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Abstract

This thesis is devoted to the solution of optimal control problems governed by linear 

and nonlinear wave equations and the estimation of the errors in approximating these 

solutions.

First, the boundary control of a linear wave equation with an integral performance 

criterion and fixed final states is considered. This problem is modified into the one con­

sisting of the minimization of a linear functional over a set of positive Radon measures, 

the optimal measure is then approximated by a finite combination of atomic measures 

and so the problem is converted to a finite-dimensional linear programming problem. 

The solution of this problem is used to construct a piecewise-constant control.

In estimating the integral performance criterion and fixed final states from the men­

tioned finite-dimensional linear program, some errors occur. We have established some 

general results concerning these errors, and estimate them in term of the number of lin­

ear constraints appeared in the finite-dimensional linear program.

Finally, the existence and numerical estimation of the distributed control of a nonlin­

ear wave equation with an integral performance criterion and fixed final states is consid­

ered. Again by means of the well-known process of embedding, the problem is replaced 

by another one in which the minimum of a linear form is sought over a subset of pairs 

of positive Radon measures defined by linear equalities. The minimization in the new 

problem is global, and it can be approximated by the solution of a finite-dimensional 

linear program. However, the final states in this case are only reached asymptotically, 

that is, as the number of constraints being considered tends to infinity.
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Chapter 1

Introduction

1.1 General background

Optimal control theory has been rapidly developing during the last 30 years, and much 

of the newly found theory has been used in the solution of an enormous variety of engi­

neering, biological, and social problems. Many of the problems of design in airframe, 

shipbuilding, electronic, and other engineering fields are, in essence, problems of con­

trol (see [5], [25] and [27]).

To define a classical control problem, we require to describe the components of the 

problem, such as the differential equation satisfied by the controlled system, the space 

where the problem has a solution, the performance criterion and so on. Then since we 

will modify the classical problem, we need to put some conditions on the functions and 

sets which appear in control problem to allow the modifications which seem to have 

some advantages over the classical formulation. So to start the definitions we need, (i) 

a real closed time interval I  = [to, h],  with t0 < ti,  in which the controlled system will 

be involved, (ii) a bounded and closed subset^  of M m (set of admissible controls) that 

in which the control functions take values, (iii) a differential equation describing the 

control system, satisfied by the trajectory function t £ I  — ► Y ( t ) £ lRn and control 

function t £ — ► u(t) £ U, where u(t) is a measurable function, and (iv) an observation 

function f 0[ t , Y ( t \ u(t)] which is assumed to be known. We can put further conditions 

on this function as necessary.

A classical optimal control problem is that of finding an admissible control u £ U which
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satisfies the differential equation describing the controlled system and minimizes the 

functional J  : W  — ► IR defined by

J{p) = y{fo{t,p)), p e w  (1.1)

where p =  [y(-),u(-)], is given and W  is the set of admissible pairs of trajectories 

and controls.

The following problems are among the main fields of study and development of optimal 

control theory:

(i) Existence of optimal control.

(ii) Necessary (or possibly necessary and sufficient) conditions for u to be an optimal 

control.

(iii) Constructive algorithms amenable to numerical computations for the approxima­

tion of an optimal control.

Clearly the development of such theory depends on the form of differential equation de­

scribing the controlled system. A substantial literature has been developed in the field 

of optimal controls. It seems impossible to review here its development or even that of 

any its branches. Lemer [40], [41], [42], [43] and Fel’dbaum [15], [16], [17], [18] in 

their pioneering papers, Hestenes [30], Pontryagin et al [51], and recently Rubio [59] 

considered the case where the system is controlled by ordinary differential equations. 

Barbu [1] considered the problem for systems governed by variational inequalities. We 

may consider the system whose state Y(t)  € IRn is given by the solution of a partial 

differential equation combined with some appropriate boundary and initial conditions. 

Considerable research has been published in this area, let us mention only Butkovskiy 

[5], Lions [45], Wang [83], Russell [67]-[69], and Egorov [11]. In this thesis, we deal 

with the control theory of hyperbolic partial differential equations. These are the equa­

tions of propagation (wave) processes and their properties correspond to the properties 

of these processes. We will consider some control theoretic questions arising in con­

nection with such propagating processes.
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1.2 Boundary optimal control of the linear wave 

equation

Boundary value controls are practically motivated, in fact, in most physical systems, 

control is typically applied on the boundary of the controller medium. For example, in 

control systems regulating the temperature of material bodies and in systems contain­

ing chemical reactors the control is applied on the boundary. Boundary value control 

of a system causes changes in the state of the system to be propagated from the bound­

ary into the interior of the state. The linear wave equation with boundary control is the 

archetype mathematical system for many control processes. Some well-known exam­

ples modeled by this kind of equation are the study of structural vibration in a distributed 

elastic medium, electrical transmission along a lossless line [27], and the propagation 

of sound in gases.

To give a short explanation in mathematical terms, assume n > 1 be a positive inte­

ger and ft a bounded, open, connected region in IRn with smooth boundary Y = Oft. 

Define

Consider a control system whose evolution in time is described by function Y  = Y(x , t ) ,  

defined in ft x (0, T), where T  is a given positive number, satisfying

L[Y] = 0, ( x , f ) € f t  x (0 ,T ) ( 1.2)

U Ï

y (x ,0 )  =  Fo(æ), -^ -(x ,0 ) =  x e  ft (1.3)

Y ( ( , t )  = u(( , t ) ,  ( ( , i ) e r x ( o , n (1.4)
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reaching a specified state at time T,
t

d Y
Y { x , T) = gx(x), -^ - (z , T ) = g2{x), x e ft, (1.5)

and also minimizing a particular performance criterion, where (£, t) G T x [0,T] —*• 

u(£, t), is the control function.

This problem is considered in the work of many authors. We name only Butkovskiy

[5], Lions [45], Russell [67], [68], [69], Lagnese [38], [39], and Malnowski [46]. In 

each normally the concern is on the exact controllability of some class of hyperbolic 

equations. However they differ mainly in (i) the geometry of the body i2, for example 

some assumed fi is a domain with simple geometry such as parallelepiped (see Graham 

[25]) or sphere (see Graham and Russell [26]), (ii) the value of terminal states gi(x) 

and g2(x), (iii) the determination method of terminal states, (iv) the measure for the 

deviation of Y(x,  T)  from g-i(x) and Yt(x, T)  from g2(x).

The control function u will be termed admissible if it is measurable function on [0, T] 

and

(a) u(£,t) e U, a.e. for (£ ,i) e  T x [0,T]

(b) Y ( x , T )  =  gi(x), Yt(x ,T)  =  a-e. for x e  0 , g\(x) and g2(x) are fixed

functions in L 2(Sl). Let U be the set of admissible controls. In general this set may be 

empty, there are many control problems without solution because the desired terminal 

states not can be reached by means of an admissible control. When n =  1, 0  is an 

interval in M 1, in this case Russell [68] showed thatfor Y(x,  T)  = 0 and ^- (x ,  T)  =  0, 

x e [0,1], the system is controllable if T > 2. Herget [29] considered the case when 

the system is nullcontrollable, i.e., the set of reachable states are dense in Z,2(Q). For 

the case n > 2, Graham and Russell [26] considered the problem where il is the sphere

il =  { i €  M n | ||z ||e <  1} ,

and T =  <9fHs the set

T = { x e  Mn\ 11»cHe =  1},
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with || • ||e denoting the Euclidean norm, and Y(x,  T)  = 0, x , T)  = 0, x e  ft. They 

showed that the problem is controllable if T  >  diamft =  2. Russell [69] and Lagnese 

[39] showed that for general ft, when n >  2, the wave equation is exactly controllable 

in some finite time T  and the set of controllable states includes in i i 2(ft) x H 1 (ft), then 

T  is unspecified if n  is even, but if n  is odd, exact controllability is possible in any time 

T  >  diamft.

We may reduce the control problems (1.2)-(1.5) to moment problems. These moment 

problems will be studied by employing methods developed by ButkOvskiy [5] and Courant 

& Hilbert [8].

In the following we define an optimal control problem associated with the above prob­

lem. Assume that the set of admissible controls U is non-empty, then the optimal control 

problem consists of finding a u £ U  which minimizing the functional

where / 0 € C(J2), the space of continuous functions on X) =  T x [0, T] x U,  with 

the uniform topology. We modify the problem in which we seek the minimum of a 

functional defined on a set of positive Radon measures. We show the existence of such 

a minimizing measure, and show that this measure can be approximated by a piecewise 

constant control.

The main approach that is used here is based on an idea of Young [86], consisting of 

the replacement of classical variational problems by problems in measure spaces. The 

early and very principle version of this approach was carried out by Ghouila-Houri [23]. 

This method was employed for the first time by Wilson and Rubio [85] on an optimal 

control problem with a diffusion equation, then by some others, for example, Rubio and 

Wilson [64], Rubio [58] and Kamyad et al [34].

1.3 Optimal control for a nonlinear wave equation

Let n  >  1 be a positive integer and ft a bounded, open, connected region in M n, with 

smooth boundary T and T  a positive real number, define Qt  :=  ft x (0, T)  a bounded

( 1.6)
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cylinder of height T,  I>  the lateral surface of the cylinder QT, D0 and Dt  respectively 

the base and the top of it. Define

L \ n  =  ^  -  A » y  +  | r r r ,

for p > 0. Now consider a control system whose evolution in time is described by the 

real function Y  = Y(x,  t ), defined in QT and satisfying

L[Y] = v, (x , t ) € Q T (1.7)

where v € L 2(Qt ), with the boundary condition

Y  = 0, on T j (1.8)

and the initial conditions

y(®,o) = y0(*), x e D 0
lt(® ,0) =  l i ( s ) ,  x e D 0 (1.9)

while the continuous functions Y0 and Yi are given, and achieves specified states

Y ( x , T )  = 9l (x), x e D T

Yt(x ,T)  = g2(x), x € DT (U 0 )

where continuous functions g\(x) and g2(x) are given.

The function Y  in (1.7) represents some field quantity and the inhomogeneous term v 

represents sources energy in the field. Possible interactions of the field with itself are 

described by the non-linear term \Y\PY.  We call (x, t) e  Qt  —* v(x, t) e  V  c  M  the 

control function.

Lions [44] showed that the problem (1.7)-(1.9) at each t  has a solution in the Sobolev 

spaces V\ = Hq(D,)C\Lp (Q,), where P  =  p +  2. He also established uniqueness for the 

case p = 2 and n =  3. In the case i2 =  JRn we ignore the boundary condition (1.8) and
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have the pure initial values, or Cauchy problem. For n = 3, Jorgens [32] has obtained 

a classical solution of the Cauchy problem for certain class of equations. Sather [71] 

in his pioneering paper considered existence of the weak solution of the problem (1.7)-

(1.9) in generalized sense. Segal [74] and Schiff [72] also considered the existence of 

classical and weak solutions for the problem (1.7)-(1.9) when n and p have some fixed 

values.

A pair (y, v) of trajectory function Y  and control function v is said to be admissible if:

(1) The function (x , t ) —> Y (x , t )  is a solution of (1.7)-(1.9).

(2) The terminal relationships

Y ( x , T )  = gi(x), x G Dt 

Yt(x,T)  = g2{x), x € D t

are satisfied.

Let T  be the set of all admissible pairs which assumed to be non-empty. The optimal 

control problem associated with this control system consists of finding an admissible 

pair (Y, v) which minimizes the functional

J =  i  f 0(Y(x , t ) , x , t )dxdt+ [  f i (v(x , t ) , x , t )dxdt  (1.11)
J Q t  • 'Qt

where / 0, / i  are continuous, non-negative, real-valued functions on IRn+2 with speci­

fied properties.

We first write the integral relationships satisfied by the solution of the problem (1.7)-

(1.10) (see Mikhailov [48]), then transform the problem, instead of minimizing over a 

set of admissible trajectory-control pairs, we minimize it over a subset of a product of 

two measure spaces. In this way we change the problem to a linear form and so we 

benefit from the whole paraphernalia of linear analysis. We show that there is always a 

minimizer for our measure theoretical problem. This minimizer is global, i.e., the value 

reached is close to the global minimum of the problem. Next we obtain the approxima­

tion value of the optimal pair Radon measure that enable us to construct a piecewise 

constant control v(x , t) corresponding to the desired final states Y ( x , T )  and Yt(x, T ).
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Like the linear case, the final states are reached only asymptotically, that is, as the num­

ber of constraints associated with the measure-theoretical problem tends to infinity, Y ( x , T ) 

and Yt(x, T ) respectively in L2(Qt ), tend to gi(x) andg2(x).

The first time this idea was employed by Rubio [58] who considered nonlinear opti­

mal control problems in Hilbert spaces, Rubio and Holden [63] considered the idea in 

the control problem of a nonlinear diffusion equation with a small nonlinearity. Re­

cently, many researches have been carried out for nonlinear optimal control problems. 

Rubio in [61]-[62] considered the case for nonlinear diffusion equations and in [60] for 

the nonlinear elliptic equations, where the control function were assumed to be in the 

boundary. Farahi [12] and then Farahi, Rubio and Wilson [14] considered the optimal 

control problem for nonlinear wave equations, while they used distributed control for 

their purposes. Nevertheless, much more works still are needed to do (see Section 4.8). 

We should mention also that independently of these works there has been much research 

on dual methods, especially by the Lipzig school, see [35], [36], [65], and [66].

In this thesis, we will only discuss existence and optimality conditions of optimal con­

trols governed by linear and nonlinear wave equations. For other respects such as nec­

essary and sufficient conditions for controllability, stability of numerical methods and 

applications of optimal control problems, one can refer to references listed in the pre­

vious Sections 1.1-1.3.

In Section 2.1 we consider the existence of an optimal control for the one-dimensional 

wave equation with the same initial, boundary and final conditions as in Section 1.2. We 

denote the set of all admissible controls by U. Our optimal control problem consists of 

finding a u(-) 6 U which minimizes the functional

where /o € C([0,T]xU).  This problem may or may not have a solution in U. We then 

replace the problem by another one in which the minimum of a linear functional is con­

1.4 Outline of the thesis
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sidered over a set of positive Radon measures on Q. Then we consider a linear program 

for determining an approximation to the optimal control. In particular we obtain an ap­

proximation to the optimal Radon measure /¿*, which is introduced in this chapter. By 

changing the problem to a finite-dimensional linear program, we show a practical way 

to obtain an approximation to the measure p*. Also we obtain the approximate value 

of the optimal control corresponding to the final desired functions. Further in Section 

2.2 we extend the purposes of Section 2.1 to n-dimensions, in this section we consider 

the existence of a control function for the n-dimensional linear wave equations with the 

same initial, boundary and final conditions respectively as (1.3), (1.4), (1.5). Then we 

want to find an admissible control u which minimizes a functional such as

J K v ) ] =  /  /  /o ti.t .u C t.O ]# * »JO Jdw

where / 0 G C (£ ) , the space of continuous functions on £  =  T x [0,T] x U. Like 

Section 2.1, we again modify the control problem to a linear programming problem for 

determining an approximation to the optimal control, then we construct a numerical 

algorithm to find the approximate value of the optimal control. In each section some 

example will be given to specify the procedure. The paper of Farahi, Rubio and Wilson 

[13] is covered by a part of this chapter.

In Chapter 3, we establish some general results for approximating our optimal control 

problem by a linear programming problem. We will assume the control set U is non­

empty. By procedure described in Chapter 2, we change the control problem (1.2)-( 1.6) 

to a problem of minimizing the linear functional

A* — K /o ) (U 2 )

over the set Q of positive Radon measures on f2 which satisfy the equalities

p{4>n) = «U , n =  1 ,2 , .. .

p(Gr) =  aGr, r  =  0,1, ... (1.13)
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where ^ „ ’s and Gr ’s are known functions and a n’s and a c / s  are known scalars. This 

problem is one of linear programming, all the functions in (1.12) and (1.13) are lin­

ear in the variable p. This linear programming problem consists of minimizing the 

function (1.12) on the subset Q of positive Radon measures described by the equal­

ities (1.13). Since the underlying space is not finite-dimensional and the number of 

equalities (1.13) is not finite, this problem is an infinite-dimensional linear program­

ming problem. Proposition 2.1 in Chapter 2 shows that this problem has a minimizing 

solution, ^*, say , in Q. We develop an intermediate program, semi-infinite, by consid­

ering the minimization of p — > p(fo) not over the set Q but over a subset of Q defined 

by requiring that only a finite number of constraints in (1.13) be satisfied, Q(M i , M 2). 

Now we approximate the solution of (1.12)-( 1.13) by the solution of the following prob­

lem:

Minimize

i< — <• M /o) (1-14)

over the subset Q(MX, M 2) of positive Radon measures on fi which only satisfy the 

equalities

p{^n) = Oin, n =  1 ,2 ,..., Ml,

p{Gr) = aGr, r  =  0 ,1 ,..., M2, (1.15)

where Mi and M 2 are two positive integers, in some cases one of them may be infin­

ity. The solution of this final problem for given functions V>n’s and Gr ’s depends on 

the numbers M x and M 2 appearing in the linear program; we have not made this fact 

explicit in the notation, since we believe that it is a very difficult problem. We shall 

call the solution of the new semi-infinite linear programming problem 

the results of Proposition 3.1 in this chapter tell us that if we increase these numbers 

M i and M 2, then o) approaches the p*(fo). First in Section 3.2 we discuss

about

max |YMl ( x  , T)  -  gx(x) |
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where Ym^ x , T)  indicates the solution of the system (1.14)-(1.15) at the time t = T  

when only Mi  in (1.15) is finite and gi(x) is the given final state continuous function.

In this chapter we will focus then on the estimation of the maximum value of

where Mi  and M 2 are two positive integers. In Section 3.3 we estimate the maximum 

value of (1.16) when only M2 is finite. In the numerical examples of Chapter 2, we have 

established the solutions of some control problems in which we have chosen Gr ’s as 

semi-continuous functions defined on [0, T ]. It has been shown in Rubio [59] that linear 

combinations of these functions can approximate arbitrarily well any function in Ci (I  x 

U), the class of all continuous functions depending only on t. By using these pulse 

functions, as shown in Section 3.4, and from (1.14)-(1.15) we can find the approximate 

value of p*(fQ) with fewer number of M2 than the number used in Section 3.3. Finally 

in Section 3.5, we construct a method to estimate the maximum value of (1.16) when 

both Mi  and M2 are finite, in this construction one may establish an upper-bound as 

well as a lower-bound for ¿u*(/0), the solution of the linear system (1.12)-(1.13), then 

the difference of these upper-lower bounds gives the missing error in the computation 

of p*(fo)- We show that the sequence

is a nondecreasing convergent sequence bounded above by the value g*(fo), so by choos­

ing fixed numbers Mi  and M2 we will find a lower-bound for /x*(/0). Unfortunately 

we could not provide any analysis leading to an accurate upper-bound for /¿*(/0), but 

by using the dual of the linear program (1.14)-(1.15) and an iterative method we can 

estimate an upper-bound for /x*(/0) and so estimate the maximum value of (1.16). Al­

though many useful concepts and results have been proved in this chapter, there are still 

few unanswered questions related to these concepts and results (see Section 4.8).

In Chapter 4 we study the existence of an optimal distributed control for the n-dimensional 

nonlinear wave equation (1.7) with boundary condition as (1.8) and initial conditions as 

(1.9) with exception F (x , 0) =  0, x G D0, and with terminal conditions as (1.10). Our

Im*(/o)  -  Pq(m 1,m 2) (/ o)I (1.16)
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optimal control problem consists of finding an admissible control v which minimizes a 

functional like (1.11). This chapter is in fact an extension of Rubio [62] from nonlin­

ear diffusion equations to nonlinear wave equations. Firstly, we define certain spaces 

which are to be used in construction of a framework for the treatment of nonlinear wave 

equations and consider the sufficient conditions for existence solution of equation (1.7). 

Next we write some integral relationships satisfied by the solution of this equation and 

then proceed to transform the problem to a linear case, in this metamorphosis we replace 

the problem by a new one in which the minimum of the functional (1.11) is sought over 

a set of product of two measure spaces. The new formulation has some advantages: 

there is an automatic existence theory (Proposition 4.2), and the minimization in it is 

global, that is, the value reached from the new problem is close to the global infimum 

of the problem, but as well as in the case of the linear wave equations considered in 

Chapter 2, the final states are reached only asymptotically (Theorem 4.2), that is as the 

number of (linear) constraints in the new problem tends to infinity. Now as in Chapter 2 

we face a practical way to obtain an approximation to the optimal pair Radon measures 

(fi*, v*) which are introduced in this chapter. Finally we compute the approximate op­

timal control corresponding to the final desired states (1.10). The theory is confirmed 

by proving several propositions and a theorem and also by computing the nearly opti­

mal control and the desired final state for one example and the nearly optimal control 

for the another one. A part of research contained in this chapter appeared in Farahi [12] 

and further more in Farahi, Rubio and Wilson [14].



Chapter 2

The Optimal Control of the Linear 

Wave Equation

2.1 An optimal control problem for one-dimensional 

wave equation

2.1.1 Introduction

In this section we consider a control system whose evolution in time is described by 

the function (x , t) — > Y(x,  t), defined in (0, S) x (0, T), where T  and S  are positive 

numbers, satisfying the wave-equation

Yti{x,t) = a2Yxx(x,t),  (2.1)

where a is the velocity of wave propagation in the given medium, and Y(x,  t) describes 

the variation of the oscillation at point x and time t. The initial conditions are:

Y(x,0)  = f (x )  

Yt{x,0) = h(x), (2.2)
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the boundary conditions:

Y(0, t )  = u(t) 

Y(S , t )  = u(t), (2.3)

where t G [0, T] — ► u(t) G JR is the control function. We define the control u to be

admissible if it is Lebesgue measurable function on [0, T] and

(a) u(t) G [-1 ,1 ] a.e. for t G [0, T].

(b) The solution of the partial differential equation (2.1) corresponding to the initial 

conditions (2.2) and the boundary conditions (2.3) satisfies the terminal conditions

where gi(x), g2(x) € L 2(0,S).

Let U be the set of admissible controls. In general this set may be empty. Problems 

of this type have been considered by, for example, [67] and [46] (in which the control 

function was assumed to be differentiable) and by, for example, [5].

We may reduce the above control problem to a moment problem. This moment prob­

lem will be studied by employing methods developed by [5], [28], and [79]. We define 

in the following an optimal control problem associated with the above problem. Let U 

be a non-empty set, and let the optimal control problem consists of finding an admissi­

ble control u which minimizes the functional

where / 0 GC(fl), the space of continuous functions on il=[0, T ] x [—1,1], with the 

topology of uniform convergence.

This control problem may or may not have a solution in U. In the following we re­

place the problem by another one in which the minimum of a linear functional is con­

sidered over a set of Radon measures on il=[0, T] x [—1,1].

Y ( x , T )  = gi(x) 

Yt(x ,T)  = g2(x), (2.4)

(2.5)
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2.1.2 Modified control problem

We consider the solution of (2.1)-(2.3) in the sense of Butkovskiy [5]

where

and

where

Y(x , t )  -  Yi(x, t)  +  Y2(x,t),

w  .a  v2' /  a 7rnai , c  • v-nat . irnx Yi{x,t) = 2_,(^nCos——  +  Bn s in —— ) s m —
n=l ^ ^ i

Bn =  Qbna
2 f s

Y2(x, t )  = /  K ( x , t  -  t ) u ( t ) cLt , 
Jo

. , ^  . irnx . imat
K( x , t )  = }^Cn  s m - — sin

n = l ^ 5  ’

and Cn= y  [1 -  (-1 )" ]. When the control function is applied at one side of the bound­

ary, then cn =

Since gi(x), g2(x) G ¿ 2(0, 5), they possess a half-range Fourier series

9i(x ) = X) an sin
7r nax

1
00

9 i{x ) =  X ) sin

5
. 7rnax

n=l

Hence, by assuming «2 =  1 ,5  =  7r the optimal control problem reduces to finding a
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measurable control function u (t) £ [—1,1] for t £ [0, T] which satisfies

[ T
/ -ll>n(t,u(t))dt =  CCn,0

where

•0n (i, u{t)) =  - [1  -  ( - l ) n] (sin(nt) +  cos(nt)) u(t),
7T

a n =  -  Bn +  an (sin(nT) -  cos(nT))

+  — (sin(nT) +  cos(nT)), n =  l , 2 , ... 
n

(2.6)

and minimizes the functional (2.5). In general, a minimizing solution to this problem 

may not exist; in the following we replace the problem by another one in which the 

minimum of a linear functional is sought over a set of Radon measures on fl =  [0, T] x 

[—1,1]. In fact we proceed to enlarge the set U, we proceed as follows:

(1) For a fixed control function u(-) the mapping

defines a positive linear functional on C(fl).

(2) There exists a unique positive Radon representing measure // on fl such that

In particular the above equality is valid for F  =  / 0. Now we replace the original min­

imization problem by one in which we will find the minimum of /i( /0) over a set Q of 

positive Radon measures on fi. These measures are required to have certain properties 

which are abstracted from the definition of admissible controls. First from (2.7),

Jo

(2.7)

\ p ( F ) \ < T Snp\F(t,u)[,n

hence

M 1) <  T.
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Next, the measures in Q must satisfy an abstracted version of equation (2.6),

pi^Pn) — ^  — 1)2, • •••

Note that this is possible since tpn G C(Q). Finally, suppose that G G C(Q) does not 

depend on u, that is,

G (i,u i) =  G (i,u 2),

for all t € [0, T], u i, u2 G [-1 , lj.Then measures in Q must satisfy

I Gdfj, =  / G[i, u]dt =  og,

where u is an arbitrary number in the set [—1,1], and ao is the Lebesgue integral of 

G(-,u) over [0, T], independent of u. This property of Q will be used in the next section, 

when we use a theorem due to Ghouila-Houri [23]. Let .M+(Q) be the set of all positive 

Radon measures on 0 . Then the set Q is defined as a subset of A/i+(il)

Q =  Si n s2 n s3

where

51 = {p  G M +(Q) : p( 1) <  T} ,

5 2 =  [p e  : /i(V’n) -  Oin, n = 1 ,2 ,...}  ,

53 =  |/x G : p(G) = og, G G C(fl),  independent of u} .

Now if we topologize the space M(f l )  by the weak*-topology, it can be seen that Si  is 

compact in A l(fi) with respect to weak*-topology (see [33] page 26, [59] Chapter 2). 

The set S 2 can be written as
oo& = n

n~ 1

where M n = {p G : p(tpn) =  <*n} is closed because it is the inverse image of

a closed set on the real line ( the set {an} ), under a continuous map p — ► pi'Pn) € JR
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(see [59]). Since the infinite intersection of closed sets is closed, so S2 is closed. By 

a similar argument S3 is closed. Therefore Q is a closed subset of the compact set Si, 

and hence is compact. The functional I : Q — ► M, defined by

I(p)  =  /  /txfy* =  t i fo)  € M, p e Q ,  (2.8)
J n

is a linear continuous functional on a compact set Q, therefore attains its minimum at 

least in one extreme point on Q. We have shown, thus, the purpose of the following 

proposition:

Proposition 2.1 The measure- theoretical problem, which consists of finding the min­

imum of the functional (2.8) over the subset Q of A t+(fl), possesses a minimizing so­

lution p*, say, in Q.

2.1.3 Approximation of the optimal control by a 

piecewise-constant control

It can be shown that the action of the optimal measure might be approximated by that 

of a piecewise constant control. With each piecewise constant admissible control u(-) 

we may associate a measure pu in A f+(0 ) n  Si D S2 n S3. Let Q1 be the set of all 

such measures pu\ then Theorem 1 of Ghouila-Houri [23] shows that, when .M(Q) is 

given the weak*-topology, Qi is dense in M +(ii) !~l Si D S2 D S3. A basis of closed 

neighborhoods in this topology is given by the sets of the form

{p  : |/i(Fn)| <  e, n =  1,2, ...k +  1} , (e >  0)

where A; is a positive integer, Fn e C(Q,). It is therefore possible to find a measure 

pu corresponding to a piecewise constant control in any weak*-neighborhood of p*. In 

particular we can put

F\ = fo, F2 = ^ i , ...Fk+i -- i>k',
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and a piecewise control «&(•) can be found such that

T
\ f  fo[t,uk(t)]dt -  p*(f0)\ <  e,
Jo

rT1 /  i(>n[t,Uk(t)\dt -  0Cn\ <  e, n =  1,2,..., k.
Jo

Therefore, by using the piecewise constant control Ufc(-), we can get within e of the min­

imum value p*(fo).

The question of whether the final state gi(-) in (2.4) is (approximately ) attained is a dif­

ficult problem for this equation, because, we believe, the lack of a damping term. The 

only general result that can be achieved depends for its proof on a property of compact 

sets, of which we proceed to remind the reader. We make the following definition (see 

Royden [56], Choquet [6]):

The set S  is said to be compact if it has the finite intersection property, that is, let Fa be 

any collection of closed sets in S  such that any finite number of them has a nonempty 

intersection; then the total intersection f |a Fa is nonempty.

Lemma. 2.1 If S  is compact, then any sequence in S  has a convergent subsequence.

Proof. Let X  =  {xn, n  = 1 ,2 ,...}  be a sequence in S  and rx < r2 < ... < rn < ... 

a strictly increasing sequence of natural numbers; then the sequence X '  in S  given by 

X '  =  {xTn, n =  1,2,...}  is a subsequence of X.  Let Frn be the set | i rn) xTn+1, ... j ,  

then |  is a collection of closed sets with the finite intersection property, and so there

is a point x  which belongs to f | Frn. The point x is the limit point of the subsequence 

X ',  since for any open set 0  containing x we have x € Frn, and so there must be an N  

such that xTn € O with n >  N . □

Now we can prove the following proposition.

Proposition 2.2 Consider our general problem P:

m in /i( /0)
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subject to the conditions

KV’j) =  oy, j  = 1 ,2 ,... (2.9)

where p e  Q.

Let pk be the solution in A/i+(ii) of the following problem, to be called P fc:

min p( f0)

subject to the conditions

p{4>j) =  oy, j  = 1 ,2 ,..., k (2.10)

where p  G S\.

Then the sequence {pk} has a convergent subsequence, which converges weakly* to 

p* G A i+(0 ). Further:

(a)

Pktyj) — ► K i ’j) = ah  3 = 1 ,2 ,...

M*(/o) — » K /o). (2.11)

(b)

inf p( f0) =  (/**, /o) >  inf p(fo)- (2.12)
¿/k *

(c) Each pk can be considered to be an admissible control u*.. Then any control in the 

convergent subsequence will give a final state close to ffi(-) for sufficiently large values 

of the index k in the index set of the subsequence.

Proof, (a) Since Si  is compact, we can extract a subsequence so that
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and (2.11) are satisfied.
(b) Assume Q ( k ) be the set of measures in satisfying (2.10), so X +(f2) D

Q ( k )  D Q. Then the solution of the problem (2.10) ( the proof of the existence of 

solution of the problem (2.10) is being based on the same considerations on Proposition 

2.1 ), satisfies the following inequality

inf p( f0) = inf p(fo) =  (p*, fo) > inf p( f0) =  inf p( f0). (2.13)
Pfc Q(k) r  Q

(c) We can find a control uk that approximates well the measure p k in Pk. Then this can

be modified slightly so that the conditions for Pk are exact. □

In general, this result is as far as we can go searching for an admissible control that gives 

rise to a final state near gi(-). But in the many cases studied in the rest of the chapter, 

we have found that the desired final states can be approximated very well by only small 

values of k; and of course no attention has been paid whether this index is, or is not, in 

the index set of convergent subsequence.

2.1.4 Approximation to the optimal measure

We now develop a method for the estimation of a nearly-optimal piecewise constant 

control. In this development we follow Kamyad, Rubio, and Wilson [34], In the first 

step, we obtain an approximation to the optimal measure p* by constructing a sequence 

of finite-dimensional approximation to the infinite-dimensional linear programming prob­

lem defined by (2.8) and with restrictions defined by Si, S2 and S3. Next, we construct 

a piecewise-constant control function corresponding to the finite-dimensional problem. 

The infinite-dimensional linear programming problem can be written in the following 

form:

Minimize

I{p) = P(fo)
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subject to

HI) s  T
pi^Pn) — ^n, rt — 1, 2, ...

p{G) =  at?, G E C(Q), independent of u. (2.14)

The functions i/>n, a n, n = 1,2,..., are defined by (2.6). We define Gi(-,u) =  V as a 

monomial in t only, then from Weierstrass Approximation Theorem (see, e.g., [2]) any 

continuous function on [0, T], can be uniformly approximated by a finite linear combi­

nations of elements of the set

{<*(•,«) = ?,» = 1,2,...}.

Of course, the measures p in (2.14) are required to be positive Radon measures on i2. 

Now, by using monomials (?„ the minimization problem (2.14) changes to the follow­

ing one:

Minimize

I(p)  =  P(fo)

subject to

P( 1) <  T

p(.ipn) = rxn, Tl — 1,2,...

p(Gi) =  ad ,  i = 1 ,2 ,... (2.15)

where is the Lebesgue integral of Gl(-,u) over [0, T],

The approximation of this program by a sequence of finite-dimensional programs is 

based on the following constructions:

(a) Only a finite number Mi  of functions will be considered; this number can be as 

large as required.

(b) Only a finite number M 2 of functions Gt in (2.15) will be considered. We assume
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Q{MX, M 2) be the set of measures in A f+(iî) satisfying

M l) <  T

p(tjjn) =  a n, n =  1,2, .. .,  Mi

p(Gi) = aGi, i =  1,2, ...,M 2, (2.16)

we will show in Proposition 3.1, that if /Xq minimum of /x — > /x(/0)

over the set Q(MX, M 2), then

lim °) = inf n U o) =  M (/o).

(c) The set SI =  [0, T] x [-1 ,1 ] will be covered with a grid, by taking m i + 1 and 

m 2 + 1  points along the i-axis and u-axis respectively, these points will be equidistant, 

at a distance — and — each separately in the order mentioned. Now fi is divided to 

N  = mi  - m 2 equal volume rectangles fij, j  =  1 ,2 ,..., N;  we choose Zj as the center 

flj. Since for many applications it is convenient to approximate continuous functions 

by functions of an elementary nature, we shall not take functions Gi{-,u) = t l, i =  

1 ,2 ,..., M 2, in (b), but lower-semicontinuous functions, we choose these functions to 

be the characteristic functions of the individual rectangles formed by dividing the set 

SI = [0, T] x [—1,1] to m i partition along i-axis. In fact these lower-semicontinuous 

step functions are defined as:

/»(*> «) l  t e J i  

0 otherwise

where Ji =  [(i — l ) “ i ¿ =  1 ,2 ,..., m i, so any continuous function on [0, T] can 

be uniformly approximated by linear combinations of these functions (see Bartle [2], 

Theorem 24.4). Of course, there will be then as many functions as rectangles, that is,

M2 =  m i.
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Now, instead of the infinite-dimensional linear programming problem (2.15), we shall 

consider a finite-dimensional one in which the measures are positive Radon measures 

on il supported by the grid defined above; each such measure is defined by a set of non­

negative real numbers aj, j  =  1 , 2 , N,  where N  =  m i • m 2 is the number of points 

in the grid. Since one non-negative extra slack variable ajv+i is necessary to handle 

the first inequality in (2.15), (see Gass [22], chapter 4), thus the linear programming 

problem consists of minimizing the linear form

N + l

E i )¿=1
over the set aj > 0, subject to

N + 1

E «> = r
3=1 
N + l

V , =  7̂1} ft -- 1*2, •••) Ml
3=1 
N + l
' ¿ a j f i{Zj ) = afi, i =  1 ,2 ,..., M2. (2.17)
j=i

It is well known (see, e. g., [22], Chapter 3) that the linear form ajfo(Zj)  attains 

its minimum at an extreme point of the set in 1RN+1 defined by the constraints (2.17) 

and the requirement that aj > 0, j  =  1 ,2 ,..., N  + 1 , and that such an extreme point has 

at most M  = Mi + M 2 + l  nonzero coefficients; this is fortunate, because we usually 

choose N  much larger than that M.  In Chapter 3, we show that, if we take M i, M 2 

sufficiently large, then the solution of the linear programming problem (2.17) gives a 

good approximation to the solution of (2.14), i.e., the infima of the two problems are as 

close as desired.

The procedure to construct a pieciewise constant control function from the solution 

{aj , j  =  1 ,2 ,..., TV} of the linear programming problem (2.17) which approximates the 

action of the optimal measure, is based on the analysis in Rubio [59] (Chapter 5). 

Assume that the set <+>n  = {%i, 1 =  1 ,2 ,..., N }  is the set constructed by dividing the 

interval [0, T] and [—1,1] respectively into m i and m 2 equal subintervals. From The­

orem III. 1 of [59], the measure Pq M̂um2) ^  the set Q(Mi, M 2) satisfying (2.16) and
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at which I(p)  =  p(fo) attains its minimum, for sufficiently large N,  has the following 

form

=  (2.18)
1=1

where Zi e and 8(Z) e M +(n) is the unitary atomic measure with support the 

singleton set {Z}. This measure is characterized by

8{Z)F = F(z), f  e c{n), z e n .

Of course the equality in (2.18) is not exact and some error will appear that can consid­

ered as the error present in numerical computation.

Define =  / [i,_liit)xK_1,Uj) dp*Q(MuM2), by Ghouila-Houri’s Theorem [23]

Hij — f  dp*Q(MuM2) ( ^ u ) — L  , .  , M j(t ,u) -

P  ([^i-i»^*) ^  [u j —l i ^ j ) )

f o r i  <  i < m i, 1 <  j  <  m 2, and il;; l =  1 ,2 ,..., N,  is the Zth subrectangle of 

the partition il, where l = m i( j  — 1) +  ¿. As we mentioned before, the center of the 

subrectangle fij has been chosen as Zi, that is Zi =  Zmi^ _ 1'j+i, thus

f  ¿ E  akd(Zk)] = <k
k=1

where l = mi ( j  — 1) +  i.

We can proceed now to construct the piecewise constant control u\ which approximates 

the action of p* on the functions / 0, V’n, n  =  1 ,2 ,..., M x and / , ,  ¿ =  1 ,2 ,..., M 2. Let

u ( t )  =  Ul =
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for t  G Bij, where

Bij — [ii_i +  ^2  Hik,U-i ^2  H%k) (2.19)
k<j k<j

where tt 's are the number .... T,  and Hik defined as above. Since those inter-

vals B ^  for which H%j =  0 are reduced to a point, they do not contribute any u, so they 

can be ignored. We shall consider in the analysis to follow only those Hij which are 

positive. We may obtain all B^  in the same way. Then, the piecewise constant con­

trol u is defined by taking the value ui in the subinterval corresponding to the value

l)+i'

In fact, to summarize the procedure of constructing the piecewise constant control u(-) 

from the solution of the linear programming problem (2.17), first, for l = 1 , 2 , JV, 

we identify the indices l such that the components a; of the extreme point are positive, 

and the corresponding values U associated with them. With each such U, we identify 

one subinterval J t =  [fi_i,<») of the m i partition interval of [0, T]. To each of these 

subintervals J%, there will correspond at least one, and usually several, of these values 

a\ which just selected. We then partition these subintervals Jj into further subintervals 

Bij; for each index l with these properties, of length equal to a/, and then, the control u 

is defined by taking u(t) = ui on it. These subintervals which partition J; then can be 

put together to cover the main interval [0, T].

Since at most Mi -f M 2 + 1  of <n’s are non zero, the control therefore will suffer at most 

Mi +  M 2 +  1 jumps.

In the next section we shall give some numerical results obtained by using these tech­

niques.

2.1.5 Numerical results

We will apply the method described in the previous section for the estimation of 

pieciewise constant controls for the one-dimensional wave equations. In all the exam­

ples, the criterion functions is f 0 =  u2 and a = 1, T  = ir, S  = ir, Mi =  5, M 2 =  10, 

m i =  10, m 2 =  20. So it is assumed that the set fi =  [0,7r] x  [—1,1] is divided to
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N  = 200 subrectangles with centers at zi =  (ij, U [ ) ;  i = 1,2,..., N.  We define

u\ =  u2 — . . .  = u io — —0.95 

tin  =  U12 = . . .  = U20 =  —0.85

Ul91 =  U192 — . . .  — 1̂ 200 — 0.95

and

ii

h

tio

Then we use a N A G  fortran library routine based on the modified simplex method to 

solve the linear system (2.17).

Example 2.1 Consider the linear wave equation

7r
• =  ti9i =  r rin  — .

¿12 =  . . .  =  ¿192 =

=  ¿20 — ¿200 —

20
3-7T
20

197T
"2Ô“'

Ytt[x,t) — Yxx{x >t)i

the initial conditions are:

y (z ,0 )  =  f (x )  = sin(x)

l t ( * , 0) =  fc(®) =  0,.

the boundary conditions are:

y ( 0,t )  =  u(t)

Y ( S , t ) =  u(t).
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We assume that g\ = 0, g2 =  0, x € [0, ir]. In this example, after 72 iterations the cost 

function converges to the value 3.95714 x 10-1 , and we find the following computa­

tional results:

a 10i =  0.31415926 a n0 =  0,31415927 a n 2 =  0.00463199

Q,\i9 =  0.00463426 a 122 =  0.30952727 a123 =  0.02667988

ai28 =  0.02667596 «129 =  0.30952500 a133 =  0.28747939

aisa =  0.28748330 a 144 =  0.31415927 a i45 =  0.17911889

a 146 =  0.17912431 a147 =  0.31415926 aiss =  0.13504037

a 156 =  0.13503495

Now to construct the pieciewise constant control function for this example, we use the 

method introduced above, we have, e.g.,

Hij =  aioi — ami(j-i)+i — 0.31415926

fo r t  =  1, j  =  11, since ii =  so by (2.19), B i tn  =  [0.0,0.31415926) and if 

t € B i tn ,  then u(t) =  ti10i =  0.05. We define all the subintervals B l3’s in the same 

way and then draw the pieciewise constant control function in an appropriate manner 

in the corresponding subintervals.

The graphs of the piecewise constant control function and the approximation of the final 

function gi(x)  can be seen in Fig. 2.1 and Fig. 2.2, respectively. We mention that in all 

the numerical examples Y(x, T)  is approximated by J2nti Pn sin(nx), where

p n = (—1 )nAn +  -[1  -  ( - i r ] ( - l )n+1 f  sin(nt)uk(t)dt.
7T JO
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Figure 2.1: Graph of the pieciewise constant control function for Example 2.1

—....... y«0 . 0  » ■■ Fir»ol S t a t a

Figure 2.2: Final state for Example 2.1
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Example 2.2 Consider the linear wave equation

— Yxx(^Xjt ,̂

the initial conditions are:

y (x ,0 )  =  f (x ) =  cos(x) 

y ( x ,0 )  =  h(x) =  0,

the boundary conditions are:

Y (0 ,t) =  u(t) 

Y (S ,t) =  0.

m

Figure 2.3: Graph of the pieciewise constant control function for Example 2.2
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We assume that <71 =  0, gi =  0, x € [0,7r], In this example after 44 iterations the 

cost function converges to the value 1.086860. The graphs of the piecewise constant 

control function and the approximation of the final function g\{x) can be seen in Fig. 

2.3 and Fig. 2.4, respectively.

Y-0 .0 Final State

Figure 2.4: Final state for Example 2.2 

Example 2.3 Consider the linear wave equation

Ytt(x,t)  =  YXI(x,t),

the initial conditions are:

y (x ,o )  =  / (* )  =  o

Yi(x,0) =  h(x) =  0,
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the boundary conditions are:

y (o ,i)  =  u(t)

Y(S, t) = u(t).

We assume <h =  sin(x), g2 = 0, x G [0, 7r]. For this example, the total number of 

iterations is 39, and the cost function takes a value of 7.903563 x 10-1 . The graphs 

of the piecewise constant control function and the approximation of the final function 

gi(x)  can be seen in Fig. 2.5 and Fig. 2.6, respectively.

m

Figure 2.5: Graph of the pieciewise constant control function for Example 2.3
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oin

Y*sin(x) - ■ ■ Final State

Figure 2.6: Final state for Example 2.3

Example 2.4 Consider the linear wave equation

) =  Yxx(x,t),

the initial conditions are:

Y (x ,0) =  / (x )  =  0 

Yi(x,0) =  h(x) =  cos(x),

the boundary conditions are:

V (0,t )  =  u(i)

Y (S , t )  = 0.
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We assume gi =  sin(cc), g2 = 0, x G [0, 7r]. For this example the total number of 

iterations is 47, and the cost function takes a value of 7.351063 x 10_1. The graphs 

of the piecewise constant control function and the approximation of the final function 

gi(x)  can be seen in Fig. 2.7 and Fig. 2.8, respectively.

in

t

Figure 2.7: Graph of the pieciewise constant control function for Example 2.4
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y=sin(x) 1 1 ■ ■ Final sate

Figure 2.8: Final state for Example 2.4

2.2 Existence of an optimal control for the n-dimensional 

wave equation

2.2.1 Introduction

Here we consider the existence of an optimal control for the n-dimensional wave 

equation

Ytt(x,t)  = a2 v 2 Y ( x yt), (2.20)

where (x, t)  — ► Y ( x , t ) , ( x , t )  G tu x (0, T),  and \y2Y  is the Laplacian of the function 

Y  in lRn.
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The boundary condition is:

Y(x,  t ) =  u(x, t), (x, t) E du> x (0, T ) (2.21)

and the initial conditions are:

Y(x,  0) =  /(x ) ,  x £ u )

Yi(x,0) =  h(x), X  Gw, (2.22)

where u> is a bounded open set in M n, with boundary dco G C 1, and u(x, t ) e  1R, where 

(a;, t) G duj x [0, T], is the control function.

We say that the control u is admissible if it is a measurable function on du> x [0, T ] 

and

(a) u (i) e  [—1, 1] a.e. for (x, t) e  dw x [0, T].

(b) Y(x,  T)  = gi(x)  a.e. for s  € cu; <71 G ¿ 2(w) is the desired final state.

(c) Yt(x, T)  =  52(®) a.e. for x E g2 E L2(u>) is a given continuous function.

We define the set of admissible controls as U. Our optimal control problem consists of 

finding a u(-, •) e  U which minimizes

(2.23)

where f 0 € C (S ), the space of continuous functions on

E = doj x [0,T] x [-1 ,1 ],

with the topology of uniform convergence.
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2.2.2 Modified control problem

The solution of equation (2.20) with boundary condition (2.21) and initial conditions 

(2 .22) is

Y(x, t) =  —a2 f  [  u(y,T)-^-[K(x,y,t-r)]dTdy J $OJ Jo iJVy

+  f  [K(x,y, t)h(x) -  K t(x ,y ,t )f(x)]dy  
J<jJ

(see Roach [54], Chapter 9). Here y, f)] is the normal derivative with respect

to its second variable y, and

s x . . , , ,  .sinfLiOi)
K ( x , y , t ) =  ^ 2 a n(x)an(y)H(t) — — — ,

n= 1 Kn(l

where an denotes the orthonormal eigenfunction with corresponding eigenvalue An de­

fined by the equation
d2

— V  )Un ~  An^n-

Here Jfe£ =  An and H(t)  is the Heaviside function and is included to emphasize the 

fact that the solution is identically zero for t <  0 . Thus if we assume a=1, we have

Y { x ,T )  = - [ T I  a ^ ) a n(yf n{K f ' ~ t))]dydt
Jo Jdu OVy kn

+ f  [X) an(x)an(y)Sm^ T ^ h(x) -  an(x)an(y)cos(knT)f(x) \dy
Jw  n = 1 n=l

~  r f T t  / \ d , ,sin( kn(T — t)) , ,
=  s i - I  L u{y^ a 7 t a*{y)— k — iydt

+  / (» .(ii)am^ y ^ T— h{x) -  an(y)cos(k„T)f(x))dy]an(x).
J (jj fcn

If we assume IaJ - £ ; an(y)]u(y, t)dy = vn(t), then

w fl
Y(x ,T )  = ■ £ , { - l  «.(0

_ _ i  ** on=l

T sin (kn( T - t ) )
kn

dt

+
sin(fcn(T))

kn
h(x) an(y) cos {knT)f{x))dy]aJx) .

LEEDS UNIVERSITY LIBRARY
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From the above we find Yt(x, T ) as

00 ¡t /> Q
=  Y . [ -  /  (u (y ,T )-—an(y)dy)cos(kn( t - T ) ) d i

n = l  •'O Jdu @Vy

d Y  00 

dt

+  /  (on(j/) cos(knt)h(x)  +  an(y)kn sin(knt)f(x))dy]an(x), 
Juj

where by assumption
d

[  -¿—an(y)u(y, r)dy = vn(r), 
Jdoj OVy

we get,
9 Y ,
dt

+

w  «2
(x, T)  =  Y ! [“  /  vn(i) cos(&n(T -  i))di 

I  (an(y) cos(knT)h(x)  +  an(y)Jcn sm(knT)f(x))dy]an(x).
Jw

Thus,
w

r ( * ,T )  = ' £ l - L  "»W
n=l

T sin (kn( T - t ) )
dt

+  /  K (sOJ(aJ
sin (kn(T))

kn
h(x) -  an(y)cos(knT)f(x))dy]an(x )

and
00 ,T

(x, T ) =  5 3  [~ J  u» (0  cos(kn(T -  t))dt
n = l  0

+ f  (an(y) cos(knT)h(x) + an(y)kn sin(knT)f(x))dy]an(x).
J  fjj

Since the desired final states belong to L2(uj), we can expand them in terms of the se­

quence of orthonormal eigenfunctions an(x),

OO

Y(x,  T)  =  gi{x) =  53  Cnan(x),
71=1

/9F 00
— (x, T)  =  02(s) =  53  ^ a n(x).

71=1

Thus,

/  H y»(0~^4r— ~ ] * +  /  an(i/)[— -  cos(Ä „r))/(x)]dy =  c»,v 0 A/ft J ilf fcfl
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/  [ -V n ( i)cos( ^ n ( r - i ) ) ] c i i +  /  an(y)[coa(knT)h(x) +  knsm(knT)f(x)]dy = dn. 
J  0 v w

But,

cos kn(T — i) =  cos knT • cos knt +  sin knT ■ sin knt 

sin kn(T - t )  =  sin knT • cos knt — cos knT • sin

so

and

Let

J r1 l
[—vn(t) • T -(sin  knT • cos knt — cos knT • sin knt]dt 

o kn

+  /  an{y)[
J  (jj

sin knT 
kn

h(x) -  cos(knT) • f(x)\dy = Cn,

rT
/  [-'UnfOCcos knT  ■ cos knt +  sin knT  • sin knt]dt 

Jo

+  /  an(j/)[cos knT  • h(x) + kn • s i n ^ T )  • f(x)]dy = dn.

f  [vn(t) • sin knt]dt = X  
Jo
t T/  [vn(i) • COS knt\dt = Y,

Jo

then by some manipulations and using Cramer’s Rule, we find

X  — Cn,kn cos knT  dn sin knT  -|- kn I Q"nijy')f(jr)dy1
Jw

Y  =  — cnkn sin knT  — dn cos knT  +  / an(y)h(x)dy ,
J W

or

i Tvn{t){
Jo

C n k n ( cos knT —  sin

sin knt +  cos knt)dt = 

knT) — dn(cos knT +  sin knT)
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+ /  [h(x) +  knf(x )\an(y)dy. J cÜ

Assume

Cnkn{cos knT  — sin knT)  — dn(cos knT  + sin knT )

+  /  [h(x) + knf(x)]an(y)dy =  6n, n =  1, 2,..., (2.24)
Joj

then we have

rT/  vn(t)(sinknt +  c o sknt)dt =  6n, n  =  1 ,2 , ..., 
Jo

or

/  /  anM  -« (y ^ X s in M  +  c o s M ) ^ *  =  £n, n  =  l ,2 , ....Jdu OVy

Since we assumed doj G C 1, we can let the parametric equation of du> be in the follow­

ing form,

Y  — } A( £ l ( 'S l ,  5 2 j Ò C 5 ! )  5 2) £ n (-S l, 8 2 , • •.•Sn. - l ) )

where

0 < 5 i < l ,  ¿ =  1,2, ...n — 1

(see Kamyad [33], page 13). 

Thus

Sn= I [ -¿T-antflis), & ( * ) ,  •••»£»(«))•“ ( & ( « ) .  6 ( « ) , - , £ n ( « ) , i )Jo J A.

x [sin knt +  cos knt\B(s)dsdt ,

where s = (s1, s 2} ¿n-i) and B(s)  is the Jacobian of this transformation from x- 

coordinatestos -coordinatesandds =  dsi .ds2....dsn^1, m d A  = [0,1] x [0,1],..., x [0 ,1], 

(n-1 times). If we assume

•M ». f, ti) =  ^ - a „ ( Ì ! ( s ) ,  ( 2(3) , Ì»(s)) • t*(ii(s), .... {„(s), t)

Ì

é

1
#

I
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x [sin knt +  cos knt]B(s), (2.25).

then our problem reduces to finding a measurable control u(y,t) £ [—1,1] where (y, t) £ 

duj x [0,T ] or (y(s), t) £  [0, 1] x [0, 1] x ,..., x [0,l ]  x [0,T] (n times) which satisfies

/  f ipn(s,t,u(s,t))dsdt =  Sn, n — 1 ,2 ,. . . ,  (2.26)
J 0 J A

and minimizes

J =  f f fo(s,t,u(s,t))dsdt, (2.27)
Jo Ja

where / 0A(3 , t, u(s, t)) = f 0(s, t, u(a, i)) • 5 ( i ) .

In general, this problem may have no solution, so we proceed to enlarge the set U, 

the set of admissible controls, and replace this problem by another one in which the 

minimum of a linear functional is considered over =  A x  [0, T] x [—1,1], Weproceed 

as follows:

(1) For a fixed u, the mapping

A p - F — ► /  /  F[s,t,u(s,t)]dsdt, F  £  C(Q),
Jo J a

defines a positive linear functional over C(Q).

(2) There exists a unique positive Radon representing measure p on Q such that

J = [T j  F(s,t,u(s,t))dsdt =  /  Fdp =  p{F),  F  £ C (fi) (2.28)
Jo J  a J n

(Riesz representation theorem).

Now, we replace the original minimization problem by one in which we are to find 

the minimum of p(fo) over a set Q of positive Radon measures. We proceed as before. 

Firstly from (2.28) we have

\p(F)\ < Tswp\F(t,u)\, 
n
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hence,

\ m  < t .

Next, the measures in Q must satisfy

pijpn) — dn, n — 1, 2,....

Note that this is possible because ipn G (7(0), n — 1 ,2 ,....

Finally, assuming G G Gift) and independent of u, that is, if (s, t) G A  x  [0, T] and 

u i , u 2 G [— 1 ,1 ], then G(s, t ,u i)  =  G(s , t ,u2); then the measures in Q must satisfy

f Gdp = ( f G(s,t ,u(s,t))dsdt  =  aG,
Jo Jo J a

where ao is the Lebesgue integral of G. As before, if be the set of all positive

Radon measures on ii, we have

Q = Si n S2 n s 3,

where

s1 = {peM+(n):p(i)<T} ,

S3 = {p  e  + : p(1>n) =  ^n} ,

S3 = G : p(G) — aG, G G (7(0), independent of it j  .

If we topologize the space M (Q )  by the weak*-topology, it can be seen that (Section 

2 .1) Si  is compact, S2 and S3 are closed, therefore Q is a closed subset of the compact 

set Si,  and then is compact, ( see also [34]). Therefore the functional I  : Q — ► M  

defined by

I{p ) -  [  fodp = P(fo) € dR, p  G Q (2.29)

attains its minimum on Q. Thus, the measure-theoretical problem, which consists of 

finding the minimum of the functional (2.29) over the subset Q of M +(£l), possesses
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a minimizing solution p*, say, in Q.

We now show that the action of the optimal measure could be approximated by that 

of a piecewise constant control. With each piecewise constant control u(-) we associate 

a measure pu in A4+(Q) fl 5 i fi S2 fl £3. Let Q1 be the set of all such measures pu, 

then an extension of a theorem of Ghouila-Houri (see [33]) shows that, when M(fl)  is 

given the weak’-topology, Q\ is dense in M +(Sl) n  Si n  S2 fi S3. A basis of closed 

neighborhoods in this topology is given by the sets of the form

{p : |/x(irn)| <  e, n = 1 , 2, ...k +  1} , (e >  0)

where k is an integer, Fn G In any weak*-neighborhood of p*, it is therefore pos­

sible to find a measure pu corresponding to a piecewise constant control. In particular 

we can put

Fi = fo, F2 = Tpi, ...Fk+i = ipk] 

a piecewise constant control «*(•) can be found such that

| /  Fn[t,uk(t)]dt -  p*(Fn)\ < e, n =  1 ,2 ,..., k +  1.

Thus, by using the piecewise constant control Uk(-), we can get within e of the mini­

mum value p*(fo)•

2.2.3 Approximation to the optimal measure

Now, as before, we intend to develop a method for the estimation of piecewise con­

stant control. We proceed just as in Section 2.1. Our infinite dimensional problem can 

be written in the following form:

Minimize

=  t i fo )
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such that

A*(l) < T
P('4>n)=z ^n, U=  1, 2,...

p(G) =  do, G € C (ft), independent of u. (2.30)

The functions Sn and tpn, n  =  i ,  2,..., are respectively as (2.24) and (2.25). Of course, 

the measures p are required to be positive Radon measures on ft. The approximation 

of the program (2.30) by a sequence of finite-dimensional program is based on the con­

structions that we described it precisely in Section 2.1. In fact

(a) We consider only a finite number Mi of the functions ipn; this number can be as 

large as required.

(b) We cover the set ft =  A x [0, T] x [-1 ,1 ] =  [0, l ]n-1 x [0, T] x [ - 1 , 1] with a

grid, by taking +  1, m 2 + 1, and m 3 + 1  points along the ¿¿-axis, ¿ =  1, 2,..., n — 1, 

t-axis, and u-axis respectively. These points will be equidistant, by and ■—

respectively. Then the set ft is divided into N  =  m i- 1m 2m 3 equal volume cuboids 

ftj, j  =  1 ,2 ,..., N ; we choose Z  = (s,; ¿ =  1 ,2 ,..., n — 1, i, u) as the center of each 

cuboid. We will number then the points Z  in ft sequentially, from 1 to N.

(c) We consider only M 2 functions of G in (2.30). These functions are not continuous 

functions as above, but pulselike, lower-semicontinuous functions. We choose these 

functions G to be the characteristic functions of the individual rectangular cuboids that 

formed by dividing the set ft into m i-1 partition along ¿¿-axis; ¿ =  l , 2 , . . . ,n  — 1, and 

m 2 partition along t- axis. We shall denote these functions as Gi, l =  1 ,2 ,..., M 2. To 

specify these G;’s precisely, we find the numbers

s° =  0 <  sj <  ... <  ¿r1 =  !. =  1)2, ...,n  — 1

on ¿¿-axis and the numbers

<0 =  0 <  <1 <  ... <  tm2 =  T
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on f-axis. Now define Gi(-, -,u) on [0, l]n 1 x [0, T] as follows:

G i(s , t ,u )
1 i f i  G [U-uU), s = (s1,s2,...,sn_i) G ,s)? *)

0 otherwise

where

*1 =  1 , 2  , . . . , 1 7 1 !  

i2 =  1, 2, . . . ,m i

in-1 =  1,2, ...,m i

i =  1, 2, ...,m 2

and

l =  [ m r 2( i n - i  -  1)  +  m r 3( in - 2 -  1)  +  . . .  +  -  1)  +  * a] +  m ? ' 1 ^  -  1 ) .

So each Gi will be unity in one of the cuboids defined above and zero elsewhere. There 

will be then as many functions as cuboids, that is

M 2 - m^~1m 2.

Rem ark: The linear combinations of the functions Gi, can approximate any function 

arbitrarily well in C2(fl) where il =  A  x [0, T\ x [— 1 ,1] is used for a subspace

of C(fi)  which depends only on variables s =  (si, s2, •••, -Sn-i) and t]. This means that 

for any G e  C2(ft) there exists a sequence j  of functions in the subspace spanned 

by the functions Gi(-,-,u) defined as above, such that

Gl(s, t, u) — > G{s, t, u )

uniformly in i l  (see [31]). The functions Gi are not continuous, however, each of the 

Gi’s is the limit of an increasing sequence of positive continuous functions, {Gik}', then,
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if p is any positive Radon measure on fl,

p(Gi) =  lim fi{Gik).k~* oo

Now instead of the infinite-dimensional linear programming problem (2.30), we con­

sider one in which the measures are positive Radon measures on fi supported by the 

grid defined above; each such measure is defined by a set of non-negative real num­

bers dj, j  =  1 , 2 , N,  where N  =  r a i- 1m 2ra3 is the number of points Z  in the grid. 

Since one non-negative dummy variable a/y+i is necessary to handle the first inequality 

in (2.30) (see [22]), thus the infinite-dimensional linear programming problem (2.30) 

would be approximated by the following finite-dimensional linear programming prob­

lem:

Minimize
JV+l
£  « M Z j )
¿=1

over the set a,j > 0, subject to

N + 1

Z “j = T

N + 1
=  ^»i ^  1, 2, ...,

3=1 
JV+1
£  ajGi(Zj) = aG„ i =  1 ,2 ,..., M 2. (2.31)
i=i

The solution of the linear programming problem (2.31) gives rise to a Radon measure 

which is a linear combination of N  +  1 atomic measures

N + l

/* =  £  aA z j)

where the a5’s are the solution of (2.31) and the Z j ’s are the corresponding values of Z  

which define the support of each atomic measure. It is clear that

Zj — (sjiy i 1,2,..., n  1, fj, Uj).
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We shall use aj’s and Z j ’s to define a pieciewise constant control u which is admissible 

and, for sufficiently large values of Mi, M 2, and N,  gives a value to the performance 

criteria a,jf0(Zj)  which is near to the infimum of n ( f0) over the set Q.

The procedure of the construction of this pieciewise constant control function which 

approximates the action of the optimal measure is based on the analysis described in 

Section 2.1.

2.2.4 Numerical results

Example 2.5 Consider the wave equation

Yu = \J2YXX

where Y(x ,  y, t) :(x,y ,t)  G w x [0,T], and u  is the rectangle [0,ir] x [0, ir] in the xy- 

plane. Since the boundary duj is divided to four individual segments which are defined 

by variable s, 0 <  s < 1 (see Appendix 2.3), so the control function is symmetric in 

the four edges of the boundary du;. The initial conditions are:

Y (x ,y ,0 )  = f ( x , y )  = 0, (x ,y)eu>

Yt(x, y, 0) =  h(x, y) =  0, (x, y) G u

and the boundary condition is:

Y {x ,y , t )  = u(x ,y , t ) ,  € du> x (0,T ).

We are looking the control function u(x, y, t ) such that

2
Y ( x , y , T )  = gi(x,y)  = (0 .1 )-----sinx • s iny,

7T

Yt{ x , y ,T ) =  g2(x,y)  =  0,

at a specified time T.

We choose T  =  1.57T. T h e n (s ,t ,u )  G T where s G [0,1], t G [0, T], and u G 

[—1,1]. We divided the set [0,1] on the 5-axis into 8 equal subintervals and the set
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[0, T]=[0 ,1.57r] on the ¿-axis into 20 subintervals and the set [-1 ,1 ] on the «-axis into 

15 equal subintervals, so that V = [0,1] x [0, T] x [—1,1] is divided into 2400 equal 

subsets. We assume Zk = Z(sk,tk,uk),  k = 1,2, ...2400, where

Ui = U2

«161 =  «162

• —  «160

• —  «320

14
15
12
15

«2241 =  «2242 —
14

—  «2400 —  7 7  jlo

so in general « 16OM-1 =  « i60fc+2 =  ••• =  «i6o(fc+i) =  i k =  0,1, ...14.

Also we choose s* as follows:

Si =  s2

S21 — ¿22

520 —  5161 —  • •■ • —  5180 —  • ■• • —  52260 =
1

16

5 4 0 =  5 181 =  • ■■ • =  5200 =  • •• • =  52280 =
3
16

S141 - Si42 =  . . . =  Si60 - 5301 — . . .  — 532o — . . .  — 52400 =
15
16

and in general 5i60fe+20t+j =  i =  0,1, ...7, j  = 1,2, ...20, k = 0 ,1 ,..., 14, and 

we choose,

¿1 —  ¿21 

¿161 =  ¿181

• —  ¿141

. —  ¿301

1.Ö7T
~4CT
1.57T
“4Ö"

¿2041 —  ¿2061 —  ... —  ¿2381 —
1.Ö7T
~ W '
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and,

¿2 —  ¿22 —  ... —  ¿142

¿162 =  ¿182 =  •• • =  ¿302

¿2042 —  ¿2062 —  • • • —  ¿2382

and,

¿20 =  ¿40 —  ... —  ¿160

¿180 =  ¿220 =  . . . =  ¿320

¿2060 —  ¿2100 —  ••• —  ¿2400

and in general ¿i6ofc+2o»+j =  (2j 1̂ 1— ;i  =  0 , l , . . .7 , j  =  1,2, ...20, k = 0 ,1 ,..., 14.

Our linear programming problem consists of minimizing the following real function

2401
T ,  ajfo(Zj)y
j=l

over the set of coefficients aj >0, j  = 1,2, ...2401, such that

2401
Z * ,  = t
j=i
2401

X ] aM z i) = i = 1,2, ...M i,

2401

E  « //« (% ) = i =  1,2, ...M 2.
3 = 1

In this linear programming problem one extra dummy variable, a24oi, is necessary to 

handle the first inequality in (2.30).

Here we choose the criterion function to be f 0(s, t , u) =  u2, and we define the func­

58.Ô7T
40

58.5tt

40

58.5tt

4.Ô7T
I t T
4.57T
40

4.57T
1 0 " !
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tions fki’s as

fki(s,t,u) =  1, ( s , t )e jk i

fki(s,t,u) =  0, o th e rw is e ,

where =  [(& — 1 )d,kd) x [(1 — 1 )d‘,ld'), d = |, d' = and k — 1,2, ...8, and

l =  1, 2, . . .20.

We know that ckl is the integral of function fki over j M, that is,

r l  rl.hic rkd rid

c i , = L L  M s <t ) d t d s=J w  w  M s ’ t)d td s

fkd fid
=  / dtds =  -̂ x

J(k-i)d J(i-i)d' 8 20 160

rid 1.57T 1.57T
, k  = 1 ,2,...8,1 =  1,2,...20.

By definition of the functions fki and due to the choice of the st’s and i / s ,  for k =  

1,2, ...8, and 1 = 1 ,2 ,  ...20, the following correspondence is established:

(Sk,tl) •<=>• (•Si60n+20(fc-l)+i>^160n+20(fc-l)+/),

n  =  0,1, ...14,1 =  1,2, ...8, and k =  1,2, ...20. 

Thus,

fkl(sk,tl) =  /«(•Sl60n+20(fe-l)+Z>ll60n+20(fc-l)+l) =  1 

f ki(s,t) =  0, o th e rw is e .

From the equation

2400

£  ai M z i)  =  c“ .
3=1

k = 1 ,2 ,...8 , 1 =  1,2,...20, and Zj =  (a,-,*,-),

we have
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° l / l l ( s l )  ¿ l )  +  a 2 / l l ( s 2) h )  +  • • • +  O 2400/ ll(-S2400, ¿2400) 

a l / 2 l ( - S l ,  ¿ l )  +  0 2 / 2 1 ( 5 2 , ¿2 )  +  • • • + . 02400/ 21( 52400) ¿240o)

1.57T
W
1.57r
W

01/ 208(51,^1) +  o 2/ 208(52,^2) + +  02400/208(52400, ¿2400) =
1.57T
W ’

or by definition fki we find that:

ai +  ai6i +  . . .  +  02241 —

02 +  Oi62 +  • • • +  02242 —

1.57T
W
1.57T
w

0160 +  O 320 +  .. • +  O 2400 —
1.57T
160”'

Thiis Oj =  1.57T =  T, but since Y ^ \  aj =  T,  we find that the slack variable 

02401=0 . Also we have

2400
Yh = 6i, ' i = 1, 2,..., Mi,
j=i

so for Mi =  4

a i ip i( Z i)  +  02^1 (^ 2 ) +  • • • +  02400^1 (^2400) =  ¿1

O n fc(Z l) +  0 2V-2( ^ 2 ) +  • • • +  0 2 4 0 0 0 2 ( ^ 2400) =  #2

aii]>z(Z\) +  a 2V’3 ( ^ 2 ) +  • • • +  02400^3(^2400) =  ¿3

O l ^ i ^ l )  +  0‘2'lf’ i{Z 2 )  +  • • • +  0240oV’4 (-^240o) =  £4,

where Zj =  (Sj , t j ,u j ); j  =  1,2, ...2400.

We have shown in Appendix 2.3 that:
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■0! =  — 8  s in (3 7 r )  • u ( s ,  t )  • ( s i n  t  -f- c o s  t )

•02 =  —12 sin(s7r) • ti(s, t) • (sin y/Et +  cos y/Et)

03 =  —24 sin(357r) • u(s, t) • (sin 31 +  cos 3i)

0 4  =  — 8 [ 2  s in ( 2 s 7 r )  — s in ( 4 s 7 r ) ]  • w ( s ,  t )  • ( s i n  y / l O t  +  c o s  \ / lO i)

and

^  =  0.1

Si =  0, i >  2.

So our control problem is as follows:

Minimize the functional
2400

j=l

subject to,

2400

y, Oj[—8 sin(5j7r) • Uj • (sinij +  cosij)] =  0.1 
j=i
2400
y  dj[—12 sin(sj7r) • Uj • (sin \/5 ij +  cos VEtj)] =  0

2400

y  a7[—24 sin(3sj7r) • Uj • (s in 3 ij +  cos 3f,)] =  0

2400

y  o5-[-16 sin(23j7r) +  8 sin(4sj7r)] • Uj • (sin y/lOtj +  cos %/iOij)] =  0
i=i
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and,

O l +  C&161 +  . . . +  d 2241 =

0-2 +  a 162 +  • • • +  02242 =

1.57T
Teo"
1.57T
Teo"

O l60 +  O320 +  • • • +  02400  =
1.57T
160" '

In this example after 631 iterations the cost function converges to the value 1.214811x10 

while CPU time is 629 seconds. The graph of the piecewise constant control function 

can be seen in Fig. 2.9.

Figure 2.9: Graph of the pieciewise constant control for Exampe 2.5
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2.3 Appendix

In Example 2.5 we have assumed the region u> to be rectangle [0,7r] x [0, ir]. Here we 

find the set of orthonormal eigenfunctions an(x,y),  n = 1 , 2 , and corresponding 

eigenvalues An, associated with the equation

The orthonormal eigenfunctions an(x, y ), (x,y)e u>, and corresponding eigenvalues An’s, 

and kn s are as follows (see [28], Chapter 6)

ai(x, y) 

a2(x,y) 

a3(x,y) 

a4(x,y)

a5(x,y) 

«6 (x,y) 

a?(x,y)

2 .
— sin x sin y,
7T

Ai — 1, h =  1,

2 . 5 [E— sinxsm  2 y, 
7r

a2 - - , k2
~  V 2 ’

2
— sin2x sin 2y, CO II k3 =  2,
7T

— sin x sin 3y, A4 =  5, k4 =  Vh,
7r

— sin2x sin 3y,
7T

A - 13As -  2 > k5 II

— sin3x sin 3y, A6 =  9, h =  3,
7r
2 . . ,
— sin2x sin 4 y,
7T

A7 =  10, kr =  >/io,

Now we consider,

Q
i>n(s, t, u(s , i) )  =  i ( 5), 6 ( 3)) • U s ) ,  *) X [sin knt +  cos knt\B(s),

where denotes the outward normal derivative to duj. We know that du>= du>ili du>2 U 

du>3 U duj4, where

U s) =  7r s  

. U s )  == 0,
dull - <
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du>2
6 ( s )  =  7T 

6 (5 ) =  7T5,

du>3 =  - 

doji =  <

and s e  [0,1]. Thus for example

6 0 0  =  tt(1 -  s)

6 0 0  =  tt,

t i(s) = 0

&>(s) =  7r(l -  s),

do,\ _  A  dai
dvy ~  h i  dvi ’

where,

do* 2 2=  (gradai)aWl( 0 , - l )  =  ( - cos x siny, -  sinx cost/)awi(0 ,-1 )
OVx 7r 7T

2 2- ----sin(s7r) cos(0) = -----sin(.s7r),
7T 7T

ddi
dv2

2 2
(g radai)9u,2( l ,  0) =  ( - cos x siny, -  sinx cosy)aW2{l, 0)

7T 7T
2 2

=  — cos(7r) sin(s7r) = ---- sin(.S7r),
7r 7r

2 2
-5^  =  (grada1)9w3(0 ,1) =  ( - c o s x s in y ,- s in x c o s 2/)9a,3(0, 1)
ov3 tt7T

2 2
=  -  sin(7T -  s 'k ) cos(7r) = ------s in (s7 r ) ,

7T 7T

2 2
~  =  (gradai)9a,4(—1,0) =  ( - cos x s iny, -  sinx cos y W ( - l ,  0)
O V a ~  ~7T 7T

2 2
= ----cos(0) sin(7T — S ' K )  = -----sin(7Ts).

7T 7T
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So ^  |  sin(7T5), and B(s) = +  & )  =  7r. Thus we have

V>i =  —8 sin(7rs) • ti(£i(.s), (2(3), i)[sini +  cos t], (s, t) £ [0,1] x [0, T]

Similarly, we find that

0IIiniä-IItoII

and

V>4 =  [-12sin (7 rs)]u (^ i(s),6 (s ))i )[sinv/5i +  cos"^ 'i3>

V>6 =  [-24sin(37rs)]u(^i(s),6(-s).i )[sin3i +  cos3i])

v>7 =  [-16  sin(27rs) +  8 sin(47rs)]ti(^i(s), 6 (s ) ,  i)[sin y/lOt + cos \/l0 i] , 

and so on. In Example (2.5), we have chosen

From (2.24) we have:

V*i =  V’i .

^2 =  V>4, 

^3 =  V’e,

4 =  V»7-

Sn — cnkn(cos fcnT — sin knT)  — dn(cos fcnT +  sin fcnT ) 

4" f  [^(3 ) 4” knf(x')]cin(y')dy , n =  1 ,2 ,. . . .
Jfjj

In this example
2

01(3 , 2/) =  (0.1)— sin x siny7T

and

02(3 , 2/) =  0,
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so ci =  0.1, c2 =  c3 =  ... =  0, and di =  d2 — d3 =  ... =  0, also

f ( x ,y) = o, (x, y)eu>

h(x,y) = 0, ( s , y ) G w ,

so

Si = Ciki(coskiT — sinkiT).

But k\ = 1 and T =  ^ ,  so

Si =  (0 .1 )(— sin — ) =  0.1.

Similarly we find that

Si = 0, i >  2.



Chapter 3

Approximation

3.1 Introduction

In this chapter, we consider the problem of approximating an optimal control problem 

by a class of linear programming problems. The primal problem to be investigated is 

the following 

Minimize

where // G .A/i+(fl), the set of positive Radon measures on the given fi, and we want

to approximate (3.1) by a problem of the following form

Minimize

H ■ fo — ► Kfo)

subject to

(j,(^n) = a n, n — 1) 2 ,...,

/¿(G>) =  o-Gri ^ 11 •••> (3.1)

V ■ fo K f o )

subject to

fi(ipn) = an, n =  1 ,2 ,. . . ,  M i,

/x(Gr) =  aGr, r =  0 ,1 , . . . ,  M 2, (3.2)



Chapter 3. Approximation 59

which Mi and M2 are two given positive integers, in some cases one of them may be 

infinity. In this approximation we focus our attention on the maximum value of

where u*(/0) is the optimal value of the primal problem (3.1) and /x* ( / 0) is the'  ' <3(M! ,M2)
minimum of the problem (3.2); Q(M\, M 2) is the set of measures in yVi+(Q) satisfying 

(3.2).

We consider the approximations, however, from a more general case in which only one 

of the two positive integers Mi or M 2 are finite, to a particular case, in which both of 

Mi and M 2 are finite.

In Section 3.2, we discuss about

max \Ym,.(x , T) — <7i(a:)| (3.3)

where YMl(x, T)  is the terminal value of the solution of the optimal control problem 

which is determined by using only Mi constraints of the equations (3.1), and gi(x) is 

the final given value.

In Section 3.3, we will consider the value of

m a x |M* ( /o ) - i* ; (Mi„ i)(/o)l (3.4)

where M 2 is finite and Mi =  oo.

In Section 3.4, we consider the case when instead of using the monomials Gr = tr, r  =  

0 ,1 ,..., M 2 in the second equations of (3.2), we use a sequence of step functions { /s} 

whose linear combinations can approximate a function in Ci(i2) arbitrarily well, when 

i) =  [0, T] x [—1,1] and Ci(f2) is the subspace of C'(i)) which depends only on the 

variable t. This means that for any /  € C i(fl), there exists a sequence {/*} of simple 

functions in the subspace spanned by { f s} such that
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uniformly when s tends to infinity (see Hewitt and Stromberg [31], Theorem 11.35 and 

Bartel [2], Theorem 24.4).

Use of these simple functions { /,}  brings a remarkable advantage which is used in this 

section.

In the last section, Section 3.5, finally, we shall consider the value of (3.4) when Mx and 

M2 both are finite. In this case, in fact, we consider a sequence of finite-dimensional 

linear programming problems whose solutions approximate the solution of the optimal 

control problem (3.1).

Several authors have proposed and studied this kind of approximation, that is, approx­

imating an infinite-dimensional linear programming problem by a finite-dimensional 

one. It appears that the first attempt was done by Vershik and Temel’t [81], Temel’t 

[78] and Vershik [80], and then followed by many others. Here we employ the method 

that used by Dahleh and Pearson [9], Mendlovitz [47] and then developed in the work 

of Staffans [76]-[77].

In each section we will give some numerical results to show how accurate each proce­

dure is.

3.2 The first type of approximation

In Chapter 2 we considered the following one-dimensional wave equation

Ytt( x , t ) =  a2Yxx(x , t )

with the initial conditions:

Y(x ,0)  = f (x )  

Yt(x, 0) =  h(x),

and with the boundary conditions:

Y(0 , t )  = u(t) 

Y (S , t )  = u(t),
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where t € [0, T] — ► u(t) € 1R was called the control function. We defined the control 

u is admissible if it is Lebesgue measurable function on [0, T\ and

(a) u(t) e  [-1 ,1 ] a.e. for t e  [0, T],

(b) The solution of the wave equation corresponding to the given initial and boundary 

conditions satisfies the following terminal relations

Y ( x ,T )  = gi(x)

Yt{x,T)  = g2{x),

where gx(x ) € L 2(0, S)  and g2{x) e  L 2(0, S ). We assumed the control u be admissi­

ble, then the optimal control problem consisted of finding an admissible control u which 

minimizes the functional

T
/ [ « ( • ) ] = /  (3.5)

where / 0 €C(fi), the space of continuous functions on Q=[0,T] x [-1 ,1 ], with the 

topology of uniform convergence.

We showed in Chapter 2 that

Y(x , t )  =  Y1(x,t)  + Y2(x,t),

where

/ .\ v ' ' /■ a Tcnat . 7Tnat. . rrnxYi(x,t) = 2_j(An COS-J- + Bn s m —g - ) s m —̂ - ,
71=1

2 rs 7TA~=sL AO «n 1 ^ 1  «if,

B n =
2 rs

Sna I  h sin f é e

Y2( x , t ) — [  K ( x , t  — T)u(r)dT, 
Jo

tt

and
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where
^  . irnx . m a tK{x, t)  = 2_cn s m - ^ - s in —— .
71— 1

This control problem is then reduced to finding a measurable control function u(t) G 

[—1,1] for t G [0, T] which satisfies

[ T
/  ipn (t,u(t))dt = an,n  = 1 ,2 ,..., 
Jo (3.6)

and minimizes the functional (3.5), where,

ipn (t , u ( t )) =  -[1  -  ( - l ) n] (sin(ni) +  cos(ni))u(i)
7T

a n =  An — Bn -f an (sin(nT) — cos(nT)) +  — (sin(nT) +  co s(nT )),
Tl

n =  1 ,2 ,..., (3.7)

an and bn are the Fourier coefficients of gi(x) and <72(2 ) respectively in the expansion

of these functions over the interval [0,5] into the function sin(nx), n = 1 ,2 ,.....Then,

this problem is reduced again to the following one,

Minimize

M : /o — ► Kfo)  (3.8)

over the set Q of positive Radon measures as a subset of M +(Q.) (the set of all positive 

Radon measures on Ct) with the weak*-topology, such that

p($n) — o t j n  1)2,...,

p(G) =  aa, G € G(Q), independent of u. (3.9)

By Proposition 2.1, there exists an optimal measure p* in the set Q which satisfies the 

equalities (3.9) and for which p*(fo) <  p(fo), for all p € Q.

tt
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We assume Q(MX, M 2) be the set of measures in M +(i2) satisfying

pi i ’n) = OCn, n =  1, 2, Ml

p(Gr) = 0,G r , r = 0 ,1 ,2 , ...M2, Gr =  tr,

then we can prove the following proposition. 

Proposition 3.1 As M x and M 2 tend to infinity

tends to

rj(Mi,M2) = inf u ( /0)
<5 (Aii, M2)

V =  i ÿ  K /o ).

Proof. We prove this proposition in several steps,

(a) The sequence {rj(Mi, M2), Mi  =  1 , 2 , M 2 = 1 ,2 ,...}  converges as Mi, M 2 tend 

to infinity, (see [59] Chapter 3). Thus, the double sequence r](Mi, M 2 ) converges as Mi  

and M 2 tend to infinity, to a number, say, £.

(b) We prove that this limit (  equals 77, i n f q p(fo)- First we show that the double limit 

£ can be computed sequentially. It is known that

£ =  J im  [J im  V(M i ,M 2)\
M \ —*00 M 2—*00

provided that the l i m ^ ^  rj{Mi,M2) exists. We show that when M x is fixed and M 2 

varies, l i m ^ ^  rj(Mi,M2) exists; we have

Q(MU 1) D  Q(MU2) D  ... D  Q{Mi ,M 2) D  ...,

77(Mi ,1 ) <  r] (Mi ,2)  <  ... <  7/(M1,M 2) <  ...,

forM i =  1 ,2 ,.... The sequence {t](Mi , M2), M 2 =  1 ,2 ,...}  is nondecreasing and bounded 

above; it converges to a number, say, ((Mi),  thus

lim t)(Mi , M 2) =  ((Mi).M2—*00
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(c) The double limit (  can be computed sequentially. Define

oo
Q(M1) =  n  W , M 2);

M2 —1

then

C ^ )  = J im V(MU M 2) = inf u ( f0).
M 2—*co Q (M i )

We have

0 (1 ) D Q(2) D ... D g (A fi)  D ... D 0 ,

thus,

C (i) <  C(2) <  ... <  C(M i) <  ... <  I).

as expected, the sequence ( (Mi)  converges, necessarily, to the same number (  intro­

duced in (a), and so

(  < V (3.10)

(d) Let

then from

CO

p =  n  w > .
Aii =1

0 (1 ) D 0 (2 ) D ... D Q{Mi) D ... D 0 ,

we have 0  C P, and ( — lim^-»«» C(-^i) — infp Kfo)-

We can show that P C Q. If  p £ P,  then fi(tpn) = ocn, n = 1 ,2 ,.... Also if p £ P, then 

p(G) = clg for all continuous functions G independent of u in the subspace spanned 

by the set {G> =  tr, r = 0 ,1 ,...} , by linearity. This implies that we prove the equality 

p(G) = aG = Jo G(t)dt holds for all G £ C[0, T] and independent of u, since the 

set {G> =  tr, r =  0 ,1 ,...}  is dense in the space of all continuous functions G on the 

compact interval [0, T) and with the values in R, so for such functions G there exists a 

sequence {Gj } of functions in this subspace for which

sup |G(i) — GJ(£)|
[0,21
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tends to zero as j  tends to infinity. Then,

|/i(G ) — ao | =  |m(^ )  — o-o — V-{&) 4- oq,\

=  I /  [^ (0  — G^(t)]dfi -f a-G — a-ai I J n

<  T  ■ e( j)+ \aG -  aGo |.

The two last terms in this expression tend to zero as j  tends to infinity, (see [2], page 

316), while the first term is independent of j ,  thus p(G) =  aG, and then P  c  Q, so

Now from (3.10) and (3.11), we find that rj = £, and the contention of the proposition

Let YMl(x, T ), x e  [0, S] be the final state attained by assuming ¡i e  Q(Mi).  The 

question of whether the distance between Yux (x, T ) and gi(x), the given terminal con­

dition, in Lv (1 <  p <  oo), is small enough is a difficult problem for this equation, 

because, we believe, the lack of a damping term.

Assume be the infimum of the optimal control problem (3.1) which is de­

termined by using only Mi  constraints in the first equations of (3.1), by [85], for any 

e >  0 and an integer M i, we can find a piecewise constant control UMr, such that by 

using this control one can get within e of the minimum value /¿*(/0) in Zq, that is

where p*(fo) =  infq p(fo).

We can put together this result and those from Proposition 2.2 and indicate that given 

e >  0, we may chose Mi so that tends to satisfy the conditions of the problem. 

However, since Proposition 2.2 is based on the extraction of a convergent subsequence, 

it may be difficult in general to identify this control. In fact this result is as far as we can 

go in the search of an admissible control um! (•) that gives rise to a final state Ym1 (x , T ) 

near gi(x). In the especial cases as examples carried out in Chapter 2, we found that the 

desired final states pi (x ) ’s were approximated very well in L«, with only small values of

7} =  inf p(fo) < £ = inf fi(fo). 
Q *

(3.11)

follows. □

(3.12)
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M x. In the following example, we will show these matters by indicating the maximum 

difference between Ym^ x , T)  and gi(x), that is

for some examples in Chapter 2.

Example 3.1 Let

Ytt(x, t)  = Yxx(x,t),

the initial conditions are:

Y{x,0)  = f (x )  

yt(£c,0) =  h(x),

the boundary conditions are:

Y(0,t )  = u{t) 

Y ( v , t )  =  u(t).

We assume that the control function u is admissible, so the solution of the above optimal 

problem satisfies the terminal conditions (2.4) for some given functions gi(x), gi(x) 

and minimizes the functional I[it(-)] in (3.5). We showed in Chapter 2 that this optimal 

control problem can be reduced to the following one:

Minimize

P ■ fo — ► p(fo)

subject to

/¿(V’n.) — a ni n — 1 ,2 , ...,

/¿(G>) = aGr, r  =  0 ,1 ,..., (3.13)
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where from (3.7)

ipn(t, u(t)) =  cn (sin(nt) +  cos(ni)) u(t),

an = An - B n + ( - 1  r +1an +  ( - 1 )" +1^ ,
n

and A n, Bn, an, bn, cn are as in Section 2.1.

In chapter 2 we employed a discretization method to solve such a linear programming 

problem as (3.13) for various initial and terminal conditions defined in Examples 2.1- 

2.4, and then we used the associated pieciewise constant controls to draw the final states 

Y(x,  T). In the following table, we will show the maximum difference between Ymx (x , T); 

the obtained terminal value, and gi(x); the given terminal value, for each of these ex­

amples. In all cases we have chosen / 0 =  u2, Mi  =  15, while in Example 2.1, f ( x )  — 

sin(x), h{x) =  0, gi(x) =  0,g2(x ) = 0, and in Example 2.2, f ( x ) =  cos(x), h(x) =  0, 

gi(x ) =  0, gs(x) = 0, and in Example 2.3, f ( x )  = 0, h(x) = 0, gi(x) = sin(x), 

g2(x) = 0, and in Example 2.4, / (x )  =  0, h(x) =  cos(x), gi(x) = sin(x), and 

g2{x) = 0, when x € [0,7r].

Mi Example max\YMl(x ,T )  -  5 i(x)|

15 Example 2.1 1.07 x 1 0 '2

15 Example 2.2 1.43 x 10-2

15 Example 2.3 7.41 x lO '2

15 Example 2.4 5.20 x 10"2

3.3 The second type of approximation

In this section we consider the variation of M 2 in the following problem: 

Minimize
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over the set Q(M2) =  Dm i=i Q(M i ,M 2) of positive Radon measures as a subset of 

A l+(ft), satisfying

p(ijjn) = ctn, n = 1 ,2 ,...

p(Gr) =  aGr, r  =  0,1, Gr = tr,

where i/>n(f, u), and a n, n  =  1 , 2 , are known functions. Let p *q(m2) 4116 optimal

measure over Q(M2), that is, p* q̂m2)Uo) =  infQ(Ai2) /¿(/o), which satisfies

<̂3(Ai2)(V’n) =  a ni Tl — 1 ,2 ,...

V*Q(M2)(Gr) = aGr, r  =  0 ,l , . . .M 2. (3.14)

Here we want to find M 2 such that for a given e >  0, (3.14) is satisfied and

I ^ ( at2)(/o) -  inf p ( f0)\ < t  (3.15)

where Q is the set of positive Radon measures /x satisfying (3.9), and p*(fo) = infg p(fo). 

Consider the following Lemma from [33] (Appendix B.2).

Lemma. 3.1 Let f Q be a continuous function defined on a compact set ft C IRP, and let 

e >  0 be given. We can divide ft into a finite number of subsets, say, ft: , j  = 1 ,2 ,..., m 

of equal volume or measure such that for every x , x  6 ft j , j  = 1 ,2 ,..., m

|/o(a:) - /o ( a : ') | <  e.

Now suppose ci >  0 is given, then by Lemma 3.1 we can find numbers

0 =  to < ti < t 2 <  ... <  ti <  ... <  ifj =  7T (3.16)

and Borel sets Vi, V2, ..., V:, ..., Vs, forming a partition on U =  [-1 ,1 ], such that for 

any i = 1 ,2 ,..., R, j  = 1 ,2 ,..., S,

(M ') € («,«') 6 Vjt l f0( t ,u)  -  f o ( t \ u ) \  < £l. (3.17)
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Let

Kij — x ^j)> (3.18)

then
s s

X) Kij =  x I'j)-
j=l j=1

Now, we define

Fi(t,u) =  1 if (f,u ) G x i/

F i(i, u) =  0 otherwise,

then

+  +  F iiy -« (Mi> +  -  +  . ( _ , , ] * *

=  / x 2) =  X  ^);" [ii-littjx"

-  /¿«(Aiz)^)- (3.19)
J=1

We note that the functions =  1 , 2 are dependent on the time only. Fori =  1, 

we extend F% to the part of the i-axis for which t < t Q and call this extension Ff,  defined 

as

Fi(to — h) = F^(t0 +  h) =  F1(t0 +  h), 0 <  h <  A i =  t\ — to.

For i - R  we extend FR in a similar manner beyond t = tR, and call this extension FR. 

Let Fi be the function Fit i =  2 ,..., R -  1 and F? for i =  1, R\ then the Fi s have the 

following shape:
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Figure 3.1: The graph of Fi

Let P ™2 be the function of time consisting of the first M 2 +1 terms of the Chebyshev 

approximation of Fi, i =  1 ,2 ,...R. Since the se t{ l,i, for every t € [i0, t«],

satisfies the Haar condition (see [37] Chapter 6), thus it is a basis for P^ 2, and we can 

write
m 2

PtM2= J 2 f c r t r, i  = l ,2 , . . . ,R .
T=0

Since p *q(m 2) satisfies (3.14),

fJ'Q(M2)iGr') = ar> 71 =  1) M 2, Gr =  t ,

thus,

m 2 m 2

r = 0  r = 0

=  -  A (( ) l*  + 1  Fi(t)dt

=  Ai +  l l P ^ ( t )  -F i( t )]M

II
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where Ai  =  U — and J  =  [i0, ¿ä] - [0, tt]. 

We have

= A( + jf [J>"’(t) -  H t t i d t  +  ^ ( i i  -  />"’ ) = Af + i f 1,

where,

We define

where,

^ = Mg(* a)( £  -  o + / ; ^ M2 w  -

^ ■  =  * « ( 1 + 0 .

6*
Ai +  O

Then by (3.19) we have

E  H., = E  Jf« +  E  =  ScHM^Pi) +  *>.%<,<*,)(£)
J=1 J=1 j=l

8M2

=  ^ (M 2) ( ^ ) ( l  +  />f2) =  +  0 ( 1  -

=  Av.

A< + i f 2) (3.20)

Also we have

1 +  P,m2 =  £M2H  ■St J 1i j > (3.21)

where

£ f 2 =
1 +  Pm 2

1
,m 2

A i + 5,

=  1 +
SM̂

A /

Now we proceed to construct a piecewise constant control which approximates the ac­

tion of Pq(m2) on 1116 function / 0. Let Uj be an element of Vj, for j  -  1,2, ...S. Define
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u(t) = Uj if t € Bij, where

Bij — [ij_i +  ^  Hik, ti-1 +  Hik)-
k<j

Since those intervals for which — 0 are reduced to a point, they do not con­

tribute anything to integrals such as those in the definition of the numbers kj below, and 

can be ignored. Thus without loss of generality, we assume Hij >  0, i =  1 , 2 , R, 

j  =  1,2, ...S. With each piecewise constant admissible control u(-) we may associate 

a measure /¿u; if pq is the measure associated with the piecewise constant control con­

structed above, then

fo r i =  1 ,2 , j  =  1 , 2 , Then

(3.22)

where

Iij =  inf {fo(t, u) : (t , u ) E x Vj}

Sij = sup{/o (f,u ) : (t , u ) G [fj-i.fi) x Vj}.

If

then from (3.18),

thus
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and so,

Hij In Kij Sn ^ Tij ^  Hij S{ j Kijlij,

but from (3.21) K X] =  ( f42Hij, so,

Hn(hi  -  i f ' S . j )  <  hi -  Tn <  H ^ S n  -  £ "= /„),

or,

\ k  -  Tij\ < Hu max { |/ tf -  £ , ^ 1 , 1 $ ,  -  £«■/«!},

but,

m a x ^ j - £ " » ^ 1 ,1 ^ - - £ " = /« ! }

=  m a x { |/ i;i -  S i j  +  S i j  -  |, |5y -  I n  +  I t j  -  ( " ’ /¡¿|}

<  m a x {[«, +  (1 -  £ "* )£ ,! , |e, +  (1 -  £ " - ) / iJ|} ,

SO

\ k j  -  T i j \  <  H i j  {e, +  |1 -  (M m ax d iiy l, |Sy|)}

Adding all the inequalities in (3.23) with respect to i, j ,  we obtain

\ Jn fodp*Q(M2) -  =  l/4(M 2)(/o ) - ^ / o [ i , u ( i ) ] d i |

R S R S
< ei £  £  Hv  +  £  £  H'i\l -  i f *21 max(lJi i l , \Sij\)

i = 1 j=l t=l j = 1

R S
<  Cl ( < « - * o ) +  £ E  fiiill -  ̂ 1  maxd/,,1, \ S i j \ ) .

*=i j=i

We know that |1 — ¿f*21 =  thus

| l - ^ | m a x ( | / tJ| , |5 tJ|) =
I*"» I

max(|/1;|l|SlJ|).

(3.23)
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If we assume

m ax(|/y |, |<Sij|) =  Sij

then if s =  maxi3 we have

icAi2i

If we choose M 2 large enough so that

\ S M , \ <
5

i? S
/o [i, u(t)}dt\ < ei(tR -  to) +  ex 5 3  I ]  =  2ei(*n -  to)-

t= ij=l

This value of M 2 will be referred to as M \ . Thus, we have proved that by choosing M \  

large enough so that

| i f i  =  -  - i f 1’) +  j ^ P ? 1 -  F i ) it \  <

there exists a piecewise constant control u such that

I^Q(m2) ( /o) ”  Jj fo[tiu(t)]dt\ < 2ei(tR — t0). (3.24)

By a similar way if one assume

Kij =  p([t i-i ,U)  x Vj)

j=i

l/i«(M2)(/o) ~  J

then
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Define û(t) =  Uj if t £ B^ ,  where

Bij =  [¿¿_i +  53  Kik,U-i  +  53  Kik)i 
k<j k<j

with each piecewise constant admissible control u(-) we may associate a measure ¡iv\ 

then

=  L f 0(t,u)dpp =  I f 0(ttuj)dt
J B i j  x  Vj J  B%j

for ¿ =  1 , 2 , R, j  =  1 , 2 , S. Now

Kijlij ^  Lij ^  KijSij,

assume

Tij =  [  fodpT,d[t%~

SO

and

Kijlij < Tu < KijSij,

I Lij Tij I <  Kijt\.

Adding all the above inequalities with respect to i  and j , we find that

\p*(fo) -  -  *o). (3.25)

We assume M 2 =  M j. Let

L i j =  f  f 0(t,Uj)dt, i  = l ,2 ,. . . ,R, j  =  l,2,...,S,
JB„

where

Bij — [¿¿_i +  5Z Kik,ti-1 +  53  Kik),
k<j k<j

lij — (  fo(t, Uj)dt, i — 1 ,2 , ..., R, j  — 1 2 , S,
JB

and
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where

Bij — i +  ^  Hik, ti„i +  ^2  Hik), 
k<j k<j

and Kij and H\j respectively are defined with respect to fi* and f ^ q ^ y

where

I i j  H i j  ^  ^  H %1 S ij

IijKij ^  Lij ^  Kij Sij)

Iij  =  inf { f o ( t , u )  : (i,w ) € [i<_a> t^) x l ^ }  

SV,- =  s u p { /0( i ,u )  : ( i ,u )  <E [it-a .ii)  x  VJ}.

Since,

< t^ <-  K i]

T <  <  <?-<t; ~
Ki■i]

adding all the above inequalities with respect to j ,

<  £ i =1 llJ <  5 ..
2^=1 B tj

and

or,

But we have

<  5 ..-iV7 — v^5 T> — <Lj=i Aij

I i i<
/ a , fo[t,u(t)}dt

<Sij

r ^ J a . / oM M ] ^  ^  „

(î , î ') e  [it_ i.it), {u ,u )  e Vj,

We have

(3.26)

\fo(t,u) -  f o ( t , u ) \  < ei



Chapter 3. Approximation 77

so, | Sij -  Iij | < ei, and from (3.26) we have

„  / a , fo[t, Ù(t)]dt / A fo[t, u(t))dt—ei < --------------------------------- -----------<  d
A; A,

or

-  eaA i <  f  f 0[t,u(t)]dt -  f  f 0[t,u(t)]dt < eiAi.
J

Adding all the inequalities in (3.27) with respect to i = 1 ,2 , ..., R  we obtain 

- £ 1  (tR -  to) <  fo[t,u(t)\dt -  J^fo[t,u(t)]dt <  d ( i H  -  to),

or

J  f 0[t, ù(t)]dt -  J  f 0[t, u(t)]dt\ <  ei(tR -  tQ).

Now by the inequality

\A — B \ <  \ A - C \  + \ C - D \  + \ D - B \ ,

and from (3.24), (3.25) and (3.28) we have

W o )  -  ^ m 2) U o)I <  Im* ( / o)  -  j j o [ t , H t ) ] i t \

+ Imq(m2)( /o) -  Jjfo[i,y-(i)]dt\ +  [ Jj  /fj[i, uitj'dt  -  /„[i, u(t)]dt\

< £i(tR — ¿o) +  2£i (£r — to) +  £i(in — ¿o) =  4e1(t/{ — i0) =  4-Trd. 

Now if we want (3.15) to be satisfied, i.e., for a given e > 0

\p*(fo) — PQ(M2)(fo)\ <  e,

(3.27)

(3.28)

we must have
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so (3.15) is satisfied if M 2 is large enough so that,

=  !/•<>(«,)(« -  I f ' )  +  -  F)dt\  <  (3.29)

for i =  1 , 2 , 7 2 .  To estimate such positive integer M 2, we consider the following 

problem.

Assume 72 +  1 distinct points 0 =  20 < t\ <  ... <  U <  ... <  tj? =  tt and the functions 

Fi, i = 1 ,2 ,..., 72; which defined before, be given. If the function P ™2 consists of the 

first M 2 +  1 terms of the Chebyshev approximation of i =  1,2, ...72, then the error 

of approximation is

£ « * + )  =  + ( -  p^ W

where|| • || is L 1 norm in [0,7r], i.e.,

| |^ i -7 V ^ a|| =  ¡* \F i - P f * 2\dt.Jo

Since the set | l ,  t , ..., tM* j  forms a basis for P ™2 in any interval such as [0,7r], thus

m 2

PtM2 = £ / M r ,
r = 0

and so
m 2

EM3(Fi)±\\Fi -'£P irt, l  0 < ( < T .
r = 0

We define Hi(t), i = 2,..., 72 — 1 as follows:

77,(2) =

0 0 <  t < ti_! -  e 

¿ (2  -  U-1) +  \  2i_i -  e <  2 <  U-1 +  (

1 2i_i +  e <  2 <  2* — e

f^(2 -  U )  +  \  U — e <  2 <  2; +  e 

0 2i +  e < 2 < 7 r
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and define H\(t)  as

Hi(t)  =

0

m + i
i

2 ^ ( Ì - Ì l )  +  |  < 1 - C <

h  +  e <  t <  7T

and ÌTb (ì ) as

#*(*) =  <

0 0 <  i <  ifl_i -  e

¿¿(t — Ìr- i ) 4- |  Ìb - i — 6 <  i <  Ì r- i +  e

1 ìr~i +  e < t < 7 r - e

~ ( t  -7 r )  +  |  7 r - e < i < 7 r  +  e

0 i >  7T +  e

when e <  u is a positive number.

Figure 3.2: The graph of Hi(t)

Now

HR -  ^ " ’ 11 <  ll-p; -  flill +  ll-ff; -
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where

\\Fi ~  Hi II =  f  |F< -  Hi\dt = I Fi -  Hi\dt + r i+e I Fi -  Ht \dt
JO JO J t i - 1— e

+  /*’ e I Fi -  Hi\dt +  / ! '+e I Fi -  Hi\dt +  r  I Fi -  Hi\dt
J t i -  1+e J t i—e J t i+e

= 0 +  /  ,_1 6 1 Fi -  ffildi +  0 +  f t,+e I Fi -  +  0
Jti—i — e Jti — e

f t  t-i a rti-i+e A
=  /  | F i - f T i | d t + /  |F i - f i i | i i

J t i - l - e  J t i-j

+  T  | F i - H i | d t +  / t,+e I Fi -  # i |d i 
J t i —e Jti
1 1 1 1
- e  +  - e  +  - e  +  - e  =  e .  
4 4 4 4

Thus it is clear that as e —► 0, ||F; -  Ff*|| —» 0. We have

E m , ( F i )  =  ||ii -  P ^ \ \  <  e + lift -  i^ ll- (3.30)

From Propositions 3.4-3.5 in Appendix 3.6 we have

l i f t  -  = r  i f t  -  ^ i *  <  « . ( f t )  <  6» x ^ - ( ~ ) =«/o 2e 2M2 2eM2

Thus (3.30) reduces to the following inequality

37T2
< « + 2 ^ -  (3.31)

We now return to the main problem, from (3.29),

i«.M,i =  I/*«<«,)(£ -  - p"1) + -  i ; ) * i

< W («i)(ii -  ^"’ )l + I  IP"’ -  W t  = K ìm,)(Fì -  i^ ) |  + Em, (Fi),
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!/*«(*,)(£ -  =  I ~

< l  \Pf‘ ~ Fi\d»Q(M2) 
= EM2{E),

so

|<§f2| < E mA F )  +  EmA E )  =  2Em2{E),

and by (3.31),

\6E2\ <  2e +
3tt2
eMo

-- A-We assume e =  M 2 2, we may choose M 2 so large that e < then

l i f^ l <  ~~T +  ~ T -
M i  M 2

Thus in order (3.15) to be satisfied, we need to estimate M 2 such that for any i

1,2

T  +
37T <

M 22 M i

where A i = t{ — i t_i, and e >  0 is given.

e • At- 
47rs ’

3.4 Consideration of pulse functions in the second type 

of approximation

In the numerical examples of Chapter 2, instead of using monomials Gr = tT, we used 

piecewise constant continuous functions of the time only, called pulse functions', and 

in this way we found some accurate results. These signal time functions, defined over 

the time interval (0, T ), are like Rademacher and Walsh functions (see, for example, 

[82], [19], [3]) and can approximate any continuous function depending only on time 

arbitrarily well. Here we consider employment of such functions in the second type of 

approximation.
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The problem which considered in the previous section is 

Minimize

p :  fo — ► p(fo)

over the set Q(M2) of positive Radon measures satisfying

=  «n, U = 1, 2, ...

p(Gr) = aGr, r  =  0 ,1 ,...M2,G> =  f .

We looked for number M 2 such that for a given positive e >  0,

\PQ(M2)(fo) ~  inf/¿(/o)| <  e-

Now instead of using monomials Gr in the second equalities above, we use a number 

M 2 of functions of the time only, to replace the functions Gr , r  =  0 ,1 ,2 ,..., M 2, where 

these new functions will be denoted by f s, s =  1 ,2 ,..., M 2 and defined as

f s(t) =  1 U t e j s

f s(t) =  0 otherwise, (3.32)

with j s - [i0 +  (3 -  1 )d, t0 +  sd), and d =  j± ,  where A t  = tR - 10 = r  -  0 =  tt, and 

M 2 is in fact the number of subintervals in partition of interval the [0,7r],

These functions are not continuous, and two remarks need to be made concerning then- 

suitability:

(i) Each of functions / s, s =  1 ,2 ,..., M 2 is the limit of an increasing sequence of posi­

tive continuous functions { f sk},  so, if p is any positive Radon measure on i l  then p ( f s) =

OO p(fsk)-

(ii) Consider now the set of all such functions, for all positive integers M 2. The linear 

combinations of these functions can approximate any function in C'1(Q) [here C'i(fi), is 

the class of all continuous functions depending only on t] arbitrarily well, in the sense
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that the essential supremum (see Friedman [20], page 57) of the error function can be 

made to tend to zero by choosing in an appropriate manner a sufficient number of terms 

in the corresponding expansion ( see Rubio [59]).

By this replacement, the above problem changes to the following 

Minimize

P- f o  — ► p(fo)

over the set Q(M2) of positive Radon measures satisfying

pi.'fin) =  &ni It — 1,2, ...

p(fs)  =  as, s — 1 ,2 ,..., Af2, (3.33)

where f 3 is defined in (3.32) and as is the integral of f s on [0, T], i.e., as =  /0r  f sdt = 

j^-. Now the problem is to find M 2 such that for a given e >  0, (3.33) is satisfied and

\Pq(m2)Uo) ~  p(fo)\ < e. (3.34)

where in (3.34) p*Q(M2)(fo) =  infq(m2) p(fo) over the new set Q(M2).

The analysis leading to the second type of approximation can be carried out in the 

same way as before. We assume for any ex > 0 the partition in (3.16), i.e.,

0 =  to <  ¿1 <  t2 <  ... <  ti <  ... <  tjfi =  7T,

is such that U -  U-1 =  h > 0 (h is independent of i) where h =  ^  =  t- ^ -  =  By 

Lemma 3.1 there are Borel sets VX,V2 forming a partition on U = [ - 1,1],

such that for any i =  1,2, — 1,2, ...S', we have, as (3.17),

(i, i ) £ [f»-i, fi), (u, u ) e v jy \fo(t, u ) — /o(i , 1 )̂1 <  t x.

Assume M 2 is chosen such that h = n - ~ ,  for some positive integer n, then M 2 =  nR.
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Now, as before, we define

Fi(t,u) =  1 if (t , u ) e [ti-i,U) x U

Fi(t,u) =  0 otherwise, i = 1 , 2 , R,

and define Fi be the projection of Fi, i =  1 , 2 , i?, along the tx-axis. Let Pf*2 be the 

function of time consisting of a number M2 of / s, s = 1,2 ,,.., M2, in the corresponding 

expansion of Ft,i  = 1,2, described below:

For n  =  l,

m 2

Pi*2 =  E « . / . .  wliere ai =  1, a» =  0, if s ±  i,
5=1

so in this case, P ™2 = fi  = P .

In Figure 3.3, we compare the graphs of Fi and P f *2 in this case:

Ft
Ti

h

Figure 3.3: The graphs of Fi and P ™2
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For n = 2,

M 2=2R
p M 2 _  2̂ cxsf Si where a 2*_i =  a 2i =  1, a s =  0, if 3 ^  2z,

5=1

so in this case, P ™2 =  / 2;- i  +  Î 2i =  -F».

U-l

Figure 3.4: The graphs of Fx and P ™2

For n = 3,

M 2=3R

Pi*2 =  S  a */s> wiiere a 3i-2 =  <*31—1 =  a 3i =  1, a 3 = 0,
5=1

so in this case, P ™2 =  / 3»-2 +  /31-1 +  / 3t =  F i-  
The situation is the same for n  =  4 ,5 ,.... Thus,

pQ^M^iPi*2) — PQ(M2)(Pi) — Jj Pidt = Ai =  h, 

and as in the analysis of previous section

=  a* -  ^ M2) +  /  [ ^ M2( 0  -  % ) ] *  =J J

5 7  ̂2i -  1,

t

otherwise

Now, by using (3.21), (3.22), (3.23), (3.24) we can find a piecewise constant control u
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Figure 3.5: The graphs of Fi and P ™2

such that,

l/4(Jii2)(/o) “  ^/o[<,u(<)]dt| <  ei(<b -  ¿o). (3.35)

As we proved earlier in this chapter, we can find a piecewise constant control u such 

that

Now from (3.17), by assuming t € [U-u U) and u e  Vjt and using (3.26), (3.27), and 

(3.28) we find that

~  Mq( / o)I ^  3 irei.

If we want (3.34) to be satisfied, that is for a given e >  0,

l/X<3(Ai2)(/°) — Mq C/o)! ^  e>

we must have ei <  So for a given e >  0, (3.34) will be satisfied if we can find 

the positive integers R  and S, where R  defining the following equidistant partition on

(3.36)

M ,

0 =  io  <  tl < h  <  ... <  ti <  ... <  tR =  7T

h =  U — ti-x, i — 1 ,2 ,..., R, and S  denoting the Borel sets Vi, V2, ..., Vj, ..., Vs, a
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partition on U = [— 1,1], such that for any i =  1,2, j  = 1,2, ...,S , we have

( t , t )  ( u ,u )  e V j ,  \ fo ( t ,u )~  fo(t ' ,u)\  < (3.37)
07T

Now we can choose

M 2 = nR,  (3.38)

where n  is a positive integer. It is clear that the best choice of M 2 is M 2 =  R. Consider 

the following examples.

Example 3.2 In Example 2.3, we assumed / 0 =  u2, where u g [-1 ,1 ] and t  g [0,7r]. 

Suppose e >  0 is given and we want to find M 2 such that

l/4(M2) ( /o ) - in f /x ( /0)| <  e.

We divide U = [-1 ,1 ] into S  equidistant partitions Vjf j  = 1 ,2 ,..., S  of length k,

i.e., d(Vj) = k and [0,7r] into R  equidistant partitions [¿¿_i,tt ), i =  1,2, . . . ,R  where 

k = A u = and h = A t  = ^  such that by (3.37)

( u ,u )  G Vj,(t , t ' )  e [ti-i,U) | / 0(u) -  / 0(u ')| =  \u2 - u 2\ <
6TT

Since / 0 =  u2 is independent of t, for a given e >  0, we may choose R  = 1, and the 

length k small enough such that

( u ,u )  € Vj,(t , t ' )  e  [t0, tR) \fo(u) -  fo{u)\ = \u2 - u 2\ <
37T

Now by (3.38), we have M 2 = n R  — n  where n  can be any positive integer.

Exam ple 3.3 In the above example we assume f 0 = ut, where u e  [-1 ,1 ], and t G

[0, 7r].

Again we divide [-1 ,1 ] into S  equidistant partitions Vj of length k and [0,7r] into R
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equidistant partitions U-i) of length h where k =  |  and h = such that by (3.37) 

( u ,u )  € V j , ( t , t )  € [ ii- i.ii) . \fo(t,u) -  f 0( t ' ,u ) \  <  ei =

To find &, h, we have,

| / 0( i ,u )  -  f o ( t , u ) \  = \tu — t 'u \  = \ t ( u - u )  + u ( t - t ) \

<  |i ||u  — u I +  | t / | | i  — t'\ <  7r| u  — u |  +  11 — t'\ <irk + h, 

now by assuming, for example, k < ifc, h <

\ t - t ' \  < h, \u — u \  < k, \ fo ( t ,u )~  f 0(t',u'\ <  d  =
07T

but/i =  |  andfc =  |  <  f^ .so  R  > ^ a n d S  >  If, for example, we are going

to find M 2 such that by approximating p*Q (/ 0) with the solution of linear programming

(3.33), (Ug(M2)(/o)» absolute value of error be less than 0.05, i.e.,

lAt^(Af2)(/ o ) —  /¿gi/o)! <  e =  -  x  10 x ,

we need to choose e\ =  — =  so R  > ^  =  1207T2 «  1185. Now by (3.38) 

M 2 = nR,  thus we can choose M 2 =  1185.

3.5 The third type of approximation

In this section we are going to construct a method to estimate the value of p*Q ( f 0) when 

Mi  and M 2 both are finite positive integers. This method does not give the exact value 

of the optimal solution but enables us to find an approximate value for it. First of all we 

change the original problem (3.1),

Minimize
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subject to

K^n)  =  On, n  =  1 ,2 ,. . . ,

fj,(Gr ) =  aGr1 r  =  0 ,1, . . . ,

to a district linear programming problem, this metamorphosis can be done by using sev­

eral propositions and a theorem. The new linear problem will have infinitely many con­

straints and variables and of course its solution is /¿q( /0). Now if we limit the number 

of nonzero variables in this metamorphosed problem and solve a semi-infinite linear 

programming problem, with finite number of variables but infinitely many equations, 

then the solutions that we get are feasible for the primal one, hence, they are superop- 

timal solutions, i.e., the value fJ-q(fo) lies below of these solutions.

If instead we drop all but only Mi  and M2 + 1 equations in (3.1), then we get the fol­

lowing semi-infinite linear program 

Minimize

p : f o  — ► p{fo)

subject to

/ i (V ’n )  =  « n ,  Tl =  1 , 2 , . . . , M l

p(Gr) = aGr, r -  0 , l , . . . ,M 2.

We call the solutions of this new reduced problem as The sequence

{^Q(Afi,Ms)(/o)> Ml = 1 ,2 ,..., M 2 =  1,2, ...} ,

is a nondecreasing convergent sequence bounded above by the primal optimal value 

p*(fo) (see Proposition 3.1), so any term of this sequence is a lower bound for /x*(/0). 

By using the both solutions at the same time, one can get an upper bound and a lower 

bound for the optimal value /Xq ( / 0). The difference of these upper-lower bounds gives 

the missing error in the calculation of p*Q(fo). To specify the method we consider the 

variation of Mi  and M 2 in the following problem
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Minimize

A*: fo — ► Kfo)

over the set of positive Radon measures Q{Mi, M2) as a subset of such that

MV’n) =  <*n, 7 1 = 1 , 2 ,

/i(Gr ) =  aGr, r  =  0 ,1 ,..., Ma, Gr =  tr (3.39)

where V»n(<,«),aiidan,n  =  1,2 ,..., M u  are known functions and ft =  [0,7r] x  [-1 ,1 ]. 

Let Mq(M!,m2) be the optimal measure over Q(MU M 2), that is, for which p*Q(Ml,M2)(fo) = 

inf<?(AiliAf2) fi(fo) and which satisfies (3.39). As we proved in Section 3.2

= ' ‘« (A )’

where Q is the set of positive Radon measures satisfying

/i(V’n) =  «n, 71 =  1,2 ,...

fi(Gr) = aaT, r  =  0 ,1 ,....

For given positive integers Mi, M 2, we want to find e >  0, such that Pq M̂lM2) satisfies 

(3.39) and

l/iQ(Mi,Ai2)(-M ~  ^ q ( / o)I ^  e- (3.40)

The value e in (3.40) is the estimated error in approximating the primal value Pq(f0)

by
It is assumed that the first function appearing in the set of second equalities is G0 =  1

m

and as we defined before ac0 = f0 dt = T  =  7r, so we define Q as the set of positive
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Radon measures satisfying

/¿(l) =  T =  7T 

fltyn) = (Xn, . n =  1 ,2 ,...

MGr ) =  aGr, r  =  1 ,2 ,.... (3.41)

Now we construct a method to find an approximate solution for (3.41). This method is 

related to some methods appearing in [80], [76], [77] and [9]. In this construction we 

follow two basic steps:

(i) F irst step

Here we will describe a method to find a lower bound for /¿q ( / o). Assume that Fi = 

1,F 2 — '¡/’I » =  0Mi)F sii+2 =  Gi , . . .,Fm1+m2+i = Gm2) thus Q(M i , M 2) is 

the set of positive Radon measures on fi satisfying

fi(Fi) = ai, ai = ir,i = + M 2 + l.

Proposition 3.2 Let the functions Fi,F2,..., Fm1+m2+i be continuous on a compact 

Hausdorff topological space fi, with F\(Z)  =  1, Z  e  fi, and let Q(Mi, M 2) be the set 

of positive Radon measures on fi, Q(M i ,M 2) = {p £ A t+(fi) : p{Fi) = ai , i  =  

1 ,2 ,..., Mi  +  M 2 +  1} with cci >  0. Then if Q(Mx, M 2) is nonempty, it is a compact 

convex subset of <M+(fi), and if Pq(mum2) is 811 extremal point of Q(Mi, M 2), then it 

is of the form
M \  +JW2 +1

/i <3(Aii,Af2) = < * « ) >  Zi E Q, ai > 0
1=1

where 8{Zi) is the atomic measure with support the singleton set {Z i j  .

Proof. See [55] and [59]. v □

Using Proposition 3.2, the minimization problem (3.39) changes to the following one: 

Minimize
M1+JW2+I

^ Q { M i , M 2) { f o )  =  X /  a i f o ( Z i ) >  Z i E Q , , a i > 0  
i=1
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subject to

.M1 +M2 + 1

ai =  ir =  a 1 
i= l

Mi -|-iW2 "I-!
=  a j+i> j  =  1 ,2 ,. .. ,  M i

A4*i‘i~A4'2"l-l
^   ̂ a,iGr ( Z i)  — olqt , r =  1,2, . . . ,M 2
t=l

Since we have not used discretization, this problem sets up a semi-infinite linear pro­

gramming problem; the Z^s  are in the set fi but there are only a finite number of con­

straints. Since (3.42) contains less restrictions compared to the original problem (3.41) 

and since the number of these restrictions increases by increasing the number of vari­

ables, it is clear that the corresponding optimal values of the truncated problem (3.42) 

form a nondecreasing sequence, bounded from above by the infimum of the original 

problem posed on Q (Proposition 3.1). Therefore the solution of (3.42) gives us Pq(Mi m2)( /o)> 

which it is a suboptimal solution, i.e., it is a lower bound for the primal solution ( / 0).

(ii) Second step

To find an upper bound for p*Q(fo), we need to prove the following proposition.

Proposition 3.3 Let u> be a countable dense subset of ii. Given e > 0, a measure 

v £ M +(u>) can be found such that

l^q(Mi,M2)(/o) — K /o)l <  e 

l/xQ(Aii,JW2)(-^*) ~  u(Fi)I <  e > 

¿ =  1 ,2 ,..., Mi  +  M 2 +  1

and

Proof.

Ai"i +A/2+1
v =  ^2  akS(Zk), Zk £ u>

k = i

The proof is same as that of Proposition III.3 in [59]. □
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Let P (M 1, M 2, e)  C M N be the set of N  ordered tuples (a i, a2, a^)  satisfying

ai >  0

l £ « i -  tt| <  e'
4= 1

N

\ ai'tl’A z i) -  ai+il ^  e\  i  =  2> •••» Mi
4= 1

N
1£  -  ogv I <  e , r  =  1 , 2 , M 2t (3.43)
1=1

where Z; e  u, i =  1 , 2 , TV and u; is a dense subset of £2.

Theorem. 3.1 For every e > 0, the problem of minimizing the functional

1=1

on the set P (M i , M 2, e)  has a solution for N  — N (e )  sufficiently large, the solution 

satisfies

N

/ig(MllM2)(/o) +  p(e ) ^  Z ]  “ifo(Zi) <  PQ{MuM2){fo) +  e
4= 1

where the non-positive p(c)  tends to zero as e tends to zero.

Proof. The proof is same as that of Theorem III. 1 of [59]. □

The parameter e appearing in the Theorem 3.1 can be considered as the error present 

in numerical computation of the expressions involved in the definition of the set P (  Afi, M 2, e'). 

When setting up the linear programming problem akin to the theorem, it was assumed 

that e is equal to zero.

By this theorem our linear programming problem consists of minimizing the linear form

N

PQ(MltM2)(fo) =  Y ^ aifo(Zi)
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over the set of coefficients a; >  0, subject to

N

l >  =  7r =  a i
t=i
N

}   ̂ =  ^ j+ ij J =  1,2, ...,M i
i=i
N

J£ a iGr{Zi) = aGr, r  =  l ,2 , . . . ,M 2, (3.44)
t=i ■

where Z; 6  w; a dense subset of i2. Define coN =  A: =  1 ,2 ,..., N},  then it is 

obvious that wn C u>.

Assume

Sh k  =  { +  ~— 1 +  v  +  V y)l> * — 1>2,• ••>#> j  — 1»2,.
(i — 1 )7T

H K K ; K

where H  and K  are positive integers, then u> = Uh&k >i Sh k - Now let A be the follow­

ing transformation

A : N x N  — ► JV

defined by A (a,.;) =  H (j  — l) + i , i  = 1,2, j  = 1 ,2 ,..., K,  and let the set 

uiM = { Zi , l =  1,2 ,..., M  =  i f  If}  C u  be the set of points that are defined as

, \ / * (* - 1 )*  , 1 2 ( 7  — 1).
Zi =  Zx(i,j) =  Z(U,Uj) =  ( —  -I — , - 1  +  —  H----- — — ) G

i =  1 ,2 ,..., if , j  =  1 ,2 ,..., i f

where Z =  H (j  - 1 )  +  i; for sufficiently large i f  and K,  the set u>M will contain the set 

U>N-

Now we assume that M\  and M 2 tend to infinity, thus in the linear programming prob­

lem (3.44), N  tends to infinity, and since ujn  is contained in u>M, so M  =  i f K  tends to 

infinity. Once M i, Af2, N  tend to infinity, the problem (3.44) changes to the following

one
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Minimize
CO

y ;  o>ifo{Zi)j € o>, a; >  0
t=i

subject to

53 aj =  7r =  a x
t=i
oo
'y ®j'+l yj =  1> 2, ...
t=l
oo

2  =  OGr , r  =  1 ,2 ,...,
i=i

(3.45)

when u> =  \Jh&k >i Sh k -

If the set Q is non-empty, then the solution of (3.45) is Pq( /o)- The new linear program­

ming problem (3.45) is an infinite-dimensional linear programming. To find an upper 

bound for the solution of (3.45), we restrict the variables in (3.45) while the constraints 

are still infinite, i.e., we consider the following problem 

Minimize
N ’

5 3 a*/°(^i)> Zi E u}, a i > 0  
1—1

subject to

N 1

53  ai =  7T =  «1 
i=l
N ’

5 3  ( Z j ) = ctj+hj =
t=i
N ‘

51 (Z%) =  C(jr , r  =  1 ,2 ,.... (3.46)
t=i

In fact, in (3.46), we restrict the number of nonzero variables to N'  and we want to 

solve again a semi-infinite linear programming problem with infinitely many equations. 

The solutions that we get are feasible for the primal problem (3.45), hence, they are 

superoptimal, i.e., the values of the objective function of (3.46) lie above the primal 

value, so we can get an upper bound for the primal value /¿q( / 0).

Although it is clear in principle what we should do, but still two major obstacles re­

main: How do we solve the truncated problems (3.42) and (3.46)?



Chapter 3. Approximation 96

Let us first discuss the solution of the problem (3.42). As mentioned before, this prob­

lem is a semi-infinite linear programming problem. We have chosen here a method 

due to Glashoff and Gustafson (see [24]) to solve such a problem. This is an iterative 

method and it consists of six steps. The most difficult problem encountered in using this 

method was that of finding an initial solution from which one can start the method and 

find successive values towards the minimum. This was done here by means of finite­

dimensional linear program, obtained by discretization. In step (E3) of the method, we 

used the AMOEBA routine ( see [52]) based on Nelder-Mead [50] to find the minimum 

of a function of several scalar variables. Of course, since we had a constrained domain 

ft =  [0,7r] x [-1 ,1 ] in this minimization, we used the following transformation from

[4],
T  = 7T —  7T s i n 2 t

i? =  1 — 2sin2u.

The situation is more complicated for the problem (3.46). In fact we did not find in 
literature any method to solve such kind of problems, except in special cases, where the 

semi-finite problem (3.46) changes to a finite-dimensional one. (e.g., see Mendlovitz 

[47], Staffans [76]-[77]). We attempt here a method to find an approximate value of the 

solution (3.46), (see [9]).

The dual of the problem (3.46) is as follows 

Maximize
00

»=1

subject to

oo

E A W )  £  A (Z i)
1—1

OO

<  / o(Z j )
¿=1

Y^PiFi(Zw)  <  / q(Z jv'))
1=1

(3.47)
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where the Fi’s are the known functions ^ ’s and Gr ’s.

We restrict once more the variables, this time in (3.47) that is, we assume

Pi = 0, i > M

for some positive integer M.  So this new problem is as follows 

Maximize
M
'EfiiOi
1=1

subject to

/3iFi(Zi) +  ... +  Pm Fm (Z i ) <  fo(%i) 

fiiFi(Z2) +  ... +  Pm Fm (Z2) <  /o(-^2)

P\F\{Zn ') +  +  Pm Fm (Zm') < / o(Zni). (3.48)

Thus in (3.48) we have restricted again the number of nonzero variables. This new prob­

lem is a finite-dimensional linear programming problem with finite variables and con­

straints. The solutions of this final problem are a lower bound for the solution of the 

semi-infinite problem (3.47) (problem (3.47) is a maximization problem ). Now let the 

number of variables M  in (3.48) increases, for larger value of M  the value of objective 

function in (3.48) increases; if we assume that the value of the objective function of 

(3.48) in this case is /m ,W'(/o )» then by increasing M  we give rise to successive values 

of lM,N’(fo)- Since the sequence {/m ,w '(/o ), M  = 1 ,2 ,...}  converges to superoptimal 

solution of (3.47), one can find, by increasing M , an approximate value of the super- 

optimal to any desired accuracy.

By using the both solutions of (3.42) and (3.47) at the same time, we have access to an 

upper bound as well as a lower bound of the optimal value p*Q ( / 0), and the difference 

of these upper-lower bounds gives the missing error bound that permits one to truncate 

the problem and gets within e of the optimal solution.

To illustrate the method, we consider the following example. Note that N 1 can be any 

positive integer for which we can find a feasible solution in (3.48). In the next example,
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we have chosen it as N' = 800, which is in fact the number of the points in discretiza­

tion of fi.

Example 3.4 Consider the following one-dimensional linear wave equation (Example 

2.3)

the initial conditions are:

F (x ,0 ) =  f ( x )

Yi(x, 0) =  h(x),

and the boundary conditions are:

Y(0,t )  = u(t)

Y (S , t )  = u(t).

The problem is to find the admissible control u(t) such that at t =  T  =  tt,

Y ( x , T ) =  sin(a;)

Yt{x,T) = 0,

and minimizes the functional I  — £  u(t)2dt. This control problem is reduced to the

following one

Minimize

P ’-fo  — * K /o )

over the set Q of positive Radon measures such that,

/¿(V’n) =  OCn, n = 1 ,2 ,...,

Kfs( t ) )  = K  3 =  1, 2,...

/o =  u2,i(>n (t,u(t)) = \  (sin(2n -  l ) t  +  cos(2n -  l)t)u(t) ,  an = - a n c o s ( (2 n -  

l)7r), where an is the Fourier coefficient of sin(x), n  =  1 ,2 ,..., f s(t) is defined as (3.32)
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and bs =  f s(t)dt, s — 1 ,2 ,.... In Q(Mi,  M2); a subset of positive Radon measures 

of M +(il) satisfying in (3.39), we assume =  6, M 2 = 10, so as Example 2.3

01 =  (sinf +  cos t)u 

0  2 =  (sin3t +  cos 3 t)u 

0 3 = (sin 51 +  cos 5 t)u 

■ 04 =  (sin 71 +  cos 7 t)u

05 =  (sin 9i +  cos 9t)u

0 6 =  (sin l i t  +  cos l l i ) u

and

/•(*) =  ‘
1

0

(s —1)7T 
10 < t <r — 

-  1 <  10

otherwise

Thus the linear programming problem akin to the (3.42) is as the following 

Minimize
16

subject to

16

'y y Qj 0 j(^ t)  j  1 ,2 ,..., 6
1=1 

16

Y ^ c i i f s ( Z i )  = bs, s =  1 ,2 ,..., 10,
t=i

cii > 0, Zi e  ft =  [0, tt] x  [-1 ,1 ]. Of course we do not need £j® i <n =  it, since the 

last equalities automatically give this result.

This is a semi-infinite linear programming problem with a suboptimal solution. For 

treating this problem numerically, we choose here the simplex algorithm of Glashoff 

and Gustafson. To start the algorithm one need a basic set from which can be iterated 

toward the minimum. Here we find a basic set by means of a finite-dimensional linear 

program obtained by discretization. We cover the set O =  [0,7r] x [—1,1] with a grid 

by taking m i +  1 and m 2 +  1 points along the i-axis, and u-axis each separately in the 

ordered mentioned. These points are equidistant of ^  and ^  respectively. Now il is
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divided into N  =  m i • m 2 number of equal volume rectangles fij, j  7= 1 ,2 ,..., IV, 

and Zj — (t j,Uj) is chosen as the center of Qj. We assume mi — 10, m 2 =  10, so 

N  = 100. Then a finite-dimensional simplex program is run, with 100 variables and, 

of course, 16 constraints. The minimum obtained is 0.807839 with only 16 variables

^3 0 ) 0 3 9 ) O40, O48, O49, 057, CI58, 0 6 6  , 0 67 , O71, «75, Osi, 0 8 2  , 0 83 , 084, a85

which are nonzero. Now for the basic set we choose

■Si =  (¿30, 030) 

52 =  (¿39,039) 

•S3 =  (¿40 , O40 )

54  =  ( ¿4 8 ,  0 4 a )

55 =  (¿49,049)

5 6  =  (¿57,057)

57 =  (¿58 , 058)

58 =  (¿66, 066)

•S9 =  (¿6 7 , O67 )

197T
~20
17tt

20
197T
"20~
157T
"20"
17tt

=  ( - 0.5 ,

=  ( - 0 .3 ,

=  ( - 0 .3 ,

= ( -0.1,
=  ( - 0 1 ’ 20 

= ( ° - 3' ^ )

)

)

)

)

)

sio =  (¿71, 071) =  (0.5, — )
97r

sn  =  (¿75, 075) =  (0 -5 ,^ -)

•S1 2  =  (¿8 1 , o 8i)  =  (0 .7, — )

37T
■S1 3  =  (¿82,082) =  ( 0 . 7 , — )
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•S14 =  (i83,«83) — (0.7, — ) 

s 15 =  (¿84, «84) =  (0.7, — )
9tt

■ S16 =  (¿85, «85) =  (0.7, —  )•

Then the simplex algorithm of Glashoff and Gustafson is applied by using this basic set, 

and after several iteration the value of 0.7853981 is resulted as the best improvement for 

the value of objective function. So

M(6,io)(/o) =  0.7853981,

and this value is a suboptimal value, i.e., it is a lower bound for /¿q ( / o).

We apply then the method introduced in this section for the estimation of a superoptimal 

solution for the problem (3.47). We start to produce successive values of ¿ m ,j v ' ( / o )  by 

increasing M  and using the solutions of the linear programming problem (3.48) in an 

appropriate manner by choosing right functions ifti’s and f s ’s. Note that for a successful 

termination of this scheme we require that the following error test for all values of M  

and M '  to be greater than a positive integer N,  be satisfied,

\ lM ,N '(f o )  ~  lM ',N '{ fo )\ -  2 X lO"71)

where n  is a positive integer and indicates the correct significant digits in the values of 

lM ,N '( f o )  (see [7]). Of course the scheme also terminates if a feasible solution is not 

found.

To get an overview of this method, we show the results of the solutions of the linear 

program (3.48) for various numbers of M,  in the following table.
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M lM,N'(fo) =  E^=l O-jfo(Zj) M W ( / o )  =  E j i i  ajfoiZj)

16 0.7855724 160 0.8076010

20 0.7856818 170 0.8110139

30 0.7860472 180 0.8115679

40 0.7865888 190 0.8126507

50 0.7874906 192 0.8132239

60 0.7884763 193 0.8167052

70 0.7900899 194 0.8167381

80 0.7908173 195 0.8174612

90 0.8003187 196 0.8175006

100 0.8014668 197 0.8191731

110 0.8016821 198 0.8191749

120 0.8019248 199 0.8202239

130 0.8021950 200 0.8202265

140 0.8026118 201 0.8202269

150 0.8040056 202 0.8202272

We did not find feasible solution for this problem when we increased M.  In Figure 3.6, 

we show the graph of the function /m ,w '(/o ) in term of some values of M,  as a piece- 

wise constant function. Since from the number N  =  202, by choosing M  > N,  we did 

not find feasible solution, so the final point of the sequence {1m ,jv'(/o )} is the number 

0.8202272, i.e., the sequence {/m ,jv'(/o )} converges to 0.8202272, which this number 

is a superoptimal value.

Therefore, we have found a lower bound as well as an upper bound for the primal so­

lution //q( / o), that is

0.785398 < ifQ( f0) <  0.8202272
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° 0 .0 0 8  0 . 34-0 0 .6 7 2  1 . 004- 1 .336  1 .666  2 .0 0 0
M A x i s  ( 1 0 e 2 )

Appr value ----  Upper bound

Figure 3.6: District graph of I m ,n <Uo)

In Example 2.3, with M x = 6, M 2 =  10 we found p*Q(fo) «  7.903563 x 10-1 , that the 

most absolute error in this computation is

d = |7.903563 x 10_1 -  0.8202272| =  0.0298709.
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3.6 Appendix

Rem ark. If the function f ( x ) satisfies

|/ (* i )  “  / M l  <  K \x i ~  *2!“

for xi,  x 2 € [a, b] and a > 0, then f ( x )  is said to satisfy the Lipschitz condition of 

order a  with constant K  on [a, b].

Proposition 3.4 Let the numbers

0 =  ¿0 < U < ••• < U <  ... <  ¿R =  7T 

define a partition in the interval [0,7r]. Then the functions Hi(t) defined as

0 0 <  t < ti-1 -  e

— t i -1) +  |  t i -1 — e <  t <  t i-i  +  

Hi(t) = 1 t<_i +  e <  t < ti -  e

£ ( t  -  U) +  \  t i - e < t < t i  + e 

0 ti + e < t < tt

for i = 2 ,3 ,..., R -  1, and Hx{t) defined as

Hx(t) =
¿(0 +1

t < —e 

—e < t < e  

e < t < t x — e

~2̂ {t — ti)  +  |  t x — e <  t <  +  e

0 ti +  e < t < 7 r

and iiji( i)  as
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0 0 <  t < tR- 1 -  e

Ye{t -  tR- i ) +  \
HR(t) = 1

2 7 ^ - ^ ) +  I 
0

tR-1 — e <  i <• iü - i  +  e 

î r _ i  +  e < i < 7 r  — e  

7T — e < i < 7 r  +  e 

i  >  7T +  e.

are satisfying the Lipschitz conditions for t G [0,7r],whene <  ~ ~  is a positive 

number.

Proof. We choose a  =  1 and K  =  thus iïi( i) ,  i = 1,2,..., i? will satisfies the 

Lipschitz condition if

|tf,(r1) - . 8 i(T2) | < i | T 1 - T 2| (3.49)

for every tj <  r 2 and r i, r 2 € [0,7r].

1. It is clear that if t i , t 2 G [0, i;_i -  e] U [i* +  e, 7r] then (3.49) is satisfied.

2. If n  G [0, <¿-1 -  e] U  f t  +  e, *] and r 2 6 [i»-i +  e, U -  e] or r 2 G [0, t ^  -  e] U  

[¿i +  e,7r] andri G [i*_i +  e, — c] then |J3i(r1) - f r i(r2)| =  l a n d | r i - r 2| >  2e, 

or lTl~T?l >  1, thus

|/ f i( r i ) - i 3 ' i (T2) | < i | T I - T 2|.

3. If Ti G (¿¿-1 — e,U-1 +  e) and r 2 =  ¿¿_x +  e, then from the following shape

^  or’ h,(t2)-h,(Ti) =  (since ^  case # ( r 2) =  1), thus

IHi{T2) -  H i i n )| =  |r2 -  n |  • = Ye \T2~  Tll-
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Figure 3.7: The graph of Hi(t)

4. From above it is clear that if tx G [i*_ i -  e, i» _ i +  e] and r 2 €  [i»_ i + e,U — e] 

then (3.49) is satisfied.

5 . If t\ G (ti~ i  — e , U- 1  +  e] and r 2 G (¿ ¿ -i — e , i j _ i  - f  e ] , then from the following 

shape

Figure 3.8: The graph of Hi(t)

H ì ( t 2 )  _ T y —g  nr H ì ( t 2 ) - H ì ( t i ) _
Hì{ti )  r i - g ’ ’ Hi(n) or \Hì(t2) -  H i r , )  | =  |ra -  n |  •

but so

H1(t2) ~ H 1(t1)\ = T2 ~  Tx|
2e

6. If r i <  ¿¿-I — e and r 2 G (U-i -  e, i;_i +  e], then from the following shape
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Figure 3.9: The graph of Hi(t)

-  «i (Ti ) |  =  | fli(Ti)| .  but, 1 i  SO

IfliMI = < ]I~ L-

7. Proof for other choices of t\ and r 2 turns back to the proof for one of the above 

mentioned cases. □

Proposition 3.5 Let en( / )  now denotes the minimax error in approximation of the func­

tion /  e  [a, b] by an algebraic polynomial of degree <  n. If /  satisfies the Lipschitz 

condition with constant K  and order a, then

e , ( f )  <

Proof. See [53].

We recall that in Proposition 3.5, en( f )  = m inm axa<x<b | /  -  Pn(x )|.

□



Chapter 4

The Global Control of Nonlinear Wave 

Equations

4.1 Introduction

In Chapter 2 we introduced an approach for the treatment of boundary control problems 

associated with linear wave equations, based on the replacement of the classical opti­

mization problem by one in measure spaces. However, in this chapter we apply these 

ideas to a control problem associated with a nonlinear wave equation and distributed 

control.

In Section 4.2 we define the equation and the functional spaces in which we are going 

to find its solution. In Sections 4.3-4.5, we transform the problem; instead of minimiz­

ing the integral performance criterion over a set of admissible pairs of trajectory and 

control, we minimize it not over one measure space, as in Chapter 2, but over a sub­

set of a product of two measure spaces so as to change the problem to a linear form 

and to benefit from the whole paraphernalia of linear analysis. In Section 4.6 we ob­

tain an approximation to the optimal pair Radon measures (/z*, u*), by using a linear 

programming scheme, and then we obtain a piecewise constant control function v(x, t) 

corresponding to the desired final states u(x, T ) and ut(x, T ). And finally in Section 

4.7 we bring two examples and obtain the corresponding controls and show the graphs 

of these pieciewise constant controls .
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Problems of this type have been considered in (e.g. Rubio and Holden [63], and Rubio 

[60], [61], [62]) in which in the nonlinear diffusion equations the control function were 

assumed to be in the boundary, whilst we use distributed control for our purpose.

4.2 The equation- functional spaces

Let D  be a bounded open region in the n-dimensional space M n with smooth bound­

ary dD,  and T  a positive real number, define:

We will consider the following wave equation which appears in Relativistic Quantum 

Mechanics. (See [72], [73], [44]).

Qt  :=  D x (0, T),  abounded cylinder of height T  >  0,

Tt  '= dD  x (0, T),  the lateral surface of the cylinder Qt , 

Do :=D  x {0} , the base of the cylinder Qt ,

Dt  ;=  D x {T} , the top of the cylinder Qt .

utt -  A u  +  |u |pu =  v, (4.1)

for the real function u =  u(x, t), (x, t) 6  Qt, where

and p > 0, with the boundary condition

u =  0 on IV, (4.2)
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and the initial conditions

u(x,  0) =  «o(®) =  0, x € D, 

ut( x , 0) = ui(x),  x e D ,

(4.3)

(4.4)

where the continuous function is given.

The problem is nonlinear due to the presence of the term \u\pu.

In (4.1), the function (x , t ) € Qt — ► v(x ,t )  € V  C M  is the Distributed Control 

function which takes the values in a bounded set V.

To have the tools to resolve the problem, we need to introduce certain spaces of func­

tionals which is to be used through of this chapter.

(a) We shall constantly use the usual real spaces LP{D), 1 <  P  <  oo,

LP(D) =  : real — valued, Lebesgue measurable functions in D, with ||u ||PD <  oo

where the norm is,

Similarly, L°°{D) is the class of all essentially bounded real-valued measurable func­

tions u on D, with the norm

when ess sup indicates the essential supremum, (see [10], [20]). LP(D) is a Banach 

spaces where given the norm ||u ||PiD (see [20]).

(b) We designate by ( / ,  g) the scalar product in L2(D), i.e.,

(4.5)

|[tt||oo =  ess sup |u(x)|, x € D (4.6)

(4.7)

(c) We shall repeatedly make use of Sobolev spaces, we put:

H°(D)  =  {u : u G L 2(D)}
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so H°(D) consists of all real-valued functions which are square summable on D in the 

sense of Lebesgue, and

H\D) = ju  : u e L2(D), ~  e L\D), i = 1 , 2 , n j  (4.8)

which is equipped with the norm

wu,»,=(i“i2+ |: (£ )2)i- i«)

We also use Hq(D), defined as follows:

Hq(D) =  closure of C™(D) in H1(D)

= subspace of H l (D) of functions null on IV, (4-10)

where C£° is the space of C°° functions on D with compact support in D.
The space H1(D), and hence Hq(D), are Hilbert spaces (see [21],[44]).

To study the problem (4.1)-(4.4) we introduce the space

V, = H l ( D ) f \ L p (D)  (4.11,

where

P = P + 2. (4.12)

The space Vi is equipped with the norm

€ — - IM L jm  +  ll”'ILf(», (4.13)

which makes it a Banach space. Indeed, by Sobolev’s imbedding theorem (see [44]),

Ho(D) C LP(D), if P < n > 3
n — Z
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from which we get

Vi =  Hq(D), if p < -  n (p <  oo, when n  =  2). (4.14)

(d) If X  is a Banach space, we designate by Lp (0, T\ X ) the space of functions 

t  — ► f ( t ) ,  from (0, T)  — > X  that are measurable, with values in X , and such that

( £  11/(011?*)* =  l l / IU .,, ,* , <  oo, if P  <  oo;

if P  =  oo, we replace the norm by

ess sup | | /(f ) | |x =  | | / I L o o ( 0 i W  t € (O.T).

Naturally we have:

Lp (0,T-,Lp (D)) = Lp (Qt ).

4.3 A formulation of the initial-boundary value 

problem

In this section we shall consider weak solutions of equation (4.1) which satisfy the bound­

ary condition (4.2) and the initial conditions (4.3) and (4.4) in generalized senses (see 

Mihkailov [48], Rubio [62], Sather [71], Wilcox [84]). The concept of weak solution 

is defined relative to a certain class of test functions that we use later:

tP =  {V’ : 6 L l (I\ Hq(D)), where its normal d e r iv a t iv e G  ¿ 1(I; H°(D)),

and ip(t) =  0 in a neighborhood of f =  T}, 

when I  =  {f, 0 <  t < T  <  oo} =  [0, T).

The following condition will be imposed on the inhomogeneous term v:

v € L 2(Qt ). (4.15)
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Definition 4.1 Let the hypothesis (4.15) holds along with conditions u0(x) G Vi, (Vi 

as (4.11)), ui  € L 2(D) on the initial data. A function u is a weak solution of the initial­

boundary value problem (4. l)-(4.4) if

u  G Zr°°(0, T; Vi) (4.16)

Pi'll
G L°°(0,T] L 2(D)) (4.17)

f T w )  -  (a u(t), v>(i))+ v>(i))> dt
Jo

=  ( « 1 ,^ ( 0 ) ) + /  (u(t),V>(i))di, V’ G ^  (4.18)Jo

and,

u(0) =  uo(x). (4.19)

Definition 4.1 is equivalent to the classical formulation (4.1)-(4.4) in case the solution 

and data are smooth functions of (x, t ) and x  in QT and in D respectiviely (see, for 

instance ,[71]).

4.4 Existence and transformation

Now we demonstrate the existence of the solution of the problem (4.1)-(4.4) and then 

transform it to a new problem. Here we have not established uniqueness of the solution. 

Lions [44] showed that if 0 <  p < then the solution of the initial-boundary value 

problem (4.1)-(4.4) is unique. He chose n = 3, p = 2, (see also Schiff [72] where he 

took n — 3, p =  2). Segal [74] proved that the problem has unique global solution in 

one and two space dimensions, and in three dimensions when p — 2. We should men­

tion that the class of initial data and inhomogeneous term v in the following existence 

theorem is the same as the class employed in the definition of the weak solution.

The proof of the next theorem can be found in [44] and in [70].
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Theorem. 4.1 Suppose that D is a bounded open set. We are given v ,u 0, u i, such that:

v £ L 2(Qt ) (4.20)

u0 € Vi (Vi as (4.11)) (4.21)

and,

tii e  L2(D),

then there exists a function u where

and satisfying the equation (4.1)

ô^ïl
- -  Aw +  \u\pu =  V in Qt 

ot*

and the initial conditions (4.3)-(4.4),

(4.22)

(4.23)

(4.24)

(4.25)

ti(0) =  uo (4.26)
d u ,nS
-^ (0 )  =  «i- (4.27)

From (4.10) and (4.11), u =  0 on IV; the condition (4.2) is thus incorporated in (4.23). 

From (4.23)-(4.25) we get in particular that u and §f are continuous functions on [0, T] 

in such a way that (4.26) and (4.27) make sense (for details see [44]).

A pair (u, v ) of trajectory function u and control function v is said to be admissible if: 

(i) The function (x, t) — > u(x, t ) is a solution of (4.1), that is in I°°(0, T; Hq(D) n 

LP(D )) and satisfies (4.2), (4.3) and (4.4).



Chapter 4. The Global Control o f Nonlinear Wave Equations 115

(ii) The control function is continuous in QT.

(iii) The terminal relationships

u(x ,T )  = gi(x), x <= D

ut(x, T) = g2(x), x e  D (4.28)

are satisfied; gi(x) and g2(x) are given continuous functions on Dt .

The set of admissible pairs will be denoted by T ,  and assumed to be nonempty. We 

make a further point that, since the control set V  is bounded, that is, there is a constant 

M y  so that

\ v {x , t ) \< M v ,  ( x , t ) e Q T,

thus v € L 2(Qt ), (4.20), and so by Theorem 4.1 and (4.23), u 6  L°°(0, T; Fx), so

ess sup ||u||yi <  oo,

by (4.13), H k  =  IMIhi(b) +  m d  since by (4.9)

u (Iu\
»=1 Ud,%

1
2

we conclude that u(x, t ) is bounded. Thus there is a set A  c  M,  so that

u(x, t)  £ A,  V (x,i) g <5r , (4.29)

The set A  is the smallest such sets, i.e., the intersection of all such sets for all possible 

admissible controls. Thus every point in our set A  will be a state that can be reached 

by an admissible control inside the time interval [0, T). We will use this property in the 

proof of Theorem 4.2.

The optimization problem associated with this equation is as follows:

Let /o, f i  be continuous, non-negative, real-valued functions on JRn+2, and assume that
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there is a constant h > 0 so that

f 0(u (x , t ) ,x , t )  < h\u\, (u , x , t ) £ A x  Qt .

Then we wish to find a minimizer pair (u, v) in T  for the functional

J =  f 0(u(x , t ) ,x ,t )dxdt  + / f i (v(x , t ) ,x , t )dxdt .  (4.30)
J Q t  j Q t

Now we transform the problem with a view at generalization. Suppose that the function 

u is an admissible trajectory function. Take 0 <  e <  T,  find the scalar product of (4.1) 

by a function tp(x, t) £ Hq(Qt ), since by (4.8), ÿ(x ,  t ) G L2(QT), we can use (4.7):

( u  • VO =  ( ( utt -  d i v ( V « )  +  M Pu )  • V0> VV>(x, t) G HI(Qt )

or by (4.7)

or,

Since

/ vÿdxdt  =  /  (Utt — d iv (y u ) +  \u\pu)ipdxdt,
J Q t —€ J Q t -€

f  v'ifjdxdt = I {utt -  àiv(\Ju))il>dxdt + f  ( \u\pu)ÿdxdt .
JQt-€ JQr-e JQt-*

ut4> = (wtV’)t ~  “ tV’t,

and

V’d i v ( v w )  =  div(V> V  u) ~  V  Vs

so

/ v-ipdxdt =  /  (ut'ip)tdxdt -  / V  u)dxdt
J Q x - t  J Q r - t  J Q r - t

+ f  ( V w V  V’ ~ uti>t)dxdt +  /  (|u|pii)V>ctacZi.
j Q t ~ , J Q r - t
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Now by Ostrogradskii’s formula

j  div(A(x))dxdt = I A(x) • ndsdt} 
Jqt—€ «/rT_.r T-

and

which yield

/  (utip)tdtdx = I (uttp)dx — / (utip)dx,
J Q t - c J D t - ,  J D q

/  vipdxdt = /  (ut'ip)dx — / (utip)dx — / tp{\Ju • n)dsdt 
j Qt—€ JDt-* JDo JTt- i

-f /  ( v u V  V’ ~  utxpt)dxdt +  I ( \u\pu)xpdxdt.
J Q r - .  J Q t_

By initial condition (4.4) and taking into account the final condition of ut and the prop­

erty of ip on the boundary, and the continuity of the u(x, t) in QT, as e — ► 0, we find 

that

/  V ^ - (\u\pu)tp)dxdt + /  (vip)dxdt
J Q t  J Q t

=  /  92‘pdx — I U\xpdx
J D>p J Do

for every ip € Hq(Qt ).

Since utipt — — «V’tt,

/  (uttp^dxdt =  / (uipt)tdxdt — / (uiptt)dxdt,
J Q t  J Q t  J Q t

but by (4.3) ti(x, 0) =  «0(2 ) =  0, and by (4.28) u(x, T ) =  5i(x ), so

/  {uipt)tdxdt =  /  u(x,T)ipt( x , T ) d x — u(x,0)ipt(x,0)d,
JQt JDt v Dq

Thus

=  [  gi(x)-ipt(x,T)dx.
J  D*r

/  (utipt)dxdt =  /  gi(x)'ipt(x ,T)dx  -  /  (uxptt)dxdt , 
jQt JD? JQt
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and also since

u A tß  = div(u V  — V u V  V1

by using again the Ostrogradskii’s formula we have

/  ( y u  V  il>)dxdt = /  div(u y  i>)dxdt -  u A  ipdxdt 
JQt JQt JQt

=  /  u ^ - d s d t  — /  u A  ipdxdt, 
Jr^ uti ÌQji

and from the boundary condition (4.2), u(x,  i)|p r  =  0, so,

/  ( v u  V  i>)dxdt = — u A  tpdxdt 
J Q t  J Q t

Thus the above integral form changes to:

J gi(x)4>t(x,T)dx -  j f  (uif>u)dxdt — ( \u\puip)dxdt

+ (  u A  ibdxdt+ /  (vil>)dxdt= /  g2̂ d x  -  /  ui.ipdx, 
J q t JQt •'At JD0

or

+  \u\puip)dxdt — j (viß)dxdt Jq t

=  /  (tfiV’t ~  92Ì>)dx +  /  tiii ’dx, J v Dq (4.31)

for every xf> € Hq(Qt ).

We proceed to transform the problem in the next section and we will follow Chapter 

2 in this transformation.

4.5 Metamorphosis

In general, the minimization of the functional (4.30) over T  may be not possible, the 

infimum is not attained at any admissible pair; it is not even possible, for instance, to 

write necessary conditions for this problem. We then proceed to transform the problem,
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so in the following, we replace the problem by the one in which the minimum of the 

functional (4.30) calculated over a set S  of positive Radon-measures o n O x w , that will 

be defined. Those measures in <5 should have some properties which can be deduced 

from the definition of admissible control.

We notice that any solution of (4.1)-(4.4) defines a linear-bounded positive functional

in the space C(Q) of continuous real-valued functions F,  where 9  :=  A  x QT. Also, 

a control v defines a linear-bounded-positive functional

in the space C(co) of continuous functions G, where u> : = V  x QT.

By the Riesz representation Theorem, an admissible pair (u , v) defines a pair of unique 

Radon measure (p, v), on 9  x u>, such that

v ( - , - ) : G — ► / G(v(t ,x),x , t)dxdt
Q t

for all F  e  C(9),  and

for all G e  C(u).  Thus (4.31) changes to:

(4.32)

where

F^(u(x, t ), x, t) :=  uiptt - u A i p  + I u\puip 

G^{v(x, t), x, t ) :=  —vij}

(4.33)
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Thus, the minimization of the functional (4.30) over T  is equivalent to the minimization 

of

I(lM,v) =  K /o ) +  K / l ) (4.34)

where

Kf o)  :=  /  fodp J  n

K /i )  :=  /  h dvJ  uj

over the set of measures (/x, v) corresponding to admissible pair (u, v) subject to:

p (Ftp) + € Hl(QT). (4.35)

So far we have just changed only the appearance of the problem. Now we consider 

the extension of our problem, and the minimization (4.34) over the set Q of all pairs of 

measures (/x, v) € x M +(u>) satisfying (4.35). Measures in Q, where

Q =  {(/x, v) : (/x, i/) € A i+(fl) x M +{u>) and satisfy (4.35)}

should have some extra properties which are derived from the definition of admissible 

pairs (u, v). In fact if

— >1R

depends only on (x, t), then

K 0  = L  t{x>t )dxdt = a€ (4.36a)
J Q t

the Lebesgue integral of (  over Qt- Also if a function
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depends only on (x, t), then

K O  =  f  ({x,t)dxdt = b( (4.36b)
J Q t

the Lebesgue integral of (  over QT.

Now we have defined a new optimization problem. In the next section we analyse this 

new problem and show that it always has at least one optimizer, then we start the pro­

cess of approximation, that is, of building a framework so as to construct admissible 

trajectory-control pairs which are nearly minimizers of the functional (4.30) and satis­

fies the terminal conditions (4.28) as nearly as desired.

4.6 Existence and approximation

Now back to our original problem, we determine under what conditions there is a pair 

of optimal measures (p, v) for the function

(p,v)  — ►/¿(/o) +  K / i )

in the set Q C x M +(u>) defined by

K Fi>) +  K@1>) =  oty, e  Hl{QT)

K O  = H

K O  =  bo for all (, £ (4.37)

where (  : Ü — > B.  and C : 0  — > M  depend only on (x, t). We assume that the set of 

measures Q is nonempty, it may be because the system is controllable, even though, of 

course, the set Q may be nonempty while the set of trajectory function u, and control 

function v, i.e., the set T  is empty, one of the advantages of the present formulation. 

We try to find a topology on the space M +(Q) x M +(u) in which Q is compact and 

the function (/*, v) — * Kf o)  +  K h )  is continuous. This topology can be the weak* -  

topology on

<5 =  |(/x, v) : (//, v) € A4+(fi) x A^+( a ; ) | .
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Now we can prove:

Proposition 4.1 The set Q of measures (/x, v) defined as those measures in S  satisfying

(4.37) is compact in the topology induced by the weak*-topology on S.

Proof. Note that (4.36) imply that; writing In and l w for the characteristic functions 

on Î2 and u> respectively and L for the Lebesgue measure of D,

/¿(ln) — TL,  i/(l W) = TL,

then the set

{(//, v) : (/x, v) G M +(Q) x M +(u;), /x(ln ) +  v( lu) = 2TL  > 0},

is compact in the weak*-topology (see Alaoglu Theorem, in Royden [56], page 202). 

Thus Q that satisfies (4.37) is a subset of the above compact set. Also, we can write

q = n  {(p’1' ) ' - k u ) + v(Gtp)=<xti>},

remember that the last two sets of equalities in (4.37) are implied by the first set.

The linear functional (/x, v) G Q ► p(F)  +  V(G) G M  is continuous (see Chapter 2, 

for the continuity of (p, v) e  Q — > p(F)  +  i/(G) E M ) ,  but the set {(/x, v ) : p( f^)  + 

v{G^) = cty} that it is the inverse image of the closed singleton set {a^} c  1R  is a 

closed set, so the set Q is closed and since it is a subset of a compact set, is compact.□

Proposition 4.2 There exists an optimal measure (p*, v*) in the set Q that minimizes

I(p,  v) =  p(fo) +  K / i )

Proof. By Proposition II.I of Rubio [59], the continuous function (/x, v) — > /x(/0) +  

v( f i )  that is a mapping from the compact set Q into the real line attains its minimum 

on the set Q, i.e., exists a pair of measure (/x*, v*) g Q,  such that

( p* , v*) <p  ( /0) +  K / i )

for all (/x, v) G Q. □
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The proof of the following proposition is much like that of Theorem 7.1 in [34] and 

Proposition 2 in [57].

Proposition 4.3 The set Q-i C Q of measures (u ,v), which are piecewise-constant 

functions on ft and u; respectively and satisfy (4.35) and (4.36), is weakly*-dense in Q.

We later use this proposition to prove our important theorem of approximation. Up to 

here we have developed an infinite-dimensional program by considering minimization 

of

7(/i,i/) =  /i(/o) +  K / i )

over the set Q. Now we are going to consider the minimization of I(p , v), not over the 

set Q but over a subset of Q defined by requiring that only a finite number of constraints

(4.37) is satisfied. This will be achieved by choosing a countable set of functions that 

is total in Hq(Qt ). In the following we define precisely what we mean here by this 

concept, (see Kreyszig [37] page 168).

Definition 4.2 The set V’i £ Hl{QT),i  =  l ,2 , . . .} i s a  total set (fundamental set) 

in H l(Q T), if for any given 1/> 6 H£(Qt ), and any e >  0, there exists an integer 

N  > 0 and scalars a;, ¿ =  1 ,2 ,..., TV, so that

max IV’ - <  e
Qt z=i

N

max IV’t -- £ 1 <  €
Qt i=i

N

max IV’tt <
Qt i=l

N

max i a  V1 -  y Z ai A  tpi
Qt t=i

So the span of this total set is dense in H i (QT).

We also take sets of functions {&, j  = 1 ,2 , ...} and { (kl k = 1 ,2 ,...}  which are total in 

the respective subspaces of C (ft) and C(ui). We shall write

Fi := Ffr, Gi :=  Gfr, ai =  a ^ ,  i =  1 ,2 ,...
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dj .— j  — 1» 2, bk bçki k — 1>2, .••• ■

Then we have the important following proposition for our first result of approximation; 

its proof is much like the proof of Proposition 3.1.

Proposition 4.4 Let M 1; M 2, M3 be positive integers. Consider the problem of mini­

mizing

0 *.v) — ► K fo) + K / i )

over the set Q{MU M 2, M3) of measures x M +(oj) satisfying

p(Fi) + v(Gi) = on, i = l ,2 , .. . ,M 1 

M )  = 3 = 1 ,2 ,..., Afa

KCfc) =  h ,  k =  1 ,2 ,...,M 3

then as M i , M 2, M 3 — >00

77(M i ,M 2,M 3) =  inf [p(fo) +  v(fi)]

tends to

V = inf[K /o) +  K /i)]-
Q

It is clear that 77 <  infr  J, where J  defined as (4.30).

Note that we have limited the number of constraints in the original problem, but un­

derlying space still is infinite-dimensional. In fact the problem is:

Minimize

I ( p , v )  = K /o) + K /i) (4.38a)
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over the set Q(Mx, M 2, M3) subject to:

/¿(Fi) +  i'(Gi) =  oi, i =  1 ,2 , . . . ,  Mi (4.38b)

/*(&) =  aj. 3 =  1,2, ...,M 2

KCfc) = bk, k -  1 ,2 ,..., M 3. (4.38d)

(4.38c)

This problem is one of the linear programming, all functions in (4.38) are linear in p 

and v, and the pairs (/*, v) are positive, in fact it is a semi-infinite linear programming, 

since the unknowns p and v are in Q(Mi, M 2, M3).

Now we consider the construction of the suboptimal pairs of trajectories and controls 

for (4.30). We first obtain optimal measures (p*, v*) from problem like (4.38). There 

are several methods to find the numerical solution to such problems, for example, the 

method described in Glashoff and Gustafson [24] and the discretization method that we 

used in Chapter 2. The existence of such a minimizer shown in Appendix 4.9, then we 

obtain a weak* approximation to (//*, v*) by set of two piecewise-constant functions 

(u, v ) and by means of results given in Proposition 4.3.

Since the control function v obtained in this way is a piecewise-constant function and 

D is a bounded domain, thus for each (x , t ) e  D x  (0,T ), v (x ,t)  e  L2(QT), so v 

can serves as control function (4.15) for a weak solution of the problem (4. l)-(4.4). We 

denote this solution by uv, where uv e  L°°(0, T, Vi), and Vx is as (4.11). (See [44]). 

This pair (uv, v ) of trajectory and control function is not exactly admissible, i.e., while 

M i, M 2, M3 are not large enough, (uv,v)  may not belong to T ,  however it is asymptot­

ically admissible. This concept, borrowed from Rubio [62], is defined as follows:

Definition 4.3 The pair (uv, v) of trajectory and control function that has been found 

as above procedure is called asymptotically admissible if:

(a) The trajectory uv is the weak solution of (4. l)-(4.4) corresponding to the admissible 

control u € L2(Qt )-

(b) For every ip e  Hq(Qt ), the trajectory uv satisfies the constraints (4.31).

(c) The final values of uv(0, T) and uvt(0, T) tend respectively in L2(DT) to the indi­
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cated functions gi(x) and g2(x) in (4.28) as M l, M 2, M3 — > oo.

We now prove in the following theorem, that (uv,v)  is asymptotically admissible and 

if M i, M 2, M3 tend to oo then the value of the functional J  defined by (4.30) at (uv,v)  

tends to rj =  infQ /( //, v ).

Theorem. 4.2 Let (uv,v)  be the pair constructed as explained above. Then under the 

appropriate conditions on the approximations involved:

(i) The trajectory uv as the weak solution of (4.1)-(4.4) satisfies the constraints (4.18) 

for every test function and the relations (4.31) for every ijj € Hq(Qt ).

(ii) As M i, M 2, M3 — ► oo

K ( - . r ) - f l r i | | ia — ► o

||w„t(-, T) — 5r2||i2 *0

where gi and g2 are described as (4.28),

(iii)

J(uv,v)  — ► inf = rj,
Q

when M i, M 2, M j tend to oo. J(uv, v ) is the value of J  at the pair (uv, v).

Proof. Since the proof is slightly subtle and long, we break it into 3 manageable parts. 

We assume in (4.4) tti(x, 0) =  0, x e  D. Assume Mi >  0 is fixed. Then write e :=  -¡L. 

and fix the values of M2 and M3. Let (/x*, v*) be the minimizer for the functional (4.38a) 

over the set of measures <2(Mi, M2, M3), Appendix 4.9 shows how such a minimizer 

exists. Because of the density of Qx in Q, Proposition 4.3, we can find a pair of piece­

wise constant trajectory-control functions (u , v) on Qu  so that

I {Pu(fo) +  M fi ) }  -  i f f ( fo )  + v*(/i)} I <  e (4.39a)

\Pu( F i )  +  v v ( G i )  -  Oil <  e, i =  1 ,2 ,.. . ,Ml (4.39b)

K 6 )  “  * j\ <  e. J  =  1,2, M2 (4.39c)

HCk) ~  h \ < c, k = 1 ,2 ,...,M 3. (4.39d)
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In the above inequalities, we have used the pair (pu, vv) to denote measures in M +(SI) x 

M +{oj) generated by the pair trajectory-control (u, v ).

Now we prove that the pair (uv, v) obtained as described above is asymptotically ad­

missible, i.e., (i) and (ii) of the theorem are satisfied.

(i) As explained above we apply the piecewise constant control function v e  L2(QT) 

to find the weak solution of the problem (4. l)-(4.4), called uv. So by Definition 4.1, the 

trajectory function uv satisfies (4.18), i.e.,

rp

[  {(-<,(*)> V’W )  -  ( i ( t ) )  +  ( K ( i ) i 'X ( t ) ,  v>(i))}dt
J o

=  (“ i>V>(o))+ f  v  e  9Jo

and by the procedure ended to (4.31), we can show that

/ (uviptt ~ A  ip + \uv\puvip)dxdt -  j  (vip)dxdt 
JQt JQt

= /  (3'iV’t -  92^)d x  + f  u i ipdx,
J  P y  J  £ )q

for every ip G Hq(Qt ).

Thus the trajectory function uv satisfies the constraints (4.18) for every ip e  ^  and con­

straints (4.31) for every ip G H l{Q T) and so (i) is satisfied.

(ii) To prove the second part of the theorem, choose the functions ipi G Hq(Qt ), i = 

1 ,2 ,..., Mi as the following linear combination,

i i  =  +  Vi (4.40)

such that 9i s and t̂ ’s have the following specific characteristics:

(a) The function 9% e Hq(Qt ) is chosen so that the Lebesgue measure of the support 

of 9i in Qt  does not exceed >  0 to be indicated below, and so that the maximum of
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the numbers

|0tOM)l» 1 ( x , t ) e Q T (4.4i)

are not greater than e2 >  0 which will be defined later. For example, if we assume that 

the total set {& }  in H i(Q T) is such that

ipi = x ( l — x )  sin2(7rzi), 0 <  x  < 1, T  =  1,

then 8i € H l(Q T) can be chosen as Oi =  0, for every (x ,t)  £ QT, and of course the 

maximum value of the numbers in (4.41) are zero.

Now from (4.33) we have:

F Si : =  u 6 i t t  -  u A 8 i  +  \ u \ pu 6 i ,

so

|F fll(x ,f) | =  \u(x,t)8nt ~  u (x ,t)A 9 i + \u(x ,t)\pu(x,t)9i\

< |u (x ,t) | \9itt\ +  |w(a3,f)| |A ^ | +  \u (x ,t)\p+1 |0j|

< 6 2[21(A) + (l(A )Y +1],

by the properties \ 9 i ( x ,  <)|, \9i i t ( x ,  i) | and | A0i| on QT assumed above, and from (4.29) 

where we assumed u (x ,t)  G A  C M ,V (x ,t) € QT, here 1(A) is defined as the length of 

the bounded set A. Since the set A  is the intersection of all the sets that contain u(x, t) 

for every (x ,t)  G QT, then 1(A) is finite and is as small as possible. Now we choose 

e2 >  0 such that e2[21(A) +  l(A )p+1] <  1, which gives the result that,

| ^ . ( x,< ) |< 1 ,

on :=  A  x Qt . The Lebesgue measure of the support of F6x(-, •) in f i is  in fact equal 

the product of the Lebesgue measure of the support of 9 t in Q t  and the Lebesgue mea­

sure of the support of u in A  which as we defined the first one is less than ei, thus the
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Lebesgue measure of the support of F$t(-, •) is less than ei.measA Now we choose ex 

such that ei.measA <  e. So by choosing ex accordingly, the Lebesgue measure of the 

support of Fg ■(-,■) will belessthane.

(b) The second part of the linear combination (4.40), i.e., the function 77,(2:, t) e  

Ho (Qt ) 1S chosen so that r)i(x, T) =  0 and t j h ( x , T) = 0 on D. Obviously it is easy 

to find such functions, e.g., in the case of choosing the total set {^¿} in Hq(Qt ) as 

ipi =  a;(l — x )  sin2(irit) in (a), then r } i ( x ,  t) =  a:(l -  x )  sin2(7rit). So

Since the set {V’i} is total in Hq(Qt ), and rji(x, t ) 6 Hq(Qt ), then by the definition, 

for any given e3 >  0 there exists an integer N f  and scalars such that

[  92Vi{',T))(k
J  Dip

'■x =  0, i =  1, 2 , . . . ,Mi. (4.42)

max|?7i - Y a ^ i \  < e3 
Qt  j = 1

Nl
max \r)it -E  a i j i ’j t ]  <  e3

Qt  j =1
Nl

max \rji t t  -  Y  <̂ ¿«1 < £ 3  

Qt  j = 1

max | A 7 7i — E a i j  ̂  V’jl  ̂e3'

From (4.33)

F Vi : =  urj iu - u A r ) i  +  \ u \ pur)i ,

so Nx
—c3|2u  +  |u |‘itt| +  Y  a i j F ^  <  F Vi <  e3 \ 2 u  +  |u |pii| +  Y  a ^ F ^ .

or

n}
\F Vl <  e3l2u +  M Pu |. (4.43)
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Similarly, since from (4.33)

G m =  ~VT}i,

we find that

From (4.38),

where

\Gvi an Gii>i i <  e3 i

p*{F^) +  v*{G^) = oii, i = l ,2 , .. . ,M 1

<*i =  /  { g i i ’i t  -  g 2 tp i)d ,  
J  Dj*

i ) a x .

Now if we choose Mi >  iV*, then

N}Nl Nf
P "f v ( ¿ , aijGil>j) — Y ,  agcx-i

j=i ¿=i i=i

i — 1 ,2 ,..., Mi

where

iVt t y*
 ̂y aijaj )   ̂&ij I (girfu g2̂i)dx

3=1 3=1 J D t

, *n
= / k  S  - 92 Y1 aiji’MJ Dr>

(4.44)

But the set {ipj} is total, so for given e3 >  0 we can find N? such that
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We assume that Ni =  max{iVl, N?}, since T) =  0, rji(x, T ) =  0, thus

I /  £  o u M i t  ~  92^j)dx\ =  | d ijF ^)  +  l / * ( ¿  OijG^ ) |  
jdt j~\ j=1 j=1

< e3 [  (\g i\ + \g2\)dx. (4.45)
J  £?ji

Now from (4.43)-(4.45), we may choose iVt so large that

l ^ ( ^ )  +  *'*(<3f«)l <  §- (4.46)

By Proposition 4.3 there exists a pair trajectory-control (it, v), and so the pair (/¿u, vv) G 

Qx of measures generated by this pair (it, v), such that (4.39b) is satisfied,

\pu(FVi) +  vv(Gv,) -  p*(FVx) -  v \ G m)| <  i ,

so by (4.46) and above inequality

ll^uiF^) -\r Vv(Gni)\ <  e, i =  1 ,2 ,..., Mj. (4.47)

Thus we have

^  =  P’rw +  Pfio

with r}i(x,t) G Hq(Qt )> &i(x,t) G Hq(Qt ), t]i(x,T) = 0, r]it( x ,T ) =  0 on D, and 

IF* | <  1 on fi, and the Lebesgue measure of suppF* <  e, i =  1 ,2 ,..., Mx, and (4.47) 

is satisfied.

Now we obtain the weak trajectory uv corresponding to the control v as explained be­

fore. Then by writing pUv for the measure corresponding to this trajectory function uv 

and by the manipulations leading to (4.31), we find that

liuv{Fi) +  vv(Gi) -  f  (uv(-,T)i(}it -  uvt{-,T)‘tf)^)dxi

i =  l ,2 , . . . ,M 1.

(4.48)
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But the pair (//*, v * )  satisfies (4.35), so

p * ( F i )  + v * { G i )  = f  (gi-ipi t  -  g2i l>i )dx = ci i ,  i = 1,2, (4.49)
J  D ji

By subtraction of two relation (4.48) and (4.49) we find that

I /  [ ( u v ( - i T ) - 9 i ) ' lPit  +  ( g 2 - u v t ( - , T ) ) i p i } d x \  =  \ p * ( F i )  +  v * ( G i ) - f i Uv( F i ) - v v ( G i ) \
J D t

=  \ ^ ( F )  +  S ( G i )  -  ^ ( F i )  +  ^ J F . )  -  ^ ( F i )  -  

<  +  v * ( G i )  -  f f ( F i )  -  v ’ ( G i ) \  +  W ( F i )  -  i i u, ( F i ) \

where by (4.49) and (4.39b)

\ p u ( F i )  +  v v { G i )  -  p * ( F i )  -  v * ( G i ) \  =  IP u ( F i )  +  V v ( G i )  -  «¿1 <  e, i =  1 ,2 , ..., M i ,  

thus

I /  [ ( u v ( - , T ) - g 1 )xpit +  ( g 2 - u v t ( - , T ) ) x p i \ d x \ <  e + \ f i u ( F i ) - ^ ( F i ) ] ,
J d t

but,

\ P u ( F i )  -  P uv { F i )  | =  \ ( p u -  /X uJ(^)l =  10*1* -  P u  +  i ^ ) |

<  \ {Pu  ~  /O G ^U i) | +  | (/Xu “  /* u j ( i^ ) | ,

where we have,

|(/*u — puv )(-̂ i7«)l =  \ p u ( F rH') +  ^ (C ^ )  — vv { G v^) — P iL v iF r j^

<  \ p u ( F Vi) +  v v ( G Vi)| +  I P u v i F m )  +  ¡/v ( G Vi) \ .

From (4.47) we infer the first part of the right-hand side is less than e, and

|/Xu„(FVi) +  vv(GVi)\ — | /  [uv(0 ,T )Vit( ; T )  uvt(0,T)r)i(‘,T)]dx\ — 0,
J  D t
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since Vi(-yT) = 0 and T) =  0, for all x e  DT, also

\(Pu -  t ^ ) { F 9i)| <  m ax|Fei||suppFit| <  1 • e =  e,

so

10*«- /* * ,) (# ) !  <  2e. (4.50)

Thus,

j ^ [(«*(•, T ) -  gityit +  {92 ~  uvt{-,T))ipi]dxI <  3e =

¿ =  1 , 2 , . . , ] ^ .  (4.51)

It follows from (4.51) that as Mi — > 00

lluv(0,T) — g\^\L2 — >0

||«„i(0, T ) — ^211 x,2 — ► 0

(See Appendix 4.10). '

Note that we need also M 2,M 3 — > oo. a requirement of the proof of Proposition 4.3 

(see [34] and [57]). So part (ii) of the theorem is satisfied.

(iii) To prove the third part of the theorem, we have:

\J(uv,v ) -  in f /( // , v)\ = \pUv(fo) +  vv( / i )  -  (M*(/0) +  u*(fi))\ =

l^ , ( /o )  +  Vv(fl) ~  W o )  +  V* (h ) )  +  0*u(/o) +  Vv(fl)) -  {pu{fo) +  ^ ( / i ) ) |

<  M o )  + Vv( h )  -  (/x*(/o) +  u \ f x))\ +

where by (4.39a) the first part of the right-hand side of the above inequality is less than 

e, so

| J K ,  v) -  inf I (p,  v)\ < e + | ( ^  _  /xu)(/0)|. (4.52)
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We recall that the function f 0 satisfies the condition

f 0(u (x ,t) ,x ,t)  < h\u\,

on ii, so

\(pu„ -  A * u ) ( / o ) l  <  hliPu, -  Pu)™ (4.53)

where &(u(x, t), x, t ) :=  u, (u, x, t) £ f l  We are assuming, withoutloss of generality, 

that u > 0 on £1 = A  x Qt . Since we have chosen the intersection of those sets A, 

every (u, x , t)  £ Q can be reached by an admissible control v £ V  inside the interval 

[0, T], thus F,p in the following can be defined.

Further, choose ip £ H l(Q T) of the form:

K K
^  S I A I < a,

i=l t'=l

with K  a fixed integer not greater than M lf and

A <
_1_
Ah’

then by the linear property

K  K  K

=  uiptt -  uAip +  \u\puip = u ^ 2 ß i i p i t t - u ^ 2 ß i ^ +  M puJ2ßi4>i
t=l t=l t=l

K  K

= ~  =  Y ^ ß iF^
1=1 ¿=1

=  E m ,
i=l

K

K/̂ Uv /iu)(-^V)| — \ipUv Atu)(y^ ßiFi)\
1=1

<  \ßi\\(ßuv -  Pv.){Fi)\ +  . . .  +  |/3 j c | | ( ^ u v  -  Pu){F k ) I ,

and so
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but from (4.50), \(fiUv — pu)Fi\ <  2e, for ¿ =  1 ,2 ,..., K , so

K

\(puv -  PuXf'V)! ^  2eX) \&\ ^ 2Ae-
i—1

Since ip =  J2?=.i Pitpi we may choose the coefficients /3t , i = 1 ,2 ,..., K  so that:

<  3

- 1 | < j

on fi, which imply that

\miptt ~ m(£\ip -  1) +  w p+1ip\ < e', 

on ft; the number e' will be determined below. Then

K/Xu. -  Pu)ro\ = \(pUv -  ~  w(Aip -  1) +  mp+1Tp)

-  (pUv -  Pu){rrriptt -  zo(Aip) 4- w p+1ip)\

<  e'meas(gT) +  \(fj,Uv -  pu)F^\ < e'meas(QT) +  2Ae.

If we take then

so by (4.53)

and by (4.52)

Pv)ro\ <
2 h h ’

\(Puv -Pu)fo \  <  e,

\J(uv,v) — inf J(/i, v)\ < 2e,
Q (4.54)

the third contention of the theorem follows. □
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4.7 Numerical examples

We will apply the method introduced in this chapter for the estimation of nearly optimal 

controls. Now we show the details in the following examples.

Example 4.1 Consider the nonlinear wave equation

utt -  A u + u3 = v, (4.55)

for the real function u = u(x, t), (x ,t)  £ Qt , where

u =  0, on IV

u(x, 0) =  0, x £ D 

ut(x,0) =  0, x £ D

and

D :=  (0,1), x G [0,1], dD  :=  {0,1 } ,T  = 1, t £ [0,1], QT :=  (0 ,1)2, Tt  :=  

dD  x  (0,1), Do : =  (0,1) x  {0}, DT : =  (0,1) x  {1}.

We assume the terminal relations as follows:

u (x ,T ) = gi(x) = sin(7ra:), ut(x ,T )  =  g2(x ) =  0, x £ D, 

and we choose V  = [-4 ,4 ], A = [0,4], f 0 =  u2, / x =  0, so

Q, := A  x  Qt  — [0,4] x  (0, l ) 2, eu :=  V  x  QT =  [-4 ,4 ] x  (0, l ) 2.



Chapter 4. The Global Control o f Nonlinear Wave Equations 137

The functions 0  in (4.33) are selected as 0 (x , t ) =  tp sin(/7rx) and six number of them 

are chosen with values of / =  1,2,3 and p =  1,2. Thus

01 =  t sin(7rx)

02 =  t s in (2 7 rx)

03 =  t s in (3 7 rx)

04 =  t2 s in (7 rx)

05 =  t2 s in (2 7 rx)

06 =  t2 s in (3 7 rx)

Therefore by applying 0»’s we have:

Fi =  u(tir2 sm(irx)) +  u3(t sin(7rx))
F2 =  u(4tir2 s in (2 7 rx )) +  u3(t s in (2 7 rx))

F3 =  u(9t7r2 s in (3 7 rx )) +  u3(t s in (3 7 rx))

F i  =  u ( 2 s in (7 r x ) )  +  u ( t 27T2 s in (7 r x ) )  +  U3 ( t 2 s in (7 r x ) )

F5 =  u (2 s in (2 7 rx ))  +  i i ( 4 i 27r2 s in (2 7 rx)) +  u3(t2 s in (2 7 rx )) 

F6 =  u (2  sin(3-7rx)) +  u ( 9 i27r2 s in (3 7 rx)) +  u3(t2 s in (3 7 rx )),

By (4.33),

Fi =  = uiput -  u A  0 j  +  t i30 t ,

and

G% —  G —  V7pi

and
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and

and

Gi = —vt sin(Trx)

G2 = — vtsm(2irx) 

G3 = —uisin(37rx) 

G4 =  —v t2 sin(7Tx) 

G5 =  —vt2 sin(27rx) 

G6 =  —ui2sin(37rx),

/•1 1
ai =  j  sin(Trx) sin(7rx)dx = -

a2 =  /  sin(7rx) sin(27rx)dx =  0 Jo

a3 = / sin(7rx) sin(37rx)dx =  0 
Jo

a4 — J 2 sin(7rx) sin(?rx)dx = 1

as =  j  2sin(7rx) sin(27rx)dx =  0

«6 =  / 2sin(7rx)sin(37Tx)Jx = 0. Jo

Now we will choose 64 functions ( , we divide the square [0, l]2 into 64 equal squares 

and choose the 64 functions £ as being the characteristic functions of the individual 

squares. In other word the functions are defined as the following:

&(x, t) = i ,

0, otherwise

where j  = 8(1 — 1) +  h, h — 1 ,2 ,..., 8, l =  1,2, ...,8. Now by (4.36a) 

üj =  aij =  l QT^ x ' ^ dxdt =  J =  1 ,2 ,...,64 .



Chapter 4. The Global Control of Nonlinear Wave Equations 139 

Likewise, the 64 functions ( are defined and by (4.36b) 

bk=b,,.= f (k(x,t)dxdt=~,k=l,2, ... ,64. 
}QT 64 

Having defined "Pi 's, l; 'sand (k 's, by ( 4.38) the problem is transformed to the following: 

Minimize 

subject to: 

I(µ, 11) =·µ(Jo)+ 11(!1) 

µ(Fi)+ 11(Gi) = ai, 

µ(l;) = a;, 

11((k) = bk, 

i=l,2, ... ,6 

j=l,2, ... ,64 

k = 1,2, ... ,64. (4.56) 

This system is a semi-infinite linear programming problem, since the unknown is in 

M+(n) x M+(w) but with only a finite number of constraints. We use adiscretization 

method to deal with the above linear programming problem. We divide the interval 

[O, 1] on the x-axis into 8 equal subintervals, and choose the x/s as follows: 

2j -1 
XG4(k-1)+8(j-l)+i = 

16 
, 

i = 1,2, ... ;8, j = 1,2, ... ,8, k = 1,2, ... ,8, 

except for xi, x2, ... , xs and Xs1, x58 , ••• , x 64. We divide also the interval [O, 1] on t-axis 

into 8 equal subintervals, and choose the t/s as: 

We select u/s as: 

2i -1 
t64(k-1)+8(j-l)+i = !6' 

i = 1,2, ... ,8, j = 1,2, ... ,8, k = 1,2, ... ,8. 

(2j - 1) 
U64(j-l)+i = 

4 

i = 1,2, ... ,64, j = 1,2, ... ,8, 
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except for « i, u2, u 8, and u57, u58, ...u64. In order to take the boundary condition

(4.2) into account in this process, we assume

Now, the set il =  [0,4] x (0, l ) 2 will be covered with a grid, defined by taking all 

points in ft with coordinates Zi =  (xi} t t, m), ¿ =  1 ,2 ,..., 512 as above. Similarly, the 

set w =  [-4 ,4 ] x (0, l ) 2 will be covered with a grid defined by taking all points in w 

with coordinates Zi =  i = 1,2, ...,512. Then, instead of the semi-infinite

linear programming problem (4.56) we shall consider one in which the measures p and 

v  are those positive Radon measures on ft and co supported by the grids defined by Zz’s 

and Z i ’s  respectively, each such measure p  and v  is defined by a set of non negative real 

numbers c t j  and /3j, respectively where j  =  1,2, ...,512. Then the linear programming 

problem consists of minimizing the linear form

X l  — x 2 — . . - X s  —  0 ,  X 57  =  3358 =  . . .  =  Xg4 —  1
and

ui = u2 =  ...ii8 =  0, U57 =  ii58 =  ... =  iig4 =  0.

Finally we choose,

512

over the set of coefficients a t > 0, ß3 >  0, such that

512 512

512

512
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This finite-dimensional linear program was solved by a modified simplex method, tak­

ing a total of 269 iterations, and the value 1.419222 x 10-1 was resulted for the objective 

function. Now we will construct the nearly optimal control v by using the method ap­

plied in Chapter 2. The graph of the resulting control v is shown in Fig. 4.1.

o o

Figure 4.T. The nearly optimal control u(x, f)

Then we use the control function v obtained above to find u(x, T), the final value 

of the solution of the system (4.1)-(4.4) by applying an implicit difference method. In 

order to obtain an implicit difference method a replacement for the equation (4.55), the 

region Qt  is covered by a rectilinear grid with sides parallel to the x-axis and ¿-axis, 

with h and k being the grid spacing in the x and t directions respectively. So (ih, j  k ) is a 

grid point, where i and j  are non negative integers which i — j  — 0 indicate the origin. 

The functions satisfying (4.55) and the difference equation at the grid point x =  ih, 

t =  j k  are denoted by u (ih ,jk )  and uzj  respectively. The number of grid points is
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N  • M  and h =  and k = Now we return to the equation (4.55) in the form

utt — A u +  u3 =  ü,

where v  is obtained as described above. If we put x  =  i h ,  t  =  j k  and consider the 

equation (4.55) at (a:, t ) ,  then

{ u t t ) i , j  =  ( u x x ) i , j  +  ( v  — U  ) i ij .

We use the following central difference formulae for the second derivatives (see, for 

instance, [7]),
\ _  ui,j+1 — +  Ui,j-iKutt)i,]---------------- u -------------

(uxx)i,j
ui+l,j %ui,j ~t~ ui-l,j

h2

then the difference replacement for the equation (4.55) on rectangular grid is

u i , j+ i  2U{tj  +  U i , j - i  m  +  U i - i tj)  +  k  ( U j j  — ) ,

where m  =  f . Assume j  =  0, then

tit.i — 2 u ito +  W i.-i ^ 2(w i+ i,o  —  2̂ ,0 +  w »-i,o ) +  k2(vito — ufo)-

From initial condition (4.3), we know that Uifl =  0, so

« ¿ , i  +  u * , - i  =  k 2 ( v i>0) .

From initial condition (4.4)

du
dt Lo =  «t(®»0) =  0, x e  D,

so if in the central difference formula for the first derivative, i.e.,

2 k
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we choose j  = 0, then u ^ i  =  uiA, and therefore

tt»,i =  1 <  i < N  -  1

while from the boundary condition (4.2),

u0,j = uN)j = 0, 0 <  j  < M. ■

(4.57)

(4.58)

Now consider the following implicit difference replacement for the equation (4.55),

1 ,1
u.h  3 -  +  - 8 2xu itj  +  - 8 2x u itj - 1) +  ( V i j  -  u ^ ) ,

where

^ ij+ i itj -)- Ui'j—i

^xu h i  ~  u i + l , j  ~  2 u i, j +  u i - l , j

(see, for instance, Mitchell [49], Chapter 5, Smith [75], Chapter 4 ). Then an appropri­

ate implicit difference formula for equation (4.55) at the grid point ( ih , jk ) is :

+  ( - 1  — ¿¡~)uhj+i +  (-^ -V t+ ij+ i

=  +  ( ~ 2 +  k2uh  +  m2K ;  +

+  (— — +  ( i  +  1 +  (— —)^ + i,i- i

-  k 2vit j.

By assuming i =  1 ,2 ,..., N  -  1, j  =  1, and taking the boundary condition (4.58) into 

account, we find the following system of linear equations,

AU2 = BU\ +  CUo + Fi, (4.59)
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where A  and C are two symmetric tridiagonal matrices as follows:

1 1 HH
-> ™2m 04

m2 1 m 2 
. 2 04

• 
O

• 
o

i *—
* i 

•

H
i

C =  - A

and B  is the following symmetric tridiagonal matrix,

—2 +  &2«i,i +  m 2
__2171
2 0

B =
m2
2 —2 +  fc2« 2,! +  f«2 • • 0

0 0 . - 2  +  k2u2N

and,

U2

« 1,2

« 2,2

«iV-1,2

Ux

« 1,1

« 2,1

«JV-1,1

U0 =

« 1,0

« 2,0

«JV—1,0
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Vx =

- k 2vlti 

—k2v 24

-P u jV -l.l

From (4.57) Ui and from initial condition (4.3) U0 are known, then from (4.59) we can 

find (72. This formula is stable for all m  >  0 and if it is expanded about the grid point 

(ih, jk ) ,  the truncation error is found to be:

, 2, 2r( - 2 m 2 - l  d4u 1 2 - 1 7 - 1 3 m 4 d6u
h k [( —  +  m h ( — 2— ) ä l i  +  -]•

By using the iteration relation

A U j + i  — B U j  +  C U j - i  +  V j ,  j  = 1,2 ,..., M  — 1

we can find Uj+i at each step, where

TT u 2 , j + l
u j + 1 —

U N - l , j + l

We used this implicit difference method to obtain a numerical solution of the above 

problem. We have chosen h = k = which lead to M  =  N  =  50 and m  = 1. In 

all calculation, the values of v at internal grid points were taken from v(x, t ) obtained 

above. The graph of the u(x, T), the final value of the solution, produced by this scheme 

is shown in Fig. 4.2.

Example 4.2 As a second example, we took again the equation (4.55) with the same 

boundary and initial conditions, but assume

fo = (u — sin(7rx))2 

h = V 2
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O

u(x,T) S1n(rt x)

Figure 4.2: Functions u(x, T) and sin(Trx)

while domains and terminal conditions were the same as in Example 4.1. In this exam­

ple the total number of iterations was 316, and the cost function took the value 4.137847. 

Graph of the resulting control function v(x, t ) is shown in Fig. 4.3.
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Figure 4.3: The nearly optimal control v(x, t )

4.8 Conclusion and recommendations for further 

research work

In this thesis the solution of optimal control problems governed by linear and nonlin­

ear wave equations and the estimation of the errors in computing these solutions have 

been considered. The main approach used here is based on the idea of replacement 

of a classical control problem with a problem in measure space in which one seeks to 

minimize a linear form over a subset of this measure space which is described by lin­

ear equalities. The new measure-theoretical optimization problem was treated as an 

infinite-dimensional linear programming problem which enabled us to develop a com­

putational method to find the approximate solution of the classical optimal control prob­

lem. This computational scheme seems to be adequate for variety of optimal control
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problems controlled by hyperbolic differential equations. Some basic ideas were es­

tablished in Chapter 3 to estimate the errors in the approximate solutions of optimal 

control problems, these ideas are useful in estimating the errors which occur when an 

infinite linear program is approximated by a finite one. In fact, the concepts and meth­

ods introduced in this thesis provide a framework for new treatment for optimal control 
problems guided by wave equations. There are still some more problems to be solved 

related to this thesis that are recommended for further research work.

( 1) In Chapters 2 and 4, we studied optimal control problems for the linear and non lin­

ear wave equations with prescribed initial and boundary conditions defined on a bounded, 

open, connected domain u> e  JRn with smooth boundary du>. If the boundary duj has 

some jump or if the given data are discontinuous (as in the case, e.g., for wave mo­

tion initiated by an impulse) then the solutions also are discontinuous at the curve du>, 

shocks. In the further study of existence and approximation of optimal control, it is in­

teresting and important to investigate the optimal control problems controlled by shock 

waves. This field is completely new and subtle and needs more explorations.

(2) In Chapter 4, to prove the existence of a classical solution for the nonlinear wave 

equation

U t t  — A u  +  \ u \ pu  =  V ,  

we assumed the boundary condition as

u = 0 on the boundary IV,

while the control function was the inhomogeneous term v =  v(x, t) and the prescribed 

initial conditions (4.3)-(4.4) were satisfied. It is important to develop the theory of op­

timal control problems guided by nonlinear wave equations where, as the linear case, 

the control is applied on the boundary VT. For development of this theory first we need 

to prove the existence of the solution with the new boundary condition.

(3) In Chapter 4, we considered the optimal control problem with the initial condition 

(4.3), i.e.,

u (x ,0 ) =  u0(x) =  0, x € D.
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The third problem is to choose a: — ► u0(x) any real continuous function, where x E D. 

Although it seems for this case the problem could be solved by the analysis used in 

Chapter 4, but it needs to be tackled wisely.

(4) In Chapter 3, to find the approximation of the optimal value /¿*(/0), we attempted 

for the lower and upper bounds of this value. However, we were unsuccessful for an ac­

curate upper bound. A further research is to find an appropriate upper bound for p*(f0) 

by choosing M l and M2, some fixed positive integers. Although there are some related 

works (see Vershik and Temel’t [81] and Vershik [80]), but we believe that to solve this 

problem, one need to introduce some new concepts, spaces and topology.

(5) In Chapter 2 we considered the n-dimensional linear wave equation. The fifth prob­

lem consists in considering the following linear hyperbolic equation with variable co­

efficients:

Ytt(x ,t)  -  div(o(®) V  +  b(x)Y (x,t) = f ( x , t )

where (x, i ) £ w x  [0, T ], and / (x ,  t) is a continuous function on oj x [0, T] and a, b are 

continuous functions on u>. We can assume the same boundary condition as in Chap­

ter 2 and define the initial conditions and the set of admissible controls and objective 

functions as in Chapter 2.

4.9 Appendix

In this appendix we show that the problem 

Minimize

=  fi(fo) +  v{h )

over the set Q(MUM 2, M b) subject to:

[¿(Fi) +  v{ßi) — aii * — 1)2,..., Mi

K b )  = ai > j  — 1,2, ...,M 2

v((k) = bk, k — 1 , 2,..., M3.
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has a solution.

In fact by the same considerations as Proposition 4.1 and Proposition 4.2, the set of 

positive measures Q(M i ,M 2, M3) is compact on the set S  and the function

( f i ,  v ) — ► p ( f 0 ) +  */(/i) € M

that maps this compact set on the real line is continuous, so this function attains its 

minimum on the set Q{M1} M 2, M 3), i.e., there exists a pair of measures (/¿J, v{) e  

Q(M i ,M 2, M 3), such that

inf JK /o )  +  K /i)]-Q( Afj ,AÎ2 i AÎ3 )

4.10 Appendix

Since the set is a basis for the space function Hq(Qt ), we choose the set {^¿} 

orthonormal with respect to inner product defined on QT and such that iplt(x, T ) =  0, 

Va: g D. Thus for this kind of base, (4.51) changes to

| /  [(Uvt(-,T) - g 2 ) i > i ] dx \  < 3e, i =  1 ,2, . . . ,  Mx.
J Dx

Assume

w2(-,T) = uVt( - ,T )~  g2

and write w2(-,T ) in term of this orthonormal base,

OO

w2 (-,T ) = 'Z ,aM - > T )
j=i

where

M -iT W & ’T) = /  M ; T W ; T ) d x  = <J Dx
1 i — j  

0 i i  j.

So

(  w2(-, T )d x I =  |a»| <  3e, i = 1 ,2 ,..., M x.
J Dx

(4.60)



Chapter 4. The Global Control o f Nonlinear Wave Equations 151

Thus the first Mi Fourier coefficients of w2(-, T) are bounded tightly, also the tail

oo
h (x )=  £

of the Fourier series of w2(-,T) tends to zero as Mi — > oo. Now, we can choose Mi 

so large that

||^(aOI|L2 — e’ * e  Dt ,

then
Afi

\\uVt(-,T ) -  g2\\L2 =  \\w2(-,T)\\L2 = || X) +
j=l

oo
E  M ’i l k

j = M i + l

Mi
<  l l E ^ l k  +  I W k -

¿=i

But by the orthonormality properties of ipj’s and from (4.60) we find that

M!
I I E M Æ

Mi
=  5 1 “? ^  9e3 - JMx,

¿=1

so

Thus

if Mi

Similarly, we choose the set {^¿} orthonormal with respect to an inner product defined 

on Qt  but such that ÿi(x , T ) =  0, for every x e  D. For this kind of base, (4.51) 

changes to

| [  [(«„(•, T) ~  g ^ i t ld x l  <  3e, i = 1 ,2 ,..., Mi.
JDt

Assume

v > i ( - , T )  =  U v ( - , T ) - g l f

Mi
l E ^ V b l k  < 3 ev/M i.

3=1

lu«t('>^1) 92\\l2 <  3e^M i +  e — ~t=  +  v p ,
v v M i Mi

oo,then

\uvt(-,T) - 92\\l3 — ► 0.
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again in a similar way, we can show that

lim | M - , r ) - 5'i||L2 =  lim ||ti» i(-,r)||— ► ().
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