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Iist of Symbols

The following list contains those symbols that
have been used consistently throughout the thesis. Be-
cause of the large number of quantities to be represented
and the undesirability of using alphabets other than
English and Greek, it has been necessary to use some
symbols to represent different quantities at different
times and places. In every instance the symbol has been

defined where introduced to avoid misinterpretation of

its meaning.

A Vector potential of the magnetic field
B Magnetic flux density

E Voltage gradient or electric intensity
E(k), F(k) Elliptic integrals

i3,k Unit vectors, Cartesian coordinates

I Total current

H Magnetic intensity

n Unit vector normal to the surface

Pn’ Q, Legendre functions of order n

Pn, Q, Toroidal functions of order n

8 Distance

v Electric potential

L Self-inductance



r, 6, ¢
Ps 2y X
X, Iy 2
4

o

[}

u, v, w
W

S

Spherical coordinates

Cylindrical coordinates

Cartesian Coordinates

Potential function

Primary megnetic constant(=1.257+10~5)
Flux linkage

Torbidal coordinates

Work, energy

Small increment of a quantity



SUMMARY

Cylindrically symmetrical electric or magnetic
fields are often present in electrical apparatus. It
is usually considered to be prudent to study these
fields experimentally rather than mathematically, since
analytic methods require more advanced mathematics than
is normally possessed by practical engineers.

The author has derived in the present paper
some analytic solutions for a few common field problems
of this kind.

The paper is essentially in three parts: %he
first two parts are concerned with electric fields; the
last being devoted to a magnetic field.

The first part deals with the general theory
of zonal toroidal functions and in particular with the
application of these functions to the problem of the
electric field of an electrode system consisting of a
rod and a concentric ring.’ The experimental investi-
gations undertaken by the author to justify the useful-
ness of these functions were carried out with the aid

of an electrolytic tank.



The second part is devoted to the allied
problem of the sphere gap. Legendre's functions and
dispherical coordinates are used.

The third part deals with the exact calculation
0f the self-inductance of a circular turn of wire by
means of toroidal functions. _

Finally, a number of appendices have been in-
cluded, dealing with a variety of interesting details
which it has been considered advisible to separate from

the main text of the thesise



PART 1

THE APPROXIMATE CAICULATION OF THE ELECTRIC

FIEILD BETWEEN A ROD AND A CONCENTRIC RING

BY MEANS OF TOROIDAL FUNCTIONS




FIG.I2. EQUIVALENT SYSTEM WITH TOROIDAL ELECTRODES



lelo INTRODUCTION,

The electric field in an electrode system con-
'éisting of a cylindrical rod surrounded by a concentric
ring of circulér section (Fige l.l) is not exaftly cal-
culable by any known analytical method; but it has an
important bearing on the design of bushings, which may
be regarded as practical embodiments of this ideal arrange-
mente. The problem is discussed by Schwaiger< 1) in terms
of experimentally determined breakdown voltaggs, mostlj
obtained by measuring the sParkOVer voltage between a pair
of crossed rods. On the theoretical side the allied
problem of a wire passing through a circular hole in a
plate was attacked by Bolliger( 2) by a method which
would furnish an approximate solution to our problem,
namely by regarding the electrodes as two members of thé
system of hyperboloids formed by rotating a set of con-
focal hyperbolas about their conjugate axis.

The theoretical part of the present paper also
proceeds by attacking an allied problem, that of the field
befween electrodes which are tores of thé system férmed
when a set df coaxial circles is rotated aboﬁt its radical
axis (Fig. 1.2). Thus the ring electrode is correctly
represented, but the rod is replaced by an hour-glass~

shaped solid having the same radius on the central plane.



The " Toroidal Functions " necessary for the solution

of fhis problem were firét introduced by Neumann( 3)
in 1864, inlconnection with the problem of the distri-
butioﬁ 6f heat in a solid anchor-ring.and were discussed
in detail by other investiggtors, in partieular, by
Hicks( 4) (5 ); but the author has only been able

to trace one numerical table of these functions, that
published by Fouguet$ © 7 in 1937.  As Fowquet's table
does not cover a sufficient range for our'purpASe, an
extended table has been computed and included in this
paper. The values have been used to calculate the
potential gradients én the electrodes at the pointé of
nearest approach. The question of the error introduced
in replacing the rod by an hour-glass is investigated
with the aid of an electrolytic tank, and conclusions
are dréwn about the most efficient radii for the con~
ductors. | |

The word " Tore " used later in this paper

means an anchor-ring whichwhas a circular cross-section.
It is also to Dbe understood’that the " Toroidal Functions "
satiefy Laplace's equation and are suitable for conditions

given over the surfaces of the tore.



FIG. 1.3.



l.2, TOROIDAL CO~-ORDINATES.

We shall now consider the " toroidal functions "
which arise when Laplace's equation is transformed so
that the three co~ordinates, which are then taken as
independent variables, are the parameters 'u' of a
family of anchor-rings or tores, the parameters ‘v' of
a family of spherical bowls orthogbnal to the anchor-
rings and the parameters 'w' of a family of half-planes
orthogonal to the tores and bowls, | |

If A, B, are points on a straight line through
the origin, O, perpendicular to the z-axis, and making

an angle 'w' with the x-axis, we take as the co-ordinates
of a point P, in the plane w= constant, the value of.\
log( AP/BP ) which may be denoted by 'u', the angle APB,
denoted by 'v', and the azimuthal angle 'w'. The dis=
tance, 2a, between A and B is taken to be constante. (see
Fig. 1.3 )

It is clear that as 'W' increases from O to
2%, the surfaces for which 'u' has constant values will
be the family of tores generated by the revolution round
the z-axis of the ciréles of the family of coaxial circles
of which A and B are the limiting points. Also the
surfaces for which 'v' has constant values will be the

family of spherical bowlse.



(a) RECTANGULAR CARTESIAN CO-ORDINATES.

The relation between the rectangular Cartesian
coordinates ( x,y,z ) and the toroidal coordinates

( u,vyw ) is

a sinhu cosw
X =

coshu = cosv

a sinhu sinw

J = (1.2.1)
coshu - cosv

a sinv
Z =
coshu = cosv
a sinhu

coshu -~ cosv

From (1.2.1), the line u = constant gives the

equation,

P2 + 2° = 2a cothuf + a? = 0 m—m——— (1,2,2)

This gives a family of coaxial circles with limiting
points at +a.
- Similarly, the line v=constant has the equation,

2

92 + 2° = 2a.cotv.z - I R — (1.2.3)
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For the element of length ds, we have in the
new co-ordinates (u,v,w,)

(a8)® = (@p)? + (a2)® + p2(aw)®

which is easily found to reduce to

2 ,
(ds)2 - a 5 { (du)2+(dv)2+sinh2u(dw)2}
(coshu-cosv)

(b) CYLINDRICAL CO-ORDINATES.

The cylindrical co-ordinates (P,z,X) and the
toroidal co-ordinates (u,v,w) are related by a well-

known mathematical equation given by

P +at+jz
u+ jv = log
® P eat+jz
so that,
1 za+(f+a)2
u =" log
e z‘?..‘._(P a)2
can-1 2az
v = =~tan
?2+22-a?
a (e%3V 4 1)
P+jz = u+jv

e -1

du coshu=-cosv
dn * a

= (sinhu/F )
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1l.5. TOROIDAL FUNCTIONS.

It is well known that if u,v,w be any systen
of orthogonal curvilinear co-ordinates, Laplace's equation

nay be expressed in the form

/ heh; O 4 l""‘
vp= —mlg‘( ,,,’3“)7‘9—('67';7';‘)*7 T—;‘?’,)}
=0 (1.3.1)
where
12 2 2 2
hi = ( ) ( ) ( )
- &2, <-'3-WY,—>2 - G5°
and

x = X(u,v,w)
v = Y(u,v,w)
z = Z(u,v,w)
In the present case, u,v, being conjugate

functions of Pand z
2 U\ du\2
by = B3P+ P

= FF eGP -

and since
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w = tan~t (y/x)
Thus,
2 2
h3 = p

so that equation (l.3.1) becomes

. " o
$uP$H *'3:7(?%5)+%/¢-$‘)+<%)}§$=o -------- (1.3.2)

We are concerned solely with problems having
cylindrical symmetry, so that the variable "w" becomes
irrelevant. For such problems, Laplace's equation, when

expressed in terms of u and v, becomes

L( sinhu a¢) + o ( sinhu od
U coshu=-cosv ¢u ov coshu=-cosv @v

| - - (1.3.3)
where $ is the potential in the field.

) =0

The substitution
¢=¥ (C.QShu-COSV)% ----- (1.3.4)

reduces equation (1.3.3) to
. |
gu +-S%£i+cothu % +—k—‘—¥/ = 0
Now we will seek & solution of the typeVaU V,

where U, V, are functions of u, v respectively.

We get
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. 2 2
_ir a’u +;L cothu_gg.+-l-a n—;ng—g = +n?, say
U . du U dau 4 V dv
(1.3.6)
Hence

"V = Ccosnv + Dsinnv

and
a°u ay 1 .2
— + cothu =— +(—=-n“ )U= 0
du du 4
- (1.3.7)
The solution of equation (1.3.7) may be
written~

U=ap(u)+bgq(u)

.............. (1.%.8)

where a5 bn, C, D are arbitrary constants, while the

functions pn(u) and qn(u) are defined by the ihtegrals.

2 (" a8
p (v = T _[ (coshu-sinhu cosf)"*

e (10309)

ds
q,(u) = r
o e (coshut+sinhu co..w.lfle)m"bé

............... (1.3.10)
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) *
pn(u), qn(u) are toroidal functions

The properties of these functions are found
to have analogies with those of the ordinary spherical
harmonics, but with essential differences.

The general solution of equation (1.3.3) may
be written (see Appendix 1)

g = (coshu-cosv)%;i{anpn(u) + bngn(u)} cosnv

(1.3.11)

Terms in ?sinnv'! are formally possible, but
they cannot occur in a problem such as this, wherein.the

central plane is a plane of symmetrye

* pn(u), q,(u) are Legendre functions of order (n-%),

the relation being pn(u) = PnP%(ju),' qn(u) = Qn;%(ju);
but we have thought it desirable to use a new notation.

Hicks uses Ph(u) for mp,(u), Q, for qn(u); but this

bdrrowing of the customary symbols for Legendre functions
may lead to confusion.
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(a) TABLE OF TOROIDAL FUNCTIONS.

As Fouquet's table does not cover a sufficient
range for our purpose and also undoubtedly contains a
number of errors, it is considered advisable that an
extended table should be computed and included in this
thesis.

It will be shown in the latter sections that
the toroidal functions can be expressed in terms of
elliptic integrals. Using the necessary formulae given,
the required table of values for the first four functions
of each kind has been worked outs | | \

The table is computed in three stages as follows:—

(1) A difference table is constructed for
the 10-figure table of the complete elliptic integralé
published by Milne-thomsong 12 )

 (2) By means of the difference table and the

appropriate equgations, we calculate the values for the
first two functions of each kind.
| (3) The other two functions are obtained byr
using the recurrénce formulae provided.

Although a 7-figure table was initially calculated,
only a 4-figure table is included in this thesis; this is
due to the fact that the 4-figure table will cover our

computation sufficiently; The tabular intervals are
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chosen so that where possible linear interpolation or

at worst the inclusion of second difference suffice. An
ordinary difference table and a logarithmic difference
table are computed to ensure the accuracy of the table
and are found to be smooth and satisfactorye. The tables
are the result of original calculations, no undue steps
have been taken to secure the rigorous accuracy of half

a unit in the last defimal. In no case should any error

greater than ¢ 0.52 units of the last decimal be found.
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FIG. 15 TOROIDAL

FUNCTIONS



PTOROIDAL FUNCTIONS

u
0.0
ol
,2
o3
okt
0.5

o6

.7
98
"9

1.0
ol
,2
o3

g

1.5
NS
o7
.9

2;0

p,(u)
1.000
#9994
«9975
« 9944
«9901
«9846
09780
9702

« 9614

.9516
49409
.9292
.9168
.9035
8897
8752
+8601

L8446
8286

«8123
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TABLE

py (u)
1,000
1,002
1008
1.017
1.0%0
1,047
1.068
1,092
1.120
1,153
1,189
1,229
'1.275
1,321
1.373
1,429
1,489
1554
l.624
1.698
1.777

1

(FIRST XIND )

Pz(u)

1.000

1,009
1.038

1.086
1.155

1l.246

l.262
1.504
1.678
1;885

20132
2424

26767

- 3.169

34640
4.190

4,832

5580

6.452

70 466

8,646

95(u)

1.000

1.022
1.089
1.206
1,379
1.620
1,942

24366
2,918

30631

4,551

“50733

(1)

7,252
9;202‘
1,170
1,491
1,903
2432
3.110
3,981
5.098
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TABLE 1 (CONTINUED)-~mmmn-n TOROIDAL FUNCTIONS
u P, (u) py () py(u) Pz (u)
2.1 7788 1,860 (1) 1.002 (1) 6.532
.2 7617 1,949 1,162 84373
3 L 2,043 L347 (2) o7
- 7271 2,142 1,563 1,377
245 . 7097 2,247 1.814 1,766
;6 6925 2,358 2.105 2,266
.7 .6750 2,476 2,444 2,908
.8 +6577 2,599 2,838 3,732
9 6405 2,730 3429 44790
3.0 6234 2.867 3,828 6,148
.1 +6064 3,012 T E 7.892
.2 .5897 3,164 5.164  (3) 1.013
3 L5731 3,324 5,998 1.300
o 05568 34493 6,967 © 1.670
3.5 «5407 3671 8.093 2,144
6 L5248 3.858 94402 2,753
.7 5092 4,054 (2) 1.092  3.534
.8 4939 4,261 1,269 4537
9 4788 44479 1,474 5,826

4,0 641 4,708 1.713  7.480




TOROIDAL FUNCTIONS

u

0.0
.1
.2
3
4

0.5
.6
o7
.8
9

1.0
.1
.2
o3
ol

1.5
6
o?
.8
9

2.0

qq(w)

44380
3.681

' 3.267

24969
2,735
2,840
2,373
2226
2,095
1.975

1.866

1.765
1.672
1.585
1.503
1.426
1.354
1.286
1,222

1,161

TABLE 2

(<L)
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-ql(u)

24389
1.712
1.329
1.069
8.768
74283
6.101
50143
4,354
3,700
3,152
2.690
24300
1.969
1.687

- 1,447

(-2)

l.242
1.067
S.164
74875

q2(u)

1.742
1.102

(-1) 7.640
5.512
4,067
3,043
24300
1.750
1.338
1.027

(=2) 7.907
60102
4,717
34651

- 2.830
2,195
1.704
1.324
1.029

(=3) 7.999

( SECOND KIND )

q5(u)

1.367
(=1) 7.714
4,802
3.120
2.076 7
1.407
(~2) 9.567
64582
44549
3,158
2.200
1.536
1.073
(=3) 7.514
5,268
3.697
24596
1.825
1,283
(~4) 94028
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'DABIE 2 (CONTINUED) mm=m——m TOROIDAL FUNCTIONS
u Qo (u) qp (u) a5 (u) q3(w)
2.1 1,104 (-2) 6,769  (-3) 84221  (=4) 6.350
.2 1.049 5.821 4.8%9 4,469
o3 (=1) 9.973 5006 3,765 34147
4 9.482 4,305 2.930 2.216
2.5 9.016 3,703 2,281 1.560
.6 84574 3,186 1,775 1.099
.7 8154 24741 1.382 (=5) 7.741
.8 74754 2,359 1.076 5,453
.9 74375 2,030 (<4) 84377 3.841
3.0 7.014 1,747  6.523 24706
gl 6.671 1.503 5,079 1,907
.2 6.346  1.294 3,955 14343
.3 6,036 1.113 5{080. (~6) 9.466
5781 (=3) 9.581 2,398 6,670
345 54460 8,246 1%868 44700
6 50194 7.097 1454 34312
.7 4941 6,108 1.133 24333
.8 44700  5.257  (=5) 8.820 1.644
.9 4,470 4,524 64869 1.159
4,0 4,252 3.894 5.349  (=7) 8.165

The numbers in parentheses indicate the power
of 10 by which tabulatéd values are to be multiplied
CeFe q3(5009 = 0000002706
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l.4. DISCUSSION ON p_(u).

We shall first discuss the integral already

obtained.

J” ae

1
p,(u) =
o % & (coshu-sinhu.cos®)

n+2

—(1.539)

It can be shown that the above integral is the

same as

1
—%—J (coshu-sinhu- cc>se)m"'1/é de
A ‘
mmmmmm(Llo4,1)
If we differentiate pn(u) in (1.3.9) werste

"u", we get

dpn(u) 1 ("(sinhu-coshu-cos0)ae
du R Jy (coshu-sinhu-cos8)

whence

g§£§%g ;égiéﬂl - pn+l(u)~coshupn(u)

-=-(1.4.2)

Similarly from (Ll.4.1)

?‘3%(‘1‘2' = (n-}é)‘lx{(coshu—sinhu . cose;nui

x(sinhu-coshu-cose)}de
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Thus

2sinhu dpn(u)
2n-1 du = coshwvp,(u) = pp_y(w)

- (1.4.3)

Combining (l.4.2) and (1.4.3) we get

(2n+l)pn*1(u) - 4ncoshupn(u) + (2nﬁl)pn_l(u) =0

———————— (elbodt)
This sequence equation may also be deduced at
once from (1.3.9) or (l.4.1)

The function of order zero, po(u), may be ex=
pressed in terms of an elliptic integral as follows:

1™ de
po(u)a'?fl(coshu—sinhu cos® )k

1 .0k de
-5 &

.-%:.211% F(R)  =—==m=——mm- (1e4.5)
where : osinhy -
& - cishuisinhu = 1=
and
3?2 = (coshu-&iinhﬂa - oo

F(R) is known as the complete elliptic integral
of the first kind. |



23

p; () =-',E]:(cosl'm.‘-sinhu.-cose)}é ae
| . :
<= (1-8%- s10°6) @
i

from the recurrence formulas, we find
p,(u) = 4 coshu () =Lp (w

- e 3 151 3 Po
pB(u) =--?.-coshu p2(u) --g—pl(u)

The value of pn(u) when u=0 is 1
The value of pn(u) when u=® is ®

These statements are at once seen to be true.
Since 'u' becomes infinite along the critical circle it
follows that the functions pn(u) are not suitable functions
to use by which to express functions which are finite in
spaces containing the critical circle, i.e. within any
tore. But it is finite and continuous for all space

outside any tore.
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1.5, BEHAVIOUR OF pn(u) FOR SMALL AND LARGE VALUES OF "u".

We know

a6 ‘
o (coshu-sinhu-cos®

1
Pn(u) a?t— )Il‘k%

r
=---J-'-'(r.:oshu)"n")é (l—tanhu-cose)'n'y"de
r o

‘ v
= -.irl—(coshu)"n'%_[,{ 1+(n+%)tanhu. cos®

+ (n+*/é")2§n+ih) ténlfu-cosze +...} ae

--;I‘E.(coshl.l)"'n"}é {n:+ %—(nﬁé) (n+5/z)§anh2u+ . -}

- (1.5.1)

(a) when "u" is small and the terms higher than second

may be neglectéd, we have

) COShu é (l+“/ﬁu2+...-...)

e {1.5.2)

and

tanhu & u -~ - (1.5.3)

\

Substituting (1.5.2) and (1.5.3) into equation
(1.5.1), we get

pn(u) a_,%.(l+%u2+ ceee )'n'%(m-%; X (2n;l}(2;+3)u2.}.)
4né-l u2)

2 (1+ ,
16 L e " -""(10504)
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| This approximate form obtained for pn(u) for
small values of"u" is surprisingly accurate, even beyond
the expected range of validity. However for higher
values of "n", the range of validity will be slightly
reduced.

(p) with large valueiof "u", we have

coshu = %( e% + ™% )
sinhu = %( e% - &%)
Substituting these relations into pn(u),‘we get

1 (" de
D o ,
n(®) R‘i{%(eu+e'u)-cos@%(eu—e'u)}n*k

a8 :
(eusin?%O + e'ucose%e)n+%

Y
nﬂ

2 e-(n+%)?f“h ae!
- 3
r o (coses? +e 2usin?9')n*é

(1.5.7)

where ©' = %(W - 6 )

Now,

J@h ae!
o(cosaef + e"'zu.c.;:i.n.‘?S')1/é

2u

: log(4e’), if ™% is small

( approximation for complete elliptic integral )
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when n=1

[
° (00829{' + e-gusinze')ﬁ

= 2% (logh = % logh) where Xae~2U
d

= 1/A = e2u
when n=2
e 48!
o (cos20' + e 2usi1126?)/‘2
3
similarly

J"h 6!
b (cosg1 , o=2Ug;,2g)nth

. 2246 ...(20-2) _u
5‘5'70 . -.(211'-1)

Thus
py(u) 2 -;tz-e'%u(loge%u) — %ue"%u

py(u) 32 ¢

.-,_?_ 2°4 ...(2n=2) (n-%)u
py(u) #— 35 . (2nel) e
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l.6. DISCUSSION ON qn(u).

We know
o
46
*] (u) =}~ e g —
n '[(coshu+sinhu~cosh9)n'%
“““““““““““““ (105.10)
and may be expressed in terms of pn(u)
q,(u) = pn(u)r ——du
""pn(u)-sinhu
_— memmem(1.6.1)

Similarly, for qn(u) as in the case of pn(u)

can also be easily shown that

2sinhu dqn(u)
2n+1l du

= q,,(u) - coshu-qn(u)

2sinhu dq_(u)
2n~-1 du

= qoshu-qn(u) - qn;l(u)

S —— (1.6.2)
and

(2n+l)qn*l(u)-4n coshu qn(u)+(2n-1)qn_l(u) =0

————— —-(1.6.3)
Again, if we wish to express qn(u) in terms of

Elliptic integrals, we have to change © into 20, write

cosh®=secp; sinhu= tang ; dO=secgdqd and when 6=0 orw,
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¢=0 or ’1’/2.
| Then

T

qo(u)=2] ae. =
{coshu+sinhu-(coshu-sinhu)sin“g}
"%
= 2k “ P' (k) - (1.6.4)

Similarly,

q (@) = 2% {31 (x) - B'(k)}
(1.6.5)

The value of qn(u) for u=0 is o, and for u=o

is zero. Hence q,(u) is suitable for the space within

a tore, and not for space including the axis.

% _cosnv dv
A useful integral { Cocshu—sosvy? =2 qn(u)

. , - (1.6.6)
which of%en appears in connection with the toroidal
functions. |

It has been observed, during the calculatioﬁ
-for toroidal functions of qa(u) and qa(u), that for high

values of u, qn(u) becomes extremely difficult to cal=-

culate and the accuracy of the value obtained is doubt- |
ful. The recurrence formulae derived by Hicks seem to

be unsuitable for our purpose and a new approach,
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independent of the elliptic integrals had to be found
in order that the required accuracy of the table might
be preserved. For this, the author has derived a new
formula for the calculation of qn(u) for any value:

Of’ui¢
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1.7 CAICULATION OF g (u)e.

We know,

(u)=f 48 nF e
9n , (coshu+sinhu- cosh®)

'-'fi de

° %eu(l+<:oshe)+‘P$eu(l--vcoshe)}nﬁé

-(n+}é)u J a6
(cosh %0 -~ '2usinh2]é9)n+%

'(n*%)ufncosh (2n+1)%9 {l+(n+%)e 2utanh2/46

+}é(n+1/a)(n+3lz)e A o™ %O Feoevves } ae

~(n+) o coshk0.de
e u“. (L+sinh“¥e)2+t

2n+l ~2u [“cosh¥o sinh°ye de

+
2 ) (l+sinha%9)n+2

+O.....I.'..}

Let sinh#@=x, Kkcosh¥ede=dx, we get

-(n+}é)u{ ®  ax o—2u (_2n+1 %° dx :
2 LN BN A I
° ° (14 2)n+l ( )j (1+x )n-|72 ¥ ! }

Let x=tang, dx=sec2¢d¢; we now get
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T YA
‘ 2e'<n+1’é)u{jcoszn¢d¢ + e-2u(n+’/é)fosin2y!-coszn¢d¢

o~Hu (2n+l) (2n+3)
8

+

fgin%f .c0s°%gdg +.... .}
0

- ne-(n#/é)u (2n~-1)(2p=3)...1 N (2n+1>e-2u (2n-1)(2n~3)..1

2n (2n=2)+ee.02 2 (2n+2) 2n.....2

, (2o+1)(20+3) _~4u (2n-l)(2n-3)......l+.”}
8 (Co+4)(2n+2) e e e e e s ;

o xe-(nﬁé)u (2n-1)(2n=3)....1 {l+ e-2u 2n+l 1
2n(2n“2) e s e 02 2 2n+2

+

e—l’-{-‘u (2n+l)<2n+3)'1’3 +..0.g.-.o}

(2n+2)(2n+4).2.4
" if n=0
qo(u)ane'%u (l+%e-2u+_9~ e--’-}-u + 225 e-6u )
« o4 2304
if ns= la
g ()= o™ V(14 2e720, 22 oM 4 L))
e 8 64
if n =&

(u) =X~ U (l+—5—- e=2U , 32 ~Hu +ee)
% 8 12 128




('0+

NG 0%9 o1 oT
no=° TTIT *ny° ZGT *ng-° Z*D) ng-® ¥ — = (m)
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1.8, SOLUTION OF THE FPROBLEM OF COAXTAL TORES.

The potential of the field between charged.

coaxial tores is given by

$ = (coshu-cosv)%z{anpn(u)-a-bnqn(u)} cosnv

(1.8.1)

If ¢ = O when u = U, for all values of v, .

we get

anpn(u,) + bnqn(u.) =0

Therefore,

p, (uy)
byt = oGe) %

Substituting (1.8.2) into (1.8.1l), we have

0 b
$ = (cosrm—c:»o.‘sw)yé u% an{ pn(u) - qz L n(u) } cosnv

- cme=(+1.8.3)

If ¢ =V, when u = u, for all values of v,

we have

12 @ (u ) .
$ = (cf)shuafcosv)'énzﬂ'an{ pn(uz) - %ﬁyqn(ua)} cosnv

(1.8.2)
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(u,)
v =§'a {pn(u2 —-E-Q—El—'qn(ue)} cosnv

(coshu2—cosv) we

(1.8.4)

Multiplying both sides by 'cosnv dv' and
integrating them from O to T, we will have

p,(u;)

SV " cosnv dv
quCuy)

o (coslluz-co.c.nr)1’é qn(ue)}

= %an‘Pn(u?.) =

(1.8.5)

where §= 1 when n21l, but §= %.
But equation (1.6.6) gives

T cosnv dv

=2 g (w

;
¢ (coshu=-cosv)

Hence
2[2 $nqy(ay) g (uy)

pn(u2)qn(ul> - Pn(ul)qn(uZ)

22 v $29,Cus) 2, (u;)
n T ppuslay (uy) = pp(uyda,(uy)

- - (1.8.6)
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~ Therefore the general equation of potential of the field
between two charged tofes, U, and u, is given by

22

g = -—WCV (coAshu-cosv)%’;%( = $n qn(ul)qn(uz)

Pp(¥p)an(uy) = py(uy)ay(uy)

IJCIPR

{pn(u) - —W qn(u)} Coonv”
(l‘8f7)

The potential on the line v =3, is given by

2[2

g = -"5"'—-\7(1+coshu)yé g (-1) $n qn(u] )qn(“a) ‘
. N=o pn u2 qn Ufl e pn(ul)qn(ua)

- Db (uy)
{pn(u) ,‘ _Ezﬁi._). qn(u)}

(1.8.8)

We’i are'chiefly interested in the potential
gradients on the surfaces of the two conductors; since ‘
u is constant on ea¢h of these surfaces, the direction
of the field is the direction of variation of u. The
gradient is (-Dﬂ/&&u), thus

l 74 (coshu-cosv) &4
E, = Y a 3u

(1.8.9)
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The points of especial interest are X_, X; (see Fig.l.2),

where the two conductors are closest together, and where

the coordinates (u, v) are (ul,n') and (uz,n), , being
greater than u, if U, denotes the central conductor.
At any point on the plane v = T

E = -1+ coshu) 34
u a FY

Therefore, the potential gradient

,r (coshu+l)z( )% a {cosh%u [p;l(u) Pp(wy) q'(u)]

nee ’? qn(ul

| p_(u,)
thsintthu [ p_(u) =—B1° 4 (u) )
+ u[ o u) qn(ul) Ap\! ]

(1.8.10)

Evaluating this with the help of the identities (1.6. 2),

we obtain

B 'r ..9.‘2%%2@1_2( 1)3{(ncoshu+}é){anp (u) + bnqn(u)]

u aSl

=(avt) {anpn+l(u) + bnqn+l(u)]}

(1.8.11)
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On the earthed conductor u = Uy equation (1.8.11) re-

duces to

B = A2 coshz}éu g( 1>n{

1 & “siohju & Pre1(uy) + bnqm-l (ul >)

(1.8.12)

while on the live conductor u = Uy,

"E iqfl—%%%i Z( 1) l 27']? V(ncoshu2+}é)5nqn(u2)

- (o+)]a nPns1 (W) + bnqn+1(u‘2)]}

(1.8.13)
with the aid of the iden’ci’bw, given by Hicks,
pr'l(u)qn(ﬁ) - p(u)qi(u) = 1 / sinhu
(1.8.14)
we obtain
1 ' 1
qp() = anuS {Pn(u)qn(u) - sinhu]
| ‘(1.8015)
substituting (1.8.15) into (1.8.109, we get |
,]" (1+coshu) n ' py(u,)
E Z( -1) coshfulp!(u) - —B_=_ |«x
a -2, (-1)" ay{costitulp) ) ]
p!(u)g, (u) o P nu }
(Jl pn?u) sinhu.p (u)’ ]"', st u[pn(u) a,(u qn(u)] !

(1.8.16)
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On the earthed conductor u = u,;, equation (1.8.16), re-

duces to
/E(l+coshuL) °Z°(__l)n a { P4 }cosh}éu
E, = . 4 n sinhul-qn(ulj 1
) 2 2.cosh2}éu1 EE(-I)n am.cosh%ul
a "o 2sinhju,. coshlu,+q (u,)
{2 - coshayéul %( 1y { 1 }
= - a ————————
a - Sinh%ul nzo. n qn(ul)

(1.8.17)

'The potential gradient on the surfaces of the
conductor can now be easily calcuiated by substituting

the values of y andt U, into the appropriate equations.

It is considered to be convenient and practical,

to employ the dimension ratios rl/R, r2/R ( see Fig. 1.1 )y
instead of using uy and u, as independent variables.

The relations between rys Tpy R and a, up, u2kare
-

u, = sech-l(rx/R)

1 T2
up = 2 tanh ™t TJ3 2




FIG. 16. ELECTROLYTIC TANK  UNIT



N
o) N
J Y
|

O. OSCHLATOR OUTPUT SOV AT IKC/S

D. DETECTOR -

FIG. 1.7 CIRCUIT DIAGRAM CF ELECTROLYTIC TANK




39

1.9. ELECTROLYTIC TANK INVESTIGATION.

To ascertain how closely the field between
coaxial tores approximates to that between a coaxial
rod and ring, the latter was investigated in a wedge-
shaped electrolytic tank. (see Fig. 1.6)

The principle, from which the field plotting
in an electrolytic tank is derived, is based entirely
on Maxwell's equations, In a homogeneous isotropic
dielectric which is bounded by two electrodes and in
which there are no internal charges, Maxwell's equations

reduce: . to

V=0 (1.9.1)

This is well known as Laplace's equation which must be
satisfied gt every point in the‘particular field in
question.

The electric circuit shown in Fig. 1l.7. is
essentially a Wheatstone bridge, with two arms formed
by the probe‘and the electrodes 1 and 2, and the other
two arms AC and BC on the calibrated potentiometer.,

The probe is moved until its potential is equal to the
selected value on the tap C of the poténtiometér as in-

dicated by the deStors
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Detector.

The headphones are chosen as the detector for
the purpose of conveniehce. Of course, other devices
such as a cathode-ray oscilloscope may be used as detector.
In order to reduce the noise in the headphones to a mini-
mum, &a matching transformer is inserted between the

phones and the probe.

Electrolyte.

Ordinary tap water has been used throughout
the test and found to be satisfactory. Other solut;ons
such as N/1000 :0f sodium hydroxide and N/2000 of sulpﬁ%ic
‘acid have been tried by various investigators and used

with satisfaction.

Supply. '
The supply is obtained from an oscillator of

a two stage Ween bridge type with thermistor stabiliza-
tion. The frequency used is approximately 1,000 ¢/s.

It répresents a compromise between error introduced by
polarisation and stray capacitance, the former decreases
quickly with increasiéng frequency up to 1,000 - 1,500 c/s;
but thereafter reductions are outweighted by errors

resulting from stray capacitance.
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Electrode.

Different combinations of electrode materials
and electrolytes have been tried in order to reduce the
surface impedance to a minihum, to avevd oxidation yet
to keep within the confines of simplicity and a#ailability.,

It has been found, with satisfaction, b&ﬁguthot
that electrodes made of copper coated with " AQﬁadag"

(a solution of graphite ) have a very low contact drop
when the ordinary tap water is used as electrolyte.

From a preliminary test with electrodes re-
presenting concentric cylinders it was concluded that
the curve of potential variation could be drawn with an
éccuracy of 1 per cente.

By tilting the tank, a we@ge-shaped bath is
formed to represent the axially symmetrical fields which'
are uﬁder investigation. It is very importént that
the wetting line should coincide with the axis of sym-
metrye. Unfortunately, owing to the surface tension
between the eleCtrolyte and the floor of the tank (i.e.
glass), it is harﬁly possible to obtain a straight wet-
ting line as desired. This difficulty has however been
overcome by placing a piece of adhesive tape along the

wetting line to cause a ‘! forced axis of symmetry’'.
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For exploration of the field close to the
axis as needed for calculating the electric stress on
the surfaces of the electrodes, a large-scale model is
desirable in order to avoid the capillary rise of the
electrolyte on the probe, which may cause considerable
error in very shallow water.

The radial variation in potential in the mid-
plane was plotted for different combinations of electrode
radii, and the voltage gradients on the electrodes were
deduced; the results are set forth in Figs.l.1l0 and
l.11. Fig. 1.10, showing the voltage gradient on the
tore, is to be compared with Fig.’l.S.; Fig.1l.1l1l. showing
that on the central conductor, with Fig. 1.9.

The relation between the two sets of curves
~is summed up in Figs. 1.12 and 1.13., in which the ratio
of measured to calculated voltage gradient'is plotted.
On the tore, the ratio approaches unify for large values
of r, ( that is, for thick rings ); but in general the
measured value is less than the calculated. On the
central conductor the reverse is true, the measured
value exceeding the calculated, and again the ratio
approaches unity for large values of Toe These ten-
dencies can be deduced from a general consideration‘

of the field, the hour-glass shape of the central conductor
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tending to produce a reduced gradient on itself and an
increased gradient on the surrounding ring s compared
with a central conductor of cylindrical shape. It may
therefore be said that the calculations confirm the

general correctmness of the measurements.
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1l.10., CONCLUSIONS.

The electric field in an electrode sYstem
consisting of a rod surrounded by a concentric ring of
circular section is approximately calculated by replacing
the rod by an hour-glass-shaped conductor of the same
minimum radius. The resulting field is then calculated
in terms of toroidal functions, numerical tables &f which
are given. In order to find how closely the calculated
results correspond with the true values for a rod and a
concentric ring, a systematic eiectrolytic tank study
'is‘undertaken and charts of the differences between theory
and experiment are given.

For any given value of‘(rl/R), there must be
a value of (r2/R) which will make the maximug voltage
gradients on the two electrodes equal. This relation
is given by curves A and A' in Fig. |.14. , curve A re-
férfing to the calculated values of voltage gradient
and curve A' %o the measured values. The considerable
‘discrepancy between these two curves is due to the fact
that the measured voltagg gradients on the two electrodes
diverge from the calculated ones in opposite directions.

The relation given by these curves represents
an optimum design condition. Assuming it to be satisfied,

the voltage gradient on either electrode is given by .

|
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curve B or B', curve B referring to the calcula ted values
and curve B' to the measured ones. Either curve shows
a minimum attainable gradient of about (2.3V/R); theory
suggests that this will occur when rl=0.2OR, r2=0.165R,
while measurement corrects these walues to rl=0.27R,
r2=0.lOR. So long as the relation between T and Ty

is correctly maintained, their values can depart quite

a long way from those cited without greatly increasing

the volﬁage gradient.



PART 2

THE ELECTRIC FIEID BETWEEN TWO SPHERES




2e1l. INTRODUCTION.

Sphere gaps are used extensively nowadays
in high voltage engineering to measure impulse or
surge voltages, and at normal frequency to calibrate
other measuring devices. The problem of calculating
the electric field in a sphere gap is a very old one
and has intrigued some of the great minds in electrical
theory. Kirchhoff, Kelvin, Alexander Russell and others
have made contributipns to ite The method has been
that of approximation by successive images, and it
appears that no general analytical method of solution
" has beenldeveloped as in the case of the analogous
problems for the ellipsoid and anchor-ring. In this
paper a general solution of Laplace’s equation is ob-
tained in a form suitable for problems in which the
boundary conditions are given over two spherical sur-
faces and the electric field in a sphere gap is cal=-

culated,
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2.2, DIPOLAR CO~ORDINATES.

The co~ordinate:: system known as ' Dipolar or
Dispherical co-ordinates ! are defined by rotating about
the z axis the system of circles, in any plane, through
two fixed points on the axis and the orthogonal system
-of circles. Thus, if x,y,2, are the Cartesian co-ordinates
and P= (x2+y2)%, and the distance between the fixed points
2a, we have a system of orthogonal curvilinear co-ordinates,

u,vy,w, where

. P +j(z+a) |
= ]
oY = So%e P +j(z~a)
w o= tanfl(y/x) ‘ (2.2.1)

The surfaces u=copstant will then be a series
of non-intersecting ccaxial spheres having a common dia~
metral plane u=0, It is obvious that the origin and
"~ the value of 'a! can be so chosen that any two given non-
intersecting spheres will be included in the system.
These co-ordinates are similar to those employed by Hicks
in his memoir on ' Toroidal Functions ', the difference
being that in the present case the circles are rotated
about the line through the limiting points instead of
about their common radiéal axis. Further, in one case

the surface conditions are given over spheres, while in
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thé other case they are given over 'tores' or 'anchor-
rings?. It will be useful to set down here in a compact
form, formulas relating to these functions, which will
be required later on. Most of them are easily proved

and are set down‘without proof.

P = a sinv

coshu-~cosv
— (2.2.2)
a sinhu
Z =
coshu=cosv
or z+jp = Ja-cot%(u+jnb - ———(2e2.3)

-l
$e)? + (% = {32+ 282}

5.
- (coshu;fosv) (2.2.4)

If *r' be the radius of any sphere of the system,
and 'd' the distance of its centre from the origin,

r = a/{sinhuj

| - (2.2.5)
d = ascothu

The detailed account of the dipolar coordinates

may be found in'Jeffery‘s paper( 1 ).
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2.5.' SOLUTION OF LAPLACE'S EQUATION,V&ﬁ:O.

It is well known that if u,v,w, be any system
of the orthogonal curvilinear co-~ordinates, Laplace's

equétion may be written in the form,

Ve -hich{ 3t 32) + st 3 + S 3% }=0

— E——c-I D

where

B = (282 + (3 >2 (342

2 d 2 2
B = 5D+ GPP e B

2 2 2
05« (2 4 (F2 v (57

In the present case, u,v being conjugate

functions of P end z,

2 2 ’ 2 VN2 V42
ERETSC +(G5°= (T2 ($%n3

and since

w= tan"l(y/x)
therefore,
2 2
by = 1/p

Substituting these values into (2.3.1),
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Laplace's equation then becomes,

2Py + 2(p 21 p {( } 2%-0
-(20302)

Write ¢a\%§ 3 we obtain,

Y 9. :
aa&'" Ul "'q_vp,a{(';t’ +(a }"’f {( %%"}"a—ﬁi
R (2.3.3)
thus,
-§;‘{,— -g,—}"r +—-.;,—( Y i‘i)-o ----------- (243.4)

Since the problem we are interested in is

symmetrical about 2 axis,

i'.e. W‘-’-O

equation (2.3.4) then becomes,

N,

a
s T}-km‘ ~--(2.3.4a)

+

After the usual manner we will seek a solution
of the type ¥ =U V, where U, V are functions of u, v
respectively. Substituting this in (2.3.4a) we at once

obtain,

3
%%=%—%+4———&?’= constant = -(n+}é)2, say
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Hence,

U =A cosh(n+¥)u + B sinh(n+k)u
and

2
& Hew? mmamlv o

Put

Vv = (simr)yé , . we have
2 dx, 2 =03
.8_1_%‘:+ cotv a-ﬁ,--n—(n fn)x 0;

finally writing cosvsll, we have

]
(@]

(1%2) g—;"z —E}Lg'ﬁ- +n(n+1)X

The solution of which is well known to be

x= SELG0 + Do)

Pngn) being the Legendre functions of order
n, Q () is thevcorfesponding function of the ' second

kind ¢, Hence,

V= (sinv)% {aPhgu) + angu)}’

and a particular solution of equation (2.3.4a) may be
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expressed in the fornm,

fa(coshu;cosv)%{Acosh(n+%)u+Bsinh(n+%)u}{aPngu)+an9ﬂ)}

(2,3.5)
We shall find that for physical applications

it is sufficient fo confine our attention to integral values

of n. QMoreover, the solution corresponding to n=-(m+l)

is identical in form with that corresponding to n=+m.

It will, therefore, be sufficient to consider only positive

integral values of 'n' and we may write the general

solution for the potential.

(coshu—cosv)%i{Ancosh(n*%)u+aninh(n+%)u}{anrng#)+bngngﬂ)}

nso

(2.3.5a)
‘ The function ¢ and its first differential

coefficients must be finite and continuous at allvpoints

of the field except those which correspond to‘some

special physical conditions such as a source or a charge.

PnQM) is finite and continuous for all real values of
v, but QnQpJ becomes infinite when v = O or ;, hence

cannot occur in the expression for ¢ which is to hold
throughout a region including any point of axis of z.

It is to such cases that we confine our attention in
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the present paper, so that

¢=(coshu—cosv)%";.:{A.ncosh(nv/é)u + aninh(m-%)u} Pngll.)

-(20306)
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24+ SOLUTION OF THE PROBLEM OF THE SPHERE GAP.

Equation (2.3.6) shows that the potential of
the field between two charged spheres is given by

¢=(coshu—cosv)%njzo{Ancosh(n«%)u + aninh(n-\-%)u} Pn(/u')

Let Uy, Uy be any two spheres such that u,? 0
but u, is unrestricteds The potential ¢ is constant

over each of these spheres and we can without loss of

generality suppose it to be zero over the surface u,
and V over surface u;. It is obvious that g will be .

of the form

¢=(coShu—cosv)%é{Ansinh(n+%) (u-ua) } Pn(cosv)

(2.411)

from which we have

V(coshul-cosv)'% = '%Ansinh(m’/é) (ul-—uz) % Pn(cosv)

(2e4.2)

The left-hand side of the above equation may
be written
J2 v e'%ul (1 - 2 W cosv + e~CW )'%

=2V % e-(n+}é)u, Pn(cosv) | ————— (2.4.3)

n:o

since ul> 0
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Equating the coefficients of Pn(cosv), we
obtain the vglue of A‘n and the potential function then

becones,

- - %% sinh(n+%) (u-us) .y
p=I2 V(coshu-cosv) p2 St o) G ) ® (n+¥)u, PG

- (2e444)
We are actually interested in the voltage
gradient of the field, especially the voltage gradient

on the surface of two equal spheres ( i.e. U=+, and

U=-u, ). Since it is symmetrical about the plane u-O;

the voltage gradient will be obtained by differentiating
equation (2.4.4) and substituting u,=-u,.

3¢ _ coshu-cosv 3¢

OSn ou

The potential gradient
‘ a

(2.4.5)
The breskdown usually occurs at the points
where the gradient is maximum, i.e., on the line v= .

Thus,

3¢ % g ! pug+ Feofint
S aV(l‘f-wﬁu);(-s) yFYeremy { = coof (NI 2 }

(2.4.6)
The voltage gradient at u=u, is
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Euy = Bv-co’ % 3" €™ £ giah ¥4 nedycon ¥ athagenus)

The voltage gradient given by equation (2.4.7)
s plotted in Fig.(2.1). Instead of using u, as in-

dependent variable the dimension ratio r/f is employed.

The relationtbetween r,{, and a, u,are

‘ a® = (0% + 2°)

L = r-coshu,



~
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2.5, METHOD OF IMAGES.

It is not necessary to give more than a brief
outline of the method of images, since the details are
always given in general textbooks of electromagnetism.

It ié well known that a sphere of radius r,
distance & from a charge q; may be made a zero equi-
potential surface by placing with it a charge q2=-ql.r[£
at a distance c=r°/f from the centre of r. The point |
at a is cailed an ' inverse point ' and the.charge qz
an ' inverse charge '.

We are now to determine a system of charges
such as will preserve two spheres of radii r, and Ts
with a distance £ between centres, at potential v,
anﬁ v, respectively, (Fig. 2.2). We shall employ the
methods of superposition and successive approximations
in four stages as follows:~-

(a) Let T be an isolated sphere at poten=-
tial V,. Its charge may then be considered as con-
centrated at its centre and equal to qQ = Vérz.

(b) Now bring up the sphere r, of zero
potential. To hold it at zero potential in the pre-
sence of §2 we must place a charge g, = ~q2r1/£
= -V,rir,/g at a distance b; = ri/ﬁ,. But the pre-
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| sence of this charge would change the potential of
r,, 50 we must place a charge g,y = =qyq*To/ (£-vy)

2 2
Ts to its proper potential V2. But this in turn
necessitates a charge Uy at b2, and SO0 on. The pro-
cess is continued each new charge becoming smaller than
the one before it, until the effect of additional charge

becomes quite nelgligible. We thus arrive at a series

of images which maintain T, at V2 and T at Vl=0.

(c) In exactly the same way a series of
charges can be found which will maintain T, at V2=0
and r, at V.

(d) PFinally, by superposition of the two
systems of charges arrived at in (b) and (¢) above,
we obtain the necessary charges to hold r, at V2 énd
riat Ve |

The potential gradients for a particular
system of two spheres having equal radii of 6.25cm.
are plotted in(Fig.2.3).

The new method derived can be checked against
the method ofrimaggs simply by substituting the dimension
ratio into (2.447). It was found with satisfaction that
the two values agreed.
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2.6+ CONCLUSIONS.

The method derived in this paper for the cal-
culation of voltage gradient of the electric field in
a sphere gap involves more advanced mathematics than
is used in sucessive images, but the time and labour
saving is great. ‘

In practice, we are chiefly interested in the
breakdown voltage of the sphere gap whose‘tables of
numerical value for different radii and spacings are
calculated experimentally and given in the British
Standard No.358 of 1939, Unfortunately, as the ele-
ctric stress is raised, the behaviour of}the dielectric
in the sphere gap becomes very complicated ahd changes,
depending on a number of factors such as surface of
spheres, conditioning of spheres, correction for air
density etc.. Until the behaviour of the dielectric
before breakdown is thoroughly known, the theoretical
method derived in this paper gives only a rough esti=

mation of the breakdown voltage, However, it has been

shown that the new method is far more powerful in attack-

ing this king of problem than the method of images,
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3.lf INTRODUCTION.

The calculation of the self-inductance of a
circular turn of wire ( see Fig. 3.1 ) has a number of
applications in the design of inductors and is a pro=-
blem of importance in electrical engineering and es-
pecially in the field of communication, Although this
quantity has been approximately calculated by various
investigators( 1)(2)(3) whose formulae are to be
found in various electrical engineering handbooks and
notably in the publications of the National Bureau of
Standards, the exact calculation which is the object
of the present investigation cannot be found. These
approximate formulae are only valid when the dimension
ratio r/R is very small ( that is, for thin wire).

In this investigation, the toroidal coordinates
are so chosen that the form of the wire is truly re-

presented by the surface u = u_, and it is also assumed

O’
that the current flpws in the wire in such a way that
no magnetic flux cuts the surface of the wire. The
assumed condition is, in fact, approached with very high-

frequency currents. The functions necessary for the
solution of this problem are similar to those used in

part 1; in fact they are the first derivatives of the



el

toroidal functions pn(u), qn(u). A numerical table of

these functions has been computed and included in the
thesis., An accﬁracy of a part in a thousand is aimed
at in general, but better precision is obtainable over

most of the table.
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3,2. VECTOR POTENTIAL.

It is not necessary to give more tﬁén a brief
outline of the theory of the vector potential, since
the details are to be found in general textbooks of
electromagnetisme. \

We know that the vector fiéld of current density
Iis derived from the vector field of magnetic force by
the process of taking‘its curl; this fact is represented

by the vector equation

curlf = J - (3-2-1) 

In the same way, we may take a vector A such that we

write for the magnetic induction in vector form.

curld = B - (3+2.2)

Then 'A' is called the ‘vector potential' due to the
current density J; its mathematical and physical pro-
perties are easily explained. In words, this equation
means that the magnetic induction is to be found from

the vector potential by taking the curl; i.e. by finding
the direction of the axis around which the line integral
of the vector potential is greatest and the amount of

the line integral; the first is the direction of the

magnetic induction, the second is proportional to its

magnitude,
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.The components of curlA expressed in toroidal

coordinates are

“'SETSE"”{ 50 35 (Aast-65.3 icke

25 Zeran -5 tAAS)
55 Ss e 86 &, U 8585 (Autsal) =
el o) - iAo

§5 §_ (Ay-5S0)=5Sy- aSu-(Au““)
T b - (Auxm - Sk)

(3.2.3)

We are chiefly interested in cases where the

vector potential A has only a w-component i.e, Aa(0,0,Aw);

so AW is henceforth called A; and

curlh = TF 2_(pa), -;lrgtqm), 0

(3.2.4)

If the current flows in the surface of'the
wire ( along circumferential paths ) with the current
density so distributed that u = u, is a line of force:

that is to say that’thnne is no line of force penetrating

the surface: then



o4

B, = 0 on surface

u
or
(curlA)u = 0 (30205)
This gives
"y
or
PA = constant (3.2.6)

In space, curlB = O, this gives

curl curld = 0 ' (3.2.7)

A is presumed to be a function of u and v

only; so the equation (3.2.7) becomes

curl curlA = { (f 2 (P +-§7[‘%"%,(PA)”

B ) 2 2 ’fg%]}

L[ BA _ ZA _roP2 L of A1 A 3P 3
¥ (7w Yo P Lla0 e *W"W]*F‘(“‘“;fi)

A

.- O - (3.208)

Since P, z are conjugate functions of u, v, -

3r , 2P
_8_0%06" 0

(22 4+ (252 .2
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Therefore the equation (3.2.7) becomes

| [9A JA SA > Al
A au-‘+av‘+—fl>_(_§t% au."'—a'%%ér') pl"} °

(3.2.9)
Laplace's equation in toroidal coordinates is
| (3¢ , 3¢ 1, oP 2 2P 20|
x{ st ot Pl ouod Yor o j °

(3.2.10)

where ¢ is independent of w. '
Thus the equation (3.2.9) obeyed by A is

724 = ‘%i ________________ (3.2.11)

This is known as 'Polsson's equation'.
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5¢3. THE GENERAL SOLUTIONS OF THE EQUATION curl curl A = O,

We have already obtained that when the vector
potential A has only a w-component, the equation

curl curl A = O beconmes

1 [ 3A 3A . P 2A
;\'law'r am*? 5&6& AT r;/\}

Ssetscssevsessnsne (30209)

The substitution,

A =yY(cosh u - cos v)}é essesses (3e3.1)

Y *a%
ETR Y'Y J.P \"

M t3v ~lopov s fL  op 2P
AR AN v S 1 Yy,

will reduce equation (3.2.9) to

yw ﬂ--ii - ' [ EE NN RN Y] v.l'2.
T+ - F‘A =0 (3.3.2)

Substituting P‘ e duy__ and A= “into

‘ cwRu - ey
equation (3.3.2), we then get

a
coRy ~ o™

y ¥ 31y
ot T "z Y 7O

G0 essvsccroescesse (5‘303)

This equation is solved in the usual manner

by assuming )(/s U V, where U is a function of u only
and V a function of v only. By this substitution,

equation (3.3.3) is then transformed into



2
—dL.V—g_-o

L
vV odwt

Since the first term cannot contain v and the second
term cannot contain u, both must be constant, and are
written + n? and —n? respectively. Thus the separate

differential equations for U and V are

—%’;-%(JM&?U’RIU 7 (5-3-4).
and —g*;l;=—n‘v (3.3.5)

The independent solutions of the equation
(3.3.5) are cos nv and sin nv, and it is known froﬁ,
the theory of Fourier series that a sum of terms in
which n takes all integral values from zero to infinity
will be capable of describing any distribution of
current on the surface of a tore. By direct substitution,
it may be proved that the independent solutions of"
equation (3.3.4) are pé(u) and qﬁ(u). - (The proof is
to be found in Appendix 4) pﬂ(u) and qﬁ(u) are the
- first derivatives of the toroidal functions pn(u) and
qn(u) respectively. |

pﬁ(u) and qﬁ(u) can be expressgd in terms of
pn(u) and qn(u); the necessary formulae are given in
(1.6.2). Using these, the following table of values
for the first four functions of each kind has been

worked out. There are differences between these figures
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and those contained in Fouquet's table, which contains
a number of errorse.

The general solution of the equation (3.3.3)
is the product of the solutions of the equations (3.3.4)
and (3.3.5), and may be written

\'4 =§{ QnPa (@) +ba 1;.'.«)} ¢ (MY +Xn)

(3.3.6)
where &y bn’“h are arbitrary constants. When the cen=-
tral plane is a plane of symmetry (as here), o - 0;
therefore, the vector potential of the field, set up
by the current flowing circumferentially in such a way
that the surface of the tore is a line of force, is

given by |
0
Asdiemhu-eme) 2 | 0 Patw shgrw ) no

(3.3.7)
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TABLE 3

TOROIDAL FUNCTIONS

u p(u) P} (u) p5(u) py(w)
o;o 0 0 0 0
1 (=2)-1.246  (=2)3.747  (=1)1.881  (-1)4.417
.2 -2.486 7,502 3.809 9.107
o3 -3.713  (=1)1.126 5,822 *1.435
" ~4.909 1.502 24970 2,047
0.5 -6.077 1.880 *1.03%0 2.785
.6 ~7.201 - 2.259 1.287 3,693
.7 -8.281 2.640 1.574 4.829
8  =9.310 3.023 1.897 64262
.9 (-1)-1.028 3.410 2,264 8,082
1.0 =1.120 3.801 2,682 (1)1.040
o1 ~1.205 4,196 3.161 1.337
2 ~1.283 4.596 3,713 1716
3 -1.355 5,003 44350 2.203
o ~1.420 54416 5,086 2.827
1.5 ~1.479 5.838 54937 3,627
.6 -1.551 6.270 6.924 4,655
7 -1.577 64712 8,067 5.972
.8 -1.616 7.166 94395  7.664
.9 ~1.650 74634  (1)1.093 19,836

2.0 -1.678 8,117 1.272 (2)1.262
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TABLE 3 (CONTINUED) TOROIDAL FUNCTIONS

u pg(u) pi(w) p5(u) pi(u)
2.1 (<1)-1.700  (~1)8.616 (1)1.479 (2)1.620
.2 -1.717 9.132 1.720 . 2,080
.3 1,729 9.669 2,000 2.670
s -1.736 1,022 24325 3,420
2.5 ~1.739 1,080 2,702 4,401
.6 -1.738 1,140 3,141 54650
o7 -1.734 1,203 3.650 74253
.8 ~1.726 1.269 4,241 9.313
9 -1.715 1,338 4.928 (31,196
3.0 . -1.701 1.410 5.727 1.535
o1 -1.685 1.485 64655 1.971
2 - ~1.666 1.563 74732 2.531
o3 ~1.646 1.645 8.984 3,249
ot -1.623 1.731 (2)1.044 4,172
345 ~1.599 1.822 1.213 54357
.6 ~1.573 1.917 1.409 6.879
o7 ~1.546 2,017 1.637 8,853
.8 -1.518 2.122 1.902 (4)1.134
9 -1.489 2.232 2.210 1.456

4.0 -1.460 20547 2,568 1.870
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- TABIE &

TOROIDAL PFPUNCTIONS

u 0l (w) al (w) a3 () ajCu)
0.0 0 0 0 0
;1 (1) -1.004 -9.876 ~9.566 -9.178
.2 x5,071 -4.,802 ~4,381 -3.915
53 ;5,424 ~3.082 -2.615 ~2.151
o4 2,606 -2.208 ~1.728 ~1.302
0.5 -2.118 -1.676 -1.204 (=1)-8.278
N ~1.793 -1.317  (~1)-8.639 ~5.398
o7 ~1.561 -1.060 ~6.630 ~3.621
.8 1,387  (~1)-8.662 ~4.734 ~2.447
9 -1.250 ~7.163 ~3.561 ~1.670
1.0 ~1.138 ~5¢976 -2.699 ~1.148
o1  ~1.048 ~5.017 -2.058  (=2)=7.935
2 (=1)-9.697 4234 =1.575 ~5.499
o3 ~9.023 ~3.587 ~1.210 ~3.829
ot ~8,432 ~3.049  (-2)-9.323 -2.671
1.5 ~7.906 ~2.597 ~7.198 -1.868
.6 ~7.433 -2.217 -5.566 ~1.308
o7 ~7 « 004 ~1.895 ~44310  (=3)=9.165
.8 ~6.611 -1.622 -3.341 -6.431
W9 -6.249 ~1.390 ~2.592 -4,516

200 "50913 | -1.192 "“20012 "30174
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TABLE 4 (CONTINUED) TOROIDAL FUNCTIONS
u ql(w) cii (w) g3 () a3§u)
2.1 (;1)-5.601 (-1)=1.023 (=2)-1.563 (=3)-2.231
02 ~5.310 (-2)-8.785 -1,215 -1.569
o3 ~5.037 =7.546  (=3)=9.445 ~-1.104
;4 ;4,780 ~6.485 ~7.346  (=4)=7.771
205 -4.539 =5574 =5.715 =5.470
.6 -4;311 ~4.792 ~l4 4446 ;3.852
;7 4,095 -4,121 ~3.460 -2,712
.8 ;5;892 ~3.545 -2.693 -1.910 .
.9 ~3.699 ~3.049 ~2.096 ~1.345
3.0 ~3.516 ~2.623 =1.632  (=5)=9.478
;1 34342 ~24257 -1;271 ~6.677
2 =3.178 1,942 (~4)-9.892 ~44. 704
3 ~3.022 ~1.671 7,702 =3.3L4
ok ~2.874 ~1.438 -5.998 -2.335
3;5 -2.733 -1.238 ~4+670 | -1.645
6 -2.599' ~1,065 -3.637 -1.159
o7 -2,472 (-3)-9.164 -2,832 (=6)-8.169
o8 -2.351 ~7.887  -2.205 -5.756
9 -2;236 -6.788 -1.717 -4,056

4.0 -20127 ) "‘50842 "'l ¢357 "'20858
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3,4, DETERMINATION OF THE COEFFICIENT ”anf.

We have already obtained

A=il(coRu~coor) 2. anpite) + bty | e

(3.3.7)
As the vector potential contains the central axis, i.e.
u = 0, the term bnqﬁ<u) must disappear. The equation

(3.3.7) then becomes

A =ltofu ~ecov) g_; an Pl conv
(Be4a1l)

We have assumed that the u-component of the magnetic

. flux B on the surface of the wire is zero, thus
B,= (curl A)u

= SFHRA

=0

or ‘a sinh u
cosh u = cos v

4) = constant, say c.

(3.4.2)
the vector potential

On the tore u = LIS

A=lecsRug-cov) f;‘o O Paluo) LoV

(3.443)
Substituting (3.4.3) into (3.4.2), we get
a-oa(:ﬁkuo [ / _
Nl toflue - Coov) n% a"PuULo)CN‘hU =C

This gives



7

%
c(coshu o-cosv)
a sinhu o

o0 ¥ .
; a_p! c
1‘% npn(uo) osnv = © sov dv

(Beltott)

Multiplying both sides by cosnv and integrating
from O tol, we get

i rc(coshuo-cosv)
sn“anpn(uo) - a sinhu, cosnv av

(344.5)

where 811'4[ when n»l, but 'So-l..

Hence

- ¢ I”(coshu -c sv)}é cosnv av
&n sonPa(u_Ja sinbu ), o~ 0

(30406)
But
( %
[(cashu ~cosv)” cosnv av
(-]
(co shu_=cosv)
" (Coshun-cosv) cosnv dv "= (3e4.7)
o

n
J“(coshuocosnv)dv Jcosv cosnv dv
»n -

o(coshuo-c) sv)}é . (coshug-c:osv)75

Evaluating this with the help of the identities
of Hicks' equation (23), we obtain that the first term is



75

W2 coshuy q (v ) (34448)

and the second term may be split into

_?%eos{n&i)v av _,i&cos(ns;)v dv
%(coshuo-cosv)% o (coshuo—cosv)

= ;'Ié{%qn+1(uo) + }éq-n—l(uo)}

(3.4.9)

Thus the equation (3.4.7) becomes

JQ{COShuoqn(uo)’" %dnﬁl(uo) - %anl(uc)}

(3.4410)

By use of the relation (1.6.3), equation
(3.4.10) is further simplified to

2.2 :
P sinhu° qn(uo)
Thus the mxpression for the coefficieat 'an’ may be

written as

a = 215 c qﬁ(uo)
4n°~1 §ama pp(u,)

(Boltall)
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3+95. TOTAL CURRENT.,

Ampérels law satated in the integral form is

JB-as =n 21 (3.5.1)

where i indicates the total current in the ciraiit.

On the surface u=u,, we know Bu'Bw'o’

By "%%QA)

(coshu_-cosv) (coshun-cosv);{ a sinhu A}
a a sinhu, dul(coshu -cos)

__gcoshuo-cosv)z_q._{ & sinhu,

. _
Za pl(u )cosnv}
a® sinhu du (coshuo-cosv)}{ no L7070

2

2
. (coshuo-cosv) {[ - a sinhu a sinhauo
a sinhuo v,

(coshu o~C osv)’é aa,/(.coshu o=C08

a sinhu
a p!(u_)cosnv +[ 2 a_p'(u -}cosnj
2.8,Pa (% (coshuo—cosv)wz el

(coshu o---c:osv)}é
asinhu o

. .2
“VaSJ.nh u -coshu, (qoshuo-co sv)]

' . - #
Zanpn}cosnv [51nhu°(coshuo cosv) Za ph cosnv]}

(305‘2)
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Substituting (3.5.2) into (3.5.1), we get the

expression for the td?l current,

I =-1T05n3 ‘ds

n a
no A By (coshu ~cosv

) dv

(coshu --co:ssv)’é 5
{[%sinh u,~coshu (coshu_-cosv)
o o o

a 51nhu

"l

' N - " )
Zahpngosnwj [s:.nhuo(coshuo cosv)za ot cqsnv]

a
(coshu -cosv) dv}

(3.5.3)

Evaluating this with the help of the identities
of Hicks' equation (23), it becomes

2
I l:l-.-o 2an{sinhuop£ qn

4qn
4n -]

[coshuop' + sinhu p”]*

(505'4‘)

This expression is further simplified with the
aid of the identity (1.6.3)s The final result is

I I—J"-f-ozan (305.5)
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3.6, TOTAL FLUX.

The total flux through the circuit is defined

by the integral form as

JB da ~——- (3.6.1)

But
B = curlA

We get therefore

J = I(curlé)n da (3.6.2)
By Stokes's theorem, equation (3.6.2) becomes
§ = fa-as
In the present caée, % = Av = O then

. x
Q -JKA ds

X a sinhu
'.Lcoshu—cosv A-Qw

As the vector potential A is a function of u
and v only, we get |

The total flux, § 273 inhu(cosh ¥ $a plooszv
e to uxy 9 = —spu-cosv- Sinhu(coshu-cosv g,oanpncosnv

«-cXa_sinhu ;{:anpx'1 (u)cosnv
(coshu=cosv)’“ ne .

= 2%C (3-603)

where 'c¢' is defined in equation (3.4.2)
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3,7, EXACT EXPRESSION FOR THE SELF-INDUCTANCE OF A
| CIRCULAR TURN OF WIRE.

The self-inductance of a circuit is defined
as the total flux linkage per unit current and may be

written as

( total filux liikgge ) . .
L= ? ¢ Total current ) in Heory

(3.7.1)

SUbStituting (30505) and (3.605) into the

above expression for self-inductance, we get

X
L '_jig_g__ (34742)
8,
T
. This exact expression for the self-inductance
of a circular turn of wire may be expressed in terms of
the toroidal functions simply by substituting ( 3.4.11)
into the above equation.

Thus

20.%° a

= 3 | j
z&.(nz- %) {%}

L

(3+743)
The self-inductances given by the eyyation

(347.3) are calculated and plotted in Fig (3.2_).
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Instead of using u, and a as independent variables, the

dimension ratio (r/R) has been used., The relations

between r, R and s, u, are

a = R {1-(r/R)2}% )

u, = arc sech(r/R)
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5.8. APPROXIMATE FORMUILA FOR THE SELF-INDUCTANCE OF
A CIRCULAR TURN OF WIRE.

In a magnetic field, energy is required to
produce the field, but no energy is required to main-
tain it. If the magnetic flux density is B in a given
volume element AV in the field ( the field being ' in
vacuo ! or in a material not containing magnetizable

material ), then it can be shown that

w = =i~ [[f B%av - (3.8.1)
This stored energy may also be expressed in terms of
the current and the self-inductance,

1l ;-2

W’-E-'II (5.802)
Combining equations (3.8.1) and (3.8.2), we get

1.2 1 (ff2 '

3L a?ﬂ]UB av (3.8.3)

For our present purpose, assuming that the

dimension ratio (r/R) is very small, we obtain

L=NR(lgE -2)

(3.844)

The detailed account of the integration is to

be found in Abraham's book ¢ ¥ 7.
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The self-inductance given by the equation

(3.8.4) is plotted in Fig. (3.2b) to be compared with

Fig. (Boza)o
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3.9. CONCLUSIONS

The relation between the two curves is summed
up in Fig (3.3) in which the ratio of the approximate
value of self-inductance of a circular turn of wire to
the exact is plotted. The ratio approaches unity for
small values of r/R (that is, for thin wire); but in
general the approximate value is greater than the exact.
The tendency for an increased sélf-inductance, when
calculated from the approximate formula, can be easily
deduced from a general consideration of the field; the.
current which was assumed to be concentrated at the axis
in the calculation produces a stronger magnetic flux-
linkages,

The error introduced by the approximate for-
mula is found to be significant (that is, more than’
10%), when the dimension ratio r/R has a value of more
than 0.35. Thus the genéral correctness of the exact

calculation is confirmed by the approximate one.
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Appendix lo

pn(u) and qn(u) are the ‘general solution of the equation

14 \d
-girt—g—- wﬂ.u.a “ﬁ“?-o

Laplace's equation expressed in toroidal co-

odinates (u, v, w) has the form

. sk
gﬁ‘mﬂu-mv au. W(Ma-c%ov ) "—'( “)5—) o

| -- (1)
Where there is radial symmetry, the last term disappearé.

In such case the above equation will reduce to

awt iﬁ*“d“at ~¥=o0 (2)

The general solution of equation (2) may be

written
0 ;
ysé [anpn(u) + bnqn(u)}cosnv

where

| - de
p (ui=—
n X 1[ (coshu=-sinhu: cose)m%

qn(u> = ‘r -~ n+
o (coshu+sinhu- goshe)
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The proof that pn(u) and qn(u) are the solutions

of the eguation is as follows:

Sipce

1 (" ao_ .
Ry —
n n .(coshu—sinhu‘cose)n+%_

dp,(u) _ _ 1
du X

2n+1 I“(sinhu-coshu-cose) ae
2 A (coshu-sinhu-cos@)nﬁ%'

(4)
Aléo |

-n2 d2pn 4a { " (sinhu-coshu. cose) d@}

2n+l  du” du l % (coshu~sinhu. cos®) "%

__.2n+3 (T (sinhu-coshu-cos@)2 . 40
o (coshu—sinhu-coso)n+§

L ae
* (coshu-sinhu. cose)™*?

+

(5)
We know |
(sinhu-coshu-cose)2 ; (coshu—sinh.u-cosé)2
= 00329 -1
--51n%0 - k (6)

/
Hence, the first term of equation (5) becomes,
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~-_ 2n+3 ]”-singe + (coshu-sinhu-cose)2 _de
2 I, . (coshu-sinhu. cos@)?*

__2n+3 jﬂ sin0 de _ 2n+3
2 Y% (coshu

—sinhu‘cose)n+%‘ 2

n-pn(u)

Therefore,

8%p, = (2o+1)%  _2nel 1 X cos@ a0
2 22 n 2 7t sinhu ‘s (coshu-sinhu.cog8)2t¥

du
(?7)

" Let the potential V= U:¥, where U and V are

functions of u and v respectively, equation (2) then

reduces to

v | 2
:;F? + n°Vs=20 (8)
and
2%y pradl o (0% = 1)y g
‘au? r e du 4 |
(9)
Equation (8) has the general solution given
by -
V= a'coshv + b'sinnv
If equation (9) has the general solution given
by

U= appa(u) « Py qu®
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then p, and g, must satisfy the equation (9) separately.

With,pn defined by equation (3),

2
:E_Bn_+ cothu _Pn
du2 du
=g2n+122p 2nt+l - 1 ” cosH 48
4 n =72 'wsimhu (coshu—sinhu-cos@)n+%
4 Soshu  2n+l :;_f“sinhu-coshu-cose . a6
simhu 2 ) (coshu~-sinhu:cos@ )™

§2n+122 2n+l 1 coshusinhu—sinh?u cose

I 2  Wsinhuls  (;ochu-sinhu. cose)

§2n+1}2p _ 2n+l _;_I |
n LU (coshu—sinhu cose)n*k

+

- 4n?-l
T Pp

Hence p, is a solution of the equation (2). . Bimilarly,
it can also be proved in the same manner that g is a

solution of the equation.
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Appendix 2.

S_n(u) expressed in terms of p (u).

‘Let Y= o p (u)-F (u) ( 10 )

substituting this into equation (9), we get

2

a~F 4ar
P 5, 2%y 3, cothupn——-—n = 0
B du du du du
which may be written
dFa dPn
daw da 0
‘ +2 + CoMfu=0
dFp Pa
aw
(1)
The integral of this equation is |
aF '
l°ge'<'1'11" + 2 loge-pn + loge-sinhu = 0
(12)
Thus |
ar_ _ _ A 5
du sinhu p

n

where A is the constant of integration.

Hence O

o sinhu-pi - (13 )
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comparing equation (13) with tthe given solution, we have

' ® du
aq(w) =Ap,(w) |- e (57

(14 )
The following relations between p, and d, will
be useful in application;
(a) - -
4) Pny1'9pn T Pp*9n4l *2o+l
———1—-—-.
sinhu

' - 1
(b) Patq " Po*dn .

! - N = 3
They are easily proved, for substituting for Pni1t 941

from their sequence equation.
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Appendix 3

VECTOR OPERATIONS IN TOROIDAL COORDINATES.

Let us assume three orthogonal coordinates
U, vV, W, so,thaﬁ the three sets of coordinate surfaces,
u = constant, v = constant, w = constant, intersect at
rigﬁt angles, though in general the surfaces will be

curved. Now let us move a distance dsu normal to a

surface u = constant, When we do so, v and w do not
change, but we reach another surface on which u has

increased by du, which in general is different from dsu.
In general, we have

ds, = hydv (15 )

dsw = h3dw

where

2 2 Y 2 3Z 2
- (B2 @2 &

~'similarly for h2 and h3.

The first step in settimg up vector operations
. ,in any set of coordinates is to derive these h’s, which
o can be done by elementary geometrical methods. Thus
in toroidal coordinates where the coordinates are'u, V, W,

we have



o4

SSu = Asu

§Sy = AV mmmmmemm—mmeeeee—o (16)
gsw = fsw
where
d(P+iz
o

a
* "(coshu-cosv)

which corresponds to " 1/% " in Hicks' paper.

GRADIENT. _
The component of the gradient of a scalar S'
in any direction is its rate of change in that direction.
Thus the component in the direcfion 'u! (normal to the
surface uscdnstant) is

ds' _ 1 as?

dsu hl du’

with similar formulas for the other components.  Thus

in toroidal coordinates, we have

. 1l oS!

! B evmeuen  ewmememm——
gradus A 3a
1 s

grade' = 3V
1 oS!

’ E 3 ——
gradWS Tr Y
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DIVERGENCE,

Let us apply the divergence theorem to a

small volume element 4V = dsu dsv dsw, bounded by co-
ordinate:isurfaces at Uy, ul+duletc.. If we have a

vector A, with components Au' Av’ Aw along the three curvi-
linear axes, the flux into the volume over the face at u,

whose area is ds_ ds_, is (Au ds,, dsw)u, and the corres-
ponding flux out over the opposite face is (Au dsv dsw)u+du’
where we note that the area dsv dsw changes with u as well

as the flux density Au. Thus the flux out over these two

‘faces is
-2 . '
S (Au ds dsw) du

d ‘h

1 d
h1h2h3 ou

(Auoh2~h5) av

Proceeding similarly with the other pairs of faces, and
setting the whole outward flux equal to divA dv, we

have

| N ' 3 }
diva = hthhB{Au (Ayhohs )+ 37 (ARl D g (A by hy)

- ' (17 )
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Thus in toroidal coordinates

aiv & = o Jay P+ Folay P+ Soa, X))

(18 )

LAPLACIAN.,
Writing the Laplacian of a scalar S as divgradS,
and placing Au = graduS, etc., in the expression for

divA, we have

h;h h
%8 = [ {a( 593 %(h§21§)+ 1293)},0

h h2 3 ou hl
(19)
Thus in toroidal coordinates, we will have
2 1 {3 3 A aS}
VAS = xP {a ) aV(P )+
--( 20 )
CURL.

We apply Stokes's theorem to an approximately
rectangular area‘bounded by u, u+du, v, v+4dve. The line
integral of a vector A about the circuit is

Au(u,v)dsu+Av(u+du,v)dSv-Au(u,v+dv)dsu-Av(u,v)dSv
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This is approximately equal to

{Bamoray) - Splny ) anav

- (21)
Since this must be equal to curl A das. dsv, we ahve

/ .
curl A " b5, {g—u(heAv) - '%;;' (A,hy) }

(a1)

With the similar expressions for the other components.

Thus in toroidal coordinates, we have

curl A -;\-Iﬁ{g;; (AW¥P) - %;v'.(%'l)}
curl A shf{DW (Au-p) - au (AW-P)}
curl A =2 ) - & e}
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Appendix 4

pﬁ(u) and qﬁ(u) are the general solutions of the equation

a?y__ 2n_ _3U__ ..
du 4sinh™u
If we put.
1% ;
U -_(sin@u) ¢ (22)
then
. 2
-g—g- = (sinhu) —%% '+ﬁ(sinhu)'}é coshu ¢
&%y - (sinhu)%-ggg-+(sinhu)'%coshu dg
du2 du du
. % -} 2
+%(sinhu)”” ¢ - ¥%(sinhu) =~ cosh®™u ¢
Thus
2
4a~u Pl U
+nU -~——é——§-
du2 4ginh™u
a2 | _
= (sichu)” [—d—g- + cothu-2& - (n®%)g - (sinmu)™? ¢}
du :
or
2 ' -
-g-%-+ cothu-%%-- (n?d%)¢ -~ (sinhu) 2 g=0
du :

(23)
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The toroidal functions pn(u) and qn(u) satisfy

5
—g-g-+ cothurgﬁ- (n?d%)p = O (Hicks' eque 9)
- du )

Differentiate this with respect to 'u' and write p! for

%E—, we get
a°p! aps 2 2
-——g—— + cothu—aﬁ-— -~ cosech®u p! - (n“~%)p! = O
du :

vh ich is equation (23). Thus the solutions of equati omi.

(23) are pj(u) and qp(u).



