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Abstract

Smart meters (SMs) provide advanced monitoring of consumer energy usage, thereby
enabling optimized management and control of electricity distribution systems.
Unfortunately, the data collected by SMs can reveal information about consumer
activity, such as the times at which they run individual appliances. Two approaches
have been proposed to tackle the privacy threat posed by such information leakage.
One strategy involves manipulating user data before sending it to the utility provider
(UP); this approach improves privacy at the cost of reducing the operational insight
provided by the SM data to the UP. The alternative strategy employs rechargeable
batteries or local energy sources at each consumer site to try decouple energy usage
from energy requests. This thesis investigates the latter approach.

Understanding the privacy implications of any strategy requires an appropriate
privacy metric. A variety of metrics are used to study privacy in energy distribution
systems. These include statistical distance metrics, differential privacy, distortion
metrics, maximal leakage, maximal α-leakage and information measures like mutual
information. We here use mutual information to measure privacy both because its
well understood fundamental properties and because it provides a useful bridge to
adjacent fields such as hypothesis testing, estimation, and statistical or machine
learning.

Privacy leakage under mutual information measures has been studied under a
variety of assumptions on the energy consumption of the user with a strong focus
on i.i.d. and some exploration of markov processes. Since user energy consumption
may be non-stationary, here we seek privacy guarantees that apply for general
random process models of energy consumption. Moreover, we impose finite capacity
bounds on batteries and include the price of the energy requested from the grid,
thus minimizing the information leakage subject to a bound on the resulting energy
bill. To that aim we model the energy management unit (EMU) as a deterministic
finite-state channel, and adapt the Ahlswede-Kaspi coding strategy proposed for
permuting channels to the SM privacy setting.

Within this setting, we derive battery policies providing privacy guarantees
that hold for any bounded process modelling the energy consumption of the user,
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including non-ergodic and non-stationary processes. These guarantees are also
presented for bounded processes with a known expected average consumption. The
optimality of the battery policy is characterized by presenting the probability law
of a random process that is tight with respect to the upper bound. Moreover, we
derive single letter bounds characterizing the privacy-cost trade off in the presence of
variable market price. Finally it is shown that the provided results hold for mutual
information, maximal leakage, maximal-alpha leakage and the Arimoto and Sibson
channel capacity.
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Ī(∆) denoting lower bound and upper bound respectively. . . . . . . 88

4.8 Information leakage I(∆) against standard deviation of the market σ

with I(∆), I(∆) and Ī(∆) denoting lower bound, exact value, and
upper bound respectively. . . . . . . . . . . . . . . . . . . . . . . . . 88

5.1 Evolution of the battery state when no energy is introduced into the
battery, where zi = s0 − σ(xi) takes values in the grey area. . . . . . 94

5.2 Information leakage I(∆) against privacy budget with I, I and Ī
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Chapter 1

Introduction

1.1 Smart Grid

The electricity grid was designed around the prevailing production and consumption
paradigms of the 20th century. At that time, the energy landscape was dominated by
few large power stations, e.g. nuclear, coal, gas, whose production capacity could be
increased or reduced on demand. This allowed for power generation to be adjusted
to match the power consumption, with generation costs increasing with the peak
power, as the more expensive stations were turned on. The small number of power
sources allowed precise monitoring of the power grid by relatively few sensors placed
primarily on the high and medium voltage grids [15]. Failure of any of the large
power stations, or critical grid connections, could lead to a large scale failure of the
grid [16]. However, due to the few players involved, grid failures and disruptions
were relatively infrequent and could be solved in an ad-hoc manner [17]. This linear,
one-way, behaviour is depicted in Figure 1.1.

Figure 1.1. Traditional model of the electricity grid showing a one-way system
formed by (left to right) large power generation station, high voltage transmission
grid, medium/low voltage distribution grid, consumers [1]

.

However, the evolving energy scenario and the emerging challenges of the 21st
century urge for a modernization of the electricity grid. The growing climate crisis
requires the reduction of greenhouse gas emissions, with specific targets set in the
Paris agreement [18]. At the same time, the world energy consumption is predicted
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to increase by 48% from 2012 to 2040 [19], driven by population growth, rise of the
GDP per capita and increased penetration of electric vehicles among others [20]. In
the UE for example, the 2030 Energy Strategy [21] includes the following targets:

• a 40% cut in greenhouse gas emissions compared to 1990 levels,

• at least a 32% share of renewable energy consumption, with an upward revisions
clause for 2023,

• indicative target for an improvement in energy efficiency at EU level of at least
32.5%, following on from the existing 20% target for 2020,

• support the completion of the internal energy market by achieving the existing
electricity interconnection target of 10% by 2020, with a view to reaching 15%
by 2030.

Thus, large-scale introduction of renewable energy sources, and more efficient energy
generation, distribution, and consumption are required [22]. However, the distributed
and stochastic nature of renewable energy sources presents new challenges that call
for a change of paradigm in the electricity grid. In the following we discuss those
challenges.

The amount of energy generated by traditional power plants can be increased
or reduced when required. However, the amount of energy generated by renewable
energy sources is governed by stochastic factors outside engineering control such as
solar radiation or wind speed. Moreover, there exists a strong geographical correlation
of the atmospheric factors determining the power harvesting capabilities. This implies
that the energy production of large geographical areas fluctuates randomly. For these
reasons, the energy generation in this setting can no longer be adjusted to match
the energy consumption. There are three main approaches to tackle this problem.
The first approach relies on storing energy when production exceeds demand, and
consuming it otherwise. A second approach relies on increasing the interconnection
between distant areas. Thus, the weaker correlation between distant areas and
the diversity of sources reduces the variability of the energy production. A third
approach is to match the demand to the generation, incentivizing consumers to shift
their energy demand to off-peak times. None of these solutions are perfect, and a
combination of the three is required in the grid of the future.

Renewable energy sources, in particular wind and solar power that are predicted
to account for 13.7% and 11.9% of the total energy generation by 2040 [20], are
distributed in nature. Thus, the large scale adoption of renewable energy sources
brings forth a new paradigm, where the grid is no longer dominated by a few large
centralized power plants but by a large number of energy sources distributed across the
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grid. Therefore, new schemes need to adapt to Distributed Energy Resources (DER),
where multitude of agents generate electricity in different parts of the grid, as opposed
to a few agents injecting power at very specific locations. At the same time, the
advent of electric cars and batteries supporting available DER is predicted to increase
the number and diversity of Distributed Energy Storage Systems (DESS). These
small sources and storage systems are usually connected directly to the distribution
grid (low voltage) whereas traditional electricity generators are connected to the
transmission grid (high voltage). Large scale introduction of this sources requires
fine management in the low voltage regime, increasing the need for precise energy
consumption and production monitoring on the distribution grid.

Furthermore, the increasing dependency on the electricity supply and recent
cyberattacks on the power grid call for a re-examination of the current failure and
attack prevention mechanisms. This is exemplified by the December 2015 attack
on Ukrainian electricity grid that switched off 30 substations leaving about 230
thousand people without electricity for multiple hours [23]. Examples of accidental
grid failures are the 2003 US Northeast blackout affecting 55 million people for
multiple days [16]; or more recently the 2012 Indian blackout affecting 620 million
people, or around 9% of the world’s population [24]. With an increasing number
of players distributed across the grid and governed by diverse stochastic sources,
the grid must be redesigned to include self healing capabilities and rapid recovery
from failure, disconnection or sudden power injections by one or multiple correlated
players.

The so called smart grid aims to update the existing grid to the new challenges of
the 21st century described above. The smart grid is defined by the EU Commission
Task Force for Smart Grids as follows.

Definition 1.1. [25] A Smart Grid is an electricity network that can cost efficiently
integrate the behaviour and actions of all users connected to it – generators, consumers
and those that do both – in order to ensure economically efficient, sustainable power
system with low losses and high levels of quality and security of supply and safety.

Though elements of smartness also exist in many parts of existing grids, the
difference between a today’s grid and a smart grid of the future is mainly the grid’s
capability to handle more complexity than today in an efficient and effective way.
A smart grid employs innovative products and services together with intelligent
monitoring, control, communication, and self-healing technologies in order to:

• Better facilitate the connection and operation of generators of all sizes and
technologies.

• Allow consumers to play a part in optimising the operation of the system.
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• Provide consumers with greater information and options for how they use their
supply.

• Significantly reduce the environmental impact of the whole electricity supply
system.

• Maintain or even improve the existing high levels of system reliability, quality
and security of supply.

• Maintain and improve the existing services efficiently.

• Foster market integration towards European integrated market

Figure 1.2 depicts a simple smart grid model with distributed and highly inter-
connected energy storage and stochastic energy sources.

Figure 1.2. Smart grid model depicting a highly interconnected system with dis-
tributed energy storage capabilities and stochastic energy sources connected at
different points of the grid [1].

We now describe the main actors, components and the energy market aiming to
provide the natural self-balancing behaviour of the grid.

A wide variate of actors participate in the smart grid. The following describes
some of the most relevant ones. The first actor is the consumer, sometimes called
prosumer if they also generate electricity. Consumers demand energy, typically
paying a fixed hourly rate for it. Another important actor is the Utility Provider
(UP) who serves as the middleman between generators and consumers. UPs must
balance their portfolio, matching the amount of energy they buy in the wholesale
market to the the energy consumed by their users. Two key players managing the grid
at a local level are the Meter Responsible Party (MRP) and the Distribution System
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Operator (DSO). MRPs and DSOs are responsible for the low and medium voltage
distribution network of a specific area, as well as for keeping quality parameters
within the limits set by the regulator. The Transmission System Operator (TSO)
is responsible for the high voltage transmission network, and for balancing the grid
i.e. matching production and demand, at all times. Large generators and consumers
are typically connected to the transmission network. Finally, the regulator audits
the operation of the grid and designs technical regulations such as the European
standard EN 50160 [26].

Energy markets are a key component of the electricity grid, enabling the self-
balancing of the grid, matching generation and demand. There are three energy
markets: the wholesale, the balancing and retail market. The retail market trades
electricity between users and suppliers, market prices typically follows fixed tariff
based on long term contract. The wholesale market trades large amounts of energy
between suppliers and generators. The price is determined by competitive negotiation.
Here electricity is traded for time for every settlement period, typically around half-
hourly, with a submission deadline to negotiate before. The balancing market,
managed by the TSO aims to match consumption and supply in real time. Therein,
the TSO is able to buy energy in the balancing market or activate strategic reserves.

Smart meters are advanced metering devices that measure electricity consumption
and generation data, as well as operational grid data to the MRP multiple times per
hour. The MRPs then transfer the required data to the DSO and UP allowing them
to automate grid management and bill the user for the consumed energy. SMs allow
for managing the grid at a local level, balancing stochastic power injections with
a responsive demand that reduces the requirements to increase the grid capacity
and its associated cost. SMs also contain an off-switch, allowing the provider to
disconnect the household from the grid in case of grid failure, in order to avoid a
full-scale blackout. Moreover, SMs also send measurements about quality such as root
mean square voltage variations (voltage drop-out, sags and swells, total harmonic
distortion...) helping the DSO fulfil its duties. Furthermore, this infrastructure also
enables dynamic energy pricing, shifting user demand to match energy generation
[27, 28]. SMs also communicate their readings to the Home Area Network (HAN)
gateway. This enables the introduction of energy consumption indicators for the
user, raising awareness of the energy cost. Energy consumption indicators have been
reported to reduce the energy consumption up to 15% [29].

For these reasons the roll out of SM is currently taking place world-wide. The
EU directive 2009/72/EC [30] states “Where roll-out of smart meters is assessed
positively, at least 80% of consumers shall be equipped with intelligent metering
systems by 2020.”. Expenditure required on the UK electricity grid between 2012 and
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2050 is estimated to drop from £46bn if only conventional technologies are employed,
to £27bn if a smart grid is deployed [31].

1.2 Privacy

The University of Cambridge dictionary defines privacy as: the right that someone
has to keep their personal life or personal information secret or known only to a small
group of people [32]. A selection of mathematical definitions of privacy are presented
in Section 2.2. However, it is clear by the wide range of metrics and the lack of
consensus inside the engineering community that finding an adequate mathematical
definition of privacy is still an open problem.

Despite disagreements over how to measure privacy, there is a growing body of
literature addressing privacy. This interest is partly fostered by some recent privacy
breaches, such as the Cambridge Analytica scandals revealed in early 2018, that
collected personal data from millions of Facebook users without their consent [33].
As another example, in 2019 it was revealed that some of the audio recorded by
the voice assistant from Amazon, Google and Apple are listened and reviewed by
humans, who have reported to overhear private conversations [34]. Another scandal
is the one revealed in 2005, where it was discovered that, in an attempt to combat
piracy, Sony BMG CDs were purposely infected with malware that sent the private
listening habits and the IP of the user to the companies headquarters [35].

However, privacy breaches are not always intentional. In 2006 Netflix published
10 million film rankings by 500,000 as a research challenge. The data was anonymized
by replacing users names and personal information with random numbers. However,
correlations analysis with IMDB allowed for de-anonymization of some users, re-
vealing the content they watched on Netflix [36]. On another example, using public
anonymous data from the 1990 census, [37, 38] shows that 87% of the 248 million
population in the United States is uniquely identified by their five-digit ZIP code,
gender and date of birth, reducing the geographical resolution to city/towns or even
counties uniquely identifies 50% and 18% of the population respectively. This is
specially worrying if one takes into account that, at the time of that study, many
states in the US published “anonymized” healthcare data for research purposes where
ZIP code, gender and date of birth were linked with medical history [37].

Within the electricity grid, precise fine-grained information about energy con-
sumption can be used to infer sensitive information about the users [39, 40]. Every
electrical device has a characteristic energy consumption profile [41]. This consump-
tion signature can be compared against the fine-grained data provided by the smart
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meters. Techniques such as Non-Intrusive Load Monitoring (NILM) [42] use the
information collected by smart meters to infer sensitive information about users [43–
45]. In the case of households, human presence [43], patterns on domestic appliances
[46], amount of sleep [47, 48], breakfast habits [46, 47], home presence during sick
leave [47] or tuned TV channel [49, 50] are among the large list of events disclosed
by smart meters. In the case of industry, it can leak acquisition of new machines,
number of items manufactured in a day, broken machinery or out of hours working
[47] among others. This information is of great personal, social and economical
importance for companies or individuals.

Not surprisingly, leakages of energy consumption data have also been reported
[43, 49]. In 2012 researchers in the USA revealed that the data collected by SMs
in their area was sent to the UP as plain text [43]. This data contained real time
consumption every 30 seconds as well as the ID of the user. It was also noted that the
ID of SMs was printed on the front face of the meters, with the majority of SMs being
placed outside the households, making de-anonymization simple. Researchers were
able to monitor SMs in a range of up to 300 meters with a single antenna, identifying
unoccupied residences and living routines. In 2009 two laws aimed to enforce the
usage of SMs were blocked by the Senate of the Netherlands motivated by the privacy
concerns that emerge as a result of the increased penetration of SMs [51]. This
hinders the implementation of the smart grid. It is then paramount to understand
and characterize the fundamental tradeoff between operational performance and user
privacy.

1.3 Smart meter privacy

There is a different degree of overlapping between the data required by the service
provider and the sensitive data that the user may not want to disclose. The local
GP for instance requires access to the medical record of a patient, this information is
the same that the user might want to keep private. However, in the smart grid, the
information required by the grid operators, i.e. power generation/consumption, is
different to the sensitive data that is required to keep private, i.e. what that power
is used for. The operator does not need to know what electrical devices are used for,
but a function of that data, e.g. the aggregated power consumption. This brings in
a fundamental question, is it possible, and to what extend, to increase the privacy of
the user while preserving the utility of the data for the provider.

The introduction of SMs has brought forth a growing body of literature addressing
the conflict between efficient energy monitoring and privacy. In [52, 53] obfuscation
of the knowledge that the utility provider (UP) has about the energy consumption
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of the user is studied. Indeed, in the case in which the SM readings are the
only source of information available to the UP obfuscation yields some degree of
privacy. Obfuscation is achieved by different mechanisms, such as aggregating the
consumption of multiple users [52], compression of the energy consumption sequences
[53] or homomorphic encryption [54] among others. These techniques suffer from
different shortcomings. Firstly, data aggregation and noise addition reduce the
utility of the data provided to the DSO and UPs, preventing DSOs from accurately
monitoring the grid, and limiting the benefits of SMs. Another shortcoming is the
ability of the DSO or any eavesdropper to monitor the energy consumption of a user
by other means [55]. Finally, many of these solutions still rely on a trusted party to
aggregate or obfuscate the data.

A different approach to the problem arises in settings where the user has access to
alternative energy sources [9, 56] or energy storage devices [57–59]. In this case, the
UP has perfect knowledge of the energy provided to the user, but the user employs
the alternative energy source and the energy storing capability of the system to
dissociate the energy consumed by the appliances from the energy provided by the
UP. This thesis focuses on the latter approach.

1.4 Overview and contributions

The aim of this thesis is to characterize the fundamental limits governing smart
meter privacy in the presence of energy storage devices.

• In Chapter 2 we review the different system models proposed in the literature,
presenting an integrated perspective of the different models. Subsequently,
we introduce the main privacy metrics studied in the literature. Finally, we
review the state of the art in smart meter privacy for scenarios in which local
energy sources or local energy storage are available. This review shows the
importance of characterizing privacy guarantees that hold for a wide class of
energy consumption processes modelling the energy consumption of the user.

• In Chapter 3 we present universal privacy guarantees for EMUs with access to a
finite capacity battery. Therein we provide mathematical guarantees that hold
for any bounded energy consumption process. We further extend the analysis
to characterize bounded processes with a given expected energy consumption.
The bounds are shown to be tight by proposing an energy consumption process
that achieve the upper bound for any feasible battery policy implemented
by the EMU. The contents of this chapter were published on the 2017 IEEE
Proceedings on International Conference on Smart Grid and Communications,
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Dresden, Germany under the title “Smart meter privacy via the trapdoor
channel” [60].

• In Chapter 4 we address the impact of variable market prices on the privacy
guarantees. This allows us to characterize the impact of privacy optimization
on the energy bill and on the self-balancing capacity of the grid. Therein
we provide upper and lower bounds on the minimum achievable information
leakage under a constraint on the energy bill. The contents of this chapter
were published on 2019 IEEE International Symposium on Information Theory,
Paris, France under the title “Universal Privacy Guarantees for Smart Meters”
[61].

• In Chapter 5 we provide single letter bounds to the information leakage and
extend the obtained results to maximal leakage and maximal α-leakage. To
this aim, we provide upper and lower bounds on the cardinalities of the mini-
mal covering and packing sets. This allows for a tight characterization of the
information leakage when no privacy budget is available. The extension to
other metrics is done by proving a more general result showing that under cer-
tain conditions, maximal leakage, maximal α-leakage and mutual information
coincide.





Chapter 2

Literature review

In this chapter, we describe the state of the art in smart meter privacy when the
energy management unit has access to energy storage devices or local energy sources.
In Section 2.1, we present an integrated view of the different system models proposed
across the literature. In Section 2.2, we focus on the most common privacy metrics
studied in the literature. Subsequently, Section 2.3 studies the different solutions
and techniques developed for smart meter privacy. Finally, in Section 2.4, we review
the previous sections, identifying a research gap in the literature and presenting our
main problem formulation for this thesis.

2.1 System model

In this section, we present an integrated perspective of the different system models
employed across the literature. To this aim, we follow the main body of literature in
employing a discrete time model. This is grounded on the fact that digital systems
operate in discrete time and motivated by the better tractability presented by discrete
time models. Within this setting, at time step i, the user consumes Xi ∈ X ⊆ Z units
of energy. To satisfy this consumption, the energy management unit (EMU) has
access to four different sources of energy: the utility provider (UP), energy harvesting
devices (EHD), energy storage devices (SD) and alternative energy sources (AES).
This scheme is depicted in Figure 2.1. Moreover, the EMU is typically constrained
to avoid any power outage or energy waste. Thus, the EMU must create a request
sequence that meets the energy demands of the user and does not request energy it
cannot use or store, i.e.

Yi = Xi − Vi − Ei + ∆Si, (2.1)
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Figure 2.1. Integrated system model.

where Yi denotes the energy requested from the UP, Vi and Ei denote the energy
generated by the AES and EHD respectively, and ∆Si = (Si+1 − Si) denotes the
energy stored or consumed from the battery.

Other alternatives explored in the literature include demand shifting and energy
waste. Demand shifting implies leaving the demand of the user unsatisfied, forcing
the consumption to be cancelled or rescheduled, this approach is studied in [62, 63]
under different non information-theoretic metrics and joint energy bill optimization.
Wasting energy, e.g. by dissipating it as heat, is also proposed in [13] as a way
to increase the privacy of the user.Multiuser scenarios are proposed in [10]. The
scenario of one user with access to two energy storage devices connected together is
proposed in [64] for independent and identically distributed (i.i.d.) inputs.

Our interest on this model arises with the introduction of the smart meter (SM)
and the variable market price m ∈ Rn. Variable market prices introduce an extra
constraint on the EMU, as a budget constraint is typically imposed by the user,
forcing energy requests Yi to be shifted towards more economical time slots. Finally,
the privacy risk posed by the fine grained energy consumption data that the SMs
sends to the UP is centre to our attention in this thesis. The different elements of
this system models are described in greater details in the following subsections.

2.1.1 Smart meters

Smart Meters periodically send electricity consumption and generation data to the
MRP, which further distributes the necessary data to the DSO and the UP. MRP
are also able to send commands to the SM, e.g. to request log files [15].

The European Union recommends smart meters should send integrated energy
measurements every 15 minutes in order to enable the proper functioning of the
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Smart Meter Model Time Resolution

Itron Centron 1 min
REX2 5 min

Kamstrup Omnipower 5 min
Enel Open Meter 15 min

Table 2.1. Smallest time resolution of currently used SMs [65].

smart grid. Current specifications in the UK mandate resolutions of 30 minutes.
Table 2.1 shows the smallest rime resolution of currently employed SMs. However,
the real sampling capabilities of smart meters are above these values, with real time
consumption data being displayed to users every 10 seconds in some devices [66].
Moreover, this resolution is expected to increase with the introduction of additional
renewable energy sources and the diversification of sources and producers in the
smart grid.

In our discrete time model, each time step represent a measurement from the
SM. Thus, the time resolution of our model matches that of the SM. This comes
with no loss of generality and enables the information metrics to capture the real
information captured by the smart meter. More generally, this model generalizes
to any metering device, such as the ones commercially available to monitor the
consumption behaviour of the user [55].

2.1.2 Energy consumption

The energy consumption of the user, is modelled as a discrete time stochastic process
Xn taking values in a real or discrete alphabet, i.e. X ⊆ R or X ⊆ Z respectively.
The discrete nature of the consumption alphabet is usually assumed for the sake
of simplicity and justified by the limited precision of energy devices in real power
systems.

As seen in Figure 2.2, the energy consumption of typical users tends to exhibit
non-stationary dynamics. A review of public datasets containing energy consumption
profiles of real users is presented in [67]. This non-stationary behaviour, together
with the high dependency of the consumption across different users calls for the
adoption of a unified, simplified energy consumption model. Three main approaches
are explored in the literature in order to model the statistics of energy consumptions.
For the simpler and better understood model, the energy consumption of the user
is assumed to be i.i.d.. Although the energy consumption of typical users exhibit
strong time correlations [2], the i.i.d. assumption provides a first foundational step,
enabling the single letter characterization of privacy measures [14]. A more refined
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Figure 2.2. An example of energy consumption over the course of a day for one of
the houses in REDD [2].

approach models the energy consumption as a Markov process. This model better
captures the real dynamics of the system, opening the door to more complex models,
such as hidden Markov models, which could arguably model the energy consumption
with higher accuracy [2, 68]. The third family of approaches, relies on avoiding
the need for probabilistic models. This is done by considering offline policies [7],
adopting distribution independent metrics such as maximal leakage, or by learning
an approximation of the system dynamics online [69].

2.1.3 Energy storage device

Electric batteries, and more generally energy storage devices, are devices capable of
storing energy and later converting it into electrical power, usually in the form of
direct current. With the advent of local energy sources and the rapid adoption of
electric cars, the availability of energy storage devices, and more specifically electric
batteries, is predicted to increase [20]. Table 2.2 presents some of the batteries
currently available in the market. Most providers guarantee 10.000 charge/discharge
cycles of battery life or up to 10 years of life. Some exceptions to this rule such as
the powervault ECO, which employ second hand car batteries, and thus provide
shorter guarantees of 3 to 5 years. Most commercially available batteries are based
on Lithium-ion technology. This batteries provide a lower life-time cost and provide
higher efficiency levels than previous batteries based on lead acid and cheaper in
terms of upfront cost.

Definition 2.1. A battery is said to have capacity β, maximum power discharge
rate Pmin and maximum charging rate Pmax when the amount of energy stored in the
battery at time step i ∈ J0, n− 1K satisfies

0 ≤ Si ≤ β, (2.2)
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Supplier Capacity
(kWh)

Peak Power
(kW)

Approximate
Cost (£)

BYD B-BOX 1.28 - 441.6 12.8 1,700
Enphase 1.2 0.27 1,700

LG Chem Resu 2.9 - 9.3 3 - 5 2,628
Moixa Smart Battery 2 - 3 2.4 2,950

Powervault 3 4.1 - 20.5 0.8 - 5.5 2,000
Puredrive ESS 4.8 - 9.6 3 3,492
Samsung SDI 3.24 2 3,500

Simpliphi 0.58 - 3.2 1.5 -
Solax Battery 3.3 - 6.5 6 1,920

Sonnen Batterie Eco 2 - 16 3 - 8 4,500
Tesla Powerwall 2.0 13.5 5 7,750

Varta Pulse 3.3 - 6.5 1.8 - 2.5 3,579
xStorage by Nissan 3.6 - 6 2.52 3000

Table 2.2. Battery models [65, 70].

and the amount of energy stored or consumed from the battery between two consecutive
time steps satisfies

−Pmin ≤ Si+1 − Si ≤ Pmax. (2.3)

It is important to note that batteries are damaged by repeated charging and
discharging cycles. Hence the usage of batteries for privacy optimization might
shorten the life span of batteries. Therein privacy optimization might push batteries
above the typical guarantees of 10, 000 cycles during 10 years, i.e. around 2.75
charge/discharge cycles per day. The wear and tear of the battery is considered in
[71–74] where the damage produced to the battery by the charging and discharging
process is considered. Therein, the damage is measured by the following cost function:

D(Sn) =
n−1∑
i=0

1{Si+1 ̸= Si}, (2.4)

where 1{Si+1 ≠ Si} is one when the battery is being charged or discharged. The
privacy optimization is then performed subject to a constraints on the damage inflicted
to the battery. Finally, [7] considers more complex and realistic battery models,
including thermal and chemical energy storage devices where multiple parameters
such as capacity, minimum and maximum charging rates, initial battery state, and
charging efficiency factor are considered in the model.
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2.1.4 Local energy generation

In some scenarios, users have access to local energy sources. These sources can be
broadly classified in two groups:

• Alternative Energy Sources (AES) or on-demand sources, where the user
controls the dynamics of the energy generation process, e.g. a petrol generator.

• Energy Harvesting Devices (EHD) or stochastic sources, where the generation
process is governed by external forces, e.g. a solar panel or wind turbine.

In the case of AES, the energy generated at time i, and denoted by Vi, is controlled
by the user. This generation mechanism is subject to the physical constraints of the
underlying source. These constraints are typically modelled as an average P and a
peak power P̂ generation constraint, i.e.

Π(P , P̂ ) =
{

PV n : E
[

n−1∑
i=0

Vi

]
= P and 0 ≤ Vi ≤ P̂ for all i

}
. (2.5)

In the case of EHD the generated energy at time step i is modelled by Ei, with
the stochastic process En taking values in alphabet En with distribution PEn . This
stochastic process is usually governed by atmospheric factors, such as wind speed or
sun radiation, which can be assumed to be similar across large areas. Thus, the UP
has access to statistical information about the energy generated by the stochastic
source, either by implementing their own sensors, checking publicly available data,
or by inferring it from the consumption of nearby users. The type and installed
capacity of alternative energy sources is not directly available to the UP. The level
at which the UP knows the statistics of the energy generation process is modelled in
a variety of ways across the literature.

2.1.5 Energy bill

Dynamic energy pricing, where the price for the energy varies along the day, plays
a key role in the smart grid. In this setting, dynamic prices are expected to shift
the demand of users adapting it to the generation peaks and valleys introduced by
renewable energy sources [28, 29]. Energy storage devices are expected to play a key
role helping user shift their demand towards cheaper, more environmentally friendly,
time slots [75]. This sets a two objective optimization problem on the storage device,
where joint privacy-cost optimization is required. Buying energy when it is cheaper
reduces the power bill but might not be optimum from a privacy perspective (and
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Figure 2.3. Example of market price evolution over time [3].

vice versa). Understanding the relationship between privacy and cost can help find
interesting tradeoffs.

In the UK, the two most common variable tariffs, provided by the six major
utility providers are UK Economy 7 and UK economy 10. UK economy 7 offers
7h/day of reduced off-peak prices over night, with the exact times depending on the
region, as shown in Figure 2.3. Another popular tariff is UK economy 10, which
offers 10 hours of reduced off-peak energy prices split in three blocks, usually between
1-4pm, 5-7pm and midnight to 5am. This variable price system, where the users
pays a predefined price that varies in blocks of different lengths (always larger than
the sampling period of the SMs) is the most common variable price tariff worldwide
[15]. Interestingly, [76] offers real time prices for the consumers, which can register to
receive notifications or program their smart appliances to be switched when market
prices fall down.

Variable market prices are considered in [6, 77–80]. Therein, the energy bill
is calculated by multiplying the energy request sequence Y n, by the market price
m ∈ Rn, i.e. the energy bill results in

B(Y n) =
n−1∑
i=0

miYi = mT Y n. (2.6)

Mirroring the market price paid by users in real scenarios [81], it is often assumed,
without loss of generality, that the market price is constant over each of the K blocks
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Figure 2.4. Example of market price evolution over time depicting prices on the
Iberian Peninsula on Monday July 5, 2010 [3].

of time. The duration of the k-th block, with k = 0, 1, . . . , K − 1, is denoted by lk,
giving

m = (m0, . . . , m0︸ ︷︷ ︸
l0

, m1, . . . , m1︸ ︷︷ ︸
l1

, . . . , mK−1, . . . , mK−1︸ ︷︷ ︸
lK−1

), (2.7)

where mk denotes the market price during block k, and the k-th market change takes
place at time step tk = tk−1 + lk−1 with k = 1, 2, . . . , K and t0 = 0. An example of
this model is pictured in Figure 2.4.

The privacy-cost tradeoff is analysed with a deviation from the average metric
for scenarios in which the user energy consumption is known in advance [6] or is
estimated by an online control algorithm [80]. In [79] bounds on the privacy-cost
tradeoff are provided for scenarios where the user is allowed access to an energy
storage device and privacy is measured with mutual information.

2.2 Privacy metrics

Before discussing the existing solutions aiming to maximize the privacy of the users, it
is paramount to answer a more fundamental question: what do we mean by privacy?
And in particular: How do we mathematically measure privacy? An overview of
some of the most common privacy metrics proposed in the literature follows. A
more comprehensive review of different privacy metrics describing over eighty privacy
metrics is presented in [82].



2.2 Privacy metrics 19

2.2.1 Quadratic deviation

State of the art non-intrusive load monitoring (NILM) algorithms employ the differ-
ences in consecutive load measurements or features, i.e. Yi+1 − Yi, to detect when
appliances are switched on or off [83, 44]. Furthermore, it is clear that an EMU
that maps every consumption sequence x ∈ X n to the same (typically constant)
request w ∈ Yn leaks no information about the behaviour of the user. However, this
mapping is generally infeasible, as it is not allowed by the battery constraints. A
simple way of measuring how much the consumption of the user Y n deviates from a
non-informative output w is the quadratic deviation.

Definition 2.2. Given a joint probability distribution PXn,Y n, and a sequence w ∈ Rn,
the quadratic deviation or mean squared error is given by

V(w) ∆= 1
n
E

[
∥Y n −w∥2

2

]
, (2.8)

where the expected value is taking with respect to PXn,Y n.

In [71, 75, 84] the non-informative output w is considered constant over time, i.e.
wi = E[1/n

∑n−1
j=0 Xj] for all i, while [78] considers w to be a function of the market

price, i.e. wi = f(mi). Further joint variance-cost optimizations are considered in
[6, 80].

The additive character of V(w) provided by the ℓ2-norm simplifies the calculation
of this privacy metric. However, it is unclear whether this metric captures the
fundamental properties of privacy. As an intuitive example of this shortcoming,
consider, for any finite a ∈ R, the deterministic one to one mapping:

Y n = Xn/a + w. (2.9)

Therein, the privacy leakage measured by the quadratic deviation

V(w) = E[(Xn)T Xn]/a, (2.10)

can be made arbitrarily small by increasing the constant a. However, it is clear
that the proposed mapping provides no privacy, as the UP can uniquely recover the
consumption Xn from the request Y n, i.e.

Xn = a(Y n −w). (2.11)

While this metric provides some interesting insights, a stronger mathematical foun-
dation is needed.
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2.2.2 Fisher information

Fisher information is a measure of information typically used in mathematical
statistics. Given a random variable Y , with probability distribution parametrized by
parameter θ, Fisher information measures the information that Y contains about the
parameter θ. Intuitively, for any given realization y and parameter θ the score, i.e.

ℓ′
θ,y = ∂

∂θ
log PY |Θ(y|θ), (2.12)

measures how sensitive the probability distribution is to changes in the parameter θ.
Low score values imply that it is hard to accurately estimate θ upon observation of
y. Following this intuition, the Fisher information is defined as the variance of the
score, i.e.

I(θ) ∆= E

[(
ℓ′

θ,y −E[ℓ′
θ,y]
)2
]
, (2.13)

where the expected value is taken over the conditional probability distribution
PY |Θ=θ. It can be shown that the expected value of the score satisfies E[ℓ′

θ,y] = 0,
and therefore, the Fisher information is given by

I(θ) = E

[(
ℓ′

θ,y)2
]

=
∫ (

∂

∂θ
log PY |Θ(y|θ)

)2

log PY |Θ(y|θ)dy. (2.14)

In the smart meter privacy context the interest is not in estimating a single parameter
θ, but a sequence x ∈ X n. Thus, the matrix form extension of the Fisher information
is used in [74] as a measure of privacy.

Definition 2.3. The Fisher information matrix is given by

I(x) ∆=
∫

PY |X(y|x)
[

∂ log PY |X(y|x)
∂x

]
×
[

∂ log PY |X(y|x)
∂x

]T

. (2.15)

Interestingly, as a result of the Cramér-Rao bound [85], the Fisher information
matrix provides a lower bound on the variance of any unbiased estimator, specifically:

Tr
(
I(x)−1

)
≤ E

∥∥∥x̂(Y )− x
∥∥∥2

2
, (2.16)

where Tr(·) denotes the trace operator. In the context of SM privacy, this provides
an operational meaning to the Fisher information, as described in [74].
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2.2.3 Hypothesis testing

Intuitively, one can say that a system achieves a high level of privacy if it is hard for an
attacker to determine which of a set of hypothesis about the user H = {h0, h1, ..., hK}
is true. Examples of possible hypothesis include determining whether the user is
at home or not H = {h0 : user is at home, h1 : user is not at home} or whether
the user is watching TV or not H = {h0 : TV is on, h1 : TV is off}. In the most
common case of binary hypothesis testing, the attacker is subject to two types of
errors, i.e. rejecting the null hypothesis h0 when it is true, and failing to reject it
when it is false. These errors are described in the following table:

h0 is true h1 is true

Fail to reject h0 Right decision Type II error
Reject h0 Type I error Right decision

The probabilities of Type I error and Type II error are denoted by pI and pII

respectively. The Neyman-Pearson lemma [86] shows that the optimal decision
region is given by the likelihood ratio test:

Ch0 =
{

x ∈ X : PX|H(x|h0)
PX|H(x|h1)

≥ λ

}
. (2.17)

Therein, hypothesis h0 is rejected when x ̸∈ Ch0 and vice versa. For a fixed Type I
probability of error, the minimum achievable Type II probability, and its asymptotic
exponential decay rate, are used in [8, 87–89] as privacy metrics, yielding the following
definition.

Definition 2.4. Given a joint probability distribution PX,Y , a set of two mutually
exclusive hypothesis H = {h0, h1}, and a constraint pI ≤ α on the Type I probability
of error, the privacy level is given by the probability of Type II error, i.e.

p∗
II

∆= P[ Fail to reject h0 | h0 is false ], (2.18)

the asymptotic exponential decay rate of p∗
II is given by

r∗
II = lim

n→∞
− log p∗

II

n
. (2.19)

Interestingly, in [90], the minimum Type II probability of error p∗
II , is used as a

utility metric instead of a privacy metric. Therein, the disclosure mechanism must
allow the UP to infer information about one specific hypothesis, while minimizing
the global concept of privacy captured by mutual information.
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2.2.4 Differential privacy

Differential privacy, as originally proposed in [91] arises in the context of database
privacy. The underlying intuition behind differential privacy is that, for a disclosure
mechanism to be considered private, the outcome of any query A over two datasets
differing only in one element should be indistinguishable. The following definition
captures this notion.

Definition 2.5. Given an n-dimensional dataset Xn, a randomized algorithm to
answer query A is (δ, ϵ)-differentially private if for all x, x′ ∈ Xn that differ only in
one element, and all S ⊆ range(A)

P[A(x) ∈ S] ≤ eϵP[A(x′) ∈ S] + δ. (2.20)

Thus, for two datasets differing only on one element, the probability distribution
of the response to any query should be similar. Note that setting (δ, ϵ) = (0, 0)
implies perfect privacy, while letting δ = 1 or ϵ be sufficiently large implies no privacy
guarantee. Differential privacy in the smart meter context is proposed as a privacy
measure in [92].

Interestingly, in [93] an ordering between privacy metrics is presented. Therein,
a randomized mechanism PY |Xn , randomly mapping the input Xn to an output
variable Y , is defined as ϵ-mutual information differentially private (ϵ-MI-DP) if:

sup
i,PXn

I(Xi; Y |X−i) ≤ ϵ log e. (2.21)

Furthermore, a randomized mechanism PY |Xn is defined as ϵ-Kullback-Leibler differ-
entially private (ϵ-KL-DP) if for all neighbouring data sets x, x′:

D(PY |Xn=x∥PY |Xn=x′) ≤ ϵ log e. (2.22)

Finally, the following ordering is established:

ϵ-DP ⪰ KL-DP ⪰ MI-DP ⪰ (δ)-DP ⪰ (ϵ, δ)-DP, (2.23)

where α-DP ⪰ β-DP implies that for all β′ > 0 there exist an α′ > 0 such that α′-DP
implies β′-DP. That is, α-DP is a stronger privacy metric in the sense that for any
set of parameters defining the metric β-DP, there exist a set of parameters defining
α-DP such that α-DP implies β-DP. Furthermore, it is noted that

MI-DP = (ϵ, δ)-DP, (2.24)



2.2 Privacy metrics 23

when the cardinality of the database entries or the query response are bounded. Fi-
nally, links between differential privacy and Hypothesis testing are established in [94].
Therein, the degradation of differential privacy when multiple queries are responded
by the disclosure mechanism, i.e. the composition theorem, is characterized.

2.2.5 Maximal leakage and maximal α-leakage

Maximal leakage [95] considers an adversary that upon observation of a random
variable Y tries to guess a function of a related random variable X. This captures
an attacker that is not interested in estimating the consumption of the user X, but
some other related property U satisfying the Markov chain U −X − Y , e.g. whether
the user is at home. Specifically, the maximal leakage measures the logarithm of the
ratio between the probability of a correct guess of U when Y is observed, i.e.

P[U = Û |Y ]= max
PÛ|Y

E

[
PÛ |Y (Û = U |U, Y )

]
=
∑

y
max

u
PU,Y (u, y), (2.25)

where the equality follows by using maximum a posteriori probability (MAP) detec-
tion, and the probability of a correct guess without observing Y , i.e.

P[U = Ũ ]= max
PŨ

E

[
PŨ(Ũ = U |U)

]
= max

u
PU(u). (2.26)

This ratio aims to capture the multiplicative gain in estimation power provided by
observation of Y and is computed for the worst functional U , in order to capture
any possible function of interest. The following definition captures this idea.

Definition 2.6. Given a joint distribution PXY on finite alphabets X and Y the
maximal leakage from X to Y is defined as

L(X → Y ) ∆= sup
U−X−Y

log P[U = Û |Y ]
P[U = Ũ ]

, (2.27)

where U , Ũ and Û take values on an arbitrary finite alphabet U .

Interestingly, [95, Theorem 1] shows that the maximal leakage equals:

L(X → Y ) = log
∑

y∈Y
max

x∈X :PX(x)>0
PY |X(y|x)

 . (2.28)

This shows that the maximal leakage L(X → Y ) depends only on the support of
X and not on its distribution PX . Maximal α-leakage, a generalization of maximal
leakage with a stronger dependency on the distribution PX , is presented in [96] and
given by the following definition.
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Definition 2.7. Given a joint distribution PXY on finite alphabets X and Y the
maximal α-leakage from X to Y is defined as

Lmax
α (X→Y ) ∆= sup

U−X−Y

α

α−1 log
maxPÛ|Y

E

[
PÛ |Y (Û = U |U,Y )

α
α−1

]
maxPŨ

E

[
PŨ(Ũ = U |U)

α
α−1

] , (2.29)

with U and Û taking values on the same finite, but arbitrary alphabet.

The definition of Maximal α-leakage is equivalent to that of maximal leakage
when α goes to ∞, while it is equivalent to mutual information when α goes to 1 as
discussed in [96].

While the Shannon capacity of a channel PY n|Xn captures the number of messages
that can be reliably reconstructed at the receiver, maximal leakage impose no
reliability constraint. This idea is captured, for i.i.d. inputs, by the following equality
[97]:

C = lim
n→∞

max
PXn

1
n

I(Xn; Y n) = lim
ϵ→0

lim
n→∞

1
n
LC

ϵ (Xn → Y n) (2.30)

with the recoverable leakage defined by

LC
ϵ (X → Y ) ∆= sup

U−X−Y
P[U=Û |Y ]≥1−ϵ

log P[U = Û |Y ]
P[U = Ũ ]

. (2.31)

Interestingly, as noted in [95], the maximal leakage is equivalent to another notion
of leakage previously introduced in [98] under the same name and defined as

ML(X → Y ) ∆= sup
X

log P[X = X̂|Y ]
P[X = X̃]

= sup
U−X−Y

log P[U = Û |Y ]
P[U = Ũ ]

. (2.32)

2.2.6 Mutual information

Another approach to measure the information leakage, or the information obtain
by the UP, about the consumption X, upon observation of the request Y , is the
mutual information. In [99] Shannon proposes three fundamental properties that
any measure of information must satisfy. Specifically, any information metric H of a
random variable X on alphabet X must satisfy

• Breaking independent choices into successive choices does not increase nor
decrease the uncertainty of the outcome, i.e. for any independent X1 and X2

random variables H(X1 ×X2) = H(X1) + H(X2)
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• For equally likely events, i.e. P (x) = 1
|X | for all x ∈ X , the uncertainty increases

with the number of choices, i.e. H is a monotonically increasing function of
|X |.

• H should be a continuous function in P (X).

In [99, Theorem 2] Shannon shows that the only function satisfying the three axioms
is

H(X) = −K
∑
x∈X

PX(x) log PX(x), (2.33)

where K is an arbitrary constant typically set to 1, and log is usually the logarithm in
base 2 or e. Intuitively, the information metric or entropy function (2.33), measures
the average rate needed to describe X. The notion of entropy allows the following
generalization to joint entropy of X and Y :

H(X, Y ) = −
∑
x∈X

∑
y∈Y

PX,Y (x, y) log PX,Y (x, y). (2.34)

Moreover, the conditional entropy, or entropy of X given that Y is known, is given
by

H(X|Y ) = −
∑
x∈X

∑
y∈Y

PX,Y (x, y) log PX|Y (x|y). (2.35)

A natural extension capturing the amount of information about X obtained upon
measuring Y follows.

Definition 2.8. Given a joint distribution PY,X , the mutual information is given by

I(X; Y ) ∆= H(X)−H(X|Y ), (2.36)

where H(X) and H(X|Y ) capture the average rate needed to describe X when Y is
not known and when it is known respectively

Within this definition, the mutual information captures how much of the entropy
of X is explained by Y . The Venn diagram in Figure 2.5 helps contextualize the
different measures of entropy and mutual information explained above.

We now describe some fundamental properties shown by the mutual information.
More fundamental properties as well as detailed proofs are presented in [100]. Inter-
estingly, by the chain rule, the entropy of a collection of random variables is the sum
of the conditional entropies. Specifically, given n random variables X1, X2, · · · , Xn
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H(X|Y ) H(Y |X)

H(X,Y )

I(X;Y ) H(Y )H(X)

Figure 2.5. Venn diagram of mutual information

with mass probability p(x1, x2, · · · , xn), the entropy satisfies

H(Xn) =
n∑

i=1
H(Xi|X i−1). (2.37)

This property is preserved by the mutual information

I(Xn; Y ) =
n∑

i=1
I(Xi; Y |X i−1) (2.38)

which follow by definition of entropy and mutual information.

Moreover, the entropy of a random variable is always positive, i.e.

H(X) = −
∑
x∈X

PX(x) log PX(x) ≥ 0. (2.39)

This property follows by noting that PX(x) ∈ [0, 1] for all x ∈ X , and therefore
log PX(x) is always negative, yielding the negative sum greater or equal to zero. On
the other extreme, the entropy is always bounded by the logarithm of the cardinality
of the output alphabet, i.e.

H(X) ≤ log |X |. (2.40)

This follows from the concavity of the logarithm and the Jensen’s Inequality:

H(X) =
∑
x∈X

PX(x) log 1
PX(x) (2.41)

≤ log
∑
x∈X

PX(x) 1
PX(x) = log |X |. (2.42)
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Interestingly, the mutual information can be expressed in terms of the Kullback-
Leibler divergence [101] between two probability distributions

I(X; Y ) = D(PX,Y (x, y)∥PX(x)PY (y)), (2.43)

where the Kullback-Leibler divergence is given by

D(p∥q) = −
∑
x∈X

p(x) log p(x)
q(x) . (2.44)

This relation shows a different perspective on the mutual information, where mutual
information is a measure of divergence between the joint PX,Y (x, y) and the product
distributions PX(x)PY (y). The more independent or unrelated X and Y are, the more
the joint distribution resembles the product distribution, the smaller the divergence,
and the smaller the information about X contained in Y . A simple corollary of this
identity shows the non-negativity of the mutual information

I(X; Y ) = D(PX,Y (x, y)∥PX(x)PY (y)) ≥ 0. (2.45)

This implies that conditioning reduces entropy, i.e.

H(X) = I(X; Y ) + H(X|Y ) ≥ H(X|Y ). (2.46)

Interestingly, by the data processing inequality, post-processing cannot increase
the amount of information. Specifically, given three variables satisfying the Markov
chain X → Y → Z, the mutual information satisfies I(X; Y ) ≥ I(X; Z), i.e. no
transformation Y → Z can increase the information about X. This follows from
noting that by the chain rule

I(X, Y, Z) = I(X, Z) + I(X, Y |Z) = I(X, Y ) + I(X, Z|Y ), (2.47)

and using the fact that I(X, Z|Y ) = 0 by assumption and I(X, Y |Z) ≥ 0.

In some scenarios, as the one captured by maximal leakage, the provider is not
interested on the energy consumption sequence X, but on a function of it (e.g.
whether the user is at home). Thus, it is interesting to note that by the data
processing inequality, for any Markov chain U −X − Y such that U ⊥ Y |X it holds
that

I(U ; Y ) ≤ I(X; Y ). (2.48)
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Thus, the mutual information provides an upper bound on the information leaked
about any possible function U .

Another concern arising with the usage of mutual information as a privacy
measure is its heavy dependency on the input distribution PX . In other words, it
captures the information leaked by a specific distribution of the energy consumption.
However, the energy consumption of real users greatly varies between users and over
time, often presenting non-stationary behaviours.

2.3 Existing solutions and techniques

In the following we present some of the existing privacy preserving solutions and
techniques available in the literature. Some surveys of the current state of the art
are also available in [65, 47, 102, 103].

2.3.1 Heuristic policies

Heuristic policies are constructed based on human intuition of what good policies
should resemble. These policies are not derived in a systematic manner, as the
solution of a mathematical optimization process. Although in the absence of lower
bounds, they provide no guarantee of optimality, the heuristic origin of these policies
does not hinder the characterization of the resulting leakage according to different
privacy measures.

In the best effort (BE) algorithm [58], the EMU attempts to preserve the energy
requested form the grid constant over time. Therein, whenever allowed by the battery
constraints, the energy request at time i matches the request at the previous time
step, i.e. Yi = Yi−1. When such request is not possible, the battery is fully charged
or discharged. The authors of [58] proposed three different measures of information
leakage: Kullback-Leibler divergence, cluster classification, and regression analysis.
Intuitively, the larger the difference between the energy consumption and the request
the more private a system is. Thus, the authors suggest the usage of the empirical
Kullback-Leibler divergence between the input PXn and output PY n distributions.
The second metric proposed is based on cluster classification. This metric is based
on the idea that the power consumption {Xi} fluctuates around a set of values
depending on the underlying system, thus cluster classification of the output load
{Yi} is also employed as a measure of privacy. The third metric proposed is regression
analysis, and in particular the coefficient of determination R2, i.e. which proportion
of the residuals are explained by the model. These metrics are further discussed in
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Figure 2.6. Energy consumption Xn (top) and energy request Y n (bottom) when
NILL proposed in [4] is used with a realistic 6kWh battery.

[104], where the load balancing of the grid is also considered in the optimization
process.

Another approach, named non-intrusive load levelling (NILL), is proposed in
[4]. Therein, when allowed by the battery constraints, the energy request is set to a
steady state value KSS. Otherwise, the request is set to a charging KL or discharging
KH level. Thus the energy request Yi lies in the finite alphabet {KH , KSS, KL},
where the middle state KSS is given preference over the others. This approach aims
to reduce the number of so called features, or variations on the output load used by
state of the art non-intrusive load monitoring algorithms to infer information about
the user [83, 44]. Thus, the reduction of the number of features is used in [4] as a
measure of privacy. Simulation results using complex realistic battery models and
real energy consumption data are provided in Figure 2.6. The authors show that
with their proposed algorithm the number of features decreases from thousands to
1− 6 per day. Comparison of the empirical entropies of the consumption and request,
i.e. H(Xn) and H(Y n) is also used in [4] as a measure of privacy. A similar strategy
is compared in [79] with the solution of a greedy Markov Decision Process.

The two algorithms above, i.e. BE and NILL, are reviewed and generalised in [5].
Therein, the energy requests take values in a finite alphabet {0, d, 2d, · · · }, where the
value of d is selected so that maximum charging and discharging constraints of the
battery are always satisfied, i.e. d = min{Pmin, Pmax}. Thus, given a consumption
X(t), the EMU is allowed to request Y (t) = ⌈X(t)/d⌉ or Y (t) = ⌊X(t)/d⌋. Three
so called stepping algorithms are proposed in [5] to decide when to round up or
down. The lazy stepping (LS1 and LS2) algorithms, aim to keep the request constant,
unless otherwise forced by the battery constraints. The lazy charging (LC) algorithm
aims to reduce the number of charging/discharging cycles of the battery, by always
rounding up/down, until the battery is fully discharged/charged, when the strategy
is inverted and repeated. A third stepping algorithm is the random charging (RC),
where the rounding direction is selected at random. Numerical approximations of
the mutual information between particular functions of the consumption and request
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Figure 2.7. Comparison of the privacy achieved by different heuristic algorithms over
multiple data sets [5].

sequences i.e. I(f(X); f(Y )) are studied as a measure of privacy and compared
between different algorithms, Figure 2.7.

2.3.2 Quadratic deviation: Lagrangian and Lyapunov

While arguably not the best available metric to capture the privacy leakage, the
tractability of quadratic deviation makes this metric worth exploring. Moreover
analysis of the solutions yield by the optimization of this metric can lead to interesting
insights. In [71, 6, 84, 105] the quadratic deviation from average is proposed as a
privacy metric, i.e.

V(w) = 1
n
E

[
∥Y −w∥2

2

]
, (2.49)

with wi = E[1/n
∑n−1

j=0 Xj ] for all i. In [78] the above idea is relaxed, and the objective
level wi is allowed to fluctuate with the market price mi, i.e. wi = f(mi). Therein,
the user is also interested in minimizing the price paid for the energy, B = 1

n
mT Y n,

for a given market price m ∈ Rn. In order to preserve privacy, the user has access to
an energy storage device with capacity β. This joint optimization of V and B under
the battery constraints is then posed as a weighed average optimization problem:

min
Π

(
θV(w) + (1− θ)B

)
= min

Π

1
n

(
θE

[
∥Y −w∥2

2

]
+ (1− θ)mT Y n

)
, (2.50)

where Π denotes the set of feasible battery polices such the battery constraints are
satisfied, i.e. 0 ≤ ∑n−1

i=0 (Yi−Xi) ≤ β for all i. Note that this is a convex optimization
problem, that is solved by standard Lagrangian multipliers. The solution is a
backward water-filling algorithm, where the water level is limited by the battery
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Figure 2.8. Backward water-filling algorithm resulting from joint cost-variance
optimization in [6], with (a) infinite and (b) finite capacity batteries, Xi, Ci and τi

respectively denoting the energy consumption, the price paid of the energy, and the
length of the i-th market block. Figure is obtained for θ = 1/3.

capacity. Figure 2.8 shows an instance of this backward water-filling algorithm, where
the water level tends to be flat subject to the constraints imposed by the battery, i.e.
the energy request must precede the consumption (water can not be moved forward)
and only a limited amount of water can be moved backwards (in the case of finite
capacity batteries). In [105] mutual information is numerically evaluated for the
resulting policy obtained from the minimization of the load variance.

One of the main advantages of the above model is that it makes no assumptions
over the statistics of Xn or Mn. Contrary to usual information-theoretic metrics no
a priori knowledge on PXn or PMn is required. Moreover this technique holds for
arbitrary input Xn and output Y n alphabets. However, the energy consumption
is required to be known in advance. In [80] a relaxation that does not require
future knowledge of the energy consumption and asymptotically achieves optimality
is proposed. The solution is achieved by deriving the Lyapunov function with a
drift-plus-penalty [80].

2.3.3 Finite state machine

Another possible approach to capture the memory introduced by batteries are finite
state machines. Figure 2.9 depicts a simple FSM, representing binary system, with
a battery of capacity one, and binary input Xn and output Y n alphabets, i.e.
S = X = Y = {0, 1}. Therein, at any time step i, the state of the FSM captures the
state of the battery, while the different consumption profiles PXn and the battery
policies PY n|Xn determine the transition probabilities between states. This is shown
on Table 2.3 and Figure 2.9. Note that this model allows for larger battery sizes and
input/output alphabets at the expense of increased number of states and complexity.
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b = 0 b = 1

x = 0 y = 0

x = 1 y = 1

x = 0 y = 1
x = 0 y = 0

x = 1 y = 1

x = 1 y = 0

Figure 2.9. Finite State Machine modelling a binary battery

xi si yi P (yi|xi, si) si+1

0 0 0 pa 0
0 0 1 1− pa 1
0 1 0 1 1
0 1 1 0 -
1 0 0 0 -
1 0 1 1 0
1 1 0 1− pb 0
1 1 1 pb 1

Table 2.3. FSM transition table for SMs with battery.

In [57] a simple FSM with a binary i.i.d. input and battery is studied. In [13, 56]
this model is extended to include other elements such as Energy Harvesting Devices
(EHDs) or schemes allowing energy waste. Extensions to non-binary batteries or
any arbitrary size input, output and battery alphabets are studied in [13]. For the
continuous alphabet case, the usage of simulation based solutions [106] is proposed
in [57]. Simulation based solutions allow the computation of upper and lower bounds
on the information leakage rate. Note that in theory the restriction to i.i.d. inputs
can also be relaxed, extending the problem to include Markov sources, by including
the previous input Xi−1 in an augmented state space of the FSM.

In order to characterize the privacy leakage numerical approximations of the
mutual information are employed in [56, 57, 13]. These approximations rely on the
Asymptotic Equipartition Property (AEP) [100]. The AEP states that when n→∞
the logarithm of the joint probability 1

n
log P (r1, · · · , rn) limits in probability to the

entropy of the process H(Rn). This leads to

nI(Xn; Y n)= H(Xn) + H(Y n) + H(Xn, Y n) (2.51)
≈ H(Xn)− log P (y1, y2, · · · , yn)

+ log P (x1, x2, · · · , xn, y1, y2, · · · , yn), (2.52)
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where the values of P (y1, y2, · · · , yn) and P (x1, x2, · · · , xn, y1, y2, · · · , yn) are recur-
sively computed by running the forward pass of the Bahl-Cocke-Jelinek-Raviv (BCJR)
algorithm [107]. Exhaustive search among a discrete version of all the possible policies
is then employed in [13, 57, 56] to find the best battery policy.

Interestingly, in [108] a similar approach is used to compute the event-based
information theoretic privacy:

sup
i

I(Xi; Y n). (2.53)

The aim of this metric is to capture adversaries that are not interested in the whole
sequence Xn but only on certain event Xi. This formulation is one step closer to
that of ϵ-mutual information differential privacy (2.21), and its links to differential
privacy.

FSM models provide a simple approach, enabling the tools to calculate information-
theoretic privacy figures in simple scenarios. However characterization of optimum
points of tradeoff requires exhaustive search over all the possible strategies. At the
same time, the computational complexity of FSM models grows with the size of
the alphabets S, X and Y . This exponential growth poses serious difficulties in the
extension of this model to continuous or arbitrary size alphabets.

A more fundamental drawback of the FSM model is that it fails to capture the
complete set of actions the user can take in order to protect the privacy. The scheme
proposed in Table 2.3 assigns the output probabilities as a function of the current
input and battery state. However, in a system with memory, optimal privacy policies
decide the output taking all previous inputs and outputs into account. This can
be partially solved by including last outputs [57] and inputs into the state of the
FSM. However, including all past inputs and outputs in the state space renders the
problem computationally infeasible.

2.3.4 Markov decision process

Markov decision processes (MDP) provide a mathematical framework to model
decision processes satisfying the Markov property. In particular, let Si denote the
state of the system at time i. For any time i and state Si, the controller is allowed
to take a possibly random decision Ai out of the set of possible decisions A(Si). For
a given action and state, the system then moves into a new state with probability
P (Si+1|Ai, Si). That is, the state transition probability depends on the current action
and state but not on past actions or states, i.e. the system satisfies the Markov
property. This transition generates a cost for the controller c(Si, Ai), which is a
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function of the decision taken and the current and future state. The objective of
the MDP is to minimize the total cost obtained by the decision maker over a finite
interval (finite horizon MDP) or the infinite future (infinite horizon MDP) [109]. In
the SMs context, when the energy consumption and the energy generated by the
available energy sources satisfy the Markov property, it is possible to formulate the
optimization of the energy request process as an MDP.

Quadratic deviation

In [7, 69] the privacy optimization problem is formulated as an MDP. Therein, the
aim of the user is to minimize the privacy leakage measured in terms of quadratic
deviation while simultaneously minimizing the energy bill. Unlike most models in the
literature, the user buys and sells energy at different prices mc

i and md
i , respectively.

Thus, the cost function is given by

J(π) = E

[
n−1∑
i=0

c(si, ai)
]

= E

[
n−1∑
i=0

λV(si, ai) + (1− λ)B(si, ai)
]

, (2.54)

where V(si, ai) and B(si, ai) respectively denote the privacy leakage and the energy
bill induced by (si, ai), and π denotes a feasible battery policy. Interestingly, in [7, 69],
two possible models for the energy storage device are considered, namely: thermal and
chemical energy storage devices. Within those models maximum capacity, minimum
and maximum charging rates, initial battery state, and charging efficiency factor are
considered.

To determine the optimal policy, the transition probabilities of the energy con-
sumption, i.e. PXi+1|Xi

are required. However, the authors note the non stationary
nature and the large variability of the energy consumption. Thus a model-free
learning method is employed to learn the cost associated with each state-action pair.
In particular an η−greedy Q-Learning algorithm [110] that explores a random action
with probability η and exploits a greedy action with probability 1− η is employed.
After each action, the system learns the incurred cost c(si, ai), and updates the
learned cost function Q : S ×A → R as

Q(si,ai)←Q(si,ai)+α

(
c(si,ai)+ min

a∈A(si+1)
(Q(si+1,a)−Q(si,a))

)
, (2.55)

where α ∈ [0, 1] is the learning rate. In order to characterize the performance of
the learning algorithm, the authors of [7] compare it with the corresponding offline
algorithm, where the future energy consumption is known in advance to the algorithm.
Figure 2.10 compares this two algorithms, showing that both algorithms yield very
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Figure 2.10. Energy consumption and requests under the online (Q-learning) and
the offline (Benchmark) algorithms proposed in [7] for a battery of capacity 10kWh.

similar energy requests. The privacy obtained by this method is further analysed by
computing the empirical mutual information.

Mutual information

In [14, 111] mutual information is considered as a privacy measure when the user
has access to an energy storage device. Thus, the cost function is given by

J(π) = I(S0, Xn; Y n) =
n−1∑
i=0

I(Si, Xn; Yi|Y i−1), (2.56)

where the equality follows from the chain rule and noting that the battery states are
determined by the past input and outputs. At any time step i, the feasible values
of Yi are determined by the current energy consumption Xi and battery state Si.
Noticing also the following inequality,

n−1∑
i=0

I(Si, Xn; Yi|Y i−1) ≥
n−1∑
i=0

I(Si, Xi; Yi|Y i−1), (2.57)

the authors of [14] show that there is no loss of optimality in restricting to battery
policies that decide the request Yi based only on the current consumption Xi, battery
state Si and past requests Y i−1, i.e. f : X × S × Y i−1 → Y .

This additive formulation of the cost function, allows to formulate the problem as a
MDP by defining the system state as (Xi, Si, Y i−1). However, under this formulation,
the number of states grows exponentially with time, rendering the computation
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infeasible for large n. This is solved by showing that the belief state:

πi(x, s) = P[Xi = x, Si = s|Y i−1 = yi−1], (2.58)

is a sufficient statistic for (2.57). The discrete approximation of the belief state
can be calculated recursively. Defining the system state as (Xi, Si, πi) allows the
formulation of the problem as an MDP, for which numerical simulations yield the
optimal policies.

For the i.i.d. case, [14] shows that there is no lost of optimality in further
restricting the search to invariant policies i.e. policies such that

P (Xi, Si, Yi|Y i−1) = P (X1, S1, Y1). (2.59)

Marginalizing the above distribution shows that under invariant policies, the request
{Yi} is i.i.d.. The authors of [14] further restrict the search to so called structured
policies, under which the marginal distribution of Yi is PX , yielding consumption and
request statistically indistinguishable. After this structural simplifications and by
further restricting the system state to Wi = Si −Xi a single letter characterization
is obtained. The information leakage under the optimal policy is then given by

J(π∗) = min
PS∈PS

I(S −X; X), (2.60)

and is achieved by the memoryless structured policy

q(y|x, s, πi) = PX(y)P ∗
S(y − x + s)∑

x′ PX(x′)P ∗
S(x′ − x + s) , (2.61)

where P ∗
S denotes the optimal distribution achieving (2.60). The authors of [14]

note that extending the MDP formulation to incorporate extra additive costs such
as the price paid for the energy is rather immediate. However, the approach used
to characterize the single letter expression for the case of the i.i.d. consumption
may not generalize well. The above also appears in [111–114]. In [115] this idea is
extended from i.i.d. to independent periodically time varying input distributions. It
is shown that the straight forward application of the above scheme is suboptimal for
periods of length two.

In [79] the price paid for the energy is considered by characterizing upper and
lower bounds on the privacy-cost tradeoff. The corresponding MDP is formulated
by means of belief state (2.58) for scenarios where the user is allowed access to an
energy storage device. In [116, 117] the MDP formulation of systems with access to
an EHD and a finite capacity battery is presented. Interestingly, a model predictive
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control (MPD) and a dynamic programming approach are presented in [118] and
[119] respectively.

Hypothesis testing

In [8], the behaviour of the user at time i is given by Hi ∈ H with probability
law determined by the time invariant kernel PHi+1|Hi

, i.e. Hn is a Markov process.
Based on that behaviour, the user consumes Xi ∈ X units of energy with probability
determined by the time invariant kernel PXi+1|Hi+1,Xi

. To preserve the privacy of the
user, the EMU has access to a finite capacity energy storage device with internal
state denoted by Si.

Within this setting, at every time step i, the attacker performs an n-ary hypothesis
test in order to infer the behaviour hi. Let c(ĥi, hi) > 0 denote the cost incurred by
the adversary on making decision ĥi when hi is true. It is then shown in [8] that
the optimal strategy P ∗

Ĥ|Yi
from a greedy adversary is to perform a deterministic

likelihood-ratio test (LRT). The minimal Bayesian risk r∗
i is defined by

r∗
i =

∑
(ĥi,hi)∈H2

c(ĥi, hi)PĤi,Hi
(ĥi, hi). (2.62)

The privacy measure is defined as the accumulated discounted minimal Bayesian
risk, i.e.

V =
∞∑

t=0
βtr∗

i , (2.63)

with β ∈ [0, 1). This metric suits scenarios where privacy concerns degrades over
time. The aim of the EMU is to implement the policy that maximizes privacy given
by

P ∗
Yi|Xi,Si

= argmax
Π

V (2.64)

for Π denoting the set of feasible battery policies. This problem is then formulated
as an MDP problem with state (hi, xi, si) and belief state bi = PHi,Xi,Si

. Noting the
complexity of solving the above model, a simplified version is also proposed. Thus
an instantaneously optimal control strategy maximizing the instantaneous Bayesian
risk is proposed, and given by

P ∗
Yi|Xi,Si

= argmax
Π

r∗
i (bi) (2.65)
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Figure 2.11. Accumulated discounted minimal Bayesian risk V against time step
t = i, for optimal policies V ∗ and instantaneously optimal (greedy) policies V ∗

t [8].

Numerical results comparing both strategies are then computed and shown in
Figure 2.11.

2.3.5 Instantaneous constraints - rate distortion theory

The approach presented in [120, 9, 121, 11, 10, 122, 53] relies on noticing that when
users have access to an alternative energy source with instantaneous power constraints,
the information leakage, measured in terms of mutual information, resembles the well
known information rate distortion function. This link allows access to concepts and
information theoretic tools developed for the calculation of rate distortion functions.
Within this setting, the user has access to an alternative energy source, with peak
power constraint P̂ and average power constraint P . In [120], the information leakage
is then given by

I(P , P̂ ) = inf
Π(P ,P̂ )

I(Xn, Y n), (2.66)

where Π(P , P̂ ) = {PY n|Xn : yi ∈ Y ,E[(Xi − Yi)] ≤ P , 0 ≤ Xi − Yi ≤ P̂ , ∀i} denotes
the set of feasible battery policies that satisfy the instantaneous power constraints.
Similarly, the information rate distortion function is given by

RI(D) = inf
E[
∑

i
d(Xi,X̂i)]≤D

I(Xn; X̂n). (2.67)
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The analogy between mutual information, information leakage and rate distortion is
shown by setting the distortion function to

d(xi, yi) =

xi − yi, when 0 ≤ xi − yi ≤ P̂

∞, otherwise.
(2.68)

Interestingly, by the rate distortion theorem [100], the information rate distortion
function RI(D) is equivalent to the rate distortion function R(D). This rate deter-
mines the size 2nR(D) of the minimum codebook needed to compress a source Xn,
such that the distortion between the original Xn and the reconstructed copy X̂n

satisfies E[∑i d(Xi, X̂i)] ≤ D. However, a main difference between both formulations,
as noted by the authors of [120], is that the rate distortion function is considered
for offline lossy compression, while the policies they derived for the smart meter
context typically work in an online manner. Different privacy results are obtained
in the literature by exploiting this link on i.i.d. scenarios, where the rate distortion
function is better understood.

It is shown in [9, Theorem 1] that for i.i.d. inputs and additive fidelity criteria
(2.68) the optimal battery policy is memoryless, i.e.

inf
Π(P ,P̂ )

I(Xn; Y n) = inf
Π(P ,P̂ )

I(X; Y ). (2.69)

Furthermore, for discrete inputs, it is shown in [10, 120] that under i.i.d. assumptions
and instantaneous power constraints there is no loss of optimality in restricting to
discrete output alphabets of the form Y = X . The proof is done by constructing the
mapping:

PŶ |X(ŷ|x) =


0, when xi ≤ ŷ ≤ xi+1,∫

(xi,xi+1] PY |X(y|x)dy, when ŷ = xi+1,

PY |X(y|x), otherwise,

(2.70)

for each i and ordered set X . The mapping is then shown to preserve the feasibility,
and the data processing inequality guarantees that the mutual information does
not increase. This reduces the optimization to discrete alphabets, moreover by the
convexity of the privacy metric over PY n|Xn , the privacy optimization is reduced
to a convex problem with linear constraints. This allows direct application of
efficient algorithms such as the Blahut-Arimoto algorithm, to numerically compute
the information leakage [100].
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In the case of continuous input loads, the well known rate distortion Shannon
Lower Bound, i.e.

inf
Π(P ,P̂ )

I(X; Y ) = inf
Π(P ,P̂ )

(
H(X)−H(X|Y )

)
(2.71)

≥ H(X)− sup
Π(P ,P̂ )

H(X − Y ). (2.72)

is proposed in [10]. The distribution of V = X − Y that maximizes the entropy
among those random variables V with mean P and satisfying 0 ≤ V ≤ P̂ is the
truncated exponential distribution PV [100, Chapter 11], defined as

PV (v) =


1

λ0
e

− v
λ1 0 ≤ v ≤ P̂

0 otherwise,
(2.73)

where the values of λ0 and λ1 are set so that E[V ] = P and
∫∞

∞ PV (v)dv = 1. Thus,
the Shannon Lower bound, as provided in [9], is given by

inf
Π(P ,P̂ )

1
n

I(Xn; Y n) ≥ h(X)− ln(λ0)−
P

λ1
, (2.74)

where h(·) stands for differential entropy. For input distributions continuous on R+

the optimal battery policy is given by

PY |X(y|x) = PV (x− y) PY (y)
PX(x) , (2.75)

where the output distribution PY (y) is obtained by Laplace transformation [9]. This
bound is known to be tight for i.i.d. exponential distribution on the input. The
privacy-average power tradeoff obtained in [9] for different peak power constraints is
depicted in Figure 2.12.

In [10] these results are generalized for multiuser scenario, where multiple users
share access to a common AES. This is done by setting Xi = (X0,i, X1,i, · · · , XN−1,i)
and Yi = (Y0,i, Y1,i, · · · , YN−1,i). For independent distributions over different users,
and under no peak power constraints, the privacy function is shown to be

I(P ,∞) = inf∑N−1
j=0 Pj≤P

N−1∑
j=0
I(Pj,∞). (2.76)

This approach leads to a reverse waterfilling algorithm. This is in line with well
known results obtained for problems with similar formulations as the case of rate
distortion function for parallel Gaussian sources [100, Theorem 10.3.3]. Comparison
of numerical results with those of non-collaborative scenarios show the benefit
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Figure 2.12. Privacy-Average power tradeoff for different peak power constraints and
X ∼ exp(1) as shown in [9].

Figure 2.13. Privacy-Average power tradeoff for different number of users as shown
in [10].

of multiuser collaboration in Figure 2.13. Extensions including energy waste are
presented in [121].

Interestingly, in [11] systems with EHD and infinite capacity batteries are shown
to be equivalent to systems with an average power constrained AES. Specifically,
under infinite capacity battery, i.i.d. inputs, and EHD generating an average power



42 Literature review

Figure 2.14. Leakage rate with an EHD and an battery with infinity capacity I∞,
and zero capacity for a UP knowing Ĩ0 and not knowing I0 the energy generated by
the EHD [11].

of P E the leakage is shown to be

I∞ = I(P E,∞). (2.77)

For the case of no battery, i.i.d. inputs and i.i.d. EHD generating E units of energy,
the leakage is shown to be characterized by

I0 = inf
PY |X,E :0≤X−Y ≤E

I(X; Y ), (2.78)

where I(X; Y ) is conditioned on E, i.e. I(X; Y |E) when the amount of energy
harvested is known to the provider. The three cases above are compared in Figure 2.14,
providing upper and lower bounds for cases with finite capacity batteries.

Another interesting approach comes from [53, 122], where instead of a battery,
measurement are distorted before being sent to the provider. Therein, the utility of
the data sent to the provider limits the amount of distortion that can be applied
to the data. The distortion is measured in terms of quadratic distortion while the
privacy is measured in terms of mutual information.
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2.3.6 Hypothesis testing: Chernoff-Stein lemma

This family of strategies relies on the application of the Chernoff-Stein Lemma in
order to characterize the asymptotic decay rate of the p∗

II probability of error when the
privacy is measured in terms of Hypothesis testing. Specifically, the Chernoff-Stein
lemma [100] shows that for i.i.d. distributions the asymptotic exponential decay rate
of p∗

II is given by

r∗
II = lim

n→∞
− log p∗

II

n
= D(P (Y |h0)∥P (Y |h1)), (2.79)

where D(p∥q) denotes the Kullback-Leibler divergence between two probability
distributions p and q, and is given by (2.44).

In [87] the user is allowed access to an EHD generating Zi units of energy with
probability PZ . Thus, the EHD is i.i.d. and independent of the consumption process
Xi. The user has also access to an energy storage device with “sufficiently large”
capacity that is always able to satisfy the energy demands of the user, as long as the
total amount of energy stored or consumed from the battery is asymptomatically
zero, that is,

lim
n→∞

n−1∑
i=0

(yi + zi − xi) = 0. (2.80)

The energy consumption of the user is assumed to be i.i.d. with distribution PX|H .
Thus, the optimization problem becomes

min
PY |H
D(PY |H(·|h0)∥PY |H(·|h1)), (2.81)

with PY |H the set of memoryless policies such that

E(Y |h0) = E(X|h0)−E(Z) = f0, (2.82)
E(Y |h1) = E(X|h1)−E(Z) = f1. (2.83)

The above problem is a convex optimization problem with linear constraints. Thus
the optimal solution has to satisfy the Karush-Kuhn-Tucker (KKT) conditions [123].
Careful study of the KKT conditions under different cases allowed the authors of [87]
to show that the alphabet of the optimal policy satisfies the cardinality constraints
|Y∗| ≤ 2. The trivial case |Y∗| = 1, occurs only when both hypothesis have the same
expected value f0 = f1, yielding r∗

II = 0. On the non-trivial scenario |Y∗| = 2, the
optimal alphabet is shown to satisfy Y∗ = {minY , maxY}, yielding

r∗
II = f0−minY

maxY−minY log f0−minY
f1−minY + maxY−f0

maxY−minY log maxY−f0

maxYf1
. (2.84)
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Figure 2.15. Minimum KL distance rII against the constraints on the average energy
supply from the energy provider (f0, f1). Case 1: minY = 1 and maxY = 9. Case 2:
minY = 3 and maxY = 7).

The numerical example in Figure 2.15 shows two ways to enhance the privacy of
smart meters: increasing the difference maxY −minY and decreasing the difference
|f0 − f1|. It is further shown that the leakage does not increase when the attackers
knows Zn. In [88] memoryless hypothesis-aware and hypothesis-unaware policies
with memory are considered, showing that memoryless hypothesis-aware policies
cannot outperform hypothesis-unaware policies. Furthermore, it is shown that there
is no loss of optimality in reducing the energy demand alphabet Y to the energy
consumption alphabet X .

2.3.7 Fisher information

In [74] Fisher information is used as a proxy to bound the variance of the estimation
error of unbiased estimators of the energy consumption of the user. This is based on
the Cramér-Rao bound [85], showing that the Fisher information matrix provides a
lower bound on the variance of any unbiased estimator:

E

∥∥∥x̂(Y )− x
∥∥∥2

2
≥ Tr

(
I(x)−1

)
, (2.85)

where Tr(·) denotes the trace and the Fisher information matrix is given in 2.3. In
[74] the energy consumption x is assumed to be a deterministic vector on R+.
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Interestingly, the battery constraints are defined as constraints on the energy
drawn from the battery bi = si − si+1, with the sequence of steps b in the set

B =
{

b ∈ RT : 0 ≤ s0 +
i∑

k=0
bk ≤ β, for all i

}
. (2.86)

Feasible battery policies are then defined as a random transformation γ(b|x) =
Px[Bn = b], where we recall the energy consumption x is assumed to be deterministic.
The first problem considered is the characterization of optimal battery policies when
the consumption is not known to the EMU, i.e. γ(b|x) = γ(b). The resulting
problem is given by

J (γ) = Tr
(
I(x)−1

)
≥ n2 Tr (I(x)) . (2.87)

Lagrangian multipliers show that the optimal battery policy γ∗ is the greedy algorithm,
yielding

E

∥∥∥x̂(Y )− x
∥∥∥2

2
≥ n2 Tr (I(x)) = n2κβ2, (2.88)

with κ = Tr (I(x)−1) for β = 1.

The second problem is the characterization of optimal battery policies when the
consumption is known in advance to the EMU, i.e. γ(b|x). The objective function is
then

J (γ) =
∫

x∈X n
Tr
(
I(x)−1

)
f(x)dx ≥ n2

(∫
x∈X n

Tr (I(x)) f(x)dx
)−1

(2.89)

where f(x) denotes the weight associated with x, or the interest to make the
estimation of x hard. Note f(x) can be set without loss of generality so that∫

x∈X n f(x)dx = 1. Lagrangian optimization shows than when the weight is uniform
across x, i.e. f(x) = f for all x ∈ X n, then the solution to this problem is equivalent
to that of optimizing when no knowledge of the consumption is available.

Constraint optimization considering market cost and battery’s wear and tear is
further studied in [74]. Lagrangian optimization of the problem show the optimal
solution is given by the solution of a linear partial differential equation. Moreover,
charging and discharging rates are studied, the greedy algorithm is showed to no
longer be optimal, and the solution is then computed numerically. Finally, numerical
characterization of the f-score obtained by state of the art NILM algorithms are
presented for different battery sizes under the proposed battery policies.
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2.4 Conclusions and main problem formulation

The smart meter privacy problem has been formulated in a variety of ways. Finite
state machine models have been proposed to characterize mutual information under
i.i.d. and Markovian input processes. This approach yields suboptimal solutions
unless all past input and outputs are included in the state, which makes the problem
computationally infeasible unless structural simplifications are applied. Alternatively,
Markov decision processes yield numerical solutions for quadratic deviation, mutual
information and hypothesis testing privacy metrics under Markov constraints on the
input process. Furthermore, structural simplifications allow for simple expressions
under i.i.d. inputs. Moreover, cost constraints and EHD are easily included into
MDP models. The equivalence between rate distortion theory and EMUs with
instantaneous power constraints and i.i.d. inputs enables the usage of efficient
numerical algorithms (Blahut-Arimoto) and single letter lower bounds (Shannon
Lower bound). Under Hypothesis Testing privacy metrics, and EHD with sufficiently
large batteries, Chernoff-Stein Lemma allows single letter characterization of the
asymptotic exponential decay rate of the Type II probability of error with i.i.d.
inputs. Fisher information allows computation of bounds of the minimum variance
of any unbiased estimator by assuming deterministic energy consumptions with or
without cost constraints.

We propose the utilization of mutual information to measure privacy for two reason.
First because its interpretation in terms of an adversary that minimizes log-loss with
respect to an evolving soft-decision model [96] is well-matched to the evolving nature
of energy distribution over time. Secondly, because mutual information provides a
useful bridge to adjacent fields such as hypothesis testing [124], estimation [125], and
statistical or machine learning [126].

In a nutshell, the simplicity and tractability of i.i.d. consumption models has
captured the main focus in the literature, with some studies focusing on numerical
solutions for Markovian energy consumptions. However, solutions for general input
processes are only available numerically for quadratic deviation cost functions, and
Fisher information, under either deterministic consumptions or learning algorithms
(Q-Learning). Furthermore, in privacy and security settings it is typically interesting
to characterize the worst-case performance. This interest is grounded on the need
to provide guarantees that hold for every user, and is captured in the definition of
privacy metrics such as differential privacy [91] or maximal leakage [96].

In the following, we focus on obtaining single letter guarantees that hold for
a broad class of consumption processes. Specifically, we focus on bounded input
processes, under no stationary or ergodic conditions. The results are also particularise
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for processes with known expected average value. Moreover, we characterize the
privacy-cost trade off in the presence of variable market prices. The provided results
hold for mutual information, maximal leakage and maximal-alpha leakage.





Chapter 3

Universal privacy guarantees via
the trapdoor channel

Within this chapter we focus on providing universal privacy guarantees for EMUs
with access to a finite capacity battery. Our aim is to provide universal privacy
guarantees that hold for a wide class of energy consumption models. In Section 3.3,
we provide guarantees that hold for any bounded energy consumption. In Section
3.4, we particularize the guarantees by imposing a mean constraint on the energy
consumption. It is important to remark that these bounds, i.e. on bounded input
alphabets and on bounded input alphabets with average constraints, hold for any
distribution on the consumption. We do not impose any stationary, ergodic or
information stability constraints on the input source, i.e. the proposed bounds hold
for every scenario in which the mutual information is defined.

The tightness of the upper bounds presented in Section 3.3 and Section 3.4 is
demonstrated by constructing energy consumption processes that are tight with
respect to the upper bounds for any feasible battery policy implemented by the EMU.
In Section 3.5, we present numerical evaluations of the single letter upper and lower
bounds derived on the previous sections.

The generality of the upper bounds, holding for any input distribution, is achieved
thanks to inspiration borrowed from the trapdoor channel literature, and more gener-
ally, from the broader class of permuting channels. Therein, a combinatorial approach
is employed to study the set of feasible transformations that the channel can imple-
ment, i.e. random permutations of the input. Thus, the key idea is understanding
the combinatorial nature of the constraints imposed by battery channels. That is,
given an input, a battery-based channel limits the set of feasible outputs, but do not
impose constraints on the distribution of the output across the feasible set.
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The term universal is borrowed from the source coding community, where universal
data compression codes are those that achieve near optimal compression performance
regardless of the statistics of the input source, e.g. LZ77 [127] and LZ78 [128]. The
conceptual similarities between privacy and data compression studied in Section
2.3.5 and Section 5.4.1 further motivate this terminology.

3.1 System model

User energy consumption profiles tend to exhibit non-stationary features. Therefore,
it is essential to employ consumption models that capture realistic temporal dynamics.
To this end, we model user energy consumption as a discrete-time random process Xn

with probability distribution PXn over the alphabet X n = J0, αKn, where α denotes the
maximum energy consumption of the user during one time step. We focus on integer
random variables for presentation purposes but the results generalize to arbitrary
discrete time random processes over any discrete alphabet. The random variable
Xi describes the energy consumed by a user at time step i with i ∈ {0, 1, ..., n− 1}.
This model accommodates the non-stationary statistics observed in user energy
consumption profiles [58, 2] and Figure 3.1.

Figure 3.1. An example of energy consumption over the course of a day for one of
the houses in REDD [2].

The energy requested from the UP is modelled by a discrete-time random process
Y n where the random variable Yi describes the energy requested from the UP at
time step i ∈ {0, 1, ..., n− 1}. The energy request alphabet Y ⊆ Z is larger than X
since we consider UPs that are able to satisfy the energy consumption of the user
even when no battery is available; in addition, Y contains negative values to capture
the possibility that the user sells energy back to the grid.
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Figure 3.2. Energy Management System with Finite Battery Model

To characterize the level of privacy that the user is guaranteed when the realization
of Xn is known to the provider only via Y n, we use Shannon’s mutual information
as a measure of privacy. The fundamental properties of mutual information are
summarized in Section 2.2.6. To that end, the EMU implements a policy that
maps consumption sequences Xn to energy request sequences Y n. These policies
aim to minimize the mutual information between Xn and Y n while satisfying some
operational constraints.

Definition 3.1. Given a random process Xn modelling the energy consumption of
the user and an EMU implementing a battery policy π ∈ PY n|Xn, the information
leakage is defined as

I(Xn, π) ∆= 1
n

I(Xn; Y n). (3.1)

Remark 3.1. Note that the information leakage is normalized over n in order to
preserve consistence with the literature. However, our results hold in the finite block
length regime. Thus, our results characterize the total information leakage as well as
the asymptotic leakage rate.

Figure 3.2 depicts the energy management system and the random processes
therein. The privacy guarantee is defined in terms of the information leakage from
the user to the provider, and the task of the EMU is to choose a battery policy that
minimizes the information leakage while satisfying the operational constraints.

The battery can store up to β ∈ N energy units. Thus, the battery state at time
step i, denoted by Si, takes values in S = J0, βK and is governed by the charging
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dynamics:

Si = s0 +
i−1∑
k=0

Yk −
i−1∑
k=0

Xk, (3.2)

where s0 ∈ S = J0, βK is the initial battery state. At this point, we need to clarify the
limitations of the battery model that we assume. First, we do not impose any charge
or discharge rate limits on the battery, i.e. the battery stores or provides as much
energy as the EMU requests at any given time step. Secondly, we do not consider the
strain induced on the health of the battery by the charge and discharge cycles. This
strain is an important factor in real battery systems and, indeed, practical EMU
policies should consider the damage caused by rapid charge and discharge strategies.
Within the proposed setting, a power outage occurs when Si + Yi −Xi < 0; energy is
wasted when Si + Yi −Xi > β. We focus on EMUs that do not allow power outages
nor energy waste, these ensures the energy demand of the user is always satisfied
and only the necessary energy is bought. Definition 3.2 captures the set of energy
requests that the EMU can implement.

Definition 3.2. Given an initial state s0 ∈ S, an n ∈ N, and an energy consumption
sequence x ∈ X n as the inputs of an EMU with battery capacity β, the set of feasible
energy requests is

Yn(s0, x) ∆= {y ∈ Yn : si ∈ J0, βK for all i ∈ J0, nK}. (3.3)

Given the initial state s0 ∈ S and the energy consumption x ∈ X n, the EMU
must select an energy request sequence y that satisfies the feasibility constraint
y ∈ Yn(s0, x). The following definition describes the selection process.

Definition 3.3. Given an EMU with battery capacity β and initial state s0, the set
of feasible battery policies over the output alphabet Y is given by

Ω(s0, β) ∆= {PY n|Xn : supp(PY n|Xn=x) ⊆ Yn(s0, x) for all x ∈ X n}. (3.4)

Remark 3.2. It is important to note that the proposed definition for the set of
feasible battery policies Ω(s0, β) contains non-causal battery policies. Implementation
of non-causal battery policies rely on precise forecasting capabilities.

Remark 3.3. Note the dependency of the set of feasible request sequences Yn(s0, x)
and the set of feasible battery policies Ω(s0, β) on the initial state s0. However, the
notation PY n|Xn=x,S0=s0 is avoided to emphasize that the initial state is considered a
known system parameter and not a random variable.

Remark 3.4. Note that within this setting, the conditional probability distribu-
tion P (Y n|Xn) models the battery charge/discharge process. The set of charg-
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ing/discharging models that the battery is able to implement given the feasibility
constraints imposed in Definition 3.2 is characterized by the set of feasible battery
policies Ω(s0, β).

3.2 Challenges and methodology

In this section, we address the main challenges posed by the proposed system model,
in particular we highlight the challenges posed by the memory introduced by the
finite capacity battery and the generality of the input process. Therein, we aim to
understand the difficulty posed by the setting and limitations of previous approaches.
Subsequently, we propose a new approach that sheds light on the problem. This
new approach is inspired by the results of Ahlswede and Kaspi [129] on the trapdoor
channel. Our proposal hinges on the idea that, under certain conditions, the SMs
privacy problem and the trapdoor channel are equivalent.

3.2.1 Challenges introduced by this model

Our objective is to characterize the minimum information leakage that a finite
capacity battery can guarantee, i.e. we aim to obtain a bound holding for every input
distribution. Minimizing mutual information over a set of random transformations is
a hard problem in general that often arises in information theory. The vast majority
of the literature is devoted to subadditive distortion constraints and stationary
sources, with a strong focus on additive constraints and stationary ergodic sources
[130]. The challenges introduced by more general sources and fidelity criteria are
portrayed in the lack of a coding theorem proving the operational lossy compression
meaning of this minimization. Unlike systems with instantaneous power constraints
(Section 2.3.5), battery policies are not defined by additive constraints. Although
some work has been done on more general fidelity criteria, such as context-dependent
fidelity criteria [131], minimization of the mutual information subject to general, non
additive or subadditive constraints is still an open problem [130]. Furthermore, the
input processes considered here do not posses the common assumptions of stationarity
or ergodicity. This impedes the utilization of many of the tools typically employed
in information theory and ergodic theory. This further hinders the tractability of
the proposed system model.

In short, the memory introduced by the battery and the generality of the input
process reduces the tractability of the problem. For these reasons, the solutions
presented so far in the literature focus on simplifications of the above system model.
Therein, the battery is removed or considered sufficiently large, thus avoiding the
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issues raised by memory; or the input processes are assumed to be i.i.d. or Markovian,
allowing structural simplifications and tools requiring ergodic or stationary properties.
However, we argue that the need for these assumptions hinges around the probabilistic
approaches employed in those studies. Probabilistic models are commonly employed
in information theory since input sources, and channel models are governed by
probabilistic laws, and in view of the great generality allowed by probabilistic models.
However, we note that the constraints imposed on the energy consumption Y n are
constraints on its support and not on the probability distribution, i.e. Y n is constraint
to the set of feasible outputs Y(s0, x) with any arbitrary probability, as shown in
Definition 3.3. That is, battery policies are determined by combinatorial constraints.
While probabilistic models provide great generality, and are able to model battery
policies, we argue that a combinatorial analysis can provide the understanding and
structural simplifications required to improve the tractability of the problem before
a probabilistic model is employed.

3.2.2 Permuting and trapdoor channels

As discussed in Chapter 2, battery policies have been modelled in a variety of ways.
The fundamental property governing battery policies is that, up to a constant β,
the total amount of energy introduced into the battery equals the total amount of
energy provided by the battery. Therein, batteries allow the energy request sequence
to be a reordered or permuted version of the consumption sequence, but they do not
allow energy to be generated or consumed. It is important to note that batteries do
not only perform a permutation of the consumption sequences, e.g.

(4, 2, 3)→ (4, 3, 2), (3.5)

but they are also able to aggregate symbols, e.g.

(4, 2, 3)→ (4, 5, 0). (3.6)

Moreover, only those permutations that preserve the internal state of the battery,
i.e. the difference between the sum of all previous inputs and outputs, within the
operational limits are allowed. This idea, further developed in Section 3.2.3, brings
our attention to the the general class of permuting channels [132].

Permuting channels inspired by DNA coding and transmission systems where
symbols are inserted, deleted, permuted or substituted are studied from a geometric,
combinatorial approach in [133, 134]. Similar asymptotically optimal codes are
presented in [135]. Unlike on those system, batteries do not allow insertions or
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deletions of symbols, nor they are limited by a maximum number of permutations.
In fact, batteries allow permuting, adding or subtracting every input element, as long
as the battery constraints are satisfied. In [136] a permuting channel able to permute
inputs up to a k-distance and a k-buffer is presented. Therein, two players try to
establish a stenographic communication by transmitting ordered packages. This
scheme models covert communications via internet protocol (IP) or cache timing
[137]. The k-buffer permuter is able to permute the channel inputs based on a buffer
of capacity k, the aim of the jammer channel is to minimize the communication
rate. Interestingly, in [136], a combinatorial approach with game theoretic tools is
employed. This approach is closer to our system model, as no insertions or deletions
are allowed.

A more similar problem is presented in the trapdoor channel, first introduced by
D. Blackwell [138], and depicted on the front cover of the Dover edition of Robert B.
Ash’s classical book “Information Theory” [12]. In [138, 12], the trapdoor channel
or chemical channel is described as a two-state channel, represented by a box with
capacity for two balls. At every time step a new ball comes in (input) and one of the
balls inside the box goes out (output). This behaviour is depicted in Figure 3.3. In the
original work by Blackwell the balls are marked in a binary alphabet X = Y = {0, 1}
and the box has capacity for 2 balls, i.e. only one ball is left inside the box between
time steps. However, interest generated by the channel has lead to generalizations to
arbitrary ball alphabets and arbitrary box capacities [129]. Despite the attention
gathered by the trapdoor channel and its simplicity, a closed form expression for
its capacity is still unknown. The zero-error capacity was proved to be 0.5bits per
channel use [139]. The feedback capacity was studied by [140]. Recurrent algorithms
have been used to show that the capacity is strictly bigger that 0.5bits [141].

In 1987, Ahlswede and Kaspi [129] proposed two variations of the trapdoor
channel: the permuting jammer and the permuting relay [142]. In the relay channel
case, the trapdoor aims to communicate information by permuting a fixed sequence
of input balls. In the jammer channel case the trapdoor acts as a jammer, aiming to
minimize the communication rate by releasing one ball or another. Therein, at every
time step a ball numbered 1, 2, ..., α̂ is introduced into the box and one of the β̂ + 1
balls inside the box is extracted. Within the jammer model, the ball extracted from
the box is selected in order to minimize the mutual information between the input
and the output. Note that the extraction criteria is not probabilistic and is instead
analysed using combinatorial tools. Thus, by following a combinatorial approach, it
is shown [129, Proposition 1] that the Shannon capacity Cj of such channels is lower
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Figure 3.3. Diagram depicting the functioning of a trapdoor channel with β = 1, as
illustrated on the cover of Robert B. Ash’s classical book [12]

bounded by

Cj ≥
log α̂

β̂ + 1
. (3.7)

Moreover, when α̂ = 2 the capacity is upper bounded by

Cj ≤
1

β̂ + 1
. (3.8)

Despite the difficulty of characterizing single letter expressions for the capacity of the
original model of the trapdoor channel [138], the combinatorial approach followed
in [129] allowed for the characterization of single letter bounds holding for general
input processes in the case of the jamming trapdoor channel. These results, and the
ideas therein, inspire our work on battery policies. In the following, this inspiration
is further motivated by showing that, under certain circumstances, the battery and
trapdoor channels are equivalent.

3.2.3 Equivalence between trapdoor and battery channel

In [129], Ahlswede and Kaspi define the trapdoor channel as a box containing b0 blue
balls and β − b0 red balls. The operation of the channel is depicted in Figure 3.3. At
time i a new ball Xi coloured blue or red is thrown into the box. Immediately after,
one of the β + 1 balls inside the box is selected and taken out of the box. Let Yi

denote the ball extracted at time i. Following this model, the number of blue balls
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inside the box at time i is given by

bi = b0 +
i−1∑
k=0

bl(Xk)−
i−1∑
k=0

bl(Yk), (3.9)

where the indicator function bl(·) equals 1 when its argument is coloured blue and
0 otherwise. Similarly, when X = Y = {red, blue} the number of red balls inside
the box at time i is given by ri = β − bi. Replacing bi = β − ri and b0 = β − r0 into
(3.9) yields:

ri = r0 +
i−1∑
k=0

bl(Yk)−
i−1∑
k=0

bl(Xk). (3.10)

For a box of capacity β, the set of feasible output sequences Yn (r0, x) is defined as
the set of outputs y ∈ Yn than can be pulled out of the box given an initial state r0

and an input sequence x ∈ X n. The following definition captures the set of output
sequences that the trapdoor can implement.

Definition 3.4. Given an initial state s0 ∈ J0, βK, an n ∈ N, and a sequence
x ∈ J0, 1Kn as the inputs of a trapdoor channel with capacity β, the set of feasible
output sequences is

Yn
T (r0, x) =

{
y ∈ Yn : ri + bl(yi)− bl(xi) ∈ J0, βK for all i

}
. (3.11)

Following the same principle as in the battery channels, given the initial state
r0 ∈ J0, βK and the input sequence x ∈ X n, the trapdoor channel must select an
output sequence y that satisfies the feasibility constraint y ∈ Yn(s0, x). This selection
process, depicted in Figure 3.3, is captured by the following definition.

Definition 3.5. Given a trapdoor with capacity β and initial state r0, the set of
feasible trapdoor policies over the output alphabet Y is given by

ΩT (r0, β) ∆= {PY n|Xn : supp(PY n|Xn=x) ⊆ Yn
T (r0, x) for all x ∈ X n

T }. (3.12)

The following theorem shows that, for binary input and output alphabets, the
battery and the trapdoor channels are equivalent since requesting energy from the
grid corresponds to extracting a ball from the trapdoor channel. Similarly, replacing
a ball from the trapdoor channel in (3.10) corresponds to charging the battery of the
EMU in (3.2).

Theorem 3.1. Consider an EMU with a battery of capacity β, initial state s0 ∈ S
and binary input and output alphabets i.e. X n = Yn = {0, 1}n. Consider also a
trapdoor channel with capacity for β balls, initial state s0 and balls taking binary
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values, i.e. X n
T = Yn

T = {0, 1}n. Then the two systems are equivalent, i.e. they have
the same set of feasible input distributions PXn:

PXn = PXn
T

=
{
PXn : xn ∈ {0, 1}n

}
, (3.13)

and the same set of feasible battery/trapdoor policies PY n|Xn:

Ω(s0, β) = ΩT (s0, β) (3.14)

Proof: The proof for the input distributions (3.13) follows immediately by
the theorem conditions. The proof for the set of feasible policies (3.14) follows by
recalling the definition of feasible battery policies (3.4), i.e.

Ω(s0, β) ∆= {PY n|Xn : supp(PY n|Xn=x) ⊆ Yn(s0, x) for all x ∈ X n} (3.15)

and the definition of the set of feasible trapdoor policies (3.12), i.e.

ΩT (s0, β) ∆= {PY n
T |Xn

T
: supp(PY n

T |Xn
T =x) ⊆ Yn

T (s0, x) for all x ∈ X n
T } (3.16)

Thus, it suffices to show that the set of feasible request sequences Yn(s0, x) and
Yn

T (s0, x) are equivalent. The proof is completed by noting that the set of feasible
outputs Yn

T (s0, x) in the trapdoor channel (3.11) and the set of feasible energy
requests Yn(s0, x) in the battery channel (3.3) are equivalent when both input and
output alphabets are binary, i.e. X n

T = X n = Yn
T = Yn = {0, 1}n. ■

Remark 3.5. It is important to note that the equivalence presented here for the
binary case does not hold for other alphabets. This is because in the trapdoor channel
[129] the output is constrained to permutations of the input sequence. However, in
our setting, the output is not required to contain the same symbols as the input, as
the consumed energy can be combined or divided across different time steps. For that
reason, the combinatorial approach presented by Ahlswede and Kaspi [129] requires
some modifications to properly model the battery channel but the main idea remains.
In the following, we present a combinatorial approach, based on the one proposed
by Ahlswede and Kaspi, that avoids the difficulties introduced by the probabilistic
structures generally employed in the SMs privacy literature.

This equivalence between the trapdoor and the battery channels immediately
provides our first result.

Theorem 3.2. Consider an EMU with a battery of capacity β and initial state
s0 ∈ S. Let Xn be a random process taking values in X n = Yn = {0, 1}n, then there
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exists a battery policy π̂ ∈ Ω(s0, β) such that

I(Xn, π̂) ≤ 1
β + 1 . (3.17)

Furthermore, there exist an energy consumption sequence X̂n, such that for any
battery policy π̂ ∈ Ω(s0, β) the following holds

I(X̂n, π) = 1
β + 1 . (3.18)

Proof: The proofs follow immediately from (3.7) and (3.8) derived in [129], and
the equivalence between the trapdoor and the battery channels for binary alphabets
proved in Theorem 3.1. ■

3.3 Privacy with arbitrary energy consumption

In this section, we provide bounds on the information leakage rate when no restrictions
are imposed on the probability law of Xn. We first propose the construction of
a feasible battery policy π̂ ∈ Ω(s0, β) and characterize an upper bound on the
information leakage rate I induced by π̂ for any arbitrary random process Xn.
Furthermore, we study the tightness of the upper bound by presenting the probability
law of a random process X̂n whose leakage is tight with respect to the upper bound.
Moreover, the leakage rate induced by the random process X̂n is shown to be
independent of the employed battery policy π ∈ Ω(s0, β).

3.3.1 Upper bound on the information leakage rate

We propose a battery policy based on the code construction in [129]. The code
proposed in the trapdoor channel context is the counterpart of the battery policy in
the smart meter case. For the design of the random transformation that minimized
the mutual information, Ahlswede and Kaspi show that, in the binary case, the
trapdoor is always able to output a constant sequence of balls with length equal to
the trapdoor size. In our case we are interested in larger alphabets, and batteries are
not only able to permute, but also to aggregate energy. However, the idea of forcing
a uniform, low entropy, behaviour in the output process inspired us in the design of
our battery policies. The proposed policy structures the energy request sequences
according to the output alphabet defined below.

Definition 3.6. Consider the set of codewords of length l constructed by repetitions
of 0 or α symbols, i.e. Ol = {(0, 0, · · · , 0), (α, α, · · · , α)} ⊆ X l. For n = lm, we
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define the block repetition alphabet as the set Om
l of sequences obtained by the m-fold

concatenation of codewords of length l, i.e.

Om
l = Ol ×Ol × ...×Ol. (3.19)

We now define a battery policy that maps the energy consumption of the user to
output sequences constructed with the block repetition alphabet Om

l .

Definition 3.7. A block battery policy π̂ ∈ Ω(s0, β) is a mapping of the form

π̂ : S × X n → Om
l ∩ Yn(s0, x). (3.20)

Note that a block battery policy is nothing more than a strategy to assign to
each input sequence a feasible energy request sequence constructed with a block
repetition alphabet. With these definitions at hand we now provide the following
privacy guarantee.

Theorem 3.3. Consider an EMU with a battery of capacity β and initial state
s0 ∈ S. Let Xn be a random process with Xi taking values in X = {0, 1, · · · , α}
for i = 1, 2, · · · , n, and let π̂ denote a block battery policy with l = ⌊(β + 1)/α⌋ as
described in Definition 3.7. Then

I(Xn, π̂) ≤ 1
⌊(β + 1)/α⌋

. (3.21)

Proof: Notice that the information leakage rate is upper bounded by

I(Xn, π̂) = 1
n

I(Xn; Y n) ≤ 1
n

H(Y n). (3.22)

Since Y n takes values in Om
l and |Om

l | = 2m we have that

1
n

H(Y n) ≤ 1
n

log |Om
l | =

1
n

log(2m) = m

n
= 1

l
. (3.23)

We now show that when l ≤ (β + 1)/α there exists at least one block battery
policy π̂ that is feasible for every initial state s0 and consumption x. To prove this
we show that for every realization x and initial state s0 there exists an energy request
sequence y ∈ Om

l such that y belongs to the set of feasible energy requests Yn(s0, x).
The strategy is to notice that Om

l ∩ Yn(s0, x) ̸= ∅ for m = 1 and to then prove by
induction that the non-emptiness of the intersection holds for m ≥ 1.

For m = 1, the intersection {(0, 0, · · · , 0), (α, α, · · · , α)}∩Y l
β(s0, xl) is non-empty

if and only if either the sequence (0, 0, · · · , 0) or (α, α, · · · , α) belong to Yn(s0, x).
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This implies that either

si+1 = si + yi − xi = si + 0− xi ∈ S = J0, βK (3.24)

or

si+1 = si + yi − xi = si + α− xi ∈ S = J0, βK (3.25)

hold for all i ≤ l. In the first case, described in (3.24), we have that xi ≥ 0 for
i = 0, · · · , l− 1. Hence, the energy stored in the battery, si, decreases monotonically.
Therefore, since s0 ≤ β, all si belong to S = J0, βK when si ≥ 0 on the last time step,
i.e.,

0 ≤ s0 −
l−1∑
i=0

xi. (3.26)

Similarly, in the case described by (3.25), we have that xi ≤ α and the energy stored
increases monotonically. It is then sufficient to show that

s0 −
l−1∑
i=0

xi ≤ β − αl. (3.27)

When β − αl ≥ −1 every integer sl ∈ Js0 − lα, s0K satisfies at least one of the
inequalities given by (3.26) and (3.27). This ensures that either (3.26) or (3.27)
hold for every s0 ∈ S and x ∈ X l, and therefore, the intersection Om

l ∩ Yn(s0, x)
is non-empty. This completes the proof for m = 1. The induction for m ≥ 1 is
straightforward as the proof for m = 1 holds for every initial state s0. ■

Remark 3.6. Theorem 3.3 provides an upper bound on the leakage induced by any
energy consumption process taking values in a bounded alphabet J0, αK. This implies
that when the EMU implements a block battery policy, no bounded energy consumption
process leaks more than 1

⌊(β+1)/α⌋ bits per sample. Thus, Theorem 3.3 provides a
worst case guarantee for any user with a bounded energy consumption.

Note that in order to map input pairs (s0, x) to energy requests in Om
l it suffices

to forecast, at the start of each block of length λ = (β + 1)/α, whether the battery
will deplete during the current block, i.e. s0 − σ(xλ) ≶ 0. This shows the forecasting
capabilities required to implement the battery policy described in Theorem 3.3.

3.3.2 Tightness of the upper bound

We now address the tightness of the upper bound presented in Theorem 3.3. To
this end, we construct a random process modelling the energy consumption of the



62 Universal privacy guarantees via the trapdoor channel

user that is tight with respect to the result in Theorem 3.3 for every battery policy
π ∈ Ω(s0, β). The worst case input process presented by Ahlswede and Kaspi hinges
on the same idea as the optimal battery policy, i.e. uniformity. The worst case
input process is thus constructed by consecutively introducing a fixed number of
balls of the same type into the trapdoor. When this number exceeds the capacity
of the trapdoor, the trapdoor is forced to leak the type of ball that was introduced.
Although the constraints imposed on batteries polices and on the trapdoor channel
are not equivalent outside the binary case, the worst case input processes derived
for the trapdoor channel provided inspiration for the design of our our worst case
consumption processes.

Theorem 3.4. Consider an EMU with a battery of capacity β and initial state
s0. Let X̂n be a random process taking uniformly distributed values in Om

l with
l = ⌈(β + 1)/α⌉. Let π be a feasible battery policy. Then

I(X̂n, π) = 1
⌈(β + 1)/α⌉

. (3.28)

Proof: Expand I(X̂n, π) as

I(X̂n, π) = 1
n

I(Xn; Y n) = 1
n

H(Xn)− 1
n

H(Xn|Y n). (3.29)

When Xn is uniformly distributed over the alphabet Om
l , with |Om

l | = 2m and
n = ml, we have that

1
n

H(Xn) = 1
n

log |Om
l | =

m

n
= 1

l
. (3.30)

We now show that the equivocation rate 1
n
H(Xn|Y n) is 0 when Xn takes values in

Om
l with l > β/α. To this aim, we prove by induction that when the input sequence

x belongs to Om
l with l > β/α, the sets Yn(s0, x) of feasible output words generated

by different consumption sequences are disjoint, i.e.

Yn(s0, x′) ∩ Yn(s0, x) = ∅ for x′ ̸= x. (3.31)

As a result, any request sequence y ∈ Yn(s0, x) unequivocally determines the
generating input x. In other words, given an output sequence y there is no uncertainty
about the input x, and therefore, the equivocation rate 1

n
H(Xn|Y n) is 0.

For m = 1 there are two possible inputs (0, 0, · · · , 0) and (α, α, · · · , α). When
x = (0, 0, · · · , 0) ∈ O1

l the energy stored in the battery at time l is given by

sl(0) = s0 +
l−1∑
i=0

(yi − 0). (3.32)
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Similarly, when x = (α, α, · · · , α) ∈ X l the energy stored in the battery at time l is
given by

sl(α) = s0 +
l−1∑
i=0

(yi − α). (3.33)

Taking the difference between (3.32) and (3.33) yields:

sl(0)− sl(α) =
l−1∑
i=0

α = lα. (3.34)

When sl(α) ∈ S = J0, βK we have that sl(0) = sl(α)+lα ≥ lα, showing that for lα > β

the events sl(α) ∈ S = J0, βK and sl(0) ∈ S = J0, βK do not occur simultaneously.
This implies that the set of output sequences belonging to Yn(s0, (0, 0, · · · , 0)) and
Yn(s0, (α, α, · · · , α)) is empty for every initial state s0. Therefore the sets are disjoint
and 1

n
H(Xn|Y n) = 0. The proof for m > 1 follows by induction and noticing that

the proof above is valid for every initial state s0. ■

Remark 3.7. Theorem 3.4 shows that at least one consumption profile leaks 1
⌈(β+1)/α⌉

bits per sample, for any feasible battery policy. This implies that no upper bound with
the generality of the one presented in Theorem 3.3 can guarantee a leakage smaller
than 1

⌈(β+1)/α⌉ bits per sample.

Note that the gap between both bounds is given by

G = 1
⌈(β + 1)/α⌉

− 1
⌊(β + 1)/α⌋

=


0, when (β + 1)/α ∈ Z

1
⌈β+1

α ⌉⌊β+1
α ⌋

, otherwise.
(3.35)

Thus, the bounds are exact for integer values of (β + 1)/α, and their difference
increase roughly with the square of λ = (β + 1)/α otherwise. Note that this gap
is a peculiarity introduced by the discrete time nature of the model. When the
time needed to fully discharge the battery is an integer number of time steps,
i.e. (β + 1)/α ∈ Z upper and lower bounds coincide. Otherwise, the feasibility
of the upper bound is only guaranteed during ⌊(β + 1)/α⌋ time steps, while the
consumption sequence requires ⌈(β + 1)/α⌉ time steps to leak one bit of information.
It is important to note that the maximum energy consumption α is a function of
the sampling interval, i.e. α = PmaxT , where Pmax is the peak power consumption of
the user and T is the sampling interval. Thus, by selecting an adequate sampling
interval, i.e. T such that (β + 1)/(PmaxT ) ∈ Z, we can always make the bounds exact
for arbitrary values of β and Pmax.
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3.4 Privacy with an average energy constraint

The information leakage rate bounds provided in Section 3.3 do not impose any
moment restriction on the random process modelling the energy consumption of
the user. Indeed, they depend only on the peak energy consumption α and on the
size of the battery β. However, one of the most widely used energy consumption
metrics is the average energy consumption over an arbitrary time interval, being
common for SMs to display this information to the user [29, 66]. In the following,
we particularize the results in Theorem 3.3 and Theorem 3.4 to the case in which
the average energy consumption of the user is specified. Therein, we analyse the
impact of the average energy consumption on the privacy performance. We define
the average energy consumption of the random process Xn as

µn = E

[
1
n

n−1∑
i=0

Xi

]
. (3.36)

Note that since we do not impose any stationarity constraint on the random process
Xn, the average energy consumption is a function of the time step n. This agrees
with the non-stationary nature observed in energy consumption profiles of residential
users [58].

Following the results on Section 3.3, the upper bound presented in this section
relies on the availability of energy consumption forecasts up to λ = (β + 1)/α time
steps ahead. Moreover, the upper bound provides a worst case guarantee, i.e, it
upper bounds the amount of information that any bounded consumption profile
with a given average consumption leaks to the provider. Finally, the lower bound
presented in this section shows the existence of a consumption profile tight to the
upper bound. This implies that, for the same generality, there exist no significantly
lower upper bound than the one here presented.

3.4.1 Upper bound on the information leakage rate

The following result provides an upper bound on the information leakage rate for
random processes Xn with average energy consumption µn.

Theorem 3.5. Consider a battery system with capacity β and initial state s0. Let Xn

be a random process taking values on X n = J0, αKn with average energy consumption
µn. Let π̂ be a block battery policy with l = ⌊(β + 1)/α⌋, then

I(Xn, π̂) ≤
max

ϵ∈[ −s0
nα

,
β−s0

nα
] H2

(
µn

α
+ ϵ

)
⌊(β + 1)/α⌋

, (3.37)
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where H2(p) = −p log2 p− (1− p) log2(1− p) denotes the binary entropy.

Proof: Let the output process Y n take values in Om
l . Thus, the information

leakage rate is upper bounded by

I(Xn, π̂) ≤ 1
n

H(Y n) (3.38)

= 1
n

m−1∑
i=0

H(Yil, . . . , Y(i+1)l−1|Y0, . . . , Yil−1) (3.39)

≤ 1
n

m−1∑
i=0

H(Yil, . . . , Y(i+1)l−1), (3.40)

where (3.39) follows by applying the chain rule and (3.40) follows from the fact that
conditioning reduces entropy. Notice that (3.40) is the entropy of m sequences Y l

taking values on the binary alphabet Ol = {(0, 0, · · · , 0), (α, α, · · · , α)}. Therefore,
the information leakage is upper bounded by

I(Xn, π̂) ≤ 1
n

m−1∑
i=0

H(Yil, . . . , Y(i+1)l−1) (3.41)

≤ 1
n

m−1∑
i=0

H2

(
P
[
Y l = (α, α, . . . , α)

] )
(3.42)

= 1
l
H2

E
[

1
n

∑n−1
i=0 Yi

]
α

, (3.43)

with equality for the case in which each sequence Y l is independent and identically
distributed, i.e. with distribution

P
[
Y l = (α, α, . . . , α)

]
=
E

[
1
n

∑n−1
i=0 Yi

]
α

, (3.44)

and

P
[
Y l = (0, 0, . . . , 0)

]
= 1− P

[
Y l = (α, α, . . . , α)

]
. (3.45)

We now bound the average energy requested from the grid as a function of the
average energy consumption of the user and the battery size. Dividing (3.2) by n

and taking the expected value w.r.t PXn,Y n yields

E

[
1
n

n−1∑
i=0

Yi

]
= E

[
1
n

n−1∑
i=0

Xi

]
+E

[
Sn − s0

n

]
, (3.46)
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or equivalently, noting that Sn takes values in J0, βK and recalling (3.36),

µn −
s0

n
≤ E

[
1
n

n−1∑
i=0

Yi

]
≤ µn + β − s0

n
. (3.47)

This implies that

P
[
Y l = (α, α, . . . , α)

]
=
E

[
1
n

∑n−1
i=0 Yi

]
α

= µn

α
− ϵ (3.48)

for some ϵ ∈ [−s0
nα

, β−s0
nα

]. Recall that for l ≤ (β + 1)/α, and for every initial state
s0 ∈ S and input realization x ∈ X n there exists a sequence y ∈ Om

l such that y
belongs to the set of feasible energy requests Yn(s0, x). Thus, the above strategy is
always feasible, completing the proof. ■

3.4.2 Tightness of the upper bound

Proceeding in a similar fashion as in Section 3.3, we now prove that the upper bound
in Theorem 3.5 is tight for a certain class of random processes modelling the energy
consumption.

Theorem 3.6. Consider a battery system with capacity β and initial state s0. Let
X̂n be a random process with average energy consumption µn and taking values in
Om

l with l = ⌈(β + 1)/α⌉. Let π be a feasible battery policy, then

I(X̂n, π) =
H2

(
µn

α

)
⌈(β + 1)/α⌉

. (3.49)

Proof: It follows from (3.43) that the entropy rate of the random process Xn

taking values in Om
l is upper bounded by

1
n

H(Xn) ≤ 1
l
H2

E
[

1
n

∑n−1
i=0 Xi

]
α

 = 1
l
H2

(
µn

α

)
, (3.50)

with equality when the m symbols X l forming Xn are i.i.d.. We now recall that
when Xn takes values in Om

l with l > β/α the input x can be uniquely determined
from the output sequence y and H(Xn|Y n) = 0. Thus, by selecting l = ⌈(β + 1)/α⌉,
we have that

I(X̂n, π) = 1
n

H(Xn)− 1
n

H(Y n|Xn) = 1
n

H(Xn) ≤
H2

(
µn

α

)
⌈(β + 1)/α⌉

. (3.51)



3.5 Numerical results 67

with equality when when the m symbols X l forming Xn are i.i.d.. This concludes de
proof. ■

3.5 Numerical results
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Figure 3.4. Upper bound on the information leakage rate of an EMU as a function
of the ratio between the battery size and the peak power consumption.

In this section we numerically evaluate the bounds derived in the previous sections.
The upper bound derived in Theorem 3.3 is depicted for different battery sizes in
Figure 3.4. It is interesting to note that the privacy guarantees increase significantly
for small values of (β + 1)/α but the benefit vanishes as the size of the battery
increases.

The upper bound on the information leakage rate of infinitely large sequences
when the average energy consumption of the user is known is illustrated in Figure 3.5
and Figure 3.6. As expected, the binary entropy term in Theorem 3.5 introduces
concavity in the upper bound as shown in Figure 3.5. Interestingly, Figure 3.6 shows
that the information leakage rate reduction as the size of the battery increases is less
significant for extreme values of the average energy consumption. For representation
purposes we evaluate the upper bounds when n goes to ∞, and defined the infinity
length average energy consumption µ = limn→∞ µn which we assume to exits.
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Figure 3.5. Upper bound on the information leakage rate of an EMU with infinitely
large sequences as a function of the average energy consumption of the user for
different values of the ratio between the battery size and the peak power consumption.
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Figure 3.6. Upper bound on the information leakage rate of an EMU with infinitely
large sequences, as a function of the ratio between the battery size and the peak
power consumption for different values of the average energy consumption of the user
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3.6 Conclusion

In this chapter we have studied the information leakage rate of EMUs with finite
battery capacity for general random processes modelling the energy consumption
of the user. Our results are inspired by previous works on permuting channels, and
in particular by the jamming case of the trapdoor channel. Following the coding
strategies proposed for the trapdoor channel, where the output is kept constant
for a fixed number of time steps, we defined the family of block battery policies.
These policies map energy consumption sequences to a block repetition alphabet,
constant in blocks of length λ = (β + 1)/α. We have shown that these policies are
feasible for arbitrary random processes taking values on a bounded alphabet, thus,
providing an upper bound on the information leakage holding for a wide class of
input processes. While the resulting policy is non-causal, detailed analysis shows that
knowing (β + 1)/α time steps ahead suffices to achieve optimality. Thus, we envision
practical implementations that rely on consumption forecasting. This approach also
provides insight on what forecasting capabilities are needed.

Furthermore, we have make specific the analysis to the case in which the average
energy consumption of the user is known and we have concluded that extreme values
of the average energy consumption provide lower values of information leakage to
the utility provider. The tightness of the upper bound was studied by presenting the
probability law of a consumption process tight to the upper bound. The construction
of this consumption process, inspired by the work on the trapdoor channel, shows
that energy consumption process that consume either no energy or maximum power
in cycles of length λ leak the maximum amount of information to the provider. This
further emphasizes the key role played by the parameter λ = (β + 1)/α, i.e. by the
time needed to deplete a fully charged battery.





Chapter 4

Universal privacy guarantees
under cost constraints

Variable market prices play a fundamental role in the smart grid, enabling new
approaches to match energy generation and demand [27, 28]. However, variable
market prices pose an extra constraint on privacy preserving battery policies, since
the user is encouraged to charge and discharge the battery at particular times of
the day in order to reduce the energy bill. Thus, it is important to understand how
variable market prices impact the privacy guarantees studied in Chapter 3.

Within this chapter, we study the impact of variable market prices on the privacy
guarantees. To that aim we model the market prices as a deterministic sequence
known in advance by the user. This is in line with most modern billing systems for
private consumers, where the different price zones and times are defined in advance.
In Section 4.2, we address the main challenges introduced by the joint privacy-cost
optimization. Therein we formulate the price constraint as a constraint on the
battery state at market transition points. In Section 4.3, we derive upper and lower
bounds on the privacy guarantee subject to feasibility and cost constraints. Finally,
in Section 4.4, we numerically evaluate the presented bounds.

4.1 System model

Within this chapter we follow the energy management system depicted in Figure 4.1.
The privacy guarantee is defined in terms of the information leakage from the user to
the provider, and the task of the EMU is to choose a battery policy that minimizes
the leakage while satisfying the operation and cost constraints.
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Information Leakage

User UPSMEMU

Battery

Figure 4.1. Energy Management System with finite battery model and variable
market price m.

Following with the set-up in Chapter 2, we model user energy consumption
as a discrete-time random process Xn on alphabet X n = J0, αKn, with probability
PXn ∈ PXn . Here PXn is a fixed family probability distributions that may contain non-
stationary random processes. The EMU maps the consumption sequence Xn ∈ X n

to a request sequence Y n ∈ Yn using a battery policy PY n|Xn . To be considered
feasible, battery policy PY n|Xn must create a request sequence that meets the energy
demands of the user and does not request energy it cannot use or store. Formal
definitions of the sets of feasible energy request and feasible battery policies are given
in Definition 3.2 and 3.3.

Our aim in feasible policy design is to minimize privacy subject to a constraint
on policy cost. Towards this end, we define our measures of information leakage
(where privacy is high when information leakage is low) and cost. We measure a
battery policy’s information leakage by its worst-case performance.

Definition 4.1. The information leakage of policy PY n|Xn is

Ī(PY n|Xn) = max
PXn ∈PXn

1
n

I(Xn; Y n). (4.1)

We measure the cost of a policy PY n|Xn as the difference between the user’s energy
bill under that policy and the user’s energy bill under the feasible battery policy
that minimizes the energy bill. Under this definition, cost can be negative only for
infeasible policies. To calculate energy bills, we model the energy market price as a
deterministic sequence, m ∈ Rn. Under this definition, the cost of an energy request
sequence y is mT y. We assume that the market price is constant over each of K

blocks of time. The price and duration of the k-th block, k = 0, 1, . . . , K − 1, are
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mk and lk, respectively, giving

m = (m0, . . . , m0︸ ︷︷ ︸
l0

, m1, . . . , m1︸ ︷︷ ︸
l1

, . . . , mK−1, . . . , mK−1︸ ︷︷ ︸
lK−1

). (4.2)

Definition 4.2. Consider an EMU with battery capacity β, initial state s0 ∈ S, and
market price m. The system cost of energy consumption sequence x ∈ X n under
battery policy PY n|Xn is

g(Y n, x) = EPY n|Xn=x [mT Y n −mT y∗(x)], (4.3)

where y∗(x) = argminy∈Yn(s0,x) mT y is the sequence that induces the minimum
feasible cost. For any ∆ ≥ 0, the set of feasible ∆-affordable battery policies is

Γ(∆) ∆=
{
PY n|Xn ∈ Ω(s0, β) : g(Y n, x) ≤ ∆ for all x ∈ X n

}
. (4.4)

Remark 4.1. Note the implicit dependency of the systems cost function g(Y n, x) and
of the set of feasible battery policies Γ(∆) on the output alphabet Y, the initial battery
state s0 and the capacity of the battery β. However, here the simplified notation
g(Y n, x) and Γ(∆) is preferred to g(Y n, x,Y , s0, β) and Γ(∆,Y , s0, β) for simplicity,
and because the following focuses on the influence of the budget constraint ∆ while
the influence of Y , s0 and β is studied in Chapter 3 and Section 4.2.2.

Finally, the privacy-cost function defines the optimal tradeoff between privacy
and cost achievable by feasible battery policies.

Definition 4.3. Given an EMU with battery capacity β, initial state s0 and market
price m, the privacy cost function is defined, for each ∆ ≥ 0, as

I(∆) ∆= min
PY n|Xn ∈Γ(∆)

Ī(PY n|Xn). (4.5)

The following lemma shows that the privacy cost function I(∆) is invariant to
the order of optimization.

Lemma 4.1. The privacy cost function I(∆) is invariant with respect to the opti-
mization order, i.e.

I(∆) = min
Γ(∆)

max
PXn

1
n

I(Xn; Y n) = max
PXn

min
Γ(∆)

1
n

I(Xn; Y n). (4.6)
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Proof: Let π1, π2 ∈ Γ(∆) be ∆-affordable battery policies. Note that any linear
combination π3 = λπ1 + (1− λ)π2, with λ ∈ [0, 1], satisfies the cost constraint:

g(Y n
3 , x)= mT

E[λY n
1 + (1− λ)Y n

2 ]−mT y∗(x) ≤ ∆, (4.7)

and the support constraint:

supp(Y n
3 ) = supp(Y n

1 ) ∪ supp(Y n
2 ) ⊆ Yn(s0, x). (4.8)

Thus Γ(∆) is convex. The minimax theorem [143], shows that

max
a∈A

min
b∈B

f(a, b) = min
b∈B

max
a∈A

f(a, b) (4.9)

when A, B are compact convex sets and f : A × B → R is a continuous function
concave for fixed b and convex for fixed a. Thus, by concave-convex properties of the
mutual information, and the compactness and convexity of the sets PXn and Γ(∆)
the proof is completed. ■

4.2 Challenges and methodology

We now focus on the main challenges introduced by variable market prices. Specifi-
cally, we notice the utility of modelling cost constraints as a constraint on the battery
state at market transition points. These characterizations allow us to combine
feasibility and cost constraints into a single, more tractable, optimization problem.
Therein, at every time step, the battery state is in J0, βK as a result of the feasibility
constraints, while at market transition points, the battery state is further constraint
to a smaller interval by the budget constraints. Two main approaches to tackle this
problem are then proposed, the first approach relies on solving the optimization
problem one market block at a time, while the second one considers the whole time
interval as a single block.

4.2.1 Analysis of market price constraints

In Chapter 3, feasible battery policies that guarantee that the battery state belongs
to the interval J0, βK were presented. Thus, in order to improve the tractability of
the problem, it is useful to present the cost constraints as a constraint on the set of
battery states. Recall that the the energy bill is given by

B = mT Y n =
K−1∑
k=0

mk

ik+1−1∑
i=ik

Yi

 (4.10)
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where ik denotes the time step at which the k-th market change takes place, i.e.
ik+1 = ik + lk, with i0 = 0. By the battery charging dynamics, this implies that

B =
K−1∑
k=0

mk

ik+1−1∑
i=ik

(Si+1 − Si + Xi)
 (4.11)

= mT Xn +
K−1∑
k=0

mk

(
Sik+1 − Sik

)
(4.12)

= mT Xn +
K−1∑
k=0

mk(Tk+1 − Tk) (4.13)

where Tk denotes the battery state at the k-th market transition point, i.e. Tk = Sik
.

Regrouping terms we have that

B = mT Xn−m0T0 +(m0−m1)T1 + ···+(mK−2−mK−1)TK−1 +mK−1TK , (4.14)

= mT Xn −m0s0 +
K∑

k=1
δkTk, (4.15)

where δ denotes the vector of market price differences, i.e. δk = mk−1 − mk for
k = 1, 2, . . . , K − 1 and δK = mK−1. That is, the price paid for the energy depends
on the initial battery state s0, the energy consumption Xn and the battery state at
transition points. Therefore, the additional price paid for the privacy of sequence x
is given by

g(Y n, x) = EPY n|Xn=x [mT Y n −mT y∗(x)] (4.16)

= EPY n|Xn=x

[
K∑

k=1
δk(Tk − T ∗

k )
]

. (4.17)

Thus, the additional price paid for the energy depends solely on the battery states
at transition points. It is worth noting that in general, the optimal battery states at
transition points T ∗

k depends on the market m, the energy consumption of the user
x and the output alphabet Y. Interestingly, for large output alphabets, i.e. Y = Z
we have that

mT y∗(x) = mT Xn −m0s0 + min
T K∈J0,βKK

K∑
k=1

δkTk (4.18)

= mT Xn −m0s0 +
K∑

k=1
δkβ1{δk < 0}. (4.19)

That is, the strategy to minimize the cost is to fully charge the battery, i.e. T ∗
k = β,

when the future price is more expensive than the current one, i.e. when mk−1−mk =
δk < 0. Similarly, the optimal strategy is to fully discharge the battery, i.e. T ∗

k = 0,
when the future price is cheaper than the current one, i.e. when mk−1−mk = δk > 0.
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Figure 4.2. Battery state evolution over time. In grey the region containing all
possible sequences of battery states that achieve the minimum price, where T ∗

k

denotes the battery states at transition points that yield the minimum feasible price.
Note the different charging and discharging slopes, as the extremes of Y are allowed
different values.

Note that the feasibility of this strategy is not guaranteed when the request alphabet
is constrained, as there exist sequences x such that the battery can not be fully
charged/discharged during one market block. The impact of constrained request
alphabets is studied in the following section. When Y = Z, the additional price paid
for the privacy is given by

g(Y n, x)= EPY n|Xn=x

[
K∑

k=1
δk(Tk − T ∗

k )
]

. (4.20)

Furthermore, when Y = Z, the additional price paid at each time step is non-negative,
and thus

g(Y n, x) = EPY n|Xn=x

[
K∑

k=1
|δk||Tk − T ∗

k |
]

= EP
T K |Xn=x

[
K∑

k=1
|δk|T ∆

k

]
, (4.21)

where T ∆
k = |Tk−T ∗

k | denotes the deviation from the optimal battery state at market
transition point k. That is, deviating T ∆

k units from the optimal market price at
transition k induces an extra cost δk.

Interestingly, when ∆ = 0 and Y = Z, the battery states at transition points are
constrained to a single value, i.e. T ∆

k = 0 for all k = 0, 1, · · · , K − 1, as depicted in
Figure 4.2. This simplifies the probabilistic structure of the problem, introduced by
the usage of the expected value in the cost constraint, enabling the utilization of
some the combinatorial arguments developed in Chapter 3. Furthermore, it enables
the independent optimization of each of the K market blocks, since the initial and
final battery state of each market block are fixed, Figure 4.2. This allows us to
construct the worst case consumption process when ∆ = 0, while relaxation of the
single value constraints generalizes the result to arbitrary alphabets. Similarly, when
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∆ = ∞, the problem reduces to that solved in Chapter 3 using a combinatorial
argument. Increasing or reducing the energy requested at market transition points
allows us to fine tune the battery state at transition points. Thus, reducing the price
paid for the energy and modelling scenarios with arbitrary price constraints.

4.2.2 Impact of the output alphabet on information leakage

In the following, we characterize the impact of the output alphabet on the information
leakage I(∆). In particular, we show that the information leakage does not increase
when the policy operates with a constrained output alphabet Yc. Lemma 4.2 shows
that it is possible to remove extreme values, i.e. yi ̸∈ J0, αK, while retaining the
feasibility of the sequence y ∈ Yn(s0, x). This is depicted in Figure 4.3.

Lemma 4.2. Let two output alphabets Yn
c and Yn be such that J0, αKn ⊆ Yn

c ⊆ Yn ⊆
Zn. Then there exists a function Fn : Yn → Yn

c such that for any (s0, x) ∈ S × X n

and y ∈ Yn(s0, x) it holds that

Fn(y) ∈ Yn
c (s0, x), (4.22)

where Yn
c (s0, x) denotes the feasible set with output alphabet Yc.

Proof: We first define the set of functions {hi}n
i=1 that allows us to define Fn.

For each function hi with i ∈ J1, nK set di ∈ J0, (yi − α)+K and define hi : Yn → Yn
c

as

hi(y)=

y + di(ei+1 − ei), when i ∈ J1, n− 1K

y− diei, otherwise,
(4.23)

where ei ∈ Nn denotes the ith unit vector of the standard base, i.e. (ei)k = 1{k = i}.
That is, the function hi reallocates the purchase of di units of energy from time step
i to the next time step i + 1. Note that when this occurs on the last time step,
i.e. when i = n, the excess energy request is not reallocated but removed from the
sequence. Let s ∈ Sn+1 be the sequence of battery states induced by the feasible
sequence y. By the battery charging dynamics (3.2), the sequence of battery states
induced by ỹ = hi(y) is given by

s̃ = s− diei+1, (4.24)

with di ∈ J0, (yi − α)+K. Note that

s̃i+1 = si+1 − di ≤ si+1 ≤ β, (4.25)



78 Universal privacy guarantees under cost constraints

Figure 4.3. Original energy request sequence y taking values outside J0, αK (red) and
final energy request sequence Fn(y) taking values in J0, αK (green).

and since xi ≤ α ≤ yi − di

s̃i+1 = s̃i + (yi − di)− xi ≥ s̃i ≥ 0. (4.26)

Thus s̃ ∈ Sn+1, and hi(y) ∈ Yn(s0, x). The above argument shows that any
excess energy request, i.e. yi ≥ α, can be reallocated to the next time step. A
similar argument shows that any excess can be reallocated to the previous time step.
Furthermore any excess energy selling, i.e. yi < 0, can be reallocated to the next
and previous time steps without impacting the feasibility of the energy request. A
recursive application of the arguments above yields the existence of the function Fn

constructed as

Fn(y) = hn ◦ hn−1 · · · ◦ h1(y), (4.27)

so that Fn(y) ∈ Yn
c (s0, x). This completes the proof. ■

The lemma above shows that battery policies that operate over an output alphabet
with a maximum energy request that matches the peak energy consumption of the
user, i.e. Y = J0, αK, are sufficient to satisfy the feasibility. However, in general the
function Fn does not preserve the price paid for the energy, as y and Fn(y) may yield
different energy bills. The following lemma identifies the conditions that guarantee
that the energy bill does not change after the application of Fn.

Lemma 4.3. Let the output alphabet be Yn
c ⊆ J−β/l, β/l + αKn where l = mink lk

and lk is the length of the k-th market price period as defined in (4.2). Consider a ∆-
feasible battery policy PY n|Xn ∈ Γ(∆). Then there exists a function F̂n,m : Yn → Yn

c

such that P
F̂n,m(Y n)|Xn is a ∆-feasible battery policy for output alphabet Yc.

Proof: A sufficient condition for any mapping F̂n,m reallocating energy consump-
tion to preserve the energy bill, is to preserve the total amount of energy requested
during each market block k. By the battery charging dynamics (3.2), the total
amount of energy requested during any block of length lk, starting at i = ik, is given
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by

ik+lk∑
i=ik

Yi = Tk+1 − Tk +
ik+lk∑
i=ik

Xi, (4.28)

Where we recall that Tk+1 and Tk denote the battery state at transition points
between market blocks, as described in (4.13). Note that as Tk+1, Tk take values in
J0, βK and Xi take values in J0, αK for all i, we have that

ik+lk∑
i=ik

Yi ∈ J−β, β + lkαK (4.29)

That is, the total energy requested during any market block takes values in J−β, β +
lkαK. When the output alphabet Yc allows such requests i.e. when Yn

c ⊇ J−β/lk, β/lk+
αKn, there is no need to reallocated energy between market blocks. No energy reallo-
cation between markets blocks implies no difference on the price paid for the energy.
■

The lemmas above show that the resulting output sequences Fn(y) and F̂n(y) do
not depend on the input pair (s0, x) and instead depend only on the original output
sequence y. This insight leads to the following result.

Lemma 4.4. Let IY(∆) represent the privacy-cost function under output alphabet
Yn, then for any Y ⊃ YX = X :

IYX (∞) = IY(∞). (4.30)

Furthermore for any ∆ ≥ 0, Y ⊃ Yc = J−β/l, β/l + αKn as defined in Lemma 4.3, it
holds that:

IYc(∆) = IY(∆). (4.31)

Proof: Let ΓY(∆) denote the set of feasible ∆-affordable battery policies under
output alphabet Y. Lemma 4.2 states the existence of a function Fn : Yn → Yn

X

such that if PY n|Xn ∈ Γ(∞) then PFn(Y n)|Xn ∈ Γ(∞). The function Fn induces the
Markov chain

Xn → Y n → Fn(Y n). (4.32)

Therefore I(Xn; Fn(Y n)) ≤ I(Xn; Y n) by the data processing inequality. The
converse follows by noting that ΓYX

(∞) ⊆ ΓY(∞), and therefore

min
ΓY (∞)

I(Xn; Y n) ≤ min
ΓYX

(∞)
I(Xn; Y n). (4.33)
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For the second statement, Lemma 4.3 shows the existence of a function F̂n,m :
Yn → Yn

c such that if PY n|Xn ∈ Γ(∆) then P
F̂n(Y n)|Xn ∈ Γc(∆). Noting that the

function F̂n,m induces the Markov chain

Xn → Y n → F̂n,m(Y n) (4.34)

yields I(Xn; F̂n,m(Y n)) ≤ I(Xn; Y n) by the data processing inequality. The converse
follows by noting that Γc(∆) ⊆ Γ(∆), and therefore

min
Γ(∆)

I(Xn; Y n) ≤ min
Γc(∆)

I(Xn; Y n). (4.35)

■

Lemma 4.4 shows that under certain assumptions, the privacy cost function does
not vary when the EMU operates with a constrained output alphabet. This result is
consistent with prior results reported for privacy based on hypothesis testing [87] and
for i.i.d. energy consumptions with instantaneous power constraints [120, 10, 144]
We note that the proof for the existence of the function F̂n presented in Lemma 4.3
requires forecasting of l time steps ahead.

We now improve the upper bounds presented on Chapter 3. Intuitively, smaller
sampling periods, i.e. the time elapsed between time steps, lead to larger privacy
leakages. This intuition leads to the following result.

Lemma 4.5. Let n be a positive integer and λ = (β + 1)/α. Then the privacy cost
function under no cost constraints, is bounded by

I(∞) ≤ 1
n

⌈
n

λ

⌉
. (4.36)

Proof: Let T0 denote the time elapsed between two time steps, and Pmax = α/T0

denote the maximum power consumption of the user. Let n′ = nα denote the
corresponding number of samples if the sampling period is reduced to T ′

0 = T0/α =
1/Pmax, i.e. T = T0n = T ′

0n
′ with T denoting the total time. Then α′ = PmaxT ′

0 = 1.
Moreover, the total information leakage satisfies

nI(∞) ≤ n′I ′(∞). (4.37)

Which follows the intuition that reducing the sampling period can not decrease the
total information leakage. To prove this, let y′ be a feasible sequence for T ′

0, inducing
battery states s′. Then, for T0, the battery states s, induced by the downsampled
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sequence fn(y) with

fk(y′) =
(k+1)α−1∑

i=kα

y′
i, (4.38)

are a subsequence of the original battery states s′, in particular

si = s0 +
i∑

k=0
(fk(y′)− fk(x′)) = s′

iα. (4.39)

Thus, fk(y′) is feasible if y′ is feasible, and inducing a smaller leakage by the data
processing inequality. Recall that Theorem 3.3 shows that

n′I ′(∞) ≤
⌈

n′

⌊(β + 1)/α′⌋

⌉
=
⌈

nα

⌊(β + 1)/1⌋

⌉
=
⌈

nα

β + 1

⌉
=
⌈

n

λ

⌉
. (4.40)

This completes the proof. ■

Note that for a sampling period T0 and a maximum power consumption Pmax =
α/T0, the total amount of information leaked during a time interval T = nT0 is
bounded by

nI(∞) ≤
⌊

n

λ

⌋
=
⌊

T/T0

(β + 1)/(PmaxT0)

⌋
=
⌊

TPmax

β + 1

⌋
. (4.41)

Thus, for sampling periods satisfying T0 ≤ (β + 1)/Pmax, the total amount of
information leaked to the provider is independent of the sampling period T0. This
implies that, when block battery policies are employed, increasing the sampling
frequency of SMs over (β + 1)/Pmax does not increase the information leakage. This
enables the UP to measure the energy consumption of the user arbitrarily often
without increasing the information about the activities performed by the user. This
property of block battery policies is of particular interest as the sampling frequency
of smart meters is predicted to increase [66].

4.3 Privacy with cost constraints

Theorem 4.1 bounds the information leakage for arbitrary cost constraints ∆. The
proof proceeds by constructing a battery policy that combines two components for
every request sequence. One of the components guarantees the feasibility constraint,
while the other guarantees the cost constraint.
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4.3.1 Upper bound on the information leakage rate

Theorem 4.1. Consider an EMU with battery capacity β, initial state s0, market
price m, and output alphabet Yn satisfying Yn

c ⊆ Yn with Yn
c defined in Lemma 4.4,

then

I(∆) ≤ I(∞) + IΓ(∆), (4.42)

where

IΓ(∆) = min
P

T̃ K |T K ∈Γω(∆)
max

P
T K ∈P

T K

1
n

I(T̃ K − T K ; T K). (4.43)

Here T K and T̃ K are random processes in J0, βKK, PT K denotes the set of possible
distributions over J0, βKK , and the joint distribution between T K and T̃ K is determined
by

Γω(∆) =
{

PT̃ K |T K : E
[

K∑
k=1

δk(T̃k − T ∗
k )
]
≤ ∆

}
, (4.44)

where T ∗
k = β1{δk < 0} is the battery state at transition times achieving the minimum

cost, δk ∈ R denotes the vector of market price differences, with entries given by
δk = mk−1 −mk for k = 1, 2, . . . , K − 1 and δK = mK−1.

Proof: We prove the result for Yn = Zn; Lemma 4.4 generalizes the proof for
every Yn satisfying Yn

c ⊆ Yn. The proof follows by dividing the optimization process
into two steps. In the first step, we present a battery policy ω such that the resulting
request sequence V n

ω satisfies the power outage and energy waste constraints, i.e.,
ω ∈ Ω(s0) as defined in (3.4). These policies are discussed in Chapter 3. In the
second step, we define a random vector V n

γ such that Y n = V n
ω + V n

γ also satisfies
the cost constraints. Specifically, for Tk denoting the battery state induced by V n

ω

and Xn at market transition time k, we set

V n
γ =

K∑
k=1

(
(eik−1 − eik

)(T̃k − Tk)
)

, (4.45)

where ik denotes the time step of the k-th market transition. This implies that the
battery state induced by V n

ω + V n
γ and Xn at market transition time k, is T̃k. Thus,

g(Y n, x) = EP
T K |Xn=x

[
K∑

k=1
δk(T̃k − T ∗

k )
]

, (4.46)
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where (4.46) follows by (4.20) and recalling that Yn = Zn. Selecting the transforma-
tion γ determining T̃ K from the set described in (4.44) yields

I(Xn; Y n) ≤ I(Xn; V n
ω ) + I(Xn; V n

γ |V n
ω ) (4.47)

= I(Xn; V n
ω ) + H(V n

γ |V n
ω )−H(V n

γ |V n
ω , Xn, T K) (4.48)

= I(Xn; V n
ω ) + H(T̃ K − T K |V n

ω )−H(T̃ K − T K |T K) (4.49)
≤ I(Xn; V n

ω ) + I(T̃ K − T K ; T K), (4.50)

where (4.48) follows as Xn and V n
ω determine T K by the battery charging dynamics

(3.2); (4.49) follows by (4.45) and noting that T̃ K − T K is independent of V n
ω and

Xn given T K . Thus

nI(∆) = min
PY n|Xn ∈Γ(∆)

max
PXn

I(Xn; Y n) (4.51)

≤ min
γ∈Γω(∆)

min
ω∈Ω(s0)

max
PXn

(
I(Xn; V n

ω ) + I(T̃ K − T K ; T K)
)

(4.52)

≤ min
ω∈Ω(s0)

max
PXn

I(Xn; V n
ω ) + min

γ∈Γω(∆)
max
P

T K

I(T̃ K − T K ; T K). (4.53)

This completes the proof. ■

Corollary 4.1. Consider an EMU with battery capacity β, initial state s0, market
price m, and output alphabet Yn satisfying Yn

c ⊆ Yn with Yn
c defined in Lemma 4.4,

then for any input process Xn:

I(∆) ≤ 1
n

⌈
n

λ

⌉
+ IΓ(∆), (4.54)

where IΓ(∆) is defined in (4.43). Furthermore, for any input process Xn with expected
energy consumption µn:

I(∆) ≤ 1
n

⌈
n

λ

⌉
max

ϵ∈[ −s0
nα

,
β−s0

nα
]
H2

(
µn

α
+ ϵ

)
+ IΓ(∆), (4.55)

where IΓ(∆) is defined in (4.43).

Proof: The proof of (4.54) follows by Theorem 3.3 and Lemma 4.5. The proof
of (4.55) follows by Theorem 3.5, Lemma 4.5, and using that ∑n−1

i=0 (Vγ)i = 0. ■

While direct computation of the information leakage in (4.5) relies on finding an
n-dimensional joint distribution satisfying Γ(∆), the bound presented in (4.42) relies
on a K-dimensional distribution and the simplified version of Γ(∆) defined in (4.44).
This significantly eases the computation of the information leakage as described in
Section 4.4. The following corollary provides a single letter bound for the additional
information leakage rate induced by the market.
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Corollary 4.2. Consider an EMU with battery capacity β, initial state s0, market
price m, and output alphabet Yn satisfying Yn

c ⊆ Yn with Yn
c defined in Lemma 4.4,

then for any input process Xn:

IΓ(∆) ≤
(

1− ∆
∆max

)+
K

n
log(β + 1). (4.56)

Proof: Note that by (4.43) and cardinality bounds on the mutual information,
we have that

nIΓ(0) ≤ log |T K | = K log(β + 1). (4.57)

Moreover, by (4.44), for any feasible battery state T̃k in J0, βK and optimal battery
state T ∗

k the system cost function is bounded by

E

[
K∑

k=1
δk(T̃k − T ∗

k )
]
≤ β∥δ∥1 = ∆max. (4.58)

Therefore, for ∆ ≥ ∆max, any feasible battery state T̃k satisfies the cost function.
Thus setting T̃ K = T K satisfies the cost constraint, and yields that IΓ(∆) = 0.
A time-sharing argument, based on the convexity of Γ(∆), proved in Lemma 4.1,
completes the proof. ■

4.3.2 Tightness of the upper bound

We now address the tightness of the upper bound presented in Theorem 4.1. To that
end, we construct a random process modelling the energy consumption of the user
that is tight with respect to the result in Theorem 4.1 for every battery policy in
Γ(∆).

Theorem 4.2. The privacy cost function I(∆) is lower bounded by

1
n

K−1∑
k=0

(
κk + log(lkα− κk ⌈λ⌉α)− min

ΓT (∆)
H(Tk)

)
≤ I(∆), (4.59)

where κk = ⌊lk/ ⌈λ⌉ − 1⌋+ and

ΓT (∆) =
{

PT K : E
[

K∑
k=1

δk(Tk − T ∗
k )
]
≤ ∆

}
. (4.60)

Proof: We proceed to prove by presenting the probability law PW n of a random
process W n achieving the lower bound. Let the input alphabet Wn be divided
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according to the market price partitioning, i.e.

Wn =W l1 ×W l2 × ...×W lK . (4.61)

Let each market partition be further divided in two, i.e. W lk = Ak × Bk. Let

Ak = Oκk

⌈λ⌉ =
{

(0, 0, · · · , 0)︸ ︷︷ ︸
⌈λ⌉

, (α, α, · · · , α)︸ ︷︷ ︸
⌈λ⌉

}κk

, (4.62)

with κk = ⌊lk/ ⌈λ⌉ − 1⌋+ and where Oκk

⌈λ⌉ is the block repetition alphabet presented
in Definition 3.6. Moreover let

Bk = {w0, w1, · · · , wN} ⊂ X lk−⌈λ⌉κk , (4.63)

with σ(wi) = i and N = α(lk − ⌈λ⌉κk), i.e. no two elements in Bk share the same
total consumption. Let W n take uniformly distribution values over Wn, then for any
feasible battery policy it holds that

nI(∆) ≥ min
Γ(∆)

I(W n; Y n) (4.64)

= log |Wn| −max
Γ(∆)

H(W n|Y n) (4.65)

= log |Wn| −max
Γ(∆)

H(T K |Y n) (4.66)

≥ log |Wn| −max
Γ(∆)

K−1∑
k=0

H(Tk), (4.67)

where inequality (4.64) follows as PW n ∈ PXn . Equality (4.65) follows as W n take
uniformly distributed values over Wn. Equality (4.66) holds by the Bayes’ rule

H(W n|Y n) = H(W n|T K , Y n) + H(T K |Y n)−H(T K |W n, Y n), (4.68)

and using that H(W n|T K , Y n) = 0 by Theorem 3.3, and H(T K |W n, Y n) = 0 by the
battery charging dynamics. Finally, inequality (4.67) follows by the chain rule and
the fact that conditioning reduces entropy. This completes the proof. ■

4.4 Numerical results

In this section, we numerically assess the upper bounds on the privacy cost described
in Theorem 4.2 and Theorem 4.1. We model the market price after the UK Economy
7 tariff, where users are charged an off-peak price of 0.071 £/kWh within a 7 hour
block and a peak price of 0.152 £/kWh otherwise [81]. We assume the user has an LG
Chem RESU 6.5 battery with a capacity of 4.2 kWh and a peak power of 4.2 kW [145].
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Figure 4.4. Information leakage I(∆) against privacy budget ∆ with I(∆), I(∆)
and Ī(∆) denoting lower bound, exact value, and upper bound respectively.

For simplicity we match the users’ maximum power consumption to the peak power
of the battery, i.e., 4.2 kW [65]. The SM sends the UP integrated energy readings
every 10 min. Thus, we set the time elapsed between time steps i and i + 1 to 10 min.
Defining 175W as 1 unit of energy yields the following parameters in our system model:
market lengths l0 = 7h× 3 samples/hour = 21 and l1 = 17h× 3 samples/hour = 51;
corresponding market prices of m0 = 0.152£/kWh× 3 samples/hour× 375 W/unit =
1.90 cents per sample per energy unit; and m1 = 0.071£/kWh× 3 samples/hour×
375 W/unit = 0.88 cents per sample per energy unit; maximum consumption between
time steps α = 4.5 kW/(3 samples/hour)/(375 W/unit) = 4; battery capacity β =
4.125 kW/(375 W/unit) = 11.

Figure 4.7 depicts the bounds on the privacy cost I(∆) for different values of
the system cost ∆ and initial battery state s0 = 0 during a one day period, i.e.
n = 24 h/0.3 h = 72. It can be seen how the information leakage decreases with the
increase of the privacy budget. The convexity of the set of feasible battery policies
on ∆ can be appreciated on the upper bound. For large values of the system cost
∆ the cost constraint is always satisfied, i.e. IΓ(∆) = 0, and the privacy leakage is
governed by the feasibility constraints. Figure 4.4 shows the impact of the privacy
budget ∆ on the information leakage. Note how the information leakage decreases
logarithmically with the privacy budget.

Figure 4.5 depicts the impact of the maximum energy consumption α on the
information leakage. It can be seen how larger values of α increase the information
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Figure 4.5. Information leakage I(∆) against maximum energy consumption α with
I(∆) and Ī(∆) denoting lower bound and upper bound respectively.
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Figure 4.6. Information leakage against number of market changes K for a fixed
total length n with I(∆), I(∆) and ¯I(∆) denoting lower bound, exact value, and
upper bound respectively.

leakage. The step like behaviour is due to the discrete time approximation of the
system and the sampling period. Figure 4.6 shows the impact of the number of
market changes K on the privacy guarantee. Therein the length of the consumption
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Figure 4.7. Information leakage I(∆) against battery capacity β with I(∆) and
Ī(∆) denoting lower bound and upper bound respectively.
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Figure 4.8. Information leakage I(∆) against standard deviation of the market σ
with I(∆), I(∆) and Ī(∆) denoting lower bound, exact value, and upper bound
respectively.

sequence, n, is preserved as K increases. It can be seen that the information leakage
increases linearly with the number the market changes. It can also be appreciated
how the gap between upper and lower bound increases as the number of market
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changes increases. Figure 4.7 shows the impact of the battery capacity on the privacy
guarantee. As described on the previous chapter, the privacy guarantee decreases
with the inverse of the battery capacity. Figure 4.8 shows the impact of the standard
deviation of the market price prices on the privacy guarantee. Therein the UK 7
tariff is employed and the corresponding prices are modified to match the desired
standard deviation σ. The information leakage increases rapidly with σ for small
values of σ, to stabilize later on the large σ regime.

4.5 Conclusion

In this chapter we have studied the tradeoff between privacy and energy cost in the
presence of variable market prices. Therein, we studied the market price constraints,
noticing that the energy bill is determined by the battery state at transition points.
In Section 4.3 an upper bound holding for any distribution on the consumption is
derived for the case when a maximum privacy budget is available. The upper bound
is derived in two steps, on the first step the feasibility constraints are satisfied as
studied in Chapter 3. On the second step, the battery states at transition points are
optimized in order to satisfy the budget constraints. The tightness of the bound is
studied by deriving the probability law of an energy consumption process inducing a
fixed information leakage for any feasible battery policy. Numerical simulations were
presented in Section 4.4. Analysis of the numerical simulations shows that leakage
decreases with the privacy budget, while it increases for larger deviations of the
market price and number of market changes.





Chapter 5

Single-letter bounds of universal
privacy guarantees

In this section, we provide single letter bounds to the information leakage and extend
these bounds and the results obtained in previous chapters to other privacy metrics.
Section 5.1 studies the necessary and sufficient conditions for the existence of shared
feasible requests. Therein, the cardinalities of the minimal covering and packing sets
are bounded. This enables the exact characterization of the information leakage
when no privacy budget is allocated. Section 5.2 provides single letter upper and
lower bounds for any privacy budget. Numerical simulations evaluating the obtained
bounds are then presented in Section 5.3. Finally, Section 5.4 extends the validity
of the results obtained through out this thesis to maximal leakage and maximal
α-leakage. The extension is accomplished via a general result showing that under
certain conditions, maximal leakage, maximal alpha leakage and mutual information
coincide.

In continuity with Chapter 4, in this chapter, we follow the system model defined
in Section 4.1.

5.1 Challenges and methodology: Geometry of
the set of feasible request

In this section, we study the geometry of the set of feasible energy request sequences.
Therein, we characterize the fundamental properties determining the existence of
shared feasible sequences, and provide cardinality bounds to the set covering and
packing of the input and output alphabets.
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5.1.1 Shared output sequences

For a given β, Lemma 5.1 characterizes a necessary and sufficient condition under
which all input pairs (s0, x) in a setA share a common feasible output yA. Such shared
output sequences are good for privacy since a UP that sees yA cannot distinguish
which input pair (s0, x) ∈ A caused it. Conversely, when two inputs (s0, x), (ŝ0, x̂)
share no feasible output yA, the EMU cannot conceal from the UP which pair caused
the request. The following measure of distance is useful for that analysis.

Definition 5.1. The distance between two input pairs (s0, x), (ŝ0, x̂) ∈ S × X n is
defined as

dn

(
(s0, x), (ŝ0, x̂)

)
= max

i∈J0,n−1K

∣∣∣∣ (s0 − σ(xi)
)
−
(
ŝ0 − σ(x̂i)

) ∣∣∣∣. (5.1)

Where we recall that σ(·) denotes the sum over all the elements of a vector,
e.g. σ(xi) denotes the total accumulated energy consumption up to time i− 1, i.e.
σ(xi) = ∑i−1

k=0 xk. Let zi denote s0−σ(xi) and note that the definition above satisfies
the conditions of a distance, i.e. it satisfies the triangle inequality

dn((s0, x), (s′
0, x′))= max

i∈J0,n−1K
|zi − z′

i| (5.2)

≤ max
i∈J0,n−1K

(|zi − z′′
i |+ |z′′

i − z′
i|) (5.3)

≤ max
i∈J0,n−1K

|zi − z′′
i |+ max

j∈J0,lK
|z′′

j − z′
j|, (5.4)

the symmetry dn((s0, x), (s′
0, x′)) = dn((s′

0, x′), (s0, x)), and the identity of indis-
cernibles dn((s0, x), (s0, x)) = 0 conditions.

Lemma 5.1 shows that the distance between input pairs determines the existence
of a shared feasible output y. The result emphasizes the central role that battery
capacity β plays in privacy.

Lemma 5.1. Let A denote a subset of the input pair alphabet S0 ×X n. Then, the
following two statements are equivalent.

a) The distance between every two pairs (s0, x), (ŝ0, x̂) ∈ A is less than or equal
to the capacity of the battery, i.e.

dn

(
(s0, x), (ŝ0, x̂)

)
≤ β for all (s0, x), (ŝ0, x̂) ∈ A. (5.5)

b) All sequences in A share a feasible request yA, i.e.

yA ∈
⋂

(s0,x)∈A
Yn(s0, x). (5.6)
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Proof: Let the sequence yA be such that for all i:

σ(yi
A) ∆= − min

(s0,x)∈A
(s0 − σ(xi)), (5.7)

Thus, for any (ŝ0, x̂) ∈ A, the battery state at time i + 1 is

si+1 = (ŝ0 − σ(x̂i))− min
(s0,x)∈A

(s0 − σ(xi)). (5.8)

Since dn

(
(s0, x), (ŝ0, x̂)

)
≤ β implies that si+1 ∈ J0, βK for all i, it follows that yA is

a feasible sequence. The converse follows since for any sequence y and any input
pairs (s0, x), (ŝ0, x̂) ∈ A such that dn

(
(s0, x), (ŝ0, x̂)

)
> β, the absolute difference

between the corresponding battery states at some time step i satisfies
∣∣∣si+1 − ŝi+1

∣∣∣ =
∣∣∣(s0 − σ(xi))− (ŝ0 − σ(x̂i))

∣∣∣ > β. (5.9)

Thus si+1 and ŝi+1 cannot both belong to S = J0, βK. ■

In the following we particularize the previous result to the case in which the
battery state at time n is in a given range.

Lemma 5.2. Let An(S0,Zn) denote a subset of the input alphabet S ×X n satisfying

An(S0,Zn) =
{
(s0, x) ∈ S0 ×X n : s0 − σ(x) ∈ Zn

}
, (5.10)

with S0 = JS0,S0K ⊆ S and Zn = JZn,ZnK ⊆ JS0 − nα,S0K, where ·̄ and · denote
the maximum and minimum element of an ordered set. Then the following two
statements are equivalent.

a) All sequences in A share a feasible request yA, i.e.

yA ∈
⋂

(s0,x)∈A
Yn(s0, x). (5.11)

b) One or more of the following holds

nα + Zn − S0 ≤ β, (5.12)
S0 −Zn ≤ β, (5.13)

S0 − S0 + i∗α ≤ β + d, (5.14)

where i∗ = ((Zn −Zn)− (S0 − S0) + nα)/2α and d = α min(i∗ − ⌊i∗⌋ , ⌈i∗⌉ − i∗).
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Proof: By Lemma 5.1, it suffices to show that (5.12) to (5.14) are equivalent to
(5.5). Note that (5.5) holds if and only if

max
(s0,x)∈A

(
s0 − σ(xi)

)
− min

(s0,x)∈A

(
s0 − σ(xi)

)
≤ β (5.15)

for all i ∈ J0, n− 1K. The geometrical analysis shown in Figure 5.1 reveals (5.15) is
equivalent to

min{S0,Zn + (n− i)α} −max{S0 − iα,Zn} ≤ β (5.16)

for all i ∈ J0, n− 1K. This holds if and only if, for all i, one of the following holds

S0 − S0 + iα ≤ β, (5.17)
S0 −Zn ≤ β, (5.18)

Zn + (n− i)α− S0 + iα ≤ β, (5.19)
Zn + (n− i)α−Zn ≤ β. (5.20)

Algebraic manipulation of equations (5.17) and (5.20) completes the proof. ■

Figure 5.1. Evolution of the battery state when no energy is introduced into the
battery, where zi = s0 − σ(xi) takes values in the grey area.

5.1.2 Cardinality bounds

Building on Lemma 5.1, Theorem 5.1 gives an upper bound on the number of
distinguishable input pairs (s0, xn) ∈ S0 × X n, where S0 ⊆ S is the set of possible
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initial battery states. The result is obtained by building a covering {Ai} of S0 ×X
such that all input pairs in each Ai share a common feasible request yi. The result
shows that the minimum time λ

∆= ⌊(β + 1)/α⌋ needed to fully discharge a battery
of capacity β under maximal consumption α

∆= maxX is a central parameter in the
construction of privacy preserving battery policies.

Theorem 5.1. Let S0 = JS0,S0K and Sn = JSn,SnK be two intervals denoting the
possible states of the battery at times 0 and n. There exists a set of request sequences
Vn(S0,Sn) ⊆ Yn such that

log
∣∣∣Vn(S0,Sn)

∣∣∣≤⌊n−λ+d0

λ

⌋+

+log
⌈

(n+d0) mod λ+λ1{n≥ lz}
|Sn|α−1 +1B

⌉
. (5.21)

with d0 = (S0 − S0)/α ≤ λ, and 1B the indicator function

1B = 1

{
β + lrα

|Sn|
≤ 1 + 2

⌊
lrα

|Sn|

⌋}
. (5.22)

Moreover, for every input pair (s0, x) ∈ S0 ×X n, at least one sequence v ∈ Vn(S0)
is feasible, i.e.

Yn(s0, x) ∩ Vn(S0) ̸= ∅, (5.23)

and guarantees that sn ∈ Sn.

Proof: Consider the first lz = β/α − d0 time steps, and note that all possible
input sequences during those lz time steps, i.e. S0 ×X lz , are contained in the set

A0 = {(s0, x) ∈ S0 ×X lz : s0 − σ(x) ∈ JS0 − lzα,S0K}, (5.24)

as the condition s0 − σ(x) ∈ JS0 − lzα,S0K is always satisfied. By (5.12) in Lemma
5.2, there exists request sequence yz feasible for every input pair in A0.

Following a similar reasoning, consider the set of possible input pairs during
the subsequent λ times steps, i.e. S × X λ. Define a cover of the input alphabet,
S × X λ ⊆ (A1

⋃A2), with subsets given by

A1 =
{
(s0, x) ∈ S × X λ : s0 − σ(x) ∈ J0, βK

}
, (5.25)

and

A2 =
{
(s0, x) ∈ S × X λ : s0 − σ(x) ∈ J−λα,−1K

}
, (5.26)
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where the union A1
⋃A2 contains all sequences in S×X λ as s0−σ(x) ∈ J−λα,−1K∪

J0, βK. By Lemma 5.2, there exists a shared feasible sequence yi for all pairs in Ai

with i = 1, 2. The above argument can be recursively applied κ = ⌊(n− lz)/λ⌋+

times.

For the remaining lr = l− lz−κλ time steps, define a cover of the input alphabet,
S × X lr ⊆ ⋃iA′

i, with subsets:

A′
i =

{
(s0, x) ∈ S × X lr : s0 − σ(x) ∈ Zi

}
, (5.27)

and the Zi intervals satisfying the conditions of Lemma 5.2, having the same
cardinality as Sn, and such that s0 − σ(x) ∈ ⋃N−1

i=0 Zi for all (s, x) ∈ S × X lr . The
required number of intervals N is thus given by

N ≤
⌈

β + lrα

|Sn|

⌉
+ 1

{
β + lrα

|Sn|
≤ 1 + 2

⌊
lrα

|Sn|

⌋}
, (5.28)

where the additional one comes from the constraints imposed by Lemma 5.2. By
Lemma 5.2, for each i there exists a sequence y′

i feasible for all input pairs in
Alr(S,Zi). Note that for each i, the final state of the battery for all sequences in
Alr(S,Zi) resulting from y′

i lies on the interval

s0 − σ(x) + σ(y′
i) ∈ JZi + σ(y′

i),Zi + σ(y′
i)K, (5.29)

adding Zi + σ(y′
i)− Sn to the last time step of the request sequence (y′

i)lr yields

JZi + σ(y′
i),Zi + σ(y′

i)K = Sn, (5.30)

while preserving the feasibility constraint, as only the final state is modified. The
proof is completed by setting

Vn(S0,Sn) = {yz} × {y1, y2} × ...× {y1, y2}︸ ︷︷ ︸
κ

×{y′
1, · · · , y′

N}. (5.31)

■

The construction of the set of request sequences given by (5.31) shows the
forecasting capabilities required to implement optimal battery policies. Note that
in order to map input pairs (s0, x) to energy requests in Vn(S0,Sn) it suffices to
forecast, at the start of each block of length λ, whether the battery will deplete
during the current block, i.e. s0 − σ(xλ) ≶ 0. Moreover, in order to achieve the
minimum feasible price, the EMU requires knowledge of the total amount of energy
consumed during the last lr ≤ λ time steps of each market block. The following
theorem shows the previous result is tight.
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Theorem 5.2. Let S0 = {s0} and Sn = JSn,SnK denote the possible states of the
battery at times 0 and n. Then there exists a set Wn(S0,Sn) ⊆ X n with cardinality

log|Wn(S0,Sn)|≥
⌊

n− ⌈λ⌉
⌈λ⌉

⌋+

+ log
⌈

n mod ⌈λ⌉+ ⌈λ⌉1{n ≥ ⌈λ⌉}
|Sn|α−1

⌉
, (5.32)

for λ = (β + 1)/α. Moreover, no sequence y ∈ Zn satisfies sn ∈ Sn and is feasible,
i.e.

Yn(s0, w) ∩ Yn(s′
0, w′) = ∅, (5.33)

for any distinct (s0, w), (ŝ0, ŵ) in Wn(S0,Sn).

Proof: Consider the first ⌈λ⌉ time steps. Let the input alphabet during those
⌈λ⌉ time steps be defined by w1, w2 ∈ X ⌈λ⌉, with w1 and w2 such that σ(w1) = 0
and σ(w2) ≥ ⌈λ⌉α. This implies that

d
(

(s0, w1), (s0, w2)
)

= |σ(w1)− σ(w2)| = ⌈λ⌉α > β. (5.34)

Therefore, by Lemma 5.1, no output sequence is shared between (s0, w1) and (s0, w2),
i.e

Y⌈λ⌉(s0, w1) ∩ Y⌈λ⌉(s0, w2) = ∅. (5.35)

In view of this, the input sequence wy ∈ {w1, w2}, and the initial battery state of
the second block s⌈λ⌉ = s0 − σ(wy) + σ(y) are uniquely determined by the output
sequence y. The argument above can be applied recursively for the subsequent
κ̂ = ⌊(n− ⌈λ⌉)/ ⌈λ⌉⌋+ blocks.

Following a similar reasoning, let the alphabet defining the remaining lr = n−κ̂ ⌈λ⌉
time steps be given by {w′

1, w′
2, ..., w′

N} ⊆ X lr with wi such that σ(wi) = i|Sn| and

N =
⌊

lrα

|Sn|

⌋
=
⌈

n mod ⌈λ⌉+ ⌈λ⌉1{n ≥ ⌈λ⌉}
|Sn|α−1

⌉
. (5.36)

Consequently, for any given y, only one sequence w′
i satisfies the constraint sn =

sκ̂⌈λ⌉ − σ(w′
i) + σ(y) ∈ Sn simultaneously. Setting

Wn(S0,Sn) = {w1, w2}× ...×{w1, w2}︸ ︷︷ ︸
κ

×{w′
1, · · · , w′

N}. (5.37)

completes the proof. ■
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5.2 Single-letter universal privacy bounds under
cost constraints

In the following, we bound the information leakage given in Definition 3.1. We first
recover the results presented in Theorem 3.3 and Theorem 3.4, i.e. when ∆ =∞,
using the tools developed in this chapter. Moreover, we provide tight, single letter
characterizations for the case in which no extra money is allocated for privacy
purposes, i.e. ∆ = 0. In Section 5.2.1 and Section 5.2.2, we provide single letter
upper and lower bounds on the information leakage for arbitrary values of ∆.

Theorem 5.3. The privacy cost function under no energy bill constraints I(∞) is
bounded by

1
n

⌊
n

⌈λ⌉

⌋
≤ I(∞) ≤ 1

n

⌊
n

λ

⌋
, (5.38)

where λ = (β + 1)/α.

Proof: Upper bound. Theorem 5.1 shows the existence of the set Vn({s0},Sn)
with cardinality bounded by

log |Vn({s0},Sn)| ≤
⌊

n− λ

λ

⌋+

+ log
⌈

n mod λ + λ1{n ≥ λ}
λ

⌉
=
⌊

n

λ

⌋
, (5.39)

such that the intersection Vn({s0}) ∩ Yn(s0, x) is not empty for every input pair
(s0, x). Letting the output Y n take values in Vn({s0}) ∩ Yn(s0, x) completes the
proof.

Lower bound. Theorem 5.2 states the existence of the set Wn = Wn({s0},S)
with cardinality bounded by

log |W| ≥
⌊

n− ⌈λ⌉
⌈λ⌉

⌋+

+ log
⌈

n mod ⌈λ⌉+ ⌈λ⌉1{n ≥ λ}
⌈λ⌉

⌉
=
⌊

n

⌈λ⌉

⌋
, (5.40)

such that no two sequences inWn share a common output sequence, i.e. H(W n|Y n) =
0. Letting W n take uniformly distributed values over Wn completes the proof. ■

For integer values of λ, lower an upper bounds on Lemma 5.3 coincide, providing
the exact value of the information leakage nI(∞) = ⌊n/λ⌋. Consequently, the step
behaviour of the privacy guarantee when n increases, is not a peculiarity introduced
by the tools used in this paper, but the real behaviour of the system.
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Theorem 5.4. The privacy cost function when no deviation from the minimum
feasible price is allowed I(0), is bounded by

1
n

K−1∑
k=0

⌊ lk − ⌈λ⌉
⌈λ⌉

⌋+

+ log lk mod ⌈λ⌉+ ⌈λ⌉1{(lk ≥ ⌈λ⌉}
α−1

 (5.41)

≤ I(0) ≤ 1
n

K−1∑
k=0

⌊ lk − λ

λ

⌋+

+ log lk mod λ + λ1{lk ≥ λ}
α−1

, (5.42)

where λ = (β + 1)/α.

Proof: Upper bound. Let Tk denote the state of the battery at the k-th market
transition point, and let T ∗

k denote the value of Tk that achieves the minimum cost.
Theorem 5.1 shows the existence of a set Vk = Vlk({T ∗

k−1}, {T ∗
k }) with cardinality

bounded by

log |Vk| ≤
⌊

lk − λ

λ

⌋+

+ log
⌈

lk mod λ + λ1{lk ≥ λ}
α−1

⌉
(5.43)

such that at least one sequence v ∈ Vk is feasible, i.e. Vk ∩ Y lk(Tk−1, xlk) ̸= ∅, and
guarantees that Tk = T ∗

k . Letting the output Y n take values in

V0 × V1 × · · · × VK−1 ∩ Yn(s0, x) (5.44)

completes the proof.

Lower bound. Theorem 5.2 states the existence of the set of input sequences
Wk =Wlk({T ∗

k−1}, {T ∗
k }) with cardinality bounded by

log |Wk| ≥
⌊

lk − ⌈λ⌉
⌈λ⌉

⌋+

+ log
⌈

lk mod ⌈λ⌉+ ⌈λ⌉1{lk ≥ ⌈λ⌉}
α−1

⌉
, (5.45)

such that no two sequences inWk share a common output sequence, i.e. H(Wk|Y n, W k−1) =
0. Letting W n take uniformly distributed values overW0×W1×· · ·×WK−1 completes
the proof. ■

Similarly as with Lemma 5.3, for integer values of λ, lower an upper bounds on
Lemma 5.4 coincide, providing the exact value of the privacy guarantee

I(0) = 1
n

K−1∑
k=0

⌊ lk − λ

λ

⌋+

+ log lk mod λ + λ1{lk ≥ λ}
α−1

 . (5.46)
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5.2.1 Upper bound the information leakage rate

Theorem 5.5 presents our main result for this section, where we provide a single
letter bound on the information leakage for arbitrary cost constraints ∆. Following
the approach of Theorem 4.1, the proof proceeds by constructing a battery policy
that combines two components for every request sequence. One of the components
guarantees the feasibility constraint, while the other guarantees the cost constraint.
Single letter bounds, based on bounding the cardinality of the output, are then
provided.

Theorem 5.5. The privacy cost function is upper bounded by

I(∆) ≤ I(∞) +
K∑

k=0
log

⌈
β + 1

⌊∆′/(K|δk|)⌋

⌉
. (5.47)

with ∆′ = ∆ +∑K
k=1 |δk|.

Proof: The proof follows by providing a bound on IΓ(∆) presented on Theorem
4.1. In particular, for each market block k we propose the deterministic mapping
Tk → T̃k:

T̃k =

Tk mod dk, when T ∗
k = 0

(β − Tk) mod dk, otherwise (i.e. when T ∗
k = β),

(5.48)

for positive integers dk > 0. Therein, at any market transition point k, the extra
price paid due to the deviation of T̃k from its optimal value T ∗

k is upper bounded by

max
PTk

E

[
δk(T̃k − T ∗

k )
]
=1{T ∗

k = 0}max
PTk

E

[
δk

(
Tk mod dk

)]
+1{T ∗

k = β}max
PTk

E

[
δk

(
(β− T̃k) mod dk−β

)]
(5.49)

=1{T ∗
k = 0}

(
δk(dk−1)

)
+1{T ∗

k = β}
(
−δk(dk−1)

)
(5.50)

=
∣∣∣δk

∣∣∣(dk − 1), (5.51)

Thus, the cost constraint is bounded by

E

[
K∑

k=1
δk(T̃k − T ∗

k )
]
≤

K∑
k=1
|δk|(dk − 1), (5.52)

while the information leakage is bounded by

I(T̃ K − T K ; T K) ≤
K∑

k=1
log |T̃k − Tk| ≤

K∑
k=1

log
⌈

β + 1
dk

⌉
. (5.53)
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Thus, the information leakage is upper bounded by

min
d

K∑
k=1

log
⌈

β + 1
dk

⌉
s.t.

K∑
k=1
|δk|(dk − 1) ≤ ∆. (5.54)

The approximate integer solution dk = ⌊∆′/(K|δk|)⌋, with ∆′ = ∆ + ∑K
k=1 |δk|,

obtained by Lagrangian optimization of (5.54), satisfies the cost constraint

K∑
k=0
|δk|(dk − 1)=

K∑
k=0
|δk|

(⌊
∆′

K|δk|

⌋
− 1

)
(5.55)

≤
K∑

k=0
|δk|

(
∆′/K

|δk|
− 1

)
= ∆. (5.56)

Moreover, the resulting information leakage is given by

I(T̃ K − T K ; T K) ≤
K∑

k=0
log

⌈
(β + 1)

⌊∆′/(K|δk|)⌋

⌉
. (5.57)

This completes the proof. ■

5.2.2 Tightness of the upper bound

We now provide a lower bound on the privacy cost function I(∆). The lower bound
is derived by constructing an energy consumption profile PW n that achieves the lower
bound for any feasible policy in Γ(∆).

Theorem 5.6. The privacy guarantee I(∆) as is lower bounded by

I(∆) ≥ 1
⌈λ⌉

+ 1
n

K−1∑
k=0

log
(

(β + 1)
∆′/(K|δk|)

)
+ γ, (5.58)

with ∆′ = ∆ +∑K
k=1 |δk| and

γ = 1
n

K−1∑
k=0

(
log ck − ck − 1/ ln(2)

)
, (5.59)

where ck = (lk mod ⌈λ⌉)/⌈λ⌉+ 1{lk ≥ ⌈λ⌉}.

Proof: Let the random process W n take uniformly distributed values over
W0 ×W1 × · · · × WK−1, with Wk = W lk({T ∗

k−1}, {T ∗
k }), as defined in Lemma 5.4

and Theorem 5.2. Thus

H(W n) =
K−1∑
k=0

⌊ lk − ⌈λ⌉
⌈λ⌉

⌋+

+ log lk mod ⌈λ⌉+ ⌈λ⌉1{lk ≥ ⌈λ⌉}
α−1

 , (5.60)



102 Single-letter bounds of universal privacy guarantees

while

H(W n|Y n) = H(T K |Y n)−H(T K |W n, Y n) + H(W n|Y n, T K) ≤ H(T K), (5.61)

as H(W n|Y n, T K) by construction. The maximization of H(T K) over Γ(∆) can be
relaxed to maximizing

max
Γ(∆)

H(T K) ≤ max
Γ(∆)

K−1∑
k=0

H(Tk) ≤ max
Π(∆)

K−1∑
k=0

H(T ∆
k ), (5.62)

with

Π(∆) ∆=
{

PY n|Xn :E
[

K∑
k=1
|δk|T ∆

k

]
≤∆ and T ∆

k ≥ 0
}

, (5.63)

where we now allow T ∆
k = |Tk − T ∗

k | to expand outside J0, βK into ZK
+ , taking values

over the positive integers, while keeping the cost constraints. The distribution that
maximizes the entropy of T ∆

k ≥ 0 for a given expected value µk = E[T ∆
k ] is the

geometric distribution, i.e.

H(T ∆
k ) = log(1 + µk) + log

(
1 + 1

µk

)µk

≤ log(1 + µk) + 1/ ln(2). (5.64)

Constructing the Lagrangian multiplier, we derive that the maximum is achieved for
µk = ∆′/(K|δk|)− 1. Therefore

max
Π(∆)

K−1∑
k=0

H(T ∆
k ) =

K−1∑
k=0

(
log ∆′

K|δk|
+ 1/ ln(2)

)
. (5.65)

This yields

nI(∆) ≥ H(W n)−max
Π(∆)

K−1∑
k=0

H(T ∆
k ) (5.66)

=
K−1∑
k=0

⌊ lk−⌈λ⌉
⌈λ⌉

⌋+

+log lk mod ⌈λ⌉+⌈λ⌉1{lk≥⌈λ⌉}
α−1 − log ∆′

K|δk|
− 1

ln(2)

 (5.67)

=
K−1∑
k=0

(
lk
⌈λ⌉

+ log (β + 1)
∆′/(K|δk|)

+ γk

)
(5.68)

= n

⌈λ⌉
+

K−1∑
k=0

log (β + 1)
∆′/(K|δk|)

+
K−1∑
k=0

γk, (5.69)

where

γk=
⌊

lk − ⌈λ⌉
⌈λ⌉

⌋+

− lk
⌈λ⌉

+ log lk mod ⌈λ⌉+ ⌈λ⌉1{lk ≥ ⌈λ⌉}
(β + 1)α−1 − 1

ln(2) , (5.70)
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and therefore, noting that

lk
⌈λ⌉
−
⌊

lk
⌈λ⌉

⌋
= lk mod ⌈λ⌉

⌈λ⌉
, (5.71)

and that log(x/λ) ≥ log(x/ ⌈λ⌉) for every x ∈ R, we have that

γk ≥ log ck − ck − 1/ ln(2), (5.72)

with

ck = lk mod ⌈λ⌉+ ⌈λ⌉1{lk ≥ ⌈λ⌉}
⌈λ⌉

. (5.73)

This completes the proof. ■

Note that the gap between the single letter upper and lower bounds presented on
theorems 5.5 and 5.6 is given by

G = I(∞) + 1
n

K∑
k=0

log
⌈

β + 1
⌊∆′/(K|δk|)⌋

⌉

−
(

1
⌈λ⌉

+ 1
n

K−1∑
k=0

log
(

(β + 1)|
∆′/(K|δk|)

)
+ γ

)
, (5.74)

with ∆′ = ∆+∑K
k=1 |δk|, γ = 1

n

∑K−1
k=0

(
log ck−ck−1/ ln(2)

)
, and ck = (lk mod ⌈λ⌉)/⌈λ⌉+

1{lk ≥ ⌈λ⌉}. Recall that by Theorem 4.5, we have that

I(∞) ≤ 1
n

⌈
n

λ

⌉
. (5.75)

Therefore

G = 1
n

(
⌈

n

λ

⌉
− n

⌈λ⌉
) + 1

n

K∑
k=0

log
(⌈

β + 1
⌊∆′/(K|δk|)⌋

⌉
∆′/(K|δk|)

(β + 1)

)
− γ. (5.76)

Moreover, note that log(ck)− ck ≥ −1 for ck ∈ (1, 2), and therefore

γk ≥

−1− 1
ln(2) ≈ −2.44, when lk ≥ ⌈λ⌉

− lk mod ⌈λ⌉
⌈λ⌉ + log lk mod ⌈λ⌉

⌈λ⌉ − 1
ln(2) otherwise.

(5.77)

This implies that, for slow changing markets, i.e. lk ≥ ⌈λ⌉, the gap between upper
and lower bound increases by ≈ 2.4/n bits per market change, plus the rounding
errors described in (5.76).
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5.3 Numerical results

In this section, we numerically assess the upper bounds on the privacy cost derived
in this chapter. We model the market price after the UK Economy 7 tariff, where
users are charged an off-peak price of 0.071 £/kWh within a 7 hour block and
a peak price of 0.152 £/kWh otherwise [81]. We assume the user has a Tesla
Powerwall battery with a capacity of 13.5kWh and a peak power of 5kW. We
let the maximum power consumption of the user be 4.5kW [65]. The SM sends
the UP integrated energy readings every 15 minutes following EU specifications
for SMs [65]. Thus, we set the time elapsed between time steps i and i + 1 to
15min. These yields the following values in our system model: market lengths
l0 = 7h× 4 samples/hour = 28 and l1 = 17h× 4 samples/hour = 68; corresponding
market prices of m0 = 0.152£/kWh× 4 samples/hour = 0.38 cents per sample per
watt; and m1 = 0.071£/kWh× 4 samples/hour = 0.1775 cents per sample per watt;
maximum consumption between time steps α = 4500 W/4 samples/hour = 1125;
battery capacity β = 13499.
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0.1
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Figure 5.2. Information leakage I(∆) against privacy budget with I, I and Ī
denoting lower bound, exact value, and upper bound respectively.

Figure 5.2 shows the impact of the privacy budget ∆. It can be seen how the
information leakage decreases logarithmically with the privacy budget. Figure 5.3
shows the impact of the maximum energy consumption α on the information leakage.
It can be seen how the privacy guarantee increases linearly with the α. The bounds
for different privacy budget are parallel to each other. Figure 5.4 shows the impact of
the number of market changes K on the privacy guarantee. Therein the total length
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Figure 5.3. Information leakage I(∆) against maximum energy consumption α with
I and Ī denoting lower bound and upper bound respectively.
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Figure 5.4. Information leakage against number of market changes K for a fixed
total length n with I, I and Ī denoting lower bound, exact value, and upper bound
respectively.

of the sequence n is preserved as K increases. It can be seen that the information
leakage increases linearly with the number the market changes and interestingly,
the privacy budget defines the slope of the increase. It is also interesting to note
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Figure 5.5. Information leakage I(∆) against battery capacity β with I and Ī
denoting lower bound and upper bound respectively.
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Figure 5.6. Information leakage I(∆) against standard deviation of the market σ
with I, I and Ī denoting lower bound, exact value, and upper bound respectively.

that the gap between upper and lower bound increases as the number of market
changes increases. Figure 5.5 shows the impact of the battery capacity on the privacy
guarantee. Interestingly, for small values of β the leakage is decreases inversely with
the battery size. However, for larger values of β increasing the battery size does not
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reduce the leakage. Thus, the privacy leakage is governed by the market component
for large values of β, and by the no market component I(∞) in the small β regime.
Figure 5.6 shows the impact of the standard deviation of the market price prices on
the privacy guarantee. Therein the UK 7 tariff is employed and the corresponding
prices are modified to match the desired standard deviation σ. The information
leakage increases logarithmically with σ for small values of σ, to stabilize later on
the large σ regime.

5.3.1 Comparison with previous results

The diversity of modelling approaches and the novelty of this work hinders the direct
comparison of the result obtained in this thesis with those available in the literature.
Firstly, this thesis measures the privacy leakage in terms of mutual information,
hindering the direct comparison with those works based on other metrics such as
hypothesis testing and heuristic metrics. This issue is partly solved by the extension
of this work to other metrics derived in Section 5.4 and by the links previously
established between mutual information and other privacy metrics described in
Section 2.2. Moreover, there exist a large diversity across the literature on the
capabilities available to the EMU, in this work, for instance, we model a finite
capacity battery, while other works consider alternative energy sources with average
or maximum power generation constraints [122, 53]. Furthermore, this thesis is
focused on the derivation of worst case universal privacy guarantees, a completely
novel approach in the literature, while the main focus of the existing literature is on
obtaining bounds valid for specific i.i.d. or Markovian energy consumption models.
Finally, the battery policies proposed in this thesis allow for non-causal behaviours,
i.e. they require precise forecasting of future energy consumptions, while the main
body of literature focuses on causal battery policies.

However, it is possible to compare some of the results derived in this thesis with
some of the previous works available in the literature. In our work, for instance,
Theorem 5.3 shows that the privacy cost function under no energy bill constraints
I(∞) is bounded by

1
n

⌊
n

⌈λ⌉

⌋
≤ I(∞) ≤ 1

n

⌊
n

λ

⌋
, (5.78)

where λ = (β + 1)/α. Figure 5.7, shows the similarity between the results obtain
on Theorem 5.3 and those obtained in [57, section 4.1] and [13] for i.i.d. inputs on
binary alphabets, i.e. for α = 1. It is important to note that the bounds provided
on Theorem 5.3 hold for any input distribution with offline battery policies. The
numerically calculated values depicted in Figure 5.7 are based on binary i.i.d. input
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loads with causal policies. For larger input and output alphabets, the non-causal
approach, i.e. the available forecasting capabilities, can provide an advantage over
the causal approach. Similarly, for larger alphabets, the i.i.d. assumptions can lead
to a significant reduction on the achievable information leakage rate.

Figure 5.7. Numerical simulations for minimum information leakage rate I(∞) = Ip,
versus battery capacity β = K for binary i.i.d. inputs, i.e. α = 1 [13, Fig. 7].

Moreover, Figure 5.8 shows the results obtained in [14] and developed over [111–
114]. Therein, it is shown that for i.i.d. binomially distributed energy consumptions,
battery size β = 50, and maximum consumption α = mx = 20, the leakage rate
equals ≈ 0.045, while Theorem 5.3 shows that for worst case consumptions models,
the information leakage rate equals ≈ 1/λ = α/(β + 1) = 20/51 ≈ 0.39, showing
a factor of ≈ 8.67 between the worst case guarantee presented in this thesis, and
the i.i.d. binomially distributed case shown in Figure 5.8. At the same time,
for α = mx = 5, Figure 5.8 shows a leakage rate of ≈ 0.015 while Theorem 5.3
shows that for worst case consumptions models, the information leakage rate equals
≈ 1/λ = α/(β + 1) = 5/51 = 0.098, giving a factor of ≈ 6.5. This difference is
due the fact that the binomial distribution does not model a worst case scenario.
Moreover, the growing difference between worst and binomial i.i.d cases as α increases
highlights that the worst case scenario where Xi ∈ {0, α} departs from the binomially
distributed Xi ∼ Bi(α, 0.5) as α increases.

5.4 Generalization to other metrics

In the following we generalize some of our previous results to other information
leakage metrics. Lemma 5.3 generalizes Lemma 4.4, showing that for any distribution
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Figure 5.8. Suboptimal (dashed line) and optimal (solid line) leakage rate for i.i.d.
Binomially distributed demand Xi ∼ Bi(α, 0.5) for α = mx = {5, 10, 20} [14].

modelling the energy consumption of the user, and for any metric satisfying the
data processing inequality, constraining the output alphabet does not increase the
information leakage.

Lemma 5.3. Let the energy consumption of the user Xn be modelled by PXn taking
values over X n ⊂ Rn. Let Γ(∆) denote the set of ∆-affordable battery policies. Let
L(Xn, Y n) denote any information metric satisfying the data processing inequality.
Then for any Y ⊃ YX = X :

min
Γ(∞)
L(Xn, Y n) = min

Γ(∞)
L(Xn, Y n

X ) (5.79)

Furthermore for any ∆ ≥ 0, Y ⊃ Yc = J−β/l, β/l + αKn (as defined in Lemma 4.3)
it holds that:

min
Γ(∆)
L(Xn, Y n) = min

Γ(∆)
L(Xn, Y n

c ). (5.80)

Proof: The proof follows by noting that Lemma 4.4 holds for any metric satisfying
the data processing inequality and any input distribution. ■

The following lemma presents an ordering of different privacy metrics.
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Lemma 5.4. Let PXn,Y n denote a joint distribution, then for any α ∈ [0,∞] it holds
that [96]:

I(Xn; Y n) ≤ Lα(Xn → Y n) (5.81)
= sup

PXn

IS
α (Xn; Y n) = sup

PXn

IA
α (Xn; Y n) (5.82)

≤ L(Xn → Y n) ≤ log | supp(Y n)|. (5.83)

where IS
α and IA

α denote the Sibson and the Arimoto mutual information respectively,
PXn is the set of all distributions with support on X n, Lα(Xn → Y n) denotes the
maximal α-leakage and L(Xn → Y n) denotes the maximal leakage as defined in
Section 2.2.5.

The ordering established by Lemma 5.4 implies that all the lower bounds on
the mutual information presented in this thesis hold for maximal leakage, maximal
α-leakage, Sibson and Arimoto channel capacity (with a support constrained input
distribution). Furthermore, note that the upper bounds on the mutual information
derived by bounding the cardinality of the output also hold. This leads to Theorem
5.7.

Theorem 5.7. Let PXn denote the family of probability distributions with support
on J0, αKn, let Γ(∆) denote the set of ∆-affordable feasible battery policies, then

min
Γ(∆)

max
PXn
L(Xn → Y n) ≤ 1

n

⌊
n

λ

⌋
+

K∑
k=0

log
⌈

β + 1
⌈2∆/(K|δk|)⌉

+ 0.5
⌉
, (5.84)

furthermore, for ∆ = 0 we have that

min
Γ(0)

max
PXn

L(Xn→Y n)≤ 1
n

K−1∑
k=0

⌊ lk−λ

λ

⌋+

+log lk mod λ+λ1{lk≥λ}
α−1

, (5.85)

and for ∆ =∞ we have that

min
Γ(∞)

max
PXn
L(Xn → Y n) ≤ 1

n

⌊
n

λ

⌋
. (5.86)

Proof: The proof follows by noticing that Theorems 5.4 and 5.5 provide a bound
on the cardinality of the output alphabet Yn, and Lemma 5.4. ■

These results suggest a stronger equivalence between mutual information and
maximal leakage presented on the following section.
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5.4.1 Equivalence between privacy metrics

The following theorem provides an upper bound on the maximal leakage that holds for
general input processes. For simplicity, all the upper bounds are proved for maximal
leakage. However, we note that by Lemma 5.4 upper bounds on the maximal leakage
also upper bound maximal α-leakage, Sibson and Arimoto channel capacity.

Theorem 5.8. Let PXn,Y n denote any joint probability distribution on finite alphabets
X n and Yn. Then for any ϵ > 0 and sufficiently large n, there exist a random process
Y n

ϵ such that P[Y n
ϵ ̸= Y n|Xn] ≤ ϵ, and

L(Xn → Y n
ϵ ) ≤ H̄(Y n), (5.87)

where H̄(Y n) denotes the sup-entropy, i.e. the smallest real number γ such that for
all ϵ′ > 0:

lim
n→∞

P
[
log 1

PY n(Y n) ≥ γ + ϵ′
]

= 0. (5.88)

Furthermore, when Y n is stationary ergodic, and for any ϵ > 0 and sufficiently large
n, there exist a random process Y n

ϵ such that P[Y n
ϵ ̸= Y n|Xn] ≤ ϵ and

L(Xn → Y n
ϵ ) ≤ H(Y n). (5.89)

Proof: For any ϵ > 0, sufficiently large n, and any general process Y n, [146,
Theorem 3] shows the existence of a collection of M n-tuples {yn

1 , · · · , yn
M} such

that log M ≤ H̄(Y n) and

P[Y n ̸∈ {yn
1 , · · · , yn

M}] ≤ ϵ. (5.90)

Let Y n
ϵ equal Y n when Y n ∈ {yn

1 , · · · , yn
M} and yn

1 otherwise. Thus, the cardinality
bounds imply that

L(Xn → Y n
ϵ ) ≤ log M ≤ H̄(Y n). (5.91)

This completes the proof of the first part of the theorem. The second part follows as for
stationary ergodic sources the required number of n-tuples satisfies log M ≤ H(Y n).
■

We now show that under certain mild assumptions, all our previous results (except
Theorem 4.1) generalize to maximal leakage and maximal α-leakage, the following
definition is useful for that purpose.
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Definition 5.2. For any ϵ > 0, the set of ϵ-feasible ∆-affordable battery policies is
given by

Γϵ(∆) =
{

PY n|Xn : P[Y n ̸∈ Yn(s0, x)] ≤ ϵ and g(Y n, x) ≤ ∆, ∀x ∈ X n
}

. (5.92)

That is, we allow a non zero, arbitrarily small, probability of wasting energy or
leaving the energy consumption of the user unsatisfied. Note that in real scenarios,
where there exist a non zero probability of energy waste and unsatisfied demand
due to other sources, such as grid, battery or appliance failure, an arbitrary small
probability is acceptable.

Lemma 5.5. For any process Xn modelling the energy consumption of the user, any
ϵ > 0 and sufficiently large n it holds that

min
Γϵ(∆)

L(Xn → Y n) ≤ min
Γ(∆)

H̄(Y n), (5.93)

where H̄(Y n) denotes the sup-entropy rate. Furthermore, for stationary ergodic
processes Xn modelling the energy consumption of the user, any ϵ > 0 and sufficiently
large n:

min
Γϵ(∆)

L(Xn → Y n) ≤ min
Γ̂(∆)

H(Y n), (5.94)

where Γ̂(∆) denotes all policies in Γ(∆) such that Y n is ergodic.

Proof: Denote by Ŷ n the process achieving the minimum entropy in (5.94).
Theorem 5.8 states the existence of a random process Y n

ϵ such that P[Y n
ϵ ̸= Ŷ n|Xn] ≤

ϵ and

L(Xn → Y n
ϵ ) ≤ H̄(Ŷ n) = min

Γ(∆)
H̄(Y n). (5.95)

Note that since Ŷ n ∈ Yn(s0, x) it holds that:

P[Y n
ϵ ̸∈ Yn(s0, x)] = P[Y n

ϵ ̸= Ŷ n|Xn] ≤ ϵ. (5.96)

Furthermore, since g(Ŷ n, x) ≤ ∆, letting y1 = 0n shows that

g(Y n
ϵ , x) ≤ g(Ŷ n, x) + g(y1, x)P[Y n

ϵ ̸= Ŷ n|Xn] ≤ ∆. (5.97)

Therefore, PY n
ϵ |Xn ∈ Γϵ(∆) and

min
Γϵ(∆)

L(Xn → Y n) ≤ L(Xn → Y n
ϵ ) ≤ min

Γ(∆)
H̄(Y n). (5.98)
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This completes the proof for general output processes. The proof for stationary
ergodic processes follows by (5.89). ■

The following theorem provides an immediate consequence of this result.

Theorem 5.9. Let the energy consumption of the user be modelled by a discrete
stationary ergodic stochastic process Xn with average energy consumption µn, then
for any ϵ > 0 and sufficiently large n:

min
Γϵ(∆)

max
PXn

1
n
L(Xn → Y n) ≤ H2

(
µn

α

) 1
λ

+ 1
n

K∑
k=0

log
⌈

β + 1
⌈2∆/(K|δk|)⌉

+ 0.5
⌉
. (5.99)

for ∆ =∞:

min
Γϵ(∞)

max
PXn

1
n
L(Xn → Y n) ≤ H2

(
µn

α

) 1
λ

. (5.100)

Proof: The proofs follows from Theorem 5.5 and Lemma 5.5. ■

Lemma 5.5 shows that the minimum achievable entropy, subject to a fidelity
criteria or distortion constrain Γ(∆), upper bounds the minimum achievable maximal
leakage, subject to an ϵ relaxation of the fidelity criteria, i.e. Γϵ(∆). The following
theorem shows that under certain conditions on the fidelity criteria, the minimum
achievable maximal leakage is upper bounded by the minimum achievable mutual
information, under the same fidelity criteria. Since maximal leakage upper bounds
mutual information, this shows that both metrics share the minimum subject to a
certain class of fidelity criteria.

Theorem 5.10. Let Xn and dn(x, y) denote an input source and a fidelity criteria
dn : X n × X̂ n → R, such that the rate distortion theorem holds, e.g. let Xn be
stationary ergodic and dn be a subadditive fidelity criteria with a reference letter, i.e.
∃a : E[d1(x, a)] = ρ <∞ [130, Theorem 11.5.1], then

lim
n→∞

min
E[ 1

n
dn(Xn,Y n)]≤∆

1
n
L(Xn → Y n) = lim

n→∞
min

E[ 1
n

dn(Xn,Y n)]≤∆

1
n

I(Xn; Y n). (5.101)

Proof: Let R denote the smallest real number for which there exist a mapping

Xn →M → X̂n, (5.102)

such that M takes values in {1, 2, · · · , 2nR} and E
[

1
n
dn(Xn, X̂n)

]
≤ ∆. Note that

by cardinality bounds and the data processing inequality

nR ≥ L(Xn →M) ≥ L(Xn → X̂n). (5.103)
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Furthermore, as Xn → X̂n satisfies the distortion constraint

L(Xn → X̂n) ≥ min
E[ 1

n
dn(Xn,Y n)]≤∆

L(Xn → Y n). (5.104)

Finally, for sources and fidelity criteria satisfying some version of the rate distortion
theorem, and for large enough n, we have that

min
E[ 1

n
dn(Xn,Y n)]≤∆

1
n

I(Xn;Y n)≥R≥ min
E[ 1

n
dn(Xn,Y n)]≤∆

1
n
L(Xn→Y n). (5.105)

Noticing that the maximal leakage upper bounds the mutual information shows that
the above chain of inequalities holds with equality. ■

This shows that although the mutual information and the maximal leakage are
not generally equal, their infima subject to certain class of fidelity criteria are equal.
Furthermore, by Lemma 5.4 this also implies the that maximal α-leakage, Sibson
and Arimoto capacity for any α ∈ [0,∞] share the same infima when the source
and fidelity criteria satisfy the aforementioned constraints. This provides a new
method to characterize rate distortion functions a hard problem in general. In the
privacy optimization context, and for sources and fidelity criteria satisfying the rate
distortion theorem, this settles the discussion about whether mutual information or
maximal leakage should be employed as a privacy measure. Therein, this equivalence
gives a new operational meaning to mutual information minimization, and a more
fundamental, well studied framework for maximal leakage minimization. Finally, the
following lemma provides a simple example of this.

Lemma 5.6. Let Xn denote a bounded, asymptotically mean stationary (AMS)
process modelling the energy consumption of the user. Let the EMU have access to
an AES with average power constraint P̄ , then

lim
n→∞

min
Π(P̄ )

1
n
L(Xn → Y n) = lim

n→∞
min
Π(P̄ )

1
n

I(Xn; Y n), (5.106)

where

Π(P̄ ) =
{

PY n|Xn : E
[

1
n

n−1∑
i=0

(Xi − Yi)
]
≤ P̄ and Yi ≤ Xi for all i

}
. (5.107)

Proof: By [130] the rate distortion equals the Shannon’s rate distortion for AMS
sources Xn and additive fidelity criteria with a reference letter, i.e. ∃a : E[d1(x, a)] =
ρ <∞. Thus, by Theorem 5.10 it suffices to show that Π(P̄ ) is an additive fidelity
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criteria with a reference letter. Let the fidelity criteria be defined by

d1(x, y) =

x− y, when y ≤ x

∞ otherwise .
(5.108)

Let the n-th extension have the additive formulation

dn(x, y) = 1
n

n−1∑
i=0

d1(xi, yi). (5.109)

Finally, for bounded consumptions, the reference letter a = 0, yields the expected
distortion E[d1(x, a)] = E[x] <∞. This completes the proof. ■

5.5 Conclusions

In this chapter, we have presented the necessary and sufficient conditions of the
existence of shared feasible request. This enabled the characterization of the car-
dinalities of the minimal covering and packing sets, which yield the single letter
characterization of the information leakage when no privacy budget is available.
Furthermore, we have introduced structural simplifications to the battery policy and
the worst case consumption presented in Chapter 4. The proposed battery policy
and worst case consumption provide single letter upper and lower bounds on the
information leakage rate for arbitrary privacy budgets. This showed the impact of the
different parameters in the privacy-cost function, providing interesting operational
insights to the smart meter privacy problem.

Finally, in Section 5.4 we have showed that the results derived in this thesis hold
for maximal leakage, maximal α-leakage, and Sibson and Arimoto channel capacities.
Moreover, we have shown that, under certain conditions, the aforementioned privacy
metrics are equivalent.





Chapter 6

Conclusions and future work

6.1 Conclusions

In Chapter 1, we motivated this work by describing the new challenges faced by
the electricity grid and highlighting the importance of advanced sensing and com-
munication infrastructure, and in particular of smart meters, to tackle this new
challenges. Subsequently, we noted the growing privacy concerns raised by recent
privacy scandals and gave a few examples on how the data collected by smart meters
can be used to infer private information about the users. Thus, emphasizing the
need to develop privacy preserving mechanisms within the smart grid.

In Chapter 2, we reviewed the existing literature on smart meter privacy when
access to energy storage or energy harvesting devices is available. We noticed that the
simplicity and tractability of i.i.d. consumption models has captured the main focus
in the literature, with some studies focusing on numerical solutions for Markovian
energy consumptions. However, in privacy and security settings one is typically
interested in the worst-case performance. This interest hinges on the need to provide
guarantees that hold for every user and is captured in the definition of privacy metrics
such as differential privacy or maximal leakage. For these reasons, it is important to
characterize privacy guarantees that hold for a wide range of random processes that
capture the diversity of energy consumption patterns and user profiles.

In Chapter 3, we focused on providing universal privacy guarantees that hold for a
wide class of energy consumption models. However, we noticed that this model greatly
limits the tractability of the problem. In particular, we discussed the difficulties
posed by the memory introduced by the battery and the generality of the input
process. These difficulties hinder the characterization of mutual information bounds
as they impede the utilization of many of the tools typically used in both information
theory and ergodic theory. To tackle these difficulties we noted that battery policies
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are subject to constraints on their support, but they are not subject to constraints
on the probability assigned to each realization. This idea inspired us to model
battery policies from a combinatorial perspective, which provided understanding and
structural simplifications of the system constraints.

In particular, the code construction employed by Ahlswede and Kaspi in the
analysis of the trapdoor channel shed light on the structure of optimal battery
policies and worst case energy consumptions. Therein, the construction of the
optimal jamming strategy (battery policy) and the worst case input process (worst
case consumption) are based on the idea of repetition and uniformity. For the policy
design, Ahlswede and Kaspi show that in the binary case, the trapdoor is always able
to output a constant sequence of balls with length equal to the trapdoor size. For
the worst case consumption, consecutively introducing more balls of the same type
than the trapdoor can store, forces the trapdoor to leak the type of ball introduced.
Finally, these inspiration was grounded by showing the equivalence between battery
policies and the jammer case of the trapdoor channel for binary input and output
alphabets. However, this equivalence does not hold for arbitrary alphabets, since the
battery is able to aggregate energy.

These ideas inspired the construction of block battery policies, providing mutual
information privacy guarantees that hold for any energy consumption taking values
on a bounded alphabet. The optimality of block battery policies was characterized by
presenting an energy consumption process whose leakage is tight with respect to the
upper bound provided by the proposed battery policy. Following the construction
by Ahlswede and Kaspi, both battery policy and worst case consumption relied on
the idea of uniformity, with both repeating a sequence of either no consumption or
maximum consumption for the length required to deplete a fully charged battery.
Thus, one bit of information is leaked every λ time steps, where λ denotes the
time needed to deplete a fully charged battery. Furthermore, we studied the case
in which the average energy consumption of the user is specified, showing that
the information leakage is governed by the binary entropy of the average energy
consumption. Moreover, this showed that the aforementioned battery policy and worst
case consumption preserve their optimality when the average energy consumption is
specified. It is important to note that the proposed battery policy requires non-causal
information about whether the battery will be depleted in the next λ time steps.
Although not far-fetched, these forecasting capabilities are not always available to
the EMU.

In Chapter 4 we recalled the importance of variable market prices, and their
fundamental role in matching energy demand and generation. Consequently, we
focused on understanding the fundamental tradeoff between privacy optimization and
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the price paid for the energy. Our key insight to solve this multi-objective optimization
problem relied on expressing the price paid for the energy as a function of the battery
state at market transition points. This allowed us to combine feasibility and cost
constraints into a single more tractable optimization problem with constrained
battery states.

For the construction of the battery policy, we started with the block battery
policy derived in the previous chapter. The energy requested by this market unaware
policy was then increased or reduced at market transition points. This allows the
fine tuning of the battery state at transition points, reducing the price paid for the
energy, and modelling scenarios with arbitrary price constraints. The analysis was
also particularized to consider scenarios with known average energy consumptions.
As in the previous chapter, this policy requires the forecasting of whether the battery
will deplete in the next λ time steps. At the same time, the requirements to guarantee
the price constraints depend on the maximum amount of energy that the user can
sell or request from the provider at each instant. For the construction of the worst
case consumption, we started with an EMU constrained to the minimum feasible
cost. This effectively forces the battery states at the start and end of each market
block to a single value, allowing the study of each market block independently of
each other. This constraint was then relaxed to model arbitrary privacy budgets.

In Chapter 5 we noted the importance of single letter expressions characterizing
the upper and lower bounds on the information leakage. Single letter expressions
provide more fundamental insights than numerical results, helping understand the
dependence on each parameter, and increasing the tractability of the analysis when
integrated into a larger framework. Subsequently, we derived the necessary and
sufficient conditions under which all the consumption sequences in a given set share
a feasible request. This characterization is fundamental in the design of privacy
preserving battery policies since the existence of shared request sequences determines
whether the EMU is able conceal the energy consumption sequence that induced the
energy request. This allowed us to bound the cardinality of the minimal covering and
packing sets, and to obtain a tight single letter characterization of the information
leakage when no privacy budget is allocated.

Moreover, we proposed structural simplifications on the battery policy and worst
case consumptions derived in Chapter 4 that yield single letter upper and lower
bounds on the information leakage. This single letter characterization showed that
the cost constraint adds an additional component to the leakage induced by the
feasibility constraints. This additional component, induced by the market, increases
linearly with the number of market changes while it increases logarithmically with
the battery size and the variance of the market prices. Finally, doubling the privacy
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budget reduces the information leakage in one bit. These show how the different
energy tariffs impact the information leakage, help the users decide on a privacy-cost
tradeoff point, and help understand the impact of the battery size on the information
leakage, among others. Finally, we extended our previous results to other privacy
metrics. In particular we showed that the upper and lower bounds derived in this
thesis hold for maximal leakage, maximal α-leakage, and Sibson and Arimoto channel
capacities. These results were obtained by showing that, under certain conditions,
these privacy metrics are equivalent.

6.2 Future work

We now discuss some possible future lines of research.

• Characterize the impact of causality on the privacy guarantees. Im-
plementation of the battery policies presented in this thesis requires non-causal
information on whether the battery will deplete in the following λ time steps.
Thus, the work here presented can be further developed by determining what
forecasting capabilities are typically available in real scenarios. Furthermore, it
is interesting to characterize the privacy-forecasting tradeoff, therein describing
the achievable privacy as a function of the forecasting capability of the EMU.

• Introduce more complex battery models. In our study, we do not consider
the wear and tear of the battery, and we do not limit the maximum and
minimum discharge rates. As discussed in Section 2.1.3, the characteristics of
commercial batteries are typically within the requirements of block battery
polices. Although our requirements are met by some batteries, and are typical
assumptions in the SM privacy literature, certain batteries do not match the
requirements of block battery policies. This work can thus be further developed
by characterizing the privacy loss induced by more complex battery models.

• Introduce more constraints on the consumption. Within this thesis
we have characterized bounds on the information leakage that hold for any
bounded energy consumption. Furthermore we have made specific the analysis
to consider scenarios where the average energy consumption of the user is
specified. Another possible way forward is to further make specific the analysis
for scenarios in which other properties of the energy consumption are specified,
e.g. variance or autocorrelation.

• Exploit the link between mutual information and maximal leakage.
In Chapter 5 we showed the equivalence between maximal leakage and mutual
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information under certain scenarios. This equivalence may be useful in the
characterization of rate distortion bounds, as it provides an alternative charac-
terization method. The equivalence also provides a new operational meaning
to the minimization of mutual information, thus exploring this link can shed
some light on other scenarios such as the definition of new privacy measures.
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