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Abstract

The interaction between cocoa polyphenols and sugars was investigated in 

the Caco-2 cell model. Previous investigations have suggested a link 

between sugar content of a food/meal and epicatechin bioavailability. To
i

investigate this hypothesis further, the effect of sucrose, glucose and 

fructose on epicatechin absorption across the Caco-2 monolayer was 

studied, and is presented here. Apical to basolateral transport of epicatechin 

was enhanced by co-incubation with sucrose, but not glucose or fructose. It 

is proposed that sucrose-induced cell signalling stimulated activity of the 

sodium-dependent glucose transporter SGLT1, which lead to widening of 

tight junction pore size. Consequently paracellular permeability of 

epicatechin was enhanced. The presence of glucose or fructose, but not 

sucrose, reduced the total concentration of methylated epicatechin produced 

by Caco-2 cells. Decreased formation of methylated epicatechin is 

hypothesised to be a consequence of catechol-Omethyl transferase 

inhibition (COMT). COMT requires a magnesium cation cofactor, which is 

also required by some glycolytic enzymes. It is suggested that competition 

for the magnesium (II) cofactor leads to reduced epicatechin methylation. 

Flavanol-rich dark chocolate extract also reduced total methylation of 

epicatechin. It is proposed that flavanols with a degree of polymerisation 

greater than monomer compete with epicatechin for methylation.

Dark chocolate is reported to have a low glycaemic index, which was 

hypothesised to be attributable to flavanol inhibition of sucrose hydrolysis 

and/or glucose uptake. In Caco-2 cells the rate of sucrose hydrolysis and the 

rate of glucose transport were attenuated by a flavanol-rich dark chocolate 

extract. Reduced rate of sucrose hydrolysis was partly attributed to the
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epicatechin content of the dark chocolate extract, with a synergistic 

contribution from other flavanol components. Similarly, synergy between the 

flavanol components of dark chocolate extract, or those components with a 

degree of polymerisation greater than dimer, is postulated to be responsible 

for reducing the rate of glucose absorption. Moderate concentrations of 

flavanol monomers and B2 dimer enhanced the rate of sucrose hydrolysis; 

proposed to be a consequence of flavanol-enzyme binding, at a site other 

than the active site, resulting in a conformational change that lead to more 

exposed catalytic residues at the active site. Caffeine and theobromine 

increased the rate of cellular glucose uptake. This is suggested to be a 

consequence of stimulated SGLT1 trafficking to the apical membrane 

induced by elevated cyclic adenosine monophosphate concentration within 

the cells as a result of cyclic 3’, 5’-nucleotide phosphodiesterase inhibition.
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Chapter 1 Literature review

1.1 Cocoa and chocolate

1.1.1 Production

Cocoa is a dry powdered product manufactured from seeds of the 

Theobroma cacao L. tree, and in its unsweetened form is the result of fat 

extraction from cocoa liquor. Cocoa liquor is the material used in chocolate 

confectionery manufacture along with other ingredients such as sugar, 

emulsifier, milk protein, etc. depending on the desired product.

The production of cocoa liquor begins with cleaning the seeds followed by a 

fermentation stage during which the chemical composition of the bean 

begins to alter and once dried the beans are ready to be roasted. Roasting 

may be performed before or after shelling (winnowing), and is a fundamental 

part of the process that affects the flavour characteristics and nutrient profile 

of the final product. The shelled bean, known as the nib, is then ground to a 

paste, which causes the fat to melt and form cocoa liquor. The liquor may 

then be treated with an alkali solution, ‘Dutching’, to increase the pH and 

improve payability. Similar to the roasting process, the alkalising step 

affects the chemical composition of the cocoa liquor such that both stages in 

processing may be refined and strictly controlled to develop a product with a 

specific chemical profile.

1.1.2 Composition and biologically active components

The nutrient composition of cocoa and chocolate is distinct; dark chocolate 

containing 70% cocoa solids contributes more energy, lipid and sugars per 

100 g edible weight than unsweetened cocoa powder. However comparing
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percentage content is less relevant from a physiological perspective as the 

actual amount of dark chocolate and cocoa powder consumed is very 

different. A typical portion size of dark chocolate is approximately 28 g 

whereas a cocoa beverage may only contain around 5.5 g of unsweetened 

cocoa powder. Relative to the serving size, contributions to energy, lipid and 

sugar intake from unsweetened cocoa powder are much lower than from 

dark chocolate and quite insignificant compared with the United Kingdom 

(UK) reference nutrient intake (RNI) values. Similarly, micronutrient 

contribution from cocoa powder is slight with the exception of copper. A 

typical serving of unsweetened cocoa powder contributes approximately 

16% of an adults daily UK RNI for copper (1.2 mg/d). A typical portion of 

70% cocoa solids dark chocolate contributes quite considerably to total fat 

and non-milk extrinsic sugar (NMES) recommended intakes -  16% and 13% 

respectively. Additionally micronutrient contribution towards an adults intake 

are substantial -  copper, 41%; iron and magnesium, each 23% (females); 

phosphorus 16% and zinc 13% (females). Deficiency of copper, magnesium, 

phosphorus and zinc is generally not a problem for the UK adult population 

however iron is a common deficiency in females. Although non-haem iron is 

less well absorbed than haem sources, when the body’s iron reserves are 

low absorption becomes more efficient (Ministry of Agriculture 1995).

Of the non-essential nutrient components of dark chocolate and cocoa the 

most relevant, considering serving size, are caffeine, theobromine and 

flavonoids. Caffeine in cocoa powder is negligible; however a 28 g bar of 

dark chocolate may contain approximately 22 mg (U.S. Department of 

Agriculture 2011). For comparison a teaspoon of regular instant coffee

contains around 31 mg and a cup of tea 47 mg (U.S. Department of

*
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Agriculture 2011). Theobromine, a structurally similar precursor of caffeine in 

plant cells, is abundant In dark chocolate and cocoa. A typical serving of 

70% dark chocolate would provide more than 200 mg whilst a typical serving 

of cocoa powder supplies >100 mg (U.S. Department of Agriculture 2011). 

Flavonoids present in dark chocolate and cocoa have attracted much 

attention in the past decade and are believed to stimulate biological activities 

that may be beneficial to human health. The main flavonoids identified in 

dark chocolate are flavanol monomers (-)-epicatechin and (+)-catechin, and 

polymers of these compounds up to decamer, and ferulic acid. Resveratrol 

and its 3-O-glucoside are also present but in >100-fold lesser amounts. The 

main flavanol present in dark chocolate is (-)-epicatechin, at approximately 

70 mg 100 g‘1 fresh weight (Neveu etal. 2010). The (-)-epicatechin B2 dimer 

and C1 trimer constitute ~36 and 26 mg 100g'1 fresh weight respectively. A 

28 g typical portion of dark chocolate would supply almost 20 mg of (-)- 

epicatechin, 10 mg of the B2 dimer and 7 mg of C1 trimer.

1.1.2.1 Bioavailability of caffeine and theobromine

Caffeine is a 1,3,7-trimethylated xanthine that is metabolised in vivo to 

paraxanthine (1,7-dimethyl xanthine), theophylline (1,3 -dimethyl xanthine), 

theobromine (3,7-dimethyl xanthine) and 1,3,7-trimethyluric acid in pathways 

similar to those described for theobromine (Figure 1.11 (Thorn etal. 2012). 

Caffeine is efficiently absorbed from the small intestine, such that the entire 

dose administered is absorbed with a reported peak in plasma concentration 

at approximately 30 min post-ingestion. The elimination half-life is on 

average 4.5 h but dependent on high individual variations (Blanchard and 

Sawers 1983).
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There have been a limited number of bioavailability studies conducted in 

humans and other animals since the late 1950’s; although the analytical 

methods have changed the metabolic outcomes remain relatively similar. In 

the first of such studies the authors identified unchanged theobromine and 3 

metabolites in 48 h urine following consumption of the pure compound 

(Cornish and Christman 1957). The main metabolite was 7-methylxanthine 

which accounted for up to 30% of the dose, 3-methylxanthine accounted for 

approximately 20% and 7-methyluric acid accounted for around 4% of the 

dose. Later, 3,7-dimethyluric acid and a uracil compound was identified in 

urine following consumption of cocoa powder (Arnaud and Welsch 1979). 

These additional compounds have since been confirmed in human trials and 

the uracil compound identified as 6-amino-5-(N-methylformylamino)-1- 

methyluracil (Tarka et al. 1983). Metabolite recovery of around 80% of the 

ingested dose plus 18% unchanged theobromine have been reported (Tarka 

et al. 1983). Shively et al (1985) also documented a small percentage of 

unchanged theobromine in the faeces of subjects which accounted for less 

than 1.5% of the ingested dose. Pharmacokinetic investigations have 

demonstrated an average half-life of theobromine in plasma of 7.2 h when 

consumed in the form of a gelatin capsule (Lelo et al. 1986) and 10 h when 

ingested from an aqueous solution (Shively et al. 1985) with total clearance 

from plasma measured at 1.2 mL min'1 kg'1 and 0.9 mL min'1 kg'1, 

respectively. The maximum plasma concentration of theobromine from 

chocolate is reached approximately 2 h post-ingestion suggesting that it is 

entirely absorbed in the small intestine (Shively et al. 1985). And although 

the mechanism for absorption through the intestinal epithelium has not been 

described, based on In vitro absorption of caffeine using colon

* M
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adenocarcinoma cells (Caco-2) (Smetanova et al. 2009), it can be surmised 

that theobromine similarly diffuses passively through the enterocytes into the 

hepatic circulation.

Most recent investigations have focused on the mechanisms by which 

theobromine is demethylated and oxidised to methyluric acid. Work 

conducted in the early 1990’s suggested the hepatic cytochrome P450 

pathway with specific involvement of the monooxygenase enzyme (EC 

1.14.14.1) isoforms CYP1A2 and CYP2E1 (Gu et al. 1992, Tassaneeyakul 

et al. 1994, Rodopoulos et al. 1996). The main metabolite present in urine 

accounting for up to 40% of the ingested dose is 7-methyl xanthine which is 

a product of both enzyme isoforms. CYP2E1 appears to be the least specific 

as it also catalyses the formation of 3-methylxanthine and 3,7-dimethyluric 

acid (Gates and Miners 1999). Whilst the 3-methylxanthine isomer may 

undergo slight further metabolism to 3-methyluric acid (~1% of dose) 

(Rodopoulos et al. 1996), 7-methylxanthine is the main substrate, produced 

from theobromine catabolism, for xanthine oxidase (EC 1.17.3.2). Xanthine 

oxidase catalyses oxidation of carbon-8 to form 7-methyluric acid. The 

mechanism of uracil formation is yet to be established.
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Figure 1.1 Metabolic pathway of theobromine

1.1.2.2 Bioavailability of flavanols

Flavanols are a type of phytochemical within the subgroup of flavonoids, 

other types within this subgroup include flavonols, flavones, flavanones, 

anthocyanidins and isoflavones. Phenolic acids and tannins are also a 

subclass of phytochemicals categorised as phenolics and are often 

incorporated in the general discussion of flavonoids. Human intervention 

studies investigating the bioavailability and effects of flavonoids have 

typically focused on phenolics in tea, coffee, red wine, fruit juice, onion and 

soy bean.

Epicatechin is the principal flavanol that has been investigated and to which 

many health benefits arising from consumption of tea and chocolate have 

been attributed.

*
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A number of bioavailability studies in rats and humans have investigated the 

pharmacokinetics of epicatechin either administered as the individual 

compound or in a food matrix such as cocoa and tea. The specific 

mechanism of epicatechin uptake from the small intestine has not been 

elucidated although a transcellular route in vivo has been established 

through detection of phase II metabolites in plasma. In vitro studies 

demonstrate the absence of saturation kinetic properties, and similar 

apparent permeability coefficients (Papp) for apical to basolateral and 

basolateral to apical transport which together suggest a paracellular route 

(Deprez etal. 2001, Kosinska and Andlauer2012).

Epicatechin absorption in vivo predominantly results in the production of 

phase II metabolites; very little, if any, free epicatechin is detected in 

humans. The peak plasma concentration of metabolites is reached 2-4 h 

post-ingestion indicating that absorption occurs mainly in the small intestine. 

There are some discrepancies in the pattern of metabolism between human 

and rat models. In both, epicatechin is predominantly conjugated with D- 

glucuronic acid in either the 3’ or 4’ position, a reaction catalysed by the 

membrane bound enzyme UDP-glucuronosyltransferase (EC 2.4.1.17) 

(Kuhnle et al. 2000, Baba et al. 2001b, Actis-Goretta et al. 2012). 

Methylation of epicatechin and epicatechin-O-D-glucuronides, catalysed by 

catechol-O-methyltransferase (EC 2.1.1.6), have also been reported in rat 

plasma but not human (Baba etal. 2001b). In humans methylated and non- 

methylated epicatechin is also conjugated with a sulphate group by 

sulfotransferase enzymes (EC 2.8.2.1) and some studies have reported the 

detection of sulfated glucuronide conjugates of epicatechin in both humans 

and rats (Baba et al. 2000b, Baba et al. 2001b).
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Polymeric flavanols with a degree of polymerisation up to decamer have 

been identified in dark chocolate and cocoa. Monomeric units are joined by a 

carbon-carbon bond at various locations on the molecule. Currently 

commercial availability of these compounds is limited so many studies have 

focused attention on the B2 dimer and C1 trimer of (-)-epicatechin (Figure 

1.2). or non-specific polymers extracted from cocoa or grape seed extract. In 

vitro studies have demonstrated that trimer to hexamer flavanols from cocoa 

degrade up to 100% to form monomers and dimers when incubated at pH 2 

for up to 3.5 h at 37°C. The dimer degraded by ~20% to monomer. This was 

refuted by the results of a human study in which a cocoa beverage was 

consumed then gastric fluid extracted at ten minute intervals until the 

stomach was empty. The flavanol profile did not alter during the course of 

gastric fluid extraction indicating that there was no degradation of polymeric 

flavanols (Rios et al. 2002). The evidence for absorption of oligomeric 

flavanols is similarly contrasting. Perfusion of rat jejunum with dimeric 

flavanols demonstrated degradation of dimer to monomer with the detection 

of unmetabolised monomer at the serosal side. Some methylated dimer was 

also identified (Spencer et al. 2001). Procyanidin B2 administered to rats 

orally in water following a 12 h fast was detected in plasma along with 

epicatechin and 3’-0-methyl epicatechin; maximum concentration was 

achieved at 30-60 min. Up to 18 h, all three compounds were identified in 

urine along with methylated and non-methylated conjugates (Baba et al. 

2002). Contradictory to this, plasma collected from rats 3 h following 

consumption of a meal prepared with grapeseed extract or the B3 dimer did 

not contain any B3 dimer and catechin and epicatechin were only detected 

in the plasma of rats fed the grapeseed, extract. The concentration of
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catechin in the plasma following consumption of grapeseed extract was 

comparable with the concentration following consumption of the same 

amount of pure catechin indicating that the dimer was not degraded to its 

monomer constituents (Donovan et al. 2002). A study published more 

recently reported similar results following human consumption of beverages 

containing either (-)-epicatechin only, monomer to decamer flavanols, or 

dimer to decamer. Monomeric flavanols were primarily detected in plasma 

following consumption of the (-)-epicatechin only beverage and the monomer 

to decamer-containing beverage. A small concentration of (-)-epicatechin 

was detected in plasma following ingestion of the dimer to decamer 

beverage but this was commensurate with low levels present in the 

beverage rather than a consequence of polymer degradation (Ottaviani et at. 

2012). It appears that whilst rats may have the capacity to hydrolyse flavanol 

dimers to monomers and absorb some intact dimers, humans do not 

possess the same ability.

Flavanols that are not absorbed in the small intestine pass through to the 

colon where they are substrates for microflora metabolism. Metabolites 

detected in urine approximately 15 h after ingestion of tea included 5- 

(S’^ ’.S’-trihydroxyphenyO-y-valerolactone attributed to epigallocatechin 

metabolism and 5-(3’,4’-dihydroxyphenyl)-Y-valerolactone attributed to 

epicatechin metabolism (Li et at. 2000). In vitro assays of human colonic 

microflora with polymeric flavanols have revealed the formation of various 

phenolic acids including 2-(3-hydroxyphenyl)-acetic acid, 2-(4- 

hydroxyphenyl)-acetic acid, 2-(3,4-dihydroxyphenyl)-acetic acid, 3-phenyl- 

propionic acid, 3-(3-hydroxyphenyl)-propionic acid and 3-(4-hydroxyphenyl)- 

propionic acid (Deprez et at. 2000, Appeldoom et at. 2009a).
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Dimer B2 (epicatechin-(4p->8)-epicatechin)

Figure 1.2 Cocoa flavanol structures

(4p->8)-epicatechin)

1.2 Cocoa and health

1.2.1 Consumption

A recent report by KPMG LLP (KPMG LLP 2012) demonstrated that whilst 

globally economies have been in recession, the chocolate market has 

remained stable, in fact its retail market value has risen marginally each year 

since 2007 and is predicted to continue its growth at a rate of 2% per year 

over the next 5 years. The majority of the global market is held by Western 

Europe (32%) followed by North America (20%), Asia (17%), Latin America 

(13%), Eastern Europe (12%), Middle East and Africa (4%) and Australasia
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(2%), with large growth predicted in the smaller markets over the coming 

years.

The global population is increasing and with improvements in nutrition and 

health care so too is the age of populations. Concomitant to an ageing 

population is an increase in the number of non-communicable diseases 

which is the cause of more than 36 million deaths around the world each 

year, more than 80% of these deaths are due to cardiovascular diseases, 

cancers, diabetes and respiratory diseases (United Nations 2012). The 

economic impact of such chronic diseases has been estimated by the World 

Health Organisation (World Health Organization 2006) which predicts the 

greatest burden will be on the low and middle income countries. The 

estimated accumulated loss of national income between 2005 and 2015 is 

$3.4 billion in the United Kingdom, whilst China, India and Russia have 

estimated national losses of $53.3 billion, $23 billion and $29.8 billion, 

respectively. One factor associated with chronic non-communicable disease 

is an unhealthy diet; some governments have already introduced taxes on 

unhealthy foods whilst others are considering this possibility (KPMG LLP 

2012).

The 2008/2009 UK National Dietary Nutrition Survey (NDNS) (Food 

Standards Agency 2010) reported that adults were consuming on average 

21 g of chocolate confectionery per day and the 2010 Family Food survey 

(Department for Environment 2011) reported an average contribution to 

energy intake from confectionery (including chocolate) of 4% per person per 

day. In 2010 confectionery as a whole contributed 15% of the total non-milk 

extrinsic sugars (NMES) consumed per person per day from household 

purchases and 13% from foods purchased outside the home (Department
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for Environment 2011); the current UK reference nutrient intake (RNI) 

recommends that NMES should not provide more than 11% of the daily 

energy intake (Food Standards Agency 2006). Considering potential taxes 

on unhealthy foods and the increasing global popularity of chocolate there 

appears to be scope for manufacturers to invest in research and 

development to manufacture products with functional health benefits.

1.2.2 Epidemiological evidence for beneficial effects

During the last 5 years there have been numerous reviews considering the 

role of cocoa in specific health issues in addition to a small number of 

epidemiological studies. The majority of published work during this time is 

human and non-human intervention trials particularly focusing on the effect 

of cocoa products or chemical components of cocoa individually. The 

majority of work relates to cardiovascular disease (CVD) with hypotheses 

typically that consumption of cocoa or Intake of specific components of 

cocoa are able to lower risk or improve biomarkers of disease. Discussion in 

this section predominantly considers the literature pertaining to CVD but is 

inclusive of other areas of study with all human intervention trials 

summarised in table format (Table 1.1). _

The risk of death from stroke, coronary heart disease (CHD) and CVD 

amongst participants of the Iowa Women’s Health Study (IWHS) was lower 

in women who consumed chocolate relative to those who consumed no 

chocolate (Mink et al. 2007). Similarly data taken from the United States 

National Heart, Lung and Blood Institute Family Heart Study (Djousse et al. 

2011) suggests that compared with no intake, participants with a greater 

frequency of chocolate intake have a reduced odds of CHD prevalence, the
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lowest in consumers of 5 or more servings per week. However by contrast, 

a study of women participating in the Swedish Mammography Cohort 

(Mostofsky et al. 2010) demonstrated that the beneficial effect of chocolate 

consumption on risk of heart failure was reversed as intake exceeded 2 

servings per week. It is relevant to note at this point that serving size is not 

stated in the aforementioned studies, although the authors of the Swedish 

investigation do suggest an average portion size somewhere between 19 

and 30 g. An inverse association between chocolate consumption up to 7.5 

g per day and risk of CVD among German adults participating in the 

European Prospective Investigation into Cancer was reported (Buijsse et al.

2010). In the latter study and that of the IWHS, the association appeared 

most compelling for stroke. Evaluation of data taken from The Stockholm 

Heart Epidemiology Program (Janszky et al. 2009) of individuals who have 

experienced a first acute myocardial infarction, show that the risk of cardiac 

mortality is lowest in those who consume a 50 g portion of chocolate at least 

twice per week and the risk of a non-fatal stroke was shown to be lowest in 

those consuming up to one portion per week.

From this small collection of epidemiological studies it can be surmised that 

the consumption of 50-100 g per week of chocolate may reduce the risk of 

cardiovascular disease, in particular stroke. What is not established in any 

of these investigations is the type of chocolate consumed. The type of 

chocolate, i.e. dark, milk or white, and the addition of other ingredients such 

as fruit or nuts, is an important factor in the overall analysis of evidence. 

Dark chocolate typically contains more non-fat cocoa solids (NFCS) than 

milk chocolate, and white chocolate contains no NFCS. As the percentage 

of NFCS content increases, the percentage content of sugar decreases
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(U.S. Department of Agriculture 2011). Furthermore milk and white 

chocolate also contain milk powder that is not present in dark chocolate. 

One study investigating the effects of additional ingredients demonstrated 

that the lipid profile and inflammation biomarker concentration was improved 

following consumption of a cocoa product with the addition of hazelnuts, 

phytosterols and soluble fibre. The cocoa product without added ingredients 

had no significant effect (Sola et al. 2012).

Some epidemiological studies have investigated more specific interactions 

by focusing on particular components of cocoa. The primary focus has been 

flavonoids and in relation to cocoa, particularly the flavan-3-ol and 

proanthocyanidin sub-classes of polyphenols. An evaluation of incident 

hypertension, biomarkers of inflammation and endothelial dysfunction in 

relation to flavonoid intake of participants in the Nurses’ Health Study (NHS) 

I and II, and the Health Professionals Follow-Up Study (HPFS) (Cassidy et 

al. 2011, Landberg et al. 2011) did not find any relationship with flavan-3-ol 

or proanthocyanidin intake. However, at the highest daily intake of catechin 

and epicatechin, the primary flavan-3-ol constituents of cocoa, there was a 

significantly lower risk of incident hypertension. In contrast, a significant 

reduction in the risk of CVD has been reported with increased intake of 

flavanols and proanthocyanidins (McCullough et al. 2012). The reduction 

was not linear and, similar to other epidemiological evidence, reversed in the 

highest intake groups.*

r*
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1.2.3 Mechanisms of biological effects

1.2.3.1 Endothelial cell dysfunction

Endothelial cell dysfunction is an indicator of cardiovascular disease that has 

been widely studied in vivo and in vitro. Many of the human intervention 

trials described in this chapter involve quantification of products secreted by 

the endothelium such as nitric oxide, or expression of inflammatory response 

proteins such as interleukin-6 (IL-6). One study recently reported that nitric 

oxide (NO) production by platelets isolated from healthy subjects increased 

following 3 weeks daily consumption of dark chocolate (Nanetti et al. 2012). 

Systolic blood pressure (SBP) in spontaneously hypertensive rats (SHR) 

was reduced and considered to be a consequence of increased nitric oxide 

production following an acute dose of CocoanOX (a polyphenol-rich cocoa 

powder); the effect was prevented in the presence of an endothelial nitric 

oxide synthase (eNOS) inhibitor (M. Quinones et al. 2011). The same 

authors investigated the long-term effect of CocoanOX supplementation and 

observed attenuated development of hypertension in SHR with the effect 

being greatest in animals given the lowest dose (Quinones et al. 2010). 

Another study of SHR whose diets were supplemented with soluble cocoa 

fibre exhibited lower SBP and DBP during the treatment period. Throughout 

a 4 week post-treatment period when the test treatment had been 

discontinued SBP increased equivalent to control and DBP increased 

beyond that of control animals (Sanchez etal. 2010).

SHR administered 200 and 400 mg kg'1 doses of CocoanoX exhibited higher 

plasma angiotensin converting enzyme (ACE) activity at the end of the 

intervention period, plasma concentration of angiotensin II was also raised.
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The latter remaining elevated after treatment ended. Although this may be 

suggestive of a negative consequence, the authors discussed the possibility 

that inhibition of ACE leads to an increase in its plasma concentration 

without reducing efficacy of the inhibitor. The same study measured 

relaxation of pre-contracted intact aorta rings extracted from control animals

induced by incubation with CocoanOX. Relaxation was reduced in the
%

presence of N^-nitro-L-arginine methyl ester (L-NAME) but not indomethacin 

implying that dilation was a result of eNOS activity rather than prostaglandin- 

I synthase (Mar Quinones et at. 2011). Similar effects have been reported 

using pre-contracted renal arteries isolated from wild-type (WT) and 

atherosclerotic mice (ATX) (Gendron etal. 2010). Catechin treatment in WT 

mice during months 9 to 12 improved dilation at 12 months compared with 

the untreated group, however this effect was not replicated in ATX mice. 

Incubation with NG-nitro L-arginine (L-NNA) attenuated dilation in untreated 

WT mice but animals exposed to 3 months catechin treatment were 

unaffected, suggesting that eNOS was not inhibited in catechin treated cells 

or that addition of indomethacin to the incubation did not further affect this 

result.

In vitro studies using human umbilical vein endothelial cells (HUVEC) are 

widely used as a model to study endothelial function. HUVEC cells 

incubated with (-)-epicatechin for 2 hours had significantly increased nitrite 

levels up to 1 pM of (-)-epicatechin however beyond this, up to 10 pM, the 

nitrite concentration did not differ from control (Brossette et al. 2011). 

Similarly the greatest augmentation of nitric oxide produced by human 

coronary artery endothelial cells (HCAES) was reported following a 10 

minute incubation with 1 pM (-)-epicatechin (Ramirez-Sanchez et al. 2010).
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Following a 24 hour incubation with (-)-epicatechin Brossette et al (2011) 

observed no significant change in endothelial nitric oxide synthase (eNOS) 

mRNA expression nor any variation in its stability. It may be that increased 

production of nitric oxide is attributable to an interaction with the 

phosphatidylinositol 3-kinase (PI3K) pathway which is involved in controlling 

phosphorylation of the activation residues Ser1177 and Ser633. Treatment 

of HCAES with epicatechin increased phosphorylation of these serine 

residues and reduced phosphorylation of Thr495. In addition epicatechin 

treatment appeared to induce activation of eNOS through uncoupling from 

caveolin-1 (Cav-1) which it is bound to at the cytosolic side of the cell 

membrane in its inactive form, and binding with calmodulin (CaM) to 

stimulate solubilisation of the active enzyme. Further analysis suggested 

that this effect was mediated via interaction with phospholipase C. Whilst 

these conditions were dependent on the presence of calcium, the same 

authors have also demonstrated that epicatechin is able to stimulate NO 

production induced by phosphorylation of serine residues and activation of 

eNOS without uncoupling from Cav-1 in calcium-free conditions (Ramirez- 

Sanchez et al. 2011).

Similarly enhanced phosphorylation of non-specific serine/threonine protein 

kinase (Akt), an enzyme involved in the PI3K pathway, was measured in 

mice subjected to ischemia-reperfusion injury following 10 days of 

supplementation with 1 mg kg'1 body weight (-)-epicatechin; infarct size was 

reduced. Co-supplementation with the opioid antagonist’s naloxone or 

naltrindole eliminated the effect on Akt phosphorylation and infarct size. The 

results suggest that the protection conveyed by epicatechin was dependent 

on interaction with opioid receptors in the heart (Panneerselvam etal. 2010).
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Endothelium secretion of endothelin-1 (ET-1) is associated with vascular 

constriction and therefore negative cardiovascular consequences. Bovine 

aortic endothelial cells (BAEC) treated with a procyanidin-rich extract of 

cocoa produced less ET-1 than control cells; the response was dose- 

dependent (Caton et al. 2010). Procyanidin-rich extracts of other fruits 

elicited similar results and the trimer to pentamer fractions of cranberry 

extract were shown to downregulate expression of ET-1 mRNA and 

upregulate Kruppel-like factor 2 (KLF2) mRNA, a transcription factor that 

mediates the synthesis of ET-1. Garcia-Conesa et a l (2009) demonstrated a 

similar reduction in ET-1 synthesis in HUVEC treated with a procyanidin-rich 

fraction of apple (Garcia-Conesa etal. 2009).

Increasing nitric oxide concentration in vivo is generally considered a 

positive consequence due to its functions of vasodilation (Figure 1.3) and 

inhibition of platelet aggregation. It is possible that reported increases in 

flow-mediated dilation (FMD) and reduction of blood pressure following 

cocoa consumption (Table 1.1) is due to an increase in the production of 

nitric oxide stimulated by epicatechin (Figure 1.41. Chronic intake may have 

a long-term protective effect in the event of CVD, although in vitro and non

human in vivo results are not necessarily transferable to humans and 

consumption of cocoa products will contribute to energy and macronutrient 

intake that may be considered unhealthy.

1.2.3.2 Inflammation

Serum concentration of C-reactive protein (CRP) in a cohort of healthy 

Italian adults participating in the Moli-sani Project was lower amongst 

consumers of less than 3 x 20 g servings per week of dark chocolate (di
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Giuseppe et al. 2008); this effect was not observed in consumers of 3 or 

more servings per week. A higher CRP concentration is associated with a 

higher risk of CHD therefore it can be inferred from this study that moderate 

consumers of dark chocolate have a lower risk of CHD than non- and high- 

consumers. Of the human intervention trials published since 2007 in which 

the serum CRP concentration is quantified following a chronic cocoa 

supplementation, the overall effect Is inconclusive. In healthy subjects 

significant reductions in CRP following intervention have been observed 

(Hamed et al. 2008, Tzounis et al. 2011), whereas in subjects suffering from 

hypertension, hypercholesterolemia or type-2 diabetes there have been no 

significant changes observed (Grassi etal. 2008, Mellor etal. 2010, Sarria et 

al. 2012). By contrast, in a study of diabetic mice whose diets were 

supplemented with epicatechin significantly lower CRP levels were reported 

compared with diabetic mice whose diets were not supplemented (Si et al.

2011). Although serum CRP concentration is indicative of CVD it is yet to be 

determined whether high serum concentration contributes to the 

development of disease or whether it is a consequence of the disease. The 

level of intake of cocoa products or individual components, and whether any 

ability to lower CRP levels improves prognosis in patients or reduces risk in 

a healthy population, is yet to be determined.

1.2.3.3 Oxidative stress and dyslipidemia

Daily oral supplementation of 1 mg kg'1 epicatechin for 10 days prior to 

ischemia-reperfusion injury, in rats, reduced infarct size and oxidized 

glutathione/reduced glutathione ratio (GSSH/GSH) at 48 hours post-injury 

(Yamazaki et al. 2008). Infarct size remained significantly smaller at 3
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weeks post-injury. A further study by the same authors performed on 

animals exposed to permanent coronary occlusion (POC) yielded very 

similar results of infarct size, they also hypothesized that exposure to 

epicatechin prior to POC may elicit an increase of Akt phosphorylation
i

however no significant changes were observed (Yamazaki et al. 2010). 

Dyslipidemia is a major risk factor of CVD that has prompted an abundance 

of investigations, not least in relation to cocoa consumption. Many of the 

intervention trials described in Table 1.1 have reported increased HDL 

cholesterol levels and improved total cholesterol/HDL cholesterol ratio 

following cocoa intervention. A soluble cocoa fibre product fed to rats 

consuming a high cholesterol diet attenuated the negative consequences of 

the diet. The cholesterol-rich diet raised total- and LDL cholesterol 

concentration, and malondialdehyde (MDA) concentration of serum but 

these levels were significantly reduced in the group supplemented with the 

cocoa fibre product. In contrast the cholesterol-rich diet caused a reduction 

in HDL cholesterol concentration that was also improved by supplementation 

with the cocoa fibre product (Ramos et al. 2008, Bravo et al. 2008). A 

similar study of rats fed a high cholesterol diet with and without the addition 

of cocoa procyanidins reported that rats fed the cholesterol-rich diet 

experienced significantly higher plasma total cholesterol than rats fed a 

normal diet. This increase was significantly attenuated by the addition of 0.5 

or 1.0% cocoa procyanidins to the high cholesterol diet. Furthermore rats 

consuming the high cholesterol diet ail exhibited significantly more 

cholesterol and triglycerides in the liver than rats fed the normal diet. At the 

highest supplementation of cocoa procyanidins this increase was 

significantly less (Osakabe and Yamagishi 2009).

I
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Obese-diabetic rats fed a diet supplemented with cocoa extract for 4 weeks 

demonstrated improved levels of plasma total cholesterol that was similar to 

that of non-diabetic rats consuming a normal diet. An improvement of similar 

magnitude was also noted for plasma triglycerides and LDL cholesterol. 

There were no significant changes in plasma HDL cholesterol concentration 

(Jalil et al. 2009). Diabetic mice treated with epicatechin for 15 weeks 

exhibited similar total- and LDL cholesterol levels to non-diabetic mice at the 

end of the study period that were significantly lower than untreated diabetic 

mice. Longevity of the epicatechin-supplemented mice was also improved; 

the number of mice surviving until the end of the study period was 

significantly greater than diabetic mice without supplementation, and not 

different from control mice. Markers of inflammation in the serum of 

epicatechin-supplemented diabetic mice were also affected by the treatment. 

Compared with non-treated diabetic mice, insulin-like growth factor-1 (IGF- 

1), CRP-1, interleukin-1 p (¡L-1P) and glutathione were either returned to 

control levels or reduced significantly. Interestingly, although there were no 

significant differences of superoxide dismutase (SOD) activity between 

control and diabetic mice, activity was significantly greater in the treated 

diabetic group (Si etal. 2011).

Investigations using the Zucker fatty rat model of obesity and metabolic 

syndrome demonstrated that supplementation of the diet with 5% soluble 

cocoa fibre resulted in a significant reduction of plasma MDA concentration 

such that levels were no longer significantly different from lean control rats. 

Zucker fatty rats fed a standard diet exhibited significantly higher levels of 

tumour necrosis factor-a (TNF-a) compared with the lean control animals but 

this was reduced in animals that consumed the 5% soluble cocoa fibre diet.
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It is important to note that this reduction was not statistically significant 

however levels in the supplemented group were not significantly different 

from either fatty or lean rats. Fatty animals fed the 5% soluble cocoa fibre 

supplemented diet had significantly higher levels of plasma adiponectin
t

compared with fatty rats and lean rats, which had similar levels (Sanchez et 

al. 2011). The same authors investigated the effect of a soluble cocoa fibre 

on development of hypertension in SHR and reported reduced MDA plasma 

concentration (Sanchez et af. 2010). A similar reduction in plasma MDA 

concentration was observed when SHR were treated with 100, 200 and 400 

mg kg'1 doses of CocoanOX; the effect was reversed by the end of a 4 week 

post-treatment period (Mar Quinones et al. 2011).

1.2.3.4 Conclusion

Cardiovascular diseases are responsible for more deaths globally than any 

other cause (World Health Organization 2011) and are the focus of much 

research, not least in relation to cocoa. The main focus of such research 

has been to identify associations between intake and disease, and to elicit 

mechanisms by which onset of disease can be delayed or prevented, or 

where treatment of cardiovascular events can be facilitated. Many of the 

human intervention studies described in Table 1.1 have involved intervention 

treatments that have demonstrated improvements in markers of disease risk 

factors such as total/HDL cholesterol ratio and FMD. Nitric oxide synthesis 

is possibly the most investigated endothelial function in relation to cocoa 

over the last 5 years with many authors reporting increases in NO 

concentration of plasma. At this time the predominant mechanistic 

hypothesis is that cocoa, or a component such as epicatechin, stimulates

'W>
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eNOS activity. Although this doesn’t appear to be the only mechanism that 

is affected, certainly increasing NO synthesis may be one reason why FMD 

and blood pressure are improved following intervention treatments.



Intervention Control Study design Outcomes Ref.
1 Cu deficient patients 

supplemented with 10- 
40 g cocoa powder per 
day until improvement 
observed

None Serum trace metal 
concentration monitored s 
24 months post-enteral 
tube insertion in 23 
patients (78.8 ± 10.4 
years)

1 serum [Cu] and 
neutrophil count

(Nishiwaki 
et al. 2011)

2 One cup of espresso 
coffee and 30 g DC 
(separate occasions)

None 50 term pregnant women 
without complicated 
gestation (31.8 ± 5.05 
years)

f  fetal HR 
accelerations and 
variability

(Buscicchio 
et al. 2012)

3 15 g pp-rich DC per day 
for 8 weeks

15 g macronutrient 
matched low-pp 
chocolate (3.9 mg ECE
g-1)

Double-blind, randomised 
cross-over; 10 subjects 
diagnosed with CFS (6 
females, 4 males) (52 ± 8 
years)

Improved symptoms 
of CFS

(Sathyapala 
n et al. 
2010)

4 HF beverage Macronutrient-matched 
LF beverage

Cross-over; 10 healthy 
females (18-65 years)

f  cutaneous blood 
flow

(Neukam et 
al. 2007)

. 5 20 g HF chocolate per 
day for 12 weeks

20 g LF chocolate (<30 
mg flavanols)

Double-blind, randomised; 
30 healthy subjects (22 
females, 8 males) (42.7 ± 
10 years)

|  minimal erythema 
dose

(Williams et 
al. 2009)

6 37 g DC and 237 mL 
cocoa beverage per day 
for 6 weeks

Low-pp bar and 
beverage containing 
0.20 mg g~1 and 40.87 
mg g_1 total 
proanthocyanidins, 
respectively

Double-blind, randomised; 
101 healthy subjects (60 
females, 41 males) (£60 
years)

|  pulse rate at 
midpoint and end-of- 
treatment

(Crews et 
al. 2008)

1.2.4 H
um

an intervention trials



Intervention Control Study design Outcomes Ref.
7 Flavanol-rich cocoa 

beverage per day for 1 
week

Flavanol-poor cocoa 
beverage (36 mg 
flavanols per day)

Double-blind, randomised; 
21 healthy subjects (10 
females, 11 males) (72.2 ± 
6 years)

t  cerebral blood flow 
in response to acute 
dose of cocoa 
beverage

(Sorond et 
al. 2008)

8 Cocoa beverage 
containing either 520 
mg or 994 mg cocoa 
flavanols

Macronutrient-matched 
cocoa beverage 
containing 46 mg cocoa 
flavanols

Double-blind, cross-over; 
30 healthy subjects (17 
females, 13 males) (21.9 ± 
SE 0.61 years)

Improved cognitive 
performance and 
reduced mental 
fatigue

(Scholey et 
al. 2010)

9 35 g DC 35 g white chocolate Cross-over; 30 subjects (22 
females, 8 males) (18-25 
years)

Improved contrast 
sensitivity, motion 
integration threshold,

(Field et al. 
2011)

Visual spatial working
memory, and reaction 01
time

10

11

20 g chocolate 
beverage

containing MF or HF 
content per day for 30
days_______________
Mashed potato powder 
(1 g kg-1 BW) 
supplemented with 
cocoa butter (1 g k g 1 
BW)______________ _

20 g chocolate Double-blind, randomised; f  posterior parietal (Camfield ef
beverage LF content 63 subjects (52.30 ± 7.49 activity, synaptic al. 2012)

years) excitation and neural
information 
processing speed

Mashed potato powder Randomised, cross-over; Plasma [TAG] and (Tholstrup et 
(1 g k g 1 BW) 10 healthy females (38.2 ± [IL-6] were altered (no al. 2011)
supplemented with olive 10.7 years) significant difference
oil (1 g kg-1 BW) between the meals)



Intervention Control Study design Outcomes Ref.
12 Cocoa beverage twice 

per day for 12 weeks
Cocoa-free beverage Randomised; 25 healthy 

males (38 ±  SE 1 years)
i  LDL susceptibility to (Baba et al. 
oxidation and urinary 2007b) 
[dityrosine]; f  HDL 
cholesterol

13 Low-, medium-, or high- 
pp cocoa beverage 
twice per day for 4  
weeks

Nutrient matched 
beverage (trace 
amounts of cocoa pp)

Double-blind; 160 normo- 
and mildly
hypercholesterolemic 
subjects (91 females, 69 
males) (20-70 years)

i  [Apo BJ in M CP and 
HCP groups; |  
oxidised LDL (kU L*1 
plasma) in all groups

(Baba et at. 
2007a)

14 40 g DC Macronutrient matched, 
flavonoid-free chocolate

Double-blind, randomised; 
22 heart transplant 
recipients (4 females, 18 
males)

t  Coronary artery 
diameter and %  
change of 
endothelial- 
dependent 
vasomotion; J, [8-iso- 
PGF2a] and platelet 
adherence

(Flammer et 
al. 2007)

15 22 g DC supplemented Macro- and Double-blind, cross-over, i  Serum total- and (Allen et al.
with 1.1 g canola sterol 
esters twice per day for 
4 weeks

micronutrient matched 
DC without the addition 
of plant sterols

49 subjects (32 females, 17 
males) (24-70 years) with 
elevated cholesterol (5.20- 
7.28 mmol L-1)

LDL cholesterol; i  
SBPand DBP 
(combined 
intervention and 
control results)

2008)

16 MF or HF beverage Macro- and 
micronutrient matched 
LF beverage

Double-blind, randomised, 
cross-over; 10 type-2 
diabetic subjects (2 

. females, 8 males) (64.7 ±  
9.9 years)

t  FMD (Balzer et al. 
2008)



Intervention Control Study design Outcomes Ref.
17 Flavanol containing 

beverage 3 times per 
day for 30 days

Macro- and 
micronutrient matched 
LF beverage

Double-blind, randomised; 
41 type-2 diabetic subjects 
(29 females, 12 males) 
(intervention, 63.1 ±  8.3 
years; control, 64.4 ±  8.6 
years)

T FMD (Balzer et al. 
2008)

18 HF beverage twice per 
day for 12 weeks with 
and without 45 min 
physical activity 3 days 
per week

Macro- and 
micronutrient matched 
LF beverage with and 
without physical activity

Double-blind, randomised; 
49 overweight and obese 
subjects (32 females, 17 
males) (40-50 years)

t  FMD (combined 
exercise and non- 
exercise results); |  
insulin resistance, 
DBP and MAP 
(flavanol treatment 
nested in time)

(Davison et 
al. 2008)

19 Phase 1: Acute 
consumption of 74 g DC

Phase 2 :2  cups of 
either sugar-containing 
cocoa beverage or 
sugar-free cocoa 
beverage

Phase 1: 74 g cocoa- 
free chocolate

Phase 2 :2  cups of 
sugar-containing cocoa- 
free beverage

Single-blind, randomised, 
cross-over; 45 healthy 
subjects (35 females, 10 
males) (52.8 ± 1 1 .0  years)

T FMD; iS B P and  
DBP; greatest FMD  
improvement 
following sugar-free 
cocoa beverage.

(Faridi et al. 
2008)

20 100 g flavanol-rich DC 
per day for 15 days

100 g flavanol-free white 
chocolate per day

Double-blind, cross-over; 
19 hypertensive, 
prediabetic subjects (8 
females, 11 males) (44.8 ±  
8.0 years)

4, Insulin resistance 
and t insulin 
sensitivity; J, clinical 
SBP and DBP, and 
ambulatory BP; f  
FMD and j. serum  
total- and LDL 
cholesterol

(Grassi et al. 
2003)



Intervention Control Study design Outcomes Ref.
21 100 g DC per day for 1 

week
None 28 healthy subjects (19 

females, 9 males) (42 ±12  
years)

|  platelet activated '  
GP llb/llla 
expression; J, LDL 
cholesterol; î  HDL 
cholesterol, i  C- 
reactive protein 
(females only)

(Hamed et 
at. 2008)

22 Cocoa beverage twice 
per day for 2 weeks

Macro- and 
micronutrient matched 
LF beverage

Double-blind, randomised, 
cross-over; 20 
hypertensive subjects (12 
females, 8 males) (51 ± SE 
1.5 years)

T insulin-stimulated 
brachial artery 
diameter

(Muniyappa 
et at. 2008)

23 20 g cocoa powder in 
250 mL skimmed milk 
twice per day for 4 
weeks

250 mL skimmed milk 
without cocoa powder

'i

Randomised, cross-over; 
42 high-risk of CVD 
subjects (23 females, 19 
males) (69.7 ±11.5 years)

î  HDL cholesterol; J. 
expression of 
adhesion molecules 
on the surface of 
monocytes and

(Monagas et 
ai. 2009, 
Khan et al. 
2010)

concentration of 
circulating soluble 
adhesion molecules

24 HF cocoa beverage 
followed by 10 min 
cycling

Macronutrient matched Double-blind, randomised, |  FMD; |  AUC for (Berry et at.
LF cocoa beverage cross-over; 21 healthy DBPandM APin 2010)
followed by cycling overweight/obese subjects response to exercise

(8 females, 13 males) (54.9 
± SE 2.2 years)



Intervention Control Study desiqn Outcomes Ref.
25 Cocoa beverage 

containing 33, 372, 712, 
or 1052 mg total 
flavanols per day for 6 
weeks

None Double-blind, randomised; 
52 mildly hypertensive 
subjects (20 females, 32 
males) (42-74 years)

j, 24 h ambulatory 
MAP, SBP and DBP 
(1052 mg); 1 
Overnight ambulatory 
SBP, DBP and HR

(Davison et 
al. 2010)

26 6 g or 25 g DC per day 
for 3 months

None Single-blind, randomised; 
91 cardiovascular high-risk

i  24 h, day- and 
night-time MAP, SBP

(Desch et al. 
2010)

patients (20 females, 71 
males) (57-74 years)

and DBP (6 g); 1 24 h 
and daytime MAP  
and SBP (25 q)

27 HF cocoa beverage Nutrient matched LF Double-blind, randomised, t  FMD (both (Heiss et al.
twice per day for 30 
days

cocoa beverage cross-over; 16 coronary 
artery disease (CAD) 
patients (3 females, 13 
males) (64 ± 3 years)

conditions), FMD  
post-intervention was 
higher than post
control; T % of CACs; 
J, plasma [nitrite]; f 
SBP

2010)

28 15 g DC 3 times per day Macronutrient matched Double-blind, randomised, t  Serum [HDL (Mellor et al.
for 8 weeks cocoa solids-free 

chocolate
cross-over; 12 type-2 
diabetic subjects (5

cholesterol]; J. total 
cholesterol:HDL

2010)

females, 7 males) (42-71 
years)

cholesterol ratio

29 Dairy based cocoa 
beverage containing 
either natural-dose 
(NTC) or high-dose 
(TEC) theobromine 
once per day for 3

Unspecified dairy based 
placebo beverage

Double-blind, randomised, 
cross-over; 42 pre-/stage 1 
hypertensive, healthy 
subjects (10 females, 32 
males) (62 ±  4.5 years)

T 24 h DBP (NTC); T 
24 h SBP, daytime 
DBP, 24 h, day- and 
night-time HR (TEC); 
|  central SBP, HR  
and stroke volume

(van den 
Bogaard et 
al. 2010)

weeks (TEC)
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31

32

Dairy-based high-fat 
liquid meal plus HF 
cocoa powder

In terven tion_________

40 g DC twice per day 
for 2 weeks followed by 
1.5 h cycling

40 g DC

Macronutrient matched 
dairy-based high-fat 
liquid meal containing 
LF cocoa powder

C ontro l_________________
Double-blind, randomised, 
cross-over; 18 healthy 
subjects (16 females, 2 
males) (25.2 ±  2 .5  years)

S tu d y  d e s ig n ______________

30.4 g bar of sugar- and Single-blind, randomised; 
fat-matched cocoa 20 healthy males (22 ±  4
liquor-free chocolate years)
followed by cycling

40 g milk chocolate Single-blind, randomised,
cross-over; 20 healthy 
subjects (13 females, 7

\  males) (33 ±11  years) and
20 smokers (13 females, 7 
males) (33 ±11  years)

f  serum [triglycerides] (Westphal 
and [free fatty acids] and Luley 
(both conditions); |  2011)
FMD (both conditions, 
higher following
intervention)______________________
t  Plasma [F2- (Allgrove et
isoprostane] post- a/. 2011)
exercise (both
conditions, lower
following
intervention); |
oxidised LDL pre- and
post-exercise____________________
l  Serum sNOx2-dp, (Loffredo et
urinary isoprostane a/. 2011,
excretion and platelet Camevale et
ROS, sNOx2-dp and a/. 2012)
8-iso-PGF2a (healthy
subjects); f  FMD,
serum [NOx] and
platelet NOx
production (smokers);
l  serum sNOx2-dp,
urinary isoprostane
excretion and platelet
ROS, sNOx2-dp and
8-iso-PGF2a
(smokers)

O u tc o m e s ______________R ef.__________

wo



Intervention Control Study design Outcomes Ref.
33 Cocoa beverage 

containing either 2,5, 
13 or 26 g of cocoa

Macronutrient matched 
beverage without cocoa 
powder

Double-blind, randomised; 
23 healthy subjects (14 
females, 9 males) (63 ± SE 
2 years)

Dose-dependent 
greater change in 
FMD (5, 13 and 26 
g); t  SBP(2 and 26 
g); t  DBP (2,13 and 
26 g); |  MAP (2,13 
and 26 g); j, [glucose] 
(0, 2 and 5 g)

(Monahan et 
al. 2011)

34 Sugar-free cocoa 
beverage or a sugar- 
sweetened cocoa 
beverage twice per day 
for 6 weeks

Cocoa-free sugar- 
sweetened beverage

Double-blind, randomised, 
cross-over; 39 overweight, 
healthy subjects (33 
females, 6 males) (41-63 
years)

t  FMD (both 
conditions)

(Njike et at. 
2011)

35 75 g DC None 16 healthy subjects (6 
females, 10 males) (20-45 
years)

i  Angiotensin
converting enzyme 
activity

(Persson et 
al. 2011)

36 13.5 g flavonoid- Macronutrient matched
enriched chocolate placebo chocolate
twice per day for 1 year

Double-blind, randomised; 
93 postmenopausal, type-2 
diabetic patients (51-74 
years)

|  Plasma [insulin] and (Curtis et al. 
insulin resistance; |  2012)
insulin sensitivity; |
[LDL cholesterol]; f  
CHD risk (both 
conditions, less 
following intervention)



Intervention Control Study design Outcomes Ref.
37 100 g DC followed by 

2.5 h of cycling
Macronutrient matched 
cocoa solids-free bar 
(71 g) followed by 
cycling

Single-blind, randomised, 
cross-over; 14 healthy male 
subjects (22 ±  1 years)

t  Plasma total 
antioxidant status 
(both conditions); |  
[insulin] pre-exercise 
and 1 h post
exercise; i  plasma 
[glucose] post
exercise (both 
conditions)

(Davison et 
at. 2012)

38 100 g high-antioxidant 
dark chocolate (HADC) 
or 100 g DC

None

>

Double-blind, randomised, 
cross-over; 15 healthy 
subjects (9 females, 6 
males) (30 ±  5 years)

t  Plasma FRAP (both 
interventions); HADC  
FRAP remained 
higher at 4 and 5 h; |  
urinary HADC FRAP 
up to 12 h; T ; 
[triacylglycerol] (both 
interventions); f  [thiol] 
at 2- and 4 h (both 
interventions)

(Lettieri- 
Barbato et 
at. 2012)

39 50 g DC per day for 3 
weeks

None 50 healthy subjects (25 
females, 25 males) (28-45 
years)

t [HDL cholesterol] 
and [triglyceride] and 
]. LDL cholesterol 
(females only); i  lipid 
peroxidation, 
conjugated diene and 
hydroperoxide 
content of HDL and 
LDL; t  platelet 
production of NO; j. 
peroxyn ¡trite

(Nanetti et 
at. 2012)



Intervention Control Study design Outcomes Ref.
40 Cocoa products: (B)

cocoa + hazelnuts, (C) 
cocoa + hazelnuts + 
phytosterols, (D) cocoa 
+ hazelnuts + 
phytosterols + soluble 
fibre per day for 4 
weeks

(A) Cocoa Double-blind, randomised; 
113 pre/stage-1 
hypertensive and 
hypercholesterolemic 
subjects (67 females, 46 
males) (43-65 years)

J, [Total-] and [LDL 
cholesterol] and 
[Apo B] and Apo 
B:Apo A ratio (C) 
and (D); J, hsCRP 
and oxidised LDL (D)

(Sola et at. 
2012)

41 DC and cocoa
beverage once per day 
for 3 months

None 5 type-2 diabetic patients 
with stage II and III heart 
failure (47-71 years)

t  [HDL cholesterol]; 
enhanced 
expression of 
markers of 
mitochondrial 
structure in skeletal 
muscle

(Taub et al. 
2012)

Table 1.1 Summary of intervention studies using cocoa published between 2007 and 2012. Only outcomes 
with a statistical significance of a maximum p<0.05 are reported. Mean ± standard deviation unless 
otherwise stated. Abbreviations used in the table: increase; J. decrease; DC, dark chocolate; HR, heart 
rate; pp. Polyphenol; CFS, chronic fatigue syndrome; HF, high flavanol; LF, low flavanol; MF, medium 
flavanol; BW, body weight; TAG, triacylglycerol; IL-6, interleukin 6; LDL, low-density lipoprotein; HDL, high- 
density lipoprotein; Apo B, apolipoprotein B; 8-iso-PGF2a, 8-iso-prostaglandin F2a; SBP, systolic blood 
pressure; DBP, diastolic blood pressure; FMD, flow mediated dilation; MAP, mean arterial pressure; GP, 
glycoprotein; CVD, cardiovascular disease; AUC, area under curve; CACs, circulating angiogenic cells; 
sNOx2-dp, soluble NOx2 derived peptide; • ROS, reactive oxygen species; FRAP, ferric reducing ability of 
Dlasma: NO. nitric oxide.
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Nitric Oxide

Nitric Oxide-

Figure 1.3 Nitric oxide stimulated vasodilation
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Peroxynitrite Nitric Oxide

Superoxide

_ X
/O

NADPH Oxidase7
Figure 1.4 Potential mechanisms by which epicatechin increases nitric oxide 
concentration



36

1.3 Carbohydrate metabolism

1.3.1 Sucrose hydrolysis

Sucrose is a disaccharide, MW 342.3, composed of glucose and fructose 

monosaccharides (Figure 1.5). Hydrolysis of sucrose is an acid catalysed 

reactions that liberates a-D-glucose and 3-D fructose with no mutarotation 

reported (Zagalak and Curtius 1975). The authors of this study investigated 

enzyme catalysed acid hydrolysis of sucrose and revealed that cleavage of 

the monosaccharide units occurs between the anomeric carbon of glucose 

and the adjoining oxygen atom; experiments using H2180  confirmed the 

incorporation of 180  into liberated a-D-glucose but not 3-D-fructose. The use 

of 2H20  demonstrated that protonation of each monosaccharide upon 

release from sucrose was not from water present in the reaction mix.

Enzyme hydrolysis of sucrose in humans is exclusively catalysed by sucrase 

(EC 3.2.1.48) although it also exhibits activity for maltose, a disaccharide 

comprised of two glucose units. Sucrase is located at the luminal surface of 

enterocytes, both crypt cells and microvillus cells express the enzyme in its 

mature and precursor form (Beaulieu et al. 1989). Sucrase is anchored to 

the epithelial cell membrane via another a-glucosidase enzyme, isomaltase 

(EC 3.2.1.10), that is responsible for the hydrolysis of maltose and 

isomaltose. The two subunits of sucrase and isomaltase are initially 

synthesised in the rough endoplasmic reticulum (RER) as a single 

polypeptide chain of 1827 amino acid residues with a MW in the region of 

220,000-280,000 Daltons (Da) (Conklin et al. 1975). The exact molecular 

weight measured varies depending on the method of solubilisation, either 

papain or Triton-X-100 (Brunner et al. 1979). The protein is then transported
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to the Golgi apparatus where N- and O-linked glycosylation takes place; 

transfer from the RER to the Golgi apparatus takes 2-3 hours (Beaulieu et al. 

1989). The glycosylated precursor protein is transported to the basolateral 

epithelial membrane then inserted into the lipid bilayer with the N ̂ -term inal 

of isomaltase remaining in the cytosol. A hydrophobic region containing 31 

amino acids acts as the membrane anchor and the mainly hydrophilic amino 

acids are exposed to the luminal cavity (Semenza 1986). Exposure of the 

precursor to the lumen permits cleavage of the two subunits by pancreatic 

protease enzymes with the subunits remaining associated in the sucrase- 

isomaltase (SI) complex (Hauri et al. 1979).

The active site of sucrase displays activity towards hydrolysis of a 1-2 and 

a1-4 glycosidic bonds. Human lysosomal a-glucosidase shares a highly 

conserved catalytic site with human and rabbit isomaltase, and rabbit 

sucrase (Hermans et al. 1991, Chantret et al. 1992). A study of the 

interaction between human lysosomal or yeast a-glucosidase and the 

inhibitor conduritol B epoxide (CBE) revealed that the (3-carboxyl group of 

aspartic acid at the active site was essential for hydrogen bond formation 

with CBE and that proton donation was likely to be from an aspartic acid 

residue (Hermans et al. 1991, Okuyama et al. 2001). In support of these 

findings, structural studies using the inhibitors kotalanol and Man2GlcNAc2, 

an asparagine-linked N-acetylated oligosaccharide, have revealed hydrogen 

bond formation between aspartic acid residues and saccharide hydroxyl 

groups, with aspartic acid residues also identified as catalytic nucleophiles. 

Stabilisation of the enzyme-inhibitor complex was proposed to involve 

additional hydrophobic interactions with leucine, tryptophan, phenylalanine, 

valine and tyrosine (Sim et al. 2010).

I EEDS UNIVERSITY LIBRARY
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1.3.1.1 Modification of sucrase activity

1.3.1.1.1 Diet and disease

The activity of Si may be enhanced or diminished in different disease states 

or through diet. A diet high in sucrose or medium-chain triacylglycerols 

resulted in significantly increased SI mRNA levels and increased activity in 

rats compared with animals fed a low-starch, high long-chain triacylglyerol 

diet (Yasutake etal. 1995). Intrajejunal administration of fructose or sucrose 

solution, but not glucose, compared with sugar-free solution, similarly 

enhanced SI activity and mRNA levels in rats (Kishi et al. 1999). A high- 

carbohydrate, low-fat diet fed to mice similarly enhanced the activity and 

mRNA levels of SI compared with animals fed a low-carbohydrate, high-fat 

diet (Honma et al. 2007). The authors reported the increase to be associated 

with enhanced acetylation of histone H3 and H4 on the promoter and 

transcription regions of the SI gene. Increased SI activity has also been 

reported in streptozotocin-induced diabetic rats due to a reduced rate of 

enzyme degradation (Olsen and Korsmo 1977). A more recent study 

demonstrated that increased SI mRNA levels, protein expression and 

enzyme activity were reduced to levels equivalent to those in non-diabetic 

rats, with insulin treatment (Liu etal. 2011). The authors treated Caco-2 cells 

with insulin and observed reduced SI mRNA levels and activity that was 

associated with a reduction in the level of caudal type homeobox 2 (CDX2) 

mRNA. Inhibition of the mitogen-activated protein kinase (MAPK)-dependent 

pathway, via which CDX2 is expressed, returned CDX2 mRNA levels, and SI 

mRNA levels and activity to a level equivalent to control cells not treated with 

insulin. Hepatocyte nuclear factor-1a (HNF-1a), another transcriptional

-**
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protein, is also implicated in the regulation of SI expression. Decreased 

expression and activity of SI in Caco-2 cells cultured with high concentration 

glucose media, was reversed when glucose concentration was lowered; 

HNF-1a mRNA was similarly affected by glucose concentration (Gu et al. 

2007).

Congenital sucrase-isomaltase deficiency (CSID) is an autosomal recessive 

disease of the human small intestine that results in abdominal pain and 

diarrhoea following ingestion of sugar. The pathogenesis of CSID has been 

mostly attributed to a mutation of the SI gene that encodes the precursor 

enzyme protein (Uhrich et al. 2012). Subsequent synthesis of the protein in 

the RER leads to the substitution of specific amino acids in the single 

polypeptide chain. Various amino acid alterations have been noted in 

biopsies obtained from patients suffering with CSID a small number of which 

appear more frequently. Consequently substituted amino acid residues lead 

to incorrect folding of the protein, insufficient transportation from either the 

RER or the Golgi apparatus, and cleavage of the hydrophobic membrane 

domain from the precursor protein within the RER ultimately preventing 

anchorage in the apical membrane of the epithelial cell (Jacob et al. 2000, 

Ritz etal. 2003, Keiser etal. 2006).
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Figure 1.5 Structure of the disaccharide sucrose composed of a-D-glucose 
and (3-D-fructose

1.3.2 Glucose transport

Glucose absorption from the lumen of the small intestine is controlled by two 

distinct protein carriers located at the apical membrane, SGLT1 and GLUT2, 

and one at the basolateral membrane, GLUT2. The primary glucose carrier, 

SGLT1, is a protein composed of 664 amino acid residues of which 14 

helical regions span the apical membrane (Hediger et al. 1989, Turk et al. 

1994, Turk et al. 1996). Activity of the carrier is dependent on the binding of 

sodium ions and maintenance of a negative electrochemical gradient within 

the cell. This gradient is a result of basolateral efflux of 3 sodium ions by the 

sodium-potassium pump and influx of fewer sodium ions via the glucose 

carrier protein. Affinity of this secondary active cotransporter for glucose is 

high as demonstrated by a low Michaelis-constant, ~5 mM (Scow et al. 

2011), which represents the ratio of dissociation to formation of the 

transporter-substrate complex. Even at low luminal concentrations SGLT1 

continues to transport glucose against a concentration gradient. Structural

i
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evaluations have demonstrated that the number of sodium ions bound to the 

transporter affects the capacity for glucose binding and that cation-n: 

interactions are involved in binding two sodium ions to the transporter which 

induces a conformational change that permits glucose binding (Jiang et al. 

2012). Investigations using the SGLT1 inhibitor phloridzin and glucose 

stereoisomers implicate the C-terminal loop 13 and tryptophan residues in 

formation of the transporter-substrate complex (Raja et al. 2003, Raja et al. 

2004, Kumar et al. 2007, Tyagi et al. 2007, Wimmer et al. 2009). In order to 

release sodium and glucose into the cytosol the transporter must undergo a 

reorientation from outward to inward facing (Sala-Rabanal et al. 2012). This 

conformational change is a result of a sequence of altered electrical charges 

(Longpre et al. 2012). Reorientation weakens the bond between the 

transporter and one of the sodium ions which confers a disruption to the 

hydrogen bonds that maintain the transporter-glucose complex thereby 

releasing glucose into the cell. It has been proposed that only one sodium 

ion is released into the cell and that the second remains bound to the 

transporter and returns to the extracellular facing orientation. 

Sodium-independent passive diffusion of glucose is facilitated by the GLUT2 

protein carrier. Located in the basolateral membrane GLUT2 allows 

transport of glucose and fructose out of the cell into the hepatic portal vein. 

Relatively recently this transporter has also been detected in the apical 

membrane where it is believed to assist SGLT1 uptake of glucose in the 

presence of a high glucose concentration in the intestinal lumen (Zheng et 

al. 2009, Chaudhry et al. 2012). The secondary structure of GLUT2 is similar 

to that of SGLT1. It is a protein comprised of 554 amino acids that span the 

cell membrane across 12 regions with both the C- and A/-terminal cytosol
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facing (Mueckler 1994, Olson and Pessin 1996). Passive diffusion of glucose 

is proposed to involve hydrogen bond formation of glucose at carbon atoms 

1, 3 and 4 with carbon-6 involved in a hydrophobic association with the 

transporter (Colville et al. 1993); transmembrane regions 9 to 12 have been 

considered essential for transporter-glucose affinity (Wu et al. 1998). In 

contrast to SGLT1, GLUT2 is a low affinity-high capacity carrier of glucose, 

Km = ~20 mM, that does not show saturated kinetics with increasing 

concentration of substrate (Scow et al. 2011, Zheng et al. 2012). 

Translocation of GLUT2 to the apical membrane occurs rapidly within 

minutes of cells sensing the presence of a high luminal concentration of 

glucose. The mechanism for apical GLUT2 translocation is proposed to 

involve two separate pathways that cooperate to enhance activity of protein 

kinase C isoform pil (PCKpil) (EC 2.7.11.13). Cotransport of sodium ions 

into the cell leads to depolarisation of the cell membrane which activates the 

calcium channel Cav1.3 permitting a flux of calcium ions into the cell; this is 

maximal at glucose concentrations that saturate SGLT1. The increased 

influx of calcium alters the cytoskeletal structure and increases PCKpil 

affinity for phosphatidylserine. Similarly at SGLT1 saturating concentrations 

of glucose, apical sweet taste receptors are activated and internalised by the 

cell; the alpha subunits of these receptors is cleaved and released into the 

cytosol. The remaining beta and gamma subunits activate phospholipase C 

isoform pil (PLCpIl) (EC 3.1.4.11) which catalyses the removal of a 

diacylglycérol from phosphatidyl inositol-bisphosphate. The presence of 

diacylglycérol fully activates PKCpil which leads to translocation of GLUT2 

to the apical membrane (Scow et al. 2011). Caco-2 cells co-incubated with
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PKC inhibitors or activator demonstrate reduced and elevated glucose 

uptake, respectively (Zheng etal. 2012).

1.3.2.1 Modification of transporter activity

1.3.2.1.1 Diet and disease

In healthy subjects the plasma increase in glucose concentration following a 

meal stimulates the release of insulin from pancreatic beta cells. Insulin 

receptors on muscle cells and adipocytes bind to the plasma insulin 

subsequently resulting in the insertion of glucose transporter GLUT4 into the 

cell membrane to facilitate glucose uptake, thereby lowering plasma glucose 

concentration. Insulin receptors at the apical membrane of epithelial cells 

similarly bind to insulin in the lumen and induce a reduction of GLUT2 

translocation to the apical membrane that lowers glucose absorption from 

the small intestine (Tobin et al. 2008). In the diabetic disease state, glucose 

uptake into adipocytes and muscle cells is impaired due to resistance to the 

action of insulin or through lack of insulin release from pancreatic beta cells. 

In response to both situations, enhanced insertion of GLUT4 into the plasma 

membrane of adipocytes and muscle cells is not stimulated and plasma 

glucose concentration remains elevated. At the intestinal level, GLUT2 

internalisation is not promoted therefore apical GLUT2 levels remain high 

and glucose uptake continues to be facilitated (Tobin et al. 2008). 

Streptozotocln-induced diabetic rats exhibit enhanced expression of GLUT2 

in enterocytes that is reversed with insulin treatment (Burant et al. 1994, 

Corpe et al. 1996). Increased levels of GLUT2 in the small intestine of 

human subjects with type-2 diabetes has also been reported (Dyer et al. 

2002).
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1.4 Objectives

The objective of this project was to investigate the interaction between dark 

chocolate flavanols and sugars, including the metabolic fate of each, and to 

identify potential mechanisms by which interaction may occur.

)



Chapter 2 Materials and methods

2.1 Chemicals

All chemical reagents were purchased from Sigma-Aldrich, Dorset UK, and 

all water is ultrapure with a resistivity of 18.2 MQ-cm at 25°C supplied using 

the Millipore Milli-Q Integral system, unless otherwise stated.

2.1.1 Reagent preparation

Transport buffer solution was prepared according to the Hanks' Balanced 

Salt solution (H6648) formulation without the addition of D-glucose. Briefly, 

0.4 g L"1 potassium chloride (P5405), 0.06 g L'1 potassium phosphate 

(P0662), 0.05 g L'1 sodium phosphate dibasic (S9763), 0.35 g L‘1 sodium 

bicarbonate (S5761), 8 g L'1 sodium chloride (S5886), supplemented with 

0.27 g L‘1 calcium chloride dihydrate (C7902) and 0.018 g L'1 ascorbic acid 

(A4544) were dissolved in water and the solution adjusted to pH 7.4 at 37°C 

before being sterile filtered (Corning® 430049).

2.1.1.1 Dark chocolate extract preparation

A flavanol-rich dark chocolate extract was prepared as recently described 

(Robbins e ta l2012). Nestlé Noir Intense 70% cocoa solids was ground to a 

powder and the fat removed by treatment with hexane. A volume (45 ml_) of 

hexane (Fisher Scientific, H/0406/PB17) was added to 5 g of powder and the 

suspension sonicated at 50°C for 5 min before being centrifuged at 3,000 

rpm for 5 min. The hexane was decanted to waste and the process repeated 

twice more; residual hexane was evaporated overnight in a fume cupboard. 

A flavanol-rich extract was prepared from the fat-free powder; 10 mL of 

extraction solution containing acetone (Fisher Scientific, A/0606/17), water
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and acetic acid (Fisher Scientific, A/0360/PB15) (70:29.5:0.5) was added to 

the required quantity of powder and the suspension sonicated at 50°C for 5 

min followed by centrifugation at 3,000 rpm for 5 min. The supernatant was 

collected and passed through a strong-cation exchange solid phase 

extraction cartridge (52686) and filtered through a polytetrafluoroethylene 

(PTFE) membrane syringe filter, 17 mm, 0.2 pm (Chromacol, 17-SF-02(T)). 

The filtrate was evaporated to dry under vacuum then reconstituted in 20 mL 

of test or control solution and corrected to pH 7.4 at 37°C.

2.1.1.1.1 HPLC-FLD protocol

The flavanol profile, monomer to decamer, of dark chocolate extract was 

analysed using an Agilent 1200 series HPLC with fluorescence detection, as 

recently described (Robbins et al. 2012). A Phenomenex Develosil Diol 100 

A 5 pm column, 250 x 4.6 mm, plus Phenomenex cyano guard column, 4.x 3 

mm, was maintained at 35°C in a thermostatted column oven. The mobile 

phase consisted of solvent A) 2% acetic acid in acetonitrile (Fisher Scientific, 

A/0626/17) (98:2 v/v), and B) 2% acetic acid in aqueous methanol (Fisher 

Scientific, M/4058/17) (95:3:2 v/v/v/). The flow rate was maintained at 1.0 mL 

min'1 throughout the duration of the analytical run. The mobile phase 

gradient of solvent B in solvent A was as follows: 0 min, 7% B; 3 min, 7% B; 

60 min, 37.6% B; 63 min, 100%; 70 min 100% B; 76 min, 7% B; 81 min, 7%

B. Fluorescence detection was performed with excitation at 230 nm and 

emission at 321 nm. The photomultiplier level was set to 10. Standard 

epicatechin was used to prepare a calibration curve of fluorescence as a 

function of epicatechin concentration. Linear regression analysis, with the y- 

intercept fixed at zero, was conducted to obtain the gradient and adjusted R-

i
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square value of the curve. The concentration of flavanols dimer to decamer 

was calculated using the epicatechin calibration curve with a relative 

response factor applied to each fraction. The flavanol content (mg 100g'1) of 

fresh weight dark chocolate was calculated firstly by converting the 

concentration (mg mL'1) to the content (mg g '1) of defatted dark chocolate. A 

correction factor was applied to account for the dilution factor and fat content 

of the dark chocolate.

2.1.1.2 In  vitro  epicatechin transport and methyiation

Sugar solutions containing 100 mM sucrose (S9378), glucose (Fisher 

Scientific, G/0450/60) or fructose (47740) were prepared in transport buffer 

solution and corrected to pH 7.4 at 37°C. Each sugar solution was 

subsequently used to prepare test solutions containing 250 pM epicatechin. 

Briefly, 2 mg epicatechin was dissolved in a mixture containing 10 pL 

dimethyl sulfoxide plus 990 pL sugar solution, or transport buffer for the 

experimental control. The suspension was sonicated at 37°C for 30 min then 

vortexed to ensure complete dissolution. A volume (725 pL) of epicatechin 

solution was diluted to 20 mL using the corresponding solution then 

corrected to pH 7.4 at 37°C.

2.1.1.3 Dark chocolate extract inhibits sucrose hydrolysis in the Caco> 

2 cell model

A 20 mM sucrose solution was prepared. Briefly, 684 mg of sucrose (S9378) 

was dissolved in 100 mL of transport buffer solution and then corrected to 

pH 7.4 at 37°C.
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2.1.1.3.1 Pure compounds

Pure compounds were weighed and initially dissolved in 1 mL of a 1% 

solution of DMSO (60153) in transport buffer solution or 20 mM sucrose 

solution (v/v). Aliquots were diluted to 20 mL using transport buffer solution 

or 20 mM sucrose solution to obtain final concentrations as described below.

Compound Weight

(mg)

Aliquot
(pL)

Final Concentration 
(pM)

Flavanol monomers 3 970 500

2 581 200

1 580 100

1 290 50

1 116 20

Procyanidin B2 3 385 100

(Extrasynthese, 0984) 3 193 50

Acarbose (A8980) 3 860 200

2 645 100

1 645 50

a(-)-Epicatechin (Extrasynthese, 0977 S), (+)-Epicatechin (Nacalia Tesque, 
02573-34), (-)-Catechin (C0567), (+)-Catechin (Extrasynthese, 0976 S).

2.1.1.3.2 Ethyl acetate extract of dark chocolate extract

A volume (0.75 mL) of ethyl acetate (Fisher Scientific, E/0906/17) was 

added to the dry extract; the suspension was vortexed to mix and 

centrifuged at 17,000 x g for 5 minutes. The supernatant was removed and 

evaporated to dry. To the remaining pellet the ethyl acetate extraction 

procedure was repeated and the supernatant evaporated to dry. Each ethyl 

acetate fraction was reconstituted in 20 mL of sucrose solution and then 

correct to pH 7.4 at 37°C.



2.1.1.4 Glucose transport inhibition by a flavanol-rich dark chocolate 

extract

A stock solution of 10 mM glucose was prepared. Briefly, 180 mg of glucose 

(Fisher Scientific, G/0450/60) was dissolved in 100 mL of transport buffer 

solution and 50 mL serial dilutions ranging from 0.25-7 mM prepared in 

transport buffer solution. A 20 mL aliquot of each concentration was taken to 

which 9 pL of 0.1 pCi pL'1 [14C]-glucose was added to a final radioactivity 

concentration of 0.045 pCi mL'1 and then corrected to pH 7.4 at 37°C.

2.1.1.4.1 Pure compound preparation

Pure compounds were weighed and initially dissolved in 1 mL of a 1% 

solution of DMSO (60153) in transport buffer solution (v/v). Aliquots were 

diluted to 20 mL to obtain final concentrations as described below. A volume 

(9 pL) of 0.1 pCi pL'1 [14C]-glucose was added to each 20 mL solution to 

obtain a final radioactivity concentration of 0.045 pCi mL'1, and then 

corrected to pH 7.4 at 37°C.
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Compound Weight

(mg)

Aliquot

(pL)

Final Concentration 
(mM)

(-)-Epicatechin 
(Extrasynthese, 0977 S)

2 581 0.2

(-)-Epicatechin 6 969 1

(+)-Epicatechin (Nacalai Tesque, 02573- 

34)

2 581 0.2

(-)-Catechin (C0567) 2 581 0.2

(+)-Catechin 
(Extrasynthese, 0976 S)

2 581 0.2

Procyanidin B2 
(Extrasynthese, 0984)

3 780 0.2

Caffeine (C0750) 1 971 0.25

Theobromine (T4500) 10 605 1.68

2.1.1.4.2 Solid phase extraction of flavanol fractions

There are no commercially available standards of flavanols with a degree of 

polymerisation greater than trimer. In order to obtain and investigate the 

effect of flavanol polymers larger than dimer, a solid phase extraction (SPE) 

procedure was developed based on the HPLC-FLD method used to quantify 

the compounds. Using a vacuum manifold, vacuum 0.2 bar, Supelclean™ 

LC-Diol tubes (57016) were pre-conditioned with 2 mL of acetonitrile. Dried 

dark chocolate extract was reconstituted in water and 2 mL of the aqueous 

extract was loaded into the SPE tube. To prevent dilution of the collected 

sample, the initial 2 mL of aqueous extract was eluted to waste. A further 1 

mL of aqueous extract was loaded into the SPE tube and collected in a 

centrifuge tube. The SPE material was washed twice with 1 mL per wash of 

water; each of these washes was collected separately in a centrifuge tube.
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Analytes that remained adsorbed to the SPE material were eluted with two 

washes, 1 mL each wash, of a predominantly organic solvent. The elution 

solvent contained 85% acetonitrile/acetic acid (98:2 v/v) and 15% 

methanol/water/acetic acid (95:3:2 v/v/v). The elution samples were 

collected separately in centrifuge tubes. Each sample was evaporated to dry 

then reconstituted in 0.5 mL acetone/water/acetic acid (70:29.5:0.5 v/v/v) for 

HPLC-FLD analysis.

2.2 Cell culture

The human colon adenocarcinoma cell line, Caco-2 (HTB-37™), was 

obtained from the American Type Culture Collection (ATCC®) at passage 18 

(LGC Standards, Middlesex UK) and propagated in 25 cm2 (Corning® 

430639) and 75 cm2 (Corning® 430641) polystyrene culture flasks using 

Eagle’s Minimum Essential Medium (EMEM). Media containing 1g L'1 D- 

glucose (30-2003, LGC Standards, Middlesex UK) supplemented with 15% 

(v/v) fetal bovine serum (F7524), 19.6 mL L'1 L-glutamine (200 mM; G7513), 

10 mL L'1 penicillin-streptomycin (10,000 U mL'1-10 mg mL'1; P0781), 10 mL 

L'1 MEM non-essential amino acid solution (100x; M7145) and 1 mL L‘1 

amphotericin B (250 pg mL'1; A2942). The incubation temperature was 

maintained at 37°C with an atmosphere of 95% air and 5% carbon dioxide 

(CO2). At 2 or 3 day intervals growth media was replenished and at 80% 

confluence cells were detached from the flask surface using 0.25% trypsin- 

EDTA solution (T4049). For experiments cells were cultured in 24 mm 

Transwell® plates on a 4.67 cm2, 0.4 pm pore polycarbonate membrane 

insert (Corning® 3412) at a density of 6.43 x 104 cells cm'2. Growth media 

contained 10% fetal bovine serum (v/v) in EMEM supplemented as
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described previously, incubation conditions remained unchanged. 

Experiments were performed between 21 and 23 days after seeding on 

Transwell® membrane inserts.

2.2.1 Validation of ceil membrane integrity

The integrity of the Caco-2 monolayer in each Transwell® insert was 

confirmed by measuring the trans-epithelial electrical resistance (TEER) of 

the cells using a Millicell ERS-2 Electrical Resistance System (Millipore, 

Watford UK). TEER value is indicative of the monolayer condition, a low 

value implying less well formed tight junctions between the cells which may 

increase the paracellular transport of a compound across the membrane. 

Readings were taken at three positions per insert with the mean ± SEM 

being calculated for each well. The mean resistance of a blank insert, i.e. 

with no cells, was subtracted from the mean of each Transwell® insert 

containing cells to provide the resistance of the cell monolayer.

2.2.2 Assay protocol

Initially cells were washed to remove traces of cell culture media in a 

process that involved aspiration of media from apical and basolateral 

compartments and replacement with 2 mL of pre-warmed transport buffer. 

The solution was immediately aspirated and replaced with a further 2 mL of 

transport buffer before being returned to the incubator for 30 min at 37°C, 

5% CO2 to facilitate tight junction formation between cells. Following 

incubation trans-epithelial electrical resistance (TEER) was measured. The 

transport buffer was aspirated and replaced with a further 2 mL of transport 

buffer in the basolateral compartment and 2 mL of control or test solution in 

the apical compartment. Transwell® plates were returned to the incubator,

'M r
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for up to 55 minutes (refer to section 2.3.2, 2.3.3 and 2.3.4 for the specific 

duration of each assay) at 37°C, 5% CO2.

Upon removal from the incubator the trans-epithelial electrical resistance 

was measured in each insert before collection of apical and basolateral 

samples. Cells were washed with the addition of 2 mL of transport buffer in 

each compartment to ensure collection of all analytes. Cells were then 

detached from the membrane using 1 mL of 1 M sodium hydroxide (71686) 

solution per insert, and placing the Transwell® plate on a rotating shaker for 

30-40 min. Upon collection of the detached cells the solution was neutralised 

by the addition of 1 mL of 1 M hydrochloric acid (Fisher Scientific, 

H/1200/PB17) solution. All samples were stored at -20°C until required for 

analysis.

2.3 Analytical methods

2.3.1 Validation

Protocol validation was based upon the international Union of Pure and 

Applied Chemistry (IUPAC) harmonised guidelines for single-laboratory 

validation of methods of analysis (Thompson et al. 2002).

2.3.2 In vitro  epicatechin transport and methylation

All pure compound epicatechin is the 2R, 3R enantiomer (Extrasynthese, 

0977 S). One Transwell® plate was allocated per experimental condition to 

provide six replicates. Two passages of cells, passage 43 and 50, were 

utilised in the investigation of epicatechin transport and methylation. The cell 

culture assay duration was 60 minutes.
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2.3.2.1 HPLC-DAD-MS2 Protocol

2.3.2.1.1 Parameters

An Agilent 1200 series Rapid Resolution System equipped with a 

Phenomenex Kinetex® C18 2.1 x 150 mm column was employed for the 

liquid chromatographic separation*of analytes. The stationary phase was 

fitted in a thermostatted column compartment maintained at 35 ± 0.15°C. 

The mobile phase consisted of solvent A: 0.2% formic acid in water (v/v) and 

solvent B: 0.2% formic acid in LCMS grade acetonitrile (v/v) (Fisher 

Scientific, A/0638/17). The solvent flow was maintained at 0.3 mL min'1 

throughout the following gradient schedule of solvent B, briefly: 0 min, 5%; 

5.8 min, 5%; 35 min, 30%; 37.4 min, 95%; 41 min, 95%; 44.6 min, 5%; and

53.1 min, 5%. The diode array detector was set to measure signal intensity 

at 220 nm and 280 nm each with a bandwidth of 8 nm. Mass spectrometric 

detection of analytes was performed using the Agilent 6410 Triple 

Quadrupole LC/MS system. In negative electrospray ionisation mode the 

instrument parameters were as follows: gas temperature and flow 350°C, 11 

L min'1; nebuliser gas pressure 30 psi; capillary voltage, -4000 V; and delta 

EMV 400 V. The analytical method run time was divided into 4 segments; 

the first being a window of 0 to 2 min whereby flow to the mass 

spectrometer was diverted to waste so as to reduce the transfer of salts 

which may otherwise interfere with analyte detection and quantification by 

causing increased background noise and suppression of ionisation. The 

remaining time segments, along with analytical parameters for compound 

quantification and qualification are shown in Table 2.1.

$



55

Multiple reaction monitoring extraction from total ion counts and peak area 

integration for each compound was performed using Agilent MassHunter 

Workstation Software version B.03.01.

2.3.2.1.2 Linearity, precision and limit of quantification

Initially six calibration standard solutions were prepared in the range of 0-50 

pM and analysed in triplicate. Briefly, 1 mg of epicatechin was dissolved in a 

1 % solution of dimethyl sulfoxide (DMSO) (60153) in water (v/v). Serial 

dilutions were prepared using water to closely match the sample matrix. For 

each concentration the mean peak area ± standard error of the mean (SEM) 

(n=3) was plotted against concentration; linear regression analysis was 

performed to calculate the adjusted R-square value and gradient of the 

calibration curve. The relative standard deviation (RSD) of replicate peak 

areas was calculated for each concentration to assess precision of the 

analysis at each concentration. Limit of detection and limit of quantification 

was defined as 6x and 10x respectively, the mean of replicate zero 

concentration solutions.

2.3.2.1.3 Sample preparation for HPLC-DAD-MS2 analysis

Samples were vortexed to ensure homogeneity then centrifuged at 17,000 x 

g for 5 min at room temperature to remove cellular matter. Supernatant was 

collected into a 1.8 mL cryogenic vial for storage at -20°C, and 1 mL passed 

through a polytetrafluoroethylene (PTFE) membrane syringe filter, 17 mm, 

0.2 pm (Chromacol, 17-SF-02(T)) pre-conditioned with 1 mL methanol 

(Fisher Scientific, M/4058/17) followed by 1 mL water. A volume of filtered 

sample (180 pL) was added to an amber micro-vial along with 20 pL of 16.4
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pM taxifolin (Extrasynthese, 1036), final concentration 1.6 pM, chosen as a 

suitable internal standard for the relative identification of analytes.



Time
segment

Retention
time

(min)

Compound Precursor
ion

(nVz)

Quantification Qualification

Product
ion

(m/z)

Fragmerrtor
voltage

(V)

Collision
energy

(V)

Product
ion

(m/z)

Fragmentor
voltage

(V)

Collision
energy

(V)

2 13.0 Ca tech in 289.0 244.8 120 8 202.9 120 15

3 17.4 Epicatechin 289.0 245.0 120 8 203.0 120 15

4 21.6 3’-0-metfiyt-
epicatechin

303.1 136.8 110 12 165.0 110 10

4 23.4 4’-0-methyl-
epicatechin

303.1 1368 110 12 165.0 110 12

4 225 Taxifolin 303.1 284.9 110 15 124.9 110 2

Table 2.1: Mass spectrometry parameters for quantification and qualification of epicatechin, methylated epicatechin metabolites 
and taxifolin
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2.3.3 Dark chocolate extract inhibits sucrose hydrolysis in the 

Caco-2 cell model

Cells between passage 25 and 49 were utilised in the investigation of 

sucrose hydrolysis. A minimum of three replicates was allocated per 

experimental condition. The cell culture assay duration was 20 minutes

2.3.3.1 Glucose oxidase/peroxidase assay

The rate of sucrose hydrolysis was initially quantified by determination of 

glucose concentration In the sample and dividing this by the incubation time. 

The initial method for measuring glucose concentration was the glucose 

oxidase/peroxidase assay in which glucose oxidation to gluconic acid and 

hydrogen peroxide is catalysed by glucose oxidase/peroxidase from 

Aspergillus niger (EC 1.1.3.4) (49180). In the presence of hydrogen 

peroxide, horseradish peroxidase (EC 1.11.1.7) (P8125) catalyses the 

oxidation of o-dianisidine (D9154) to form a brown colour, addition of 

sulphuric acid (Fisher Scientific, S/9160/PB17) to the reaction mix changes 

the wavelength of absorbance and thus a colour change to pink is observed. 

The absorbance of the solution was measured at 540 nm. The Caco-2 cell 

assay protocol was developed based on Michaelis-Menten kinetic analysis 

of sucrose hydrolysis using this method. Initial inhibition assays using a 

cocoa powder extract provided by Nestlé revealed an inhibitory effect on 

enzymes of the glucose oxidase/peroxidase assay. To overcome  ̂ this 

problem a solid phase extraction procedure using hydrophilic-lipophilic 

balanced reversed-phase cartridges (Waters, 186003849) was investigated, 

however this proved unsuccessful. An alternative method using universally 

radiolabelled [14C]-sucrose and liquid scintillation counting was proposed as 

. <•*»
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a more suitable method. This also had the benefit of allowing distinction 

between glucose produced from sucrose hydrolysis and residual glucose 

from the cell culture media which may cause inaccurate determinations of 

glucose concentration.

2.3.3.1.1 Linearity, precision, limit of detection and limit of quantification

Six standard calibration solutions were prepared in the range of 0-80 pg mL'1 

and analysed in triplicate. The concentration of each calibration solution was 

plotted against the mean absorbance at 540 nm ± standard error of the 

mean (SEM) (n=3). Linear regression analysis was performed, with the y- 

intercept fixed at zero, to calculate the gradient and adjusted R-square value 

of the calibration curve. The relative standard deviation (RSD) of replicate 

absorbance values was calculated for each concentration to assess 

precision of the analytical method. Limit of detection and limit of 

quantification, as defined by The Food and Drug Administration Validation of 

Analytical Procedures, were calculated as shown in Equation 2.1 and 

Equation 2.2.

Limit o f  detection =
3.3<r
m. .  . r , r . . 10 a

Limit o f quantification =
Equation 2.1 

Equation 2.2

Where a = standard deviation of blank samples and m = gradient of the 

calibration curve.

2.3.3.1.2 Sample preparation for glucose oxidase/peroxidase assay

Samples were centrifuged at 17,000 x g  for 5 minutes to remove cell debris 

and 0.06 mL of the supernatant added to a microplate well. To commence
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the assay, 0.12 mL of assay reagent containing 12.5 units mL'1 of glucose 

oxidase/peroxidase, 2.5 purpurogallin units mL'1 of peroxidase and 2.5 pg 

mL'1 o-dianisidine, was added to the microplate well containing cell culture 

sample and incubated for 30 min at 37°C. The reaction was stopped by 

addition of 0.12 mL of 6 M sulphuric acid. The absorbance of each well was 

measured at 540 nm using a microplate reader.

2.3.3.1.3 Calculations

The absorbance of each sample was initially corrected against a blank and 

the concentration of glucose calculated from the linear regression equation 

determined for the absorbance calibration curve. The molar concentration 

was converted to rate of product formed per minute by division of the total 

molar concentration of glucose by the incubation time. The rate of product 

formation was equated to the rate of sucrose hydrolysis. The kinetic 

properties of sucrose hydrolysis were measured using the Michaelis-Menten 

model. A plot of rate of sucrose hydrolysis as a function of initial sucrose 

concentration was prepared and nonlinear regression analysis based on the 

Michaelis-Menten equation performed (Equation 2.3). Rearrangement of the 

equation permitted the maximum velocity (Vmax) and Michaelis constant (Km) 

to be determined (Equation 2.4 and Equation 2.5V

i f  ..... VmaxlS] 
0 *M +  IS]

Equation 2.3

„ v0(KM +  [S ])
Vmax -  [Sj

Equation 2.4

, ,  K n a x t^ l rr1
k M — 1/ "  “M)

Equation 2.5



2.3.3.2 Liquid scintillation counting

Liquid scintillation counting was performed using a Packard 1600 TR Liquid 

Scintillation Analyser. The carbon-14 isotope emits high energy beta 

radiation and has a half-life of 5730 years which promotes sample stability 

allowing repeated sample analysis. Use of a liquid scintillation cocktail 

(National Diagnostics/Fisher Scientific, SCN-220-110F) containing an 

energy-collecting solvent and a phosphor facilitates the measurement of 

radiation emissions, referred to as disintegrations. One disintegration per 

second (DPS) equates to 1 Becquerel (Bq), the standard international unit of 

radioactivity, and can be converted to the commonly used unit of Curie (Ci). 

The radioactive component emits a beta particle, the energy from which is 

ultimately absorbed by the phosphor. The phosphor becomes excited from 

the absorption of energy causing it to emit light energy that is detected by 

the scintillation counting equipment. Each phosphor emits one photon but 

multiple phosphors may be excited by the emission of one beta particle 

creating a distinct intensity of light that is measured as a pulse. The pulses 

are expressed as the number of counts per minute (CPM) which can be 

converted to the number of disintegrations per minute (DPM) based on the 

efficiency of energy transfer of the liquid scintillation cocktail and 

subsequently converted to units of radioactivity. In the current investigation 

the protocol for liquid scintillation counting used a minimum ratio of scintillant 

to sample volume of 1: 10 to ensure sufficient energy transfer and therefore 

permit the equation of one count per minute to one disintegration per minute. 

Counts were converted to units of Curie based on the relation of 1 Curie 

being equal to 2.2 x 1012 disintegrations per minute. Counting efficiency of 

the equipment and background radiation was corrected for. The counts per
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minute determined for a carbon-14 calibration solution, relative to its 

specified value was calculated, and the correction factor applied to the 

counts per min for each calibration solution. The counts per minute of a 

background calibration solution were then subtracted from the counts per 

minute measured for each sample.

Because the [14C]-sucrose (Perkin-Elmer, NEC100X050UC) was universally 

labelled the basolateral radioactivity measured was a combination of glucose 

and fructose liberated during sucrose hydrolysis; apical radioactivity was the 

sum of sucrose, glucose and fructose. Because of this glucose and fructose 

could not be quantified in the apical compartment. Initial analysis using the 

glucose oxidase/peroxidase method had demonstrated that relatively only a 

small amount of glucose was detected in the basolateral compartment, the 

majority was present in the apical compartment. To overcome this issue a 

high pressure liquid chromatography (HPLC) separation with 

electrochemical detection was developed to quantify mono- and 

disaccharides. After development of the HPLC-IPAD method the presence of 

sucrose in the basolateral compartment of Transwell® plates was observed 

rendering the use of [14C]-sucrose ineffective for quantification of sucrose 

hydrolysis.

Concentration of glucose and fructose was not quantified using this method 

therefore a calibration curve was not produced.

2.3.3.2.1 Sample preparation for liquid scintillation counting

Samples were vortexed to ensure homogeneity then a volume, 0.25 mL for 

apical samples and sample blanks, and 0.5 mL for basolateral and cell 

samples, was added to liquid scintillation vials containing 5 mL of scintillant.

. •>»
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Light emission was counted for 10 min per vial and the number of counts per 

minute calculated by the equipment software.

2.3.3.2.2 Calculations

Radioactivity in the basolateral compartment of Transwell® plates was 

converted from counts per minute to Curie and expressed as a percentage 

of the total (apical + basolateral + cellular) radioactivity in the well.

2.3.3.3 HPLC-Integrated Pulsed Amperometrlc Detection (IPAD)

Carbohydrate separation is based on the principle of anion exchange 

chromatography. In water at 25°C the dissociation constants of glucose and 

fructose are >12; a strong sodium hydroxide gradient, pH>12, causes 

ionisation of the sugars and permits separation of glucose, fructose and 

sucrose. Electrochemical detection employs the use of three electrodes, a 

gold working electrode, a combined pH-silver/silver chloride reference 

electrode and a titanium counter electrode. Application of a repeating 

sequence of potentials across the working and reference electrodes causes 

oxidation of the gold electrode. The titanium counter electrode receives the 

flow of electrons to ensure the potential applied across the working and 

reference electrodes remains unaffected by current flowing from the gold 

electrode. Anionic sugar molecules are attracted to the oxidised gold 

electrode and a transfer of electrons results in the detection of current. The 

current is integrated over time which gives a measure of charge that is 

expressed in units of Coulombs (C).

Separation of mono- and disaccharides was achieved using a Dionex 

CarboPac PA20 column (3 x 150 mm), with Dionex CarboPac PA20 guard 

column (3 x 30 mm), fitted into a thermostatted column compartment on a
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Dionex LC system with autosampler (AS50), gradient pump (GS50), and 

electrochemical detector (ED50), controlled by Chromeleon 6 software. 

Sonicated solvents A) water, and B) 200 mM sodium hydroxide (71686) 

were stored under nitrogen gas for the duration of use and replaced with 

fresn solutions at least once per week. Solvent flow rate was maintained at 

0.4 m l min'1 throughout the following gradient schedule of solvent B in 

solvent A: 0 min, 30%; 10 min, 50%; 17 min, 30%; 27 min, 30%. The 

repeating sequence of potentials was as follows: 0.00 s, 0.05 V; 0.20 s, 0.05 

V; 0.40 s, 0.05 V; 0.41 s, 0.75 V; 0.60 s, 0.75 V; 0.61 s, -0.15 V; 1.00 s, - 

0.15V; integration of current over time began at 0.20 s and ended at 0.40 s. 

The electrode cleaning step from 0.41 s to 1.00 s firstly ensured full 

oxidation of analytes at the gold electrode with the application of a high 

positive potential, then repulsion of all analytes upon application of a 

negative potential. The autosampler temperature was maintained at 10°C 

and the column oven at 30°C.

2.3.3.3.1 Linearity, precision, limit of detection and limit o f quantification

Ten standard calibration solutions were prepared in the range of 0-500 pM 

and analysed in triplicate. The molar concentration of each calibration 

solution was plotted against the mean peak area, expressed in units of 

nC*min, ± standard error of the mean (SEM) (n=3). Linear regression 

analysis was performed, with the y-intercept fixed at zero, to calculate the 

gradient and adjusted R-square value of the calibration curve. The relative 

standard deviation (RSD) of replicate calibration solutions was calculated for 

each concentration to assess precision of the analytical method. Limit of

■ ■ * 4 ,
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detection and quantification were calculated as shown in Equation 2.1 and 

Equation 2.2.

2.3.3.3.2 Sample preparation for HPLC-IPAD

Samples were centrifuged at 17,000 x g for 5 minutes to remove cell debris. 

Supernatant was passed through a 1.7 mm, 0.2 pm PTFE filter pre

conditioned with 1 mL methanol (Fisher Scientific, M/4056/17) followed by 1 

ml_ water. A volume of filtered sample (180 pL) was added to a 

polypropylene HPLC vial along with 20 pL of 1 mM fucose (F2252) used as 

an internal standard.

2.3.3.3.3 Calculations

The concentration of each glucose and fructose was calculated from the 

linear regression equation determined from the peak area calibration curve 

for each monosaccharide. The sum of apical and basolateral molar 

concentration for each monosaccharide was calculated and corrected 

against the appropriate sample blank. To account for any potential loss of 

glucose and fructose through cellular glycolysis the mean monosaccharide 

concentration was derived from the individual total concentrations of glucose 

and fructose. The rate of product formation was equated to the rate of 

sucrose hydrolysis and was calculated by dividing the total molar 

concentration by incubation time.

2.3.4 Glucose transport inhibition by a flavanol-rich dark 

chocolate extract

All glucose used in the investigation was the D- isomer. Cells between 

passage 33 and 50 were utilised in the investigation of [14C]-glucose
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transport. One Transwell® plate was allocated per experimental condition to 

provide six replicates. The cell culture assay duration was 30 minutes.

2.3.4.1 Liquid Scintillation Counting

Liquid scintillation counting was performed using a Packard 1600 TR Liquid 

Scintillation Analyser. A universally labelled [14C]-glucose isotope (Perkin- 

Elmer, NEC042V250UC) was used in the measurement of apical to 

basolateral glucose transport and cellular uptake. To prevent residual 

glucose from the cell culture media interfering with determination of 

basolateral and cellular glucose concentration, each solution was 

supplemented with a fixed volume of radiolabelled glucose containing a 

specific radioactivity. The benefits of this were two-fold: firstly glucose 

analysis was precise and sensitive, and secondly minimal pre-analytical 

sample preparation was required due to lack of interference from other 

compounds in the sample matrix.

The carbon-14 isotope emits high energy beta radiation and has a half-life of 

5730 years which promotes sample stability allowing repeated sample 

analysis. Use of a liquid scintillation cocktail containing an energy-collecting 

solvent and a phosphor facilitates the measurement of radiation emissions, 

referred to as disintegrations. One disintegration per second (DPS) equates 

to 1 Becquerel (Bq), the standard international unit of radioactivity, and can 

be converted to the commonly used unit of Curie (Ci).

The radioactive component emits a beta particle, the energy from which is 

ultimately absorbed by the phosphor. The absorption of energy excites the 

phosphor causing it to emit light energy that is detected by the scintillation 

counting equipment. Each phosphor emits one photon but multiple

‘Mr



phosphors may be excited by the emission of one beta particle creating a 

distinct intensity of light that is measured as a pulse. The pulses are 

expressed as the number of counts per minute (CPM) which can be 

converted to the number of disintegrations per minute (DPM) based on the 

efficiency of energy transfer of the liquid scintillation cocktail and 

subsequently converted to units of radioactivity. In the current investigation 

the protocol for liquid scintillation counting used a minimum ratio of scintillant 

to sample of 10:1 (v/v) to ensure sufficient energy transfer and therefore 

permit the equation of one count per minute to one disintegration per minute. 

Counts were converted to units of Curie based on the relation of 1 Curie 

being equal to 2.2 x 1012 disintegrations per minute. Counting efficiency of 

the equipment and background radiation was corrected for. The counts per 

minute determined for a carbon-14 calibration solution, relative to its 

specified value was calculated, and the correction factor applied to the 

counts per min for each calibration solution. The counts per minute of a 

background calibration solution were then subtracted from the counts per 

minute measured for each sample.

2.3.4.1.1 Linearity, precision and limit o f quantification

Ten standard calibration solutions were prepared in the range of 0-0.014 pCi 

(0-30,000 CPM) and analysed in triplicate. Briefly, 2 pL of 0.1 pCi pL'1 [14C]- 

glucose stock solution was diluted to 2 mL (0.1 pCi mL'1) and serial dilutions 

prepared using transport buffer solution. Based on the specific activity of the 

stock solution (319 pCi pmol'1) the molar content of each calibration solution 

was calculated and plotted against the mean number of counts per minute ± 

standard error of the mean (SEM) (n=3). Linear regression analysis was
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performed with the y-intercept fixed at zero to calculate the gradient and 

adjusted R-square value of the calibration curve. The relative standard 

deviation (RSD) of replicate counts per minute was calculated for each 

calibration solution to assess precision of the analysis at each molar amount. 

The limit of quantification was defined as the concentration equivalent to 10x 

the standard deviation of background corrected blank samples (Currie 

1968).

2.3.4.1.2 Sample preparation for liquid scintillation counting 

Refer to section 2.3.3.2.1, page 62.

2.3.4.1.3 Calculations

Each sample was corrected for background radiation and the content of [U- 

14C]-glucose calculated from the linear regression equation determined for 

the calibration curve. The content was converted to concentration per 

millilitre and, based on the ratio of radiolabelled glucose to non-radiolabelled 

glucose in the corresponding transport solution, the concentration per 

millilitre of non-radiolabelled glucose was calculated. Total glucose 

concentration per millilitre was calculated as the sum of radiolabelled and 

non-radiolabelled glucose, then converted to the concentration per litre. The 

rate of apical to basolateral transport and cellular uptake (pM min'1) was 

calculated from the total glucose concentration in either the basolateral 

samples or cellular samples, respectively, divided by total incubation time. 

The kinetic properties of apical to basolateral glucose transport and cellular 

uptake were measured using the Michaelis-Menten model. A plot of 

transport rate as a function of initial glucose concentration was prepared and 

nonlinear regression analysis based on the Michaelis-Menten equation was
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performed (Equation 2.3). Rearrangement of the equation permitted the 

maximum velocity (Vmax) and Michaelis constant (KM) to be determined 

(Equation 2.4 and Equation 2.5).

2.4 Statistical analysis

All statistical analysis of data was performed using IBM 

SPSS Statistics 19. Levene’s homogeneity of variances was initially 

executed to calculate whether data variation within each group was 

significant. Where significant variations were measured a non-parametric 

test to determine significant differences between groups was applied. If data 

variations were not significant a parametric test was utilised. Data are 

expressed as mean values ± standard error of the mean (SEM), and 

differences were considered statistically significant when p<0.05, unless

otherwise stated.
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Chapter 3 In  v itro  epicatechin transport and méthylation

3.1 Abstract

The investigation of epicatechin transport and méthylation presented here 

was carried out to determine whether transport of pure epicatechin across 

the Caco-2 cell monolayer was significantly affected by co-incubation with 

sucrose, glucose or fructose; and whether transport of epicatechin from a 

flavanol-rich dark chocolate extract was significantly different from that of the 

individual compound. The results of this study reveal that whilst epicatechin 

transport is not significantly affected by the presence of higher molecular 

weight oligomers and polymers in a dark chocolate extract, O-methylation of 

epicatechin is significantly attenuated. The presence of sucrose significantly 

improved epicatechin transport but did not elicit a significant effect on the 

formation of 3’- and 4’-0-methy!ated metabolites. Conversely co-incubation 

with glucose and fructose did not significantly affect epicatechin absorption 

but did significantly reduce the synthesis of 3’-0-methylated metabolites. 

The role of paracellular permeability in epicatechin transport and the 

potential for competitive, inhibition of catechol-O-methyltransferase by 

oligomeric flavanols and by glycolytic enzymes requiring the magnesium 

divalent cation is discussed.

.
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3.2 Introduction

There are several reports in the literature of eplcatechin bioavailability 

studies undertaken in humans and animals and absorption studies in cell 

culture models using flavanol-rich foods, beverages, plant extracts and the 

pure compound. Effects of the food matrix on gastrointestinal absorption and 

metabolism of epicatechin from cocoa in human and animal subjects has 

been investigated with particular attention to the carbohydrate and protein 

content, both of which are of significance to confectionary and beverages 

containing cocoa flavanols. The physical form in which the cocoa is ingested 

appears to significantly affect the pharmacokinetic properties of epicatechin 

with maximum concentration (Cmax) of serum epicatechin greater in human 

subjects following ingestion of a cocoa beverage compared with a dark 

chocolate bar containing an equivalent amount of total flavanols (Neilson et 

al. 2009). Although this could be a consequence of the different cocoa butter 

content, and therefore fat content, of the bars and beverages. The ability of 

carbohydrates to enhance epicatechin absorption has been proposed but 

the evidence is inconclusive. Carbohydrate content of a meal and plasma 

flavanol area under the curve (AUC) was reported following an investigation 

of volunteers consuming either table sugar, bread or grapefruit juice 

immediately before consumption of a sugar-free flavanol-rich cocoa 

beverage (Schramm et al. 2003). Each test meal significantly increased 

plasma flavanol (epicatechin + catechin) 0-8 hour AUC relative to 

consumption of the cocoa beverage only. Table sugar and bread also 

increased the Cmax. Augmented plasma epicatechin Cmax and AUC following 

consumption of a dark chocolate bar containing sucrose compared with an
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equivalent bar containing maltitol has also been reported (Rodriguez-Mateos 

et al. 2012). However the authors noted that the perceived enhancement 

induced by sucrose may be a consequence of reduced epicatechin 

absorption brought about by the presence of maltitol. A sugar-free flavanol 

equivalent control would be required to confirm the result.

Neilson et al (2009) speculated that the presence of sucrose may enhance 

epicatechin bioavailability. This was based on the highest Cmax following 

consumption of a high-sucrose confectionary bar compared with a low- 

sucrose equivalent, and a sucrose-containing beverage compared with 

sucrose-free beverage. However neither of these results was significant. 

Furthermore non-significant results were reported using a rat model to 

compare the effect of sucrose and milk-protein compared with a reference 

dark chocolate on epicatechin pharmacokinetics (Neilson et al. 2010).

These studies focus on the effect of sucrose on intestinal absorption of free 

epicatechin however it has been reported that following consumption of dark 

chocolate epicatechin in its free form is not detected in the plasma of human 

subjects (Actis-Goretta et al. 2012). The presence of free epicatechin in the 

plasma of human subjects following cocoa intake is controversial. In addition 

to the intervention studies discussed here others, including those based on 

animal models, have quantified free epicatechin along with methylated and 

non-methylated conjugates in the plasma of subjects (Baba et al. 2000b, 

Baba et al. 2000a, Baba et al. 2001a). Epicatechin and its metabolite 

concentrations in the plasma and urine of rats was examined following 

ingestion of increasing doses of pure epicatechin. The results were 

compared with concentrations following almost identical doses of 

epicatechin administered in a cocoa powder (Baba et al. 2001a). The



authors reported significantly lower plasma concentrations of methylated and 

non-methylated epicatechin conjugates post-ingestion of the cocoa powder 

compared with the pure compound. Conversely, free epicatechin 

concentration in plasma was significantly higher following cocoa powder 

treatment compared with the pure compound. Analysis of free epicatechin 

and its metabolite concentrations in urine revealed no significant differences 

between the two treatments suggesting an attenuated rate of epicatechin 

absorption from the gut lumen and/or metabolism within the intestinal 

epithelial cells.

The observation that free epicatechin concentration is higher and metabolite 

bioavailability is lower from cocoa than from the pure compound may be 

explained by the presence of higher molecular weight flavanols in the cocoa. 

Perfusion studies of rat small intestine with mixtures of flavanol oligomers 

have resulted in the detection of low levels of the B2 dimer when co

incubated with either a procyanidin tetramer or B5 dimer (Spencer et al. 

2001, Appeldoorn et al. 2009b). Methylated dimer has also been detected 

along with free epicatechin following incubation of rat small intestine with a 

mix of B2 and B5 dimers (Spencer et al. 2001); although the detection of 

free epicatechin following incubation of flavanol oligomers has been 

contested (Donovan etal. 2002, Ottaviani etal. 2012).

Detection of methylated dimer but not methylated epicatechin suggested 

inhibition of the enzyme catechol-O-methyltransferase (COMT) within the 

cells. Dose-dependent reduction of COMT activity with epicatechin as the 

substrate, in the presence of increasing concentration of dimers was 

observed. Concurrently dose-dependent formation of O-methylated B2 and 

B5 dimers was noted at concentrations up to 300 pM of dimers. Above this
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concentration methylation of both dimers decreased indicating that inhibition 

of COMT activity £300 pM is competitive whereas >300 pM inhibition 

becomes non-competitive. Epicatechin and quercetin have been reported to 

inhibit the activity of human liver cytosolic COMT using 4-hydroxyestradiol as 

substrate, both flavonoids demonstrated a mixed mechanism of inhibition 

with non-competitive inhibition occurring at high concentrations of each 

(Nagai et al. 2004). The authors hypothesised that non-competitive inhibition 

is in part due to the presence of many COMT substrates that increases the 

formation of S-adenosyl-L-homocysteine (SAH) from S-adenosyl-L- 

methionine (SAM), SAH itself being a non-competitive inhibitor of COMT. In 

addition increased utilisation of SAM would reduce its availability as a methyl 

group donor.

Based on in vivo observations the objective of the investigation described in 

this chapter was to determine whether incubation of a flavanol-rich dark 

chocolate extract and the saccharides sucrose, glucose and fructose were 

able to modify in vitro epicatechin absorption and methylation using Caco-2 

cells as a model of the human small intestine.
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3.3 Results

3.3.1 HPLC-DAD-MS2 Validation

3.3.1.1 Linearity, precision and limit of detection and quantification

Epicatechin calibration solutions in the range 0-50 pM were analysed in 

triplicate and the mean peak area ± standard error of the mean (SEM) plot 

against concentration (Figure 3.1). Triplicate zero concentration epicatechin 

solutions generated small ion counts of which the peak areas were 

integrated. The signal to noise ratio of these peaks was calculated to be less 

than 10; subsequently the values were substituted for zero and for linear 

regression analysis the y-axis intercept was set to zero. An adjusted R- 

square value of 1.0 was calculated suggesting good proportionality of 

concentration with peak area.

The relative standard deviation was calculated for each of the five 

concentrations ranging from 1-50 pM; because the zero concentration peak 

areas had been corrected to zero the mean and standard deviation was 

calculated as zero. For all other concentrations relative standard deviation 

ranged from 10-20 %, becoming smaller with increasing concentration; 

precision of the protocol was considered acceptable.

The limit of detection was defined as the smallest peak area that was 

significantly different from the mean peak area of replicate zero 

concentration solutions (p<0.05). This equated to a concentration of 113 nM. 

The limit of quantification was calculated as the concentration at which the 

peak area was 10x that of the mean peak area of replicate zero 

concentration solutions. This equated to 188 nM.
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Concentration of epicatechin and methylated metabolites were calculated by 

rearrangement (Equation 3.2) of the linear regression equation obtained 

from the epicatechin calibration curve (Equation 3.1). The concentrations of 

methylated metabolites were calculated as epicatechin equivalents 

assuming a relative response factor of 1.0.

y  = mx + c Equation 3.1

(y -  c) Equation 3.2
x = ---------m

[Epicatechin] (pM)

Figure 3.1 Epicatechin calibration curve. Mean ± SEM (n=3); gradient = 
1475, adjusted R-square = 1.0.
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3.3.2 Epicatechin transport study

3.3.2.1 Caco-2 cell monolayer validation

Monolayer permeability is of importance when investigating the transport of 

a compound across the cell membrane. Blank corrected TEER values below 

300 ohms may be demonstrative of less well formed tight junctions between 

the cells. Only cells with TEER values £300 ohms were used in the 

investigation presented here (Table 3.1).

For each cell culture assay performed the TEER values were compared to 

determine whether a significant difference existed between the conditions 

investigated. In the assay that investigated the effect of a flavanol-rich dark 

chocolate extract there was no significant difference in TEER values 

between the two groups consequently it was considered that any significant 

differences in basolateral epicatechin concentration could be reasonably 

considered a result of the condition being tested. In the experiment to test 

the effect of sucrose, glucose and fructose on epicatechin transport and 

methylation the mean TEER of control cells (250 pM epicatechin) was 

significantly lower (p<0.05) than the mean TEER of cells used in the test 

conditions of sucrose, glucose and fructose. Partial correlation analysis 

controlling for condition showed no significant correlation between 

basolateral epicatechin concentration and TEER value (Figure 3.2). To avoid 

this problem replicates should have been distributed throughout the 

Transwell® plates rather than allocating one plate per condition.
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Condition TEER (Ohms)

250 pM Epicatechin 416± 12
Dark chocolate extract containing 241 pM epicatechin 455 ± 21

250 pM Epicatechin 291 ± 12a
250 pM Epicatechin + 100 mM sucrose 333 ± 8b

250 pM Epicatechin + 100 mM glucose 342 ± 10b

250 pM Epicatechin + 100 mM fructose • 326 ± 6b

Table 3.1 Blank corrected trans-epithelial electrical resistance (TEER) 
measured before commencement of each assay. Mean ± SEM (n=6) for 
each condition. Different superscript letters represent a significant difference, 
p<0.05.

Trans-epithelial electrical resistance (Ohms)

Figure 3.2 Basolateral concentration of epicatechin after the 60 minute 
incubation, in the absence and presence of 100 mM sucrose, glucose or 
fructose, as a function of mean ± SEM (n=3) trans-epithelial electrical 
resistance per Transwell® insert measured before commencement of the 
assay.
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3.3.2.2 Epicatechin transport and méthylation

3.3.2.2.1 Effect of dark chocolate extract

Transport of epicatechin through a Caco-2 cell monolayer was assessed in 

the absence and presence of a flavanol-rich dark chocolate extract. Table

3.2 shows the flavanol content of Nestlé NOIR Intense 70% cocoa solids 

and the extract used in the cell culture assay. A HPLC-FLD chromatogram 

representative of dark chocolate extract containing flavanol monomers to 

decamer is presented in Figure 3.3. Caco-2 cells were incubated for 60 min 

with either a flavanol-rich cocoa extract containing 241 pM epicatechin or 

250 pM epicatechin standard referred to as the control. TEER values 

measured after the 60 minute incubation revealed a significant reduction 

compared with the resistance measured before commencement of the assay 

(Figure 3.4A1. The mean TEER of cells incubated with the flavanol-rich dark 

chocolate extract were also significantly lower than the mean control cell 

resistance post-incubation. The mean TEER did not fall below 300 Ohms in 

either condition investigated indicating that the monolayer maintained an 

acceptable level of integrity. The concentration of epicatechin in the 

basolateral compartment and 3’- and 4’-0-methylated epicatechin in the 

apical and basolateral compartments was calculated from the epicatechin 

calibration curve and corrected to account for the limit of quantification 

(LOQ). Concentrations below the LOQ were considered to be zero. 

Following incubation with the flavanol-rich dark chocolate extract epicatechin 

concentration in the basolateral compartment was not significantly different 

from the control (Figure 3.4B) however the total concentration of 3’-0 - 

methylated epicatechin (sum of apical and basolateral concentrations) was
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significantly lower than the control (Figure 3.5A). Basolateral concentration 

of 3’-0-methyl epicatechin was not significantly different from the control and 

neither was the total or basolateral concentration of 4’-Omethyl epicatechin 

(Figure 3.5B).



Degree of Polymerisation Content

mg 100 g'1 FW Dark 
Chocolate

pg mL'1 Dark 
Chocolate Extract

Monomer 68.7 116.7

Dimer 43.2 73.5

Trimer 11.0 18.6

Tetramer 6.8 11.7

Pentamer 2.6 4.6

Hexamer 1.2 2.1

Heptamer 0.6 1.3

Octamer 0.3 0.6

Nonamer 0.2 0.4

Decamer 0.2 0 .2

Table 3.2 Flavanol content of the dark chocolate extract used to investigate 
epicatechin transport and méthylation by Caco-2 cells. Values represent the 
mean of two replicates and are expressed as the quantity (mg) per 100 g 
fresh weight (FW) of Nestlé NOIR Intense 70% cocoa solids dark chocolate 
and the amount present in the extract that was incubated with cells.

Figure 3.3 HPLC-FLD chromatogram of dark chocolate extract containing 
64.3 mg of flavanol monomers 100 g '1 fresh weight of dark chocolate. Peak 
numbering equates to the degree of polymerisation with 1 = monomer, 2 = 
dimer etc.
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250 pM Epicatechin DC Extract 241 pM EC

B

Figure 3.4 A) Blank corrected trans-epithelial electrical resistance (TEER) of 
Caco-2 monolayers measured before and after the 60 min incubation. Mean 
± SEM (n=6 ). Different letters represent significant differences, p<0.05. B) 
Epicatechin concentration in the basolateral compartment of Transwell® 
plates post-incubation with 250 pM standard epicatechin (EC) or a flavanol- 
rich dark chocolate (DC) extract containing 241 pM EC. Mean ± SEM (n=6 ).
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□  Apical

I Apical

Figure 3.5 A) Concentration of 3’-0-methyl epicatechin, and B) 4'-C>-methyl 
epicatechin in the apical and basolateral compartments of Transwell® plates 
after the 60 min incubation with 250 pM standard epicatechin (EC) or a 
flavanol-rich dark chocolate (DC) extract containing 241 pM EC. Mean ± 
SEM (n=6 ). Asterisk denotes a significant difference in the total 
concentration (sum of apical and basolateral concentrations) compared with 
250 pM epicatechin, **p<0.01.
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3.3.2.2.2 Effect of sucrose, glucose and fructose

Epicatechin transport through the Caco-2 cell monolayer and methylation by 

cells was assessed In the absence (control) and presence of 100 mM 

sucrose, glucose, and fructose. TEER of the cell monolayer following 

incubation with 100 mM sucrose, glucose or fructose significantly diminished 

compared with the corresponding measurements taken before 

commencement of the 60 minute incubation (Figure 3.6A). The TEER of the 

control cells did not significantly change and the post-incubation TEER of 

cells incubated in the presence of 100 mM glucose or fructose was not 

significantly different from the post-incubation control cells TEER. Incubation 

of cells with 100 mM sucrose did significantly lower the TEER compared with 

post-incubation TEER of the control cells. A significant correlation was 

established between basolatera! epicatechin concentration and TEER 

measurements taken post-incubation (Figure 3.7).

The concentration of epicatechin in the basolateral compartment was 

significantly higher in the presence of 100 mM sucrose compared with the 

control (Figure 3.6B). Glucose and fructose did not significantly affect the 

basolateral epicatechin concentration.

Analysis of both apical and basolateral solutions revealed that only in control 

cells was 3’-0-methylated epicatechin metabolites effluxed across the 

basolateral membrane; 4 ’-0-methylated epicatechin metabolites were only 

effluxed across the apical membrane in control and sucrose-incubated cells 

(Figure 3.8A and B). Co-incubation with glucose or fructose significantly 

reduced the total and apical concentration of 3’-0-methyl epicatechin, but 

not the basolateral concentration, compared with the control; sucrose did not
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elicit a significant effect. There was no significant change in 4’-0-methylation 

of epicatechin across any of the conditions tested.

Figure 3.6 A) Blank corrected trans-epithelial electrical resistance of Caco-2 
monolayers measured before and after the 60 min incubation in the absence 
(control) and presence of 100 mM sucrose, glucose or fructose. Mean ± 
SEM (n=6). Different letters represent significant differences, p<0.05. B) 
Epicatechin concentration in the basolateral compartment of Transwell® 
plates post-incubation. Mean ± SEM (n=6). Asterisk denotes a significant 
difference from the control, *p<0.05.
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Figure 3.7 Basolateral concentration of epicatechin after the 60 minute 
incubation as a function of mean ± SEM (n=3) trans-epithelial electrical 
resistance per Transwell® insert measured post-incubation. Partial 
correlation analysis controlling for condition revealed a significant correlation 
between basolateral epicatechin concentration and TEER, p<0.001.
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B

Figure 3.8 A) Concentration of 3’-O-methyl epicatechin, and B) 4’-0-methyl 
epicatechin in the apical and basolateral compartments of Transwell® plates 
after the 60 min incubation in the absence (control) and presence of 1 0 0  mM 
sucrose, glucose or fructose. Mean ± SEM (n=6 ). Asterisk denotes a 
significant difference in the total concentration (sum of apical and basolateral 
concentrations) compared with the control, **p<0 .0 1 .
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3.4 Discussion

3.4.1 Effect of dark chocolate extract

The trans-epithelial electrical resistance of cells post-incubation was 

significantly lower than before commencement of the assay. Whilst there 

was no significant difference in pre-incubation TEER between the conditions 

investigated, the post-incubation TEER was significantly different but 

remained £300 Ohms. The cell monolayer was considered to be sufficiently 

intact that paracellular permeability was not affected. Incubation of Caco-2 

cells with the flavanol-rich dark chocolate extract containing 241 pM 

epicatechin did not significantly affect epicatechin transport compared with 

transport of 250 pM standard epicatechin. Formation of 3'-0-methylated 

epicatechin metabolites was significantly diminished in the presence of dark 

chocolate extract relative to standard epicatechin; this is in agreement with a 

study of rats in which total 3’-0-methylated epicatechin metabolites were 

significantly lower post-consumption of cocoa powder compared with 

ingestion of standard epicatechin (Baba et al. 2001a).

The predominant flavanol in the dark chocolate extract was epicatechin 

however a substantial quantity of dimers and trimers was also present. 

Tetrameric flavanols have been shown to enhance the cellular absorption of 

dimers (Appeldoorn et a i 2009b) which are reported to competitively inhibit 

the activity of catechol-O-methyltransferase reducing the formation of 

methylated epicatechin metabolites at concentrations relevant to this study 

(Spencer et al. 2001). It is postulated that the attenuation of 3'-0-methylated 

epicatechin observed in the present investigation may be a consequence of



cellular uptake of dimeric flavanols that compete with epicatechin for 

methylation by COMT.

3.4.2 Effect of sucrose, glucose and fructose

Incubation of cells with 100 mM sucrose, glucose or fructose significantly 

reduced the post-incubation TEER of the monolayer relative to pre

incubation TEER. Co-incubation with sucrose, but not glucose or fructose, 

significantly reduced the TEER relative to the control. In each test condition 

the value fell below 300 Ohms which indicates loss of monolayer integrity 

and potential for increased paracellular transport of solutes. The paracellular 

route has a net negative charge which results in a differential rate of solute 

permeability in the order from fastest to lowest cationic > neutral > anionic 

(Amidon et al. 1999). In addition to this principle the rate of permeability is 

also regulated by the molecular weight and radius of the solute, such that 

smaller molecules permeate faster than larger ones. The authors 

demonstrated that disruption of the cell monolayer of Madin-Darby canine- 

kidney (MDCK) cells increased paracellular transport of sucrose and 

mannitol with sucrose permeability being more greatly affected than 

mannitol. The pore radius of an integral MDCK monolayer was calculated as

6.1 A; by comparison the radius of mannitol and sucrose is 4.1 and 5.6 A, 

respectively. The disrupted monolayer, pore size 11.0 A, was considered to 

become relatively less inhibiting to the larger molecule. The pore radius of 

Caco-2 cells is almost double that of MDCK cells however the permeability 

coefficient of mannitol is not significantly different between the two cell 

models. This is considered to be a function of other physical characteristics
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of the cells including cell height and width, length of tight junctions and width 

of lateral space.

Incubation of Caco-2 cells with 100 mM sucrose, but not glucose or fructose, 

significantly increased the apical to basolateral transport of epicatechin. 

Concomitantly the TEER of cells incubated in the presence of sucrose 

significantly diminished compared with the control. It is probable that 

increased basolateral epicatechin concentration was a result of a 

significantly disrupted cell monolayer which allowed greater paracellular 

permeation. The absence of a significant change in basolateral epicatechin 

concentration following incubation with glucose or fructose, even though the 

monolayer resistance diminished below 300 Ohms, is believed to be a result 

of there being no significant difference between the post-incubation TEER of 

cells incubated with glucose and fructose compared with control cells.

In Caco-2 cells activation of the sodium-dependent glucose transporter, 

SGLT1, has been reported to increase tight junction permeability (Turner 

and Black 2000). The presence of sucrose in the diet of mice significantly 

increased SGLT1 activity compared with a carbohydrate-free diet or diet 

containing maltose (Weiss et al. 1998, Lam et al. 2002). Weiss et al {1998) 

also demonstrated that sucrose a-glucosldase activity increased parallel with 

SGLT1 activity. Whilst it would be expected that the presence of glucose 

would induce activation of SGLT1, it has been reported that sucrose and 

fructose, but not glucose, enhances the activity of sucrose a-glucosidase 

(EC 3.2.1.48) in rats (Kishi et al. 1999). It could be postulated that incubation 

of Caco-2 cells with sucrose, but not glucose or fructose, induces SGLT1 

activity that leads to increased tight junction pore size as determined by

■ r*



reduced electrical resistance of the cell monolayer, and therefore increased 

paracellular permeability of epicatechin.

The presence of glucose or fructose, but not sucrose, elicited a significant 

reduction in 3’-0-methylation of epicatechin. The méthylation of epicatechin 

is an enzyme catalysed reaction in which a methyl group is transferred from 

S-adenosyl-methionine to the substrate. It is a requirement of the enzyme 

activity for the presence of a divalent metal cation; this is usually magnesium 

(II). The metal cation ensures that the substrate binds to the enzyme- 

cofactor complex in the correct orientation to permit methyl group transfer; 

changing the metal ion affects the enzyme activity. In the present cell culture 

study magnesium is not present in the transport solution; the only divalent 

cation present is calcium (II). It has been reported that substituting calcium 

(II) for magnesium (II) produces a significant inhibition of the enzyme. 

Because the calcium (II) ion is larger than the magnesium (II) ion this 

prohibits the correct cofactor-substrate alignment within the enzymes active 

site (Sparta and Alexandrova 2012). The control transport solution is 

formulated using the same protocol therefore is it likely that magnesium (II) 

stored within the cells permits continued COMT activity. The inhibition of 

enzyme activity in the presence of glucose or fructose may be due to 

competition for magnesium (II) from other enzymes within the cell. Glucose 

is the primary substrate in the glycolytic pathway, it is initially phosphorylated 

by hexokinase (EC 2.7.1.1), an enzyme requiring magnesium (II) for its 

activity, to produce glucose-6-phosphate. The pathway continues with 

conversion to fructose-6-phosphate catalysed by glucose-6-phosphate 

isomerase (EC 5.3.1.9) and further phosphorylation to form fructose-1, 6- 

bisphosphate by 6-phosphofructokinase (EC 2.7.1.11), an enzyme that also
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requires magnesium (II). It is probable that sucrose does not elicit a similar 

reduction of epicatechin méthylation due to the relatively low levels of 

glucose and fructose liberated from enzymatic sucrose hydrolysis; the 

concentration of each monosaccharide produced may remain too low to 

exhibit an inhibitory effect of COMT.

Schramm et al (2003) demonstrated a positive association between 

carbohydrate content of a meal and plasma epicatechin area under the 

curve. Other studies have proposed similar associations but with less 

convincing results (Neilson et al. 2009, Rodriguez-Mateos et al. 2012). It 

may be that other components of the formulations are responsible for the 

effects observed or that lack of significant differences is due to the dose 

administered. The doses administered to subjects in the human studies 

described previously to determine the effect of food components on 

epicatechin bioavailability are shown in Table 3.3. In the Caco-2 study 

presented here the concentration of epicatechin and sucrose applied to cells 

was 250 pM and 100 mM, respectively. Assuming 500 mL of gastric fluid this 

would be the equivalent to a serving of approximately 53 g and 71 g of 

Nestlé NOIR Intense dark chocolate containing 70% cocoa solids to achieve 

the same epicatechin and sucrose concentrations.

• ¥ *
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Reference Sucrose Flavanol monomer

(9) (mM) (mg) (MM)

Schramm et a/ (2003) 35 204 100 689

Neilson et a/(2009) 15 88 36 248

Rodriguez-Mateos et al (2012) 10 58 75 517

Table 3.3 Sucrose and flavanol monomer content per serving based on 65 
kg body weight and equivalent concentration assuming 500 mL gastric fluid 
given to human subjects to investigate the effect of sucrose on epicatechin 
bioavailability.

3.5 Conclusion

In the Caco-2 cell model the apical to basolateral transport of epicatechin is 

not affected by the presence of higher molecular weight flavanols in a dark 

chocolate extract or monosaccharides glucose and fructose. Sucrose does 

significantly enhance epicatechin transport, possibly via its potential to 

increase paracellular permeability through stimulation of SGLT1 activity. The 

formation of 3’-0-methylated epicatechin is significantly attenuated in the 

presence of a dark chocolate extract and glucose or fructose. It is 

hypothesised that the effect of dark chocolate extract is attributable to the 

presence of dimeric flavanols in the dark chocolate extract which compete 

with epicatechin for methylation. The effect of glucose and fructose is 

proposed to be a consequence of glycolysis enzymes competing with COMT 

for magnesium (II) cations that are necessary for activity. Prospective 

studies in which the effect of sucrose on SGLT1 activity and TEER of Caco- 

2 cells are required to confirm the hypothesis presented here. Co-incubation 

of epicatechin with commercially available dimeric flavanol standards should 

be performed in Caco-2 cells to confirm whether epicatechin transport and 

COMT activity is significantly affected by the presence of dimeric flavanols.
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Chapter 4 Dark chocolate extract inhibits sucrose hydrolysis 

in the Caco-2 cell model

4.1 Abstract

The rate of sucrose hydrolysis in Caco-2 cells was investigated in the 

presence of flavanol-rich dark chocolate and individual flavanol constituents 

of dark chocolate. Enantiomers of each catechin stereoisomer and 

acarbose, used as a positive control, were also assessed. Acarbose dose- 

dependently reduced the rate of hydrolysis. Dark chocolate extract 

containing 322 pM flavanol monomers and 500 pM (-)-epicatechin 

significantly decreased the rate of hydrolysis by 59% and 31% respectively. 

This suggests that the epicatechin content of dark chocolate is partly 

responsible with potential synergistic effects from other flavanol components 

contributing to the difference. All individual flavanol monomers and dimer 

investigated significantly enhanced the rate of sucrose hydrolysis at a 

concentration of 50 pM. With the exception of (+)-epicatechin, all other 

concentrations investigated did not affect the rate of sucrose hydrolysis. It is 

hypothesised that sucrase-flavanol binding may occur at two distinct 

locations; one that is not the active site, could alter the tertiary structure of 

the enzyme exposing more catalytic residues, thereby enhancing sucrose 

hydrolysis at moderate concentrations; and two at the more accessible 

active site, flavanol binding would elicit an inhibitory effect that becomes 

more prominent with increasing concentration of inhibitor.



4.2 Introduction

The effects of plant extracts and the individual phenolic components on 

carbohydrate metabolising enzymes present in the small intestine have been 

extensively investigated during the last decade (Kim et al. 2000, Hansawasdi 

etal. 2001, Matsui etal. 2001, Matsui etal. 2002, Ramachandra etal. 2005, 

McDougall et al. 2005, Barrenetxe et al. 2006, Iwai et al. 2006, He et al.

2007, Gupta et al. 2007, Ani and Naidu 2008, Kumarappan and Mandaol

2008, Adisakwattana and Chanathong 2011, Pereira et al. 2011, El- 

Beshbishy and Bahashwan 2012). Primarily these studies have focused on 

inhibition of enzymes belonging to the hydrolase family -  a-amylase (EC 

3.2.1.1), a-glucosidase (maltase) (EC 3.2.1.20), and sucrose a-glucosidase 

(sucrase) (EC 3.2.1.48). Common features of these enzymes are the 

catalytic residues of aspartic and glutamic acid that, each contains an acidic 

side chain (Nichols et al. 2003, Lo Piparo et al. 2008). At physiological pH 

the ionised a-carboxyl group of each amino acid is able to participate in 

hydrogen bond formation with the hydroxyl groups of phenolic compounds. 

Many investigations have observed that more hydroxyl groups present in the 

molecule generally equates to stronger inhibition of the enzyme compared 

with similar structures containing fewer hydroxyl groups. This was 

demonstrated by a study of monomeric flavanols and condensed tannins 

typically present in tea. The most effective inhibition of maltase and sucrase 

was performed by those compounds esterified to gallic acid, such as 

theaflavin-3-O-gallate, epigallocatechin gallate and epicatechin gallate 

(Matsui etal. 2007, Kamiyama etal. 2010). A summary of the concentrations
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required to reduce activity of the enzymes by 50% (IC50) reported by Matsui 

et al (2007) is shown in Table 4.1.

The stereochemical configuration of hydroxyl groups was also found to be of 

importance to the efficacy of inhibition. The 3’ hydroxyl group of theaflavin-3- 

O  gallate rotated in the 'R  configuration inhibits maltase more potently than 

the 'S’ configuration. Similarly the HR  configuration of the C-ring hydroxyl 

group of both catechin and epicatechin inhibited maltase more than the ‘S  

isomer (Matsui et a i 2007).

The number of hydroxyl groups present on the B-ring of flavonols affects the 

inhibitory capacity towards sucrase, maltase and a-amylase. The order of 

inhibition from strongest to weakest was reported to match the number of 

hydroxyl groups from most to fewest in a study of guava leaf constituents, 

with myricetin > quercetin > kaempferol (Wang et a i 2010). Apigenin, a 

flavone containing one B-ring hydroxyl group but no C-ring hydroxyl, 

exhibited only slight inhibition (IC50 >30 mM), suggesting that hydroxylation 

of the C-ring is also important.

A double bond between carbon-2 and carbon-3 of the C-ring forms a 

conjugated system with delocalised electrons throughout the A- and C-rings, 

the presence of which has also been implicated in the ability of a flavonoid to 

inhibit glucohydrolase enzymes. Lo Piparo et al (2008) assessed the 

interaction between a variety of flavonoids and amino add residues at the 

active site of human salivary a-amylase. They found the conjugated system 

was able to form n-n bonds with the aromatic side chains of tryptophan and 

tyrosine. Luteolin and quercetin, a flavone and flavonol containing the 

conjugated AC ring system and presenting identical structures except for the 

presence of a carbon-3 hydroxyl group in quercetin, exhibit similar IC50
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values, 18.4 pM and 21.4 pM respectively. Catechin and epicatechin, 

flavanols that do not possess the conjugated system were unable to achieve 

50% inhibition of a-amylase at concentrations up to 100 pM.

The flavanols catechin and epicatechin are also only weak inhibitors of 

sucrase and maltase, refer to Table 4.1. and supported by the observations 

of Kamiyama et a /(2010). Concentrations required to reduce enzyme activity 

to 50% are not physiologically easy to achieve. For example, one of the 

best sources of (-)-epicatechin is dark chocolate that contains approximately 

70 mg 100 g'1 fresh weight (Neveu et al. 2010). Assuming 500 mL of gastric 

liquid this equates to approximately 480 pM. Any benefits arising from 

inhibition of carbohydrate hydrolysis would likely be offset by the high sugar 

and fat intake from consuming 200 g of dark chocolate. As previously 

discussed the gallateci flavanols seem to be more effective inhibitors of a- 

glucosidase enzymes at physiologically relevant concentrations, which may 

explain the medicinal use of green tea as an anti-diabetic treatment in some

cultures.
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Maltase IC50 

(pM)
Sucrase IC50 

(pM)

(-)-Epicatechin (2R, 3R) 770 1080

(+)-Epicatechin (2S, 3S) 1320 Not measured

(-)-Catechin (2S, 3R) 1890 Not measured

(+)-Catechin (2R, 3S) 4320 Not measured

Epigallocatechin : 1260 921

Epicatechin gallate 53 172

Epigallocatechin gallate 40 169

Theaflavin 500 >10,000

Theaflavln-3-O-gallate (3 ’R) 10 1024

Theaflavin-3-O-gallate (3’S) 83 Not measured

Table 4.1 Concentration of flavanols required to inhibit the activity of maltase 
(EC 3.2.1.20) and sucrase (EC 3.2.1.48) by 50% (IC50) taken from Matsui et 
al (2007).

Plant extracts containing relatively high concentrations of polymerised 

flavanols such as grape seed extract have been assayed to determine the 

efficacy of a-glucosidase inhibition and protein binding. Sucrase activity in 

the Caco-2 cell model was reduced by 61% in the presence of 0.3 g L'1 pre

digested grape seed extract containing approximately 54% flavanols with a 

degree of polymerisation greater than dimer (Laurent et al. 2007). The 

protein binding capacity of flavanols, ranging from monomer to hexamer 

extracted from grape seed, was assessed by fluorescence quenching of 

tryptophan residues in bovine serum albumin and a-amylase (Soares et al. 

2007). Flavanols with a higher molecular weight (MW) exerted greater 

quenching capacity of a-amylase tryptophan residues than the smaller 

molecules, and flavanols with a gallate moiety were more effective than non-

i



gallated compounds. Tannic acid, a large phenolic compound with MW 

1701.2, exerted the strongest fluorescence quenching capacity.

Tannic acid has been described to inhibit human salivary a-amylase by a 

mixed mode (Kandra et al. 2004) and similarly Inhibits sucrase by mixed- 

type at physiological pH 7.2 (Gupta et al. 2010). The authors reported that 

binding of the phenolic compound altered the tertiary structure of the 

enzyme such that tryptophan residues in the active site became more 

exposed to the hydrophilic environment.

Synergistic effects between individual compounds and extracts have also 

been reported. Mulberry extract combined with either roselle, 

chrysanthemum or butterfly pea extract enhanced maltase inhibition 

compared with mulberry extract alone. Similarly, roselle extract combined 

with either chrysanthemum, mulberry, bael or butterfly pea extract increased 

a-amylase inhibition compared with roselle extract alone (Adisakwattana et 

al. 2012). The combined pure compounds quercetin and myricetin, hyperin 

and avicularin, kaempferol and quercetin increased sucrase and maltase 

inhibition compared with the compounds assayed individually; a-amylase 

was not affected (Wang etal. 2010).

The aim of this investigation was to determine whether flavanol-rich dark 

chocolate extract and individual flavanol components were able to inhibit the 

hydrolysis of sucrose in the Caco-2 cell model.
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4.3 Results

4.3.1 Analytical protocol validation

4.3.1.1 Linearity, precision, limit of detection and limit of quantification

4.3.1.1.1 Glucose oxidase/peroxidase assay

Calibration solutions in the range 0-80 pg mL'1 were assayed using the 

glucose oxidase/peroxidase method and a calibration curve of absorbance 

at 540 nm as a function of glucose concentration prepared. The linear 

regression equation was obtained, with the y-intercept fixed at zero the 

gradient = 0.014 and the adjusted R-square = 0.99, suggesting good 

proportionality of absorbance and concentration

Figure 4.1V The relative standard deviation of absorbance was calculated for 

each concentration of glucose, and ranged from 2.2 to 12.7% indicating that 

precision of the method was acceptable. The limit of detection was 

calculated as 1.9 pg mL'1 and the limit of quantification as 5.7 pg mL'1.

Figure 4.1 Glucose oxidase/peroxidase assay calibration curve; gradient = 
0.014, adjusted R-square = 0.99. Mean ± standard error of the mean (n=3).
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The rate of sucrose hydrolysis in Caco-2 cells co-incubated with a cocoa 

powder extract provided by Nestlé, was investigated using the glucose 

oxidase/peroxidase method to determine glucose concentration in the 

sample. At this point it was observed that the cocoa powder extract inhibited 

the activity of enzymes in the glucose/oxidase assay. To overcome 

interference a solid phase extraction procedure, using hydrophilic-lipophilic 

balanced cartridges, was trialled to assess whether the interfering 

compounds could be removed from the sample. Whilst the extraction 

improved glucose measurement in the presence of cocoa powder, some 

glucose was retained by the adsorbent (RguæJL2). In addition this process 

was labour intensive and time-consuming such that alternative methods of 

glucose analysis were investigated.

Figure 4.2 Absorbance of glucose calibration solutions, determined using the 
glucose oxidase/peroxidase method, following incubation in the absence and 
presence of a cocoa powder extract, with (+ SPE) and without (No SPE) 
solid phase extraction. Mean ± SEM (n=3).
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4.3.1.1.2 HPLC-IPAD

Data analysis was performed over a 15 month period with a 3 month break 

between December 2010 and March 2011. At the beginning of each 

analytical period calibration solutions in the range 0-500 pM were analysed 

to ensure accurate data analysis and compare equipment function. 

Calibration curves of peak area as a function of glucose or fructose 

concentration were prepared (Figure 4.3A and Bl  The linear regression 

equation was obtained with the y-intercept fixed at zero the gradient for 

glucose and fructose were calculated as 0.19 and 0.16, respectively, and the 

adjusted R-square was 1.0 for each, suggesting good proportionality of peak 

area and concentration (Figure 4.3A and B1. The relative standard deviation 

(RSD) of peak area was calculated for each concentration of glucose and 

fructose, and ranged from 0.7 to 11.2% and 0.8 to 8.7%, respectively. The 

limit of detection and limit of quantification were calculated as 0.02 pM and 

0.06 pM for glucose and 0.01 pM and 0.04 pM for fructose.

Precision of the analytical method at the beginning of the second analytical 

period, determined by calculation of RSD, remained acceptable although 

there was a loss of sensitivity reflected in lower gradients and higher limits of 

detection (LOD) and quantification (LOQ). Glucose: gradient = 0.14, LOD = 

0.44 pM, and LOQ = 1.32 pM; fructose: gradient = 0.12, LOD = 0.05 pM, 

and LOQ = 0.14 pM.

Figure 4.4 represents a typical chromatogram of 200 pM calibration solution 

containing fucose, glucose, fructose and sucrose. Fucose was used as an 

internal standard. Figure 4.5 demonstrates the presence of sucrose in a 

basolateral cell culture sample.
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Figure 4.3 A) Glucose, and B) fructose HPLC-IPAD calibration curves. A) 
Gradient = 0.19, adjusted R-square = 1.0. B) Gradient = 0.16, adjusted R- 
square = 1.0. Mean ± standard error of the mean (n=3).
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Figure 4.4 HPLC-IPAD chromatogram representing peaks of fucose, 
glucose, fructose and sucrose, from left to right. Concentration of each = 200 
pM.

Figure 4.5 HPLC-IPAD chromatogram demonstrating the presence of 
sucrose in a basolateral cell culture sample. Fucose was added as the 
internal standard.
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4.3.2 Cell culture

4.3.2.1 Validation of cell membrane integrity

Trans-epithelial electrical resistance (TEER) was measured before the 20 

min incubation and corrected to account for resistance of the polycarbonate 

membrane to provide a measure of the cell monolayer resistance. Mean 

TEER varied from 130 to 464 (Table 4.2). The rate of sucrose hydrolysis 

significantly correlated with TEER even when the assay condition was 

controlled for, p<0.01 (Figure 4.6). An association between TEER and cell 

passage number was considered but no significant correlation existed, 

whereas the rate of sucrose hydrolysis and passage number did correlate 

significantly, p<0.001 (Figure 4.7V However, controlling for the condition and 

passage number did not alleviate the significant correlation between TEER 

and rate of sucrose hydrolysis, p<0.01. During 2010, after the first period of 

cell culture assays whilst a new batch of cells was being prepared for the 

second period of cell culture assays, cell clumping was observed in culture 

flasks. It was proposed that high glucose concentration in the media may be 

a contributing factor to cells forming clumps in which rather than remaining 

as a monolayer they began to stack on top of one another. The 

concentration of glucose in the culture media was reduced from 25 mM to 5 

mM which resulted in a general lowering of TEER of the cell monolayer. 

TEER and rate of sucrose hydrolysis significantly correlated with media 

glucose concentration, p<0.001 (Figure 4.8A and B1. Controlling for the 

assay condition, passage number and media glucose concentration 

removed any significant correlation between the rate of sucrose hydrolysis 

and TEER. In assays where the TEER of the test condition differed
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significantly from the control condition partial correlation analysis, controlling 

for the condition, was performed and confirmed there was no association 

between TEER and the rate of hydrolysis, p>0.05.
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Condition TEER (Ohms)

Control Test

200 pM Acarbose 195 236**

100 pM Acarbose 209 310**

50 pM Acarbose 319 385***

DCa extract 322 pM epicatechin 213 254**

DC extract 141 pM epicatechin 443 403

DC extract ethyl acetate fraction 65 pM epicatechin 443 463

DC extract ethyl acetate fraction <1 pM epicatechin 443 437

500 pM (-)-Epicatechin 334 332

200 pM (-)-Epicatechin 195 285**

200 pM (-)-Epicatechin 130 177

200 pM (-)-Epicatechin 392 423*

100 pM (-)-Epicatechin 160 187

100 pM (-)-Epicatechin 209 424***

50 pM (-)-Epicatechin 319 415***

20 pM (-)-Epicatechin 392 434**

200 pM (+)-Epicatechin 195 289**

200 pM (+)-Epicatechin 392 . 417

100 pM (+)-Epicatechin 209 405***

50 pM (+)-Epicatechin 319 402**

20 (+)-Epicatechin 392 424*

200 pM (+)-Catechin 337 447***

100 pM (+)-Catechin 209 363**

50 pM (+)-Catechin 319 403***

20 pM (+)-Catechin 337 464***

200 pM (-)-Catechin 337 409*

100 pM (-)-Catechin 209 367**
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Condition TEER (Ohms)

Control Test

50 pM (-)-Catechin 319 405**

20 pM (-)-Catechin 337 447**

100 pM Procyanidin B2 209 319**

50 pM Procyanidin B2 319 401**

Table 4.2 Blank-corrected Caco-2 cell monolayer trans-epithelial electrical 
resistance (TEER) for each assay condition investigated. Mean ± SEM. 
Abbreviation: DC, dark chocolate. Asterisk denotes a significant difference 
from the control, *p<0.05, **p<0.01 and ***p<0.001.
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Figure 4.6 Rate of sucrose hydrolysis plotted against mean ± SEM trans 
epithelial electrical resistance (n=163).

Figure 4.7 Rate of sucrose hydrolysis as a function of cell passage number.



R
at

e 
of

 s
uc

ro
se

 h
yd

ro
ly

si
s 

(n
m

ol
 m

in
"1

) 
Tr

an
s-

ep
ith

el
ia

l e
le

ct
ric

al
 r

es
is

ta
nc

e 
(O

hm
s)

110

Figure 4.8 A) Trans-epithelial electrical resistance, and B) rate of sucrose 
hydrolysis as a function of glucose concentration in the cell culture media.

- * *
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4.3.3 Sucrose hydrolysis study

4.3.3.1 Kinetic investigation

The kinetic properties of sucrose hydrolysis were determined using the 

glucose oxidase/peroxidase assay to measure glucose concentration. To 

establish the most appropriate sucrose concentration the kinetic properties 

were assessed using the Michaelis-Menten model. Assays of 1-120 mM 

sucrose revealed a typical hyperbolic growth curve when rate of hydrolysis 

was plotted against sucrose concentration (Figure 4.91. The maximum rate 

of hydrolysis (Vmax) = 20.5 nmol min'1, and Michaelis constant (KM) = 19.3 

mM, was calculated from nonlinear regression analysis using the Michaelis- 

Menten function and rearrangement of the Michaelis-Menten equation. 

Subsequent assays were performed using 20 mM sucrose as this was within 

the linear range of the curve signifying that the enzyme was not saturated.

Figure 4.9 Plot of rate of hydrolysis against sucrose concentration with 
Michaelis-Menten nonlinear regression analysis. Mean ± SEM (n=3).
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4.3.3.2 Inhibition investigation

The effect of dark chocolate extract and flavanol monomers and dimers on 

sucrose hydrolysis was investigated with the rate of sucrose hydrolysis 

calculated based on the concentration of mean glucose and fructose 

concentrations in the samples. Acarbose, an anti-diabetic prescription drug 

which inhibits the activity of carbohydrate hydrolysing enzymes, was used as 

a positive control. The total flavanol profile of monomers to decamers for the 

dark chocolate extracts and ethyl acetate fractions used in this investigation 

are displayed in Table 4.3. The mean concentration of glucose and fructose 

in each dark chocolate extract and ethyl acetate fraction is also presented. 

Acarbose dose-dependently inhibited the rate of sucrose hydrolysis up to 

93%, p<0.001 (Table 4.41. Dark chocolate extract containing 322 pM 

flavanol monomers significantly reduced the rate of sucrose hydrolysis by 

59% (p<0.01). Dark chocolate extract containing 141 pM flavanol monomers 

and ethyl acetate fractions containing £65 pM flavanol monomers had no 

significant effect (Figure 4.10). Inhibition of sucrose hydrolysis in the 

presence of (-)-epicatechin was only significant at the highest concentration 

investigated (500 pM) = 31% inhibition, p<0.001 (Figure 4.11V A 10-fold 

lower concentration of (-)-epicatechin (50 pM) significantly enhanced 

sucrose hydrolysis by 56%, p<0.01. All other concentrations of (-)- 

epicatechin investigated did not elicit a significant effect. The (+)-epicatechin 

enantiomer also significantly enhanced sucrose hydrolysis, by 60%, at 

concentrations of 50 and 100 pM, p<0.05 and p<0.01 respectively (Figure 

4.13A). Other concentrations of (+)-epicatechin investigated, 20 and 200 pM, 

did not significantly affect the rate of sucrose hydrolysis. The (+) and (-)- 

catechin enantiomers demonstrated significant enhancement of sucrose
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hydrolysis at a concentration of 50 pM, increasing it by 51% (p<0.05) and 

64% (p<0.01), respectively (Figure 4.12A and B). Similarly, procyanidin B2 

significantly enhanced sucrose hydrolysis by 26% at a concentration of 50 

pM, p<0.05. All other concentration of (+)-catechin, (-)-catechin and 

procyanidin B2 did not produce a significant moderation of sucrose 

hydrolysis in Caco-2 cells.
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Total flavanol content of dark chocolate extract3 and ethyl 
acetate fractions0 (mg) / Monosaccharide concentration (pM) 

Degree o f --------------------------------------------------------------------------------------------------------
polymerisation Flavanol m onom ers (jjM ) 

322s 141a 65* <1b

Monomer 3.09 1.36 0.63 0.01

Dimer 1.95 0.14 0.06 0.03

Trimer 0.49 0.04 0.02 0.01

Tetramer 0.31 0.02 0.01 0.0

Pentamer 0.12 0.01 0 0

Hexamer 0.05 0 0 0

Heptamer 0.03 0 0 0

Octamer 0.02 0 0 0

Nonamer 0.01 0 0 0

Decamer 0.01 0 0 0

Monosaccharide 377 120 4 0

Table 4.3 Total flavanol content (mg) and monosaccharide concentration 
(pM) of dark chocolate extract3 and ethyl acetate fractions'3 used to 
investigate the effect on sucrose hydrolysis in Caco-2 cells.

Condition Rate of hydrolysis 
(nmol min'1)

Control T est

A% Statistical
analysis

Acarbose (pM)

50 3.42 1.19 ¿65 p<0.001

100 8.13 0.60 ¿93 p<0.001

200 3.32 0.24 ¿93 p<0.001

Table 4.4 Rate of hydrolysis for each concentration of acarbose investigated 
along with the corresponding control value, and percentage change relative 
to the control. Mean (n£3).
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Figure 4.10 Rate of sucrose hydrolysis as a percentage of control following 
incubation of Caco-2 cells with dark chocolate extract and ethyl acetate 
fractions containing 322, 141, 65 and <1 pM flavanol monomers. Horizontal 
line at 100% represents the control. Mean ± SEM (n=6). Asterisk denotes a 
significant difference from the control **p<0.01.

Figure 4.11 Rate of sucrose hydrolysis as a percentage of control following 
incubation of Caco-2 cells (-)-epicatechin ranging from 20-500 pM. 
Horizontal line at 100% represents the control. Mean ± SEM (n^3). Asterisk 
denotes a significant difference from the control; **p<0.01, ***p<0.001.
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Figure 4.12 Rate of sucrose hydrolysis as a percentage of control following 
incubation of Caco-2 cells with A) (+)-catechin and B) (-)-catechin. Horizontal 
line at 100% represents the control. Mean ± SEM (n>3). Asterisk denotes a 
rate of hydrolysis that is significantly different from the control; *p<0.05, 
**p<0.01.
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Figure 4.13 Rate of sucrose hydrolysis as a percentage of control following 
incubation of Caco-2 cells with A) (+)-epicatechin and B) procyanidin B2. 
Horizontal line at 100% represents the control. Mean ± SEM (n£3). Asterisk 
denotes a rate of hydrolysis that is significantly different from the control; 
*p<0.05, **p<0.01.
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4.4 Discussion

4.4.1 Cell culture validation

Validation of Caco-2 cell monolayer integrity highlighted the importance of 

establishing and maintaining a rugged cell culture protocol. Changes in 

glucose concentration, and potentially other nutrients, of the culture media 

significantly affected trans-epithelial electrical resistance (TEER) and the 

rate of sucrose hydrolysis. Overall diminishing rate of sucrose hydrolysis 

was associated with increasing cell passage number, which indicates that 

conducting experiments within a range that is as narrow as possible is 

essential for eliminating sources of error in the results. TEER has been 

reported to increase significantly with increasing cell passage number 

(BriskeAnderson et al. 1997), however in the investigation presented here 

this was not observed.

4.4.2 Analytical protocol validation

Interference of the glucose oxidase/peroxidase assay by polyphenols has 

been reported (Nishioka et al. 1998, Shaukat and Waqar 2011, Xu et al.

2012). Reduced glucose determination was associated with prevention of 

chromophore formation and hydrogen peroxide scavenging resulting in 

oxidation of the active component, epigallocatechin gallate (Shaukat and 

Waqar 2011). Investigations whereby glucose concentration has been 

quantified using the glucose oxidase/peroxidase assay in the presence of 

polyphenols require validation to confirm that the assay is not hindered by 

the presence of the polyphenolic component. In the event that this does
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occur, a suitable extraction procedure should be incorporated or an 

alternative method of glucose measurement developed.

4.4.3 Inhibition of sucrose hydrolysis

The greatest reduction of sucrose hydrolysis in Caco-2 cells was measured 

following incubation with 100 and 200 pM acarbose. Dark chocolate extract 

containing 322 pM flavanol monomers also significantly reduced the rate of 

sucrose hydrolysis. In order to determine whether the reduction was 

attributable to one specific flavanol monomer or dimer constituent of the 

extract the rate of sucrose hydrolysis was measured in the presence of (-)- 

epicatechin, (+)-catechin and procyanidin B2. Inhibition of sucrose hydrolysis 

was observed in the presence of 500 pM (-)-epicatechin, neither (+)-catechin 

or procyanidin B2 elicited a significant reduction. This supports the findings 

of Matsui et al (2007) and Kamiyama et al (2010) that report the necessity 

for a high concentration to achieve 50% inhibition of activity. These results 

suggest that inhibition of sucrose hydi olysis in the presence of dark 

chocolate extract containing 322 pM flavanol monomers may be partly 

attributable to the (-)-epicatechin component. It may be that a synergistic 

effect occurs between the different flavanol monomers, oligomers and 

polymers similar to the synergistic inhibition of sucrase reported for flavonols 

and flavonol glycosides (Wang etal. 2010).

Each of the flavanol monomers and B2 dimer enhanced the rate of sucrose 

hydrolysis at concentrations of 50 pM. Gupta et al (2010) proposed that 

binding of a phenolic compound such as tannic acid to a-amylase altered the 

tertiary structure such that tryptophan residues in the active site became 

more exposed to the hydrophilic environment. It may be that flavanol
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monomers and dimers are able to bind sucrase in two locations, one that 

induces a change in the structure of the enzyme exposing more of the 

catalytic residues subsequently enhancing activity, and the second at the 

active site causing inhibition of activity. This could explain how moderate 

concentrations appear to enhance enzyme activity and higher 

concentrations are inhibitory. At concentrations between, there is no 

apparent significant change due to the enhancement and inhibition 

counteracting one another. This supports previous evidence which shows 

that relatively high concentrations of non-gallated flavanol monomers are 

necessary to achieve 50% inhibition of enzyme activity (Matsui et at. 2007, 

Lo Piparo et at. 2008, Kamiyama etaf. 2010). In order to determine whether 

stereochemical configuration of the flavanol monomer affects the inhibitory 

capacity, higher concentrations of each enantiomer must be investigated. 

Enhancement of sucrase activity by each of the flavanol monomers and B2 

dimer does not significantly differ between the groups indicating that 

stereochemical configuration of the B-ring and of the C-ring hydroxyl group 

is not a contributing factor. Superficially the degree of polymerisation also 

appears to be inconsequential although further investigations using more 

polymerised flavanols are required to confirm this proposal.

Sustained augmentation of sucrase activity measured following incubation 

with 100 pM (+)-epicatechin may suggest that the 2S, 3S configuration 

restricts effective binding at the active site, thereby preventing a relative 

reduction of sucrose hydrolysis, as observed with the other flavanol 

monomers at this concentration.

Previous studies that have investigated the effect of phenolic compounds on 

a-glucosidase activity have suggested that the number of hydroxyl groups,



stereochemical configuration of the C-ring hydroxyl and conjugation of the 

AC-ring system is of importance to the inhibition of sucrase, maltase and a- 

amylase (Matsui et al, 2007, Wang étal, 2010(Lo Piparo étal. 2008). Based 

on the results of the investigation presented here it would be necessary to 

compare the inhibitory profile of flavanols with compounds that contain the 

conjugated AC-ring system and the same number of hydroxyl groups, for 

example epicatechin and quercetin. It would also be beneficial to compare 

the inhibitory capacity of epicatechin with epigallocatechin and epicatechin- 

3-O-gallate to investigate whether the addition of hydroxyl groups affect 

sucrase inhibition in the Caco-2 model.

Analysis of the kinetic properties of sucrase in the absence and presence of 

flavanols would suggest a method by which inhibition occurs. Further 

analysis of the protein structure-activity association may be confirmed using 

fluorescence quenching techniques or computational ligand docking 

software.

4.5 Conclusion

Sucrose hydrolysis in the Caco-2 cell model was reduced as a consequence 

of incubation with a flavanol-rich dark chocolate extract. The (-)-epicatechin 

content of the dark chocolate extract is considered to be partly responsible 

and a synergistic effect with other flavanol components is proposed to 

account for the difference of inhibitory capacity between the dark chocolate 

extract and individual compound. Multiple binding sites on the enzyme are 

hypothesised to be the reason for elevated sucrose hydrolysis at moderate 

concentrations of each flavanol monomer and dimer investigated. 

Prospective studies should include investigation of stereochemical
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configuration effects. Synergy between the flavanol components requires 

attention along with considering whether degree of polymerisation 

contributes to the overall effect. Kinetic analysis of sucrose hydrolysis in the 

Caco-2 cell model along with other structure-activity analytical methods may 

provide insight to the mechanism and binding properties of dark chocolate 

flavanols in relation to sucrase.
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Chapter 5 Glucose transport inhibition by a flavanol-rich 

dark chocolate extract

5.1 Abstract

Glucose transport across the Caco-2 cell monolayer was significantly 

reduced in the presence of a flavanol-rich dark chocolate extract containing 

35, 71, 142 and 322 pM epicatechin. Kinetic analysis revealed that the 

maximum rate of cellular uptake and apical to basolateral transport was 

significantly attenuated; this was dose-dependent for apical to basolateral 

transport. The concentration of glucose required to achieve half the 

maximum rate of apical to basolateral transport (Km) was significantly 

increased, independent of the dose investigated. Overall inhibition was of 

the mixed-type, with non-competitive inhibition being tentatively attributed to 

the apical sodium-dependent glucose transporter SGLT1 and competitive 

inhibition attributed to the basolateral glucose transporter GLUT2. Inhibition 

was not shown to be the result of individual flavanol monomer or B2 dimer 

components of the dark chocolate extract but is hypothesised to be a 

consequence of higher molecular weight flavanols or a synergistic effect 

between monomers and dimers. Caffeine, theobromine, procyanidin B2 and 

(+)-epicatechin increased the rate of cellular uptake but not apical to 

basolateral transport. The role of caffeine and theobromine as inhibitors of 

cyclic 3’, 5’-nucleotide phosphodiesterase and the potential for enhanced 

SGLT1 activity is considered and discussed in relation to the results 

presented here.
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5.2 Introduction

Cellular uptake of glucose is primarily a secondary active process performed 

by the high-affinity sodium-dependent transporter SGLT1, KM = 0.8 mM 

(Hediger and Rhoads 1994), that can transport glucose against its 

concentration gradient permitting uptake even when the concentration of 

glucose in the lumen is low. By contrast during post-prandial periods when 

the concentration of glucose in the lumen is high, glucose uptake is assisted 

by the sodium-independent hexose transport GLUT2 (Kellett and Brot- 

Laroche 2005). GLUT2 facilitates diffusion of glucose along its concentration 

gradient and although it has less affinity for glucose than its sodium- 

dependent counterpart, Km = 17 mM (Thorens 1996), it possesses a high 

capacity for glucose transport.

A number of in vitro and ex vivo studies have investigated the interaction of 

flavonoids with intestinal glucose transporters. The majority of these focus 

on the effects of flavonols, in particular quercetin and its glycosides. It is now 

widely accepted that flavonoid glycosides are either deglycosylated by 

lactase phloridzin hydrolase (LPH) located at the epithelial brush border 

allowing the aglycone to diffuse into the cell, or alternatively the glycoside is 

transported into the cell via the sodium-dependent glucose transporter 

SGLT1, before being deglycosylated by cytosolic (3-glucosidase. Entry of 

both the aglycone and glycoside has been established through detection of 

phase II metabolites of the aglycone.

Whilst quercetin-3-O-glucoside and 4-O-glucoside have been observed to 

competitively inhibit the sodium-dependent uptake of glucose (Ader et al. 

2001, Cermak et al. 2004), few studies report the ability of flavonoid
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aglycones to reduce SGLT1 activity. Of three investigations to report 

significant reduction in sodium-dependent glucose uptake by non- 

glycosylated flavonoids, only one reported inhibition with physiologically 

realistic concentrations. Significant reduction of sodium-dependent glucose 

uptake was observed in Caco-2 cells with 100 pM (+)-catechin, (-)- 

epicatechin, epigallocatechin, epicatechin gallate and epigallocatechin 

gallate (Johnston et al. 2005). Studies prior to this also demonstrated 

inhibition of sodium-dependent glucose transport by epicatechin gallate and 

epigallocatechin gallate although the concentrations required to elicit a 

similar reduction were much greater, up to 1 mM (Kobayashi et al. 2000, 

Hossain et al. 2002). Hossain et al (2002) also reported inhibition of sodium- 

dependent glucose transport by catechin, however the inhibition constant 

(K) was approximately 2.3 mM. The type of inhibition reported in these 

studies was contradictory; Kobayashi et al (2000) suggested competitive 

inhibition whereas Hossain et a /(2002) proposed non-competitive.

Reports of sodium-independent glucose transport inhibition by non- 

glycosylated flavonoids are more prominent. In Caco-2 cells and Xenopus 

Oocytes, quercetin was reported to attenuate glucose uptake at 

physiologically relevant concentrations (Johnston et al. 2005, Kwon et al. 

2007); the latter suggesting a non-competitive mode of inhibition. 

Epicatechin gallate and quercetin-3-O-glucoside were also reported to 

competitively inhibit sodium-independent glucose transport at a 

concentration of 100 pM each (Chen et al. 2007).

A more recent investigation of glucose uptake and transport across a Caco-2 

cell monolayer reported the dose-dependent inhibition of both sodium- 

dependent and independent transport in the presence of strawberry or apple



126

extract; sodium independent inhibition was more potent as determined by 

the lower concentration required to achieve 50% inhibition (ICso)- Kinetic 

evaluation of the mechanism for transport inhibition indicated mixed-type for 

apical cellular uptake and non-competitive for transport across the 

basolateral membrane. Individual pure compounds were screened for 

inhibitory capacity, and quercetin-3-O-rhamnoside displayed the lowest IC5o 

for inhibition of apical and basolateral transport of those tested. (-)- 

Epicatechin elicited less than 50% inhibition at a concentration exceeding 

500 pM (Manzano and Williamson 2010).

The objective of the investigation presented here was to determine whether 

a flavanol-rich dark chocolate extract, and biologically active components of 

dark chocolate, were able to inhibit glucose uptake into Caco-2 cells and 

transport across the basolateral membrane.
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5.3 R esults

5.3.1 Liquid Scintillation Counting

5.3.1.1 Validation

5.3.1.1.1 Linearity, precision and limit of quantification

A calibration curve of radioactivity as a function of [U-14C]-glucose quantity 

was prepared and the linear regression equation obtained. With the y- 

intercept fixed at zero the gradient was calculated as 2441 and the adjusted 

R-square equal to 1.0, suggesting good proportionality of radioactivity and 

molar quantity (Figure 5.1V The relative standard deviation of radioactivity 

was calculated for each concentration of radiolabelled glucose, and ranged 

from 0.03 to 0.81% indicating that counting precision of the equipment was 

good. The limit of quantification was calculated as 0.02 pmol.

Figure 5.1 [U-14C]-Glucose calibration curve. Mean ± SEM (n=3); gradient = 
2441, adjusted R-square = 1.0.
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5.3.2 Cell culture

5.3.2.1 Validation of cell membrane integrity

Trans-epithelial electrical resistance (TEER) was measured before and after 

the 30 min incubation and corrected to account for resistance of the 

polycarbonate membrane to provide a measure of the cell monolayer 

resistance (Table 5.1). Inter-assay mean TEER measurements taken before 

commencement of the assay showed a large variation ranging from 160 to 

509 Ohms. Partial correlation analysis controlling for the assay condition 

confirmed that basolateral glucose concentration did not correlate with TEER 

measured pre- or post-incubation (Figure 5.2). Pre-incubation TEER value 

was significantly correlated with cell passage number (p<0.001) (Figure 5.31.

Condition TEER (Ohms)

Before After

1 mM Glucose 4231 14 326 19***

Dark chocolate extract 35 pM epicatechin 408±7 3451 10***

0.25 mM Glucose 282 1 11 25919

Dark chocolate extract 71 pM epicatechin 299 1 9 2891 14

0.5 mM Glucose ^ 322 112 2901 12

Dark chocolate extract 71 pM epicatechin 30316 3331 10*

1 mM Glucose 310115 2791 10

Dark chocolate extract 71 pM epicatechin 347 1 5 35617

2 mM Glucose 26916 25416

Dark chocolate extract 71 pM epicatechin 28215 29519

4 mM Glucose 32618 28317

Dark chocolate extract 71 pM epicatechin 321 15 , 3451 11**
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Condition TEER (Ohms)

Before After

7 mM Glucose 402 ± 12 353 ± 14*

Dark chocolate extract 71 pM epicatechin 423 ± 15 423 ± 8

0.25 mM Glucose 443 ± 22 268 ±19***

Dark chocolate extract 142 pM epicatechin 462 ± 17 331 ±13***

0.5 mM Glucose 451 ± 22 311 ±17***

Dark chocolate extract 142 pM epicatechin 497 ± 16 416 ±17**

1 mM Glucose 409 ±3 305 ± 10**

Dark chocolate extract 142 pM epicatechin 398 ± 12 400 ± 5

2 mM Glucose 386 ±14 384 ± 12

Dark chocolate extract 142 pM epicatechin 444 ± 10 404 ±13*

4 mM Glucose 425 ± 15 393 ± 20

Dark chocolate extract 142 pM epicatechin 424 ±6 450 ± 14

7 mM Glucose 509 ±8 322 ± 14

Dark chocolate extract 142 pM epicatechin 475 ± 20 337 ± 12

1 mM Glucose 272 ± 11 259 ± 12

Dark chocolate extract 322 pM epicatechin 254 ± 11 272 ±4

1 mM Glucose 160 ±7 184 ±8

200 pM (-)-Epicatechin 175± 15 187 ±5

200 pM (+)-Epicatechin 252 ± 16 246 ± 11

200 pM (-)-Catechin 276 ±8 265 ±9

1 mM Glucose 236 ± 10 232 ±11

200 pM (+)-Catechin 257 ±7 237 ±6

200 pM Procyanidin B2 313 ±22 273 ±4

1 mM (-)-Epicatechin 346 ±5 278 ± 6***

1 mM Glucose 323 ±7 275 ± 9**

250 pM Caffeine 366 ±6 321 ± 8**
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Condition TEER (Ohms)

Before After

1.68 mM Theobromine 355 ±10 285 ±8**

Table 5.1 Blank-corrected trans-epithellal electrical resistance (TEER) 
measured before and after each assay. Mean ± SEM (n=6) for each 
condition. Asterisk denotes significant difference from the corresponding pre
incubation measurement, *p<0.05, **p<0.01 and ***p<0.001.
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Trans-epithelial electrical resistance (Ohms)

Figure 5.2 Basolateral concentration of glucose after the 30 min incubation 
in each assay replicate, as a function of mean ± SEM (n=3) trans-epithelial 
electrical resistance per Transwell® insert cell monolayer measured before 
commencement of the assay.

Figure 5.3 Pre-incubation trans-epithelial electrical resistance per 
Transwell® insert monolayer, mean ± SEM (n=3), as a function of cell 
passage number.
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5.3.2.2 [U-14C]-Glucose transport study

The effect of a flavanol-rich dark chocolate extract, containing between 35 to 

322 pM flavanol monomers (Table 5.2). on apical to basolateral transport 

and cellular uptake of glucose was investigated. Biologically active 

components of dark chocolate were also individually assayed to explore the 

possibility that they were able to moderate glucose uptake and transport at 

concentrations relevant to the dark chocolate extract.

Co-incubation of 1 mM glucose with dark chocolate extract dose- 

dependently attenuated the apical to basolateral transport and cellular 

uptake of glucose up to 75% and 68% respectively. Each preparation of dark 

chocolate extract significantly reduced the concentration of basolateral 

glucose, p<0.001 (Figure 5.4A). Dark chocolate extract containing 142 and 

322 pM epicatechin also significantly reduced the cellular concentration of 

glucose, p<0.001 (Figure 5.4B). Of the flavanol monomers and B2 dimer 

tested, none significantly affected the concentration of glucose measured in 

the basolateral compartment (Figure 5.5A); 200 pM of each (+)-epicatechin 

or procyanidin B2 significantly increased cellular glucose concentration by 

20% and 26% respectively (p<0.01) (Figure 5.5B). Caffeine (250 pM) and 

theobromine (1.68 mM) did not significantly affect the basolateral 

concentration of glucose (Figure 5.6A). By contrast the cellular concentration 

of glucose was significantly increased by 25% and 9% in the presence of 

caffeine (p<0.05) and theobromine (p<0.01) (Figure 5.6B).

The kinetic properties of glucose transport in the absence and presence of 

dark chocolate extract containing 71 pM and 142 pM epicatechin were 

investigated. Basolateral and cellular concentration of glucose following 

incubation with initial glucose concentrations ranging from 0.25 to 7 mM are
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displayed in Figure 5.7A and B. Both dark chocolate extract preparations 

significantly reduced the basolateral concentration of glucose at each 

substrate concentration investigated (p<0.01 or p<0.001). Cellular glucose 

concentration was significantly reduced at each substrate concentration 

investigated in the presence of dark chocolate extract containing 142 pM 

epicatechin (p<0.05 and p<0.001) and by dark chocolate extract containing 

71 pM epicatechin at substrate concentrations of 0.25, 4 and 7 mM (p<0.05 

and p<0.001). Graphical representation of apical to basolateral rate of 

transport and cellular uptake as a function of substrate concentration 

demonstrates typical Michaelis-Menten hyperbolic saturation curves in the 

absence and presence of dark chocolate extract (Figure 5.8A and B). 

Nonlinear regression analysis using the Michaelis-Menten equation 

performed on each data set revealed the maximum rate (Vmax) and Michaelis 

constant (KM) of apical to basolateral transport and cellular uptake of cells 

incubated in the presence of substrate only, and when co-incubated with 

each preparation of dark chocolate extract (Table 5.3). The rate of apical to 

basolateral glucose transport was significantly attenuated dose-dependently 

in the presence of dark chocolate extract (p<0 .01), this is indicative of non

competitive inhibition. The Michaelis-constant was significantly augmented in 

the presence of dark chocolate extract (p<0.05 and p<0.01), independent of 

dose, indicating that transporter affinity for the substrate was reduced due to 

competitive-type inhibition. Together these kinetic parameters suggest that 

dark chocolate extract exerts a mixed-type inhibition of apical to basolateral 

glucose transport.

The rate of cellular glucose uptake was also significantly lower in the 

presence of dark chocolate extract (p<0 .01), dose-independent, suggesting
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non-competitive inhibition of cellular glucose uptake. The Michaelis constant 

significantly diminished in the presence of dark chocolate extract containing 

71 pM epicatechin implying that transporter affinity for the substrate was 

enhanced. Dark chocolate extract containing 142 pM epicatechin did not 

significantly affect the Michaelis constant relative to the control however in 

comparison to the dark chocolate extract containing 71 pM epicatechin it 

was significantly greater (p<0.01). Cellular glucose uptake appeared only to 

be inhibited in a non-competitive manner.

Defatted Dark Chocolate (g)

0.5 1 2 4.5

Total flavanol content (mg g-1 FW)a 

Transport solution concentration 

Flavanol monomers (pM)a 

Flavanol dimers (pM)a 

Caffeine (pM)b 

Theobromine (mM)b

0.7 1.4 2.7 6.1

35 71 142 322

11 22 45 102

62 124 248 563

0.7 1.3 2.7 6.1

Table 5.2 Total flavanol content (monomer to decamer) per gram of dark 
chocolate, fresh weight (FW), and concentration of flavanol monomers and 
dimers, caffeine and theobromine in the transport solution prepared using 
defatted dark chocolate. aBased on empirical measurement of flavanol 
content of an extract prepared using 1 g of defatted dark chocolate. 
Calculated from values reported in the USDA Nutrient Database (U.S. 
Department of Agriculture 2011).
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Figure 5.4 (A) Apical and basolateral, and (B) cellular concentration of 
glucose following a 30 min incubation of Caco-2 cells with 1 mM glucose in 
the absence (control) and presence of dark chocolate (DC) extract 
containing 35, 71, 142 or 322 pM epicatechin (EC). Control concentration 
equates to rate of apical to basolateral transport 5.9 ± 0.2 pM min'1 and rate 
of cellular uptake 0.41 ± 0.02 pM min'1. Mean ± SEM (n=£6). Asterisk 
denotes a significantly different basolateral or cellular concentration relative 
to the control, ***p<0.001.
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Control
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Figure 5.5 (A) Apical and basolateral, and (B) cellular concentration of 
glucose following a 30 min incubation of Caco-2 cells with 1 mM glucose in 
the absence (control) and presence of flavanol monomers and B2 dimer. 
Control concentration equates to rate of apical to basolateral transport 6.1 ± 
0.2 pM min'1 and rate of cellular uptake 0.36 ± 0.03 pM min'1. Mean ± SEM 
(n=£6). Asterisk denotes a significantly different cellular concentration 
relative to the control, **p<0.01.
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1.68 mM Theobromine
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Control
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a

Figure 5.6 (A) Apical and basolateral, and (B) cellular concentration of 
glucose following a 30 min incubation of Caco-2 cells with 1 mM glucose in 
the absence (control) and presence of caffeine and theobromine. Control 
concentration equates to rate of apical to basolateral transport 6.0 ±0.1 pM 
min'1 and rate of cellular uptake 0.29 ± 0.00 pM min'1. Mean ± SEM (n=6). 
Asterisk denotes a significantly different cellular concentration relative to the 
control, *p<0.05 and **p<0.01.



138

[Glucose] (mM)

B

Figure 5.7 (A) Basolateral and (B) cellular concentration of glucose following 
a 30 min incubation of Caco-2 cells with 0.25-7 mM glucose in the absence 
(no extract) and presence of dark chocolate (DC) extract containing 71 or 
142 pM epicatechin (EC). Values are mean ± SEM (n=26). Asterisk denotes 
significant difference from the corresponding no extract value, *p<0.05,
**p <0 .01 , ***p <0 .001 .



♦ No Extract

Figure 5.8 Rate of (A) apical to basolateral transport and (B) cellular uptake 
of glucose following a 30 min incubation of Caco-2 cells with 0.25-7 mM 
glucose in the absence (no extract) and presence of dark chocolate (DC) 
extract containing 71 or 142 pM epicatechin (EC). Mean ± SEM (n=£6).
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Apical to Basolateral Cellular Uptake

Vmax KM Vmax KM

(pMmin-1) (mM) (pMmin-1) (mM)

No Extract 27.2 ± 0.9 3.5 ±0.3 1.3 (0.1) 2.2 (0.2)

DC Extract 

71 pM EC

21.3 ±0.7** 5.2 ± 0.3** 0.9 (0.04)** 1.3 (0.2)*

DC Extract 

142 pM EC

11.2 ± 0.3**t 4.6 ± 0.2* 1.0 (0.1)** 2.7 (0.3)t

Table 5.3 Michaelis-Menten kinetic properties of cellular uptake and apical to 
basolateral transport of glucose in the absence (no extract) and presence of 
dark chocolate (DC) extract containing 71 pM or 142 pM epicatechin (EC). 
Values are mean ± SEM (n£6) per condition. Asterisk denotes significant 
difference from the corresponding no extract value, *p<0.05 and **p<0.01 
and |  denotes significant difference from the corresponding DC extract 
containing 71 pM EC (p<0.01).

5.3.3 Solid phase extraction of flavanol fractions

Separation of dark chocolate extract fractions was achieved using a solid 

phase extraction (SPE) procedure based on the HPLC-FLD method of 

flavanol monomer to decamer quantification. Comparison of the whole 

extract not subjected to SPE l Figure 5.9) with the total flavanols obtained 

following SPE, calculated as the sum of each SPE step, displayed very 

similar concentrations indicating that most of the flavanols monomer to 

decamer were collected (Table 5.4). Monomers mainly eluted with the ‘initial’ 

pass of sample (Figure 5.10A) and the water wash phases. Dimers eluted 

equally across each phase except the final organic solvent elution step 

demonstrating no preference for aqueous or organic solvent. The larger 

compounds with a greater degree of polymerisation appeared to be retained 

by the sorbent material more strongly. Trimeric flavanols, in total, eluted



equally between the aqueous and organic solvents although a preference for 

the organic solvent was observed with the majority of the compound eluting 

with the first organic solvent elution step (Figure 5.1 OB). A small amount of 

tetramer and pentamer were collected in the aqueous wash phases however 

the majority of each was collected following the first organic solvent elution. 

The remaining compounds, hexamer to decamer, were eluted in the organic 

solvent elution only.

It was intended that the aqueous fractions combined, rich in flavanols 

monomer and dimer, and the fractions eluted with organic solvent, 

containing relatively few flavanol monomers and dimers but rich in trimers to 

decamers, would be used in the assay of glucose transport to determine 

whether either fraction replicated the effect of the whole dark chocolate. This 

would help to elucidate the main compounds responsible for inhibition of 

glucose transport. Due to lack of time remaining this assay was not 

performed but is recommended for future work in order to contribute to the 

understanding of glucose transport inhibition by dark chocolate extract.
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Concentration (pg mL'1)

Polymerisation A B C D E F G

Monomer 275.5 274.7 171.5 20.8 3.9 746.5 771.9

Dimer 35.1 42.5 30.9 39.9 4.0 152.6 145.5

Trimer 5.7 11.5 15.4 28.8 2.1 63.5 54.8

Tetramer 0.5 2.4 4.2 14.8 1.3 23.2 20.6

Pentamer 0.0 0.3 0.8 9.7 1.2 12.0 11.2

Hexamer 0.0 0.0 0.0 4.6 0.9 5.4 7.1

Heptamer 0.0 0.0 0.0 1.9 0.5 2.4 2.5

Octamer 0.0 0.0 0.0 0.7 0.2 1.0 1.1

Nonamer 0.0 0.0 0.0 0.3 0.1 0.4 0.5 •

Decamer 0.0 0.0 0.0 0.2 0.1 0.2 0.2

Table 5.4 Flavanols monomer to decamer determined by HPLC-FLD in 
fractions of dark chocolate extract separated by a solid phase extraction 
(SPE) procedure. A = initial collection of aqueous sample following SPE, B = 
first aqueous wash, C = second aqueous wash, D = first organic solvent 
elution, E = second organic solvent elution, F = total of all SPE steps A to E, 
and G = whole dark chocolate extract before SPE separation of fractions.
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Figure 5.9 HPLC-FLD chromatogram of whole dark chocolate extract 
flavanols monomer to decamer before solid phase extraction separation of 
fractions. Peak numbers represent the degree of polymerisation; 1 = 
monomer, 2 = dimer, etc.
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Figure 5.10 HPLC-FLD chromatogram of A) initial aqueous fraction collected 
following solid phase extraction, and B) the first organic solvent wash of 
sorbent retained compounds. Peak numbers represent the degree of 
polymerisation; 1 = monomer, 2 = dimer, etc.
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5.4 Discussion

Preparations of flavanol-rich dark chocolate extract containing 35, 71, 142 

and 322 pM epicatechin were shown to reduce basolateral glucose 

concentration in a dose-dependent manner. Cellular concentration of 

glucose was also dose-dependently reduced but only in the presence of dark 

chocolate extract containing 142 and 322 pM epicatechin. Glucose uptake 

into epithelial cells is predominantly governed by the sodium-dependent 

secondary active cotransporter SGLT1 and efflux from the basolateral 

membrane is maintained entirely by passive diffusion facilitated by the 

sodium-independent GLUT2. Kinetic analysis of apical to basolateral 

transport and rate of cellular uptake revealed that glucose transport and 

uptake reached saturation as substrate concentration increased; this is 

indicative of active transport. In the study presented here it is evident that 

the predominant mechanism of glucose transport is via the sodium- 

dependent cotransporter SGLT1.

The highest concentrations of epicatechin-containing dark chocolate extract, 

142 and 322 pM, significantly reduced the concentration of cellular glucose 

which could be considered responsible for the observed reduction in 

basolateral glucose concentration, however at the lowest concentrations of 

epicatechin-containing dark chocolate extract, 35 and 71 pM, the basolateral 

glucose concentration was significantly reduced without a corresponding 

reduction of cellular glucose concentration. If the cellular uptake of glucose 

remained constant a reduction in basolateral glucose concentration would be 

expected to create an accumulation of glucose within the cell. The absence 

of increased cellular glucose concentration may be a consequence of
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surplus glucose being either metabolised within the cell or effluxed from the 

apical membrane. Alternatively the results may indicate that apical glucose 

transport is also diminished but to a lesser extent than basolateral transport 

thereby negating any accumulation of glucose within the cell. Reduced 

cellular and basolateral concentration implies that apical uptake is affected 

still more to the point where a significant difference is observed. Inhibition of 

basolateral transport separate from that of apical transport demonstrates the 

ability of the inhibiting compound(s) to cross the apical cell membrane or 

permeate the tight junctions between cells to reach the basolateral 

membrane where the effect is elicited.

To assess whether inhibition of glucose transport was attributable to specific 

flavanol components of the dark chocolate extract, epicatechin was assayed 

at a concentration relevant to that in the dark chocolate extract. In this 

instance 200 pM, and 1 mM, (-)-epicatechin did not significantly affect 

glucose concentration in the cells or basolateral compartment. For ease of 

comparison the same concentration of (+)-catechin and procyanidin B2, a 

flavanol monomer and dimer present in dark chocolate, were also 

investigated. (+)-Catechin did not elicit a significant effect on glucose 

transport. In contrast the cellular concentration of glucose was significantly 

greater in the presence of procyanidin B2 relative to the control; basolateral 

concentration was unaffected. The enantiomers (+)-epicatechin and (-)- 

catechin were also investigated to determine whether the structural 

configuration of the flavanol monomer was able to exhibit a significant effect. 

200pM (-)-Catechin did not significantly moderate glucose transport however 

the same concentration of (+)-epicatechin significantly increased the cellular 

uptake of glucose without affecting basolateral efflux. From these results it



was apparent that individually flavanol monomers and B2 dimer were not 

responsible for the inhibitory effect induced by the dark chocolate extract, 

although a synergistic effect of flavanols in the dark chocolate extract could 

be responsible.

The methylated xanthine components of dark chocolate, caffeine and 

theobromine were also assayed at concentrations relevant to those 

expected in the dark chocolate extract. Both compounds significantly 

increased the cellular concentration of glucose without affecting the 

basolateral glucose concentration. Increased cellular uptake but not apical to 

basolateral transport of glucose following incubation in the presence of (+)- 

epicatechin, procyanidin B2, caffeine and theobromine is considered to be a 

consequence of enhanced apical glucose transporter activity without any 

significant change in the activity of basolateral glucose transport. It has been 

reported that the presence of caffeine significantly enhances intestinal 

glucose absorption in human subjects following ingestion of coffee (Johnston 

et al. 2003) and hypothesised that augmented carbohydrate oxidation during 

exercise is a consequence of a caffeine induced increase in glucose 

absorption (Yeo et al. 2005). Both caffeine and theobromine are inhibitors of 

the enzyme cyclic 3’, 5’-nucleotide phosphodiesterase (EC 3.1.4.17) that 

catalyses the hydrolysis of a phosphate ester on a 3', 5’-cyclic nucleoside 

monophosphate (Butcher and Sutherland 1962). Inhibition of this enzyme 

results in the intra-cellular increase of a substrate such as cyclic adenosine 

monophosphate (cAMP), which has been implicated in the stimulation of 

SGLT1 activity (Sharp and Debnam 1994). cAMP-dependent protein kinase 

(EC 2.7.11.11) catalyses the phosphorylation of proteins, such as SGLT1, by 

transferring a phosphate group from adenosine triphosphate (ATP). cAMP-
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activated protein kinase has been associated with enhancement of SGLT1 

activity through additional trafficking of the transporter to the apical 

membrane. The maximum rate of glucose transport was increased without 

alteration of transporter affinity for the substrate (Wright et al. 1997). 

Previous studies have reported flavonoid inhibition of phosphodiesterase 

activity with cAMP as the substrate (Beretz e t al. 1978, Ruckstuhl and 

Landry 1981) and stimulation of cAMP-dependent protein kinase (Eid et al. 

2010, Zygmunt et al. 2010). This offers a hypothesis for the observed 

increase in cellular glucose concentration in the presence of caffeine, 

theobromine, procyanidin B2 and (+)-epicatechin.

Analysis of the kinetic effects of dark chocolate extract revealed that the 

maximum rate of apical to basolateral transport was dose-dependently 

reduced parallel with an increase in the Michaelis constant, not dose- 

dependent, that is overall indicative of a mixed-type inhibition. The maximum 

rate of reaction (Vmax) is representative of the rate at which an enzyme- 

substrate complex dissociates to form the product dependent on the 

concentration of total enzyme present. Attenuation of the rate of reaction, or 

in this instance the rate of transport, signifies non-competitive inhibition. The 

Michaelis constant (KM) represents the ratio of enzyme-substrate complex 

dissociation, to enzyme and substrate or enzyme and product, relative to the 

formation of the enzyme-substrate complex. Increased Km is associated with 

decreased affinity of the enzyme, or in this instance transporter, for the 

substrate which is indicative of competitive inhibition.

Kinetic analysis of cellular glucose uptake demonstrated that dark chocolate 

extract significantly attenuated the maximum rate of transport, independent 

of dose, implying non-competitive inhibition. Dark chocolate extract
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containing 142 pM epicatechin did not significantly affect the Michaelis 

constant however the extract containing 71 pM epicatechin was responsible 

for a significant increase in the calculated KM that suggests enhancement of 

transporter affinity for the substrate.

Reduced Vmax of cellular uptake and apical to basolateral transport suggest 

that apical SGLT1 and basolateral GLUT2 are inhibited non-competitively. 

Increased Km of apical to basolateral transport but not cellular uptake 

suggests that competitive inhibition affects GLUT2 but not SGLT1. The 

ability to competitively inhibit GLUT2 indicates that the inhibitor is able to 

enter the cell and is therefore limited to the less polymerised flavanols. 

Inhibition of SGLT1 could be a consequence of flavanol-transporter bond 

formation at one of the extracellular or intracellular loops which alters the 

structural conformation of the protein. The lack of inhibition by the flavanol 

monomers and B2 dimer investigated, imply that flavanols with a greater 

degree of polymerisation are involved or that a synergistic effect occurs. 

Protein-flavanol interactions are more prolific with increasing molecular 

weight (Soares et al. 2007) however the ability to enter the cell and interact 

with intracellular loops is expected to be limited to compounds with a degree 

of polymerisation no larger than dimer (Spencer et al. 2001, Ottaviani et al. 

2012). The capacity to permeate the tight junctions and elicit an extracellular 

basolateral effect is probably limited to flavanols with a degree of 

polymerisation no greater than hexamer (Zumdick etal. 2012).

The observed increase in Km of cellular uptake is hypothesised to be a 

consequence of enhanced SGLT1 trafficking to the apical membrane elicited 

by the methyl xanthine content of the dark chocolate extract. Whilst it would 

be expected to observe an increase in cellular glucose concentration and
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therefore rate of transport, this effect may be negated by the presence of 

flavanols which non-competitively inhibited the activity of SGLT1. The 

proposed methyl xanthine induced effect may not be dose-dependent 

whereas dark chocolate extract induced reduction of cellular glucose 

concentration was dose-dependent. Dark chocolate extract containing 71 pM 

epicatechin may only inhibit cellular glucose uptake sufficiently to counteract 

the enhancement stimulated by caffeine and/or theobromine therefore there 

is no significant change in cellular glucose concentration. The addition of 

extra transporters that have the potential to increase glucose uptake are 

non-competitively inhibited, thus a reduced Vmax and increased Km is 

calculated. In the presence of dark chocolate containing 142 pM epicatechin 

SGLT1 is inhibited beyond the level of enhancement such that a significant 

reduction in cellular glucose concentration is observed. The Vmax remains 

attenuated whilst the Km is returned to a level similar to that of the control 

containing no dark chocolate extract.

5.5 C onclusion

Dark chocolate extract, but not individual flavanol monomers, B2 dimer and 

methyl xanthines, inhibit the cellular uptake and apical to basolateral 

transport of glucose. Non-competitive inhibition of both apical SGLT1 and 

basolateral GLUT2 along with competitive inhibition of GLUT2 is the 

proposed method of inhibition. Specific inhibitor/s remain unknown but are 

postulated to involve low molecular weight flavanols that are able to 

permeate the apical cell membrane where they interact with the intracellular 

active site of the protein carrier GLUT2. Inhibition of SGLT1 may involve low 

molecular weight flavanols that either enter the cell and form bonds with



intracellular regions of the protein or remain in the extracellular space where 

they similarly can interact with luminal facing regions of the protein. Larger 

molecular weight flavanols may also interact with the extracellular regions. 

Caffeine and theobromine are hypothesised to enhance cellular glucose 

concentration through inhibition of cyclic 3’, 5’-nucleotide phosphodiesterase 

which may increase the cellular concentration of cyclic adenosine 

monophosphate ultimately leading to additional SGLT1 trafficking to the 

apical membrane. This effect potentially conveys an enhancement of the 

SGLT1 Michaelis dissociation constant (KM) but is reversed by inhibition of 

the transporter.

Future studies should initially investigate inhibition of GLUT2 separately from 

SGLT1 as the kinetic properties of each transporter need to be determined 

separately. The potential for methyl xanthine inhibition of cyclic 3’, 5’- 

nucleotide phosphodiesterase and whether this does lead to enhancement 

of SGLT1 membrane insertion and activity in the Caco-2 cell model requires 

confirmation. The inhibitory effect of flavanols with a degree of 

polymerisation greater than dimer should also be investigated. Synergistic 

effects between the flavanol components of dark chocolate and antagonism 

of methyl xanthine effects require further consideration. Where possible, the 

flavanol binding sites of SGLT1 and GLUT2 should be elucidated.
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C hapter 6 S um m ary and fu tu re  perspectives

6.1 Epicatechin  transport

6.1.1 Effect of dark chocolate

Epicatechin present in dark chocolate extract was transported from the 

apical to basolateral membrane of the Caco-2 monolayer to the same extent 

as the individual compound. Transcellular transport of epicatechin was 

confirmed by the detection of O-methylated epicatechin in both apical and 

basolateral compartments following incubation of Caco-2 cells with standard 

epicatechin; the predominant form being 3’-0-methylated epicatechin. 

Incubation of cells with dark chocolate extract resulted in there being no O- 

methylated epicatechin detected in either apical or basolateral samples. 

Inhibition of epicatechin méthylation by flavanol dimers has been reported 

using epicatechin as the substrate (Spencer et al. 2001). Reduced formation 

of 3’-0-methyl epicatechin was linear at concentrations of dimer up to 300 

pM and increased dimer méthylation was noted. The concentration of 

flavanol dimers in the dark chocolate extract used in the investigation 

presented here was 76 pM. The absorption of flavanol dimers remains 

controversial, in vitro and animal models appear to more readily transport 

these compounds whereas availability in humans is less likely. This 

highlights the difficulty of extrapolating results obtained from animal and cell 

culture studies to humans.

In the study of epicatechin transport across the Caco-2 cell monolayer 

presented here, only free and methylated epicatechin were analysed, 

detection of free flavanol dimers in the basolateral compartment and 

methylated dimers along with conjugated metabolites of epicatechin would
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provide more insight as to the mechanisms that affected the metabolism of 

epicatechin present in the dark chocolate extract. In the absence of such 

analysis it is hypothesised that flavanol dimers present in the dark chocolate 

extract were taken up by the cell where they competitively inhibited 

méthylation of epicatechin. Studies of dimer absorption report very low 

concentrations permeating the epithelial membrane, which may have little 

significance in vivo. Similarly attenuating the rate at which epicatechin is 

metabolised by intestinal, kidney or hepatic cells doesn’t appear to affect 

total elimination in urine, thereby potentially restricting the impact this may 

have physiologically. Further investigations which address the bioactivity of 

metabolised forms of flavanol monomers and dimers may elucidate a 

physiological implication of these results.

D a r k  c h o c o l a t e  e x t r a c t

F l a v a n o l  m o n o m e r s  

&  d i m e r s

i  O - M e t h y l  e p i c a t e c h in  

f O - M e t h y l  d i m e r

S A M S A H

Figure 6.1 Illustration of proposed mechanism for dark chocolate extract 
inhibition of epicatechin méthylation in Caco-2 cells.
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6.1.2 Effect of sucrose, glucose and fructose

Sucrose enhanced the absorption of epicatechin in the Caco-2 cell model, 

which was attributed to stimulation of sodium-dependent glucose transporter 

activity at the apical membrane leading to increased tight junction pore size, 

determined by lower trans-epithelial electrical resistance; this resulted in 

greater paracellular permeability of epicatechin. A small number of human 

intervention studies have resulted in the speculation that sucrose may 

augment epicatechin bioavailability. Many investigations have focused on 

the bioactivity of epicatechin in its free form, with improvements in 

biomarkers of cardiovascular disease being its primary potential benefit. The 

mechanisms by which epicatechin may exert such influence include 

increased endothelial nitric oxide levels through inhibition of reduced 

nicotinamide adenine dinucleotide phosphate (NADPH) oxidase which 

produces the superoxide radical that is able to form a complex with nitric 

oxide producing another radical, peroxynitrite. Endothelial nitric oxide may 

also be elevated through epicatechin inhibition of arginase, which competes 

with nitric oxide synthase for the substrate L-arginine. Stimulation of 

endothelial nitric oxide synthase activity by epicatechin induced 

phosphorylation of serine residues has also been proposed. Nitric oxide 

stimulates endothelial vasodilation and may be responsible for increased 

flow mediated dilation (FMD) observed in human intervention trials in which 

consumption of cocoa has resulted in greater FMD being measured.

Epicatechin has also been reported to improve biomarkers of CVD risk 

factors such as inflammation, oxidative stress and dyslipidemia. Reduction



of: C-reactive protein in diabetic mice supplemented with epicatechin, 

malondialdehyde concentration in rats supplemented with cocoa fibre, and 

total and LDL cholesterol levels of obese-diabetic rats supplemented with 

cocoa, have been reported.

Increasing bioavailability of epicatechin with formulations including sucrose 

may enhance such beneficial effects. However the impact of sucrose on 

biomarkers of disease must also be taken into consideration.

Glucose and fructose reduced the production of methylated epicatechin in 

the Caco-2 cell model although epicatechin transport was not affected. This 

suggested the inhibition of COMT activity. COMT inhibition in the presence 

of glucose or fructose is hypothesised to be a consequence of glycolytic 

enzymes competing with COMT for the magnesium cation cofactor required 

for activity in both pathways. Further investigations are required to determine 

whether, in the presence of magnesium (II) in the transport solution, glucose 

and fructose are able to inhibit COMT activity. It is possible that the inhibition 

observed in the epicatechin transport study presented here is unique to the 

specific conditions under which the assay was conducted, i.e. a lack of 

sufficient magnesium cations.

Sucrose Sucrose
Epicatechin

Epicatechin
*

îEpicatechin

Figure 6.2 Illustration for the proposed mechanism by which sucrose may 
enhance epicatechin absorption in Caco-2 cells.
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Figure 6.3 Illustration of the proposed mechanism by which glucose and 
fructose inhibit the production of methylated epicatechin in Caco-2 cells.

6.2 S ucrose hydro lysis

Dark chocolate extract containing 322 pM epicatechin reduced the rate of 

sucrose hydrolysis in Caco-2 cells by 59%, this was partly attributable to the 

(-)-epicatechin content. Standard (-)-epicatechin also reduced the rate of 

sucrose hydrolysis but >500 pM would be required to achieve a 50% 

reduction in hydrolysis. This is consistent with previous studies that report 

IC50 concentrations >1 mM for inhibition of sucrase activity. Flavanol-protein 

interactions are greater as the molecular weight, and thus the degree of 

polymerisation, increases. Combined with the results of the study presented 

here, it is hypothesised that synergistic effects between flavanols in dark
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chocolate extract accounts for inhibition of sucrose hydrolysis in excess of 

that measured for (-)-epicatechin alone. Further investigation using 

commercially available standard compounds and/or those extracted by 

separation of flavanol fractions would confirm or refute this concept. 

a-Hydrolase enzymes operate in a similar way; product formation is a 

function of acid hydrolysis of the substrate. The active site of sucrase shares 

some homology with a-amylase; it has been proposed that flavanol inhibition 

of the enzyme requires the presence of delocalised electrons in a 

conjugated AC-ring and is dependent on the number of hydroxyl groups 

across the molecule. Based on this evidence, it would not be expected that 

flavanols, containing just two hydroxyl groups located on the B-ring and a 

non-conjugated AC-ring system, would have a propensity for strong 

inhibition of sucrase. The stereoisomerisation of hydroxyl groups has also 

been implicated in the capacity to inhibit a-hydrolase enzymes. In order to 

examine this hypothesis, greater concentrations of each flavanol monomer 

enantiomer require investigation to allow comparison with the (-)-epicatechin 

isomer.

Based on the evidence presented here, it appears that enhancement of 

sucrase activity is independent of isomerisation. However, it is possible that 

(+)-epicatechin, containing the 2S, 3S bond configuration, has less affinity 

for binding sucrase at the site which causes inhibition of sucrose hydrolysis. 

Enhancement of activity was sustained at a concentration in which the other 

flavanol monomers, and dimer, displayed a relative reduction in activity, 

compared to the enhanced activity. Analysis of the kinetic properties of 

sucrose hydrolysis in the presence of dark chocolate extract and individual 

flavanol compounds, would confirm the type of inhibition. Computational
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software could be used to predict the sites of interaction for ligands based on 

protein structure. Enhanced sucrose hydrolysis in the presence of moderate 

concentrations of flavanol monomers and dimer are proposed to be a 

consequence of flavanol-protein binding at a site other than the active site of 

sucrase. It has been suggested that such binding may stimulate a 

conformational change in the tertiary structure of the enzyme permitting 

more catalytic residues to be exposed to the hydrophilic environment (Gupta 

et al. 2010). In this instance the result may be enhanced hydrolysis of 

sucrose at the active site leading to an increase in the rate of product 

formation.

Impaired hydrolysis of sucrose in the small intestine is associated with 

congenital sucrase-isomaltase deficiency, a disease in which the patient 

experiences abdominal pain, bloating and diarrhoea. As there is no cure for 

the disease treatment involves elimination of sucrose, and other 

carbohydrates that are hydrolysed to maltose, from the diet or use of an 

enzyme replacement therapy. Inhibition of a-glucosidase enzymes by 

acarbose is an approved treatment for type-2 diabetes, although side-effects 

of flatulence and diarrhoea have been reported; the ability of dark chocolate 

extract and (-)-epicatechin to reduce sucrose hydrolysis could be considereds'-

to lead to similar side-effects. However this would depend upon whether 

sucrose hydrolysis was reduced sufficiently for sucrose to pass through to 

the colon where it would elicit negative side-effects, or whether hydrolysis 

was merely slowed down such that the peak in blood glucose concentration 

was lessened. This is a more probable outcome as consumption of dark 

chocolate is not associated with negative intestinal effects.
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6.3 Glucose transport

Dark chocolate extract reduced cellular uptake and transport of glucose. 

This was not attributed to commercially available individual flavanol 

monomer or dimer components of dark chocolate cr to caffeine and 

theobromine. It is hypothesised that a synergistic effect of the flavanol 

components is present. Individually caffeine and theobromine increased the 

rate of cellular glucose uptake without any change in the rate of transport. 

This supports previous reports that have observed greater glucose 

concentration in the plasma of subjects following ingestion of a caffeine 

containing beverage compared with a similar decaffeinated drink (Johnston 

et al. 2003). This is believed to be a result of increased sodium-dependent 

glucose transporter trafficking to the apical membrane due to elevated 

cellular concentrations of cAMP through inhibition of cyclic 3’, 5’-nucleotide 

phosphodiesterase activity.

Transport of glucose by Caco-2 cells, presented here, was not linear with 

increasing concentration therefore it was considered that the primary route 

of cellular uptake was via the sodium-dependent glucose transporter SGLT1. 

Kinetic analysis of glucose transport in the presence of different 

concentrations of dark chocolate extract revealed a dose-dependent 

reduction in the rate of transport but not cellular uptake. The concentration of 

glucose required to achieve half the maximum rate of transport was 

increased for apical to basolateral transport without any change in cellular 

uptake, at the highest concentration of dark chocolate extract investigated. It 

is proposed that glucose uptake by SGLT1 was non-competitively inhibited 

whereas basolateral efflux of glucose by the hexose transporter GLUT2 was
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inhibited by mixed-type. Non-competitive inhibition of GLUT2 is believed to 

be dose-dependent and responsible for the dose-dependent change in Vmax. 

Apparent enhancement of cellular glucose uptake in the presence of the 

lowest concentration of dark chocolate extract investigated, determined by a 

lower Km, was believed to be a result of methyl xanthine induced stimulation 

of SGLT1 trafficking to the apical membrane concurrent with non-competitive 

inhibition of the transporter by the flavanol components.

Increased intestinal glucose concentration stimulates the insertion of GLUT2 

into the apical membrane to assist with glucose absorption. In type-2 

diabetic patients GLUT2 at the apical membrane remains elevated such that 

high blood glucose concentration, due to impaired uptake by muscle and 

adipose cells, is exacerbated. A capacity to reduce the activity of glucose 

transporters may be of benefit to patients with diabetes or pre-diabetes. In 

healthy subjects a general reduction in the glycaemic impact of a food/meal 

is considered beneficial for health. The presence of sugars in the colon may 

result in abdominal pain and diarrhoea, however similarly to the 

consideration for sucrase inhibition, a reduction in the rate of transport that 

lessens the post-prandial peak of blood glucose concentration without 

affecting the total concentration absorbed, is less likely to have negative

side-effects.
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Figure 6.4 Illustration of the proposed mechanism for inhibition of glucose 
uptake and transport through the Caco-2 cell monolayer, and enhancement 
of glucose uptake by caffeine and/or theobromine.

6.4  E ffect of dark ch oco late  on g luco se  uptake in healthy  

hum an subjects

To date there have been many studies conducted to investigate the effect of 

plant extracts and polyphenolic components on blood glucose levels. 

Several in vivo animal studies have investigated the chronic effects of 

dietary supplementation on biomarkers of metabolic disease and expression 

of genes related to glucose metabolism (Bose et al. 2008, Oliveira et al.

2008, Hininger-Favier et al. 2009, Kannappan and Anuradha 2009, Jia et al.

2009, Chen et al. 2011, Sae-tan et al. 2011, Bnouham et al. 2012, Kobori et 

al. 2012, Qin et al. 2012). Overall these studies reveal lowered blood
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glucose concentration and insulin concentration/sensitivity following 

supplementation with the extract, in comparison to a non-supplemented 

control. Acute administration of various plant extracts has been shown to 

lower the rise in post-prandial blood glucose concentration in healthy and 

diabetic-induced animals (Motilva et al. 1983, Koga et al. 2006, Ishikawa et 

al. 2007, Ndong et al. 2007, Hogan et al. 2010, Abeywickrama et al. 2011, 

Ali et al. 2011, Ikarashi et al. 2011, Roy etal. 2011, Murase et al. 2012). The 

use of glucose, sucrose or maltose in the oral tolerance test of these studies 

has been useful to suggest a mechanism by which the hypoglycemic effects 

occur. For example 1 g kg-1 polyphenolic extract of Acacia mearnsii 

administered to rats along with glucose, sucrose or maltose significantly 

reduced the 0-3 h area under the curve (AUC), 0.5 g kg'1 of extract also 

reduced the 0-3 h AUC for maltose induced glycaemia. These results 

suggest that further to inhibition of glucose transport, the activity of sucrase 

and maltase enzymes may also be attenuated (Ikarashi et al. 2011). An 

extract of Nerium indicum leaves reduced the rise in blood glucose 

concentration in rats orally administered maltose or sucrose. Rise in blood 

glucose was suppressed at 30, 60 and 90 min following sucrose ingestion, 

and at 60 and 90 min following ingestion of maltose. Everted intestinal sacs 

were exposed to 1 mM chlorogenic acid, a component of the leaf extract, 

along with maltose or glucose. In both instances glucose absorption was 

significantly lower than the control (Ishikawa et al. 2007). Several ex wVo 

and in vitro assays have demonstrated the ability of plant extracts, and 

individual polyphenolic compounds to reduce glucose transport and sugar 

hydrolysis (Kobayashi et al. 2000, Song et al. 2002, Johnston et al. 2005, 

Hanamura et al. 2006, Kottra and Daniel 2007, Kwon et al. 2007, Wang et
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al. 2008, Manzano and Williamson 2010, Adisakwattana and Chanathong 

2011, Boath étal. 2012).

The results presented in Chapter 4 and Chapter 5 support the evidence that 

cocoa extracts, rich in polyphenols, are able to reduce sucrose hydrolysis 

and glucose transport in vitro.

A 50 g serving of dark chocolate, containing 31 g of carbohydrate, has a 

reported glycaemic index (Gl) of around 42 compared with a 50 g portion of 

glucose with a Gl of 100 (University of Sydney 1995-2007). The Gl is a 

measure of the glycaemic response to a food or beverage during 120 min 

post-ingestion; it is compared with the Gl of a standard reference food which 

is commonly glucose in water or white bread. The Gl of the test food is 

calculated as a percentage of the reference; the higher the Gl of a food, the 

greater its impact on glycaemia. The relatively low Gl of dark chocolate may 

be partly attributed to it containing mainly sucrose; a 50 g portion of sucrose 

has a Gl of ~60 compared with glucose (Foster-Powell et al. 2002). The 

glucose present in sucrose must first be liberated by the activity of intestinal 

sucrase before absorption can occur therefore attenuating the rise in blood 

glucose. Typically, post-prandial blood glucose concentration peaks at 

around 30 min; following ingestion of 50 g of glucose in water, the 30 min 

peak equates to a blood glucose concentration increase of approximately 2 

mM above the pre-ingestion baseline concentration (Chlup et al. 2010). The- 

change induced by ingestion of dark chocolate containing 50 g of 

carbohydrate was approximately 0.4 mM, at its maximum, however over the 

120 min post-prandial period a distinct peak was not observed as the 

change remained relatively constant throughout (Figure 6.5) (Chlup et al. 

2010).
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DARK CHOCOLATE

Time (min)

Figure 6.5 Mean glycaemic change from the pre-meal value following 
consumption of 50 g of carbohydrate in dark chocolate compared with 
glucose (Chlup et al. 2010).

The glycaemic index, determined in diabetic and non-diabetic subjects, of a 

variety of different foods containing 50 g of carbohydrate significantly 

correlated with polyphenol content (Thompson et al. 1984). Following 

ingestion of apple juice, compared with a control that was matched for sugar 

content, the rise in blood glucose concentration was significantly lower at 15 

and 30 min in healthy subjects. Blood glucose concentration over 3 h did not 

differ significantly suggesting that absorption was delayed (Johnston et al. 

2002). Ingestion of an Instant tea beverage containing 75 g of glucose did 

not alter the 0-150 min AUC but did lower the blood glucose concentration 

measured at 120 min suggesting that the return to baseline was more rapid 

(Bryans et al. 2007). Similar results were observed in healthy subjects 

following consumption of a mixed berry purée, plus 250 mL water, containing 

35 g sucrose, 4.5 g glucose and 5.1 g fructose, compared with 250 mL water 

containing the same sucrose, glucose and fructose content. There was no 

significant difference in the 0-3 h AUC, however blood glucose concentration
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was significantly lower at 15 and 30 min. At 120 min post-ingestion, blood 

glucose was significantly higher than the control indicating that the rate of 

glucose absorption was reduced, not the overall concentration (Torronen et 

al. 2010).

Based on the results of in vitro studies presented in chapters 3 and 4 and 

the reported potential for plant extracts to attenuate the post-prandial peak of 

blood glucose concentration, a human intervention study is proposed to 

investigate whether consumption of dark chocolate in combination with a 

glucose-containing beverage could attenuate the post-prandial rise in blood 

glucose concentration over a 120 min post-ingestion period compared with a 

nutrient-matched control chocolate bar free from cocoa polyphenols.

Studies that investigate the post-prandial blood glucose concentration rely 

on a standard blood glucose monitor to measure the concentration. In a 

glycaemic index test this is adequate, however the human study proposed 

here is intended to investigate glucose absorption. As dark chocolate 

contains only sucrose, in a study such as this the use of a standard blood 

glucose monitor would measure blood glucose concentration resuiting from 

the uptake of glucose from the beverage and of glucose liberated from the 

hydrolysis of sucrose. Thus the results would not be specific to glucose 

transport. The stable 13C-D-glucose isotope has been routinely used as a 

metabolic tracer in human studies. Enrichment of the test food with this 

compound would enable specific measurement of 13C-D-glucose and 

calculation of the 13C to 12C-D-glucose ratio; theoretically this should 

increase as glucose is absorbed from the test food. In order to measure 13C- 

D-glucose in plasma a method for sensitive and precise measurement of 

plasma enriched with 13C-D-glucose is described using HPLC separation
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and mass spectrometry detection of glucose. Compared with a standard 

blood glucose monitoring method, use of the 13C-D-glucose tracer provides a 

method to specifically investigate glucose absorption in the presence of a 

complex food matrix.

6.4.1 HPLC-MS Protocol

6.4.1.1 Parameters

A Shimadzu LC 2010 HPLC system equipped with a Phenomenex Rezex™ 

RNM-carbohydrate ion exclusion column, 8% cross-linked with sodium 

cations, 7.8 x 300 mm, was employed for the liquid chromatographic 

separation of glucose. The stationary phase was fitted in a thermostatted 

column compartment maintained at 60 ± 0.1 °C. The mobile phase consisted 

of T m M  sodium formate (71539) in water. An isocratic gradient was 

maintained at a flow rate of 0.4 mL m in1 throughout the duration of the run. 

Maximum pressure was set to 65 bar and minimum pressure was 10 bar. 

Mass spectrometric detection of glucose was performed using the Shimadzu 

LCMS 2020 Single Quad Mass Spectrometer. Instrument parameters were 

as follows: gas temperature and flow 350°C, 15 L min'1; nebuliser gas flow

1.5 L min'1; desolvation line temperature 250°C; heat block temperature 

200°C. The analytical method run time was divided into 2 segments; the first 

being a window of 0 to 27.5 min during which analytes were detected in 

positive electrospray ionisation (+ESI) mode. During the second time 

segment, 27.5 to 28 min, negative electrospray ionisation (-ESI) was 

performed to eliminate analyte residue accumulation at the source which 

may suppress ionisation and reduce sensitivity of the mass spectrometer.

» »
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The autosampler was set to 8°C and a needle rinse step incorporated into 

the method before and after sample aspiration.

6.4.1.2 Sample preparation for LCMS analysis

Blood samples were centrifuged at 2,000 x g for 3 minutes to separate 

cellular matter from the plasma. The plasma supernatant was collected into 

centrifuge tubes and 50 pL diluted 10-fold with ice-cold ethanol. The ethanol- 

plasma mix was vortexed and stored at -20°C for 1 h before being 

centrifuged at 13,000 x g  for 15 min and the supernatant syringe filtered 

through a 17 mm, 0.2 pm PTFE membrane (Chromacol, 17-SF-02(T)). The 

supernatant was evaporated to dry under vacuum and reconstituted in 50 pL 

water.

6.4.2 Pilot study

6.4.2.1 Ethical approval

Ethical approval was obtained from the University of Leeds Mathematics and 

Physical Sciences (MaPS) and Engineering joint Faculty Research Ethics 

Committee (MEEC FREC), reference MEEC 11-040.

6.4.2.2 Human study design

The design is a single-blind cross-over with participants required to attend 

two sessions, each session no longer than 3 h. Attendance at both sessions 

will qualify the volunteer to receive £5 to compensate for their time. 

Volunteers will be asked to complete an informed consent form and pre

study questionnaire to determine suitability for the study. Volunteers will be 

excluded if they smoke, have been diagnosed with diabetes, pre-diabetes,
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digestive disease, sugar intolerance, food allergy or hypertension, are taking 

prescribed medication, regular dietary supplements or pregnant/lactating. 

Healthy, adult volunteers will be asked to maintain a normal, nutritionally 

balanced diet containing >150 g of carbohydrate per day and refrain from 

drinking alcohol and taking part in strenuous physical activity for 3 days prior 

to the study day. In addition the participants will be asked not to consume 

chocolate or cocoa during the 3 day period. On the evening prior to the 

study, subjects will be asked to consume a moderate meal then fast for 12 

hours before their allocated start time on the study day.

On the day of the study participants will arrive at the designated time and 

rest for 10 minutes before providing the first sample of blood (baseline, T=0). 

The subject will then be asked to consume a 40 g bar of Nestlé NOIR 

Intense dark chocolate containing 70% cocoa solids, or a 28 g bar of 

macronutrient-matched chocolate free from cocoa solids. Immediately 

following ingestion of the bar, subjects will be asked to drink an aqueous 

beverage containing 25 g of D-glucose and 0.1 g of 13C-D-glucose. Blood 

will be collected at 15, 30, 60, 90 and 120 min post-consumption. 

Micro-volumes of blood will be drawn from the finger tip using BD 

Microtainer contact-activated lancets (MidMeds, 366594) designed 

specifically for the single puncture collection of blood volume up to 500 pL. 

Blood will be collected into BD Microtainer tubes containing sodium- 

ethylenediaminetetraacetic acid (EDTA) to prevent cell aggregation and 

sodium fluoride to prevent cellular glycolysis diminishing the glucose 

concentration (Fisher Scientific, SZV-110-130Y).

At the end of each session participants will be provided with a snack.
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Subject confidentiality will be ensured by allocation of identification codes to 

each participant that will be kept securely in a restricted access area in a 

locked filing cabinet. Participants will be free to withdraw from the study at 

any point without providing a reason.

6.4.3 Qualification of D-glucose

12C-D-Glucose has a molecular weight of 180.16, in positive electrospray 

ionisation mode the mass to charge ratio (m/z) for selective ion monitoring 

(SIM) is 181.16. The Shimadzu LCMS 2020 Single Quad Mass 

Spectrometer is not sensitive to detect intervals <1, therefore all selective ion 

monitoring was set to integer m/z only. For example [12C-D-glucose + H+] = 

m/z 181. During a scan (+ESI) of standard 12C-D-glucose m/z ratios of 203, 

221,383, 384 and 385 were detected; these were qualified as follows:

Mass/charge ratio Compound + adduct

203 12C-D-glucose + scdium

221 12C-D-glucose + sodium + water

383 12C-D-glucose + 12C-D-glucose + sodium

384 12C-D-glucose + 13C-D-glucose + sodium

385 13C-D-glucose + 13C-D-glucose + sodium
____ f.___ ______ 1 ____ i__:__________ ___:___ t W/sTable 6.1 Mass/charge ratios detected during selective ion monitoring of 12C- 

D-glucose.
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During a scan (+ESI) of standard 13C-D-glucose m/z ratios of 204 and 222 

were detected and qualified as follows:

Mass/charge ratio Compound + adduct

204 13C-D-glucose + sodium

222 13C-D-glucose + sodium + water
___________________ _________________ i___ :_______________ __________ r  1 3 ^Table 6.2 Mass/charge ratios detected during selective ion monitoring of 13C- 

D-glucose.

In addition to the ratios shown above, selective ion monitoring of m/z ratios 

181 and 182 was included in the method to detect ionised 12C-D-glucose 

(181) and 13C-D-glucose (182). In the standards and plasma samples 

analysed during method development, m/z 181 and 182 were not detected. 

Figure 6.6 and Figure 6.7 show the absolute intensity of signals detected for 

ions of m/z 203, 221, 383, 384 and 385 from standard 12C-D-glucose, and 

204 and 222 from standard 13C-D-glucose. Analysis of 12C-D-glucose 

revealed the presence of 13C-D-glucose, this would be expected due to the 

natural abundance of the carbon-13 isotope of glucose. The standard 13C-D- 

glucose used in this study was enriched with D-glucose labelled with one 

carbon-13 atom. Natural abundance of carbon-13 isotopes of glucose 

decrease as the number of substituted carbon atoms increase.

The purity of the 12C-D-glucose isotope can be confirmed by calculating the 

atom percent which takes into account the isotopic abundance of the sample 

relative to that of an international standard. The international standard used 

for carbon is the ratio of carbon-13 to carbon-12 in Vienna Pee Dee 

Belemnite (VPDB) that is equal to 0.0112372 ± 0.0000009 (Rst). Calculation 

of isotopic abundance and atom percent are shown in Equation 6.1 and 

Equation 6.2, respectively.
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Equation 6.1

Equation 6.2

Where:

Rs = ratio of carbon-13 to carbon-12 in the sample

To calculate the isotopic abundance and subsequently the atom percent of 

D-glucose the number of carbon-12 and carbon-13 atoms in each isotope 

must be accounted for. Integration of ion count peak area for each m/z ratio 

was performed then the sum of peak areas for each isotope in the sample 

calculated; from this, the ratio of 12C-D-glucose to 13C-D-glucose peak areas 

was determined. The ratio was then converted to the ratio of carbon-12 

atoms to carbon-13 atoms by multiplying by 6 (6 carbon-12 atoms in one 

molecule of 12C-D-glucose) plus 5 (5 carbon-12 atoms in one molecule of 

13C-D-glucose). Inversion of the figure obtained in this last calculation 

provided the ratio of carbon-13 atoms to carbon-12 atoms which is used to 

calculate isotopic abundance. The isotopic abundance of standard 12C-D- 

glucose, used in the method development presented here, was equal to 65.5 

± 17.8 %o and the atom percent calculated from this was 1.18 ± 0.02 (n=3). 

Isotopic abundance >1 indicates that the sample is enriched with carbon-13 

atoms relative to the international standard (Godin et al. 2007). The plasma 

samples analysed in the development of this method contained an isotopic 

abundance of 63.9 ± 2.3 %o and an atom percent of 1.18 ± 0.00 (n=3).

6.4.4 Plasma enrichment with 13C-D-glucose
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A trial was undertaken to confirm the method was sensitive to measure 

plasma enrichment following ingestion of 0.1 g 13C-D-glucose and 25 g 12C- 

D-glucose dissolved in 200 mL of tap water. A volunteer provided a sample 

of blood at baseline before drinking the beverage, then at 30 and 60 min 

post-ingestion. At baseline, isotopic abundance was 50.9 %o and the atom 

percent calculated as 1.17. Plasma collected at 30 and 60 min post

ingestion was calculated to have an isotopic abundance of 94.1 %0 and 97.2 

%o, respectively. Atom percent at 30 and 60 min was 1.21 and 1.22, 

respectively. These results demonstrate the ability of the method to detect 

enrichment of plasma with 13C-D-glucose following ingestion of a beverage 

containing a molar ratio of 13C- to 12C-D-glucose = 0.004.
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Figure 6.6 LCMS selective ion monitoring chromatograms extracted from the 
total ion count chromatogram of standard 12C-D-glucose.
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Figure 6.7 LCMS selective ion monitoring chromatograms extracted from the 
total ion count chromatogram of standard 13C-D-glucose.

6.5 Conclusion

The results of the investigations presented here demonstrate the interaction 

between cocoa polyphenols and sugars. Sucrose has been shown to 

enhance epicatechin transport through the Caco-2 cell monolayer whilst dark 

chocolate extract, glucose and fructose attenuate epicatechin methylation. 

The apparent low glycaemic index of dark chocolate, compared with glucose
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(and sucrose), may be attributable to its capacity to inhibit sucrose 

hydrolysis and glucose transport; the evidence presented here supports this 

hypothesis. The mechanism by which each of these outcomes occurs was 

not investigated but the hypotheses put forward provide a direction for future 

work to take. Namely, prospective investigations are recommended to 

include the following: determination of COMT activity in the presence of 

flavanols with a varying degree of polymerisation, and in the presence of 

glucose and fructose with sufficient magnesium (II) cofactor present in the 

transport solution; confirmation of enhanced sucrase activity at moderate 

concentrations, and reduced activity at high (£500 pM) concentrations of 

flavanols; measurement of sucrase kinetic properties to determine the type 

of inhibition and structure-activity associations using different stereoisomers 

and computational software to reveal the requirements for interaction and 

the binding sites at which interactions may occur; sodium-dependent 

glucose transport should be more thoroughly investigated to confirm, or 

refute, the capacity for dark chocolate extract to inhibit GLUT2; the kinetic 

properties of methyl xanthine induced SGLT1 activity and the effect of 

varying concentrations of flavanols would further the understanding of this 

process; sucrase activity and glucose transport in the presence of separated 

flavanol fractions of dark chocolate would help to narrow the range of 

possible compounds responsible for the effects of dark chocolate extract; 

and, implementation of a human study in which 13C-D-glucose plasma 

enrichment is measured following consumption of dark chocolate, compared 

with a nutrient-matched placebo control, may support the in vitro evidence 

for reduced glucose absorption induced by the flavanol components of dark 

chocolate.
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rendered acellular. Phases two and three will include cocoa powder dissolved in the beverage. Some subjects will only 
be required to provide up to 0.1 mL of blood per time-point.

Reduction of blood glucose concentration following consumption of a meal is desirable in healthy humans as well as 

those suffering from prediabetes and type-2 diabetes. Excessively high blood glucose concentration, particularly over a 
prolonged period, can damage arterial cells which increases the potential for narrowing of the arteries and consequently 

an increased risk of cardiovascular disease |1). Additionally it is likely that slowing glucose uptake may help to reduce 
body weight |2], being overweight is a risk factor for developing type-2 diabetes (31.

This research is funded by a 6BSRC industrial CASE award to Nestlé PTC, York. Recruitment will take place on the main 
University of Leeds campus.

A.10 What are the main ethical issues with the research and how will these be addressed?

Indicate any issues on which you would welcome advice from  the ethics committee.

Laiflgmtd&oragfli

The study co-ordmator will provide a clear, concise Participant Information Sheet (appendix 1) and Informed Consent 

Form (appendix 2) for the volunteers to read, complete and sign prior to commencement of the study. After the 

candidate has been determined as suitable to participate in the study, the background of the study (including purpose, 
duration, protocol, potential discomfort, associated risk, potential benefits, confidentiality, and disclosure of results, 
participation and withdrawal) will be explained to the participant. The study co-ordinator will fully answer all questions 

to the satisfaction of the individual. Written informed consent will be obtained by the study co-ordinator from each 
participant at least 7-days prior to enrolment in the study. The consent form will be signed and dated by both the 

participant and the study co-ordinator, and will be photocopied twice; one copy to be held with the study records (held 
by the study co-ordinator) and one copy for the individual. Written informed consent must be obtained before the 

individual can participate in the study and all participants will be free to withdraw from the study at any point without 

providing a reason.
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Pre-studv questionnaire

In order to assess candidate suitability for the study, each candidate will be required to complete a questionnaire 

(appendix 3) pertaining to lifestyle, including height and weight, gender, age, ethnicity and relevant medical history; this 

information may be considered a sensitive issue. Each volunteer will be assured that participation is entirely voluntary.

3-dav restricted diet & overnight fasting

There may be some mild discomfort/inconvenience caused by the 3 -day restricted diet and overnight fasting before the 

study. However the quantity and range of foods permitted is substantial and sufficient to provide a nutritionally 
balanced diet.

Subisti cQrrâfcnMift anti daia-Bigisflign

Confidentiality of all participants will be maintained; identification will be coded using 10 numbers that will be assigned 
on the day of the study. All data collected will be treated as confidential and stored securely in a locked filing cabinet 

according to current University regulations. It will not be possible to identify individual participants from the ID 
numbers; the linkage between individual identity and ID number will be kept in written form only and stored in a locked 

filing cabinet in a restricted access area. Data evaluation will only be performed using ID numbers. Anonymised data will 
be stored for no longer than 5 years in accordance with the University guidelines on the password protected M-drive of 

the University server.

Eihici commime approva!

This human study protocol will be submitted to the Faculty of Mathematics and Physical Sciences Ethics Committee at 

the University of Leeds, UK.

PART B: About the research team

B .l To be completed by students only ?0

Qualification working towards (eg 

Masters. PhD)
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Supervisor's name (Title, f irs t name, 

surname)
Professer Gary Williamson

Department/ School/ Institute School of Food Science and Nutrition

Faculty MAPS

Work address (including postcode) School of Food Science & Nutrition, University of Leeds, LS2 9JT

Supervisor's telephone number 0 113  343 8380

Supervisor's email address K .w H iijn iw n e W lM t-u K

Module name and number ( if  

applicable)

B.2 O ther m embers o f th e  research team  (eg co-investigators, co-supervisors)21

Name (Title, f irs t nome, surname)

Position

Department/ School/ Institute

Faculty

Work address (including postcode)

Telephone number

Email address

Name (Title, first name, surname)

Position

Department/ School/ Institute

Faculty

Work address (including postcode)
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Telephone number

Email address

Part C: The Research

C .l  W hat are the aims of the study? (Must be in language comprehensible to a lay person.)

The main objective of this pilot study is to determine whether consumption of cocoa affects blood glucose concentration 
over a 2-hour period post-ingestion.

C.2 Describe the design of the research. Qualitative methods as well as quantitative methods should be included. (Must 

be in language comprehensible to a lay person.)

It Is Important tha t the study can provide Inform ation about the alms that It  Intends to address. I f  a study connat answer the  
questions /  add to the knowledge base that it  Intends to, due to the way that It is designed, then wasting partidpan ts ' tim e  

could be an ethical issue.

This is a placebo-controlled, crossover pilot study conducted over three-phases of no more than 3 hours per phase. All 

volunteers will be asked to complete a consent form and pre-study questionnaire prior to participation. It is anticipated that 

the pilot study will require no more than 12  subjects.

Days 1-3  prior to study day

Subjects will be required to maintain a normal nutritionally balanced diet containing > 150  g of carbohydrate per day 

(appendix 4), and refrain from drinking alcohol and taking strenuous physical activity. Additionally the subjects will be asked 
not to consume chocolate or cocoa during this 3 -day period. On the evening prior to the study, subjects will be asked to eat 

a moderate meal then fast for 12  hours before their allocated start time on the day of the study.

Day 4 -  Study day

Subjects will be asked to arrive at a pre-designated time; they will then rest for 10  minutes before providing the first 2 m l 

sample of blood for glucose analysis (baseline). After this first sample has been taken, the subject will be asked to consume 

the beverage containing 75 g of ,?C-D-glucose plus 0.15 g of nQ-D-glucose* within 5 minutes. The subject will then provide 

a 2m L blood sample at 15, 30, 60, 90 and 120  minutes post-consumption. 5ome subjects will be required to provide up to 
0.1 m l of blood per time-point, drawn using a standard finger-prick device.

Sample flhfllVW

Whole blood samples will be centrifuged within 30 minutes of collection and the acellular plasma fraction collected and 
stored at -80’C until required for analysis (appendix 5 and 6). The remaining cellular fraction will be treated with a
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disinfectant to destroy the cells, as per manufacturer guidelines. Glucose concentration in the plasma samples will be 

analysed using liquid chromatography with mass spectrometry detection (LC-MS).

S la t li& iljQ ito ii

Blood glucose concentration in the test conditions will be assessed for statistically significant difference from the control 
condition at each time point using the Students T-test. Statistically significant difference will also be calculated between the 

two test conditions.

C.3 W hat w ill participants be asked to  do in the  study? 23 (e.g. number o f visits, time, travel required, Interviews etc)

Participants will initially be asked to complete a consent form and pre-study questionnaire. The information provided 

on the questionnaire will be used to determine suitability for the study, and will include:

Height, weight, age. gender, ethnic background, smoking habit, pre-diagnosed gastrointestinal disease, pre-diabetes or 
diabetes, hyper tension, pregnancy/lactation, use of prescribed medication or dietary supplements.

f or 3 days prior to the study day, subjects will be asked to maintain a normal nutritionally balanced diet avoiding cocoa, 

chocolate and alcohol. Additionally each subject will be asked to refrain from strenuous physical activity during the 3- 

day period. The night before the study the participants will be required to fast for 12 hours (water to be permitted).

On the morning of the study, subjects will be asked to arrive at the study venue at an allocated time and then be asked 

to rest for 10 minutes before the first (baseline) blood sample is collected. The participants will then be asked to drink 
the beverage within 5 minutes and subsequent blood samples will be collected at 15, 30, 60,90 and 120  minutes post

consumption. At the end of each study phase each subject will be provided with a snack

Each participant will not be required to be present for longer than 3 hours during each phase of the study. There are 

three phases to the study so the total time required from each subject will be 9 hours (appendix 7 and 8).

The study will take place in the School of Food Science and Nutrition on weekdays during the University's normal 
opening hours. Subjects may have to travel to the building from elsewhere on campus or from outside the University 

campus, however it is envisaged that many of the volunteers will be staff or students at the University of leed and 

therefore travel will be minimal.
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•There are two naturally occurring stable isotopes of carbon, carbon-12 and carbon-13 with an abundance of 98.9% 
and 1 . 1 %  respectively |4]. In this study the carbon atom in position 6 of the glucose molecule has an atomic mass of 13 

(the remaining 5 carbon atoms have a mass of 12) therefore giving the glucose a molecular mass of 18 1.2  rather than 
180.2 as in most cases. This difference in mass allows the specific analysis of u C6-0-glucose concentration in the 

plasma samples, the presence of which will only originate from the beverage consumed at the beginning of the study. 

The use of ,3C6-D-glucose in this study provides a sensitive and precise method to analyse the changes in blood glucose 
during the study period and compare the effects of cocoa consumption on the appearance of glucose in the blood. The 

use of carbon-13 in nutritional investigations is well documented and completely safe due to the stability of the carbon 

atom nucleus |5].

C.4 Does the research involve an international collaborator or research conducted overseas:54

(Tick as appropriate)

r  Yes W  No

If yes, describe any ethical review procedures that you will need to comply with in that country:

Describe the measures you have taken to comply with these:

Include copies of any ethical approval letters/ certificates with your application

C.S Proposed study dates and duration

Research stari date (DO/MM/YY) 30 /0 4 /12 Research end uate (DD/MM/YY): 29/06/12

Fieldwork start date (DD/MM/YY): 30/04/12 Fieldwork end date (DD/MM/YY): 29/D6/12
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C.6. Where will the research be undertaken? (i.e. in the street, on UoL premises, in schools)29

The study will be conducted in the School o f fo o d  Science and Nutrition at the University o f  Leeds.

K RECRUITMENT & CONSENT PROCESSES

H ow  portkiponts ore recruited is im portant to ensure that they are not induced or coerced into participation. The way  

participants ore identified m ay have a  beo.ing on whether the results con be generalised. Explain each point and give 

details for subgroups separately If appropriate.

C.7 How will potential participants in the study be:

(i) identified?

Individual subject identification will be in the form of code and no personal details will be referred to in this study. 
Personal details are only required to determine subject suitability such that results will be generalised not specific to 
individual participants.

(li) approached?

Volunteers will be sought by way of general invitation in the form of posters (appendix 9) displayed around the 

University of Leeds campus and by general email (appendix 10) to all staff and students within the School of food 

Science and Nutrition.

(Hi) recruited? 14

Subjects wilt be recruited from the staff and student population. Participation in the study is entirely voluntary and 

participants will be free to withdraw from the study at any point without giving a reason.
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CM Will you be excluding any group* of people, and if so what is the rationale for that? 27

Excluding certain groups o f  people, Intentionally or unintentionally m ay be unethical in some circumstances, ft may 

be wholly appropriate to  exclude groups o f  people in other coses.

The selection criteria have been chosen to minimise variable factors that can affect glucose absorption based on age, 
ethnicity, body mass index, pre-existing illnesses, pregnancy/iactation and use of prescribed medication.

C.9 How many participants will be recruited and how was the number decided upon?

I t  is Im portant to ensure tha t enough participants ore recruited to  be able to answ er the aims o f  the  research.

This is a pilot study to determine whether a main study will be required and if so how many participants would be 
required based on power analysis, in this case, based on previous experience of the research team supervisor, it has 

been decided that 12 subjects will be sufficient to provide a reliable result.

Remember to include a ll advertising m ateria l {posters, emails etc) os port o f  your application

C IO  Wilt the research involve any element of deception? M If yes, please describe why this is necessary and 

whether participants wilt be informed at the end of the study.

No

C . l l  Will informed consent be obtained from the research participants?30

15 V „  r  NO

If yes, give details of how H will be done. Give details of any portfcutar steps to provide Information (In addition to o written 
Information sheet} e.g. videos, interactive m aterial. if  you ore not going to be obtaining informed consent you wiU need to 
justify this.

Written consent will be sought horn each volunteer prior to commencement of the study. Volunteers will receive a participant 

information sheet and informed consent form after a positive reply to the recruitment advertisement. The main investigator 
will verbally explain the participant information sheet and Informed consent form; all questions from the volunteer will be
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answered at any time. The prospective participant will have approximately 7 days before the study commences to finally 

decide, sign and return the completed informed consent form ( in duplicate -  one copy for the participant and one for the 
research records, both to be consigned by the main investigator).

If participants art to be recruited from any of potentially vulnerable groups, alve details of extra steps token to assure their 
protection. Describe any arrangements to be mode for obtaining consent from a legal representative.

Copies of any m itten consent form, written information and all other explanatory m aterial should accompany this 
application. The Information sheet should moke explicit that participants can withdrawn from the research at any time, If the 
research design permits.

5amp/e Information sheets and consent forms are available from the University ethical review webpage at
httû '/ /re s t  QtchsuQOQft.tccds.oc.uk/lndex.Dho/ocodcfnfc s taff/aood oracticc/cthlcol review orocess/unlvtrsltv ethical review-

l

€.12 Describe whether participants will be able to withdraw from the study, and up to what point (eg if data is to be 
anonymised). H withdrawal is QfiS possible, explain why no t

Volunteers will be informed that withdrawal from the study is possible at any time without giving a reason and without 
questions being asked. No negative consequences or change of treatment of the participant will ensue.

€.11 How long wilt the participant nave to  decide whether to take part In the research?11

It may be appropriate to recruit participants on the spot for low risk research; however considère don Is usually necessary 

for riskier projects.

The participant should decide whether or not to take part in the study in the 7 days prior to commencement of the 

study.

€.14 What arrangements have been made for participants who might not adequately understand verbal explanations 

or written information given in English, or who have special communication needs? **(e.g. translation, use of 

interpreters etc. it Is Important that groups of people are not excluded due to kmguoge borders or disabilities, where 
assistance can be given.)

Volunteers who do not adequately understand the English language will not be recruited in the study. Email and mobile
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phone contact details will be provided on the recruitment advert and participant information sheet.

C.15 Will individual or group interviews/ questionnaires discuss any topics or issues that might be sensitive, 
embarrassing or upsetting, or Is it possible that criminal or other disclosures requiring action could take place during 

the study (e.g. during Interviews/group discussions, o r use of screening tests for drugs)? **

Yes No

i f  Yes, give details o f  procedures in place to  deal w ith these issues

The information sheet should explain under what circumstances action may be token

C.16 Will individual research participants receive any payments, fees, reimbursement of expenses or any other 

Incentives or benefits for taking part in this research? u

P  V -  r  No

if  Yes, please describe the amount, number and site of incentives and on what basis this was decided.

Participants will receive a snack at the end of each study phase to compensate for 12-hour fasting and study 
participation.

RISKS OF THE STUDY
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C.17 What i r e  th t  potential benefit» and/ or risks tor research participant»? 33

There it very low potential risk involved in this pilot study. The participants may feel some discomfort from blood 
sampling, which will be conducted by a trained phlebotomist; and from the 12-hour fasting, however a snack will be 

provided at the end of each study phase to compensate for this. There are no direct benefits to the participant although 
following a 3-day nutritionally balanced diet may be considered a benefit to some individuals who would not normally 

follow such a diet.

C.18 Does the research Involve any risks fen the researchers themselves, or people not directly involved in the 

research? Bg lone working **

r  Yes *  No

If yes, pleas* deserto*: _

Is a risk assessment necessary for this research?

r  p
Yes No tf yes, please include a copy of your risk assessment form with your application.

Further information on fieldwork risk assessments is availabie at http^/www.leeds.ac.uk/safetv/fieldwork/index.htm.

DATA ISSUES

C.19 WUI the research involve any of the following activities at any stage (including identification of potential research 

participants)? (Tick as appropriate)

r
Examination of personal records by those who would not normally have access 

Access to research data on Individuals by people from outside the research team

Electronic transfer of data

Sharing data with other organisations

Exportirç data outside the European Union

UREC Ethic* term ver sten 11 (updated 1?/01f12)
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Use of personal addresses, postcodes, faxes, e-mails or telephone numbers 

Publication of direct quotations from respondents

Publication of data that might allow Identification of Individuals to be identified 

Use of audio/visual recording devices

FLASH memory or other portable storage devices 

Storage of personal data on or including any of the following:

Manual files

Home or other personal computers 

Private company computers

Laptop computers

C.20. How will the research team ensure confidentiality and security of personal data? I.g. anonymisation procedures, 

Mcurc storage and coding of data. 7 You may wish to refer to thedtu  protection and research webmg.

See the answer explained in question A10.

C J l  For how long will date from the study be stored? Please explain why ttm  length of time has been chosen.

___5_____ years, _________ months

Nd.' ftCUK ouidtroce states thot doto should normally be preserved t  'td accessible for ten yean, but for some prt^ects ft 

may be 20 years or longer.

Students: It would be reasonable to retain data for at least 2 years after publication or three years after the end of 
data collection, whichever Is longer

CONFLICTS Of INTEREST

I C.22 Will any of the researchers or their Institutions receive any other benefits or Incentives for taking part In this
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research over and above normal salary or th e  costs o f undertaking th e  research?

Yes 19 No

I f  yes, indicate how  much and on w h at basis this has been decided

4« 1
C.23 Is th e re  scope fo r any o ther conflict o f interest? For example w ill the research funder have control o f publication 

o f research findings ?

P r
Yes No I f  yes, please explain _

C.24 Does the  research involve external funding? (Tick as appropriate)

p r*
Yes No I f  yes, w h at is the source o f this fund ing ? Nestlé PTC, York and Biotechnology a nd

Biological Sciences Research Council (BBSRC)
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PART D Declarations

Declaration by Chief Investigators

1. The information in this form  is accurate to  the best o f my knowledge and belief and I take full responsibility for it.

2. I undertake to  abide by the  University's ethical and health & safety guidelines, and the  ethical principles 

underlying good practice guidelines appropriate to my discipline.

3. If the research is approved I undertake to  adhere to  the study protocol, the  terms o f this application and any 

conditions set out by the Research Ethics Com m ittee.

4. I undertake to  seek an ethical opinion from  the  REC before im plementing substantial am endm ents to  the  

protocol.

5. I undertake to submit progress reports if required.

6. I am aware o f my responsibility to be up to date and comply w ith the requirements o f the law and relevant 

guidelines relating to security and confidentiality o f patient or other personal data, including the  need to register 

w hen necessary w ith  the appropriate Data Protection Officer.

7. I understand that research records/ data may be subject to inspection for audit purposes if required in future

8. I understand that personal data about m e as a researcher in this application will be held by the relevant RECs and 

that this will be managed according to the principles established in the Data Protection Act.

9. I understand that the Ethics Com m ittee may choose to audit this project at any point after approval.

Sharing inform ation fo r training purposes

Optional -  please tick as appropriate:

I would be content for members of o ther Research Ethics Committees to have access to  the inform ation in the  

application in confidence for training purposes. All personal identifiers and references to  researchers, funders 

and research units would be removed.

Principal Investigator

Signature of Principal Investigator:................................ ............................................. (This needs to  be an actual signature rather

than just typed. Electronic signatures are acceptable)

Print n a m e :..............................................................................
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Date: (dd/mm/yyyy):

Supervisor of student research

/ have read, edited and agree with the form obove.

Supervisor's signature:.................................. ......................... ....... . (This needs to be an actual signature rather than just

typed. Electronic signature* are acceptable)

Print name:

Date: Idd/m m /yyyy)

Please submit your form by em ail to  J.M BUihieCHeeds.ac.ufc or if you are in the Faculty of Medicine and Health 

ac uÉ. Remember to  Indude any supporting materiel such as your participant information sheet, 

consent form, interview questions and recruitment material w ith your application.
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CheckRat:

□  I have used tayman'sterms to  describe my research (applications are r#vt#w*d by lay members o f the  commet## as 

well].

□  I have answered all the questions on the form. Including those wrth several parts {refer to the guidance if you're not 

sure how to answer a question or how much detail is required)

Q  I have included any relevant supplementary materials such es

□  Recruitment material (posters, emails etc)

□  Sampto M ftlcuM nt inforrmtion th t«t

U  hmpte conb.nl tom.
Include different versions for different groups of participants eg for children and adults.

□  If I am not going to  b t using participant information sheets or consent forms I have explained why not and how 

Informed consent wUI be otherwise obtained.

Q  If you are a student have you discussed your application with your supervisor and are they satisfied that you have 

completed the form  correctly? (This w ill speed upyour application).

□  I have submitted e signed eoov o f my application (if you are a student your supervoor also needs to  sign the form)
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Ethical review 

NOTICE OF AMENDMENT

To be completed in typescript by the Principal Investigator in language comprehensible to a 
lay person and submitted to the FREC that gave the favourable opinion o f the research.

Further guidance ¡s ovoUobh ot
Mtc://researctuuBBort.lteds.oc.h </lndex.BhB/ocodemlc staff/aood oroctlce/manaaina approved projects- 
1/aooM na for an am endm ent1,

Principal Investigator's details:

Name:
Samantha Ellam

Address: School of Food Science and Nutrition

Telephone: 07843171548

Email: fs Q 7s le@ leed s .ac .uk
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Full title of study:
The effect of dark chocolate on blood glucose 
concentration following oral ingestion o f a  glucose 
beverage

Ethics reference 
number:

MEEC11-040

Date study 
commenced:

Not yet started

Amendment number 
and date:

*1,13.11.2012

Type of amendment (indicate all that apply In bold)

(a) Am endm ent to Inform ation previously given on the University o f Leeds ethical review application form  

Yet No

I f  yes, pleose refer to relevant sections o f  the FREC application In the "summary o f 

changes'section below.

(b ) A m en d m e n t to th e in fo rm a tio n  sh e e t(s) a n d  o r  c o n se n t fo m t (s )  fo r p a rt ic ip a n t s , o r  to  a n y  o th e r su p p o rn n g  

d o cu m e n ta tio n  f o r  th e stu d y

Ye» No

I f  yes, pleose submit a ll revised documents w ith  new  version numbers ond dates, 

highlighting new  text using a different colour fo n t o r the track changes fe a tu re ,
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Summary of changes

Briefly summarise the m ain changes proposed in this am endm ent using language comprehensible to o  lay 

person. Explain the purpose a f  the changes and their significance fo r the  study, In the cose o f  a  m odified 

am endm ent, highlight the modifications that have been mode.

I f  the  am endm ent significantly alters the  research design o r  methodology, o r  could otherwise o f  fe e t the  

scientific value o f the study, supporting scientific Information should be given (or enclosed separately!. 

Indicate whether or not additional scientific critique hos been obtained.

Initially the study was intended to provide the participants with a  cocoa containing beverage 
however the sponsor prefers to use a dark chocolate bar matched with a white chocolate bar as the 
control. The glucose will still be consumed in beverage form following consumption o f the 
chocolate bar, the glucose concentration has also been reduced. The change will make the results 
more comparable with the in  v i t r o  investigations previously conducted and more relevant for the 
sponsor who is providing the chocolate bars.

Blood collection has changed. Depending upon further method development It may be necessary 
to insert a cannula device in to the arm and collect up to 6 m l of blood per time point. A cannula 
allows blood to be drawn without a  needle so is more suitable for multiple collections during a short 

period. However if the analytical method is suitable for a small volume o f blood then only a finger 
prick will be required to draw the blood and the sample volume required will be a maximum of 0.6 
mL per time point.
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Any other relevant information

A p p lic a n ts  m a y  in d ic a te  an y  specific e th ica l issues re la t in g  to the  
a m e n d m e n t, on w h ich  th e  o p in io n  o f  the R E C  is sought.

List o f enclosed documents

D ocum ent Version Date

P articipant info rm ation  Sheet v3 23.11.12

P re p a ra tio n  o f  a c e llu la r  h u m a n  p la sm a v2 09.11.12

P ro g ra m m e  o f  S tu d s
v2 09.11.12

R e c ru i tm e n t e m a il
v2 09.11 .12

S tu d y  flo w c h a rt
v2 16.11.12

R e c ru i tm e n t p o s te r
v2 16.11.12
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Declaration

• I confirm that the information in this form is accurate to the best of my knowledge and I take full 
responsibility for it.

• I consider that it would be reasonable for the proposed amendment to be implemented

Signature o f Principle! Investigator ......... ....................

Print name:  Samantha Ellam.....................

D ate  o f  submission:  1 6 .1 1 . 12 .....

Signature o f supervisor o f student project: ....................................». ».

Print name: „....Professor Gary Williamson....

Dote o f submission: ........ 1 6 .1 1 . 1 2 .............
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Please submit your form by email to J.M.Blaikie@leeds.ac.uk or if you are in tbe Faculty of Medicine and 

Health FMHUn!Ethics@lceds,ac,uk.
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Participant Information Sheet

JtoMTifr proisfl I'tlt

The effect o f chocolata on blood glucose concantration following oral Ingestion o f a glucose 
beverage.

You are being invited to take part in a research project. Before you decide it is Important for you to 
understand why the research is being done and what It will involve. Please take time to read the 
following information carefully and discuss it with others if you wish. Ask us if there is anything that 
is not clear or If you would like more information. Take time to decide whether or not you wish to 

take part.

What Is the Purpose of the project?

following consumption o f carbohydrate-rich food or sugary drinks there is a  rise in blood glucose 
concentration that usually reaches a peak after approximately 30 minutes. After this time the 
concentration of glucose declines until it returns to approximately the starting concentration, this 
usually occurs around 2 hours after eating or drinking. Different foods and beverages have different 
effects on blood glucose levels depending on how much carbohydrate is present and how quickly it 
is digested and absorbed. It is now widely recognised that eating foods which raise blood glucose 
levels gradually, rather than rapidly, has health benefits and may help control weight.

This research project will determine whether chocolate affects the absorption of glucose over a  2 
hour period following consumption of a  beverage containing 200 m l o f water and 25 g of glucose. 
Two conditions will be tested over 2 sessions:

1, 2 8  a  white chocolate + g lu co se  beverage

2 . 4 0  g dark chocolate ♦  g lu cose  beverage

UREC B h ic sk xm  vwstcn 11 (updttrt 17(01/12)
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Why have I been chosen?

The participant selection criteria are based upon the Following:

•  Healthy male or female

•  Aged 18 to 60 years

•  Normal body mass index (BMI) between 18.5 and 24.9 kg/m*

•  Non-smoker

•  No known gastrointestinal, metabolic or other chronic disease

•  Not pregnant or lactabng

•  Not taking prescribed medication or dietary supplements

It is up to you to decide whether or not to take part. If you do decide to take part you will be given 
this information sheet to keep (and be asked to sign a consent form) and you can still withdraw at 
any time without it affecting any benefits that you are entitled to in anyway. You do not have to 
give a  reason.

What will happen to me if I take part?

This is a  two phase study that will take place over two weeks; you will be required to  attend the 
School of Food Science and Nutrition twice, once per week on two separate weeks, for a  maximum 
of 3 hours per visit.

Before the study can begin you will be asked to read, complete and sign an informed consent form 
and pre-study questionnaire. All information provided on the pre-study questionnaire is confide itial 
and will only be used to determine suitability for participation in the study.

For three days prior to the study day you will be asked to eat a normal, nutritionally balanced diet 
avoiding alcohol and strenuous physical activity. You will also be asked not to eat foods or drinks 
containing chocolate or cocoa. On the evening before the study day,, you will be asked to eat a 
moderate meal then fast for 12 hours before arriving at your allocated time.

On the study day you will arrive at your allocated time and rest for 10 minutes before providing your 
first sample of blood. You will then be asked to eat a chocolate bar and drink a beverage, , 
containing 200 mL of water, 25 g of ’ 'C-D-glucose and 0.1 g of "C,-D glucose*;within 5 minutes. 
Further blood samples will be collected at 15, 30, 60, 90 and 120 minutes after finishing the 

beverage. At the end of the session you will be provided with a snack.

To be confirmed:

Up to 6 mL of blood will be collected at each time point using a cannula device that allows blood to 
be drawn without the use of a needle.

UREC Ethic« fcxm vefuon 1 i (updated 17/01/121
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Blood will be drawn from a  fingertip using a single-use disposable lancet. The area where the finger- 
prick is performed will initially be sterilised using an alcohol wipe, and allowed to dry. A minimum 
0.4 m l, maximum 0 .6  ml, of blood will b e  collected i n to  a  m ic ro c o lle c t io n  tu b e  a t  e a c h  t im e -p o in t .

•This is a naturally occurring stable isotope-containing form of glucose. It is used in this study due to 
its low natural abundance which allows distinction between the glucose added to and consumed in 
the beverage, and any that may be naturally present in the chocolate.

What are the possible disadvantages and risks of taking part?

There are no additional risks involved as the procedures are according to standard guidelines. Due 
to the short duration o f the study and the consumption of normal food, the risk o f non-routine 
medication being required by a volunteer whilst the study is in progress is very low. This occurrence 
will be dealt with on a case-by-case basis at the discretion o f the volunteer, and recorded by the 
study co-ordinator should the volunteer decide to participate, and be deemed suitable to continue. 
Any adverse effects observed will be treated in the sam e way, with emphasis on the choice of the 
volunteer whether or not to continue with the study. A decision by any volunteer to discontinue 
their involvement In the study shall not Interfere in any way with the manner In which the volunteer 
Is treated by the study co-ordinator. All data will be used even from subjects who withdraw 
(provided that the volunteer consents to this).

What are the possible benefits of taking part?

You may not personally benefit from participating in the study, but results may be used for the 
advancement of knowledge and the future benefit of other individuals.

Will mv taking part in this project be kept confidential?

The result of the data obtained will be reported in a collected manner with no reference to a specific 
individual. Hence, the data from each individual will remain confidential. As a subject only you have 

the right to  know the results o f the total analysis.

i
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What type of information will be sought from mg and why is the collection of this information 
relevant for achieving the research project's objectives?

Data on your general health and blood plasma samples will be collected in the study.

What will happen to the results o f the research project?

Once all participants have completed the study, the information obtained will need to be collected 
and analysed before any results are published. This is likely to take at least one year to be finalised. 
If you would also like to know the results of the study, the research team will be able to give this 
information to you when it becomes available. You will not be identified in any report or 

publication.

Who is organising and funding the research?

This study is organised by Professor Gary Williamson, Food Biochemistry Group, School of Food 
Science and Nutrition, University of Leeds, UK. The research is funded by a  BBSRC industrial case 
award to Nestlé PTC, York, UK.

Who do I contact for further information?

Samantha Ellam, Study Co-ordinator 
School o f Food Science and Nutrition 
Faculty of Mathematics and Physical Sciences 
University of teeds 
Email: fs07sleifflleeds.ac.uk 
Mobile: 07843 171548

Thank you for taking the time to  lead  this information sh e e t

UREC Etries torm w rite«  11 (updu«417W1/12I
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Informed Consgrrt Form

Research protect lit le The effect of cocoa powder on blood glucose concentration following an oral
glucose tolerance test

Name of researcher Samantha Ellam

In itia l the box i f  you agree with the statement to the left

1 1 confirm that I have read and understand the Participant Information Sheet (dated TBC) 
explaining the above research project and I have had the opportunity to ask questions about 
the project.

2 1 understand that my paitic^ttion is voluntary and that I am free to withdraw at any time 
without giving any reason and without there being any negative consequences, in addiuon, 
should 1 not wish to answer any particular question or questions, I am free to decline. (You 
can contact the study co-ordinator by email fs07slctfIccds ac uk or mobile: 07843 
171548.)

3 I understand that my responses will be kept strictly confidential I give permission for 
members of the research team to have access to my anonymised responses I understand 
that my name will not be linked with the research materials, and I will not be identified or 
idenufiahle in tte report or reports that result from the research

4 I agree for the data collected from me to be used m future research

5 1 agree to take part in the above research project and will inform the principal investigator
should my contact details change

6 1 agree to be recontacted for future research projects related to this study

Name of participant Dale Signalize

Name of person taking consent Dale Signature

Lead Researcher Dale Signature

UREC Ethics term version 11 (updated I7 ff1 fl2 )
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Pre-study Questionnaire

Full name

Age; __ Height. Weight

Contact phone no :

F.mail address:

Please circle or tick the appropriate answer.

Q1 What is your gender'’

Mate Female

Q2 Do you smoke’’

Yes No

Q3 Have you been diagnosed with any of the following0

Diabetes Yes No

Pre-diaheles (also known as impaired fasting 
glucose, impaired glucose tolerance)

Yes No

Digestive disease (e g Crohn's disease, celiac 
disease)

Yes No

Sugar intolerance (sucrose, glucose, fructose) Yes No

Food allergy (trace amounts of nuts and gluten may 
be present in the cocoa powder)

Yes No

Hypertension Yes ‘ No

Q4 Are you currently taking any prescribed medication'’

Yes No

Q5. Do you regularly take any dietary supplements

Yes No

Q6 Are you pregnant or Isolating0

Yes No

UREC Ethic* form version 11 (updated 17/01/12)
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Q7 What is your ethnic background'1

D White -  British D Asian or Asian British -  Bangladeshi

□ White -  Irish □ Chinese

□ White -  Scottish □ Other Asian background

□ Irish traveller 0 Mixed -  White and Black Caribbean

D Other white background □ Mixed -  White and Black African

□ Black or Black British -  Caribbean □ Mixed -  White and Black Asian

□ Black or Black British -  African □ Other Mixed background

□ Other Black background □ Other Ethnic background

□ .Asian or Asian British -  Indian □ Prefer not to state

□ Asian or Asian British -  Pakistani
-ft « -
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Pre-study dipt

For 3 days prior to the study day you will be required to  maintain a nutritionally balanced diet 

containing at least 150 g of carbohydrate per day. Below is some Information regarding what a 

nutritionally balanced diet Is, followed by a list of carbohydrate-nch foods and some examples of 
how m uch to consume throughout the day to achieve the required intake.

T h h  h  th e  'e a t w e l  p la te *. I t  show s th e  

d iffe re n t types  of fo o d  w e  n eed  a n d  th e  

p ro p o rtio n s  in  w h ic h  th e y  shou ld  be  

consum ed.

For m o re  in fo rm a tio n , v is it: 

h t tp : / /w w w .n h s .u k /l iv e w e ll /g o o d fo o d

As you can see carbohydrate-rich (starchy) foods should make up approximately one third of your 
daily diet. These foods include bread, rice, potatoes, pasta, oats and breakfast cereals; the table 

below shows average carbohydrate content based on m edium portion sizes.

F o o d P o rtion  s u e C arbohydrate'

B re a d 2 m ed iu m  s l ic e s  (7 2  g ) 32 g

R ic e , b o ile d 180 g 57  g

P o ta to es

O v en  ch ips 165 g 30  g

C n s p s 1 b a g ( 3 0  g ) 1 5 g

B a le d 2 0 0  g
, , „ „ . 1, ... . .'-/li nil-mi. I.-1I -------- n - i  mi ..I. . .  nr. | J

63 g
L________ __________ _____

B o ile d 175 g 30 g

Sp a gh e tti, c o o le d 2 3 0  g 5 1 g

B re a k fa s t  ce rea ls

P o m d g e  o a ts 160 g 106 g

W eetab ix 2 b isc u a ts (3 8  g ) [ » g

C o m H a k e s 3 0  g 2 6 g

Food Standards Agency (1995) Manual of Nutrition Tenth Edition, UK: The Stationery Office

So, If you eat 2 slices of bread and a bowl of cornflakes for breakfast; a baked potato for lunch and 

spaghetti Bolognese for dinner you would consume approximately 170 g of carbohydrate.

Fruit and 
vegetables

M ilk  and
da iry foods

Maat, fish, 
eggs, baans

and other non-dairy 
sources of protein

Food and d rinks 
h igh  In fat and/or sugar

Bread, lice, 
potatoes, pasta

•nd  other starchy foods

U R E C  E th ic s  torm ve rs io n  11 (updated 17X51/12)
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Plasma collection form 

To b« completed by the study co-ordinator

Subject ID code

Test condition

Time point

Collection time

Total »ample volume (m l)

Comment»

UREC Ethics torm version 11 (updated 17/01/12)
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Preparation of acellular human plasm«

Equipment

0.6 m l Sodium fluoride tubes 
1.5 m l centrifuge tubes 
Tube labels

Protocol

1. Collect 0.4-0.6 m l of vrfiole blood into a labelled medical grade PET tube containing 

sodium fluoride (required for inhibition of glycolysis). Immediately place on ice.

2. Within 15 minutes, centrifuge the whole blood sample for 10 minutes at 3000 x g.

3. Using a non-sterile tip, pipette 0.05 mL of supernatant and transfer to a labelled 1 5 

mL centrifuge tube. Several aliquots may be prepared.

4. Seal and freeze upright at S  -20 'C  until required for analysis.

labellina

Blood collection tubes and centrifuge tubes will be labelled as follows:

•  Subject ID code

•  Study code, comprised of:

o  Test condition identification (C1.C2,) 

o  Timepoint (0 ,15, 30 ,60, 90, 120)

•  Date

•  Investigator initials

UREC Etmc« form wrvan I t  <updtf«d 17At/1?)
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Recruitment «mall

Subject: Invitation to eat chocolate...

Main text:

As part of a PhD research project, healthy male and female adults aged 18 to 60 years are invited to 
take part in this pilot study. You will be required to attend 2 sessions over 2 weeks and provide 
blood samples over a 2 hour period at each session. There will be a  12 hour fasting period overnight 
before each session and a snack will be provided at the end of each session.

Volunteers will be asked to follow a nutritionally balanced diet for 3 days prior to each session and 
to avoid alcohol and strenuous physical activity during that time.

The aim of this pilot study is to  determine whether absorption of glucose into the blood is affected 
by consumption of dark chocolate.

For more Information please contact Samantha Ellam by email: fs07sleifflleeds.ac.uk or mobile: 
07843 171548.

This study Is organised by Professor Gary Williamson, Food Biochemistry Group, School of Food 
Science and Nutrition, University o f Leeds.

Participation is entirely voluntary and you are free to withdraw at any time without providing a 
reason. All information that is collected during the study is anonymous and kept strictly confidential.

Thank you for your time.

Samantha Ellam
PhD Research Student
School of Food Science and Nutrition
University of Leeds

UREC Ethics form version 11 (updated 17/01/12>
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8.2 International Conference on Polyphenols and Health 

2009: Cocoa polyphenols inhibit sucrose hydrolysis in
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Cocoa polyphenols inhibit sucrose hydrolysis 
in Caco-2 cells
School of Food Science and Nutrition University of Leeds

Introduction
■ Dietary sucrose is hydrolysed in the small intestine by 

; sucrose alpha-glucosidase (EC 3 2 1 48)

¡ • Liberated glucose is primarily transported across the 
epithelium by a process of secondary active transport 
involving the sodium-dependent glucose transporter SGLT1

• During periods of elevated blood glucose passive diffusion 
| of glucose across the apical membrane is additionally
facilitated by the sugar transporter GLUT2

• Rising blood glucose stimulates the release of insulin from 
pancreatic beta cells

• Insulin binds with receptors on the basolateral surface of 
skeletal muscle cells consequently promoting the uptake of

j glucose via the sugar transporter GLUT4

• Attenuation of glucose liberation and transport from the 
intestinal lumen may reduce post-prandial blood glucose 
concentration thereby reducing glycémie load

Methodology
• Caco-2 cells were seeded into 6-well Transwell® plates at a 
density of 282,000 cells per well

• 21 days post-seeding cells were ready for experiment:

| /  Confluent

■ f Polarised 

v  Differentiated

j V Presence of tight junctions

| • Cells were incubated with 20 mM sucrose plus test 
: compound or exlract (pH 7.4) for 20 minutes at 37°C, 5% C 02

| • Solid phase extraction of each sample was performed to 
remove polyphenols

• The concentration of glucose in each sample was measured 
using the glucose oxidase/peroxidase assay

Results and Discussion

Figure 1 i  ineweaver Bur* plot of the mean rate of tucroM hydrotyns (n ■  3) 
m the Caco-2 cell model The maximum rate of reaction (V ^,) and Michael»' 
Men ten constant (K J calculated from the linear regression equation is given

3 00 

2 50 

-, 2 00 

1  150

^  100 -j

>  0 50 

000 

•0 50
1 0 0 ,M 100 jiM 03 nM 4 mg mL ’ 

Catechm Epícatectun ProcyamOtn Cocos
82 extract

Figure 2 The effect of cocoa extract and cocoa polyphenols on the rate of 
sucrose hydrolysis in the Caco-2 cell model

Conclusion and Future Work
• Preliminary results suggest that cocoa extract substantially 
inhibits the rate of sucrose hydrolysis In Caco-2 cells

• 100 ,iM (-)-Epicatechin demonstrated the greatest inhibition 
(45%) followed by 83 pM Procyanidin B2 (32%) and 100 pM 
(v)-Catechin (23%)

• Future work will include determining

-  The kinetic inhibition parameters of sucrose hydrolysis 
using the Caco-2 cell model

-  The effect of cocoa polyphenols on glucose transpod 
across the Caco-2 cell monolayer

UNIVERSITY O F LEEDS
T h i s  project i s  funded by a B B S R C  in d u stria l case award to N estlé , Yo rk U K
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44 Abstract:

45 Cocoa is a dry powdered non-fat component product prepared from the

46 seeds of the Theobroma cacao L. tree and a common ingredient of many

47 food products, especially chocolate. Nutritionally cocoa contains biologically

48 active substances which may affect human health: flavonoids (epicatechin

49 and oligomeric procyanidins), theobromine and magnesium. Theobromine

50 and epicatechin are absorbed efficiently in the small intestine, and the nature

51 of the conjugates and metabolites are now known. Oligomeric procyanidins

52 are poorly absorbed in the small intestine, but catabolites are very efficiently

53 absorbed after microbial biotransformation in the colon. There have now

54 been a significant number of studies on the effects of cocoa and its

55 constituent flavonoids, using in vitro and in vivo approaches. Most human

56 intervention studies have been performed on cocoa as an ingredient,

57 whereas many in vitro studies have been performed on individual

58 components. ~70 human intervention studies have been carried out on

59 cocoa and cocoa-containing products over the last 12 years with a variety of

60 endpoints. These studies indicate that the most robust biomarkers affected

61 remain as endothelial function, blood pressure and cholesterol level.

62 Mechanistically, there is supporting evidence to show that epicatechin

63 affects, amongst other targets, nitric oxide synthesis (eNOS), breakdown

64 (via inhibition of NADPH oxidase) and the substrate arginine (via inhibition of

65 arginase). The evidence further supports cocoa as a biologically-active

66 ingredient with potential benefits on biomarkers related to cardiovascular .

67 . disease. However, when present in chocolate, consideration should always

68 be given to the calorie and sugar content in the total diet.

69
4
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70 INTRODUCTION

71

72 Cocoa is a dry powdered non-fat component product manufactured from

73 seeds of the Theobroma cacao L. tree, and is the ingredient considered in

74 this review. Cocoa liquor also contains cocoa butter (~55%) and is the

75 material used in chocolate confectionery manufacture along with other

76 ingredients such as sugar, emulsifier, milk protein, etc. depending on the

77 desired product. The production of cocoa liquor begins with cleaning the

78 seeds followed by a fermentation stage during which the chemical

79 composition of the bean is altered. After drying, the beans are roasted either

80 before or after shelling (winnowing), a fundamental part of the process that

81 affects the flavour characteristics and nutrient profile of the final product (1).

82 The shelled bean, known as the nib, is then ground to a paste, which causes

83 melting of the fat and formation of the cocoa liquor. The liquor may then be

84 treated with an alkali solution, termed ‘Dutching’, to increase the pH and

85 improve palatability. Similar to the roasting process, the alkalising step

86 affects the chemical composition of the cocoa liquor such that both stages in

87 processing may be refined and strictly controlled to develop a product with a

88 specific chemical profile (2). Being a roasted natural product, cocoa is a

89 complex material. The primary components impacting on health are currently

90 considered to be the naturally-occurring or process-derived flavonoids,

91 theobromine, and magnesium. The ingredients added to make chocolate,

92 sugar and cocoa butter, will not be discussed here.

93

94 In Europe, consumers prefer milk chocolate but dark chocolate is almost as

popular (3). In the US, milk chocolate is also the most popular, although the
5

95
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96 majority of US confectionery consumption (~87 %) is not as pure chocolate

97 but rather enrobed with nuts, wafer, fruit, etc (4). Cocoa taken as a beverage

98 is also popular in some countries like Spain and this should also be taken

99 into account when surveying intake of chocolate and cocoa products.

100 Nutritionally, chocolate generates vehement debate in popular articles, and
t

101 opinions on the internet can be found that cover the whole range from

102 glorification of the benefits to emphasis on the evils of consumption! News

103 articles can be found claiming that “chocolate should be taxed to control

104 obesity" and at the other end of the scale that “chocolate may help keep you

105 slim”. The 2008/2009 UK National Dietary Nutrition Survey (5) reported that

106 adults were consuming an average of 21 g of chocolate confectionery per

107 day and the 2010 Family Food survey (6) reported an average contribution

108 to energy intake from confectionery (including chocolate) of 4% per person

109 per day. In 2010 confectionery as a whole contributed 15% of the total non- 

no milk extrinsic sugars consumed per person per day from household

111 purchases and 13% from foods purchased outside the home (6); the current

112 UK reference nutrient intake recommends that non-milk extrinsic sugars

113 should not provide more than 11 % of the daily energy intake (7). A recent

114 report (8) demonstrated that whilst economies globally have been in

115 recession, the chocolate market has remained stable; in fact its retail market

116 value has risen marginally each year since 2007 and is predicted to continue

117 growing at a rate of 2% per year over the next 5 years. The majority of the

118 global market is held by Western Europe (32%) followed by North America

119 . (20%), Asia (17%), Latin America (13%), Eastern Europe (12%), Middle East

120 and Africa (4%) and Australasia (2%), with large growth predicted in the

121 smaller markets over the coming years.
6
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123 There have now been several hundred human intervention studies on

124 flavonoids and flavonoid-rich foods, reviewed in many publications (3;9-12).

125 The role of flavonoid-rich foods on health has further been supported by

126 many epidemiological studies including meta-analyses comprising large total

127 numbers of volunteers (13). These studies infer a general and fairly

128 consistent protection by flavonoids against heart disease and biomarkers of

129 cardiovascular risk, while the evidence for protection against cancer is

130 weaker. This review will focus on recent work on the effect of cocoa,

131 including cocoa flavonoids, on biomarkers related to cardiovascular health.

132 Previously studies have shown that cocoa may improve cardiovascular

133 health by improving flow mediated dilation, a marker of endothelial function,

134 decreasing the susceptibility of LDL to oxidation, inhibiting platelet

135 aggregation and activation, and decreasing levels of F2-isoprostanes (3).

136 Recent meta-analyses on human intervention studies associated dark

137 chocolate with a reduction in systolic hypertension or diastolic pre-

138 hypertension (14) and both chocolate and cocoa with improvements in flow

139 mediated dilation (15).

140

141 BIOLOGICALLY ACTIVE COMPONENTS OF COCOA

142

143 Flavonoids

144

145 Cocoa beans contain a high amount of flavonoids, a member of the broader

146 polyphenol class. The main constituents are flavan-3-ols (Figure 1 ), present

147 as monomeric (-)-epicatechin and (+)-catechin, together with type-B
7
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148 proanthocyanidins, formed from monomeric flavanols by oxidative coupling

149 between the C-4 of the heterocyclic ring and the C-6 or C-8 positions of the

150 adjacent unit to create oligomers and polymers. Procyanidins in cocoa

151 include the B2 and B5 dimers and the C1 trimer, together with high levels of

152 longer chain polymers comprising four or more monomeric units (16; 17).

153 Flavan-3-ols are lost during fermentation, treatment with alkali and roasting

154 (18) so that the total flavan-3-ol content of commercial cocoa varies by >10-

155 fold (19). Processing can also result in some epimerisation of (-)-epicatechin

156 to form (-)-catechin (20;21).

157

158 Theobrom ine

159

160 Theobromine (Figure 2) is a 3,7-dimethylated xanthine alkaloid that is also

161 formed during caffeine metabolism. It is most commonly consumed in the

162 human diet from chocolate and cocoa but is also present in tea. Especially

163 high levels are present in cocoa, about 2.5% of dry weight, whereas caffeine

164 is - 1 0-fold lower (~0.24%) (22). Theobromine is not degraded during cocoa

165 processing and can be used as a marker of cocoa content (21). The effect of

166 theobromine on arteriosclerotic pain was reported as far back as 1926 (23).

167 The more recent focus on cocoa flavonoids has meant that theobromine is

168 often not considered as a component responsible for an observed activity,

169 but its high bioavailability and potential biological activities mean that it

170 should not be ignored in cocoa intervention studies.

171

172 M agnesium

173

8



247

174 According to the USDA National Nutrient Database, magnesium is found at

175 significant levels in cocoa (2-4 mg/g dry powder). Although dependent on the

176 type of chocolate, this means that a 40 g portion of 70%-cocoa dark

177 chocolate would contain «40 mg of magnesium, enough to make a modest

178 -10% contribution to the recommended daily allowance (300-400 mg

179 magnesium /day in adults) (24). Magnesium is an essential co-factor in

180 many hundreds of enzyme-catalysed reactions in vivo, and is essential for

181 maintenance of blood pressure, neuronal transmission and muscular

182 contraction. Deficiency has been linked to the metabolic syndrome, insulin

183 resistance and diabetes (24).

184

185 BIOAVAILABILITY OF INTACT FLAVONOIDS FROM COCOA

186

187 After consumption of food, any biologically active component must survive in

188 the digestive tract and be absorbed and metabolised in a form which

189 reaches and influences the target tissue, 'n the mouth, procyanidins bind to

190 salivary proteins, the degree of binding influenced strongly by the inter-

191 flavan-3-ol linkage and the chemical nature of the structural monomeric units

192 rather than size of the oligomers (25;26). In vivo, flavanols are stable in the

193 stomach (27), and reach the small intestine intact. The jejunal pH can reach

194 8.5, where flavanols are expected to be unstable, but epicatechin and

195 procyanidins appear to remain largely unaffected in the small intestinal

196 lumen, dependent on the food matrix, presumably due to the stabilising

197 influence of protein and other food constituents (28;29). Flavanols may also

198 be stabilised by the presence of fat in the intestinal lumen (30). Epicatechin

is absorbed in the small intestine and after consumption of dark chocolate,
9
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200 conjugation produces (-)-epicatechin-3'-0-(3-D-glucuronide, (-)-epicatechin

201 3-O-sulfate, and 3'-0-methyl epicatechin sulfates (substituted in the 4', 5,

202 and 7 positions) in the plasma with a time of maximal concentration in the

203 blood of at 3-4 h (31). Epicatechin is subsequently excreted in urine with a

204 similar, but not identical, profile of conjugates and urinary data show that a
*

205 minimum of 20% of the epicatechin dose from cocoa is absorbed (31),

206 apparently higher than the dose of epicatechin absorbed from green tea

207 (32). The food matrix affects the rate and extent of absorption (33). Studies

208 on rats have indicated that flavan-3-ol monomer conjugates may be

209 transferred from the blood stream to the liver and subsequently returned to

210 the small intestine via bile (34;35). Regarding the oligomers, intact

211 procyanidin dimer B2 is poorly absorbed intact both in humans and animals

212 (36-38), and has only been detected at very low levels in human urine after

213 consumption of cocoa (39). Individual human intervention studies on

214 absorption and metabolism have been reviewed in detail (10;33).

215

216 METABOLISM AND ABSORPTION OF PHENOLICS AFTER MICROBIAL

217 CATABOLISM

218

219 There is now compelling evidence that the microbiota play a major role in the

220 metabolism of flavanols which reach the colon i.e. the proportion which are

221 not absorbed in the small intestine. After cocoa consumption by humans, 3-

222 (3'-hydroxyphenylpropionic acid, 3'-hydroxy-phenylacetic acid, 3',4'-

223 dihydroxy-phenylacetic acid, 3-hydroxybenzoic acid, ferulic acid, 5-(3',4'-

224 dihydroxy-phenyl)-y-valerolactone (5) and 5-(3'-methoxy-4'-hydroxyphenyl)-

10
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225 y-valerolactone were excreted in urine, peaking between 9 and 48 h,

226 indicative of microbial catabolism (39;40). These microbial metabolites

227 constitute about 80% of the dose of radiolabelled procyanidin B2 in rats, as

228 judged by urinary appearance and a late Tmax (41), even though the intact

229 parent compound is almost absent from plasma and urine. The broad range

230 of metabolites produced by the microbiota has been shown using in vitro

231 incubations and analysis of the intermediate and final products, where

232 catabolism favoured removal of the 4' rather than the 3'-hydroxyl group,

233 along with both p-oxidation and a-oxidation and some scission of the

234 interflavan bond (42;43). Metabolism of radiolabelled procyanidin polymers

235 (average dp ~6 ) by human colonic microflora in vitro showed that they were

236 almost totally degraded after 48 h. The main metabolites detected were

237 similar to those described above found in urine (44). Some patterns in the

238 appearance of gut microbiota metabolites are apparent depending on the

239 class of parent polyphenol, and in general after consumption of

240 procyanidins, the flavan-3-ols are mainly converted to CeC2 and C6C3-

241 dihydro forms partly via C6-C5 intermediates, the latter being unique to

242 flavan-3-ols (45).

243

244 BIOAVAILABILITY OF THEOBROMINE

245

246 Theobromine is absorbed extensively in the small intestine and the

247 metabolic pathway is quite well understood. The main metabolite is 7-

248 methylxanthine which accounts for up to 30% of the dose, 3-methylxanthine

249 accounting for ~20% and 7-methyluric acid for ~4% of the dose (46). 3,7-

dimethyluric acid and 6-amino-5-(N-methyl-formylamino)-1-methyluracil are
11
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251 also present in urine following consumption of cocoa powder (47-49).

252 Unmodified theobromine is also found in urine and a small amount in feces

253 (<1.5% of the ingested dose) (49). The half-life of theobromine in plasma

254 was 7.2 h when consumed in the form of a gelatine capsule (50) and 10 h

255 when ingested from an aqueous solution (49). The maximum plasma
*

256 concentration of theobromine from chocolate is reached approximately 2 h

257 post-ingestion suggesting that it is entirely absorbed in the small intestine

258 (49). Although the mechanism for absorption through the intestinal

259 epithelium has not been described exactly, based on in vitro absorption of

260 caffeine using Caco-2cells (51), it can be surmised that theobromine

261 similarly diffuses passively through the enterocytes into the hepatic

262 circulation.

264 The mechanisms by which theobromine is demethylated and oxidized to

265 methyluric acid involve hepatic cytochrome P450 enzymes with specific

266 involvement of the monooxygenase (EC 1.14.14.1) isoforms CYP1A2 and

267 CYP2E1 (52-54). The primary metabolite, 7-methylxanthine, is a product of

268 both enzyme isoforms. CYP2E1 appears to be the least specific as it also

269 catalyses the formation of 3-methylxanthine and 3,7-dimethyluric acid (55).

270 Whilst the 3-methylxanthine isomer may undergo limited further metabolism

271 to 3-methyluric acid (-1 % of dose) (53), 7-methylxanthine is the main

272 substrate from theobromine catabolism for xanthine oxidase (EC 1.17.3.2)

273 which catalyses the oxidation of carbon-8 to form 7-methyluric acid. The .

274 bioavailability of theobromine and high levels in cocoa mean that levels will

275 reach micromolar levels in plasma after consumption of modest amounts of

276 cocoa.
12
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277

278 EFFECTS OF COCOA IN HUMAN INTERVENTION STUDIES

279

280 The 28 human intervention studies on the effect of cocoa between 2000 and

281 2007 have been reviewed (3). The main outcomes were improved

282 endothelial function, decreased susceptibility of LDL to oxidation, inhibition

283 of platelet aggregation and activation, and decreased levels of F2-

284 isoprostanes. Since then, there have been numerous reviews regarding the

285 role of cocoa in specific health issues, in addition to a small number of

286 epidemiological studies. Since 2007, the majority of published work in

287 human and non-human intervention trials focused on the effect of cocoa

288 products, or individual chemical components of cocoa, on risk of

289 cardiovascular disease as estimated using surrogate biomarkers. Discussion

290 in this section predominantly considers the literature pertaining to

291 cardiovascular disease but is inclusive of other areas of study, with all

292 human intervention trials conducted since 2007 summarised in Table 1. Of

293 these studies,, 15 have measured changes in parameters related to

294 endothelial function, either flow mediated dilation, angiotensin converting

295 enzyme activity or nitric oxide/nitrite levels. Blood pressure changed in 9 of

296 the studies and cholesterol levels were affected in 13 studies. Oxidative

297 parameters, such as F2-isoprostanes and susceptibility of LDL to oxidation,

298 were changed in 9 of the studies. Other parameters reported to be affected

299 by cocoa intervention were glucose/insulin levels (5 studies), platelet

300 function (5 studies), brain blood flow and cognitive function (4 studies),

301 inflammation (2 studies) and skin (2 studies). Six of the studies used

exercise in some form as a variable in at least one of the study arms. These
13
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303 studies indicate that the largest changes measured remain as endothelial

304 function, blood pressure and cholesterol levels. However, variations in study

305 time, from a single dose up to 3 months intervention, and in the type of

306 cocoa given, make rigorous interpretation difficult. It is interesting to note

307 that positive changes in flow mediated dilation may be greatest when cocoa

308 is administered in the absence of sugar (56).

309 '

310 Epidemiological evidence

311

312 In the last few years, several epidemiological studies have reported on the

313 effects of cocoa intake in various population groups. Elderly male

314 participants in the Zutphen Elderly Study had lower cardiovascular mortality

315 when correlated with long-term cocoa intake (57). The risk of death from

316 stroke, coronary heart disease and cardiovascular disease amongst

317 participants of the Iowa Women’s Health Study was lower in women who

318 consumed chocolate relative to those who consumed no chocolate (58).

319 Similarly data taken from the United States National Heart, Lung and Blood

320 Institute Family Heart Study (59) suggests that compared with no intake,

321 participants with a greater frequency of chocolate intake have reduced

322 coronary heart disease prevalence, the lowest found for consumers of 5 or

323 more servings per week. In contrast, a study of women participating in the

324 Swedish Mammography Cohort (60) demonstrated that the beneficial effect

325 of chocolate consumption on risk of heart failure was reversed as intake

326 exceeded 2 servings per week. It is relevant to note at this point that exact

327 serving size is not stated in the aforementioned studies, although the

328 authors of the Swedish investigation do suggest an average portion size
14
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329 somewhere between 19 and 30 g. There was an inverse association

330 between chocolate consumption up to 7.5 g per day and risk of

331 cardiovascular disease among German adults participating in the European

332 Prospective Investigation into Cancer (61). In the latter study and that of the

333 Iowa Women’s Health Study, the association appeared most compelling for

334 stroke. Evaluation of data taken from The Stockholm Heart Epidemiology

335 Program (62) of individuals who have experienced a first acute myocardial

336 infarction show that the risk of cardiac mortality was lowest in those who

337 consumed a 50 g portion of chocolate at least twice per week, and the risk of

338 a non-fatal stroke was shown to be lowest in those consuming up to one

339 portion per week.

340

341 From these epidemiological studies it can be inferred that the consumption

342 of 50-100 g per week of chocolate may reduce the risk of cardiovascular

343 disease, in particular stroke. What is not established in any of these

344 investigations is the type of chocolate consumed i.e. dark, milk or white, and

345 the possible addition of other ingredients such as fruit or nuts, important

346 factors in the overall analysis of the evidence, in addition to total diet and

347 numerous other cardiovascular disease risk factors. Dark chocolate typically

348 contains more non-fat cocoa solids than milk chocolate, while white

349 chocolate contains none. As the percentage of non-fat cocoa solids content

350 increases, the percentage content of sugar decreases. Further, milk and

351 white chocolate also contain milk powder that is not present in dark

352 chocolate. A case in point is demonstrated in a study (63) where the lipid

353 profile and inflammation biomarker concentration was improved following

consumption of a cocoa product with the addition of hazelnuts, phytosterols
15
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355 and soluble fibre. However, the cocoa product without added ingredients had

356 no significant effect.

357

358 Some epidemiologists have investigated more specific interactions by

359 focusing on particular components of cocoa rather than the product per se.

360 As with the majority of all evidence discussed in this review, the

361 overwhelming theme is flavonoids and in particular the flavan-3-ol and

362 proanthocyanidin sub-classes of polyphenols, although other components

363 could conceivably have complementary, antagonistic or synergistic effects.

364 An evaluation of incident hypertension, biomarkers of inflammation and

365 endothelial dysfunction in relation to flavonoid intake of participants in the

366 Nurses’ Health Study I and II, and the Health Professionals Follow-Up Study

367 (64;65), did not find any relationship with flavan-3-ol or proanthocyanidin

368 intake. However, at the highest daily intake of catechin and epicatechin, the

369 primary flavan-3-ol constituents of cocoa, a significantly lower risk of incident

370 hypertension was found. In contrast, a recent study (66) demonstrated a

371 significant reduction in the risk of cardiovascular disease with increased

372 intake of flavan-3-ols and proanthocyanidins although this attenuation was

373 not linear and, similar to other evidence from epidemiological studies,

374 reversed in the highest intake groups.

375

376

377

378 M echanism s of biological effects

379

380 E n d o th e lia l ce ll dysfunction
1 6
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381

382 Endothelial cell dysfunction represents a risk factor for cardiovascular

383 disease and as such has been widely studied in vivo and in vitro (67). Many

384 of the human intervention trials discussed here involve quantification of

385 products secreted by the endothelium such as nitric oxide, or expression of

386 inflammatory response proteins such as interleukin-6 (IL-6). For example,

387 nitric oxide (NO) production by platelets isolated from healthy subjects was

388 increased following 3 weeks daily consumption of dark chocolate (68). At

389 least half of the studies listed in Table 1 reported improvements in

390 parameters related to endothelial function. Generally these are biomarkers

391 related to NO metabolism, including flow mediated dilation, angiotensin

392 converting enzyme activity or nitric oxide/nitrite levels. Mostly favourable

393 changes in blood pressure were reported in 9 of the studies. This marker is

394 especially important since average decrease in diastolic blood pressure in a

395 population of 1 mmHg is enough to reduce the incidence of coronary heart

396 disease events by 5% and of stroke by 7% in persons aged 50-69 y with a

397 systemic (high) blood pressure of 150 mm Hg and a diastolic blood pressure

398 of 90 mm Hg (69). Although an association between a sharp increase in

399 cardiovascular disease (CVD) mortality and blood pressure (BP) was made

400 very early, newer studies have introduced the notion of “background"

401 hypertension (pre-hypertension) and support the idea that pre-hypertension

402 increases the rate of cardiovascular disease only when accompanied with

403 other risk factors, the age having a major impact.

404

405 Systolic blood pressure in spontaneously hypertensive rats was reduced,

considered to be a consequence of increased nitric oxide production,
17
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407

408

409
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416

417

418

419

420

421

422
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427

428

429

430

431

432

following an acute dose of CocoanOX; the effect was prevented in the 

presence of an endothelial nitric oxide synthase (eNOS) inhibitor (70). The 

same authors investigated the long-term effect of CocoanOX 

supplementation and observed attenuated development of hypertension in 

spontaneously hypertensive rats with the effect being greatest in animals 

given the lowest dose (71). In another study, spontaneously hypertensive 

rats whose diets were supplemented with soluble cocoa fibre exhibited lower 

systolic and diastolic blood pressure during the treatment period. Throughout 

a 4 week post-treatment period when the test diet had been discontinued, 

systolic blood pressure increased equivalent to control and diastolic blood 

pressure increased beyond that of control animals (72).

Spontaneously hypertensive rats administered 200 and 400 mg kg'1 body 

weight doses of CocoanoX exhibited higher plasma angiotensin converting 

enzyme activity at the end of the intervention period, and plasma 

concentration of angiotensin II was also raised. The latter remained elevated 

after the treatment ended. The same study measured relaxation of pre

contracted intact aorta rings extracted from control animals induced by 

incubation with CocoanOX. Relaxation was reduced in the presence of Nw- 

nitro-L-arginine methyl ester but not indomethacin implying that dilation was 

a result of eNOS activity rather than prostaglandin-l synthase (73). Similar 

effects were reported using pre-contracted renal arteries isolated from wild- 

type and atherosclerotic mice (74). Catechin treatment in wild-type mice .. 

during months 9 to 12 improved dilation, at 12 months compared with the 

untreated group; however this effect was not replicated in atherosclerotic

mice. Incubation with NG-nitro L-arginine attenuated dilation in untreated
■ 18

■M*



257

433 wild-type mice but animals exposed to 3 months catechin treatment were

434 unaffected, suggesting that eNOS was not inhibited in catechin treated cells

435 or that addition of indomethacin to the incubation did not further affect this

436 result.

437

438 In vitro studies using human umbilical vein endothelial cells (HUVEC) are

439 widely used as a model to study endothelial function. On incubation of

440 HUVEC cells with (-)-up to 1 pM epicatechin for 2 h, nitrite, as an indirect

441 marker of the intracellular nitric oxide level, increased significantly (75).

442 Similarly the greatest augmentation of nitric oxide produced by human

443 coronary artery endothelial cells followed a 10 min incubation with 1 pM (-)-

444 epicatechin (76). Following a 24 h incubation with (-)-epicatechin, there was

445 no significant change in endothelial nitric oxide synthase (eNOS) mRNA

446 expression nor any variation in its stability (75). It is hypothesized that

447 increased production of nitric oxide is attributable to an interaction with the

448 phosphatidylinositol 3-kinase pathway which is involved in controlling

449 phosphorylation of the activation residues Seri 177 and Ser633. Treatment

450 of human coronary artery endothelial cells with epicatechin increased

451 phosphorylation of these serine residues and reduced phosphorylation of

452 Thr495. In addition, epicatechin treatment appeared to induce activation of

453 eNOS through uncoupling from caveolin-1 (Figure 3). The latter binds to the

454 cytosolic side of the cell membrane in its inactive form, and binding with

455 calmodulin stimulates solubilisation of the active form, mediated via

456 interaction with phospholipase C. Whilst these conditions were dependent

457 on the presence of calcium, epicatechin is able to stimulate NO production

induced by phosphorylation of serine residues and activation of eNOS
19
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459 without uncoupling from caveolin-1 in calcium-free conditions (77). Similarly

460 enhanced phosphorylation of non-specific serine/threonine protein kinase

461 (Akt), an enzyme involved in the phosphatidylinositol 3-kinase pathway, was

462 measured in mice subjected to ischemia-reperfusion injury following 10 d of

463 supplementation with 1 mg kg'1 body weight (-)-epicatechin; infarct size was
*

464 reduced. Co-supplementation with the opioid antagonists naloxone or

465 naltrindole eliminated the effect on Akt phosphorylation and infarct size. The

466 results suggest that the protection conveyed by epicatechin was dependent

467 on interaction with opioid receptors in the heart (78). Endothelium secretion

468 of endothelin-1 is associated with vascular constriction and therefore

469 increased concentration has negative cardiovascular consequences. Bovine

470 aortic endothelial cells treated with a procyanidin-rich extract of cocoa

471 produced less endothelin-1 than control cells; the response was dose-

472 dependent (79). Procyanidin-rich extracts of other fruits elicited similar

473 results and the trimer to pentamer fractions of a cranberry extract were

474 shown to down-regulate expression of endothelin-1 mRNA and up-regulate

475 Kruppel-like factor 2 mRNA, a transcription factor that mediates the

476 synthesis of endothelin-1. There was a similar reduction in endothelin-1

477 synthesis in HUVEC treated with a procyanidin-rich fraction of apple (80).
s '-

478 Epicatechin also inhibits NADPH oxidase (81) and arginase activity (82),

479 leading to elevated intracellular NO levels (Figure 4).

480

481 An elevated nitric oxide concentration in vivo is generally regarded as

482 beneficial due to its vasodilating properties and inhibition of platelet

483 aggregation. It is possible that reported increases in flow-mediated dilation

484 and reduction of blood pressure following cocoa consumption (see Table 1)
20
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485 are due to an increase in the production of nitric oxide stimulated by

486 epicatechin. Therefore, chronic intake may have a long-term protective

487 effect against cardiovascular disease via these mechanisms.

488

489 In flam m ation

490

491 Inflammation is a complex process and several biomarkers are used to

492 identify chronic inflammation in humans. Although multiple biomarkers are

493 now recommended to assess cardiovascular disease risk, a higher C-

494 reactive protein concentration is associated with a higher risk of coronary

495 heart disease (83-86). In a cohort of healthy Italian adult participants in the

496 Moli-sani Project, consumers of less than 3 x 20 g servings per week of dark

497 chocolate had lower plasma concentrations of C-reactive protein (87), but,

498 as observed in other studies, this effect was negated in those consuming 3

499 or more servings per week. The overall effect, as assessed from human

500 intervention trials published since 2007 in which serum C-reactive protein

501 concentration was quantified following chronic cocoa supplementation, is

502 inconclusive. In healthy subjects, significant reductions in C-reactive protein

503 following intervention were seen (88;89), whereas in subjects suffering from

504 hypertension, hypercholesterolemia or type-2 diabetes, no significant

505 changes were observed (90-92). In comparison, a study of diabetic mice,

506 where diets were supplemented with epicatechin, reported significantly lower

507 C-reactive protein levels compared with control diabetic mice (93). Although

508 serum C-reactive protein concentration is indicative of cardiovascular

509 disease, it is yet to be determined whether a high serum concentration

510 contributes to the development of disease or whether it is a consequence of
21
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511 the disease. So at this point the level of intake of cocoa products or

512 individual components, and whether any ability to lower C-reactive protein

513 levels improves prognosis in patients or reduces risk in a healthy population,

514 is yet to be evaluated.

515
*

516 O xidative  s tress  a n d  dys iip idem ia

517

518 Oxidative stress is a broad term covering many aspects related to

519 generation of reactive oxygen species, with both chemical and biological

520 consequences. In a biological sense, the term must be carefully defined and

521 several biomarkers have been used to indicate a general oxidative stress in

522 vivo (94;95). Dyslipidemia constitutes a major risk factor for cardiovascular

523 disease that has prompted an abundance of investigations, not least in

524 relation to cocoa consumption. Many of the intervention trials listed in Table

525 1 have reported increased HDL cholesterol levels and improved total

526 cholesterol/HDL cholesterol ratio following dietary cocoa intervention

527

528 Animal models have also supported the association. When fed to rats, a

529 cocoa fiber product protected against the effects of a high cholesterol diet,

530 namely total-, LDL and HDL-cholesterol and serum malondialdehyde (96;97)

531 and a similar effect was seen with 0.5 or 1.0% cocoa procyanidins (98). In

532 the Zucker rat model of obesity and metabolic syndrome, 5% soluble cocoa

533 fibre diet reduced plasma malondialdehyde and increased adiponectin (99).

534 The 5% soluble cocoa fibre diet also reduced malondialdehyde plasma

535 concentration in spontaneously hypertensive rats (72). A similar reduction in

536 plasma malondialdehyde concentration was observed when spontaneously
22
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537 hypertensive rats were treated with 100, 200 and 4C0 mg kg'1 body weight

538 doses of CocoanOX, while the effect was reversed by the end of a 4 week

539 post-treatment period (73). Obese-diabetic rats fed a diet supplemented with

540 cocoa extract for 4 weeks demonstrated improved levels of plasma total

541 cholesterol, plasma triglycerides and LDL cholesterol. There were no

542 significant changes in plasma HDL cholesterol concentration (100). Similar

543 improvements were observed in diabetic mice treated with epicatechin for 15

544 weeks together with enhanced longevity. Compared with non-treated

545 diabetic mice, insulin-like growth factor-1, C-reactive protein, interleukin-1 p

546 and glutathione were either returned to control levels or reduced significantly

547 (93). Daily oral supplementation of rats with 1 mg kg'1 body weight

548 epicatechin for 10 d prior to ischemia-reperfusion injury reduced infarct size

549 and oxidized glutathione/reduced glutathione ratio (GSSH/GSH) at 48 h

550 post-injury. Infarct size remained significantly smaller at 3 weeks post-injury

551 (101). A further study by the same authors performed on animals exposed to

552 permanent coronary occlusion (POC) yielded very similar results of infarct

553 size (102).

554

555 Cognitive function

. 556

557 Of the studies shown in Table 1, four have shown an improvement in some

558 biomarkers of cognitive function including cerebral blood flow, lowered

559 fatigue and increased processing of tasks (103-106). The changes are

560 modest but significant, and the mechanism may be related to vasodilation

561 and increased blood flow to the brain and nervous system.

562
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563 Conclusions

564

565 Cardiovascular diseases are responsible for more deaths globally than any

566 other cause (107) and are the focus of much research, not least in relation to

567 cocoa. The main target of such research has been to identify associations
*

568 between intake and disease, and to discover mechanisms by which onset of

569 disease can be delayed or prevented, or where treatment of cardiovascular

570 events can be facilitated. Many of the human intervention studies described

571 in Table 1 have involved intervention treatments that have demonstrated .

572 improvements in markers of disease risk factors such as total/HDL

573 cholesterol ratio and flow-mediated dilation. Nitric oxide synthesis is

574 possibly the most investigated endothelial function in relation to cocoa over

575 the last 5 years with many authors reporting increases jn NO concentration

576 of plasma. The predominant mechanistic hypothesis is that cocoa, especially

577 epicatechin, stimulates eNOS activity, inhibits arginase and inhibits NADPH

578 oxidase, leading to lower levels of superoxide and hence higher levels of

579 NO. Although this is not the only mechanism involved, a substantial increase

580 in NO synthesis may account for flow-mediated dilation and lower blood

581 pressure following intervention treatments.

582

583 Future prospects

584 Despite a substantial number of human studies which consolidated the

585 effects on endothelial function, blood pressure and cholesterol, the advances

586 in the last 5 years have been incremental and supportive, rather than

587 revolutionary. While important, there are other aspects that need addressing

588 in the future. One of the most important is the assessment of long term
24
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589 nutritional doses as compared to high dose acute studies, and the relative

590 benefits of each. There are no easy ways to measure chronic effects, and

591 usually epidemiological studies have been used to fill this gap. Controlling

592 the diet of human in the long term is almost impossible, and novel strategies

593 need to be devised to test chronic effects. An important fact is that most

594 cocoa consumption worldwide is as chocolate, which also contains

595 additional calories, and these should be taken into account in any

596 intervention studies. Most of the recommendations made previously are still

597 relevant (3), especially the design of a relevant “edible” placebo (especially

598 important for chronic studies, and milk chocolate is not a real control for dark

599 chocolate owing to the milk content) and the need to publish the results of

600 studies where cocoa does not give a measured effect. (3)

601 
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613 A cronym s and definitions:

614

615 “Polyphenol(s)” is used as a collective term for phenolic acids, flavonolds,

616 isoflavones and tannins. Hence polyphenols strictly should be written as

617 (poly)phenols, since phenolic acids are (mono)phenols, flavonoids and
is

618 isoflavones are (di)phenols (the C ring is not a true phenolic ring) and

619 tannins are (poly)phenols. Flavonoids consists of several classes, of which

620 the flavanols (also called flavan-3-ols, and including their oligomers, the

621 proanthocyanidins), flavonols, anthocyanins, flavanones and flavones are

622 the most abundant in the diet.

623 Epicatechin is the main flavanol in cocoa and there are many reports on

624 this flavonoid. It has anomeric carbons at positions 2 and 3, making 4

625 possible structures: (-)-epicatechin and (+)-catechin, which occur naturally

626 in plants, and (—)-catechin and (+)-epicatechin, which occur in foods owing

627 to isomerization during processing. Each form is absorbed to different

628 extents (108), supporting the concept of active processes involved in

629 absorption and metabolism. In this review, where the “(—)-epicatechin" form

630 is specified in the paper, then this notation is used. If the form is not

631 specified, then "epicatechin” is used.

632 Cocoa is a dry powdered non-fat component product manufactured from

633 cocoa beans. The full cocoa bean is used to make cocoa liquor, containing

634 the constituent cocoa butter (—55%), and is used to make chocolate after

635 addition of other ingredients such as sugar, emulsifier, milk protein, etc. .

636 CocoanOX is a commercially available polyphenol-rich cocoa powder which

637 has been used in several experimental intervention studies.

638
26



Intervention Control Study design Outcomes Ref.
Cu deficient patients 
supplemented with 
10-40 g cocoa 
powder per day until 
improvement 
observed

None Serum trace metal 
concentration monitored s 
24 months post-enteral 
tube insertion in 23 
patients (78.8 ± 10.4 years)

f  serum [Cu] and neu trophil count (109)

One cup of espresso 
coffee and 30 g DC 
(separate occasions)

None 50 term pregnant women 
without complicated 
gestation (31.8 ± 5.05 
years)

1 fetal HR accelerations and 
variability

(110)

15 g pp-rich DC per 
day for 8 weeks

15 g macronutrient 
matched low-pp 
chocolate (3.9 mg 
ECE g>)

Double-blind, randomised 
cross-over; 10 subjects 
diagnosed with CFS (6 
females, 4 males) (52 ± 8 
years)

Improved symptoms of CFS (111)

HF beverage Macronutrient- 
matched LF 
beverage

Cross-over; 10 healthy 
females (18-65 years)

|  cutaneous blood flow (112)

265



20 g HF chocolate 
per day for 12 weeks

20 g LF chocolate 
(<30 mg flavanols)

Double-blind, randomised; 
30 healthy subjects (22 
females, 8 males) (42.7 ± 
10 years)

t  minimal erythema dose (113)

37 g DC and 237 mL 
cocoa beverage per 
day for 6 weeks

Low-pp bar and 
beverage
containing 0.20 mg 
g 1 and 40.87 mg 
g_1 total
proanthocyanidins,
respectively

Double-blind, randomised; 
101 healthy subjects (60 
females, 41 males) (>60 
years)

t  pulse rate at midpoint and end-of- 
treatment

(114)

Flavanol-rich cocoa 
beverage per day for 
1 week >

Flavanol-poor 
cocoa beverage 
(36 mg flavanols 
per day)

Double-blind, randomised; 
21 healthy subjects (10 
females, 11 males) (72.2 ± 
6 years)

f  cerebral blood flow in response to 
acute dose of cocoa beverage

(106)

Cocoa beverage 
containing either 520 
mg or 994 mg cocoa 
flavanols

Macronutrient- 
matched cocoa 
beverage/46 mg 
cocoa flavanols

Double-blind, cross-over; 
30 healthy subjects (17 
females, 13 males) (21.9 ± 
SE 0.61 years)

Improved cognitive performance 
and reduced mental fatigue

(105)

35 g DC 35 g white 
chocolate

Cross-over; 30 subjects 
(22 females, 8 males) (18- 
25 years)

Improved contrast sensitivity, 
motion integration threshold, visual 
spatial working memory, and 
reaction time

(104)
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20 g chocolate 
beverage containing 
MF or HF content per 
day for 30 days

20 g chocolate 
beverage LF 
content

Double-blind, randomised; 
63 subjects (52.30 ± 7.49 
years)

t  posterior parietal activity, synaptic 
excitation and neural information 
processing speed

(103)

Mashed potato 
powder (1 g kg1 BW) 
with cocoa butter (1 g 
kg-1 BW)

Mashed potato 
powder (1 g kg1 
BW) supplemented 
with olive oil (1 g kg- 
1 BW)

Randomised, cross-over; 10 
healthy females (38.2 ± 10.7 
years)

Plasma [TAG] and [IL-6] were altered 
(no significant difference between the 
meals)

(115)

Cocoa beverage twice 
per day for 12 weeks

Cocoa-free
beverage

Randomised; 25 healthy 
males (38 ± SE 1 years)

j. LDL susceptibility to oxidation and 
urinary [dityrosine]; f  HDL cholesterol

(116)

Low-, medium-, or 
high-pp cocoa 
beverage twice per 
day for 4 weeks

Nutrient matched 
beverage (trace 
amounts of cocoa 
PP)

Double-blind; 160normo- 
and mildly
hypercholesterolemic 
subjects (91 females, 69 
males) (20-70 years)

j, [Apo B] in MCP and HCP groups; j, 
oxidised LDL (kU L 1 plasma) in all 
groups

(117)

40 g DC Macronutrient 
matched, flavonoid- 
free chocolate

Double-Wind, randomised, 
22 heart transplant 
recipients (4 females, 18 
males)

f  Coronary artery diameter and % 
change of endothelial-dependent 
vasomotion; j  [8-iso-PGF2a] and 
platelet adherence

(118)
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22 g DC
supplemented with 
1.1 g canola sterol 
esters twice per day 
for 4 weeks

Macro- and 
micronutrient 
matched DC 
without the addition 
of plant sterols

Double-blind, cross-over;
49 subjects (32 females, 17 
males) (24-70 years) with 
elevated cholesterol (5.20- 
7.28 m m olL'1)

l  Serum total- and LDL cholesterol; 
l  SBPand DBP (combined 
intervention and control results)

(119)

MF or HF beverage Macro- and 
micronutrient 
matched LF 
beverage

\!

Double-blind, randomised, 
cross-over; 10 type-2 
diabetic subjects (2 
females, 8 males) (64.7 ± 
9.9 years)

f  FMD (120)

Flavanol containing 
beverage 3 times per 
day for 30 days

Macro- and 
micronutrient 
matched LF 
beverage

Double-blind, randomised; 
41 type-2 diabetic subjects 
(29 females, 12 males) 
(intervention, 63.1 ± 8.3 
years; control, 64.4 ± 8.6 
years)

T FMD (120)
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HF beverage twice 
per day for 12 weeks 
with and without 45 
min physical activity 
3 days per week

Macro- and 
micronutrient 
matched LF 
beverage with and 
without physical 
activity

Double-blind, randomised; 
49 overweight and obese 
subjects (32 females, 17 
males) (40-50 years)

t  FMD (combined exercise and non
exercise results); |  insulin 
resistance, DBP and MAP (flavanol 
treatment nested in time)

(121)

Phase 1: Acute 
consumption of 74 g 
DC

Phase 2: 2 cups of 
either sugar- 
containing cocoa 
beverage or sugar- 
free cocoa beverage

Phase 1: 74 g
cocoa-free
chocolate

Phase 2: 2 cups of 
sugar-containing 
cocoa-free 
beverage

Single-blind, randomised, 
cross-over; 45 healthy 
subjects (35 females, 10 
males) (52.8 ± 11.0 years)

t FMD; J.SBP and DBP; greatest 
FMD improvement following sugar- 
free cocoa beverage.

(56)

100 g flavanol-rich 
DC per day for 15 
days

100 g flavanoFfree 
white chocolate per 
day

Double-blind, cross-over, 
19 hypertensive, 
prediabetic subjects (8 
females, 11 males) (44.8 ± 
8.0 years)

|  Insulin resistance and |  insulin 
sensitivity; j  clinical SBP and DBP, 
and ambulatory BP; t  FMD and | 
serum total- and LDL cholesterol

(90)

100 g DC per day for 
1 week

None 28 healthy subjects (19 
females, 9 males) (42 ± 12 
years)

i  platelet activated GP llb/llla 
expression; j  LDL cholesterol; f 
HDL cholesterol. J C-reactive 
protein (females only)

(89)
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Cocoa beverage 
twice per day for 2 
weeks

Macro- and 
micronutrient 
matched LF 
beverage

Double-blind, randomised, 
cross-over; 20 
hypertensive subjects (12 
females, 8 males) (51 ± SE 
1.5 years)

t  insulin-stimulated brachial artery 
diameter

(122)

20 g cocoa powder in 
250 mL skimmed milk 
twice per day for 4 
weeks

250 mL skimmed 
milk without cocoa 
powder

Randomised, cross-over; 
42 high-risk of CVD 
subjects (23 females, 19 
males) (69.7 ±11.5 years)

t  HDL cholesterol; j  expression of 
adhesion molecules on the surface 
of monocytes and concentration of 
circulating soluble adhesion 
molecules

(123;
124)

HF cocoa beverage 
followed by 10 min 
cycling

Macronutrient 
matched LF cocoa 
beverage followed 
by cycling

Double-blind, randomised, 
cross-over; 21 healthy 
overweight/obese subjects 
(8 females, 13 males) (54.9 
± SE 2.2 years)

t  FMD; l  AUC for DBP and MAP in 
response to exercise

(125)

Cocoa beverage 
containing 33, 372, 
712, or 1052 mg total 
flavanols per day for 
6 weeks

None Double-blind, randomised; 
52 mildly hypertensive 
subjects (20 females, 32 
males) (42-74 years)

|  24 h ambulatory MAP, SBP and 
DBP (1052 mg); j, Overnight 
ambulatory SBP, DBP and HR

(126)
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6 g or 25 g DC per 
day for 3 months

None Single-blind, randomised; 
91 cardiovascular high-risk 
patients (20 females, 71 
males) (57-74 years)

l  24 h, day- and night-time MAP, 
SBP and DBP (6 g); i  24 h and 
daytime MAP and SBP (25 g)

(127)

HF cocoa beverage 
twice per day for 30 
days

Nutrient matched 
LF cocoa beverage

Double-blind, randomised, 
cross-over; 16 coronary 
artery disease (CAD) 
patients (3 females, 13 
males) (64 ± 3 years)

t  FMD (both conditions), FMD post
intervention was higher than post
control; t  % of CACs; |  plasma 
[nitrite]; |  SBP

(128)

15 g DC 3 times per 
day for 8 weeks

Macronutrient 
matched cocoa 
solids-free 
chocolate

Double-blind, randomised, 
cross-over; 12 type-2 
diabetic subjects (5 
females, 7 males) (42-71 
years)

t  Serum [HDL cholesterol]; ]. total 
cholesterol:HDLcholesterol ratio

(92)

Dairy based cocoa 
beverage containing 
either natural-dose 
(NTC) or high-dose 
(TEC) theobromine 
once per day for 3 
weeks

Unspecified dairy 
based placebo 
beverage

Double-blind, randomised, 
cross-over; 42 pre-/stage 1 
hypertensive, healthy 
subjects (10 females, 32 
males) (62 ± 4.5 years)

T 24 h DBP (NTC); 1 24 h SBP, 
daytime DBP, 24 h, day- and night
time HR (TEC); j  central SBP, HR 
and stroke volume (TEC)

(129)
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Dairy-based high-fat 
liquid meal plus HF 
cocoa powder

Macronutrient 
matched dairy- 
based high-fat liquid 
meal containing LF 
cocoa powder

Double-blind, randomised, 
cross-over; 18 healthy 
subjects (16 females, 2 
males) (25.2 ± 2 .5 years)

f  serum [triglycerides] and [free fatty 
acids] (both conditions); J. FMD (both 
conditions, higher following 
intervention)

(130)

40 g DC twice per day 
for 2 weeks followed 
by 1.5 h cycling

30.4 g bar of sugar- 
and fat-matched 
cocoa liquor-free 
chocolate followed 
by cycling

Single-blind, randomised; 20 
healthy males (22 ± 4  years)

|  Plasma [F^isoprostane] post
exercise (both conditions, lower 
following intervention); i  oxidised LDL 
pre- and post-exercise

(131)

40  g DC 40 g milk chocolate Single-blind, randomised, 
cross-over; 20 healthy 
subjects (13 females, 7 
males) (33 ± 11 years) and 
20 smokers (13 females, 7 
males) (33 ±1 1  years)

i  Serum sNOx2-dp, urinary 
isoprostane excretion and platelet 
ROS, sNOx2-dp and 8-iso-PGF2a 
(healthy subjects); t  FMD, serum 
[NOx] and platelet NOx production 
(smokers); ] serum sNOx2-dp, urinary 
isoprostane excretion and platelet 
ROS, sNOx2-dp and 8-iso-PGF2a 
(smokers)

(132)
(133)

Cocoa beverage 
containing either 2 ,5 , 
13 o r2 6 g ofcocoa

Macronutrient 
matched beverage 
without cocoa 
powder

Double-blind, randomised; 
23 healthy subjects (14 
females, 9 males) (63 ± SE 
2 years)

Dose-dependent greater change in 
FMD (5 ,1 3  and 26 g); T SBP (2 and 
26 g); t  DBP (2 ,1 3  and 26 g); t  MAP 
(2 ,1 3  and 26 g); |  [glucose] (0 ,2  and 

5g)

(134)
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Sugar-free cocoa 
beverage ora sugar- 
sweetened cocoa 
beverage twice per 
day for 6 weeks

Cocoa-free sugar-
sweetened
beverage

Double-blind, randomised, 
cross-over; 39 overweight, 
healthy subjects (33 
females, 6 males) (41-63 
years)

t  FMD (both conditions) (135)

75 g DC None 16 healthy subjects (6 
females, 10 males) (20-45 
years)

|  Angiotensin-converting enzyme 
activity

(136)

13.5g flavonoid- 
enriched chocolate 
twice per day for 1 
year

Macronutrient 
matched placebo 
chocolate

Double-blind, randomised; 
93 postmenopausal, type-2 
diabetic patients (51-74 
years)

l  Plasma [insulin] and insulin 
resistance; |  insulin sensitivity; i  
[LDL cholesterol]; i  CHD risk (both 
conditions, less following 
intervention)

(137)

100g DC followed by 
2.5 h of cycling

Macronutrient 
matched cocoa 
solids-free bar (71 
g) followed by 
cycling

Single-blind, randomised, 
cross-over, 14 healthy male 
subjects (22 ± 1 years)

t  Plasma total antioxidant status 
(both conditions); f  [insulin] pre
exercise and 1 h post-exercise; |  
plasma [glucose] post-exercise (both 
conditions)

(138)

100 g high- 
antioxidant dark 
chocolate (HADC) or 
100 g DC

None Double-blind, randomised, 
cross-over, 15 healthy 
subjects (9 females, 6 
males) (30 ± 5 years)

f  Plasma FRAP (both interventions); 
HADC FRAP remained higher at 4 
and 5 h; |  urinary HADC FRAP up to 
12 h; t  [triacylglyceroO (both 
interventions); f  [thiol] at 2- and 4 h 
(both interventions)

(139)
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50 g DC per day for 3 
weeks

None 50 healthy subjects (25 
females, 25 males) (28-45 
years)

t  [HDL cholesterol] and [triglyceride] 
and |  LDL cholesterol (females 
only); |  lipid peroxidation, 
conjugated diene and hydroperoxide 
content of HDL and LDL; f  platelet 
production of NO; j  peroxynitrite

(68)

(B) cocoa+hazelnuts,
(C)
cocoa+haze!nuts+ 
phytosterols, (D) 
cocoa+hazelnuts+phy 
tosterols+soluble 
fibre daily, 4 weeks

(A) Cocoa

■'i

Double-blind, randomised; 
113 pre/stage-1 
hypertensive and 
hypercholesterolemic 
subjects (67 females, 46 
males) (43-65 years)

|  [Total-] and [LDL cholesterol] and 
[Apo B] and Apo B:Apo A ratio (C) 
and (D); j, hsCRP and oxidised LDL 
(D)

(63)

DC and cocoa 
beverage once per 
day for 3 months

None 5 type-2 diabetic patients 
with stage II and III heart 
failure (47-71 years)

Î  [HDL cholesterol]; enhanced 
expression of mitochondrial structure 
markers in skeletal muscle

(140)
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Table 1. Summary of intervention studies on cocoa between 2007 and 2012. 

Only outcomes with a statistical significance of a maximum p<0.05 are 

reported. Mean ± SD unless otherwise stated.

Abbreviations used in the table: increase; |  decrease; DC, dark chocolate; 

HR, heart rate; pp. Polyphenol; CFS, chronic fatigue syndrome; HF, high 

flavanol; LF, lowflavanol; MF, medium flavanol; BW, body weight; TAG, 

triacylglycerol; IL-6, interleukin 6; LDL, low-density lipoprotein; HDL, high- 

density lipoprotein; Apo B, apolipoprotein B; 8-iso-PGF2a, 8-iso

prostaglandin F2a; SBP, systolic blood pressure; DBP, diastolic blood 

pressure; FMD, flow mediated dilation; MAP, mean arterial pressure; GP, 

glycoprotein; CVD, cardiovascular disease; AUC, area under curve; CACs, 

circulating angiogenic cells; sNOx2-dp, soluble NOx2 derived peptide; ROS, 

reactive oxygen species; FRAP, ferric reducing ability of plasma; NO, nitric 

oxide.
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Figure legends

Figure 1 : Chemical structures of cocoa flavanols

Figure 2: Metabolic pathways of theobromine in humans

Figure 3: General mechanism by which NO affect vasodilation

Figure 4: Possible mechanisms by which epicatechin affects nitric oxide 

levels.
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Figure 1
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Abstract

18 We have investigated the inhibition of glucose transporters SGLT1 and GLUT 2 by

19 polyphenol-rich herbal supplement using the well-characterized Caco-2 intestinal model.

20 Glucose absorption under sodium dependent and sodium-free conditions was decreased by

21 54% and 35% respectively in the presence of the water soluble components from the herbal

22 supplement. Using sodium-dependent and sodium-free mechanistic studies, we demonstrate

23 that the inhibition of GLUT2 was greater than SGLT1. Glycosidase and esterase enzymatic

24 hydrolysis was used to assess the impact of human metabolism on the efficacy of activity.

25 Glucose transport across the membrane was reduced by 70% compared to the control and

26 the enhance inhibition was associated with significant increases in flavonoid aglycones,

27 caffeic acid and p-coumaric acid. These results suggest that intact and metabolized

28 polyphenols, likely to be found in the lumen after ingestion of the supplement, play an

29 important role in the attenuation of glucose absorption and may have potentially beneficial

30 anti-glycemic effects in the body.

31

3



302

Introduction

32 Over the past two decades the prevalence of diabetes has risen dramatically, and is

33 estimated to effect 347 million people globally [1]. Type 2 diabetes is the most common

34 form, which can develop following prolonged periods of elevated blood glucose

35 (hyperglycemia); and is a recognized risk factor for metabolic syndrome [2]. Lifestyle

36 modifications including increased fruit and vegetable consumption, weight loss and lowered

37 blood glucose may prevent or delay disease development [3,4].

38 Promising evidence is emerging concerning the use of certain herbs, botanicals and trace

39 elements for the control of blood glucose [5,6]. Currently there is insufficient evidence to

40 draw conclusions on the efficacy of herbal remedies, but beneficial effects on several risk

41 factors have been observed for chromium and Gymnema sylvestre (gymnema) [7],

42 cinnamon [8], green coffee [9] and grape seed [10] in controlled-trials. The mechanism of

43 action is currently unclear, but there is growing evidence that secondary plant metabolites,

44 known as polyphenols, can modulate carbohydrate metabolism [11]. th e  in  v itro  anti-

45 diabetic properties o f a number of extracts have been attributed to polyphenols [12-15],

46 mainly cinnamates, glycosides, procyanidins and flavonol derivatives. Modulation of such

47 metabolic markers by natural botanicals may be beneficial to the treatment or prevention of

48 type 2 diabetes.

49 Previous cell culture studies using plant materials have demonstrated that some

50 polyphenols can attenuate intestinal glucose absorption and potentially “blunt” post-prandial

51 glucose spikes by inhibition of active uptake via sodium-dependent glucose transporter 1

52 (SGLT1) and facilitated transport by sodium-independent transporter 2 (GLUT2) [16,17].

53 However, very few have addressed the issue of identification and efficacy of the in  v iv o  gut

54 lumen metabolites despite established knowledge that following ingestion, polyphenols

55 undergo metabolism by the intestinal p-glycosidase, LPH [18]. Growing evidence suggests

56 that the major forms present in the body are de-glycosylated and metabolized derivatives of

4
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57 the parent aglycones [19,20], which have altered biological activities [21]. Attenuation of

58 glucose transport across the small intestine by polyphenols and their metabolites may be a

59 potential mechanism of glycemic control. Such activity may, in part, explain previous

60 observations of lowered blood glucose concentrations and delayed glucose absorption in

61 human studies [22,23] following consumption of polyphenol-rich foods.

62 The purpose of this study was to investigate the inhibitory potency of a botanical

63 supplement containing a broad spectrum of herbs and spices on glucose uptake by SGLT1

64 and GLUT2 transporters using a Caco-2 cell model of the small intestine. Consumption of

65 this botanical supplement can affect glucose absorption and may be useful for the

66 prevention or management of type 2 diabetes.

5
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Materials and Methods

67 Chemicals

68 All chemicals were purchased from Sigma-Aldrich (Dorset, UK) unless stated otherwise.

69 D-glucose and HEPES (N-(2-Hydroxyethyl)piperazine-N'-2-ethanesulfonic acid) were

70 purchased from Fisher Scientific (Loughborough, UK). Magnesium sulfate was purchased

71 from VWR International Ltd (Leicestershire, UK). Transwell polycarbonate inserts (6 well,

72 0.4 pm pore size), tissue culture flasks and filter system (500 ml, 0.2 pm nylon membrane)

73 were manufactured by Coming® and supplied by Sigma-Aldrich (Dorset, UK). D-[U-14C]-

74 glucose was purchased from Perkin Elmer (Cambridge, UK) and Exoscint XR scintillation

75 cocktail from National Diagnostic (Yorkshire, UK). Eagle’s Minimum Essential Medium

76 (EMEM, 1000 mg/ L glucose) was purchased from American Type Cell Culture (LGC

77 Promochem, Middlesex, UK). Herbal powders were supplied by NewChapter.com

78 (Vermount, USA).

79 Preparation of cell culture test solutions

80 The herbal supplement used in this study was composed of several herbs, spices and

81 botanicals and was prepared fresh on the day of use. Test solutions used in the sodium

82 dependent/ independent cell culture experiments were prepared as described. Herbal

83 powders equivalent to 1020 mg of extract were solubilized in DMSO and centrifuged at 17,

84 000 xg for 5 min. Supernatants were combined and an aliquot (81 pi) of the mixture was

85 diluted to 20 ml using transport buffer (pH 7.4) of the appropriate sodium content modified

86 1 mM glucose and combined with D-[U-14C] glucose (0.05 pCi/ ml).

87 For the preparation of the polyphenolic extracts with and without enzymatic hydrolysis,

88 an aliquot (81 pi) of the solubilized herbal supplement was combined with ascorbic acid

89 (1 mg/ ml) as a stabilizing agent and then diluted to 20 ml with warm (40 °C) buffer solution

90 (CHjCOOH, 0.2 M: CHjCOONa, 0.2 M, 90:10, v/v, pH 3.8) either with or without

6
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91 hesperidinase from Aspergillus niger (40 U/ L). All samples were incubated at 40 °C for 5 h

92 in a shaking water bath (Grant Aqua 12 Plus, Grant Instruments Ltd, Cambridgeshire, UK).

93 Afterwards, a liquid-liquid extraction procedure was performed by adding 20 ml of warm

94 ethyl acetate. Phases were mixed by vortex (10 min), followed by centrifugation at 4000 *g

95 (5 min) to allow separation and collection of upper ethyl acetate phase. These steps were

96 repeated twice more using 10 ml of ethyl acetate. The combined organic phases were dried

97 under nitrogen flow at 40 °C. The dried extracts were reconstituted with 50 pi DMSO,

98 sonicated (5 min) and vortexed to mix. Reconstituted solutions were then diluted to 20 ml

99 using transport buffer A (see below) modified with 1 mM glucose and D-[U-14C] glucose at

100 0.05 pCi/ ml.

101 In order to calculate the recovery efficacy of the extraction procedure, the above steps

102 were repeated in triplicate using samples that had been spiked with an internal standard,

103 dihydrocaffeic acid (0.01 mg/ ml), immediately before enzyme hydrolysis. Samples were

104 reconstituted in transport buffer A without D-[U-I4C] glucose.

105 Cell culture

106 The human colon adenocarinoma cell line, Caco-2 (IITB-37) was obtained from the

107 American Type Culture Collection at passage 25 (LGC Promochcm, Middlesex, UK).

108 Permeability studies utilized Caco-2 cells between passages 40 and 46. Caco-2 cells were

109 added to Transwell inserts (24 mm diameter, 4.67 cm2 growth area) at a density 6 x 104

110 cells/cm2 and cultured for 21 d at 37°C under a humidified atmosphere of 95% air: 5% C 02.

111 The culture medium, EMEM supplemented with 10% FBS, 1 OOU/ml pcnicillin-

112 streptomycin and 0.25 pg/ml amphotericin B was replaced every other day.

113 Glucose transport measurements

114 On or after 22 d, permeability studies were initiated by careful aspiration of the culture

115 medium from apical and basal compartments and 2 ml of transport buffer A (HEPES, 20

7
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116 mM; NaCl, 137 mM; KC1,4.7 mM; CaCl2, 1.8 mM; and MgS04, 1.2 mM; adjusted to pH

117 7.4 using NaOI I, 10 mM) was added to each compartment to carefully wash cells. After

118 washing, the solutions were removed and fresh transport buffer (A) was added into each

119 compartment. Plates were incubated at 37 °C in a humidified 5% C 02 atmosphere for 30

120 min to allow equilibration of tight junction integrity. Trans-epithelial electrical resistance

121 > (TEER) measurements were recorded using a Millicell ERS volt-ohm meter fitted with a

122 chopstick probe (Millipore Ltd, Watford, UK). Wells with a resistance above 250 Q, after

123 correction for membrane resistance, were used. Afterwards, the liquid was aspirated and

124 replaced with 2 ml of test solution (1 mM glucose and Z)-[U-,4C] glucose at 0.05 pCi/ ml

125 dissolved in transport buffer A with or without the herbal supplement, 0.4% DMSO) at pH

126 7.4; all basal solutions were in transport buffer A (pH 7.4). Plates were incubated at 37 °C in

127 a humidified 5% C 02 atmosphere for 25 min, the TEER measurements were repeated and

128 the solutions removed. Statistical analysis was performed on the final TEER for all test

129 conditions, and addition of herbal supplement had no effect on monolayer resistance

130 compared to respective controls (p >0.22). Apical and basal compartments were washed

131 twice with 1 ml of transport buffer to remove any residual D-[U-,4C] glucose from the cell

132 monolayer or compartment walls and the aliquots were collected. After this, 1 ml of NaOH

133 (1 mM) was added to the apical compartments and shaken for 30 min to lyse the cells. The

134 detached cells were then neutralized with 1 ml of HC1 (1 mM), mixed and the aliquots were

135 collected. Radiochemical detection of D-[U-14C] glucose was performed by combining 5 ml

136 of scintillation cocktail with 0.25 ml of the apical solutions or 0.5 ml of the basal solutions,

137 the apical and basal wash solutions and lysed cell solutions. All samples were analyzed

138 using a Parkard Liquid Scintillation Analyzer 1600TR. A cold sample of transport buffer

139 solution was used to determine background noise and all samples were corrected for the

140 count efficiency of the analyzer. .

141 To investigate the transport of glucose under sodium-free conditions, the experiments

142 above were repeated using transport buffer B; where the formulation of transport buffer A
8
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was modified so that sodium chloride was replaced by potassium chloride (137 mM) and 

adjusted to pH 7.4 using KC1 (10 mM).

To assess the inhibitory potential of the herbal supplement in the native and digested 

forms, the transport experiments described above were repeated using polyphenolic extracts 

prepared with and without enzymatic hydrolysis.

HPLC-DAD and MS analysis

Analysis of the aqueous polyphenol extracts, prepared with and without enzyme 

hydrolysis, was performed using the following HPLC-DAD-MS method. An aliquot (1 ml) 

of each extract was removed to a 2 ml tube and centrifuged at 17,000 *g for 5 min to 

remove particulate matter. A small volume (100 pi) was removed to an amber vial, spiked 

with internal standard and stored in the HPLC autosampler for analysis. A volume (5 pi) 

was injected on to a Rapid Resolution HPLC (1200 series Agilent Technologies, Berkshire, 

UK) with diode array (DAD). The methodology used was based on our previous work [24]. 

Chromatographic separation was achieved on an Eclipse plus Cl 8 column (30 °C, 2.1 mm x 

100 mm, 1.8 pm; Agilent Technologies) using a 75 min gradient of (A) premixed 5% 

acetonitrile in water (5:95, v/v) and (B) premixed 5% water in acetonitrile (5:95, v/v) both 

modified with 0.1% formic acid with a flow rate of 0.26 ml/min. Elution was initiated at 0% 

of solvent B and maintained for 17 min; the percentage of solvent B was then increased to 

35% over the next 43 min and immediately increased to 100% for 5 min before initial 

starting conditions were resumed for a 10 min column re-equilibration. After separation the 

analytes were quantified by DAD based on calibration curves for available standards 

including caffcic acid, 5-O-caffeoylquinic acid, cinnamaldchyde, p-coumaric acid, coumarin 

and dihydrocaffcic acid. Dicaffcoylquinic acid and fcruloylquinic acid were quantified 

based on 5-caffcoylquinic acid, data are expressed as mean ±SD (n =3). Calibration curves 

showed good linearity over the tested range; Pearson’s coefficients were significant at the 

1% level (R2 > 0.99). Caffeic acid was used to determine DAD analytical performance

9
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169 based on triplicate injections on the same day: the limit of quantification was 25 nM,

170 accuracy and precision were calculated at < 2% R.E. and R.S.D respectively.

171 Identification of analytes present in the extracts was confirmed by MS. In brief, after

172 separation the eluate was passed, without splitting, into an Agilent 6410 triple quadrupole

173 MS fitted with an electrospray ionization interface and the operation conditions are
I

174 described elsewhere [24], Samples were analyzed in full scan (100-1000 m/z) mode under

175 both negative and positive ionization conditions to identify the relevant molecular ions.

176 Then the identity of the compounds was then confirmed using multiple reaction monitoring

177 (MRM) mode by comparison of molecular ion and associated fragmentation pattern to

178 available standards. Quercetin and kaempferol could not be determined by DAD due to co-

179 elution interference. Thus these compounds were quantified in MRM mode based on

180 quercetin and kacmpferol reference standards using the response of the major product ion

181 achieved by fragmentation of the 301 and 285 negative molecular ions respectively.

182 Statistical analysis

183 Analysis of variance was used to confirm statistical difference in samples under different

184 experimental conditions and is a test of whether the means of two or more groups are equal.

185 Shilpro-Wilk and Levene’s test were performed to confirm the normality of the data and the

186 equality of variances respectively. The mean difference was statistically significant at the

187 5% level (PASW statistics. 17)

188

10
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Results

189 Inhibition of glucose transport under sodium dependent/ sodium-free conditions

190 The final concentration of the herbal supplement used in cell transport studies reflected

191 the estimated physiological concentration in the gut lumen following ingestion. In the

192 absence of the aqueous herbal supplement under sodium-dependent conditions, D-[U-UC]

193 glucose was taken up by the cells and transported into the basal chamber at a rate of 4.4

194 ±0.1 nmol/cm2 • min. It is expected that the uptake of glucose in the presence of sodium is

195 mediated by both SGLT1 and GLUT2 located at the apical surface and exported to the

196 serosal side via GLUT2 in the basal membrane. Addition of the herbal supplement

197 significantly (p< 0.001) decreased glucose transport to 45.6 ±3.8% of the control value (Fig.

198 1A), ~55% inhibition. In the absence of aqueous herbal supplement under sodium free

199 conditions, the rate of Z)-[U-14C] glucose transport was reduced to 3.3 ±0.1 nmol/cm2 • min

200 compared to sodium dependent conditions. In the absence of sodium, it is considered that

201 glucose transport is mediated solely by the GLUT2 transporters located at the apical and

202 basal membranes. Incubation of the Caco-2 cells with the herbal supplement under these

203 conditions lead to a significant (p< 0.001) decrease in glucose transport to the basal chamber

204 to 65 ±2.6% of the control value (Fig. 1 A), ~35% inhibition.

205 Under sodium dependent conditions, the supplement had no effect on the accumulation

206 of D-[U-14C] glucose by Caco-2 cells compared to control (Fig. 1B). In contrast, the

207 inhibition of glucose transport by the extract of the herbal supplement under sodium-free

208 conditions was associated with a significantly (p< 0.001) lowered accumulation of glucose

209 in the Caco-2 cells compared to control conditions (Fig. 1B).

210 Effect of de-conjugation on potency of glucose-transporter inhibition

211 Cell transport studies were performed under sodium dependent conditions using

212 polyphenol extracts prepared from the aqueous herbal supplement following a liquid-liquid

11
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213 extraction with or without an enzymatic de-conjugation step. Extraction efficiencies for

214 dihydrocaffeic acid show that 92 ±0.3% and 93 ±1.4% of the spiked amount was recovered

215 after extract with and without enzymatic de-conjugation respectively. The non-hydrolyzed

216 polyphenol extract efficiently reduced glucose transport to 50 ±1.5% of the control value,

217 which was comparable with the un-extracted herbal supplement. Interestingly, when the

218 hydrolyzed polyphenol extract was used, there was a larger and significant (p< 0.001)

219 decrease in the rate of glucose uptake to 29.3 ±2.1% of the control value (Fig. 2).

220 Polyphenol composition of herbal supplement

221 The herbal supplement used in the current study contained a combination of herbs, spices

222 and botanicals (Fig. 3). A liquid-liquid extraction was performed in the presence or absence

223 of glycosidase and esterase enzyme mixture and resulting polyphenol extracts were

224 analyzed by 11PLC-D AD-MS. A typical chromatogram of the polyphenol profile is shown

225 in Fig. 4A, for details of peak numbers refer to Table 1. The major components of the non-

226 hydrolyzed polyphenol extract appear to be chlorogenic acids and cinnamaldehyde.

227 Following enzymatic de-conjugation, the polyphenol profile is distinctly altered due to

228 liberation of free-aglycone forms (Fig. 4B). A statistically significant increase in response

229 was observed for several of the compounds including caffeic acid, p-coumaric acid,

230 quercetin and kacmpfcrol. The compounds were identified by comparison of the retention

231 time, UV spectra and the molecular ion produced by eicctrospray ionization relative to

232 available standards.

12
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Discussion

233 There is growing evidence for the in  v itro  interaction of polyphenols with transporters

234 [16,17,25] and enzymes [15,26,27] of importance to glucose absorption and metabolism.

235 These observations indicate that these compounds may have beneficial influence on

236 glycemic control, which is a known risk factor for the development cf type 2 diabetes. The

237 objective of this current study was to assess the capacity of a new herbal supplement to

238 reduce glucose transport across the small intestine, and demonstrate the mechanism of

239 action.

240 The data indicate that the combination of polyphenols from the herbs, spices and seeds in

241 the aqueous herbal supplement were able to decrease the transport of glucose by up to 54%

242 at concentrations predicted after ingestion of a normal dietary serving. Investigations with

243 and without sodium suggest that disruption of GLUT2 mediated uptake is the major apical

244 target for attenuation of glucose transport by Caco-2 cells. The predominant polyphenols

245 identified following HPLC-MS analysis were cinnamaldehyde and dicaffeoylquinic acids

246 derived from cinnamon and coffee beans respectively.

247 Evidence from clinical trials in humans have indicated that a daily high dose (> 3 g) of

248 cinnamon significantly lowered fasting blood glucose concentrations in type 2 diabetic

249 volunteers [28,29]. In other studies using a daily dose of 1 -1.5 g, these effects were not

250 observed [30-32]. The mechanism of action is unclear, but i n  v i t r o  and animal studies, using

251 levels of cinnamon achievable in the diet, suggest these effects may be attributed to

252 enhanced glucose storage by adipocyte cells [33,34], increased glucose conversion to

253 glycogen in the liver [35] and reduced carbohydrate digestion in the small intestine via

254 inhibition of a-glucosidase [15]. Similarly, dicaffeoylquinic acids have been highlighted as

255 the principal compounds responsible for the inhibition of glucose transporters by herbal

256 beverages in the small intestine [16], leading to reduced glucose absorption. These

13
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257 observations suggest that polyphenols found in cinnamon and coffee may improve insulin

258 sensitivity and reduce post-prandial glucose levels.

259 Enzymatic hydrolysis of the aqueous herbal supplement lead to significant increases in

260 the amounts of caffeic acid and p-coumaric acid. These compounds are likely to be released

261 from the caffeoylquinic acids present in the green coffee, resulting from esterase activity
- *

262 within the hespcridinase used in this study. Analysis of the hydrolysed supplement by

263 HPLC-MS also revealed small, yet significant, increases in the amounts of quercetin and

264 kaempfcrol, which were present in small amounts in the unhydrolysed supplement. Overall,

265 glucose uptake across the epithelial cells was reduced by 70% compared to the control.

266 These results sugges that the anti-diabetic activity may be enhanced following metabolism

267 in the intestinal lumen and indicates that the free-aglycones have greater potency to inhibit

268 or delay glucose uptake than their glycosylated forms. However, since the herbal

269 supplement used in our current study was unpurified, it is not possible assign these effects to

270 a specific componcnt(s).

271 Currently, literature evidence for the influence of polyphenols on glucose absorption

272 across Caco-2 cells is limited. Our data are in agreement with those investigating the *

273 inhibition of glucose transporters SGLT1 and GLUT2, by individual polyphenols derived

274 from fruit extracts [17]. The authors reported inhibitory activity of /j-coumaric acid at

275 concentrations in the range of 10 to 500 pM, which is comparable to the levels detected in

276 our current study. In a rodent model of type 2 diabetes, a moderate intake of caffeic acid

277 (approximately 40 mg/kg body weight) induced a reduction in blood glucose levels and

278 lowered glucose-6-phosphatase activity [36]. Interestingly glucose uptake was significantly

279 reduced by 10-100 pM quercetin but not rutin, the glycosidic form, in several transport

280 models mainly via interaction with GLUT2 [25,37]. In contrast to our results, some studies

281 using individual hydroxycinnamic acids including caffeic acid, 5-caffeoylquinic acid and p-

282 coumaric acid, at a concentration of 100 pM, reported no effect on glucose uptake under
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either sodium-dependent or sodium-free conditions [25]. A likely explanation for these 

differences may be the use of a mixture of polyphenols used in the current study, leading to 

enhancement of the inhibitory activity. Co-incubation of polyphenols and their 

physiological effects have received little attention in vitro, but human trials with 

polyphenol-rich beverages offer promising benefits for the reduction of blood glucose in 

healthy volunteers [22,38],

Our study demonstrates that water soluble components from a herbal supplement 

composed of a variety of herbs, spices and seeds, efficiently reduced glucose transport 

across Caco-2 intestinal cells mainly through interaction with the GLUT2 transporter 

family. Since the aglycone metabolites released following enzymatic hydrolysis have 

sustained biological activity, we propose that regular dietary consumption may improve 

glucose control either by limiting or delaying glucose absorption in the intestine. These 

encouraging findings require further evaluation in human controllcd-trials to establish the 

beneficial effects in the body.
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Fig. 1. A: Effect of herbal supplement on glucose transport by Caco-2 cells under sodium 

dependent and sodium-free conditions. B: Effect of herbal supplement on the intracellular 

accumulation of glucose by Caco-2 cells under sodium dependent and sodium-free 

conditions. Values expressed as a percentage of the control value which was the glucose 

transport under each condition in the absence of herbal supplement. Each data point is the 

mean ±SD (n = 3). **: p< 0.001.

Fig. 2. Effect of polyphenol extract prepared with or without enzymatic hydrolysis on 

glucose transport by Caco-2 cells under sodium dependent conditions. Values expressed as a 

percentage of the control value which was the glucose transport under sodium dependent 

conditions in the absence of polyphenol extract. Each data point is the mean ±SD (n = 3).

**:p< 0 001.

Figure 3. Percentage composition of the herbal supplement.

Fig. 4. HPLC-DAD trace (280 nm) showing the phenolic profile of the extracts prepared 

without (A) and with enzymatic hydrolysis (B). For peak numbers refer to Table 1. *: p<

0.01; **: p< 0.001.

Legends for Figures
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Figure 3

□ Gymnema

a  Green Coffee

■ Grape Seed

□ Hibiscus

■ Cinnamon 

0  Holy basil

□ Chromium

B Russian Tarragon

■ Ginger

□ Turmeric
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Table 1. Characterization o f the polyphenols in the herbal supplement without and 
after enzyme hydrolysis by IIPLC-DAD-MS

Peak
number Compound

Retcntio 
n time

(min)

X
max

(nm)

Molccu 
lar ion

[M-H]-

Concentration

(HM)

1
dihydrocaffeic 
acid (IS) 10.9 280 181

Without
Hydrolysis

ND

With
Hydrolys

is
*

2

5-0-
caffeoylquinic
acid 13.7

325,
295 353 46 ±0.03

3 caffeic acid 14.5 179 ND
77.1

±0.2**

4 p-coumaric acid 25.6
310,
290 163 1.4 ±0.03

12.8
±0.01**

5

5-0-
feruloylquinic
acid 29.4

325,
295 367 7.7 ±0.06

6 coumarin 33.2
280,
310 [ ! 4 7 f 8.0 ±0.09

7

3,4-di-O-
caffeoylquinic
acid 38.4

325,
295 515 11.4 ±0.03

0.7
±0.06**

8

3,5-di-O-
caffcoylquinic
acid 39.1

325,
295 515 8.3 ±0.09

4.0
±0.03*

9

4,5-di-O-
caffeoylquinic
acid 40.9

325,
295 515 13.5 ±0.07

7.7
±0.07*

10 cinnamaldéhyde 43.5 290 [133]+* 98.2 ±0.05 .

11 quercetin 46.0 370 301 0.1 ±0.004
0.8

±0.03**

12 kaempferol 365 285 0.1 ±0.005
0.7

±0.03**

A statistically significant change in concentration was observed *: p> 
0.01; **: p> 0.001. [ ]+: positive molecular ion.
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