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ABSTRACT

The thesis reports an investigation carried out on more than two 

hundred and fifty prismatic specimens to study the cumulative fatigue 

damage of plain concrete subjected to constant and variable amplitude cyclic 

compressive stresses.

Pulse velocity measurements and strain charecteristics were used to 

indicate the extent of progressive fatigue damage. At a given percentage of 

the life the amount of damage of a specimen is dependent on the stress level.

Prismatic specimens were also subjected to repeated compressive 

stresses according to various load programmes in which the maximum load was 

varied between two limits the minimum load being kept constant throughout.

The results were interpreted according to the pulse velocity measurements, 

the physical appearance of fractered specimens together with the phenomenon 

of progressive fracture itself.

Palmgren-Miner hypothesis was found to give conservative or unsafe 

predictions of the fatigue life depending on the load programme. Factors 

affecting the accuracy of the hypothesis are discussed and an empirical 

design chart is presented.
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NOMENCLATURE AND SYMBOLS

As far as possible the notations used in this thesis are in conformity 

with the recommendations of B.S.3518:1962 and the International Organization

for Standardization and the following definitions apply for the terms used;
, ! •

Stress cycle =A stress cycle is the smallest section of the stress time func­

tion which is repeated periodically and identically.

Stress level,(S)=Percentage of ultimate static prism  s tre n g th .

Maximum stress «Highest algebraic value of stress level in the stress cycle.

level,(S ) max
Minimum stress «Lowest algebraic value of stress level in the stress cycle 

level'(Sn.in) 1
Range of stress=Algebraic difference between the maximum end minimum stress 

levels in one cycle.

«Number of loading cycles

«Fatigue life or number of cycles at failure for a given test 

condition.

Cycle ratio, «The ratio of the number of applied loading cycles to■the 

(n/ft) number of cycles causing failure at the same constant amplitude

stress level.

Fatigue limit «The limiting value, of the stress level below which a material
i

can presumably endure an infinite number of stress cycles.

level,(S ) ’ r
n

N

Fatigue strength
«The greatest stress level which can be sustained for a given

or Endurance,$N
number of stress cycles without failure.

S -N diagram =A semilog plot of stress level against number of cycles at 

failure.

S-N*P diagram «A semilog plot of stress level against number of cycles at 

failure for different probabilities of failure,P. 

a, b, c, d «Constants for empirical relationships, their specific use are 

explained as they occur.
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CHAPTER ONE

INTRODUCTION

1.1 General

Most structures are subjected to fluctuating and repetitive loads, 

such as those caused by the wind, occupants, mobile equipment, or 

moving vehicles (live loads). When a structural member is subjected 

to a sufficiently large number of loading cycles, failure may occur 

even though the stress due to loading is lower than the ultimate 

static strength (determined by a single loading) of a similar member.

This phenomenon, termed fatigue failure, is found to exist in concrete 

as in most structural materials and has been under investigation by 

various research organizations since the beginning of the present century. 

There are, nevertheless, many aspects of the behaviour of concrete under 

repetitive loading that need further investigation, among them the problem 

of cumulative fatigue damage.

1.2 Cumulative fatigue damage

As the stress induced by repeated loading fluctuates in the material 

of a structure, physical changes occur. If the variation of stress is 

sufficiently great, permanent damage may result although this damage is 

not normally discernible. The progressive increase of this damage under 

repeated cycles of stress is termed fatigue damage and eventually leads 

to visible deterioration and fatigue failure.

There are three main problems in designing any structure subjected 

to complex live loads so that the accumulation of fatigue damage does 

not threaten safety:-

(1) Predicting and describing the fatigue producing stress variations 

that the structure will experience.
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(2) Evaluation of cumulative damage.

(3) Accounting for the wide scatter in fatigue life that is observed 

for seemingly identical test specimens and structures.

The evaluation of cumulative damage is a problem because the stress 

cycles in actual structures vary so greatly in magnitude, number and 

order that it is practically impossible to perform enough experiments 

to cover all variations. Therefore, the total fatigue damage has to be 

evaluated by summation of the effects of individual cycles. If the progressive 

damage mechanism during each stress cycle was fully understood, this 

summation to determine the cumulative effect, would present no problem.

The other alternative is to employ one of the proposed cumulative fatigie 

damage hypotheses (to be examined in chapter 8),however, none of them 

has been experimentally proved to be sufficiently reliable when applied 

to concrete.

An investigation of how a concrete element is progressively damaged 

under both uniform and repetitive loadings of varying amplitude, leading 

to fatigue failure, is therefore of considerable value.The practical 

application of the resulting knowledge would be advantageous not only 

in the safe and serviceable design of structures such as bridge girders, 

slabs, pavements, machine foundation, off-shore structures subject to 

heavy wave action, or prestressed railway sleepers, but also for the 

economical use of structural materials.

1.3 Levels of approach in studying concrete

There are three levels of approach in studying any deformable body of 

a composite material, i.e. the phenomenological or large scale level, 

the fundamental or structural level, and the molecular or atomic level]

For the study of fatigue in concrete, two levels of approach, the funda-
4

2mental and the phenomenological have been suggested.

The fundamental level is concerned with the behaviour and interaction 

of the contituent parts of concrete with the purpose of explaining the
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observed characteristics such as strength or fatigue behaviour in terms 

of phase interaction. This type of research adds to the basic knowledge 

of the mechanism of behaviour of condrete, but does not necessarily find 

an immediate application to any specific problem.

The phenomenological level is concerned with the behaviour of concrete 

as a whole such as, for example, its stress level-fatigue life relation­

ship. The results of this type of research may find direct application 

in practical problems, mostly in the form of empirical information. Indeed 

most fatigue tests of concrete to date have been carried out in order to 

give practical information to engineers. However, this kind of information 

alone cannot give satisfactory explanation of the mechanism of the be­

haviour of concrete. It is from the combination of information obtained 

from these two levels of study that a real understanding of the nature of 

fatigue in concrete begins to emerge, as has occurred in the study of 

metal fatigue.

1.4 Froposal for present investigation

Since the available information regarding cumulative fatigue damage 

in concrete in compression is very scarce the approach to this investigation 

will be at both levels though predominantly phenomenological. In this way 

it is hoped that, besides producing some empirical data of practical 

application, the knowledge gained from the more fundamental observations 

may help towards an improved understanding of the nature of fatigue in 

concrete.

1.5 Objective of investigation

The purpose and scope of the investigation is to examine the cumulative 

fatigue damage of high strength concrete under a cycling compressive load 

between a constant lower stress level and both constant and systematically 

varied upper stress levels. The work consists of three parts as followsj-



-  4  -

Part 1 : Review and description of tests.

Part 2 : Tests under loading of constant amplitude.

The objective of this part of the work are as follows:

1. To study the effect upon the gross behaviour of a particular concrete 

of various constant amplitude cyclic loadings with a view to correlating 

the parameters, namely maximum stress level; number of cycles to failure; 

and probability of failure.

2. To investigate the effects of the cyclic loadings on various properties, 

namely shape of stress-strain curve; elastic and inelastic strain; Modulus 

of elasticity, etc.

3. To study by ultrasonic pulse velocity technique, the mechanism of 

static and fatigue crack initation and propagation which can indicate the 

extent of damage and the relative rates of accumulation of fatigue damage 

and to examine the relationship between pulse velocity and number of cycles 

of stress in the relation to the total fatigue life.

Part 3 : Tests under loading of variable amplitude.

The objective of this part of the work are as follows:

1. To investigate possible alternative damage concepts of cumulative damage 

and cumulative fatigue damage theories with particular reference to the 

Palmgren-Miner cumulative damage hypothesis.

2. To investigate the limitations of the Palmgren-Miner hypothesis in 

order that engineers may have a better appreciation of the circumstances 

in which the hypothesis is unsafe, or safe, and to suggest and investigate 

possible modifications in order to improve the accuracy.

A practical cumulative fatigue concept is put forward and the validity 

of the concept is verified in the light of the conclusions drawn from the 

present investigation.

1.6 Limitations of the investigation
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In order to investigate as many variations of repeated loading as

possible the following variables were maintained constant throughout the
/

programme of tests.

,, 1. Mix proportions, range of age of concrete and environmental 

conditions.

2. Wave form of loading cycle (sinusoidal).

3. Frequency of loading.

4. Minimum stress level.

5. Maximum stress level (Between 65% and 85% of the ultimate 

static strength of concrete).

The effects that variations in mix, age of concrete, type and rate 

of loading, etc. will have on the cumulative fatigue damage in concrete 

in compression are beyond the scope of this study, and must be left until 

more is known about the nature of emulative fatigue damage under the 

above simplified conditions.
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: i CHAPTER T7/0

REVIEW OF CURRENT KNOWLEDGE OK THE FAILURE OF PLAIN CONCRETE 

UNDER COMPRESSIVE FATIGUE LOADING

2.1 General Reviews

Studies of the fatigue behaviour of concrete under repeated loading 

now extend over more than 70 years. However, the majority of them, being 

exploratory investigations, have been fragmentary and of limited scope and 

it is difficult to draw many firm conclusions from the available information 

which is based on the results of tests conducted on different types of 

specimens subjected to various loading conditions.

The information concerning fatigue properties of concrete may be divided 

into the three categories of plain, reinforced, and prestressed concrete.

The current knowledge of the fatigue properties of concrete, reinforcing 

bars, welded reinforcing mats, prestressing tendons is now published by the

A.C.I. Committee 215^ and will not be covered here. The purpose of this 

chapter is to summarise the relevant important work and to indicate its 

limitations and requirements for further research, with particular reference 

to the fatigue behaviour of plain concrete under axial compressive fatigue 

loading.

Reviews of the earlier work were published by Mills and Dawson^ in 1927, 
c 6 7by Cassie7 in 1939 and in more detail, by Nordby, and by Bate' in 1958.

8In I960, the A.C.I. produced an exhaustive annotated bibliography covering
9the period up to the end of 1958. In February 1965» Murdock7 published a 

comprehensive and critical review of fatigue research on plain concrete 

in which he summarised the state of knowledge at that time and suggested 

some recommendations for future research. Neal and Kesler]^ later in the 

same year, published a report on the fatigue of plain concrete in which 

they summarised the state of knowledge with particular reference to the 

extensive investigations at the University of Illinois. In 1968, as a
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preliminary part of a comprehensive research programme on plain concrete 

to "be undertaken by the Transport and Road Research Laboratory, Raithby 

and V/hiffin11 published an extensive literature review and outlined some 

recommendations for future research. In March 1974# the A.C.I. committee 

215 published a report^ which provided the most updated information concern - 

ing the fatigue properties of component materials, namely, concrete, rein-
12forcing bars, etc. More recently, the A.C.I. published a special publication 

(ACI-SF41) in which 15 papers presented at the Abe3.es symposium 'Fatigue of 

Concrete' in November 1972, were included. A concise review of the current 

state of knowledge on fatigue in concrete was also published by Eennett^ in 

May, 1974.

2.2 Fatigue of plain concrete under repeated axial compressive loads

In reviewing the work that has been done on concrete it is convenient 

to use the following broad headings:

(1) Constant amplitude tests.

(2) Time dependent effects (i.e., specimen age, rate of loading 

rest periods, etc).

(3) Effect of Material properties.

(4) Mechanism of fatigue failure.

(5) Effect of previous stress history.

(6) Stress interaction and cumulative damage.

2.2.1' Constant amplitude tests

1ASome of the earliest work on fatigue was reported by Van Omum H in 

1903, mainly on 5lnim neat Portland cement cubes four weeks old but also 

including some concrete cubes, tested in repeated compression at four cycles 

per minute. In 1907^ tests on 127x127x305mm prisms aged both one month 

and one year at frequencies of two to four cycles per minute were described.

The scope of the tests was limited to lives of less than about 10^ cycles.

Van Ornum's work merits attention because it established the existence of
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the fatigue phenomenon for concrete and recorded the observation of pro­

gressive failure. The slope of the stress-strain relationship varied with 

the! number of load cycles applied, initially being convex but later . change- 

ing to linear and to concave, with a progressive decrease in stiffness, and 

finally near failure it became S-shaped. His tests indicated that concrete 

has no fatigue limit as in the case of metal but he concluded that the 

fatigue strength under repeated loading could be stated to be about 55 per­

cent of the static ultimate strength for a fatigue life of 7000 cycles. He 

appeared also to be the first to have expressed the fatigue strength of cement 

mortar and concrete in form of an S-N diagram (Fig2.l).

; !
Williams, in 1920, tested cylinders at six to eight cycles per day. 

Limited data indicated a slight increase in the modulus of elasticity of 

concrete with repetitions of load.

In the thirty years following Van Ornum's tests, there were several

investigations which followed similar lines, notably by Probst and his stud-
*17 18 19 20 21ents '* and by Ban 7 and Graf and Brenner ’ at Karlsruhe, Germany. These

investigations were mainly concerned with progressive deformation Tinder fatigue 

loading and particular attention has been paid to recording stress-strain 

diagrams at various stages of the tests. Although the number of specimens 

was small, it was possible to extend the observations to longer lives than 

those of Van Ornum. Consideration was also given at thi3 time to the inter­

relation between fatigue strain and creep, following earlier observations 
22by Berry, and to the implications of partial strain recovery on the removal 

of the load.

20The investigation by Graf and Brenner was significant because it in­

troduced a modified Goodman diagram for the firsi time into concrete study, 

describing the effect of rangeoFstress on the fatigue behaviour of concrete.

Only a limited number of points was covered but some typical results are given 

in Fig 2.2.
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These German investigations,'although more detailed and meticulous 

than Van Ornum^ did relatively little more than substantiate his results. 

However, they do provide a firm basis for continued work which may provide 

a better understanding of the mechanism of fatigue failure. The work of 

Graf and Brenner, * in particular, included the effect of a number of 

variables, namely, cross-section, speed of testing, mix proportions, curing^ 

range of stress and specimen age.

For almost a quarter of a century from 1956 to 1959» no further reports 

of fatigue tests under direct compression appeared. In 1959* Antrim and 

McLaughlin reported a study of fatigue behaviour of air-entrained and non­

air-entrained concrete. Tests were made on 76x152mm cylinders subjected 

to repeated axial compression at a frequency of loading of 1000 cycles per 

minute. The data indicated when extrapolated, a fatigue strength of about 

55 percent of the static ultimate strength at 10 million cycles without any 

significant differencès between the fatigue strength of the two types of 

concrete; and no evidence of a fatigue limit v;as found (see Fig. 2.3.). In a 

subsequent study carried out in 1961, Gray, McLaughlin and Antrim^ extended 

the investigation to include lightweight aggregate concretes at frequencies 

of 500 and 1000 cycles per minute and again the specimens where 76xl5?mm 

cyclinders. No fatigue limit was found and no effect of speed of testing 

was discernible. There was no significant difference between the fatigue 

strength between lightweight concrete and that of conventional concrete (see 

Fig. 2.4). Although the results were limited in scópe, and the number of tests 

was relatively small, the main contribution of these tests was in the exten­

sion of fatigue knowledge to a different type of concrete and to higher fre­

quencies of loading used.
OC

In 1965* Linger and Gillespie ^  reported a study in which axial load 

tests were performed on cylinders both in direct compression and in split- 

cylinder indirect tension. The results obtained were very similar to those
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of Van Omuni, although covering a much wider range of lives. No significant 

difference; in fatigue life was found between tensile and compressive load­

ing when , the; applied load was expressed in terms of percentage of the ultimate 

staticistrength and there also appeared to be slightly less scatter in'the 

results for the tensile splitting tests (see Fig 2.5). The Goodman diagrams 

were also used to fehow the results, which although were limited by the small 

number of relevant test points, indicated a consistency in fatigue strength 

between compressive and indirect tensile loading, therefore, suggesting a 

similarity in the mechanism of failure.

At the university of Leeds, Muir conducted a programme of fatigue tests 

on high strength concrete 76x76x203mm prisms loaded in compression at fre- 

quencies between 190 to 340 c.p.m. and the published test results' indicated 

a fatigue strength at one million cycles of between 66 and 71 percent of the 

static ultimate strength, when the lower load limit was maintained at 8.62 

N/mm . When corrected by the modified Goodman diagram, this corresponds to 

60 percent at 1 million cycles and when extrapolated, 61 and 57 percent at 

2 million and 10 million cycles respectively. The results were generally 

in good agreement with the previous investigators of the 1930's and establish­

ed a definite trend of a slightly lower value for the high strength concrete, 

28Raju in 1968, of the same university, conducted an extensive programme 

of tests, on high strength concrete 76x76x203mm prisms with the main object­

ive of studying the mechanism of fatigue failure of plain, concrete and the
29published test results ' indicated a fatigue strength of concrete of about 

62 percent of static ultimate strength at 2 million cycles when the lower load 

limit was maintained at 1.4-1.7 N/mm, The results were in agreement of the 

previous investigations except the average static strength of the concrete
p p p*7

used was 40 N/mra compared to;39“63 N/mm of Bennett and Muir, The test
tis 30data also has been analysed on a statical basis using McCall's' model intro­

ducing the probability of failure to the conventional S-N diagram.
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The main contribution of these tests by Bennett and his students lies 

in the extension of fatigue knowledge to hig^ strength concrete (>60 N/mm ), 

and to provide a better understanding of the mechanism of fatigue in .compres-f 

sion. The work of Muir also included the effects of the maximum size of 

coarse aggregates between in. (9mm) and ^/4 in. (18mm) and the results 

indicated no significant difference of the fatigue strength of the two type 

of specimens. The work of Raju included the effects of understressing, 

the introduction of cylindrical inclusion at the middle of the prismatic 

specimens^ the comparisons of the fatigue behaviour of cement pastes and mortars, 

and the study of microcrack formation by both optical and ultrasonic pulse 

velocity techniques •

The work by Ople and Hulsbos^ at Lehigh University in 1$66f merits atten­

tion because although most investigators have used either direct axially 

compressive loading or pure flexure, in these tests the behaviour of concrete 

prisms with a compressive stress gradient has been studied. The specimens 

were loaded eccentrically to produce the required stress gradient across the 

section. Marked differences were found in fatigue life between uniformly 

stressed and non-uniformly stressed specimens, the fatigue strength of the 

latter being higher than the former. For specimens having the same maximum 

compressive stress, an increase in fatigue strength of about 15 to 18 percent 

of static ultimate strength wasachieved on specimens having a zero to maxi­

mum strain distribution, when compared with uniformly stressed specimens for

a fatigue life of 40,000 to 1,000,000 cycles. The test data was analysed
27on a statistical basis using the McCalls's mathematical model.

52More recently, in 1972 Awad and Hilsdorf published a study on the 

strength and deformation characteristics of plain concrete subjected to high 

repeated and sustained compressive loads. Particular emphasis was placed on 

studies of effect of the time during which the concrete was subjected to high 

stresses. Tests were made on 102x102x305mm prisms aged 3*7» and 90 days sub­

jected to repeated or sustained compressive loads with maximum stresses rang­
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ing from 80 to 95 percent of the static ultimate strength and rates of load-
2ing of 4.14,41.36 and 413*68 N/mm /min. The results indicated that the re­

sponse of concrete to high repeated loads was to a large extent controlled 

by the duration of time during whidh the concrete had to resist stresses

higher than its sustained load strength. Therefore, the speed of testing 

had a substantial influence on the fatigue life of concrete, this is discussed 

further in Section 2.2.2.2 p. 13« An analytical procedure was also developed 

to predict the number of cycles to failure for concrete subjected to various 

stress ranges at various rates of loading.

2.2.2 Time dependent effects.

2.2.2.1 Effect of age of specimen

Little work appears to have been done hitherto on the effects of age on 

compressive fatigue performance of concrete. The sole systematic research 

appears to be that of Linger and Gillespie. J who conducted tests on cylind­

rical specimens in repeated compression. The limited results indicated that 

for specimens less than 3 months old, fatigue strength increased with age, 

theincrease being approximately linear over an age of 40 to 84 days. The 

results showed the fatigue strength at one million cycles to be 0*64 of the 

static strength at 40 days increasing to 0f82 at 84 days. No data was avail­

able for ages greater than 84 days.

The only other attempt to investigate the effects of age on the fatigue 

strength of concrete was by Raithby and Galloway^ of the T.R.R.L. who con­

ducted flexural fatigue tests on small concrete beams with the objectives of 

stuping the effects of moisture state, age in terms of curing time and rate 

of loading on the fatigue performance of three types of concrete used in high- . 

way construction. The results of these flexural tests are not directly relevant 

but it is of interest that they indicated the fatigue performance to be strongly 

dependent on the age of the concrete. They also suggested that a reasonably 

good prediction of long term performance of concrete of ages up to 3 years 

might be obtained by extrapolation from the results of short term tests under
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appropriate, conditions.

i A sustained load test may be considered as a limiting case of fatigue loading 

where the stress range R=0. Awad and Hilsdorf^ conducted sustained load tests 

on prisms aged 7,28 and 90 days at maximum sustained - stress levels , of 85»

90 and 95 percent of the static ultimate strength; the results indicated that 

for high stress levels causing failure after less than 5p0 min *0.90), old 

concrete was more resistant to sustained loading than young concrete. However, 

this trend was reversed at lower stress levels causing failure after more than 

1000 min, the time to failure for concrete loaded at an age of 7days was larger 

than for older concrete. This was explained as probably due to continued hy­

dration while the specimen was under load which may have partially or completely 

offset the damage caused by the load. Hydration under load was particularly 

significant at low stress levels when the time to failure was sometimes several 

days. '

2.2.2.2 Rate of loading

As the static strength of concrete depends greatly on the rate of loading,,it 

might be expected that fatigue performance would also be affected by the spped 

of testing. Results from several tests indicate, however, that the effect is 

not great. Tests; by Mehmel1  ̂over the range 30 to 90 cycles/min (0.5-1.5Hz), 

and Graf and Brenner^’^  in the range of 260 to 450 cycles/min (4.55-7•5Hz), 

showed that frequency of loading had no effect on the fatigue life provided the 

maximum stress level was less than 75 percent of the static strength. This con- 

clu3 ion .was supported by Antrim and McLaughlin^ and Cray, McLaughlin and AntrirS 

for tests at 500 and 1000 cycles/min (8.33-16.7Hz). Comparative tests at 500 

and 9000 cycles/min (8.33-150Hz),were conducted on 51x102mm cylinders in 1959 ty 

Assimacopoulos,■Warner and EkbergyT of Lehigh University in an.effort to develop 

satisfactory methods of accelerated fatigue testing. The limited test data (9 

specimens at 500 cycles/min and 25 at 9000 cycles/min) indicated a fatigue 

strength of 63 percent of static strength at 2 million cycles for a minimum stres 

level of 10 percent of the static strength. The two rates of loading were found
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to have no significant effect on the fatigue life despite the fact that at 9C00 

cycles/min a considerable temperature rise (in some cases from room temperature 

of 78°P to 175°F) occurred due to internal friction in the specimen.

However, the conclusions drawn from the above investigations cannot be re­

garded as being very reliable due to the fact that the number of specimens tested, 

and the range of frequencies covered were too small. The individual results 

were somewhat inconclusive and showed enormous scatter (as much as 1000 to 1 

of Kax^Tin life at particular stress levels).

For higher stress levels (00 to 95 percent of static strength) a significant 

influence of rate of loading has been observed by Awad and Hilsdorf?^ Under 

such conditions, creep effects became more important, leading to a reduction 

in fatigue strength with decreasing rate of loading. It was found that a de­

crease of rate of loading by one order of magnitude resulted in a decrease of 

the fatigue life by almost one order of magnitude (rate of loading V.S log N).

3sWork has recently been completed by Sparks and Menzies in which com­

pressive fatigue tests were performed on 102x102x203mm prisms with maximum load 

levels between JC/f« and of the static strength in a triangular wave form at 

rate of 0,5 and 50 N/mm'/sec and the minimum load level was maintained constant 

at one third of the static strength tested at the rate of loading specified 

in BS 1881: 1970 (0.25 N/mm^/sec). The results indicated that the rate of 

loading did infact affect the fatigue strength of plain concrete in compression. 

The degree to which the fatigue life was enhanced in the tests, by the more1 

rapid application of loading was dependent upon the level of the maximum load. 

Although it was not possible to put an exact figure on the improvement of life, 

it was generally of lower order than the increase in the rate of loading.

The typical result showed that a hundred-fold increase in the rate of loading 

produced a tenfold improvement in fatigue life. The conclusions drawn from 

this work together with those of Awad and Hilsdorf are of importance because 

it means that accelerated fatigue testing of concrete in compression may



1 - 15 -
\;
;i :

' ; s t r e n g t h '
produce an overestimate of their true fatigue[if the actual rate of loading

is very low. It is interesting to note that this reduction in fatigue strength

with lower rates of loading was in fact observed as early as 1934-6 by Graf

and Brenner ’ when they noticed a slight decrease in endurance at a slow

rate of 10 cycles/min (o .167Hz ),

2.2.2 .5 Deformation

In general, the strain of concrete during repeated loading increased sub-
29stantially beyond the value observed after the first load application. The 

deformation is greater at lower rates of l o a d i n g ^ * ^

2.2.2.4. Rest Periods

The effect of rest periods on the fatigue behaviour of concrete in compres­

sion has not been sufficiently explored. Early investigators (during 1923- 

1930)observed that rest periods appeared to have a beneficial effect on the 

fatigue strength of concrete]"' No other data is available concerning the effect 

of rest periods in compressive fatigue tests.

In flexural fatigue tests, however, a few investigations have been con­

ducted to study the effect of rest periods, namely by Hilsdrof and Keeler' 6 

and more recently by Raithby and Galloway^ The test results of the former 

indicated that rest periods of up to 5 minutes increased the fatigue strength 

but that periods longer than 5 minutes had no further effect and the frequency 

of the rest periods appeared to be more important than their duration (see 

Pig. 2,6). In contrast, the results of the latter indicated that the rest periods 

appeared to give a slight reduction in life but the differences were not 

statistically significant at the 5^ level. The contradiction in these two 

conclusions is probably due to the difference in the testing programmes,

Hilsdorf and Kesler^ introduced rest periods of 1 to 27 minutes at the end 

of blocks of about 4500 cycles whereas in the tests of Raithby and Galloway^ 

rest periods of 0.5 and 2.0 sec were applied after each cycle of loading.
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2.2.3 Effect of material properties

Test reports as early as 1936 indicated that the fatigue strength decreas­

ed sli^itly with an increase in the static strength; however, the reduction 

with an increase in static strength appeared to he too small to he of practical 

importance]^ It has also been found that cement paste and cement-sand mortar 

specimens, of the same proportions as in concrete specimens did not differ 

significantly from the concrete in fatigue strength^

Fatigue testing has been extended to include air-entrained concrete*^ and 

light-weight aggregate concretes of high and low strength?^ In each case the 

fatigue characteristics were similar to thoseof normal concrete; no fatigue 

limit was found under 10 million cycles, at which duration the extrapolated 

fatigue strength was about 55 percent of the static ultimate strength when the 

minimum stress is zero.

2,2./», ,. Mechanism of fatigue failure.

The fatigue of concrete is a process of progressive permanent internal 

cracks of microscopic width at the cement natrix/aggregate interface and the 

matrix itself when subjected to repeated stresses. Fatigue fracture of con­

crete is more extensive and characterised by considerably larger strains and 

microcracking as compared to the somewhat similar cracking accompanying con­

crete under static compressive loading]*^ The internal cracking of the concrete 

could be detected by the decrease in the pulse velocity of an ultrasonic pulse 

in lateral direction. Another effect of fatigue on the properties of concrete 

is the concavity of the stress-strain curves prior to failure, thi3 could be

the result of some of the cracks at right angles to the direction of loading,
29tending to close under increasing stress.

2.2,5 Effect of previous stress history

The application of repeated compressive stresses at a level below the 

fatigue strength at 10 million cycles i.e., less than 55 percent of the static 

strength, which is known as 'Understressing', has been found to have a margin­
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ally beneficial effect on the subsequent static strength. This amount varied 

from 5 percent to as much as 15 percent increase in static strength in early 

investigation]"* More recently, the results from tests by Bennett and his

students2^*2^ showed the same trend on concrete of much higher strength (40-
2 2760 N/rrim ), the average increase in static strength was about 11 percent and

295 percent. This phenomenon has also been observed in beams subjected to un­

derstressing in flexural tests]"*

2.3 V'ork on stress interaction and cumulative damage

In the majority of fatigue testing programmes, the range of cyclic stresses 

has remained the same throughout each individual test (Constant amplitude tests). 

In contrast, concrete may in practice be subjected to a whole spectrum of 

stresses in random order and to assess the fatigue strength in such cases it 

is necessary to know the accumulation of fatigue damage under cyclic stresses 

of varying amplitude and order. Currently, no data is available concerning 

the fatigue performance of concrete under compressive cyclic loads of vary­

ing magnitude,

2,It Limitations of previous investigations.

Review of the published investigations to date shows that, with a few 

exceptions, the .scope of each investigation has been rather limited and the 

methods of testing have varied considerably. Loading arrangement, form and 

rate of loading, type and size of specimens, and age of specimens are a few 

of the variables which have differed in each investigation. However, the • 

obvious significant limitation of the investigations is the lack of informa­

tion on stress interaction and cumulative fatigue damage in plain concrete 

in compression. In view of their importance it is rather surprising that 

these problems have scarcely been touched upon. Although the compressive 

fatigue problem is not likely to be critical in structural reinforced and 

prestressed concrete members under the load and stress conditions governed 

by present practice, this position may change due to the introduction of
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advanced design procedures and increasing use of high strength material, for 

example, more slender columns, piles, more flexible machine bases and off­

shore structures etc.

Furthermore, precise information is needed to enable a reliable evaluation 

to be made of fatigue damage in an actual structure. It is doubtful whether 

the present practice in estimating the fatigue performance from the limited 

knowledge gained from constant amplitude tests will always result in a safe 

and serviceable structure.

2.5 Requirements for further investigation

Since the fatigue behaviour of concrete subjected to compressive cyclic 

loading of varying amplitude appears to be practically unknown, it would seem 

that the initial requirement is a thorough systematic study of the effects of 

varying loading.programmes. This should probably begin by establishing an 

S-N diagram or more precisely an S-N-P diagram of a particular concrete by 

constant amplitude tests, under one set of environmental conditions and with 

strict control of the many variables to permit qualitative and quantitative 

assessment of the results. The progressive changes in the properties of conc­

rete ‘under fatigue loading which could define the degree of fatigue damage i.e. 

the strain data, hysteresis curves etc. w'ill be monitored. However, these 

changes are only useful for laboratory specimens and are of little use in the 

field. Particular attention will, therefore, be paid to ultrasonic non-destruc 

tivc testing techniques which may offer an indirect method of measuring the 

fatigue damage sustained by a structural member in situ.

When the S-N-P diagram has been established, the concrete specimens will 

be subjected to several loading programmes designed to yield as much informa­

tion as possible on the cumulative fatigue damage, and the physical changes in 

the concrete specimens will simultaneously be monitored by ultrasonic methods. 

The results ,of such systematic;tests may outline characteristics of the cumula­

tive :fatigue damage and check the validity of any proposed cumulative damage 

theory.
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CHAPTER 3

TEST SPECIMENS: DESIGN, PREPARATION

j !

3.1 Materials, mix proportions

3.1.1. Materials

The cement used for all tests came from a single consignment of a rapid

hardening type ("Ferrocrete" of the Blue Circle Cement Group) conforming to
*

B.S.12:1971. An analysis is shown in Table 3*1» The aggregates were well 

graded North Nottinghamshire quartzitic gravels. The coarse aggregates (irre­

gular shape) had a maximum nominal size of 1omm (3/8 in.) and the fine aggre­

gate was 3mm (3/16 in.) graded sand. The fineness moduli, defined as the sum 

of the cumulative percentages retained on the sieves of the standard series: 

150, 300, 600,jxm,1.20,2.40*4.76mm (nos. 100, 52, 25* 14, 7» 3/16 in.) and up 

to the largest sieve size present, of both coarse and fine aggregates were 

5.90 and 2.62 respectively. Both aggregates conformed to the limits set out 

in 3.S.8823; 1201:1965, the fine aggregate following within zone 2. The typical 

grading curves of coarse aggregate, fine aggregate, and the combined aggregates

in the ratio of 2:1 corresponding approximately to the curve no,2 of McIntosh
37and Erntroy's type grading curves^ are shown in Fig. 3.1.

3.1.2. Mix Proportions

After several preliminary mix trials consisting of aggregate cement ratios 

of 5:1* 6:1, 7:1* and water cement ratios of 0.5, 0.55, 0.6, O.65. Mix pro­

portions of 1:2:4 with a water cement ratio . of 0.6 was standardised for the

tests. The mix was adopted on the basis that it gave a minimum characteristic
2 2 cube strength of 40 N/mm at 28 days, and an average prism strength of 36 N/mrrr

at 35 days (after air drying in the laboratory for at least 3days). A typical

gain of strength with time of the mix is shown in Fig. 3.2 and a histogram of

all batches is shown in Fig. 3*3« The workability of the mix was measured by

* Private communication: C.M. Gibson, Technical Dept., The Cement Marketing Co.
Ltd.
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Slump, Compacting Factor, and Vebe tests. The average values for the first 

5 hatches were: Slump, 12.7mm (1/2 inch); C.F., 0.92; and Vebe time, 4 seconds.

3.2 Specimen shape and size

The effect of cross-sectional shape and height to width ratio of the speci­

men. on the mode of progressive damage and failure were two factors considered 

in selecting the final shape and size of the specimens for this investigation.

A critical study of the influence of these two parameters is not intended in 

thi3 work because it has been under investigation by various international 

research organizations'^ ■ at least as far as the influence on the static 

compressive strength of concrete is concerned. The conclusion reached in these 

works could be summarised as follows:

There is little variation in the crushing strength of specimens having 

similar dimensions but different cross-sectional shapes. Also, the apparent

strength of concrete specimens with the same cross-section increases with de­

crease of the ratio, of height to width or diameter. The effect is very marked 

below a ratio of 1.5 and less marked above 2.5. The former is due to increased 

frictional lateral restraining effect of the loading platens of the test machine 

on the ends of the specimens and the latter to the tendency towards instability 

in slender specimens?®’^  However, for research investigations, a ratio of 

height to width or diameter greater than 2.5 has been proposed^ on the basis 

that the middle third of the specimen could- be regarded as an undisturbed comp­

ression for measurement in the elastic range and up to failure.

Based on these facts, it wa3 decided to use 76x76x203mm (3x3x8 in.) concrete 

prisms which were convenient size for the testing rigs and more suitable for 

ultra pulse velocity measurements than those of circular cross-section, This 

size had been used previously for both fatigue and creep investigations in this 

laboratory^»^9i46 would therefore enable comparisons to be made.

For quality control tests, 102mm (4in.) cubes were used throughout the in­

vestigation.
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3.3 Casting, Curing and Quality Control

The specimens were cast vertically into steel moulds conforming to B.S. 

1881:1970. A pan mixer of 2 cubic feet (O.863 m^) capacity was used for mix­

ing with a constant mixing time of 2 minutes and 8 prisms and 12 control cubes 

were cast in each batch. The pan of the mixer was thoroughly hosed down and 

excess water tipped away before use, to ensure even wetting of the pan and 

kept the variation of the water cement ratio of the mix to minimum as possible 

for each batch. Good compaction of the specimens was achieved by the use of an 

Allam vibrating table and a constant compaction time of J>0 seconds was observed 

for each casting layer. After compaction excess concrete was removed, and the 

top surface was trowelled off to a smooth finish. The specimens were allowed to 

set partially before covered with wet hessian and polythene sheet. They were 

removed from their moulds after 24 hours and stored in the controlled conditions 

of the curing room at a temperature of 18°C - 1°C (65°F) and a relative 

humidity of 95-100a> for a period of 28 days before testing.

In order to ensure that all of the specimens used in the tests v/ore fairly 

uniform in strength, each step in preparation was standardis.ed and closely 

supervised. The sieve analysis of aggregates was performed at regular intervals 

in order to detect any irregularity in the grading curves. The whole consign­

ment of R.H.F. cement (1 Tonne) along with the high alumina "cement employed 

in capping the prisms were delivered in double paper bags which were carefully 

wrapped and stored at uniform • temperature (20°C) and humidity (50-60^) 

throughout the test period. The effort was justified and resulted in a fairly 

uniform strength (Fig. 3*3). The relationship between the standard deviation 

and ultimate cube strength at 28 days is shown in Fig. 3*5. The average with- 

in-batch standard deviation* of the control cubes at 28 days (33 batches) .is
* A
Average within-batch standard deviation, computed from:

^  * 1

2 2  2+ Sp + .... SN*
N

where; S..,S-, .... etc., = Standard deviations within batch.
N » Number of batches.
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p
1.26 N/mm (coefficient of variation is 2.937S) which is well below the value 

recommended by the working groupl set up by a joint CEB/CIB/FIF/RILR.1 committee^
' j

(Fig. 3.4).

3*4 Preparation of ends of specimens

The ends of the specimens were required to be perfectly plane and at rightl
angles to the sides. As the tops of the specimens could not be adequately sm- 

-oothed off before the concrete had set, the resulting surfaces were somewhatf
rough and not truly plane. When testing in uniaxial compression, stress con­

centrations resulted and the apparent strength of the concrete was greatly re­

duced. At the same time, the scatter of strength was increased because of the 

influence of the defects in planencss. A lack of planeness of 0.25mm (0.01 in.)

can lower the strength a3 much as by one-third, the loss in strength being partic-
48ularly large in high-strength concrete.

In fatigue tests where the specimens are stressed to various stress levels 

based on the average static strength of the control specimens, it is obviously 

essential that the specimens should give reliable and consistent strength re­

sults. In order to achieve this not only must the quality of the concrete be 

closely controlled but also the ill-effects of uneven end surfaces of the speci­

mens must be eliminated.

There are three means of overcoming the problem of a rough end surface of 

the specimen: packing with a bedding material,^grinding, and capping.

The test results from several investigations (49 “ 51 .) indicate that

packing, usually of softboard, cardboard, rubber, lead or polyethylene can 

appreciably reduce the scatter of strength, but at the same time it can also 

lead to an appreciable lowering of the apparent mean strength of the concrete 

compared with capped or even with smooth-trowelled specimens. The reduction 

in strength arises from lateral strains induced in the specimen by Poisson's 

ratio effect in the packing material which is generally higher than that of 

the concrete so that splitting is induced. This effect is usually greater than,
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that of lubricating the ends of the specimen in order to eliminate the restrain- « 

ing influence of the friction between the specimen and the platen on lateral

spread of the concrete, which has been found to reduce the strength of the i
52 \

specimen. ;

The grinding of a plane, square bearing surface is another alternative, 

but is rather expensive. The writer 1 s attempts to eliminate the defects by i

grinding both top and bottom surfaces of the specimens were unsuccessful. The 

resulting scatter of the strength, indicated by the coefficient of variation, j

was 7*5/" (5 batches: 24 prisms). This value is,however,less than the test re­

sults of "as-cast" prisms which had a coefficient of variation of 10?£. The *

average relative strengths of the ground specimens and the "as-cast" specimens ;
f, l

were 70?» and 59?“ of the control cubes respectively. These values are in agree- j
26 !ment with those of Muir.

The use of high alumina cement caps (1.5-5™° thick) in conjunction with j
mild steel loading plates (13-19™° thick), having the same cross-section as ]

26 ' Ithe prisms (76x76mm) was found by Muir to give the least coefficient of vari- i

ation (6?S) to gether with a high relative strength of 77aIn of the cube strength. |

The relative strength in Raju's tests was 79?̂ « It was found by Raju that 

the premature splitting of the ends under high repeated loads observed by Muir 

could be prevented by good compaction of the caps and a slight modification 

of the capping method.

The possibility of using a "brush platen"^'^ which allows the free lateral 

deformation of concrete to develop hence eliminating the friction and providing 

a uniform compressive stress was also considered. However, when compared with 

the advantages of using the well proven capping method of Raju^® and V/haleyf^ 

and the useful comparison with previous results, the delay which would have 

arisen in manufacturing brush platens was concluded to be uneconomical. It 

was therefore decided to(use the capping method which had previously been em­

ployed in this laboratory.
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The previously used capping jigs shown in plate 1 (a), consisted of two 

vertical machined steel plates 76x50x22mm (5x2x7/8 in.) and 102x50x22mm (4x2x 

7/8 in.) bolted together forming a right angled corner and perpendicularly 

bolted to a machined base plate 152x152x1Jmm (6x6xl/2 in.). The capping mat­

erial consisted of high alumina cement with a water cement ratio of 0.27 and 

was allowed to set partially before being spread and uniformly compacted on 

the loading plate to an approximate thickness of 1.5-Jmm. The loading plate 

wa3 then positioned as shown, the prism was held firmly into the right angle, 

lowered gently onto the cement paste, pressed down and clamped in position.

The prism was gently tapped down, the cement paste being squeezed out until 

the layer was equal to or less than 1,5mm, the excess cement paste removed and 

the prism was finally clamped tight. In this way all of the eight prisms from 

a batch could be capped at one time. The operation was repeated on the other 

end of the specimen 24 hours later, during which they were covered with wet 

hessian and polythene sheet to maintain the curing condition. The specimens 

were generally capped when 29-JO day3 old and cured by keeping in the curing 

room further for 2 days before they were transferred to the testing laboratory 

when J2 days old.

Although this method gave accurate alignment of the plates and excellent 

perpendicularity, it had one disadvantage, namely that the need to repeat the 

capping operations lengthened the operation and interfered with the testing 

work. A new design of capping jig, which retained all the good qualities of 

the previous type but enabled the capping to be performed on both ends in one 

day, was later developed and brought into use by the end of series-A of the 

tests.

3.4.1 New Capping Method

The new capping jig was of a similar construction to the original type 

except that the machined plates forming a right angled corner were wider and 

taller. It also had an additional detachable top plate. The details of all
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cor.ponent parts are shown in Fig.3.6. Before capping holt "A" which served 

to ease the removal of the capped prism, was turned hack until the machined 

end was flush with the exposed inside surface of the vertical plate, afterI '
which all the surfaces were thinly coated with mould oil. The same sequence 

of capping operations was then performed as had been done when using the old 

jigs. When the lower end had been capped, another loading plate with a layer 

of cement paste 2mm thick was turned over, placed on the top of the prism and 

carefully tapped until the top of the loading plate was 2 mm below the top of 

the adjacent right angled plates. The top plates was then gently placed in 

position and carefully screwed down by means of 4 bolts "B" thereby squeezing 

out the excess cement paste which was trowelled off. The complete assembly 

of the new jig and the capped specimen is shown in Plate 1(b). By this method, 

all eight of the prisms in one batch could be capped at both ends in one session. 

The specimens were capped when 29 days old, moist cured for another 2 days and 

were transferred for air drying in the testing laboratory when 31 days old.

The average value of the coefficient of variation of the strength at the 

commencement of testing of 24specimens capped by the new method was 3.8/i com­

pared with 4.5$ for the old method. Even though the improvement in the control 

of the scatter of strength was small the practical advantage of the new method 

was obvious. Every capped prisms had the same standard length of 233mm (9g^in.) 

with the loading plates and 207.56 mm (8g^in.) without, which was of a great 

advantage in the study by pulse velocity technique. (Chapter 7)»

3.5 Preparation of specimens for testing

As the average temperature of the testing laboratory was 24°-1°C and the 

relative humidity 50-60ji compared with 18°-1C and 95-100?' relative humidity 

of the curing room, the problem of controlling the uniformity of strength again 

arose since a change of ambient conditions might influence the concrete strength. 

The effect was studied on the strength of the prisms and control cubes of trans­

fer to the laboratory atmosphere from the moist condition of the curing room, 

the results of which are shown in Fig. 3»7» It was found that the strength of'



"both prisms and control cubes increased suddenly when exposed to air drying 

with reference to the typical strength-time curves for moist curing which were 

obtained from specimen tested in a saturated condition. There was, however, 

no significant difference in the above increase of strength whether transfer 

to the laboratory took place after 28,35>or 42 days. However, one consistent 

feature of all the specimens under test was that the strength only increased 

markedly in the first 3 days of air drying, after which the increase in strength 

was relatively small in up to 14 days. It is probable that the sudden increase 

of strength after cessation of moist curing is the result of the immediate loss 

of moisture, since specimens are known to develop a higher strength when tested
55dry than saturated;

Cn the basis of this study, the specimens were kept in the testing labora­

tory for not less than 3-4 days before tests commenced. This practice ensured 

that the scatter of the strength would be a minimum during the period of testing 

which lasted up to 3 weeks in some batches although the normal period was 7-9 
days per batch.

3.5«1 Protection of caps.

The application of silicone grease, immediately after transfer, to act s.3 
a water-retaining membrane around the edges of the caps was found to prevent 

the occurrence of micro cracks due to drying shrinkage, the latter effect could 

sometimes lead to the premature splitting of the cap3 both before and during 

cyclic load tests.

. -  2 6  -
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CHAPTER FOUR

LOADING EQUIPMENT, ■ INSTRUMENTS. AND 

GENERAL SCHH/E OP TESTS

4.1 Testing machines

4.1.1 Losenhausenwerk fatigue testing machine

The Losenhausen Universal Hydraulic System (UHS)-60-type universal fatigue 

testing machine (Plate 2), with a static load capacity of 60 tonnes (588.42 kN) 

and a maximum dynamic load capacity of 40 tonnes (392.28kN) was used through-, 

out the investigation for fatigue and static tests of prismatic specimens.

The frequencies of loading available were, 190,240,500,380,460,580,720,860, cycles 

per minute. The stress-time diagram produced by the machine (Fig. 4.1) was 

nominally a sine wave unless the speed was more than 580 cycles/min. For dy­

namic tests conducted in this investigation a constant spaed of 190 cycles/min 

(3.167 Hz) was used throughout.

The working principle of this machine is shown diagrammatically in Fig. 4.2, 

Two opposed pistons each supplied by separate pumps act on a single cross head, 

the tpp provides tension, the bottom compression. The compression and tension 

are initially balanced to produce the required minimum specimen load. The 

pulsator (300 cm cylinder) is switched on and its amplitude of stroke increased 

gradually. This causes the tension pressure to fluctuate cyclically and hence 

the corresponding specimen load gradually increases until the maximum load is 

reached. The compression pressure remains relatively constant due to a large 

damping reservoir of oil in the circuit. A complete description of the machine
eg

may be found elsewhere, and a schematic layout of the hydraulic circuit is 

shown in Fig. 4.3.

For static tests, the loads were measured by a 12 in. pendulum dynamometer 

(Pe) which could be read to 500 lbf (2.444 N) end was accurate to 1 %, For 

the measurement of the upper (Pu) and lower loads (Po) under cyclic loading, 

two 8in. Bourden gauges which could be read to 200 lbs (0.889 N) were used.
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These measured, through a system of rotary valves, the difference between 

compression and tension pressures when the pulsator was at the top and bottom 

of its stroke. Their accuracy of i Jffo was maintained by applying an appropriate 

correction factor obtained from the manufacturer's calibration chart. However,
i

for the plain concrete specimens used in this study, the correction factor was 

approximately unity.

The machine had built-in automatic load—  maintaining devices which kept 

the load limits constant, automatic safety devices to stop the machine when 

the specimens failed or the load limits were exceeded and a digital counter 

reading to 10 indicated the number of loading cycles.

¿,1.2 Denison compression testing machine

A 300 ton (2942.1 kN) Denison compression testing machine Avery- Denison 

Testing Machines Ltd., TJ.K., was used for all control tests on cubes throughout 

the investigation. The machine platens consisted of a ball seating for the 

top platen with a rigid bearing block for the bottom platen. A constant load- 

ing of 15 N/mm /min (2,200 lbf/in /min) conforming to B.S. 1881:1970, was used 

for all the static control tests. The accuracy of the machine was within Grade 

B classification of B.S. 1610:1964.

4.1.3 Calibration

Prior to testing, the machines were calibrated by means of 25 and 50 T. 

Johanson dynamometers and the results were in good agreement with those of the 

manufacturer. Subsequently, the machines were calibrated at regular intervals 

so that any deviation that might occur due to a change in the oil viscosity 

resulting from the prolonged running of the UHS machine, could be rectified be­

forehand.

4.2 Selection of strain measuring devices 

The choice of gauges available were. 1 P '! 1 1
’ 1. Mechanical
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2. Electrical Resistance

Preliminary tests were made using demountable mechanical gauges (Demec) deve-
57loped by Morice and Base, detachable Lamb's 4 in. mirror roller extensometers 

(A. Macklow-Smith Ltd., London) and electrical resistance strain gauges (e.r.s.) 

both in static and dynamic tests to study the relative merits of the strain 

measuring devices.

4.2.1 Method of fixing gauges.

For Demec gauges, stainless steel seating discs were fixed on the specimen 

at the desired gauge lengths by means of Amco F 88 dental cement using the supp­

lied standard gauge bar. Due to the quick setting action resulting from the 

evaporation of the solution, the discs were ready for use within 10-15 minutes.

When using Lamb's 4 in. mirror roller extensometer, two gauges were clamped 

on opposite sides of the specimen, the rollers and the angles of the mirrors 

were carefully positioned until the reflected images of an illuminated cross 

from a slide projector were shown on a millimetre scale at a distance of 1-85 

m • from the prism. The schematic arrangement is shown in Fig. 4.4.

Before fixing the e.r.s. gauges, a selected surface area of the specimen 

was smoothed by fine emery paper and wiped clean to provide a plain surface 

which was then coated with a thin layer of the special adhesive supplied by 

the manufacturers. A second layer of the adhesive was placed on the dried 

primer layer and the gauge with the leads connected was placed in position anl 

pressed down smoothly under the protective plastic sheet to expel the trapped 

air bubbles and the surplus aclhesive. A minimum of 24 hours was allowed for 

the adhesive to harden before testing commenced.

4.2.2 Static tests.

It was hot possible to measure both longitudinal and lateral strain on the 

same specimen with the Lamb's extensometers on account of the size of

the instrument! When employed for longitudinal measurement, they could give



an accuracy determined by the accuracy of machining of the roller. The mean 

diameter of the roller was quoted by the manufacturers of the instrument as 

0.149755 in., assuming that this is correct to - 0.00001 in. This would re­

present an accuracy of - 0.001$ although it is doubtful whether such a high 

standard would be achieved on account of error introduced at the knife-edge 

and contact surfaces. The resolution was 2.5x10”** strain for a scale distance

of 185 cm. In a static test to destruction, it was necessary to remove the
!

instrument in order to avoid costly damage prior to failure. This and the 

fact that they had to re-mounted on each specimen intum made them unsuitable 

for the tests. However, they mi#it have been useful in a test where long-term
t

strain under a non-destructive static load was required i.e. a creep test.

Exploratory tests were conducted on the prismatic specimens by using PL 

30 (30 mm) e.r.s. gauges with a resolution of 5x10*”̂  for longitudinal and lat­

eral strains. For comparison 4 in. and 2 in. Demec gauges were also used for 

strain measurements the former for longitudinal and the latter for lateral 

strains, these had resolutions of 20 and 25x10”^ strain respectively.

For longitudinal compressive strain, the difference between the e.r.s. and 

Demec gauge reading was about 5$» "the difference was probably due to the diff­

erence in the gauge lengths employed. A small error of 1-2 divisions in read­

ing the Demec gauges was considered to be insignificant in view of the fact 

that the longitudinal strain at failure was about 2000 micro- strain.

For lateral tensile strain, the 2 in. Demec gauges were found to be insën- 

itive to small changes in lateral strain which were about one-tenth to one- 

fifth of that in compression and the error of 1-2 divisions in reading was 

considerable. In contrast, the e.r.s gauges were more sensitive and gave more 

consistent results. Hence it was decided to adopt the PL30 e.r.s gauges for 

static tensile strain measurements.

For longitudinal strain measurements, it was decided to use the 4 in. Demec 

gauges on the grounds that the e.r.s. gauge length of 30mm is not sufficient
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to give accurate, consistent strains when compared with the longer measuring 

length of 4 in. of the former.

4«2.3 Dynamic tests

Due to the obvious disadvantage of the Lamb's mirror roller Extensometers 

in the destructive testing, the choice of the gauges was reduced to two. Pre­

liminary tests using e.r.s. and Demec gauges resulted in agreement of the strain 

values in compression during the early stages of the test; i.e. in the first 

1-2 days. However, as the test progressed the readings from the e.r.s. gauges 

began to drift appreciably from those of the Demec gauges. This could have 

been due to the effect of an increase in specimen temperature under dynamic 

loading. Some gauges were even rendered inactive by local cracking across the 

length of the gauges long before the specimen failed. On the contrary, Demeci
gauges gave consistent strain readings up to failure so that it was decided, 

to adopt the 4 in. Demec gauges for longitudinal strain measurements in dy­

namic test, and the PL 30 (30 mm) Japanese e.r.s. gauges for lateral tensile 

strain measurements in short term dynamic tests (chapter 6).

4.3« Ultrasonic non-destructive testing Equipments

4,3.1 Cawkell Ultrasonic Materials Tester

The ultrasonic non-destructive tester, commercially known as "Materials 

Tester-Type Ultrasonic Crystal Transducer (UCT)-2", manufactured by A.E. 

Cawkell Research and Electronics Ltd., U.K. was of an early design developed 

by Jones and Gatfield^’”̂  at the Road Research Laboratory between 1945 and 

1949 and also independently in Canada by Leslie and Cheesman^0 at about the 

same time. The equipment generated a series of pulses of a damped vibration 

of frequency about 150 kHz at a rate of 50 pulses per second which were trans­

mitted to a specimen by means of a barium titanate transducer 30 mm in dia­

meter. The pulse was received by a receiver-transducer at the other end andi )
amplified to give a visual image trace on a Cathode ray oscilloscope. A built-, . . . , ¡. : i .
-in electronic time marker system was used to display the time interval for the
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ij!

measurement of the time in microseconds for the wave to transverse the specimen.i : .... i ■
Depending on the experience of the operator, it was possible to read the equip-j . . ‘
ment to an accuracy of i 0.1 microseconds.

For an efficient transmission of the pulse from the transducer to the speci­

men, it is essential to provide a proper contact between the transducer faces 

and the surfaces of the specimen. To achieve this, a small holding frame was 

developed using two 40x150x12 mm aluminium plates and two 6 mm mild steel bars 

300 mm long threaded at the ends. The transducers were held against the opposite 

faces of the specimen by thumbscrews and washers, and isolated from the frame 

by 2 rubber washers. An application of thin layers of silicone grease between 

the transducer faces and the surfaces of the specimen ensured a sharp and steady 

pulse signal during the tests with minimum loss of energy at the interfaces.

A typical arrangement of the Cawkell ultrasonic tester with transducers, hold­

ing frame and the specimen is shown in plate 3«

4.3.2 Portable Ultrasonic Non-Destructive Digital Indicating

Tester. (PUNDIT)

The PUNDIT non-destructive tester, manufactured by C.N.S. Instruments Ltd., 

London,U.K. was of a new design employing up-to-date integrated circuits and 

silicon semiconductors throughout. The equipment consisted of a pulse recur- ' 

rence generator, set reference delay, receiver amplifier, timing pulse oscillator, 

gateAdecade units, and two piezoelectric crystals. A simplified system dia-
' i ■ .

gram is shown in Fig. 4.4 and a typical testing arrangement of the equipment 

with the transducers is also shown in Plate 2. . j

Both transducers consisted of lead zirconate titanate (PZT4) ceramic piezo- :j

electric elements mounted in stainless steel case 50 mm in diameter and 42 mm ||

in depth. The pulse generator generated a peak voltage of 800 Volts operating 

for 2 microsecs to the transmitting transducer which by virtue of its piezo- 

jelectric property vibrated mechanically at its resonant frequency equal to 50 j

KHz with a pulse repetition frequency of 10 pulses per seconds. After trans- [.
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mission through the specimen under test the ultrasonic pulse was converted 

to an electrical signal in the receiving transducer, amplified and processed 

through the gate control unit and the transmission time taken by the pulse
• i.

to pass through the specimen was displayed in the form of 3 digits on three 

'in - line' numerical indicator tubes. Two ranges of time measurement were 

available on the instrument, namely -

a) 0.5 to 499*5 microsecs in units of 6.5 microseconds.

b) 1 to 999 microsecs in units of 1 microsecond.

The accuracy of transit time measurement was generally not less than the 

direct reading values indicated on the display. When a good transducer coupling 

was made by means of silicone grease with the surface of the material tested 

and the pulses were not unduly attenuated, the last digit would either remain 

at a steady value or would oscillate between two adjacent values. In the latter 

case, the mean reading was used enabling transmission times to be read to the 

nearest 0.25 microsecs for the 0.5 microsec range. The manufacturers claimed 

an accuracy of not less than t 1 °/o for very good surface coupling conditions 

and a minimum path length of 3 in. in testing medium to high strength concrete.

4.3*3 Experimental techniques

With the Cawkell ultrasonic material tester, the recommended method of

setting the start of the return pulse to the left hand edge of the appropriate 
59 ' ’time marker ' was used to obtain the correct alignment. Much care was needed, 

however, to read the onset of the return pulse on the cathode ray oscilloscope, 

as it very much depended on personal judgement.

The Pundit ultrasonic tester was far easier to operate. A one to four 

microsecond variable delay control was incorporated to set the zero of the in­

strument each time it was used. The zero was likely to change particularly 

when different types of transducers were used and the delay control would enable 

the instrument to be adjusted to read correctly (the design of the receiving



- 3 4 -

amplifier unit of the Pundit allowed it to be used with transducers over a fre­

quency range from 20.kHz to 250kHz; normally a frequency of 50 kHz was used). The 

variable delay was used in conjunction with a standard reference bar supplied 

with the instrument and had an accurately known transmission time of about 50 

microseconds. This time was affected by the ambient temperature and the correct 

time was given against a built-in thermometer on the reference bar. Due to the 

easier reading, the holding frame was discarded and the transducers were held 

firmly against the opposite faces of the specimen by hands.

Pilot tests were conducted to assess the relative merits of the two testers 

in measuring the transmission time of a pulse through control cubes and prisms 

under both static and dynamic loadings. In General, the readings of the trans­

mission time were in agreement, the difference being only 0.5-1?». However, 

with the Cawkell tester, the initial no-load pulse velocity measurements were 

generally slightly higher than those indicated by the Pundit. This was probably 

due to the differing sizes of the transducer crystals, differences in the spread 

of the pulses, the differences in accuracy, and the higher frequency of the 

Cawkell crystals. It had,been observed by Shah and Chandra that the initial 

no-load velocity of the ultrasonic pulse increases with an increasing frequency 

of the crystal. It should be mentioned that Leslie and Chessman^ concluded 

that the pulse velocity was independent of the frequency. However, their range 

of frequencies (10 to 50 kHz) was much smaller than that used by Shah and Chandra 

(25 to 2250 kHz).

It was not possible to measure the transmission time during the dynamic tests 

by the Cawkell instrument because it was impossible to read the onset of the 

return pulse due to its fluctuating patterns. In contrast, the Pundit instrum­

ent gave a reliable, accurate, consistent reading during the dynamic tests from 

the no-load measurement to shortly before failure. It was, therefore, decided 

to adopt the Pundit tester for the measurements of ultrasonic pulse velocity 

in static and dynamic tests on the ground that it gave accurate, consistent 

and most important, reproducable readings. It was easier to operate, independ­
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ent of personal judgement, portable, and could be used in continuous monitoring f
: I

of pulse velocity without interfering with the tests. !

4.4 Planning of test programmes

At present, there are no special standards laid down for the fatigue test­

ing of concrete, but it would.appear reasonable to adopt the available standards 

for the fatigue testing ofmetafl’̂  as a general guild in planning.

As described in Section 1.6 (p.5 ) a number of variables which were known I;

to affect the fatigue properties of concrete were maintained constant through- |j
. ! i ■ ■ - i  . r

out the tests. Even when these conditions are fulfilled, there remain a number 

of unknown and uncontrollable factors which produce a large scatter in the jj

fatigue life, even of seemingly identical specimens. In the past, this scatter j
j

in fatigue life was not regarded as a problem and only a few specimens were j

used to determine the fatigue life, or the relation between load (stress level) 

and life, as a result of which the validity of the conclusions was disputable.

It is now generally accepted that scatter is an inherent feature of the fatiguet
characteristics of concrete, so that a large number of specimens is required 

to obtain correct information on the fatigue life. Tests must, therefore, be 

planned so that the errors arising from the uncontrollable factors are as small 

as possible and the data must be statistically interpreted in order to draw 

correct conclusions.

Findley^'** section 5) 8Uggested that at least ten specimens be tested for 

an S-N diagram, but that a larger number of speciems (20 to 50) would be desir­

able to establish the S-N diagram accurately and to indicate the variability j.

of the material. Weibull 31 experimentally verified that, even if the num- j

bei of specimens tested had a self-evident iJifluence on the accuracy of the |

parameters computed from the observations, other factors might be of equal J

importance. He proposed that at least six specimens should be tested at any i:

stress level or 20-30 specimens altogether in order to establish an acceptable 

S-N diagram. The efficiency of a test series in this respect depends upon the !, 

choice of the stress levels, on the testing machine and possibly on other 1
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factors. Accordingly, in this study, specimens were assigned from each batch

at random for control static tests and fatigue test groups, the number depend-
1 -

ing upon the objective of the test.
. !

4.5 Fatigue testing methods.

The simplest form of fatigue loading is obtained by applying a fluctuating 

stress of a constant amplitude to the specimen until total failure occurs. 

Different specimens of the test series may be subjected to different stress 

amplitudes, but for each individual specimen the amplitude will never be varied.

This type of fatigue testing is called a constant-amplitude test.
4.5*1 Constant-amplitude tests

Depending upon the choice of stress levels, constant-amplitude tests may 

be classified into three categories^ providing that the rate of loading is not 

more than 70 N/mm/s which is the case of impact loading.! ; i .■ . : ■ t ;
(1) The routine or normal fatigue test, where applied stresses are

chosen in such a way that all specimens are expected to fail after a moderate
t 7number of cycles, say 10 to 10; A few run-outs, although not intended, may 

occur.

(2) The short-life or low cycling fatigue test, where the maximum

stress levels are usually between 85-95$ of the static ultimate strength. All

specimens are expected to fail at less than 1000 cycles and some may even fail

statically on the first application of the load.

(3) The long-life test where stress cycles are near the anticipated
6 Tfatigue strength for a given number of cycles, usually between 10 and 10' and 

a number of the specimens (run-outs) do not fail.

The short-life test and the long-life test were usually performed to supple­

ment the information obtained from the normal fatigue test. For obvious reasons, 

constant-amplitude, normal fatigue test to failure were used in the second part 

of this investigation.
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4.5*2 Variable-amplitude tests

Complicated forms of loading would be required in order to simulate the 

stresses to which concrete is subjected in actual service and in order to in­

vestigate the laws relating to the accumulation of fatigue damage in a specimen 

subject to fluctuating stresses of different amplitudes, the programmes of load­

ing must be simplified. These tests termed variable-amplitude tests comprise 

the third part of the investigation. In these tests only two stress levels 

were used but with systematically varying sequences of loading. The cumulative 

damage tests will be dealt with in detail in chapter 8-10.

4.6.General Scheme of tests

It was necessary to set out a general scheme for the investigation, compris­

ing the different series of tests to achieve the different objectives detailed 

in section 1.5 (p.3 )• Table 4.1 presents a summary of each series showing 

the number of specimens used for control and fatigue tests under both constant 

and varying amplitude loading together with a short description of the objective 

of the investigation.



CHAPTER 5

ANALYSIS OF RESULTS: FATIGUE STRENGTH

5#1 General

The experimental programme for the phenomenological studies, consisted of 

static control tests and normal fatigue tests as defined in Section 4.5*1-(l)» 

p.56 . The former were necessary so that an estimate of the ultimate static 

compressive strength of the concrete in each hatch could he obtained on which 

basis the specimens were assigned to different- stress levels expressed on per­

centage of the static strength,

5.2 Testing procedures

5*2.1 Static tests.

For each hatch, 3 sets of 4 control cubes selected at random were tested 

respectively at 28 days, at the commencement and at the completion of the test 

at the standard rate of loading specified in BS 1881:1970 (0.25 N/mm /sec) in 

the 300 Tonne Denison compression testing machine. The results of the static 

tests made on 102mm cubes are shown in Table 5*1«

For an estimate of the compressive strength of concrete used in each batch 

3 prisms were selected at random and loaded to failure at a uniform rate in 

the Losenhausenwerk universal testing machine which was also used for the 

fatigue tests and the mean value of their results was taken as the basis for 

fixing the stress levels for the specimens to be tested in fatigue. One prism 

was tested statically at the completion of the fatigue tests as a check on 

the strength gain during the tests. The results of the static tests on 76x76x 

203mm prisms are shown in Table 5*2

The summary of the average of the ultimate static strength at different 

ages of the control cubes and the prisms, average of with-in batch standard 

deviation and coefficient of variation are shown in Table 5«3



The mean ratio of prism to cube strength at the time of the commencement 

of the tests was 0.72 which was not in agreement with the higher values of 

0.77 of Muir ' and 0.79 of Raju. This was probably due to their method of 

not breaking the bond between the mild steel loading plates and the high alumina 

cement caps, whereas in the present tests, the loading plates were detached 

prior to testing, and placed in position when setting up for the tests.

5*2.2 Fatigue tests

Four prisms from each batch were tested in fatigue at different stress levels.

The choice of stress levels depended upon the purpose for which the data were

required. In the normal fatigue tests in which concrete specimens were expected 
x 7to fail at 10 to 10 cycles, the maximum stress levels employed in the investi­

gation varied from 60-85 percent with an increment of 5 percent. A nominal 

stress of 1.8 to 2.0 N/mm corresponding to a minimum stress level of 5 to 6 

percent was used in the fatigue tests throughout, in order to avoid impact load­

ing on the specimen during cyclic loadings. A typical arrangement for both 

static and fatigue tests is shown in plate 2.

One preliminary static load cycle was performed on the specimen with the 

maximum load corresponding to the maximum stress level in the fatigue tests to 

determine the modulus and area of the hysteresis loop. Thereafter strain measure­

ments were made at specified intervals during thefatigue test until the end of 

the test or shortly prior to failure of the specimen. The lower load was then 

applied and the pulsator was set to the constant frequency of 190 cycles per 

minute (3.167Hz). Because of the nature of the machine the amplitude of the 

load cycle could only be gradually increased to the maximum load value, the 

process taking about 3-400 cycles, the number of cycles was counted from the 

point at which the maximum load value was reached.

The specimens which did not fail in fatigue after 3 x 10^ cycles were con­

sidered as ’run-out’ and were not included in the analysis. These were subse­

quently loaded statically to failure, A total of 44 prisms comprising series
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A were tested in the first phase of the investigation and the summary of the 

results of the fatigue tests is shown in Table 5*4.

5.3. Necessity for statistical analysis of fatigue test data

An examination of the results of fatigue tests presented in Table 5*4 clearly
28indicates the nonreproducable aspects of fatigue. Raju observed that with 

led
carefully controlAconditions in fatigue testing of plain concrete in compress­

ion, a range of between 3 to 1 and 38 to 1 in the number of cycles to failure 

at the same stress-level was not unusual. The summary of the range in the
v

number of cycles to failure at each stress level in the work is shown in Table

5.5 below;

TABLE 5.5 SUMMARY OP RANGE OP NO. OP CYCLES TO FAILURE

Range of nò of cycles 
to failure

Stress levelB in percent
85 80 75 70 65

Minimum 3*1. 4.6:1 3.6:1 1.06:1 2.63:1

Maximum 13*1 87:1 31:1 6.14:1 5.37*1

With the exception of a maximum of 87:1 at 80$ stress level, the variation 

was within 30:1 in other stress levels. It was, therefore, obvious that the 

approach to the scatter of test results was bound to affect seriously the 

validity of conclusions drawn from the normal fatigue tests.

In view of the widely varying fatigue characterisics observed in the tests, 

the present fatigue data have been analysed on a statistical basis as recomm­

ended by B.S. 3518} Part 5*1986, to improve the validity of the conclusions 

drawn from them.

5.4 Analysis of test results.

The fatigue strength characteristic of plain concrete subjected to repeated 

compressive stress of constant amplitude is normally represented by the S-N 

diagram, in which N the number of cycles to failure is plotted, usually on 

a logarithmic scale, against S the stress level, and since the relationship
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of S to log N is sensibly linear up to at least 10 million cycles, a linear 

regression analysis may be employed.

One of the fundamental assumptions of linear regression analysis is that

the dependent variable,{-in this case the fatigue life) has approximately the

same (normal) distribution for every value of the independent variable, (the

stress level). The shape of the frequency distribution of fatigue life at any

stress level cannot be accurately determined from a small number of tests but

can only be estimated'from*the results of previous investigations. No exact

data is available for the character of this distribution of concrete mainly
65due to the great number of specimens required.for tests. Weibull ■ argued 

that even the testing of 100 specimens at each stress level could not yield 

sufficient information for the distribution to be accurately determined, for i 

which several thousand specimens might be needed.

The cummulative frequency distribution for any particular investigation
28will approximately reveal, the shape of the distribution diagram. Raju 

found that the distribution of fatigue life of plain concrete specimens at 

a given stress level was skewed suggesting the log normal relationship. 

Consequently, in the analysis of the fatigue data in this study, the fit of 

a log normal distribution for fatigue life was investigated.

The fatigue life of the specimens tested at a give stress level was analysed 

by ranking the specimens in the order of N and the probability of failure *p» 

at a smaller number of cycles than each value of "N, was calculated by dividing 

the rank of each specimen 'to' by (n+1), where ' n’ was the total number of 

specimens tested at a given value of S. The calculated value of *P* with the 

ranking of the specimens are shown in Table 5*6 , In calculating 'P' the reason 

for dividing by (n+1), rather than by 'n' is to avoid obtaining a probability 

of failure of 1.0 for the specimen having the greatest fatigue life in the 

group. The probability,that all future specimens will fail at this same number 

of cycles is not 1.0 however closely it may approach the limit. The ratio of
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m/(n+l) appears to give the best estimate of 'P* as proposed by Weibull^ and
67 28 50 65 68Gumbel , and had been used by several other investigators,; ¡ i . , . ;  i

For each stress level the logarithm of the test value of fatigue life was 

plotted against the cumulative frequency of the probability of failure. Fig,

5.1 shows the fitted straight lines for different stress levels. From the 

statistics in Table it is evident that the test values of fatigue life at 

lower stress levels fit the log normal distribution better than those at higher
r , (

stress levels, and with less scatter.

This analysis clearly shows that the distribution of fatigue life of con­

crete specimens tested at stress levels from 65 to 85 percent can be reasonably 

approximated to log normal,

5.4.1 S-N Diagram

The plot of the fatigue life test data suggested a straight line relation­

ship between the two variables which had to be established by a linear regression Ï 

analysis. In this analysis the stress level S was taken as the independent 

variable and the logarithm of the fatigue life log N as the dependent variable.

The latter may be assumed to be normally distributed as has been discussed in 

Section 5»3«

The line of regression of the stress level S upon Log N is shown in Fig 5»2. 

This line had a correlation coefficient of 0.940788 which was significant at 
a level of 0.1 percent. The statistics of the results of the regression analy­

sis are presented in Table 5*8. Run-out specimens were excluded from these com- j

putations.

5.4.1*1 Discussion of results.

The S-N diagram which is statistically reliable only between the stress

levels of 65 and 85 percent, indicates a fatigue strength of 62.6 percent for ¡I
6 7 . j2 x10 cycles and, when extrapolated, 58.6 percent for 10' cycles. These

'27 29 Î!values are comparable to those of earlier investigations by Muir and Raju ' jy
 ̂ : ' ' fi

È
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which are summarized in table 5*9*

TABLE 3.9 FATIGUE OF HIGH-STRENGTH CONCRETE IN COMPRESSION

Static Fatigue strength ratio or stress level
SOURCE Strength 

( N/mm ]
(S) in percent 62 x 10̂  cycles 10 x 10“ cycles

muir 39-63 66 63
" (Corrected by Good­
man diagram) 39-63 61 57

RAJU 40 62 58
JINAWATH 36 63 59

From Table 5*9» it appears that the fatigue strength ratio slightly- 

decreased as the static strength increased. However, the decrease of the 

fatigue strength ratio with the increase in static strength appeared to be 

too small to be of practical importance.

The S-N diagram also indicated the high sensitivity of fatigue life to 

small changes in the maximum stress levels. A decrease in stress level of 

only 6 percent resulted in an increase in the fatigue life, from about 95»000 

cycles to 1.1 x 10^cycles.

5.4*2 S-N-P diagrams

The S-N diagrams discussed in Section 5.4.1 provide at best an approxi­

mate indication of the trend of the relationship between the variables, 

stress level and fatigue life within an undefined broad range of probability 

values. This conventional representation of fatigue tests neglected an im­

portant characteristic aspect of all fatigue data, namely their scatter.
28 65In view of this feature, it is now accepted by investigators *' * 3 that 

the S-N diagram should be extended to include the probability of failure P 

as a third variable, enabling the number of cycles at a given stress level 

to be determined for a chosen probability of failure.

5.4.2.1 S-N-P diagram from McCall’s Model

McCall^0 in 1958 published the first report in which the dimension of
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eprobability was added to the fatigue studies of concrete. The mathematical 

model proposed to establish a relationship between the Stress level S, the 

fatigue life N and the probability of failure P can be represented as:

I . 10- a s W N ) °  .........(1)

■Where L - Probability of a specimen surviving 'N' repetitions of load. 

“ (1-P)* where p - Probability of failure ■ m/(n+l)

S» Ratio of the maximum repeated stress to static strength.

a,b,and c are experimental constants

Hence, log (-log L) » log a + b log S + c log log N ........ (2)

For ease in computation, this was used in the linear form,

Z - A + BX + CY ........ (3)

Where Z - log (log N){ X - log S; Y - log (-log L){

A »-log a ; B ■-b and C -
c c c

The fit of the present test data to the model was investigated by con­

ducting a multiple regression analysis with 'X' and 'Y' as independent 

variables and 'Z' as a dependent variable. The constants determined by the 

regression analysis were,

z  -  6.933756 -  3.350850X + 0»119501Y (4)

and 10-9.49 * 10“59S28,04(log N)8,568 (5)

These two equations correspond to Eq(3) and (1) respectively. A 

measure of the degree of correlation of the variables S, N, and L was obtain 

ed by calculating the multiple correlation coefficient which had a value of 

0.981468 while the standard error of estimate was 0.0293957« The statistics 

of the results of the regression analysis are presented in Table 5*10«

3.4.2.2 Discussion
. ' 1 ' • . i ! '

The test results are compared with those predicted by the model in Fig.
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5.3« While the test results compare favourably with the model prediction 

for a stress level of 75 percent, there are large deviations for the in­

creasing and decreasing stress levels. In McCalls model dY/dZ is constant 

so that the graphical representation of Y against Z for discrete values of 

S results in a series of parallel straight lines representing the various 

stress levels. The fatigue test data indicate that the range of scatter of 

log N at higher stress levels is greater than that at the lower stress levels 

(Table 5*5* p.40 ). A close examination of the test data plotted in Fig. 5*3 

suggests that the slope dY/dZ of the lines representing the various stress 

levels should decrease with the increase in stress level and vise versa.

5.4.5-S-N-P diagram from Modified McCall's Model*^

In order to accommodate the phenomenon of scatter associated with any

stress level as indicated by the fatigue test data, it was necessary to modify
28the logarithmic form of the model suggested by McCall. Raju proposed a form 

as follows:

Z - A + BX + CY + DXY ........ (6)

where the symbols had the same meaning as in the previous section with 1D' 

as an additional constant. The last factor ' DXY' represented the variation 

in the scatter. The fit of this equation to the present fatigue data was 

investigated and the constants evaluated by a multiple regression analysis 

of the fatigue data were found to be :

A * 5.637252, B - -2.659922, C - -2.151478 and D - 1.210185

The modified form is compared with the test data in Fig 5.4» and is found 

to give a somewhat better fit to the experimental results as indicated by the 

multiple correlation coefficient which improved from 0.981468 to 0.989958, 

while the standard error of estimate decreased from 0.0294 to 0,0220. • The
% • . X .

statistics of the multiple regression analysis are shown in Table 5.M .



5.4.4. S-N-P diagram from the cumulative normal distribution function

An alternative approach was made to derive the S-N-P diagrams by using 

the’conventional S-N relation discussed in Section 5*4.1 and the cumulative 

normal distribution function^ The regression equation, 

log N - 17.422118-0.177616S

can be used to predict the fatigue life ' N’ for any given stress level * S* 

with a 50 percent probability as it is derived from a least square analysis. 

The relationship of S,N and P is given by the cumulative normal distribution 

function as :
x

P - 1 . { expf-Cx^^AS^tiX ........ (7)
s J W T "  )» - oc

Where: P - Probability that failure will occur at a number of cycles equal 

to or less than N.

X - log N

yU *» ( 1 7 .422118-0.177616s) S ■« Maximum stress level ;
A
S ■ Estimate of the standard deviation of the population found to be 

0.461153 (Table 5.8)

Eq (7) can be used in the simplified form for computation as follows:

lo g  N ■ Ks . . . . . . . . . . . . . . . . ( 8 .)
The estimate of fatigue life at a given stress level for the required

probability of failure can be made by using suitable values of 'K' from a
70standard statistical table. The S-N-P diagrams shown in Fig 5.5 were 

derived in this manner for probabilities ranging from 0.01 to 0.99 and stress 

levels from 65 to 85 percent using the following values of K:-

K

-2.526 

-1,645 

-1.282 
-0.524

28

P

0.01
0.05

0.10

0.30

0.50 0.0
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0.70 +0.524

0.90 +1.282

0.95 +1.645

0.99 +2.J26

5.5 Comparison of S-N-P diagrams and recommendations

The comparisons of the three sets of S-N-P diagrams derived from McCall's 

model, the modified McCalls's model and from the cumulative normal distribution 

function representing probabilities of failure range from 0.05 to 0.95 and 

0.01 and 0.99 are shown in Pig 5.6 and 5*7 respectively. The selection of 

any set of diagrams for estimation of fatigue life depends mainly on the exact 

nature of the variation of scatter associated with the stress level; this can­

not be accurately done on the information gained from a small number of tests.

Diverse trends had been observed by different investigators but, again, all
71involved limited number of tests. Venuti in an investigation of fatigue strength 

of prestressed concrete beams observed that the variability of logarithmic
29fatigue life increased with the increase of stress level. The results of Raju, 

Antrim and Mclaughlin?  ̂showed similar trends in the tests of high strength con­

crete, ordinary and air-entrained concrete in compression, while the fatigue 

tests of Ople and Hulsbos^ indicated the reverse trend of decreasing variability 

in the fatigue life with the increase in stress level. Little evidence is avail­

able from other sources to explain this anomaly; therefore, it is important that 

the comparison of the results of previous tests carried out under widely diff- 

erent conditions be made with caution. Raju' ' suggested that the S-N-P diagrams 

derived from the cumulative normal distribution function appeared to be generally 

valid on the ground that they covered the scatter of test results reasonably 

well at stress levels between 65 and. 85 percent. However, his conclusion came 

from a graph in which several'groups of previous test results were plotted against 

the probability limits obtained from the analysis of his own test data. Act­

ually every group of test results will have different probability limits, and
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should he analysed individually, which is beyond the scope of this investi­

gation. Nevertheless, this work provided a good comparison with the other 

available evidence and showed clearly the difficult task involved.

As discussed in Section 5.4.P-42, the results of the present investigation 
showed the trend to wider scatter at higher stress levels. In fig. 5.6 and 

particularly fig. 5.7» this was in agreement with the diagrams derived from 

the modified McCall's model in which the scatter band at any stress level 

representing the range of variability of fatigue life increased with an in­

crease in stress level, whereas in McCall's model the scatter band increased 

with a decrease in stress level. The diagrams derived from the cumulative 

normal distribution function show a uniform scatter at all stress levels and 

alone of the three diagrams covered all the test resultsin the present study.

In view of the high variability of fatigue life and in the absence of 

any reliable data regarding the scatter, it is recommended that prediction of 

fatigue life should be made by the S-N-P diagrams derived from the cumulative 

normal distribution function based on constant scatter at all stress level.

5.6 Conclusions

1) The fatigue life distribution of plain concrete specimens at a given 

stress level is approximately log normal.

2) A satisfactory relationship between the two variables, predicted; i .
fatigue life and maximum stress level can be achieved by a linear regression 

analysis.

3) In an estimation of the fatigue life, the probability of failure 

should be included as an additional variable in the light of the high variabil-• 4 • * -
ity inherant in the fatigue test data.

4) Pending the availability of more extensive test results regarding the■ - l . ' i » ' .
scatter, the S-N-P diagrams derived from the cumulative normal distribution

■< t
function using the conventional S-N diagram, may be accepted for stress levels 

between 65 and 85 percent.
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CHAPTER SIX

ANALYSIS OP RESULTS: OTHER EFFECTS

6.1 General

As has been described earlier in Chapter 2, the fatigue behaviour 

of concrete is related to some of its other characteristics which undergo 

changes when a stress is applied. The progressive changes of these 

characteristics with time, under the effect of a repeated cyclic stress, 

may give some further indication of the degree of accumulation of fatigue 

damage.

6.2 Test procedure

For a detailed examination of the relationship between these changes 

and the fatigue life, the first three of the four prisms comprising the 

series B, were tested at maximum stress levels, of 80, 75 and 70 percent of 

ultimate static strength with a lower stress of 5 per cent. The last prism 

in the series was used as a pilot specimen, tested Under variable amplitude 

cyclic loading, (the results of which will be discussed in detail in Chapters 

9 - 10). These tests in series B were conducted in addition to the tests 

in series A with the purpose of gathering more information especially in 

regard to lateral strains. The average static strength of the batch of 

concrete is shown in Table 6.1. A static loading cycle was conducted 

before the start of the fatigue test with strain measurements on all four 

sides of the specimens for regular increments of load, up to a maximum 

corresponding to the maximum stress level assigned to the specimens. 

Thereafter a static load cycle was applied at suitable intervals by 

interrupting the fatigue test, and the stress-strain curves shown in Figures

6.1 - 6.5 were obtained.

6.3 Shanes of stress-strain curves

The first stress-strain branch on loading in compression is convex



towards the stress axis. This is due to the development of bond cracks
at

between matrix and aggregate oriented parallel to the direction of
73application of load and is absent in neat cement paste. The effect is

confirmed by the decrease in pulse velocity in the lateral direction ■

perpendicular to the loading axis (Fig. 6.1) to which no corresponding
62decrease has been observed in neat cement specimens. After a few cycles

of loading the loading branch becomes straight and gradually reverses its
dScurvature (i.e. concave towards the stress axis), the slope (— ) becoming 

steeper in the upper ranges of stress. (Figs, 6.2 - 6.4). This has been 

similarly reported by several investigators * 7 and indeed these changes

were observed in the earliest fatigue studies.^4>15 The reversal of 

curvature is attributed by Mehmel^ (confirmed by Bennett and Raju)2'* to 

the existence and development of bond cracks perpendicular to the direction 

of loading} their closing leads to a progressive increase in stiffness 

(termed low-strain stiffness) as the load is increased. At the same time 

the pulse velocity measurement in the lateral direction which will be 

discussed in Chapter 7» indicated that during this closing stage of 

horizontally oriented cracks, the existing vertically oriented cracks were 

also widening under the influence of the load (Fig, 6.1). When the 

horizontal cracks were closed this tended to arrest the widening of the 

vertical cracks hence d S/d£ became steeper as the load increased.

Provided that the stress level was less than about 85$ there was no further 

cracking in the direction parallel to the load at least not during the statio 

loading. Mehmel also found that there was no low-strain stiffness effect 

in neat cement. The second reversal of the stress-strain loading branch 

to become S-shaped when approaching failure, which was first reported by
II 1C

Van Ornum 7 was also observed to occur in the present work for the
, 1

highly-stressed specimens (Figs. 6.1, 6.2). From Fig. 6.1, it can be 

observed that this is due to the development of more vertically oriented
< • : ' t
cracks as indirectly indicated by further decrease in pulse velocity in the
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lateral direction after the existing vertically oriented cracks have been 

arrested. 1

6.4 Hysteresis

The interest in the area enclosed by the loading and unloading

branches of the stress-strain curve for a material (hysteresis loop) arises

from the fact that it represents the energy absorbed within the material

per cycle of load and is manifested by a rise in temperature of the specimen

due to the internal friction.4 Since an application of cyclic stress

always leads to some inelastic deformation resulting from the internal

structural modification, the change in the area of the subsequent hysteresis

loops as compared with the first loop will represent the reduction in the rate

of absorption of energy. The irreversible deformation involved may be

either in the form of crack initiation or irreversible deformation without
52a loss of continuity, such as a viscous flow.

Concrete exhibits a large hysteresis area on the first loading cycle 

due to the high degree of bond microcracking occurring in this cycle .(Figs.

6.2 - 6.5). Subsequent cyclic loading results in a reduction in area of 

the hysteresis loop. The typical changes in the area with cycles of repeated 

load, expressed as a percentage of the area of the first loop, are shown 

in Fig. 6.6. The variation of the hysteresis area with the fraction of 

total fatigue life of the specimens (as denoted by the cycle ratio n/N, 

where n • number of applied loading cycles, N - number of loading cycles 

at failure) is also shown in Fig. 6.7. From fig. 6.6, it will be observed 

that after a few hundred cycles of stress, the hysteresis area was reduced 

to about 407.of the original area. The study of Fig. 6.7 will reveal that 

this change occurred at as early as 1 percent of the total life. From the 

same graph, it can be said that the changes in the hysteresis area consist 

of 3 stages, namely rapid decrease of the area as early as n/N - 1 to 10fo 
(bond microcracking formation - stage 1), followed by a uniform decrease
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from 10 to 85$ of the total life (manifested by a rise in temperature

coupled with a slow and stable propagation of one or more cracks'^ and

some non-elastic deformation without disruption of continuity of the

material7 - stage 2). Finally, when approaching failure, the hysteresis

area shows a renewed increase due to the extension of microcracking into the 
29matrix 7 and hence increased the energy absorption (stage 5). It can also 

be concluded that the lower the maximum stress levels the greater the 

decrease of the hysteresis area (Fig. 6.7).

6.5 Total strain

Total strain (&) is defined as the sura of the elastic strain,

(the instantaneously recoverable part of the deformation) and the inelastic 

strain, £-ine]_» (the delayed recoverable and the irrecoverable part of the 

deformation). The variation of the total strain with the number of loading 

cycles and with the cycle ratio is shown in Figs. 6.8 - 6.11 for specimens 

tested at 80$, 75$» 70$; and 65$ respectively. Generally it can be said 

that the total strain gradually increased with increased cycles of load, 

the rapid increase observed as failure approached being exaggerated by the 

logarithmic scale of the number of cycles (Fig. 6.8 and Fig.6.10). From 

the study of the curves in Figs. 6.9 and 6.11,"it can be observed that the 

variation of £ with n/N shows the same trend as the changes in the 

hysteresis area although of a different order, namely a rapid increase from 

0 to about 12$ of the total life, a uniform increase from 12$ to about 90$ 

of the total life and a slight increase in the rate (d£/d(j|)) from about 

90$ to failure. One significant observation which can be derived is that 

the amount of the total strain is larger the lower the stress levels (Fig. 

6.9 and 6.11). This is probably due to the smaller number of loading 

cycles which the highly stressed specimens can sustain before failure as 

compared with the low stressed specimens. .
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6.6 Elastic strain

Elastic strain, the instantaneously recoverable part of the 

deformation, is defined here as the difference between the strain at maximum 

stress (total strain) and that at zero stress observed on the unloading 

branch of a stress-strain cycle. The typical changes observed in the 

elastic strains with the number of loading cycles and with the cycle ratio 

of specimens subjected to different stress levels are shown in Fig3. 6.12 

and 6.13 respectively. From Fig. 6.12, it is observed that the elastic 

strain increased with the number of cycles of load. The strain data plotted 

against the cycle ratio (Fig. 6.13) again shows the same trend as the changes 

in the total strain, namely a rapid increase from 0 to 10$ of the total life, 

a uniform increase from 10 to 85$ of the total life and a slight increase 

in the rate (d£e^/d(n/N)) from 85$ to failure. However, the specimen which 

was tested at 65$ stress level did not show any sign of rapid increase at 

as late as 98$ of the total life. From Fig. 6.13, the results seem to

indicate that the higher the stress level the higher the elastic strain at
28failure. This observation is contrary to those of Raju who concluded that 

there seemed to be a limiting value of elastic strain near fatigue failure 

which was independent of the stress level and hence the number of cycles to 

failure. It has been shown that there is a slight increase in both the 

total strain and in the elastic strain at about 90$ of the total life to 

failure. This probably explains the contradiction between the results of 

Raju and of the present tests. Owing to the limited data available and 

the absence of an instrument which could record the strain history up to 

failure without interrupting the tests the difference cannot be explained 

at present.

6.7 Inelastic strain

The component of strain which is not immediately recoverable at any 

stage during the course of the fatigue test is here referred to as inelastic
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strain. This is normally made up of the strain due to viscous flow and

microcracks, which is irrecoverable, and that due to delayed elasticity,

recoverable over a period of time. 1 ^ Figs. 6.14 and 6.15 show the

typical variation of the inelastic strain with the number of loading cycles

and with the cycle ratio of specimens subjected to different stress levels.

It can be observed that the inelastic strain at the first cycle of loading

was larger the greater the stress levels and the strain increased with the

number of cycles of load (Fig. 6.14). Plots of the inelastic strain with

the cycle ratio (Fig. 6.15) with the exception of the specimen which was

tested at 80$, suggested that there was a gradual increase starting from

the first cycle of loading rather than a marked increase in the early

fraction of the total life. The strain showed a greater rate of increase

at about 75 to 85i° of the total life to failure. For the specimen which

was tested at 65f° stress level, the strain showed a marked increase from 0
to about 15$ of the total life followed by a uniform increase up to S&fo of
the total life without showing any sign of rapid increase towards the failure.

The plot of the ratio of the inelastic to elastic strain against the cycle

ratio indicates that the increase in the inelastic strain component is

considerably greater than the elastic component so that the ratio always

increases with the total fatigue life which confirms the observations made

by Mehmel ' and Raju. One significant fact emerging from Figs. 6.14 -
6.15 is that in general the lower the stress level the higher the inelastic
strain. It is interesting to note that from the measurements of pulse

velocity in the lateral direction (which will be discussed in Chapter 7)

it will be seen that the lower the stress level the greater the percentage

decrease of the original pulse velocity. In all the specimens which were

tested at a stress level of less than 60°/°t almost all the inelastic strain
; 75

was due to the combined effect of viscous flow and microcracking, but the 

reduction of pulse velocity is entirely due to microcracking. This,
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therefore, indicates that the component of inelastic strain due to micro­

cracking is predominant.

6.8 Modulus of elasticity

The secant modulus of elasticity at various stages in the fatigue

tests was calculated using the elastic strain data discussed in section

6.6 and the typical results plotted against the number of cycles and the

cycle ratio are shown in Figs. 6.17 - 6.18 respectively. A progressive

decrease with the number of loading cycles was observed in all specimens

which were tested at 80, 75» 70 and 65$ stress levels (Fig. 6.17). In

Fig. 6.18, with the exception of the specimen tested at 65$ stress level,

it can be said that the higher the stress level the lower the percentage

decrease of the original modulus of the elasticity. The initial decrease
at

is probably due to the development of bond cracks in a load oriented direction, 

followed by the uniform decrease from about 10 - 85$ of the total fatigue life 

probably as a result of the progressive propagation of the cracks. Finally 

a very slight decrease in the modulus prior to failure was observed probably 

due to the initiation of matrix cracks, the propagation of which rapidly leads

to failure.
\

6.9 Volumetric strain and Poisson's ratio

Figs. 6.19 - 6.21 show the static stress-longitudinal (axial), 

lateral,volumetrie strain (defined as equal to the longitudinal strain - 2 

lateral strain)' and Poisson's ratio relationships for specimens tested 

at 80, 75 and 70$ stress levels respectively. Generally, it can be said 

that the higher the stress level the larger the longitudinal, lateral and

volumetric strain. The same conclusion can also be applied to Poisson's
1

ratio. The changes of the volumetric strain with time under constant 

amplitude cyclic loading are shown in Figs. 6.22 - 6.24. The changes in 

the Poisson's ratio with time are also shown in Fig. 6.25 - 6.27. From 

Figs. 6.22 - 6.24, it can be observed that the volume of concrete under
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cyclic loading at stress levels 'between 70 - 80fa starts to increase rather

than decrease after a few hundred cycles of loading (corresponding to

about 15fo to 25f<> of the total life) and the lower the stress level the
earlier in its fraction of the life that the volume starts to increase.

This period corresponds to the marked increase in strain values and the

significant decrease in the hysteresis area and modulus of elasticity. The
75beginning of the volume dilation was observed by Shah and Chandra to be 

related to the sharp increase in the length of continuous cross-linked 

microcracks indicating the beginning of slow crack growth. In other words,
: f i

the beginning of the volume dilation corresponded to the beginning of the 

uniform increase and decrease of the above characteristics. It is inter­

esting to mention also that the first loading and unloading branches of the 

stress-volumetric strain curves are convex towards the stress axis and

apart from the curve of BP - 3(S - lOfo) the curves showed a slightmojc
reversal at the upper range of the stress. This reversal is the point at 

which under static loading the volume of concrete starts to increase rather 

than decrease. After a few hundred loading cycles the sign of the volumetric 

strain changes from contraction to expansion and becomes straight and 

gradually reverses its curvature to become concave towards the stress axis. 

Shah and Chandra'^- observed that such behaviour was not found in hardened 

cement paste specimens; the volume of the paste continued to decrease 

until failure occurred. It was observed that there was a very rapid 

increase in the strain value when approaching failure. For example, in 

Fig. 6.23 the last recorded values of the strain corresponding to about 987» 

of the total life was about 3 times the magnitude of the strain value at 
about 84f<> of the total life.

Figs. 6.25 - 6.27 show that Possion's ratio increases with the number 

of loading cycles for all specimens which failed in fatigue. This is in 

contrast to the decrease in the ratio with time under both static and
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cyclic stresses found by Whaley^ and is due to the much lower maximum 

stress levels used (30 - 60fo against 'JO - 85$ in the present work) as a 

result of which beneficial effects due to understressing namely, redistri­

bution of stress from matrix to aggregate as a result of viscous flow etc?^'^ 

took place. The low-strain stiffness effects can also be observed from the 

curves in Fig. 6.26 - 6.28 which show a large decrease in the ratio at low 

stress with an increase in stiffness at the higher stress as the number of 

cycles increases. It is observed also that at the first cycle of load the 

maximum value of the ratio occurs at the maximum point of the increasing 

load. However as the number of cycles increases towards failure the minimum 

value of the ratio occurs at the maximum stress level. This is probably due 

to the closing of the horizontally oriented cracks which causes the marked 

increase in the longitudinal strain at low load and hence the decrease in 

the ratio.

6.10 Conclusions

The principal feature to emerge from the observations discussed is 

that cyclic stresses of constant amplitude have a progressive effect on the 

properties of concrete each of which is affected to a varying degree 

depending on the level of stress. These changes may be summarised as 

follows:

1. The changes in the shape of the stress-strain curves depend on

the maximum stress level and the number of loading cycles. These changes 
ta

qualitively indicate the phenomenon of progressive damage of fatigue in 

compression.

2. Generally, the changes in the characteristics affected by the 

application of cyclic loading consist of 3 stages, firstly a rapid decrease 

in the area of the hysteresis loop and secant modulus of elasticity and an 

increase in the total strain, elastic strain, inelastic strain, volumetric 

strain and Poisson's ratio up to 0 - ICffo of the total life. This is followed



by a uniform decrease of the first two and a uniform increase of the other 

characteristics mentioned above between about 15 - 9 0fi> of the total fatigue 

life. Finally when fatigue failure occurs, there is a slight increase in 

the hysteresis area, the total strain, elastic and inelastic strain, 

volumetric strain and Poisson's ratio while the secant modulus of elasticity 

shows a slight decrease.

3. The lower the maximum stress level the larger the decrease of the 

hysteresis area. This observation applies to all the three stages of 

changes.

4. The amount of the total strain is larger the lower the stress 

level. The same conclusion applies to the inelastic strain.

5. The elastic strain data seemed to indicate that the higher the 

stress level the larger the value of the elastic strain at failure.

6. For all specimens which failed in fatigue, the secant modulus 

of elasticity decreased with the increase in the number of loading cycles 

and the results seemed to indicate that the lower the stress level the 

larger the decrease.

7# Y/hen concrete specimens are subjected to cyclic compressive 

loading for about 15 - 2 5 of the total fatigue life the volume of concrete 

starts to increase rather than continuing to deorease.

8. Poisson's ratio increases with the number of loading cycles for 

all specimens which failed in fatigue.
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CHAPTER SEVER

STUDY OF FATIGUE DAMAGE BY ULTRASONIC 

PUT.SE VELOCITY METHOD

7.1 Introduction

In the previous chapter, certain characteristics of concrete have 

been shown to be affected by cyclic loading and their relationships with 

the cycle ratio have been demonstrated. These relationships, may with 

some reservations be employed as indirect indications of how a specimen 

undergoes changes (fatigue damage) at a particular constant amplitude cyclic 

stress level through-out its life. It is obvious that the relationships 

established are only useful in the determination of the damage-cycle ratio 

relationship of laboratory specimens and are of little use in actual 

structures. Furthermore, owing to the limitations of the available strain­

measuring instrument it was necessary to interrupt the cyclic loading at 

intervals to measure strain. This practice introduces rest periods.into 

the loading programme and may hence affect the results. The fatigue damage 

of concrete has been seen to be a process of progressive permanent internal 

cracking of microscopic width at the cement matrix/aggregate interface, in 

the matrix itself and sometimes extending into the coarse aggregate. Thus 

a method of detecting the initiation and propagation of cracks without 

interrupting the cyclic loading would be a very useful tool in fatigue 

research.

Ultrasonic pulse velocity measurements have been successfully related 

to the incidence of cracks and other voids. With the development by 

Elvery and others^ of the PUNDIT (Portable Ultrasonic Non-Destructive 

Digital Indicating Tester), it is possible for the first time for pulse 

velocity measurements to be taken continuously during a cyclic loading test.
' W •

In this chapter, the possibility of using ultrasonio measurements
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as external indicators of changes in the internal microstructure of 

concrete subjected to cyclic loads is investigated.

7.2 General reviews

The fultrasonic pulse velocity technique involves measuring the

transit time lof an ultrasonic pulse through a path of known length in a

concrete specimen. Since the velocity of the ultrasonic pulse in a

solid material depends on the density and elastic properties of the material

and is also affected by the presence of cracks, the measured pulse velocity

can be used to indicate these properties. The technique was first intro-
77duced by Long, Kurtz and Sandenaw in 1945 and at that stage was 

essentially confined to the determination of the elastic properties of a
58 59material. An early instrument was also developed by Jones and Gatfield ’ 

in England and independently in Canada by Leslie and Cheesman^ in 1946- 

1950 (Soniscope). It was soon realized that the technique, as a non­

destructive testing method, had a definite advantage over the alternative 

method of measuring the resonant frequency' in that. it could be used on

any element irrespective of its size and shape. Many investigators,
58 79notably Jones in 1949, and 1952, deduced the presence and development 

of microcracks from the changes in velocity of an ultrasonic pulse. Jones 

showed that in a compression test the cracks are mostly parallel to the 

direction of the load. His technique was later used by several other 

investigators in the study, of the properties of concrete and the initiation 

and propagation of cracks under both tension and compression. Examples 

are found in the work of Jones and Gatfield (1955)»^ Rtlsch (1959)80 who
81unlike Jones measured pulse amplitude instead of velocity, Kaplan (i960),

• 1 '

82and of Shankar (1963) . More information about extensive work done in

Canada and U.S.A. during the period of 1945-1958 was also published in
Qi

1959 by the Highway research board. ■' The first authoritative book on 

the nondestructive testing of concrete and pulse velocity techniques in
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particular was published by Jones in 1962®^, and was followed by an ACI
QC

Monograph No.2 in 1966. ? A general review of nondestructive testing by

Jones was published posthumously in 1 9 7 0 , in the ICE symposium on

nondestructive testing of concrete and timber (1969) which several

interesting papers were also presented. More recent progress in this
oq 62field was described by Bennett and Raju (19^9). J Shah and Chandra (1970) t

Elvery (1971)»^ and Nwokoye (1973).^ Finally, the British Standard

Institution has issued B.S.4408: Recommendations for Nondestructive Methods
90of testing for Concrete in 1971* These have been published in separate 

parts and the part concerned with ultrasonic testing is covered by B.S.4408: 

Part 5: 1971.

7*3 Testing procedure

The equipment and testing technique for the measurements of pulse 

velocity of concrete specimens under static and cyclic loading is described 

in Section 4.3» P«31« Since cracks were known to form mostly in the 

middle part of a specimen and parallel to the direction of the load under 

uniaxial compression, most of the tests were performed with the transducers 

on opposite sides at the mid depth of the specimen so as to measure the 

pulse velocity in the lateral direction perpendicular to the applied load.

A study of the percentage decrease of the original pulse velocity in the 

longitudinal direction parallel to the load was also made on a few specimens 

subjected to cyclic loads in order to confirm the presence of cracks 

perpendicular to the direction of the load.

It should be noted that all the work referred to in Section 7*2 was 

concerned with the properties of concrete and the initiation and propa­

gation of cracks under static loading pnly. It is the purpose of this 

part of the present work to study crack initiation and propagation tinder 

both static loading and cyclic loading. With regard to the latter, the 

change in pulse velocity has for the first time been monitored continuously
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throughout a fatigue test. By this practice the complication arising 

from the introduction of rest periods has teen eliminated thus improving 

the accuracy of the test results.

7.4 Analysis of pulse velocity test results

7.4.1 Static tests

The changes in pulse velocity in the lateral direction were

measured at intervals during the static control tests and in the first

static loading cycle of the fatigue tests on prismatic specimens. Typical

curves of stress against percentage decrease of the original pulse velocity

for the first few cycles are shown in Figs. 7.1 - 7*4 (also in Fig. 6.1).

It will he seen that there is no unique relationship between the stress

level .and the point where a significant decrease in the pulse velocity

occurred. On the contrary the first decrease in the pulse velocity was

sometimes observed at a stress as low as 20$ and sometimes as high as 70$

of the ultimate static strength. The early decrease is probably due to

the extension of microcracks induced during setting and subsequently on

drying due to local breakdown in the adhesion between the coarse aggregate

and the matrix. The greater the amount of decrease which was observed

at about 60$ of the ultimate is approximately the stage at which the lateral

strain, the volumetric strain and Poisson's ratio increased sharply (Fig3.

6.19 - 6.21), indicating that microcracks of more significant influence on

the elastic properties of concrete are formed and propagate from this

stage onwards. This observation is in agreement with the findings of

several investigators, namely Newman, ' Robinson and Jones and Kaplan^ .
87According to N e w m a n , stable crack initiation and propagation occur at

applied stresses below 40$ of the ultimate stress, whereas more significant

cracking occurs between 40 - 60$ of the ultimate. This behaviour was also
88inferred from^acoustic and X-ray techniques.
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It was not possible to observe the maximum decrease of the original

pulse velocity when failure occurred; however, the average maximum decrease

observed when approaching failure was 9 • 10$ of the initial pulse velocity
20which is in agreement with about 9$ observed by Raju.

A few measurements of the pulse velocity in the lateral direction 

were also made on control cubes. It was observed that the first decrease 

in the velocity was at 30 - 37$ of the ultimate and the maximum decrease 

when approaching failure was about 15$ of the initial value. It should 

be observed that under static loading, the maximum decrease in pulse 

velocity depends largely on the height to width ratio of the specimen.

Jones and Gatfield^ observed a total decrease of 15$ in cubes whereas 

only half of that was noted for cylinders. The reason for this is that 

cylinders (or prisms as in the present work) which are more slender than 

cubes have been observed to undergo lateral deformation, when approaching 

failure, of only half.the value observed in cubes. ’ For this reason, 

together with the above observations, a greater decrease in pulse velocity 

relates to a larger degree of deformation resulting from a larger degree 

of cracking both as regard with number and size of the cracks. Therefore, 

the degree of microcracking (fatigue damage) in both static and fatigue 

tests can be comparatively assessed by the magnitude of the decrease in 

pulse velocity.

7.4*2 Fatigue tests

The relationships between the stress and percentage decrease of 

the original lateral pulse velocity are shown in Figs. 7*1 - 7*4 For 

specimens tested at 80, 75» 70 and 65$ 'stress levels respectively. Note 

that these measurements were made at suitable intervals in the course of 

the fatigue tests in test series A and B in which the need to measure 

strain compelled the interruption of the tests at intervals. However, the 

rest of the measurements were made throughout the tests in series C, D and



-  6 4  -

E continuously without interruption. An important feature to "be noted 

from the figures 7»1 - 7*4 is the progressive growth of microcracks in the 

material due to fatigue as indicated by the gradual decrease of pulse 

velocity. A study of the figures also revealed that early in the fatigue 

life, the decrease of the pulse velocity in each cycle was greater at the 

maximum stress and the fact that the decrease of pulse velocity was 

linearly proportional to the stress indicated that there was no opening, 

closing or propagation of the cracks. After about 25 - 35/° of the total 

life, however, there was an indication that microcracks began to "move", 

namely to open and close due to the application and removal of the load in 

each cycle as shown by the loop in the stress-velocity decrease diagram.

At the same time there was a transition of the relationship namely, 

minimum decrease of pulse velocity corresponded to maximum stress as the 

number of loading cycles increased. It should be noted that this trans­

ition corresponds to the stage where low-strain stiffness effects also 

take place (Figs. 6.2 - 6.5)» and corresponds to the convexity and concavity 

of the stress-strain curves (Figs. 7«1 - 7*4)» The similarity between 

the two relationships implies firstly, that the variation of the stress- 

strain curves relates to the initiation and propagation of microcracks. 

Secondly, it indicates that the decrease of pulse velocity is a valid 

comparative method of monitoring internal changes in a specimen under 

cyclic loading.

7.5 Pulse velocity-number of cycles and Pulse velocity-cycle ratio

relationships

The relationships between the decrease of pulse velocity and the 

number of loading cycles (n) are shown in Figs. 7*5» 7*7» 7*9 and 7*11 

for the specimens tested at 80, 75» 70 and 6 5 maximum stress level 

respectively. For comparison, the relationships between the decrease 

of pulse velocity and the cycle ratio (ratio of the total fatigue life,
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n/N) are also shown respectively in Figs. 7.6, 7.8, 7*10 and 7*12. For 

clarity, all of the relationships except that for the specimen tested at 

75$ stress level, are shown for the maximum decrease of original pulse 

velocity. To give a complete record, in Fig. 7*7 and 7*8 the relations 

for both maximum and minimum decrease of pulse velocity are shown.

Generally, it can be said that the decrease of pulse velocity increases 

with the number of cycles and the cycle ratio. And on the average, the 

lower the stress level the greater is the decrease of pulse velocity. In 

Figs. 7*6» 7.8, 7.10 and 7*12, it will be noticed that there are 3 stages 

in the progress of the decrease of pulse velocity with the cycle ratio. 

Firstly, there is a sharp decrease of about 15 - 20$ of the original velocity

at about n/N - 10 - 20$ (stage l), followed by a gradual decrease of pulse

velocity from n/N ■ 20$ to 85 - 90$ (stage 2). ' Finally, the rate of

decrease of pulse velocity becomes slightly greater when approaching

failure. There also seem to be unique relationships between the two pairs 

of variables represented by the equations:

V - a(n)b ..... (7.1)

and V - a(n/N)b ......(7.2)

where; V - maximum percentage decrease of original pulse velocity 

n ■ number of loading cycles in cycles 

n/N - the cycle ratio in percent

N - the number of loading cycles where failure occurred 

a,b ■ experimental constants which can be evaluated by a regression 

analysis.

These equations are used extensively in the analysis of the problem 

of cumulative damage, both under constant amplitude and variable amplitude 

tests using the data illustrated in the Figs. 7.1 - 7*11» which will be 

discussed in detail in Chapters 9 and 10. However, it can be said at this 

stage that the relationships established can be used to estimate the extent
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of fatigue damage suffered by the material, and that the relationships 

established are significant at the 0,1% level.

In addition to the study of the variation in the pulse velocity in

the lateral1 direction, changes in the pulse velocity in the direction of

the load were observed on two prisms in series B, the variation of which is

shown in relation to the cycle ratio in Fig. 7*13. It can be seen that

there is also a progressive decrease in the pulse velocity in the direction

of the load and the decrease is greater as the cycle ratio increases. Note

that the magnitude of the decrease of pulse velocity in the longitudinal

direction parallel to the load was only about 15 - 2J% compared with 40 -

50% of the original in the lateral direction. This proves that the majority

of the microcracks formed during cyclic loading in compression are aligned

in the direction parallel to the load and have been confirmed by the study
29of cracks by Bennett and Raju , The frequently observed phenomenon of

t

low-strain stiffness is also explained by the fact that horizontally

oriented cracks exist and their closing,together with the opening of the 
at

vertically oriented cracks,causes the pronounced downward convexity of the 

stress-strain curve for low stress levels.

It is of interest also to note that there is a large difference 

between static and cyclic loading tests in the decrease of pulse velocity 

when approaching failure. The decrease of pulse velocity in fatigue 

tests is about 4 to 5 times that observed in.static tests. This implies 

that the degree of cracking under repeated loads is significantly greater 

than that under static load. This observation is in agreement with those 

of several investigators 7' * and is best confirmed in Plate 6 and

Fig. 9*24 in which the cracking mode at failure under a static load and 

cracking mode under a cyclic loading test are shown respectively. It will 

be clearly seen that cracking developed under static load is much less 

extensive than in the fatigued specimens.
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7.6 Discussion and conclusions

The study of fatigue damage (microcracking) by ultrasonic pulse 

velocity method investigated in this chapter has demonstrated that the 

method can be a very useful tool for detecting the development and growth 

of microcracks under repeated load as shown by the progressive decrease 

of original pulse velocity and its analogy to the stress-strain relation­

ships, and from visual observation of the cracks themselves. The method

offers far more useful features in the study of microcracking than the
92 28other techniques, namely, the use of a powerful microscope'7 ’ together

92with the assistance of strain gauges and extensometer to locate the

SURFACE cracks; slicing of specimens after applying a given number of

loading cycles then grinding, dyeing, polishing and inspecting under a 
29 95microscope ’ . The former method was often very tedious and confined

the observation on the surface only whereas in the latter the revelation 

of the location and length of the cracks were at the expense of loss of 

continuity of the specimens inherent in a slicing technique. Furthermore, 

the propagation of microcracks cannot be observed from one stage of test 

to the next.

There are also several other techniques in the field of logical

nondestructive methods of testing in the study of the initiation and
88propagation of cracks namely, X-rays and fluorescent-dye technique

and
which sometimes required the specimen to be sawn,^therefore, suffered the 

same draw back in slicing. Another promising approach lies in acoustic 

methods which work on the principle that the formation or propagation of a 

microcrack is associated with the release of energy. When a crack forms 

or spreads, part of the original strain energy is dissipated in the form 

of heat, mechanical vibrations, and in the creation of new surfaces. The 

mechanical, vibrations component can be detected by acoustic methods and 

recorded, hence microcracking may be detected by studying sounds emitted
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from the concrete. Unfortunately, these methods require expensive 

equipment, trained personnel, specific size and shape of the material 

and involve difficult setting up of the equipment. The pul3e velocity
l

technique in comparison with the above methods, has considerable advantages 

in ease of setting up and operation in the laboratory or field; the method 

permits an assessment of the condition of concrete along the entire path 

length under both static and cyclic loading continuously through the test.

The use of the suggested relationships determined from tests on 

small specimens such as those used in the present tests to predict the 

remaining life of larger structural element requires caution. More tests 

are needed to study the effects of size, age, mix proportions etc., on 

pulse velocity in relation to the total fatigue life. The prospect of 

using the pulse velocity technique in the study of progressive fatigue 

damage of a brittle material is, however, much more promising and will be 

used extensively in the next part of the present work involving the study 

of the emulative damage under variable loading conditions. It is felt 

that knowledge thus gained will be of value in assessing the remaining 

life of a partially fatigued structural element in the field so that the 

strengthening or replacement could be effected whenever the need arises.

The following conclusions are drawn from the research investigation:

1. Under the usual test conditions, with the specimens in contact 

with the steel platens, the onset of significant cracks was detected at 

different proportions of the ultimate load for different shapes of specimen,

i.e, about 33% for cubes and about 60% for prisms.

2. When approaching failme, more cracks were developed in cubes 

than in prisms and were mostly parallel to the direction of the load.

3. A significant decrease in the pulse velocity occurs in both the 

lateral and longitudinal directions for concrete prisms subjected to
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cyclic compressive loads of intensity 65 to 85 percent of the ultimate 

strength. The decrease becomes greater as the number of cycles increases.

4. Failure in all fatigued specimens is preceded by cracks mostly 

parallel to the direction of loading, as indicated by the magnitude of the 

decrease in the pulse velocity in the lateral direction which is nearly 

four to five times greater than that under static load.

5* The lower the stress level the greater the'decrease in pulse 

velocity.

6. There are unique relations between the decrease of pulse velocity 

and the number of loading cycles and between the decrease of pulse velocity 

and the cycle ratio. Empirical relationships established between the 

parameters were significant at the O.lfi level and can be used in the detailed 

study of cumulative fatigue damage in compression.
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CHAPTER EIGHT

REVIEW OF CURRENT CUMULATIVE FATIGUE 

DAMAGE HYPOTHESES

8.1 Introduction

As has been described in Chapter 2, the majority of investigations of the 

fatigue performance of plain concrete have been conducted by means of constant 

amplitude tests. However, the need to design for the fatigue life at one con­

stant stresss level occurs very rarely in an actual structure, since the stress 

cycles in service vary greatly in magnitude, number and order. Owing to the 

complication of the stress variations, it is not practicable to perform enough 

tests to cover all stress variations, so that the fatigue performance of the 

actual structure can be accurately evaluated, particularly at the design stage, 

when the sizes of the structural elements are chosen. Moreover, there will al­

ways be some uncertainty in predicting and determining the fatigue-producing 

stress variations that the structure will experience before the structure has 

actually been built and put into service.

It is, therefore, necessary to employ a cumulative damage hypothesis for

the prediction of the fatigue life of any structure subjected to a spectrum of

stresses in random order. Despite the multiplicity of hypotheses available for

the design of metal structures the original Palmgren-Miner cumulative damage
94'' 13

hypothesis, (Miner's rule) is still generally adopted. There are several 

reasons for this. Firstly, it is simple to use and is often regarded as giving 

a conservative (safe) prediction, although this is. not necessarily correct and 

has to be verified experimentally. Secondly, conventional S-N diagrams are 

commonly available and most of the practical alternative methods of life pre- 

diction require additional data which in many cases would be expensive to obtain. 

Finally none of the subsequent hypotheses has yet been proved sufficiently re­

liable to outweigh the probable increased complication of their use. For this 

reason, much of Part 3 of the present work will be devoted to the investigation



of the limitations of Palmgren-Miner hypothesis with particular, reference to 

its application to the problem of cumulative fatigue damage in concrete in com­

pression.
26

Only a limited amount of work has been done.on the problem of cumulative

fatigue damage in concrete. Therefore, it is reasonable to review some of the

proposed cumulative hypotheses in the more thoroughly studied field of metal

fatigue since it may be possible to adapt one or more of these to explain the

behaviour of concrete subjected to varying amplitude fatigue loading, In the

review of the hypotheses two criteria have been suggested in order to classify
95 .

them, namely stress dependence and interaction effects.

8.2 Stress dependence

A distinguishing feature of various cumulative-damage hypotheses is the manner 

in which the course of damage depends on the stress amplitude. This is probably 

due to the fact that the number of cycles to failure depends on the stress am­

plitude i.e., the higher the stress amplitude or stress level, the less the 

number of cycles to failure and vice-versa. However, as will be described be­

low, certain cumulative damage hypotheses can be termed "stress-independent 

hypotheses". Stress independent, in this case, means that equal amounts of 

damage are produced at equal fractions of the total life for all stress ampli­

tudes. However, care is required in defining the terms "damage" and "life".

In a simple, constant amplitude test, the specimen is subjected to a constant 

stress range thoughout each individual test. After undergoing a number of stress 

cycles, or in some cases even after the first or second repetition of the stress 

cycle, fatigue damage occurs although it is not usually discernible. This dam­

age is progressive in nature, (see Section 2.2.4.P.16. Mechanism of fatigue 

failure) and eventually leads to visible deterioration end the disintegation 

of the specimen (fatigue failure). At this stage, damage may be described as 

complete, or 100 percent. The process is depicted schematically in Pig. 8.1
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Figure 8.2 shows the effect of the stress amplitude on the number of cycles

to failure for several levels of stress. On the curves, equal amounts of damage

as defined above are not equivalent in an absolute sense, because the damage

at failure (indicated either by total strain at failure or by decrease in the

ultrasonic pulse velocity in the lateral direction) has been observed to be

different for differing stress amplitudes; greater ultimate damage occurs when
29the stress amplitude is small and the number of cycles to failure is larger. 

(Chapter 6-7).

The damage measured must, therefore, be revised so that equal ordinates re­

present the same amount of damage. In the consideration of stress cycles of 

varying amplitudes in varying order, the amount of damage at failure for the 

highest stress in the spectrum can be used as a reference so that if the damage 

at failure for any stress amplitude is divided by the reference value, the re­

sulting relationships between damage and number of cycles (fig. 8.3) will indicate 

the same true damage at equal values of the ordinate. With the damage measured 

as shown in Fig. 8.3, the number of cycles to failure in a constant amplitude
t

test; N p  should be replaced by N^, the number of cycles that produces an amount 

of damage equal to the damage at failure at the highest stress amplitude S^.

If the curvesi.in Fig. 8.3 are adjusted by dividing n, the number of cycles 

applied, by the number of cycles that produce the selected damage level 

(damage at failure at the highest stress amplitude), oneor other of the two 

possibilities shown in Fig. 8.4 and Fig. 8.5, will result. The cumulative dam­

age hypotheses that are stress-independent result in Fig. 8.4» while the cumula­

tive damage hypotheses that reduce to the representation of Fig. 8.5 are stress- 

dependent. Note that the curves in Fig. 8,5 do not necessarily have to be non­

intersecting between the origin and point 1,1.

8.3 Interaction effects.

The other important factor to be taken into account in a cumulative-damage 

hypdthesis is interaction. If the relationship between damage and the number 

of cycles at a specified stress amplitude is assumed to be" valid irrespective
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of what other stress amplitudes are applied, the cumulative-damage hypotheses 

is termed an "interaction-free hypothesis11. On the other hand, a hypothesis 

that assumes that the previous application of other stress amplitudes change 

the course of damage due to the given stress amplitude is an interaction hypoth­

esis.

For example, consider a concrete specimen which has undergone sufficient 

stress cycles of varying amplitudes to produce a certain amount of damage after 

which one more stress cycle is applied, e.g. of amplitude S^. For an interaction- 

free cumulative damage hypothesis, the increment of damage produced by this addi­

tional cycle would be the slope of the damage-cycle ratio curve for the given 

stress amplitude (S^) at the level of damage which has already occurred multi­

plied by the increment of the cycle ratio. For an additional cycle, the incre­

ment in the cycle ratio , d(n/N), would be 1/Ny  In equation form:

D -  dD ,  1 (8.1)

d<8> n3

where dD/d(n/N) is determined at the appropriate level or the damage curve 

for the stress ampitude, S^. The cumulative damage hypotheses in which the 

above expression is not valid for the incremental damage are interaction hy­

potheses.

The definition of interaction-free hypotheses applies equally well to either 

the stress-independent hypotheses of Fig. 8.4 or the stress-dependent hypotheses 

of Fig. 8.5.



-  7 4  -

8.4. General comparison of cumulative damage hypotheses

8.4.1. Palmgren-Miner cumulative fatigue damage hypotheaig 

and alliance hypotheses

The most generally known cumulative damage hypothesis, usually attributed 
94

to Miner, will be used as a basis comparison. Miner's hypothesis was orgin- 

ally applied to cumulative damage before the appearance of the first crack. 

However, there is no fundamental reason why it cannot be applied to life up to 

any state of damage (but the accuracy of prediction may well depend on the dam­

age state considered).
96

Actually Palmgren had presented cumulative damage equations identical

to Miner's hypothesis some 20 years earlier, apparently as the result,of a
9 5 .

purely intuitive approach, but it was Miner who made this hypothesis famous

by presenting attractively simple cumulative damage equations supported by
/

experimental work.

Palmgren-Miner hypothesis (Fig. 8.6) simply states that, irrespective of the 

magnitude of the stress, each and every stress cycle has some influence on the 

ultimate endurance of, and is responsible for a certain amount of fatigue dam­

age to a specimen, component or structure. It specifically assumes that, for 

each stress amplitude, there is a linear rate of fatigue damage irrespective of 

the order of load application, and failure occurs when the sum of the damage, 

increments at each stress level accumulates to unity, i.e, damage is proport­

ional to n/N, the condition for failure being represented by the equations

i-m

2
i«i

n1 - n1 + n2
N. N1

n, n__ + __2 + • • • • jm
N2 N3 Nm

- 1 (8 .2 )

where: N. to N - the number of cycles to failure at stress level S. to I m i

^m >



to the number of stress cycles actually applied at each stress 

level in sequence.

Classification and comparison of the cumulative-damage hypotheses can be 

made by using the two characteristics distinguished in the previous sections 

namely, stress dependence and interaction effects, as follows:-

1. The cumulative damage hypotheses that reduce to a stress-independent

damage-cycle ratio relationship when adjusted in the manner of Pig. 8.4 and

are interaction-free are equivalent to the Palmgren-Miner hypothesis.
95,97

?. It has been proved that the cumulative damage hypotheses that are

stress-dependent, reducing to the form shown in Pig. 8.5 when adjusted, and are 

interaction-free' will predict shorter life under random spectrum loading than 

would be predicted by the Palmgren-Miner.hypothesis.

3. In order for a cumulative damage hypothesis to predict longer life than 

does the Palmgren-Miner’- hypothesis, it must obviously be an interaction type 

of cumulative damage hypothesis (and can be either stress-dependent or stress- 

independent). Interaction-type damage hypotheses can be constructed so as to 

predict either shorter or,longer life than does the Palmgren-Miner hypothesis.

The hypotheses studied were selected as being representative of the breadth 

of the possibilities, not as being necessarily superior to the others that 

have been proposed. Those considered and the conclusions drawn from them are 

as follows: ]

Under the same classification as the Palmgren-Miner hypotheses of the valid­

ity of linear summation of the cycle ratios (stress-independent and interaction
9 8  99

free.) are those of Langer 1937 J Poland, Richard, and Work 1949» Valluri 
100

1961 in a much more complicated approach, proposed a hypothesis based on dis­

location theory and plastic deformation of metal which is not relevent to this 

work. However,<: this ■ theory is found to be equivalent to Palmgren-Miner hypo the 

is if certain restrictions concerning definition of fatigue damage are observed
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8.4.2 Stress-dependent and interaction-free hypotheses
101

As modified Palmgren-Miner hypotheses, Newmark (1951)> and in particular
102

Marco and Starkey (1954) have proposed hypotheses of cummulative damage based

on the experimental observations of the fracture appearance of the specimens

tested. The following was assumed.

1. Fatigue damage is representable by the terra D, and is a variable, beginn­

ing from zero when no cyclic-stress history exists in a specimen and becoming 

unity when the specimen has finally failed (i.e. completly fractured) under the 

influence of cyclic stressing.

2. Damage may be expressed quantitatively as a function of the cycle ratio 

number n^/N^

The general equation (8.3) is finally replaced by the exponential relationship

The equation (8.4) when shown diagrammatically is similar to Fig. 8.5. These 

empirical damage-cycle ratio relationships, when used in the prediction of the 

life of a specimen will predict shorter life in a simple,one step test (eg. 2 

stages of loading) of high-low sequence namely, tested at for n^/N then load­

ed at to failure (S^Sg) and vice versa. More generally, when applied to vari­

able amplitude loading, this hypothesis will also predict a shorter life than the
94,97

Palmgren-Miner hypothesis. ’ '
103. ,

Grover (i960) ' has proposed a stress-dependent, interaction-free hypothesis ' 

that differs from the Palmgren-Miner hypothesis in that it postulates a two-stage 

damage process. It is assumed that cracks are initiated during an initfel stage of 

damage as stress cycles are applied. In a single-level or constant amplitude test 

this initial stage is completed at some fraction denoted by "a", of the total 

cycles to failure* In the second stage, propagation of cracks to failure occurs 

in the course of application of the fraction (1-a) of the total number of-cycles

102,

Thus, D - f(n^/Ni) (8.5)

(8.4)
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to failure. It is assumed that the value of "a" for any stress amplitude is

constant whether or not cycles of other stress amplitudes are applied (i.e.
95

interaction-free). It was pointed out by Kaechele that the essential features 

of this theory are contained in the method proposed by Langer.

For cumulative-damage calculations under spectrum loading, it is assumed that 

the Palmgren-Miner hypothesis applies to each stage, which results in two equat­

ions:

and

where n ■ no of cycles applied during the initial stage,

; m « no of cycles applied during the second stage.
103

As originally noted , if a^ is the same for all stress amplitudes in the 

spectrum, this theory is equivalent to the Palmgren - Miner hypothesis.

The normalized damage-cycle ratio relationships postulated by this hypoth­

esis are shown in Fig. 8.7. It will be clearly seen that the hypothesis is

stress-dependent,-since the damage curves in Fig. 8.7 differ for different stress
/ •

amplitude. Thus, it will predict failure in fewer cycles than will the Palmgren- 

Miner hypothesis when appliedto the well-mixed stress spectrum.

2  —  
aiNi

m.
2  J L

( 1 - a ^  - 1

(8.5)

(8.6)

There are insufficient data to provide a meaningful determination of-; the

value of the parameter "a" and how it varies with stress amplitude. However,

the hypothesis is still viable in its application in the field of metal fatigue

where it has been proposed that the fatigue life of metal consists of several 
104

stages.

Q .4.3 Stress-dependent and interaction hypotheses
104 • '

Corten and Dolan (1956) proposed an interaction hypothesis which involves the 

attractive assumption that interaction effects can be determined from fairly

■i

.1■1:j

! j 

1
-¡j

%

1£
*

I



1,

- 78 -

simple fatigue tests at two stress levels (one-step tests). As originally
T04

presented , the general form of this hypothesis includes both stress-dep <-
105,106

endence and interaction effects. Subsequent experimental work in

connection with the theory, however, led to the formulation of a stress-indep­

endent, interaction theory.

In the original presentation, the expression for damage as a function of 

applied cycles for stress amplitude was given by:

Di ■ mirini (8.7)

where m - some number of "damage nuclei" 

r^- a crack-propagation constant,

a^« Constant

These expressions are assumed constant for a specified stress amplitude 

(in a constant amplitude loading test) but may be different for different stress 

amplitudes. Damage at failure is prescribed as unity (or 100 per cent), giving

Dn  -  mA T± Na A -1 (8.8)

By dividing m^ r^ N ^ i  

damage is obtained:

- 1 into Eq. (8*7)t the following expression for

»1 T < Ì >i (8.9)

The damage-cycle ratio relationship derived from this equation can be shown 

as in Fig. 8.4 or 8.5. As mentioned above, it was. concluded that a^ was in­

dependent of stress for the materials (cold-drawn steel wire) and stress spectra 

used in the work; thus the case of Fig. 8.4.

Interaction effects are introduced into this theory, leading to the possibil­

ity of predictions that differ from the Palmgren-Miner hypothesis. It follows 

from the assumption that the number of damage nuclei produced by the highest 

stress in a spectrum will affect the growthVat other, lower stress amplitudes.

J

i

'i

i



It is assumed that the damage growth at lower stress amplitudes will be faster 

after a higher stress amplitude has been applied than when the lower amplitude 

is applied alone. In other words, m is considered to be larger for the higher 

stress than for the lower stress. With the interaction effect included, the 

damage Eq. becomes

m.
D . -  r -  ( d ) &i1 m. (8 .10)

where m^ ■ the damage - nuclei number for the highest stress

in the spectrum (assumed to be applied early in the test)

•th,râ  - the damage-nuclei number for the i (lower) 

stress amplitude.

By defining a new parameter as

M
m.l
m~

1

a ,

(8 .11)

The damage relationship of Eq. (8.10) can be written as

D .
i

ain.

MiNi<

(8 . 12)

N- which is equal to M.N., is a revised (because of interaction) number 
* th\of cycles to failure at the i amplitude which should be used in the damage 

equation when the ith amplitude is mixed together with a higher stress amplitude

For design purpose, a fictitious S-N diagram for use with spectrum loading

can be constructed as a straight line passing through (the cycles to failure

at the highest stress in the spectrum determined from constant amplitude tests)

and through a point N, at a lower stress amplitude. The value for N, is
1i i

determined from one-step tests containing the two stress levels and S^. As
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was observed in the original work,104 a^ was independent of stress levels; 

therefore, cumulative damage could then be assessed for any spectrum by using 

the Palmgren-Miner hypothesis with the interaction S-N diagram thus obtained.

Apart from the above mentioned work, there are several proposed interaction
107 108

hypotheses namely, the Freudenthal-Heller hypothesis, Shanley's hypothesis,
109 •

Henry's hypothesis etc. These hypotheses which in some instances were based 

on experimental findings and in others were purely theoretical relations intro-
i ! . .  .
duced interaction effects in a more complex way, and mostly concerned the fati­

gue behaviour of metal and attempted to relate the cumulative damage to such 

factors as "Critical crack length", "Mean grain size", "Residual stress due to 

manufacturing process", etc. which are not very relevant to the study of plain 

concrete.

More critical reviews and analysis of the cumulative hypotheses as applied
95,97,101

to the problem of metal fatigue up to 1971 can be found elsewhere. Currently,
97

there are at least 22 proposed hypotheses for the metal fatigue problem.

8.5 Conclusions
to

1) There are two key assumptions with whichAdetermine general trends of 

the life prediction by cumulative damage hypotheses, namely stress-dependence 

and interaction effects.

2) Cumulative fatigue damage hypotheses may be stress-dependent or stress- 

independent. That is the amount of fatigue damage by a certain cycle ratio may 

be the same for all stress amplitudes (stress-independent) or different (stress- 

dependent).

3) There may also be interaction or interaction-free hypotheses. The 

course of damage at one stress amplitude may be changed by other stress ampli­

tudes (interaction), or it may be unaffected (interaction-free).

4) The Palmgren-Miner hypothesis simply states that when a spectrum of 

stress amplitudes is applied, fatigue failure will occur when the fractions of 

life expended at each stress amplitude which is the ratio of the number applied
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at that amplitude (n^) to the number that would cause fatigue failure at that 

amplitude (N^); add up to one.

5) From the study of the key assumptions, it can be concluded that Palmgren 

Miner hypothesis is a stress-independent, interaction-free hypothesis, and other 

hypotheses that have these assumptions are therefore equivalent to the Palmgren- 

Miner hypothesis.

6) Stress-dependent, interaction-free cumulative fatigue damage hypotheses 

when used to predict the life of a concrete specimen subjected to random load­

ing of varying amplitude will predict' a shorter life than the Palmgren-Miner 

hypothesis. ■ . . i '

7) Interaction oriented hypotheses can predict a shorter or longer life 

than the Palmgren-Miner hypothesis and have to be verified experimentally.
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CHAPTER NINE

TWO STAGE CUMULATIVE DAMAGE TESTS

9.1 General

At the design stage of engineering structures it is sometimes necessary 

to obtain a first estimate of fatigue life for any fatigue-sensitive structural 

elements. In many cases, such as loading in off-shore structures subjected to 

heavy wave action and loading in machine bases supporting heavy reciprocating 

metal presses, the service loading is of variable amplitude, and it is here 

that the need to employ a cumulative damage hypothesis arises.

The design of concrete structures subjected to complex service loading is 

frequently based on the Palmgren-Miner hypothesis'^1̂  which assumes that each 

cycle in a constant amplitude test consumes the same percentage of the fatigue 

life of a specimen. If different maximum stress levels are applied within one 

test, failure occurs when:

■ 1 ........................ ( 9 . 1 )

i - 1,2, ..

m n .
2  r  1

>m

Where n^ is the number of loading cycles at a stress level S^, 

and N^ is the fatigue life of a specimen tested at S^.

9.2 Limitation of Palmgren-Miner hypothesis

It is apparent from a study of the literature that the Palmgren-Miner 

hypothesis can.give highly inaccurate estimates of fatigue life under variable

amplitude loading. For example, in the only attempt to verify this hypothesis
nexperimentally in flexural fatigue tests of concrete, values of 2  _t varying
N_,

from 0.01 to 2 have been reported. There also axe many cases of metal fatigue 

tests where the values of2n./N. have been shown to differ significantly from
no

unity, ranging from 0.01 to over 20. ' The fact that Miner’a data used in sup­

port of the hypothesis were derived from tests conducted solely on aluminium- 

alloy specimens, together with several doubtful basic assumptions in the



hypothesis can explain much of.the variation in n^A.^ as follows:

The basic concept of damage (2)) may be expressed in function form as:

D  - f.(n/Nj) ......... (9.2)

where n^/N^ is the cycle ratio

Miner's hypothesis assumes that Eq.(9.2) has the linear form

D - n ^  ......... (9.3)

For any stress pattern, Eq (9*3) leads to the conclusion that the amount 

of damage done is exactly equal to the cycle ratio. Eq. 9*3 i8 shown graphically 

in Fig 9.1.

Damage,
( 1 , 1 )

o, n/.N

Fig. 9.1 CYCLE RATIO-DAMAGE RELATIONSHIP FOR D - n ^ ^

From Fig. 9*1» it will be clearly seen that if a spectrum of varying am­

plitude loading is applied to a specimen until failure (D - 1), then 

2  ni/N1 m 1 ■

i - 1,2, ...m

This concept of damage assumes that if a certain fraction of the life X 

■ nj/N^ is consumed at stress level S^, there remains a usable life of ng/N^ ■

(1 —x) at any stress level S^. According to this concept of damage, it makes 

no difference if is larger or smaller that . More generally, the remain­

ing usable life depends only onJn^/N^ for all the previous stress levels and is 

independent of the number of stress levels or the order in which they have occurr-H



The hypothesis does not make allowances for the effects of understressing, 

neither does it take account of the application of an occasional high load 

which could cause severe damage at a point of stress concentration and the 

introduction of residual stresses as a consequence.

9.3 Methods of Verification

Many investigations had been carried out to determine the applicability of 

the hypothesis under a number of loading conditions. In metal fatigue studies, 

specimens were usually subjected to a sequence of stress cycles in which the 

amplitude and maximum stress level were maintained constant at one set of 

values for a fraction of the estimated life, then at another set of values for 

another fraction of the life, and so on until failure resulted (Step tests).

However, in each case a limited number of tests has been run and usually only
%one specimen has been tested for a given stress pattern. In Miner's work, 

tests were performed on single specimens for each sequence of loading, con­

sisting of one, two, three, or four steps (VIZ, two, three, four, or five 

stages) in the sequence and the range of values for2 n^/N^ was from 0.61 to 

1.49» with an average value close to unity. On the basis of the same tests
99Dolan, Richart, and Work reported a much larger range of values forEnj/N^ihowever 

an average value of approximately unity was also indicated by these tests.
102 in.

Marco and Starkey reported, on the basis of tests by Kibbey, in which single 

specimens were tested with 2,3,4»5»6 and 7 steps, that the average value of

^n./N. was 1.49 for ascending load, and 0,78 decending load. Marco and Starkey
102

also confirmed in their own work' that^n^/N^ was less than unity in one step 

tests of decending load and more than unity in onestep tests of ascending 

load.

36
In the field of concrete, the results of Hilsdorf and Kesler, quoted above, 

were obtained from one-step tests performed on single beam specimens for each 

sequence of loading. The block programme loading similar to the type used by
104. < ■

Coten and Dolan «was employed in which a test load was applied in repeated



block each of which consisted of n^ cycles at stress level , n? at S2̂ ig.9.2) 

The reported results indicated thatSn^/N^ was sometimes greater and sometimes 

less than unity. *

In view of the variation and wide range of values ofSn^/N^,reported in 

these investigations and the uncertainty regarding the effect of the number of 

the steps in a sequence of loading and the order in which they are applied, a 

series of tests was conducted by the writer in an attempt to determine whether 

these factors would effect the value of2 n^/N^ thus checking the validity and 

limitations of the Palmgren-Miner hypothesis.

The tests reported in Chapters 9 and 10 have been of two main types. First 

reported in this chapter, are the 'Step' tests, where testing commences tinder 

constant amplitude loading at one maximum stress level and the level is changed 

once after a fixed cycle ratio (n^/N^) to a second stress level which is maintained 

until total failure of the specimen has occurred. The minimum stress level is 

kept constant throughout, the maximum stress level being either decreased or 

increased from the first to the predetermined second stress level.

The second type of test is the mixed spectrum test ('spectrum' refers to 

amplitudes), which approximates more closely to service loading conditions. In 

such tests there are two or more steps, and after the final step repeated load­

ing is continued to failure at the predetermined stress level. The difference 

between this and the first type of test is that although the stress level (viz.

7(#> and 8($) are kept constant, they are repeated in "saw-tooth" formation.

The results of the writer's tests of this'type will be discussed in chapter 10.

The validity of the Palmgren-Miner hypothesis is generally judged by the

cumulative cycle ratio , for example 2  n./N.; at failure, and usually written in
i i

the abbreviated form 2  n/N.
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All fatigue tests were carried out using two different loading programmes 

(1 and 2). Tin Programme 1 (Pig. 9«3a), a fixed cycle ratio (n^N^) of repeated 

load was applied at a stress level S^. After n1 cycles the stress level was 

decreased to and the test continued until the specimen failed after an add­

itional ng cycles. Programme 2 (Pig. 9«3b) ia a reversal of Programme 1 in so 

far as the lower stress level was applied first, and after n^ cycles the load 

was increased from to S^. The only two maximum stress levels (S^ and S2) 

used in this part of the work were 80¡o and 70^. The choice was made on the 

basis that these represented an intermediate range of stress levels, whereas 

with a higher stress level ( 8 %  or more), excessive deformation resulting from 

creep can interfere with the tests and may cause premature failure of the test 

specimens. At the same time, any expected fatigue life of less than about 1600 

cycles (which is the expected life at QQP/o stress level) was considered too short 

a time for sufficient data to be collected, considering that the speed of loading 

was 190 cycle/min. On the other hand, a lower stress level (659l° or less) may 

lead to the side effect of understresssing or strengthening of the specimens, 

hence complicating the interpretation of the results. The minimum stress was 

kept constant at 5-6a/o throughout. A summary of the static strength of control 

cubes and prisms is shown in Table 9*1 and 9*2 respectively, A static loading 

cycle was conducted before the start of the fatigue test, with strain measure­

ments on all four sides of the specimen for regular increments of load, up to a 

maximum corresponding to the maximum stress level S^. This practice, together 

with continuous monitoring of any internal changes by ultrasonic pulse velocity 

measurement in the lateral direction was adopted for quality control purposes.

Thereafter, only continuous pulse velocity measurements were made without 

interruption of the fatigue stest. This eliminated the need to introduce rest 

periods for monitoring purposes, which had been a necessity before the introduct­

ion of the digital indicating PUNDIT instrument. It was hoped that the continu­

ous monitoring of any changes to the specimens during the fatigue tests would



improve the accuracy in interpretation of the results since it wa3 known that
11.»)rest periods can cause a lengthening of the fatigue life of the specimens.

9*4.1 Selection Methods for fatigue specimens

Several pilot batches of specimens were tested with the loading programmes 

1 and 2, selecting the specimens by the method outlined in section 5*2 chapter 

5, p. 38 . As was expected, inconsistencies among the results were encountered. 

Indeed, after a few batches had been tested, the inconsistencies were found to 

be so great that it was hardly possible to draw any conclusion from the experi­

mental values of^n/N and n^/Ng. It was finally decided that apart from certain 

factors arising from the uncontrollable working charecteristics of the LOS 

Machine (e,g. the automatic load maintainer devices can introduce a variation 

in final loading of - y/o)\ the main source of these inconsistencies was the 

variation in strength of the control prisms and the fatigue specimens. There­

fore, more precise methods of selection of fatigue specimens were developed and 

thereafter used throughout this part of the work.

9.4.2 Nondestructive method of quality control

The previous method and the new method developed may be summarised as • 

follows.

Previous method: Out of 8 prisms in a batch, 3 control prisms were randomly 

selected and tested to determine the likely average static strength of the 

batch on which basis the stress levels were calculated and randomly assigned to 

4 fatigue specimens. The last prism was tested statically at the completion of 

the fatigue teststo check the gain of strength during the period of the tests.

Note; This method was sometimes changed to the following pattern; 2 control 

prisms before, 1 during and 1 at the completion of the tests. This was adopted 

especially when the period of testing was longer than the normal 7-9 days/batch, 

in order that a slight gain in strength during the test period could be detected 

and the assigned load adjusted accordingly.



Present method

1. Prior to testing, pulse velocity measurements in both the lateral 

and the Ingitudihal direction were made to every prism in a batch to check 

the uniformity of the concrete. The prisms were then separated into several

small groups, each consisting of prisms which had the same lateral and lngitud- >'
■ ij!

inal pulse velocity values. It is interesting to note that the longitudinal X

pulse velocity values showed more variation between different prisms than the )i

relatively consistent lateral values. This was probably due to the fact that 

the prisms were cast vertically at the same time in 3 layers, and also to the 

longer distance (203.2mm compared to 76.2mm) involved. Usually, there were j!

2-3 small groups in one batch, with sometimes 1 or 2 odd specimens which had 

pulse velocity values much lower or higher than those belonging to the groupu, h

indicating that they were worse or better compacted than the others. Using the j. 

fact that the specimens with the higher pulse velocity values, were likely to ii

be denser and consequently stronger, control prisms were randomly drawn from ! f

each group and tested to determine the likely static strength of the groups. :

The odd specimens were discarded but as a check were tested statically to failure.  ̂

The results of these static tests together with the weighing of every prism as 

a supporting check verified the above assumption.

2. As another measure of quality control} strain measurements were per- 

-formed on all four sides of all control specimens and a set of load-deformation 1

curves was drawn for each specimen and set aside as reference curves. These §

curves were compared with the load-deformation curves obtained from an initial |

static loading cycle of the actual fatigue specimens which were randomly select­

ed from the groups. In the event of the load-deformation curve of a fatigue 

specimen not approximating closely to the curve of the control specimen of the 

same group, that specimen was treated with caution as being ."likely to be strong- 1 

er or weaker than the expected strength value. In the case of severe departure 

of the load-deflection curve from the control curve, in either direction the 

final assigned stress level would be changed to the value corresponding to the |
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nearest control curve even though it had come from a different group of specimens

3. As a final measure, a continuous history of the change in pulse velo­

city in the lateral direction, of a fatigue specimen under the assigned cyclic 

stress level (viz 70?v or QO’/o) was recorded. This was constantly monitored and 

any specimen which showed either little or excessive change in pulse velocity 

under repeated loading cycles, was judged as either too strong or too weak and 

rejected. This practice helped to screen out any specimen which showed signs 

that the assigned stress level was either too low or too high in relation to the 

TRUE strength. The fact that the specimens which were judged too strong or too 

weak for the assigned load, always failed at approximately 2-3 times more or less 

than the expected life at the particular stress levels proved that this practice 

was effective.

It should be emphasized that these non-destructive measures are not a sub­

stitute for destructive testing, at least as far as the determination of the 

variation in strength among the group of specimens in a batch is concerned. It 

is always necessary to test control specimens statically to failure to find out 

the most likely static strength of the small groups, classified with the help 

of the above nondestructive measures. Nondestructive tests by themselves are 

comparative rather than absolute, and they should be used with caution and their 

correlation with strength should not be relied upon. However, with experience,  ̂

and enough background information (the concrete used in this present work was 

of the same proportions, contituent parts and under the strict control of lab­

oratory conditions) these nondestructive measures could provide useful and 

effective supporting information. The methods developed were more flexible and

sensitive than the previous method which was previously used by several invest- 
27,29,46igators and also by the writer in the tests described in the previous

part of the work. They could be used to detect a slight variation.>in the streng­

th among the specimens in a batch BEFORE the testing began so as to establish

the correct stress levels immediately prior to the fatigue tests. Moreover,
■ ; r , ! : (

they were sufficiently flexible to discover in time those specimens-which were
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wrongly loaded at the commencement of the teats.
' 1V't9.5 One-step test results ?.i.

lU.:
The results of the one-step tests are summarised in Table 9.3. It will 

be observed that four specimens were tested for each set of values of 5^2 and <>i

n^/N^ and a total number of twelve specimens were tested in each programme of 'y
•:s

tests. The column marked and S£ indicated the first and second stress ampli- *j;

tudes used in the test programmes. The value of2(n/N) gives the average for ,s-j
a v ' «: j

all the specimens tested with a given set of values of S? and n1/N^. Also 

in the columns marked Hg/Ng and2n/N, the results of each test are shown in in- 

creasing order of magnitude. The values of n^/N^f ng/Ng and2n/N shown in the y
’ if!

Table 9.3 were computed by using the mean (probability of failure «* 0.5) value !|
Vf: j

of N1 and Ng as determined from the S-N-P diagrams derived from the cumulative L‘j 

distribution function discussed in Chapter 5« ;1■ • iifi*
f;

Curves showing the relationship between the percentage decrease of original 

pulse velocity (V) in maximum and minimum and the number of applied cycles (n) 

both in linear and logarithmic scale are shown in Pig. 9*4-9«5 for tests of n.j/N.j 

- 0.25 (S^Sg). It will be observed that the two types of graph showed different 

trends due to the different scales used. .It was sometimes necessary to use the 

logarithmic scale in plotting n because of the large number of cycles involved, 

coupled with the rapid change of V in the early stages. However, this would be 

misleading in interpreting the results. Therefore, the plot of V against cumula­

tive cycle ratio (2n/N)was investigated (Fig. 9*6) and it was found that there 

was a clearer relationship between V (which can be used as an indirect means to 

define fatigue damage) and fatigue life (Sn/N), In subsequent tests, therefore, 

the relationships between V (damage) and fatigue life were represented in this 

way. (Fig. 9.7-9.11) The summary of all the results is shown in Fig. 9*12.

*1
•J

f.C

h%

■*,y
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9.6 Analysis and interpretation of results

Fatigue damage is a difficult term to define or measure precisely or quan­

titatively. It may be defined qualitatively as a change in the properties of 

a material subjected to cyclic stressing which may reduce the number of cycles 

of stress the material will subsequently withstand before final failure. Fatigue 

damage in concrete may probably be expressed in terms of the following physical 

variables:-

1. The number of independent fatigue-initiating cracks which are progres­
sively operative.

2. The length and width of these cracks.

3* The orientation of the cracks.

For the purpose of interpretation of the test results, fatigue damage is 

assumed to be representable by the parameter D which is zero at the commencement 

of the life of a specimen and unity or 100^ the moment of failure. The fatigue 

damage in all of the one-step tests was continously monitored by the indirect 

method of measuring the decrease in ultrasonic pulse velocity through the stressed 

specimens in the lateral direction. It was suggested above that the rate at 

which fatigue damage accumulates in a specimen at any given time depends on the 

number of fatigue cracks present and the length and width of these cracks. It 

seems reasonable, therefore, to assume that the fatigue damage in concrete could 

be indirectly measured in terms of the decrease in ultrasonic pulse velocity 

since the latter is directly affected by the extent and location of cracks in 

the specimen under fatigue loading. It is assumed also that damage may be ex­

pressed quantitatively as a function of the cycle ratio n/N{

Thus, D or V - f (n/N) ..........  (9.4)

Some clue as to the form of this functional relationship may be deduced 

from the results of the constant-amplitude loading tests, from the results of 

the one-step tests shown in Fig. 9.4-9.11 and also from the observations which

can be made of the physical appearance of fractured specimens and the phenomenon 
of progressive fracture! itself.
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Evidence from the curves of the relationship between V and n in log scale; 

V and cycle ratio (n/N) for specimens tested at different stress levels and V 

and 2  n/N in one-step tests together with Raju's plots of V against percentage 

of life (n/N)2^ seems to suggest that the functional form of D or V ■ f (n/N)

may be represented by the exponential relationship.

D - a(n/N)b .........  (9-5)

Where a and b are experimental constants

In view of the large scatter of the results obtained it seems that only 

statistical methods of analysis of the data could make possible any proper in­

terpretation of the results. Therefore, the fit of the data points of V against 

n in log scale; V against n/N for results obtained from constant amplitude tests 

(chapter 7) and V against2n/N in one-step tests was investigated using Non­

linear regression to obtain the best fitting curve of the form y - axb where 

n is the independant variable (n , n/N or2n/N) and y is the observed dependent 

variable (Damage or V)

The problem is reduced to one of linear regression by taking the log of 

both sides of the equation (9.5)

Thus, log D - log (a) + b log (n) ;

or log D - log (a) + b log (n/N) ;

or log D - log (a ) + b log (2 n/N) ;

and substituting Y' - log D, X'»log(n); log (n/N) or log (In/N),

and A' - log a $
Hence, Y' - A' + BX’

a linear regression analysis(by the method of least squares) was performed

to determine A' and B', then A was determined by
A'A ■ e

The formulea are as follows: 11V



-  93 -

B

A

r- =

n 2  ( LQ G ^ X- LO G ^Y,) -  ( |  LOG^X-,) ( |  LO G ^Y,
n 2 n 2

n 2  ( LO G  X .)—( 2  LO G  X .)
1 e i 1 e i

exp i s  (LOG Y . ) -  ( 2  LOG X . ) b \  
n U e i 1 e i ;

n §  ( LOG^Xj LO G^Y.) -  ( 2  L O G ^X , ^  L O G '^Y ; )

n 2 n i n 2 n '  2
r>2 ( LO G  X .) -■ (2  LO G  X.) n2 (  LO G  Y . ) - ( 2  LO G  Y )

1 e i 1 2 I _ 1 2 i 1 e i

The analysis of the experimental data was performed by using the WANG series 

600 computer employing the standard programme in 2 stages. In the first stage, 

there were 3 trials in the fitting of curves to the data obtained from the con­

stant amplitude tests. For convenience, they will be referred to as trials 1.1, 

1.2(a) and 1.2(b) respectively.

Trial 1.1 Max. decrease in pulse velocity, V • a (log n/N)*5;

also Total strain, £ - c(log n) and£- c log (n/N).

The fit of £ - c(log n)^ and £ ■* c log (n/N)^ was done as an independent 

experimental check using data from chapter 6. It was observed that the express­

ions derived above did not represent the experimental data, therefore, the sec­

ond trial was made.

Trial 1.2 (a) V - a(n)*5 and V ■ a (n/N)*5 ;

£ - c(n)^ and l - c (n/N)^

A summary of the results is given in Table 9*4-9»5* It will be observed 

that all of the correlation coefficients (r) were significant at less than 0,1̂i 

level and the correlation coefficients of the equations V - a(n/N)^ and £ - c 

(n/N) were generally better than those from V - a(n) and £ ■ c(n). Although 

the expressions in this trial seemed to represent the data fairly well, neverthe' 

less, due to the problem that will be discussed later, a third trial 1.2(b) 

was considered to be necessary in which the first two expressions in the second 

trial were fitted to data which omitted values of specimens which, assessed by



the method described on p. 88 » were excessively weak or strong. The results

are also summarised in Table 9*4—9•5• Again, the correlation coefficients (r) 

were all significant at less than 0.1$ level indicating that there is a valid 

association between the two variables of the relationships established. It will 

be noticed that the r values have improved on account of the more consistent 

data. Curves showing the relationship derived from these equations and from 

the last two equations in trial 1.2(a) at different stress amplitudes are shown 

in Pig. 9.13-9.16.

it•  .1

After the data of the constant amplitude tests were analysed, the data from 

the one-step tests were analysed in the second stage which for convenience, they 

will be referred as 2.1, 2.2, and 2.3 as follows:

2.1 Curves of the equations V ■ a(n)^ and V - a(n/N)^ were fitted to all 

the data from specimens tested at stress levels of 80$ and 70$ respectively in 

the first stages of the one-step tests. This was done as an independent experi­

mental check of the expressions derived from the constant amjlitude test over the 

full life of the specimens. The results are shown in comparison with the results 

from stage 1 in Table 9.4-9.5» and graphically shown in Pig. 9.17-9.18» The 

values of r, in this stage of analysis show an improvement over those in the 

first stage probably on account of the more scrupulous control of the tested 

specimens.

2.2 For the purpose of detailed analysis and interpretation of the results 

of the one-step tests, the above equations were fitted to the data obtained from 

specimens tested at S1 - 80$ and S1 - 70$ for n1/N1 - 0.25»0.5. and 0.75 separat­

ely. This enabled the course of damage in the first stage of the tests to be 

established from the same four specimens,that continued into the second stage.

The summary of the results are shown in Table 9.6. The values of r which are 

significant at the 0.1$ level provide an adequate assurance of the relationship 

established. ' - ’

It will be observed that in the second stage of analysis (Table 9*6) all

' i 
"i ! ') 

J i. !
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the values of N, both at 80$ and 70$ stress levels, derived by extrapolation 

of the relationships established from all the data predicted lives of 1,689 

cycles and 96f40O cycles. These are very close to those given by the S-N-P 

diagrams at P - 0.5 which are 1,632 cycles at S ■ 80$ and 971486 cycles at 3 - 

70$. This observation is significant in two ways. Firstly, it implies that 

the results of the statistical analysis of the S-N-P diagram which was derived 

from all the data are still valid when applied to the more strictly controlled 

specimens. 0a the other hand, it also implies that the non-destructive method 

of quality control suggested in Section 9*4»2 of this chapter is an effective 

means for detecting variation in strength of the specimens prior to testing 

and providing a very sensitive means of predicting with accuracy the approximate 

number of cycles to failure of a specimen at a given stress level. Secondly, 

it improves the validity of the conclusions drawn from the results on one-step 

tests by increasing the accuracy with which the stress levels were applied in 

each test.

2.3 In order to determine the course of damage at the second stage of the 

one-step tests, the equations:

V2 - a(n2)b and V2 - (n2/N2)b

where V_ - The maximum decrease in pulse velocity value
^  \

due to n2 at S2 

n2 - number of cycles at S2

n2/N2« cycle ratio at S2

were fitted to the group of data at S2 - 70$ and 80$ after ■ 0.25;

0.5 ; 0.75 respectively. The summary of the results is shown in Table 9*7 and 

9.8.

9.6.1 Stress Dependence

One of the problems in the investigation of fatigue damage in concrete is 

to determine whether or not the damage-cycle ratio relationship (D or V against



n/N) is stress-dependent. The method of analysis suggested in chapter 8 was

employed to check the relationship using the expressions obtained from the

regression analysis in trial 1.2(a) as follows:
b d.

a) The plot of ■ a^(n/N) and £  ̂- c^(n/N) at different stress 

amplitudes (indicated by the suffix i) were first investigated and the values 

of and t  ̂at the end of the fatigue life (n/N - 10Q£) were determined from 

the equations. (Pig. 9»19a)

b) The values of Vui and as above were substituted in the equations
bi d^

Vi - a^(n) and ■ c^(n) to arrive at the best estimate of the fatigue life

at each stress amplitude. These values were used to establish the terminal
b i  d ipoints (N^f Vui> and (Ni*^ui) of the curves - a^(n) and - c^(n) (Pig. 

9 . i 9 . b )

c) The ultimate damage for a stress level of 80/ was also assumed for the

other stress levels, and normalised curves of V or £ against n/N were drawn.(Fig. 
9*19.C)

The normalised curves (see Fig. 20) clearly indicate that the fatigue dam­

age of concrete in compression is infact stress-dependent, that is to say the 

amount of damage at a given cycle ratio depends on the stress amplitude. It 

will be observed that the course of damage represented by plots of V against 

n/N was convex upward and with the exception of the damage curve at a stress 

amplitude of 75/, the trend was that during the early part of the life fatigue 

damage progressed more quickly at low than at high stress amplitudes while 

during the later stages of the life the opposite was the case. The seemingly 

identical damage-cycle ratio relationship at 65/- and 70/ stress amplitudes and 

the anomalous trend of damage at 75/ were probably a reflection of the large 

scatter of the ecperimental data of the former and the limited data available 

for the latter. This was examined further in trial 1.2(b) where the data from 

obviously weak or strong specimens (assessed by the method described on P-88 

were excluded from the analysis. Using the steps outlined above and the norma­

lised damage (V) - cycle ratio curves (Pig. 9«21) at each stress amplitude
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clearly indicate different damage curves at 80$, 70$ and 65$ stress amplitude. 

Apart from the exceptional curve at 75$, the general trend is the same as in 

trial 1.2(a) (Pig. 9»20). Plots of normalised £ against n/N from results of trial 

1.2(a)(Pig.9.22) and normalised V against n/N from 1-step test results (Fig. 9.23) 

showed the sama trends of stress-dependence.

Evidence from the visual ovservations of the phenomena of progressive crack­

ing of specimens tinder test at different stress amplitudes, together with a 

study of the physical appearance of the fractured specimens, confirms the relative 

values of Vui and the trend of the normalised damage-cycle ratio relationships.

The observation showed that there were no visible cracks up to a certain fraction 

of the life for specimens tested at high stress amplitudes (85-80$) (In fact, 

as indirectly indicated by the decrease in ultrasonic pulse velocity, some minute 

internal cracks must have existed.) As suggested earlier in this chapter, the 

rate at which the fatigue damage accumulates in a specimen at any given time 

depends on the number, length and width of the fatigue cracks. Therefore, this 

is a clear indication that fatigue damage in specimens which were stressed at 

high levels took place more slowly during the early part of its life than in 

specimens tested at low stress amplitudes (70-65$) but was higher during the 

later stages of the life of the specimens. It was observed that when the de­

crease in pulse velocity reached about 27-29$ of the original velocity (at about 

70-85$ of its fatigue life) hairline cracks (about 0.1-0.2mm width) became vis­

ible to the naked eye on the surfaces in the middle portion of the specimens.

Prom this moment until failure, cracking developed at a very rapid pace, mainly 

by lengthening and widening of the existing cracks rather than by the formation 

of new cracks. Thus the ends of the fractured specimens which were tested at 

high stress levels consistently showed less traces of visible damage (both vis­

ible cracks on the surfaces and bond failure at the aggregate-cement matrix in­

terfaces) than specimens tested at low stress levels, as clearly illustrated by 

Plate 4« The curve of, 80$ in Fig. 9*21 represents the progress of fatigue damage 

in a highly stressed specimen.



On the contrary, visual observations indicated that during the early fraction 

of life of specimens tested at low stress amplitudes (70-65%), many cracks 

developed simultaneously. Hairline cracks developed at weak points, probably 

initiated by shrinkage, and progressively became a network of larger cracks.

Thus, during the early stages, damage progressed more rapidly than in the corr­

esponding period of the specimens tested at higher stress levels and hairline 

cracks (about 0.1-0.2mm width) became visible to the naked eye in a random 

pattern on all the surfaces of the specimens earlier, namely

at about 49-64% of the life (in which the decrease in pulse velocity was about 

27-29% of the original velocity) compared with at 70-85% of the life at high 

levels. However, from this moment until failure, cracking developed at a very 

slow pace, mainly by the formation of new cracks rather than by lengthening and 

widening of the existing cracks. It was observed that some cracks, especially 

those which were approximately perpendicular to the loading axis, exhibited the 

phenomena known as "breathing" i.e. closing and opening corresponding to the 

cyclic application and removal of load. This tends to delay the final disin­

tegration of the specimen by absorbing some of the eneigy applied to the stressed 

specimen. This is substantiated by Fig. 9«24 which shows the state of damage 

of a specimen after 1,804,400 cycles at 65% (the dotted lines indicates the 

final fracture-patterns). This specimen even after suffering such a large amount 

of damage, was able to withstand another 309,507 cycles at stress level of 65% 

before failure, indicating that the rate of damage at later stages of the life 

of specimens tested at low levels was not so great as in highly stressed specimens 

Thus the ends of the fractured specimens which were tested at low stress ampli­

tudes (70-65%) consistently showed more visible cracks and a greater amount of 

bond failure at the aggregate-cement matrix interface (Plate 5) than could be 

seen in the specimens tested at high stress amplitudes. The damage curves of 

70%,65% in Fig. 9«21 represent the rate of damage likely in a low stressed speci­

men
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It may be concluded from the analysed values of the coefficient of corre­

lation, r, which were generally significant at less than 0.1$, that the relation­

ships D (either measured in terms of the maximum decrease in pulse velocity in 

lateral direction, V, or total strain,l,) - a(n)b , a(n/N)b or - c(n)d ,c(2)dwere
I

quite adequate|to express the accumulation of the fatigue damage of concrete 

specimens subjected to cyclic stresses in compression. It also may be concluded 

that as the stress level increases, in the relationships: V - a(fi)b andt- c(n)d j 

all of the constants (a,b,c and d) increase, a and b being greater than and c 

and d less than unity. On the other hand as the stress level increases, in the 

relationships: V - a(n/N)b and£- c(n/N)d; a and c are greater than unity and 

decrease, while b and d are less than unity.

•*-
j

i ;

An examination of Table 9.3 clearly establishes one significant fact. In 

every series of tests in which the stress amplitude was decreased from a high 

value to a low value, the value of2(n/N) was less than unity, (i.e. less thaqOT
the fatigue life predicted by the Palmgren-Miner hypothesis), that is the hypo­

thesis is not safe when applied to this loading programme. On the other hand 

in every series of tests in which the stress amplitude was increased from a low 

to a high value, the value of2(n/N) was greater than unity showing the fatigue 

life predicted by the hypothesis to be conservative. Thus the hypothesis did not 

accurately predict the fatigue life of the specimens tested in this investigation
* 1

It is of interest to mention that in the ohly other cumulative fatigue damage
which 1/5

investigation of concreteAwas done in flexural tests, the opposite trends appear­

ed to apply. It was found that when cyclic loading at a high stress was followed 

by loading at a lower stress the fatigue life (2 n/N) achieved was more than 

unity, but that it was less than unity when the first stress level was less than 

the second. The contradiction between the conclusions from these flexural tensile 

tests and those from the present investigation cannot easily be explained but 

suggests radically different modes of fatigue damage under the two different 

types of loading.

fl-:
i'i
k

iif
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9.6.2 Stress interaction effects.

The other important factor to be taken into account in approaching the prob­

lems of cumulative fatigue damage is whether or not there are stress interaction 

effects. If the relationship between damage and cycle ratio at a certain stress 

amplitude (S^) is affected by the magnitude and order of occurrance of other 

stress amplitudes, than there are said to be of stress interaction effects. It 

will be shown that these effects were in fact present in the two programmes of 

tests under consideration.

-  1 0 0  -  '

Having regard to the amount of scatter, the data from the one-step tests were 

analysed to find the best average of the damage courses in the first stage (S^) 

and the second stage (S0) of the loading programmes using the methods outlinedC. *
in section 9.6.1 stage 2.1 and 2.3. The results are shown graphically in Pig. 

9.25-9.30. Prom the graphs, the stress-interaction effects are clearly demon­

strated by the fact that the damage courses due to (either less or more than

S.j) have been altered due to the application of for n^/l^ when compared with 

the likely courses of damage over the full life of a specimen (n^/N^ ■ 100^) 

due to the application of and S2 alone. K. study of the curves of the relation­

ships between V and2(n/N) at different values of S^, S2 and n1/N1 clearly indic­

ates that when a specimen which was subjected to a certain cycle ratio (n^/N^) at 

a high stress amplitude (n^/N1 « 0.25,0.5 and 0.75) was subsequently stressed at 

a lower stress amplitude a change of the course of damage took place i.e. the

damage rate dD

W>)j

seemed to increase markedly in the first part of n2/N2 (Pig 9»25—

9.27). As2(n/N) (in this instance’,' n^/l^ + n2/N2) increased, the damage increas-4 

ed and progressed to failure at a value of2(n/N) less than unity. In contrast, 

in a specimen whidh was initially stressed at a lower value, and subsequently 

loaded at a higher stress level (Fig. 9.28-9.30) the damage due to the second 

stress amplitude progressed at a relatively slow and constant rate and failure 

occured when2n/N was greater than unity. This strengthening effect which some­

times resulted in even the life (n^/Ng) at the second stress level exceeding the 

predicted life (from S-N-P diagram) at that level for a virgin specimen, together
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with the above behaviour, indicated that there was indeed a stress-interaction

effect under compressive cyclic loading of varying amplitudes.

It is interesting to mention that the phenomenon known as ’understressing1

which causes the strengthening of a concrete specimen as have been reported 
11 27 29elsewhere * ’’ ^(section 2.2.5,p»l6) has been observed to occur when the speci­

men is subjected to about lO^cycles of a constant amplitude loading of a magni-
n

tude less than the fatigue strength at 10’cycles(about 55 %)•

It is of importance to know the effect of the stage at which the stress amp­

litude was changed(i.e. the value of n^/N^). It was demonstrated earlier in this 

Chapter that the magnitude of the stress levels in the loading programme 1 and 2 

(namely, or S < S 2) affected the damage to a specimen and the accuracy of

the predicted life using the Palmgren-Miner hypothesis. It also could be seen 

from Figs. 9.25-9.30 that for loading programme 1 (Figs.9.25-9*27), the longer 

the specimen was subjected to S^, the higher the rate of damage(dD/d(n/N))at S^. 

The same conclusion can also be applied to loading programme 2 although,the 

magnitude of the rate of damage in the former is much more than the latter. 

(Figs. 9.28-9.30).

9.7 Conclusions

9*7*1 Cumulative fatigue damage of concrete under constant amplitude loading

1) A satisfactory relationship between the two variables namely, the damage

(D), indirectly indicated by the maximum decrease in pulse velocity in the 

lateral direction (V) and the cycle ratio can be achieved by a power

function regression analysis, Y = aX .

2) Damage of a highly stressed specimen (S >  8($) accumulates more slowlymax
than that of a low-stressed specimen (sma^  70$) in the early fraction of life, 

but progresses more quickly than the latter in the later part of the life.

3) The amount of fatigue damage produced by a given cycle ratio is not the 

same for all stress levels but depends on the stress level to which the concrete 

is subjected (Stress dependence).

. ' ! ¡1 |
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9.7*2 Cumulative fatigue damage of concrete under variable amplitude loading

1) The Palmgren-Miner hypothesis did not predict with accuracy the lives 

of specimens subjected to the loading programmes 1 and 2 used in this part of 

the study.

2) The specimens subjected to the loading programme 1 (high-low) had 

shorter lives than predicted by the hypothesis, which could not therefore be 

safely applied.

3) The hypothesis was too conservative when used to predict the life of a 

specimen subjected to the loading programme 2 (low-high sequence).

k) From the curves showing the relationship between V and2n/N of one-step 

tests indicated that stress interaction effects existed and the magnitude and 

the order of application of the stress levels in a loading programme affected 

the fatigue behaviour.

5) The application of a high stress level(i.e. 80 %) to a specimen for a

certain cycle ratio was found to cause a marked increase of the damage rate

(dD/d(n/N)) at a second and lower stress level so that Actual life (£n/N)______
Life predicted by Palmgren

; I :

_____________________  <  ! •
-Miner hypothesis

6) The application of a low stress level(i.e. 70 %) to a specimen before 

it was subsequently loaded at a higher stress level was found to have a benefi­

cial effect so much so that the actual life at the second stress level (n^/N^) 

sometimes exceeded the life predicted by the S-N-P diagram.

7) The longer the specimen was subjected to the first stress level, the 

higher the rate of damage dD/d(n/N) at the second stress level. This is parti­

cularly true in the loading programme 1.
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CHAPTER TEN

13JLTIPLB STAGE CUMULATIVE DAMAGE TESTS

10.1 Introduction

In Chapter $, the results of one step tests in which the maximum 

stress level was changed only once (loading programme 1 and 2 in Pigs.

9.3a and 9»3b)»have been discussed and compared with the predictions 

derived from the Palmgren-Miner hypothesis. Such tests are not truely 

representative of the actual conditions to which a structural member may be 

exposed. Furthermore, there is a possibility that one-step tests may 

engender strong emphasis on interaction effects that could be less signifi­

cant in randomly variable loading conditions. It has also been seen that 

this type of test, especially the low-high one-step test, appears to 

accentuate the amount of .scatter normally encountered in fatigue experiments. 

In order to test under conditions closer to the varying load spectrums 

encountered in service, a number of multiple stage (i.e, 2-step and 4-step) 

cumulative damage tests were performed by the writer and will be discussed 

in this chapter. The test programmes were also designed with the objective 

of studying whether the number and order of application of the steps in a 

loading programme would affect the value of the cumulative cycle ratio 

(2n./N^), that is the total fatigue life.

10.2 Test procedure

There are 2 main types of multi-step test reported in this Chapter. 

They are as follows:

10.2.1 Two-step tests (D-series, part A and B) Five specimens were 

tested for each loading programme (Programme 3 and 4 in Tables 10.7 and 

10.8) which consists of a sequence of two changes of the maximum load 

between.the ;two; stress levels - 80$ and Sg - 70$ of; the ultimate.

In programme 3 (D-series, part A), n^ cycles of repeated loads were applied
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at a stress level S^. After n^ cycles the stress level was decreased 

to $ 2 for a further cycles. Finally, the stress level was increased 

to Sj (which is equal to S^) and the test continued until the specimen 

failed after an additional n^ cycles. Program 4 (D-series part B) is an 

inversion of Program 3 insofar as the lower stress level (iCf/o) was applied 

first, and after n^ cycles the load was increased from 70% to QO% for 

another n2 cycles. Finally, the load was decreased from 80% to 1[0%j and 

test continued until failure occurred after an additional n^ cycles.

10.2.2 Four-step tests (E-series, part A and B) Five specimens were also 

tested for each loading programme (Programme 5 and 6 in Tables 10.9 and 

10.10) which consists of a sequence of four changes of the maximum load 

between the two stress levels » 80/£ and S2 ■ 70% of the ultimate. In 

programme 5 (E-series part A), n^, n2, n^, n^ of repeated load3 were applied 

at stress levels 80, 70, 80, and 70% respectively. The number of cycles 

n^ to n^ were assigned so that they corresponded to about one-fifth of the 

fatigue life at 80% and 70$ stress levels. After n^ cycles at 70% the 

stress level was increased to 80^ and the test continued until the specimen 

failed after an additional n^ cycles. Program 6 is the inversion of 

Programme 6 insofar as the lower stress level was applied first and 

continued until failure occurred in the fifth and final stage.

The method of selecting the fatigue specimens was the same as in 

section 9*4.2. The ultimate static strength of cubes and prisms of test 

series D and E are summarised in Tables 10.1 - 10.2 and 10.3 - 10.4 

respectively.

10.3 Two-step test results

The results of both loading programme 3 and 4 are summarised in 

Table 10.5* The columns S^, S2 and indicate the first, second and 

third stress levels used in the sequence and the columns n^/N^, n2/l\T2 and
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n,/N, the corresponding cycle ratios. 2  (n/N) is the cumulative cycle
V  5 3 1

ratio and 2  (n/N) is the average cumulative cycle ratio for all five  ̂ av
specimens tested in a programme. All values of 2  (n/N) shown in Table

10.5 were computed by using the value of N^ as determined from the S-N-P

diagram derived from the cumulative distribution function at P (probability

of failure) - 0.5. It will be observed that all but one specimen in each

loading programme have a cumulative cycle ratio greater than unity, with 
3
2  (n/N) - 1.408 and 1.734 lor programmes 3 and 4 respectively. These
1 av

values are both greater than the prediction of the Palmgren-Miner hypothesis 
94,96

( 2  (n/N) - l). This implies that the hypothesis is generally conservative

and cannot be applied accurately to loading programmes 3 arid. 4* It is

also observed that, just as when programme 2 (one-step low-high tests), was

compared with programme 1 (high-low tests) the results of programme 4 (low-

high- low) exhibit greater scatter than those of the programme 3 (high-low-

high). According to the results, the number of steps and the order of the

application of the steps in a programme both have a considerable influence

on the fatigue behaviour. For a number of steps greater than one, the

fatigue life under variable amplitude loading at stress levels 70/“ and 80/

is generally greater than predicted by the Palmgren-Miner hypothesis and
3
2  (n/N) is larger if the low preceded the high stress level in a varying 
1 av

programme. It will be interesting to see whether the above observation 

applies to the loading programme 5 and 6 in which the number of step3 was 

increased from two to four.

10.3.1 Analysis of two step test results

In order to study the mechanism by which fatigue damage accumulates 

under the programme 3 and 4» the internal changes of the specimens were 

continuously monitored throughout the cyclic load tests by the pulse 

velocity technique, the results of which are shown in Figs. 10,1 - 10.6.

To give a complete pioture, both the maximum and minimum decrease of pulse

3
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velocity is shown, and the number of cycles is shown both in linear and 

logarithmic scales for a specimen tested under the programme 3 in Figs.

10.1 - 10.2. The relationship between both the maximum and minimum 

decrease of pulse velocity and the cycle ratio of the same specimen is 

also shown in Fig. 10.3. . It is obvious that Fig. 10.3 gives the best and 

clearest representation of the variation of pulse velocity throughout the 

life of the specimen. In Fig. 10.4 the same relationship is shown for a 

specimen tested under the programme 4. Fig. 10.3 indicates that after a 

ratio n^/N^ at S^, the rate of damage (d V/d(^)) was increased when the 

stress level was changed from to a lower stress level confirming the 

results observed in a high-low sequence in programme 1 (Chapter 9). 

However, after a further ratio n2/U2 at S^, the stress was increased again 

to S^, and the rate of damage was observed to reduce and later to increase 

gradually when approaching failure. In Fig. 10.4, the contrary was 

observed in that after the usual early rapid increase in the damage at the 

stress level S^, the rate of damage fell to zero in the latter part of the 

period n2/N2 when the load was increased to a higher stress level S^.

After a cycle ratio n2/N2 at S2, the stress was decreased to the original 

level and the rate of damage was again observed to increase gradually 

as the cumulative cycle ratio increased to failure. The behaviour is 

summarised in Figs. 10.5 - 10.6 in which for clarity only the maximum 

decrease of the pulse velocity is shown, for specimens tested in thè 

programmes 3 and 4« The results were analysed using the equations 

established in Chapters 7 and 9 and the best average curves were plotted 

to show the curves of damage against cumulative cycle ratio. The summary 

of the analysis is shown in Tables 10.7 and 10.8 and the correlation 

coefficients which were generally significant at less than the 0.1$ level 

provide an adequate assurance of the relationships established. In Figs.

10.5 - 10.6, it also will be seen that one out of five specimens tested in
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each programmed failed before the completion of the test with the result- 
3

ing 2  n/N less than unity. It is observed that the failure was preceded 
1

by an increase in the rate of damage, in each case, as a result of the 

application of a high stress level followed by a lower stress level in the 

sequence. For example, in Fig. 10.5* the specimen (D2 - F4) failed during 

the second stage of the programme in which the stress level was changed to 

70$ after at - 80$. In Fig. 10.6, the specimen (D4 - F2) failed

during the third stage of the programme during which the stress level was 

changed to 70$ after at - 70$ and rx̂ at - 80$.

10.4 Four-step test results

The results of programmes 5 and 6 are summarised in Table 10.6.

The columns S,, S„, S,, S, and Sc indicate the stress levels for the1 2’ y  4 5
first, second, third, fourth and fifth stages in the programme;n^/N^, ....

V v  n^/N^ indicate the respective cyole ratios at each stress level.

2  (n/N) is the cumulative cycle ratio of a specimen and 2  (n/N) the 
1 1 av 

average for all five specimens tested in a programme. • All values of 2  (n/N)

were computed using the same value of as in Table 10.5. Again, it will

be seen that one out of five specimens tested in the programme 5 failed be-
3

fore the completion of the programme with 2  (n/N) * 0*512, and one
1

specimen in the loading programme 6 failed during the fifth stage with 
5
2  (n/N) »0.967* However, the rest of the specimens tested in both 
1

programmes failed when the cumulative cycle ratios reached a value greater

than that of unity predicted by the Palmgren-Miner hypothesis. The
5

average values of 2  (n/N) in the programmes 5 and 6 are 1.738 and 1.685
1

respectively. The scatter of the results in programme '6 is observed to be 

larger than programme 5* In all the multi-stage cumulative damage tests 

conducted, an increase in the number of steps did not seem to reduce the 

scatter of the results, rather the contrary. An observation that can 

clearly be made is that the scatter was greater, when the low preceded the
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high stress level in any alternating single or multiple step cycle loading

test, than in the opposite loading arrangement. With the exception of
5

the average value of 2  (n/ll) in the programme 5» the observation made in
1

section 10.5 applies to the four-step tests, that is to say an increase in 

the number of the steps in a sequence leads to a slight increase in the 

average value of the cumulative cycle ratio at failure which is generally 

greater than the prediction of the Palmgren-Miner hypothesis.

10.4*1 Analysis of four-sten test results

The internal changes in each of the specimen tested in the 

programme 5 and 6 as indicated by the decrease of the original pulse 

velocity are shown against the cumulative cycle ratio in Figs. 10.7 and 

10.8 respectively. The cumulative damage behaviour in the two programmes 

is also summarised by the maximum decrease of pulse velocity in Figs. 10.9 

- 10.10. The data were analysed using the method outlined in Chapters 7 

and 9 and the best average curves derived from the analysis were fitted 

to the data as shown in the figures. The summary of the results of the 

analysis is also presented in Tables 10.9 and 10.10.

From Figs. 10,7 and 10.9» it will be observed that when was 80$, 

the rate of damage increased markedly when the stress level was changed 

to Sg - 70$. However, this sharp increase was reduced to a uniform rate 

when the stress level was changed to - 80$. During the fourth stage 

of the test, the load was decreased from to « 70$» and it was 

observed that the rate of damage was again increased markedly due to the

influence of the previous loading history of the cycle ratio n^/U^ at
>

stress Sj, but the rate was not as great as during at S2» Finally,

the load was increased to Sc - 80$ and the test continued to failure. 

During this final stage the damage increased uniformly to failure. In 

Figs. 10.8 and 10.10, it was observed that when the stress was increased 

from - 70$ to ■> 80$ after n^/N^ «0.2, the rate of damage fell from
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the usual early rapid increase of damage at the stress level to a 

uniform rate. The rate was, however, again increased when the stress 

was decreased to - 70$. During the following fourth and fifth stages 

of the sequence in which the stress level changed to « 80$ for n̂ /lf̂  

and Sj.; - 70$ to failure, the rate of damage was observed to be continuously 

uniform during n^/N^ at and ny/Nj. at Ŝ. to failure. In the specimen 

which failed at the third stage of programme 5 (Fig. 10.9) failure was 

observed to be preceded by a great increase in the rate of damage during 

the second stage, in which the stress level was changed to a lower stress,and 

in which the application of the high stress at the third stage failed to 

arrest this sharp increase.

10.5 Discussion end conclusions

The study of the cumulative fatigue damage under multiple stage 

variable amplitude tests investigated in this chapter has demonstrated that 

the interaction effect or load history has a significant role in the general 

behaviour. The results shown confirmed that in a loading programme, if a 

low stress level was preceded by the application of a higher stress level 

for a fraction of the fatigue life, the damage (initiation and propagation 

of microcracks) rate accelerated to a rate somewhat beyond the value to be 

expected from the application of the low stress in the constant amplitude 

test alone. An opposite though smaller effect was found when the stress 

changed from a low to a high level, i.e. after the change the damage rate 

was retarded for some time and gradually accelerated when failure 

approached. In alternating multi-step tests such as the loading 

programmes 3 - 6, the overall effect of the above acceleration and retard­

ation of the damage rate was to give values of at failure greater

than the value derived from the Palmgren-Miner hypothesis, that is2  ^ - 1.

It is likely that 2  ̂  will be1 greater than unity under two possible 

conditions? firstly, in a loading sequence which consists of a number of



long periods at low stress level interrupted by occasional short periods 

at high stress level (S 80$)» and secondly, when there are alternating 

short periods of low and high stress levels. — can also be improved

by the initial application of a low cyclic stress for a short period of 

about 20 - 30 per cent of the fatigue life at that stress level followed 

by mixed cyclic stresses. These assumptions are, however, confined to 

the speed of loading, maximum stress level and constant environmental 

conditions observed in this investigation and their applicability to 

concrete of . other mix proportions, age, etc. and environmental conditions 

requires caution and has to be justified experimentally.

To explain the above behaviour, i.e. retardation and acceleration 

in the damage rate in stepped tests requires more detailed fundamental 

studies of the behaviour and interaction of the constituent component of 

concrete - aggregate, water, and cement gel. However, a probable 

phenomenological explanation of the above characteristics will be attempted 

here:

Under cyclic load tests, assuming the specimen to have some fatigue 

life, the applied maximum'stress level may not be sufficient to favour the 

propagation of the existing microcracks induced during setting and 

subsequently on drying due to local breakdown in the adhesion between the 

aggregates and the matrix. However, concrete as a heterogeneous material 

is not perfectly elastic} some energy is therefore stored in the material 

with cyclic loading and this build-up of energy as manifested by an 

increase in the internal temperature, when it reaches a sufficient magnitude 

favours the growth of cracks. Because of the lower constant stress 

amplitude and hence limited store of energy, it is more likely that a 

larger number of new cracks forms, favoured by local discontinuities, 

under a low cyclic stress compared to a fewer, well defined cracks in the
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case of high stress (Chapter 9)» The greater decrease of pulsevelocity 

at low than high cyclic stress also confirms the formation of such cracks. 

If the applied stress is decreased from high to low after a fraction of 

life, the excess energy after losses will mainly help towards the growth 

of the existing cracks hence there is a rapid decrease in the pulse 

velocity. On the other hand, if the high stress is preceded by a low 

stress in a cyclic load test, most of the energy will be absorped by the 

closing of a large number of microcracks and the energy demand required 

for the formation and propagation of the existing microcracks will not be 

met within a reasonable period of time unless the test is continued to 

failure at the second and higher cyclic stress. This may probably explain 

the retardation in the decrease of the pulse velocity (damage rate). It 

should be emphasized that the above explanation is empirical and has yet 

to be proved fundamentally.

The following conclusions can be drawn from the research 

investigation:

1. The Palmgren-Miner hypothesis does not accurately predict the 

fatigue life and generally gives too conservative a value of 2  ̂  for 

multiple Step' loading programmes.

2. Stress interaction effects are significant in the cumulative 

fatigue study of multiple stages and generally give2 ~ >  1 at failure.

3« The fatigue life of concrete subjected to cyclic loads of

varying amplitude is influenced by the number of steps and the order in

which they are applied. Generally, a larger number of short steps gives

a higher value of 2  Also, a low followed by a high cyclic stress in
nstep-tests gives a higher value of 2  jj.
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CHAPTER ELEVEN

RESIGN CONSIDERATIONS; SUMMARY OE 

CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

11.1 Design considerations

The Palmgren-Miner hypothesis is a common method for the design of 

concrete structure subjected to varying repeated loads. It is very simple 

and, therefore, can be applied even to complex load programmes. Nevertheless, 

the discussion in Chapter 9-10 has shown that the hypothesis does not 

represent the actual behaviour of concrete and it may, in some cases give 

unconservative results. More particularly, it has been shown that the 

hypothesis is affected by the factors summarised below.

11.1.1 Factors affecting the accuracy ofS  ~  derived from the Palmgren- 

Miner hypothesis

a. Effects of stress dependence and interaction;

The fatigue damage of concrete in compression has been seen to be

stress dependent (Chapter 9) that is, under constant amplitude loading, the

shape of the curve of damage against percentage life (cycle ratio) differs
95 97according to the stress level. It has also been proved77’ 7 that:

a) Under constant amplitude loading, the relative rate of damage 

accumulation (dD/d(n/N)) varies with the stress at a given cycle ratio (n/N), 

(i.e. there are different curves of damage against percentage life for 

different stresses) and;

b) The damage rate under spectrum loading is a simple average of 

(dD/d(n/N))CA of constant amplitude loading weighted according to the 

probability of occurrence, Pm(S) of stress cycles at stress S so that the 

damage rate under spectrum loading is equal to

dD

spectrum

OC

0

P (S)dS m ' ' « • • 11*1
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Then failure is predicted at 2  1, i.e, due to the above effect

alone the Palmgren-Iiiner hypothesis will overestimate the life.

¡However, the results shown in Chapters 9 and 10 have also demonstrated 

that stress-interaction effects exist alongside stress-dependence in the 

fatigue process, showing that equation (ll.l) is not strictly true. Stress 

interaction effects have been shown to increase 2  — so that at failure it 

is greater than unity (Chapter 10). The effects, for example •strengthening 

effect' etc., are summarised below.

b. Effect of low-level stress cycles

It has been shown that low-level stress cycles may be beneficial or 

damaging depending on the order of their application in a loading sequence 

(i.e. before or after high stress cycles). The circumstances under which 

the strengthening effect ensures that low-level stress cycles do no damage, 

or are beneficial, are as follows:

The strengthening effect occurs in a loading sequence consisting of 

a limited period of low cyclic stress level followed by a period at a higher 

stress level (low-high one-step tests) to failure. Under these conditions 

the value of 2  ^  may be from 1.1 to 2.6 times the life of specimens tested 

only at the higher stress level. 7/hen under a multiple step loading 

programme (programme 3 - 6 in Chapter 10) there is a large number of short 

periods of low stress cycles and/or high preceded by a low stress cycle 

2, ^ is generally greater than unity.

On the other hand, when a low cyclic stress level was preceded by a 

high stress, the initiation and propagation of cracks was found to progress 

rapidly and unless the stress level was increased within a reasonable time 

2  ^ was less than unity. Nevertheless, in a multiple-step variable 

amplitude test, the overall effect of interaction will generally give values 

of 2  |  greater than unity.
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11.2 A conceptual damage-cycle ratio relationship

A mathematical formulation of the more sophisticated hypothesis 

which allows for both stress-dependence and interaction, such as a 

modification of Coten-Dolan^^ hypothesis, will result in expressions far 

too complicated to be used as a design tool. A simpler empirical damage 

concept to express the cumulative fatigue behaviour of concrete under 

variable cyclic compression is presented in the following:

Fatigue damage, D, can be defined as a variable, beginning at zero 

at the start of the fatigue life of a specimen and reaching unity at failure. 

The curve of damage against percentage life (or cycle ratio) at one selected 

constant amplitude cyclic stress can be given an arbitrary form. For 

example, in Fig. 11.1 which is derived from the present series of one-step 

tests the curve for the 70$ stress level is represented by a straight line. 

This line, together with the curve marked 80$ (l) are the two curves to be 

used in the evaluation of the fatigue life in high-low one-step tests.

The 70$ line is used with the curve marked 80$ (2) to determine the fatigue 

life in low-high one step tests. The two curves 80$ (l) and (2) are 

derived from the average of the results of one-step tests (Chapter 9)* and 

the fact that there are two and not one 80$ curve is a clear proof of inter­

action. The procedures for the determination of the fatigue life are as 

follows:

a. For a programme consisting of two main levels in high-low sequence, 

draw a vertical line from the value of n^/N^ (the fraction of the life at 

the first stress level) to intercept the 80$ (l) line. From this point 

draw a line parallel to the horizontal axis to the right to intercept the 

70$ line and read the value of (the fraction of the life at constant

amplitude loading at the second stress level) from the scale below.2  n/N 

is equal to n^/N^ + n2^2 will always be less than 'unity.
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"b. For a one step low-high sequence, draw a vertical line at the 

given value of n^/N^ to intercept the 70$ line, then draw a horizontal line 

to the left to intercept the 80$ (2) line and read the value of n^N, from 

the scale. 2  n/N is equal to n^/N^ + n2/N2 and is always greater than

unity. I

To determine the probable fatigue life in two-step and four-step 

sequences, it is necessary to define the area beneath the 70$ line as 

negative and the area enclosed by the 80$ (2) as a positive (or strengthening 

area). This is because we are now dealing with the combined results of 

positive (low-high sequence) and negative (high-low sequence) interaction 

effects, each of which has influence over the subsequent sequences. As 

an example the fatigue life will be determined for a low-high-low loading 

programme consisting of 50$ of the life at a stress level of 70$ followed 

by 50$ of the life at 80$ and a further period of unknown length at 70$•

The use of the diagram is represented in Fig. 11.1 by the points: B, C, D,

E, F, G. The cycle ratio at the third stage is equal to

EF - HX - GX - (from n2/N2 scale),»1.55 - 0.46 - 1.09

The net cycle ratio » 0 . 5 + 0 . 5 + 1 . 0 9  « I .69

Compared with the experimental average result » 1.734

For a high-low-high programme (Programme 5)» the points in Fig. 11.1 

are B, I, F, J, K and

nj/Nj' - 0.67 - 0.16 - 0.51 ( K J = K L “ J l )
2  n/N - 0.5 + 0.5 + 0.51 - 1.11

Compared to the experimental result ■ 1.408

The same procedure can also be applied to four step tests. For 

example, a loading programme consists of alternate stress levels of 70$,

8C$, 70$, 80$ for a fixed 20$ of the life in each period and a further period 

of unknown length at 70$ stress level. The use of the diagram in this case
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is represented in Fig. 11.1 by the points a', b', c', d', e', f', g' and 

h', i'. The cycle ratio at the fifth stage, n^/K^, is equal to Ij =

= h' i' - .995 - 0.255 - 0.74

therefore 2 |  - 0.2 ■+ 0.2 + 0.2 + 0.2 + 0.74 - 1*54 

Compared to the experimental average result - 1.685

For a loading programme similar to the programme 6 ;

TL./llr- - 0.52 » 0.12 - 0.4 5 5
.*. 2  n/N - 0.8 + 0.4 « 1.2 (1.758 average)

It will be seen that the predicted life derived from the conceptual 

damage-cycle ratio relationships approximates to the average experimental 

values, and generally predicts slightly lower values of 2  ^ than the 

actual 2  ^  thus providing some safety margin. Therefore, the interaction 

effects between a high and low stress level forming a complex loading 

sequence could be determined from relatively simple one-step tests.

To improve the accuracy, it is proposed that the conceptual damage- 

cycle ratio should be derived from a large number of experimental results, 

this could be done by varying the cycle ratio n̂ /lT̂  at the first stage of 

the tests from 0.05 to 0.95 with an increment of 0.5 after which the tests 

continue to failure under the second stress level. It should also be 

emphasized that the derived concept is purely empirical and is only one of 

the possible approaches to the problem of cumulative damage. Its applica­

bility to concrete of other mix proportions, age, etc., requires caution 

and must be justified by further experiments.

11»3 Summary of conclusions and suggestions for further research

Most of the cd nclusions resulting from the analysis and discussion 

of the test data are presented at the end of each Chapter. . However, the 

conclusions which are considered as a significant outcome from the present 

work will be summarised here.
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Analysis of several models of S-N-P diagrams in the light of 

experimental data reveals that the conventional diagram of stress against 

number of loading cycles (S-N) diagram, extended to include the probability 

of failure, P, derived from the cumulative normal distribution function, 

is generally applicable for stress levels between 65 and 85y* of the static 

ultimate strength.

Cyclic stresses of constant amplitude have a progressive effect on 

the properties of concrete each of which is affected to a varying degree 

depending on the level of stress. Generally, the changes consist of 3 

stages, firstly a rapid decrease in the area of the hysteresis loop and 

modulus of elasticity and an increase in the total strain, elastic strain, 

inelastic strain, volumetric strain and Poisson's ratio up to 0 - I0f° of 

the total life. This is followed by a uniform decrease of the first two 

and a uniform increase of the other characteristics mentioned. Finally 

when fatigue failure occurs, there is a slight increase in the hysteresis 

area, the total strain, elastic and inelastic strain, volumetric strain 

and Poisson's ratio while the modulus of elasticity shows a slight

decrease.

The progressive internal changes of concrete under constant amplitude 

cyclic stress can be indirectly indicated by the decrease of the original 

pulse velocity. Empirical relations are proposed relating the decrease of 

pulse velocity with the cycle ratio or the fatigue life and the number of 

loading cycles.

Fatigue damage of concrete is stress-dependent, that is, the damage 

at a certain cycle ratio is not the same for all stress levels and depends 

on the stress level to which the concrete is subjected. Damage of a 

highly stressed specimen accumulates more slowly than that of a low-stressed 

specimen in the early fraction of life, but progresses more quickly than the

f
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latter in the later part of the life. The magnitude of the stress levels

and the order in which they are applied also affects the general fatigue 

behaviour (stress-interaction) when the concrete is subjected to variable 

amplitude cyclic loading.

The Palmgren-Kiner hypothesis is a stress-dependent, interaction-

free hypothesis, and therefore, does not accurately predict the fatigue life

of concrete subjected to multiple step variable amplitude loading

programmes as conducted in the present work. Generally, it gives too
nconservative a value of 2  jj, but sometimes it gives an unsafe prediction 

by over-estimating of the actual value of 2  ~.

A conceptual damage-cycle ratio relationship is proposed in which the 

stress-interaction effects is introduced and generally fair agreement is , 

obtained from its use with multi-step sequence at two stress levels.

There are, however, some difficulties that must be resolved by further 

experimental justification.

H . 3 .I Suggestions for further research

1. This investigation was restricted to one mix and one set of 

environmental conditions. It would be advantageous to establish whether 

the same findings occur independent of these parameters.

2. Pulse velocity measuring instruments are now available with 

facilities for connection to a chart recorder and it is hence possible

to record the decrease in pulse velocity continuously throughout failure.

It would be useful to establish whether there is a limiting value of the 

decrease of pulse velocity at failure for specimens tested at constant and 

variable amplitude tests. If there is, the decrease of pulse velocity and 

the fatigue life relationships established could be used to determine the 

true amount of damage at any given value of the fatigue life.

3. The acceleration and suppression of the decrease of pulse
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velocity observed, when a low cyclic stress was preceded by a high level 

and vice versa in stepped tests was attributed to the growth of the exist­

ing well-defined cracks and the absorption of energy by a large number of 

microcracks. Supporting evidence from crack studies, i.e. studies with 

inclusions of different shape and'orientation, cracking in partially 

fatigued specimens, etc., will be needed to prove the assumption.

4. A more extensive investigation of the cumulative fatigue 

damage behaviour under variable amplitude cyclic stresses .other than the 

two maximum stress' levels used in the present work is required to establish 

whether the interaction effects vary with the range of stress.

5. It will be advantageous to check the validity of the proposed 

empirical damage concept when applied to other types of variable amplitude 

loading, i.e. random, and/or block loading programmes.
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TABLE 4.1 SUMMARY OF TEST PROGRAMME

SERIES SIZE OF NUMBER OF SPECIMENS
DESIGNATION SPECIMENS CONTROL TESTS FATIGUE OBJECT OF TESTS

4 "CUBE PRISMS TESTS -

A 12 X  11 4 X 1 1 4 X 1 1 S.N.P. Relation-Stress Strain-Characteristics-Hysteresis 
Changes-Modulus of Elasticity-Pulse Velocity Changes in 
Concrete, under constant amplitude loading.

Effect of constant amplitude loading on Longitudinal
B

76.2X76.2 
X203.2mm. 
(3X3X8in)

12 4 4 and Lateral Strain, Volumetric Strain and Poisson's 
Ratio.

C 12 X  13 4 X 1 3 4 X 1 3

Verification of the Palmgren-Miner Cumulative Fatigue
-

D 12 X  4 4 X  4 4 X  4
Damage Hypothesis for concrete under variable amplitude

.... E 1 2 X 4 4 X 4 4 X 4 cyclic loadings.



SERIES-A

TABLE 5.1 ULTIMATE STATIC STRENGTH OF CONTROL CUBES

----- u DAYS . COMMENCEMENT 0]b’ TEST COMPLET]:ox o p TEST I
b a t c h , o , o s.d. Age.days / 2 s.d. Age,days . o s.d.IOÏ5 lbf/in N/mm“ N/mih2 lbf/in2 N/mm N/mm2 lbf/in2 N/mm N/mm2

A-1 6240 43.00 0.44 (36)
7250 50.00 1.82 (38)

7150 49.28 1.87

A-2 6490 44.75 0.22 (37)
7360 50.76 1 .21 (40)

7445 51.34 1 .42

A-3 6365 43.88 1.47 • (36)
7315 50.42 0.82 (4 0)

7810 53.86 1 .27

A-4 6345 43.74 1.16 (35)
6970 48.07 2.66

\ * ** (37)
7480 51.58 1.87

A-5 6310 43.49 1 .43 (38) ’ 
7200 49.64 1 .70 (44)

7760 53.52 0.62

A-6 6210 42.81 0.78 (37)
7200 49.64 0.92 (49)

7940 54.73 0.39

A-7 6500 44.80 0.84 (44)
7870 54.25 1.89 (48)

7640 52.68 1.21

A-8 6250 43.10 0.96 (47)
7590 52.31 1.76 (55)

•7905 54.49 1 .65

A-9 5955 41 .05 1 .38 (44)
7325 50.49 0.61 (51 ) 

7410 51.10 1 .65

A-10 6110 42.14 0.39 (45)
7325 50.49 1 .20 (63)

7760 53.52 1.51

A-11 ' 6060 41 .78 1 .44 (36)
7095 48.92 0.88 (61)

7850 54.12 1 .27

AVERAGE 6260 43.14 1.05 7320 50.45 1.52 7650 52.74 1 .41

Coeff. of variation: 2,44$ 3.02^ 2,6 8/-

* - Average of 4 cubes,'

**- Test stopped due to the break-down of fatigue testing machine, 

s.d. = Standard deviation.



TABLE 5.2 ULTIMATE STATIC STRENGTH'OF CONTROL PRISMS
SERIES-A

COMMENCEMENT OF TEST* COMPLETION OF TEST+
BATCH
No.

Age
days lbf/in2 N/mm2 s.d.

N/mm2
Age
days lbf/in2 N/mra2 s.d.

N/mm4"

A-1 36 4810 33.17 1 .04 38 4790 33.03
A-2 37 5095 35.13 0.60 40 5675 39.12
A-3 37 4870 33.56 0.44 40 5090 35.10

** *# ##
A-4 35 5225 36.02 0.63 37 5080 35.02 I 1.29

** NOTE : TEST STOPPED DUE TO
M/C BRAKE DOWN.

A - 5 38 5285 36.44 0.52 44 5040 34.75
A -6 37 5295 36.51 0.50 49 5170 35.64
A-7 44 5680 39.14 0.24 48 6415 44.22
A -8 47 5450 37.59 0.18 55 5730 39.52
A - 9 44 5345 36.85 2.53 51 5370 37.01
A - 10 45 5435 37.46 0.03 63 5600 38.62 

35.46' 0.17*A- 1 1 36 4940 34.07 1.27 47' 5145 *
61 5110 35.24

AVERAGE 5220 35.99 0.98 5350 36.89

Coefficient of variation: 2,73$ ■ ■ ■

* Average of 3 prisms.
+ Test result of 1 prism. 
' Average of 2 prisms.

TABLE 5.3 SUMMARY OF STATIC TESTS

DESIGNATION CONTROL CUBES PRISMS
28 days COMMENCEMENT COMPLETION COMMENCEMENT

SERIES-A
-B
-C
-D
-E

AVERAGE

43.14 N/mm2 
43.83 " 
42.78 " 
42.51 " 
43.86 " « 
43,22 N/mrn

50.45 N/mm2 
51.01 " 
49.28 »
47.95 "
<51 77 "
50!09 N/mm2

52.74 N/mm2 
52.43 " 
50.47 " 
51. 12 " 
52.98 " 3 
51.94 N/mrri

35.99 N/mm2 
35.24 " 
35.02 " 
36.32 " 
38.37 " 0 
36.1 8 N/mm*-

1,26 N/mm2 1.62 N/mm2 1.35 N/mm2 1.31 N/ mm4"
Coeff. of 
variation 2.93 $ 3 .24/ 0 2.60 / 3.63 /

s.d. = Standard deviation. ( §  ).



TABLE 5.4 SUMMARY OF FATIGUE TEST RESULTS
SERIES-A

BATCH SPECIMEN No. AVERAGE STATIC MAXIMUM STRESS No. OF
STRENGTH OF-PRISMS LEVEL, ■ fo CYCLES TO

No. N/mm FAILURE,N

F-1 33.17 80 . 1 512'
A-1 F-2 33.17 80 1 951

F-3 33.17 75 4 481
F-4 33.17 75 17 541
F-1 35.00 80 931

A 0 F-2 35.00 75 17 861
F-3 35.00 75 6 691
F-4 35.00 70 18 731
F-1 33.56 80 201

A -i F-2 33.56 75 1 111A —  J F-3 33.56 70 37 771
F-4 33.56 70 109 031
F-1 36.02 80 1 241

A — A F-2 36.02 85 331A —»*+ F-3 36.02 — — M.B*
F-4 36.02 — M.B*
F-1 36.44 ' 70 70 251

A er F-2 36.44 70 17 783A —  0 F-3 36.44 75 34 421
F-4 36.44 75 1 5 351
F-1 36.51 65 F.L**

A-6 F-2 36.51 80 5 351
F-3 36.51 65 1 850 885
F-4 36.51 80 17 511
F-1 39.14 85 361
F-2 39.14 85 651A— í F-3 39.14 70 86 364
F-4 39.14 70 54 283
F-1 37.59 85 51

A-8 F-2 37.59 85 491
F-3 37.59 85 151
F-4 37.59 65 1 500 577
F-1 36.85 85 261

A-9 F-2 36.85 85 F.L.**
F-3 36.85 85 621
F-4 36.85 65 1 452 399
F-1 37.46 80 1 533

A-10 F-2 37.46 65 551 234
F-3 37.46 65 2 113 707
F-4 37.46 — M.B.*
F-1 34.07 65 2 265 054

34.07 65 2 962 823A-11 : x-2 '
F-3 34.07 60 R .0. + +

' ’ F-4 34.07 60 R.0,+ +

NOTE: M;B.* -Test abandoned due to fatigue testing machine 
broke down.

F.L.**-Failure during loading. R.O.++-Run out . specimens,
(N> 3X10° cycles)
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TABLE 5.6
FREQUENCY DISTRIBUTION OF FATIGUE LIFE

■ SERIES A

m
N

P
N

P
S=85 ' S=80 S=75

m S=70 S=65

1 0.051 0.201 1.111 0.1111 1 17.783 .551 .234 0.125

2 0.151 0.931 4.003 0.2222 2 18.731 1452.399 0.250

3 0.261 1.241 4.481 0.3333 3 37.771 1500.577 0.375

4 0.331 1.512 6.691 0.4444 4 54.283 1850.8S5 0.500

5 0.361 1.531 15.351 0.5555 5 70.251 2113,707 0.625

6 0.491 1.951 17.541 0,6666 6 86.364 2265.054 0.750

7 0.621 5.351 17.861 0.7777 7 109.031 2962.823 0.875

8 0.651 17.511 34.421 0.8888 n=7

00IIa

S = Stress level - Percentage of static strength, 

n = Number of specimens tested at any stress level. 

N = Number of cycles to failure in thousands, 

m = Ranking of a specimen of a group based on the 

magnitude of N.

P = Probability of failure-cumulative frequency=



TABLE 5.7 STATISTICS OF FATIGUE DATA AT EACH STRESS LEVEL

STRESS 

LEVEL, S

H i  O F
SPECIMENS, n

FATIGUE LIFE, N LOG FATIGUE LIFE, log E Log N = (a+bP)

H A

V Log N VARIANCE §
log N CV a b r

85 8 0.36475 0.21367 2.459784 0.135635 0.368287 0.14972 1.83478 0.01250 0.9242

■80 8 3.77862 5.74843 3.249056 0.318026 0.563938 0.17357 2.28661 0.01925 0.9293

75 8 12.68250 10.97074 3.917986 0.230396 0.479996 0.12251 3.07049 O.OI695 0.9612

70 7 56.31628 34.45144 4.664988 0.097366 O .3 1 2 0 3 6 0.06688 4.09948 0.01131 0.9788

-,&5 7 1813.81128 756.96716 6.214126 0.054837 0.234173 0.03768 5.82512 0.00778 0.8975

60 *
2 - - - - ' - - - -

* - Run out, not included in computations.
-  3N - Kean fatigue life x 10 cycles.

log N - Kean of log fatigue life.

S'- Standard deviation =

C - Coefficient of variation = v

Jnï(x)^- (Sx)2 
1 n(n-1T where, x = variate value, n = the number of values.

Kean
** - St. Line Equation, Log N = (a + bp); where, P = Probability of

a,b = Coefficient of 

r = Coefficient of

failure (Table5.6). 

St. Line Equation. 

Correlation.



TABLE 5.8
STATISTICS OF LINEAR REGRESSION ANALYSIS

S-N DIAGRAM

Regression Coefficients:

a = 17.422118

b - 0.177616

Mean of ’S' = 75.000000

Mean of 'LogN' = 4.101188

SOURCE SUM OP SO. DEGREE OF FREEDOM MEAN SQ.
Regression 58.965158 1 58.965158

Residual 7.655837 36 0.212662

Total 66.620995 37

F-Test for r, p r^(n-2) 
r “ l-r^ 277.271525

Coefficient of Determination = r2 = 0.885084

Coefficient of Correlation = r = -0.940788

Standard Error of Estimate = 0.461153

Regression Equation:

L 0gN = 17.422118 - 0.177616 S

This equation is statistically reliable for 65 < S < 8 5 .
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TAUT .K 5.10

STATISTICS OF MULTIPLE LINEAR REGRESSION ANALYSIS 

S-N-P DIAGRAMfMc 'Call * s MODEL.)

Multiple Regression Coefficients :

A

B

C

Mean of 'Log(LogN)’ 

Mean of 'LogS'

Mean of ' Log(-LogL),'

6.933756 

-3.350850 

0.119501 

= 0.581152 

= 1.873116

= -0.571172

SOURCE

Regression

Residual

Total

F-Test

Coefficient

Coefficient

SUM OF SQ DEGREE OF FREEDOM

0.793381 

3.024375X1O”2 

0.823625

459.075745 

of Determination

2
35

37

= 0.963279

of Multiple Correlations 0.981468

MEAN SQ-

0.396690

8.641071X10"4

Standard Error of Estimate 2.939570X1O"2

Multiple Regression Equation?

Log(LogN) = 6.933756 - 3.350850LOgS + 0.119501Log(-LogL)

where L = 1-P j P = Probability of failure.



TABLE 5.11
STATISTICS OF MULTIPLE LINEAR REGRESSION ANALYSIS 

S-N-P DIAGRAM (MODIFIED M c C a l l ' s  MODEL)

Multiple Regression Coefficients :

Mean of 

Mean of 

Mean of 

Mean of

A 

B 

C = 

D =

'Log(LogN)'

'Log S' 

'Log(-LogL)' 

’LogS[Log(-LogL)]

5.637252 

-2.659922 

-2.151478 

1.210185 

- 0.581152

= 1.873116

a -0.571172 

'= -1.071818

SOURCE SUM OP SQ DEGREE OF FREEDOM MEAN SQ

Regression 0,807166 

Residual 1.645809X10"2

Total 0.823625

F -Test = 555.829413

3 0.269056

34 4.840615X10

37

Coefficient of Determination = 0.980017

Coefficient of Multiple Correlation= 0.989958 

Standard Error of Estimate = 2.200140X10“2

Multiple Regression Equation:

Log(LogN) = 5.637252 - 2.659922LogS - 2.151478Log(-LogL)

+ 1 ,210185LogS[Log(-LogL)]

where L = 1-P ; P = Probability of failure.



TABLE 6.1 ULTIMATE STATIC STRENGTH OP CONTROL CUBES AND PRISMS OP 

CONCRETE IN B-SERIES

CONTROL CUBES

28th DAYS* COMMENCEMENT OF TEST* COMPLETION OP TEST*

lbf/in2 N/mm2 s.d. « 
(N/mm )

(A^e-days) N/mm s.d.«
p

(Age-da^) N/mm' s.d.«
lbf/in2 (N/mm“*) lbf/in^1 (N/mm^)

6360 43.83 1.21

(40)

7400 51.01 2.43

(54)

7605 52.43 0.61

Coeff. of
variation 2.76/ 4.76/o 1.16/

CONTROL PRISMS+

(40)

5110 35.24 0.34

NOTE:
Result

5570 38.42 of one 
prism

Coefficient of variation O.96/

NOTEs * - Average of 4 cubes 

+■ - Average of 3 prisms 

s.d. - Standard deviation



TABLE 9.1 ULTIMATE STATIC STRENGTH OF CONTROL CUBES
SERIES-C

BATCH
+ h *28xn DAYS COMMENCEMENT OF TEST COMPLETION OF TEST*

lbf/in2 N/mn?
s. d. A g e ,days . 2 s.d. A g e ,day£

■N/mm2
s.d.

No. N/mm2 lbf/in* N/mm N/mm2 lbf/in N/mm2

C-1 6830 47.10 1 .74 (37)
7905 54.49 2.25 : (4 2)

7830 54.00 1 .22

C-2 6250 43.10 1.18 (36)
6990 48.19 0.48 (42)

7340 50.62 0.92

C-3 6095 42.02 1 .07 (35)
6885 47.46 0.79 (40) 

. 7025 48.44 0.48

C-4 6250 43.11 1 .67 (36)
7025 48.44 0.88 (39)

7095 48.92 1.63

C-5 5970 41 .17 1.18 (3 5)
6970 48.07 0.72 (38)

6970 48.07 0.46

C-6 6145 42.38 1.65 (35)
6655 45.89 1.07 (42)

7270 50.13 2.15

C-7 6235 42.98 0.72 (39)
7905 54.49 1 .65 (41)

7830 53.98 1 .04

C-8 6305 43.47 0.72 (38)
7305 50.38 2.37 (49)

7760 53.52 1.51

C-9 6235 42.98 0.46 (39)
7235 49.89 1.97 (43)

7410 51.10 1 .65

C-10 5815 40.08 1.33 (38)
6865 47.34 2.10 (43)

6605 45.53 1.37

c- 1 1 6090 41 .98 1 .83 (37)
6780 46.74 3.09 (44)

7375 50.86 1.85

C-1 2 5955 41.05 1.82 (37)
6960 47.98 0.39 (46)

7130 49.16 1 .45

C-1 3 6480 44.68 1 .60 (37) 
7445 ’ 51.34 1 .37 (44)

7515 51 .82 1 .67

AVERAGE 6205 42.78 1.37 7150 49.28 1.67 7320 50.47 1.42

Coefficient of 
variation 3.20$ 3.40$ 2.80$

* -Average of 4 cubes, 

s.d. = Standard deviation.



SERIES-C

TABLE 9.2 ULTIMATE STATIC STRENGTH OF CONTROL PRISMS

BATCH COMMENCEMENT OP TEST* COMPLETION OF TEST+

•lo

Age
days lbf/in2 N/mm2 s.d.

N/mm 2
Age
days lbf/in2 N/mm2 Remark

C-1 37-39' 4910 33.84 1.26 42 5410 37.34 >av.
I I **

C-2 36-39 4935 34.01 0.57 42 — -
C-3 35 4600 31 .70 2.14 40 4700 32.38

I t **
C-4 36-38 4510 31.09 2.09 39 — -
C-5 36 4725 32,58 0.49 38 4580 31.59
C-6 36 5350 36.89 0.40 42 5930 40.90 >av.

*#C-7 39 5920 40.80 0.28 41 — -
C-8 39 5530 38.12 1 .04 49 5475 37.74
C-9 39 4780 32.96 2.19 43 4210 29.02 >a.v.
C-10 38 5130 35.38 0.81 43 4525 31.19 > av.
C-11 37 5615 38.72 0.68 43 5135 35.40 > av.
C-1 2 37 5135 35.40 1 .36 46 5360 36.94*#
C-1 3 37 4910 33.86 3.39 44 — -

AVERAGE 5080 35.02 1.56 5036 34.72
Coefficient of variation 4.45%

*
**
+

- Average of 3 prisms.
-. Average of 4 prisms.
- Test result of 1 prism.

1 - 2 prisms at the beginning, 1 prism in the middle of the test.
" - 3 prisms at the beginning, 1 prism in the middle of the test,
s.d. = Standard deviation.



TABLE 9.3 SUMMARY OF ONE STEP TEST RESULTS
C-SERIES

SPECIMEN si S2 V Ni V N2 E(n/N)= §1+1*2 2 PALMGREN-MINER'S £ n/N
NUMBER

1o
1 12

1°

C1 -F1 80 70 0.251 0.383 0.633
C6 -F4 
C13-F2

80
80

70
70

0.251
0.251

0.408
0.550

0.659
0.801 0.764 0.152 1.000

C11-F3 80 70 0.251 0.715 0.965
C8 -F2 80 70 0.502 0.146 0.648
C13-F1 
C11-F4

80
80

70
70

0.502 . 
0.502

0.189
0.218

0.692
0.720 0.748 0.125 1.000

C1 -F3 80 70 0.502 0.428 0.931
C10-F2 80 70 0.753 0.037 0.791
C2 -F1 
C3 -F3

80
80

70
70

0.753
0.753

0.039
0.074

0.792
0.827 0.816 0.032 1.000

C5 -F3 80 70 0.753 0.103 0.856
C10-F4 70 80 0.250 1.010 1.260
C8 -F3 
C1 -F2

70
70

80
80

0.250
0.250

1 .880 
1.990

2.130
2.240 2.120 0.655 1.000

C2 -F3 70 80 0.250 2.600 2.850 N
C12-F4 70 80 0.500 0.851 1.351
C13-F4 70 80 0.500 1.127 1.628 2.104 0.725 1.000C4 -F3 70 80 0.500 2.105 2.605
C1 -F4 70 80 0.500 2.385 2.835
C13-F5 70 80 0.750 0.349 1.099
C2 -F2 70 80 0.750 0.453 1.203 1.716 0.734 1.000C6 -F2 70 80 0.750 1.120 1.870
C9 -F2 70 80 0.750 1.942 2.692

S.j — Stress level for the first stage -foof prism static strength n^= No of cycles for the first stage
S2 = Stress level for the second stage-^of prism static strength n~= No of cycles for the second stag
N.j = Fatigue life at constant stress level S. ^  (continue to failure)
N2 = Fatigue life at constant stress level Si>, §  = Standard deviation



TABLE 9.4 SUMMARY OF CONSTANT AMPLITUDE AND 

1 STEP TEST ANALYSIS

STRESS

le v e l

£ -  c(n/N)d V -  a(n/N)b

Trial 1.2(a) Trial 1.2(a) Trial 1.2(b) Trial 2.1

80$ c -  1840.1371 
d - 0.0955
r -  0.8822

Degree of 
Freedom -  6

a - 6.1682 
b - 0.3495 
r -  0.8050 
At* -  1005IS 

v  -  30.846/0
Degree of 
Freedom -  231

a - 6.3574 
b - 0.3220 
r -  0.8408 
Atft - 100$

V - 28.008$ 
Degree of 
Freedom « 138

a - 7.3798 
b - 0.3024 
r -  0.9064
At ft « 100$

v  -  29.707$
Degree of 
Freedom «127

75$ c -  1855.5041 
d -  0.0974 
r -  0.8722

Degree of 
Freedom « 7

a -  5.5906 
b -  0.3884 
r -  0.8774 
Atjj- 100$

V -  33.450/ 
Degree of 
Freedom -  20

The same as 
Trial 1.2(a)

10fo c -  1873.5170 
d -  0.0716 
r - 0.8315

Degree of 
Freedom » 2 3

a -  10.27 38 
b -  0.2426 
r -  O.9O36 
At ft -  100$

v  -  3 1 .4 1 0 /
Degree of 
Freedom « 101

a -  9.4372 
b -  0.2572 
r - 0,9094 
Atjj -  100$

v  -  30.842$
Degree of 
Freedom - 74

a -  10.1407 
b - 0.2535 
r -  0.9195 
At U -  100$

v  « 32.591$
Degree of 
Freedom ■ 250

65$ c - 2335.3697 
d - 0.0877 
r - 0.8692

Degree of 
Freedom « 61

a - 11.5660 
b - 0.2162 
r -0.8973 
At jj - 100$

v  -  31.306
Degree of 
Freedom - 81

a - 10.4483 
b - 0.2206 
r - 0.9177 
At n - 100$

V «,28.865$
Degree of 
Freedom « 32

V - Percentage decrease of original pulse velocity 
£ • Total strain in micron

n/N « Cycle ratio
a,b,c and d - Experimental constants

r - Coefficient of correlation



TABLE 9.5 SUMMARY OF CONSTANT AMPLITUDE AND

1 STEP TEST ANALYSIS

STRESS £ ■ c (n)^ V - a(n)k

LEVEL Trial 1.2(a) Trial 1.2(a) Trial 1.2(b) Trial 2.1

80$ c - 1406.6909 a - 2.7790 a - 3.2019 a » 3.0961
d - 0.0970 b - 0.3043 b - 0.2833 b - 0.3042
r - 0.8822 . r - 0.7639 r - 0.7577 r - 0.8752

At V - 30.846?; At V - 28.008$ At V - 29.707$
N - 2722 N - 2113 N - 1689

Degree of Degree of Degree of Degree of
Freedom Freedom Freedom Freedom
- 8-2 - 6 - 233-2 - 231 » 140-2 - 138 - 129-2 - 127

75$ c - 1107.4238 a - 0.4915
d - 0.0980 b - 0.4402 The same as
r - 0.8729 r - 0.9627 

At V - 33.450$ Trial 1.2(a)
N - 14559

Degree of Degree of
Freedom « 7 Freedom - 20

70$ c - 1104.9795 a - 2.8832 a - 1.8043 a - 1.7556
d - 0.0749 b - 0.2080 b - 0.2475 b.- 0.2545
r - 0.8684 r - 0.8114 r - 0.8868 r - 0.9204

At V - 31.410$ At V - 30.842$ AtV ■ 32.591
N - 97,000 N - 95703 N - 96399

Degree of Degree of Degree of Degree of
Freedom - 23 Freedom »101 Freedom - 74 Freedom ■ 250

6$ c - 955.2368 a - 1.4047 a - 1.3746
d - 0.0897 b - 0.2146 b - 0.2155
r - 0.8725 r - 0.8942 r - 0.9037

At V - 31.306$ At V - 28.865?;
N - 1915463 N - 1380815

Degree of Degree of Degree of
Freedom » 61 Freedom - 81 Freedom - 32

V - Percentage decrease of original pulse velocity 
£ - Total strain in micron 
n - Number of applied cycles 

a,btc and d - Experimental constants 
r - Coefficient of correlation



TABLE 9.6 SUMMARY OF 1 STEP TEST ANALYSIS

STRESS LEVEL 
S 1
80 #

STRESS LEVEL 
S1
70 °/o

V = a(n/N)b
n , / ^  = 25 # n1 /N-j = 50 # V N 1 = 75

a = 9.1956 a = 7.2147 a = 6,0249
b = 0.2194 b = 0.3022 b = 0.3647
r = 0.7776 r = 0.9192 r = 0.9642
At n/N = 1 00 # At yH = 1 00 # At rAi = 1 0 0 #
X  = 25.266 X  = 29.011 Vu = 32.313
Degree of Freedom Degree of Freedom Degree of

Freedomo'»CMIICM1ICNCMII ___ = 47 - 2 = 45_______ = 5 7 - 2  = 5^
V  = a(n)b

n^/N^ = 2 5  °p n 1/N1 = 50 # = 75 #

a = 4.9604 a = 3.0858 a = 2.1641
b = 0.2203 b = 0.3030 b = 0.3656
r = 0.7778 r = 0.9196 r = 0.9644
At Vu = 25.266 At X  = 29.011 At Vu = 32.313

N = 1 620 N = 1 627 N = 1 628
Degree of Freedom Degree of Freedom Degree of

Freedom
= 1 5 - 2 = 1 3 = 48 - 2 = 46 =  57 - 2 =  55

V =  a (n/N)b
=  25 # n 1/N1 =  50 c/o /N1 =  75 #

a =  9.1688 a =  10.9894 a =  9.4489
b =  0.2166 b =  0.2507 b =  0.285Ö
r =  0.9102 r =  0.9126 r =  0.9013
At %  =  100 # At % i  =  100 °/o At %  =  1 0 0 #
X  =  24.870 X  =  34.864 X =  35.235
Degree of Freedom Degree of Freedom Degree of

Freedom=  117 - 2 =  115 = 9 8 - 2  = 9 6 = 150- 2 =148
V =  a(n)b

=  25 # =  50 # n 1/N1 = 7 5  #
a =  2.1741 a =  1.9380 a =  1.2544
b =  0.2106 b =  0.2517 b =  0.2898
r =  0.9220 r =  0.9140 r =  0.9365
At X  =  24.870 At X  =  34.864 At Vu =  35.235

N =  106 137 N =  96 786 N =  99 462
Degree of Freedom Degree of Freedom Degree of

Freedom
= 65 - 2 = 63 =  95 - 2 =  93 =  1 5 0 - 2  =148



TABLE 9.7 SUMMARY OF 1 STEP TEST ANALYSIS

STRESS LEVEL io io V~ = a( \ & n 0 ;

S! S2 n,/N,
V N2 a b

£
r

80 io 70 Ì 25.1 TU
FAILURE 0.1968 0.4436 0.9007

(51.30) DEGREE OF. FREEDOM = 70-2 = 68

5 0 . 2 TO
FAILURE 0.0888 0.5386 0.9532

(24.60) DEGREE OF FREEDOM = 63-2 = 61

75.3 TO
FAILURE 0.6543 0.3559 0.7100

( 6.23) DEGREE OF FREEDOM = 50-2 = 48

70 io 80 io 25 TO
FAILURE 0.01867 0.8308 0.9401

(187.00) DEGREE OF FREEDOM = 62-2 = 60

50 TO
FAILURE 0.0266 0.8434 0.9252

(160.40) DEGREE OF FREEDOM = 83-2 = 81

75 TO
FAILURE 0.1275 0.5737 0.8006

(196.60) DEGREE OF FREEDOM = 42-2 = 40

V 2 = Maximum decrease in ultrasonic pulse velocity in percent 

due to n 2 at S2 .

n 2 = Actual loading cycles at S2 after at •

a,b as Experimental constants, 

r = Coefficient of correlation.



TABLE 9.8 SUMMARY OP 1 STEP TEST ANALYSIS

STRESS LEVEL * * V, a= a( n 2/N )b
si S2 n,/N, n 2/N2 a b r

80 1o 70 fo 25.1 TO
FAILURE 4.1748 0.4430 0.9008

(51.30) DEGREE OF FREEDOM = 70-2 = 6 8

50.2 TO 3.6308 0.5372 0.9528
FAILURE
(24.60) DEGREE OF FREEDOM = 63-2 = 61

75.3 TO
FAILURE 6.9582 0.4918 0.8608

(6.23) DEGREE OF FREEDOM = 50-2 = 48

70 1° 80 °/° 25 TO
FAILURE 0.1903 0.8306 0.9401

(187.00) DEGREE OF FREEDOM = 62-6 = 60

50 TO
FAILURE 0.2764 0.8482 0.9256

(160.40) DEGREE OF FREEDOM = 83-2 = 81

75 TO
FAILURE 0.6334 0.5736 0.8006

(96.60) DEGREE OF FREEDOM = 42-2 = 40

V 2 = Maximum decrease in ultrasonic pulse velocity in percent 

due to ^2 / ^ 2  ^2*

n2 ^ 2  = Actual cycle ratio at after n -j/̂ -j at , 

a,b = Experimental constants 

r ■« Coefficient of correlation.



TABLE 10.1 ULTIMATE STATIC STRENGTH OF CONTROL CUBES

SERIES-D

BATCH
No.

28th DAYS* COMMENCEMENT 0!F TEST* c o m p l e t :[ON OF TEST*

lbf/in2 N/mm2
s.d.
N/mm2

Age »days
N/mm2

s.d.
N/mm2

Age,davs
N/mm2

s.d.
N/ mm*1.lbf/in^ Ibf/in2

D-1 6155 42.43 0.82 (37)
6605 45.53 1.93 (43)

6990 48.19 0.92

D-2 6535 45.04 0.96 (37)
7290 50.25 1 .27 (43)

8150 56.18 1 .79

D-3 5850 40.32 0.72 (37)
6920 47.71 2.25 (45)

7290 50.25 1 .27

D-4 6130 42.26 1 .07 (38)
7010 48.31 1.39 (44)

7235 49.89 1 .04

AVERAGE 6165 42.51 0.90 6955 47.95 1 .75 7415 51.12 1 .29

Coeff. of variation: 2.125» 3.66 % 2.54e/»

* - Average of 4 cubes, 
s.d. = Standard deviation.

TABLE 10.2 ULTIMATE STATIC STRENGTH OF CONTROL PRISMS

SERIES-D

BATCH
NÖ.

C0MMENCEMEN3 OF TEST** COMPLETION OF TEi3T+
Age
days lbf/in2 N/mm2 s.d.«

N/mm
Age
days lbf/in2 N / mm" Remark

D-1 37 5285 36.44 1 .24 43 4970 34.26
D-2 37 5375 37.06 0.60 43 5930 40.89 >av.
D-3 37 5055 34.85 2.35 45 5415 37.34
D-4 38 5360 36.94 0.90 44 5845 40.30 >av.

'AVERAGE 5270 36.32 1.43 5540 38.19

Coeff. of variation: 3.94°/»

** - Average of 3 prisms,
+ - Test result of 1 prism.



TABLE 10.3 ULTIMATE STATIC STRENGTH OP CONTROL CUBES
SERIES-E

b a t c h
+ h * 28xnDAYS COMMENCEMENT OP TEST* COMPLETION OP 1UCST

. 2 , 2 s.d. A g e ,days . 2 s.d. Age,davs
N/mm2

s.d.

ol • lbf/in N/mm N/ mm2 lbf/in2 N/mm ̂ N/mm2 lbf/in2 N/mm2

E-1 6375 43.95 1 .07 (37)
7375 50.86 0.88 (44)

7620 52.55 0.48

E-2 6165 42.52 2.00 (38)
7410 51.10 1.21 (45)

7620 51.10 1.65

E-3 6585 45.41 2.47 (39)
7750 53.42 0.57 (46) . 

8050 55.50 0.34

E-4 6325 43.59 0.42 (42)
7500 51.70 2.10 (44)

7655 52.79 1.38

a v e r a g e  6365 43.86 1 .68 7510 51 .77 1 .32 7685 52.98 1 .11
Coeff.of variation: 3.855» 2.55# 2.10#

* -Average of 4 cubes.

TABLE 10.L ULTIMATE STATIC STRENGTH OF CONTROL PRISMS

SERIES-E

BATCH

No.

COMMENCEME NT OP TEST** COMPLETION OP TEST+
Age
days lbf/in2 N/mm2 s.d.

N/mm^
Age
days lbf/in2 N/mm2 Remark

E-1 37 5845 40.30 1.09 44 mm ' —  —

E-2 38 5190 35.78 0.69 45 -
E-3 39 5940 40.96 1 .60 46 7215 49.72' > ay.
E-4 42 5285 36.44 1 .47 44 - —

AVERAGE 5565 38.37 1 .26 \

Coefficient of variation 3.29#

** - Average of 3 prisms.
+ - Test result of 1 prism.
' - Average of 2 prisms.
" - Average of 5 prisms,
s.d. = Standard deviation.



T A B LE 1 0 .5  SUMMARY O F  TWO S T E P  T E ST  RESULTS
D - S E R I E S

SPECIMEN
NUMBER

si
*

S2
%

S3
%■ Ni —2

N2
—3
N3

vH r: Up + -2  + —3 
~ N  N j N |  N^

3
Z  (n/ti)av 
1

s.d. PALMGREN-NINER 
HYPOTHESIS Z|J

D2-F4 80 7° 80 0.300 0.233 0.533

Dl-Fl 80 70 80 0.300 0.300 0.858 1.458

D2-F1 80 70 80 0.300 0.300 0.913 1.513 1.408 0.519 1.000

D3-F3 80 70 8o 0.300 0.300 1.030 1.630

D1-F4 80 70 80 0.300 0.300 1.310 1.910

D4-F2 70 80 70 0.300 0.300 0.205 0.805

D4-F4 70 80 70 0.300 0.300 0.829 1.429

D2-F2 70 80 70 0.300 0.300 0.995 1.595 I .734 0.792 1.000

D4-F3 70 80 70 0.300 0.300 1.275 1.875

D!-F3 7° 80 70 0.300 0.300 2.365 2.965 •

S
N 3

3
nl*n2

n3
s*d*

b Stress levels for the first,second and third stage (Percentage of prism ultimate static strength) 
e Fatigue life at constant stress levels S^, S^, and S^
= Number of cycles for the first and second stage
*= Number of cycles for the third stage(continue to failure)
= Standard de viation.



TABLE 10.6 SUMMARY OF FOUR TEST RESULTS
E-SERIES

SPECIMEN
NUMBER

S1
1°

S2
*

S3 V
1°

S5
*

Si
n i

s2
N2

a3
i

n.
<

£5 5
2  - 7  »

5  V, 
2(-)1 N ;av. s.d.

PALMGREN-
MINER2 $N

El-FI~ 80 7° 80 70 80 0.202 0.200 0.110 - - O .5 1 2

E1-F3 : 80 70 80 70 80 0.202 0.200 0.202 0 .2 2 7 0.747 1.578

E1-F4 • 80 70 80 70 80 0.202 0.200 0.202 0.200 1.030 1.834 1.738 0.793 1 . 0 0 0

E2-F1 80 70 80 70 80 0.202 0.200 0.202 0.200 1.287 2 .0 9 1

E2-F3 80 70 80 70 80 0.202 0.200 0.202 0.200 1.875 2.679

E4-F2 70 80 70 80 70 0.200 0.202 0.200 0.202 0.163 0.967

E2-F2 7 0 80 70 80 70 0.200 0.202 0.200 0.202 0 .4 2 0 I .2 2 4

E2-F4 7 0 80 70 80 70 0.200 0.202 0.200 0.202 0.575 1.379 1.685 0.819 1.000

E2-F5 7 0 80 70 80 70 0.200 0.202 0.213 0.202 0.995 1.812

E1-F5 70 80 70 80 70 0.200 0.202 0.200 0.202 2 .2 4 0 3 .0 4 4

sl’ S2’ V

CO

S5
V V V V

nl’ n2, V n4
nc5

Stress levels for the first, second, third, fourth, fifth stage {fo of prism static strength) 
Fatigue life at constant stress levels S^, S^, S^, S^ and S^
Number of cycles for the first, second, third and fourth stage 
Number of cycles for the fifth stage (continue to failure)
Standard deviation

1» SSSSSSSSS8SSS3



TABLE 10.7 SUMMARY OF TWO STEP TEST ANALYSIS

D - SERIES/PART A

S1 - 80j4 s 2 - 1 0/, Sj - 8 $

nl/ N.J- 0 - 30.0$ 2 n/N - 30.02-60.0$ • E g  »60.022-To FAILURE

V1 - a (n 1 /N1 )
b

V2 - a ( 2 n/N ) V3 - a (3 n/N)

a « 6.1119 

b - 0.2785

r - 0.9910
DEGREE OP . FREEDOM

= 30-2 - 28 
AT n/N - 1 0 $

vu - 22.03$

a » 0.9462 
b - 0.8598

r - 0.9674
DEGREE OP FREEDOM .

- 60

à ■ 10.3642 
b - 0.2774

r - O .7266
DEGREE OP FREEDOM

- 7?

V1 - a (n^) b w
S t  n, n* n,

a

b

2.7934

0.2794

r - 0.9909

DEGREE OP FREEDOM 

- 30-2 - 28

AT Vu - 22.03$
N - 1622

Number of cycles (n)- 
LOADING PROGRAMME 3

» Stress levels for the first,second and third stage

•. Max. decrease of original pulse velocity in percent 
dut to n^N^ at ; n^/Ng at Sg and n^/N^ at

■ Cumulative cycle ratio
■ Experimental constants

r -Coefficient of correlation



TABLE 10.8 SUMMARY OP TWO STEP TEST ANALYSIS

D - SERIES/PART B '

S1 - 70$ S2 - 80 $ Sj = 7 0$

ni/N1 - 0-30.00* 2 n/N - 30.00-60.02$ -60.02-T0 FAILURE

V1 - a(n1/N1)b •V? - a(2n/N)b Vj ■ a(2n/N)b

a - ’ 8.7233 a - 9.41 59 a - 2.7968

b - 0.2184 b - 0.2237 b - 0.5549

r - O .9 4 6 9

DEGREE OP FREEDOM 
- 50-2-48 

AT n/N - 100$
Vu - 23.844$

r - 0.3787
DEGREE OP FREEDOM 

- 27

r - 0.8344 
DEGREE OF FREEDOM 

. 40

1 a(n1)'

a ■ - 2.0233 

b - 0.2115

r - 0.9569

DEGREE OP FREEDOM

- 50-2 - 48 
AT Vu - 23.844$

N - 116,255 LOADING PROGRAMME 4

NOTE all expressions are of the same meanings as

in Table 10.8



TABLE 10.9 SUMMARY OF FOUR STEP TEST ANALYSIS
E - SERIES/PART A

80?° 10?° 8 Qf?o 10?° Q0?°

ni/"i 20.20?° 2  n/N - 20.02 - 40.0256 2  n/N 40.02 - 60.04?® 2 n / S  - 60.04 - 80.0456 2  -^ N 80.04 - TO FAILÜHÏ

V2 = a(2n/N)‘ a (2 n/N) a(2 n/N) V5 » a(2n/N)'

a
b
r

DEGREE

AT n/N
Yu

- 5.3547
« 0 .2 2 7 0

- 0.9591 
OF FREEDOM
-  18- 2=16 
=  10056
= I5.2315S

a - 0.6809
b - 0.9123 
r = 0.8974

DEGREE OF FREEDOM 
- 33

a = 8.0246
b = 0.2338
r = 0.4400

DEGREE OF FREEDOM 
= 19

a = 0.8922 
b = 0.7735 
r = 0.7436

DEGREE OF FREEDOM
= 50

a = 5.5072 
b = 0.3684 
r = 0.7543

DEGREE OF FREEDOM
- 59

t( v

a
b
r

DEGREE

A T Y u;

= 2.8284 
»  0.2278 

- 0.9589
OF FREEDOM 
tx 16  

N = 1620

NOTE; All expressions are of the same meanings 
as in Table 10.6

Max decrease of
original pulse velocity in percent due to

EXCEPT; V1, Vy V5

£>1* S^» Sj, S4 and S^.
2  ̂  = Cumulative cycle ratio 

b = Experimental constants 
r = Coefficient of correlation



TABLE 10.10 SU?!MAEY OF FOUR STEP TEST ANALYSIS 
E - SERIS5/PART B
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REPEATED AXIAL COMPRESSIVE LOADING. BASED ON 
VAN ORNUM8 . [MEAN STATIC STRENGTH 8.27 N/mm2 ]

Xi

PIG. 2.2 MODIFIED GOODMAN DIAGRAM FOR CONCRETE SUBJECTED 
TO REPEATED AXIAL LOADING. BASED .ON GRAF AND 
BRENNER8 .[MEAN STATIC STRENGTH 17.58 N/ram2 ]
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FIG. 2.3 S-N DIAGRAM FOR AIR-ENTRAINED CONCRETES SUBJECTED 
TO REPEATED AXIAL COMPRESSIVE LOADING.
BASED ON ANTRIM AND McLAUGHLIN?3

Cycles to Failure

FIG. 2.4 S-N DIAGRAMS FOR HIGH AND LOW STRENGTH LIGHTWEIGHT 
AGGREGATE CONCRETE SUBJECTED TO REPEATED AXIAL 
COMPRESSIVE LOADING. BASED ON GRAY,. McLAUGHLIN, : 
AND ANTRIM?4 '
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FIG. 2.5 FATIGUE LIFE OF CONCRETE IN TENSION 
AND COMPRESSION BASED ON LINGER AND 
GILLESPIE?5 [MEAN STATIC STRENGTH = 23.16 N/mm2 ]

FIG. 2.6 EFFECT OF REST PERIODS ON FATIGUE
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FIG. 3.1 TYPICAL AGGREGATE GRADING CURVES

Si02 21.11 °/o LSF 91.6
A L O 6.50 f LCF 90.0 °/°
Fe2°3 2.61 c/° SR 2.32 c/o
Ca0 64.53 % AR 2.49 °/°

1.00 °/°o MgO °3S 43.6 fo
M2 S°3 2.41 °/o C2S 27.6 °/>

O Na20 0.28 f c 3a 12.8

V 0.62 f C .AF 4 7.9 1°

Loss on Ignition 0.81 <fo
Insoluble Residue 1 .29 7°
Free Lime 1.1 % '

Water for Standard Consistency 27.7•*$OM Setting Times: Initial 135 minutes
COH Final 185 minutesHI
Pi Expansion 1 mm. Surface Area 428 m^/kg

TABLE 3.1 TEST RESULTS OF R.H.P.C. IN ACCORDANCE WITH 
B.S 12:PHYSICAL AND CHEMICAL TESTS.



NU
MB

ER
 O

F 
CU

BE
S 

IN
 I

NT
ER

VA
L 

CO
MP

RE
SS

IV
E 

CU
BE

 S
TR

EN
GT

H—
N/
ra
m

8000
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CM
40 -

30

20 -

10

0 1 3  7 14

MOIST CURE 
R,H.9540<#
TEMP. 18°C (65°P)

O Average of . 12 cubes

_  6000

CONCRETE MIX PROPORTIONS(by wt.) 
R.H. P.C. 1
FINE AGGREGATE 2
COARSE AGGREGATE 4
VATER/CEMENT RATIO 0.6 -
SLUMP TEST(av. ) 13 mm. ( H O  
C.F. (av.) 0.92
VEBE TEST (av.) 3.5 second

CM
-  4000

2000

0
28 35 42 50 60

Age, days

FIG. 3.2 TYPICAL GAIN OF STRENGTH OF CONCRETE 
WITH TIME.

F I G . 3.3 HISTOGRAM OF ULTIMATE CUBE STRENGTH 
(Age 28 days)

lb
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F I G.3.4 PROPOSED RELATIONSHIP BETWEEN STANDARD DEVIATION
AND THE CHARACTERISTIC STRENGTH {. Ul )
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FIG. 3.6 NEW CAPPING JIG [Scale 1:2] 
All dimensions are in inches 
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FIG. 6.5 VARIATION OF STRESS-STRAIN CURVES WITH NUMBER OF CYCLES
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FIG. 7.1 VARIATION OF STRESS - PERCENTAGE DECREASE OF THE ORIGINAL PULSE VELOCITY CURVES WITH

NUMBER OF CYCLES
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FIG. 8.1 REPRESENTATION OF PROGRESS OF FATIGUE
DAMAGE WITH APPLICATION OF STRESS CYCLES 
(CONSTANT STRESS AMPLITUDE)
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FIG. 8.2 DAMAGE-CYCLE RELATIONSHIPS FOR SEVERAL
STRESS AMPLITUDES, CONSTANT STRESS AMPLITUDE 
TESTS ( S 1> S 2> S 3> S 4 )
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FIG. 9.2i* CRACKING MODE OF A DAMAGED SPECIMEN AFTER

1 804 400 LOADING CYCLES.
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FIG. 10.7 VARIATION OF V WITHS n/N OF A SPECIMEN SUBJECTED TO LOADING PROGRAMME 5
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F IG . 1 1 . 1  CONCEPTUAL DAMAGE -  CYCLE RATIO RELATIONSHIPS ( FROM ONE STEP TESTS )
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