Design and Synthesis of 3-D Building Blocks for Medicinal Chemistry

Andres Ricardo Gomez Angel

MSc by Research

University of York
Department of Chemistry

December 2019

Abstract

This thesis describes the design and synthesis of two 3-D building blocks for potential use in medicinal chemistry. The design and synthesis of normorphan-derived 3-D building block \mathbf{A} and morphan-derived 3-D building block \mathbf{B} is outlined. Further functionalisation of the normorphan-derived 3-D building block into lead-like compounds is also presented.

A

B

Section 2.1 describes the design consideration, vector analysis and proposed route for the synthesis of normorphan-derived 3-D building block A. Section 2.2 presents the racemic synthesis of normorphan-derived building block \mathbf{A} which was achieved with a 30% overall yield on a multi-gram scale via a seven-step sequence. Section 2.3 describes the investigation of routes for the synthesis of enantioenriched normorphan-derived 3-D building block \mathbf{A} by asymmetric cyclisation and diastereomeric resolution approaches.

The design, vector analysis and proposed route for morphan-derived 3-D building block B are presented in Section 3.1. Initial approaches for the synthesis of morphan-derived building block B using sulfonamide protecting groups are presented in Section 3.2. Further approaches for the synthesis of morphan-derived building block \mathbf{B} using an N-Boc protecting group are then outlined in Section 3.3. However, unfortunately, both these routes were ultimately unsuccessful in providing the desired 3-D building block B.

Finally, Chapter 4 showcases the functionalisation potential of normorphan-derived building block \mathbf{A} for the synthesis of medicinally-relevant lead-like compounds. Section 4.1 presents the Suzuki-Miyaura arylation of 3-D building block \mathbf{A} with a variety of aryl bromides while Section 4.2 shows further functionalisation of the building block into compounds such as normorphan lactams \mathbf{C} and \mathbf{D} and amine-based scaffold \mathbf{E}.

C

D

E

List of Contents

Abstract ii
List of Contents iii
List of Tables v
List of Figures vi
Acknowledgments viii
Author's Declaration ix
Chapter 1 Introduction. 1
1.1. Building Blocks in Medicinal Chemistry 1
1.2 Exit Vector Analysis 5
1.3 Normorphan 6-Azabicyclo[3.2.1]octane Scaffold 9
1.3.1 Introduction to the Normorphan Scaffold 9
1.3.2 Overview of Racemic Approaches for the Synthesis of the Normorphan Scaffold 10
1.3.3 Overview of Asymmetric Approaches to the Normorphan Scaffold 16
1.4 Morphan 2-Azabicyclo[3.3.1]nonane Scaffold 18
1.4.1 Introduction to the Morphan Scaffold 18
1.4.2 Overview of Racemic Approaches for the Synthesis of the Morphan Scaffold19
1.4.3 Overview of Asymmetric Approaches for the Synthesis of the Morphan Scaffold 24
1.5 Project Outline 29
Chapter 2 Design and Synthesis of a Normorphan-Derived 3-D Building Block 30
2.1 Design Considerations, Vector Analysis and Proposed Route for the Synthesis of a Normorphan-Derived 3-D Building Block 31
2.2 Development of a Racemic Synthesis of a Normorphan-Derived 3-D Building Block 36
2.3 Investigation of Routes for the Synthesis of Enantioenriched Normorphan-
Derived 3-D Building Block 45
2.4 Overview 50
Chapter 3 Design and Studies Towards the Synthesis of a Morphan-Derived 3-D Building Block 51
3.1 Design Considerations, Vector Analysis and Proposed Route for the Synthesis ofa Morphan-Derived 3-D Building Block52
3.2 Initial Approaches for the Synthesis of a Morphan-Derived 3-D Building BlockUsing Sulfonamide Protecting Groups57
3.3 Investigation of the Synthesis of a Morphan-Derived 3-D Building Block Using a Boc Protecting Group 63
3.4 Overview 75
Chapter 4 Suzuki-Miyaura Cross-Coupling and Further Functionalisation of the Normorphan-derived 3-D Building Block 76
4.1 Suzuki-Miyaura Arylations of the Normorphan-Derived 3-D Building Block. 77
4.2 Further Functionalisation of the Normorphan-Derived 3-D Building Block 84
4.3 Overview 90
Chapter 5 Conclusions and Future Work 91
Chapter 6 Experimental 95
6.1 Computational Methods 95
6.2 Synthetic Methods 95
6.2.1 General Methods 95
6.2.2 General Procedures 96
6.2.3 Experimental Procedures and Characterisation Data 97
6.2.4 HPLC Traces 151
6.2.5 Crystal Data. 153
Abbreviations 154
References 158

List of Tables

Table 2.1 - Optimisation of racemic cyclisation to give normorphan 109 38
Table 2.2 - Formation of vinyl triflate $\mathbf{1 1 0}$ 40
Table 2.3-Optimisation of vinyl MIDA boronate formation 43
Table 2.4 - Asymmetric cyclisation of $\mathbf{1 0 8}$ into $\mathbf{1 0 9}$ 47
Table 3.1 - Optimisation of the hydrogenation of morphan $\mathbf{8 7}$ into $\mathbf{1 3 8}$ 66
Table 3.2 - Hydrogenation of morphan 148 69
Table 4.1 - Optimisation of N-DMB deprotection. 87
Table 6.1 - Crystal data and structure refinement for paob1911 153

List of Figures

Figure 1.1 - Carreira's azaspirocycles and a ciprofloxacin analogue 2
Figure 1.2 - Mykhailiuk's spirocyclic pyrrolidine building blocks 3
Figure 1.3 - Miykhailiuk’s azabicyclo[3.2.0]heptane building blocks 3
Figure 1.4 - Selected examples from Pfizer's quick building block library 4
Figure 1.5 - Visual representation of variation vectors. 5
Figure 1.6-Grygorenko's 4- to 7-membered ring carbocycle exit vector analysis ${ }^{19}$ 6
Figure 1.7-Grygorenko's heterocycle exit vector analysis a) r- θ plot (polar coordinates); b)$\theta-\Phi_{1} / \Phi_{2}$ plot; c) $\Phi_{1}-\Phi_{2} \operatorname{plot}^{20}$ 7
Figure 1.8 - Examples of bicyclic diamines analysed by Grygorenko and co-workers 7
Figure 1.9-Grygorenko's bicyclic diamine exit vector analysis a) r- θ plot (polar coordinates); b) $\theta-\Phi_{1} / \Phi_{2}$ plot; b) $\Phi_{1}-\Phi_{2}$ plot 8
Figure 1.10-Normorphan bicyclo[3.2.1]octane scaffold 9
Figure 1.11 - Pharmaceutically-relevant normorphans 10
Figure 1.12 - Penduncularine 4 and Actinobolamine 5 10
Figure 1.13 - Morphan bicyclo[3.3.1]nonane scaffold 18
Figure 1.14 - Relevant morphans 19
Figure 1.15 - Envisaged normorphan and morphan 3-D building blocks 94 and 95 29
Figure 2.1 - Normorphan building block 94 30
Figure 2.2 - Normorphan building block 94 31
Figure 2.3 - Vector analysis for building block 94 in: a) $r-\theta$ plot (polar coordinates); b) visual representation of variation vectors; c) $\Phi_{1}-\Phi_{2}$ plot; c) $\theta-\Phi_{1} / \Phi_{2}$ plot. 34
Figure 2.4 - Key ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopic signals for building block 94 42
Figure 2.5- ${ }^{1} \mathrm{H}$ NMR spectrum of the crude product of the Miyaura borylation reaction (blue) and subsequent MIDA transesterification (red). 44
Figure 2.6 - Possible organocatalysts identified for the asymmetric cyclisation 45
Figure 3.1-Morphan building block 95 51
Figure 3.2 - Morphan building block 95. 52
Figure 3.3.3 - Vector analysis for morphan building block 95 (red) and normorphan 94 (blue)in: a) visual representation of variation vectors; b) r - θ plot (polar coordinates); c) $\Phi_{1}-\Phi_{2}$ plot;d) $\theta-\Phi_{1} / \Phi_{2}$ plot.54
Figure 3.4 - Multiplet analysis for the diastereomeric outcome of the hydrogenation of $\mathbf{6 0}$ into 141. 59
Figure 3.5 - Multiplet analysis for the diastereomeric outcome of the hydrogenation of $\mathbf{8 7}$into 138.65
Figure 3.6-Multiplet analysis for the diastereomeric outcome of the hydrogenation of 87 into 146 68
Figure $4.1-{ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1 5 5 a}$ (blue) and $\mathbf{1 5 5 b}$ (red) 80
Figure 4.2 - X-ray crystal structure of amide 170 86
Figure 5.1 - Normorphan-derived building block 94 91
Figure 5.2 - Products from further functionalisation of building block 94 91
Figure 6.1 - HPLC Trace for ARG-1-009 151
Figure 6.2 - HPLC Trace for ARG-1-065 152
Figure 6.3 - HPLC Trace for ARG-1-061 152

Acknowledgments

I would like to thank my supervisor Professor Peter O'Brien for taking me into the group, for his help, guidance, support and ideas. It is thanks to him that this research was possible and as successful and enlightening as it was. A big thank you as well to Professor Richard Taylor for being my internal panel member and for his encouragement and advice.

A special thank you must go to James Firth who was instrumental in starting the project, for being my mentor and teaching me the bits and pieces that would help me undertake this project. I would also like to thank all past and current POB group members for making this year such an invaluable, joyous and enlightening experience. These include Alex, Giordaina, Hanna, Tom, Rebecca, Sophie, Nico, Kevin, Jonathan, James D, Kleo, Ben, Stephen and Hannah. I could never leave out a big thank you to Matthew who provided me with both sanity and insanity in equal measure when I needed them.

Next, I would like to thank the staff of the Department of Chemistry at York. Graeme McAllister for making sure everything ran smoothly, Heather for her impeccable work running the NMR service and Karl for the mass spectrometry service.

Finally, I would like to thank my parents and partner, Paula, for their love, infinite support in everything I do and their never-ending patience.

Author's Declaration

I declare that this thesis is a presentation of original work and I am the sole author. This work has not previously been presented for an award at this, or any other, University. All sources are acknowledged as references.

Andres Ricardo Gomez Angel

Chapter 1 Introduction

1.1. Building Blocks in Medicinal Chemistry

With the advent of high-throughput screening (HTS), pharmaceutical research and development (R\&D) has begun to research different approaches for the exploration of chemical space. ${ }^{1}$ On top of this, concepts such as "lead-oriented synthesis", "escape from flatland", " "conformational restriction" ${ }^{4}$ and "scaffold hopping" ${ }^{5}$ have turned chemists' attention into developing high quality and more diverse sets of building blocks. ${ }^{6-9}$

Building blocks represent one of the main toolkits that medicinal chemists use to access lead compounds and to increase the diversity of lead-like structures. ${ }^{10}$ Building blocks often constitute the main backbone of lead-like scaffolds and it is common for the same building block to be incorporated into varied lead structures across different projects. ${ }^{10}$ Thus, the idea that higher quality and more diverse building blocks can improve the overall quality and success of discovery projects has been widely presented and adopted by various pharmaceutical companies such as AstraZeneca ${ }^{11}$ and Pfizer. ${ }^{12}$ In particular, the desired features in building blocks for medicinal chemistry have been outlined by AstraZeneca. ${ }^{11}$ The presence of chemical functionality for easy incorporation into the lead structure, the 'Rule of 2' (MW <200, clogP <2, H-bond donors ≤ 2 and H-bond acceptors ≤ 4) and the lack of redox-active functionality once incorporated into the structure were initially selected as high quality hallmarks for a building block. ${ }^{11}$

Additional analyses into the impact of aromatic ring counts on compound developability suggested that increasing numbers of aromatic rings present in lead compounds had detrimental effects on the physicochemical properties of compounds thus lowering their applicability in discovery projects. ${ }^{13}$ On top of this, the "escape from flatland" concept was introduced by Lovering et al. ${ }^{3}$ This concept explored the correlation between the progression of molecules through drug development stages and clinical trials and the fraction of sp^{3} hybridised carbon atoms (Fsp^{3}, number of sp^{3} hybridised carbon atoms divided by the total number of carbon atoms) as well as stereogenic centres present within the molecule. Lovering et al. analysed compounds that had reported biological activity or were described in a medicinal chemistry patent between 1980 and 2009 and they found that a correlation existed between increased Fsp^{3} and the progression of a drug through the drug development stages. The paper also found a 33% increase in the stereogenic centre count from discovery molecules to drugs. They also found that increased saturation had a beneficial effect on the
physical properties of drug candidates such as increased solubility and decreased melting points. These studies are taken as examples in support of the idea that increased 3-D shape of drug candidates and their building blocks can increase the likelihood of successful progression through clinical trials.

Following this and the widespread presence of diverse cyclic systems in drug-like molecules, ${ }^{14}$ the concepts of "conformational restriction" and "scaffold hopping" have come into play for lead-oriented synthesis. ${ }^{2}$ In this context, the use of conformationally restricted cyclic systems as surrogates for flexible rings (e.g. piperidines, morpholines, azepanes) has become popular. ${ }^{6}$ Selected examples of said types of building blocks are presented below.

Carreira and co-workers ${ }^{15}$ developed a series of azaspirocycles as surrogates for piperazinelike motifs (Figure 1.1). During their studies, Carreira et al. found that these azaspirocycles showed favourable pharmacokinetic properties with respect to their parent ring systems allowing for the synthesis of a ciprofloxacin analogue (Figure 1.1) with a better pharmacokinetic profile.

Ciprofloxacin analogue

Figure 1.1-Carreira's azaspirocycles and a ciprofloxacin analogue
Mykhailiuk and co-workers ${ }^{16,17}$ presented in 2017 an extensive set of spirocyclic pyrrolidines with either two or three diversity points as building blocks for medicinal chemistry. These spirocyclic pyrrolidines showed comparable physicochemical properties to their analogous piperidine and morpholine systems with slightly increased lipophilicity but significantly improved metabolic stability. Some selected examples are presented in Figure 1.2. One of the spirocyclic pyrrolidines was also studied as a substituent in a ciprofloxacin-derived antibacterial agent DV-7751.

DV-7751

Figure 1.2 - Mykhailiuk's spirocyclic pyrrolidine building blocks
Also in 2017, Miykhailiuk and co-workers 6 reported the synthesis of 3azabicyclo[3.2.0]heptane building blocks as surrogates for piperidine motifs. These bicyclic building blocks had similar physicochemical properties to their parent piperidines but occupied a slightly different part of chemical space according to their exit vectors (see Section 1.2). Some examples of these scaffolds are shown in Figure 1.3 together with Belaperidone, an antischizophrenia agent, which was prepared using one of the building blocks.

Belaperidone

Figure 1.3-Miykhailiuk's azabicyclo[3.2.0]heptane building blocks

It is finally worth noting that Pfizer ${ }^{12}$ has recently developed a building block library in collaboration with various chemical companies that contains various high Fsp^{3} and conformationally restricted building blocks (Figure 1.4). This set of building blocks has been incorporated into the company's discovery pipeline in recent years.

Figure 1.4-Selected examples from Pfizer's quick building block library

1.2 Exit Vector Analysis

Exit vector analysis is a way of visualizing chemical space, originally introduced for CAVEAT software in the 1990s, ${ }^{18}$ and recently popularised by Grygorenko and coworkers ${ }^{19}$ for the geometric description of functionalisation vectors for bifunctional scaffolds. Exit vector analysis uses the relative orientation of the two diversity vectors n_{1} and n_{2} that can be described according to four geometric parameters. For example, in the case of a 1,4-disubstituted cyclohexane (Figure 1.5): the distance between the variation points C 1 and $\mathrm{C} 2, \mathrm{r}$, the plane angles Φ_{1} (between vector n_{1} and $\mathrm{C} 1-\mathrm{C} 2$) and Φ_{2} (between vector n_{2} and C1-C2) and the dihedral angle θ defined by the vectors $\mathrm{n}_{1}, \mathrm{C} 1-\mathrm{C} 2$ and n_{2}. These parameters can be determined from the atomic coordinates and allow for the construction of Ramachandran-like plots. ${ }^{19}$

Figure 1.5 - Visual representation of variation vectors.
Extensive work has been performed by Grygorenko and coworkers ${ }^{19,20}$ in the classification of simple saturated carbo- and heterocyclic systems. Initial studies by Grygorenko into simple 3- to 7-membered carbocyclic compounds showed clustering that allowed for systematic categorisation of these structures into four distinct regions (Figure 1.6). ${ }^{19}$ Region α mainly comprises cis- and trans-1,2 systems. Cis-1,3 scaffolds as well as cis-1,4 6membered rings form the β region. On the other hand, the γ region is formed by trans-1,4 6membered rings while region δ includes trans-1,3 6-membered rings alongside some trans1,3 5-membered scaffolds. Within this initial analysis by Grygorenko, there were only two trans-1,4 7-membered rings which lie outside the defined regions.
a

Figure 1.6-Grygorenko's 4- to 7-membered ring carbocycle exit vector analysis ${ }^{19}$
Further studies by Grygorenko and co-workers ${ }^{20}$ on heterocyclic scaffolds demonstrated that, despite their apparent similarities to their carbocyclic counterparts, the plane and dihedral angles for these scaffolds differed significantly. Particularly, it was found that 1,3substituted scaffolds occupied an area previously unoccupied at $r=2.5 \AA$ between the β and δ regions in the dihedral angle plot (Figure 1.7 a) while still occupying a distinct region in plane angle plots (Figure 1.7b,c). This led to the definition of a new region ε for these 1,3disubstituted heterocycles. Region β was also extended to encompass some 1,4 - and some outlying 1,3-disubstituted scaffolds.
a

- $\alpha_{1 A}$ cluster
- $\alpha_{1 B}$ cluster

α region
- $\alpha_{1 c}$ cluster
- α_{10} cluster
 β region
- $\alpha_{2 A}$ cluster
- $\alpha_{2 B}$ cluster \square γ region
- β_{1} cluster
- $\beta_{2 A}$ cluster
 δ region
- β_{28} cluster
- γ cluster
- small clusters

ε region

Figure 1.7-Grygorenko's heterocycle exit vector analysis a) r- θ plot (polar coordinates); b) $\theta-\Phi_{1} / \Phi_{2}$ plot; c) $\Phi_{1}-\Phi_{2}$ plot. ${ }^{20}$

Grygorenko and co-workers ${ }^{20,21}$ have also extended their exit vector analysis to a series of conformationally restricted, bicyclic amines (Figure 1.8). In this analysis, it was found that bicyclic scaffolds could access previously untapped areas of chemical space. In particular, they found that larger values of r could be easily accessed with these scaffolds. Grygorenko also found that the variety of structures encompassed in this set allowed for access to a wide variety of predictable elaboration vectors outside the areas previously stablished (Figure 1.9).

Figure 1.8 - Examples of bicyclic diamines analysed by Grygorenko and co-workers

 piperazine analogs
\square γ region

- other bicyclic diamines

Figure 1.9-Grygorenko's bicyclic diamine exit vector analysis a) r- θ plot (polar coordinates); b) $\theta-\Phi_{1} / \Phi_{2}$ plot; b) $\Phi_{1}-\Phi_{2}$ plot

Exit vector analysis has also been applied to various other compounds such as 3((hetera)cyclobutyl)azetidines, ${ }^{22}$ propellanes ${ }^{23}$ and sultams ${ }^{24}$ and it has become an easy, well regarded and predictable method for the characterisation of the 3-D shape of medicinallyrelevant scaffolds. ${ }^{1}$

1.3 Normorphan 6-Azabicyclo[3.2.1]octane Scaffold

1.3.1 Introduction to the Normorphan Scaffold

In recent years, normorphan-derived scaffolds have been a focus of interest in synthetic chemistry mainly due to their applications in the pharmaceutical industry ${ }^{25}$ and their wide presence in diverse natural products. ${ }^{26-29}$ Consequently, attention towards the synthesis and applications of this bicyclic scaffold has been continuously expanding. The normorphan scaffold has as its core a bicyclic [3.2.1]octane structure where the 6-position of the scaffold has been replaced with an amino group (Figure 1.10). This amine or amide, alongside the variety of substitution patterns that emerge from the different synthetic approaches, allow for a diverse set of functionalisation vectors in pharmaceutical space. The normorphan core also shows potential for scaffold hoping, which alongside its 3-dimensionality make it a suitable candidate as a medicinal chemistry building block.

Figure 1.10 - Normorphan bicyclo[3.2.1]octane scaffold
In the context of pharmaceutical applications, 2,3-disubstituted normorphans have been investigated as novel dopamine transporter (DAT) inhibitors by Bonjoch and co-workers. ${ }^{25}$ During their studies, it was found that normorphan 1 showed comparable potency to that of currently-used DAT inhibitors while showing less potential side-effects. Likewise, normorphan $\mathbf{2}$ is currently being investigated as a potential antitumor agent against diffuse large B-celllymphomas. ${ }^{30}$ Azaprophen $\mathbf{3}$ has been widely investigated for the treatment of Alzheimer's disease due to its high potency as a muscarinic acetylcholine receptor antagonist. ${ }^{31-33}$ Finally, normorphan CGP48506 has been investigated as a calciumsensitizing agent (Figure 1.11). ${ }^{34}$

1

2

3

CGP48506

Figure 1.11 - Pharmaceutically-relevant normorphans
On the other hand, several natural products also contain the normorphan 6azabicyclo[3.2.1]octane scaffold (Figure 1.12). For example, peduncularine 4 has been a synthetic target of notable interest with seven formal and total syntheses published so far. ${ }^{27}$ Additionally, actinobolamine 5 has also been a relevant synthetic target for chemists since its structural elucidation by Munk and co-workers in 1967..28,35

4

5

Figure 1.12 - Penduncularine 4 and Actinobolamine 5

1.3.2 Overview of Racemic Approaches for the Synthesis of the Normorphan Scaffold

In this Section, an overview of previously reported racemic approaches for the synthesis of the normorphan and structurally related scaffolds is presented. Among the first approaches for the synthesis of the normorphan core were the thermal lactamisation of 1,3 aminoacids, ${ }^{36}$ Beckmann rearrangements of bicyclo[2.2.1]hetan-2-one oximes, ${ }^{37}$ amide alkylation, ${ }^{38}$ Hofmann-Loeffler-Freytag reactions ${ }^{39}$ and aza-Michael additions. ${ }^{40}$ However, while these reactions afforded the desired normorphan cores in moderate to good yields, many of them had poor functional group tolerance and/or required lengthy syntheses for their starting materials. Many of them also required the installation of a precursor bicyclic scaffold. ${ }^{41}$

While investigating the synthesis of peduncularine 4, Speckamp and co-workers ${ }^{42}$ generated an electrophilic N-acyliminium cation $\mathbf{6}$ by acid treatment of lactam $\mathbf{7}$ which subsequently cyclised to give normorphan $\mathbf{8}$ in 87% yield (Scheme 1.1). However, while this methodology
showed a good functional group tolerance and excellent yield, it required a six-step sequence to obtain precursor lactam 7.

Scheme 1.1
A somewhat curious approach to the synthesis of the normorphan scaffold was developed by Hoyt Meyer and co-workers ${ }^{43}$ for the synthesis of peduncularine 4. In it, they utilised a $\mathrm{Cr}(0)$-mediated [6+2] cycloaddition under photochemical conditions between isopropyl isocyanate and cycloheptatriene $\mathbf{9}$ to give bicyclic scaffold 10 as a single diastereomer in 37% yield. Bicycle $\mathbf{1 0}$ was then treated with $\mathrm{Tl}\left(\mathrm{NO}_{3}\right)_{3}$ to give normorphan $\mathbf{1 1}$ in 13% yield over the two-step sequence (Scheme 1.2). Nonetheless, it is evident that the low yields and use of toxic metals render this methodology unattractive.

Scheme 1.2
Other approaches have also been used to synthesise the normorphan core during the synthesis of peduncularine $\mathbf{4}$ such as ring closing metathesis between the 3 - and 4 - positions of the ring, ${ }^{44}$ radical cyclisation of oximes, ${ }^{45}$ [3+2] annulation of allylic silanes ${ }^{46}$ and iminium ion-promoted rearrengements. ${ }^{27}$ However, only the [3+2] annulation of allylic silanes was studied beyond the synthesis of their target. For example, Woerpel and coworkers ${ }^{26}$ used silylated cyclohexadiene $\mathbf{1 1}$ to access normorphan $\mathbf{1 2}$ by treatment with chlorosulfonyl isocyanate. Here, the allylic silyl species adds to the isocyanate to generate the zwitterionic intermediate $\mathbf{1 3}$ which undergoes 1,2-silyl migration to give allylic cation
14. Cation $\mathbf{1 4}$ then rapidly cyclises to give a $91: 9$ mixture of regioisomers with addition at the 1-position being the main product (Scheme 1.3). ${ }^{46}$ This approach was one of the first approaches to normorphans that required few steps towards the synthesis of its starting materials while achieving high yields and a high possibility for diversification of normorphan 12.

Scheme 1.3
In 2004, Johnson and co-workers ${ }^{25}$ developed a method to quickly access simple normorphans. By using a Diels-Alder reaction between N-Me-pyridone $\mathbf{1 5}$ and acrylic acid at $200{ }^{\circ} \mathrm{C}$ for 10 days and forming the methyl ester, normorphan 16 was obtained in 36% yield over the two-step sequence (Scheme 1.4). This was achieved by initial formation of the Diels-Alder adduct 17 which rearranged via tricyclic intermediate 18 to give normorphan 19. Normorphan 19 was finally methylated using MeI and $\mathrm{K}_{2} \mathrm{CO}_{3}$ to give normorphan 16. Even though the starting materials for the methodology are readily available, the high temperature and long reaction times required are a significant drawback of this approach.

Scheme 1.4
In 2011, Nevado and co-workers ${ }^{47}$ developed a methodology for the regioselective oxidative difunctionalisation of unactivated alkenes. However, while their methodology was not aimed at the synthesis of the normorphan scaffold, they found that while using sulfonamides $\mathbf{2 0}$, a gold catalyst and hypervalent iodine compound 21, their substrates rearranged to form benzo-fused normorphans 22 in moderate to good yields as single diastereomers (Scheme 1.5). Due to the need for the electron rich phenyl groups in the starting material, this methodology has a very limited substrate scope.

Scheme 1.5
Another racemic approach for the synthesis of the normorphan core was reported in 2014 by Xue and co-workers. ${ }^{48}$ Here, they found that treating cyclohexanone $\mathbf{2 3}$ with DPPA and $\mathrm{Et}_{3} \mathrm{~N}$ gave normorphan $\mathbf{2}$ in 76% yield via a Curtius rearrangement into isocyanate $\mathbf{2 4}$ which was trapped by an enolate generated from the ketone in 23 (Scheme 1.6). Unfortunately, no further exploration into the scope of this reaction was carried out.

Scheme 1.6
On the other hand, Grainger and co-workers ${ }^{29,49}$ studied the semipinacol rearrangement of cis-fused β-lactam diols as a way to access bridged bicyclic lactams such as normorphans. In their work, β-lactam 25 was treated with triphenylphosphine and $\mathrm{C}_{2} \mathrm{Cl}_{6}$ at reflux to afford normorphans 26 in good to excellent yields (Scheme 1.7). This transformation occurs via a cyclic phosphorane 27 formed from the diol present in lactam 25 and in situ generated $\mathrm{Ph}_{2} \mathrm{PCl}_{2}$ which undergoes migration to release $\mathrm{Ph}_{3} \mathrm{PO}$ and form the ketone in the 2-position. However, even though this methodology gave normorphans 26 in good to excellent yields with different protecting groups, the lengthy five-step sequence required to access β-lactam 25 is its main drawback.

Scheme 1.7

A concise and flexible route to access normorphan 26 was reported by Bonjoch and coworkers ${ }^{50}$ in 2015. Thus, trichloroamidoketones 28 were treated with pyrrolidine in toluene under $\mu \mathrm{W}$ irradiation to give normorphans 26 respectively in moderate to excellent yields (Scheme 1.8). Additionally, trichloroamidoketones $\mathbf{2 8}$ were easily obtained in a three-step sequence with a single purification from cyclohexanone 29 and the corresponding amine. Of note, Bonjoch's methodology tolerated different functionalities both in the 3- and 5-positions of the normorphan scaffold making this methodology an easy and reliable way to access diverse normorphans.

Scheme 1.8
A different approach for the synthesis of the normorphan scaffold was reported in 2017 by Lin and co-workers. ${ }^{51}$ Treatment of N -Ts enynamides $\mathbf{3 0}$ with AlCl_{3} afforded a wide variety of 2-chloro normorphans $\mathbf{3 1}$ in moderate to good yields (Scheme 1.9).

Scheme 1.9
As a final example, Dong and co-workers ${ }^{52}$ described a Pd-catalysed cyclisation of alkynelinked cyclohexanones into normorphans in 2019. While mostly applicable to 6-oxabicyclo[3.2.1]octanes, they reported that when cyclohexanone 32 was treated with $[\mathrm{Pd}(\text { allyl }) \mathrm{Cl}]_{2}$ and bis-phosphine $(S, S)-\mathbf{3 3}$, CsOPiv and benzoic acid at $130^{\circ} \mathrm{C}$, normorphan 34 was obtained in 42% yield as a 70:30 mixture of diastereomers (Scheme 1.10). Of note is the use of enantiomerically pure ligand $(S, S)-\mathbf{3 3}$ which was required for the sole purpose of increasing the diastereoselectivity of the reaction. Accordingly, no enantioselectivities were described by the authors.

Scheme 1.10

1.3.3 Overview of Asymmetric Approaches to the Normorphan Scaffold

Successful examples of the asymmetric synthesis of normorphans are quite scarce. ${ }^{53}$ In 2014, Chemler and co-workers ${ }^{54}$ reported a methodology for asymmetric normorphan synthesis similar to that of Nevado and co-workers (see Scheme 1.5) which proceeded via a Cu catalysed carboamination. Use of sulfonamide $\mathbf{3 5}, \mathrm{Cu}(\mathrm{OTf})_{2}$, a chiral bisoxazoline ligand $(R, R)-\mathbf{3 6}, \mathrm{K}_{2} \mathrm{CO}_{3}$ and MnO_{2} at $110^{\circ} \mathrm{C}$ afforded the benzo-fused normorphan 37 in 76% yield and 97:3 er (Scheme 1.11). Unfortunately, however, only a modest diversity of substituents in the aromatic ring could be accommodated, with substitution outside the aromatic ring causing complete inhibition of the reaction.

Scheme 1.11
During their studies into the racemic synthesis of normorphans, Bonjoch and co-workers ${ }^{50}$ briefly explored the use of chiral amino acid-derived organocatalysts for the cyclisation step. However, they found that while (S)-prolinamide (S)-38 gave the best result, normorphan 26 was obtained in only 50% yield and 81:19 er (Scheme 1.12). Several other (S)-proline and amino acid-derived organocatalysts were explored with little to no success. Due to the poor results obtained, no effort was made into determining the identity of the major enantiomer obtained.

Scheme 1.12
Finally, in 2019 whilst the work described in this thesis was being carried out, Ye and coworkers ${ }^{53}$ reported an asymmetric variant of a Conia-Ene type carbocyclisation for the synthesis of normorphans. Alkyne-linked cyclohexanones such as $\mathbf{3 9}$ were treated with chiral amine (R)-40 to give normorphan 41 in 53\% yield and 95:5 er (Scheme 1.13). This represents one of the only examples of the successful asymmetric synthesis of the normorphan scaffold. This methodology could accommodate diverse substitution on the aromatic ring. However, non-aromatic substituents on the alkyne led to the production of a [3.3.1]nonane scaffold instead of the [3.2.1]octane (see Section 1.4.3). Diverse functionalisation of the normorphan scaffold was explored such as hydrogenation of the alkene, oxidative cleavage of the alkene and deoxygenation of the 2-position carbonyl.

Scheme 1.13

1.4 Morphan 2-Azabicyclo[3.3.1]nonane Scaffold

1.4.1 Introduction to the Morphan Scaffold

Morphan-derived scaffolds have long been of great interest in synthetic chemistry primarily due to their extensive presence in natural products such as those from the daphniphyllum and strychnos alkaloid families, ${ }^{55-57}$ and their presence in diverse compounds of pharmaceutical interest. ${ }^{58-61}$ Accordingly, the investigation of synthetic methods and applications for the morphan scaffold are continuously on the rise. The morphan scaffold has as its core a bicyclic [3.3.1]nonane structure where the 2-position has been replaced with an amino group (Figure 1.13). This amine, together with the diverse substitution patterns that arise from the different synthetic approaches allow for a varied set of functionalisation vectors in pharmaceutical space. The 3-dimensionality of the morphan core along the regions of pharmaceutical space it can occupy (see Figure 1.9) make it an adequate candidate as a medicinal chemistry building block.

Figure 1.13 - Morphan bicyclo[3.3.1]nonane scaffold
In the context of natural products, the morphan core is present in a wide variety of alkaloids such as daphniyunnine A which is a potent cytotoxic agent ${ }^{55}$ and morphine which is widely known for its therapeutic and anaesthetic properties. ${ }^{62}$ Meanwhile, FR901483 has found application as an immunosupressant ${ }^{59}$ while morphan 42 and derivatives were reported by Thomas and co-workers ${ }^{61}$ as opioid receptor antagonists. During their studies, Thomas found that morphan 42 in particular showed similar potency to Naloxone ${ }^{\circledR}$ for the treatment of opioid overdoses without some of the potential side effects associated with it (Figure 1.14). Several other natural products contain the morphan scaffold in their structure and have been relevant synthetic targets throughout the years. Worthy of mention is strychnine and other alkaloids of the strychnos family such as kopsone as well as macrocyclic natural products such as Madangamine A. ${ }^{58}$

Daphniyunnine A

FR901483

morphine

42

Figure 1.14 - Relevant morphans

1.4.2 Overview of Racemic Approaches for the Synthesis of the Morphan Scaffold

A wide variety of synthetic methods for the synthesis of the morphan core have been described and the topic has been the focus of various reviews. ${ }^{56}$ As such, a non-exhaustive list of some of the most recent and/or relevant methods to the current work will be presented in this Section. In 1982, Mullican and co-workers ${ }^{63}$ reported a method for the synthesis of simple morphans by intramolecular enolate alkylation. In this work, the alkene in allylamine 43 was cleaved via ozonolysis to give an aldehyde which was reduced to give keto alcohol 44 after ketal deprotection. Keto alcohol 44 was then mesylated and treated with base to give morphan 45 in 26\% yield from allylamine 43 (Scheme 1.14). This method has the major drawback of requiring a lengthy five-step sequence to access morphan $\mathbf{4 5}$ on top of the required synthesis for allylamine 43.

Scheme 1.14

In 1999, Bonjoch and co-workers ${ }^{64}$ reported a radical ring closure to access morphan scaffolds. Treating trichloroamidoketone 28 with TMSI and HMDS at $-20^{\circ} \mathrm{C}$ gave silyl enol ether 46 which was cyclised and de-chlorinated by treatment with $\mathrm{Bu}_{3} \mathrm{SnH}$ and AIBN at reflux to give morphan 47 in 70% yield from 28 (Scheme 1.15). This work represented a significant improvement over previous methods for the synthesis of morphans. However, the harsh conditions necessary for the cyclisation presumably meant that no additional substitution was explored by Bonjoch.

Scheme 1.15
Another racemic route to access the morphan scaffold was described by Bonjoch and coworkers in 2005. ${ }^{65}$ In this work, Bonjoch used a Pd-catalysed enolate alkenylation to generate the morphan core from the Daphniphyllum alkaloid family (see Figure 1.14). Use of ketone 48, PhOK and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ in THF at reflux gave morphan 49 in 45% yield (Scheme 1.16). However, since the development of this methodology was made in the context of synthesising the morphan core for the Daphniphyllum alkaloid family, no further exploration of the scope was performed.

Scheme 1.16
On the other hand, Chiba and coworkers ${ }^{66}$ described the synthesis of diverse morphan scaffolds via Mn (III)-mediated reactions of cyclopropanols with vinyl azides. In this work, it was found that when vinyl azides $\mathbf{5 0}$ were reacted with cyclopropyl fused cyclopentanols 51 in the presence of $\mathrm{Mn}(\mathrm{III})$, 1-hydroxy-morphans 52 were formed in moderate to excellent
yields and diastereoselectivities (Scheme 1.17). The reaction proceeds via formation of cyclohexanone carbon-centred radical $\mathbf{5 3}$ which adds to the vinyl azide with loss of N_{2} to form a nitrogen-centred radical 54. This nitrogen-centred radical then adds to the ketone to form the 1-hydroxy-morphan. Despite the somewhat limited functionality this methodology offers, it was demonstrated that further functionalisation such as deoxygenation, reduction of the imine or substitution of the hydroxyl group was easily carried out.

Scheme 1.17
Based on Bonjoch's work (see Scheme 1.15), Belderrain and co-workers ${ }^{67}$ described a Cucatalysed radical cyclisation of trichloroacetamide 55 into a highly substituted morphan. Use of trichloroacetamide 55 with CuCl, TPMA and AIBN in DCE at $60^{\circ} \mathrm{C}$ gave morphan 56 in 55% yield (Scheme 1.18). It is notable that, under these conditions, full de-chlorination did not occur. Little substrate scope was investigated by Belderrain, but further functionalisation such as diastereoselective de-chlorination, and substitution was described.

Scheme 1.18
In their effort to develop an asymmetric synthesis for the morphan scaffold, Dixon and coworkers ${ }^{68}$ described the use of an organocatalytic intramolecular Michael addition of a 4substituted cyclohexanone to obtain the morphan scaffold. Thus, treatment of α, β -
unsaturated ester $\mathbf{5 7}$ with propylamine and benzoic acid in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ afforded morphan $\mathbf{5 8}$ in 89% yield as a single diastereomer (Scheme 1.19). α, β-Unsaturated esters similar to 57 were obtained in good yields in three- to four-step sequences with a single purification. However, the scope of the reaction was only explored for the developed asymmetric variant which is discussed in detail in Section 1.4.3.

Scheme 1.19
Dixon and co-workers ${ }^{69}$ reported another approach for the synthesis of morphans from 4substituted cyclohexanones in 2017. In this work, use of an alkyne-linked cyclohexanone 59, pyrrolidine, $\mathrm{Cu}(\mathrm{OTf})_{2}$ and PPh_{3} in THF led to the formation of morphan $\mathbf{6 0}$ in 78% yield (Scheme 1.20). The scope of this reaction was only explored further for the asymmetric variant (see Section 1.4.3).

Scheme 1.20
Another method for the synthesis of morphans via Michael addition was described by Yan and co-workers ${ }^{70}$ in 2017. Thus, the reaction between ketene aminals 61 and quinone monoketals 62 in water at $60^{\circ} \mathrm{C}$ led to the formation of morphans $\mathbf{6 3}$ in good to excellent yields (Scheme 1.21). This occurs via a Michael addition of the aminal $\mathbf{6 1}$ to the quinone $\mathbf{6 2}$ followed by an aza-Michael addition of the aminal nitrogen into the quinone's second alkene. An attractive feature of this reaction is that it is carried out in water with no other reagents. The methodology was able to accommodate different electron withdrawing groups in the aminal 61 such as NO_{2}, methyl ketone and acetophenone. The method could also
accommodate methyl substituents in the 1- and 2-positions of the quinone and different ketal protecting groups. However, it has the major drawback of being limited to cyclic ketene aminals with no further functionalisation of the product being explored.

$\mathrm{X}=\mathrm{C}(\mathrm{OMe})_{2}$
90\%

$\mathrm{X}=\mathrm{C}(\mathrm{OMe})_{2}$
87%

$\mathrm{X}=\mathrm{C}(\mathrm{OEt})_{2}$
85\%

$\mathrm{X}=\mathrm{C}(\mathrm{OMe})_{2}$
80\%

Scheme 1.21
Yan and co-workers ${ }^{71}$ made use of a similar approach to their ketene aminal variant (see Scheme 1.21) by using monoacetal protected quinones 64 and a enaminones $\mathbf{6 5}$. As such, treating quinones $\mathbf{6 4}$ with enaminones $\mathbf{6 5}$ and DBU in acetone at reflux afforded morphans 66 in good to excellent yields (Scheme 1.22). However, their scope was limited to N - Ar and N-Bn substituents as well as 4-substituted acetophenones in the 4-position of the morphan scaffold.

$\mathrm{X}=\mathrm{C}(\mathrm{OMe})_{3}$
80%

Scheme 1.22

As a final example of a racemic approach for the morphan scaffold, the nitroso-ene cyclisation reaction has also been used as a way to synthesise morphan cores. In 2017, Hong and co-workers ${ }^{72}$ described a way of accessing the morphan core from an in situ generated N-acyl nitroso compound. Amide 67 was treated with $n-\mathrm{PrN}^{+} \mathrm{IO}_{4}^{-}$to generate acyl nitroso compound 68 which spontaneously cyclised via a nitroso-ene reaction of 68 to give an N hydroxy morphan. The N-hydroxy morphan was then acetylated to give morphan 69 in 85% yield and moderate selectivity for the two-step sequence (Scheme 1.23). Different functionality in the 8 -position of the morphan scaffold was explored such as silyl ethers and acyl protected amines. The 6-position of the scaffold could also be replaced by an ether or a protected amine motif. Of note, the synthesis of alkaloid (\pm)-kospone, which is one of the simplest alkaloids from the Daphniphyllum family, was achieved using this methodology.

Scheme 1.23

1.4.3 Overview of Asymmetric Approaches for the Synthesis of the Morphan Scaffold

Since many of the synthetic methodologies for the morphan scaffold have been developed with a view to the total synthesis of one of the many natural products that contain them, there are more asymmetric methodologies for the synthesis of this scaffold compared to normorphans. In 2009, Bonjoch and co-workers ${ }^{73}$ developed an organocatalytic desymmetrisation of a 4-substituted cyclohexanone under $\mu \mathrm{W}$ irradiation to access the morphan scaffold. The approach used cyclohexanone 70, proline-derived organocatalyst (R -S)-71 and water in $\mathrm{CH}_{3} \mathrm{CN}$ under $\mu \mathrm{W}$ irradiation to give morphan 72 in 70% yield and 85:15
er (Scheme 1.24). Multiple proline-derived catalysts were explored with little success. However, the use of catalyst 71 with water as additive gave a good yield and adequate enantioselectivity. Unfortunately, the scope of the reaction to access different substitution patterns on the morphan scaffold was not further explored.

Scheme 1.24
Following this, the same group developed an alternative organocatalysed asymmetric synthesis of morphans by making use of a Robinson-type annulation. ${ }^{74}$ Treatment of ketoesters $\mathbf{7 3}$ and aldehyde $\mathbf{7 4}$ with proline-derived catalyst $(R)-\mathbf{7 5}$ and water with LiOH gave morphans 76 in moderate to good yields and excellent enantioselectivities (Scheme 1.25). Some exploration was made into different substituents on the 8 -position of the morphan scaffold.

Scheme 1.25
Expanding the methodology previously proposed (see Scheme 1.19), Dixon and coworkers ${ }^{68}$ developed an asymmetric variant of their organocatalysed Michael addition. Replacing propylamine with thiourea $(R, R)-77$ and using cyclohexanones 78 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in a sealed tube at $50{ }^{\circ} \mathrm{C}$ gave morphans 79 in good to excellent yields with good enantioselectivities as single diastereomers (Scheme 1.26). Computational analysis of the
organocatalyst used identified relatively simple thiourea $(R, R)-77$ as a suitable catalyst. Some substitution in the 1-position of the morphan scaffold was investigated with overall good results.

Scheme 1.26
Another example of the asymmetric synthesis of morphans was described by Jia and coworkers ${ }^{75}$ in 2016. Jia developed a $\mathrm{Pd} /$ proline- co-catalysed asymmetric arylative desymmetrisation of cyclohexanones. For example, treatment of cyclohexanone $\mathbf{8 0}$ with (S) proline (S)-81, $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{PPh}_{3}, \mathrm{AcOH}^{2}$ and $\mathrm{K}_{3} \mathrm{PO}_{4}$ in MeOH at $85^{\circ} \mathrm{C}$ afforded morphan 82 in 91% yield and $99: 1$ er (Scheme 1.27). However, this methodology could only accommodate limited substitution in the 4 - and 5-positions of the aromatic ring.

Scheme 1.27
As a complement to their racemic methodology (see Scheme 1.20), Dixon and co-workers ${ }^{69}$ described the asymmetric synthesis of morphans using cooperative silver and amine catalysis. Thus, treatment of alkyne-linked cyclohexanones $\mathbf{8 3}$ with AgNTf_{2}, chiral amine (S)-40, chiral phosphine 84 and 2,4-dinitrophenol in i-PrOH gave morphans 60, 85-91 in moderate to excellent yields and good to excellent enantioselectivities (Scheme 1.28). It was
found that sulfonamides attached to electron releasing groups such as Ts and 4$\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{SO}_{2}$ gave their corresponding morphans $\mathbf{6 0}$ and $\mathbf{8 5}$ in excellent yields and enantioselectivities. Sulfonamides with electron withdrawing groups such as 4-Ns gave moderate yields with slightly decreased enantioselectivities (86). By contrast carbamate protecting groups such as N -Boc (87) and N - Cbz (88) suffered from diminished yields and enantioselectivities. There was also a strong match/mismatch effect between the chiral amine and phosphine components of the reaction.

Scheme 1.28
As a final example, the methodology described by Ye and co-workers ${ }^{53}$ (see Scheme 1.13) could be easily adapted for the asymmetric synthesis of the morphan core. Use of cyclohexanones 92 with amine (S) $\mathbf{- 4 0}$ and $\mathrm{Et}_{3} \mathrm{~N}$ in benzotrifluoride afforded morphans 93 in good to excellent yields and moderate to excellent enantioselectivities (Scheme 1.29). The reaction could easily accommodate a variety of alkyl, alkenyl and aryl substituents in the 4position of the morphan core.

92

93

84\% 94:6 er

70\% 80:20 er

(S)-40

95\% 95:5 er

74\% 95:5 er

90\% 97:3 er

Scheme 1.29

1.5 Project Outline

Over recent years, the use of 3-D shaped building blocks in medicinal chemistry has received increased interest. Therefore, there is a need to explore the design and development of synthetic methodology to obtain complex, bifunctional, high Fsp ${ }^{3}$ building blocks for use in medicinal chemistry. The synthesis of medicinally-relevant compounds and the development of methodology for medicinal chemistry has long been of interest to the O'Brien group. It was planned that this project would focus on the design and synthesis of novel bifunctional 3-D building blocks 94 (normorphan scaffold) and 95 (morphan scaffold) containing a vinyl MIDA boronate and an amine or amide functionality for use in medicinal chemistry (Figure 1.15). It was decided that the development of synthetic methodology for the synthesis of 3D building blocks 94 and 95 as both racemic samples and single enantiomers would be investigated. Previous work by Bonjoch ${ }^{50}$ was envisaged as a way to obtain the racemic normorphan scaffold in building block 94 and the development of an enantioselective variant would be investigated. On the other hand, methodology developed by Dixon ${ }^{69}$ would be utilised to access both the racemic and enantioenriched morphan scaffold in building block 95. The results of these investigations are presented in Chapters 2 and 3.

94

95

Figure 1.15 - Envisaged normorphan and morphan 3-D building blocks 94 and 95
It was also planned to showcase the potential of the building blocks by outlining different functionalisation reactions that could be achieved with them. This would be done by exploring the scope of Suzuki-Miyaura cross couplings on the vinyl MIDA boronate functionality, demonstrating the diastereoselective hydrogenation of the building block as well as deprotection for the amide or amine protecting group. In the end, these studies were carried out only on building block $\mathbf{9 4}$ and the results are presented in Chapter 4.

Chapter 2 Design and Synthesis of a Normorphan-Derived 3-D Building Block

In this Chapter, the design and development of synthetic methodology required to access 3-D building block 94 (Figure 2.1) is described. Section 2.1 covers the design considerations and the vector analysis of various derivatives of $\mathbf{9 4}$ as well as the proposed synthetic strategy towards the 3-D building block. Section 2.2 discusses the synthesis of the building block, alongside optimisation of the cyclisation, enol triflate formation and borylation reactions. Section 2.3 outlines different approaches for the synthesis of enantioenriched building block 94 including studies on an organocatalytic cyclisation approach as well as a resolution approach with chiral MIDA boronate derivatives. Finally, Section 2.4 provides an overview of the results presented in this chapter.

94

Figure 2.1 - Normorphan building block 94.

2.1 Design Considerations, Vector Analysis and Proposed Route for the Synthesis of a Normorphan-Derived 3-D Building Block

With the prominence of the bicyclo[3.2.1]octane core in the medicinal chemistry literature ${ }^{25,41,76}$ and the available synthetic routes to diverse substitution patterns on these normorphan bicyclic cores presented in Section 1.3, our attention turned to a 6 -azabicyclo[3.2.1] bifunctional building block $\mathbf{9 4}$ with a 2 -substituent as our first target (Figure 2.2). It was envisaged that building block $\mathbf{9 4}$ could be obtained based on previous work by Bonjoch et al. ${ }^{50}$ as presented in Section 1.3.2.

94

Figure 2.2 - Normorphan building block 94.
It was expected that the bicyclic structure in building block $\mathbf{9 4}$ would provide conformational rigidity to allow for a set of predictable vectors from the functionalisation handles. With this in mind, the set of elaboration vectors were calculated for a group of structures which we hypothesised could be easily accessed by simple, reliable reactions. For example, SuzukiMiyaura cross-coupling on building block 94 should give arylated normorphan 96 which could be: (i) immediately deprotected and N-functionalised to give amides 97 and 98 ; (ii) hydrogenated diastereoselectively then deprotected and N-functionalised to give amides $\mathbf{9 9}$ and $\mathbf{1 0 0}$; (iii) reduced into amine $\mathbf{1 0 1}$ then hydrogenated and functionalised to give amines 102, 103 and 104 or (iv) reduced into amine 101 then deprotected and functionalised to give amines 105, 106 and 107 (Scheme 2.1). For the hydrogenation steps, we predicted that hydrogenation on the exo-face of the bicyclic scaffold should occur selectively to give the diastereomers shown.

Scheme 2.1
The set of structures shown in Scheme 2.1 gives an idea of the different elaboration vectors that can be achieved with building block 94. Using a Pipeline Pilot protocol previously developed in the O'Brien group, ${ }^{77}$ the lowest energy conformer for each molecule was generated using molecular mechanics. On these conformers, the set of variation vectors for each molecule was selected and then calculated using an algorithm developed by Grygorenko and co-workers ${ }^{19}$ to give the results shown in Figure 2.3. Figure 2.3a defines the vectors for the case of a 1,4 disubstituted cyclohexane, namely, the distance between the
variation points C 1 and C 2 , r , the plane angles Φ_{1} (between vector n_{1} and $\mathrm{C} 1-\mathrm{C} 2$) and Φ_{2} (between vector n_{2} and $\mathrm{C} 1-\mathrm{C} 2$) and the dihedral angle θ defined by the vectors $\mathrm{n}_{1}, \mathrm{C} 1-\mathrm{C} 2$ and n_{2}.

Comparing our set of vectors to those calculated by Grygorenko and co-workers ${ }^{19,20}$ for a variety of cyclic compounds reveals that building block $\mathbf{9 4}$ has vectors that lie outside the clusters normally associated with simple 3- to 7-membered cyclic scaffolds (see Section 1.2). They also have distinct vectors compared to a diverse set of [3.3.n]propellanes ${ }^{23}$ and cyclobutyl-azetidine-based scaffolds synthesised by the same group. ${ }^{22}$ Our set also shows a good level of conformational rigidity where most of the structures are clustered together in the $r-\theta$ plot (Figure 2.3b). However, some changes are observed between the hydrogenated products and their parent compounds with distinct clusters differing mainly by the Φ_{1} angle due to the change in hybridisation on the variation point C 1 . Additionally, N-methyl derivatives of the amine-based scaffold $\mathbf{1 0 3}$ and $\mathbf{1 0 6}$ seem to be outliers with regards to angles θ, Φ_{1} and Φ_{2} (Figure 2.3b,c,d), This, due to the sp^{3} hybridization of nitrogen and its protonation during the conformer generation.

Figure 2.3 - Vector analysis for building block 94 in: a) $r-\theta$ plot (polar coordinates); b) visual representation of variation vectors; c) $\Phi_{1}-\Phi_{2}$ plot; c) $\theta-\Phi_{1} / \Phi_{2}$ plot.

Our initial proposed route for the synthesis of 3-D building block $\mathbf{9 4}$ is outlined in Scheme 2.2. As previously mentioned, the scaffold construction is based on previous work by Bonjoch et al. ${ }^{50}$ and the route reported by Bonjoch appeared to offer a quick and reliable way to access the racemic normorphan scaffold from an organocatalytic cyclisation of a trichloroacetamide (see Scheme 1.8). Using this approach, we envisaged that trichloroamidoketone 108 could be obtained from monoprotected cyclohexadione 29 in three steps and then, using Bonjoch's organocatalytic cyclisation, we could obtain normorphan scaffold 109. After the cyclisation, elaboration into vinyl MIDA boronate 94 was envisioned via vinyl triflate formation to give 110, followed by a Pd-catalysed Miyaura borylation ${ }^{78}$ using $\mathrm{B}_{2} \mathrm{pin}_{2}$ to give vinyl pinacol boronate 111 and transesterification sequence to introduce the MIDA group. Additionally, it was hoped that an asymmetric organocatalytic variant of the cyclisation could be developed to access the enantioenriched building block 94.

Scheme 2.2
In Bonjoch's work, a benzyl group was used as the protecting group for the amine (see Scheme 1.8). However, in the case of amides, benzyl groups are notoriously hard to deprotect. ${ }^{79}$ Therefore, we proposed the use of 2,4-dimethoxybenzyl (DMB) protection since it should be more easily removed under either acidic or oxidative conditions during further functionalisation of the building block. A different protecting group such as Boc was not selected as we were unsure of the effect of an imide in the pyrrolidine-catalysed cyclisation. Finally, it is worth noting that the decision of using a vinyl MIDA boronate in the finalised building 94 block arose from the fact that MIDA boronates, popularised by Burke and coworkers, ${ }^{80-82}$ tend to be easy to handle, bench-stable, crystalline solids, that are easily hydrolysed to coupling active boronic acids under traditional aqueous Suzuki-Miyaura conditions. ${ }^{82}$

2.2 Development of a Racemic Synthesis of a Normorphan-Derived 3-D Building Block

To begin the studies towards the synthesis of the desired building block, it was necessary to access trichloroacetamide 108. To this end, the previously reported synthesis for the N-Bn variant of the trichloroacetamide $\mathbf{2 8}$ by Bonjoch and co-workers ${ }^{50}$ (see Scheme 1.8) was used as a model to obtain the N-DMB derivative 108. Reductive amination of 1,4 -cyclohexadione monoethylene acetal 29 (5.6 mmol scale) with a stoichiometric amount of 2,4dimethoxybenzylamine and using $\mathrm{NaBH}(\mathrm{OAc})_{3}$ (1.4 eq .) as a reducing agent quantitatively afforded the crude amine that was, after work-up, sufficiently pure for the next reaction. Hydrolysis of the ketal with $3 \mathrm{M} \mathrm{HCl}_{(\mathrm{aq})}$ quantitatively gave the crude ketone as a sufficiently pure product that was taken on to amide formation using an excess (1.8 eq.) of trichloroacetyl chloride in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ (1.9 eq.). After purification by chromatography, trichloroacetamide $\mathbf{1 0 8}$ was obtained in 89% yield over the three-step sequence (Scheme 2.3).

Scheme 2.3
Formation of trichloroacetamide $\mathbf{1 0 8}$ was confirmed by HRMS and both ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy where, despite the presence of rotamers (65:35 ratio) about the amide's $\mathrm{C}-\mathrm{N}$ bond, diastereotopic signals were observed for the attached DMB group ($\delta_{H} 4.60-4.52$ (m , 1.3H, ArCHN), 4.04-3.92 (m, 0.35H, ArCHN), 3.84-3.74 (m, 6.35H, ArCHN, OMe)). Additionally, the ${ }^{13} \mathrm{C}$ NMR spectrum showed signals at $\delta_{\mathrm{C}} 93.8$ and 160.7 that were assigned, by analogy with the N - Bn variant $\mathbf{2 8}\left(\delta_{\mathrm{C}} 93.5,160.5\right),{ }^{64}$ as the CCl_{3} and $\mathrm{C}(\mathrm{O}) \mathrm{N}$ signals respectively.

Scale-up of the procedure to 26 mmol of substrate gave a 90% yield of amidoketone $\mathbf{1 0 8}$ when purified by chromatography (Scheme 2.3). However, since it was desired to achieve a
more efficient purification, avoiding the large amounts of solvent and silica required for chromatography, an alternative purification was attempted on a 26 mmol scale. With the knowledge that the N-Bn variant can be purified by recrystallisation from $\mathrm{Et}_{2} \mathrm{O}$, purification by triturating the crude product with $\mathrm{Et}_{2} \mathrm{O}$ was attempted. This gave trichloroacetamide $\mathbf{1 0 8}$ in 60% yield which, despite being significantly lower than that obtained using chromatography, provides a useful alternative when purifying this early-stage product in large quantities.

Next, trichloroacetamide $\mathbf{1 0 8}$ was subjected to an organocatalytic cyclisation using Bonjoch's conditions ${ }^{50}$ with pyrrolidine to afford normorphan 109. This reaction proceeds via formation of enamine $\mathbf{1 1 2}$ from pyrrolidine and the ketone, with enamine $\mathbf{1 1 2}$ adding to the trichloroacetamide with concomitant elimination of ${ }^{-} \mathrm{CCl}_{3}$. However, initial results using toluene as a solvent at reflux gave normorphan 109 in only 45% yield (Scheme 2.4). The ${ }^{1} \mathrm{H}$ NMR spectrum of normorphan $\mathbf{1 0 9}$ showed the expected signal of the newly formed $\mathrm{CH} \alpha$ to the two carbonyl groups as a doublet at $\delta_{\mathrm{H}} 3.18$, having only one significant coupling (${ }^{3} J$ $=5.0 \mathrm{~Hz}$) to one of the methylene bridge protons and a negligible coupling to the other.

Scheme 2.4
With this result in hand, we set out to find an adequate set of conditions for this cyclisation reaction (Table 2.1). Increasing the reaction time from 45 min to 3 h at reflux in toluene had a detrimental effect on the yield (33% of $\mathbf{1 0 9}$, Entry 2). Thus, using the alternative method proposed by Bonjoch, a change into neat, sealed tube conditions and lowering the pyrrolidine equivalents was made. In this way, a good yield (63%) of normorphan 109 was obtained (Entry 3). Finally, since solubility problems were observed in the early stages of the reaction, we wondered whether increasing the equivalents of pyrrolidine to 1.0 and adding a small amount of toluene (4.0 M concentration) could prove beneficial. To our delight, this set of conditions afforded the best, most reproducible result (80% of 109, Entry 4). Using these
conditions, normorphan $\mathbf{1 0 9}$ was isolated in 80% yield on a 1.22 mmol scale with no erosion of the yield when scaled up to 17.1 mmol scale (Entry 5).

Table 2.1 - Optimisation of racemic cyclisation to give normorphan 109

Entry	Pyrrolidine Eq.	Solvent	$\mathbf{C}^{\mathbf{a}}$ (\mathbf{M})	Temp $^{\mathbf{b}}$ $\left({ }^{\circ} \mathbf{C}\right)$	Time	Scale $(\mathbf{m m o l})$	Yield $^{\mathbf{c}}$ $(\%)$	Vessel
1	2.0	Toluene	0.3	Reflux	45	0.49	45	$\mathrm{RBF}^{\mathrm{d}}$
2	2.0	Toluene	0.3	Reflux	min 3	0.98	33	$\mathrm{RBF}^{\mathrm{d}}$
3	0.5	Neat	100	1 h	1.22	63	Sealed tube	
4	1.0	Toluene	4.0	100	1 h	1.22	80	Sealed tube
5	1.0	Toluene	4.0	100	1 h	17.1	80	Sealed tube

a) Concentration of substrate ($\mathrm{mmol} / \mathrm{mL}$); b) Temperature measured in oil bath; c) Isolated \% yield; d) RBF = round-bottomed flask.

With an optimised cyclisation in hand, vinyl triflate formation from the ketone in normorphan 109 was the next step to be investigated. Relying on Bredt's rule for regioselectivity and a reported literature procedure ${ }^{83}$ for a similar normorphan that lacked the amide, use of LDA as a base and PhNTf_{2} as a triflate source was attempted. Thus, normorphan 109 was treated with LDA at $-78{ }^{\circ} \mathrm{C}$ in THF to give the enolate which was trapped with PhNTf_{2} to give vinyl triflate $\mathbf{1 1 0}$ in 30% yield after purification by chromatography (Scheme 2.5). Vinyl triflate formation was confirmed by ${ }^{1} \mathrm{H}$ NMR spectroscopy, in which a narrow 1 H multiplet was observed at $\delta_{\mathrm{H}} 5.56-5.51$ and assigned to the alkene $\mathrm{CH} .{ }^{13} \mathrm{C}$ NMR spectroscopy also showed a quartet $(J=320.0 \mathrm{~Hz})$ at $\delta_{\mathrm{C}} 118.6$ corresponding to the CF_{3} carbon. Signals corresponding to the newly-formed alkene at δ_{C} 148.4 and 114.8 were also observed.

Scheme 2.5
A range of conditions were then explored with the aim to increasing the yield for the formation of vinyl triflate $\mathbf{1 1 0}$ (Table 2.2). We first attempted to change the triflate source to a more reactive triflimide (Comins' reagent 113) which has shown use with unreactive substrates in previous studies. ${ }^{84}$ However, only a marginal increase in yield was observed (33% of 110, Entry 2) suggesting issues with deprotonation of ketone $\mathbf{1 0 9}$ rather than problems with trapping the formed enolate. Thus, a brief screen of bases was performed. Using LiHMDS and Comins' reagent gave only traces of enol triflate 110 (Entry 3). Changing to NaHMDS showed promise giving 110 in 54% yield (Entry 4). However, the product from this reaction was isolated as an 85:15 mixture with triflamide 114, derived from Comin's reagent, that proved impossible to separate by chromatography. On the other hand, using KHMDS as a base and returning to PhNTf_{2} as the triflate source gave only traces of product (Entry 5). It has been suggested ${ }^{85}$ that a wash with cold $1 \mathrm{M} \mathrm{NaOH}_{\text {(aq) }}$ in the workup can be effective at removing side-products from the triflating agent. Following this, using NaHMDS with both PhNTf_{2} and Comins' reagent $\mathbf{1 1 3}$ gave vinyl triflate $\mathbf{1 1 0}$ as a pure product albeit in a diminished yield suggesting decomposition of $\mathbf{1 1 0}$ in the work-up (Entries 6 and 7). Finally, using NaHMDS and PhNTf_{2} as a triflate source without the NaOH wash gave vinyl triflate $\mathbf{1 1 0}$ in a moderate and consistent yield (Entry 8) but increasing the reaction time proved detrimental to the yield (Entry 9). Thus, using NaHMDS as a base and PhNTf_{2} as the triflate source with a trapping time of 18 h and without a NaOH wash in the work-up proved to be the most effective way to obtain vinyl triflate 110. These conditions also allowed the reaction to be scaled up to 12.3 mmol scale without any detrimental effect on the yield (61% of 110).

109

110

113
Comins' reagent

114

Entry	Base	Eq.	Tf Source	Eq.	Time (\mathbf{h})	Yield $^{\text {a }}$ $(\boldsymbol{\%})$
1	LDA $^{\text {b }}$	1.2	PhNTf $_{2}$	1.4	18	30
2	LDA $^{\text {b }}$	1.2	$\mathbf{1 1 3}$	1.3	72	$33^{\text {c }}$
3	LiHMDS	1.4	$\mathbf{1 1 3}$	1.3	18	$10^{\text {d }}$
4	NaHMDS	1.3	$\mathbf{1 1 3}$	1.3	18	54^{e}
5	KHMDS	1.3	PhNTf $_{2}$	1.4	18	8
6	NaHMDS	1.8	PhNTf $_{2}$	1.3	18	$45^{\text {f }}$
7	NaHMDS	1.8	$\mathbf{1 1 3}$	1.3	18	$36^{\text {f }}$
8	NaHMDS	1.8	PhNTf $_{2}$	1.3	18	$61^{\text {g }}$
9	NaHMDS	1.8	PhNTf $_{2}$	1.3	48	33

a) Isolated \% yield; b) Prepared in situ by the addition of $n-\mathrm{BuLi}$ to $i-\mathrm{Pr}_{2} \mathrm{NH}$; c) Isolated as an 80:20 mixture with $\mathbf{1 1 4}$; d) Estimated by ${ }^{1} \mathrm{H}$ NMR spectroscopy; e) Isolated as an $85: 15$ mixture with $\mathbf{1 1 4}$; f) cold $1 \mathrm{M} \mathrm{NaOH}_{(\text {(aq) }}$ wash; g) 12.3 mmol scale

The next step involved converting vinyl triflate $\mathbf{1 1 0}$ into vinyl pinacol boronate intermediate 111 and then into the desired vinyl MIDA boronate 94. This was initially attempted using a literature procedure, ${ }^{78}$ with dppf as a ligand for the Pd and KOAc as base, which gave vinyl pinacol boronate 111 as an inseparable mixture with $\mathrm{B}_{2} \mathrm{pin}_{2}$ derived impurities which was submitted to vinyl MIDA boronate formation. This was carried out using a large excess of MIDA and $\mathrm{HC}(\mathrm{OEt})_{3}$ at $100{ }^{\circ} \mathrm{C}$ in DMSO^{86} giving vinyl MIDA boronate 94 in 20% yield over the two steps (Scheme 2.6).

Scheme 2.6
Formation of both vinyl pinacol boronate $\mathbf{1 1 1}$ and vinyl MIDA boronate $\mathbf{9 4}$ was confirmed by HRMS and NMR spectroscopy. Particularly, for vinyl pinacol boronate 111, the signal corresponding to the alkene proton shifted downfield from $\delta_{\mathrm{H}} 5.56-5.51$ in vinyl triflate $\mathbf{1 1 0}$ to δ_{H} 6.40-6.37 in vinyl pinacol boronate 111. Additionally, the signal corresponding to the C-OTf carbon resonance in vinyl triflate $\mathbf{1 1 0}$ which was observed at $\delta_{\mathrm{C}} 148.4$ disappeared for the newly formed C-Bpin in vinyl pinacol boronate 111. This is due to coupling between the carbon and the quadrupolar boron atom which gives rise to signals that occasionally are not well resolved in the ${ }^{13} \mathrm{C}$ NMR spectrum. ${ }^{87}$ On the other hand, for vinyl MIDA boronate 94, the signal corresponding to the alkene signal was observed at $\delta_{\mathrm{H}} 5.98$ (ddd, $J=3.0,3.0$, 3.0 Hz). Additionally, the incorporation of the MIDA moiety on building block 94 was confirmed with the proton signals corresponding to the two diastereotopic CH_{2} groups. Three of these protons appeared alongside one of the benzylic protons at $\delta_{\mathrm{H}} 4.27-4.07(\mathrm{~m}, 4 \mathrm{H})$, with the other one coming at $\delta_{\mathrm{H}} 3.96(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H})$. The N-Me signal was also observed as a 3 H singlet at $\delta_{\mathrm{H}} 2.84$. Finally, the ${ }^{13} \mathrm{C}$ NMR spectrum showed the alkene CH signal at $\delta_{\mathrm{C}} 134.1$ with signals for quaternary protons appearing at $\delta_{\mathrm{C}} 169.2$ and 167.9 which were assigned as the two diastereotopic $\mathrm{C}=\mathrm{O}$ groups in the MIDA group (Figure 2.4).

94

Figure 2.4 - Key ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopic signals for building block 94.
With building block 94 in hand and the observed problems in the formation of vinyl pinacol boronate 111, our attention turned to finding conditions suitable for the synthesis of vinyl MIDA boronate $\mathbf{9 4}$ in higher yield. It has been reported ${ }^{88}$ that for challenging substrates changing the ligand in Miyaura's borylation to PPh_{3} and the base to KOPh can give better results. However, use of these conditions in toluene with vinyl triflate $\mathbf{1 1 0}$ gave only impure vinyl pinacol boronate $\mathbf{1 1 1}$ after chromatographic separation. With this result and upon performing 2-D TLC analysis of the impure pinacol boronate 111, it was concluded that decomposition under chromatography conditions was occurring. Nonetheless, this impure product was submitted to the previously used MIDA boronate formation conditions, affording a 54% yield of vinyl MIDA boronate 94 over the two steps (Table 2.3, Entry 1).

With these results in hand, and the evidence of vinyl pinacol boronate $\mathbf{1 1 1}$ decomposition under column chromatography conditions, Miyaura's borylation was once more attempted and the crude product directly submitted to MIDA boronate formation. This gave a 70\% yield of vinyl MIDA boronate $\mathbf{9 4}$ over the two steps. However, a significant amount of alkene 115 (17%) was also observed for reactions in which vinyl pinacol boronate 111 was not purified (Entry 2). Additionally, since the formation of vinyl MIDA boronate $\mathbf{9 4}$ required a large excess of both of the reagents used, an attempt at diminishing the equivalents of MIDA from 6.5 to 4.0 and of $\mathrm{HC}(\mathrm{OEt})_{3}$ from 4.5 to 4.0 was made. However, a decrease in the yield of vinyl MIDA boronate $\mathbf{9 4}$ to 60% was observed while the isolated quantity of alkene $\mathbf{1 1 5}$ remained mostly similar (Entry 3). The formation of alkene $\mathbf{1 1 5}$ was determined from its characteristic alkene signals. Namely, two signals were observed at $\delta_{H} 6.07$ (dddd,
$J=9.0,7.5,1.0,1.0 \mathrm{~Hz}, 1 \mathrm{H})$ and $5.51(\mathrm{dddd}, J=9.0,3.5,3.0,1.5 \mathrm{~Hz}, 1 \mathrm{H})$ which were consistent with the two alkene protons in $\mathbf{1 1 5}$. Likewise, the ${ }^{13} \mathrm{C}$ NMR spectrum showed two signals corresponding to $=\mathrm{CH}$ carbons at $\delta_{\mathrm{C}} 129.2$ and 126.0.

Table 2.3-Optimisation of vinyl MIDA boronate formation

a) \% yield after chromatography; b) not determined; c) no intermediate purification of pinacol boronate $\mathbf{1 1 1}$ was attempted.

Additional ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis of the crude mixtures for both the intermediate vinyl pinacol boronate $\mathbf{1 1 1}$ and the vinyl MIDA boronate $\mathbf{9 4}$ indicate that alkene $\mathbf{1 1 5}$ seems to be generated primarily as a by-product of Miyaura's borylation step, presumably by a protodeborylation-type process. This is evidenced by the appearance of the signals associated with the alkene protons in $\mathbf{1 1 5}$, and their ratios with respect to the alkene signals in both 111 and 94 in the crude spectra for both reactions (Figure 2.5). This together with the fact that Entry 4 (Table 2.3) gave a diminished yield for MIDA boronate $\mathbf{9 4}$ but a similar yield for alkene $\mathbf{1 1 5}$ when compared to Entry 3, leads us to conclude that alkene $\mathbf{1 1 5}$ is mainly a product that arises from the Miyaura borylation of vinyl triflate $\mathbf{1 1 0}$ into vinyl pinacol boronate 111.

Figure $2.5-{ }^{1} \mathrm{H}$ NMR spectrum of the crude product of the Miyaura borylation reaction (blue) and subsequent MIDA transesterification (red).

Thus, the synthesis of vinyl MIDA boronate building block $\mathbf{9 4}$ was achieved with a 30% overall yield on a multigram-scale from ketone 29 (Scheme 2.7). This was accomplished using a three-step sequence to give amidoketone 108, followed by an organocatalytic cyclisation into normorphan $\mathbf{1 0 9}$ and finishing with a vinyl triflate formation to give $\mathbf{1 1 0}$ and borylation-transesterification to give vinyl MIDA boronate 94.

[^0]
2.3 Investigation of Routes for the Synthesis of Enantioenriched NormorphanDerived 3-D Building Block

With the need to obtain enantioenriched building block 94, two alternative and complementary strategies to achieve this were envisaged. Based on the literature precedent presented in Section 1.3.3, we hypothesised that an asymmetric variant for the organocatalytic cyclisation could be developed to access the enantioenriched normorphan scaffold. The second strategy would be based on a resolution approach based on chiral MIDA derivatives.

The organocatalytic cyclisation approach would require the exploration of different organocatalysts to those tried by Bonjoch ${ }^{50}$ to improve both the yield and enantioselectivity. Thus, we set out to find a small set of catalysts which could prove adequate to allow the asymmetric cyclisation of $\mathbf{1 0 8}$ into 109. Previous research by Bonjoch and co-workers ${ }^{50}$ identified commercially available (S)-prolinamide (S) - $\mathbf{3 8}$ as a possible catalyst for this transformation (see Scheme 1.12). On the other hand, Dixon's ${ }^{68}$ thiourea $(R, R)-77$ (see Scheme 1.26) presented itself as a suitable option that could be synthesised in two steps with a single purification. Finally, Tang-and coworkers ${ }^{89}$ outlined the use of thiourea (S) - $\mathbf{1 1 6}$ which could be also be obtained in two steps with a single purification (Figure 2.6).

(S)-38

$(R, R)-77$

(S)-116

Figure 2.6 - Possible organocatalysts identified for the asymmetric cyclisation
Having assembled this short list of possible catalysts, we set out to synthesise them. As previously mentioned, catalyst $(R, R)-77$ could be synthesised in two steps from commercially available N-Boc-diamine (R, R) - $\mathbf{1 1 7}$ and methyl isothiocyanate, which in our hands gave a 90% yield of $(R, R)-\mathbf{1 1 8}$. Subsequent deprotection and free-basing of the hydrochloride salt afforded thiourea (R, R)-77 in an 86% overall yield (Scheme 2.8). Likewise, thiourea (S)-116 was prepared in two steps by using N-Boc pyrrolidine (S)-119 and the appropriate isothiocyanate $\mathbf{1 2 0}$ to afford (S)-121 in $\mathbf{8 5 \%}$ yield which was deprotected and free-based quantitatively to afford thiourea (S)-116 (Scheme 2.9). Data for both synthesised catalysts matched those reported in the literature. ${ }^{68,89}$

Scheme 2.8

Scheme 2.9
With our catalysts in hand and Bonjoch's precedent, we first attempted the asymmetric cyclisation of 108 into 109 using (S)-prolinamide ((S)-38. Thus, use of trichloroamidoketone 108 with (S)-prolinamide (S)-38 in DMSO at $50^{\circ} \mathrm{C}$ for 5 days gave normorphan $\mathbf{1 0 9}$ in 25% yield and 77:23 er (Scheme 2.10). This was consistent the result previously obtained by Bonjoch ${ }^{50}$ with the $N-B n$ analogue (see Scheme 1.12). The er was determined using chiral stationary phase HPLC in comparison with a racemic standard. Unfortunately, we were not able to determine the absolute configuration of the major enantiomer.

Scheme 2.10
Following this, use of Dixon's thiourea $(R, R)-77$ under the reported conditions ${ }^{68}$ was attempted. However, using trichloroamidoketone 108 with thiourea $(R, R)-77$ and PhCOOH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in a sealed tube at $50{ }^{\circ} \mathrm{C}$ for 7 days gave no product (Entry 2). Using our initial conditions of trichloroamidoketone $\mathbf{1 0 8}$ in DMSO with thiourea $(R, R)-77$ at $50^{\circ} \mathrm{C}$ for 5 days,
normorphan 109 was obtained in 12% yield and 60:40 er (Entry 3). Finally, use of thiourea $(S)-\mathbf{1 1 6}$ as catalyst in DMSO at $50^{\circ} \mathrm{C}$ for 5 days gave a 30% yield of normorphan $\mathbf{1 0 9}$ in only 55:45 er (Entry 4). Due to these disappointing yields and enantioselectivities, no further work was carried out on this approach.

Table 2.4 - Asymmetric cyclisation of $\mathbf{1 0 8}$ into $\mathbf{1 0 9}$

Entry	Catalyst	Conditions	Time	Yield $^{\mathbf{a}}$ $(\%)$	er $^{\mathbf{b}}$
1	$(S)-\mathbf{3 8}(50 \mathrm{~mol} \%)$	DMSO, $50{ }^{\circ} \mathrm{C}$	5 days	25	$77: 23$
2	$(R, R)-\mathbf{7 7}(10 \mathrm{~mol} \%)$	$\mathrm{PhCOOH}(0.05 \mathrm{eq}),$.	7 days	No Reaction	
3	$(R, R)-\mathbf{7 7}(50 \mathrm{~mol} \%)$	$\mathrm{CH}_{2} \mathrm{Cl} 2,50^{\circ} \mathrm{C}$	DMSO, $50^{\circ} \mathrm{C}$	5 days	12
4	$(S)-\mathbf{1 1 6}(50 \mathrm{~mol} \%)$	DMSO, $50^{\circ} \mathrm{C}$	5 days	30	$50: 40$

a) \% yield after chromatography; b) er determined using chiral stationary phase HPLC

Next, we considered the resolution approach using chiral MIDA derivatives. Previous research by Cheon and co-workers ${ }^{90}$ had shown that racemic BINOL-derived boronic acid $\mathbf{1 2 2}$ could be resolved by converting it into their diastereomeric MIDA* boronates 123a and 123b with chiral MIDA derivative 124 and separating them by chromatography (Scheme 2.11).

Scheme 2.11
Likewise, Burke and co-workers ${ }^{81}$ described the resolution of racemic carbon-centred sp^{3} boronic acids using chiral MIDA derivative 125. In one example, racemic boronic acid rac126 was reacted with chiral MIDA 125 to give separable B(MIDA*) derivatives 127a and 127b in good yields (Scheme 2.12). In Burke's approach, the produced chiral MIDA* boronates $\mathbf{1 2 7 a} \mathbf{a} \mathbf{1 2 7 b}$ were hydrolysed in situ in order to perform a stereoretentive SuzukiMiyaura cross-coupling reaction.

Scheme 2.12
As such, we planned to explore different chiral MIDA* derivatives that would allow us to obtain diastereomeric vinyl MIDA* boronates which we could then separate using chromatography. The chiral MIDA* derivatives utilised by Cheon and Burke were proposed alongside a simpler α-methyl-cyclohexylamine derived MIDA*. However, in our hands, when attempting the transesterification reaction for this substrate with the chiral MIDA
derivatives, negligible formation of the desired vinyl MIDA* boronates 128a and 128b was observed. Instead, we observed mainly the formation of alkene $\mathbf{1 1 5}$ (Scheme 2.13). At this point, our attempts at the synthesis of enantioenriched building block $\mathbf{9 4}$ were halted.

Scheme 2.13

2.4 Overview

To summarise, the racemic synthesis of normorphan 3-D building block $\mathbf{9 4}$ was achieved in 30% overall yield over seven steps. This was achieved via a three-step sequence to form amidoketone 108 that was submitted to an organocatalytic cyclisation with pyrrolidine to give the normorphan scaffold. Normorphan $\mathbf{1 0 9}$ was converted into the vinyl triflate $\mathbf{1 1 0}$ and finally into the MIDA boronate $\mathbf{9 4}$ by a telescoped borylation-transesterification sequence.

Two different approaches for the synthesis of enantioenriched 3-D building block $\mathbf{9 4}$ were also explored. Initial approaches exploiting the organocatalytic cyclisation with three chiral catalysts attempted with little success, with (S)-prolinamide (S)-38 affording the best results giving the desired scaffold 109 in 25% yield and 77:23 er. Chiral thioureas developed by Dixon and Tang were also explored with little success. Likewise, attempting to resolve the formed diastereomers of the chiral derived MIDA* boronates was not fruitful since alkene 115 was the main product.

Suzuki-Miyaura cross coupling alongside further functionalisation of the synthesised normorphan 3-D building block towards lead-like compounds is described in Chapter 4.

Chapter 3 Design and Studies Towards the Synthesis of a Morphan-Derived 3-D Building Block

The design and development of synthetic methodology towards accessing 3-D building block 95 (Figure 3.1) is described in this chapter. The design considerations and vector analysis of various derivatives of $\mathbf{9 5}$ as well as the proposed synthetic strategy towards the 3-D building block are discussed in Section 3.1. Section 3.2 discusses initial approaches for the synthesis of the building block using N-sulfonamide protected derivatives while Section 3.3 describes the synthesis of the normorphan building block $\mathbf{9 5}$ from an N-Boc protected amine. Finally, an overview of the results presented in this chapter and future work are discussed in Section 3.4.

MIDA

95

Figure 3.1 - Morphan building block 95.

3.1 Design Considerations, Vector Analysis and Proposed Route for the Synthesis of a Morphan-Derived 3-D Building Block

The bicyclo[3.3.1]nonane core is an important structural motif that is found in a diverse range of bioactive molecules and natural products. ${ }^{55,59,91}$ As such, many synthetic routes for different substitution patterns on these morphan bicyclic cores have been developed (see Section 1.4). With this in mind, our attention turned to 2-aza-bicyclo[3.3.1]nonane bifunctional building block 95 with a 4 -methyl substituent as our next target (Figure 2.2). It was envisaged that building block $\mathbf{9 5}$ could be obtained based on some of the previous work developed by Dixon et al. ${ }^{69}$ which was presented in Section 1.4.2.

Figure 3.2 - Morphan building block 95.
As in the case of normorphan building block 94 (see Section 2.1), it was expected that the bicyclic structure in building block 95 would provide conformational rigidity and a set of predictable functionalisation vectors. With this in mind, the set of elaboration vectors was calculated for a group of structures which we hypothesised could be easily accessed by simple, reliable reactions as previously established for building block 94. For example, Suzuki-Miyaura cross-coupling on building block $\mathbf{9 5}$ should give arylated morphan 129 which could be: (i) immediately deprotected and N-functionalised to give amines 130-132 (ii) hydrogenated diastereoselectively then deprotected and N -functionalised to give amines 133-135 (Scheme 3.1). Similar to normorphan scaffold 94, we predicted that hydrogenation on the exo-face of the bicyclic scaffold should occur selectively to give the diastereomers shown.

$130 R=P h$
$131 R=M e$
132 R = Ac

95

129
$133 \mathrm{R}=\mathrm{Ph}$
$134 R=M e$
$135 \mathrm{R}=\mathrm{Ac}$

Scheme 3.1

The set of structures shown in Scheme 3.1 gives an idea of the different elaboration vectors that could be achieved with 3-D building block $\mathbf{9 5}$. By following the same procedure as that for normorphan 3-D 94 (see Section 2.1), the set of variation vectors for each molecule was selected and then calculated using Grygorenko and co-workers ${ }^{19}$ algorithm to give the results shown in Figure 3.3.

Similar to the case of normorphan building block 94, morphan building block $\mathbf{9 5}$ has a set of elaboration vectors that lie outside the clusters normally associated with simple 3- to 7membered ring cyclic scaffolds (see Section 1.2) whilst also having distinct vectors from the set of [3.3.n]propellanes ${ }^{23}$ and cyclobutyl-azetidine based scaffolds synthesised by the same group. ${ }^{19,20,22}$ The set shows slightly lower conformational rigidity where the structures appear to be more loosely clustered than those previously calculated for normorphan 94 in the r - θ plot (Figure 3.3b). This is likely due to the larger ring sizes in the morphan 95
[3.3.1]nonane bicyclic core compared to the [3.2.1]octane in the normorphan 94. Just as observed for normorphan $\mathbf{9 4}$, some changes are observed between the hydrogenated products and their parent compounds which are observed by distinct clusters differing mainly by the Φ_{1} angle due to the change in hybridisation on the variation point C_{1}. Additionally, N-phenyl derivatives of the scaffold, $\mathbf{1 3 0}$ and $\mathbf{1 3 3}$, seem to be outliers with regards to angles θ, Φ_{1} and Φ_{2} (Figure 3.3b,c,d). It is noteworthy that, similar to normorphan 94, the N-Me derivatives of scaffold 95 are ionized at the pH at which the conformer generation is performed (7.4) stopping inversion at the sp^{3} nitrogen.

Figure 3.3 - Vector analysis for morphan building block 95 (red) and normorphan 94 (blue) in: a) visual representation of variation vectors; b) $r-\theta$ plot (polar coordinates); c) $\Phi_{1}-\Phi_{2}$ plot; d) $\theta-\Phi_{1} / \Phi_{2}$ plot.

Our proposed plans to obtain 3-D building block 95 are presented in Scheme 3.2. The scaffold construction is based on previous work by Dixon et al. ${ }^{69}$ and appeared to offer a quick and reliable way to access both the racemic and the enantioenriched normorphan scaffold from a Ag or Cu and amine co-catalysed cycloisomerisation of an alkyne-linked cyclohexanone (see Scheme 1.20). Following Dixons's approach, we envisaged that amino ketones 136/59 could be obtained from monoprotected cyclohexadione 29 in three steps and
then, using the organocatalytic cycloisomerisation, we could obtain morphan scaffolds 137/60. After the cyclisation, hydrogenation of the exocyclic alkene and sulfonamide protecting group exchange into a tert-butyl carbamate to give morphan $\mathbf{1 3 8}$ was proposed for N -Ts morphan $\mathbf{6 0}$. For $\mathrm{N}-(4-\mathrm{Ns})$ morphan 86, in order to avoid hydrogenation of the NO_{2} functionality in the sulfonamide, protecting group exchange and then hydrogenation would be performed. Finally, elaboration into vinyl MIDA boronate 95 was envisioned via vinyl triflate formation to give $\mathbf{1 3 9}$, followed by a Pd-catalysed Miyaura borylation ${ }^{78}$ using B2pin ${ }_{2}$ and transesterification sequence to introduce the MIDA group. Additionally, it was expected that our developed route could be applied to enantioenriched morphans $\mathbf{8 6} / \mathbf{6 0}$ produced by Dixon's asymmetric variant of the cycloisomerisation to access the enantioenriched building block 95 .

95

Scheme 3.2
In Dixons's work, sulfonamide protected amines afforded higher yields and better enantioselectivities than carbamate or acetyl protected ones in the enantioselective variant
(see Scheme 1.28). Additionally, it was reported that enantioenriched sulfonamide protected morphans such as $\mathbf{8 6}$ and $\mathbf{6 0}$ could be easily recrystallised to enantiopurity. ${ }^{69}$ As such, despite the possibility of needing harsher conditions for the deprotection of these sulfonamides, we proposed exploring the route starting with an N -Ts protected amine and exchanging it to a Boc after the enantiopure building block had been obtained. The use of an $N-(4-\mathrm{Ns})$ protected amine was also proposed as it can be more easily removed via a $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction. ${ }^{92}$ It was also ultimately necessary to explore the N-Boc protected series of compounds.

3.2 Initial Approaches for the Synthesis of a Morphan-Derived 3-D Building Block Using Sulfonamide Protecting Groups

The first step in the synthesis of the desired building block involved accessing amino ketones 136 and 59. To this end, the previously reported synthesis by Dixon and co-workers ${ }^{69}$ was used. Reductive amination of 1,4-cyclohexadione monoethylene acetal 29 with propargylamine and using $\mathrm{NaBH}(\mathrm{OAc})_{3}$ as a reducing agent quantitatively afforded the crude amine that was, after work-up, sufficiently pure for the next reaction. Hydrolysis of the ketal with $3 \mathrm{M} \mathrm{HCl}_{(\mathrm{aq})}$ in THF gave the crude ketone as a sufficiently pure product. This ketone was the diversification point for the protecting group. As such, it was used in sulfonamide formation using either p-toluenesulfonyl chloride or 4-nitrobenzenesulfonyl chloride in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ and catalytic DMAP. After purification by chromatography, N -Ts-amino ketone 59 was obtained in 85% yield over the three-step sequence whereas N -(4-Ns)-amino ketone 136 was obtained in 45\% yield (Scheme 3.3).

29

136 PG $=4-\mathrm{Ns} 45 \%$
59 PG= Ts 85%

Scheme 3.3
Formation of N-(4-Ns)-amino ketone $\mathbf{1 3 6}$ was confirmed by HRMS and both ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy where signals for the protons next to nitrogen were observed at $\delta_{\mathrm{H}} 4.36-$ $4.18(\mathrm{~m}, 1 \mathrm{H})$ and $4.18(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 2 \mathrm{H})$. The 2.5 Hz coupling of the NCH_{2} protons can be explained by a long distance ${ }^{4} J$ coupling to the alkyne proton. Furthermore, the alkyne proton was observed as a triplet at $\delta_{\mathrm{H}} 2.17$. Incorporation of the sulfonamide group was evidenced by the signals in the aromatic region at $\delta_{\mathrm{H}} 8.41-8.31$ and $8.20-8.08$. Likewise, $N-\mathrm{Ts}$ protected amine 59 showed a similar ${ }^{1} \mathrm{H}$ NMR spectrum with the signal for the Me group overlapping with another signal at $\delta_{\mathrm{H}} 2.46-2.33$.

Next, amino ketones 136 and 59 were subjected to a copper and amine co-catalysed cycloisomerisation using Dixon's conditions. ${ }^{69}$ Thus, reaction of each amino ketone with $\mathrm{Cu}(\mathrm{OTf})_{2}, \mathrm{PPh}_{3}$ and pyrrolidine afforded racemic morphans $\mathbf{8 6}$ and $\mathbf{6 0}$. These reactions proceed via formation of enamine $\mathbf{1 4 0}$ between pyrrolidine and the ketone, with enamine

140 adding to the Cu -activated alkyne to perform a 6 -exo-dig cyclisation. This gave racemic morphans 86 and 60 in 85% and 83% yield respectively (Scheme 3.4). In the ${ }^{1} \mathrm{H}$ NMR spectrum of morphan 86, signals were observed in the alkene region at $\delta_{\mathrm{H}} 5.14$ and 5.07 (both doublets) which were assigned to the $=\mathrm{CH}_{2}$ protons. Additionally, all data from morphans $\mathbf{1 3 6}$ and $\mathbf{5 9}$ were consistent with those reported in the literature. ${ }^{69}$

Scheme 3.4
During purification, it became apparent that $N-(4-\mathrm{Ns})$ morphan 86 showed poor solubility in most organic solvents with the exception of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. This made both purification and further handling of morphan 86 inconvenient, leading us to make the decision of discarding the 4Ns sulfonamide protecting group in favour of the Ts sulfonamide. With this in mind, we set out to try the planned hydrogenation of the exocyclic double bond. However, our first attempt using a set of conditions reported by Bonjoch for a similar morphan, ${ }^{65}$ using normorphan $\mathbf{6 0}, 10 \% \mathrm{Pd} / \mathrm{C}$ in MeOH at rt , gave a complex mixture of unidentified products (Scheme 3.5).

Scheme 3.5
Nonetheless, a change in solvent from MeOH to EtOAc and increasing the amount of 10% Pd / C from 0.10 eq to 0.25 eq gave a better result. In this way, a $72: 25$ mixture of diastereomeric morphans endo- and exo-141 was isolated in 40% yield. However, we also found that enamine $\mathbf{1 4 2}$ appeared as a by-product of the reaction, isolated in 56% yield as a 95:5 mixture with starting morphan 60 (Scheme 3.6).

Scheme 3.6
Formation of hydrogenated morphans endo- and exo- $\mathbf{1 4 1}$ was confirmed by both HRMS and NMR spectroscopy and the diastereomeric outcome of this reaction was identified by ${ }^{1} \mathrm{H}$ NMR spectroscopy. In particular, the signals corresponding to the NCH_{2} protons in each diastereomer were diagnostic. The major diastereomer showed signals at $\delta_{\mathrm{H}} 3.83$ (dd, $J=$ $13.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}$) and $2.81\left(\mathrm{dd}, J=13.5,12.5 \mathrm{~Hz}, 1 \mathrm{H}\right.$) (Figure 3.3). The signal at $\delta_{\mathrm{H}} 3.83$ was assigned as the equatorial proton, having one large ${ }^{2} J=13.5 \mathrm{~Hz}$ coupling and a small ${ }^{3} J_{\text {eq-ax }}=6.0 \mathrm{~Hz}$ coupling to the adjacent CH proton. The other signal, at $\delta_{\mathrm{H}} 2.81$, was assigned as the NCH_{2} axial proton and showed two large couplings, one ${ }^{2} J=13.5 \mathrm{~Hz}$ and one ${ }^{3} J_{\mathrm{ax}-\mathrm{ax}}$ $=12.5 \mathrm{~Hz}$ to the CH proton. These J values were consistent with assigning the major product as endo-141. In contrast, the minor diastereomer's NCH_{2} signals appeared at $\delta_{\mathrm{H}} 3.25$ (dd, J $=12.5,5.0 \mathrm{~Hz}, 1 \mathrm{H})$ and $2.98(\mathrm{dd}, J=12.5,6.0 \mathrm{~Hz}, 1 \mathrm{H})$. Each showed one large ${ }^{2} J=12.5 \mathrm{~Hz}$ coupling and a second small ${ }^{3} J_{\text {ax-eq }}$ or ${ }^{3} J_{\text {eq-eq }}$ coupling. This is consistent with the adjacent CH proton being in an equatorial position (axial methyl group) and allowed the assignment of the minor diastereomer as exo-141 (Figure 3.3).

exo-141 (minor)
III

Figure 3.3-Multiplet analysis for the diastereomeric outcome of the hydrogenation of $\mathbf{6 0}$ into 141.

The major diastereomer is formed by hydrogenation on the less hindered exo face of the bicyclic scaffold as we had previously observed for normorphan-derived 3-D building block 94. On the other hand, the minor diastereomer is presumably formed by a minor competing pathway of endo face hydrogenation.

Enamine 142 was also identified by NMR spectroscopic analysis. Namely, the ${ }^{1} \mathrm{H}$ NMR spectrum of enamine 142 showed a signal in the high end of the alkene region at $\delta_{\mathrm{H}} 6.79$ (q, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}$) which was assigned as the $=\mathrm{CH}$ proton. This had a long distance ${ }^{4} J$ coupling to a methyl group $\delta_{\mathrm{H}} 1.62(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H})$. This, alongside reported NMR spectroscopy data for 6-membered ring N-Ts enamines, ${ }^{93}$ led us to conclude that enamine 142 was the byproduct formed. We hypothesise that enamine $\mathbf{1 4 2}$ is formed by Pd-mediated isomerisation of the alkene to a product stabilized by the strongly electron withdrawing effect of the sulfonamide.

Based on this, we set out to find conditions that would allow us to obtain morphan 141 with good diastereoselectivity while avoiding the formation of enamine 142. After the conclusion of the work presented in this thesis, it was reported ${ }^{53}$ that using high pressures (20 atm) with $10 \% \mathrm{Pd} / \mathrm{C}$ afforded good yields and excellent diastereoselectivity for morphans similar to 60. Additionally, Li and co-workers ${ }^{94,95}$ reported the use of Crabtree's catalyst for the diastereoselective hydrogenation of a diverse set of structurally complex morphans. Likewise, PtO_{2} has been reported for the hydrogenation of exocyclic alkenes in sulfonamide and sulfinamide protected pyrrolidines. ${ }^{96}$ Thus, we decided to explore the possibility of using PtO_{2} for the hydrogenation of morphan $\mathbf{6 0}$ into 141. Using H_{2} with PtO_{2} in EtOAc at rt for 6 h afforded morphan 141 in 15% yield and >97:3 dr. However, while the formation of enamine $\mathbf{1 4 2}$ was not observed, a new product, which accounted for the remaining mass, was formed (Scheme 3.7). Unfortunately, purification of this by-product was not possible, and this made full characterisation impossible. Nonetheless, HRMS analysis suggested the formation of a product from the addition of 4 H to morphan $\mathbf{6 0}$. Additionally, IR spectroscopic analysis of the impure product suggested that reduction of the ketone had occurred since no carbonyl bands were observed. All of this information led us to tentatively assign this by-product as alcohol $\mathbf{1 4 3}$, formed by the hydrogenation of the exocyclic alkene and ketone moieties in morphan 60.

Scheme 3.7
Thus, in order to correctly characterise alcohol 143, we proposed to reduce the ketone in morphan 141 to form alcohol 143 and compare the NMR spectra of both products. Consequently, NaBH_{4} reduction of morphan 141 in MeOH at $0{ }^{\circ} \mathrm{C}$ for 2 h was attempted. This gave alcohol 143 in 96% yield and $>97: 3 \mathrm{dr}$ from the product of hydride addition from the exo-face of the bicyclic scaffold (Scheme 3.8).

Scheme 3.8
Formation of alcohol $\mathbf{1 4 3}$ was confirmed by HRMS, NMR and IR spectroscopic analysis. The ${ }^{1} \mathrm{H}$ NMR spectrum of alcohol $\mathbf{1 4 3}$ showed a signal at $\delta_{\mathrm{H}} 3.97$ (dddd, $J=11.0,7.0,4.5$, $1.5 \mathrm{~Hz}, 1 \mathrm{H})$ which, due to its chemical shift and COSY couplings, was assigned as the HOCH proton. Additionally, the coupling pattern, containing a large ${ }^{3} J_{\mathrm{ax}-\mathrm{ax}}=11.0 \mathrm{~Hz}$, two small ${ }^{3} J_{\mathrm{ax}-\mathrm{eq}}=7.0$ and 4.5 Hz and a small ${ }^{3} J$ coupling to the OH proton led us to assign it as the product from exo addition of the hydride into the carbonyl group. Characterisation of alcohol 143 allowed us to confirm that this was the main constituent of the by-product isolated from the PtO_{2}-catalysed hydrogenation of morphan $\mathbf{6 0}$. Despite this, it was not possible to determine what other compounds were observed alongside it.

We then hypothesised that hydrogenation of the carbonyl group could be slower than hydrogenation of the alkene. Therefore, a shorter reaction time was attempted. Use of PtO_{2} in EtOAc at rt for 45 min on a 0.3 mmol scale gave morphan 141 in 61% yield, albeit with a slightly diminished diastereoselectivity of 95:5. Since it was hoped that the product could be recrystalised to diastereopurity, this reaction was scaled up to 3.2 mmol . Unfortunately, while morphan 141 was isolated in 76% yield, the diastereoselectivity was reduced significantly to 85:15 for no obvious reason (Scheme 3.9).

Scheme 3.9
Additionally, the expected reduction of the ketone when submitting normorphan 141 to the conditions for removal of the N -Ts protecting group (i.e. Li , naphthalene or $\mathrm{Mg}, \mathrm{MeOH}$) led us to believe that N-Ts protected substrates were not ideal. Consequently, we hypothesised that starting from a N-Boc protected substrate might prove to be a more efficient route towards 3-D building block 95. It was expected that despite N-Boc protected substrates giving diminished yields and enantioselectivities in the asymmetric variant of the cyclisation, the shorter overall route would overcome the reduced yield. Additionally, we hoped that the likelihood of vinyl MIDA boronate $\mathbf{9 5}$ being crystalline would allow us to recrystallise the final product to enantiopurity.

3.3 Investigation of the Synthesis of a Morphan-Derived 3-D Building Block Using a Boc Protecting Group

Since sulfonamide protected morphans proved non-ideal for the synthesis of 3-D building block 95 and with the aim of streamlining the synthesis by avoiding protecting group exchanges, we moved on to investigate the N-Boc protecting group. We envisaged that the N-Boc protecting group would be carried throughout the synthesis without any need to be deprotected and, ideally, improving the diastereoselectivity issues in the hydrogenation of the exocyclic alkene.

Thus, amino ketone 144 was synthesised in a three-step synthesis using our general approach. 1,4-Cyclohexadione monoethylene acetal 29 (32.3 mmol scale) was reacted with propargylamine and $\mathrm{NaBH}(\mathrm{OAc})_{3}$ to give the crude amine quantitatively. The ketal protecting group was deprotected with $3 \mathrm{M} \mathrm{HCl}_{(\mathrm{aq})}$ in THF to give the crude amino ketone. This crude amino ketone was protected using $\mathrm{Boc}_{2} \mathrm{O}$ in THF to give, after chromatography, N-Boc amino ketone 144 in 77\% yield over the three-step sequence (Scheme 3.10).

Scheme 3.10
As in the case of amino ketones $\mathbf{1 3 6}$ and $\mathbf{5 9}$, formation of amino ketone 144 was confirmed by HRMS and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopic analysis. Namely, despite broadening due to rotamers, signals were observed at $\delta_{\mathrm{H}} 4.59-4.16(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 3.92(\mathrm{br} \mathrm{s}, 2 \mathrm{H})$ and $2.21-1.86$ $(\mathrm{m}, 3 \mathrm{H})$. These signals were assigned as the $\mathrm{NCH}, \mathrm{NCH}_{2}$ and $\equiv \mathrm{CH} / \mathrm{CH}_{2}$ protons respectively. Additionally, a singlet for 9 H , assigned as the t - Bu group, was observed at $\delta_{\mathrm{H}} 1.48$. The ${ }^{13} \mathrm{C}$ NMR spectrum of amino ketone $\mathbf{1 4 4}$ showed a signal at $\delta_{C} 154.8$ which was assigned as the $\mathrm{C}=\mathrm{O}$ from the Boc group with all spectroscopic data matching those reported in the literature. ${ }^{69}$

We then moved on to attempt the racemic cyclisation into morphan 87. Gratifyingly, using the conditions of $\mathrm{Cu}(\mathrm{OTf})_{2}, \mathrm{PPh}_{3}$ and pyrrolidine and scaling up to 7.96 mmol scale, gave
morphan $\mathbf{8 7}$ in 77% yield after chromatography (Scheme 3.11). Formation of morphan $\mathbf{8 7}$ was evidenced primarily by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis. Particularly, two rotameric signals were observed for one of the alkene's CHH' protons at $\delta_{\mathrm{H}} 5.07(\mathrm{~s}, 0.55 \mathrm{H}), 5.04(\mathrm{~s}$, 0.45 H,). A second signal in the alkene region appeared at $\delta_{\mathrm{H}} 4.99(\mathrm{~s}, 1 \mathrm{H})$ and was assigned as the second alkene proton. All spectroscopic data was consistent with those reported in the literature. ${ }^{69}$

Scheme 3.11
Having accessed morphan scaffold $\mathbf{8 7}$, our attention turned to the hydrogenation step which had presented some difficulties for N-Ts morphan $\mathbf{6 0}$. With this in mind, the hydrogenation was initially explored using H_{2} and $10 \% \mathrm{Pd} / \mathrm{C}(0.1 \mathrm{eq})$ in EtOAc. This gave the crude product which contained (by ${ }^{1} \mathrm{H}$ NMR spectroscopy) a 90:8:2 mixture of enamine $\mathbf{1 4 5}$, morphan endo-138 and morphan exo-138 (Scheme 3.12). Formation of enamine $\mathbf{1 4 5}$ was evidenced primarily by ${ }^{1} \mathrm{H}$ NMR spectroscopy of the crude product. Namely, the $=\mathrm{CH}$ signal from the enamine appeared as two rotameric signals at $\delta_{\mathrm{H}} 7.03-6.94(\mathrm{~m}, 0.5 \mathrm{H})$ and $6.85-6.76(\mathrm{~m}$, $0.5 \mathrm{H})$. This was confirmed by isolation and characterisation from a subsequent experiment (see Table 3.1).

Scheme 3.12
Formation of morphans endo- and exo-138 was confirmed by HRMS and NMR spectroscopic analysis. Particularly, the ${ }^{1} \mathrm{H}$ NMR spectrum of the mixture of N -Boc morphans endo- and exo- $\mathbf{1 3 8}$ showed very similar features to those of the N-Ts analogues. A 3 H doublet at $\delta_{\mathrm{H}} 0.85$ for the Me group of morphan endo- $\mathbf{1 3 8}$ was observed. Likewise,
the signals for the NCHH' protons were observed at $\delta_{\mathrm{H}} 4.04$ (dd, $J=14.0,6.5 \mathrm{~Hz}, 0.5 \mathrm{H}$), $3.92(\mathrm{dd}, J=14.0,6.5 \mathrm{~Hz}, 0.5 \mathrm{H})$ and $2.83-2.66(\mathrm{~m}, 1 \mathrm{H})$ for morphan endo-138. However, there was significant broadening of the signals due to the presence of rotamers, which made it difficult to identify the diastereomers by multiplet analysis. Nonetheless, the signals for the NCHH' protons for the minor diastereomer exo-138, observed at $\delta_{\mathrm{H}} 3.58$ (dd, $J=13.5$, $5.5 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.37(\mathrm{dd}, J=13.5,5.5 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.27(\mathrm{dd}, J=13.5,5.5 \mathrm{~Hz}, 0.5 \mathrm{H})$ and 3.12 (dd, $J=13.5,5.5 \mathrm{~Hz}, 0.5 \mathrm{H}$), point towards the adjacent CH proton being in an equatorial position (Figure 3.4). This, alongside the diastereomeric outcome of the hydrogenation of N-Ts protected morphan $\mathbf{6 0}$, suggest that the major diastereomer from the hydrogenation was endo-138.

Figure 3.4 - Multiplet analysis for the diastereomeric outcome of the hydrogenation of $\mathbf{8 7}$ into $\mathbf{1 3 8}$.
Since the result from this hydrogenation gave mostly enamine 145 , we moved on to explore different conditions that would allow us access to morphans 138 in good yields and selectivity. Thus, a small optimisation of the hydrogenation was attempted (Table 3.1). A change in solvent from EtOAc to EtOH using $10 \% \mathrm{Pd} / \mathrm{C}$ was initially made. However, after work-up, only a complex mixture of products was observed (Entry 2). Likewise, using $\mathrm{AcOH}(5 \mathrm{eq})$ as additive in the hope of protonating the enamine, with $10 \% \mathrm{Pd} / \mathrm{C}$ in EtOAc gave a similar outcome (Entry 3). It has been suggested that transfer hydrogenation with ammonium formate can effectively hydrogenate difficult substrates such as deactivated enamines. ${ }^{97}$ Therefore, transfer hydrogenation conditions with $\mathrm{NH}_{4}{ }^{+} \mathrm{HCO}_{2}{ }^{-}$and $10 \% \mathrm{Pd} / \mathrm{C}$ were attempted on morphan 87 but, unfortunately, only a complex mixture of products was observed after work-up (Entry 4).

Table 3.1 - Optimisation of the hydrogenation of morphan $\mathbf{8 7}$ into $\mathbf{1 3 8}$
Conditions

Next, a change of catalyst from $10 \% \mathrm{Pd} / \mathrm{C}$ to $20 \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}$ was made while keeping the equivalents constant. In this way, morphan endo-138 was obtained in 18\% yield and 90:10 dr with enamine $\mathbf{1 4 5}$ being obtained in $\mathbf{7 2 \%}$ yield (Scheme 3.13).

Scheme 3.13
With the poor results obtained with Pd catalysts, we hypothesised that, as in the case with N-Ts morphan 60, hydrogenation of N-Boc morphan 87 using PtO_{2} would afford the product from the hydrogenation of both the alkene and the ketone. This could hopefully be purified and then oxidised to give the desired morphan endo-138. Thus, morphan 87 was hydrogenated in the presence of PtO_{2} in EtOAc . This gave a $90: 10$ mixture of alcohols endoand exo-146 in 86% yield, together with its corresponding enamine 147 in 10% yield as a single diastereomer (Scheme 3.14).

Scheme 3.14
Formation of morphans endo- and exo- $\mathbf{1 4 6}$ was confirmed by HRMS and NMR spectroscopy and the diastereomeric outcome of the reaction was identified by ${ }^{1} \mathrm{H}$ NMR spectroscopy. In particular, the signals for the NCH_{2} protons in each diastereomer were diagnostic, while the CH signal adjacent to the alcohol allowed the assignment of this stereocentre. The major diastereomer showed rotameric signals at $\delta_{\mathrm{H}} 3.81$ (dd, $J=13.5,6.0 \mathrm{~Hz}, 0.55 \mathrm{H}$), 3.71 (dd, J $=13.5,6.0 \mathrm{~Hz}, 0.45 \mathrm{H}), 3.02(\mathrm{dd}, J=13.5,13.0 \mathrm{~Hz}, 0.55 \mathrm{H})$ and $2.98(\mathrm{dd}, J=13.5,13.0 \mathrm{~Hz}$, 0.45 H) for the NCH_{2} protons (Figure 3.5). The signals at $\delta_{\mathrm{H}} 3.81$ and 3.71 correspond to the equatorial proton and have a large ${ }^{2} J=13.5 \mathrm{~Hz}$ coupling and a small ${ }^{3} J_{\text {eq-eq }}=6.0 \mathrm{~Hz}$ coupling to the adjacent CH . The other signals at $\delta_{\mathrm{H}} 3.02$ and 2.98 correspond to the NCH_{2} axial proton and showed two large couplings, one ${ }^{2} J=13.5 \mathrm{~Hz}$ and one ${ }^{3} J_{\mathrm{ax}-\mathrm{ax}}=13.0 \mathrm{~Hz}$. This was consistent with the proton adjacent to the NCH_{2} protons being in an axial position (Me in an equatorial position) and allowed the assignment of the major diastereomer as morphan endo146 (Figure 3.5). With respect to the stereoselectivity of the carbonyl reduction, the major diastereomer showed a signal at $\delta_{\mathrm{H}} 3.97$ (ddd, $J=11.0,5.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}$) which was assigned as the CHOH proton. This signal shows one large ${ }^{3} J_{\mathrm{ax}-\mathrm{ax}}=11.0 \mathrm{~Hz}$ coupling to one of the adjacent CH_{2} protons and two small ${ }^{3} J_{\mathrm{ax}-\mathrm{eq}}=5.5 \mathrm{~Hz}$ couplings. This is consistent with this proton being in an axial position (OH equatorial) as shown in Figure 3.5. As in the case of N-Ts morphan 141 (see Section 3.2), this outcome is presumably derived from a major pathway involving hydrogenation from the exo-face of the bicyclic core on both the alkene and the ketone functionalities. We hypothesised that the minor diastereomer in the hydrogenation of the exocyclic alkene was being formed by a minor, competing pathway of hydroxyl-directed hydrogenation.

Figure 3.5 - Multiplet analysis for the diastereomeric outcome of the hydrogenation of $\mathbf{8 7}$ into $\mathbf{1 4 6}$
In a similar way, the formation of enamine 147 was confirmed by NMR spectroscopic analysis. The ${ }^{1} \mathrm{H}$ NMR spectrum of enamine 147 showed characteristic signals similar to those observed for enamine 145. Namely, rotameric signals were observed at $\delta_{\mathrm{H}} 6.94$ (s, $0.5 \mathrm{H})$ and $6.77(\mathrm{~s}, 0.5 \mathrm{H})$ and were assigned as the $=\mathrm{CH}$ proton. The signal for the CH proton adjacent to the OH appeared at $\delta_{\mathrm{H}} 3.86$ (dddd, $J=10.0,4.5,4.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}$) which, by the same analysis as that for morphan endo- $\mathbf{1 4 6}$ (see Figure 3.5), confirms that the alcohol is in an equatorial position.

In order to explore improving the diastereoselectivity, we decided to investigate reduction of the ketone into the alcohol first and then study the hydrogenation of the exocyclic alkene. In addition, protection of the alcohol and hydrogenation would allow us to explore the hypothesis of hydroxyl-directed hydrogenation. Consequently, morphan 87 was reduced with NaBH_{4} in MeOH to give, after work-up, alcohol $\mathbf{1 4 8}$ as a sufficiently pure product in $\mathbf{9 5 \%}$ yield as a single diastereomer (Scheme 3.15). The ${ }^{1} \mathrm{H}$ NMR spectrum of alcohol 148 showed the signal for the CH proton adjacent to the alcohol at $\delta_{\mathrm{H}} 3.72-3.59(\mathrm{~m}, 1 \mathrm{H})$. However, although the diastereomeric outcome of the reduction could not be determined directly by ${ }^{1} \mathrm{H}$ NMR spectroscopy of alcohol $\mathbf{1 4 8}$, it was possible to determine it from the product of the subsequent conversion of alcohol $\mathbf{1 4 8}$ into morphan endo-146.

Scheme 3.15

A range of conditions was then explored for the hydrogenation of morphan 148 (Table 3.2). We first attempted the use of $10 \% \mathrm{Pd} / \mathrm{C}$ as a catalyst for the hydrogenation. However, when morphan 148 was hydrogenated in the presence of $10 \% \mathrm{Pd} / \mathrm{C}$ as catalyst in EtOH , only enamine $\mathbf{1 4 7}$ was obtained in 96% yield (Entry 1). We hypothesised that using AcOH as an additive could protonate enamine $\mathbf{1 4 7}$ thus making the overall reduction easier. Nonetheless, when morphan 148 was hydrogenated using $10 \% \mathrm{Pd} / \mathrm{C}$ as catalyst in the presence of AcOH only a complex mixture of products were observed after work-up (Entry 2). It was then decided to change the catalyst to $20 \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}$. Using this catalyst, enamine 147 was obtained as the single product of the hydrogenation in 94% yield after work-up (Entry 3). As previously mentioned, it has been suggested that transfer hydrogenation conditions can be effective for unreactive alkenes. ${ }^{97}$ Using these conditions, a 75:25 mixture of morphans endo- and exo- $\mathbf{1 4 6}$ was isolated in 42% yield and enamine 147 was isolated in 55% yield (Entry 4). It was then decided to use PtO_{2} as the catalyst since it had previously shown the highest efficiency for the hydrogenation of ketone substrates (see Scheme 3.9 and Scheme 3.14). Gratifyingly, hydrogenation of morphan 148 using PtO_{2} as catalyst gave morphan endo- $\mathbf{1 4 6}$ in 90% yield and $\mathbf{7 5 : 2 5}$ dr with enamine $\mathbf{1 4 7}$ being isolated in only 6% yield (Entry 5).

Table 3.2 - Hydrogenation of morphan 148

		 endo-146				
		147				
Entry	Conditions			Temp $\left({ }^{\circ} \mathrm{C}\right)$	$146{ }^{\text {a }}$	$147{ }^{\text {a }}$
1	$\begin{gathered} \mathrm{H}_{2}, 10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{EtOH}, \\ 2 \mathrm{~h} \end{gathered}$	rt	0\%	96\%		
2	$\mathrm{H}_{2}, 10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{AcOH}$, EtOH, 2 h	rt	Complex mixture ${ }^{\text {b }}$			
3	$\begin{gathered} \mathrm{H}_{2}, 20 \% \mathrm{Pd}(\mathrm{OH})_{2} \\ \text { EtOAc, } 2 \mathrm{~h} \end{gathered}$	rt	0\%	94\%		
4	$\begin{gathered} 10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{NH}_{4}^{+} \mathrm{HCO}_{2}^{-}, \\ \mathrm{MeOH}, 2 \mathrm{~h} \end{gathered}$	reflux	$\begin{gathered} 42 \% \\ 75: 25 \mathrm{dr}^{\mathrm{c}} \end{gathered}$	55\%		
5	$\mathrm{H}_{2}, \mathrm{PtO}_{2}, \mathrm{EtOAc}, 2 \mathrm{~h}$	rt	$\begin{gathered} 90 \% \\ 75: 25 \mathrm{dr}^{\mathrm{c}} \\ \hline \end{gathered}$	6\%		

a) isolated \% yield; b) by ${ }^{1} \mathrm{H}$ NMR spectroscopy of the crude product; c) determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy

The diminished diastereoselectivity in the hydrogenation of morphan 148 (Table 3.2, Entries 4 and 5) with respect to morphan 87 (Table 3.1, Entry 1) supports the hypothesis that the minor diastereomer is generated by a competing pathway of hydroxyl-directed hydrogenation. Presumably, starting from alcohol 148, this pathway is more significant. Consequently, we decided that protecting the hydroxyl group in morphan 148 with a bulky group such as TBDMS would hinder this minor pathway both sterically and by impeding coordination of the hydroxyl group to the metal catalyst. As such, morphan 148 was O protected by using TBDMS and imidazole in DMF. This gave O-TBDMS morphan 149 in 83% yield (Scheme 3.16).

Scheme 3.16
Formation of O-TBDMS morphan 149 was confirmed by HRMS and NMR spectroscopy. In particular, the ${ }^{1} \mathrm{H}$ NMR spectrum of morphan 149 showed the expected signals for the $=$ CHH' protons at $\delta_{H} 5.02-4.96(\mathrm{~m}, 1 \mathrm{H})$ and 4.95-4.89 (m, 1H). Signals were also observed at $\delta_{\mathrm{H}} 0.87(\mathrm{~s}, 9 \mathrm{H})$ and $0.07-0.03(\mathrm{~m}, 6 \mathrm{H})$ which were assigned as the t - Bu and Me groups from the TBDMS group. On the other hand, the ${ }^{13} \mathrm{C}$ NMR spectrum of morphan 149 showed four signals at $\delta_{\mathrm{C}}-4.3$ to -4.4 which were assigned to the Me groups adjacent to the Si .
O-TBDMS morphan 149 was then hydrogenated using our previously established conditions with H_{2} and PtO_{2} as catalyst at rt for 16 h . Use of these conditions with morphan 149 gave hydrogenated morphan endo-150 in 20\% yield as a single diastereomer and enamine 151 in 55% yield (Scheme 3.17). The ${ }^{1} \mathrm{H}$ NMR spectrum of morphan 150 showed rotameric signals at $\delta_{\mathrm{H}} 3.84(\mathrm{dd}, J=13.5,6.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.73(\mathrm{dd}, J=13.5,6.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.07(\mathrm{dd}, J=13.5$, $13.0 \mathrm{~Hz}, 0.5 \mathrm{H}$) and $3.03(\mathrm{dd}, J=13.5,13.0 \mathrm{~Hz}, 0.5 \mathrm{H}$) which were assigned as the NCHH' protons. Following the same analysis as that for morphans endo- $\mathbf{1 3 8}$ and -endo-146 (see Figure 3.4 and Figure 3.6) allowed us to conclude that the diastereomer formed is the endo product. Formation of enamine 151 was also confirmed by HRMS and NMR analysis. Particularly, the ${ }^{1} \mathrm{H}$ NMR spectrum of enamine $\mathbf{1 5 1}$ showed characteristic rotameric signals at $\delta_{\mathrm{H}} 6.88(\mathrm{~s}, 0.4 \mathrm{H})$ and $6.73(\mathrm{~s}, 0.6 \mathrm{H})$ which were assigned to the $=\mathrm{CH}$ proton of the enamine
and the Me signal was observed at $\delta_{\mathrm{H}} 1.78-1.75(\mathrm{~m}, 3 \mathrm{H})$. On the other hand, the ${ }^{13} \mathrm{C}$ NMR spectrum showed signals at $\delta_{\mathrm{C}} 122.2,121.8,115.3$ and 114.4 with the first two being assigned as the $=\mathrm{C}$ carbon and the other two as the $=\mathrm{CH}$, the signals doubling up due to rotamers.

149

endo-150
$20 \%>97: 3 \mathrm{dr}$

151
55\%

Scheme 3.17
The diastereomeric outcome of this hydrogenation, namely the formation of morphan endo$\mathbf{1 5 0}$ in $>97: 3 \mathrm{dr}$, suggests that, due to the absence of a hydroxyl-directed pathway, the reaction is completely sterically controlled. This therefore supports our previously outlined hypothesis that the minor product, exo-146, from the hydrogenation of $\mathbf{1 4 8}$ is being formed by a minor pathway of hydroxyl-directed hydrogenation. However, our efforts to improve the outcome of the hydrogenation using TBDMS protection did not prove of much use since, despite increasing the diastereoselectivity of the reaction, increasing the steric bulk on the endo face of morphan 149 also led to significantly diminished yields. Thus, we decided that converting morphan 87 into a 90:10 mixture of alcohols endo- $\mathbf{1 4 6}$ and exo-146 by hydrogenation (see Scheme 3.14) and then oxidising this mixture back into the ketone using Dess-Martin periodinane (DMP) would be the best course of action. We hypothesised that the vinyl MIDA boronate, which we expected to be a crystalline solid, could be recrystallised to diastereopurity. As such, we first attempted the oxidation of a 90:10 mixture of alcohols endo-146 and exo-146 using DMP in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at rt for $\mathbf{2} \mathrm{h}$. This gave a 90:10 mixture of ketomorphans endo-138 and exo-138 in 84\% yield (Scheme 3.18). Spectroscopic data for ketomorphans 138 were consistent with previously obtained samples (see Scheme 3.12).

Scheme 3.18

In order to facilitate purification and increase the yield, we investigated whether this oxidation could be performed on the crude product from the hydrogenation of morphan 87. In this way, morphan 87 was hydrogenated using H_{2} and PtO_{2} in EtOAc and the crude product from this reaction was treated with DMP in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Gratifyingly, this gave morphan endo-138 in 71% yield and 90:10 dr with a single purification while enamine $\mathbf{1 4 5}$ was obtained in 15\% yield (Scheme 3.19). This represents a negligible decrease in yield, which on top of the easier purification constitutes a useful alternative for the synthesis of a 90:10 mixture of morphans endo- and exo-138.

Scheme 3.19
The next step involved turning the ketone in morphans 138 into a vinyl triflate. This was attempted using NaHMDS and PhNTf_{2}, previously identified from our work on the normorphan scaffold (see Section 2.2). Thus, morphan endo-138 (90:10 dr) was treated with NaHMDS in THF at $-78^{\circ} \mathrm{C}$ for 1 h and the formed enolate was trapped with PhNTf_{2} from $-78{ }^{\circ} \mathrm{C}$ to rt for 18 h . In this way, vinyl triflate endo- $\mathbf{1 3 9}$ (90:10 dr) was obtained in 70% yield after chromatography (Scheme 3.20). Formation of vinyl triflates endo- and exo-139 was confirmed by HRMS and NMR spectroscopy. In particular, the ${ }^{1} \mathrm{H}$ NMR spectrum of vinyl triflates 139 showed a signal at $\delta_{\mathrm{H}} 5.92(\mathrm{dd}, J=4.0,4.0 \mathrm{~Hz})$ which was assigned to the $=\mathrm{CH}$ proton of the major diastereomer. On the other hand, the ${ }^{13} \mathrm{C}$ NMR spectrum of vinyl triflate endo- $\mathbf{1 3 9}$ showed a quartet at $\delta_{\mathrm{C}} 118.6(J=320 \mathrm{~Hz})$ which was assigned as the CF_{3} carbon.

endo-138 90:10 dr
 $-78{ }^{\circ} \mathrm{C}$ to rt, 18 h

endo-139
70\% 90:10 dr

Scheme 3.20

The last step involved turning vinyl triflate endo-139 (90:10 dr) into vinyl pinacol boronate endo-152 and this into vinyl MIDA boronate 95 . We envisaged doing this with the previously used method of a Miyaura borylation using $\mathrm{B}_{2} \mathrm{pin}_{2}, \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}, \mathrm{PPh}_{3}$ and KOPh to form vinyl pinacol boronate endo-152. Then, based on previous experience with normorphan 3-D building block 94 (see Section 2.2), taking the crude pinacol boronate endo152 and transesterifying it into vinyl MIDA boronate 95 using MIDA and $\mathrm{HC}(\mathrm{OEt})_{3}$. Thus, vinyl triflate endo-139 (90:10 dr) was treated with $\mathrm{B}_{2} \mathrm{pin}_{2}, \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}, \mathrm{PPh}_{3}$ and KOPh in toluene at rt for 18 h and the crude product was treated with MIDA and $\mathrm{HC}(\mathrm{OEt})_{3}$ in DMSO at $100{ }^{\circ} \mathrm{C}$ for 48 h . However, after chromatography, vinyl MIDA boronate 95 was isolated as a mixture with unidentified products (Scheme 3.21). Nonetheless, the formation of vinyl MIDA boronate 95 was confirmed by both HRMS and NMR spectroscopy. The ${ }^{1} \mathrm{H}$ NMR spectrum of vinyl MIDA boronate 95 showed a signal at $\delta_{\mathrm{H}} 6.22-6.17(\mathrm{~m}, 1 \mathrm{H})$ which was assigned as the $=\mathrm{CH}$ proton. In addition, rotameric signals for one of the NCHH^{\prime} protons were observed at $\delta_{\mathrm{H}} 4.51-4.43(\mathrm{~m}, 0.6 \mathrm{H}), 4.35-4.30(\mathrm{~m}, 0.4 \mathrm{H})$. Unfortunately, due to time constraints and the overall impracticality of the synthesis of morphan-derived building block $\mathbf{9 5}$, no further attempts at synthesising vinyl MIDA boronate $\mathbf{9 5}$ were made.

Scheme 3.21
Thus, the synthesis of an impure sample of vinyl MIDA boronate $\mathbf{9 5}$ was achieved using the N-Boc protected series of compounds. The route was accomplished up to vinyl triflate endo139 with a 29% overall yield and 90:10 dr (Scheme 3.22). This was achieved using a threestep sequence to give amino ketone $\mathbf{1 4 4}$, followed by a $\mathrm{Cu} /$ amine co-catalysed cycloisomerisation into morphan 87, diastereoselective hydrogenation and oxidation into morphan 138 and finishing with a vinyl triflate formation to give 139. Borylationtransesterification into vinyl MIDA boronate $\mathbf{9 5}$ was also attempted, but impure vinyl MIDA boronate 95 was isolated. Further exploration into the diastereoselective hydrogenation was also performed by studying alcohol and O-TBDMS derivatives of morphan 87.

29

1. Propargylamine, $\mathrm{NaBH}(\mathrm{OAc})_{3}$,

2. $3 \mathrm{M} \mathrm{HCl}_{(\mathrm{aq})}$, THF, $\mathrm{rt}, 72 \mathrm{~h}$
3. $\mathrm{Boc}_{2} \mathrm{O}, \mathrm{THF}, \mathrm{rt}, 18 \mathrm{~h}$

144 77\%

87 77\%

1. $\mathrm{H}_{2}, \mathrm{PtO}_{2}, \mathrm{EtOAc}$ rt, 16 h
2. DMP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ rt, 2 h

endo-138
71\% 90:10 dr

3. $\mathrm{PhNTf}_{2}, \mathrm{THF}$ $-78{ }^{\circ} \mathrm{C}$ to rt, 18 h

endo-139
70\% 90:10 dr
4. $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}, \mathrm{PPh}_{3}$ $\mathrm{B}_{2} \mathrm{pin}_{2}, \mathrm{KOPh}$, toluene $50{ }^{\circ} \mathrm{C}$, 18 h
5. MIDA, $\mathrm{HC}(\mathrm{OEt})_{3}$ DMSO, $100^{\circ} \mathrm{C}, 48 \mathrm{~h}$

95
5
impure sample isolated

Scheme 3.22

3.4 Overview

To summarise, the synthesis of a morphan-derived 3-D building block was partially achieved. Initially, use of a sulfonamide protected series of compounds was explored with limited success. A change into the N-Boc protected series of compounds afforded the latestage vinyl triflate endo-139 in 29% overall yield over seven steps. This was achieved by a three-step sequence to give aminoketone 144 which was cyclised with pyrrolidine and a $\mathrm{Cu}(\mathrm{OTf})_{2}$ catalyst to afford the morphan scaffold which was subsequently converted into vinyl triflate endo-139. Formation of the objective vinyl MIDA boronate 95 was attempted but only an impure sample was obtained. Different approaches for the hydrogenation of both the N-Ts and N-Boc substrates were investigated. Reduction of the ketone moiety and protection of the formed alcohol as an $O-$ TBDMS group were explored with little success.

Chapter 4 Suzuki-Miyaura Cross-Coupling and Further Functionalisation of the Normorphan-derived 3-D

 Building BlockIn order to demonstrate the utility of normorphan-derived building block 94 in the construction of drug-like and lead-like compounds for medicinal chemistry, this Chapter summarises some of the functionalisation possibilities that were explored (Scheme 4.1). Section 4.1 focuses on Suzuki-Miyaura cross-coupling with the vinyl MIDA boronate handle on building block $\mathbf{9 4}$. Section 4.2 shows further functionalisation of the 3 -D building block including hydrogenation of the alkene, reduction of the amide moiety and deprotection of the N-DMB group. Finally, Section 4.3 provides an overview of the functionalisation possibilities that were explored.

Scheme 4.1

4.1 Suzuki-Miyaura Arylations of the Normorphan-Derived 3-D Building Block

With the aim to showcase the functionalisation possibilities of 3-D building block 94, our attention turned to Suzuki-Miyaura cross-couplings using the vinyl MIDA boronate installed in the building block (Scheme 4.2). Initially, it was planned to explore conditions for the cross-coupling using 4-bromoanisole and 4-bromobenzotrifluoride as coupling partners. Then, a variety of aromatic and heteroaromatic aryl bromides would be explored. It was also desired to include a set of aryl bromides based on FragLites, introduced by Waring and coworkers, ${ }^{98}$ as medicinally-relevant aryl groups.

94

Scheme 4.2
Various sets of conditions have been developed for the use of MIDA boronates in SuzukiMiyaura cross-couplings, which are essentially classified into those that use a slow-release strategy and a deprotection strategy. ${ }^{99}$ The slow-release strategy, developed by Burke and coworkers, ${ }^{82}$ hydrolyses the MIDA boronate in situ under standard aqueous Suzuki-Miyaura conditions to generate the free boronic acid which is subsequently transmetallated into the catalytic cycle to minimize by-products generated in the presence of large quantities of free boronic acid in the reaction media (Scheme 4.3). On the other hand, the deprotection strategy, mainly used in iterative cross-coupling ${ }^{100}$ and anhydrous Suzuki-Miyaura crosscouplings ${ }^{81}$ relies on the full release of the boronic acid into a dilute solution for its further use in the cross-coupling by slow addition into the reaction media (Scheme 4.3).
Slow-release strategy

Stable MIDA	Unstable boronic
boronate	acid

Deprotection strategy

Scheme 4.3

Taking these strategies into consideration and with the idea of having a simple and reliable method for performing the Suzuki-Miyaura cross-coupling of vinyl MIDA boronate 94, our attention turned to the slow-release method developed by Burke et al. ${ }^{82}$ using $\mathrm{Pd}(\mathrm{OAc})_{2}$ as a Pd source, SPhos as a ligand and $\mathrm{K}_{3} \mathrm{PO}_{4(\text { (aq })}$ for the release of the boronic acid. Using this set of conditions, vinyl MIDA boronate $\mathbf{9 4}$ was successfully coupled to 4 -bromoanisole to give, after chromatography, arylated normorphan $\mathbf{1 5 3}$ in 86% yield (Scheme 4.4) as the only product. Incorporation of the 4 -anisole group was confirmed by HRMS and ${ }^{1} \mathrm{H}$ NMR spectroscopy where the signal corresponding to the vinylic proton was observed at $\delta_{\mathrm{H}} 5.67$ in arylated normorphan 153, Additionally, signals corresponding to the methoxy groups in the aromatic rings were seen as 9 H multiplet at $\delta_{\mathrm{H}} 3.78$.

Scheme 4.4
With this result in hand, coupling to 4-bromobenzotrifluoride was attempted. However, ${ }^{1} \mathrm{H}$ NMR spectroscopy of the crude reaction mixture revealed the appearance of three products as well as the desired arylated normorphan 154. Thus, after chromatography, arylated normorphan 154 was isolated in 61% yield. A second product, identified as alkene 115, was isolated in 20% yield while another two products subsequently identified as bis-normorphans 155a and 155b were isolated in 2% and 4% yield as $75: 25$ and $95: 5$ mixtures with SPhos respectively (Scheme 4.5). Incorporation of the benzotrifluoride moiety in normorphan 154 was confirmed by HRMS and NMR spectroscopic analysis. Namely, signals observed in the ${ }^{1} \mathrm{H}$ NMR spectrum of normorphan 154 in the aromatic region at $\delta_{\mathrm{H}} 7.68-7.63$ and $7.60-7.55$ as multiplets were assigned as those from the benzotrifluoride motif. Additionally, the ${ }^{13} \mathrm{C}$ NMR spectrum of normorphan 154 showed signals at $\delta_{\mathrm{c}} 129.1(\mathrm{q}, J=32.5 \mathrm{~Hz})$ and 125.5 ($\mathrm{q}, J=4.0 \mathrm{~Hz}$) which were assigned as the ipso and ortho carbons to the CF_{3} group. $\mathrm{The}^{\mathrm{CF}_{3}}$ carbon appeared at $\delta_{\mathrm{C}} 124.4(\mathrm{q}, J=272.0 \mathrm{~Hz})$.

Scheme 4.5

The first of the observed by-products that was isolated in 20% yield was identified as alkene 115 by comparison with previously isolated samples (see Section 2.2). We hypothesise that alkene $\mathbf{1 1 5}$ is formed by protodeborylation of the transient boronic acid species formed by
hydrolysis of vinyl MIDA boronate 94 . On the other hand, ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis of the other two isolated products $\mathbf{1 5 5}$ a and $\mathbf{1 5 5 b}$ (2% and 4% yield respectively) showed that they had very similar spectra. Particularly, the ${ }^{1} \mathrm{H}$ NMR spectra of both compounds contained all the signals from the normorphan core. For bis-normorphan 155a signals appeared at $\delta_{\mathrm{H}} 5.85(\mathrm{~s}), 3.67(\mathrm{~d}, J=5.0 \mathrm{~Hz})$ and $3.08(\mathrm{~d}, J=5.0 \mathrm{~Hz})$ for the $=\mathrm{CH}, \mathrm{NCH}$ and $\mathrm{C}(\mathrm{O}) \mathrm{CH}$ protons of the normorphan core respectively. For bis-normorphan 155b these same signals were seen at $\delta_{\mathrm{H}} 6.05-5.62(\mathrm{~m}), 3.72-3.67(\mathrm{~m})$ and $3.16(\mathrm{~d}, J=5.0 \mathrm{~Hz})$. This was consistent to a coupled normorphan bearing a vinyl substituent that showed no signals in the ${ }^{1} \mathrm{H}$ NMR spectrum with the exception of those belonging to the normorphan core (Figure 4.1). Additionally, the ${ }^{13} \mathrm{C}$ NMR spectra for both $\mathbf{1 5 5 a}$ and $\mathbf{1 5 5 b}$ showed only signals that belonged to the normorphan core.

Figure $4.1-{ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1 5 5}$ (blue) and $\mathbf{1 5 5 b}$ (red)
Thus, we propose that a dimerisation by oxidative homocoupling of the boron-containing species had occurred giving rise to the formation diastereomeric bis-normorphans $\mathbf{1 5 5 a} / \mathbf{b}$. This was confirmed by HRMS analysis. It is likely that these products are generated by a minor competing pathway in which small quantities of oxygen present in the reaction, ${ }^{101}$ coupled with high concentrations of the transient boronic acid species, ${ }^{102}$ lead to the formation of the homocoupled product.

With the previous results in hand, we moved on to study the scope of aryl bromides that could be coupled to normorphan-derived 3-D building block 94 . Use of 5-bromopyrimidine gave arylated normorphan $\mathbf{1 5 6}$ in 60% yield, alkene $\mathbf{1 1 5}$ in 5\% yield and bis-normorphans $\mathbf{1 5 5 a} \mathbf{/ b}$ in 3% and 7% yields respectively. Likewise, use of N-TIPS azaindole 157 as
coupling partner afforded arylated normorphan $\mathbf{1 5 8}$ in $\mathbf{5 8 \%}$ yield with only trace by-products formed (Scheme 4.6).

156: 60\%
158 : 58\%
115 : trace
155a : trace
155a: 3\%
155b : trace

Scheme 4.6
Use of 4-bromo-acetanilide gave arylated normorphan $\mathbf{1 5 9}$ in 45% yield as a 90 :10 mixture with bis-normorphan 155b (7\% yield). This coupling also afforded alkene 115 in 40% yield and bis-normorphan 155a in 3% yield. Coupling to 2-methoxy-5-bromopyrimidine gave arylated normorphan $\mathbf{1 6 0}$ in 66% yield as a $95: 5$ mixture with bis-normorphan 155a (5% yield). This coupling also gave alkene $\mathbf{1 1 5}$ and bis-normorphan $\mathbf{1 5 5 b}$ in 6% and 7% yield respectively (Scheme 4.7).

Scheme 4.7 - a) Isolated as a 90:10 mixture with bis-normorphan 155b; b) Isolated as a $95: 5$ mixture with bis-normorphan 155a

A selection of less successful results is summarised in Scheme 4.8. Use of 3-bromo-2-methoxy-pyridine afforded only alkene 115 in 55% yield and bis-normorphans $\mathbf{1 5 5 a} / \mathrm{b}$ in 6% and 10% yield respectively after chromatography. However, it should be noted that formation of arylated morphan 161 was evidenced in the ${ }^{1} \mathrm{H}$ NMR spectrum of the crude product. Similarly, coupling using 2-bromo-5-fluoro-3-methylpyridine gave only alkene $\mathbf{1 1 5}$ in 60% yield and bis-normorphans $\mathbf{1 5 5 a} / \mathbf{b}$ in 3% and 8% yield respectively despite evidence of the formation or arylated normorphan $\mathbf{1 6 2}$ by ${ }^{1} \mathrm{H}$ NMR spectroscopy of the crude product. Finally, ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis of the crude reaction mixtures of couplings using 4-bromo-2-hydroxypyridine, 4-bromo-isoxazole and 4-bromo-pyrazole showed formation of only trace amounts of the desired products.

94

161^{a}
115:55\%
155a: 6\%
155b: 10\%

162^{a}
115: 60\%
155a: 3\%
155b : 8\%

115

155a/b

Scheme 4.8 - a) Formation of product evidenced by ${ }^{1} \mathrm{H}$ NMR spectroscopy of the crude product.
Thus, 3-D building block 94 was coupled to a variety of aryl bromides, including heteroaromatic ones, in moderate to good yields, proving the potential utility of the 3-D building block in the synthesis of lead-like compounds. However, it is important to note that non-protected groups such as free NH or OH moieties proved in many cases detrimental to the yield. Additionally, the appearance of different by-products by competing pathways was inconvenient as some of them were difficult to separate from the desired product.

It is known ${ }^{99}$ that modifying the reaction conditions, for slower release of the boronic acid (e.g. lower concentrations of base), as well as utilising different precatalyst/ligand combinations ${ }^{82}$ can have a beneficial effect by reducing the formation of the undesired products of cross-couplings. Thus, we propose that while the current conditions prove adequate for the Suzuki-Miyaura coupling of 3-D building block 94, an optimisation of the reaction conditions could be performed to allow for coupling with the more problematic heteroaryl bromides and decrease contamination by side products of the reaction.

4.2 Further Functionalisation of the Normorphan-Derived 3-D Building Block

With the scope of the Suzuki-Miyaura arylation briefly explored, we moved on to the further functionalisation that was proposed for 3-D building block 94. Once Suzuki-Miyaura functionalisation had been performed, it was envisaged that the arylated normorphan could be taken on through two distinct routes. The first involved diastereoselective hydrogenation of the alkene in 163 into normorphan 164. Normorphan 164 could then be deprotected to give normorphan 165 upon which conditions for N-functionalisation could be explored. On the other hand, the amide in arylated normorphan 163 could be reduced to obtain amine 166 which could then be deprotected to obtain normorphan 167 (Scheme 4.9).

Scheme 4.9
The first step investigated was the diastereoselective hydrogenation of the alkene. We expected that, due to the inherent shape of building block 94, hydrogenation of the alkene would likely be diastereoselective due to preferential hydrogenation on the less sterically hindered exo-face of the bicyclic scaffold. With this in mind, we utilised standard hydrogenation conditions with $10 \% \mathrm{Pd} / \mathrm{C}$ as catalyst under a hydrogen atmosphere to perform the hydrogenation on arylated normorphan 153. To our delight, using these conditions, hydrogenated normorphan 168 was isolated in 92% yield as a single diastereomer, with no purification required (Scheme 4.10).

Scheme 4.10
Formation of normorphan 168 was confirmed by HRMS and NMR spectroscopy. The ${ }^{1} \mathrm{H}$ NMR spectrum of normorphan 168 showed a signal at $\delta_{\mathrm{H}} 2.84$ (ddd, $J=12.0,5.0,1.5 \mathrm{~Hz}$, $1 \mathrm{H})$ which was assigned as the proton in the benzylic position. Another signal at $\delta_{\mathrm{H}} 1.85$ (ddd, $J=14.0,5.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}$) was assigned to one of the protons in the CHH' in the 3position of the normorphan scaffold. The other CHH ' proton signal was observed underneath other signals. Since normorphan $\mathbf{1 6 8}$ is an oil, the stereochemical outcome was assigned as the expected exo product from X-ray crystallographic analysis of a subsequent derivative (see Figure 4.2).

In contrast, attempted hydrogenation of aza-indole arylated normorphan 158 into normorphan 169 proved unsuccessful (Scheme 4.11), The ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis of the crude product revealed a low number of aromatic signals, with new aliphatic signals appearing. This could be evidence of hydrogenation of the aza-indole aromatic ring or formation of a dearomatized unidentified product.

Scheme 4.11
We then moved on to search for deprotection conditions for the N-DMB protecting group that is present in arylated normorphan 168. The majority of methods used for the
deprotection of the N-DMB group make use of its ability to generate a stable, benzylic carbocation. As such, many methods for deprotection use acidic conditions such as TFA with cation scavengers such as water ${ }^{79}$ or 1,3-dimethoxybenzene, ${ }^{103}$ or Lewis acids such as $\mathrm{BCl}_{3 .}{ }^{104} \mathrm{~N}$-DMB groups have also been deprotected under oxidative conditions such as DDQ ${ }^{105}$ or ceric ammonium sulfate. ${ }^{106}$ With this knowledge, a first set of conditions using aqueous TFA at rt was attempted. Pleasingly, this gave amide 170 in 68% yield after 72 h (Scheme 4.12).

Scheme 4.12
Removal of the N-DMB group to give NH amide $\mathbf{1 7 0}$ was confirmed by HRMS and by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis. Particularly, the ${ }^{1} \mathrm{H}$ NMR spectrum of amide $\mathbf{1 7 0}$ showed a broad singlet at $\delta_{\mathrm{H}} 6.69$, which had no carbons attached and was assigned as the NH proton. This was evidence of the removal of the N-DMB group. Gratifyingly, amide $\mathbf{1 7 0}$ proved to be a solid and analysis by X-ray crystallography (Figure 4.2) allowed us to confirm the stereochemical outcome of the hydrogenation of arylated normorphan 94 . As expected, the relative stereochemistry of the stereocentre generated at the benzylic position was that from hydrogenation from the least sterically hindered exo face of the alkene.

Figure 4.2 - X-ray crystal structure of amide $\mathbf{1 7 0}$

However, since the deprotection of the N-DMB group in amide $\mathbf{1 6 8}$ proved to be slow, with some starting material observed after 72 h , we moved on to finding conditions which could provide amide $\mathbf{1 7 0}$ more quickly and efficiently. Making use of the different ways to deprotect N-DMB groups, oxidative conditions were employed. In this manner, using DDQ as oxidant and water as scavenger gave amide 168 in 25% yield with significant formation of unidentified by-products observed (Entry 2). Thus, we returned to the use of acidic conditions while heating to speed the reaction up and hopefully achieve full conversion. Accordingly, using $80 \% \mathrm{TFA}_{(\mathrm{aq})}$ at $60^{\circ} \mathrm{C}$ afforded amide $\mathbf{1 7 0}$ in 73% yield after 18 h (Entry 3). However, while these conditions proved adequate for the deprotection of amide 168, we thought that some functionalities that could be introduced in previous steps of the synthesis, such as the BMIDA, ${ }^{107}$ could be labile to aqueous acid. As such, we turned our attention to a different cation scavenger to use with our acidic conditions. Use of anhydrous TFA and 1,3-dimethoxybenzene as scavenger ${ }^{103}$ gave amide $\mathbf{1 7 0}$ in 52% yield. However, the reaction proved to be slow, taking 72 h with presence of some starting material remaining in the crude product (Entry 4).

Table 4.1-Optimisation of N-DMB deprotection.

Entry	Conditions	Temp $\left({ }^{\circ} \mathbf{C}\right)$	Time (\mathbf{h})	Yield $^{\text {a }}$ $(\boldsymbol{\%})$
1	$80 \% \mathrm{TFA}_{(\mathrm{aq})}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$	rt	72	68
2	$\mathrm{DDQ}, \mathrm{H}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$	rt	24	25
3	$80 \% \mathrm{TFA}_{(\mathrm{aq})}$	60	18	73
4	TFA, 1,3-dimethoxybenzene, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	rt	72	52

a) \% isolated yield

With different conditions for the deprotection of the N-DMB group in hand, we were interested in exploring whether the N-DMB group could be removed from vinyl MIDA boronate 94 and if the product from this deprotection could be selectively functionalised in
the presence of the N-H amide. Initially, attempting the deprotection of the N-DMB in vinyl MIDA boronate $\mathbf{9 4}$ by using our highest yielding conditions $\left(80 \% \mathrm{TFA}_{(\mathrm{aq})}\right.$ at $\left.60{ }^{\circ} \mathrm{C}\right)$ failed to give N -H-amide 171, giving a complex mixture of unidentified products (Scheme 4.13). This, we hypothesise, was partly due to hydrolysis of the MIDA boronate moiety under the acidic conditions.

Scheme 4.13
Therefore, we changed the cation scavenger to 1,3-dimethoxybenzene in the absence of water. Pleasingly, using anhydrous TFA with 1,3-dimethoxybenzene in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at rt , amide 171 was generated in 60% yield (Scheme 4.14). The formation of amide 171 was confirmed by both HRMS and NMR spectroscopy. Namely, the ${ }^{1}$ H NMR spectrum of amide 171 showed a singlet at $\delta_{\mathrm{H}} 7.55$ which was assigned to the newly formed N-H. Likewise, the proton signals expected for the NCH_{2} protons from the MIDA group were observed at δ_{H} $4.25,4.13,3.91$ and 3.90 as doublets due to their diastereomeric nature. Likewise, the ${ }^{13} \mathrm{C}$ NMR spectrum of amide 171 showed signals for the MIDA boronate being observed at δ_{C} 170.4 ($\mathrm{C}=\mathrm{O}$, ester), 169.2 ($\mathrm{C}=\mathrm{O}$, ester) and 46.6 (NMe). Nevertheless, despite success at obtaining deprotected 3-D building block 171, it suffered from extremely low solubility in most common organic solvents, which makes amide 171 inconvenient as a building block for further elaboration.

Scheme 4.14
Finally, we explored whether we could obtain an amine version of our building block. This would allow us to expand the accessible set of elaboration vectors by changing the hybridisation of the nitrogen and thus the geometry of the bicyclic scaffold (see Section 2.1). Hence, it was envisaged that reduction of the amide in arylated normorphan $\mathbf{1 5 3}$ would allow
easy access into the desired amine. This could, in principle, be achieved by using a variety of reducing agents such as $\mathrm{LiAlH}_{4},{ }^{108} \mathrm{DIBAlH},{ }^{109} \mathrm{BH}_{3}$ complexes, ${ }^{110}$ or even transition metal hydride complexes ${ }^{111}$ with varying degrees of selectivity. However, since arylated normorphan 153 did not contain particularly reactive functionalities, LiAlH_{4} was used. Reduction of arylated normorphan $\mathbf{1 5 3}$ with LiAlH_{4} in THF at reflux afforded amine $\mathbf{1 7 2}$ in 70% yield after chromatography (Scheme 4.15).

Scheme 4.15
Successful reduction of the amide $\mathbf{1 5 3}$ to give amine $\mathbf{1 7 2}$ was confirmed by HRMS, NMR and IR spectroscopy. The ${ }^{1} \mathrm{H}$ NMR spectrum of amine $\mathbf{1 7 2}$ showed a 2 H multiplet $\delta_{\mathrm{H}} 3.12-$ 3.02 which is the region expected for a CH_{2} next to a heteroatom. This led us to assign this signal as the newly formed CH_{2} in amine 172. Additionally, the signal for the proton at the 7-position of the normorphan scaffold in amine $\mathbf{1 7 2}$ was observed as a doublet of doublets at $\delta_{H} 3.00$. Finally, the IR spectrum of amine $\mathbf{1 7 2}$ showed no bands in the carbonyl region.

4.3 Overview

To summarise, we have shown that 3-D building block 94 can be functionalised in diverse ways. Namely, we have shown that Suzuki-Miyaura cross-coupling on $\mathbf{9 4}$ can be performed with a variety of aryl bromides, including some heteroaromatics in moderate to good yields (Scheme 4.16).

Scheme 4.16 - a) Isolated as a 90:10 mixture with bis-normorphan $\mathbf{1 5 5 b}$; b) Isolated as a $95: 5$ mixture with bis-normorphan 155a

Diastereoselective hydrogenation of the alkene in normorphan 153 was also exemplified obtaining an excellent yield and complete diastereoselectivity towards the product from hydrogenation from the exo face. This was confirmed by X-ray crystallographic analysis. Deprotection conditions for the N-DMB group were also identified by using aqueous TFA at $60^{\circ} \mathrm{C}$. Likewise, for hydrolysis-sensitive groups, anhydrous deprotection conditions were also found by using 1,3-dimethoxybenzene as a cation scavenger. Gratifyingly, these last conditions were successfully applied to the deprotection of 3-D building block 94 which unfortunately proved inadequate for further functionalisation due to solubility problems. Finally, we were able to access a different set of elaboration vectors by converting the amide into an amine by reduction with LiAlH_{4} in good yield.

Chapter 5 Conclusions and Future Work

In conclusion, normorphan-derived building block $\mathbf{9 4}$ was synthesised in its racemic form in an overall 30% yield via a seven-step sequence (Figure 5.1). This sequence consisted of a three-step synthesis of an aminoketone that was then cyclised to give the normorphan. This was then converted into the vinyl triflate to enable a Miyaura borylation and transesterification sequence to give normorphan-derived building block $\mathbf{9 4}$. Two approaches for the enantioenriched synthesis of building block $\mathbf{9 4}$ were also explored, namely, an organocatalytic asymmetric cyclisation and a diastereomeric resolution approach. However, both approaches ultimately proved unsuccessful.

94

Figure 5.1 - Normorphan-derived building block 94
Suzuki-Miyaura arylations of 3-D building block 94 were showcased with a variety of aryl bromides including heteroaromatic ones in yields of $46-86 \%$. Further functionalisation of building block $\mathbf{9 4}$ such as diastereoselective hydrogenation of the alkene, N-deprotection and reduction of the amide were also successful to give the products shown in Figure 5.2.

153
$92 \%>97: 3 \mathrm{dr}$

170 73\%

172 70\%

Figure 5.2 - Products from further functionalisation of building block 94

Future work on the synthesis of building block $\mathbf{9 4}$ could include the exploration of alternative routes for the synthesis of enantioenriched building block 94 . For example, a more in-depth study into the organocatalytic cyclisation of trichloroacetamide 108 into normorphan 109 could be carried out. In this study, catalysts such as $(R)-\mathbf{4 0}$ utilised by Ye and co-workers ${ }^{53}$ in their Conia-ene methodology, could be explored (Scheme 5.1).

Scheme 5.1
Ye and co-workers ${ }^{53}$ also explored the cleavage of the alkene in the products of their asymmetric Conia-ene type reaction ($\mathbf{1 7 3}$ to $\mathbf{1 7 4}$ to $\mathbf{1 7 5}$). This could be utilised to obtain a sulfonamide protected version of the normorphan scaffold 175. Then, selective conditions for the deprotection of the sulfonamide group could be explored to afford enantioenriched building block 94 or a derivative (Scheme 5.2).

Scheme 5.2
Alternatively, different conditions for the formation of the vinyl MIDA boronate could be explored to allow for the formation and resolution of the diastereomeric MIDA* boronates. Namely, hydrolysis of the pinacol boronate 111 into boronic acid $\mathbf{1 7 6}$ and installation of the chiral MIDA derivatives using the conditions reported by Burke and co-workers ${ }^{81}$ could be explored with the aim to avoid formation of alkene $\mathbf{1 1 5}$ (Scheme 5.3).

Scheme 5.3
On the other hand, further work on the functionalisation of normorphan-derived scaffold 94 could include further exploration of the scope and conditions for Suzuki-Miyaura crosscoupling of the vinyl MIDA boronate $\mathbf{9 4}$ to enable coupling with a more diverse and medicinally-relevant set of heteroaromatic aryl bromides. N-Functionalisation of the building block such as N-alkylation and N-arylation could also be explored on amide-based scaffold 178 (Scheme 5.4a). Furthermore, conditions for hydrogenation, deprotection and N functionalisation of amine-based scaffold $\mathbf{1 7 9}$ could also be explored (Scheme 5.4b).
a)

b)

179

Scheme 5.4
With regards to morphan-derived building block 95, the synthesis of this building block proved more challenging. Late-stage enol triflate $\mathbf{1 3 9}$ was obtained in 29% overall yield and only 90:10 dr. However, formation of vinyl MIDA boronate 956 from enol triflate 169 failed to give a pure sample of vinyl MIDA boronate 95 (Scheme 5.5). Different routes involving sulfonamide and N-Boc protected series of substrates were studied for the synthesis of building block 95 with the N -Boc protected series of compounds chosen for the overall route.

Scheme 5.5

Further work in this scaffold should involve the synthesis and characterisation of a pure sample of vinyl MIDA boronate $\mathbf{9 5}$ which could be achieved by attempting purification of the intermediate vinyl pinacol boronate instead of using the crude product. Development of a route into diastereopure building block $\mathbf{9 5}$ is also important. A possible approach would be to use the hydrogenation conditions reported by Ye and co-workers ${ }^{53}$ ($10 \% \mathrm{Pd} / \mathrm{C}$ with H_{2} at 20 bar) (Scheme 5.6). Alternatively, a different approach to access a morphan scaffold without the methylene group could be investigated. For example Dixon and co-workers ${ }^{68}$ reported the synthesis of $\mathbf{1 8 0}$ after which decarboxylation could be performed to access the diastereopure morphan building block 95 (Scheme 5.6). Finally, Suzuki-Miyaura functionalisation of the vinyl MIDA boronate, hydrogenation of the alkene, and N functionalisation could be explored.
a)

b)

Scheme 5.6

Chapter 6 Experimental

6.1 Computational Methods

Computational vector analysis was performed by generating the lowest energy conformer of the compound of interest using a Pipeline Pilot protocol developed in the O’Brien group. ${ }^{77}$ Prior to conformer generation a wash step was performed, which involved stripping salts and ionising the molecule at pH 7.4 . Any stereocentre created here was left with undefined stereochemistry. SMILES strings were converted to their canonical representation. A list of allowed chirality at each centre is generated and a SMILES file with all possible stereoisomers was written. Conformers were generated using the BEST method in Catalyst using the rel option, run directly on the server and not through the built-in Conformation Generator component with a chosen maximum relative energy threshold of $20 \mathrm{kcal} \mathrm{mol}^{-1}$, maximum of 255 conformers for each compound. Conformations were read, ones that cannot be represented by the canonical SMILES are discarded, with the remaining ones standardised to a single enantiomer. Duplicates were filtered with a RMSD threshold of 0.1. Minimisation with 200 steps of Conjugate Gradient minimisation with an RMS gradient tolerance of 0.1 was performed using the CHARMm forcefield with Momany-Rone partial charge estimation and a Generalised Born implicit solvent model. Duplicates were filtered again with a RMSD threshold of 0.1.

Following this, the lowest energy conformer was selected for each compound and a MDL Molfile containing the 3-D coordinates of atoms was generated. The variation points and vectors were individually defined and the file was inputted into Grygorenko's ${ }^{19}$ Python ${ }^{\text {TM }}$ protocol which gave the processed data for r, Φ_{1}, Φ_{2}, and θ.

6.2 Synthetic Methods

6.2.1 General Methods

All non-aqueous reactions were carried out under oxygen-free Ar atmosphere using flamedried glassware. THF was freshly distilled from sodium and benzophenone. Alkyllithiums were titrated against N-benzylbenzamide before use. ${ }^{112} \mathrm{Et}_{3} \mathrm{~N}, i-\mathrm{Pr}_{2} \mathrm{NH}$ and pyrrolidine were distilled over CaH_{2} before use. Brine refers to a saturated $\mathrm{NaCl}_{(\mathrm{aq})}$ solution. Water is distilled water. Flash column chromatography was carried out using Fluka Chemie GmbH silica (220440 mesh). Thin layer chromatography was carried out using commercially available Merck

F254 aluminium backed silica plates. Proton (400 MHz) and carbon (100.6 MHz) NMR spectra were recorded on a Jeol ECX-400 instrument using an internal deuterium lock. For samples recorded in CDCl_{3}, chemical shifts are quoted in parts per million relative to CHCl_{3} ($\delta_{\mathrm{H}} 7.26$) and $\mathrm{CDCl}_{3}\left(\delta_{\mathrm{C}} 77.0\right.$, central line of triplet). For samples recorded in d_{6}-DMSO, chemical shifts are quoted in parts per million relative to DMSO ($\delta_{\mathrm{H}} 2.50$, central line of quintet) and d_{6}-DMSO ($\delta_{\mathrm{C}} 39.5$, central line of septet). For samples recorded in d_{6}-acetone, chemical shifts are quoted in parts per million relative to acetone ($\delta_{\mathrm{H}} 2.05$, central line of quintet) and d_{6}-acetone ($\delta_{\mathrm{C}} 29.8$, central line of septet). Carbon NMR spectra were recorded with broad band proton decoupling and assigned using DEPT experiments. Coupling constants (J) are quoted in Hertz. Melting points were carried out on a Gallenkamp melting point apparatus. Infrared spectra were recorded on an ATI Mattson Genesis FT-IR spectrometer. Electrospray high and low resonance mass spectra were recorded at room temperature on a Bruker Daltronics microOTOF spectrometer.

6.2.2 General Procedures

General Procedure A: Suzuki-Miyaura cross coupling of vinyl MIDA boronate 94

A solution of vinyl MIDA boronate 94 ($100 \mathrm{mg}, 0.234 \mathrm{mmol}, 1.0 \mathrm{eq}$), $\mathrm{Pd}(\mathrm{OAc})_{2}(3 \mathrm{mg}$, $0.012 \mathrm{mmol}, 0.05 \mathrm{eq}), \mathrm{SPhos}(10 \mathrm{mg}, 0.023 \mathrm{mmol}, 0.1 \mathrm{eq})$ and the aryl bromide (0.28 mmol , 1.2 eq) in dioxane (2.35 mL) in a sealed tube was stirred at rt for 15 min under Ar. 3 M $\mathrm{K}_{3} \mathrm{PO}_{4 \text { (aq) }}(0.59 \mathrm{~mL}, 1.755 \mathrm{mmol}, 7.5 \mathrm{eq})$, degassed by sparging with Ar , was added and the resulting mixture was stirred and heated at $60^{\circ} \mathrm{C}$ in a sealed tube for $20 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic extracts were washed with brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give the crude product.

6.2.3 Experimental Procedures and Characterisation Data

2,2,2-Trichloro- N-(2,4-dimethoxybenzyl)- N-(4-oxocyclohexyl)acetamide 108

108

A solution of 1,4-cyclohexadione monoethylene acetal 29 ($4.00 \mathrm{~g}, 25.6 \mathrm{mmol}, 1.0 \mathrm{eq}), 2,4-$ dimethoxybenzylamine ($3.9 \mathrm{~mL}, 25.6 \mathrm{mmol}, 1.0 \mathrm{eq}$) and $\mathrm{NaBH}(\mathrm{OAc})_{3}(7.60 \mathrm{~g}, 35.9 \mathrm{mmol}$, $1.4 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was stirred at rt for 16 h . Saturated $\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{aq})}(10 \mathrm{~mL})$ was added. Then, $1 \mathrm{M} \mathrm{NaOH}_{(\mathrm{aq})}$ was added until $\mathrm{pH} \approx 10$ was reached. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic extracts were washed with brine $(50 \mathrm{~mL})$ dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give the crude amine as a pale yellow oil. To the crude amine was added $3 \mathrm{M} \mathrm{HCl}_{(\mathrm{aq})}(140 \mathrm{~mL})$ and the resulting solution was stirred at rt for 48 h . Solid $\mathrm{Na}_{2} \mathrm{CO}_{3}$ was added until $\mathrm{pH} \approx 9$ was reached and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic extracts were washed with brine $(50 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give the crude amino ketone as a pale yellow oil. The crude amino ketone was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{~mL})$. The resulting solution was cooled to $0^{\circ} \mathrm{C}$ and $\mathrm{Et}_{3} \mathrm{~N}(6.8 \mathrm{~mL}, 48.6 \mathrm{mmol}, 1.9 \mathrm{eq})$ was added under Ar. Then, trichloroacetyl chloride ($5.2 \mathrm{~mL}, 45.0 \mathrm{mmol}, 1.8 \mathrm{eq}$) was added dropwise and the solution was allowed to warm to rt . The resulting solution was stirred at rt for 4 h and then poured into water $(30 \mathrm{~mL})$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$ and the combined organic extracts were washed with brine $(50 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica with $4: 6$ to $7: 3 \mathrm{Et}_{2} \mathrm{O}$-hexane as eluent gave trichloroacetamide 108 ($9.45 \mathrm{~g}, 90 \%$) as a white solid, $\mathrm{mp} 122-124^{\circ} \mathrm{C} ; R_{\mathrm{F}}\left(4: 6 \mathrm{Et}_{2} \mathrm{O}\right.$-hexane) 0.22 ; IR (ATR) 2956, 1717 ($\mathrm{C}=\mathrm{O}$, ketone), 1674 ($\mathrm{C}=\mathrm{O}$, amide), 1615, 1507, 1417, 1259, 1208, 1157, 1123, 1036, $825,812,730,667 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (65:35 mixture of rotamers) $\delta 7.25-$ 7.15 (m, 0.35H, Ar), 6.96 (d, $J=8.5 \mathrm{~Hz}, 0.65 \mathrm{H}, \mathrm{Ar}$), 6.52-6.35 (m, 2H, Ar), 5.00 (br t, $J=$ $12.0 \mathrm{~Hz}, 0.65 \mathrm{H}, \mathrm{NCH}), 4.93-4.79$ (m, $0.35 \mathrm{H}, \mathrm{NCH}$), $4.60-4.52$ (m, 1.3H, NCHAr), 4.043.92 (m, 0.35H, NCHAr), 3.84-3.74 (m, 6.35H, NCHAr, OMe), 2.49-2.37 (m, 3.3H, CH), 2.36-2.21 (m, 0.7H, CH), 2.21-2.10 (m, 2.05H, CH), 2.10-1.91 (m, 1.95H, CH). ${ }^{13}$ C NMR (100.6 MHz, CDCl_{3}) (mixture of rotamers) $\delta 208.4$ ($\mathrm{C}=\mathrm{O}$, ketone), 160.7 ($\mathrm{C}=\mathrm{O}$, amide),
160.1 (ipso-Ar), 157.2 (ipso-Ar), 128.7 (Ar, only resolved in HMQC), 127.1 (Ar), 117.4 (ipso-Ar), 104.3 (ipso-Ar), 98.5 (Ar), $93.8\left(\mathrm{CCl}_{3}\right), 57.2(\mathrm{NCH}), 55.5(\mathrm{OMe}), 46.9(\mathrm{NCH})$, $42.1\left(\mathrm{NCH}_{2}\right), 39.8\left(\mathrm{CH}_{2}\right), 29.3\left(\mathrm{CH}_{2}\right)(1 \times$ OMe resonance not resolved); HRMS (ESI) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{20}{ }^{35} \mathrm{Cl}_{3} \mathrm{NO}_{4}(\mathrm{M}+\mathrm{Na})^{+} 430.0350$, found 430.0344 (+1.4 ppm error).

Lab book reference: ARG-1-007

A solution of 1,4-cyclohexadione monoethylene acetal 29 ($875 \mathrm{mg}, 5.62 \mathrm{mmol}, 1.0 \mathrm{eq}$), 2,4dimethoxybenzylamine ($0.9 \mathrm{~mL}, 5.84 \mathrm{mmol}, 1.0 \mathrm{eq}$) and $\mathrm{NaBH}(\mathrm{OAc})_{3}(1.70 \mathrm{~g}, 7.86 \mathrm{mmol}$, $1.4 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ was stirred at rt for 16 h . Saturated $\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{aq})}(5 \mathrm{~mL})$ was added. Then, $1 \mathrm{M} \mathrm{NaOH}_{(\text {(aq) }}$ was added until $\mathrm{pH} \approx 10$ was reached. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give the crude amine as a pale-yellow oil. To the crude amine was added $3 \mathrm{M} \mathrm{HCl}_{(\mathrm{aq})}(40 \mathrm{~mL})$ and the resulting solution was stirred at rt for 48 h . Solid $\mathrm{Na}_{2} \mathrm{CO}_{3}$ was added until $\mathrm{pH} \approx 9$ was reached and the solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10$ $\mathrm{mL})$. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give the crude amino ketone as a pale-yellow oil. The crude amino ketone was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. The resulting solution was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{Et}_{3} \mathrm{~N}(1.5 \mathrm{~mL}$, $10.8 \mathrm{mmol}, 1.9 \mathrm{eq}$) was added. Then, trichloroacetyl chloride ($1.1 \mathrm{~mL}, 9.80 \mathrm{mmol}, 1.8 \mathrm{eq}$) was added dropwise and the solution was allowed to warm to rt. The resulting solution was stirred at rt for 4 h and then poured into water $(10 \mathrm{~mL})$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$ and the combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica with 4:6 to 7:3 $\mathrm{Et}_{2} \mathrm{O}$-hexane as eluent gave trichloroacetamide $\mathbf{1 0 8}$ ($2.04 \mathrm{~g}, 89 \%$) as a white solid, identical (by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy) to that described above.

Lab book reference: ARG-1-003

A solution of 1,4-cyclohexadione monoethylene acetal 29 ($4.06 \mathrm{~g}, 26.0 \mathrm{mmol}, 1.0 \mathrm{eq}), 2,4-$ dimethoxybenzylamine ($4.0 \mathrm{~mL}, 26.0 \mathrm{mmol}, 1.0 \mathrm{eq}$) and $\mathrm{NaBH}(\mathrm{OAc})_{3}(7.70 \mathrm{~g}, 36.4 \mathrm{mmol}$, $1.4 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(107 \mathrm{~mL})$ was stirred at rt for 12 h . Saturated $\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{aq})}(10 \mathrm{~mL})$ was added. Then, $1 \mathrm{M} \mathrm{NaOH}_{(\text {aq) }}$ was added until $\mathrm{pH} \approx 10$ was reached. The mixture was extracted with
$\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give the crude amine as a pale-yellow oil. To the crude amine was added $3 \mathrm{M} \mathrm{HCl}_{(\mathrm{aq})}(140 \mathrm{~mL})$ and the resulting solution was stirred at rt for 48 h . Solid $\mathrm{Na}_{2} \mathrm{CO}_{3}$ was added until $\mathrm{pH} \approx 9$ was reached and the solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20$ $\mathrm{mL})$. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give the crude amino-ketone as a pale-yellow oil. The crude amino-ketone was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{~mL})$. The resulting solution was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{Et}_{3} \mathrm{~N}(7.0 \mathrm{~mL}$, $49.4 \mathrm{mmol}, 1.9 \mathrm{eq}$) was added. Then, trichloroacetyl chloride ($5.3 \mathrm{~mL}, 46.8 \mathrm{mmol}, 1.8 \mathrm{eq}$) was added dropwise and the solution was allowed to warm to rt. The resulting solution was stirred at rt for 4 h and then poured into water $(30 \mathrm{~mL})$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$ and the combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give the crude product. Purification by triturating the crude solid with $\mathrm{Et}_{2} \mathrm{O}(2 \times 50 \mathrm{~mL})$ gave trichloroacetamide $\mathbf{1 0 8}(6.38 \mathrm{~g}, 60 \%)$ as a white solid, identical (by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy) to that described above.

Lab book reference: ARG-2-108

6-(2,4-Dimethoxybenzyl)-6-azabicyclo[3.2.1]octane-2,7-dione 109

109

A mixture of trichloroacetamide $\mathbf{1 0 8}(501 \mathrm{mg}, 1.22 \mathrm{mmol}, 1.0 \mathrm{eq})$ and pyrrolidine (0.11 mL , $1.22 \mathrm{mmol}, 1.0 \mathrm{eq})$ in toluene (0.3 mL) was stirred and heated at $100^{\circ} \mathrm{C}$ in a sealed vial for 1 h . The crude mixture was directly purified by flash column chromatography on silica with 1:1 to 4:1 EtOAc-hexane as eluent to give normorphan $109(281 \mathrm{mg}, 80 \%)$ as a red oil, R_{F} (1:1 EtOAc-hexane) 0.17; IR (ATR) 2953, 1723 (C=O, ketone), 1689 (C=O, amide), 1613, $1588,1508,1418,1295,1209,1158,1125,1034,835 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.24-7.21 (m, 1H, Ar), 6.48-6.44 (m, 2H, Ar), 4.60 (d, $J=14.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHH}$ '), 4.43 (d, J $=14.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHH}$), $3.85-3.78(\mathrm{~m}, 7 \mathrm{H}, \mathrm{OMe}, \mathrm{NCH}), 3.18(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{CH})$,
2.56 (dddd, $J=11.5,5.0,5.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-4), 2.45-2.32\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{CHH}^{\prime}\right), 2.08-2.00$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}-2$), $1.98(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-4), 1.79$ (dddd, $J=13.5,8.5,8.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}-2) .{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 203.0$ ($\mathrm{C}=\mathrm{O}$, ketone), 170.8 ($\mathrm{C}=\mathrm{O}$, amide), 160.9 (ipso-Ar), 158.7 (ipso-Ar), 131.3 (Ar), 116.8 (ipso-Ar), 104.4 (Ar), 98.6 (Ar), 58.3 (CHCO), $55.5(\mathrm{OMe}), 54.8(\mathrm{NCH}), 39.5\left(\mathrm{NCH}_{2}\right), 36.2\left(\mathrm{CH}_{2}-4\right), 35.1\left(\mathrm{CH}_{2} \mathrm{CO}\right), 27.6\left(\mathrm{CH}_{2}-2\right)(1 \times$ OMe resonance not resolved); HRMS (ESI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{4}(\mathrm{M}+\mathrm{H})^{+}$290.1383, found 290.1387 (+1.4 ppm error).

Lab book reference: ARG-1-019

A mixture of trichloroacetamide $108(200 \mathrm{mg}, 0.49 \mathrm{mmol}, 1.0 \mathrm{eq})$ and pyrrolidine (0.1 mL , $0.98 \mathrm{mmol}, 2.0 \mathrm{eq})$ in toluene (2 mL) was stirred and heated at reflux for 45 min . The solvent was evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica with 1:1 to 4:1 EtOAc-hexane as eluent gave normorphan $\mathbf{1 0 9}$ ($63 \mathrm{mg}, 45 \%$) as a red oil, identical (by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy) to that described above.

Lab book reference: ARG-1-006

A mixture of trichloroacetamide $\mathbf{1 0 8}(400 \mathrm{mg}, 0.98 \mathrm{mmol}, 1.0 \mathrm{eq})$ and pyrrolidine (0.2 mL , $1.96 \mathrm{mmol}, 2.0 \mathrm{eq})$ in toluene (3 mL) was stirred and heated at reflux for 3 h . The solvent was evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica with 1:1 to 4:1 EtOAc-hexane as eluent gave normorphan $\mathbf{1 0 9}$ ($93 \mathrm{mg}, 33 \%$) as a red oil, identical (by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy) to that described above.

Lab book reference: ARG-1-008

A mixture of trichloroacetamide $108(500 \mathrm{mg}, 1.22 \mathrm{mmol}, 1.0 \mathrm{eq})$ and pyrrolidine ($51 \mu \mathrm{~L}$, $0.61 \mathrm{mmol}, 0.5 \mathrm{eq}$) was stirred and heated at $100{ }^{\circ} \mathrm{C}$ in a sealed vial for 1 h . The crude mixture was directly purified by flash column chromatography on silica with $1: 1$ to $4: 1$ EtOAc-hexane as eluent to give normorphan 109 ($222 \mathrm{mg}, 63 \%$) as a red oil, identical (by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy) to that described above.

Lab book reference: ARG-1-010
A mixture of trichloroacetamide $108(7.00 \mathrm{~g}, 17.1 \mathrm{mmol}, 1.0 \mathrm{eq})$ and pyrrolidine (1.43 mL , $17.1 \mathrm{mmol}, 1.0 \mathrm{eq})$ in toluene (4.3 mL) was stirred and heated at $100^{\circ} \mathrm{C}$ in a sealed tube for 1 h . The crude mixture was directly purified by flash column chromatography on silica with 1:1 to 4:1 EtOAc-hexane as eluent to give normorphan $109(3.96 \mathrm{~g}, 80 \%)$ as a red oil, identical (by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy) to that described above.

Lab book reference: ARG-2-109

6-(2,4-Dimethoxybenzyl)-7-oxo-6-azabicyclo[3.2.1]oct-2-en-2-yl trifluoromethanesulfonate 110

NaHMDS (4.0 mL of a 2 M solution in THF, 8.0 mmol , 1.6 eq) was added dropwise to a stirred solution of normorphan $109(1.44 \mathrm{~g}, 4.97 \mathrm{mmol}, 1.0 \mathrm{eq})$ in THF $(12 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ under Ar. The resulting solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h . Then, a solution of PhNTf_{2} ($2.30 \mathrm{~g}, 6.46 \mathrm{mmol}, 1.3 \mathrm{eq}$) in THF (8 mL) was added and the resulting solution was allowed to warm slowly to rt . The solution was stirred at rt for 16 h . Saturated $\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{aq})}(15 \mathrm{~mL})$ was added and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 15 \mathrm{~mL})$. The combined organic extracts were washed with brine $(50 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica with $1: 1$ to 4:1 $\mathrm{Et}_{2} \mathrm{O}$-hexane as eluent gave vinyl triflate $110(1.25 \mathrm{~g}, 60 \%)$ as a clear oil, $R_{\mathrm{F}}\left(3: 2 \mathrm{Et}_{2} \mathrm{O}-\right.$ hexane) 0.22; IR (ATR) 2959, 1703 (C=O), 1662 (C=C), 1589, 1508, 1415, 1206, 1138, 878, 834, $609 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.14-7.08(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 6.47-6.40(\mathrm{~m}, 2 \mathrm{H}$, Ar), $5.56-5.51(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CH}), 4.50(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHH}$), $4.29(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}$, NCHH'), 3.83-3.77 (m, 6H, OMe), 3.76-3.71 (m, 1H, NCH), 2.98-2.94 (m, 1H, CH-5), 2.36-2.23 (m, 3H, CH $\left.{ }_{2}-2, \mathrm{CH}-4\right), 1.90\left(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-4\right) ;{ }^{13} \mathrm{C}$ NMR (100.6 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta 173.6(\mathrm{C}=\mathrm{O}), 160.8$ (ipso-Ar), 158.5 (ipso-Ar), 148.4 (=C), 130.9 (Ar), 118.6 (q, $J=320.0 \mathrm{~Hz}, \mathrm{CF}_{3}$), 117.2 (ipso-Ar), $114.8(=\mathrm{CH}), 104.5$ (Ar), 98.6 (Ar), 55.5 (OMe), 55.4 (OMe), $53.0(\mathrm{NCH}), 44.7(\mathrm{CHCO}), 38.4\left(\mathrm{NCH}_{2}\right), 34.1\left(\mathrm{CH}_{2}-4\right), 28.3\left(\mathrm{CH}_{2}-2\right)$; HRMS (ESI) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{NO}_{6} \mathrm{~S}(\mathrm{M}+\mathrm{Na})^{+} 444.0699$, found 444.0706 (-1.8 ppm error).

Lab book reference: ARG-1-048
$n-\mathrm{BuLi}(0.19 \mathrm{~mL}$ of a 2.2 M solution in THF, $0.41 \mathrm{mmol}, 1.2 \mathrm{eq}$) was added dropwise to a stirred solution of $i-\mathrm{Pr}_{2} \mathrm{NH}(61 \mu \mathrm{~L}, 0.41 \mathrm{mmol}, 1.2 \mathrm{eq})$ in THF (1 mL) at $-78{ }^{\circ} \mathrm{C}$ under Ar. The resulting solution was stirred at $-78^{\circ} \mathrm{C}$ for 10 min . Then, a solution of normorphan $\mathbf{1 0 9}$ ($100 \mathrm{mg}, 0.35 \mathrm{mmol}, 1.0 \mathrm{eq}$) in THF (0.8 mL) was added. The solution was stirred for 1 h . Then, a solution of $\operatorname{PhNTf}_{2}(172 \mathrm{mg}, 0.48 \mathrm{mmol}, 1.4 \mathrm{eq})$ in THF (1 mL) was added and the resulting solution was allowed to warm slowly to rt. The solution was stirred at rt for 18 h . Saturated $\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{aq})}(2 \mathrm{~mL})$ was added and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic extracts were washed with brine (10 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica with $1: 1$ to $4: 1 \mathrm{Et}_{2} \mathrm{O}$-hexane as eluent gave vinyl triflate $\mathbf{1 1 0}$ (44 $\mathrm{mg}, 30 \%$) as a clear oil, identical (by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy) to that described above.

Lab book reference: ARG-1-021

LiHMDS (1.0 mL of a 1 M solution in THF, $1.01 \mathrm{mmol}, 1.4 \mathrm{eq}$) was added dropwise to a stirred solution of normorphan $\mathbf{1 0 9}$ ($210 \mathrm{mg}, 0.72 \mathrm{mmol}, 1.0 \mathrm{eq}$) in THF (2.5 mL) at $-78{ }^{\circ} \mathrm{C}$ under Ar. The resulting solution was stirred at $-78^{\circ} \mathrm{C}$ for 1 h . Then, a solution of Comins' reagent $\mathbf{1 1 3}(370 \mathrm{mg}, 0.94 \mathrm{mmol}, 1.3 \mathrm{eq})$ in THF (2 mL) was added and the resulting solution was allowed to warm slowly to rt. The solution was stirred at rt for 18 h . Saturated $\mathrm{NH}_{4} \mathrm{Cl}_{\text {(aq) }}$ $(5 \mathrm{~mL})$ was added and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic extracts were washed with brine (20 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give the crude product which contained $<10 \%$ of vinyl triflate $\mathbf{1 1 0}$ by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

Lab book reference: ARG-1-027

KHMDS (0.31 mL of a 1 M solution in THF, $0.31 \mathrm{mmol}, 1.3 \mathrm{eq}$) was added dropwise to a stirred solution of normorphan $\mathbf{1 0 9}(100 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.0 \mathrm{eq})$ in THF $(1.5 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ under Ar. After stirring at $-78^{\circ} \mathrm{C}$ for 1 h , a solution of PhNTf_{2} ($122 \mathrm{mg}, 0.34 \mathrm{mmol}, 1.4 \mathrm{eq}$) in THF (1.5 mL) was added and resulting the solution was allowed to warm slowly to rt. The solution was stirred at rt for 18 h . Saturated $\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{aq})}(5 \mathrm{~mL})$ was added and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$. The combined organic extracts were washed with brine $(20 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica with $1: 1$ to $4: 1 \mathrm{Et}_{2} \mathrm{O}$-hexane as eluent gave vinyl triflate $\mathbf{1 1 0}$ ($8 \mathrm{mg}, 8 \%$) as a clear oil, identical (by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy) to that described above.

Lab book reference: ARG-1-020

NaHMDS (0.76 mL of a 2 M solution in THF, $1.53 \mathrm{mmol}, 1.8 \mathrm{eq}$) was added dropwise to a stirred solution of normorphan 109 ($245 \mathrm{mg}, 0.85 \mathrm{mmol}, 1.0 \mathrm{eq}$) in THF (3 mL) at $-78{ }^{\circ} \mathrm{C}$ under Ar. The resulting solution was stirred at $-78^{\circ} \mathrm{C}$ for 1 h . Then, a solution of PhNTf_{2} ($395 \mathrm{mg}, 1.11 \mathrm{mmol}, 1.3 \mathrm{eq}$) in THF (2.5 mL) was added and the resulting solution was allowed to warm slowly to rt. The solution was stirred at rt for 18 h . Saturated $\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{aq})}(5$ $\mathrm{mL})$ was added and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$. The combined organic extracts were washed with cold $10 \% \mathrm{NaOH}_{(\mathrm{aq})}(10 \mathrm{~mL})$ and brine $(50 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica with $1: 1$ to $4: 1 \mathrm{Et}_{2} \mathrm{O}$-hexane as eluent gave vinyl triflate 110 ($150 \mathrm{mg}, 45 \%$) as a clear oil, identical (by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy) to that described above.

Lab book reference: ARG-1-031

NaHMDS (0.76 mL of a 2 M solution in THF, $1.53 \mathrm{mmol}, 1.8 \mathrm{eq}$) was added dropwise to a stirred solution of normorphan 109 ($245 \mathrm{mg}, 0.85 \mathrm{mmol}, 1.0 \mathrm{eq}$) in THF (3 mL) at $-78{ }^{\circ} \mathrm{C}$ under Ar. The resulting solution was stirred at $-78^{\circ} \mathrm{C}$ for 1 h . Then, a solution of Comins' reagent $113(435 \mathrm{mg}, 1.11 \mathrm{mmol}, 1.3 \mathrm{eq})$ in THF (2.5 mL) was added and resulting the solution was allowed to warm slowly to rt. The solution was stirred at rt for 18 h . Saturated $\mathrm{NH}_{4} \mathrm{Cl}_{(\text {aq })}(5 \mathrm{~mL})$ was added and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$. The
combined organic extracts were washed with cold $10 \% \mathrm{NaOH}_{(\mathrm{aq})}(10 \mathrm{~mL})$ and brine $(50 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica with $1: 1$ to $4: 1 \mathrm{Et}_{2} \mathrm{O}$-hexane as eluent gave vinyl triflate $\mathbf{1 1 0}$ ($130 \mathrm{mg}, 36 \%$) as a clear oil, identical (by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy) to that described above.

Lab book reference: ARG-1-032

NaHMDS (2.8 mL of a 2 M solution in THF, $1.52 \mathrm{mmol}, 1.8 \mathrm{eq}$) was added dropwise to a stirred solution of normorphan $109(230 \mathrm{mg}, 0.79 \mathrm{mmol}, 1.0 \mathrm{eq})$ in THF $(2.8 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ under Ar. The resulting solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h . Then, a solution of PhNTf_{2} ($367 \mathrm{mg}, 1.23 \mathrm{mmol}, 1.3 \mathrm{eq}$) in THF (2.2 mL) was added and the resulting solution was allowed to warm slowly to rt. The solution was stirred at rt for 48 h . Saturated $\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{aq})}(5$ mL) was added and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$. The combined organic extracts were washed with brine (50 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica with $1: 1$ to $4: 1 \mathrm{Et}_{2} \mathrm{O}$-hexane as eluent gave vinyl triflate $\mathbf{1 1 0}$ ($113 \mathrm{mg}, 33 \%$) as a clear oil, identical (by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy) to that described above.

Lab book reference: ARG-1-038

NaHMDS (9.2 mL of a 2 M solution in THF, 18.4 mmol , 1.6 eq) was added dropwise to a stirred solution of normorphan 109 ($3.55 \mathrm{~g}, 12.3 \mathrm{mmol}, 1.0 \mathrm{eq}$) in THF (30 mL) at $-78{ }^{\circ} \mathrm{C}$ under Ar. The resulting solution was stirred at $-78^{\circ} \mathrm{C}$ for 1 h . Then, a solution of PhNTf_{2} ($5.70 \mathrm{~g}, 15.9 \mathrm{mmol}, 1.3 \mathrm{eq}$) in THF (20 mL) was added and resulting the solution was allowed to warm slowly to rt . The solution was stirred at rt for 18 h . Saturated $\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{aq})}(30$ $\mathrm{mL})$ was added and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(5 \times 20 \mathrm{~mL})$. The combined organic extracts were washed with brine (50 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica with $1: 1$ to $4: 1 \mathrm{Et}_{2} \mathrm{O}$-hexane as eluent gave vinyl triflate $\mathbf{1 1 0}(3.20 \mathrm{~g}, 61 \%)$ as a clear oil, identical (by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy) to that described above.

Lab book reference: ARG-2-111

6-(2,4-Dimethoxybenzyl)-7-oxo-6-azabicyclo[3.2.1]oct-2-en-2-yl

trifluoromethanesulfonate $110 \quad$ and N-(5-chloropyridin-2-yl)-1,1,1trifluoromethanesulfonamide 114

110

114
$n-\mathrm{BuLi}(0.25 \mathrm{~mL}$ of a 2.2 M solution in THF, $0.53 \mathrm{mmol}, 1.3 \mathrm{eq}$) was added dropwise to a stirred solution of $i-\operatorname{Pr}_{2} \mathrm{NH}(75 \mu \mathrm{~L}, 0.53 \mathrm{mmol}, 1.3 \mathrm{eq})$ in THF $(1 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ under Ar. The resulting solution was stirred at $-78^{\circ} \mathrm{C}$ for 10 min . Then, a solution of normorphan 109 ($118 \mathrm{mg}, 0.41 \mathrm{mmol}, 1.0 \mathrm{eq}$) in THF (1 mL) was added. The resulting solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h . Then, solution of Comins' reagent $\mathbf{1 1 3}$ ($208 \mathrm{mg}, 0.53 \mathrm{mmol}, 1.3 \mathrm{eq}$) in THF (1 mL) was added and the resulting solution was allowed to warm slowly to rt. The solution was stirred at rt for 18 h . Saturated $\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{aq})}(2 \mathrm{~mL})$ was added and the mixture extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic extracts were washed with brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica with $1: 1$ to $4: 1 \mathrm{Et}_{2} \mathrm{O}$-hexane as eluent gave an 80:20 mixture of vinyl triflate $\mathbf{1 1 0}$ and sulfonamide $\mathbf{1 1 4}$ (69 mg , i.e. 56.6 $\mathrm{mg}(33 \%)$ of vinyl triflate 110) as a clear oil. Diagnostic signals for sulfonamide 114: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.15-8.10(\mathrm{~m}, 1 \mathrm{H}), 7.82-7.75(\mathrm{~m}, 1 \mathrm{H}), 7.72-7.64(\mathrm{~m}, 1 \mathrm{H})$.

Lab book reference: ARG-1-022

NaHMDS (0.53 mL of a 2 M solution in THF, $1.08 \mathrm{mmol}, 1.3 \mathrm{eq}$) was added dropwise to a stirred solution of normorphan $109\left(240 \mathrm{mg}, 0.83 \mathrm{mmol}, 1.0\right.$ eq) in THF $(1.5 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ under Ar. The resulting solution was stirred at $-78^{\circ} \mathrm{C}$ for 1 h . Then, a solution of Comins' reagent $113(424 \mathrm{mg}, 1.08 \mathrm{mmol}, 1.3 \mathrm{eq})$ in THF (2.5 mL) was added and the resulting solution was allowed to warm slowly to rt. The solution was stirred at rt for 18 h . Saturated
$\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{aq})}(5 \mathrm{~mL})$ was added and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$. The combined organic extracts were washed with brine (20 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica with $1: 1$ to $4: 1 \mathrm{Et}_{2} \mathrm{O}$-hexane as eluent an $85: 15$ mixture of vinyl triflate $\mathbf{1 1 0}$ and sulfonamide $\mathbf{1 1 4}$ (219 mg , i.e. 190 mg (54%) of vinyl triflate $\mathbf{1 1 0}$) as a clear oil.

Lab book reference: ARG-1-025

8-(6-(2,4-Dimethoxybenzyl)-7-oxo-6-azabicyclo[3.2.1]oct-2-en-2-yl)-4-methyldihydro$4 \lambda^{4}, 8 \lambda^{4}-[1,3,2]$ oxazaborolo $[2,3-b][1,3,2]$ oxazaborole-2,6(3H,5H) -dione 94 and 6-(2,4-dimethoxybenzyl)-6-azabicyclo[3.2.1]oct-2-en-7-one 115

94

115

A solution of vinyl triflate $\mathbf{1 1 0}(1.98 \mathrm{~g}, 4.70 \mathrm{mmol}, 1.0 \mathrm{eq}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(97 \mathrm{mg}, 0.14 \mathrm{mmol}$, $0.03 \mathrm{eq}), \mathrm{PPh}_{3}(73 \mathrm{mg}, 0.28 \mathrm{mmol}, 0.06 \mathrm{eq}), \mathrm{KOPh}(931 \mathrm{mg}, 7.05 \mathrm{mmol}, 1.5 \mathrm{eq})$ and $\mathrm{B}_{2} \mathrm{pin}_{2}$ $(1.31 \mathrm{~g}, 5.17 \mathrm{mmol}, 1.1 \mathrm{eq})$ in toluene (30 mL) under Ar was stirred and heated at $50^{\circ} \mathrm{C}$ for 16 h . The solids were removed by filtration through Celite ${ }^{\circledR}$ and the filtrate was evaporated under reduced pressure to give the crude pinacol boronate. The crude pinacol boronate was dissolved in DMSO (24 mL) and MIDA ($4.49 \mathrm{~g}, 30.54 \mathrm{mmol}, 6.5 \mathrm{eq}$) and $\mathrm{HC}(\mathrm{OEt})_{3}(3.70$ $\mathrm{mL}, 21.14 \mathrm{mmol}, 4.5 \mathrm{eq})$ were added. The resulting mixture was stirred and heated at 100 ${ }^{\circ} \mathrm{C}$ under Ar for 48 h . Saturated $\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{aq})}(10 \mathrm{~mL})$ was added and the mixture was extracted with EtOAc $(4 \times 30 \mathrm{~mL})$. The combined organic extracts were washed with brine (50 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica with 9:1 to $7: 3 \mathrm{CH}_{2} \mathrm{Cl}_{2}$-acetone as eluent gave alkene 115 ($192 \mathrm{mg}, 15 \%$) as a clear oil, R_{F} ($9: 1$ hexane-acetone) 0.1; IR (ATR) 2940, 2835, $1685(\mathrm{C}=\mathrm{O}), 1612,1587,1506,1411,1206,1031,832,669 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta 7.09-7.03(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 6.42-6.34(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 6.07$ (dddd, $J=9.0,7.0,1.0,1.0$ $\mathrm{Hz}, 1 \mathrm{H},=\mathrm{CH}-6), 5.51$ (dddd, $J=9.0,3.5,3.0,1.5 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}-1), 4.50(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{NCHH}^{\prime}\right), 4.16(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHH}$), 3.76-3.71 (m, 6H, OMe), 3.66-3.62 (m, 1H, NCH), 2.75 (dd, $J=7.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-5$), $2.17-2.04$ (m, 3H, CHH'-2, CHH'-4), 1.71 (d, $\left.J=10.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H^{\prime}-4\right) ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.5$ ($\mathrm{C}=\mathrm{O}$), 160.4 (ipso-Ar), 158.5 (ipso-Ar), 130.3 (Ar), 129.2 (=CH-6), 126.0 (=CH-1), 117.8 (ipso-Ar), 104.3 (Ar), $98.4(\mathrm{Ar}), 55.4(\mathrm{OMe}), 54.3(\mathrm{NCH}), 40.8(\mathrm{CH}-5), 37.8\left(\mathrm{NCH}_{2}\right), 33.9\left(\mathrm{CH}_{2}-4\right), 28.3\left(\mathrm{CH}_{2}-2\right)$ $\left(1 \times\right.$ OMe resonance not resolved); HRMS (ESI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{Na})^{+}$ 296.1257, found 296.1250 (+2.7 ppm error) and vinyl MIDA boronate 94 ($1.40 \mathrm{~g}, 70 \%$) as an off-white crystalline solid, $\mathrm{mp} 80-82^{\circ} \mathrm{C} ; R_{\mathrm{F}}\left(4: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$-acetone) 0.29 ; IR (ATR) 2958, 1760 ($\mathrm{C}=\mathrm{O}$, ester), 1673 ($\mathrm{C}=\mathrm{O}$, amide), 1614, 1508, 1457, 1292, 1180, 1036, $823 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, d_{6}$-acetone) $\delta 7.08(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 6.53(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar})$, $6.45(\mathrm{dd}, J=8.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 5.98$ (ddd, $J=3.0,3.0,3.0 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 4.41(\mathrm{~d}, J=$ $15.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHH}$ '), 4.27-4.07 (m, 4H, NCHH', CHH'CO2), 3.96 (d, J = $17.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}^{\prime} \mathrm{CO}_{2}$), 3.81 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), 3.78-3.71 (m, 4H, OMe, NCH), 2.84 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{NMe}$), 2.64 (d, $J=4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-5), 2.24-2.17\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHH}^{\prime}-2\right), 2.16$ (ddd, $J=10.5,5.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}$, CHH '-4), 1.67 (d, $\left.J=10.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}{ }^{\prime}-4\right) ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, d_{6}$-acetone) $\delta 177.0$ ($\mathrm{C}=\mathrm{O}$, amide), 169.2 ($\mathrm{C}=\mathrm{O}$, ester), 167.9 ($\mathrm{C}=\mathrm{O}$, ester), 160.7 (ipso-Ar), 158.6 (ipso-Ar), $134.1(=\mathrm{CH}), 130.0(\mathrm{Ar}), 117.8$ (ipso-Ar), $104.6(\mathrm{Ar}), 98.2(\mathrm{Ar}), 62.0\left(\mathrm{CH}_{2} \mathrm{CO}_{2}\right), 61.3$ $\left(\mathrm{CH}_{2} \mathrm{CO}_{2}\right), 55.0(\mathrm{OMe}), 54.8(\mathrm{OMe}), 54.3(\mathrm{NCH}), 45.8(\mathrm{NMe}), 41.8(\mathrm{CH}-5), 37.6\left(\mathrm{NCH}_{2}\right)$, $33.7\left(\mathrm{CH}_{2}-4\right)$, $28.8\left(\mathrm{CH}_{2}-2\right.$, only resolved in DEPT-135) ($=\mathrm{C}-\mathrm{B}$ resonance not resolved); HRMS (ESI) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{BN}_{2} \mathrm{O}_{7}(\mathrm{M}+\mathrm{Na})^{+} 451.1647$, found 451.1654 (-0.2 ppm error)

Lab book reference: ARG-2-114
PdCl_{2} (dppf) ($22 \mathrm{mg}, 0.03 \mathrm{mmol}, 0.06 \mathrm{eq}$), dppf ($17 \mathrm{mg}, 0.03 \mathrm{mmol}, 0.06 \mathrm{eq}$), KOAc (134 $\mathrm{mg}, 1.37 \mathrm{mmol}, 3.0 \mathrm{eq})$ and $\mathrm{B}_{2} \mathrm{pin}_{2}(137 \mathrm{mg}, 0.54 \mathrm{mmol}, 1.2 \mathrm{eq})$ were added to a stirred solution of vinyl triflate $\mathbf{1 1 0}$ ($193 \mathrm{mg}, 0.46 \mathrm{mmol}, 1.0 \mathrm{eq}$) in dioxane (3 mL) at rt under Ar. The resulting mixture was stirred and heated at $80^{\circ} \mathrm{C}$ under Ar for $16 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added and the mixture was extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. The combined organic extracts were washed with brine (20 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give the crude pinacol boronate. Purification by flash column chromatography
on silica with 4:6 EtOAc-hexane as eluent gave impure pinacol boronate $\mathbf{1 1 1}(100 \mathrm{mg})$ which was dissolved in DMSO (1.2 mL). MIDA ($228.5 \mathrm{mg}, 1.55 \mathrm{mmol}, 6.2 \mathrm{eq}$) and $\mathrm{HC}(\mathrm{OEt})_{3}$ $(0.17 \mathrm{~mL}, 1.0 \mathrm{mmol}, 4.0 \mathrm{eq})$ were added. The resulting mixture was stirred and heated at 100 ${ }^{\circ} \mathrm{C}$ under Ar for 48 h . Saturated $\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{aq})}(10 \mathrm{~mL})$ was added and the mixture was extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The combined organic extracts were washed with brine (20 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica with 9:1 to $7: 3 \mathrm{CH}_{2} \mathrm{Cl}_{2}$-acetone as eluent gave vinyl MIDA boronate 94 ($49 \mathrm{mg}, 25 \%$) as an off-white crystalline solid identical (by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy) to that described above. Diagnostic signals for pinacol boronate 111: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.11-7.07$ (m, 1H, Ar), 6.43-6.39 (m, 2H, Ar), 6.39$6.37(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CH}), 4.52\left(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHH}\right.$ '), $4.14\left(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHH} \mathrm{H}^{\prime}\right)$, 3.84-3.74 (m, 6H, OMe), 3.66-3.60 (m, 1H, NCH), 3.07 (d, J=4.5 Hz, 1H, C(O)CH), 2.11 (ddd, $J=10.5,5.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}$), 1.64 (d, $J=10.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H^{\prime}$); HRMS (ESI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{BNO}_{5}(\mathrm{M}+\mathrm{Na})^{+} 422.2109$, found 422.2117 (-1.0 ppm error).

Lab book reference: ARG-1-015

A solution of vinyl triflate $\mathbf{1 1 0}(219 \mathrm{mg}, 0.52 \mathrm{mmol}, 1.0 \mathrm{eq}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(15 \mathrm{mg}, 0.02$ $\mathrm{mmol}, 0.03 \mathrm{eq}$), $\mathrm{PPh}_{3}(8 \mathrm{mg}, 0.03 \mathrm{mmol}, 0.06 \mathrm{eq}), \mathrm{KOPh}(103 \mathrm{mg}, 0.78 \mathrm{mmol}, 1.5 \mathrm{eq})$ and $\mathrm{B}_{2} \mathrm{pin}_{2}(145 \mathrm{mg}, 0.57 \mathrm{mmol}, 1.1 \mathrm{eq})$ in toluene (3 mL) was stirred and heated at $50^{\circ} \mathrm{C}$ under Ar for $16 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$ was added, and the mixture was extracted with EtOAc (4×10 $\mathrm{mL})$. The combined organic extracts were washed with brine (10 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give the crude pinacol boronate. Purification by flash column chromatography on silica with $4: 6 \mathrm{EtOAc}$-hexane as eluent gave impure pinacol boronate $\mathbf{1 1 1}$ (158 mg) which was dissolved in DMSO (1.8 mL). MIDA ($343 \mathrm{mg}, 2.33$ mmol, 6.2 eq$)$ and $\mathrm{HC}(\mathrm{OEt})_{3}(0.25 \mathrm{~mL}, 1.50 \mathrm{mmol}, 4.0 \mathrm{eq})$ were added. The reaction mixture was heated and stirred at $100{ }^{\circ} \mathrm{C}$ under Ar for 48 h . Saturated $\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{aq})}(10 \mathrm{~mL})$ was added and the mixture was extracted with $\mathrm{EtOAc}(4 \times 10 \mathrm{~mL})$. The combined organic extracts were washed with brine (20 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica with 9:1 to 7:3 $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-acetone as eluent gave vinyl MIDA boronate $\mathbf{9 4}$ ($122 \mathrm{mg}, 54 \%$) as an off-white crystalline solid, identical (by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy) to that described above.

A solution of vinyl triflate $\mathbf{1 1 0}(1.45 \mathrm{~g}, 3.44 \mathrm{mmol}, 1.0 \mathrm{eq}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(72 \mathrm{mg}, 0.10 \mathrm{mmol}$, $3 \mathrm{~mol} \%), \mathrm{PPh}_{3}(54 \mathrm{mg}, 0.21 \mathrm{mmol}, 6 \mathrm{~mol} \%), \mathrm{KOPh}(682 \mathrm{mg}, 5.16 \mathrm{mmol}, 1.5 \mathrm{eq})$ and $\mathrm{B}_{2} \mathrm{pin}_{2}$ ($961 \mathrm{mg}, 3.78 \mathrm{mmol}, 1.1 \mathrm{eq}$) in toluene (22 mL) was stirred and heated at $50^{\circ} \mathrm{C}$ under Ar for 16 h . The solids were removed by filtration through Celite ${ }^{\circledR}$ and the filtrate was evaporated under reduced pressure to give the crude pinacol boronate 111. The crude pinacol boronate was dissolved in DMSO (18 mL) and MIDA ($1.52 \mathrm{~g}, 10.32 \mathrm{mmol}, 3.0 \mathrm{eq}$) and $\mathrm{HC}(\mathrm{OEt})_{3}(2.4 \mathrm{~mL}, 13.76 \mathrm{mmol}, 4.0 \mathrm{eq})$ were added. The reaction mixture was stirred and heated to $100{ }^{\circ} \mathrm{C}$ under Ar for 48 h . Saturated $\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{aq})}(10 \mathrm{~mL})$ was added and the mixture extracted with $\mathrm{EtOAc}(4 \times 30 \mathrm{~mL})$. The combined organic extracts were washed with brine (50 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica with $9: 1$ to $7: 3 \mathrm{CH}_{2} \mathrm{Cl}_{2}$-acetone as eluent gave alkene 115 ($150 \mathrm{mg}, 17 \%$) as a clear oil, identical (by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy) to that described above and vinyl MIDA boronate 94 ($850 \mathrm{mg}, 60 \%$) as an off-white crystalline solid, identical (by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy) to that described above.

Lab book reference: ARG-2-120

tert-Butyl ((1R,2R)-2-(3-methylthioureido)cyclohexyl)carbamate ($\boldsymbol{R}, \boldsymbol{R}$)-118

$(R, R)-118$
Methyl isothiocyanate ($419 \mathrm{mg}, 5.60 \mathrm{mmol}, 3 \mathrm{eq}$) was added to a stirred solution of tertbutyl ($(1 R, 2 R)$-2-aminocyclohexyl)carbamate (R, R)-117 ($400 \mathrm{mg}, 1.87 \mathrm{mmol}, 1.0 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8.5 \mathrm{~mL})$ under Ar at rt . The solution was stirred at rt for $24 \mathrm{~h} .1 \mathrm{M} \mathrm{NaOH}_{(\mathrm{aq})}(10$ mL) was added and the mixture was extracted with $\mathrm{EtOAc}(3 \times 20 \mathrm{~mL})$. The combined organic extracts were washed with brine (20 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica with 4:6 EtOAc-hexane as eluent gave N-Boc-thiourea (R, R)-118 ($484 \mathrm{mg}, 90 \%$) as a white gum, $[\alpha]_{\mathrm{D}}-4.1\left(c 2.1 \mathrm{CHCl}_{3}\right)$ (lit., $\left.{ }^{68}[\alpha]_{\mathrm{D}}-4.3\left(c 2.1 \mathrm{CHCl}_{3}\right)\right) ; R_{\mathrm{F}}(1: 1 \mathrm{EtOAc}-$ hexane $)$
0.32; IR (ATR) 3332 (NH), 2933, 1674 (C=O), 1504, 1414, $1165 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , d_{4}-methanol) $\delta 4.13-3.97(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}), 2.87$ (br s, 3H, NMe), 2.10-1.87 (m, 2H), 1.77$1.62(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.36(\mathrm{~m}, 10 \mathrm{H}), 1.33-1.19(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, d_{4}$-methanol) $\delta 157.2(\mathrm{C}=\mathrm{O}), 78.7\left(\mathrm{OCMe}_{3}\right), 60.2,54.0,32.3,32.0,27.4,24.7,24.5,13.2(\mathrm{C}=\mathrm{S}$ resonance not resolved); HRMS (ESI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}(\mathrm{M}+\mathrm{Na})^{+} 310.1560$, found 310.1561 (-0.4 ppm error). Spectroscopic data consistent with those reported in the literature. ${ }^{68}$

Lab book reference: ARG-1-074

1-(($1 R, 2 R$)-2-Aminocyclohexyl)-3-methylthiourea (R, R)-77

(R, R)-77
4 M HCl in dioxane ($1.79 \mathrm{~mL}, 7.18 \mathrm{mmol}, 9.6 \mathrm{eq}$) was added to a stirred solution of N-Bocthiourea $(R, R)-\mathbf{1 1 8}(215 \mathrm{mg}, 0.748 \mathrm{mmol}, 1.0 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.7 \mathrm{~mL})$ at rt under Ar. The resulting solution was stirred at rt for 6 h . The solvent was evaporated under reduced pressure. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added. Then $1 \mathrm{M} \mathrm{NaOH}_{(\mathrm{aq})}(10 \mathrm{~mL})$ was added and brine (5 mL) was added. The layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(6 \times 5 \mathrm{~mL})$. The combined organic extracts were washed with brine (10 mL), dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$) and evaporated under reduced pressure to give the thiourea $(R, R)-77(180 \mathrm{mg}, 96 \%)$ as a white gum, $[\alpha]_{\mathrm{D}}+7.5\left(c 3.0 \mathrm{CHCl}_{3}\right)\left(\right.$ lit., $\left.{ }^{68}[\alpha]_{\mathrm{D}}+7.3\left(c 3.0 \mathrm{CHCl}_{3}\right)\right)$; IR (ATR) 2933, 1515, $1414 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, d_{4}$-methanol) $\delta 4.18-3.63(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}), 2.95(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NMe})$, 2.59-2.46 (m, 1H, NCH), 2.00-1.93 (m, 2H), 1.84-1.67 (m, 2H), 1.50-1.16 (m, 4H); ${ }^{13} \mathrm{C}$ NMR (100.3 MHz, d_{4}-methanol) $\delta 55.8,35.2,33.0,26.7,26.0(\mathrm{C}=\mathrm{S}, \mathrm{NMe}$, NCH resonances not resolved); HRMS (ESI) m / z calcd for $\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}$188.1216, found 188.1213 $\left(+1.5 \mathrm{ppm}\right.$ error). Spectroscopic data consistent with those reported in the literature. ${ }^{68}$

Lab book reference: ARG-2-094
tert-Butyl (S)-2-((3-(3,5-bis(trifluoromethyl)phenyl)thioureido)methyl)pyrrolidine-1carboxylate (S)-121

(S)-121

1-Isothiocyanato-3,5-bis(trifluoromethyl)benzene $\mathbf{1 2 0}(938 \mathrm{mg}, 3.46 \mathrm{mmol}, 1.4 \mathrm{eq})$ was added to a stirred solution of tert-butyl (S)-2-(aminomethyl)pyrrolidine-1-carboxylate (S)119 ($630 \mathrm{mg}, 3.46 \mathrm{mmol}, 1.0 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(21 \mathrm{~mL})$ at rt under Ar. The resulting solution was stirred at rt for $24 \mathrm{~h} .1 \mathrm{M} \mathrm{NaOH}_{(\mathrm{aq})}(20 \mathrm{~mL})$ was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic extracts were washed with brine (30 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica with 1:1 EtOAc-hexane as eluent gave N-Boc-thiourea (S) - $\mathbf{1 2 1}(1.27 \mathrm{~g}, 85 \%)$ as an off-white solid, $\mathrm{mp} 94-96{ }^{\circ} \mathrm{C} ; R_{\mathrm{F}}(1: 1$ EtOAc-hexane) 0.22; IR (ATR) 2978, 1658 (C=O), 1368, 1274, $681 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, d_{6}-DMSO, $120^{\circ} \mathrm{C}$) $\delta 9.87$ (br s, $1 \mathrm{H}, \mathrm{NH}$), 8.30 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{Ar}$), 8.04 (br s, $1 \mathrm{H}, \mathrm{NH}$), 7.64 (s, 1H, Ar), 4.05-3.97 (m, 1H, NCH), 3.83-3.74 (m, 1H, NCHH'), 3.64-3.55 (m, 1H, NCH H^{\prime}), 3.42-3.24 (m, 2H, C(O)NCHH'), 2.02-1.76 (m, 4H, CH2), 1.43 (s, 9H, CMe3); ${ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, d_{6}$-DMSO, $120{ }^{\circ} \mathrm{C}$) $\delta 181.9$ (C=S), 154.8 (C=O), 142.7 (ipso-Ar), 130.9 (q, $J=33.0 \mathrm{~Hz}$, ipso-Ar), 125.2, 122.5, $79.4\left(\mathrm{CMe}_{3}\right), 56.8,47.5,46.9,28.7$ (CMe_{3}) ($\mathrm{Ar}, \mathrm{CF}_{3}$ resonances not resolved) HRMS (ESI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}(\mathrm{M}+\mathrm{Na})^{+}$ 494.1307, found 494.1296 (+2.4 ppm error).

Lab book reference: ARG-1-077
(S)-1-(3,5-bis(Trifluoromethyl)phenyl)-3-(pyrrolidin-2-ylmethyl)thiourea (S)-116

(S)-116

TFA ($4.0 \mathrm{~mL}, 47.7 \mathrm{mmol}, 150 \mathrm{eq}$) was added to a stirred solution of N-Boc-thiourea (S) - $\mathbf{1 2 1}$ ($150 \mathrm{mg}, 0.32 \mathrm{mmol}, 1.0 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ at rt under Ar. The resulting solution was stirred at rt for $2 \mathrm{~h} .1 \mathrm{M} \mathrm{NaOH}_{(\mathrm{aq})}(4 \mathrm{~mL})$ was added and the mixture was extracted with
$\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 10 \mathrm{~mL})$. The combined organic extracts were washed with brine (30 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give thiourea (S) - $\mathbf{1 1 6}$ ($117 \mathrm{mg}, \mathbf{9 9 \%}$) as an off-white solid, $[\alpha]_{\mathrm{D}}-26.3\left(c 0.70 \mathrm{CHCl}_{3}\right)\left(\right.$ lit. ${ }^{89}{ }^{8}[\alpha]_{\mathrm{D}}-26.7\left(c 0.695 \mathrm{CHCl}_{3}\right)$); mp 102$104{ }^{\circ} \mathrm{C}$ (lit., ${ }^{89} 102{ }^{\circ} \mathrm{C}$); IR (ATR) 3246 (NH), 2958, 1550, 1276, $681 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, d_{4}-methanol) $\delta 8.10(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}), 7.50(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}), 3.89-3.79\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{NCH}, \mathrm{NCH}_{2}\right)$, 3.24 (ddd, $J=11.5,7.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{NCHH}$ '), 3.18-3.11 (m, 1H, C(O)NCHH'), 2.112.01 (m, 1H, CH), 2.00-1.86 (m, 2H, CH), 1.75-1.64 (m, 1H, CH); ${ }^{13} \mathrm{C}$ NMR (100.6 MHz , d_{4}-methanol) $\delta 184.2$ (C=S), 142.8 (ipso-Ar), 132.7 ($\mathrm{q}, J=33.5 \mathrm{~Hz}$, ipso-Ar), 124.7 ($\mathrm{q}, J=$ $272.0 \mathrm{~Hz}, \mathrm{CF}_{3}$), 124.2 (br, Ar), 118.3 (br, Ar), $61.8(\mathrm{NCH}), 46.5\left(\mathrm{NCH}_{2}\right), 45.5\left(\mathrm{NCH}_{2}\right), 28.6$ $\left(\mathrm{CH}_{2}\right), 24.2\left(\mathrm{CH}_{2}\right)$; HRMS (ESI) m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+} 372.0964$, found 372.0962 (+0.4 ppm error). Spectroscopic data consistent with those reported in the literature. ${ }^{89}$

Lab book reference: ARG-2-121

6-(2,4-Dimethoxybenzyl)-6-azabicyclo[3.2.1]octane-2,7-dione 109

109

A solution of trichloroacetamide $108(200 \mathrm{mg}, 0.49 \mathrm{mmol}, 1.0 \mathrm{eq})$ and (S)-prolinamide (S) $38(28 \mathrm{mg}, 0.24 \mathrm{mmol}, 0.5 \mathrm{eq})$ in DMSO $(2.0 \mathrm{~mL})$ was stirred and heated at $50^{\circ} \mathrm{C}$ in a sealed tube for 5 days. Water (5 mL) was added and the mixture extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. The combined organic extracts were washed with brine $(3 \times 10 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica with $1: 1$ to $4: 1$ EtOAc-hexane as eluent gave enantioenriched normorphan 109 ($33 \mathrm{mg}, 25 \%, 77: 23$ er by CSP-HPLC) as a red oil, identical (by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy) to that described above; CSP-HPLC: Chiracel IC ($1 i$-PrOH, 0.5 mL $\min ^{-1}$) 40.4 min (major), 56.5 min (minor) (Figure 6.1).

Lab book reference: ARG-1-009

A solution of trichloroacetamide $108(200 \mathrm{mg}, 0.49 \mathrm{mmol}, 1.0 \mathrm{eq})$, thiourea $(R, R)-77(6 \mathrm{mg}$, $0.02 \mathrm{mmol}, 0.05 \mathrm{eq}$) and benzoic acid ($1.5 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.02 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL})$ was stirred and heated at $50^{\circ} \mathrm{C}$ in a sealed tube for 7 days. The solvent was evaporated under reduced pressure to give the crude product which contained (by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy) no trace of product.

Lab book reference: ARG-1-044

A solution of trichloroacetamide $\mathbf{1 0 8}(100 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.0 \mathrm{eq})$ and thiourea $(R, R)-77(20$ $\mathrm{mg}, 0.12 \mathrm{mmol}, 0.5 \mathrm{eq})$ in DMSO (1.0 mL) was stirred and heated at $50^{\circ} \mathrm{C}$ in a sealed tube for 5 days. Water (5 mL) was added and the mixture was extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The combined organic extracts were washed with brine $(3 \times 10 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica with 1:1 to 4:1 EtOAc-hexane as eluent gave enantioenriched normorphan 109 ($9 \mathrm{mg}, 12 \%, 60: 40$ er by CSP-HPLC) as a red oil, identical (by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy) to that described above. CSP-HPLC: Chiracel IC ($1 i$-PrOH, 0.5 mL $\min ^{-1}$) 35.6 min (major), 49.4 min (minor) (Figure 6.2).

Lab book reference: ARG-1-065

A solution of trichloroacetamide $\mathbf{1 0 8}(100 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.0 \mathrm{eq})$ and thiourea $(S) \mathbf{- 1 1 6}(45$ $\mathrm{mg}, 0.12 \mathrm{mmol}, 0.5 \mathrm{eq})$ in DMSO $(1.0 \mathrm{~mL})$ was stirred and heated at $50^{\circ} \mathrm{C}$ in a sealed tube for 5 days. Water (5 mL) was added and the mixture extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. The combined organic extracts were washed with brine $(3 \times 10 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica with 1:1 to $4: 1$ EtOAc-hexane as eluent gave enantioenriched normorphan 109 ($21 \mathrm{mg}, 30 \%, 55: 45$ er by CSP-HPLC) as a red oil, identical (by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy) to that described above. CSP-HPLC: Chiracel IC ($1 i$-PrOH, 0.5 mL $\min ^{-1}$) 35.7 min (major), 49.1 min (minor) (Figure 6.3).

Lab book reference: ARG-1-061

4-Nitro- N-(4-oxocyclohexyl)- N-(prop-2-yn-1-yl)benzenesulfonamide 136

136

A solution of 1,4-cyclohexadione monoethylene acetal 29 ($1.73 \mathrm{~g}, 7.51 \mathrm{mmol}, 1.0 \mathrm{eq}$), propargylamine ($0.5 \mathrm{~mL}, 7.81 \mathrm{mmol}, 1.04 \mathrm{eq}$) and $\mathrm{NaBH}(\mathrm{OAc})_{3}(2.23 \mathrm{~g}, 10.51 \mathrm{mmol}, 1.4$ eq) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ was stirred at rt for 24 h . Saturated $\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{aq})}(10 \mathrm{~mL})$ was added. Then, $1 \mathrm{M} \mathrm{NaOH}_{(\mathrm{aq})}$ was added until $\mathrm{pH} \approx 10$ was reached. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The combined organic extracts were washed with brine (10 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give the crude amine as a pale yellow oil. To a solution of the crude amine in THF (18 mL) was added $3 \mathrm{M} \mathrm{HCl}_{(\mathrm{aq})}(18 \mathrm{~mL})$ and the resulting solution was stirred at rt for 72 h . Solid $\mathrm{Na}_{2} \mathrm{CO}_{3}$ was added until $\mathrm{pH} \approx 9$ was reached and the mixture was extracted with $\operatorname{EtOAc}(3 \times 15 \mathrm{~mL})$. The combined organic extracts were washed with brine (10 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give the crude amino ketone as a red oil. The crude amino ketone and DMAP (88 $\mathrm{mg}, 0.72 \mathrm{mmol}, 0.1 \mathrm{eq})$ were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(36 \mathrm{~mL})$. The resulting solution was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{Et}_{3} \mathrm{~N}(1.25 \mathrm{~mL}, 9.01 \mathrm{mmol}, 1.25 \mathrm{eq})$ was added under Ar. Then, a solution of 4nitrobenzenesulfonyl chloride ($2.00 \mathrm{~g}, 9.01 \mathrm{mmol}, 1.25 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.5 \mathrm{~mL})$ was added dropwise and the solution was allowed to warm to rt . The resulting solution was stirred at rt for 18 h and then $1 \mathrm{M} \mathrm{HCl}_{(\mathrm{aq})}(10 \mathrm{~mL})$ was added. The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$ and the combined organic extracts were washed with brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent gave alkynyl amino ketone $\mathbf{1 3 6}(2.51 \mathrm{~g}, 45 \%)$ as an off-white solid, mp 146-148 ${ }^{\circ} \mathrm{C}$ (lit., ${ }^{69} 147-148{ }^{\circ} \mathrm{C}$); $R_{\mathrm{F}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ 0.32; IR (ATR) 2954, $1716(\mathrm{C}=\mathrm{O}), 1529\left(\mathrm{NO}_{2}\right), 1350(\mathrm{~S}=\mathrm{O}), 1163,735,613$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.41-8.31$ (m, 2H, Ar), 8.20-8.08 (m, 2H, Ar), 4.36$4.18(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}), 4.18\left(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.51-2.35\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}-2\right), 2.17(\mathrm{t}, J=$ $2.5 \mathrm{~Hz}, 1 \mathrm{H}, \equiv \mathrm{CH}), 2.11-1.94\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}-3\right) ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 207.9(\mathrm{C}=\mathrm{O})$, 150.2 (ipso-Ar), 146.4 (ipso-Ar), 128.7 (Ar), 124.4 (Ar), 78.8 ($\equiv \mathrm{C}-6$), 73.9 ($\equiv \mathrm{CH}-7$), 56.3 (NCH), $39.8\left(\mathrm{NCH}_{2}\right), 32.8\left(\mathrm{CH}_{2}-2\right), 30.2\left(\mathrm{CH}_{2}-3\right)$; HRMS (ESI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$
$(\mathrm{M}+\mathrm{Na})^{+} 359.0672$, found 359.0676 (-1.1 ppm error). Spectroscopic data consistent with those reported in the literature. ${ }^{69}$

Lab book reference: ARG-1-085

4-Methyl- N-(4-oxocyclohexyl)- N-(prop-2-yn-1-yl)benzenesulfonamide 59

59

A solution of 1,4-cyclohexadione monoethylene acetal $29(5.05 \mathrm{~g}, 32.3 \mathrm{mmol}, 1.0 \mathrm{eq})$, propargylamine ($2.2 \mathrm{~mL}, 32.6 \mathrm{mmol}, 1.04 \mathrm{eq}$) and $\mathrm{NaBH}(\mathrm{OAc})_{3}(9.59 \mathrm{~g}, 42.3 \mathrm{mmol}, 1.4 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(108 \mathrm{~mL})$ was stirred at rt for 24 h . Saturated $\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{aq})}(25 \mathrm{~mL})$ was added. Then, $1 \mathrm{M} \mathrm{NaOH}_{(\mathrm{aq})}$ was added until $\mathrm{pH} \approx 10$ was reached. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(4 \times 25 \mathrm{~mL})$. The combined organic extracts were washed with brine (30 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give the crude amine as a pale yellow oil. To a solution of the crude amine in THF (40 mL) was added $3 \mathrm{M} \mathrm{HCl}_{(\mathrm{aq})}(120 \mathrm{~mL})$ and the resulting solution was stirred at rt for 72 h . Solid $\mathrm{Na}_{2} \mathrm{CO}_{3}$ was added until $\mathrm{pH} \approx 9$ was reached and the mixture was extracted with $\mathrm{EtOAc}(4 \times 25 \mathrm{~mL})$. The combined organic extracts were washed with brine (30 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give the crude amino ketone as red oil. The crude amino ketone and DMAP (394 $\mathrm{mg}, 3.23 \mathrm{mmol}, 0.1 \mathrm{eq})$ were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(160 \mathrm{~mL})$. The resulting solution was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{Et}_{3} \mathrm{~N}(5.63 \mathrm{~mL}, 40.4 \mathrm{mmol}, 1.25 \mathrm{eq})$ was added under Ar. Then, a solution of p-toluenesulfonyl chloride ($7.70 \mathrm{~g}, 40.4 \mathrm{mmol}, 1.25 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added dropwise and the mixture was allowed to warm to rt . The resulting solution was stirred at rt for 18 h and then $1 \mathrm{M} \mathrm{HCl}_{(\mathrm{aq})}(25 \mathrm{~mL})$ was added. The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 20 \mathrm{~mL})$ and the combined organic extracts were washed with brine (30 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica with 1:3 EtOAc-hexane as eluent gave alkynyl amino ketone $59(8.44 \mathrm{~g}, 85 \%)$ as an off-white solid, mp $125-127{ }^{\circ} \mathrm{C}$ (lit., ${ }^{69}$ $126-127^{\circ} \mathrm{C}$); $R_{\mathrm{F}}(1: 3 \mathrm{EtOAc}-\mathrm{hexane}) 0.21$; IR (ATR) 2954, 1714 (C=O), 1326 ($\mathrm{S}=\mathrm{O}$), 1157,

1044, 656, $571 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.82-7.78(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.32-7.27(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{Ar}), 4.26-4.12(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}), 4.10\left(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.46-2.33(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Me}$, $\left.\mathrm{CH}_{2}-2\right), 2.16(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \equiv \mathrm{CH}), 2.12-1.90\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}-3\right) ;{ }^{13} \mathrm{C}$ NMR (100.6 MHz , CDCl_{3}) $\delta 208.7(\mathrm{C}=\mathrm{O}$), 143.8 (ipso-Ar), 137.6 (ipso-Ar), 129.8 (Ar), 127.4 (Ar), $79.8(\equiv \mathrm{CH})$, $73.1(\equiv \mathrm{C}), 55.7(\mathrm{NCH}), 40.0\left(\mathrm{CH}_{2}-2\right), 32.6\left(\mathrm{NCH}_{2}\right), 30.1\left(\mathrm{CH}_{2}-3\right), 21.7(\mathrm{Me}) ;$ HRMS (ESI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{Na})^{+}$238.0978, found 328.0978 (-0.1 ppm error). Spectroscopic data consistent with those reported in the literature. ${ }^{69}$

Lab book reference: ARG-2-038

4-Methylene-2-((4-nitrophenyl)sulfonyl)-2-azabicyclo[3.3.1]nonan-6-one 86

$\mathrm{Cu}(\mathrm{OTf})_{2}(11 \mathrm{mg}, 0.03 \mathrm{mmol}, 0.05 \mathrm{eq}), \mathrm{PPh}_{3}(31 \mathrm{mg}, 0.12 \mathrm{mmol}, 0.20 \mathrm{eq})$ and pyrrolidine $(10 \mu \mathrm{~L}, 0.12 \mathrm{mmol}, 0.2 \mathrm{eq})$ were added to a stirred solution of amino ketone $\mathbf{1 3 6}(200 \mathrm{mg}$, $0.60 \mathrm{mmol}, 1.0 \mathrm{eq}$) in THF (3 mL) in a sealed tube at rt under Ar. The resulting mixture was stirred at rt for 15 min and then stirred and heated at $90^{\circ} \mathrm{C}$ for 18 h . The mixture was allowed to cool to rt and the solids were removed by filtration through Celite ${ }^{\circledR}$. The filtrate was evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent gave morphan $\mathbf{8 6}(170 \mathrm{mg}, 85 \%)$ as an offwhite solid, mp 172-174 ${ }^{\circ} \mathrm{C} ; R_{\mathrm{F}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.32$; IR (ATR) 2954, $1714(\mathrm{C}=\mathrm{O}), 1529,\left(\mathrm{NO}_{2}\right)$, 1650, $1164(\mathrm{~S}=\mathrm{O}), 738 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.43-8.38$ (m, 2H, Ar), 8.078.02 (m, 2H, Ar), $5.14\left(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CHH}^{\prime}\right), 5.07\left(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH} H^{\prime}\right), 4.24$ (d, $J=14.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHH}$ '), 4.13 (dd, $J=3.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}$), 3.83 (dd, $J=14.5,1.0$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{NCHH}$) , 3.30-3.23 (m, 1H, CH-2), 2.78 (ddd, $J=16.0,13.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}^{-}-6$), $2.42-2.30\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH} \mathrm{H}^{\prime}-6, \mathrm{CHH}^{\prime}-5\right), 2.02-1.88\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH} H^{\prime}-5, \mathrm{CHH}^{\prime}-3\right) ;{ }^{13} \mathrm{C}$ NMR (100.6 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 207.4$ (C=O), 150.3 (ipso-Ar), 143.8 (ipso-Ar), 137.2 (=C), 128.6 (Ar), 124.7 (Ar), $115.9\left(=\mathrm{CH}_{2}\right)$, $50.1(\mathrm{CH}-2), 48.4(\mathrm{NCH}), 47.4\left(\mathrm{NCH}_{2}\right), 34.8\left(\mathrm{CH}_{2}-6\right), 32.3\left(\mathrm{CH}_{2}-\right.$ 5), $30.7\left(\mathrm{CH}_{2}-3\right)$; HRMS (ESI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}(\mathrm{M}+\mathrm{Na})^{+} 359.0672$, found
359.0672 (-0.1 ppm error). Spectroscopic data consistent with those reported in the literature. ${ }^{69}$

Lab book reference: ARG-2-003

4-Methylene-2-toluenesulfonyl-2-azabicyclo[3.3.1]nonan-6-one 60

60
$\mathrm{Cu}(\mathrm{OTf})_{2}(89 \mathrm{mg}, 0.25 \mathrm{mmol}, 0.05 \mathrm{eq}), \mathrm{PPh}_{3}(258 \mathrm{mg}, 0.98 \mathrm{mmol}, 0.20 \mathrm{eq})$ and pyrrolidine $(82 \mu \mathrm{~L}, 0.982 \mathrm{mmol}, 0.20 \mathrm{eq})$ were added to a stirred solution of amino ketone $59(1.5 \mathrm{~g}$, $4.91 \mathrm{mmol}, 1.0 \mathrm{eq})$ in THF (25 mL) in a sealed tube at rt under Ar. The resulting mixture was stirred at rt for 15 min and then stirred and heated at $90^{\circ} \mathrm{C}$ for 18 h . The mixture was allowed to cool to rt and the solids were removed by filtration through Celite ${ }^{\circledR}$. The filtrate was evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica with 1:4 to 1:1 EtOAc-hexane as eluent gave morphan 60 $(1.25 \mathrm{~g}, 83 \%)$ as an off-white solid, $\mathrm{mp} 138-140{ }^{\circ} \mathrm{C}$ (lit., ${ }^{69} 136-138{ }^{\circ} \mathrm{C}$); $R_{\mathrm{F}}(1: 4$ EtOAchexane) 0.08; IR (ATR) 2952, 1713 (C=O), 1342, $1160(\mathrm{~S}=\mathrm{O}), 1095,547 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.75-7.70(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.35-7.31$ (m, 2H, Ar), 5.10 (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.=\mathrm{C} H \mathrm{H}^{\prime}\right), 5.01\left(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH} H^{\prime}\right), 4.16\left(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NC} H \mathrm{H}^{\prime}\right), 4.09(\mathrm{dd}, J=$ $3.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}$), 3.75 (d, $J=14.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH} H^{\prime}$), 3.22 (br s, 1H, CH-2), 2.80 (ddd, $J=16.0,13.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H \mathrm{H}^{\prime}-6$), 2.43 (s, 3H, Me), 2.40-2.31 (m, 1H,CHH'-5), 2.27 (dd, $\left.J=16.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H^{\prime}-6\right), 1.96$ (dddd, $J=14.0,3.5,3.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}-3$), 1.87 (ddd, $\left.J=14.0,3.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H^{\prime}-3\right), 1.90-1.80\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH} H^{\prime}-5\right) ;{ }^{13} \mathrm{C}$ NMR (100.6 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 208.3$ (C=O), 143.0 (ipso-Ar), 138.2 (=C), 134.8 (ipso-Ar), 130.0 (Ar), 127.4 (Ar), $115.2\left(=\mathrm{CH}_{2}\right), 50.2(\mathrm{CH}-2), 48.0(\mathrm{NCH}), 47.2\left(\mathrm{NCH}_{2}\right), 34.8\left(\mathrm{CH}_{2}-6\right), 32.5\left(\mathrm{CH}_{2}-\right.$ 5), $30.5\left(\mathrm{CH}_{2}-3\right), 21.6(\mathrm{Me}) . ;$ HRMS (ESI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{Na})^{+} 329.0978$, found 328.0971 (+2.2 ppm error). Spectroscopic data consistent with those reported in the literature. ${ }^{69}$

Lab book reference: ARG-2-023

4-Methyl-2-toluenesulfonyl-2-azabicyclo[3.3.1]nonan-6-one endo-141, 4-methyl-2-toluenesulfonyl-2-azabicyclo[3.3.1]non-3-en-6-one

endo-141

142

143
$\mathrm{PtO}_{2}(39 \mathrm{mg}, 0.17 \mathrm{mmol}, 0.06 \mathrm{eq})$ was added to a stirred solution of morphan $\mathbf{6 0}(846 \mathrm{mg}$, $2.77 \mathrm{mmol}, 1 \mathrm{eq})$ in EtOAc (14 mL) at rt under Ar. The reaction flask was evacuated under reduced pressure and back-filled with Ar three times and then with H_{2} three times. The mixture was stirred under a balloon of $\mathrm{H}_{2}(760 \mathrm{mmHg})$ for 6 h . The solids were removed by filtration through Celite ${ }^{\circledR}$ and the filtrate was evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica with $1: 4$ to $3: 2 \mathrm{Et}_{2} \mathrm{O}-$ hexane as eluent gave hydrogenated morphan endo-141 (124 mg, 15\%, >97:3 dr) as a white solid, mp 146-148 ${ }^{\circ} \mathrm{C} ; R_{\mathrm{F}}$ (2:3 Et 2 O -hexane) 0.15 ; IR (ATR) 2929, 1702 (C=O), 1338, 1158 ($\mathrm{S}=\mathrm{O}$), $546 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.73-7.68(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.34-7.29(\mathrm{~m}, 2 \mathrm{H}$, Ar), 4.29 (dd, $J=3.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}$), 3.83 (dd, $J=13.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHH}$), 2.81 (dd, $J=13.5,12.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHH}$), 2.48-2.38 (m, 5H, ArMe, CH-2, CHH'-6), 2.10 (ddd, $J=$ $18.0,10.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H^{\prime}-6$), 2.04-1.84 (m, 5H, CHH'-5, CHH'-3, CH-8), 0.84 (d, J = $7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHMe}$); ${ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 211.0$ (C=O), 143.6 (ipso-Ar), 137.3 (ipso-Ar), 130.0 (Ar), 127.1 (Ar), $49.0(\mathrm{CH}-2), 47.4\left(\mathrm{NCH}_{2}\right), 46.1(\mathrm{NCH}), 39.3\left(\mathrm{CH}_{2}-6\right)$, $32.8\left(\mathrm{CH}_{2}-5\right), 32.7(\mathrm{CH}-8), 28.6(\mathrm{CH}-3), 21.6$ (ArMe), $16.8(\mathrm{CHMe})$; HRMS (ESI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{Na})^{+} 330.1164$, found $330.1129(+1.6 \mathrm{ppm}$ error) and impure alcohol $143(670 \mathrm{mg})$ as an off-white solid.

Lab book reference: ARG-2-024
$10 \% \mathrm{Pd} / \mathrm{C}(49 \mathrm{mg}, 0.04 \mathrm{mmol}, 0.10 \mathrm{eq})$ was added to a stirred solution of morphan $\mathbf{6 0}$ (150 $\mathrm{mg}, 0.49 \mathrm{mmol}, 1 \mathrm{eq})$ in $\mathrm{MeOH}(20 \mathrm{~mL})$ at rt under Ar. The reaction flask was evacuated under reduced pressure and back-filled with Ar three times and then with H_{2} three times. The mixture was stirred under a balloon of $\mathrm{H}_{2}(760 \mathrm{mmHg})$ for 16 h . The solids were
removed by filtration through Celite ${ }^{\circledR}$ and the filtrate was evaporated under reduced pressure to give the crude product which contained (by ${ }^{1} \mathrm{H}$ NMR spectroscopy) a complex mixture of products.

Lab book reference: ARG-2-007
$10 \% \mathrm{Pd} / \mathrm{C}(100 \mathrm{mg}, 0.08 \mathrm{mmol}, 0.25 \mathrm{eq})$ was added to a stirred solution of morphan $\mathbf{6 0}$ (100 $\mathrm{mg}, 0.33 \mathrm{mmol}, 1 \mathrm{eq})$ in $\operatorname{EtOAc}(16 \mathrm{~mL})$ at rt under Ar. The reaction flask was evacuated under reduced pressure and back-filled with Ar three times and then with H_{2} three times. The mixture was stirred under a balloon of $\mathrm{H}_{2}(760 \mathrm{mmHg})$ for 2 h . The solids were removed by filtration through Celite ${ }^{\circledR}$ and the filtrate was evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica with 1:4 to 3:2 $\mathrm{Et}_{2} \mathrm{O}$-hexane as eluent gave a $75: 25$ mixture (by ${ }^{1} \mathrm{H}$ NMR spectroscopy) of hydrogenated morphans endo-141 and exo-141 ($43 \mathrm{mg}, 40 \%$) as a white solid and a $95: 5$ mixture (by ${ }^{1} \mathrm{H}$ NMR spectroscopy) of enamine $\mathbf{1 4 2}$ and morphan $\mathbf{6 0}(59 \mathrm{mg}$, i.e. $56 \mathrm{mg}(56 \%)$ of $\mathbf{1 4 2}$ and $3 \mathrm{mg}(3 \%)$ of $\mathbf{6 0}$) as an off-white solid, $R_{\mathrm{F}}\left(3: 2 \mathrm{Et}_{2} \mathrm{O}\right.$-hexane) 0.52 ; IR (ATR) 2932, 1706 $(\mathrm{C}=\mathrm{O}), 1358,1158(\mathrm{~S}=\mathrm{O}), 944,663 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ for 142: $\delta 7.68-7.64$ (m, 2H, Ar), 7.28 (m, 2H, Ar), 6.79 (q, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}-7$), 4.12-4.09 (m, 1H, NCH), 2.69 (dd, $J=1.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-2$), 2.54 (ddd, $J=15.5,13.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H \mathrm{H}^{\prime}-6$), 2.38 (s, 3H, ArMe), 2.35-2.28 (m, 1H, CHH'-5), 2.12 (dd, $J=15.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}^{\prime}-6$), 1.87 (ddd, $J=13.5,6.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H^{\prime}-5$), 1.80 (ddd, $J=13.0,2.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} \mathrm{H}^{\prime}-3$), 1.62 (d, $J=1.5 \mathrm{~Hz}, 3 \mathrm{H},=\mathrm{CMe}$), 1.27 (dddd, $J=13.0,3.5,3.5,3.0 \mathrm{~Hz}, 1 \mathrm{HCHH}{ }^{\prime}-3$); ${ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for 142: $\delta 208.3$ ($\mathrm{C}=\mathrm{O}$), 144.0 (ipso-Ar), 135.8 (ipso-Ar), 130.0 (Ar), 126.9 (Ar), 122.8 (=CH-7), 113.6 (=C-8), $49.7(\mathrm{CH}-2), 47.6(\mathrm{NCH}), 34.5\left(\mathrm{CH}_{2}-5\right), 33.7$ $\left(\mathrm{CH}_{2}-6\right), 27.7\left(\mathrm{CH}_{2}-3\right), 21.6(\mathrm{ArMe}), 19.5(=\mathrm{CMe})$; HRMS (ESI) m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{~S}$ $(\mathrm{M}+\mathrm{Na})^{+} 328.0978$, found $328.0971(+1.2 \mathrm{ppm}$ error $)$. Diagnostic signals for morphan exo141: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.20-4.12(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}), 3.25$ (dd, $J=12.5,5.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{NCHH}$ '), 2.98 (dd, $J=12.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHH}$ '), 1.07 (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHMe}$).

Lab book reference: ARG-2-012
$\mathrm{PtO}_{2}(3.3 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.05 \mathrm{eq})$ was added to a stirred solution of morphan $\mathbf{6 0}(100 \mathrm{mg}$, $0.33 \mathrm{mmol}, 1 \mathrm{eq}$) in EtOAc (2 mL) at rt under Ar. The reaction flask was evacuated under
reduced pressure and back-filled with Ar three times and then with H_{2} three times. The mixture was stirred under a balloon of $\mathrm{H}_{2}(760 \mathrm{mmHg})$ for 45 min . The solids were removed by filtration through Celite ${ }^{\circledR}$ and the filtrate was evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica with 1:4 to 3:2 $\mathrm{Et}_{2} \mathrm{O}$-hexane as eluent gave a $95: 5$ mixture (by ${ }^{1} \mathrm{H}$ NMR spectroscopy) of hydrogenated morphans endo-141 and exo-141 (61 mg, 61\%) as a white solid and impure alcohol 143 (35 mg) as an off-white solid.

Lab book reference: ARG-2-029
$\mathrm{PtO}_{2}(32 \mathrm{mg}, 0.36 \mathrm{mmol}, 0.05 \mathrm{eq})$ was added to a stirred solution of morphan $\mathbf{6 0}(991 \mathrm{mg}$, $3.24 \mathrm{mmol}, 1 \mathrm{eq})$ in $\mathrm{EtOAc}(16 \mathrm{~mL})$ at rt under Ar. The reaction flask was evacuated under reduced pressure and back-filled with Ar three times and then with H_{2} three times. The mixture was stirred under a balloon of $\mathrm{H}_{2}(760 \mathrm{mmHg})$ for 45 min . The solids were removed by filtration through Celite ${ }^{\circledR}$ and the filtrate was evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica with 1:4 to 3:2 $\mathrm{Et}_{2} \mathrm{O}$-hexane as eluent gave a 85:15 mixture (by ${ }^{1} \mathrm{H}$ NMR spectroscopy) of hydrogenated morphans endo-141 and exo-141 ($760 \mathrm{mg}, 76 \%$) as a white solid and impure alcohol 143 $(210 \mathrm{mg})$ as an off-white solid.

Lab book reference: ARG-2-029

4-Methyl-2-toluenesulfonyl-2-azabicyclo[3.3.1]nonan-6-ol 143

143
$\mathrm{NaBH}_{4}(62 \mathrm{mg}, 1.63 \mathrm{mmol}, 5.0 \mathrm{eq})$ was added to a stirred solution of morphan endo- $\mathbf{1 4 1}$ $(100 \mathrm{mg}, 0.33 \mathrm{mmol}, 1 \mathrm{eq})$ in $\mathrm{MeOH}(2 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under Ar. The resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h . EtOAc (10 mL) and water (10 mL) were added. The layers were separated and the organic layer was washed with brine (10 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and
evaporated under reduced pressure to give alcohol $\mathbf{1 4 3}$ ($97 \mathrm{mg}, 96 \%,>97: 3 \mathrm{dr}$) as a white solid, mp 90-92 ${ }^{\circ} \mathrm{C} ; R_{\mathrm{F}}$ (3:2 $\mathrm{Et}_{2} \mathrm{O}$-hexane) 0.18 ; IR (ATR) $3521(\mathrm{OH}), 2925,1327,1154$ $(\mathrm{S}=\mathrm{O}), 671 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.70-7.65(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.28-7.24(\mathrm{~m}, 2 \mathrm{H}$, Ar), 4.02 (dddd, $J=3.0,3.0,3.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}$), 3.97 (dddd, $J=11.0,7.0,5.0,1.5 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{HOCH}$), 3.69 (dd, $J=12.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHH}$), 3.18 (dd, $J=12.5,12.5 \mathrm{~Hz}, 1 \mathrm{H}$, NCHH'), 2.40 (s, 3H, ArMe), 2.06-1.93 (m, 2H, CH-2, CH-8), 1.86 (ddd, $J=13.5,5.0,3.0$ Hz, 1H, CHH'-6), 1.82-1.74 (m, 1H, CHH'), 1.71-1.47 (m, 5H, CHH'-6, CHH', CH2, OH), $1.15(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHMe}) ;{ }^{13} \mathrm{C}$ NMR (100.6 MHz, CDCl_{3}) $\delta 143.1$ (Ar), 137.0 (Ar), 129.8 (ipso-Ar), 127.0 (ipso-Ar), 74.4 (HOCH), $49.7\left(\mathrm{NCH}_{2}\right), 46.6(\mathrm{NCH}), 37.7(\mathrm{CH}-2)$, $34.9\left(\mathrm{CH}_{2}\right), 34.3(\mathrm{CH}-8), 31.0\left(\mathrm{CH}_{2}\right), 29.7\left(\mathrm{CH}_{2}-6\right), 21.6(\mathrm{ArMe}), 18.6(\mathrm{CMe} 3)$; HRMS (ESI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{Na})^{+} 332.1291$, found 333.1288 (+0.4 ppm error).

Lab book reference: ARG-2-030

tert-Butyl (4-oxocyclohexyl)(prop-2-yn-1-yl)carbamate 144

144

A solution of 1,4-cyclohexadione monoethylene acetal $29(5.05 \mathrm{~g}, 32.3 \mathrm{mmol}, 1.0 \mathrm{eq})$, propargylamine ($2.2 \mathrm{~mL}, 32.6 \mathrm{mmol}, 1.04 \mathrm{eq}$) and $\mathrm{NaBH}(\mathrm{OAc})_{3}(9.59 \mathrm{~g}, 42.3 \mathrm{mmol}, 1.4 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(108 \mathrm{~mL})$ was stirred at rt for 24 h . Saturated $\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{aq})}(25 \mathrm{~mL})$ was added. Then, $1 \mathrm{M} \mathrm{NaOH}_{(\mathrm{aq})}$ was added until $\mathrm{pH} \approx 10$ was reached. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(4 \times 25 \mathrm{~mL})$. The combined organic extracts were washed with brine (30 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give the crude amine as a pale yellow oil. To a solution of the crude amine in THF (40 mL) was added $3 \mathrm{M} \mathrm{HCl}_{(\mathrm{aq})}(120 \mathrm{~mL})$ and the resulting solution was stirred at rt for 72 h . Solid $\mathrm{Na}_{2} \mathrm{CO}_{3}$ was added until $\mathrm{pH} \approx 9$ was reached and the mixture was extracted with $\mathrm{EtOAc}(4 \times 25 \mathrm{~mL})$. The combined organic extracts were washed with brine (30 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give the crude amino ketone as a red oil. The crude amino ketone was dissolved in THF (34 mL) and $\mathrm{Boc}_{2} \mathrm{O}(8.487 \mathrm{~g}, 37.2 \mathrm{mmol}, 1.2 \mathrm{eq})$ was added at rt . The resulting solution was stirred at rt for 18 h and then water (25 mL) was added. The resulting mixture
was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 20 \mathrm{~mL})$. The combined organic extracts were washed with brine (30 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica with 1:5 EtOAc-hexane as eluent gave alkynyl amino ketone $144(6.21 \mathrm{~g}, 77 \%)$ as a white solid, mp $72-74{ }^{\circ} \mathrm{C}$ (lit., ${ }^{69}$ $71-72{ }^{\circ} \mathrm{C}$); R_{F} (1:4 EtOAc-hexane) 0.20; IR (ATR) 2973, 1717 (C=O), 1689 (C=O), 1165, $681 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.59-4.16$ (br m, 1H, NCH), 3.92 (br s, $2 \mathrm{H}, \mathrm{NCH}_{2}$), 2.53-2.31 (m, 4H, CH2-2), 2.21-1.86 (m, 3H, $\left.\equiv \mathrm{CH}, \mathrm{CH}_{2}-3\right), 1.48\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CMe}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 209.6$ ($\mathrm{C}=\mathrm{O}$, ketone), 154.8 ($\mathrm{C}=\mathrm{O}, \mathrm{Boc}$), 81.1 (CMe_{3}), 80.8 ($\equiv \mathrm{C}$), $70.8(\equiv \mathrm{CH}), 53.7(\mathrm{NCH}), 40.1\left(\mathrm{CH}_{2}-2\right), 32.5\left(\mathrm{NCH}_{2}\right), 29.8\left(\mathrm{CH}_{2}-3\right), 28.5(\mathrm{CMe} 3)$; HRMS (ESI) m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{Na})^{+} 274.1414$, found 274.1415 (-0.5 ppm error). Spectroscopic data consistent with those reported in the literature. ${ }^{69}$

Lab book reference: ARG-2-086
tert-Butyl 4-methylene-6-oxo-2-azabicyclo[3.3.1]nonane-2-carboxylate 87

87
$\mathrm{Cu}(\mathrm{OTf})_{2}(144 \mathrm{mg}, 0.398 \mathrm{mmol}, 0.05 \mathrm{eq}), \mathrm{PPh}_{3}(419 \mathrm{mg}, 1.59 \mathrm{mmol}, 0.20 \mathrm{eq})$ and pyrrolidine ($130 \mu \mathrm{~L}, 1.59 \mathrm{mmol}, 0.20 \mathrm{eq}$) were added to a stirred solution of amino ketone $144(2.0 \mathrm{~g}, 7.96 \mathrm{mmol}, 1.0 \mathrm{eq})$ in THF (30 mL) in a sealed tube at rt under Ar. The resulting mixture was stirred at rt for 15 min and then stirred and heated at $90^{\circ} \mathrm{C}$ for 18 h . The mixture was allowed to cool to rt and the solids were removed by filtration through Celite ${ }^{\circledR}$. The filtrate was evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica with $1: 9$ to $1: 1$ EtOAc-hexane as eluent gave morphan 87 ($1.54 \mathrm{~g}, 77 \%$) as a white solid, $\mathrm{mp} 78-80^{\circ} \mathrm{C} ; R_{\mathrm{F}}(1: 2$ EtOAc-hexane) 0.2 ; IR (ATR) 2972, 1716 ($\mathrm{C}=\mathrm{O}$, ketone), 1686 ($\mathrm{C}=\mathrm{O}, \mathrm{Boc}$), 1389, 1164, $1100 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) ($55: 45$ mixture of rotamers) $\delta 5.07(\mathrm{~s}, 0.55 \mathrm{H},=\mathrm{CHH}$), $5.04(\mathrm{~s}, 0.45 \mathrm{H},=\mathrm{CHH}$), $4.99\left(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH} H^{\prime}\right), 4.38\left(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 0.55 \mathrm{H}, \mathrm{NC} H \mathrm{H}^{\prime}\right), 4.32(\mathrm{dd}, J=3.5,3.0 \mathrm{~Hz}, 0.45 \mathrm{H}$, NCH), 4.24 (d, $J=16.0 \mathrm{~Hz}, 0.45 \mathrm{H}, \mathrm{NCHH}$), 4.19 (dd, $J=3.5,3.0 \mathrm{~Hz}, 0.55 \mathrm{H}, \mathrm{NCH}), 4.07$ (d, $J=16.0 \mathrm{~Hz}, 0.45 \mathrm{H}, \mathrm{NCHH}$), 4.01 (d, $J=16.0 \mathrm{~Hz}, 0.55 \mathrm{H}, \mathrm{NCHH}$), 3.33 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}-2$), 2.74-2.54 (m, 1H, CHH'-6), 2.42-2.19 (m, 3H, CHH'-6, CHH'-5, CHH'-3), 2.00 (ddd, $J=$
$\left.14.0,13.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}^{\prime}-3\right), 1.85-1.73\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH} H^{\prime}-5\right), 1.53-1.45\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{CMe}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (rotamers) $\delta 209.3$ ($\mathrm{C}=\mathrm{O}$, ketone), 209.0 ($\mathrm{C}=\mathrm{O}$, ketone), 155.2 (C=O, Boc), $154.9(\mathrm{C}=\mathrm{O}, \mathrm{Boc}), 139.8(=\mathrm{C}), 139.6(=\mathrm{C}), 114.2\left(=\mathrm{CH}_{2}\right), 113.8\left(=\mathrm{CH}_{2}\right), 80.2$ (CMe_{3}), $51.3(\mathrm{CH}-2), 50.8(\mathrm{CH}-2), 46.3\left(\mathrm{NCH}_{2}\right), 46.3(\mathrm{NCH}), 45.6\left(\mathrm{NCH}_{2}\right), 45.4(\mathrm{NCH})$, $35.3\left(\mathrm{CH}_{2}-6\right)$, $34.9\left(\mathrm{CH}_{2}-6\right), 31.4\left(\mathrm{CH}_{2}\right), 31.2\left(\mathrm{CH}_{2}\right), 30.6\left(\mathrm{CH}_{2}\right), 28.6(\mathrm{CMe} 3)$; HRMS (ESI) m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{Na})^{+}$274.1414, found 274.1412 (+0.6 ppm error). Spectroscopic data consistent with those reported in the literature. ${ }^{69}$

Lab book reference: ARG-2-052

tert-Butyl 4-methyl-6-oxo-2-azabicyclo[3.3.1]nonane-2-carboxylate endo-138 and tertButyl 4-methyl-6-oxo-2-azabicyclo[3.3.1]non-3-ene-2-carboxylate 145

138

145
$\mathrm{PtO}_{2}(213 \mathrm{mg}, 0.936 \mathrm{mmol}, 0.1 \mathrm{eq})$ was added to a stirred solution of morphan $87(2.35 \mathrm{~g}$, $7.36 \mathrm{mmol}, 1 \mathrm{eq})$ in EtOAc (47 mL) at rt under Ar. The reaction flask was evacuated under reduced pressure and back-filled with Ar three times and then with H_{2} three times. The mixture was stirred under a balloon of $\mathrm{H}_{2}(760 \mathrm{mmHg})$ for 16 h . The solids were removed by filtration through Celite ${ }^{\circledR}$ and the filtrate was evaporated under reduced pressure to give the crude product. The crude product was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ and Dess-Martin periodinane ($5.95 \mathrm{~g}, 14.0 \mathrm{mmol}, 1.5 \mathrm{eq}$) was added at rt under Ar. The resulting mixture was stirred at rt for 2 h . Saturated $\mathrm{NaHCO}_{3(\mathrm{aq})}(50 \mathrm{~mL})$ was added and the mixture was stirred for 30 min . The layers were separated and the organic layer was washed with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3(\mathrm{aq})}(15 \mathrm{~mL})$ and brine (25 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and the evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica with 1:9 to $2: 3 \mathrm{Et}_{2} \mathrm{O}$-hexane as eluent gave enamine $145(360 \mathrm{mg}, 15 \%)$ as a clear oil, R_{F} (2:3 $\mathrm{Et}_{2} \mathrm{O}$-hexane) 0.24; IR (ATR) 2933, 1693 (C=O, ketone), 1665 (C=O, Boc), 1392, 1152, $729 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ($50: 50$ mixture of rotamers) $\delta 7.03-6.94(\mathrm{~m}, 0.5 \mathrm{H}$, $=\mathrm{CH}), 6.85-6.76(\mathrm{~m}, 0.5 \mathrm{H},=\mathrm{CH}), 4.46-4.38(\mathrm{~m}, 0.5 \mathrm{H}, \mathrm{NCH}), 4.32-4.24(\mathrm{~m}, 0.5 \mathrm{H}, \mathrm{NCH})$, 2.83-2.76 (m, 1H, CH-2), 2.62-2.46 (m, 1H, CHH'-6), 2.35-2.18 (m, 1H, CHH'6), 2.202.07 (m, 1H, CHH'), 2.07-1.94 (m, 1H, CHH'), 1.98-1.75 (m, 2H, CHH', CHH'), 1.62 (d, J
$=1.5 \mathrm{~Hz}, 3 \mathrm{H},=\mathrm{CMe}), 1.52-1.45\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{CMe}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (rotamers) $\delta 209.4$ ($\mathrm{C}=\mathrm{O}$, ketone), 209.3 ($\mathrm{C}=\mathrm{O}$, ketone), 152.1 ($\mathrm{C}=\mathrm{O}$, Boc), 151.5 ($\mathrm{C}=\mathrm{O}, \mathrm{Boc}$), 123.5 $(=\mathrm{CH}), 123.3(=\mathrm{CH}), 111.6(=\mathrm{C}), 110.7(=\mathrm{C}), 81.2\left(\mathrm{CMe}_{3}\right), 81.0\left(\mathrm{CMe}_{3}\right), 50.3(\mathrm{CH}-2), 50.0$ ($\mathrm{CH}-2$), $45.6(\mathrm{NCH}), 44.7(\mathrm{NCH}), 33.7\left(\mathrm{br}, \mathrm{CH}_{2}-6\right), 33.4\left(\mathrm{CH}_{2}\right), 32.8\left(\mathrm{CH}_{2}\right), 29.3\left(\mathrm{CH}_{2}\right)$, $29.1\left(\mathrm{CH}_{2}\right)$, $28.35(\mathrm{CMe} 3), 28.3(\mathrm{CMe} 3), 19.4(\mathrm{Me}), 19.3(\mathrm{Me}) ;$ HRMS (ESI) m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{Na})^{+} 374.1414$, found 374.1406 (+2.9 ppm error) and a $90: 10$ mixture (by ${ }^{1} \mathrm{H}$ NMR spectroscopy) of hydrogenated morphans endo-138 and exo-138 (1.67 g, 71\%) as an off-white solid, R_{F} (2:3 $\mathrm{Et}_{2} \mathrm{O}$-hexane) 0.17 ; IR (ATR) 2930, 1684 (C=O), 1402, 1339, $1167,1096 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for endo-138 (50:50 mixture of rotamers): δ $4.52-4.28(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}), 4.04$ (dd, $J=14.0,6.5 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{NCHH}$), 3.92 (dd, $J=14.0,6.5$ $\mathrm{Hz}, 0.5 \mathrm{H}, \mathrm{NCHH}$ '), 2.83-2.66 (m, 1H, NCHH'), 2.56-2.46 (m, 2H, CH-2, CHH'-6), 2.292.16 (m, 1H, CHH'6), 2.14-1.89 (m,5H, CH2-3, CH2-5, CH-8), 1.44 (s, 9H, CMe ${ }_{3}$), 0.85 (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHMe}) ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for endo- $\mathbf{1 4 1}$ (rotamers): $\delta 212.0$ ($\mathrm{C}=\mathrm{O}$, ketone), 211.8 ($\mathrm{C}=\mathrm{O}$, ketone), 155.1 ($\mathrm{C}=\mathrm{O}, \mathrm{Boc}$), 155.0 ($\mathrm{C}=\mathrm{O}$, Boc), 80.0 (CMe), 49.7 (CH-2), $49.6(\mathrm{CH}-2), 47.3\left(\mathrm{NCH}_{2}\right), 46.6\left(\mathrm{NCH}_{2}\right), 44.4(\mathrm{NCH}), 43.3(\mathrm{NCH}), 39.6\left(\mathrm{CH}_{2}-\right.$ 6), $33.0\left(\mathrm{CH}_{2}\right), 32.8\left(\mathrm{CH}_{2}\right), 32.6(\mathrm{CH}-8), 30.5\left(\mathrm{CH}_{2}\right), 29.9\left(\mathrm{CH}_{2}\right), 28.5(\mathrm{CMe} 3), 17.1(\mathrm{CHMe})$; $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{Na})^{+} 276.1570$, found $276.1570(0.0 \mathrm{ppm}$ error). Diagnostic signals for exo138: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ($50: 50$ mixture of rotamers) $\delta 3.58(\mathrm{dd}, J=13.5,5.5 \mathrm{~Hz}$, $0.5 \mathrm{H}, \mathrm{NCHH}$ '), 3.37 (dd, $J=13.5,5.5 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{NCHH}$ '), 3.27 (dd, $J=13.5,5.5 \mathrm{~Hz}, 0.5 \mathrm{H}$, $\mathrm{NCH} H^{\prime}$), 3.12 (dd, $\left.J=13.5,5.5 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{NCH} H^{\prime}\right)$.

Lab book reference: ARG-2-090

Dess-Martin periodinane ($365 \mathrm{mg}, 0.86 \mathrm{mmol}, 2.0 \mathrm{eq}$) was added to a stirred solution of a 90:10 mixture of morphans endo- $\mathbf{1 4 6}$ and exo- $\mathbf{1 4 6}$ ($110 \mathrm{mg}, 0.43 \mathrm{mmol}, 1.0$ eq) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(7 \mathrm{~mL})$ at rt under Ar. The resulting mixture was stirred at rt for 2 h . Saturated $\mathrm{NaHCO}_{3(\mathrm{aq})}$ $(10 \mathrm{~mL})$ was added and the mixture was stirred for 30 min . The layers were separated and the organic layer was washed with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3(\mathrm{aq})}(10 \mathrm{~mL})$ and brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica with 1:9 to 2:3 $\mathrm{Et}_{2} \mathrm{O}$-hexane as eluent gave a 90:10 mixture (by ${ }^{1} \mathrm{H}$ NMR spectroscopy) of hydrogenated morphans endo-138 and exo-138 (89 $\mathrm{mg}, 84 \%$) as an off-white solid, identical (by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy) to that described above.
$10 \% \mathrm{Pd} / \mathrm{C}(40 \mathrm{mg}, 0.04 \mathrm{mmol}, 0.1 \mathrm{eq})$ was added to a stirred solution of morphan 87 (100 $\mathrm{mg}, 0.40 \mathrm{mmol}, 1.0 \mathrm{eq})$ in EtOAc (2 mL) at rt under Ar. The reaction flask was evacuated under reduced pressure and back-filled with Ar three times and then with H_{2} three times. The mixture was stirred under a balloon of $\mathrm{H}_{2}(760 \mathrm{mmHg})$ for 2 h . The solids were removed by filtration through Celite ${ }^{\circledR}$ and the filtrate was evaporated under reduced pressure to give the crude product which contained (by ${ }^{1} \mathrm{H}$ NMR spectroscopy) a 90:8:2 mixture of enamine 145, morphan endo-138 and morphan exo-138

Lab book reference: ARG-2-041
$10 \% \mathrm{Pd} / \mathrm{C}$ ($21 \mathrm{mg}, 0.02 \mathrm{mmol}, 0.1 \mathrm{eq}$) was added to a stirred solution of morphan 87 (50 $\mathrm{mg}, 0.20 \mathrm{mmol}, 1.0 \mathrm{eq})$ in $\mathrm{EtOH}(1 \mathrm{~mL})$ at rt under Ar. The reaction flask was evacuated under reduced pressure and back-filled with Ar three times and then with H_{2} three times. The mixture was stirred under a balloon of $\mathrm{H}_{2}(760 \mathrm{mmHg})$ for 2 h . The solids were removed by filtration through Celite ${ }^{\circledR}$ and the filtrate was evaporated under reduced pressure to give the crude product which contained (by ${ }^{1} \mathrm{H}$ NMR spectroscopy) a complex mixture of products.

Lab book reference: ARG-2-053
$10 \% \mathrm{Pd} / \mathrm{C}(21 \mathrm{mg}, 0.02 \mathrm{mmol}, 0.1 \mathrm{eq})$ was added to a stirred solution of morphan 87 (50 $\mathrm{mg}, 0.20 \mathrm{mmol}, 1.0 \mathrm{eq})$ and $\mathrm{AcOH}(56 \mu \mathrm{~L}, 1.0 \mathrm{mmol}, 5 \mathrm{eq}) \mathrm{in} \operatorname{EtOAc}(1 \mathrm{~mL})$ at rt under Ar. The reaction flask was evacuated under reduced pressure and back-filled with Ar three times and then with H_{2} three times. The mixture was stirred under a balloon of $\mathrm{H}_{2}(760 \mathrm{mmHg})$ for 2 h . The solids were removed by filtration through Celite ${ }^{\circledR}$ and the filtrate was evaporated under reduced pressure to give the crude product which contained (by ${ }^{1} \mathrm{H}$ NMR spectroscopy) a complex mixture of products.

Lab book reference: ARG-2-053
$20 \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(14 \mathrm{mg}, 0.02 \mathrm{mmol}, 0.1 \mathrm{eq})$ was added to a stirred solution of morphan $\mathbf{8 7}$ $(50 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0 \mathrm{eq})$ in EtOAc $(1 \mathrm{~mL})$ at rt under Ar. The reaction flask was evacuated
under reduced pressure and back-filled with Ar three times and then with H_{2} three times. The mixture was stirred under a balloon of $\mathrm{H}_{2}(760 \mathrm{mmHg})$ for 2 h . The solids were removed by filtration through Celite ${ }^{\circledR}$ and the filtrate was evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica with 1:9 to 2:3 $\mathrm{Et}_{2} \mathrm{O}$-hexane as eluent gave enamine $145(36 \mathrm{mg}, 72 \%)$ as a clear oil, identical (by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy) to that described above and a $90: 10$ mixture (by ${ }^{1} \mathrm{H}$ NMR spectroscopy) of hydrogenated morphans endo-138 and exo-138 (9 mg, 18\%) as an off-white solid, identical (by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy) to that described above.

Lab book reference: ARG-2-057
$10 \% \mathrm{Pd} / \mathrm{C}(10 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.02 \mathrm{eq})$ was added to a stirred solution of morphan $87(100$ $\mathrm{mg}, 0.40 \mathrm{mmol}, 1.0 \mathrm{eq})$ and $\mathrm{NH}_{4}{ }^{+} \mathrm{HCO}_{2}^{-}(251 \mu \mathrm{~L}, 3.98 \mathrm{mmol}, 10 \mathrm{eq})$ in $\mathrm{MeOH}(2 \mathrm{~mL})$ at rt under Ar. The resulting mixture was stirred and heated at reflux for 2 h under Ar. The solids were removed by filtration through Celite ${ }^{\circledR}$ and the filtrate was evaporated under reduced pressure to give the crude product which contained (by ${ }^{1} \mathrm{H}$ NMR spectroscopy) a complex mixture of products.

Lab book reference: ARG-2-064
tert-Butyl 6-hydroxy-4-methyl-2-azabicyclo[3.3.1]nonane-2-carboxylate endo-146 and tert-butyl 6-hydroxy-4-methyl-2-azabicyclo[3.3.1]non-3-ene-2-carboxylate 147

146

147
$\mathrm{PtO}_{2}(9.0 \mathrm{mg}, 0.04 \mathrm{mmol}, 0.1 \mathrm{eq})$ was added to a stirred solution of morphan $87(100 \mathrm{mg}$, $0.40 \mathrm{mmol}, 1.0 \mathrm{eq})$ in EtOAc (2 mL) at rt under Ar. The reaction flask was evacuated under reduced pressure and back-filled with Ar three times and then with H_{2} three times. The mixture was stirred under a balloon of $\mathrm{H}_{2}(760 \mathrm{mmHg})$ for 16 h . The solids were removed by filtration through Celite ${ }^{\circledR}$ and the filtrate was evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica with $1: 9$ to $1: 4$

EtOAc-hexane as eluent gave enamine 147 ($10 \mathrm{mg}, 10 \%,>97: 3 \mathrm{dr}$) as an off-white solid, mp $140-142{ }^{\circ} \mathrm{C} ; R_{\mathrm{F}}$ (2:3 EtOAc-hexane) 0.20; IR (ATR) $3440(\mathrm{OH}), 2934,1665(\mathrm{C}=\mathrm{O}), 1392$, $1156 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (50:50 mixture of rotamers) $\delta 6.94(\mathrm{~s}, 0.5 \mathrm{H},=\mathrm{CH}-$ 7), 6.77 (s, $0.5 \mathrm{H},=\mathrm{CH}-7$), $4.18-4.14(\mathrm{~m}, 0.5 \mathrm{H}, \mathrm{NCH}), 4.05-4.02$ (m, $0.5 \mathrm{H}, \mathrm{NCH}$), 3.86 (dddd, $J=10.0,4.5,4.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HOCH}), 2.38$ (ddd, $J=4.5,3.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-2$), 1.98-1.84 (m, 1H, CHH'), 1.79 (s, 3H, Me), 1.74-1.51 (m, 4H, CHH', CHH'), 1.49-1.38 ($\mathrm{m}, 10 \mathrm{H}, \mathrm{CH} H^{\prime}, \mathrm{CMe}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (rotamers) $\delta 152.3$ ($\mathrm{C}=\mathrm{O}, \mathrm{Boc}$), 151.7 (C=O, Boc), 123.0 (=CH-7), 122.7 (=CH-7), 113.7 (=C), 113.1 (=C), 80.6 (CMe $_{3}$), $80.3\left(\mathrm{CMe}_{3}\right), 74.8(\mathrm{HOCH}), 74.7(\mathrm{HOCH}), 45.7(\mathrm{NCH}), 44.9(\mathrm{NCH}), 39.8(\mathrm{CH}-2), 39.5$ $(\mathrm{CH}-2), 31.3\left(\mathrm{CH}_{2}\right), 30.7\left(\mathrm{CH}_{2}\right), 28.8\left(\mathrm{CH}_{2}\right), 28.6\left(\mathrm{CH}_{2}\right), 28.5\left(\mathrm{CMe}_{3}\right), 28.4(\mathrm{CMe} 3), 27.8$ $\left(\mathrm{CH}_{2}\right), 27.7\left(\mathrm{CH}_{2}\right), 22.5\left(\mathrm{CH}_{2}\right), 22.4\left(\mathrm{CH}_{2}\right)$; HRMS (ESI) m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{Na})^{+}$ 276.1570, found 276.1568 (+0.9 ppm error) and a $90: 10$ mixture (by ${ }^{1} \mathrm{H}$ NMR spectroscopy) of hydrogenated morphans endo-146 and exo-146 ($86 \mathrm{mg}, 86 \%$) as an off-white solid, R_{F} (2:3 EtOAc-hexane) 0.18; IR (ATR) 3436 (OH), 2928, 1662 (C=O), 1402, $1168 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) (55:45 mixture of rotamers) for endo-146 $\delta 4.17-4.12(\mathrm{~m}, 0.45 \mathrm{H}$, NCH), 4.03-4.00 (m, 0.55H, NCH), 3.97 (ddd, $J=11.0,5.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HOCH}$), 3.81 (dd, $J=13.5,6.0 \mathrm{~Hz}, 0.55 \mathrm{H}, \mathrm{NCHH}$ '), 3.71 (dd, $J=13.5,6.0 \mathrm{~Hz}, 0.45 \mathrm{H}, \mathrm{NCHH}$ '), $3.02(\mathrm{dd}, J=$ $\left.13.5,13.0 \mathrm{~Hz}, 0.55 \mathrm{H}, \mathrm{NCH} H^{\prime}\right), 2.98$ (dd, $J=13.5,13.0 \mathrm{~Hz}, 0.45 \mathrm{H}, \mathrm{NCHH}$ '), 2.18 ($\mathrm{s}, 1 \mathrm{H}$, OH), 2.05-1.95 (m, 2H, CH-2, CH-8), 1.92-1.80 (m, 2H, CHH'), 1.77-1.63 (m, 2H, CHH'), 1.59-1.47 (m, 2H, CHH'), 1.44-1.36 (m, 9H, CMe 3), 1.16 (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHMe}) ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (rotamers) $\delta 155.4(\mathrm{C}=\mathrm{O}), 155.8(\mathrm{C}=\mathrm{O}), 79.4(\mathrm{CMe} 3), 79.3$ (CMe 3), 74.7 (HOCH), $74.67(\mathrm{HOCH}), 49.6\left(\mathrm{NCH}_{2}\right), 49.0\left(\mathrm{NCH}_{2}\right), 44.8(\mathrm{NCH}), 43.8$ $(\mathrm{NCH}), 38.2(\mathrm{CH}), 38.0(\mathrm{CH}), 34.5\left(\mathrm{CH}_{2}\right), 34.46\left(\mathrm{CH}_{2}\right), 34.2(\mathrm{CH}), 34.0(\mathrm{CH}), 30.9\left(\mathrm{CH}_{2}\right)$, $30.8\left(\mathrm{CH}_{2}\right), 30.6\left(\mathrm{CH}_{2}\right), 30.0\left(\mathrm{CH}_{2}\right), 28.5(\mathrm{CMe} 3), 18.9(\mathrm{CHMe}), 18.8(\mathrm{CHMe})$; HRMS (ESI) m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{Na})^{+} 278.1727$, found 278.1721 (+2.0 ppm error). Diagnostic signals for exo-146: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.65-2.50\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH} H^{\prime}\right), 0.91(\mathrm{~d}, J=$ 7.0 Hz, 3H, CHMe).

Lab book reference: ARG-2-067
$10 \% \mathrm{Pd} / \mathrm{C}(28 \mathrm{mg}, 0.03 \mathrm{mmol}, 0.1 \mathrm{eq})$ was added to a stirred solution of morphan 148 (65 $\mathrm{mg}, 0.25 \mathrm{mmol}, 1.0 \mathrm{eq})$ in $\mathrm{EtOH}(1.3 \mathrm{~mL})$ at rt under Ar. The reaction flask was evacuated under reduced pressure and back-filled with Ar three times and then with H_{2} three times.

The mixture was stirred under a balloon of $\mathrm{H}_{2}(760 \mathrm{mmHg})$ for 2 h . The solids were removed by filtration through Celite ${ }^{\circledR}$ and the filtrate was evaporated under reduced pressure to give enamine 147 ($63 \mathrm{mg}, 96 \%$) as an off white solid, identical (by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy) to that described above.

Lab book reference: ARG-2-047
$10 \% \mathrm{Pd} / \mathrm{C}(21 \mathrm{mg}, 0.02 \mathrm{mmol}, 0.1 \mathrm{eq})$ was added to a stirred solution of morphan 148 (50 $\mathrm{mg}, 0.20 \mathrm{mmol}, 1.0 \mathrm{eq})$ and $\mathrm{AcOH}(56 \mu \mathrm{~L}, 1.0 \mathrm{mmol}, 5.0 \mathrm{eq})$ in $\mathrm{EtOH}(1 \mathrm{~mL})$ at rt under Ar. The reaction flask was evacuated under reduced pressure and back-filled with Ar three times and then with H_{2} three times. The mixture was stirred under a balloon of $\mathrm{H}_{2}(760$ mmHg) for 2 h . The solids were removed by filtration through Celite ${ }^{\circledR}$ and the filtrate was evaporated under reduced pressure to give the crude product which contained (by ${ }^{1} \mathrm{H}$ NMR spectroscopy) a complex mixture of products.

Lab book reference: ARG-2-055
$20 \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(14 \mathrm{mg}, 0.02 \mathrm{mmol}, 0.1 \mathrm{eq})$ was added to a stirred solution of morphan 148 ($50 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0 \mathrm{eq}$) in EtOAc (1 mL) at rt under Ar. The reaction flask was evacuated under reduced pressure and back-filled with Ar three times and then with H_{2} three times. The mixture was stirred under a balloon of $\mathrm{H}_{2}(760 \mathrm{mmHg})$ for 2 h . The solids were removed by filtration through Celite ${ }^{\circledR}$ and the filtrate was evaporated under reduced pressure to give enamine 147 ($47 \mathrm{mg}, 94 \%$) as an off white solid, identical (by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy) to that described above.

Lab book reference: ARG-2-057
$10 \% \mathrm{Pd} / \mathrm{C}(10 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.02 \mathrm{eq})$ was added to a stirred solution of morphan 148 (100 $\mathrm{mg}, 0.40 \mathrm{mmol}, 1.0 \mathrm{eq})$ and $\mathrm{NH}_{4}{ }^{+} \mathrm{HCO}_{2}{ }^{-}(251 \mathrm{mg}, 3.98 \mathrm{mmol}, 10 \mathrm{eq})$ in $\mathrm{MeOH}(2 \mathrm{~mL})$ at rt under Ar. The resulting mixture was stirred and heated at reflux for 2 h . The solids were removed by filtration through Celite ${ }^{\circledR}$ and the filtrate was evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica with $1: 9$ to 1:4 EtOAc-hexane as eluent gave enamine $147(55 \mathrm{mg}, 55 \%)$ as an off-white solid, identical
(by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy) to that described above and a $75: 25$ mixture (by ${ }^{1} \mathrm{H}$ NMR spectroscopy) of hydrogenated morphans endo-146 and exo-146 (42 mg, 42\%) as an offwhite solid.

Lab book reference: ARG-2-065
$\mathrm{PtO}_{2}(4 \mathrm{mg}, 0.02 \mathrm{mmol}, 0.1 \mathrm{eq})$ was added to a stirred solution of morphan $\mathbf{1 4 8}(50 \mathrm{mg}, 0.2$ mmol, 1.0 eq) in EtOAc (1 mL) at rt under Ar. The reaction flask was evacuated under reduced pressure and back-filled with Ar three times and then with H_{2} three times. The mixture was stirred under a balloon of $\mathrm{H}_{2}(760 \mathrm{mmHg})$ for 2 h . The solids were removed by filtration through Celite ${ }^{\circledR}$ and the filtrate was evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica with 1:9 to 1:4 EtOAchexane as eluent gave enamine $147(3 \mathrm{mg}, 6 \%)$ as an off-white solid, identical (by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy) to that described above and a $75: 25$ mixture (by ${ }^{1} \mathrm{H}$ NMR spectroscopy) of hydrogenated morphans endo-146 and exo-146 (40 mg, 90\%) as an offwhite solid.

Lab book reference: ARG-2-050

tert-Butyl 6-hydroxy-4-methylene-2-azabicyclo[3.3.1]nonane-2-carboxylate 148

148
$\mathrm{NaBH}_{4}(1.04 \mathrm{~g}, 27.6 \mathrm{mmol}, 5.0 \mathrm{eq})$ was added to a stirred solution of morphan $87(1.39 \mathrm{~g}$, $5.52 \mathrm{mmol}, 1.0 \mathrm{eq})$ in $\mathrm{MeOH}(28 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under Ar. The resulting mixture was allowed to warm to rt . The mixture was stirred at rt for 4 h . EtOAc (10 mL) and water $(10 \mathrm{~mL})$ were added. The layers were separated and the organic layer was washed with brine (10 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give alcohol 148 ($1.33 \mathrm{~g}, 95 \%$, $>97: 3 \mathrm{dr}$) as a white solid, $\mathrm{mp} 112-114{ }^{\circ} \mathrm{C}$; R_{F} (3:2 EtOAc-hexane) 0.23 ; IR (ATR) 3432 (OH), 2935, $1670(\mathrm{C}=\mathrm{O}), 1395,1168 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.09-5.05$ (m, $1 \mathrm{H},=\mathrm{CHH}$) , 4.96-4.91 (m, 1H, CHH'), 4.26-3.95 (m, 3H, NCH, NCHH'), 3.72-3.59 (m,

1H, HOCH), 2.72 (br dd, $J=4.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-2$), 2.06-1.91 (m, 2H, CHH'), 1.86-1.61 (m, 3H, CHH', OH), 1.48-1.37 (m, 10H, CMe,$\left.~ \mathrm{CH} H^{\prime}\right), 1.34-1.20\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH} H^{\prime}\right) ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (rotamers) $\delta 155.2(\mathrm{C}=\mathrm{O}), 154.9(\mathrm{C}=\mathrm{O}), 142.0(=\mathrm{C}), 141.8(=\mathrm{C})$, $112.9\left(=\mathrm{CH}_{2}\right), 112.8\left(=\mathrm{CH}_{2}\right), 79.6\left(\mathrm{CMe}_{3}\right), 71.0(\mathrm{HOCH}), 47.6\left(\mathrm{NCH}_{2}\right), 46.7\left(\mathrm{NCH}_{2}\right), 45.8$ (NCH), $44.9(\mathrm{NCH}), 41.8(\mathrm{CH}-2), 41.3(\mathrm{CH}-2), 30.3\left(\mathrm{CH}_{2}\right), 30.1\left(\mathrm{br}, \mathrm{CH}_{2}\right), 29.3\left(\mathrm{CH}_{2}\right), 29.2$ $\left(\mathrm{CH}_{2}\right), 28.8\left(\mathrm{CH}_{2}\right), 28.6$ (br, CMe $)$; HRMS (ESI) m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{Na})^{+}$ 276.1570, found 276.1564 (+2.4 ppm error).

Lab book reference: ARG-2-049

tert-Butyl 6-((tert-butyldimethylsilyl)oxy)-4-methylene-2-azabicyclo[3.3.1]nonane-2carboxylate 149

149

TBDMSCl ($144 \mathrm{mg}, 0.96 \mathrm{mmol}, 1.2 \mathrm{eq}$) was added to a stirred solution of morphan 148 (200 $\mathrm{mg}, 0.79 \mathrm{mmol}, 1.0 \mathrm{eq})$ and imidazole ($134 \mathrm{mg}, 1.97 \mathrm{mmol}, 2.5 \mathrm{eq}$) in DMF (3 mL) at rt under Ar. The resulting solution was stirred at rt for 48 h . Saturated $\mathrm{NaHCO}_{3(\mathrm{aq})}(15 \mathrm{~mL})$ was added and the resulting mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$. The combined organic extracts were washed brine $(3 \times 10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica with 99:1 to 9:1 hexane-Et2 O gave morphan 149 ($240 \mathrm{mg}, 83 \%$) as a clear oil, $R_{\mathrm{F}}(9: 1$ hexane- $\mathrm{Et}_{2} \mathrm{O}$) 0.25; IR (ATR) 2930, 1692 (C=O), 1391, 1095, $835 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 5.02-4.96(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CHH}), 4.95-4.89\left(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CH} H^{\prime}\right), 4.21-3.91(\mathrm{~m}, 3 \mathrm{H}, \mathrm{NCH}$, NCHH'), 3.73-3.64 (m, 1H, OCH), $2.61(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}-2), 2.04-1.88(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHH}$), 1.671.48 (m, 3H, CHH', CHH'), 1.48-1.31 (m, 10H, OCMe $3, \mathrm{CHH}$), 0.87 (s, 9H, SiCMe ${ }_{3}$), 0.07-0.03 (m, 6H, SiMe 2); ${ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (rotamers) $\delta 155.3(\mathrm{C}=\mathrm{O}), 155.2$ $(\mathrm{C}=\mathrm{O}), 141.5(=\mathrm{C}), 141.0(=\mathrm{C}), 113.4\left(=\mathrm{CH}_{2}\right), 113.1\left(=\mathrm{CH}_{2}\right), 79.6\left(\mathrm{CMe}_{3}\right), 79.5\left(\mathrm{CMe}_{3}\right)$, $73.0(\mathrm{OCH}), 72.95(\mathrm{OCH}), 48.1\left(\mathrm{NCH}_{2}\right), 47.2\left(\mathrm{NCH}_{2}\right), 46.1(\mathrm{NCH}), 45.4(\mathrm{NCH}), 42.1(\mathrm{CH}-$ 2), $\left.41.7(\mathrm{CH}-2), 30.8\left(\mathrm{CH}_{2}\right), 30.7\left(\mathrm{CH}_{2}\right), 30.3\left(\mathrm{CH}_{2}\right), 29.5\left(\mathrm{CH}_{2}\right), 29.1\left(\mathrm{CH}_{2}\right), 28.8(\mathrm{OCMe})_{3}\right)$,
26.1 (SiCMe ${ }_{3}$), -4.30 (SiMe), -4.32 (SiMe), -4.40 (SiMe), -4.42 (SiMe); HRMS (ESI) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{37} \mathrm{NO}_{3} \mathrm{Si}(\mathrm{M}+\mathrm{Na})^{+} 390.2435$, found 390.2428 (+1.8 ppm error).

Lab book reference: ARG-2-063
tert-Butyl 6-((tert-butyldimethylsilyl)oxy)-4-methyl-2-azabicyclo[3.3.1]nonane-2carboxylate endo-150 and tert-butyl 6-((tert-butyldimethylsilyl)oxy)-4-methyl-2-azabicyclo[3.3.1]non-3-ene-2-carboxylate 151

endo-150

151
$\mathrm{PtO}_{2}(13 \mathrm{mg}, 0.06 \mathrm{mmol}, 0.1 \mathrm{eq})$ was added to a stirred solution of morphan $\mathbf{1 4 9}$ (150 mg , $0.41 \mathrm{mmol}, 1.0 \mathrm{eq})$ in EtOAc (2 mL) at rt under Ar. The reaction flask was evacuated under reduced pressure and back-filled with Ar three times and then with H_{2} three times. The mixture was stirred under a balloon of $\mathrm{H}_{2}(760 \mathrm{mmHg})$ for 16 h . The solids were removed by filtration through Celite ${ }^{\circledR}$ and the filtrate was evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica with 99:1 to 95:5 hexane- $\mathrm{Et}_{2} \mathrm{O}$ as eluent gave enamine 151 ($82 \mathrm{mg}, 55 \%$) as a clear oil, $R_{\mathrm{F}}\left(9: 1\right.$ hexane- $\left.\mathrm{Et}_{2} \mathrm{O}\right)$ 0.34; IR (ATR) 2930, 1697 (C=O), 1390, 1156, 1083, $773 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (60:40 mixture of rotamers) $\delta 6.88(\mathrm{~s}, 0.4 \mathrm{H},=\mathrm{CH}), 6.73(\mathrm{~s}, 0.6 \mathrm{H},=\mathrm{CH}), 4.16-4.11(\mathrm{~m}, 0.6 \mathrm{H}$, NCH), 4.03-3.96 (m, 0.4H, NCH), 3.84-3.77 (m, 1H, OCH), 2.27-2.22 (m, 1H, CH-2), 1.94-1.78 (m, 1H, CHH'), 1.78-1.75 (m, 3H, =CMe), 1.69-1.50 (m, 4H, CHH', CHH'), $1.48-1.37$ (m, 10H, CHH', OCMe_{3}), $0.88-0.82$ (m, 9H, SiCMe 3), 0.05-0.00 (m, 6H, SiMe 2); ${ }^{13} \mathrm{C}$ NMR (100.6 MHz, CDCl_{3}) (rotamers) $\delta 152.3(\mathrm{C}=\mathrm{O})$, $151.7(\mathrm{C}=\mathrm{O}), 122.2(=\mathrm{CH}), 121.8$ $(=\mathrm{CH}), 115.3$ (=C), $114.4(=\mathrm{C}), 80.3\left(\mathrm{OCMe}_{3}\right), 80.0\left(\mathrm{OCMe}_{3}\right), 75.4(\mathrm{OCH}), 75.2(\mathrm{OCH})$, $45.8(\mathrm{NCH}), 44.9(\mathrm{NCH}), 40.2(\mathrm{CH}-2), 40.0(\mathrm{CH}-2), 31.3\left(\mathrm{CH}_{2}\right), 30.7\left(\mathrm{CH}_{2}\right), 29.1\left(\mathrm{CH}_{2}\right)$, $28.9\left(\mathrm{CH}_{2}\right), 28.4(\mathrm{OCMe} 3), 28.3\left(\mathrm{CH}_{2}\right), 28.1\left(\mathrm{CH}_{2}\right), 26.0(\mathrm{SiCMe} 3), 22.4(=\mathrm{CMe}), 22.2$ (=CMe), $18.2\left(\mathrm{SiCMe}_{3}\right), 18.17$ (SiCMe_{3}), -4.61 (SiMe), -4.64 (SiMe), -4.7 (SiMe).; HRMS (ESI) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{37} \mathrm{NO}_{3} \mathrm{Si}(\mathrm{M}+\mathrm{Na})^{+} 390.2435$, found 390.2434 (+0.2 ppm error) hydrogenated morphan endo- $\mathbf{1 5 0}$ ($30 \mathrm{mg}, 20 \%>97: 3 \mathrm{dr}$) as a clear oil, $R_{\mathrm{F}}\left(9: 1\right.$ hexane- $\mathrm{Et}_{2} \mathrm{O}$) 0.27; IR (ATR) 2928, 1689 (C=O), 1092, 834, $773 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (50:50
mixture of rotamers) $\delta 4.18$ (br dd, $J=3.0,3.0 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{NCH}$), 4.04 (br dd, $J=3.0,3.0 \mathrm{~Hz}$, $0.5 \mathrm{H}, \mathrm{NCH}$), $3.97-3.90(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}), 3.84$ (dd, $J=13.5,6.0 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{NCHH}$), 3.73 (dd, $J=13.5,6.0 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{NCHH}$) , 3.07 (dd, $\left.J=13.5,13.0 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{NCH} H^{\prime}\right), 3.03(\mathrm{dd}, J=$ $\left.13.5,13.0 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{NCH} H^{\prime}\right), 2.10-1.96$ (m, 1H, CH-2), 1.95-1.89 (m, 1H, CHMe), 1.791.65 (m, 4H, CHH', CHH'), 1.61-1.50 (m, 1H, CHH'), 1.51-1.41 (m, 9H, OCMe $), 1.17$ (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH} M e), 0.87\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiCMe}_{3}\right), 0.08--0.06\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{SiMe}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (100.6 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) (rotamers) $\delta 155.5(\mathrm{C}=\mathrm{O}), 79.25$ (OCMe_{3}), 79.2 (OCMe_{3}), $75.2(\mathrm{OCH}), 75.17$ $(\mathrm{OCH}), 49.8\left(\mathrm{NCH}_{2}\right), 49.1\left(\mathrm{NCH}_{2}\right), 45.0(\mathrm{NCH}), 44.0(\mathrm{NCH}), 38.5(C H M e), 38.3(C H M e)$, $34.8\left(\mathrm{CH}_{2}\right), 34.7\left(\mathrm{CH}_{2}\right), 34.5(\mathrm{CH}-2), 34.4(\mathrm{CH}-2), 32.0\left(\mathrm{CH}_{2}\right), 31.9\left(\mathrm{CH}_{2}\right), 30.8\left(\mathrm{CH}_{2}\right), 30.2$ $\left(\mathrm{CH}_{2}\right), 28.65\left(\mathrm{OCMe}_{3}\right), 26.0\left(\mathrm{SiCMe}_{3}\right), 19.2(\mathrm{CHMe}), 18.2(\mathrm{CHMe}),-4.68(\mathrm{SiMe}),-4.7$ (SiMe); HRMS (ESI) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{39} \mathrm{NO}_{3} \mathrm{Si}(\mathrm{M}+\mathrm{Na})^{+} 392.2591$, found $392.2592(-0.1$ ppm error).

Lab book reference: ARG-2-068

tert-Butyl 4-methyl-6-(((trifluoromethyl)sulfonyl)oxy)-2-azabicyclo[3.3.1]non-6-ene-2carboxylate endo-139

139

NaHMDS (0.95 mL of a 2 M solution in THF, $1.90 \mathrm{mmol}, 1.6 \mathrm{eq}$) was added dropwise to a stirred solution of a 90:10 mixture of morphans endo- $\mathbf{1 3 8}$ and exo-138 ($300 \mathrm{mg}, 1.18 \mathrm{mmol}$, 1.0 eq) in THF (3 mL) at $-78^{\circ} \mathrm{C}$ under Ar. The resulting solution was stirred at $-78^{\circ} \mathrm{C}$ for 1 h . Then, a solution of $\operatorname{PhNTf}_{2}(550 \mathrm{mg}, 1.54 \mathrm{mmol}, 1.3 \mathrm{eq})$ in THF (2 mL) was added and the resulting solution was allowed to warm slowly to rt . The mixture was stirred at rt for 16 h. Saturated $\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{aq})}(10 \mathrm{~mL})$ was added and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15$ $\mathrm{mL})$. The combined organic extracts were washed with brine $(25 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica with 99:1 to 9:1 hexane-acetone as eluent gave a 90:10 mixture (by ${ }^{1} \mathrm{H}$ NMR spectroscopy) of vinyl triflates endo- $\mathbf{1 3 9}$ and exo- $\mathbf{1 3 9}$ ($320 \mathrm{mg}, 70 \%$) as a clear oil, $R_{\mathrm{F}}(98: 2$ hexane-acetone) 0.14 ; IR (ATR) 2972, 1691 (C=O), 1414, 1209, 1143, 847, 611 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for endo-139 (55:45 mixture of rotamers) $\delta 5.92(\mathrm{dd}, J=$
$4.0,4.0 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 4.55-4.49(\mathrm{~m}, 0.55 \mathrm{H}, \mathrm{NCHH}), 4.38-4.32(\mathrm{~m}, 0.45 \mathrm{H}, \mathrm{NCHH}), 3.99-$ 3.90 ($\mathrm{m}, 0.45 \mathrm{H}, \mathrm{NCH} H^{\prime}$), 3.84-3.75 (m, 0.55H, NCHH'), 2.64-2.45 (m, 3H, NCH, CH-2, CHH'), 2.18-2.07 (m, 1H, CHH'), 1.94-1.84 (m, 3H, CHH', CHMe), 1.49-1.41 (m, 9H, CMe_{3}), $0.92(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHMe}) ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for endo-139 (rotamers) $\delta 154.8(\mathrm{C}=\mathrm{O}), 148.2(=\mathrm{C}), 119.5(\mathrm{br},=\mathrm{CH}), 118.6\left(\mathrm{q}, ~ J=320.0 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 80.1$ (CMe_{3}), $44.3\left(\mathrm{NCH}_{2}\right), 43.4\left(\mathrm{NCH}_{2}\right), 42.3$ (br, NCH), $37.9(\mathrm{CH}-2), 33.6$ (CHMe), 33.4 (CHMe), $32.2\left(\mathrm{CH}_{2}\right), 32.0\left(\mathrm{CH}_{2}\right), 31.2\left(\mathrm{br}, \mathrm{CH}_{2}\right), 28.6\left(\mathrm{CMe}_{3}\right), 17.2(\mathrm{CHMe})$; HRMS (ESI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{NO}_{5} \mathrm{~S}(\mathrm{M}+\mathrm{Na})^{+}$408.1063, found 408.1064 (-0.3 ppm error). Diagnostic signals for exo-139 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ($55: 45$ mixture of rotamers) δ $5.90-5.84(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CH}$), 3.71 (br d, $J=13.5 \mathrm{~Hz}, 0.45 \mathrm{H}, \mathrm{NCHH}$), 3.62 (br d, $J=13.5 \mathrm{~Hz}$, $0.55 \mathrm{H}, \mathrm{NCHH}$ '), 3.20 (dd, $J=13.5,4.5 \mathrm{~Hz}, 0.55 \mathrm{H}, \mathrm{NCH} H^{\prime}$), 3.11 (dd, $J=13.5,4.5 \mathrm{~Hz}$, $\left.0.45 \mathrm{H}, \mathrm{NCH} H^{\prime}\right), 1.11(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH} M e)$.

Lab book reference: ARG-2-088
tert-Butyl

[1,3,2]oxazaborolo[2,3-b][1,3,2]oxazaborol-8-yl)-2-azabicyclo[3.3.1]non-6-ene-2carboxylate 95

95

A solution of enol triflate 139 ($318 \mathrm{mg}, 0.82 \mathrm{mmol}, 1.0 \mathrm{eq}$), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(17 \mathrm{mg}, 0.025$ $\mathrm{mmol}, 3 \mathrm{~mol} \%$), $\mathrm{PPh}_{3}(13 \mathrm{mg}, 0.05 \mathrm{mmol}, 6 \mathrm{~mol} \%), \mathrm{KOPh}(164 \mathrm{mg}, 1.24 \mathrm{mmol}, 1.5 \mathrm{eq})$ and $\mathrm{B}_{2} \operatorname{Pin}_{2}(230 \mathrm{mg}, 0.91 \mathrm{mmol}, 1.1 \mathrm{eq})$ in toluene (6 mL) under Ar was stirred and heated at 50 ${ }^{\circ} \mathrm{C}$ and stirred for 16 h . The solids were removed by filtration through Celite ${ }^{\circledR}$ and the filtrate was evaporated under reduced pressure to give the crude pinacol boronate. The crude pinacol boronate was dissolved in DMSO (5 mL) and MIDA ($607 \mathrm{mg}, 4.12 \mathrm{mmol}, 5.0 \mathrm{eq}$) and $\mathrm{HC}(\mathrm{OEt})_{3}(0.62 \mathrm{~mL}, 3.71 \mathrm{mmol}, 4.5 \mathrm{eq})$ were added. The resulting mixture was stirred and heated at $100^{\circ} \mathrm{C}$ under Ar for 48 h . Saturated $\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{aq})}(10 \mathrm{~mL})$ was added and the mixture was extracted with EtOAc $(4 \times 30 \mathrm{~mL})$. The combined organic extracts were washed with
brine (50 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica with $1: 4$ to $1: 1$ hexaneacetone as eluent gave impure vinyl MIDA boronate $95(150 \mathrm{mg})$ as a white solid, R_{F} (6:4 hexane-acetone) $0.26 ;{ }^{1} \mathrm{H}$ NMR (400 MHz CDCl 3) diagnostic signals for endo-95 (60:40 mixture of rotamers) $\delta 6.22-6.17(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CH}), 4.51-4.43(\mathrm{~m}, 0.6 \mathrm{H}, \mathrm{NCHH}$), 4.35-4.30 (m, 0.4H, NCHH'), 2.78 (s, 1.4H, NMe), 2.75 (s, 1.6H, NMe), 1.40 (s, 9H, CMe 3), 1.00 (d, $J=7.0 \mathrm{~Hz}, 1.4 \mathrm{H}, \mathrm{CHMe}), 0.80(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1.6 \mathrm{H}, \mathrm{CHMe})$; HRMS (ESI) m$/ \mathrm{z}$ calcd for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{BN}_{2} \mathrm{O}_{6}(\mathrm{M}+\mathrm{Na})+415.2011$, found $415.2015(+0.9 \mathrm{ppm}$ error $)$

Lab book reference: ARG-2-092

6-(2,4-Dimethoxybenzyl)-2-(4-methoxyphenyl)-6-azabicyclo[3.2.1]oct-2-en-7-one 153

153

Using general procedure A, MIDA boronate $94(750 \mathrm{mg}, 1.75 \mathrm{mmol}, 1.0 \mathrm{eq}), \mathrm{Pd}(\mathrm{OAc})_{2}$ (20 $\mathrm{mg}, 0.09 \mathrm{mmol}, 5 \mathrm{~mol} \%$), SPhos ($72 \mathrm{mg}, 0.17 \mathrm{mmol}, 10 \mathrm{~mol} \%$), 4-bromoanisole (0.27 mL , $2.11 \mathrm{mmol}, 1.2 \mathrm{eq})$ and $3 \mathrm{M} \mathrm{K}_{3} \mathrm{PO}_{4(\mathrm{aq})}(5.74 \mathrm{~mL}, 17.2 \mathrm{mmol}, 7.5 \mathrm{eq})$, in dioxane (28 mL) gave the crude product. Purification by flash column chromatography on silica with $1: 1$ EtOAc-hexane as eluent gave arylated normorphan $153(565 \mathrm{mg}, 86 \%)$ as a clear oil, $R_{\mathrm{F}}(3: 2$ EtOAc-hexane) 0.49; IR (ATR) 2938, 2835, 1686 (C=O), 1609, 1508, 1244, 1032, 835, 729 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50-7.44$ (m, 2H, Ar), 7.15-7.11 (m, 1H, Ar), 6.89$6.84(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 6.45-6.41(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 5.70-5.63(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CH}), 4.57(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{NCHH}^{\prime}\right), 4.25(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHH}$), 3.81-3.76 (m, 9H, OMe), 3.76-3.73 (m, 1H, NCH-3), 3.23 (d, $J=5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-5), 2.63-2.27$ (m, 2H, CH2-2), 2.24 (ddd, $J=10.0,5.0$, $5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH} '-4), 1.84\left(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H^{\prime}-4\right) ;{ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 176.8 (C=O), 160.4 (ipso-Ar), 158.9 (ipso-Ar), 158.6 (ipso-Ar), 139.8 (=C), 133.5 (ipso-Ar), 130.5 (Ar), 126.5 (Ar), 119.7 (=CH), 118.0 (ipso-Ar), 113.9 (Ar), 104.3 (Ar), 98.5 (Ar), 55.5 (OMe), $55.4(\mathrm{OMe}), 53.9(\mathrm{NCH}), 44.3(\mathrm{CHCO}), 38.0\left(\mathrm{NCH}_{2}\right), 34.1\left(\mathrm{CH}_{2}-4\right), 28.8\left(\mathrm{CH}_{2}-2\right)$
$\left(1 \times\right.$ OMe resonance not resolved); HRMS (ESI) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NO}_{4}(\mathrm{M}+\mathrm{H})^{+}$ 380.1856 , found 380.1858 (-0.4 ppm error).

Lab book reference: ARG-1-070

6-(2,4-Dimethoxybenzyl)-2-(4-(trifluoromethyl)phenyl)-6-azabicyclo[3.2.1]oct-2-en-7one 154, 6-(2,4-dimethoxybenzyl)-6-azabicyclo[3.2.1]oct-2-en-7-one 115 and 6,6'-bis(2,4-dimethoxybenzyl)-6,6'-diaza[2,2'-bi(bicyclo[3.2.1]octane)]-2,2'-diene-7,7'dione 155a/B

154

115

155a/b

Using general procedure A, vinyl MIDA boronate 94 ($100 \mathrm{mg}, 0.234 \mathrm{mmol}, 1.0 \mathrm{eq}$), $\operatorname{Pd}(\mathrm{OAc})_{2}(3 \mathrm{mg}, 0.012 \mathrm{mmol}, 0.05 \mathrm{eq})$, SPhos ($10 \mathrm{mg}, 0.023 \mathrm{mmol}, 0.1 \mathrm{eq}$), $4-$ bromobenzotrifluoride ($63 \mathrm{mg}, 0.280 \mathrm{mmol}, 1.2 \mathrm{eq}$) and $3 \mathrm{M} \mathrm{K}_{3} \mathrm{PO}_{4(\mathrm{aq})}(0.59 \mathrm{~mL}, 1.755$ mmol, 7.5 eq) in dioxane (2.34 mL) gave the crude product. Purification by flash column chromatography on silica with 4:1 to 3:2 hexane-EtOAc as eluent gave alkene $\mathbf{1 1 5}$ (12 mg , 20%) as a clear oil, identical (by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy) to that described above, arylated normorphan $\mathbf{1 5 4}(60 \mathrm{mg}, 61 \%)$ as a clear oil, $R_{\mathrm{F}}(3: 2$ hexane-EtOAc) 0.32 ; IR (ATR) 2941, 2837, 1687 (C=O), 1613, 1588, 1507, 1322, 1109, 818, $730 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}) $\delta 7.68-7.63(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.60-7.55(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.16-7.11$ (m, 1H, Ar), 6.47-6.39 (m, 2H, Ar), 5.85 (ddd, $J=3.5,3.0,1.5 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}-1), 4.57$ (d, $J=15.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHH}$), 4.26 (d, $J=15.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHH}$), 3.83-3.67 (m, 7H, OMe, NCH), 3.24 (d, $J=4.5 \mathrm{~Hz}, 1 \mathrm{H}$, CH-5), 2.42-2.31 (m, 2H, CHH'-2), 2.27 (ddd, $J=10.0,5.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}$ '-4), 1.86 (d, $\left.J=10.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H^{\prime}-4\right) ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.4$ ($\mathrm{C}=\mathrm{O}$), 160.6 (ipso-Ar), 158.6 (ipso-Ar), 144.2 (ipso-Ar), 139.6 (=C), 130.7 (Ar), 129.1 ($\mathrm{q}, J=32.5 \mathrm{~Hz}$, ipso-Ar), $125.6(\mathrm{Ar}), 125.5(\mathrm{q}, J=4.0 \mathrm{~Hz}, \mathrm{Ar}), 124.4\left(\mathrm{q}, J=272.0 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 123.8$ (=CH), 117.8 (ipso-
$\mathrm{Ar}), 104.3$ (Ar), $98.5(\mathrm{Ar}), 55.5(\mathrm{OMe}), 53.7(\mathrm{NCH}), 44.2(\mathrm{CH}-5), 38.2\left(\mathrm{NCH}_{2}\right), 34.0\left(\mathrm{CH}_{2}-\right.$ 4), $29.1\left(\mathrm{CH}_{2}-2\right)\left(1 \times\right.$ OMe resonance not resolved); HRMS (ESI) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{NO}_{3}$ $(\mathrm{M}+\mathrm{Na})^{+} 440.1444$, found $440.1442\left(+0.4 \mathrm{ppm}\right.$ error), a $75: 25$ mixture (by ${ }^{1} \mathrm{H}$ NMR spectroscopy) of bis-normorphan $\mathbf{1 5 5 a}$ and SPhos (2 mg , i.e. $1.5 \mathrm{mg}(2 \%)$ of $\mathbf{1 5 5 a}$) as a clear oil, R_{F} (3:2 hexane-acetone) 0.2; IR (ATR) 2928, 1689 (C=O), 1613, 1588, 1508, 1208, 1034, $831 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for 155a $87.14-7.06(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 6.48-6.39(\mathrm{~m}, 4 \mathrm{H}$, Ar), 5.85 (s, 2H, =CH), 4.51 (d, $J=15.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCHH}$ '), 4.18 (d, $J=15.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCHH}$), $3.82-3.75$ (m, 12H, OMe), 3.67 (d, $J=5.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}$), 3.08 (d, $J=5.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}-5$), $2.36-2.20$ (m, 4H, CHH'-2), 2.16 (ddd, $J=10.5,5.0,5.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CHH}$ '-4), 1.71 (d, $J=10.5$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{CH} H^{\prime}-4\right) ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for $\mathbf{1 5 5 a} \delta 176.4(\mathrm{C}=\mathrm{O})$, 160.4 (ipso-Ar), 158.7 (ipso-Ar), 139.2 (=C), 130.5 (Ar), 119.4 (=CH), 118.0 (ipso-Ar), 104.2 (Ar), 98.5 (Ar), $55.5(\mathrm{OMe}), 53.5(\mathrm{NCH}), 42.3(\mathrm{CH}-5), 38.1\left(\mathrm{NCH}_{2}\right), 34.1\left(\mathrm{CH}_{2}-4\right), 28.5\left(\mathrm{CH}_{2}-2\right)(1 \times \mathrm{OMe}$ resonance not resolved); HRMS (ESI) m / z calcd for $\mathrm{C}_{32} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{6}(\mathrm{M}+\mathrm{Na})^{+} 567.2466$, found 567.2455 (+1.9 ppm error) and a 95:5 mixture (by ${ }^{1} \mathrm{H}$ NMR spectroscopy) of bis-normorphan $\mathbf{1 5 5 b}$ and SPhos (3 mg i.e. $2.85 \mathrm{mg}(4 \%)$ of $\mathbf{1 5 5 b}$) as a clear oil, $R_{\mathrm{F}}(3: 2$ hexane-acetone) 0.09; IR (ATR) 2929, 1764, 1678 (C=O), 1613, 1508, 1208, 1035, 835, $731 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for 155b $\delta 7.13-7.09(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 6.46-6.40(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}), 6.05-5.62(\mathrm{~m}$, $2 \mathrm{H},=\mathrm{CH}), 4.55(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCHH}$ '), $4.16(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCHH}$ '), 3.84-3.76 (m, 12H, OMe), 3.72-3.67 (m, 2H, NCH), 3.16 (d, $J=5.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}-5), 2.35-2.30$ (m, $4 \mathrm{H}, \mathrm{CHH}^{\prime}-2$), 2.14 (ddd, $J=10.0,5.0,5.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CHH}$ '-4), 1.76 (d, $J=10.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CHH} \mathrm{H}^{\prime}$ 4); ${ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for $\mathbf{1 5 5 b} \delta 176.6$ (C=O), 160.4 (ipso-Ar), 158.6 (ipso$\mathrm{Ar}), 138.0$ (=C), 130.6 (Ar), 120.1 (=CH), 117.9 (ipso-Ar), 104.3 (Ar), 98.5 (Ar), 55.5 (OMe), $53.7(\mathrm{NCH}), 41.2(\mathrm{CH}-5), 37.9\left(\mathrm{NCH}_{2}\right), 33.6\left(\mathrm{CH}_{2}-4\right), 28.7\left(\mathrm{CH}_{2}-2\right)(1 \times \mathrm{OMe}$ resonance not resolved); HRMS (ESI) m / z calcd for $\mathrm{C}_{32} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{6}(\mathrm{M}+\mathrm{Na})^{+} 567.2466$, found 567.2466 (0 ppm error).

Lab book reference: ARG-2-123

N-(4-(-6-(2,4-Dimethoxybenzyl)-7-oxo-6-azabicyclo[3.2.1]oct-2-en-2-

yl)phenyl)acetamide 159 6-(2,4-dimethoxybenzyl)-6-azabicyclo[3.2.1]oct-2-en-7-one 115 and 6,6'-bis(2,4-dimethoxybenzyl)-6,6'-diaza[2,2'-bi(bicyclo[3.2.1]octane)]-2,2'-diene-7,7'-dione 155a/b

159

115

Using general procedure A, vinyl MIDA boronate 94 ($100 \mathrm{mg}, 0.234 \mathrm{mmol}, 1.0 \mathrm{eq}$), $\operatorname{Pd}(\mathrm{OAc})_{2}(3 \mathrm{mg}, 0.012 \mathrm{mmol}, 0.05 \mathrm{eq})$, SPhos ($10 \mathrm{mg}, 0.023 \mathrm{mmol}, 0.1 \mathrm{eq}$,, $4-$ bromoacetanilide ($63 \mathrm{mg}, 0.280 \mathrm{mmol}, 1.2 \mathrm{eq}$) and $3 \mathrm{M} \mathrm{K}_{3} \mathrm{PO}_{4(\text { aq })}(0.59 \mathrm{~mL}, 1.755 \mathrm{mmol}$, 7.5 eq) in dioxane (2.34 mL) gave the crude product. Purification by flash column chromatography on silica with 2:8 to 1:99 hexane-EtOAc as eluent gave alkene $\mathbf{1 1 5}$ (26 mg , 40%) as a clear oil, identical (by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy) to that described above, a 75:25 mixture (by ${ }^{1} \mathrm{H}$ NMR spectroscopy) of bis-normorphan $\mathbf{1 5 5 a}$ and SPhos (3 mg , i.e. 2.3 mg (3\%) of 155a) as a clear oil, identical (by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy) to that described above and a 90:10 mixture (by ${ }^{1} \mathrm{H}$ NMR spectroscopy) of arylated normorphan $\mathbf{1 5 9}$ and bis-normorphan $\mathbf{1 5 5 b}$ (48 mg , i.e. 43.2 mg (45%) of $\mathbf{1 5 9}$ and 4.8 mg (7%) of $\mathbf{1 5 5 b}$) as a clear oil, $R_{\mathrm{F}}(1: 99$ hexane-EtOAc) 0.3 ; IR (ATR) $3309(\mathrm{NH}), 2939,2836,1669(\mathrm{C}=\mathrm{O})$, 1613, 1591, 1508, 1208, 1035, $730 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for $159 \delta 8.82$ (br s, 1H, NH), 7.52-7.49 (m, 2H, Ar), 7.43-7.39 (m, 2H, Ar), 7.09 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 6.47-$ $6.40(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 5.77-5.74(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CH}), 4.59(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHH}$), $4.25(\mathrm{~d}, J=$ $15.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHH}$ '), 3.84-3.73 (m, 7H, OMe, NCH), 3.27 (d, $J=4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-5$), 2.382.22 (m, 3H, CHH'-2, CHH'-4), 2.07 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$), 1.88 ($\mathrm{d}, \mathrm{J}=10.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH} H^{\prime}-4$); ${ }^{13} \mathrm{C}$ NMR ($\left.100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.1$ ($\mathrm{C}=\mathrm{O}$, lactam), 169.1 ($\mathrm{C}=\mathrm{O}, \mathrm{NHC}(\mathrm{O})$), 160.6 (ipso-Ar), 158.6 (ipso-Ar), 139.7 (ipso-Ar), 138.0 (ipso-Ar), 135.6 (=C), 130.2 (Ar), 125.7 (Ar), 120.5 (=CH), 120.0 (Ar), 117.6 (ipso-Ar), 104.3 (Ar), 98.6 (Ar), 55.5 (OMe), 55.4 (OMe), 54.0
(NCH), 44.1 (C-5), $38.3\left(\mathrm{NCH}_{2}\right), 34.1\left(\mathrm{CH}_{2}-4\right), 28.8\left(\mathrm{CH}_{2}-2\right), 24.4(\mathrm{Me}) ;$ HRMS (ESI) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{Na})^{+} 429.1785$, found 429.1782 (+0.7 ppm error).

Lab book reference: ARG-2-117

6-(2,4-Dimethoxybenzy))-2-(pyrimidin-5-yl)-6-azabicyclo[3.2.1]oct-2-en-7-one 156, 6-(2,4-dimethoxybenzyl)-6-azabicyclo[3.2.1]oct-2-en-7-one 115 and 6,6'-bis(2,4-dimethoxybenzyl)-6,6'-diaza[2,2'-bi(bicyclo[3.2.1]octane)]-2,2'-diene-7,7'-dione 155a/b

156

115

155a/b

Using general procedure A, vinyl MIDA boronate 94 ($100 \mathrm{mg}, 0.234 \mathrm{mmol}, 1.0 \mathrm{eq}$), $\operatorname{Pd}(\mathrm{OAc})_{2}(3 \mathrm{mg}, 0.012 \mathrm{mmol}, 0.05 \mathrm{eq})$, SPhos ($10 \mathrm{mg}, 0.023 \mathrm{mmol}, 0.1 \mathrm{eq}$), 5 -bromopyrimidine ($45 \mathrm{mg}, 0.280 \mathrm{mmol}, 1.2 \mathrm{eq}$) and $3 \mathrm{M} \mathrm{K}_{3} \mathrm{PO}_{4(\mathrm{aq})}(0.59 \mathrm{~mL}, 1.755 \mathrm{mmol}, 7.5 \mathrm{eq})$ in dioxane (3.9 mL) gave the crude product. Purification by flash column chromatography on silica with 99:1 to 9:1 $\mathrm{Et}_{2} \mathrm{O}-\mathrm{MeOH}$ as eluent gave alkene $115(3 \mathrm{mg}, 5 \%)$ as a clear oil, identical (by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy) to that described above, arylated normorphan $156(50 \mathrm{mg}, 60 \%)$ as a clear oil, $R_{\mathrm{F}}\left(9: 1 \mathrm{Et}_{2} \mathrm{O}-\mathrm{MeOH}\right) 0.27$; IR (ATR) 2942, 2866, 1687 $(\mathrm{C}=\mathrm{O}), 1613,1507,1412,1208,1033,903,823,726 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 9.06 (s, 1H, Ar), 8.85 ($\mathrm{s}, 2 \mathrm{H}, \operatorname{Ar}$), 7.15-7.07 (m, 1H, Ar), 6.45-6.37 (m, 2H, Ar), 5.90 (dd, $J=3.5,3.5 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 4.54(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHH}$), $4.23(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}$, NCHH'), 3.77 ($\mathrm{s}, 7 \mathrm{H}, \mathrm{OMe}, \mathrm{NCH}$), 3.19 (d, $J=5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-5$), 2.41-2.32 (m, 2H, CHH'2), 2.28 (ddd, $J=10.5,5.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H \mathrm{H}^{\prime}-4$), 1.86 (d, $\left.J=10.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH} H^{\prime}-4\right) ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.8$ (C=O), 160.6 (ipso-Ar), 158.6 (ipso-Ar), 157.3 (Ar), 153.5 (Ar), 135.0 (=C), 133.8 (ipso-Ar), 130.7 (Ar), 125.6 (=CH), 117.5 (ipso-Ar), 104.4 (Ar), 98.5 (Ar), $55.5(\mathrm{OMe}), 53.4(\mathrm{NCH}), 43.6(\mathrm{CH}-5), 38.2\left(\mathrm{NCH}_{2}\right), 33.8\left(\mathrm{CH}_{2}-4\right), 29.1$ $\left(\mathrm{CH}_{2}-2\right)\left(1 \times\right.$ OMe resonance not resolved); HRMS (ESI) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3}(\mathrm{M}+$ $\mathrm{Na})^{+}$374.1475, found 374.1471 (+0.9 ppm error), a $75: 25$ mixture (by ${ }^{1} \mathrm{H}$ NMR
spectroscopy) of bis-normorphan $\mathbf{1 5 5 a}$ and SPhos (2 mg , i.e. 1.5 mg (3%) of 155a) as a clear oil, identical (by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy) to that described above and a $90: 10$ mixture (by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy) of bis-normorphan $\mathbf{1 5 5 b}$ and SPhos (4 mg , i.e. 3.6 mg (7\%) of $\mathbf{1 5 5 b}$) as a clear oil, identical (by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy) to that described above.

Lab book reference: ARG-2-106

6-(2,4-Dimethoxybenzyl)-2-(2-methoxypyrimidin-5-yl)-6-azabicyclo[3.2.1]oct-2-en-7one 160, 6-(2,4-dimethoxybenzyl)-6-azabicyclo[3.2.1]oct-2-en-7-one 115 and 6,6'-bis(2,4-dimethoxybenzyl)-6,6'-diaza[2,2'-bi(bicyclo[3.2.1]octane)]-2,2'-diene-7,7'dione 155a/b

Using general procedure A, vinyl MIDA boronate 94 ($100 \mathrm{mg}, 0.234 \mathrm{mmol}, 1.0 \mathrm{eq}$), $\mathrm{Pd}(\mathrm{OAc})_{2}(3 \mathrm{mg}, 0.012 \mathrm{mmol}, 0.05 \mathrm{eq})$, SPhos ($10 \mathrm{mg}, 0.023 \mathrm{mmol}, 0.1 \mathrm{eq}$), 5 -bromo-2-methoxy-pyrimidine ($53 \mathrm{mg}, 0.280 \mathrm{mmol}, 1.2 \mathrm{eq}$) and $3 \mathrm{M} \mathrm{K}_{3} \mathrm{PO}_{4(\mathrm{aq})}(0.59 \mathrm{~mL}, 1.755 \mathrm{mmol}$, $7.5 \mathrm{eq})$ in dioxane (2.34 mL) gave the crude product. Purification by flash column chromatography on silica with 99:1 to 9:1 $\mathrm{Et}_{2} \mathrm{O}-\mathrm{MeOH}$ as eluent gave alkene $\mathbf{1 1 5}(4 \mathrm{mg}$, 6%) as a clear oil, identical (by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy) to that described above, a 95:5 mixture (by ${ }^{1} \mathrm{H}$ NMR spectroscopy) of arylated normorphan 160 and bis-normorphan $\mathbf{1 5 5 a}\left(62 \mathrm{mg}\right.$, i.e. $58.9 \mathrm{mg}(66 \%)$ of $\mathbf{1 6 0}$ and $3.1 \mathrm{mg}(5 \%)$ of $\mathbf{1 5 5 a}$) as a clear oil, $R_{\mathrm{F}}(95: 5$ $\left.\mathrm{Et}_{2} \mathrm{O}-\mathrm{MeOH}\right) ~ 0.46$; IR (ATR) 2955, 2836, 1686 (C=O), 1613, 1589, 1471, 1412, 1207, 1032, $823 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) for $160 \delta 8.60(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}), 7.08(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, Ar), 6.46-6.35 (m, 2H, Ar), 5.78 (dd, $J=3.5,2.5 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}$), 4.49 (d, $J=15.0 \mathrm{~Hz}, 1 \mathrm{H}$, NCHH'), 4.19 (d, $J=15.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHH}$), 3.95 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), 3.81-3.71 (m, 7H, OMe, NCH), 3.10 (dd, $J=5.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-5$), 2.38-2.29 (m, 2H, CHH'-2), 2.25 (dddd, $J=$
$\left.10.0,5.5,4.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} \mathrm{H}^{\prime}-4\right), 1.85\left(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H^{\prime}-4\right) ;{ }^{13} \mathrm{C}$ NMR (100.6 $\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 175.8$ ($\mathrm{C}=\mathrm{O}$), 164.9 (ipso-Ar), 160.6 (ipso-Ar), 158.6 (ipso-Ar), 155.9 (Ar), 134.6 (ipso-Ar), 130.2 (Ar), 128.0 (=C), 122.9 (=CH), 117.8 (ipso-Ar), 104.3 (Ar), 98.3 (Ar), $55.41(\mathrm{OMe}), 55.36(\mathrm{OMe}), 54.8(\mathrm{NCH}), 43.7(\mathrm{CH}-5), 38.0\left(\mathrm{NCH}_{2}\right), 33.6\left(\mathrm{CH}_{2}-4\right), 28.8$ $\left(\mathrm{CH}_{2}-2\right)\left(1 \times\right.$ OMe resonance not resolved); HRMS (ESI) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{4}(\mathrm{M}+$ $\mathrm{Na})^{+}$404.1581, found 404.1583 (-0.4 ppm error) and a $90: 10$ mixture (by ${ }^{1} \mathrm{H}$ NMR spectroscopy) of bis-normorphan 155b and SPhos (5 mg , i.e. 4.5 mg of $\mathbf{1 5 5 b}, 7 \%$) as a clear oil, identical (by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy) to that described above.

Lab book reference: ARG-2-107

6-(2,4-Dimethoxybenzyl)-2-(1-(triisopropylsilyl)-1H-pyrrolo[2,3-b]pyridin-5-yl)-6-azabicyclo[3.2.1]oct-2-en-7-one 158

158

Using general procedure A, MIDA boronate 94 ($200 \mathrm{mg}, 1.47 \mathrm{mmol}, 1.0 \mathrm{eq}$), $\mathrm{Pd}(\mathrm{OAc})_{2}$ (6 $\mathrm{mg}, 0.025 \mathrm{mmol}, 0.05 \mathrm{eq})$, SPhos ($20 \mathrm{mg}, 0.047 \mathrm{mmol}, 0.1 \mathrm{eq}$), 5-bromo-1-triisopropylsilanyl-1 H-pyrrolo[2,3-b]pyridine 157 ($198 \mathrm{mg}, 0.56 \mathrm{mmol}, 1.2 \mathrm{eq}$) and 3 M $\mathrm{K}_{3} \mathrm{PO}_{4(\text { aq })}(1.52 \mathrm{~mL}, 4.59 \mathrm{mmol}, 7.5 \mathrm{eq})$ in dioxane $(7.5 \mathrm{~mL})$ gave the crude product. Purification by flash column chromatography on silica with 1:4 EtOAc-hexane as eluent gave arylated normorphan 158 ($178 \mathrm{mg}, 58 \%$) as a clear oil, $R_{\mathrm{F}}(1: 4$ EtOAc-hexane) 0.15 ; IR (ATR) 2945, 2866, 2244, 1686 (C=O), 1613, 1507, 1465, 1385, 1207, 1154, 906, 726, $648 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.41(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 8.10(\mathrm{~d}, J=2.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{Ar}), 7.27$ (d, $J=3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.21-7.13$ (m, 1H, Ar), 6.55 (d, $J=3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}$), 6.49-6.40 (m, 2H, Ar), 5.78 (dd, $J=3.5,3.5 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 4.61(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}$, NCHH'), 4.29 (d, $J=15.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHH}$ '), 3.91-3.72 (m, 7H, OMe, NCH), 3.33 (d, $J=5.0$

Hz, 1H, CH-5), 2.43-2.30 (m, 2H, CHH'-2), 2.29 (ddd, $J=10.0,5.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}^{\prime}-4$), 1.91 (d, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H^{\prime}-4$), 1.85 (sept, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{SiCH}$), $1.121(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $9 \mathrm{H}, \mathrm{SiCHMe} 2$), 1.117 ($\mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{SiCHMe} \mathrm{e}_{2}$); ${ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.8$ (C=O), 160.5 (ipso-Ar), 158.6 (ipso-Ar), 153.4 (ipso-Ar), 140.3 (Ar), 139.0 (=C), 131.6 (Ar), 130.6 (Ar), 129.1 (ipso-Ar), 124.7 (Ar), 122.0 (ipso-Ar), 120.5 (=CH), 118.0 (ipsoAr), 104.3 (Ar), 103.4 (Ar), 98.5 (Ar), 55.5 (OMe), $53.9(\mathrm{NCH}), 44.6(\mathrm{CH}-5), 38.0\left(\mathrm{NCH}_{2}\right)$, $34.2\left(\mathrm{CH}_{2}-4\right), 29.0\left(\mathrm{CH}_{2}-2\right), 18.3(\mathrm{SiCHMe} 2), 12.4(\mathrm{SiCH})(1 \times$ OMe resonance not resolved); HRMS (ESI) m / z calcd for $\mathrm{C}_{32} \mathrm{H}_{44} \mathrm{~N}_{3} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+} 546.3146$, found 546.3147 (0.1 ppm error).

Lab book reference: ARG-1-069

Attempted synthesis of 6-(2,4-Dimethoxybenzyl)-2-(2-methoxypyridin-3-yl)-6-azabicyclo[3.2.1]oct-2-en-7-one 161. 6-(2,4-Dimethoxybenzy)-6-azabicyclo[3.2.1]oct-2-en-7-one 115 and 6,6'-bis(2,4-dimethoxybenzyl)-6,6'-diaza[2,2'-bi(bicyclo[3.2.1]octane)]-2,2'-diene-7,7'-dione 155a/b

94

155a/b

Using general procedure A, vinyl MIDA boronate $94(100 \mathrm{mg}, 0.234 \mathrm{mmol}, 1.0 \mathrm{eq})$, $\operatorname{Pd}(\mathrm{OAc})_{2}(3 \mathrm{mg}, 0.012 \mathrm{mmol}, 0.05 \mathrm{eq})$, SPhos ($10 \mathrm{mg}, 0.023 \mathrm{mmol}, 0.1 \mathrm{eq}$), 3-bromo-2-methoxy-pyridine ($53 \mathrm{mg}, 0.280 \mathrm{mmol}, 1.2 \mathrm{eq}$) and $3 \mathrm{M} \mathrm{K}_{3} \mathrm{PO}_{4(\mathrm{aq})}(0.59 \mathrm{~mL}, 1.755 \mathrm{mmol}$, $7.5 \mathrm{eq})$ in dioxane (2.34 mL) gave the crude product. Purification by flash column chromatography on silica with 99:1 to 9:1 $\mathrm{Et}_{2} \mathrm{O}-\mathrm{MeOH}$ as eluent gave alkene $\mathbf{1 1 5}(37 \mathrm{mg}$, 55%) as a clear oil, identical (by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy) to that described above, a 75:25 mixture (by ${ }^{1} \mathrm{H}$ NMR spectroscopy) of bis-normorphan 155 a and SPhos (4 mg , i.e. 3 mg (6\%) of 155a) as a clear oil, identical (by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy) to that described above and an $85: 15$ mixture (by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy) of bisnormorphan $\mathbf{1 5 5 b}$ and $\operatorname{SPhos}\left(6 \mathrm{mg}\right.$, i.e. $5 \mathrm{mg}(10 \%)$ of $\mathbf{1 5 5 b}$) as a clear oil, identical (by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy) to that described above. There was evidence in the ${ }^{1} \mathrm{H}$ NMR spectrum of the crude product for the formation of arylated normorphan 161 but none was isolated after chromatography.

Attempted synthesis of 6-(2,4-dimethoxybenzyl)-2-(6-fluoro-3-methylpyridin-2-yl)-6-azabicyclo[3.2.1]oct-2-en-7-one 162. 6-(2,4-Dimethoxybenzyl)-6-azabicyclo[3.2.1]oct-2-en-7-one 115 and 6,6'-bis(2,4-dimethoxybenzyl)-6,6'-diaza[2,2'-bi(bicyclo[3.2.1]octane)]-2,2'-diene-7,7'-dione 155a/b

115

155a/b
Using general procedure A, vinyl MIDA boronate $94(100 \mathrm{mg}, 0.234 \mathrm{mmol}, 1.0 \mathrm{eq})$, $\mathrm{Pd}(\mathrm{OAc})_{2}(3 \mathrm{mg}, 0.012 \mathrm{mmol}, 0.05 \mathrm{eq})$, SPhos ($10 \mathrm{mg}, 0.023 \mathrm{mmol}, 0.1 \mathrm{eq}$), 2-bromo-5-fluoro-3-methylpyridine ($33 \mu \mathrm{~L}, 0.280 \mathrm{mmol}, 1.2 \mathrm{eq}$) and $3 \mathrm{M} \mathrm{K}_{3} \mathrm{PO}_{4(\mathrm{aq})}(0.59 \mathrm{~mL}, 1.755$ $\mathrm{mmol}, 7.5 \mathrm{eq})$ in dioxane (2.34 mL) gave the crude product. Purification by flash column chromatography on silica with 99:1 to 9:1 $\mathrm{Et}_{2} \mathrm{O}-\mathrm{MeOH}$ as eluent gave alkene $\mathbf{1 1 5}(40 \mathrm{mg}$, 60%) as a clear oil, identical (by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy) to that described above, a 80:20 mixture (by ${ }^{1} \mathrm{H}$ NMR spectroscopy) of bis-normorphan $\mathbf{1 5 5 a}$ and SPhos (2 mg , i.e. 1.5 mg (3%) of 155a) as a clear oil, identical (by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy) to that described above and an $85: 15$ mixture (by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy) of bisnormorphan 155b and SPhos (5 mg , i.e. $4 \mathrm{mg}(8 \%)$ of 155b) as a clear oil, identical (by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy) to that described above. There was evidence in the ${ }^{1} \mathrm{H}$ NMR
spectrum of the crude product for the formation of arylated normorphan $\mathbf{1 6 2}$ but none was isolated after chromatography.

Lab book reference: ARG-2-124

Attempted synthesis of 6-(2,4-dimethoxybenzyl)-2-(2-hydroxypyridin-4-yl)-6-azabicyclo[3.2.1]oct-2-en-7-one

94

Using general procedure A, vinyl MIDA boronate 94 ($100 \mathrm{mg}, 0.234 \mathrm{mmol}, 1.0 \mathrm{eq}$), $\operatorname{Pd}(\mathrm{OAc})_{2}(3 \mathrm{mg}, 0.012 \mathrm{mmol}, 0.05 \mathrm{eq})$, SPhos ($10 \mathrm{mg}, 0.023 \mathrm{mmol}, 0.1 \mathrm{eq}$), 4-bromo-2hydroxypyridine ($49 \mathrm{mg}, 0.280 \mathrm{mmol}, 1.2 \mathrm{eq}$) and $3 \mathrm{M} \mathrm{K}_{3} \mathrm{PO}_{4(\mathrm{aq})}(0.59 \mathrm{~mL}, 1.755 \mathrm{mmol}, 7.5$ eq) in dioxane (2.34 mL) gave the crude product which contained (by ${ }^{1} \mathrm{H}$ NMR spectroscopy) only traces of arylated normorphan.

Lab book reference: ARG-2-116

Attempted synthesis of 6-(2,4-dimethoxybenzyl)-2-(isoxazol-4-yl)-6-azabicyclo[3.2.1]oct-2-en-7-one

Using general procedure A, vinyl MIDA boronate 94 ($100 \mathrm{mg}, 0.234 \mathrm{mmol}, 1.0 \mathrm{eq}$), $\mathrm{Pd}(\mathrm{OAc})_{2}(3 \mathrm{mg}, 0.012 \mathrm{mmol}, 0.05 \mathrm{eq})$, SPhos ($10 \mathrm{mg}, 0.023 \mathrm{mmol}, 0.1 \mathrm{eq}$), 4-bromoisoxazole ($41 \mathrm{mg}, 0.280 \mathrm{mmol}, 1.2 \mathrm{eq}$) and $3 \mathrm{M} \mathrm{K}_{3} \mathrm{PO}_{4(\text { aq })}(0.59 \mathrm{~mL}, 1.755 \mathrm{mmol}, 7.5 \mathrm{eq})$ in dioxane (2.34 mL) gave the crude product which contained (by ${ }^{1} \mathrm{H}$ NMR spectroscopy) only traces of arylated normorphan.

Lab book reference: ARG-2-105

Attempted synthesis of 6-(2,4-dimethoxybenzyl)-2-(1H-pyrazol-4-yl)-6-azabicyclo[3.2.1]oct-2-en-7-one

94

Using general procedure A, vinyl MIDA boronate 94 ($100 \mathrm{mg}, 0.234 \mathrm{mmol}, 1.0 \mathrm{eq}$), $\operatorname{Pd}(\mathrm{OAc})_{2}(3 \mathrm{mg}, 0.012 \mathrm{mmol}, 0.05 \mathrm{eq})$, SPhos $(10 \mathrm{mg}, 0.023 \mathrm{mmol}, 0.1 \mathrm{eq}), 4$-bromopyrazole ($41 \mathrm{mg}, 0.280 \mathrm{mmol}, 1.2 \mathrm{eq}$) and $3 \mathrm{M} \mathrm{K}_{3} \mathrm{PO}_{4(\mathrm{aq})}(0.59 \mathrm{~mL}, 1.755 \mathrm{mmol}, 7.5 \mathrm{eq})$ in
dioxane (2.34 mL) gave the crude product which contained (by ${ }^{1} \mathrm{H}$ NMR spectroscopy) only traces of arylated normorphan.

Lab book reference: ARG-2-104

6-(2,4-Dimethoxybenzyl)-2-(4-methoxyphenyl)-6-azabicyclo[3.2.1]octan-7-one 168

168
$10 \% \mathrm{Pd} / \mathrm{C}(61 \mathrm{mg}, 0.057 \mathrm{mmol}, 10 \mathrm{~mol} \%$) was added to a stirred solution of arylated normorphan 153 ($215 \mathrm{mg}, 0.57 \mathrm{mmol}, 1 \mathrm{eq}$) in $\mathrm{MeOH}(3 \mathrm{~mL})$ at rt under Ar. The reaction flask was evacuated under reduced pressure and back-filled with Ar three times and then with H_{2} three times. The resulting mixture was stirred under a balloon of $\mathrm{H}_{2}(760 \mathrm{mmHg})$ for 18 h . The solids were removed by filtration through Celite ${ }^{\circledR}$ and washed with MeOH (10 $\mathrm{mL})$. The filtrate was evaporated under reduced pressure to give hydrogenated normorphan $168(200 \mathrm{mg}, 92 \%,>97: 3 \mathrm{dr})$ as a clear oil, $R_{\mathrm{F}}(3: 2$ EtOAc-hexane) 0.49 ; IR (ATR) 2936, 2835, 1680 (C=O), 1611, 1587, 1508, 1243, 1032, 825, $728 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}) $\delta 7.37-7.33$ (m, 2H, Ar), 7.22 (d, $\left.J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}\right), 6.87-6.82$ (m, 2H, Ar), 6.476.42 (m, 2H, Ar), 4.64 (d, $J=14.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHH}$ '), 4.30 (d, $J=14.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHH}$), $3.84-3.74$ (m, 9H, OMe), 3.61 (dd, $J=5.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}$), 2.84 (ddd, $J=12.0,5.0,1.5$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}-6$), 2.64 (d, $J=5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-5), 2.28$ (dddd, $J=11.0,5.5,5.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}$, CHH'-4), 1.85 (ddd, $J=14.0,5.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H \mathrm{H}^{\prime}-1$), $1.79-1.61$ (m, 3H, CHH'-1, CHH'$\left.2, \mathrm{CH} H^{\prime}-4\right), 1.52$ (ddd, $J=12.0,11.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H^{\prime}-2$); ${ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.3$ (C=O), 160.5 (ipso-Ar), 158.7 (ipso-Ar), 158.2 (ipso-Ar), 136.5 (ipso-Ar), 131.0 (Ar), 128.7 (Ar), 117.9 (ipso-Ar), 113.7 (Ar), 104.2 (Ar), 98.4 (Ar), 55.5 (OMe), 55.4 (OMe), $55.3(\mathrm{OMe}), 54.8(\mathrm{NCH}), 46.2(\mathrm{CH}-5), 44.0(\mathrm{CH}-6), 39.7\left(\mathrm{CH}_{2}-4\right), 38.6\left(\mathrm{NCH}_{2}\right)$, $27.5\left(\mathrm{CH}_{2}-1\right), 26.4\left(\mathrm{CH}_{2}-2\right)$; HRMS (ESI) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NO}_{4}(\mathrm{M}+\mathrm{Na})^{+}$404.1832, found 404.1837 (-1.2 ppm error).

Lab book reference: ARG-1-054

2-(4-Methoxyphenyl)-6-azabicyclo[3.2.1]octan-7-one 170

170
$80 \% \mathrm{v} / \mathrm{v} \mathrm{TFA}_{\text {(aq) }}(8 \mathrm{~mL})$ was added to a stirred solution of N-DMB-amide $168(100 \mathrm{mg}, 0.26$ mmol, 1.0 eq) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ at rt . The resulting mixture was stirred and heated at $60^{\circ} \mathrm{C}$ for 18 h . The solvent was evaporated under reduced pressure. The residue was suspended in toluene (10 mL) and the solvent was evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica with 1:1 to 7:3 EtOAchexane as eluent gave amide $\mathbf{1 7 0}$ ($44 \mathrm{mg}, 73 \%$) as an off-white crystalline solid, mp 140 $142{ }^{\circ} \mathrm{C}$; $R_{\mathrm{F}}(7: 3$ EtOAc-hexane) 0.20; IR (ATR) 3231 (NH), 2934, 1693 (C=O), 1611, 1514, 1247, 1181, 1035, 835, $773 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.27$ (m, 2H, Ar), 6.88-6.79 (m, 2H, Ar), 6.69 (br s, 1H, NH), 3.85-3.69 (m, 4H, OMe, NCH), 2.88 (ddd, $J=$ $12.5,6.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-6), 2.53$ (d, $J=5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-5$), 2.44 (dddd, $J=11.5,6.0,5.5$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H \mathrm{H}^{\prime}-4$), 2.09-1.88 (m, 2H, CHH'-1, CHH'-2), 1.88-1.73 (m, 2H, CHH'-1, CHH'-4), 1.68 (ddd, $J=12.5,12.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H^{\prime}-2$); ${ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 179.0 ($\mathrm{C}=\mathrm{O}$), 158.2 (ipso-Ar), 136.2 (ipso-Ar), 128.5 (Ar), 113.8 (Ar), 55.3 (OMe), 51.2 (NCH), 45.8 (CH-5), $43.8(\mathrm{CH}-6), 41.0\left(\mathrm{CH}_{2}-4\right), 29.1\left(\mathrm{CH}_{2}-1\right), 26.8\left(\mathrm{CH}_{2}-2\right)$; HRMS (ESI) m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+} 232.1332$, found 232.1334 (-0.8 ppm error).

Lab book reference: ARG-1-062
$80 \% \mathrm{v} / \mathrm{v} \mathrm{TFA}_{\text {(aq) }}(5 \mathrm{~mL})$ was added to a stirred solution of N-DMB-amide $168(70 \mathrm{mg}, 0.18$ $\mathrm{mmol}, 1.0 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ at rt . The resulting mixture was stirred at rt for 72 h . The solvent was evaporated under reduced pressure. The residue was suspended in toluene (10 mL) and the solvent evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica with $1: 1$ to $7: 3$ EtOAc-hexane as
eluent gave amide $\mathbf{1 7 0}$ ($27 \mathrm{mg}, 68 \%$) as an off-white crystalline solid, identical (by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy) to that described above.

Lab book reference: ARG-1-057

DDQ ($71 \mathrm{mg}, 0.31 \mathrm{mmol}, 1.5 \mathrm{eq}$) was added to a stirred solution of N-DMB-amide 168 (79 $\mathrm{mg}, 0.21 \mathrm{mmol}, 1.0 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{~mL})$ at rt . The resulting mixture was stirred at rt for 24 h . Saturated $\mathrm{NaHCO}_{3(\text { (aq })}(5 \mathrm{~mL})$ was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic extracts were washed with brine (10 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica with $1: 1$ to $7: 3$ EtOAc-hexane as eluent gave amide $\mathbf{1 7 0}$ ($12 \mathrm{mg}, 25 \%$) as an off-white crystalline solid, identical (by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy) to that described above.

Lab book reference: ARG-1-058

TFA ($596 \mu \mathrm{~L}, 7.8 \mathrm{mmol}, 30 \mathrm{eq}$) was added to a stirred solution of N-DMB-amide 168 (100 $\mathrm{mg}, 0.26 \mathrm{mmol}, 1.0 \mathrm{eq}$) and m-dimethoxybenzene ($68 \mu \mathrm{~L}, 0.52 \mathrm{mmol}, 2 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.3$ $\mathrm{mL})$ at rt . The resulting solution stirred at rt for 72 h . Saturated $\mathrm{NaHCO}_{3(\mathrm{aq})}(5 \mathrm{~mL})$ was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic extracts were washed with brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica with 1:1 to 7:3 EtOAc-hexane as eluent gave amide $\mathbf{1 7 0}$ ($31 \mathrm{mg}, 52 \%$) as an off-white crystalline solid, identical (by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy) to that described above.

Lab book reference: ARG-1-084

4-Methyl-8-(-7-oxo-6-azabicyclo[3.2.1]oct-2-en-2-yl)dihydro-4 $\lambda^{4}, 8 \lambda^{4}$ -[1,3,2]oxazaborolo[2,3-b][1,3,2]oxazaborole-2,6(3H,5H)-dione 171

171

TFA ($800 \mu \mathrm{~L}, 7.01 \mathrm{mmol}, 30 \mathrm{eq}$) was added to a stirred solution of vinyl MIDA boronate 94 ($100 \mathrm{mg}, 0.23 \mathrm{mmol}, 1.0 \mathrm{eq}$) and m-dimethoxybenzene ($60 \mu \mathrm{~L}, 0.46 \mathrm{mmol}, 2 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(1.15 \mathrm{~mL})$ at rt . The resulting mixture was stirred at rt for 72 h . The solvent was evaporated under reduced pressured. The residue was suspended in toluene (5 mL) and the solvent was evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica with 1:1 to 8:2 $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-acetone as eluent gave free amide $\mathbf{1 7 1}$ (39 $\mathrm{mg}, 60 \%)$ as a white crystalline solid. mp $280-282{ }^{\circ} \mathrm{C}$ (decomposition); $R_{\mathrm{F}}\left(2: 8 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ acetone) 0.31 ; IR (ATR) 3388 (NH), 1755 (C=O, ester), 1671 ($\mathrm{C}=\mathrm{O}$, amide), 1322, 110, $1039,558 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, d_{6}$-DMSO) $\delta 7.55(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}$), 5.86 (ddd, $J=3.0,3.0$, $1.5 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}-1), 4.25$ (d, $J=17.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{CHH}$ '), 4.13 (d, $J=16.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{C}(\mathrm{O}) \mathrm{CHH}$ '), 3.91 (d, $\left.J=17.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{CHH}^{\prime}\right), 3.90\left(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{CH}^{\prime}\right)$, 3.68-3.65 (m, 1H, NCH), 2.64 (s, 3H, NMe), 2.41 (d, $J=5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-5$), 2.32 (ddd, $J=$ $19.0,3.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H \mathrm{H}^{\prime}-2$), 2.07 (ddd, $J=10.5,5.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H \mathrm{H}^{\prime}-4$), 2.02 (ddd, J $\left.=19.0,3.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H^{\prime}-2\right), 1.52\left(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H^{\prime}-4\right) ;{ }^{13} \mathrm{C}$ NMR (100.6 MHz , d_{6}-DMSO) $\delta 179.7$ ($\mathrm{C}=\mathrm{O}$, amide), 170.4 ($\mathrm{C}=\mathrm{O}$, ester), 169.2 ($\mathrm{C}=\mathrm{O}$, ester), 134.1 ($=\mathrm{CH}$), 62.2 $\left(\mathrm{CH}_{2} \mathrm{CO}_{2}\right), 61.6\left(\mathrm{CH}_{2} \mathrm{CO}_{2}\right), 49.8(\mathrm{NCH}), 46.6(\mathrm{NMe}), 41.5(\mathrm{CH}-5), 34.9\left(\mathrm{CH}_{2}-4\right), 33.2\left(\mathrm{CH}_{2}-\right.$ 2) (=C-B resonance not resolved); HRMS (ESI) m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{BN}_{2} \mathrm{O}_{5}(\mathrm{M}+\mathrm{H})^{+}$ 301.0966, found 301.0966 (+0.8 ppm error).

Lab book reference: ARG-1-094
$80 \% \mathrm{v} / \mathrm{v} \mathrm{TFA}_{(\mathrm{aq})}(7 \mathrm{~mL})$ was added to a stirred solution of vinyl MIDA boronate 94 (100 $\mathrm{mg}, 0.23 \mathrm{mmol}, 1.0 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ at rt . The resulting mixture was stirred and heated at $60^{\circ} \mathrm{C}$ for 18 h . The solvent was evaporated under reduced pressure. The residue was suspended in toluene (5 mL) and the solvent was evaporated under reduced pressure to
give the crude product which contained (by ${ }^{1} \mathrm{H}$ NMR spectroscopy) an unidentified mixture of products

Lab book reference: ARG-1-093

6-(2,4-Dimethoxybenzyl)-2-(4-methoxyphenyl)-6-azabicyclo[3.2.1]oct-2-ene 172

172

A solution of arylated normorphan $153(200 \mathrm{mg}, 0.53 \mathrm{mmol}, 1.0 \mathrm{eq})$ in THF (7.5 mL), was added dropwise to a stirred suspension of $\mathrm{LiAlH}_{4}(80 \mathrm{mg}, 2.11 \mathrm{mmol}, 4 \mathrm{eq})$ in THF (3.5 mL) at rt under Ar. The resulting mixture was stirred and heated at reflux for 16 h under Ar. After allowing the mixture to cool to rt, $\mathrm{H}_{2} \mathrm{O}(0.15 \mathrm{~mL}), 2 \mathrm{M} \mathrm{NaOH}_{(\mathrm{aq})}(0.32 \mathrm{~mL})$ and $\mathrm{MgSO}_{4}(250$ mg) were added and the resulting mixture was stirred for 15 min . The solids were removed by filtration through Celite ${ }^{\circledR}$ and the filtrate was evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica with 99:1 to 9:1 EtOAc-MeOH as eluent gave amine $172(136 \mathrm{mg}, 70 \%)$ as a clear oil, $R_{\mathrm{F}}(9: 1 \mathrm{EtOAc}-\mathrm{MeOH})$ 0.3; IR (ATR) 2934, 2832, 1607, 1507, 1240, 1152, 1032, $819 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.39(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.31-7.27(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 6.87-6.82(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 6.48$ (dd, $J=8.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 6.44(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 5.72(\mathrm{ddd}, J=3.5,3.5,1.5 \mathrm{~Hz}$, $1 \mathrm{H},=\mathrm{CH}$), 3.87-3.80 (m, 2H, NCHH'Ar), 3.81-3.79 (m, 9H, OMe), 3.48-3.42 (m, 1H, NCH), 3.12-3.02 (m, 2H, NCHH'-7), 3.00 (dd, $J=5.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-5$), 2.48 (ddd, $J=$ $18.5,3.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H \mathrm{H}^{\prime}-2$), 2.30 (ddd, $J=18.5,3.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H^{\prime}-2$), 2.04 (ddd, J $\left.=10.5,5.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H \mathrm{H}^{\prime}-4\right), 1.84\left(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}{ }^{\prime}-4\right) ;{ }^{13} \mathrm{C}$ NMR (100.6 MHz , CDCl_{3}) $\delta 159.6$ (ipso-Ar), 158.6 (ipso-Ar), 158.2 (ipso-Ar), 144.2 (=C), 134.1 (ipso-Ar), 130.2 (Ar), 126.2 (Ar), 121.3 (ipso-Ar), 119.6 (=CH), 113.8 (Ar), 103.9 (Ar), 98.4 (Ar), 63.2 $\left(\mathrm{NCH}_{2}-7\right), 58.2(\mathrm{NCH}), 55.45(\mathrm{OMe}), 55.43(\mathrm{OMe}), 55.38(\mathrm{OMe}), 52.6\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 38.6$ (CH-5), $34.3\left(\mathrm{CH}_{2}-2\right), 33.6\left(\mathrm{CH}_{2}-4\right)$; HRMS (ESI) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{H})^{+}$ 366.2064 , found 366.2066 (-0.5 ppm error).

Lab book reference: ARG-1-071

6.2.4 HPLC Traces

HPLC Traces for enantioenriched 109

109

ARG-1-009

Figure 6.1 - HPLC Trace for ARG-1-009

```
ARG-1-065
```



```
Signal 1: DAD1 C, Sig=210,8 \(\operatorname{Ref}=360,100\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Peak } \\
\#
\end{gathered}
\] & \[
\begin{gathered}
\text { RetTime } \\
\text { [min] }
\end{gathered}
\] & Type & \begin{tabular}{l}
Width \\
[min]
\end{tabular} & \[
\begin{gathered}
\text { Area } \\
{\left[\mathrm{mAU} \mathrm{~A}^{2}\right]}
\end{gathered}
\] & \[
\begin{aligned}
& \text { Height } \\
& \text { [mAU] }
\end{aligned}
\] & \[
\begin{gathered}
\text { Area } \\
\%
\end{gathered}
\] \\
\hline 1 & 35.642 & MM & 1.3076 & 4.01799 e 4 & 512.13098 & 57.1293 \\
\hline 2 & 49.380 & MM & 1.7289 & 3.01516 e 4 & 290.67096 & 42.8707 \\
\hline Total & s : & & & 7.03315 e 4 & 802.80194 & \\
\hline
\end{tabular}
```

Figure 6.2 - HPLC Trace for ARG-1-065

ARG-1-061

Signal 1: DAD1 C, Sig=210, 8 Ref $=360,100$

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{\star} \mathrm{S}\right]} \end{gathered}$	Height [mAU]	Area \%
1	35.704	MM	1.2960	4.00709 e 4	515.31061	55.2087
2	49.075	MM	1.6863	3.25099 e 4	321.30942	44.7913
Total	S :			7.25809 e 4	836.62003	

Figure 6.3 - HPLC Trace for ARG-1-061

6.2.5 Crystal Data

Crystal data for 170

Table 6.1 - Crystal data and structure refinement for paob1911

Identification code	paob1911
Empirical formula	$\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{2}$
Formula weight	231.28
Temperature/K	109.95(10)
Crystal system	monoclinic
Space group	P21/c
a/Å	16.7674(7)
b/Å	6.2020(2)
c/Å	11.4525(4)
$\boldsymbol{\alpha} /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	97.971(4)
$\gamma /{ }^{\circ}$	90
Volume/i ${ }^{\text {3 }}$	1179.45(8)
Z	4
$\rho_{\text {calcg }} / \mathrm{cm}^{\mathbf{3}}$	1.302
$\mu / \mathbf{m m}^{-1}$	0.695
F(000)	496.0
Crystal size/mm ${ }^{3}$	$0.157 \times 0.138 \times 0.03$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54184)$
2Θ range for data collection $/{ }^{\circ}$	10.656 to 141.988
Index ranges	$-20 \leq h \leq 20,-6 \leq k \leq 7,-14 \leq 1 \leq 13$
Reflections collected	8760
Independent reflections	2251 [$\left.\mathrm{R}_{\text {int }}=0.0333, \mathrm{R}_{\text {sigma }}=0.0340\right]$
Data/restraints/parameters	2251/0/159
Goodness-of-fit on \mathbf{F}^{2}	1.048
Final R indexes [$\mathrm{I}>=\mathbf{2 \sigma}$ (I)]	$\mathrm{R}_{1}=0.0547, \mathrm{wR}_{2}=0.1437$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0645, \mathrm{wR}_{2}=0.1522$
Largest diff. peak/hole / e \AA^{-3}	0.57/-0.28

Data collected, solved and refined by Sam Hart

Abbreviations

Ac - Acetyl
Acac - Acetylacetone
AIBN - Azobisisobutyronitrile

Aq-Aqueous
Ar - Aryl
Bn - Benzyl
Boc-tert-butoxycarbonyl
Br - Broad
Cbz - Carboxybenzyl
cm^{-1} - Wavenumber
CSP - Chiral stationary phase
d - Doublet
DAT - Dopamine transporter
DBU-1,8-Diazabicyclo[5.4.0]undec-7-ene
DCE-1,2-dichlorethane
DDQ - 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone
DMAP - 4-Dimethylaminopyridine
DMB - 2,4-Dimethoxybenzyl
DMF - Dimethylformamide
DMP - Dess-Martin peridinane
DMSO - Dimethylsulfoxide
DPPA - Diphenyl phosphoryl azide
Dppf - 1, 1^{\prime}-Bis(diphenylphosphino)ferrocene

Eq-Equivalents
ESI - Electrospray ionisation
Et - Ethyl
EWG - Electron withdrawing group
Fsp ${ }^{3}$ - Fraction of sp^{3} carbons
g-Gram(s)
h $-\operatorname{Hour}(\mathrm{s})$
H bond - Hydrogen bond
HMDS - hexamethyldisilazane
HPLC - High performance liquid chromatography
HRMS - High resolution mass spectrometry
HTS - High throughput screening
Hz - Hertz
IR - Infra-red
$i-\mathrm{Pr}$ - iso-propyl
J - Coupling constant in Hz
kcal mol ${ }^{-1}$ - Kilocalories per mole
LDA - Lithium diisopropylamine
m-Multiplet
M - Molar
m / z - Mass to charge ratio
M+ - Molecular ion
Me - Methyl
mg - Milligrams
$\mu \mathrm{M}$ - Micromolar
MIDA - Methyliminodiacetic acid
min - Minute(s)
mL - Millilitre(s)
mmol - Millimole(s)
MS - Mass spectrometry
Ms - Mesyl

MW - Molecular weight
NMR - Nuclear Magnetic Resonance
Ns - 4-Nosyl
PG - Protecting group
Ph - Phenyl
Pin - Pinacolato

Piv - Pivaloyl
PMP - para-methoxyphenyl
PNP - para-nitrophenyl
ppm - Parts per million
p-tol - para-tolyl
q - Quartet
Rf- Retention Factor
R\&D - Research and development
rt - Room Temperature
s - Singlet
SMILES - Simplified molecular-input line-entry system
t-Triplet
t-Bu - tert-butyl
TBS - tert-butyldimethylsilyl
TBDMS - tert-butyldimethylsilyl
TBDPS - tert-butyldiphenylsilyl
TIPS - Triisopropylsilyl
Tf - Triflate

TFA - Trifluoroacetic acid

THF - Tetrahydrofuran
TPMA - Tris(2-pyridylmethyl)amine
Ts - Tosyl
$\mu \mathrm{W}$ - Microwave

References

1. Grygorenko, O. O.; Volochnyuk, D. M.; Ryabukhin, S. V.; Judd, D. B., Chem. - Eur. J. 2019, 10.1002/chem. 201903232.
2. Doveston, R.; Marsden, S.; Nelson, A., Drug Discov. Today 2014, 19, 813-819.
3. Lovering, F.; Bikker, J.; Humblet, C., J. Med. Chem. 2009, 52, 6752-6756.
4. Mann, A., Chapter 17 - Conformational Restriction and/or Steric Hindrance in Medicinal Chemistry. In The Practice of Medicinal Chemistry (Third Edition), Wermuth, C. G., Ed. Academic Press: New York, 2008; pp 363-379.
5. Böhm, H.-J.; Flohr, A.; Stahl, M., Drug. Discov. Today Techno.l 2004, 1, 217-224.
6. Denisenko, A. V.; Druzhenko, T.; Skalenko, Y.; Samoilenko, M.; Grygorenko, O. O.; Zozulya, S.; Mykhailiuk, P. K., J. Org. Chem. 2017, 82, 9627-9636.
7. Burkhard, J. A.; Wuitschik, G.; Rogers-Evans, M.; Müller, K.; Carreira, E. M., Angew. Chem. Int. Ed. 2010, 49, 9052-9067.
8. Wlochal, J.; Davies, R. D. M.; Burton, J., Org. Lett. 2014, 16, 4094-4097.
9. Druzhenko, T.; Denisenko, O.; Kheylik, Y.; Zozulya, S.; Shishkina, S. S.; Tolmachev, A.; Mykhailiuk, P. K., Org. Lett. 2015, 17, 1922-1925.
10. Helal, C. J.; Bartolozzi, A.; Goble, S. D.; Mani, N. S.; Guzman-Perez, A.; Ohri, A. K.; Shi, Z.-C.; Subramanyam, C., Drug Discov. Today 2018, 23, 1458-1462.
11. Goldberg, F. W.; Kettle, J. G.; Kogej, T.; Perry, M. W. D.; Tomkinson, N. P., Drug Discov. Today 2015, 20, 11-17.
12. Helal, C. J.; Bundesmann, M.; Hammond, S.; Holmstrom, M.; Klug-Mcleod, J.; Lefker, B. A.; McLeod, D.; Subramanyam, C.; Zakaryants, O.; Sakata, S., ACS Med. Chem. Lett. 2019, 10, 1104-1109.
13. Ritchie, T. J.; Macdonald, S. J. F., Drug Discov. Today 2009, 14, 1011-1020.
14. Aldeghi, M.; Malhotra, S.; Selwood, D. L.; Chan, A. W. E., Chem. Biol. Drug. Des. 2014, 83, 450-461.
15. Burkhard, J. A.; Wagner, B.; Fischer, H.; Schuler, F.; Müller, K.; Carreira, E. M., Angew. Chem. Int. Ed. 2010, 49, 3524-3527.
16. Chalyk, B. A.; Butko, M. V.; Yanshyna, O. O.; Gavrilenko, K. S.; Druzhenko, T. V.; Mykhailiuk, P. K., Chem. - Eur. J. 2017, 23, 16782-16786.
17. Chalyk, B.; Isakov, A.; Butko, M.; Hrebeniuk, K.; Savych, O.; Kucher, O.; Gavrilenko, K.; Druzhenko, T.; Yarmolchuk, V.; Zozulya, S.; Mykhailiuk, P., Eur. J. Org. Chem. 2017, 4530-4542.
18. Lauri, G.; Bartlett, P. A., J. Comput. Aided Mol. Des. 1994, 8, 51-66.
19. Grygorenko, O. O.; Babenko, P.; Volochnyuk, D. M.; Raievskyi, O.; Komarov, I. V., RSC Adv. 2016, 6, 17595-17605.
20. Grygorenko, O. O.; Demenko, D.; Volochnyuk, D. M.; Komarov, I. V., New J. Chem. 2018, 42, 8355-8365.
21. Grygorenko, O. O.; Prytulyak, R.; Volochnyuk, D. M.; Kudrya, V.; Khavryuchenko, O. V.; Komarov, I. V., Mol. Divers. 2012, 16, 477-487.
22. Feskov, I. O.; Chernykh, A. V.; Kuchkovska, Y. O.; Daniliuc, C. G.; Kondratov, I. S.; Grygorenko, O. O., J. Org. Chem. 2019, 84, 1363-1371.
23. Sokolenko, Y. M.; Yurov, Y. Y.; Vashchenko, B. V.; Hryshchuk, O. V.; Filimonova, Y.; Ostapchuk, E. N.; Artemenko, A.; Zaremba, O. V.; Grygorenko, O. O., J. Org. Chem. 2019, 84, 13908-13921.
24. Dibchak, D.; Shcherbacova, V.; Denisenko, A. V.; Mykhailiuk, P. K., Org. Lett. 2019, 21, 8909-8914.
25. Quirante, J.; Vila, X.; Bonjoch, J.; Kozikowski, A. P.; Johnson, K. M., Bioorg. Med. Chem. 2004, 12, 1383-1391.
26. Roberson, C. W.; Woerpel, K. A., J. Am. Chem. Soc 2002, 124, 11342-11348.
27. Hodgson, D. M.; Shelton, R. E.; Moss, T. A.; Dekhane, M., Org. Lett. 2010, 12, 28342837.
28. Holmes, A. B.; Kee, A.; Ladduwahetty, T.; Smith, D. F., J. Chem. Soc., Chem. Commun. 1990, 0, 1412-1414.
29. Betou, M.; Male, L.; Steed, J. W.; Grainger, R. S., Chem. - Eur. J. 2014, 20, 65056517.
30. Melnick, A.; Cerchietti, L. C.; Cardenas, M.; Xue, F.; MAcKerell, A. D. BCL6 Inhibitors as Anticancer Agents. US20160166549A1, 2016.
31. Genovese, R. F.; Elsmore, T. F., Pharmacol. Biochem. Behav. 1989, 32, 495-498.
32. Genovese, R. F., Eur. J. Pharmacol. 1990, 176, 271-279.
33. Triggle, D. J.; Kwon, Y. W.; Abraham, P.; Pitner, J. B.; Mascarella, S. W.; Carroll, F. I., J. Med. Chem. 1991, 34, 3164-3171.
34. Herold, P.; Herzig, J. W.; Wenk, P.; Leutert, T.; Zbinden, P.; Fuhrer, W.; Stutz, S.; Schenker, K.; Meier, M.; Rihs, G., J. Med. Chem. 1995, 38, 2946-2954.
35. Munk, M. E.; Sodano, C. S.; McLean, R. L.; Haskell, T. H., J. Am. Chem. Soc 1967, 89, 4158-4165.
36. Schneider, W.; Hoyer, J., Arch. Pharm. 1971, 304, 637-648.
37. Hunt, P. A.; Moody, C. J.; Slawin, A. M. Z.; Williams, D. J.; Myers, P. L.; Smith, C., J. Chem. Soc. Perk. T. 1. 1992, 831-837.
38. Takeda, M.; Inoue, H.; Noguchi, K.; Honma, Y.; Kawamori, M.; Tsukamoto, G.; Saito, S., Chem. Pharm. Bull. 1976, 24, 1002-1012.
39. Gassman, P. G.; Fox, B. L., J. Org. Chem. 1967, 32, 3679-3680.
40. Furstoss, R.; Teissier, P.; Waegell, B., J. Chem. Soc. Chem. Comm. 1970, 384.
41. Bonjoch, J.; Mestre, E.; Cortes, R.; Granados, R.; Bosch, J., Tetrahedron 1983, 39, 1723-1728.
42. Klaver, W. J.; Hiemstra, H.; Speckamp, W. N., J. Am. Chem. Soc 1989, 111, 25882595.
43. Rigby, J. H.; Meyer, J. H., Synlett 1999, 1999, 860-862.
44. Washburn, D. G.; Heidebrecht, R. W.; Martin, S. F., Org. Lett. 2003, 5, 3523-3525.
45. Kitamura, M.; Ihara, Y.; Uera, K.; Narasaka, K., Bull. Chem. Soc. Jpn. 2006, 79, 1552-1560.
46. Roberson, C. W.; Woerpel, K. A., Org. Lett. 2000, 2, 621-623.
47. De Haro, T.; Nevado, C., Angew. Chem. Int. Ed. 2011, 50, 906-910.
48. Sun, X.; Rai, R.; Deschamps, J. R.; Mackerell, A. D.; Faden, A. I.; Xue, F., Tetrahedron Lett. 2014, 55, 842-844.
49. Grainger, R. S.; Betou, M.; Male, L.; Pitak, M. B.; Coles, S. J., Org. Lett. 2012, 14, 2234-2237.
50. Diaba, F.; Montiel, J. A.; Serban, G.; Bonjoch, J., Org. Lett. 2015, 17, 3860-3863.
51. Yeh, M.-C. P.; Chang, Y.-M.; Lin, H.-H., Adv. Synth. Catal. 2017, 359, 2196-2201.
52. Zheng, P.; Wang, C.; Chen, Y.-C.; Dong, G., ACS Catal. 2019, 9, 5515-5521.
53. Xu, Y.; Sun, Q.; Tan, T.-D.; Yang, M.-Y.; Yuan, P.; Wu, S.-Q.; Lu, X.; Hong, X.; Ye, L.-W., Angew. Chem. Int. Ed. 2019, 58, 16252-16259.
54. Casavant, B. J.; Hosseini, A. S.; Chemler, S. R., Adv. Synth. Catal. 2014, 356, 26972702.
55. Kang, B.; Jakubec, P.; Dixon, D. J., Nat. Prod. Rep. 2014, 31, 550-562.
56. Bonjoch, J.; Diaba, F.; Bradshaw, B., Synthesis 2011, 993-1018.
57. Cannon, J. S.; Overman, L. E., Angew. Chem. Int. Ed. 2012, 51, 4288-4311.
58. Ballette, R.; Pérez, M.; Proto, S.; Amat, M.; Bosch, J., Angew. Chem. Int. Ed. 2014, 53, 6202-6205.
59. Snider, B. B.; Lin, H., J. Am. Chem. Soc 1999, 121, 7778-7786.
60. Kibayashi, C.; Miyata, T.; Takahama, K.; Fukushima, H. Morphan derivatives or salts thereof and medicinal compositions containing the same. US6608080B1, 2000.
61. Carroll, F. I.; Melvin, M. S.; Nuckols, M. C.; Mascarella, S. W.; Navarro, H. A.; Thomas, J. B., J. Med. Chem. 2006, 49, 1781-1791.
62. Xie, C.; Luo, J.; Zhang, Y.; Huang, S.-H.; Zhu, L.; Hong, R., Org. Lett. 2018, 20, 2386-2390.
63. Boger, D. L.; Patel, M.; Mullican, M. D., Tetrahedron Lett. 1982, 23, 4559-4562.
64. Quirante, J.; Scolano, C.; Diaba, F.; Bonjoch, J., Heterocycles 1999, 50, 731-738.
65. Solé, D.; Urbaneja, X.; Bonjoch, J., Org. Lett. 2005, 7, 5461-5464.
66. Wang, Y.-F.; Chiba, S., J. Am. Chem. Soc 2009, 131, 12570-12572.
67. Diaba, F.; Martínez-Laporta, A.; Bonjoch, J.; Pereira, A.; Muñoz-Molina, J. M.; Pérez, P. J.; Belderrain, T. R., Chem. Commun. 2012, 48, 8799-8801.
68. Gammack Yamagata, A. D.; Datta, S.; Jackson, K. E.; Stegbauer, L.; Paton, R. S.; Dixon, D. J., Angew. Chem. Int. Ed. 2015, 54, 4899-4903.
69. Manzano, R.; Datta, S.; Paton, R. S.; Dixon, D. J., Angew. Chem. Int. Ed. 2017, 56, 5834-5838.
70. Ma, Y.-L.; Wang, K.-M.; Huang, R.; Lin, J.; Yan, S.-J., Green Chem. 2017, 19, 3574-3584.
71. Hu, X.-M.; Zhou, B.; Yang, C.-L.; Lin, J.; Yan, S.-J., ACS Omega 2018, 3, 59946005.
72. Zhai, L.; Tian, X.; Wang, C.; Cui, Q.; Li, W.; Huang, S.-H.; Yu, Z.-X.; Hong, R., Angew. Chem. Int. Ed. 2017, 56, 11599-11603.
73. Diaba, F.; Bonjoch, J., Org. Biomol. Chem. 2009, 7, 2517.
74. Bradshaw, B.; Parra, C.; Bonjoch, J., Org. Lett. 2013, 15, 2458-2461.
75. Liu, R.-R.; Li, B.-L.; Lu, J.; Shen, C.; Gao, J.-R.; Jia, Y.-X., J. Am. Chem. Soc 2016, 138, 5198-5201.
76. Kallepu, S.; Gollapelli, K. K.; Nanubolu, J. B.; Chegondi, R., Chem. Commun. 2015, 51, 16840-16843.
77. Wheldon, M. C. Design and Synthesis of 3-Dimensional Fragments to Explore Pharmaceutical Space. University of York, 2016.
78. Ishiyama, T.; Murata, M.; Miyaura, N., J. Org. Chem. 1995, 60, 7508-7510.
79. Muranaka, K.; Ichikawa, S.; Matsuda, A., J. Org. Chem. 2011, 76, 9278-9293.
80. Gillis, E. P.; Burke, M. D., Aldrichimica Acta. 2009, 42, 17-27.
81. Lehmann, J. W.; Crouch, I. T.; Blair, D. J.; Trobe, M.; Wang, P.; Li, J.; Burke, M. D., Nat. Commun. 2019, 10, doi:10.1038/s41467-019-09249-z.
82. Knapp, D. M.; Gillis, E. P.; Burke, M. D., J. Am. Chem. Soc 2009, 131, 6961-6963.
83. Tessier, P. E.; Nguyen, N.; Clay, M. D.; Fallis, A. G., Org. Lett. 2005, 7, 767-770.
84. Comins, D. L.; Dehghani, A., Tetrahedron Lett. 1992, 33, 6299-6302.
85. Ritter, K., Synthesis 1993, 735-762.
86. Lv, W.-X.; Li, Q.; Li, J.-L.; Li, Z.; Lin, E.; Tan, D.-H.; Cai, Y.-H.; Fan, W.-X.; Wang, H., Angew. Chem. Int. Ed. 2018, 57, 16544-16548.
87. Wrackmeyer, B., Prog. Nucl. Magn. Reson. Spectrosc. 1979, 12, 227-259.
88. Takagi, J.; Takahashi, K.; Ishiyama, T.; Miyaura, N., J. Am. Chem. Soc 2002, 124, 8001-8006.
89. Cao, C.-L.; Sun, X.-L.; Kang, Y.-B.; Tang, Y., Org. Lett. 2007, 9, 4151-4154.
90. Lee, C.-Y.; Cheon, C.-H., J. Org. Chem. 2013, 78, 7086-7092.
91. Zhang, H.; Yang, S.-P.; Fan, C.-Q.; Ding, J.; Yue, J.-M., J. Nat. Prod. 2006, 69, 553557.
92. Miller, S. P.; Zhong, Y.-L.; Liu, Z.; Simeone, M.; Yasuda, N.; Limanto, J.; Chen, Z.; Lynch, J.; Capodanno, V., Org. Lett. 2014, 16, 174-177.
93. Åhman, J.; Somfai, P., J. Chem. Soc., Perkin Trans. 1 1994, 1079-1082.
94. Chen, Y.; Zhang, W.; Ren, L.; Li, J.; Li, A., Angew. Chem. Int. Ed. 2018, 57, 952956.
95. Lu, Z.; Li, Y.; Deng, J.; Li, A., Nat. Chem. 2013, 5, 679-684.
96. Procopiou, G.; Lewis, W.; Harbottle, G.; Stockman, R. A., Org. Lett. 2013, 15, 20302033.
97. Paryzek, Z.; Koenig, H.; Tabaczka, B., Synthesis 2003, 2023-2026.
98. Wood, D. J.; Lopez-Fernandez, J. D.; Knight, L. E.; Al-Khawaldeh, I.; Gai, C.; Lin, S.; Martin, M. P.; Miller, D. C.; Cano, C.; Endicott, J. A.; Hardcastle, I. R.; Noble, M. E. M.; Waring, M. J., J. Med. Chem. 2019, 62, 3741-3752.
99. Lennox, A. J. J.; Lloyd-Jones, G. C., Isr. J. Chem. 2010, 50, 664-674.
100. Gillis, E. P.; Burke, M. D., J. Am. Chem. Soc 2007, 129, 6716-6717.
101. Adamo, C.; Amatore, C.; Ciofini, I.; Jutand, A.; Lakmini, H., J. Am. Chem. Soc 2006, 128, 6829-6836.
102. Butters, M.; Harvey, J. N.; Jover, J.; Lennox, A. J. J.; Lloyd-Jones, G. C.; Murray, P. M., Angew. Chem. Int. Ed. 2010, 49, 5156-5160.
103. Mitsumori, S.; Tsuri, T.; Honma, T.; Hiramatsu, Y.; Okada, T.; Hashizume, H.; Kida, S.; Inagaki, M.; Arimura, A.; Yasui, K.; Asanuma, F.; Kishino, J.; Ohtani, M., J. Med. Chem. 2003, 46, 2446-2455.
104. Chiba, T.; Kitahata, S.; Matsuda, A.; Ichikawa, S., Chem. Pharm. Bull. 2016, 64, 811816.
105. Gupta, R.; Sogi, K. M.; Bernard, S. E.; Decatur, J. D.; Rojas, C. M., Org. Lett. 2009, 11, 1527-1530.
106. Maduskuie, T. P.; McNamara, K. J.; Ru, Y.; Knabb, R. M.; Stouten, P. F. W., J. Med. Chem. 1998, 41, 53-62.
107. Gonzalez, J. A.; Ogba, O. M.; Morehouse, G. F.; Rosson, N.; Houk, K. N.; Leach, A. G.; Cheong, P. H. Y.; Burke, M. D.; Lloyd-Jones, G. C., Nat. Chem. 2016, 8, 10671075.
108. Mazurov, A. A.; Miao, L.; Bhatti, B. S.; Strachan, J.-P.; Akireddy, S.; Murthy, S.; Kombo, D.; Xiao, Y.-D.; Hammond, P.; Zhang, J.; Hauser, T. A.; Jordan, K. G.; Miller, C. H.; Speake, J. D.; Gatto, G. J.; Yohannes, D., J. Med. Chem. 2012, 55, 9181-9194.
109. Fukuyama, T.; Liu, G., J. Am. Chem. Soc 1996, 118, 7426-7427.
110. Gray, D.; Gallagher, T., Angew. Chem. Int. Ed. 2006, 45, 2419-2423.
111. Wang, X.; Xia, D.; Qin, W.; Zhou, R.; Zhou, X.; Zhou, Q.; Liu, W.; Dai, X.; Wang, H.; Wang, S.; Tan, L.; Zhang, D.; Song, H.; Liu, X.-Y.; Qin, Y., Chem 2017, 2, 803-816.
112. Burchat, A. F.; Chong, J. M.; Nielsen, N., J. Organomet. Chem 1997, 542, 281-283.

[^0]: Scheme 2.7

