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Abstract
We present a method for unsupervised learning of event classes from videos in which

multiple activities may occur simultaneously. Unsupervised discovery of event classes
avoids the need to hand-crafted event classes and thereby makes it possible in principle to
scale-up to the huge number of event classes that occur in the real world. Research into an
unsupervised approach has important consequences for tasks such as video understand-
ing and summarization, modelling usual and unusual behaviour and video indexing for
retrieval. These tasks are becoming increasingly important for scenarios such as surveil-
lance, video search, robotic vision and sports highlights extraction as a consequence of
the increasing proliferation of videos.

The proposed approach is underpinned by a generative probabilistic model for events
and a graphical representation for the qualitative spatial relationships between objects
and their temporal evolution. Given a set of tracks for the objects within a scene, a set
of event classes is derived from the most likely decomposition of the ‘activity graph’
of spatio-temporal relationships between all pairs of objects into a set of labelled events
involving subsets of these objects.

The posterior probability of candidate solutions favours decompositions in which
events of the same class have a similar relational structure, together with three other mea-
sures of well-formedness. A Markov Chain Monte Carlo (MCMC) procedure is used to
efficiently search for the MAP solution. This search moves between possible decomposi-
tions of the activity graph into sets of unlabelled events and at each move adds a close to
optimal labellings (for this decomposition) using spectral clustering.

Experiments on simulated and real data show that the discovered event classes are of-
ten semantically meaningful and correspond well with ground-truth event classes assigned
by hand.

Event Learning is followed by learning of functional object categories. Equivalence
classes of objects are discovered on the basis of their similar functional role in multiple
event instantiations. Objects are represented in a multidimensional space that captures
their functional role in all the events. Unsupervised learning in this space results in func-
tional object-categories.

Experiments in the domain of aircraft handling suggests that our spatio-temporal rep-
resentation together with the learning techniques are a promising framework for learning
functional object-categories from video.
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Chapter 1

Introduction

Humans have a distinctive ability to observe and understand the apparently complex world
of activities in simple terms. Even though activities may present themselves visually
as a continuously changing stream of complex phenomena, the human mind tends to
organize them compactly in terms of meaningful abstractions such as event classes and
object classes. For example, kitchen activities are simply comprehended in terms of event
classes that represent procedures involved in making hot drinks and associated object
classes such as spoons, sugar bowls and cups. Activities for three domains with their
associated event and object classes are illustrated in Fig. 1.1.

Event and object classes are closely related to the idea of interactions that is central
to this work. It is intuitive to think of an event class as describing a similar type of inter-
actions between objects, for the purpose of reaching a goal. These objects are naturally
organized into functional object classes such that those of the same class (e.g. spoons)
play a similar functional role (e.g. transferring sugar) whenever an event belonging to the
associated event class (coffee making) occurs. Consequently, objects of the same class
(e.g. spoons) interact in a very similar way with objects of other classes (e.g. cups, sugar
bowls), across event occurrences of the coffee making event class.

These close connections between event classes, object classes and interactions have
inspired the following question that is addressed in this thesis: if we were to point a
camera at activities for a certain domain and assume no prior knowledge of event and
object classes for any particular domain, is it possible for a machine to learn activities,
more precisely to analyse interactions and learn the event classes, object classes and their
relationships?

This thesis proposes a framework in which a machine can be programmed to under-
stand about activities for a domain in an unsupervised way i.e. without having to encode

1



Chapter 1 2 Introduction

Figure 1.1: Three different domains - aircraft apron, kitchen, football match - where
objects are interacting with each other. Examples of associated event and object classes
are given below each of the respective domains.

knowledge about the event and object classes of any particular domain. The ability to
understand activities can be potentially useful for machines that learn from observation
and help humans carry out activities efficiently. Learning from observation can enable a
machine to adapt when placed in new circumstances, predict what is going to happen and
react accordingly, transfer learned knowledge to related domains, and invent new ways of
performing certain tasks. Moreover, since events, objects and their relationships are so
fundamentally related to natural language categories such as verbs, nouns and sentences
that relate them, this research task represents a small but potentially significant step to-
ward bridging the gap between perception, understanding and natural language.

Section 1.1 describes the key insights and the concepts that are central to the thesis.
Section 1.2 details the goals and the challenges that need to be overcome to meet the
goals. Section 1.3 describes an overview of the approach adopted in the thesis. Section 1.4
describes the novelty of the proposed approach and the significance of the work. Section
1.5 concludes this chapter by discussing an overview of the rest of the thesis.

1.1 Characterizing Activities

The following are the key concepts used to characterize activities: (i) domain; (ii) qual-
itative spatio-temporal relationships; (iii) interactions; (iv) event classes; (v) events; (vi)



Chapter 1 3 Introduction

complicating factors such as overlap, coincidences and noise;(vii) functional object classes;
(viii) functional relationships. Each of these concepts are described below.

Activities and Domains. First we clarify our understanding of the word activities. The
phrase human activities or more simply activities is generally used to refer to the entire
diversity of things that humans do. A domain such as a kitchen, airport, workshop involve
a subset of human activities directed towards a finite set of semantically meaningful goals.
For example, a kitchen domain may be characterized by activities that are directed towards
goals such as preparing meals, or washing vessels and extended hours of kitchen activities
may be observed and recorded in the form of a video. It is assumed here that activities are
generally planned and executed by people who have an understanding of a domain, e.g. a
cook for a kitchen, airport authorities for aircraft handling activities.

Qualitative Spatio-temporal Relationships. An important premise in this work is that
occurrences of interest in activities are often accompanied by changes in qualitative spa-
tial states (e.g. near, far) between sequences of regions, where each sequence corresponds
to a single moving object. We refer to a sequence of regions corresponding to a single
moving object as region histories. These occurrences of interest can be modelled by suit-
ably combining qualitative spatial and temporal relationships between the corresponding
region histories. This type combination is referred to as qualitative spatio-temporal rela-

tionships.

Interactions. In this work, interactions are regarded as a special subset of qualitative
spatio-temporal relationships. They are used to model a sequence of distinct qualitative
spatial states between a set of region histories. We represent interactions in a graph based
structure called interaction graphs. Interactions facilitate well defined similarity measures
and the application of machine learning techniques.

Event Classes. Intuitively, an event class represents spatio-temporally similar ways of
performing some task. More formally, an event class is regarded as a probability dis-
tribution over a finite set of similar interactions or equivalently interaction graphs. For
example, an unloading event class may represent spatio-temporally similar interactions
between vehicles such as loaders, trolleys and planes for the task of transferring luggage
from a plane to an airport.
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Events. Events are regarded in this work as occurrences of event classes in space and
time. More expressly, an event is a set of tracklets (part of tracks) such that they are an
embedding of the spatio-temporal relationships modelled by an event class. Event classes
may have many event occurrences in extended periods of activity. For example, several
occurrences of the unloading event class may be expected to be observed over extended
periods of aircraft apron activity.

Complicating Factors. Three factors are regarded as inducing complexities when ac-
tivities are observed and these are referred to as complicating factors. First, events are
allowed to overlap i.e. they may share tracklets. Second, there are often occurrences that
do not embody any of the event classes that are associated with activities for a domain.
We refer to these occurrences as coincidences in this work. Finally, when activities are
observed and their video is processed, complexities in image processing tends to gives
rise to changes in spatio-temporal relationships. We refer to this as observation noise.

Functional Object Classes. Functional object classes are regarded as being closely as-
sociated with event classes. These are classes of objects whose instances have similar
functionalities or functional roles across event occurrences of the same class. For exam-
ple, objects of a functional class such as trolleys play a similar functional role (of carrying
the bags from the loader to the airport) across event occurrences of the unloading event
class.

Functional Relationships. Functional relationships are significant correlations between
event classes and functional object classes. Functional relationships associate event classes,
which are just spatio-temporal relationships without any object type, to particular func-
tional object classes. For example, associating an unloading event classes to potential
functional object classes such as loaders, trolleys and planes is the description of their
functional relationships.

1.2 Goals and Challenges

Our goal of unsupervised video activity understanding is the task of learning event classes,
functional object classes and their functional relationships assuming no prior knowledge
about these entities.

We use the word unsupervised in the sense that the machine does not have any prior
knowledge about the event and functional object classes for the domain of interest (or any
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other domain).
The goals described above are challenging with regard to both the representation and

learning, for the following reasons. First of all, a good representation should be able to
abstract only the relevant information from video. The videos considered here are a se-
quence of millions of images and contain a lot of information in them. The abstraction
of relevant information is the first step to learning from such complex data. Specifically,
a good representation needs to be expressive enough to capture spatial and temporal de-
pendencies that characterize interactions. At the same time, the representation needs to
abstract just the relevant information and represent it in a way that interactions can be
compared quantitatively. The representation should also be robust enough to variations in
spatio-temporal relationships arising either due to the intrinsic variations amongst events
of the same class or due to instabilities in image processing.

The second aspect, which is the task of unsupervised learning, is challenging because
neither the segmentation of the tracks (that compose activities) into events nor the event
classes are known. When the event classes are known in advance, as in the supervised
learning setting, events may be recognized and segmented in activities. On the other
hand, when the segmentation of activities into events is known in advance, event classes
may be found by clustering event descriptions.

The task of jointly learning events and the event classes is difficult, especially due to
the three complicating factors. The presence of overlap between events makes the search
space of events more complex. The presence of coincidences adds further complexity as
it becomes necessary to incorporate properties that could be used to differentiate events
from coincidences. Finally, the task of jointly learning events and event classes is made
further difficult due to the presence of noise.

The task of learning functional object classes and functional relationships is also chal-
lenging as it requires a formulation in which functional roles are discovered and then
objects are represented in terms of their functional roles with respect to events. This rep-
resentation has to be robust enough to deal with uncertainties in the event classes that are
learned from potentially noisy video data.

All these aspects of representation and learning make the desired goal of activity un-
derstanding a challenging problem. The following section describes our approach in ad-
dressing these challenges.
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1.3 Overview of the Framework

The approach for understanding activities is explained in three parts: (i) qualitative spatio-
temporal relationships and interactions; (ii) event classes and a generative process; (iii)
learning functional object classes and functional relationships.

Qualitative Spatio-temporal Relationships and Interactions. In order to represent
abstract qualitatively interesting aspects of complex occurrences in video activities, we
simplify continuous space using a few qualitative spatial relationships. This makes it
possible to afford the representation of complex temporal dependencies using qualitative
temporal relationships. We introduce the notion of an interaction to refer to a restricted
subset of qualitative spatio-temporal relationships that facilitate well defined similarity
measures. Interactions are represented in the form of graphs which facilitate the applica-
tion of graph based learning mechanisms. Finally, in order to make this description robust
to observation noise from the tracked output, a generative process is used to estimate the
true occurrences of qualitative spatial relationships.

Event Classes and a Generative Process. We define our notion of event classes, in
order to model spatio-temporally similar ways of performing some task. Accordingly an
event class is defined as a probability distribution over a finite set of interaction graphs.
According to this probability distribution, the more common ways of performing a task
have higher probability than other ways. This idea has an intuitively appealing basis in
real events across domains, for example, event classes such as making coffee, tackling
and football tackles. There are usually some standard or prototypical ways in which these
tasks are performed, while other ways are less probable.

We model activities for a domain as arising from a generative process. The first as-
pect of this generative process is a set of event classes for the activities of a domain.
Event classes are characterized by certain desirable properties called event-like proper-
ties. These properties help distinguishing between events and coincidences. The second
aspect of the generative process is an activity graph which captures the spatio-temporal
relationships between all the tracks present in the activities. The activity graph captures
spatio-temporal relationships that correspond to events and coincidences. The final aspect
is that a set of tracks that are observed and are regarded as a possible embedding of an
activity graph. The generative process models the joint probability distribution between
these three aspects, namely the event classes, activity graph and a possible embedding.

In the unsupervised learning setting, a set of tracks is observed for a video from a
certain domain. The generative process is given a priori as specified above. The goal is
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to discover the latent configurations of this process (which includes event classes, activity
graph, events and coincidences) i.e. to find the most likely interpretation of the video.
The posterior probability for any candidate interpretation is a measure of how likely it
is that the candidate interpretation could have generated the observed set of tracks. The
Maximum a Posteriori (MAP) solution is found by efficiently sampling the space of poste-
rior distributions of candidate interpretations using Markov Chain Monte Carlo (MCMC)
techniques.

Functional Object Classes and Functional Relationships. Once event classes are
learned using the approach described above, the framework proceeds to learning func-
tional object classes. In order to learn functional object classes, sets of objects that have
the same functional roles with respect to each of the event classes are discovered. Ob-
jects are then represented in terms of the functional role they play and then clustered into
functional object classes. The final aspect of activity understanding is learning the asso-
ciations between event classes and functional object classes. The functional relationships
between the functional object classes and event classes are learned by considering only
the significant correlations between them.

1.4 Novelty and Significance

This thesis introduces a novel framework for understanding activities from video. The
framework is unsupervised and therefore does not assume knowledge about any particular
domain. The following are the novel and significant contributions of this work.

1. This work represents activities in terms of spatio-temporal relationships. We define
the notion of interactions, in order to performing learning tasks on activities.

2. A novel generative process for learning a compact representation of activities from
complex video is formulated in this thesis. This involves learning the most likely
configurations of the generative process which are assumed to have generated the
activities.

3. Learning is posed as MAP estimation of the latent configuration of this generative
process. An MCMC procedure for sampling and evaluating solutions fits well with
the proposed generative process, and is described in detail.

4. Finally, functional object classes are introduced. A simple procedure for learning
these classes from the learned event classes is another contribution. The functional
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relationships between the functional object classes and the event classes represents
the culmination of this work, as this relationship forms an essential aspect of activity
understanding.

1.5 Thesis Overview

The rest of the thesis is organised as follows. Chapter 2 reviews the research context
for work on activity understanding. This chapter starts by describing aspects that make
the problem of unsupervised event analysis a complex task. Then area of event analysis
is reviewed under various approaches such as pattern recognition, state space models,
grammars and logic. The summary of each relevant technique is followed by a discussion
relating to the complexity of the task. This chapter includes closely related work in graph
based learning as this work focusses on representation and learning with graphs. This
chapter also includes a literature survey on object classes. Finally this chapter describes
the spatio-temporal relationships that are closely related to this work.

Chapter 3 focusses on representing and comparing interactions. The key idea of inter-
actions are first introduced in this chapter. This is followed by a relational representation
of interactions using a graph based structure called the interaction graph. In order to com-
pare interactions, a similarity measure between these interaction graphs are defined. The
idea of representing the interactions in an entire activity using an activity graph is also
discussed in this chapter. A generative process for inducing interaction graphs from video
data is then described. Finally, the notion of embedding a spatio-temporal description as
tracks in space and time that embody these relationships is detailed.

Chapter 4 focusses on learning of event classes from activities in an unsupervised way.
The key idea of a generative process for activities where event graphs are sampled from an
event class distribution is described in this chapter. The problem of unsupervised learning
is formulated as MAP estimation of the latent configuration of a generative process. An
efficient procedure that uses MCMC to address this problem is described.

Chapter 5 details the proposed technique of learning object classes once the event
classes have been learned. This chapter concludes with the description of the technique
for learning functional relationships.

Chapter 6 describes the evaluation of the proposed framework in an aircraft domain.
This chapter starts by evaluating the efficacy of the HMM based framework for obtain-
ing stable qualitative relationships from video. Then the frameworks for learning event
classes from video are evaluated both qualitatively and quantitatively. Finally the evalua-
tion of the functional object classes and relationships are described.
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The last chapter 6 offers describes the main contributions and novelties of this work.
This is followed by limitations of the existing framework and insights into future direc-
tions. This thesis concludes with some general remarks about the work.



Chapter 2

Related Work

Event analysis is a research topic at the confluence of other areas such as computer vision,
knowledge representation and machine learning. The last decade has seen considerable
progress in this field for two reasons. Firstly, there has been an increasing demand for
tasks such as recognizing events, retrieval of clips with similar semantic content and dis-
covery of patterns for domains such as surveillance, television production and robotic
vision. Secondly, there has been considerable progress in research in computer vision,
knowledge representation and machine learning that can now effectively address these
tasks.

It is apparent that this progress has been more dominant along certain directions of
research than others. For example, with regard to learning, there has been considerable
focus on the supervised learning setting for the task of event recognition. The devel-
opment of well established theoretical frameworks and efficient algorithms in machine
learning such as discriminative methods (e.g. support vector machines, boosting) and
generative probabilistic methods (e.g. dynamic Bayesian networks, latent dirichlet anal-
ysis) and grammatical methods have been accompanied by a swift application to event
analysis.

In contrast to the above, there has been relatively little work on the unsupervised learn-
ing setting. Moreover, there has been little work on the application of relational learning
and qualitative spatio-temporal relationships to event analysis, despite the growing body
of work in these areas.

This thesis focusses on learning events in an unsupervised setting. Here, qualitative

10
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spatio-temporal relationships are regarded as being fundamental for characterizing activ-
ities. Besides, relational learning, especially in a graph based setting, is proposed as a
natural formalism for learning from this representation.

The above considerations point towards a natural way of organizing this chapter. A
review of the main trends in related research for event analysis such as pattern recogni-
tion methods (Section 2.2), state space models (Section 2.3), grammars (Section 2.4) and
logic (Section 2.5) are first discussed. For each of these, supervised approaches are first
described briefly followed by a more detailed treatment of unsupervised approaches, since
unsupervised learning is the focus of this thesis. The literature on graph mining (Section
2.6) is reviewed as our approach applies and builds upon techniques developed in this
research area. The survey of event analysis in this chapter starts with Section 2.1, which
clarifies and defines some key words used to characterize each thread of related work.

The review of event analysis and graph mining is followed by a review of research on
learning object categories in Section 2.7, which form a secondary but important aspect
of the framework proposed in the thesis. This is followed by a review of qualitative
spatio-temporal relationships in Section 2.8, as they are central for characterizing events
in this work. However, since this work focusses on applying qualitative spatio-temporal
relationships, a brief review of relevant techniques are discussed in this section.

Section 2.9 characterizes our approach using certain key terms that are introduced in
the begining of this chapter. These terms are used throughout the chapter to describe other
related work.

Section 2.10 describes the relationship with other existing approaches in the literature.
The applicability of existing approaches to the unsupervised activity understanding task
addressed in this work is also discussed.

This chapter is concluded by Section 2.11.

2.1 Three Aspects of Event Analysis

This section defines key concepts and terms used in event analysis. These concepts and
terms are necessary systematically describing the related work and contextualizing the
proposed framework in relation to it. A summary of each related work is followed by a
discussion that uses the key words described in this section. A secondary motivation for
this section is to clarify these, given their highly ambiguous usage in the literature.

Some of these concepts have been clarified in previous surveys [Lavee et al., 2009,Xie
et al., 2008] from which this chapter borrows ideas. However, a more detailed classifica-
tion has been found necessary in order to present the related work as a context to ours.
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These concepts are organized under three broad categories: (i) domain and task; (ii) learn-
ing; (iii) nature and complexity of videos. These terms are first described below, without
explicit references to work that are characterized by them. After this description, they are
used to classify different parts of related work described in the rest of the chapter.

2.1.1 Domain and Task

The increasing need to analyse videos automatically for certain domains has played a sig-
nificant role in determining the direction of research in event analysis. One example is
surveillance, where there has been an increasing need to semi-automate CCTV monitor-
ing for domains such as airports, banks, and train stations. Another example is robotic
vision where robots that can visually understand and participate in domains such as work-
shops, kitchens and elderly care homes can be potentially very useful. Other applications
such as the analysis of television broadcasts, particularly sports and news have stimulated
much research in activity analysis. Even though the domains are many, much of event
analysis can be summarized by a handful of tasks of which event detection, retrieval and
discovery are particularly prevalent. The goal of event detection is to detect events in a
video stream. Event retrieval corresponds to retrieving videos that contain similar events
given a query event from a video database. Unsupervised event discovery is the task of
analysing videos and discovering events and event classes in them. This work focusses
on this third problem of event discovery from videos.

2.1.2 Learning

Learning from data is a powerful paradigm that has permeated many fields including event
analysis. The success of this paradigm for complex entities such as events is also because
many recent approaches allow the combination of expert domain knowledge together with
mechanisms for learning from data. The following are three key aspects of these machine
learning based approaches [Lavee et al., 2009].

Learning Setting. The learning setting is used to refer to the nature and degree to which
expert domain knowledge is encoded. While supervised approaches generally encode se-
mantic knowledge about the type of events for a domain, unsupervised approaches tend to
assume minimal knowledge about the type of events. However these two crisp categories
are only useful for characterizing the two ends of a spectrum. The following paragraphs
endeavour to characterize this spectrum in terms of sharper and well defined distinctions,
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for the sake of bringing in greater precision in summarizing event analysis approaches, in
terms of their learning settings.

• Supervised Settings

– At one end of the spectrum of learning setting is the case of a manually defined

setting, where the events are described as hand crafted rules. A degree of
confidence may be associated for each rule. In such a case, events are detected
either by logical abduction or probabilistic inference.

– In the standard supervised setting, events are manually segmented and la-
belled. A model of the events is usually learned using supervised learning
frameworks in machine learning. The events may be segmented into separate
clips or the precise information (e.g. spatio-temporal extents together with
participating objects) may be well specified for straightforward segmentation.

– We refer to a deictic supervision setting as the application of multiple instance

learning setting [Dietterich et al., 1997] to event analysis, where only the
spatial and temporal extents (called deictic intervals) of events are specified
along with their respective class labels.

• Unsupervised Settings

– In the clustering setting, it is assumed that the events are segmented but unla-
belled. In this setting, features may be extracted for each event and clustered
using techniques in machine learning.

– We refer to a transactional learning setting when the deictic spatio-temporal
regions are given but not labelled. This word is borrowed from the body of
research in data mining [Cook and Holder, 2007].

– We refer to a unsupervised discovery setting when, neither any form of seg-
mentation of the activities into events are given nor are the class labels for any
part of the video are assumed. The primitive events are also assumed as not
given.

Features. In the field of event analysis, features are used to refer to descriptions of
salient aspects in a video. Features have been categorized in the survey paper of [Xie et al.,
2008] as low level, mid level and high level. Low level features are usually properties of
pixels in images such as colour, texture and shape or their properties in image sequences
such as quantized location or direction of motion. Low level features have been found to
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be particularly well suited for modelling the behaviour of groups in crowded scenes, es-
pecially because object detection and tracking are typically too hard for such scenes. Mid
level features capture perceptual intuitions as well as semantically meaningful aspects of
images such as tracked objects, segmented body parts etc. High level features aggregate
low level or mid level features into high level data structures such as sequences, bags and
relational entities such as logical formulae and graphs.

Event Models. Event models are a description of events in some formalism. These have
been systematically categorized and discussed in the survey paper [Lavee et al., 2009]
as follows: (i) pattern recognition techniques; (ii) state space models; (iii) grammars;
(iv) logic. Both logic and graphs can be used to model relational data. This work intro-
duces a framework in which graphs are used for relational representation and modelling
of events.

2.1.3 Characterizing Complexity

A study of the factors that influence the complexity of the task of event analysis provides
a good insight into the nature of different approaches that have been employed to this
end. Moreover, these factors provide a paradigm for conceptually comparing different
approaches that have been developed in event analysis.

Nature of Video Input. This chapter adopts the following categorization of video input
from a previous survey [Xie et al., 2008]: (i) single stream from one take; (ii) multiple
cameras, single take; (iii) single stream from multiple takes; (iv) media collectives.

Complexity of Events. In general, complexity of events is relative and may be charac-
terized in several different ways, depending on the problem at hand. However, the follow-
ing are some high level features for characterizing complexity. More importantly, as will
be seen in the rest of the chapter, these features provide useful concepts for comparing
different approaches in event analysis.

• Atomic (e.g. a hand scooping some butter) or composite (making breakfast). It is
important to note that these definitions are not absolute and that the consideration
of whether an event is atomic or composite depends on the level of abstraction that
is chosen.

• Single temporal process (e.g. a hand scooping some butter) vs multiple parallel

processes (e.g. a hand scooping some butter, while the other hand takes a slice of
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bread). There are two aspects of multiple temporal processes which influence the
complexity of events.

– Independent processes (e.g. two cooks making separate dishes without any
dependencies) or dependent processes (e.g. two cooks cooking the same dish
in a way that their actions depend on each other).

– Sharing of processes or objects (e.g. sharing a spoon while cooking two dif-
ferent dishes).

• Structural complexity characterizes the degree of complexity in the structure of
events. One aspect of structural complexity is aptly characterized by a hierarchy
of grammatical types in Chomsky’s hierarchy such as the simpler regular grammar
to the more complex context free grammars, context sensitive grammars and recur-
sively enumerable grammars. These grammars correspond to recognition machines
such as finite state automata, recursive finite state automata etc. While structurally
simpler events are modelled by simpler models such as finite state automata, com-
plex events which for example may have nested structure (e.g. aaabbb) require
structurally more complex recognition machines.

Another aspect of structural complexity is temporal complexity. While simpler
events may be modelled by assuming a first order Markov process, temporal com-
plex events tend to have complex temporal dependencies that may require higher
order Markov processes or Allen’s temporal relations [Allen, 1983].

• Semantic complexity characterizes the degree of expressiveness required to describe
events. For example while events with propositional descriptions (e.g. abcd) are
simpler to model, events that are best described in a relational form (e.g.R1(a)R2(b, c)

R3(c, d)R4(a)) are more complex to model.

• Spatially scene dependent events (e.g. cars turning left at a particular junction in a
particular scene) are easier to characterize as they are learned from a single scene.
On the other hand, spatially scene independent events (e.g. cars turning left at any
junction in any scene) are more complex to learn as they require generalization
across different scenes.

• Degree of variations in the event classes. Event classes whose event instances
have identical structure are easier to mine using standard techniques in data mining.
On the other hand, event classes which have variations are harder to discover and
model, especially in the unsupervised setting.
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Complexity of Learning Events from Activities. The complexity of activities is re-
lated to the ease with which events can be detected or discovered from them. Three key
aspects that characterize complexity of learning events from activities are detailed below.

• Noise and co-incidental occurrences make the problem of learning events from
activities more complex. This is because the event patterns may become veiled in
the presence of noise and coincidence, necessitating mechanisms to focus attention
on event like structures, or ways of modelling noise and coincidences.

• Sharing of objects and interactions across events make the problem of learning
more complex. These two factors make the problem of segmentation of activities
into events less straightforward.

• The learning setting has a direct relationship to the complexity of learning. In the
supervised setting both the segmentation and labelling of activities into events are
assumed to be given. In the clustering setting, the events are segmented and given,
but the labelling has to be inferred. In the deictic supervision setting, the learning
task can be slightly more complex if the deictic regions contain noise or events
from other classes. The unsupervised event discovery setting is generally more
complex than the above settings, because event classes have to be learned while
simultaneously searching the space of possible segmentations.

2.2 Pattern Recognition Techniques

Pattern recognition techniques represent events in a space with a suitably defined similar-
ity metric. In this thesis, both classical supervised approaches such as event classification
and unsupervised approaches such as clustering are generally applied.

2.2.1 Supervised Learning Approaches

Supervised approaches belonging to pattern recognition techniques are mostly used to
recognize events that correspond to types of motion. These have been used in conjunction
with low level and mid level features. Events such as walk, run and skip in [Cao et al.,
2004] and events such as putting on sunglasses [Smith et al., 2005] are recognized using
low level pixel based features with K-NN [Dasarathy, 1990], SVMs [Burges, 1998] and
Boosting [Schapire, 1990] respectively. Events such as human walking and dog running
in [Goldenberg et al., 2002] and person crossing the corridor in [Pittore et al., 1999] are
recognized using mid level object based features with K-NN and SVMs respectively.
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2.2.2 Unsupervised Learning Approaches

Unsupervised learning using pattern recognition approaches has been applied to event
analysis to recognize different types of events and in conjunction with features at different
levels of representation. A summary of these approaches are described below.

Clustering Sequences of States. In many domains events take the form of a certain
sequence of states and the segmentation of events are known or relatively easy to extract.
For example, in traffic scenes, trajectories of interest such as a car turning or a pedes-
trian crossing are events and their segmentation is known in advance. Event classes are
regarded as clusters of similar state sequences.

Similarity between trajectories is often expressed as a combination of properties of
both appearance and motion (behaviour). For example authors in [Wang et al., 2006] use
these two aspects to infer the structure of the scene, as it is hypothesized that the scene
structure (e.g. the location of the pedestrian crossing ) affects the behaviour of moving ob-
jects in the scene. Trajectories that represent candidate events are clustered in two stages.
In the first stage, an appearance attribute, specifically the size, is used to separate vehicles
and pedestrians in a road scene. The behavioural attributes, which are the spatial location
and motion based features, are used to further separate these two clusters into semantic re-
gions such as a one way road, u-turn exits etc. Thus a scene is automatically interpreted in
terms of event classes, whose event instances correspond to trajectories in spatial regions,
within which objects exhibit semantically similar appearance and behaviour, as illustrated
in Fig. 2.1.

Several features and distance measures have been used to cluster trajectories. The
work described above [Wang et al., 2006] uses spatial coordinates, object size and veloc-
ity with a modified Hausdorff distance. The authors in [Buzan et al., 2004] use spatial co-
ordinates with the longest common subsequence (LCSS) [Vlachos et al., 2008] distance,
while the authors in [Hervieu et al., 2008] use translation, rotation and scale invariant
features with a HMM based distance measure to cluster trajectories.

Authors in [Oh and Hoogs, 2010] characterize behaviour of trajectories by using loca-
tion independent features which capture the relationship of a trajectory to scene structures
such as buildings, parking spots, roads etc. These features are used to produce location in-
dependent event classes such as vehicles passing through, people walking on side walks,
people crossing the road etc. However, this technique relies on the knowledge of a partic-
ular scene and is in this sense scene dependent.

Many domains such as indoor (e.g. a kitchen) or cargo unloading involve events

which may be expressed as a sequence of location based states in which an agent moves
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Figure 2.1: Clustering of events, each of which is a trajectory, in order to obtain event
classes. Figure from [Wang et al., 2006].

around. For examples two events may be e1 : (shelf, stove, washer, sink, washer),
e2 : (fridge, stove, washer, sink, table). Events that are similar tend to share similar
sub-sequences (e.g. stove, washer, sink for the above events e1 and e2) and therefore
may be grouped into event classes.

This approach is undertaken in [Hamid et al., 2009]. In this work, events are ini-
tially represented as sequences of states, which are manually described using a predefined
event vocabulary e.g. enter the kitchen, turn stove on, get eggs, as illustrated in Fig. 2.2.
Then they are re-represented in terms of statistics of their local event subsequence, so that
events that share similar statistics tend to be similar, and may hence belong to the same
event class. The locations are not metrically represented (x, y coordinates), but qualita-
tively interesting locations are symbolically represented (fridge, table). Therefore, these
events, in principle, are spatially scene independent. This aspect of the work highlights
the advantage of qualitative representation.

Discussion. The approaches described above are a case of the clustering setting,
since the segmentation of activities into events (which are just trajectories or sequences of
states) is known a priori. Also, these events are often scene dependent as they are spatially
related to a particular scene under consideration. The events are atomic, except in [Hamid
et al., 2009], in contrast to compositional events such as a person crossing the road after

the car stops for him/her, which are explored in [Wang et al., 2009]. Events are modelled
as a single temporal process. It is worthwhile noting that the sequences are propositional
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Figure 2.2: Clustering of events which are a sequence of qualitatively interesting states.
Figure from [Hamid et al., 2009]

in nature and are therefore semantically simple.

Mining Sequences of States. When events take the form of state sequences, but their
segmentation is unknown, frequent sequence mining may be applied to obtain frequent
patterns that may correspond to events. In [Toshev et al., 2006], interactions between
vehicles and predefined zones on a road gives rise to a propositional sequence of spatial
states similar to work described above by authors in [Hamid et al., 2009]. However,
unlike [Hamid et al., 2009], the event segments are assumed unknown and therefore a
sequence mining approach is used to discover classes of frequent sequences, which are
regarded as event classes.

The authors in [Wang et al., 2005b] transform a video into a sequence of symbols
which are obtained by clustering low level video features. Repetitive sub-sequences are
mined from this sequence to obtain event classes that capture similar high level concepts
such as a “diver preparing to dive on a springboard” in broadcast videos.

Discussion. The approaches described above are cases of the unsupervised discov-

ery setting, since the segmentation of activities into events (which are just trajectories or
sequence of states) are not known a priori. The events considered are composite in na-
ture. Events are modelled as a single temporal process. Also, since the sequences are
propositional, they are semantically simple.
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2.3 State Space Methods

State space models explicitly model the structure of the state space in an event domain [Lavee
et al., 2009]. The following paragraphs discuss different types of state space models that
have been used for event modelling. This is followed by more detailed descriptions of
unsupervised learning approaches that use state space models.

2.3.1 Supervised Approaches

State-space models specify a joint probability distribution over state-space i.e. over ob-
served and unobserved random variables that characterize the states of a system. Bayesian
networks [Heckerman, 1999] are a way to make state space models tractable by fac-
torizing the joint probability distribution into a simpler distribution by making it pos-
sible to model conditional independences between these variables. Bayesian networks
are amongst the most popular directed state space models. They represent a set of ran-
dom variables and their conditional independences via a directed acyclic graph (DAG).
Bayesian networks have been used in different ways for modelling events. One classical
way of using Bayesian networks is discussed in [Hongeng and Nevatia, 2001], where the
compositional relationships between events, their sub-events and other observed features
are represented at multiple levels of granularity. The higher levels usually correspond to
composite events (a person approaching another), the mid level to atomic events (move
towards, slow down) and the lower levels to observable features (distance to reference
object, direction, bounding box), as illustrated in Fig. 2.3.

Using Bayesian networks, the probability of a composite event is inferred by propa-
gating the probabilities upwards from the observation level to the atomic sub-event level
and finally to the level of the composite event at the top of this. In general, Bayesian
networks have been applied mostly to object based abstractions to recognize events such
as overtaking, following as reported in [Buxton and Gong, 1995], [Lv et al., 2006]. While
these Bayesian networks are well suited for modelling: (i) the hierarchical and semantic
space of events; (ii) their ability to model uncertainty; (iii) their computational tractability,
they are not ideally suited for temporal modelling.

Hidden Markov Models (HMM) [Rabiner, 1989] are a class of graphical models that
are well suited to model the temporal aspect of events. A HMM is a statistical model in
which the observations and states are assumed to be modelled by a Markov Process with
states that are not observed. These hidden states emit a sequence of observations.

There are many variations of the classical HMM model, capturing different kinds of
dependencies between random variables. These have been used to model multiple par-



Chapter 2 21 Related Work

Figure 2.3: A Bayesian network for complex events. Detection is inference over the
Bayesian network. Figure from [Hongeng and Nevatia, 2001]

allel temporal processes and varying degrees of temporal dependencies between these
processes. The simplest of these are the Parallel HMMs (PaHMM) [Vogler and Metaxas,
2001] where the multiple temporal processes are modelled but are assumed to be tem-

porally independent of each other. They have been used for sign language recogni-
tion [Vogler and Metaxas, 2001], where the signs from each hand represent a single tem-
poral process. These two processes are assumed to be independent of each other based on
the cited linguistic evidence that the two temporal process of the American Sign Language
can be viewed as acting with a high degree of independence on the phoneme level.

In contrast to PaHMMs, Coupled HMMs (CHMM) [Oliver et al., 2000] are used to
recognize events such as interactions between persons (e.g. follow, reach and walk to-
gether), where it is essential to model the temporal dependencies between the multiple
temporal processes.

Hidden Semi-Markov Models (HSMM) have been used to model duration for rec-
ognizing events such as a car passing through a check point [Hongeng and Nevatia,
2003]. Another variation of the standard HMM is the Hierarchical Hidden Markov Model
(HHMM) which has been used in [125] to model the natural hierarchy present in compos-
ite events. These are used to recognize events such as short meals, have snacks. Several
hybrids of the above HMM variations have been used for various tasks. However greater
expressiveness is often found to come at the cost of tractability and achieving this trade
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off is a matter of design expertise.

2.3.2 Unsupervised Approaches

While much work with state space models focuses on a supervised learning setting, there
has been some notable work for the case of unsupervised setting. The following para-
graphs describe this work in detail.

Hierarchical Hidden Markov Models. In structured domains such as sports, hierar-
chically nested repetitive segments may occur. A HHMM is used in [Xie et al., 2003] to
model recurring events in each in terms of simpler HMMs, and the higher-level transitions
between these events as another level of a Markov chain. They are used to automatically
discover high-level structures, for example, plays and breaks in soccer and baseball. Some
parameters such as state connectivity, number of levels of the Markov chain and the time
scale of the states are manually specified. The search for the optimum model is performed
using Markov Chain Monte Carlo techniques with Bayesian Information Criteria (BIC)
as the model posterior.

Dynamic Bayesian Networks. Domains such as aircraft aprons and shops, often consist
of composite events which are composed of multiple parallel processes of atomic events.
In these domains, it is often the case that some of these temporal processes are dependent
while some others are independent of each other. Dynamic Bayesian Networks (DBNs)
are a class of all Bayesian networks that have random variables associated with a time
series. While classical HMMs, PaHMMs and CHMMs are all examples of DBNs, the
generic DBN framework can model multiple parallel processes with partial temporal

dependencies and thus strike a middle ground between PaHMMs and CHMMs, which are
on either extremes in terms of modelling temporal dependencies.

In [Xiang and Gong, 2006], an event class is regarded as generating a sequence of
atomic events, each of which is a group of significant pixel changes (over time) in a lo-
cal image neighbourhood. Event classes are obtained by clustering events, which are
represented in terms of certain properties of the respective group of pixels, such as their
position, shape, visual change type and motion features. The temporal relations between
events are modelled using a Dynamically Multi-Linked Hidden Markov Model (DML-
HMM), which is a kind of DBN, based on the discovery of salient dynamic interlinks
among multiple temporal processes corresponding to the events generated by multiple
event classes. This technique is unsupervised because, first of all, the event classes are
found by clustering, as illustrated in Fig. 2.4. The number of clusters is automatically
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Figure 2.4: Clustering of events into event classes. Figure from [Xiang and Gong, 2006].

determined using Bayesian Information Criterion. Moreover, the DML-HMM is built us-
ing BIC based factorization resulting in its topology being intrinsically determined by the
underlying causality and temporal order among events, as shown in Fig. 2.5. Experi-
ments on a shop and aircraft scene confirm that the DML-HMM is superior compared to
other Dynamic Probabilistic Networks such as Multi-Observation Hidden Markov Model
(MOHMM), a Parallel Hidden Markov Model (PaHMM) and a Coupled Hidden Markov
Model (CHMM) for the task of unsupervised learning.

Discussion. The approaches described above are a case of the Unsupervised discov-

ery setting, since the segmentation of activities into events is not known in advance. The
events in the latter work [Xiang and Gong, 2006] are scene dependent as they are spa-
tially related to a particular scene under consideration. The events in [Xie et al., 2003]
and [Xiang and Gong, 2006] are composite. The HHMM can model nested structures
and are therefore not structurally simple, though the events in [Xie et al., 2003] are gen-
erally simpler. The events modelled in [Xiang and Gong, 2006] are multiple temporal

processes, though the temporal dependencies that they model are essentially first order
Markov. It is worthwhile noting that the sequences are propositional in nature and are
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Figure 2.5: Dynamic Bayesian networks for modelling multiple parallel processes. Figure
from [Xiang and Gong, 2006].

therefore semantically simple.

Topic Models. Topic models learn discrete latent variables from co-occurrence data or
features by exploiting the conjugacy of Dirichelet and multinomial distributions [Blei
et al., 2003]. In domains such as crowded traffic scenes, where groups of objects exhibit
patterns of motions, topic models are well suited to composite events which are composed
of atomic events such as a car stopping followed by person crossing the road. Topic
models which are a class of Bayesian networks have been gaining popularity in computer
vision after their success in document analysis research. In the extension to event analysis,
the entity that is analogous to a text document is a video clip for a domain such as traffic
in [Wang et al., 2009]. A text document is regarded as containing a mixture of several
topics. Analogously a video clip (document) is regarded as containing several atomic
events (topics) such as car stopping and pedestrian crossing. Thus a video clip contains
a composite event. Just as a set of textual words are the building blocks of topics, a video

word, which is the quantized positional and directional features for each pixel in the video
clip, constitute atomic events. This idea is illustrated in Fig. 2.6.

The video clip is assumed to be generated by first assigning for each pixel an atomic
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event (topic) and then assigning a visual word given this event in the following four steps.
First, given a video clip, a distribution over atomic events is picked (from a distribution
over distributions). For example, according to this distribution, the clips may be more
likely to contain atomic events such as car stopping and pedestrian crossing. Second,
given this distribution, one topic is sampled from this distribution for any particular pixel
(word position in a document) in the video clip. Thirdly, for that particular pixel and for
topic chosen for this pixel, a distribution over possible video words is picked (from a dis-
tribution over distributions). Finally, a visual word is sampled from this distribution over
video words for those pixels. Note that the visual words are considered to be independent
given the topics according to a standard bag of words model assumption.

In [Wang et al., 2009], this generative process is formulated as variants of Latent
Dirichlet Allocations (LDA) and Hierarchical Dirichlet Processes (HDP). Given just video
sampled into non-overlapping clips (analogously the set of documents), the atomic activi-
ties (topics as co-occurring words) and their interactions (co-occurring topics) are discov-
ered in an unsupervised manner.

Discussion. The approaches described above are cases of the unsupervised discov-

ery setting, since neither the segmentation of activities into events, nor the event models
that generated these events are known in advance. The events are scene dependent as they
are spatially related to a particular scene under consideration. These approaches model
composite events in terms of co-occurring atomic events. While multiple temporal process

are modelled using this technique, the bag of words assumption implies that the spatial
and temporal relations between these process are not modelled. It is worthwhile noting
that the sequences are propositional in nature and are therefore semantically simple.

2.4 Grammars

A grammar is a set of rules of a specific kind, that can be used to form strings in a formal
language. The rules describe valid ways of forming strings according to the language’s
syntax. The following paragraphs describe related work on supervised approaches with
grammars for event analysis. This is followed by a description of unsupervised ap-
proaches.
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Figure 2.6: Topic models for discovering events in a scene. At the topmost level, the
quantized positional and directional features for each pixel in the video clip constitute
atomic events (e.g. car stopping) in the middle level. The atomic events constitute the
composite events (e.g. car stopping and pedestrian crossing) in the bottom level. Figure
from [Wang et al., 2009].

2.4.1 Supervised Approaches

In domains such as parking lots and train stations, events such as drop off and pick up

tend to take the form of nested structures with long term pairwise correlations. Stochastic
context free grammars [Stolcke, 1995] are aptly suited for modelling such events as they
generate nested structure in an outside-in fashion rather than from left to right fashion of
regular grammar based models such as the HMMs.

Context Free Grammars are expressed in terms of the following three components in
event analysis. The first is a set of terminals (e.g. person_appear, person_dissapear,
car_stop, car_start [Joo and Chellappa, 2006]) that correspond to atomic events that are
detected using low level features. Second, a set of non-terminals (e.g. CAR_START )
which usually correspond to composite events. The set of production rules generate com-
posite events using atomic events. Stochastic context free grammars allows probabilities
to be associated with each production rule.

The key property of context free grammars are that a production rule can generate a
correlated pair of terminal/non-terminal symbols, then another correlated pair inside that.
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Rules such as the one given below can generate nested structures in an outside-in fashion.

DROP_OFF → CAR_STOP person_appear person_dissapear CAR_START

CAR_START → car_stop car_start CAR_START

In the language of formal grammars, event recognition corresponds to determining
whether a sequence of terminals i.e. primitive events (extracted from a video) constitutes
an event. The technique used for determining this is called parsing which returns a parse
tree – that shows how to generate the sequence via the application of production rules, or
shows the composition of the sequence in terms of the production rules.

Context free grammars are used for interpreting a video of object manipulations [Brand,
1996] into coherent events such as add, remove, move objects using qualitative spatial
primitives such as attach, detach, motion etc. Two-person interactions are modelled using
simple context free grammars in [Ryoo and Aggarwal, 2006].

Grammars have been extended with probabilities (SCFG) [Moore and Essa, 2002] and
used in conjunction with mid level features for detecting events such as parking events.
An example of a rule with an associated probability (.7) is given below.

CAR_START → car_stop car_start CAR_START .7

Attribute grammars [Joo and Chellappa, 2006] have been used in conjunction with
mid level features for recognizing events such as parking, drop off and pick up. Attribute
grammars formally associate attributes with each symbol (terminals and non-terminals)
and rules for assigning values. The application of rules can also be restricted by con-
straints on attributes.

2.4.2 Unsupervised Approaches

In comparison to supervised approaches, there has been relatively much less work on
unsupervised learning of grammars for activities. The following are two approaches that
have been found in the literature.

Learning Grammar using Compression. Human gestures such as those that occur
in musical conducting are instances of human activities that are regarded in [Wang et al.,
2001] as consisting of gesture primitives corresponding to atomic events, with a high level
structure controlling the temporal ordering of these events. Thus a grammar based model
is adopted to model gestures. The atomic events which are the terminal symbols of the
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grammar are obtained by over segmenting a original long gesture into short segments and
then clustering them to obtain clusters of very similar and basic motion patterns. Over
segmentation involves searching for natural inconsistent points that are usually accompa-
nied by dips in velocity or abrupt changes in direction of movement. Clustering involves
training a HMM on each segment and then grouping these segments on the basis of a
distance metric between their respective HMMs (HMMs provide a distance metric for
sequence comparison).

Thus each segment is an atomic event and is represented as a non-terminal symbol
that corresponds to its cluster number. By replacing the segments with these symbols in
the original long gesture , the gesture is expressed as a sequence of symbols or alphabets.
A heuristic approach called COMPRESSIVE [Witten, 2000] is adopted to approximate
a MDL (Minimum Description Length [Grünwald, 2005]) solution by iteratively substi-
tuting the current most compressive subsequence of the original sequence into a non-
terminal and thus learns a grammar. The compressive ratio of a subsequence is expressed
as a trade-off between its frequency in the original sequence and its length. The approach
is applied to musical conducting and results in grammars for 2, 4 and 6 beat patterns.

Many complex activities may be represented by symbolic sequences whose underly-
ing nested structures can be modelled by grammars as described above. However, when
these sequences are extracted from real video data they often tend to be corrupted by in-
terleaved noisy symbols arising from two sources which are considered in [Kitani et al.,
2008]. First, due to errors1 in observation. The other source is coincidental occurrences
(that do not play any important purpose in the activities).

For such corrupted sequences, a grammar that explains the nested patterns of events
can be learned (in principle ) only when the noise is identified. Equivalently, once the
non-noise symbols is identified, the grammar that describes the sequence can be recov-
ered. This intuition is the basis for the approach in [Kitani et al., 2008]. The approach
involves generating hypothetical context free grammars corresponding to a candidate set
of non-noise symbols using the COMPRESSIVE algorithm [Witten, 2000]. This is con-
verted into a SCFG by adding the production probabilities for each learned rule. The
candidate SCFG that produces the minimum description length of the sequence of hypo-
thetical non-noise symbols is obtained by searching in the space of candidate SCFGs and
selecting the one with the lowest value of the description length. The description length
of a candidate SCFG is expressed as a weighted sum of the description length of the
grammar (considered by itself) and the description length of data (sequence of non-noise
symbols ) when encoded by the candidate SCFG. This approach is evaluated on activities

1such as insertion, deletion, substitution errors
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from a convenience store and is able to learn a parse tree of common structure found in
the data despite the presence of noise.

Discussion. The approaches described above is a case of the Unsupervised discov-

ery setting, since the segmentation of activities into events is not known in advance. These
approaches model composite events in terms of nested structures of atomic events. Thus
the events are structurally complex. These techniques model single temporal processes

and offer no mechanisms to separate multiple temporal processes. The event sequences
are propositional in nature and are therefore semantically simple.

2.5 Logical and Relational Models

Many complex events involve relations between entities (attach(loader, plane)) and do-
main constraints that are expressed in terms of existential and universal statements such
as only one loader can attach to a plane during a turnover. Logical and relational lan-
guages models are more expressive than string grammars as they can encode complex
propositions, functions and quantification.

Atoms are the basic unit of a logical representation to express relationships between
entities such as jeff is a parent of paul (e.g. parent(jeff, paul)), someone X is a parent
of paul (e.g. parent(X, paul)), or some person X is a parent of someone else Y (e.g.
parent(X,Y)). Atoms consists of predicates (e.g. parent) which relate terms that may be
either called constants which are specific objects (e.g. jeff, paul) or variables (e.g. X,Y)
which stand for an arbitrary object in the universe of discourse.

Clauses are formulas that relate atoms to each other and express relationships such
as X is the grandparent of Y if X is a parent of Z and Z is a parent of Y. This is ex-
pressed as a clause c which is grandparent(X,Y) : −parent(X,Z), parent(Z,Y), where
grandparent(X,Y) is the head(c) of this clause, and parent(X,Z), parent(Z,Y) the body(c).
Clauses with an empty body, such as parent(jeff, paul) are called facts.

A substitution θ (e.g. {sfX/anne}), is an assignment of term(s) (e.g. anne) to a
variable(s) X in a clause c, and is denoted by cθ which is

daughter(anne,Y): −female(anne), parent(Y, anne)

If c and c′ are two clauses, then the clause c θ-subsumes c′ if there exists a substitu-
tion θ such that cθ ⊆ c′. According to definition the clause c θ-subsumes all the following
clauses (i) daughter(anne,mary) : −female(anne) parent(mary, anne) obtained by substi-
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tution of constants; (ii) daughter(X,Y) : −female(X), obtained by removing a literal.

2.5.1 Manually Defined Setting

In supervised approaches using logical models, a set of logical predicates and their rela-
tionships in the form of inference rules are used to manually encode the knowledge about
the events in a domain. Event recognition is performed using logical inference techniques.

Authors in [Shet et al., 2005] use a first order logic framework of Prolog in the domain
of surveillance to detect events such as violations of security in the entrance of a building.
Primitive events such as a person swiping a card or entering a building are first detected
using low level features from video. These are then translated into observed facts, which
a logic programming language (Prolog) uses in conjunction with manually encoded rules
for events, to arrive at valid inferences regarding events observed in the video.

theft(P,B,T) = human(P), package(B), possess(P,B,T), not(belongs(B,P,T))

This framework is extended in later work [Tran and Davis, 2008] to account for inherent
uncertainty in video events such as a parking lot where occlusions and missing detections
offer additional challenges. A degree of uncertainty is used to extend the three compo-
nents: (i) atomic events (e.g. put a bag into a car); (ii) rules encoding composite events
(e.g. a person enters some car); (iii) common-sense knowledge (e.g. people walking to-

gether usually enter the same car). A Markov logic framework is used to combine these
three components into one framework and perform probabilistic inference to detect com-
plex events e.g. determine the probability of an event such as a person enters some car,
given the input video sequences.

In all of the above approaches, events are usually encoded by a domain expert. Induc-
tive Logic Programming (ILP) offers a paradigm for learning the descriptions of events
themselves in a supervised setting where these are segmented and labelled, as described
below.

2.5.2 Supervised Approaches using ILP

Inductive Logic Programming [Muggleton and De Raedt, 1994] is a framework for learn-
ing logical definitions of relationships from data. Even though ILP has been extended in
the recent years to a whole spectrum of tasks such as regression, clustering, association
analysis, the most common task has been to learn logical definitions for the positive class
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Figure 2.7: Background knowledge of positive examples (+), negative examples (-) and
facts.

in a binary classification task. For example, given the background knowledge in Fig. 2.7,
the positive class is identified by a target relation such as daughter(X,Y), and the goal is
to learn a logical definition such as:

daughter(X,Y)← female(X), parent(Y,X)

ILP searches the hypothesis space of candidate target definitions by starting from
the most general hypothesis (an empty clause) and then specializes this by exploiting
a natural order of clauses based on θ-subsumption and adding additional predicates to the
clause. If a candidate hypothesis satisfies some positive examples, it is removed, and in
this manner proceeds until the hypothesis covers as many positive examples and as few
negative examples, as possible. Additionally, an MDL term is used to prefer hypotheses
of smaller sizes to larger ones.

The ILP approach constructs a clause satisfying some of the positive examples, adds
this clause to the body of the target definition, and removes these positive examples that
have been explained [Muggleton and De Raedt, 1994].

In domains such as card games, the events are subject to the protocols of the game.
Identical event instances are subject to the same protocol, i.e. they have the same high
level description and can therefore be regarded as being in the same event class. Thus, ILP
is a suitable framework for learning these event classes i.e. protocols, once the positive
examples of events are labelled. In [Needham et al., 2005], the events are not labelled
directly by a domain expert but indirectly with audio utterances that accompany positive
examples of the events. For instance, the positive examples of events such as placing of
two cards with the same colour or shape are accompanied by spoken utterances such as
same colour, same shape etc. Since these utterances are continuous audio signals, they
are discretized and grouped into clusters. The cluster labels for each utterance are used as
the class labels for the corresponding events. Once the positive examples for events are
labelled, the target definitions for the positive classes, that are intended to correspond to
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protocols of the game, are learned using ILP.
The use of ILP to learn descriptions of the events is extended in [Dubba et al., 2010]

to learning events for more complex domains such as aircraft turnovers, once deictic su-
pervision has been provided by a domain expert. This approach builds upon a equivalent
logical representation of events proposed in [Sridhar et al., 2008] (described in chapter
3), where qualitative spatial relationships are integrated with temporal relationships in a
graph based representation. Deictic supervision is used to characterize positive examples
for each event class for the videos of an aircraft apron. ILP is used to learn the description
of these events that covers as many of the positive examples and as few of the negative
examples as possible.

2.5.3 Unsupervised Approaches

The following describes two main approaches in ILP for unsupervised learning from a
logical database representation and a logical sequence representation respectively. This is
followed by describing one single work that has been found to apply relational sequence
learning to video event analysis.

Relational Learning Approaches. Unsupervised approaches for discovering patterns
using a logical representation is studied under the topic of relational data mining (RDM).
Many of the approaches here can be thought of as extending work from frequent itemset
mining and ILP for the unsupervised scenario. A common theme in RDM is to use Data-
log queries [Ceri et al., 1989] to find frequent patterns in a logical database. For example,
the query ? − person(X), parent(X,Y), hasPet(Y,Z) finds triples (x, y, z), where child y

of person x has pet z. In Datalog, an additional parameter called a key needs to be spec-
ified. If an atom such as person(X) is a key then this atom must be present in all queries
considered during discovery and the query needs to be frequent with respect to this atom.
The frequency of a query Q is the number of answer substitutions θ for the variables in
the key atom, when the query Qθ is present in the logical database.

The WARMR [Dehaspe and Toivonen, 1999,King et al., 2001] system follows a sim-
ilar approach taken by the APRIORI [Agrawal and Srikant, 1994b] algorithm for finding
frequent item sets for a propositional database. However, unlike APRORI, the WARMR
system uses techniques from ILP to upgrade a logical database. A level wise approach
is adopted where a complex query Q2 at level l + 1 is generated from a simpler frequent
query Q1 at level l, in such a way that that Q1 θ-subsumes Q2.

Several approaches that are in spirit similar to those of WARMR have been adopted
for the more specialized case of discovering sequential logical patterns. In seqlog [Lee
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and De Raedt, 2002], a relational sequence database may consist of sequences of unix
commands such as cd(april), latex(par, tex), dvipdf(par, dvi), lpr(par, pdf). Relational se-
quence mining aims at finding frequent patterns for e.g. latex(X, tex), dvipdf(X, dvi)

which means that a user after compiling a latex file into a dvi file, converts it into a pdf file.
Frequent patterns are found by extending the standard level-wise search to sequences, in
a space structured using θ-subsumption, such as in WARMR.

Relational Sequence Learning for Video Events. Very recently, an unsupervised ap-
proach to learning event classes for card games such as Uno is explored in [Antanas et al.,
2009]. The primitive events correspond to the type of card that is being dealt and this
is recognized in a simplified vision setting. The dealings are expressed as a relational
sequence that captures various attributes of a card such as its colour, number etc. A re-
lational sequence mining framework called r-grams, as formulated in [Kersting et al.,
2008], is then used to discover compositional event classes in the relational sequence that
correspond to protocols in the card games such as: a card is followed by a card of the

same colour or same number.

Discussion. The above approach is a case of the Unsupervised discovery setting,
since the segmentation of activities into events is not known in advance. It models com-

posite events in terms of atomic events. These techniques model single temporal processes

and offer no mechanisms to separate multiple temporal processes. The event sequences
are relational in nature and are therefore semantically complex.

2.6 Learning with Relational Graphs

Graph based representations offer powerful mechanisms for analysing relational data.
This work introduces a graph based representation for event analysis, where graphs are
used to represent spatio-temporal relationships between interacting objects. The follow-
ing sections survey work in graph mining that are closely related to the two approaches
for learning with graphs. The first is a mining based approach where activities are repre-
sented by one large activity graph and the task of mining event graphs – subgraphs that
correspond to events – is addressed. The second learning approach hypothesises that ac-
tivities are generated by a compact representation of event classes, each of which is a
similar set of graphs with a probability distribution. The goal of learning is to find the
event classes and the process that generated the activity.
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The next section discusses graph based learning approaches under three main head-
ings: (i) graph mining; (ii) graph classification and clusteringl; (iii) graph sampling.
These are very closely related to this work and also cover a large part of graph based
learning.

2.6.1 Graph Mining

Much of the initial work on graph based learning [Washio and Motoda, 2003] focussed
on efficient mining of frequent subgraphs, since the isomorphism of graphs is combi-
natorially expensive [Köbler et al., 1993]. Despite this restriction, many solutions that
efficiently search the space of candidate frequent graphs have been developed. The focus
of much graph mining research is a transactional setting rather than a single graph set-

ting. In a transactional mining setting, a set of graphs are given, referred to as a graph

database. The support of a subgraph in the graph database is the number of graphs in
the database in which the subgraph occurs at least once. Frequent subgraphs are those
whose support exceeds a preset threshold. The notion of support in a single graph setting
is discussed in [Bringmann and Nijssen, 2008].

Approaches for graph mining can be categorized into the following groups: (i) greedy
search using compression; (ii) apriori based breadth first; (iii) depth first ; (iv) constraint
based mining.

Greedy Search with Compression. SUBDUE [Holder et al., 1994] is a constrained
beam search based technique which uses the MDL principle for obtaining a compressed
representation of an input graph(s). The technique generates a candidate graph G by
adding a vertex at each iteration starting with a subgraph with a single vertex that is
present in the input graph I . At each iteration, candidate graphs are evaluated using
the total description length (DL) [Grünwald, 2005] defined as the sum of the description
length of the subgraph, L(G), and description length of the input graph, I(L|G), in which
all the instances of the subgraph G are replaced by single nodes. Once a subgraph Ĝ
that minimizes the total description length is found, the next iteration starts by using the
rewritten graph as a new input. Two additional features of SUBDUE are that it allows
incorporation of background knowledge and permits variations in the subgraphs using
approximate matching. However, this approach is prone to getting stuck in local optimum
as Subdue is based on a greedy search with no backtracking. Moreover, the maximum
width of the beam is predetermined.
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Figure 2.8: Edge expansion lattice, in which one edge is added at a time from the top in
order to obtain the target graph at the bottom.

Apriori based Breadth First Search. The apriori based approaches perform a level
wise search of the space to generate candidate k+1 sized graphs by combining only pairs
of frequent k sized graphs, that share a common k−1 size graph. The frequency of a k+1

size candidate graph is computed by scanning the graph data base. By using only frequent
graphs to generate candidates at the next level, the search space is kept under control. The
two main techniques that are based on the apriori approach are AGM [Inokuchi et al.,
2000] which adopts a vertex based approach where the size corresponds to the number of
vertices and FSG [Kuramochi and Karypis, 2001], which adopts an edge based approach,
where the size corresponds to the number of edges. The possible graphs are obtained
by adding a vertex as in AGM and an edge as in FSG. The space of subgraphs that are
obtained by adding one edge at a time, in order to obtain a target subgraph, is shown with
an example edge expansion lattice [Hasan and Zaki, 2009], in Fig. 2.8.

In order to efficiently determine the frequency of graphs in AGM, the graphs data set
are transformed into their canonical forms for computing subgraph isomorphisms.

FSG uses canonical labelling to efficiently check if a particular candidate subgraph
has already been generated, since joining two subgraphs of size k can lead to multiple
subgraphs of size k+1. FSG increases the efficiency of deriving canonical labels by taking
advantage of graphs which have subsets of vertices with the same labels and degree. The
vertices are partitioned according to those with the same label and degree and only the
possible permutations within each partition are exhaustively tested instead of testing all
permutations. FSG also increases the efficiency of frequency counting of a k + 1 size
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candidate graph by computing the intersection of the TID lists [Dunkel and Soparkar,
1999] of its frequent k sized suggraphs. If the size of the intersection is below the support
this k+1 size candidate graph is pruned, otherwise the frequency of this graph is computed
by limiting the search only to the transactions in the intersections of the TID lists.

Depth First Search. The above approaches suffer from a bottleneck that they are prone
to generating the same graph many times, as there are n different n− 1 edge graphs that
can generate the same n edged graph. Moreover, sub-graph isomorphism is a costly op-
eration and testing for false candidates degrades the performance. Gspan [Yan and Han,
2002] dramatically improves the performance by reorganizing the edge-expansion lattice
into a DFS code tree, where the nodes at level k correspond to a candidate subgraph with
k edges. The key characteristic of this tree is that a depth-first traversal can enumerate
the tree in increasing lexicographical order. The algorithm proceeds with an outer loop
which starts with frequent 1 edge graphs and for each such edge shrinks the graphs in the
database by removing the edge, once all the descendants of this 1-edge graph have been
searched. In the inner loop, the search is made efficient by pruning all descendants of a
subgraph either if its not frequent or if its code is not minimum. The latter condition is a
key feature of this approach since the lexicographical order ensures that if the code is min-
imum, then it has been discovered before and this in turn implies that all its descendants
have been discovered before and so can be discarded.

Constraint based Search. The techniques above have been developed mainly for im-
proving scalability on subgraph mining. However, when the graphs are dense the ex-
traction is not always tractable and results in many uninteresting graphs outputted. Cab-
Gin [Wang et al., 2005a] and gprune [Zhu et al., 2007] introduced paradigms being to
use constraints in order to reduce the cost of mining and increase the focus on interest-
ing patterns. The size constraint is satisfied by a graph G if and only if size is greater
than or lesser than a pre-defined threshold. Structural constraints on rigid structures such
as the cycle and chain constraint were introduced due to the significance of chains and
rings in molecular biology. The size of a cycle or a chain being greater than a pre-defined
threshold is an example of a structural constraint. Other structural constraints are on girth
and circumference. The girth of a graph is the length of a shortest simple cycle in the
graph and the circumference is the length of a longest simple cycle. Another interesting
class of constraints are constraints on the labels. These are used to express very specific
constraints on the labels such as to mine substructures that consists of vertices labelled
with atoms O and N with edges with not more than two double bonds and a ring of at least
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size four. Another class of constraint is used to mine only those substructures that are a
subgraph or a supergraph of a given graph. Finally, aggregate constraints such as count,

min, max, sum are computed over labels or their attributes.

2.6.2 Graph Classification and Clustering

The task of classification is learning to classify separate individual graphs in a graph
database into two or more categories. Both supervised classification and unsupervised
approaches for graph clustering have been developed in the recent past.

The Subdue algorithm is extended for supervised learning as SubdueCL [Gonzalez
et al., 2002]. Given graphs from positive and negative classes, this algorithm performs a
beam search to generate candidate subgraphs which are evaluated according to classifica-
tion accuracy or minimum description length. Once the optimum subgraph is found, the
positive examples that are covered by this graph are removed and this process is repeated
until all positive examples are covered. This procedure finds a set of connected graphs
that is used to classify unseen graphs. An unseen graph is classified as positive if there is
at least one subgraph in the set that is present in this graph and negative if it contains no
graph in this set.

Another approach [Deshpande et al., 2005] first identifies frequent subgraphs in train-
ing examples using frequent graph mining and then represents each example in terms of
a feature vector, where each feature is a function, such as frequency, that represents the
membership of the frequent subgraph in that example. These features are used to train
a support vector machine. During classification, an unseen example is represented in a
similar manner and is given to the SVM for classification.

Another approach is to use graph kernels [Gärtner et al., 2003] which compute a
similarity measure between a pair of graphs as the inner product of the feature vectors of
these graphs over a high dimensional feature space. The advantage of using a kernel is
that this similarity can be computed feasibly without explicitly generating the subgraph
features. Intuitively, the direct product kernel between two graphs counts the identical
walks that can be taken in both of them.

The approach in [Kudo et al., 2004] uses the DFS ftree in gSpan to find subgraphs
that distinguish between the positive and negative examples according to the boosting
framework. A lower bound on the error is used to prune the search space in the DFS tree
to prevent further expansion of candidate subgraphs.
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2.6.3 Graph Sampling

Very recently there has been much interest in sampling a small set of frequent graphs that
are frequent, interesting or representative, instead of mining for all subgraphs with respect
to these criteria. Two interesting papers have been recently published that use Markov
Chain Monte Carlo methods to sample interesting (frequent, discriminatory) subgraphs
from a graph database [Hasan and Zaki, 2009] and representative graphs [Hübler et al.,
2008] from a single graph respectively. When the direct sampling from a probability
distribution is difficult, the Metropolis-Hastings (M-H) [Neal, 1993] algorithm approxi-
mates this distribution with a histogram by sequentially obtaining random samples. The
key merit of the M-H algorithm is that it can draw samples from any probability distri-
bution provided that a function proportional to the density can be calculated i.e. without
having to compute the normalization constant that is required for obtaining the exact
probability in Bayesian computations.

Such a sampling is performed with Markov chains which are a stochastic process that
have the Markov property that future states depend only on the current and not the pre-
vious states. At each step in the Markov chain, a new sample is proposed by applying a
move to the current sample. This sample is accepted or rejected according to an accep-
tance probability.

In [Hasan and Zaki, 2009], frequent or interesting graphs are sampled without enu-
merating the entire set of candidate subgraphs. The M-H algorithm performs a random
walk on the partial order lattice of subgraphs using moves that either extend or remove
edges. This results in generating candidates by moving up to a pattern super-neighbour
or moving down to a pattern sub-neighbour in the partial order lattice. The acceptance
probability for each candidate subgraph is evaluated as a ratio of their interestingness
measures and the transition probabilities which are expressed in terms of the degrees in
the edge-expansion lattice. In this manner, the Markov chain is used to sample interesting
subgraphs till the random walk converges to a stationary distribution.

The authors in [Hübler et al., 2008] focus on finding representative subgraphs for a
single large graph using the M-H algorithm. Representative graphs are regarded as smaller
subgraphs of a large graph which approximates the properties of the original large graph.
Starting with an initial random subgraph from the original graph, the M-H algorithm
searches the space of subgraphs by generating candidate subgraphs with a move which
corresponds to the composite operation of removing one node and adding a new node at
each iteration. The acceptance probability for each candidate subgraph is evaluated as a
ratio of their similarity (or equivalently an inverse distance function) to the original graph
with respect to a pre identified set of properties. The graph with the highest similarity
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score is chosen after the Markov chain converges to the stationary distribution.

Discussion. While the above approaches provide much insight into how graphs may
be applied for the task of event analysis, they do not provide complete solutions to this
problem. For example, in the mining task, the notion of interestingness of a subgraph as
defined in the literature is not close to what is required for event analysis. For the genera-
tive model based approach, the goal is to find the best partition or cover an activity graph
with subgraphs that are event like. The above approaches do not provide the framework
for such an analysis.

However, there are ideas that are worth borrowing from the data association literature
which has been employed often in tracking to assign detections to objects, and extending
them to graphs. Recent solutions [Russell et al., 2006] use MCMC to find the optimal as-
sociation by searching the space of possible associations. A Markov chain is constructed
to sample the space of associations to search for the association that maximizes a pos-
terior. The work proposed in this thesis is inspired by the ideas in data association and
graph based learning literature.

2.7 Learning of Object Classes

The previous sections focussed on related work concerning event analysis. While event
analysis is the main focus of the thesis, an additional contribution of this thesis is that of
learning functional object classes using the learned event classes, as outlined in chapter 5.
This part of the chapter describes related work on representing objects in various ways.

Learning models of object classes is a well researched and one of the most important
topics in computer vision and robotics. While most traditional approaches have focussed
on learning visual object classes that model the appearances of objects, recent work in the
robotics community [Saxena et al., 2008] has focussed more on object affordances that
model what actions can be performed on the object. Thus a chair is sittable, pushable,
liftable etc. While affordance is primarily concerned with how an object may be used
based on their physical properties, functionality focusses on how the objects are actually

used, or more generally, the roles that they play with respect to events. That is, objects of
a functional category tend to have a similar functional role with respect to events of the
same event class, as explained further in chapter 5. The following paragraphs first review
relevant literature on visual object classes in various learning settings, then work based
on affordance based object classes and finally functional object classes.
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2.7.1 Visual Appearance based Object Classes

Much of the work concerning visual object representation has focussed on the supervised
setting, where a set of labelled object classes are given and a model trained on this is used
to detect objects in unseen images. However, there has been growing interest in the last
five years on the unsupervised learning setting due to the rapid proliferation of images
containing various classes and the need to develop highly reliable object recognition sys-
tems, while minimizing the labour required in manual annotation of images for training.
Moreover, unsupervised learning is closer to the goal of designing machines that observe
and learn from the world with little guidance from humans.

There have been a plethora of techniques, both within the supervised and the unsuper-
vised settings that vary in the nature and degree of supervision, as previously discussed in
the context of event analysis in Section 2.1.2.

Supervised Settings. The completely supervised techniques (e.g. [Dalal and Triggs,
2005]) learn object class models when the position and the class labels for the objects of
interest are specified. These models are used to recognize instances belonging to these
classes in unseen images.

Other supervised approaches require a lesser degree of human guidance. The authors
in [Duygulu et al., 2002] assume that the segmentations and the labels of more than one
object class in each training images are given. However the correspondence between the
segmentations and the labels are not given. A machine translation based approach is used
to learn the correspondence and the object class models simultaneously. These models
are used to predict the class labels of segments in unseen images.

Manual effort is further reduced in the work of [Fergus et al., 2005], where the con-
dition that the position of the object needs to be specified is relaxed. Training images
for object classes of interest are obtained with little effort using the Google search en-
gine. The positions of the objects of interest are not specified and topic models are used
to learn the distribution. A similar degree of supervision is adopted in [Todorovic and
Ahuja, 2006], where it is assumed that instances of an object class of interest is frequent
across several images. However, some images may contain multiple instances of the class
of interest, objects of other classes and may not even contain the objects of interest. Image
features are extracted and organized in a tree structure and frequently occurring trees are
extracted and the object classes are modelled using a tree union between these trees.

Object Discovery Settings. A more unsupervised approach is the object discovery set-
ting, where neither the object position/segmentation nor the object labels are assumed to
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be given. The machine learns to discover the position/segmentation of the object, but not
the class to which it belongs.

In the case of static images, image segmentation may result in object discovery in
cases where the objects are homogeneous with respect to properties of their pixels such
as colour, texture etc. Image segmentation approaches [Shi and Malik, 2000,Carreira and
Sminchisescu, 2010] tend to segment images into regions which are homogeneous with
respect to these properties.

In the case of video input, additional information such as homogeneity in motion is
used to discover objects. The oldest and simplest approach that may be used to discover
objects to an extent is foreground extraction. Some main issues with the foreground are
that: (i) object blobs may be merged with the background; (ii) an object may be covered
only partially by an object blob or may be event split into two blobs; (iii) two moving
objects tend to be merged into the same foreground if they are moving spatially close to
each other.

Object discovery techniques in [Southey and Little, 2006] address this problem by
combining appearance, shape, and rigid object motion to discover and model multiple
objects. Their approach involves finding a sequence of images and depth maps of a given
scene. Appearance and shape features are used to oversegment the scene into smaller
regions. Groups of moving features are identified and the movement of these features are
used to determine which of these correspond to objects. Thus an object which may be
oversegmented could be recovered by combining the segments that are likely to corre-
spond to objects. Models of the discovered objects are formed with additional features.
These additional features are extracted by taking snapshots of the discovered objects, as
they move in time. In this way objects are automatically discovered and modelled.

Unsupervised Settings. At the other end of the spectrum are the unsupervised ap-
proaches whose input are the images or videos with no information about the position
or the labels of the objects of interest. The output from these approaches are the posi-
tion/segmentation along with the class labels that the system learned.

Objects are discovered and their classes learned simultaneously from a collection of
static images [Russell et al., 2006] in two steps. First multiple segmentations for each
image are produced, by varying the parameters of the normalized cut technique with the
assumption that each object instance is correctly segmented at least by one segmentation.
Then object classes which are groups of correctly segmented objects that are coherent in
a large set of candidate segments, are learned.

Another approach by Parikh et. al. [Parikh and Chen, 2007] obtains a hierarchy
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of object classes for static scenes by grouping image features which spatially co-occur
across images for the same scene, under the same leaf of the hierarchy. In this manner,
the technique learns to identify candidate objects such as keyboards, while also learning
higher level object classes such as a desk area (consisting of a computer, desk etc).

Recent research in [Celik et al., 2009] learns object classes and detects instances of
these in video in an unsupervised manner. Given a video, foreground blobs and their HOG
features are first extracted. These blobs are clustered into object classes and a multi-class
object detector is trained for these positive classes against negative samples automatically
extracted from the background. The models learned on these object classes are used for
detecting corresponding objects in the video. This work was first developed for a single
dominant object class [Celik et al., 2008] in videos such as those of train stations, where
objects of a single class such as persons are mostly present. Recently, this approach has
been extended for multiple object classes for videos of domains such as traffic, where
several classes such as cars, people etc. are expected to be seen.

Discussion. In this framework, where object interactions are modelled, the first step
is the extraction of object blobs from video. While most of the work on extracting ob-
jects from a scene by modelling visual appearances are supervised, the object discov-
ery [Southey and Little, 2006] and unsupervised settings [Russell et al., 2006,Celik et al.,
2009] are showing increasing potential in recent years for this task. While this work uses
a supervised approach for detecting and extracting object blobs for further processing us-
ing visual appearance modelling, their class information is not used further during the
process of learning events and functional object classes.

2.7.2 Affordance Based Object Categories

Representing and modelling objects in terms of their affordances has in recent years
gained increasing interest in the robotics and cognitive vision communities. In the con-
text of cognitive agents such as robots, affordance based categories have been found more
relevant than visual object categories, since robots interact with objects and the notion of
how an object can be used is important for such interactions. Affordance properties are
learned from the way a human or a robot interacts with objects.

In [Stark et al., 2008], simple prototypical actions between a human and an object
(e.g. placing a cup with a handle) are used to learn the affordance cues, which correspond
to the region of interaction on the object (e.g. the handle). Visual features are extracted
for these interaction regions for affordance cue based object recognition. This approach
is also extended to combining multiple affordance cues. In [Veloso et al., 2006], the
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affordance properties of an object (e.g. chair) by are learned by detecting some pre-
defined actions related to them (e.g. sitting). These are used to learn the visual properties
of the object and are used for detecting the object in other parts of the video.

In [Ridge et al., 2009], a cognitive agent learns the affordances of objects by perform-
ing certain actions (e.g. push) on them and then seeing the result (e.g. slide, roll). Each
object is represented in terms of these results in a result vector. The clustering of the re-
sult vector yields affordance classes. Then, both visual appearance vectors and the result
vectors are taken and the best matching cluster (in the affordance classes) is found for
each result vector using a nearest neighbour search. The best-matching clusters for each
result vector are then used along with the object property vector for training and used for
detecting unseen objects.

Another approach is followed by Needham et al. in [Needham et al., 2005], in which
the actions associated with a particular configurations of objects in a table top game are
learned. Objects are described by a tuple of features (colour, texture, position), and the
rules learnt by the system induce a hierarchy on the objects, by grouping objects indistin-
guishable by virtue of resulting actions, into equivalence classes.

2.8 Qualitative Spatio-Temporal Relations

One of the main themes of this work is that qualitative spatio-temporal relationships offer
a potential way for bridging the gap between low level event features and high level event
descriptions. Qualitative primitives structure quantitative measurements into crisp equiva-
lence classes, making distinctions which enable the abstraction of qualitatively interesting
concepts from quantitative measurements [Cohn et al., 2003].

Qualitative spatial and temporal representations emerged in order to represent and
reason with two important aspects of knowledge, namely time and space. Qualitative
temporal reasonsing is a part and parcel of commonsense knowledge and is reflected in
natural language when we speak of certain things happening during, before etc. with re-
spect to other things. Allen’s Interval Algebra [Allen, 1983] was introduced as a calculus
for temporal reasoning in 1983. This calculus defines 13 possible base relations between
convex intervals on a directed line. The basic relations and a graphical depiction are given
in Fig. 2.9. Allen’s temporal algebra provides a composition table that can be used for
reasoning about temporal descriptions of events. In this work, temporal relationships are
used for representing and learning about events.

A number of qualitative spatial calculi were derived from the interval algebra for rep-
resenting and reasoning about objects that are related to each other in space. The three
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Figure 2.9: Allen’s temporal relationships between pairs of intervals. The intervals are
given by X and Y . For each asymmetric relationship (Before), there is also an inverse
relationship (BeforeI). Thus, there is a total of 13 base temporal relationships.

main aspects of spatial relationships are topology (e.g touch, inside), orientation (e.g left

of, above) and distance (e.g. near, far). These relationships are used in natural language
to describe the spatial aspects of the world qualitatively. Examples of topological and
orientation relations are illustrated in Fig. 2.10(a) and 2.10(b) respectively.

In order to apply logical reasoning to spatial relationships, it is useful to have a set of
qualitative binary base relations which have the property of being jointly exhaustive and
pairwise disjoint i.e. between any two spatial entities exactly one of the base relations
hold. These primitives allow compositional spatial relations that are exploited by reason-
ing engines which use compositional tables. The compositional tables constrain relations
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(a) Conceptual Neighbourhood for the RCC-5 [Randell et al.,
1992] [Cohn et al., 1997].

(b) Qualitative orientation relations.

Figure 2.10: Topological (RCC-5) and directional relationships are shown.
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between two regions x and z when the relationships between regions x, y and y, z are
known. Region Connection Calculus or specifically RCC-8 and RCC-5 [Randell et al.,
1992, Cohn et al., 1997] are the most well known calculi for topological relationships.
RCC-5 is a topology-based spatial theory which abstracts spatial configurations of two
physical regions to a set of jointly exhaustive pairwise disjoint (jepd) qualitative relation-
ships that can hold between this pair of regions. Five topological relations between two
regions x and y are defined based on the parts they share. The conceptual neighbourhood
graph (CNG) captures the continuity between these five relations as shown in Fig.2.10(a).

Qualitative spatial relationships may be manually specified or may be learned from
the data. In [Fernyhough et al., 2000b], primitive spatial relations such as right, ahead,
behind, which are typical on a road traffic scenario are manually defined. Composite
events such as following, pulling out, pulling in the front, corresponding to sequences of
primitive events, are learned from data. The approach in [Galata et al., 2002] is similar
to that of [Fernyhough et al., 2000b], except that this approach automatically learns the
qualitative spatial relationships from data and moreover explicitly computes probabilities
associated with the composite events.

The approach in [Southey and Little, 2007] learn Qualitative Spatial Relations be-
tween objects by using a maximum entropy model and proximity features (Touching,
Near, Mid, Far) to model the ’interactions’ between those objects. One of their examples
is that of an unknown object in the centre as well as a fork left to and a knife right to it.
It is proposed that a model of qualitative spatial relationships between objects in a scene
can provide scene contextual cues in order to detect objects such as a plate, which is sur-
rounded by other objects like the fork and knife. They demonstrate its applicability for
object recognition based on the learned scene contextual cues.

In this section, we characterize our approach using the key terms described in section
2.1.

2.9 Characterizing the Proposed Approach.

In this work, we address the problem of unsupervised activity understanding. This in-
volves event learning and functional object learning. The event learning task that we
address falls in the category of unsupervised discovery setting. In this setting, both event
classes and the decomposition of activities in terms of events have to be learned simulta-
neously.

We use high level features in the form of relational structures. Specifically we propose
a relational graph based representation in this work. This representation relies on the
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extraction of mid-level features in the form of object tracks from video.
The events that we aim to learn are generally compositional and consist of multiple

parallel processes, some of which can be temporally dependent on each other. Further-
more events may also share objects. The events can be structurally complex. For exam-
ple, they can have nested structures. Also the events we characterise tend to have complex

temporal dependencies.
The events considered here also tend to be semantically complex, as relational descrip-

tions are needed to suitably describe interactions between objects. The events tend to be
spatially scene independent. Therefore they are better characterized by spatial relation-
ships rather than absolute position. Finally, event classes are allowed to have structural
variations, i.e. they need not be structurally identical.

The activities that we address are complex to learn due to the presence of overlap be-
tween events and the presence of coincidences. Otherwise, the segmentation of activities
into events is more straightforward and the events may be directly clustered to form event
classes. Another source of complexity is the presence of observation noise, that arises
due to complexities in detection and tracking.

2.10 Applicability of Related Approaches

The following paragraphs summarize the applicability of other approaches in literature to
the unsupervised activity understanding task that we address. We focus on the approaches
that have been classified under the unsupervised discovery setting, in this chapter.

Pattern Recognition Techniques. First, we consider previous work on the application
of pattern recognition based techniques, described in Section 2.2. Sequence mining is
used to extract patterns, when activities are represented as a single propositional sequence
in [Toshev et al., 2006] and [Wang et al., 2005b]. However these approaches have very
limited applicability to our task, as the sequences are propositional and activities are mod-
elled as a single temporal process. In our case, activities are composed of events happen-
ing in parallel or with shared objects. When these are represented as a sequence, these
parallel processes get interleaved and it becomes almost impossible to extract patterns
using these approaches. Moreover, these approaches do not offer a principled way of
handling coincidence and noise.

State Space Models. Second, we consider previous work on the application of state
space models, described in Section 2.3. While the approach using a HHMM in [Xie
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et al., 2003] models structurally complex events, their representation is propositional and
they do not model multiple temporal processes. Therefore, it is hard to separate parallel
interleaved events. For this reason this technique has limited applicability to our task.

On the other hand, the approach in [Xiang and Gong, 2006] uses a DML-HMM
to model multiple temporal processes to model a single event. This technique required
substantial data (more than 20 turnarounds at an airport apron) most of which contain only
the event of interest, just to model a single composite event. This is due to the parametric
generative model that requires a reasonable amount of training data. Their representation
is also propositional, making it extremely hard to separate interleaved multiple parallel
events. For these reasons, these approaches have limited applicability for activities that
we address i.e where there are multiple events and coincidences occurring in parallel.

The approach in [Wang et al., 2009] model activities in terms of topic models. While
approaches based on topic models offer a promising paradigm to model multiple parallel
processes, their applicability to our task is limited by the bag of words assumption, that
make it difficult to model complex spatial and temporal relationships between these pro-
cess. Moreover, they are spatially scene dependent as they require that all the activities
that are modelled have similar spatial configurations, e.g. the activities on the same road.
Our approach models spatial relationships between objects and are therefore spatially
scene independent.

The approaches described above are a case of the Unsupervised discovery setting,
since the segmentation of activities into events is not known in advance. The events in the
work [Xiang and Gong, 2006] are scene dependent as they are spatially related to a par-
ticular scene under consideration. The events in [Xiang and Gong, 2006] are composite.
The HHMM can model nested structures and are therefore not structurally simple, though
the events in [Xie et al., 2003] are generally simpler. The events modelled in [Xiang and
Gong, 2006] are multiple temporal processes, though the temporal dependencies that they
model are essentially first order Markov. It is worthwhile noting that the sequences are
propositional in nature and are therefore semantically simple.

Grammars. We consider previous work on the application of grammars, described in
Section 2.4. Grammars (particularly SCFGs) are interesting because they can model struc-
turally complex events. The approach in [Kitani et al., 2008] uses SCFGs for the unsuper-
vised discovery task. They also model the presence of observation noise. However, they
model only single temporal processes and offer no mechanisms to separate multiple tem-
poral processes. Their propositional representation makes it harder to apply to activities
with multiple parallel processes. This limits the applicability to our task.
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Logic based Relational Learning. We consider previous work on the application of
logic, as described in Section 2.5. A relational sequence approach [Antanas et al., 2009]
has been used for the unsupervised discovery task for activities. While the events that
are modelled are semantically complex, the approach does not offer any mechanisms to
separate multiple temporal processes. This aspect limits the applicability to our task.

Graph Based Relational Learning. Finally, we consider previous work on the appli-
cation of graphs, as described in Section 2.6. To the best of our knowledge, we have not
found any other work apart from our own, that applies graph based relational learning to
the task of unsupervised activity understanding.

In the earlier phase of this work, we represented the entire activity as a graph structure
and applied existing graph mining techniques to discover patterns. While the graphs that
were generated were mostly uninteresting (i.e. did not represent any meaningful entity
such as an interaction), they provided a starting point for exploring the possibility of
incorporating additional constraints into the mining process.

We found that existing techniques do not allow a way of incorporting this knowledge,
and thus could not be directly applied for our task. However, these initial explorations lead
to a graph based relational learning framework that we use to model complex activities.
The rest of the thesis describes this framework.

2.11 Conclusions

This chapter has reviewed several aspects of related work that is relevant to this thesis.
The review first covered the main trends in the related work on event analysis, such as
pattern recognition methods, state space models, grammars and logic. The literature on
graph mining is reviewed as our approach applies and builds upon techniques developed
in this research area. We have also reviewed relevant aspects of literature on learning
object classes, since this forms a secondary but important aspect of the framework pro-
posed in the thesis. Finally, we have reviewed related work on qualitative spatio-temporal
relationships, as they are central for characterizing events in this work.
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Representation of Interactions

3.1 Introduction

Our supposition is that qualitative spatio-temporal relationships between objects are fun-
damental in characterizing many human activities, even more so than the behaviour of
objects considered individually. Even though objects move by themselves through con-
tinuous space and time, the human mind tends to represent and process this data in terms
of discrete states that are qualitatively interesting [Cohn et al., 2003]. For example, on
an aircraft apron, even though a trolley, a loader and a plane may move through contin-
uous space across a time frame of several thousand image frames, there are usually only
a very small set of qualitatively interesting states between these objects, of which three
are illustrated and explained in Fig. 3.1. Qualitatively interesting states between a set of
objects are marked by a persistence of qualitative spatial relationships between all pairs
of objects until there is a difference in qualitative spatial relationship between at least one
pair of objects.

We regard an interaction as a sequence of distinct qualitatively interesting topological
states1 between a set of region histories. A region history is simply a temporal sequence
of regions. Interactions are regarded as conceptual or schematic entities, that exist inde-
pendently of observable objects in space and time. However, they are said to be embedded

in space and time when a set of concrete objects exemplify an identical sequence of spa-

1We restrict ourselves to topology in this work. But the general idea can be assumed to be adaptable to
other spatial aspects.

49



Chapter 3 50 Representation of Interactions

6

4

Figure 3.1: An interaction is depicted below in a schematic form, as a sequence of three
distinct qualitative spatial states. An embedding of this sequence by concrete objects in
space and time is shown above.

tial states that characterize the interaction. An example of an interaction between three
abstract region histories and a corresponding embedding by real objects in space and time
is shown in Fig. 3.1.

This chapter focusses on three aspects: (i) interactions and their relational descrip-
tions; (ii) a similarity between these relational descriptions; (iii) relationship between
interactions and their embeddings in space and time.

The first focus of this chapter is to provide a relational description of interactions in
terms of qualitative spatial and temporal relationships between the corresponding region
histories. When the relational description of an interaction is exemplified by region his-
tories that correspond to a concrete set of observable objects, these objects are regarded
as an embedding of the interaction in time and space. However, the interaction itself is an
abstraction that has no reference to specific details of embeddings such as spatial location
and temporal durations in which the corresponding objects are observed. The relational
description takes the form of a tripartite graph structure called an interaction graph.

The second focus of this chapter is to define a similarity measure on relational de-
scriptions in order to compare interactions spatio-temporally i.e. on the basis of their
qualitative spatio-temporal relationships. This similarity measure is used for clustering
interactions and will be useful for the purposes of learning from this relational represen-
tation in chapter 4.

The final focus of the chapter is the relationships between interactions and their em-
beddings in space and time. The first part deals with mapping a set of tracks from video
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Figure 3.2: The Conceptual Neighbourhood Graph (CNG) for the three qualitative spatial
relations – {P,PO,DR} – used in this work, is shown. The CNG captures the continuity
between these three relations.

data to the corresponding interaction, by inducing qualitative spatial relationships that
hold between them. These relationships have been traditionally defined [Cohn et al.,
2003] in terms of sharp boundaries of change between regions. However, this can result
in unstable relationships due to noise that arises from complexities of processing video
data. Moreover, the traditional definitions are defined for a static scenario i.e. for a single
frame and do not take advantage of the temporal history of spatial relationships that can
be obtained from previous frames which are available in video data. Therefore, a Hidden
Markov Model (HMM) based technique for computing a more stable sequence of quali-
tative spatial relationships from video data is proposed. The second part deals with how
this HMM based approach can be used to determine how likely it is that a set of tracklets
is an embedding of an interaction.

Section 3.2 introduces the qualitative spatio-temporal relationships used in this work.
Section 3.3 describes interactions in terms of qualitative spatio-temporal relationships
with some added constraints. This section also introduces interaction graphs, which are
a graph based representation of interactions. Section 3.4 details the similarity measure
between interaction graphs. A non-parametric clustering approach to form clusters of
interaction graphs is also described in this section. Section 3.5 describes the relationships
between an interaction and its embeddings. Finally, Section 3.6 concludes the chapter.

3.2 Qualitative Spatio-Temporal Relationships

This section describes the qualitative spatial and temporal relationships used in this work.
This is followed by how these are combined to form spatio-temporal relationships, which
are an important construct for describing the notion of interaction described in the next
Section 3.3. This work focusses on three simple spatial relationship, for which the con-
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ceptual neighbourhood graph is shown in Fig. 3.2:

< = {P (Part Of) ,PO (Partially Overlaps) ,DR (Discrete)}

The choice of these spatial relationships is motivated by considerations arising from real
video data, where interesting things tend to happen even when there is a change with
respect to these simple spatial relationships. The illustration in Fig. 3.1 lends support to
this motivation.

These three relationships are derived from the RCC-5 calculus [Cohn and Hazarika,
2001] (Fig. 2.10(a)) according to the following considerations. Firstly, different objects
are unlikely to have equal spatial extents in real video data and therefore EQ is not needed.
Moreover, the inverse PPi of PP (Proper Part) is not needed because the representation
followed in this work takes into account this duality. Therefore the three original relations
PP,PPi and EQ (Equals) in RCC-5 are combined into one state P. In this way, RCC-5 is
transformed into a simpler calculus with just three qualitative spatial relations < = {DR,
PO, P}.

The temporal relationships used in this work are derived from Allen’s temporal re-
lations [Allen, 1983] by taking the seven basic relations and omitting the respective in-
verses, since the representation followed in this work takes into account this duality. The
temporal relationships are the following:

ℵ = {Before(<),Meets(m),Overlap(o), Starts(s),During(d),Finishes(f),Equal(=)}

While the choice of spatial relationships in this work are specific and simple, the
proposed framework for representing and learning events is more general. For example it
allows the possibility of incorporating other types of spatial relationships (e.g. orientation
and distance) respectively, or even learning them from data using approaches similar to
[Galata et al., 2002]. These possibilities are discussed further in chapter 7 on future work.

Spatial-Temporal Relationships. Spatio-temporal relationships are a representation
that combine spatial and temporal relationships and are useful when spatial relationships
hold for a certain duration. For example when the spatial relationships between two pairs
of region histories (either same or different pairs) hold for a certain duration, then the
spatio-temporal relationships between them can be expressed as: (i) the fact that the spa-
tial relationship between the first pair of region histories holds for a certain interval; (ii)
the fact that the spatial relationship between the second pair of region histories hold for a
certain interval; (iii) the temporal relationships between these respective intervals.
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To formulate this notion more precisely, first of all, the predicate Holds(s, (ri, rj), Ik)

represents the fact that the spatial relationship s ∈ < holds for a pair of region histories
(ri, rj), during the interval Ik.

The especially interesting case is when s holds maximally for an interval Ik. This can
be expressed as Holds(s, (ri, rj), Ik) and a different pair of spatial relationships s′, s′′ ∈ <
and s′ 6= s, s′′ 6= s holds immediately before and after this interval respectively. This
special case is given by the predicate MaximallyHolds(s, (ri, rj), Ik).

An episode is defined as ek = (ri, rj, s, Ik) for compactly specifying spatial relation-
ships that hold maximally for a certain duration Ik.

The following functors are defined for an episode ek: (i) Regions(ek) maps to the
respective pair of region histories (ri, rj); (ii) Interval(ek) maps to the temporal interval
Ik; (iii) Spatial(ek) maps to the spatial relation s. Using these functors, the truth value

that a spatial relationship Spatial(ek) maximally holds between Regions(ek) during the
interval Interval(ek), for an episode ek is expressed as a predicate:

MaximallyHolds(Spatial(ek),Regions(ek), Interval(ek))

Two such episodes ek and el for two different pairs of region histories are shown in
Fig. 3.3.

For a pair of episodes ek and el, their respective intervals Interval(ek) and Interval(el)

can be related temporally by specifying the corresponding temporal relation2

a = Temporal(Interval(ek), Interval(el)), where a ∈ ℵ

The functor Temporal is defined in Appendix D. The qualitative spatio-temporal re-
lationships are expressed as a conjunction of spatial and temporal relationships. For the
example in Fig. 3.3, the qualitative spatio-temporal relationships are expressed as:

MaximallyHolds(Spatial(ek),Regions(ek), Interval(ek))∧

MaximallyHolds(Spatial(el),Regions(el), Interval(el))∧

Overlaps(Interval(el), Interval(ek))

(3.1)

2Note that either Temporal(Interval(ek), Interval(el)) or Temporal(Interval(el), Interval(ek)) is well
defined, but not both, unless Temporal(Interval(ek)) = Equal
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Figure 3.3: Co-temporal spatial relationships are illustrated. Each color band represents
an episode. The colors green, yellow and red correspond to spatial relations P,PO,DR
respectively. Particularly of interest in the text are the two episodes el and ek, as they
provide an example for describing spatio-temporal relationships.

3.3 Interactions and Interaction Graphs

This section describes the concepts of interaction and interaction graph proposed in this
thesis. Informally, an interaction is regarded as a time sequence of distinct qualitative
states between a set of region histories. The qualitative spatial state of a set of region
histories R = {r1, r2, ..., rk} at any instant in time can be defined as the set of all pairwise
spatial relationships sij ∈ < for each distinct pairs of region histories (ri, rj) ∈ R. In-
teractions arise when there is a change in spatial relationships between atleast one pair of
region histories. An interaction is characterized by the bounding interval within which the
changing qualitative states are considered to be of interest. An example of an interaction
as a sequence of three different qualitative states is shown in Fig. 3.4 between the two
solid vertical lines.

Interactions are schematic entities, where the region histories and the time intervals
need not be necessarily observed in real space and time. While interactions can be ex-
pressed as a sequence of qualitative spatial states, in this work, we choose to represent
interactions in terms of spatio-temporal relationships, as described above. This represen-
tation provides a compact and natural representation, particularly for spatial relationships
that are co-temporal, as illustrated in Fig. 3.4. In contrast, representing as a global se-
quence of qualitative states would require artificially segmenting certain episodes along
boundaries of other episodes. However, not all qualitative spatio-temporal relationships
(e.g. as given in expression 3.1) qualify as interactions. The following paragraphs de-
scribe certain conditions with respect to spatial and temporal relationships for character-
izing interaction.
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Spatial Relationships. A set of episodes E for a set of region histories R can be re-
garded as specifying the spatial relationships for an interaction if E implies the existence
of a sequence of qualitative states between R within a bounding interval, such that E de-
scribes all and only those spatial relationships, between R during this bounding interval.

For example, this set of episodes E = {e2, e3, e4, e5, e6, e7} qualify in characterizing
the interaction in Fig. 3.4 for the following reason. Consider the set of initial episodes

EI (i.e. {e2, e4, e5} ) and the set of final episodes EF (i.e. {e3, e4, e7}) for this set E . The
first reason is that the bounding interval for this interaction is given by the starting time

instants of one or more of the last starting initial episodes (e.g. as given by the solid
vertical line at the start of e2) and by the ending time instants of one or more of the first

ending final episodes (e.g. as given by the solid vertical line at the end of e7). The second
reason is that this set of episodes E characterizes all and only those spatial relationships,
between the region histories r1, r2, r3 during this bounding interval.

More formally, the set of initial episodes EI and the set of final episodes EF for a set
of episodes E , are defined as follows.

EI = {e : e ∈ E ∧ ∀e′ ∈ E , [Regions(e′) = Regions(e)]⇒ [Meets(Interval(e), Interval(e′))

∨ Before(Interval(e), Interval(e′))]}

EF = {e : e ∈ E ∧ ∀e′ ∈ E , [Regions(e′) = Regions(e)]⇒ [Meets(Interval(e′), Interval(e))

∨ After(Interval(e), Interval(e′))]}

A set of episodes E is regarded as describing an interaction if the following two con-
ditions are satisfied.

1. The set E guarantees the existence of an interval (as shown between the two solid
vertical lines in Fig. 3.4) that characterizes the interaction.

2. The set E should contain all the episodes (e.g. e2− e7 in Fig. 3.4) between any two
episodes for the same pair of region histories considered in E .

These two conditions are elaborated below. Firstly, the existence of the starting and
ending point, for the interval that is used to characterize an interaction, is guaranteed for
a set of episodes E , if for a set of episodes E : (i) every pair of initial episodes EI share
an overlapping interval; (ii) every pair of final episodes EF share an overlapping interval.
The condition on the initial episodes would ensure that they all share the starting time
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Figure 3.4: Our idea of an interaction is shown to be represented in two ways. Above:
an interaction between three region histories r1, r2, r3 is shown as a temporal sequence
of four distinct qualitative spatial states. These states are bounded by a temporal interval
shown by two solid vertical lines. This interaction is related to a schematic notion of
passing a ball i.e. where the first player (with region history r1) passes the ball (r2) to the
second player (r3), who keeps it. Below: the episodes (e2 to e7) that correspond to this
interaction are shown. The second way of representing an interaction involves specifying
qualitative spatio-temporal relationships in terms of these episodes, as described in the
main text.
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instant of the last starting initial episode(s). The condition on the final episodes would
ensure that they all share the ending time instant of the first finishing final episode(s).
In this manner, these two conditions imply the existence of the starting and ending time
instants of the interval which contains (or overlaps with) only those episodes in E . The
existence of such an interval, as implied by these two conditions, is the first requirement
in characterizing an interaction. This is expressed as:

∀(ei, ej) ∈ EI [¬Before(Interval(ei), Interval(ej)) ∧ ¬After(Interval(ei), Interval(ej))]∧

∀(ei, ej) ∈ EF [¬Before(Interval(ei), Interval(ej)) ∧ ¬After(Interval(ei), Interval(ej))]

(3.2)

Secondly, in order that E completely describes an interaction, it should contain all
episodes between any two episodes for the same pair of region histories considered in E ,
i.e. the set of episodes E should be gapless. A description without gaps ensures that it
completely and uniquely represents an interaction. That is:

∀ei, ej ∈ E : [Regions(ei) = Regions(ej) ∧ Before(Interval(ei), Interval(ej))]

⇒ ∃ek ∈ E : [Meets(Interval(ei), Interval(ek)) ∧ Regions(ek) = Regions(ei)]

(3.3)

The set of episodes E = {e2, e3, e4, e5, e6, e7} in the example interaction in Fig 3.4
satisfiy conditions 3.2 and 3.3.

Temporal Relationships. Episodes are naturally related to each other in time and these
dependencies are suitably captured using Allen’s temporal relationships between the re-
spective intervals for pairs of episodes. For the interaction in Fig. 3.4, the temporal
relation Meets(Interval(e2), Interval(e3)) expresses the temporal dependency between the
intervals corresponding to episodes e2 and e3.

Given a set of episodes E , a setA is regarded as a consistent and complete description
of the temporal relations that correspond to an interaction if and only if all and only
those temporal relationships that are germane to that interaction are contained in A. The
temporal relationships between all pairs of episodes in E are considered germane to the
corresponding interaction, except those which are between either (i) two initial episodes
EI , or (ii) two final episodes EF , as these non-germane temporal relationships may be
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determined outside the bounding interval for the corresponding interaction.
The inclusion of these non-germane temporal relationships would imply that that even

though two interactions may be identical with respect to their spatio-temporal relation-
ships within an interval, the spatio-temporal relationships describing these two interac-
tions may be non-isomorphic (in a sense to be made precise in Section 3.4), as these
relations can vary depending on when the respective initial episodes start or when the
respective final episodes end.

More formally, the set of temporal relationships A for episodes E is defined as fol-
lows3:

A = {a(Interval(ek), Interval(el)) : a = Temporal(Interval(ek), Interval(el))∧

{ek, el} ⊆ E ∧ ¬ [{ek, el} ⊆ EI ∨ {ek, el} ⊆ EF )]} (3.4)

The corresponding set of temporal relationshipsA for E = {e2, e3, e4, e5, e6, e7} in the
example interaction in Fig 3.4 is given by considering only germane temporal relation-
ships that are obtained by temporally relating the intervals corresponding to the following
episode pairs:

{(e2, e3), (e2, e6), (e2, e7), (e3, e5), (e3, e6), (e4, e6), (e5, e6), (e5, e7), (e6, e7)}

Spatio-Temporal Relationships for an Interaction. The qualitative spatial and tem-
poral relationships together describe an interaction. Given a set of episodes E that satisfy
conditions 3.2 and 3.3 and a corresponding set of temporal relationshipsA given by equa-
tion 3.4, an interaction is represented as follows:

∧
e∈E

MaximallyHolds(Spatial(e),Regions(e), Interval(e)) ∧
∧
a∈A

a

(3.5)

3.3.1 Interaction Graph

We choose to represent interactions in a relational form with a tripartite graph based struc-
ture called an interaction graph. This has several computational advantages over a purely
textual logical notation. These advantages are discussed further below in this section.

3The following clarification needs to be made, given the way the predicate Temporal has been defined. If
Temporal(Interval(ek), Interval(el)) is undefined, then there is no a(Interval(el), Interval(ek)) relationship
in a, but there may be a dual a(Interval(ek), Interval(el)).
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Figure 3.5: The interaction graph for the interaction in Fig. 3.4 is shown. The layer 1
nodes at the bottom, correspond to region histories r1, r2, r3 in Fig. 3.4. The layer 2
nodes at the middle correspond to the episodes e2 to e7 for the interaction shown in Fig.
3.4. These nodes are labelled with corresponding spatial relationships. The layer 3 nodes
at the top are labelled with corresponding the core temporal relationships between certain
pairs of episodes (as clarified in the main text). The lighter arrows point upwards, while
the darker arrows point downwards, in order to represent the asymmetry in the qualitative
spatial and temporal relationships respectively.

The nodes of three layers are as follows (refer to Fig. 3.5 for the examples): (i) layer 1

nodes map to the region histories (e.g. r1, r2, r3); (ii) layer 2 nodes represent the germane
set of episodes E (e.g. e2 − e7) and are labelled with their respective spatial relation-
ships, such that the episode node (e.g. e2), the corresponding pair of region history nodes
(r1, r2) together with the connecting edges express the logical relationship implied by
the episode node (e.g. the nodes corresponding to e2, r1, r3 together with the edges that
connect them represents the proposition MaximallyHolds(PO, (r1, r2), I2)); (iii) layer 3

nodes (e.g. a1 − a9) are labelled with germane temporal relationships expressed in equa-
tion 3.4, such that a layer 3 node (e.g. a1) and the corresponding pair of episode nodes
(e.g. e2, e3), together with the connecting edges, express the temporal relationships in A
(e.g. Meets(Interval(e2), Interval(e3))).

An interaction graph g = (V ,D, ψ2, ψ3,<,ℵ) is a directed edge-labelled layered

graph with three layers. The vertices V of this graph are divided into three sets corre-
sponding to the three layers and is given by V1 ∪ V2 ∪ V3. The directed edges D exist
only between adjacent layers. All the relations are binary, so there are exactly two edges
from each node to nodes in the layer below. The function ψ2 maps the nodes in the second
layer to labels which are spatial relations in <. The function ψ3 maps nodes in the third
layer to labels which are temporal relations in ℵ.

1. Layer 1 nodes (e.g. r1, r2, r3 in Fig. 3.5) correspond to the interacting region histo-
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ries R. There is a 1-1 mapping ϕ1 : V1 ↔ R.

2. Layer 2 nodes (e.g. e2 to e7 in Fig. 3.5) correspond to a set of episodes E that satisfy
conditions 3.2 and 3.3 and are labelled with the respective spatial relationships.
That is, there is a 1-1 mapping ϕ2 : V2 ↔ E where E is the set of episodes generated
by the region histories R = ϕ1(V1). These nodes are labelled with spatial relations
between the respective pairs of region histories pointed to in layer 1 as shown in
Fig. 3.5. A mapping ψ2 : V2 → < is defined such that for v ∈ V2, ψ2(v) = s ∈ <
if and only if:

∃v′, v′′ ∈ V1 ∧ s = Spatial(ϕ2(v))∧

Regions(ϕ2(v)) = 〈ϕ1(v′), ϕ1(v′′)〉 ∧ 〈v : v′, v′′〉 ∈ D

where 〈v : v′, v′′〉 ∈ D is defined as follows.

〈v : v′, v′′〉 ∈ D ≡ [〈v, v′〉 ∧ 〈v′′, v〉 ∈ D] ∨ [〈v′, v〉 ∧ 〈v, v′′〉 ∈ D]

This notation enables us to handle the convention introduced above for asymmetric

binary spatial and temporal relations. The asymmetry in spatial relationships is
given by the direction of the edges. For example, when the relationship between
r2 and r3 is P for the interaction in Fig. 3.4, this is given by an upward arrow
(light shade in Fig. 3.5) from the node corresponding to r2 to the second layer node
labelled with P and a downward arrow (dark shade in Fig. 3.5) from this node to
the the node corresponding to r3. In the above equation, the direction of the edges
is given by the order of the vertices, for example in the above 〈v, v′〉 ∈ D is used
to indicate that there is a directed edge from node v to v′. The same scheme is
followed for representing the asymmetry in temporal relationships.

3. Layer 3 nodes are labelled with the set of germane temporal relationships A as
given in equation 3.4 between the durations corresponding to pairs of episode nodes,
in the second layer. The layer 3 nodes are labelled with Allen’s temporal relation be-
tween intervals corresponding to the episodes for the pair of layer 2 nodes, pointed
to from the layer 3 node. A mapping ψ3 : V 3 → ℵ is defined such that for any
v ∈ V3, ψ3(v) = a ∈ ℵ if and only if:
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∃v′, v′′ ∈ V2 ∧ a = Temporal(Interval(ϕ2(v′), Interval(ϕ2(v′′))∧

ϕ3(v) = (v′, v′′) ∧ 〈v : v′, v′′〉 ∈ D

In order to ensure isomorphism of spatio-temporally identical interactions, which
only differ in when the initial and final episodes respectively start and end, it is
necessary to represent all and only the germane relationships as given in equation
3.4. In terms of the interaction graph, this is expressed in terms of the above speci-
fication of the layer 3 nodes together with the following condition:

∀v′, v′′ ∈ V2 : {v′, v′′} 6∈ EI ∧ {v′, v′′} 6∈ EF ⇔ ∃v ∈ V3 : 〈v : v′, v′′〉 ∈ D

The above equation expresses the condition that whenever a pair of layer 2 nodes
v′, v′′ are both not corresponding to initial episodes or both not corresponding to
final episodes, then the temporal relationship between them is specified by a layer
3 node v. Conversely, whenever a temporal relationship is specified by a layer
3 node v, where v relates a pair of layer 2 nodes v′, v′′, then v′, v′′ are both not
corresponding to initial episodes or both not corresponding to final episodes.

The graph based representation provides a computationally efficient alternative to the
logic based representation expressed in the statement 3.5. While there is a repetition of
region histories and episode variables in the logic based representation, the interaction
graph avoids this repetition by uniquely representing each region history and episode just
once. The graph based representation also enables a well defined and computationally
efficient comparison of interactions by means of a similarity measure defined in Section
3.4. In the rest of this thesis, the terms interaction and interaction graphs are used inter-
changeably.

3.4 Comparing Interactions Spatio-Temporally.

Interactions may be related to each other with respect to their spatio-temporal relation-
ships in several ways. Two interactions may be identical or even similar to each other.
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1.9

Figure 3.6: Two sub-interactions of the interaction in Fig. 3.4 are shown on the left. The
corresponding interaction graphs for these sub-interactions are shown on the right. Note
that these are sub-graphs of the interaction graph shown in Fig. 3.5.

An interaction may be a sub-interaction or a super-interaction of another. The follow-
ing paragraphs describe the concepts involved in comparing interactions using interaction
graphs.

Identical Interactions. Let g = (V ,D, ψ2, ψ3,<,ℵ) and g′ = (V ′,D′, ψ′2, ψ′3,<,ℵ)

be two interaction graphs. They are spatio-temporally identical if and only if there is a
bijection Ψ : g ↔ g′ such that

1. Correspondence wrt. edges:

∀(v, w) ∈ V : 〈v, w〉 ∈ D ⇒ 〈Ψ(v),Ψ(w)〉 ∈ D′

∀(v′, w′) ∈ V ′ : 〈v′, w′〉 ∈ D′ ⇒ 〈Ψ−1(v′),Ψ−1(w′)〉 ∈ D

2. Correspondence wrt. node labels:

∀v ∈ V2, ψ2(v) = ψ′2(Ψ(v)) ∧ ∀w ∈ V3, ψ3(w) = ψ′3(Ψ(w))

∀v′ ∈ V ′2, ψ′2(v′) = ψ2(Ψ−1(v)) ∧ ∀w′ ∈ V ′3, ψ′3(w′) = ψ3(Ψ−1(w))

In the rest of the thesis, we use g ' g′ to say that two interaction graphs g and g′ are
isomorphic to each other.
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Sub-interactions. The notion of sub-interactions is useful for defining a similarity mea-
sure between relations and for defining events and sub-events below. An interaction g′ is
a sub-interaction of another interaction g, if there is a sub-graph h ⊆ g such that g′ and h
are isomorphic.

In general, there are two kinds of sub-interactions along with their combinations that
are possible: (i) one interaction can have fewer region histories; (ii) fewer qualitative
spatial changes, or both. For example, consider the interaction in Fig. 3.4 with 3 re-
gion histories and 3 spatial changes. The corresponding interaction graph shown in Fig.
3.5. An interaction sub-graph and the corresponding interaction with one less region
history(i.e. 2 region histories, 2 spatial changes) is shown at the top in Fig. 3.6. An in-
teraction sub-graph and the corresponding interaction with one less spatial change (i.e. 3
region histories, 2 spatial changes) is shown at the bottom in Fig. 3.6.

Frequency. Another useful notion is the frequency of g′ in g and is given by the number
of unique sub-graphs h in g that are isomorphic to g′. An interaction g′ is sufficiently

frequent in g if its frequency is greater than a pre-defined threshold.

Similarity between Interactions. In order to compare any two interactions g and g′ on
the basis of their spatio-temporal relationships, an appropriate similarity measure between
g and g′ needs to be defined. If two interactions are spatio-temporally identical, then their
respective interaction graphs will be isomorphic.

However, in order to compare spatio-temporally similar interactions, a suitable mea-
sure of similarity between their respective interaction graphs is needed. One way of mea-
suring similarity between any two graphs (or more generally structures) is to represent
them in terms of bag of sub-graphs (or substructures), so that if two graphs contain a
similar set of sub-graphs, then we can expect the two graphs to be similar.

While this is a suitable approach in general [Deshpande et al., 2005], in the case
of interaction graphs, most sub-graphs do not represent interactions and therefore may
not form good features. Also, these redundant sub-graphs increase the dimensionality of
the feature space, potentially add noise and are computationally inefficient as sub-graph
isomorphism needs to be examined individually for each sub-graph.

Thus an efficient representation is adopted in this work, where each interaction is
represented in terms of a fixed dictionary Gr = (υ1, ..., υi, ...υn) of interaction graphs4.

4This dictionary is prepared offline by constructing the interaction graphs for all possible interactions
between region histories, such that the number of region histories and the number of spatial changes are
within a pre-determined bound.
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Figure 3.7: An interaction graph gj (the same as in Fig. 3.5) is shown to be represented as
a vector. An entry in this vector corresponds to the frequency with which a grapheme in
Gr (clarified below) occurs in gj . Just a few graphemes are shown for the sake of clarity.
The sequences of dots are used to convey the presence of the rest of the graphemes and
the corresponding entries in the vector.

These graphs in this dictionary are called graphemes. The representation of the interaction
graph for the interaction in Fig. 3.4 in terms of graphemes is shown in Fig. 3.7.

Another way in which the dimensionality of the feature space is restricted is to con-
strain the number of region histories and the number of changes in spatial relationships
by respective upper bounds. It is natural to expect that these numbers would typically
be constrained by the domain under consideration. Thus by restricting the dictionary to
those graphs that represent interactions and constraining the number of region histories
and changes in spatial relationships, the dimensionality of the representation is reduced
substantially.

Using this dictionary, an interaction graph g is re-represented as a histogram of length
n:

Φ(g) = [w1f1..., wifi, ..., wnfn]

The term fi is the frequency with which a grapheme υi ∈ Gr occurs in the interaction
graph g. The weight wi is an exponential function exp(υi) of the mean of the number of
region histories and number of spatial changes represented in υi. This serves the purpose
of giving greater weights to larger graphs, as two graphs are more similar if they share a
larger common sub-graph than a smaller one.

Using the representation described above, any two interaction graphs gj and gk may
be re-represented as a bag of graphemes (BoG). The BoG kernel K(gj, gk) measures the
similarity between two graphs (gj, gk), in terms of the extent to which they share common
graphemes.

K(gj, gk) = 〈Φ(gj),Φ(gk)〉 =

∑n
i=1 w

2
i fjifki

(
∑n

i=1(wifji)2
∑n

i=1(wifki)2)
1
2

(3.6)



Chapter 3 65 Representation of Interactions

Figure 3.8: This figure illustrates that an interaction graph (from Fig. 3.5) referred to as
gj can belong to multiple classes with different probabilities P (gj|c1) and P (gj|c2). The
relative thickness of the arrows pointing from gj to the two classes, is used to convey that
the gj is more likely given c1 than c2. The class conditional probabilities for the graphs in
a given bag B are illustrated on the right.

Density Estimation using the Similarity Measure. The BoG based representation to-
gether with the BoG Kernel makes it possible to represent an interaction in a constrained
high dimensional space, where similar interactions occupy a similar position in this high
dimensional space. This representation naturally leads to the notion of clusters of similar
interactions. When these clusters are infused with certain event-like properties, they are
regarded as event classes, an idea that is central to the next chapter.

In this work, we assume that each cluster is generated by its own density function.
We have explored parametric finite mixture modelling techniques such as the Gaussian
Mixture Model (GMM) [Figueiredo and Jain, 2002], as they have been shown to be suc-
cessful in many applications. However, we regard a non-parametric model as being more
suitable for the following reason: when interaction graphs are represented as a vector, the
mean of a set of vectors may not correspond to a valid interaction graph5.

Therefore, we model each cluster density using a non-parametric kernel density es-
timate. We apply a recent approach described in [Mallapragada et al., 2010] since this
constructs an explicit probabilistic model for each cluster, unlike other non-parametric
approaches, for example spectral clustering [Ng et al., 2001]. In this approach, given a
bag B of interaction graphs {..., gj, ...}, the kernel density estimate P (gj|ci) for a cluster
ci (belonging to a set of clusters C) is given by

P (gj|ci) =
∑
gk∈B

qikKd(gk, gj) where
|B|∑
k=1

qik = 1

In the above equation, qi = (qi1, ..., q
i
B) is regarded as the profile vector for cluster ci and

5Since only a small subset of possible vectors actually correspond to meaningful interaction graphs.
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Q = (q1, ..., q|C|) as the profile matrix. We apply the procedure presented in [Mallapragada
et al., 2010] to learn the profile matrix Q for a bag of interaction graphs B. The RBF
kernel Kd [Scholkopf, 2001] in the above equation, is defined in terms of the BOG kernel
in equation 3.6 as follows:

Kd(gj, gk) = exp

(
−(K(gj, gj) +K(gk, gk)− 2K(gj, gk))

2σ2

)
(3.7)

This idea is illustrated in Fig. 3.8, where an event graph is shown as belonging to
two different classes with different probabilities. The distribution for each class is also
shown. We will see in chapter 4 that having an explicit probabilistic model for each cluster
without a parametric form is useful for defining and learning event classes.

3.5 Interactions Embedded in Space and Time

This chapter has so far described interactions as schematic entities i.e. without any refer-
ence to any observed objects occupying regions in space and time. This section focusses
on the relationship between interactions and their embeddings in space and time.

When an object travels through space and time, the entire trajectory traced by the
regions occupied by the object through time is called its track. Tracklets are regarded
as contiguous parts of tracks. Any set of tracklets that are likely to have the spatio-
temporal relationships characterizing an interaction is regarded as an embedding of this
interaction. More formally, an embedding ε of an interaction graph g with a particular
subset of tracklets is given by the mapping ξ(g) = ε.

The following two questions are particularly of interest in exploring the relationship
between interactions and their embeddings (especially for the sake of learning described
in chapter 4).

1. Given a set of tracklets, what is the most likely interaction characterizing it?

2. Given an interaction, what is the likelihood of a particular embedding ?

3.5.1 Most Likely Interaction Graph for a Set of Tracks

It is assumed that a set of tracks for a video are given by T = {τ1, τ2..., τn}, where
each track τi consists of a sequence of blobs {o1

i , .., o
p
i }. Three tracks τ1, τ2, τ3 and the

interaction between their corresponding region histories r1, r2, r3 are illustrated in Fig.
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3.4 6.
In order to hypothesize the most likely interaction for this set of tracks T , it is required

to obtain the most likely qualitative spatial states between those tracks at any time instant.
In other words, for each pair of tracks, a likely sequence of qualitative spatial relationships
needs to be induced.

The qualitative spatial relationships described above have traditionally been computed
by using techniques that are defined in a Boolean fashion solely in terms of the connec-
tivity of the spatial extents [Cohn and Hazarika, 2001]. The main limitation of using
connectivity is the rapid flipping of spatial relationships, as a result of the slightest pos-
sible movement, at the boundaries of spatial change. The application of connectivity for
video data, where the jitter of bounding boxes is not uncommon, results in unstable spatial
relationships between blobs, as confirmed by experiments in chapter 6.

In order to address this problem, firstly a simple Bayesian model is proposed to com-
pute the probability of a spatial relationship given a pair of bounding boxes in a particular
frame. This model is then incorporated into a HMM which overlays a temporal model for
smoothing the outcome of the Bayesian Model. These two solutions are described below.

Qualitative Relationships at Each Frame

In line with common practice, we abstract the spatial extents of objects to their bounding
boxes. Let oti, o

t
j be the bounding boxes for a pair of blobs at time t, belonging to the

respective pair of tracks τi = {ot
h
i
i , .., o

tHi
i } ∈ T and τj = {ot

h
j

j , .., o
tHj
j } ∈ T , where it is

assumed that both blobs are observed together for a certain time interval. Let s be any
one of the spatial relations {DR ,PO ,P}. The following paragraphs define the probability
P (s|δ(oti, otj)), of a spatial relationship s, given the dissimilarity δ(oti, o

t
j) between a pair of

bounding boxes oti, o
t
j , at time t. This dissimilarity measure δ(oti, o

t
j) is defined as follows:

δ(oti, o
t
j) =

d(c2)− d(c1)

min(d(oti), d(otj))
(3.8)

This measure is defined with the help of two circles c1 and c2, that are illustrated in
Fig. 3.9. The first circle c1 is the largest circle in the intersection of two regions oti and
otj . The second circle c2 is the smallest circle that connects two disconnected regions oti
and otj . The diameters of the two circles are given by d(c1) and d(c2) respectively. Finally
d(oti) and d(otj) are the diagonals of the bounding boxes oti and otj respectively.

The dissimilarity measure δ(oti, o
t
j) is positive when oti, o

t
j are disconnected, zero when

6Note that the object type is not used to represent the interaction between these three tracks. The object
types are used only for illustrating the interaction with a real life example.
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Figure 3.9: Two circles c1 and c2 for formulating the notion of region based distance
between two objects oti and otj at a time instant t. The first circle c1 is the largest circle in
the intersection of two regions oti and otj . The second circle c2 is the smallest circle that
connects two disconnected regions oti and otj .

they touch and goes further negative as the relations change from DR to PO towards
P, as shown in Fig. 3.10. The denominator min(d(oti), d(otj)) makes the dissimilarity
δ(oti, o

t
j) independent of the sizes of oti, o

t
j , since the maximum value of d(c1), is equal to

min(d(oti), d(otj)) multiplied by a constant, which is the square root of two.
In order to compute the probabilities P (s|δ(oti, otj)) for each relationship s, Bayes rule

is applied:
P (s|δ(oti, otj)) = P (δ(oti, o

t
j)|s)P (s)

The prior probabilities P (s) for each spatial relationship is the proportion of the occur-
rences of that spatial relationship, to that of all the spatial relationships, in the data. The
probabilities P (δ(oti, o

t
j)|s) for each of the spatial states {DR,PO,P} are modelled by the

corresponding logistic functions given below. The three states and their logistic functions
are illustrated in Fig. 3.10.

P (δ(oti, o
t
j)|DR) = β11(1− (1 + eβ12(δ(oti,o

t
j)−β13))

−1
), β12 > 0 (3.9)

P (δ(oti, o
t
j)|PO) = β21(1− (1 + eβ22‖(δ(o

t
i,o

t
j)−β23)‖)

−1
), β22 < 0 (3.10)

P (δ(oti, o
t
j)|P) = β31(1− (1 + eβ32(δ(oti,o

t
j)−β33))

−1
), β32 < 0 (3.11)
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Figure 3.10: Logistic functions for the three spatial relationships {P ,PO ,DR} respec-
tively. The horizontal axis is the region based dissimilarity measure (given simply by δ)
and the probability distribution for each of the three spatial states are shown above this
axis.

A HMM for Smoothing Sequences of Spatial Relationships

While the above Bayesian formulation is superior to traditional point set intersection tech-
niques in that it incorporates priors on spatial relations, it still does not use the temporal
information from other nearby frames that are available in videos. The following HMM
based formulation augments the Bayesian model above by overlaying a temporal model
that incorporates additional information available in a video sequence, in order to make
better predictions of qualitative spatial relationships for each video frame. In this manner
the temporal model can be used to smooth the rapidly flipping transitions between spatial
relations that arise from visual noise and predict a more stable sequence of qualitative
spatial relationships between the corresponding blobs for a pair of observed tracks.

For each pair of blobs, an observed sequence of dissimilarities between them is as-
sumed to be generated by a corresponding Markov chain of hidden qualitative spatial
states and their respective observation models. More formally, let δ(τi, τj) = (δt′ , ..., δt, ..., δt′+k)

be an observed sequence of dissimilarities between a pair of tracks τi ∈ T and τj ∈ T dur-
ing the maximal interval (t′, t′+k) (where t′ = max(thi , t

h
j ) and t′+k = max(tHi , t

H
j )) in

which they both are present. Here δt stands for the dissimilarity δt(oti, o
t
j) between the cor-

responding pair of blobs oti ∈ τi and oti ∈ τi, at time t. Let S(τi, τj) = (st′ , ..., st, ..., st′+k)

be the corresponding hidden sequence of spatial states between τi, τj . Here st stands for
the spatial relationship st(oti, o

t
j) ∈ < at time t. The HMM that models the joint probabil-

ity distribution of the observed and hidden states is given by the tuple θ = (<, A,B, π),
where

1. < = {DR,PO,P} are the states of the HMM as illustrated by circles in Fig. 3.11.

2. A = {..., aij, ...} is the state transition matrix in which each entry aij represents the
probability of transition from state stt = si ∈ < to stt+1 = sj ∈ <. Only those
transitions that are physically possible (as shown by the arrows in Fig. 3.11) have
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Figure 3.11: The states of the HMM are shown. The allowable state transitions are con-
strained by the conceptual neighbourhood graph for the spatial states {P ,PO ,DR}.

non-zero transition probabilities.

3. B = {bi(δt)} is the observation model, where bi(δt) represents the probability
P (δt|stt = si) of observing a region based distance δt while being in state stt =

si ∈ <. The observation models for DR,PO,P are the logistic functions defined in
equations 3.9, 3.10 and 3.11 respectively. These are illustrated in Fig. 3.10.

4. π = {πi} is the initial state distribution, where πi represents the probability of state
stt = si ∈ < being the initial state.

The above model is trained with a dataset of sequences of region based distances (be-
tween tracks) that are manually annotated with the subjectively correct spatial relations.
The transition probabilities are learned from the statistics of bi-grams of spatial relations
in the annotation. Finally, the parameters of the observation models are learned using
maximum likelihood estimation using only the data corresponding to each of the states.

With a trained HMM, it is possible to predict the most likely sequence of spatial
relationships Ŝ(τi, τj), given a sequence of observed distances δ(τi, τj) and the HMM
model θ for any pair of tracks τi, τj . For each pair of tracks7, a Viterbi decoder is used to
find the most likely sequence of spatial relationships.

Ŝ(τi, τj) = arg max
S(τi,τj)

P (S(τi, τj)|δ(τi, τj), θ)

The standard implementation of a Viterbi decoder [Rabiner, 1989] provides the 1-best
Viterbi path corresponding to presumably the most likely sequence of spatial relation-
ships. However, an alternate way is to obtain k-best Viterbi paths and use other contex-
tual information to disambiguate between them. This idea will be used later on in chapter

7A reasonable assumption to make is that the spatial relationships for each pair of states can be computed
independently of other pairs.
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4. The k-best paths are obtained by finding all possible ways to reach a state, and then
picking those states corresponding to the k highest probabilities.

While this idea has been explored as early as 1993 [Rabiner and Juang, 1993], stan-
dard implementations do not encode this idea. We therefore used our own naive imple-
mentation to obtain the k-best sequences of spatial relationships. Though this required k2

times the original cost, we maintain efficiency by using only the top 2 results. This aspect
is described in chapter 4.

Once the k most likely sequences of qualitative spatial relationships between each
pair of tracks in the set T are induced, the corresponding episodes can be obtained and
the interaction and its corresponding interaction graph can be obtained as described in
Section 3.3.

3.5.2 Likely Embeddings of an Interaction Graph

The previous section described a way of inducing the k most likely interactions (or inter-
action graphs) from an observed set of tracks. This section considers the inverse problem
of determining how likely it is that a set of tracks form an embedding of a given interac-
tion.

It is assumed that embeddings should be more likely if they are prototypical of the
spatial relations i.e. pairs of tracks for which the sequence of distances are perceptually
clearer given the sequence of spatial relationships. For example, consider the interaction
graph at the top right in Fig. 3.6 and the two possible embeddings in Fig. 3.12. The
embedding at the top is more prototypical of the spatial relations in Fig. 3.6, than the one
at the bottom, because in the sequence of region based distances for the one at the bottom,
the spatial relations hold more clearly, than the one at the top.

The measure of typicality is given by the probability P (δ(τi, τj)|S(τi, τj), θ) of a se-
quence of region based distances δ(τi, τj) given a sequence of qualitative spatial relation-
ships S(τi, τj) and the HMM model θ. The probability P (δt(τi, τj)|St(τi, τj), θ) at time t
is given by the respective observation models depending on the particular spatial state at
this time t, as given in equations 3.9, 3.10 and 3.11. From the conditional independence
assumptions encoded in the HMM, it follows that:

P (δ(τi, τj)|S(τi, τj), θ) =
∏
t

P (δt(τi, τj)|St(τi, τj), θ) (3.12)

The probability of a particular embedding ε of g measures the degree to which each
pair of tracks in this embedding is prototypical of the spatial relationships given by the
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Figure 3.12: Two embeddings for the interaction graph at the top right of Fig. 3.6 are
shown. Embedding 1 is more prototypical than embedding 2 for this graph, since re-
lationships between the region histories r1 and r2 are perceptually prototypical of the
sequence of spatial relationships (DR,PO,P), as represented by this interaction graph.

interaction graph. Assuming independence for the sake of tractability, this is expressed as
a product of the observation probabilities given in equation 3.12 for the respective pair of
tracks.

P (ε|g) =
∏

(τi,τj)∈ε

P (δ(τi, τj)|S(τi, τj), θ) (3.13)

3.6 Conclusion

In this chapter, we introduce our definition of an interaction, which is in return used
to describe all the fundamental spatio-temporal relationships between a set of objects
(represented as regions). We represent interactions by interaction graphs. Interaction
graphs provide a computationally efficient and a well defined way way of comparing
interactions and clustering them. Chapter 3 also introduces probabilistic relationships
between interactions and the embedding of such, in a set of tracks.



Chapter 4

Learning Events from Activities

4.1 Introduction

We think of activities for a domain as being composed of semantically significant occur-
rences that we refer to as events. We think of an event as being composed of a set of
tracklets. We regard events as belonging to a finite set of event classes. Thus activities are
closely associated with a set of event classes. For example kitchen activities are closely
associated with event classes such as making hot drinks, cakes and aircraft apron activities
with unloading, refuelling etc.

We address our unsupervised event learning task in this chapter. In this task, activities
are observed for an extended period and recorded as a video. The goal is to learn the
associated event classes and events that are most likely given the observations in the video.

This task is challenging due to two reasons. The first is the complexity of the solution
space which involves a combination of all possible candidate event classes and all possi-
ble candidate events. The second is due to the presence of three complicating factors. The
first of these factors is the possibility of overlap between events. The second is the possi-
ble presence of coincidences. These are occurrences that do not belong to event classes.
The third is possibility of noise in observation and we refer to this as observation noise.
They arise due to complexities in image processing.

In order to address these challenges, we formulate a probabilistic generative process

which characterizes likely solutions of event classes and events using three event-like

73
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properties. These properties are made precise in the rest of the chapter. The generative
process also incorporates a way of modelling the three complicating factors. An efficient
search procedure is used to search for the most probable configurations of the generative
process which could have given rise to the observations in a video.

The following Section 4.1.1 starts with an informal introduction of the framework with
some illustrations. Section 4.2 describes the three event-like properties that can be used
to characterize the original set of event classes and events. Section 4.3 models these three
event-like properties and the complicating factors within the framework of a probabilistic
generative process.

An efficient search procedure for the most likely configurations of the generative pro-
cess is discussed in Section 4.4. Section 4.5 describes the concept of interactivity, which
is an important property that is used to characterize event classes. The final Section 4.6
concludes this chapter.

4.1.1 Overview of the Unsupervised Event Learning Framework

This section presents an overview of various aspects of our unsupervised event learning
framework. These are presented in an informal manner with the help of illustrations.
These notions are defined more formally in later sections of this chapter.

Event Classes. We assume that human activities for a certain domain are strongly as-
sociated with significant occurrences that can be classified into one or more semantically
meaningful classes. These significant occurrences are referred to as events and the se-
mantically meaningful classes as event classes. Several events for each of the classes are
expected to occur over an extended period of activities for a domain.

Some event classes are regarded as being more probable than others. Moreover, some
interactions are more probable than others for an event class. For example, coffee making
may be regarded as a more likely event class than washing up dishes for activities in a cer-
tain kitchen. Certain types of interactions (between cups, spoons etc.) may be considered
more likely than others, given a coffee making event class.

We model an event class as a discrete probability distribution over a finite set G of
interaction graphs. The set G represents all possible interactions up to a fixed number
of region histories and changes in spatial relationships1. Two event classes c1 and c2

1The upper bound on the number of region histories and changes in spatial relationships is fixed as 7
and 15 respectively in the experimental section of this thesis. The reason is that typically the size of event
graphs in real world activities are limited by these numbers.
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Figure 4.1: Activities for a domain over an extended period of observation is illustrated.
The two key aspects of our model – event classes and event cover – are shown. Event
classes c1 and c2 are modelled as probability distributions over a finite set of interaction
graphs G = {g1, ..., gN}. Since it is not easy to display the interacting tracks, we show
it schematically. Each event (e.g. ε1) is represented as an interaction between a set of
tracklets. Each tracklet is depicted by a sequence of regions with a distinct colour.
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are shown in Fig. 4.1 with red and green colour respectively. They are illustrated as
specifying a probability distribution over the set of event graphs G = {g1, ..., gN}.

Events. While event classes are abstractions, events are concrete occurrences in space
and time. An event is characterized in three ways. First of all, it is simply a set of tracklets.
Secondly, it is also an embedding of an interaction graph in G. Finally, this interaction
graph has to be likely with respect to an event class.

Events ε1 to ε8, corresponding to the two example event classes c1 and c2 are illustrated
in Fig. 4.1. The class membership of the events are given by associated colours which are
either red or green. The same set of tracks may be split into two different sets of tracklets
corresponding to two different events. This is illustrated in Fig. 4.1, where ε1 and ε5 share
the same set of tracks.

Event Cover. The composition of the tracks of an activity in terms of its constituent
events is given by what we refer to as its event cover. An event cover is a set of events.
An example of an event cover with constituent events ε1 to ε8 is shown in Fig. 4.1.

Overlap. In order to model activities in the real world, it is assumed that events within
an event cover may overlap with one another. This is shown between events ε3 and ε4,
which share an overlapping tracklet. In a real world example of aircraft apron activities,
events belonging to the unloading and bridge-on-off event classes, share the tracklet that
corresponds to a plane.

Coincidences. In the case that the union of all tracklets that belong to events is equal
to the set of tracks, then the event cover is complete i.e. all parts of the all tracks are in
the cover. Otherwise, we call the rest of the interacting uncovered tracks coincidences.
We emphasize that the occurrences of these interactions are called coincidences, because
they happen by chance, in contrast to events that belong to event classes. In other words,
events are planned for activities and coincidences are not.

Coincidences can be of two types. First, they can occur between tracklets belonging
to the same or different events. A coincidence that is the result of a change of spatial
relationship between two different events ε1 and ε2 is illustrated in Fig. 4.1. Second,
they can occur between other tracklets. This is illustrated in Fig. 4.1, by tracklets around
which there is no ellipse. A real world example of a coincidence is an occasional change
of spatial relationships that some times happens between a plane puller and a trolley.
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Observation Noise. Finally, it is assumed that an event could be corrupted with ob-

servation noise, which involves a random change in spatio-temporal relationships. We
emphasize that observation noise arises only due to complexities in processing the ob-
served data. A noisy embedding of an event class tends not to be prototypical (in the
sense described in Section 3.5), of any of the interaction graphs that are likely for an
event class. Note that while a coincidence does not belong to the event cover, a noisy
event is considered to be a part of the event cover.

A noisy event ε5 is shown in Fig. 4.1. Even though ε5 belongs to class c1, the fi-
nal spatial state between the tracklets in ε5 is shown to be different from other proto-
types (ε2, ε4, ε7) of the same class c1, as it has been corrupted by noise. For video data,
noise arises due to complexities in image processing e.g. misplaced detections or jitter of
bounding boxes.

Unsupervised Event Learning. In the unsupervised event learning framework consid-
ered here, a set of tracks that correspond to extended periods of observation of activities
for a certain domain are assumed to be given. The original event classes and event cover
associated with the activities for a domain are assumed to be unknown. The aim is to
discover the most likely event classes and the event cover for the given set of tracks.

The following section elucidates the three event-like properties used to characterize a
likely set of event classes and an event cover respectively. These are first described in a
simple setting, where an event class is represented by a single prototypical event graph
and the three complicating factors are absent. Section 4.3 extends these three properties
and also models the complicating factors in a probabilistic generative process.

4.2 Event-like Properties in a Simple Setting

In a simple setting, event classes are very simply represented with just one interaction.
Moreover, the three complicating factors are assumed to be absent. A simple setting is
illustrated in Fig. 4.2.

We characterize event classes in the simple setting with three event-like properties.
The first two – size and interactivity – are desirable properties of event classes. The third
– frequency – is a desirable property of an event cover of the observed data given a set of
event classes. 2.

2In the probabilistic extension described later in Section 4.3, the first two properties are used to charac-
terize a prior distribution over event classes. The third property is used to characterize a likelihood term.
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Figure 4.2: A simplified setting where event classes are represented as a single prototype.
For the above illustration, P (g1|c1) = 1 and P (g3|c2) = 1. The three complicating factors
– overlap, coincidence and noise – are absent. These aspects stand out on comparison with
the general setting as illustrated in Fig. 4.1.

Size of the Interactions. We characterize event classes with larger interaction graphs
than smaller ones. The size of an interaction graph is the mean of the number of region
histories and changes in spatial relationships.

We regard size as a desirable property of event classes, since real world activities
(e.g. aircraft apron) are generally planned in terms of larger units (e.g. unloading), than
smaller ones (e.g. trolley attaches to a loader). This property is intuitive from a Minimum
Description Length (MDL) [Grünwald, 2005] perspective, since larger interactions would
tend to explain more of the observations than smaller ones.

Interactivity. We characterize event classes with interaction graphs that represent ac-
tively engaging objects 3. Interactivity is a measure of how actively a set of objects are
engaged with each other, as further motivated and made precise in Section 4.5.

We regard interactivity as a desirable property of event classes, because many inter-
esting events are composed of actively engaging objects, e.g. a subset of players who are
passing the ball in a football game, rather than all other players. This property is also intu-

3Rather than some objects being passive while others are actively changing their spatio-temporal rela-
tionships with respect to each other.
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itive from an MDL perspective, since the event classes with higher interactivity and their
associated event covers would tend to describe the more dense part of the data (with a lot
of spatio-temporal relationships caused by actively engaging objects). That is, they tend
to have a higher descriptive power, rather than those event classes with low interactivity,
which would tend to describe the sparser parts of the activities.

Frequency in the Event Cover. The third property is of a covering of the observed
data, given a set of event classes. An event cover of the observed data is regarded in this
work, as being well characterized by a set of event classes, if the event cover has frequent
embeddings of the event classes (i.e. their respective prototypical interactions) in the data.

We regard frequency as a desirable property of a covering of the data given a set of
event classes, because events are expected to re-occur frequently for extended periods
of observation4. This property is also intuitive from an MDL perspective since an event
cover of the observed data is more likely given event classes if the regularities (in this
case through frequent occurrence) in the data are explained by the model.

Combination of the Event-Like Properties. While each of these three event-like prop-
erties can be used to characterize likely event classes and event covers, we consider them
more effective in combination. This is due to the following reason. It is expected that
embeddings of interactions, which are large and interactive, also tend to be frequent, only
if they are events. In other words, it is assumed that coincidences do not tend to have the
property implied by the combination of these three event-like properties.

4.3 A Generative Process for a Complex Setting

In a complex setting, it is assumed that event classes represent spatio-temporally similar
ways of performing some task5. Moreover, the three complicating factors are assumed to
be present. A complex setting was illustrated in Fig. 4.1.

We introduce a probabilistic generative process in order to model a more general no-
tion of event classes and the three complicating factors in one integrated framework. The
generative process consists of two components. The first is an event model that general-
izes the notion of event classes as a probability distribution over interaction graphs. The
second component is an activity graph used to model the three complicating factors.

4This follows from the assumption that many of the interactions in activities are associated with a set of
event classes.

5In contrast to a simple setting, where events belonging to an event class were assumed to be spatio-
temporally identical.
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The complex setting with an event model and an activity graph is illustrated in Fig.
4.3. Throughout this chapter, we will use Fig. 4.3 as an illustration of our framework.

Event Model

An event model is defined in terms of event classes, where each class is a probability
distribution over G, which is a finite set of interaction graphs. Two event classes c1 and c2

and their respective distributions over a set of graphs G = {g1, ..., gN} are shown in Fig.
4.3.

More formally, it is supposed that for activities of a domain, there is an underlying
event model. We refer to this event model as Θ. This model specifies a probability distri-
bution P (X = gj) or simply P (gj). Here X is a random variable which can be assigned
to an interaction graph gj ∈ G, where G is a finite set of interaction graphs, as introduced
above.

The probability distribution P (gj) is further expressed as a mixture of distributions.
We adopt the non-parametric model described in Section 3.4 to model the mixture den-
sities. This mixture is associated with a finite set of event classes C = {c1, ..., cp}. Each
event class ci ∈ C is associated with a probability P (ci). Each interaction graph gj ∈ G is
associated with an event class ci ∈ C with probability P (gj|ci).

Thus P (ci) and P (gj|ci) can be interpreted as the parameters of the event model Θ.
Henceforth, we will express them as P (ci|Θ) and P (gj|ci,Θ). This is because, we would
like to explicitly characterize the dependency of the mixture distribution on Θ, since the

underlying model Θ is itself allowed to vary in this work, as given below6.

Activity Graph

An activity graph is an intermediate representation between an event model and an ob-
served set of tracks, as shown in Fig. 4.3. The activity graph is shown to be composed of
component sub-graphs (λ1 to λ8 in Fig. 4.3), each of which maps to an interaction graph
in G. Moreover, they represent interactions between region histories, which correspond
to tracks. The correspondence is shown by the use of the same colour for a track and the
layer 1 node of the activity graph, as shown in Fig. 4.3.

More formally, it is supposed that for a given set of tracks T , there is an underlying
three layered activity graph Λ. This graph specifies the spatio-temporal relationships

6As described further below, the goal of unusupervised event learning is to find the optimal event model
and activity graph given a set of tracks, by searching through possible event models and actvity graphs.
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between a set of region histories RT , that are represented in the layer 1 nodes, such that
there is a bijective mapping betweenRT and T .

The activity graph Λ is composed of component sub-graphs {..., λk, ...}, where each
λk is isomorphic to an interaction graph in G. Moreover λk represents an interaction
between a subset of region histories inRT .

Finally, the component sub graphs of the activity graph are partitioned into two parts:
Λ = Λ1 ∪ Λ2. The precise reason for partitioning the activity graph is described further
below. Henceforth, we use activity graph to mean a partitioned activity graph. We refer
to ∆ as the set of all possible activity graphs for tracks T .

The above specification of an activity graph Λ with partitions Λ1 and Λ2 is expressed
as:

Λ ≡ {λ : ∃gj ∈ G ∧ λ ' gj} such that {r : ∃λ ∈ Λ ∧ r is a layer 1 node of λ} = RT
Λ = Λ1 ∪ Λ2 and Λ1 ∩ Λ2 = ∅

In the above expressions, λ ' gj is used to denote that λ is isomorphic to gj .

Relationship to Event Classes. An activity graph is closely related to an event model.
Given an event model Θ, the two parts Λ1 and Λ2 become semantically significant in the
following way.

We regard the first part Λ1 as the set of event graphs. An event graph λ ∈ Λ1 is
isomorphic to an interaction graph gj ∈ G. We regard the second part Λ2 as the set of
coincidental interaction graphs. Event graphs are more likely with respect to an event
model than the coincidental interaction graphs. The likelihood of an activity graph given
an event model is expressed in terms of the event graphs Λ1, further below. According to
this formulation, those partitions (Λ1,Λ2) that results in more likely Λ1, are considered as
more likely activity graphs Λ.

Relationship to Tracks. An activity graph is related to a set of tracks in the following
way. First of all, each layer 1 node of the activity graph maps to a corresponding set of
tracks (from the above definition of an activity graph).

Secondly, each component graph λ of the activity graph Λ, can be mapped to a subset
of tracklets, such that these tracklets represent a possible embedding of λ. This relation-
ship is illustrated in Fig. 4.3.

Finally, the partition of the activity graph into event graphs and coincidental interac-
tion graphs induces a corresponding partition of the tracks into sets of tracklets represent-
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Figure 4.3: An activity graph is shown as an intermediate representation between event
classes and a set of tracks. The event graphs λ1 to λ8 are the event graphs whose corre-
sponding embeddings are events from ε1 to ε8. The two coincidental interaction graphs
are surrounded by blue ovals and they correspond to the two coincidences as shown. The
coincidental interaction between a region history in λ1 and another region history in λ2

is shown with the help of two layer 2 nodes and one layer 3 node respectively. The layer
1 nodes of the event graphs are coloured with the colours of the tracklets for the corre-
sponding events, in order to illustrate this mapping. The event graphs {λ2, λ4, λ5, λ7}
are likely given class c1 and are therefore surrounded by red ovals. The event graphs
{λ1, λ3, λ6, λ8} are likely given class c2 and are therefore surrounded by green ovals. The
structure of the activity graph reflects those of the tracklets with respect to properties such
as overlap, coincidence and noise. These aspects are shown by dashed lines with arrows.
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ing events and others representing coincidences.
More formally, an event εk is an embedding of an event graph λk ∈ Λ1 with a partic-

ular subset of tracklets belonging to T , and is given by the mapping ξ(λk) described in
Section 3.5. An event cover E is defined as the set of all events. This is expressed as:

E ≡ {εk : λk ∈ Λ1 ∧ ξ(λk) = εk}

Note that according to the above definition of the activity graph Λ, the event graphs λ ∈ Λ1

can overlap by sharing region histories inRT . Since there is a one to one correspondence
betweenRT and T , sharing of region histories between a pair of event graphs implies that
the corresponding events (given by ξ) will overlap with respect to the respective tracklets.

Unsupervised Event Learning Task

In our unsupervised event learning task, neither the original event model Θ, nor the origi-
nal activity graph (whose embeddings are the tracks) Λ are known. The goal is to learn Θ

and the activity graph Λ that are most likely given the set of tracks T is given for a video
of a domain.

In order to address this task we introduce two other models apart from the event model
Θ. These are: (i) an exponential model of the proportion of overlap Ω favouring mini-
mum overlap; (ii) an exponential model Υ of the proportion of coincidences, favouring
minimum coincidences. Whilst these properties are made more precise below, we now
continue with the description of the unsupervised learning task.

A candidate interpretation = is defined as a tuple = = 〈Θ,Λ,Ω,Υ〉 that is most likely
for a given set of tracks T .

Our goal in unsupervised event learning is to find the most likely interpretation =̂
given a set of tracks. Accordingly, the existence of a target distribution of possible inter-
pretations is assumed, according to which each interpretation= has a posterior probability
(given tracks) and the optimal interpretation =̂ has the highest posterior probability.

=̂ = arg max
=

P (=|T ) (4.1)

For tractability we assume that T is conditionally independent of Θ,Ω,Υ given Λ.
Since Ω and Υ are given, their prior probability is equal to one. The probability P (T ) is
not represented in the factorization as the set of tracks T is given and so does not influence
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the comparison between the interpretations. Thus equation 4.1 is transformed to:

=̂ = arg max
Θ,Λ

P (Θ)P (Λ|Θ,Ω,Υ)P (T |Λ)

We continue explaining each of the factors P (Θ), P (Λ|Θ,Ω,Υ) and P (T |Λ), under the
following sections entitled event classes and activity graphs respectively.

Event Classes

In our unsupervised event learning framework, the underlying event model Θ for the
activities for a domain are unknown. However, some event models are regarded as being
more likely to characterize an observed video of activities than others. We model our a

priori belief about an event model Θ in the form of a prior probability distribution P (Θ).

P(Θ): Prior Distribution over Event Classes

We characterize this prior probability in terms of two properties – expected size and ex-

pected interactivity. These are probabilistic extensions of the two event-like properties
– size 7 and interactivity8. The reason for using these two properties was motivated in
Section 4.2. Here, we present their extension to the more general notion of event classes,
that is assumed for the complex setting.

The expected size E
(
S(X)|Θ

)
for the random variable X defined over G, given an

event model Θ is:

E
(
S(X)|Θ

)
=

∑
gj∈G

S(gj)
∑
ci∈C

P (gj|ci,Θ)P (ci|Θ)

The expected interactivity E
(
I(X)|Θ

)
for the random variable X defined over G,

given an event model Θ is:

E
(
I(X)|Θ

)
=

∑
gj∈G

I(gj)
∑
ci∈C

P (gj|ci,Θ)P (ci|Θ)

We now define the prior distribution P (Θ). The prior distribution P (Θ) is expressed

7Size S(gj) for an interaction graph gj is the mean of the number of region histories and number of
spatial changes in gj , as introduced in Section 4.2.

8Interactivity I(gj) for an interaction graph gj measures the extent to which the region histories repre-
sented by gj actively engage with each other. Interactivity is made precise in Section 4.5
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as a normalized exponential model of a weighted combination of expected interactivity
and expected size, since the higher values of these properties implies higher prior proba-
bility for the event model Θ.

P (Θ) =
1

z1

exp
(
γ1 E

(
I(X)|Θ

)
+ γ2 E

(
S(X)|Θ

))
(4.2)

In the above equation, z1 is a normalization term ensuring that P (Θ) sums to one over
the range of all possible event models Θ’s. The setting of the parameters γ1 and γ2 (also
γ3 to γ5 used below) are described in chapter 6.

Likelihoods with respect to Activity Graphs

In our unsupervised event learning framework, the underlying activity graph is unknown.
However, some activity graphs Λ ∈ ∆ are regarded as being more likely in characterizing
the observed activities than others. In order to characterize likely activity graphs, we first
take note of the dual role of the activity graph.

The activity graph is an intermediate representation between an event model and a set
of tracks. Therefore, it possess what we regard as a dual characteristic of data and model.
With respect to an event model, it behaves like data, in the sense that it can be regarded as
an abstracted representation of the data, i.e. the spatio-temporal relationships between a
given set of tracks. Thus it is reasonable to formulate the likelihood of the activity graph
given a model of events, overlap and coincidence.

With respect to a set of tracks, it behaves like a model, since the activity graph could
generate many possible embeddings. Thus, it is reasonable to formulate the likelihood
of a set of tracks, given an activity graph. These two dual aspects are formulated more
precisely below.

P(Λ|Θ,Ω,Υ): Likelihood of an Activity Graph

The conditional probability P (Λ|Θ,Ω,Υ) of an activity graph given an event model Θ, a
model of overlap Ω and a model of coincidences Υ is expressed as an exponential model
consisting of three terms as follows:

P (Λ|Θ,Ω,Υ) =
1

z2

exp
(
γ3 E

(
F(X,Λ|Θ)

)
− γ4O(Λ1)− γ5N(Λ)

)
(4.3)

In the above equation, z2 is the normalization term. The first term E
(
F(X,Λ1|Θ)

)
stands for the expected frequency9 of the random variable X in Λ1, given an event model

9The frequency of an interaction graph in another interaction graph is defined in Section 3.4.
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Θ. Expected frequency is defined in terms of the function F(gj,Λ1) that maps a graph gj
to its frequency in Λ1 and is defined as:

E
(
F(X,Λ1|Θ)

)
=

∑
gj∈G

F(gj,Λ1)
∑
ci∈C

P (gj|ci,Θ)P (ci|Θ)

The second term O(Λ1) is a measure of the proportion of overlap of region histories
between event graphs in Λ1. This measure is computed by the total number of region
histories represented in Λ1, divided by the sum total of the number of region histories for
each λ ∈ Λ1. The negative sign for this term is used to model the belief that activities
tend to be composed of events that overlap minimally. The parameter λ4 is the parameter
of the model of overlap Ω.

The third term N(Λ) is a measure of the proportion of coincidental spatial changes
in Λ2 divided by the total number of spatial changes in Λ1. The total number of spatial
changes is computed by counting the number of meets relationships in layer 3 nodes of Λ1

or Λ2 respectively. The negative sign for this term is used to model the belief that activities
tend to be composed of a minimal proportion of interactions in which coincidental spatial
changes are present. The parameter λ5 is the parameter of the model of coincidence Υ.

P(T |Λ): Likelihood of an Embedding

Certain sets of tracks are regarded as being better embeddings of the activity graph in
space-time than others if they are more prototypical of the spatial relations. The degree of
typicality is measured using equation 3.12 described in chapter 3. Embeddings which are
perceptually prototypical of the spatial relations should be generated with a high proba-
bility, according to this equation. The probability P (T |Λ) of a set of tracks T given an
activity graph Λ is simplified by decomposing the Λ into independent HMMs for each
pair of tracks {τi, τj}. Thus P (T |Λ) can be expressed as the following product10, which
we convert into an exponential form in order to be in-line with equations 4.3 and 4.2:

P (T |Λ) =
∏

(τi,τj)

P
(
δ(τi, τj)|S(τi, τj), θ

)
= exp

(∑
(τi,τj)

log(P (δ(τi, τj)|S(τi, τj), θ))
)

10The terms in this equation are explained in chapter 3.
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Modelling Observation Noise. The likelihood term defined above makes it possible to
model observation noise. As introduced before, observation noise arises due to complex-
ities in image processing.

In order to model observation noise as a part of the generative process, it is assumed
that when an event graph λ ∈ Λ is embedded as a set ε of tracklets , there may be random

changes in spatial relationships. When these changes occur, the embedded tracklets ε are
no longer perceptually prototypical11 of this event graph λ. The set of tracklets ε is more
likely to correspond to some other event graph λ′ ∈ Λ′, where Λ′ is some other activity
graph.

Consequently, the likelihood P (T |Λ) would be smaller than the likelihood P (T |Λ′).
However, the likelihood P (Λ|Θ,Ω,Υ) is expected to be greater than P (Λ′|Θ′,Ω,Υ), be-
cause the presence of λ ∈ Λ would be expected to be more frequent than λ′ ∈ Λ′. As a
result there is a chance that the overall posterior probability for Λ is higher than for Λ′,
even though noise has caused the event ε to be perceptually more prototypical of λ′ ∈ Λ′

than λ ∈ Λ.
The above reasoning suggests that it is possible to propose different possible activity

graphs (e.g. Λ, Λ′) for the same set of tracks T and then allow the combination of the
two likelihood terms of the posterior, as given in equations 4.3 and 4.4, to favour the
appropriate activity graph.

This combination may be used to recover the appropriate activity graph (in this case
Λ), despite the presence of observation noise. This idea is applied by the use of moves,
that switch between alternative sequence of spatial states. This aspect is described further
in Section 4.4.

4.4 Search for the Most Likely Interpretation

Our generative process for activities provides a probabilistic framework for formulating
the posterior probability for an interpretation given the set of tracks. The posterior prob-
ability for a candidate interpretation is a measure of how likely it is that the candidate
interpretation could have generated the observed set of tracks. In principle, the Maximum
a Posteriori (MAP) solution could be found by exhaustively searching the space of can-
didate interpretations. However, in practice, enumerating all possible interpretations is
infeasible. Therefore MCMC with simulated annealing [Kirkpatrick et al., 1983] is used
to sample this distribution of interpretations and choose the maximum on convergence. A
review of MCMC with simulated annealing is described in Appendix A.

11In the sense described in Section 3.5



Chapter 4 88 Learning Events from Activities

4.4.1 Searching for the Optimal Interpretation

In this work, the Metropolis Hastings (M-H) algorithm [Neal, 1993] is used to sample the
posterior distribution P (=|T ) of interpretations = given tracks T . The posterior distribu-
tion can be expressed in a compact form, as follows:

P (=|T ) =
1

z1z2

exp

(
γ1E

(
I(X)|Θ

)
+ γ2E

(
S(X)|Θ

)
+ γ3E

(
F(X,Λ|Θ)

)
−γ4O(Λ1)− γ5N(Λ) +

∑
(τiτj)

log(P (δ(τi, τj)|S(τi, τj), θ)

)

The normalization terms z1z2 is hard to compute as it involves a summation through
each sample in the space of all possible interpretations. The M-H algorithm addresses the
problem of drawing samples from a sample space with a posterior probability, when the
normalization term for the posterior probability is hard to compute. This idea is explained
in detail in Appendix A. In such cases, the posterior probability is given only in an un-
normalized form, that is, without z1z2 in the above equation.

Thus M-H algorithm is used to sample the un-normalized density by simulating a
Markov chain of interpretations (=1, ...,=t, ...). Each interpretation=t at the t’th iteration
of the Markov chain corresponds to an event model Θt and an activity graph Λt. We do
not make Ω and Υ explicit, since they are fixed for all iterations. The activity graph Λt at
each iteration induces a corresponding event cover Et for the given set of tracks T .

We first present an overview of the algorithm and then discuss the details. A Markov
chain is simulated by sampling a move m from a set of moves M (line 5). The move
m is applied to the activity graph Λt of the current interpretation =t (line 6). This move
transforms it to a new activity graph Λt+1. For this activity graph, a new event model Θt+1

is obtained (line 9) by finding that event model Θt+1 given this new activity graph Λt+1,
which maximizes the posterior probability:

Θt+1 = arg max
Θ

P (Λt+1,Θ,Ω,Υ|T )

The activity graph Λt+1 and the new event model Θt+1 form the new interpretation
=t+1 (line 11). The candidate interpretation =t+1 of the Markov chain is accepted or
rejected as given by the acceptance probability (line number 13):

ζ(=t,=t+1) = min

(
1,

(
Q(=t+1,=t)P (=t+1|T )

Q(=t,=t+1)P (=t|T )

) 1
T

)
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Algorithm 1: The M-H algorithm for finding the optimal interpretation for a set of
tracks.

Input: T : Tracks
Result: Optimal Interpretation =̂ = 〈Θ̂, Λ̂〉
Initialize Λ0 ;1
Compute Θ0: Θ0 ← arg maxΘ P (Λ0,Θ,Ω,Υ|T );2
repeat3

m← SampleMove(M);55
Λt+1 ← ApplyMove(m,Λt);77
Θt+1 ← arg maxΘ P (Λt+1,Θ,Ω,Υ|T );99
=t+1 = 〈Θt+1,Λt+1〉;1111

ζ = min

(
1,
(

Q(=t+1,=t)P (=t+1|T )
Q(=t,=t+1)P (=t|T )

) 1
T

)
;

1313
ς ← Rand(0, 1);14
if ζ > ς then1616
=t+1 ← =t;17

else18
=all ← =all ∪ =t+1;19

until convergence ;20

=̂ ← max(=all);21

return =̂22

In the above equation, Q() represents proposal probabilities and is described below,
in the context of the moves that can be applied. Simulated annealing is incorporated with
the introduction of a temperature T with a geometric annealing schedule with parameter
κ. This is in order to speed up the convergence of the M-H algorithm towards the global
optimum. In this manner the posterior distribution of the candidate interpretations is
sampled and the optimal interpretation is chosen from this sample after convergence (line
21). The set of moves, the respective proposal probabilities and the process of obtaining
an optimal event model at each iteration is described below.

Moves and Proposal Probabilities

The proposal probabilities Q(=t,=t+1), Q(=t+1,=t) for each move =t → =t+1 and its
reverse move =t+1 → =t are computed as a fraction of the number of moves that result in
state =t+1 from =t to the total number of moves that can be applied to =t. The proposal
probabilities for each of the moves are described below:

Birth and Death. For a birth move, we pick a coincidental interaction graph λj ∈
Λ2 uniformly at random (u.a.r), and include it as an event graph in Λ1. The respective
proposal probability Q(=t,=t+1) for a birth move is 1 divided by the total number of
coincidental interaction graphs in Λ2. A death move is the reverse procedure. We pick
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an event graph u.a.r from Λ1 and include it as a coincidental interaction graph in Λ2. The
respective proposal probability Q(=t+1,=t) for a death move is 1 divided by the total
number of coincidental interaction graphs in Λ1. This move is shown schematically with
the corresponding interactions in Fig. 4.4.

Merge/Split Temporally. The first type of move merges or splits interactions by in-
creasing or decreasing the number of spatial states, while keeping the number of tracks
constant. In a merge move, a pair of event graphs λj, λk is selected u.a.r from the set of
all possible merge pairs in Λt

1 and they are merged. This move is shown schematically
with the corresponding interactions in Fig. 4.4. For a split move, an event graph gk is
selected u.a.r. For this event graph with qualitative spatial states s1, ..., sns, a break point
is chosen chosen u.a.r from {1, ..., ns} and then split as illustrated schematically with the
corresponding interaction in Fig. 4.4.

The respective proposal probability for a merge move is 1 divided by the number of
possible merges possible. In principle, any two event graphs can be merged. However,
to make the sampling more efficient, we define the notion of neighbourhood in space and
time in which these event graphs are embedded as events. Two events are regarded as
neighbours if their temporal distance and spatial distance are smaller than a threshold.
The spatial distance between two events is regarded as the shortest distance between their
respective tracks. The temporal distance is regarded as the proportion of the time interval
where the two events intersect divided by the sum of the time intervals of both events.
These two thresholds are fixed manually and discussed in chapter 6.

The proposal probability for the split move is 1 divided by ns−1, which is the number
of possible ways an event graph, corresponding to an interaction, with ns qualitative states
can be split into two sub-event graphs.

Merge/Split Region Histories. The second type of move merges or splits interactions
by increasing or decreasing the number of interacting objects. For a merge move, a pair
of event graphs λj, λk is selected u.a.r from the set of all possible merge pairs and are
merged as shown schematically with the corresponding interactions in Fig. 4.4. However,
events may also be merged so that their objects overlap with each other. The probability
that two merged events overlap is set to a small value12. For a split move, an event graph
gk is selected u.a.r and is partitioned u.a.r into event graphs with different sets of objects.

12This value is set heuristically as .1 to allow for a relatively small proportion of overlap.
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Figure 4.4: Illustrates the four types of moves for the MCMC search. The first type of
move changes labels of a coincidental interaction graph as an event graph or vice versa.
The second type of move splits or merges event graphs based on interactions. The third
type of move splits or merges event graphs based on objects. The fourth switches between
the two most likely spatio-temporal relationships for the same set of tracks.

Change Spatial Relationships. For the same set of tracklets of an event, the third move
switches between the two most likely interaction graphs. The top two interaction graphs
are obtained by choosing a pair of tracklets in an event. We first obtain the two most
likely sequence of spatial relationships for this pair, as described in Section 3.5.1. Then
we switch between these two sequences i.e. if the current sequence is the most likely
then we switch to the second most likely sequence, and vice versa. Since there is only
one possibility for the move and its reverse move, both Q(=t+1,=t) and Q(=t,=t+1) are
equal to 1.

Obtaining an Optimal Event Model at every Iteration. For any activity graph, Λt+1

that is generated, a corresponding bag of event graphsB = {..., λi, ...} such that λi ∈ Λt+1
1

are induced. In order to find the optimal event model, we enumerate all possible class
labellings for this set of graphs. Accordingly, we try all possible class assignments by
varying the number of classes and for each number, we explore all possible assignments
of the graphs in this set B into event classes. We model the class conditional probabilities
P (gj|C, ci) and P (ci|C) in a non-parametric form, as described in Section 3.4. For each
candidate event model Θ we compute the posterior P (Λt+1,Θ,Ω,Υ|T ) and assign the Θ
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that maximizes the posterior to Θt+1 .

4.5 Interactivity

As already identified in the introduction, those candidate events in which all participating
tracks are actively engaged uniformly over time are considered more event-like. More
precisely, preference is given to those candidate event graphs in which spatial relations
are distributed uniformly (i) across all subsets of tracks (e.g. Fig. 4.5 (a) rather than Fig.
4.5 (b) ) (ii) temporally (for e.g. Fig. 4.5 (a) rather than Fig. 4.5 (c)). Preference (i)
means preferring candidate events with fewer tracks involved ignoring extraneous ones.
(ii) means preferring candidate events in which interactions between pairs of tracks are
tightly interleaved.

Pointwise mutual information (PMI) [Watanabe, 1960] is a well suited measure to
model the degree of association between a subset of outcomes belonging to random vari-
ables. The degree of interaction between a subset of tracks for a candidate event is mod-
elled in terms of the PMI between them. Then interactivity is expressed in terms of point-
wise total correlation [Watanabe, 1960], which is just a weighted sum of PMIs over all
subsets of tracks for a candidate event graph. Pointwise total correlation is highest when
interactions between the tracks for the candidate event graph H are well distributed, both
temporally and amongst subsets of tracks.

Let H1 be the layer 1 nodes (corresponding to tracks) of a candidate event graph H
and let ω ⊆ H1 be a subset of these nodes. PMI measures the strength of association
between a set of tracks ω, by comparing the joint probability of interaction P (ω) between
tracks in ω, to the joint probabilities of interactions P (ω′), of all its respective subsets13

of tracks ω′ ⊆ ω.

PMI(ω) := log

( ∏
ω′:ω′⊆ω

P (ω′)qω′

)
where qω′ = (−1)‖ω

′‖ (4.4)

We adopt a well known procedure for estimating the joint probabilities P (ω′) in equa-
tion 4.4, by measuring the proportion of contexts (which is appropriately defined below)
in which the interaction between all tracks in the subset ω′ are observed, to the total num-

13When ω is a set of two outcomes {x, y}, we have the well known form PMI(x, y) =
log(P (x, y)P (x)−1P (y)−1). This form is generalized to more than 2 variables in equation 4.4. Note that
joint probabilities of subsets ω′ ⊆ ω with odd cardinality (e.g. P (x), P (x, y, z)) are in the denominator
since qω′ = −1, while those of even cardinality (e.g. P (x, y)) are in the numerator, since qω′ = 1.
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Figure 4.5: The notion of interactivity is illustrated with three scenarios. (a) Interactions
between all three tracks τ1, τ2, τ3 are uniformly distributed between all subsets of tracks
and over the temporal period. (b) Interactions between tracks τ4, τ5 are far more than be-
tween the other subsets {τ5, τ6} and {τ4, τ6}. (c) While interactions are evenly distributed
between subsets of tracks, they are less evenly distributed temporally. Here, τ7, τ8 interact
initially, while τ9 is a bystander, and then τ7, τ9 interact while τ8 is a bystander.
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Figure 4.6: Windows on a sequence of layer 3 meets nodes α1, ..., αNof an Λ are used to
measure the joint probabilities for a set of tracks - here just τi and τj .

ber (N ) of all possible contexts. We have found that a window of width w that captures w
consecutive interactions of the activity is an appropriate context for our purpose14 .

We formulate the window in terms of the activity graph Λ by first noting that the layer
3 nodes labelled by meets capture (points of) interactions between all pair of tracks for
the entire activity. We order these nodes temporally (by the end of each initial episode of
the meets relation) to get a sequence (α1, ..., αN) as shown in Fig 4.6, whereN is the total
number of interactions for an entire activity. A window of width w is simply defined as a
subsequence (αk, ..., αk+w−1) of length w.

The probability of interaction P (τi) for a single track τi ∈ ε, with respect to a can-
didate event graph H , is just the fraction of the total number of windows N − w + 1, in
which τi interacts with any other track in H1.

We estimate P (τi) from Λ, by counting the number windows, which contain layer 3
nodes labelled by meets in H , such that:

1. Descendants in layer 1 contain τi.

2. All the layer 2 nodes are in H .
14A sliding window of a fixed widthw (e.g. a window of w words) has been regarded as a good context in

the statistical natural language processing community, where it is used to compute the association between
co-occuring words (e.g. bread and butter) by computing their co-occurrence within such windows.
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3. Normalizing by N − w + 1.

In a similar manner, the joint probability P (ω) for any set of tracks ω, with respect to
a candidate event graph H , is estimated by:

1. Counting the number of windows of width w, which contain layer 3 meets nodes in
H .

2. The set of all layer 1 descendants of which are equal to ω and all the descendants
in layer 2 are in H .

3. Normalizing by N − w + 1.

In Fig. 4.6, the leftmost sample window of width 3 captures the interactionmeets(e1, e5)

between τi, τj as shown below the activity graph, as represented by the layer 3 node αp.
Similarly, the rightmost window captures the interaction and meets(e5, e9) between τi, τj
as shown below the activity graph, and as represented by the layer 3 node αq. All the
descendants of αp and αq in layer 1 are equal to {τi, τj}.

We insert the probabilities of interaction for all subsets ω′ ⊆ ω in equation 4.4 to
obtain PMI(ω), and thus measure the PMI for all subsets ω ⊆ H1 of layer 1 nodes
(tracks) for a candidate event graph H . The PMI for scenarios such as shown in Fig. 4.5
(a), in which interactions are temporally well interleaved, tend to be higher than scenarios
such as Figs. 4.5 (b),(c), since the former kind are likely to induce more windows, for
larger subsets of tracks (and therefore a greater PMI score).

We now compute pointwise total correlation ξ(H) [Watanabe, 1960], which is the
sum of all the pointwise mutual information PMI(ω) over all subsets ω of tracks H1 of
a candidate event, weighted by their respective joint probabilities P (ω).

ξ(H) :=
∑

ω:ω⊆H1

P (ω)PMI(ω)

The value of ξ(H) is highest when interactions between the tracks for the candidate event
graph H are well distributed, both temporally and amongst subsets of tracks. Therefore
ξ(H) is regarded as a good measure of interactivity. Finally, as smaller intervals measure
interaction more significantly than larger intervals, we define the interactivity I(ω) for
a candidate event ω by weighting the pointwise total correlation with an exponentially
decreasing function of window width η,

I(H) =
∑
σ

e−ηξη(H)
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In this manner, the interactivity measure has been defined in order to give higher
scores to interactions that represent actively engaging objects.

4.6 Conclusion

This chapter describes a procedure for learning event classes as well as events from
domain-specific video data. We represent activities of a given domain by the events,
which are modelled by an event model. The event model itself consists of event classes.
An event class is regarded as a probability distributions over a finite set of interactions
and represents similar spatio-temporal relationships between objects.

In an unsupervised event learning task, neither the original event classes nor the origi-
nal events that compose a given video of activities are known in advance and both have to
be learned simultaneously. In order to address this challenge, this chapter also introduces
a mathematical formulation of a generative process. This process incorporates certain
event-like properties that can be used to characterize the original set of event classes and
events. We further generalize our formulation to model overlap, observation noise and co-
incidences of events. Finally, it is incorporated into an algorithm that efficiently searches
for the most likely interpretation for a given video.



Chapter 5

Learning Functional Classes

5.1 Introduction

The previous chapter described a procedure for learning event classes from video in an un-
supervised way. These event classes were described just in terms of interactions between
objects. The object type was regarded as being irrelevant. However, a more intuitive
understanding of activities takes into account the relationship between object classes and
event classes. The close association between event classes and object classes for three
different domains are illustrated in Fig. 5.1.

The work described in this chapter is based on the idea that there are certain classes of
objects whose instances (e.g. a trolley in an airport apron) tend to play similar functional
roles (e.g. transporting bags) with respect to specific event classes (e.g. unloading). They
tend to have similar functionality with respect to events and are hence called functional

object classes. The relationship between the functional object classes and event classes
are regarded as functional relationships.

This chapter firstly focusses on learning functional object classes. These are learned
from the event classes that have themselves been learned using the techniques described
in chapter 4. The learning procedure involves firstly inducing functional roles for each
object from the learned event classes. Then, each object is represented in terms these
roles. Finally, the objects are clustered to form functional object classes. It is expected
that objects that have similar functional roles are likely to belong to the same functional

97
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Figure 5.1: Three different domains – kitchen, workshop and airport apron – are shown
above. Objects belonging to various object classes that are associated with the events in
these domains are shown below.

object class.
The second focus of this chapter is to learn the functional relationships between the

learned functional object classes and the event classes. Functional relationships between
events and objects are regarded as the key for understanding and describing human ac-
tivities. For example, in aircraft apron activities, an unloading operation in an aircraft
domain is intuitively well described by a certain kind of interaction (given by the event
class) between certain types of objects (given by the functional object classes such as
loaders, trolleys and planes). Functional relationships are learned by mining association
rules for strong associations between functional object classes and event classes.

Section 5.2 describes a procedure for learning functional object classes. Section 5.3
describes how functional relationships are discovered by mining for significant patterns
of associations between event classes and functional object classes. Finally Section 5.4
presents some concluding remarks for this chapter.

5.2 Unsupervised Learning of Functional Object Classes

Object classes are an important cognitive construct for comprehending the diversity of
objects that are perceived at each moment of wakeful existence. While objects in the
world are perceived in terms of visual features i.e. what they look like, they are often
comprehended in terms of their function i.e. what they are used for. Even a short reflection
suffices to convince one that objects that we encounter in day-to-day activities such as
knives, cars, pens etc. are all perceived according to their visual features and understood
according to what they do i.e. cutting, driving, writing respectively.
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Figure 5.2: A scenario where several occurrences of the taking away event classes can be
found. It is supposed that three occurrences of this event class have been found. Specifi-
cally h1 takes away b1 from p1, b2 from p1 and b3 from p2 respectively.

The following paragraphs introduce the idea of functional object classes as object
classes whose instances play similar functional roles across occurrences of the same event
class. We use the following running example in the rest of the chapter. We therefore
introduce the example first and then describe the functional object learning procedure
with the help of this example.

Consider an event class which represents interactions where an object takes away
another object from a third object. A scenario where such events may occur is illustrated
in Fig. 5.2. Let us suppose that three occurrences of this event has been observed and that
they are spatio-temporally identical1. These three occurrences are enumerated below.

h1 takes b1 away from p1

h1 takes b2 away from p1

h1 takes b3 away from p2

We say that the object instances are naturally classified into three obvious functional
roles2:

1. The first object(s) {h1} play the functional role of an agent that takes away, in
typical dining activities, this could typically be a hand, as shown in Fig. 5.2.

2. The second object(s) {b1, b2, b3} play the functional role of being taken away. This
1In the case, when an event class is given by more than one prototype, which are spatio-temporally

similar, we consider the occurrences for each of these prototypes separately.
2We informally describe functional roles here. A more formal definition of functional roles is described

further ahead in the chapter.
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Figure 5.3: The interaction and an interaction graph for the taking-away event class is
shown. The interaction graph represents the spatio-temporal relationships between three
region histories r1, r2, r3, where r1 is taking away r2 from r3. At the bottom three occur-
rences of the taking away event is represented and their equivalent representation in the
form of predicates {F (h1, b1, p1), F (h1, b2, p1), F (h1, b3, p2)} are shown.

could typically be a food item such as a vegetable, bread or even cutlery such as a
spoon as shown.

3. The third object(s) {p1, p2} play the function role of an object from which other

objects are being taken away. These could typically be a container such as a plate
or a cup, as shown.

The above example provides a way of classifying objects into meaningful functional
roles, provided an alignment (e.g. b1, b2, b3) were some how given. The key hypothesis

of this chapter is that the mapping between the layer 1 nodes of an event graph and the
corresponding object occurrences induces an alignment of the objects in such a way that
this alignment results in intuitive functional roles.

We believe that this is a reasonable hypothesis for the reason that across several oc-
currences of an event class (e.g. taking away), objects sharing a particular functional role
(e.g. instances of forks, knives) and objects sharing another functional role (e.g. instances
of vegetables or instances of plates) tend to have similar or event identical spatio-temporal
relationships with each other e.g. vegetables may interact in an identical way with forks
and plates i.e. they are initially surrounded by the plate, then get attached to fork and are
finally disconnected with the plate.
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For the taking-away event class, the interaction between three region histories that
represent taking-away are shown in Fig. 5.3. The corresponding interaction graph has
three occurrences in the data, as enumerated below with corresponding object labels3.

The above hypothesis provides a way of inducing functional roles by exploiting the
alignment induced by occurrences of event classes. The following paragraphs describe a
procedure for inducing functional roles and then learning functional object classes.

A Predicate based Representation. We would like to abstractly represent an event
graph that represents interactions such as X1 takes X2 away from X3 by the predicate
F (X1, X2.X3). More formally, given an event graph g, we can represent this abstractly
by a predicate F (X1, ..., Xn), where n is the number of layer 1 nodes of g and X1, ..., Xn

are ordered in some canonical order. We call F an event class predicate and F (X1, ..., Xn)

an uninstantiated event class.
We would like to represent instantiated event classes of the form F (X1, X2, p1), where

the third variable X3 has been instantiated by the object label p1. This represents the
event class of any object X1 taking away another object X2 from p1. More formally,
by Fα

i , we denote the instance of F (X1, ..., Xn) obtained by instantiating xi with α i.e.
F (X1, ..., Xi−1, α,Xi+1, ..., Xn).

A Lattice for General to Specific Event Classes. We would like to represent event
classes with different degrees of instantiations and learn from this representation. Ac-
cordingly, we construct an upper semi lattice L called an event class latice, with n + 1

levels such that the top node (at level 0) is F (X1, ..., Xn) and the level n nodes are all the
instances of F (X1, ..., Xn) that correspond to all the event occurrences of g in the data.

This lattice is partially ordered by instantiation such that at level k, k variables of
the event predicate are instantiated, and the immediate descendants of any node in L are
instances of it (with one more variable instantiated). All the nodes in levels L1, ..., Ln−1,
we call specific event classes. This is because, they all have some, but, not all, of their
arguments instantiated.

The lattice for the taking away event class is shown in Fig. 5.4. It can be seen that bot-
tom most level 4 of the lattice are all the instancesF (h1, b1, p1), F (h1, b2, p1), F (h1, b3, p2),
that correspond to all the event occurrences of an interaction graph for the taking away

event class.
3These labels have nothing to do with their type.
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Functional Roles. This lattice facilitates a mechanism to take advantage of the spec-
trum of event classes and define functional roles for each of these classes.

Let l be a node at level k of L, such that the i’th argument of l is an uninstantiated
variable. i.e. if Lk be the set of all nodes at level k of L, then l ∈ Lk there exists α such
that lαi ∈ Lk+1.

Figure 5.4: A lattice that represents event classes with different degrees of instantiations
– from general to specific. The lattice shown above is constructed for the the three ex-
ample occurrences of the taking-away event class. This lattice L is partially ordered by
instantiation such that at level k, k variables of the event predicate are instantiated, and
the immediate descendants of any node in L are instances of it (with one more variable
instantiated).

For example, with respect to the lattice in Fig. 5.4, l = F (h1, X2, X3) is a node at the
first level of L such that the second argument (i = 2) is uninstantiated.

A functional role is characterized by all instantiations of a variable i of a node l ∈ Lk
at the next level Lk+1. Thus we define a functional role Rl

i

Rl
i = {α : lαi ∈ L} where the i’th argument of l is an uninstantiated variable.

In the above example, the functional roleRl1
1 = {h1} induced by l1 = F (X1, X2, X3) ∈

L0 for the variable X1 has only one element, since there is only one substitution h1, such
that l1 belongs to nodes L1 of the lattice L as shown in in Fig. 5.4.

Interestingly the more specific event class l6 = F (X1, X2, p1) ∈ L1 induces a special-
isation of the functional role Rl6

2 = {b1, b2} for the variable X2 i.e. objects that are taken
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away from the plate p1 (X3 takes the value p1).
Five functional roles are summarized below4.

1. Rl1
1 = {h1} (hand): objects that take way.

2. Rl1
2 = {b1, b2, b3} (bread, vegetable, spoon): objects that are taken away.

3. Rl1
3 = {p1, p2} (plate, cup): objects from which are taken away.

4. Rl6
2 = {b1, b2} (bread, vegetable): objects that are taken away from the plate p1.

5. Rl7
2 = {b3} (spoon): objects that are taken away from the cup p2.

These specific functional roles are interesting because objects that have similar inter-
action with the same object are often functionally more similar. In this example, objects
that are taken away from a plate are usually food items and are more likely to be similar to
each other than objects that are taken away from an arbitrary object. While this argument
may be generalized by considering objects that are taken away from instances of the same
functional object class (class of plates) are also more similar to each other, this is beyond
the scope of this thesis, and is therefore discussed in chapter 7.

The functional roles described above suggests a natural categorization of objects. First
we would like to put Rl1

1 , R
l1
2 , R

l1
3 into three separate functional classes, as the objects in

each of these three sets play the same functional role with respect to this event class.
Furthermore, we would like to sub-classify Rl1

2 into two more specific functional object
classes Rl6

2 = {b1, b2} that are taken away from the plate and functional object class
Rl7

2 = {b3} that is taken away from the cup. Such a nested relationship between classes
can be used to derive a functional object taxonomy.

Algorithm 2: An algorithm for mining functional roles from an event class lattice.
Input: Instances of F (X1, ..., Xn) that correspond to all the p occurrences of g in the data
Result: A set L of functional object roles
Initialize L ← ∅ ;1
Form the lattice L with n+ 1 levels for F and the p occurrences;2
foreach k = 0 : n− 1 do44

foreach lj ∈ Lk do66
if i’th variable is uninstantiated then88

L ← L ∪Rlj
i ;1010

4Note that the mention of object categories such as hand, vegetable in brackets are only meant to make
the presentation more intuitive. These are not known to the system and the goals is to be able to learn
categories that are close to these.
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Rl1
2 Rl1

3 Rl6
2

b1 1 0 1
b2 1 0 1
b3 1 0 0
p1 0 1 0
p2 0 1 0

Table 5.1: An object by event role matrix is illustrated. If an object (e.g. b1) participates
in an event role Rl1

2 , then the corresponding entry in the matrix is 1. Otherwise it is zero.

5.2.1 A Procedure for Mining Functional Roles

A general procedure for mining functional roles is shown in algorithm 2. For each learned
event class and for each of the event graphs g with p corresponding occurrences, the
lattice as described above, is formed. The input for this algorithm is all the instances of
F (X1, ..., Xn) that correspond to all the occurrences of g in the data. The desired output
of this procedure is the set L of all functional roles for the nodes between levels L0 to
Ln−1.

The procedure described in algorithm 2 first initializes L to a null set. Then it scans
this lattice in a level-wise manner from level L0 the Ln−1. For each node lj at the level Lk

if the i’th variable is not already instantiated, then the functional role Rlj
i is found. The

discovered functional role is added to L. This procedure continues till all nodes in L have
been explored.

The procedure described above is used to mine for functional roles for each event
class. The next stage involves representing objects in terms of functional roles so that
objects that play similar functional roles may be clustered into functional object classes.
Accordingly, each object is represented as a row vector of an object by functional roles

matrix M , in which Mi,j equals 1 if the object oi occurs in a particular functional role Rlj
i

and 0 otherwise. This matrix is illustrated in table 5.1 for three example event roles.
As each functional role corresponds to an event role, the row vectors of this matrix

summarize each object in terms of the role it plays in all the event-roles and thus induce
a multidimensional object space. In this space, objects that have a similar functional role
with respect to similar sets of events are expected have a high similarity measure. We
therefore perform k-means clustering using a cluster partition index to determine p. Thus
a set of functional object classes c1, c2, ..., cp are learned. The object classes obtained
using this approach are shown in the experimental chapter 6.
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5.3 Functional Relationships

The association between events and objects is essential for understanding and describing
human activities. For example an unloading operation in an aircraft domain is well de-
scribed by a certain kind of interaction between objects of functional classes such as load-
ers, trolleys and planes. Thus human activities are suitably described by the functional
relationships between event classes which describe interactions and functional object cat-
egories.

The approach described above results in a set of functional object classes c1, ..., cp.
In order to discover functional relationships between event classes and functional ob-
ject classes, the object instance oi for each predicate Fq(..., oi, ...) is instantiated with the
corresponding learned functional class cm and this yields : Fq(..., cm, ...). Suppose for
example that the following instantiations are obtained and represented without the use of
respective brackets:

F1, c1, c2, c3

F1, c1, c2, c3

F1, c1, c2, c3

F1, c1, c4, c3

F1, c1, c4, c3

These can be regarded as a database of item-sets, where the first item (e.g. F1) is
always the symbol for the event class and the others (c1, c2, c3) are the instantiated classes
for the objects. The above database suggest it may possible to mine for the significant
associations between event classes and object classes. For the above example, it can be
seen that F1, c1 is a very strong association between the event class F1 and the object class
c1, since this occurs relatively frequently in the above database of item sets. Similarly, the
association given by F1, c1, c2, c3 can be regarded as quite strong from the above database,
since its frequency (equals 3) is again relatively high.

A simple apriori technique [Agrawal and Srikant, 1994a] from the area of frequent
item set mining is used in order to discover significant associations event classes and
functional object classes in this work. An outline of this procedure is shown in algo-
rithm 3. This procedure involves forming candidate functional relationships (e.g. Can =

F1, c1, c2) which consists of two parts: an event class label (e.g. F1) and a sequence of ob-
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Algorithm 3: An apriori based algorithm for finding functional relationships.
Input: {..., {Fi, ck1 , ck2 , ..., ckl

}, ...} Event class - object classes item sets for an event class Fi

Result: FR Functional relationships in the form of frequent item sets
foreach o = 1 : omax do22

Can← GenerateCandidate;3

if ‖Can‖ > kfr then55
FR← FR ∪ Can;6

return FR7

ject classes (e.g. c1, c2). Candidate generation (given in line 2 of algorithm 3) is followed
by counting the frequency Can in the item set based description for that event class F1

(line 5 of algorithm 3). The apriori search proceeds in a breadth-wise fashion, where item
sets of each level are merged to form those of the next level, as described in [Agrawal
and Srikant, 1994a]. However, only those item sets whose frequency is above a threshold
kfr (line 5 of algorithm 3). Once the level-wise search terminates, all item sets which are
non-maximal are eliminated. This way significant associations between event classes and
object classes are discovered.

5.4 Conclusions

This chapter described a procedure for learning functional object classes, given the event
classes learned using the procedure in Chapter 4. The objects of a given domain are
regarded as being modelled by functional object classes, such that those of the same class
play a similar functional role whenever an event belonging to the associated event class
occurs. In order to learn functional object classes, each object is represented in terms
of a vector of functional roles it plays in each of the event classes. Clustering with this
representation results in clusters that represent the desired functional object classes. The
final focus of this chapter is the learning of functional relationships between the learned
event classes and the functional object classes. We learn functional relationships by using
a simple, yet effective procedure based on frequent item set mining.



Chapter 6

Evaluation of Activity Understanding

6.1 Introduction

Our framework for unsupervised activity understanding was presented in two stages. The
first stage was event learning, where the aim was to learn event classes and an event cover,
given a video that captures extended period of activities, for a certain domain. A proce-
dure for event learning was described in chapter 4. The second stage is functional object
class learning, which uses these learned event classes to induce functional object classes
and functional relationships. Procedures for learning functional object classes and rela-
tionships were described in chapter 5. Both these aspects are based on the representation
of event classes in terms of interactions, as described in chapter 3. This chapter evaluates
our framework for unsupervised activity understanding presented in chapter 3, 4 and 5.

The HMM based procedure for obtaining a regularized sequence of spatial relation-
ships despite noise from video is first evaluated. Synthetic data sets are used to evaluate
event learning in a more controlled environment. A real data set – an aircraft apron – is
used to evaluate the techniques for learning event classes, functional object classes and
functional relationships respectively.

Section 6.2 describes the synthetic and real data set respectively. Section 6.3 describes
the evaluation of the HMM based procedure. Section 6.4 describes the experimental set-
tings, parameter estimation and evaluation scores for the event learning procedure. Sec-
tion 6.5 describes our experiments on real data. Section 6.6 describes the evaluation of the
procedures for functional object class learning and discovering functional relationships.
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Section 6.7 summarizes the overall conclusions of the experimental evaluation.

6.2 Data Sets, Ground Truth and Evaluation Procedures

We use both synthetic and real datasets to evaluate our framework for activity understand-
ing. While synthetic datasets are used for evaluating only the event learning aspect of the
framework, real datasets are used to evaluate the entire framework. This section describes
the two datasets.

6.2.1 Synthetic Datasets

Synthetic data provides a controlled environment where it is possible to simulate the gen-
eration of real-world-like activities, while being able to analyse the role of event-like
properties – expected size, frequency and interactivity – and also the effect of the com-
plicating factors – overlap, noise and coincidence. Synthetic data is produced by a sim-
ulation by a technique described in Appendix B. A simulation results in an event model
Θ with event classes Ĉ = {ĉ1, ..., ĉnc} and an associated event cover Ê = {ê1, ..., êne}.
The association between the event classes and the events in the event cover is given by a
labelling of the events L̂ = {ĉk1 , ..., ĉkne} into their respective classes. In addition to these
events, the synthetic data is used to capture a certain proportion of: (i) coincidences nco;
(ii) overlaps nov; (iii) events nno that are corrupted by noise. A simulation S is expressed
as S = (Ê , L̂, nco, nov, nno).

In the following experiments, two types of synthetic datasets are simulated, one simple
and the second complex. In the first type, the three complicating factors – coincidence
(c), overlap (o) and noise (n) – are absent i.e S = (Ê , L̂, 0, 0, 0). Therefore this dataset is
called synthetic data(-con). In the second type of dataset, the three complicating factors
are all present i.e. S = (Ê , L̂, nco, nov, nno), where nco > 0, nov > 0, nno > 0. This is
referred to as just synthetic data.

6.2.2 Real Datasets

A real dataset, which is a video of activities at an aircraft airport apron is used to evaluate
the event and object learning procedures. This dataset was chosen as it embodies the kind
of structure and complexities that tend to be present in several other datasets (e.g. work-
shops, football matches). Structure manifests itself as spatio-temporally similar events
over extended periods of observation. These events are embeddings of certain semanti-
cally interesting event classes such as bridge-on, unloading etc. Complexity manifests
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Figure 6.1: An image from the airport apron dataset.

itself in the form of factors such as noise, overlap and coincidences. Another reason for
the choice of this dataset was data availability.

This dataset comprises of approximately 24 turnarounds totally spanning around 37
hours of video footage, showing servicing of aircraft between flights. The camera po-
sitioning for all the turnarounds is the same, so the same view as shown in Fig. 6.1 is
obtained. It is important to note that we deliberately chose not to provide any information
about the start and end of each turnaround. That is all the turnarounds are concatenated
temporally and given as one large video, and no additional preprocessing is carried out
to separate the video into turnarounds. Providing the learning system with the additional
information about segments corresponding to turnarounds would imply a certain amount
of supervision (corresponding to a transactional setting), that we intend to avoid.

In the rest of the work, the airport dataset is divided into two parts. The first part
consists of 4 representative turnarounds1 and is referred to as part 1 apron data. The
second part consists of 20 turnarounds is referred to as part 2 apron data2.

6.2.3 Processing the Video Data Sets to Obtain Tracks

The processing of the real data sets involved two stages – detection and tracking. These
two stage are described below.

1These turnarounds were chosen in a way that they represent the variances in appearance for the other
20 turnarounds.

2The event and object learning framework is only applied to part 2 apron data only.
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Detection. For the first stage, a multi-class object detector [Ott and Everingham,
2009] based on HOG features was trained on part 1 apron data and applied to each frame
of part 2 apron data3 The five classes considered were: (i) plane; (ii) trolley; (iii) loader;
(iv) bridge; (v) plane-puller. The choice of these object classes were based on the con-
sideration that the three IATA (The Air Transport Association) events, namely unloading,
bridge-on-off and plane-puller-on described interactions between these objects. Pedes-
trians are not detected for this scene for the reason that their size reduces substantially,
making detections complex. Detection becomes even more complex, when pedestrians
merge together and split, especially at this distance.

Approximately 5000 training samples were collected for each of these classes from
part 1 apron data. In order to simplify the task of data collection, a semi-automated
technique was used. This technique was based on the work reported by authors in [Celik
et al., 2009]. It involved clustering of foreground blobs based on their appearance features
into clusters. These clusters were used to prepare the training data for each class. In order
to obtain good performance, repeated bootstrapping and manual removal of noisy samples
was used to improve the quality of the detector on part 1 apron data. The trained multi-
class object detector is applied on each frame of the entire part 2 apron data. This gives
rise to a set of detections with associated membership probabilities for each of the five
object classes described above.

Tracking. The second stage involves applying our implementation of the tracking
technique reported in [Yu and Medioni, 2008] to the detected blobs in part 2 apron data.
The MCMC data association tracker searches for a covering of the detected blobs into
tracks, such that this covering has the maximum posterior probability, given a set of de-
tected objects. The likelihood term of the posterior probability favours a set of tracks that
are likely with respect to continuity of appearance, motion and class IDs (output from the
detector). The prior term that favours larger tracks which have less overlap and less noise.
We chose this technique since it performs global optimization to obtain the most likely
set of tracks.

Note: Although the tracked objects have types associated with appearance based ob-
ject classes, the event learning procedure deliberately ignores these in order not to be

dependent on them. Thus in principle, it could work equally with untyped tracks.
3The choice of this technique was the result of preliminary experiments with different features, after

which it was found that HOG features are well suited to characterize the objects in the scene.
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6.3 Evaluation of the HMM based Procedure

A HMM was proposed in Section 3.5, as a means of obtaining a more stable sequence
of qualitative spatial relationships from video, in comparison to the existing point inter-
section technique which is defined in a Boolean fashion solely in terms of connectivity
of the spatial extents, as surveyed in [Cohn and Hazarika, 2001]. The following experi-
ment evaluates the HMM based procedure and compares it with the point set intersection
technique, which is regarded as the baseline.

In order to train and test the HMM, the part 1 apron data is randomly divided into
two parts. The first consisting of two thirds is used for training, and the rest one third for
testing. Ten such random partitions are created for evaluation. The training data is hand
annotated by associating pairs of tracks in the training set with a corresponding sequence
of spatial relationships4. These annotations are subjectively assigned by the annotators.

Instead of labelling the entire data of several thousand frames, only those segments,
where there are changes in spatial relationships are considered for training and testing
the HMM. This is because, the main purpose of the HMM is to learn a stable transition
between the spatial states, rather than parts where there is a considerably high certainty
of the spatial states.

A total of 27 training segments and 14 test segments were prepared. In these seg-
ments, those pairs of tracks for which the spatial relationships change are are first iden-
tified. These pairs are subjectively labelled with the appropriate spatial relationship for
each frame in which both the tracks are observed. The segments are also provided with re-
spective episodes for this sequence of spatial relationship. One such segment is illustrated
in Fig. 6.2.

The HMM is trained on the training segments for each random partition using the
procedure described in Section 3.5.1. The trained HMM is then applied on the test seg-
ments for the corresponding random partition. This gives rise to a sequence of spatial
relationships between pairs of tracks on the test segments. A corresponding sequence of
episodes are constructed from the inferred sequence of spatial relationships, for the sake
of evaluation which is described below.

Results

The performance of the HMM is evaluated in two ways. The first involves evaluating
the extent to which the HMM outputs a correct sequence of episodes. It was observed

4This is because, the purpose of the HMM is to learns a mapping from a pair of tracks to a corresponding
sequence of spatial relationships.
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... ... ... ...

Figure 6.2: A segment with which the HMM based procedure for obtaining spatial rela-
tionships is trained and evaluated. Some images from a segment that has been manually
annotated for training and evaluating the HMM are shown. An example of an annotation
in the form of a sequence of spatial relationships is shown for a pair of tracks correspond-
ing to a loader and trolley respectively.

across the 10 random partitions, the sequence of episodes for 85.7% of the test segments,
with a variance of 8.3%, exactly corresponded to the ground truth. However the point
intersection based technique only resulted in an accuracy of 42.8% with a variance of
17.2%.

The second evaluation involves evaluating the extent to which the outputted episodes
temporally align with those of the ground truth. This evaluation is restricted only to
those those segments whose sequence of episodes obtained from the HMM matches the
ground truth. This is because, the purpose is to understand the extent of deviation in
temporal alignment, despite the fact that the episodes have been matched correctly. A
good alignment ensures a reduced chance of structural difference in temporal relationships
(amongst the episodes) between the ground truth and the output of the HMM.

It was observed that across the 10 random partitions, there was an average overlap of
68.1% temporal overlap with a variance of 4.3% between the outcome of the HMM and
the ground truth. The point intersection based technique resulted in an average overlap of
33.4% with a variance of 14.8%.

Conclusion

It can be concluded that the HMM significantly outperforms the traditional point intersec-
tion based technique. In particular, the potential advantage of using the HMM described
in Section 3.5, for inducing stable sequence of qualitative spatial relationships from video
data, has been demonstrated.
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6.4 Experimental Settings, Parameter Estimation and Eval-
uation Scores

The following paragraphs describe the two kinds of experiemental settings for evaluating
our event learning procedure, a method for parameter determination and two types of
evaluation scores.

Experimental Settings. This section describes four experiments to evaluate the event
learning procedure proposed in this work, on synthetic data. Synthetic data provides a
controlled experimental environment in which the proposed framework can be evaluated
and analysed. Three experiments are performed with simulations of the type synthetic

data (-con). The goal is to understand the significance of the three event-like properties
and the effect of their combination in the absence of complicating factors. The absence of
these factors makes it easier to analyse the role of these properties in isolation. For these
three experiments, the factors that model these additional complexities (con) are turned
off and this is called as generative process (-con). The fourth experiment is performed
with simulations of type synthetic data, in order to understand the effect of increasing
the presence of these factors, on the performance of the event learning procedure. In this
experiment, the event learning procedure is referred to as generative process.

Parameter Determination. The generative process is expressed as an exponential
function of a linear combination of event like properties and complicating factors in 4.4.
The parameters γ1 to γ5, involved in the linear combination, are regarded as the meta-

parameters of the generative process.
The estimation of meta-parameters is often a difficult problem, especially for an un-

supervised case where a ground truth is not provided for training. We therefore use a sep-
arate synthetic data set in order to determine the parameters. We use the ground truth for
this synthetic dataset and determine the meta-parameters. For the rest of the experiments,
both on real and synthetic data, we re-use these parameters. We believe that reusing the
parameters is reasonable, since most datasets encode similar assumptions (e.g. minimum
overlap, coincidence etc.) to those of the synthetic datasets. This saves us from providing
supervision in the form of knowledge of the events and event classes, for a new dataset,
in order to determine parameters.

We adopt the approach reported in [Yu and Medioni, 2008] for determining param-
eters. The choice of the approach is motivated by the consideration that their technique
shares certain similarity with ours. Their approach involves the use of MCMC for search-
ing for an optimal covering of object blobs in the form of tracks. Our approach involves
the use of MCMC for searching for an optimal covering of tracks in the form of an event
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E. Size E. Int. E. Freq. Combination
F-Measure 13.5 67.7 32.4 100.0
Rand Index 7.1 31.6 21.9 100.0

Table 6.1: The table shows the accuracies of the generative process (-con), when each
of the three event like properties are evaluated individually and also when they are com-
bined. The individual evaluations for each property is given by the the following abbrevi-
ations (i)expected size (E.Size); (ii) expected interactivity (E.Int); (iii) expected frequency
(E.Freq). The final column shows the accuracies with their combinations.

cover, together with finding the associated event classes.
Their approach makes use of the fact that the posterior density is a linear combination

of the parameters. Since the posterior for the ground truth is known the posterior for all
other sub-optimal interpretations is expressed as being lesser than that of the ground truth.
This constraint is expressed as a linear equation. After collecting multiple constraints, we
use Linear Programming to find a solution of positive parameters with a maximum sum of
the parameters, given the constraints. We have found that the 1000 constraints are enough
to be able to obtain an accurate estimate of the parameters.

Evaluation Scores. Two types or evaluation scores are used to quantitatively evalu-
ate the outcome of the event learning procedures on synthetic data. The first measures
the accuracy of a learned event cover E with respect to the ground truth event cover Ê,
using the F-measure [Baeza-Yates and Ribeiro-Neto, 1999]. The second evaluation score
namely the Rand Index [Rand, 1971], measures the accuracy of the class assignments C
of a learned event cover with respect to the ground truth event classes Ĉ. Appendix C
describes the use and suitability of F-measure and Rand Index respectively.

Experiment 1: Contribution of the Event-Like Properties

The purpose of this experiment is to evaluate the contribution of each event-like property
and their combined contribution. Accordingly, a total of 20 simulations were performed
to generate synthetic datasets of the type synthetic data(-con). For each simulation, gener-
ative process(-con) is applied by turning off each of the three properties i.e. size, interac-
tivity and frequency respectively. Then the generative process(-con) is applied by with a
combination of these properties, with the parameters that were found using the approach
described above.
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Results

The results of this experiment are tabulated in table 6.1. For all 20 simulations, the com-
bination gave a 100% accuracy with respect to both F-measure and Rand index. However,
each factor, when taken individually resulted in much lower accuracies as shown.

Conclusions

This experiment demonstrates the significance of combining the three event like prop-
erties in order to recover the original event classes and events. This experiment also
demonstrates that the method for parameter determination described above gives rise to
parameters that facilitates this recovery.

Experiment 2: An Analysis of the Trace of Event-Like Properties

While the above experiment supports the hypothesis about the significance of combining
the event-like properties, what is more interesting is to gain a precise understanding of the
role that these properties play at different stages during the learning process i.e. during
the progression of the Markov chain.

Accordingly, the respective values of the posterior together with expected values of
size, interactivity and frequency at each iteration of the Markov chain were plotted against
the iteration number. These plots for one out of the 20 simulation, are shown in Fig. 6.3
5. In addition, the F-measure and Rand index values are also plotted against the number
of iterations in Fig. 6.3, in order to analyse the relationships between these event-like
properties, posterior, F-measure and Rand index respectively.

Results

An inspection of the results in Fig. 6.3 suggest three distinct phases in the Markov chain.
These are described below:

1. In the first phase, within the first 200 iterations, expected size and interactivity
increases steeply, while there is hardly any increase in frequency. During this phase,
the single tracklets aggregate into two or more tracklets such that expected size and
expected interactivity increases with a corresponding increase in the posterior. This
is also reflected in an increase in the F-Measure and Rand Index. That is, moves
that favour an increase in size and interactivity are favoured. However, the lack of

5The plots for the rest of the 19 simulations showed a similar behaviour as described below.
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Figure 6.3: Trace of (i) energy (which is proportional to the posterior; (ii) expected fre-
quency; (iii) expected size; (iv) expected interactivity; (v) F-measure; (vi) Rand index,
with respect to the number of iterations of the Markov chain.



Chapter 6 117 Evaluation of Activity Understanding

significant increase in frequency indicates that the patterns of similar events have
not started to emerge.

2. In the second phase, between 200 and 300 iterations, whilst there is still a sharp
increase in size and interactivity, expected frequency evidences a substantial rise,
with corresponding rise in the posterior. This is also reflected in an increase in the
F-Measure and Rand Index. This indicates that patterns have started to surface and
moves that give rise to higher expected frequency are favoured.

3. In the third phase, between 300 and 400 iterations, expected size and interactivity
show variations but no substantial increase. However, during this phase, there is a
sharp rise in increase for expected frequency, indicating that more and more patterns
are found, while exploring within the same range for interactivity and size. A simi-
lar behaviour is observed till 1000 iterations, where it can be seen that it is increases
in expected frequency that cause an increase in the posterior. This is also reflected
in an increases in the F-measure and Rand index respectively. In this phase, the
moves that cause a substantial increase in expected frequency are favoured and it is
these moves that drive the search toward the optimal event classes and events.

Conclusions

To summarize, this analysis gives an insight into how the three event like properties
combine together in recovering the original set of event classes and the event cover re-
spectively. Initially, expected size and expected interactivity together aggregate potential
events, albeit with an error rate of around 50%. This aggregation gives rise to patterns
of similar or identical events in the event cover. Then the expected frequency starts to
dominate while still acting in tandem with the other two properties to resolve these errors.

Experiment 3: Sensitivity to Variation in Parameters

In this work, we use a linear programming based approach [Yu and Medioni, 2008] to de-
termine the meta-parameters, as described in Section 6.4. However, it has been observed
from preliminary experiments on synthetic data that under a wide range of values for the
parameters, the MCMC optimization converges towards the optimal solution. Moreover
the technique for parameter determination in Section 6.4 estimates values well within this
range. It was observed that for parameter values within this range, MCMC converges
relatively fast. Outside this range, it takes longer to converge and some times the Markov
chain does not converge after several thousand iterations.
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Figure 6.4: A plot of accuracy with respect to variation of meta-parameters for expected
size, interactivity and frequency is shown. Each point in the coordinate system is a tuple
of parameters for these three properties. The accuracy for this point is plotted with a
colour coding, where red is for 0% accuracy, and blue represents 100% accuracy.

In order to analyse the performance of the system with respect to variations in pa-
rameters in a systematic manner, the following experiment was performed. A total of 20
simulations were performed in order to capture the variance in the data. For each simula-
tion, the parameters for size, interactivity and frequency were varied such that they sum
to one. The accuracies are plotted with a colour coding where red is for 0% accuracy and
blue represents 100% accuracy. The number of simulations were restricted to 5000, since
it was observed during the preliminary explorations that for a large range of parameter
values, the Markov chain converges well within 5000 iterations.

A very similar behaviour was observed across all 20 simulations. Therefore a plot for
one of the simulations is shown in Fig 6.4.

Results

The following observations were made. First, there is a fairly large range of values (as
shown in blue) for which the accuracy is 100% and beyond this range, the accuracy de-
clines quite sharply. Second the estimated values are roughly in interior of this region,
implying that there is a fairly good range within which the variation of the parameters
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does not cause a decrease in accuracy.

Conclusions

These two observations suggest that the method for parameter estimation described in
6.4 gives rise to parameters that are stable i.e. only a considerable deviation from these
parameters can cause a decrease in accuracy.

Experiment 4: Effect of Increase in Complicating Factors on Perfor-
mance

The generative process was formulated in order to be robust to the three complicating
factors. In order to experimentally validate our formalism, we perform the following
experiment to evaluate its robustness to each of these three properties.

Accordingly, three experiments are performed to evaluate the effect of increase in
overlap, coincidence and noise respectively. For each of these experiments, the three
corresponding factors are increased gradually, such that at the first stage, the factor under
consideration is absent and in the 11’th stage, its presence is significant. For each factor
and for each stage, two sets of 10 simulations are performed. The first 10 simulations are
performed with generative process (-con) which is regarded as the baseline, and the next
10 with generative process. The average accuracy with an error-band are plotted for each
of the 11 stages and for increase in each factors respectively in Fig. 6.5.

Results

It can be seen that the performance of the generative process (-con) degrades rapidly with
increase in noise, coincidences and overlap. However, the performance of the generative

process degrades very slowly till a certain point, and beyond this point degrades more
gracefully than the baseline technique.

Conclusions

To summarize, this experiment has demonstrated that for synthetic data, the generalized
model (generative process) is far more robust to increase in complicating factors, as com-
pared to the baseline (generative process (-con)) technique. Experiments with real data in
Section 6.5 further demonstrates the robustness of the framework to these factors.
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Figure 6.5: Evaluation of the robustness of the generative process to an increase in the
presence of each complicating factor. The three plots show the accuracies of the baseline
(generative process (-con)) and the generalized model (generative process) with increase
in proportion of (i) coincidence; (ii) noise; (iii) overlap, respectively.
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6.5 Evaluation of Event Learning on Real Data

The framework for learning event classes is evaluated on the airport apron dataset, as
described in Section 6.2. An event cover ground truth for real data sets is obtained by
manually annotating the set of tracks in terms of subsets which consists of tracklets. For
the aircraft apron data set, an event cover ground truth consisting of event occurrences for
three predetermined event classes is prepared.

These event classes are: (i) unloading; (ii) bridge/loader attaches (on) and detaches
(off) from the plane; (iii) plane-puller attaches to the plane. These classes were prede-
fined as interesting with respect to monitoring tasks that were prescribed by independent
domain experts.

A ground truth consisting of the event covers for the aircraft apron video for these
three classes was defined by other domain experts. This ground truth consists of an event
cover, where an event occurrence of the cover is specified by a set of objects and the
interval during which they interact. In addition, the event class for each occurrence is
made available.

The framework for learning event classes is evaluated on the two real data sets –
airport apron – as described in Section 6.2. Both the baseline approach and the generative
process were evaluated. The parameters γ1 to γ5 in equation 4.4 are set to values, that
were determined for synthetic data, using the approach described in Section 6.4.

Even though we could have used the ground-truth for real data and determined the
parameters using the approach in Section 6.4, we deliberately chose not to use any knowl-
edge about the events in the particular domain, for setting the parameters. This choice is
motivated by the consideration that we would like our event learning framework to be un-

supervised, where supervision means providing knowledge about the nature of the event
classes and events for a domain.

Using these parameters, the procedure outlined in Section 4.4 for searching for the
optimal interpretation is applied. With a geometric scheduling starting after 3000 iter-
ations, it was observed that this gives sufficient time for the technique to perform initial
exploration of the distribution. The temperature T , subject to a geometric scheduling with
a fairly high value for κ = .9999, is used to ensure that the Markov chain does not get
struck at local maxima during the initial phase.

Results

The generative process for the airport apron dataset gave rise to two event classes. The
qualitative and quantitative evaluation of these event classes and the event cover are dis-
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Figure 6.6: Representative occurrences of prototypes, coincidence and recovered noisy
event are shown for event class 1. Note that in order to be able to display a sequence
of over 7 images, we split them into two rows and use three dots (...) to represent the
continuity. The two representative interactions that characterize the first event class are
shown in (a) and (b) along with two of the respective occurrences, whose spatio-temporal
relationships are identical to these prototypes. One of the noisy occurrences shown in
(c), whose spatio-temporal relationships are not identical to (a) or (b), has been recovered
by the framework and is considered as belonging to the first class. The first class has
also erroneously captured coincidental interactions, which does not correspond to the
unloading, one instance being shown in (d).
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cussed below for this dataset.

1. True Positives: Class 1 is represented by two prototypical interactions with 18 oc-
currences in total. A total of 14 occurrences of these two prototypical interac-
tions capture spatio-temporal relationships between instances of trolleys, loaders
and planes, that correspond to what is semantically understood as unloading, ac-
cording to the IATA definition. One representative occurrence out of these 14, for
each prototypical interaction, is shown in Fig. 6.6(a) and (b) respectively.

Class 2 is represented by one prototypical interaction with 23 occurrences in total.
A total of 16 occurrences of this prototypical interaction capture spatio-temporal
relationships between instances of trolleys, loaders and planes, that correspond to
what is semantically understood as a combination of two IATA events - bridge-
on-off and plane-puller-on6 One representative occurrence out of these 14, for this
prototypical interaction, is shown in Fig. 6.7(a).

The generative process has been shown to have some robustness to observation
noise. A representative noisy occurrence out of 5 for class 1, which is not spatio-
temporally identical to either of the two prototypical interactions representing class
1 is shown in Fig. 6.6 (c). A representative noisy occurrence out of 6 for class 2 is
shown in Fig. 6.7 (b).

2. True Negatives: The event learning procedure has been able to label several coinci-
dental interactions correctly. Two examples of coincidental interactions are shown
in Fig. 6.8.

3. False Positives: The generative process has erroneously captured some coinciden-
tal occurrences. A total of 4 coincidental occurrences which do not correspond
to the semantic notion of unloading, were erroneously captured by class 1. One
such representative occurrence is shown in Fig. 6.6 (d). A total of 7 coinciden-
tal occurrences which do not correspond to the semantic notion of bridge-on-off
and plane-puller-on, were erroneously captured by class 1. One such representative
occurrence is shown in Fig. 6.7 (c).

4. False Negatives: The generative process has not captured some occurrences that
correspond to the unloading and bridge-on-off and plane-puller on class respec-

6It is reasonable to compare against this combination, since the ground truth event classes are specified
at a certain level of granularity and it is unreasonable to expect the learned event classes to have the same
granularity so that an exact comparison may be possible. On the other hand it is required to check whether
whether the learned events are closely associated with the official IATA events determined by the domain
experts.
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Figure 6.7: Representative occurrences of prototypes, coincidence and recovered noisy
event are shown for event class 2. The one representative interaction that characterizes
the second event class is shown in (a) along with one of the respective occurrence, whose
spatio-temporal relationships are identical to these prototypes. One of the noisy occur-
rences shown in (b), whose spatio-temporal relationships is not identical to (a), has been
recovered by the framework and is considered as belonging to the second class. The
second class has also erroneously captured coincidental interactions, which does not cor-
respond to the unloading, one instance being shown in (c).
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Figure 6.8: Example of two coincidental interactions, which are not classified as belong-
ing to any of the learned event classes.

Baseline
Generalized
Model

Unloading 69.0,22.5,39.9 77.8,70.0,73.7
Bridge-on-off & plane-puller-on 58.5,50.0,54.4 69.6,80.0,74.4

Table 6.2: Evaluation of the baseline (generative process -(con)) and the generalized
model (generative process) on real data, with respect to a predefined set of event classes:
(i) unloading; (ii) bridge-on-off & plane-puller-on. The three entries are the precision,
recall and the F-Measure respectively.

tively. Class 1 has not captured 6 occurrences of corresponding to unloading. Class
2 has not captured 6 occurrences of bridge-on-off and plane-puller-on.

It has been observed that these occurrences are not captured either because they
are corrupted with noise that the framework has not been able to handle or because
they are not frequent and similar enough to the prototypical interactions of the event
classes.

The quantitative aspects of the above observations are summarized in table 6.2. The
columns of table 6.2 are the two event classes in which these three predefined classes are
present. The first of the pair of entries of table 6.2 is the precision, the second recall and
the third is the F-measure, for each class.

Conclusions

The following conclusions can be made from the above observations:

1. The two event classes represent distinct interactions that semantically correspond
to IATA defined events.
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2. These two event classes together describe a large part of what goes on in the scene
between the type of vehicles under consideration.

3. These event classes capture similar ways of performing the same task and several
of these similar ways correspond to the semantics captured by the respective event
class.

4. However, the event classes have also erroneously captured some coincidences. Chap-
ter 7 on future work discusses ways of addressing this problem.

5. The event learning framework has shown robustness to noise by capturing seman-
tically relevant occurrences even though they are spatio-temporally different from
the representative prototypical interaction for the classes.

6.6 Evaluating Functional Object Classes and Functional
Relationships

This section describes the evaluation of the procedure for learning functional object classes
and functional relationships from the learned event classes, as described in Section 5.2.
A total of 18 occurrences for class 1 and 23 occurrences for class 2 were input to the
procedure for learning functional object classes.

The next step involved using the learned event classes and functional object classes to
discover significant functional relationships, as described in Section 5.3. The object IDs
are replaced by the respective functional classes, in the format given in Section 5.3. Then
the frequent item set mining based procedure described in this section is applied to mine
significant functional relationships between the object classes and event classes.

Results

The procedure for learning functional object clustered the object tracks into five object
classes object classes 1 to object classes 5, each of which are shown in Fig 6.9. From the
results, it can be observed that the proposed scheme has been able to classify the objects
in the scene into five functional categories that largely correspond to the commonly held
categories i.e. trolley, loader, bridge, plane-puller and plane. In order to quantitatively
assess the performance, the accuracy of these classes with respect to ground truth are
summarized in table 6.3.

The procedure for learning functional relationships learned two functional relation-
ships. The first one was the association between event class 1, object class 2, object class
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Figure 6.9: The five functional object classes that were learned are shown. These five
classes largely correspond to (i) trolley; (ii) bridge; (iii) loader; (iv) plane-puller; (v)
plane. Table 6.3 displays the accuracies with respect to each of these five classes.

Trolley Loader Bridge Plane-puller Plane
GenProc 82.7% 73.6% 78.2% 70.0% 93.75%

Table 6.3: Evaluation of functional object classes with respect to a predefined set of object
classes.

5. The second is the association between event class 2, object class 3, object class 4 and
object class 5.

Since most occurrences of event class 1 correspond to the semantic category of un-
loading, and most instances of object classes 1, 2 and 5 correspond to trolleys, loaders
and planes, the following functional relationship has been learned: Unloading takes place

according to interactions (given by the event class 1) between object classes which mostly

are loaders, trolleys and planes.

Since most occurrences of event class 2 correspond to the semantic category, which is
a combination of bridge-on-off and plan-puller-on, and most instances of object classes 3,
4 and 5 correspond to bridges, plane-pullers and planes, the following functional relation-
ship has been learned: bridge-on-off and plan-puller-on events take place according to

interactions (given by the event class 2) between object classes which mostly are bridges,

plane-pullers and planes.
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6.7 Overall Conclusion

This chapter described the experimental evaluation of the framework for activity under-
standing described in chapters 3, 4 and 5 of this thesis. The HMM based procedure for
obtaining a sequence of spatial relationships from video was evaluated. This experiment
demonstrated that the HMM substantially outperforms existing techniques by exploiting
the temporal information available in a video.

The procedure for learning event classes were evaluated both on synthetic data and a
real dataset. The experiments on the synthetic datasets demonstrated the efficacy of event-
like properties and its robustness to complicating factors. The experiments on the real
datasets have demonstrated the framework’s ability to discover semantically meaningful
events from a real video dataset.

Finally, the procedures for learning functional object classes and functional relation-
ships were evaluated. These experiments have demonstrated the framework’s ability to
learn semantically meaningful object functional object classes and functional relation-
ships for real data.
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Summary and Future Work

This thesis proposed a framework for unsupervised learning of activities from video data.
We introduced a representation which is able to model the changing qualitative relation-
ships between a set of objects using the notion of interaction. Additionally we introduced
an unsupervised learning scheme based on this representation. It involves the learning of
a compact model for activities in terms of event classes and an activity graph. Finally, we
introduced functional object classes, functional relationships and procedures for learning
them.

In this chapter, we summarize the main contributions of our framework in section 7.1.
We then discuss some limitations and possible ways of addressing these in the future, in
section 7.2. We conclude this chapter with some final remarks in section 7.3.

7.1 Contributions

In this section we discuss the novel contributions of this thesis, focusing on three indi-
vidual aspects. These are: (i) representation of activities; (ii) the generative process for
modelling activities and (iii) the framework for unsupervised event learning.

7.1.1 Representation of Activities

We consider the following as novel contributions with regards to the representation of
activities, event classes and events.

129
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Application of Qualitative Spatio-temporal Relationships to Activity Understanding.
This work contributes to the rather sparse research [Galata et al., 1999,Fernyhough et al.,
2000a, Southey and Little, 2007] on the application of qualitative spatial relationships
to activity understanding, by modelling spatial relations between objects instead of their
individual behaviours, for learning about activities. This is in contrast to much previous
work [Hamid et al., 2009, Oh and Hoogs, 2010, Wang et al., 2006] in the area of activity
analysis that have modelled behaviour of individual objects in the form of sequences of
locations, or as groups of pixels with certain motion characteristics [Wang et al., 2009,
Xiang and Gong, 2006].

Another contribution is the modelling of complex temporal dependencies by using
Allen’s temporal relationships [Allen, 1983]. In contrast, previous work that use qual-
itative spatial relationships for learning about activities [Galata et al., 1999, Fernyhough
et al., 2000a], assume a simple sequence-based representation.

Those approaches that do not simplify space using qualitative spatial relations are
able to afford only a simple model of time. Thus, much previous work [Hongeng and
Nevatia, 2001,Oliver et al., 2000,Vogler and Metaxas, 2001,Wang et al., 2009,Xiang and
Gong, 2006,Xie et al., 2003] assume a low-order (mostly first order) Markovian temporal
dependency.

To summarize, this work simplifies space by abstracting only qualitatively interesting
spatial relationships. Simplifying space makes it possible to be able to afford the repre-
sentation of complex temporal dependencies (in form of Allen’s temporal algebra). This
makes it possible to have a rich representation of very complex interactions that charac-
terize human activities.

Representing Interactions. Second is the concept of an interaction as a distinct se-
quence of qualitative states between a set of regions, and a way of computing similarity
between interactions. This work defines interactions in a novel way, as a subset of qual-
itative spatio-temporal relationships. Such a definition makes it possible to have a well
defined similarity measure. The similarity measure enables the application of learning al-
gorithms to interactions. Furthermore, the interaction graph introduced is another novelty
that provides a computationally efficient way of performing learning with interactions.

Modelling Interactions using a HMM. Third is the use of a Hidden Markov Model
(HMM) to model a probabilistic relationship between an interaction and its embedding.
This probabilistic relationship makes it possible to learn events despite the presence of
noise. A related contribution is that the HMM provides a way of obtaining stable qualita-
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tive spatial relationships from video. In contrast, previous work as reviewed in [Cohn and
Hazarika, 2001], has only provides a way of obtaining a single crisp representation from
a static image, without incorporating temporal information available in a video.

7.1.2 A Generative Process for Modelling Activities

This thesis directly contributes to the field of learning about activities utilizing a genera-
tive process. We consider the following aspects as novel:

Even Classes as Distributions over Interactions Graphs. The representation of event
classes as probability distributions over interaction graphs is novel. To our knowledge,
there has been no previous work that defines a probability distribution over spatio-temporal
relationships or interactions. We have also not come across any technique that character-
izes likely event models with event-like properties to distinguish from coincidences, as
introduced in this work.

Concept of Activity Graphs. Second is the concept of an activity graph for represent-
ing an entire stretch of real-world activity. The activity graph provides an elegant way of
modelling the entire spatio-temporal layout of the activity in one graph structure. It makes
it possible to separate the modelling of its relationships with an event model, a model of
overlap and coincidence, from its relationships with tracks (in order to model observation
noise). To the best of our knowledge, we have not come across any work that models
these aspects of activities, in an explicit manner.

7.1.3 Unsupervised Event Learning

We contribute to the topic of unsupervised event learning in the following three ways.

Unsupervised Setting. The definition of an unsupervised setting whose aim is to learn
the event classes and the event cover associated with activities is novel. To the best of
our knowledge, we have not come across any work that searches simultaneously for an
optimal event cover and an optimal event model.

Optimal Interpretation via MCMC. A contribution of this work is the use of MCMC
for activity understanding. Previous work such as [Yu and Medioni, 2008] have used
MCMC to find an optimal covering of detected blobs with a set of tracks. This work uses
MCMC to simultaneously find an optimal event cover of tracks and an event model. It



Chapter 7 132 Summary and Future Work

is possible that such a procedure could also be potentially be extended to other areas of
application.

7.1.4 Functional Object Classes and Functional Relationships

A further novel aspect of this work is a technique for learning functional object classes
and functional relationships from the learned event classes.

While much work has focussed on learning and recognizing objects based on affor-
dances, this work introduces the idea of functional object categories that relate to how
objects are actually used with respect to events. The key insight to that part of the the-
sis establishes is that objects can be represented in terms of the functional roles they play
with respect to the events that have been learned. This representation facilitates measuring
the functional similarity of objects that play a similar role with respect to event instances
in the same class. The emergent idea is that of functional object classes whose object
instances are functionally similar with respect to the learned events.

Functional object classes are an important notion as their association with event classes
leads to a holistic definition of activities, where events are not just interactions between
any set of objects, but between instances of certain functional object classes. This idea is
explored in chapter 5 and provides an intuitive framework for describing activities in the
real world.

7.2 Future Work

Throughout this thesis, we have presented a framework for the unsupervised understand-
ing of activities from video data. Possible future work extends into various directions.
This section serves to summarize these directions.

Additional Modelling Capabilities. In our framework, qualitative spatial relations are
prescribed manually to specific datasets. Thus each time the framework is applied to a
new data set, an appropriate set of spatial relations would need to be manually prescribed.
Generally speaking, the possibility exists that these manually assigned relations may not
be optimal for characterizing the events in that dataset.

This problem can possibly be resolved by replacing the manually specified qualitative
relationships by a set of automatically discretized relationships, which are learnt from
training data. A similar idea has been explored by Galata et. al. in [Galata et al., 1999]
by utilizing a HMM.
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Distinction of Events. Our work strictly focuses on a spatio-temporal distinction of
events. However, other possible types of distinctions can be considered, e.g. the types of
objects that are engaged in the events or the location of the events.

We can address this issue by including additional qualitative relationships or features
such as direction, position (zones), objects types into the framework.

Distribution of Events. The activity graphs introduced in this thesis assume that events
are independent of each other and therefore randomly distributed with respect to each
other in space and time. The proposed notions of minimal overlap and coincidental in-
teractions between them can be looked at as a set of constrains of these activity graphs.
However, in many real-world scenarios activities are often composed of events and sub-
events that are structurally related to each other.

Future work therefore can consider a more complex modelling of events in an activity
graph to account for these aspects.

Characterizations of Events. Our system favours only those events that have certain
properties such as being relatively large, interactive and frequent. We do realize that,
outside of the scope of this thesis, there may very well be domains where events have to
be considered that do not fulfil these requirements. One way of addressing this limitation
is to explore alternative characterizations of events, which might very well be domain
specific.

Fixed Tracks. Our current implementation assumes a given and fixed set of tracks of
objects. Additionally we either detect objects by using detectors trained prior to event
discovery or by utilizing much simpler, yet somewhat supervised, colour segmentation
techniques. Even though we do not use any information provided by the detectors about
the class membership of each object, it would be desirable to point a camera at a video
without providing any additional information about the types of objects involved.

Unsupervised object discovery from video [Southey and Little, 2006] is the obvious
choice to resolve this situation. Note also that the proposed framework does not offer the
ability to influence the tracking itself. Interweaving unsupervised object discovery with
object tracking and the proposed framework therefore seems to be a very challenging yet
desirable goal of future work.

Functional Similarity. In our framework two objects, such as a piece of vegetable and
a slice of bread, are regarded as being functionally similar if they are taken away from the
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same plate. We realize that this is overly restrictive.
It therefore seems desirable to learn functional roles of objects in a scene as well as to

tightly integrate such a model of roles into our system. A possibly outline of a solution
is the inclusion of the learning of functional object classes (Chapter 5) into the event
discovery process.

7.3 Concluding Remarks

This thesis introduced a framework for obtaining events from video data in an unsuper-
vised fashion as well as modelling function object classes. We have experimentally val-
idated that we can indeed discover events from video data and verified a relative strong
robustness to noise introduced by low-level image processing techniques. Therefore we
regard the proposed framework as a small but significant step towards activity understand-
ing.



Appendix A

The Metropolis Hastings Algorithm

The Metropolis Hastings algorithm addresses the problem of drawing samples S from
a sample space with a posterior probability %(S), when the normalization term for the
posterior probability is hard to compute. In such cases the posterior probability is given
only in an unnormalized form %∗(S), where the normalized density is

%(S) =
%∗(S)∑

S′∈Ψ %
∗(S ′)

A sampling of this nature is accomplished by the use of Markov chains with state tran-
sition matrix

∏
where

∏
(Sn, Sn+1) = P (Sn+1|S0, ..., Sn) has the property that the future

state Sn+1 depend only on the current state Sn and not on past states. The unnormalized
density %∗ is sufficient for the simulation of the Markov chain to converge to the stationary
density if and only if both the following conditions hold [Neal, 1993]: (i) The Markov
chain is ergodic under certain conditions [Neal, 1993], that is any state is reachable from
any other state in a finite number of transitions; (ii) the normalized density follows the
detailed balance condition, that is

%(S)
∏

(S, S ′) = %(S ′)
∏

(S ′, S)

Since the normalization constant cancels out in condition (ii), it implies that as long
as %∗(S) satisfies this condition, the Metropolis algorithm will converge to the stationary
distribution. The transition probability

∏
(S, S ′) is expressed as the product of: (i) a

proposal distribution Q(S, S ′) that describes the probability of moving from state S to S ′;
(ii) ζ(S, S ′) which is the probability of accepting the move from state S to S ′. In order
that the detailed balance is ensured, the acceptance probability is given by
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ζ(S, S ′) = min

(
1,
Q(S ′, S)%∗(S ′)

Q(S, S ′)%∗(S)

)
In the case when the M-H algorithm is used for optimization by means of sampling,

the Markov chain may be prone to get struck at local maxima and can be extremely slow.
Simulated annealing was introduced to address this problem by changing the density in
such a manner so that more transitions are accepted initially, till later on, only those
with improvements in the density are accepted. This change in the density is designed to
try and ensure that regions of low density are explored in the beginning without getting
struck in local maxima, and as the number of iterations increase, the tendency to move
towards regions of high density increases. Such a change in density can be brought about
by the following modification in the acceptance probability with the introduction of a
temperature term T which is gradually reduced by a geometric schedule T = κnumiter

with 0 < κ < 1, and numiter is the number of iterations. The geometric schedule
is initiated after a certain minimum number of iterations, to allow the Markov chain to
explore regions of low density at the beginning.

ζ(S, S ′) = min

(
1,

(
Q(S ′, S)%∗(S ′)

Q(S, S ′)%∗(S)

) 1
T

)
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Generation of Synthetic Datasets

Synthetic activities are simulated by the following procedure1. The following are the steps
undertaken to generate synthetic data:

1. The number of event classes nc is first ascertained. This number is sampled uni-
formly at random (u.a.r) from the set {4− 10}.

2. The event classes C = {c1, c2, ..., cnc} are randomly assigned prior probabilities.
Activities are modelled in terms of some event classes being very common and
others less and less common. Therefore, the prior probability is modelled as a
normalized geometric distribution P (ci) = p(1−p)i∑nc

i p(1−p)i where ci ∈ C and p is fixed
to be equal to .5.

3. The total number of event graphs and events ne is sampled u.a.r from the set {40−
70}.

4. The number of event graphs npi for each class ci is given by neP (ci).

5. A bag of event graphs B for each event class ci is produced in the following steps.
The first step is to assign a geometric distribution for each class ci. Accordingly, a
parameter pi assigning a geometric distribution to each class ci, so that for the npi
event graphs, the number of event graphs gj is equal to (pi(1− pi)j)npi.

6. Having obtained these statistics, the next step involves sampling the event graphs.
This is carried out by choosing one distinct representative prototype for each class
ci as follows.

1This is similar in spirit to the generative process outlined in section 4.3 of chapter 4
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Since event classes are well characterized by large interaction graphs as motivated
in section 4.2, the number of region histories nr is sampled u.a.r from {3− 6} and
the number fo spatial changes ns is sampled u.a.r from {4− 12}.

Another desirable property of event classes is that the their representative interac-
tion graphs have high interactivity scores. Accordingly an interaction graph with
size (nr, ns) is sampled from a distribution over Γ (described in section 4.3) that
is proportional to their interactivity scores 2. In this manner, the first representative
prototype for the first event class is obtained.

7. Subsequently, one representative prototype for each class is obtained in the same
manner with the added requirement that it is farthest (as queried by the pairwise
distance matrix between the graphs in B) from the representative prototypes for all
previous classes.

8. Other representative prototypes for each class are obtained by sampling the number
of prototypes for class in such a way that they are relatively close to the representa-
tive prototype (again by querying the distance matrix between the graphs in B). For
each representative prototype gj belonging to ci’th class , (pi(1− pi)j)npi copies of
this prototype are obtained.

9. The next stage is the construction of an activity graph. The proportion of overlap
nov is sampled from a geometric distribution

10. A small proportion of coincidental interactions nco are obtained by sampling inter-
action graphs such that they are not large, and interactive at the same time. For size,
nr and ns are sampled u.a.r from the sets {2− 3} and {2− 4}.

11. Once the event graphs and the coincidental interactions have been sampled, they
are randomly dispersed in space and time such that the embeddings encode the
proportion of overlap nov and coincidental interactions nco.

12. Noise is obtained by randomly distorting a small proportion nno of events. This is
done in such a way that there is a single valid change in spatial relationship between
a pair of tracklets.

The procedure described above generates a synthetic data of activities. This process
is referred to as a simulation and is given by S = (Ê , L̂, nco, nov, nno), where Ê is the
original event cover, L̂ the labelling of the event cover. The other three terms nco, nov, nno
stand for the proportion of coincidence, overlaps and noise.

2so that interaction graphs with higher values of interactivity are more likely to be sampled



Appendix C

Evaluation Scores for Event Covers and
Event Classes

The following paragraphs describe a way of evaluating an event cover. The second aspect
is an evaluation score for event classes.

Evaluation of an Event Cover

Let E = {e1, ..., ep} and be the set of events in the event cover E, and the ground-
truth GT = {gt1, ..., gtq}, respectively. Let E ∩ GT be the number of events in E that
completely overlap with those in GT , where ei ∈ E and gtj ∈ GT are regarded as
completely overlapping if they are composed of the same set of tracklets.

The F measure [Baeza-Yates and Ribeiro-Neto, 1999] is well suited for computing
the accuracy of E with respect to GT and is defined as the harmonic mean of precision
Pr and recall Re, as given below.

F =
2PrRe

Pr +Re
, Pr =

‖E ∩GT‖
‖E‖

, Re =
‖E ∩GT‖
‖GT‖

Recall measures how much of the GT is covered by E, while precision measures how
much of the E covers the GT and both of these take values between 0 and 1. While Pr
can be low, Re can be high and vice versa, the value of F-measure is high when the values
of both Pr and Re are high.
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Evaluation of Event Classes

The F-measure described above does not evaluate the accuracy of the event cover with
respect to the assignment of events to a set of event classes. The Rand index [Rand, 1971]
is well suited evaluation score for this purpose. A true positive TP decision assigns two
events belonging to the same class in the ground truth to the same class in the learned
event classes. A true negative TN decision assigns two events belonging to different
classes in the ground truth to different event classes in the learned set. There are two
types of errors. A FP decision assigns two events belonging to different clusters in the
ground truth to the same event class in the learned set. A FN decision assigns two events
belonging to the same event class in the ground truth to different event classes. The Rand
index RI is a measure of accuracy i.e. the percentage of decisions that are correct:

RI =
TP + TN

TP + FP + FN + TN
(C.1)
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Temporal Relationships between two
Intervals

The temporal relationship Temporal(i1, i2) between two intervals i1, i2 are given by:

Before ⇐⇒ End(i1) < Start(i2)− 1

Meets ⇐⇒ End(i1) < Start(i2)− 1

Overlap ⇐⇒ End(i1) < Start(i2) ∧ Start(i2) < End(i1)

Starts ⇐⇒ Start(i1) < Start(i2) ∧ End(i1) < End(i2)

During ⇐⇒ Start(i2) < Start(i1) ∧ End(i1) < End(i2)

Finishes ⇐⇒ Start(i1) < Start(i2) ∧ End(i1) < End(i2)

Equal if i1 = i2
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