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Abstract 

This thesis describes the design and synthesis of two 3-D building blocks for potential use 

in medicinal chemistry. The design and synthesis of normorphan-derived 3-D building block 

A and morphan-derived 3-D building block B is outlined. Further functionalisation of the 

normorphan-derived 3-D building block into lead-like compounds is also presented. 

 

Section 2.1 describes the design consideration, vector analysis and proposed route for the 

synthesis of normorphan-derived 3-D building block A. Section 2.2 presents the racemic 

synthesis of normorphan-derived building block A which was achieved with a 30% overall 

yield on a multi-gram scale via a seven-step sequence. Section 2.3 describes the investigation 

of routes for the synthesis of enantioenriched normorphan-derived 3-D building block A by 

asymmetric cyclisation and diastereomeric resolution approaches. 

The design, vector analysis and proposed route for morphan-derived 3-D building block B 

are presented in Section 3.1. Initial approaches for the synthesis of morphan-derived building 

block B using sulfonamide protecting groups are presented in Section 3.2. Further 

approaches for the synthesis of morphan-derived building block B using an N-Boc protecting 

group are then outlined in Section 3.3. However, unfortunately, both these routes were 

ultimately unsuccessful in providing the desired 3-D building block B. 

Finally, Chapter 4 showcases the functionalisation potential of normorphan-derived building 

block A for the synthesis of medicinally-relevant lead-like compounds. Section 4.1 presents 

the Suzuki-Miyaura arylation of 3-D building block A with a variety of aryl bromides while 

Section 4.2 shows further functionalisation of the building block into compounds such as 

normorphan lactams C and D and amine-based scaffold E. 
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Chapter 1 Introduction 

1.1. Building Blocks in Medicinal Chemistry 

With the advent of high-throughput screening (HTS), pharmaceutical research and 

development (R&D) has begun to research different approaches for the exploration of 

chemical space.1 On top of this, concepts such as “lead-oriented synthesis”,2 “escape from 

flatland”,3 “conformational restriction”4 and “scaffold hopping”5 have turned chemists’ 

attention into developing high quality and more diverse sets of building blocks.6-9 

Building blocks represent one of the main toolkits that medicinal chemists use to access lead 

compounds and to increase the diversity of lead-like structures.10 Building blocks often 

constitute the main backbone of lead-like scaffolds and it is common for the same building 

block to be incorporated into varied lead structures across different projects.10 Thus, the idea 

that higher quality and more diverse building blocks can improve the overall quality and 

success of discovery projects has been widely presented and adopted by various 

pharmaceutical companies such as AstraZeneca11 and Pfizer.12 In particular, the desired 

features in building blocks for medicinal chemistry have been outlined by AstraZeneca.11 

The presence of chemical functionality for easy incorporation into the lead structure, the 

‘Rule of 2’ (MW <200, clogP <2, H-bond donors ≤2 and H-bond acceptors ≤4) and the lack 

of redox-active functionality once incorporated into the structure were initially selected as 

high quality hallmarks for a building block.11  

Additional analyses into the impact of aromatic ring counts on compound developability 

suggested that increasing numbers of aromatic rings present in lead compounds had 

detrimental effects on the physicochemical properties of compounds thus lowering their 

applicability in discovery projects.13 On top of this, the “escape from flatland” concept was 

introduced by Lovering et al.3 This concept explored the correlation between the progression 

of molecules through drug development stages and clinical trials and the fraction of sp3 

hybridised carbon atoms (Fsp3, number of sp3 hybridised carbon atoms divided by the total 

number of carbon atoms) as well as stereogenic centres present within the molecule. 

Lovering et al. analysed compounds that had reported biological activity or were described 

in a medicinal chemistry patent between 1980 and 2009 and they found that a correlation 

existed between increased Fsp3 and the progression of a drug through the drug development 

stages. The paper also found a 33% increase in the stereogenic centre count from discovery 

molecules to drugs. They also found that increased saturation had a beneficial effect on the 
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physical properties of drug candidates such as increased solubility and decreased melting 

points. These studies are taken as examples in support of the idea that increased 3-D shape 

of drug candidates and their building blocks can increase the likelihood of successful 

progression through clinical trials. 

Following this and the widespread presence of diverse cyclic systems in drug-like 

molecules,14 the concepts of “conformational restriction” and “scaffold hopping” have come 

into play for lead-oriented synthesis.2 In this context, the use of conformationally restricted 

cyclic systems as surrogates for flexible rings (e.g. piperidines, morpholines, azepanes) has 

become popular.6 Selected examples of said types of building blocks are presented below. 

Carreira and co-workers15 developed a series of azaspirocycles as surrogates for piperazine-

like motifs (Figure 1.1). During their studies, Carreira et al. found that these azaspirocycles 

showed favourable pharmacokinetic properties with respect to their parent ring systems 

allowing for the synthesis of a ciprofloxacin analogue (Figure 1.1) with a better 

pharmacokinetic profile. 

 

Figure 1.1 - Carreira’s azaspirocycles and a ciprofloxacin analogue  

Mykhailiuk and co-workers16,17 presented in 2017 an extensive set of spirocyclic 

pyrrolidines with either two or three diversity points as building blocks for medicinal 

chemistry. These spirocyclic pyrrolidines showed comparable physicochemical properties 

to their analogous piperidine and morpholine systems with slightly increased lipophilicity 

but significantly improved metabolic stability. Some selected examples are presented in 

Figure 1.2. One of the spirocyclic pyrrolidines was also studied as a substituent in a 

ciprofloxacin-derived antibacterial agent DV-7751. 
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Figure 1.2 - Mykhailiuk's spirocyclic pyrrolidine building blocks 

Also in 2017, Miykhailiuk and co-workers6 reported the synthesis of 3-

azabicyclo[3.2.0]heptane building blocks as surrogates for piperidine motifs. These bicyclic 

building blocks had similar physicochemical properties to their parent piperidines but 

occupied a slightly different part of chemical space according to their exit vectors (see 

Section 1.2). Some examples of these scaffolds are shown in Figure 1.3 together with 

Belaperidone, an antischizophrenia agent, which was prepared using one of the building 

blocks. 

 

Figure 1.3 - Miykhailiuk’s azabicyclo[3.2.0]heptane building blocks 
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It is finally worth noting that Pfizer12 has recently developed a building block library in 

collaboration with various chemical companies that contains various high Fsp3 and 

conformationally restricted building blocks (Figure 1.4). This set of building blocks has been 

incorporated into the company’s discovery pipeline in recent years. 

 

 

Figure 1.4 - Selected examples from Pfizer's quick building block library 
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1.2 Exit Vector Analysis 

Exit vector analysis is a way of visualizing chemical space, originally introduced for 

CAVEAT software in the 1990s,18 and recently popularised by Grygorenko and co-

workers19 for the geometric description of functionalisation vectors for bifunctional 

scaffolds. Exit vector analysis uses the relative orientation of the two diversity vectors n1 

and n2 that can be described according to four geometric parameters. For example, in the 

case of a 1,4-disubstituted cyclohexane (Figure 1.5): the distance between the variation 

points C1 and C2, r, the plane angles Φ1 (between vector n1 and C1-C2) and Φ2 (between 

vector n2 and C1-C2) and the dihedral angle θ defined by the vectors n1, C1-C2 and n2. These 

parameters can be determined from the atomic coordinates and allow for the construction of 

Ramachandran-like plots.19 

 

Figure 1.5 - Visual representation of variation vectors. 

Extensive work has been performed by Grygorenko and coworkers19,20 in the classification 

of simple saturated carbo- and heterocyclic systems. Initial studies by Grygorenko into 

simple 3- to 7-membered carbocyclic compounds showed clustering that allowed for 

systematic categorisation of these structures into four distinct regions (Figure 1.6).19 Region 

α mainly comprises cis- and trans-1,2 systems. Cis-1,3 scaffolds as well as cis-1,4 6-

membered rings form the β region. On the other hand, the γ region is formed by trans-1,4 6-

membered rings while region δ includes trans-1,3 6-membered rings alongside some trans-

1,3 5-membered scaffolds. Within this initial analysis by Grygorenko, there were only two 

trans-1,4 7-membered rings which lie outside the defined regions. 
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Figure 1.6 - Grygorenko's 4- to 7-membered ring carbocycle exit vector analysis19 

Further studies by Grygorenko and co-workers20 on heterocyclic scaffolds demonstrated 

that, despite their apparent similarities to their carbocyclic counterparts, the plane and 

dihedral angles for these scaffolds differed significantly. Particularly, it was found that 1,3-

substituted scaffolds occupied an area previously unoccupied at r = 2.5 Å between the β and 

δ regions in the dihedral angle plot (Figure 1.7a) while still occupying a distinct region in 

plane angle plots (Figure 1.7b,c). This led to the definition of a new region ε for these 1,3- 

disubstituted heterocycles. Region β was also extended to encompass some 1,4- and some 

outlying 1,3- disubstituted scaffolds.  
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Figure 1.7 - Grygorenko's heterocycle exit vector analysis a) r-θ plot (polar coordinates); b) θ-Φ1/Φ2 plot; c) 

Φ1-Φ2 plot.20 

Grygorenko and co-workers20,21 have also extended their exit vector analysis to a series of 

conformationally restricted, bicyclic amines (Figure 1.8). In this analysis, it was found that 

bicyclic scaffolds could access previously untapped areas of chemical space. In particular, 

they found that larger values of r could be easily accessed with these scaffolds. Grygorenko 

also found that the variety of structures encompassed in this set allowed for access to a wide 

variety of predictable elaboration vectors outside the areas previously stablished (Figure 

1.9). 

 

Figure 1.8 - Examples of bicyclic diamines analysed by Grygorenko and co-workers 
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Figure 1.9 - Grygorenko's bicyclic diamine exit vector analysis a) r-θ plot (polar coordinates); b) θ-Φ1/Φ2 

plot; b) Φ1-Φ2 plot 

Exit vector analysis has also been applied to various other compounds such as 3-

((hetera)cyclobutyl)azetidines,22 propellanes23 and sultams24 and it has become an easy, well 

regarded and predictable method for the characterisation of the 3-D shape of medicinally-

relevant scaffolds.1 
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1.3 Normorphan 6-Azabicyclo[3.2.1]octane Scaffold 

1.3.1 Introduction to the Normorphan Scaffold 

In recent years, normorphan-derived scaffolds have been a focus of interest in synthetic 

chemistry mainly due to their applications in the pharmaceutical industry25 and their wide 

presence in diverse natural products.26-29 Consequently, attention towards the synthesis and 

applications of this bicyclic scaffold has been continuously expanding. The normorphan 

scaffold has as its core a bicyclic [3.2.1]octane structure where the 6-position of the scaffold 

has been replaced with an amino group (Figure 1.10). This amine or amide, alongside the 

variety of substitution patterns that emerge from the different synthetic approaches, allow 

for a diverse set of functionalisation vectors in pharmaceutical space. The normorphan core 

also shows potential for scaffold hoping, which alongside its 3-dimensionality make it a 

suitable candidate as a medicinal chemistry building block. 

 

Figure 1.10 - Normorphan bicyclo[3.2.1]octane scaffold 

In the context of pharmaceutical applications, 2,3-disubstituted normorphans have been 

investigated as novel dopamine transporter (DAT) inhibitors by Bonjoch and co-workers.25 

During their studies, it was found that normorphan 1 showed comparable potency to that of 

currently-used DAT inhibitors while showing less potential side-effects. Likewise, 

normorphan 2 is currently being investigated as a potential antitumor agent against diffuse 

large B-celllymphomas.30 Azaprophen 3 has been widely investigated for the treatment of 

Alzheimer’s disease due to its high potency as a muscarinic acetylcholine receptor 

antagonist.31-33 Finally, normorphan CGP48506 has been investigated as a calcium-

sensitizing agent (Figure 1.11).34 
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Figure 1.11 - Pharmaceutically-relevant normorphans 

On the other hand, several natural products also contain the normorphan 6-

azabicyclo[3.2.1]octane scaffold (Figure 1.12). For example, peduncularine 4 has been a 

synthetic target of notable interest with seven formal and total syntheses published so far.27 

Additionally, actinobolamine 5 has also been a relevant synthetic target for chemists since 

its structural elucidation by Munk and co-workers in 1967.28,35 

 

Figure 1.12 - Penduncularine 4 and Actinobolamine 5 

1.3.2 Overview of Racemic Approaches for the Synthesis of the Normorphan Scaffold 

In this Section, an overview of previously reported racemic approaches for the synthesis of 

the normorphan and structurally related scaffolds is presented. Among the first approaches 

for the synthesis of the normorphan core were the thermal lactamisation of 1,3 aminoacids,36 

Beckmann rearrangements of bicyclo[2.2.1]hetan-2-one oximes,37 amide alkylation,38 

Hofmann-Loeffler-Freytag reactions39 and aza-Michael additions.40 However, while these 

reactions afforded the desired normorphan cores in moderate to good yields, many of them  

had poor functional group tolerance and/or required lengthy syntheses for their starting 

materials. Many of them also required the installation of a precursor bicyclic scaffold.41 

While investigating the synthesis of peduncularine 4, Speckamp and co-workers42 generated 

an electrophilic N-acyliminium cation 6 by acid treatment of lactam 7 which subsequently 

cyclised to give normorphan 8 in 87% yield (Scheme 1.1). However, while this methodology 
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showed a good functional group tolerance and excellent yield, it required a six-step sequence 

to obtain precursor lactam 7. 

 

Scheme 1.1 

A somewhat curious approach to the synthesis of the normorphan scaffold was developed 

by Hoyt Meyer and co-workers43 for the synthesis of peduncularine 4. In it, they utilised a 

Cr(0)-mediated [6+2] cycloaddition under photochemical conditions between isopropyl 

isocyanate and cycloheptatriene 9 to give bicyclic scaffold 10 as a single diastereomer in 

37% yield. Bicycle 10 was then treated with Tl(NO3)3 to give normorphan 11 in 13% yield 

over the two-step sequence (Scheme 1.2). Nonetheless, it is evident that the low yields and 

use of toxic metals render this methodology unattractive.  

 

Scheme 1.2 

Other approaches have also been used to synthesise the normorphan core during the 

synthesis of peduncularine 4 such as ring closing metathesis between the 3- and 4- positions 

of the ring,44 radical cyclisation of oximes,45 [3+2] annulation of allylic silanes46 and 

iminium ion-promoted rearrengements.27 However, only the [3+2] annulation of allylic 

silanes was studied beyond the synthesis of their target. For example, Woerpel and co-

workers26 used silylated cyclohexadiene 11 to access normorphan 12 by treatment with 

chlorosulfonyl isocyanate. Here, the allylic silyl species adds to the isocyanate to generate 

the zwitterionic intermediate 13 which undergoes 1,2-silyl migration to give allylic cation 
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14. Cation 14 then rapidly cyclises to give a 91:9 mixture of regioisomers with addition at 

the 1-position being the main product (Scheme 1.3).46 This approach was one of the first 

approaches to normorphans that required few steps towards the synthesis of its starting 

materials while achieving high yields and a high possibility for diversification of 

normorphan 12. 

 

Scheme 1.3 

In 2004, Johnson and co-workers25 developed a method to quickly access simple 

normorphans. By using a Diels-Alder reaction between N-Me-pyridone 15 and acrylic acid 

at 200 °C for 10 days and forming the methyl ester, normorphan 16 was obtained in 36% 

yield over the two-step sequence (Scheme 1.4). This was achieved by initial formation of 

the Diels-Alder adduct 17 which rearranged via tricyclic intermediate 18 to give normorphan 

19. Normorphan 19 was finally methylated using MeI and K2CO3 to give normorphan 16. 

Even though the starting materials for the methodology are readily available, the high 

temperature and long reaction times required are a significant drawback of this approach. 
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Scheme 1.4 

In 2011, Nevado and co-workers47 developed a methodology for the regioselective oxidative 

difunctionalisation of unactivated alkenes. However, while their methodology was not aimed 

at the synthesis of the normorphan scaffold, they found that while using sulfonamides 20, a 

gold catalyst and hypervalent iodine compound 21, their substrates rearranged to form 

benzo-fused normorphans 22 in moderate to good yields as single diastereomers (Scheme 

1.5). Due to the need for the electron rich phenyl groups in the starting material, this 

methodology has a very limited substrate scope. 

 

Scheme 1.5 

Another racemic approach for the synthesis of the normorphan core was reported in 2014 by 

Xue and co-workers.48 Here, they found that treating cyclohexanone 23 with DPPA  and 

Et3N gave normorphan 2 in 76% yield via a Curtius rearrangement into isocyanate 24 which 

was trapped by an enolate generated from the ketone in 23 (Scheme 1.6). Unfortunately, no 

further exploration into the scope of this reaction was carried out. 
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Scheme 1.6 

On the other hand, Grainger and co-workers29,49 studied the semipinacol rearrangement of 

cis-fused β-lactam diols as a way to access bridged bicyclic lactams such as normorphans. 

In their work, β-lactam 25 was treated with triphenylphosphine and C2Cl6 at reflux to afford 

normorphans 26 in good to excellent yields (Scheme 1.7). This transformation occurs via a 

cyclic phosphorane 27 formed from the diol present in lactam 25 and in situ generated 

Ph2PCl2 which undergoes migration to release Ph3PO and form the ketone in the 2-position. 

However, even though this methodology gave normorphans 26 in good to excellent yields 

with different protecting groups, the lengthy five-step sequence required to access β-lactam 

25 is its main drawback. 

 

Scheme 1.7 

A concise and flexible route to access normorphan 26 was reported by Bonjoch and co-

workers50 in 2015. Thus, trichloroamidoketones 28 were treated with pyrrolidine in toluene 

under µW irradiation to give normorphans 26 respectively in moderate to excellent yields 

(Scheme 1.8). Additionally, trichloroamidoketones 28 were easily obtained in a three-step 

sequence with a single purification from cyclohexanone 29 and the corresponding amine. Of 

note, Bonjoch’s methodology tolerated different functionalities both in the 3- and 5-positions 

of the normorphan scaffold making this methodology an easy and reliable way to access 

diverse normorphans. 
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Scheme 1.8 

A different approach for the synthesis of the normorphan scaffold was reported in 2017 by 

Lin and co-workers.51 Treatment of N-Ts enynamides 30 with AlCl3 afforded a wide variety 

of 2-chloro normorphans 31 in moderate to good yields (Scheme 1.9). 

 

Scheme 1.9 

As a final example, Dong and co-workers52 described a Pd-catalysed cyclisation of alkyne-

linked cyclohexanones into normorphans in 2019. While mostly applicable to 6-oxa-

bicyclo[3.2.1]octanes, they reported that when cyclohexanone 32 was treated with 

[Pd(allyl)Cl]2 and bis-phosphine (S,S)-33, CsOPiv and benzoic acid at 130 °C, normorphan 

34 was obtained in 42% yield as a 70:30 mixture of diastereomers (Scheme 1.10). Of note 

is the use of enantiomerically pure ligand (S,S)-33 which was required for the sole purpose 

of increasing the diastereoselectivity of the reaction. Accordingly, no enantioselectivities 

were described by the authors. 
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Scheme 1.10 

1.3.3 Overview of Asymmetric Approaches to the Normorphan Scaffold 

Successful examples of the asymmetric synthesis of normorphans are quite scarce.53 In 2014, 

Chemler and co-workers54 reported a methodology for asymmetric normorphan synthesis 

similar to that of Nevado and co-workers (see Scheme 1.5) which proceeded via a Cu-

catalysed carboamination. Use of sulfonamide 35, Cu(OTf)2, a chiral bisoxazoline ligand 

(R,R)-36, K2CO3 and MnO2 at 110 °C afforded the benzo-fused normorphan 37 in 76% yield 

and 97:3 er (Scheme 1.11). Unfortunately, however, only a modest diversity of substituents 

in the aromatic ring could be accommodated, with substitution outside the aromatic ring 

causing complete inhibition of the reaction. 

 

Scheme 1.11 

During their studies into the racemic synthesis of normorphans, Bonjoch and co-workers50 

briefly explored the use of chiral amino acid-derived organocatalysts for the cyclisation step. 

However, they found that while (S)-prolinamide (S)-38 gave the best result, normorphan 26 

was obtained in only 50% yield and 81:19 er (Scheme 1.12). Several other (S)-proline and 

amino acid-derived organocatalysts were explored with little to no success. Due to the poor 

results obtained, no effort was made into determining the identity of the major enantiomer 

obtained. 
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Scheme 1.12 

Finally, in 2019 whilst the work described in this thesis was being carried out, Ye and co-

workers53 reported an asymmetric variant of a Conia-Ene type carbocyclisation for the 

synthesis of normorphans.  Alkyne-linked cyclohexanones such as 39 were treated with 

chiral amine (R)-40 to give normorphan 41 in 53% yield and 95:5 er (Scheme 1.13). This 

represents one of the only examples of the successful asymmetric synthesis of the 

normorphan scaffold. This methodology could accommodate diverse substitution on the 

aromatic ring. However, non-aromatic substituents on the alkyne led to the production of a 

[3.3.1]nonane scaffold instead of the [3.2.1]octane (see Section 1.4.3). Diverse 

functionalisation of the normorphan scaffold was explored such as hydrogenation of the 

alkene, oxidative cleavage of the alkene and deoxygenation of the 2-position carbonyl. 

 

Scheme 1.13
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1.4  Morphan 2-Azabicyclo[3.3.1]nonane Scaffold 

1.4.1 Introduction to the Morphan Scaffold 

Morphan-derived scaffolds have long been of great interest in synthetic chemistry primarily 

due to their extensive presence in natural products such as those from the daphniphyllum 

and strychnos alkaloid families,55-57 and their presence in diverse compounds of 

pharmaceutical interest.58-61 Accordingly, the investigation of synthetic methods and 

applications for the morphan scaffold are continuously on the rise. The morphan scaffold 

has as its core a bicyclic [3.3.1]nonane structure where the 2-position has been replaced with 

an amino group (Figure 1.13). This amine, together with the diverse substitution patterns 

that arise from the different synthetic approaches allow for a varied set of functionalisation 

vectors in pharmaceutical space. The 3-dimensionality of the morphan core along the regions 

of pharmaceutical space it can occupy (see Figure 1.9) make it an adequate candidate as a 

medicinal chemistry building block. 

 

Figure 1.13 - Morphan bicyclo[3.3.1]nonane scaffold 

In the context of natural products, the morphan core is present in a wide variety of alkaloids 

such as daphniyunnine A which is a potent cytotoxic agent55 and morphine which is widely 

known for its therapeutic and anaesthetic properties.62 Meanwhile, FR901483 has found 

application as an immunosupressant59 while morphan 42 and derivatives were reported by 

Thomas and co-workers61 as opioid receptor antagonists. During their studies, Thomas found 

that morphan 42 in particular showed similar potency to Naloxone® for the treatment of 

opioid overdoses without some of the potential side effects associated with it (Figure 1.14). 

Several other natural products contain the morphan scaffold in their structure and have been 

relevant synthetic targets throughout the years. Worthy of mention is strychnine and other 

alkaloids of the strychnos family such as kopsone as well as macrocyclic natural products 

such as Madangamine A.58  
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Figure 1.14 - Relevant morphans 

1.4.2 Overview of Racemic Approaches for the Synthesis of the Morphan Scaffold 

A wide variety of synthetic methods for the synthesis of the morphan core have been 

described and the topic has been the focus of various reviews.56 As such, a non-exhaustive 

list of some of the most recent and/or relevant methods to the current work will be presented 

in this Section. In 1982, Mullican and co-workers63 reported a method for the synthesis of 

simple morphans by intramolecular enolate alkylation. In this work, the alkene in allylamine 

43 was cleaved via ozonolysis to give an aldehyde which was reduced to give keto alcohol 

44 after ketal deprotection. Keto alcohol 44 was then mesylated and treated with base to give 

morphan 45 in 26% yield from allylamine 43 (Scheme 1.14). This method has the major 

drawback of requiring a lengthy five-step sequence to access morphan 45 on top of the 

required synthesis for allylamine 43. 

 

Scheme 1.14 
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In 1999, Bonjoch and co-workers64 reported a radical ring closure to access morphan 

scaffolds. Treating trichloroamidoketone 28 with TMSI and HMDS at –20 °C gave silyl enol 

ether 46 which was cyclised and de-chlorinated by treatment with Bu3SnH and AIBN at 

reflux to give morphan 47 in 70% yield from 28 (Scheme 1.15). This work represented a 

significant improvement over previous methods for the synthesis of morphans. However, the 

harsh conditions necessary for the cyclisation presumably meant that no additional 

substitution was explored by Bonjoch. 

 

Scheme 1.15 

Another racemic route to access the morphan scaffold was described by Bonjoch and co-

workers in 2005.65 In this work, Bonjoch used a Pd-catalysed enolate alkenylation to 

generate the morphan core from the Daphniphyllum alkaloid family (see Figure 1.14). Use 

of ketone 48, PhOK and Pd(PPh3)4 in THF at reflux gave morphan 49 in 45% yield (Scheme 

1.16). However, since the development of this methodology was made in the context of 

synthesising the morphan core for the Daphniphyllum alkaloid family, no further exploration 

of the scope was performed. 

 

Scheme 1.16 

On the other hand, Chiba and coworkers66 described the synthesis of diverse morphan 

scaffolds via Mn(III)-mediated reactions of cyclopropanols with vinyl azides. In this work, 

it was found that when vinyl azides 50 were reacted with cyclopropyl fused cyclopentanols 

51 in the presence of Mn(III), 1-hydroxy-morphans 52 were formed in moderate to excellent 
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yields and diastereoselectivities (Scheme 1.17). The reaction proceeds via formation of 

cyclohexanone carbon-centred radical 53 which adds to the vinyl azide with loss of N2 to 

form a nitrogen-centred radical 54. This nitrogen-centred radical then adds to the ketone to 

form the 1-hydroxy-morphan. Despite the somewhat limited functionality this methodology 

offers, it was demonstrated that further functionalisation such as deoxygenation, reduction 

of the imine or substitution of the hydroxyl group was easily carried out. 

 

Scheme 1.17 

Based on Bonjoch’s work (see Scheme 1.15), Belderrain and co-workers67 described a Cu-

catalysed radical cyclisation of trichloroacetamide 55 into a highly substituted morphan. Use 

of trichloroacetamide 55 with CuCl, TPMA and AIBN in DCE at 60 °C gave morphan 56 in 

55% yield (Scheme 1.18). It is notable that, under these conditions, full de-chlorination did 

not occur. Little substrate scope was investigated by Belderrain, but further functionalisation 

such as diastereoselective de-chlorination, and substitution was described.  

 

Scheme 1.18 

In their effort to develop an asymmetric synthesis for the morphan scaffold, Dixon and co-

workers68 described the use of an organocatalytic intramolecular Michael addition of a 4-

substituted cyclohexanone to obtain the morphan scaffold. Thus, treatment of α,β-
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unsaturated ester 57 with propylamine and benzoic acid in CH2Cl2 afforded morphan 58 in 

89% yield as a single diastereomer (Scheme 1.19). α,β-Unsaturated esters similar to 57 were 

obtained in good yields in three- to four-step sequences with a single purification. However, 

the scope of the reaction was only explored for the developed asymmetric variant which is 

discussed in detail in Section 1.4.3. 

 

Scheme 1.19 

Dixon and co-workers69 reported another approach for the synthesis of morphans from 4-

substituted cyclohexanones in 2017. In this work, use of an alkyne-linked cyclohexanone 

59, pyrrolidine, Cu(OTf)2 and PPh3 in THF led to the formation of morphan 60 in 78% yield 

(Scheme 1.20). The scope of this reaction was only explored further for the asymmetric 

variant (see Section 1.4.3). 

 

Scheme 1.20 

Another method for the synthesis of morphans via Michael addition was described by Yan 

and co-workers70 in 2017. Thus, the reaction between ketene aminals 61 and quinone 

monoketals 62 in water at 60 °C led to the formation of morphans 63 in good to excellent 

yields (Scheme 1.21). This occurs via a Michael addition of the aminal 61 to the quinone 62 

followed by an aza-Michael addition of the aminal nitrogen into the quinone’s second 

alkene. An attractive feature of this reaction is that it is carried out in water with no other 

reagents. The methodology was able to accommodate different electron withdrawing groups 

in the aminal 61 such as NO2, methyl ketone and acetophenone. The method could also 
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accommodate methyl substituents in the 1- and 2-positions of the quinone and different ketal 

protecting groups. However, it has the major drawback of being limited to cyclic ketene 

aminals with no further functionalisation of the product being explored. 

 

Scheme 1.21 

Yan and co-workers71 made use of a similar approach to their ketene aminal variant (see 

Scheme 1.21) by using monoacetal protected quinones 64 and a enaminones 65. As such, 

treating quinones 64 with enaminones 65 and DBU in acetone at reflux afforded morphans 

66 in good to excellent yields (Scheme 1.22). However, their scope was limited to N-Ar and 

N-Bn substituents as well as 4-substituted acetophenones in the 4-position of the morphan 

scaffold.  

 

Scheme 1.22 
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As a final example of a racemic approach for the morphan scaffold, the nitroso-ene 

cyclisation reaction has also been used as a way to synthesise morphan cores. In 2017, Hong 

and co-workers72 described a way of accessing the morphan core from an in situ generated 

N-acyl nitroso compound. Amide 67 was treated with n-PrN+IO4
– to generate acyl nitroso 

compound 68 which spontaneously cyclised via a nitroso-ene reaction of 68 to give an N-

hydroxy morphan. The N-hydroxy morphan was then acetylated to give morphan 69 in 85% 

yield and moderate selectivity for the two-step sequence (Scheme 1.23). Different 

functionality in the 8-position of the morphan scaffold was explored such as silyl ethers and 

acyl protected amines. The 6-position of the scaffold could also be replaced by an ether or a 

protected amine motif. Of note, the synthesis of alkaloid (±)-kospone, which is one of the 

simplest alkaloids from the Daphniphyllum family, was achieved using this methodology. 

 

Scheme 1.23 

1.4.3 Overview of Asymmetric Approaches for the Synthesis of the Morphan Scaffold 

Since many of the synthetic methodologies for the morphan scaffold have been developed 

with a view to the total synthesis of one of the many natural products that contain them, there 

are more asymmetric methodologies for the synthesis of this scaffold compared to 

normorphans. In 2009, Bonjoch and co-workers73 developed an organocatalytic 

desymmetrisation of a 4-substituted cyclohexanone under µW irradiation to access the 

morphan scaffold. The approach used cyclohexanone 70, proline-derived organocatalyst (R-

S)-71 and water in CH3CN under µW irradiation to give morphan 72 in 70% yield and 85:15 
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er (Scheme 1.24). Multiple proline-derived catalysts were explored with little success. 

However, the use of catalyst 71 with water as additive gave a good yield and adequate 

enantioselectivity. Unfortunately, the scope of the reaction to access different substitution 

patterns on the morphan scaffold was not further explored. 

 

Scheme 1.24 

Following this, the same group developed an alternative organocatalysed asymmetric 

synthesis of morphans by making use of a Robinson-type annulation.74 Treatment of 

ketoesters 73 and aldehyde 74 with proline-derived catalyst (R)-75 and water with LiOH 

gave morphans 76 in moderate to good yields and excellent enantioselectivities (Scheme 

1.25). Some exploration was made into different substituents on the 8-position of the 

morphan scaffold. 

 

Scheme 1.25 

Expanding the methodology previously proposed (see Scheme 1.19), Dixon and co-

workers68 developed an asymmetric variant of their organocatalysed Michael addition. 

Replacing propylamine with thiourea (R,R)-77 and using cyclohexanones 78 in CH2Cl2 in a 

sealed tube at 50 °C gave morphans 79 in good to excellent yields with good 

enantioselectivities as single diastereomers (Scheme 1.26). Computational analysis of the 
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organocatalyst used identified relatively simple thiourea (R,R)-77 as a suitable catalyst. 

Some substitution in the 1-position of the morphan scaffold was investigated with overall 

good results. 

 

Scheme 1.26 

Another example of the asymmetric synthesis of morphans was described by Jia and co-

workers75 in 2016. Jia developed a Pd/proline- co-catalysed asymmetric arylative 

desymmetrisation of cyclohexanones. For example, treatment of cyclohexanone 80 with (S)-

proline (S)-81, Pd(OAc)2, PPh3, AcOH and K3PO4 in MeOH at 85 °C afforded morphan 82 

in 91% yield and 99:1 er (Scheme 1.27). However, this methodology could only 

accommodate limited substitution in the 4- and 5-positions of the aromatic ring. 

 

Scheme 1.27 

As a complement to their racemic methodology (see Scheme 1.20), Dixon and co-workers69 

described the asymmetric synthesis of morphans using cooperative silver and amine 

catalysis. Thus, treatment of alkyne-linked cyclohexanones 83 with AgNTf2, chiral amine 

(S)-40, chiral phosphine 84 and 2,4-dinitrophenol in i-PrOH gave morphans 60, 85-91 in 

moderate to excellent yields and good to excellent enantioselectivities (Scheme 1.28). It was 
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found that sulfonamides attached to electron releasing groups such as Ts and 4-

MeOC6H4SO2 gave their corresponding morphans 60 and 85 in excellent yields and 

enantioselectivities. Sulfonamides with electron withdrawing groups such as 4-Ns gave 

moderate yields with slightly decreased enantioselectivities (86). By contrast carbamate 

protecting groups such as N-Boc (87) and N-Cbz (88) suffered from diminished yields and 

enantioselectivities. There was also a strong match/mismatch effect between the chiral amine 

and phosphine components of the reaction. 

 

Scheme 1.28 

As a final example, the methodology described by Ye and co-workers53 (see Scheme 1.13) 

could be easily adapted for the asymmetric synthesis of the morphan core. Use of 

cyclohexanones 92 with amine (S)-40 and Et3N in benzotrifluoride afforded morphans 93 in 

good to excellent yields and moderate to excellent enantioselectivities (Scheme 1.29). The 

reaction could easily accommodate a variety of alkyl, alkenyl and aryl substituents in the 4-

position of the morphan core.  
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Scheme 1.29 
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1.5 Project Outline 

Over recent years, the use of 3-D shaped building blocks in medicinal chemistry has received 

increased interest. Therefore, there is a need to explore the design and development of 

synthetic methodology to obtain complex, bifunctional, high Fsp3 building blocks for use in 

medicinal chemistry. The synthesis of medicinally-relevant compounds and the development 

of methodology for medicinal chemistry has long been of interest to the O’Brien group. It 

was planned that this project would focus on the design and synthesis of novel bifunctional 

3-D building blocks 94 (normorphan scaffold) and 95 (morphan scaffold) containing a vinyl 

MIDA boronate and an amine or amide functionality for use in medicinal chemistry (Figure 

1.15). It was decided that the development of synthetic methodology for the synthesis of 3-

D building blocks 94 and 95 as both racemic samples and single enantiomers would be 

investigated. Previous work by Bonjoch50 was envisaged as a way to obtain the racemic 

normorphan scaffold in building block 94 and the development of an enantioselective variant 

would be investigated. On the other hand, methodology developed by Dixon69 would be 

utilised to access both the racemic and enantioenriched morphan scaffold in building block 

95. The results of these investigations are presented in Chapters 2 and 3. 

 

Figure 1.15 - Envisaged normorphan and morphan 3-D building blocks 94 and 95 

It was also planned to showcase the potential of the building blocks by outlining different 

functionalisation reactions that could be achieved with them. This would be done by 

exploring the scope of Suzuki-Miyaura cross couplings on the vinyl MIDA boronate 

functionality, demonstrating the diastereoselective hydrogenation of the building block as 

well as deprotection for the amide or amine protecting group. In the end, these studies were 

carried out only on building block 94 and the results are presented in Chapter 4.
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Chapter 2 Design and Synthesis of a Normorphan-Derived 3-D 

Building Block 

In this Chapter, the design and development of synthetic methodology required to access 

3-D building block 94 (Figure 2.1) is described. Section 2.1 covers the design 

considerations and the vector analysis of various derivatives of 94 as well as the proposed 

synthetic strategy towards the 3-D building block. Section 2.2 discusses the synthesis of 

the building block, alongside optimisation of the cyclisation, enol triflate formation and 

borylation reactions. Section 2.3 outlines different approaches for the synthesis of 

enantioenriched building block 94 including studies on an organocatalytic cyclisation 

approach as well as a resolution approach with chiral MIDA boronate derivatives. Finally, 

Section 2.4 provides an overview of the results presented in this chapter.  

 

 

Figure 2.1 - Normorphan building block 94. 
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2.1 Design Considerations, Vector Analysis and Proposed Route for the Synthesis of 

a Normorphan-Derived 3-D Building Block 

With the prominence of the bicyclo[3.2.1]octane core in the medicinal chemistry 

literature25,41,76 and the available synthetic routes to diverse substitution patterns on these 

normorphan bicyclic cores presented in Section 1.3, our attention turned to a 6-aza-

bicyclo[3.2.1] bifunctional building block 94 with a 2-substituent as our first target (Figure 

2.2). It was envisaged that building block 94 could be obtained based on previous work by 

Bonjoch et al.50 as presented in Section 1.3.2. 

 

Figure 2.2 - Normorphan building block 94. 

It was expected that the bicyclic structure in building block 94 would provide conformational 

rigidity to allow for a set of predictable vectors from the functionalisation handles. With this 

in mind, the set of elaboration vectors were calculated for a group of structures which we 

hypothesised could be easily accessed by simple, reliable reactions. For example, Suzuki-

Miyaura cross-coupling on building block 94 should give arylated normorphan 96 which 

could be: (i) immediately deprotected and N-functionalised to give amides 97 and 98; (ii) 

hydrogenated diastereoselectively then deprotected and N-functionalised to give amides 99 

and 100; (iii) reduced into amine 101 then hydrogenated and functionalised to give amines 

102, 103 and 104 or (iv) reduced into amine 101 then deprotected and functionalised to give 

amines 105, 106 and 107 (Scheme 2.1). For the hydrogenation steps, we predicted that 

hydrogenation on the exo-face of the bicyclic scaffold should occur selectively to give the 

diastereomers shown. 
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Scheme 2.1 

The set of structures shown in Scheme 2.1 gives an idea of the different elaboration vectors 

that can be achieved with building block 94. Using a Pipeline Pilot protocol previously 

developed in the O’Brien group,77 the lowest energy conformer for each molecule was 

generated using molecular mechanics. On these conformers, the set of variation vectors for 

each molecule was selected and then calculated using an algorithm developed by 

Grygorenko and co-workers19 to give the results shown in Figure 2.3. Figure 2.3a defines 

the vectors for the case of a 1,4 disubstituted cyclohexane, namely, the distance between the 
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variation points C1 and C2, r, the plane angles Φ1 (between vector n1 and C1-C2) and Φ2 

(between vector n2 and C1-C2) and the dihedral angle θ defined by the vectors n1, C1-C2 

and n2. 

Comparing our set of vectors to those calculated by Grygorenko and co-workers19,20  for a 

variety of cyclic compounds reveals that building block 94 has vectors that lie outside the 

clusters normally associated with simple 3- to 7-membered cyclic scaffolds (see Section 1.2). 

They also have distinct vectors compared to a diverse set of [3.3.n]propellanes23 and 

cyclobutyl-azetidine-based scaffolds synthesised by the same group.22 Our set also shows a 

good level of conformational rigidity where most of the structures are clustered together in 

the r-θ plot (Figure 2.3b). However, some changes are observed between the hydrogenated 

products and their parent compounds with distinct clusters differing mainly by the Φ1 angle 

due to the change in hybridisation on the variation point C1. Additionally, N-methyl 

derivatives of the amine-based scaffold 103 and 106 seem to be outliers with regards to 

angles θ, Φ1 and Φ2 (Figure 2.3b,c,d), This, due to the sp3 hybridization of nitrogen and its 

protonation during the conformer generation. 



34 

 

 

Figure 2.3 - Vector analysis for building block 94 in: a) r-θ plot (polar coordinates); b) visual representation 

of variation vectors; c) Φ1-Φ2 plot; c) θ-Φ1/Φ2 plot.  

Our initial proposed route for the synthesis of 3-D building block 94 is outlined in Scheme 

2.2. As previously mentioned, the scaffold construction is based on previous work by 

Bonjoch et al.50 and the route reported by Bonjoch appeared to offer a quick and reliable 

way to access the racemic normorphan scaffold from an organocatalytic cyclisation of a 

trichloroacetamide (see Scheme 1.8). Using this approach, we envisaged that 

trichloroamidoketone 108 could be obtained from monoprotected cyclohexadione 29 in three 

steps and then, using Bonjoch’s organocatalytic cyclisation, we could obtain normorphan 

scaffold 109. After the cyclisation, elaboration into vinyl MIDA boronate 94 was envisioned 

via vinyl triflate formation to give 110, followed by a Pd-catalysed Miyaura borylation78 

using B2pin2 to give vinyl pinacol boronate 111 and transesterification sequence to introduce 

the MIDA group. Additionally, it was hoped that an asymmetric organocatalytic variant of 

the cyclisation could be developed to access the enantioenriched building block 94. 
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Scheme 2.2 

In Bonjoch’s work, a benzyl group was used as the protecting group for the amine (see 

Scheme 1.8). However, in the case of amides, benzyl groups are notoriously hard to 

deprotect.79 Therefore, we proposed the use of 2,4-dimethoxybenzyl (DMB) protection since 

it should be more easily removed under either acidic or oxidative conditions during further 

functionalisation of the building block. A different protecting group such as Boc was not 

selected as we were unsure of the effect of an imide in the pyrrolidine-catalysed cyclisation. 

Finally, it is worth noting that the decision of using a vinyl MIDA boronate in the finalised 

building 94 block arose from the fact that MIDA boronates, popularised by Burke and co-

workers,80-82 tend to be easy to handle, bench-stable, crystalline solids, that are easily 

hydrolysed to coupling active boronic acids under traditional aqueous Suzuki-Miyaura 

conditions.82  
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2.2 Development of a Racemic Synthesis of a Normorphan-Derived 3-D Building 

Block 

To begin the studies towards the synthesis of the desired building block, it was necessary to 

access trichloroacetamide 108. To this end, the previously reported synthesis for the N-Bn 

variant of the trichloroacetamide 28 by Bonjoch and co-workers50 (see Scheme 1.8) was used 

as a model to obtain the N-DMB derivative 108. Reductive amination of 1,4-cyclohexadione 

monoethylene acetal 29 (5.6 mmol scale) with a stoichiometric amount of 2,4-

dimethoxybenzylamine and using NaBH(OAc)3 (1.4 eq.) as a reducing agent quantitatively 

afforded the crude amine that was, after work-up, sufficiently pure for the next reaction. 

Hydrolysis of the ketal with 3 M HCl(aq) quantitatively gave the crude ketone as a sufficiently 

pure product that was taken on to amide formation using an excess (1.8 eq.) of trichloroacetyl 

chloride in the presence of Et3N (1.9 eq.). After purification by chromatography, 

trichloroacetamide 108 was obtained in 89% yield over the three-step sequence (Scheme 

2.3). 

 

Scheme 2.3 

Formation of trichloroacetamide 108 was confirmed by HRMS and both 1H and 13C NMR 

spectroscopy where, despite the presence of rotamers (65:35 ratio) about the amide’s C–N 

bond, diastereotopic signals were observed for the attached DMB group (δH 4.60–4.52 (m, 

1.3H, ArCHN), 4.04–3.92 (m, 0.35H, ArCHN), 3.84–3.74 (m, 6.35H, ArCHN, OMe)). 

Additionally, the 13C NMR spectrum showed signals at δC 93.8 and 160.7 that were assigned, 

by analogy with the N-Bn variant 28 (δC 93.5, 160.5),64 as the CCl3 and C(O)N signals 

respectively.  

Scale-up of the procedure to 26 mmol of substrate gave a 90% yield of amidoketone 108 

when purified by chromatography (Scheme 2.3). However, since it was desired to achieve a 
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more efficient purification, avoiding the large amounts of solvent and silica required for 

chromatography, an alternative purification was attempted on a 26 mmol scale. With the 

knowledge that the N-Bn variant can be purified by recrystallisation from Et2O, purification 

by triturating the crude product with Et2O was attempted. This gave trichloroacetamide 108 

in 60% yield which, despite being significantly lower than that obtained using 

chromatography, provides a useful alternative when purifying this early-stage product in 

large quantities. 

Next, trichloroacetamide 108 was subjected to an organocatalytic cyclisation using 

Bonjoch’s conditions50 with pyrrolidine to afford normorphan 109. This reaction proceeds 

via formation of enamine 112 from pyrrolidine and the ketone, with enamine 112 adding to 

the trichloroacetamide with concomitant elimination of –CCl3. However, initial results using 

toluene as a solvent at reflux gave normorphan 109 in only 45% yield (Scheme 2.4). The 1H 

NMR spectrum of normorphan 109 showed the expected signal of the newly formed CH α 

to the two carbonyl groups as a doublet at δH 3.18, having only one significant coupling (3J 

= 5.0 Hz) to one of the methylene bridge protons and a negligible coupling to the other.  

 

Scheme 2.4 

With this result in hand, we set out to find an adequate set of conditions for this cyclisation 

reaction (Table 2.1). Increasing the reaction time from 45 min to 3 h at reflux in toluene had 

a detrimental effect on the yield (33% of 109, Entry 2). Thus, using the alternative method 

proposed by Bonjoch, a change into neat, sealed tube conditions and lowering the pyrrolidine 

equivalents was made. In this way, a good yield (63%) of normorphan 109 was obtained 

(Entry 3). Finally, since solubility problems were observed in the early stages of the reaction, 

we wondered whether increasing the equivalents of pyrrolidine to 1.0 and adding a small 

amount of toluene (4.0 M concentration) could prove beneficial. To our delight, this set of 

conditions afforded the best, most reproducible result (80% of 109, Entry 4). Using these 
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conditions, normorphan 109 was isolated in 80% yield on a 1.22 mmol scale with no erosion 

of the yield when scaled up to 17.1 mmol scale (Entry 5). 

Table 2.1 - Optimisation of racemic cyclisation to give normorphan 109 

 

Entry Pyrrolidine 

Eq. 

Solvent Ca 

(M) 

Tempb 

(°C) 

Time Scale 

(mmol) 

Yieldc 

(%) 

Vessel 

1 2.0 Toluene 0.3 Reflux 45 

min 

0.49 45 RBFd 

2 2.0 Toluene 0.3 Reflux 3 h 0.98 33 RBFd 

3 0.5 Neat 100 1 h 1.22 63 Sealed 

tube 

4 1.0 Toluene 4.0 100 1 h 1.22 80 Sealed 

tube 

5 1.0 Toluene 4.0 100 1h 17.1 80 Sealed 

tube 
a) Concentration of substrate (mmol/mL); b) Temperature measured in oil bath; c) Isolated % yield; d) 

RBF = round-bottomed flask. 
 

With an optimised cyclisation in hand, vinyl triflate formation from the ketone in 

normorphan 109 was the next step to be investigated. Relying on Bredt’s rule for 

regioselectivity and a reported literature procedure83 for a similar normorphan that lacked 

the amide, use of LDA as a base and PhNTf2 as a triflate source was attempted. Thus, 

normorphan 109 was treated with LDA at –78 °C in THF to give the enolate which was 

trapped with PhNTf2 to give vinyl triflate 110 in 30% yield after purification by 

chromatography (Scheme 2.5). Vinyl triflate formation was confirmed by 1H NMR 

spectroscopy, in which a narrow 1H multiplet was observed at δH 5.56–5.51 and assigned to 

the alkene CH. 13C NMR spectroscopy also showed a quartet (J = 320.0 Hz) at δC 118.6 

corresponding to the CF3 carbon. Signals corresponding to the newly-formed alkene at δC 

148.4 and 114.8 were also observed. 
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Scheme 2.5 

A range of conditions were then explored with the aim to increasing the yield for the 

formation of vinyl triflate 110 (Table 2.2). We first attempted to change  the triflate source 

to a more reactive triflimide (Comins’ reagent 113) which has shown use with unreactive 

substrates in previous studies.84 However, only a marginal increase in yield was observed 

(33% of 110, Entry 2) suggesting issues with deprotonation of ketone 109 rather than 

problems with trapping the formed enolate. Thus, a brief screen of bases was performed. 

Using LiHMDS and Comins’ reagent gave only traces of enol triflate 110 (Entry 3). 

Changing to NaHMDS showed promise giving 110 in 54% yield (Entry 4). However, the 

product from this reaction was isolated as an 85:15 mixture with triflamide 114, derived 

from Comin’s reagent, that proved impossible to separate by chromatography. On the other 

hand, using KHMDS as a base and returning to PhNTf2 as the triflate source gave only traces 

of product (Entry 5). It has been suggested85 that a wash with cold 1 M NaOH(aq) in the work-

up can be effective at removing side-products from the triflating agent. Following this, using 

NaHMDS with both PhNTf2 and Comins’ reagent 113 gave vinyl triflate 110 as a pure 

product albeit in a diminished yield suggesting decomposition of 110 in the work-up (Entries 

6 and 7). Finally, using NaHMDS and PhNTf2 as a triflate source without the NaOH wash 

gave vinyl triflate 110 in a moderate and consistent yield (Entry 8) but increasing the reaction 

time proved detrimental to the yield (Entry 9). Thus, using NaHMDS as a base and PhNTf2 

as the triflate source with a trapping time of 18 h and without a NaOH wash in the work-up 

proved to be the most effective way to obtain vinyl triflate 110. These conditions also 

allowed the reaction to be scaled up to 12.3 mmol scale without any detrimental effect on 

the yield (61% of 110). 
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Table 2.2 - Formation of vinyl triflate 110 

 

Entry Base Eq. Tf Source Eq. Time 

(h) 

Yielda 

(%) 

1 LDAb 1.2 PhNTf2 1.4 18 30 

2 LDAb 1.2 113 1.3 72 33c 

3 LiHMDS 1.4 113 1.3 18 10d 

4 NaHMDS 1.3 113 1.3 18 54e 

5 KHMDS 1.3 PhNTf2 1.4 18 8 

6 NaHMDS 1.8 PhNTf2 1.3 18 45f 

7 NaHMDS 1.8 113 1.3 18 36f 

8 NaHMDS 1.8 PhNTf2 1.3 18 61g 

9 NaHMDS 1.8 PhNTf2 1.3 48 33 

a) Isolated % yield; b) Prepared in situ by the addition of n-BuLi to i-Pr2NH; c) Isolated 

as an 80:20 mixture with 114; d) Estimated by 1H NMR spectroscopy; e) Isolated as 

an 85:15 mixture with 114; f) cold 1 M NaOH(aq) wash; g) 12.3 mmol scale 
 

The next step involved converting vinyl triflate 110 into vinyl pinacol boronate intermediate 

111 and then into the desired vinyl MIDA boronate 94. This was initially attempted using a 

literature procedure,78 with dppf as a ligand for the Pd and KOAc as base, which gave vinyl 

pinacol boronate 111 as an inseparable mixture with B2pin2 derived impurities which was 

submitted to vinyl MIDA boronate formation. This was carried out using a large excess of 

MIDA and HC(OEt)3 at 100 °C in DMSO,86 giving vinyl MIDA boronate 94 in 20% yield 

over the two steps (Scheme 2.6).  
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Scheme 2.6 

Formation of both vinyl pinacol boronate 111 and vinyl MIDA boronate 94 was confirmed 

by HRMS and NMR spectroscopy. Particularly, for vinyl pinacol boronate 111, the signal 

corresponding to the alkene proton shifted downfield from δH 5.56–5.51 in vinyl triflate 110 

to δH 6.40–6.37 in vinyl pinacol boronate 111. Additionally, the signal corresponding to the 

C–OTf carbon resonance in vinyl triflate 110 which was observed at δC 148.4 disappeared 

for the newly formed C–Bpin in vinyl pinacol boronate 111. This is due to coupling between 

the carbon and the quadrupolar boron atom which gives rise to signals that occasionally are 

not well resolved in the 13C NMR spectrum.87 On the other hand, for vinyl MIDA boronate 

94, the signal corresponding to the alkene signal was observed at δH 5.98 (ddd, J = 3.0, 3.0, 

3.0 Hz). Additionally, the incorporation of the MIDA moiety on building block 94 was 

confirmed with the proton signals corresponding to the two diastereotopic CH2 groups. Three 

of these protons appeared alongside one of the benzylic protons at δH 4.27–4.07 (m, 4H), 

with the other one coming at δH 3.96 (d, J = 17.0 Hz, 1H). The N-Me signal was also observed 

as a 3H singlet at δH 2.84. Finally, the 13C NMR spectrum showed the alkene CH signal at 

δC 134.1 with signals for quaternary protons appearing at δC 169.2 and 167.9 which were 

assigned as the two diastereotopic C=O groups in the MIDA group (Figure 2.4). 
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Figure 2.4 - Key 1H and 13C NMR spectroscopic signals for building block 94. 

With building block 94 in hand and the observed problems in the formation of vinyl pinacol 

boronate 111, our attention turned to finding conditions suitable for the synthesis of vinyl 

MIDA boronate 94 in higher yield. It has been reported88 that for challenging substrates 

changing the ligand in Miyaura’s borylation to PPh3 and the base to KOPh can give better 

results. However, use of these conditions in toluene with vinyl triflate 110 gave only impure 

vinyl pinacol boronate 111 after chromatographic separation. With this result and upon 

performing 2-D TLC analysis of the impure pinacol boronate 111, it was concluded that 

decomposition under chromatography conditions was occurring. Nonetheless, this impure 

product was submitted to the previously used MIDA boronate formation conditions, 

affording a 54% yield of vinyl MIDA boronate 94 over the two steps (Table 2.3, Entry 1). 

With these results in hand, and the evidence of vinyl pinacol boronate 111 decomposition 

under column chromatography conditions, Miyaura’s borylation was once more attempted 

and the crude product directly submitted to MIDA boronate formation. This gave a 70% 

yield of vinyl MIDA boronate 94 over the two steps. However, a significant amount of 

alkene 115 (17%) was also observed for reactions in which vinyl pinacol boronate 111 was 

not purified (Entry 2). Additionally, since the formation of vinyl MIDA boronate 94 required 

a large excess of both of the reagents used, an attempt at diminishing the equivalents of 

MIDA from 6.5 to 4.0 and of HC(OEt)3 from 4.5 to 4.0 was made. However, a decrease in 

the yield of vinyl MIDA boronate 94 to 60% was observed while the isolated quantity of 

alkene 115 remained mostly similar (Entry 3). The formation of alkene 115 was determined 

from its characteristic alkene signals. Namely, two signals were observed at δH 6.07 (dddd, 
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J = 9.0, 7.5, 1.0, 1.0 Hz, 1H) and 5.51 (dddd, J = 9.0, 3.5, 3.0, 1.5 Hz, 1H) which were 

consistent with the two alkene protons in 115. Likewise, the 13C NMR spectrum showed two 

signals corresponding to =CH carbons at δC 129.2 and 126.0. 

Table 2.3 - Optimisation of vinyl MIDA boronate formation 

 

Entry 
Eq. 

MIDA 

Eq. 

HC(OEt)3 

Yield of 

94a (%) 

Yield of 

115a (%) 

1 6.2 4.0 54 N.D.b 

2c 6.5 4.5 70 15 

3c 3.0 4.0 60 17 

a) % yield after chromatography; b) not determined; c) no intermediate 

purification of pinacol boronate 111 was attempted.  

 

Additional 1H NMR spectroscopic analysis of the crude mixtures for both the intermediate 

vinyl pinacol boronate 111 and the vinyl MIDA boronate 94 indicate that alkene 115 seems 

to be generated primarily as a by-product of Miyaura’s borylation step, presumably by a 

protodeborylation-type process. This is evidenced by the appearance of the signals 

associated with the alkene protons in 115, and their ratios with respect to the alkene signals 

in both 111 and 94 in the crude spectra for both reactions (Figure 2.5). This together with 

the fact that Entry 4 (Table 2.3) gave a diminished yield for MIDA boronate 94 but a similar 

yield for alkene 115 when compared to Entry 3, leads us to conclude that alkene 115 is 

mainly a product that arises from the Miyaura borylation of vinyl triflate 110 into vinyl 

pinacol boronate 111. 
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Figure 2.5 - 1H NMR spectrum of the crude product of the Miyaura borylation reaction (blue) and subsequent 

MIDA transesterification (red). 

Thus, the synthesis of vinyl MIDA boronate building block 94 was achieved with a 30% 

overall yield on a multigram-scale from ketone 29 (Scheme 2.7). This was accomplished 

using a three-step sequence to give amidoketone 108, followed by an organocatalytic 

cyclisation into normorphan 109 and finishing with a vinyl triflate formation to give 110 and 

borylation-transesterification to give vinyl MIDA boronate 94. 

 

Scheme 2.7
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2.3 Investigation of Routes for the Synthesis of Enantioenriched Normorphan-

Derived 3-D Building Block 

With the need to obtain enantioenriched building block 94, two alternative and 

complementary strategies to achieve this were envisaged. Based on the literature precedent 

presented in Section 1.3.3, we hypothesised that an asymmetric variant for the 

organocatalytic cyclisation could be developed to access the enantioenriched normorphan 

scaffold. The second strategy would be based on a resolution approach based on chiral 

MIDA derivatives.  

The organocatalytic cyclisation approach would require the exploration of different 

organocatalysts to those tried by Bonjoch50 to improve both the yield and enantioselectivity. 

Thus, we set out to find a small set of catalysts which could prove adequate to allow the 

asymmetric cyclisation of 108 into 109. Previous research by Bonjoch and co-workers50 

identified commercially available (S)-prolinamide (S)-38 as a possible catalyst for this 

transformation (see Scheme 1.12). On the other hand, Dixon’s68 thiourea (R,R)-77 (see 

Scheme 1.26) presented itself as a suitable option that could be synthesised in two steps with 

a single purification. Finally, Tang-and coworkers89 outlined the use of thiourea (S)-116 

which could be also be obtained in two steps with a single purification (Figure 2.6). 

 

Figure 2.6 - Possible organocatalysts identified for the asymmetric cyclisation 

Having assembled this short list of possible catalysts, we set out to synthesise them. As 

previously mentioned, catalyst (R,R)-77 could be synthesised in two steps from 

commercially available N-Boc-diamine (R,R)-117 and methyl isothiocyanate, which in our 

hands gave a 90% yield of (R,R)-118. Subsequent deprotection and free-basing of the 

hydrochloride salt afforded thiourea (R,R)-77 in an 86% overall yield (Scheme 2.8). 

Likewise, thiourea (S)-116 was prepared in two steps by using N-Boc pyrrolidine (S)-119 

and the appropriate isothiocyanate 120 to afford (S)-121 in 85% yield which was deprotected 

and free-based quantitatively to afford thiourea (S)-116 (Scheme 2.9). Data for both 

synthesised catalysts matched those reported in the literature.68,89 
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Scheme 2.8 

 

 
Scheme 2.9 

With our catalysts in hand and Bonjoch’s precedent, we first attempted the asymmetric 

cyclisation of 108 into 109 using (S)-prolinamide (S)-38. Thus, use of trichloroamidoketone 

108 with (S)-prolinamide (S)-38 in DMSO at 50 °C for 5 days gave normorphan 109 in 25% 

yield and 77:23 er (Scheme 2.10). This was consistent the result previously obtained by 

Bonjoch50 with the N-Bn analogue (see Scheme 1.12). The er was determined using chiral 

stationary phase HPLC in comparison with a racemic standard. Unfortunately, we were not 

able to determine the absolute configuration of the major enantiomer. 

 

Scheme 2.10 

Following this, use of Dixon’s thiourea (R,R)-77 under the reported conditions68 was 

attempted. However, using trichloroamidoketone 108 with thiourea (R,R)-77 and PhCOOH 

in CH2Cl2 in a sealed tube at 50 °C for 7 days gave no product (Entry 2). Using our initial 

conditions of trichloroamidoketone 108 in DMSO with thiourea (R,R)-77 at 50 °C for 5 days, 
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normorphan 109 was obtained in 12% yield and 60:40 er (Entry 3). Finally, use of thiourea 

(S)-116 as catalyst in DMSO at 50 °C for 5 days gave a 30% yield of normorphan 109 in 

only 55:45 er (Entry 4). Due to these disappointing yields and enantioselectivities, no further 

work was carried out on this approach. 

Table 2.4 - Asymmetric cyclisation of 108 into 109 

 

Entry Catalyst Conditions Time Yielda 

(%) 

erb 

1 (S)-38 (50 mol%) DMSO, 50 °C 5 days 25 77:23 

2 (R,R)-77 (10 mol%) PhCOOH (0.05 eq.), 

CH2Cl2, 50 °C 

7 days No Reaction 

3 (R,R)-77 (50 mol%) DMSO, 50 °C 5 days 12 60:40 

4 (S)-116 (50 mol%) DMSO, 50 °C 5 days 30 55:45 

a) % yield after chromatography; b) er determined using chiral stationary phase HPLC 

 

Next, we considered the resolution approach using chiral MIDA derivatives. Previous 

research by Cheon and co-workers90 had shown that racemic BINOL-derived boronic acid 

122 could be resolved by converting it into their diastereomeric MIDA* boronates 123a and 

123b with chiral MIDA derivative 124 and separating them by chromatography (Scheme 

2.11).  
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Scheme 2.11 

Likewise, Burke and co-workers81 described the resolution of racemic  carbon-centred sp3
 

boronic acids using chiral MIDA derivative 125. In one example, racemic boronic acid rac-

126 was reacted with chiral MIDA 125 to give separable B(MIDA*) derivatives 127a and 

127b in good yields (Scheme 2.12). In Burke’s approach, the produced chiral MIDA* 

boronates 127a/127b were hydrolysed in situ in order to perform a stereoretentive Suzuki-

Miyaura cross-coupling reaction.  

 

Scheme 2.12 

As such, we planned to explore different chiral MIDA* derivatives that would allow us to 

obtain diastereomeric vinyl MIDA* boronates which we could then separate using 

chromatography. The chiral MIDA* derivatives utilised by Cheon and Burke were proposed 

alongside a simpler α-methyl-cyclohexylamine derived MIDA*. However, in our hands, 

when attempting the transesterification reaction for this substrate with the chiral MIDA 
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derivatives, negligible formation of the desired vinyl MIDA* boronates 128a and 128b was 

observed. Instead, we observed mainly the formation of alkene 115 (Scheme 2.13). At this 

point, our attempts at the synthesis of enantioenriched building block 94 were halted.  

 

Scheme 2.13
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2.4 Overview 

To summarise, the racemic synthesis of normorphan 3-D building block 94 was achieved in 

30% overall yield over seven steps. This was achieved via a three-step sequence to form 

amidoketone 108 that was submitted to an organocatalytic cyclisation with pyrrolidine to 

give the normorphan scaffold. Normorphan 109 was converted into the vinyl triflate 110 and 

finally into the MIDA boronate 94 by a telescoped borylation-transesterification sequence. 

Two different approaches for the synthesis of enantioenriched 3-D building block 94 were 

also explored. Initial approaches exploiting the organocatalytic cyclisation with three chiral 

catalysts attempted with little success, with (S)-prolinamide (S)-38 affording the best results 

giving the desired scaffold 109 in 25% yield and 77:23 er. Chiral thioureas developed by 

Dixon and Tang were also explored with little success. Likewise, attempting to resolve the 

formed diastereomers of the chiral derived MIDA* boronates was not fruitful since alkene 

115 was the main product. 

Suzuki-Miyaura cross coupling alongside further functionalisation of the synthesised 

normorphan 3-D building block towards lead-like compounds is described in Chapter 4. 
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Chapter 3 Design and Studies Towards the Synthesis of a 

Morphan-Derived 3-D Building Block 

The design and development of synthetic methodology towards accessing 3-D building 

block 95 (Figure 3.1) is described in this chapter. The design considerations and vector 

analysis of various derivatives of 95 as well as the proposed synthetic strategy towards the 

3-D building block are discussed in Section 3.1. Section 3.2 discusses initial approaches 

for the synthesis of the building block using N-sulfonamide protected derivatives while 

Section 3.3 describes the synthesis of the normorphan building block 95 from an N-Boc 

protected amine. Finally, an overview of the results presented in this chapter and future 

work are discussed in Section 3.4.  

 

 

Figure 3.1 - Morphan building block 95. 
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3.1 Design Considerations, Vector Analysis and Proposed Route for the Synthesis of a 

Morphan-Derived 3-D Building Block 

The bicyclo[3.3.1]nonane core is an important structural motif that is found in a diverse 

range of bioactive molecules and natural products.55,59,91 As such, many synthetic routes for 

different substitution patterns on these morphan bicyclic cores have been developed (see 

Section 1.4).  With this in mind, our attention turned to 2-aza-bicyclo[3.3.1]nonane 

bifunctional building block 95 with a 4-methyl substituent as our next target (Figure 2.2). It 

was envisaged that building block 95 could be obtained based on some of the previous work 

developed by Dixon et al.69 which was presented in Section 1.4.2. 

 

Figure 3.2 - Morphan building block 95. 

As in the case of normorphan building block 94 (see Section 2.1), it was expected that the 

bicyclic structure in building block 95 would provide conformational rigidity and a set of 

predictable functionalisation vectors. With this in mind, the set of elaboration vectors was 

calculated for a group of structures which we hypothesised could be easily accessed by 

simple, reliable reactions as previously established for building block 94. For example, 

Suzuki-Miyaura cross-coupling on building block 95 should give arylated morphan 129 

which could be: (i) immediately deprotected and N-functionalised to give amines 130-132 

(ii) hydrogenated diastereoselectively then deprotected and N-functionalised to give amines 

133-135 (Scheme 3.1). Similar to normorphan scaffold 94, we predicted that hydrogenation 

on the exo-face of the bicyclic scaffold should occur selectively to give the diastereomers 

shown. 
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Scheme 3.1 

 

The set of structures shown in Scheme 3.1 gives an idea of the different elaboration vectors 

that could be achieved with 3-D building block 95. By following the same procedure as that 

for normorphan 3-D 94 (see Section 2.1), the set of variation vectors for each molecule was 

selected and then calculated using Grygorenko and co-workers’19 algorithm to give the 

results shown in Figure 3.3.  

Similar to the case of normorphan building block 94, morphan building block 95 has a set 

of elaboration vectors that lie outside the clusters normally associated with simple 3- to 7-

membered ring cyclic scaffolds (see Section 1.2) whilst also having distinct vectors from the 

set of [3.3.n]propellanes23 and cyclobutyl-azetidine based scaffolds synthesised by the same 

group.19,20,22 The set shows slightly lower conformational rigidity where the structures 

appear to be more loosely clustered than those previously calculated for normorphan 94 in 

the r-θ plot (Figure 3.3b). This is likely due to the larger ring sizes in the morphan 95 
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[3.3.1]nonane bicyclic core compared to the [3.2.1]octane in the normorphan 94. Just as 

observed for normorphan 94, some changes are observed between the hydrogenated products 

and their parent compounds which are observed by distinct clusters differing mainly by the 

Φ1 angle due to the change in hybridisation on the variation point C1. Additionally, N-phenyl 

derivatives of the scaffold, 130 and 133, seem to be outliers with regards to angles θ, Φ1 and 

Φ2 (Figure 3.3b,c,d). It is noteworthy that, similar to normorphan 94, the N-Me derivatives 

of scaffold 95 are ionized at the pH at which the conformer generation is performed (7.4) 

stopping inversion at the sp3 nitrogen. 

 

Figure 3.3 - Vector analysis for morphan building block 95 (red) and normorphan 94 (blue) in: a) visual 

representation of variation vectors; b) r-θ plot (polar coordinates); c) Φ1-Φ2 plot; d) θ-Φ1/Φ2 plot.  

Our proposed plans to obtain 3-D building block 95 are presented in Scheme 3.2. The 

scaffold construction is based on previous work by Dixon et al.69 and appeared to offer a 

quick and reliable way to access both the racemic and the enantioenriched normorphan 

scaffold from a Ag or Cu and amine co-catalysed cycloisomerisation of an alkyne-linked 

cyclohexanone (see Scheme 1.20). Following Dixons’s approach, we envisaged that amino 

ketones 136/59 could be obtained from monoprotected cyclohexadione 29 in three steps and 
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then, using the organocatalytic cycloisomerisation, we could obtain morphan scaffolds 

137/60. After the cyclisation, hydrogenation of the exocyclic alkene and sulfonamide 

protecting group exchange into a tert-butyl carbamate to give morphan 138 was proposed 

for N-Ts morphan 60. For N-(4-Ns) morphan 86, in order to avoid hydrogenation of the NO2 

functionality in the sulfonamide, protecting group exchange and then hydrogenation would 

be performed. Finally, elaboration into vinyl MIDA boronate 95 was envisioned  via vinyl 

triflate formation to give 139, followed by a Pd-catalysed Miyaura borylation78 using B2pin2 

and transesterification sequence to introduce the MIDA group. Additionally, it was expected 

that our developed route could be applied to enantioenriched morphans 86/60 produced by 

Dixon’s asymmetric variant of the cycloisomerisation to access the enantioenriched building 

block 95. 

 

Scheme 3.2 

In Dixons’s work, sulfonamide protected amines afforded higher yields and better 

enantioselectivities than carbamate or acetyl protected ones in the enantioselective variant 
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(see Scheme 1.28). Additionally, it was reported that enantioenriched sulfonamide protected 

morphans such as 86 and 60 could be easily recrystallised to enantiopurity.69 As such, despite 

the possibility of needing harsher conditions for the deprotection of these sulfonamides, we 

proposed exploring the route starting with an N-Ts protected amine and exchanging it to a 

Boc after the enantiopure building block had been obtained. The use of an N-(4-Ns) protected 

amine was also proposed as it can be more easily removed via a SNAr reaction.92 It was also 

ultimately necessary to explore the N-Boc protected series of compounds.  
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3.2 Initial Approaches for the Synthesis of a Morphan-Derived 3-D Building Block 

Using Sulfonamide Protecting Groups 

The first step in the synthesis of the desired building block involved accessing amino ketones 

136 and 59. To this end, the previously reported synthesis by Dixon and co-workers69 was 

used. Reductive amination of 1,4-cyclohexadione monoethylene acetal 29 with 

propargylamine and using NaBH(OAc)3 as a reducing agent quantitatively afforded the 

crude amine that was, after work-up, sufficiently pure for the next reaction. Hydrolysis of 

the ketal with 3 M HCl(aq) in THF gave the crude ketone as a sufficiently pure product. This 

ketone was the diversification point for the protecting group. As such, it was used in 

sulfonamide formation using either p-toluenesulfonyl chloride or 4-nitrobenzenesulfonyl 

chloride in the presence of Et3N and catalytic DMAP. After purification by chromatography, 

N-Ts-amino ketone 59 was obtained in 85% yield over the three-step sequence whereas N-

(4-Ns)-amino ketone 136 was obtained in 45% yield (Scheme 3.3). 

 

Scheme 3.3 

Formation of N-(4-Ns)-amino ketone 136 was confirmed by HRMS and both 1H and 13C 

NMR spectroscopy where signals for the protons next to nitrogen were observed at δH 4.36–

4.18 (m, 1H) and 4.18 (d, J = 2.5 Hz, 2H). The 2.5 Hz coupling of the NCH2 protons can be 

explained by a long distance 4J coupling to the alkyne proton. Furthermore, the alkyne proton 

was observed as a triplet at δH 2.17. Incorporation of the sulfonamide group was evidenced 

by the signals in the aromatic region at δH 8.41–8.31 and 8.20–8.08. Likewise, N-Ts 

protected amine 59 showed a similar 1H NMR spectrum with the signal for the Me group 

overlapping with another signal at δH 2.46–2.33. 

Next, amino ketones 136 and 59 were subjected to a copper and amine co-catalysed 

cycloisomerisation using Dixon’s conditions.69 Thus, reaction of each amino ketone with 

Cu(OTf)2, PPh3 and pyrrolidine afforded racemic morphans 86 and 60. These reactions 

proceed via formation of enamine 140 between pyrrolidine and the ketone, with enamine 
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140 adding to the Cu-activated alkyne to perform a 6-exo-dig cyclisation. This gave racemic 

morphans 86 and 60 in 85% and 83% yield respectively (Scheme 3.4). In the 1H NMR 

spectrum of morphan 86, signals were observed in the alkene region at δH 5.14 and 5.07 

(both doublets) which were assigned to the =CH2 protons. Additionally, all data from 

morphans 136 and 59 were consistent with those reported in the literature.69 

 

Scheme 3.4 

During purification, it became apparent that N-(4-Ns) morphan 86 showed poor solubility in 

most organic solvents with the exception of CH2Cl2. This made both purification and further 

handling of morphan 86 inconvenient, leading us to make the decision of discarding the 4-

Ns sulfonamide protecting group in favour of the Ts sulfonamide. With this in mind, we set 

out to try the planned hydrogenation of the exocyclic double bond. However, our first 

attempt using a set of conditions reported by Bonjoch for a similar morphan,65 using  

normorphan 60, 10% Pd/C in MeOH at rt, gave a complex mixture of unidentified products 

(Scheme 3.5). 

 

Scheme 3.5 

Nonetheless, a change in solvent from MeOH to EtOAc and increasing the amount of 10% 

Pd/C from 0.10 eq to 0.25 eq gave a better result. In this way, a 72:25 mixture of 

diastereomeric morphans endo- and exo-141 was isolated in 40% yield. However, we also 

found that enamine 142 appeared as a by-product of the reaction, isolated in 56% yield as a 

95:5 mixture with starting morphan 60 (Scheme 3.6). 
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Scheme 3.6 

Formation of hydrogenated morphans endo- and exo-141 was confirmed by both HRMS and 

NMR spectroscopy and the diastereomeric outcome of this reaction was identified by 1H 

NMR spectroscopy. In particular, the signals corresponding to the NCH2 protons in each 

diastereomer were diagnostic. The major diastereomer showed signals at δH 3.83 (dd, J = 

13.5, 6.0 Hz, 1H) and 2.81 (dd, J = 13.5, 12.5 Hz, 1H) (Figure 3.3). The signal at δH 3.83 

was assigned as the equatorial proton, having one large 2J = 13.5 Hz coupling and a small 

3Jeq-ax = 6.0 Hz coupling to the adjacent CH proton. The other signal, at δH 2.81, was assigned 

as the NCH2 axial proton and showed two large couplings, one 2J = 13.5 Hz and one 3Jax-ax 

= 12.5 Hz to the CH proton. These J values were consistent with assigning the major product 

as endo-141. In contrast, the minor diastereomer’s NCH2 signals appeared at δH 3.25 (dd, J 

= 12.5, 5.0 Hz, 1H) and 2.98 (dd, J = 12.5, 6.0 Hz, 1H). Each showed one large 2J = 12.5 Hz 

coupling and a second small 3Jax-eq or 3Jeq-eq coupling. This is consistent with the adjacent 

CH proton being in an equatorial position (axial methyl group) and allowed the assignment 

of the minor diastereomer as exo-141 (Figure 3.3).  

 

Figure 3.3 - Multiplet analysis for the diastereomeric outcome of the hydrogenation of 60 into 141. 
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The major diastereomer is formed by hydrogenation on the less hindered exo face of the 

bicyclic scaffold as we had previously observed for normorphan-derived 3-D building block 

94. On the other hand, the minor diastereomer is presumably formed by a minor competing 

pathway of endo face hydrogenation. 

Enamine 142 was also identified by NMR spectroscopic analysis. Namely, the 1H NMR 

spectrum of enamine 142 showed a signal in the high end of the alkene region at δH 6.79 (q, 

J = 1.5 Hz, 1H) which was assigned as the =CH proton. This had a long distance 4J coupling 

to a methyl group δH 1.62 (d, J = 1.5 Hz, 3H). This, alongside reported NMR spectroscopy 

data for 6-membered ring N-Ts enamines,93 led us to conclude that enamine 142 was the by-

product formed. We hypothesise that enamine 142 is formed by Pd-mediated isomerisation 

of the alkene to a product stabilized by the strongly electron withdrawing effect of the 

sulfonamide.  

Based on this, we set out to find conditions that would allow us to obtain morphan 141 with 

good diastereoselectivity while avoiding the formation of enamine 142. After the conclusion 

of the work presented in this thesis, it was reported53 that using high pressures (20 atm) with 

10% Pd/C afforded good yields and excellent diastereoselectivity for morphans similar to 

60. Additionally,  Li and co-workers94,95 reported the use of Crabtree’s catalyst for the 

diastereoselective hydrogenation of a diverse set of structurally complex morphans. 

Likewise, PtO2 has been reported for the hydrogenation of exocyclic alkenes in sulfonamide 

and sulfinamide protected pyrrolidines.96 Thus, we decided to explore the possibility of using 

PtO2 for the hydrogenation of morphan 60 into 141. Using H2 with PtO2 in EtOAc at rt for 6 

h afforded morphan 141 in 15% yield and >97:3 dr. However, while the formation of 

enamine 142 was not observed, a new product, which accounted for the remaining mass, was 

formed (Scheme 3.7). Unfortunately, purification of this by-product was not possible, and 

this made full characterisation impossible. Nonetheless, HRMS analysis suggested the 

formation of a product from the addition of 4H to morphan 60. Additionally, IR 

spectroscopic analysis of the impure product suggested that reduction of the ketone had 

occurred since no carbonyl bands were observed. All of this information led us to tentatively 

assign this by-product as alcohol 143, formed by the hydrogenation of the exocyclic alkene 

and ketone moieties in morphan 60. 
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Scheme 3.7 

Thus, in order to correctly characterise alcohol 143, we proposed to reduce the ketone in 

morphan 141 to form alcohol 143 and compare the NMR spectra of both products. 

Consequently, NaBH4 reduction of morphan 141 in MeOH at 0 °C for 2 h was attempted. 

This gave alcohol 143 in 96% yield and >97:3 dr from the product of hydride addition from 

the exo-face of the bicyclic scaffold (Scheme 3.8). 

 

Scheme 3.8 

Formation of alcohol 143 was confirmed by HRMS, NMR and IR spectroscopic analysis. 

The 1H NMR spectrum of alcohol 143 showed a signal at δH 3.97 (dddd, J = 11.0, 7.0, 4.5, 

1.5 Hz, 1H) which, due to its chemical shift and COSY couplings, was assigned as the HOCH 

proton. Additionally, the coupling pattern, containing a large 3Jax-ax = 11.0 Hz, two small 

3Jax-eq = 7.0 and 4.5 Hz and a small 3J coupling to the OH proton led us to assign it as the 

product from exo addition of the hydride into the carbonyl group. Characterisation of alcohol 

143 allowed us to confirm that this was the main constituent of the by-product isolated from 

the PtO2-catalysed hydrogenation of morphan 60. Despite this, it was not possible to 

determine what other compounds were observed alongside it. 

We then hypothesised that hydrogenation of the carbonyl group could be slower than 

hydrogenation of the alkene. Therefore, a shorter reaction time was attempted. Use of PtO2 

in EtOAc at rt for 45 min on a 0.3 mmol scale gave morphan 141 in 61% yield, albeit with 

a slightly diminished diastereoselectivity of 95:5. Since it was hoped that the product could 

be recrystalised to diastereopurity, this reaction was scaled up to 3.2 mmol. Unfortunately, 

while morphan 141 was isolated in 76% yield, the diastereoselectivity was reduced 

significantly to 85:15 for no obvious reason (Scheme 3.9). 
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Scheme 3.9 

Additionally, the expected reduction of the ketone when submitting normorphan 141 to the 

conditions for removal of the N-Ts protecting group (i.e. Li, naphthalene or Mg, MeOH) led 

us to believe that N-Ts protected substrates were not ideal. Consequently, we hypothesised 

that starting from a N-Boc protected substrate might prove to be a more efficient route 

towards 3-D building block 95. It was expected that despite N-Boc protected substrates 

giving diminished yields and enantioselectivities in the asymmetric variant of the 

cyclisation, the shorter overall route would overcome the reduced yield. Additionally, we 

hoped that the likelihood of vinyl MIDA boronate 95 being crystalline would allow us to 

recrystallise the final product to enantiopurity.  
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3.3 Investigation of the Synthesis of a Morphan-Derived 3-D Building Block Using a 

Boc Protecting Group 

Since sulfonamide protected morphans proved non-ideal for the synthesis of 3-D building 

block 95 and with the aim of streamlining the synthesis by avoiding protecting group 

exchanges, we moved on to investigate the N-Boc protecting group. We envisaged that the 

N-Boc protecting group would be carried throughout the synthesis without any need to be 

deprotected and, ideally, improving the diastereoselectivity issues in the hydrogenation of 

the exocyclic alkene. 

Thus, amino ketone 144 was synthesised in a three-step synthesis using our general 

approach. 1,4-Cyclohexadione monoethylene acetal 29 (32.3 mmol scale) was reacted with 

propargylamine and NaBH(OAc)3 to give the crude amine quantitatively. The ketal 

protecting group was deprotected with 3 M HCl(aq) in THF to give the crude amino ketone. 

This crude amino ketone was protected using Boc2O in THF to give, after chromatography, 

N-Boc amino ketone 144 in 77% yield over the three-step sequence (Scheme 3.10). 

 

Scheme 3.10 

As in the case of amino ketones 136 and 59, formation of amino ketone 144 was confirmed 

by HRMS and 1H and 13C NMR spectroscopic analysis. Namely, despite broadening due to 

rotamers, signals were observed at δH 4.59–4.16 (br m, 1H), 3.92 (br s, 2H) and 2.21–1.86 

(m, 3H). These signals were assigned as the NCH, NCH2 and ≡CH/CH2 protons respectively. 

Additionally, a singlet for 9H, assigned as the t-Bu group, was observed at δH 1.48. The 13C 

NMR spectrum of amino ketone 144 showed a signal at δC 154.8 which was assigned as the 

C=O from the Boc group with all spectroscopic data matching those reported in the 

literature.69 

We then moved on to attempt the racemic cyclisation into morphan 87. Gratifyingly, using 

the conditions of Cu(OTf)2, PPh3 and pyrrolidine and scaling up to 7.96 mmol scale, gave 
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morphan 87 in 77% yield after chromatography (Scheme 3.11). Formation of morphan 87 

was evidenced primarily by 1H NMR spectroscopic analysis. Particularly, two rotameric 

signals were observed for one of the alkene’s CHH’ protons at δH 5.07 (s, 0.55H), 5.04 (s, 

0.45H,). A second signal in the alkene region appeared at δH 4.99 (s, 1H) and was assigned 

as the second alkene proton. All spectroscopic data was consistent with those reported in the 

literature.69 

 

Scheme 3.11 

Having accessed morphan scaffold 87, our attention turned to the hydrogenation step which 

had presented some difficulties for N-Ts morphan 60. With this in mind, the hydrogenation 

was initially explored using H2 and 10% Pd/C (0.1 eq) in EtOAc. This gave the crude product 

which contained (by 1H NMR spectroscopy) a 90:8:2 mixture of enamine 145, morphan 

endo-138 and morphan exo-138 (Scheme 3.12). Formation of enamine 145 was evidenced 

primarily by 1H NMR spectroscopy of the crude product. Namely, the =CH signal from the 

enamine appeared as two rotameric signals at δH 7.03–6.94 (m, 0.5H) and 6.85–6.76 (m, 

0.5H). This was confirmed by isolation and characterisation from a subsequent experiment 

(see Table 3.1). 

 

Scheme 3.12 

Formation of morphans endo- and exo-138 was confirmed by HRMS and NMR 

spectroscopic analysis. Particularly, the 1H NMR spectrum of the mixture of N-Boc 

morphans endo- and exo-138 showed very similar features to those of the N-Ts analogues. 

A 3H doublet at δH 0.85 for the Me group of morphan endo-138 was observed. Likewise, 
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the signals for the NCHH’ protons were observed at δH 4.04 (dd, J = 14.0, 6.5 Hz, 0.5H), 

3.92 (dd, J = 14.0, 6.5 Hz, 0.5H) and 2.83–2.66 (m, 1H) for morphan endo-138. However, 

there was significant broadening of the signals due to the presence of rotamers, which made 

it difficult to identify the diastereomers by multiplet analysis. Nonetheless, the signals for 

the NCHH’ protons for the minor diastereomer exo-138, observed at δH 3.58 (dd, J = 13.5, 

5.5 Hz, 0.5H), 3.37 (dd, J = 13.5, 5.5 Hz, 0.5H), 3.27 (dd, J = 13.5, 5.5 Hz, 0.5H) and 3.12 

(dd, J = 13.5, 5.5 Hz, 0.5H), point towards the adjacent CH proton being in an equatorial 

position (Figure 3.4). This, alongside the diastereomeric outcome of the hydrogenation of 

N-Ts protected morphan 60, suggest that the major diastereomer from the hydrogenation was 

endo-138. 

 

Figure 3.4 - Multiplet analysis for the diastereomeric outcome of the hydrogenation of 87 into 138. 

Since the result from this hydrogenation gave mostly enamine 145, we moved on to explore 

different conditions that would allow us access to morphans 138 in good yields and 

selectivity. Thus, a small optimisation of the hydrogenation was attempted (Table 3.1). A 

change in solvent from EtOAc to EtOH using 10% Pd/C was initially made. However, after 

work-up, only a complex mixture of products was observed (Entry 2). Likewise, using 

AcOH (5 eq) as additive in the hope of protonating the enamine, with 10% Pd/C in EtOAc 

gave a similar outcome (Entry 3). It has been suggested that transfer hydrogenation with 

ammonium formate can effectively hydrogenate difficult substrates such as deactivated 

enamines.97 Therefore, transfer hydrogenation conditions with NH4
+HCO2

– and 10% Pd/C 

were attempted on morphan 87 but, unfortunately, only a complex mixture of products was 

observed after work-up (Entry 4).  
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Table 3.1 - Optimisation of the hydrogenation of morphan 87 into 138 

 

Entry Conditions Temp 
145 : endo-138 : exo-138 

 

1 
H2, 10 % Pd/C (0.1 eq), 

EtOAc 
rt 90 : 8 : 2a 

2 
H2, 10 % Pd/C (0.1 eq), 

EtOH 
rt Complex mixturea 

3 
H2, 10 % Pd/C (0.1 eq), 

AcOH (5.0 eq), EtOAc 
rt Complex mixturea 

4 

10% Pd/C (0.02 eq), 

NH4CO2H (10 eq), 

MeOH 

reflux Complex mixturea 

a) Determined by 1H NMR spectroscopy 

Next, a change of catalyst from 10% Pd/C to 20% Pd(OH)2/C was made while keeping the 

equivalents constant. In this way, morphan endo-138 was obtained in 18% yield and 90:10 

dr with enamine 145 being obtained in 72% yield (Scheme 3.13). 

 

Scheme 3.13 

With the poor results obtained with Pd catalysts, we hypothesised that, as in the case with 

N-Ts morphan 60, hydrogenation of N-Boc morphan 87 using PtO2 would afford the product 

from the hydrogenation of both the alkene and the ketone. This could hopefully be purified 

and then oxidised to give the desired morphan endo-138. Thus, morphan 87 was 

hydrogenated in the presence of PtO2 in EtOAc. This gave a 90:10 mixture of alcohols endo- 

and exo-146 in 86% yield, together with its corresponding enamine 147 in 10% yield as a 

single diastereomer (Scheme 3.14). 
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Scheme 3.14 

Formation of morphans endo- and exo-146 was confirmed by HRMS and NMR spectroscopy 

and the diastereomeric outcome of the reaction was identified by 1H NMR spectroscopy. In 

particular, the signals for the NCH2 protons in each diastereomer were diagnostic, while the 

CH signal adjacent to the alcohol allowed the assignment of this stereocentre. The major 

diastereomer showed rotameric signals at δH 3.81 (dd, J = 13.5, 6.0 Hz, 0.55H), 3.71 (dd, J 

= 13.5, 6.0 Hz, 0.45H), 3.02 (dd, J = 13.5, 13.0 Hz, 0.55H) and 2.98 (dd, J = 13.5, 13.0 Hz, 

0.45H) for the NCH2 protons (Figure 3.5). The signals at δH 3.81 and 3.71 correspond to the 

equatorial proton and have a large 2J = 13.5 Hz coupling and a small 3Jeq-eq = 6.0 Hz coupling 

to the adjacent CH. The other signals at δH 3.02 and 2.98 correspond to the NCH2 axial 

proton and showed two large couplings, one 2J = 13.5 Hz and one 3Jax-ax = 13.0 Hz. This was 

consistent with the proton adjacent to the NCH2 protons being in an axial position (Me in an 

equatorial position) and allowed the assignment of the major diastereomer as morphan endo-

146 (Figure 3.5). With respect to the stereoselectivity of the carbonyl reduction, the major 

diastereomer showed a signal at δH 3.97 (ddd, J = 11.0, 5.5, 5.5 Hz, 1H) which was assigned 

as the CHOH proton. This signal shows one large 3Jax-ax = 11.0 Hz coupling to one of the 

adjacent CH2 protons and two small 3Jax-eq = 5.5 Hz couplings. This is consistent with this 

proton being in an axial position (OH equatorial) as shown in Figure 3.5. As in the case of 

N-Ts morphan 141 (see Section 3.2), this outcome is presumably derived from a major 

pathway involving hydrogenation from the exo-face of the bicyclic core on both the alkene 

and the ketone functionalities. We hypothesised that the minor diastereomer in the 

hydrogenation of the exocyclic alkene was being formed by a minor, competing pathway of 

hydroxyl-directed hydrogenation. 
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Figure 3.5 - Multiplet analysis for the diastereomeric outcome of the hydrogenation of 87 into 146 

In a similar way, the formation of enamine 147 was confirmed by NMR spectroscopic 

analysis. The 1H NMR spectrum of enamine 147 showed characteristic signals similar to 

those observed for enamine 145. Namely, rotameric signals were observed at δH 6.94 (s, 

0.5H) and 6.77 (s, 0.5H) and were assigned as the =CH proton. The signal for the CH proton 

adjacent to the OH appeared at δH 3.86 (dddd, J = 10.0, 4.5, 4.5, 4.5 Hz, 1H) which, by the 

same analysis as that for morphan endo-146 (see Figure 3.5), confirms that the alcohol is in 

an equatorial position.  

In order to explore improving the diastereoselectivity, we decided to investigate reduction 

of the ketone into the alcohol first and then study the hydrogenation of the exocyclic alkene. 

In addition, protection of the alcohol and hydrogenation would allow us to explore the 

hypothesis of hydroxyl-directed hydrogenation. Consequently, morphan 87 was reduced 

with NaBH4 in MeOH to give, after work-up, alcohol 148 as a sufficiently pure product in 

95% yield as a single diastereomer (Scheme 3.15). The 1H NMR spectrum of alcohol 148 

showed the signal for the CH proton adjacent to the alcohol at δH 3.72–3.59 (m, 1H). 

However, although the diastereomeric outcome of the reduction could not be determined 

directly by 1H NMR spectroscopy of alcohol 148, it was possible to determine it from the 

product of the subsequent conversion of alcohol 148 into morphan endo-146. 

 

Scheme 3.15 
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A range of conditions was then explored for the hydrogenation of morphan 148 (Table 3.2). 

We first attempted the use of 10% Pd/C as a catalyst for the hydrogenation. However, when 

morphan 148 was hydrogenated in the presence of 10% Pd/C as catalyst in EtOH, only 

enamine 147 was obtained in 96% yield (Entry 1). We hypothesised that using AcOH as an 

additive could protonate enamine 147 thus making the overall reduction easier. Nonetheless, 

when morphan 148 was hydrogenated using 10% Pd/C as catalyst in the presence of AcOH 

only a complex mixture of products were observed after work-up (Entry 2). It was then 

decided to change the catalyst to 20% Pd(OH)2/C. Using this catalyst, enamine 147 was 

obtained as the single product of the hydrogenation in 94% yield after work-up (Entry 3). 

As previously mentioned, it has been suggested that transfer hydrogenation conditions can 

be effective for unreactive alkenes.97 Using these conditions, a 75:25 mixture of morphans 

endo- and exo-146 was isolated in 42% yield and enamine 147 was isolated in 55% yield 

(Entry 4). It was then decided to use PtO2 as the catalyst since it had previously shown the 

highest efficiency for the hydrogenation of ketone substrates (see Scheme 3.9 and Scheme 

3.14). Gratifyingly, hydrogenation of morphan 148 using PtO2 as catalyst gave morphan 

endo-146 in 90% yield and 75:25 dr with enamine 147 being isolated in only 6% yield (Entry 

5). 

Table 3.2 - Hydrogenation of morphan 148 

 

Entry Conditions 
Temp 

(°C) 
146a 147a 

1 
H2, 10% Pd/C, EtOH,   

2 h 
rt 0% 96% 

2 
H2, 10% Pd/C, AcOH, 

EtOH, 2 h 
rt Complex mixtureb 

3 
H2, 20% Pd(OH)2, 

EtOAc, 2h 
rt 0% 94% 

4 
10% Pd/C, NH4

+HCO2
–, 

MeOH, 2 h 
reflux 

42% 

75:25 drc 
55% 

5 H2, PtO2, EtOAc, 2 h rt 
90% 

75:25 drc 
6% 

a) isolated % yield; b) by 1H NMR spectroscopy of the crude product; c) 

determined by 1H NMR spectroscopy 
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The diminished diastereoselectivity in the hydrogenation of morphan 148 (Table 3.2, Entries 

4 and 5) with respect to morphan 87 (Table 3.1, Entry 1) supports the hypothesis that the 

minor diastereomer is generated by a competing pathway of hydroxyl-directed 

hydrogenation. Presumably, starting from alcohol 148, this pathway is more significant. 

Consequently, we decided that protecting the hydroxyl group in morphan 148 with a bulky 

group such as TBDMS would hinder this minor pathway both sterically and by impeding 

coordination of the hydroxyl group to the metal catalyst. As such, morphan 148 was O-

protected by using TBDMS and imidazole in DMF. This gave O-TBDMS morphan 149 in 

83% yield (Scheme 3.16). 

 

Scheme 3.16 

Formation of O-TBDMS morphan 149 was confirmed by HRMS and NMR spectroscopy. 

In particular, the 1H NMR spectrum of morphan 149 showed the expected signals for the 

=CHH’ protons at δH 5.02–4.96 (m, 1H) and 4.95–4.89 (m, 1H). Signals were also observed 

at δH 0.87 (s, 9H) and 0.07–0.03 (m, 6H) which were assigned as the t-Bu and Me groups 

from the TBDMS group. On the other hand, the 13C NMR spectrum of morphan 149 showed 

four signals at δC –4.3 to –4.4 which were assigned to the Me groups adjacent to the Si. 

O-TBDMS morphan 149 was then hydrogenated using our previously established conditions 

with H2 and PtO2 as catalyst at rt for 16 h. Use of these conditions with morphan 149 gave 

hydrogenated morphan endo-150 in 20% yield as a single diastereomer and enamine 151 in 

55% yield (Scheme 3.17). The 1H NMR spectrum of morphan 150 showed rotameric signals 

at δH 3.84 (dd, J = 13.5, 6.0 Hz, 0.5H), 3.73 (dd, J = 13.5, 6.0 Hz, 0.5H), 3.07 (dd, J = 13.5, 

13.0 Hz, 0.5H) and 3.03 (dd, J = 13.5, 13.0 Hz, 0.5H) which were assigned as the NCHH’ 

protons. Following the same analysis as that for morphans endo-138 and -endo-146 (see 

Figure 3.4 and Figure 3.6) allowed us to conclude that the diastereomer formed is the endo 

product. Formation of enamine 151 was also confirmed by HRMS and NMR analysis. 

Particularly, the 1H NMR spectrum of enamine 151 showed characteristic rotameric signals 

at δH 6.88 (s, 0.4H) and 6.73 (s, 0.6H) which were assigned to the =CH proton of the enamine 
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and the Me signal was observed at δH  1.78–1.75 (m, 3H). On the other hand, the 13C NMR 

spectrum showed signals at δC 122.2, 121.8, 115.3 and 114.4 with the first two being 

assigned as the =C carbon and the other two as the =CH, the signals doubling up due to 

rotamers. 

  

Scheme 3.17 

The diastereomeric outcome of this hydrogenation, namely the formation of morphan endo-

150 in >97:3 dr, suggests that, due to the absence of a hydroxyl-directed pathway, the 

reaction is completely sterically controlled. This therefore supports our previously outlined 

hypothesis that the minor product, exo-146, from the hydrogenation of 148 is being formed 

by a minor pathway of hydroxyl-directed hydrogenation. However, our efforts to improve 

the outcome of the hydrogenation using TBDMS protection did not prove of much use since, 

despite increasing the diastereoselectivity of the reaction, increasing the steric bulk on the 

endo face of morphan 149 also led to significantly diminished yields. Thus, we decided that 

converting morphan 87 into a 90:10 mixture of alcohols endo-146 and exo-146 by 

hydrogenation (see Scheme 3.14) and then oxidising this  mixture back into the ketone using 

Dess-Martin periodinane (DMP) would be the best course of action. We hypothesised that 

the vinyl MIDA boronate, which we expected to be a crystalline solid, could be recrystallised 

to diastereopurity. As such, we first attempted the oxidation of a 90:10 mixture of alcohols 

endo-146 and exo-146 using DMP in CH2Cl2 at rt for 2 h. This gave a 90:10 mixture of keto-

morphans endo-138 and exo-138 in 84% yield (Scheme 3.18). Spectroscopic data for keto-

morphans 138 were consistent with previously obtained samples (see Scheme 3.12).  

 

Scheme 3.18 
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In order to facilitate purification and increase the yield, we investigated whether this 

oxidation could be performed on the crude product from the hydrogenation of morphan 87. 

In this way, morphan 87 was hydrogenated using H2 and PtO2 in EtOAc and the crude 

product from this reaction was treated with DMP in CH2Cl2. Gratifyingly, this gave morphan 

endo-138 in 71% yield and 90:10 dr with a single purification while enamine 145 was 

obtained in 15% yield (Scheme 3.19). This represents a negligible decrease in yield, which 

on top of the easier purification constitutes a useful alternative for the synthesis of a 90:10 

mixture of morphans endo- and exo-138. 

 

Scheme 3.19 

The next step involved turning the ketone in morphans 138 into a vinyl triflate. This was 

attempted using NaHMDS and PhNTf2, previously identified from our work on the 

normorphan scaffold (see Section 2.2). Thus, morphan endo-138 (90:10 dr) was treated with 

NaHMDS in THF at –78 °C for 1 h and the formed enolate was trapped with PhNTf2 from 

–78 °C to rt for 18 h. In this way, vinyl triflate endo-139 (90:10 dr) was obtained in 70% 

yield after chromatography (Scheme 3.20). Formation of vinyl triflates endo- and exo-139 

was confirmed by HRMS and NMR spectroscopy. In particular, the 1H NMR spectrum of 

vinyl triflates 139 showed a signal at δH 5.92 (dd, J = 4.0, 4.0 Hz) which was assigned to the 

=CH proton of the major diastereomer. On the other hand, the 13C NMR spectrum of vinyl 

triflate endo-139 showed a quartet at δC 118.6 (J = 320 Hz) which was assigned as the CF3 

carbon. 

 

Scheme 3.20 
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The last step involved turning vinyl triflate endo-139 (90:10 dr) into vinyl pinacol boronate 

endo-152 and this into vinyl MIDA boronate 95. We envisaged doing this with the 

previously used method of a Miyaura borylation using B2pin2, PdCl2(PPh3)2, PPh3 and KOPh 

to form vinyl pinacol boronate endo-152. Then, based on previous experience with 

normorphan 3-D building block 94 (see Section 2.2), taking the crude pinacol boronate endo-

152 and transesterifying it into vinyl MIDA boronate 95 using MIDA and HC(OEt)3. Thus, 

vinyl triflate endo-139 (90:10 dr) was treated with B2pin2, PdCl2(PPh3)2, PPh3 and KOPh in 

toluene at rt for 18 h and the crude product was treated with MIDA and HC(OEt)3 in DMSO 

at 100 °C for 48 h. However, after chromatography, vinyl MIDA boronate 95 was isolated 

as a mixture with unidentified products (Scheme 3.21). Nonetheless, the formation of vinyl 

MIDA boronate 95 was confirmed by both HRMS and NMR spectroscopy. The 1H NMR 

spectrum of vinyl MIDA boronate 95 showed a signal at δH 6.22–6.17 (m, 1H) which was 

assigned as the =CH proton. In addition, rotameric signals for one of the NCHH’ protons 

were observed at δH 4.51–4.43 (m, 0.6H), 4.35–4.30 (m, 0.4H). Unfortunately, due to time 

constraints and the overall impracticality of the synthesis of morphan-derived building block 

95, no further attempts at synthesising vinyl MIDA boronate 95 were made. 

 

Scheme 3.21 

Thus, the synthesis of an impure sample of vinyl MIDA boronate 95 was achieved using the 

N-Boc protected series of compounds. The route was accomplished up to vinyl triflate endo-

139 with a 29% overall yield and 90:10 dr (Scheme 3.22). This was achieved using a three-

step sequence to give amino ketone 144, followed by a Cu/amine co-catalysed 

cycloisomerisation into morphan 87, diastereoselective hydrogenation and oxidation into 

morphan 138 and finishing with a vinyl triflate formation to give 139. Borylation-

transesterification into vinyl MIDA boronate 95 was also attempted, but impure vinyl MIDA 

boronate 95 was isolated. Further exploration into the diastereoselective hydrogenation was 

also performed by studying alcohol and O-TBDMS derivatives of morphan 87. 
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Scheme 3.22 
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3.4 Overview 

To summarise, the synthesis of a morphan-derived 3-D building block was partially 

achieved. Initially, use of a sulfonamide protected series of compounds was explored with 

limited success. A change into the N-Boc protected series of compounds afforded the late-

stage vinyl triflate endo-139 in 29% overall yield over seven steps. This was achieved by a 

three-step sequence to give aminoketone 144 which was cyclised with pyrrolidine and a 

Cu(OTf)2 catalyst to afford the morphan scaffold which was subsequently converted into 

vinyl triflate endo-139. Formation of the objective vinyl MIDA boronate 95 was attempted 

but only an impure sample was obtained. Different approaches for the hydrogenation of both 

the N-Ts and N-Boc substrates were investigated. Reduction of the ketone moiety and 

protection of the formed alcohol as an O-TBDMS group were explored with little success. 



76 

 

Chapter 4 Suzuki-Miyaura Cross-Coupling and Further 

Functionalisation of the Normorphan-derived 3-D 

Building Block 

In order to demonstrate the utility of normorphan-derived building block 94 in the 

construction of drug-like and lead-like compounds for medicinal chemistry, this Chapter 

summarises some of the functionalisation possibilities that were explored (Scheme 4.1). 

Section 4.1 focuses on Suzuki-Miyaura cross-coupling with the vinyl MIDA boronate 

handle on building block 94. Section 4.2 shows further functionalisation of the 3-D building 

block including hydrogenation of the alkene, reduction of the amide moiety and 

deprotection of the N-DMB group. Finally, Section 4.3 provides an overview of the 

functionalisation possibilities that were explored. 

 

Scheme 4.1 
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4.1 Suzuki-Miyaura Arylations of the Normorphan-Derived 3-D Building Block 

With the aim to showcase the functionalisation possibilities of 3-D building block 94, our 

attention turned to Suzuki-Miyaura cross-couplings using the vinyl MIDA boronate installed 

in the building block (Scheme 4.2). Initially, it was planned to explore conditions for the 

cross-coupling using 4-bromoanisole and 4-bromobenzotrifluoride as coupling partners. 

Then, a variety of aromatic and heteroaromatic aryl bromides would be explored. It was also 

desired to include a set of aryl bromides based on FragLites, introduced by Waring and co-

workers, 98 as medicinally-relevant aryl groups. 

 

Scheme 4.2 

Various sets of conditions have been developed for the use of MIDA boronates in Suzuki-

Miyaura cross-couplings, which are essentially classified into those that use a slow-release 

strategy and a deprotection strategy.99 The slow-release strategy, developed by Burke and 

coworkers,82 hydrolyses the MIDA boronate in situ under standard aqueous Suzuki-Miyaura 

conditions to generate the free boronic acid which is subsequently transmetallated into the 

catalytic cycle to minimize by-products generated in the presence of large quantities of free 

boronic acid in the reaction media (Scheme 4.3). On the other hand, the deprotection 

strategy, mainly used in iterative cross-coupling100 and anhydrous Suzuki-Miyaura cross-

couplings81 relies on the full release of the boronic acid into a dilute solution for its further 

use in the cross-coupling by slow addition into the reaction media (Scheme 4.3).  
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Scheme 4.3 

  

Taking these strategies into consideration and with the idea of having a simple and reliable 

method for performing the Suzuki-Miyaura cross-coupling of vinyl MIDA boronate 94, our 

attention turned to the slow-release method developed by Burke et al.82 using Pd(OAc)2 as 

a Pd source, SPhos as a ligand and K3PO4(aq) for the release of the boronic acid. Using this 

set of conditions, vinyl MIDA boronate 94 was successfully coupled to 4-bromoanisole to 

give, after chromatography, arylated normorphan 153 in 86% yield (Scheme 4.4) as the only 

product. Incorporation of the 4-anisole group was confirmed by HRMS and 1H NMR 

spectroscopy where the signal corresponding to the vinylic proton was observed at δH 5.67 

in arylated normorphan 153, Additionally, signals corresponding to the methoxy groups in 

the aromatic rings were seen as 9H multiplet at δH 3.78. 
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Scheme 4.4 

With this result in hand, coupling to 4-bromobenzotrifluoride was attempted. However, 1H 

NMR spectroscopy of the crude reaction mixture revealed the appearance of three products 

as well as the desired arylated normorphan 154. Thus, after chromatography, arylated 

normorphan 154 was isolated in 61% yield. A second product, identified as alkene 115, was 

isolated in 20% yield while another two products subsequently identified as bis-normorphans 

155a and 155b were isolated in 2% and 4% yield as 75:25 and 95:5 mixtures with SPhos 

respectively (Scheme 4.5). Incorporation of the benzotrifluoride moiety in normorphan 154 

was confirmed by HRMS and NMR spectroscopic analysis. Namely, signals observed in the 

1H NMR spectrum of normorphan 154 in the aromatic region at δH 7.68–7.63 and 7.60–7.55 

as multiplets were assigned as those from the benzotrifluoride motif. Additionally, the 13C 

NMR spectrum of normorphan 154 showed signals at δC 129.1 (q, J = 32.5 Hz) and 125.5 

(q, J = 4.0 Hz) which were assigned as the ipso and ortho carbons to the CF3 group. The CF3 

carbon appeared at δC 124.4 (q, J = 272.0 Hz). 

 

Scheme 4.5 

The first of the observed by-products that was isolated in 20% yield was identified as alkene 

115 by comparison with previously isolated samples (see Section 2.2). We hypothesise that 

alkene 115 is formed by protodeborylation of the transient boronic acid species formed by 
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hydrolysis of vinyl MIDA boronate 94. On the other hand, 1H NMR spectroscopic analysis 

of the other two isolated products 155a and 155b (2% and 4% yield respectively) showed 

that they had very similar spectra. Particularly, the 1H NMR spectra of both compounds 

contained all the signals from the normorphan core. For bis-normorphan 155a signals 

appeared at δH 5.85 (s), 3.67 (d, J = 5.0 Hz) and 3.08 (d, J = 5.0 Hz) for the =CH, NCH and 

C(O)CH protons of the normorphan core respectively. For bis-normorphan 155b these same 

signals were seen at δH 6.05–5.62 (m), 3.72–3.67 (m) and 3.16 (d, J = 5.0 Hz). This was 

consistent to a coupled normorphan bearing a vinyl substituent that showed no signals in the 

1H NMR spectrum with the exception of those belonging to the normorphan core (Figure 

4.1). Additionally, the 13C NMR spectra for both 155a and 155b showed only signals that 

belonged to the normorphan core. 

 

Figure 4.1 - 1H NMR spectra of 155a (blue) and 155b (red) 

Thus, we propose that a dimerisation by oxidative homocoupling of the boron-containing 

species had occurred giving rise to the formation diastereomeric bis-normorphans 155a/b. 

This was confirmed by HRMS analysis. It is likely that these products are generated by a 

minor competing pathway in which small quantities of oxygen present in the reaction,101 

coupled with high concentrations of the transient boronic acid species,102 lead to the 

formation of the homocoupled product.   

With the previous results in hand, we moved on to study the scope of aryl bromides that 

could be coupled to normorphan-derived 3-D building block 94. Use of 5-bromopyrimidine 

gave arylated normorphan 156 in 60% yield, alkene 115 in 5% yield and bis-normorphans 

155a/b in 3% and 7% yields respectively. Likewise, use of N-TIPS azaindole 157 as 
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coupling partner afforded arylated normorphan 158 in 58% yield with only trace by-products 

formed (Scheme 4.6). 

 

Scheme 4.6 

Use of 4-bromo-acetanilide gave arylated normorphan 159 in 45% yield as a 90:10 mixture 

with bis-normorphan 155b (7% yield). This coupling also afforded alkene 115 in 40% yield 

and bis-normorphan 155a in 3% yield. Coupling to 2-methoxy-5-bromopyrimidine gave 

arylated normorphan 160 in 66% yield as a 95:5 mixture with bis-normorphan 155a (5% 

yield). This coupling also gave alkene 115 and bis-normorphan 155b in 6% and 7% yield 

respectively (Scheme 4.7).  
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Scheme 4.7 - a) Isolated as a 90:10 mixture with bis-normorphan 155b; b) Isolated as a 95:5 mixture with 

bis-normorphan 155a 

A selection of less successful results is summarised in Scheme 4.8. Use of 3-bromo-2-

methoxy-pyridine afforded only alkene 115 in 55% yield and bis-normorphans 155a/b in 

6% and 10% yield respectively after chromatography. However, it should be noted that 

formation of arylated morphan 161 was evidenced in the 1H NMR spectrum of the crude 

product. Similarly, coupling using 2-bromo-5-fluoro-3-methylpyridine gave only alkene 115 

in 60% yield and bis-normorphans 155a/b in 3% and 8% yield respectively despite evidence 

of the formation or arylated normorphan 162 by 1H NMR spectroscopy of the crude product. 

Finally, 1H NMR spectroscopic analysis of the crude reaction mixtures of couplings using 

4-bromo-2-hydroxypyridine, 4-bromo-isoxazole and 4-bromo-pyrazole showed formation 

of only trace amounts of the desired products. 
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Scheme 4.8 - a) Formation of product evidenced by 1H NMR spectroscopy of the crude product. 

Thus, 3-D building block 94 was coupled to a variety of aryl bromides, including 

heteroaromatic ones, in moderate to good yields, proving the potential utility of the 3-D 

building block in the synthesis of lead-like compounds. However, it is important to note that 

non-protected groups such as free NH or OH moieties proved in many cases detrimental to 

the yield. Additionally, the appearance of different by-products by competing pathways was 

inconvenient as some of them were difficult to separate from the desired product.  

It is known99 that modifying the reaction conditions, for slower release of the boronic acid  

(e.g. lower concentrations of base), as well as utilising different precatalyst/ligand 

combinations82 can have a beneficial effect by reducing the formation of the undesired 

products of cross-couplings. Thus, we propose that while the current conditions prove 

adequate for the Suzuki-Miyaura coupling of 3-D building block 94, an optimisation of the 

reaction conditions could be performed to allow for coupling with the more problematic 

heteroaryl bromides and decrease contamination by side products of the reaction. 
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4.2 Further Functionalisation of the Normorphan-Derived 3-D Building Block 

With the scope of the Suzuki-Miyaura arylation briefly explored, we moved on to the further 

functionalisation that was proposed for 3-D building block 94. Once Suzuki-Miyaura 

functionalisation had been performed, it was envisaged that the arylated normorphan could 

be taken on through two distinct routes. The first involved diastereoselective hydrogenation 

of the alkene in 163 into normorphan 164. Normorphan 164 could then be deprotected to 

give normorphan 165 upon which conditions for N-functionalisation could be explored. On 

the other hand, the amide in arylated normorphan 163 could be reduced to obtain amine 166 

which could then be deprotected to obtain normorphan 167 (Scheme 4.9). 

 

Scheme 4.9 

The first step investigated was the diastereoselective hydrogenation of the alkene. We 

expected that, due to the inherent shape of building block 94, hydrogenation of the alkene 

would likely be diastereoselective due to preferential hydrogenation on the less sterically 

hindered exo-face of the bicyclic scaffold. With this in mind, we utilised standard 

hydrogenation conditions with 10% Pd/C as catalyst under a hydrogen atmosphere to 

perform the hydrogenation on arylated normorphan 153. To our delight, using these 

conditions, hydrogenated normorphan 168 was isolated in 92% yield as a single 

diastereomer, with no purification required (Scheme 4.10). 
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Scheme 4.10 

Formation of normorphan 168 was confirmed by HRMS and NMR spectroscopy. The 1H 

NMR spectrum of normorphan 168 showed a signal at δH 2.84 (ddd, J = 12.0, 5.0, 1.5 Hz, 

1H) which was assigned as the proton in the benzylic position. Another signal at δH 1.85 

(ddd, J = 14.0, 5.0, 5.0 Hz, 1H) was assigned to one of the protons in the CHH’ in the 3-

position of the normorphan scaffold. The other CHH’ proton signal was observed underneath 

other signals. Since normorphan 168 is an oil, the stereochemical outcome was assigned as 

the expected exo product from X-ray crystallographic analysis of a subsequent derivative 

(see Figure 4.2).  

In contrast, attempted hydrogenation of aza-indole arylated normorphan 158 into 

normorphan 169 proved unsuccessful (Scheme 4.11), The 1H NMR spectroscopic analysis 

of the crude product revealed a low number of aromatic signals, with new aliphatic signals 

appearing. This could be evidence of hydrogenation of the aza-indole aromatic ring or 

formation of a dearomatized unidentified product.  

 

Scheme 4.11 

We then moved on to search for deprotection conditions for the N-DMB protecting group 

that is present in arylated normorphan 168. The majority of methods used for the 
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deprotection of the N-DMB group make use of its ability to generate a stable, benzylic 

carbocation. As such, many methods for deprotection use acidic conditions such as TFA 

with cation scavengers such as water79 or 1,3-dimethoxybenzene,103 or Lewis acids such as 

BCl3.
104 N-DMB groups have also been deprotected under oxidative conditions such as 

DDQ105 or ceric ammonium sulfate.106 With this knowledge, a first set of conditions using 

aqueous TFA at rt was attempted. Pleasingly, this gave amide 170 in 68% yield after 72 h 

(Scheme 4.12).  

 

Scheme 4.12 

Removal of the N-DMB group to give NH amide 170 was confirmed by HRMS and by 1H 

NMR spectroscopic analysis. Particularly, the 1H NMR spectrum of amide 170 showed a 

broad singlet at δH 6.69, which had no carbons attached and was assigned as the NH proton. 

This was evidence of the removal of the N-DMB group. Gratifyingly, amide 170 proved to 

be a solid and analysis by X-ray crystallography (Figure 4.2) allowed us to confirm the 

stereochemical outcome of the hydrogenation of arylated normorphan 94. As expected, the 

relative stereochemistry of the stereocentre generated at the benzylic position was that from 

hydrogenation from the least sterically hindered exo face of the alkene. 

  

Figure 4.2 - X-ray crystal structure of amide 170 
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However, since the deprotection of the N-DMB group in amide 168 proved to be slow, with 

some starting material observed after 72 h, we moved on to finding conditions which could 

provide amide 170 more quickly and efficiently. Making use of the different ways to 

deprotect N-DMB groups, oxidative conditions were employed. In this manner, using DDQ 

as oxidant and water as scavenger gave amide 168 in 25% yield with significant formation 

of unidentified by-products observed (Entry 2). Thus, we returned to the use of acidic 

conditions while heating to speed the reaction up and hopefully achieve full conversion. 

Accordingly, using 80% TFA(aq) at 60 °C afforded amide 170 in 73% yield after 18 h (Entry 

3). However, while these conditions proved adequate for the deprotection of amide 168, we 

thought that some functionalities that could be introduced in previous steps of the synthesis, 

such as the BMIDA,107 could be labile to aqueous acid. As such, we turned our attention to 

a different cation scavenger to use with our acidic conditions. Use of anhydrous TFA and 

1,3-dimethoxybenzene as scavenger103 gave amide 170 in 52% yield. However, the reaction 

proved to be slow, taking 72 h with presence of some starting material remaining in the crude 

product (Entry 4). 

Table 4.1 - Optimisation of N-DMB deprotection. 

 

Entry Conditions Temp 

(°C) 

Time 

(h) 

Yielda 

(%) 

1 80% TFA(aq), CH2Cl2 rt 72 68 

2 DDQ, H2O, CH2Cl2 rt 24 25 

3 80% TFA(aq) 60 18 73 

4 TFA, 1,3-dimethoxybenzene, CH2Cl2 rt 72 52 

a) % isolated yield 

With different conditions for the deprotection of the N-DMB group in hand, we were 

interested in exploring whether the N-DMB group could be removed from vinyl MIDA 

boronate 94 and if the product from this deprotection could be selectively functionalised in 
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the presence of the N-H amide. Initially, attempting the deprotection of the N-DMB in vinyl 

MIDA boronate 94 by using our highest yielding conditions (80% TFA(aq) at 60 °C)  failed 

to give N-H-amide 171, giving a complex mixture of unidentified products (Scheme 4.13). 

This, we hypothesise, was partly due to hydrolysis of the MIDA boronate moiety under the 

acidic conditions. 

 

Scheme 4.13 

Therefore, we changed the cation scavenger to 1,3-dimethoxybenzene in the absence of 

water. Pleasingly, using anhydrous TFA with 1,3-dimethoxybenzene in CH2Cl2 at rt, amide 

171 was generated in 60% yield (Scheme 4.14). The formation of amide 171 was confirmed 

by both HRMS and NMR spectroscopy. Namely, the 1H NMR spectrum of amide 171 

showed a singlet at δH 7.55 which was assigned to the newly formed N-H. Likewise, the 

proton signals expected for the NCH2 protons from the MIDA group were observed at δH 

4.25, 4.13, 3.91 and 3.90 as doublets due to their diastereomeric nature. Likewise, the 13C 

NMR spectrum of amide 171 showed signals for the MIDA boronate being observed at δC 

170.4 (C=O, ester), 169.2 (C=O, ester) and 46.6 (NMe). Nevertheless, despite success at 

obtaining deprotected 3-D building block 171, it suffered from extremely low solubility in 

most common organic solvents, which makes amide 171 inconvenient as a building block 

for further elaboration. 

 

Scheme 4.14 

Finally, we explored whether we could obtain an amine version of our building block. This 

would allow us to expand the accessible set of elaboration vectors by changing the 

hybridisation of the nitrogen and thus the geometry of the bicyclic scaffold (see Section 2.1). 

Hence, it was envisaged that reduction of the amide in arylated normorphan 153 would allow 
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easy access into the desired amine. This could, in principle, be achieved by using a variety 

of reducing agents such as LiAlH4,
108 DIBAlH,109 BH3 complexes,110 or even transition 

metal hydride complexes111 with varying degrees of selectivity. However, since arylated 

normorphan 153 did not contain particularly reactive functionalities, LiAlH4 was used. 

Reduction of arylated normorphan 153 with LiAlH4 in THF at reflux afforded amine 172 in 

70% yield after chromatography (Scheme 4.15). 

 

Scheme 4.15 

Successful reduction of the amide 153 to give amine 172 was confirmed by HRMS, NMR 

and IR spectroscopy. The 1H NMR spectrum of amine 172 showed a 2H multiplet δH 3.12–

3.02 which is the region expected for a CH2 next to a heteroatom. This led us to assign this 

signal as the newly formed CH2 in amine 172. Additionally, the signal for the proton at the 

7-position of the normorphan scaffold in amine 172 was observed as a doublet of doublets 

at δH 3.00. Finally, the IR spectrum of amine 172 showed no bands in the carbonyl region. 
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4.3 Overview 

To summarise, we have shown that 3-D building block 94 can be functionalised in diverse 

ways. Namely, we have shown that Suzuki-Miyaura cross-coupling on 94 can be performed 

with a variety of aryl bromides, including some heteroaromatics in moderate to good yields 

(Scheme 4.16).  

 

Scheme 4.16 - a) Isolated as a 90:10 mixture with bis-normorphan 155b; b) Isolated as a 95:5 mixture with 

bis-normorphan 155a 

Diastereoselective hydrogenation of the alkene in normorphan 153 was also exemplified 

obtaining an excellent yield and complete diastereoselectivity towards the product from 

hydrogenation from the exo face. This was confirmed by X-ray crystallographic analysis. 

Deprotection conditions for the N-DMB group were also identified by using aqueous TFA 

at 60 °C. Likewise, for hydrolysis-sensitive groups, anhydrous deprotection conditions were 

also found by using 1,3-dimethoxybenzene as a cation scavenger. Gratifyingly, these last 

conditions were successfully applied to the deprotection of 3-D building block 94 which 

unfortunately proved inadequate for further functionalisation due to solubility problems. 

Finally, we were able to access a different set of elaboration vectors by converting the amide 

into an amine by reduction with LiAlH4 in good yield. 
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Chapter 5 Conclusions and Future Work 

In conclusion, normorphan-derived building block 94 was synthesised in its racemic form in 

an overall 30% yield via a seven-step sequence (Figure 5.1). This sequence consisted of a 

three-step synthesis of an aminoketone that was then cyclised to give the normorphan. This 

was then converted into the vinyl triflate to enable a Miyaura borylation and 

transesterification sequence to give normorphan-derived building block 94. Two approaches 

for the enantioenriched synthesis of building block 94 were also explored, namely, an 

organocatalytic asymmetric cyclisation and a diastereomeric resolution approach. However, 

both approaches ultimately proved unsuccessful. 

 

Figure 5.1 - Normorphan-derived building block 94 

Suzuki-Miyaura arylations of 3-D building block 94 were showcased with a variety of aryl 

bromides including heteroaromatic ones in yields of 46-86%. Further functionalisation of 

building block 94 such as diastereoselective hydrogenation of the alkene, N-deprotection and 

reduction of the amide were also successful to give the products shown in Figure 5.2. 

 

Figure 5.2 - Products from further functionalisation of building block 94 
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Future work on the synthesis of building block 94 could include the exploration of alternative 

routes for the synthesis of enantioenriched building block 94. For example, a more in-depth 

study into the organocatalytic cyclisation of trichloroacetamide 108 into normorphan 109 

could be carried out. In this study, catalysts such as (R)-40 utilised by Ye and co-workers53 

in their Conia-ene methodology, could be explored (Scheme 5.1). 

 

Scheme 5.1 

Ye and co-workers53 also explored the cleavage of the alkene in the products of their 

asymmetric Conia-ene type reaction (173 to 174 to 175). This could be utilised to obtain a 

sulfonamide protected version of the normorphan scaffold 175. Then, selective conditions 

for the deprotection of the sulfonamide group could be explored to afford enantioenriched 

building block 94 or a derivative (Scheme 5.2). 

 

Scheme 5.2 

Alternatively, different conditions for the formation of the vinyl MIDA boronate could be 

explored to allow for the formation and resolution of the diastereomeric MIDA* boronates. 

Namely, hydrolysis of the pinacol boronate 111 into boronic acid 176 and installation of the 

chiral MIDA derivatives using the conditions reported by Burke and co-workers81 could be 

explored with the aim to avoid formation of alkene 115 (Scheme 5.3). 
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Scheme 5.3 

On the other hand, further work on the functionalisation of normorphan-derived scaffold 94 

could include further exploration of the scope and conditions for Suzuki-Miyaura cross-

coupling of the vinyl MIDA boronate 94 to enable coupling with a more diverse and 

medicinally-relevant set of heteroaromatic aryl bromides. N-Functionalisation of the 

building block such as N-alkylation and N-arylation could also be explored on amide-based 

scaffold 178 (Scheme 5.4a). Furthermore, conditions for hydrogenation, deprotection and N-

functionalisation of amine-based scaffold 179 could also be explored (Scheme 5.4b). 

  

Scheme 5.4 

With regards to morphan-derived building block 95, the synthesis of this building block 

proved more challenging. Late-stage enol triflate 139 was obtained in 29% overall yield and 

only 90:10 dr. However, formation of vinyl MIDA boronate 956 from enol triflate 169 failed 

to give a pure sample of vinyl MIDA boronate 95 (Scheme 5.5). Different routes involving 

sulfonamide and N-Boc protected series of substrates were studied for the synthesis of 

building block 95 with the N-Boc protected series of compounds chosen for the overall route. 
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Scheme 5.5 

Further work in this scaffold should involve the synthesis and characterisation of a pure 

sample of vinyl MIDA boronate 95 which could be achieved by attempting purification of 

the intermediate vinyl pinacol boronate instead of using the crude product. Development of 

a route into diastereopure building block 95 is also important. A possible approach would be 

to use the hydrogenation conditions reported by Ye and co-workers53 (10% Pd/C with H2 at 

20 bar) (Scheme 5.6). Alternatively, a different approach to access a morphan scaffold 

without the methylene group could be investigated. For example Dixon and co-workers68 

reported the synthesis of 180 after which decarboxylation could  be performed to access the 

diastereopure morphan building block 95 (Scheme 5.6). Finally, Suzuki-Miyaura 

functionalisation of the vinyl MIDA boronate, hydrogenation of the alkene, and N-

functionalisation could be explored. 

 

Scheme 5.6
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Chapter 6 Experimental 

6.1 Computational Methods 

Computational vector analysis was performed  by generating the lowest energy conformer 

of the compound of interest using a Pipeline Pilot protocol developed in the O’Brien group.77 

Prior to conformer generation a wash step was performed, which involved stripping salts 

and ionising the molecule at pH 7.4. Any stereocentre created here was left with undefined 

stereochemistry. SMILES strings were converted to their canonical representation. A list of 

allowed chirality at each centre is generated and a SMILES file with all possible 

stereoisomers was written. Conformers were generated using the BEST method in Catalyst 

using the rel option, run directly on the server and not through the built-in Conformation 

Generator component with a chosen maximum relative energy threshold of 20 kcal mol-1, 

maximum of 255 conformers for each compound. Conformations were read, ones that cannot 

be represented by the canonical SMILES are discarded, with the remaining ones standardised 

to a single enantiomer. Duplicates were filtered with a RMSD threshold of 0.1. Minimisation 

with 200 steps of Conjugate Gradient minimisation with an RMS gradient tolerance of 0.1 

was performed using the CHARMm forcefield with Momany-Rone partial charge estimation 

and a Generalised Born implicit solvent model. Duplicates were filtered again with a RMSD 

threshold of 0.1. 

Following this, the lowest energy conformer was selected for each compound and a MDL 

Molfile containing the 3-D coordinates of atoms was generated. The variation points and 

vectors were individually defined and the file was inputted into Grygorenko’s19 Python™ 

protocol which gave the processed data for r, Φ1, Φ2, and θ. 

 

6.2 Synthetic Methods 

6.2.1 General Methods 

All non-aqueous reactions were carried out under oxygen-free Ar atmosphere using flame-

dried glassware. THF was freshly distilled from sodium and benzophenone. Alkyllithiums 

were titrated against N-benzylbenzamide before use.112 Et3N, i-Pr2NH and pyrrolidine were 

distilled over CaH2 before use. Brine refers to a saturated NaCl(aq) solution. Water is distilled 

water. Flash column chromatography was carried out using Fluka Chemie GmbH silica (220- 

440 mesh). Thin layer chromatography was carried out using commercially available Merck 
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F254 aluminium backed silica plates. Proton (400 MHz) and carbon (100.6 MHz) NMR 

spectra were recorded on a Jeol ECX-400 instrument using an internal deuterium lock. For 

samples recorded in CDCl3, chemical shifts are quoted in parts per million relative to CHCl3 

(δH 7.26) and CDCl3 (δC 77.0, central line of triplet). For samples recorded in d6-DMSO, 

chemical shifts are quoted in parts per million relative to DMSO (δH 2.50, central line of 

quintet) and d6-DMSO (δC 39.5, central line of septet). For samples recorded in d6-acetone, 

chemical shifts are quoted in parts per million relative to acetone (δH 2.05, central line of 

quintet) and d6-acetone (δC 29.8, central line of septet). Carbon NMR spectra were recorded 

with broad band proton decoupling and assigned using DEPT experiments. Coupling 

constants (J) are quoted in Hertz. Melting points were carried out on a Gallenkamp melting 

point apparatus. Infrared spectra were recorded on an ATI Mattson Genesis FT-IR 

spectrometer. Electrospray high and low resonance mass spectra were recorded at room 

temperature on a Bruker Daltronics microOTOF spectrometer. 

6.2.2 General Procedures 

General Procedure A: Suzuki-Miyaura cross coupling of vinyl MIDA boronate 94 

A solution of vinyl MIDA boronate 94 (100 mg, 0.234 mmol, 1.0 eq), Pd(OAc)2 (3 mg, 

0.012 mmol, 0.05 eq), SPhos (10 mg, 0.023 mmol, 0.1 eq) and the aryl bromide (0.28 mmol, 

1.2 eq) in dioxane (2.35 mL) in a sealed tube was stirred at rt for 15 min under Ar. 3 M 

K3PO4(aq) (0.59 mL, 1.755 mmol, 7.5 eq), degassed by sparging with Ar, was added and the 

resulting mixture was stirred and heated at 60 °C in a sealed tube for 20 h. H2O (5 mL) was 

added and the mixture was extracted with Et2O (3 × 10 mL). The combined organic extracts 

were washed with brine (10 mL), dried (Na2SO4) and evaporated under reduced pressure to 

give the crude product. 
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6.2.3 Experimental Procedures and Characterisation Data 

2,2,2-Trichloro-N-(2,4-dimethoxybenzyl)-N-(4-oxocyclohexyl)acetamide 108 

 

A solution of 1,4-cyclohexadione monoethylene acetal 29 (4.00 g, 25.6 mmol, 1.0 eq), 2,4-

dimethoxybenzylamine (3.9 mL, 25.6 mmol, 1.0 eq) and NaBH(OAc)3 (7.60 g, 35.9 mmol, 

1.4 eq) in CH2Cl2 (100 mL) was stirred at rt for 16 h. Saturated NH4Cl(aq) (10mL) was added. 

Then, 1 M NaOH(aq) was added until pH ≈ 10 was reached. The mixture was extracted with 

CH2Cl2 (3 × 20 mL). The combined organic extracts were washed with brine (50 mL) dried 

(Na2SO4) and evaporated under reduced pressure to give the crude amine as a pale yellow 

oil. To the crude amine was added 3 M HCl(aq) (140 mL) and the resulting solution was 

stirred at rt for 48 h. Solid Na2CO3 was added until pH ≈ 9 was reached and the mixture was 

extracted with CH2Cl2 (3 × 20 mL). The combined organic extracts were washed with brine 

(50 mL), dried (Na2SO4) and evaporated under reduced pressure to give the crude amino 

ketone as a pale yellow oil. The crude amino ketone was dissolved in CH2Cl2 (80 mL). The 

resulting solution was cooled to 0 °C and Et3N (6.8 mL, 48.6 mmol, 1.9 eq) was added under 

Ar. Then, trichloroacetyl chloride (5.2 mL, 45.0 mmol, 1.8 eq) was added dropwise and the 

solution was allowed to warm to rt. The resulting solution was stirred at rt for 4 h and then 

poured into water (30 mL). The mixture was extracted with CH2Cl2 (3 × 20 mL) and the 

combined organic extracts were washed with brine (50 mL), dried (Na2SO4) and evaporated 

under reduced pressure to give the crude product. Purification by flash column 

chromatography on silica with 4:6 to 7:3 Et2O-hexane as eluent gave trichloroacetamide 108 

(9.45 g, 90%) as a white solid, mp 122-124 °C; RF (4:6 Et2O-hexane) 0.22; IR (ATR) 2956, 

1717 (C=O, ketone), 1674 (C=O, amide), 1615, 1507, 1417, 1259, 1208, 1157, 1123, 1036, 

825, 812, 730, 667 cm‒1; 1H NMR (400 MHz, CDCl3) (65:35 mixture of rotamers) δ 7.25–

7.15 (m, 0.35H, Ar), 6.96 (d, J = 8.5 Hz, 0.65H, Ar), 6.52–6.35 (m, 2H, Ar), 5.00 (br t, J = 

12.0 Hz, 0.65H, NCH), 4.93–4.79 (m, 0.35H, NCH), 4.60–4.52 (m, 1.3H, NCHAr), 4.04–

3.92 (m, 0.35H, NCHAr), 3.84–3.74 (m, 6.35H, NCHAr, OMe), 2.49–2.37 (m, 3.3H, CH), 

2.36–2.21 (m, 0.7H, CH), 2.21–2.10 (m, 2.05H, CH), 2.10–1.91 (m, 1.95H, CH). 13C NMR 

(100.6 MHz, CDCl3) (mixture of rotamers) δ 208.4 (C=O, ketone), 160.7 (C=O, amide), 
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160.1 (ipso-Ar), 157.2 (ipso-Ar), 128.7 (Ar, only resolved in HMQC), 127.1 (Ar), 117.4 

(ipso-Ar), 104.3 (ipso-Ar), 98.5 (Ar), 93.8 (CCl3), 57.2 (NCH), 55.5 (OMe), 46.9 (NCH), 

42.1 (NCH2), 39.8 (CH2), 29.3 (CH2) (1 × OMe resonance not resolved); HRMS (ESI) m/z 

calcd for C17H20
35Cl3NO4 (M + Na)+ 430.0350, found 430.0344 (+1.4 ppm error). 

Lab book reference: ARG-1-007 

 

A solution of 1,4-cyclohexadione monoethylene acetal 29 (875 mg, 5.62 mmol, 1.0 eq), 2,4-

dimethoxybenzylamine (0.9 mL, 5.84 mmol, 1.0 eq) and NaBH(OAc)3 (1.70 g, 7.86 mmol, 

1.4 eq) in CH2Cl2 (25 mL) was stirred at rt for 16 h. Saturated NH4Cl(aq) (5mL) was added. 

Then, 1 M NaOH(aq) was added until pH ≈ 10 was reached. The mixture was extracted with 

CH2Cl2 (3 × 10 mL). The combined organic extracts were dried (Na2SO4) and evaporated 

under reduced pressure to give the crude amine as a pale-yellow oil. To the crude amine was 

added 3 M HCl(aq) (40 mL) and the resulting solution was stirred at rt for 48 h. Solid Na2CO3 

was added until pH ≈ 9 was reached and the solution was extracted with CH2Cl2 (3 × 10 

mL). The combined organic extracts were dried (Na2SO4) and evaporated under reduced 

pressure to give the crude amino ketone as a pale-yellow oil. The crude amino ketone was 

dissolved in CH2Cl2 (20 mL). The resulting solution was cooled to 0 °C and Et3N (1.5 mL, 

10.8 mmol, 1.9 eq) was added. Then, trichloroacetyl chloride (1.1 mL, 9.80 mmol, 1.8 eq) 

was added dropwise and the solution was allowed to warm to rt. The resulting solution was 

stirred at rt for 4 h and then poured into water (10 mL). The mixture was extracted with 

CH2Cl2 (3 × 10 mL) and the combined organic extracts were dried (Na2SO4) and evaporated 

under reduced pressure to give the crude product. Purification by flash column 

chromatography on silica with 4:6 to 7:3 Et2O-hexane as eluent gave trichloroacetamide 108 

(2.04 g, 89%) as a white solid, identical (by 1H and 13C NMR spectroscopy) to that described 

above. 

Lab book reference: ARG-1-003 

 

A solution of 1,4-cyclohexadione monoethylene acetal 29 (4.06 g, 26.0 mmol, 1.0 eq), 2,4-

dimethoxybenzylamine (4.0 mL, 26.0 mmol, 1.0 eq) and NaBH(OAc)3 (7.70 g, 36.4 mmol, 

1.4 eq) in CH2Cl2 (107 mL) was stirred at rt for 12 h. Saturated NH4Cl(aq) (10mL) was added. 

Then, 1 M NaOH(aq) was added until pH ≈ 10 was reached. The mixture was extracted with 
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CH2Cl2 (3 × 20 mL). The combined organic extracts were dried (Na2SO4) and evaporated 

under reduced pressure to give the crude amine as a pale-yellow oil. To the crude amine was 

added 3 M HCl(aq) (140 mL) and the resulting solution was stirred at rt for 48 h. Solid Na2CO3 

was added until pH ≈ 9 was reached and the solution was extracted with CH2Cl2 (3 × 20 

mL). The combined organic extracts were dried (Na2SO4) and evaporated under reduced 

pressure to give the crude amino-ketone as a pale-yellow oil. The crude amino-ketone was 

dissolved in CH2Cl2 (80 mL). The resulting solution was cooled to 0 °C and Et3N (7.0 mL, 

49.4 mmol, 1.9 eq) was added. Then, trichloroacetyl chloride (5.3 mL, 46.8 mmol, 1.8 eq) 

was added dropwise and the solution was allowed to warm to rt. The resulting solution was 

stirred at rt for 4 h and then poured into water (30 mL). The mixture was extracted with 

CH2Cl2 (3 × 20 mL) and the combined organic extracts were dried (Na2SO4) and evaporated 

under reduced pressure to give the crude product. Purification by triturating the crude solid 

with Et2O (2 × 50 mL) gave trichloroacetamide 108 (6.38 g, 60%) as a white solid, identical 

(by 1H and 13C NMR spectroscopy) to that described above. 

Lab book reference: ARG-2-108 

 

6-(2,4-Dimethoxybenzyl)-6-azabicyclo[3.2.1]octane-2,7-dione 109 

 

A mixture of trichloroacetamide 108 (501 mg, 1.22 mmol, 1.0 eq) and pyrrolidine (0.11 mL, 

1.22 mmol, 1.0 eq) in toluene (0.3 mL) was stirred and heated at 100 °C in a sealed vial for 

1 h. The crude mixture was directly purified by flash column chromatography on silica with 

1:1 to 4:1 EtOAc-hexane as eluent to give normorphan 109 (281 mg, 80%) as a red oil, RF 

(1:1 EtOAc-hexane) 0.17; IR (ATR) 2953, 1723 (C=O, ketone), 1689 (C=O, amide), 1613, 

1588, 1508, 1418, 1295, 1209, 1158, 1125, 1034, 835 cm–1; 1H NMR (400 MHz, CDCl3) δ 

7.24–7.21 (m, 1H, Ar), 6.48–6.44 (m, 2H, Ar), 4.60 (d, J = 14.5 Hz, 1H, NCHH'), 4.43 (d, J 

= 14.5 Hz, 1H, NCHH'), 3.85–3.78 (m, 7H, OMe, NCH), 3.18 (d, J = 5.0 Hz, 1H, C(O)CH), 
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2.56 (dddd, J = 11.5, 5.0, 5.0, 2.5 Hz, 1H, CH-4), 2.45–2.32 (m, 2H, C(O)CHH’), 2.08–2.00 

(m, 1H, CH-2), 1.98 (d, J = 11.5 Hz, 1H, CH-4), 1.79 (dddd, J = 13.5, 8.5, 8.5, 1.5 Hz, 1H, 

CH-2). 13C NMR (100.6 MHz, CDCl3) δ 203.0 (C=O, ketone), 170.8 (C=O, amide), 160.9 

(ipso-Ar), 158.7 (ipso-Ar), 131.3 (Ar), 116.8 (ipso-Ar), 104.4 (Ar), 98.6 (Ar), 58.3 (CHCO), 

55.5 (OMe), 54.8 (NCH), 39.5 (NCH2), 36.2 (CH2-4), 35.1 (CH2CO), 27.6 (CH2-2) (1 × 

OMe resonance not resolved); HRMS (ESI) m/z calcd for C16H19NO4 (M + H)+ 290.1383, 

found 290.1387 (+1.4 ppm error). 

Lab book reference: ARG-1-019 

 

A mixture of trichloroacetamide 108 (200 mg, 0.49 mmol, 1.0 eq) and pyrrolidine (0.1 mL, 

0.98 mmol, 2.0 eq) in toluene (2 mL) was stirred and heated at reflux for 45 min. The solvent 

was evaporated under reduced pressure to give the crude product. Purification by flash 

column chromatography on silica with 1:1 to 4:1 EtOAc-hexane as eluent gave normorphan 

109 (63 mg, 45%) as a red oil, identical (by 1H and 13C NMR spectroscopy) to that described 

above. 

Lab book reference: ARG-1-006 

 

A mixture of trichloroacetamide 108 (400 mg, 0.98 mmol, 1.0 eq) and pyrrolidine (0.2 mL, 

1.96 mmol, 2.0 eq) in toluene (3 mL) was stirred and heated at reflux for 3 h. The solvent 

was evaporated under reduced pressure to give the crude product. Purification by flash 

column chromatography on silica with 1:1 to 4:1 EtOAc-hexane as eluent gave normorphan 

109 (93 mg, 33%) as a red oil, identical (by 1H and 13C NMR spectroscopy) to that described 

above. 

Lab book reference: ARG-1-008 

 

A mixture of trichloroacetamide 108 (500 mg, 1.22 mmol, 1.0 eq) and pyrrolidine (51 µL, 

0.61 mmol, 0.5 eq) was stirred and heated at 100 °C in a sealed vial for 1 h. The crude 

mixture was directly purified by flash column chromatography on silica with 1:1 to 4:1 

EtOAc-hexane as eluent to give normorphan 109 (222 mg, 63%) as a red oil, identical (by 

1H and 13C NMR spectroscopy) to that described above. 
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Lab book reference: ARG-1-010 

A mixture of trichloroacetamide 108 (7.00 g, 17.1 mmol, 1.0 eq) and pyrrolidine (1.43 mL, 

17.1 mmol, 1.0 eq) in toluene (4.3 mL) was stirred and heated at 100 °C in a sealed tube for 

1 h. The crude mixture was directly purified by flash column chromatography on silica with 

1:1 to 4:1 EtOAc-hexane as eluent to give normorphan 109 (3.96 g, 80%) as a red oil, 

identical (by 1H and 13C NMR spectroscopy) to that described above. 

Lab book reference: ARG-2-109 

 

6-(2,4-Dimethoxybenzyl)-7-oxo-6-azabicyclo[3.2.1]oct-2-en-2-yl 

trifluoromethanesulfonate 110 

 

NaHMDS (4.0 mL of a 2 M solution in THF, 8.0 mmol, 1.6 eq) was added dropwise to a 

stirred solution of normorphan 109 (1.44 g, 4.97 mmol, 1.0 eq) in THF (12 mL) at –78 °C 

under Ar. The resulting solution was stirred at –78 °C for 1 h. Then, a solution of PhNTf2 

(2.30 g, 6.46 mmol, 1.3 eq) in THF (8 mL) was added and the resulting solution was allowed 

to warm slowly to rt. The solution was stirred at rt for 16 h. Saturated NH4Cl(aq) (15 mL) was 

added and the mixture was extracted with Et2O (4 × 15 mL). The combined organic extracts 

were washed with brine (50 mL), dried (Na2SO4) and evaporated under reduced pressure to 

give the crude product. Purification by flash column chromatography on silica with 1:1 to 

4:1 Et2O-hexane as eluent gave vinyl triflate 110 (1.25 g, 60%) as a clear oil, RF (3:2 Et2O-

hexane) 0.22; IR (ATR) 2959, 1703 (C=O), 1662 (C=C), 1589, 1508, 1415, 1206, 1138, 878, 

834, 609 cm–1; 1H NMR (400 MHz, CDCl3) δ 7.14–7.08 (m, 1H, Ar), 6.47–6.40 (m, 2H, 

Ar), 5.56–5.51 (m, 1H, =CH), 4.50 (d, J = 14.5 Hz, 1H, NCHH'), 4.29 (d, J = 14.5 Hz, 1H, 

NCHH'), 3.83–3.77 (m, 6H, OMe), 3.76–3.71 (m, 1H, NCH), 2.98–2.94 (m, 1H, CH-5), 

2.36–2.23 (m, 3H, CH2-2, CH-4), 1.90 (d, J = 10.5 Hz, 1H, CH2-4); 13C NMR (100.6 MHz, 



102 

 

CDCl3) δ 173.6 (C=O), 160.8 (ipso-Ar), 158.5 (ipso-Ar), 148.4 (=C), 130.9 (Ar), 118.6 (q, 

J = 320.0 Hz, CF3), 117.2 (ipso-Ar), 114.8 (=CH) , 104.5 (Ar), 98.6 (Ar), 55.5 (OMe), 55.4 

(OMe), 53.0 (NCH), 44.7 (CHCO), 38.4 (NCH2), 34.1 (CH2-4), 28.3 (CH2-2); HRMS (ESI) 

m/z calcd for C17H18F3NO6S (M + Na)+  444.0699, found 444.0706 (–1.8 ppm error). 

Lab book reference: ARG-1-048 

 

n-BuLi (0.19 mL of a 2.2 M solution in THF, 0.41 mmol, 1.2 eq) was added dropwise to a 

stirred solution of i-Pr2NH (61 µL, 0.41 mmol, 1.2 eq) in THF (1 mL) at –78 °C under Ar. 

The resulting solution was stirred at –78 °C for 10 min. Then, a solution of normorphan 109 

(100 mg, 0.35 mmol, 1.0 eq) in THF (0.8 mL) was added. The solution was stirred for 1 h. 

Then, a solution of PhNTf2 (172 mg, 0.48 mmol, 1.4 eq) in THF (1 mL) was added and the 

resulting solution was allowed to warm slowly to rt. The solution was stirred at rt for 18 h. 

Saturated NH4Cl(aq) (2 mL) was added and the mixture was extracted with Et2O (3 × 10 mL). 

The combined organic extracts were washed with brine (10 mL), dried (Na2SO4) and 

evaporated under reduced pressure to give the crude product. Purification by flash column 

chromatography on silica with 1:1 to 4:1 Et2O-hexane as eluent gave vinyl triflate 110 (44 

mg, 30%) as a clear oil, identical (by 1H and 13C NMR spectroscopy) to that described above. 

Lab book reference: ARG-1-021 

 

LiHMDS (1.0 mL of a 1 M solution in THF, 1.01 mmol, 1.4 eq) was added dropwise to a 

stirred solution of normorphan 109 (210 mg, 0.72 mmol, 1.0 eq) in THF (2.5 mL) at –78 °C 

under Ar. The resulting solution was stirred at –78 °C for 1 h. Then, a solution of Comins’ 

reagent 113 (370 mg, 0.94 mmol, 1.3 eq) in THF (2 mL) was added and the resulting solution 

was allowed to warm slowly to rt. The solution was stirred at rt for 18 h. Saturated NH4Cl(aq) 

(5 mL) was added and the mixture was extracted with Et2O (3 × 10 mL). The combined 

organic extracts were washed with brine (20 mL), dried (Na2SO4) and evaporated under 

reduced pressure to give the crude product which contained <10% of vinyl triflate 110 by 

1H NMR spectroscopy. 

Lab book reference: ARG-1-027 
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KHMDS (0.31 mL of a 1 M solution in THF, 0.31 mmol, 1.3 eq) was added dropwise to a 

stirred solution of normorphan 109 (100 mg, 0.30 mmol, 1.0 eq) in THF (1.5 mL) at –78 °C 

under Ar. After stirring at –78 °C for 1 h, a solution of PhNTf2 (122 mg, 0.34 mmol, 1.4 eq) 

in THF (1.5 mL) was added and resulting the solution was allowed to warm slowly to rt. The 

solution was stirred at rt for 18 h. Saturated NH4Cl(aq) (5 mL) was added and the mixture was 

extracted with Et2O (3 × 15 mL). The combined organic extracts were washed with brine 

(20 mL), dried (Na2SO4) and evaporated under reduced pressure to give the crude product. 

Purification by flash column chromatography on silica with 1:1 to 4:1 Et2O-hexane as eluent 

gave vinyl triflate 110 (8 mg, 8%) as a clear oil, identical (by 1H and 13C NMR spectroscopy) 

to that described above. 

Lab book reference: ARG-1-020 

 

NaHMDS (0.76 mL of a 2 M solution in THF, 1.53 mmol, 1.8 eq) was added dropwise to a 

stirred solution of normorphan 109 (245 mg, 0.85 mmol, 1.0 eq) in THF (3 mL) at –78 °C 

under Ar. The resulting solution was stirred at –78 °C for 1 h. Then, a solution of PhNTf2 

(395 mg, 1.11 mmol, 1.3 eq) in THF (2.5 mL) was added and the resulting solution was 

allowed to warm slowly to rt. The solution was stirred at rt for 18 h. Saturated NH4Cl(aq) (5 

mL) was added and the mixture was extracted with Et2O (3 × 15 mL). The combined organic 

extracts were washed with cold 10% NaOH(aq) (10 mL) and brine (50 mL), dried (Na2SO4) 

and evaporated under reduced pressure to give the crude product. Purification by flash 

column chromatography on silica with 1:1 to 4:1 Et2O-hexane as eluent gave vinyl triflate 

110 (150 mg, 45%) as a clear oil, identical (by 1H and 13C NMR spectroscopy) to that 

described above. 

Lab book reference: ARG-1-031 

 

NaHMDS (0.76 mL of a 2 M solution in THF, 1.53 mmol, 1.8 eq) was added dropwise to a 

stirred solution of normorphan 109 (245 mg, 0.85 mmol, 1.0 eq) in THF (3 mL) at –78 °C 

under Ar. The resulting solution was stirred at –78 °C for 1 h. Then, a solution of Comins’ 

reagent 113 (435 mg, 1.11 mmol, 1.3 eq) in THF (2.5 mL) was added and resulting the 

solution was allowed to warm slowly to rt. The solution was stirred at rt for 18 h. Saturated 

NH4Cl(aq) (5 mL) was added and the mixture was extracted with Et2O (3 × 15 mL). The 
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combined organic extracts were washed with cold 10% NaOH(aq) (10 mL) and brine (50 mL), 

dried (Na2SO4) and evaporated under reduced pressure to give the crude product. 

Purification by flash column chromatography on silica with 1:1 to 4:1 Et2O-hexane as eluent 

gave vinyl triflate 110 (130 mg, 36%) as a clear oil, identical (by 1H and 13C NMR 

spectroscopy) to that described above. 

Lab book reference: ARG-1-032 

 

NaHMDS (2.8 mL of a 2 M solution in THF, 1.52 mmol, 1.8 eq) was added dropwise to a 

stirred solution of normorphan 109 (230 mg, 0.79 mmol, 1.0 eq) in THF (2.8 mL) at –78 °C 

under Ar. The resulting solution was stirred at –78 °C for 1 h. Then, a solution of PhNTf2 

(367 mg, 1.23 mmol, 1.3 eq) in THF (2.2 mL) was added and the resulting solution was 

allowed to warm slowly to rt. The solution was stirred at rt for 48 h. Saturated NH4Cl(aq) (5 

mL) was added and the mixture was extracted with Et2O (3 × 15 mL). The combined organic 

extracts were washed with brine (50 mL), dried (Na2SO4) and evaporated under reduced 

pressure to give the crude product. Purification by flash column chromatography on silica 

with 1:1 to 4:1 Et2O-hexane as eluent gave vinyl triflate 110 (113 mg, 33%) as a clear oil, 

identical (by 1H and 13C NMR spectroscopy) to that described above. 

Lab book reference: ARG-1-038 

 

NaHMDS (9.2 mL of a 2 M solution in THF, 18.4 mmol, 1.6 eq) was added dropwise to a 

stirred solution of normorphan 109 (3.55 g, 12.3 mmol, 1.0 eq) in THF (30 mL) at –78 °C 

under Ar. The resulting solution was stirred at –78 °C for 1 h. Then, a solution of PhNTf2 

(5.70 g, 15.9 mmol, 1.3 eq) in THF (20 mL) was added and resulting the solution was 

allowed to warm slowly to rt. The solution was stirred at rt for 18 h. Saturated NH4Cl(aq) (30 

mL) was added and the mixture was extracted with Et2O (5 × 20 mL). The combined organic 

extracts were washed with brine (50 mL), dried (Na2SO4) and evaporated under reduced 

pressure to give the crude product. Purification by flash column chromatography on silica 

with 1:1 to 4:1 Et2O-hexane as eluent gave vinyl triflate 110 (3.20 g, 61%) as a clear oil, 

identical (by 1H and 13C NMR spectroscopy) to that described above. 

Lab book reference: ARG-2-111 
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6-(2,4-Dimethoxybenzyl)-7-oxo-6-azabicyclo[3.2.1]oct-2-en-2-yl 

trifluoromethanesulfonate 110 and N-(5-chloropyridin-2-yl)-1,1,1-

trifluoromethanesulfonamide 114 

   

n-BuLi (0.25 mL of a 2.2 M solution in THF, 0.53 mmol, 1.3 eq) was added dropwise to a 

stirred solution of i-Pr2NH (75 µL, 0.53 mmol, 1.3 eq) in THF (1 mL) at –78 °C under Ar. 

The resulting solution was stirred at –78 °C for 10 min. Then, a solution of normorphan 109 

(118 mg, 0.41 mmol, 1.0 eq) in THF (1 mL) was added. The resulting solution was stirred 

at –78 °C for 1 h. Then, solution of Comins’ reagent 113 (208 mg, 0.53 mmol, 1.3 eq) in 

THF (1 mL) was added and the resulting solution was allowed to warm slowly to rt. The 

solution was stirred at rt for 18 h. Saturated NH4Cl(aq) (2 mL) was added and the mixture 

extracted with Et2O (3 × 10 mL). The combined organic extracts were washed with brine 

(10 mL), dried (Na2SO4) and the evaporated under reduced pressure to give the crude 

product. Purification by flash column chromatography on silica with 1:1 to 4:1 Et2O-hexane 

as eluent gave an 80:20 mixture of vinyl triflate 110 and sulfonamide 114 (69 mg, i.e. 56.6 

mg (33%) of vinyl triflate 110) as a clear oil. Diagnostic signals for sulfonamide 114: 1H 

NMR (400 MHz, CDCl3) δ 8.15–8.10 (m, 1H), 7.82–7.75 (m, 1H), 7.72–7.64 (m, 1H). 

Lab book reference: ARG-1-022 

 

NaHMDS (0.53 mL of a 2 M solution in THF, 1.08 mmol, 1.3 eq) was added dropwise to a 

stirred solution of normorphan 109 (240 mg, 0.83 mmol, 1.0 eq) in THF (1.5 mL) at –78 °C 

under Ar. The resulting solution was stirred at –78 °C for 1 h. Then, a solution of Comins’ 

reagent 113 (424 mg, 1.08 mmol, 1.3 eq) in THF (2.5 mL) was added and the resulting 

solution was allowed to warm slowly to rt. The solution was stirred at rt for 18 h. Saturated 
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NH4Cl(aq) (5 mL) was added and the mixture was extracted with Et2O (3 × 15 mL). The 

combined organic extracts were washed with brine (20 mL), dried (Na2SO4) and evaporated 

under reduced pressure to give the crude product. Purification by flash column 

chromatography on silica with 1:1 to 4:1 Et2O-hexane as eluent an 85:15 mixture of vinyl 

triflate 110 and sulfonamide 114 (219 mg, i.e. 190 mg (54%) of vinyl triflate 110) as a clear 

oil. 

Lab book reference: ARG-1-025 

 

8-(6-(2,4-Dimethoxybenzyl)-7-oxo-6-azabicyclo[3.2.1]oct-2-en-2-yl)-4-methyldihydro-

4λ4,8λ4-[1,3,2]oxazaborolo[2,3-b][1,3,2]oxazaborole-2,6(3H,5H)-dione 94 and 6-(2,4-

dimethoxybenzyl)-6-azabicyclo[3.2.1]oct-2-en-7-one 115 

           

A solution of vinyl triflate 110 (1.98 g, 4.70 mmol, 1.0 eq), PdCl2(PPh3)2 (97 mg, 0.14 mmol, 

0.03 eq), PPh3 (73 mg, 0.28 mmol, 0.06 eq), KOPh (931 mg, 7.05 mmol, 1.5 eq) and B2pin2 

(1.31 g, 5.17 mmol, 1.1 eq) in toluene (30 mL) under Ar was stirred and heated at 50 °C for 

16 h. The solids were removed by filtration through Celite® and the filtrate was evaporated 

under reduced pressure to give the crude pinacol boronate. The crude pinacol boronate was 

dissolved in DMSO (24 mL) and MIDA (4.49 g, 30.54 mmol, 6.5 eq) and HC(OEt)3 (3.70 

mL, 21.14 mmol, 4.5 eq) were added. The resulting mixture was stirred and heated at 100 

°C under Ar for 48 h. Saturated NH4Cl(aq) (10 mL) was added and the mixture was extracted 

with EtOAc (4 × 30 mL). The combined organic extracts were washed with brine (50 mL), 

dried (MgSO4) and evaporated under reduced pressure to give the crude product. Purification 

by flash column chromatography on silica with 9:1 to 7:3 CH2Cl2-acetone as eluent gave 

alkene 115 (192 mg, 15%) as a clear oil, RF (9:1 hexane-acetone) 0.1; IR (ATR) 2940, 2835, 

1685 (C=O), 1612, 1587, 1506, 1411, 1206, 1031, 832, 669 cm–1; 1H NMR (400 MHz, 
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CDCl3) δ 7.09–7.03 (m, 1H, Ar), 6.42–6.34 (m, 2H, Ar), 6.07 (dddd, J = 9.0, 7.0, 1.0, 1.0 

Hz, 1H, =CH-6), 5.51 (dddd, J = 9.0, 3.5, 3.0, 1.5 Hz, 1H, =CH-1), 4.50 (d, J = 15.0 Hz, 1H, 

NCHH'), 4.16 (d, J = 15.0 Hz, 1H, NCHH'), 3.76–3.71 (m, 6H, OMe), 3.66–3.62 (m, 1H, 

NCH), 2.75 (dd, J = 7.0, 4.5 Hz, 1H, CH-5), 2.17 – 2.04 (m, 3H, CHH'-2, CHH'-4), 1.71 (d, 

J = 10.0 Hz, 1H, CHH'-4); 13C NMR (100.6 MHz, CDCl3) δ 177.5 (C=O), 160.4 (ipso-Ar), 

158.5 (ipso-Ar), 130.3 (Ar), 129.2 (=CH-6), 126.0 (=CH-1), 117.8 (ipso-Ar), 104.3 (Ar), 

98.4 (Ar), 55.4 (OMe), 54.3 (NCH), 40.8 (CH-5), 37.8 (NCH2), 33.9 (CH2-4), 28.3 (CH2-2) 

(1 × OMe resonance not resolved); HRMS (ESI) m/z calcd for C16H19NO3 (M+Na)+ 

296.1257, found 296.1250 (+2.7 ppm error) and vinyl MIDA boronate 94 (1.40 g, 70%) as 

an off-white crystalline solid, mp 80-82 °C; RF (4:1 CH2Cl2-acetone) 0.29; IR (ATR) 2958, 

1760 (C=O, ester), 1673 (C=O, amide), 1614, 1508, 1457, 1292, 1180, 1036, 823 cm–1; 1H 

NMR (400 MHz, d6-acetone) δ 7.08 (d, J = 8.5 Hz, 1H, Ar), 6.53 (d, J = 2.5 Hz, 1H, Ar), 

6.45 (dd, J = 8.5, 2.5 Hz, 1H, Ar), 5.98 (ddd, J = 3.0, 3.0, 3.0 Hz, 1H, =CH), 4.41 (d, J = 

15.0 Hz, 1H, NCHH'), 4.27–4.07 (m, 4H, NCHH', CHH'CO2), 3.96 (d, J = 17.0 Hz, 1H, 

CHH'CO2), 3.81 (s, 3H, OMe), 3.78–3.71 (m, 4H, OMe, NCH), 2.84 (s, 3H, NMe), 2.64 (d, 

J = 4.5 Hz, 1H, CH-5), 2.24–2.17 (m, 2H, CHH'-2), 2.16 (ddd, J = 10.5, 5.5, 4.5 Hz, 1H, 

CHH'-4), 1.67 (d, J = 10.5 Hz, 1H, CHH'-4); 13C NMR (100.6 MHz, d6-acetone) δ 177.0 

(C=O, amide), 169.2 (C=O, ester), 167.9 (C=O, ester), 160.7 (ipso-Ar), 158.6 (ipso-Ar), 

134.1 (=CH), 130.0 (Ar), 117.8 (ipso-Ar), 104.6 (Ar), 98.2 (Ar), 62.0 (CH2CO2), 61.3 

(CH2CO2), 55.0 (OMe), 54.8 (OMe), 54.3 (NCH), 45.8 (NMe), 41.8 (CH-5), 37.6 (NCH2), 

33.7 (CH2-4), 28.8 (CH2-2, only resolved in DEPT-135) (=C-B resonance not resolved); 

HRMS (ESI) m/z calcd for C21H25BN2O7 (M + Na)+  451.1647, found 451.1654 (–0.2 ppm 

error) 

Lab book reference: ARG-2-114 

 

PdCl2(dppf) (22 mg, 0.03 mmol, 0.06 eq), dppf  (17 mg, 0.03 mmol, 0.06 eq), KOAc (134 

mg, 1.37 mmol, 3.0 eq) and B2pin2 (137 mg, 0.54 mmol, 1.2 eq) were added to a stirred 

solution of vinyl triflate 110 (193 mg, 0.46 mmol, 1.0 eq) in dioxane (3 mL) at rt under Ar. 

The resulting mixture was stirred and heated at 80 °C under Ar for 16 h. H2O (10 mL) was 

added and the mixture was extracted with EtOAc (3 × 10 mL). The combined organic 

extracts were washed with brine (20 mL), dried (Na2SO4) and evaporated under reduced 

pressure to give the crude pinacol boronate. Purification by flash column chromatography 
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on silica with 4:6 EtOAc-hexane as eluent gave impure pinacol boronate 111 (100 mg) which 

was dissolved in DMSO (1.2 mL). MIDA (228.5 mg, 1.55 mmol, 6.2 eq) and HC(OEt)3 

(0.17 mL, 1.0 mmol, 4.0 eq) were added. The resulting mixture was stirred and heated at 100 

°C under Ar for 48 h. Saturated NH4Cl(aq) (10 mL) was added and the mixture was extracted 

with EtOAc (3 × 10 mL). The combined organic extracts were washed with brine (20 mL), 

dried (MgSO4) and evaporated under reduced pressure to give the crude product. Purification 

by flash column chromatography on silica with 9:1 to 7:3 CH2Cl2-acetone as eluent gave 

vinyl MIDA boronate 94 (49 mg, 25%) as an off-white crystalline solid identical (by 1H and 

13C NMR spectroscopy) to that described above. Diagnostic signals for pinacol boronate 

111: 1H NMR (400 MHz, CDCl3) δ 7.11–7.07 (m, 1H, Ar), 6.43–6.39 (m, 2H, Ar), 6.39–

6.37 (m, 1H, =CH), 4.52 (d, J = 15.0 Hz, 1H, NCHH'), 4.14 (d, J = 15.0 Hz, 1H, NCHH’), 

3.84–3.74 (m, 6H, OMe), 3.66–3.60 (m, 1H, NCH), 3.07 (d, J = 4.5 Hz, 1H, C(O)CH), 2.11 

(ddd, J = 10.5, 5.5, 5.5 Hz, 1H, CHH’), 1.64 (d, J = 10.5 Hz, 1H, CHH’); HRMS (ESI) m/z 

calcd for C22H30BNO5 (M + Na)+  422.2109, found 422.2117 (–1.0 ppm error). 

Lab book reference: ARG-1-015 

 

A solution of vinyl triflate 110 (219 mg, 0.52 mmol, 1.0 eq), PdCl2(PPh3)2 (15 mg, 0.02 

mmol, 0.03 eq), PPh3 (8 mg, 0.03 mmol, 0.06 eq), KOPh (103 mg, 0.78 mmol, 1.5 eq) and 

B2pin2 (145 mg, 0.57 mmol, 1.1 eq) in toluene (3 mL)was stirred and heated at 50 °C under 

Ar for 16 h. H2O (15 mL) was added, and the mixture was extracted with EtOAc (4 × 10 

mL). The combined organic extracts were washed with brine (10 mL), dried (Na2SO4) and 

evaporated under reduced pressure to give the crude pinacol boronate. Purification by flash 

column chromatography on silica with 4:6 EtOAc-hexane as eluent gave impure pinacol 

boronate 111 (158 mg) which was dissolved in DMSO (1.8 mL). MIDA (343 mg, 2.33 

mmol, 6.2 eq) and HC(OEt)3 (0.25 mL, 1.50 mmol, 4.0 eq) were added. The reaction mixture 

was heated and stirred at 100 °C under Ar for 48 h. Saturated NH4Cl(aq) (10 mL) was added 

and the mixture was extracted with EtOAc (4 × 10 mL). The combined organic extracts were 

washed with brine (20 mL), dried (MgSO4) and evaporated under reduced pressure to give 

the crude product. Purification by flash column chromatography on silica with 9:1 to 7:3 

CH2Cl2-acetone as eluent gave vinyl MIDA boronate 94 (122 mg, 54%) as an off-white 

crystalline solid, identical (by 1H and 13C NMR spectroscopy) to that described above. 

Lab book reference: ARG-1-028 
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A solution of vinyl triflate 110 (1.45 g, 3.44 mmol, 1.0 eq), PdCl2(PPh3)2 (72 mg, 0.10 mmol, 

3 mol%), PPh3 (54 mg, 0.21 mmol, 6 mol%), KOPh (682 mg, 5.16 mmol, 1.5 eq) and B2pin2 

(961 mg, 3.78 mmol, 1.1 eq) in toluene (22 mL) was stirred and heated at 50 °C  under Ar 

for 16 h. The solids were removed by filtration through Celite® and the filtrate was 

evaporated under reduced pressure to give the crude pinacol boronate 111. The crude pinacol 

boronate was dissolved in DMSO (18 mL) and MIDA (1.52 g, 10.32 mmol, 3.0 eq) and 

HC(OEt)3 (2.4 mL, 13.76 mmol, 4.0 eq) were added. The reaction mixture was stirred and 

heated to 100 °C under Ar for 48 h. Saturated NH4Cl(aq) (10 mL) was added and the mixture 

extracted with EtOAc (4 × 30 mL). The combined organic extracts were washed with brine 

(50 mL), dried (MgSO4) and evaporated under reduced pressure to give the crude product. 

Purification by flash column chromatography on silica with 9:1 to 7:3 CH2Cl2-acetone as 

eluent gave alkene 115 (150 mg, 17%) as a clear oil, identical (by 1H and 13C NMR 

spectroscopy) to that described above and vinyl MIDA boronate 94 (850 mg, 60%) as an 

off-white crystalline solid, identical (by 1H and 13C NMR spectroscopy) to that described 

above. 

Lab book reference: ARG-2-120 

 

tert-Butyl ((1R,2R)-2-(3-methylthioureido)cyclohexyl)carbamate (R,R)-118 

 

 

Methyl isothiocyanate (419 mg, 5.60 mmol, 3 eq) was added to a stirred solution of tert-

butyl ((1R,2R)-2-aminocyclohexyl)carbamate (R,R)-117 (400 mg, 1.87 mmol, 1.0 eq) in 

CH2Cl2 (8.5 mL) under Ar at rt. The solution was stirred at rt for 24 h. 1 M NaOH(aq) (10 

mL) was added and the mixture was extracted with EtOAc (3 × 20 mL). The combined 

organic extracts were washed with brine (20 mL), dried (Na2SO4) and evaporated under 

reduced pressure to give the crude product. Purification by flash column chromatography on 

silica with 4:6 EtOAc-hexane as eluent gave N-Boc-thiourea (R,R)-118 (484 mg, 90%) as a 

white gum, [α]D –4.1 (c 2.1 CHCl3) (lit.,
68 [α]D –4.3 (c 2.1 CHCl3)); RF (1:1 EtOAc-hexane) 
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0.32; IR (ATR) 3332 (NH), 2933, 1674 (C=O), 1504, 1414, 1165 cm‒1; 1H NMR (400 MHz, 

d4-methanol) δ 4.13–3.97 (m, 1H, NCH), 2.87 (br s, 3H, NMe), 2.10–1.87 (m, 2H), 1.77–

1.62 (m, 2H), 1.47–1.36 (m, 10H), 1.33–1.19 (m, 5H); 13C NMR (100.6 MHz, d4-methanol) 

δ 157.2 (C=O), 78.7 (OCMe3), 60.2, 54.0, 32.3, 32.0, 27.4, 24.7, 24.5, 13.2 (C=S resonance 

not resolved); HRMS (ESI) m/z calcd for C13H25N3O2S (M + Na)+ 310.1560, found 310.1561 

(–0.4 ppm error). Spectroscopic data consistent with those reported in the literature.68 

Lab book reference: ARG-1-074 

 

1-((1R,2R)-2-Aminocyclohexyl)-3-methylthiourea (R,R)-77 

 

4 M HCl in dioxane (1.79 mL, 7.18 mmol, 9.6 eq) was added to a stirred solution of N-Boc-

thiourea (R,R)-118 (215 mg, 0.748 mmol, 1.0 eq) in CH2Cl2 (4.7 mL) at rt under Ar. The 

resulting solution was stirred at rt for 6 h. The solvent was evaporated under reduced 

pressure. CH2Cl2 (5 mL) was added. Then 1 M NaOH(aq) (10 mL) was added and brine (5 

mL) was added. The layers were separated and the aqueous layer was extracted with CH2Cl2 

(6 × 5 mL). The combined organic extracts were washed with brine (10 mL), dried (Na2SO4) 

and evaporated under reduced pressure to give the thiourea (R,R)-77 (180 mg, 96%) as a 

white gum, [α]D +7.5 (c 3.0 CHCl3) (lit.,
68 [α]D +7.3 (c 3.0 CHCl3)); IR (ATR) 2933, 1515, 

1414 cm‒1; 1H NMR (400 MHz, d4-methanol) δ 4.18–3.63 (m, 1H, NCH), 2.95 (s, 3H, NMe), 

2.59–2.46 (m, 1H, NCH), 2.00–1.93 (m, 2H), 1.84–1.67 (m, 2H), 1.50–1.16 (m, 4H); 13C 

NMR (100.3 MHz, d4-methanol) δ 55.8, 35.2, 33.0, 26.7, 26.0 (C=S, NMe, NCH resonances 

not resolved); HRMS (ESI) m/z calcd for C8H17N3S (M + H)+ 188.1216, found 188.1213 

(+1.5 ppm error). Spectroscopic data consistent with those reported in the literature.68 

Lab book reference: ARG-2-094 
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tert-Butyl (S)-2-((3-(3,5-bis(trifluoromethyl)phenyl)thioureido)methyl)pyrrolidine-1-

carboxylate (S)-121 

 

1-Isothiocyanato-3,5-bis(trifluoromethyl)benzene 120 (938 mg, 3.46 mmol, 1.4 eq) was 

added to a stirred solution of tert-butyl (S)-2-(aminomethyl)pyrrolidine-1-carboxylate (S)-

119 (630 mg, 3.46 mmol, 1.0 eq) in CH2Cl2 (21 mL) at rt under Ar. The resulting solution 

was stirred at rt for 24 h. 1 M NaOH(aq) (20 mL) was added and the mixture was extracted 

with CH2Cl2 (3 × 20 mL). The combined organic extracts were washed with brine (30 mL), 

dried (Na2SO4) and evaporated under reduced pressure to give the crude product. 

Purification by flash column chromatography on silica with 1:1 EtOAc-hexane as eluent 

gave N-Boc-thiourea (S)-121 (1.27 g, 85%) as an off-white solid, mp 94-96 °C; RF (1:1 

EtOAc-hexane) 0.22; IR (ATR) 2978, 1658 (C=O), 1368, 1274, 681 cm‒1; 1H NMR (400 

MHz, d6-DMSO, 120 °C) δ 9.87 (br s, 1H, NH), 8.30 (s, 2H, Ar), 8.04 (br s, 1H, NH), 7.64 

(s, 1H, Ar), 4.05–3.97 (m, 1H, NCH), 3.83 – 3.74 (m, 1H, NCHH’), 3.64–3.55 (m, 1H, 

NCHH’), 3.42–3.24 (m, 2H, C(O)NCHH’), 2.02–1.76 (m, 4H, CH2), 1.43 (s, 9H, CMe3); 

13C NMR (100.6 MHz, d6-DMSO, 120 °C) δ 181.9 (C=S), 154.8 (C=O), 142.7 (ipso-Ar), 

130.9 (q, J = 33.0 Hz, ipso-Ar), 125.2, 122.5, 79.4 (CMe3), 56.8, 47.5, 46.9, 28.7 (CMe3) 

(Ar, CF3 resonances not resolved) HRMS (ESI) m/z calcd for C19H23F6N3O2S (M + Na)+ 

494.1307, found 494.1296 (+2.4 ppm error). 

Lab book reference: ARG-1-077 

 

(S)-1-(3,5-bis(Trifluoromethyl)phenyl)-3-(pyrrolidin-2-ylmethyl)thiourea (S)-116 

 

TFA (4.0 mL, 47.7 mmol, 150 eq) was added to a stirred solution of N-Boc-thiourea (S)-121 

(150 mg, 0.32 mmol, 1.0 eq) in CH2Cl2 (4 mL) at rt under Ar. The resulting solution was 

stirred at rt for 2 h. 1 M NaOH(aq) (4 mL) was added and the mixture was extracted with 
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CH2Cl2 (4 × 10 mL). The combined organic extracts were washed with brine (30 mL), dried 

(Na2SO4) and evaporated under reduced pressure to give thiourea (S)-116 (117 mg, 99%) as 

an off-white solid, [α]D –26.3 (c 0.70 CHCl3) (lit.,
89 [α]D –26.7 (c 0.695 CHCl3)); mp 102-

104 °C (lit.,89 102 °C); IR (ATR) 3246 (NH), 2958, 1550, 1276, 681 cm‒1; 1H NMR (400 

MHz, d4-methanol) δ 8.10 (s, 2H, Ar), 7.50 (s, 1H, Ar), 3.89–3.79 (m, 3H, NCH, NCH2), 

3.24 (ddd, J = 11.5, 7.5, 7.5 Hz, 1H, C(O)NCHH’), 3.18–3.11 (m, 1H, C(O)NCHH’), 2.11–

2.01 (m, 1H, CH), 2.00–1.86 (m, 2H, CH), 1.75–1.64 (m, 1H, CH); 13C NMR (100.6 MHz, 

d4-methanol) δ 184.2 (C=S), 142.8 (ipso-Ar), 132.7 (q, J = 33.5 Hz, ipso-Ar), 124.7 (q, J = 

272.0 Hz, CF3), 124.2 (br, Ar), 118.3 (br, Ar), 61.8 (NCH), 46.5 (NCH2), 45.5 (NCH2), 28.6 

(CH2), 24.2 (CH2); HRMS (ESI) m/z calcd for C14H15F6N3S (M + H)+ 372.0964, found 

372.0962 (+0.4 ppm error). Spectroscopic data consistent with those reported in the 

literature.89 

Lab book reference: ARG-2-121 

 

6-(2,4-Dimethoxybenzyl)-6-azabicyclo[3.2.1]octane-2,7-dione 109 

 

A solution of trichloroacetamide 108 (200 mg, 0.49 mmol, 1.0 eq) and (S)-prolinamide (S)-

38 (28 mg, 0.24 mmol, 0.5 eq) in DMSO (2.0 mL) was stirred and heated at 50 °C in a sealed 

tube for 5 days. Water (5 mL) was added and the mixture extracted with EtOAc (3 × 10 mL). 

The combined organic extracts were washed with brine (3 × 10 mL), dried (Na2SO4) and 

evaporated under reduced pressure to give the crude product. Purification by flash column 

chromatography on silica with 1:1 to 4:1 EtOAc-hexane as eluent gave enantioenriched 

normorphan 109 (33 mg, 25%, 77:23 er by CSP-HPLC) as a red oil, identical (by 1H and 13C 

NMR spectroscopy) to that described above; CSP-HPLC: Chiracel IC (1 i-PrOH, 0.5 mL 

min–1) 40.4 min (major), 56.5 min (minor) (Figure 6.1). 

Lab book reference: ARG-1-009 
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A solution of trichloroacetamide 108 (200 mg, 0.49 mmol, 1.0 eq), thiourea (R,R)-77 (6 mg, 

0.02 mmol, 0.05 eq) and benzoic acid (1.5 mg, 0.01 mmol, 0.02 eq) in CH2Cl2 (2.5 mL) was 

stirred and heated at 50 °C in a sealed tube for 7 days. The solvent was evaporated under 

reduced pressure to give the crude product which contained (by 1H and 13C NMR 

spectroscopy) no trace of product. 

Lab book reference: ARG-1-044 

 

A solution of trichloroacetamide 108 (100 mg, 0.24 mmol, 1.0 eq) and thiourea (R,R)-77 (20 

mg, 0.12 mmol, 0.5 eq) in DMSO (1.0 mL) was stirred and heated at 50 °C in a sealed tube 

for 5 days. Water (5 mL) was added and the mixture was extracted with EtOAc (3 × 10 mL). 

The combined organic extracts were washed with brine (3 × 10 mL), dried (Na2SO4) and 

evaporated under reduced pressure to give the crude product. Purification by flash column 

chromatography on silica with 1:1 to 4:1 EtOAc-hexane as eluent gave enantioenriched 

normorphan 109 (9 mg, 12%, 60:40 er by CSP-HPLC) as a red oil, identical (by 1H and 13C 

NMR spectroscopy) to that described above. CSP-HPLC: Chiracel IC (1 i-PrOH, 0.5 mL 

min–1) 35.6 min (major), 49.4 min (minor) (Figure 6.2). 

Lab book reference: ARG-1-065 

 

A solution of trichloroacetamide 108 (100 mg, 0.24 mmol, 1.0 eq) and thiourea (S)-116 (45 

mg, 0.12 mmol, 0.5 eq) in DMSO (1.0 mL) was stirred and heated at 50 °C in a sealed tube 

for 5 days. Water (5 mL) was added and the mixture extracted with EtOAc (3 × 10 mL). The 

combined organic extracts were washed with brine (3 × 10 mL), dried (Na2SO4) and 

evaporated under reduced pressure to give the crude product. Purification by flash column 

chromatography on silica with 1:1 to 4:1 EtOAc-hexane as eluent gave enantioenriched 

normorphan 109 (21 mg, 30%, 55:45 er by CSP-HPLC) as a red oil, identical (by 1H and 13C 

NMR spectroscopy) to that described above. CSP-HPLC: Chiracel IC (1 i-PrOH, 0.5 mL 

min–1) 35.7 min (major), 49.1 min (minor) (Figure 6.3). 

Lab book reference: ARG-1-061 
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4-Nitro-N-(4-oxocyclohexyl)-N-(prop-2-yn-1-yl)benzenesulfonamide 136 

 

A solution of 1,4-cyclohexadione monoethylene acetal 29 (1.73 g, 7.51 mmol, 1.0 eq), 

propargylamine (0.5 mL, 7.81 mmol, 1.04 eq) and NaBH(OAc)3 (2.23 g, 10.51 mmol, 1.4 

eq) in CH2Cl2 (25 mL) was stirred at rt for 24 h. Saturated NH4Cl(aq) (10 mL) was added. 

Then, 1 M NaOH(aq) was added until pH ≈ 10 was reached. The mixture was extracted with 

CH2Cl2 (3 × 15 mL). The combined organic extracts were washed with brine (10 mL), dried 

(Na2SO4) and evaporated under reduced pressure to give the crude amine as a pale yellow 

oil. To a solution of the crude amine in THF (18 mL) was added 3 M HCl(aq) (18 mL) and 

the resulting solution was stirred at rt for 72 h. Solid Na2CO3 was added until pH ≈ 9 was 

reached and the mixture was extracted with EtOAc (3 × 15 mL). The combined organic 

extracts were washed with brine (10 mL), dried (Na2SO4) and evaporated under reduced 

pressure to give the crude amino ketone as a red oil. The crude amino ketone and DMAP (88 

mg, 0.72 mmol, 0.1 eq) were dissolved in CH2Cl2 (36 mL). The resulting solution was cooled 

to 0 °C and Et3N (1.25 mL, 9.01 mmol, 1.25 eq) was added under Ar. Then, a solution of 4-

nitrobenzenesulfonyl chloride (2.00 g, 9.01 mmol, 1.25 eq) in CH2Cl2 (4.5 mL) was added 

dropwise and the solution was allowed to warm to rt. The resulting solution was stirred at rt 

for 18 h and then 1 M HCl(aq) (10 mL) was added. The resulting mixture was extracted with 

CH2Cl2 (3 × 15 mL) and the combined organic extracts were washed with brine (10 mL), 

dried (Na2SO4) and evaporated under reduced pressure to give the crude product. 

Purification by flash column chromatography on silica with CH2Cl2 as eluent gave alkynyl 

amino ketone 136 (2.51 g, 45%) as an off-white solid, mp 146-148 °C (lit.,69 147-148 °C); 

RF (CH2Cl2) 0.32; IR (ATR) 2954, 1716 (C=O), 1529 (NO2), 1350 (S=O), 1163, 735, 613 

cm‒1; 1H NMR (400 MHz, CDCl3) δ 8.41–8.31 (m, 2H, Ar), 8.20–8.08 (m, 2H, Ar), 4.36–

4.18 (m, 1H, NCH), 4.18 (d, J = 2.5 Hz, 2H, NCH2), 2.51–2.35 (m, 4H, CH2-2), 2.17 (t, J = 

2.5 Hz, 1H, ≡CH), 2.11–1.94 (m, 4H, CH2-3); 13C NMR (100.6 MHz, CDCl3) δ 207.9 (C=O), 

150.2 (ipso-Ar), 146.4 (ipso-Ar), 128.7 (Ar), 124.4 (Ar), 78.8 (≡C-6), 73.9 (≡CH-7), 56.3 

(NCH), 39.8 (NCH2), 32.8 (CH2-2), 30.2 (CH2-3); HRMS (ESI) m/z calcd for C15H16N2O5S 
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(M + Na)+ 359.0672, found 359.0676 (–1.1 ppm error). Spectroscopic data consistent with 

those reported in the literature.69 

Lab book reference: ARG-1-085 

 

4-Methyl-N-(4-oxocyclohexyl)-N-(prop-2-yn-1-yl)benzenesulfonamide 59 

 

A solution of 1,4-cyclohexadione monoethylene acetal 29 (5.05 g, 32.3 mmol, 1.0 eq), 

propargylamine (2.2 mL, 32.6 mmol, 1.04 eq) and NaBH(OAc)3 (9.59 g, 42.3 mmol, 1.4 eq) 

in CH2Cl2 (108 mL) was stirred at rt for 24 h. Saturated NH4Cl(aq) (25 mL) was added. Then, 

1 M NaOH(aq) was added until pH ≈ 10 was reached. The mixture was extracted with CH2Cl2 

(4 × 25 mL). The combined organic extracts were washed with brine (30 mL), dried 

(Na2SO4) and evaporated under reduced pressure to give the crude amine as a pale yellow 

oil. To a solution of the crude amine in THF (40 mL) was added 3 M HCl(aq) (120 mL) and 

the resulting solution was stirred at rt for 72 h. Solid Na2CO3 was added until pH ≈ 9 was 

reached and the mixture was extracted with EtOAc (4 × 25 mL). The combined organic 

extracts were washed with brine (30 mL), dried (Na2SO4) and evaporated under reduced 

pressure to give the crude amino ketone as red oil. The crude amino ketone and DMAP (394 

mg, 3.23 mmol, 0.1 eq) were dissolved in CH2Cl2 (160 mL). The resulting solution was 

cooled to 0 °C and Et3N (5.63 mL, 40.4 mmol, 1.25 eq) was added under Ar. Then, a solution 

of p-toluenesulfonyl chloride (7.70 g, 40.4 mmol, 1.25 eq) in CH2Cl2 (20 mL) was added 

dropwise and the mixture was allowed to warm to rt. The resulting solution was stirred at rt 

for 18 h and then 1 M HCl(aq) (25 mL) was added. The resulting mixture was extracted with 

CH2Cl2 (4 × 20 mL) and the combined organic extracts were washed with brine (30 mL), 

dried (Na2SO4) and evaporated under reduced pressure to give the crude product. 

Purification by flash column chromatography on silica with 1:3 EtOAc-hexane as eluent 

gave alkynyl amino ketone 59 (8.44 g, 85%) as an off-white solid, mp 125-127 °C (lit.,69 

126-127 °C); RF (1:3 EtOAc-hexane) 0.21; IR (ATR) 2954, 1714 (C=O), 1326 (S=O), 1157, 
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1044, 656, 571 cm‒1; 1H NMR (400 MHz, CDCl3) δ 7.82–7.78 (m, 2H, Ar), 7.32–7.27 (m, 

2H, Ar), 4.26–4.12 (m, 1H, NCH), 4.10 (d, J = 2.5 Hz, 2H, NCH2), 2.46–2.33 (m, 7H, Me, 

CH2-2), 2.16 (t, J = 2.5 Hz, 1H, ≡CH), 2.12–1.90 (m, 4H, CH2-3); 13C NMR (100.6 MHz, 

CDCl3) δ 208.7 (C=O), 143.8 (ipso-Ar), 137.6 (ipso-Ar), 129.8 (Ar), 127.4 (Ar), 79.8 (≡CH), 

73.1 (≡C), 55.7 (NCH), 40.0 (CH2-2), 32.6 (NCH2), 30.1 (CH2-3), 21.7 (Me); HRMS (ESI) 

m/z calcd for C16H19NO3S (M + Na)+ 238.0978, found 328.0978 (–0.1 ppm error). 

Spectroscopic data consistent with those reported in the literature.69 

Lab book reference: ARG-2-038 

 

4-Methylene-2-((4-nitrophenyl)sulfonyl)-2-azabicyclo[3.3.1]nonan-6-one 86 

 

Cu(OTf)2 (11 mg, 0.03 mmol, 0.05 eq), PPh3 (31 mg, 0.12 mmol, 0.20 eq) and pyrrolidine 

(10 µL, 0.12 mmol, 0.2 eq) were added to a stirred solution of amino ketone 136 (200 mg, 

0.60 mmol, 1.0 eq) in THF (3 mL) in a sealed tube at rt under Ar. The resulting mixture was 

stirred at rt for 15 min and then stirred and heated at 90 °C for 18 h. The mixture was allowed 

to cool to rt and the solids were removed by filtration through Celite®. The filtrate was 

evaporated under reduced pressure to give the crude product. Purification by flash column 

chromatography on silica with CH2Cl2 as eluent gave morphan 86 (170 mg, 85%) as an  off-

white solid, mp 172-174 °C; RF (CH2Cl2) 0.32; IR (ATR) 2954, 1714 (C=O), 1529, (NO2), 

1650, 1164 (S=O), 738 cm‒1; 1H NMR (400 MHz, CDCl3) δ 8.43–8.38 (m, 2H, Ar), 8.07–

8.02 (m, 2H, Ar), 5.14 (d, J = 1.5 Hz, 1H, =CHH'), 5.07 (d, J = 1.5 Hz, 1H, =CHH'), 4.24 

(d, J = 14.5 Hz, 1H, NCHH'), 4.13 (dd, J = 3.0, 3.0 Hz, 1H, NCH), 3.83 (dd, J = 14.5, 1.0 

Hz, 1H, NCHH'), 3.30–3.23 (m, 1H, CH-2), 2.78 (ddd, J = 16.0, 13.0, 8.0 Hz, 1H, CHH'-6), 

2.42–2.30 (m, 2H, CHH'-6, CHH'-5), 2.02–1.88 (m, 3H, CHH'-5, CHH'-3); 13C NMR (100.6 

MHz, CDCl3) δ 207.4 (C=O), 150.3 (ipso-Ar), 143.8 (ipso-Ar), 137.2 (=C), 128.6 (Ar), 

124.7 (Ar), 115.9 (=CH2), 50.1 (CH-2), 48.4 (NCH), 47.4 (NCH2), 34.8 (CH2-6), 32.3 (CH2-

5), 30.7 (CH2-3); HRMS (ESI) m/z calcd for C15H16N2O5S (M + Na)+ 359.0672, found 
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359.0672 (–0.1 ppm error). Spectroscopic data consistent with those reported in the 

literature.69 

Lab book reference: ARG-2-003 

 

4-Methylene-2-toluenesulfonyl-2-azabicyclo[3.3.1]nonan-6-one 60 

 

Cu(OTf)2 (89 mg, 0.25 mmol, 0.05 eq), PPh3 (258 mg, 0.98 mmol, 0.20 eq) and pyrrolidine 

(82 µL, 0.982 mmol, 0.20 eq) were added to a stirred solution of amino ketone 59 (1.5 g, 

4.91 mmol, 1.0 eq) in THF (25 mL) in a sealed tube at rt under Ar. The resulting mixture 

was stirred at rt for 15 min and then stirred and heated at 90 °C for 18 h. The mixture was 

allowed to cool to rt and the solids were removed by filtration through Celite®. The filtrate 

was evaporated under reduced pressure to give the crude product. Purification by flash 

column chromatography on silica with 1:4 to 1:1 EtOAc-hexane as eluent gave morphan 60 

(1.25 g, 83%) as an off-white solid, mp 138-140 °C (lit.,69 136-138 °C); RF (1:4 EtOAc-

hexane) 0.08; IR (ATR) 2952, 1713 (C=O), 1342, 1160 (S=O), 1095, 547 cm‒1; 1H NMR 

(400 MHz, CDCl3) δ 7.75–7.70 (m, 2H, Ar), 7.35–7.31 (m, 2H, Ar), 5.10 (d, J = 2.0 Hz, 1H, 

=CHH'), 5.01 (d, J = 2.0 Hz, 1H, =CHH'), 4.16 (d, J = 14.0 Hz, 1H, NCHH'), 4.09 (dd, J = 

3.5, 3.0 Hz, 1H, NCH), 3.75 (d, J = 14.0 Hz, 1H, NCHH'), 3.22 (br s, 1H, CH-2), 2.80 (ddd, 

J = 16.0, 13.0, 7.5 Hz, 1H, CHH'-6), 2.43 (s, 3H, Me), 2.40–2.31 (m, 1H,CHH'-5), 2.27 (dd, 

J = 16.0, 6.0 Hz, 1H, CHH'-6), 1.96 (dddd, J = 14.0, 3.5, 3.5, 3.5 Hz, 1H, CHH'-3), 1.87 

(ddd, J = 14.0, 3.0, 3.0 Hz, 1H, CHH'-3), 1.90–1.80 (m, 1H, CHH'-5); 13C NMR (100.6 

MHz, CDCl3) δ 208.3 (C=O), 143.0 (ipso-Ar), 138.2 (=C), 134.8 (ipso-Ar), 130.0 (Ar), 

127.4 (Ar), 115.2 (=CH2), 50.2 (CH-2), 48.0 (NCH), 47.2 (NCH2), 34.8 (CH2-6), 32.5 (CH2-

5), 30.5 (CH2-3), 21.6 (Me).; HRMS (ESI) m/z calcd for C16H19NO3S (M + Na)+ 329.0978, 

found 328.0971 (+2.2 ppm error). Spectroscopic data consistent with those reported in the 

literature.69 

Lab book reference: ARG-2-023 
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4-Methyl-2-toluenesulfonyl-2-azabicyclo[3.3.1]nonan-6-one endo-141, 4-methyl-2-

toluenesulfonyl-2-azabicyclo[3.3.1]non-3-en-6-one 142 and 4-methyl-2-

toluenesulfonyl-2-azabicyclo[3.3.1]nonan-6-ol 143 

 

   

PtO2 (39 mg, 0.17 mmol, 0.06 eq) was added to a stirred solution of morphan 60 (846 mg, 

2.77 mmol, 1 eq) in EtOAc (14 mL) at rt under Ar. The reaction flask was evacuated under 

reduced pressure and back-filled with Ar three times and then with H2 three times. The 

mixture was stirred under a balloon of H2 (760 mmHg) for 6 h. The solids were removed by 

filtration through Celite® and the filtrate was evaporated under reduced pressure to give the 

crude product. Purification by flash column chromatography on silica with 1:4 to 3:2 Et2O-

hexane as eluent gave hydrogenated morphan endo-141 (124 mg, 15%, >97:3 dr) as a white 

solid, mp 146-148 °C; RF (2:3 Et2O-hexane) 0.15; IR (ATR) 2929, 1702 (C=O), 1338, 1158 

(S=O), 546 cm–1;  1H NMR (400 MHz, CDCl3) δ 7.73–7.68 (m, 2H, Ar), 7.34–7.29 (m, 2H, 

Ar), 4.29 (dd, J = 3.5, 3.0 Hz, 1H, NCH), 3.83 (dd, J = 13.5, 6.0 Hz, 1H, NCHH'), 2.81 (dd, 

J = 13.5, 12.5 Hz, 1H, NCHH'), 2.48–2.38 (m, 5H, ArMe, CH-2, CHH'-6 ), 2.10 (ddd, J = 

18.0, 10.5, 8.5 Hz, 1H, CHH'-6), 2.04–1.84 (m, 5H, CHH'-5, CHH'-3, CH-8), 0.84 (d, J = 

7.0 Hz, 3H, CHMe); 13C NMR (100.6 MHz, CDCl3) δ 211.0 (C=O), 143.6 (ipso-Ar), 137.3 

(ipso-Ar), 130.0 (Ar), 127.1 (Ar), 49.0 (CH-2), 47.4 (NCH2), 46.1 (NCH), 39.3 (CH2-6), 

32.8 (CH2-5), 32.7 (CH-8), 28.6 (CH-3), 21.6 (ArMe), 16.8 (CHMe); HRMS (ESI) m/z calcd 

for C16H21NO3S (M + Na)+ 330.1164, found 330.1129 (+1.6 ppm error) and impure alcohol 

143 (670 mg) as an off-white solid. 

Lab book reference: ARG-2-024 

 

10 % Pd/C (49 mg, 0.04 mmol, 0.10 eq) was added to a stirred solution of morphan 60 (150 

mg, 0.49 mmol, 1 eq) in MeOH (20 mL) at rt under Ar. The reaction flask was evacuated 

under reduced pressure and back-filled with Ar three times and then with H2 three times. 

The mixture was stirred under a balloon of H2 (760 mmHg) for 16 h. The solids were 
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removed by filtration through Celite® and the filtrate was evaporated under reduced pressure 

to give the crude product which contained (by 1H NMR spectroscopy) a complex mixture of 

products.  

Lab book reference: ARG-2-007 

 

10 % Pd/C (100 mg, 0.08 mmol, 0.25 eq) was added to a stirred solution of morphan 60 (100 

mg, 0.33 mmol, 1 eq) in EtOAc (16 mL) at rt under Ar. The reaction flask was evacuated 

under reduced pressure and back-filled with Ar three times and then with H2 three times. 

The mixture was stirred under a balloon of H2 (760 mmHg) for 2 h. The solids were removed 

by filtration through Celite® and the filtrate was evaporated under reduced pressure to give 

the crude product. Purification by flash column chromatography on silica with 1:4 to 3:2 

Et2O-hexane as eluent gave a 75:25 mixture (by 1H NMR spectroscopy) of hydrogenated 

morphans endo-141 and exo-141 (43 mg, 40%) as a white solid and a 95:5 mixture (by 1H 

NMR spectroscopy) of enamine 142 and morphan 60 (59 mg, i.e. 56 mg (56%) of 142 and 

3 mg (3%) of 60) as an off-white solid, RF (3:2 Et2O-hexane) 0.52; IR (ATR) 2932, 1706 

(C=O), 1358, 1158 (S=O), 944, 663 cm–1; 1H NMR (400 MHz, CDCl3) for 142: δ 7.68–7.64 

(m, 2H, Ar), 7.28 (m, 2H, Ar), 6.79 (q, J = 1.5 Hz, 1H, =CH-7), 4.12–4.09 (m, 1H, NCH), 

2.69 (dd, J = 1.5, 1.5 Hz, 1H, CH-2), 2.54 (ddd, J = 15.5, 13.5, 7.5 Hz, 1H, CHH'-6), 2.38 

(s, 3H, ArMe), 2.35–2.28 (m, 1H, CHH'-5), 2.12 (dd, J = 15.5, 6.0 Hz, 1H, CHH'-6), 1.87 

(ddd, J = 13.5, 6.0, 3.0 Hz, 1H, CHH'-5), 1.80 (ddd, J = 13.0, 2.5, 2.5 Hz, 1H, CHH'-3), 1.62 

(d, J = 1.5 Hz, 3H, =CMe), 1.27 (dddd, J = 13.0, 3.5, 3.5, 3.0 Hz, 1H CHH'-3); 13C NMR 

(100.6 MHz, CDCl3) for 142: δ 208.3 (C=O), 144.0 (ipso-Ar), 135.8 (ipso-Ar), 130.0 (Ar), 

126.9 (Ar), 122.8 (=CH-7), 113.6 (=C-8), 49.7 (CH-2), 47.6 (NCH), 34.5 (CH2-5), 33.7 

(CH2-6), 27.7 (CH2-3), 21.6 (ArMe), 19.5 (=CMe); HRMS (ESI) m/z calcd for C16H19NO3S 

(M + Na)+ 328.0978, found 328.0971 (+1.2 ppm error). Diagnostic signals for morphan exo-

141: 1H NMR (400 MHz, CDCl3) δ 4.20–4.12 (m, 1H, NCH), 3.25 (dd, J = 12.5, 5.0 Hz, 

1H, NCHH'), 2.98 (dd, J = 12.5, 6.0 Hz, 1H, NCHH'), 1.07 (d, J = 7.0 Hz, 3H, CHMe). 

Lab book reference: ARG-2-012 

 

PtO2 (3.3 mg, 0.01 mmol, 0.05 eq) was added to a stirred solution of morphan 60 (100 mg, 

0.33 mmol, 1 eq) in EtOAc (2 mL) at rt under Ar. The reaction flask was evacuated under 
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reduced pressure and back-filled with Ar three times and then with H2 three times. The 

mixture was stirred under a balloon of H2 (760 mmHg) for 45 min. The solids were removed 

by filtration through Celite® and the filtrate was evaporated under reduced pressure to give 

the crude product. Purification by flash column chromatography on silica with 1:4 to 3:2 

Et2O-hexane as eluent gave a 95:5 mixture (by 1H NMR spectroscopy) of hydrogenated 

morphans endo-141  and exo-141 (61 mg, 61%) as a white solid and impure alcohol 143 (35 

mg) as an off-white solid.  

Lab book reference: ARG-2-029 

 

PtO2 (32 mg, 0.36 mmol, 0.05 eq) was added to a stirred solution of morphan 60 (991 mg, 

3.24 mmol, 1 eq) in EtOAc (16 mL) at rt under Ar. The reaction flask was evacuated under 

reduced pressure and back-filled with Ar three times and then with H2 three times. The 

mixture was stirred under a balloon of H2 (760 mmHg) for 45 min. The solids were removed 

by filtration through Celite® and the filtrate was evaporated under reduced pressure to give 

the crude product. Purification by flash column chromatography on silica with 1:4 to 3:2 

Et2O-hexane as eluent gave a 85:15 mixture (by 1H NMR spectroscopy) of hydrogenated 

morphans endo-141  and exo-141 (760 mg, 76%) as a white solid and impure alcohol 143 

(210 mg) as an off-white solid.  

Lab book reference: ARG-2-029 

 

4-Methyl-2-toluenesulfonyl-2-azabicyclo[3.3.1]nonan-6-ol 143 

 

 

NaBH4 (62 mg, 1.63 mmol, 5.0 eq) was added to a stirred solution of morphan endo-141 

(100 mg, 0.33 mmol, 1 eq) in MeOH (2 mL) at 0 °C under Ar. The resulting mixture was 

stirred at 0 °C for 1 h. EtOAc (10 mL) and water (10 mL) were added. The layers were 

separated and the organic layer was washed with brine (10 mL), dried (MgSO4) and 
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evaporated under reduced pressure to give alcohol 143 (97 mg, 96%, >97:3 dr) as a white 

solid, mp 90-92 °C; RF (3:2 Et2O-hexane) 0.18; IR (ATR) 3521 (OH), 2925, 1327, 1154 

(S=O), 671 cm–1;  1H NMR (400 MHz, CDCl3) δ 7.70–7.65 (m, 2H, Ar), 7.28–7.24 (m, 2H, 

Ar), 4.02 (dddd, J = 3.0, 3.0, 3.0, 3.0 Hz, 1H, NCH), 3.97 (dddd, J = 11.0, 7.0, 5.0, 1.5 Hz, 

1H, HOCH), 3.69 (dd, J = 12.5, 7.0 Hz, 1H, NCHH'), 3.18 (dd, J = 12.5, 12.5 Hz, 1H, 

NCHH'), 2.40 (s, 3H, ArMe), 2.06–1.93 (m, 2H, CH-2, CH-8), 1.86 (ddd, J = 13.5, 5.0, 3.0 

Hz, 1H, CHH'-6), 1.82–1.74 (m, 1H, CHH'), 1.71–1.47 (m, 5H, CHH'-6, CHH', CH2, OH), 

1.15 (d, J = 7.0 Hz, 3H, CHMe); 13C NMR (100.6 MHz, CDCl3) δ 143.1 (Ar), 137.0 (Ar), 

129.8 (ipso-Ar), 127.0 (ipso-Ar), 74.4 (HOCH), 49.7 (NCH2), 46.6 (NCH), 37.7 (CH-2), 

34.9 (CH2), 34.3 (CH-8), 31.0 (CH2), 29.7 (CH2-6), 21.6 (ArMe), 18.6 (CMe3); HRMS (ESI) 

m/z calcd for C16H23NO3S (M + Na)+ 332.1291, found 333.1288 (+0.4 ppm error). 

Lab book reference: ARG-2-030 

 

tert-Butyl (4-oxocyclohexyl)(prop-2-yn-1-yl)carbamate 144 

 

A solution of 1,4-cyclohexadione monoethylene acetal 29 (5.05 g, 32.3 mmol, 1.0 eq), 

propargylamine (2.2 mL, 32.6 mmol, 1.04 eq) and NaBH(OAc)3 (9.59 g, 42.3 mmol, 1.4 eq) 

in CH2Cl2 (108 mL) was stirred at rt for 24 h. Saturated NH4Cl(aq) (25 mL) was added. Then, 

1 M NaOH(aq) was added until pH ≈ 10 was reached. The mixture was extracted with CH2Cl2 

(4 × 25 mL). The combined organic extracts were washed with brine (30 mL), dried 

(Na2SO4) and evaporated under reduced pressure to give the crude amine as a pale yellow 

oil. To a solution of the crude amine in THF (40 mL) was added 3 M HCl(aq) (120 mL) and 

the resulting solution was stirred at rt for 72 h. Solid Na2CO3 was added until pH ≈ 9 was 

reached and the mixture was extracted with EtOAc (4 × 25 mL). The combined organic 

extracts were washed with brine (30 mL), dried (Na2SO4) and evaporated under reduced 

pressure to give the crude amino ketone as a red oil. The crude amino ketone was dissolved 

in THF (34 mL) and Boc2O (8.487 g, 37.2 mmol, 1.2 eq) was added at rt. The resulting 

solution was stirred at rt for 18 h and then water (25 mL) was added. The resulting mixture 
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was extracted with CH2Cl2 (4 × 20 mL). The combined organic extracts were washed with 

brine (30 mL), dried (Na2SO4) and evaporated under reduced pressure to give the crude 

product. Purification by flash column chromatography on silica with 1:5 EtOAc-hexane as 

eluent gave alkynyl amino ketone 144 (6.21 g, 77%) as a white solid, mp 72-74 °C (lit.,69 

71-72 °C); RF (1:4 EtOAc-hexane) 0.20; IR (ATR) 2973, 1717 (C=O), 1689 (C=O), 1165, 

681 cm‒1; 1H NMR (400 MHz, CDCl3) δ 4.59–4.16 (br m, 1H, NCH), 3.92 (br s, 2H, NCH2), 

2.53–2.31 (m, 4H, CH2-2), 2.21–1.86 (m, 3H, ≡CH, CH2-3), 1.48 (s, 9H, CMe3);
 13C NMR 

(100.6 MHz, CDCl3) δ 209.6 (C=O, ketone), 154.8 (C=O, Boc), 81.1 (CMe3), 80.8 (≡C), 

70.8 (≡CH), 53.7 (NCH), 40.1 (CH2-2), 32.5 (NCH2), 29.8 (CH2-3), 28.5 (CMe3); HRMS 

(ESI) m/z calcd for C14H21NO3 (M + Na)+ 274.1414, found 274.1415 (–0.5 ppm error). 

Spectroscopic data consistent with those reported in the literature.69 

Lab book reference: ARG-2-086 

 

tert-Butyl 4-methylene-6-oxo-2-azabicyclo[3.3.1]nonane-2-carboxylate 87 

 

Cu(OTf)2 (144 mg, 0.398 mmol, 0.05 eq), PPh3 (419 mg, 1.59 mmol, 0.20 eq) and 

pyrrolidine (130 µL, 1.59 mmol, 0.20 eq) were added to a stirred solution of amino ketone 

144 (2.0 g, 7.96 mmol, 1.0 eq) in THF (30 mL) in a sealed tube at rt under Ar. The resulting 

mixture was stirred at rt for 15 min and then stirred and heated at 90 °C for 18 h. The mixture 

was allowed to cool to rt and the solids were removed by filtration through Celite®. The 

filtrate was evaporated under reduced pressure to give the crude product. Purification by 

flash column chromatography on silica with 1:9 to 1:1 EtOAc-hexane as eluent gave 

morphan 87 (1.54 g, 77%) as a white solid, mp 78-80 °C; RF (1:2 EtOAc-hexane) 0.2; IR 

(ATR) 2972, 1716 (C=O, ketone), 1686 (C=O, Boc), 1389, 1164, 1100 cm‒1; 1H NMR (400 

MHz, CDCl3) (55:45 mixture of rotamers) δ 5.07 (s, 0.55H, =CHH'), 5.04 (s, 0.45H, =CHH'), 

4.99 (s, 1H, =CHH'), 4.38 (d, J = 16.0 Hz, 0.55H, NCHH' ), 4.32 (dd, J = 3.5, 3.0 Hz, 0.45H, 

NCH), 4.24 (d, J = 16.0 Hz, 0.45H, NCHH'), 4.19 (dd, J = 3.5, 3.0 Hz, 0.55H, NCH), 4.07 

(d, J = 16.0 Hz, 0.45H, NCHH'), 4.01 (d, J = 16.0 Hz, 0.55H, NCHH'), 3.33 (s, 1H, CH-2), 

2.74–2.54 (m, 1H, CHH'-6), 2.42–2.19 (m, 3H, CHH'-6, CHH'-5, CHH'-3), 2.00 (ddd, J = 
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14.0, 13.5, 3.0 Hz, 1H, CHH'-3), 1.85–1.73 (m, 1H, CHH'-5), 1.53–1.45 (m, 9H, CMe3); 
13C 

NMR (100.6 MHz, CDCl3) (rotamers) δ 209.3 (C=O, ketone), 209.0 (C=O, ketone), 155.2 

(C=O, Boc), 154.9 (C=O, Boc), 139.8 (=C), 139.6 (=C), 114.2 (=CH2), 113.8 (=CH2), 80.2 

(CMe3), 51.3 (CH-2), 50.8 (CH-2), 46.3 (NCH2), 46.3 (NCH), 45.6 (NCH2), 45.4 (NCH), 

35.3 (CH2-6), 34.9 (CH2-6), 31.4 (CH2), 31.2 (CH2), 30.6 (CH2), 28.6 (CMe3); HRMS (ESI) 

m/z calcd for C14H21NO3 (M + Na)+ 274.1414, found 274.1412 (+0.6 ppm error). 

Spectroscopic data consistent with those reported in the literature.69 

Lab book reference: ARG-2-052 

 

tert-Butyl 4-methyl-6-oxo-2-azabicyclo[3.3.1]nonane-2-carboxylate endo-138 and tert-

Butyl 4-methyl-6-oxo-2-azabicyclo[3.3.1]non-3-ene-2-carboxylate 145 

   

PtO2 (213 mg, 0.936 mmol, 0.1 eq) was added to a stirred solution of morphan 87 (2.35 g, 

7.36 mmol, 1 eq) in EtOAc (47 mL) at rt under Ar. The reaction flask was evacuated under 

reduced pressure and back-filled with Ar three times and then with H2 three times. The 

mixture was stirred under a balloon of H2 (760 mmHg) for 16 h. The solids were removed 

by filtration through Celite® and the filtrate was evaporated under reduced pressure to give 

the crude product. The crude product was dissolved in CH2Cl2 (100 mL) and Dess-Martin 

periodinane (5.95 g, 14.0 mmol, 1.5 eq) was added at rt under Ar. The resulting mixture was 

stirred at rt for 2 h. Saturated NaHCO3(aq) (50 mL) was added and the mixture was stirred for 

30 min. The layers were separated and the organic layer was washed with saturated 

Na2S2O3(aq) (15 mL) and brine (25 mL), dried (MgSO4) and the evaporated under reduced 

pressure to give the crude product. Purification by flash column chromatography on silica 

with 1:9 to 2:3 Et2O-hexane as eluent gave enamine 145 (360 mg, 15%) as a clear oil, RF 

(2:3 Et2O-hexane) 0.24; IR (ATR) 2933, 1693 (C=O, ketone), 1665 (C=O, Boc), 1392, 1152, 

729 cm–1; 1H NMR (400 MHz, CDCl3) (50:50 mixture of rotamers) δ 7.03–6.94 (m, 0.5H, 

=CH), 6.85–6.76 (m, 0.5H, =CH), 4.46–4.38 (m, 0.5H, NCH), 4.32–4.24 (m, 0.5H, NCH), 

2.83–2.76 (m, 1H, CH-2), 2.62–2.46 (m, 1H, CHH'-6), 2.35–2.18 (m, 1H, CHH'-6), 2.20–

2.07 (m, 1H, CHH'), 2.07–1.94 (m, 1H, CHH'), 1.98–1.75 (m, 2H, CHH', CHH'), 1.62 (d, J 
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= 1.5 Hz, 3H, =CMe), 1.52–1.45 (m, 9H, CMe3); 
13C NMR (100.6 MHz, CDCl3) (rotamers) 

δ 209.4 (C=O, ketone), 209.3 (C=O, ketone), 152.1 (C=O, Boc), 151.5 (C=O, Boc), 123.5 

(=CH), 123.3 (=CH), 111.6 (=C), 110.7 (=C), 81.2 (CMe3), 81.0 (CMe3), 50.3 (CH-2), 50.0 

(CH-2), 45.6 (NCH), 44.7 (NCH), 33.7 (br, CH2-6), 33.4 (CH2), 32.8 (CH2), 29.3 (CH2), 

29.1 (CH2), 28.35 (CMe3), 28.3 (CMe3), 19.4 (Me), 19.3 (Me); HRMS (ESI) m/z calcd for 

C14H21NO3 (M + Na)+ 374.1414, found 374.1406 (+2.9 ppm error) and a 90:10 mixture (by 

1H NMR spectroscopy) of hydrogenated morphans endo-138 and exo-138 (1.67 g, 71%) as 

an off-white solid, RF (2:3 Et2O-hexane) 0.17; IR (ATR) 2930, 1684 (C=O), 1402, 1339, 

1167, 1096 cm–1; 1H NMR (400 MHz, CDCl3) for endo-138 (50:50 mixture of rotamers): δ 

4.52–4.28 (m, 1H, NCH), 4.04 (dd, J = 14.0, 6.5 Hz, 0.5H, NCHH'), 3.92 (dd, J = 14.0, 6.5 

Hz, 0.5H, NCHH'), 2.83–2.66 (m, 1H, NCHH'), 2.56–2.46 (m, 2H, CH-2, CHH'-6), 2.29–

2.16 (m, 1H, CHH'-6), 2.14–1.89 (m, 5H, CH2-3, CH2-5, CH-8), 1.44 (s, 9H, CMe3), 0.85 

(d, J = 7.0 Hz, 3H, CHMe); 13C NMR (100.6 MHz, CDCl3) for endo-141 (rotamers): δ 212.0 

(C=O, ketone), 211.8 (C=O, ketone), 155.1 (C=O, Boc), 155.0 (C=O, Boc), 80.0 (CMe3), 

49.7 (CH-2), 49.6 (CH-2), 47.3 (NCH2), 46.6 (NCH2), 44.4 (NCH), 43.3 (NCH), 39.6 (CH2-

6), 33.0 (CH2), 32.8 (CH2), 32.6 (CH-8), 30.5 (CH2), 29.9 (CH2), 28.5 (CMe3), 17.1 (CHMe); 

C14H23NO3 (M + Na)+ 276.1570, found 276.1570 (0.0 ppm error). Diagnostic signals for exo-

138: 1H NMR (400 MHz, CDCl3) (50:50 mixture of rotamers) δ 3.58 (dd, J = 13.5, 5.5 Hz, 

0.5H, NCHH’), 3.37 (dd, J = 13.5, 5.5 Hz, 0.5H, NCHH’), 3.27 (dd, J = 13.5, 5.5 Hz, 0.5H, 

NCHH’), 3.12 (dd, J = 13.5, 5.5 Hz, 0.5H, NCHH’). 

Lab book reference: ARG-2-090 

 

Dess-Martin periodinane (365 mg, 0.86 mmol, 2.0 eq) was added to a stirred solution of a 

90:10 mixture of morphans endo-146 and exo-146 (110 mg, 0.43 mmol, 1.0 eq) in CH2Cl2 

(7 mL) at rt under Ar. The resulting mixture was stirred at rt for 2 h. Saturated NaHCO3(aq) 

(10 mL) was added and the mixture was stirred for 30 min. The layers were separated and 

the organic layer was washed with saturated Na2S2O3(aq) (10 mL) and brine (10 mL), dried 

(MgSO4) and evaporated under reduced pressure to give the crude product. Purification by 

flash column chromatography on silica with 1:9 to 2:3 Et2O-hexane as eluent gave a 90:10 

mixture (by 1H NMR spectroscopy) of hydrogenated morphans endo-138 and exo-138 (89 

mg, 84%) as an off-white solid, identical (by 1H and 13C NMR spectroscopy) to that 

described above. 
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Lab book reference: ARG-2-079 

 

10% Pd/C (40 mg, 0.04 mmol, 0.1 eq) was added to a stirred solution of morphan 87 (100 

mg, 0.40 mmol, 1.0 eq) in EtOAc (2 mL) at rt under Ar. The reaction flask was evacuated 

under reduced pressure and back-filled with Ar three times and then with H2 three times. 

The mixture was stirred under a balloon of H2 (760 mmHg) for 2 h. The solids were removed 

by filtration through Celite® and the filtrate was evaporated under reduced pressure to give 

the crude product which contained (by 1H NMR spectroscopy) a 90:8:2 mixture of enamine 

145, morphan endo-138 and morphan exo-138 

Lab book reference: ARG-2-041 

 

10% Pd/C (21 mg, 0.02 mmol, 0.1 eq) was added to a stirred solution of morphan 87 (50 

mg, 0.20 mmol, 1.0 eq) in EtOH (1 mL) at rt under Ar. The reaction flask was evacuated 

under reduced pressure and back-filled with Ar three times and then with H2 three times. 

The mixture was stirred under a balloon of H2 (760 mmHg) for 2 h. The solids were removed 

by filtration through Celite® and the filtrate was evaporated under reduced pressure to give 

the crude product which contained (by 1H NMR spectroscopy) a complex mixture of 

products. 

Lab book reference: ARG-2-053 

 

10% Pd/C (21 mg, 0.02 mmol, 0.1 eq) was added to a stirred solution of morphan 87 (50 

mg, 0.20 mmol, 1.0 eq) and AcOH (56 µL, 1.0 mmol, 5 eq) in EtOAc (1 mL) at rt under Ar. 

The reaction flask was evacuated under reduced pressure and back-filled with Ar three times 

and then with H2 three times. The mixture was stirred under a balloon of H2 (760 mmHg) 

for 2 h. The solids were removed by filtration through Celite® and the filtrate was evaporated 

under reduced pressure to give the crude product which contained (by 1H NMR 

spectroscopy) a complex mixture of products. 

Lab book reference: ARG-2-053 

20% Pd(OH)2/C (14 mg, 0.02 mmol, 0.1 eq) was added to a stirred solution of morphan 87 

(50 mg, 0.20 mmol, 1.0 eq) in EtOAc (1 mL) at rt under Ar. The reaction flask was evacuated 
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under reduced pressure and back-filled with Ar three times and then with H2 three times. 

The mixture was stirred under a balloon of H2 (760 mmHg) for 2 h. The solids were removed 

by filtration through Celite® and the filtrate was evaporated under reduced pressure to give 

the crude product. Purification by flash column chromatography on silica with 1:9 to 2:3 

Et2O-hexane as eluent gave enamine 145 (36 mg, 72%) as a clear oil, identical (by 1H and 

13C NMR spectroscopy) to that described above and a 90:10 mixture (by 1H NMR 

spectroscopy) of hydrogenated morphans endo-138 and exo-138 (9 mg, 18%) as an off-white 

solid, identical (by 1H and 13C NMR spectroscopy) to that described above. 

Lab book reference: ARG-2-057 

 

10% Pd/C (10 mg, 0.01 mmol, 0.02 eq) was added to a stirred solution of morphan 87 (100 

mg, 0.40 mmol, 1.0 eq) and NH4
+HCO2

– (251 µL, 3.98 mmol, 10 eq) in MeOH (2 mL) at rt 

under Ar. The resulting mixture was stirred and heated at reflux for 2 h under Ar. The solids 

were removed by filtration through Celite® and the filtrate was evaporated under reduced 

pressure to give the crude product which contained (by 1H NMR spectroscopy) a complex 

mixture of products. 

Lab book reference: ARG-2-064 

 

tert-Butyl 6-hydroxy-4-methyl-2-azabicyclo[3.3.1]nonane-2-carboxylate endo-146 and 

tert-butyl 6-hydroxy-4-methyl-2-azabicyclo[3.3.1]non-3-ene-2-carboxylate 147 

   

PtO2 (9.0 mg, 0.04 mmol, 0.1 eq) was added to a stirred solution of morphan 87 (100 mg, 

0.40 mmol, 1.0 eq) in EtOAc (2 mL) at rt under Ar. The reaction flask was evacuated under 

reduced pressure and back-filled with Ar three times and then with H2 three times. The 

mixture was stirred under a balloon of H2 (760 mmHg) for 16 h. The solids were removed 

by filtration through Celite® and the filtrate was evaporated under reduced pressure to give 

the crude product. Purification by flash column chromatography on silica with 1:9 to 1:4 
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EtOAc-hexane as eluent gave enamine 147 (10 mg, 10%, >97:3 dr) as an off-white solid, mp 

140-142 °C; RF (2:3 EtOAc-hexane) 0.20; IR (ATR) 3440 (OH), 2934, 1665 (C=O), 1392, 

1156 cm–1; 1H NMR (400 MHz, CDCl3) (50:50 mixture of rotamers) δ 6.94 (s, 0.5H, =CH-

7), 6.77 (s, 0.5H, =CH-7), 4.18–4.14 (m, 0.5H, NCH), 4.05–4.02 (m, 0.5H, NCH), 3.86 

(dddd, J = 10.0, 4.5, 4.5, 4.5 Hz, 1H, HOCH), 2.38 (ddd, J = 4.5, 3.5, 3.5 Hz, 1H, CH-2), 

1.98–1.84 (m, 1H, CHH’), 1.79 (s, 3H, Me), 1.74–1.51 (m, 4H, CHH’, CHH’), 1.49–1.38 

(m, 10H, CHH’, CMe3); 
13C NMR (100.6 MHz, CDCl3) (rotamers) δ 152.3 (C=O, Boc), 

151.7 (C=O, Boc), 123.0 (=CH-7), 122.7 (=CH-7), 113.7 (=C), 113.1 (=C), 80.6 (CMe3), 

80.3 (CMe3), 74.8 (HOCH), 74.7 (HOCH), 45.7 (NCH), 44.9 (NCH), 39.8 (CH-2), 39.5 

(CH-2), 31.3 (CH2), 30.7 (CH2), 28.8 (CH2), 28.6 (CH2), 28.5 (CMe3), 28.4 (CMe3), 27.8 

(CH2), 27.7 (CH2), 22.5 (CH2), 22.4 (CH2); HRMS (ESI) m/z calcd for C14H23NO3 (M + Na)+ 

276.1570, found 276.1568 (+0.9 ppm error) and a 90:10 mixture (by 1H NMR spectroscopy) 

of hydrogenated morphans endo-146 and exo-146 (86 mg, 86%) as an off-white solid, RF 

(2:3 EtOAc-hexane) 0.18; IR (ATR) 3436 (OH), 2928, 1662 (C=O), 1402, 1168 cm–1; 1H 

NMR (400 MHz, CDCl3) (55:45 mixture of rotamers) for endo-146 δ 4.17–4.12 (m, 0.45H, 

NCH), 4.03–4.00 (m, 0.55H, NCH), 3.97 (ddd, J = 11.0, 5.5, 5.5 Hz, 1H, HOCH), 3.81 (dd, 

J = 13.5, 6.0 Hz, 0.55H, NCHH’), 3.71 (dd, J = 13.5, 6.0 Hz, 0.45H, NCHH’), 3.02 (dd, J = 

13.5, 13.0 Hz, 0.55H, NCHH’), 2.98 (dd, J = 13.5, 13.0 Hz, 0.45H, NCHH’), 2.18 (s, 1H, 

OH), 2.05–1.95 (m, 2H, CH-2, CH-8), 1.92–1.80 (m, 2H, CHH’), 1.77–1.63 (m, 2H, CHH’), 

1.59–1.47 (m, 2H, CHH’), 1.44–1.36 (m, 9H, CMe3), 1.16 (d, J = 7.0 Hz, 3H, CHMe); 13C 

NMR (100.6 MHz, CDCl3) (rotamers) δ 155.4 (C=O), 155.8 (C=O), 79.4 (CMe3), 79.3 

(CMe3), 74.7 (HOCH), 74.67 (HOCH), 49.6 (NCH2), 49.0 (NCH2), 44.8 (NCH), 43.8 

(NCH), 38.2 (CH), 38.0 (CH), 34.5 (CH2), 34.46 (CH2), 34.2 (CH), 34.0 (CH), 30.9 (CH2), 

30.8 (CH2), 30.6 (CH2), 30.0 (CH2), 28.5 (CMe3), 18.9 (CHMe), 18.8 (CHMe); HRMS (ESI) 

m/z calcd for C14H25NO3 (M + Na)+ 278.1727, found 278.1721 (+2.0 ppm error). Diagnostic 

signals for exo-146: 1H NMR (400 MHz, CDCl3) δ 2.65–2.50 (m, 1H, NCHH’), 0.91 (d, J = 

7.0 Hz, 3H, CHMe).  

Lab book reference: ARG-2-067 

 

10% Pd/C (28 mg, 0.03 mmol, 0.1 eq) was added to a stirred solution of morphan 148 (65 

mg, 0.25 mmol, 1.0 eq) in EtOH (1.3 mL) at rt under Ar. The reaction flask was evacuated 

under reduced pressure and back-filled with Ar three times and then with H2 three times. 
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The mixture was stirred under a balloon of H2 (760 mmHg) for 2 h. The solids were removed 

by filtration through Celite® and the filtrate was evaporated under reduced pressure to give 

enamine 147 (63 mg, 96%) as an off white solid, identical (by 1H and 13C NMR 

spectroscopy) to that described above. 

Lab book reference: ARG-2-047 

 

10% Pd/C (21 mg, 0.02 mmol, 0.1 eq) was added to a stirred solution of morphan 148 (50 

mg, 0.20 mmol, 1.0 eq) and AcOH (56 µL, 1.0 mmol, 5.0 eq) in EtOH (1 mL) at rt under 

Ar. The reaction flask was evacuated under reduced pressure and back-filled with Ar three 

times and then with H2 three times. The mixture was stirred under a balloon of H2 (760 

mmHg) for 2 h. The solids were removed by filtration through Celite® and the filtrate was 

evaporated under reduced pressure to give the crude product which contained (by 1H NMR 

spectroscopy) a complex mixture of products. 

Lab book reference: ARG-2-055 

 

20% Pd(OH)2/C (14 mg, 0.02 mmol, 0.1 eq) was added to a stirred solution of morphan 148 

(50 mg, 0.20 mmol, 1.0 eq) in EtOAc (1 mL) at rt under Ar. The reaction flask was evacuated 

under reduced pressure and back-filled with Ar three times and then with H2 three times. 

The mixture was stirred under a balloon of H2 (760 mmHg) for 2 h. The solids were removed 

by filtration through Celite® and the filtrate was evaporated under reduced pressure to give 

enamine 147 (47 mg, 94%) as an off white solid, identical (by 1H and 13C NMR 

spectroscopy) to that described above. 

Lab book reference: ARG-2-057 

 

10% Pd/C (10 mg, 0.01 mmol, 0.02 eq) was added to a stirred solution of morphan 148 (100 

mg, 0.40 mmol, 1.0 eq) and NH4
+HCO2

– (251 mg, 3.98 mmol, 10 eq) in MeOH (2 mL) at rt 

under Ar. The resulting mixture was stirred and heated at reflux for 2 h. The solids were 

removed by filtration through Celite® and the filtrate was evaporated under reduced pressure 

to give the crude product. Purification by flash column chromatography on silica with 1:9 to 

1:4 EtOAc-hexane as eluent gave enamine 147 (55 mg, 55%) as an off-white solid, identical 
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(by 1H and 13C NMR spectroscopy) to that described above and a 75:25 mixture (by 1H NMR 

spectroscopy) of hydrogenated morphans endo-146 and exo-146 (42 mg, 42%) as an off-

white solid. 

Lab book reference: ARG-2-065 

 

PtO2 (4 mg, 0.02 mmol, 0.1 eq) was added to a stirred solution of morphan 148 (50 mg, 0.2 

mmol, 1.0 eq) in EtOAc (1 mL) at rt under Ar. The reaction flask was evacuated under 

reduced pressure and back-filled with Ar three times and then with H2 three times. The 

mixture was stirred under a balloon of H2 (760 mmHg) for 2 h. The solids were removed by 

filtration through Celite® and the filtrate was evaporated under reduced pressure to give the 

crude product. Purification by flash column chromatography on silica with 1:9 to 1:4 EtOAc-

hexane as eluent gave enamine 147 (3 mg, 6%) as an off-white solid, identical (by 1H and 

13C NMR spectroscopy) to that described above and a 75:25 mixture (by 1H NMR 

spectroscopy) of hydrogenated morphans endo-146 and exo-146 (40 mg, 90%) as an off-

white solid. 

Lab book reference: ARG-2-050 

 

tert-Butyl 6-hydroxy-4-methylene-2-azabicyclo[3.3.1]nonane-2-carboxylate 148 

 

NaBH4 (1.04 g, 27.6 mmol, 5.0 eq) was added to a stirred solution of morphan 87 (1.39 g, 

5.52 mmol, 1.0 eq) in MeOH (28 mL) at 0 °C under Ar. The resulting mixture was allowed 

to warm to rt. The mixture was stirred at rt for 4 h. EtOAc (10 mL) and water (10 mL) were 

added. The layers were separated and the organic layer was washed with brine (10 mL), 

dried (MgSO4) and evaporated under reduced pressure to give alcohol 148 (1.33 g, 95%, 

>97:3 dr) as a white solid, mp 112-114 °C; RF (3:2 EtOAc-hexane) 0.23; IR (ATR) 3432 

(OH), 2935, 1670 (C=O), 1395, 1168 cm–1; 1H NMR (400 MHz, CDCl3) δ 5.09–5.05 (m, 

1H, =CHH’), 4.96–4.91 (m, 1H, CHH’), 4.26–3.95 (m, 3H, NCH, NCHH’), 3.72–3.59 (m, 
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1H, HOCH), 2.72 (br dd, J = 4.0, 4.0 Hz, 1H, CH-2), 2.06–1.91 (m, 2H, CHH’), 1.86–1.61 

(m, 3H, CHH’, OH), 1.48–1.37 (m, 10H, CMe3, CHH’), 1.34–1.20 (m, 1H, CHH’); 13C 

NMR (100.6 MHz, CDCl3) (rotamers) δ 155.2 (C=O), 154.9 (C=O), 142.0 (=C), 141.8 (=C), 

112.9 (=CH2), 112.8 (=CH2), 79.6 (CMe3), 71.0 (HOCH), 47.6 (NCH2), 46.7 (NCH2), 45.8 

(NCH), 44.9 (NCH), 41.8 (CH-2), 41.3 (CH-2), 30.3 (CH2), 30.1 (br, CH2), 29.3 (CH2), 29.2 

(CH2), 28.8 (CH2), 28.6 (br, CMe3); HRMS (ESI) m/z calcd for C14H23NO3 (M + Na)+ 

276.1570, found 276.1564 (+2.4 ppm error). 

Lab book reference: ARG-2-049 

 

tert-Butyl 6-((tert-butyldimethylsilyl)oxy)-4-methylene-2-azabicyclo[3.3.1]nonane-2-

carboxylate 149 

 

TBDMSCl (144 mg, 0.96 mmol, 1.2 eq) was added to a stirred solution of morphan 148 (200 

mg, 0.79 mmol, 1.0 eq) and imidazole (134 mg, 1.97 mmol, 2.5 eq) in DMF (3 mL) at rt 

under Ar. The resulting solution was stirred at rt for 48 h. Saturated NaHCO3(aq) (15 mL) was 

added and the resulting mixture was extracted with Et2O (3 × 15 mL). The combined organic 

extracts were washed brine (3 × 10 mL), dried (MgSO4) and evaporated under reduced 

pressure to give the crude product. Purification by flash column chromatography on silica 

with 99:1 to 9:1 hexane-Et2O gave morphan 149 (240 mg, 83%) as a clear oil, RF (9:1 

hexane-Et2O) 0.25; IR (ATR) 2930, 1692 (C=O), 1391, 1095, 835 cm–1; 1H NMR (400 MHz, 

CDCl3) δ 5.02–4.96 (m, 1H, =CHH’), 4.95–4.89 (m, 1H, =CHH’), 4.21–3.91 (m, 3H, NCH, 

NCHH’), 3.73–3.64 (m, 1H, OCH), 2.61 (s, 1H, CH-2), 2.04–1.88 (m, 2H, CHH’), 1.67–

1.48 (m, 3H, CHH’, CHH’), 1.48–1.31 (m, 10H, OCMe3, CHH’), 0.87 (s, 9H, SiCMe3), 

0.07–0.03 (m, 6H, SiMe2); 
13C NMR (100.6 MHz, CDCl3) (rotamers) δ 155.3 (C=O), 155.2 

(C=O), 141.5 (=C), 141.0 (=C), 113.4 (=CH2), 113.1 (=CH2), 79.6 (CMe3), 79.5 (CMe3), 

73.0 (OCH), 72.95 (OCH), 48.1 (NCH2), 47.2 (NCH2), 46.1 (NCH), 45.4 (NCH), 42.1 (CH-

2), 41.7 (CH-2), 30.8 (CH2), 30.7 (CH2), 30.3 (CH2), 29.5 (CH2), 29.1 (CH2), 28.8 (OCMe3), 



131 

 

26.1 (SiCMe3), –4.30 (SiMe), –4.32 (SiMe), –4.40 (SiMe), –4.42 (SiMe); HRMS (ESI) m/z 

calcd for C20H37NO3Si (M + Na)+ 390.2435, found 390.2428 (+1.8 ppm error). 

Lab book reference: ARG-2-063 

 

tert-Butyl 6-((tert-butyldimethylsilyl)oxy)-4-methyl-2-azabicyclo[3.3.1]nonane-2-

carboxylate endo-150 and tert-butyl 6-((tert-butyldimethylsilyl)oxy)-4-methyl-2-

azabicyclo[3.3.1]non-3-ene-2-carboxylate 151 

  

PtO2 (13 mg, 0.06 mmol, 0.1 eq) was added to a stirred solution of morphan 149 (150 mg, 

0.41 mmol, 1.0 eq) in EtOAc (2 mL) at rt under Ar. The reaction flask was evacuated under 

reduced pressure and back-filled with Ar three times and then with H2 three times. The 

mixture was stirred under a balloon of H2 (760 mmHg) for 16 h. The solids were removed 

by filtration through Celite® and the filtrate was evaporated under reduced pressure to give 

the crude product. Purification by flash column chromatography on silica with 99:1 to 95:5 

hexane-Et2O as eluent gave enamine 151 (82 mg, 55%) as a clear oil, RF (9:1 hexane-Et2O) 

0.34; IR (ATR) 2930, 1697 (C=O), 1390, 1156, 1083, 773 cm–1; 1H NMR (400 MHz, CDCl3) 

(60:40 mixture of rotamers) δ 6.88 (s, 0.4H, =CH), 6.73 (s, 0.6H, =CH), 4.16–4.11 (m, 0.6H, 

NCH), 4.03–3.96 (m, 0.4H, NCH), 3.84–3.77 (m, 1H, OCH), 2.27–2.22 (m, 1H, CH-2), 

1.94–1.78 (m, 1H, CHH’), 1.78–1.75 (m, 3H, =CMe), 1.69–1.50 (m, 4H, CHH’, CHH’), 

1.48–1.37 (m, 10H, CHH’, OCMe3), 0.88–0.82 (m, 9H, SiCMe3), 0.05–0.00 (m, 6H, SiMe2); 

13C NMR (100.6 MHz, CDCl3) (rotamers) δ 152.3 (C=O), 151.7 (C=O), 122.2 (=CH), 121.8 

(=CH), 115.3 (=C), 114.4 (=C), 80.3 (OCMe3), 80.0 (OCMe3), 75.4 (OCH), 75.2 (OCH), 

45.8 (NCH), 44.9 (NCH), 40.2 (CH-2), 40.0 (CH-2), 31.3 (CH2), 30.7 (CH2), 29.1 (CH2), 

28.9 (CH2), 28.4 (OCMe3), 28.3 (CH2), 28.1 (CH2), 26.0 (SiCMe3), 22.4 (=CMe), 22.2 

(=CMe), 18.2 (SiCMe3), 18.17 (SiCMe3), –4.61 (SiMe), –4.64 (SiMe), –4.7 (SiMe).; HRMS 

(ESI) m/z calcd for C20H37NO3Si (M + Na)+ 390.2435, found 390.2434 (+0.2 ppm error) 

hydrogenated morphan endo-150 (30 mg, 20% >97:3 dr) as a clear oil, RF (9:1 hexane-Et2O) 

0.27; IR (ATR) 2928, 1689 (C=O), 1092, 834, 773 cm–1; 1H NMR (400 MHz, CDCl3) (50:50 



132 

 

mixture of rotamers) δ 4.18 (br dd, J = 3.0, 3.0 Hz, 0.5H, NCH), 4.04 (br dd, J = 3.0, 3.0 Hz, 

0.5H, NCH), 3.97–3.90 (m, 1H, OCH), 3.84 (dd, J = 13.5, 6.0 Hz, 0.5H, NCHH’), 3.73 (dd, 

J = 13.5, 6.0 Hz, 0.5H, NCHH’), 3.07 (dd, J = 13.5, 13.0 Hz, 0.5H, NCHH’), 3.03 (dd, J = 

13.5, 13.0 Hz, 0.5H, NCHH’), 2.10–1.96 (m, 1H, CH-2), 1.95–1.89 (m, 1H, CHMe), 1.79–

1.65 (m, 4H, CHH’, CHH’), 1.61–1.50 (m, 1H, CHH’), 1.51–1.41 (m, 9H, OCMe3), 1.17 (d, 

J = 7.0 Hz, 3H, CHMe), 0.87 (s, 9H, SiCMe3), 0.08– -0.06 (m, 6H, SiMe2); 
13C NMR (100.6 

MHz, CDCl3) (rotamers) δ 155.5 (C=O), 79.25 (OCMe3), 79.2 (OCMe3), 75.2 (OCH), 75.17 

(OCH), 49.8 (NCH2), 49.1 (NCH2), 45.0 (NCH), 44.0 (NCH), 38.5 (CHMe), 38.3 (CHMe), 

34.8 (CH2), 34.7 (CH2), 34.5 (CH-2), 34.4 (CH-2), 32.0 (CH2), 31.9 (CH2), 30.8 (CH2), 30.2 

(CH2), 28.65 (OCMe3), 26.0 (SiCMe3), 19.2 (CHMe), 18.2 (CHMe), –4.68 (SiMe), –4.7 

(SiMe); HRMS (ESI) m/z calcd for C20H39NO3Si (M + Na)+ 392.2591, found 392.2592 (–0.1 

ppm error).  

Lab book reference: ARG-2-068 

 

tert-Butyl 4-methyl-6-(((trifluoromethyl)sulfonyl)oxy)-2-azabicyclo[3.3.1]non-6-ene-2-

carboxylate endo-139 

 

NaHMDS (0.95 mL of a 2 M solution in THF, 1.90 mmol, 1.6 eq) was added dropwise to a 

stirred solution of a 90:10 mixture of morphans endo-138  and exo-138 (300 mg, 1.18 mmol, 

1.0 eq) in THF (3 mL) at –78 °C under Ar. The resulting solution was stirred at –78 °C for 

1 h. Then, a solution of PhNTf2 (550 mg, 1.54 mmol, 1.3 eq) in THF (2 mL) was added and 

the resulting solution was allowed to warm slowly to rt. The mixture was stirred at rt for 16 

h. Saturated NH4Cl(aq) (10 mL) was added and the mixture was extracted with Et2O (3 × 15 

mL). The combined organic extracts were washed with brine (25 mL), dried (Na2SO4) and 

evaporated under reduced pressure to give the crude product. Purification by flash column 

chromatography on silica with 99:1 to 9:1 hexane-acetone as eluent gave a 90:10 mixture 

(by 1H NMR spectroscopy) of vinyl triflates endo-139  and exo-139 (320 mg, 70%) as a clear 

oil, RF (98:2 hexane-acetone) 0.14; IR (ATR) 2972, 1691 (C=O), 1414, 1209, 1143, 847, 611 

cm–1; 1H NMR (400 MHz, CDCl3) for endo-139 (55:45 mixture of rotamers) δ 5.92 (dd, J = 
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4.0, 4.0 Hz, 1H, =CH), 4.55–4.49 (m, 0.55H, NCHH’), 4.38–4.32 (m, 0.45H, NCHH’), 3.99–

3.90 (m, 0.45H, NCHH’), 3.84–3.75 (m, 0.55H, NCHH’), 2.64–2.45 (m, 3H, NCH, CH-2, 

CHH’), 2.18–2.07 (m, 1H, CHH’), 1.94–1.84 (m, 3H, CHH’, CHMe), 1.49–1.41 (m, 9H, 

CMe3), 0.92 (d, J = 7.0 Hz, 3H, CHMe); 13C NMR (100.6 MHz, CDCl3) for endo-139 

(rotamers) δ 154.8 (C=O), 148.2 (=C), 119.5 (br, =CH), 118.6 (q, J = 320.0 Hz, CF3), 80.1 

(CMe3), 44.3 (NCH2), 43.4 (NCH2), 42.3 (br, NCH), 37.9 (CH-2), 33.6 (CHMe), 33.4 

(CHMe), 32.2 (CH2), 32.0 (CH2), 31.2 (br, CH2), 28.6 (CMe3), 17.2 (CHMe); HRMS (ESI) 

m/z calcd for C15H22F3NO5S (M + Na)+  408.1063, found 408.1064 (–0.3 ppm error). 

Diagnostic signals for exo-139 1H NMR (400 MHz, CDCl3) (55:45 mixture of rotamers) δ 

5.90–5.84 (m, 1H, =CH), 3.71 (br d, J = 13.5 Hz, 0.45H, NCHH’), 3.62 (br d, J = 13.5 Hz, 

0.55H, NCHH’), 3.20 (dd, J = 13.5, 4.5 Hz, 0.55H, NCHH’), 3.11 (dd, J = 13.5, 4.5 Hz, 

0.45H, NCHH’), 1.11 (d, J = 7.0 Hz, 3H, CHMe). 

Lab book reference: ARG-2-088 

 

tert-Butyl 4-methyl-6-(4-methyl-2,6-dioxotetrahydro-2H-4λ4,8λ4-

[1,3,2]oxazaborolo[2,3-b][1,3,2]oxazaborol-8-yl)-2-azabicyclo[3.3.1]non-6-ene-2-

carboxylate 95 

 

A solution of enol triflate 139 (318 mg, 0.82 mmol, 1.0 eq), PdCl2(PPh3)2 (17 mg, 0.025 

mmol, 3 mol%), PPh3 (13 mg, 0.05 mmol, 6 mol%), KOPh (164 mg, 1.24 mmol, 1.5 eq) and 

B2Pin2 (230 mg, 0.91 mmol, 1.1 eq) in toluene (6 mL) under Ar was stirred and heated at 50 

°C and stirred for 16 h. The solids were removed by filtration through Celite® and the filtrate 

was evaporated under reduced pressure to give the crude pinacol boronate. The crude pinacol 

boronate was dissolved in DMSO (5 mL) and MIDA (607 mg, 4.12 mmol, 5.0 eq) and 

HC(OEt)3 (0.62 mL, 3.71 mmol, 4.5 eq) were added. The resulting mixture was stirred and 

heated at 100 °C under Ar for 48 h. Saturated NH4Cl(aq) (10 mL) was added and the mixture 

was extracted with EtOAc (4 × 30 mL). The combined organic extracts were washed with 
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brine (50 mL), dried (MgSO4) and evaporated under reduced pressure to give the crude 

product. Purification by flash column chromatography on silica with 1:4 to 1:1 hexane-

acetone as eluent gave impure vinyl MIDA boronate 95 (150 mg) as a white solid, RF (6:4 

hexane-acetone) 0.26; 1H NMR (400 MHz CDCl3) diagnostic signals for endo-95 (60:40 

mixture of rotamers) δ 6.22–6.17 (m, 1H, =CH), 4.51–4.43 (m, 0.6H, NCHH’), 4.35–4.30 

(m, 0.4H, NCHH’), 2.78 (s, 1.4H, NMe), 2.75 (s, 1.6H, NMe), 1.40 (s, 9H, CMe3), 1.00 (d, 

J = 7.0 Hz, 1.4H, CHMe), 0.80 (d, J = 7.0 Hz, 1.6H, CHMe); HRMS (ESI) m/z calcd for 

C19H29BN2O6 (M + Na)+  415.2011, found 415.2015 (+0.9 ppm error) 

Lab book reference: ARG-2-092 

 

6-(2,4-Dimethoxybenzyl)-2-(4-methoxyphenyl)-6-azabicyclo[3.2.1]oct-2-en-7-one 153 

 

Using general procedure A, MIDA boronate 94 (750 mg, 1.75 mmol, 1.0 eq), Pd(OAc)2 (20 

mg, 0.09 mmol, 5 mol%), SPhos (72 mg, 0.17 mmol, 10 mol%), 4-bromoanisole (0.27 mL, 

2.11 mmol, 1.2 eq) and 3 M K3PO4(aq) (5.74 mL, 17.2 mmol, 7.5 eq),   in dioxane (28 mL) 

gave the crude product. Purification by flash column chromatography on silica with 1:1 

EtOAc-hexane as eluent gave arylated normorphan 153 (565 mg, 86%) as a clear oil, RF (3:2 

EtOAc-hexane) 0.49; IR (ATR) 2938, 2835, 1686 (C=O), 1609, 1508, 1244, 1032, 835, 729 

cm–1; 1H NMR (400 MHz, CDCl3) δ 7.50–7.44 (m, 2H, Ar), 7.15–7.11 (m, 1H, Ar), 6.89–

6.84 (m, 2H, Ar), 6.45–6.41 (m, 2H, Ar), 5.70–5.63 (m, 1H, =CH), 4.57 (d, J = 15.0 Hz, 1H, 

NCHH'), 4.25 (d, J = 15.0 Hz, 1H, NCHH'), 3.81–3.76 (m, 9H, OMe), 3.76– 3.73 (m, 1H, 

NCH-3), 3.23 (d, J = 5.0 Hz, 1H, CH-5), 2.63–2.27 (m, 2H, CH2-2), 2.24 (ddd, J = 10.0, 5.0, 

5.0 Hz, 1H, CHH'-4), 1.84 (d, J = 10.0 Hz, 1H, CHH'-4); 13C NMR (100.6 MHz, CDCl3) δ 

176.8 (C=O), 160.4 (ipso-Ar), 158.9 (ipso-Ar), 158.6 (ipso-Ar), 139.8 (=C), 133.5 (ipso-Ar), 

130.5 (Ar), 126.5 (Ar), 119.7 (=CH), 118.0 (ipso-Ar), 113.9 (Ar), 104.3 (Ar), 98.5 (Ar), 55.5 

(OMe), 55.4 (OMe), 53.9 (NCH), 44.3 (CHCO), 38.0 (NCH2), 34.1 (CH2-4), 28.8 (CH2-2) 
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(1 × OMe resonance not resolved); HRMS (ESI) m/z calcd for C23H25NO4 (M + H)+  

380.1856, found 380.1858 (–0.4 ppm error). 

Lab book reference: ARG-1-070 

 

6-(2,4-Dimethoxybenzyl)-2-(4-(trifluoromethyl)phenyl)-6-azabicyclo[3.2.1]oct-2-en-7-

one 154, 6-(2,4-dimethoxybenzyl)-6-azabicyclo[3.2.1]oct-2-en-7-one 115 and 6,6'-

bis(2,4-dimethoxybenzyl)-6,6'-diaza[2,2'-bi(bicyclo[3.2.1]octane)]-2,2'-diene-7,7'-

dione 155a/B  

 

Using general procedure A, vinyl MIDA boronate 94 (100 mg, 0.234 mmol, 1.0 eq), 

Pd(OAc)2 (3 mg, 0.012 mmol, 0.05 eq), SPhos (10 mg, 0.023 mmol, 0.1 eq), 4-

bromobenzotrifluoride (63 mg, 0.280 mmol, 1.2 eq) and 3 M K3PO4(aq) (0.59 mL, 1.755 

mmol, 7.5 eq) in dioxane (2.34 mL) gave the crude product. Purification by flash column 

chromatography on silica with 4:1 to 3:2 hexane-EtOAc as eluent gave alkene 115 (12 mg, 

20%) as a clear oil, identical (by 1H and 13C NMR spectroscopy) to that described above, 

arylated normorphan 154 (60 mg, 61%) as a clear oil, RF (3:2 hexane-EtOAc) 0.32; IR (ATR) 

2941, 2837, 1687 (C=O), 1613, 1588, 1507, 1322, 1109, 818, 730 cm–1; 1H NMR (400 MHz, 

CDCl3) δ 7.68–7.63 (m, 2H, Ar), 7.60–7.55 (m, 2H, Ar), 7.16–7.11 (m, 1H, Ar), 6.47–6.39 

(m, 2H, Ar), 5.85 (ddd, J = 3.5, 3.0, 1.5 Hz, 1H, =CH-1), 4.57 (d, J = 15.0 Hz, 1H, NCHH'), 

4.26 (d, J = 15.0 Hz, 1H, NCHH'), 3.83–3.67 (m, 7H, OMe, NCH), 3.24 (d, J = 4.5 Hz, 1H, 

CH-5), 2.42–2.31 (m, 2H, CHH'-2), 2.27 (ddd, J = 10.0, 5.0, 4.5 Hz, 1H, CHH'-4), 1.86 (d, 

J = 10.0 Hz, 1H, CHH'-4); 13C NMR (100.6 MHz, CDCl3) δ 176.4 (C=O), 160.6 (ipso-Ar), 

158.6 (ipso-Ar), 144.2 (ipso-Ar), 139.6 (=C), 130.7 (Ar), 129.1 (q, J = 32.5 Hz, ipso-Ar), 

125.6 (Ar), 125.5 (q, J = 4.0 Hz, Ar), 124.4 (q, J = 272.0 Hz, CF3), 123.8 (=CH), 117.8 (ipso-
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Ar), 104.3 (Ar), 98.5 (Ar), 55.5 (OMe), 53.7 (NCH), 44.2 (CH-5), 38.2 (NCH2), 34.0 (CH2-

4), 29.1 (CH2-2) (1 × OMe resonance not resolved); HRMS (ESI) m/z calcd for C23H22F3NO3 

(M + Na)+  440.1444, found 440.1442 (+0.4 ppm error), a 75:25 mixture (by 1H NMR 

spectroscopy) of bis-normorphan 155a and SPhos (2 mg, i.e. 1.5 mg (2%) of 155a) as a clear 

oil, RF (3:2 hexane-acetone) 0.2; IR (ATR) 2928, 1689 (C=O), 1613, 1588, 1508, 1208, 1034, 

831 cm–1; 1H NMR (400 MHz, CDCl3) for 155a δ 7.14–7.06 (m, 2H, Ar), 6.48–6.39 (m, 4H, 

Ar), 5.85 (s, 2H, =CH), 4.51 (d, J = 15.0 Hz, 2H, NCHH'), 4.18 (d, J = 15.0 Hz, 2H, NCHH'), 

3.82–3.75 (m, 12H, OMe), 3.67 (d, J = 5.0 Hz, 2H, NCH), 3.08 (d, J = 5.0 Hz, 2H, CH-5), 

2.36–2.20 (m, 4H, CHH'-2), 2.16 (ddd, J = 10.5, 5.0, 5.0 Hz, 2H, CHH'-4), 1.71 (d, J = 10.5 

Hz, 2H, CHH'-4); 13C NMR (100.6 MHz, CDCl3) for 155a δ 176.4 (C=O), 160.4 (ipso-Ar), 

158.7 (ipso-Ar), 139.2 (=C), 130.5 (Ar), 119.4 (=CH), 118.0 (ipso-Ar), 104.2 (Ar), 98.5 (Ar), 

55.5 (OMe), 53.5 (NCH), 42.3 (CH-5), 38.1 (NCH2), 34.1 (CH2-4), 28.5 (CH2-2) (1 × OMe 

resonance not resolved); HRMS (ESI) m/z calcd for C32H36N2O6 (M + Na)+ 567.2466, found 

567.2455 (+1.9 ppm error) and a 95:5 mixture (by 1H NMR spectroscopy) of bis-normorphan 

155b and SPhos (3 mg i.e. 2.85 mg (4%) of 155b) as a clear oil, RF (3:2 hexane-acetone) 

0.09; IR (ATR) 2929, 1764, 1678 (C=O), 1613, 1508, 1208, 1035, 835, 731 cm–1; 1H NMR 

(400 MHz, CDCl3) for 155b δ 7.13–7.09 (m, 2H, Ar), 6.46–6.40 (m, 4H, Ar), 6.05–5.62 (m, 

2H, =CH), 4.55 (d, J = 15.0 Hz, 2H, NCHH'), 4.16 (d, J = 15.0 Hz, 2H, NCHH'), 3.84–3.76 

(m, 12H, OMe), 3.72–3.67 (m, 2H, NCH), 3.16 (d, J = 5.0 Hz, 2H, CH-5), 2.35–2.30 (m, 

4H, CHH'-2), 2.14 (ddd, J = 10.0, 5.0, 5.0 Hz, 2H, CHH'-4), 1.76 (d, J = 10.0 Hz, 2H, CHH'-

4); 13C NMR (100.6 MHz, CDCl3) for 155b δ 176.6 (C=O), 160.4 (ipso-Ar), 158.6 (ipso-

Ar), 138.0 (=C), 130.6 (Ar), 120.1 (=CH), 117.9 (ipso-Ar), 104.3 (Ar), 98.5 (Ar), 55.5 

(OMe), 53.7 (NCH), 41.2 (CH-5), 37.9 (NCH2), 33.6 (CH2-4), 28.7 (CH2-2) (1 × OMe 

resonance not resolved); HRMS (ESI) m/z calcd for C32H36N2O6 (M + Na)+ 567.2466, found 

567.2466 (0 ppm error). 

Lab book reference: ARG-2-123 
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N-(4-(-6-(2,4-Dimethoxybenzyl)-7-oxo-6-azabicyclo[3.2.1]oct-2-en-2-

yl)phenyl)acetamide 159 6-(2,4-dimethoxybenzyl)-6-azabicyclo[3.2.1]oct-2-en-7-one 

115 and 6,6'-bis(2,4-dimethoxybenzyl)-6,6'-diaza[2,2'-bi(bicyclo[3.2.1]octane)]-2,2'-

diene-7,7'-dione 155a/b  

 

Using general procedure A, vinyl MIDA boronate 94 (100 mg, 0.234 mmol, 1.0 eq), 

Pd(OAc)2 (3 mg, 0.012 mmol, 0.05 eq), SPhos (10 mg, 0.023 mmol, 0.1 eq), 4-

bromoacetanilide (63 mg, 0.280 mmol, 1.2 eq) and 3 M K3PO4(aq) (0.59 mL, 1.755 mmol, 

7.5 eq) in dioxane (2.34 mL) gave the crude product. Purification by flash column 

chromatography on silica with 2:8 to 1:99 hexane-EtOAc as eluent gave alkene 115 (26 mg, 

40%) as a clear oil, identical (by 1H and 13C NMR spectroscopy) to that described above, a 

75:25 mixture (by 1H NMR spectroscopy) of bis-normorphan 155a and SPhos (3 mg, i.e. 2.3 

mg (3%) of 155a) as a clear oil, identical (by 1H and 13C NMR spectroscopy) to that 

described above and a 90:10 mixture (by 1H NMR spectroscopy) of arylated normorphan 

159 and bis-normorphan 155b (48 mg, i.e. 43.2 mg (45%) of 159 and 4.8 mg (7%) of 155b) 

as a clear oil, RF (1:99 hexane-EtOAc) 0.3; IR (ATR) 3309 (NH), 2939, 2836, 1669 (C=O), 

1613, 1591, 1508, 1208, 1035, 730 cm–1; 1H NMR (400 MHz, CDCl3) for 159 δ 8.82 (br s, 

1H, NH), 7.52–7.49 (m, 2H, Ar), 7.43–7.39 (m, 2H, Ar), 7.09 (d, J = 8.5 Hz, 1H, Ar), 6.47–

6.40 (m, 2H, Ar), 5.77–5.74 (m, 1H, =CH), 4.59 (d, J = 15.0 Hz, 1H, NCHH'), 4.25 (d, J = 

15.0 Hz, 1H, NCHH'), 3.84–3.73 (m, 7H, OMe, NCH), 3.27 (d, J = 4.5 Hz, 1H, CH-5), 2.38–

2.22 (m, 3H, CHH'-2, CHH'-4), 2.07 (s, 3H, Me), 1.88 (d, J = 10.5 Hz, 1H, CHH'-4); 13C 

NMR (100.6 MHz, CDCl3) δ 177.1 (C=O, lactam), 169.1 (C=O, NHC(O)), 160.6 (ipso-Ar), 

158.6 (ipso-Ar), 139.7 (ipso-Ar), 138.0 (ipso-Ar), 135.6 (=C), 130.2 (Ar), 125.7 (Ar), 120.5 

(=CH), 120.0 (Ar), 117.6 (ipso-Ar), 104.3 (Ar), 98.6 (Ar), 55.5 (OMe), 55.4 (OMe), 54.0 
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(NCH), 44.1 (C-5), 38.3 (NCH2), 34.1 (CH2-4), 28.8 (CH2-2), 24.4 (Me); HRMS (ESI) m/z 

calcd for C24H26N2O4 (M + Na)+ 429.1785, found 429.1782 (+0.7 ppm error). 

Lab book reference: ARG-2-117 

 

6-(2,4-Dimethoxybenzyl)-2-(pyrimidin-5-yl)-6-azabicyclo[3.2.1]oct-2-en-7-one 156, 6-

(2,4-dimethoxybenzyl)-6-azabicyclo[3.2.1]oct-2-en-7-one 115 and 6,6'-bis(2,4-

dimethoxybenzyl)-6,6'-diaza[2,2'-bi(bicyclo[3.2.1]octane)]-2,2'-diene-7,7'-dione 155a/b 

 

Using general procedure A, vinyl MIDA boronate 94 (100 mg, 0.234 mmol, 1.0 eq), 

Pd(OAc)2 (3 mg, 0.012 mmol, 0.05 eq), SPhos (10 mg, 0.023 mmol, 0.1 eq), 5-bromo-

pyrimidine (45 mg, 0.280 mmol, 1.2 eq) and 3 M K3PO4(aq) (0.59 mL, 1.755 mmol, 7.5 eq) 

in dioxane (3.9 mL) gave the crude product. Purification by flash column chromatography 

on silica with 99:1 to 9:1 Et2O-MeOH as eluent gave alkene 115 (3 mg, 5%) as a clear oil, 

identical (by 1H and 13C NMR spectroscopy) to that described above, arylated normorphan 

156 (50 mg, 60%) as a clear oil, RF (9:1 Et2O-MeOH) 0.27; IR (ATR) 2942, 2866, 1687 

(C=O), 1613, 1507, 1412, 1208, 1033, 903, 823, 726 cm–1; 1H NMR (400 MHz, CDCl3) δ 

9.06 (s, 1H, Ar), 8.85 (s, 2H, Ar), 7.15–7.07 (m, 1H, Ar), 6.45–6.37 (m, 2H, Ar), 5.90 (dd, 

J = 3.5, 3.5 Hz, 1H, =CH), 4.54 (d, J = 15.0 Hz, 1H, NCHH'), 4.23 (d, J = 15.0 Hz, 1H, 

NCHH'), 3.77 (s, 7H, OMe, NCH), 3.19 (d, J = 5.0 Hz, 1H, CH-5), 2.41–2.32 (m, 2H, CHH'-

2), 2.28 (ddd, J = 10.5, 5.0, 5.0 Hz, 1H, CHH'-4), 1.86 (d, J = 10.5 Hz, 1H, CHH'-4); 13C 

NMR (100.6 MHz, CDCl3) δ 175.8 (C=O), 160.6 (ipso-Ar), 158.6 (ipso-Ar), 157.3 (Ar), 

153.5 (Ar), 135.0 (=C), 133.8 (ipso-Ar), 130.7 (Ar), 125.6 (=CH), 117.5 (ipso-Ar), 104.4 

(Ar), 98.5 (Ar), 55.5 (OMe), 53.4 (NCH), 43.6 (CH-5), 38.2 (NCH2), 33.8 (CH2-4), 29.1 

(CH2-2) (1 × OMe resonance not resolved); HRMS (ESI) m/z calcd for C20H21N3O3 (M + 

Na)+  374.1475, found 374.1471 (+0.9 ppm error), a 75:25 mixture (by 1H NMR 
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spectroscopy) of bis-normorphan 155a and SPhos (2 mg, i.e. 1.5 mg (3%) of 155a) as a clear 

oil, identical (by 1H and 13C NMR spectroscopy) to that described above and a 90:10 mixture 

(by 1H and 13C NMR spectroscopy) of bis-normorphan 155b and SPhos (4 mg, i.e. 3.6 mg 

(7%) of 155b) as a clear oil, identical (by 1H and 13C NMR spectroscopy) to that described 

above. 

Lab book reference: ARG-2-106 

 

6-(2,4-Dimethoxybenzyl)-2-(2-methoxypyrimidin-5-yl)-6-azabicyclo[3.2.1]oct-2-en-7-

one 160, 6-(2,4-dimethoxybenzyl)-6-azabicyclo[3.2.1]oct-2-en-7-one 115 and 6,6'-

bis(2,4-dimethoxybenzyl)-6,6'-diaza[2,2'-bi(bicyclo[3.2.1]octane)]-2,2'-diene-7,7'-

dione 155a/b 

 

Using general procedure A, vinyl MIDA boronate 94 (100 mg, 0.234 mmol, 1.0 eq), 

Pd(OAc)2 (3 mg, 0.012 mmol, 0.05 eq), SPhos (10 mg, 0.023 mmol, 0.1 eq), 5-bromo-2-

methoxy-pyrimidine (53 mg, 0.280 mmol, 1.2 eq) and 3 M K3PO4(aq) (0.59 mL, 1.755 mmol, 

7.5 eq) in dioxane (2.34 mL) gave the crude product. Purification by flash column 

chromatography on silica with 99:1 to 9:1 Et2O-MeOH as eluent gave alkene 115 (4 mg, 

6%) as a clear oil, identical (by 1H and 13C NMR spectroscopy) to that described above, a 

95:5 mixture (by 1H NMR spectroscopy) of arylated normorphan 160 and bis-normorphan 

155a (62 mg, i.e. 58.9 mg (66%) of 160 and 3.1 mg (5%) of 155a) as a clear oil, RF (95:5 

Et2O-MeOH) 0.46; IR (ATR) 2955, 2836, 1686 (C=O), 1613, 1589, 1471, 1412, 1207, 1032, 

823 cm–1; 1H NMR (400 MHz, CD2Cl2) for 160 δ 8.60 (s, 2H, Ar), 7.08 (d, J = 8.0 Hz, 1H, 

Ar), 6.46–6.35 (m, 2H, Ar), 5.78 (dd, J = 3.5, 2.5 Hz, 1H, =CH), 4.49 (d, J = 15.0 Hz, 1H, 

NCHH'), 4.19 (d, J = 15.0 Hz, 1H, NCHH'), 3.95 (s, 3H, OMe), 3.81–3.71 (m, 7H, OMe, 

NCH), 3.10 (dd, J = 5.0, 1.0 Hz, 1H, CH-5), 2.38–2.29 (m, 2H, CHH'-2), 2.25 (dddd, J = 
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10.0, 5.5, 4.5, 1.0 Hz, 1H, CHH'-4), 1.85 (d, J = 10.5 Hz, 1H, CHH'-4); 13C NMR (100.6 

MHz, CD2Cl2) δ 175.8 (C=O), 164.9 (ipso-Ar), 160.6 (ipso-Ar), 158.6 (ipso-Ar), 155.9 (Ar), 

134.6 (ipso-Ar), 130.2 (Ar), 128.0 (=C), 122.9 (=CH), 117.8 (ipso-Ar), 104.3 (Ar), 98.3 (Ar), 

55.41 (OMe), 55.36 (OMe), 54.8 (NCH), 43.7 (CH-5), 38.0 (NCH2), 33.6 (CH2-4), 28.8 

(CH2-2) (1 × OMe resonance not resolved); HRMS (ESI) m/z calcd for C21H23N3O4 (M + 

Na)+  404.1581, found 404.1583 ((–0.4 ppm error) and a 90:10 mixture (by 1H NMR 

spectroscopy) of bis-normorphan 155b and SPhos (5 mg, i.e. 4.5 mg of 155b, 7%) as a clear 

oil, identical (by 1H and 13C NMR spectroscopy) to that described above. 

Lab book reference: ARG-2-107 

 

6-(2,4-Dimethoxybenzyl)-2-(1-(triisopropylsilyl)-1H-pyrrolo[2,3-b]pyridin-5-yl)-6-

azabicyclo[3.2.1]oct-2-en-7-one 158 

 

Using general procedure A, MIDA boronate 94 (200 mg, 1.47 mmol, 1.0 eq), Pd(OAc)2 (6 

mg, 0.025 mmol, 0.05 eq), SPhos (20 mg, 0.047 mmol, 0.1 eq), 5-bromo-1-

triisopropylsilanyl-1H-pyrrolo[2,3-b]pyridine 157 (198 mg, 0.56 mmol, 1.2 eq) and 3 M 

K3PO4(aq) (1.52 mL, 4.59 mmol, 7.5 eq) in dioxane (7.5 mL) gave the crude product. 

Purification by flash column chromatography on silica with 1:4 EtOAc-hexane as eluent 

gave arylated normorphan 158 (178 mg, 58%) as a clear oil, RF (1:4 EtOAc-hexane) 0.15; 

IR (ATR) 2945, 2866, 2244, 1686 (C=O), 1613, 1507, 1465, 1385, 1207, 1154, 906, 726, 

648 cm–1; 1H NMR (400 MHz, CDCl3) δ 8.41 (d, J = 2.0 Hz, 1H, Ar), 8.10 (d, J = 2.0 Hz, 

1H, Ar), 7.27 (d, J = 3.5 Hz, 1H, Ar), 7.21–7.13 (m, 1H, Ar), 6.55 (d, J = 3.5 Hz, 1H, Ar), 

6.49–6.40 (m, 2H, Ar), 5.78 (dd, J = 3.5, 3.5 Hz, 1H, =CH), 4.61 (d, J = 15.0 Hz, 1H, 

NCHH'), 4.29 (d, J = 15.0 Hz, 1H, NCHH'), 3.91–3.72 (m, 7H, OMe, NCH), 3.33 (d, J = 5.0 
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Hz, 1H, CH-5), 2.43–2.30 (m, 2H, CHH'-2), 2.29 (ddd, J = 10.0, 5.0, 5.0 Hz, 1H, CHH'-4), 

1.91 (d, J = 10.0 Hz, 1H, CHH'-4), 1.85 (sept, J = 7.5 Hz, 3H, SiCH), 1.121 (d, J = 7.5 Hz, 

9H, SiCHMe2), 1.117 (d, J = 7.5 Hz, 9H, SiCHMe2); 
13C NMR (100.6 MHz, CDCl3) δ 176.8 

(C=O), 160.5 (ipso-Ar), 158.6 (ipso-Ar), 153.4 (ipso-Ar), 140.3 (Ar), 139.0 (=C), 131.6 

(Ar), 130.6 (Ar), 129.1 (ipso-Ar), 124.7 (Ar), 122.0 (ipso-Ar), 120.5 (=CH), 118.0 (ipso-

Ar), 104.3 (Ar), 103.4 (Ar), 98.5 (Ar), 55.5 (OMe), 53.9 (NCH), 44.6 (CH-5), 38.0 (NCH2), 

34.2 (CH2-4), 29.0 (CH2-2), 18.3 (SiCHMe2), 12.4 (SiCH) (1 × OMe resonance not 

resolved); HRMS (ESI) m/z calcd for C32H44N3O3 (M + H)+  546.3146, found 546.3147 (–

0.1 ppm error). 

Lab book reference: ARG-1-069 
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Attempted synthesis of 6-(2,4-Dimethoxybenzyl)-2-(2-methoxypyridin-3-yl)-6-

azabicyclo[3.2.1]oct-2-en-7-one 161. 6-(2,4-Dimethoxybenzyl)-6-azabicyclo[3.2.1]oct-2-

en-7-one 115 and 6,6'-bis(2,4-dimethoxybenzyl)-6,6'-diaza[2,2'-

bi(bicyclo[3.2.1]octane)]-2,2'-diene-7,7'-dione 155a/b 

 

Using general procedure A, vinyl MIDA boronate 94 (100 mg, 0.234 mmol, 1.0 eq), 

Pd(OAc)2 (3 mg, 0.012 mmol, 0.05 eq), SPhos (10 mg, 0.023 mmol, 0.1 eq), 3-bromo-2-

methoxy-pyridine (53 mg, 0.280 mmol, 1.2 eq) and 3 M K3PO4(aq) (0.59 mL, 1.755 mmol, 

7.5 eq) in dioxane (2.34 mL) gave the crude product. Purification by flash column 

chromatography on silica with 99:1 to 9:1 Et2O-MeOH as eluent gave alkene 115 (37 mg, 

55%) as a clear oil, identical (by 1H and 13C NMR spectroscopy) to that described above, a 

75:25 mixture (by 1H NMR spectroscopy) of bis-normorphan 155a and SPhos (4 mg, i.e. 3 

mg (6%) of 155a) as a clear oil, identical (by 1H and 13C NMR spectroscopy) to that 

described above and an 85:15 mixture (by 1H and 13C NMR spectroscopy) of bis-

normorphan 155b and SPhos (6 mg, i.e. 5 mg (10%) of 155b) as a clear oil, identical (by 1H 

and 13C NMR spectroscopy) to that described above. There was evidence in the 1H NMR 

spectrum of the crude product for the formation of arylated normorphan 161 but none was 

isolated after chromatography. 
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Lab book reference: ARG-2-118 

 

Attempted synthesis of 6-(2,4-dimethoxybenzyl)-2-(6-fluoro-3-methylpyridin-2-yl)-6-

azabicyclo[3.2.1]oct-2-en-7-one 162. 6-(2,4-Dimethoxybenzyl)-6-azabicyclo[3.2.1]oct-2-

en-7-one 115 and 6,6'-bis(2,4-dimethoxybenzyl)-6,6'-diaza[2,2'-

bi(bicyclo[3.2.1]octane)]-2,2'-diene-7,7'-dione 155a/b 

 

Using general procedure A, vinyl MIDA boronate 94 (100 mg, 0.234 mmol, 1.0 eq), 

Pd(OAc)2 (3 mg, 0.012 mmol, 0.05 eq), SPhos (10 mg, 0.023 mmol, 0.1 eq), 2-bromo-5-

fluoro-3-methylpyridine (33 µL, 0.280 mmol, 1.2 eq) and 3 M K3PO4(aq) (0.59 mL, 1.755 

mmol, 7.5 eq) in dioxane (2.34 mL) gave the crude product. Purification by flash column 

chromatography on silica with 99:1 to 9:1 Et2O-MeOH as eluent gave alkene 115 (40 mg, 

60%) as a clear oil, identical (by 1H and 13C NMR spectroscopy) to that described above, a 

80:20 mixture (by 1H NMR spectroscopy) of bis-normorphan 155a and SPhos (2 mg, i.e. 1.5 

mg (3%) of 155a) as a clear oil, identical (by 1H and 13C NMR spectroscopy) to that 

described above and an 85:15 mixture (by 1H and 13C NMR spectroscopy) of bis-

normorphan 155b and SPhos (5 mg, i.e. 4 mg (8%) of 155b) as a clear oil, identical (by 1H 

and 13C NMR spectroscopy) to that described above. There was evidence in the 1H NMR 
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spectrum of the crude product for the formation of arylated normorphan 162 but none was 

isolated after chromatography. 

Lab book reference: ARG-2-124 

 

Attempted synthesis of 6-(2,4-dimethoxybenzyl)-2-(2-hydroxypyridin-4-yl)-6-

azabicyclo[3.2.1]oct-2-en-7-one 

 

Using general procedure A, vinyl MIDA boronate 94 (100 mg, 0.234 mmol, 1.0 eq), 

Pd(OAc)2 (3 mg, 0.012 mmol, 0.05 eq), SPhos (10 mg, 0.023 mmol, 0.1 eq), 4-bromo-2-

hydroxypyridine (49 mg, 0.280 mmol, 1.2 eq) and 3 M K3PO4(aq) (0.59 mL, 1.755 mmol, 7.5 

eq) in dioxane (2.34 mL) gave the crude product which contained (by 1H NMR spectroscopy) 

only traces of arylated normorphan. 

Lab book reference: ARG-2-116 
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Attempted synthesis of 6-(2,4-dimethoxybenzyl)-2-(isoxazol-4-yl)-6-

azabicyclo[3.2.1]oct-2-en-7-one 

 

Using general procedure A, vinyl MIDA boronate 94 (100 mg, 0.234 mmol, 1.0 eq), 

Pd(OAc)2 (3 mg, 0.012 mmol, 0.05 eq), SPhos (10 mg, 0.023 mmol, 0.1 eq), 4-bromo-

isoxazole (41 mg, 0.280 mmol, 1.2 eq) and 3 M K3PO4(aq) (0.59 mL, 1.755 mmol, 7.5 eq) in 

dioxane (2.34 mL) gave the crude product which contained (by 1H NMR spectroscopy) only 

traces of arylated normorphan. 

Lab book reference: ARG-2-105 

 

Attempted synthesis of 6-(2,4-dimethoxybenzyl)-2-(1H-pyrazol-4-yl)-6-

azabicyclo[3.2.1]oct-2-en-7-one 

 

Using general procedure A, vinyl MIDA boronate 94 (100 mg, 0.234 mmol, 1.0 eq), 

Pd(OAc)2 (3 mg, 0.012 mmol, 0.05 eq), SPhos (10 mg, 0.023 mmol, 0.1 eq), 4-bromo-

pyrazole (41 mg, 0.280 mmol, 1.2 eq) and 3 M K3PO4(aq) (0.59 mL, 1.755 mmol, 7.5 eq) in 
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dioxane (2.34 mL) gave the crude product which contained (by 1H NMR spectroscopy) only 

traces of arylated normorphan. 

Lab book reference: ARG-2-104 

 

6-(2,4-Dimethoxybenzyl)-2-(4-methoxyphenyl)-6-azabicyclo[3.2.1]octan-7-one 168 

 

10% Pd/C (61 mg, 0.057 mmol, 10 mol%) was added to a stirred solution of arylated 

normorphan 153 (215 mg, 0.57 mmol, 1 eq) in MeOH (3 mL) at rt under Ar. The reaction 

flask was evacuated under reduced pressure and back-filled with Ar three times and then 

with H2 three times. The resulting mixture was stirred under a balloon of H2 (760 mmHg) 

for 18 h. The solids were removed by filtration through Celite® and washed with MeOH (10 

mL). The filtrate was evaporated under reduced pressure to give hydrogenated normorphan 

168 (200 mg, 92%, >97:3 dr) as a clear oil, RF (3:2 EtOAc-hexane) 0.49; IR (ATR) 2936, 

2835, 1680 (C=O), 1611, 1587, 1508, 1243, 1032, 825, 728 cm–1; 1H NMR (400 MHz, 

CDCl3) δ 7.37–7.33 (m, 2H, Ar), 7.22 (d, J = 8.5 Hz, 1H, Ar), 6.87–6.82 (m, 2H, Ar), 6.47–

6.42 (m, 2H, Ar), 4.64 (d, J = 14.5 Hz, 1H, NCHH'), 4.30 (d, J = 14.5 Hz, 1H, NCHH'), 

3.84–3.74 (m, 9H, OMe), 3.61 (dd, J = 5.5, 4.5 Hz, 1H, NCH), 2.84 (ddd, J = 12.0, 5.0, 1.5 

Hz, 1H, CH-6), 2.64 (d, J = 5.5 Hz, 1H, CH-5), 2.28 (dddd, J = 11.0, 5.5, 5.5, 1.5 Hz, 1H, 

CHH'-4), 1.85 (ddd, J = 14.0, 5.0, 5.0 Hz, 1H, CHH'-1), 1.79–1.61 (m, 3H, CHH'-1, CHH'-

2, CHH'-4), 1.52 (ddd, J = 12.0, 11.5, 5.0 Hz, 1H, CHH'-2); 13C NMR (100.6 MHz, CDCl3) 

δ 175.3 (C=O), 160.5 (ipso-Ar), 158.7 (ipso-Ar), 158.2 (ipso-Ar), 136.5 (ipso-Ar), 131.0 

(Ar), 128.7 (Ar), 117.9 (ipso-Ar), 113.7 (Ar), 104.2 (Ar), 98.4 (Ar), 55.5 (OMe), 55.4 

(OMe), 55.3 (OMe), 54.8 (NCH), 46.2 (CH-5), 44.0 (CH-6), 39.7 (CH2-4), 38.6 (NCH2), 

27.5 (CH2-1), 26.4 (CH2-2); HRMS (ESI) m/z calcd for C23H27NO4 (M + Na)+  404.1832, 

found 404.1837 (–1.2 ppm error). 
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Lab book reference: ARG-1-054 

 

2-(4-Methoxyphenyl)-6-azabicyclo[3.2.1]octan-7-one 170 

 

80% v/v TFA(aq) (8 mL) was added to a stirred solution of N-DMB-amide 168 (100 mg, 0.26 

mmol, 1.0 eq) in CH2Cl2 (1 mL) at rt. The resulting mixture was stirred and heated at 60 °C 

for 18 h. The solvent was evaporated under reduced pressure. The residue was suspended in 

toluene (10 mL) and the solvent was evaporated under reduced pressure to give the crude 

product. Purification by flash column chromatography on silica with 1:1 to 7:3 EtOAc-

hexane as eluent gave amide 170 (44 mg, 73%) as an off-white crystalline solid, mp 140-

142 °C; RF (7:3 EtOAc-hexane) 0.20; IR (ATR) 3231 (NH), 2934, 1693 (C=O), 1611, 1514, 

1247, 1181, 1035, 835, 773 cm–1; 1H NMR (400 MHz, CDCl3) δ 7.35–7.27 (m, 2H, Ar), 

6.88–6.79 (m, 2H, Ar), 6.69 (br s, 1H, NH), 3.85–3.69 (m, 4H, OMe, NCH), 2.88 (ddd, J = 

12.5, 6.0, 2.0 Hz, 1H, CH-6), 2.53 (d, J = 5.5 Hz, 1H, CH-5), 2.44 (dddd, J = 11.5, 6.0, 5.5, 

2.0 Hz, 1H, CHH'-4), 2.09–1.88 (m, 2H, CHH'-1, CHH'-2), 1.88–1.73 (m, 2H, CHH'-1, 

CHH'-4), 1.68 (ddd, J = 12.5, 12.5, 6.0 Hz, 1H, CHH'-2); 13C NMR (100.6 MHz, CDCl3) δ 

179.0 (C=O), 158.2 (ipso-Ar), 136.2 (ipso-Ar), 128.5 (Ar), 113.8 (Ar), 55.3 (OMe), 51.2 

(NCH), 45.8 (CH-5), 43.8 (CH-6), 41.0 (CH2-4), 29.1 (CH2-1), 26.8 (CH2-2); HRMS (ESI) 

m/z calcd for C14H17NO2 (M + H)+  232.1332, found 232.1334 (–0.8 ppm error). 

Lab book reference: ARG-1-062 

 

80% v/v TFA(aq) (5 mL) was added to a stirred solution of N-DMB-amide 168 (70 mg, 0.18 

mmol, 1.0 eq) in CH2Cl2 (1 mL) at rt. The resulting mixture was stirred at rt for 72 h. The 

solvent was evaporated under reduced pressure. The residue was suspended in toluene (10 

mL) and the solvent evaporated under reduced pressure to give the crude product. 

Purification by flash column chromatography on silica with 1:1 to 7:3 EtOAc-hexane as 
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eluent gave amide 170 (27 mg, 68%) as an off-white crystalline solid, identical (by 1H and 

13C NMR spectroscopy) to that described above. 

Lab book reference: ARG-1-057 

 

DDQ (71 mg, 0.31 mmol, 1.5 eq) was added to a stirred solution of N-DMB-amide 168 (79 

mg, 0.21 mmol, 1.0 eq) in CH2Cl2 (1 mL) and H2O (0.1 mL) at rt. The resulting mixture was 

stirred at rt for 24 h. Saturated NaHCO3(aq) (5 mL) was added and the mixture was extracted 

with CH2Cl2 (3 × 5 mL). The combined organic extracts were washed with brine (10 mL), 

dried (MgSO4) and evaporated under reduced pressure to give the crude product. Purification 

by flash column chromatography on silica with 1:1 to 7:3 EtOAc-hexane as eluent gave 

amide 170 (12 mg, 25%) as an off-white crystalline solid, identical (by 1H and 13C NMR 

spectroscopy) to that described above. 

Lab book reference: ARG-1-058 

 

TFA (596 µL, 7.8 mmol, 30 eq) was added to a stirred solution of N-DMB-amide 168 (100 

mg, 0.26 mmol, 1.0 eq) and m-dimethoxybenzene (68 µL, 0.52 mmol, 2 eq) in CH2Cl2 (1.3 

mL) at rt. The resulting solution stirred at rt for 72 h. Saturated NaHCO3(aq) (5 mL) was added 

and the mixture was extracted with CH2Cl2 (3 × 5 mL). The combined organic extracts were 

washed with brine (10 mL), dried (MgSO4) and evaporated under reduced pressure to give 

the crude product. Purification by flash column chromatography on silica with 1:1 to 7:3 

EtOAc-hexane as eluent gave amide 170 (31 mg, 52%) as an off-white crystalline solid, 

identical (by 1H and 13C NMR spectroscopy) to that described above. 

Lab book reference: ARG-1-084 
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4-Methyl-8-(-7-oxo-6-azabicyclo[3.2.1]oct-2-en-2-yl)dihydro-4λ4,8λ4-

[1,3,2]oxazaborolo[2,3-b][1,3,2]oxazaborole-2,6(3H,5H)-dione 171 

 

TFA (800 µL, 7.01 mmol, 30 eq) was added to a stirred solution of vinyl MIDA boronate 94 

(100 mg, 0.23 mmol, 1.0 eq) and m-dimethoxybenzene (60 µL, 0.46 mmol, 2 eq) in CH2Cl2 

(1.15 mL) at rt. The resulting mixture was stirred at rt for 72 h. The solvent was evaporated 

under reduced pressured. The residue was suspended in toluene (5 mL) and the solvent was 

evaporated under reduced pressure to give the crude product. Purification by flash column 

chromatography on silica with 1:1 to 8:2 CH2Cl2-acetone as eluent gave free amide 171 (39 

mg, 60%) as a white crystalline solid. mp 280-282 °C (decomposition); RF (2:8 CH2Cl2-

acetone) 0.31; IR (ATR) 3388 (NH), 1755 (C=O, ester), 1671 (C=O, amide), 1322, 110, 

1039, 558 cm–1; 1H NMR (400 MHz, d6-DMSO) δ 7.55 (s, 1H, NH), 5.86 (ddd, J = 3.0, 3.0, 

1.5 Hz, 1H, =CH-1), 4.25 (d, J = 17.5 Hz, 1H, C(O)CHH'), 4.13 (d, J = 16.5 Hz, 1H, 

C(O)CHH'), 3.91 (d, J = 17.5 Hz, 1H, C(O)CHH'), 3.90 (d, J = 16.5 Hz, 1H, C(O)CHH'), 

3.68–3.65 (m, 1H, NCH), 2.64 (s, 3H, NMe), 2.41 (d, J = 5.0 Hz, 1H, CH-5), 2.32 (ddd, J = 

19.0, 3.0, 3.0 Hz, 1H, CHH'-2), 2.07 (ddd, J = 10.5, 5.0, 5.0 Hz, 1H, CHH'-4), 2.02 (ddd, J 

= 19.0, 3.0, 1.5 Hz, 1H, CHH'-2), 1.52 (d, J = 10.5 Hz, 1H, CHH'-4); 13C NMR (100.6 MHz, 

d6-DMSO) δ 179.7 (C=O, amide), 170.4 (C=O, ester), 169.2 (C=O, ester), 134.1 (=CH), 62.2 

(CH2CO2), 61.6 (CH2CO2), 49.8 (NCH), 46.6 (NMe), 41.5 (CH-5), 34.9 (CH2-4), 33.2 (CH2-

2) (=C-B resonance not resolved); HRMS (ESI) m/z calcd for C12H15BN2O5 (M + H)+  

301.0966, found 301.0966 (+0.8 ppm error). 

Lab book reference: ARG-1-094 

 

80% v/v TFA(aq) (7 mL) was added to a stirred solution of vinyl MIDA boronate 94 (100 

mg, 0.23 mmol, 1.0 eq) in CH2Cl2 (1.5 mL) at rt. The resulting mixture was stirred and 

heated at 60 °C for 18 h. The solvent was evaporated under reduced pressure. The residue 

was suspended in toluene (5 mL) and the solvent was evaporated under reduced pressure to 
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give the crude product which contained (by 1H NMR spectroscopy) an unidentified mixture 

of products 

Lab book reference: ARG-1-093 

6-(2,4-Dimethoxybenzyl)-2-(4-methoxyphenyl)-6-azabicyclo[3.2.1]oct-2-ene 172 

 

A solution of arylated normorphan 153 (200 mg, 0.53 mmol, 1.0 eq) in THF (7.5 mL), was 

added dropwise to a stirred suspension of LiAlH4 (80 mg, 2.11 mmol, 4 eq) in THF (3.5 mL) 

at rt under Ar. The resulting mixture was stirred and heated at reflux for 16 h under Ar. After 

allowing the mixture to cool to rt, H2O (0.15 mL), 2 M NaOH(aq) (0.32 mL) and MgSO4 (250 

mg) were added and the resulting mixture was stirred for 15 min. The solids were removed 

by filtration through Celite® and the filtrate was evaporated under reduced pressure to give 

the crude product. Purification by flash column chromatography on silica with 99:1 to 9:1 

EtOAc-MeOH as eluent gave amine 172 (136 mg, 70%) as a clear oil, RF (9:1 EtOAc-MeOH) 

0.3; IR (ATR) 2934, 2832, 1607, 1507, 1240, 1152, 1032, 819 cm–1; 1H NMR (400 MHz, 

CDCl3) δ 7.39 (d, J = 8.5 Hz, 1H, Ar), 7.31–7.27 (m, 2H, Ar), 6.87–6.82 (m, 2H, Ar), 6.48 

(dd, J = 8.5, 2.5 Hz, 1H, Ar), 6.44 (d, J = 2.5 Hz, 1H, Ar), 5.72 (ddd, J = 3.5, 3.5, 1.5 Hz, 

1H, =CH), 3.87–3.80 (m, 2H, NCHH'Ar), 3.81–3.79 (m, 9H, OMe), 3.48–3.42 (m, 1H, 

NCH), 3.12–3.02 (m, 2H, NCHH'-7), 3.00 (dd, J = 5.0, 4.5 Hz, 1H, CH-5), 2.48 (ddd, J = 

18.5, 3.5, 2.0 Hz, 1H, CHH'-2), 2.30 (ddd, J = 18.5, 3.5, 3.5 Hz, 1H, CHH'-2), 2.04 (ddd, J 

= 10.5, 5.0, 5.0 Hz, 1H, CHH'-4), 1.84 (d, J = 10.5 Hz, 1H, CHH'-4); 13C NMR (100.6 MHz, 

CDCl3) δ 159.6 (ipso-Ar), 158.6 (ipso-Ar), 158.2 (ipso-Ar), 144.2 (=C), 134.1 (ipso-Ar), 

130.2 (Ar), 126.2 (Ar), 121.3 (ipso-Ar), 119.6 (=CH), 113.8 (Ar), 103.9 (Ar), 98.4 (Ar), 63.2 

(NCH2-7), 58.2 (NCH), 55.45 (OMe), 55.43 (OMe), 55.38 (OMe), 52.6 (NCH2Ar), 38.6 

(CH-5), 34.3 (CH2-2), 33.6 (CH2-4); HRMS (ESI) m/z calcd for C23H27NO3 (M + H)+  

366.2064, found 366.2066 (–0.5 ppm error). 

Lab book reference: ARG-1-071 
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6.2.4  HPLC Traces 

HPLC Traces for enantioenriched 109 

 

ARG-1-009 

 

 

Figure 6.1 - HPLC Trace for ARG-1-009 
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ARG-1-065 

 

 

Figure 6.2 - HPLC Trace for ARG-1-065 

 

ARG-1-061 

 

 

Figure 6.3 - HPLC Trace for ARG-1-061 
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6.2.5  Crystal Data 

Crystal data for 170 

 

Table 6.1 - Crystal data and structure refinement for paob1911 

Identification code  paob1911  

Empirical formula  C14H17NO2  

Formula weight  231.28  

Temperature/K  109.95(10)  

Crystal system  monoclinic  

Space group  P21/c  

a/Å  16.7674(7)  

b/Å  6.2020(2)  

c/Å  11.4525(4)  

α/°  90  

β/°  97.971(4)  

γ/°  90  

Volume/Å3  1179.45(8)  

Z  4  

ρcalcg/cm3  1.302  

μ/mm-1  0.695  

F(000)  496.0  

Crystal size/mm3  0.157 × 0.138 × 0.03  

Radiation  CuKα (λ = 1.54184)  

2Θ range for data collection/°  10.656 to 141.988  

Index ranges  -20 ≤ h ≤ 20, -6 ≤ k ≤ 7, -14 ≤ l ≤ 13  

Reflections collected  8760  

Independent reflections  2251 [Rint = 0.0333, Rsigma = 0.0340]  

Data/restraints/parameters  2251/0/159  

Goodness-of-fit on F2  1.048  

Final R indexes [I>=2σ (I)]  R1 = 0.0547, wR2 = 0.1437  

Final R indexes [all data]  R1 = 0.0645, wR2 = 0.1522  

Largest diff. peak/hole / e Å-3  0.57/-0.28  

 

Data collected, solved and refined by Sam Hart 
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Abbreviations 

Ac - Acetyl 

Acac - Acetylacetone 

AIBN - Azobisisobutyronitrile 

Aq - Aqueous 

Ar - Aryl 

Bn - Benzyl 

Boc - tert-butoxycarbonyl 

Br - Broad 

Cbz - Carboxybenzyl 

cm‒1 - Wavenumber 

CSP - Chiral stationary phase 

d - Doublet 

DAT - Dopamine transporter 

DBU - 1,8-Diazabicyclo[5.4.0]undec-7-ene 

DCE - 1,2-dichlorethane 

DDQ - 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone 

DMAP - 4-Dimethylaminopyridine 

DMB - 2,4-Dimethoxybenzyl 

DMF - Dimethylformamide 

DMP - Dess-Martin peridinane 

DMSO - Dimethylsulfoxide 

DPPA - Diphenyl phosphoryl azide 

Dppf - 1,1′-Bis(diphenylphosphino)ferrocene 
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Eq - Equivalents 

ESI - Electrospray ionisation 

Et - Ethyl 

EWG - Electron withdrawing group 

Fsp3 - Fraction of sp3 carbons 

g - Gram(s) 

h - Hour(s) 

H bond - Hydrogen bond 

HMDS - hexamethyldisilazane 

HPLC - High performance liquid chromatography 

HRMS - High resolution mass spectrometry 

HTS - High throughput screening 

Hz - Hertz 

IR - Infra-red 

i-Pr - iso-propyl 

J - Coupling constant in Hz 

kcal mol‒1 - Kilocalories per mole 

LDA - Lithium diisopropylamine 

m - Multiplet 

M - Molar  

m/z - Mass to charge ratio 

M+ - Molecular ion 

Me - Methyl 

mg - Milligrams 
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μM - Micromolar 

MIDA - Methyliminodiacetic acid 

min - Minute(s) 

mL - Millilitre(s) 

mmol - Millimole(s) 

MS - Mass spectrometry 

Ms - Mesyl 

MW - Molecular weight 

NMR - Nuclear Magnetic Resonance 

Ns - 4-Nosyl 

PG - Protecting group 

Ph - Phenyl 

Pin - Pinacolato 

Piv - Pivaloyl 

PMP - para-methoxyphenyl 

PNP - para-nitrophenyl 

ppm - Parts per million  

p-tol - para-tolyl 

q - Quartet  

Rf- Retention Factor  

R&D – Research and development 

rt - Room Temperature  

s - Singlet  

SMILES - Simplified molecular-input line-entry system  
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t - Triplet 

t-Bu - tert-butyl 

TBS - tert-butyldimethylsilyl 

TBDMS - tert-butyldimethylsilyl 

TBDPS - tert-butyldiphenylsilyl 

TIPS - Triisopropylsilyl 

Tf - Triflate 

TFA - Trifluoroacetic acid 

THF - Tetrahydrofuran 

TPMA - Tris(2-pyridylmethyl)amine 

Ts - Tosyl 

μW - Microwave  
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