samples 

are indicated by the key and follow the sequence post-treatment (WTW outlet) and through 3 

service reservoirs (SR), inlet and outlet. Data is the annual average ± standard deviation. A 

network schematic of the SRs within each system is provided in Figure 4.1.  SR marked with 

a * are pipe only systems (water does not pass through an un-sampled SR). 
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6.3 AOC and Planktonic Cell Concentration In DWDS 

To provide an insight into the relationship between AOC concentration, cell counts and 

disinfection residual within the bulk water, and assess the degree of biological stability, AOC 

results were compared with TCC, ICC, total chlorine and temperature data for DWDS 1 (Figure 

6.3 & 6.4), DWDS 2 (Figure 6.5 & 6.6) and DWDS 3 (Figure 6.7 & 6.8). Due to sampling 

constraints, flow cytometry data was not unavailable for DWDS 4, therefore AOC and cell 

concentration comparisons were not possible. Three SR in each DWDS were analysed, as 

outlined previously (Figure 6.1). The relationship between AOC and microbial load was 

assessed over 12 months to firstly determine the impact of AOC concentration on cell growth, 

and secondly, to identify any seasonal trends in the AOC concentration and other water quality 

data.  

The AOC concentration within DWDS 1 and DWDS 3 exhibited a seasonal trend, with 

AOC concentration being elevated in spring, before declining through summer and autumn 

(Figures 6.3 & 6.7). AOC concentrations also decreased from post treatment to final SR 

sampled in this study. In DWDS 1, TCC’s were high in post-treated water before declining and 

continuing to stay low throughout the DWDS (TCC’S 98% lower in DWDS 1.3 than post-

treated water). Summer (re)growth was evident within all SR in DWDS 1, with SR 1.1 

exhibiting a sharp increase in ICC to 7240 cells/mL. This correlated with a decline in the AOC 

concentration. DWDS 1, a chlorinated system, exhibited a 55.32% decline in total chlorine 

concentration from post-treatment to SR 1.3.  

Despite very low percentages of intact cells being found in the treated waters of all 

three DWDS, these percentages were seen to increase with HRT in the distribution systems. 

The most significant increase in the percentage of intact cells was found within DWDS 2 with 

the percentage of intact cells increasing from 2.40% to over 50%. A significant decline in AOC 

concentration was found in SR 2.2, which correlates with an increase in ICC, especially during 
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autumn. As with DWDS 1, some (re)growth was evident within DWDS 2, especially in SR 2.2. 

The chloraminated DWDS 2 exhibited a decline in total chlorine concentration of 30.56%.  

The AOC concentration within DWDS 3 was lower than DWDS 1 and 2 at all points 

within the system. This correlated with lower TCC and ICC values within the DWDS. A small 

increase in ICC was observed within SR 3.1, 3.2 and 3.3 during spring and summer, in which 

the percentage of intact cells increased from 13.49 to 24.61%. DWDS 3 (chloraminated) 

exhibited the smallest decline (21.97%) in chlorine concentration from post treatment to SR 

3.3 (21.97%).  
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Figure 6.3: Seasonal water quality data for DWDS 1. Variation in the mean a) AOC 

concentration b) total cell counts (TCC) and c) intact cell counts (ICC) in post-treated water 

and three service reservoirs (SR) within DWDS 2 during the two year sampling programme. 

Nb different y-axis scale for each parameter and different y axis in Figures 6.2, 6.4 and 6.6. 

See Figure 4.1 for schematic of SR locations in each DWDS (the three SR are not in series).  
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Figure 6.4: Seasonal water quality data for DWDS 1. Variation in the mean a) percentage 

of intact cells ((ICC/TCC)* 100) b) total chlorine and c) temperature in post-treated water and 

three service reservoirs (SR) within DWDS 2 during the two year sampling programme. Nb 

different y-axis scale for each parameter and different y axis in Figures 6.3, 6.5 and 6.7. See 

Figure 4.1 for schematic of SR locations in each DWDS (the three SR are not in series).  
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Figure 6.5: Seasonal water quality data for DWDS 2. Variation in the mean a) AOC 

concentration b) total cell counts (TCC) and c) intact cell counts (ICC) in post-treated water 

and three service reservoirs (SR) within DWDS 3 during the two year sampling programme. 

Nb different y-axis scale for each parameter and different y axis in Figures 6.2, 6.4 and 6.6. 

See Figure 4.1 for schematic of SR locations in each DWDS (the three SR are not in series). 
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Figure 6.6: Seasonal water quality data for DWDS 2. Variation in the mean a) percentage 

of intact cells ((ICC/TCC)* 100) b) total chlorine and c) temperature in post-treated water and 

three service reservoirs (SR) within DWDS 2 during the two year sampling programme. Nb 

different y-axis scale for each parameter and different y axis in Figures 6.3, 6.5 and 6.7. See 

Figure 4.1 for schematic of SR locations in each DWDS (the three SR are not in series). 
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Figure 6.7: Seasonal water quality data for DWDS 3. Variation in the mean a) AOC 

concentration b) total cell counts (TCC) and c) intact cell counts (ICC) in post-treated water 

and three service reservoirs (SR) within DWDS 4 during the two year sampling programme. 

Nb different y-axis scale for each parameter and different y axis in Figures 6.2, 6.4 and 6.6. 

See Figure 4.1 for schematic of SR locations in each DWDS (the three SR are not in series). 
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Figure 6.8: Seasonal water quality data for DWDS 3. Variation in the mean a) percentage of 

intact cells ((ICC/TCC)* 100) b) total chlorine and c) temperature in post-treated water and 

three service reservoirs (SR) within DWDS 2 during the two year sampling programme. Nb 

different y-axis scale for each parameter and different y axis in Figures 6.3, 6.5 and 6.7. See 

Figure 4.1 for schematic of SR locations in each DWDS (the three SR are not in series). 
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6.4 Self Organising Map Analysis 

To help understand trends and relationships between the large numbers of water quality 

parameters sampled within the four DWDS in this study, a self organising map (SOM) was 

constructed to help visualise the data (Figure 6.9).The concentration of AOC was found to be 

highest when the TCC was high but the percentage of intact cells was low, thus suggesting 

limited AOC consumption. A clear trend can also be identified that when the total chlorine is 

low (illustrated by blue shading), the ICC is high. This confirms the ability of total chlorine to 

suppress cell growth when at higher concentrations.  

 

Figure 6.9: Self Organising Map (SOM) analysis of total chlorine (mg / l ), water 

temperature, total cell count (cells / mL), intact cell count (cells / ml), percentage of intact 

cells, distance from water treatment works (km), AOC concentration (µg C / L) and total 

ATP (RLU). The cell shading denotes the numerical value of the vectors and a colour bar is 

presented to show the mapping between shading and numerical value. In this study, blue 

denotes low and red denotes high values. 
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6.4 Discussion 

The AOC concentration within DWDS was found to be a function of several factors including 

source water quality, chlorine residue, seasonality, AOC concentration removal at the treatment 

works and bacterial activity. As this study employs both SR inlet and outlet sampling, it is 

possible to identify changes in AOC concentration with HRT within both piped sections and 

the SRs. The HRT is calculated from the pipe and/or SR volume, divided by the flow rate (l/s). 

When comparing the AOC concentration in post-treated water to SR outlet water, AOC was 

found to decline with increasing HRT within the majority (7 out of 12 in both summer and 

winter) of DWDS, indicating that these systems were acting as net sinks of AOC. The decline 

in AOC in DWDS 1 and 3 correlated with an increase in ICC. A decrease in AOC with distance 

in the distribution systems has been found to correlate with an increase in heterotrophic bacteria 

(LeChevallier et al. 1987; Van der Kooij et al. 1989; Han et al. 2012). 

 To determine if the reduction of AOC levels in distribution may be caused by 

planktonic bacteria or those growing on the walls of the mains or SRs as biofilms, the AOC 

concentration in post-treated water was compared to SR inlet water. The 12 DWDS consisted 

of 6 DWDS which are pipe only and 6 which pass through SR before reaching the final sampled 

SR (see Figure 4.1). The AOC concentration was found to increase within all of the pipe only 

sections during winter and 83% of pipe only sections during summer. In cases where organic 

matter is released from the biofilm, this can increase AOC and cell counts within the bulk water 

(Han et al. 2012). In contrast, the AOC concentration was found to decrease within 8 of the 12 

SR sampled in both summer and winter. A reduction in AOC during elevated storage within a 

SR points to AOC consumption by heterotrophic bacteria.  

The AOC concentration with DWDS is not only influenced by the degree of cell growth 

but also the disinfection residual. In DWDS 1, an initial increase in AOC concentration was 

observed before declining with distance in the network. The initial increase in AOC is a 
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potential result of organic matter reacting with chlorine. One reason for an increase in AOC 

concentration is the oxidation of organic matter macromolecules into small-molecule 

biodegradable organic compounds (such as carboxylic acids) by chlorine or chloramine (Lou 

et al. 2009; Liu et al. 2015). Hence, the trade-off between achieving effective disinfection and 

limiting unwanted by-product formation (in this case AOC) becomes a main operational goal 

for water utilities. Despite AOC increasing after leaving the works, the presence of chlorine 

resulted in a low number of intact cells a short distance from the WTW. However, as total 

chlorine declines in the system from 0.95 mg/L to 0.53 mg/L at the outlet of SR 2, there is an 

increase in the number of intact cells with the percentage of ICC rising from 2% in post-treated 

water to >63% in SR2. 

A seasonal trend was identified in DWDS 1-3, in which the AOC concentration 

generally increased to a maximum in spring, before declining from in summer and autumn.  

Polanska et al. (2005) also observed an increasing trend in the AOC concentration during 

spring. Summer (re)growth was evident with DWDS 1 and 3, with an increase ICC within all 

SRs within DWDS 1 during summer. We conclude that a decrease in AOC from spring to 

summer is due to the consumption of AOC by heterotrophic organisms. This is demonstrated 

by an increase in the number of intact cells during summer. Similarly, there are fewest TCC 

and ICC within the winter months. The lower temperatures in winter would limit the bacterial 

(re)growth during distribution and therefore AOC consumption by bacteria would be lower. It 

would also be likely that the reaction between chlorine and organic matter would also slow 

down at lower temperatures (Liu et al. 2002). The combined effect of supressed microbial 

growth and slower oxidation of organic carbon, resulted in a continuous increase in AOC 

concentration during the winter season. 

In DWDS 4 AOC values remained low (<125 µg/L) in post-treated water and within 

the DWDS. This site is supplied by borehole water containing low concentration of AOC. This 
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highlights the importance of good source water quality. Similarly, DWDS 3 was found to 

contain AOC concentrations lower than DWDS 1 and 2 throughout distribution. Intact cell 

counts remained relatively low within DWDS 4 most likely as the AOC in the system was 

unable to support any additional (re)growth. Organic carbon, especially AOC has been 

identified as a primary factor controlling microbial growth in drinking water distribution 

systems (Lehtola et al. 2001; LeChevallier et al. 1991).  DWDS 3 and DWDS 4 are also the 

two systems with the shortest hydraulic residence time (105 hrs in DWDS 1, 268 hrs in DWDS 

4, 371 hrs in DWDS 2, 510 hrs in DWDS 3) (Table 4.3).  

In DWDS 2, supplied by chloraminated surface water, the AOC concentration was 

characterised by the highest AOC values and highest TCC. Despite having >40,000 TCC 

(cells/mL) within each SR, <9% of these were intact. It is likely that these cells attributed to 

the high AOC values with the system.  

6.5 Summary 

Application of the optimised AOC method developed in this thesis provided novel evidence of 

different pipe and service reservoir behaviour. This chapter presents first time data of the AOC 

concentration increasing within pipe only systems, and declining within SR. The results from 

this study highlight the complex cycling of AOC within DWDS, being a combination of both 

planktonic and biofilm processes within the pipes and SR. AOC was demonstrated to be a 

useful tool in assessing water quality and gaining understanding of DWDS behaviour, which 

would be otherwise not be observable.  
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Chapter 7:  The Impact of AOC Concentration on Biofilm Growth and 

Mobilisation 

7.1 Aims and Objectives 

The novel AOC method outlined in Chapter 5 was previously applied to four DWDS to 

characterise spatial and temporal variations in AOC concentration, and determine the impact 

of AOC concentration on microbial (re)growth in the bulk water (Chapter 6). Elevated AOC 

concentrations were found to correlate with increased levels of microbial growth in the bulk 

water. Increased levels of (re)growth can lead to a loss of biological stability, defined as 

drinking water in which the microbial quality does not change as the water travels from WTW 

to the customers tap. However, it is unclear how the AOC concentration impacts biofilm 

growth and potential mobilisation within the DWDS. The majority of new microbial growth in 

DWDS occurs on the pipe wall, in comparison to the bulk water (Lehtola et al. 2004; Moritz 

et al. 2010).  

This chapter aims to understand the impact of AOC concentration on both planktonic 

and attached microorganisms, in order to gain a holistic understanding of AOC within DWDS. 

Specifically, the information gained will help determine the impact of AOC concentration on 

biofilm accumulation, characteristics and mobilisation behaviour. This study aims to determine 

the impact of AOC concentration on biofilm cell growth and maturation for one year. In 

addition, by quantifying the community composition of both the biofilm and the bulk water, 

this work will quantify the impact of the AOC concentration on both planktonic and attached 

bacterial and fungal communities. Finally, this research will determine if an elevated AOC 

concentration in the bulk water will affect the microbial and discolouration risk of the biofilm. 

7.2 Introduction 

Using three novel, full-scale experimental pipe loops (Table 7.1) supplied with either high- 

(WTW 2; DWDS 1; Pipe Loop A), medium- (WTW 16; DWDS 3; Pipe Loop B) or low-AOC 
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(WTW 20; DWDS 3; Pipe Loop C) drinking water biofilm and bulk water samples were 

collected over a 12 month study period to determine the impact of AOC concentration on 

biofilm accumulation. Specifically, the number of cells (and the proportion that remained 

intact) in the biofilms were quantified and the bacterial and fungal communities were compared 

between the sites, to identify any selective pressures due to the AOC concentration. After 12 

months growth, the flow rate was raised within each pipe loop to determine any differences in 

the mobilisation and discolouration response of biofilms that developed under different AOC 

concentrations. 

Table 7.1: Source water quality, treatment stages and disinfectant types supplying the 

three novel, full-scale experimental pipe loops.  

AOC 

Concentration 
Source 

Water 

Treatment 

Type 

WTW 

ID 

Disinfectant 

Type 

DWDS 

ID 

Pipe 

Loop 

ID 

High Reservoir RGF 2 Cl2 DWDS 1 A 

Medium River 
Membrane 

16 NH2Cl DWDS 3 B 

Low Groundwater 20 NH2Cl DWDS 4 C 

WTW = water treatment works; DWDS = drinking water distribution system, ID = identification 

number / letter. RGF: rapid gravity filter, Cl2: chlorine, and NH2Cl: Monochloramine. 

 

7.3 Bulk water Quality 

In order to determine the impact of AOC concentration on bulk water  quality, AOC was 

sampled both within raw water supply each WTW, and within post-treated water supplying 

each pipe loop.  

7.3.1 The Impact of AOC Concentration on Raw Water Quality (upstream of pipe-

loops) 

To assess any changes in raw water quality supplying the three WTW, and compare this to the 

quality of post-treated water supplying the pipe loop test facilities, standard drinking water 

parameters were monitored (see section 4.6) along with AOC, TCC and ICC to assess the 
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biological stability of raw water. Additionally, bulk water sampling was conducted to monitor 

any changes in incoming water quality during the 12 month study period to determine any 

seasonal changes in bulk water quality. Routine raw water drinking water parameters sampled 

included turbidity, iron, manganese, total chlorine and TOC. It should be noted that turbidity, 

iron, manganese and TOC are not sampled at WTW 20 as this is a ground water source with 

historically low levels of background contaminants, therefore this data is unavailable.  

 The mean and range of each of the measured raw water quality parameters (excluding 

AOC, TCC and ICC which are plotted in Figure 7.1, Figure 7.2 and Figure 7.3), for each site, 

are shown in Table 7.2.  

 

Table 7.2: Raw water quality (upstream of pipe loop) during the formation of biofilms 

over a 12 month period at Pipe Loop A and Pipe Loop B.  

Water Quality 

Parameter 

WTW 2 (Pipe Loop A) 

Mean (St. Dev) 

WTW 16 (Pipe Loop B) 

Mean (St. Dev) 

Turbidity (NTU) 2.27 (1.66) 0.68 (0.59) 

Iron (µg / L) 152.07 (90.17) 116.93 (64.23) 

Manganese (µg / L) 18.33 (14.17) 8.09 (3.70) 

ATP (RLU/100µl) 207,246 (213,568) 25,975 (18,281) 

Colony counts 22°C 

(CFU / mL) 

202 (108) 239 (89.05) 

Colony counts 37°C 

(CFU / mL) 

47 (88) 31 (46) 

TOC (mg / L) 4.3 (1.1) 3.6 (1.6) 

 

Raw water supplying WTW 2 contained higher concentrations of turbidity, iron, manganese, 

ATP, colony counts at 37°C and TOC, in comparison to raw water supplying WTW 16 (Table 

7.2). Notably, the ATP concentration within raw water supplying WTW 2 was approximately 

8 fold greater (when using the mean) than the ATP concentration within raw water supplying 

WTW 16. 

The AOC concentration (Figure 7.1) within raw water was measured in triplicate every 

two weeks for a 12 month period. On average, WTW 20 contained the lowest concentration of 
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AOC (91 ±12 µg C / L), when compared to WTW 2 (379 ±31 µg C / L) & WTW 16 (319 ±35 

µg C / L) (data in text is expressed as the mean ± standard deviation). AOC concentration 

within the raw ground water supplying WTW 20 remained relatively consistent throughout the 

12 month period, whereas AOC within WTW 2 and 16 was found to gradually increase during 

autumn / winter and gradually decline during summer (Figure 7.1).  

 

Figure 7.1: Assimilable organic carbon (AOC) concentration (n=3) in raw water at WTW 

2 (A), WTW 16 (B) and WTW 20 (c), plotted against time. AOC concentration was sampled 

every 2 weeks for 1 year. 
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During the 12 month experimental programme, high TCC and ICC within raw water were 

found to correlate with highest TCC and ICC within the bulk water of each pipe loop. A high 

level of variability in TCC and ICC was exhibited within raw bulk water supplying WTW 2 

and WTW 16. This is likely due to source water quality as WTW 2 is supplied by an upland 

reservoir, whereas WTW 16 is supplied by a river source. Raw water TCC and ICC were only 

sampled within WTW 2 & WTW 16 (see Section 4.5.1), and are presented in Figure 7.2. Mean 

TCC within raw reservoir water supplying WTW 2 (2.51 x 106 ±1.7 x 106 cells/mL) was much 

higher than the river water supplying WTW 16 (1.08 x 106 ±9.22 x 105 cells/mL; Figure 7.2). 

When split into monthly averages, the greatest TCC was found within June (early summer 

peak) at WTW 2, and September (late summer peak) at WTW 16. 
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Figure 7.2: Total cell count (TCC) concentration (n=1)* in raw water at WTW 2 (A) and 

WTW 16 (B), plotted against time. TCC was sampled every 2 days for 1 year. TCC was not 

sampled within raw water at WTW 20 (C). *see Section 4.4.1 for details of samples collected 

by Scottish Water.  

 

ICC exhibited the same trend as TCC; the average ICC within the raw water supplying WTW 

6 contained more intact cells (mean=1,987,970, StDev=1,473,259 cells/mL) than raw water 

supplying WTW 20 (mean=865,171, StDev=801,794 cells/mL) (Figure 7.3). The percentage 

of cells found to be intact within raw water was on average 79% in WTW 2, and 80% in WTW 

16. Consistent with TCC, maximum ICC within WTW 2 again peaked in September, whereas 

maximum ICC within WTW 16 peaked during October. Both TCC and ICC within raw water 
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exhibited a high degree of variability throughout the year (WTW 2 TCC range = =157,640 - 

6,284,000, ICC range = 130,320 – 6,489,600; WTW 16 TCC range 3,200 – 2,737,200; WTW 

16 TCC range = 0 – 2,504,400). This high level of variability was not reflected in the AOC 

concentration in the raw water (Figure 7.1) 

 
Figure 7.3: Intact cell count (ICC) concentration (n=1)* in raw water at WTW 2 and 

WTW 16, plotted against time. ICC was sampled every 2 days for 1 year. ICC was not 

sampled within raw water at WTW 20 (C). *see Section 4.4.1 for details of samples collected 

by Scottish Water.  

 

7.3.2 The Impact of AOC on Post-Treated and Pipe Loop Bulk Water Quality 

To determine the impact of the AOC concentration on bulk-water microbial water quality and 

biostability, post-treated bulk water quality was monitored at the WTW, in parallel with water 
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from each of the three pipe loops (PL): PL A (WTW 2), PL B (WTW 16) and PL C (WTW 

20). Bulk water sampling ensured that the water in each of the pipe loops was representative 

of post-treated water entering each of the DWDS, and therefore any biofilm data is likely 

representative of the network. For all bulk water parameters, post-treated water and pipe loop 

water were of similar quality and exhibited the same trends (Figures 7.4 – 7.8). Total chlorine 

remained fairly constant throughout the 12 month period at all sample points, of each site 

(Figure 7.4). Mean total chlorine in post-treated water at WTW 2 was 0.89 ±0.11 mg/L; 1.34 

±0.15 mg/L at WTW 16 and 0.64 ±0.10 mg/L at WTW 20.  
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Figure 7.4: Total chlorine in post-treated water (n=1)* (black) and pipe loop (n=3) (red) 

at WTW 2 (Pipe loop A) (A), WTW 16 (Pipe loop B) (B) and WTW 20 (Pipe loop C) (C), 

plotted against time. Total chlorine in post-treated water was sampled every 2 weeks for 1 

year. WTW 2: chlorine, WTW 16: chloramine; WTW 20: chloramine. Pipe loop data (red) is 

average ±StDev. *see Section 4.4.1 for details of samples collected by Scottish Water. 

 

The mean water temperature within post-treated water supplying the three pipe loops showed 

little variation between sites; 9.1 ±5.3°C at WTW 2, 9.7 ±5.8°C at WTW 16 and 9.1 ±0.9°C at 

WTW 20 (Figure 7.5). Both post-treated water from WTW 2 (surface water reservoir source) 

and WTW 16 (a surface water river source) exhibited a seasonal variation, whilst the water 

temperature at WTW 20 remained relatively constant throughout the 12 month period, 

consistent with the behaviour of a ground water source. WTW 2 and WTW 16 exhibited an 
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18.0°C and 19.3°C difference in temperature, respectfully, during the study, whilst WTW 20 

exhibited only a 6.9°C difference in temperature over the 12 months.  

 

Figure 7.5: Temperature in post-treated water (n=1)* (black) and pipe loop sample tap 

(n=3) (red) at WTW 2 (Pipe loop A) (A), WTW 16 (Pipe loop B) (B) and WTW 20 (Pipe 

loop C) (C), plotted against time. Temperature in post-treated water was sampled every 2 

weeks for 1 year. Pipe loop data (red) is average ±StDev. *see Section 4.4.1 for details of 

samples collected by Scottish Water. 

 

Turbidity remained constantly low throughout the 12 months, containing a mean of 0.2 ±0.1 

NTU within post-treated water at WTW 2 (0.2 ±0 NTU in PL A), 0.2 ±0.1 NTU within post-

treated water at WTW 16 (0.2 ±0 NTU in PL B) and 0.2 ±0 at WTW 20 (0.2 ±0 NTU in PL 
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C). Iron remained below the limits of detection (<7 µg/l) in post-treated water leaving all three 

WTW throughout the 12 month sampling period. Manganese within post-treated water was 

highest at WTW 2 (mean=5.98 ±4.09 µg/l) and WTW 16 (4.96 ±3.01 µg/l) and lowest within 

WTW 20 (2.05 ±0.40 µg/l). All three WTW had low or no culturable colonies at 22°C; mean=0 

±1 CFU /mL at WTW 2, 0 ±1 CFU /mL at WTW 16, 0 ±1 CFU /mL at WTW 20, or 37°C; 

mean=0 ±0 CFU /mL at WTW 2, 0 ±0 CFU /mL at WTW 16, 0 ±0 CFU /mL at WTW 20.  

 The AOC concentration within post-treated water exhibited similar seasonal trends to 

raw water data, but at a lower level. The AOC concentration was highest within post-treated 

water leaving WTW 2 (mean=300 µg C / L), mid-range in WTW 16 (mean=245 µg C/ L) and 

lowest in WTW 20 (mean=73 µg C / L) (See Figure 7.6). The AOC concentration within post-

treated water at WTW 20 showed least seasonal variation, consistent with behaviour of ground 

water source waters.  
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Figure 7.6: Assimilable organic carbon (AOC) concentration in post-treated water (n=3) 

(black) and pipe loop sample tap (n=3) (red) at WTW 2 (Pipe loop A) (A), WTW 16 (Pipe 

loop B) (B) and WTW 20 (Pipe loop C) (C), plotted against time. AOC concentration in 

post-treated water and pipe loop sample tap was sampled every 2 weeks for 1 year. Pipe loop 

data (red) is average ±StDev. 

 

TCC and ICC were highest within Pipe loop A, the site supplied by post-treated water from 

WTW 2 which contained the highest AOC concentration. Mean TCC was 118,668 cells / mL 

within WTW 2, 1691 cells / mL within WTW 16 and 450 cells / mL within site 20 (Figure 7.7, 

n.b. the different y-axis in each plot A, B & C). The variability in TCC and ICC in the raw 
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water was also observed in post-treated water at WTW 2 and WTW 16, suggesting that the 

treatment process was not removing all cells.  

 

Figure 7.7: Total cell count (TCC) concentration in post-treated water (n=1)* and pipe 

loop sample tap (n=3) at WTW 2 (Pipe loop A) (A), WTW 16 (Pipe loop B) (B) and WTW 

20 (Pipe loop C) (C), plotted against time. TCC was sampled every 2 days in post-treated 

water and every 2 weeks at the pipe loop sample tap for 1 year. Nb the different y-axis in each 

plot (A, B & C). Pipe loop data (red) is average ±StDev. Data point 12,800 cells/mL on 

31/08/2017 within post-treated water leaving WTW 20 was removed as it was deemed to be an 

anonymous result. *see Section 4.4.1 for details of samples collected by Scottish Water. 

 

ICC within post-treated water in WTW 2 were again considerably higher than the other two 

sites (Figure 7.8 (n.b. the different y-axis in each plot A, B & C)). Mean TCC was 569 (0 – 
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24,720) cells / mL within WTW 2, 206 (0 – 33,200) cells / mL within WTW 16 and 49 (0 – 

160) cells / mL within WTW 20. The high level of variability in TCC and ICC within raw water 

(Figures 7.2 and 7.3) is also visible in post-treated water (Figures 7.7 and 7.8), suggesting that 

raw water variability is able to get through the treatment process at the WTW.  

 

Figure 7.8: Intact cell count (ICC) concentration in post-treated water (n=1)* and pipe 

loop sample tap (n=3) at WTW 2 (Pipe loop A) (A), WTW 16 (Pipe loop B) (B) and WTW 

20 (Pipe loop C) (C), plotted against time. ICC was sampled every 2 days in post-treated 

water and every 2 weeks at the pipe loop sample tap for 1 year. Nb the different y-axis in each 

plot (A, B & C). Pipe loop data (red) is average ±StDev. *see Section 4.4.1 for details of 

samples collected by Scottish Water. 
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7.3.3 The Impact of AOC Concentration on Bulk Water Community Composition  

The impact of AOC concentration on the community composition of bacteria and fungi within 

the bulk water of Pipe Loops A, B and C. Water samples were collected at the beginning of the 

experiment growth phase (Day 0), after 6 months and at the end of the growth phase (Month 

12). DNA was successfully extracted from all bulk water samples. 

7.3.3.1 Bacterial and Fungal Community Analysis 

The bacterial and fungal bulk water community composition was found to vary over time and 

between different sites. The dominant bacterial class within bulk water samples was 

Proteobacteria. The dominant genera within bacterial bulk water communities varied over time 

and location with Herbaspirillum, Pseudomonas, Brucella, Acinetobacter, Staphylococcus and 

Gloeobacter all being dominant at different times. Pseudomonas was particularly dominant at 

Site A, containing the highest AOC concentration. A similar trend was also shown with regards 

to fungal communities. More variation was evident over time and between sites in the bulk 

water than biofilms, with Pezizaceae, Psathyrellaceae, Pleosporaceae, Cladosporiaceae, 

Aspergillaceae and Cladosporiaceae all being abundant at different time points. 

Pleosporaceae was particularly dominant at Site A, containing the highest AOC concentration.  

Figure 7.9 shows the similarities in bacterial community between all bulk water samples 

(Day 0, Month 6 and Month 12), analysed at the OTU level. The dendrogram was plotted using 

bacterial OTU relative abundance data. A clear site difference was identified between the three 

pipe loops, with samples clustering by AOC concentration (high, medium and low). Bulk water 

within Pipe Loop A (characterised by a high AOC concentration), was the only site to exhibit 

a change in bacterial community over time (Clusters 1, 2 & 3, Figure 7.9).  
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Figure 7.9: Dendrogram plotted using post-treated bulk water bacterial OTU relative 

abundance data from water supplying PL A (high AOC concentration), PL B (medium 

AOC concentration) and PL C (low AOC concentration). Data was square root transformed 

and a Bray Curtis similarity matrix was generated. Sample identification numbers are shown 

(first letter / number indicates time point, the second letter indicates the pipe loop, and the third 

number indicates the triplicate number). Samples are grouped by AOC concentration.  

 

Bulk water samples were further compared visually (Figure 7.10) and statistically (Tables 7.3 

and 7.4) to determine if the site difference in bacterial community composition was statistically 

significant. Figure 7.10 presents an nMDS plot of Day 0, Month 6 and Month 12 bacterial OTU 

relative abundance data. A clear site effect was being evident, with three distinct clusters at 

high, medium and low AOC concentration, being identified.  

 

1 2 3 
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Figure 7.10: Visualisation of bacterial community similarities within post-treated bulk 

water. nMDS plotted using 12 month bacterial OTU relative abundance data. Data was 

square root transformed and a Bray Curtis similarity matrix was generated. Sample 

identification numbers are shown (first letter / number indicates time point, the second letter 

indicates the pipe loop, and the third number indicates the triplicate number).  

 

ANOSIM values confirm that the site difference is statistically significant for all relative 

abundance data (see Table 7.3). ANOSIM data by site showed that presence / absence data had, 

on average, a higher global R value than relative abundance data. This indicated that similar 

community bacterial community members were present, but at different abundances. SIMPER 

analysis identified that average dissimilarity was higher for relative abundance data 

(84.95±5.53) than presence absence data (61.52±9.56). Bio-replicates at each sample point 

were found to be most similar within bulk water in Pipe Loop C (containing a low AOC 

concentration) (see SIMPER analysis, Table 7.4). 12 month bacterial samples from Pipe Loop 

A and Pipe Loop B showed more variation between replicates (see Table 7.4), suggesting that 

higher AOC values created a more variable community within the bulk water. 
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Table 7.3: ANOSIM values for bulk water bacteria OTU relative abundance and 

presence / absence data, including Day 0, Month 6 and Month 12.  

Samples Data Global R Value p-Value 

Day 0 (ANOSIM by 

site) 

Presence / absence 0.533 0.086 

Relative abundance 0.975 0.039 

Month 6 (ANOSIM 

by site) 

Presence / absence 0.441 0.050 

Relative abundance 1 0.041 

Month 12 (ANOSIM 

by site) 

Presence / absence 0.622 0.048 

Relative abundance 1 0.026 

Site A: Day 0 and 

Month 12 (ANOSIM 

by date) 

Presence / absence 0.432 0.236 

Relative abundance 0.521 0.186 

Site B: Day 0 and 

Month 12 (ANOSIM 

by date) 

Presence / absence 0.384 0.264 

Relative abundance 0.466 0.120 

Site C: Day 0 and 

Month 12 (ANOSIM 

by date) 

Presence / absence 0.111 0.200 

Relative abundance 0.362 0.200 

Global R value: 0 = same, 1 = completely different. The significance level is the p value <0.05: 

significant; >0.05: weak evidence).  

 

Table 7.4: SIMPER analysis Day 0 and Month 12 bulk water bacteria OTU presence / 

absence and relative abundance data. 

Date Data Site 
Average 

SimilarityA 
Site Group 

Average 

DissimilarityB 

Presence/ 

absence 

Day 0 

A 28.21 Site A & Site B 52.56 

B 38.62 Site B & Site C 61.11 

C 42.05 Site A & Site C 77.27 

Month 12 

A 21.36 Site A & Site B 51.36 

B 29.14 Site B & Site C 60.42 

C 43.22 Site A & Site C 66.38 

Relative 

Abundance 

Day 0 

A 10.45 Site A & Site B 75.41 

B 16.63 Site B & Site C 84.23 

C 23.58 Site A & Site C 90.10 

Month 12 

A 10.90 Site A & Site B 83.86 

B 14.83 Site B & Site C 85.33 

C 22.23 Site A & Site C 90.74 

AAverage similarity between samples taken at same time point, at the same site; BAverage 

dissimilarity between different sites (A, B & C). 
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A dendrogram shows the similarities in fungal community between all bulk water samples 

(Day 0, Month 6 and Month 12), analysed at the OTU level (Figure 7.11). As found with 

bacterial OTU relative abundance bulk water data (Figure 7.9), samples were found to group 

by AOC concentration (high, medium and low). Site A exhibited also exhibited a change in 

community composition with time, with three distinct clusters at Day 0, Month 6 and Month 

12 (Figure 7.11; clusters 2, 3 and 4) being identified. A distinct cluster was also identified at 

Day 0 within Pipe Loop C (Figure 7.11; cluster 1).  

 

Figure 7.11: Dendrogram plotted using fungal OTU relative abundance data from post-

treated bulk water quality supplying PL A (high AOC concentration), PL B (medium 

AOC concentration) and PL C (low AOC concentration). Data was square root transformed 

and a Bray Curtis similarity matrix was generated. Sample identification numbers are shown 

(first letter / number indicates time point, the second letter indicates the pipe loop, and the third 

number indicates the triplicate number). Samples are grouped by AOC concentration.  

 

1 2 3 4 
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Figure 7.12 presents an nMDS plot of Day 0, Month 6 and Month 12 bacterial OTU relative 

abundance data. A clear site effect was again evident, with three distinct clusters by AOC 

concentration (high, medium and low). ANOSIM values confirm that the site difference in 

fungal relative abundance was statistically significant (Table 7.5). The community composition 

of fungi within bulk water in Pipe Loop A was also found to cluster by date (Figure 7.12), 

suggesting the community composition at this site is most subject to seasonal changes. Similar 

to bacterial relative abundance data, SIMPER analysis of relative abundance data identified 

that average dissimilarity was higher for relative abundance data (67.03±3.14) than presence 

absence data (59.78±2.45). Bio-replicates at each sample point were found to be most similar 

within bulk water within Pipe Loop C (containing a low AOC concentration), and most 

different within Pipe Loop A bulk water (containing a high AOC concentration (see SIMPER 

analysis, Table 7.6). This suggests that a higher AOC values created a more variable fungal 

community within the bulk water. 
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Figure 7.12: Visualisation of fungal community similarities within post-treated bulk 

water. nMDS plotted using 12 month fungal OTU relative abundance data. Data was 

square root transformed and a Bray Curtis similarity matrix was generated. Sample 

identification numbers are shown (first letter / number indicates time point, the second letter 

indicates the pipe loop, and the third number indicates the triplicate number).  
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Table 7.5: ANOSIM values for bulk water bacteria OTU relative abundance and 

presence / absence data, including Day 0, Month 6 and Month 12 data. 

Samples Data Global R Value p-Value 

Day 0 (ANOSIM by 

site) 

Presence / absence 0.642 0.010 

Relative abundance 0.912 0.050 

Month 6 (ANOSIM 

by site) 

Presence / absence 0.600 0.100 

Relative abundance 0.874 0.002 

Month 12 (ANOSIM 

by site) 

Presence / absence 0.542 0.032 

Relative abundance 0.911 0.010 

Site A: Day 0 and 

Month 12 (ANOSIM 

by date) 

Presence / absence 0.425 0.120 

Relative abundance 0.524 0.320 

Site B: Day 0 and 

Month 12 (ANOSIM 

by date) 

Presence / absence 0.345 0.122 

Relative abundance 0.311 0.060 

Site C: Day 0 and 

Month 12 (ANOSIM 

by date) 

Presence / absence 0.255 0.091 

Relative abundance 0.321 0.045 

Global R value: 0 = same, 1 = completely different. The significance level is the p value <0.05: 

significant; >0.05: weak evidence).  

 

Table 7.6: SIMPER analysis Day 0 and Month 12 bulk water bacteria OTU presence / 

absence and relative abundance data. 

Date Data Site 
Average 

SimilarityA 
Site Group 

Average 

DissimilarityB 

Presence/ 

absence 

Day 0 

A 32.76 Site A & Site B 61.07  

B 42.91 Site B & Site C 60.17 

C 39.91 Site A & Site C 61.96 

Month 12 

A 45.00 Site A & Site B 55.05 

B 63.10 Site B & Site C 59.64 

C 33.77 Site A & Site C 60.79 

Relative 

Abundance 

Day 0 

A 34.55 Site A & Site B 65.96  

B 40.49 Site B & Site C 67.89 

C 28.23 Site A & Site C 69.83 

Month 12 

A 39.46 Site A & Site B 61.41 

B 40.69 Site B & Site C 67.27 

C 24.95 Site A & Site C 69.84 

AAverage similarity between samples taken at same time point, at the same site; BAverage 

dissimilarity between different sites (A, B & C). 
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7.3.3.2 The Impact of AOC on the Diversity Indices of Bacterial and Fungal Bulk Water 

Communities 

Diversity indices tests, including relative richness, relative evenness and relative diversity were 

undertaken for bacterial (Table 7.7) and fungal communities (Table 7.8) from bulk water 

samples taken from Pipe Loops A, B & C to understand the impact of AOC concentration on 

the relative richness, relative evenness and relative diversity of biofilm samples. The relative 

richness, evenness and diversity of bacterial (Table 7.7) and fungal communities (Table 7.8) 

within bulk water at Day 0, Month 6 and Month 12 were found exhibit a clear site effect. No 

statistically significant changes were found over time for either taxa (see ANOSIM analysis 

Tables 7.3 and 7.5).  

Table 7.7: Ecological indices of bacterial planktonic communities from drinking water 

bulk water samples supplying Pipe Loops A, B & C (n=3) at Day 0, Month 6 and Month 

12.  A) Relative richness, B) relative evenness, and C) relative diversity. 

Pipe 

Loop 
Time 

Relative Richness 

(Chao) 

Relative Evenness 

(Simpson) 

Relative Diversity 

(Shannons Index) 

Mean Range Mean Range Mean Range 

A 

Day 0 1362.00 85.98 0.89 0.01 5.82 0.52 

6 Month 1251.33 184.32 0.88 0.04 5.85 0.71 

12 Month 1569.67 97.90 0.86 0.04 5.26 1.00 

B 

Day 0 911.00 30.27 0.94 0.01 3.89 0.55 

6 Month 796.00 61.51 0.93 0.01 4.27 0.28 

12 Month 914.67 57.83 0.94 0.01 4.51 0.13 

C 

Day 0 622.67 127.01 0.98 0.02 3.20 0.17 

6 Month 566.00 110.57 0.98 0.01 3.73 0.44 

12 Month 710.33 83.63 0.99 0.01 3.63 0.45 
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Table 7.8: Ecological indices of fungal planktonic communities from drinking water bulk 

water samples supplying Pipe Loops A, B & C (n=3) at Day 0, Month 6 and Month 12 . 

A) Relative richness, B) relative evenness, and C) relative diversity. 

Pipe 

Loop 
Time 

Relative Richness 

(Chao) 

Relative Evenness 

(Simpson) 

Relative Diversity 

(Shannons Index) 

Mean Range Mean Range Mean Range 

A 

Day 0 1005.67 15.82 0.89 0.03 4.84 0.68 

6 Month 1013.67 31.63 0.86 0.01 5.21 0.35 

12 Month 994.67 54.15 0.90 0.02 4.69 0.71 

B 

Day 0 755.67 116.32 0.94 0.01 3.87 0.41 

6 Month 871.67 53.78 0.95 0.02 4.15 0.28 

12 Month 783.33 49.00 0.94 0.01 3.96 0.42 

C 

Day 0 651.67 72.25 0.97 0.00 3.30 0.28 

6 Month 686.67 75.08 0.99 0.01 3.51 0.29 

12 Month 646.33 61.08 0.99 0.01 3.13 0.10 

 

7.3.4 The Impact of AOC Concentration on the Bulk water Response within Pipe Loops 

Test Facilities during Flushing 

The effect of AOC concentration on how easily material was mobilised into the bulk water 

under elevated shear stress (flushing) was determined. Following on from the 12 month growth 

phase, the bulk quality of each of the pipe loops (A, B & C) was assessed at each of the flushing 

steps implemented during the mobilisation phase (see Section 4.6.4.1, Table 4.6). The turbidity, 

iron, manganese, TCC, ICC, TOC and AOC concentration within the bulk water were plotted 

at each flow rate / shear stress (Figure 7.13 – Figure 7.19). The calculations used to generate 

the shear stress are listed in Appendix 5.  

7.3.4.1 Turbidity, Iron and Manganese Bulk water Response to Increased Shear Stress 

The bulk water turbidity response during flushing is shown in Figure 7.13. Pipe Loops B and 

C exhibited a positive, linear turbidity response as the shear stress was raised. Pipe loop A, the 

site supplied by post-treated water containing the highest AOC concentration, exhibited the 

greatest turbidity response following mobilisation, increasing from 0.27 to 4.75 NTU. Pipe 
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Loop A therefore posed the greatest discoloration risk. Conversely, Pipe Loop C supplied by 

post-treated ground water containing the lowest AOC concentration experienced the smallest 

turbidity response increasing from 0.2 to 2.15 NTU. The turbidity response during flushing of 

Pipe Loop A did plateau slightly during the final flushing step, suggesting that material most 

material had been mobilised during the first flushing steps.   

 

Figure 7.13: Turbidity in bulk water within pipe loop test facilities at Pipe loop A (WTW 

2), Pipe loop B (WTW 16) and Pipe loop C (WTW 20), during the mobilisation phase. 

Turbidity was monitored using an online turbidity logger (averages are presented ± 

StDev).  

 

Similar to the turbidity response in each of the pipe loops, the concentration of iron (Figure 

7.14) and manganese (Figure 7.15) in the bulk water following flushing was highest in Pipe 

Loop A, and lowest in Pipe Loop C. All three sites contained relatively low iron (mean=12.53 

µg/L in Pipe Loop A, mean=10.07 µg/L in Pipe Loop B and mean=6.83 µg/L in Pipe Loop C) 

and manganese (mean=8.67 µg/L in Pipe Loop A, mean=5.10 µg/L in Pipe Loop B and 

mean=3.10 µg/L in Pipe Loop C) concentration prior to flushing. Despite this, Pipe loop A 

exhibited the greatest increase in iron (increase of 225.00 µg/L) and manganese (increase of 
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33.90 µg/L) following flushing, as indicated by the gradient in Table 7.9. These results 

demonstrate that sufficient iron can accumulate over the course of a year to generate an iron 

failure (over 200 µg/l DWI, 2017) when flushing.  

The gradient, R2 and P values for turbidity, iron and manganese concentration in bulk 

water within each of the three pipe loop test facilities during the mobilisation phase are listed 

in Table 7.9. Pipe Loop A can be seen to have consistently the highest gradient value, 

confirming the greatest turbidity, iron and manganese was experienced within Pipe loop A. In 

contrast, the smallest gradient can consistently be found within Pipe Loop A. R2 values are 

consistently high for turbidity, iron and manganese parameters within Pipe Loops A, B and C, 

indicating a linear response to the increase in shear stress during flushing.  

 

Table 7.9: Gradient (G), R2 and P values for turbidity, iron and manganese in bulk 

water within pipe loop test facilities at PL A (WTW 2), PL B (WTW 16) and PL C 

(WTW 20), during the mobilisation phase. 

Pipe 

Loop 

ID 

Turbidity Iron Manganese 

GradientA R2B P 

valueC 

GradientA R2B P 

valueC 

GradientA R2B P 

valueC 

A 1.39 0.8902 0.0160 72.58 0.8947 0.0150 11.58 0.9110 0.0116 

B 1.13 0.9720 0.0020 54.43 0.9300 0.0080 9.55 0.9447 0.0056 

C 0.63 0.9374 0.0068 36.06 0.8948 0.0150 4.30 0.9564 0.0039 

AThe gradient defines the rate of change along the regression line; BR2 value indicates the goodness of fit of the linear regression model to the data, nearer to 1 

the better the fit; C A significant p value indicates that the gradient is significantly different from 0. 
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Figure 7.14: Iron (Fe) (n=3) in bulk water within pipe loop test facilities at Pipe loop A 

(WTW 2), Pipe loop B (WTW 16) and Pipe loop C (WTW 20), during the mobilisation 

phase.  

 

Figure 7.15: Manganese (Mn) (n=3) in bulk water within pipe loop test facilities at Pipe 

loop A (WTW 2), Pipe loop B (WTW 16) and Pipe loop C (WTW 20), during the 

mobilisation phase.  
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7.3.4.2 Cell Count Bulk Water Response to Increased Shear Stress 

Prior to the commencement of flushing, post-treated water in Pipe loop A contained a higher 

concentration of TCC in the bulk water (mean=31,551 cells/mL) in comparison to Pipe loop B 

(mean=2039 cells/mL) and Pipe loop C (mean=250 cells/mL). Following flushing, all three 

pipe loops exhibited an increase of both TCC (Figure 7.16) and ICC (Figure 7.17) within bulk 

water. The TCC increased by the greatest extent within Pipe Loop A and Pipe Loop B, 

increasing by 21,229 cells/mL within Pipe Loop A, and 20,595 cells/mL within Pipe Loop. The 

bulk water within Pipe Loop C had the smallest increase in TCC during flushing, with the TCC 

increasing by 6376 cells/mL from the mixing phase to the final flushing step. Despite Pipe 

Loop A containing the highest TCC within bulk water at the end of the growth phase, the rate 

of change in TCC during mobilisation was highest in Pipe Loop B (see gradient values in Table 

7.10).  

 

 

Figure 7.16: Total cell count (TCC) (n=3) in bulk water within pipe loop test facilities at 

Pipe loop A (WTW 2), Pipe loop B (WTW 16) and Pipe loop C (WTW 20), during the 

mobilisation phase.  
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In contrast to TCC, ICC within bulk water prior to mobilisation was relatively similar between 

sites, with 1,504 cells/mL within Pipe Loop A, 552 cells/mL within Pipe Loop B and 71 

cells/mL within Pipe Loop C. The greatest increase in ICC following flushing occurred within 

Pipe Loop A (increase of 16,972 cells/mL), followed by Pipe Loop B (increase of 10,687 

cells/mL) and finally the smallest increase in ICC within Pipe Loop C (4,816 cells/mL). During 

the mobilisation phase, TCC and ICC within bulk water in Pipe Loop A had the least linear 

response to shear stress, in comparison to Pipe Loop B and C. 

 

Figure 7.17: Intact cell count (ICC) (n=3) in bulk water within pipe loop test facilities at 

Pipe loop A (WTW 2), Pipe loop B (WTW 16) and Pipe loop C (WTW 20) during the 

mobilisation phase.  

 

The gradient, R2 and P values for TCC and ICC in bulk water within each of the three pipe 

loop test facilities during the mobilisation phase are listed in Table 7.10. Despite the largest 

turbidity, iron manganese and ICC response being observed in Pipe Loop A, the largest TCC 

gradient was found in Pipe Loop B. 
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Table 7.10: Gradient (G), R2 and P values for total cell count (TCC) and intact cell count 

(ICC) in bulk water within pipe loop test facilities at PL A (WTW 2), PL B (WTW 16) 

and PL C (WTW 20), during the mobilisation phase. 

Pipe 

Loop 

ID 

TCC ICC 

GradientA R2B P valueC GradientA R2B P valueC 

A 5902 0.8029 0.0396 5100 0.7362 0.0629 

B 6870 0.9514 0.0046 3394 0.9621 0.0032 

C 2072 0.9982 0.0000 1551 0.8656 0.0218 
AThe gradient defines the rate of change along the regression line; BR2 value indicates the goodness of fit of the linear regression model to the data, nearer to 1 

the better the fit; CA significant p value indicates that the gradient is significantly different from 0. 

 

7.3.4.3 Organic Carbon Response 

The response of TOC within bulk water in Pipe Loops A, B and C is plotted in Figure 7.18. 

The behaviour of TOC within bulk water during flushing mirrored all other water quality 

parameters (turbidity, iron, manganese, TCC and ICC), excluding AOC. TOC concentration 

was consistently highest within Pipe Loop A throughout the flushing phase. The greatest 

increase in TOC within bulk water was experienced within Pipe Loop A (increase of 9.50 

mg/L), followed by Pipe Loop B (increase of 6.53 mg/L) and finally Pipe Loop C (4.53 mg/L).  
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Figure 7.18: Total organic carbon (TOC) (n=3) in bulk water within pipe loop test 

facilities at Pipe loop A (WTW 2), Pipe loop B (WTW 16) and Pipe loop C (WTW 20), 

during the mobilisation phase. 

 

In summary, all bulk water samples collected during mobilisation, including turbidity, iron, 

manganese, TCC, ICC and TOC exhibited a clear site effect. The largest response in each of 

these parameters during flushing was consistently observed within Pipe Loop A, with the 

smallest response being observed within Pipe Loop C. Pipe Loop A was fed within post-treated 

drinking water containing the highest AOC concentration during both the growth and 

mobilisation phase, whilst Pipe Loop C was supplied by bulk water containing the consistently 

the lowest AOC concentration.  

In contrast to all of the other bulk water samples collected during mobilisation, the rate 

of AOC mobilisation from the biofilm was surprisingly similar between all three sites, 

independent of the background AOC concentration (Figure 7.19). The AOC response to an 

increase in shear stress was not linear, with all three pipe loops almost reaching a plateau in 

AOC concentration during the final flushing step. A clear site different in AOC concentration 

was exhibited within each pipe loop pre-flush (during the mixing step), with the highest AOC 
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concentration within Pipe Loop A (mean=284 µg/L), followed by Pipe Loop B (mean=202 µg 

C/L) and the lowest AOC concentration within Pipe Loop C (mean=43 µg C/L). However, the 

increase in AOC concentration from pre- to post-flush was unexpectedly the same or similar 

between sites, with a 115 µg C/L increase in AOC within Pipe Loop A, 120 µg C/L increase 

in AOC within Pipe Loop B, and a 115 µg C/L increase in AOC within Pipe Loop C. 

 

 

Figure 7.19: Assimilable organic carbon (AOC) (n=3) in bulk water within pipe loop test 

facilities at Pipe loop A (WTW 2), Pipe loop B (WTW 16) and Pipe loop C (WTW 20), 

during the mobilisation phase.  

 

The gradient, R2 and P values for TOC and AOC in bulk water within each of the three pipe 

loop test facilities during the mobilisation phase are listed in Table 7.11. Despite the largest 

TOC gradient being experienced within Pipe Loop A, the smallest AOC gradient was also 

experienced within Pipe Loop A. The R2 value for AOC concentration within Pipe Loop A was 

considerably lower than other pipe loops, suggesting the AOC response during mobilisation 

within Pipe Loop A was non-linear.  
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Table 7.11: Gradient (G), R2 and P values for total organic carbon (TOC) and assimilable 

organic carbon (AOC) in bulk water within pipe loop test facilities at PL A (WTW 2), PL 

B (WTW 16) and PL C (WTW 20), during the mobilisation phase. 

Pipe 

Loop 

ID 

TOC AOC 

GradientA R2B P valueC GradientA R2B P valueC 

A 3.01 0.9500 0.0048 28 0.5840 0.1325 

B 2.20 0.9030 0.0132 40 0.9969 0.0001 

C 1.31 0.7857 0.0452 36 0.8830 0.0176 
AThe gradient defines the rate of change along the regression line; BR2 value indicates the goodness of fit of the linear regression model to the data, nearer to 1 

the better the fit; CA significant p value indicates that the gradient is significantly different from 0. 

 

7.4 Biofilm Accumulation and Post-flush Biofilms Subsequent Mobilisation  

Biofilm samples from coupons within Pipe loops A, B and C were analysed to determine the 

total volume (biofilms cells, EPS and (in)organics) (Section 4.7.5.2), cell count and community 

composition of the biofilm and how this varied with AOC concentration. The total biofilm 

volume was assessed at Day 0 and Month 12, whilst both the cell count concentration and 

community composition were sampled at Day 0, Month 3, Month 6, Month 9, Month 12 and 

post-flush.  

7.4.1 Biofilm SEM Images 

 

SEM imaging was used to enable qualitative visual comparisons of biofilms following the 12 

month growth phase, to determine any differences between each of the pipe loops supplied by 

post-treated water with different AOC concentrations. The SEM images show that the biofilms 

which accumulated in each pipe loop exhibited a significant difference in both quantity and 

structure of biofilm (Figures 7.20 and 7.21). The biofilm developed on coupons in Pipe Loop 

A, supplied by the highest AOC concentration, had more extensive biofilm coverage, with a 

dense EPS matrix, compared to Pipe Loop B or Pipe Loop C. The EPS also looked to have a 

filament type structure. It is possible that the biofilm structure affected how easily the biofilm 

accumulated on the pipe surface and how easily it was mobilised during flushing. In contrast, 
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the biofilms that accumulated at Pipe Loop B and C had granular or patchy EPS coverage. 

Inorganic particles were visualised within SEM images of biofilms from all three pipe loops. 

As most inorganic material was released from biofilms grown in high AOC conditions (Pipe 

Loop A). The biofilm structure could also impact the rate at which inorganics are incorporated 

into the biofilm, and the rate at which they are released.  

In contrast, cells were difficult to visualise in the SEM images potentially due to the 

large amount of EPS accumulated after 12 months biofilm growth obstructing the view of the 

cells. A previous study of drinking water biofilms found that proteins and carbohydrates 

appeared above cells in the biofilm (Fish et al. 2015). In addition to SEM images, more detailed 

biofilm analysis was conducted to determine a) the cell count (total and intact) and b) the 

bacterial and fungal community composition of the biofilms to quantitatively characterise and 

compare biofilm from different sites. 
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Figure 7.20: Representative SEM images of 12 month biofilm samples from A) Pipe loop 

A and B) Pipe loop B and C) Pipe loop C, imaged at the magnification  indicated by the 

scale bar on each image. Images on left magnification = 500 x, images on right magnifaction 

= 1000 x.  

A) 

B) 

C) 
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Figure 7.21: Representative SEM images of 12 month biofilm samples from A) Pipe loop 

A and B) Pipe loop B and C) Pipe loop C, imaged at the magnification  indicated by the 

scale bar on each image. Magnification = 5000 x. 

A) 

B) 

C) 
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7.4.2 Cell Concentration during the Growth Phase and Post-flush 

In order to assess the number of cells within biofilms accumulating on coupons in each pipe 

loop, the TCC and ICC of the biofilms were measured every three months during the 

experiment growth phase, and once following the mobilisation (post-flush) phase to determine 

the biofilm response to an increase in shear stress (Figures 7.22 & 7.23) In all cases, both the 

TCC and the ICC of the biofilm increased during the growth-phase and decreased following 

flushing. The greatest increase in both TCC and ICC following the 12 month growth phase was 

seen in Pipe Loop A; the pipe loop supplied with post-treated water containing the highest 

concentration of AOC. Biofilms within pipe loop A were found to have a dense, filament type 

structure (Figures 7.20 and 7.21), suggesting that the physical structure of the biofilm may 

affect how easily cells accumulate within the biofilm and how easily they become mobilised 

into the water column. The rate of biofilm growth was different at each site, with a greater rate 

in Pipe Loop A and slowest rate at Pipe Loop C. However, biofilm growth within Pipe Loop 

A appeared to slow, perhaps indicating that growth had reached a plateau, whereas biofilm 

growth within the other two pipe loops was still increasing. Following on from flushing, the 

greatest loss of TCC from the biofilm was experienced within Pipe Loop A (60% decline in 

TCC), as compared to 28% loss TCC within Pipe Loop B and 23% loss TCC within Pipe Loop 

C. The greatest loss of ICC occurred within Pipe Loop B (30% loss of ICC) in comparison to 

a 24% decline within Pipe Loop A and 18% within Pipe Loop C.  
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Figure 7.22: Total cell count (TCC) within drinking water biofilms within pipe loop test 

facilities at Pipe loop A (WTW 2), Pipe loop B (WTW 16) and Pipe loop C (WTW 20), 

during the growth (Day 0 -12 month) and mobilisation (post-flush) phase. Average (n=3) 

±StDev plotted.  

 

Figure 7.23: Intact cell count (TCC) within drinking water biofilms within pipe loop test 

facilities at Pipe loop A (WTW 2), Pipe loop B (WTW 16) and Pipe loop C (WTW 20), 

during the growth (Day 0 -12 month) and mobilisation (post-flush) phase. Average (n=3) 

±StDev plotted.  
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7.4.3 Biofilm Community Composition  

The community composition of the biofilms within Pipe Loops A, B and C were characterised 

every three months during the experiment growth phase and once following the mobilisation 

(post-flush) phase (see Section 4.7.2.2 and 4.7.3 for methods). Only two of the three Day 0 

Pipe Loop B, and two of the three Day 0 Pipe Loop C biofilms contained quantities of bacterial 

or fungal DNA detectable via the methods used in this study. DNA was successfully extracted 

from three Day 0 samples from Pipe Loop A. 

7.4.3.1 Bacterial and Fungal Community Analysis 

The bacterial and community composition of biofilms from Pipe Loops A, B and C exhibited 

less variation than their bulk water counterparts, The dominant bacterial class within biofilm 

samples was Proteobacteria and within it Betaproteobacteria (representing a 60% of the total 

community). At genus level Pseudomonas, Herbaspirillum and Brucella were most were most 

abundant, with little change over time. The fungal community was dominated by Ascomycota 

(15–40%) and Corticiaceae (10–31%). The most abundant fungal genera post-flush was 

Pezizaccea, which were in much lower abundance during growth. 

Figure 7.24 shows the similarities in bacterial community between all biofilm samples 

(Day 0, Month 3, 6, 9, 12 and Post-Flush), analysed at the OTU level. The dendrogram was 

plotted using bacterial OTU relative abundance data and presents evidence of a community 

shift from initial colonisers to biofilm maturation (Figure 7.24). Day 0 samples were found to 

be independent from all other samples and exhibited no site effect (Day 0 ANOSIM by site: 

Global R value = 0.25; p-value = 0.143) (Cluster 1, Figure 7.24). Month 3 samples were found 

to again cluster independently from all the other samples, but a significant site effect was 

observed (Month 3 ANOSIM by site: Global R value = 1; p-value = 0.004) (Clusters 2-4, Figure 

7.24). After 3 months, some variation in samples was observed but site specific clusters were 

less obvious. Bacterial post-flush samples were found to cluster together (Post-Flush ANOSIM 
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by site: Global R value = 0.226; p-value = 0.029) (Cluster 5, Figure 7.24), suggesting that 

flushing has a homogenisation effect. 

 

 

Figure 7.24: Dendrogram plotted using biofilm bacterial OTU relative abundance data 

from both the mobilisation (Day 0 – 12 month) and the mobilisation phase (post-flush). 

Data was square root transformed and a Bray Curtis similarity matrix was generated. Sample 

identification numbers are shown (first letter / number indicates time point, the second letter 

indicates the pipe loop, and the third number indicates the triplicate number).  

 

To determine if site difference were evident in more mature biofilms, rather than just at initial 

biofilm development, bacterial communities within 12 month biofilm samples were compared 

visually (Figure 7.25 A) and statistically (Tables 7.12 and 7.13). Some clustering of 12 month 

samples was observed (similarity of 40%), with a site effect being evident (Figure 7.25 A). 

ANOSIM of 12 months samples showed that there were some differences in relative abundance 

1 2 3 4 
Sample ID 

5 
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(R = 0.284, p-value = 0.032) (Table 7.12)). ANOSIM data for Month 12, showed high levels 

of similarity for both presence / absence and relative abundance data, however only the 

similarity in relative abundance data was significant. This indicated that similar community 

bacterial community members were present, but at different abundances. 

Month 12 and Post-Flush sampled were analysed in an nMDS plot to identify if there 

was a community shift following flushing (Figure 7.25 B). See Table 7.12 for ANOSIM of 12 

month and post-flush samples analysed by date. Bio-replicates at each sample point were found 

to fairly similar within Site B (supplied by post-treated water containing a mid AOC 

concentration) (see SIMPER analysis, Table 7.13). 12 month samples from Site A and Site C 

showed more variation between replicates (see Table 7.13), suggesting that extreme AOC 

values (either high or low) created a more variable community. Similarly, 12 month and post 

flush samples showed some grouping of samples (similarity of 40%), with some clustering by 

site and time point (Figure 7.25 A). There was also a clear clustering of Month 12 and Post-

flush samples, with the exception of sample point PF_C_3. Post-flush samples again showed 

that samples from Site B were most similar (see SIMPER analysis, Table 7.13). 
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Figure 7.25: Visualisation of biofilm bacterial community similarities. A) nMDS plotted 

using 12 month bacterial OTU relative abundance data. B) nMDS plotted using bacterial 

OTU relative abundance data including samples from the growth (12 month samples 

only) and the mobilisation phase (post-flush (PF)). Data was square root transformed and a 

Bray Curtis similarity matrix was generated. Sample identification numbers are shown (first 

letter / number indicates time point, the second letter indicates the pipe loop, and the third 

number indicates the triplicate number). Similarity cluster lines were based on the similarity 

levels found in the hierarchical analysis (see Figure 7.28).  

 

A 

B 
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Table 7.12: ANOSIM values for biofilm bacteria OTU relative abundance and presence 

/ absence data, including Month 12 & Post-Flush data.  

Samples Data Global R Value p-Value 

Month 12 (ANOSIM by 

site) 

Presence / absence 0.218 0.096 

Relative abundance 0.284 0.032 

Site A: Month 12 and 

Post-flush (ANOSIM by 

date) 

Presence / absence 0.593 0.100 

Relative abundance 0.778 0.100 

Site B: Month 12 and 

Post-flush (ANOSIM by 

date) 

Presence / absence 0.704 0.100 

Relative abundance 1 0.100 

Site C: Month 12 and 

Post-flush (ANOSIM by 

date) 

Presence / absence 0.111 0.500 

Relative abundance -0.148 0.600 

Global R value: 0 = same, 1 = completely different. The significance level is the p value <0.05: 

significant; >0.05: weak evidence).  

 

Table 7.13: SIMPER analysis Month 12 and Post-flush biofilm bacteria OTU 

presence / absence and relative abundance data. 

Date Data Site 
Average 

SimilarityA 
Site Group 

Average 

DissimilarityB 

Presence/ 

absence 

Month 12 

A 37.76 Site A & Site B 61.07  

B 42.91 Site B & Site C 60.17 

C 39.91 Site A & Site C 61.96 

Post-Flush 

A 45.00 Site A & Site B 55.05 

B 63.10 Site B & Site C 59.64 

C 33.77 Site A & Site C 60.79 

Relative 

Abundance 

Month 12 

A 34.55 Site A & Site B 65.96  

B 40.49 Site B & Site C 67.89 

C 28.23 Site A & Site C 69.83 

Post-Flush 

A 39.46 Site A & Site B 61.41 

B 40.69 Site B & Site C 67.27 

C 24.95 Site A & Site C 69.84 

AAverage similarity between samples taken at same time point, at the same site; BAverage 

dissimilarity between different sites (A, B & C). 

 

The dendrogram in Figure 7.26 shows the similarities in fungal community between all biofilm 

samples (Day 0, Month 3, 6, 9, 12 and post-flush), analysed at the OTU level. Fungi OTU 
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relative abundance data exhibited a similar trend to bacterial OTU data, with Day 0 samples 

clustering independently from all other samples (Cluster 1, Figure 7.26) and exhibiting no site 

effect (Day 0 ANOSIM by site: Global R value = 0.55; p-value = 0.086). As observed with 

Month 3 bacteria samples (Figure 7.26), Month 3 fungi samples were found to cluster 

independently from all the other samples, and a site effect was observed (Month 3 ANOSIM 

by site: Global R value = 1; p-value = 0.004). Following the same trend as bacteria data, all 

samples after Month 3 showed some variation but site specific clusters were less obvious. 

Unlike post-flush bacterial OTU relative abundance data, clustering of post-flush fungal data 

was not evident.  

 

Figure 7.26: Dendrogram plotted using biofilm fungal OTU relative abundance data from 

both the growth (Day 0 – 12 month) and the mobilisation phase (post-flush (PF)). Data 

was square root transformed and a Bray Curtis similarity matrix was generated. Sample 

identification numbers are shown (first letter / number indicates time point, the second letter 

indicates the pipe loop, and the third number indicates the triplicate number). 

1 2 3 4 
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An nMDS plot of 12 month fungal OTU relative abundance data shows some clustering of 

samples was observed (similarity of 40%) (Figure 7.27). Sample M12_C_3 was removed from 

Figure 7.27 A, and all subsequent analysis as it was an outlier. ANOSIM analysis of 12 month 

samples only global R = 0.062 p-value = 0.286 (see Table 7.14 for ANOSIM of 12 month and 

post-flush samples analysed by date). Similarity between replicates of 12 month fungal OTU 

relative abundance data was again highest at Site B (Site B Month 12 SIMPER: 43.89 similarity 

(Table 7.15). Similarly, 12 Month and post flush samples showed some grouping of samples 

(similarity of 40%), with some clustering by site and time point, with the exclusion of samples 

M12_C_3 and PF_C_3 (Figure 7.27 B). ANOSIM values for Month 12 and post-flush fungi 

OTU relative abundance and presence / absence data again showed high levels of similarity (as 

indicated by the low global R value), however none of the values were found to be significantly 

significant (Table 7.14).  
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Figure 7.27: Visualisation of biofilm fungal community similarities. A) nMDS plotted 

using 12 month fungal OTU relative abundance data with data point M12_C_3 removed. 

B) nMDS plotted using fungal OTU relative abundance data from both the growth (12 

month samples only) and the mobilisation phase (post-flush (PF)). Data was square root 

transformed and a Bray Curtis similarity matrix was generated. Sample identification numbers 

are shown (first letter / number indicates time point, the second letter indicates the pipe loop, 

and the third number indicates the triplicate number). Similarity cluster lines were based on the 

similarity levels found in the hierarchical analysis (see Figure 7.30).  
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Table 7.14: ANOSIM values for biofilm fungi OTU relative abundance and presence / 

absence data, including Month 12 & Post-Flush data. 

Samples Data Global R Value P-Value 

Month 12 (ANOSIM 

by site) 

Presence / absence 0.021  0.470 

Relative abundance 0.062  0.286 

Site A: Month 12 and 

Post-flush (ANOSIM 

by date) 

Presence / absence 0.259 0.200 

Relative abundance 0.296 0.300 

Site B: Month 12 and 

Post-flush (ANOSIM 

by date) 

Presence / absence 0.111 0.300 

Relative abundance 0.444 0.200 

Site C: Month 12 and 

Post-flush (ANOSIM 

by date) 

Presence / absence -0.074 0.500 

Relative abundance -0.185 0.800 

Global R value: 0 = same, 1 = completely different. The significance level is the p value <0.05: 

significant; >0.05: weak evidence).  

 

Table 7.15: SIMPER analysis Month 12 and Post-flush biofilm fungi OTU presence / 

absence and relative abundance data. 

Date Data Site 
Average 

Similarity 
Site Group 

Average 

Dissimilarity 

Presence/ 

absence 

Month 12 

A 63.88 Site A & Site B 39.18 

B 59.52 Site B & Site C 39.93 

C 60.54 Site A & Site C 37.61 

Post-

Flush 

A 63.85 Site A & Site B 37.19 

B 62.68 Site B & Site C 40.71 

C 55.29 Site A & Site C 40.95 

Relative 

Abundance 

Month 12 

A 39.56 Site A & Site B 59.71 

B 43.89 Site B & Site C 61.52 

C 32.55 Site A & Site C 62.67 

Post-

Flush 

A 40.32 Site A & Site B 58.37 

B 43.35 Site B & Site C 66.55 

C 24.33 Site A & Site C 67.83 

AAverage similarity between samples taken at same time point, at the same site; BAverage 

dissimilarity between different sites (A, B & C). 
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7.4.3.2 Diversity Indices of Bacterial and Fungal Biofilm Data 

Diversity indices tests were undertaken for bacterial and fungal communities from drinking 

water biofilm samples taken from Pipe Loops A, B & C to determine if the AOC concentration 

had an impact on the relative richness, relative evenness and relative diversity of biofilm 

samples. The relative richness, evenness and diversity of bacterial communities at Day 0, 

Month 3, Month 6, Month 9, Month 12 and Post-flush were found to exhibit little variation 

between sites but some change with time (Table 7.16). The relative richness, evenness and 

diversity of bacterial communities increased from Day 0 to Month 3, as would be expected for 

a maturing biofilm.  

Table 7.16: Ecological indices of biofilm bacterial communities from drinking water 

biofilm samples taken from Pipe Loops A, B & C (n=3) at Day 0, Month 3, Month 6, 

Month 9, Month 12 and Post-Flush. A) Relative richness, B) relative evenness, and C) 

relative diversity. 

Pipe 

Loop 
Time 

Relative Richness 

(Chao) 

Relative Evenness 

(Simpson) 

Relative Diversity 

(Shannons Index) 

Mean StDev Mean Range Mean Range 

A 

Day 0 54.33 8.02 52.50 0.71 57.50 3.54 

3 Month 805.33 44.00 1111.00 71.53 1122.67 131.64 

6 Month 1017.67 163.37 929.33 239.83 1032.67 118.57 

9 Month 1687.67 390.76 881.33 205.05 1043.67 431.62 

12 Month 894.33 145.11 826.00 154.92 940.33 486.46 

Post-flush 642.33 167.66 818.33 55.43 785.67 217.12 

B 

Day 0 0.93 0.00 0.94 0.01 0.93 0.00 

3 Month 0.98 0.00 0.99 0.00 0.99 0.00 

6 Month 0.87 0.14 0.96 0.02 0.98 0.02 

9 Month 0.99 0.01 0.99 0.00 0.97 0.02 

12 Month 0.93 0.03 0.96 0.01 0.95 0.02 

Post-flush 0.96 0.01 0.94 0.01 0.90 0.03 

C 

Day 0 3.09 0.07 3.15 0.20 3.16 0.00 

3 Month 4.98 0.10 5.48 0.12 5.40 0.04 

6 Month 3.76 0.98 4.65 0.28 4.99 0.33 

9 Month 5.98 0.47 5.15 0.09 4.91 0.69 

12 Month 3.95 0.47 4.36 0.20 4.12 0.56 

Post-flush 4.47 0.10 4.13 0.05 3.37 0.30 
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The relative richness, relative evenness and relative diversity of fungal communities within 

drinking water biofilm samples taken from Pipe Loops A, B & C, are plotted in listed in Table 

7.17. Similar to bacterial data, the diversity indices of fungal biofilm communities showed little 

variation from Day 0 to Post-flush, within only a statistically significant increase in the relative 

richness, evenness and diversity increase from Day 0 to Month 3. 

Table 7.17: Ecological indices of biofilm fungal communities from drinking water 

biofilm samples taken from Pipe Loops A, B & C (n=3) at Day 0, Month 3, Month 6, 

Month 9, Month 12 and Post-Flush. A) Relative richness, B) relative evenness, and C) 

relative diversity. 

Pipe 

Loop 
Time 

Relative Richness 

(Chao) 

Relative Evenness 

(Simpson) 

Relative Diversity 

(Shannons Index) 

Mean StDev Mean Range Mean Range 

A 

Day 0 58.25 0.25 53.90 0.99 62.25 5.30 

3 Month 1024.69 20.02 926.78 88.68 1105.10 56.74 

6 Month 1012.69 125.69 1157.67 141.21 1004.24 128.21 

9 Month 1058.30 127.50 1073.04 28.50 998.61 172.61 

12 Month 1004.78 145.33 862.13 85.65 997.77 185.10 

Post-flush 994.60 87.15 900.03 39.60 851.28 247.54 

B 

Day 0 0.90 0.03 0.90 0.04 0.92 0.01 

3 Month 0.97 0.00 0.97 0.00 0.96 0.02 

6 Month 0.98 0.01 0.90 0.11 0.97 0.01 

9 Month 0.97 0.00 0.96 0.01 0.93 0.02 

12 Month 0.95 0.00 0.96 0.01 0.90 0.12 

Post-flush 0.96 0.01 0.85 0.20 0.81 0.25 

C Day 0 2.88 0.23 2.86 0.30 3.11 0.09 

 3 Month 4.43 0.05 4.21 0.09 4.02 0.16 

 6 Month 4.22 0.25 3.72 0.59 4.26 0.41 

 9 Month 4.20 0.11 3.99 0.21 3.66 0.22 

 12 Month 3.49 0.01 3.83 0.18 3.44 1.39 

 Post-flush 3.90 0.28 3.23 0.98 2.81 1.63 

 

7.4.3.3 Comparison of Bulk water and Biofilm Bacterial and Fungal Biofilm Data 

The community composition of bacteria and fungi found within the bulk water and biofilms in 

Pipe Loops A, B and C were compared to identify any differences in the planktonic and 

attached microbiome. Figure 7.28 presents an nMDS plot comparing bulk water (post-treated 
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water supplying Pipe Loop A, B and C) and biofilm (Pipe Loop A, B and C) bacterial OTU 

relative abundance data. The biofilm samples were found to cluster together, independent of 

site location. Interestingly, AOC release from the biofilm was also very similar in each pipe 

loop (Figure 7.19). Therefore, similar levels of AOC storage within the biofilm could lead to 

the development of similar community compositions within the biofilm. In contrast, bulk water 

samples were found to clearly cluster by site. ANOSIM data by site showed that presence / 

absence data had, on average, a higher global R value than relative abundance data (Table 

7.18). This indicated that similar community bacterial community members were present in the 

bulk water and within the biofilm, but that they were present at different abundances. 

 

Figure 7.28: nMDS plotted using bulk water bacterial OTU relative abundance data 

(post-treated water supplying Pipe Loop A, B and C) from Day 0, Month 6 and Month 

12, and biofilm (Pipe Loop A, B and C) bacterial OTU relative abundance data from 6 

and 12 months. Data was square root transformed and a Bray Curtis similarity matrix was 

generated.  
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Table 7.18: ANOSIM values for Month 12 bulk water and Month 12 biofilm bacterial 

OTU relative abundance and presence / absence data. 

Samples Data Global R Value P-Value 

Site A: Month 12 bulk 

water & Month 12 

biofilm  

Presence / absence 0.545 0.010 

Relative abundance 0.912 0.050 

Site B: Month 12 bulk 

water & Month 12 

biofilm 

Presence / absence 0.478 0.020 

Relative abundance 0.842 0.025 

Site C: Month 12 bulk 

water & Month 12 

biofilm 

Presence / absence 0.511 0.090 

Relative abundance 0.745 0.100 

Global R value: 0 = same, 1 = completely different. The significance level is the p value <0.05: 

significant; >0.05: weak evidence).  

 

An nMDS plot comparing bulk water (post-treated water supplying Pipe Loop A, B and C) and 

biofilm (Pipe Loop A, B and C) fungal OTU relative abundance data is presented in Figure 

7.29. Similar to bacterial relative abundance data, fungal biofilm samples were found to cluster 

together, independent of site location, whereas bulk water samples were found to clearly cluster 

by site. ANOSIM analysis of fungal OTU data by site showed higher that presence / absence 

data had, on average, a higher global R value than relative abundance data (Table 7.19). This 

indicated that similar community bacterial community members were present in the bulk water 

and within the biofilm, but that they were present at different abundances. 
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Figure 7.29: nMDS plotted using bulk water fungal OTU relative abundance data (post-

treated water supplying Pipe Loop A, B and C) from Day 0, Month 6 and Month 12, and 

biofilm (Pipe Loop A, B and C) fungal OTU relative abundance data from 6 and 12 

months. Data was square root transformed and a Bray Curtis similarity matrix was generated.  

 

Table 7.19: ANOSIM values for Month 12 bulk water and Month 12 fungal OTU relative 

abundance and presence / absence data. 

Samples Data Global R Value P-Value 

Site A: Month 12 bulk 

water & Month 12 

biofilm  

Presence / absence 0.358 0.026 

Relative abundance 0.822 0.050 

Site B: Month 12 bulk 

water & Month 12 

biofilm 

Presence / absence 0.515 0.090 

Relative abundance 0.845 0.900 

Site C: Month 12 bulk 

water & Month 12 

biofilm 

Presence / absence 0.311 0.050 

Relative abundance 0.915 0.100 

Global R value: 0 = same, 1 = completely different. The significance level is the p value <0.05: 

significant; >0.05: weak evidence).  
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7.5 Discussion 

7.5.1 Growth Phase: Bulk water  

This results of this chapter confirm that microbial regrowth is limited in drinking water systems 

where the AOC concentration is limited. Water quality within Pipe Loop A (supplied by post-

treated water from WTW 2) was characterised by the highest AOC, TCC and ICC 

concentration, suggesting this site was the least biologically stable. In contrast, Pipe Loop C 

(supplied by post-treated water from WTW 20) consistently had the lowest concentration and 

least variability, of AOC, TCC and ICC. Pipe Loop C is therefore the most biologically stable 

based on values cited in the literature (≤10 – 120 µg/L) (Van der Kooij, 1992; LeChevallier et 

al. 1996; Ohkouchi et al. 2013; Wang, Tao & Xin, 2014; LeChevallier et al. 2015). Pipe Loop 

A was supplied by chlorinated water, whereas Pipe Loop B and Pipe Loop C were supplied 

with chloraminated post-treated water. Compared to chloramine, chlorine tended to cause 

higher AOC concentrations within drinking water, as a result of chlorine creating smaller 

molecules within TOC which might contribute to a higher AOC concentration. As TCC and 

ICC were not available for raw water supplying WTW 20, it is not clear if this is due to source 

water quality or the treatment process. Cheswick et al. 2019 analysed TCC and ICC within raw 

and post-treated water across 213 drinking Scottish Water WTW over three years (n = 39,340). 

Cell counts within post-treated were found to be mostly driven by individual treatment 

processes, with membrane treatment having the highest removal efficiency of TCC and ICC 

(Cheswick et al. 2019). 

The AOC concentration within post-treated drinking water was confirmed to be a 

function of source water quality and the type of treatment processes applied. Pipe Loop A 

(WTW 2) and Pipe Loop B (WTW 16), which are both supplied by surface water sources, 

exhibited a seasonal trend in post-treated water quality over the 12 month study period. These 

sites exhibited an increase in AOC concentration during spring, before declining during the 
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summer months (Figure 7.6), which correlated with an increase in intact cell counts (Figure 

7.8). This is likely due to AOC being used by heterotrophic organisms for growth. Polanska et 

al. 2005 also observed an increasing trend in the AOC concentration during spring. This trend 

was also identified during bulk water sampling from service reservoirs in operational DWDS 

(Chapter 6). In contrast, Pipe Loop C exhibited little variation in water quality during the 12 

month experimental programme. Liu et al. (2012) found that better source water quality 

resulted in lower AOC concentrations in post-treated water. It is therefore important to consider 

how source water and seasonal variation impacts the AOC concentration, and how this impacts 

the rate of (re)growth and degree of biostability within the drinking water. 

 This thesis has compared for first time the impact of AOC concentration on both bulk 

water and biofilm bacterial and fungal community composition and structure within operational 

DWDS. The community composition and structure of bulk water within each of the three pipe 

loops was found to be a function of the AOC concentration. This is potentially a result of 

different microorganisms having different catabolic capabilities for certain substrates (Newton 

et al. 2011). The exact composition of AOC within drinking water is not constant, and will 

depend on source water quality, the treatment process and the disinfection residual applied. 

The rate at which organisms can utilise the AOC will depend on which organic molecules make 

up the AOC (Escobar et al. 2000).The community composition and structure of 

microorganisms and its relation to carbon concentration has been assessed in terms on 

indigenous microorganisms that colonise the surfaces of filter materials used at WTW (Section 

2.3.2.8). Liao et al. (2013), for example, theorised that the AOC concentration could impact 

microbial community composition (at class level) in biofilters.  

7.5.2 Growth Phase: Biofilm  

AOC concentration was found to not only impact microbial growth within the bulk water, but 

also influence the volume, cell count and community composition of biofilms residing at the 
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pipe wall. AOC had a significant effect on the degree of biofilm accumulation during the twelve 

month study period. SEM images (Figures 7.20 & 7.21) and cell counts (Figures 7.22 and 7.23) 

confirmed the accumulation of biofilm over time, with site specific differences in accumulation 

being observed. SEM images indicated that the greatest volume of biofilm material had 

accumulated on 12 month coupons taken from Pipe Loop A, supplied by post-treated water 

containing the highest AOC concentration. Similarly, the number of cells incorporated into the 

biofilm was greatest within the pipe loop supplied by post-treated water containing the 

consistent highest AOC concentration. This research shows for the first time that the AOC 

concentration not only affects microbial growth and biological stability in the bulk-water, but 

also microbial growth within the biofilm, with greatest growth of cells in the biofilm will occur 

when AOC is not limited The AOC concentration was found to not only affect the final cell 

number of cells within the biofilm, but also the growth rate of cells within the biofilm The 

increase in TCC and ICC within the biofilm was slowing between Month 9 and Month 12 

(Figures 7.22 & 7.23), suggesting that biofilms will mature faster at high AOC concentration.  

SEM images showed that the biofilms within each of the pipe loops accumulated 

different amounts of biofilm and the biofilm structure was very different (Figures 7.20 and 

7.21). Within Pipe Loop A (supplied by post-treated water containing the highest AOC 

concentration), the largest amount of biofilm could be visualised using SEM and the biofilm 

has a much more dense, filamentous structure. Stoodley et al. (2001a) suggested that carbon 

(and nitrogen) affected the biofilm physical structure with higher carbon creating a thicker a 

thicker structure supporting “mushroom” cell clusters. The results of this thesis suggest that 

the AOC concentration will not only influence the amount of biofilm that accumulates, but also 

affect the structure and density of the biofilm. 

The AOC concentration was found to have a smaller effect on the community structure and 

composition of the bacterial or fungi residing in the biofilm (in comparison to bacteria and fungi within 
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the bulk water). As the biofilm analysed in this thesis were still maturing, it is likely that time was the 

dominant effect on the community composition. The community composition of bacteria and fungi 

within the biofilm was found to change over time. Both the bacterial and fungal community composition 

became more stable over time (Figures 7.24 and 7.26), with a clear shift from initial colonisers (Day 0 

and Month 3) to a more stable ‘core community’ after the 12 month growth period. Similarly, the 

community structure changed over time, with an increased in the relative richness and diversity from 

Day 0 to Month 3. AOC release from the biofilm was also very similar in each pipe loop (Figure 7.19). 

Therefore, similar levels of AOC storage within the biofilm could lead to the development of similar 

community compositions within the biofilm. 

7.5.3 Mobilisation phase: Bulk water  

During the mobilisation phase, the rate of AOC release from the biofilm to the water column 

was the same within each pipe loop, independent of the AOC concentration within the bulk 

water. All other measured drinking water parameters, including TOC, exhibited a site effect 

during mobilisation. This suggests that complex cycling of AOC occurs in DWDS, in which 

biofilms likely play a major role. During flushing, the pipe loop supplied by post-treated water 

containing the highest AOC concentration experienced greatest and most consistent increase 

in discoloration, as indicated by turbidity (Figure 7.13) and largest increase in bulk water iron 

(Figure 7.14) and manganese (Figure 7.15) concentration. The pipe loop supplied by bulk water 

containing the highest concentration of AOC exhibited an iron response sufficient to generate 

an iron failure (over 200 µg/l DWI, 2017). This is in the absence of any prior material being 

present on the pipes prior to the start of the experiment and material only being able to 

accumulate for one year.  This could be a result of the biofilm within Pipe Loop A having 

accumulated more inorganic material during the growth phase, or the biofilm at Pipe Loop A 

being less resistant to mobilisation. 

The TCC/ICC concentration increased within the bulk water during flushing, 

suggesting that cells were being mobilised from the biofilm with increasing shear stress. The 
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greatest increase in both TCC and ICC within the bulk water occurred within Pipe Loop A, 

supplied by post-treated water containing the highest AOC concentration. Highest TCC/ ICC 

response within the bulk water therefore correlated with the highest turbidity response. Pipe 

loop A exhibited the least linear response to flushing, especially with regards to TCC and ICC 

within the bulk water. This suggests that the AOC concentration not only affects the number 

of cells that will be released from the biofilm during flushing, but also the stability of the 

biofilms and how easily it will detach from the pipe wall.  

7.5.4 Biofilm  

Following flushing, biofilm samples within all three pipe loop samples exhibited a loss of cells 

(both total and intact), confirming that cells were being mobilised into the bulk water. The 

greatest loss of TCC from biofilm samples was experienced within Pipe Loop A, characterised 

by bulk water containing the highest AOC concentration. This suggests that a greater AOC 

concentration led to increased growth and replication within the biofilm during the growth 

phase, or that the stability of the biofilm was lower hence more cells were released during 

flushing. The presence of an elevated AOC concentration therefore promotes microbial 

mobilisation and planktonic contamination. The observed trends in TCC/ICC and AOC 

concentration were the same as relationship between in turbidity and metals data, with the 

largest TCC/ICC, turbidity and metals response occurring within Pipe Loop A, containing 

highest AOC concentration within the bulk water. This suggests that mobilisation of a greater 

concentration of microbial cells could cause an increased discolouration response. This is in 

contrast to Fish et al. 2018, in which TCC and ICC inversely correlated with turbidity and 

metals (iron and manganese) data during flushing trials within an experimental DWDS. This 

study, however, used three different chlorine concentrations (chlorine-boost 0.80-0.82 mg/L, 

no Dosing 0.35-0.45 m/g and dechlorinated 0.03-0.05 mg/L) which could explain the 

differences in trend between TCC/ICC and the turbidity response. Community composition 
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data identified independent clustering of Month 12 and Post-flush samples, suggesting a shift 

in both bacterial and fungal community composition following flushing. Bacterial and fungal 

ecological indices were also found to change after flushing, with a decline in OTU richness 

and diversity post-flush.  

7.5.5 Bulk water vs. Biofilm Comparisons 

After 12 months accumulation, the community composition of bacteria developed biofilm at 

each site were found to be remarkably similar, despite the community composition of incoming 

post-treated water exhibiting a clear site effect. The AOC concentration was found to impact 

the planktonic (bulk water) microbiome to a greater extent than microorganisms residing in the 

biofilm. The AOC concentration within bulk water has been found to impact the rate and 

amount of biofilm growth but another parameter other than AOC is likely governing the 

community composition of bacteria and fungi within biofilms. Furthermore, the bacterial and 

fungal richness and diversity was found to be higher within biofilms than in bulk water, a trend 

also identified by Douterelo et al. (2013). It is widely accepted that a very small fraction (<5%) 

of bacteria in DWDS is present in the bulk water (Lehtola et al. 2004; Simoes et al. 2010; Liu 

et al. 2014), which could result in differences in community composition between planktonic 

and attached microbial community compositions. Previous studies have found that the bacterial 

community composition differed between biofilms and bulk water drinking water samples 

(Martiny et al. 2005; Douterelo et al. 2011). A number of explanations for this difference 

between bulk water and biofilm community composition have been suggested including; 

particular bacterial species are able to express cell surface polymers that can increase cell 

hydrophobicity and promote processes such as co-aggregation (Rickard et al. 2003; 2004), 

different bacterial groups have greater sensitivity to chlorine (McCoy et al. 2012) and so are 

better adapted to biofilm environments, and certain organisms are better suited to the biofilm 

environment as the availability of nutrients is higher at the pipe wall (Emtiazi et al. 2004), 
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7.6 Summary 

The AOC concentration within post-treated water was found to dictate both the rate of biofilm 

growth, and the discoloration risk the biofilms posed when they are mobilised. It was found 

that under elevated AOC concentrations, the highest number of cells (total and intact) were 

incorporated into the biofilm. The rate of biofilm maturation was also subject to AOC 

concentration, with biofilms within Site A (supplied by post-treated water containing the 

highest AOC concentration) having the fastest growth rate before approaching a plateau in 

growth at 12 months. An elevated AOC concentration within the bulk water also increased the 

discoloration risk posed by the biofilm, with the greatest NTU and metals responses observed 

at Pipe Loop A during flushing. However, the rate of AOC release from the biofilm into the 

water column was found to be independent from bulk water AOC concentration. This suggests 

the need to consider how AOC is used or incorporated into the biofilm, and further understand 

processes that govern AOC accumulation and subsequent release into the bulk water. The 

bacterial and fungal community composition was found to differ between biofilms and bulk 

water samples, with bulk water community composition being found to be dependent of bulk 

water AOC concentration. The bacterial and fungal community composition within the biofilm 

was not found to be a function of AOC concentration or the community composition within 

the bulk water.  
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Chapter 8: Discussion and Further Work 
 

8.1 Discussion 

8.1.1 The Importance of the AOC Method in Determining Planktonic (re)growth and 

Drinking Water Biostability   

The first aim of this thesis was to develop a rapid, robust AOC method that can be routinely 

applied to operational WTW to gain an insight into AOC removal efficiencies during treatment. 

The fast, standardised AOC method developed in this study enabled an in-depth study of AOC 

variation in the DWDS, previously limited due to the time and resource intensive nature of 

existing AOC assays. The speed and reproducibility of the assay enabled this study to analyse 

the AOC concentration in drinking water (32 sample points throughout four operational DWDS 

(including WTW, SR inlet and outlets), over a period of two years. Such an in-depth study, 

providing an insight into the effect of microbial growth, seasonality, disinfection, DWDS 

infrastructure and hydraulic retention time on the AOC concentration, would not be possible 

without the development of a quick, reproducible AOC method. Previous studies that analyse 

distribution effects are often limited by being spatially unrepresentative (having only a few 

sample locations in the network) (Lautenschlager et al. 2013, Liu et al. 2014) or being on a 

short-term basis looking at weekly or monthly variations (Hu et al. 1999). This is therefore the 

first study of its kind to analyse long-term changes in AOC within both pipes and service 

reservoirs in DWDS.  

The AOC method developed in this study was successfully validated within raw and 

post-treated water at twenty WTW, confirming AOC removal during conventional water 

treatment. Although an average of 40% of AOC was removed from the drinking water during 

treatment, microbial (re)growth was still evident downstream within all four DWDS sampled. 

The second aim of this thesis was to quantify the degree of 'biological stability' within DWDS 

by comparing the AOC concentration with routine bulk water quality parameters to provide a 
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greater insight the relationship between AOC concentration, microbial cell counts and 

disinfectant within DWDS. AOC has previously been demonstrated to limit microbial growth 

at concentrations <100 µg/L (Van der Kooij, 1992, LeChevallier et al. 1996; Wang, Tao & 

Xin, 2014; Ohkouchi et al. 2013) (Section 2.3.2.7; Table 2.6). Although the degree of microbial 

(re)growth was reduced in DWDS 1 which was supplied by drinking water containing <100 

µg/L, (re)growth was not prevented. This suggests that there is not one universal AOC 

concentration that represents the threshold for biological stability. Rather, the AOC 

concentration that will limit (re)growth is dependent on the conditions in each individual WTW 

or DWDS, and is likely governed by various chemical and microbial interactions that occur as 

the water passes from source to tap.  

The term (re)growth has previously been used to describe the recovery of disinfectant 

injured cells, whereas aftergrowth has been used to describe microbial growth in a distribution 

system (Characklis, 1988; van der Kooij, 2003). In this thesis, (re)growth is used to describe 

microorganisms that survive the treatment process and the multiplication of organisms within 

the DWDS itself. It is important to consider if (re)growth only refers to planktonic cell growth 

within the DWDS (as it is often defined), or if the term also includes the growth of cells within 

biofilms attached to DWDS pipe walls. Often the main focus of (re)growth or biostability 

research is on the impact of AOC concentration on planktonic bio-stability, despite knowledge 

that biofilms interactions also impact drinking water quality (Section 1.1). The majority of 

microbial growth in DWDS occurs on the pipe wall, in comparison to the bulk water (Lehtola 

et al. 2004; Moritz et al. 2010), and therefore biofilm formation, activity and subsequent 

mobilisation is thought to be one of the main causes of a loss in drinking water biostability in 

DWDS (Manuel et al. 2010). 

By utilising the AOC method developed in this thesis, along with flow cytometric 

assessments of planktonic (re)growth, it was possible to identify spatial and seasonal trends in 
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microbial (re)growth and drinking water biostability within DWDS. This study found evidence 

of microbial summer (re)growth and subsequent AOC depletion (Figure 6.2, Figure 6.4 and 

Figure 6.6); a trend that would have been previously undetectable without the development of 

a fast, reproducible AOC method, and flow cytometric analysis of cell concentrations (total 

and intact). When making assessments of drinking water biostability, it is also important to 

accurately quantify the microbial content of drinking water post-treatment and throughout the 

DWDS. The relationship between AOC and microbial enumeration within drinking water has 

previously only been assessed in terms of coliforms (LeChevallier et al. 1996) and HPC (Van 

der Kooij, 1992), which only take into account the culturable proportion of bacteria (Allen et 

al. 2004; Hammes et al. 2008). In this thesis, the AOC concentration was found to influence 

both bacterial and fungal communities differently within the bulk water and the biofilm, 

highlighting the importance of looking across different taxa.  

 

8.1.2 Factors Affecting AOC and Biological Stability in DWDS 

 

8.1.2.1 Disinfection 

This thesis aimed to quantify AOC concentrations from DWDS supplied by different source 

waters and WTW, determine if and how AOC varies within and between different systems, 

and how AOC is impacted upon by the choice and concentration of disinfection residual. The 

relationship between AOC, microbial (re)growth and disinfection was analysed within both 

chlorinated and chloraminated DWDS. The AOC concentration within DWDS was found to be 

influenced by the degree of cell growth and the presence, type and concentration of disinfection 

residual (see Figure 6.1 A & B; Section 6.5). An initial increase in AOC in chlorinated water 

was identified at short distances from the WTW. This increase in AOC was potentially a result 

of organic matter reacting with chlorine. One reason for an increase in AOC concentration is 

the oxidation of organic matter macromolecules into small-molecule biodegradable organic 
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compounds (such as carboxylic acids) by chlorine or chloramine (Lou et al. 2009; Liu et al. 

2015). Hence, the trade-off between achieving effective disinfection and limiting unwanted by-

product formation (in this case AOC) becomes a main operational goal for water utilities. 

   

8.1.2.2 Seasonality 

One aim of this thesis was to understand temporal and spatial fluctuations in AOC within 

DWDS by conducting service reservoir (SR) inlet and outlet sampling. This piece of work 

aimed to identify which areas of the DWDS (pipes or service reservoirs) were acting as sources 

and sinks of AOC.  The long-term timescale of analyses undertaken in this thesis enabled 

seasonal trends in AOC concentration (and other water quality parameters) to be identified. 

AOC concentration within DWDS was found to generally increase to a maximum in spring, 

before declining in summer and autumn. This trend in AOC concentration coincided with an 

increase in the rate of planktonic microbial (re)growth during summer. Seasonality is therefore 

able to influence the AOC concentration and rate of (re)growth within drinking water, thereby 

impacting the degree of water biostability. It is therefore important to consider seasonality 

when managing the microbial bulk water quality in DWDS. Polanska et al. (2005) also 

observed an increasing trend in the AOC concentration within WTW and DWDS during spring, 

reaching a maximum in summer; however the rate of (re)growth was not monitored. A decrease 

in AOC from spring to summer is likely due to the consumption of AOC by heterotrophic 

organisms. This is demonstrated by an increase in the number of intact cells during summer. A 

number of studies have demonstrated that at temperatures above 15°C, microbial activity (ICC) 

will increase (Ndiongue et al. 2005; Li et al. 2018). The chemical reaction between chlorine 

and organic matter has also been shown to slow down at lower temperatures (Liu et al. 2002). 

The combined effect of supressed microbial growth and slower oxidation of organic carbon 

resulted in a continuous increase in AOC concentration during the winter season. 
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Although a seasonal trend in AOC and planktonic (re)growth was identified during 

DWDS bulk water sampling, the same trend was not identified in biofilm growth within the 

pipe loop test facilities. The biofilms that accumulated at the pipe loop were establishing and 

maturing during the 12 month study period (Figures 7.26 and 7.27), and therefore biofilm 

maturation was the greatest ecological influence on the biofilms. Once biofilms are established 

it is possible that seasonal variation might be exhibited within the biofilm. It is also possible 

that organisms residing in the biofilm are able to exhibit greater resilience to changes in the 

bulk water conditions, such as higher disinfection concentrations (Wingender et al. 1999; 

Hageskal et al. 2012). 

8.1.2.3 Hydraulic Retention Time & DWDS Infrastructure  

During DWDS bulk water sampling, a general decrease in AOC with increasing hydraulic 

retention time was found to correlate with an increase in planktonic intact cells. However, AOC 

concentration is not only a function of hydraulic retention time, but is instead a function of 

more complex cycling between bulk water and biofilm. By undertaking both SR inlet and outlet 

sampling, this study identified, for the first-time evidence of pipe vs. SR behaviour, with pipe 

only sections of the network acting as sources of AOC and SR dominated DWDS acting as 

sinks of AOC. Pipe only areas of the network have a higher surface to bulk water ratio, and 

therefore it is likely that interactions with biofilms on the pipe wall are the dominant factors 

affecting the AOC concentration. In contrast, water within SR has less contact time with the 

infrastructure surface, and therefore planktonic processes are the dominant factors affecting the 

AOC concentration. The AOC concentration was found to increase within all of the pipe only 

sections during winter and 83% of pipe only sections during summer (Figures 6.1 A and B). In 

cases where organic matter is released from the biofilm, this can increase AOC and cell counts 

within the bulk water (Han et al. 2012). Pipe loop test facility data confirmed the ability of 

biofilms to contribute to AOC in bulk water during mobilisation events, irrespective of the 
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background AOC concentration (Figure 7.23). In contrast, the AOC concentration was found 

to decrease within 67% of SR sampled in both summer and winter (Figures 6.1 A and B). A 

reduction in AOC during elevated storage within a SR points to AOC consumption by 

heterotrophic bacteria. This evidence confirms the importance of surface to water volume ratios 

in the DWDS in determining final water quality, and highlights that the location of the sampling 

point in the DWDS is critical to interpreting the biostability of drinking water.  

8.1.3 The impact of AOC Concentration on Biofilm Mobilisation and Potential 

Discoloration Risk 

This thesis aimed to characterise the effect of elevated shear stress (flushing) upon the biofilms 

that has accumulated under different AOC concentrations, and to quantify how easily the 

material mobilised into the bulk water (in terms of AOC concentration, cell counts, turbidity 

and inorganic material.) Ultimately this research will determine if an elevated AOC 

concentration in the bulk water will affect the microbial and discolouration risk of the biofilm. 

a high AOC concentration during biofilm development resulted in the greatest, and most 

consistent, increase in discoloration (indicated by turbidity and largest increase in bulk water 

iron and manganese concentration) during mobilisation compared to other AOC concentrations 

(Figures 7.17, 7.18 and 7.19). This could be a result of the high AOC biofilm having 

accumulated more inorganic material during the growth phase, or the biofilm being less 

resistant to mobilisation. Therefore, elevated AOC concentrations may contribute to forming 

biofilms which pose a greater discoloration risk. Similarly, the smallest discolouration response 

following mobilisation was exhibited by biofilms accumulated under low AOC conditions. 

Further research is needed to understand if, or how, the AOC concentration influences biofilm 

structure and stability. The rate of biofilm detachment is also dependent on hydraulic 

conditions (Abe et al. 2012; Douterelo et al. 2013; Fish et al. 2017), disinfection residual and 
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temperature (Ginige et al. 2011) within the DWDS, all of which can also influence the AOC 

concentration within the bulk water.   

In addition to turbidity, (in)organics are also released into the bulk water during 

flushing, as a result of EPS and cells in the biofilm being mobilised. As identified in Figures 

7.26 and 7.27, the site containing the highest concentration of AOC also had the greatest TCC 

and ICC released from the biofilm into the bulk water during mobilisation tests. A greater AOC 

concentration led to increased cell incorporation into the biofilm during the growth phase, and 

a lower degree of biofilm stability so that more cells were released during flushing.  

8.1.4 The Impact of AOC on Biofilm Growth  

An aim of this research was to determine the relationship between AOC concentration and 

biofilm volume, community composition and stability within a DWDS. AOC was found to 

have a significant effect on both the degree of biofilm accumulation and the cell content of the 

biofilm, during the twelve month study period. SEM images and cell counts confirm the 

accumulation of biofilm over time (Figures 7.24 and 7.25). The AOC concentration 

significantly impacted the number of cells within biofilm, with a higher AOC concentration in 

the bulk water leading to greater number of cells (total and intact) within the biofilm and the 

bulk water. This suggests greatest growth of cells in the biofilm will occur when AOC is not 

limited; a trend identified for the first time within a full scale pipe loop system. DWDS 

sampling revealed pipe only areas of the network acted as net sources of AOC, suggesting 

biofilms generally contribute towards AOC in the bulk water. The rate of exchange of AOC 

between the bulk water and biofilm will dependent on other environmental conditions within 

the DWDS. Fish et al. (2017) suggested that high varied flow rates might lead to increased 

nutrient uptake by the biofilm, causing the biofilm to act as a net sink of nutrients.  

The AOC concentration was found to have a significant impact on biofilm community 

composition, with bacterial and fungal community compositions exhibiting a clear site effect. 
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The AOC concentration was also found to impact the biofilm bacterial and fungal community 

composition, but to a lesser extent. AOC impacted initial colonisation, with three distinct 

communities being identified. The biofilm community composition  became more similar by 

12 months, although the communities were still distinct. A clear shift was observed from initial 

colonisers (Day 0 and Month 3) to a more stable ‘core community’ after 12 months.  

8.1.5 AOC Behaviour  

The AOC concentration within post-treated drinking water is a function of source water quality 

and the type of treatment processes applied. However, the AOC concentration is not constant 

throughout the DWDS, and will be affected by environmental conditions (physical, chemical 

and microbial) in the DWDS, including the degree of (re)growth (within the bulk water and 

within biofilms), DWDS infrastructure (the surface-area-to-water-volume ratio of pipes vs SR), 

hydraulic retention time, type and concentration of disinfectant, and seasonality. Bulk water 

AOC is utilised by heterotrophic, planktonic microorganisms for growth, subsequently leading 

to a net depletion of AOC. The rate of planktonic microbial (re)growth is not only dependent 

on the carbon concentration, but also nutrient availability, disinfectant, and seasonality 

(temperature). Although the application of a disinfection residual is able to limit planktonic 

cell growth within DWDS (Gillespie et al. 2014), disinfectant can oxidise the natural organic 

matter in drinking water to produce AOC that can support the growth of heterotrophic bacteria 

(Liu et al. 2002; Ramseier et al. 2011). The rate of this reaction is also influenced by water 

temperature. Data presented in Figures 6.2, 6.4 and 6.6, confirms that elevated water 

temperature is associated with increased bacterial abundance in DWDS, as also found by 

Francisque et al. (2009) and Liu et al. (2013).  

 This thesis established spatial and temporal variations in AOC concentration with 

distance into the network or hydraulic retention time. Hydraulic retention time is a function of 

distance from WTW, water velocity (caused by water consumption) and storage time within 
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SR (Prest et al. 2016). A higher hydraulic retention time in the network has been associated 

with higher bacterial numbers (Nescerecka et al. 2014), decay of a disinfection residual 

(Servais at al. 1995) and depletion of AOC (Han et al. 2012). However, this study found that 

the AOC concentration in drinking water was not only a function of hydraulic retention time 

but was also dependant on the surface-area-to-water-volume ratio within DWDS. It is this ratio 

that effects the time that water spends in contact with either the surface of pipes or SR, and any 

biofilm that may be attached.  

Crucially, the AOC concentration in drinking water is impacted by interactions 

occurring in the bulk water, and those taking place in biofilms. During DWDS sampling. pipe 

dominated areas of the network exhibited a net decrease in the AOC concentration (Figures 6.1 

A and B), suggesting that AOC in the bulk water was being used to support microbial growth 

within the biofilm attached to the pipe wall. The rate of this exchange between the bulk water 

and biofilm is dependent on the time in which water is able to come into contact with the pipe 

or SR surface. Carbon and nutrients follow a gradient towards the pipe wall, a process which 

is driven by the turbulence of the water (Fish et al. 2016). It is only when the biofilm is 

mobilised that AOC, and potentially cells, will be supplied back into the bulk water. Biofilm 

mobilisation is either generated through daily background release or larger mobilisation events 

occurring after a change in environmental conditions, such as an increase in the hydraulic shear 

stress. AOC release from the biofilm was examined herein for the first time and unexpectedly 

demonstrated that the rate of AOC release from the biofilm was the same within each site, 

independent of the AOC concentration within the bulk water. This suggests that complex 

cycling of AOC occurs in the biofilm, in which excess AOC is potentially stored within the 

biofilm at times of elevated AOC concentration in the bulk water. The storage of AOC within 

the biofilm is likely limited by ecological processes occurring within the biofilm, providing a 

threshold to AOC storage. A conceptual model is presented in Figure 8.1, illustrating the 
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complex cycling of AOC in DWDS, based on the interpretations of data presented throughout 

this thesis. The comprehensive model provides a greater understanding of AOC cycling within 

drinking water, essential in the management and maintenance of biological stability within 

DWDS environments.  
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Figure 8.1: Conceptual model of assimilable organic carbon (AOC) cycling within 

DWDS. *AOC store within biofilm: biofilm includes EPS, cells and associated particles.  
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8.2 Further Work 

This project has provided a novel insight into characterising AOC within operational drinking 

water supply systems and the effect of AOC concentration on drinking water microbiology 

within both the bulk water and attached in biofilms. Furthermore, this research led to the 

development of thee state-of-the-art pipe loop test facilities, which provide a unique 

opportunity to investigate biofilm–water quality interactions in future research projects. Two 

potential future project which would provide a continuation to this EngD would be a) further 

analysis of nutrients b) the impact of disinfection on drinking water biostability.  

8.2.1 Further analysis of Nutrients 

Drinking water supplies are often dosed with phosphate to either reduce the formation of iron 

and manganese precipitates, or to increase the water pH and thereby reduce the extent to which 

lead dissolves in water. Microorganisms not only require carbon for growth but other nutrients 

including nitrogen and phosphorus (Mietinen et al. 1997). To gain a holistic understanding of 

biostability within drinking water, it is important to monitor the impact of other nutrients, such 

as phosphorous, on accumulation and mobilisation of biofilm within drinking water. It is not 

known if a change in a limiting nutrient can occur during the DWDS due to changes in pipe 

material, mixing of waters from different treatment facilities or due to biofilm formation (Prest, 

2015). Secondly, it is also important to determine the importance of autotrophic microbial 

growth within DWDS. Although the extent of autotrophic growth within DWDS is much 

smaller in comparison to heterotrophic growth, their occurrence has been reported in various 

DWDSs, and have often been related to aesthetic or operational problems (e.g. bio-corrosion). 

A greater understanding of the behaviour of physical structure of biofilms would be required 

in order to accurately predict biofilm response to changing nutrient availability.  
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8.2.2 The Impact of Disinfection on Drinking Water Biostability  

A disinfection residual is often added to final water to limit microbial (re)growth during 

distribution. The type and concentration of disinfection affects the abundance and community 

composition of microorganisms in the bulk water and within drinking water biofilms; and affect 

discoloration response of biofilms should they become mobilised (Fish et al. 2018).  

Chloramination has been shown to be more effective than chlorine at being able to penetrate 

biofilms (De Beer, Srinivasan & Stewart 1994, Chandy & Angles 2001, LeChevallier et al. 

2007). However, monochloramines can act as a source of ammonia, providing a nutrient source 

for AOB. Although studies have analysed the impact of different chlorine concentrations on 

biofilm accumulation and subsequent mobilisation, it is not clear what effect switching between 

different disinfection residual types (chlorine and chloramines) has on biofilms within drinking 

water. A range of interesting research questions include the effect of switching disinfection 

types on: the growth and release effects of material trapped at the wall, biofilm community 

composition and nitrification rates. A second experiment would be to explore the effects of 

pulse dosing, both with the same and/or changing disinfectant type. This research would assess 

if it is possible to develop the equivalent to ‘flow conditioning’ for disinfection i.e. periodic 

stressing of the system to limit build-up of material and hence manage risk. This could 

potentially represent a very low cost management option if effective. It would also be possible 

to explore the effects of pulse dosing a high chlorine concentration into chloraminated systems 

(as performed in US practice). 

 

 



Page | 231 
 

Chapter 9: Business Case 

9.1 Introduction 

Modern water treatment systems produce high-quality, safe drinking water. However, 

microorganisms are able to survive the treatment process, such as inactivation by chlorine 

disinfection, and persist within DWDS. As heterotrophic microorganisms require organic 

carbon for growth, the concentration of AOC within water is thought to govern the degree of 

microbial growth and determine the microbiological ‘stability’ of drinking water during its 

distribution. This project aims to ‘Understand the Impact of Assimilable Organic Carbon on 

Biological Stability and Biofilm Development within Drinking Water’. The project is conducted 

in collaboration with the University of Sheffield and Scottish Water (Scottish Water). 

Ultimately this project offers the development of a more rapid, reproducible AOC method that 

can be used for regular industry based sampling and provides an insight into how AOC 

concentration can influence biofilm accumulation, composition and detachment within fully 

operational DWDS. This business case will consider the knowledge transfer and cost 

effectiveness of the project, the current (and future) benefits of the project to Scottish Water 

and suggest a business case for exploiting the outcomes of the research. 

9.2. Project Overview 

The EngD project was conducted in collaboration with Scottish Water (Scottish Water) and the 

University of Sheffield to develop a quick and reproducible AOC method that could be used 

for routine drinking water analyses. The AOC method was applied to a number of WTW and 

DWDS to validate the method and to understand the impact of AOC fluctuations on microbial 

growth. AOC sampling at both service reservoir (SR) inlet and outlet sample taps provided the 

ability to distinguish pipe or SR effects on AOC within the DWDS. In addition, the impact of 
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AOC on biofilms was analysed through the installation of pipe loop test facilities at three 

WTW, each characterised by drinking water containing different AOC concentrations.  

9.3 Project Overview & Aims 

This research aimed to analyse AOC removal efficiencies at the WTW and determine the 

impact of spatial and temporal variation in AOC concentration on the biostability of post-

treated water and biofilm growth within the DWDS.    

The objectives of this research were: 

i) To develop a rapid, robust AOC method that can be used for routine drinking water 

analyses, and validate the developed method through application at WTW. 

ii) To quantify AOC concentrations from DWDS supplied by different source waters 

and WTW, ranging from clean borehole to surface water site and different 

disinfection residuals (chlorinated and chloraminated).  

iii) To quantify the degree of 'biological stability' within DWDS by comparing the AOC 

concentration with routine bulk water quality parameters to provide a greater insight 

the relationship between AOC concentration, microbial cell counts and disinfectant 

within DWDS.  

iv) To understand spatial and temporal fluctuations in AOC within DWDS, and identify 

which areas were acting as sources and sinks of AOC.   

v) To determine the relationship between AOC concentration and biofilm volume, 

community composition and stability within a DWDS. 

vi) To characterise the effect of elevated shear stress (flushing) upon the biofilms that 

remain attached, and to quantify the material mobilised into the bulk water.   
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9.4 Problem definition and specifying of research needs 

Despite drinking water utilities in the UK consistently achieving a very high degree of water 

quality compliance, regulatory failures do still occur. Although high quality water is produced 

at WTW, the microbial quality of water can deteriorate in the DWDS. There are numerous 

pathways by which contaminants, including micro-organisms, can enter and colonise the 

DWDS. Microorganisms require carbon, nitrogen and phosphorus in the ratio of 100C:10N:1P 

for growth (LeChevallier et al. 1991; Chandy & Angles 2001), inferring that in most systems 

carbon will be the limiting nutrient. As AOC refers to the fraction of total organic carbon (TOC) 

that is most easily assimilated by aquatic organisms for growth, it is expected that by limiting 

the AOC concentration in a system this should result in reduced bacterial (re)growth. However, 

AOC is not currently sampled by water utilities due the time and resources required to complete 

the method.  

9.5 Scottish Water 

Scottish Water is a publically owned combined water and sewerage company, operating 252 

drinking WTW (The Scottish Government, 2014), providing 1.3 billion litres of drinking water 

every day (Scottish Water, 2018). Scottish Water undertakes over 300,000 scientific tests each 

year, of which over 90,000 are conducted for microbial analysis. Regulatory sampling by 

Scottish Water is conducted to detect organisms who's presence is indicative of faecal or 

environmental contamination; including coliform bacteria, Escherichia coli (E.coli), 

Enterococci and Clostridium perfringens (Scottish Water 2013)). Like most water utilities in 

the UK, Scottish Water is able to achieve a high level of with 99.91% of all drinking water 

tests meeting statutory microbiological standards (Scottish Water 2013).Specifically, with 

regards to samples taken for coliform bacteria and E. coli analysis only, the majority of samples 

are taken in the service reservoir (approximately 55% of samples taken), with 30% at the exit 

of the treatment works and 15% at the consumers tap. Taking this into account, the highest 
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number of bacteriological failures for coliform bacteria, per samples taken, occurs at the 

customers tap (Scottish Water 2014). This same trend was identified at in Severn Trent systems 

(Ellis et al. 2013). This suggests that the quality of drinking water degrades considerably as it 

passes through the length of the distribution network 

Microbiological assessments traditionally conducted during treatment and distribution 

generally include bacteria enumeration of bulk water samples using conventional plating 

methods such as heterotrophic plate counts (HPC) (Sartory 2004). HPC enumeration 

techniques greatly underestimate the real numbers of microorganisms within drinking water as 

the majority of the planktonic and bacteria detached from biofilms are unable to grow on the 

media (Allen et al. 2004, Berney et al. 2008). Furthermore, the majority of microbiological 

biomass within a DWDS exists attached to the walls, with only a small amount existing within 

the water itself, thus highlighting the unrepresentative nature of using bulk water samples alone 

(Zacheus et al. 2001; Flemming et al. 2002). It was therefore important that this study explored 

the impact of AOC not only on microorganisms residing in the bulk water, but also those within 

biofilms. To explore these impacts it was clear from an early stage that the majority of research 

for this project should consist of in-situ assessments at Scottish Water.   

9.6 Project Benefits to Scottish Water  

To date, this research project has provided Scottish Water with a number of benefits including; 

- The development of a novel and advanced AOC method that can be used in Scottish 

Water. 

- Enhanced knowledge of treatment works performance including AOC removal 

efficiency.  
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- Previously unknown information regarding the impact of AOC on microbiology with 

DWDS, including different behaviour of AOC in different infrastructure (pipe vs 

service reservoir effects).  

- Investment made on state of the art pilot biofilm sampling pipe loop facilities.  

- Investment into SR inlet sample tap installations to provide insights into pipe vs SR 

behaviour. 

 

9.7 The cost effectiveness of the project for Scottish Water 

The STREAM EngD is jointly funded by the Engineering and Physical Sciences Research 

Council (EPSRC) and Scottish Water. EPSRC provided a stipend £15,226 / year, plus £3900 / 

year in tuition fees. On top of that EPSRC pays ~£11,000 per year for training and support. 

This funding is used to fund the costs associated with the Transferable Skills, Education and 

Learning (TSEL) weeks, the induction semester, accommodation and travel. The remainder of 

this funding is used to support project expenses, accumulating to ~£3500 / year in ‘direct’ 

project support.  

 When the project commenced, Scottish Water committed to providing top-up funding 

of (minimum) £48,000 over four years for an EngD project. This budget was initially divided 

into: 

- Out-source gene sequencing and associated taxonomy analysis - £25,000 

- Preparation of DNA (deoxyribonucleic acid) samples for sequencing – £10,000 (all 

other analysis costs internal to Scottish Water laboratories – including flow cytometry 

(FCM), adenosine triphosphate (ATP) and AOC) 

- Allowance for consumables for sampling equipment and facilities including coupons 

and/or pipe loop test system - £5000 (this is subject to review and revision, for example 

if coupons are to be installed this will incur substantial enabling works but potentially 

this would be internal cost to Scottish Water) 
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- Travel and subsistence for accessing a range of field sites across Scottish Water region 

– £5,000 (in addition to the sums available via the normal STREAM funding) 

 

After the project plan was developed, additional funding was provided by Scottish Water for: 

- Construction of the three pipe loop test facilities (£13,000 per loop) 

- Installation of two service reservoir inlet taps  

The additional cost of the pipe loops test facilities provided Scottish Water with state of the 

art pipe loops that can provide Scottish Water with analysis of biofilms grown in situ. 

Scottish Water also have plans to use these test loop facilities for additional research projects 

in the future.  

This project has benefited Scottish Water though the development of an AOC method 

and knowledge of AOC variations throughout drinking water treatment and distribution. There 

is a potential to offer AOC protocol training internally at Scottish Water and potentially offer 

training to other water companies. This project also hopes to provide Scottish Water with an 

indirect economic benefit through reducing the number of microbial investigations that 

Scottish Water have to undertake. The majority of samples taken for coliform bacteria and 

Escherichia coli (E. coli) analysis are taken in the service reservoir (approximately 55% of 

samples taken), with 30% at the exit of the treatment works and 15% at the consumers tap. 

Taking this into account, the highest number of bacteriological failures for coliform bacteria, 

per samples taken, occurs at the customers tap (biollWater, 2014). This same trend was 

identified at Severn Trent systems (Ellis et al. 2013). Water companies are subjected to 

financial implications when investigating coliform and E. coli failures during routine water 

quality monitoring. Ellis et al. (2018) analysed the cost associated with investigations for 737 

coliform and E. coli failures across five UK water companies (including Scottish Water). The 

average investigation costs ranged from £575 for a customer tap failure to £4,775 for a water 
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treatment works finished water failure. These costs can be divided into labour costs, re-

sampling and transportation. It is hoped that knowledge gained from this project will provide 

Scottish Water with additional knowledge regarding AOC and microbial growth to help 

efficiently manage the biological stability of these systems. Furthermore, this project will equip 

Scottish Water with a holistic understanding of microbiology within DWDS, gaining 

knowledge of the role of biofilms within DWDS and their impact on bulk water quality. As an 

estimated 95% of the overall biomass is attached to pipe walls, while only 5% resides in the 

water itself (Flemming et al. 2002) is essential to understand attached communities within these 

environments.  

9.8 A business case for exploiting the outcomes from the research  

 

9.8.1 Rationale for research exploitation 

As a result of this project, Scottish Water now have access to three pilot loop systems installed 

within their WTW. This project utilised the pipe loops to analyse the relationship between in-

situ biofilm growth, mobilisation and AOC concentration. However, DWDS are very complex 

systems and microbial growth is not only impacted upon by carbon concentration. There is 

therefore potential to explore the impact of a range of variables on water quality and biofilms.  

9.8.2 Exploitation options 

The pipe loops can easily be utilised to analyse the impact of other nutrients such as nitrogen 

and phosphorous on microbial growth. The concentrations of biologically available nitrogen 

and phosphorus are well known to play a key role in determining the ecological status of aquatic 

systems (Wetzel, 1983). However, it is not clear how the ratio of these organic nutrients 

influences the type of microorganisms which occur and whether or not individual species or 

whole communities are likely to be N- or P-limited within DWDS. At present, the monitoring 

strategies for drinking water involve detecting microorganisms in water from taps using culture 
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methods, which only analyse the planktonic, culturable fraction of bacteria. 95% of the overall 

biomass of DWDS microbiology exists attached to pipe walls, while only 5% resides in the 

water itself (Flemming et al. 2002). In this research proposal, culture-dependent methods 

would be combined with advanced techniques such as flow cytometry and DNA sequencing to 

monitor microbial abundance and diversity. Exploitation options include ambitious field trials 

to determine the degree of carbon, nitrogen and phosphorus limitation within operational 

drinking water systems, and its impact on bulk water microbiology. This would include 

sampling drinking water at a number of water utilities, including within raw water, treated 

water and distributed water (both from pipe lines and service reservoirs). 

9.8.3 Benefits 

The proposed future project could combine the representative nature of fieldwork studies with 

the controlled environment of a pipe loop test facility which allows environmental 

manipulation, experimental replication and biofilm sampling.  

9.8.4 Risks 

The risks associated with the proposed research are limited as no upfront costs are required to 

construct the pipe loop test facilities. Furthermore, service reservoir inlet taps are already in 

place for bulk water sampling.  

9.8.5 Costs 

The infrastructure needed for this work including existing pipe loop test facilities and service 

reservoir inlet and outlet sampling taps are already installed. This would therefore mean that 

the majority of the cost required for this project would be in the form of a researcher salary, 

sequencing costs and laboratory consumables.  

The requirements for this investigation would be: 

- Researcher salary: £20,000 per annum 
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- Out-source gene sequencing and associated taxonomy analysis - £25,000 

- Preparation of DNA samples for sequencing – £10,000  

- Travel and subsistence for accessing field sites across Scottish Water region – £5,000  

9.8.6 Timescales 

The timescale of the proposal would be dependent on the length of the sampling regime. This 

work would either be completed as part of a PhD/EngD project or as a post-doctoral research 

project. It is anticipated that this research could be completed within three years. 

9.8.7 Evaluation  

The overriding objective of the proposed project is to use the information and understanding 

from this thesis to inform proactive management and the prevention of microbiological failures 

in drinking water. Microbial (re)growth within the DWDS has the potential to generate 

bacterial regulatory failures, create taste, odour, colour, nitrification and turbidity in the 

drinking water and increase the occurrence of operational issues such as biofouling and bio-

corrosion. In addition, biofilms can support the multiplication of potentially pathogenic 

bacteria detrimental to human health (Wingender & Flemming, 2011). Therefore, the 

monitoring and control of nutrients entering and being distributed within the DWDS is critical 

to limiting (re)growth of microorganisms within these systems. 

9.9 Knowledge transfer and exploitation of the project outcomes within 

Scottish Water 

Results from this thesis have been shared with operators, Process Scientists and industrial 

supervisors at quarterly Process Science meetings. F Pick also delivered an oral presentation at 

both Scottish Water NOM Conference and Juniper House Science Meeting, and a poster 

presentation at Scottish Water Working Towards Zero Microbial Failures Conference. F. Pick 
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shared results and information regarding the project with interested parties within Scottish 

Water. 

9.10 How the research will benefit the Scottish Water, the water sector, and 

society 

9.10.1 Benefits to Scottish Water 

Understanding the relationship between AOC and drinking water microbiology will allow 

Scottish Water to develop a greater understanding of managing biological stability source to 

tap, which can be used to proactively maintain microbiological compliance. The overriding 

objective of the EngD project will be a means to identify the root cause of microbial growth 

and ultimately prevent microbiological failures. The fast and reproducible AOC test developed 

in this study will enable routine AOC analysis to be conducted in DWDS. By monitoring the 

AOC concentration within bulk water, it is possible to manage the rate of microbial (re)growth 

within both the bulk water and in biofilms.   

9.10.2 Benefits to the water sector 

Once the AOC methodology developed in this study has been published, the AOC method has 

the potential to utilised by other water companies in the UK. AOC is not currently widely 

sampled as it is a time consuming and resource intensive method. The use of a consistent 

method across the water sector would enable comparisons between datasets. As the water 

sector is largely focused around five year Asset Management Plan (AMP) cycles, it is vital that 

the industry works together with researchers, to enable them to consider the impacts of long-

term pressures and possible management strategies. 

9.10.3 Benefits to society 

Improved management of the microbial quality drinking water will benefit wider society, 

safeguarding the continued provision of high quality water and protecting against water-borne 



Page | 241 
 

disease, with the emerging pressures of increased urbanisation and climate change. Although 

water-borne outbreaks are uncommon, they do still occur. The recent Cryptosporidium 

outbreak during August 2015, affected 300,000 homes in Lancashire costing United Utilities 

approximately £25 million as listed in their trading update for the six months ending 30 

September 2015 (Water Briefing, 2015). Furthermore, better management of the microbial 

quality of drinking water can potentially lead to a reduced risk of discoloration; the main cause 

of customer complaints in England and Wales (Husband & Boxall, 2011). It is important the 

abiotic and biotic factors influencing microbial growth within the DWDS are fully understood 

to protect water quality and hence public health and well-being.  

 

 

 

 

 

 

 

 

 

 



Page | 242 
 

Chapter 10 Conclusion 

 

This thesis aimed to provide a greater understanding of the relationship between AOC and 

drinking water quality, in particular the impact of AOC on microbiology within both the bulk 

water and biofilms attached to the pipe walls of drinking water distribution systems (DWDS) 

infrastructure. In order to enable routine AOC sampling within drinking water supply systems, 

an AOC assay was developed which incorporates the standardisation of using known strains of 

bacteria (Pseudomonas fluorescens strain P-17 and Spirillum strain NOX), with the increased 

speed of using a higher inoculum volume and enumeration using flow cytometry. By utilising 

known bacterial strains it is possible to use standardised yield curves to convert the cell count 

to AOC concentration. Validation of the developed assay has confirmed its suitability for use 

in the field, capturing an extensive range of AOC loading in raw and post-treated water across 

20 WTW. The AOC concentration was found to decline during the treatment process within 

all WTW, with an average 40% decrease in AOC concentration. However, although the quality 

of post-treated water is high, microbial growth still occurred in DWDS, leading to a loss of 

biological stability. 

Application of the new AOC method within service reservoir (SR) inlet and outlets 

demonstrated, for the first time, complex cycling of AOC within DWDS. The AOC 

concentration was found to increase within the majority of pipe only sections of the DWDS but 

decreased within SR. This indicates that the concentration of AOC is a function of both 

planktonic and biofilm processes within DWDS and that these process are different (net use 

vs. net release). A comparison of AOC concentration to cell counts within the DWDS 

highlighted the relationship between AOC and (re)growth was dependent upon the disinfection 

residual and seasonality. Within chlorinated DWDS, an initial increase in AOC was identified 

at short distances from the WTW. The use of chloramination within DWDS was able to 

suppress the presence of intact cells more efficiently than free chlorine, but not completely 
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prevent (re)growth. Seasonality influenced the AOC concentration and rate of (re)growth 

within drinking water, thereby impacting the degree of water biostability. 

Using state-of-the-art pipe loop test facilities, an increased AOC concentration was 

found to result in a greater concentration of cells (total and intact) within the biofilm. This 

suggests greatest growth of cells in the biofilm will occur when AOC is not limited. After 12 

months accumulation, the community composition of bacteria developed biofilm at each site 

were found to be remarkably similar, despite the community composition of incoming post-

treated water exhibiting a clear site effect. The AOC concentration was found to impact the 

planktonic (bulk water) microbiome to a greater extent than microorganisms residing in the 

biofilm.  

A higher AOC concentration led to biofilms developing that posed the greatest 

discolouration risk if they should detach. Surprisingly, during mobilisation, the rate of AOC 

release from the biofilm was the same in all three pipe loops, despite the bulk water containing 

different AOC concentrations. As AOC generally increased within pipe only section during 

DWDS sampling, this suggests that drinking water biofilms are a net source of AOC. This 

study proposed a comprehensive conceptual model that captures the complex cycling of AOC 

that occurs in the biofilm, in which the AOC concentration is subject to internal storage, 

consumption by attached cells and different mobilisation rates due to daily release or hydraulic 

events. 

This thesis highlighted the importance of monitoring AOC regularly within DWDS, at 

different locations in the network, to identify areas in a network where (re)growth is likely to 

occur and therefore impact drinking water biostability. The AOC concentration was found to 

impact planktonic and biofilm microorganisms differently, confirming that planktonic samples 

provide a limited insight into biofilm behaviour within DWDS. This thesis provided greater 

understanding of AOC behaviour and demonstrated for the first time that the AOC 
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concentration,, together with biofilm processes, play a key role in governing microbial ecology 

and bio-stability within DWDS environments. The comprehensive model provided in this study 

provided a useful tool to understand complex AOC cycling within drinking water, essential in 

the future management of DWDS systems.   
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Chapter 12: Appendices 
 

Appendix 1: Literature Review  

 

Figure A1.1: Biofilm components and associated analytical methods. EPS: extracellular 

polymeric substances; ATP: Adenosine triphosphate; DGGE: Denaturing gradient gel 

electrophoresis; TGGE: temperature gradient gel electrophoresis; SSCP: single-strand 

conformation polymorphism; T-RFLP: terminal restriction fragment length polymorphism; 

(A)RISA: (automated) ribosomal intergenic space analysis; LH-PCR: length heterogeneity 

PCR.  
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Table A1.1: Flushing steps, including shear stress and flow rate values, used in previous 

DWDS studies. 

Study Flushing Step Shear Stress (Nm2) Flow Rate (l/s) 

Douterelo et al. 

2014; Fish et al. 

2017 

1 

2 

3 

0.42 

1.75 

2.91 

0.80 

3.20 

4.50 

Sharpe et al. 2017 1 

2 

3 

4 

5 

6 

0.8 

1.2 

1.75 

3.2 

4.0 

4.5 

0.5 

0.73 

1.07 

2 

2.5 

3 

Furnass et al. 2014 0 

1 

2 

3 

4 

5 

0.09 

1.12 

2.31 

3.42 

4.54 

5.65 

0.72 

3.06 

4.35 

5.37 

6.23 

7.00 

Husband et al. 2008 1 

2 

3 

4 

5 

6 

0.20 

0.50 

1.95 

4.90 

7.35 

8.90 

0.25 

0.33 

0.93 

3.32 

6.52 

9.10 

 

Appendix 2: Coupon Preparation and Biofilm Removal 

 

A2.1 Cleaning Coupons and Toothbrushes 

 

Preparation: 

- Make up 2% SDS (Sodium dodecyl sulphate). Weigh SDS out in a fume cupboard as 

very light powder. Add s.d.H2O and a flea, stir until dissolved (may require heating in 

a water bath set at 65oC if making a higher percentage SDS solution). Store at room 

temperature, do not autoclave. 

- For a 500ml volume of a 2% solution:10g SDS, 500ml s.d.H2O. 
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Procedure 

1. Place coupons (or toothbrushes) in SDS buffer in the sonicating water bath 

2. Sonicate for 45mins 

3. Remove and place coupons (or toothbrushes) in ultrapure s.d.H2O 

4. Sonicate for 10minutes 

5. Air dry coupons (or toothbrushes) in laminar flow 

6. Wrap in aluminium foil and autoclave 

 

References 

Backhaus et al. 1997 - SDS 

Buss et al. 2003 – use of SDS as a detergent 

Fish et al. 2013  

A2.2 Biofilm Suspension Protocol 

 

Procedure 

1. Open sample bag and remove insert from outer coupon 

2. Place in a 50ml falcon tube with 25ml of sterile PBS keep cool 

3. Pour off the phosphate buffer – this acts as a wash to remove any unbound material 

4. Add 30ml of phosphate buffer to the coupon and pour into a petri dish 

5. Remove the microscope insert if present – use forceps 

6. Brush the coupon using a toothbrush, standardise the brushing and tooth brush rinsing. 

To avoid bias brush 30 times in each direction indicated by the arrows while holding 

the coupon with the sterile forceps at the point marked by the red dot. After every 10 

brushes rinse the toothbrush in the phosphate buffer. 
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7. Return solution to the falcon tube – this 30ml is now the biofilm suspension 

8. Keep the biofilm suspension cold and ensure it is processed the same day 

9. Transfer 30 ml volume of biofilm suspension to a sterile falcon tube and store at 4 °C 

for ≤ 30 minutes before filtering through a 47 mm diameter, 0.22 μm pore nitrocellulose 

filter (Millipore, MA, USA) using a Microstat membrane filtration unit (Sartorius, UK) 

10. Store filters in sterile bags at -80 °C ready for DNA extraction 

Appendix 3: Buffers and Solutions 

 

A3.1 Phosphate Buffer Saline (PBS) 

- 2 mM Na3PO4 (tri sodium phosphate) 

- 4 mM NaH2PO4 (mono sodium phosphate) 

-  9 mM NaCl (sodium chloride) 

- 1 mM KCl (potassium chloride) 

- Autoclaved and stored at room temperature 

Make stocks of each solution which are 100x the concentration required in the final buffer: 

 

200mM (0.2M) Na3PO4 

1: Work out the Molar Mass of the compound by adding the atomic weights: 

Molar Mass = [(22.99x3) + (30.974) + (15.999x4)] x constant (1g mol-1) 

Molar Mass = 163.94 x 1 

Molar Mass = 163.94 g mol-1 

 

Fish et al. 2013 
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2: Rearrange the equation No Moles = Mass/Molar Mass to determine the mass of the 

compound needed to create the desired molar solution. 

No Moles X Molar Mass = Mass 

0.2 = Mass/163.94 

Mass = 32.788 g l-1 

To make a 250ml 0.2M solution, use 8.197g in 250ml of s.d.H2O 

 

3: Use stock solution 200mM (0.2M) and M1V1=M2V2 equation to make a 500ml 2mM 

solution: 

2mM x 500ml = 200mM x V2 

5ml = V2   

Therefore 5ml of 0.2M stock solution made up to 500ml will make a 2mM .solution 

 

400mM (0.4M) NaH2PO4 

1: Molar Mass = [(22.99) + (2 X 1.0079) + (30.974) + (15.999x4)] x constant (1g mol-1) 

Molar Mass =  119.9752g mol-1 

 

2: No Moles X Molar Mass = Mass 

0.4  x 119.9752= Mass 

47.99 g l-1 = Mass 

To make a 250ml 0.4M solution, use 11.9975g in 250ml of s.d.H2O 

 

3: Use stock solution 400mM (0.4M) and M1V1=M2V2 equation to make a 500ml 4mM 

solution: 

4mM x 500ml = 400mM x V2 
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5ml = V2    

Therefore 5ml of 0.4M stock solution made up to 500ml will make a 4mM solution. 

 

900mM (0.9M) NaCl 

1: Molar Mass = [(22.99) + (35.453)] x constant (1g mol-1) 

Molar Mass =  58.443g mol-1 

 

2: No Moles X Molar Mass = Mass 

0.9  x 58.443= Mass 

52.599 g l-1 = Mass 

To make a 250ml 0.9M solution, use 13.1498g in 250ml of s.d.H2O 

 

3: Use stock solution 900mM (0.9M) and M1V1=M2V2 equation to make a 500ml 9mM 

solution: 

9mM x 500ml = 900mM x V2 

5ml = V2    

Therefore 5ml of 0.9M stock solution made up to 500ml will make a 9mM solution. 

 

100mM (0.1M) KCl 

1: Molar Mass = [(39.098) + (35.453)] x constant (1g mol-1) 

Molar Mass =  74.551g mol-1 

 

2: No Moles X Molar Mass = Mass 

0.1  x 74.551= Mass 

7.455 g l-1 = Mass 
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To make a 250ml 0.1M solution, use 1.8634g in 250ml of s.d.H2O 

 

3: Use stock solution 100mM (0.1M) and M1V1=M2V2 equation to make a 500ml 1mM 

solution: 

1mM x 500ml = 100mM x V2 

5ml = V2   

Therefore 5ml of 0.1M stock solution made up to 500ml will make a 1mM solution. 

 

Phosphate Buffer Recipe using stock solutions: 

- 5ml of 0.2M Na3PO4 

- 5ml of 0.4M NaH2PO4 

- 5ml of 0.9M NaCl 

- 5ml of 0.1M KCl 

 

A3.2 5% Formaldehyde Solution 

 

- 70ml 37.5% formaldehyde 

- 411ml s.d.H2O 

Mix in fume cupboard as formaldehyde is toxic, make sure label with toxic sticker. 

 

Formaldehyde Solutions 

5% solution of formaldehyde (formalin). As the formaldehyde supplied is 35-38% a dilution 

will need to be made. 

 

For a 36.5% solution: 
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100ml = 36.5ml formaldehyde + 63.5ml H2O 

10ml =  3.65ml formaldehyde + 6.35ml H2O 

For 3.65ml to be equal to 5%:    

3.65         x    20                   = 73ml 

(5%)          (5 x 20 =100%)     (total volume that 3.65ml formaldehyde needs to be in) 

Therefore 10ml of 36.5% formaldehyde + 63ml of s.d. H2O = 73ml 5% formaldehyde 

 

As 50ml of a 5% solution is needed to fix samples for DAPI make up enough total volume 

for all samples;  for example for 10 samples a 500ml volume is required: 

70ml of 36.5% formaldehyde (7 x 10ml) in  441ml s.d.H2O  (7 x 63ml) = 511ml of 5% 

formaldehyde solution, aliquot into 50ml volumes 
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Appendix 4: Raw and Post-Treated Water Quality Data 

 

Figure A4.1: Turbidity (NTU) (n=1) in raw water at WTW 4, WTW 6 and WTW 20, 

plotted against time. Turbidity was sampled every week for 1 year.   
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Figure A4.2: Iron (n=1) in raw water at WTW 4, WTW 6 and WTW 20, plotted against 

time. Iron was sampled every week for 1 year.   
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Figure A4.3: Manganese (n=1) in raw water at WTW 4, WTW 6 and WTW 20, plotted 

against time. Manganese was sampled every week for 1 year.   
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Figure A4.4: Total organic carbon (TOC) (black) and dissolved organic carbon (DOC) 

(red) (n=1) in raw water at WTW 4, WTW 6 and WTW 20, plotted against time. TOC 

was sampled every week for 1 year.  
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Figure A4.5: Iron in post-treated water (n=1) (black) and pipe loop sample tap (red) (n=3) 

at WTW 4 (PLA), WTW 6 (PL B) and WTW 20 (PL C), plotted against time. Iron in post-

treated water was sampled every 2 weeks for 1 year.  
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Figure A4.6: Manganese in post-treated water (n=1) (black) and pipe loop sample tap 

(red) (n=3) at PLA, WTW 6 (PL B) and WTW 20 (PL C), plotted against time. Manganese 

in post-treated water was sampled every 2 weeks for 1 year.  

 

 

 



Page | 304 
 

 

Figure A4.7: ATP in post-treated water (n=1) at WTW 6 and WTW 20, plotted against 

time. ATP in post-treated water was sampled every 2 weeks for 1 year.  
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Figure A4.8: Total organic carbon (TOC) in in post-treated water (n=1) at WTW 4, WTW 

6 and WTW 20, plotted against time. TOC in post-treated water was sampled every 2 weeks 

for 1 year.  

 

A4.9: The concentration of trihalomethanes (THM) was also measured in post-treated water 

at WTW 6 and WTW 20. WTW 6 contained an average 18.5 (11 - 19.7) µg / L and WTW 20 

contained 30.2 (5 – 98) µg / L. 

 

 

 

 

 

 



Page | 306 
 

Appendix 5: Shear Stress Calculations 

In order to determine the shear stress at each of the flushing steps applied during the 

mobilisation phase of this experiment, shear stress was calculated theoretically using: 

τ= ρgRS (see Table 4.7 for definitions and units). 

The hydraulic gradient (S) was calculated using the Colebrook-White and Darcy-Weisbach 

equations (see Section 4.5.4.1 for full details). It was not possible to manually measure 

frictional losses within the pipe loop as the length of the pipe loop in total is 10m. Due to the 

short length, and the relatively smooth surface of the HDPE pipe, it would be difficult to 

measure such a small change in head loss due to primary losses (caused by boundary shear 

stress). Furthermore, the pipe loop incorporates a series of 90° bends which would be the main 

contributor to frictional losses. In the Colebrook-White equation (Section 4.5.4.1; Equation 2), 

a ks value is required to represent the roughness of the internal surface of the pipe. In this thesis, 

a ks value of 0.075 mm was used as this is representative of the roughness of HDPE pipe 

(Husband et al. 2008) used in the three pipe loops.  

To highlight the importance of using an appropriate ks pipe roughness value, a wide 

range of ks values (0.010, 0.075, 0.100 and 0.200 mm) were used to generate a shear stress 

value for each of the flushing steps used during the mobilisation phase of the pipe loop test 

facility investigation. A high ks value of 0.200 is more representative of a cast iron pipe than a 

plastic pipe (Hydraulics Research Station, 1983). When a different ks value is applied (Figure 

A5.1), a non-linear relationship between shear stress to flow rate is exhibited, highlighting the 

importance of using a representative ks value when calculating shear stress.  
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Figure A5.1: Shear stress (N/m2) plotted at each flow rate (l/s) and ks value (0.010, 0.075, 

0.100 and 0.200 mm).  

 

As an example, turbidity results were plotted against each set of shear stress values (using ks 

values of 0.010, 0.075 and 0.100 and 0.200 mm) (Figure A5.2). The gradient (G), R2 and P-

values for turbidity in bulk water at each set of stress values are listed in Table A5.1. The 

gradient within in each pipe loop showed a some variation as a result of increasing the ks value 

from 0.010 to 0.200 mm. Increasing the ks value from 0.010 to 0.200 resulted in a 0.41 decrease 

in the gradient within Pipe Loop A, 0.34 gradient decrease within Pipe Loop B and 0.19 

decrease in the gradient in Pipe Loop C. A literature approved ks value of 0.075 mm for HDPE 

pipes was used for all subsequent plots.  
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Figure A5.2: Turbidity plotted against each set of shear stress values using a ks values of 

A) 0.010; B) 0.075; C) 0.100 and D) 0.200.  
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Table A5.1: Gradient (G), R2 and P values for turbidity in bulk water within pipe loop 

test facilities at PL A (WTW 2), PL B (WTW 16) and PL C (WTW 20) during the 

mobilisation phase, at each set of shear stress values using a ks values of A) 0.010; B) 

0.075; C) 0.100 and D) 0.200. 

 

Pipe Loop ID ks Value  
Turbidity 

GradientA R2B P valueC 

A 

0.010 1.59 0.8997 0.0139 

0.075 1.39 0.8902 0.0159 

0.100 1.33 0.8886 0.0163 

0.200 1.18 0.8837 0.0175 

B 

0.010 1.30 0.9726 0.0019 

0.075 1.13 0.9720 0.0020 

0.100 1.09 0.9714 0.0020 

0.200 0.96 0.9706 0.0023 

C 

0.010 0.72 0.9450 0.0056 

0.075 0.63 0.9374 0.0068 

0.100 0.60 0.9364 0.0069 

0.200 0.53 0.9325 0.0076 
AThe gradient defines the rate of change along the regression line; BR2 value indicates the goodness of fit of the linear regression model to the data, nearer to 1 

the better the fit; C A significant p value indicates that the gradient is significantly different from 0. 

 

Appendix 6: Scientific Dissemination 

A6.1 International Conferences 

CCWI / WDSA Joint Conference, Kingston, Canada. Conference paper:  Pick, F. C., Fish, K. 

E., Biggs, C. A., Moses, J., Moore, G., & Boxall, J.B. Application of enhanced assimilable 

organic carbon method across operational drinking water systems.  

 

A6.2 Research Symposiums and Meetings 

The findings of this project have been shared internally both at the University of Sheffield and 

Scottish Water, and externally at national and international conferences.  

 

Oral Presentations at:  

- Water Network Meeting: Chemical Free Treatment (Sheffield) 20th Oct 2016  
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- Water Network Meeting: Microbial Diagnostics and Monitoring (Cranfield) 27th April 

2017  

- University of Sheffield Research Symposium (Sheffield) July 2017  

- Process Science meetings (Scottish Water)  

- STREAM industrial doctoral centre (IDC) Challenge Week  

 

Poster presentations at: 

- Scottish Water Working Towards Zero Microbial Failures Conference, Glasgow 2016 

- Redeveloping, implementing and managing innovative solutions and interventions for 

the protection of the environment and public (ReNUWIt) Conference, Sept 2016 

- Scottish Water NOM Conference (Edinburgh) 10th May 2017  

- Institute of Water (Manchester) June 2017 

 

Other Significant Deliverables 

- Presentation of thesis summary to Drinking Water Quality Regulator for Scotland 

(DWQR), 2019.  

- Winner best grant proposal Newcastle University TSEL 2018 

- Winner of best group presentation Newcastle University Challenge Week, 2018 

- Completion of Induction semester (Cranfield): Modules studied included Asset 

Management Policy & Strategy, Water & Wastewater Treatment Principles, Process 

Science & Engineering, Hydraulics & Pumping Systems, Risk Management & 

Reliability Engineering and the Group Design Project 

- TSEL 1 (Cranfield): Selling ideas in research, writing for & presenting to different 

audiences, project management for research, creativity & design 

- TSEL II (Imperial): Research ethics, presentation skills, meeting and negotiating, 

innovation processes in the water sector 
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- TSEL III (Sheffield): Time management, collaboration, personal impact / effectiveness, 

writing a business case for investment, business and financial risk, knowledge transfer 

and research exploitation 

- TSEL IV (Exeter): Supervision skills, patenting and intellectual Property (IP), PR and 

commercialisation, negotiating & influencing skills, generating a business model and 

developing a business case, public engagement, overseas collaborations, science 

communication 

- TSEL V (Newcastle): Grant writing, interview and CV skills 

 

 

 

 

 

 

 


