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List of Symbols

The following list contains those symbols that 
have been used consistently throughout the thesis. Be
cause of the large number of quantities to be represented 
and the undesirability of using alphabets other than 
English and Greek, it has been necessary to use some 
symbols to represent different quantities at different 
times and places. In every instance the symbol has been 
defined where introduced to avoid misinterpretation of 
its meaning.

A
B
E
E(k), E(k) 
i* j ,k 
I 
H
n

Pn* On

Pn* *n 
s
V

Vector potential of the magnetic field
Magnetic flux density
Voltage gradient or electric intensity
Elliptic integrals
Unit vectors, Cartesian coordinates
Total current
Magnetic intensity
Unit vector normal to the surface
Legendre functions of order n

Toroidal functions of order n 
Distance
Electric potential

L Self-inductance
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e, t Spherical coordinates
P» z» / Cylindrical coordinates
x, y, z Cartesian Coordinates
* Potential function
A.
i

Primary magnetic const ant («1.257 *10"'̂ ) 
Flux linkage

U, V, w Toroidal coordinates
W Work, energy
a . S Small increment of a quantity



SUMMARY

Cylindrically symmetrical electric or magnetic 
fields are often present in electrical apparatus. It 
is usually considered to be prudent to study these 
fields experimentally rather than mathematically, since 
analytic methods require more advanced mathematics than 
is normally possessed by practical engineers.

The author has derived in the present paper 
some analytic solutions for a few common field problems 
of this kind.

The paper is essentially in three parts: fhe 
first two parts are concerned with electric fields; the 
last being devoted to a magnetic field.

The first part deals with the general theory 
of zonal toroidal functions and in particular with the 
application of these functions to the problem of the 
electric field of an electrode system consisting of a 
rod and a concentric ring. The experimental investi
gations undertaken by the author to Justify the useful
ness of these functions were carried out with the aid 
of an electrolytic tank.
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The second part is devoted to the allied 
problem of the sphere gap. Legendre's functions and 
dispherical coordinates are used.

The third part deals with the exact calculation 
of the self-inductance of a circular turn of wire by 
means of toroidal functions.

Finallyf a number of appendices have been in
cluded, dealing with a variety of interesting details 
which it has been considered advisible to separate from 
the main text of the thesis*



PART 1

THE APPROXIMATE CALCULATION OP THE ELECTRIC

FIELD BETWEEN A ROD AND A CONCENTRIC RING

BY MEANS OF TOROIDAL FUNCTIONS



FIG.>.2. EQUIVALENT SYSTEM WITH TORQICAL ELECTRODES
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1.1. INTRODUCTION*
The electric field in an electrode system con

sisting of a cylindrical rod surrounded by a concentric 
ring of circular section (Fig* 1.1) is not exactly cal
culable by any known analytical method; but it has an 
important bearing on the design of bushings, which may 
be regarded as practical embodiments of this ideal arrange
ment* The problem is discussed by Schwaiger^  ̂  ̂in terms 
of experimentally determined breakdown voltages, mostly 
obtained by measuring the sparkover voltage between a pair 
of crossed rods. On the theoretical side the allied
problem of a wire passing through a circular hole in a

( 2 )plate was attacked by Bolligerv ' by a method which 
would furnish an approximate solution to our problem, 
namely by regarding the electrodes as two members of the 
system of hyperboloids formed by rotating a set of con- 
focal hyperbolas about their conjugate axis.

The theoretical part of the present paper also 
proceeds by attacking an allied problem, that of the field 
between electrodes which are tores of the system formed 
when a set of coaxial circles is rotated about its radical 
axis (Fig. 1.2). Thus the ring electrode is correctly 
represented, but the rod is replaced by an hour-glass- 
shaped solid having the same radius on the central plane.
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The " Toroidal Functions " necessary for the solution 
of this problem were first introduced by Neumann^ ^  ̂

in 1864-, in connection with the problem of the distri
bution of heat in a solid anchor-ring and were discussed
in detail by other investigators, in partiirular, by 

( 4- ) ( s }Hickss \ but the author has only been able
to trace one numerical table of these functions, that 
published by Fouquet^ 6  ̂in 1937» As Foaquet's table 
does not cover a sufficient range for our purpose, an 
extended table has been computed and included in this 
paper. The values have been used to calculate the 
potential gradients 6n the electrodes at the points of 
nearest approach. The question of the error introduced 
in replacing the rod by an hour-glass is investigated 
with the aid of an electrolytic tank, and conclusions 
are drawn about the most efficient radii for the con
ductors.

The word " Tore " used later in this paper 
means an anchor-ring which has a circular cross-section.
It is also to be understood that the M Toroidal Functions " 
satisfy Laplace's equation and are suitable for conditions 
given over the surfaces of the tore.



FIG. 1.3.
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1.2» TOROIDAL CO-ORDINATES.
We shall now consider the " toroidal functions " 

which arise.when Laplace's equation is transformed so 
that the three co-ordinates, which are then taken as 
independent variables, are the parameters *u' of a 
family of anchor-rings or tores, the parameters *v* of 
a family of spherical bowls orthogonal to the anchor- 
rings and the parameters 'w' of a family of half-planes 
orthogonal to the tores and bowls«

If A, B, are points on a straight line through 
the origin, 0, perpendicular to the z-axis, and making 
an angle *w* with the x-axis, we take as the co-ordinates 
of a point P, in the plane w* constant, the value of 
log( AP/BP ) which may be denoted by 'u1, the angle APB, 
denoted by 'v*, and the azimuthal angle 'w'. The dis
tance, ¿a, between A and B is taken to be constant# (see 
Fig. 1.3 )

It is clear that as 'w' increases from 0 to 
2TC, the surfaces for which *u' has constant values will 
be the family of tores generated by the revolution round 
the z-axis of the circles of the family of coaxial circles 
of which A and B are the limiting points. Also the 
surfaces for which 'v* has constant values will be the 
family of spherical bowls#
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(a) RECTANGULAR CARTESIAN CO-ORDINATES.
The relation between the rectangular Cartesian 

coordinates ( x,y,z ) and the toroidal coordinates 
C u,v,w ) is

a sinhu cosw 
x ■_______________

coshu — COST 

a sinhu sinw
y --------------—  -------------- (1.2.1)

coshu -cosv 

a sinvz »
coshu - cosv

P - ( x2 + y2)^
a sinhu 

coshu - cosv

From (1.2.1), the line u » constant gives the
equation,

p2 + z2 — 2a cothup + a2 »0 --- —  (1.2*2)

This gives a family of coaxial circles with limiting 
points at +a.

Similarly, the line v*constant has the equation,
2 2 2 p + z — 2a-cotv-z - a » 0 (1.2.3)
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For the element of length, ds, we have in the 
new co-ordinates (u,v,w,)

(ds)2 * (dp)2 + (dz)2 + p2(dw)2 

which is easily found to reduce to

(ds)2 • ----------- 5- { (du)2+(dv)2+sinh2u(dw)2(coshu-cosv)^ 1

(h) CYLINDRICAL CO-ORDINATES.
The cylindrical co-ordinates (p,z,X) and the 

toroidal co-ordinates (u,v,w) are related by a well- 
known mathematical equation given by

u + jv » loge
p +a+jz 

P -a+jz
so that,

X z2+(f+a)2
u * T  lose 2~Z 72 z +(p-a)

v ■ -tan-1 2az
P2+z2-a2

f+ jz
a (eu^ v + 1) 
eu+^v - 1

du coshu-cosv dn * a

■ (sinhu/p)
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1.3. TOROIDAL FUNGIIONS.
It is well known that if u,v,w be any system 

of orthogonal curvilinear co-ordinates, Laplace's equation 
may be expressed in the form

where

and

Its (-Tr$ +tû H)  *  M & ß }

,2 _ /dX x2 x ,SI s2 A ,dZ n2 
hi * (dir) + -) + }

h2 , \2 ,dY_,2 fdZ n2

,2 ,3X x2  ̂,dY n2 ,$z \2
h3 “ (5 T ,) + (5i"} + (§w°

(1.3.1)

x » X(u,v,w) 
y * X(u,v,w) 
z ■ Z(u,v,w)
In the present case, u,v, being conjugate 

functions of Pand z

‘i -
dU\2

< T F  >2 + <-Sf)2
and since
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w tan”1 (y/x)
Thus,

h 2 ,>2- P
so that equation (1*3.1) becomes

(1.3.2)

We are concerned solely with problems having 
cylindrical, symmetry, so that the variable "w" becomes 
irrelevant* For such problems, Laplace's equation, when 
expressed in terms of u and v, becomes

d«-'’ coshu-cosv au ' dir * coshu-cosv $v ' * u
------------ (1.3.3)

where is the potential in the field#
The substitution

<p ■ (coshu-cosv)^ ----- (1*3.4*)
reduces equation (1*3*3) to

+ j£j+C0tliu -§£ - 0
------------ (1.3.5)

Now we will seek a solution of the type*^ »IT V, 
where U, V, are functions of u, v respectively.

We get
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i . ^ n +A Cothu -S2+iU du U du 4- 7 dv
1 d2V 2 ------r » +n , say

■ (1.3 .6)

and

Hence

V « Ccosnv + Dsinnv

+ cothu —  +(-i--n2 )U* 0 du du 4

(1.3.7)

The solution of equation (1.3.7) may be
written

u • V > n(u) + V n (u)
•(1 .3.8)

where an , bn , C, D are arbitrary constants, while the 

functions Pn(u) and qn(u) are defined by the integrals*

Pn(u) 1 [n cL8_________
TC (coshu-sinhu cosB)"*1

(1.3.9)

.(u) - f :
de

*1 (coshu+sinhu cosh6)n+^
■(1.3.10)
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Pn(u), qn(u) are toroidal functions*
The properties of these functions are found 

to have analogies with those of the ordinary spherical 
harmonics, but with essential differences*

The general solution of equation (1.3*3) may 
be written (see Appendix 1)

<f> m (coshu-cosv)^ 2 (anPn(u) + ©osnv

------------------ (1.3.11)
Terms in ^innv* are formally possible, but 

they cannot occur in a problem such as this, wherein the 
central plane is a plane of symmetry*

* Pn(u), qn(u) are Legendre functions of order (n-#),

the relation being pn(u) - pn.î (du), qn(u) - Q^Cdu);
but we have thought it desirable to use a new notation. 
Hicks uses Pn(u) for 7ipn(u), for qn(u)} but this
borrowing of the customary symbols for Legendre functions 
may lead to confusion.
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(a) TABLE OF TOROIDAL FUNCTIONS.
As Bouquet's table does not cover a sufficient 

range for our purpose and also undoubtedly contains a 
number of errors, it is considered advisable that an 
extended table should be computed and included in this 
thesis.

It will be shown in the latter sections that 
the toroidal functions can be expressed in terms of 
elliptic integrals. Using the necessary formulae given, 
the required table of values for the first four functions 
of each kind has been worked out*

The table is computed in three stages as follows:-
(1) A difference table is constructed for

the 10-figure table of the complete elliptic integrals
( 12 }published by Milne-Thomson; '

(2) By means of the difference table and the 
appropriate equations, we calculate the values for the 
first two functions of each kind.

(3) The other two functions are obtained by 
using the recurrence formulae provided.

Although a 7-figure table was initially calculated, 
only a 4-figure table is included in this thesis; this is 
due to the fact that the 4-figure table will cover our 
computation sufficiently. The tabular intervals are
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chosen so that where possible linear interpolation or 
at worst the inclusion of second difference suffice* An 
ordinary difference table and a logarithmic difference 
table are computed to ensure the accuracy of the table 
and are found to be smooth and satisfactory. The tables 
are the result of original calculations, no undue steps 
have been taken to secure the rigorous accuracy of half 
a unit in the last decimal* In no case should any error 
greater than ♦ 0*52 units of the last decimal be found.





1.5

FIG. 1.5. TOROIDAL FUNCTIONS
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T A B L E  1
T 0 R 0 I D A L F U R C T I O N S  (FIRST KIND )

U P0<u> Px(u) P2(u) P3OO
0,0 1.000 1,000 1.000 1.000

.1 .9994 1.002 1.009 1.022

.2 .9975 1.008 1.058 1.089

.3 .9944 1.017 1.086 1.206

.4 .9901 1.05O 1.155 1.379
0,5 .984-6 1.047 1.246 1.620

•6 .9780 1.068 1.362 1.942
.7 .9702 1.092 1.504 2.566

• 8 .9614 1.120 1.678 2.918

.9 .9516 1.153 1.885 3.651
1,0 .9409 1.189 2.152 4.551
•1 .9292 1.229 2.424 5.733
.2 .9168 1.273 2.767 7.252
.3 .9055 1.321 3.169 9.202

.4 .8897 1.373 5.640 (1) 1.170

1.5 .8752 1.429 4.190 1.491
.6 .8601 1.489 4,852 1.905
.7 • 84A6 1.554 5.580 2.452
.8. .8286 1.624 6.452 5.110

.9 .8125 1.698 7.466 5.981
2.0 .7957 1.777 8.646 5.098
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TABLE 1 (CONTINUED)-------TOROIDAL FUNCTIONS

u p0(u> PiOO P200 P5(u)
2,1 .7788 1.860 (1) 1.002 CD 6.532
.2 .7617 I.949 1.162 8.373
•3 ni\ >\;i0 f 1 1 1 2.043 I.347 (2) I.074
.4 .727I 2.142 1.563 1.377

2.5 .7097 2.247 1.814 1.766
.6 .6923 2.358 2.IO5 2.266
• 7 .6750 2.476 2.444 2.908
.8 .6577 2.599 2.838 3.732
.9 .6405 2.730 3.296 4.790

3.° .6234 2.867 3.828 6.148
.1 .6064 3.012 4.446 7.892
.2 .5897 3.164 5.164 (3) 1.013
.3 .5731 3.324 5.998 1.300
.4 .5568 3.49Ì 6.967 1.670

3.5 .54-07 3.671 8.093 2.144
.6 .5248 3.858 9.402 2.753
.7 .5092 4.054 (2) I.O92 3.534
.8 .4939 4.261 1.269 4.537
.9 .4788 4.479 I.474 5.826

4.0 .4641 4.708 I.713 7.480

!
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T A B L E

O I E  A L  F U N 0 T I

2

0 N S ( SECOND KIND )

u qiOO q2(u) q3(u)

0.0

.1 4.380 2.389 I.742 1.367

.2 3.681 1.712 1.102 (-1 ) 7.714-

.3 3.267 1.329 (-1 ) 7.640 4.802

.4 2.969 1.069 5.512 3.I2O

0.5 2.735 (-1 ) 8.768 4.067 2.076

.6 2.540 7*283 3.043 1.407

*7 2.373 6.101 2.300 (-2 ) 9.567

.8 2.226 5.143 I.75O 6.582

.9 2.095 4.354 1.338 4.549

1.0 1.975 3.700 1.027 3.158

.1 1.866 3.152 (-2 ) 7.907 2.200

.2 1.765 2.690 6.102 1.536

.3 1.672 2.300 4.717 1.073

.4 1.585 1.969 3.651 (-3 ) 7.514

1.5 I.503 1.687 2.830 5.268

«6 1.426 1.447 2.195 3.697

.7 I.354- 1.242 1.704 2.596

.8 1.286 1.067 1.324 1.825

.9 1.222 (-2 ) 9.164 1.029 1.283

2.0 1.161 7.875 (-3 ) 7.999 (-4 ) 9*024
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TABLE 2 (CONTINUED) ------  TOROIDAL FUNCTIONS
u q0(u) q2(u) q5(u)

2.1 1.104 (-2) 6.769 (-3) 9.221 (-4) 6.350
.2 1.049 5.821 4.839 4.469
.3 (-1) 9.973 5.006 3.765 3.147
.4 9.482 4.305 2.930 2.216

2.5 9.016 3.703 2.281 1.560

.6 8.574 3.186 1.775 1.099

.7 8.154 2.741 1.382 (-5) 7.741

.8 7.754 2.359 1.076 5.453

.9 7.375 2.030 (-4) 8.377 3.841
3.0 7.014 1.747 6.523 2.706

.1 6.671 1.503 5.079 1.907

.2 6.346 1.294 3.955 1.343

.3 6.036 1.113 3.080 (-6) 9.466

.4 5.74i (-3) 9.581 2.398 6.670

3.5 5.460 8.246 1.868 4.700
.6 5.194 7.097 1.454 3.312
.7 4.941 6.108 1.133 2.333
.8 4.700 5.257 (-5) 8.820 1.644
.9 4.470 • 4.524 6.869 1.159

4.0 4.252 3.894 5.349 (-7) 8.165
The numbers in parentheses indicate the power 

of 10 by which tabulated values are to be multiplied 
e.g. q3(3.0$ - 0.00002706
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1.4. DISCUSSION ON pn(u).

We shall first discuss the integral already
obtained*

d0
(coshu-sinhu*cos9) n + W

>(1.3.9)
It can be shown that the above integral is the

same as

f (coshu-sinhu- cos9)n*’/̂ d9TV J0
•(1.4*1)

If we differentiate pn(u) in (1*3.9) w.r.t*
MuM, we get

ap^u)— £  - -(n+J4)
du

1 r7l(sinhu-coshu>cos0)d0
^ *4 (coshu-sinhu-cosO)**

whence
2sinhu .dp„(u) 
¿n+i — Tin+l^u^ coshupn^u^

(1.4*2)

Similarly from (1.4*1)

»(n|(coshu-sinhu-cos0-)n"'̂ : 

*(sinhu-coshu*cos9)}d0
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Thus
2sihhu dp (u)

----dS--  ■ costar<pn<u) - P j ^ O O
(1.4.5)

Combining (1.4.2) and (1.4.3) we get

(2n+l)pn+1(u) - 4ncoshupn(u) + (2n-l)pn-;L(u) =0
--------------- (.4.4)

This sequence equation may also be deduced at 
once from (1.3*9) or (1.4.1)

The function of order zero, pQ(u), may be ex
pressed in terms of an elliptic integral as follows:

P, d©coshu-sinhu cos©)6 
2fc>.I

%  -¿(1 - a2 sin2© )

Tt 2**^ F(8) ■(1.4.5)

where
a2

2sinhu
coshu-tsinhu 1 - e-2u

and
8*2 (coshn+sinhu)' e-2u

3?(8.) is known as the complete elliptic integral 
of the first kind.
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Pl(u) =^Jcoshu-sinhu* cos©)^ d© 
» ^ ( l - ^ . s i n 2©? d©

from the recurrence formulas, we find

p20 0  - ycoshu p-^u) --f P0(u ) 

P^(u) »-|-coshu p2(u) --|-p1Cu)

The value of pn(u) when u*0 is 1
The value of pn(u) when u»oo is <c

These statements are at once seen to be true* 
Since 'u‘ becomes infinite along the critical circle it 
follows that the functions Pn(u) are not suitable functions 
to use by which to express functions which are finite in 
spaces containing the critical circle, i.e. within any 
tore. But it is finite and continuous for all space 
outside any tore*
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1.5. BEHAVIOUR OF Pn(u) FOR SMALL AND LARGE VALUES OF "u".
We know

(u) _ i fn_______ de
11 71 -t (coshu-sinhu*cos9)n+'̂

(coshu)”11“^ J (l~tanhu*cos9)~n~~̂ d6
n

* ~(coshu)~n”^{l+(n+#)tahhU'Cos9

+ tanhVcos29 + ...}d921 J

-— (coshu) nmm/̂  |?C+ ̂ (n+30(n+%)tahh2u+. •

---- ------------- (1.5*1)
(a) when "u” is small and the terms higher than second 

may he neglected, we have

coshu » (l+}ki2+......)
— :— ~ ~ — fii.5.2)

and
tanhu » u ---------------- (1.5*3)

V

Substituting (1.5,2) and (1.5*3) into equation 
(1.5*1)» we get

p (u) *~(l+ 1̂u2+.... )“n~^(x+- X ̂ ^-2— +-̂ ^u2..n m 4 2 2
. / n . 4n2-l „2n ■ ( 1 + ------u ;16 ----- -- (1*5*4)
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This approximate form obtained for pn(u) for 
small values ofMu" is surprisingly accurate, even beyond 
the expected range of validity. However for higher 
values of "n", the range of validity will be slightly 
reduced.

(b) with large values of Mu %  we have
coshu » eu + e~u )

and
sinhu « 1A ( e11 - e~u )

Substituting these relations into pn(u), we get

P __________ ae______________
11 3cJ.()i(eu+e-u)-cose>i(eu-e-u))n+!4

_ _L,f*__________ d§___________ _
71 ̂  (euein2)4e + e“ ucos2J£9)n+^

. 2 .  e-(n+3i)ufi________ a»1
71 •'» (cos28‘ +e“2usin2e 1 )n+^

(1 .5 .7 )

where 0* * }£(7l ~ 0 )

de1
•»(cos2©’ + e“2usin2©’

? log(heu), if e“2u is small 
( approximation for complete elliptic integral )
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when n*l
r*t*[_________¿©J_________
(cos2©* + e"*2usin2© ' f l

2-^—  (log4 - %  logA) where Af»e"“2u dA

1/A * e2u

when n-2

1 ¿ 0 1
O (cos2©' + e"2usin20*)iite
2 4u —  e
3

similarly

|__________¿si___________
l (cos20i + e~2usin2© ,0n+^

» 2 2 , 4 , 5 «..(2n-2) e4u 
3-5*7....(2n-l)

Thus

P0CU) f J e “1̂u(loge4+u) — > ̂ ue~^u
Pl(u) * 4 - ^ “

p (u) ± —  2'4 • •. (2n-2) e(n-)i)u
n ' * 3-5 ...(2n-l)
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1.6. DISCUSSION ON q (u). 
We know

ln(u) =1• (coshu+sinhu-cosh©) n-yb

------------------------------ (1 .3 . 10)

and may be expressed in terms of pn(u)

V u) = --------
M 'v M -  sinhu

--------------------------- — ( 1 . 6 . 1)

Similarly, for qn(u) as in the case of pn(u)
can also be easily shown that

?S-lnhU d?n(u) = qn+1Cu) - coshu-q (u)
2n+l du

------. —-n a coshu-q (u; - q (u;
2n-l du 11 n 1

----------------------------- (1.6 .2)

and
(2n+l)qn+1(u)-4n coshu qn(u)4-(2n-l)q^1(u) * 0

-----------------(1.6.3)
Again, if we wish to express qn(u) in terms of

Elliptic integrals, we have to change 0 into 20, write 
cosh9=sec^; sinhu* tanfi ; d9*sec/d<0 and when 0*0 or»,
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0*0 or V 2.
Then

.00-2f
7y2 d<6
■o {eoshu+sinhu-icoshu-sintaOsih^}FJTF

« 2k'^ P'(k)  (1.6.4)
Similarly,

q-̂ Cu) * 2k'^ {^(k) - E'(h)}
-------------------  (1.6.5)

The value of qn(u) for u*0 is <d , and for u*«o
is zero. Hence ^(u) is suitable for the space within 
a tore, and not for space including the axis.

A. useful integral f* cos— ■ 4.?„ «/2 q (u)
i (coshu-cosvr n

----------------------------- (1 .6 .6)

which often appears in connection with the toroidal 
functions•

It has been observed, during the calculation 
for toroidal functions of qg(u) and q^(u), that for high

values of u, qn(u) becomes extremely difficult to cal
culate and the accuracy of the value obtained is doubt
ful. The recurrence formulae derived by Hicks seem to 
be unsuitable for our purpose and a new approach,
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independent of the elliptic integrals had to be found 
in order that the required accuracy of the table might 
be preserved, For this, the author has derived a new 
formula for the calculation of qn(u) for any value." 
of ’ u *.
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1.7# CALCULATION 03? qn(u),
We know,

ç°° fi Q _
qn(u)“I (cosiiu+sinliu* cosh0)n+^

•Jiiti
A S l

|}£eu(l+cosh8)+}£eu(l-coslie))n+^

» e-(n+^)u f*--------------- ài------------------__
i (cosh2#e - e 2usiDh2l/¿e)n+̂

- e~(n+̂ uJ^cosh"(2n+1)#ö (l+ (n+1i)e“2utanh2}¿e

+}Kn+1/é)(n+3/{)e“"¿futanli/l‘3í0 +......} dö

sx e-(n+>9«ut r- — £2ggjg--dg.,U  ( l^slnSô)™7

4 2n+1 e~2u f̂ cosh^Q sinĥ té© dQ 
2

/ cosili© si nh~y>© c 
_ (l+sinh^éô)^+^

}
Let sinh#!Ô*x, >£cosh}£0d9=dx, we get

2e-(n+Jé)uI f* ^
* * (l+x2)n+1

-2u f 2n+l ( x2 dx + 6 ^ ) J  - y *2 (l+xc)
+ .

, pLet x=tan0, dx*sec d̂ji; we now get
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2e” n̂+1/̂ u-[fcos2njíd0 + e"2u(n+>4) /sin2^ .cos2lVd01̂0 O

+ e”^u (2n+ i . L ^ J s i n ^ çf -co32n/d^ +....}8 o

* JCe’” n̂+1/̂ û / (2n-l)(2n-3)» » »1 ^ ^2n+l^e~2u (2n-l)(2n-3). »1
* 2n (2n-2)....2 2~ (2n+2) 2n....2

♦ (2n+D(2n»3) e-4u (2n-l)(2n-3).....1 .̂, , # l
8 (2n+4)(2n+2).....2 * '

m ̂ría-Cn+)é)u (2n-l)(2n-3)....1 r -,̂  o-2u 2n+l 1
2n(2n-2) ....2 *  ~ 2 2n4-2

+ e-^ u  (2xi4-l) (2ii4-3) »1*3 + ............ A
(2x14-2) (2n4-4). 2.4 ........1

if n - O
l„(u)-n:e-^ (X+Jíe-^.-i e-4u + -225 e~6u <0
0 64 2304

if n » I’
qi(u)-3t e- uU +Je-2u+i5 e-4" f... )
1 2 8 64

if n » 2.

q2<u) .J*e- u (X+-§_ e"2u + ̂  e-41* ♦ ..)
8 12



ng~ OB l Ç 0t9 91 gì
+ni7-9 ter V - *  ~ * T) nj-® “ —  ' C“)£li
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1.8, SOLUTION OF THE PROBLEM OF COAXIAL TORES.
The potential of the field between charged 

coaxial tores is given by

j> * (coshu-cosv)^ 2{anPn(̂ )+t>n<lJ1(u) } cosnv
------------------------ -------(1 .8 . 1)

If 0 - 0 when u = u^, for all values of v,
we get

anPn(up + V n W  * 0
Therefore,

P n < V  a
11

Substituting (1.8.2) into (1.8.1), we have

t » (coshu-cosv)^ 2  an | pn(u) -~ ^ --qn(u) j

•(1 .8 .2)

cosnv

•(.1.8.$)

If $ » V, when u » U2 for all values of v,
we have

* - (coshUg-coaT)54̂  { pn(u2) - q ^ T  qn(u2) } cosnv

and
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(cosh^-cosv)T - & n{»a(u2^ - 4n(u2)} cosnv

(1.8.4)
Multiplying both sides by 'cosnv dv' and 

integrating them from 0 to K » we will have

< ir (TC cosnv dvanV J. -iZJo (cosh^-cosv) f  " 7 7 7 V  1n(u2>}

(1.8.5)
where $n* 1 when n^-1, but #.

But equation (1.6.6) gives

cosnv dv
licOShU-COSY)54 ^

Hence

a.
2/2 

a V i n l u C V ^ ^ )
Pn(u2)9n(u1) - Pn(u1)qn (u2)

2 & i„qn(u2).pn(u1)
n 71 Pn(u2)ln(u1) - pa(u1)qn(u2)

(1 .8 .6 )
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Therefore the general equation of potential of the field 
between two charged tores, u^ and Ug is given by

2^2 «-y  V (coshu-cosv)^2l < jv n*o
i n

P ^ V V - V  - Pn(“1)qn(u2)

(Pn(u) - „ , A Ctanir

•(1.8.7)
The potential on the line v ■ 7c, is given by

2J 2
11 - -¡r-Vd+coshu/ %  (-1)“ fc

71 “  P » < V < » < V  ~  P » n < V/ISO

jpn(u) -
‘ 4 n < V

---------------------- (1 .8 .8 )

We are chiefly interested in the potential 
gradients on the surfaces of the two conductors; since 
u is constant on each of these surfaces, the direction 
of the field is the direction of variation of u. The 
gradient is (-djzJ/<J$u), thus

■B df6 (coshu-cosv) d-iZfEu "* ” " “ a du
(1.8.9)
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Tlie points of especial interest are XQ, (see Fig.1.2),
where the two conductors are closest together, and where 
the coordinates (u, v) are (u^,7T) and (ugjll)» u^ being
greater than Ug if Ug denotes the central conductor.
At any point on the plane v « %

E » - Cl + coshu) . ± L  "u a d u

Therefore, the potential gradient

Bu ,f2 i s o ^ l ) f  (.1)a 00sh*u [p .(u,
9fl(ul>

+ J&sinh&i £ Pn(u) ?n(V
4n(V

---------------------- (1 .8 . 10)
1

Evaluating this with the help of the identities (1.6.2), 
we obtain

a sinhjiu j(ncoshu+#)Janpn(u) + t>nqn(u)J

■ (1.8.11)
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On the earthed conductor u * u^, equation (1.8.11) re
duces to

E1 ‘ " 4  ' ,§~1)n { V » 1 (V  + bn<1n+l(ul)}
------------------------(1 .8 .12)

while on the live conductor u » Ug,

E2 - 4  - E l S 2- I / - « 11 { V(nooshu2+>5)inqn(u2)

- (n+54)fanpn+1 (u2) + V n +l(u2>)}

— -------------- (1.8.13)
with the aid of the identity/, given hy Hicks,

pi(u)qn(u) - Pn(u)q^(u) - 1 / sinhu
----------------- (1.8.14)

we obtain

qi<u) ■ i pi<u>«n<u> - i i k r )
---------------  (1.8.15)

substituting (1.8.15) into (1*8.10}, we get

Eu . € i h ! £ ^ | ( - l ) “ an{coshXu[pA(u) - -P£(̂ I ] x
ix X

,p;(u)qn(u) . ----- !---- }|+ f e i n h ^  f u ) - ^ -  qn(u)]|
' pn(u) Sinhu. pn(u)JJ l n <1nt'V n J>

----- ------- .---- d.8.16)
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On the earthed conductor u * u^, equation (1,8.16), re
duces to

E, ^ - - r V  ! ( - 1)n an l

CLn. coshjà̂2JiF-cosĥ }ki, 09
■ ----------- -  Z ( - U

a i*o 2sinh^u1* coshtéu  ̂q (u^)

&  * COSh^U,*•1 «P
-------r-1- 2 Ca * sinh#u, n=©

-l)n a I— *__l
4  *n<V'

------------ ------ (1.8.17)
The potential gradient on the surfaces of the 

conductor can now be easily calculated by substituting 
the values of u^ and u2 into the appropriate equations.

It is considered to be convenient and practical, 
to employ the dimension ratios r-j/R, r2/R ( see Fig. 1.1 ),
instead of using u^ and u2 as independent variables.
The relations between r^, r2, R and a, u^, u2 are

R2 - #§

u2 ■ sech”^(r^/R)

u. 2 tanh'-1 J ( R2 - xf)



FIG. 1.6. ELECTROLYTIC TANK UNIT
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1.9. ELECTROLYTIC TANK INVESTIGATION.
To ascertain how closely the field between 

coaxial tores approximates to that between a coaxial 
rod and ring, the latter was investigated in a wedge- 
shaped electrolytic tank, (see Fig. 1.6)

The principle, from which the field plotting 
in an electrolytic tank is derived, is based entirely 
on Maxwell’s equations. In a homogeneous isotropic 
dielectric which is bounded by two electrodes and in 
which there are no internal charges, Maxwell’s equations 
reduce to

o  (1.9.1)
This is well known as Laplace’s equation which must be 
satisfied at every point in the particular field in 
question.

The electric circuit shown in Fig. 1.7. is 
essentially a Wheatstone bridge, with two arms formed 
by the probe and the electrodes 1 and 2, and the other 
two arms AC and BC on the calibrated potentiometer.
The probe is moved until its potential is equal to the 
selected value on the tap C of the potentiometer as in
dicated by the de*£t or.



Detector
The headphones are chosen as the detector for 

the purpose of convenience. Of course, other devices 
such as a cathode-ray oscilloscope may be used as detector 
, In order to reduce the noise in the headphones to a mini
mum, a matching transformer is inserted between the 
phones and the probe.

Electrolyte.
Ordinary tap water has been used throughout 

the test and found to be satisfactory. Other solutions 
such as N/1000 of sodium hydroxide and N/2000 of sulpt^ic 
acid have been tried by various investigators and used 
with satisfaction.

Supply.
The supply is obtained from an oscillator of 

a two stage Wetn bridge type with thermistor stabiliza
tion. The frequency used is approximately 1,000 c/s.
It represents a compromise between error introduced by 
polarisation and stray capacitance, the former decreases 
quickly with increasing frequency up to 1,000 - 1,500 c/s; 
but thereafter reductions are outweighted by errors 
resulting from stray capacitance.
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Electrode.
Different combinations of electrode materials

and electrolytes have been tried in order to reduce the
surface impedance to a minimum, to avoid oxidation yet
to keep within the confines of simplicity and availability.

“theIt has been found, with satisfaction, by ̂author 
that electrodes made of copper coated with " Aquadag"
( a solution of graphite ) have a very low contact drop 
when the ordinary tap water is used as electrolyte.

Prom a preliminary test with electrodes re
presenting concentric cylinders it was concluded that 
the curve of potential variation could be drawn with an 
accuracy of 1 per cent.

By tilting the tank, a wedge-shaped bath is 
formed to represent the axially symmetrical fields which 
are under investigation. It is very important that 
the wetting line should coincide with the axis of sym
metry. Unfortunately, owing to the surface tension 
between the electrolyte and the floor of the tank (i.e* 
glass), it is hardly possible to obtain a straight wet
ting line as desired. This difficulty has however been 
overcome by placing a piece of adhesive tape along the 
wetting line to cause a 1 forced axis of symmetry’.
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For exploration of the field close to the 
axis as needed for calculating the electric stress on 
the surfaces of the electrodes, a large-scale model is 
desirable in order to avoid the capillary rise of the 
electrolyte on the probe, which may cause considerable 
error in very shallow water.

The radial variation in potential in the mid
plane was plotted for different combinations of electrode 
radii, and the voltage gradients on the electrodes were 
deduced; the results are'set forth in Figs.1.10 and 
1.11. Fig. 1.10, showing the voltage gradient on the 
tore, is to be compared with Fig. 1.8.; Fig.1.11. showing 
that on the central conductor, with Fig. 1.9«

The relation between the two sets of curves 
is summed up in Figs. 1.12 and 1.13.» in. which the ratio 
of measured, to calculated voltage gradient is plotted.
On the tore, the ratio approaches unity for large values 
of rg ( that is, for thick rings ); but in general the 
measured value is less than the calculated. On the 
central conductor the reverse is true, the measured 
value exceeding the calculated, and again the ratio 
approaches unity for large values of rg. These ten
dencies can be deduced from a general consideration 
of the field, the hour-glass shape of the central conductor
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tending to produce a reduced gradient on itself and an 
increased gradient on the surrounding ring $s compared 
with a central conductor of cylindrical shape. It may 
therefore be said that the calculations confirm the 
general correctness of the measurements.
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1.10. CONCLUSIONS.

The electric field in an electrode system 
consisting of a rod surrounded by a concentric ring of 
circular section is approximately calculated by replacing 
the rod by an hour-glass-shaped conductor of the same 
minimum radius. The resulting field is then calculated 
in terms of toroidal functions, numerical tables of which 
are given. In order to find how closely the calculated 
results correspond with the true values for a rod and a 
concentric ring, a systematic electrolytic tank study 
is undertaken and charts of the differences between theory 
and experiment are given.

For any given value of (r^/R), there must be 
a value of (rg/R) which will make the maximum voltage 
gradients on the two electrodes equal. This relation 
is given by curves A and A' in Fig. 1.14. , curve A re
ferring to the calculated values of voltage gradient 
and curve A' to the measured values. The considerable 
discrepancy between these two curves is due to the fact 
that the measured voltage gradients on the two electrodes 
diverge from the calculated ones in opposite directions.

The relation given by these curves represents 
an optimum design condition. Assuming it to be satisfied, 
the voltage gradient on either electrode is given b y .
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curve B or B', curve B referring to the calculated values 
and curve B* to the measured ones. Either curve shows 
a minimum attainable gradient of about (2.5V/R), theory 
suggests that this will occur when r^*0.20R, ^=0.16511» 
while measurement corrects these values to r^=0.27R» 
rg^O.lOR. So long as the relation between r^ and rg 
is correctly maintained» their values can depart quite 
a long way from those cited without greatly increasing 
the voltage gradient.



PART 2

THE ELECTRIC FIELD BETWEEN TWO SPHERES
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2,1» INTRODUCTION *

Sphere gaps are used extensively nowadays 
in high voltage engineering to measure impulse or 
surge voltages, and at normal frequency to calibrate 
other measuring devices* The problem of calculating 
the electric field in a sphere gap is a very old one 
and has intrigued some of the great minds in electrical 
theory* Kirchhoff, Kelvin, Alexander Russell and others 
have made contributions to it* The method has been 
that of approximation by successive images, and it 
appears that no general analytical method of solution 
has been developed as in the case of the analogous 
problems for the ellipsoid and anchor-ring* In this 
paper a general solution of Laplace*s equation is ob
tained in a form suitable for problems in which the 
boundary conditions are given over two spherical sur
faces and the electric field in a sphere gap is cal
culated*
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2.2. DIPOLAR CO-ORDINATES.

The co-ordinate-, system known as * Dipolar or 
Dispherical co-ordinates * are defined by rotating about 
the z axis the system of circles, in any plane, through 
two fixed points on the axis and the orthogonal system 
of circles. Thus, if x,y,z, are the Cartesian co-ordinates

Q P 1/4and f ® (x^+y^) , and the distance between the fixed points 
2a, we have a system of orthogonal curvilinear co-ordinates, 
u,v,w, where

u+S Y - loge
P +<j(z-a)

w - tan“1(y/x) ---------- (2.2.1)
The surfaces u»constant will then be a series 

of non-intersecting coaxial spheres having a common dia
metral plane u»0. It is obvious that the origin and 
the value of ’a* can be so chosen that any two given non- 
intersecting spheres will be included in the system.
These co-ordinates are similar to those employed by Hicks 
in his memoir on ' Toroidal Functions 1, the difference 
being that in the present case the circles are rotated 
about the line through the limiting points instead of 
about their common radical axis. Further, in one case 
the surface conditions are given over spheres, while in
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the other case they are given over 'tores' or 'anchor- 
rings*. It will be useful to set down here in a compact 
form, formulas relating to these functions, which will 
be required later on. Most of them are easily proved 
and are set down without proof*

0 a sinv P ■-----------coshu-cosv
-------------(2.2.2)

a sinhu
Z ....................

coshu-cosv

or z+jp * ¿}a*cot1/6(ur+;jtt)

p(coshu-cosv)- gi:

(2.2.3)

(2.2.4)

If *r* be the radius of any sphere of the system, 
and 'd' the distance of its centre from the origin,

r * a/|sihhu| 

d » a*cothu (2.2.5)

The detailed account of the dipolar coordinates 
may be found in Jeffery's paper^ ^ \
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2.3. SOLUTION OF LAPLACE * S EQUATION«
It is well known that if u,v,w, be any system 

of the orthogonal curvilinear co-ordinates, Laplace's 
equation may be written in the form,

V <t>i'AMfjaf&sh + f £ ) +
•(2.3.1)

where
t.2 /■ f è u .\2 / d U  \2.hi * <?*> + + T >

4  * <-f£->2 + + c-f^>2

4  - <-ë->2 * C ^ 2 ♦ <-3F>2

In the present case, u,v being conjugate 
functions of f> and z,

■u2 / \2 f d u \2 r \2 ( d V  \2 •ui
h i“(‘d F ) +< 1 p  +(‘aF)

and since
w* tan^Cy/x)

therefore,

h| « 1/p*

Substituting these values into (2.3»1),
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Laplace's equation then becomes,

dtt < p  l£> + aaw

Write ; we obtain,

aV . aV .at? aiF ■**

o
■(2.3.2)

V: } +f {(|p}+<§|) } lji-0
(2.3.3)

thus,

---------- (2.3.4)

Since the problem we are interested in is 
symmetrical about fc axis,

i.e. awr=0

equation (2.3.4) then becomes,

au? au‘ (2.3.4a)

After the usual manner we will seek a solution 
of the type ^  *U V, where U, V are functions of u, v 
respectively. Substituting this in (2.3*4a) we at once 
obtain,

oonstant - ~(“+̂ )2. say
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Hence,

U »A cosh(n+#)u + B sinh(n+]4)u
and

Put
yLV = (sinv/X» we have 

-|^+ cotv^|+(n2+n)X »0; 

finally writing cosv=4, we have

(l*><t2) + n ( n + l ) X  * 0 

The solution of which is well known to he

aPayO + h^CtL)

* n W  being the Legendre functions of order 
n, ^yi) is the corresponding function of the 1 second 

kind *• Hence,

V - (sinv)’* {aPnyi) + b^yi)}

and a particular solution of equation (2.3.4-a) may be
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expressed in the form,

^»(coshu-cosv)^-[Acosh(n+^)u+Bsihh(n+34)uj[aPn(̂ u)+bQn^)}
-----------------—  (2*3.5)

We shall find that for physical applications 
it is sufficient to confine our attention to integral values 
of n. Moreover, the solution corresponding to n*-(m+l) 
is identical in form with that corresponding to n*+m.
It will, therefore, "be sufficient to consider only positive 
integral values of ‘n1 and we may write the general 
solution for the potential.

(coshu-cosv)̂ 2(A-nc0sh(n+}£)u+Bnsinh(n+#)u} { anpn(/O+bAi9^}
------------------- (2.3.5a)

The function $ and its first differential 
coefficients must he finite and continuous at all points 
of the field except those which correspond to some 
special physical conditions such as a source or a charge. 

is and continuous for all real values of
v, hut Q CjO becomes infinite when v « 0 or Jt, hence
cannot occur in the expression for <f> which is to hold 
throughout a region including any point of axis of z.
It is to such cases that we confine our attention in
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the present paper, so that
/i/ CO %0=(coshu-cosv)^[{àncosh(n+14)u + Bnsinh(n+#)u

(2 .3 .6 )



2.4. SOLUTION OF THE PROBLEM OF THE SPHERE GAP.
Equation (2.3.6) shows that the potential of 

the field between two charged spheres is given by

£»(coshu-cosv)^2{Aacosh(n+)£)u + B^sinhCn+^u} Pn()yO

Let u-p U2 be any two spheres such that u^T’ 0
but U2 is unrestricted. The potential $ is constant
over each of these spheres and we can without loss of 
generality suppose it to be zero over the surface u2
and V over surface u^. It is obvious that will be .
of the form

ji»(coshu-cosv)^2{Ansinh(n+}&)(u-U2) } Pn(cosv)
-------------------  (2.411)

from which we have

Vicoshu-j-cosv)“^ -gAnsinh(n+14)(u^-U2) V Pn(cosv)
-------------------  (2.4.2)

The left-hand side of the above equation may 
be written

J2 V e-^ul Cl - 2e~U| cost + e‘2u' )"5S
-J2 V Z  e- ( a *%)a i p (cost) r\:o n

since u^> 0

(2.4.3)
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Equating the coefficients of Pn(cosv), we
t •

obtain the v^lue of An and the potential function then 
becomes,

f.j2  V(coshu-cosv)Ki-Ei5M»iEiii^il2
sinh(n+^)(u7-u2)

---------- --------  (2.4.4)
We are actually interested in the voltage 

gradient of the field, especially the voltage gradient 
on the surface of two equal spheres ( i.e. u»+u^ and
u— u^ ). Since it is symmetrical about the plane u»0,

the voltage gradient will be obtained by differentiating 
equation (2.4*4) and substituting ^»-u^.

The potential gradient 0<P
&Sn

coshu-cosv
a

ÊÎ.¿a

------ .------------- (2.4.5)
The breakdown usually occurs at the points 

where the gradient is maximum, i.e* on the line v- •
Thus,

- . ^ y n + c o I  dSn a n5 >dinfttn+i)U.| l 1
------ ---- -------- (2.4.6)

The voltage gradient at u«^ is
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---------------------(2.4.7)
The voltage gradient given by equation (2.4.7) 

i5- plotted in Pig.(2.1). Instead of using Uj_ as in
dependent variable the dimension ratio r/£ is employed. 
The relation*between r,{, and a, u,are

2 f  2 \a ** { £ + r )

t  * r*coshu-̂



FIG. 2.2.
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2.5. METHOD OF IMAGES.
It is not necessary to give more than a brief 

outline of the method of images, since the details are 
always given in general textbooks of electromagnetism.

It is well known that a sphere of radius r, 
distance £ from a charge q^ may be made a zero equi- 
potential surface by placing with it a charge r/X
at a distance c*r /£ from the centre of r. The point

/

at a is called an ' inverse point ' and the charge q^ 
an ' inverse charge '•

We are now to determine a system of charges 
such as will preserve two spheres of radii r^ and r^ 
with a distance £ between centres, at potential 
and Vg respectively, (Pig. 2,2), We shall employ the 
methods of superposition and successive approximations 
in four stages as follows:-

(a) Let rg be an isolated sphere at poten
tial Vg. Its charge may then be considered as con
centrated at its centre and equal to qg ■ ^2r2*

(b) Now bring up the sphere r^ of zero 
potential. To hold it at zero potential in the pre
sence of q£ we must place a charge q ^  » **<l2rl/̂

p“ ~V2rlr2//i at a distance b-̂ * But the pre-
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sence of this charge would change the potential of 

r2, so we must place a charge qc  ̂ » “%i* r2^  ̂ b^)

« Vgrl^ / j2(j2- b^) at c-̂ * r| / ) to return
r2 to its proper potential Yg. But this in turn
necessitates a charge q^2 at b2, and so on. The pro
cess is continued each new charge becoming smaller than 
the one before it, until the effect of additional charge 
becomes quite negligible. We thus arrive at a series 
of images which maintain r2 at V2 and ^  at V^O.

(c) In exactly the same way a series of 
charges can be found fhich will maintain r2 at V2=0 
and r^ at V^.

(d) Finally, by superposition of the two 
systems of charges arrived at in (b) and (c) above, 
we obtain the necessary charges to hold r2 at V2 and 
r^at ^i*

The potential gradients for a particular 
system of two spheres having equal radii of 6.25cm. 
are plotted in(Fig.2*3)*

The new method derived can be checked against 
the method of images simply by substituting the dimension 
ratio into (2.4.7)* It was found with satisfaction that 
the two values agreed*
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2.6, CONCLUSIONS.
The method derived in this paper for the cal

culation of voltage gradient of the electric field in 
a sphere gap involves more advanced mathematics than 
is used in successive images, but the time and labour 
saving is great.

In practice, we are chiefly interested in the 
breakdown voltage of the sphere gap whose tables of 
numerical value for different radii and spacings are 
calculated experimentally and given in the British 
Standard No.358 of 1959« Unfortunately, as the ele
ctric stress is raised, the behaviour of the dielectric 
in the sphere gap becomes very complicated and changes, 
depending on a number of factors such as surface of 
spheres, conditioning of spheres, correction for air 
density etc.. Until the behaviour of the dielectric 
before breakdown is thoroughly known, the theoretical 
method derived in this paper gives only a rough esti
mation of the breakdown voltage* However, it has been 
shown that the new method is far more powerful in attack 
ing this king of problem than the method of images*



FART 3

THE EXACT CALCULATION OF THE SELF-INDUCTANCE 

OF A CIRCULAR TURN OF WIRE BY MEANS

' OF TOROIDAL FUNCTIONS



FIG. 3.1
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3.1. INTRODUCTION.
The calculation of the self-inductance of a 

circular turn of wire ( see Fig. 3*1 ) has a number of 
applications in the design of inductors and is a pro
blem of importance in electrical engineering and es
pecially in the field of communication. Although this 
quantity has been approximately calculated by various 
investigators^ wkose formulae are to be
found in various electrical engineering handbooks and 
notqbly in the publications of the National Bureau of 
Standards, the exact calculation which is the object 
of the present investigation cannot be found* These 
approximate formulae are only valid when the dimension 
ratio r/R is very small ( that is, for thin wire).

In this investigation, the toroidal coordinates 
are so chosen that the form of the wire is truly re
presented by the surface u * uQ, and it is also assumed 
that the current flows in the wire in such a way that 
no magnetic flux cuts the surface of the wire. The 
assumed condition is, in fact, approached with very high-
frequency currents. The functions necessary for the 
solution of this problem are similar to those used in
part 1; in fact they are the first derivatives of the
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toroidal functions p^Cu), q^Cu). A numerical table of
these functions has been computed and included in the 
thesis* An accuracy of a part in a thousand is aimed 
at in general, but better precision is obtainable over 
most of the table.
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3>2. VECTOR POTENTIAL.
It is not necessary to give more than a brief 

outline of the theory of the vector potential, since 
the details are to be found in general textbooks of 
electromagnetism.

We know that the vector field of current density 
is derived from the vector field of magnetic force by 
the process of taking its curl; this fact is represented 
by the vector equation

curlH - J -----------------(3.2.1)

In the same way, we may take a vector A such that we 
write for the magnetic induction in vector form.

curlA - B ----------------- (3.2.2)

Then 'A* is called the 'vector potential' due to the 
current density J; its mathematical and physical pro
perties are easily explained. In words, this equation 
means that the magnetic induction is to be found from 
the vector potential by taking the curl; i.e. by finding 
the direction of the axis around which the line integral 
of the vector potential is greatest and the amount of 
the line integral; the first is the direction of the 
magnetic induction, the second is proportional to its 
magnitude.
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.The components of curlA expressed in toroidal 
coordinates are

...{ i Sv

l
$Su

Af (¿^a) "¿(PA®)}

_ L _ {  $ Sil i Air &*) ~&o 3
w

(3.2.3)
We are chiefly interested in cases where the 

vector potential A has only a w-component i.e. A=(0,0,Aw);
so Aw is henceforth called A; and

curlA - jplirCpA), •"■^r^r(PA)i 0
-----------------  (3.2.4)

If the current flows in the surface of the 
wire ( along circumferential paths ) with the current 
density so distributed that u ■ uQ is a line of force:
that is to say that these is no line of force penetrating 
the surface: then
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or
Bu » 0 on surface

(curlA)u - 0 ---------------- (3.2.5)
M s  gives

-rr(pA) - o
or

PA * constant
In space, curlB » 0, this gives 

curl curlA » 0

(3 .2 .6 )

(3.2.7)
A is presumed to be a function of u and v 

only; so the equation (5,2.7) becomes

curl curlA

X»1 an L do. T P »a. J T atf l air + p 0ir J J

XM da.* + air» + p L an an + air di;J+pjtt.i+iir)

- f W + (#)')}

(3.2.8)

Since p, z are conjugate functions of u, v,

¿P_+¿pm o

and
r \2 /• 3P n2 %<i + < j r >  * X
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Therefore the equation (5.2.7) becomes

A* 1 au* a t / 1 p 1 da da T  d i r  d i r '  pl A J

(3.2.9)
Laplace1s equation in toroidal coordinates is

i f aV + _a£ . *2 +iP 12.x I «oA* 1 au*+ dtrK + p' au aa + dir a*' J
(5.2 . 10)

where f is independent of w.
Thus the equation (5.2.9) obeyed by A is

V2A * -4 --------------- (3.2.11)

This is known as 'Poisson’s equation'.
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3>3. THE GENERAL SOLUTIONS OF THE EQUATION curl curl A 
We have already obtained that when the vector 

potential A has only a w-component, the equation 
curl curl A = 0 becomes

I f <?A 9lA
A11 d u.*- a»;»

.,l£iA xitMvA.»!, 
( da  da. +  dir a v  I p* ^  J

The substitution,
A » "'/'(cosh u - cos v)^
JA m p-*J± _ 1  JP 
d u  • da. A l  ' du.

(3.2.9)

(3.3.1)

and
a*A _ p-ijbfc . LäL,l. x A  ¿L,da1- ’ da.1 ' da. da. *i- / r du.' 2 ' r dur

will reduce equation (3*2.9) to

J t L
da.1

Substituting p  ad
equation (3*3*2),

+ ÌL - X j L £
Stf1 *  p * A

¿ÌaRul andcoo/Ju-mou*
we then get

=o

A

........ (3*3*2)

coo Rn-ceotr i n t o

0.

dV aV
dir1

(3*3*3)
This equation is solved in the usual manner 

by assuming U V, where U is a function of u only 
and V a function of v only. By this substitution, 
equation (3*3*3) is then transformed into
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I , <j*U . J ___U_ » . / ¿V
U 1 4J* Ï  ̂ *0. ) T  V tU* =  o

Since the first term cannot contain v and the second
term cannot contain u, both must be constant, and are 

2 2written + n and -n respectively. Thus the separate 
differential equations for U and V are

U*»‘U ----------------- -- (3 .3 .4 )

and -JjJr— ----------- (3.3.5)
The independent solutions of the equation 

(5*5*5) are cos nv and sin nv, and it is known from 
the theory of Fourier series that a sum of terms in 
which n takes all integral values from zero to infinity 
will be capable of describing any distribution of 
current on the surface of a tore* By direct substitution, 
it may be proved that the independent solutions of 
equation (3*3*4-) are p^(u) and ^¿(u). (The proof is 
to be found in Appendix 4-) p^(u) and q^(u) are the
first derivatives of the toroidal functions pn(u) and 
qn(u) respectively*

p^(u) and q^u) can be expressed in terms of 
Pn(u) and qn(u); the necessary formulae are given in 
(1.6.2). Using these, the following table of values 
for the first four functions of each kind has been 
worked out. There are differences between these figures
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and those contained in Fouquet*s table, which contains 
a number of errors.

The general solution of the equation (5*3*3) 
is the product of the solutions of the equations (3*3*4-) 
and (3*5*5)» and may be written

KsO ' v •

-----------------  (3*3*6)
where a^, b ,rfn are arbitrary constants* When the cen
tral plane is a plane of symmetry (as here), «(n ■ 0; 
therefore, the vector potential of the field, set up 
by the current flowing circumferentially in such a way 
that the surface of the tore is a line of force, is 
given by

zjltmllii-tmr) 2 j 4«)>„(») + CwTUT
------------------ (3*3*7)



69
T A B L E  3

T 0 H 0 I D A L P U N C T I 0 N S

U P¿(u) P{(u) P¿0 0 p^Cu)

0.0 0 0 0 0
.1 (-2)-1.246 (-2)3.747 (-1)1.881 (-1)4.417
.2 -2.486 7.502 3.809 9.107
.3 -3.713 (-1)1.126 5.822 *1.435
.4 -4.909 I .502 7 .97O 2.047

0.5 -6.077 1.880 *1.030 2.785
.6 -7.201 2.259 1.287 3.693
.7 -8.281 2.640 I .574 4.829
.8 -9.310 3.023 1.897 6.262
.9 (-1)-1.028 3.410 2.264 8.082

1.0 -1.120 3.801 2.682 (1)1.04o
.1 -1.205 4.196 3.161 1.337
.2 -1.283 4.596 3.713 I.7I6

.3 -1.355 5.OO3 4.35O 2.203

.4 -1.420 5.416 5.086 2.82 7
1.5 -1.479 5.838 5.937 3.627
.6 -1.531 6.270 6.924 4.655
.7 -1.577 6.712 8.067 5.972
.8 -1.616 7.166 9.393 7.664

.9 -1.650 7.634 (1)1.093 9.836
2.0 -1.678 8.117 1.272 (2)1.262
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u p ¿(u ) P{(u) P¿(u) pj(u)

2.1 (-D-1.700 (-1)8.616 (1)1.479 (2)1.620
.2 -1.717 9.I32 I.720 2.080
.3 -1.729 9.669 2.000 2.670
.4 -1.736 ♦1.022 2.325 3.420

2.5 -1.739 1.000 2.702 4.401
•6 -1.738 1.140 3.141 5.650
.7 -1.734 1.203 3.650 7.253
.8 -1.726 1.269 4.241 9.313
.9 -I.715 1.338 4.928 (3)1.196

3.0 -I.701 1.410 5.727 1.535
.1 -1.685 1.485 6.655 I.971
.2 -1.666 1.563 7.732 2.531
.3 -1.646 1.645 8.984 3.249
.4 -1.623 1.731 (2)1.044 4.172

3.5 -1.599 1.822 1.213 5.357
.6 -1.573 1*917 1.409 6.879
.7 -1.546 2.017 1.637 8.833
.8 -I.5I8 2.122 1.902 (4)1.134
.9 -1.489 2.232 2.210 1.456

4.0 -1.460 2.347 2.568 1.870
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■ TABLE 4-

T O R O I D A L FU N O T I O N S

U 9i<u) q¿(u) q£00
0.0 0 0 0 0
♦1 (1) -1.004 -9.876 -9.566 -9.178
.2 *5.071 -4.802 -4.381 -3.915
•3 -5.424 -3.082 -2.6I5 -2.151
.4 -2.606 -2.208 -1.728 -1.302

0.5 -2.118 -1.676 -1.204 ( - D - 8 .2 7 8

•6 -1.793 -I.317 ( - U - 8 .6 3 9 -5.398
»7 -1.561 -1.060 -6.630 -3.621
.8 -1.387 (-D-8.662 -4.734 -2.447
.9 -I.250 -7.163 -3.561 -1.670

1.0 -1.138 -5.976 -2.699 -1.148
.1 -1.048 -5.OI7 -2.058 (-2 )-7 «9 3 5

.2 C -D -9 .6 9 7 -4.234 -I.575 -5.499
•3 -9.023 -3.587 -1.210 -3.829
.4 -8.432 -3.049 ( - 2 J- 9 .3 2 3 -2.671

1 .5 -7.906 -2.597 -7.198 -1.868
.6 -7.433 -2.217 -5.566 -1.308
.7 -7.004 -1.895 -4.310 C -3 )-9 .l6 5

.8 -6.611 -1.622 -3.341 -6.43I

.9 -6.249 -1.390 -2.592 -4.5I6
2.0 -5.913 -I.192 -2.012 -3.I74
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TABLE 4 (CONTINUED)---------- TOROIDAL FUNCTIONS

u 9¿ (u ) l iC u )

2*1 (-1) - 5*601 (- D - I . O23 (-2) - 1.563 (-3)- 2.231

•2 - 5*310 (-2)- 8.785 - 1.215 - 1.569

♦3 - 5*037 - 7*546 (-3)- 9*445 - 1.104

•4 -4.780 -6.485 - 7*346 C-4 ) - 7*77l

2.5 -4.539 - 5.574 - 5 .7 15 - 5.470

.6 -4.511 -4.792 -4.446 - 3.852

.7 -4.095 -4.121 - 3*460 - 2 .712

.8 - 3*892 - 3.545 - 2.693 - 1.9 10

• 9 - 3*699 - 3*049 - 2.096 - I.3 4 5

3*0 - 3*516 - 2.623 - 1.632 ( - 5) - 9.478

.1 - 3.342 - 2.257 - I . 27I - 6.677

•2 - 3*178 - 1.942 (-4 ) - 9.892 -4.704

.3 **3.022 - 1.671 - 7.702 - 3.314

.4 - 2.874 - 1.438 - 5*998 - 2.335

3.5 - 2.733 - 1.238 -4.670 - 1.645

. .6 - 2.599 - 1.065 - 3*637 - I .1 5 9

.7 - 2.472 (-3)- 9.164 - 2.832 (-6)- S .169

.8 - 2.351 - 7.887 - 2.205 - 5*756

*9 - 2.236 - 6.788 - I .7 1 7 -4.056

4 .0 - 2.127 - 5.842 - 1*337 - 2.858
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3.4-» DETERMINATION OF THE COEFFICIENT "â ".
We have already obtained

2 1 + ) toriirn*o
---------------------------  ( 3 .3 .7 )

As the vector potential contains the central axis, i.e. 
u - 0, the term b ^ u )  must disappear. The equation 
(3.3*7) then becomes

A*JluoRu-ta>ir) f t * ce>tur

------------------  (3.4.1)
We have assumed that the u-component of the magnetic 
flux B on the surface of the wire is zero, thus

Bu* (curl A)u
J — a_ Af d*
0

IPA)

or u,.—  ' A) » constant, say c.vcosh u - cos v ' * ^
-  - (3 .4 .2 )

On the tore u » uQ, the vector potential

A =jMno-c*»r) %  a-h p.'ciu)0 SO 1
------------------  (3.4.5)

Substituting (3.4-.3) into 0.4-.2), we get 
tLjlfiltvio “

JLtoftuo-cwi}) §, -c
This gives



§ a  p"(u )cosnv - c(coshu0-cosv) m snv. dv 
— n 11 ° a ElDhUo

-----------------  (3.4.4)

Multiplying both sides by cosnv and integrating 
from 0 toll, we get

f-
c(coshuQ-cosv) 
~ a sinhu~ cosnv dv

------------ ---- (3.4.5)
where when n^l, but SQ»|*
Hence

an ‘ jnip^(u0)a sinbu0 ('Ccoshu^ooEV^ cosnv dv

But
yLJ (coshu -cosv)' cosnv dvV0 O

[*(oo shu -cosv)
■ { (coshu"-cosv) eosOT dv

(3*4,6)

(3*4.7)

JKcoshuQcosnv)dv
---- -------------------------

« (coshuQ-<D sv)^

1
I
cosv cosnv dv

« (coshuQ-cosv)7T

Evaluating this with the help of the identities 
of Hicks* equation (23)» we obtain that the first term is
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Jz cosliu0 qn(uQ) -------------- (3.4.8)

and the second term may be split into

J#cos(n+1 )v dv __ j* técos(n-l)v dv
'o (coshuo-cosv)^  I ( e oshu -cosv)^

-J2 -| & W V  + J4l11_1(u0)j

(3 .4 .9 )

Thus the equation (3*4*7) becomes

/J2 j coshuoqa (u0 ) -  ¿ w v  -  \ . i ( » 0))

By use of the relation (1.6.3)» equation 
(3*4.10) is further simplified to

— - M -— sinhu q*(u )¿^2~j^ o *nv o'

Thus the repression for the coefficient 'an* may be 

written as

« 2^2 
~ 7 S

g'(u ) *n> o'
4n“- l  Jn ITa  P i(u 0)

■(2.4.11)
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3.5. TOTAL CURRENT.
Ampere’s law stated in the integral form is

/B-ds - n  g i -  (3.5.1)
where 2Ji indicates the total current in the circuit•

On the surface u-u , we know B„»B «0,o* u w *
B_ l a~ *p ¿u.

(coshan-cosv) (coshun-cosv )j r  a slnhun
a a sinhu dal(coshu -cos) JC\ ' A w

Ieosh>i.-co3Y f dl a slphu0---- | « p. (u)cosn,}
a sinhuQ dul(coshu0-cosv)^ «» ° *

2(coshu -cosv)
|[

o ' M  a sinhu a sinhu----- ----Q_— __ ______o _
a*" sinhu. 1 1 (coshu -cosv)^ â /(coshu -cos-vi

5*a p*(u )cosnv +1-a n 0 1/
a sinhu

(coshuQ-cosv)^ 5 r Z aX < V * 0SIj

(co shu -c 0SY
asinhu. | £ }̂ sinh2uo-coshu0 (coshuQ-co sv)]

2 anpn cosnv ~£sinhu0(coshuo- c o s v ) c o s n v ] J

- 0*5.2)



77

Substituting (3.5.2) into (3*5*1)» we get the 
expression for the tojil current,

1 r*I = 1 B • ds^o-n
2 f* ______a______

" 7̂  ®v * (coshu0~cosv)
0 ^(coshu -cosv)^i 2* —  l..... . ... . 11 Ĵ sinh u —coshu (coshu —cosv)T[oJ. asinhu0 lL 0 o 0 '

Sa^p^cosnvJ - [sinhu^coshu^cosv^a^p^ cosnv]

(coshu^-cosv) ^v)

----------------  (3.5.3)
Evaluating this with the help of the identities 

of Hicks' equation (23)» it becomes

1 ‘f"«, 2an{sillhuoPA 9a [ooshuopi + siDi%P£]f

----------------(3.5.^)
This expression is further simplified with the 

aid. of the identity (1.6.3)* The final result is

I - V  Z att -----------------(3-5.5)70 U
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3.6. TOTAL FLUX»
The total flux through the circuit is defined 

by the integral form as

But
(3 .6 .1)

B » curlA
We get therefore

■ J(curlA)n da -----------  (3.6.2)
By Stokes’s theorem, equation (3.6.2) becomes 

(¡j » jA*ds
In the present case, Au = Av « 0 then

5 -1/ äsw
r* a sinhu » a_ m I — - , A * awJjjcoshu-cosv

As the vector potential A is a function of u 
and v only, we get

Th« total flux, § - sinhu(coshu-cosT)1,4ian:

ginhu— -Tg.Ja p' (u)cosnv 
(coshu-cosv) «*«

« 2irc --------------- (3.6.3)

t’cosnvn

where ’c’ is defined in equation (3.4-.2)
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3.7. EXACT EXPRESSION FOR THE SELF-INDUCTANCE OF A 
CIRCULAR TURN OF WIRE.

The self-inductance of a circuit is defined 
as the total flux linkage per unit current and may be 
written as

L total flax linkage ) total current ) in Henry

(5-7*1)
Substituting (3*5*5) and (3*6.3) into the 

above expression for self-inductance, we get

L 2Jtc
J5 2 a“V  n

(5*7*2)

This exact expression for the self-inductance 
of a circular turn of wire may be expressed in terms of 
the toroidal functions simply by substituting ( 3*4#11) 
into the above equation.

Thus

L

(3.7*5)
The self-inductances given fey the equation 

(3*7*3) are calculated and plotted in Pig (3*2_).
S L
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Instead of using uQ and a as independent variables, the
dimension ratio (r/R) has been used. The relations
between r, R and a, u are » » o

a - R (l-(r/R)2}^
arc secli(r/R)

( 3 . 7 . * )
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3 >8. APPROXIMATE FORMULA. FOR THE SELF-INDUCTANCE OF 
A CIRCULAR TURN OF WIRE.

In a magnetic field, energy is required to 
produce the field, hut no energy is required to main
tain it. If the magnetic flux density is B in a given 
volume element dV in the field ( the field being 1 in 
vacuo * or in a material not containing magnetizable
material ), then it can be shown that

» - a H I J A v  -------------- (3.8.1)

This stored energy may also be expressed in terms of 
the current and the self-inductance,

W - -jyll2 ------------   (3.8.2)
Combining equations (3.8.1) and (3.8.2), we get

-g-LI2 - - ~ I J j B Zd V ------------ (3.8.3)

For our present purpose, assuming that the
dimension ratio (r/R) is very small, we obtain

I - T)oE ( log M .  - 2 )
-----------------  (3.8.4)

The detailed account of the integration is to
( 4 )be found in Abraham's book
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The self-inductance given by the equation 
(5*8.4) is plotted in Fig. (5*2^) to be compared with
Fig. (3.2a).



2.0 APPROX. VALUER EXACT VALUES
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3.9» CONCLUSIONS
The relation between the two curves is summed 

up in Fig (3*3) in which the ratio of the approximate 
value of self-inductance of a circular turn of wire to 
the exact is plotted. The ratio approaches unity for 
small values of r/R (that is, for thin wire); but in 
general the approximate value is greater than the exact# 
The tendency for an increased self-inductance, when 
calculated from the approximate formula, can be easily 
deduced from a general consideration of the field; the 
current which was assumed to be concentrated at the axis 
in the calculation produces a stronger magnetic flux- 
linkage •

The error introduced by the approximate for
mula is found to be significant (that is, more than 
10%), when the dimension ratio r/R has a value of more 
than 0#35» Thus the général correctness of the exact 
calculation is confirmed by the approximate one#



84

REFERENCES 

Part 1
(1) SCHWAIGER, A,: 'Theory of Dielectrics', translated

by R.W. SORENSEN (John Wiley and Sons, 1932).
(2) BOLLIGER, A.: 'Probleme der Potentialtheorie',

Archiv fur Elektrotechnik, 1918, 6, p.134.
(3) NEUMANN, C.: 'Allgemeine Losung des Problems über

den stationären Temperaturzustand eines homo
genen Körpers welcher von irgend zwei nicht- 
conzentrischen Kugelflachen begrenzt wird'
(H.W. Schmidt, Halle, 1864).

(4) Hicks, W.M.: 'On Toroidal Functions', Philosophical
Transactions of the Royal Society« 1881, 31»P«609.

(5) Hicks, W.M.: 'On the steady Motion of a Hollow
Vortex', Philosophical Transactions of the Royal 
Society. 1884, 35» P* 161.

(6) Fouquet, W.: 'Dipolare Koordinaten und Kugelfunktionen',
Zeitschrift fur angewandte Mathematik und Mechanik. 
1937, 17, P. 48.

(7) Weber, E.: 'Electromagnetic Fields' Vol.l (John Wiley
and Sons, 1950).

(8) Jeans, Sir James.: 'The Mathematical Theory of
Electricity and Magnetism', (Cambridge University 
Press, 1951)*



85

(9) Slater& Frank,: ‘Electromagnetism* (Mcgraw-Hill 
Book Co. Inc., 1947).

(109 Hobson, E.W.: 'The Theory of Spherical and Ellipsoidal 
Harmonics*, (Cambridge Univ. Press, 1931).

(11) Basset, A*B.: 'Toroidal Functions', Proceeding London
Math. Soc.. 1893, 24, p. 180.

(12) Milne-Thomson, L.M.: 'Ten-figure Table pf the Complete
Elliptic Integrals', Proc. Bond. Math, Soc.. 
vol. 33, 1931.

Part 2

(1) Jeffery, G.B.: *0n a Form of the Solution of Laplace's
Equations suitable for problems relating to two 
Spheres*, Proc. of Royal Soc. of London, series A 
1912, p. 109*

(2) Heine, E.: 'Anwendungen der Kugelfunktionen*, Berlin
1881, p. 217.

(3) Bewley, L.Y.: 'Two Dimensional fields in Electrical 
Engineering*, (Macmillan Co•, Hew York, 1948).

Part 3
Snow, C.: 'Formulas for Computing Capacitance and 

Inductance* (H.B.S. Circular 544, 1954)*
(1)



Rosa & Grover, 'Formulas and Tables for the Calculation 
of Mutual and SeIf-Induetance' BS Sci. Pap. 169» 
revised 3rs ed.(l948).

Grover, F.W.: ' Inductance Calculations', (D. Van
Nostrand Co., Inc. 1946).

Abraham, M.: ’ The Classical Theory of Electricity
and Magnetism1, (Blackie & Son Ltd. 1948).



87

Appendix 1»

Pn(u) and qn(u) are the general solution of the equation

Laplace’s equation expressed in toroidal co
ordinates (u, v, w) has the form

4 , 4uJ .ul ¿Vs, b / fcA/u Bfy.  d t * \̂ |nQ3u.' ca}Ru.-cô nr Bu. i'r d̂ ĈoaAa-tcov dvV ^̂ fuJLu.(adu-Co»̂ ,*> *
----------------------( i )

Where there is radial symmetry, the last term disappears. 
In such case the.above equation will reduce to

do* avl InuT t ,r w \ )
The general solution of equation (2) may be

written

V - l l V a 0 0  + W u)l“ s"
where

/u>,JLf!_______ _d§________
n 31 0 (coshu-sinhu- cos9)n+^

------ ( 3 )

________ d§_______
(coshu+sinhu- eoshQ)n+1/&
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The proof that Pn(u) and qn(u) are the solutions

of the equation is  as follows:

Si$ce

ap„(u)
du

? (u)n' ' 7C J (
d0

o (coshu-sinhu*cos0)n+>T

%
2n+l r11 (sinhu-coshu»cosQ) d8 
2 J- (coshu-sinhu • cos©)11*^

■( * )
Also

-71 2
2n+l

a 2 a P
du£

£L d_ f (sinhu-coshu.cosQ) ^  
du l p (coshu-sihhu. cos0)iA+,‘4

s. 2n+3 f* (sinhu-coshu» cos©)
« (coshu-sinhu*cosO)n+x

+ j--------a __________
0 (coshu-sinhu« cos8)n+^

---------------------------- _ (  5  )

We know
2 2 (sinhu-coshu*cosQ) - (coshu-sinhu.cos©)

= cos2© — 1

=-sin20 ------------/
Hence, the first term of equation (5) becomes,

( 6  )
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v 2 22n+3 ( -sin 0 + (coshu-sinhu»cos9)* f rjjrT|Tc,—* CLv2 (coshu-sinhU' cos©)“

2n+3 f” slng8 d6______  2n+3
2 l  (coshu-sinim .cos0)n+"* " 2 n(u)

Therefore,

d2p„ = (2n+l)2 ^ _ 2n+l 1 (n cos0-dO
du2 2a n 2 Ttsinhu oCcosliu-siziliU'Cos©)11 2

---------   ( 7 )
Let the potential V'» U*Tf where U and V are 

functions of u and v respectively, equation (2) then 
reduces to

- ¿ i  + n2V = 0  ( 8 )dv^
and

+ «rtta^a. - ■ - ^ - u . odu^ du 4
------------- ( 9 )

Equation (8) has the general solution given
Ly

V * a’cosnv + b'sinnv
If equation (9) has the general solution given

by
U ^nO - O  ♦ bn * q*(a)
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then pn and qn must satisfy the equation (9) separately. 

W£th p defined by equation (3),
<U»

+ cothu dp.XL
du

_(2n+l)2 _ 2n+l 1 f76_______cosQ d8______
4 n 2 7rsinhu , (coshu-sinhu*cos©)n+1

coshu 2n+l "1 r7* sinhu-coshu*cos8 
sinhu ~2 7t J (coshu-sinhu*cos0)n+^

j[2n+]Q2 2n+l 1 f*coshusinhu-sinh^u»cos6 dQ 
“ 4 pn " T T "  7C sinhuC (coshu-sinhu-cos©)1̂

fen+l)2 2n+l JLr*______ d0__________
31 ^ V(coshu-sinhU‘Cos0)n+^

4n2-l n

Hence pn is a solution of the equation (2). Similarly, 

it can also be proved in the same manner that qn is a 

solution of the equation*
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Appendix 2.
q^Cu) expressed in terms of Pn(u).

Let cnPnCu)*Fn(u) ----------------( 10 )

into equation (9), we get

+ 2 dpn ^ n  + cothu p — ^  « 0 du du n  du
which, may be written

A h
¿Ut
AF„ 

eUt

The integrad, of this equation is

+ 2'
<IP» 
dux.
?* CciüimO

< 1 1  )

substituting this
2d Fn

?n du2

dF
l06e"diT + 2 lose*pn + l°S e*sinhu -  0

-------- ------- -( 12 )
Thus

dPn A
du sinhu pn

where A is the constant of integration. 
Hence H

duFn - A
Ìf%  sinhu*p ■( 15 )
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comparing equation (13) with tfche given solution, we have

4n(u) -Apn(u){ du
* sinhu ( pn )‘

■( 14 )
The following relations between pn and qn will

be useful in application;

C&) Pja+l’ ̂ n “ n̂* qn+l “ 2n+l

0>) n qn û n “ sinhu'

(o) pA- i i +i  -  pA+r «A -

They are easily proved, for substituting for Pn+ »̂ q.n+x

from their sequence equation.
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VECTOR OPERATIONS IN TOROIDAL COORDINATES.
Let us assume three orthogonal coordinates 

u, v, w, so that the three sets of coordinate surfaces, 
u * constant, v » constant, w * constant, intersect at 
right angles, though in general the surfaces will be 
curved. Now let us move a distance dsu normal to a
surface u ■ constant. When we do so, v and w do not 
change, but we reach another surface on which u has 
increased by du, which in general is different from dsu.
In general, we have

ds * h,du u 1
dsy » h2dv ------ ------- ( 15 )

dsw “ h3dw
where

.2 v2 A /¿y s2 ^ ,az n2
h i - c & y  + ^  + <rd V )

similarly for h2 and ĥ <

The first step in setting up vector operations 
in any set of coordinates is to derive these h*s, which 
can be done by elementary geometrical methods. Thus 
in toroidal coordinates where the coordinates are u, v, w, 
we have
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5s * u A Su

gs„ » v Agv

Ssw - fgw

where

" (coshu-cosv)
which corresponds to " 1/| ** in Hicks* paper#

GRADIENT.
The component of the gradient of a scalar S' 

in any direction is its rate of change in that direction# 
Thus the component in the direction 'u* (normal to the 
surface u»constant) is

dS* 1 3S*
ds h, auu 1

with similar formulas for the other components# Thus 
in toroidal coordinates, we have

- r - l r  

s'«4#8' - x  I r
grad S* «-i 6 w aw
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DIVERGENCE»
Let us apply the divergence theorem to a 

small volume element dV * ds ds ds , bounded by co-U V w
ordinate:Jsurfaces at u^, u^du^etc»» If we have a
vector A, with components Au, Aw along the three curvi- 
linear axes, the flux into the volume over the face at u, 
whose area is dsy dV  is dsy dsw>u, and the corres-

ponding flux out over the opposite face is (A^ dsv dsw)u+<iU>
where we note that the area dsy dsw changes with u as well
as the flux density Thus the flux out over these two
faces is

-|r (Au- dsv-dsw) du

■fu (Au" h 2 h 3^d u dv dw
- : - i.r- ~ r  (A -h5-hx) dv*h^b^h^ 0u ' u 2 3

Proceeding similarly with the other pairs of faces, and 
setting the whole outward flux equal to divA dv, we 
have div- “ hjhghjisu ^ )+j AvhJhl̂ +Jw<-Awhlh2

( 17 )
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Thus in toroidal coordinates

div A * -̂ rpr{ P*A>+ J7 (Ay-P^)+ (V  * >1
-------------------( is )

LAPLACIAN.
Writing the Laplacian of a scalar S as divgradS, 

and placing A^ « graduS, etc., in the expression for
divA, we have

— !----{ i - £ j h? i g u  i _ ( f 2 h i S x  0h^hgh^ldu' ^  a u ;+ av^ h2 av'+ aw1 h^ aw/f u

■( 19 )
Thus in toroidal coordinates, we will have

2o / J £ ft* 3$ \
7 s 7 f f e (P^ + T  a? I

■( 20 )

CURL.
We apply Stokes’s theorem to an approximately 

rectangular area hounded by u, u+du, v, v+dv. The line 
integral of a vector A about the circuit is

Au(u,v)dSu+Av(u+du,v)dSv~Au(u,v+dv)dSu-Av(u,v)dSv
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This is approximately equal to

{fe(W  - fy(W )  iudT
----------------------( 21 )

Since this must he equal to curl A*cLS'dS,,, we ahve^ w u v*

curlwA ”"h^f"5u^h2Av̂  ” avr Âuill^}

------------ *-------- ( 21 )

With the similar expressions for the other components. 
Thus in toroidal coordinates, we have

curv  - M h  5 - h  (v  *  ̂

curlyA (Au* ) - fu" ( V  P ) ) .

curlwA “ < V *  > ” 3iv

«
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Appendix 4
p^(u) and q^(u) are the general solutions of the equation

d2U _2Tt 3U "-X-— n u — A'-* 1- ■ ■ o.du^ 4sinh u

If we put
U - (sinhu)^ f --------- (22)

then
|2 - (sinhu)2_d£. ^ (sinhu)-^ coshu f

•'dy - (sinhu)^ -̂ -4- +(sinhu)~^coshu 
du^ du^ a

+>é(sinhu)^ 0 - J4(sinhu)"1 cosh2u 0

Thus

dcU 2tt 3U— £- + n U --- ^du p4sinh u

(sinhu)^ f-̂ -4- + cothu— ^-- (n2-)4)0 - (sinhu)“2l du* au

or
+ cothu 4^* - (n2-)4)ii - (sinhu)“2 ff » 0 du^ au

------------- -----------------(23)
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The toroidal functions p^u) and q^u) satisfy

cothu-4§—  (n2-K)p « 0 (Hicks' equ* 9) 
du

Differentiate this with respect to 'u* and write p* for 

we get

• —  + cothu ---cosech2u p* - (n2-j4)p' » 0

ich is equation (23)* Thus the solutions of equations 
(23) are p^(u) and q£(u).


