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Abstract 

This thesis examines the association between diet and the mandibular morphology 

in non-human primates as a model for understanding the morphology present in 

hominins. The traditional explanations of the morphological differences present in 

Paranthropus and Australopithecus have been challenged due to revised interpretations 

of the mandibular morphology, and the application of stable carbon isotopes and dental 

microwear texture analysis, which have resulted in a reassessment of the relationship 

between diet and masticatory morphology.  

The main aim was to explore the relationship between diet and mandibular/ dental 

morphology, whereby diet was analysed using a series of different diet classifications. 

Mandibular and dental traits were measured on a sample that included both extant non-

human primate taxa (n = 37) and extinct hominin taxa (n = 6). The non-human primate 

species represent a diversity of dietary preferences, habitats and body sizes, while the 

hominin sample includes species from Paranthropus, Australopithecus and early Homo.  

Morphological differences were identified between consumers of different diets, 

including between consumers of hard and tough foods. The strength of the association 

between diet and morphology was influenced by how diet was classified, with the more 

refined dietary classification techniques consistently and more successfully identifying 

morphological differences. Body size differences were also identified.  

Results comparing the hominins to non-human primates of known-diet indicate that 

hominins were likely to have consumed quite varied (omnivorous) diets. The results 

also highlight how unique the hominin corpus robusticity is, whereby it is beyond the 

range of the extant non-human primates, thus diet interpretations in relation to extreme 

robusticity remain elusive. 

While diet is not the only variable to contribute to masticatory form, this research 

demonstrates that it has a measurable influence on mandibular morphology. This 

research therefore offers a new perspective addressing the association between diet and 

morphology, providing additional evidence comparing hominin morphology to that of 

the non-human primates. This study contributes to an area of active research in 

palaeoanthropology, and forms a basis from which additional studies can proceed.  
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Chapter 1  : Introduction 

This study was borne out of recent challenges to the traditional interpretations of the 

masticatory morphology of Paranthropus and Australopithecus. Upon the discovery of 

the first specimens to be taxonomically classified Paranthropus, Broom emphasised the 

morphological distinctions between those specimens and those attributed to the genus 

Australopithecus (Broom, 1938). The craniofacial morphology present in the 

Paranthropus specimens was argued to be so different from the Australopithecus 

specimens that they could not possibly be part of the same genus. Features such as very 

large, heavily buttressed and highly robust craniofacial architecture, with inferred 

relatively massive muscles of mastication, and post-canine megadontia, characterised by 

hyper-thick dental enamel and molarised premolars (Broom, 1938; Dean, 1988; Grine & 

Martin, 1988; Wood & Strait, 2004; Wood & Constantino, 2007), all distinguished 

Paranthropus from the more gracile Australopithecus and earned Paranthropus the 

nickname: The Nutcracker Man (Lee-Thorp, 2011). A comparison of the craniofacial 

morphologies of Paranthropus, Australopithecus and early Homo is demonstrated in 

Figure 1.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.1: Comparison of the morphological differences present in the cranium, maxilla and mandible of 

Australopithecus africanus, Paranthropus boisei and Homo habilis (image courtesy of Ungar & Sponheimer, 

2011) 

When describing the Paranthropus dental morphology Robinson (1954a: 328) 

highlighted the overall disparity of the size of the small anterior dentition in relation to 

the extremely massive postcanine dentition, the flattening of the postcanine dentition, 

Image removed due to copyright 
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and the thickening of the bone around the corpus, and compared these features with 

those of other hominins. He suggested that these traits were indicative of a diet of 

“crushing and grinding… vegetable materials”. In contrast, Australopithecus presented 

a more balanced and proportionate dentition, with larger canines and smaller postcanine 

dentition, indicative of a more omnivorous diet (Robinson, 1954a). Robinson (1963: 

391-392) stated that these features in Paranthropus were dietary specialisations that 

“point[ed] to a prime dietary function of crushing and grinding”. This concept became 

known as the Dietary Hypothesis, and it was long assumed that the extreme 

morphological differences between Australopithecus and Paranthropus were the result 

of very different diets. This functional morphological hypothesis prevailed and indeed 

for many years after researchers attempted to identify the types of food to which 

Paranthropus was adapted, including seed eating (Jolly, 1970), hunting and scavenging 

(Szalay, 1975), nut-cracking (Kay, 1981), and frugivory (Walker, 1981). 

Most adaptive explanations of masticatory morphology are related in some way to 

diet, with comparative studies determining that variation in the size and shape of the 

masticatory morphology is associated with stress (Hylander, 1979a, b, 1984, 1985, 

1988; Bouvier, 1986a, b; Ravosa, 1991; Hylander & Johnson, 1994). Mandibular and 

dental features in non-human primates were analysed to determine their potential 

biomechanical importance, in particular their potential to resist high-stress loads. An 

increase in the width or depth of either the symphysis or the corpus of the mandible 

correspond to particular strains on the mandible during mastication and ingestion, and 

are considered to be necessary adaptations to resist those strains (Hylander, 1979a, b, 

1984, 1985, 1988; Bouvier, 1986a, b; Ravosa, 1991; Hylander & Johnson, 1994). The 

presence of enlarged postcanine dentition (postcanine megadontia) and hyper-thick 

dental enamel are also considered to be important biomechanical adaptations to resist 

hard or tough foods (Dean, 1988; Hylander, 1988; Daegling, 1992; Macho & Spears, 

1999; Lambert et al., 2004; Macho, 2004; Lucas et al., 2008a; Constantino et al., 2011; 

Ungar, 2011; Pampush et al., 2013; Grine & Daegling, 2017). These were some of the 

features that previously led Robinson (1954a, 1963) to propose the Dietary Hypothesis, 

whereby Australopithecus and Paranthropus were distinguished from one another on 

the basis that they were each adapted to consume strongly divergent diets, with 

Paranthropus in particular adapted to diets of mechanically challenging foods.  

For Paranthropus, the large, flat molars would have been able to crush hard foods, 

while their thick enamel would have resisted the material properties of the foods 

consumed, and their robust masticatory apparatus would have been able to generate the 
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high forces required to consume these foods, while at the same time resisting failure 

when masticating hard foods (Teaford & Ungar, 2000; Lucas et al., 2008a, b). These 

traits are often interpreted as dentognathic features adapted to the consumption of hard 

food items (Grine et al., 2006a). All of which led to the conclusion that the morphology 

present in Paranthropus were specialist adaptations to diet (Robinson, 1963).  

A combination of a reinterpretation of the morphology by Wood & Strait (2004), 

and the application of dental microwear analysis and stable carbon isotope analysis 

challenged the original grounds for separating Paranthropus and Australopithecus. The 

review by Wood & Strait (2004) led to the conclusion that rather than interpreting the 

extreme morphology present in Paranthropus as an adaptation to being a dietary 

specialist, the morphology would instead facilitate consumption of a wide variety of 

foods, thus making this genus a dietary generalist. The results from both dental 

microwear texture analysis and stable carbon isotope analysis supported this 

reinterpretation of the morphology by Wood & Strait (2004). Furthermore, the dental 

microwear texture analysis and stable carbon isotope analysis also established that 

overlap existed between P. robustus and A. africanus, and that distinctions were present 

between P. boisei and P. robustus.  

The results from the dental microwear analysis on P. robustus and A. africanus 

indicated that the two species consumed very similar diets, demonstrating a high degree 

of overlap between the anisotropy (long, parallel striations which form on the surface as 

a result of consuming tough foods, e.g., leaves and stems (Ungar et al., 2006, 2008)) 

and complexity (heavily pitted surface textures which form as a result of consuming 

hard and brittle foods, e.g., seeds (Silcox & Teaford, 2002; Ungar et al., 2006, 2008; 

Scott et al., 2009)) of the microwear patterns (Scott et al., 2005; Peterson et al., 2018). 

It was suggested that where the microwear patterns did not overlap this was the result of 

the two genera consuming different foods on a seasonal basis (Scott et al., 2005). 

Overall, the high level of dietary overlap between the two genera was supported by 

analysis of the stable carbon isotopes in the two species; evidence suggests that both 

species’ diets predominantly included C3 based foods (plants from forest understory), 

but also a significant non-C3 derived component, each consuming 35-40% C4 foods 

(grass seeds, roots, sedges and underground storage organs (tropical grasses)) 

(Sponheimer & Lee-Thorp, 1999; Sponheimer et al., 2005a, 2006a). This represents an 

unexpected degree of overlap in the same isotopic dietary regime for the two South 

African hominin species, who based on their masticatory morphology were assumed to 

have consumed very different diets.  
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Further analysis and comparison between P. boisei and P. robustus, congeners from 

East and South Africa provided evidence of further complexity. These species express 

similar patterns of masticatory robusticity and on this basis were classified into the 

genus Paranthropus and historically considered to demonstrate a morphological 

adaptation to a common dietary habitat. Evidence now suggests that they consumed 

diets from different isotopic regimes: P. boisei predominantly consumed C4 foods, 

while P. robustus consumed a varied diet consisting of both C3 and C4 foods 

(Sponheimer et al., 2006a, 2013; Ungar et al., 2008; Cerling et al., 2011; Wynn et al., 

2013).  

The results from the studies using stable carbon isotopes and dental microwear 

texture analysis indicate they are at odds with the traditional interpretations of the 

hominins based on comparative morphology. There are morphological differences 

between Australopithecus and Paranthropus that can no longer be easily explained by 

clear dietary differences, but there are also dietary differences between the South and 

East African Paranthropus species that do not appear to correspond to expected 

morphological differences. These results counter the conventional notion that 

Paranthropus species were ‘specialist’ hard object feeders and indicate that more 

caution should be applied before attempting to reconstruct hominin palaeodietary 

ecology based only on the morphological data available (Lee-Thorp, 2011).  

In an attempt to explain the morphology in a way that would complement the 

microwear and stable carbon isotope analyses, a concept based on seasonality of 

resources was invoked. As the microwear results indicated that the diets of A. africanus 

and P. robustus differed on a seasonal basis, it was suggested that their diets differed 

not in terms of the “preferred foods” consumed, but instead on those foods consumed 

during the period of resource scarcity, termed “fallback foods” (Laden & Wrangham, 

2005; Scott et al., 2005; Lambert, 2007; Marshall & Wrangham, 2007; Marshall et al., 

2009). Fallback foods are suggested to be abundant and low in quality and as a result, 

may require morphological adaptations in order to process them (Lambert, 2007; 

Marshall & Wrangham, 2007; Constantino & Wright, 2009). Based on this final point, it 

was suggested that the derived morphology present in Paranthropus was a reflection of 

their fallback foods (Scott et al., 2005; Ungar et al., 2008). The Fallback Food 

Hypothesis essentially replaced the Dietary Hypothesis of Robinson (1954a, 1963) as 

the proposed explanation for the divergent morphology present in Australopithecus and 

Paranthropus. 
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There are, however, problems with the hypothesis. While it cannot be doubted that 

non-human primates alter their diets during the seasons, or for that matter that there 

would have been a seasonal change in food resources during the Plio-Pleistocene, it has 

not been straightforward to test its effects in extant species (McGraw & Daegling, 

2012). Therefore, the association between fallback foods and morphology has not been 

established. Consequently, it is perhaps too soon to rule out the possibility of diet in 

general (not only fallback foods) corresponding to morphology.  

This study therefore sought to elucidate the potential evolutionary stimuli 

responsible for Paranthropus masticatory morphology. The potential factors that could 

influence morphology that were focussed on include: diet and body size, and to a lesser 

extent, sex dimorphism and taxonomy. This was done through the comparison of the 

mandible and its associated dentition from wide selection of haplorhine primate species, 

comprising Catarrhines and Platyrrhines, chosen with the intention of developing a 

greater insight of the interplay between masticatory morphology and diet, which would 

greatly enhance existing models of early hominin palaeobiology. By exploring patterns 

of variation using this strategy, it was possible to postulate on the strength of the 

influence of such specific factors. As highlighted by Ungar & Sponheimer (2011), in 

order to further palaeodietary research it is necessary for the results from microwear and 

stable carbon isotope analyses to be integrated with data of primate ecology and more 

focus is needed on the underlying processes, not just the outcomes.  

The hominin sample for this project included A. afarensis, A. africanus, P. boisei, P. 

robustus, Homo habilis sensu lato, and H. ergaster. The Australopithecus species were 

important to include as they pre-date the emergence of Paranthropus and thus present 

the ancestral features, while the early Homo species were important as they overlapped 

and post-dated the presence of Paranthropus.  

 

1.1 Research aims 

The general focus of this research project was to determine if there are cranio-dental 

morphological differences present in consumers of different diets. In particular, whether 

there are morphological differences between those species that consume frugivorous-

based diets from those that consume folivorous-based diets, or those containing 

granivorous contents in the diets. Comparison of dietary categories such as these is 

based on the knowledge that the mechanical properties of foods vary. In theory, a 

species with a diet dominated by fruit pulp, as a predominantly frugivorous species 

would be, should be very different morphologically from one dominated by leaves, as a 
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folivorous species would be, or one that contains seeds, as a granivorous species would. 

Fruit pulp is soft and requires very little mastication prior to consumption, while tough 

foods such as bark and mature leaves, and hard foods such as immature seeds are more 

obdurate and thus more difficult to process (Lambert et al., 2004; Lucas, 2004; Wright, 

2005; Taylor, 2006a). 

To take this exploration a step further, it was expected that the quantity of any 

specific food category would be important. Thus, species that consume high quantities 

of seeds or leaves will be morphologically different to those that consume low 

quantities of these foods. This is because greater consumption of obdurate foods places 

the masticatory apparatus under greater mechanical loading strains, which should thus 

result in biomechanical adaptations to help resist such loads (Taylor, 2006a; Grine & 

Daegling, 2017; Daegling & Grine, 2017). Depending on where the stresses and strains 

occur, the mandible is predicted to respond by increasing bone growth in the corpus and 

symphysis to improve resistance to the increased loading, this can include making the 

corpus or symphysis deeper or wider.  

A relatively deeper mandibular corpus was suggested to be the best way of 

resisting parasagittal bending loads (Hylander (1979a). These loads increase the tension 

and compression of the alveolar and basilar elements of the non-biting side of the 

corpus during mastication and incision. Previous comparative studies have highlighted 

that those species regularly consuming a diet that routinely requires forceful biting 

present deeper corpora than those species that do not consume such foods (Bouvier, 

1986a, b; Ravosa, 1991; Daegling, 1992).   

A relatively thicker mandibular corpus was proposed to be the best way of 

resisting axial torsion (Hylander, 1979a). Axial torsion is said to occur on the working 

side of the mandible during mastication and incision.  

 A relatively deeper symphysis was proposed to resist vertical bending of the 

symphysis (Hylander, 1984, 1985; Taylor, 2002). The same parasaggital bending stress 

and torsional load placed on the mandibular corpus during mastication also produces 

vertical bending of the symphysis (Hylander, 1985). During the vertical bending, the 

alveolar symphysis is compressed and the basilar symphysis is placed under increased 

tension.  

 A relatively thicker mandibular symphysis was proposed to resist lateral 

transverse bending (wishboning) (Hylander, 1985; Taylor, 2002). Wishboning is the 

result of a combination of bite force components that are at their maximum for stress 

and strain from both the working side and the balancing side occurring late in the 
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power-stroke (Hylander, 1985; Hylander et al., 1987; Hylander & Johnson, 1994; 

Vinyard & Ravosa, 1998). A thicker mandibular symphysis can be achieved through the 

presence of a “simian shelf” or a superior transverse torus, which provide the necessary 

buttressing to the wishboning (Hylander, 1984). 

 The mandibular morphology of Paranthropus displays many of the above traits, 

which reinforced the idea that it was morphologically adapted to resist the stresses and 

strains of a hard or tough food diet (Hylander, 1979a, 1988; Daegling & Grine, 1991). 

However, recent studies have questioned the proposed dietary differences between 

Australopithecus and Paranthropus, and thus the traditional explanation of their 

morphological differences (Scott et al., 2005; Sponheimer et al., 2005a, 2006a, 2013; 

Ungar et al., 2008; Cerling et al., 2011; Ungar & Sponheimer, 2011). Based on this, it is 

clear that this topic is still of importance in palaeoanthropology today. It is for this 

reason that the main aim of this project is to explore the association between diet and 

the masticatory morphology of the mandible and associated dentition. In order to 

explore the potential association between diet and morphology, it was necessary to 

analyse non-human primates of known diet as comparative analogues. The first step was 

to explore the following questions: 

 

1. Are there morphological differences present between consumers of different 

diets?  

2. Are there morphological differences between consumers of low quantities of 

particular foods to consumers of higher quantities of the same foods? 

3. How much does diet contribute towards morphological variation? 

 

 Once morphological variation of non-human primates in relation to diet was 

understood the next step was to compare hominins to non-human primates. The 

following questions were explored:  

 

4. Is the hominin morphology comparable to that present in non-human primates? 

5. Is it possible to associate the morphological features of the hominins with 

dietary categories analogous to non-human primates?  

6. Can the way hominins compare with known-diet non-human primates be used to 

frame hypotheses about diet variation in relation to morphological patterns in 

early hominins? 
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1.1.1 Sub-aim 

o To assess the potential viability of the Fallback Food Hypothesis as an 

explanation for the morphological differences present in Paranthropus and 

Australopithecus. 

 

1.2 Research objectives: 

In order to achieve these aims the following objectives were established: 

 Review and discuss the background of the project: the traditional interpretations 

of the functional morphological differences between Paranthropus and 

Australopithecus, and the more recent challenges to conventional wisdom.  

 To establish a non-human primate database of relevant species to analyse the 

mandible in the context of dietary variation and morphology. Other factors, such 

as sex dimorphism and taxonomy were also considered.  

 To run statistical tests to assess the variation of the mandible in the different 

species, and to determine if there is significant association between diet and the 

mandibular morphology.  

 To assess the results obtained in this study in the context of the traditional 

Dietary Hypothesis and the Fallback Food Hypothesis invoked today. 

 

1.3 Remaining chapters 

In this project the morphology of Paranthropus and Australopithecus was discussed, 

both in relation to the traditional Dietary Hypothesis and the more recent challenges to 

these interpretations. Extant non-human primates were explored to determine those that 

make suitable comparative analogues to the extinct hominin condition. Measurements 

were taken of the adult mandible of carefully selected species and analysed in the 

context of how the morphology corresponds to known diet, sex dimorphism and 

taxonomic information. Graphs based on known information from the non-human 

primates were created and hominins were interpreted in light of the morphological 

information gathered. The traditional Dietary Hypothesis and the Fallback Food 

Hypothesis were analysed in light of the information obtained using non-human 

primates. 

Chapter 2: Evidence of diet adaptation in hominins 

The morphological features of Paranthropus and Australopithecus are presented in 

the context of the traditional Dietary Hypothesis, the challenges to this hypothesis based 
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on biomechanical reinterpretations of the morphology, the introduction of stable carbon 

isotopes and dental microwear texture analysis. The proposed resolution to the apparent 

discontinuity between the morphology and the stable carbon isotopes and dental 

microwear texture analyses is briefly introduced. 

Chapter 3: Dietary adaptation in non-human primates 

Diet variation and seasonality of resources in non-human primates and their 

responses to them are presented in this chapter. The Fallback Food Hypothesis and its 

potential applicability to explain behavioural and morphological differences in non-

human primates and potentially hominins are further discussed.  

Chapter 4: Materials and Methods 

This chapter details the sample used for this study, including hominins and non-

human primates, and the measurements obtained for each species and why. It finishes 

off detailing the statistical analyses used in this study and why they were selected. 

Chapter 5: Statistical analysis of non-human primates and hominins 

This chapter includes the results from the various statistical analyses chosen to test 

the research questions. The focus of the chapter is divided into two sections, with the 

first part analysing the variation present in apes, Old World and New World monkeys in 

relation to their diets and body size, and the second part analysing how hominins 

compare to known-diet non-human primates.  

Chapter 6: Discussion  

This chapter discusses the results in relation to the research questions, and how they 

compare to previous studies exploring similar questions. The chapter further discusses 

what the results could mean for interpreting Paranthropus morphology. Limitations of 

the study are discussed, as are future recommendations for this research.  

Chapter 7: Conclusion 

The main conclusions reached regarding the research questions answered and any 

other key points addressed in the discussion chapter are summarised here.  

Bibliography 

This chapter includes the complete list of references used in the thesis. 
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Appendix 

All of the background information from the hominins analysed in this thesis is 

included in this chapter. This includes the environmental reconstructions, dental and 

mandibular measurements, the element analysed and its state of preservation. Also 

included in this chapter are the t-test/ ANOVA results that were not directly relevant to 

the results chapter.   
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Chapter 2  : Evidence of diet adaptation in hominins 

 This chapter introduces a brief summary of the hominins analysed, the Dietary 

Hypothesis of Robinson (1954a, 1963), the historical interpretations of the morphology 

present in Paranthropus, and how the interpretations of the morphology have changed 

assisted by the introduction of stable carbon isotope and dental microwear analyses. The 

application of stable carbon isotope and dental microwear analyses appears to have 

challenged the traditional grounds upon which Robinson’s (1954a, 1963) Dietary 

Hypothesis was laid out, and the suggested resolution to these challenges is addressed 

briefly in this chapter, to be discussed in greater detail in the following chapter.  

 

2.1 A brief history of hominins 

 As the focus of this project is centred on the morphological adaptations of 

Paranthropus in relation to Australopithecus, the study sample included species from 

both genera and early Homo (Table 2.1). 

 

Table 2.1: Australopithecus, Paranthropus and early Homo species analysed in this project 

Species 
Date of 

presence 

Type specimen 

(element) 
Locations First descriptors 

A. afarensis 
3.9 - 2.8 

mya 
LH 4 (mandible) 

Ethiopia: Belohdelie; Dikika; 
Fejej; Galili; Hadar; Laetoli; 

Ledi-Gararu; Maka; Omo; 

Woranso-Mille. Kenya: Koobi 

Fora and West Turkana; 
Lothagam 

Johanson et al. (1978) 

A. africanus 
3.5 - 2.0 

mya 

Taung 1 (cranium 

and mandible) 

South Africa: Gladysvale; 

Makapansgat; Sterkfontein; 
Taung. 

Dart (1925) 

P. boisei 
2.3 - 1.2 
mya 

OH 5 (cranium) 

Ethiopia: Omo Shungura and 

Konso-Gardula. Kenya: 
Chesowanja; Koobi Fora, West 

Turkana. Tanzania: Olduvai; 

Peninj 

Leakey (1959) 

P. robustus  
2.31 - 0.6 

mya 

TM 1517 (partial 
cranium and 

mandible) 

South Africa: Coopers; 
Drimolen; Gondolin; Kromdraai; 

Swartkrans 

Broom (1938) 

H. habilis 
sensu stricto 

2.3 - 1.4 
mya 

OH 7 (cranial, 

dental, postcranial 
elements of a 

juvenile) 

Kenya: Koobi Fora; Tanzania: 

Olduvai; Malawi: Uraha; South 

Africa: Sterkfontein 

 Leakey et al. (1964) 

H. ergaster 
1.8 - 1.3 

mya 

KNM-ER 992 

(mandible) 

Kenya: Koobi Fora; South 

Africa: Swartkrans 

Groves & Mazák (1975) 

– cited in Wood & 
Leakey (2011) 

*mya = millions of years ago 

 

 Australopithecus afarensis is widely purported to be the common ancestor of all 

hominins postdating 2.6 million years ago, including A. africanus, Paranthropus and 
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Homo (Johanson & White, 1979; Ungar, 2004; Grine et al., 2012). Considering this 

proposed phylogenetic history, A. afarensis should then represent the morphology from 

which all descendants derive, as indeed is suggested from its occlusal morphology 

(Ungar, 2004; Wood & Strait, 2004). A. afarensis is therefore an appropriate species to 

include as they are widely considered to represent the more primitive earlier 

australopithecine condition (Johanson & White, 1979; White et al., 1981; Ungar, 2004; 

Wood & Strait, 2004; Grine et al., 2012). The two species of early Homo (H. habilis 

sensu lato and H. ergaster) formed the out-group comparison. 

 The environments, habitats and time range of A. afarensis do not overlap with those 

of Paranthropus. A. afarensis, does however, still provide insight into how the nature of 

diets changed over the millions of years leading up to and during the existence of 

Paranthropus.   

 As well as forming the out-group comparison, early Homo has been included in this 

study as it overlapped with the East African Paranthropus boisei, both in temporal and 

geographic distribution (Leakey et al., 2012; Cerling et al., 2013) (Table A.1 in 

Appendix A details the exact hominin specimens used and their condition). To be 

consistent with the microwear and isotopic studies conducted, the H. habilis sample also 

included H. rudolfensis and is referred to as H. habilis sensu lato. The inclusion of H. 

ergaster provided a clearly distinguished species to compare to Australopithecus and 

Paranthropus. H. ergaster is analysed as the African sample of H. erectus (if classified 

sensu lato), as it was not considered useful or pertinent to include the Asian samples of 

H. erectus, as they lived in a very different environment to the australopithecines and 

any differences in their morphology would likely reflect this environmental difference.  

 Postcranial evidence support that all of the hominins in question were adapted to 

bipedal locomotion, although this became more efficient over time (Leakey & Hay, 

1979; Day & Wickens, 1980; Stern & Susman, 1983; Rose, 1984; Brown et al., 1985; 

Hunt, 1994; Ward et al., 2001, 2012; Pontzer et al., 2009; Haile-Selassie et al., 2010a; 

Raichlen et al., 2010; DeSilva et al., 2012; Drapeau & Harmon, 2013; Prang, 2015; 

Fernández et al., 2016). The craniofacial morphological differences between the 

hominin genera analysed ranges from more gracile (Australopithecus, early Homo) to 

more robust (Paranthropus) (Wood & Strait, 2004). This difference is present in almost 

all cranial features, although variation is present in the degree of difference for each 

species. Where each species is described as having possessed megadont postcanine 

dentition (large, flat molars), with thick dental enamel, pronounced facial prognathism 

and large overall mandibular corpus shape relative to extant hominoids, each trait is 
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greatest in Paranthropus relative to Australopithecus or early Homo (Chamberlain & 

Wood, 1985; Dean, 1988; Grine & Martin, 1988; Teaford & Ungar, 2000; Ward et al., 

2001; Ungar, 2004; Wood & Strait, 2004). A size reduction in the morphological 

features occurred during the time of Homo, where H. habilis sensu lato retained many 

of the ancestral features of earlier hominins, while H. ergaster did not, instead 

demonstrating a sizable reduction in the size of its cranial and dental traits (Wood & 

Collard, 1999; Ungar, 2004; Wood & Strait, 2004).  

 The reduction in size of morphological features in Homo was postulated to be due to 

the use of Oldowan stone tools
1
 to acquire and process foods, which in turn reduced the 

selective pressures acting on their craniofacial morphology (Ungar, 2004; Wood & 

Strait, 2004). While this last suggestion could be doubted given that the advent of 

Oldowan stone tools appears to have preceded the emergence of Homo, dating back to 

2.5 Ma – around the time of both A. garhi and P. aethiopicus (Walker et al., 1986; 

Asfaw et al., 1999) – it is also possible that it is accurate given the time it takes for 

morphology to adapt to behavioural change (Bock & von Wahlert 1965; Gailer et al., 

2016; Ungar & Hlusko, 2016). 

 Early hominins were also characterised by varying degrees of sexual dimorphism, 

presenting little canine dimorphism, but in some species very strong body mass 

dimorphism (Plavcan & van Schaik, 1997; Plavcan et al., 2005). A. afarensis (although 

see Reno et al., 2003, 2010 for an alternative interpretation), P. boisei, H. habilis and H. 

ergaster were all described as having had large body mass dimorphism (Stern & 

Susman, 1983; McHenry, 1988, 1991a, 1992; Ward et al., 2001; Plavcan et al., 2005; 

Gordon et al., 2008; Gordon, 2013; Grabowski et al., 2015). A. africanus and P. 

robustus, in contrast had more moderate levels of body mass dimorphism (McHenry, 

1991b, 1992; McHenry & Berger, 1998; Susman et al., 2001; Gordon, 2013). These 

body mass dimorphism differences highlight that even within the same genera, 

morphological differences occurred.  

 Considerable attention has been focussed on the types of habitats the early hominins 

would have inhabited, with various techniques having been applied to reconstruct the 

past environments and the dates during which the hominins existed. Through gaining a 

more comprehensive understanding of the environment, it could potentially put into 

context the morphological adaptation of the hominins, as well as provide indications of 

their behavioural and social adaptations (Reed, 1997). General reconstructions of the 

                                                             
1
 Oldowan stone tools represent the earliest stone tool industry identified. They originated from Olduvai 

Gorge, and are primarily represented by simple artefacts, such as choppers, hammerstones and flakes 

(Leakey, 1971).  
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hominins are as follows: Australopithecus existed mostly in regions of woodland with 

good water supply, likewise Paranthropus lived in similar habitats, but with 

increasingly open landscapes, and early Homo followed this environmental shift 

towards more open and arid environments (Reed, 1997, 2008; Potts, 1998; Wood & 

Strait, 2004; Behrensmeyer, 2006; Behrensmeyer & Reed, 2013) (detailed information 

on the different palaeoenvironments reconstructed for each of the hominin species 

analysed in this project is available in Appendix A, Tables A.2-A.3). This change in 

environment is a reflection of a changing climate between 4 – 2 million years ago 

(Reed, 1997; Behrensmeyer, 2006).   

 

2.2 The Dietary Hypothesis as a theory for the derived masticatory morphology 

 When the craniofacial morphology of Paranthropus was first described by 

Robinson (1954a) the derived morphological features observed in Paranthropus relative 

to Australopithecus were explained as specialist adaptations to diet. Wherein, 

Paranthropus and Australopithecus were adapted to consume strongly divergent diets - 

the Dietary Hypothesis.  

 Robinson (1963) observed that the morphology of Paranthropus was very different 

from the hominins that both preceded it (Australopithecus) and followed it (Homo). The 

derived features of Paranthropus (Table 2.2) were assumed to be of adaptive 

significance. The traits, relating in particular to the dentition (postcanine megadontia, 

including molarised premolars, hyper-thick enamel, large crowns and large occlusal 

surfaces) and superrobust mandible were suggested to be part of a suite of specialised 

adaptations to crushing and grinding (Robinson, 1954a, 1963). A viewpoint shared by 

many researchers, with the consensus that Paranthropus was adapted to the frequent 

consumption of unusually hard or tough objects, which would most likely have been 

small, thus not necessitating much incisal preparation (Hylander, 1979b, 1988; Demes 

& Creel, 1988; Rak, 1988; Daegling & Grine, 1991; Teaford & Ungar, 2000; 

Constantino et al., 2009, 2010, 2011; Smith et al., 2015). Hylander (1988: 233) referred 

to the masticatory apparatus as one that was “especially designed to generate and 

dissipate large forces during powerful postcanine biting and/ or mastication”.  
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Table 2.2: Features distinguishing Paranthropus and Australopithecus according to Robinson (1954a, b, 1963) 

Cranial feature Paranthropus Australopithecus 

Sagittal crest Present  Normally absent 

Maxillary prognathism 
Reduced due to poor development of 

anterior dentition  
More pronounced 

Mastoid region Projects laterally Less pronounced 

Post-orbital constriction  Well-developed Less pronounced 

Zygomatic bone/ processes Well-developed Slender 

Mandibular/ dental feature     

Permanent canine 

Crown is small, more symmetric, little 

relief on the lingual surface, but 
substantial root. 

Crown is large and highly 
asymmetric 

Anterior dentition 
Canines and incisors smaller than in 
Australopithecus 

Canines and incisors are 
relatively large for a hominin 

Postcanine dentition 
Massive postcanine dentition, including 
molarised premolars set in massive bone 

Postcanine dentition in 
proportion and less robust bone 

Postcanine dentition Strongly developed root systems Weaker root system 

Enamel Hyper-thick  Thick 

Muscle markings     

Temporalis Clearly large relative to brain-case Less pronounced 

Masseter 
Muscle attachments clearly marked and 

extensive 
Less pronounced 

Pterygoid muscles 

Relatively great development of the 

lateral pterygoid plate indicates a large 

and powerful pterygoid muscles 

Less pronounced 

Nuchal muscles Robust  Less pronounced 

 

 Robinson (1963) did concede that the massive postcanine dentition in Paranthropus 

could simply be a reflection of body size difference. A point reinforced by Pilbeam 

(1972) and Pilbeam & Gould (1974), who suggested that Paranthropus was a larger 

allometrically
2
 scaled equivalent of Australopithecus that required a larger postcanine 

dentition in order to masticate more of the same food during each chewing cycle to 

support its larger body size. Scaling is observed in extant non-human primates, e.g., in 

the mandibular symphysis of Papio species (Koyabu & Endo, 2009; Daegling et al., 

2013), and in terms of diet and size differences, with larger species observed to 

consume a more fibrous diet than smaller ones (Jarman-Bell principle) (Gaulin, 1979; 

Daegling & McGraw, 2001). However, scaling arguments to explain the differences in 

morphology of these hominins were dismissed on the grounds that: 1) Paranthropus 

could not have consumed more of the same food than Australopithecus because their 

microwear patterns (discussed later in the chapter) indicated that dietary differences 

were present (Kay & Grine, 1988), 2) Paranthropus was estimated to be a similar size 

to Australopithecus (Kay & Grine, 1988; Daegling & Grine, 1991; Daegling et al., 

                                                             
2
 Allometry is defined as the "study of size and shape in relation to ontogenetic, evolutionary, and static 

intra- and interspecific series” (Shea, 1983: 275) 
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2013), and 3) the anterior dentition of Paranthropus was much reduced in size relative 

to that of Australopithecus (Robinson, 1954a).  

 The size and shape of the dentition of Australopithecus was closer to that of the 

other hominins than was Paranthropus. Indeed, differences in tooth size were proposed 

as an explanation for the derived mandibular morphology in Paranthropus. The 

influence of the growth of the dentition on the form of the mandible – first proposed by 

Dart (1948) – was developed further by Wolpoff (1975), Kay (1981), Leuteneger 

(1982), and Chamberlain & Wood (1985). Wolpoff (1975) suggested that the megadont 

postcanine teeth were responsible for the robust mandibular morphology on the grounds 

that the larger the teeth the larger the surrounding jaw would need be to house the teeth. 

While the reduced size of the canines were indicative of reduced sexual dimorphism, 

meaning that the corpus did not need to accommodate long canine roots, which in the 

process made the corpus appear wider relative to its height, and thus, “more robust” 

(Kay, 1981; Leuteneger, 1982; Chamberlain & Wood, 1985).  

 Evidence does not support these proposals. No association has been found between 

canine size or molar tooth size and mandibular robusticity in catarrhines, platyrrhines 

and hominins (Daegling & Grine, 1991; Teaford & Ungar, 2000; Plavcan & Daegling, 

2006). In fact, when differences have been identified in the mandible between human 

populations there has been very little difference in tooth size (Holmes & Ruff, 2011). 

Studies investigating the possible link between sexual dimorphism and mandibular 

robusticity in haplorrhines (Daegling, 1989; Daegling & Grine, 1991; Plavcan & 

Daegling, 2006; Taylor, 2009) and strepsirrhines (Daegling & McGraw, 2001) did not 

find a correlation. Thus, the proposed correlation between dental allometry, sexual 

dimorphism and mandibular robusticity are not supported (Plavcan & Daegling, 2006). 

Instead, it was maintained that differences in postcanine tooth size in early hominins 

were more likely a reflection of dietary differences as Robinson (1963) suggested 

(Hylander, 1988; Brace et al., 1991; McHenry & Coffing, 2000; Teaford & Ungar, 

2000; Ungar, 2011).  

 To support the Dietary Hypothesis Robinson (1963) highlighted the fact that the 

hominin formerly known as Telanthropus (presently H. erectus) was able to co-exist 

with Paranthropus in South Africa. If both were consuming the same foods then 

continued coexistence would be extremely unlikely, but if both were adapted to 

different ecological requirements then coexistence is entirely possible (Robinson, 1963). 

Thus, dietary specialisations distinguished Paranthropus from Australopithecus and 

Homo in both morphology and the types of foods consumed.  
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 It is possible that the robust features present in the early hominin mandibles were 

the result of inheritance from a robust ancestor (Daegling & Grine, 1991). A. afarensis 

for example presents many of the same features of Paranthropus, but not to the same 

degree of expression. A. afarensis is therefore considered to have been less efficient at 

countering stresses in the corpus and symphysis (Hylander, 1988). This notion is 

consistent with the gradual increase of the mandible and postcanine size in the early 

hominins, increasing from A. anamensis > A. afarensis > A. africanus > P. robustus > 

P. boisei (Teaford & Ungar, 2000). For these reasons, the absolutely greater robusticity 

present in Paranthropus relative to Australopithecus is considered to be the result of 

factors other than simply inheritance. In fact, the increasing masticatory robusticity in 

each species led to suggestions that each species were better able to consume 

mechanically resistant foods than their predecessor (Teaford & Ungar, 2000).  

 Australopithecus, with their less-derived features were not viewed as being adapted 

to any particular food, but a consumer of a generalised diet that could include hard 

foods (Robinson, 1963). In contrast, the extremely large and flat postcanine dentition, 

and the overall size and robustness of the craniofacial architecture of Paranthropus 

were consistent with a specialist diet (Robinson, 1963; Hylander, 1988; Teaford & 

Ungar, 2000). Robinson (1963) suggested the diet to be one of tough foods requiring a 

large amount of mastication and low on nutritive value. This would comprise vegetable 

foods, such as “shoots and leaves, berries, tough wild fruits, roots and bulbs” (Robinson 

1954a: 328), and would help to explain the presence of grit-related damage to the 

occlusal surfaces of the teeth (Robinson, 1963).  

 Through analysis of extinct and extant animals the morphology of Paranthropus 

was scrutinised. Based on these results the notion that Paranthropus was a dietary 

specialist was generally accepted, but the idea that their diet was one of tough foods was 

not. Du Brul (1977) analysed the specialist herbivore, the giant panda and the generalist 

omnivore, the grizzly bear. Of the two, the giant panda had the most derived 

morphology and these morphological differences combined with their dietary 

proclivities served to reinforce Robinson’s Dietary Hypothesis (1954a, 1963). Other 

researchers analysed the morphology present in Gigantopithecus (once considered an 

ancestor to hominins), which displayed a similarly robust and derived masticatory 

morphology to Paranthropus (Frayer, 1973; Miller et al., 2008; Dickson, 2011). Based 

on the robust masticatory morphology, it was suggested that Gigantopithecus were 

hard-object feeders, and so too were Paranthropus.  
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 Other researchers focussed on attempting to identify the types of food that could 

have shaped the morphology of Paranthropus and several explanatory hypotheses have 

been presented with dentition being the focus. Based on the presence of the hyper-thick 

enamel in Paranthropus, it was suggested that the genus were best adapted to the 

consumption of small, hard objects, such as grass seeds (Jolly, 1970), bone crushing 

(Szalay, 1975), nut-cracking (Tobias, 1976), similar to Ramapithecus (formerly 

suggested as an ancestor, and known today as Sivapithecus) (Kay, 1981), or a 

frugivorous diet, based on hard-shelled fruits (Walker, 1981).  

  The various dietary theories suggested by Jolly (1970), Szalay (1975), Tobias 

(1976), and Walker (1981) were not readily accepted for various reasons. For example, 

bone crushing and seed consumption were not consistent with the dental microwear 

patterns present in Paranthropus (Walker, 1981). Regular consumption of nuts would 

not have driven the morphology because they are only seasonally available resources 

(Peters, 1987).  

 Hylander (1988) addressed the suggestion by Robinson (1954a, 1963) that 

Paranthropus could have consumed large quantities of highly fibrous roots that were 

high in structural carbohydrates. Observation of the molar morphology of Paranthropus 

is not consistent with a tough/ fibrous diet as its primary food-type, but Hylander (1988) 

conceded that the morphology would not prevent consumption of these types of foods. 

In fact, the mandibular morphology of Paranthropus could have been adapted to resist 

fatigue strain from prolonged chewing cycles of tough foods as suggested by Bouvier & 

Hylander (1981). The quality of the diet that Paranthropus consumed is not clear but 

regardless of hard or tough, high-quality or low-quality foods the unique features of the 

mandible and cranium of Paranthropus indicates it was well adapted for all types of 

foods, and capable of powerful repetitive loads (Hylander, 1979b, 1988; Daegling & 

Grine, 1991). In fact, Paranthropus was so well adapted to different foods it was 

considered “overdesigned” (Ward, 1991: 475). Such adaptations would have been 

beneficial for hominins during this time, for it is regarded that the diets of hominins 

during the Pliocene (the time of Australopithecus and Paranthropus) were shifting 

towards harder foods (Teaford & Ungar, 2000).  
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2.3 Biomechanics: mandibular and dental form 

2.3.1 Mandibular form 

 The majority of the research on Paranthropus focussed on the potential 

biomechanical importance of the masticatory apparatus. Studies that concentrate on the 

biomechanical adaptations of the masticatory morphology are based on the premise that 

the mandibular and dental morphology represent functional adaptations to diet (Szalay, 

1975; Happel, 1988; Kinzey, 1992; Kinzey & Norconk, 1993; Wright, 2005; Ravosa et 

al., 2010; Ruff, 2018). For the mandible it is assumed that there is a “functional 

association between plasticity in mammalian mandibular morphology and response to 

dietary-related manipulation of jaw-loading patterns” (Ravosa et al., 2010: 558). The 

functional adaptation of the mandible to the stresses of a hard-food or fracture-resistant 

diet is imperative, for it reduces the risk of fracture to the mandibular or cranial 

elements through unusual loading patterns (Ravosa et al., 2010).  

 Analysis of the biomechanical adaptations of non-human primates has focussed on 

different regions of the masticatory apparatus, but of particular interest for this thesis is 

the mandible and its dentition. This is partly because the mandible and its associated 

dentition are the most commonly available remains in the fossil record (for both human 

and non-human remains) (Szalay, 1975; Daegling, 1993a; Lucas et al., 2008a; Louys et 

al., 2011, 2015a), and because the mandibular morphology of Paranthropus is so 

derived it is logical to focus attention on this region. Researchers have analysed the 

responses of the mandibular corpus, symphysis, and temporomandibular joint (TMJ) to 

stress and strain, the effect of body size on the masticatory apparatus, along with 

variation in dental features including tooth cusp shape and size. 

 Studies that focussed on the mandibular corpus and symphysis analysed how these 

regions responded to the generation of stresses and strains and how they are dissipated 

during mastication (e.g., Hylander, 1979a, 1979b, 1984, 1985). During mastication the 

mandible is put under intense stress, but this stress is not evenly distributed (Hylander, 

1979b; Daegling, 1993b). There are bending, twisting and shearing loads acting on the 

different regions of the mandible during mastication, and as a result, it is necessary for 

the mandible to be suitably adapted to resist such strains (Hylander, 1979b). There are 

two peak areas of stress located on the mandible, and these are in the corpus and the 

symphysis (Daegling, 1993b). The degree of loading, stresses and deformations are 

governed by the mechanical properties of the foods consumed, with harder or tougher 

foods resulting in higher stresses and strains on the mandible than softer, more pliable 
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foods (Ravosa, 1991; Taylor et al., 2008). It is assumed that higher magnitude loads 

require structural adaptations to resist the stress (Taylor et al., 2008).   

 Stresses that have been observed in the mandible, include parasagittal bending 

(located on the corpus of the non-biting side), axial torsion (biting side corpus), vertical 

bending of the symphysis, and wishboning of the symphysis (Hylander, 1979a, b, 1984, 

1985, 1988; Hylander & Johnson, 1994). Adaptations to these stresses are manifested 

by: 1) a deep corpus to resist parasagittal bending, 2) a thick corpus to resist axial 

torsion, 3) deeper symphysis and presence of a transverse torus to resist vertical bending 

of the symphysis, and 4) a fused/ thick symphysis and presence of a transverse torus to 

resist wishboning (Hylander, 1979a, b, 1984, 1985, 1988; Hylander & Johnson, 1994; 

Taylor, 2002, 2006a; Vinyard et al., 2006).  

 When these biomechanical principles are applied to Paranthropus the following 

adaptations are observed: 1) with its deep corpus Paranthropus could resist sagittal 

bending on the balancing side, 2) with its transversely thick corpus it could resist 

twisting loads on the working side, 3) with its large cross-sectional area it could resist 

direct shearing loads on the working side, and 4) with its thick symphysis is could resist 

wishboning and powerful torsion during mastication (Hylander, 1979b, 1988; Daegling, 

1989). The large muscle attachment sites combined with the aforementioned large 

corpus dimensions of the mandible were interpreted as indications that the muscle 

forces acting on the mandible were unusually large in this genus (Hylander, 1988). It 

was suggested that these features were most likely related to the mechanical properties 

of the food consumed, with larger masticatory muscle forces associated with the 

consumption of hard and tough foods (Hylander, 1988).  

 Hylander (1979b) highlighted the importance of the transversely thick corpus and 

related it to the massive postcanine dentition, with particular focus on the premolars. 

The overall size and shape of the premolars indicates that they would have been of 

greater importance during mastication, and as a result would have increased the stress 

acting on this area of the mandibular corpus, which in turn would have required greater 

structural adaptations to resist the increased stress and strain (Hylander, 1988). The 

transversely thick corpus in the premolar region was highlighted as being particularly 

important because normally stresses acting in the premolar region are much smaller and 

less significant than in the molar region (Daegling, 1993b). The unique morphology 

present in the postcanine dentition and corpus indicates that the majority of the 

masticatory stresses occurred in the distal regions of the mandible/ tooth row. Indeed, it 
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is in this region that torsion, parasagittal bending and direct shear strains are at their 

greatest (Daegling & Grine, 1991). 

 While there are some studies that have identified instances where there is a clear 

relationship between masticatory stress and strain and mandibular morphology, there 

are other studies that have obtained either mixed results or no correlation (Daegling & 

Hylander, 1997; Daegling & McGraw, 2001; Taylor, 2005; McGraw et al., 2011; 

Terhune, 2011; Ross et al., 2012, 2016). The potential correlation between TMJ 

morphology and diet was one area analysed with mixed results. Taylor (2005) 

established that the mandibular ramal and condylar heights in African apes appear to be 

correlated with folivory. While Terhune (2011) found that both body size and diet were 

influential variables that appeared to affect the anteroposterior dimensions of the TMJ 

morphology in atelines, cebines and pitheciines. Yet both studies found variables, such 

as the condylar area and width (Taylor, 2005), and the variation in entoglenoid and 

articular tubercle height (Terhune, 2011) that did not appear to be correlated to diet.  

 It has been suggested that the imprecise link between diet and morphology is due to 

the usage of traditional dietary classifications, such as folivore or frugivore (Smith, 

1983; Ankel-Simons, 2007; McGraw & Daegling, 2012; McGraw et al., 2016). These 

generic classifications of diet may be of little relevance and they potentially ignore 

components of the diet that are more influential, for within each category there is much 

variation of consistency and texture (Smith, 1983; Yamashita, 1996, 1998; Ankel-

Simons, 2007). Indeed, the mechanical properties of foods can overlap from one dietary 

classification to another, meaning that these dietary groupings are not biomechanically 

informative but are vague and coarse-grained (Kinzey & Norconk, 1993; Yamashita, 

1996, 1998; Taylor et al., 2008; McGraw & Daegling, 2012; Vogel et al., 2014; Coiner-

Collier et al., 2016; McGraw et al., 2016). For example, within the leaf category there 

are variations in terms of maturity, with mature leaves being higher in fibre and 

therefore tougher than young leaves, thus requiring more force to masticate them 

(Yamashita, 1996; Koyabu & Endo, 2009; Talebi et al., 2016). Once leaf maturity is 

accounted for, the mechanical properties can vary in relation to water content, venation 

and thickness (Yamashita, 1998). This means that not all leaves are tough (Grine et al., 

2006b, 2012; Coiner-Collier et al., 2016; Talebi et al., 2016). Similarly, not all seeds are 

hard and not all fruits are soft (Yamashita, 1998; Grine et al., 2006b, 2012; Taylor, 

2006b; Vogel et al., 2014; Smith et al., 2015; Coiner-Collier et al., 2016). A diet 

comprising soft seeds will probably require different adaptations to one made up 

predominantly of hard seeds. This is a point raised to explain the lack of morphological 
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robusticity in the seed-eating Chlorocebus aethiops, Cercopithecus campbelli and 

Erythrocebus patas (Happel, 1988). In addition, diet categories do not take into account 

extra-oral processing, or factors of diet, which are out of the control of the consumer, 

e.g., seasonality of resources, or the geographic variation affecting the types of food 

available (Smith, 1983).  

 Consequently, it is not sufficient or adequate to classify diets as folivorous or 

frugivorous when attempting to make correlations between diet and morphology 

(Yamashita, 1996, 1998). New dietary categories were proposed that addressed the 

types of food mechanical properties that the species predominantly consumed (Lucas 

1979; Lucas & Luke 1984; Freeman 1988). The proposed dietary categories were hard 

(durophagus), tough (elastophagus), and soft, brittle (jusophagus) (Yamashita, 1996). 

Hardness and toughness are often opposite characteristics used to describe the resistance 

of foods. Hard foods possess a brittle, external, protective shell that requires peak-loads 

to fracture, e.g., nuts, while tough foods require more energy and repetitive loading to 

fracture, e.g., bark and pith (Taylor et al., 2008; Koyabu & Endo, 2009; Berthaume et 

al., 2010; Lee et al., 2010; Vinyard et al., 2011; Constantino et al., 2011, 2012; Wood 

& Schroer, 2012; Ungar, 2015; Berthaume, 2016). Studies of extant non-human 

primates and the extinct hominins predominantly focus on durophagy (hard-object 

feeding) (McGraw & Daegling, 2012). This is because it is generally associated with 

morphological adaptations such as powerful jaws and enlarged posterior teeth (Norconk 

& Veres, 2011), the same characteristics that define Australopithecus and especially, 

Paranthropus. 

 The incorporation of food mechanical properties provides further information upon 

which to understand how the morphology responds to the various physical properties of 

foods (Taylor, 2005; Wright, 2005; Koyabu & Endo, 2009). Investigation of food 

mechanical properties requires an understanding of fracture mechanics, about whether a 

food is hard or tough to fracture, or stiff or compliant (definitions in Table 2.3) (Wood 

& Schroer, 2012; Berthaume, 2016). There are two internal mechanical characteristics 

of foods that are commonly observed, these are: fracture toughness (R) and elastic 

modulus (Young’s modulus, E) (Taylor et al., 2008; Reed & Ross, 2010) (but see 

Berthaume, 2016 for the additional mechanical properties that should also be explored). 

It is expected that differences in food mechanical properties would result in different 

loads being applied to the mandible during mastication, and consequently, adaptations 

to reflect an ability to resist increased loads (Taylor, 2006a, b, 2009). Therefore, 

resistance to loads can vary with each food and highlights that this can result in the 
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exact same morphology appearing to be “over- or under-designed” (Taylor et al., 2008: 

611). 

  

Table 2.3: Definitions of the physical properties of foods according to Lucas (2004); Lucas et al. (2008b); 

Taylor et al, (2008); McGraw & Daegling (2012: 205-206) and Wood & Schroer (2012). Table removed due to 

copyright.  

    

    

    

    

    

 

 A recent shift in research focus has occurred with studies no longer analysing only 

what a primate is eating, but rather the food mechanical properties, the overall feeding 

behaviour (how frequently foods are consumed) and how foods are most efficiently 

broken down, but much work still remains to be done (Reed & Ross, 2010; McGraw et 

al., 2011, 2012, 2016; McGraw & Daegling, 2012; Ross et al., 2012, 2016; Berthaume, 

2016; van Casteren et al., 2016; Chalk-Wilayto et al., 2016; Talebi et al., 2016). This is 

because there is currently not enough known about food mechanical properties or the 

feeding behaviours of apes, and by extension other non-human primates (Taylor, 2002; 

Foster et al., 2006; Vogel et al., 2014; Coiner-Collier et al., 2016; McGraw et al., 

2016).  

 Of the studies that incorporate food mechanical properties, results have been 

somewhat consistent with the idea that food mechanical properties and morphology are 

connected, thus supporting the research of Hylander (1979a, 1979b, 1984, 1985, 1988) 

on stress and strain. Researchers established that feeding behaviours that involve high 

stress and strain appear to be more important determinants of dental and mandibular 

form and muscular action than are those of low strain (Hylander, 1979b, 1984, 1985; 

Bouvier, 1986; Ravosa, 1991, 1996; Yamashita, 1996, 1998; Bouvier & Ravosa, 1998; 

Lambert et al., 2004; Foster et al., 2006; Dominy et al., 2008; Norconk et al., 2009; 

Daegling et al., 2011; McGraw et al., 2016; Ross et al., 2016). For example, the fruit-
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eating cercopithecines were compared to the more folivorous colobines and more 

obdurate-food consumers, papionins. Results consistently demonstrated that colobines 

and papionins (with the tougher and more obdurate diets) exhibited more symphyseal 

corpus robusticity than the cercopithecines (Bouvier, 1986a; Ravosa, 1996; Vinyard & 

Ravosa, 1998). Similar results were reported in Pongo abelii and Pongo pygmaeus – P. 

pygmaeus is known to consume a more obdurate diet than P. abelii – with P. pygmaeus 

observed to possess a more robust corpus and symphysis than P. abelii (Taylor, 2006a).  

 It also appears that feeding behaviours that require repetitive chewing on a regular 

basis, e.g., daily, illicit influences on the mandible that are as strong as high-stress 

feeding behaviours (Williams et al., 2011 (on goats); Ross et al., 2016). This is because, 

large stress levels are experienced by leaf-eating species during mastication due to the 

repetitive chewing and large bite forces required to break foods down that are tough and 

consist of large quantities of structural carbohydrates (Ravosa, 1991). Through this, 

there also exists a correlation between morphology, diet and body size, this is because 

generally as body size increases so too does jaw length and folivory (positive allometry) 

(Hylander, 1985; Terhune, 2011). Indeed, Beecher (1983) found a correlation between 

symphyseal fusion, increased body size and leaf eating. However, it remains unknown 

which food type and consumption frequency exerts the greater selection pressure on 

non-human primates (Coiner-Collier et al., 2016).  

 Evidence once indicated that there is a greater correlation between dietary 

behaviour, food mechanical properties and morphology in platyrrhine primates 

(Norconk et al., 2009; Thompson et al., 2014; Ross et al., 2016), than in catarrhine 

primates (McGraw & Daegling, 2012). However, recent analysis of Pongo pygmaeus, 

Cercocebus atys and Colobus polykomous indicates that the correlation between form 

and function in catarrhines is stronger than once considered. Indeed, studies indicate 

their dental (C. atys, P. pygmaeus) and craniofacial morphologies (Co. polykomos) are 

reflections of accessing hard foods (Vogel et al., 2008; Daegling et al., 2011; McGraw 

et al., 2016). In the case of Co. polykomos, the craniofacial morphology reflects the 

crushing of the outer shells of seeds before mastication, not the mastication of the inner 

seeds themselves (McGraw et al., 2016), a feature that was missed in an earlier study of 

this species (Daegling & McGraw, 2001).  

 While the correlation between dietary ecology and masticatory morphology remains 

incompletely understood (Vogel et al., 2014; Ross et al., 2016), further data on feeding 

behaviours, food mechanical properties and the frequency of ingestion and mastication 

should improve the understanding of how the different factors relate to one another 
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(Foster et al., 2006; Berthaume, 2016; Coiner-Collier et al., 2016; McGraw et al., 

2016). Indeed, Daegling & McGraw (2001) and Berthaume (2016) suggest that where 

the studies do not find correlations it is because there are errors with the hypotheses, 

data collection, with the method to assess biomechanical function (as seen with the 

revisions made for the Co. polykomos feeding behaviour), or the wrong food 

mechanical properties have been investigated. Alternatively, it is possible that the diets 

observed to be consumed today are not the same as the diets to which a species was 

morphologically adapted, e.g., colobines are commonly referred to as leaf-eating 

monkeys, yet their ancestors were most likely seed eaters (Lucas & Teaford, 1994). It is 

also possible that the potential correlation between food mechanical properties and 

morphology are not apparent in every feature or to the same extent for all species 

(Daegling & McGraw, 2001; Taylor et al., 2008; Ross et al., 2012; Vogel et al., 2014). 

 Despite the success of many studies in establishing a correlation between stress and 

strain, according to some researchers it is not possible to distinguish between a 

morphology shaped by hard or tough-object eating (Smith, 1983; Ravosa, 1996; 

Daegling & McGraw, 2001; Hogue, 2008; McGraw & Daegling, 2012; Daegling et al., 

2013; Grine & Daegling, 2017). That is because both loading regimes result in changes 

to the osseous architecture, along with an increase in bone mass (Grine & Daegling, 

2017). Thus, attempts to interpret morphology can be clouded by similar morphological 

responses to stress and strain (Ross et al., 2012). To confound the situation further there 

is a great diversity of mandibular morphologies associated with hard-object feeding in 

non-human primates
3
 (Daegling & Grine, 1991; Daegling, 1992; Taylor, 2006; 

Daegling & McGraw, 2007; Grine & Daegling, 2017). As a result, studies on the 

biomechanics of the masticatory morphology of non-human primates did not always 

reveal strong correlations between diet and morphological form (e.g., Daegling & 

McGraw, 2001, 2007; Taylor, 2002, 2005, 2006b; Koyabu & Endo, 2009; McGraw & 

Daegling, 2012; Ross et al., 2012; Vogel et al., 2014; Grine & Daegling, 2017). 

 

                                                             
3
 A situation not shared by cichlid and centrarchid species of fish that are characterised by divergent 

evolutionary histories, with examples in both of species being morphologically convergent, adapted for 

the consumption of small prey using the same modes of jaw movement (Montaña & Winemiller, 2013). 

Similarly, bovines and hippotragines convergently evolved features of their dentition to assist with 

grazing, which makes distinguishing the two based on their dental morphology difficult (Gailer et al., 

2016).  
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2.3.2 Dental form 

 While the correlation between mandibular form and diet cannot be determined 

beyond high-stress diets from hard or tough foods, or low stress diets from soft foods, 

the correlation between dentition and different types of diets appears to be more 

straightforward. Conventional wisdom pertaining to tooth form generally concludes that 

a tooth is adapted to the external physical characteristics and the internal mechanical 

properties of the foods consumed (Rosenberger & Kinzey, 1976; Kinzey, 1978; Kinzey 

& Norconk, 1990; Yamashita, 1996; Swindler, 2002; Lucas et al., 2008b; Constantino 

et al., 2012; Ungar, 2015). This assumed correlation is because their primary 

relationship is a physical one, with the occlusal surface of the tooth being the point of 

contact between the food consumed and the masticatory apparatus (Yamashita, 1998; 

Norconk et al., 2009). To comminute the foods, the teeth must apply enough pressure 

(stress) to the food in order for it to fracture so that it is either easier to masticate further 

or more digestible (Yamashita, 1998). Teeth therefore need to be adapted to both break 

down foods and resist potential stress and strain from foods without fracturing (Lee et 

al., 2010; Constantino et al., 2012; Ungar, 2015; Gailer et al., 2016). The physical 

properties of a food (its resistance to fracture) and the tooth form (suitable adaptations 

to fracture food) will determine how much effort is required during mastication and 

therefore, how successful the breakdown of the food is (Yamashita, 1998; Norconk et 

al., 2009; Gailer et al., 2016). 

 Teeth are assumed to be biological structures that have evolved to perform their 

functions with the maximum of efficiency (Ungar, 2015; Gailer et al., 2016). That is to 

mechanically break down foods to assist the subsequent biochemical digestion (Kinzey, 

1978; Swindler, 2002). In so doing, teeth should enable the consumption of more of the 

relevant foods in order to increase the intake of energy required for their high metabolic 

demands (Gailer et al., 2016). It is also expected that the tooth will wear in such a way 

to keep it functionally efficient throughout life (Ungar, 2015). Various aspects of a 

tooth’s morphology provide information regarding the physical properties of the foods 

consumed (Ungar, 2011, 2015). Morphological features include: tooth size, thickness of 

the dental enamel and occlusal morphology (Ungar, 2011, 2015). Variation of tooth size 

is reflective of the external characteristics of foods, e.g., their overall size and shape, 

along with their properties, e.g., abrasiveness (Teaford & Ungar, 2000). Variation of 

tooth shape on the other hand is a reflection of the internal characteristics of foods, e.g., 

their resistance to fracture (hardness or toughness) (Teaford & Ungar, 2000). 



Chapter 2: Evidence of diet adaptation in hominins 

27 

 The first mineralised tissue to interact with foods is the enamel, its primary 

responsibility is to protect the tooth from the mechanical properties of foods, resisting 

the stresses and strains and reducing wear (Shellis et al., 1998; Macho, 2004; Macho & 

Shimizu, 2009; Ungar, 2015). As a result, it is commonly considered that the thickness 

and distribution of enamel over the tooth crown are adaptations to diet (Shellis et al., 

1998; Macho, 2004; Pampush et al., 2013; Ungar, 2015). Thick enamel is associated 

with high stress diets that include hard and/ or tough foods (Happel, 1988; Shellis et al., 

1998; Yamashita, 1998; Macho & Spears, 1999; Teaford & Ungar, 2000; Lambert et 

al., 2004; Macho, 2004; Constantino et al., 2011; Ungar, 2011; McGraw et al., 2012; 

Pampush et al., 2013; Grine & Daegling, 2017). In contrast, thin enamel is generally 

associated with a soft food diet (Kay, 1981; Kinzey, 1992; Lucas et al., 2008a; Vinyard 

et al., 2011). The adaptive benefit of thick enamel for hard or tough-object feeders is the 

protection and extended lifetime of the tooth, a feature perhaps not selected for in a 

consumer of soft foods with little wear (DeGusta et al., 2003; King et al., 2005; Lucas 

et al., 2008a; Constantino et al., 2011; Pampush et al., 2013; Grine & Daegling, 2017), 

although, it must be acknowledged that occlusal morphology and how it resists fracture 

is complex (Berthaume et al., 2010).   

 Each part of the dentition has a particular function to perform, where the anterior 

dentition is for the initial preparation, puncture and incision of foods; the postcanine 

dentition is responsible for mastication of the foods and as a result is adapted to the 

physical and chemical properties of foods (Happel, 1988; Kinzey & Norconk, 1990; 

Norconk et al., 2009). Depending on the nature of the diet consumed the size and shape 

of the anterior and posterior dentition varies (Scott, 2012). The anterior and posterior 

dentition can therefore provide indications about the general dietary classification or the 

hardness/ toughness of the diets consumed (Kay, 1975; Happel, 1988; Yamashita, 1998; 

Lucas et al., 2008b; Vinyard et al., 2011). Folivores (generally consumers of tough 

foods) have large teeth relative to their body size, and relatively long molar shearing 

blades in order to divide leafy materials more efficiently. Insectivores also have 

relatively long and sharp molar shearing blades but this is to puncture and reduce the 

brittle exoskeleton of invertebrates. Frugivores generally have larger incisors than 

folivores as they require a larger surface area to prepare fruits, with small postcanine 

teeth relative to their body size and more rounded molar cusps adapted for grinding. 

Granivores in contrast (generally consumers of hard foods) have low, blunt cusps 

(bunodonty) that correspond to opposing basins to prevent cracks from propagating 
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(Kay, 1975; Kinzey, 1978; Happel, 1988; Yamashita, 1998; Teaford & Ungar, 2000; 

Lucas, 2004; Lucas et al., 2008b; Lee et al., 2010; Ungar 2011, 2015). 

 Australopithecus and Paranthropus dental morphology was analysed in light of the 

above patterns of tooth form. The large, megadont postcanine teeth present in the 

australopithecines, and particularly the derived Paranthropus, have been suggested to 

provide a greater surface area to evenly distribute the occlusal load and increase the 

probability of fracturing small food particles or to assist with the processing of more 

obdurate foods, thus maximising the efficiency of oral food processing (Rak, 1988; 

Teaford & Ungar, 2000; Lucas et al., 2008b; Constantino et al., 2011; Norconk & 

Veres, 2011; Ungar, 2011; Scott, 2012). The presence of hyper-thick enamel, enamel 

chips and short shearing crests on Paranthropus are suggestive of a diet consisting of 

hard objects (Teaford & Ungar, 2000; Lucas et al., 2008b; Koyabo & Endo, 2009; 

Constantino et al., 2010, 2011). Greater occlusal relief and larger shearing crests in 

Australopithecus are suggestive of a tougher-food diet, while the short shearing crests 

on Paranthropus are suggestive of a diet consisting of hard objects (Teaford & Ungar, 

2000; Koyabo & Endo, 2009).   

 Of course, attempting to reconstruct past diets based on dental morphology does 

have its weaknesses. As previously mentioned, thick dental enamel can be a 

characteristic of both hard and tough object feeders (Happel, 1988; Shellis et al., 1998; 

Yamashita, 1998; Macho & Spears, 1999; Teaford & Ungar, 2000; Lambert et al., 

2004; Macho, 2004; Constantino et al., 2011; Ungar, 2011; McGraw et al., 2012; 

Pampush et al., 2013; Grine & Daegling, 2017). In addition to this, larger teeth can be 

reflections of both small, hard objects, or tough objects, or abrasive objects (Ungar, 

2011). Similarly, consistent with previously described molar size and shape patterns, the 

molars of insectivorous lorisids resemble the folivorous pattern (see Kinzey, 1978; 

Yamashita, 1998; Teaford & Ungar, 2000; Lucas, 2004; Ungar, 2011, 2015), while the 

molars of insectivorous galagids follow the frugivorous pattern (Scott, 2012). Generally 

folivorous species are associated with having relatively larger molars than frugivores 

(Kay, 1975; Kinzey, 1978; Yamashita, 1998; Teaford & Ungar, 2000; Lucas, 2004; 

Ungar, 2011, 2015), but in the case of the folivorous colobines and frugivorous 

cercopithecines this pattern has been reversed (Ungar, 2011; Scott, 2012). The latter 

point is perhaps a reflection that the dietary focus on foliage is only a recent occurrence 

in the evolutionary history of colobines (Lucas & Teaford, 1994).  

 Given that there is overlap between species consuming diets of different mechanical 

properties and species’ morphology not conforming to expected patterns, it is clear that 
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there is a need for caution when attempting to make inferences on diet based on 

morphology (Yamashita, 1996; Berthaume et al., 2010; Scott et al., 2012). Indeed, 

because diet is so complex it would perhaps be naïve to expect one morphological 

solution to each diet type (Yamashita, 1998). Thus, it appears that the majority of 

studies confirm that there are some generalised morphologies associated with certain 

diets and basic inferences can be made based on them.  

 

2.4 Challenges to the conclusion that Paranthropus was a dietary specialist 

2.4.1 Specialist and generalist morphologies  

 A reappraisal by Wood & Strait (2004) of the morphology present in Paranthropus, 

Australopithecus and early Homo led to questions being raised about whether 

Paranthropus was a dietary specialist. The question follows on from studies that have 

explored the form-function relationship with regards to what it means to be 

morphologically specialised or generalised.  

 A specialised feeding morphology is one that is adapted to and enables the efficient 

exploitation of a particular type of food that would otherwise be inaccessible, while also 

reducing the dietary diversity (Saldaña-Vázquez et al., 2015; deVries et al., 2016). For 

example, large rounded molars and fusion of pharyngeal plates in Lepomis microlophus 

(redear sunfish) enables the species to crush hard-bodied prey such as molluscs (Lauder, 

1983), while long-tongued bees (e.g., Bombus hortorum) have a narrow dietary breadth, 

specialising on the red clover (Trifolium pratense) (Goulson & Darvill, 2004). In 

contrast, a generalised dietary morphology is not adapted to any particular food and 

reflects a wide dietary intake, such as bees with shorter tongues (Goulson & Darvill, 

2004).  

 Through analysis of supposedly morphologically specialised cichlid fish, the 

understanding of what it means to be a dietary specialist was challenged. Liem (1980) 

analysed the morphology of Petrotolapia tridentiger, a species described as a highly 

specialised rock scraper, while Cosandey-Godin et al. (2008) and Binning et al. (2009) 

analysed Astatoreochromis alluaudi, a species with massive pharyngeal jaws assumed 

to be a hard-bodied prey specialist, but each of the studies found the cichlid fish were 

capable of consuming a more diverse range of foods than expected based on their 

feeding morphology. The apparent morphological specialism in the fish did not equate 

to dietary or behavioural specialism, but instead enabled the species to act as ecological 

generalists (Liem, 1980; Robinson & Wilson, 1998; Liem & Summers, 2000; 

Cosandey-Godin et al., 2008; Binning et al., 2009). These species appeared to be 
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morphologically specialised yet behaved as ecological generalists, thus becoming 

examples of Liem’s Paradox (Robinson & Wilson, 1998). 

 This paradox was resolved by an optimal foraging strategy (Robinson & Wilson 

1998), which is based on the principle that less preferred foods would be ignored when 

other, more preferred foods were available. Competition for food during periods of 

resource shortage drove the morphological specialisations, but these adaptations would 

not prevent organisms from exploiting more preferred resources when they were 

available (Robinson & Wilson, 1998). In this case, a species would act as dietary 

specialists during the period of food abundance by focussing on the preferred foods, and 

become generalists during the period of food scarcity by switching to less preferred 

foods (Robinson & Wilson, 1998). This theory opposes the traditional assumption that a 

specialist trait is one that would enable the frequent consumption of a particular food 

rather than one that enables the occasional exploitation of a food resource and rests 

upon the assumption that the preferred food resources are also easier to access and use 

(Robinson & Wilson, 1998). Based on this, what it is to be a specialist was questioned 

(Liem, 1980).  

 Robinson & Wilson (1998) proposed three different areas of specialisation: diet, 

morphology and prey utilisation efficiency, while Liem & Summers (2000) proposed 

two types of specialists: stenotopic and eurytopic. A stenotopic species is specialised 

morphologically and functionally to a narrow dietary niche, and a eurytopic species is 

morphologically specialised, but with the capacity to consume a wide variety of foods 

(Liem & Summers, 2000). 

 A key aspect of the Dietary Hypothesis (Robinson, 1954a, 1963) was that the 

morphology of Paranthropus appeared to be specialised. The derived masticatory 

features present in Paranthropus were specialist adaptations to a diet of “crushing and 

grinding” (Robinson, 1963: 392). As previously discussed, Liem’s Paradox brings into 

question what it is to be a dietary specialist (Liem, 1980). According to Wood & Strait 

(2004) the question of whether a morphology is a generalist one or a specialist one can 

be broken down into two factors: 1) what does the morphology enable an organism to 

do? and 2) what does it restrict an organism from doing? Applying this to the studies of 

Liem (1980), Cosandey-Godin et al. (2008) and Binning et al. (2009) it is clear that the 

apparent specialisations of the cichlid fish enabled them to consume the foods they were 

adapted to, but did not prevent them consuming other foods when they were available. 

This supposed specialist adaptation had the effect of broadening the dietary repertoire 

available to the fish; this is the sign of a generalist adaptation (Wood & Strait, 2004).  
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Further examples of species that appear to be morphologically specialised but 

display generalist behaviours come from platyrrhine primates (Wood & Strait, 2004; 

Wright, 2005; Norconk et al., 2009; Norconk & Veres, 2011). Features commonly 

interpreted as specialist adaptations to hard-object feeding in Cebus and Sapajus have 

been revised and are now viewed as enabling a broadening of the dietary niche (Wright, 

2005; Norconk et al., 2009; Norconk & Veres, 2011). Similarly, the morphological 

adaptations that enable leaf consumption in Alouatta once considered specialised are 

now regarded as generalised, as they do not prevent the consumption of other foods 

(Wood & Strait, 2004).  

In the above instances, the features enabled the monkeys to consume harder-food 

objects or leaves when there was little else available (Wright, 2005; Norconk et al., 

2009). The morphology of these platyrrhine monkeys have not been shaped by one food 

type, but rather by a range of mechanically demanding foods (Wright, 2005). 

Researchers have observed that dental and behavioural adaptations of many non-human 

primates have bypassed the accessibility problems posed by mechanically protected 

foods, such as seeds (Daegling et al., 2011, 2013; Norconk & Veres, 2011; McGraw & 

Daegling, 2012; Pampush et al., 2013). This essentially follows Liem & Summers’ 

(2000) definition of a eurytopic species, as it appears that a morphological specialisation 

does not equate to a behavioural specialisation.  

 In order to overcome the lack of morphological adaptations suited to hard-object 

feeding, species such as Colobus polykomos, Cacajao calvus and Chiropotes satanas 

have been observed to fracture foods in different areas of the mouth to increase 

efficiency (Daegling & McGraw, 2001; McGraw & Daegling, 2012; Pampush et al., 

2013; McGraw et al., 2016). Each species are suggested to process the hard seeds with 

their incisors instead of their molars, and then masticate the softer, more pliable seeds 

with their postcanine dentition (Daegling & McGraw, 2001; McGraw & Daegling, 

2012; Pampush et al., 2013; McGraw et al., 2016). Mastication of foods to different 

degrees across the mandible would result in different loading conditions and potentially 

different biomechanical solutions (Daegling & McGraw, 2001; Vinyard et al., 2011).  

 Other behaviours can include pounding mechanically resistant foods against rocks, 

as Cebus do (Wright, 2009; McGraw & Daegling, 2012), or the use of tools, as Pan, 

Papio and Pongo are observed to do (Goodall, 1965; van Lawick-Goodall et al., 1973; 

Sugiyama, 1994; van Schaik & Knott, 2001; Fox et al., 2004; Hicks et al., 2005; Gruber 

et al., 2010; McLennan, 2011; Smith et al., 2012). These behaviours have the capacity 

to bypass the potential lack of masticatory robusticity in order to enable access to 
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otherwise inaccessible foods and thus provide access to relatively high quality resources 

throughout the year (Norconk & Veres, 2011; McGraw & Daegling, 2012).  

 

2.4.2 How revisions of what it means to be morphologically specialised affects the 

interpretations of hominin morphology 

 Based on the questions raised with regard to what it means to be a dietary specialist, 

Wood & Strait (2004) analysed how congruent the morphology of Paranthropus is to 

the interpretation that they were dietary specialists. The conclusion was that the 

morphology of Paranthropus was quite clearly derived, but while a specialised feature 

is derived, it does not mean that a derived feature is specialised. The key variables to 

consider when classifying a species as a specialist or generalist and how they apply to 

Paranthropus are in Table 2.4.  

 

Table 2.4: Definitions of stenotopy and eurytopy according to Eldredge (1979) and Vrba (1980), as detailed in 

Table 1 from Wood & Strait (2004), and how the terms can be applied to Paranthropus summarised from 

Wood & Strait (2004). Table removed due to copyright.  

    

    

    

    

    

    

    

    

    

    

    

  
   

  

 

 Analysis of Paranthropus morphology reveals that the features so often identified as 

specialist adaptations could in fact represent generalist adaptations (Wood & Strait, 

2004). For example, the robust masticatory morphology, megadont postcanine dentition, 

and hyper-thick enamel do not preclude other foods from being consumed, so they do 

not necessarily indicate a specialist adaptation (Wood & Strait, 2004). The robust 

mandibular morphology shows that it is capable of resisting high loads and stresses 

being placed on it by various diets, but biomechanical analyses of extant non-human 
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primates cannot distinguish between a hard food and a tough food diet (Hylander, 1988; 

Daegling & McGraw, 2001; Daegling et al., 2013). The enamel might be hyper-thick to 

prevent fracture from hard food items, or to prevent wear and extend the tooth-life from 

an extremely abrasive diet (Happel, 1988; Shellis et al., 1998; Teaford & Ungar, 2000; 

Wood & Strait, 2004; Pampush et al., 2013; Grine & Daegling, 2017). The premolars 

might have undergone expansion to increase the chewing surface area so as to masticate 

more food per bite, or to extend the life of the postcanine dentition by including 

premolars in the molar row (Wood & Strait, 2004). According to researchers the only 

morphological feature that is consistent with specialist adaptations is the occlusal 

surface, a feature considered to be a poor design for leaf consumption (Hylander, 1988; 

Wood & Strait, 2004; Wood & Shroer, 2012; Strait et al., 2013). Based on the majority 

of the above traits Wood & Strait (2004) concluded that rather than excluding foods 

from the diet of Paranthropus these adaptations had the potential to broaden it, by 

enabling the frequent or seasonal consumption of hard or tough foods to go along with 

the softer foods that are available (Wood & Strait, 2004).   

 The morphology of Paranthropus is therefore consistent with euryphagy, but the 

derived features may be more important for the seasonal consumption of hard foods 

(Peters, 1987; Wood & Strait, 2004). Following on from the morphological analyses by 

Wood & Strait (2004), dental microwear texture analysis and stable carbon isotope 

analysis on the hominin fossils have combined to challenge the grounds upon which the 

original dietary reconstructions were based. In so doing, the analyses served to provide 

support for the revisions that Wood & Strait (2004) advocated.  

 

2.4.3 Dental Microwear Texture Analysis  

2.4.3.1 What it is and how it works 

 Microscopic wear patterns on the occlusal surface of molar teeth have received 

considerable attention (Yamashita et al., 2016). The method is based on the 

understanding that food mechanical properties, abrasives attached to the foods (such as 

exogenous grit, phytoliths and enamel prisms) and the chemical properties of foods are 

known to have a direct impact on the microwear surface texture of teeth (Nystrom et al., 

2004; Ungar et al., 2006; Scott et al., 2009; Grine et al., 2012). Microwear patterns are 

predominantly interpreted as the result of foods masticated at a specific moment in time 

(Nystrom et al., 2004; Ungar, 2011). As a result, it is suggested that analysis of dental 

microwear texture analysis provides direct evidence about the qualitative traits and 
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fracture mechanics of the different food items consumed, which thus reflects the nature 

of the dietary ecology of the specimens analysed (Scott et al., 2005, 2009).  

 Microwear can distinguish between a diet of hard-brittle foods and tough-pliable 

foods (Kay & Grine, 1988; Ungar, 2011). These food mechanical properties produce 

two main feature-types on the occlusal surfaces of the dentition: striations and pitting. 

Pits produce a complexity signal on the occlusal surfaces and are formed from abrasives 

being crushed between the teeth and into facets; these are commonly associated with a 

hard food diet. Striations give an anisotropic signal, and are formed from abrasives 

being dragged along the tooth surface by the opposing tooth; these are associated with a 

tough food diet (Ungar et al., 2006; Grine et al., 2012; Ungar, 2015; Percher et al., 

2018). The latter category is more a reflection of the abrasives attached to the foods, 

because in order for microwear patterns to form the object must be as hard as or harder 

than the enamel itself (Nystrom et al., 2004). A tough food by its very nature is not 

hard, but should exogenous grits, phytoliths or enamel particles be attached to the food, 

their interaction with the occlusal surfaces will create the microwear patterns (Nystrom 

et al., 2004; Scott et al., 2012). A microwear surface pattern intermediate of 

‘anisotropic’ and ‘complex’ (a balance of pits and scratches) reflects a soft fruit diet 

(Ungar et al., 2006). Microwear can also provide an indication on the size of the foods, 

with large, hard foods creating larger pits, and similarly small, hard foods creating 

smaller pits (Ungar, 2011; Grine et al., 2012). Feature sizes can be informed based on 

the scale of maximal complexity and fill volume (Ungar, 2011, 2015).   

 In general, hard-object feeders will have high complexity values and low anisotropy, 

whereas tough-object feeders tend to have high anisotropy and low complexity values 

(Scott et al., 2012). Frugivorous species often fall midway between the two microwear 

types (Ungar, 2011, 2015). In other words, dental microwear texture analysis will not 

define the exact diet consumed, but it will provide a general indication of the fracture 

properties of the foods consumed (Grine et al., 2012; Wood & Shroer, 2012), so it can 

distinguish between diets focussed on hard-foods, tough-foods or soft-foods (Scott et 

al., 2012; Grine et al., 2012; Daegling et al., 2013; Ungar, 2015).  

 

2.4.3.2 Limitations of Dental Microwear Texture Analysis 

 There are very clear benefits to using dental microwear texture analysis as it 

provides information on the physical properties of the foods consumed and it can 

identify subtle and seasonal differences in diet. In terms of hominins it is an essential 
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resource to understand more about the nature of the foods consumed (Grine et al., 

2012), but there are limitations associated with the method too.  

As dental microwear texture analysis provides information about the physical 

properties of the foods consumed in the days or weeks prior to death this can be very 

informative (Ungar, 2011). By itself it can be a problem as it is recording only a very 

short period of dietary history and thus it informs very little about overall diet of a 

species and therefore little about their overall dietary adaptations (Ungar, 2011; Wood 

& Schroer, 2012; Strait et al., 2013). This is because the more attrition/ wear/ hardness 

involved in the diet the faster the turnover of the microwear features (Nystrom et al., 

2004; Ungar, 2011; Scott et al., 2012; Percher et al., 2018). The turnover of features 

means that a diet that normally involves non-complex foods can be rapidly altered to 

appear as though hard foods are present, even after a short time consuming such foods 

(Scott et al., 2012; Wood & Schroer, 2012). The effect of which potentially results in an 

overestimation of the consumption of hard foods (Scott et al., 2012; Wood & Schroer, 

2012). Attempting to establish the abrasiveness or fibrousness of a diet based on tooth 

wear is not straightforward, for the two with their different mechanical properties/ 

fracture requirements could result in a similar morphology (Ungar, 2015). The question 

then becomes, does a species have a “steep wear gradient because it chews a little with a 

very abrasive diet, or a lot, with less abrasive one” (Ungar, 2015: 33). 

The accuracy of dental microwear texture analysis has also been questioned in 

recent years. Doubt was raised due to a study exploring a wide range of non-human 

primate microwear patterns, which revealed that it is not always possible to distinguish 

species with different diets using dental microwear texture analysis (Scott et al., 2012). 

Based on the research of Scott et al. (2012) it was suggested that dental microwear 

texture analysis studies are not perhaps as clear cut as they appear, and that therefore, 

the dietary signal identified in microwear samples might only be indirect (Strait et al., 

2013; Smith et al., 2015).  

The problem that many comparative studies have, including that of Scott et al. 

(2012) is that their studies are not based on samples that have been directly observed 

when feeding in the wild. Any inferences made about diet are therefore based on other 

field studies and not necessarily about the sample analysed. The studies by Nystrom et 

al. (2004), Yamashita et al. (2016) and Percher et al. (2018) recognised this weakness 

and incorporated direct observation of the dietary habits of their samples of Papio 

hamadryas (sensu lato), Mandrillus sphinx, and Lemur catta into their analysis of the 

dental microwear texture analysis and dental topographic analysis. The results of the 
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studies highlighted seasonal differences in the nature of the foods consumed, which 

were reflected by changes in the microwear patterns and dental topography (Nystrom et 

al., 2004; Yamashita et al., 2016; Percher et al., 2018). These studies highlight the 

potential that dental microwear texture analysis has; specifically when the sample and 

data gathered (the method) is carefully controlled. A factor not possible to control for in 

hominins, but through a more comprehensive understanding of microwear patterns in 

extant non-human primates it is possible to generate more accurate comparisons for 

hominins.  

 

2.4.4 Stable Carbon Isotope Analysis  

2.4.4.1 What it is and how it works 

 Stable isotope analysis using strontium/ calcium (Sr/Ca), nitrogen (δ
15

N), oxygen 

(δ
18

O) and carbon (δ
13

C) are additional methods used to reconstruct past diets (Copeland 

et al., 2011; Klein, 2013). Nitrogen isotopes are extracted from protein retained in fossil 

bones; strontium/calcium can be extracted from bone and dental enamel; while oxygen 

and carbon isotopes are extracted from tooth enamel (Sponheimer et al., 2005b; Balasse 

et al., 2012; Klein, 2013).  

 Stable carbon isotopes and strontium/ calcium isotopes can reflect the dietary 

ecology, the chemistry of the foods consumed and the plant communities available to 

the specimen analysed, while oxygen isotopes can establish patterns of seasonality and 

determine if a species is a frugivore, faunivore or herbivore (Sillen, 1992; Cerling et al., 

2004; Sponheimer et al., 2006a; Ungar, 2011; Balasse et al., 2012; Grine et al., 2012). 

A more complete picture of the diet of an individual would be generated if the above 

isotopes and what they inform were used in conjunction (Balasse et al., 2012; Grine et 

al., 2012). This is because, the dental enamel stores carbon and oxygen isotope 

information that is laid down during the early years (during enamel and tooth 

development), while the strontium isotopes taken from the bone present information 

from both the early and later years (during bone remodelling) (Grine et al., 2012).  

 The current understanding of oxygen isotopes and their foodweb patterns is limited, 

while strontium/ calcium isotopes are inhibited by problems relating to diagenesis
4
, and 

nitrogen isotopes are restricted by the short lifespan of proteins present in nitrogen (with 

a maximum lifespan of 200,000 years, depending on location) (Sillen, 1992; 

Sponheimer et al., 2005b; Grine et al., 2012; Klein, 2013). Unlike nitrogen isotopes, 

                                                             
4
 Diagenesis is chemical alteration over time. The effects of which have been known  to obscure or even 

obliterate strontium/calcium in the fossil remains (Sillen, 1992; Sponheimer et al., 2005b; Grine et al., 

2012) 
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carbon isotopes do not face the same limitations of time, for they persist and are 

protected in dental enamel, and unlike strontium/ calcium isotopes from bone, carbon 

isotopes do not face the same limitations of diagenesis, because enamel is denser and 

more crystalline, so the bioapatites are better protected and are less likely to be affected 

by post-mortem chemical alteration (Lee-Thorp et al., 1989; Sponheimer et al., 2005a; 

Grine et al., 2012). The highly crystalline nature and resistance to postdepositional 

diagenesis in tooth enamel means that the antemortem stable carbon isotope signal is 

retained for millions of years. Stable carbon isotopes are therefore considered to be the 

most reliable sample material used to extract dietary information (Lee-Thorp et al., 

2000; Sponheimer et al., 2005a, 2013; van der Merwe et al., 2008; Grine et al., 2012; 

Klein, 2013).  

 Animal tissues contain the degree of dietary carbon in the system, which derives 

from the particular “photosynthetic pathways at the base of the foodweb” utilised (Lee-

Thorp et al., 2000: 567; Sponheimer et al., 2006a). In other words, the isotope signals 

from the plants are carried over into the consumers (animals), and based on this; it is 

possible to identify the photosynthetic pathways that the animals’ diets were derived 

from (Grine et al., 2012). The pathways explored are C3, C4 and CAM (although the 

latter is not as common) (Lee-Thorp et al., 2000; van der Merwe et al., 2003; 

Sponheimer et al., 2006a; Grine et al., 2012). Plants that follow the C3 pathway are 

derived mainly from trees, shrubs, bushes and grasses of forested environments (the 

resultant diets would consist of nuts, fruits and leaves) (Lee-Thorp et al., 2000; van der 

Merwe et al., 2003; Sponheimer et al., 2006a; Grine et al., 2012). Plants that follow the 

C4 pathway are derived mostly from grasses and sedges, which could perhaps reflect a 

more open environment (Lee-Thorp et al., 2000; van der Merwe et al., 2003; 

Sponheimer et al., 2006a; Grine et al., 2012). So not only are stable carbon isotopes 

useful in identifying fundamental dietary differences, they also provide information 

about the environment an individual was from, which is particularly useful for 

reconstructing hominin habitats (see Table 2.5 for an environmental breakdown 

according to photosynthetic pathways) (Lee-Thorp et al., 2000; van der Merwe et al., 

2003, 2008; Sponheimer et al., 2006a; Grine et al., 2012).  

 The two pathways (C3 and C4) are distinguished based on the levels of 
13

C in their 

tissues, where C3 plant tissues are relatively depleted in 
13

C, C4 plant tissues are 

relatively enriched in 
13

C (Lee-Thorp et al., 2000; Sponheimer et al., 2006a, 2013). As a 

result, the composition of carbon isotopes in C3 and C4 plants does not overlap 

(photosynthetic pathway ranges detailed in Table 2.5) (Sponheimer et al., 2013).  
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Table 2.5: Environmental breakdown of the plants using the various photosynthetic pathways, according to 

Cerling et al., 2013 

δ
13

C range C3 pathway (range between 24% - 32%) C4 pathway (range between 10% - 14%) 

Positive values  Xeric (dry) environments Mesic (moderately moist) environments 

Intermediate values Mesic (moderately moist) environments   

Negative values Closed canopy environments Xeric (dry) environments 

 

 Typically stable carbon isotope data are dominated by C3 and C4 based food 

resources, but it is not a straightforward dichotomous system, as there exists a third 

photosynthetic pathway extracted from succulent plants, the crassulacean acid 

metabolism (CAM) pathway (Cerling et al., 2013; Sponheimer et al., 2013).  They form 

minor, but potentially important elements of the plant biomass in most woodland and 

savannah ecosystems (Cerling et al., 2013; Sponheimer et al., 2013). However, 

depending on where a species lives, the majority of foods follow C3 or C4 

photosynthetic pathways, and as such most diets are distinguished accordingly. 

 

2.4.4.2 Limitations of Stable Carbon Isotope Analysis 

  A potentially important limitation of stable carbon isotope analysis involves the 

pre-treatment methods used. Recent studies employing these analyses appear to be 

using a consistent amount of chemicals and for a similar period of time (e.g., Cerling et 

al., 2011, 2013; Sponheimer et al., 2013; Wynn et al., 2013). There is slight variation 

with those of the earlier studies (e.g., Sponheimer & Lee-Thorp, 1999; Sponheimer et 

al., 2005a), but in theory as most of the earlier samples/ specimens have been 

reanalysed later using a consistent method the results should be accurate.  

 Sponheimer et al. (2006a) report on seasonal variation within the enamel, but Strait 

et al. (2013) highlight that this might not be entirely accurate, as it could take weeks or 

months for the mineralisation of the enamel to be complete. In addition, as the stable 

carbon isotopes are extracted from the dental enamel, which grows during development, 

this means that the stable carbon isotopes are not reflective of an individual’s whole life, 

but rather they are snapshots of their diets when they were juveniles (Strait et al., 2013). 

It is possible that the diet consumed during early life differed from that during 

adulthood (Strait et al., 2013; Chalk-Wilayto et al., 2016).   

 The difference between the diet of a juvenile and that of an adult therefore requires 

different teeth be used for the extraction of stable carbon isotope analysis. The 

deciduous dentition or the earlier erupting permanent teeth are likely to reflect weaning, 

whereas, the M2 or M3 are more reflective of an adult diet (van der Merwe et al., 2008). 

Observation of those teeth that are recorded for their stable carbon isotopes in the 
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hominins reveals that of the 149 recorded, 72 are from the M2 or M3, while 77 are not 

(information available in Cerling et al., 2013 Supplementary Information). In generally 

the results are quite consistent across the dentition, but it is preferable that the 

specimens are extracted from the later developing teeth to generate a more thorough 

understanding of the adult dietary variation.  

 A further limitation of using stable carbon isotopes for the interpretation of hominin 

diets, is that if they were predators it is possible that their prey’s consumption of foods 

from one pathway (e.g., C4) obfuscated their actual diet, by overestimating a particular 

food source (Grine et al., 2012). The isotopes do not actually inform the exact nature of 

the diet, just the photosynthetic pathway, as a result it is hard to rule out foods that were 

not consumed (Strait et al., 2013). Isotope data are therefore useful to provide 

information on the abundance of resources that were exploited (Strait et al., 2013).   

 

2.4.5 Application of Dental Microwear Texture Analysis and Stable Carbon 

Isotope Analysis to hominins 

 While there are limitations associated with the methods of dental microwear texture 

analysis and stable carbon isotope analysis – as there are with any method – their 

strengths outweigh their weaknesses, and their potential importance to 

palaeoanthropological research cannot be overlooked, particularly if they are used in 

conjunction. As stable carbon isotope analysis reflects the early years of life during 

tooth formation, and dental microwear texture analysis represent the days/ weeks prior 

to death, the two methods provide a more complete picture of diet during different time 

periods (Grine et al., 2012; Percher et al., 2018). 

 Dental microwear texture analysis and stable carbon isotope analysis have both been 

applied to various specimens from the majority of hominin genera and species. The two 

methods have produced results that largely correspond, which thus increased their 

reliability (Grine et al., 2012). The results of stable carbon isotope analysis and dental 

microwear texture analysis when compared with the traditional comparative 

morphological interpretations are summarised in Table 2.6.  
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Table 2.6: Dietary interpretations based on morphological analysis, Stable Carbon Isotope Analysis and Dental Microwear Texture Analysis 

Species Comparative Morphological Analysis Stable Carbon Isotope Analysis Dental Microwear Texture Analysis  

A. anamensis 

Thick enamel, but thinner mandibular corpora compared to 

Paranthropus suggest it was able to consume a relatively 

broad diet. 1, 2 

C3 consumer. 3, 4 

Microwear patterns lacking both complexity and anisotropy 

signals, suggestive of a diet consisting predominantly of softer 

foods. 5, 6 

A. afarensis 
Similar features to Australopithecus anamensis, but greater 

mandibular robusticity. Able to consume a broad diet. 1 
C3 - C4/ CAM consumer. 4, 7 

Microwear patterns lacking both complexity and anisotropy 

signals, suggestive of a diet consisting predominantly of softer 

foods. 6, 8 

A. africanus 
An increase in postcanine size compared to those above, 
indicates diet breadth was emphasised. 1 

Highly mixed and varied diet. Consuming more 

than 50% of C3 foods and further substantial 
quantities of C4 foods. 4, 9, 10, 11, 12 

Highly varied diet, with more anisotropy than complexity 

patterns present suggestive of more tough than hard foods being 
consumed. 13, 14, 15, 16 

P. aetheopicus Highly derived craniofacial morphology. 17 Diet dominated by C4 resources. 3 No microwear information available 

P. boisei 

 Traditional interpretation: Highly derived, 

specialist hard-object feeder. 1 Diet heavily dominated by C4 resources, with a 

slight increase over time. Values do not overlap 

with Paranthropus robustus. 4, 12, 19 

Microwear patterns not consistent with hard-object feeding, but 

instead predominantly one of softer foods - similar to A. 

anamensis and A. afarensis. 12, 15, 20, 21 
 Alternative interpretation: Derived morphology 

enables the consumption of a broader range of foods and 

thus makes this species a dietary generalist. 18

P. robustus 

 Traditional interpretation: Highly derived, 

specialist hard-object feeder. 1
Highly mixed and varied diet, with seasonal 

and annual variation. Consuming more than 

50% of C3 foods and further substantial 

quantities of C4 foods. 4, 9, 11, 12, 22, 23 

Highly varied diet, with some overlap with A. africanus. High 

complexity and low anisotropy suggestive of a diet that included 

hard, brittle foods. 12, 13, 16, 24, 25, 26 
 Alternative interpretation: Derived morphology 

enables the consumption of a broader range of foods and 

thus makes this species a dietary generalist. 18

H. habilis (sensu 

lato)* 

Relatively large cheek teeth, robust mandibles compared to 

non-hominins and moderate prognathism. Morphology 
consistent with ability to consume tough foods.  18, 27 

A largely C3 based diet, but variable 

consumption of C4 based foods is present 

(between 23 - 49% C4). Consumption of C4 
resources increased over time. 3, 4, 28 

Varied diets, but no strong microwear patterns consistent with 

hard or tough object feeding, suggestive of consuming soft foods 
predominantly. 29 

H. ergaster 

Reduction in the size of dentition and mandible compared 
to other Homo species and the earlier Australopithecus and 

Paranthropus. Morphological reduction could potentially 

restrict what this species can consume - most likely offset 

by tool use. 18 

Results are indistinguishable from P. robustus. 
Consumer of a highly mixed and varied diet. 

Consuming more than 50% of C3 foods and 

further substantial quantities of C4 foods 

(approximately 20-25%). 12, 30 

Microwear patterns consisting of both complexity and 

anisotropy, suggestive of varied diets. Presents greater microwear 

complexity than any other hominin analysed, except for P. 

robustus. 12, 29 

1 Teaford & Ungar, 2000; 2 Ward et al., 2001; 3 Cerling et al., 2013; 4 Sponheimer et al., 2013; 5 Grine et al., 2006a; 6 Ungar et al., 2010; 7 Wynn et al., 2013; 8 Grine et al., 2006b; 9 Sponheimer & Lee-

Thorp, 1999; 10 van der Merwe et al., 2003; 11 Sponheimer et al., 2005a; 12 Ungar & Sponheimer, 2011; 13 Scott et al., 2005; 14 Ungar, 2011; 15 Grine et al., 2012; 16 Peterson et al., 2018; 17 Walker et 

al., 1986; 18 Wood & Strait, 2004; 19 Cerling et al., 2011; 20 Ungar et al., 2008; 21 Ungar et al., 2012; 22 Lee-Thorp et al., 1994; 23 Sponheimer et al., 2006a; 24 Grine, 1981; 25 Grine, 1986; 26 Kay & 

Grine, 1988; 27 Ungar, 2004; 28 van der Merwe et al., 2008; 29 Ungar et al., 2006; 30 Lee-Thorp et al., 2000 

* Referred to here as Homo habilis sensu lato following the convention established by other studies that analyse the stable carbon isotopes in Early Homo and do not distinguish Homo habilis from 

Homo rudolfensis due to the small sample sizes available for these species (e.g., Cerling et al., 2013). 
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The key results from Table 2.6 that are of interest to this study are from 

Paranthropus robustus in relation to P. boisei and A. africanus, and P. boisei in relation 

to early Homo. In their review of Paranthropus morphology, Wood & Strait (2004) 

suggested that features once considered indicative of specialisms (per Robinson, 1954a, 

1963), might be better considered as generalist adaptations to broaden Paranthropus 

dietary repertoires (Sponheimer & Lee-Thorp, 2003; Wood & Strait, 2004). Application 

of dental microwear texture analysis and stable carbon isotope analysis on P. robustus 

provided support for the latter conclusion, as both dental microwear texture analysis and 

stable carbon isotope analysis indicate a highly varied diet that included hard objects, 

from both C3 and C4 resources, similar to that of A. africanus (Scott et al., 2005; 

Sponheimer et al., 2006a, 2013; Cerling et al., 2011; Wynn et al., 2013). The highly 

derived and robust craniofacial morphology present in P. robustus was extremely 

different to that of A. africanus, yet the isotopic range and microwear patterns of the 

two hominins indicate some overlap. However, overlap between Paranthropus and 

Australopithecus in their dental microwear texture analysis and stable carbon isotope 

analysis results do not mean that their diets were the same (Lee-Thorp et al., 2000). 

Rather, the overlap means that both genera consumed some foods with similar material 

properties and derived from the same isotopic pathways.  

Comparison of the dental microwear texture analysis and stable carbon isotope 

analysis of P. boisei and P. robustus, congeners from East and South Africa revealed 

further problems with Robinson’s (1954a, 1963) Dietary Hypothesis. Historically they 

were considered to demonstrate a morphological adaptation to hard-object feeding that 

required powerful bite forces and the ability to withstand powerful bending moments 

(Hylander, 1988; Ungar et al., 2008). Yet the evidence from the dental microwear 

texture analysis and stable carbon isotope analysis suggests that the two species 

consumed diets of different mechanical properties and from different isotopic regimes 

(Grine, 1981; Walker, 1981; Scott et al., 2005; Sponheimer et al., 2006a, 2013; Ungar 

et al., 2008, 2012; Cerling et al., 2011, 2013). The dental microwear texture analysis 

patterns present in P. robustus are, at least occasionally, consistent with hard object 

feeding, while those present in P. boisei are not (Scott et al., 2005; Ungar et al., 2008, 

2012; Ungar & Sponheimer, 2011; Grine et al., 2012). The stable carbon isotope 

analysis signals present in P. robustus are derived from both C3 and C4 resources, while 

P. boisei are dominated by C4 resources (both isotopic regimes are consistent with 

environmental reconstructions – information available in Appendix A Tables A.2-A.3) 

(Lee-Thorp et al., 1994; Sponheimer  & Lee-Thorp, 1999; Sponheimer et al., 2005a, 
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2006a, 2013; Cerling et al., 2011). These results indicate that P. robustus were not 

dietary specialists (Lee-Thorp et al., 1994; Sponheimer & Lee-Thorp, 1999; Scott et al., 

2005; Sponheimer et al., 2005a, 2006a). P. boisei could have been a dietary specialist, 

but not on hard-object foods (Cerling et al., 2011, 2013; Daegling et al., 2011, 2013). It 

appears clear that the two species were not adapted to consume foods with the same 

mechanical properties.  

The stable carbon isotope analysis results from early Homo compared to P. boisei 

are also of interest, particularly as they demonstrate change over time (information 

available in Cerling et al., 2013 Supplementary Information). The diets of both early 

Homo species were largely dominated by C3 resources (>50%), and supplemented by C4 

resources (~25%), yet the percentage of both resources changes over 500kys (Lee-

Thorp et al., 2000; van der Merwe et al., 2008; Ungar & Sponheimer, 2011; Cerling et 

al., 2013; Sponheimer et al., 2013). From 1.99-1.67 Ma and 1.65-1.46 Ma the stable 

carbon isotope analysis results change from a dominance of C3 resources in the earlier 

time period (a ratio of C3/C4-based resources of 65/35) to a diet dominated slightly by 

C4 resources in the latter period (ratio of C3/C4-based resources of 45/55) (Cerling et al., 

2013). Stable carbon isotope analysis results of P. boisei specimens taken from the same 

periods and locations analysed for early Homo, consistently recorded a diet based on C4 

resources (Cerling et al., 2013). These results indicate that early Homo species were 

dietary generalists, while P. boisei could have been dietary specialists, as P. boisei were 

predominantly consuming C4 resources when C3 resources were available. This ability 

of P. boisei and Homo sp. to coexist during these time periods is in-keeping with Wood 

& Strait’s (2004) definition of a stenotopic species. 

Based on these results, it was questioned why the different Paranthropus species 

had such similarly derived morphologies when they were consuming very different 

diets, and what could have been the selective force that drove such a derived 

morphological adaptation in these species. In contrast, the morphological differences 

between Homo sp. and P. boisei appear to correspond to dietary differences (Cerling et 

al., 2013). Overall, these results indicate that diet could be an important factor driving 

morphological form, but not the only one. Together dental microwear texture analysis 

and stable carbon isotope analysis and biomechanical studies are seen to have 

questioned the foundations upon which the Dietary Hypothesis had been built, and call 

into question the existing models regarding current understanding of the nature of the 

diet consumed by the early hominins.  
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In an attempt to explain the highly derived morphology of Paranthropus relative to 

Australopithecus, it was suggested that Paranthropus were better adapted to foods they 

eat on an infrequent basis, when their preferred foods were unavailable (thus becoming 

examples of Liem’s Paradox). The idea that the hominins may switch to less preferred 

foods during periods of resource scarcity is commonly referred to as the Fallback Food 

Hypothesis (this is discussed in greater detail in the next chapter) (Lambert et al., 2004; 

Laden & Wrangham, 2005; Scott et al., 2005, 2014; Marshall & Wrangham, 2007; 

Marshall et al., 2009; Strait et al., 2009; Ungar, 2011; Grine et al., 2012; Scott et al., 

2014). It is assumed that fallback foods are low quality, tougher and more resistant to 

deformation than the preferred foods (Marshall & Wrangham, 2007; Marshall et al., 

2009; Harrison & Marshall, 2011). It is due to these assumed mechanical properties that 

fallback foods are suggested to have imbued selective pressures and influenced the 

different trophic morphologies observed in extant non-human primates (Lambert et al., 

2004), and indeed, have been proposed as a viable explanation for the more robust 

masticatory morphology present in the hominin species (Vogel et al., 2014). The 

Fallback Food Hypothesis represents a shift in emphasis, where morphology previously 

considered to have been influenced by foods consumed frequently; it is now proposed to 

be influenced by high-stress foods consumed infrequently. 

 The concept of seasonally available resources is not new to this discussion. Indeed, 

when Robinson (1963) proposed the Dietary Hypothesis as the reason for the clear 

morphological differences between Paranthropus and Australopithecus, he suggested 

the climate would have been undergoing changes, where over millennia there would 

have been a gradual shift towards a longer and drier dry season. Robinson (1963) 

suggested that the critical period would have been towards the end of the dry period, 

which would have been the trough in food shortage. During this critical time other 

foods, including vertebrates and invertebrates would have been consumed to 

supplement the diets of both hominins. As the climate changed the critical periods 

would have extended and the once short periods of exploiting other foods would have 

become much longer. Competition for resources would have increased, and as a result 

population levels would have dropped. According to Robinson (1963) the distinction 

between the two genera would have arisen during this time of extended food shortage, 

wherein the more generalised Australopithecus exploited their environments in a way 

that Paranthropus could not.  

Seasonally available resources were therefore clearly acknowledged when the 

Dietary Hypothesis was first proposed. It is perhaps other researchers’ interpretations of 
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Robinson’s (1963) work where it appears that the description of Paranthropus being a 

dietary specialist has been misconstrued to mean that Paranthropus only ate particular 

foods.  

The idea that there are morphological adaptations beyond what might be required of 

a routine diet as suggested by the Fallback Food Hypothesis is not a recent concept. 

Indeed, Bock & von Wahlert (1965) suggested that most organisms possess features 

that appear to be overdesigned for their routine needs and were suggested as potential 

adaptations to overcome the harshest extremes of their environments. Rosenberger & 

Kinzey (1976) and Kinzey (1978) called these morphological adaptations critical 

functions, which would enable the consumption of different foods during the resource 

scarce periods. Support for critical functions was found in studies of non-human primate 

dentition (e.g., by Happel, 1988; Anapol & Lee, 1994; Yamashita, 1996, 1998; Lambert 

et al., 2004; Norconk et al., 2009).  

In the extant non-human primate literature seasonal diet variation was first called 

Keystone Resources (sensu Terborgh, 1983, 1986), which has now been revised and 

replaced by the Fallback Foods Hypothesis (sensu Wrangham et al., 1998), and is 

commonly invoked to explain seasonal diet variation. While seasonal diet variation is a 

concept that has been recognised for many years, it is only with the recent challenges to 

the proposed diets of Paranthropus and Australopithecus that the concept has been 

applied to hominins. This is due to other studies not identifying overlap and variability 

in the hominin diets at an earlier time and as a result, continued with the assumption that 

a robust morphology indicates a unique, specialised diet (Laden & Wrangham, 2005; 

Scott et al, 2005).  

The Fallback Food Hypothesis has been invoked to explain the increasingly robust 

masticatory morphology of hominins and the differences between them (Ungar, 2004, 

2011; Laden & Wrangham, 2005; Scott et al., 2005, 2014; Grine et al., 2006a, 2006b, 

2012). Indeed, the mechanical properties of the fallback foods were suggested to have 

applied a selective pressure to influence the masticatory morphology of the following 

hominins: A. anamensis, A. afarensis, A. africanus, P. robustus, P. boisei and early 

Homo (Ungar, 2004, 2011; Laden & Wrangham, 2005; Scott et al., 2005, 2014; Grine et 

al., 2006a, 2006b, 2012). These morphological features would enable the consumption 

of hard or tough foods during periods of resource scarcity (Scott et al., 2005; Grine et 

al., 2006a, 2006b). 

The overlap in the microwear and stable carbon isotopes present between A. 

africanus and P. robustus was interpreted as the hominins consuming the same 
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preferred foods, but diverging in their use of fallback foods on a seasonal basis (Scott et 

al., 2005). A. africanus displayed greater anisotropy and were suggested to exploit 

tough fallback resources, while, P. robustus displayed greater complexity and were 

suggested to exploit hard fallback resources (Scott et al., 2005). The fallback foods for 

Paranthropus could have been underground storage organs (USOs), such as corms and 

tubers or the seeds of grasses (as Jolly, 1970 proposed), as both can be hard and brittle 

(depending on the time of the year) and can follow the C4 photosynthetic pathway 

(depending on location) (Dominy et al., 2008; Lucas et al., 2008b). 

The hyper-thick dental enamel and hyper-robust masticatory apparatus of P. 

robustus is suggested to be consistent with a hard-food diet, be it frequently or 

infrequently consumed (Lucas et al., 2008a; Constantino et al., 2010, 2011; Pampush et 

al., 2013; Strait et al., 2013; Smith et al., 2015). However, while the morphology of P. 

boisei is further derived than that of P. robustus, the nature of foods consumed and their 

frequency of consumption are still debated for P. boisei. Ungar et al. (2008) suggested 

that the morphology reflected a hard-object adaptation to fallback foods, although this is 

weakened by the lack of any hard-object signals in any of the 9 P. boisei specimens 

sampled (Ungar, 2011). To account for this lack of hard-object signal, Strait et al. 

(2013) and Scott et al. (2014) suggested that the specimens did not perish during the 

fallback time and that the seasonal use of different resources has been missed. Grine et 

al. (2012) and Pampush et al. (2013) instead proposed that the morphology might better 

reflect the repetitive mastication of tough, fibrous foods, rather than hard objects, yet 

such a diet would not correspond to the occlusal surfaces of the dentition, which are 

poorly designed for tough food eating (Strait et al., 2013).  

According to some researchers it is illogical to assume that as the mandibular 

morphology of Paranthropus became better adapted to consume tough foods (sensu 

Grine et al., 2012; Pampush et al., 2013) its dentition became better adapted to consume 

hard foods (Wood & Schroer, 2012; Strait et al., 2013; Smith et al., 2015). The 

arguments of Wood & Schroer (2012); Strait et al. (2013) and Smith et al. (2015) are 

based on the idea that morphological features are optimal solutions. Such an assumption 

is erroneous (Bock, 1980; Daegling et al., 2013; Elton et al., 2016; Grine & Daegling, 

2017). Just because something might not be “ideally” suited to a particular function 

does not mean that it cannot perform the job efficiently (Daegling et al., 2013; Elton et 

al., 2016; Gailer et al., 2016). As Ungar & Hlusko (2016: 30) stated “evolution tends to 

follow the path of least resistance”. After all, there can be multiple functions for a given 
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form, and multiple forms can perform the same function (Bock & von Wahlert, 1965; 

Bock, 1980; Taylor, 2002; McGraw & Daegling, 2012; Ungar & Hlusko, 2016). 

Based on examples of extant animals they sometimes consume foods that would not 

be expected based on their morphologies. As an example Cercocebus atys frequently 

consume extremely hard seeds, and grazing bovids frequently consume tough plant 

materials, yet the morphology in both appears to be sub-optimally suited to those foods 

(Daegling et al., 2011, 2013; McGraw & Daegling, 2012; Gailer et al., 2016). C. atys 

lack the expected craniofacial buttressing of a hard-object feeder, while Kobus 

ellipsiprymnus (bovid) appear to lack the occlusal complexity suitable for grazing (as 

observed in other bovines and hippotragines) (Daegling et al., 2011, 2013; McGraw & 

Daegling, 2012; Gailer et al., 2016). When applied to P. boisei, the rest of its 

masticatory apparatus could have compensated for the apparent sub-optimal dental 

adaptation by generating and transmitting the high, repetitive loads required when 

grinding tough foods (Ungar & Hlusko, 2016). Analysis of the mechanical properties of 

foods reveals that young leaves in their membranous state are similar to ripe fruits in 

their composition and would not require dental adaptations to masticate (Talebli et al., 

2016). Thus, should P. boisei have been consuming the leaves of grasses and sedges in 

their membranous state (as is consistent with their C4 isotopic range) their dental 

morphology would not need to be reflective of a typical folivore (Talebli et al., 2016). 

 The exploitation of fallback foods by the genus Australopithecus and P. robustus 

would make them eurytopic in nature (Wood & Strait, 2004). In contrast, it remains 

unclear if P. boisei did exploit fallback foods, and the clear divergence from Homo sp. 

in their isotopic regimes despite appearing to occupy the same locations at the same 

time (Cerling et al., 2013 Supplementary Information) is consistent with a stenotopic 

classification. The validity of Robinson’s (1954a, 1963) Dietary Hypothesis is therefore 

questioned.  

 

2.5 Chapter summary 

 To summarise, it has long been assumed that there is an association between dietary 

ecology and morphological and behavioural diversity, and that diets with different 

mechanical demands will be reflected in different morphological adaptations in the 

mandible in predictable ways (Daegling & McGraw, 2007; McGraw & Daegling, 

2012). However, in palaeoanthropology there is yet to be an agreement over how diet 

influenced the distinctive craniofacial morphology observed in the australopithecines 

(Berthaume et al., 2010). Assumptions regarding the morphology focussed on the 
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necessity for the robust masticatory form to represent a dietary adaptation to hard object 

feeding (e.g., Strait et al., 2009, 2013), as that corresponded to the assumptions that the 

diet was shifting to one inclusive of hard foods (Teaford & Ungar, 2000).  

 The recent application of stable carbon isotope and dental microwear texture 

analyses and a continued exploration of biomechanics challenge how closely correlated 

form and function are (Ungar & Hlusko, 2016). The evidence from stable carbon 

isotope analysis and dental microwear texture analysis are not consistent with any of the 

previous assumptions of the hominin diets (Berthaume et al., 2010; Grine et al., 2012; 

Wood & Shroer, 2012; Scott et al., 2014). This results in two major issues for the 

traditional understanding of Paranthropus being dietary specialists: 1) P. robustus and 

A. africanus overlapped in certain aspects of their mechanical properties of the diets 

consumed and their photosynthetic pathways (Sponheimer & Lee-Thorp, 1999; Scott et 

al., 2005; Sponheimer et al., 2005a, 2006a), and 2) P. boisei and P. robustus did not 

consume the same type of diet (Sponheimer et al., 2006a, 2013; Ungar et al., 2008).  

 With regard to the biomechanics, there are examples where there appears to be a 

clear correlation between masticatory form and the stresses applied to them (e.g., 

Hylander, 1979a, 1979b, 1984; Taylor, 2005, 2006a). However, this is not a universal 

correlation and in fact, could reflect species-specific adaptations (Daegling & McGraw, 

2001; Ross et al., 2012; Vinyard et al., 2016). Furthermore, it is not necessary to view 

an adaptation as an optimal solution to a problem (Bock, 1980; Grine & Daegling, 

2017), for it must be remembered that natural selection acts over many generations with 

the adaptive modifications gradually coming into effect in each one (Bock & von 

Wahlert 1965; Elton et al., 2016; Gailer et al., 2016; Ungar & Hlusko, 2016). Rather, 

those features that do not represent the biomechanical “optimum” can still perform a 

given function, that is, even apparently maladaptive structures are able to efficiently 

perform a task (Daegling et al., 2011, 2013; McGraw & Daegling, 2012; Elton et al., 

2016; Gailer et al., 2016). It may be that the rest of the morphology present is able to 

compensate for an apparent sub-optimal adaptation (Ungar & Hlusko, 2016). Indeed, 

there are examples of extant non-human primate species regularly masticating 

extremely hard foods but not necessarily having the morphological adaptations suited to 

do so (Daegling et al., 2011, 2013; McGraw & Daegling, 2012). Therefore, the 

buttressed facial configuration observed in many of the australopithecines is not 

necessarily an adaptation to hard-object feeding (McGraw & Daegling, 2012). An 

additional problem with regard to morphology is the fact that there appears to be no 

singular solution to a diet, where hard or tough object feeding does not result in one 
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morphological form (Bock, 1980; Daegling & McGraw, 2001; McGraw & Daegling, 

2012; Daegling et al., 2013; Grine & Daegling, 2017). For example, both colobines and 

gorillas have tough diets, but colobines do not have thick mandibular corpora like 

gorillas do (Teaford & Ungar, 2000). Of course, a lack of correlation between diet and 

morphology could reflect the fact the morphology reflects an adaptation to a previous 

generations’ diet.  

 Behavioural flexibility, such as tool use, or dietary switching, is proposed as a way 

in which organisms can mitigate the potential effects resulting from an adaptation not 

being optimally suited for a particular function (Grine & Daegling, 2017). Alternatively, 

a proposed resolution to the inconsistencies surrounding the dental microwear texture 

and stable carbon isotope analyses and the morphology is the Fallback Food Hypothesis 

(Norconk et al., 2009; Berthaume et al., 2010; Wood & Shroer, 2012). It is suggested 

that fallback foods drive the morphological adaptations, wherein the adaptations are the 

result of the infrequent consumption of mechanically resistant foods during the fallback 

periods (Marshall & Wrangham, 2007; Marshall et al., 2009; Berthaume et al., 2010; 

Wood & Shroer, 2012). It is assumed that fallback foods are low quality, tougher and 

more resistant to deformation than the preferred foods (Marshall & Wrangham, 2007; 

Marshall et al., 2009; Harrison & Marshall, 2011; Vogel et al., 2014). They therefore 

require morphological adaptations to generate the necessary power to fracture these 

foods and also to resist potential deleterious effects of consuming these foods, thus 

fallback foods have been proposed as a viable explanation for the more robust 

masticatory morphology present in some species (Vogel et al., 2014). Fallback foods 

may not be observed in the microwear, which is a reflection of the fact that the 

specimens did not perish during the fallback period (Berthaume et al., 2010; Strait et 

al., 2013; Scott et al., 2014). 

 To maintain the necessity for the derived morphological adaptations in 

Paranthropus it was suggested that both P. robustus and P. boisei consumed hard foods 

as fallback foods (Scott et al., 2005; Ungar et al., 2008). While microwear evidence 

supported the consumption of hard foods in the diet of P. robustus (Scott et al., 2005), 

there is no evidence to support the presence of hard objects in the microwear of P. 

boisei (Ungar, 2011; Grine et al., 2012). Indeed, the morphological features once 

interpreted as hard-object feeding adaptations in P. boisei could be the result of the 

regular consumption of tough-objects (Grine et al., 2012). It remains unclear which 

factor (if any) is more important for determining masticatory form, be it from repetitive/ 
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cyclical loads (average forces) or from peak masticatory forces (Happel, 1988; 

Yamashita, 1998; Taylor et al., 2008; McGraw & Daegling, 2012).  

 Application of this hypothesis to the extinct hominins is not without its critics 

though. Invocation of fallback foods as an explanation for the morphological 

adaptations present in hominins are considered to be extremely convenient, as they can 

be applied in almost any context as the explanation for a derived morphology (McGraw 

& Daegling, 2012; Grine & Daegling, 2017). It is expected that at least some of the 

fossils would present microwear traces consistent with hard-object feeding (Kimbel & 

Delezene 2009). Indeed, as Kimbel & Delezene (2009: 29) highlight “it would be a 

taphonomic anomaly that none do”. To date, there is no microwear evidence identifying 

hard-object fallback foods in hominins. Since they cannot actually be identified in the 

fossil record they remain untestable and invocation of it to fossil hominins is erroneous 

(Strait et al., 2009; McGraw & Daegling, 2012; Grine & Daegling, 2017).  
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Chapter 3  : Dietary adaptation in non-human primates 

 Non-human primate diets has long been of interest to researchers, whereby studies 

spanning a few months, a year or more analyse what foods were consumed at certain 

times of the day, how the nature of these foods varied according to the season and year, 

and potential hierarchical differences associated with sex, age or dominance (Clutton-

Brock, 1977; Watts et al., 2012a). In order to analyse the diets of the different species it 

is necessary to categorise them according to the nature of the foods they consume, for 

example, the primary dietary categories of non-human primates consist of “fruits”, 

“seeds”, “leaves” and “insects” (Clutton-Brock & Harvey, 1977; Fleagle, 1999). A diet 

that consists mostly of any one of these four food types would result in the 

classifications of frugivore, granivore, folivore, or insectivore (Clutton-Brock & 

Harvey, 1977; Fleagle, 1999; Robbins & Hohmann, 2006). In addition to these 

categories, there are further classifications to consider, these include omnivore 

(consumers of many different foods, with no one food type dominating completely), 

gummivore (consumer of gums), and nectivore (consumer of nectar) (Fleagle, 1999).  

 Dietary requirements are governed by internal and external factors that include 

physiological, chemical and social constraints (Ham, 1994; Tutin et al., 1997; Conklin-

Brittain et al., 1998; Hohmann et al., 2006; Lambert & Rothman, 2015). Internal factors 

that can influence the type of diet consumed include body size, the need to reach a 

nutritionally balanced diet, and the ability to masticate and digest foods to gain nutrients 

(Terborgh, 1983; Barton et al., 1993; Mills et al., 1993; Ham, 1994; Tutin et al., 1997; 

Peres, 2000; Remis et al., 2001; Marshall & Leighton, 2006; Russon et al., 2009; 

Fernandez-Duque & Heide, 2013; Fleagle, 2013; McGraw et al., 2014; Vogel et al., 

2014; Lambert & Rothman, 2015; Sengupta & Radhakrishna, 2016). All non-human 

primates must balance the nutritional components of their diets, meaning that there must 

be a variation in the types of food consumed (Hladik, 1977; Tutin et al., 1997; Altmann, 

2009; Felton et al., 2009a, 2009b, 2009c; Norconk et al., 2009; Potts et al., 2011; 

Fleagle, 2013). Due to differences in digestive strategies how much a diet varies 

depends on a species’ nutritional demands, which means that the importance of certain 

foods appears to be species-specific (Hladik, 1977; Krishnamani, 1994; Hohmann et al., 

2006; Doran-Sheehy et al., 2009).  

 According to the Jarman-Bell principle, body size, energy requirements and 

metabolic rates are all scaled to one another (Gaulin, 1979). Essentially, this scaled 

relationship means that body mass influences metabolic rates, which in turn influence 
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energy requirements. For example, larger bodied non-human primates have slower 

metabolic rates, while smaller bodied non-human primates have faster metabolic rates 

(Clutton-Brock & Harvey, 1977; Walker, 1981; Conklin-Brittain et al., 1998; Remis et 

al., 2001; Lambert, 2002; Taylor, 2002, 2006b; Yamagiwa & Basabose, 2006a; Vogel 

et al., 2008; Fleagle, 2013; Hanya & Chapman, 2013). The slower metabolic rates of 

larger bodied non-human primates are facilitated by digestive adaptations and lower 

nutritional requirements per unit of their body weight, while smaller bodied non-human 

primates have faster gut passage times to assist with the fast metabolism (Clutton-Brock 

& Harvey, 1977; Walker, 1981; Conklin-Brittain et al., 1998; Remis et al., 2001; 

Lambert, 2002; Taylor, 2002, 2006b; Yamagiwa & Basabose, 2006a; Vogel et al., 

2008; Fleagle, 2013; Hanya & Chapman, 2013). 

 Such digestive adaptations have a bearing on the types of diets that can be 

consumed. For example, large bodied non-human primates are generally more 

folivorous, while small bodied non-human primates are more insectivorous (Walker, 

1981; Barton et al., 1993; Cardini & Elton, 2008a; Fleagle, 2013). Both foliage and 

insects provide protein, but large bodied non-human primates can best meet their 

nutritional requirements through consumption of foliage as it is readily available in 

large quantities, while there would not be enough insects to meet demand (Walker, 

1981; Taylor, 2002, 2006b; Yamagiwa et al., 2005; Fleagle, 2013). Small bodied non-

human primates can best meet their nutritional requirements through consumption of 

insects, as they are protein-rich and quickly digested, small non-human primates also do 

not need the same volume of insects to meet their nutritional requirements as larger 

bodied non-human primates do (Clutton-Brock & Harvey, 1977; Walker, 1981; 

Conklin-Brittain et al., 1998; Lambert, 2002; Vogel et al., 2008; Fleagle, 2013). In 

general, foliage would not be a suitable food source for a smaller bodied non-human 

primate as they do not have the digestive adaptations to process such fibrous foods as 

larger bodied non-human primates do (exceptions to this include bamboo and immature 

leaves) (Clutton-Brock & Harvey, 1977; Walker, 1981; Conklin-Brittain et al., 1998; 

Lambert, 2002; Vogel et al., 2008; Fleagle, 2013). 

 Foods are selected based on their appearance and the ability of the consumer to 

masticate and digest the food. The nutritional composition, appearance, material 

properties and chemical contents of foods influence how appealing the food is to the 

consumer (Barton et al., 1993; Mills et al., 1993; Tutin et al., 1997; Peres, 2000; Remis 

et al., 2001; Marshall & Leighton, 2006; Chancellor et al., 2012; Cooke, 2012; 

Fernandez-Duque & Heide, 2013; McGraw et al., 2014; Vogel et al., 2014; Lambert & 
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Rothman, 2015; Sengupta & Radhakrishna, 2016). While the ability to access certain 

foods is determined by the consumer’s morphological or behavioural adaptations that 

can overcome the mechanical defences of the food (Fernandez-Duque & Heide, 2013; 

Fleagle, 2013; McGraw et al., 2014; Vogel et al., 2014; Lambert & Rothman, 2015).   

 Morphological adaptations to diet can include aspects of the craniofacial 

morphology, relating to the dentition and mandible/ maxilla (as discussed in the 

previous chapter), along with digestive adaptations (Clutton-Brock, 1977; Milton, 

1993). Digestive adaptations vary in different species, whereby they can prevent a 

species’ from consuming a particular food, or through increasing processing efficiency 

they can enable increased consumption of lower-quality foods
5
 (Tutin et al., 1997; 

Doran-Sheehy et al., 2009; Hanya & Chapman, 2013). For example, lower-quality 

foods, such as mature leaves, bark and fibrous fruits can be consumed by Gorilla 

because they have longer gut retention times and entodiniomorph ciliates present in 

their colons, which means that they can better digest cellulose and maximise absorption 

of nutrients (Goussard et al., 1983; Rogers et al., 1990; Tutin et al., 1997; Remis 1997; 

Remis et al., 2001; Morgan & Sanz, 2006; Taylor, 2009; Head et al., 2011; Hanya & 

Chapman, 2013). While Colobus have compartmentalised stomachs that increase the 

amount of energy that can be extracted from fibre and detoxify secondary compounds 

present in seeds and leaves (Tutin et al., 1997).  

 Behavioural adaptations to diet include differences in ranging behaviour, social 

organisation and tool use (discussed in this chapter) (Clutton-Brock, 1977; Fleagle, 

1999, 2013; Newton-Fisher et al., 1999). External factors that govern the nature of diet 

include habitat quality and location, season, and competition for resources from 

sympatric species (Goodall, 1977; Nishida et al., 1983; Fleagle, 2013). The nature of 

the habitats occupied by non-human primates is important because the vegetative 

resources within will determine the quality and quantity of foods available.   

 

3.1 Nutritional requirements of non-human primates 

 The nutritional requirements of non-human primates dictate what foods they eat and 

why. In general, fruits are consumed in preference by almost all non-human primates 

when they are available. Fruits alone do not, however, provide all of the required 

nutrients, as it is high in calories but low in protein (Hladik, 1977; Milton, 1993; Doran-

Sheehy et al., 2009; Norconk et al., 2009; Fleagle, 2013; Lambert & Rothman, 2015). 

                                                             
5
 Lower quality foods are defined as those that are harder or tougher to process/ digest, and may contain 

chemical deterrents within (Lahm, 1986; Milton, 1993). 
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Due to this, even when ripe fruit is available non-fruit foods continue to be consumed 

(Milton, 1993; Krishnamani, 1994; Nishihara, 1995; Tutin et al., 1997; Morgan & Sanz, 

2006; Norconk et al., 2009; Taylor, 2009; Kanamori et al., 2010; Chancellor et al., 

2012; Hanya & Chapman, 2013; Vogel et al., 2014). It is essential to obtain a balanced 

intake of the necessary macronutrients and energy, rather than focussing solely on one 

particular food type (Hladik, 1977; Hoshino, 1985; Happel, 1988; Milton, 1993; 

Nishihara, 1995; Tutin et al., 1997; Conklin-Brittain et al., 1998; Rothman et al., 2007; 

Felton et al., 2009a, b, c; Norconk et al., 2009; Potts et al., 2011). As no one food 

provides all of the required nutrients, a combination of food resources ensures that the 

necessary balance is met (Table 3.1 details the nutritional breakdown of foods) (Hladik, 

1977; Hoshino, 1985; Happel, 1988; Mitani, 1989; Milton, 1993; Nishihara, 1995; 

Rothman et al., 2007; Altmann, 2009; Taylor, 2009; Vogel et al., 2014; Lambert & 

Rothman, 2015).  

 Other food resources include foods at the different phenological stages, such as leaf 

flush and young leaves, flowers, flower buds, shoots, herbs, and immature seeds, all of 

which provide protein, while also being low in fibre and plant secondary metabolites
6
 

(Clutton-Brock, 1977; Hladik, 1977; Peters, 1987; Wrangham et al., 1991; Nishihara, 

1995; Tutin et al., 1997; Morgan & Sanz, 2006; Lappan, 2009; Kanamori et al., 2010; 

Hanya & Chapman, 2013; Lambert & Rothman, 2015). Even the inner parts of bark can 

be consumed in preference by some genera, e.g., Pongo, as it can be highly nutritious 

and an important source of energy, being similar to fruits in their non-structural 

carbohydrates composition and high in sodium (Vogel et al., 2014; Lambert & 

Rothman, 2015). Indeed, sometimes a species is not consuming bark or fruits (e.g., figs) 

per se but rather the highly nutritious grubs and larvae located within (Krishnamani, 

1994; Remis et al., 2001; Felton et al., 2009a, b; Potts et al., 2011).  

 

  

                                                             
6
 Plant secondary metabolites are digestion-inhibiting compounds and chemicals that form the chemical 

defences present in plants to prevent consumption by herbivorous animals (Makkar et al., 2007).   
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Table 3.1: General nutritional contents of foods consumed by non-human primates* 

Food type Low Moderate High Availability References 

Ripe fruit pulp 
Protein, insoluble fibre and 

PSMs** 
Soluble fibre 

Calories, lipids, sugar 

concentrations and easily 
digested carbohydrates 

A few months during the 

period of fruit abundance 

Hladik, 1977; Mitani, 1989; Wrangham et al., 1991; 

Milton, 1993; Krishnamani, 1994; Yamakoshi, 1998; 

Doran-Sheehy et al., 2009; Norconk et al., 2009; Lambert 
& Rothman, 2015 

Unripe fruit pulp Protein  
Insoluble fibre, soluble 
fibre, sugars and PSMs 

Fat 
A few months leading up 
to the period of fruiting 

Lambert & Rothman, 2015 

Seeds 
Concentrations of toxic 
compounds 

Depending on stage of 

development can be 
moderate to high in 

physical defences 

High quality and quantity 

of proteins, fat, lipids and 
energy. High mechanical 

defences and tannin 

content 

After the fruiting season 
Kinzey & Norconk, 1990; Reynolds et al., 1998; Norconk 
et al., 2009; Rosenberger, 2013 

Young leaves and 
shoots 

Energy, fats and tannin 
content 

Insoluble and soluble 
fibre, sugars, PSMs 

Protein Half the year 

Hladik, 1977; Kinzey, 1978; Mitani, 1989; Wrangham et 

al., 1991; Milton, 1993; Krishnamani, 1994; Reynolds et 
al., 1998; Doran-Sheehy et al., 2009; Norconk et al., 2009; 

Vogel et al., 2014; Lambert & Rothman, 2015 

Mature leaves Energy and fats 
Protein and soluble 

fibre 

Calcium, cellulose, 

insoluble fibre and PSMs 
Throughout the year 

Kinzey, 1978; Milton, 1993; Krishnamani, 1994; Reynolds 

et al., 1998; Lambert & Rothman, 2015 

Flowers 
Soluble fibre, fats and 

PSMs 

Insoluble fibre and 

sugars 
Protein A few months 

Clutton-Brock, 1977; Milton, 1993; Lambert & Rothman, 

2015 

Stems/ Piths Energy, protein and PSMs 
Insoluble fibre and 
sugars 

Soluble fibre 

Throughout the year, but 

more protein present 

during the wet season 

Wrangham et al., 1991; Lambert & Rothman, 2015 

Bark/ wood 
Soluble fibre, fats, protein, 

sugars and PSMs 
  Insoluble fibre Throughout the year Lambert & Rothman, 2015 

Gums 
Insoluble fibre, fat and 

protein  
Soluble fibre and sugars 

 
Lambert & Rothman, 2015 

Vertebrates   Fats Protein   Lambert & Rothman, 2015 

Invertebrates 
Soluble fibre, sugars and 

PSMs 

Insoluble fibre (chitin) 

and fats 
Protein Seasonal Hladik, 1977; Krishnamani, 1994; Yamakoshi, 1998 

* N.B. these represent generalisations of the nutritional qualities for each food type. In reality, the nutritional composition of all foods vary widely both within and between species (Lambert & 
Rothman, 2015). ** PSMs = plant secondary metabolites 
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 While fruits are commonly preferred food items, many non-human primates search 

for particular fruit species rather than just opportunistically consuming any fruit 

available (Reynolds et al., 1998; Basabose, 2002; Yamagiwa & Basabose, 2006a). In 

the case of the great apes, selectivity of foods applies even more to foods such as mature 

fruits or leaves, terrestrial herbaceous vegetation (THV), seeds, pith, bark, etc., which 

are often carefully selected and only consumed from a select few species, and even then, 

not all elements of the food are consumed (Goodall, 1977; Rodman, 1977; Nishida & 

Uehara, 1983; Galdikas, 1988; Nishihara, 1995; Reynolds et al., 1998; Newton-Fisher, 

1999; Remis et al., 2001; Taylor, 2006a, 2009; Altmann, 2009; Kanamori et al., 2010; 

Watts et al., 2012a; Hanya & Chapman, 2013).  

 Such discrimination of food is due to the fact that variation in quality exists within 

each food. For example, consumption of a particular leaf or part of a leaf is likely to be 

influenced by the nutrients present, such as sugar and protein, and its digestibility, with 

leaves from deciduous trees easier to digest due to containing lower levels of cellulose 

than leaves from evergreen trees (Clutton-Brock, 1977; Lambert & Rothman, 2015). 

Similarly, maturity level influences selection too, with younger leaves and immature 

seeds preferred while the more mature leaves and seeds are avoided. This preference 

reflects the fact that many of the younger versions are higher in protein and more 

nutritious than are the more mature versions, which are generally higher in fibre, plant 

secondary metabolites and mechanical defences (making them harder to masticate) 

(Goodall, 1977; Milton, 1979; Barton et al., 1993; Nishihara, 1995; Remis et al., 2001; 

Taylor, 2006a, 2009; Altmann, 2009; Kanamori et al., 2010; Hanya & Chapman, 2013).  

 Essentially what this food preference highlights is that all non-human primates 

modify their diets to reduce the negatives and focus on the positives, by selecting the 

most nutritious foods they can (Reynolds et al., 1998; Newton-Fisher, 1999; Taylor, 

2006a; Rothman et al., 2007; Altmann, 2009). The negatives and positives are 

determined by the nutritional qualities of foods and correspondingly, the nutritional 

requirements of the consumer, with the latter point a factor that changes in different 

species, due to differences in digestive anatomy. A food or macronutrient important for 

one species may not hold the same value for another; similarly, different species have 

different responses to plant secondary metabolites (Clutton-Brock, 1977; Barton et al., 

1993; Krishnamani, 1994; Conklin-Brittain et al., 1998; Remis et al., 2001; Worman & 

Chapman, 2005; Hohmann et al., 2006; Watts et al., 2012b; Lambert & Rothman, 

2015). G. g. gorilla for example, appear to avoid the lipid-rich foods and non-pulpy 

fruits that are commonly consumed by Pan (Williamson et al., 1990; Head et al., 2011). 
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While G. b. beringei consume foods high in plant secondary metabolites (e.g., tannins) 

suggested to assist with the maintenance of a healthy population of gut microbes 

(Hladik, 1977; Remis et al., 2001). Species may avoid certain foods due to them 

containing high quantities of lignin and plant secondary metabolites, while some species 

exploit these resources for a few days and then shift to another food before being 

exposed to too high a concentration of plant secondary metabolites (Krishnamani, 1994; 

Conklin-Brittain et al., 1998; Reynolds et al., 1998; Wrangham et al., 1998; Worman & 

Chapman, 2005; Doran-Sheehy et al., 2009). 

 The nutritional contents of foods are not fixed throughout the year, but rather they 

change according to habitat, season, time of the day, positioning on a tree, and 

developmental stage in response to sunlight, rainfall and temperature (Wrangham et al., 

1991; Altmann, 1998; White, 1998; Remis et al., 2001; Worman & Chapman, 2005; 

Doran-Sheehy et al., 2009; Lambert & Rothman, 2015). For example, the lipid content 

in tropical fruits can range from <0.1% (Matsumoto-Oda & Hayashi, 1999) to almost 

90% (Galetti et al., 2000). Such a variation in lipid content influences the selection of a 

fruit (Williamson et al., 1990; Basabose, 2002; Head et al., 2011). For example, despite 

Celtis durandii fruit being abundant during the wet season they were only consumed by 

Cercopithecus mitis, C. ascanius and Lophocebus albigena during the dry season when 

their lipid contents were high (Worman & Chapman, 2005).  

 

3.2 Seasonal availability of food resources 

 A key factor for why diet and nutritional properties of foods change is due to 

seasonal availability of food resources. Non-human primates occupy variations of 

tropical habitats throughout Africa, Central/ South America and Southeast Asia that 

range from rain forest to savannah (Tutin et al., 1997). The various habitat types and the 

plant species within them are subject to daily and seasonal changes in weather patterns 

(rainfall, solar radiation, cloud cover, etc.,) and temperature variation and, consequently, 

frequent changes in food availability (van Schaik et al., 1993; Boesch et al., 2006; 

Yamagiwa & Basabose, 2006a; Norconk et al., 2009; Taylor, 2009; van Doorn et al., 

2010; Hanya et al., 2013; Diaz-Martin et al., 2014; Lambert & Rothman, 2015). 

Changes to any one of these factors could potentially have massive implications for the 

phenological behaviour of the plants and the volume of crop produced (van Schaik et 

al., 1993; Norconk et al., 2009; Diaz-Martin et al., 2014).  

 The presence of young leaves (including leaf flush), flowers, fruits, and seeds follow 

a yearly cycle, being produced in intervals, but generally in complete synchrony with 
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other plant species within the forest habitat (although there are some species that fruit in 

asynchrony to the rest) (Hladik, 1977; Rodman, 1977; Galdikas, 1988; Gauiter-Hion & 

Michaloud, 1989; van Schaik et al., 1993; Tutin et al., 1997; Peres, 2000; Fox et al., 

2004; Marshall & Leighton, 2006; Norconk et al., 2009; Lambert & Rothman, 2015). 

These foods represent different phenophases of plants, with the presence of one food 

type followed by another. Generally, the phenophase begins with leaves, then flowering 

and finishes with fruiting (Figure 3.1 details the breakdown of phenophases) (van 

Schaik et al., 1993; Fleagle & McGraw 2002; McGraw et al., 2011; Denny et al., 2014). 

The seasonality of resources means that young leaves, fruits and many of the 

reproductive plant parts (flowers and seeds) that are the preferred food choice of many 

non-human primates and exploited heavily when available can fluctuate between 

abundance and absence. In contrast, the more fibrous foods, such as mature leaves and 

bark are less affected by the seasonal changes and are thus present throughout the year 

(Sabater Pi, 1979; Galdikas, 1988; Tutin & Fernandez, 1993a; Tutin et al., 1997). The 

period when fruits, leaves that are young and in flush and reproductive plant parts are 

unavailable is known as resource scarcity (as shown in Figure 3.1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Leaf flush 

Young leaves 

Leaves 

Flowering/ flower buds 

Unripe fruits/ seeds 

Ripe fruits/ seeds 

Fruit/ seed drop 

Resource scarcity (mature seeds and leaves resistant to 

decomposition persist) 

Figure 3.1: Plant phenophases according to van Schaik et al. (1993); Fleagle 

& McGraw (2002); McGraw et al. (2011); Denny et al. (2014). 
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 Of course, habitats are different, and as a result, the nature of seasonal variation will 

vary in each location (van Schaik et al., 1993; Ganas et al., 2004; Ferriss et al., 2005; 

Yamagiwa et al., 2005; Boesch et al., 2006; Hohmann et al., 2006; Robbins et al., 2006; 

Nystrom & Ashmore, 2008; van Doorn et al., 2010; Robbins, 2011). Habitat type is 

dependent on various factors, such as altitude, climatic conditions, forest-type, plant 

species composition, and soil fertility (Poulsen et al., 2001; Hanya et al., 2006; 

Hohmann et al., 2006; Morgan & Sanz, 2006; Yamagiwa & Basabose, 2006b; van 

Doorn et al., 2010; Lambert & Rothman, 2015). Given non-human primates inhabit vast 

areas of Africa, Asia and South/ Central America the environments inhabited – even at 

the subspecific level – are very different. For example, the subspecies of Pan 

troglodytes (P. t. schweinfurthii, P. t. troglodytes and P. t. verus) are distributed in 

habitats from east to west/ central Africa (Figure 3.2). This covers a range of habitats 

including more open and arid savannah habitats (e.g., Semliki, Uganda; Klainedoxa 

Bosquet, Gabon; Bossou, Guinea) and areas of evergreen/ mixed forest habitats within 

each subspecies (e.g., Kanyawara, Uganda; Lope Reserve, Gabon; Taï Forest, Ivory 

Coast) (Appendix Tables B.1-B.3 detail the environments and diets of subspecies by 

site) (Sugiyama & Koman, 1987; Tutin et al., 1991, 1997; Chapman et al., 1994; 

Wrangham et al., 1996; Jones et al., 1996; Doran, 1997; Yamakoshi, 1998; Tutin, 1999; 

Hunt & McGrew, 2002; Potts et al., 2011).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Distribution map of Pan paniscus and subspecies of Pan troglodytes (Pan troglodytes ellioti is not 

included in this study due to very small sample sizes in collections) (Image generated by the IUCN upon 

request, 2017) 

Image removed due to copyright 
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 Between different habitats the species of vegetation differ and can follow different 

trends, with some species providing high-quality and highly sought-after foods, such as 

young leaves, flowers and fruits in short concentrated spells, other species provide 

flowers and fruits when young leaves are unavailable, while other species provide fruits 

in short bursts throughout the year (van Schaik et al., 1993; Lambert & Rothman, 

2015). As a result, there is inter-site variation in food source availability, with 

variability in the quantity and quality of foods produced during both the periods of 

resource abundance and scarcity (Boesch et al., 2006; Rothman et al., 2007; Kunz & 

Linsenmair, 2010; Watts et al., 2012b).  

 There are occasions where changes in the weather patterns (e.g., failure of rainfall) 

lead to prolonged periods of resource scarcity, beyond that of the annual resource-scarce 

periods (Tutin & Fernandez, 1993b; van Schaik et al., 1993; Hafner et al., 1994; Tutin 

et al., 1997; Muri, 1999). Extreme periods of resource scarcity are characterised by the 

failure of some trees to produce fruit (Tutin et al., 1997). Alternative foods are sought 

out during these periods of extreme resource scarcity; it is during such times that 

animals are most vulnerable to starvation and mass mortality can occur (Hamilton, 

1985; Durham et al., 2008, 2010). How an animal responds to such extreme periods will 

determine their survival and thus affect their reproductive success (Nishida, 1976; Tutin 

et al., 1997; Poulsen et al., 2001).  

 An extreme example of swings between resource abundance and scarcity occurs in 

Southeast Asia. In addition to the annual periods of resource scarcity, islands such as 

Borneo and Sumatra are exposed to prolonged troughs in fruit availability on a more 

regular basis. These troughs can lead to years of little to no fruits being available, 

followed by years of extended periods of fruit abundance, so-called fruit masts (Knott, 

1998; Wich & van Schaik, 2000; Taylor, 2006a; Wich et al., 2006a, b, 2011; Kanamori 

et al., 2010). Mast-fruiting events are not commonly associated with African rain 

forests, but they have been known to occur, for example, Chrsyophyllum albidum, a 

fruiting species present at Ngogo, Kibale National Park, was observed over multiple 

years to mast (Watts et al., 2012b). During the periods of fruit mast the population of P. 

t. schweinfurthii under analysis were seen to heavily exploit the fruits (Watts et al., 

2012b).  
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3.2.1 How non-human primates react to resource scarcity  

 As fruits, young leaves and reproductive plant parts are the preferred food of many 

non-human primates they are heavily exploited when available. The diets of many 

sympatric species therefore overlap during the period of resource abundance, but given 

that these foods are seasonally available resources non-human primates must find other 

foods to eat when they are unavailable (Kinzey & Norconk, 1990; Tutin et al., 1997; 

Lambert, 1999; Marshall & Wrangham, 2007; Norconk et al., 2009; Harrison & 

Marshall, 2011; Smith et al., 2012). During periods of resource scarcity, competition for 

resources is greatest, so in order to reduce feeding competition sympatric species diets 

diverge, this was traditionally known as niche separation (Conklin-Brittain, 1977; 

Gautier-Hion, 1980; Terborgh, 1983, 1986; Cords, 1986; Ham, 1994; Tutin & 

Fernandez, 1993a; Remis, 1997; Tutin et al., 1997; Conklin-Brittain et al., 1998; 

Wrangham et al., 1998; Yamakoshi, 1998; Tutin, 1999; Remis et al., 2001; Stanford & 

Nkurunungi, 2003; Doran-Sheehy et al., 2006; Yamagiwa & Basabose, 2006b; Taylor, 

2009; Head et al., 2011; Oelze et al., 2014).  

 Periods of resource scarcity has been known to influence various factors, which all 

appear to vary by location and population. The different reactions of species and even 

populations is likely to be a reflection of the different habitats occupied, which will then 

influence the length of resource scarcity and the quality of resources available at the 

different sites (Clutton-Brock, 1977; Furuichi et al., 2001; Hohmann et al., 2006; 

Morgan & Sanz, 2006; Harrison & Marshall, 2011; Potts et al., 2011; Chancellor et al., 

2012; Watts et al., 2012b; Webster et al., 2014). During resource scarcity non-human 

primates can increase their home range to seek out specific preferred foods or they can 

reduce ranging distance to conserve energy and subsist on alternative food sources 

available (Reynolds & Reynolds, 1965; Clutton-Brock, 1977; Goodall, 1977; Hoshino, 

1985; van Schaik et al., 1993; Tutin & Fernandez, 1993a; Tutin et al., 1997; Yamakoshi 

1998; Pruetz, 2006; Wich et al., 2006a; Vogel et al., 2009; Chancellor et al., 2012). 

Some species, such as Pan troglodytes fission into smaller foraging parties to reduce 

competition for resources (Sugardjito et al., 1987; Sakura, 1994; Doran, 1997; Tutin et 

al., 1997; White, 1998; Wrangham et al., 1998; Newton-Fisher et al., 1999; Tutin, 

1999; Hohmann et al., 2006; Morgan & Sanz, 2006; Pruetz, 2006; Chancellor et al., 

2012).  

 Some populations of Pan troglodytes, Pongo pygmaeus and Sapajus apella have 

been observed to increase hunting (specific to P. troglodytes) (Rose, 1997), and tool use 

during the period of resource scarcity (Wrangham et al., 1998; Yamakoshi, 1998; 
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Basabose, 2002; Fox et al., 2004; Yamagiwa & Basabose, 2009). Even though these 

approaches are not exclusive to periods of resource scarcity as both hunting and tool use 

have been documented to also occur during the period of resource abundance (Boesch 

& Boesch, 1984; Basabose & Yamagiwa, 1997; Basabose, 2002; Gilby et al., 2006; 

Gilby & Wrangham, 2007; Yamagiwa & Basabose, 2009). Dietary switching can 

involve increasing the dietary diversity and consequently, time spent feeding, or 

reducing the range of foods consumed to those that are readily available, but of lower 

nutritional value, or those protected by hard, external shells or plant secondary 

metabolites (Wrangham et al., 1991, 1998; van Schaik et al., 1993; Krishnamani, 1994; 

Doran, 1997; Yamakoshi, 1998; Poulsen et al., 2001; Fox et al., 2004; Doran-Sheehy et 

al., 2006; Masi et al., 2009; Head et al., 2011). 

 Many non-human primate species breed on a seasonal basis, wherein females give 

birth and lactate during the peaks of food availability (van Schaik et al., 1993; Di Bitetti 

& Janson, 2000; Nakagawa, 2000; Brockman & van Schaik, 2005; Thompson & 

Wrangham, 2008; Altmann, 2009; Fernandez-Duque & Heide, 2013; Foerster et al., 

2013). In studies of apes it is well established that pregnancy and lactation places 

additional energetic demands on the females of a species (Clutton-Brock, 1977; Cords, 

1986; Fox et al., 2004), while males in sexually dimorphic species may require greater 

caloric intake (Masi et al., 2009). Members of the two sexes may respond to resource 

scarcity in different ways, for example, females can increase diversity in the foods 

consumed (Galdikas, 1988; Smith et al., 2012), increase consumption of fruits and 

insects relative to males (Clutton-Brock, 1977; Rodman, 1977; Cords, 1986; Doran-

Sheehy et al., 2009), and in some species use tools to access arils within seeds (Smith et 

al., 2012). In contrast, males can increase consumption of lipid-rich seeds (Knott, 1998; 

Smith et al., 2012), consume more leaves (Doran-Sheehy et al., 2009), and those in 

fission-fusion grouping system travel further per day to exploit other food sources, able 

to do so because they are not as restricted as females with offspring (Galdikas, 1988; 

Newton-Fisher et al., 1999; Watts et al., 2012b). Based on the multitude of responses to 

resource scarcity, it is clear that there is no one universal response pattern per species, 

but of those responses that occur, dietary switching and range shifting are considered to 

be the most common behaviours that are adopted (Goodall, 1977; van Schaik et al., 

1993; Lambert, 1999; Peres, 2000; Furuichi et al., 2001; Vogel et al., 2009; Watts et al., 

2012b; Lambert & Rothman, 2015; Vinyard et al., 2016).  

 The foods that sustain animals during the period of resource scarcity were referred 

to as Keystone Resources (sensu Terborgh, 1983, 1986, derived from Paine, 1969). 
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Terborgh (1983, 1986) proposed this concept for non-human primates after studying 

five species of New World monkeys (Cebus albifrons, Saguinus fuscicollis, Saguinus 

imperator, Saimiri sciureus and Sapajus apella) and their responses to the period of 

resource scarcity. The monkeys diverged in their use of different keystone resources, 

and he suggested that these differences were due to their overall body size differences. 

According to Terborgh (1986), the larger Sapajus and Cebus species were able to use 

their stronger and more robust masticatory apparatus to break open palm nuts, which the 

smaller Saimiri and Saguinus species were unable to do, they instead had to turn to 

other food resources, including figs and nectar. The different morphological adaptations 

of the New World monkey species explain the differential resource use by them during 

the resource-scarce period (Terborgh, 1986; van Schaik et al., 1993). It was suggested 

that different morphologies served to enable different foods to be consumed, and as 

such the morphologies acted as critical functions (sensu Rosenberger & Kinzey, 1976; 

Kinzey 1978).  

 There are two key points to be fulfilled for a food to be defined as a keystone 

resource: 1) it must be available throughout the year but lower in nutritional value than 

foods such as fruit, or it is at the very least available consistently during the resource-

scarce period (making it a reliable resource, as it shows little year-to-year variation) 

(Terborgh, 1986; van Schaik et al., 1993; Tutin et al., 1997; Yamakoshi, 1998; Peres, 

2000; Diaz-Martin et al., 2014). Some keystone resources are protected by hard outer 

shells which are difficult to access, others contain plant secondary metabolites that are 

unpleasant to consume in large quantities, and others are distributed further afield, 

requiring more time to search for them, all factors which make them less preferred 

(Terborgh, 1986; van Schaik et al., 1993; Tutin et al., 1997; Yamakoshi, 1998; Peres, 

2000; Diaz-Martin et al., 2014). 2) a keystone resource must be able to support the 

biomass of the forest, and should it be removed from the forest the ecosystem that 

depends upon it would be expected to collapse (Terborgh, 1986; Mills et al., 1993; van 

Schaik et al., 1993; Tutin et al., 1997; Yamakoshi, 1998; Peres, 2000).  

 

3.2.2 Fallback Food Hypothesis 

 The foods that sustain non-human primates during resource scarcity are presently 

commonly referred to as fallback foods. The Fallback Food Hypothesis is widely used 

in the primatological and palaeoanthropological literature, with a special issue dedicated 

to the topic in the American Journal of Physical Anthropology in 2009. The Fallback 

Food Hypothesis is based on a combination of the theories behind Terborgh’s (1983, 
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1986) Keystone Resources and Rosenberger & Kinzey’s (1976) Critical Functions 

hypotheses.  The Fallback Food Hypothesis proposes that when preferred foods are 

scarce animals resort to less-preferred foods (fallback foods) that may require special 

morphological adaptations to process them (Constantino & Wright, 2009). The key 

proponents of this hypothesis state that keystone resources and fallback foods are not 

the same, whereby fallback foods are the foods that sustain primates when preferred 

foods are scarce and that keystone resources are plant communities and should they be 

removed from the environment the community would collapse (although this is not 

entirely correct based on Terborgh’s (1983, 1986) original application of Keystone 

Resources – see above) (Marshall & Wrangham, 2007; Constantino & Wright, 2009; 

Marshall et al., 2009; Harrison & Marshall, 2011). What the two approaches share is the 

focus on the foods that sustain primates during the preferred food scarcity and the 

morphological adaptations that enable these foods to be consumed (e.g., Terborgh, 

1986; Tutin et al., 1997; Furuichi et al., 2001; Marshall & Wrangham, 2007; Diaz-

Martin et al., 2014).  

 Fallback foods are described as highly abundant but of low nutritional quality, and 

consumed only when the availability of the preferred foods decreases (Marshall & 

Leighton, 2006; Marshall & Wrangham, 2007; Grueter et al., 2009; Marshall et al., 

2009; Harrison & Marshall, 2011; Mosdossy et al., 2015). Fallback foods are 

particularly important in environments that are more affected by extremes in seasonality 

and consequently, more intense periods of resource scarcity (Hanya et al., 2006; Melin 

et al., 2014). Food quality is determined by the ease with which energy is extracted; 

dependent on how easy the food is processed extra-orally and then digested (Watts et 

al., 2012b; Mosdossy et al., 2015). Identification of the preferred and fallback foods 

depends on selectivity, whereby, the preferred foods will be over-selected relative to 

their availability, while the fallback foods will be under-selected relative to the 

availability of the preferred foods (Conklin-Brittain et al., 1998; Wrangham et al., 1998; 

Laden & Wrangham, 2005; Marshall & Leighton, 2006; Gilby & Wrangham, 2007; 

Marshall & Wrangham, 2007; Thompson & Wrangham, 2008; Marshall et al., 2009; 

Norconk et al., 2009; Harrison & Marshall, 2011).  

 Preferred foods are generally those that require the greatest investment of time and 

energy to locate them, as they are widely distributed and only seasonally available 

(Lahm, 1986; Milton, 1993; Hohmann et al., 2006; Marshall & Leighton, 2006; 

Norconk et al., 2009). A preferred resource is thus high in quality, requiring very little 

effort to masticate or digest, and will yield a high nutritional return (Marshall & 
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Leighton, 2006; Gilby & Wrangham, 2007; Marshall et al., 2009; Harrison & Marshall, 

2011; Watts et al., 2012b; Mosdossy et al., 2015). In defining fallback foods, a 

preferred resource is commonly referred to as fruit, and based on this definition 

Wrangham and colleagues (Laden & Wrangham, 2005; Gilby & Wrangham, 2007; 

Marshall & Wrangham, 2007; Constantino & Wright, 2009; Marshall et al., 2009; 

Harrison & Marshall, 2011) commonly refer to the fallback foods being consumed 

during fruit-scarce periods (different to a resource-scarce period). Fallback foods in 

contrast are lower quality, more difficult to process due to high presence in cellulose, 

hemicellulose and digestion-inhibiting compounds and chemicals (plant secondary 

metabolites). The foods, e.g., mature leaves and piths, are therefore suggested to yield 

low nutritional returns (Lahm, 1986; Wrangham et al., 1991; Milton, 1993; Hohmann et 

al., 2006; Gilby & Wrangham, 2007; Harrison & Marshall, 2011; Chancellor et al., 

2012; Watts et al., 2012b; Lambert & Rothman, 2015; Mosdossy et al., 2015).  

 Marshall & Wrangham (2007) noted that it was necessary to distinguish preference 

from importance when referring to fallback foods, whereby a preferred item need not be 

important to the diet, and an important resource need not be preferred. The preference of 

an animal to consume a certain food is entirely down to selection/ choice, whereas the 

importance of an item is defined based on the nutritional properties of the food and it 

being available on a seasonal basis (Marshall & Wrangham, 2007). Fallback foods can 

therefore be described as foods that are seasonally very important but of low preference 

(Marshall & Wrangham, 2007; Harrison & Marshall, 2011; Irwin et al., 2014).  

 A further addition to the definition of fallback foods was based on their frequency in 

the diet, whereby fallback foods were divided into staple and filler fallback foods 

(Marshall & Wrangham, 2007; Marshall et al., 2009). Staple fallback foods are 

resources that are present in the diet throughout the year, can seasonally make up the 

whole diet and are generally low in quality; while filler fallback foods are resources that 

are used only seasonally to ‘fill-in’ when required, thus never constitute the whole diet 

and are generally higher in quality (Marshall & Wrangham, 2007; Marshall et al., 

2009). According to Marshall & Wrangham (2007) the staple fallback foods were 

suggested to be responsible for the morphological adaptations present in a species to 

increase dietary flexibility.  

 Lambert (2007) analysed the potential importance of fallback foods on morphology. 

She suggested that the potential selective stimuli acting on species would vary 

according to the quality of fallback foods, with those fallback foods of high quality 

requiring different morphological adaptations from those of lower quality fallback 



Chapter 3: Dietary adaptation in non-human primates 

65 
 

foods. High-quality fallback foods were suggested to result in behavioural adaptations 

and innovations, such as social organisation and tool use to find and access preferred 

resources (Lambert, 2007; Marshall et al., 2009; Harrison & Marshall, 2011; 

Rosenberger, 2013). For example, Bossou chimpanzees used tools to access foods that 

were high in calories, fat and sugar content, and thus ensured a high-quality diet 

throughout the year, reflected in a high reproductive performance (Yamakoshi, 1998).  

 In contrast, low-quality fallback foods are abundant, but harder to access, masticate 

and digest due to increased resistance to deformation and high levels of fibre and plant 

secondary metabolites (Lambert, 2007). Consistent with the definitions provided by 

Marshall & Wrangham (2007), Lambert (2007) suggested that low-quality fallback 

foods drive morphological adaptations to facilitate consumption of a wide variety of 

foods. Adaptations, pertaining especially to the masticatory apparatus and digestive 

system have been proposed to reflect low-quality fallback food use (Lambert et al., 

2004; Lambert, 2007; Marshall & Wrangham, 2007; Doran-Sheehy et al., 2009; 

Marshall et al., 2009). These adaptations would therefore provide a survival advantage 

for the species that possess them (Kinzey & Norconk, 1990; van Schaik et al., 1993; 

Marshall & Wrangham, 2007; Sauther & Cuozzo, 2009).  

 The proposals by Lambert (2007) and Marshall & Wrangham (2007) mostly 

complement each other, but they differ in their suggestions of which type of fallback 

food is most important for morphological adaptations. Lambert (2007) followed the 

more traditional outlook and suggested the foods consumed as critical resources were 

the stimulants (similar to Kinzey & Rosenberger, 1976; Kinzey, 1978), while Marshall 

& Wrangham (2007) suggested the low-quality staple fallback foods consumed 

throughout the year were more important. Based on the use of fallback foods by other 

researchers before and after the Fallback Food Hypothesis was properly defined (e.g., 

Newton-Fisher, 1999; Tweheyo & Lye, 2003; Lambert et al., 2004; Robbins et al., 

2006; Grueter et al., 2009; Marshall et al., 2009; Vogel et al., 2009; Harrison & 

Marshall, 2011; Watts et al., 2012b; Rosenberger, 2013), it appears that Lambert’s 

(2007) proposal is more commonly accepted. The definition of staple fallback foods as 

suggested by Marshall & Wrangham (2007) is not routinely applied in field studies, for 

it essentially means that all foods except for non-fig fruits are fallback foods of some 

sort. For example, McLennan (2013) described figs as fallbacks despite being consumed 

throughout the year. Instead foods consumed throughout the year are commonly 

referred to as staples but not staple fallback foods. Furthermore, based on dietary studies 

it seems fallback foods are best defined as those foods consumed during periods of 
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resource scarcity, as opposed to those consumed during preferred food scarcity. The two 

terms are not the same, as preferred foods are only available for so many months of the 

year, but other foods that are important to maintain a balanced diet are still available, 

while resource-scarce periods represent the time of greatest stress, as observed by 

seasonal diet variation, as there is very little food available overall during this time.  

 Within the apes, suggested examples of high quality fallback food users are Pan 

troglodytes, and low quality fallback food users are Gorilla and Pongo (Wrangham et 

al., 1991, 1996, 1998; Conklin-Brittain et al., 2000; Stanford & Nkurunungi, 2003; 

Tweheyo & Lye, 2003; Morgan & Sanz, 2006; Taylor, 2006a; Wich et al., 2006b; 

Yamagiwa & Basabose, 2006a, b, 2009; Marshall & Wrangham, 2007; Thompson & 

Wrangham, 2008; Doran-Sheehy et al., 2009; Harrison & Marshall, 2011; Head et al., 

2011; McLennan, 2013). In the case of P. troglodytes, they are suggested to fallback on 

fruits from oil-palm trees and figs. These fruits are heavily exploited during the 

resource-scarce months due to their asynchronous availability (Wrangham et al., 1991; 

Peres, 2000; Shanahan & Compton, 2001; Gilby & Wrangham, 2007; Marshall & 

Wrangham, 2007; Harrison & Marshall, 2011; Head et al., 2011; Chancellor et al., 

2012; McLennan, 2013). In contrast, both Gorilla and Pongo exploit more THV and 

fruits high in fibre as fallback foods during the period of resource scarcity, although 

these foods are consumed during the periods of resource abundance as well (Stanford & 

Nkurunungi, 2003; Taylor, 2006a; Wich et al., 2006b; Yamagiwa & Basabose, 2006a, 

b, 2009; Doran-Sheehy et al., 2009; Morrogh-Bernard et al., 2009; Kanamori et al., 

2010; Harrison & Marshall, 2011; Head et al., 2011; Oelze et al., 2014). It remains 

inconclusive if Pan paniscus fallback on any foods as their habitats are aseasonal and 

they consume THV (which is highly nutritious) preferentially throughout the year 

(Badrian et al., 1981; Kano, 1982; Badrian & Malenky, 1984; Kano & Mulavwa, 1984; 

Doran, 1997; White, 1998; Hohmann et al., 2006; Lambert, 2007; Harrison & Marshall, 

2011; Serckx et al., 2015).  

 Due to the high competition for resources during the resource-scarce period, many 

researchers suggest that it is during this time of the year that the threat of mortality 

should be highest (van Schaik et al., 1993; Marshall & Wrangham, 2007; Sauther & 

Cuozzo, 2009; Vogel et al., 2009; Gogarten et al., 2012). Accordingly, it is not just the 

prolonged periods of extreme resource shortage (as suggested by Hamilton, 1985; 

Durham et al., 2008, 2010) that can increase the threat of mortality but also the annual 

period of resource scarcity. Adaptations that could assist with increasing the types of 
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food available to non-human primates during resource-scarce periods could thus be the 

difference between survival and death of that species.  

 It is suggested that frugivores are more affected by the period of resource scarcity 

than are folivores. Frugivores have more competition for their fallback resources, while 

folivores have a superabundance of their fallback foods and will therefore have less 

competition (Marshall & Wrangham, 2007). For this reason there is increased pressure 

on frugivores to adapt their morphologies to enable the consumption of alternative food 

sources for extended periods, while a folivore that occasionally consumes fruits would 

not be under the same pressure to adapt its morphology (Smith, 1982).   

 

3.3 Potential impact of fallback foods on morphology 

 To date, however, the Fallback Food Hypothesis has not been extensively explored 

with regard to its influence on morphology (Harrison & Marshall, 2011). While those 

studies that analysed its potential found inconclusive results. Early studies identified 

that aspects of the dentition may be a reflection of the consumption of critical resources, 

or the hardest/ toughest foods (as opposed to the most commonly consumed foods) 

(Rosenberger & Kinzey, 1976; Kinzey, 1978; Yamashita, 1998). Adaptations include: 

1) the presence of longer molar shearing blades in the form of ectolophs and cristid 

obliquas to assist with the shearing of leaves, as seen in Callithrix, Alouatta and 

Callicebus moloch (Rosenberger & Kinzey, 1976; Kinzey, 1978); 2) a larger molar 

talonid surface area, present in Callicebus torquatus to break down insects (Kinzey, 

1978); 3) a more robust masticatory apparatus (e.g., deeper and thicker mandibular 

corpora and symphyses) to consume both fauna and seeds, as seen in Cebus 

nigrivittatus, Sapajus apella, Chiropotes satanas and Pithecia pithecia (Cole, 1992; 

Anapol & Lee, 1994; Galetti & Pedroni, 1994; Altmann, 2009); 4) deep, acute basins, 

larger talonid than trigon areas on the molars; and 5) molar cusps that are short in height 

to masticate a hard-food diet, and large upper molar basins, and large trigons to 

masticate a strong-food diet (Yamashita, 1998).  

 Adaptations to the gut and dentition to enable the efficient extraction of energy from 

low-quality fallback foods are suggested to exist in Pongo, Gorilla and some species of 

Old World monkeys. These include thick dental enamel in Gorilla, Pongo (including 

crenulated occlusal surfaces) and Lophocebus albigena to protect the teeth from the 

potentially catastrophic effects of consuming large, hard seeds or very tough bark 

during resource-scarce periods (Lambert et al., 2004; Taylor, 2006a; Ungar, 2007; 

Vogel et al., 2008, 2009; Constantino et al., 2009). Other adaptations suggested to 
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improve the processing abilities required for the consumption of tough, high-fibre 

fallback foods, such as mature leaves and bark, include enhanced dental topography 

(higher molar shearing blades and cusps), gut length (a larger and more ciliated gut), 

longer gut retention times that slow digestion down in order to maximise the intake of 

nutrients and a larger body size in Gorilla, and forestomach fermentation abilities in 

Colobus (Milton, 1984; Doran-Sheehy et al., 2009; Yamagiwa & Basabose, 2009; 

Cooke, 2012). All of the above linked traits are lacking in Pan, which instead is 

suggested to possess enhanced harvesting abilities (including tool use) to find and locate 

ripe, succulent fruits as their fallback foods (Ungar, 2004; Marshall & Wrangham, 

2007; Doran-Sheehy et al., 2009; Yamagiwa & Basabose, 2009). 

 The different species and populations of Pongo consume different foods during the 

resource-scarce period. With fruit availability more constant on Sumatra than on 

Borneo, P. abelii consumes a much greater quantity of fruits and insects throughout the 

year compared to P. pygmaeus, with the latter consuming much greater quantities of 

bark, leaves, cambium and vegetable matter, particularly during the period of resource 

scarcity (MacKinnon, 1974; Taylor, 2006a, 2009; Wich et al., 2006a, b, 2011; Morrogh-

Bernard et al., 2009; Russon et al., 2009; Knott & Kahlenberg, 2011; Smith et al., 

2012). In particular, P. p. morio experiences the longest periods of resource scarcity 

(consistent with it being from the northeastern side of Borneo which is more affected by 

El Niño Southern Oscillation) and consequently, has to rely on more vegetative foods 

than do the other species/ subspecies (Philander, 1983; van Schaik et al., 1993; Taylor, 

2006a; Kanamori et al., 2010; Knott & Kahlenberg, 2011; Wich et al., 2011). 

Observation of the mechanical properties of foods consumed by Pongo species reveals 

that the bark and vegetation that P. pygmaeus subspecies consume are generally more 

difficult to process than are those consumed by P. abelii (Taylor, 2006a). Indeed, the 

presence of deeper mandibular corpora, and deeper and wider mandibular symphyses in 

P. p. morio and P. p. wurmbii relative to P. abelii, were interpreted by Taylor (2006a, 

2009) to be indications that the P. pygmaeus subspecies are better adapted to resisting 

loads relating to large foods or frequent mastication than are P. abelii. Taylor (2006a) 

suggested that it is possible that these differences can be attributed to the exploitation of 

critical resources or fallback foods.  

 The Fallback Food Hypothesis is consistent with the previously discussed Liem’s 

Paradox, wherein species are suggested to avoid the foods to which they are adapted 

when more preferred resources are available (Marshall & Wrangham, 2007). Species of 

cichlid fish and Gorilla are suggested to be examples of Liem’s Paradox (Liem, 1980; 
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Robinson & Wilson, 1998; Liem & Summers, 2000; Ungar et al., 2008; Binning et al., 

2009; Ungar, 2011). This paradox would suggest that species are morphologically 

adapted to their fallback foods, rather than their main dietary regime (Liem, 1980; 

Robinson & Wilson, 1998; Liem & Summers, 2000; Ungar, 2011).  

 

3.4 A critical assessment of fallback foods 

 There continues to be some confusion and subjectivity over how to accurately 

identify and apply the Fallback Food Hypothesis and how to distinguish it from 

Keystone Resources (Peres, 2000; Marshall & Wrangham, 2007; Constantino & Wright, 

2009; Lambert, 2009; Marshall et al., 2009; Sauther & Cuozzo, 2009; Taylor, 2009; 

Cooke, 2012; McGraw & Daegling, 2012; Lambert & Rothman, 2015). For example, 

some researchers use keystone resources in conjunction with fallback foods, where the 

foods consumed throughout the year are keystone resources (alternatively called staples 

by other researchers), and the foods consumed during the resource-scarce period are 

fallback foods (e.g., Basabose, 2002; Sauther & Cuozzo, 2009; Lambert & Rothman, 

2015). 

 Further issues have arisen because there are no clear guidelines to identify or 

calculate preference, which becomes a close to impossible task in short-term field 

studies (Cooke, 2012). This issue is particularly apparent in studies applying the 

fallback term to certain foods, whereby comprehensive analyses of fallback food 

availability and use are not included (e.g., Tweheyo et al., 2004; Anderson et al., 2006; 

Morgan & Sanz, 2006; Serckx et al., 2015; Sengupta & Radhakrishna, 2016) according 

to Marshall et al. (2009) and Watts et al. (2012b). To resolve this, attempts were made 

to clearly define what constitutes a preferred food and a fallback food (e.g., Marshall & 

Wrangham, 2007; Constantino & Wright, 2009; Lambert, 2009; Marshall et al., 2009; 

Harrison & Marshall, 2011). Marshall & Wrangham (2007) suggested fallback foods 

were negatively correlated with preferred foods. However, since many ecological and 

behavioural traits are co-dependent upon one another it is wrong to assume that any 

regression or correlation between two factors are indicative of a direct causal 

relationship (Clutton-Brock & Harvey, 1977).  

 Marshall et al. (2009) attempted to provide further clarity to the Fallback Food 

Hypothesis and clearly define what a fallback food is. Yet even within their article 

confusion arose with different definitions and descriptions provided. The initial 

definition of fallback foods provided by Marshall et al. (2009) was that they are the 

foods that are consumed when preferred resources are scarce, that are highly abundant 
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but of low nutritional quality. This is the common operational definition of fallback 

foods (Altmann, 2009; Constantino & Wright, 2009; Lambert, 2009; Sauther & Cuozzo, 

2009). Yet, within the same article, indeed, the same page, Marshall et al. (2009: 604) 

also define fallback foods as the foods that are consumed during a period of extreme 

resource scarcity, also referred to as bottlenecks or critical use times, which may not 

happen for a number of years, if at all within the lifetime of an individual. The two 

definitions are not mutually exclusive; for the first is part of an annual cycle of seasonal 

variation of resources, while the second is something that Marshall et al. (2009) 

acknowledge may rarely occur. Despite the lack of frequency over the latter occurrence, 

Marshall et al. (2009) suggest it is the prolonged periods of scarcity that are suggested 

to influence the morphology, socioecology and extinction of species. This suggestion 

contrasts with the suggestions that staple fallback foods (Marshall & Wrangham, 2007), 

or the foods consumed during the resource-scarce periods (Lambert, 2007) drive the 

morphological adaptations as previously proposed.  

 Classification of a food source as a fallback food implies that it is species-specific 

and fixed as a fallback resource (Gautier-Hion & Michaloud, 1989; Tutin et al., 1997; 

McGraw et al., 2014). Yet it is becoming increasingly apparent that fallback foods (like 

the rest of the available resources) are affected by temporal influences, such as 

seasonality, and are therefore habitat dependent, and thus population-specific. 

Therefore, foods that may be exploited as fallback resources during resource scarcity in 

one population, e.g., figs, invertebrates or bark, may be exploited throughout the year in 

another, or even as a preferred option in another population (Rodman, 1977, 1988; de 

Ruiter, 1986; Sugardjito et al., 1987; Galdikas, 1988; Tutin & Fernandez, 1993a; White, 

1998; Yamakoshi, 1998; Newton-Fisher, 1999; Furuichi et al., 2001; Basabose, 2002; 

Lambert, 2002; Fox et al., 2004; Pruetz, 2006; Taylor, 2006a, 2009; Yamagiwa & 

Basabose, 2006a, b, 2009; Cipolletta et al., 2007; Marshall & Wrangham, 2007; Bogart 

& Pruetz, 2008, 2011; Vogel et al., 2008, 2009; Constantino et al., 2009; Harrison & 

Marshall, 2011; Parr et al., 2011; Chancellor et al., 2012; Watts et al., 2012b; Isbell et 

al., 2013; Vogel et al., 2014; Mosdossy et al., 2015).  

 As fallback foods are population-specific, it also appears that the description of 

species as high or low quality fallback food users is perhaps too generalised. For 

example, Pan troglodytes are commonly described as high-quality fallback feeders due 

to their reported exploitation of figs during resource scarcity (Morgan & Sanz, 2006; 

Yamagiwa & Basabose, 2006a, b; Marshall & Wrangham, 2007; Thompson & 

Wrangham, 2008; Harrison & Marshall, 2011; McLennan, 2013). Yet, despite this 
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classification, different subspecies and populations of P. troglodytes are observed to 

fallback on different foods during the resource-scarce period. For example, P. t. 

schweinfurthii are known to exploit piths and stems at Gishwati, Rwanda (Chancellor et 

al., 2012) and at Kanyawara, Uganda (Wrangham et al., 1991, 1998; Potts et al., 2011), 

but not at Ngogo, Uganda (nearby Kanyawara). There they exploited young leaves 

(Watts et al., 2012b), while both young leaves and piths serve as fallbacks at Bulindi, 

Uganda (McLennan, 2013) and the montane site of Kahuzi-Biega (Basabose, 2002). 

Herbs, figs, honeybees, ants and honey (with the latter two requiring tool use) were later 

classified as fallback foods at the both Bulindi and Kahuzi-Biega (Yamagiwa & 

Basabose, 2009; McLennan, 2015). P. t. verus were observed to exploit bark, cambium 

and piths during resource scarcity (Pruetz, 2006), while P. t. troglodytes were observed 

to use tools to extract termites (Yamagiwa & Basabose, 2009). The differences at these 

sites for the species’ use of fallbacks are likely to be a reflection of differences in 

vegetation available (Yamagiwa & Basabose, 2006b; Watts et al., 2012b). For example, 

Ngogo (where high quantities of young leaves are consumed) has a much higher density 

of saplings than Kanyawara does (Watts et al., 2012b). These examples highlight that 

each application of the hypothesis is study-specific, not repeatable and not 

generalizable.  

 Despite apparently having a common operational definition for fallback foods 

consistent interpretations of a species use of food is not obtained. In fact, classification 

of a food to be a fallback food can just be a matter of selecting one food from a list of 

foods consumed, one that is perceived by the authors to be less preferred, but in the 

process potentially ignore other foods that may also fit into this category (Mills et al., 

1993; Peres, 2000; McGraw & Daegling, 2012).  

 Due to the important nutrients available in non-fruit foods it is perhaps incorrect to 

label them as low quality fallback foods (e.g., Conklin-Brittain et al., 2000; Basabose, 

2002). Doing so suggests that these foods are not desired and are only consumed 

because there is little else to eat, when in reality these foods are highly preferred, 

consumed heavily when available, are vitally important as they add nutrients such as 

protein to the diet which is imperative in order to maintain a balanced diet, and 

sometimes possess medicinal and anti-parasitic properties (Nishida & Uehara, 1983; 

Barton et al., 1993; Nishihara, 1995; Tutin et al., 1997; Morgan & Sanz, 2006; Taylor, 

2006a; Russon et al., 2009; Kanamori et al., 2010; Potts et al., 2011; Watts et al., 

2012a; Hanya & Chapman, 2013; McGraw et al., 2014; Lambert & Rothman, 2015; 

Mosdossy et al., 2015; Vinyard et al., 2016). Furthermore, in at least one study piths 



Chapter 3: Dietary adaptation in non-human primates 

72 
 

were at their most nutritious during the period of resource scarcity (Wrangham et al., 

1991). 

 Given the fact that the nutritional contents of foods are not fixed throughout the 

year, it would be wrong to make assumptions that underestimate the quality of diets, 

especially when different foods might be being consumed at their peak nutritional 

composition (Worman & Chapman, 2005). In fact, it is suggested that non-human 

primates change their diets according to the nutritional composition of foods, e.g., their 

lipid and protein levels, rather than availability of fruits or their plant secondary 

metabolites, instead they consume foods when they are at their most nutritious (Hladik, 

1977; Ham, 1994; Krishnamani, 1994; Reynolds et al., 1998; Worman & Chapman, 

2005; Boesch et al., 2006; Hohmann et al., 2006; Kunz & Linsenmair, 2010; Lambert & 

Rothman, 2015). For example, consumption of seeds and insects in mangabeys was 

negatively correlated, but as both foods provide high protein levels it was suggested that 

one food simply replaced the other when at its most nutritious (Ham, 1994). Based on 

this, the classification that piths are a low-quality fallback food for P. troglodytes due to 

them correlating negatively with fruit availability (Wrangham et al., 1991), could be 

reinterpreted as them being favoured during the wet season because they are at their 

most nutritious.  

 Currently not enough is known about the digestive physiology of many non-human 

primate species (although there are a few notable exceptions, such as the work by 

Gautier-Hion, 1980), but without this knowledge it is difficult to compare the dietary 

quality of different non-human primates (Boesch et al., 2006). Assumptions of the 

quality of diets consumed should therefore be avoided until the nutritional contents of 

the foods consumed are understood (Rothman et al., 2007; Lambert & Rothman, 2015). 

Similarly, labelling a species as a low-quality or high-quality fallback food user should 

be avoided, for they are probably ingesting the necessary nutrients for their diets 

(Lambert & Rothman, 2015). For example, in a study comparing sympatric P. 

troglodytes, Cercopithecus ascanius and Lophocebus albigena in Kibale, foods of 

different nutritional composition were consumed during the resource-scarce period 

(Conklin-Brittain et al., 1998; Wrangham et al., 1998). P. troglodytes maintained a 

highly fruit-dominated diet throughout the year, increased ripe fruit consumption when 

it was available, and only consumed piths as a fallback option, thereby keeping their 

PSM intake down. In contrast, C. ascanius and L. albigena did not increase 

consumption of ripe fruits, but instead consumed leaves, unripe fruits and seeds 

throughout the year – sometimes increasing consumption of these foods during the 
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resource-scarce period – to maintain protein and plant secondary metabolite levels 

(Conklin-Brittain et al., 1998; Wrangham et al., 1998).  

 The consumption of protein-rich foods during the period of resource scarcity by the 

cercopithecines was similar to responses of Gorilla and Pongo (Doran-Sheehy et al., 

2009; Vogel et al. 2014). Together, the results from the above studies have been 

interpreted to justify the Fallback Food Hypothesis, but perhaps they better support the 

fact that different species have different nutritional requirements. The cercopithecines 

did not increase ripe fruit consumption at a time when they could have (unlike Pan), but 

instead maintained their balanced diet, meaning that not all species need to consume 

large quantities of ripe fruits (Conklin-Brittain et al., 1998). Indeed, the high quantities 

of plant secondary metabolites (e.g., tannins and terpenoids) in the cercopithecines diets 

resulting from high consumption of leaves are probably a reflection of their greater 

detoxification requirements (Conklin-Brittain et al., 1998). While Pan did not consume 

large quantities of leaves because it has a relatively simple digestive system, meaning 

that it does not have the same ability to detoxify foods through fermentation (Hladik, 

1977).  

 The nutritional contents of fallback foods were assumed to be of much poorer 

quality than those from non-fallback foods (Gilby & Wrangham, 2007; Doran-Sheehy 

et al., 2009). Despite this assumption, significant differences were not found in the 

nutrient quality or level of plant secondary metabolites in foods consumed between the 

period of fruit abundance and resource scarcity (Conklin-Brittain et al., 1998; 

Wrangham et al., 1998; Doran-Sheehy et al., 2009). In separate studies of Pongo 

pygmaeus Knott (1998) and Vogel et al. (2014) established that some populations 

suffered from deficiencies of calories and protein not just during the resource-scarce 

period, but also throughout the year. To understand more about the relative quality of 

diet during the periods of resource abundance and scarcity, more evidence is needed on 

the nutritional composition of foods, until then it remains unclear if the nutrient quality 

is lower during the fallback time (Irwin et al., 2014). This lack of evidence to support 

nutritional differences between preferred and fallback foods does not dispute the fact 

that there are fewer foods available during the resource-scarce period or that because of 

seasonality of resources different nutrients will be available. For example, protein 

increases when more leaves/ insects are consumed, but the evidence highlights that the 

assumption of nutritional quality decrease is yet to be categorically proven (Irwin et al., 

2014).  
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 It is clear that attempts to generalise about fallback foods are fraught with 

limitations (Gautier-Hion & Michaloud, 1989; Mills et al., 1993; Tutin et al., 1997; 

Poulsen et al., 2001; Morgan & Sanz, 2006; Cooke, 2012; McGraw et al., 2014). In 

each population, the types of food available, their nutritional contents and the 

behavioural and morphological responses of the non-human primates to the period of 

resource scarcity are context-specific (Kanazawa & Rosenberger, 1989; Mills et al., 

1993; van Schaik et al., 1993; Tutin et al., 1997; Peres, 2000; Furuichi et al., 2001; 

Morgan & Sanz, 2006; Taylor, 2009; Gogarten et al., 2012; Watts et al., 2012b; 

Lambert & Rothman, 2015; Vinyard et al., 2016).  

 

3.4.1 Potential impact of diet and fallback foods on morphology 

 With regard to the notion that fallback foods can influence the masticatory 

morphology, it is perhaps too simplistic to view morphological adaptations as necessary 

to exploit fallback foods, for morphological adaptations are required to access all foods, 

be they preferred or less-preferred (Taylor, 2009). Without the necessary morphological 

adaptations to consume the more preferred foods species would struggle to survive. 

Therefore, not all adaptive complexes can be connected to fallback foods (Taylor, 

2009). 

 Beyond the basic morphological adaptations of the masticatory apparatus the 

question of how to explain the more derived morphological characteristics of certain 

species rests upon whether morphology will respond to regular mastication of particular 

foods, or to high stress but infrequent volumes of specific foods (Yamashita, 1998; 

Taylor, 2009). Observations of the feeding ecologies of apes demonstrate that the 

various species overlap in terms of the preferred foods consumed, yet they vary in the 

type of foods consumed during the resource-scarce period, e.g., Gorilla species 

consume more fibrous foods than Pan species do (Tutin & Fernandez, 1985, 1991, 

1993a; Remis, 1997; Tutin et al., 1997; Remis et al., 2001; Yamagiwa & Basabose, 

2006a, b, 2009; Taylor, 2009; Head et al., 2011; Oelze et al., 2014). Thus, logically it 

would make sense that the shared consumption of preferred foods is unlikely to require 

divergent morphologies in the different species, yet the divergent diets, which can 

include foods consumed in larger quantities that put more strain on the morphology, 

such as tough foods, or infrequently consumed harder foods, could drive the different 

morphological adaptations (Taylor, 2009).  

 The idea that an animal is adapted to its fallback food is weakened by the fact that 

the period of resource scarcity does not consist of just one food being exploited during 
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this time, but multiple foods, each with different mechanical properties, thus increasing 

the complexity (Smith, 1982; Mills et al., 1993; Vogel et al., 2014). The challenge is to 

identify which of those foods could potentially be having an impact on the morphology: 

those foods consumed frequently or those serving a critical function (fallback foods) 

(Taylor, 2006a, 2009). Distinguishing between frequent or infrequent consumed foods 

is not straightforward. Examples of this complexity are apparent in ape species. Pongo 

pygmaeus for example infrequently consumes bark (a high stress food) as a fallback 

food (Rodman, 1977, 1988; Galdikas, 1988; Taylor, 2009), while P. abelii and Gorilla 

beringei beringei consume bark throughout the year (Yamagiwa & Basabose, 2006a; 

Vogel et al., 2014). Both P. pygmaeus and G. b. beringei have more robust masticatory 

apparatus than P. abelii and together they highlight the difficulty of identifying whether 

frequent consumption or infrequent consumption of high-stress foods are responsible 

for the derived morphology present in both species (Taylor, 2009). Furthermore, the fact 

that different species vary in their use and preference of foods and fallback foods makes 

it difficult to establish common patterns.  

 According to the suggestion that non-human primates are morphologically adapted 

to their fallback foods (Lambert, 2007; Marshall & Wrangham, 2007), it is expected 

that these adaptations would be beneficial to the consumer. Yet analysis of the dentition 

of Lemur catta indicates that the species is poorly adapted for the consumption of its 

proposed fallback food, which according to Sauther & Cuozzo (2009) is tamarind fruit. 

The considerable antemortem tooth loss in the species is suggested to be evidence of 

this poor adaptation (Sauther & Cuozzo, 2009). This suggests that at least in this species 

fallback foods are not driving morphological adaptations, but they are in fact having a 

detrimental impact on the species.  

 Lambert et al. (2004) suggested that the thick dental enamel present in Lophocebus 

albigena was the result of hard-object fallback feeding. Subsequent studies also 

postulated that thick dental enamel in Pongo pygmaeus was the result of the species/ 

population consuming very hard (Constantino et al., 2009) or tough fallback foods 

(Harrison & Marshall, 2011). Very thick dental enamel is not always suggested to be an 

adaptation to fallback foods; however, as it is also suggested to be an adaptation to the 

regular consumption of the very hard seeds of Sacoglottis gabonensis in Cercocebus 

atys and C. torquatus (McGraw et al., 2011, 2014; Cooke, 2012; McGraw & Daegling, 

2012). Such overlap highlights that there are multiple explanations for the same 

morphological expression. If the very thick dental enamel present in Cercocebus and 

Lophocebus – two closely related genera – is the result of different selective pressures, 
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it indicates that thick dental enamel is a homoplastic trait. The two Cercocebus species 

highlight that morphology can respond to frequently consumed foods, not just fallback 

foods, and thus, invocation of the fallback argument is not necessary to explain 

morphological adaptations (McGraw et al., 2011, 2014; Cooke, 2012; McGraw & 

Daegling, 2012), as Marshall & Wrangham (2007) and Lambert (2007) propose.  

 If using the definition of fallback foods as proposed by Marshall & Wrangham 

(2007) superabundant foods that require morphological adaptations to consume, such as 

mature seeds, fungi and herbs would be classified as low-quality fallback foods. Yet 

despite the superabundance and the morphological adaptations needed for consuming 

seeds (very thick enamel) and fungi (digestive tract specialisations to enable the 

nutrients from non-structural carbohydrates to be absorbed) these foods are 

preferentially consumed, seeds by Cercocebus atys and C. torquatus, fungi by 

Callimico goeldi and herbs by Gorilla gorilla gorilla as they are highly nutritious and 

provide high quality proteins (Nishihara, 1995; Lambert et al., 2004; Porter et al., 2009; 

McGraw et al., 2011, 2014; Cooke, 2012). In fact, increased leaf consumption in G. g. 

gorilla has been suggested to compensate, not for fruit shortage, but for the low herb 

densities at certain sites (Head et al., 2011). According to Porter et al. (2009); Cooke 

(2012) and McGraw et al. (2014) these examples do not accord with the definitions 

outlined by Marshall & Wrangham (2007). 

 These examples challenge how foods are classified, and highlight it is perhaps not 

as straightforward to classify foods as preferred, less preferred and fallbacks (Taylor, 

2009). A resolution to this cannot be gained without having systematic data on the 

feeding ecologies between and within sites and species, the nutritional and mechanical 

properties of all food types, digestive capabilities of each species, and ontogenetic data 

on species to compare potential changes from birth and during development to 

determine if any patterns are the result of genetic or epigenetic changes (Hohmann et 

al., 2006; Taylor, 2006a; Marshall & Wrangham, 2007; Rothman et al., 2007; Lappan, 

2009; Vinyard et al., 2011; Cooke, 2012; Smith et al., 2012; Hanya & Chapman, 2013; 

Irwin et al., 2014; Oelze et al., 2014; Vogel et al., 2014; Lambert & Rothman, 2015). 

Such information is lacking for almost all non-human primates (Remis et al., 2001; 

Taylor, 2006a; Lappan, 2009; Rothman et al., 2011; Smith et al., 2012; Hanya & 

Chapman, 2013), with the exceptions of a few studies that analyse these different points 

independently. For example, hardness data are available for Cercocebus and 

Lophocebus species (Lambert et al., 2004; McGraw et al., 2011, 2014; Cooke, 2012), 

nutritional information (including fallback foods) available for Pan, Gorilla, 
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Cercopithecus ascanius and Lophocebus albigena (Conklin-Brittain et al., 1998; 

Wrangham et al., 1998; Lambert et al., 2004; Rothman et al., 2007; Doran-Sheehy et 

al., 2009; Vogel et al., 2014), and ontogenetic data in Cebus and Homo sapiens (Cole, 

1992; Holmes & Ruff, 2011).   

 Of course, this is not to say that factors other than diet are influencing the 

morphology present, many non-human primates show some level of sexual dimorphism, 

ranging from extreme dimorphism in Pongo, Gorilla and Mandrillus, to slight in Cebus 

(Schaller, 1965; Plavcan, 2001). Such differences are known to manifest in 

morphological differences in the mandible (Taylor, 2006c; Martinez-Maza et al., 2016). 

Consequently, sexual dimorphism might be making attempts to identify correlations 

between dietary ecology and morphology more complicated (Smith et al., 2012).  

 It is also possible that the differences observed in the mandibles of closely related 

taxa, such as Pongo abelii and P. pygmaeus, and Sapajus apella and S. libidinosus are 

the result of tool use (Fox et al., 2004; Taylor, 2006a, 2009; Taylor & Vinyard, 2009; 

Wright et al., 2009; Smith et al., 2012). During periods of resource scarcity, species 

from the above genera have been observed to use tools to access foods that are protected 

by hard outer shells, foods that would otherwise remain inaccessible to them (Izawa & 

Mizuno, 1977; Yamakoshi, 1998; Fox et al., 2004; Smith et al., 2012; Melin et al., 

2014). 

Both Pongo species consume Neesia seeds, which are large and well protected by a 

tough, outer husk, yet P. abelii – with its more gracile morphology – are reported to 

access the seeds through the use of tools, while P. pygmaeus – with its more robust 

masticatory morphology – use their jaws to break open the seed (Taylor, 2006a, 2009). 

Similarly, S. libidinosus used tools to assist with the opening of extremely hard foods, 

harder than those consumed by the non-tool using S. apella, yet S. apella had a 

morphology that was seemingly better adapted to hard foods than S. libidinosus (Wright 

et al., 2009). In both studies, tool use appeared to mitigate the potential morphological 

shortcomings of a species, while not being present in the more morphologically robust 

species. It must be highlighted here that while S. apella may consume foods that are not 

as hard as S. libidinosus it still consumes foods that are very hard, indeed, up to four 

times harder than those consumed by Cebus olivaceus, and its robust morphology 

appears to reflect this consumption and increase the dietary repertoire available to it  

(Wright, 2005; Taylor & Vinyard, 2009). 
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3.4.2 Utility of dietary studies in palaeoanthropology 

 The identification of preferred resources and fallback foods is challenging enough in 

extant primates, but when applied to hominins different problems are encountered, 

primarily because their diets and behaviours cannot be observed. Due to the fact that 

hominin diets cannot be observed palaeoanthropologists make use of studies on the 

diets and ecologies of non-human primates to attempt to infer potential diets in 

hominins. However, studies on non-human primates were not designed with application 

to hominins in mind, in this respect, palaeoanthropologists and primatologists 

investigate different aspects of diet and the methodologies used by primatologists may 

not be entirely appropriate for use in palaeoanthropology.   

 In order to identify preferred and fallback foods in non-human primates, the length 

of a study is perhaps one of the most significant issues to address, because as has 

already been discussed an animal dependent on reproductive plant parts is subject to the 

annual phenological changes of the floristic composition (Nishida & Uehara, 1983; 

Norton et al., 1987; van Schaik et al., 1993; Tutin & Fernandez, 1993a; Taylor, 2009). 

To identify a fallback food requires the observer to have a comprehensive knowledge of 

the dietary requirements and preferences of the non-human primates under observation 

(likely to change based on sex and age differences), as well as the local flora and its 

phenology (van Schaik et al., 1993; Hohmann et al., 2006; Taylor, 2006a). While there 

are some studies that have been undertaken over many consecutive years that highlight 

the variability of non-human primate diets (e.g., Gautier-Hion, 1980; Nishida & Uehara, 

1983; Norton et al., 1987; Tutin et al., 1997), many studies have data of their target 

species for one year cycles (e.g., Whitten, 1983; Isbell, 1998; Su & Lee, 2001; 

Chancellor et al., 2012), or in some cases only for a few months of the year (e.g., 

Barton, 1989; Nakagawa, 1989; Krishnamani, 1994; Rogers et al., 1996; Olupot et al., 

1997; Okecha & Newton-Fisher, 2006).   

 A non-human primate’s diet is known to vary on a seasonal, as well as annual basis 

(MacKinnon, 1971; Nishida & Uehara, 1983; Norton et al., 1987; Galdikas, 1988; 

Remis, 1997; Watts et al. 2012a; McLennan, 2013; Lambert & Rothman, 2015). Based 

on a short term study it is impossible to identify the full variety of foods available to 

animals in the forest and thus, the full dietary repertoire of many non-human primates, 

or indeed, recognise if a season of prolonged food shortage and the responses of the 

animals to that time are reflective of the norm for a particular site. Long-term studies are 

necessary in order to acknowledge whether a food consumed seemingly in preference 

one season is a commonly preferred food on a yearly basis or it is a one off, likewise a 
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fallback food one season might not be exploited on an annual basis (Nishida & Uehara, 

1983; Norton et al., 1987; van Schaik et al., 1993; Tutin et al., 1997; Peres, 2000; 

Furuichi et al., 2001; Basabose, 2002; Yamagiwa et al., 2005; Robbins et al., 2006; 

Vogel et al., 2009; Kunz & Linsenmair, 2010; Vinyard et al., 2011; Watts et al., 2012a; 

Lambert & Rothman, 2015).  

 The value of a specific food is entirely dependent on what nutrients the other 

available foods available provide, or indeed, fail to provide, and these will change on an 

annual basis (Altmann, 1998; Lambert & Rothman, 2015). It is essential therefore that 

the nutritional properties of foods are obtained in long-term studies that cover many 

years in order to understand more about annual temporal variation in the diet and the 

occasional periods of extreme resource scarcity (Nishida & Uehara, 1983; Norton et al., 

1987; van Schaik et al., 1993; Tutin et al., 1997; Furuichi et al., 2001; Remis et al., 

2001; Hohmann et al., 2006). Only then is it possible to identify what foods are 

important, what foods are preferred and what foods could be considered as fallbacks 

(van Schaik et al., 1993; Furuichi et al., 2001; Cooke, 2012). 

 

3.5 Chapter summary 

 To summarise, diet has for too long been considered in very simplistic terms by 

palaeoanthropologists, but it is in fact extremely complex. There are many factors, both 

internal and external that determine the quality of a species’ diet (Ham, 1994; Tutin et 

al., 1997; Conklin-Brittain et al., 1998; Hohmann et al., 2006; Lambert & Rothman, 

2015). While both the traditional method of describing a species as for example a 

frugivore, or the current vogue of classifying a food as fallback and thus categorising a 

species by fallback quality can provide important information, they both fail to properly 

acknowledge the true complexity of diet (Hanya & Chapman, 2013; Lambert & 

Rothman, 2015; Sengupta & Radhakrishna, 2016; Vinyard et al., 2016). To determine 

quality of diet, more needs to be known about the physiology of a species, from its 

masticatory apparatus to its digestive anatomy, and its nutritional requirements, along 

with the nutritional composition of the foods consumed (Hohmann et al., 2006; Taylor, 

2006a; Marshall & Wrangham, 2007; Rothman et al., 2007; Lappan, 2009; Vinyard et 

al., 2011; Cooke, 2012; Smith et al., 2012; Hanya & Chapman, 2013; Irwin et al., 2014; 

Oelze et al., 2014; Vogel et al., 2014; Lambert & Rothman, 2015). Studies need to look 

beyond labelling and assuming quality of foods and focus on obtaining very detailed 

information over long time periods that include many seasonal shifts. It must be 

remembered that every food type has a season when it is most nutritious, and they will 
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not all overlap, fruits when available will be consumed heavily, but they alone do not 

provide the necessary nutrients every species needs. To achieve a balanced diet other 

foods high in other nutrients – such as leaves and insects (protein) and seeds (lipids) – 

must be consumed (Hohmann et al., 2006; Morgan & Sanz, 2006; Taylor, 2006a; Watts 

et al., 2012a; Hanya & Chapman, 2013; McGraw et al., 2014; Lambert & Rothman, 

2015). They are all just as important as each other, but not necessarily in the same 

quantities, and potentially a shortage or indeed, excess of any nutrient could lead to ill 

health in the consumer (Knott, 1998; Vogel et al., 2014). Only once all this information 

has been obtained can reliable inferences of diet quality be made, and from these 

inferences models can be generated to theorise on hominin dietary adaptations. 

 Application of these models must however be treated with a degree of caution, for it 

must be acknowledged that foods consumed by non-human primates today (be they 

preferred or fallback) may not actually be what the species would have consumed in the 

past (Smith et al., 2012). Inferences of hominin adaptation made based on the combined 

use of dietary and morphological studies on non-human primates are therefore 

weakened. Within the time since museum skeletal collections were formed and the 

dietary studies undertaken, anthropogenically influenced factors including climate 

change, introduction of livestock grazing and the subsequent reduction of a species 

habitat will have dramatically altered what types of foods are available to be consumed 

(Sauther & Cuozzo, 2009; Cuozzo & Sauther, 2012; Smith et al., 2012; Serckx et al., 

2015). Droughts have increased in intensity and frequency in Borneo, for example, over 

the last 60 years (Walsh, 1996), so it is likely that the associated inclement weather 

patterns will have influenced the nature of the foods available to the non-human 

primates present. Such factors must be taken into consideration when attempting to infer 

diet and how it relates to morphology (Sauther & Cuozzo, 2009). 
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Chapter 4  : Materials and Methods  

4.1 Sample 

4.1.1 Hominin sample  

 The sample for this project comprised extinct hominins and extant non-human 

primates. The data for the hominins was primarily collected from the original specimen 

reports, however, there were occasions when it was not possible to access the earliest 

reports and in those instances, the information was supplemented by the online 

repository the 'Human Origins Database' (available at: 

www.humanoriginsdatabase.org). This database uses measurements and information 

published by Wood (1991). The hominin specimens analysed are detailed in Table 4.1. 

Additional information relating to the measurements, preservation condition and 

reconstructed habitats are detailed in Appendix Tables 9.1-9.7. 

 

Table 4.1: Hominin specimens used in this study 

Species Specimens 

A. afarensis A.L. 128-23 A.L. 145.35 A.L. 176.35 A.L. 188.1 

  A.L. 198.1 A. L. 198.22 A.L. 200.1b A.L. 207.13 

 
A.L. 207.17 A.L. 225.8 A.L. 228.2 A.L. 241.14 

  A.L. 266.1 A.L. 277.1 A.L. 288.1 A.L. 311.1 

 
A.L. 315.22 A.L. 330.5 A.L. 330.7 A.L. 333.44 

  A.L. 333.74 A.L. 333w-1a+b A.L. 333w-12 A.L. 333w-27 

 
A.L. 333w-32+60 A.L. 333w-48 A.L. 333w-57 A.L. 333w-59 

  A.L. 400-1a A.L. 411.1 A.L. 417.1a A.L. 417.1a,b 

 
A.L. 418.1 A.L. 432.1 A.L. 433.1a A.L. 436.1 

  A.L. 437.1 A.L. 437.2 A.L. 438.1 A.L. 440.1 

 
A.L. 443.1 A.L. 444.2 A.L. 465.5 A.L. 487-1a 

  A.L. 582.1l A.L. 620.1 DIK-2-1 LH2 

 
LH3 LH 4 LH 14 MAK-VP1/2 

  MAK-VP1/4 MAK-VP1/12     

        Total: 54 

A. africanus MLD 2 MLD 4 MLD 18 MLD 19 

 
MLD 24 MLD 34 MLD 40 Sts 7 

  Sts 36 Sts 52 Taung Stw 1 

 
Stw 3 Stw 14 Stw 47 Stw 54 

  Stw 56 Stw 61 Stw 72 Stw 80 

 
Stw 87 Stw 90 Stw 96 Stw 106 

  Stw 109 Stw 112 Stw 120 Stw 123 

 
Stw 131 Stw 133 Stw 134 Stw 142 

  Stw 145 Stw 147 Stw 151 Stw 193 

 
Stw 196 Stw 212 Stw 213 Stw 220 

  Stw 234 Stw 237 Stw 246 Stw 280 

 
Stw 285 Stw 291 Stw 295 Stw 308 

  Stw 309 Stw 327 Stw 353 Stw 364 

 
Stw 384 Stw 385 Stw 397 Stw 404 

  Stw 412 Stw 413 Stw 421 Stw 424 

http://www.humanoriginsdatabase.org/
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Species Specimens 

 
Stw 487 Stw 491 Stw 498 Stw 520 

  Stw 529 Stw 537 Stw 555 Stw 560 

 
Stw 566 Stw 586   

 
      

 
Total: 70 

P. boisei KGA 10-525 KGA 10-570 KGA 10-1720 KGA 10-2705 

  KNM-ER 403 KNM-ER 404 KNM-ER 725 KNM-ER 726 

 
KNM-ER 727 KNM-ER 728 KNM-ER 729 KNM-ER 733 

  KNM-ER 801 KNM-ER 802 KNM-ER 805 KNM-ER 810 

 
KNM-ER 818 KNM-ER 1171 KNM-ER 1467 KNM-ER 1468 

  KNM-ER 1469 KNM-ER 1477 KNM-ER 1509 KNM-ER 1803 

 
KNM-ER 1806 KNM-ER 1816 KNM-ER 1819 KNM-ER 1820 

  KNM-ER 3229 KNM-ER 3230 KNM-ER 3729 KNM-ER 3731 

 
KNM-ER 3737 KNM-ER 3885 KNM-ER 3889 KNM-ER 3890 

  KNM-ER 3954 KNM-ER 5429 KNM-ER 5679 KNM-ER 5877 

 
KNM-ER 15930 KNM-ER 15940 KNM-ER 15950 KNM-ER 16841 

  KNM-WT 17396 OH 26 OH 30 OH 38 

 
OMO 136-1 OMO 136-2 OMO 47-46 OMO 75-14 

  OMO 84-100 OMO F203-1 OMO L427-7 OMO L628-2 

 
OMO L628-3 OMO L628-4 OMO L628-9 OMO L7A-125 

  OMO L74A-21 Peninj 1     

      
 

Total: 62 

P. robustus DNH 7 DNH 8  DNH 10 DNH 12 

 
DNH 18 DNH 19 DNH 21 DNH 26 

  DNH 27 DNH 46 DNH 51 DNH 60 

 
DNH 67 DNH 68 DNH 75 DNH 81 

  SK 6 SK12 SK 23 SK 34 

 
SKW 5 SKW 10 SKW 34 SKW 4767 

  SKW 4769 SKX 257 SKX 258 SKX 4446 

 
SKX 5002 SKX 5013 SKX 5014 SKX 5015 

  SKX 5023 SKX 19892 SKX 32162 TM 1517 

 
TM 1601b KB 5223 TM 1536 TM 1600 

      
 

Total: 40 

H. habilis OH 7 OH 13 OH 16 OH 37 

  KNM-ER 817 KNM-ER 819 KNM-ER 1462 KNM-ER 1480 

 
KNM-ER 1482 KNM-ER 1483 KNM-ER 1501 KNM-ER 1502 

  KNM-ER 1508 KNM-ER 1590 KNM-ER 1801 KNM-ER 1802 

 
KNM-ER 1805 KNM-ER 3734 KNM-ER 3950 KNM-ER 60000 

  KNM-ER 62003 UR 501 
KNM-WT 

42718 
  

      
 

Total: 23 

H. ergaster KGA 10-1 KNM-BK 67 KNM-BK 8518 KNM-ER 730 

 
KNM-ER 731 KNM-ER 806 KNM-ER 809 KNM-ER 820 

  KNM-ER 992 KNM-ER 1507 KNM-ER 1808 KNM-ER 1812 

 
KNM-WT 15000 OH 22 OH 23 OH 51 

  SK 15       

      
 

Total: 17 

 

4.1.2 Comparative sample 

 In order to assess the impact of dietary factors and sexual dimorphism on 

masticatory morphology, the project focussed on the mandible from a wide selection of 

haplorrhine primate species, consisting of Catarrhines (both Hominoidea and 



Chapter 4: Materials and Methods 

83 
 

Cercopithecoidea) and Platyrrhines (Cebidae only). The use of non-human primates as 

comparative models has long been utilised as a way of furthering knowledge and 

understanding about the evolution of the early hominins (Nystrom & Ashmore, 2008; 

Wood & Schroer, 2012). Due to the nature of food availability and accessibility for 

humans today, they do not make suitable comparisons to early hominins. In contrast, 

extant non-human primates are still affected by seasonality of food resources; for this 

study, they are therefore the most suitable comparative analogues to early hominins. 

Each species and subspecies was selected based on their diets, habitat variation, and 

degree of sexual dimorphism (complete sample detailed in Table 4.2).  

 As this study draws upon various different adaptations of non-human primates, each 

species was relevant in its own way, and included to develop a broad comparative 

approach that allows consideration of general adaptive and evolutionary processes and 

patterns in the context of reconstructing extinct species' dietary ecology. The species 

analysed can be divided into homologous and analogous groupings, for example, as this 

project analysed anatomical differences, Pan, Gorilla and Pongo are the best models for 

these differences, as they are genetically the closest and anatomically the most similar 

living relatives to Homo sapiens, and so share homologies (Glazko & Nei, 2003; Kumar 

et al., 2005; Nystrom & Ashmore, 2008). However, non-human apes are not perfect 

comparisons to the hominins in question for the simple fact that they consume diets 

from very different isotopic pathways. The diets of Gorilla and Pan are almost entirely 

based on C3 resources, which is an isotope composition similar only to Australopithecus 

anamensis and no other early hominin (Cerling et al., 2013). In addition, this study also 

analysed the adaptive responses to physical environments. For this reason, monkeys 

were considered to be the most appropriate models, as they provide analogous 

comparisons (Nystrom & Ashmore, 2008). Taking these points by Nystrom & Ashmore 

(2008) and Cerling et al. (2013) into consideration, it was important that the sample was 

broad enough to encompass different dietary components and to do that, the sample had 

to include other members of the non-human primate family, for they can contribute 

significantly to studies such as this. It is for this reason that genera from 

Cercopithecoidea and Ceboidea were explored; for they can provide further insight into 

how the various adaptive factors can influence the masticatory morphology. Together 

the use of homology and analogy to compare to the hominins, provide a more complete 

comparative range of diets for the analysis.  
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4.1.2.1 Selection criteria 

 In order to focus on the impact of dietary, habitat and sex differences, it was 

important to negate the influences of confounding variables, such as developmental 

issues, consequently, adult specimens were the targeted age demographic. As with other 

studies where age is taken into consideration (e.g., Holmes & Ruff, 2011), age was 

determined by the presence of the third molar (M3) in the mandible. The presence of M3 

in the dentition is often correlated with the beginning of adulthood and thus, attaining 

adult morphology (Smith, 1989).  

 Sexual dimorphism has been observed in the mandible of extant apes, with it 

manifesting itself in areas such as the mandibular symphysis (Taylor, 2006c; Thayer & 

Dobson, 2010). By focussing on one sex only, as Fukase & Suwa (2008) do, results 

could lack accuracy, for they have not removed the potential for sexual dimorphism as a 

confounding variable. This is well summarised by Holmes & Ruff (2011: 625), who 

reason that “population level differences in symphyseal morphology may be greater or 

less within a single-sex rather than a mixed sample”. For this reason, both males and 

females were included in this sample; therefore the potential for sexual dimorphism to 

be a confounding factor in this study should have been removed. A general rule 

followed was that if sex was not attributed to a specimen, it was not analysed; however, 

there were exceptions to this. In the case of highly sexually dimorphic non-human 

primates, such as Gorilla, Pongo or Mandrillus - where males can be as much as twice 

the size of females (Cant, 1987; Setchell et al., 2001) - a judgement was made on the 

sex. This was based on features that are known to be sexually dimorphic in these 

genera, for example, overall size relative to others of the same species and the size of 

canines (Plavcan, 2001).  

 The third premolar (P3) was excluded from analysis due to the variable presence of 

sectorial morphology in some non-human primates. Sectorial morphology is a 

specialised adaptation in the Cercopithecoidea superfamily (Ankle-Simons, 2000), 

which is responsible for sharpening the maxillary canines through its elongated, single-

cusped morphology (Nystrom & Ashmore, 2008). As the premolar slopes mesially, it 

distorts the mesiodistal length of the tooth and will thus, not provide accurate 

measurements of that tooth in relation to other P3 dentition. As a result, the dentition 

analysed in this study included molars one to three and the fourth premolar.  

 Where possible, measurements were taken on the left side of the mandible, but when 

this was not possible, measurements were taken from the right side. The degree of 

asymmetry between right and left sides is disputed, for while it is recognised that the 
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morphology present on one side is not necessarily reflected on the other, little evidence 

of directional asymmetry has been identified in previous studies and indicates that either 

side can be used for scoring (Hillson, 1996). Indeed, this lack of convention is observed 

in studies on hominins (left side used by Cofran (2014)) and non-human primates (right 

side used by Holmes & Ruff (2011)). To obtain the most reliable and comparable data it 

was necessary that the measurements and photographs were taken in a consistent 

manner throughout, and only where absolutely necessary should the side change. As 

with Holmes & Ruff (2011), mandibles whose appearance was in some way altered, 

e.g., those with extensive damage that prevented measurements being obtained, 

abnormalities or were edentulous, were not included in the data collection.  

 All specimens selected for analysis in this study were chosen based on the above 

factors, but a further crucial factor was where the specimens originated, i.e. whether or 

not they were wild-shot and if they were of known locality. These details are important, 

as the non-human primates might vary in their morphological adaptations if they were 

wild (in their natural habitats) or if they were captive (in artificial environments like 

zoos). While zoos and wildlife parks attempt to reconstruct species’ habitats as close to 

what is natural, the environments are not the same (Nystrom & Ashmore, 2008), as a 

result, the foods consumed would not be the same, and most likely, they would not 

experience the impact of seasonality. In addition, by selecting specimens based on their 

location, it was possible to determine their species or subspecies identity based on 

geographical distributions of these species (for example the distributions of Pan 

troglodytes subspecies are highlighted in Figure 3.2). The museum records and the 

collectors’ field notes determine details such as these. Generally, if a specimen’s 

locality were unknown it would be excluded from analysis (consistent with Taylor, 

2006b); however, some specimens of unknown locality would still be analysed if they 

were from a species or subspecies with a limited sample size. This exception is relevant 

for wild-shot Gorilla beringei beringei, as there are very few specimens of this 

subspecies available in museums, but the limitation of not knowing where the specimen 

originates is offset in the knowledge that this subspecies are only known to occupy the 

Bwindi Impenetrable National Park, Uganda and the Virunga Volcanoes of Rwanda, 

Uganda and Democratic Republic of Congo (Robbins, 2011), so in this instance it is 

possible to narrow down locality based on knowledge of subspecies status.  
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4.1.2.2 How the grouping variables were defined 

4.1.2.2.1 Sexual dimorphism  

 Information pertaining to non-human primate species expression of sexual 

dimorphism was obtained primarily from Plavcan (2001), and supplemented by Jaffe & 

Isbell (2011), Swedell (2011) and Thierry (2011). Sexual dimorphism was defined 

based on differences between male and female body mass, not canine dimorphism. For 

the purposes of this study overall body mass dimorphism was deemed to be more 

important than canine dimorphism because it is a factor that corresponds with body 

weight and diet, along with having the potential to impact on the mandibular 

morphology beyond that directly surrounding the canine. Indeed, it is recognised that as 

body mass dimorphism increases, so too does the mandibular size dimorphism (Taylor, 

2006c). 

 Genera and species were defined by the following expressions of dimorphism: 

slight, moderate, strong and extreme. These follow the definitions of Plavcan (2001). 

Where a genus was described as having moderate to strong (e.g., Cercopithecus or 

Macaca), or strong to extreme dimorphism (e.g., Papio), more information was sought 

from other sources as this clearly represented variation within the genus. While none of 

Jaffe & Isbell (2011), Swedell (2011) and Thierry (2011) defined sexual dimorphism as 

Plavcan (2001) did, they do provide indications on the variation of dimorphism within 

the genus. For example, using the figures from Table 14.3 in Thierry (2011), it is clear 

that Macaca radiata are among the most sexually dimorphic of the macaque species, 

while M. cyclopis and M. sylvanus are moderately dimorphic by comparison. Applying 

this knowledge to that of Plavcan (2001) it was possible to fill in gaps, so in this case, 

M. cyclopis and M. sylvanus represent the moderately dimorphic species, and M. 

radiata represent the strongly dimorphic species. Table 15.1 in Swedell (2011) and 

Table 16.6 in Jaffe & Isbell (2011) present sexual dimorphism information in a similar 

way (male and female body weight averages) and was once again used to complement 

the information from Plavcan (2001).  

 As discussed in Chapter 2, the degree of sexual dimorphism in hominins varied 

from being moderate to large. Information on estimated body mass dimorphism was 

obtained from the published literature and input into the hominins database.  



Chapter 4: Materials and Methods 

87 
 

4.1.2.2.2 Body weight  

 Body weight information for non-human primates comprised species averages for 

males and females obtained primarily from Smith & Jungers (1997). Where body 

weight information was an estimate only (e.g., Mandrillus leucophaeus and Macaca 

sylvanus in Smith & Jungers (1997)), further information was obtained from Rowe 

(1996). A species average body weight was generated from this information to group 

the monkeys and apes into small and large groups. The division of groups was achieved 

by dividing 130 by 4 (this was the average weight for the largest non-human primate in 

the sample: Gorilla beringei beringei into the 4 groups). All of the monkeys fell below 

the halfway point, and all of the apes exceeded the halfway point, making the division 

of the size ranges between the monkeys and apes more straightforward. The four groups 

therefore became small monkeys and large monkeys, and small apes and large apes. 

This division of body sizes was only applied to the analyses exploring tests of 

difference, and by analysing the data as such, it was possible to account for the size 

differences that were likely to manifest in the statistical analyses of the mandible and 

thus mask the potential morphological variation associated with diet. For the Principal 

Components Analysis and Multiple Regression Analysis the size variables were log 

transformed, so the body size groupings as described above were not used.  

 Body weight information for the hominin dataset was derived primarily from 

Grabowski et al. (2015) (and presented in Table 4.2). There are several other references 

that provide information on body mass estimates (e.g., Wolpoff, 1973; Steudel, 1980; 

McHenry, 1988, 1992; Antón, 2012; Holliday, 2012) in hominins, but Grabowski et al. 

(2015) incorporated all of the hominin species analysed in this project, which none of 

the others did. By using the data from Grabowski et al. (2015) it ensured that all of the 

estimates were made using the same method, and consequently the results were 

consistent. 

 

Table 4.2: Estimated body mass of hominin species according to Grabowski et al. (2015)  

Species Body mass (kg) 

A. afarensis 39.1 

A. africanus 30.5 

P. boisei 35.3 

P. robustus 30.1 

H. habilis 32.6 

H. ergaster 51.4 

 



Chapter 4: Materials and Methods 

88 
 

4.1.2.2.3 Dietary categories 

 There is considerable variation in the types of foods consumed during both periods 

of fruit abundance and resource scarcity, as presented in detail in Chapter 3, not just by 

species but even subspecies, which are dependent on the nature of the environment and 

habitat. Long-term dietary studies help to inform on how diet can vary on a seasonal 

and annual basis, but uncertainty remains over the meaning and application of the 

Fallback Food Hypothesis. Given this uncertainty and the large variation of foods that 

could constitute fallbacks – even within subspecies – it was a very difficult concept to 

generalise and apply in this study. As a result, fallback foods were not analysed as a 

separate dietary variable, but instead included within the overall diet should their 

frequency of consumption be listed (Tables 4.4-4.6 detail diet information for each 

species). 

4.1.2.2.3.1 Traditional dietary categories 

 Dietary category for a species was assigned initially using the traditional 

classifications of Fleagle (1999), and supplemented by other researchers where this data 

was unavailable. For example, Mandrillus leucophaeus information was provided by 

Owens et al. (2015), Pan troglodytes schweinfurthii by Yamagiwa & Basabose (2006a), 

and Gorilla beringei graueri by Yamagiwa & Basabose (2009). The traditional diet 

categories used are detailed in Table 4.3 and how they apply to each species analysed 

are detailed in Tables 4.4-4.6. 

4.1.2.2.3.2 Specific classification coding categories 

 Dietary data extracted from field reports on each species analysed was compiled. 

Within each species, field reports were separated based on the method of observation 

used (focal animal sampling and faecal analysis) and the average diets for each species/ 

subspecies was calculated. Based on this dietary data, 10 of the most commonly 

occurring foods identified in field studies of non-human primates were used, but for the 

purposes of analysing the diets these foods were compressed into the following 5: fruit, 

leaves, seeds, roots and animals (Figure 4.1). Diets were then defined using combined 

aspects of the methods described by Plavcan & van Schaik (1992) and Muchlinski 

(2010), similar to Coiner-Collier et al. (2016). For example, a species was categorised 

primarily as a frugivore if more than 50% of their diet was made up of fruits 

(Muchlinski, 2010), then depending on the quantity of the additional foods in the diet, 

e.g., > 15% leaves, they would be given a mixed classification of frugivore-folivore 

(Plavcan & van-Shaik, 1992). Where a food item did not exceed 50% and the secondary 
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component exceeded 25% or the second and third components were almost equal 

(~20% each) the species was categorised as an omnivore. The specific classification 

coding categories by both direct observation and faecal analysis used are detailed in 

Table 4.3 and how they apply to each species analysed are detailed in Tables 4.4-4.6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1.2.2.3.3 Food Quantity Analysis 

 An additional dietary classification system using the same 5 food groups used 

previously (fruits, leaves, seeds, roots and animals) was also applied. From these 5 

groups, the percentage that each contributed towards the diet was noted, for example, on 

average fruit contributes to 62.7% of the diet of P. t. schweinfurthii (when using focal 

animal sampling). Based on these percentages each food type was divided into ranges of 

high, medium and low consumption. To establish the ranges for each food group, the 

lowest figure was subtracted from the highest figure, and then the remaining figure was 

divided into three, with each segment representing low, medium or high consumption of 

a food. By analysing the data by quantity analysis it was anticipated that it would be 

possible to establish if consuming different quantities of certain foods was correlated to 

certain morphological patterns. The food quantity categories by both direct observation 

and faecal analysis used are detailed in Table 4.3 and how they apply to each species 

analysed are detailed in Tables 4.4-4.6. 

 

Fruits 

 Fruits 

 Flowers 

Leaves 

 Leaves 

 Pith 

 Herbs 
 

Seeds 

 Seeds 
 

Roots & Bark 

 Roots 

 Bark 

 

Animals 

 Vertebrates 

 Invertebrates 

Figure 4.1: Food types used and what they were comprised of 



 

 

 90 

Table 4.3: Dietary categories/ quantity categories used 

Dietary categories  Food quantity categories 

Traditional 

Specific classification 

categories by direct 

observation  

Specific 

classification 

categories by faecal 

analysis 

Food quantities by 

direct observation 

Food quantities 

by faecal analysis 

Frugivore Folivore Folivore-frugivore 
Fruit: low, 

moderate, high 

Fruit: low, 

moderate, high 

Folivore Folivore-frugivore Frugivore-folivore 
Leaves: low, 

moderate, high 

Leaves: low, 

moderate, high 

Omnivore Folivore-granivore 
Frugivore-

granivore 

Seeds: low, 

moderate, high 

Seeds: low, 

moderate, high 

Frugivore-

insectivore 
Frugivore 

Frugivore-

faunivore 

Roots: low, 

moderate, high 

Roots: low, 

moderate, high 

 
Frugivore-folivore 

Frugivore-

insectivore 

Animals: low, 

moderate, high 

Animals: low, 

moderate, high 

  Frugivore-granivore Omnivore     

 
Frugivore-faunivore 

 
  

 
  Frugivore-insectivore       

  Omnivore       

 

 Species diets and expressions of sex dimorphism presented in Tables 4.4-4.6 are 

based on species averages. Information relating to the individual studies that detail a 

particular population’s location, habitat, altitude, seasonal availability of resources and 

overall diet is available at: https://opencontext.org/projects/a9dbf427-cff6-41b7-8462-

a9ab8d9908f4.  

 

 

https://opencontext.org/projects/a9dbf427-cff6-41b7-8462-a9ab8d9908f4
https://opencontext.org/projects/a9dbf427-cff6-41b7-8462-a9ab8d9908f4
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Table 4.4: Body mass dimorphism, body weight and diet information on each species from Cercopithecoidea 

Species 
Body mass 

dimorphism 

Body weight 

category* 

Traditional diet 

categories 

Specific classification 

categories by direct 

observation 

Direct Observation Specific classification 

categories by faecal 

analysis 

Faecal Analysis 

F L S R A F L S R A 

Cercocebus atys Strong Small monkey Frugivore Omnivore 46.3 2.5 28 0.5 19.5 No information 
     

Cercocebus torquatus Strong Small monkey Frugivore Frugivore/granivore 62.8 3.9 28.2 0 0 Frugivore/folivore 51.9 33.4 14.8 0 0 

Cercopithecus ascanius  Moderate Small monkey Frugivore Omnivore 38.2 17.5 0.2 0 40.1 Omnivore 49.8 24.5 14.9 0 11.3 

Cercopithecus cephus Moderate Small monkey Frugivore Frugivore/faunivore 63.9 7.7 5.9 0 22.1 Frugivore/folivore 65.2 19.2 7.9 0 3.5 

Chlorocebus aethiops Extreme Small monkey Omnivore Frugivore/folivore 68.2 18.7 0 5.7 7.4 No information 
     

Chlorocebus 

pygerythrus 
Extreme Small monkey Omnivore Omnivore 42.1 14.4 13.8 0.1 2.6 Omnivore 22.2 10.3 1.2 0 1.6 

Chlorocebus sabaeus Extreme Small monkey Omnivore Frugivore 63.2 0 12.8 0 13.1 Omnivore 37.5 28.6 0 0 26 

Chlorocebus tantalus Extreme Small monkey Omnivore No information           No information           

Erythrocebus patas Strong Small monkey Omnivore Frugivore 68.9 11.2 0.8 0 12 Omnivore 20.7 8.2 2.2 0.1 12.5 

Lophocebus albigena Strong Small monkey Frugivore Frugivore/faunivore 51 8.4 11 2.5 22.5 Omnivore 39.4 20.6 24.8 0 3.3 

Lophocebus aterrimus Strong Small monkey Frugivore Frugivore/granivore 60.9 3.3 30.5 0 1.6 Frugivore/granivore 60.5 10.5 28.9 0 0 

Macaca cyclopis Moderate Small monkey  Frugivore Frugivore/folivore 61.1 29.1 0 0 9.8 Frugivore/folivore 60.2 37.5 0 2.3 0 

Macaca radiata Strong Small monkey Frugivore Frugivore 58.3 5.5 0.2 2.4 10.6 Frugivore/folivore 49.7 25.8 5.1 0.3 14.5 

Macaca sylvanus Moderate Large monkey Frugivore Folivore/granivore 6.4 49.2 21.2 9.8 4.2 Omnivore 16.7 39.9 18.3 20.7 3.5 

Mandrillus leucophaeus Extreme Large monkey Omnivore No information 
     

Frugivore/faunivore 50 14.4 0.8 2.8 32.1 

Mandrillus sphinx Extreme Large monkey Omnivore Omnivore 47.5 11.4 34.4 0 4.9 Omnivore 34.6 20.2 25 1.9 10.9 

Papio anubis Strong Large monkey Omnivore Omnivore 39.6 29.7 9.8 6.3 3.6 Frugivore/folivore 53.9 19.5 12.9 7.4 3.9 

Papio cynocephalus Extreme Large monkey Omnivore Omnivore 34.1 27.7 7.3 19.4 1.2 Omnivore 26 29.1 23.1 13.1 0 

*Within the database the female and male averages of a species are tested separately. For the above table, it was necessary to group the species by the species average body weight. 

F = Fruit. L = Leaves. S = Seeds. R = Roots. A = Animals. All numbers presented represent an average percentage of the diet consumed.  
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Table 4.5: Body mass dimorphism, body weight and diet information on each species from Hominoidea 

Species 
Body mass 
dimorphism 

Body weight 
category* 

Traditional 
diet categories 

Specific classification 
categories by direct 

observation  

Direct Observation Specific classification 
categories by faecal 

analysis 

Faecal Analysis 

F L S R A F L S R A 

Gorilla beringei beringei Extreme Large ape Folivore Folivore 4 85.8 
 

10.2 2 Folivore/frugivore 27.7 48 10.1 4.1 
 

G. b. graueri Extreme Large ape Frugivore No information           Folivore/frugivore 21.6 60.9 0.5 15.1   

G. gorilla gorilla Extreme Large ape Frugivore Folivore/frugivore 30.2 58.8 1.2 
 

5.1 Frugivore/folivore 50.2 34.8 5.1 4.8 1.4 

Pan paniscus Moderate Small ape Frugivore Frugivore/folivore 72.6 24.9     0.1 Frugivore/folivore 53.5 32.8 6.1 0.8 5.7 

P. troglodytes 

schweinfurthii 
Moderate Small ape Frugivore No information 

     
Frugivore/folivore 51.7 34.6 4.7 3.5 1.9 

P. t. troglodytes Moderate Small ape Frugivore Frugivore/folivore 64.6 21.8 4.4   3.3 Frugivore/folivore 71.2 16 4.1 1 3.6 

P. t. verus  Moderate Small ape Frugivore Frugivore/folivore 67.2 17 2.1 2.2 11 Frugivore/folivore 60.4 29 4.2 4.5 
 

Pongo abelii Extreme Small ape Frugivore Frugivore/folivore 69.8 17.2   2.8 8.8 Frugivore/folivore 53.8 35.7 0 3.9 4.3 

Po. pygmaeus Extreme Small ape Frugivore Frugivore 72.8 12.3 
 

5.5 5.4 Folivore/frugivore 41.5 49.3 
 

9.2 
 

*Within the database the female and male averages of a species are tested separately. For the above table, it was necessary to group the species by the species average body weight. 

F = Fruit. L = Leaves. S = Seeds. R = Roots. A = Animals. All numbers presented represent an average percentage of the diet consumed.  

 

Table 4.6: Body mass dimorphism, body weight and diet information on each species from Ceboidea 

Species 
Body mass 

dimorphism 

Body weight 

category* 

Traditional diet 

categories 

Specific classification 

categories by direct 

observation 

Direct Observation Specific classification 

categories by faecal 

analysis 

Faecal Analysis 

F L S R A F L S R A 

Cebus albifrons Slight Small monkey Frugivore Omnivore 44.7 2.5 10.7 
 

42 No information 
     

C. capucinus Slight Small monkey Frugivore Frugivore/insectivore 59.3 2.4 0.6   36.1 No information           

C. olivaceus Slight Small monkey Frugivore Frugivore/insectivore 53.8 6.6 2.9 0.5 26 No information 
     

Sapajus apella Slight Small monkey Frugivore/ Insectivore Omnivore 40.3 14.5 6.8 0.2 35.4 Frugivore/insectivore 57.9 12.3 3.5   21.1 

*Within the database the female and male averages of a species are tested separately. For the above table, it was necessary to group the species by the species average body weight. 

F = Fruit. L = Leaves. S = Seeds. R = Roots. A = Animals. All numbers presented represent an average percentage of the diet consumed.  
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4.1.2.3 The final sample 

 Once these various factors had been taken into consideration, a sample of extant 

non-human primates that matched the selection criteria was developed. From this 

sample, collection databases in museums around Europe were accessed to determine the 

level and nature of availability of the genera and species selected. This step was 

particularly important, as Excel spread sheets were created to collate individual 

collection sample sizes and the overall total. To ensure that the sample was 

representative, at least 10 females and 10 males were targeted for each group. It was 

decided that this minimum total would provide a large enough base sample for each 

group analysed to be considered reliable. If the overall total did not exceed 10 

specimens in each sex, the species/ subspecies were removed from the target list. The 

preferred target sample was 20 specimens of each sex, but there were instances where 

this was not possible (for example, Gorilla beringei beringei); therefore, for species that 

were considered particularly important for this study, the data from the maximum 

amount of individuals were collected. The collections visited were: the Adolph Schultz 

Anthropology Museum and Institute (University of Zurich, Switzerland) (AIM), Royal 

Museum for Central Africa (Tervuren, Belgium) (RMCA), Berlin Museum of Natural 

History (Germany) (MFN), Powell Cotton Museum (Kent, United Kingdom) (PCM), 

Max Planck Institute for Evolutionary Anthropology (Leipzig, Germany) (MPI), 

Bavarian State Collection of Zoology (Munich, Germany) (ZSM), Vienna Museum of 

Natural History (Austria) (NHMW). The final sample and the museums/ collections 

where the specimens were housed are presented in Table 4.7.  
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Table 4.7: Primate species to be analysed in this project, the sample totals and the collection locations  

Hominoidea n = 360 M F ? Cercopithecoidea n = 633 M F ? Ceboidea n = 75 M F ? 

Gorilla beringei beringei 1,2,3 4 5 1 Cercocebus atys 1,2 20 20   Cebus albifrons 1,3,7 7 8 2 

Gorilla beringei graueri 2,3 22 22 1 Cercocebus torquatus 1,6 3 2   Cebus capucinus 3,7 5 4 2 

Gorilla gorilla gorilla 2,4 35 24 5 Cercocebus torquatus torquatus 1,4 19 6   Cebus olivaceus 1,3,7 7 2   

Pan paniscus 2 18 20 2 Cercopithecus ascanius 3 4 2 1 Sapajus apella 1,3,7 20 14 4 

Pan troglodytes schweinfurthii 2,4 22 21   Cercopithecus ascanius katangue 2 15 15           

Pan troglodytes troglodytes 2,4 26 34 7 Cercopithecus ascanius schmidti 2,3,4 21 23           

Pan troglodytes verus 1,2,5 17 20 7 Cercopithecus ascanius whitesidei 2 20 20           

Pongo abelii 1,3,6 6 6   Cercopithecus cephus 4 31 20           

Pongo pygmaeus 1,3 13 15 2 Chlorocebus aethiops 3,6,7 20 30   

 

      

Pongo pygmaeus pygmaeus 1,6 20 20   Chlorocebus pygerythrus 1,2,3,4,7 13 12           

Pongo pygmaeus wurmbii 6 1 3 1 Chlorocebus sabaeus 1,3 10 3           

        Chlorocebus tantalus 3,7 3 0           

        Erythrocebus patas 1,2,3,4,6,7 13 11 3         

        Lophocebus albigena 2,4 20 21           

        Lophocebus albigena johnstoni 2,4 3 9 3         

        Lophocebus aterrimus 2 20 20           

        Macaca cyclopis 1,3 4 5 5       
 

        Macaca radiata 3,7 1 1           

        Macaca sylvanus 1,3,6,7 6 11 1         

        Mandrillus leucophaeus 1,3,4 11 7 3         

        Mandrillus sphinx 1,2,3,6 22 9 6         

        Papio anubis 2,3 21 22 8         

        Papio cynocephalus 1,2,3,6,7 17 12 5       
 

Totals per sex  184 190 26   317 281 35   39 28 8 

1 AIM, 2 RMCA, 3 MFN, 4 PCM, 5 MPI, 6 ZSM, 7 NHMW Total sample 1108 

M= Males. F = Females. ? = Unknown sex 
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4.2 Method 

4.2.1 Data collection 

 One of the main aims of this thesis revolved around the issue of whether there are 

morphological differences that correspond to differences in diet. To test this, it was 

important to consider what methods could best fulfil the objectives and still produce a 

large enough sample. The method involved collecting metric data from the mandibles 

and dentition of non-human primates, in order to describe and compare morphological 

variation among species in the study sample. This followed the method used by Wood 

(1991) (Table 4.8 and Figures 4.2-4.4). The measurements used were carefully selected 

based on three factors: 1) previous studies have shown a variable influence of diet on 

these areas (see for example, Taylor, 2005; Holmes & Ruff, 2011), 2) these 

measurements have previously been shown to be sexually dimorphic in great apes 

(Taylor, 2006b), and 3) the metric data can be compared directly to hominins in the 

fossil record. All measurements relate to features of the mandible that could be subject 

to changes as a result of different evolutionary stimuli. It was assumed that when 

focussing on an element of the anatomy that is functionally responsible for mastication, 

as the mandible is, diet would be one of the most important stimuli involved. 

 Investigation of mandibular variation in primates has focussed primarily on the 

functional and adaptive significance of the morphology of the mandible (Taylor, 2006c; 

Holmes & Ruff, 2011). Previous studies have focussed on either symphyseal 

morphology (e.g., Fukase & Suwa, 2008) or midcorpus morphology (e.g., Hylander, 

1984, 1988; Daegling, 2001; Holmes & Ruff, 2011). However, to account for potential 

structural modifications to the mandible, it was considered essential that both 

symphyseal and corpus morphologies were analysed to generate a complete 

understanding of the variation present in the mandibles (Taylor, 2002; Taylor & Groves, 

2003). This is because increases to the depth and width of the mandibular symphysis 

and corpora are considered to be important adaptations to prevent deleterious effects 

such as sagittal bending (countered by a deeper corpus), torsional loading (countered by 

a wider corpus), symphyseal bending (countered by a deeper symphysis) and 

wishboning (countered by a wider symphysis) during mastication and incision 

(Hylander, 1979a, 1979b, 1984, 1985; Daegling, 1992; Taylor, 2006c). These factors 

occur when there is a significant degree of loading on the mandible, which can result 

from eating obdurate foods (Taylor, 2006c; Norconk et al., 2009). 

 These biomechanical factors were crucial when deciding which morphometric 

measurements would be utilised in this research. In addition, the same features are 
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measured in the extinct hominin sample, so it was possible to compare the 

measurements from the extant non-human primates to the measurements from the 

extinct hominins (hominin averages for each measurement detailed in Tables 4.9-4.10).  

 To ascertain potential variation in tooth size in relation to mandibular symphysis 

and corpus size, standard dental measurements were included. The mesiodistal and 

buccolingual diameters were measured from the P4 to the M3 (measurement definitions 

in Table 4.8).  

 
Table 4.8: Metric measurements as defined by Wood & Abbott (1983) and Wood (1991) 

Abbreviation Measurement Definition 

P4 MD 
Mesiodistal crown 

diameter (premolars) 

Distance between parallel lines erected at right angles to the mesiodistal axis 
of the crown and arranged so as to be tangential to the most mesial and distal 

points on the crown; allowance is made for interstitial wear. 

M1-M3 MD 
Mesiodistal crown 

diameter (molars) 

Maximum distance between the mesial and distal crown borders, taken 
parallel with the longitudinal axis of the crown, and, where relevant, making 

allowance for interstitial wear  

P4 BL 
Buccolingual crown 

diameter (premolars) 

Maximum distance between the buccal and lingual borders taken at right 

angles to the longitudinalaxis of the crown 

M1-M3 BL 
Buccolingual crown 

diameter (molars) 

Maximum distance across the protoconid (BL1) and hypoconid (BL2) 
between the buccal and lingual crown borders taken at right angles to the 

longitudinal axis of the crown  

SH Symphyseal height Minimum distance between the base of the symphysis and infradentale 

SD Symphyseal depth 
Maximum depth, at right angles to symphyseal height at the superior 

transverse torus 

CH Corpus height 
Minimum distance between the most inferior point on the base and the 

lingual alveolar margin at the midpoint of each tooth (P4 - M3) 

CW Corpus width 
Maximum width at right angles to corpus height taken at the midpoint of each 

tooth (P4 - M3) 

 

Table 4.9: Hominin species dental measurement averages analysed in this study  

Species P4 MD P4 BL M1 MD M1 BL M2 MD M2 BL M3 MD M3 BL 

A. afarensis 9.60 11.09 12.77 12.65 14.14 13.43 15.21 13.50 

A. africanus 10.29 11.49 13.97 13.13 15.79 14.10 16.24 13.80 

P. boisei 13.27 14.61 16.05 14.51 17.84 16.56 19.03 16.54 

P. robustus 11.17 12.98 14.41 14.33 16.04 15.40 16.77 14.88 

H. habilis 9.89 11.08 13.63 12.04 15.16 13.31 15.37 13.36 

H. ergaster 9.03 10.20 12.90 11.58 13.40 12.12 13.66 12.03 

 

Table 4.10: Hominin species mandibular measurement averages analysed in this study 

Species SH SW P4CH P4CW M1CH M1CW M2CH M2CW M3CH M3CW 

A. afarensis 39.00 19.52 36.70 19.48 34.14 20.38 31.91 22.29 30.22 28.30 

A. africanus 31.50 18.75 36.00 21.70 33.29 21.56 33.30 25.50 33.33 29.50 

P. boisei 46.83 26.45 42.26 28.45 41.56 28.65 40.63 30.91 39.65 33.53 

P. robustus 41.33 22.25 36.95 24.85 36.94 25.20 34.91 27.63 35.75 30.50 

H. habilis 34.41 20.67 35.36 19.94 33.24 20.69 33.40 23.48 27.90 23.00 

H. ergaster 31.89 19.28 30.72 19.46 27.94 19.55 31.49 20.54 32.17 21.37 
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Figure 4.2: Mesiodistal (MD) and buccolingual (BL) crown diameters (image from Wood (1991)) 

 

 

 

 

 

 

 

Figure 4.3: Corpus height (M1CDP), symphyseal height (SDP) and width (SWD) (image from Taylor, 2006b) 

  

 

 

 

 

 

 

Figure 4.4: Corpus width (M1CWD) (image from Taylor, 2006b) 

 

 Using these measurements, following the work of Taylor (2006c) and Daegling & 

McGraw (2007) seven shape ratios were generated to recreate the mandibular shape. 

These ratios were corpus and symphyseal robusticity indices, corpus and symphyseal 

size, dental crown area and crown shape index (definitions available in Table 4.11, and 

the hominin averages for each ratio are detailed in Tables 4.12-4.13). 

Image removed due to copyright 

Image removed due to copyright 

Image removed due to copyright 
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 The robusticity index
7
 used for the corpus and symphyseal measurements are 

commonly used (Wood & Abbott, 1983; Wood, 1991; Kimbel et al., 2004; Taylor, 

2006c). The robusticity index provides the opportunity to establish the degree of 

robusticity in the corpus and symphysis of each specimen and compare variation within 

and between non-human primate species and hominins (Kimbel et al., 2004).  

 The measure for crown area can be done in two ways according to Wood & Abbott 

(1983), the first using the MD and BL measurements and computing the area as 

MD*BL, the other method is through the use of a planimeter, which measures the exact 

area of a shape. Wood & Abbott (1983) compared the two methods in terms of accuracy 

and found that while the computed method overestimates the crown area, the results 

were not too dissimilar. The overall differences concealed the extensive variations that 

occurred between individuals (Wood & Abbott, 1983). This is likely to be a reflection 

of the tooth shape, where those of a more rectangular shape will be more accurate than 

those of an irregular shape (Wood & Abbott, 1983), and given that the measurements 

used are essentially for a rectangle and therefore assumes the shape being measured is a 

rectangle, there was always likely to be error associated with the measurement. Despite 

the potential error due to variation in the crown shapes, for this study, using the 

computed measure of crown area was most appropriate given the size of the sample and 

the length of time it would take to measure all four teeth per specimen using a 

planimeter. Crown shape index was then calculated for each tooth. This index is the 

expression of “the maximum buccolingual diameter as a percentage of the mesiodistal 

diameter” (Wood & Abbott, 1983: 202). Calculations of corpus and symphysis size 

using the corpus measurements obtained are functionally significant for they represent 

the mandible’s capacity to resist shear and stress (Daegling & McGraw, 2007).  

 

Table 4.11: Mandibular and dental shape ratios generated 

Index  Equation Reference 

Corpus robusticity index (CRI) [Corpus width / Corpus height] x 100 Wood (1991)  

Corpus size (CS) [Corpus height x Corpus width x 𝜋] / 4 Daegling & McGraw (2007) 

Symphyseal robusticity index 

(SRI) 
[Symphyseal width / Symphyseal height] x 100 

Using Wood (1991) equation 

for corpus robusticity index 

Symphysis size (SS) [Corpus height x Corpus width x 𝜋] / 4 Daegling & McGraw (2007) 

Crown area (computed) (CA) MD x BL (maximum) Wood (1991) 

Crown shape Index (CSI) (BL / MD x 100) Wood & Abbott (1983) 

*Using measurements taken from the photographs. 

                                                             
7
 The robusticity index is a measure of the relative proportion of mandibular width to height, so 

mandibles that are relatively wide have a higher index value and might be described as 'more robust'. 

However, the term 'robust' is used in a more general context to indicate a 'big' or 'massive' mandible and 

such mandibles may appear larger because they have a relatively taller mandibular corpus, and thus 

would produce a lower robusticity index value.  



Chapter 4: Materials and Methods 

99 

Table 4.12: Hominin species dental shape ratio averages analysed in this study 

Species P4 CA P4 CSI M1 CA M1 CSI M2 CA M2 CSI M3 CA M3 CSI 

A. afarensis 106.46 115.52 161.54 99.06 189.90 94.98 205.34 88.76 

A. africanus 118.20 111.61 183.48 94.01 222.60 89.31 224.12 84.97 

P. boisei 193.86 110.06 232.91 90.45 295.40 92.80 314.86 86.90 

P. robustus 144.98 116.27 206.41 99.42 246.99 96.02 249.55 88.73 

H. habilis 109.55 112.02 164.11 88.29 201.84 87.83 205.40 86.93 

H. ergaster 92.06 113.02 149.32 89.73 162.36 90.42 164.28 88.08 

 

Table 4.13: Hominin species mandibular shape ratio averages analysed in this study 

Species SRI SS P4CRI P4CS M1CRI M1CS M2CRI M2CS M3CRI M3CS 

A. afarensis 50.05 597.91 53.08 561.49 59.70 546.46 69.85 558.63 93.65 671.69 

A. africanus 59.52 463.88 60.28 613.55 64.78 563.70 76.58 666.92 88.50 772.31 

P. boisei 56.48 972.61 67.32 944.31 68.95 935.20 76.09 986.37 84.55 1044.00 

P. robustus 53.83 722.30 67.25 721.16 68.21 731.17 79.12 757.52 85.31 856.38 

H. habilis 60.06 558.53 56.37 553.72 62.26 540.15 70.30 615.93 82.44 503.99 

H. ergaster 60.45 482.70 63.35 469.61 69.98 429.13 65.22 507.90 66.42 539.80 

 

 Intra-observer error tests were conducted on each of the measurements taken using 

callipers. In total, 32 specimens were re-measured with callipers when visiting the 

Powell-Cotton Museum on a return visit (8 months later). Where a measurement on a 

specimen exceeded 2mm difference between the first and second recording, a third was 

taken, and from that, an average of the three recordings were used. The gap between 

repeat measurements was necessary in order to minimise learning effect (Markic et al., 

2015).  

 To test for the error between measurements the Technical Error of Measurement 

(TEM) index was used. This index represents the standard deviation between repeated 

measures and provides an assessment of the accuracy of the measurements taken 

(Knapp, 1992; Perini et al., 2005; Harris & Smith, 2009). To generate the TEM index, 

the equations provided in the intra-evaluator TEM calculations by Perini et al. (2005) 

and Harris & Smith (2009) were followed. Each measurement recorded in the intra-

observer error tests obtained a relative TEM value of less than 5% (Table 4.14 displays 

each variable’s relative TEM value), which according to the classification parameters 

set out by Perini et al. (2005) was acceptable.  
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Table 4.14: Technical Error of Measurement values for repeat measurements taken 

Area 

measured 
TEM Measurements   

Dentition 

  P4MD P4BL M1MD M1BL1 M1BL 2   

Relative TEM % 1.52 1.29 2.12 4.15 2.83   

  M2MD M2BL 1 M2BL 2 M3MD M3BL 1 M3BL 2 

Relative TEM % 1.89 2.73 2.98 1.93 3.18 2.72 

Corpus and 

symphysis 

  SH SW P4CH P4CW M1CH 
 

Relative TEM % 0.87 3.61 0.22 4.12 0.7   

 
M1CW M2CH M2CW M3CH M3CW   

Relative TEM % 3.24 0.97 1.29 1.5 0.91   

MD = Mesiodistal. BL = Buccolingual. BL1 = measured from protoconid to metaconid. BL2 = measured 

from hypoconid to entoconid. SH = Symphyseal Height. SW = Symphyseal Width. CH = Corpus Height. 

CW = Corpus Width.  

 

4.3 Data analysis 

4.3.1 Data analysis of non-human primates 

 Data from metric measurements were entered into Microsoft Excel and then 

imported into SPSS Statistics 25. The first step of the data analysis was to determine if 

the data were normally distributed and to establish general patterns of variation in the 

dataset.  

 Kolmogorov-Smirnov tests for normality were used to analyse the distribution of 

the sample dataset. Initially this test was run on the whole dataset, and then again on 

different groups (family, genus, the traditional dietary categories, specific dietary 

classifications, food quantity analysis, body size, and sex dimorphism). The results 

revealed the data was a mix of normal and not normal distribution (Table 4.15). 
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Table 4.15: Summary of selected tests for normality that demonstrate how some variables appear to be normally distributed (non significant on the Kolmogorov-Smirnov test), while many 

others are not (significant on the Kolmogorov-Smirnov test).  

Grouping variable Sample P4-M3 CA M1 CSI M2 CSI M3 CSI SS P4 CS M1 CS M2 CS M3 CS SRI P4 CRI M1 CRI M2 CRI M3 CRI 

None Whole sample 0.000 0.03 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.000 0.004 

Family 

Cercopithecoidea 0.000 0.051 0.04 0.2 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.004 0.2 

Hominoidea 0.000 0.002 0.003 0.002 0.000 0.000 0.000 0.000 0.000 0.106 0.171 0.003 0.002 0.056 

Ceboidea 0.015 0.2 0.002 0.079 0.18 0.2 0.2 0.178 0.063 0.2 0.2 0.2 0.2 0.2 

Genus 

Cercocebus 0.2 0.2 0.2 0.2 0.000 0.000 0.000 0.001 0.005 0.071 0.018 0.2 0.2 0.2 

Lophocebus 0.062 0.023 0.2 0.006 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

Papio 0.2 0.2 0.2 0.2 0.001 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

Mandrillus 0.2 0.013 0.2 0.2 0.018 0.2 0.2 0.2 0.2 0.2 0.19 0.2 0.18 0.2 

Cercopithecus 0.013 0.2 0.2 0.082 0.045 0.2 0.2 0.2 0.2 0.2 0.004 0.086 0.2 0.2 

Chlorocebus 0.2 0.009 0.2 0.2 0.2 0.2 0.2 0.03 0.2 0.099 0.2 0.2 0.2 0.2 

Erythrocebus 0.125 0.2 0.2 0.2 0.133 0.171 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

Macaca 0.2 0.2 0.198 0.2 0.2 0.076 0.2 0.035 0.191 0.03 0.2 0.2 0.025 0.2 

Gorilla 0.167 0.011 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.073 0.000 0.044 

Pan 0.2 0.000 0.2 0.2 0.059 0.2 0.002 0.002 0.081 0.003 0.038 0.005 0.2 0.2 

Pongo 0.05 0.019 0.2 0.2 0.027 0.2 0.2 0.125 0.167 0.2 0.2 0.2 0.2 0.2 

Cebus 0.2 0.2 0.011 0.2 0.061 0.2 0.156 0.2 0.2 0.017 0.2 0.2 0.2 0.2 

Sapajus 0.2 0.093 0.2 0.091 0.118 0.181 0.032 0.2 0.015 0.2 0.2 0.2 0.2 0.2 

Sex dimorphism 

Slight 0.015 0.2 0.002 0.079 0.018 0.2 0.2 0.178 0.063 0.2 0.2 0.2 0.2 0.2 

Moderate 0.000 0.000 0.099 0.2 0.000 0.000 0.000 0.000 0.000 0.032 0.001 0.000 0.001 0.168 

Strong 0.000 0.2 0.2 0.025 0.000 0.000 0.000 0.000 0.000 0.2 0.098 0.043 0.2 0.2 

Extreme 0.000 0.000 0.2 0.003 0.000 0.000 0.000 0.000 0.000 0.2 0.000 0.002 0.2 0.2 

Traditional diet 

categories 

Folivore 0.000 0.2 0.2 0.2 0.000 0.000 0.000 0.000 0.000 0.2 0.132 0.111 0.082 0.2 

Frugivore 0.000 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.2 0.000 0.000 0.000 0.018 

Omnivore 0.000 0.2 0.042 0.2 0.000 0.000 0.000 0.000 0.000 0.2 0.2 0.001 0.098 0.2 

Frugivore-Insectivore 0.2 0.093 0.2 0.091 0.118 0.181 0.032 0.2 0.015 0.2 0.2 0.2 0.2 0.2 
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4.3.2 Univariate and exploratory statistics 

 General descriptive statistics were run to provide an insight into the distribution of 

the morphological data. These tests were run on the whole sample, as well as by genus 

and diet. Scatterplots provided a visual representation of what to expect from the data.  

 Research question 1 was split in two parts and required a series of steps to be taken 

in order to answer it. The first part was to establish that morphological differences were 

present in consumers of different diets, and the second part was to establish which diets 

varied and how.  

 To identify whether morphological differences were present in consumers of 

different diets, exploratory analyses were run using significance tests. As the data were 

both normally and not normally distributed, parametric and non-parametric tests were 

used. T-tests and Mann-Whitney U, and ANOVA and Kruskal Wallis tests were run to 

test for differences within the sample. For the vast majority of the tests run the 

parametric and non-parametric results were consistent. As a result, where the tests of 

difference results are displayed (Tables 5.11-5.22, and Appendix Tables 9.9-9.24), only 

the parametric results are given, but where they differed from the non-parametric results 

they were highlighted.  

 The tests were run to investigate whether different morphologies were present in 

consumers of different diets and between species of different body sizes. To establish 

whether different morphologies were present, several steps had to be taken and these 

were broken down as detailed in Table 4.16.  

 

Table 4.16: Tests of difference used and the steps taken for each test 

Tests run  Steps taken 

 -tests/ 

Mann-Whitney U

To establish differences in morphologies of consumers of the same diets but with 

different body sizes: 

1.     Select taxon: monkey or ape 

2.     Select diet category (from traditional, specific classification coding and 

quantity analyses), e.g., frugivores. 

3.     Run t-test/ Mann-Whitney U using the raw data (crown area, crown shape 

index, corpus/ symphysis size, corpus/ symphysis robusticity index) as the test 

variables and body size as the grouping variables. 

 T-tests/ 

Mann-Whitney U

 ANOVA/ 

Kruskal-Wallis

To establish differences in morphologies of consumers of different diets but with the 

same body size: 

1.     Select taxon: monkey or ape 

2.     Select body size (small or large) 

3.     Run t-test/ Mann-Whitney U or ANOVA/ Kruskal-Wallis* using the raw 

metric data (crown area, crown shape index, corpus/ symphysis size, corpus/ 

symphysis robusticity index) as the test variables and the diet categories as the 

grouping variables. 

Usage of either the t-test or ANOVA depended on the number of dietary categories present, if only 2 dietary 

categories/ quantity categories were available in a given body size range a t-test was used, but if 3 or more dietary 

categories/ quantity categories were available an ANOVA was used. 
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 Body size differences and their effects upon masticatory morphology were not a 

primary focus of this thesis, mainly because the hominins this research was inspired by 

are not reconstructed to present very different body sizes (Grabowski et al., 2015). 

Nevertheless, body size is potentially an important factor and must not be overlooked 

when exploring morphological variables in non-human primates. 

 These tests of difference were run on the raw data, this is despite the fact other 

researchers have been known to log transform their datasets (e.g., Plavcan & Daegling, 

2006; Taylor, 2006c), and run subsequent tests of difference, including non-parametric 

tests, on the log transformed data. This approach was not followed here because it is 

considered by some researchers that by transforming data it makes interpretation of 

results more complicated, due to the fact the relationship between variables that have 

been transformed and those that have not is no longer the same (Osborne, 2002; Wilson, 

2007; Zuur et al., 2010). An influence over the relationship of the variables as described 

above would be detrimental to this project, which aimed to establish patterns of 

correlation between variables. Furthermore, some variables (size variables) of this 

dataset were log-transformed for analyses that followed later and the explorative output 

from the Kolmogorov-Smirnov test for normality of distribution still resulted in data 

that were not normally distributed. It was decided therefore that it was not necessary to 

run the tests of difference on the log-transformed data, as the raw data would provide 

the confidence that any differences observed when using both parametric and non-

parametric tests were or were not significant. Analysis on the raw data thus enabled 

identification of basic patterns of variability in the data with respect to the different 

kinds of grouping variables used. 

4.3.3 Multivariate analyses 

 Multivariate analyses were run to address the second step of research question 1 (to 

explore which diets varied and how), along with research questions 2 (whether 

consumers of different quantities of foods vary morphologically) and 3 (how much diet 

contributes to morphological variation). The analyses used to answer these questions 

were Principal Components Analysis (PCA) and Multiple Regression. The steps taken 

to run the PCA and Multiple Regression analyses are detailed in Table 4.17. 
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Table 4.17: Multivariate analyses run to answer research questions 1-3 and the steps taken for each analysis 

Research question Tests run Steps taken 

1 (part 2): Are there 

morphological differences 

present between consumers of 

different diets? How do they 

manifest? 

PCA and bivariate 

graphs 

1.     Log-transform size variables 

2.     Enter dental and mandibular 

variables with orthogonal rotation (varimax) 

3.     Bivariate scatter plots were 

generated using each of the PCA components 

on the x and y axes by the dietary categories 

2: Are there morphological 

differences between consumers 

of low quantities of particular 

foods to consumers of higher 

quantities of the same foods? 

Bivariate scatter 

plots using PCA 

components 

1.     Bivariate scatter plots were 

generated using each of the PCA components 

on the x and y axes by the quantity categories 

3: How much does diet 

contribute towards 

morphological variation? 

Multiple 

regression 

analysis using 

PCA components  

1.     PCA components used as dependent 

variables 

2.     Body size, sex and dietary 

categories used as independent variables 

3.     Method of data entry: Enter 

 

4.3.3.1 Principal Component Analysis 

 A PCA is generally run with two intentions, the first to reduce the data into smaller, 

more manageable grouping of variables (as described below), and the second, by using 

the components instead of individual variables, patterns can be identified in the data that 

would not be seen otherwise (Quinn & Keogh, 2002; Field, 2018). Prior to the PCA 

being run it was necessary to log-transform all of the size variables. Had the raw data 

been used there would have been too much residual variation from the 

heteroscedasticity present in the data. The heteroscedasticity present corresponded to 

the lack of normality identified previously in the Kolmogorov-Smirnov tests of 

normality, but unlike in the tests of differences where both parametric and non-

parametric tests could be used, it was necessary to log-transform the raw data. Using the 

natural logarithm all measurements of size were transformed, this included the 

following: corpus size, symphysis size, tooth crown area and body size. The indices 

were not log-transformed as their residuals appeared to be reasonably distributed around 

the regression line and as a result, did not display heteroscedasticity (McKillup, 2012). 

 A PCA determines which variables account for most of the variance present. The 

identification of those variables that account for the majority of variance makes the 

PCA a statistical analysis that is particularly important to studies attempting to identify 

morphological variation, and therefore commonly used in palaeoanthropology (e.g., 

Norconk et al., 2009). The PCA uses the coefficients and eigenvectors from a variable 

to determine its contribution to a component, whereby the further the coefficient is from 

zero (i.e. the closer it is to one) the greater its contribution is to that component (Quinn 

& Keogh, 2002; Field, 2018). A grouping of variables with similar coefficients will then 
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form a component that can then be analysed (Quinn & Keogh, 2002; Field, 2018). 

Identification of which variables contribute most towards a particular component can be 

obtained through the rotated components matrix in the PCA output. Bivariate scatter 

plots were then generated using each of the components on the x and y axes by the 

various dietary categories used in this thesis. The bivariate graphs were useful in 

determining potential patterns in the data, particularly with regard to whether consumers 

of a particular diet varied from consumers of another diet (part 2 of research question 1), 

or if species that consumed large quantities of, for example seeds, plotted differently to 

species that consumed very small quantities of seeds (research question 2). 

4.3.3.2 Multiple Regression Analysis  

 To answer research question 3, a multiple regression analysis was run using the 

PCA components as the dependent (y) variable. The multiple regression enabled 

analysis of the dependent variable (each principal component) by several independent 

variables at once, to try to establish which was the best predictor of the morphology 

present and how much each independent variable contributed to the variation (Madrigal, 

1998; Quinn & Keogh, 2002; Field, 2018). The use of the principal components in a 

regression analysis is preferential to the use of each individual variable (e.g., P4, M1, M2 

and M3 crown shape indices) because the components are orthogonal, which meant that 

the potential problem of multicollinearity was overcome (Quinn & Keogh, 2002; Field, 

2018). For each component the independent variables of log body size and sex were 

entered along with one of traditional diet, specific classification coding categories (DO 

and FA) and the food quantity analyses (DO and FA). As the traditional diet and the 

specific classification coding systems both used categorical data it was necessary to 

convert them into dummy variables in order for them to be included in the multiple 

regression analysis (Field, 2018). The dummy variables meant that each category within 

for example traditional diet became their own variable and were assigned a value of 1 or 

0. So for example, when a species was described as being a folivore they would have a 

1 in their folivore column, but a 0 in their frugivore, omnivore and frugivore-insectivore 

columns. By necessity, when a 1 was present in one variable (dietary category) a 0 

would be present for the rest (Field, 2018). The diet grouping with the highest n was 

excluded from the regression as a baseline group for all the other groups to be compared 

against as advised by Field (2018). For the traditional diet group frugivores were 

excluded, while in the specific classification coding by direct observation (DO) 

frugivores were excluded, and in the specific classification coding by faecal analysis 

(FA) frugivore-folivores were excluded. 
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 When the multiple regression analysis was run on the food quantity analysis 

percentages (FQA 1) problems were encountered with regard to missing dietary 

information. Not many non-human primate species have complete information about 

their diets, at least not complete in terms of the categories used in this thesis, so where 

the amount of fruits consumed would always be available, leaf, seed, root and animal 

consumption could vary between presence and absence in the different species. For 

example, Cercocebus torquatus are recorded as consuming 62.8% fruits, 3.9% leaves 

and 28.2% seeds, but no roots or animals (species average) (study-specific field reports 

are available at: https://opencontext.org/projects/a9dbf427-cff6-41b7-8462-

a9ab8d9908f4). This missing data meant that when the multiple regression analysis was 

run with the food quantity analysis category (FQA 1) any species with missing data, 

such as C. torquatus, would be excluded from the analysis, which in turn reduced the 

number of species analysed to 235 (DO) and 307 (FA) out of 772 (DO) and 797 (FA), 

respectively. The missing data could potentially miss any patterns associated with 

particular diet types and morphologies. Two approaches were used to overcome this 

issue: 1) all missing data were entered as 0 in the database (labelled as FQA 2) so that 

information available from other variables were included in the observations, and 2) 

when the multiple regressions were run the foods were entered in one by one with fruit 

as the constant, e.g., Fruits & Leaves, Fruit & Seeds, Fruits & Roots, and Fruits & 

Animals, etc. While neither approach was ideal – the presence of zeros meant that the 

average consumption for each food type was brought down considerably, and entering 

each diet one at a time potentially ignored the importance of a combination of foods – 

these approaches enabled a more thorough exploration of the data than simply using 

FQA 1. 

 The method selected to enter the data into the regression was Enter, this was 

because it enters all of the predictor variables in at once and their potential value to the y 

variable assessed. Enter is regarded by some researchers as the most appropriate method 

of variable entry for theory testing (Studenmund & Cassidy, 1987; Field, 2018). Other 

methods that could have been used are forms of stepwise, which include forward, 

backward and stepwise (combines forward and backward), but these methods are not 

recommended by statisticians for exploratory model building (Field, 2018). When the 

variables were entered into the regression body size and sex were input first and then in 

the next column the dietary variables were entered. By entering the data this way it 

meant that the variance explained by size and sex were identified first followed by the 

variance explained by diet. This was considered to be more informative than simply 

https://opencontext.org/projects/a9dbf427-cff6-41b7-8462-a9ab8d9908f4
https://opencontext.org/projects/a9dbf427-cff6-41b7-8462-a9ab8d9908f4
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entering all of the data in at the same time, which if done so would give the overall 

percentage of variance explained by everything together, not their individual 

contributions. The Enter method does not make any assumptions about the order of the 

variables entered, so separating size and sex from diet as described should not impact on 

the effectiveness of the model (Field, 2018).  

4.3.4 Data analysis of hominins compared to non-human primates 

 The focus on the second part of the data analysis was on research questions 4-5, 

exploring how the hominins compared to the non-human primates. To do this, the 

hominins dataset was combined with the non-human primate dataset. Within the 

hominins data were the genera, species, estimated species body size, estimated degree 

of sexual dimorphism, dietary information (which required new labels to be created 

which were called ‘unknown’), and their metric information. Species average body size 

and all of the size variables were log-transformed again. As there are few hominins that 

have complete information from the mandible and dentition – as collected for the non-

human primates – a PCA using the whole dataset would contain too much missing data. 

It was decided therefore to reduce the whole dataset to an average for each species. By 

reducing the dataset in such a way meant that each species had an average measure for 

each variable. A PCA was therefore run on non-human primate and hominin averages. 

Bivariate scatter plots were once again created using each of the PCA components on 

the x and y axes to answer research questions 4-5 (Table 4.18). These scatter plots 

compared how the hominins scored in relation to extant non-human primates of known 

taxonomy and diet. From these bivariate graphs it was possible to make basic inferences 

about the hominins and their potential diet adaptations (research question 6, which is 

addressed in the Discussion chapter).  

 

Table 4.18: Multivariate analyses run to answer research questions 4-5 and the steps taken for each analysis 

Research question Tests run Steps taken 

4: Is the hominin morphology 

comparable to that present in 

non-human primates? 

PCA and 

bivariate 

graphs 

1.     Log transform size variables 

2.     Use averages of each species 

3.     Enter dental and mandibular variables with 

orthogonal rotation (varimax) 

4.     Bivariate scatter plots were generated 

using each of the PCA components on the x and y axes 

by genera.  

5: Is it possible to associate 

the morphological features of 

the hominins with dietary 

categories analogous to non-

human primates? 

Bivariate 

scatter plots 

using PCA 

components 

1.     Bivariate scatter plots were generated 

using each of the PCA components on the x and y axes 

by the dietary and quantity categories.  
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Chapter 5  : Statistical analysis of non-human primates and 

hominins 

 This chapter presents the results produced from the exploratory and multivariate 

analyses undertaken on the non-human primates (section 1) and hominins (section 2). 

The results presented answer the research questions introduced in Section 1.1-1.2.  

 

5.1. Section 1: Statistical analyses on non-human primate database (research 

questions 1-3) 

 This section is divided into three parts to address the research questions. Research 

question one (Are there morphological differences present between consumers of 

different diets?) is addressed in part one to confirm if differences are present, and part 

two to establish where differences occur. Research question two (Are there 

morphological differences between consumers of low quantities of particular foods to 

consumers of higher quantities of the same foods?) is also addressed in part two. 

Research question three (How much does diet contribute towards morphological 

variation?) is explored in part three.  

 Basic descriptive statistics were run to establish how the data were distributed 

taxonomically and by diet. The means, standard deviations and numbers present for 

each measurement taken by genus are detailed in tables 5.1-5.4. How the different 

genera compare to each other are displayed in scatterplots (Figures 5.1-5.7).  

 

Table 5.1: Genus means, standard deviations and numbers present for P4 – M1 dental measurements 

  P4 Mesiodistal length P4 Buccolingual length M1 Mesiodistal length M1 Buccolingual length 

Genus  Mean  S.D. N Mean S.D. N Mean S.D. N Mean  S.D. N 

Cebus 3.24 0.2324 34 4.42 0.5349 34 4.16 0.2982 36 4.35 0.279 36 

Sapajus 3.52 0.3802 37 4.79 0.443 37 4.52 0.291 38 4.67 0.3343 38 

Cercocebus 5.87 0.4131 69 5.71 0.5719 68 7.15 0.4435 69 6.37 0.4299 68 

Lophocebus 4.69 0.4026 96 4.61 0.4091 96 6.1 0.321 96 5.34 0.3347 96 

Chlorocebus 4.32 0.5007 89 3.43 0.2815 89 5.33 0.4142 90 4.28 0.3024 90 

Erythrocebus 5.26 0.4871 26 4.15 0.5738 26 6.27 0.473 27 4.98 0.3679 27 

Cercopithecus 3.88 0.3751 169 3.07 0.3298 169 4.79 0.3596 172 3.79 0.2995 172 

Macaca 5.3 0.6589 34 5.07 0.5457 34 6.88 0.6359 33 5.62 0.4721 33 

Mandrillus 8.82 0.8797 57 7.08 0.8985 57 9.47 0.7538 57 7.62 0.602 57 

Papio 7.97 1.1454 85 7.13 0.9224 85 10.06 1.3131 85 8.5 1.0557 85 

Gorilla 11.13 0.8321 120 13.26 1.0379 120 15.29 0.9219 120 13.72 1.0613 120 

Pan 7.17 0.8393 185 8.35 0.8946 185 9.99 0.7868 184 9.38 0.8166 184 

Pongo 10.25 0.8583 87 11.22 1.1654 87 12.49 0.8682 87 11.73 0.9002 87 
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Table 5.2: Genus means, standard deviations and numbers present for M2 – M3 dental measurements  

  M2 Mesiodistal length M2 Buccolingual length M3 Mesiodistal length M3 Buccolingual length 

Genus  Mean  S.D. N Mean  S.D. N Mean  S.D. N Mean  S.D. N 

Cebus 3.9 0.2865 35 4.1 0.2438 35 3.38 0.4489 30 3.54 0.2737 30 

Sapajus 4.22 0.3442 37 4.48 0.2956 37 3.49 0.2963 27 3.755 0.3013 27 

Cercocebus 8.07 0.5243 68 7.63 0.6694 66 9.02 0.7954 69 7.4 0.7606 68 

Lophocebus 6.8 0.3592 96 6.37 0.327 96 7.59 0.6256 94 6.11 0.3915 95 

Chlorocebus 5.94 0.4308 90 5.18 0.3663 90 5.94 0.5168 86 5.09 0.4249 86 

Erythrocebus 7.29 0.4102 27 5.93 0.4034 27 7.15 0.5713 22 5.74 0.375 22 

Cercopithecus 5.22 0.4204 172 4.53 0.3477 172 5.08 0.3823 170 4.27 0.3205 170 

Macaca 8.33 0.841 34 6.95 0.663 34 10.62 1.2937 33 7.4 0.9858 33 

Mandrillus 11.53 0.9292 57 9.88 0.9881 57 13.85 1.4285 55 10.51 1.059 55 

Papio 11.98 1.4503 85 10.54 1.3546 85 15.03 1.9194 85 11.29 1.4747 85 

Gorilla 17.2 1.3179 120 15.45 1.0438 120 17.14 1.497 118 14.86 1.1362 118 

Pan 10.44 1.124 186 9.97 0.9196 185 9.84 0.9289 179 9.45 0.9468 180 

Pongo 13.284 1.2232 87 12.49 1.0688 87 13.25 1.3403 86 11.91 1.2199 86 

 

 Figures 5.1-5.4 highlight that while there is overlap between genera, there are 

morphological differences present in the dataset relating to phylogeny. These 

differences were best highlighted on the dentition at the P4 and M3, while similar 

patterns were present on the M1-M2 but with less distinction between genera. For this 

reason, the scatterplots of the dentition at the P4 and M3 are the graphs presented here 

(Figures 5.1-5.2).   

 

 
Figure 5.1: Distribution of genera by P4 buccolingual and mesiodistal dimensions 
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Figure 5.2: Distribution of genera by M3 buccolingual and mesiodistal dimensions 

 

Table 5.3: Genus means, standard deviations and numbers present for symphyseal and P4 corpus dimensions 

  Symphyseal Height Symphyseal Width P4 Corpus Height P4 Corpus Width 

Genus  Mean  S.D. N Mean  S.D. N Mean  S.D. N Mean  S.D. N 

Cebus 18.7 1.9527 36 7.53 0.7855 36 11.99 1.12218 36 5.88 0.6252 36 

Sapajus 21.14 2.2221 38 9.08 1.0063 38 14.16 1.4164 38 7.29 0.7196 38 

Cercocebus 29.32 5.8169 70 13.08 2.8055 70 22.18 3.273 70 8.95 1.249 70 

Lophocebus 28 3.0007 95 11.84 1.2127 95 21.61 1.9162 96 8.08 0.8118 96 

Chlorocebus 21.08 3.1242 89 8.91 1.3607 89 14.71 1.9362 91 5.63 0.675 91 

Erythrocebus 27.1 6.1092 27 11.06 2.0588 27 18.14 3.3194 27 6.69 0.8655 27 

Cercopithecus 16.95 2.3497 172 6.72 0.8679 172 13.54 1.4373 172 5.33 0.6361 172 

Macaca 28.4 4.3354 34 12.28 1.8003 34 20.59 2.9548 34 8.71 1.2543 34 

Mandrillus 52.45 11.1082 58 25.89 7.8947 58 32.89 5.8926 58 12.88 2.1039 58 

Papio 44.41 9.4691 84 22.06 5.6917 84 31.52 5.4101 85 11.85 1.8699 85 

Gorilla 63.66 7.7375 120 26.52 3.3396 120 38.81 5.0579 120 20.19 2.1663 120 

Pan 4.76 5.6711 194 15.3 2.073 194 27.49 3.7253 192 14.18 1.9872 192 

Pongo 56.66 7.8014 87 19.01 3.2668 87 36.61 5.1209 87 16.76 2.2566 87 

 

 Phylogenetic differences are present in the corpus and symphyseal dimensions, 

however more overlap exists here than in the dentition between the genera, particularly 

the monkeys. Differences between the genera are best displayed at the corpus at the P4 

and M2 and the symphysis (Figures 5.3-5.7). The distributions of the data at the M1 and 

M3 are less distinct and are therefore not presented here. 
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Figure 5.3: Distribution of genera by P4 corpus height and width dimensions 
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Table 5.4: Genus means, standard deviations and numbers present for M1-M3 corpus dimensions 

  M1 Corpus Height M1 Corpus Width M2 Corpus Height M2 Corpus Width M3 Corpus Height M3 Corpus Width 

Genus  Mean  S.D. N Mean  S.D. N Mean  S.D. N Mean  S.D. N Mean  S.D. N Mean  S.D. N 

Cebus 12.37 1.3268 36 5.78 0.6448 36 12.49 1.3423 36 5.93 0.6798 36 13.14 1.3183 36 6.25 0.8768 36 

Sapajus 14.684 1.6426 38 7.27 0.772 38 14.93 1.6769 38 7.58 0.7836 38 15.93 1.5767 35 8.02 0.9623 35 

Cercocebus 22.59 3.5848 70 9.17 1.0692 70 21.66 3.4527 70 10.32 1.3057 70 20.81 3.4525 70 11.55 1.4645 70 

Lophocebus 21.92 1.9947 96 8.15 0.7913 96 21.51 2.0565 96 8.6 0.8206 96 21.45 2.021 95 9.8 0.9919 95 

Chlorocebus 14.03 1.8668 91 5.84 0.5962 91 12.86 1.6371 91 6.69 0.6891 91 13.24 1.3891 89 7.46 0.7808 89 

Erythrocebus 17.67 3.1723 27 6.52 0.7261 27 16.34 2.7488 27 7.26 0.6669 27 16.44 2.6907 25 7.94 0.6884 25 

Cercopithecus 13.57 1.3891 172 5.29 0.544 172 13.21 1.3347 172 5.7 0.565 172 13.36 1.4163 171 6.47 0.6511 171 

Macaca 21.56 2.9629 34 8.89 1.2474 34 20.91 2.9218 34 10.03 1.4651 34 20.35 2.6996 34 11.59 1.7613 34 

Mandrillus 33.43 5.6783 58 12.16 1.7453 58 30.58 5.2807 58 13.2 1.6762 58 27.95 4.278 57 15.03 1.7413 57 

Papio 31.84 5.2419 85 11.8 1.6588 85 28.64 4.5295 85 13.05 1.8733 85 26.47 3.9901 85 14.96 2.1888 85 

Gorilla 38.54 4.7764 120 19.76 1.8541 120 36.69 4.621 119 22.51 2.0376 120 38.76 4.7328 119 24.86 2.1479 119 

Pan 26.3 3.485 192 13.72 1.865 193 25.36 3.0441 194 14.76 1.9128 194 26.11 2.8366 189 16.34 1.9442 189 

Pongo 36.41 4.9761 87 17.04 2.0092 87 35.52 4.8873 87 19.16 2.5688 87 36.02 4.7292 87 22.11 2.9856 87 
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 More distinctions appeared to be present in the ape genera at the M2 corpus than at 

other points along the corpus (Figure 5.4). It was not apparent if the divergent 

distribution of the Gorilla, Pan and Pongo genera reflected species differences, so for 

this reason, a further scatterplot focussing only on the apes at the species level was 

generated (Figure 5.5). With the exception of Pan paniscus and Pan troglodytes, there 

appeared to be overlap present between both Gorilla species and Pongo species.  

 

 
Figure 5.4: Distribution of genera by M2 corpus height and width dimensions 

 

 
Figure 5.5: Distribution of ape species by M2 corpus height and width dimensions 
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 As with M2 corpus dimensions, more distinctions were present between the ape 

genera at the symphysis (Figure 5.6). Once again, it was not apparent if the divergent 

distribution of the ape genera reflected species differences, and so, a further scatterplot 

focussing only on the apes at the species level was generated (Figure 5.7). Pan paniscus 

and Pan troglodytes were again distinguished from each other, and potentially 

differences maybe present between the two Pongo species but it is not very clear based 

on Figure 5.7. There appeared to be overlap present between both Gorilla species again. 

The symphyseal breadth dimensions appear to be reversals of the corpus width 

dimensions for all genera. 

 

Figure 5.6: Distribution of genera by symphyseal height and width dimensions 

 
Figure 5.7: Distribution of ape species by symphyseal height and width dimensions 
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 The means, standard deviations and numbers present for each measurement taken 

distinguished by the traditional diet categories are detailed in tables 5.5-5.8. How the 

different diet categories compare to each other are displayed in scatterplots (Figures 5.8-

5.12). Different diet categories were analysed in this study, but for the purposes of 

analysing the descriptive statistics the traditional diet categories were the only ones 

selected to be presented here.  

 

Table 5.5: Diet means, standard deviations and numbers present for P4 - M1 dental measurements 

  P4 Mesiodistal P4 Buccolingual M1 Mesiodistal M1 Buccolingual 

Traditional Diet 
Categories 

Mean S.D.  N Mean S.D.  N Mean S.D.  N Mean S.D.  N 

Folivores 7.12 3.1025 36 6.88 4.5341 36 8.78 4.2166 37 7.44 4.134 37 

Frugivores 6.67 2.7199 783 7.2 3.5999 782 8.74 3.7234 786 7.87 3.5738 785 

Omnivores 6.78 2.1575 231 5.69 1.9358 231 8.08 2.3891 232 6.65 2.0495 232 

Frugivore-

insectivores 
3.52 0.3802 37 4.79 0.443 37 4.52 0.291 38 4.67 0.3343 38 

 

Table 5.6: Diet means, standard deviations and numbers present for M2 - M3 dental measurements 

  M2 Mesiodistal M2 Buccolingual M3 Mesiodistal M3 Buccolingual 

Traditional 

Diet 
Categories 

Mean S.D.  N Mean S.D.  N Mean S.D.  N Mean S.D.  N 

Folivores 10.16 4.8479 37 8.67 4.608 37 10.43 5.0288 32 8.69 4.4975 32 

Frugivores 9.51 4.1531 787 8.78 3.8033 784 9.61 4.1099 768 8.42 3.6851 769 

Omnivores 9.53 3.0413 232 8.3 2.684 232 11.29 4.449 226 8.74 3.0749 226 

Frugivore-

insectivores 
4.22 0.3442 37 4.48 0.2956 37 3.49 0.2963 27 3.76 0.3013 27 

 

 

 Figures 5.8-5.12 highlight that while there is overlap between diet categories, there 

are morphological differences present in the dataset relating to diet. These differences 

were best highlighted on the dentition at the P4 and M3, while similar patterns were 

present on the M1-M2 but with less distinction between diets. For this reason, the 

scatterplots of the dentition at the P4 and M3 are the graphs presented here (Figures 5.8-

5.9).   
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Figure 5.8: Distribution of diet categories by P4 buccolingual and mesiodistal dimensions 

 

 

Figure 5.9: Distribution of diet categories by M3 buccolingual and mesiodistal dimensions 

Table 5.7: Diet means, standard deviations and numbers present for symphyseal and P4 corpus dimensions 

  Symphyseal Height Symphyseal Breadth P4 Corpus Height P4 Corpus Width 

Traditional Diet 
Categories 

Mean S.D.  N Mean S.D.  N Mean S.D.  N Mean S.D.  N 

Folivores 37.27 18.1549 37 15.69 7.9713 37 24.28 10.9141 37 10.71 6.7686 37 

Frugivores 36.43 17.0616 797 14.28 6.5696 797 24.83 9.6219 796 11.55 5.4158 796 

Omnivores 37.44 15.6434 231 17.95 9.0287 231 25.32 9.6304 234 9.69 3.6299 234 

Frugivore-

insectivores 
21.14 2.2221 38 9.08 1.0063 38 14.16 1.4164 38 7.29 0.7196 38 
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Table 5.8: Diet means, standard deviations and numbers present for M1-M2 corpus dimensions 

  M1 Corpus Height M1 Corpus Width M2 Corpus Height M2 Corpus Width 

Traditional 

Diet 

Categories 

Mean S.D.  N Mean S.D.  N Mean S.D.  N Mean S.D.  N 

Folivores 23.78 10.7934 37 10.62 6.8787 37 22.48 10.6895 37 12.03 8.0324 37 

Frugivores 24.62 9.3749 796 11.43 5.2439 797 23.8 8.8833 797 12.59 6.0136 798 

Omnivores 25.31 10.0398 234 9.57 3.2846 234 22.99 9.0173 234 10.61 3.4619 234 

Frugivore-

insectivores 
14.68 1.6426 38 7.27 0.772 38 14.93 1.6769 38 7.58 0.7836 38 

 

Table 5.9: Diet means, standard deviations and numbers present for M3 corpus dimensions 

  M3 Corpus Height M3 Corpus Width 

Traditional Diet 

Categories 
Mean S.D.  N Mean S.D.  N 

Folivores 23.82 12.401 35 13.19 8.5034 35 

Frugivores 24.26 9.3331 790 14.11 6.7317 790 

Omnivores 21.74 7.5352 231 12.09 4.0255 231 

Frugivore-
insectivores 

15.93 1.5767 35 8.02 0.9623 35 

 

 Dietary differences are present in the corpus and symphyseal dimensions, and are 

best displayed at the corpus at the P4 – M2 and the symphysis (Figures 5.10-5.11). In 

contrast, the distributions of the data at the M3 display considerably more overlap 

(Figure 5.12). 

 
 

 
Figure 5.10: Distribution of diet categories by P4 corpus height and width dimensions. The distribution of the 

data in this figure is also reflective of the distributions at the corpus of M1 and M2. 
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 As with Figures 5.4 and 5.6 the distribution of the corpus width data appears to be 

reversed in symphyseal breadth (Figure 5.10 compared to 5.11). 

 

 

Figure 5.11: Distribution of diet categories by symphyseal dimensions 

 

 

Figure 5.12: Distribution of diet categories by M3 corpus height and width dimensions 
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5.1.1 Morphological differences between species of different body sizes and 

consumers of different diets (first part of research question 1) 

 The results analysing morphological differences between the different body sizes 

and consumers of different diets are presented in this section. Significant values (p = 

<0.05) were obtained between the large and small monkeys consuming similar diets 

using both the parametric (t-tests) and non-parametric (Mann-Whitney U) tests of 

difference for all of the crown area and corpus/ symphysis size variables. Almost all of 

the tests run failed the Levene’s tests for the Equality of Variances. These results 

indicate that there are significant differences between the large and small body sizes 

within each dietary grouping. M1 crown area and M1 corpus size are documented in 

Table 5.10, and are representative of the rest of the size-related variables.   

 

Table 5.10: T-test results on monkeys and diet categories, grouped by body size using M1 Crown Area (CA) 

and M1 Corpus Size (CS) 

Diet category 

M1 CA M1 CS 

F 
EoV  
(sig)* 

t 
t-test 
(sig) 

F 
EoV 
(sig) 

t 
t-test 
(sig) 

Traditional Diet: Frugivore 31.154 0.000 -19.214 0.000 12.318 0.000 -9.557 0.000 

Traditional Diet: Omnivore 108.137 0.000 -36.01 0.000 136.905 0.000 -32.569 0.000 

Fruit DO: moderate 79.832 0.000 -31.67 0.000 136.418 0.000 -29.103 0.000 

Leaves DO: low 1.296 0.255 -36.902 0.000 61.821 0.000 -20.325 0.000 

Leaves DO: moderate 42.857 0.000 -13.167 0.000 22.17 0.000 -11.502 0.000 

Seeds DO: low 247.408 0.000 -27.485 0.000 137.357 0.000 -23.46 0.000 

Seeds DO: moderate 0.07 0.793 -25.837 0.000 20.614 0.000 -14.649 0.000 

Seeds DO: high 0.117 0.733 -20.001 0.000 32.51 0.000 -12.972 0.000 

Roots DO: low 80.922 0.000 -21.353 0.000 70.365 0.000 -17.51 0.000 

Animals DO: low 157.866 0.000 -26.126 0.000 129.201 0.000 -24.572 0.000 

Specific Classification FA: 
Frugivore/ Folivore 

28.447 0.000 -21.269 0.000 11.779 0.001 -17.043 0.000 

Specific Classification FA: 

Omnivore 
54.918 0.000 -24.001 0.000 89.121 0.000 -18.205 0.000 

Fruit FA: low 13.525 0.000 -16.967 0.000 2.543 0.115 -14.342 0.000 

Fruit FA: moderate 37.578 0.000 -28.39 0.000 35.581 0.000 -15.484 0.000 

Fruit FA: high 125.851 0.000 -23.855 0.000 62.259 0.000 -20.296 0.000 

Leaves FA: low 154.882 0.000 -29.618 0.000 128.486 0.000 -26.578 0.000 

Leaves FA: moderate 38.978 0.000 -14.11 0.000 6.273 0.013 -12.046 0.000 

Seeds FA: low 18.799 0.000 -23.11 0.000 257.974 0.000 -10.537 0.000 

Seeds FA: moderate 67.402 0.000 -14.731 0.000 12.851 0.000 -13.453 0.000 

Seeds FA: high 74.192 0.000 -29.297 0.000 86.319 0.000 -15.656 0.000 

Roots FA: low 19.23 0.000 -28.528 0.000 31.457 0.000 -17.165 0.000 

Animals FA: low 255.175 0.000 -15.551 0.000 76.968 0.000 -14.748 0.000 

Animals FA: moderate 22.147 0.000 -32.539 0.000 119.039 0.000 -19.457 0.000 

Animals FA: high 11.725 0.002 -20.962 0.000 33.4 0.000 -10.252 0.000 

Sig (n = 24)   
  

24   
  

24 

% Significant       100%       100% 

* EoV = Levene's test of the Equality of Variances. DO = Direct Observation. FA = Faecal Analysis 

Numbers in bold denote those that obtained significant differences on their tests, and those in red did not obtain 

significant differences.  
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Tables 5.11-5.12 indicate that significant values were obtained on most of the 

variables between the large and small monkeys consuming similar diets using both the 

parametric (t-tests) and non-parametric (Mann-Whitney U) tests of difference for the 

crown shape indices. The frequency with which these variables obtain significant 

differences increases more posteriorly along the tooth row, with M3 CSI obtaining 

significant differences approximately 95% of the time on both the t-tests and Mann-

Whitney U. Many of the tests run failed the Levene’s tests for Equality of Variances. 

These results indicate that there are significant crown shape index differences between 

the large and small body sizes within many of the dietary groupings.  

Table 5.11: T-test results on monkeys and diet categories, grouped by body size using P4 – M1 Crown Shape 

Indices (CSI) 

Diet category 

P4 CSI M1 CSI 

F 
EoV 

(sig)* 
t 

t-test 

(sig) 
F 

EoV 

(sig) 
t 

t-test 

(sig) 

Traditional Diet: Frugivore 3.106 0.079 -0.051 0.959 4.711 0.031 3.356 0.003 

Traditional Diet: Omnivore 0.685 0.409 -4.295 0.000 2.792 0.096 -2.738 0.007 

Fruit DO: moderate 79.478 0.000 -4.34 0.000* 52.856 0.000 2.769 0.006* 

Leaves DO: low 24.625 0.000 -6.075 0.000 11.303 0.001 2.685 0.008* 

Leaves DO: moderate 1.391 0.242 2.882 0.005 0 0.996 -0.618 0.538 

Seeds DO: low 74.458 0.000 3.487 0.001* 44.548 0.000 1.779 0.076 

Seeds DO: moderate 0.467 0.497 -5.073 0.000 1.313 0.257 -0.734 0.466 

Seeds DO: high 1.923 0.168 8.935 0.000 6.116 0.015 5.208 0.000 

Roots DO: low 31.4 0.000 5.034 0.000 20.375 0.000 4.76 0.002 

Animals DO: low 21.699 0.000 -1.054 0.293 7.316 0.007 -1.117 0.265 

Specific Classification FA: 

Frugivore/ Folivore 
12.945 0.000 -2.94 0.004 4.264 0.040 -2.661 0.009 

Specific Classification FA: 
Omnivore 

8.305 0.004 -1.185 0.237 0.059 0.809 -1.616 0.107 

Fruit FA: low 0.027 0.87 -4.599 0.000 0.278 0.6 -1.545 0.127 

Fruit FA: moderate 2.219 0.139 5.104 0.000 5.358 0.022 2.724 0.007 

Fruit FA: high 31.775 0.000 2.859 0.005* 20.757 0.000 2.381 0.018* 

Leaves FA: low 61.887 0.000 4.818 0.000* 30.554 0.000 3.933 0.000 

Leaves FA: moderate 17.641 0.000 -1.631 0.106 5.599 0.019 -1.689 0.095 

Seeds FA: low 11.999 0.001 3.81 0.000* 7.772 0.006 3.163 0.003* 

Seeds FA: moderate 13.044 0.000 -4.229 0.000 9.512 0.002 -1.357 0.177 

Seeds FA: high 0.258 0.612 9.093 0.000 12.028 0.001 4.469 0.000 

Roots FA: low 8.034 0.006 2.335 0.022 0.602 0.44 -0.095 0.924 

Animals FA: low 14.467 0.000 -2.448 0.015 4.701 0.031 -1.123 0.263 

Animals FA: moderate 16.923 0.000 4.017 0.000* 5.723 0.018 1.793 0.078 

Animals FA: high 0.034 0.854 -0.935 0.357 2.3 0.139 1.358 0.184 

Sig (n = 24)       18       11 

% Significant       75%       45.83% 

* EoV = Levene's test of the Equality of Variances. DO = Direct Observation. FA = Faecal Analysis 

Numbers in bold denote those that obtained significant differences on their tests, and those in red did not 

obtain significant differences. Numbers with * denote those that obtained different results on the independent 

t-test and Mann-Whitney U. 
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Table 5.12: T-test results on monkeys and diet categories, grouped by body size using M2 – M3 Crown Shape 

Indices (CSI) 

Diet category 

M2 CSI M3 CSI 

F 
EoV 

(sig)* 
t 

t-test 
(sig) 

F 
EoV 
(sig) 

t 
t-test 
(sig) 

Traditional Diet: Frugivore 6.082 0.014 7.487 0.000 0.983 0.322 7.336 0.000 

Traditional Diet: Omnivore 0.912 0.34 0.322 0.748 0.466 0.496 12.132 0.000 

Fruit DO: moderate 40.565 0.000 6.345 0.000 24.751 0.000 12.4 0.000 

Leaves DO: low 16.203 0.000 5.779 0.000 7.745 0.006 11.05 0.000 

Leaves DO: moderate 0.235 0.629 -2.913 0.005 3.092 0.082 -4.132 0.000 

Seeds DO: low 42.867 0.000 5.11 0.000 21.213 0.000 13.709 0.000 

Seeds DO: moderate 1.284 0.262 3.187 0.002 0 0.998 -7.175 0.000 

Seeds DO: high 0.533 0.467 7.815 0.000 2.202 0.14 2.7 0.008 

Roots DO: low 17.472 0.000 6.755 0.000 19.376 0.000 9.491 0.000 

Animals DO: low 8.857 0.003 0.856 0.393 10.478 0.001 8.092 0.000 

Specific Classification FA: 
Frugivore/ Folivore 

15.962 0.000 0.045 0.964 6.466 0.012 6.264 0.000 

Specific Classification FA: 

Omnivore 
6.058 0.014 3.215 0.002 0.65 0.421 10.346 0.000 

Fruit FA: low 1.602 0.21 0.439 0.662 0.054 0.817 6.089 0.000 

Fruit FA: moderate 0.283 0.595 6.321 0.000 0.16 0.69 5.666 0.000 

Fruit FA: high 25.595 0.000 5.496 0.000 11.486 0.001 10.919 0.000 

Leaves FA: low 45.334 0.000 5 0.000 28.682 0.000 9.152 0.000 

Leaves FA: moderate 6.775 0.01 4.297 0.000 0.625 0.43 10.151 0.000 

Seeds FA: low 10.005 0.002 3.978 0.000* 3.735 0.055 5.154 0.000 

Seeds FA: moderate 11.025 0.001 4.476 0.000 0.284 0.595 12.513 0.000 

Seeds FA: high 1.001 0.319 8.276 0.000 0.252 0.617 4.997 0.000 

Roots FA: low 1.076 0.302 -3.424 0.001 5.27 0.024 -0.415 0.679 

Animals FA: low 12.727 0.000 3.426 0.001 0.9 0.344 8.126 0.000 

Animals FA: moderate 9.416 0.002 3.102 0.003 5.709 0.018 7.106 0.000 

Animals FA: high 0.298 0.589 2.649 0.013 0.016 0.899 5.866 0.000 

Sig (n = 24)       20       23 

% Significant       83.33%       95.83% 

* EoV = Levene's test of the Equality of Variances. DO = Direct Observation. FA = Faecal Analysis 

Numbers in bold denote those that obtained significant differences on their tests, and those in red did not obtain 

significant differences. Numbers with * denote those that obtained different results on the independent t-test and 
Mann-Whitney U. 

 

Tables 5.13-5.14 indicate that significant values were obtained on most of the 

variables between the large and small monkeys consuming similar diets using both the 

parametric (t-tests) and non-parametric (Mann-Whitney U) tests of difference for the 

symphyseal and corpus robusticity indices. The frequency with which these variables 

obtain significant differences increases more posteriorly along the corpus. Equality of 

Variance were assumed for most of the Levene’s tests, except the SRIs. These results 

indicate that there are significant robusticity index differences between the large and 

small body sizes within many of the dietary groupings. 
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Table 5.13: T-test results on monkeys and diet categories, grouped by body size using Symphyseal Robusticity Index (SRI), and P4 – M1 Corpus Robusticity Indices (CRI) 

Diet category 

SRI P4 CRI M1 CRI 

F 
EoV 

(sig)* 
t 

t-test 

(sig) 
F 

EoV 

(sig) 
t 

t-test 

(sig) 
F 

EoV 

(sig) 
t 

t-test 

(sig) 

Traditional Diet: Frugivore 0.038 0.846 -0.582 0.561 0.848 0.358 -2.207 0.028 0.256 0.613 -1.27 0.205 

Traditional Diet: Omnivore 3.973 0.047 -9.139 0.000 0.579 0.448 -0.047 0.963 11.801 0.001 7.619 0.000 

Fruit DO: moderate 21.281 0.000 -13.54 0.000 19.696 0.000 6.06 0.000 32.096 0.000 10.168 0.000 

Leaves DO: low 21.829 0.000 -8.588 0.000 3.702 0.055 4.055 0.000 12.532 0.000 8.292 0.000 

Leaves DO: moderate 0.317 0.575 -1.884 0.063 2.393 0.126 0.363 0.718 0.046 0.83 1.365 0.176 

Seeds DO: low 5.044 0.025 -13.433 0.000 18.374 0.000 6.242 0.000 25.794 0.000 7.08 0.000 

Seeds DO: moderate 0.01 0.922 0.014 0.988 0 0.989 -4.278 0.000 1.224 0.274 0.048 0.962 

Seeds DO: high 16.165 0.000 -4.347 0.000 0.697 0.405 0.727 0.468 0.696 0.406 4.261 0.000 

Roots DO: low 0.781 0.378 -10.686 0.000 13.808 0.000 3.705 0.000 17.569 0.000 7.824 0.000 

Animals DO: low 11.093 0.001 -9.356 0.000 0.418 0.518 -0.873 0.384 9.475 0.002 4.647 0.000 

Specific Classification FA: Frugivore/ Folivore 1.352 0.246 -10.078 0.000 1.503 0.222 2.844 0.005 1.211 0.272 3.612 0.000 

Specific Classification FA: Omnivore 27.065 0.000 -7.285 0.000 9.119 0.003 -1.595 0.113 0.029 0.866 2.079 0.039 

Fruit FA: low 0.043 0.837 -0.618 0.539 0.001 0.973 -4.738 0.000 1.822 0.182 -1.288 0.202 

Fruit FA: moderate 9.067 0.003 -6.088 0.000 2.469 0.118 0.696 0.488 0.088 0.768 3.332 0.001 

Fruit FA: high 2.538 0.112 -12.208 0.000 9.011 0.003 1.844 0.067 14.134 0.000 4.227 0.000 

Leaves FA: low 13.085 0.000 -12.166 0.000 13.967 0.000 2.509 0.013* 26.423 0.000 5.886 0.000 

Leaves FA: moderate 13.336 0.000 -4.173 0.000 2.138 0.145 0.391 0.696 0.001 0.979 0.665 0.506 

Seeds FA: low 16.985 0.000 -4.281 0.001 2.813 0.095 0.301 0.764 11.726 0.001 3.383 0.002* 

Seeds FA: moderate 1.727 0.191 -6.931 0.000 0.096 0.757 -2.091 0.038 0.225 0.636 -0.323 0.747 

Seeds FA: high 11.429 0.001 -6.878 0.000 5.233 0.023 -0.073 0.942 0.327 0.568 1.738 0.084* 

Roots FA: low 7.572 0.007 -4.846 0.000 0.298 0.586 -0.548 0.585 3.461 0.066 2.161 0.033* 

Animals FA: low 0.778 0.04 -1.769 0.000 0.778 0.379 -1.769 0.078 0.042 0.837 0.654 0.514 

Animals FA: moderate 29.312 0.000 -6.784 0.000 4.856 0.029 2.78 0.007 8.962 0.003 6.418 0.000 

Animals FA: high 3.394 0.075 -1.889 0.068* 0.019 0.89 -1.712 0.097 4.77 0.036 1.464 0.162 

Sig (n = 24) 
   

19       11       15 

% Significant       79.17%       45.83%       62.50% 

* EoV = Levene's test of the Equality of Variances. DO = Direct Observation. FA = Faecal Analysis 

Numbers in bold denote those that obtained significant differences on their tests, and those in red did not obtain significant differences. Numbers with * denote those that obtained different 

results on the independent t-test and Mann-Whitney U. 
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Table 5.14: T-test results on monkeys and diet categories, grouped by body size using M2  – M3 Corpus 

Robusticity Indices (CRI) 

Diet category 

M2 CRI M3 CRI 

F 
EoV 
(sig)* 

t 
t-test 
(sig) 

F 
EoV 
(sig) 

t 
t-test 
(sig) 

Traditional Diet: Frugivore 1.262 0.262 -3.275 0.001 4.944 0.027 -6.665 0.000 

Traditional Diet: Omnivore 4.705 0.031 -8.395 0.000 0.745 0.389 0.696 0.487 

Fruit DO: moderate 5.131 0.024 4.026 0.000 0 0.992 -3.745 0.000 

Leaves DO: low 4.579 0.033 3.384 0.001 0.333 0.564 -2.78 0.006 

Leaves DO: moderate 0.111 0.74 -0.494 0.622 0.467 0.496 -1.665 0.100 

Seeds DO: low 9.839 0.002 -2.407 0.017 0.739 0.39 -10.275 0.000 

Seeds DO: moderate 3.338 0.073 1.973 0.054* 2.905 0.094 -1.123 0.266 

Seeds DO: high 0.643 0.424 3.822 0.000 1.01 0.317 1.496 0.137 

Roots DO: low 15.878 0.000 2.426 0.017 4.029 0.046 -4.523 0.000 

Animals DO: low 17.289 0.000 4.224 0.000 2.897 0.09 -2.304 0.022 

Specific Classification FA: 
Frugivore/ Folivore 

2.623 0.107 -1.174 0.242 0.228 0.633 -5.437 0.000 

Specific Classification FA: 

Omnivore 
1.966 0.162 -0.474 0.636 0.968 0.326 -5.425 0.000 

Fruit FA: low 4.724 0.033 0.103 0.918 8.335 0.005 -3.241 0.002 

Fruit FA: moderate 2.206 0.14 -1.266 0.208 0.147 0.702 -5.13 0.000 

Fruit FA: high 4.323 0.038 -3.503 0.001 0.601 0.439 -9.51 0.000 

Leaves FA: low 4.621 0.032 1.165 0.245 1.369 0.243 -7.137 0.000 

Leaves FA: moderate 1.701 0.193 -3.171 0.002 1.85 0.175 -6.037 0.000 

Seeds FA: low 2.353 0.127 -1.208 0.228 0.58 0.447 -6.012 0.000 

Seeds FA: moderate 0.465 0.496 -4.159 0.000 0.057 0.812 -7.354 0.000 

Seeds FA: high 1.494 0.223 -3.728 0.000 1.513 0.22 -6.873 0.000 

Roots FA: low 0.108 0.743 1.576 0.118 0.1 0.752 -1.629 0.107 

Animals FA: low 8.123 0.005 -4.072 0.000 2.986 0.086 -9.761 0.000 

Animals FA: moderate 1.521 0.219 3.9 0.000 0.111 0.739 -0.768 0.443 

Animals FA: high 0.156 0.696 1.47 0.151 0.05 0.825 -1.976 0.059 

Sig (n = 24)       14       17 

% Significant       58.33%       70.83% 

* EoV = Levene's test of the Equality of Variances. DO = Direct Observation. FA = Faecal Analysis. 

Numbers in bold denote those that obtained significant differences on their tests, and those in red did not 

obtain significant differences.  

 

Significant values were obtained between the large and small apes consuming 

similar diets using both the parametric (t-tests) and non-parametric (Mann-Whitney U) 

tests of difference for all of the crown area and corpus/ symphysis size variables. 

Equality of Variance were assumed for the majority of the Levene’s tests. These results 

indicate that there are significant differences between the large and small body sizes 

within each dietary grouping. M1 crown area and M1 corpus size are documented in 

Table 5.15, and are representative of the rest of the size-related variables.   
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Table 5.15: T-test results on apes and diet categories, grouped by body size using M1 Crown Area (CA) and M1 

Corpus Size (CS) 

Diet category 

M1 CA M1 CS 

F 
EoV 
(sig)* 

t 
t-test 
(sig) 

F 
EoV 
(sig) 

t 
t-test 
(sig) 

Traditional Diet: Frugivore 3.026 0.083 -29.893 0.000 0.798 0.372 -17.585 0.000 

Seeds DO: low 27.65 0.003 -30.095 0.000 32.111 0.000 -19.146 0.000 

Animals DO: low 1.946 0.164 -32.362 0.000 2.583 0.109 -21.615 0.000 

Specific Classification FA: 

Folivore/ Frugivore 
0.166 0.684 -15.303 0.000 0.729 0.395 -5.516 0.000 

Specific Classification FA: 

Frugivore/ Folivore 
4.674 0.032 -29.92 0.000 6.657 0.010 -19.505 0.000 

Fruit FA: moderate 0.24 0.627 -10.404 0.000 0.067 0.798 -5.53 0.000 

Fruit FA: high 4.674 0.032 -29.92 0.000 6.657 0.010 -19.505 0.000 

Leaves FA: moderate 0.317 0.574 -28.107 0.000 1.938 0.165 -19.548 0.000 

Leaves FA: high 0.166 0.684 -15.303 0.000 0.729 0.395 -5.516 0.000 

Seeds FA: low 33.591 0.000 -40.758 0.000 33.183 0.000 -26.166 0.000 

Roots FA: low 8.438 0.004 -33.3 0.000 10.424 0.001 -21.677 0.000 

Animals FA: low 3.011 0.084 -32.257 0.000 3.098 0.08 -20.473 0.000 

Sig (n = 12)       12       12 

% Significant       100%       100% 

* EoV = Levene's test of the Equality of Variances. DO = Direct Observation. FA = Faecal Analysis. 

Numbers in bold denote those that obtained significant differences on their tests, and those in red did not 

obtain significant differences.  

 

Tables 5.16-5.17 indicate that significant values were obtained on most of the 

variables between the large and small apes consuming similar diets using both the 

parametric (t-tests) and non-parametric (Mann-Whitney U) tests of difference for the 

crown shape indices. The molar teeth obtained significant differences on almost all 

tests, whereas P4 CSI obtained significant differences on less than half of the tests. Most 

of the tests failed the Levene’s tests for the Equality of Variance. These results indicate 

that there are significant differences between the large and small body sizes within 

many of the dietary groupings.  
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Table 5.16: T-test results on apes and diet categories, grouped by body size using P4 – M1 Crown Shape Index 

(CSI) 

Diet category 

P4 CSI M1 CSI 

F 
EoV 

(sig)* 
t 

t-test 

(sig) 
F 

EoV 

(sig) 
t 

t-test 

(sig) 

Traditional Diet: Frugivore 17.352 0.000 -3.629 0 4.136 0.043 7.632 0.000 

Seeds DO: low 15.92 0.000 -0.896 0.371 5.645 0.019 7.436 0.000 

Animals DO: low 17.056 0.000 -5.059 0.041* 4.812 0.029 7.127 0.000 

Specific Classification FA: 

Folivore/ Frugivore 
0.041 0.839 -5.647 0.000 0.312 0.578 3.497 0.001 

Specific Classification FA: 

Frugivore/ Folivore 
16.021 0.000 -1.646 0.101 6.836 0.009 8.231 0.000 

Fruit FA: moderate 1.195 0.28 -2.071 0.044 0.18 0.673 2.41 0.020 

Fruit FA: high 16.021 0.000 -1.646 0.101 6.836 0.009 8.231 0.000 

Leaves FA: moderate 13.596 0.000 -1.648 0.101 5.908 0.016 7.957 0.000 

Leaves FA: high 0.041 0.839 -5.647 0.000 0.312 0.578 3.497 0.001 

Seeds FA: low 20.97 0.000 -1.818 0.07 6.297 0.013 6.948 0.000 

Roots FA: low 16.28 0.000 -1.372 0.172 7.339 0.007 7.988 0.000 

Animals FA: low 16.392 0.000 -1.808 0.072 6.551 0.011 6.754 0.000 

Sig (n = 12)       5       12 

% Significant       41.67%       100% 

* EoV = Levene's test of the Equality of Variances. DO = Direct Observation. FA = Faecal Analysis 

Numbers in bold denote those that obtained significant differences on their tests, and those in red did not 
obtain significant differences. Numbers with * denote those that obtained different results on the parametric 

and non-parametric tests. 

 

 

Table 5.17: T-test results on apes and diet categories, grouped by body size using M2 – M3 Crown Shape Index 

(CSI) 

Diet category 

M2 CSI M3 CSI 

F 
EoV 

(sig)* 
t 

t-test 

(sig) 
F 

EoV 

(sig) 
t 

t-test 

(sig) 

Traditional Diet: Frugivore 18.253 0.000 9.238 0.000 20.903 0.000 10.571 0.000 

Seeds DO: low 11.343 0.001 9.199 0.000 7.017 0.009 10.571 0.000 

Animals DO: low 12.178 0.001 7.702 0.000 24.484 0.000 8.495 0.000 

Specific Classification FA: 

Folivore/ Frugivore 
1.458 0.23 5.586 0.000 2.078 0.153 4.974 0.000 

Specific Classification FA: 

Frugivore/ Folivore 
10.987 0.001 7.494 0.000 19.805 0.000 8.147 0.000 

Fruit FA: moderate 0.029 0.866 2.858 0.006 2.896 0.095 1.915 0.062 

Fruit FA: high 10.987 0.001 7.494 0.000 19.805 0.000 8.147 0.000 

Leaves FA: moderate 14.299 0.000 6.543 0.000 22.815 0.000 6.741 0.000 

Leaves FA: high 1.458 0.23 5.586 0.000 2.078 0.153 4.974 0.000 

Seeds FA: low 21.944 0.000 8.571 0.000 12.824 0.000 12.523 0.000 

Roots FA: low 12.294 0.001 7.673 0.000 22.034 0.000 9.153 0.000 

Animals FA: low 5.327 0.022 4.985 0.000 18.791 0.000 6.158 0.000 

Sig (n = 12)       12       11 

% Significant       100% 
   

91.67% 

* EoV = Levene's test of the Equality of Variances. DO = Direct Observation. FA = Faecal Analysis 

Numbers in bold denote those that obtained significant differences on their tests, and those in red did not 

obtain significant differences.  
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 Tables 5.18-5.19 indicate that significant values were not obtained on many of the variables between the large and small apes consuming similar 

diets using both the parametric (t-tests) and non-parametric (Mann-Whitney U) tests of difference for the robusticity indices. M2 CRI and SRI were the 

only variables that regularly obtained significant differences. Equality of Variance were assumed for the majority of the Levene’s tests. These results 

indicate that there are significant differences between the large and small body sizes within many of the dietary groupings for M2 CRI and SRI, but 

rarely for the other corpus robusticity indices. 

 

Table 5.18: T-test results on apes and diet categories, grouped by body size using Symphyseal Robusticity Indices (SRI) and P4 – M1 Corpus Robusticity Indices (CRI) 

Diet category 

SRI P4 CRI M1 CRI 

F 
EoV 

(sig)* 
t t-test (sig) F 

EoV 

(sig) 
t t-test (sig) F 

EoV 

(sig) 
t t-test (sig) 

Traditional Diet: Frugivore 0.015 0.903 -9.654 0.000 0.295 0.587 -3.065 0.002 0.766 0.382 -1.053 0.293 

Seeds DO: low 2.019 0.157 -4.256 0.000 0.956 0.33 -0.21 0.834 2.03 0.156 2.243 0.026 

Animals DO: low 1.861 0.174 -5.37 0.000 0.377 0.54 -1.508 0.133 2.929 0.088 0.211 0.833 

Specific Classification FA: Folivore/ Frugivore 0.14 0.709 -11.032 0.000 0.157 0.693 -3.763 0.000 2.216 0.14 -2.779 0.007 

Specific Classification FA: Frugivore/ Folivore 2.301 0.13 -5.232 0.000 0.77 0.381 -1.416 0.158 2.228 0.137 0.576 0.565 

Fruit FA: moderate 0.413 0.524 -6.728 0.006 0.001 0.97 -2.546 0.014 0.071 0.791 -3.085 0.003 

Fruit FA: high 2.301 0.13 -5.232 0.000 0.77 0.381 -1.416 0.158 2.228 0.137 0.576 0.565 

Leaves FA: moderate 0.736 0.392 -3.973 0.000 0.731 0.393 -1.596 0.112 1.721 0.191 0.153 0.878 

Leaves FA: high 0.14 0.709 -11.032 0.000 0.157 0.693 -3.763 0.000 2.216 0.14 -2.779 0.007 

Seeds FA: low 0.628 0.429 -7.146 0.000 1.677 0.196 -0.844 0.4 0.502 0.479 1.243 0.215 

Roots FA: low 2.598 0.108 -5.92 0.000 1.135 0.288 -1.321 0.188 1.469 0.227 0.387 0.699 

Animals FA: low 6.229 0.013 -6.042 0.000 0.978 0.324 -2.079 0.039 0.63 0.428 -0.472 0.637 

Sig (n = 12)   
  

12       6       4 

% Significant       100%       50%       33.33% 

* EoV = Levene's test of the Equality of Variances. DO = Direct Observation. FA = Faecal Analysis 

Numbers in bold denote those that obtained significant differences on their tests, and those in red did not obtain significant differences.  
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Table 5.19: T-test results on apes and diet categories, grouped by body size using M2 – M3 Corpus Robusticity 

Indices (CRI) 

Diet category 

M2 CRI M3 CRI 

F 
EoV 

(sig)* 
t 

t-test 

(sig) 
F 

EoV 

(sig) 
t 

t-test 

(sig) 

Traditional Diet: Frugivore 1.618 0.204 -5.003 0.000 0 0.99 -2.732 0.007 

Seeds DO: low 0.026 0.873 -0.767 0.444 0.066 0.798 0.163 0.871 

Animals DO: low 0.003 0.957 -2.712 0.007 0.066 0.798 -1.084 0.279 

Specific Classification FA: 

Folivore/ Frugivore 
4.216 0.043 -3.935 0.000 0.205 0.652 -0.659 0.512 

Specific Classification FA: 

Frugivore/ Folivore 
0.062 0.803 -2.321 0.021 0.019 0.891 -1.525 0.128 

Fruit FA: moderate 0.213 0.647 -2.849 0.006 0.235 0.63 0.382 0.704 

Fruit FA: high 0.062 0.803 -2.321 0.021 0.019 0.891 -1.525 0.128 

Leaves FA: moderate 0.178 0.674 -2.564 0.011 0.01 0.921 -1.949 0.053 

Leaves FA: high 4.216 0.043 -3.935 0.000 0.205 0.652 -0.659 0.512 

Seeds FA: low 1.67 0.197 -3.377 0.001 0.046 0.83 -2.151 0.032 

Roots FA: low 0 0.986 -2.763 0.006 0.053 0.818 -1.365 0.173 

Animals FA: low 0.008 0.931 -2.97 0.003 0.046 0.83 -2.124 0.035 

Sig (n = 12)       11       3 

% Significant       91.67%       25% 

* EoV = Levene's test of the Equality of Variances. DO = Direct Observation. FA = Faecal Analysis 

Numbers in bold denote those that obtained significant differences on their tests, and those in red did not 

obtain significant differences.  

 

 These results indicate that dental and mandibular variables related to size 

consistently differ significantly in both small and large monkeys and small and large 

apes when diet category is held constant. In contrast, greater variation is present in the 

results from the shape variables (crown shape index, corpus robusticity index). For the 

monkey species these differences manifest more in the M3 crown shape index and 

corpus robusticity index (Tables 5.12-5.14), while in apes the differences manifest 

throughout the molar tooth row (M1-M3 crown shape indices) and predominantly at the 

symphysis and M2 corpus robusticity index (Tables 5.16-5.19). While the dental and 

mandibular shape variables differ significantly in both the small and large monkeys and 

apes from the same diet categories, the location of these differences vary in the two 

primate groups.  

 When keeping the diet categories constant, there are morphological differences 

present between small and large monkeys and small and large apes (Tables 5.10-5.19). 

These results are important as they show that primate size does influence morphological 

expression. It is therefore an important aspect to consider when analysing 

morphological form. However, while this is true, the effects of body size do not 

comprise the core focus of this research (the reasons are explained in the Discussion 

chapter). Instead the primary focus was on exploring whether morphological differences 

were present in consumers of different diets.  
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The results from the t-tests and ANOVA (and the Mann-Whitney U and Kruskal-

Wallis) comparing consumers of different diet categories within the different body sizes 

of apes and monkeys are presented in the following tables. These results analysing the 

traditional diet categories are reflective of the results obtained from specific 

classification coding and the quantity analyses, whereby significant differences were 

identified between the consumers of different diets, therefore only the results from the 

traditional diet categories are presented here (the other results are presented in 

Appendix tables 9.9-9.24). 

The t-tests and ANOVAs often violated the equality/ homogeneity of variances 

tests (both the Levene’s and Welch’s robust tests). A point that perhaps reinforces the 

fact that the data was not normally distributed and that non-parametric tests were most 

appropriate. Comparison of the results from the parametric tests to those of the non-

parametric tests revealed that the results were the same on almost all of the tests run. As 

a result, where possible (i.e., when more than two groups were analysed in a test) the 

ANOVA data were analysed in order to explore the post-hoc data, so as to understand 

where differences between groups occurred. 

The following ANOVA analysed the differences between consumers of different 

diets from the small monkeys. All variables failed the Welch’s robust tests for the 

equality of means except M1 and M2 corpus robusticity indices (CRI). According to the 

ANOVA results in Table 5.20 there are significant differences between the consumers 

of the different dietary categories at each variable.  

 

Table 5.20: Descriptive statistics and ANOVA results from One-Way ANOVA on small monkeys with diets 

categorised using the Traditional Diet categories 

    Descriptives ANOVA* 

    N Mean Std. Deviation Std. Error Statistica Sig. 

P4CA 

Folivore 26 21.876 3.8176 0.7487     

Frugivore 383 18.927 8.5931 0.4391 
  

Omnivore 89 14.872 2.2591 0.2395 
  

Frugivore-Insectivore 37 16.892 2.5037 0.4116     

Total 535 18.255 7.6004 0.3286 42.269 0.000 

M1CA 

Folivore 27 31.304 4.1046 0.7899     

Frugivore 388 27.239 11.1317 0.5651     

Omnivore 90 22.885 2.8197 0.2972     

Frugivore-Insectivore 38 21.208 2.5440 0.4127     

Total 543 26.297 9.8319 0.4219 57.812 0.000 

M2CA 

Folivore 27 43.274 4.7968 0.9232 
  

Frugivore 385 35.463 16.1516 0.8232 
  

Omnivore 90 30.897 4.0074 0.4224 
  

Frugivore-Insectivore 37 18.979 2.4398 0.4011     

Total 539 33.960 14.6063 0.6291 296.424 0.000 

M3CA Folivore 22 41.091 4.8668 1.0376     
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    Descriptives ANOVA* 

    N Mean Std. Deviation Std. Error Statistica Sig. 

Frugivore 379 37.060 20.1473 1.0349     

Omnivore 86 30.378 4.5690 0.4927     

Frugivore-Insectivore 27 13.101 1.6283 0.3134     

Total 514 34.856 18.3626 0.8099 528.491 0.000 

P4CSI 

Folivore 26 79.5173 12.61984 2.47495 
  

Frugivore 383 93.5425 19.67788 1.00549 
  

Omnivore 89 80.3184 10.21596 1.08289 
  

Frugivore-Insectivore 37 137.4327 17.12701 2.81566     

Total 535 93.6964 22.21718 0.96053 129.134 0.000 

M1CSI 

Folivore 27 79.596 5.8110 1.1183     

Frugivore 388 85.559 9.1413 0.4641     

Omnivore 90 80.738 6.7509 0.7116     

Frugivore-Insectivore 38 103.422 6.7622 1.0970     

Total 543 85.714 9.9935 0.4289 111.363 0.000 

M2CSI 

Folivore 27 81.392 4.3703 0.8411 
  

Frugivore 385 91.580 8.0805 0.4118 
  

Omnivore 90 87.334 5.3279 0.5616 
  

Frugivore-Insectivore 37 106.522 8.5540 1.4063     

Total 539 91.387 8.9812 0.3868 91.604 0.000 

M3CSI 

Folivore 22 80.654 6.3714 1.3584     

Frugivore 379 84.131 9.6029 0.4933     

Omnivore 86 85.989 6.5982 0.7115     

Frugivore-Insectivore 27 108.441 11.7570 2.2626     

Total 514 85.570 10.6749 0.4709 39.963 0.000 

SS 

Folivore 27 243.763 92.9308 17.8845 
  

Frugivore 389 181.084 114.3764 5.7991 
  

Omnivore 89 149.866 41.4445 4.3931 
  

Frugivore-Insectivore 38 152.268 31.2572 5.0706     

Total 543 177.067 102.5797 4.4021 14.052 0.000 

P4CS 

Folivore 27 96.967 28.1439 5.4163     

Frugivore 390 97.269 49.8124 2.5223     

Omnivore 91 65.640 14.5264 1.5228     

Frugivore-Insectivore 38 81.629 15.1083 2.4509     

Total 546 90.894 44.7499 1.9151 45.092 0.000 

M1CS 

Folivore 27 91.623 24.1676 4.6511 
  

Frugivore 390 99.527 52.1666 2.6416 
  

Omnivore 91 64.792 13.0054 1.3633 
  

Frugivore-Insectivore 38 84.488 17.2282 2.7948 
  

Total 546 92.300 46.7583 2.0011 54.689 0.000 

M2CS 

Folivore 27 93.971 21.4570 4.1294     

Frugivore 390 104.921 56.0188 2.8366     

Omnivore 91 67.815 12.8729 1.3494     

Frugivore-Insectivore 38 89.555 17.3613 2.8164     

Total 546 97.126 50.0108 2.1403 58.718 0.000 

M3CS 

Folivore 25 102.483 18.8812 3.7762 
  

Frugivore 388 117.146 60.0434 3.0482 
  

Omnivore 89 77.784 12.8550 1.3626 
  

Frugivore-Insectivore 35 101.299 21.0743 3.5622 
  

Total 537 108.907 53.7583 2.3198 57.771 0.000 

SRI 

Folivore 27 41.423 4.4365 0.8538     

Frugivore 388 41.639 4.5665 0.2318     

Omnivore 89 42.504 4.7556 0.5041     

Frugivore-Insectivore 38 42.969 2.5747 0.4177     
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    Descriptives ANOVA* 

    N Mean Std. Deviation Std. Error Statistica Sig. 

Total 542 41.864 4.4938 0.1930 3.035 0.034 

P4CRI 

Folivore 27 37.500 4.7522 0.9146 
  

Frugivore 390 40.291 5.7152 0.2894 
  

Omnivore 91 38.624 4.7247 0.4953 
  

Frugivore-Insectivore 38 51.639 3.8803 0.6295 
  

Total 546 40.665 6.2281 0.2665 107.666 0.000 

M1CRI 

Folivore 27 37.651 5.5094 1.0603     

Frugivore 389 39.874 5.0412 0.2556     

Omnivore 91 42.139 5.4050 0.5666     

Frugivore-Insectivore 38 49.693 4.2749 0.6935     

Total 545 40.827 5.7080 0.2445 62.388 0.000 

M2CRI 

Folivore 27 45.297 6.5270 1.2561 
  

Frugivore 390 44.074 6.0071 0.3042 
  

Omnivore 91 52.632 7.1792 0.7526 
  

Frugivore-Insectivore 38 51.067 4.9769 0.8074 
  

Total 546 46.047 7.0564 0.3020 51.511 0.000 

M3CRI 

Folivore 25 49.502 8.9201 1.7840     

Frugivore 388 49.739 7.7653 0.3942     

Omnivore 89 56.818 7.1447 0.7573     

Frugivore-Insectivore 35 50.438 4.1907 0.7084     

Total 537 50.947 7.9680 0.3438 23.111 0.000 

*ANOVA using Welch Robust Tests of Equality of Means  

a. Asymptotically F distributed. 

 

The post-hoc results indicate that significant differences were present between all 

diets on each of the crown area variables. Significant differences were also present 

between most of the diets consumed and the rest of the morphological variables 

analysed. Where significant differences were not present between diets there did not 

appear to be many identifiable patterns present, meaning that the morphologies present 

in the consumers of the different diets appeared to be very different. However, two sets 

of diets did present a morphology that was not significantly different on a number of 

variables, these were: folivores and omnivores, and folivores and frugivores. Folivores 

and omnivores were not significantly different on P4 – M1 CSI, and P4 CRI. Folivores 

and frugivores were not significantly different on M3 CSI, M1 CRI – M2 CRI, and P4 CS 

– M2 CS. 
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The following t-test analysed the differences between frugivores and omnivores in the large monkeys. All of the size-related variables (crown area 

and corpus size) failed the Equality of Variances tests, while most of the shape variables passed them (except M3 corpus robusticity index (CRI)) 

(Table 5.21). According to the t-test results there are significant differences between frugivores and omnivores on every variable, except M1 crown 

shape index (CSI) and M3 CRI.  

 

Table 5.21: Descriptive statistics and T-test results from Independent Samples T-test comparing frugivorous and omnivorous large monkeys  

Group Statistics Independent Samples Test 

              
Levene's Test for 

Equality of Variances 
t-test for Equality of Means 

Traditional Diet Categories  N Mean 
Std. 

Deviation 

Std. Error 

Mean 
  F Sig. t df 

Sig. (2-

tailed) 

P4CA 
Frugivore 18 30.642 3.8745 0.9132 Equal variances assumed 17.529 0.000 -9.044 158 0.000 

Omnivore 142 59.700 13.5265 1.1351 Equal variances not assumed     -19.945 85.501 0.000 

M1CA 
Frugivore 17 43.951 2.5545 0.6196 Equal variances assumed 20.618 0.000 -8.053 157 0.000 

Omnivore 142 81.036 18.9144 1.5873 Equal variances not assumed     -21.765 155.440 0.000 

M2CA 
Frugivore 18 67.309 5.4187 1.2772 Equal variances assumed 15.885 0.000 -8.711 158 0.000 

Omnivore 142 122.680 26.8269 2.2513 Equal variances not assumed     -21.392 132.514 0.000 

M3CA 
Frugivore 17 94.629 12.2003 2.9590 Equal variances assumed 15.774 0.000 -7.196 155 0.000 

Omnivore 140 162.134 38.3469 3.2409 Equal variances not assumed     -15.382 66.412 0.000 

P4CSI 
Frugivore 18 93.7820 10.84614 2.55646 Equal variances assumed 0.688 0.408 2.973 158 0.003 

Omnivore 142 86.2084 10.09948 0.84753 Equal variances not assumed     2.812 20.912 0.010 

M1CSI 
Frugivore 17 81.412 4.2708 1.0358 Equal variances assumed 1.355 0.246 -1.093 157 0.276 

Omnivore 142 83.114 6.2381 0.5235 Equal variances not assumed     -1.467 25.032 0.155 

M2CSI 
Frugivore 18 83.660 3.8877 0.9163 Equal variances assumed 0.976 0.325 -2.719 158 0.007 

Omnivore 142 87.106 5.1897 0.4355 Equal variances not assumed     -3.396 25.391 0.002 

M3CSI 
Frugivore 17 71.061 6.5960 1.5998 Equal variances assumed 0.080 0.778 -2.953 155 0.004 

Omnivore 140 75.647 5.9801 0.5054 Equal variances not assumed     -2.734 19.331 0.013 

SS 
Frugivore 18 298.954 72.4971 17.0877 Equal variances assumed 36.296 0.000 -5.849 158 0.000 

Omnivore 142 939.460 462.6388 38.8238 Equal variances not assumed     -15.100 153.227 0.000 
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Group Statistics Independent Samples Test 

              
Levene's Test for 

Equality of Variances 
t-test for Equality of Means 

Traditional Diet Categories  N Mean 
Std. 

Deviation 

Std. Error 

Mean 
  F Sig. t df 

Sig. (2-

tailed) 

P4CS 
Frugivore 18 166.600 29.2450 6.8931 Equal variances assumed 18.163 0.000 -6.445 159 0.000 

Omnivore 143 315.528 97.2437 8.1319 Equal variances not assumed     -13.970 78.941 0.000 

M1CS 
Frugivore 18 177.760 30.7227 7.2414 Equal variances assumed 16.140 0.000 -6.286 159 0.000 

Omnivore 143 310.574 88.7586 7.4224 Equal variances not assumed     -12.808 63.141 0.000 

M2CS 
Frugivore 18 195.425 38.4511 9.0630 Equal variances assumed 8.238 0.005 -5.690 159 0.000 

Omnivore 143 307.481 82.2484 6.8780 Equal variances not assumed     -9.849 40.608 0.000 

M3CS 
Frugivore 18 221.400 40.1020 9.4521 Equal variances assumed 7.930 0.005 -5.420 158 0.000 

Omnivore 142 322.045 77.3235 6.4888 Equal variances not assumed     -8.778 35.839 0.000 

SRI 
Frugivore 17 42.381 5.5025 1.3345 Equal variances assumed 1.522 0.219 -4.316 157 0.000 

Omnivore 142 49.065 6.0908 0.5111 Equal variances not assumed     -4.677 20.987 0.000 

P4CRI 
Frugivore 18 43.521 4.4104 1.0395 Equal variances assumed 0.197 0.657 3.820 159 0.000 

Omnivore 143 38.655 5.1689 0.4322 Equal variances not assumed     4.322 23.303 0.000 

M1CRI 
Frugivore 18 41.751 4.3260 1.0196 Equal variances assumed 0.847 0.359 4.654 159 0.000 

Omnivore 143 37.159 3.8973 0.3259 Equal variances not assumed     4.290 20.625 0.000 

M2CRI 
Frugivore 18 49.011 5.0724 1.1956 Equal variances assumed 0.804 0.371 2.725 159 0.007 

Omnivore 143 45.128 5.7685 0.4824 Equal variances not assumed     3.012 22.913 0.006 

M3CRI 
Frugivore 18 58.741 5.3679 1.2652 Equal variances assumed 6.043 0.015 1.387 158 0.167 

Omnivore 142 56.106 7.8195 0.6562 Equal variances not assumed     1.849 27.139 0.075 

 

The following t-test analysed the differences between folivores and frugivores in the large apes. All of the variables passed the Equality of 

Variances tests (Table 5.22). According to the t-test results there are significant differences between folivores and frugivores on all of the corpus size 

variables and the P4 crown area, however, significant differences are not present on the rest of the data.  
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Table 5.22: Descriptive statistics and T-test results from Independent Samples T-test comparing folivorous and frugivorous large apes 

Group Statistics Independent Samples Test 

              
Levene's Test for 

Equality of Variances 
t-test for Equality of Means 

Traditional Diet Categories  N Mean 
Std. 

Deviation 
Std. Error 

Mean 
  F Sig. t df 

Sig. (2-
tailed) 

P4CA 
Folivore 10 167.586 23.2109 7.3399 Equal variances assumed 0.004 0.951 3.263 117 0.001 

Frugivore 109 146.507 19.2153 1.8405 Equal variances not assumed 
 

  2.786 10.164 0.019 

M1CA 
Folivore 10 219.749 18.2909 5.7841 Equal variances assumed 1.515 0.221 1.118 117 0.266 

Frugivore 109 209.799 27.5342 2.6373 Equal variances not assumed     1.565 13.084 0.141 

M2CA 
Folivore 10 289.523 39.2391 12.4085 Equal variances assumed 0.571 0.451 1.974 117 0.051 

Frugivore 109 265.816 36.0855 3.4564 Equal variances not assumed 
 

  1.840 10.446 0.094 

M3CA 
Folivore 10 269.905 42.4905 13.4367 Equal variances assumed 0.023 0.879 1.127 115 0.262 

Frugivore 107 255.249 39.0545 3.7755 Equal variances not assumed     1.050 10.472 0.317 

P4CSI 
Folivore 10 116.6563 10.69954 3.38349 Equal variances assumed 1.627 0.205 -1.110 117 0.269 

Frugivore 109 119.7462 8.20499 0.78590 Equal variances not assumed 
 

  -0.890 9.995 0.395 

M1CSI 
Folivore 10 90.654 4.5343 1.4339 Equal variances assumed 0.194 0.661 0.636 117 0.526 

Frugivore 109 89.659 4.7514 0.4551 Equal variances not assumed     0.662 10.895 0.522 

M2CSI 
Folivore 10 89.711 4.9468 1.5643 Equal variances assumed 0.463 0.498 -0.169 117 0.866 

Frugivore 109 89.935 3.9269 0.3761 Equal variances not assumed 
 

  -0.139 10.068 0.892 

M3CSI 
Folivore 10 86.130 3.0712 0.9712 Equal variances assumed 2.823 0.096 -0.495 115 0.622 

Frugivore 107 86.956 5.1827 0.5010 Equal variances not assumed     -0.756 14.342 0.462 

SS 
Folivore 10 1437.126 230.0501 72.7482 Equal variances assumed 0.793 0.375 1.096 117 0.275 

Frugivore 109 1330.566 299.0119 28.6401 Equal variances not assumed 
 

  1.363 11.982 0.198 

P4CS 
Folivore 10 692.771 108.8877 34.4333 Equal variances assumed 0.014 0.905 2.051 117 0.042 

Frugivore 109 612.776 118.7511 11.3743 Equal variances not assumed     2.206 11.060 0.049 

M1CS 
Folivore 10 687.472 99.1728 31.3612 Equal variances assumed 0.256 0.614 2.519 117 0.013 

Frugivore 109 594.536 112.6303 10.7880 Equal variances not assumed 
 

  2.802 11.243 0.017 

M2CS 
Folivore 10 764.556 114.4916 36.2054 Equal variances assumed 0.109 0.742 3.367 116 0.001 

Frugivore 108 641.208 110.5134 10.6342 Equal variances not assumed     3.269 10.613 0.008 

M3CS 
Folivore 10 875.884 159.0545 50.2975 Equal variances assumed 0.386 0.536 2.850 116 0.005 

Frugivore 108 750.576 130.5908 12.5661 Equal variances not assumed 
 

  2.417 10.155 0.036 
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Group Statistics Independent Samples Test 

              
Levene's Test for 

Equality of Variances 
t-test for Equality of Means 

Traditional Diet Categories  N Mean 
Std. 

Deviation 

Std. Error 

Mean 
  F Sig. t df 

Sig. (2-

tailed) 

SRI 
Folivore 10 43.949 5.0628 1.6010 Equal variances assumed 0.002 0.961 1.444 117 0.151 

Frugivore 109 41.720 4.6400 0.4444 Equal variances not assumed     1.342 10.435 0.208 

P4CRI 
Folivore 10 53.328 6.1736 1.9523 Equal variances assumed 0.205 0.652 0.334 117 0.739 

Frugivore 109 52.564 6.9711 0.6677 Equal variances not assumed 
 

  0.370 11.216 0.718 

M1CRI 
Folivore 10 54.327 5.8404 1.8469 Equal variances assumed 0.037 0.848 1.399 117 0.164 

Frugivore 109 51.588 5.9345 0.5684 Equal variances not assumed     1.418 10.778 0.185 

M2CRI 
Folivore 10 64.425 8.4718 2.6790 Equal variances assumed 0.095 0.758 0.826 116 0.411 

Frugivore 108 62.002 8.9114 0.8575 Equal variances not assumed 
 

  0.861 10.929 0.408 

M3CRI 
Folivore 10 63.152 9.2112 2.9129 Equal variances assumed 0.124 0.725 -0.739 116 0.461 

Frugivore 108 64.997 7.3884 0.7109 Equal variances not assumed     -0.615 10.101 0.552 

 

 For the small and large monkeys there were many significant shape variables. In fact, more shape variables obtained significant values between diet 

categories from monkey species with the same body size than they did when exploring the body size differences within dietary categories (compare 

Tables 9.11-9.12, 9.15-9.16 and Tables 5.11-5.14). This suggests that there is more morphological variation in crown shape indices and mandibular 

robusticity among consumers of different diets than between the different body sizes in monkeys. In contrast, the frequency with which the shape 

indices obtain significant values in apes are much reduced with a number of variables not obtaining any significant values (e .g., P4 CSI and M2 CSI in 

large apes, and M1 and M2 CSI in small apes) (Tables 9.19-9.20). These results indicate that dental and mandibular shape variables sometimes differ 

significantly in apes that consume different diets from the same body size category, with more significant differences occurring in the smaller species.  

 The results demonstrate that there are significant differences between the morphologies present in consumers of different diets, particularly in the 

monkeys. Based on these results it was necessary to explore the data using more comprehensive multivariate analyses. 



Chapter 5: Statistical analysis of non-human primates and hominins 

135 

5.1.2 Location of morphological differences between consumers of different diets 

(second part of research question 1 and research question 2) 

 This subsection is divided into two parts. Part one displays the results from a Principal 

Components Analysis (PCA), and part two analyses where morphological differences 

occur between consumers of different diets.  

 The PCA on the non-human primates database passed the KMO and Bartlett’s Test 

requirements. The results indicated that the total variance explained by the four 

components accounted for almost 89% of the cumulative variance (Table 5.23). Where the 

variables load on the different components is detailed in Table 5.24. The key components 

of this dataset are highlighted, with component 1 dominated by size variables (crown area 

and corpus size), component 2 dominated by corpus robusticity indices, component 3 

dominated by crown shape indices, and component 4 dominated by symphyseal robusticity 

indices.  

 

Table 5.23: Total variance explained by each component in the PCA 

Component 
Initial Eigenvalues 

Total Percent of variance Cumulative percent 

1 7.461 49.739 49.739 

2 3.183 21.220 70.960 

3 1.678 11.186 82.146 

4 0.961 6.409 88.554 
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Table 5.24: Variables that contribute to each component in the Rotated Component Matrix. Variable clusters are 

highlighted.  

  Component 

Variable 1 2 3 4 

LogP4M3CA 0.950 0.273 0.014 0.002 

LogSS 0.971 0.111 0.050 0.102 

LogP4CS 0.970 0.182 0.109 -0.016 

LogM1CS 0.975 0.174 0.106 -0.010 

LogM2CS 0.970 0.197 0.106 -0.022 

LogM3CS 0.961 0.225 0.106 -0.040 

P4CSI 0.295 0.281 0.754 -0.070 

M1CSI 0.212 0.107 0.85 -0.018 

M2CSI -0.020 0.017 0.881 0.016 

M3CSI -0.119 0.257 0.755 -0.243 

SRI 0.009 -0.055 -0.154 0.978 

P4CRI 0.183 0.759 0.414 0.052 

M1CRI 0.151 0.870 0.359 -0.054 

M2CRI 0.235 0.919 0.113 -0.061 

M3CRI 0.347 0.809 -0.066 -0.043 

Cumulative % variance explained 49.7% 71% 82.1% 88.6% 

Rotation Method: Varimax with Kaiser Normalization 

Rotation converged in 5 iterations. 

 

 The component clusters identified in the rotated components matrix of the PCA (Table 

5.24) were used in bivariate graphs to analyse dietary differences. The following diets were 

included in these graphs: 1) traditional diet categories, 2) specific classification coding 

categories by both direct observation and faecal analysis, and 3) quantity categories by 

both direct observation and faecal analysis. The graphs that best displayed the differences 

between taxa were used in this section.  

 There was little to separate out the traditional diet categories using component 1 

(loading factors dominated by size variables) and component 2 (loading factors dominated 

by corpus robusticity indices) on the x and y axes, yet when component 3 (loading factors 

dominated by crown shape indices) was used on the y-axis differences emerged. Frugivore-

insectivores were small in size (plot lower on component 1) and had wide crowns (plot 

higher on component 3), yet there was a lot of overlap in size for the rest of the groups 

(Figure 5.21). The omnivores and folivores had the longest crowns (plotting lowest on 

component 3), while there was a lot of overlap within the frugivore category ranging from 

both ends of the crown shape index spectrum (long – wide) (Figure 5.21). There were 

morphological differences present relating to component 2 (corpus robusticity indices) and 

component 3 (crown shape indices) in the species characterised by different dietary 
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categories, even when component 1 (size variables) was removed from the graph (Figure 

5.22).  

 

 
Figure 5.13: Traditional dietary categories by components 1 (size variables) and 3 (crown shape indices (CSI)) 

 

 
Figure 5.14: Traditional dietary categories by components 2 (corpus robusticity indices (CRI)) and 3 (crown shape 

indices (CSI)) 
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 When the specific classification coding categories were used, the output was very 

different between those using direct observation (Figures 5.23-5.24) and faecal analysis 

(Figures 5.25-5.27). The number of categories used largely determined the clarity of the 

graphs. For the graphs using data obtained through direct observation, the folivore-based 

categories clustered together, as did frugivore-based categories, while omnivores were 

more dispersed (Figure 5.23). There appear to be size-related patterns in the graphs; 

folivore-based species were generally larger (plot higher on component 1 (size variables)), 

while frugivore-insectivores were smaller (plot lower on component 1 (size variables)) 

than the other categories. Furthermore, the two groups that have seeds as a secondary food 

item (folivore-granivore, frugivore-granivore) clustered closer together on both axes, 

indicating that consumption of seeds occurs in similarly sized non-human primates, with 

slightly different corpus robusticity indices (the folivore-based group has a wider corpus 

and the frugivore-based group a taller corpus) (Figure 5.23).  

 

 
Figure 5.15: Specific classification coding categories by direct observation (DO) for components 1 (size variables) 

and 2 (corpus robusticity indices (CRI)) 

 

 When the shapes (component 2 (corpus robusticity indices) and component 3 (crown 

shape indices)) were plotted against each other the patterns were less clear. Despite this, 

folivore-based diets plot higher on component 2 (corpus robusticity indices), while 

frugivore-based diets and omnivores plot lower on component 2 (corpus robusticity 

indices), indicating that consumers of a folivorous-based diet present relatively wider 

mandibular corpora to consumers of frugivorous-based foods and omnivores (Figure 5.24). 
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The exception to this pattern is the frugivore-folivores who appear to overlap more with 

folivorous-based diets. Patterns are not quite as defined across component 3 (crown shape 

indices) with plenty of overlap present, but frugivore-insectivores plot highest on 

component 3 (crown shape indices), while frugivores and folivore-based diets plot lowest 

on component 3 (crown shape indices), and omnivores overlap both ranges (Figure 5.24). 

These plots indicate frugivore-insectivores present relatively wider tooth crowns while 

frugivores and folivore-based diets present relatively longer tooth crowns, and omnivores 

present both long and wide tooth crowns, and the rest of the dietary categories plot midway 

between these groups.   

 

 

 
Figure 5.16: Specific classification coding categories by direct observation (DO) for components 2 (corpus 

robusticity indices (CRI)) and 3 (crown shape indices (CSI)) 
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 There were fewer dietary categories for specific classification coding using faecal 

analysis than direct observation. As a result, clearer patterns emerged in the way the 

groups clustered. Most of the dietary groups clustered in a way that reflected size. 

Frugivore-insectivores were the smallest (plot lowest on component 1 (size variables)); 

then frugivore-granivores; then frugivore-faunivores; and finally folivore-frugivores were 

the largest in size (plot highest on component 1 (size variables)), overlapping all of these 

diet categories were frugivore-folivores and omnivores (Figure 5.25).  

 

 
Figure 5.17: Specific classification coding categories by faecal analysis (FA) for components 1 (size variables) 

and 2 (corpus robusticity index (CRI)) 

 

 When only shape-based variables were included there was considerably more overlap 

between the dietary categories, but still clustering of the groups remained (Figures 5.26-

5.27). Frugivore-insectivores had wider tooth crowns (plot higher on component 3 (crown 

shape indices)) and frugivore-faunivores had longer tooth crowns (plot lower on 

component 3 (crown shape indices)) relative to the other dietary categories, with the rest 

displaying extensive overlap (Figures 5.26-5.27). Omnivores, frugivore-granivores and 

frugivore-faunivores had relatively taller corpora (plot lower on component 2 (corpus 

robusticity indices)), while folivore-frugivores had wider corpora (plot higher on 

component 2 (corpus robusticity indices)). Frugivore-folivores overlapped the rest of the 

diet categories and presented both tall and wide corpora relative to the other dietary 

categories (ranging from low – high on component 2 (corpus robusticity indices)), while 
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frugivore-insectivores plotted at the midpoint of component 2 (corpus robusticity 

indices), indicating they were neither tall nor wide at the corpus (Figure 5.26).  

 

 

 

Figure 5.18: Specific classification coding categories by faecal analysis (FA) for components 2 (corpus robusticity 

indices (CRI)) and 3 (crown shape indices (CSI))  

 

 Frugivore-faunivores, frugivore-insectivores, frugivore-granivores and omnivores 

plot higher on component 4 (loading factors dominated by symphyseal robusticity 

indices), indicating they have relatively wider mandibular symphyses, while folivore-

frugivores had taller mandibular symphyses (plot lower on component 4 (symphyseal 

robusticity indices)) (Figure 5.27). Frugivore-folivores overlapped the rest of the diet 

categories and presented both tall and wide symphyses relative to the other dietary 

categories (ranging from low – high on component 4 (symphyseal robusticity indices) 

(Figure 5.27). 
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Figure 5.19: Specific classification coding categories by faecal analysis for components 3 (crown shape indices 

(CSI)) and 4 (symphyseal robusticity indices (SRI) 
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 When the quantity categories (low, moderate and high consumption groups) of 

different foods (fruits, leaves, seeds, roots and animals) were included the most 

distinction in the groupings consistently arose with component 1 (size variables), but 

there were instances where that was not the case. Due to the fact that size differences do 

dominate the graphs so heavily, it was decided to focus on the graphs where component 

1 (size variables) was not included to determine how differences in quantities of certain 

foods might correspond to the shape variables.  

 

Fruit consumption 

 Differences between groups consuming different quantities of fruits were best 

illustrated by component 2 (corpus robusticity indices), when comparing component 2 

and 3 (crown shape indices) by faecal analysis (Figure 5.28), as displayed below. High 

(3) consumption of fruits is very widely distributed, overlapping with the other two 

groups but with no particular pattern (Figure 5.28). In contrast, low (1) and moderate (2) 

consumers are more distinct. Low consumers of fruits plot relatively higher on 

component 2 (corpus robusticity indices) than do moderate consumers, indicating that 

low consumers have relatively wider mandibular corpora and moderate consumers have 

relatively taller corpora. There does not appear to be a pattern between low, moderate 

and high consumers of fruits on component 3 (crown shape indices).  

 

 
Figure 5.20: Fruit consumption using faecal analysis (FA) by components 2 (corpus robusticity indices (CRI)) 

and 3 (crown shape indices). 1 = low consumption, 2 = moderate consumption, 3 = high consumption. 
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 Overall, consuming a high quantity of fruit does not appear to correspond to a 

particularly defined morphology; in contrast, consumption of lower quantities of fruits 

appears to be associated with a more distinct morphological pattern. It is possible that 

the latter point is a reflection of the variation in the food mechanical properties of the 

other foods making up the rest of the diet. 

 

Leaf consumption  

 Differences between groups consuming different quantities of leaves were best 

illustrated by graph using direct observation and components 2 (corpus robusticity 

indices) and 3 (crown shape indices), while trends are displayed using components 3 

(crown shape indices) and 4 (symphyseal robusticity indices) (Figures 5.29-5.30). Low 

consumers of leaves are scattered across all components, and extend higher on 

component 3 (crown shape indices) and lower on component 4 (symphyseal robusticity 

indices) than do moderate and high consumers of leaves (Figures 5.29-5.30). This 

pattern of distribution for low consumers of leaves indicates they can be characterised 

by tall and wider corpus and symphyses, and long and wide tooth crowns. High 

consumers of leaves plot higher on component 2 (corpus robusticity indices) and 

component 3 (crown shape indices) than do moderate consumers, indicating that high 

consumers have relatively wider mandibular corpora and tooth crowns, while moderate 

consumers have relatively taller corpora and longer tooth crowns (Figures 5.29-5.30). 

On component 4 (symphyseal robusticity indices), high consumers plot somewhat lower 

than do moderate consumers, indicating that high consumers of leaves have somewhat 

taller mandibular symphyses and moderate consumers of leaves have relatively wider 

symphyses (Figure 5.30).  
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Figure 5.21: Leaves consumption using direct observation (DO) by components 2 (corpus robusticity indices 

(CRI)) and 3 (crown shape indices (CSI)). 1 = low consumption, 2 = moderate consumption, 3 = high 

consumption. 

 

 

Figure 5.22: Leaves consumption using direct observation (DO) by components 3 (crown shape indices (CSI)) 

and 4 (SRI). 1 = low consumption, 2 = moderate consumption, 3 = high consumption. 

 

 Consuming a low quantity of leaves does not appear to correspond to a particularly 

defined morphology, with variation present in both the corpus and crown morphology, 

as evinced by the scattered distribution of low consumers across the various 
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components. In contrast, consumption of moderate and high quantities of leaves appears 

to be associated with more limited and distinct ranges of variation, and thus a more 

distinct morphological pattern. 

 

Seed consumption  

 Trends between groups consuming different quantities of seeds were best illustrated 

by components 2 (corpus robusticity indices) and 3 (crown shape indices) by direct 

observation (Figure 5.31). Low consumers of seeds are scattered across all components, 

extending higher on components 2 (corpus robusticity indices) and 3 (crown shape 

indices) than do moderate and high consumers of seeds (Figure 5.19). These patterns of 

distribution for low consumers of seeds indicate they can be characterised by tall and 

wider corpora, and long and wide tooth crowns. High consumers of seeds plot lower on 

component 2 (corpus robusticity indices) and slightly higher on component 3 (crown 

shape indices) than do moderate consumers, indicating that high consumers have 

relatively taller mandibular corpora and wider tooth crowns, while moderate consumers 

have relatively wider mandibular corpora and longer tooth crowns (Figure 5.31).  

 

 

Figure 5.23: Seeds consumption using direct observation (DO) by components 2 (corpus robusticity indices 

(CRI)) and 3 (crown shape indices (CSI)). 1 = low consumption, 2 = moderate consumption, 3 = high 

consumption.   

 

 Consuming a low quantity of seeds does not appear to correspond to a particularly 

defined morphology, with variation present in both the corpus and crown morphology, 
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as evinced by the scattered distribution of low consumers across the various 

components. In contrast, consumption of moderate and high quantities of seeds appears 

to be associated with more limited and distinct ranges of variation, and thus a more 

distinct morphological pattern. 

 

Root consumption  

 The bivariate graphs using components 1-4 are somewhat different depending on 

whether root consumption by direct observation or faecal analysis is used. Low 

consumption of roots is very widely distributed in graphs using both direct observation 

and faecal analysis, overlapping with both moderate and high consumers but with no 

particular pattern (Figures 5.32-5.33). Low consumers are characterised by having both 

wider and taller, and thus more varied mandibular corpora.  

 The trends present in graphs using direct observation and faecal analysis were 

reversals of each other, with those by direct observation indicating high consumers of 

roots plot lower on component 2 (corpus robusticity indices) than do moderate 

consumers, while the graphs using faecal analysis indicate high consumers of roots plot 

higher on component 2 (corpus robusticity indices) than do moderate consumers. So 

depending on whether direct observation or faecal analysis is used, a high root 

consumer will either display a relatively taller mandibular corpus (direct observation) or 

relatively wider mandibular corpus (faecal analysis), while moderate consumers will 

either display a relatively wider mandibular corpus or taller mandibular corpus (Figures 

5.32-5.33). There does not appear to be a pattern between low, moderate and high 

consumers of roots on component 3 (crown shape indices) by either direct observation 

or faecal analysis.  

Consuming a low quantity of roots does not appear to correspond to a particularly 

defined morphology, with variation present in both the corpus and crown morphology, 

as evinced by the scattered distribution of low consumers across the various 

components. In contrast, consumption of moderate and high quantities of roots appears 

to be associated with more limited and distinct ranges of variation, and thus a more 

distinct morphological pattern, particularly on component 2 (corpus robusticity indices). 
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Figure 5.24: Roots consumption using direct observation (DO) by components 2 (corpus robusticity indices 

(CRI)) and 3 (crown shape indices (CSI)). 1 = low consumption, 2 = moderate consumption, 3 = high 

consumption. 

 

 Sample size was reduced for the graphs on roots by direct observation (Figure 5.32), 

because not many of the species analysed are recorded to be consumers of roots. In 

contrast, more species are present for those analysed by faecal analysis (Figure 5.33).  

 

 
Figure 5.25: Roots consumption using faecal analysis (FA) by components 2 (corpus robusticity indices (CRI)) 

and 3 (crown shape indices (CSI)). 1 = low consumption, 2 = moderate consumption, 3 = high consumption. 
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 These graphs for root consumption highlight the different patterns that can emerge 

depending on the data collection method used (direct observation or faecal analysis). 

They highlight the importance of analysing the data obtained by the two methods 

separately. 

 

Animal consumption 

 Differences between groups consuming different quantities of animals were best 

illustrated by component 3 (crown shape indices) when using components 2 (corpus 

robusticity indices) and 3 (crown shape indices) by faecal analysis as shown in Figure 

5.34. Moderate and high consumption groups cluster in distinct patterns on component 

3 (crown shape indices), although the pattern for moderate consumers is unique. 

Moderate consumers are clustered in groups at both ends of component 3 (crown shape 

indices) axis, while high consumers are clustered at the low range of the same axis. 

These patterns indicate species consuming moderate quantities of animals can be 

characterised by both long and wide tooth crowns, while high consumers have relatively 

longer crowns. Low consumers appear to be distributed all over the place on component 

2 (corpus robusticity indices) and around the midline of component 3 (crown shape 

indices), indicating low consumers have a varied corpus morphology, neither long nor 

wide tooth crowns (Figure 5.34).  

 

 
Figure 5.26: Animals consumption using faecal analysis (FA) by components 2 (corpus robusticity indices 

(CRI)) and 3 (crown shape indices (CSI)). 1 = low consumption, 2 = moderate consumption, 3 = high 

consumption. The more isolated cluster of moderate consumers that plot higher up on component 3 (crown 

shape indices) is the capuchin genera (Cebus and Sapajus). 
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5.1.3 Contribution of diet to morphological variation (research question 3)  

 There was a reasonably consistent pattern across each of the multiple regression 

analyses using each of the components (1-4) in terms of which dietary categories/ food 

quantities best explained the morphological variance present. As explained in the 

Methods, for each component analysed different models were run for the different types 

of diet categories (traditional diet, specific classification categories and quantity 

categories using both direct observation and faecal analysis) and of those, the regression 

models that best explained the morphological variance are presented here. The model 

summaries/ ANOVA results are detailed in Table 5.25, and their coefficient values 

detailed in Table 5.26.  

 All of the Adjusted R
2
 model summaries and ANOVAs for component 1 (loadings 

dominated by dental and mandibular size variables) were consistent and significant, 

with all dietary categories accounting for approximately 10% of the variance. The 

model that best explained the morphological variance present included log body size, 

sex, fruits & seeds by direct observation, which according to the Adjusted R
2
 in the 

model summaries accounted for as much as 86.8% of variance for component 1 (Table 

5.25). The inclusion of fruits & seeds direct observation increased the percentage of 

variance accounted for from 77.8% to 86.8%.  

 All of the Adjusted R
2
 model summaries and ANOVAs for component 2 (loadings 

dominated by corpus robusticity indices) were consistent and significant. The model 

that best explained the morphological variance present included log body size, sex, 

fruits, leaves & seeds (FA), which according to the Adjusted R
2
 in the model summaries 

accounted for 51.7% of variance for component 2 (Table 5.25). The inclusion of fruits, 

leaves & seeds (FA) increased the percentage of variance from 31% to 51.7%.  

 The Adjusted R
2
 model summaries and ANOVAs for component 3 (loadings 

dominated by crown shape indices) were consistent and significant. The model that best 

explained the morphological variance present in component 3 was that which included 

log body size, sex, fruits, roots & leaves (FA), which according to the Adjusted R
2
 in 

the model summaries accounted for as much as 40.4% of the variance (Table 5.25). The 

inclusion of fruits, roots & leaves (FA) increased the percentage of variance accounted 

for from 22.8% to 40.4%.  

 All of the Adjusted R
2
 model summaries and ANOVAs for component 4 (loadings 

dominated by symphyseal robusticity indices) were consistent and significant. The 

dietary category that best explained the morphological variance was log body size, sex, 

fruits, leaves & roots (FA), which according to the Adjusted R
2
 in the model summaries 
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accounted for 20.7% of the variance for component 4 (Table 5.25). The inclusion of 

these different food types increased the variance explained from 0.012% (just sex and 

body weight) to 20.7%.  

 Each of the model summaries from components 1-4 show that diet is an important 

variable to explain morphological variation in the mandible and dentition, particularly 

in the shape variables. For components 1 and 2 the diets that incorporate fruits and 

seeds in them appear to be the ones that best explain the variance (on top of body size 

and sex), but for components 3 and 4 the diets that included fruits, leaves and roots 

appear to best explain the variance present (on top of body size and sex).  

 

Table 5.25: Percentage of variance explained (Adjusted R2) and ANOVA results for the final model of each 

multiple regression analysis for Components 1-4.  

Model summaries ANOVA 

Comp. 
Diet 

contents 
Model 

Model 

Summary 

(Adjusted R
2
) 

Model df F Sig 

1 

Fruits & 

seeds using 
direct 

observation 

(n = 661) 

1: Log body weight, sex 0.778 
    

2: Log body weight, sex, 

fruits & seeds 

0.868 Regression 4 1090.629 0.000 

 
Residual 656 

  

2 

Fruit, 
leaves & 

seeds using 

faecal 

analysis  
(n = 721) 

1: Log body weight, sex 0.31 
    

2: Log body weight, sex, 

fruits, leaves & seeds 

0.517 Regression 5 154.89 0.000 

 
Residual 715 

  

3 

Fruit, 

leaves & 

roots using 
faecal 

analysis (n 

= 482) 

1: Log body weight, sex 0.228 
    

2: Log body weight, sex, 

fruits, leaves & roots 

0.404 Regression 5 66.296 0.000 

 
Residual 476 

  

4 

Fruit, 
leaves & 

roots using 

faecal 

analysis  (n 
= 482) 

1: Log body weight, sex 
     

2: Log body weight, sex, 
fruits, leaves & roots 

0.012 Regression 5 26.037 0.000 

0.207 Residual 476 
  

 

 The unstandardised coefficients for components 1-4 by the different dietary 

categories present largely consistent results throughout each component (Table 5.26). 

Overall, the two highest coefficients outside of the constant were log body size (highest 

for components 1 and 3, and joint highest with sex for component 4) and sex (highest 

coefficient for component 2 and joint highest with body size for component 4). For each 

component, within each dietary category there was minimal variation between the 

coefficients for the different foods, with the exception of some foods reporting negative 

and positive values.  
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 The food type that best explained the variance present for component 1 (highest 

loading factors = dental and mandibular size variables) was fruits & seeds using direct 

observation and is largely reflective of the rest of the dietary categories analysed for this 

component. The multiple regression analysis for component 1 predicts that log body 

size (B = 0.713, p = 0.000) and seed (B = 0.026, p = 0.000) consumption significantly 

increased as component 1 increased, but fruit (B = -0.007, p = 0.000) consumption 

significantly decreased as component 1 increased. Sex differences (B = 0.042, p = 

0.127) did not obtain a significant p-value on the t-statistic, indicating it did not increase 

or decrease with component 1 (Table 5.26).  

 The food type that best explained the variance present for component 2 (highest 

loading factors = corpus robusticity indices) was fruits, leaves & seeds using faecal 

analysis and is reflective of the rest of the dietary categories analysed for this 

component. The multiple regression analysis for component 2 predicts that log body 

size (B = 0.221, p = 0.000), and fruit (B = 0.011, p = 0.000) and leaf (B = 0.016, p = 

0.000) consumption significantly increased as the component 2 increased, but sex 

differences (B = -0.624, p = 0.000) and seed consumption (B = -0.046, p = 0.000) 

significantly decreased as component 2 increased (Table 5.26).  

 The food type that best explained the variance present for component 3 (highest 

loading factors = crown shape indices) was fruits, leaves & roots using faecal analysis 

and is largely reflective of the rest of the dietary categories analysed for this component. 

The multiple regression analysis for component 3 predicts that log body size (B = 0.261, 

p = 0.000), and fruit (B = 0.025, p = 0.000) and leaf (B = 0.017, p = 0.000) consumption 

significantly increased as component 3 increased, but sex differences significantly 

decreased as the component 3 increased (B = -0.131, p = 0.041). Root consumption (B = 

-0.015, p = 0.081) did not obtain a significant p-value on the t-statistic, indicating it did 

not increase or decrease with component 3 (Table 5.26). 

 The food type that best explained the variance present for component 4 (highest 

loading factors = symphyseal robusticity indices) was fruits, leaves & roots using faecal 

analysis and is largely reflective of the rest of the dietary categories analysed for this 

component. The multiple regression analysis for component 4 predicts that sex 

differences (B = 0.325, p = 0.002) and root consumption (B = 0.057, p = 0.000) 

significantly increased as component 4 increased, but log body size (B = 0.261, p = 

0.007), and fruit (B = -0.015, p = 0.000) and leaf (B = -0.028, p = 0.000) consumption 

significantly decreased as component 4 increased (Table 5.26).  



Chapter 5: Statistical analysis of non-human primates and hominins 

153 

 Despite these dietary categories clearly contributing towards the morphological 

variance as indicated by the increased Adjusted R
2 

values, the coefficients Table (5.26) 

does not reveal any of the diets present high B coefficients. This finding indicates that 

none of the diets contribute much towards the morphological variance in any of 

components 1-4. Instead, for components 2 and 4, sex presented the highest B 

coefficient, and for components 1 and 3 log body size presented the highest B 

coefficient (outside of the constant). The high loadings on the coefficients for log body 

size and sex, and the low loadings for the foods do not correspond to the Adjusted R
2
 

for components 2-4 in the model summary from Table 5.25.  

 

Table 5.26: Coefficients of components 1-4 by the models that best explained the morphological variance 

Components  
Dietary 

categories 
Model 

Unstandardised coefficients Standardised Coefficients 

B Std. Error t Sig. 

1 

Fruit & seeds 
using direct 

observation 

(n = 661) 

Constant -1.826 0.068 -26.822 0.000 

Log body weight 0.713 0.012 61.828 0.000 

Sex 0.042 0.028 1.528 0.127 

Fruit -0.007 0.001 -7.697 0.000 

Seeds 0.026 0.001 20.711 0.000 

2 

Fruit, leaves 

& seeds 

using faecal 
analysis  

(n = 721) 

Constant -0.199 0.219 -0.911 0.363 

Log body weight 0.221 0.026 8.454 0.000 

Sex -0.624 0.055 -11.43 0.000 

Fruit 0.011 0.002 4.547 0.000 

Leaves 0.016 0.003 4.823 0.000 

Seeds -0.046 0.004 -12.892 0.000 

3 

Fruit, leaves 

& roots using 

faecal 
analysis  

(n = 482) 

Constant -2.377 0.189 -12.55 0.000 

Log body weight 0.261 0.049 5.298 0.000 

Sex -0.131 0.064 -2.048 0.041 

Fruit 0.025 0.003 9.598 0.000 

Leaves 0.017 0.004 4.739 0.000 

Roots -0.015 0.009 -1.747 0.081 

4 

Fruit, leaves 

& roots using 

faecal 
analysis  

(n = 482) 

Constant 1.531 0.31 4.944 0.000 

Log body weight -0.219 0.081 -2.711 0.007 

Sex 0.325 0.104 3.118 0.002 

Fruit -0.015 0.004 -3.612 0.000 

Leaves -0.028 0.006 -4.629 0.000 

Roots 0.057 0.014 4.031 0.000 
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 Multiple regression analyses were run to predict components 1 (dental and 

mandibular size variables), 2 (corpus robusticity indices), 3 (crown shape indices), and 

4 (symphyseal robusticity indices) from log body size, sex and the various dietary 

categories. In each multiple regression, log body size and sex were entered for step 1, 

and the dietary categories were entered for step 2. Log body size and sex explained 

almost 80% of the variance for component 1, 31% of the variance for component 2, 

almost 23% of the variance for component 3, and approximately 1% of the variance for 

component 4.  

 For component 1, after entering fruits and seeds by direct observation for step 2 the 

total variance explained by the model increased to 86.8%, F (4, 656) = 1090.629, p < 

.000. The dietary categories explained an additional 9% of the variance in component 1. 

 For component 2, after entering fruits, leaves and seeds by faecal analysis for step 2 

the total variance explained by the model increased to 51.7%, F (5, 715) = 154.89, p < 

0.000. The dietary categories explained an additional 20.7% of the variance in 

component 2.  

 For component 3, after entering fruits, leaves and roots by faecal analysis for step 2 

the total variance explained by the model increased to 40.4%, F (5, 476) = 66.296, p < 

0.000. The dietary categories explained an additional 17.6% of the variance in 

component 3.  

 For component 4, after entering fruits, leaves and roots by faecal analysis for step 2 

the total variance explained by the model increased to 20.7%, F (5, 476) = 26.037, p < 

0.000. The dietary categories explained an additional 19.5% of the variance in 

component 4.  
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5.2 Section 2: Morphological analysis on non-human primates and hominins  

 This section is divided into two parts to address the research questions. Research 

question four (Is the hominin morphology comparable to that present in non-human 

primates?) is addressed in part one, and research question five (Is it possible to 

associate the morphological features of the hominins with dietary categories analogous 

to non-human primates?) is addressed in part two.  

 The Principal Components Analysis on the non-human primates and hominins 

database passed the KMO and Bartlett’s Test requirements, meaning it was possible to 

proceed with analysis. Three components had eigenvalues greater than 1, and in 

combination explained 92.8% of the variance (Table 5.27). Where the variables load on 

the different components is detailed in Table 5.28. The key components of this dataset 

are highlighted, with component 1 dominated by size variables (crown area and corpus 

size), component 2 dominated by crown shape indices and component 3 dominated by 

corpus robusticity indices.  

 

Table 5.27: Total variance explained by each component in the PCA on non-human primates and hominins 

Component 
Initial Eigenvalues 

Total Percent of variance Cumulative percent 

1 8.668 57.785 57.785 

2 3.596 23.975 81.760 

3 1.661 11.076 92.836 
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Table 5.28: Variables that contribute to each component in the Rotated Component Matrix. Clustered 

variables highlighted. 

Component 

Variable 1 2 3 

LogP4M3CA 0.943 -0.008 0.325 

LogSS 0.977 0.000 0.038 

LogP4CS 0.940 0.087 0.320 

LogM1CS 0.945 0.084 0.307 

LogM2CS 0.941 0.086 0.319 

LogM3CS 0.940 0.093 0.314 

P4CSI 0.224 0.897 0.192 

M1CSI 0.175 0.948 0.093 

M2CSI -0.023 0.936 0.016 

M3CSI -0.173 0.905 0.054 

SRI 0.097 -0.193 0.832 

P4CRI 0.329 0.476 0.765 

M1CRI 0.343 0.399 0.822 

M2CRI 0.457 0.229 0.817 

M3CRI 0.541 0.042 0.778 

Cumulative % variance explained 57.76 81.76 92.84 

Rotation Method: Varimax with Kaiser Normalization 

Rotation converged in 5 iterations. 

 

 

5.2.1 Comparable morphological variation between hominins and non-human 

primates (research question 4). 

 In this section, bivariate graphs using the components extracted from the PCA were 

used to analyse morphological differences between different hominin and non-human 

primate taxa. When components 1 (size variables) and 2 (crown shape indices) were 

used the hominins plotted within the range of extant non-human primates, particularly 

the apes and the hard-object feeding mangabeys (Cercocebus and Lophocebus species) 

(Figures 5.35 and 5.36). When component 3 (corpus robusticity indices) was analysed, 

the patterns changed completely. The hominins score very high on component 3 (corpus 

robusticity indices) and as a result, completely separate from the non-human primates. 

This indicates that they have wider mandibular corpora and symphyses than any primate 

(Macaca radiata is the closest) (Figures 5.36-5.37).  
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Figure 5.27: All non-human primate and hominin genera by components 1 (size variables) and 2 (crown shape 

indices (CSI)). Cebus and Sapajus plot at the lowest end of the scale for component 1 (size variables) and 

cluster distinctly from all other genera on component 2 (crown shape indices).  

 

 

 

 
Figure 5.28: All non-human primate and hominin genera by components 1 (size variables) and 3 (corpus 

robusticity indices (CRI)) 
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Figure 5.29: All non-human primate and hominin genera by components 2 (crown shape indices (CSI) and 3 

(corpus robusticity indices (CRI)) 

 

 As the hominins plot closest to the extant apes for components 1 (size variables) and 

components 2 (crown shape indices) (Figure 5.35), it was decided to narrow down the 

comparisons to the species level for the apes and hominin species. Gorilla and Pongo 

display similar patterns while Pan deviates from them, which means there are two 

groupings for extant apes. In contrast, the hominins are more dispersed. P. boisei was 

closer in size to Gorilla and Pongo, while the other hominins were closer in size to Pan 

for component 1 (size variables) (Figure 5.38). For component 2 (crown shape indices) 

Pan appears to be more of an outlier, while Gorilla and Pongo largely scored with 

hominins. Overall, the hominins appear to have crown shapes similar to the Gorilla and 

Pongo species/ subspecies, being slightly wider than they are long, with the exceptions 

of Australopithecus africanus, Paranthropus robustus and the early Homo species, who 

all plot around 0 meaning they have crown shapes that are as wide as they are long.   

 



Chapter 5: Statistical analysis of non-human primates and hominins 

159 

 
Figure 5.30: Ape and hominin species by components 1 (size variables) and 2 (crown shape indices (CSI)) 

 

 When the shape components were compared (components 2 (crown shape indices) 

and 3 (corpus robusticity indices)) on the graphs the way the hominins plot changed 

completely. Whereas before with the graph using components 1 (size variables) and 2 

(crown shape indices) the hominins plotted within the range of non-human primates, the 

usage of component 3 (corpus robusticity indices) sees them plot completely 

independent of any extant non-human primate (Figures 5.39-5.40). All hominins have 

wider symphyses and corpora than any extant ape.  

 Figures 5.39-5.40 also highlight how distinct the congeners Australopithecus 

afarensis and A. africanus are on components 2 (crown shape indices) and 3 (corpus 

robusticity indices). Of the hominins present A. afarensis has the widest crown shape 

(buccolingually) and the tallest mandible, while A. africanus has the widest mandible 

and among the longest tooth crowns (mesiodistally).  
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Figure 5.31: Ape and hominin species by components 1 (size variables) and 3 (corpus robusticity indices 

(CRI)) 

 

 

 
Figure 5.32: Ape and hominin species by components 2 (crown shape indices (CSI)) and 3 (corpus robusticity 

indices (CRI)). Pan troglodytes plots distinct from its congener, Pan paniscus, and Gorilla and Pongo 
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5.2.2 Association of hominin morphological features to non-human primate diet 

categories (research question 5) 

 In this section, bivariate graphs using the components extracted from the PCA were 

used to analyse morphological differences between hominins and non-human primates 

of known diet. Diets analysed include: 1) traditional diet categories, 2) specific 

classification coding categories by both direct observation and faecal analysis, and 3) 

the quantity categories (low, moderate and high consumption) of foods (fruits, leaves, 

seeds, roots and animals) by both direct observation and faecal analysis.  

 For component 1 (size variables) using the traditional dietary categories, the 

categories appear to be widely dispersed along the size ranges, with both frugivore and 

omnivore species appearing at both ends of the size spectrum. Only frugivore-

insectivores (small) and folivores (large) are distinct. The hominins (unknown diet 

category) plot alongside the upper right cluster of frugivores, some omnivores, and the 

folivore (Figure 5.41). For component 2 (crown shape indices), there are three distinct 

groupings. Omnivores plot at the lower end of the component and frugivore insectivores 

at the higher end of the graph. The hominins plot in a distinct cluster, which includes 

some frugivores and the folivore. Some frugivores are present in all three clusters 

suggesting some distinction exist within this diet category. When component 3 (corpus 

robusticity indices) was introduced the hominins were completely distinct from the 

other diet groups, with the exception A. afarensis in relation to the frugivorous M. 

radiata (circled) (Figure 5.42). 

 

 

Figure 5.33: Traditional diet categories with non-human primates and hominins by components 1 (size 

variables) and 2 (crown shape indices (CSI)) 
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Figure 5.34: Traditional diet categories with non-human primates and hominins by components 2 (crown 

shape indices (CSI)) and 3 (corpus robusticity indices (CRI)). Macaca radiata (circled) is the only extant non-

human primate species to plot near a hominin species (A. afarensis) on component 3 (corpus robusticity indices 

(CRI)).  
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 For component 1 (size variables) using the specific classification coding categories 

by direct observation, the categories appear to be widely dispersed along the size 

ranges, with frugivores, frugivore-folivores and omnivores appearing at both ends of the 

size spectrum. Frugivore-insectivores (small), folivores and folivore-frugivores (large), 

and frugivore-granivores, folivore-granivores and frugivore-faunivores (medium-sized) 

are distinct. The hominins (unknown diet category) plot alongside a number of different 

dietary groupings (Figure 5.43). P. boisei plot alongside the furthest cluster, which 

includes some of the following dietary categories: folivores, folivore-frugivores, 

frugivores and frugivore-folivores and omnivores, while A. afarensis, P. robustus and 

H. habilis plot in line with some of the omnivores and frugivore-folivores, and H. 

ergaster and A. africanus plot in line with some of the frugivore-folivores, frugivore-

granivores, frugivore-faunivores and folivore-granivores (Figure 5.43).  

 

 

 
Figure 5.35: Specific classification coding categories by direct observation (DO) with non-human primates and 

hominins by components 1 (size variables) and 2 (crown shape indices (CSI)). Cebus and Sapajus plot at the 

lowest end of the scale for component 1 (size variables) and cluster distinctly from all other taxa on component 

2 (crown shape indices). 
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 For component 2 (crown shape indices), there are three distinct groupings, but 

overlap exists between the dietary categories present. Folivore-granivore (longest crown 

shape), frugivore-faunivore, frugivore-granivore, folivore-frugivore, and folivores 

(tooth crowns as long as they are wide), and frugivore-insectivores (widest crown 

shapes) plot distinctly. Some omnivores are present in all three clusters, while 

frugivore-folivores are present in two clusters suggesting some distinction exist within 

these diet categories. The hominins plot in a distinct cluster, with A. afarensis plotting 

in line with some frugivores and frugivore-folivores, while P. boisei and H. ergaster 

plot in line with some folivores, folivore-frugivores, frugivore-folivores, frugivores and 

frugivore-granivores, and P. robustus, A. africanus and H. habilis all plot in line with 

some frugivore-granivores, frugivore-faunivores and omnivores (Figures 5.43-5.44). 

When component 3 (corpus robusticity indices) was introduced the hominins were 

completely distinct from the other diet groups, with the exception A. afarensis in 

relation to the frugivorous M. radiata (Figure 5.44). 

 

 

 
Figure 5.36: Specific classification coding categories by direct observation (DO) with non-human primates and 

hominins by components 2 (crown shape indices (CSI)) and 3 (corpus robusticity indices (CRI)). Cebus and 

Sapajus cluster distinctly from all other taxa on component 2 (crown shape indices). 
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 For component 1 (size variables) using the specific classification coding categories 

by faecal analysis, the categories appear to be widely dispersed along the size ranges, 

with frugivore-folivores and omnivores appearing at both ends of the size spectrum. 

Frugivore-insectivores (small), folivore-frugivores and frugivore-faunivores (large), and 

frugivore-granivores (medium-sized) are distinct. The hominins (unknown diet 

category) plot alongside a number of different dietary groupings (Figure 5.45). A. 

afarensis, P. boisei, P. robustus and H. habilis plot within a cluster of some folivore-

frugivores, frugivore-folivores, omnivores and frugivore-faunivore, while H. ergaster 

and A. africanus plot more in line with some of the frugivore-folivores, frugivore-

granivores and omnivores (Figure 5.45).  

 

 

 
Figure 5.37: Specific classification coding categories using faecal analysis (FA) with non-human primates and 

hominins by components 1 (size variables) and 2 (crown shape indices (CSI)). Sapajus plots at the lowest end of 

the scale for component 1 (size variables) and cluster distinctly from all other taxa on component 2 (crown 

shape indices). 
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 For component 2 (crown shape indices), there are three distinct groupings. 

Frugivore-faunivores (longest crown shape), folivore-frugivores and frugivore-

granivores (tooth crowns as long as they are wide), and frugivore-insectivores (widest 

crown shapes) plot distinctly. Some omnivores and frugivore-folivores are present in 

two of the three clusters suggesting some distinction exist within these diet categories. 

The hominins plot in a distinct cluster, with A. afarensis, P. boisei and H. ergaster 

plotting in line with some of the frugivore-folivores and folivore-frugivores, A. 

africanus and H. habilis plot in line with some of the frugivore-granivores and 

omnivores, while P. robustus plots between all of the above categories (Figures 5.45-

5.46). As before, when component 3 (corpus robusticity indices) was introduced the 

hominins were completely distinct from the other diet groups, with the exception A. 

afarensis in relation to one species of frugivore-folivore (Figure 5.46). 

 

 
Figure 5.38: Specific classification coding categories using faecal analysis (FA) with non-human primates and 

hominins by components 2 (crown shape indices (CSI)) and 3 (corpus robusticity indices (CRI)). Sapajus 

cluster distinctly from all other taxa on component 2 (crown shape indices). 
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 When the quantity categories were entered into the graphs the hominins appeared to 

align themselves differently according to the components used. The food quantity (low, 

moderate and high consumption) categories used were 1) fruits, 2) leaves, 3) seeds, 4) 

roots, and 5) animals.  

 

Fruit consumption 

 The graphs produced comparing hominins to non-human primates for fruit 

consumption by direct observation and faecal analysis were very similar, so results 

using direct observation are presented. For component 1 (size variables), the quantity 

categories appear to be widely dispersed along the size ranges, with moderate and high 

consumers appearing at both ends of the size spectrum, while low consumers appear 

both midway and high up on the graph (Figure 5.47). The hominins (unknown diet 

category) plot predominantly surrounded by some of the high consumers of fruits 

(Figures 5.47-5.48), although A. afarensis, A. africanus, P. robustus and P. boisei also 

plot in line and near some of the low and moderate consumers of fruits.  

 

 

 
Figure 5.39: Fruit consumption using direct observation (DO) by non-human primates and hominins by 

components 1 (size variables) and 2 (crown shape indices (CSI)). 1= low consumption, 2 = moderate 

consumption, 3 = high consumption, 4 = unknown consumption. Cebus and Sapajus plot at the lowest end of 

the scale for component 1 (size variables) and cluster distinctly from all other taxa on component 2 (crown 

shape indices). 
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 For component 2 (crown shape indices), there are three distinct groupings, but 

overlap exists with the quantity categories present in each. Consumers of moderate and 

high quantities of fruits are present in each of the clusters, and low quantities are present 

in two of the three clusters suggesting some distinction exist within these quantity 

categories. The hominins plot in a distinct cluster, with A. afarensis plotting in line with 

some of the high consumers, P. boisei and H. ergaster plotting in line with some of the 

low, moderate and high consumers, A. africanus and H. habilis in line with moderate 

and high consumers, while P. robustus plots between some of the low, moderate and 

high consumers (Figures 5.47-5.48). As before, when component 3 (corpus robusticity 

indices) was introduced the hominins were distinct from the non-human primates, with 

the exception of A. afarensis, which plotted in line with one of the high fruit consumers 

(Figure 5.48).  

 

 

 
Figure 5.40: Fruit consumption using direct observation (DO) by non-human primates and hominins by 

components 2 (crown shape indices (CSI)) and 3 (corpus robusticity indices (CRI)). 1= low consumption, 2 = 

moderate consumption, 3 = high consumption, 4 = unknown consumption. Cebus and Sapajus cluster distinctly 

from all other taxa on component 2 (crown shape indices). 
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Leaf consumption 

 The graphs produced to compare the hominins to non-human primates for leaf 

consumption were very different depending upon whether the diet information was 

using direct observation or faecal analysis, hence data for both are presented. For 

component 1 (size variables) using direct observation, the low quantity category appears 

to be widely dispersed along the size ranges, while moderate consumers plot closer to 

the midline, and high consumers plot at the high end of the range (Figure 5.49). The 

hominins (unknown diet category) plot predominantly surrounded by some of the low 

consumers of leaves, although A. afarensis and A. africanus, also plot in line with some 

of the moderate consumers, and P. boisei plots near the high consumers of leaves 

(Figures 5.49-5.50). 

 

 
Figure 5.41: Leaf consumption using direct observation (DO) by non-human primates and hominins by 

components 1 (size variables) and 2 (crown shape indices (CSI)). 1= low consumption, 2 = moderate 

consumption, 3 = high consumption, 4 = unknown consumption. Cebus and Sapajus plot at the lowest end of 

the scale for component 1 (size variables) and cluster distinctly from all other taxa on component 2 (crown 

shape indices). 
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 For component 2 (crown shape indices), there are three distinct groupings, with 

some overlap in the quantity categories present. Consumers of low quantities of leaves 

are present in each of the clusters suggesting some distinction exist within this quantity 

category. In contrast, moderate consumers are present in one cluster (those with longer 

tooth crowns) and high consumers are present in another (the cluster closest to the 

midline). The hominins plot in a distinct cluster, in line mostly with low consumers of 

leaves, with the exception of H. ergaster and P. boisei who also plot in line with the 

high consumers (Figures 5.49-5.50). As before, when component 3 (corpus robusticity 

indices) was introduced the hominins were distinct from the non-human primates, with 

the exception of A. afarensis, which plotted in line with a low leaf consumer (Figure 

5.50).  

 

 

 
Figure 5.42: Leaves consumption using direct observation (DO) by non-human primates and hominins by 

components 2 (crown shape indices (CSI)) and 3 (corpus robusticity indices (CRI)). 1= low consumption, 2 = 

moderate consumption, 3 = high consumption, 4 = unknown consumption. Cebus and Sapajus cluster distinctly 

from all other taxa on component 2 (crown shape indices). 
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 For component 1 (size variables) using faecal analysis, the low and moderate 

quantity categories appear to be widely dispersed along the size ranges, while high 

consumers plot at the high end of the range (Figure 5.51). The hominins (unknown diet 

category) plot predominantly surrounded by some of the moderate consumers of leaves, 

although A. afarensis, A. africanus, P. robustus and P. boisei also plot in line with some 

of the low consumers, with the latter also nearest to the high consumers of leaves 

(Figures 5.51-5.52). 

 

 
Figure 5.43: Leaves consumption using faecal analysis (FA) by non-human primates and hominins by 

components 1 (size variables) and 2 (crown shape indices (CSI)). 1= low consumption, 2 = moderate 

consumption, 3 = high consumption, 4 = unknown consumption. Sapajus plot at the lowest end of the scale for 

component 1 (size variables) and cluster distinctly from all other taxa on component 2 (crown shape indices). 
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 For component 2 (crown shape indices), there are three distinct groupings, with 

some overlap in the quantity categories present. Consumers of low quantities of leaves 

are present in each of the clusters and consumers of moderate quantities of leaves are 

present in two of the three clusters, suggesting some distinction exist within these 

quantity categories. In contrast, high consumers are present in one cluster (the cluster 

closest to the midline). The hominins plot in a distinct cluster, in line mostly with some 

of the moderate and high consumers of leaves, with the exception of A. africanus and H. 

habilis who also plot in line with some of the low consumers (Figures 5.51-5.52). As 

before, when component 3 (corpus robusticity indices) was introduced the hominins 

were distinct from the non-human primates, with the exception of A. afarensis, which 

plotted in line with one of the moderate leaf consumers (Figure 5.52).  

 

 
Figure 5.44: Leaves consumption using faecal analysis (FA) by non-human primates and hominins by 

components 2 (crown shape indices (CSI)) and 3 (corpus robusticity indices (CRI)). 1= low consumption, 2 = 

moderate consumption, 3 = high consumption, 4 = unknown consumption. Sapajus cluster distinctly from all 

other taxa on component 2 (crown shape indices). 
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Seed consumption 

 The graphs produced to compare the hominins to non-human primates for seed 

consumption were similar when using direct observation and faecal analysis, and as 

such the graphs by direct observation are displayed below. For component 1 (size 

variables), the low quantity category appears to be widely dispersed along the size 

ranges, while moderate consumers plot from lower towards the midline on the graph, 

and high consumers plot around the midline to the high end of the graph (Figure 5.53). 

The hominins (unknown diet category) plot predominantly surrounded by some of the 

low consumers of seeds, although, P. boisei, H. ergaster and A. africanus all plot in line 

with some of the moderate and high consumers of seeds (Figures 5.53-5.54).  

 

 

 
Figure 5.45: Seeds consumption using direct observation (DO) by non-human primates and hominins by 

components 1 (size variables) and 2 (crown shape indices (CSI)). 1= low consumption, 2 = moderate 

consumption, 3 = high consumption, 4 = unknown consumption. Cebus and Sapajus plot at the lowest end of 

the scale for component 1 (size variables) and cluster distinctly from all other taxa on component 2 (crown 

shape indices). 
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 For component 2 (crown shape indices), there are three distinct groupings, with 

some overlap in the quantity categories present. Consumers of low quantities of seeds 

are present in each of the clusters and consumers of high quantities of seeds are present 

in two of the three clusters, suggesting some distinction exist within these quantity 

categories. In contrast, moderate consumers are present in one cluster (the lowest 

cluster, indicating they are associated with long tooth crowns). The hominins plot in a 

distinct cluster, in line mostly with some of the low and high consumers of seeds. A. 

africanus, P. robustus, H. ergaster and H. habilis all plot in line with some of the high 

consumers of seeds, while A. afarensis and P. boisei plot in line with some low 

consumers of seeds (Figures 5.54). A. afarensis plotted in line with a low seed consumer 

on component 3 (corpus robusticity indices) (Figure 5.54). 

 

 
Figure 5.46: Seeds consumption using direct observation (DO) by non-human primates and hominins by 

components 2 (crown shape indices (CSI)) and 3 (corpus robusticity indices (CRI)). 1= low consumption, 2 = 

moderate consumption, 3 = high consumption, 4 = unknown consumption. Cebus and Sapajus cluster distinctly 

from all other taxa on component 2 (crown shape indices).  
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Root consumption 

 The graphs produced to compare the hominins to non-human primates for root 

consumption were similar when using direct observation and faecal analysis, and as 

such the graphs by direct observation are displayed below. For component 1 (size 

variables), the low quantity category appears to be widely dispersed along the size 

ranges, while moderate consumers plot around the midline to the high end of the graph, 

and high consumers plot towards the high end of the graph (Figure 5.55). The hominins 

(unknown diet category) plot predominantly surrounded by some of the low consumers 

of roots, although, A. africanus plots in line with one of the moderate consumers, and H. 

habilis and P. robustus plot in line with the high consumer of roots (Figures 5.55-5.56). 

 

 

 
Figure 5.47: Roots consumption using direct observation (DO) by non-human primates and hominins by 

components 1 (size variables) and 2 (crown shape indices (CSI)). 1= low consumption, 2 = moderate 

consumption, 3 = high consumption, 4 = unknown consumption. Cebus and Sapajus plot at the lowest end of 

the scale for component 1 (size variables) and cluster distinctly from all other taxa on component 2 (crown 

shape indices). 
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 For component 2 (crown shape indices), there are three distinct groupings, with 

some overlap in the quantity categories present. Consumers of low quantities of roots 

are present in each of the clusters and consumers of high quantities of roots are present 

in all three of the clusters, while consumers of moderate quantities of roots are present 

in two of the three clusters, suggesting some distinction exist within these quantity 

categories. In contrast, high consumers are present in one cluster (the lowest cluster, 

indicating they are associated with long tooth crowns). The hominins plot in a distinct 

cluster, mostly in line with some of the low consumers of roots. The only exception to 

this pattern is H. ergaster, which plots in line with one of the moderate consumers of 

roots (Figures 5.55-5.56). A. afarensis plotted in line with a low root consumer on 

component 3 (corpus robusticity indices) (Figure 5.56).   

 

 

 
Figure 5.48: Roots consumption using direct observation (DO) by non-human primates and hominins by 

components 2 (crown shape indices (CSI)) and 3 (corpus robusticity indices (CRI)). 1= low consumption, 2 = 

moderate consumption, 3 = high consumption, 4 = unknown consumption. Cebus and Sapajus cluster distinctly 

from all other taxa on component 2 (crown shape indices). 
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Animal consumption  

 The graphs produced to compare the hominins to non-human primates for animal 

consumption were similar when using direct observation and faecal analysis, and as 

such the graphs by direct observation are displayed below. For component 1 (size 

variables), the low quantity category appears to be widely dispersed along the size 

ranges, while moderate consumers plot from the low end of the graph to the midline, 

and high consumers plot at the lowest end of the graph (Figure 5.57). The hominins 

(unknown diet category) plot predominantly surrounded by some of the low consumers 

of animals, although, A. africanus plots near some of the moderate consumers (Figures 

5.57-5.58). 

 

 
Figure 5.49: Animal consumption using direct observation (DO) by non-human primates and hominins by 

components 1 (size variables) and 2 (crown shape indices (CSI)). 1= low consumption, 2 = moderate 

consumption, 3 = high consumption, 4 = unknown consumption. Cebus and Sapajus plot at the lowest end of 

the scale for component 1 (size variables) and cluster distinctly from all other taxa on component 2 (crown 

shape indices). 
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 For component 2 (crown shape indices), there are three distinct groupings, with 

some overlap in the quantity categories present. Consumers of low, moderate and high 

quantities of animals are each present in two of the three clusters, with low and 

moderate both present in the groups at the lowest end of the graph and the midpoint, 

while high consumers are present in the groups at the lowest and the highest end of the 

graph, suggesting some distinction exist within these quantity categories. The hominins 

plot in a distinct cluster, mostly in line with some of the low consumers of animals, 

although A. africanus and H. habilis also plots in line with some of the moderate 

consumers of animals (Figures 5.57-5.58). A. afarensis plotted in line with a low animal 

consumer on component  3 (corpus robusticity indices) (Figure 5.58).  

 

 

 
Figure 5.50: Animal consumption using direct observation (DO) by non-human primates and hominins by 

components 2 (crown shape indices (CSI)) and 3 (corpus robusticity indices (CRI)). 1= low consumption, 2 = 

moderate consumption, 3 = high consumption, 4 = unknown consumption. Cebus and Sapajus cluster distinctly 

from all other taxa on component 2 (crown shape indices). 

 

 

 

 

 

 



 

 179 

Chapter 6  : Discussion 

 This thesis aimed to explore the potential association between diet and masticatory 

morphology in non-human primates, as a basis from which to compare extinct hominins 

to extant non-human primates of known-diet. Based on this information, it was possible 

to hypothesise about the types of diets the hominins could have consumed. The 

potential implications of these results and how they compare to current interpretations 

are discussed in this chapter.  

 

6.1 Discussion of the results obtained in relation to the research questions and 

other existing research  

 An important aspect of morphological variation in extant non-human primates is 

associated with body size differences. Indeed, the effects of body size differences are 

apparent throughout the analyses run (Tables 5.10-5.19), a fact also consistent with 

another study on non-human primates (Veneziano et al., 2019) and a study on African 

antelopes (Louys et al., 2015a). The patterns observed also appear to conform to the 

Jarman-Bell principle, whereby the larger species consumed greater quantities of leaf-

based foods (foliage), while the smaller species consumed greater quantities of insect-

based foods (Figures 5.21, 5.23, 5.25). Clearly when analysing morphology and diet, 

the impact of body size is considerable and cannot be overlooked.  

 The overall morphological differences between Paranthropus and Australopithecus 

cannot, however, be explained by body size differences. While Paranthropus does 

present a masticatory apparatus that is larger relative to that of Australopithecus 

(Robinson, 1954a, b, 1963), the reconstructions of body mass based on various 

morphological traits taken from the femur and tibia indicate that there is very little 

estimated body mass difference between the two genera (information available in Table 

4.3). The range of body size variation present in the two hominin genera would be 

similar to that of large bodied primates, and thus would not show the same level of 

distinction that is present in the non-human primate dataset. Furthermore, it has been 

demonstrated the tooth size differences between Australopithecus and Paranthropus are 

not the consequence of body size differences (Kay, 1975b; Wood & Stack, 1980; 

Daegling & Grine, 1991). It would therefore appear that the clear morphological 

differences present in the masticatory apparatus of Paranthropus and Australopithecus 

are not the result of body size differences. Other factors must therefore be considered.  
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6.1.1 Examination of the association between diet and morphology in non-human 

primates 

 Previous research identified that there is an association between foods that initiate 

high stress and strain and the masticatory morphology (Hylander, 1979a, 1979b, 1984, 

1985, 1988; Hylander & Johnson, 1994; Taylor, 2002, 2006a; Vinyard et al., 2006). 

Refining the relationship further between form and function/ diet has however proven 

difficult. The association between dentition and diet is suggested to be somewhat more 

straightforward, whereby inferences can be made regarding the general dietary 

adaptation of a species based on the size and shape of their dentition (Kay, 1975; 

Kinzey, 1978; Happel, 1988; Yamashita, 1998; Teaford & Ungar, 2000; Lucas, 2004; 

Lucas et al., 2008b; Lee et al., 2010; Ungar 2011, 2015). Yet research shows that while 

the dentition is historically more informative than the mandibular morphology with 

regard to diet adaptation, it is not without its limitations.  

 To this end, the first research topics considered here pertain to:  1) whether it is 

possible to identify morphological differences in consumers of different diets, 2) 

whether consumers of large quantities of particular foods vary morphologically from 

consumers of low quantities of the same foods, and 3) how much of the morphological 

variation can be explained by diet. To address these questions a range of non-human 

primate species with different dietary preferences, occupying various habitats and 

subject to seasonal shortage and abundance of foods were analysed using a series of 

commonly used metric measurements to test the role of different independent variables, 

such as size and diet in relation to the morphology of non-human primates. Initially, it 

was intended to explore the potential impact of fallback foods on the masticatory 

morphology, but despite collecting a very large dataset attempts to classify foods as 

fallback were unsuccessful (the reasons for this are discussed later in this chapter). As a 

result, diet had to be tested as a whole, and not separated into preferred and fallback.  

 

6.1.1.1 Morphological differences between consumers of different diets 

 There were significant (p = <0.05) morphological differences between consumers of 

different diets, especially evident within the monkey group (includes both New World 

and Old World monkeys) (Table 6.1). Morphological differences between dietary 

groups manifest more clearly when using the indices, particularly as pertaining to the 

mandibular corpus and dentition in monkeys rather than between the different body size 

groupings (compare percentages in Table 6.2). In contrast, while significant 

morphological differences between consumers of different diets were present in the 
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apes, particularly the smaller species, they did not occur as frequently as morphological 

differences between the small and large apes (compare percentages in Table 6.3). The 

greater amount of differences among the small-bodied species of apes could be a result 

of differences in sample size, as reported by Meloro et al. (2015), who found that when 

larger samples were analysed greater morphological distinctions associated with feeding 

adaptations were identified in the mandibles than when smaller samples were analysed. 

This is likely because in larger samples there is a greater diversity of morphologies 

present. Differences identified here could therefore represent phylogenetic differences 

as much as body size differences. In contrast, in smaller samples there is less 

morphological diversity, and consequently fewer significant differences between 

morphologies.  
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Table 6.1: Comparison of the number of times (by percentage) consumers of different diets presented significantly different morphology in monkeys and apes 

 
Crown area Crown shape index Corpus size Corpus robusticity index 

 
P4 M1 M2 M3 P4 M1 M2 M3 SS P4 M1 M2 M3 SRI P4 M1 M2 M3 

Monkeys 86.96 100 86.90 86.96 86.96 65.22 73.91 86.96 91.30 86.96 86.96 86.96 86.96 65.22 86.96 86.96 91.30 69.57 

Apes 92.31 84.62 92.31 69.23 30.77 23.08 0 69.23 38.46 69.23 76.92 76.92 76.92 61.54 38.46 38.46 0 0 

Dietary categories analysed by small monkeys = 11.  Dietary categories analysed by large monkeys = 12. 

Dietary categories analysed by small apes = 5.  Dietary categories analysed by large apes = 8. 

 

Table 6.2: Comparison of the number of times (by percentage) different body sizes and consumers of different diets presented significantly different shape morphology in monkeys 

  Crown shape index Corpus robusticity index 

  P4 M1 M2 M3 SRI P4 M1 M2 M3 

Percentage of variables significantly different between body sizes 75.00 45.83 83.33 95.83 79.17 45.83 62.50 58.33 70.83 

Percentage of variables significantly different between consumers of different diets 86.96 65.22 73.91 86.96 65.22 86.96 86.96 91.30 69.57 

Numbers in bold denote the higher frequency of significant variables 

 

Table 6.3: Comparison of the number of times (by percentage) different body sizes and consumers of different diets presented significantly different shape morphology in apes 

  Crown shape index Corpus robusticity index 

  P4 M1 M2 M3 SRI P4 M1 M2 M3 

Percentage of variables significantly different between body sizes 41.67 100 100 97.67 100 50 33.33 91.67 25 

Percentage of variables significantly different between consumers of different diets 30.77 23.08 0 69.23 61.54 38.46 38.46 0 0 

Numbers in bold denote the higher frequency of significant variables 
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 Different morphological patterns were present in consumers of different diets across 

the variables analysed. Tooth crown differences emerged between the different diets, 

with frugivore-insectivores presenting relatively wider tooth crowns than folivores and 

omnivores who present relatively longer tooth crowns (Figures 5.21-5.22). In contrast, 

frugivores appeared to overlap with all of the categories, with no distinct pattern 

present. This last point indicates that a derived morphology is not required to consume a 

high fruit diet and that a frugivores’ morphology reflects more of a ‘jack of all trades’, 

generalist morphology.  

 Corpus and symphysis differences were also present between consumers of different 

diets. Frugivore-granivores, frugivore-faunivores, frugivore-insectivores and omnivores 

all consistently displayed taller mandibular corpora and wider symphyses. In contrast, 

folivores, folivore-frugivores and frugivore-folivores (although there is also extensive 

overlap with this group to the other frugivore-based groups), all displayed relatively 

wider mandibular corpora and taller symphyses (Figures 5.24, 5.26-5.27). These results 

largely appear to contrast with much of the work done by Hylander (1979b) and 

Bouvier (1986a, b) that suggested a deeper mandibular corpus was associated with 

folivory as a way of resisting parasagittal bending loads. Instead, a diet consisting of 

harder foods is here associated with a deeper mandible, which is consistent with the 

findings for the hard-object feeding Lophocebus albigena (Hylander, 1979b) and Pongo 

pygmaeus (Taylor, 2006a), and a diet consisting of tougher foods is here associated with 

a wider mandible. In this instance, it may be that the deeper mandibular corpus and 

wider symphyses associated with hard-object feeding is an adaptation to resist 

parasagittal bending loads and wishboning, and the wider mandibular corpus and taller 

symphysis associated with tough-object feeding may be an adaptation to resist axial 

torsion and vertical bending (Hylander, 1979a, 1985).  

 These results potentially differ to those of previous research for two reasons: 1) the 

sample used was different, and 2) some of the variables used were different. In the 

present study, focus was on frugivores with folivores, such as colobines (commonly 

used as the folivore reference species) not included. Future research using more 

folivorous species would confirm or challenge the above findings. Additionally, it is 

possible the use of different variables has had an effect on how the results from this 

study compare to others. Bouvier (1986a, b) and Ravosa (1991) both analysed jaw form 

by scaling M2 corpus height and M2 corpus width to body size and jaw length, whereas 

corpus robusticity indices as used here directly compare corpus height to corpus width 

from P4-M3. 
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 A pattern that emerged from the dietary data based on field reports (direct 

observation) was the close clustering of frugivore-granivores and folivore-granivores on 

component 1 (size variables) but the slight differences on component 2 (corpus 

robusticity indices) (Figure 5.23). Folivore-granivores appear to have relatively wider 

mandibular corpora than do frugivore-granivores, which have relatively taller 

mandibular corpora. These two categories (frugivore-granivores and folivore-

granivores) indicate that seed consumption (a secondary food) is associated with 

variation in size variables, while fruits or leaves (primary foods) are associated with 

variation in corpus robusticity indices. Overall, the bivariate graphs using traditional 

diet categories demonstrate that that there are some differences present in the 

masticatory morphology associated with dietary differences. However, the usage of the 

specific classification coding categories is preferred as it identifies the more subtle 

morphological differences between dietary categories.  

 In the food quantity analyses, different quantities of each of the foods did appear to 

correspond to different morphological patterns. High fruit consumption does not appear 

to have much bearing on morphology, but low and moderate consumption does, with 

low consumers characterised by relatively wider corpus robusticity indices and longer 

tooth crowns, and moderate consumers characterised by relatively taller corpus 

robusticity indices (Figure 5.28). Differences in fruit consumption could be a result of 

the varied foods that make up the rest of the diet when fruit consumption is low. 

 High consumers of leaves present wider mandibular corpora, taller symphyses, and 

wider tooth crowns relative to low and moderate consumers of leaves (Figures 5.29-

5.30). High consumption of seeds is associated with a relatively taller mandibular 

corpus and wider crown shapes compared to low and moderate consumers of seeds 

(Figure 5.31). Once again, these results contrast with those of Hylander (1979b) and 

Bouvier (1986a, b). For the species analysed here it appears that tough-object feeders 

may be adapted to resist the axial torsion from the working side of the mandible in the 

corpus and vertical bending of the symphysis, while hard-object feeders may present 

adaptations to resist parasagittal bending in the corpus (Hylander, 1979a).  

 Depending on whether faecal analysis or direct observation is used, high 

consumption of roots can correspond to relatively taller (by direct observation) or wider 

mandibular corpora (by faecal analysis), and little difference to the crown shape indices 

(both by direct observation), compared to low and moderate consumers (Figures 5.32-

5.33). This could mean that resistance to either parasagittal bending or axial torsion in 

the corpus are possible biomechanical adaptations associated with root consumption 
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(Hylander, 1979a, 1985). Different proportions of animal consumption are not reflected 

by different morphologies by direct observation, but they are by faecal analysis on the 

crown shape indices. Low consumers of low quantities of animal matter present 

relatively wider crowns and high consumers present relatively longer crowns (Figure 

5.34). 

 The results of the food quantity analyses, therefore indicate that consumers of high 

quantities of more obdurate foods, e.g., seeds and leaves appeared to cluster in more 

distinct groupings, while consumers of lower quantities of the same foods appeared 

more dispersed. In contrast, high consumers of fruits (assumed here to be a soft food) do 

not cluster in defined patterns, presenting a more scattered appearance on the 

morphospace, while the low and moderate consumers of fruits cluster in more distinct 

groupings, indicating the other foods consumed had an important effect.  

 The finding that the more obdurate foods, such as seeds and leaves, that generally 

involve higher stress and strains on the bone than softer foods, such as fruits, appear to 

be more important determinants of the mandibular corpus robusticity indices than are 

those of low strain is consistent with extensive literature on the subject (Hylander, 

1979b, 1984, 1985; Bouvier, 1986a, b; Ravosa, 1991, 1996; Daegling, 1992; 

Yamashita, 1996, 1998; Bouvier & Ravosa, 1998; Lambert et al., 2004; Foster et al., 

2006; Dominy et al., 2008; Norconk et al., 2009; Daegling et al., 2011; McGraw et al., 

2016; Ross et al., 2016). In fact, if leaves and seeds can be taken as proxies for 

representing tough and hard foods, respectively – which is cautioned against, but in this 

case necessary (Yamashita, 1998; Grine et al., 2006b, 2012; Taylor, 2006b; Vogel et 

al., 2014; Smith et al., 2015; Coiner-Collier et al., 2016; Talebi et al., 2016), there are 

different morphologies present in tough food eaters compared to hard food eaters 

(Figures 5.29-5.31). In this study, hard food consumers display relatively taller 

mandibular corpora, whereas, tough food consumers display relatively wider (more 

robust, i.e. a higher corpus robusticity index) mandibular corpora, along with taller 

symphyses. Previous researchers had suggested that it might not be possible to 

distinguish between morphologies of hard or tough food eaters (Hylander, 1979b; 

Smith, 1983; Daegling & Grine, 1991; Ravosa, 1996; Daegling & McGraw, 2001; 

Hogue, 2008; McGraw & Daegling, 2012; Daegling et al., 2013; Grine & Daegling, 

2017). Yet the results from this study and Veneziano et al. (2019) suggest that some 

subtle distinctions may be possible.  

 The potential reasons that this research and that of Veneziano et al. (2019) identified 

a different relationship between hard and tough foods include, 1) sample size, 2) 
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classification of diet categories, and 3) morphological variables examined.  Firstly, the 

samples used in the present study were much larger than in many other studies and as a 

result the dietary proclivities of the non-human primates were more diverse. For 

example Hylander’s (1979a) study was based on very limited species diversity as it 

focussed on Macaca fascicularis and Galago crassicaudatus.  

 Second, diet was analysed differently, for example, Smith (1983) used a binary diet 

categorisation (frugivory or folivory) and while those categories were used in this study, 

so too were more detailed categories, e.g., frugivore-folivore, as well as more quantity 

categories, which included seeds to represent harder foods. The additional diet 

categories used revealed some consistency among morphological patterns and diet, e.g., 

folivores when using specific classification coding categories by both direct observation 

and faecal analysis, and high leaf consumers both score in similar ways on the bivariate 

graphs (Figures 5.24, 5.26, 5.29-5.30). The diet categories also revealed some 

differences, e.g., folivory in the traditional diet categories (Figure 5.22) does not cluster 

in a defined way on the corpus robusticity indices as it does in all of the other dietary 

classification systems (Figures 5.24, 5.26, 5.29-5.30). This indicates that the traditional 

diet classification system is perhaps not refined enough to identify distinct associated 

patterns of morphological variation. In addition, root consumption results vary 

depending on whether they were obtained through direct observation or faecal analysis 

(Figures 5.32-5.33). The use of more extensive diet categories is therefore 

recommended so as to obtain a more accurate reflection of the association between diet 

and morphology.  

  Finally, this study used different variables and or variations of different variables to 

previous studies. For example, Daegling (1992) analysed the cross-sectional area of the 

corpus at the M2. Where the variables used overlapped with other studies, this study 

used more. For example, here the corpus robusticity indices were analysed from P4-M3, 

whereas other studies e.g., Smith (1983) used just the M1 corpus robusticity indices, 

Daegling & McGraw (2001) used M2 corpus robusticity indices, and Pitirri & Begun 

(2019) used M1-M2 corpus robusticity indices. Which corpus variables are used is 

potentially important, because slightly different patterns were present in monkeys and 

apes for those variables that were significantly different between consumers of different 

diets (Table 6.1). For monkeys, the major differences arose on P4-M2 corpus robusticity 

indices (>80%), with significant differences also found on symphyseal robusticity 

indices and M3 corpus robusticity indices (>60%). For apes, the major differences arose 

on symphyseal, P4-M1 corpus robusticity indices (100%), but rarely on M2 corpus 
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robusticity indices (20%) and never on M3 corpus robusticity indices. It is likely 

therefore that because more corpus variables were analysed in this study than in others 

(e.g., Pitirri & Begun 2019) different morphological patterns associated with different 

diets were identified. Pitirri & Begun (2019) focussed their study on apes, and used M1-

M2 corpus robusticity indices as defining variables. However, as shown here the best 

variables to identify variation associated with diet in apes are symphyseal robusticity 

indices, and P4-M1 corpus robusticity indices. Thus, Pitirri & Begun (2019) potentially 

missed identifying a stronger relationship between the corpus robusticity indices and 

diet because they did not use a greater number of variables, and particularly those that 

best identified the morphological differences. If both monkeys and apes are used in 

studies assessing the potential association between diet and corpus robusticity indices 

then all corpus robusticity indices from P4-M3 should be included to maximise the 

potential for identifying morphological variability associated with different diets. The 

use of only 1 or 2 variables potentially misses out on important patterns of association. 

 An additional pattern to emerge from this study is that the most robust non-human 

primates (those with the widest mandibular corpora, as defined by the robusticity index) 

were the consumers of folivorous diets. That folivory corresponds to a more robust 

mandible is consistent with some published research (Hylander, 1979b; Bouvier, 1986a, 

b; Ravosa, 1991), but not all, as other researchers have found that a robust mandibular 

corpus is associated with a harder food diet (Daegling, 1992; Veneziano et al., 2019). It 

is possible that the present study and that of Veneziano et al. (2019) did not report 

similar findings in terms of which food type corresponds best to mandibular robusticity 

because the two studies use different ways of assessing dietary hardness/ toughness. It is 

assumed here that high quantities of seeds in the diet equals high quantities of hard 

foods, and equally that high quantities of leaves in the diet equals high quantities of 

tough foods. In contrast, Veneziano et al. (2019) use dental microwear patterns to assess 

hardness/ toughness, so they are using the traces of the mechanical properties of foods 

for comparison. The approach of Veneziano et al. (2019) is perhaps one of the best 

ways to determine the dietary hardness/ toughness, and is an approach that should 

probably be used in future studies. However, such data were not available for the wide 

range of primate species included in this study sample, and so could not be used in this 

research.  

 It is also possible that the results from the present study reported differences on the 

diets best associated with robusticity due to the fact that the term used in previous 

research might reflect slightly different morphology than robusticity reported in this 
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study (what the robusticity index measures is addressed in Section 4.2.2). Generally, P. 

boisei are commonly regarded as the most robust hominin (Broom, 1938; Dean, 1988; 

Grine & Martin, 1988; Wood & Strait, 2004; Wood & Constantino, 2007), yet in the 

present study P. boisei did not exhibit greater robusticity than other hominins. In fact, A. 

africanus actually scored the highest value on component 3 (corpus robusticity indices) 

(Figure 5.40). As a result, further research is necessary in order to confirm this trend, 

perhaps using a different definition of robusticity. 

 In contrast to the patterns present on the corpus, there appears to be very little to 

separate seed consumption (hard foods) from leaf consumption (tough foods) using 

dental traits. This finding is in contrast to extensive literature which suggests that the 

relationship between eating hard or tough food is more correlated with the dentition 

than that of the mandibular corpus (Kay, 1975; Rosenberger & Kinzey, 1976; Kinzey, 

1978; Happel, 1988; Yamashita, 1998; Teaford & Ungar, 2000; Lucas, 2004; Lucas et 

al., 2008b; Lee et al., 2010; Ungar 2011, 2015; Vinyard et al., 2011). In terms of the 

dentition, it is likely that the lack of correlation present between the nature of the food 

consumed and the dentition is again a reflection of the variables analysed. Crown area 

and crown shape indices were the variables analysed for this study, but in many other 

studies where morphological differences between diets have been reported, cusp size 

and shape (e.g., whether cusps were low and blunt), the degree of shear on the shearing 

blade and dental enamel thickness were all found to be more informative than the size 

and shape of the crown area (Kay, 1975; Kinzey, 1978; Happel, 1988; Yamashita, 1998; 

Teaford & Ungar, 2000; Lucas, 2004; Lucas et al., 2008b; Lee et al., 2010; Ungar 2011, 

2015). It appears therefore that morphological differences between consumers of 

different diets are not readily identified using crown area and crown shape indices. As a 

result, further analyses on more detailed morphological features of the dentition should 

be undertaken in order to either confirm or challenge the results obtained so far. 

 

6.1.1.2 Assessing the contribution of diet towards morphological form 

 In the regression models analysing the contribution of diet towards the dental and 

mandibular variation, diet explained between 10 and 20% of the variance present (Table 

5.25). In the regression models using component 1 (size variables), log body weight and 

sex explained the majority of the variance present (77%), with diet contributing a 

further 9% of the variance. This result concurs with Louys et al. (2015a) and Veneziano 

et al. (2019) who also found that dental size was mainly influenced by body size.  
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 The amount of variance explained by log body weight and sex was reduced in the 

regression models run on components 2 (corpus robusticity indices = 31%), 3 (crown 

shape indices = 23%), and 4 (symphyseal robusticity indices = 1%), compared to 

component 1 (size variables = 77%). Meanwhile, when diet was included in the models, 

the amount of variance on the dependent variable explained increased by 21% for 

component 2 (corpus robusticity indices), by 19% for component 3 (crown shape 

indices), and 20% for component 4 (symphyseal robusticity indices), compared to the 

9% for component 1 (size variables) (Table 5.25). The increased association between 

component 2 (corpus robusticity indices) and diet was again similar to that of 

Veneziano et al. (2019), who found that mandibular corpus robusticity indices were 

linked to food mechanical properties. In contrast, the association between component 4 

(symphyseal robusticity indices) and diet in this study differs from that of Vaneziano et 

al. (2019), who did not find any association between diet and symphyseal robusticity 

indices, instead finding that this variable correlated best with log body size and 

phylogeny. These results and those of Vaneziano et al. (2019) highlight that diet, while 

not predicted to be the most important variable to explain variance, is consistently an 

important factor in explaining morphological variance, and is important to consider 

when analysing the various aspects of mandibular morphology.  

 The diets that appear to result in higher variance explained for each component also 

appear to show a pattern. Components 1 (size variables) and 2 (corpus robusticity 

indices) are best explained by diets that contained fruits and seeds, while components 3 

(crown shape indices) and 4 (symphyseal robusticity indices) are best explained by diets 

that contained fruits, leaves and roots. This could indicate that different components of 

the morphology respond in different ways to different diets. In this case, size and the 

corpus have a stronger association with harder foods, while the dentition and the 

symphysis have a stronger association with tough foods. If different types of diets have 

a greater association with different components of the morphology as suggested by the 

multiple regression analyses, then it is potentially very interesting as regards to 

Paranthropus. It has been suggested by some (Wood & Schroer, 2012; Strait et al., 

2013; Smith et al., 2015) that it is inconceivable that as one aspect of morphology 

becomes better adapted to hard foods, another simultaneously becomes better adapted to 

tough foods. These multiple regression results indicate that this might be possible in 

non-human primates. It would be useful for future work to elucidate the subtle 

mandibular morphological differences in Paranthropus and other hominins in relation 

to proposed dietary variation.  
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6.1.1.3 Other factors that contribute to morphological form 

 The results from this research in combination with those of other studies (e.g., 

Hylander, 1979b, 1984, 1985; Bouvier, 1986; Ravosa, 1991, 1996; Yamashita, 1996, 

1998; Bouvier & Ravosa, 1998; Lambert et al., 2004; Norconk et al., 2009; Daegling et 

al., 2011; McGraw et al., 2016; Ross et al., 2016) indicate that there is an association 

between the nature of the foods consumed (food mechanical properties) and the 

morphology of species. The results from this study also highlight that there are other 

factors besides diet associated with morphological form. Throughout the analyses, size 

was clearly an important factor in explaining variation, while biological sex (Table 

5.25) and taxonomy contributed to variation (Figures 5.1-5.7). They demonstrate 

differences associated with species characterised by different degrees of sex 

dimorphism and the different family groupings. There may be other important 

contributing factors, but they have not been explored here. The fact that log body 

weight, sex and dietary categories did not account for all of the variance present 

supports this conclusion.  

It must be remembered that the mandible is a component of the masticatory 

apparatus, which also comprises the muscles of mastication, both the internal and 

external aspects of the mandible, the temporomandibular joint, the tongue and the 

cheek, among other hard and soft tissues (Bock & von Wahlert, 1965; Grine et al., 

2010; Ungar, 2015). All of which means that the mandible is not a singular feature, but 

rather part of a character complex (Bock & von Wahlert, 1965). With this in mind, a 

robust masticatory morphology is not necessarily a functional adaptation to resist stress 

because the craniofacial apparatus does not function only to masticate foods (Smith, 

1983; Hylander, 1984; Daegling, 1993b; Daegling & McGraw, 2001; Taylor, 2002, 

2006a, b, 2009; Koyabu & Endo, 2009; Larson et al., 2018). The craniofacial apparatus, 

along with the rest of the skeleton, is governed also by several non-dietary factors. 

These include: allometry, phylogeny, genetic drift, ontogenetic changes, sexual 

dimorphism, the relationship with other tissues, spatial demands for the growth of the 

dentition, respiration, digestion, display behaviours and communication (with the latter 

factors particularly relevant for the masticatory apparatus) (Bock & von Wahlert 1965; 

Smith, 1983; Kanazawa & Rosenberger, 1989; Cole, 1992; Daegling, 1992, 1996; 

Yamashita, 1996; Daegling & McGraw, 2001; Taylor, 2006c, 2009; Cardini & Elton, 

2008b; Grine et al., 2012; Daegling et al., 2013; Elton et al., 2016; Ross et al., 2016; 

Grine & Daegling, 2017; Larson et al., 2018; Veneziano et al., 2019). Thus, feeding 
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behaviour and diet are not the only selective forces acting on the mandible, and since all 

of these factors are likely to vary by species, so too may the mandibular form (Bock & 

von Wahlert 1965; Koyabu & Endo 2009; Veneziano et al., 2019). In fact, the effect of 

phylogeny, for example means that there are many apparently novel shapes and 

adaptations that are likely to reflect developmental factors, and not selective pressures 

(Bock, 1980; Vinyard & Ravosa, 1998; Lucas et al., 2008a; McGraw et al., 2012; 

Ungar, 2015; Gailer et al., 2016; Ungar & Hlusko, 2016; Grine & Daegling, 2017; 

Zanolli et al., 2017; Veneziano et al., 2019). In the case of Paranthropus, it appears that 

factors such as phylogeny, allometry or tooth size are not responsible for the derived 

masticatory apparatus, as discussed in Section 2.2.1. As a result, other factors, such as 

diet need to be explored further.  

 Another potential explanation for the difference in morphology is that the 

morphological differences (robusticity) between Australopithecus and Paranthropus 

were reflective of difference in tool use. It has been proposed as an explanation for 

differences in the mandibular robusticity in the more gracile Pongo abelii and the more 

robust P. pygmaeus. P. abelii use tools to break large and tough Neesia seeds, while P. 

pygmaeus use their jaws to break such seeds open (Taylor, 2006a, 2009). In this case, it 

is suggested tool use has reduced the selective demands on the morphology of P. abelii 

(Taylor, 2006a; Vogel et al., 2014).  

 There are potentially many contributing factors to masticatory morphological form, 

which is to be expected given it forms part of a character complex (Bock & von 

Wahlert, 1965; Bock, 1980). Acknowledgement of these other factors is crucial in 

gaining a more comprehensive understanding of how dietary and non-dietary factors 

interact to produce the varying mandibular structures analysed (Daegling & McGraw, 

2011; Vogel et al., 2014).  Ultimately, however, these other factors were not within the 

scope of this thesis to explore. Furthermore, it is important to stress that the results from 

this research reinforce the association between diet and morphology.  

 

6.1.2 Morphological variation in hominins and non-human primates 

 With an association between diet and morphology being identified, the second part 

of the thesis focussed on comparing the morphology of the hominins to the non-human 

primates. On the basis of stable carbon isotopes and dental microwear texture analysis 

much of what was assumed regarding hominin dietary adaptation has been revised 

(Berthaume et al., 2010; Grine et al., 2012; Wood & Shroer, 2012; Scott et al., 2014). 

Both techniques challenged earlier assumptions (sensu Robinson, 1954a, 1963) about 
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the diets of hominins and further questioned whether morphology can act as an indicator 

of dietary adaptation. The last point was the focus of the thesis overall, focussing first 

on the association between diet and morphology in non-human primates, and then 

extrapolating that information further to hypothesise about whether the morphology of 

non-human primates of known-diet could provide some indications of potential dietary 

adaptation in the hominins.  

 

6.1.2.1 Comparing the morphological variation present in hominins to non-

human primates 

 The research questions for this section examined how morphologically comparable 

the hominins are to the non-human primates analysed, and whether by using non-human 

primates as models the morphological features of hominins can be associated with the 

dietary categories of extant species. Components extracted from a new PCA were used 

to compare hominins to non-human primates. The hominins fall within the range of 

non-human primates, especially the apes when component 1 (size variables) is 

compared with component 2 (crown shape indices) (Figure 5.35). In contrast, the 

hominins have greater scores on component 3 (corpus robusticity indices) than any non-

human primate species. Only A. afarensis and Macaca radiata scored at the same level 

(Figures 5.36-5.37). 

 Across each of the components, there existed a large amount of variation between 

the hominin species, greater than that present within Gorilla and Pongo, but more 

similar to that present between Pan paniscus and P. troglodytes, and within P. 

troglodytes (Figures 5.38-5.40). The exception to this pattern was between the two 

Australopithecus species, who present a range greater than any single extant species 

analysed here (Figures 5.38-5.40).  

 

6.1.2.2 Associating hominin morphological features to non-human primate diet 

categories 

 The hominins analysed in this study align with various diets based on how their 

morphologies compare to non-human primates of known diet (Figures 5.41-5.58). The 

results from the hominins have been summarised and compared to stable carbon isotope 

and dental microwear results in Tables 6.4-6.5. The results that are of particular interest 

are those from the non-Homo species: A. afarensis, A. africanus, P. boisei and P. 

robustus. These are the same species that yielded the stable carbon isotope and 

microwear results that have focussed attention upon the form-function relationship in 
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hominins (Sponheimer & Lee-Thorp, 1999; Scott et al., 2005; Sponheimer et al., 2005a, 

2006a, 2013; Ungar et al., 2008). 

 Based on how the hominins score compared to non-human primates (based only on 

the recordings from components 1 (size variables) and 2 (crown shape indices), it is 

likely that there were dietary differences between all of the hominins, including P. 

robustus and P. boisei (Tables 6.4-6.5). Many of the dietary differences suggested for 

the hominins are reflective of omnivorous diets, with each hominin species appearing to 

overlap with a number of different diet categories and food types, but not in the same 

way. The suggested diets that the hominins align with are based only on the recordings 

from components 1 (size variables) and 2 (crown shape indices), as the hominins did not 

align with any non-human primate for component 3 (corpus robusticity indices), with 

the exception of A. afarensis in relation to M. radiata. 

 Given how distinct the hominins score on component 3 (corpus robusticity indices) 

in relation to the non-human primates, it would appear the hominins were somewhat 

overdesigned relative to the extant species. The notion of the mandible being 

overdesigned has been discussed before (see Ward, 1991) and dismissed (Daegling & 

Hylander, 1997), but that was not in the same context as this. Future work could assess 

corpus morphology in different ways, e.g., analysing the mandible with Finite Element 

Analysis to assess the loading and strain capabilities (Toro-Ibacache et al., 2016; 

Stansfield et al., 2018a, b), which would help to clarify the possibility of the hominins 

appearing to be overdesigned.  
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Table 6.4: Hominin dietary interpretations based on how they plot to known-diet non-human primate dietary categories compared to stable carbon isotope and dental microwear results 

Species  
Stable Carbon Isotope 

Analysis 
Dental Microwear Texture Analysis Components Traditional Diet 

Specific Classification 

Coding DO 

Specific Classification 

Coding FA 

A. afarensis 
C3 - C4/ CAM consumer.  

1, 2, 3 

Lacking both complexity and 

anisotropy signals = softer food diet 4, 

5 

1: Size Omnivore Omnivore 
Frugivore-folivore, frugivore-

faunivore 

2: CSI Frugivore Frugivore 
Frugivore-folivore, folivore-

frugivore 

3: CRI Frugivore Frugivore Folivore-frugivore 

A. africanus 
C3 - C4 consumer (60/40).  

1, 6, 7, 8, 9 

Slightly more anisotropy than 

complexity present = varied diet but 

more tough foods present 10, 11, 12, 13 

1: Size Frugivore 
Folivore-granivore, frugivore-
folivore 

Frugivore-folivore, frugivore-
granivore, omnivore 

2: CSI Frugivore 
Omnivore, frugivore-

faunivore 

Omnivore, frugivore-

granivore 

P. boisei 

Predominantly a C4 consumer 

(C3 = 25% / C4 = 75%), with 
an increase in C4 consumption 

over time (20/80). 1, 8, 14   

Low complexity and low-to-moderate 

anisotropy = softer/ slightly tough 
food diet. 8, 11, 15  

1: Size Omnivore Omnivore 
Omnivore (near to frugivore-

folivore, folivore-frugivore) 

2: CSI Frugivore 
Frugivore-folivore, folivore-

frugivore 
Frugivore-folivore 

P. robustus 
C3 - C4 consumer (65/35).  

1, 6, 8, 16, 17 

Highly varied diet, with high 

complexity and low anisotropy = 

harder food diet. 9, 10, 18, 19, 20 

1: Size Omnivore Omnivore, frugivore-folivore Omnivore, frugivore-folivore 

2: CSI Frugivore 

Frugivore-granivore, 

frugivore-faunivore, 

omnivore 

Omnivore, frugivore-

granivore, frugivore-folivore, 

folivore-frugivore 

H. habilis 

C3 - C4 consumer (65/ 35) in 

early years, changing to an 

increase in C4 consumption 
later (45/55). 1, 21, 22  

Varied diets, lacking both complexity 

and anisotropy signals = softer food 

diet. 23 

1: Size Frugivore Frugivore-folivore Frugivore-folivore 

2: CSI Frugivore 

Omnivore, frugivore-

faunivore, frugivore-
granivore 

Omnivore, frugivore-

granivore 

H. ergaster 
C3 - C4 consumer (75/25).  

9, 24 

Highly varied diet, with high 

complexity and low anisotropy = 

harder food diet. 9, 23 

1: Size Frugivore Frugivore-granivore 
Frugivore-folivore, frugivore-
granivore, omnivore 

2: CSI Folivore 
Folivore, folivore-frugivore, 

frugivore-granivore 

Frugivore-folivore, folivore-

frugivore 
1 Sponheimer et al., 2013; 2 Wynn et al., 2013; 3 Levin et al., 2015; 4 Ungar et al., 2010; 5 Grine et al., 2006b; 6 Sponheimer & Lee-Thorp, 1999; 7 van der Merwe et al., 2003; 8 Sponheimer et al., 2005a; 9 Ungar & 

Sponheimer, 2011; 10 Scott et al., 2005; 11 Ungar, 2011; 12 Grine et al., 2012; 13 Peterson et al., 2018; 14 Cerling et al., 2011; 15 Ungar et al., 2008; 16 Lee-Thorp et al., 1994; 17 Sponheimer et al., 2006a; 18 Grine, 1981; 19 

Grine, 1986; 20 Kay & Grine, 1988; 21 Cerling et al., 2013; 22 van der Merwe et al., 2008; 23 Ungar et al., 2006; 24 Lee-Thorp et al., 2000 
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Table 6.5: Hominin dietary interpretations based on how they plot to known-diet non-human primate quantity categories compared to stable carbon isotope and dental microwear results 

Species  
Stable Carbon Isotope 

Analysis 

Dental Microwear 

Texture Analysis 
Comp. 

Direct observation Faecal analysis 

Fruit Leaves Seeds Roots Animals Fruit Leaves Seeds Roots Animals 

A. afarensis 
C3 - C4/ CAM consumer. 

1, 2, 3 

Lacking both 

complexity and 

anisotropy signals = 

softer food diet 4, 5 

1: Size Mod.  
Low/ 

Mod. 
Low 

Low/ 

High 
Low High Low 

Low/ 

Mod. 
Mod. Low 

2: CSI High Low Low Low Low Mod./ High 
Mod./ 

High 
Low Mod. Low 

3: CRI High Low Low Low Low High Mod. Low Low Mod. 

A. africanus 
C3 - C4 consumer (60/40). 

1, 6, 7, 8, 9 

Slightly more 

anisotropy than 

complexity present = 

varied diet but more 
tough foods present 10, 

11, 12, 13 

1: Size Low/ High 
Low/ 

Mod. 

Mod./ 

High 
Mod. 

Low (near 

Mod.) 
Low/ High Mod. 

Low/ 

Mod. 

Low/ 

Mod. 
Low 

2: CSI Mod./ High Low 
Mod./ 

High 
Low Mod. Mod./ High 

Low/ 

Mod. 
High - Low 

P. boisei 

Predominantly a C4 
consumer (C3 = 25% / C4 

= 75%), with an increase 

in C4 consumption over 

time (20/80). 1, 8, 14 

Low complexity and 
low-to-moderate 

anisotropy = softer/ 

slightly tough food diet. 
8, 11, 15 

1: Size Mod. Low High Low Low 
Mod. (near 

low/ high) 
Low High Low Mod. 

2: CSI Mod./ High 
Low/ 

High 
Low Low Low High Mod. Low Low Low 

P. robustus 
C3 - C4 consumer (65/35). 

1, 6, 8, 16, 17 

Highly varied diet, with 
high complexity and 

low anisotropy = harder 

food diet. 9, 10, 18, 19, 20 

1: Size Mod./ High Low Low High Low Mod./ High Mod. 
Low/ 

High 

Low/ 

Mod. 
Low 

2: CSI Low/ High 
Low/ 

High 
High Low Low 

Low, Mod., 

High 

Mod./ 

High 

Low/ 

Mod. 

Low/ 

High 
Low 

H. habilis 

C3 - C4 consumer (65/ 35) 
in early years, changing to 

an increase in C4 

consumption later 

(45/55). 1, 21, 22 

Varied diets, lacking 
both complexity and 

anisotropy signals = 

softer food diet. 23 

1: Size High Low Low Low Low High 
Low/ 
Mod. 

Low Low Low 

2: CSI Mod./ High Low 
Low/ 

High 
Low 

Low/ 

Mod. 
Mod./ High 

Low/ 

Mod. 
High - Low 

H. ergaster 
C3 - C4 consumer (75/25). 

9, 24 

Highly varied diet, with 

high complexity and 

low anisotropy = harder 

food diet. 9, 23 

1: Size High Low 
Mod./ 
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Mod. Low High Mod. Mod. Low Low 

2: CSI 
Low, Mod., 

High 
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High 
High Mod. Low 

Low, Mod., 

High 

Mod/ 

High 

Low/ 

Mod. 

Low/ 

High 
Low 

1 Sponheimer et al., 2013; 2 Wynn et al., 2013; 3 Levin et al., 2015; 4 Ungar et al., 2010; 5 Grine et al., 2006b; 6 Sponheimer & Lee-Thorp, 1999; 7 van der Merwe et al., 2003; 8 Sponheimer et al., 2005a; 9 Ungar & Sponheimer, 

2011; 10 Scott et al., 2005; 11 Ungar, 2011; 12 Grine et al., 2012; 13 Peterson et al., 2018; 14 Cerling et al., 2011; 15 Ungar et al., 2008; 16 Lee-Thorp et al., 1994; 17 Sponheimer et al., 2006a; 18 Grine, 1981; 19 Grine, 1986; 20 Kay & 

Grine, 1988; 21 Cerling et al., 2013; 22 van der Merwe et al., 2008; 23 Ungar et al., 2006; 24 Lee-Thorp et al., 2000 
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 Stable carbon isotope analyses indicate that A. afarensis consumed diets that were 

from C3, C4 and CAM isotopic pathways (Wynn et al., 2013; Levin et al., 2015), and 

the dental microwear texture analyses indicated that the diet consumed was 

predominantly one comprising softer foods (Grine et al., 2006b; Ungar et al., 2010). 

Hypothetically, these isotopic reconstructions are supported by the way in which A. 

afarensis score in relation to some of the extant non-human primates. A. afarensis could 

have consumed an omnivorous diet dominated by fruits, and supplemented by leaves 

and some seeds, roots and animals (Tables 6.4-6.5). These are foods that could 

correspond to the reconstructions based on the microwear and stable carbon isotopes. 

Fruits and seeds could come from the C3 resources and the leaves
8
 and roots from the C4 

resources, while the animal matter could be reflective of either photosynthetic pathway, 

depending on what pathway the foods they consumed came from (Sponheimer et al., 

2005a, 2006a; Cerling et al., 2013). The mechanical properties associated with fruits, 

leaves, seeds and animal matter could also correspond to those of softer foods, as the 

fruits could be soft and fleshy, and the leaves could be consumed in relatively low 

quantities. Seeds and roots might not have featured prominently in the diets based on a 

lack of correspondence to microwear. Depending on whether the animals were 

vertebrates or invertebrates determines their resistance to fracture. A vertebrate may be 

tough and fleshy, while an invertebrate could be soft-bodied, e.g., caterpillars and 

termites, or hard if they had hard exoskeletons, e.g., beetles (Smith, 1983; Melin et al., 

2014; Mossdossy et al., 2015). Neither hard nor extensively tough features have been 

identified on microwear studies of A. afarensis to date, meaning animal consumption 

(should it have occurred) could reflect consumption of the softer-bodied invertebrates. 

Termite fishing as observed in Pan has been proposed as a potential dietary activity the 

hominins could have undertaken to obtain the necessary protein requirements (Bogart & 

Pruetz, 2008, 2011). While the earliest occurrence of A. afarensis from approximately 

3.9 million years ago (Wynn et al., 2006; Reed, 2008)) precedes the earliest known date 

of stone tools currently (Lomekwi stone tools are dated to 3.3 million years old 

(Harmand et al., 2015)), it is possible the hominins could have used perishable tools, 

such as twigs, to procure social insects, such as termites (McGrew, 1992; Ungar & 

Teaford, 2002; Bogart & Pruetz, 2011). 

                                                             
8
 Leaves as used in this section do not simply refer to leaves that are found on trees, but also include grass 

leaves, piths, stems, and herbs. Essentially, they are the foliage off of a plant/ tree. This is a potential 

limitation as the description is vague, however, it would be extremely difficult to obtain meaningful 

results when analysing many different dietary categories. Information on what foods were included in 

each of the following categories fruits, leaves, seeds, roots and animals is available in Appendix C, Table 

C.2. 
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Stable carbon isotope analyses and dental microwear texture analysis indicate that 

A. africanus consumed highly varied diets that were from a mix of C3 and C4 resources 

that consisted of some hard and tough foods (Sponheimer & Lee-Thorp, 1999; van der 

Merwe et al., 2003; Scott et al., 2005; Sponheimer et al., 2005a; Peterson et al., 2018). 

These reconstructions are supported by the way in which A. africanus score in relation 

to some of the extant non-human primates. A. africanus could have consumed a mixed 

diet dominated by fruits and seeds, and supplemented by leaves, roots and animals 

(Tables 6.4-6.5). Once again, these are all foods that could correspond to the 

reconstructions based on the microwear and stable carbon isotopes, as the fruits and 

seeds could come from the C3 resources and the leaves and roots from the C4 resources, 

while the animals could be reflective of either photosynthetic pathway. The mechanical 

properties associated with fruits, seeds, leaves, roots and animals could also correspond 

to those of tougher and harder foods.  Depending on the part of the food item consumed, 

its maturity and seasonality, along with other factors, the fruits could be soft or tough, 

the leaves and roots could be tough, the seeds hard, and again, the animals could be a 

mixture of both hard and tough, or soft and or leave no trace behind if they were 

consuming termites.  

It is likely that the hominins, such as A. afarensis and A. africanus both consumed 

leaf-based foods to some extent, based not just on the results from this study, but also an 

understanding of the need to achieve a balanced diet. However, why their microwear 

patterns differed is unclear. It is possible that because dental microwear reflects the 

mechanical properties of food items consumed shortly before death (Grine, 1986; 

Teaford & Oyen, 1989), A. africanus and A. afarensis consumed foods of a different 

nature. Perhaps A. africanus specimens perished when leaves were more mature and 

thus left more of a microwear signal, while A. afarensis perished when leaves were 

younger and consequently, did not leave defined microwear signals. This scenario is 

very unlikely. So too is the implication that all specimens would have died under one 

environmental condition. The differences could also reflect environmental differences 

between East and South Africa, where maybe in South Africa there were tougher foods, 

fewer trees flushing, or more dusts present compared to East Africa. As highlighted by 

Geissler et al. (2018) where on the forest floor foods were picked up would determine 

how much grit covered the foods, with those collected from above the leaf litter coated 

in significantly less grit than the foods from beneath the leaf litter. Perhaps A. africanus 

consumed seeds regularly found beneath the leaf litter, and A. afarensis consumed seeds 

from above the leaf litter, or higher in the canopy. It is possible therefore that the 
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environmental differences between East and South Africa could explain the differences 

in dietary signals between A. africanus and A. afarensis. However, it is not possible to 

make precise inferences about the microwear differences because there is no evidence 

to either confirm or deny the suggestions.  

 The stable carbon isotope and dental microwear texture analysis results from P. 

boisei indicate this species continued the trend of the East African hominins (from A. 

afarensis to P. aethiopicus) of consuming a diet dominated by tough, C4 foods (Ungar 

& Sponheimer, 2011; Cerling et al., 2011, 2013; Sponheimer et al., 2013; Levin et al., 

2015). The C4 isotopic pathway accords with the environmental reconstructions 

associated with P. boisei specimens (open woodlands, edaphic grasslands, savannah, 

and bushland habitats) (Reed, 1997; Dominguez-Rodrigo et al., 2001; Schwartz & 

Tattersall, 2005; Plummer et al., 2015; Linder, 2017). The dental microwear patterns 

indicate P. boisei consumed a diet with softer and tougher foods, characterised by 

striations across the occlusal surfaces (Ungar et al., 2008, 2012). Due to these 

reconstructions, it was suggested that the morphology could reflect the repetitive 

chewing of tough, fibrous foods, rather than the infrequent consumption of hard foods 

(Grine et al., 2012; Ungar et al., 2012; Pampush et al., 2013; Macho, 2014; Scott et al., 

2014; Alemseged, 2015; Berthaume et al., 2018). Research has been undertaken to 

explore foods that are from C4 isotopic pathways and tough to masticate. Foods could 

have included grass leaves (Cerling et al., 2011; Lee-Thorp, 2011; Ungar & 

Sponheimer, 2011; Sponheimer et al., 2013; Paine et al., 2018), grass seeds (Jolly, 

1970), and sedges (Sponheimer et al., 2005a, 2013; Dominy et al., 2008; Cerling et al., 

2011; Lee-Thorp, 2011; Ungar & Sponheimer, 2011; Macho, 2014; Levin et al., 2015).  

 These reconstructions are supported by the way P. boisei score compared with some 

of the non-human primates. P. boisei could have consumed a diet consisting of high 

quantities of leaves and fruits, with a low quantity of seeds, roots and animals (Tables 

6.4-6.5). It is not possible based on the present results to support or reject suggestions 

mentioned above, as foods were not analysed at the level of grass leaves, seeds and 

sedges (leaves here essentially include all things folivorous). Consumption of leaves 

and fruits, with low quantities of seeds, roots and animals could correspond to the 

reconstructions based on the microwear and stable carbon isotopes. This is because the 

leaves and roots could come from the C4 resources, the fruits and seeds from the C3 

resources (these make up approximately 23% of the diet according to Cerling et al. 

(2013)), and the animals from either pathway. The mechanical properties associated 

with these foods could also correspond to those of softer/ tougher foods, as the fruits 
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could be soft and the leaves and roots somewhat tougher. A further support to the idea 

that P. boisei frequently consumed tough foods is that the most robust non-human 

primates (those with the widest mandibular corpora) also had a diet that was either 

dominated by or supplemented by foliage (folivores, folivore-frugivores and frugivore-

folivores), supporting the findings of Hylander (1979b), Bouvier (1986a, b) and Ravosa 

(1991). Thus, the folivorous diets of non-human primates appear to be associated with 

more robust mandibular corpora (as defined by component 2) and could represent a 

directional trend that the hominins continue (Figures 5.24, 5.26, 5.29-5.30). Of course, 

the same caveat discussed before regarding the robusticity indices applies here. The 

folivores analysed in this study display the widest mandibular corpora, and thus the 

highest robusticity index, other studies using different ways of analysing robusticity 

might obtain different results. Further clarity on robusticity and how it is best measured 

is vital.  

 The idea that the morphology of P. boisei could reflect the repetitive chewing of 

tough foods, rather than the infrequent consumption of hard foods was argued against 

because a low-cusped dentition appeared to be poorly adapted to such a diet (Hylander, 

1988; Wood & Strait, 2004; Wood & Schroer, 2012; Strait et al., 2013; Smith et al., 

2015). However, it is possible that with the exception of the low-cusped dentition, the 

rest of the masticatory morphology could have been well adapted to tough foods. The 

morphology would still be able to generate and transmit the high, repetitive loads 

required when grinding tough foods. In so doing, it would compensate for the apparent 

sub-optimal dental adaptation (Daegling & McGraw, 2007; Ungar & Sponheimer, 2011; 

Scott et al., 2014; Ungar & Hlusko, 2016). Indeed, consensus has shifted away from the 

idea that the derived masticatory morphology of Paranthropus was an optimally 

designed morphological solution to a hard-food diet (Ungar & Hlusko, 2016; Grine & 

Daegling, 2017). Despite the fact that the dentition was not ideally suited to masticating 

tough foods it does not mean that it could not perform the job efficiently (Daegling et 

al., 2013; Scott et al., 2014; Gailer et al., 2016). Cercocebus atys and the bovid, Kobus 

ellipsiprymnus provide evidence of extant animals consuming foods not expected to be 

consumed based on their morphologies. Cercocebus atys frequently consume extremely 

hard seeds, and grazing bovids frequently consume tough plant materials, yet the 

morphology in both appears to be sub-optimally suited to those foods (Daegling et al., 

2011, 2013; McGraw & Daegling, 2012; Gailer et al., 2016).  

 Alternatively, if the C4 foods consumed by P. boisei were leaves of grasses and 

sedges in their membranous state they would not require the dentition to be reflective of 
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a typical folivore, with high shearing cusps (Talebi et al., 2016). Indeed the low-cusped 

molars could have been suitable adaptations to crushing the tough foods in a milling and 

grinding action (Macho, 2014; Scott et al., 2014).   

 Stable carbon isotope analyses indicate that P. robustus consumed a mixed diet of 

C3 and C4 resources (Lee-Thorp et al., 1994; Sponheimer & Lee-Thorp, 1999; 

Sponheimer et al., 2005a, 2006a). This is an observation that could be consistent with 

the results of the dental microwear texture analyses, which indicated that the diet was 

highly varied, and included hard, brittle foods (Grine, 1981, 1986; Kay & Grine, 1988; 

Scott et al., 2005; Peterson et al., 2018). These reconstructions are supported by the 

way in which P. robustus score in relation to some of the non-human primates. P. 

robustus could have consumed a mixed diet, which consisted of high quantities of 

fruits, leaves and seeds, and supplemented by roots and animals (Tables 6.4-6.5). These 

are all foods that could correspond to the reconstructions based on the microwear and 

stable carbon isotopes, as the fruits and seeds could come from the C3 resources and the 

leaves and roots from the C4 resources, while the animals could be reflective of either 

photosynthetic pathway. The mechanical properties associated with these foods could 

also correspond to those of tougher and harder foods, as the fruits could be soft, leaves 

and roots could be tough, the seeds hard, and the animals could be hard, tough or soft 

depending on the type of animal consumed (vertebrate or invertebrate).  

 The results from this study support the stable carbon isotopes and dental microwear 

texture analysis results that suggest P. robustus and P. boisei probably consumed 

different foods. It is likely that both species consumed varied diets, and were thus 

dietary generalists, but perhaps they concentrated on different combinations of foods. 

The diet of P. robustus appears to overlap with a diverse range of diet types, whereas P. 

boisei appears to be more restricted with the diet types it overlaps with, falling more in 

the range of some of the frugivores and some of the folivores (Tables 6.4-6.5).  

 Stable carbon isotope analyses indicate that H. habilis consumed a largely C3 diet, 

with consumption of C4 resources increasing over time (van der Merwe et al., 2008; 

Cerling et al., 2013). This is an observation that could be consistent with the results of 

the dental microwear texture analyses, which indicated that the diet was mostly 

dominated by soft foods due to a lack of either anisotropy or complexity signals (Ungar 

et al., 2006). Such reconstructions are partially supported by the way in which H. 

habilis score in relation to some of the non-human primates. H. habilis could have 

consumed a mixed diet, which consisted of high quantities of fruits, and potentially 

moderate-high quantities of leaves and seeds, with a presence of animal and root 
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consumption too (Tables 6.4-6.5). These are all foods that could correspond to the 

reconstructions based on the microwear and stable carbon isotopes, as the fruits and 

seeds could come from the C3 resources and the leaves and roots from the C4 resources, 

while the animals could be reflective of either photosynthetic pathway. Aside from the 

fact that fruits could be soft, the rest of the assumed mechanical properties associated 

with these foods do not completely correspond to the microwear signals. There are two 

potential reasons for this lack of association: 1) the maturity of the foods consumed and 

2) the proposed use of tools by early Homo. The hominins could have been consuming 

young leaves and ripe seeds, both of which could potentially have been at their softest 

and lacking the plant defences that mature leaves and unripe seeds would possess 

(Kinzey, 1978; Kinzey & Norconk, 1990; Milton, 1993; Krishnamani, 1994; Reynolds 

et al., 1998; Norconk et al., 2009; Rosenberger, 2013; Lambert & Rothman, 2015). 

Alternatively, tools could have been used for the butchering of animals or the breaking 

down of the hard outer shell of seeds, as seen in non-human primates, e.g., in Pan 

troglodytes, Pongo abelii and Sapajus apella (Yamakoshi, 1998; Fox et al., 2004; 

Taylor, 2006a, 2009; Taylor & Vinyard, 2009; Wright et al., 2009; Yamagiwa & 

Basabose, 2009; Smith et al., 2012; McLennan, 2015; Pante et al., 2018). As neither 

hard nor tough features have been identified on the microwear of H. habilis specimens 

to date, they were unlikely to consume hard or tough animals, instead they could have 

consumed soft-bodied invertebrates with or without the use of tools.  

 Stable carbon isotope analyses indicate that H. ergaster consumed a highly varied 

diet with a mix of C3 and C4 resources (Lee-Thorp et al., 2000), an observation that is 

consistent with the results of the dental microwear texture analyses, which also 

indicated that the diet was highly varied, with both anisotropy and complexity signals 

present (Ungar et al., 2006). In fact, there are more complexity signals present on H. 

ergaster than any hominin, except P. robustus (Ungar et al., 2006). These 

reconstructions are supported by the way in which H. ergaster score in relation to some 

of the non-human primates. H. ergaster could have consumed a mixed diet, which 

consisted of high quantities of fruits, leaves and seeds, and supplemented by roots and 

animals (Tables 6.4-6.5). These are all foods that could correspond to the 

reconstructions based on the microwear and stable carbon isotopes, as the fruits and 

seeds could come from the C3 resources and the leaves and roots from the C4 resources, 

while the animals could be reflective of either photosynthetic pathway, depending on 

what pathway the foods they consumed came from. The mechanical properties 

associated with these foods could also correspond to those of tougher and harder foods, 
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as the fruits could be soft, leaves and roots could be tough, the seeds hard, and the 

animals could be hard, tough or soft depending on the type of animal consumed 

(vertebrate or invertebrate). 

 These results highlight the importance of future studies extensively exploring food 

mechanical properties. It is clear that there is variation in food mechanical properties 

and while the variation has been acknowledged here, many assumptions have had to be 

made as well. In combination with the stable carbon isotope and dental microwear 

texture analysis results, interpretations of the bivariate graphs from the Principal 

Component Analyses (PCA) potentially provides more context for how and where the 

hominin diets varied. Furthermore, the results could provide a useful context in which 

to develop questions and approaches for future research in this area. The results from 

this study continue to challenge the early assumption of Paranthropus being a dietary 

specialist. With the exception of H. habilis (reasons for this have been discussed), the 

potential diets the hominins align with support each species microwear and stable 

carbon isotope signals. Particularly of interest from these graphs is that they also 

support the conclusion made on other grounds that P. boisei and P. robustus consumed 

different diets from each other. 

 

6.2 General discussion  

6.2.1 How this study can inform on Paranthropus mandibular and dental 

morphology. 

 One of the most important aspects of the stable carbon isotopes and dental 

microwear texture analysis results on P. robustus and P. boisei was the fact that 

reconstructions indicated the two species consumed foods from different isotopic 

pathways and from different mechanical properties. As a result, P. robustus may no 

longer be considered a dietary specialist, while P. boisei could still have been but not on 

hard foods (Lucas et al., 2008a; Constantino et al., 2010, 2011; Pampush et al., 2013; 

Strait et al., 2013; Smith et al., 2015). This led to suggestions that P. boisei and P. 

robustus were not adapted to the same dietary regime (Cerling et al., 2011; Ungar & 

Sponheimer, 2011; Sponheimer et al., 2013). While it is true that P. boisei does display 

the most derived morphological features of the hominins and a C4 dominated diet could 

indicate a dietary specialism, other interpretations have been presented. Wood & Strait 

(2004) argued that the derived morphology could have had the effect of broadening the 

nature of the foods available rather than restricting it, and Macho (2014) demonstrated a 

diet dominated by C4 resources need not be considered a specialist one. In fact, as with 
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extant animals, it would have been essential for the hominins to balance their diets, and 

a diet dominated by C4 resources could still achieve a nutritional balance (Macho, 

2014). Indeed, the bivariate graphs (as broken down in Tables 6.4-6.5) support the idea 

that P. boisei consumed a broad diet and as a result was adaptively a generalist.  

 The stable carbon isotopes and dental microwear texture analysis results have been 

suggested to indicate that P. boisei and P. robustus were not consuming the same types 

of foods or those from the same pathway (Sponheimer et al., 2006a, 2013; Ungar et al., 

2008), but it is still not possible to rule out the possibility they were adapted to a similar 

dietary regime. Ultimately, morphology and behaviour evolve at different rates, 

whereby feeding behaviour can change within the lifetime of an individual but it takes 

many generations for the adaptive modifications to come into effect (Bock & von 

Wahlert 1965; Gailer et al., 2016). Morphology is a legacy of the ancestor and is the 

direct indication of what a species was capable of eating, but not necessarily what it did 

eat. Instead, what a species actually consumes is dependent on the environment and 

what is available to them (Daegling & Grine, 1991; Ungar et al., 2008, 2012; Grine et 

al., 2012; Louys et al., 2012; Sponheimer et al., 2013; Macho, 2014; Grine & Daegling, 

2017).  

 Environmental reconstructions for the P. boisei and P. robustus sites in East and 

South Africa are somewhat similar (site information available in Appendix Tables 9.2-

9.3). Yet the nature of foods available to them would likely differ, along with the 

weather patterns and seasonality of resources, as observed in non-human primates, with 

diet known to differ between populations as a result of environmental differences, 

relating to the type of local fauna and flora, seasonality of resources and climatic 

differences (Yamagiwa & Basabose, 2006b; Potts et al., 2011; Watts et al., 2012b; 

Macho, 2014; Veneziano et al., 2019). Considering that differences have been identified 

in the microwear patterns of Gorilla gorilla and Gorilla beringei (Tables 6.6-6.9), it is 

not that remarkable they have been identified in P. robustus and P. boisei. P. boisei and 

P. robustus could therefore represent generalist dietary consumers eating regionally 

different foods (Cerling et al., 2011), with P. robustus consuming harder foods on an 

infrequent basis and P. boisei consuming tougher foods more regularly (Ungar & 

Sponheimer, 2011). The two Paranthropus species would therefore represent examples 

of adaptive divergence (Cerling et al., 2011).  

 The dominance of C4 resources in the diet of P. boisei could be used as evidence the 

species was a dietary specialist, particularly as sympatric early Homo species were 

consuming a mixed C3/C4 diet (Cerling et al., 2011, 2013; Sponheimer et al., 2013). 
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However, a change in percentages of C3/C4 in the diets of early Homo occurred, and 

specimens analysed from later in the early Homo presence shows the diet shifted to one 

dominated slightly by C4 resources (ratio of C3/C4-based resources of 45/55) (Cerling et 

al., 2013). These differences between the C3/C4 ratios in the diets of P. boisei and early 

Homo need not reflect dietary specialisms, but they could simply be a reflection of 

different species adapting to the environment at a different rate, as seen with the gradual 

shift towards a C4-based diet in many animals from 9.9 million years ago in East Africa 

(Uno et al., 2011; Linder, 2017). For example, equids and rhinocerotids diets were 

dominated by C4 foods from 9.9 and 9.6 mya, respectively, yet suid diets were not 

dominated by C4 foods until between 6.5 and 4.2 mya (Uno et al., 2011).  

 The second key point to be discussed based on the results from stable carbon 

isotopes and dental microwear texture analyses was that overlap existed using both 

techniques between P. robustus and A. africanus. The stable carbon isotope results 

showed that both species consumed foods from C3 and C4 isotopic pathways (Lee-

Thorp et al., 1994; Sponheimer & Lee-Thorp, 1999; van der Merwe et al., 2003; 

Sponheimer et al., 2005a, 2006a), while the microwear analyses show that although 

both species overlapped in certain aspects of food type consumed (both consumed softer 

foods), they differed in other areas. P. robustus is characterised by complex features 

indicative of the occasional consumption of a harder food diet, and A. africanus is 

characterised by anisotropic features indicative of the occasional consumption of a 

tougher food diet (Grine, 1981, 1986; Kay & Grine, 1988; Scott et al., 2005; Strait et 

al., 2013; Peterson et al., 2018). Scott et al. (2005) suggested that where the dental 

microwear texture analyses differed between the species was reflective of them 

consuming fallback foods of different mechanical properties. The presence of hard 

foods as fallback foods were proposed to explain the more derived morphology of P. 

robustus in relation to that of A. africanus (Scott et al., 2005). Equally, fallback foods 

were also used to explain the derived morphology of P. boisei too (Ungar et al., 2008). 

Such an adaptation would therefore accord with the dominant perceptions and 

understanding of the highly derived morphology of Paranthropus being an adaptation 

for a hard-food diet.  

 To invoke the Fallback Food Hypothesis to explain morphological differences 

between hominins as many researchers do (e.g., Ungar, 2004, 2011; Laden & 

Wrangham, 2005; Scott et al., 2005, 2014; Grine et al., 2006a, 2006b, 2012; Ungar et 

al., 2008) is problematic. As highlighted in Section 3.4 there are fundamental problems 

and inconsistencies in the hypothesis and its application to dietary interpretations. These 
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same problems were identified in this research when attempting to test the Fallback 

Food Hypothesis.  

 Problems with the Fallback Food Hypothesis were encountered often when 

attempting to classify foods as fallback foods, some of these problems are listed below 

in the context of Pan troglodytes. The Fallback Food Hypothesis was proposed in the 

1990s but was not commonly used until after 2005 (following the application of it to 

hominins by Laden & Wrangham (2005) and Scott et al. (2005)), yet many of the 

studies detailing the dietary ecology of Pan troglodytes occur before this time. This 

means that these studies do not list what they consider to be fallback foods, a decision 

therefore had to be made when creating the non-human primate diet database: is a food 

assigned fallback on the basis of assumed quality and seeming lack of preference, or 

was that study left blank? As it would have been highly subjective for an individual 

who was not present when the study was undertaken to make the decision on fallback 

foods and likely using a different operating strategy as other studies and therefore being 

inconsistently applied, the fallback food column was left empty. A further issue to that 

above is the fact that there is no clear consensus in how to define and apply the 

hypothesis in primatology (e.g., Lambert, 2007; Marshall & Wrangham, 2007; Marshall 

et al., 2009; Harrison & Marshall, 2011), which means that for those studies that did 

record fallback foods in P. troglodytes (e.g., Morgan & Sanz, 2006; Yamagiwa & 

Basabose, 2006a, b; Marshall & Wrangham, 2007; Thompson & Wrangham, 2008; 

Harrison & Marshall, 2011; McLennan, 2013), they might have done so in an approach 

different to each other. Once again indicating that the hypothesis can be inconsistently 

applied. These issues correspond to problems identified by other researchers, whereby 

the Fallback Food Hypothesis was found to be extremely subjective despite the fact that 

many researchers have previously attempted to define it (e.g., Marshall & Wrangham, 

2007; Constantino & Wright, 2009; Lambert, 2009; Marshall et al., 2009; Sauther & 

Cuozzo, 2009; Taylor, 2009; Cooke, 2012; McGraw & Daegling, 2012; Lambert & 

Rothman, 2015).  

 On the occasions that a fallback food was assigned further problems were 

encountered. In the case of P. troglodytes, it is routinely described as being a high-

quality fallback feeder due to their consumption of figs (Morgan & Sanz, 2006; 

Yamagiwa & Basabose, 2006a, b; Marshall & Wrangham, 2007; Thompson & 

Wrangham, 2008; Harrison & Marshall, 2011; McLennan, 2013), yet upon closer 

inspection this description does not hold up. Fallback foods in P. troglodytes range from 

piths and stems (Wrangham et al., 1991, 1998; Potts et al., 2011; Chancellor et al., 
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2012), young leaves (Watts et al., 2012b), herbs, figs, honeybees, ants and honey 

(Yamagiwa & Basabose, 2009; McLennan, 2015), bark and cambium (Pruetz, 2006), 

and termites (Yamagiwa & Basabose, 2009). Based on this diversity of foods consumed 

and defined as fallbacks it soon became apparent that there was not one food that could 

be generalised for species, or even subspecies as a fallback. This is because a food 

important to one species or population may not be for another, so it is impossible to 

generalise beyond population-specific studies (Clutton-Brock, 1977; Barton et al., 1993; 

Krishnamani, 1994; Conklin-Brittain et al., 1998; Remis et al., 2001; Worman & 

Chapman, 2005; Hohmann et al., 2006; Watts et al., 2012b; Lambert & Rothman, 

2015). Not to mention the fact that based on those foods highlighted above, it could be 

questioned whether P. troglodytes could routinely be described as a high-quality 

fallback feeder. A consequence of the fact that there is such diversity of foods labelled 

fallback foods in P. troglodytes (as an example) meant that foods could not be 

generalised and as a result, could not be tested against the morphological data collected 

in this study.  

 Additional problems that were identified in other studies are detailed below. To 

properly understand what foods could constitute a fallback food would require years of 

extensive field observation to monitor the seasonal and annual diet variation of 

populations, not the one or two year field studies that are most commonly available 

(Nishida & Uehara, 1983; Norton et al., 1987; van Schaik et al., 1993; Tutin et al., 

1997; Peres, 2000; Vogel et al., 2009; Vinyard et al., 2011; Watts et al., 2012a; 

Lambert & Rothman, 2015). Even after such extensive field studies, there is no 

guarantee a food that might act as a fallback food one season would do so again another 

season (Norton et al., 1987; Mills et al., 1993; van Schaik et al., 1993; Tutin et al., 

1997; Peres, 2000; Yamagiwa et al., 2005; Vogel et al., 2009; Kunz & Linsenmair, 

2010; Vinyard et al., 2011; Watts et al., 2012a; Lambert & Rothman, 2015). Until more 

is known about the dietary, nutritional and digestive requirements of various non-human 

primate species it remains a very subjective approach, and attempts to invoke it may in 

fact be holding researchers back (Mills et al., 1993; Hohmann et al., 2006; Taylor, 

2006a; Rothman et al., 2007; Lappan, 2009; Vinyard et al., 2011; Cooke, 2012; 

McGraw & Daegling, 2012; Irwin et al., 2014; Vogel et al., 2014; Lambert & Rothman, 

2015).  

 The question then of whether or not a fallback food has the capacity to influence the 

morphology of an animal depends on how one defines fallback foods. Too often it is 

used as an easy term to explain seasonality of resources (McGraw & Daegling, 2012; 
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Grine & Daegling, 2017). Here, it is argued that the foods that are consumed during the 

annual period of resource scarcity are not fallbacks, but instead they are foods that are 

available at different times of the year and consequently, consumed on a seasonal basis, 

like fruits. An animal has to maintain a balanced diet, and while it is logical that they 

would prefer fruit they cannot survive on fruit alone, other foods high in different 

nutrients are essential, e.g., seeds for lipids, leaves for proteins (Hladik, 1977; Milton, 

1993; Tutin et al., 1997; Conklin-Brittain et al., 1998; Rothman et al., 2007; Felton et 

al., 2009a, b, c; Norconk et al., 2009; McGraw et al., 2014; Lambert & Rothman, 2015; 

Vinyard et al., 2016). These other foods are all equally important in maintaining the 

balanced diet, but not necessarily required in the same quantities (Knott, 1998; Vogel et 

al., 2014). This adds to the suggestion that these other foods are simply part of seasonal 

diet variation, and do not constitute fallback foods. Instead, a fallback food should be 

that which is consumed in times of famine and peak stress. This after all will be the 

critical time that determines whether an animal will live or die. However, given the fact 

that periods of famine may not occur on a frequent basis, or at all within the lifetime of 

an individual, it is not considered here that fallback foods are responsible or invoke a 

selective pressure on the adaptive morphology. In fact, the idea that an animal may be 

adapted to a food that they may or may not consume on an infrequent basis is illogical. 

There would be no selective pressure acting upon a species if the food was not regularly 

(in this case annually) consumed. Nor would it be efficient to develop a derived 

morphological adaptation that would only occasionally serve a function (Daegling, 

2007). Instead, a derived morphological adaptation can be explained through the 

consumption of high stress foods on a cyclical basis or infrequently throughout the year 

that are part of the seasonal diet variation, such as tough or hard foods.  

 When observing the masticatory morphologies of for example, Pan and Gorilla, 

they are distinct, but as many field studies have shown their diets overlap during the 

periods of fruit abundance but diverge during scarcity (Tutin et al., 1991, 1997; Tutin & 

Fernandez, 1993; Tutin, 1999; Head et al., 2011). It does therefore make sense that the 

shared consumption of preferred foods is unlikely to require different morphologies in 

the different species, yet the divergent diets, which can include foods consumed in 

larger quantities that put more strain on the morphology, such as tough foods, or 

infrequently consumed harder foods, could drive the different morphological 

adaptations (Daegling & McGraw, 2007; Taylor, 2009). There are numerous examples 

within the literature of an association between morphology and high stress foods (e.g., 

Hylander, 1979b, 1984, 1985; Bouvier, 1986; Ravosa, 1991, 1996; Yamashita, 1996, 
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1998; Bouvier & Ravosa, 1998; Lambert et al., 2004; Foster et al., 2006; Dominy et al., 

2008; Norconk et al., 2009; Daegling et al., 2011; McGraw et al., 2016; Ross et al., 

2016). This is further supported by the results from this research, looking at quantity of 

foods consumed. High consumption of fruits (assuming they are soft and fleshy) does 

not appear to result in distinct morphologies according to Figure 5.28, yet those species 

characterised by low consumption of fruits did present more distinct morphologies, 

which could be considered a reflection of the morphological response to other foods in 

the diet. In addition, those species recorded to consume high quantities of obdurate 

foods such as leaves or seeds, cluster in distinct ways on the bivariate graphs (Figures 

5.29-5.31).  

 The Fallback Food Hypothesis as an explanation for the derived morphology 

present in Paranthropus compared to Australopithecus as suggested by Laden & 

Wrangham (2005) and Scott et al. (2005) is on first consideration a plausible and 

convincing argument. Upon further examination of the hypothesis and unsuccessful 

attempts at testing, it was found to be fundamentally flawed, insomuch that it could not 

be tested, a point also highlighted by other researchers (e.g., McGraw & Daegling, 

2012; Wood & Schroer, 2012; Daegling et al., 2013; Lambert & Rothman, 2015; Grine 

& Daegling, 2017). The reality is that it is hard enough to identify diet in a broad sense 

in hominins (Ungar, 2011; Macho, 2014; Alemseged, 2015), because “individuals have 

different food preferences and access to different resources in different places and at 

different times” (Ungar, 2011: 54). It is therefore, harder still to identify fallback foods 

and their effects on morphology in the fossil record (Berthaume et al., 2018). For this 

very reason the Fallback Food Hypothesis as an explanation for the derived morphology 

present in P. boisei was dismissed because no evidence of hard-object feeding has been 

found on any P. boisei specimen (Ungar, 2011). The suggestions that microwear traces 

have not identified evidence of fallback foods because specimens did not perish during 

that time, as Strait et al. (2013) and Scott et al. (2014) suggest, is farfetched (McGraw 

& Daegling, 2012). Many researchers have suggested that it is during the periods of 

resource-scarcity, defined by some (van Schaik et al., 1993; Marshall & Wrangham, 

2007; Constantino & Wright, 2009; Sauther & Cuozzo, 2009; Vogel et al., 2009) as the 

fallback period, that competition for resources is greatest, and thus the threat of 

mortality is greatest (although see Grine et al., (2012) and Gogarten & Grine (2013) for 

alternative interpretations). It would be expected that traces of fallback foods would 

therefore be identified, or indeed overrepresented in the microwear signals (Gogarten et 

al., 2012), to then not find a single example of a fallback signal on a specimen perishing 
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during this time is inconceivable (Kimbel & Delezene, 2009). The Fallback Food 

Hypothesis, at least in its current state, is not a viable theory to explain the 

morphological differences between Paranthropus and Australopithecus. 

 Furthermore, to use stable carbon isotopes and dental microwear texture analyses to 

refute Robinson’s Dietary Hypothesis (1954a, b, 1963) and instead justify the Fallback 

Food Hypothesis as Scott et al. (2005); Ungar et al. (2008); Marshall et al. (2009), 

among others do is a leap, particularly as there appears to have been a misunderstanding 

about what Robinson (1963) meant by Paranthropus being a dietary specialist. 

Robinson (1963) did not specifically state that Paranthropus only consumed the food to 

which it was adapted, but that the morphology reflected an adaptation to crushing and 

grinding tough vegetation. Foods that were likely to be included in their diets were roots 

and bulbs, however, the nature of the vegetation available to them would depend on 

seasonality of food resources (Robinson, 1963). The evidence from stable carbon 

isotopes and dental microwear texture analyses does not contradict this, as P. robustus 

could have crushed its food, and P. boisei could have ground down its food. It still 

stands to reason that the derived morphology is a beneficial adaptation to the break 

down and mastication of obdurate foods. All evidence from biomechanical studies, 

stable carbon isotopes, dental microwear texture analyses, and even this study indicate 

more obdurate foods were likely to have been available to hominins. Crucially, 

evidence also indicates that there is an association between obdurate foods and 

morphology.  

 It is also important to note here that while overlap existed in the microwear and 

stable carbon isotope results of P. robustus and A. africanus (Lee-Thorp et al., 1994; 

Sponheimer & Lee-Thorp, 1999; van der Merwe et al., 2003; Scott et al., 2005; 

Sponheimer et al., 2005a, 2006a; Peterson et al., 2018), it does not mean that the two 

species consumed the same diets; rather they consumed some foods with similar 

material properties and from similar isotopic pathways. The Dietary Hypothesis of 

Robinson (1954a, 1963) is not therefore undermined. Equally, it does not appear 

necessary to invoke the Fallback Food Hypothesis to explain the morphological 

differences between the species.  

 Of course, it would be remiss to discuss the results obtained from stable carbon 

isotope and dental microwear texture analyses without also a discussion where 

improvements or further information would be beneficial. The contributions that studies 

using stable carbon isotopes and dental microwear texture analysis have made to 

palaeoanthropology cannot be underestimated, for they, in combination, have helped to 
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refine the understanding of the dietary ecologies of hominins. The two methods do not, 

however, tell the whole story of diet adaptation in hominins. The two methods provide 

indications of the photosynthetic pathways of food consumed at the start of life (stable 

carbon isotope analysis) and the mechanical properties of the foods consumed towards 

the end of life (dental microwear texture analysis), but they do not inform on what a 

species was capable of consuming, which is why analysing morphology remains 

particularly important. 

 Between consumers of C3 foods there is much morphological variation (as shown by 

the M1 crown area and M1 corpus robusticity index) and dietary variation within this 

isotopic range, as highlighted by Tables 6.6-6.9. Future research could explore this 

further, by investigating how much variation exists in a similar isotope value range. 

Indeed, this could involve conducting Principal Components Analyses (PCA) and using 

the isotope value categories to interpret the PCA plots.  

 There are also different microwear patterns within genera, e.g., Gorilla, meaning 

different types of foods are consumed, e.g., harder foods by Gorilla gorilla and tougher 

foods by Gorilla beringei (Scott et al., 2012), similar to P. boisei and P. robustus (Scott 

et al., 2005; Ungar et al., 2008). These results may therefore prompt the question, is too 

much being made of the stable carbon isotope and dental microwear texture analysis 

results from the hominins? Given the results from the two techniques and this study 

complement each other it suggests that they are accurate. Equally, given there can exist 

large morphological variation within isotopic pathways it also highlights the continued 

value of comparative morphology studies. 
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Table 6.6: Stable carbon isotopes, microwear patterns, habitat information, diet, M1 Crown Area (averages) and M1 Corpus Robusticity Indices (averages) (data taken from averages 

obtained in this study) for apes.  

Genus δ13C Microwear Diet Habitat M1 crown area M1 corpus robusticity index 

Pan 

C3. 
1, 2, 3, 

4, 5, 6, 7, 8, 

9, 10 

Varied diet. Some studies 

report greater complexity than 

anisotropy, while other 

studies report greater 

anisotropy than complexity. 
11, 12, 13 

Consume mostly fruits, and 

supplement with leaves, piths, 

flowers, seeds, roots and animals. 

Variation present between 

subspecies and even populations. 14, 

15, 16, 17 

Ranges from savannah to 

rainforest, and low to high 

altitude. 18, 19, 20, 21, 22 

 P. paniscus: 76.65.  

 P. troglodytes 

schweinfurhtii: 94.55.  

 P. troglodytes troglodytes: 

95.26. 

P. troglodytes verus: 107.71.   

 P. paniscus: 49.51.  

 P. troglodytes schweinfurthii: 

54.91.  

 P. troglodytes troglodytes: 

52.76. 

P. troglodytes verus: 55.04.   

Gorilla  C3. 
23, 24 

 Different patterns are present 

on G. gorilla (higher 

complexity consistent with 

harder foods) compared with 
G. beringei  (higher 

anisotropy consistent with 

tougher foods), indicating 
different diets are consumed. 
11, 12, 13 

 Large variation between species 

and even subspecies. Gorilla gorilla 
gorilla consumes a diet dominated 

by fruits and supplement with 

leaves, piths, seeds, flowers, bark 

and insects. Gorilla beringei 
beringei and Gorilla beringei 

graueri both consume diets 

dominated by leaves, although 

Gorilla beringei beringei consumes 
considerably more leaves and 

Gorilla beringei graueri 

supplements their diet with more 

fruits. 25, 26, 27, 28, 29, 30, 31, 32 

 Ranges from savannah to 

evergreen to montane 
forests, and from low to 

very high altitude. 25, 27,  30, 

33, 34 

 G. gorilla gorilla: 200.62. 

 G. beringei beringei: 

219.76.  

 G. beringei graueri: 222.56 

 G. gorilla gorilla: 51.60.  

 G. beringei beringei: 54.33. 

 G. beringei graueri: 51.49 

Pongo  C3. 
35 

Varied diet. Some studies 

report complexity present, 

while others report low levels 
of complexity and anisotropy. 

11, 12, 13 

Fruits and leaves dominate all diets, 

but variation exists between species 

and even within subspecies. 36, 37, 38, 

39, 40, 41, 42 

 Ranges from coastal peat 

swamps to primary tropical 

rainforest, and low to high 
altitude. 39, 40, 42 

 P. abelii: 140.80.  

 P. pygmaeus pygmaeus: 

147.69.  

 P. pygmaeus wurmbii: 

145.80 

 P. abelii: 49.47.  

 P. pygmaeus pygmaeus: 

46.84.  

 P. pygmaeus wurmbii: 44.66 

1
 Schoeninger et al., (1999); 

2
 Schoeninger et al., (2016); 

3
 Sponheimer et al., 2006b; 

4 
Oelze et al., (2011); 

5
 Oelze et al., (2014); 

6
 Loudon et al., (2016); 

7
 Cerling et al., (2004); 

8
 Smith et al., (2010); 

9
 

Carter & Bradbury (2016); 
10

 Carlson & Crowley (2016); 
11

 Teaford & Walker (1984); 
12

 King et al., (1999); 
13

 Scott et al., (2012); 
14

 Badrian & Malenky (1984); 
15

 Head et al., (2011); 
16

 Watts et al., 

(2012a); 
17

 Bessa et al., (2015); 
18

 White (1998); 
19

 Myers-Thompson (2002); 
20

 Chapman et al., (1994); 
21

 Hunt & McGrew (2002); 
22 

McGraw & Zuberbuhler (2007);
 23

 Oelze et al., (2014); 
24

 

Blumenthal et al., (2012); 
25

 Williamson et al., (1990); 
26

 Tutin et al., (1991); 
27 

Tutin et al., (1997); 
28

 Nishihara, (1995); 
29

 Doran et al., (2002); 
30

 Head et al., (2011); 
31

 Remis (1997); 
32

 Yamagiwa et 

al., (2005); 
33 

Rothman et al., (2007); 
34

 Fossey & Harcourt (1977);  
35

 Pushkina et al., (2010); 
36 

MacKinnon (1974); 
37 

Rodman (1977); 
38

 Galdikas (1988); 
39

 Wich et al., (2006b); 
40

 Russon et al., 

(2009); 
41 

Fox et al., (2004); 
42 

Morrogh-Bernard et al., (2009). 
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Table 6.7: Stable carbon isotopes, microwear patterns, habitat information, diet, M1 Crown Area (averages) and M1 Corpus Robusticity Indices (averages) (data taken from averages 

obtained in this study) for Old World monkeys. 

Genus δ13C Microwear Diet Habitat M1 crown area M1 corpus robusticity index 

Cercocebus C3. 
1,2 

High microwear complexity and 

low anisotropy, indicative of a 
hard-food diet. 3 

Consume mostly fruits and seeds, and 

supplement with invertebrates, piths, stems. 
Leaves, flowers and roots make up the rest of 

the diet. 4, 5, 6, 7, 8 

Tropical evergreen 

forests at low altitude. 4, 

7, 9 

 C. atys: 43.97. 

 C. torquatus: 47.96 

 C. atys: 43.47.  

 C. torquatus: 39.64 

Lophocebus C3. 
10 

Varied diet. Some studies report 

high complexity patterns, while 
others report high complexity and 

high anisotropy, indicating that hard 

and tough foods were consumed. 3, 

11, 12, 13, 14, 15 

Consume mostly fruits and seeds, and 
supplement with leaves and invertebrates. 

Flowers, piths, stems and bark make up the rest 

of the diet. 16 17, 18, 19, 20, 21, 22 

Ranges from savannah 

to primary evergreen 
forest, and from low to 

high altitude. 21, 22, 23, 24, 

25 

 L. albigena: 33.78.  

 L. aterrimus: 31.21. 

 L. albigena: 38.09. 

 L. aterrimus: 36.47 

Cercopithecus C3. 
2, 10

  
Anisotropy present, indicative of a 

tough food diet. 26, 27 

Diet dominated by fruits, and supplement with 

leaves and invertebrates. Flowers, seeds, pith 

and stems make up the rest of the diet. 19, 21, 28, 

29, 30, 31 

Ranges from savannah 

to  evergreen forest, and 

from low to high 

altitude. 19, 28,30, 32 

 C. ascanius: 17.59.  

 C. cephus: 19.92 

 C. ascanius: 39.94. 

 C. cephus: 38.93 

Chlorocebus 
C4. 

33, 

34 

Anisotropy present, indicative of a 

tough food diet. 26, 27 

Variation between species. Highly varied diets, 

with high consumption of fruits, leaves, flowers 

and invertebrates. 35, 36. 37. 38, 39, 40, 41 

Ranges from thorn bush 

- riverine forest. Mostly 

high altitude. 35, 36, 39 

 Ch. aethiops: 22.06. 

 Ch. pygerythrus 23.49.  

 Ch. sabaeus: 24.99 

 Ch. aethiops: 41.92. 

 Ch. pygerythrus 41.64. 

 Ch. sabaeus: 39.83 

Erythrocebus   
 

Varied diets, dominated by gums, thorns and 

flowers. 38, 42, 43 

Semiarid, open 

woodlands and high 

altitude. 38, 42 
 E. patas: 31.31  E. patas: 37.65 

1
 Krigbaum et al., (2013); 

2
 Cerling et al., (2004); 

3
 Scott et al., (2012); 

4 
Mitani (1989); 

5
 Bergmüller (1998); 

6
 McGraw et al., (2011); 

7
 Cooke (2012); 

8
 Daegling et al., (2011); 

9
 Range & Noe (2002);

10
 Carter & 

Bradbury (2016); 
11

 Teaford & Walker (1984); 
12

 El-Zaatari et al., (2005); 
13

 Scott et al., (2006); 
14 

Ungar et al., (2006); 
15

 Ungar et al., (2008); 
16

 Freeland (1979); 
17 

Horn (1987); 
18

 Ham (1994); 
19

 Tutin et al., 

(1997); 
20

 Poulsen et al., (2002); 
21

 Tutin (1999); 
22

 Poulsen et al., (2001); 
23

 Freeland (1980); 
24

 Doran-Sheehy et al., (2009); 
25

 Waser (1977); 
26

 Galbany & Perez-Perez (2004); 
27

 Galbany et al., (2005); 
28

 Struhsaker 

(1978); 
29

 Cords (1986); 
30

 Chapman et al., (2002); 
31

 Bryer et al., (2013); 
32

 McGrew et al., 1996; 
33

 Sponheimer & Lee-Thorp (2001); 
34 

Loudon et al., (2014); 
35

 Dunbar & Dunbar (1974);
 36

 Galat & Galat-Luong 

(1978); 
37

 Harrison (1983); 
38

 Isbell et al., (1998); 
39

 Whitten (1983); 
40

 Wrangham & Waterman (1981); 
41

 Lee & Hauser (1998); 
42 

Isbell (1998); 
43

 Nakagawa (1989). 
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Table 6.8: Stable carbon isotopes, microwear patterns, habitat information, diet, M1 Crown Area (averages) and M1 Corpus Robusticity Indices (averages) (data taken from averages 

obtained in this study) for Old World monkeys (continued). 

Genus δ13C Microwear Diet Habitat M1 crown area M1 corpus robusticity index 

Mandrillus   
 

Highly varied diets. High consumption of 

fruits, leaves, seeds, flowers, roots and 
invertebrates. 1, 2, 3, 4, 5, 6, 7 

Ranges from savannah 

zone to mature forest, and 
low to high altitude. 1, 2, 7 

 M. leucophaeus: 70.25. 

 M. sphinx: 73.71 

 M. leucophaeus: 39.18. 

 M. sphinx: 35.5 

Papio 

C3/ 

C4. 
8, 

9, 10 

High anisotropy and high complexity, 

indicative of tough and hard foods 

being present. 11, 12, 13, 14, 15, 16, 17, 18 

Highly varied diets. 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 

29, 30, 31, 32, 33 

Predominantly savannah-

type environments. Low 

to high altitude. 19, 22, 24, 26 

 P. anubis: 95.16.  

 P. cynocephalus: 74.3 

 P. anubis: 37.54.  

 P. cynocephalus: 37.13 

Macaca   
Higher complexity than anisotropy, 

indicative of a harder food diet. 16 

Large variation between species. M. cyclopis 

and M. radiata have fruit dominated diets, 

and supplement with flowers, piths and 

invertebrates. M. sylvanus consumes a diet 
dominated by leaves, seeds, roots and herbs. 
34, 35, 36, 37, 38, 39, 40, 41 

Predominantly evergreen 

forest, ranging from low 

to high altitude. 34, 36, 38 

 M. cyclopis: 34.36.  

 M. radiata: 26.75.  

 M. sylvanus: 43.96 

 M. cyclopis: 40.34. 

 M. radiata: 47.5.  

 M. sylvanus: 41.77 

1
 Owens et al., (2015); 

2
 Hoshino (1985); 

3
 Lahm (1986); 

4
 Norris (1988); 

5
 Rogers et al., (1996); 

6
 Tutin et al., (1997); 

7
 Tutin (1999); 

8
 Carter & Bradbury (2016); 

9
 Cerling et al., (2004); 

10
 Codron et al., (2008); 

11
 

Ryan (1981); 
12

 Daegling & Grine (1999); 
13

 Nystrom et al., (2004); 
14

 El Zaatari et al., (2005); 
15

 Ungar et al., (2006); 
16

 Scott et al., (2012); 
17

 Galbany & Perez-Perez (2004); 
18

 Galbany et al., (2005); 
19

 Post, et al., 

(1980); 
20

 Barton (1989); 
21

 Pochron (2000); 
22

 Harding (1976); 
23

 Stacey (1986); 
24

 Kunz & Linsenmair (2008); 
25

 Norton et al., (1987); 
26

 Okecha & Newton-Fisher (2006); 
27 

Dunbar & Dunbar (1974); 
28

 Barton et 

al., (1993); 
29

 Post (1982); 
30

 Bentley-Condit (2009); 
31

 Kay (1981); 
32

 Swindler (2002); 
33

 Plavcan (2001); 
34

 Ali (1986); 
35

 Krishnamani (1994); 
36

 Su & Lee (2001); 
37

 Ménard (1985); 
38

 Ménard & Vallet (1986); 
39

 

Mehlman (1988); 
40

 El Alami et al., (2012); 
41

 Ménard et al., (2014) 

 

Table 6.9: Stable carbon isotopes, microwear patterns, habitat information, diet, M1 Crown Area (averages) and M1 Corpus Robusticity Indices (averages) (data taken from averages 

obtained in this study) for New World monkeys. 

Genus δ13C Microwear Diet Habitat M1 crown area M1 corpus robusticity index 

Cebus C3. 
1 

Variation between species, with some 

presenting higher levels of anisotropy and 

others with higher levels of complexity. 

Indicating diets range from hard and 
tough between species. 2, 3, 4, 5 

Fruits and invertebrates dominate the diets. 

Leaves, flowers, seeds, pith and stems, roots, 

vertebrates, and other foods make up the rest of 
the diet. 6, 7, 8, 9, 10, 11, 12, 13, 14 

Mostly tropical, dry forests. 
13, 14 

 C. albifrons: 18.24.  

 C. capucinus: 18.28. 

 C. olivaceus: 17.71 

 C. albifrons: 46.62.  

 C. capucinus: 47.81.  

 C. olivaceus: 46.14 

Sapajus   
High complexity present, indicative of a 
hard-food diet. 3, 15, 16, 17, 18, 19 

Fruits and invertebrates dominate the diets. 

Leaves, flowers, seeds, pith and stems, roots, 
vertebrates, and other foods make up the rest of 

the diet. 13, 20, 21, 22, 23, 24, 25, 26 

Ranges from tropical 

rainforest to mountain 
savannah forest, and from 

mid to high altitude. 21, 22, 25 

 S. apella: 21.22  S. apella: 49.69 

1 
Schoeninger et al., (1997); 

2
 Scott et al., (2012); 

3
 Teaford (1985); 

4
 Teaford & Runestad (1992); 

5
 Teaford & Robinson (1989); 

6
 Defler (1979); 

7
 Robinson (1986); 

8
 Chapman (1987); 

9 
Chapman & Fedigan (1990); 

10
 Fragaszy & Boinski (1995); 

11
 Williams & Vaughan (2001); 

12
 McKinney (2011); 

13
 Terborgh (1983); 

14
 Tomblin & Cranford (1994); 

15
 Teaford & Walker (1984); 

16
 Scott et al., (2005); 

17
 Scott et al., (2006); 

18
 

Ungar et al., (2006); 
19

 Ungar et al., (2008); 
20

 Izawa (1979); 
21

 Mittermeier & van Roosmalen (1981); 
22

 Brown & Zunino (1990); 
23

 Galetti & Pedroni (1994); 
24

 Peres (1994); 
25

 Stevenson et al., (2000); 
26

 Gomez-

Posada (2012). 
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 There are still areas where more information would be beneficial and could further 

improve understanding of the dietary ecologies of hominins. A potential weakness of 

the inferences made from stable carbon isotope analyses is not based on the method of 

analysis, but rather the nature of the data collected. Stable carbon isotopes have been 

extracted on each of the hominin species included in this study, but the isotopes are 

predominantly taken from specimens from the same localities. Within those localities 

specimens are taken from different members or stratigraphic layers, which means that 

they can represent changes in the nature of the environments, but it is likely that 

environmental differences are greater between sites than within sites (Appendix Table 

9.8 details the exact specimens used in stable carbon isotope analysis and their isotopic 

value, locations, reconstructed environments and dates of presence). It is possible 

therefore, that there is some environmental variation and thus isotopic variation in many 

of the species that has not been identified. For example, despite the fact that A. 

africanus has been found in 4 sites, stable carbon isotopes have only been extracted in 

specimens from 2 of those sites, and of those from 4 specimens from Makapansgat and 

18 from Sterkfontein (Table 6.10). The environmental reconstructions from Sterkfontein 

and Makapansgat are quite similar throughout the different formations (ranging from 

open to closed habitats), but the environmental reconstructions for Gladysvale and 

Taung are slightly different (closed habitats) (Appendix Tables 9.2-9.3). Based on these 

environmental reconstructions, it is expected that the Sterkfontein and Makapansgat 

specimens would range from C3/ C4 resources, yet Gladysvale and Taung could be 

predominantly C3.  

 A similar pattern is present with P. robustus, identified at 5 different South African 

sites, but specimens are only tested from Swartkrans (n = 21) and Kromdraai (n = 1) 

(Table 6.10). The particular members the specimens tested are associated with are 

reconstructed to have been mixed environments with open habitats and woodland 

nearby (Reed, 1997; Pickering et al., 2011; Herries & Adams, 2013). In contrast, the 

sites/ members associated with P. robustus remains at Coopers, Drimolen and 

Sterkfontein are all reconstructed to have been more open and grassland environments 

(Appendix Tables 9.2-9.3).  Based on these environmental reconstructions, it is 

expected that the Swartkrans and Kromdraai specimens would range from C3/ C4 

resources, yet Coopers, Drimolen and Sterkfontein could be slightly more C4 dominated 

(similar to P. boisei). Extraction of the stable carbon isotopes from the other sites would 

therefore be highly beneficial and further enhance the understanding of each species’ 

dietary ecology.  
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Table 6.10: Hominin species, their associated locations, dates of presence, locations and ages of specimens where stable carbon isotopes have been extracted (information summarised from 

Appendix Table A.10. 

Species 
Date of presence 

(MYA) 
Locations 

Locations from where isotopes 

have been taken 
Specimen ages (MYA) 

A. anamensis 4.2 - 3.8  
Ethiopia: Asa Issie; Aramis; Galili; Woranso-

Mille. Kenya: Allia Bay; Kanapoi 

Allia Bay (n = 4),  

Kanapoi (n = 13) 

Kanapoi = 4.12 - 4.06.  

Allia Bay = 4 

A. afarensis 3.9 - 2.8  

Ethiopia: Belohdelie; Dikika; Fejej; Galili; Hadar; 

Laetoli; Ledi-Gararu; Maka; Omo; Woranso-Mille. 

Kenya: Koobi Fora and West Turkana; Lothagam 

Hadar (n = 20) Hadar = 3.8 - 2.94 

A. africanus 3.5 - 2.0  
South Africa: Gladysvale; Makapansgat; 

Sterkfontein; Taung. 

Makapansgat (n = 4),  

Sterkfontein (n = 18) 

Makapansgat = 2.9 - 2.6. 

Sterkfontein = 2.65 - 2 

P. aethiopicus  2.7 - 2.3  Ethiopia: Omo. Kenya: West Turkana Turkana (n = 5) Turkana = 2.52 - 2.3 

P. boisei 2.3 - 1.2  

Ethiopia: Omo Shungura and Konso-Gardula. 

Kenya: Chesowanja; Koobi Fora, West Turkana. 

Tanzania: Olduvai; Peninj 

Koobi Fora (n = 24),  

West Turkana (n = 3),  

Olduvai (n = 1),  

Peninj (n = 1),  

Baringo (n = 1) 

Koobi Fora = 1.82 - 1.46.  

West Turkana = 1.77.  

Olduvai = 1.82.  

Peninj = 1.62.  

Baringo = 1.42 

P. robustus  2.31 - 0.6  
South Africa: Coopers; Drimolen; Gondolin; 

Kromdraai; Swartkrans 

Swartkrans (n  = 21),  

Kromdraai (n = 1) 

Swartkrans = 2.31 - 0.6.  

Kromdraai = 1.8-1.6 

H. habilis sensu 

stricto 
2.3 - 1.4  

Kenya: Koobi Fora; Tanzania: Olduvai; Malawi: 

Uraha; South Africa: Sterkfontein 

Koobi Fora (n = 4),  

Olduvai (n = 3) 

Koobi Fora = 1.97 - 1.76.  

Olduvai = 1.8 - 1.75 

H. ergaster 1.8 - 1.3  Kenya: Koobi Fora; South Africa: Swartkrans Koobi Fora (n = 4) Koobi Fora = 1.59 - 1.46 
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 As far as dental microwear texture analysis is concerned, increased sample sizes 

would be beneficial. For example, the dental microwear texture analyses taken from P. 

boisei might not be reflective of the species, given that they are only taken on 9 

specimens (Ungar et al., 2008, 2012). So perhaps it is not a large enough sample size to 

be making large generalisations about the diets of this species. However, the specimens 

do come from a number of sites and time periods, so Ungar et al. (2008, 2012) suggest 

that the results should be reasonably reliable. Furthermore, Scott et al. (2005) analysed 

19 specimens of P. robustus and A. africanus, and concluded that the two species 

overlapped in certain aspects of their diets, but diverged in other areas. These 

conclusions were later supported by a study on a much greater number of specimens (n 

= 110) from the same species (Peterson et al., 2008), indicating that at least in these 

cases the smaller subsample analysed previously was accurate. Nonetheless, more 

information is always beneficial when reconstructing diets of hominins.  

 Stable carbon isotopes, dental microwear texture analysis and comparative 

morphological analysis should all be used in conjunction to further elucidate the dietary 

ecologies of hominins and non-human primates. There is no doubting how valuable 

stable carbon isotope and dental microwear texture analyses are, but using them without 

field studies on non-human primates could lack context. For example, Pan and Pongo 

overlap in their isotopes and microwear (Teaford & Walker, 1984; King et al., 1999; 

Schoeninger et al., 1999, 2016; Sponheimer et al., 2006b; Pushkina et al., 2010; Scott et 

al., 2012), yet the field studies provide the necessary context and highlight the diets 

were not the same (Rodman, 1977; Galdikas, 1988; Fox et al., 2004; Wich et al., 2006b; 

Head et al., 2011; Watts et al., 2012a; Bessa et al., 2015). It is possible the same could 

be said for the hominins and the comparative morphological analysis is needed to 

understand what the hominins were capable of consuming. There does appear to be an 

association between diet and morphology, so the value comparative morphological 

analysis should not be overlooked.  

 

6.3 Potential limitations of this research  

 Of course, as with any research study there are potential limitations to the approach 

taken in this study. The potential challenges of the research undertaken include those 

faced by many other researchers. A key challenge is highlighted by McGraw & 

Daegling (2012), whereby the specimens that were measured were not the same as those 

observed in the wild in field studies, therefore the dietary information could be 

unreliable when applied to the morphology. It is also possible that the foods consumed 
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by non-human primates at the time of the observations were not actually what the 

species would have consumed at the time the skeletal samples were collected (Smith et 

al., 2012). Within the time since museum skeletal collections were formed and the 

dietary studies undertaken, anthropogenically influenced factors including climate 

change, introduction of livestock grazing and the subsequent reduction of a species 

habitat will have dramatically altered the seasons and environments and as a result the 

types of foods available (Sauther & Cuozzo, 2009; Cuozzo & Sauther, 2012; Smith et 

al., 2012; Serckx et al., 2015). To then attempt to take this a step further and apply this 

information to hominins is problematic for several reasons. One such reason is the fact 

that the aims and objectives of primatologists undertaking field research are different to 

those of the palaeoanthropologists who use their data, potentially leading to important 

data being missed or factors that are not important being overemphasised. Ultimately, 

the dietary data collected for research projects such as the present one are dependent on 

other researchers and the methods they use, and inferences of hominin adaptation made 

based on the combined use of dietary and morphological studies on non-human 

primates are therefore potentially weakened. These are fundamental issues with all 

studies, so inferences have to be made with caution. 

 Despite these inherent issues with the use of non-human primate dietary data and 

morphological analysis as they are used here, it was the best approach available, as none 

of the hominins analysed in this study are alive today to observe in the wild, meaning 

that non-human primates are the best comparisons available. It was intended that 

limitations would be further offset by trying to include as many dietary studies of the 

different species as possible, to create a more accurate description of the overall dietary 

ecologies of the various species.  

The usage of generic dietary classifications, such as folivore or frugivore have been 

suggested to be of little relevance for studies aiming to investigate a possible correlation 

between diet and morphology, for within each category there is much variation of 

consistency and texture of the food items of the food items (Smith, 1983; Yamashita, 

1996, 1998; Ankel-Simons, 2007; McGraw & Daegling, 2012; McGraw et al., 2016). 

Indeed, the mechanical properties of foods can overlap from one dietary classification to 

another, meaning that these dietary groupings are not biomechanically informative but 

are vague and coarse-grained (Kinzey & Norconk, 1993; Yamashita, 1996, 1998; Taylor 

et al., 2008; McGraw & Daegling, 2012; Vogel et al., 2014; Coiner-Collier et al., 2016; 

McGraw et al., 2016). Similarly, it is wrong to assume that all fruits are soft, all leaves 

are tough, and all seeds are hard, for there is much variation in the mechanical 
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properties of each food type (as discussed in chapter 3) (Yamashita, 1998; Grine et al., 

2006b, 2012; Taylor, 2006b; Vogel et al., 2014; Smith et al., 2015; Coiner-Collier et 

al., 2016; Talebi et al., 2016). However, when analysing the morphology of the non-

human primates and hominins in this thesis the dietary categories and assumptions of 

food mechanical properties were used to provide some context and comparison. These 

assumptions were made despite knowing that they are problematic because information 

on the mechanical properties of foods for almost all of the species analysed in this thesis 

is currently unavailable, thus assumptions were necessary. By including multiple ways 

of assessing diet, from the traditional dietary categories, the specific classification 

coding categories, and the food quantity analyses, it was intended that a more 

comprehensive overview of diet would be taken and the potential pitfalls of any one of 

these approaches would be mitigated. Indeed, patterns were identified with some dietary 

factors that were consistent regardless of the dietary category used, while patterns were 

sometimes found to differ depending on the diet classification used. Future research on 

mechanical properties of foods for the various non-human primates analysed in this 

study would help to elucidate patterns further.  

The above were factors that required consideration when designing the research 

project. Given the time and funding available for this research the approaches taken 

were the most appropriate. From these potential limitations and experiences from the 

study, the following section discusses the recommendations for future research.  

 

6.4 Future avenues of research 

 Based on the results from this project there are three aspects recommended for 

further exploration. The first considers further research and any suggested amendments 

to the research method, the second covers suggested aspects to explore in field studies 

of non-human primates, and the third covers suggested aspects to explore in studies of 

the hominins.  

 

6.4.1 Further research opportunities and amendments  

 When preparing this research project, preliminary studies assisted in refining the 

approach and improving the methodology. Initial plans included 3D scanning of 

mandibles and dentition using a Structured Light 3D Scanner (by 3D3 Solutions). 

However, a pilot study showed that this was not a feasible inclusion in data collection. 

In brief, some of the major obstacles faced were due to the time taken per scan and its 

suitability to travel. A future study focussing entirely on imaging different species and 
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subspecies could have great value. With attention only on imaging, and with the 

advancements that have already been made in scanning equipment, it should be possible 

to develop a vast dataset of non-human primates in virtual space. The high-resolution 

scans that are developed can then be used in combination with geometric 

morphometrics and Finite Element Analysis. The potential benefits of these techniques 

to palaeoanthropology are substantial. For example, a Finite Element Analysis would 

enable the researcher to simulate different loading scenarios on the mandible and assess 

its performance under strain (Toro-Ibacache et al., 2016; Stansfield et al., 2018a, b). 

Given that an association has been identified between mandibular morphology and diets 

that involve high stress and strain, explorative studies using Finite Element Analysis to 

analyse the mandibular morphology of the hominins under varying strains would be 

extremely useful.  

 A further aspect of the method that was developed but not addressed in this study 

was the observation of non-metric traits. Non-metric data were recorded on all of the 

specimens analysed, but time did not permit complete analysis of the non-metric traits. 

Non-metric traits, such as a Tuberculum sextum and Tuberculum intermedium are 

regularly observed on hominins, and have even been used to distinguish Paranthropus 

from Australopithecus and early Homo, (e.g., Wood & Abbott, 1983, Prat et al., 2005, 

Irish et al., 2018). To date, with the exception of Swindler (2002), knowledge on 

presence and variation in non-metric traits in non-human primates remains mainly 

unexplored. The large sample analysed in this project provides an opportunity to further 

develop knowledge on the appearance of these traits, and it will be analysed and 

published following the submission of this PhD.  

 During the initial formulation of this study, the focus was on frugivorous non-

human primates since it was considered that they were most affected by seasonality of 

resources. However, recent research on responses to periods of resource scarcity 

highlights how folivorous species are also affected by seasonality of resources (Snaith 

& Chapman, 2005, 2007; Gogarten et al., 2012). It would therefore be useful for future 

studies to include the feeding ecologies, digestive capabilities and morphology of non-

human primates that consume foliage preferentially, and indeed other foods. 

Comparisons can then be made to the non-human primates and hominins used in this 

study to more accurately ascertain morphological variation in relation to dietary 

differences. By including more species characterised by different diet categories, such 

as a greater sample of folivores, it would provide further comparisons to the patterns 
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observed on the corpus robusticity indices and determine whether the patterns identified 

in this study continue in a wider sample.  

 Cebus and Sapajus were included in the sample because they were suggested to be 

essential species to include to analyse the effects of fallback foods (Wright, 2005). 

However, throughout the PCA graphs comparing the morphologies of extant non-

human primates to hominins, Cebus and Sapajus consistently clustered in distinct ways 

to the rest of the species in the morphospace (Figures 5.35-5.58). These species may not 

therefore represent the most appropriate comparisons to Old World monkeys, apes and 

hominins, as they have probably solved the challenges they have faced in their own 

ways, unique to the species of the Old World.  

 The corpus robusticity indices present in the hominins are unlike any of the extant 

species analysed, which does impact on the ability to interpret the extinct species 

morphology compared to extant species. Examination of Miocene hominoids, such as 

Gigantopithecus – which is said to have presented similarly robust and derived 

masticatory morphology to Paranthropus – would be valuable (Frayer, 1973; Miller et 

al., 2008; Olejniczak et al., 2008; Dickson, 2011). In particular, it would be worthwhile 

exploring how the Miocene hominoids compare to each other, to the rest of the 

hominins and extinct and extant non-human primates.  

 The use of corpus robusticity indices in the present study (and also Veneziano et al. 

2019) was successful in distinguishing between a leaf-based diet (used as a proxy for 

toughness) and a seed-based diet (used as a proxy for hardness). Yet many studies 

reported an inability to distinguish these diets (Hylander, 1979b; Smith, 1983; Daegling 

& Grine, 1991; Ravosa, 1996; Daegling & McGraw, 2001; Hogue, 2008; McGraw & 

Daegling, 2012; Daegling et al., 2013; Grine & Daegling, 2017). It would be useful 

therefore, for more research to explore the potential morphological differences between 

a hard and tough-food diet, and between those foods that are frequently consumed to 

those that are infrequently consumed (Sponheimer et al., 2013). To identify the 

differences between hard and tough foods microwear studies can be used in conjunction 

with the morphological analyses, as Veneziano et al. (2019) do. Furthermore, the 

inclusion of stable carbon isotopes in these analyses would further clarify 

morphological variation present within each isotopic pathway. Exploration of other 

aspects of the morphology, e.g., cortical bone thickness and distribution (Daegling, 

2007) would further elucidate morphological variation associated with diet. 

 Based on the present study, the more detailed dietary classification techniques were 

more successful in identifying patterns of association between diet and the corpus 
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morphology than the traditional dietary classification categories. Future studies are 

therefore advised to explore diet using more refined approaches, such as the quantity 

categories and the specific classification coding systems.  

 The dental variables analysed in the present study were unable to identify clear 

morphological differences between diets, regardless of the dietary classification system 

used. As previous research (e.g., Kay, 1975; Kinzey, 1978; Happel, 1988; Yamashita, 

1998; Teaford & Ungar, 2000; Lucas, 2004; Lucas et al., 2008b; Lee et al., 2010; Ungar 

2011, 2015) established that diets can be distinguished based on the dentition, it is 

advised that those dental variables be used again to confirm or challenge the patterns 

observed on the corpus robusticity indices. 

 There appears to be a discontinuity between what is generally observed to be a 

robust morphology, e.g., that present in P. boisei, to the results obtained in the corpus 

robusticity indices. Future research should concentrate on defining robusticity and 

refining how best to measure it.  

 

6.4.2 Suggested next steps for field studies of non-human primates 

 When palaeoanthropologists are addressing adaptations in hominins, especially 

pertaining to diet, they are reliant on comparative data collected by primatologists. 

However, the research approaches of the two disciplines are not always congruent. One 

such aspect is how foods are classified and assessing the potential quality of those 

foods. To determine the quality of the foods consumed and the potential effects of those 

foods upon morphology, it is important to understand: 1) the nutritional and 2) 

mechanical properties of the foods, 3) the digestive capabilities of the consumers, 4) 

their feeding behaviours, and 5) to recognise how requirements change throughout life 

(Rothman et al., 2007; Lappan, 2009; Norconk et al., 2009; Vinyard et al., 2011; Ross 

et al., 2012; Hanya & Chapman, 2013; Irwin et al., 2014; Oelze et al., 2014; Vogel et 

al., 2014; Lambert & Rothman, 2015).   

 To properly understand seasonal diet variation and what foods could accurately be 

described as preferred foods and fallback foods long-term observation of species dietary 

habits are essential. There are many field schools observing and recording the dietary 

ecologies of non-human primates and it would be useful if the data were made freely 

available, perhaps through online databases.  

 Future studies on dental microwear texture analysis should follow the methods of 

Nystrom et al. (2004), Yamashita et al. (2016) and Percher et al. (2018), in observing 

the non-human primates in their natural habitats and what they consume to compare to 
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their dental microwear signatures. Such an approach would be highly beneficial to 

understanding the microwear patterns observed in non-human primates, and for 

subsequent use on the hominins. 

 

6.4.3 Suggested next steps for research on hominins 

 Conclusions drawn from the results from the present study indicate there remain 

further avenues to explore with regard to hominin dietary ecology. One aspect is that of 

the suggested changes to the microwear analyses on non-human primates as highlighted 

above. The inclusion of as many corpus measurements as possible would also be 

beneficial. Corpus robusticity indices at the M1 has been the focus in many studies on 

hominin mandibles (e.g., Brown & Walker, 1993; White et al., 2000; Kimbel et al., 

2004; de Ruiter et al., 2008; Leakey et al., 2012). Poor perseveration of mandibles has 

led to very limited measurements; for some species (A. anamensis and P. aethiopicus) 

only M1 corpus robusticity indices were recorded (Leakey & Walker, 1988; Ward et al., 

2001, 2013). Based on the analyses run it is clear that variation exists in the corpus 

morphology from P4-M3 in non-human primates (Tables 6.1-6.3), and there is no reason 

to suggest that will not be the case in hominins. Future research on hominins should 

therefore include comprehensive information on the corpus measurements, e.g., 

robusticity indices all along the molar tooth row (if available) to ascertain potential 

variation in the corpus.   

 The importance of stable carbon isotopes to the study of hominin diets is 

undisputed, but there are areas where more information would be beneficial. It is clear 

that C4 foods formed an important component of the diets of hominins (Elton, 2008), 

particularly in East Africa, but currently not enough is known about C4 plants (Ungar & 

Sponheimer, 2011; Sponheimer et al., 2013). Since C4 plants includes a wide variety 

species, more information is needed about their distribution and abundance in habitats, 

their nutritional properties, and the potential variation in their mechanical properties 

before any valuable inferences can be made about hominin diets and adaptations 

(Sponheimer et al., 2013).  

 To date, stable carbon isotope analysis data are available for each of the hominin 

species analysed in this study, but the inclusion of specimens at their earliest and latest 

dates of presence and from different locations would be useful. Given that the various 

hominin species are found at a number of different sites across a large timescale 

(detailed information on hominin localities available in Appendix Tables 9.2-9.3), it is 

possible that isotopic pathways recorded on specimens from one locality will differ 
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from another, especially if their location in time differ. To have information on potential 

isotopic stability or change in a species would be highly beneficial for understanding the 

dietary pathways of hominin species over time.  

 In order to understand more about the hominins it is necessary to integrate the 

different approaches of collecting information, as the use of a single approach may 

provide a very biased or incomplete picture (Daegling & McGraw, 2007; Ungar & 

Sponheimer, 2011; Grine et al., 2012; Alemseged, 2015). Different information can be 

derived from the different approaches, and when used together can complement each 

other, helping to build an idea of what the hominins were both capable of consuming 

and what types of foods they consumed at the start and end of their lives (Ungar et al., 

2008, 2012; Ungar & Sponheimer, 2011; Sponheimer et al., 2013). 
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Chapter 7  : Conclusion 

7.1   General conclusions 

 Attempts to understand the potential stimuli behind the highly derived morphology 

observed in Paranthropus occupied the attentions of palaeoanthropologists for many 

years, with the consensus of many being that Paranthropus and Australopithecus 

diverged due to very different diet adaptations (sensu Robinson, 1954a, 1963). Interest 

in these hominins and their morphology was renewed with the application of stable 

carbon isotopes and dental microwear texture analyses to the hominins. These analyses 

challenged the conventional understandings of the adaptive morphologies of both 

Paranthropus and Australopithecus, whereby they suggest that Paranthropus and 

Australopithecus were not divided by clear dietary differences as Robinson (1954, 

1963) proposed. Instead, overlap existed in the diets of P. robustus and A. africanus 

(Scott et al., 2005), while the diets of P. boisei and P. robustus diverged (Cerling et al., 

2011). In order to reconcile the morphological differences between Paranthropus and 

Australopithecus, it was proposed that they were morphologically adapted to their 

fallback foods (Laden & Wrangham, 2005; Scott et al., 2005; Ungar et al., 2008).  

 In light of the confusion surrounding the possible explanations for Paranthropus 

morphology in relation to that of Australopithecus, this study set out to explore if it was 

possible to identify morphological differences in non-human primates that correspond 

to differences in diet. Dental and mandibular morphology was assessed in a broad 

sample of haplorhine primate species (n = 37) that reflect different dietary preferences, 

habitats and body sizes. Age (juvenile or adult), sex, specimen provenance (wild shot or 

from captivity) and health condition (e.g., whether the specimen was edentulous or not) 

were all factors taken into account when selecting specimens to be analysed. An 

additional sample of 6 species of hominins was also collected to compare the 

morphology to that of known-diet non-human primates.  

 The aims, objectives and research questions as set out in the Introduction have been 

met and answered (as detailed below). As a result, new evidence in support of an 

association between diet, and in particular, the food mechanical properties of diet and 

morphology has been gathered. This finding supports extensive literature on the subject.  
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1. Are there morphological differences present between consumers of different 

diets?  

 Morphological differences were present in consumers of different diets. These 

differences manifested themselves in different areas of the mandibular and dental 

morphologies. Dietary differences also corresponded to body size differences. 

According to the Jarman-Bell principle, folivores are generally recognised as being 

larger species, while insectivores are generally recognised as being smaller species, and 

indeed this is acknowledged in the results of this study. The largest species analysed in 

this study, Gorilla, are observed to consume large quantities of foliage (although exact 

quantities of foliage depends on the subspecies and populations analysed), while the 

smallest species in this study, Cebus/ Sapajus, consume large quantities of insects in 

their diets. The size-related variables (crown area and corpus size) reflect these dietary 

and body size differences in these species.  

 When the dietary categories were analysed by the other morphological variables 

different patterns emerged, indicating that there is an association between diet and 

morphology, outside of body size. Diets cluster in particular patterns on each of the 

following variables: corpus robusticity indices, crown shape indices and symphyseal 

robusticity indices.  

 Different corpus and symphysis shapes emerged in the different dietary categories. 

Consumers of diets dominated primarily by fruits and supplemented by other foods, 

e.g., frugivore-insectivores, presented taller mandibular corpora and wider symphyses 

relative to consumers of diets dominated by foliage and supplemented by other foods, 

e.g., folivore-frugivores, who presented wider mandibular corpora and taller symphyses.    

 Different crown shapes also emerged in the different dietary categories. Frugivore-

insectivores consistently displayed the widest tooth crowns, while folivores and 

omnivores presented the longest tooth crowns relative to the other categories.  

 

2. Are there morphological differences between consumers of low quantities of 

particular foods relative to consumers of higher quantities of the same foods? 

 Morphological differences were present in consumers of different quantities of the 

same foods. Depending on the foods consumed, low quantities of certain foods, e.g., 

fruits, resulted in more defined clusters, while in other foods, e.g., seeds and leaves, low 

quantities resulted in a more varied and scattered appearance. Equally, depending on the 

foods consumed, high quantities of certain foods, e.g., seeds and leaves, resulted in 

more defined clusters, while in other foods, e.g., fruits, high quantities resulted in a 
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more varied and dispersed appearance. Relative to low consumers of the following 

foods, high consumption of leaves corresponds to a wider mandibular corpus, taller 

symphysis and wider tooth crowns; high consumption of seeds corresponds to a taller 

mandibular corpus and wider crown shape; high consumption of roots corresponds to 

both a wider and taller corpus and a wider symphysis; high consumption of roots 

corresponds to longer tooth crowns. In contrast, low consumers of fruits present wider 

mandibular corpora and longer tooth crowns, while moderate consumers of fruits 

present taller mandibular corpora.  

 These differences appear to reflect an association between the mechanical properties 

of foods and morphology. Indeed, it is possible that the more defined clustering of the 

low consumers of fruits reflects the mechanical properties of the foods that make up the 

rest of the diet.  

 In this study a folivorous diet (as shown by research question 1) and one that 

contains higher quantities of leaves (as shown by research question 2) is associated with 

a wider mandibular corpus, a result that differs from research by Hylander (1979b) and 

Bouvier (1986a, b), which found folivory was associated with a taller mandibular 

corpus. In the present study, differences were also identified between consumers of 

seeds (used as a proxy for hard foods) and consumers of leaves (used as a proxy for 

tough foods), which previous researchers had suggested might not be possible 

(Hylander, 1979b; Daegling & Grine, 1991). Based on the trends present in the results, 

the most robust non-human primates (those with the widest mandibular corpora) were 

the consumers of folivorous diets. This result is consistent with some work (Hylander, 

1979b; Bouvier, 1986a, b) but not all (Daegling, 1992; Veneziano et al., 2019). The 

potential reasons for these differences could include: 1) sample size: a larger dataset 

was used here than in many other studies (both in terms of the different species used 

and the number of specimens from each species analysed), although it was lacking some 

of the focus species used in the other studies. 2) diet was classified using a variety of 

different approaches. 3) more morphological variables were analysed from across the 

molar tooth row, and 4) the potential vagaries that surround assessing robusticity and 

the appropriateness of the robusticity index.  

 

3. How much does diet contribute towards morphological variation? 

 Depending on the variable analysed diet explains between 10 and 20% of the 

morphological variation. For size variables diet is predicted to explain a small 

proportion (~9%) of the variance in comparison to log body size and sex, which are 
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predicted to explain considerably more of the variance (~77%). The association between 

the variables represented by size variables and log body size is also consistent with 

other research. For corpus robusticity indices diet is predicted to explain approximately 

21% of the variance and log body size and sex 31%. The increased association between 

diet and corpus robusticity indices is also consistent with other research. For crown 

shape indices diet is predicted to explain approximately 18% of the variance and log 

body size and sex 23%. For symphyseal robusticity indices diet is predicted to explain 

19.5% of the variance and log body size and sex 1.2%. For the shape variables (indices) 

diet is predicted to explain a greater percentage of the variance than it is for size 

variables. In fact, the predicted contribution of diet to the shape variables remains 

consistent throughout the models, while the predicted influence of size decreases in the 

shape variables from that present in the size variables. Diet, while not being the most 

important factor based on the regression analyses is clearly an important variable when 

analysing morphological variance.  

 

4. Is there comparable morphological variation within hominins to non-human 

primates? 

Depending on the variables analysed there is some comparable morphological 

variation within hominins to non-human primates. When analysing corpus sizes, crown 

areas and crown shape indices hominins score within the range of extant non-human 

primates, but when analysing the corpus robusticity indices hominins are completely 

distinct from non-human primates. 

 

5. Is it possible to associate the morphological features of the hominins with 

dietary categories analogous to non-human primates?  

 Using size variables and crown shape indices it is possible to associate 

morphological features with dietary categories analogous to non-human primates. In 

contrast, because the corpus robusticity indices of the hominins were so distinct, their 

morphological features could not be associated with specific dietary categories in non-

human primates. 

 

 

 



Chapter 7: Conclusion 

228 

6. Can the way hominins compare with known-diet non-human primates be used 

to frame hypotheses about diet variation in relation to morphological patterns in early 

hominins? 

 Based on the various diets and food types entered it is likely that there were dietary 

differences between the hominins. Each of the hominins aligned with various diet types, 

indicating they could each have consumed an omnivorous/ generalist diet, even P. 

boisei. While each species is consistent with an omnivorous diet, it appears that 

variation in diet would have existed between species. The dietary variation is consistent 

with suggestions based on the stable carbon isotopes and dental microwear texture 

analyses. The results of this research therefore support the following revisions: 1) P. 

robustus and P. boisei both represent generalist diet consumers/ adaptations, with a 

capacity to consume tough/ hard foods depending on what is available. 2) The 

differences in quantities of C4 in their diets could reflect adaptations to their 

environments. It is possible they were similarly constrained by nutritional requirements, 

but as discussed previously, diets in non-human primates vary from species to species, 

and indeed, within species, between populations. This variation in diet consumed is a 

reflection of a species’ need to achieve a nutritionally balanced diet with the resources 

available to them. 3) Overlap in stable carbon isotopes and partial overlap in dental 

microwear texture analyses in A. africanus and P. robustus does not mean they were 

consuming the same diets. It is still entirely possible that their diets were very different.  

 The fact that the hominins exceed the limit of the non-human primates on the corpus 

robusticity indices makes it difficult to hypothesise what type of diet was consumed 

based on this variable alone. However, should the hominins follow the trend present in 

the non-human primates that indicates a more folivorous diet corresponds to a wider 

mandibular corpus (i.e. a more robust mandibular morphology as defined by the higher 

score on the robusticity index), it is possible to speculate that the robust mandibles 

present in the hominins represent an adaptation to regular consumption of tough foods. 

Further research is needed to confirm or challenge this suggestion, particularly with 

regards to refining how robusticity is best defined and measured.   

 

● Sub-aim: To assess the potential viability of the Fallback Food Hypothesis as 

an explanation for the morphological differences present in Paranthropus and 

Australopithecus. 

 The Fallback Food Hypothesis could not be tested in this research because it lacked 

a clear operational definition. This research relied upon field reports of the feeding 
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ecologies of non-human primates and without a clear consensus of fallback foods in 

those reports to then label a food a fallback food was a problem. An inability to test the 

hypothesis is a fundamental flaw and it appears to be a convenient explanation for the 

results obtained in the dental microwear texture and stable carbon isotope analyses in 

Paranthropus and Australopithecus. Before invoking the Fallback Food Hypothesis to 

explain the morphological differences observed in Paranthropus and Australopithecus 

more work is needed to understand food mechanical properties, and specifically the 

relationship between infrequently consumed high-impact foods and morphology, and 

regularly consumed, tough foods and morphology.  

 The results indicate that answers have been obtained to the research questions 

established at the start. While this is true, there were limitations present in the study and 

there still remains plenty of scope for further research.  

 

7.2  Limitations of study and recommended areas for future research 

 There are limitations associated with this research, and while attempts were made to 

overcome them it is important to acknowledge what they were. Limitations include the 

following: 1) the specimens analysed morphologically are not the same as those for 

which dietary data is available, and as a result 2) assumptions were made regarding the 

quality and food mechanical properties of diets. While these limitations are all clearly 

important, by analysing a broad sample of non-human primates, and collecting as much 

dietary information and analysing it in different ways for each species/ subspecies as is 

done here, it was considered that the limitations were mitigated somewhat. In fact, what 

was once a potential limitation of the study is now a potential strength, as the diverse 

diet categories (specific classification coding systems and quantity analyses) identified 

morphological patterns that the traditional diet categories missed. They also identified 

differences in consumers of tough and hard foods, which had previously not been 

considered possible. These limitations are commonly encountered in this discipline and 

these approaches are widely used in research such as this.  

 There remain plenty of avenues for further research to understand more about the 

association between diet and morphology and beyond that to further understand the 

palaeobiology of Paranthropus. In addition there still remains further work that can be 

done with the existing dataset. As such, the following recommendations for future 

research are suggested:  
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● Using the data available from this research explore the potential importance of 

non-metric traits and their association with diet and phylogeny. It is intended 

that these data will be analysed and published following PhD submission.  

● Increasing the sample further to include more dietary categories, including more 

folivorous species and the Miocene hominoids. 

● Based on the analyses from this research, it is advised that when morphological 

variables are recorded on specimens they include a more exhaustive number of 

variables for analysis than is the norm. For example, if analysing corpus 

robusticity indices, it is recommended they are recorded from P4-M3, instead of 

just M1 or M2. This is because variation exists between both monkeys and apes, 

and by focussing only on M1 or M2 morphological variation corresponding to 

dietary differences is potentially lost. 

● Using alternative approaches to analysing morphology, including 3D geometric 

morphometrics/ Finite Element Analysis. These approaches can help inform on 

potential loading capabilities.  

● Combining comparative morphological analysis with stable carbon isotope and 

dental microwear texture analyses. This would involve using the morphometric 

data in relation to the microwear surface patterns to determine food hardness/ 

toughness from each specimen, as Veneziano et al. (2019) do, and the isotopic 

pathways of each specimen. That way a more accurate way of assessing dietary 

hardness/ toughness is utilised, along with identifying morphological variation 

within isotopic pathways. Both factors that would be very useful to understand 

more in relation to the hominins.  

● More work is needed to understand the relationship between infrequently 

consumed high-impact foods and morphology, and regularly consumed, tough 

foods and morphology. 

● It would also be useful if more work were undertaken to understand more about 

C4 foods. Specifically, about what C4 foods include, their mechanical properties 

and their nutritional properties.  

● Use multiple ways of analysing diet. Traditional techniques do appear to miss 

morphological variation when compared with the more detailed classification 

techniques.  

● Refine how robusticity is measured.  
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 The current study elaborates on analyses already conducted that assess the 

association between diet and morphology, this time with a more complete and 

taxonomically diverse data set, a more refined dietary classification, and the 

acknowledgement of other factors, such as sexual dimorphism and body size 

differences. Ultimately, there is no one particular driver of morphology, as there are a 

number of different factors that could potentially contribute to morphological form 

(Larson et al., 2018). However, evidence suggests that it is possible to distinguish 

between general dietary adaptations and consumers of greater or lesser quantities of 

foods on the mandibular morphology. Thus, there appears to be an association between 

the mechanical properties of foods and the mandibular and dental morphology of non-

human primates. Despite this, it remains unclear which factor is more important for 

determining masticatory form out of repetitive/ cyclical loads (average forces) or peak 

masticatory forces (Happel, 1988; Yamashita, 1998; Taylor et al., 2008; McGraw & 

Daegling, 2012). If the way in which morphology in non-human primates responds to 

the mechanical properties of foods can be considered an accurate proxy for hominin 

morphology, then it appears likely that the mechanical properties of foods consumed by 

the early hominins would have also contributed to the morphology observed. Whether 

diet was the most important component is unclear (Berthaume et al., 2010), but further 

analysis of the hominins through stable carbon isotopes, dental microwear texture 

analysis, comparative morphology and 3D scanning and its associated technologies can 

only help to further the understanding of the dietary ecologies of the hominins.  
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Chapter 9  : Appendix  

Appendix A: Hominins information 

Appendix A details the condition and state of preservation of the hominins, the palaeoenvironments they are associated with, their dental and 

mandibular measurements, their reconstructed body sizes, and their stable carbon isotope results. Table 9.1 presents information on the specimens 

analysed and their state of preservation/ condition.  

 

Table 9.1: Hominin specimens used, their condition and comments from Tables 9.4 – 9.8 

Species/ 

Specimen 
Condition Comments on measurements from Tables 9.4 – 9.8 

Australopithecus afarensis 

AL 128-23 
Right mandibular fragment 

with C - M2 
Measurements and description from Johanson et al. (1982b). Kimbel et al. (2004) differ on M1 and M2 corpus breadth measurements.  

AL 145.35 
Left mandibular corpus with 
broken P3, P4; intact M1 and 

M2 

Measurements and description from Johanson et al. (1982b). All accessory cusps from this author are listed as present/ absent. Kimbel et al. 
(2004) differ on P4, M1 and M2 corpus breadth measurements.  

AL 176.35 P4 
Kimbel et al. (2004) do not specify the side from which the measurements were taken, or the condition of the specimens represented, element 

identified is deduced by measurements available. 

AL 188.1 

Right mandible fragment 

with distal root of P3, P4, and 

M1 roots, and intact M2, M3 

Measurements and description from Johanson et al. (1982b). Kimbel et al. (2004) differ on M2 corpus height measurements. 

AL 198.1 
Left mandibular corpus with 
I1 socket, I2 root, C to M3 

Measurements and description from Johanson et al. (1982b). Kimbel et al. (2004) differ on P4, M1 and M2 corpus breadth. Wood (1991); Kimbel 
et al. (2004) report different M1 robusticity index. 

AL 198.22 M1 
Measurements from Kimbel et al. (2004), no description of specimen condition available, assumed to be an M1 based on measurements. Side 

used for corpus measurements unknown (left side assumed). 

AL 200.1b RM1 Measurements and description from Johanson et al. (1982b). 

AL 207.13 

Fragmentary left mandible 

with intact P3, P4, M2, and 

broken M3 

Measurements and description from Johanson et al. (1982b). Kimbel et al. (2004) differ on P4 (corpus breadth), M1 and M2 (corpus breadth and 

height) measurements. Wood (1991); Kimbel et al. (2004) report different M1 robusticity index. 

AL 207.17 M3 Measurements from Kimbel et al. (2004), no description of specimen condition available, assumed to be an M3 based on measurements. 

AL 225.8 M2 and M3 
Measurements from Kimbel et al. (2004), no description of specimen condition available, assumed to be an M2 and M3 based on measurements. 

Side used for corpus measurements unknown (left side assumed). 

AL 228.2 P4 and M1 Measurements from Kimbel et al. (2004), no description of specimen condition available, assumed to be a P4 and M1 based on measurements. 
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Condition Comments on measurements from Tables 9.4 – 9.8 

Side used for corpus measurements unknown (left side assumed). 

AL 241.14 LM2 Measurements and description from Johanson et al. (1982b).  

AL 266.1 
Mandible with incisor and 
canine alveoli, LP3 to M1, and 

RP3 to M3 

Measurements and description from Johanson et al. (1982b). Kimbel et al. (2004) differ in corpus breadth measurements at P4, M1 (and height) 
and M2. Wood (1991); Kimbel et al. (2004) report different M1 robusticity index. 

AL 277.1 
Left mandible fragment with 

C to M2 

Measurements and description from Johanson et al. (1982b). Kimbel et al. (2004) differ on P4, M1 and M2 corpus breadth measurements. Wood 

(1991); Kimbel et al. (2004) report different M1 robusticity index. 

AL 288.1 

Mandible almost complete. 

The left P3 and M3 are 

isolated. Left M2, P3, and C 

as well as right I2 and C are 
represented by empty alveoli. 

The left M1, P4, I2, I1, and 

right I1 are represented by 

broken roots.  

Measurements from Johanson et al. (1982b), accessory cusps information and condition of specimen from Johanson et al. (1982c). Kimbel et al. 
(2004) differ on P4, M1 and M2 corpus breadth measurements. Wood (1991); Kimbel et al. (2004) report same robusticity index. 

AL 311.1 
Left mandibular corpus with 

C - M3 
Measurements and description from Johanson et al. (1982b). Kimbel et al. (2004) differ on P4 corpus breadth. 

AL 315.22 M1 
Measurements from Kimbel et al. (2004), no description of specimen condition available, assumed to be an M1 based on measurements. Side 

used for corpus measurements unknown (left side assumed). 

AL 330.5 P4-M3 
Measurements from Kimbel et al. (2004), no description of specimen condition available, assumed to be a P4-M3 based on measurements. Side 

used for corpus measurements unknown (left side assumed). 

AL 330.7 P4 and M1 Measurements from Kimbel et al. (2004), no description of specimen condition available, assumed to be a P4 and M1 based on measurements. 

AL 333.44 LP4 Measurements and description from Johanson et al. (1982b). 

AL 333.74 
Left mandible fragment with 

M1 - M3 
Measurements and description from Johanson et al. (1982b).  

AL 333w-
1a+b 

Left mandible fragment with 

P3 to M2, and right mandible 
fragment with P3 to M2, and 

RM3 fragment 

Measurements and description from Johanson et al. (1982b). Kimbel et al. (2004) differ on P4 corpus breadth, and both height and breadth at M1 
and M2. Wood (1991); Kimbel et al. (2004) report average of this robusticity index. 

AL 333w-12 
Right mandible fragment 

with RM1 

Measurements and description from Johanson et al. (1982b). Kimbel et al. (2004) differ on P4 and M1 corpus breadth measurements. Wood 

(1991); Kimbel et al. (2004) report different M1 robusticity index. 

AL 333w-27 
Left mandible fragment with 

LM2 
Measurements and description from Johanson et al. (1982b). 

AL 333w-

32+60 

Fragmentary mandible with 

most of the left corpus with 
RC, RI2, LP3 - M3. Small 

fragment of right corpus with 

M3.  

Measurements and description from Johanson et al. (1982b). Kimbel et al. (2004) differ on P4, M1 and M2 corpus breadth measurements. Wood 

(1991); Kimbel et al. (2004) report different M1 robusticity index. 
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Condition Comments on measurements from Tables 9.4 – 9.8 

AL 333w-48 RM2 Measurements and description from Johanson et al. (1982b). 

AL 333w-57 
Left mandible fragment with 

M2 - M3 
Measurements and description from Johanson et al. (1982b).  

AL 333w-59 
Left mandible fragment with 

M2 - M3 
Measurements and description from Johanson et al. (1982b).  

AL 400-1a 
Mandible with full dentition 

(except RI1). 

Measurements and description from Johanson et al. (1982b). Kimbel et al. (2004) differ on M1 corpus breadth measurements. Wood (1991); 

Kimbel et al. (2004) report different M1 robusticity index. 

AL 411.1 
Right mandible fragment 

with broken M1 - M3 
Measurements and description from Johanson et al. (1982c).  

AL 417.1a P4 - M3 
Measurements from Kimbel et al. (2004), no description of specimen condition available, assumed to be a P4- M3 based on measurements. Side 

used for corpus measurements unknown (left side assumed). 

AL 417.1a,b M2 and M3 
Measurements from Kimbel et al. (2004), no description of specimen condition available, assumed to be an M2 - M3 based on measurements. 

Measurements are averages. 

AL 418.1 M2 
Measurements from Kimbel et al. (2004), no description of specimen condition available, assumed to be an M2 based on measurements. Side 

used for corpus measurements unknown (left side assumed). 

AL 432.1 Condition unknown 
Measurements from Kimbel et al. (2004), no description of specimen condition available. Side used for corpus measurements unknown (left side 

assumed). 

AL 433.1a P4 
Measurements from Kimbel et al. (2004), no description of specimen condition available, assumed to be a P4- M3 based on measurements. Side 

used for corpus measurements unknown (left side assumed). 

AL 436.1 Condition unknown 
Measurements from Kimbel et al. (2004), no description of specimen condition available. Side used for corpus measurements unknown (left side 

assumed). 

AL 437.1 M2 and M3 
Measurements from Kimbel et al. (2004), no description of specimen condition available, assumed to be a P4- M3 based on measurements. Side 

used for corpus measurements unknown (left side assumed). 

AL 437.2 M2 
Measurements from Kimbel et al. (2004), no description of specimen condition available, assumed to be a P4- M3 based on measurements. Side 

used for corpus measurements unknown (left side assumed). 

AL 438.1 
Right mandibular corpus and 

ramus 
Measurements from Kimbel et al. (2004), description from Drapaeu et al., (2005). 

AL 440.1 M1 and M2 Measurements from Kimbel et al. (2004), no description of specimen condition available, assumed to be an M1 - M2 based on measurements.  

AL 443.1 P4 and M2 Measurements from Kimbel et al. (2004), no description of specimen condition available, assumed to be a P4 and M2 based on measurements.  

AL 444.2 P4 and M1 
Measurements from Kimbel et al. (2004), no description of specimen condition available, assumed to be a P4- M1 based on measurements. Side 

used for corpus measurements unknown (left side assumed). 

AL 465.5 M3 Measurements from Kimbel et al. (2004), no description of specimen condition available, assumed to be an M3 based on measurements.  

AL 487-1a M3 Measurements from Kimbel et al. (2004), no description of specimen condition available, assumed to be an M3 based on measurements.  

AL 582.1l P4 
Measurements from Kimbel et al. (2004), no description of specimen condition available, assumed to be a P4 based on measurements. 

Measurements are averages. Side used for corpus measurements unknown (left side assumed). 

AL 620.1 M3 
Measurements from Kimbel et al. (2004), no description of specimen condition available, assumed to be an M3 based on measurements. Side 

used for corpus measurements unknown (left side assumed). 

DIK-2-1 Left mandibular corpus and a Measurements and description from Alemseged et al. (2005). 
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Condition Comments on measurements from Tables 9.4 – 9.8 

portion of the symphysis. The 

P3, M1, M3, and part of M2 

crown were recovered.  

LH2 

Mandible with intact crowns 

R + L dm2; unerupted crowns 

R + L I1, C, P3; damaged 

crowns R + L dC, dm1, M1; 
broken roots R + L dI1, dI2.  

Measurements and description from White (1977). 

LH3 

Isolated permanent and 

deciduous teeth from both the 

mandible and maxilla. 
Mandibular dentition: RdC, 

Rdm1, I, R + L C, RP3, R + L 

P4, R + LM1. 

Measurements and description from White (1977). All accessory cusps identified by this author are listed as present/ absent. 

LH 4 

Mandibular corpus with 

broken RC, RM1, RM2; intact 

R & L P4; RP3, M3; LM1, 

LM2 

Measurements and description from White (1977). Kimbel et al. (2004) provide averages of these measurements.  

LH 14 
Isolated teeth: LI1 - LC, LP4; 
RI1 - RC, RM1 or 2. 

Measurements and description from White (1977). 

MAK-VP1/2 
Right side of mandible, with 

condyle, M1 - M3. 
Measurements and description from White et al. (2000). Kimbel et al. (2004) provide the same measurements. 

MAK-VP1/4 RM2 Measurements and description from White et al. (1993) 

MAK-VP1/12 
Mandible with LI2 - LM3. 

RP3 - RM3.  
Measurements and description from White et al. (2000). Kimbel et al. (2004) provide averages of these measurements. 

Australopithecus africanus 

MLD 2 
Subadult mandible with LP4 - 
LM2, RI1 - RP3, RM1 – RM2 

Measurements from Wood (1991), condition of specimen from Oakley et al. (1977). Cusp numbers from both M2s changed to reflect principle 
cusps present. 

MLD 4 RM3 Measurements from Wood (1991), condition of specimen from Oakley et al. (1977). 

MLD 18 
Mandible with LI1-LP4, RI1-

RM3 
Measurements from Wood (1991), condition of specimen from Oakley et al. (1977). 

MLD 19 LM3 
Measurements from Wood (1991), condition of specimen from Oakley et al. (1977). Cusp numbers from both M3s changed to reflect principle 

cusps present. 

MLD 24 LM2 Measurements from Wood (1991), condition of specimen from Oakley et al. (1977). 

MLD 34 
Mandible with RM2 and RM3 
roots 

Measurements from Wood (1991), condition of specimen from Oakley et al. (1977). 

MLD 40 
Left mandibular corpus with 

C-root of M3 
Measurements from Wood (1991), condition of specimen from Oakley et al. (1977). 
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Sts 7 Mandible with M2 and M3 Measurements from Wood (1991), condition of specimen from Oakley et al. (1977). 

Sts 36 Adult mandible Measurements and description from de Ruiter et al. (2013). 

Sts 52 Mandible with full dentition 
Measurements from Wood (1991), condition of specimen from Oakley et al. (1977). Cusp numbers from both M2s and LM3 changed to reflect 
principle cusps present. 

Taung 
Juvenile cranium and 

mandible with M1 

Measurements from Wood (1991), condition of specimen from Oakley et al. (1977). Cusp numbers from both M1s changed to reflect principle 

cusps present. 

Stw 1 LM1  Measurements and description from Moggi-Cecchi et al. (2006). All accessory cusps identified by this author are listed as present/ absent. 

Stw 3 LM2 Measurements and description from Moggi-Cecchi et al. (2006).  

Stw 14 

Mandible with teeth: RP3, 

RM1 - RM3, LP4, LM1 (in 

pieces) -LM3 

Measurements and description from Moggi-Cecchi et al. (2006).  

Stw 47 RM3 Measurements and description from Moggi-Cecchi et al. (2006).  

Stw 54 LM2 Measurements and description from Moggi-Cecchi et al. (2006).  

Stw 56 LP4 Measurements and description from Moggi-Cecchi et al. (2006).  

Stw 61 RM2 
Measurements and description from Moggi-Cecchi et al. (2006). Inconsistent use of term postmetaconulid (described by Swindler (2002) as a 
synonym for a protostylid), but here referred to as a feature present on the distal ridge of the metaconid, similar to location of the C7.  

Stw 72 LM2 Measurements and description from Moggi-Cecchi et al. (2006).  

Stw 80 
Mandible with teeth: 

Complete, except no RM1 
Measurements and description from Moggi-Cecchi et al. (2006).  

Stw 87 RP4 Measurements and description from Moggi-Cecchi et al. (2006). 

Stw 90 RM3 Measurements and description from Moggi-Cecchi et al. (2006). Postmetaconulid referred to as a separate trait from the C6 and C7. 

Stw 96 LM3 Measurements and description from Moggi-Cecchi et al. (2006).  

Stw 106 RM1 Measurements and description from Moggi-Cecchi et al. (2006).  

Stw 109 
Right mandibular fragment 

M2-M3 
Measurements and description from Moggi-Cecchi et al. (2006). An incipient C7 occurs in the form of a postmetaconulid.  

Stw 112 LP4 Measurements and description from Moggi-Cecchi et al. (2006).  

Stw 120 LM2 Measurements and description from Moggi-Cecchi et al. (2006). 

Stw 123 LM1 and RM1 Measurements and description from Moggi-Cecchi et al. (2006). An incipient postmetaconulid is present. 

Stw 131 
Right mandibular fragment 

with P4 - M1 and LP4 
Measurements and description from Moggi-Cecchi et al. (2006). 

Stw 133 LM3 Measurements and description from Moggi-Cecchi et al. (2006).  

Stw 134 LM2 Measurements and description from Moggi-Cecchi et al. (2006). 

Stw 142 

Right mandibular fragment 

with C, P3, P4, M1 and LM1 - 

LM3 

Measurements and description from Moggi-Cecchi et al. (2006).  
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Stw 145 RM1 Measurements and description from Moggi-Cecchi et al. (2006). 

Stw 147 RP4 Measurements and description from Moggi-Cecchi et al. (2006).  

Stw 151 Associated lower teeth 
Measurements and description from Moggi-Cecchi et al. (2006). Additional measurements and accessory cusp information (listed as present/ 
absent) from Moggi-Cecchi et al., (1998).  

Stw 193 
Isolated mandibular teeth: 

LP4, LM1, LM2, RP3, RP4 
Measurements and description from Moggi-Cecchi et al. (2006).  

Stw 196 LM3 
Measurements and description from Moggi-Cecchi et al. (2006). Uncertainty about whether a feature is a postmetaconulid or a C7, a C7 has been 
included in the spreadsheet. 

Stw 212 
Isolated mandibular teeth: 

LP3 - LM3, RP4, RM2 - RM3 
Measurements and description from Moggi-Cecchi et al. (2006).  

Stw 213 
Isolated mandibular teeth: 
LC-LM2, RC-RM2 

Measurements and description from Moggi-Cecchi et al. (2006). 

Stw 220 RM1 Measurements and description from Moggi-Cecchi et al. (2006).  

Stw 234 RM2 Measurements and description from Moggi-Cecchi et al. (2006). 

Stw 237 LM3 Measurements and description from Moggi-Cecchi et al. (2006).  

Stw 246 LM1 Measurements and description from Moggi-Cecchi et al. (2006). 

Stw 280 
Maxillary and mandibular 

teeth: RM3 
Measurements and description from Moggi-Cecchi et al. (2006). Incipient development of a postmetaconulid. 

Stw 285 LM2 and RM2 Measurements and description from Moggi-Cecchi et al. (2006). 

Stw 291 RM1 Measurements and description from Moggi-Cecchi et al. (2006).  

Stw 295 
Isolated mandibular teeth: 

RM1-RM3, LM1 - LM3 
Measurements and description from Moggi-Cecchi et al. (2006). 

Stw 308 RM2 Measurements and description from Moggi-Cecchi et al. (2006).  

Stw 309 LM1 and RM1 Measurements and description from Moggi-Cecchi et al. (2006). 

Stw 327 
Left mandibular corpus: LP4 - 

LM3 
Measurements and description from Moggi-Cecchi et al. (2006).  

Stw 353 RM3 Measurements and description from Moggi-Cecchi et al. (2006). Possible postmetaconulid present. 

Stw 364 RM1 Measurements and description from Moggi-Cecchi et al. (2006).  

Stw 384 
Right mandibular corpus: RP4 

- RM3 
Measurements and description from Moggi-Cecchi et al. (2006). 

Stw 385 
Left mandibular fragment 
with M2 - M3 

Measurements and description from Moggi-Cecchi et al. (2006).  

Stw 397 RM3 Measurements and description from Moggi-Cecchi et al. (2006). 

Stw 404 
Right mandibular corpus: RC 

- RM3, and LM3 
Measurements and description from Moggi-Cecchi et al. (2006).  

Stw 412 LM2 and RM2 Measurements and description from Moggi-Cecchi et al. (2006). A large but incipiently developed postmetaconulid, but no C7. 
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Stw 413 LP4 Measurements and description from Moggi-Cecchi et al. (2006).  

Stw 421 LM1 and RM1 Measurements and description from Moggi-Cecchi et al. (2006). An incipient postmetaconulid. 

Stw 424 LM2 Measurements and description from Moggi-Cecchi et al. (2006).  

Stw 487 
Isolated mandibular teeth: 

LP4, RM3 
Measurements and description from Moggi-Cecchi et al. (2006). 

Stw 491 
Isolated mandibular teeth: 

RI1, RC, RP4, LC, LM1 - LM3 
Measurements and description from Moggi-Cecchi et al. (2006).  

Stw 498 Left and right mandible  Measurements and description from Moggi-Cecchi et al. (2006). 

Stw 520 RM3 Measurements and description from Moggi-Cecchi et al. (2006).  

Stw 529 
Maxillary and mandibular 

teeth: RM2 -RM3, LM3 
Measurements and description from Moggi-Cecchi et al. (2006). 

Stw 537 

Isolated mandibular teeth: 

LI2, LC, LP4-LM3, RI2, RC, 

RM2, RM3  

Measurements and description from Moggi-Cecchi et al. (2006).  

Stw 555 LM2 Measurements and description from Moggi-Cecchi et al. (2006). 

Stw 560 
Isolated mandibular teeth: 

LP4 - LM3, RM2 - RM3 
Measurements and description from Moggi-Cecchi et al. (2006). A well-developed postmetaconulid (c.f. C7). 

Stw 566 RM1 Measurements and description from Moggi-Cecchi et al. (2006). A small C7 and a postmetaconulid are present.  

Stw 586 LM3 Measurements and description from Moggi-Cecchi et al. (2006).  

Paranthropus boisei   

KGA 10-525 Partial skull Measurements and description from Suwa et al. (1997).  

KGA 10-570 Juvenile mandible Measurements and description from Suwa et al. (1997).  

KGA 10-1720 LM3 Measurements and description from Suwa et al. (1997).  

KGA 10-2705 RM2 Measurements and description from Suwa et al. (1997).  

KNM-ER 403 Right mandibular fragment Measurements from Wood (1991), condition of specimen from Wood & Constantino (2007). 

KNM-ER 404 Right mandibular fragment Measurements from Wood (1991), condition of specimen from Wood & Constantino (2007). 

KNM-ER 725 Left mandibular body Measurements from Wood (1991), condition of specimen from Wood & Constantino (2007). 

KNM-ER 726 Left mandibular body Measurements from Wood (1991), condition of specimen from Wood & Constantino (2007). 

KNM-ER 727 Right mandibular fragment Measurements from Wood (1991), condition of specimen from Wood & Constantino (2007). 

KNM-ER 728 Right mandibular body Measurements from Wood (1991), condition of specimen from Wood & Constantino (2007). 

KNM-ER 729 Mandible 
Measurements from Wood (1991), condition of specimen from Wood & Constantino (2007). Cusp numbers from RM2 and both M3s changed to 
reflect principle cusps present.  

KNM-ER 733 Skull fragments Measurements and cusp numbers on RM3 from Wood (1991), condition of specimen from Wood & Constantino (2007).  

KNM-ER 801 
Right mandibular body, plus 

LM3 crown  

Measurements from Wood (1991), condition of specimen from Oakley et al. (1977). Cusp numbers from RM2 and both M3s changed to reflect 

principle cusps present. 



Appendix 

300 

Species/ 

Specimen 
Condition Comments on measurements from Tables 9.4 – 9.8 

KNM-ER 802 
Mandible RP4-RM1, RM3, 

LP4 - LM3 

Measurements from Wood (1991), condition of specimen from Oakley et al. (1977). Cusp numbers from RM1, LM2 and both M3s changed to 

reflect principle cusps present. 

KNM-ER 805 Mandible fragment Measurements from Wood (1991), condition of specimen from Wood & Constantino (2007). 

KNM-ER 810 
Left mandibular body with 

LM3 
Measurements and condition of specimen from Wood (1991). 

KNM-ER 818 Left adult mandible Measurements and condition of specimen from Wood (1991). 

KNM-ER 
1171 

LP4, LM2, RM1 - RM2 
Measurements from Wood (1991), condition of specimen from Oakley et al. (1977). Cusp numbers from RM1 and both M2s changed to reflect 
principle cusps present. 

KNM-ER 

1467 
RM3 Measurements and description from Day et al. (1976), additional measurements from Wood (1991). 

KNM-ER 
1468 

Right mandibular body 
Measurements and description from Day et al. (1976), additional measurements from Wood (1991). Wood (1991) differs from all M1 and M2 
measurements (except M2 corpus height). 

KNM-ER 

1469 
Left mandibular body 

Measurements and description from Day et al. (1976), additional measurements from Wood (1991). Wood (1991) differs from all M1 and M2 

measurements. 

KNM-ER 
1477 

Juvenile mandible Measurements and description from Day et al. (1976). Wood (1991) differs on symphyseal height.  

KNM-ER 

1509 
LM1 and LM3 

Measurements from Wood (1991), condition of specimen from Oakley et al., (1977). Cusp numbers from LM3 changed to reflect principle cusps 

present. 

KNM-ER 
1803 

Right mandibular body 
Measurements and description from Day et al. (1976), additional measurements from Wood (1991). Wood (1991) concurs with corpus 
measurements at M1. 

KNM-ER 

1806 
Edentulous adult mandible 

Measurements and description from Day et al. (1976), additional measurements from Wood (1991). Wood (1991) differs on symphyseal 

measurements. 

KNM-ER 
1816 

Fragmentary juvenile 
mandible 

Measurements and description from Day et al. (1976), additional measurements from Wood (1991). Wood (1991) differs on measurements for P4, 
M1 and M2 (MD). Cusp numbers from LM2 changed to reflect principle cusps present. 

KNM-ER 

1819 
LM3 Measurements and condition from Wood (1991). Cusp numbers from LM3 changed to reflect principle cusps present. 

KNM-ER 
1820 

Left juvenile mandible 
Dental measurements from Wood (1991), symphyseal measurements and description from Day et al. (1976). Wood (1991) differs on symphyseal 
measurements. Cusp numbers from LM1 changed to reflect principle cusps present. 

KNM-ER 

3229 
LP4 and RP4 Measurements from Wood (1991) and description from Leakey & Walker (1985). 

KNM-ER 
3230 

Adult mandible with 
complete dentition 

Measurements and condition from Wood (1991), non-metric trait information from Leakey & Walker (1985). Cusp numbers from RM2 and RM3 
changed to reflect principle cusps present. 

KNM-ER 

3729 

Eroded left mandibular 

fragment 
Measurements and condition from Wood (1991). 

KNM-ER 
3731 

Left mandibular body Measurements and condition from Wood (1991). 

KNM-ER 

3737 

Associated dentition 

including: RM1 and RM3 
Measurements from Wood (1991), condition of specimen from Grine (1988). Cusp numbers from RM3 changed to reflect principle cusps present. 

KNM-ER RP4: unworn crown Measurements from Wood (1991), condition of specimen from Leakey & Walker (1985). 
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3885 

KNM-ER 

3889 
Mandible fragment Measurements from Wood (1991), condition of specimen from Wood & Constantino (2007). 

KNM-ER 

3890 
Left lower molar 

Measurements from Wood (1991), condition of specimen from Leakey & Walker (1985). Cusp numbers from LM1 changed to reflect principle 

cusps present. 

KNM-ER 

3954 

Weathered edentulous adult 

mandible. 
Measurements and condition from Wood (1991), 

KNM-ER 

5429 
Fragmentary adult mandible Measurements and condition from Wood (1991). 

KNM-ER 

5679 
Isolated tooth: LM2 

Measurements from Wood (1991), condition of specimen from Wood & Constantino (2007). Cusp numbers from LM2 changed to reflect 

principle cusps present. 
KNM-ER 

5877 

Right side of mandible with 

RM3 
Measurements and description from Leakey & Walker (1985). Non-metric data from Wood (1991). 

KNM-ER 

15930 
Left mandibular body Measurements and description from Leakey & Walker (1988). Wood (1991) differs on all measurements, except M2 corpus height.   

KNM-ER 

15940 
LM3 and RM3 Measurements and description from Leakey & Walker (1988). 

KNM-ER 

15950 
LM3: heavily weathered Measurements and description from Leakey & Walker (1988). 

KNM-ER 

16841 
Edentulous mandible Measurements and description from Leakey & Walker (1988). Wood (1991) differs on all measurements, except P4 and M3 corpus width. 

KNM-WT 

17396 
LM3 Measurements and description from Leakey & Walker (1988). 

OH 26 

RM3 mesial crown. Although 

Wood & Constantino (2007) 

describe this as a maxillary 

molar. 

Measurements from Wood (1991), condition of specimen from Oakley et al. (1977). 

OH 30 
Deciduous and permanent 

dentition: LM1 

Measurements from Wood (1991), condition of specimen from Wood & Constantino (2007). Cusp numbers from LM1 changed to reflect 

principle cusps present. 

OH 38 RM2 and two incisors Measurements from Wood (1991), condition of specimen from Wood & Constantino (2007). 

OMO 136-1 LM3 Measurements from Coppens (1973b*), condition of specimen from Howell & Coppens (1974). 

OMO 136-2 LM3 crown Measurements from Coppens (1973a*), condition of specimen from Howell & Coppens (1974). 

OMO 47-46 RM2: worn Measurements from Coppens (1971*), condition of specimen from Howell & Coppens (1974). 

OMO 75-14 
Associated teeth: LP3-LM3, 

RP3-RM3 
Measurements from Coppens (1971*), condition of specimen from Howell & Coppens (1974). 

OMO 84-100 RM3 Measurements from Coppens (1973a*), condition of specimen from Howell & Coppens (1974). 

OMO F203-1 RM3 Measurements from Coppens (1973b*), condition of specimen from Howell & Coppens (1974). 

OMO L427-7 Right hemi-mandible with M2 Measurements from Wood (1991), condition of specimen from Howell & Coppens (1974). 
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OMO L628-2 LM3 Measurements from Wood (1991), condition of specimen from Howell & Coppens (1974). 

OMO L628-3 LM3 Measurements from Wood (1991), condition of specimen from Howell & Coppens (1974). 

OMO L628-4 LP4 Measurements from Wood (1991), condition of specimen from Howell & Coppens (1974). 

OMO L628-9 LM2 Measurements from Wood (1991), condition of specimen from Howell & Coppens (1974). 

OMO L7A-

125 

Mandible with complete 

dentition, except incisors 
Measurements from Howell (1969), with additional measurements from Wood (1991), condition of specimen from Howell & Coppens (1974). 

OMO L74A-
21 

Right hemi-mandible with P4 Measurements from Wood (1991), condition of specimen from Howell & Coppens (1974). 

Peninj 1 Mandible 
Measurements from Wood (1991), condition of specimen from Wood & Constantino (2007). Cusp numbers from LM1 and both M3s changed to 

reflect principle cusps present. 

Paranthropus robustus 

DNH 7 
Cranium and mandible, both 

complete with dentition 
Measurements and description from Keyser (2000). 

DNH 8  
Mandible with complete 

dentition 
Measurements and description from Keyser (2000). All non-metric data for the Drimolen material is from Moggi-Cecchi et al. (2010).  

DNH 10 
Right mandibular fragment 

with M3 
Measurements and description from Keyser et al. (2000).  

DNH 12 RM3 Data and description from Moggi-Cecchi et al. (2010). 

DNH 18 RM3 Measurements and description from Keyser et al. (2000).  

DNH 19 
Left mandibular body with 

P3, P4, M1, M2 and M3 
Measurements and description from Keyser et al. (2000).  

DNH 21 
Left mandibular body with 

M2, M3 
Measurements and description from Keyser et al. (2000).  

DNH 26 RP4 Measurements and description from Keyser et al. (2000).  

DNH 27 LP4 Measurements and description from Keyser et al. (2000).  

DNH 46 RM1 Measurements from Keyser et al., (2000). Non-metric data and condition from Moggi-Cecchi et al., (2010).  

DNH 51 
Right mandibular fragment 
with P3, P4, M1, M2, M3 

Measurements and description from Keyser et al., (2000).  

DNH 60 

Cranial fragments and 

associated teeth (Rdm1, 

Rdm2, RM1, RM2) 

Measurements from Keyser et al. (2000). Non-metric data and condition from Moggi-Cecchi et al. (2010).  

DNH 67 RM1 Measurements and description from Moggi-Cecchi et al. (2010). 

DNH 68 

Right mandibular body 

(fragments) with C 

(fragment), P3, P4, M1, M2, 
M3 

Measurements and description from Keyser et al. (2000).  

DNH 75 RM3 Measurements and description from Keyser et al. (2000).  
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DNH 81 RM1 Measurements from Keyser et al. (2000). Non-metric data and condition from Moggi-Cecchi et al. (2010).  

SK 6 
Mandible with LP3 - LM3 and 

RP4 - RM3 

Measurements from Wood (1991), condition of specimen from Oakley et al. (1977). Cusp numbers from both M1s and M2s changed to reflect 

principle cusps present. 

SK12 
Mandible with LP3 - LM3 and 

RP3 - RM3 

Measurements from Wood (1991), condition of specimen from Oakley et al. (1977). Cusp numbers from LM3 changed to reflect principle cusps 

present. 

SK 23 
Mandible with complete 

dentition 

Measurements from Wood (1991), condition of specimen from Oakley et al. (1977). Cusp numbers from LM2 and RM3 changed to reflect 

principle cusps present. 

SK 34 
Mandible with LP4 - LM3, 

RI1 - RM3 

Measurements from Wood (1991), condition of specimen from Oakley et al. (1977). Cusp numbers from both M2s and M3s changed to reflect 

principle cusps present. 

SKW 5 Mandible 
Measurements and description from Grine & Daegling (1993). Grine (1993) also reports the same measurements for the teeth dimensions, but 

reports different measurements for all corpus height and breadth. 

SKW 10 
RM1: buccal and distal 

portions of crown 
Measurements and description from Grine & Strait (1994). Grine (1993) reports the same measurements for the teeth dimensions. 

SKW 34 Right mandibular corpus Measurements and description from Grine & Strait (1994). Grine (1993) reports the same measurements for the teeth dimensions. 

SKW 4767 
RM1: complete crown with 
damaged roots 

Measurements and description from Grine & Strait (1994). Grine (1993) reports the same measurements for the teeth dimensions. 

SKW 4769 
LM2: distal portions of 

cracked crown 
Measurements and description from Grine & Strait (1994). Grine (1993) reports the same measurements for the teeth dimensions. 

SKX 257 RM1 Measurements and description from Grine (1989). Grine (1993) reports the same measurements for the teeth dimensions. 

SKX 258 LM1 Measurements and description from Grine (1989). Grine (1993) reports the same measurements for the teeth dimensions. 

SKX 4446 
Subadult mandible with RP4, 

RM1 and RM2 

Measurements from Grine (1988), condition of specimen from Grine (1989). Grine (1993) reports the same measurements, except for the 

symphyseal width (reports 26.7mm).  

SKX 5002 LM3: complete crown Measurements from Grine (1988), condition of specimen from Grine (1989). Grine (1993) reports the same measurements. 

SKX 5013 

Partial left mandibular corpus 

with distal root of P4, intact 

M1, M2 root neck and 

incomplete M3 root socket 

Measurements from Grine (1988), condition of specimen from Grine (1989). Grine (1993) reports the same measurements. 

SKX 5014 RM3 Measurements from Grine (1988), condition of specimen from Grine (1989). Grine (1993) reports the same measurements. 

SKX 5015 LM3: distal crown portion Data and condition from Grine (1989) 

SKX 5023 
RM1: complete and worn 

crown 
Measurements from Grine (1988), condition of specimen from Grine (1989). Grine (1993) reports the same measurements. 

SKX 19892 
LM2: incomplete and worn 

crown 
Measurements from Grine (1988), condition of specimen from Grine (1989). Grine (1993) reports the same measurements. 

SKX 32162 
RP4: incomplete and unworn 

crown 
Measurements from Grine (1988), condition of specimen from Grine (1989).  

TM 1517 
Mandible with RP3 - M3 and 

associated LP3 and LP4 
Measurements and description from Thackeray et al. (2001). Non-metric trait information from Wood (1991). 

TM 1536 Right mandible with RI1, Measurements and description from Thackeray et al. (2001). 
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Rdi2, Rdc1, Rdm1-2, RM1, 

Ldc, Ldm1 

TM 1600 
Left mandible fragment with 
P3, M2-M3 

Measurements and description from Thackeray et al. (2001). 

TM 1601b LP4 Measurements and description from Thackeray et al. (2001). 

KB 5223 

Isolated permanent and 

deciduous mandibular teeth: 
Ldc, Ldm1, Ldm2, LI1, LI2, 

Lc, LM1, Rdm2, RI1, RI2, 

RM1 

Measurements and description from Thackeray et al. (2001). 

Homo habilis 

OH 7 
Mandible with LI1 - LM2, RI1 

- RM1 

Measurements from Wood (1991), condition of specimen from Oakley et al. (1977). Cusp numbers from LM2 changed to reflect principle cusps 

present. 

OH 13 
Mandible with complete 

dentition 

Measurements from Wood (1991), condition of specimen from Oakley et al. (1977). Cusp numbers from both M3s changed to reflect principle 

cusps present. 

OH 16 
Mandible RI2 - RM3, LI1 - 

LM3 

Measurements from Wood (1991), condition of specimen from Oakley et al. (1977). Cusp numbers from RM2 and both M3s changed to reflect 

principle cusps present. 

OH 37 

Left mandibular corpus with 

M1 - M2, roots of I2, C, P4 and 
M3 

Measurements from Wood (1991), condition of specimen from Oakley et al. (1977). 

KNM-ER 817  Left mandibular body Measurements and description from Leakey & Wood (1973). 

KNM-ER 819 
Cracked and eroded left 

mandibular body. 
Measurements and description from Wood (1991). Assigned to H. habilis by Brown & Walker (1993).  

KNM-ER 

1462 
LM3 crown Measurements and description from Leakey & Wood (1974). 

KNM-ER 

1480 
RM3 crown Measurements and description from Leakey & Wood (1974). 

KNM-ER 

1482 

Mandible with RP4, LP4 - 

LM3, roots of RI2 - RM1, LI2, 

C, LM1 

Measurements from Wood (1991), condition of specimen from Oakley et al. (1977). Cusp numbers from LM3 changed to reflect principle cusps 

present. 

KNM-ER 
1483 

Fragmentary adult mandible Measurements from Wood (1991), condition of specimen from Leakey & Wood (1974).  

KNM-ER 

1501 

Right mandibular corpus with 

roots of C-M3 
Measurements from Leakey & Wood (1974), Wood (1991), and description from Oakley et al. (1977). 

KNM-ER 

1502 
Right mandibular body 

Measurements and description from Leakey & Wood (1974). Additional measurements and non-metric information from Wood (1991). Cusp 
numbers from RM1 changed to reflect principle cusps present. Brown & Walker (1993) report the same dental measurements, but assign it to H. 

ergaster. 

KNM-ER 

1508 
RM1 or 2 Measurements and description from Leakey & Wood (1974). 
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KNM-ER 

1590 

Cranium and mandibular 

LM2 
Measurements and description from Day et al. (1976). 

KNM-ER 
1801 

Left mandibular body 
Measurements and description from Day et al. (1976). Wood (1991) differs on dental measurements for P4 and M1, and measurements for M1 
corpus thickness. 

KNM-ER 

1802 

Well-preserved mandibular 

body 

Measurements and description from Day et al. (1976). Wood (1991) differs on dental measurements for P4, M1 and M2, and symphyseal 

thickness. Cusp numbers from both M1s and M2s changed to reflect principle cusps present. Brown & Walker (1993) report the same dental 

measurements. 
KNM-ER 

1805  
Cranium and mandible 

Measurements and description from Day et al. (1976). Wood (1991) differs on dental measurements for M2 and M3 (MD), but concurs with M1 

corpus height. 

KNM-ER 

3734 
Left mandibular body Measurements and description from Wood (1991). Assigned to H. habilis by Brown & Walker (1993).  

KNM-ER 

3950 
Adult mandibular symphysis Measurements and description from Wood (1991). Assigned to H. habilis by Brown & Walker (1993).  

KNM-ER 

60000 
Nearly complete mandible Measurements and description from Leakey et al. (2012) (S.I.). Coronoid height: [96]; Condyle height: 89. 

KNM-ER 

62003 
Right mandibular fragment Measurements and description from Leakey et al. (2012) (S.I.).  

UR 501 
Mandibular corpus broken in 

half 

Measurements and description from Bromage et al. (1995).  Shrenk et al. (1993) also provide measurements for mandibular and dental metrics. 

But the measurements from Bromage et al. (1995) were used because they followed the method of Wood (1991). Cusp numbers from RM2 
changed to reflect principle cusps present. 

KNM-WT 

42718 
RM1 Measurements and description from Prat et al. (2005).  

Homo ergaster 

KGA 10-1 Left mandibular body Measurements and description from Suwa et al. (2007). Accessory cusps defined as present/absent. 

KNM-BK 67 

Young adult mandible LM2 - 

LM3, roots of LP3-LM1, RP3-

RM3, alveoli of Left and 
Right  I1-C 

Measurements from Wood (1991), condition of specimen from Oakley et al. (1977). Cusp numbers from LM3 changed to reflect principle cusps 

present. 

KNM-BK 

8518 
Mandible Measurements from Wood (1991), condition of specimen from Oakley et al. (1977). 

KNM-ER 730 Mandible 
Measurements and condition from Day & Leakey (1973), additional measurements and LM3 cusp numbers from Wood (1991). Brown & Walker 
(1993) report the same dental measurements. 

KNM-ER 731 Left mandibular fragment Measurements and condition from Day & Leakey (1973), additional measurements from Wood (1991). 

KNM-ER 806 LM1 - LM3, RM3 
Measurements and condition from Leakey & Wood (1973), additional measurements from Wood (1991). Cusp numbers from all left mandibular 

molars changed to reflect principle cusps present. 

KNM-ER 809 LM1 Measurements and condition from Leakey & Wood (1973). 

KNM-ER 820 Juvenile mandible 
Measurements and condition from Leakey & Wood (1973), additional measurements from Wood (1991). Brown & Walker (1993) report the 

same dental measurements. 
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KNM-ER 992 Adult mandible 
Measurements and condition from Leakey & Wood (1973), additional measurements from Wood (1991). Brown & Walker (1993) report the 

same dental measurements. 

KNM-ER 
1507 

Juvenile left mandibular body 
Measurements and condition from Leakey & Wood (1974), additional measurements from Wood (1991). Cusp numbers from LM1 changed to 
reflect principle cusps present. Brown & Walker (1993) report the same dental measurements. 

KNM-ER 

1808 

Fragmentary mandible RM2 - 

RM3 

Measurements from Wood (1991) and Brown & Walker (1993), condition of specimen from Oakley et al., (1977). But Brown & Walker (1993) 

list this as left sided dentition, and the measurements from RM2 as LM3.  

KNM-ER 
1812 

Fragmentary right mandible 
Measurements from Wood (1991), additional observation and condition of specimen from Day et al. (1976). Both differ on reports of symphyseal 
thickness. 

KNM-WT 

15000 

Mandible with right and left 

dentition from C - M2. 

Measurements and description from Brown et al. (1985). Additional measurements from Brown & Walker (1993) and Wood (1991). 

Measurements from Brown & Walker (1993) differ from those of Brown et al. (1985) on LP4 (BL), RM1 (MD), LM1 (MD and BL), both M2s 

(MD and BL).  

OH 22 
Right mandibular corpus with 

P3 - M2, and roots of I1- C, M3 
Measurements from Wood (1991), condition of specimen from Oakley et al. (1977). 

OH 23 
Left mandibular corpus P4-

M2 (abraded) and roots of P3 
Measurements from Wood (1991), condition of specimen from Oakley et al. (1977). 

OH 51 LM1 Measurements from Wood (1991), no description of specimen condition available, assumed to be LM1 based on measurements. 

SK 15 
Mandible LM1 - LM3, RM2 - 

RM3 

Measurements from Wood (1991), condition of specimen from Oakley et al. (1977). Cusp numbers from both M3s changed to reflect principle 

cusps present. 

* cited in Wood (1991). It was not possible to obtain access to the original specimen reports from Coppens. 

See Oakley et al., (1977), along with the original specimen reports cited above for further information about each specimen, including the exact unit in which each were found. 

 

Table 9.2 provides the reconstructed environments for each site and stratigraphic layer associated with hominin fossils. Table 9.3 provides the 

same information for those hominins of questionable/ unknown taxonomic attribution. 
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Table 9.2: Hominin sites of occupation, dates of presence and reconstructed palaeoenvironments 

Species Site Unit Age (MYA)* 
Reconstructed 

palaeoenvironments  
Reference Notes 

A. afarensis*** 
Hadar 

Formation 
Basal member  3.8 - 3.42 

Mosaic of woodland and 

shrubland, near water 

Johanson et al. (1982a); Alemseged et al. 

(2005); Wynn et al. (2006); Reed (2008) 

Dikika specimen comes from this 

Member (Alemseged et al., 2005) 

    
Sidi Hakoma 

Member 
3.42 - 3.26 

Medium - open density 

woodland, grassland, 

shrubland 

Johanson et al. (1982a); Reed (1997, 

2008) Most hominins come from the Sidi 

Hakoma and Denen Dora Members 

(Johanson et al., 1982a) 

 
  

Denen Dora 
Member 

3.26 - 3.2 
Mixed habitats, woodland, 
bushlands, edaphic 

grasslands, wetlands 

Johanson et al. (1982a); Reed (1997, 
2008) 

    Kada Hadar 3.2 - 3.12 

KH-1: Open woodland 

with some edaphic 
grassland 

Reed (2008) 
A.L. 288-1 near the base of this 

Member (White et al., 1984) 

 
    3.12 - 2.94 

KH-2: Open woodland/ 

shrubland 
Reed (2008) 

A.L. 438 and A L. 444 found in this 

horizon (Kimbel et al., 1997) 

  
Koobi Fora: 
Turkana Basin 

Tulu Bor 3.36 - 3 
Scrub woodland and 
flooding river.  

Reed (1997)   

 
Omo: Usno 

Formation 
U-10 3.6 - 2.7 

Wooded riverine habitat 

with some edaphic 

grasslands 

Reed (1997); Brown (1994) 
 

  

West Turkana: 

Nachukui 

Formation 

Kataboi and 

Lomekwi 

Members 

3.6 - 3.3 

Mosaic habitats of 

woodland and forest, but 

becoming increasingly dry 

and open  

Harris et al. (1988); Leakey et al. (2001); 

Bobe (2011) 
  

 
Kantis  

Kantis Fossil 

Site 
3.45 - 2.77 

Open landscape with 

secondary closed 

landscapes 

Mbua et al. (2016) 
 

  Laetoli 
Upper Unit 

Laetolil Beds 
3.76 - 3.46 

Heavy woodland-bushland 

cover 

Andrews (1989); Leakey et al. (1995); 
Reed (1997, 2008); Kovarovic & 

Andrews (2007) 

Andrews (1989) provides the 

chronology for this site. 

    
Upper Unit 

Laetolil Beds  
3.76 - 3.46 

Lightly wooded to open 

habitats. Grassland 
savannah with seasonal 

aridity. Areas of thicker 

vegetation nearby.  

Hay (1987); Bonnefille & Riollet (1987); 

Leakey et al. (1995); Louys et al. (2015b) 

Musiba et al. (2007) and Su and 
Harrison (2007, 2008) describe Laetoli 

as a mosaic of woodland, shrubland, 

bushland and grassland, which follows 

the transition of environments through 
the two members.     

Ndolanya 
Beds  

2.6 
Open grassland and light 
woodland/ bushland cover 

Kovarovic et al. (2002); Kovarovic & 
Andrews (2007) 

 
Maka 

SHT/ Tulu 

Bor Tuff 
3.85 - 3.4 

Intermediate between 

open, dry and closed, 

mesic environments 

White et al. (1993) 
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Species Site Unit Age (MYA)* 
Reconstructed 

palaeoenvironments  
Reference Notes 

A. africanus Sterkfontein Member 4 2.65 - 2.0 

Open woodland, riparian 

forest, bushland and 
grassland 

Reed (1997); Reynolds & Kibii (2011); 

Pickering & Kramers (2010); Herries et 
al. (2013) 

Pickering & Kramers (2010) and 

Herries et al. (2013) report on the 

chronology of this site. Although see 
Pickering et al. (2011) for a slightly 

broader time frame, and Wood & Strait 

(2004) for a narrower time frame. 

 
  

Silberberg 
Grotto 

3.67 - 2.2 
Riverine gallery forest, 
with grassland nearby 

Reynolds & Kibii (2011); Herries & Shaw 
(2011); Granger et al., (2015) 

Herries & Shaw (2011) provide the 
lower limits; and Granger et al. (2015) 

provide the upper limits for this site. 

    
Jacovec 

Cavern  
< 2.4 

Mosaic of open and closed 

habitats, riverine gallery 
forest and bushland 

Reynolds & Kibii (2011); Herries et al. 

(2013) 

Herries et al. (2013) provide 

chronology for this site. 

 

Makapansgat Member 3 2.9 - 2.6 

Mosaic habitat, riparian 

woodland, bushland, and 

edaphic grassland. 

Dramatic vegetation shift 

occurred during this time. 

Cadman & Rayner (1989); Reed (1997); 

Behrensmeyer & Reed (2013); Herries et 
al. (2013) 

Different interpretations have been 

given for Makapansgat, but this is 

likely a reflection of material being 

extracted from different times of 

deposition (Cadman and Rayner, 

1989). Herries et al. (2013) provide 
chronology for these sites.  

    Member 4 2.7 - 2.5 

Diversity of habitats, 

ranging from woodland 
(riparian habitats) - 

bushland (dryer habitats) 

Zavada & Cadman (1993); Reed (1997); 
Herries et al. (2013) 

 
Gladsyvale 

Gladysvale 

Breccia 
Dumps  

2.4 - 2.0 Closed vegetation 
Behrensmeyer & Reed (2013); Herries et 

al. (2013) 

Herries et al. (2013) provide 

chronology for this site. 

  Taung  
Taung Dart 

Deposits 
3.0 - 2.6 Dense woodland 

Behrensmeyer & Reed (2013); Herries et 

al. (2013) 

Herries et al. (2013) provide 

chronology for this site. 

P. boisei 
Koobi Fora: 

Turkana Basin 
Burgi 3.0 - 2.0 

Open woodland, edaphic 
grasslands and riparian 

woodland 

Reed (1997) 
 

    KBS Member 1.88 - 1.6 
Grassland/ shrubland 

environment 
Reed (1997)   

 
  

Okote 

Member 
1.6 - 1.39 

Wetlands and edaphic 

grasslands 
Reed (1997) 

 

  

Omo: 

Shungura 
Formation 

Member G 2.33 - 1.8 
Open woodland, edaphic 
grasslands, river nearby 

Reed (1997); Plummer et al. (2015)   

 
Olduvai Gorge Bed I: FLKN  1.85 - 1.84 Freshwater spring 

Clarke (2012); McHenry (2012); Ashley 

et al. (2014) 

Presence here according to Clarke 

(2012). Site description from Ashley et 

al. (2014). Dates are estimations based 
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Reconstructed 

palaeoenvironments  
Reference Notes 

on Figure 3 in McHenry (2012) 

    
Bed I: 

FLKNN 
1.85 - 1.84 

Closed/ freshwater spring 

surrounded by wetlands 

Shipman & Harris (1988); Ashley et al. 

(2010); McHenry (2012); Uribelarrea et 
al, (2014) 

Dates are estimations based on Figure 

3 in McHenry (2012) 

 
  

Bed I: FLK-

Zinj 
1.84 - 1.79 

Closed/ wet habitat. Palm 

and Acacia woodland. 

Alternatively reconstructed 
as being grassland, 

woodland and bushland.  

Shipman & Harris (1988); Ashley et al. 

(2010); McHenry (2012); Uribelarrea et 
al, (2014) 

Lower limits of dates are based on 

estimations from Figure 3 in McHenry 

(2012). For alternative reconstruction 
see Reed (2008). 

    
Bed II: BK 

Locality 
1.79 - 1.15 Closed/ wet habitat 

Shipman & Harris (1988); Ashley et al. 

(2010); Stanistreet (2012) 

Exact locality dates not available so 

dates of Bed II obtained from 
Stanistreet (2012) 

 
  

Bed II: HWK 

Locality 
1.79 - 1.15 

Open/ arid. Alternatively 

reconstructed with 

abundant springs and 
wetlands  

Shipman & Harris (1988); Ashley et al. 

(2010); Stanistreet (2012)  

See Ashley et al. (2010) for alternative 

environmental reconstruction. Exact 

locality dates not available so dates of 
Bed II obtained from Stanistreet 

(2012) 

  
Peninj Humbu 

Formation 
Lake Natron 1.7 - 1.3 Savannah grassland 

Dominguez-Rodrigo et al. (2001); 

Schwartz & Tattersall (2005) 

Schwartz & Tattersall (2005) provide 

chronology of this site. 

 
Konso   1.4 Dry grassland Suwa et al. (1997) 

 

  Lake Malawi 

Chiwondo 

Beds 3A: 

Malema 

~2.5 - 2.3 
Open environment: grass-

bushland habitats 

Kullmer et al. (1999); Sandrock et al. 

(2007) 
  

 
Chesowanja Chemoigut 1.4 - 1.1 

Bushed grassland habitat, 

with riverine and lacustrine 

elements 

Carney et al. (1971); Bishop et al. (1978); 

Wood & Strait (2004) 

Carney et al. (1971) provide lower 

limits of site date; Bishop et al. (1978) 

provide description but information 

obtained from Wood & Strait (2004), 
who also provide upper limits of the 

site.  

  West Turkana 

Lokalalei 

Member: 

Kokiselei: I 

1.86 - 1.53 

Mosaic habitat ranging 
from closed/wet and 

closed/dry to open edaphic 

grasslands, or wet 

grasslands 

Leakey & Walker (1988); Shipman & 

Harris (1988); Bobe et al. (2007); Bobe 

(2011) 

Leakey & Walker (1988) describe 

position of locality. Bobe et al. (2007) 
provide dates for Tuffs. Shipman & 

Harris (1988) and Bobe (2011) give 

time- and region-specific 

environmental descriptions, they are 
not site specific. 

 
  

Lokalelei 

member: 

Kaito 

1.86 - 1.6 
Closed, wet woodland 

habitat 

Harris et al. (1988); Shipman & Harris 

(1988); Wood & Strait (2004) 

Presence here according to Wood & 

Strait (2004). Position of Unit 

according to Harris et al. (1988). 
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Reconstructed 

palaeoenvironments  
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P. robustus 

Coopers: 

Monte Cristo 

Formation 

Cooper's Cave 

D 
1.62 - 1.4  

Grassland with woodlands 

and water source nearby. 

de Ruiter et al. (2009); Pickering et al. 

(2011); Herries & Adams (2013) 

Chronology from Pickering et al. 

(2011) and Herries & Adams (2013), 

which has updated the earlier 
estimations from Berger et al. (2003); 

Steininger et al. (2008) and de Ruiter 

et al. (2009). N.B. Hominin remains 

were also identified from Cooper's A 
and B, but it has not been possible to 

obtain information regarding the two 

site's deposition chronology or their 

reconstructed environments.  

 
Drimolen   2 - 1.5 

Mixed environment with 

grassland  
Keyser (2000) 

Herries et al. (2009) provide a 

narrower time frame of 1.9 - 1.6mya, 

alternatively Herries & Adams (2013) 

report an age of 2.0 - 1.4mya. Given 

that the time range has not changed too 

much since the original specimen 

report, it was decided to maintain the 

original dating estimates. 

  Kromdraai B Member 3 1.8 - 1.6 
Open grassland with 

riparian woodland 
Reed (1997) 

Chronology from Herries & Adams 

(2013), who provide a narrower time 

frame than does Reed (1997), but 

slightly greater time-frame than the 
earlier work by Herries et al. (2009). 

 
Sterkfontein Member 5b 1.4 - 1.1 

Open or wooded grassland/ 
plains region 

Reed (1997); Herries et al. (2009); 
Pickering & Kramers (2010); Herries & 

Adams (2013) 

Chronology from Herries et al. (2009) 

and Herries & Adams (2013). Member 

position from Pickering & Kramers 
(2010). Reed does not distinguish 

between Members 5A-C in the 

description of the site.  

  Swartkrans Member 1 2.31 - 1.64 
Open habitat with a 

riverine woodland nearby 

Reed (1997); Elton, 2001; Pickering et al. 

(2011); Herries & Adams (2013) 

This member includes Lower Bank 
and Hanging Remnant, dates from 

Pickering et al. (2011) and Herries & 

Adams (2013) (more refined than 

those earlier provided by Herries et al. 
(2009). Reed does not distinguish 

between the two levels in the 

description of the site.  

 
  Member 2 1.7 - 1.1 

Wooded grassland with 
wetlands. Alternatively: 

Reed (1997); Herries et al. (2009); 
Herries & Adams (2013) 

Chronology from Herries et al. (2009) 
and Herries & Adams (2013). Open 
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palaeoenvironments  
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open habitat. habitat according to Elton (2001).  

    Member 3 1.3 - 0.6 
Open edaphic grasslands 

with a river/ stream 
Reed (1997); Herries & Adams (2013) 

Chronology from Herries & Adams 

(2013), which partially overlaps 
Herries et al. (2009) 

H. habilis 
Koobi Fora: 

Turkana Basin 
Burgi 3.0 - 2.0 

Open woodland, edaphic 

grasslands and riparian 

woodland 

Reed (1997)   

    KBS Member 1.88 - 1.6 
Grassland/ shrubland 

environment 
Reed (1997) 

Presence here according to Kimbel et 

al. (1997) 

 
  

Okote 

Member 
1.6 - 1.39 

Wetlands and edaphic 

grasslands 
Reed (1997) 

Presence here according to Wood & 

Strait (2004) 

  

Omo: 

Shungura 

Formation 

Member G 2.33 - 1.8 
Open woodland, edaphic 

grasslands, river nearby 
Reed (1997); Plummer et al. (2015)   

 

West Turkana: 
Nachukui 

Formation 

Kalochoro 
Member: 

Lokalalei 1α 

2.4 - 2.3 

Mosaic habitat, wet 
grassland, marsh or lagoon 

conditions associated with 

this site 

Harris et al. (1988); Prat et al. (2005); 

Tiercelin et al. (2010) 

Site and date information from Prat et 
al., (2005). Habitat description is from 

Tiercelin et al. (2010)  

  
Hadar 
Formation 

Kada Hadar 2.92 - 2.33 Dry, open habitat Kimbel et al. (1997) 
A.L. 666 found between BKT-2 and 
BKT-3 tephras (Kimbel et al., 1997) 

 

Hadar 

Busidima 

Formation 

Makaamitalu 

Basin 
~2.35 Wooded grasslands Reed (2008) 

 

    Danauli Basin ~2 
Open wet grasslands and 

floodplains 
Reed (2008)   

 
Olduvai Gorge 

Bed I: 

FLKNN 
1.85 - 1.84 

Closed/ freshwater spring 

surrounded by wetlands 

Leakey et al. (1964); Shipman & Harris 
(1988); Ashley et al. (2010); McHenry 

(2012); Uribelarrea et al. (2014). 

For site location see Leakey et al. 

(1964). Dates are approximations 
based on Figure 3 in McHenry (2012). 

Habitat descriptions are from Shipman 

& Harris (1988); Ashley et al. (2010); 

Uribelarrea et al. (2014). 

    
Bed II: HWK 

W Locality 
1.79 - 1.15 Freshwater spring 

Ashley et al. (2009); Clarke (2012); 

Stanistreet (2012) 

Presence here according to Clarke 

(2012); site description from Ashley et 

al. (2009); exact locality dates not 

available so dates of Bed II obtained 
from Stanistreet (2012) 

 
  

Bed II: MCK 

Locality 
1.79 - 1.15 Freshwater spring 

Ashley et al., (2009); Clarke (2012); 

Stanistreet (2012) 

Presence here according to Clarke 

(2012); site description from Ashley et 

al. (2009); exact locality dates not 
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available so dates of Bed II obtained 

from Stanistreet (2012) 

  Lake Malawi 

Chiwondo 
Beds 3A: 

Uraha 

Locality 

2.5 - 2.3 
Closed/ dry habitats: 
variable density woodlands 

and grasslands 

Bromage et al. (1995); Sandrock et al. 

(2007) 
  

 
Sterkfontein Member 5a 1.8 - 1.4 

Open or wooded grassland/ 
plains region 

Reed (1997); Herries et al. (2009); 
Herries & Shaw (2011) 

Chronology from Herries et al. (2009). 
Member position from Herries & Shaw 

(2011). Reed does not distinguish 

between Members 5A-C in the 

description of the site. This is the site 
of Stw 53, attributed to Homo habilis 

by Curnoe & Tobias (2006), but see 

Clarke (2007) for alternative 

attribution to Australopithecus 
africanus. 

H. ergaster 
Koobi Fora: 

Turkana Basin 
Burgi 3.0 - 2.0 

Open woodland, edaphic 

grasslands and riparian 

woodland 

Reed (1997) 
Presence here according to Wood & 

Strait (2004) 

 
  KBS Member 1.88 - 1.6 

Grassland/ shrubland 

environment 
Reed (1997) 

 

    
Okote 

Member 
1.6 - 1.39 

Wetlands and edaphic 

grasslands 
Reed (1997) 

Presence here according to Wood & 

Strait (2004) 

 

West Turkana: 

Nachukui 

Formation 

Natoo 

Member 
1.64 - 1.33 

Mosaic habitat: limited 

development of forest, 

narrow riparian woodland, 

open grassland, and 
seasonal marshes. 

Feibel & Brown (1993); Reed (1997) 

Alternatively, Harris et al. (1988) 

describe this Member as being arid 

grassland. 

  Olduvai Gorge Bed II 1.79 - 1.15 
Open, arid and closed, wet 
habitats 

Shipman & Harris (1988); Wood & Strait 
(2004) 

Presence here according to Wood & 

Strait (2004). Exact locality not given 

by Wood & Strait (2004), so general 
Bed II habitat description by Harris & 

Shipman (1988) used.  

 
Sterkfontein Member 5c 1.3 - 0.8 

Open or wooded grassland/ 

plains region 

Reed (1997); Herries et al. (2009); 

Pickering & Kramers (2010) 

Chronology from Herries et al. (2009). 

Member position from Pickering & 
Kramers (2010). Reed does not 

distinguish between Members 5A-C in 

the description of the site.  

  Swartkrans Member 1 2.31 - 1.64 Open habitat with a Reed (1997); Pickering et al. (2011); This member includes Lower Bank 
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Reconstructed 

palaeoenvironments  
Reference Notes 

riverine woodland nearby Herries & Adams (2013) and Hanging Remnant, dates from 

Pickering et al. (2011) and Herries & 

Adams (2013) (more refined than 
those earlier provided by Herries et al. 

(2009). Reed does not distinguish 

between the two levels in the 

description of the site.  

    Member 2 1.7 - 1.1 
Wooded grassland with 

wetlands  
Reed (1997); Herries & Adams (2013) 

Chronology from Herries et al. (2009) 

and Herries & Adams (2013) 

*N.B. MYA: million years ago. **No universal definition for savannah available, so it is assumed that all references that describe a savannah environment are similar to that described by 

Wynn (2000: 414), where a savannah is somewhere "between tropical rainforests and mid-latitude deserts, with seasonally dry vegetation which is characterized by a herbaceous stratum, 

with or without woody vegetation of variable height and spacing".  ***No information could be obtained regarding the palaeoenvironments of Belohdelie or Fejej.      

For additional information on palaeoenvironmental reconstructions see Reed (1997); Potts (1998); Wood & Strait (2004) and Behrensmeyer & Reed (2013) 

 

Table 9.3: Locations of questionable species attributions 

Species Site Unit 
Age 

(MYA)* 

Reconstructed 

palaeoenvironments  
Reference Notes 

cf. A. afarensis Galili Shabeley Laag Member ~ 3.8 - 3.5 

Open woodland, 

bushland-woodland 
and shrubland 

Kullmer et al. 

(2008) 

Member chronology estimated based on Figure 7 in 

Kullmer et al., (2008) 

  Hadar Formation Ledi-Gararu** 3.45 - 3.18 
Woodland, grasslands 
- open woodland 

Geraads et al. 
(2012) 

According to Behrensmeyer & Reed (2013) this is an 

A. afarensis site, although Geraads et al., (2012) 

discuss only bovids identified at this site. This could 
be a site where hominin remains are likely but not yet 

published as Behrensmeyer & Reed (2013) make 

reference to in Table 4.1. 

cf. A. africanus Olduvai Gorge Bed II: MCK Locality: 1.79 - 1.15  Freshwater spring 

Ashley et al. 
(2009); Clarke 

(2012); 

Stanistreet 

(2012) 

Presence here according to Clarke (2012); site 

description from Ashley et al. (2009); exact locality 

dates not available so dates of Bed II obtained from 

Stanistreet (2012) 

    Bed II: VEK Locality: 1.79 - 1.15  Freshwater spring 

Ashley et al. 

(2009); Clarke 

(2012); 

Stanistreet 
(2012) 

Presence here according to Clarke (2012); site 

description from Ashley et al. (2009); exact locality 

dates not available so dates of Bed II obtained from 
Stanistreet (2012) 
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Age 

(MYA)* 

Reconstructed 

palaeoenvironments  
Reference Notes 

Australopithecus 

sp. 
Galili Lasdanan Member ~ 4.5  - 4.2  

Open woodland, 

bushland-woodland 

and shrubland 

Kullmer et al, 

(2008) 

Member chronology estimated based on Figure 7 in 

Kullmer et al. (2008) 

    Dhidinley Member ~ 4.2 - 4.1 

Open woodland, 

bushland-woodland 

and shrubland 

Kullmer et al. 

(2008) 

Member chronology estimated based on Figure 7 in 

Kullmer et al. (2008) 

 
  Shabeley Laag Member ~ 3.8 - 3.5 

Open woodland, 
bushland-woodland 

and shrubland 

Kullmer et al. 
(2008) 

Member chronology estimated based on Figure 7 in 
Kullmer et al. (2008) 

  

Lothagam: 

Nawata 

Formation 

  7.5 - 5.5 

Mix of gallery forest, 

open woodlands, 
grassland, close to a 

large river and ponds. 

Becoming more open 

towards the latter 

stages of this 

Formation 

Leakey et al. 
(1996); Bobe 

(2011); 

Behrensmeyer 

& Reed 

(2013) 

Kissel & Hawks (2015) attribute the mandible KNM-

LT 329 to Australopithecus sp. But see Kramer (1986) 

for attribution to cf. Australopithecus afarensis.  

 

Lothagam: 

Nachukui 
Formation 

Apak Member 4.9 - 4.2 
Woodland, grassland 

and river nearby 

Su & Harrison 

(2007)  

    Kaiyumung Member <3.9 

Open habitat: 

grasslands, bushlands 

and lake nearby 

Su & Harrison 

(2007) 
  

 
Omo: Shungura 

Formation 
Member B 3.36 - 2.85 

Closed woodland, 

riverine forest and 

edaphic grasslands 

Reed (1997); 

Plummer et al. 

(2015) 
Shipman & Harris (1988) describe the Shungura 
Formation as one that is closed but of varying degrees 

of wetness, which is reflected throughout the 

reconstructed Members. Wood & Strait (2004) do not 

list Australopithecus sp. as present in Member D, but 

Reed (1997) does.  

    Member C 2.85 - 2.52 

Bushland - woodland, 

riverine forest and 

edaphic grasslands 

Reed (1997); 
Barr (2015); 

Plummer et al. 

(2015) 

 
  Member D 2.52 - 2.4 

Riverine forests, 
woodland - bushland 

and edaphic 

grasslands 

Reed (1997); 

Plummer et al. 

(2015) 

  Woranso-Mille    3.8 - 3.57 

Mosaic habitats: 
riverine gallery forest, 

closed and open 

woodland, grassland 

Haile-Selassie 

et al. (2010b) 
  

Paranthropus sp. Gondolin GD 1 1.8 - 1.7 
Outside the cave 
mesic conditions with 

Adams et al. 
(2007);   
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Age 

(MYA)* 

Reconstructed 

palaeoenvironments  
Reference Notes 

extensive vegetative 

cover. Carnivores 

could have used this 
area as a feeding 

retreat/ den, and the 

remains were then 

washed inside the 
cave by a water 

source. 

Herries & 

Adams (2013) 

    GD2 1.95 - 1.78 

Cave with water 

source nearby, but 
likely a primary 

carnivore den 

Herries et al. 

(2006); 
Herries & 

Adams (2013) 

  

Homo habilis 
(sensu lato)? 

 Omo: Shungura 

Formation 
Member E 2.4 - 2.36 

Well-watered 

woodland-bushland, 

riparian woodland or 

forest 

Reed (1997); 

Plummer et al. 
(2015) 

Taxonomic attribution queried by Wood & Strait 

(2004) 

    Member F 2.36 - 2.33 

Edaphic grasslands, 

open woodland and 
bushland 

Reed (1997); 

Barr (2015); 
Plummer et al. 

(2015) 

Taxonomic attribution queried by Wood & Strait 
(2004) 

*MYA: million years ago.  **Information originally extracted from Behrensmeyer & Reed (2013) 

For additional information on palaeoenvironmental reconstructions see Reed (1997); Potts (1998), Wood & Strait (2004) and Behrensmeyer and Reed (2013). 

 

The following Tables (9.4-9.7) detail the measurements taken from each hominin specimen analysed in this study. Tables 9.4-9.5 detail the 

hominin specimens with measurements from the mandibular corpus and symphysis. This information had to be broken up into two tables: Table 9.4 

includes measurements on the symphysis, and corpus measurements at the P4-M1, and Table 9.5 includes measurements on the corpus at M2-M3. 

Tables 9.6-9.7 detail the dental measurements from the P4-M1 (Table 9.6), and M2-M3 (Table 9.7). 
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Table 9.4: Hominin specimens and their symphyseal and P4 and M1 corpus measurements. References for each measurement numbered, but where no references are provided (e.g., on the 

Robusticity Indices) these have been worked out using the formula from Wood (1991). 

Species/ specimen Symphysis P4 Corpus M1 Corpus 

 
H W R.I.* H W R.I. H W R.I. 

 
 

  
L R L R L R L R L R L R 

Australopithecus afarensis 

AL 128-23 
      

16.61** 
     

18.61 
  

AL 145.35    281  19.31  68.9  27.81  22.431  752  

AL 188.1                

AL 198.1    32.21  15.71  48.8  31.11  17.31  522  

AL 198.22            21.73    

AL 207.13      17.71    30.41  18.41  592  

AL 225.8          31.13      

AL 228.2    363  163  44.4  31.83  16.33  51.33  

AL 266.1  202   39.81***  20.61  51.8  30.531  221  702 

AL 277.1    39.21  18.21  46.4  371  181  492  

AL 288.1 32.52 17.52 53.9  29.31  16.81  57.3 301 29.431  19.11  572 

AL 311.1      24.81      24.21    

AL 315.22    333  17.33  52.4  29.73  19.23  64.63  

AL 330.5    31.43  18.53  58.9  31.13  20.93  67.23  

AL 333w-1a+b     37.51  18.71  49.9 35.51 35.11 201 20.31 562 542 

AL 333w-12     31.11  17.41  55.9  30.61  19.31  572 

AL 333w-32+60 452 222 48.9 40.11  22.21  55.4  38.41  23.41  612  

AL 400-1a 39.52 192 48.1  35.61  18.51**  51.9  35.41  19.11  522 

AL 417.1a    37.23  18.43  49.5  363  183  502  

AL 418.1                

AL 432.1                

AL 433.1a,b      20.33    353  20.23  57.73  

AL 436.1                

AL 437.1    443  21.23  48.2  403  203  503  

AL 437.2    43.43  22.23  51.2  38.53  22.23  57.73  

AL 438.1     423  2553  59.5  41.33  24.753  59.93 

AL 444.2    43.93  21.13  48.1  41.23  233  55.83  

AL 582.1    40.53  22.63  55.8    21.43    
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AL 620.1    383  19.53  51.3  36.23  20.53  56.63  

LH 4 394 19.14 48.9 35.34 344 17.44 17.64 49.3 51.8 31.44  19.24 19.64 604  

MAK-VP1/2             19.65   

MAK-VP1/12    33.65 31.35 17.25 18.25 51.2 58.2 31.35 29.75 18.65 18.85 59.4 63.3 

Australopithecus africanus 

MLD 2 202 21.52 107.5       252 242  232  95.8 

MLD 18  212     20.542    342  20.52  602 

MLD 34           322  19.52  612 

MLD 40    372  23.52  63.5  362  23.52  652  

Sts 7 462    412  246  58.5  41.52  246  57.8 

Sts 36     376  196  51.4  366  206  55.7 

Sts 52 352 182 51.4 31.52 292  21.52  74.1  29.52  24.52  842 

Taung 252 14.52 58         182 17.52   

Paranthropus boisei 

KNM-ER 403 
          

472 
 

30.542 
 

6542 

KNM-ER 404 
               

KNM-ER 725 
 

302 
 

38.52 
 

27.52 
 

71.4 
 

412 
 

29.52 
 

722 
 

KNM-ER 726 
   

442 
 

30.52 
 

69.3 
 

462 
 

302 
 

652 
 

KNM-ER 727 
          

352 
 

242 
 

692 

KNM-ER 728 
          

372 
 

262 
 

702 

KNM-ER 729 502 32.52 65 452 4642 292 282 64.4 60.9 43.52 44.52 292 27.52 622 672 

KNM-ER 733 
 

20.52 
  

3942 
 

262 
 

66.7 
 

39.52 

 
272 

 
682 

KNM-ER 801 452 
         

43.52 
 

29.52 
 

682 

KNM-ER 805 
         

412  292  712  

KNM-ER 810 
 

262 
 

40.52  24.52  60.5  402  262  652  

KNM-ER 818 572 302 52.6 522 
 

392 
 

75 
 

502 
 

362 
 

722 
 

KNM-ER 1468 502 262 52 
 

5042 
 

332 
 

66 
 

48.18 
 

36.98 
 

752 

KNM-ER 1469 
 

272 
 

46.52 
 

322 
 

68.8 
 

[42]8 
 

338 
 

802 
 

KNM-ER 1477 23.18 138 56.3 
            

KNM-ER 1803 
          

428 
 

258 
 

602 

KNM-ER 1806 488 238 47.9 472 478 288 278 59.6 57.4 442 458 298 27.58 618 662 

KNM-ER 1820 29.58 212 71.2 
        

242 
   

KNM-ER 3229 502 
   

412 
 

252 
 

61 
 

392 
 

[28]2 
 

722 

KNM-ER 3230 522 252 48.1 422 412 262 292 70.7 61.9 422 422 282 302 66.72 71.42 
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KNM-ER 3729 
   

372  262  70.3  382  282  742  

KNM-ER 3731 
   

322      302  182  602  

KNM-ER 3889 452 282 62.2 
            

KNM-ER 3954 
   

3342  2542  75.8  3442  2642  <762  

KNM-ER 5429 5042 
   

4442 
     

4442 
 

>302 
 

> 682 

KNM-ER 5877 
          

442 
 

292 
 

662 

KNM-ER 15930 
 

237 
 

34.97 
 

23.27 
 

66.5 
 

34.27 
 

25.27 
 

712 
 

KNM-ER 16841 39.87 29.77 74.6 
 

42.87 
 

267 
 

60.8 
 

42.67 
 

26.97 
 

642 

OMO L7A-125 572 352 61.4 482 472 372 
 

77.1 
 

482 492 362 332 752 67.42 

OMO L74A-21 472 262 55.3 
 

462 
 

242 
 

52.8 
 

43.52 
 

252 
 

572 

Peninj 1 502 242 48 41.52 40.52 26.52 25.52 63.9 63 40.52 392 302 282 742 722 

Paranthropus robustus 

SK 6 
         

37.52  242  642  

SK 12 
   

432 412 312 322 72.1 78.1 442 422 332 312 752 742 

SK 23 502 
  

402 402 23.52 23.52 58.8 58.8 372 392 24.52 24.52 662 632 

SK 34 
   

412 412 212 252 51.2 61 402 412 222 232 552 562 

SKW 5 379 209 54.1 
 

349 
 

239 
 

67.7 349 339 259 269 73.5 78.8 

SKW 34 
            

2610 
  

SKX 4446 3711 24.511 66.2 
 

3411 
 

22.911 
 

67.4 
 

32.811 
 

2411 
 

73.1 

SKX 5013 
   

31.711 
 

22.711 
 

71.6 
 

32.311 
 

24.111 
 

74.6 
 

Homo habilis 

KNM-ER 817    
 

  3012 
 

1812 
 

60   2912 
 

1812 
 

62.1 
 

KNM-ER 819       402   262   65   382   272   712   

KNM-ER 1482 362 222 61.1 32.52 312 202 212 61.5 67.7  312 
 

202 202  652 
 

KNM-ER 1483 402 252 62.5 402   202   50   39.52   26.52   672   

KNM-ER 1501   
 

    3213 
 

1613 
 

50 
 

3013 
 

1613 
 

592 

KNM-ER 1502                     2813   1713   632 

KNM-ER 1801 322 
 

  368 
 

198 
 

52.8   348 
 

19.38 
 

592 
 

KNM-ER 1802 368 24.38 67.5   408 208 208   50   388 238 238   612 

KNM-ER 1805 228 268 118.2 472 
 

232 
 

48.9   302 
 

212 
 

702 
 

KNM-ER 3734       352   192   54.3   332   19.52   592   

KNM-ER 3950 312 18.52 59.7   
    

  
      

KNM-ER 60000 4314 2114 48.8 3914   2114   53.9   3814   2014   5314   

KNM-ER 62003 3614 2014 55.6   3314 
 

2014 
 

60.6 
 

3214 
 

[19] 14 
 

[59]14 
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OH 7           23.52           252       

OH 13 252 182 72   262 
 

16.52 
 

63.5 
 

26.52 
 

182 
 

682 

OH 37 292 192 65.5 312   202   64.5   322   19.52   612   

UR 501 36.115 20.315 56.2 35.115 35.815 19.615 2015 55.8 55.9 34.315 3515 22.415 21.315 65.3 60.9 

Homo ergaster 

KGA 10-1   
 

  [33.5]16 
 

20.716 
 

61.816 
 

[32.5]16 
 

21.316 
 

6616 
 

KNM-BK 67 312 19.52 62.9 352 332   17.52   53 352 332   172   522 

KNM-BK 8518 302 21.52 71.7 292 27.52 18.52 192 63.8 69.1 302 30.52 212 20.52 702 662 

KNM-ER 730 32.717 17.717 54.1 32.52   192   58.5   32.317   1917   602   

KNM-ER 731   202   
      

2517 
 

19.317 
 

702 
 

KNM-ER 820 2712 16.512 61.1             1812 1912 1712 1712 94.4 89.5 

KNM-ER 992 372 212 56.8 3112 3212 2012 2112 64.5 65.6 3112 3212 2012 2012 652 632 

KNM-ER 1507                   1913   1913   100   

KNM-ER 1808   
 

  
 

[30]18 
    

  2918 
    

KNM-ER 1812 328 178 53.1                         

KNM-WT 15000   
 

  27.219 25.319 18.119 1919 66.5 75.1 24.419 23.219 19.519 20.519 79.9 88.4 

OH 22 33.52 202 59.7   292   20.52   70.7   28.52   212   742 

OH 23   
 

  322 
 

202 
 

62.5 
 

332 
 

212 
 

642 
 

SK 15 (Brain 1993)       [28]20   1720    60.7   [27.5] 20   18.520    67.3   

*Height (H); Width (W); Robusticity Index (R.I.). Robusticity Index - ([corpus width]/[corpus height]) x 100 (adults) 

**Measurements from Minimum Corpus Breadth, instead of Perpendicular Corpus Breadth. *** Measurements from Minimum Corpus Height: Base to occlusal Rim, instead of Base to the midpoint of 
the alveolar margin of the tooth. 

1 White & Johanson, 1982; 2 Wood, 1991; 3 Kimbel et al., 2004; 4 White et al., 1977; 5 White et al., 2000; 6 de Ruiter et al., 2013; 7 Leakey & Walker, 1988; 8 Day et al., 1976; 9 Grine & Daegling, 1993; 
10 Grine & Strait, 1994; 11 Grine, 1989; 12 Leakey & Wood, 1973; 13 Leakey & Wood, 1974; 14 Leakey et al., 2012; 15 Bromage et al., 1995; 16 Suwa et al., 2007; 17 Day & Leakey, 1973; 18 Leakey & 

Walker, 1985; 19 Brown & Walker, 1993; 20 Rightmire, 1990. 
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Table 9.5: Hominin specimens and their M2 and M3 corpus measurements. References for each measurement numbered, but where no references are provided (e.g., on the Robusticity 

Indices) these have been worked out using the formula from Wood (1991). 

Species/ specimen M2 Corpus M3 Corpus 

 
H W R.I. H W R.I. 

  L R L R L R L R L R L R 

Australopithecus afarensis 

AL 128-23   
  

231 
 

  
      

AL 145.35     25.61                   

AL 188.1   33.31  22.31  66.9       

AL 198.1 30.81   17.71   57.5   31.31           

AL 198.22 343  20.93  61.5         

AL 207.13 27.31   20.41**   74.7   26.51           

AL 225.8 28.13  21.43  76.2         

AL 228.2                         

AL 266.1   27.61  24.21**  87.7       

AL 277.1     21.21                   

AL 288.1   27.61       261     

AL 311.1                         

AL 315.22 283  203  71.4         

AL 330.5 28.33   19.53   68.9               

AL 333w-1a+b 32.41  24.31 24.41 75         

AL 333w-12                         

AL 333w-32+60 35.41  261  73.5         

AL 400-1a                         

AL 417.1a 32.83  18.43  56.1         

AL 418.1 363                       

AL 432.1    20.33           

AL 433.1a,b     20.86                   

AL 436.1 263  19.63  75.4         

AL 437.1     19.63                   

AL 437.2 373  24.23  65.4         

AL 438.1   37.13   28.13   75.7             

AL 444.2 37.63  30.53  81.1         

AL 582.1                         
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Species/ specimen M2 Corpus M3 Corpus 

 
H W R.I. H W R.I. 

  L R L R L R L R L R L R 

AL 620.1 34.53  22.63  65.5         

LH 4 29.54   22.44   75.9               

MAK-VP1/2   32.65  21.45  65.6  30.75     

MAK-VP1/12 31.15 [27.7]5 20.35 20.85 65.3 77 33.95 [28.2]5         

Australopithecus africanus 

MLD 2                         

MLD 18   31.52 
 

252 
 

79.4 
 

322 

 
292 

 
90.6 

MLD 34   332   222   66.7             

MLD 40 362 
 

272 
 

75   352 
 

302 
 

85.7 
 

Sts 7   372           332         

Sts 36   
    

  
      

Sts 52   292   282   96.6             

Taung   
    

  
      

Paranthropus boisei 

KNM-ER 403   45.52   32.52   71.4   452   342   75.6 

KNM-ER 404   45.52  352  76.9       

KNM-ER 725 41.52   32.52   78.3   37.52   362   96   

KNM-ER 726 452  312  68.9   412  332  80.5  

KNM-ER 727   332   262   78.8             

KNM-ER 728   37.52  272  72       

KNM-ER 729 412 432 31.52 292 67.4 76.8   432   362   83.7 

KNM-ER 733   362  292  80.6       

KNM-ER 801   42.52   322   75.3   402         

KNM-ER 805 392  33.52  85.9        

KNM-ER 810 412   33.52   81.7   412   332   80.5  

KNM-ER 818 482  362  75         

KNM-ER 1468   478   33.88   71.9   472   352   74.5 

KNM-ER 1469 408  33.58  83.8   452  412  91.1  

KNM-ER 1477                         

KNM-ER 1803               

KNM-ER 1806 412 418 308 28.58 73.28 69.5             
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Species/ specimen M2 Corpus M3 Corpus 

 
H W R.I. H W R.I. 

  L R L R L R L R L R L R 

KNM-ER 1820               

KNM-ER 3229 412   332   80.5   402   342   85  

KNM-ER 3230 422 412  352   85.4    [36]2   

KNM-ER 3729 362   28.52   79.2   332   282   84.9  

KNM-ER 3731 282  212  75        

KNM-ER 3889                         

KNM-ER 3954    282     292      

KNM-ER 5429       >342                 

KNM-ER 5877   43.52  35.52  81.6       

KNM-ER 15930 327   29.77   92.8   32.37   27.37   84.5   

KNM-ER 16841   43.87  27.47  62.6  39.87  [32]7  80.4 

OMO L7A-125 482 482 322 352 66.7 72.9 47.52 482 34.52 352 72.6 72.9 

OMO L74A-21               

Peninj 1 392 372 30.52 31.52 78.2 85.1 34.52 33.52 362 322 104.3 95.5 

Paranthropus robustus 

SK 6 332   27.52   83.3              

SK 12 412 402 332 312 80.5 77.5 412 372 352  85.4  

SK 23 34.52 362 27.52 262 79.7 72.2 342 352 282 272 82.4 77.1 

SK 34 372 412 252 232 67.6 56.1 352 382 312  85.6  

SKW 5 329 329 299 319 90.6 96.9 339 349 299 329 87.9 94.1 

SKW 34     3110          

SKX 4446   31.211   27.211   87.2             

SKX 5013 31.211  26.311  84.3         

Homo habilis 

KNM-ER 817   
    

  
      

KNM-ER 819 402   292   72.5               

KNM-ER 1482 302  222  73.3   302  242  80  

KNM-ER 1483                         

KNM-ER 1501   3013  19.513  65  2613  2113  80.8 

KNM-ER 1502                         

KNM-ER 1801               
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Species/ specimen M2 Corpus M3 Corpus 

 
H W R.I. H W R.I. 

  L R L R L R L R L R L R 

KNM-ER 1802   [38]8   278   71.1             

KNM-ER 1805 302  242  80   262      

KNM-ER 3734 322   202   62.5   292   172   58.6   

KNM-ER 3950               

KNM-ER 60000 3514   2114   60               

KNM-ER 62003               

OH 7     252                   

OH 13   28.52  22.52  79  26.52  232  86.8 

OH 37 34.52   23.52   68.1   312   242   77.4   

UR 501   3615 26.315 26.515   73.6             

Homo ergaster 

KGA 10-1 [31.5]16 
 

22.116 
 

7016   
      

KNM-BK 67 34.52 342   18.52   54.4  352 342 22.52 20.52 64.3 60.3 

KNM-BK 8518 31.52 312 232 222 73 71 32.52 30.52 222 21.52 67.7 70.5 

KNM-ER 730 31.417   18.717   59.6   30.517   19.217   63   

KNM-ER 731               

KNM-ER 820                         

KNM-ER 992 3312 3512 221412 2412 66.7 68.6 3512 3712 2412 2512 68.6 67.6 

KNM-ER 1507                         

KNM-ER 1808   30.518  2018  65.6  3018  2118  70 

KNM-ER 1812                         

KNM-WT 15000 24.819 23.519 2119 21.319 84.7 90.6       

OH 22   28.52   212   73.7   332   222   66.7 

OH 23 322  202  62.5         

SK 15 [24]20   [23.5]20   97.9   [24.5]20   [23.5]20 95.9   

*Height (H); Width (W); Robusticity Index (R.I.). Robusticity Index - ([corpus width]/[corpus height]) x 100 (adults) 

**Measurements from Minimum Corpus Breadth, instead of Perpendicular Corpus Breadth.  
1 White & Johanson, 1982; 2 Wood, 1991; 3 Kimbel et al., 2004; 4 White et al., 1977; 5 White et al., 2000; 6 de Ruiter et al., 2013; 7 Leakey & Walker, 1988; 8 Day et al., 1976; 9 

Grine & Daegling, 1993; 10 Grine & Strait, 1994; 11 Grine, 1989; 12 Leakey & Wood, 1973; 13 Leakey & Wood, 1974; 14 Leakey et al., 2012; 15 Bromage et al., 1995; 16 Suwa et 

al., 2007; 17 Day & Leakey, 1973; 18 Leakey & Walker, 1985; 19 Brown & Walker, 1993; 20 Rightmire, 1990. 

 



Appendix 

324 

Table 9.6: Hominin specimens and their P4 and M1 dental measurements. References for each measurement numbered. 

Species/ 

specimen 

P4 MD P4 BL M1 MD M1 BL Max M1 BL1 M1 BL2 

 
L R L R L R L R L R L R 

Australopithecus afarensis                       
A.L. 128-23 7.71 

 
101   11.21 

 
11.11 

     A.L. 145.35 9.51       131   13.41           
A.L. 176.35 10.72 

 
10.62   

        A.L. 188.1                         
A.L. 198.1 8.51 

 
9.81   8.81 

       A. L. 198.22         12.82               
A.L. 200.1b   

  
  

 
12.81 

 
12.51 

    A.L. 207.13 8.71   101                   
A.L. 207.17   

  
  

        A.L. 225.8                         
A.L. 228.2 9.62 

 
10.92   12.82 

 
122 

     A.L. 241.14                         
A.L. 266.1 91 91 111 10.41 121 121 11.91 11.91 

    A.L. 277.1 9.51   11.81   121               
A.L. 288.1   7.41 

 
10.51 

 
11.71 

 
111 

    A. L. 315.22         13.42               
A.L. 330.5 8.72 

 
10.42   12.42 

 
12.12 

     A.L. 330.7 10.52   12.12   13.72   13.42           
A.L. 333.44 101 

 
11.21   

        A.L. 333.74         12.61   13.51           
A.L. 333w-1a+b 9.41 9.51 10.51 10.51 12.71 12.71 12.11 12.21 

    A.L. 333w-12           12.41   12.71         
A.L. 333w-27   

  
  

        A.L. 333w-

32+60 

9.51   12.81   12.81   13.21           
A.L. 333w-48   

  
  

        A.L. 333w-57                         
A.L. 333w-59   

  
  

        A.L. 400-1a 9.11 9.11 11.11 11.31 12.21 12.41 12.41 12.71         
A.L. 411.1 

     
12.51 
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Species/ 

specimen 

P4 MD P4 BL M1 MD M1 BL Max M1 BL1 M1 BL2 

 
L R L R L R L R L R L R 

A.L. 417.1a 8.63 
 

11.23 
 

12.43 
 

11.93 
     A.L. 417.1a,b 

            A.L. 418.1 
            A.L. 433.1a 9.52 

           A.L. 437.1 
            A.L. 437.2 
            A.L. 438.1 
            A.L. 440.1 
    

14.82 
 

13.12 
     A.L. 443.1 10.82 

 
11.72 

         A.L. 444.2 11.42 
   

14.62 
       A.L. 465.5 

            A.L. 487-1a 
            A.L. 582.1l 11.42 

 
11.82 

         A.L. 620.1 
            DIK-2-1 
    

14.74 
 

144 
     LH2 

    
[13.7]5 [14]5 

 
[13.9]5 

    LH3 11.15 10.95 11.75 11.95 13.45 
 

13.35 
     LH 4 9.55 9.45 115 10.75 11.95 11.85 

 
12.65 

    LH 14 10.65 
 

11.55 
         MAK-VP1/2 

     
13.16 

 
12.46 

    MAK-VP1/4 
            MAK-VP1/12 8.86 9.56 9.96 10.86 12.86 12.66 12.26 12.16 

    
Australopithecus africanus 

           MLD 2 
    

14.88 14.78 14.18 13.98 14.18 13.98 13.78 13.88 

MLD 4 
            MLD 18 
 

8.98 
 

11.88 
 

12.68 
 

13.18 
    MLD 19 

            MLD 24 
            MLD 40 9.78 

 
11.38 

 
13.18 

 
12.48 

 
12.28 

 
12.38 

 Sts 7 
            Sts 52 
 

9.88 
 

12.18 
 

13.88 
 

13.28 
 

13.18 
 

12.88 

Taung 
    

13.38 13.48 13.38 138 
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Species/ 

specimen 

P4 MD P4 BL M1 MD M1 BL Max M1 BL1 M1 BL2 

 
L R L R L R L R L R L R 

Stw 1 
    

13.49 
 

12.69 
     Stw 3 

            Stw 14 109 
 

129 
         Stw 47 

            Stw 54 
            Stw 56 11.19 

 
12.49 

         Stw 61 
            Stw 72 
            Stw 80 9.59 

 
109 

         Stw 87 
 

9.39 
 

12.19 
        Stw 90 

            Stw 96 
            Stw 106 
     

12.49 
 

11.59 
    Stw 109 

            Stw 112 8.79 
 

9.39 
         Stw 120 

            Stw 123 
    

13.49 13.39 12.19 11.89 
    Stw 131 10.79 10.19 11.99 11.79 

 
14.49 

 
12.69 

    Stw 133 
            Stw 134 
            Stw 142 
 

9.89 
 

11.19 14.79 
 

14.19 
     Stw 145 

     
13.79 

 
12.69 

    Stw 147 
 

10.19 
 

109 
        Stw 151 9.69 

 
10.39 [9.4]10 13.89 149 11.79 11.89 

    Stw 193 9.59 10.49 12.49 11.89 
  

12.89 
     Stw 196 

            Stw 212 
 

10.59 
 

12.29 
        Stw 213 9.99 9.79 10.59 10.39 
        Stw 220 

       
13.29 

    Stw 234 
            Stw 237 
            Stw 246 
    

15.89 
 

12.99 
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Species/ 

specimen 

P4 MD P4 BL M1 MD M1 BL Max M1 BL1 M1 BL2 

 
L R L R L R L R L R L R 

Stw 280 
            Stw 285 
            Stw 291 
     

14.49 
 

13.49 
    Stw 295 

      
149 

     Stw 308 
            Stw 309 
    

14.89 14.89 13.79 13.99 
    Stw 327 11.69 

 
11.59 

 
13.89 

 
12.89 

     Stw 353 
            Stw 364 
     

13.89 
 

12.79 
    Stw 384 

 
11.59 

 
13.29 

 
15.59 

 
15.19 

    Stw 385 
            Stw 397 
            Stw 404 
 

10.29 
 

10.69 
 

12.69 
 

12.59 
    Stw 412 

            Stw 413 109 
 

10.99 
         Stw 421 

    
15.39 15.39 13.89 13.79 

    Stw 424 
            Stw 487 12.39 

           Stw 491 
    

13.39 
 

12.79 
     Stw 498 11.49 

 
12.99 

 
14.69 

 
14.19 

     Stw 520 
            Stw 529 
            Stw 537 11.29 

 
12.79 

 
159 

 
13.59 

     Stw 555 
            Stw 560 11.49 

           Stw 566 
     

139 
 

12.29 
    Stw 586 

            
Paranthropus boisei 

           KGA 10-525 
            KGA 10-570 
     

16.216 
 

14.916 
    

KGA 10-1720 
            

KGA 10-2705 
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Species/ 

specimen 

P4 MD P4 BL M1 MD M1 BL Max M1 BL1 M1 BL2 

 
L R L R L R L R L R L R 

KNM-ER 403 
     

158 
      

KNM-ER 404 
            

KNM-ER 729 158 14.38 14.68 16.38 
 

16.48 
 

168 
    

KNM-ER 733 
            

KNM-ER 801 
            

KNM-ER 802 13.78 13.68 14.58 14.98 
 

16.58 
 

15.88 
    

KNM-ER 810 
            

KNM-ER 818 15.18 
 

15.98 10.58 17.88 
       

KNM-ER 1171 15.78 
 

15.38 
         

KNM-ER 1467 
            

KNM-ER 1477 
    

[15]17 [15]17 [12]17 [12]17 
    

KNM-ER 1509 
    

15.38 
 

14.48 
 

14.28 
 

14.48 
 

KNM-ER 1816 1417 1317 15.617 14.417 16.617 
 

13.817 
 

13.48 
 

13.78 
 

KNM-ER 1819 
            

KNM-ER 1820 
    

15.38 
 

14.48 
 

13.48 
 

14.38 
 

KNM-ER 3229 138 12.88 13.28 14.18 
        

KNM-ER 3230 13.78 14.58 
 

16.58 
 

178 
 

15.48 
 

14.88 
 

15.48 

KNM-ER 3737 
     

15.58 
      

KNM-ER 3885 
 

12.28 
 

14.18 
        

KNM-ER 3890 
    

15.68 
 

148 
 

13.38 
 

148 
 

KNM-ER 5679 
            

KNM-ER 5877 
            

KNM-ER 15930 1212 
 

1412 
 

14.612 
 

12.812 
     

KNM-ER 15940 
            

KNM-ER 15950 
            

KNM-WT 17396 
            

OH 26 
            

OH 30 
    

178 
 

14.58 
 

13.58 

 
14.48 

 
OH 38 

            
OMO 136-1 

            
OMO 136-2 

            
OMO 47-46 
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Species/ 

specimen 

P4 MD P4 BL M1 MD M1 BL Max M1 BL1 M1 BL2 

 
L R L R L R L R L R L R 

OMO 75-14 
 

11.414 
 

12.714 
 

15.614 
 

14.114 
    

OMO 84-100 
            

OMO F203-1 
            

OMO L427-7 
            

OMO L628-2 
            

OMO L628-3 
            

OMO L628-4 10.38 
 

11.58 
         

OMO L628-9 
            

OMO L7A-125 11.719 
 

18.919 
 

16.819 
 

18.719 
     

OMO L74A-21 
 

13.48 
 

12.78 
        

Peninj 1 14.68 13.28 158 14.98 16.68 16.48 15.48 15.58 14.78 14.98 15.48 15.48 

Paranthropus robustus 
           

DNH 7 [10.3]20 [10.1]20 12.620 11.920 [13.4]20 
 

12.620 [12.7]20 
    

DNH 8 11.320 11.420 13.620 13.420 [15.7]20 [15.2]20 14.520 14.720 
    

DNH 10 
            

DNH 12 
            

DNH 18 
            

DNH 19 [12.3]22 
 

[13.2]22 
         

DNH 21 
            

DNH 26 
 

[10.9]22 
          

DNH 27 [11.2]22 
 

[12.9]22 
         

DNH 46 
     

[14.7]22 
 

[13.5]22 
    

DNH 51 
 

[11]22 
 

[12.5]22 
 

[14.3]22 
      

DNH 60 
     

13.622 
 

11.922 
    

DNH 67 
     

14.621 
 

12.221 
    

DNH 68 
 

9.922 
   

[14.5]22 
      

DNH 75 
            

DNH 81 
     

[14.6]22 
 

1322 
    

SK 6 118 
 

12.38 
 

16.78 16.78 15.58 14.88 14.98 14.28 15.58 14.78 

SK12 
            

SK 23 11.18 11.18 14.48 13.78 15.28 158 14.88 14.78 14.18 14.48 14.78 14.78 

SK 34 12.38 
 

13.88 
 

158 15.18 13.88 14.88 13.78 148 13.88 14.58 
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Species/ 

specimen 

P4 MD P4 BL M1 MD M1 BL Max M1 BL1 M1 BL2 

 
L R L R L R L R L R L R 

SKW 5 11.223 10.823 12.723 12.523 
 

13.323 13.323 13.223 
 

12.623 13.323 13.223 

SKW 10 
     

15.324 
      

SKW 4767 
     

16.124 
 

14.424 
    

SKW 4769 
            

SKX 257 
     

13.325 
 

11.625 
    

SKX 258 
    

13.625 
 

11.825 
     

SKX 4446 
 

11.726 
 

12.526 
 

15.126 
 

14.326 
    

SKX 5002 
            

SKX 5013 
    

13.226 
 

1226 
     

SKX 5014 
            

SKX 5015 
            

SKX 5023 
     

13.226 
 

12.826 
    

SKX 19892 
            

SKX 32162 
 

10.826 
          

TM 1517 11.727 11.627 13.227 13.127 
 

14.527 
 

1327 
    

TM 1601b 10.827 
 

12.127 
         

KB 5223 
    

14.327 1427 12.527 12.627 
    

TM 1536 
     

[12.8]27 
 

11.827 
    

TM 1600 
            

Homo habilis 
           

OH 7 10.48 10.68 10.78 10.78 14.18 14.38 12.58 12.68 12.48 12.48 12.38 12.38 

OH 13 98 98 9.88 9.98 
 

138 
 

11.68 
 

11.58 
 

11.48 

OH 16 10.18 10.28 118 10.98 
 

14.68 
 

12.88 
 

12.68 
 

12.88 

OH 37 
    

138 
 

10.98 
 

10.98 
 

10.58 
 

KNM-ER 1462 
            

KNM-ER 1480 
            

KNM-ER 1482 9.78 
 

12.28 12.68 13.28 
 

13.38 
     

KNM-ER 1483 
            

KNM-ER 1502 
     

13.427 
 

11.427 
 

11.48 
 

11.58 

KNM-ER 1508 
     

13.627 
 

12.227 
    

KNM-ER 1590 
            

KNM-ER 1801 9.317 
 

1117 
 

12.417 
 

13.317 
 

13.18 
 

13.18 
 



Appendix 

331 

Species/ 

specimen 

P4 MD P4 BL M1 MD M1 BL Max M1 BL1 M1 BL2 

 
L R L R L R L R L R L R 

KNM-ER 1802 11.417 11.317 1217 12.117 14.717 14.617 13.317 13.217 138 138 13.18 138 

KNM-ER 1805 
            

KNM-ER 3734 9.18 
 

8.18 
 

13.68 
 

10.68 
 

10.18 
 

10.68 
 

KNM-ER 60000 8.828 8.728 9.828 9.828 12.828 [13]28 11.428 11.428 
    

KNM-ER 62003 
 

[10]28 
 

[11.7]28 
        

UR 501 10.329 10.429 11.529 11.829 15.129 15.229 12.629 12.829 
    

KNM-WT 42718 
     

13.73 
 

11.63 
 

11.33 
 

11.63 

Homo ergaster 
           

KGA 10-1 9.731 
 

[10.2]31 
 

[13.5]31 
 

[12.8]31 
     

KNM-BK 67 
            

KNM-ER 730 
    

11.732 
 

11.732 
   

11.58 
 

KNM-ER 806 
    

13.733 
 

12.633 
 

12.58 
 

12.58 
 

KNM-ER 809 
    

12.533 
 

12.733 
     

KNM-ER 820 
    

12.333 12.233 10.733 10.833 10.68 10.78 
 

10.48 

KNM-ER 992 8.433 8.633 11.133 11.133 1233 11.933 10.933 10.733 10.88 10.78 10.88 10.78 

KNM-ER 1507 
    

13.327 
 

11.127 
 

10.98 
 

11.18 
 

KNM-ER 1808 
            

KNM-ER 1812 
            

KNM-WT 15000 935 934 9.535 10.234 12.235 11.935 10.935 11.135 
    

OH 22 
 

98 
 

108 
 

13.48 
 

128 
 

128 
 

11.68 

OH 51 
    

148 
 

12.98 
 

12.78 
 

12.98 
 

SK 15 
    

13.38 
 

11.98 
 

11.18 
 

11.88 
 

MD = Mesiodistal Crown Diameter. BLMax = Buccolingual Crown Diameter maximum distance, BL1 = Buccolingual Crown Diameter from Protoconid - 

Metaconid, BL2 = Buccolingual Crown Diameter from Hypoconid - Entoconid.  
1 Johanson et al., 1982b. 2 Kimbel et al., 2004. 3 Kimbel et al., 1994. 4 Alemseged et al., 2005. 5 White 1977. 6 White et al., 2000. 7 White et al., 1993. 8 Wood 

1991. 9 Moggi-Cecchi et al., 2006. 10 Moggi-Cecchi et al., 1998. 11 Kuykendall & Conroy 1999. 12 Leakey & Walker 1988. 13 Coppens 1973a. 14 Coppens 1971. 
15 Coppens 1973b. 16 Suwa et al., 1997. 17 Day et al., 1976. 18 Leakey & Walker 1985. 19 Howell 1969. 20 Keyser 2000. 21 Moggi-Cecchi et al., 2010. 22 Keyser 

et al., 2000. 23 Grine & Daegling 1993. 24 Grine & Strait 1994. 25 Grine 1988. 26 Thackeray et al., 2001. 27 Leakey & Wood 1974. 28 Leakey et al., 2012. 29 

Bromage et al., 1995. 30 Prat et al., 2005. 31 Suwa et al., 2007. 32 Day & Leakey 1973. 33 Leakey & Wood 1973. 34 Brown & Walker 1993. 35 Brown et al., 1985. 
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Table 9.7: Hominin specimens and their M2 and M3 dental measurements. References for each measurement numbered. 

Species/ 

specimen 

M2 MD M2 BL Max M2 BL1 M2 BL2 M3 MD M3 BL Max M3 BL1 M3 BL2 

  L R L R L R L R L R L R L R L R 

Australopithecus afarensis                           

A.L. 128-23 12.11 

 

12.51 

             A.L. 145.35 15.41 
 

14.21 
             

A.L. 176.35 

                A.L. 188.1 
 

14.81 
 

15.21 
       

14.91 
    

A.L. 198.1 11.21 

 

12.41 

     

14.11 

 

12.11 

     A. L. 198.22 
                

A.L. 200.1b 

                A.L. 207.13 131 
 

12.51 
             

A.L. 207.17 

        

13.42 

 

11.32 

     A.L. 225.8 13.42 
 

11.12 
     

152 
 

13.82 
     

A.L. 228.2 

                A.L. 241.14 14.61 
 

[13.5]1 
             

A.L. 266.1 

 

131 

 

141 

     

151 

 

13.81 

    A.L. 277.1 14.31 
 

14.51 
             

A.L. 288.1 

 

131 

 

12.21 

    

141 14.11 12.21 12.21 

    A. L. 315.22 
                

A.L. 330.5 12.72 

 

12.82 

     

13.72 

 

12.72 

     A.L. 330.7 
                

A.L. 333.44 

                A.L. 333.74 13.31 
       

13.91 
 

13.81 
     

A.L. 333w-1a+b 13.21 13.71 12.51 131 

            A.L. 333w-12 
                

A.L. 333w-27 151 

 

[14.1]1 

             A.L. 333w-

32+60 

14.21 
 

14.61 
     

14.21 14.11 [14.4]1 14.21 
    

A.L. 333w-48 

 

12.61 

 

[12.1]1 

            A.L. 333w-57 13.51 
 

12.11 
     

14.41 
 

12.51 
     

A.L. 333w-59 13.21 

 

14.41 

     

141 

 

[13.1]1 

     A.L. 400-1a 14.81 14.31 14.61 14.51 
    

14.81 15.21 13.51 13.81 
    

A.L. 411.1 

         

[15]1 
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Species/ 

specimen 

M2 MD M2 BL Max M2 BL1 M2 BL2 M3 MD M3 BL Max M3 BL1 M3 BL2 

  L R L R L R L R L R L R L R L R 

A.L. 417.1a 133 
 

13.13 
      

14.93 
 

13.33 
    

A.L. 417.1a,b 13.22 

 

13.12 

     

15.42 

 

13.32 

     A.L. 418.1 16.52 
               

A.L. 433.1a 

                A.L. 437.1 16.12 
 

13.92 
     

16.52 
 

13.62 
     

A.L. 437.2 15.62 

               A.L. 438.1 
 

162 
       

16.52 
      

A.L. 440.1 15.82 

 

13.82 

             A.L. 443.1 15.22 
 

14.22 
             

A.L. 444.2 

                A.L. 465.5 
        

142 
       

A.L. 487-1a 

        

17.22 

       A.L. 582.1l 
                

A.L. 620.1 

        

17.42 

 

15.32 

     DIK-2-1 
        

18.14 
 

14.74 
     

LH2 

                LH3 
                

LH 4 13.75 13.95 13.65 

      

15.95 

 

14.25 

    LH 14 
                

MAK-VP1/2 

 

14.76 

 

136 

     

15.66 

 

136 

    MAK-VP1/4 
 

16.27 
 

13.87 
            

MAK-VP1/12 13.66 13.86 13.36 13.36 

    

14.86 14.96 13.46 13.46 

    Australopithecus africanus 
               

MLD 2 16.88 16.28 15.38 

 

158 15.38 15.28 

         MLD 4 
          

14.28 
 

14.28 
 

13.78 
 

MLD 18 

 

14.28 

 

14.78 

   

14.38 

 

14.28 

 

13.98 

 

13.88 

 

13.58 

MLD 19 
        

15.18 
 

13.68 
 

13.78 
 

13.38 
 

MLD 24 15.18 

 

13.88 

 

13.68 

 

13.88 

         MLD 40 15.38 
 

14.18 
 

13.78 
 

148 
         

Sts 7 15.88 15.38 14.68 15.38 14.48 14.98 14.68 15.28 16.48 

 

14.48 

 

14.48 

   Sts 52 15.28 14.48 13.58 13.48 13.58 13.38 12.98 12.78 13.78 13.78 138 12.88 12.98 12.88 12.38 11.78 

Taung 
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Species/ 

specimen 

M2 MD M2 BL Max M2 BL1 M2 BL2 M3 MD M3 BL Max M3 BL1 M3 BL2 

  L R L R L R L R L R L R L R L R 

Stw 1 
                

Stw 3 15.99 

 

13.89 

             Stw 14 
 

15.89 
 

14.29 
     

17.89 
 

14.69 
    

Stw 47 

         

15.89 

 

14.29 

    Stw 54 
  

14.99 
             

Stw 56 

                Stw 61 
 

15.99 
 

14.39 
            

Stw 72 16.79 

 

15.19 

             Stw 80 
         

15.29 
      

Stw 87 

                Stw 90 
         

16.89 
 

14.39 
    

Stw 96 

          

15.89 

     Stw 106 
                

Stw 109 

 

16.79 

 

15.69 

     

17.49 

 

15.69 

    Stw 112 
                

Stw 120 16.19 

 

15.49 

             Stw 123 
                

Stw 131 

                Stw 133 
        

16.59 
 

159 
     

Stw 134 16.49 

 

14.99 

             Stw 142 
        

16.49 
 

15.49 
     

Stw 145 

                Stw 147 
                

Stw 151 

                Stw 193 
  

14.39 
             

Stw 196 

          

12.99 

     Stw 212 
 

169 
 

14.89 
    

16.79 
 

13.99 
     

Stw 213 14.49 14.49 12.89 12.79 

            Stw 220 
                

Stw 234 

 

14.49 

 

13.39 

            Stw 237 
        

189 
 

15.99 
     

Stw 246 
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Species/ 

specimen 

M2 MD M2 BL Max M2 BL1 M2 BL2 M3 MD M3 BL Max M3 BL1 M3 BL2 

  L R L R L R L R L R L R L R L R 

Stw 280 
         

16.89 
 

16.49 
    

Stw 285 14.29 

 

13.59 

             Stw 291 
                

Stw 295 15.59 

 

14.59 

     

15.49 15.19 14.29 14.49 

    Stw 308 
 

179 
 

14.39 
            

Stw 309 

                Stw 327 16.69 
 

14.39 
             

Stw 353 

         

13.59 

 

12.29 

    Stw 364 
                

Stw 384 

 

179 

 

16.89 

     

18.29 

 

16.89 

    Stw 385 15.59 
 

14.99 
     

169 
 

14.89 
     

Stw 397 

         

16.79 

      Stw 404 
 

14.49 
 

13.79 
     

14.89 
 

14.19 
    

Stw 412 14.69 14.69 139 139 

            Stw 413 
                

Stw 421 

                Stw 424 17.79 
 

169 
             

Stw 487 

         

17.99 

 

14.79 

    Stw 491 14.79 
 

13.99 
     

15.89 
 

149 
     

Stw 498 17.69 

 

15.89 

     

18.59 

 

16.19 

     Stw 520 
         

16.29 
 

14.39 
    

Stw 529 

 

15.19 

 

14.49 

    

15.29 15.29 14.69 149 

    Stw 537 16.69 16.69 15.59 15.39 
    

16.19 
 

16.19 
     

Stw 555 15.29 

 

13.49 

             Stw 560 179 16.99 15.99 16.59 
    

17.49 179 15.99 16.19 
    

Stw 566 

                Stw 586 
                

Paranthropus boisei 
               

KGA 10-525 

  

[16.8]16 

     

2116 

 

17.716 

     KGA 10-570 
                

KGA 10-1720 
        

18.716 
 

14.916 
     

KGA 10-2705 
   

[17.5]16 
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Species/ 

specimen 

M2 MD M2 BL Max M2 BL1 M2 BL2 M3 MD M3 BL Max M3 BL1 M3 BL2 

  L R L R L R L R L R L R L R L R 

KNM-ER 403 
 

158 
              

KNM-ER 404 
 

198 
 

178 
            

KNM-ER 729 20.58 19.88 188 18.18 17.38 17.98 188 17.98 21.28 22.28 198 198 198 18.58 17.88 18.68 

KNM-ER 733 
         

198 
      

KNM-ER 801 
 

19.28 
 

16.78 
     

19.28 
 

168 
 

15.58 
  

KNM-ER 802 
  

158 
      

18.78 
 

16.48 
 

16.28 
 

16.38 

KNM-ER 810 
        

17.78 
 

15.78 
 

15.58 
 

15.68 
 

KNM-ER 818 20.38 
 

18.48 
     

21.98 
 

18.28 
 

18.28 
   

KNM-ER 1171 198 19.38 178 16.88 178 
 

16.68 16.48 
        

KNM-ER 1467 
         

18.816 
 

15.516 
 

15.48 
 

15.18 

KNM-ER 1477 
                

KNM-ER 1509 
        

19.88 
 

15.98 
 

15.98 
 

158 
 

KNM-ER 1816 17.317 
 

16.217 
   

15.88 
         

KNM-ER 1819 
        

22.28 
       

KNM-ER 1820 
                

KNM-ER 3229 
                

KNM-ER 3230 20.28 20.88 198 18.68 188 17.98 18.98 18.68 20.58 21.38 16.58 16.98 16.48 16.78 16.38 16.98 

KNM-ER 3737 
                

KNM-ER 3885 
                

KNM-ER 3890 
                

KNM-ER 5679 198 
     

16.38 
         

KNM-ER 5877 
         

23.518 
 

[20] 18 
    

KNM-ER 

15930 

1612 
 

14.512 
     

18.212 
 

1512 
     

KNM-ER 

15940 
        

1812 18.512 15.512 15.912 
    

KNM-ER 

15950 
        

2012 
 

1712 
     

KNM-WT 

17396 
        

[19]12 
 

[17]12 
     

OH 26 
             

16.78 
  

OH 30 
                

OH 38 
 

18.58 
 

17.68 
 

17.68 
 

17.18 
        

OMO 136-1 
        

17.915 
 

15.615 
     

OMO 136-2 
        

16.713 
 

14.613 
     

OMO 47-46 
 

16.814 
 

16.414 
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Species/ 

specimen 

M2 MD M2 BL Max M2 BL1 M2 BL2 M3 MD M3 BL Max M3 BL1 M3 BL2 

  L R L R L R L R L R L R L R L R 

OMO 75-14 16.714 17.514 15.414 15.414 
    

15.114 
 

14.114 
     

OMO 84-100 
         

16.513 
      

OMO F203-1 
         

17.215 
 

15.915 
    

OMO L427-7 
 

16.48 
 

15.28 
 

14.78 
 

15.28 
        

OMO L628-2 
        

198 
 

17.88 
 

17.88 
 

15.48 
 

OMO L628-3 
        

18.78 
 

16.28 
 

16.18 
 

16.28 
 

OMO L628-4 
                

OMO L628-9 15.48 
 

14.28 
 

14.28 
 

148 
         

OMO L7A-125 16.28 
 

188 
      

18.219 
 

14.819 
    

OMO L74A-21 
                

Peninj 1 17.88 17.68 16.28 16.28 168 15.98 
 

16.18 18.28 18.88 16.18 15.78 15.88 15.38 16.18 15.78 

Paranthropus robustus 
               

DNH 7 [13.4]20 [14.2]20 13.520 13.520 
    

[15.2]20 [15.4]20 13.620 13.420 
    

DNH 8  [15.9]20 [15.5]20 1520 [14.8]20 
    

19.120 18.820 16.220 15.520 
    

DNH 10 
         

[15.7]22 
 

[14.7]22 
    

DNH 12 
                

DNH 18 
         

[17.2]22 
 

[15.7]22 
    

DNH 19 [16.6]22 
 

[15.2]22 
             

DNH 21 [15.3]22 
 

[13.9]22 
     

[14.3]22 
 

[13.7]22 
     

DNH 26 
                

DNH 27 
                

DNH 46 
                

DNH 51 
 

[16.8]22 
 

13.922 
     

[17]22 
 

13.922 
    

DNH 60 
 

14.522 
 

1322 
            

DNH 67 
                

DNH 68 
 

[17.2]22 
 

[14.3]22 
     

[14.7]22 
      

DNH 75 
         

[17.3]22 
 

13.422 
    

DNH 81 
                

SK 6 17.98 188 16.28 16.48 168 15.88 16.18 16.38 18.78 18.48 15.58 16.28 
 

16.28 
 

16.18 

SK12 
        

17.38 
 

15.38 
 

15.38 
 

15.28 
 

SK 23 168 15.68 14.98 14.98 14.88 14.78 14.88 14.98 16.88 17.58 13.18 14.48 138 14.48 12.98 13.98 

SK 34 17.18 178 16.58 16.48 16.48 15.98 16.48 16.28 18.18 18.28 168 178 15.68 16.78 15.88 16.38 
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Species/ 

specimen 

M2 MD M2 BL Max M2 BL1 M2 BL2 M3 MD M3 BL Max M3 BL1 M3 BL2 

  L R L R L R L R L R L R L R L R 

SKW 5 15.923 1623 14.423 14.423 1423 1423 14.323 14.423 
 

16.723 [14.3]23 1423 [14.3]23 1423 
 

13.223 

SKW 10 
                

SKW 4767 
                

SKW 4769 
  

16.524 
             

SKX 257 
                

SKX 258 
                

SKX 4446 
 

17.125 
 

15.825 
            

SKX 5002 
        

17.625 
 

13.925 
     

SKX 5013 
                

SKX 5014 
         

17.225 
 

1525 
    

SKX 5015 
                

SKX 5023 
                

SKX 19892 
  

14.825 

             
SKX 32162 

                
TM 1517 

   
14.126 

     
16.226 

 
13.926 

    
TM 1601b 

                
KB 5223 

                
TM 1536 

                
TM 1600 14.826 

 
14.726 

     
1626 

 
14.726 

     
Homo habilis 

               
OH 7 15.78 

 
13.78 

 
13.58 

 
13.58 

         
OH 13 

 
14.28 

 
128 

 
11.88 

 
11.98 14.88 14.88 12.38 12.48 12.18 12.28 12.28 12.48 

OH 16 
 

15.48 
 

15.18 
 

14.98 
 

14.58 15.98 15.98 14.38 14.48 14.38 14.48 148 13.88 

OH 37 14.78 
 

13.38 
 

13.28 
 

138 
         

KNM-ER 1462 
        

14.527 
 

13.627 
     

KNM-ER 1480 
         

15.327 
 

12.527 
    

KNM-ER 1482 158 
 

148 
       

14.68 
   

14.38 
 

KNM-ER 1483 
  

12.98 
 

12.98 
 

12.68 
         

KNM-ER 1502 
                

KNM-ER 1508 
                

KNM-ER 1590 13.917 
 

16.817 
             

KNM-ER 1801 
        

178 
 

14.68 
 

14.58 
 

14.38 
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Species/ 

specimen 

M2 MD M2 BL Max M2 BL1 M2 BL2 M3 MD M3 BL Max M3 BL1 M3 BL2 

  L R L R L R L R L R L R L R L R 

KNM-ER 1802 16.617 16.517 14.117 14.317 14.18 13.98 14.28 148 
        

KNM-ER 1805 
 

13.817 
 

12.817 
 

12.88 
 

12.88 
 

14.417 
 

12.217 
 

12.28 
 

128 

KNM-ER 3734 14.18 
 

11.78 
 

10.58 
 

11.68 
         

KNM-ER 

60000 

1428 13.928 12.828 12.628 
    

15.728 15.428 12.928 13.328 
    

KNM-ER 

62003 
                

UR 501 
 

18.329 
 

14.929 
            

KNM-WT 

42718 
                

Homo ergaster 
               

KGA 10-1 14.431 
 

1331 
     

[13]31 
 

11.831 
     

KNM-BK 67 13.58 138 11.28 10.98 11.18 10.98 11.18 10.98 12.98 12.88 11.48 11.28 11.48 11.28 10.88 10.78 

KNM-ER 730 1232 
 

11.632 
     

1332 
 

11.532 
 

11.48 
 

11.48 
 

KNM-ER 806 14.333 
 

13.133 
 

13.18 
 

13.18 
 

14.733 1433 12.133 12.233 12.48 12.28 12.38 12.18 

KNM-ER 809 
                

KNM-ER 820 
                

KNM-ER 992 1333 13.233 12.333 12.533 12.28 12.28 11.88 12.28 12.833 1333 12.333 12.133 12.38 12.18 11.78 10.88 

KNM-ER 1507 
                

KNM-ER 1808 
 

13.68 
 

128 
 

128 
 

11.98 13.634 
 

1234 
     

KNM-ER 1812 
        

14.58 
 

12.58 
 

12.48 
 

12.58 
 

KNM-WT 

15000 

12.235 12.435 11.535 11.435 
            

OH 22 
 

138 
 

11.78 
 

11.78 
 

11.48 
        

OH 51 
                

SK 15 
 

14.68 
 

138 
 

12.68 
 

12.98 14.78 14.68 12.68 12.28 12.48 12.28 12.28 12.38 

MD = Mesiodistal Crown Diameter. BLMax = Buccolingual Crown Diameter maximum distance, BL1 = Buccolingual Crown Diameter from Protoconid - Metaconid, BL2 = Buccolingual 

Crown Diameter from Hypoconid - Entoconid.  
1 Johanson et al., 1982b. 2 Kimbel et al., 2004. 3 Kimbel et al., 1994. 4 Alemseged et al., 2005. 5 White 1977. 6 White et al., 2000. 7 White et al., 1993. 8 Wood 1991. 9 Moggi-Cecchi et al., 2006. 

10 Moggi-Cecchi et al., 1998. 11 Kuykendall & Conroy 1999. 12 Leakey & Walker 1988. 13 Coppens 1973a. 14 Coppens 1971. 15 Coppens 1973b. 16 Suwa et al., 1997. 17 Day et al., 1976. 18 Leakey 

& Walker 1985. 19 Howell 1969. 20 Keyser 2000. 21 Moggi-Cecchi et al., 2010. 22 Keyser et al., 2000. 23 Grine & Daegling 1993. 24 Grine & Strait 1994. 25 Grine 1988. 26 Thackeray et al., 2001. 27 

Leakey & Wood 1974. 28 Leakey et al., 2012. 29 Bromage et al., 1995. 30 Prat et al., 2005. 31 Suwa et al., 2007. 32 Day & Leakey 1973. 33 Leakey & Wood 1973. 34 Brown & Walker 1993. 35 

Brown et al., 1985. 
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Table 9.8 presents the stable carbon isotope results for each hominin analysed to date. Information includes the tooth the data was extracted from, 

the site and member the tooth was found, its estimated age, and the type of environment the specimen was reconstructed to have inhabited. The stable 

carbon isotope results highlight the changing environment over time, particularly in East Africa, shifting from a C3 dominated diet to more of a C4-

based diet.  

Table 9.8: Stable Carbon Isotope signatures and environmental reconstructions for each hominin specimen 

Species Specimen Tooth δ13C Site Age Member Environment Reference 

A. afarensis 

A.L. 125-11 M1 in 

maxillary 

fragment 

-13 Hadar 3.42 - 3.26** SH2 Medium - open density woodland, grassland, 

shrubland 

Wynn et al. (2013) SOM 

A.L. 207-17 Lm3 -4.3 Hadar 3.26 - 3.2** DD2 Mixed habitats, woodland, bushlands, edaphic 

grasslands, wetlands 

Wynn et al. (2013) SOM 

A.L. 225-8 M2 in 

mandible 

fragment 

-6.7 Hadar 3.42 - 3.26** SH1 Medium - open density woodland, grassland, 

shrubland 

Wynn et al. (2013) SOM 

A.L. 249-27 P3 fragment -10 Hadar 3.42 - 3.26** SH1 Medium - open density woodland, grassland, 

shrubland 

Wynn et al. (2013) SOM 

A.L. 293-3 I1 -10.7 Hadar 3.26 - 3.2** DD3 Mixed habitats, woodland, bushlands, edaphic 

grasslands, wetlands 

Wynn et al. (2013) SOM 

A.L. 309-8 M1 fragment -6.4 Hadar 3.26 - 3.2** DD3 Mixed habitats, woodland, bushlands, edaphic 

grasslands, wetlands 

Wynn et al. (2013) SOM 

A.L. 333-52 M1 fragment -8.6 Hadar 3.26 - 3.2** DD2 Mixed habitats, woodland, bushlands, edaphic 

grasslands, wetlands 

Wynn et al. (2013) SOM 

A.L. 411-1 M2 in 

mandible 

fragment 

-7.7 Hadar 3.42 - 3.26** SH2 Medium - open density woodland, grassland, 

shrubland 

Wynn et al. (2013) SOM 

A.L. 423-1  M1 -7.2 Hadar 3.42 - 3.26** SH2 Medium - open density woodland, grassland, 

shrubland 

Wynn et al. (2013) SOM 

A.L. 432-1 M3 fragment -4.3 Hadar 3.26 - 3.2** DD3 Mixed habitats, woodland, bushlands, edaphic 

grasslands, wetlands 

Wynn et al. (2013) SOM 

A.L. 437-2 M2 fragment -6.6 Hadar 3.12 - 2.94** KH2 Open woodland/ shrubland Wynn et al. (2013) SOM 

A.L. 438-1h RM1 fragment -10.2 Hadar 3.12 - 2.94** KH2 Open woodland/ shrubland Wynn et al. (2013) SOM 

A.L. 440-1  P4 fragment -7.6 Hadar 3.12 - 2.94** KH2  Open woodland/ shrubland Wynn et al. (2013) SOM 

A.L. 444-2  M2/M3 

fragment 

-8 Hadar 3.12 - 2.94** KH2 Open woodland/ shrubland Wynn et al. (2013) SOM 

A.L. 452-18 M fragment -2.9 Hadar 3.12 - 2.94** KH2 Open woodland/ shrubland Wynn et al. (2013) SOM 

A.L. 462-7 M3 -6.4 Hadar 3.12 - 2.94** KH2 Open woodland/ shrubland Wynn et al. (2013) SOM 

A.L. 660-1 M2 fragment -9.6 Hadar 3.42 - 3.26** SH1 Medium - open density woodland, grassland, 

shrubland 

Wynn et al. (2013) SOM 

DIK2-1 M fragment -4.3 Hadar 3.8 - 3.42** BM Mosaic of woodland and shrubland, near water Wynn et al. (2013) SOM 

DIK40-1 LM1 -10.6 Hadar 3.42 - 3.26** SH Medium - open density woodland, grassland, 

shrubland 

Wynn et al. (2013) SOM 

DIK49 P -4.9 Hadar 3.42 - 3.26** SH Medium - open density woodland, grassland, 

shrubland 

Wynn et al. (2013) SOM 

A. africanus 

MLD 12 RM3 -7.7 Makapansgat 2.9 - 2.6** MAK 3 Mosaic habitat, riparian woodland, bushland, 

and edaphic grassland. Dramatic vegetation 

shift occurred during this time 

Sponheimer & Lee-Thorp 

(1999) MLD 28 RM3 -8.1 Makapansgat 2.9 - 2.6** MAK 3 Mosaic habitat, riparian woodland, bushland, 

and edaphic grassland. Dramatic vegetation 

shift occurred during this time 

Sponheimer & Lee-Thorp 

(1999) MLD 30 RM1 -5.6 Makapansgat 2.9 - 2.6** MAK 3 Mosaic habitat, riparian woodland, bushland, 

and edaphic grassland. Dramatic vegetation 

shift occurred during this time 

Sponheimer & Lee-Thorp 

(1999) MLD 41 M -11.3 Makapansgat 2.9 - 2.6** MAK 3 Mosaic habitat, riparian woodland, bushland, 

and edaphic grassland. Dramatic vegetation 

shift occurred during this time 

Sponheimer & Lee-Thorp 

(1999) 
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Species Specimen Tooth δ13C Site Age Member Environment Reference 

STS 31 RM3 -6.8 Sterkfontein 2.65 - 2** ST4 Open woodland, riparian forest, bushland and 

grassland 

Sponheimer et al. (2005a) 

STS 32 RM3 -7.8 Sterkfontein 2.65 - 2** ST4 Open woodland, riparian forest, bushland and 

grassland 

Sponheimer et al. (2005a) 

STS 2218 M -5.9 Sterkfontein 2.65 - 2** ST4 Open woodland, riparian forest, bushland and 

grassland 

Sponheimer et al. (2005a) 

STS 45 RM2 -4 Sterkfontein 2.65 - 2** ST4 Open woodland, riparian forest, bushland and 

grassland 

Sponheimer et al. (2005a) 

STS 72 RM3 -9.7 Sterkfontein 2.65 - 2** ST4 Open woodland, riparian forest, bushland and 

grassland 

Sponheimer et al. (2005a) 

STW 14 Lm1 -6.7 Sterkfontein 2.65 - 2** ST4 Open woodland, riparian forest, bushland and 

grassland 

van der Merwe et al. (2003) 

STW 207 ? -2 Sterkfontein 2.65 - 2** ST4 Open woodland, riparian forest, bushland and 

grassland 

van der Merwe et al. (2003) 

STW 211 M -7.3 Sterkfontein 2.65 - 2** ST4 Open woodland, riparian forest, bushland and 

grassland 

van der Merwe et al. (2003) 

STW 213i Lm1 -1.8 Sterkfontein 2.65 - 2** ST4 Open woodland, riparian forest, bushland and 

grassland 

van der Merwe et al. (2003) 

STW 229 P -5.8 Sterkfontein 2.65 - 2** ST4 Open woodland, riparian forest, bushland and 

grassland 

van der Merwe et al. (2003) 

STW 236 P -3.7 Sterkfontein 2.65 - 2** ST4 Open woodland, riparian forest, bushland and 

grassland 

van der Merwe et al. (2003) 

STW 252 RM1 -7.4 Sterkfontein 2.65 - 2** ST4 Open woodland, riparian forest, bushland and 

grassland 

van der Merwe et al. (2003) 

STW 276 Lm1 -8 Sterkfontein 2.65 - 2** ST4 Open woodland, riparian forest, bushland and 

grassland 

van der Merwe et al. (2003) 

STW 303 RM2 -4.3 Sterkfontein 2.65 - 2** ST4 Open woodland, riparian forest, bushland and 

grassland 

van der Merwe et al. (2003) 

STW 304 M -7.4 Sterkfontein 2.65 - 2** ST4 Open woodland, riparian forest, bushland and 

grassland 

van der Merwe et al. (2003) 

STW 309b (409) Lm1 -6.1 Sterkfontein 2.65 - 2** ST4 Open woodland, riparian forest, bushland and 

grassland 

van der Merwe et al. (2003) 

STW 315 Ldm2 -5.7 Sterkfontein 2.65 - 2** ST4 Open woodland, riparian forest, bushland and 

grassland 

van der Merwe et al. (2003) 

STW 73 RM2 -8.8 Sterkfontein 2.65 - 2** ST4 Open woodland, riparian forest, bushland and 

grassland 

van der Merwe et al. (2003) 

P. boisei 

KNM-ER 13750 m-frag 0.2 Turkana: 

Koobi Fora 

1.82 KBS Grassland/ shrubland environment Cerling et al. (2013) SOM 

KNM-ER 1469 Lm3 -2.3 Turkana: 

Koobi Fora 

1.82 Upper 

Burgi 

Open woodland, edaphic grasslands and 

riparian woodland 

Cerling et al. (2013) SOM 

KNM-ER 1479A m3 -2.3 Turkana: 

Koobi Fora 

1.82 KBS Grassland/ shrubland environment Cerling et al. (2013) SOM 

KNM-ER 15940 Lm3 -1.1 Turkana: 

Koobi Fora 

1.73 KBS Grassland/ shrubland environment Cerling et al. (2013) SOM 

KNM-ER 1804 LM3 -1.2 Turkana: 

Koobi Fora 

1.73 KBS Grassland/ shrubland environment Cerling et al. (2013) SOM 

KNM-ER 1806C Rm3 -1.3 Turkana: 

Koobi Fora 

1.76 KBS Grassland/ shrubland environment Cerling et al. (2013) SOM 

KNM-ER 3952F LM3 -1.2 Turkana: 

Koobi Fora 

1.82 KBS Grassland/ shrubland environment Cerling et al. (2013) SOM 

KNM-ER 732A RP4 -0.1 Turkana: 

Koobi Fora 

1.78 KBS Grassland/ shrubland environment Cerling et al. (2013) SOM 

KNM-ER 810 p3  -3.4 Turkana: 

Koobi Fora 

1.73 KBS Grassland/ shrubland environment Cerling et al. (2013) SOM 

KNM-ER 816B m-frag -1.9 Turkana: 

Koobi Fora 

1.73 KBS Grassland/ shrubland environment Cerling et al. (2013) SOM 

KNM-ER 1171C Lm1 -0.6 Turkana: 

Koobi Fora 

1.59 Okote Wetlands and edaphic grasslands Cerling et al. (2013) SOM 

KNM-ER 15951F m-frag -3.3 Turkana: 

Koobi Fora 

1.52 Okote Wetlands and edaphic grasslands Cerling et al. (2013) SOM 

KNM-ER 1819  m3 0.9 Turkana: 

Koobi Fora 

1.6 
 

  Cerling et al. (2013) SOM 

KNM-ER 3737B Rm1 -1.6 Turkana: 

Koobi Fora 

1.59 Okote Wetlands and edaphic grasslands Cerling et al. (2013) SOM 

KNM-ER 3887 RM3 -1.7 Turkana: 

Koobi Fora 

1.46 Okote Wetlands and edaphic grasslands Cerling et al. (2013) SOM 
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Species Specimen Tooth δ13C Site Age Member Environment Reference 

KNM-ER 6080 Rm2 -2.2 Turkana: 

Koobi Fora 

1.52 Okote Wetlands and edaphic grasslands Cerling et al. (2013) SOM 

KNM-ER 6082  Lp3 -0.8 Turkana: 

Koobi Fora 

1.5 Okote Wetlands and edaphic grasslands Cerling et al. (2013) SOM 

KNM-ER 729 Lp4 0 Turkana: 

Koobi Fora 

1.53 Okote Wetlands and edaphic grasslands Cerling et al. (2013) SOM 

KNM-ER 733A Rm3 -1.5 Turkana: 

Koobi Fora 

1.52 Okote Wetlands and edaphic grasslands Cerling et al. (2013) SOM 

KNM-ER 733D LP4 -0.5 Turkana: 

Koobi Fora 

1.52 Okote Wetlands and edaphic grasslands Cerling et al. (2013) SOM 

KNM-ER 801C Lm3 0.4 Turkana: 

Koobi Fora 

1.59 Okote Wetlands and edaphic grasslands Cerling et al. (2013) SOM 

KNM-ER 802D Lm1 -0.1 Turkana: 

Koobi Fora 

1.59 Okote Wetlands and edaphic grasslands Cerling et al. (2013) SOM 

KNM-ER 802G m3 -1.9 Turkana: 

Koobi Fora 

1.59 Okote Wetlands and edaphic grasslands Cerling et al. (2013) SOM 

KNM-ER 818 Lm3 0.7 Turkana: 

Koobi Fora 

1.5 Okote Wetlands and edaphic grasslands Cerling et al. (2013) SOM 

KNM-WT 17396 Lm3 -1.9 Turkana: 

Nachukui 

1.77 Kaito: 

Kokiselei 

Closed, wet woodland habitat Cerling et al. (2013) SOM 

KNM-WT 37100 m2 or m3 -1.8 Turkana: 

Nachukui 

1.77 Kaito: 

Kokiselei 

Closed, wet woodland habitat Cerling et al. (2013) SOM 

KNM-WT 37748 RM3 -2.1 Turkana: 

Nachukui 

1.77 Kaito: 

Kokiselei 

Closed, wet woodland habitat Cerling et al. (2013) SOM 

OH5 LM2 -1.2 Olduvai 1.82 Bed I Closed/ wet habitat. Palm and Acacia 

woodland. Alternatively reconstructed as being 

grassland, woodland and bushland 

van der Merwe et al. (2008) 

Peninj Lm2 -0.7 Peninj 1.62 Humbu 

Formation 

Savannah grassland van der Merwe et al. (2008) 

KNM-CH-302 m-frag -1.3 Baringo 1.42     Cerling et al. (2011) SOM 

P. robustus 

SK 14000 LM3 -5.9 Swartkrans 2.31 - 1.64** SK1 Open habitat with a riverine woodland nearby Sponheimer et al. (2005a) 

SK 14132 RM3 -6.9 Swartkrans 2.31 - 1.64** SK1 Open habitat with a riverine woodland nearby Sponheimer et al. (2005a) 

SK 1512 P -8.8 Swartkrans 2.31 - 1.64** SK1 Open habitat with a riverine woodland nearby Lee-Thorp et al. (1994) 

SK 19 Rm3 -6.3 Swartkrans 2.31 - 1.64** SK1 Open habitat with a riverine woodland nearby Sponheimer et al. (2005a) 

SK 24605 RM3 -7.3 Swartkrans 2.31 - 1.64** SK1 Open habitat with a riverine woodland nearby Sponheimer et al. (2006a) 

SK 24606 RM2 -6.1 Swartkrans 2.31 - 1.64** SK1 Open habitat with a riverine woodland nearby Sponheimer et al. (2006a) 

SK 41 LM3 -6.7 Swartkrans 2.31 - 1.64** SK1 Open habitat with a riverine woodland nearby Sponheimer et al. (2005a) 

SK 57 LM3 -6.5 Swartkrans 2.31 - 1.64** SK1 Open habitat with a riverine woodland nearby Sponheimer et al. (2005a) 

SK 876 M -6.7 Swartkrans 2.31 - 1.64** SK1 Open habitat with a riverine woodland nearby Lee-Thorp et al. (2000) 

SK 878 Rp3 -6.8 Swartkrans 2.31 - 1.64** SK1 Open habitat with a riverine woodland nearby Lee-Thorp et al. (1994) 

SK 879 M -8.5 Swartkrans 2.31 - 1.64** SK1 Open habitat with a riverine woodland nearby Lee-Thorp et al. (1994) 

SK 879 M -8.1 Swartkrans 2.31 - 1.64** SK1 Open habitat with a riverine woodland nearby Lee-Thorp et al. (1994) 

SKW 3068 LM2 -8.1 Swartkrans 2.31 - 1.64** SK1 Open habitat with a riverine woodland nearby Sponheimer et al. (2005a) 

SKW 4768 LM2 -7.4 Swartkrans 2.31 - 1.64** SK1 Open habitat with a riverine woodland nearby Sponheimer et al. (2005a) 

SKW 6 LM3 -7 Swartkrans 2.31 - 1.64** SK1 Open habitat with a riverine woodland nearby Sponheimer et al. (2005a) 

SKW 6427 M -8.6 Swartkrans 2.31 - 1.64** SK1 Open habitat with a riverine woodland nearby Sponheimer et al. (2006a) 

SKX 1312 LM1 -8.1 Swartkrans 1.7 - 1.1** SK2 Wooded grassland with wetlands  Lee-Thorp et al. (1994) 

SKX 333 Rm1 -10 Swartkrans 1.7 - 1.1** SK2 Wooded grassland with wetlands  Lee-Thorp et al. (1994) 
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SKX 35025 RM -7.9 Swartkrans 1.3 - 0.6** SK3 Open edaphic grasslands with a river/ stream Lee-Thorp et al. (1994) 

SKX 5015 Lm3 -9.6 Swartkrans 2.31 - 1.64** SK1 Open habitat with a riverine woodland nearby Lee-Thorp et al. (1994) 

SKX 5939 M -5.4 Swartkrans 2.31 - 1.64** SK1 Open habitat with a riverine woodland nearby Sponheimer et al. (2006a) 

TM 1600 Lm2 -7.9 Kromdraai 1.8 - 1.6** KB3 Open grassland with riparian woodland Sponheimer et al. (2005a) 

H.habilis 

KNM-ER 1483E* m-frag -7.5 Turkana: 

Koobi Fora 

1.89 Upper 

Burgi 

Open woodland, edaphic grasslands and 

riparian woodland 

Cerling et al. (2013) SOM 

KNM-ER 1802B* LM3 -6.4 Turkana: 

Koobi Fora 

1.97 Upper 

Burgi 

Open woodland, edaphic grasslands and 

riparian woodland 

Cerling et al. (2013) SOM 

KNM-ER 1805* Lm1 -7.7 Turkana: 

Koobi Fora 

1.76 KBS Grassland/ shrubland environment Cerling et al. (2013) SOM 

KNM-ER 3734* Lm3 -5.8 Turkana: 

Koobi Fora 

1.95 KBS Grassland/ shrubland environment Cerling et al. (2013) SOM 

OH 62 LM2 -8.3 Olduvai 1.8 Bed I Closed/ wet habitat. Palm and Acacia 

woodland. Alternatively reconstructed as being 

grassland, woodland and bushland 

van der Merwe et al. (2008) 

OH 65 LM3 -5.2 Olduvai 1.8 Bed I Closed/ wet habitat. Palm and Acacia 

woodland. Alternatively reconstructed as being 

grassland, woodland and bushland 

van der Merwe et al. (2008) 

OH 7 Lm2 -8.8 Olduvai 1.75 Bed I Closed/ wet habitat. Palm and Acacia 

woodland. Alternatively reconstructed as being 

grassland, woodland and bushland 

van der Merwe et al. (2008) 

H. ergaster 

KNM-ER 730A* Lm1 -2.6 Turkana: 

Koobi Fora 

1.54 KBS Grassland/ shrubland environment Cerling et al. (2013) SOM 

KNM-ER 820* Ldm2 -3.5 Turkana: 

Koobi Fora 

1.51 Okote Wetlands and edaphic grasslands Cerling et al. (2013) SOM 

KNM-ER 992B* Lc -5 Turkana: 

Koobi Fora 

1.46 Okote Wetlands and edaphic grasslands Cerling et al. (2013) SOM 

KNM-ER 1808l* m-frag -2.6 Turkana: 

Koobi Fora 

1.59 KBS Grassland/ shrubland environment Cerling et al. (2013) SOM 

Homo sp. 

KNM-WT 42718  Rm1 -7.2 Turkana: 

Nachukui 

2.29 Kalochoro Mosaic habitat, wet grassland, marsh or lagoon 

conditions associated with this site 

Cerling et al. (2013) SOM 

KNM-ER 1478A m-frag -8.6 Turkana: 

Koobi Fora 

1.82 KBS Grassland/ shrubland environment Cerling et al. (2013) SOM 

KNM-ER 1478A M2 -8.1 Turkana: 

Koobi Fora 

1.82 KBS Grassland/ shrubland environment Cerling et al. (2013) SOM 

KNM-ER 1593C m1 -7.4 Turkana: 

Koobi Fora 

1.8 KBS Grassland/ shrubland environment Cerling et al. (2013) SOM 

KNM-ER 1814E m3 -6.6 Turkana: 

Koobi Fora 

1.67 KBS Grassland/ shrubland environment Cerling et al. (2013) SOM 

KNM-ER 2599 p4 -9.9 Turkana: 

Koobi Fora 

1.86 KBS Grassland/ shrubland environment Cerling et al. (2013) SOM 

KNM-ER 2600 m-frag -6.1 Turkana: 

Koobi Fora 

1.82 KBS Grassland/ shrubland environment Cerling et al. (2013) SOM 

KNM-ER 45501 m-frag -5.8 Turkana: 

Koobi Fora 

1.85 KBS Grassland/ shrubland environment Cerling et al. (2013) SOM 

KNM-ER 45502 Lm1 or Lm2 -3.9 Turkana: 

Koobi Fora 

1.85 KBS Grassland/ shrubland environment Cerling et al. (2013) SOM 

KNM-ER 45503 M2 or M3 -8.6 Turkana: 

Koobi Fora 

1.85 KBS Grassland/ shrubland environment Cerling et al. (2013) SOM 

KNM-ER 62000 rM1 -7.2 Turkana: 

Koobi Fora 

1.97 Upper 

Burgi 

Open woodland, edaphic grasslands and 

riparian woodland 

Cerling et al. (2013) SOM 

KNM-ER 7330 RP3 -5.5 Turkana 1.83 KBS Grassland/ shrubland environment Cerling et al. (2013) SOM 

KNM-WT 37745 Rp3 -6.4 Turkana: 

Nachukui 

1.75 Kaito: 

NY1 

Closed, wet woodland habitat Cerling et al. (2013) SOM 

SK 27 LM3 -8.2 Swartkrans 2.31 - 1.64** SK1 Open habitat with a riverine woodland nearby Lee-Thorp et al. (2000) 

SK 80/ 847 P -7.1 Swartkrans 2.31 - 1.64** SK1 Open habitat with a riverine woodland nearby Lee-Thorp et al. (2000) 

SK 2635 P -9.2 Swartkrans 2.31 - 1.64** SK1 Open habitat with a riverine woodland nearby Lee-Thorp et al. (2000) 

KNM-ER 807 LM1 -5.6 Turkana: 

Koobi Fora 

1.52 Okote Wetlands and edaphic grasslands Cerling et al. (2013) SOM 

KNM-ER 807 LM2 -5.6 Turkana: 

Koobi Fora 

1.52 Okote Wetlands and edaphic grasslands Cerling et al. (2013) SOM 
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KNM-ER 808G RM1 -5.1 Turkana: 

Koobi Fora 

1.52 Okote Wetlands and edaphic grasslands Cerling et al. (2013) SOM 

KNM-ER 809A Lm1 -5 Turkana: 

Koobi Fora 

1.53 Okote Wetlands and edaphic grasslands Cerling et al. (2013) SOM 

KNM-ER 3733 LM1 -4.6 Turkana: 

Koobi Fora 

1.65 KBS Grassland/ shrubland environment Cerling et al. (2013) SOM 

KNM-ER 3733 LM2 -3.8 Turkana: 

Koobi Fora 

1.65 KBS Grassland/ shrubland environment Cerling et al. (2013) SOM 

* SOM = Supporting Online Material. **Species and dates assigned based on information of specimen numbers and member information from Table 9.2-9.3. All environmental reconstructions use 

information from Table 9.2-9.3. Specimens in bold denote those using an M2 or M3.  
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Results  

Tables 9.9-9.10 indicate that significant values were obtained between similar-sized 

monkeys consuming different diets using both the parametric (t-tests and ANOVA) and non-

parametric (Mann-Whitney U and Kruskal-Wallis) tests of difference for the crown area 

variables. The smaller species obtained significant differences on the parametric and non-

parametric tests more often than the larger species did. Significant differences were also present 

on most of the Levene’s tests for the Equality of Variance/ Homogeneity of Variance too. These 

results indicate that there are significant differences between similar-sized monkeys consuming 

different diets.  

Table 9.9: T-test and ANOVA tests on monkeys and body size, grouped by dietary categories using P4 – M1 

Crown Area (CA) 

Body 
size 

Diet category 

P4 CA M1 CA 

F/ Levene 

Statistic 

EoV/ 

HoV 
t/ F 

t-test/ 

ANOVA 

F/ Levene 

Statistic 

EoV/ 

HoV 
t/ F 

t-test/ 

ANOVA 

Small Traditional Diet 52.061 0.000 42.269 0.000 91.859 0.000 57.812 0.000 

Large Traditional Diet 17.529 0.000 -19.945 0.000 20.618 0.000 -21.765 0.000 

Small  
SpecClassCode 

DO* 
14.989 0.000 38.906 0.000 10.511 0.000 82.759 0.000 

Large 
SpecClassCode 
DO 

16.827 0.000 18.715 0.000 24.031 0.000 20.712 0.000 

Small Fruit DO 0.73 0.393 -5.983 0.000 0.109 0.742 -7.009 0.000 

  Leaves DO 6.578 0.011 -5.003 0.000 15.474 0.000 -8.474 0.000 

 

Seeds DO 49.253 0.000 152.452 0.000 26.447 0.000 206.836 0.000 

  Animals DO 78.729 0.000 146.054 0.000 157.121 0.000 256.618 0.000 

Large Fruit DO 16.827 0.000 -18.715 0.000 24.031 0.000 -20.712 0.000 

  Leaves DO 15.297 0.000 0.768 0.444 86.449 0.000 -2.204 0.030* 

 

Seeds DO 11.027 0.000 202.795 0.000 26.49 0.000 283.452 0.000 

  Roots DO 7.611 0.001 131.508 0.000 15.852 0.000 205.578 0.000 

Small  
SpecClassCode 

FA 
47.562 0.000 18.633 0.000 50.659 0.000 81.281 0.000 

Large 
SpecClassCode 

FA 
1.141 0.322 11.571 0.000 8.552 0.000 31.296 0.000 

Small  Fruit FA 14.938 0.000 22.021 0.000 20.363 0.000 46.43 0.000 

  Leaves FA 36.152 0.000 278.456 0.097 40.234 0.000 275.598 0.019* 

 

Seeds FA 178.388 0.000 109.089 0.000 187.868 0.000 220.38 0.000 

  Animals FA 5.315 0.005 21.171 0.000 21.849 0.000 38.904 0.000 

Large Fruit FA 7.951 0.001 203.829 0.000 35.234 0.000 304.909 0.000 

  Leaves FA 0.501 0.48 9.178 0.000 0.07 0.792 5.765 0.000 

 

Seeds FA 8.529 0.000 1.717 0.189 56.592 0.000 4.39 0.016* 

  Roots FA 10.499 0.000 217.991 0.000 32.402 0.000 325.689 0.000 

 

Animals FA 9.843 0.000 4.785 0.012* 46.466 0.000 4.357 0.017* 

Overall 

(n = 23) 

Number 

significant    
20 

   
23 

Small 

(n = 11) 
% Significant 

   
90.91% 

   
100% 

Large 

(n = 12) 
% Significant 

   
83.33% 

   
100% 

Overall % Significant 
   

86.96% 
   

100% 

* EoV = Levene's test of Equality of Variances. HoV = Levene's test of the Homogeneity of Variances. SpecClassCoding 

=Specific Classification Coding. DO = Direct Observation. FA = Faecal Analysis 
Blue dietary categories = ANOVA. Black dietary categories = t-tests. Numbers in bold denote those that obtained significant 

differences on their tests, and those in red did not obtain significant differences. Numbers with * denote those that obtained 

different results on the parametric and non-parametric tests. 
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Table 9.10: T-test and ANOVA tests on monkeys and body size, grouped by dietary categories using  M2 – M3 

Crown Area (CA) 

Body 

size 
Diet category 

M2 CA M3 CA 

F/ Levene 
Statistic 

EoV/ 
HoV 

t/ F 
t-test/ 

ANOVA 
F/ Levene 
Statistic 

EoV/ 
HoV 

t/ F 
t-test/ 

ANOVA 

Small Traditional Diet 96.165 0.000 296.424 0.000 103.949 0.000 528.491 0.000 

Large Traditional Diet 15.885 0.000 -21.392 0.000 15.774 0.000 -15.382 0.000 

Small  
SpecClassCode 
DO*  

12.921 0.000 304.521 0.000 9.309 0.000 190.388 0.000 

Large 
SpecClassCode 

DO 
16.838 0.000 20.048 0.000 16.626 0.000 15.03 0.000 

Small Fruit DO 1.364 0.243 -9.038 0.000 1.52 0.218 -7.974 0.000 

  Leaves DO 15.813 0.000 -11.139 0.000 12.86 0.000 -14.664 0.000 

 

Seeds DO 22.739 0.000 212.033 0.000 18.117 0.000 205.989 0.000 

  Animals DO 150.245 0.000 389.414 0.000 124.193 0.000 302.019 0.000 

Large Fruit DO 16.838 0.000 -20.048 0.000 16.626 0.000 -15.03 0.000 

  Leaves DO 51.736 0.000 -1.279 0.204 31.274 0.000 -1.506 0.135 

 

Seeds DO 14.809 0.000 223.536 0.000 11.386 0.000 119.278 0.000 

  Roots DO 10.636 0.000 175.874 0.000 6.58 0.002 113.964 0.000 

Small  
SpecClassCode 
FA 

76.245 0.000 377.386 0.000 95.834 0.000 466.063 0.000 

Large 
SpecClassCode 

FA 
1.502 0.226 24.316 0.000 0.401 0.671 20.361 0.000 

Small  Fruit FA 32.625 0.000 42.958 0.000 39.308 0.000 40.027 0.000 

  Leaves FA 13.779 0.000 231.827 0.000 0.483 0.000 151.194 0.000 

 

Seeds FA 180.014 0.000 229.823 0.000 156.688 0.000 261.292 0.000 

  Animals FA 9.005 0.000 48.103 0.000 27.645 0.000 51.788 0.000 

Large Fruit FA 12.667 0.000 252.122 0.000 9.901 0.000 123.857 0.000 

  Leaves FA 1.883 0.172 6.331 0.000 0.695 0.406 4.235 0.000 

 

Seeds FA 30.372 0.000 0.85 0.432 17.117 0.000 1.14 0.327 

  Roots FA 15.38 0.000 252.237 0.000 10.492 0.000 124.233 0.000 

 

Animals FA 27.222 0.000 0.55 0.58 17.901 0.000 53.338 0.096 

Overall 

(n = 23) 

Number 

significant 
  

  
20 

   
20 

Small  

(n = 11) 
% Significant   

  
100% 

   
100% 

Large 

(n = 12) 
% Significant   

  
75% 

   
75% 

Overall % Significant     86.9%       86.96% 

* EoV = Levene's test of Equality of Variances. HoV = Levene's test of the Homogeneity of Variances. SpecClassCoding 
=Specific Classification Coding. DO = Direct Observation. FA = Faecal Analysis 

Blue dietary categories = ANOVA. Black dietary categories = t-tests. Numbers in bold denote those that obtained 

significant differences on their tests, and those in red did not obtain significant differences. Numbers with * denote those 

that obtained different results on the parametric and non-parametric tests. 
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Tables 9.11-9.12 indicate that significant values were obtained on many variables between 

similar-sized monkeys consuming different diets using both the parametric (t-tests and ANOVA) and 

non-parametric (Mann-Whitney U and Kruskal-Wallis) tests of difference for the crown shape 

indices. The smaller species obtained significant differences on the parametric and non-parametric 

tests more often than the larger species did. Significant differences were also present on many of the 

Levene’s tests for the Equality of Variance/ Homogeneity of Variance too. These results indicate that 

there are significant differences between similar-sized monkeys consuming different diets.  

Table 9.11: T-test and ANOVA tests on monkeys and body size, grouped by dietary categories using P4 – M1 Crown 

Shape Indices (CSI) 

Body 

size 
Diet category 

P4 CSI M1 CSI 

F/ Levene 

Statistic 

EoV/ 

HoV 
t/ F 

t-test/ 

ANOVA 

F/ Levene 

Statistic 

EoV/ 

HoV 
t/ F 

t-test/ 

ANOVA 

Small Traditional Diet 7.25 0.000 129.134 0.000 3.449 0.016 111.363 0.000 

Large Traditional Diet 0.688 0.408 2.973 0.003 1.355 0.246 -1.093 0.276 

Small  
SpecClassCode 

DO* 
23.348 0.000 33.655 0.000 21.04 0.000 39.086 0.000 

Large 
SpecClassCode 

DO 
1.605 0.204 8.21 0.000 1 0.319 1.506 0.134 

Small Fruit DO 31.542 0.000 1.487 0.138 30.976 0.000 1.076 0.282 

  Leaves DO 4 0.046 -1.672 0.114 5.343 0.021 2.403 0.029* 

 
Seeds DO 50.092 0.000 52.622 0.000 31.498 0.000 29.95 0.000 

  Animals DO 96.145 0.000 17.788 0.000 55.562 0.000 15.105 0.000 

Large Fruit DO 0.902 0.344 2.645 0.009 1 0.319 -1.506 0.134 

  Leaves DO 0.915 0.341 -4.308 0.000 3.942 0.049 -0.013 0.989 

 
Seeds DO 4.801 0.01 11.588 0.000 3.9 0.023 5.524 0.008 

  Roots DO 3.45 0.036 2.002 0.148 0.225 0.799 5.017 0.011 

Small  
SpecClassCode 

FA 
3.191 0.024 117.036 0.000 2.149 0.094 126.387 0.000 

Large 
SpecClassCode 

FA 
1.605 0.204 8.929 0.000 1.235 0.294 5.207 0.008 

Small  Fruit FA 14.399 0.000 27.161 0.000 21.636 0.000 28.539 0.000 

  Leaves FA 64.733 0.000 3.761 0.000 25.187 0.000 20.089 0.000 

 
Seeds FA 37.047 0.000 38.169 0.000 31.975 0.000 22.65 0.000 

  Animals FA 22.656 0.000 8.84 0.001 16.889 0.000 1.516 0.235 

Large Fruit FA 0.781 0.46 5.6 0.007 1.562 0.213 1.179 0.315 

  Leaves FA 1.9 0.17 -2.9 0.004 1.903 0.17 -1.773 0.078* 

 
Seeds FA 0.421 0.657 14.408 0.000 2.043 0.133 4.347 0.018 

  Roots FA 3.8 0.024 17.628 0.000 2.94 0.056 8.536 0.001 

  Animals FA 0.947 0.391 17.712 0.000 2.811 0.064 4.402 0.018 

Overall 

(n = 23) 

Number 

significant    
20 

   
15 

Small  

(n = 11) 
% Significant 

   
81.82% 

   
81.82% 

Large 

(n = 12) 
% Significant 

   
91.67% 

   
50% 

Overall % Significant 
   

86.96% 
   

65.22% 

* EoV = Levene's test of Equality of Variances. HoV = Levene's test of the Homogeneity of Variances. SpecClassCoding 

=Specific Classification Coding. DO = Direct Observation. FA = Faecal Analysis 

Blue variables = ANOVA. Black variables = t-tests. Numbers in bold denote those that obtained significant differences on 
their tests, and those in red did not obtain significant differences. Numbers with * denote those that obtained different results 

on the parametric and non-parametric tests. 
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Table 9.12: T-test and ANOVA tests on monkeys and body size, grouped by dietary categories using  M2 – M3 Crown 

Shape Indices (CSI) 

Body 

size 
Diet category 

M2 CSI M3 CSI 

F/ Levene 

Statistic 

EoV/ 

HoV 
t/ F 

t-test/ 

ANOVA 

F/ Levene 

Statistic 

EoV/ 

HoV 
t/ F 

t-test/ 

ANOVA 

Small Traditional Diet 6.743 0.000 91.604 0.000 4.769 0.003 39.963 0.000 

Large Traditional Diet 0.976 0.325 -2.719 0.007 0.08 0.778 -2.953 0.004 

Small  
SpecClassCode 

DO* 
10.492 0.000 40.406 0.000 5.562 0.000 17.582 0.000 

Large 
SpecClassCode 

DO 
0.932 0.336 3.044 0.003 0.124 0.725 3.253 0.001 

Small Fruit DO 6.292 0.012 2.523 0.012* 6.454 0.011 4.498 0.000 

  Leaves DO 5.902 0.015 7.107 0.000 5.772 0.017 16.111 0.000 

 
Seeds DO 26.823 0.000 24.523 0.001 9.107 0.000 19.954 0.000 

  Animals DO 32.848 0.000 27.398 0.000 15.208 0.000 35.158 0.000 

Large Fruit DO 0.932 0.336 -3.044 0.003 0.124 0.725 -3.253 0.001 

  Leaves DO 0.754 0.387 0.234 0.815 0.41 0.523 1.027 0.306 

 
Seeds DO 1.596 0.206 8.757 0.001 0.105 0.9 6.714 0.003 

  Roots DO 0.248 0.781 8.696 0.001 0.665 0.517 4.955 0.012 

Small  
SpecClassCode 
FA 

4.412 0.005 58.807 0.000 9.465 0.000 44.764 0.000 

Large 
SpecClassCode 

FA 
0.964 0.384 4.729 0.013 1.86 0.159 2.242 0.116 

Small  Fruit FA 15.412 0.000 39.753 0.000 4.041 0.018 4.814 0.010* 

  Leaves FA 18.635 0.000 0.792 0.1 24.155 0.000 1.351 0.001* 

 
Seeds FA 26.315 0.000 12.67 0.000 18.329 0.000 24.349 0.000 

  Animals FA 10.986 0.000 0.705 0.5 6.806 0.001 12.744 0.000 

Large Fruit FA 1.018 0.364 5.717 0.006 0.703 0.497 3.834 0.029 

  Leaves FA 0.084 0.772 0.454 0.65 0.268 0.606 3.179 0.002 

 
Seeds FA 0.497 0.609 2.365 0.103 0.207 0.813 1.841 0.169 

  Roots FA 1.102 0.335 9.674 0.001 0.208 0.813 3.945 0.027 

  Animals FA 0.834 0.437 1.975 0.15 0.031 0.97 4.819 0.012 

Overall 

(n = 23) 

Number 

significant    
17 

   
20 

Small  

(n = 11) 
% Significant 

   
81.82% 

   
100% 

Large 

(n = 12) 
% Significant 

   
66.67% 

   
75% 

Overall % Significant  
  

73.91% 
   

86.96% 

* EoV = Levene's test of Equality of Variances. HoV = Levene's test of the Homogeneity of Variances. SpecClassCoding 
=Specific Classification Coding. DO = Direct Observation. FA = Faecal Analysis 

Blue variables = ANOVA. Black variables = t-tests. Numbers in bold denote those that obtained significant differences on 

their tests, and those in red did not obtain significant differences. Numbers with * denote those that obtained different 

results on the parametric and non-parametric tests. 

 

Tables 9.13-9.14 indicate that significant values were obtained on most variables between similar-

sized monkeys consuming different diets using both the parametric (t-tests and ANOVA) and non-

parametric (Mann-Whitney U and Kruskal-Wallis) tests of difference for the corpus size variables. 

The smaller species obtained significant differences on the parametric and non-parametric tests more 

often than the larger species did. Significant differences were also present on most of the Levene’s 

tests for the Equality of Variance/ Homogeneity of Variance too. These results indicate that there are 

significant differences between similar-sized monkeys consuming different diets.  
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Table 9.13: T-test and ANOVA tests on monkeys and body size, grouped by dietary categories using Symphyseal Size (SS), P4 – M1 Corpus Size (CS) 

Body size Diet category 

SS P4 CS M1 CS 

F/ Levene 

Statistic 

EoV/ 

HoV 
t/ F 

t-test/ 

ANOVA 

F/ Levene 

Statistic 

EoV/ 

HoV 
t/ F 

t-test/ 

ANOVA 

F/ Levene 

Statistic 

EoV/ 

HoV 
t/ F 

t-test/ 

ANOVA 

Small Traditional Diet 38.298 0.000 14.052 0.000 76.543 0.000 45.092 0.000 91.086 0.000 54.689 0.000 

Large Traditional Diet 36.296 0.000 -15.1 0.000 18.163 0.000 -13.97 0.000 16.14 0.000 -12.808 0.000 

Small  SpecClassCode DO* 19.953 0.000 55.545 0.000 15.193 0.000 86.185 0.000 18.709 0.000 80.785 0.000 

Large SpecClassCode DO 32.16 0.000 14.039 0.000 17.334 0.000 13.644 0.000 14.527 0.000 12.636 0.000 

Small Fruit DO 52.461 0.000 -11.011 0.000 63.826 0.000 -9.225 0.000 62.411 0.000 -8.765 0.000 

  Leaves DO 1.867 0.172 -3.196 0.001 10.182 0.002 -4.462 0.000 8.924 0.003 -5.427 0.000 

 
Seeds DO 11.292 0.000 87.488 0.000 10.381 0.000 195.393 0.000 11.605 0.000 214.565 0.000 

  Animals DO 86.792 0.000 171.646 0.000 115.842 0.000 136.249 0.000 127.43 0.000 127.586 0.000 

Large Fruit DO 32.16 0.000 -14.039 0.000 17.334 0.000 -13.644 0.000 14.527 0.000 -12.636 0.000 

  Leaves DO 3.879 0.051 3.521 0.001 1.177 0.28 1.899 0.06 2.595 0.109 1.572 0.119 

 
Seeds DO 24.242 0.000 115.357 0.000 8.552 0.000 100.288 0.000 7.411 0.001 83.725 0.000 

  Roots DO 21.73 0.000 70.812 0.000 10.884 0.000 66.637 0.000 8.627 0.000 57.834 0.000 

Small  SpecClassCode FA 30.006 0.000 53.366 0.000 30.944 0.000 69.874 0.000 35.74 0.000 62.491 0.000 

Large SpecClassCode FA 4.757 0.01 0.193 0.825 0.963 0.384 2.4 0.1 0.54 0.584 2.97 0.060* 

Small  Fruit FA 11.863 0.000 38.823 0.000 10.812 0.000 40.119 0.000 16.056 0.000 50.204 0.000 

  Leaves FA 1.175 0.000 103.143 0.183 9.995 0.304 170.854 0.022* 12.168 0.000 190.773 0.002* 

 
Seeds FA 81.973 0.000 163.049 0.000 130.084 0.000 304.85 0.000 156.022 0.000 338.353 0.000 

  Animals FA 12.265 0.000 26.593 0.000 62.786 0.000 27.092 0.000 93.981 0.000 29.305 0.000 

Large Fruit FA 21.858 0.000 116.254 0.000 9.025 0.000 96.786 0.000 8.361 0.000 81.154 0.000 

  Leaves FA 13.515 0.000 6.691 0.000 3.361 0.069 6.562 0.000 1.353 0.246 5.819 0.000 

 
Seeds FA 2.196 0.115 6.566 0.003 0.609 0.545 1.788 0.176 1.568 0.212 1.219 0.303 

  Roots FA 25.266 0.000 125.239 0.000 9.957 0.000 99.222 0.000 7.666 0.001 82.267 0.000 

 
Animals FA 2.761 0.067 13.594 0.000 0.591 0.555 7.845 0.001 1.656 0.195 5.139 0.009 

Overall (n = 23) Number significant 
   

21 
   

20       20 

Small (n = 11) % Significant 
   

90.91% 
   

100% 
   

100% 

Large (n = 12) % Significant 
   

91.67% 
   

75% 
   

75% 

Overall % Significant 
   

91.30% 
   

86.96%       86.96% 

* EoV = Levene's test of Equality of Variances. HoV = Levene's test of the Homogeneity of Variances. SpecClassCoding =Specific Classification Coding. DO = Direct Observation. FA = Faecal 
Analysis 

Blue variables = ANOVA. Black variables = t-tests. Numbers in bold denote those that obtained significant differences on their tests, and those in red did not obtain significant differences.  

Numbers with * denote those that obtained different results on the parametric and non-parametric tests. 
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Table 9.14: T-test and ANOVA tests on monkeys and body size, grouped by dietary categories using M2 – M3 Corpus 

Size (CS) 

Body 

size 
Diet category 

M2 CS M3 CS 

F/ Levene 

Statistic 

EoV/ 

HoV 
t/ F 

t-test/ 

ANOVA 

F/ Levene 

Statistic 

EoV/ 

HoV 
t/ F 

t-test/ 

ANOVA 

Small Traditional Diet 90.238 0.000 58.718 0.000 99.972 0.000 57.771 0.000 

Large Traditional Diet 8.238 0.005 -9.849 0.000 7.93 0.005 -8.778 0.000 

Small  
SpecClassCode 
DO* 

20.147 0.000 81.634 0.000 21.62 0.000 101.673 0.000 

Large 
SpecClassCode 

DO 
7.247 0.008 9.629 0.000 6.711 0.011 8.463 0.000 

Small Fruit DO 62.804 0.000 -8.577 0.000 81.632 0.000 -8.876 0.000 

  Leaves DO 9.673 0.002 -6.91 0.000 10.267 0.001 -6.389 0.000 

 
Seeds DO 14.893 0.000 196.656 0.000 14.213 0.000 222.717 0.000 

  Animals DO 124.527 0.000 124.726 0.000 120.05 0.000 121.415 0.000 

Large Fruit DO 7.247 0.008 -9.629 0.000 6.711 0.011 -8.463 0.000 

  Leaves DO 1.19 0.277 1.029 0.305 4.997 0.027 -0.581 0.563 

 
Seeds DO 4.228 0.017 48.827 0.000 4.95 0.008 38.079 0.000 

  Roots DO 3.445 0.036 36.641 0.000 2.672 0.074 35.874 0.000 

Small  
SpecClassCode 
FA 

42.322 0.000 56.374 0.000 39.432 0.000 71.124 0.000 

Large 
SpecClassCode 

FA 
0.717 0.49 3.542 0.036 0.636 0.525 9.472 0.000 

Small  Fruit FA 23.019 0.000 54.506 0.000 28.348 0.000 59.368 0.000 

  Leaves FA 15.729 0.000 230.471 0.001* 22.67 0.000 234.969 0.004* 

 
Seeds FA 197.376 0.000 360.791 0.000 197.357 0.000 421.533 0.000 

  Animals FA 97.648 0.000 29.718 0.000 111.405 0.000 30.319 0.000 

Large Fruit FA 3.995 0.02 48.391 0.000 3.549 0.031 41.714 0.000 

  Leaves FA 0.505 0.478 5.671 0.000 1.403 0.238 6.877 0.000 

 
Seeds FA 0.741 0.478 0.656 0.523 2.828 0.062 0.859 0.429 

  Roots FA 4.432 0.013 49.427 0.000 4.454 0.013 40.087 0.000 

 
Animals FA 0.805 0.449 3.332 0.043* 3.685 0.028 1.011 0.371 

Overall  

(n = 23) 

Number 

significant 
      20       20 

Small  

(n = 11) 
% Significant   

  
100% 

   
100% 

Large  

(n = 12) 
% Significant   

  
75% 

   
75% 

Overall % Significant       86.96%       86.96% 

* EoV = Levene's test of Equality of Variances. HoV = Levene's test of the Homogeneity of Variances. SpecClassCoding 
=Specific Classification Coding. DO = Direct Observation. FA = Faecal Analysis 

Blue variables = ANOVA. Black variables = t-tests. Numbers in bold denote those that obtained significant differences on 
their tests, and those in red did not obtain significant differences.  Numbers with * denote those that obtained different results 

on the parametric and non-parametric tests. 

 

Tables 9.15-9.16 indicate that significant values were obtained on most variables between similar-

sized monkeys consuming different diets using both the parametric (t-tests and ANOVA) and non-

parametric (Mann-Whitney U and Kruskal-Wallis) tests of difference for the corpus robusticity 

indices. The smaller species obtained significant differences on the parametric and non-parametric 

tests slightly more often than the larger species did. Significant differences were present on most of 

the Levene’s tests for the Equality of Variance/ Homogeneity of Variance for the smaller species but 

not the larger species. These results indicate that there are significant differences between similar-

sized monkeys consuming different diets.  
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Table 9.15: T-test and ANOVA tests on monkeys and body size, grouped by dietary categories using Symphyseal Robusticity Index (SRI), P4 – M1 Corpus Robusticity Indices (CRI) 

Body size Diet category  

SRI P4 CRI M1 CRI 

F/ Levene 

Statistic 

EoV/ 

HoV 
t/ F 

t-test/ 

ANOVA 

F/ Levene 

Statistic 

EoV/ 

HoV 
t/ F 

t-test/ 

ANOVA 

F/ Levene 

Statistic 

EoV/ 

HoV 
t/ F 

t-test/ 

ANOVA 

Small Traditional Diet 4.535 0.004 3.035 0.034 3.089 0.027 107.666 0.000 0.992 0.396 62.388 0.000 

Large Traditional Diet 1.522 0.219 -4.316 0.000 0.197 0.657 3.82 0.000 0.847 0.359 4.654 0.000 

Small  SpecClassCode DO* 2.927 0.013 5.64 0.000 8.858 0.000 27.763 0.000 9.283 0.000 23.493 0.000 

Large SpecClassCode DO 1.092 0.298 4.585 0.000 0.117 0.733 -4.455 0.000 0.696 0.406 -4.908 0.000 

Small Fruit DO 11.057 0.001 -2.637 0.009 17.498 0.000 3.998 0.000 12.606 0.000 -8.765 0.000 

  Leaves DO 0.833 0.362 -2.644 0.008 0.048 0.827 0.076 0.939 2.428 0.12 0.308 0.758 

 
Seeds DO 0.497 0.609 17.626 0.000 13.324 0.000 14.236 0.000 3.671 0.026 4.301 0.016* 

  Animals DO 4.131 0.017 7.734 0.001 28.35 0.000 28.382 0.000 10.135 0.000 11.576 0.000 

Large Fruit DO 1.092 0.298 -4.585 0.000 0.117 0.733 4.455 0.000 0.696 0.406 4.908 0.000 

  Leaves DO 0.855 0.357 0.843 0.401 0.266 0.607 -2.932 0.004 0.254 0.615 -3.355 0.001 

 
Seeds DO 3.274 0.041 11.581 0.000 0.586 0.558 11.87 0.000 1.137 0.324 12.083 0.000 

  Roots DO 1.226 0.564 12.745 0.000 0.046 0.955 14.816 0.000 1.093 0.339 8.134 0.001 

Small  SpecClassCode FA 5.874 0.001 2.412 0.07 2.782 0.041 143.405 0.000 1.116 0.343 82.334 0.000 

Large SpecClassCode FA 6.359 0.002 2.871 0.066 1.621 0.201 2.524 0.09 3.907 0.022 2.657 0.078 

Small  Fruit FA 0.286 0.751 3.147 0.047* 10.089 0.000 15.715 0.000 3.941 0.02 3.543 0.032* 

  Leaves FA 5.929 0.304 13.699 0.021* 4.153 0.000 33.304 0.002 6.96 0.000 45.062 0.003 

 
Seeds FA 2.509 0.083 6.295 0.002 21.284 0.000 29.556 0.000 21.923 0.000 30.693 0.000 

  Animals FA 2.107 0.123 1.923 0.162 18.438 0.000 8.969 0.001 10.851 0.000 6.282 0.005 

Large Fruit FA 1.915 0.151 11.06 0.000 0.339 0.713 12.15 0.000 1.156 0.317 12.27 0.000 

  Leaves FA 1.407 0.237 2.374 0.019 1.576 0.211 0.414 0.68 0.326 0.569 -2.238 0.027* 

 
Seeds FA 1.074 0.344 0.384 0.683 0.127 0.88 6.604 0.003 1.422 0.244 8.387 0.001 

  Roots FA 4.558 0.012 11.501 0.000 0.763 0.468 12.28 0.000 1.381 0.254 9.184 0.000 

 
Animals FA 1.759 0.177 0.28 0.757 0.233 0.792 2.154 0.127 1.39 0.253 7.848 0.001 

Overall (n = 23) Number significant 
   

15 
   

20 
   

20 

Small (n = 11) % Significant 
   

63.64% 
   

90.91% 
   

81.82% 

Large (n = 12) % Significant 
   

72.73% 
   

83.33% 
   

91.67% 

Overall % Significant 
   

65.22% 
   

86.96% 
   

86.96% 

* EoV = Levene's test of Equality of Variances. HoV = Levene's test of the Homogeneity of Variances. SpecClassCoding =Specific Classification Coding. DO = Direct Observation. FA = 

Faecal Analysis. 

Blue variables = ANOVA. Black variables = t-tests. Numbers in bold denote those that obtained significant differences on their tests, and those in red did not obtain significant differences.  
Numbers with * denote those that obtained different results on the parametric and non-parametric tests. 
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Table 9.16: T-test and ANOVA tests on monkeys and body size, grouped by dietary categories using M2 – M3 Corpus 

Robusticity Indices (CRI) 

Body 

size 
Diet category  

M2 CRI M3 CRI 

F/ Levene 

Statistic 

EoV/ 

HoV 
t/ F 

t-test/ 

ANOVA 

F/ Levene 

Statistic 

EoV/ 

HoV 
t/ F 

t-test/ 

ANOVA 

Small Traditional Diet 1.855 0.136 51.511 0.000 4.548 0.004 23.111 0.000 

Large Traditional Diet 0.804 0.371 2.725 0.007 6.043 0.015 1.849 0.075 

Small  
SpecClassCode 
DO* 

3.352 0.005 31.451 0.000 1.967 0.082 26.085 0.000 

Large 
SpecClassCode 

DO 
0.534 0.466 -3.234 0.002 5.109 0.025 -2.426 0.022 

Small Fruit DO 0.536 0.464 3.38 0.001 1.231 0.268 2.821 0.005 

  Leaves DO 1.792 0.181 -0.15 0.881 0.029 0.866 -1.795 0.073 

 
Seeds DO 0.916 0.401 23.078 0.000 3.058 0.048 33.095 0.000 

  Animals DO 7.874 0.000 21.901 0.000 12.875 0.000 15.846 0.000 

Large Fruit DO 0.534 0.466 3.234 0.002 5.109 0.025 2.426 0.022 

  Leaves DO 1.299 0.256 -3.929 0.000 1.087 0.299 -3.74 0.000 

 
Seeds DO 0.37 0.692 14.462 0.000 2.444 0.091 11.493 0.000 

  Roots DO 0.084 0.919 2.836 0.069 2.146 0.122 1.299 0.282 

Small  
SpecClassCode 
FA 

5.109 0.002 30.314 0.000 5.343 0.001 2.628 0.054 

Large 
SpecClassCode 

FA 
2.274 0.106 6.515 0.003 0.121 0.886 9.315 0.000 

Small  Fruit FA 4.859 0.008 13.34 0.000 4.368 0.013 7.736 0.001 

  Leaves FA 5.136 0.026 69.135 0.002 5.272 0.588 47.263 0.508 

 
Seeds FA 8.88 0.000 48.87 0.000 1.747 0.176 15.624 0.000 

  Animals FA 0.696 0.499 13.216 0.000 1.769 0.172 13.567 0.000 

Large Fruit FA 0.693 0.501 11.83 0.000 2.637 0.075 10.718 0.000 

  Leaves FA 0.86 0.355 -1.808 0.073 3.059 0.082 -0.596 0.552 

 
Seeds FA 0.686 0.505 12.161 0.000 0.611 0.544 12.868 0.000 

  Roots FA 4.242 0.016 5.644 0.006 3.913 0.022 2.845 0.067 

 
Animals FA 0.296 0.745 17.295 0.000 0.186 0.83 17.169 0.000 

Overall  

(n = 23) 

Number 

significant 
      21       16 

Small 

(n = 11) 
% Significant 

   
90.91% 

   
72.73% 

Large  

(n = 12) 
% Significant 

   
91.67% 

   
66.67% 

Overall % Significant       91.30%       69.57% 

* EoV = Levene's test of Equality of Variances. HoV = Levene's test of the Homogeneity of Variances. SpecClassCoding 
=Specific Classification Coding. DO = Direct Observation. FA = Faecal Analysis.  

Blue variables = ANOVA. Black variables = t-tests. Numbers in bold denote those that obtained significant differences on their 

tests, and those in red did not obtain significant differences.  Numbers with * denote those that obtained different results on the 

parametric and non-parametric tests. 
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Tables 9.17-9.18 indicate that significant values were obtained on most variables between similar-

sized apes consuming different diets using both the parametric (t-tests and ANOVA) and non-

parametric (Mann-Whitney U and Kruskal-Wallis) tests of difference for the crown area variables. 

The smaller species obtained significant differences on the parametric and non-parametric tests more 

often than the larger species did. Significant differences were rarely obtained on the Levene’s tests for 

the Equality of Variance/ Homogeneity of Variance. These results indicate that there are significant 

differences between similar-sized apes consuming different diets.  

 

Table 9.17: T-test and ANOVA tests on apes and body size, grouped by dietary categories using P4 – M1 Crown Area 

(CA) 

Body 
size 

Diet category 

P4 CA M1 CA 

F/ Levene 

Statistic 

EoV/ 

HoV 
t/ F 

t-test/ 

ANOVA 

F/ Levene 

Statistic 

EoV/ 

HoV 
t/ F 

t-test/ 

ANOVA 

Large Traditional Diet 0.004 0.951 3.263 0.000 1.515 0.221 1.118 0.266 

Small  
SpecClassCode 
DO 

0.037 0.848 8.665 0.000 0.091 0.763 6.64 0.000 

Large 
SpecClassCode 

DO 
0.038 0.846 3.189 0.002 1.102 0.297 2.311 0.024 

Large Fruit DO 0.038 0.846 3.189 0.000 1.102 0.297 2.311 0.024 

Small  
SpecClassCode 

FA 
0.2 0.655 17.59 0.000 0.077 0.782 15.492 0.000 

Large 
SpecClassCode 

FA 
1.33 0.251 2.127 0.035 0.633 0.428 4.713 0.000 

Small  Fruit FA 0.2 0.655 17.59 0.000 0.077 0.782 15.492 0.000 

  Leaves FA 7.456 0.001 194.514 0.000 13.068 0.000 148.914 0.000 

 
Roots FA 0.978 0.324 -20.792 0.000 0.643 0.424 -17.511 0.000 

Large Fruit FA 1.091 0.339 4.41 0.023 0.518 0.597 10.96 0.000 

 
Leaves FA 1.33 0.251 -2.127 0.035 0.633 0.428 -4.713 0.000 

  Seeds FA 0.003 0.957 -3.292 0.001 1.531 0.218 -1.143 0.255 

 
Roots FA 3.589 0.061 -0.35 0.727 0.303 0.583 -4.057 0.000 

Overall  

(n = 13) 

Number 

significant 
      12       11 

 Small  

(n = 5) 
% Significant 

   
100%   

  
100% 

 Large  

(n = 8) 
% Significant 

   
87.50%   

  
75% 

 Overall % Significant 
   

92.31%       84.62% 

* EoV = Levene's test of Equality of Variances. HoV = Levene's test of the Homogeneity of Variances. 
SpecClassCoding =Specific Classification Coding. DO = Direct Observation. FA = Faecal Analysis 

Blue dietary categories = ANOVA. Black dietary categories = t-tests. Numbers in bold denote those that obtained 

significant differences on their tests, and those in red did not obtain significant differences.  
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Table 9.18: T-test and ANOVA tests on apes and body size, grouped by dietary categories using  M2 – M3 Crown Area 

(CA) 

Body 

size 
Diet category 

M2 CA M3 CA 

F/ Levene 

Statistic 

EoV/ 

HoV 
t/ F 

t-test/ 

ANOVA 

F/ Levene 

Statistic 

EoV/ 

HoV 
t/ F 

t-test/ 

ANOVA 

Large Traditional Diet 0.571 0.451 1.974 0.051 0.023 0.879 1.127 0.262 

Small  
SpecClassCode 

DO 
0.406 0.525 6.615 0.000 0.079 0.779 6.608 0.000 

Large 
SpecClassCode 

DO 
0.211 0.647 2.961 0.004 0.035 0.851 1.689 0.096 

Large Fruit DO 0.0211 0.647 2.961 0.004 0.035 0.851 1.689 0.096 

Small  
SpecClassCode 
FA 

2.356 0.126 13.759 0.000 6.351 0.012 14.333 0.000 

Large 
SpecClassCode 

FA 
0.312 0.578 4.777 0.000 0.087 0.769 2.746 0.007 

Small  Fruit FA 2.356 0.126 13.759 0.000 6.351 0.012 12.495 0.000 

  Leaves FA 9.18 0.000 92.279 0.000 10.811 0.000 79.842 0.000 

 
Roots FA 4.043 0.045 -14.318 0.000 7.941 0.005 -13.673 0.000 

Large Fruit FA 0.17 0.843 11.139 0.000 0.108 0.898 3.657 0.041 

 
Leaves FA 0.312 0.578 -4.777 0.000 0.087 0.769 -2.746 0.007 

  Seeds FA 0.604 0.439 -2.005 0.047 0.022 0.882 -1.152 0.252 

 
Roots FA 0.453 0.502 -3.551 0.001 0.142 0.707 -2.116 0.037 

Overall 

(n = 13) 

Number 

significant 
  

  
12       9 

 Small 

(n = 5) 
% Significant   

  
100%   

  
100% 

 Large 

(n = 8) 
% Significant   

  
87.50%   

  
50% 

 Overall % Significant       92.31%       69.23% 

* EoV = Levene's test of Equality of Variances. HoV = Levene's test of the Homogeneity of Variances. SpecClassCoding 

=Specific Classification Coding. DO = Direct Observation. FA = Faecal Analysis 

Blue dietary categories = ANOVA. Black dietary categories = t-tests. Numbers in bold denote those that obtained 
significant differences on their tests, and those in red did not obtain significant differences.  
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Tables 9.19-9.20 indicate that significant values were rarely obtained between similar-sized apes 

consuming different diets using both the parametric (t-tests and ANOVA) and non-parametric (Mann-

Whitney U and Kruskal-Wallis) tests of difference for the crown shape indices, M3 CSI appears to be 

the only exception to this pattern with significant differences reported between most of the dietary 

categories. The smaller species obtained significant differences on the parametric and non-parametric 

tests more often than the larger species did for P4 CSI and M3 CSI, but the reverse was true for M1 

CSI. Significant differences were rarely obtained on the Levene’s tests for the Equality of Variance/ 

Homogeneity of Variance. These results indicate that there are some significant differences between 

similar-sized apes consuming different diets.  

Table 9.19: T-test and ANOVA tests on apes and body size, grouped by dietary categories using P4 – M1 Crown Shape 

Indices (CSI) 

Body 

size 
Diet category 

P4 CSI M1 CSI 

F/ Levene 

Statistic 

EoV/ 

HoV 
t/ F 

t-test/ 

ANOVA 

F/ Levene 

Statistic 

EoV/ 

HoV 
t/ F 

t-test/ 

ANOVA 

Large Traditional Diet 1.627 0.205 -1.11 0.269 0.194 0.661 0.636 0.526 

Small  
SpecClassCode 

DO 
1.177 0.28 -0.289 0.773 0.438 0.509 -0.084 0.933 

Large 
SpecClassCode 

DO 
1.951 0.167 -0.706 0.483 1.123 0.293 1.412 0.162 

Large Fruit DO 1.951 0.167 -0.706 0.483 1.123 0.293 1.412 0.162 

Small  
SpecClassCode 
FA 

7.652 0.006 -2.708 0.007 2.022 0.156 0.654 0.514 

Large 
SpecClassCode 

FA 
0.776 0.38 1.11 0.269 1.989 0.161 2.375 0.019 

Small  Fruit FA 7.652 0.006 -2.708 0.007 2.022 0.156 0.654 0.514 

  Leaves FA 4.05 0.019 7.124 0.001 1.027 0.36 1.862 0.16 

 
Roots FA 10.707 0.001 2.817 0.005 3.398 0.067 -0.36 0.719 

Large Fruit FA 0.993 0.374 1.598 0.223 0.983 0.377 2.582 0.096 

 
Leaves FA 0.776 0.38 -1.11 0.269 1.989 0.161 -2.375 0.019* 

  Seeds FA 1.655 0.201 1.096 0.276 0.205 0.651 -0.65 0.517 

 
Roots FA 0.012 0.912 -1.783 0.077 1.467 0.228 -2.053 0.042* 

Overall 

(n = 13) 

Number 

significant 
      4       3 

Small  

(n = 5) 
% Significant   

  
80%   

  
0.00% 

 Large 

(n = 8) 
% Significant   

  
0.00%   

  
37.50% 

 Overall % Significant       30.77%       23.08% 

* EoV = Levene's test of Equality of Variances. HoV = Levene's test of the Homogeneity of Variances. 

SpecClassCoding =Specific Classification Coding. DO = Direct Observation. FA = Faecal Analysis 
Blue dietary categories = ANOVA. Black dietary categories = t-tests. Numbers in bold denote those that obtained 

significant differences on their tests, and those in red did not obtain significant differences. Numbers with * denote those 

that obtained different results on the parametric and non-parametric tests. 
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Table 9.20: T-test and ANOVA tests on apes and body size, grouped by dietary categories using P4 – M1 Crown Shape 

Indices (CSI) 

Body 
size 

Diet category 

M2 CSI M3 CSI 

F/ Levene 

Statistic 

EoV/ 

HoV 
t/ F 

t-test/ 

ANOVA 

F/ Levene 

Statistic 

EoV/ 

HoV 
t/ F 

t-test/ 

ANOVA 

Large Traditional Diet 0.463 0.498 -0.169 0.866 2.823 0.096 -0.495 0.622 

Small  
SpecClassCode 

DO 
2.397 0.124 -0.869 0.386 0.057 0.812 -1.253 0.212 

Large 
SpecClassCode 

DO 
0.34 0.561 -0.339 0.735 0.921 0.34 -1.614 0.111* 

Large Fruit DO 0.34 0.561 -0.339 0.735 0.921 0.34 -1.614 0.111* 

Small  
SpecClassCode 

FA 
2.534 0.113 -0.261 0.794 5.883 0.016 -5.425 0.000 

Large 
SpecClassCode 

FA 
0.041 0.839 -0.888 0.376 0.006 0.941 -4.783 0.000 

Small  Fruit FA 2.534 0.113 -0.261 0.794 5.883 0.016 -5.425 0.000 

  Leaves FA 3.842 0.023 0.053 0.949 5.206 0.006 16.016 0.000 

 
Roots FA 4.492 0.035 0.341 0.776 4.288 0.039 5.428 0.000 

Large Fruit FA 0.318 0.729 0.403 0.673 0.729 0.485 11.691 0.000 

 
Leaves FA 0.041 0.839 0.888 0.376 0.006 0.941 4.783 0.000 

  Seeds FA 0.438 0.509 0.135 0.892 2.944 0.089 0.452 0.652 

  Roots FA 0.369 0.545 0.836 0.405 0.147 0.702 4.601 0.000 

Overall 

(n = 13) 

Number 

significant 
  

  
0 

   
9 

Small  

(n = 5) 
% Significant   

  
0.00% 

   
100% 

 Large 

(n = 8) 
% Significant   

  
0.00% 

   
50.00% 

 Overall % Significant       0.00%       69.23% 

* EoV = Levene's test of Equality of Variances. HoV = Levene's test of the Homogeneity of Variances. SpecClassCoding 

=Specific Classification Coding. DO = Direct Observation. FA = Faecal Analysis 
Blue dietary categories = ANOVA. Black dietary categories = t-tests. Numbers in bold denote those that obtained significant 

differences on their tests, and those in red did not obtain significant differences. Numbers with * denote those that obtained 

different results on the parametric and non-parametric tests. 

 

Tables 9.21-9.22 indicate that significant values were obtained between similar-sized apes 

consuming different diets using both the parametric (t-tests and ANOVA) and non-parametric (Mann-

Whitney U and Kruskal-Wallis) tests of difference for most of the corpus size variables, with the 

exceptions of specific classification coding by faecal analysis and leaf and root consumption by faecal 

analysis in the larger species, all of which never obtained a significant value on their t-tests. The 

smaller species obtained significant differences on the parametric and non-parametric tests more often 

than the larger species did. Equality of Variances/ Homogeneity of Variances were assumed for the 

majority of the corpus size variables, but not for the symphysis size. These results indicate that there 

are significant differences between similar-sized apes consuming different diets that manifest more in 

the corpus than in the symphysis. 
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Table 9.21: T- test and ANOVA tests on apes and body size, grouped by dietary categories using Symphyseal Size (SS), P4 – M1 Corpus Size (CS) 

Body size Diet category 

SS P4 CS M1 CS 

F/ Levene 

Statistic 

EoV/ 

HoV 
t/ F 

t-test/ 

ANOVA 
F/ Levene 

Statistic 

EoV/ 

HoV 
t/ F 

t-test/ 

ANOVA 
F/ Levene 

Statistic 

EoV/ 

HoV 
t/ F 

t-test/ 

ANOVA 

Large Traditional Diet 0.793 0.375 1.096 0.275 0.014 0.905 2.051 0.042 0.256 0.614 2.519 0.013 

Small  SpecClassCode DO 8.764 0.004 4.028 0.007 1.224 0.27 6.057 0.000 1.504 0.222 6.78 0.000 

Large SpecClassCode DO 0.112 0.738 1.418 0.16 0.032 0.859 2.058 0.043* 0.099 0.754 2.503 0.015 

Large Fruit DO 0.112 0.738 1.418 0.16 0.032 0.859 2.058 0.043* 0.099 0.754 2.503 0.015 

Small  SpecClassCode FA 28.188 0.000 11.414 0.000 2.103 0.148 9.219 0.000 4.14 0.043 11.381 0.000 

Large SpecClassCode FA 4.104 0.045 1.053 0.295 1.17 0.282 0.752 0.454 0.681 0.411 0.768 0.444 

Small  Fruit FA 28.188 0.000 8.008 0.000 2.103 0.148 9.219 0.000 4.14 0.043 9.903 0.000 

  Leaves FA 21.814 0.000 31.886 0.000 6.473 0.002 34.973 0.000 7.343 0.001 48.765 0.000 

 
Roots FA 32.746 0.000 -9.185 0.000 2.042 0.154 -10.456 0.000 4.499 0.035 -11.217 0.000 

Large Fruit FA 3.51 0.033 1.261 0.3 0.715 0.491 2.394 0.111 0.339 0.713 3.87 0.034 

 
Leaves FA 4.104 0.045 -1.035 0.295 1.17 0.282 -0.752 0.454 0.681 0.411 -0.768 0.444 

  Seeds FA 0.784 0.378 -1.118 0.266 0.008 0.929 -2.066 0.041 0.242 0.624 -2.541 0.012 

  Roots FA 6.643 0.011 -0.416 0.679 1.262 0.264 0.387 0.699 0.358 0.551 0.625 0.533 

Overall (n = 13) Number significant   
  

5   
  

9 
   

10 

Small (n = 5) % Significant   
  

100%   
  

100% 
   

100% 

Large (n = 8) % Significant   
  

0.00%   
  

50.00% 
   

62.50% 

Overall % Significant       38.46%       69.23%       76.92% 

* EoV = Levene's test of Equality of Variances. HoV = Levene's test of the Homogeneity of Variances. SpecClassCoding =Specific Classification Coding. DO = Direct Observation. FA = 
Faecal Analysis 

Blue dietary categories = ANOVA. Black dietary categories = t-tests. Numbers in bold denote those that obtained significant differences on their tests, and those in red did not obtain 

significant differences. Numbers with * denote those that obtained different results on the parametric and non-parametric tests. 
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Table 9.22: T- test and ANOVA tests on apes and body size, grouped by dietary categories using M2 – M3 Corpus Size 

(CS) 

Body 

size 
Diet category 

M2 CS M3 CS 

F/ Levene 

Statistic 

EoV/ 

HoV 
t/ F 

t-test/ 

ANOVA 

F/ Levene 

Statistic 

EoV/ 

HoV 
t/ F 

t-test/ 

ANOVA 

Large Traditional Diet 0.109 0.742 3.367 0.001 0.386 0.536 2.85 0.005 

Small  
SpecClassCode 

DO 
4.056 0.046 7.662 0.000 5.449 0.021 8.231 0.000 

Large 
SpecClassCode 

DO 
0.299 0.586 3.376 0.001 0.073 0.788 2.48 0.015 

Large Fruit DO 0.299 0.586 3.376 0.001 0.073 0.788 2.48 0.015 

Small  
SpecClassCode 
FA 

8.481 0.004 12.679 0.000 7.177 0.008 13.738 0.000 

Large 
SpecClassCode 

FA 
0.157 0.693 1.777 0.078 0.771 0.382 0.35 0.727 

Small  Fruit FA 8.481 0.004 10.756 0.000 7.177 0.008 12.241 0.000 

  Leaves FA 12.515 0.000 57.983 0.000 10.718 0.000 76.288 0.000 

 
Roots FA 10.814 0.001 -12.036 0.000 10.482 0.001 -13.594 0.000 

Large Fruit FA 0.511 0.601 5.509 0.01 1.341 0.266 3.138 0.061* 

 
Leaves FA 0.157 0.693 -1.777 0.078 0.771 0.382 -0.35 0.727 

  Seeds FA 0.105 0.747 -3.395 0.001 0.405 0.526 -2.875 0.005 

  Roots FA 1.628 0.205 0.05 0.96 2.57 0.112 1.238 0.218 

Overall 

(n = 13) 

Number 

significant 
 

  
10 

   
10 

Small  

(n = 5) 
% Significant  

  
100% 

   
100% 

Large 

(n = 8) 
% Significant  

  
62.50% 

   
62.50% 

Overall % Significant  
  

76.92% 
   

76.92% 

* EoV = Levene's test of Equality of Variances. HoV = Levene's test of the Homogeneity of Variances. SpecClassCoding 

=Specific Classification Coding. DO = Direct Observation. FA = Faecal Analysis 

Blue dietary categories = ANOVA. Black dietary categories = t-tests. Numbers in bold denote those that obtained 
significant differences on their tests, and those in red did not obtain significant differences. Numbers with * denote those 

that obtained different results on the parametric and non-parametric tests. 

 

Tables 9.23-9.24 indicate that significant values were rarely obtained between similar-sized apes 

consuming different diets using both the parametric (t-tests and ANOVA) and non-parametric (Mann-

Whitney U and Kruskal-Wallis) tests of difference for the corpus and symphyseal robusticity indices. 

Where significant differences did occur, they mainly manifested in the P4 and M1 corpus and only in 

the smaller species. Equality of Variances/ Homogeneity of Variances were assumed for all of the 

corpus robusticity indices. These results indicate that there are some significant differences between 

similar-sized apes consuming different diets that manifest more in the anterior corpus. 



Appendix 

359 

Table 9.23: T-test and ANOVA tests on apes and body size, grouped by dietary categories using Symphyseal Robusticity Index (SRI), P4 – M3 Corpus Robusticity Indices (CRI) 

Body size Diet category 

SRI P4 CRI M1 CRI 

F/ Levene 

Statistic 

EoV/ 

HoV 
t/ F 

t-test/ 

ANOVA 

F/ Levene 

Statistic 

EoV/ 

HoV 
t/ F 

t-test/ 

ANOVA 

F/ Levene 

Statistic 

EoV/ 

HoV 
t/ F 

t-test/ 

ANOVA 

Large Traditional Diet 0.002 0.961 1.444 0.151 0.205 0.652 0.334 0.739 0.037 0.848 1.399 0.164 

Small  SpecClassCode DO 0.371 0.543 -1.291 0.199 2.055 0.154 -2.219 0.028* 0.74 0.391 -2.244 0.026 

Large SpecClassCode DO 0.204 0.653 1.706 0.092 0.228 0.635 0.256 0.799 0.014 0.906 1.454 0.15 

Large Fruit DO 0.204 0.653 1.706 0.092 0.228 0.635 0.256 0.799 0.014 0.906 1.454 0.15 

Small  SpecClassCode FA 0.497 0.482 -4.287 0.000 0.006 0.939 -3.606 0.000 2.22 0.137 -3.373 0.001 

Large SpecClassCode FA 5.74 0.018 2.444 0.016 0.108 0.743 -0.192 0.848 1.996 0.16 0.365 0.716 

Small  Fruit FA 0.497 0.482 -4.287 0.000 0.006 0.939 -3.606 0.000 2.22 0.137 -3.373 0.001 

  Leaves FA 2.796 0.063 14.158 0.000 0.015 0.985 6.238 0.003 0.964 0.383 7.951 0.001 

 
Roots FA 1.364 0.244 4.733 0.000 0.068 0.794 4.719 0.000 1.947 0.164 4.197 0.000 

Large Fruit FA 3.454 0.035 2.929 0.072* 0.121 0.886 0.121 0.887 0.818 0.444 1.007 0.38 

 
Leaves FA 5.74 0.018 -2.444 0.016 0.108 0.743 0.192 0.848 1.996 0.16 -0.365 0.716 

  Seeds FA 0.006 0.938 -1.446 0.151 0.182 0.671 -0.343 0.732 0.036 0.851 -1.422 0.158 

  Roots FA 7.155 0.009 -1.747 0.083 0.022 0.881 0.393 0.695 1.221 0.271 0.43 0.668 

Overall (n = 13) Number significant   
  

8   
  

5 
   

5 

Small (n = 5) % Significant   
  

100%   
  

100% 
   

100% 

Large (n = 8) % Significant   
  

37.50%   
  

0.00% 
   

0.00% 

Overall % Significant       61.54%       38.46%       38.46% 

* EoV = Levene's test of Equality of Variances. HoV = Levene's test of the Homogeneity of Variances. SpecClassCoding =Specific Classification Coding. DO = Direct Observation. FA = 
Faecal Analysis 

Blue dietary categories = ANOVA. Black dietary categories = t-tests. Numbers in bold denote those that obtained significant differences on their tests, and those in red did not obtain 

significant differences. Numbers with * denote those that obtained different results on the parametric and non-parametric tests. 
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Table 9.24: T-test and ANOVA tests on apes and body size, grouped by dietary categories using M2 – M3 

Corpus Robusticity Indices (CRI) 

Body 
size 

Diet category 

M2 CRI M3 CRI 

F/ Levene 
Statistic 

EoV/ 
HoV 

t/ F 
t-test/ 

ANOVA 
F/ Levene 
Statistic 

EoV/ 
HoV 

t/ F 
t-test/ 

ANOVA 

Large Traditional Diet 0.095 0.758 0.826 0.411 0.124 0.725 -0.739 0.461 

Small  
SpecClassCode 

DO 
0.719 0.398 -1.32 0.189 1.072 0.302 -0.448 0.655 

Large 
SpecClassCode 

DO 
0.065 0.799 1.287 0.202 0.08 0.778 -0.474 0.637 

Large Fruit DO 0.065 0.799 1.287 0.202 0.08 0.778 -0.474 0.637 

Small  
SpecClassCode 

FA 
0.226 0.635 -0.867 0.387 0.132 0.717 1.111 0.268 

Large 
SpecClassCode 
FA 

3.335 0.07 1.781 0.077 0.002 0.967 0.593 0.555 

Small  Fruit FA 0.226 0.635 -0.867 0.387 0.132 0.717 1.111 0.268 

  Leaves FA 0.43 0.651 1.352 0.263 0.085 0.918 1.921 0.152 

 
Roots FA 0.401 0.527 1.374 0.171 0.365 0.546 -0.748 0.455 

Large Fruit FA 2.011 0.139 1.59 0.224 0.084 0.919 0.564 0.576 

 
Leaves FA 3.335 0.07 -1.781 0.077 0.002 0.967 -0.593 0.555 

  Seeds FA 0.086 0.77 -0.844 0.401 0.122 0.727 0.711 0.478 

  Roots FA 3.502 0.064 -1.336 0.184 0.117 0.733 -1.019 0.31 

Overall 

(n = 13) 

Number 

significant 
  

  
0 

   
0 

Small 

(n = 5) 
% Significant   

  
20% 

   
0.00% 

Large 

(n = 8) 
% Significant   

  
0.00% 

   
0.00% 

Overall % Significant       0.00%       0.00% 

* EoV = Levene's test of Equality of Variances. HoV = Levene's test of the Homogeneity of Variances. SpecClassCoding 

=Specific Classification Coding. DO = Direct Observation. FA = Faecal Analysis 

Blue dietary categories = ANOVA. Black dietary categories = t-tests. Numbers in bold denote those that obtained significant 
differences on their tests, and those in red did not obtain significant differences. Numbers with * denote those that obtained 

different results on the parametric and non-parametric tests. 

 

 


