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Abstract

In spite of their advantages, e.g. high strength, low weight, and high stiffness, 

composite laminates are prone to the formation of transverse cracking during both 

manufacture and service. It has been well recognised that the core to this damage 

mode is stress singularities near transverse cracks. In addition, transverse cracking 

may cause degradation in the thermoelastic properties of a laminate, and meanwhile 

new ply cracks usually form with the increase of applied loading. As a result, the 

stress transfer near transverse cracks, thermoelastic property degradation due to 

transverse cracking, and propagation of transverse cracks are all important issues in 

the analysis of composite laminates.

The major contribution of this work is to develop a new semi-analytical method, the 

state space method, to evaluate the stress transfer near free edges and transverse 

cracks. On the basis of the generalised plane strain condition, the method overcomes 

the limitation of analytical methods in study nonsymmetric laminates. Moreover the 

method guarantees continuous fields of interlaminar stresses across interfaces 

between layers, which is one of the obstacles for conventional finite element method.

Another contribution is to apply the stress analysis to assess the thermoelastic 

property degradation induced by transverse cracking in general cross-ply and 

symmetric angle-ply laminates. The prediction is made by using the constitutive 

equation of laminates in the Classical Laminate Theory. The numerical results of 

stiffness degradation for nonsymmetric cross-ply laminates are revealed for the first 

time in the literature.

The final contribution of this work is to apply the stress analysis to predict 

propagation of transverse cracking in general composite laminates. An energy-based 

cracking criterion is used to predict the crack multiplication process. The predictions 

for nonsymmetric laminates and the effects of shearing to transverse cracking are 

believed to be the first solutions in the literature.
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Chapter 1 Introduction

Chapter 1. Introduction

In this thesis, a systematic investigation on the stress distribution near free edges and 

transverse cracks, material property degradation induced by transverse cracking, and 

propagation of transverse cracking in composite laminates is presented. All these 

problems are long standing issues in the literature. Here, a novel method, the state 

space method, combined with composite mechanics and fracture mechanics, is used to 

tackle the complexity of the problems.

In this chapter, the motivation behind this research is introduced, in which the 

problems of free edge effect and transverse cracking are described. Then the research 

objectives are set corresponding to the existing problems. Contributions of this 

research are also stated, along with the application scope of the present study. Finally 

the layout of the work presented in this thesis is given.

1.1. Motivation behind This Research

Composite materials are broadly used in a variety of engineering fields, including 

aerospace, automotive, and civil engineering, as well as in electronic circuit boards, 

and sports equipment. Except the advantages such as low weight, high stiffness, high 

strength, low thermal expansion, corrosion resistance and retention of properties at 

high temperature, today laminated composites are often the choice of designers 

because they can be tailored to meet the specific demands of each particular 

application.

A composite laminate is a perfectly bonded assembly of individual plies of a 

unidirectional composite for which the fibres embedded in matrix are parallel in a 

direction that defines the orientation of the ply within the laminate. Fig. 1.1 shows a 

cross-ply laminate having separated individual plies (McCartney, 2001).

In spite of their many advantages, laminated composites are prone to the formation of 

damages when subjected to mechanical and thermal loading during both manufacture 

and service. It is widely recognised that free edge and internal delamination as well as
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transverse ply cracking in composite laminates are the most commonly observed types 

of damage. An immediate effect of this damage is to cause a degradation of 

thermoelastic constants, such as changes in Young’s modulus, Poisson’s ratio and the 

thermal expansion coefficients. A secondary effect of these matrix dominated failure 

modes is that they nucleate other forms of damage, such as fibre pull out or fibre 

break, and provide pathways for moisture or other corrosive agents. Thus fully 

understanding the damage mechanism and its effect, and making the most use of 

composite laminates is the motivation behind the research work described in this 

thesis.

It has been well recognised that the core to understand the damage mechanism is 

stress transfer near material discontinuities in composite laminates. Both free edge and 

transverse cracks are material discontinuities where stress singularities usually exist. 

Therefore it is a prerequisite to understand the stress characteristics near these zones. 

In the following part, brief background descriptions are given about free edge effects 

and transverse cracking.

Fig. 1.1 Computer image of the structure of a cross-ply laminate 

1.1.1. Free Edge

A typical composite laminate with free edges is shown in Fig. 1.2 (Pipes and Pagano, 

1970). It has the form of a tensile coupon of thickness h and width L and lies within 

the x-y plane of the Cartesian x-y-z coordinate system. Due to the mismatch of 

material properties of bonded adjacent layers and the presence of gradients in the in
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plane stresses, uniaxial tension in the ^-direction may give rise to high localised 

interlaminar stresses crzz, a xz and a vz. Then the plane stress assumption used in the

Classical Laminate Theory (CLT) is no longer valid. The stress state is three 

dimensional, in order to satisfy the traction free boundary conditions (Becker, 1993). 

Interlaminar normal and shear stresses, cr , cr and cr , some of which exhibit

singular behaviour, are present in a boundary layer region along the free edges of 

composite laminates.

Interlaminar stresses not only exit in anisotropic materials, but may be present in any 

layered material with free edges. For isotropic layers made of the same material, there 

is no mismatch in material properties and interlaminar stresses are ignored in most 

applications. In contrast to isotropic materials, composite laminae exhibit a very broad 

range of properties as a function of fibre orientation. The mismatch in Poisson’s 

ratios, shear coupling coefficients, and thermal expansion coefficients can lead to very 

large interlaminar stresses. These interlaminar stresses are of critical concern to 

designers because they can lead to délamination type failures at loads well below 

those corresponding to in-plane failure.

Fig. 1.2 Nomenclature of a finite width laminated coupon under an axial tension

Interlaminar stresses near free edges can be controlled to some extent through the 

choice of materials, fibre orientations, stacking sequence and layer thickness.

3
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However, they can be eliminated totally only through the use of homogeneous 

materials. They must be considered whenever laminated composite materials are used 

in the design of a structure which has free edges. They are present at all free edges of 

laminated composites including holes and cutouts (Herakovich, 1989). A full 

understanding of the mechanism of the free edge effect is essential for a safe and 

reliable design.

1.1.2. Transverse Cracking

Fig. 1.3 A symmetric [079070°] laminate with transverse cracks in 90° ply

The first form of damage in composite laminates is usually matrix cracking, which are 

intralaminar or ply cracks that traverse the thickness of the ply and run parallel to the 

fibres in that ply. Ply cracks can be observed during tensile loading, fatigue loading, 

changes in temperature, and thermocycling. Ply cracks can form in any plies, but they 

form predominantly in plies off-axis to loading directions. The most common 

observation of ply cracks is cracking in 90° plies during axial loading in the 0° 

direction (Fig. 1.3). These ply cracks are transverse to the loading direction and are 

thus sometimes called transverse cracks. The terms matrix microcracks, microcracks, 

intralaminar cracks, ply cracks, and transverse cracks are found often in the composite 

literature. They usually refer to the same cracking phenomenon (Nairn, 2000).

Similar to the free edge effect, the stress state near the transverse cracks is three 

dimensional due to the mismatch of material properties between layers and the 

interlaminar stresses often exhibit singular behaviour in order to satisfy the traction 

free condition along the crack surface. The stress transfer is redistributed when the 

laminate was damaged. The loads that such plies were carrying, when the laminate 

was undamaged, are transferred to neighbouring plies.
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Transverse cracking in composites generally does not lead directly to failure. For all 

laminates, there are no transverse cracks until approaching certain onset stress or 

strain that corresponds to the initiation of transverse cracking. After the initial matrix 

crack, the crack density typically increases very rapidly. At high crack density, the 

transverse cracking slows down and approaches a saturation damage state. The fibres 

and adjacent plies serve as obstructions to crack propagation, preventing a dominant 

crack from forming as in monolithic materials. It can, however, facilitate other 

damage modes. For example, transverse cracks can induce delamination, cause fibre 

break or provide pathways for the entry of corrosive liquids. Such damage modes 

could in turn lead to laminate failure.

More importantly, transverse cracking may cause degradation in the thermoelastic 

properties of the laminate including changes in all effective moduli, Poisson ratios, 

and thermal expansion coefficients. The structure will subsequently respond 

differently to future loads. If a given design cannot tolerate ply cracking induced 

degradation in properties, then the formation of ply cracks constitutes failure of the 

design.

As a result the stress transfer at the transverse cracks, the effects they have on 

laminate properties, and the processes by which they form and develop are all 

important problems in the analysis of failure of composite laminates.

1,2. Objectives of This Research

The general objective of this research is to develop an analytical methodology to study 

the effects of the free edge and transverse cracking in composite laminates. The 

specific objectives chosen for investigation in this research are:

• To develop a new analytical model to investigate the stress transfer near free 

edges and transverse cracks in composite laminates under both mechanical and 

thermal loading;

• To apply the stress analysis to assess the degradation of the thermoelastic 

properties due to transverse cracking; and
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• To apply the stress analysis to predict the propagation of transverse cracking in 

composite laminates, considering the residual thermal stresses.

The purpose of the stress analysis is to seek interlaminar stress solutions with high 

accuracy. To this end, a novel method, the state space method, is derived in both 

cross-ply and angle-ply laminates. On the basis of these stress solutions, the effective 

thermoelastic constants of a cracked laminate, which are functions of the crack 

density, are predicted using the constitutive equation in the Classical Laminate Theory 

(CLT). Furthermore, the stress solutions, combined with an energy theory, are 

employed to predict the development of transverse cracking in laminates, taking 

account of the thermal residual stresses induced in manufacture. The applications of 

the methodology are shown by numerical examples and are compared with numerical 

results from other models and experimental data in the literature.

The stress transfer model is developed under the generalised plane strain condition. It 

is reasonable for the present analysis to make such a hypothesis. An important 

application of the theoretical analysis is to simulate actual material property tests, 

where most test specimens are designed to subject to a very simple stress state, e.g. 

plane strain or plane stress condition. An accurate theoretical or numerical simulation 

can be used to replace these expensive tests and establish a ‘virtual’ laboratory.

1.3. Contributions of This Research

The major contribution of this research focuses on the area of computational 

modelling that is specifically applicable to the damaged composite laminates. These 

include:

• Successful application of the state space method to evaluate interlaminar stress 

singularities near free edges and transverse cracks in general composite 

laminates, subjected to both mechanical and thermal loading. This method 

overcomes the limitation of analytical methods in study nonsymmetric 

laminates and guarantees continuous fields of interlaminar stresses across 

interfaces between layers, which are obstacles for conventional finite element 
method (FEM);
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• Successful assessment of the thermoelastic property degradation induced by 

transverse cracking in general cross-ply and symmetric angle-ply laminates. 

The prediction is made by using the constitutive equation of laminates in the 

Classical Laminate Theory in conjunction with the stress analysis; and

• Successful prediction of transverse cracking propagation in general composite 

laminates, considering the residual thermal stresses and the effects of shearing. 

An energy-based cracking criterion and the energy release rate due to 

transverse cracking are used to predict the crack multiplication process.

Under the generalised plane strain condition, the numerical results of interlaminar 

stress distribution, thermoelastic property degradation and transverse cracking 

propagation in nonsymmetric laminates are revealed for the first time in the literature.

1.4. Layout of This Thesis

The rest of this thesis is organized as follows:

Chapter 2 presents a literature review on the investigations of two types of material 

discontinuities in composite materials, i.e. free edges and transverse cracks. For the 

free edge effects, published work was focused on evaluating the interlaminar stress 

singularities in the vicinity of free edges. For transverse cracking problem, the issues 

about stress transfer, property degradation and transverse crack propagation are 

extensively reviewed. The stress transfer is a fundamental concern to understand the 

damage mechanism in composite laminates. In most circumstances, the predictions of 

property degradation and cracking propagation are based on the stress transfer in 

cracked laminates.

Chapter 3 describes the basics of approaches and theories that are required for the 

current work. First the concept of state space and solutions of state variable equations 

or state equations are briefly introduced. Then equilibrium equations and stress-strain 

relationships of an anisotropic material under the generalised plane strain deformation 

are presented. After that the effective thermoelastic constants of composite laminates 

are derived on the basis of the Classical Laminate Theory (CLT) and the coupling 

features of anisotropic materials are explained through stiffness matrices. At last the
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concepts and expressions of some most pertinent principles in Fracture Mechanics are 

discussed and derived.

Chapter 4 develops a semi-analytical method, the state space method, to evaluate the 

interlaminar stress singularities near free edges and transverse cracks in general cross- 

ply laminates. The method is based on a state space representation of the three- 

dimensional equations of elasticity that is applied to a generalised plane strain 

condition. Numerical solutions are obtained using layer refinement in the through 

thickness direction and Fourier series expansion in an in-plane direction. Unlike some 

other solutions, no major assumptions are introduced prior to the solution derivation 

and it takes account of all the stress components and independent material constants. 

Furthermore the method always guarantees continuous distributions of both 

displacements and interlaminar stresses across interfaces between layers. Another 

significant feature is that by this approach, a laminate may be composed of an 

arbitrary number of orthotropic layers, each of which may have different material 

property and thickness.

Chapter 5 extends the state space method, which has been successfully used in cross- 

ply laminates, to a more sophisticated one, which is capable of investigating stress 

transfer in general angle-ply laminates. Once again, a generalised plane strain 

deformation is assumed. Because the extension-shear coupling exists in the angle-ply 

laminates, the stress components ayz and <jxy do not vanish and therefore have to be 

considered in the state space equations. The challenge of the new model is to find 

suitable displacement expressions and in-plane Fourier series expansions for all state 

variables, which must satisfy the boundary conditions and could be eliminated during 

further derivations. These difficulties are overcome by introducing new state variables 

associated with appropriate expressions. Comparisons with other available results are 

carried out to validate the present predictions. To the best of the author’s knowledge, 

the present solutions for nonsymmetric laminates under an axial strain and for 

laminates under in plane shearing are revealed for the first time in the literature and 

can be used as benchmarks for validating new models. In fact, since the state space 

method for angle-ply laminates is posed in general terms it includes the state space 

method for cross-ply laminates as one of its particular forms.
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Chapter 6 applies the stress analysis to access the thermoelastic property degradation 

due to transverse cracking in cross-ply and symmetric angle-ply laminates. The 

relationships of the overall deformation and the applied loading in cracked laminates 

are assumed to follow the same constitutive equations of undamaged laminates in the 

Classical Laminate Theory. This is a process to homogenise the effective properties of 

a cracked laminate into the equivalent properties of an undamaged homogeneous 

plate. In term of the coupling characteristics, the effective thermoelastic properties of 

selected laminates are defined by their corresponding compliance matrices. The 

compliance coefficients of selected laminates are determined by the stress analysis of 

specially designed loading cases. Numerical results are presented and are validated by 

other results and experimental data. Since there are no available results in the 

literature, the stiffness degradations in nonsymmetric cross-ply laminates are 

compared with McCartney’s prediction through Dr Ye’s research collaboration.

Chapter 7 applies the stress analysis to predict the propagation of transverse cracking 

by using an energy-based method. The energy release rate due to transverse cracking 

is derived by assuming that the crack density increases uniformly. Then the critical 

energy release rate is introduced to predict the new crack formation. Numerical 

examples are presented in both symmetric and nonsymmetric laminates under tension. 

In addition, the transverse cracking in laminates under a combination of tension and 

shearing is also studied. Since there are no published results in nonsymmetric 

laminates to date, comparisons are only made in symmetric layups with those of other 

models and experimental data.

Chapter 8 summaries the overall achievements in this thesis, draws some conclusions 

and finally suggests ideas for continued and future investigation.
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Chapter 2. Literature Review

Some fundamental knowledge of free edge effect and transverse cracking in 

composite laminates has been briefly outlined in the previous chapter. A common 

feature of free edge and transverse cracking problems is that they both involve in 

investigating the singular stress field which is a basis to predict property degradation 

and cracking propagation. The research history of free edge effect and transverse 

cracking began in the 1970s and a variety of models have been developed. In this 

chapter, a review is made on the estimation of interlaminar stresses near free edge, 

the stress transfer near transverse cracks, the property degradation due to transverse 

cracking, and the transverse crack propagation in composite laminates.

2.1. Free Edge Effect in Composite Laminates

It is a well-established fact that at free edges of composite laminates, interlaminar 

stresses arise due to a mismatch in elastic properties between plies. Thus in this 

region near the free edge known as boundary layer, it has been shown that the state 

of stress is three-dimensional in nature and not predictable accurately by the 

Classical Laminate Theory (CLT). Over the past 30 years, numerous investigators 

have used a variety of methods to attempt to evaluate the stresses at straight free 

edges. These include analytical, numerical and semi-analytical methods.

2.1.1. Analytical Methods

The existence of interlaminar stresses in a boundary layer region along free edges of 

laminated materials has been known for more than three decades. The first 

publication (Puppo and Evensen, 1970) dealing with anisotropic materials appears to 

be a study of anisotropic layers separated by isotropic shear layers with interlaminar 

normal stress being neglected throughout the laminate. Other methods were also 

attempted to examine the problem, including approximate elasticity solution, higher 

order plate theory, boundary layer theory, and variational method.
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2.1.1.1. Approximate Elasticity Solution

Pagano and Pipes (1971; 1973) introduced some simple approximation equations to 

explain the occurrence of interlaminar normal stresses in the vicinity of free edges of 

a tensile coupon and conducted some basic considerations toward optimum lay-ups. 

Pipes and Pagano (1974) investigated symmetric angle-ply laminates under uniaxial 

tension by approximating the displacement field with Fourier series expansions. 

Convergence investigations showed that a high number of series terms were needed 

to reach some accuracy of the results.

Hsu and Herakovich (1977) investigated free edge effects by assuming edge 

displacement fields in the form of trigonometric and exponential terms. Comparison 

with the results of other authors nevertheless showed some discrepancies (Mittelstedt 

and Becker, 2004).

In most methods the laminate is assumed to be sufficiently long (Fig. 1.2). Hence, 

due to Saint-Venant’s principle, the influence of the loading point on other remote 

region is negligible. Within the premise of Saint-Venant’s principle, Wang and 

Crossman (1978) presented a simplified method for calculating interlaminar stresses 

accomplished by smearing two or more laminae as a quasi-homogeneous lamina.

Wang and Choi (1982b; 1982a) used the Lekhnitskii's (1963) stress potential and the 

theory of anisotropic elasticity and were able to determine the order of stress 

singularities at the laminate free edges. The eigenfunction method developed by 

them involves the solution of a complicated and tedious eigenvalue problem and 

requires the use of a collocation technique at every ply interface in order to satisfy 

traction continuity. This limits the application of this technique to relatively thin 

laminate.

Valisetty and Rehfield (1985) introduced a simple methodology for the assessment of 

displacements and stresses in a four-ply symmetric [0°/90°]s laminate by considering 

layerwise equilibrium in connection with adequate kinematical assumptions, Hooke’s 

law and the corresponding boundary and continuity conditions. Even though easily
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applicable and of a reasonable accuracy, their method is within a very limited range 

of applicability.

2.1.1.2. Higher Order Plate Theory

Pagano (1974) employed a higher-order plate theory for estimation of transverse 

normal stress in a symmetric, finite-width, composite laminate subjected to an axial 

extension. This theory is a reasonable approach to compute the thickness distribution 

of transverse normal stresses. This, however, does not seem to guarantee that the 

edge tractions on each layer satisfy the boundary conditions.

Krishna Murty and Hari Kumar (1989) used a higher-order theory approach and 

modelled the laminate as an equivalent single layer by assuming polynomials 

through the complete laminate thickness. The method yielded stress functions in the 

form of trigonometric and hyperbolic terms which were in satisfactory accord with 

the results of other authors. Nevertheless, one major drawback of equivalent single 

layer approaches in general is the occurrence of discontinuous interlaminar stresses 

in the interfaces as long as these are computed by constitutive equations, since the 

assumed displacement formulations are priori defined over the complete laminate 

thickness (Mittelstedt and Becker, 2004).

Becker (1993; 1994) utilised a new higher order plate theory to solve the free edge 

problem. The model assumed a particular warp deformation mode that is induced by 

the free edge effect and decays rapidly towards the laminate interior. The whole 

analysis is easy to apply, requires minimal computational effort, and allows 

interlaminar stress parameter studies to be carried out simply by changing constants 

in the closed form relations. However the applications are only limited to symmetric 

laminates.

Using the first-order shear deformation theory (FSDT) of plates and a layerwise 

theory, Nosier and Bahrami (2006) developed analytical solutions to the free edge 

problem of an antisymmetric angle-ply laminate subjected to arbitrary combinations 

of extensional and torisonal loads. The displacement components consist of two 

parts: a global part and a local part. The unknown constants appearing in the global
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part of the displacement field may be determined accurately from an analysis based 

on the FSDT. The unknown functions appearing in the local part, on the other hand, 

are determined from an analysis based on a layerwise theory. The advantage of the 

higher-order plate theory is that it can be easily applied in antisymmetric angle-ply 

laminates under various loading conditions, but it’s very difficult for this theory to 

satisfy the traction free conditions at free edges.

2.1.1.3. Boundary Layer Theory

The boundary layer theory of plane stress in isotropic elasticity is extended to the 

laminated composites by Tang (1975) and Tang and Levy (1975). In the boundary 

layer region, equations are separated into two problems, i.e. torsion problem and 

plane strain problem. This technique provides a tool to predict all the three 

interlaminar stresses.

A boundary model to study the stress concentration phenomenon in the vicinity of a 

free edge of a laminated composite plate is suggested by Davet and Destuynder 

(1986). This model allows the use of an explicit formula for the transverse shear 

stress. The description of the singular behaviour for a plate under inplane loading is 

emphasised.

Lin et al. (1995) used boundary layer theory in conjunction with the method 

proposed by Kassapoglou and Lagace (1986; 1987) to calculate interlaminar stress 

distribution near the straight free edges of generally stacked laminates. All the 

boundary conditions for each ply and the interface traction continuity were exactly 

satisfied. The laminate was subdivided into interior region and boundary layer region 

and each stress component is determined by superposition of the interior stress and 

boundary layer stress. Unfortunately the numerical results of interlaminar stresses 

along interfaces were only given in symmetric laminates.

2.1.1.4. Variational Method

Based on assumed in-plane stresses and the use of Reissner's variational principle, 

Pagano (1978a; 1978b) developed an approximate theory. The only assumption 

required is that regarding the stresses themselves. Information concerning
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displacements is a consequence of the procedure and does not require any a prior 

assumption. The fact that the procedure contains a built-in method to assess and 

regulate the quality of the approximation, by increasing the number of imaginary 

layers, implies a very widespread range of application as the author and other 

researchers demonstrated in subsequent work.

Global modes, which follow from an assumed displacement field and lead to the 

definition of effective (or smeared) laminate moduli, are not sufficiently accurate for 

stress field computation. On the other hand, local models, in which each layer is 

represented as a homogeneous anisotropic continuum, become intractable as the 

number of layers becomes even moderately large. Pagano and Soni (1983) blended 

these concepts into a self-consistent model which can define detailed response 

functions in a region of interest (local), while representing the remainder of the 

domain by effective properties (global). In this investigation the laminate thickness is 

divided into two parts. A variational principle has been used to derive the governing 

equations of equilibrium. For the global region of the laminate, potential energy has 

been utilised, while the Reissner functional has been used for the local region. The 

field equations are based upon an assumed thickness distribution of stress 

components within each layer of the local region and displacement components in 

the global region.

Kassapoglou and Lagace (1986; 1987) released some leading works on the analysis 

of free edge stresses. The Kassapoglou and Lagace (KL) solution assumed that the 

stresses consist of layerwise products of in-plane exponential terms and polynomials 

through the thickness. The thickness terms were adjusted such that they blend into 

CLT in the inner laminate regions and that continuity of all interlaminar stresses in 

the laminate interfaces is warranted. Also, the conditions for stress free laminate 

facings as well as traction-free edges were met exactly. Free parameters in the in

plane stress approaches were then finally determined by minimisation of the total 

laminate complementary potential. Since the KL solution was something of a success 

due to its simplicity yet its good performance even for thick laminates, it was used 

and refined by several other authors. Introducing the thermoelastic stress strain 

relations into the KL solution, Webber and Mortan (1993) presented a variational 

method to determine the free edge stresses due to thermal effects. Additional terms
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for the consideration of the discontinuous change of the elastic material properties in 

the interfaces were introduced by Rose and Herakovich (1993). The additional terms 

took into account the local mismatches in Poisson’s ratio and coefficient of mutual 

influence between adjacent layers. Amrutharaj et al. (1996) used a modified KL 

solution to predict the edge delamination of a symmetric angle-ply tension coupon 

laminate.

Kim and Atluri (1994) developed an approximate method based on equilibrium 

equations and used the principle of minimum complimentary energy to investigate 

the interlaminar stresses near straight free edges of beam-type laminated composite 

structures under out-of-plane shear/bending. The analysis includes longitudinal 

degrees-of-freedom in the stress distribution. The unknowns in the resulting stress 

expressions are obtained by solving an eigenvalue problem whose coefficients are 

not constants but depend on the shear loading location. The stress component is 

assumed to consist of two parts, namely, the far-field stress and the companion 

stress. By definition, only the far-field stresses exist in the central region of the 

laminate away from the free edge. This hypothesis not only adds much complexity to 

the formulation but unfortunately yields approximately results, although the stress 

equilibrium, compatibility and all of the boundary conditions are satisfied.

Yin (1994a; 1994b) proposed an approximate analytical method, based on the 

variational principle of complimentary virtual work and using polynomial stress 

functions in each layer. The method involved in solving an eigenvalue problem for 

the interfacial values of the stress functions. Later Yin (1994c) presented simple 

solutions containing exponential functions to approximate the stress functions. The 

method, though not as rigorous and accurate as the previous eigenvalue solution, was 

applicable to free edge problems involving non-linear elastic materials behavior. Yin 

(1997) further extended the eigenfunction method and applied to thermal stress 

problems associated with the non-uniform temperature loads.

Flanagan (1994) presented a variational method, based on expanding stress functions 

in terms of a harmonic series in the thickness direction and using the principle of 

minimum complementary energy. The merit of this method is relatively simple and
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efficient from an engineering viewpoint, but the in-plane stresses are discontinuous 

through the thickness direction.

Zhang and Yeh (1998) used stress functions and a variational approach to the free 

edge effect in symmetric laminates under mechanical and thermal load. The 

introduced stress functions satisfied equilibrium as well as all given boundary and 

continuity conditions and consisted of thickness terms in the form of polynomials 

multiplied with unknown in-plane functions. The governing Euler-Lagrange 

equations for the unknown functions were derived by imposing the principle of 

minimum complementary potential.

Cho and Yoon (1999), Kim et al. (2000) and Cho and Kim (2000) carried out a series 

of studies on free edge interlaminar stress and free edge strength using an extended 

Kantorovich method. The Lekhnitskii stress functions are adopted to divide 

interlaminar stress expressions into the in-plane and out-of-plane coordinate 

functions. Under the principle of complementary minimum energy through 

eigenproblem, the in-plane and out-of-plane stress functions are improved through 

the iterative extended Kantorovich method. The approach is capable of considering 

combined mechanical loads (extension, bending and twisting) and residual thermal 

loads with the limitation to symmetric lay-up configurations. Cho and Rhee (2004) 

combined the iterative stress based method and genetic algorithms to study the 

strength of free edges and optimise lay-up.

Based in part on Yin’s (1994a; 1994b) implementation of the minimum 

complementary energy principle, Suvorov and Dvorak (2001) described an analytical 

procedure for evaluation of the effect of release of fibre prestress, applied prior to 

matrix consolidation, on stress distribution in individual plies and at free edges of 

composite laminates. Specific results are found for cross-ply and quasi-isotropic 

symmetric laminates under tension.

Inspired by Pagano’s (1978b) variational method, Carreira et al. (2002) developed a 

model, called multiparticle models of multilayered materials (M4), to evaluate the 

stress state in the vicinity of a free edge or microcracks in symmetric laminates. 

Multiparticle models are a family of models. E.g. M4_2n+1 considers the laminate as

16



Chapter 2 Literature Review

a membranar superposition (2n equations plus a global one, with n being the number 

of plies in the laminate). Resultant forces in each layer as well as interlaminar shear 

stresses are taken into account, yet resultant moment in the layer is not. Diaz Diaz et 

al. (2002) applied the M4 model into software called DEILAM and took account of 

the inelastic strain fields in the layers and fields of displacement discontinuities at the 

interfaces.

2.1.2. Numerical Methods

A common feature of all analytical methods is that they can only be used for the 

simple geometric cases, since for thick realistic structural laminates the solution to 

the full 3D problem is extremely complex. Thus a variety of numerical methods have 

been developed to calculate these interlaminar stresses at straight free edges. In 

general, these numerical methods can be divided into the finite difference method 

and the finite element method (FEM). Concerning the FEM, it can be sort into 

conventional FEM (standard displacement based elements), special purpose FEM 

(considering singular stresses or stress continuity) and global/local FEM.

2.I.2.I. Finite Difference Method

The first complete three-dimensional analysis of interlaminar stresses in fibrous 

composites involved the application of finite difference techniques to the governing 

elasticity equations (Pipes and Pagano, 1970). They obtained solutions to the 

problem of a finite width laminated coupon under tensile axial load (see Fig. 1.2). 

Their results showed the existence of interlaminar stresses in a boundary layer region 

along the free edge of the coupon. Results were presented for a variety of fibre 

orientations and laminate stacking sequences. It was shown that the width of the 

boundary layer is approximately equal to the thickness of the laminate, that the 

interlaminar normal stress ozz and the interlaminar shear stress axz can exhibit 

singular behavior at the intersection of the layer interfaces with the free edge, and 

that the sign and magnitude of the interlaminar stresses are functions of the laminate 

configuration: material, fibre orientations, layer thickness and order of stacking 

(Herakovich, 1989). However since they used a relatively coarse mesh in the finite 

difference method, the exact nature of the stress singularities at the free edges could 

not be ascertained.
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Following the approach used by Pipes and Pagano (1970) the interlaminar stress 

distribution in a four layer composite laminate in bending was studied by Salamon 

(1978). He predicted that the magnitudes of the interlaminar normal and shear 

stresses, although in general relatively small, rise sharply near the free edges. This 

distinguishing feature was observed over a boundary region of the order of one 

laminate thickness inward from the free edge (Kant and Swaminathan, 2000).

Later Altus et al. (1980) presented a 3D finite difference solution for the free edge 

effects in angle-ply laminates. It was shown that the 3D finite difference method 

gave improved results as compared to 2D analytical or numerical methods used 

earlier. They were able to conclude that the peeling stress a a and the longitudinal 

stress have a dominant effect on interlaminar failure characteristics (Kant and 

Swaminathan, 2000).

Bauld et al. (1985) drew comparisons between the finite element method and the 

finite difference method by investigating several stress concentration phenomena and 

concluded that both methods are essentially comparable in accuracy, yet in the direct 

vicinity of stress singularities the application of both methods needs refinement of 

the applied numerical mesh densities and are cautious interpretation of the results.

Bhaskar et al. (2000) developed an approximate three-dimensional elasticity solution 

based on the finite difference technique for the expansion of a circular cylindrical 

shell of finite length, free at its ends, and subjected to an axisymmetric, uniformly 

distributed radial load on the inner surface. The disadvantage of Bhaskar’s finite 

difference method is that it does not satisfy traction free condition at the free edges, 

although the interlaminar stress values agree very closely with those of a plate under 

uniform axial extension.

2.I.2.2. Conventional Finite Element Method

Due to the singular nature of stress state near free edges, the finite element methods 

with standard displacement-based elements require a refined meshing strategy, 

whereas the element mesh may be coarse in the inner regions where CLT holds true.
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An early numerical investigation was released by Isakson and Levy (1971). They 

modeled the problem of an isotropic shear layer in the absence of interlaminar 

normal stresses. It was recognised that the tensile coupon problem could be 

formulated as a two-dimensional finite element problem because of the independence 

of the stress and strain states on the axial coordinate. Initially, cross-ply laminates 

were studied with two-dimensional finite elements (Herakovich, 1976). It was then 

recognised that general laminates could also be analysed using two-dimensional 

finite element models. Subsequently, many results have been published using the 

finite element technique. In addition to those of Herakovich and co-authors 

(Herakovich and Bargner, 1980; Herakovich et al., 1979; Herakovich and O'Brien, 

1979) Wang and Crossman (1977) used the same formulation as Herakovich et al., 

but with a finer finite element mesh. The finer mesh provided more detail in the 

neighborhood of the singularity. Whitcomb et al. (1982) dedicated their work to the 

convergence characteristics of the displacement-based FEM in the presence of 

singular stress fields and pronounced the need for mesh refinements in such regions. 

Bauld et al. (1985) examined the convergence behaviour of the finite element method 

in the presence of stress singularities.

Wanthal and Yang (1991) developed three finite elements for the analysis of thick 

laminates where the effect of transverse shear deformation was very severe. The first 

layer quadrilateral element (LQ1) has 16 nodes of 40 degrees of freedom (dof) with 

zero transverse normal strain and constant transverse shear strain. The second layer 

quadrilateral element (LQ2) is of 16 nodes with 48 dof and allows for a constant 

transverse normal strain. One of the two terms in the expression for transverse shear 

strain is allowed to vary linearly through the thickness. The third layer quadrilateral 

element (LQ3) is of 24 nodes with 64 dof and improves upon the LQ2 element by 

allowing both terms in the transverse shear displacement expression to vary linearly 

through the layer thickness. Later Yang and He (1994) used the LQ3 element for the 

analysis of free edge stresses in cross-ply and angle-ply laminate.

Icardi and Bertetto (1995) studied the stress singularity at the free edge interface and 

at comers of laminated plates using a 20 node quadratic interpolation, isoparametric 

brick element and a 15 node quadratic interpolation singular wedge element
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generated from the 20 node brick element. The nodal parameters assumed for both 

elements are the three displacement components u, v, w in the x, y, z directions. A 

predictor corrector procedure is used to fulfill the stress contact and traction free 

condition. The effect of material properties and layer orientations, the slope of 

inclined edges and comer angles were studied.

Three-dimensional 20-node quadratic brick elements were used by Lessard et al. 

(1996) to analyse the free edge effect in a symmetric cross-ply laminate. A new mesh 

technique, named ‘slice model’, allows for a higher number of elements near the 

anticipated stress singularity regions, therefore providing higher stress magnitudes at 

the edge. Property degradation is possible since the slice model has the ability to 

change the materials properties in all directions independent of one another.

2.1.2.3. Special Purpose Finite Element Method

Because most previous finite element methods only applied approximate 

satisfactions of the traction free boundary conditions. Spilker and Chou (1980) 

presented a special purpose hybrid stress multilayer finite element in which the 

traction free conditions are satisfied exactly. Chen and Huang (1989) developed a 

new hybrid stress finite element by modifying and reformulating Spilker and Chou’s 

(1980) model. The hybrid-stress finite element method is characterised by an 

assumed stress field in the element and an assumed displacement field along the 

interelement boundary.

Kim and Hong (1991) used a 16 node, 48 dof curved isoparametric element without a 

midside node in the thickness direction. They used the substructure technique and 

analysed a laminate with and without hole. The effect of laminate thickness and 

stacking sequence on the interlaminar stress near the free edges in the case of a solid 

laminate and near the hole boundary in the case of a laminate with a hole were 

studied (Kant and Swaminathan, 2000).

On the basis of Pipes and Pagano (1970)’s displacement field for laminates under a 

generalised plane deformation state and Schapery (1969)’s nonlinear viscoelasic 

constitutive relations, Yi (1997) developed a finite element procedure for the analysis
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of non-linear viscoelastic interlaminar stresses in composite laminates subjected to 

arbitrary combinations of axial extension, bending, and twisting loads. Yi et al. 

(1998) also applied this method to study the interlaminar stresses in nonsymmetrical 

laminated composites due to axial strain and bending.

Gaudenzi et al. (1998) proposed a multi-layer higher-order finite element technique 

to overcome the limits of the single-layer theories that shows discontinuities of the 

stress field at the interfaces. The method is demonstrated to be simple and effective 

both for the analysis of in-plane and through thickness distributions of interlaminar 

stress components.

Nguyen and Caron (2006) presented a finite element model based on the 

Multiparticle Model of Multilayered Materials (M4) (Carreira et al., 2002) to 

evaluate the interlaminar stresses in symmetric laminates. An eight-node 

isoparametric quadrilateral element with 5n dof at each nodal point is formulated (n 

is the layer’s number of the laminate). The interlaminar stresses are given directly in 

a straight forward manner using constitutive equations without postprocessing works.

2.1.2.4. Global/local Finite Element Method

The initial approach adopted to analyse composite laminates of finite size subjected 

to external loads was of a 2D finite element method. Though the 2D elements can 

yield accurate results at locations away from the traction free edges and 

discontinuities, it cannot predict accurately the complex stress state near any 

geometric or material discontinuities or near a traction free edge. As limitations of 

the 2D technique became known and more powerful computers became available, 

3D finite elements were used to estimate interlaminar stresses in the critical regions 

of laminates. However, when the number of laminae is large, the need to have 

sufficient elements in the through-thickness direction combined with the 

undesirability of using finite elements with high aspect ratios leads to requiring many 

elements. Hence the analysis results in a large sparse system of equations, which 

requires a vast amount of computer storage space and thus makes 3D finite element 

modeling impracticable and possibly formidable. In view of the above facts many 

investigators attempted global/local finite element analysis (Hirai et al., 1984; Mao
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and Sun, 1991; Whitcomb and Woo, 1993a, b) that perform separate analyses on the 

global and local region. Thomson and Griffin (1990) extended the same approach 

and proposed a 2D-3D global/local finite element analysis. They subdivided the 

entire laminate into local and global regions, the local region being the traction free 

edges, and the area around geometric or material discontinuities and the global 

region is located far away from local region. They used a simplified 2D finite 

element analysis on a global region and a more detailed 3D finite element analysis on 

a local region.

Although the global/local finite element analysis was demonstrated to yield 

reasonably economical solutions by achieving considerable savings in computer time 

and storage, the stresses derived from the displacements by using the stress-strain 

relationship lead to a stress field that is usually discontinuous across element 

boundaries, because conventional finite element analysis is based on the 

approximation of displacements that only guarantees the continuity of all 

displacement components across the element boundaries. This discontinuity can lead 

to inaccurate prediction of failure load and failure mode.

2.1.3. Semi-analytical Methods

Although finite element method is probably one of the most universal methods that 

can be applied to problems involving any cross section and lamination profile, it still 

requires much computation time and quite often it cannot predict accurately stress 

fields for free edge analysis of multi-layered laminates. Most analytical methods also 

are confined the applications to study laminates having regular cross sections. 

Consequently some semi-analytical approaches were proposed combining a certain 

analytical technique with FEM or a layerwise laminate theory.

In the context of Saint-Venant's principle Dong and Goetschel (1982) used a semi- 

analytical method, combining the finite element interpolations over the thickness 

with exponential decay into the plate’s interior, to model the behavior of a laminate 

plate composed of an arbitrary number of bonded, elastic, anisotropic layers.

The state space approach was used by Wang et al. (2000) to solve problems
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involving stress decay in composite laminates due to edge boundary effects. The 

stress and displacement distribution was defined as a linear combination of the 

interior stress field and the eigenstress field. The interior stress field was determined 

by the Classical Laminate Theory. The solution of the eigenstress field was involved 

in employing the state space method and principle of virtual work. A numerical 

layerwise method is used to ensure a good satisfaction of the edge boundary 

conditions. The numerical results revealed the stress singularity near free edges, 

however the exact nature of the singularity could not be determined numerically in 

their work since the interlaminar shear stress was still present. The decay rate of edge 

effects was also investigated by Ye (2001a; 2001b) using the state space method for 

cross-ply and angle-ply laminated composite cylinders with free edges.

Ye and Sheng (2003) presented a semi-analytical method, which extended the state 

space method that has been successfully used in analyses of laminates subjected to 

various load and boundary conditions without considering stress singularities 

(Soldatos and Hadjigeorgiou, 1990; Ye and Soldatos, 1994a, b, 1995, 1996; Ye and 

Soldatos, 1997; Ye, 2002), to evaluate free edge stresses in cross-ply laminated 

cylinders subjected to axisymmetrically distributed transverse loads. Zhang et al. 

(2006b) also applied this method to investigate the free edge effect in cross-ply 

laminated composite plates. The method was based on a state space representation 

(in the form of matrix differential equation) of the three-dimensional equations of an 

orthotropic elastic plate. The displacements and interlaminar stresses were taken as 

the primary state variables. The interfacial continuity conditions are satisfied by 

using a transfer matrix that transmits the state variables from the top to the bottom 

layer. Numerical solutions were obtained using a layerwise refinement technique and 

in-plane Fourier series expansion. Compared to Wang et al. (2000)’s results, herein 

the traction free boundary conditions were fully satisfied by all stress components.

A state space finite element method that combines the traditional finite element 

approximation and the recursive formulation of state space equation (Soldatos and 

Hadjigeorgiou, 1990; Fan and Ye, 1990a, b; Ye, 2002) is proposed to evaluate the 

stress singularities in the vicinity of free edges or localised traction free surfaces by 

Ye et al. (2004). By using the method, a plate is divided into finite elements in the 

plane of the plate, while the through thickness distributions of the displacements and
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stresses are solved directly from the state space equation. Due to the use of the 

standard finite element procedure in the proposed analysis, it is expected that there 

will be a straightforward extension to apply the method to, e.g., laminated plates with 

nonrectangular boundaries and plate assemblies, etc.

Tahani and Nosier (2003a; 2003b; 2003c) used a layer wise continuous displacement 

based approach with linear interpolation between the displacement functions in the 

interfaces of cross-ply laminates under uniform axial extension, thermal loading, and 

bi-directional bending. The in-plane solutions for the displacements were determined 

by the solution of the governing differential equations, which were derived by the 

principle of minimum potential energy of the cross-ply laminate and yielded an 

eigenvalue problem that was solved numerically. The resultant stress fields were of a 

hyperbolical form and fulfilled the boundary conditions of traction-free edge in an 

integral sense. The method showed a good agreement with the results of several 

other authors. Nevertheless, a certain drawback of the described methodology is the 

increasing computational effort with an increasing number of plies (Mittelstedt and 

Becker, 2004).

Mittelstedt and Becker (2006) developed a layerwise theory for the analysis of free 

edge effects in thermally loaded symmetric laminates. The method is based on a 

discretisation of the physical laminate plies into an arbitrary number of mathematical 

layers through the thickness. The principle of minimum potential energy yields the 

governing Euler-Lagrange equations which allow for a closed-form analytical 

solution for the in-plane functions, thus characterising this method as a semi- 

analytical one. This method is proven to be a fast and reliable means of analysis for 

free edge effects, however the given boundary conditions of traction free laminate 

edges are satisfied in an averaged sense.

A review has been made of developments in different methods used for the 

estimation of interlaminar stresses of free edges. The literature devoted to analytical, 

numerical and semi-analytical methods is surveyed. Analytical methods generally 

provide an acceptable compromise between accuracy and economy in predicting 

interlaminar stresses, but they can only be used for laminates with simple geometry, 

loading and boundary conditions. Numerical methods, e.g. finite element methods,
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can predict three-dimensional stress state in general cases, but their storage 

requirements due to the large number of variables and computer costs sometimes 

make them impracticable. Semi-analytical methods utilising the merits of both 

analytical and numerical methods are not only straightforward for efficient and 

reliable programming but versatile enough to cover all types of problems relevant to 

practical situations.

2.2. Transverse Cracking in Com posite Lam inates

When composite laminates are subjected to tensile loading, the early stage of damage 

is dominated by matrix cracking in the transverse plies. Thus the stress transfer near 

the transverse cracks, property degradation due to transverse cracking, and the 

initiation and propagation of matrix cracking are all important problems in the 

analysis and design of composite laminates. These problems have been studied 

extensively during the last three decades.

2.2.1. Stress Transfer in Composite Laminates

The stress transfer near transverse cracks is a fundamental concern to understand the 

damage mechanism in composite laminates. In most circumstances, the predictions 

of property degradation and cracking propagation are based on the stress analysis of 

the cracked laminates. Many stress transfer approaches have been reported to model 

the stress distribution, the thermoelastic property degradation or/and cracking 

propagation in composite laminates. Some of the works are briefly reviewed as 

follow.

2.2.1.1. Shear Lag Analysis

Shear lag models remain the most commonly used models for calculating the stress 

fields of cracked composite laminates because of their simple form. They are being 

modified and generalised to enable better description of wider classes of laminates. 

Most shear lag models assume that uniform through-thickness displacement and 

normal stresses in every layer. Shear stress exists only in a shear transfer region 

between layers and is uniform through thickness within that region.
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Shear-lag analysis appears to have been first introduced by Garrett and Bailey (1977) 

to estimate the stress distribution in the cracked 90° plies, and then developed in 

many analyses. They used a one-dimensional shear lag model to calculate the stress 

transferred from the cracked transverse plies to the uncracked longitudinal plies. This 

work played a key role in characterising the ply crack problem and emphasised the 

need for predictive methodologies.

Reifsnider and the coauthors (Reifsnider and Talug, 1980; Reifsnider and Jamison, 

1982) devised a simple shear lag method to evaluate stiffness reduction due to 

cracks. This simple analysis has yielded reasonably good predictions of stiffness 

reduction and is of considerable conceptual value but it is not sufficiently accurate.

Flaggs (1985) presented a two-dimensional shear lag model, followed closely in 

spirit to the one-dimensional shear lag model used by Garrett and Bailey (1977), to 

predict the tensile matrix failure in composite laminates. In the normal context, shear 

lag is associated with the load transfer of shear stress to normal stress or vice-versa. 

In his formulation, however, shear lag will also be used as the load transfer 

mechanism for in-plane shear as well as the normal stress.

Lim and Hong (1989) formulated a modified shear lag analysis, taking into account 

the concept of interlaminar shear layer, to evaluate the effect of transverse cracks on 

the thermoelastic property degradation. The mutual interaction of transverse cracks 

was considered in their analysis as the transverse crack spacing becomes small.

Lee and Daniel (1990) employed a simplified shear lag analysis to develop a 

progressive damage scheme for cross-ply composite laminates. Closed form 

solutions are given for the transverse crack density, stress distributions and reduced 

stiffness of damage plies as well as the entire laminate as a function of applied load 

and lamina properties. For progressive transverse cracking, the approach assumes 

that the next set of cracks occurs when the maximum axial stress in those plies 

reaches the transverse strength of the layer.

Fan and Zhang (1993) proposed a two dimensional shear lag analysis where the out- 

of-plane shear stresses vary linearly across the whole thickness of constraining layer.
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Zhang et al. (1992) further improved this model to permit partial linear variation of 

out of plane shear stresses. The stiffness reduction due to matrix cracking was then 

predicted using an equivalent constraint model (ECM). The ECM laminate consists 

of the cracked lamina itself, the nearest ply groups and the stiffness-equivalent 

homogeneous layers lumped from the rest of the plies. The effect of non-uniform 

transverse cracking was also examined. On the basis of the ECM of the damaged 

laminae, Kashtalyan and Soutis (2000) used an improved 2-D shear lag analysis to 

determine the in-plane stresses of the ECMs and stiffness degradation in cross-ply 

laminates with matrix cracking both in the 0° and 90° layers. Although the ECM is 

verified to be a reliable method to predict stiffness reduction in cracked composite 

materials, the nature of this model does not allow the real interlaminar stress 

distributions to be evaluated.

A modified one-dimensional shear-lag approach (Xu, 1995), suitable for cross-ply 

laminates of various stacking sequences, is based on the assumption that longitudinal 

displacement is independent of the 0° ply thickness and width and is a power 

function of the thickness co-ordinate and indeterminate function of the length co

ordinate in the 90° piles. The stiffness reduction and matrix cracking propagation 

were demonstrated by numerical results. In comparison with the experimental data, 

this method can only provide reasonable predictions, but far from accurate.

A parabolic shear-lag analysis was developed by Berthelot et al. (1996) to investigate 

the stress distributions and stiffness reduction in cross-ply laminates, subjected to 

uniaxial tensile loading. The model assumed a parabolic variation of longitudinal 

displacement in the 0° and 90° layers. An extended approach of the parabolic shear- 

lag analysis was proposed by Berthelot (1997), in which an indeterminate variation 

of the longitudinal displacement across the thickness of 0 0 layer is assumed. These 

two approaches neglect the variations of the transverse displacement with the 

longitudinal coordinate. This assumption leads to a unreliable evaluation of the shear 

stress in the vicinity of the crack.

Smith and Ogin (1999) obtained estimates of the reduced flexural modulus as a 

function of crack density based on the one-dimensional shear-lag approach. The
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solution is shown to agree well with a more sophisticated stress transfer model 

(McCartney and Pierse, 1997b) in the literature.

The shear-lag model provides a basic understanding of the load transfer process in 

laminates with matrix cracks in the transverse plies. However there are many 

shortcomings related to its basic assumptions. The shear transfer region is assumed to 

be restricted to the interface alone thereby introducing a shear discontinuity into the 

model. The assumption of uniform through-thickness displacement and normal 

stresses in every layer does not take account of the crack tip effects. In summary, the 

shear lag method is an extensively used model because of its simple mechanical 

principle, but it usually gives non-accurate predictions.

2.2.I.2. Variational Approaches

Variational approaches are developed on the basis of the principle of minimum 

complementary energy. Complementary energy is defined through thermo

mechanical stresses in layers. Different models assume different form of stress 

distribution in layers that satisfy the equilibrium equations. A minimisation 

procedure is used to find the best solution in the context of this principle. The final 

form of the complementary energy therefore varies according to the complexity of 

the model (Joffe and Varna, 1999).

Hashin (1985) was the first to use variational approach to determine the stress 

distribution and stiffness reduction of cracked cross-ply laminates. The analysis 

entailed the assumption, as is common to most shear lag theories, that the axial stress • 

perturbation within each group of plies is a function of the axial coordinate and is 

independent of the thickness coordinate. The complementary energy principle was 

invoked to derive a strict lower bound on the effective stiffness (Praveen and Reddy, 

1998). Hashin (1988) extended this method to evaluate the effective thermal 

expansion coefficients (TEC) of cross-ply laminates with transverse cracks.

On the basis of Hashin’s variational approach Naim (1989)) presented a new 

variational solution to determine the two dimensional thermoelastic stress state in 

cross-ply laminates of type [0m/90„]s and [90m/0„]J. The stress analysis was used to
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calculate the energy release rate due to formation of a new ply crack. The analysis 

accurately includes the effect of residual thermal stresses. The variational solution 

was also used to get an analytical expression for the longitudinal expansion 

coefficient of the cracked cross-ply laminate as a function of crack density.

Varna and Berglund (1991; 1994) compared different variational models to evaluate 

the thermo-elastic properties of cross-ply laminates with transverse cracks. Non- 

uniform stress distributions are included through the thickness of both the 0° and the 

90° layers. Joffe and Varna (1999) derived closed-form expressions relating stiffness 

changes to the transverse crack density. The variational approach was used to 

calculate the stress-perturbation function in the closed-form expressions.

Within the same frame of Hashin (1985)’s model, Gudmundson and Zang (1993) 

presented a more refined analysis. Crack interaction was taken into account, and the 

complete extensional stiffness and thermal expansion for a composite laminate of 

arbitrary lay-up configurations were derived in closed forms. However only average 

ply stresses and strains can be determined by this model. Adolfsson and 

Gudmundson (1997) predicted thermoelastic property degradation of composite 

laminates with matrix cracks in all plies. Because the two-dimensional laminate 

theory was adopted as the theoretical basis, the analysis can be only limited in thin 

laminates.

Schoeppner and Pagano (1998) used a variational theorem by Reissner (1950) to 

study the elastic stress fields in large radius axisymmetric cylinders. The variational 

theorem has been shown by Pagano (1978a; 1978b) to accurately describe stress 

fields in flat laminates. Models based on this approach have been shown to 

accurately describe stress fields in the vicinity of stress risers and the axisymmetric 

model has been shown to provide accurate predictions of energy release rates. In 

addition, the models have the capability to provide improvements in the accuracy of 

the predicted stress fields by subdividing physical layers into sub-layers.

Praveen and Reddy (1998) employed an energy-based variational method to derive 

and upper bound on the effective axial stiffness of cross-ply laminates with 

transverse cracks. The model is complementary to Hashin (1985)’s lower bound one.
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The displacement perturbations are assumed in terms of the displacements of the 

layerwise laminate theory of Reddy (1987). The stress transfer due to the presence of 

matrix cracks was also examined in detail and the results show good agreement with 

other models.

Rebiere et al. (2001) proposed two variational models, using different functions for 

the distribution of the stress field, to show the influence of transverse and 

longitudinal cracks on the stress distribution and on the elastic property reduction of 

a cross-ply laminate. In their analysis the crack surface is assumed to be plane and 

only thin laminates are considered.

Tounsi et al. (2005) used Hashin’s (1985) variational model to assess the effect of 

temperature and moisture on the reduction of longitudinal Young’s modulus in cross- 

ply laminates with transverse cracking. The results show that the hygrothermal 

environment has a significant effect on the relative reduction of longitudinal Young’s 

modulus at the higher crack density. In contrast, the sensitivity of the hygrothermal 

effects on the Poisson’s ratio becomes weaker.

Li and Lim (2005) developed variational principles for generalised plane strain 

problems and applied them to the stress analysis of transversely cracked laminates 

and effective elastic properties of unidirectionally fibre-reinforced composites. Both 

the total potential energy and the total complementary potential energy principles 

were well formulated and presented. The expression of the total complementary 

potential energy is revealed for the first time in the literature.

2.2.I.3. Approximate Elasticity Solutions

Im (1990) investigated the stress transfer in composite laminates with transverse 

cracks by using the Lekhnitskii's (1963) stress potentials for generalised plane strain 

deformation. An eigenfunction series solution was constructed by satisfying the 

boundary conditions near crack surfaces and the interface. The conditions on the 

other boundaries are satisfied approximately by truncated series terms in the least 

square method. In general, the number of truncated terms strongly depends on the
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geometry and boundary conditions. Furthermore this investigation is limited to 

symmetric cross-ply laminates.

McCartney (1992; 1996) and McCartney and Pierse (1997a; 1997b) developed a 

series of stress transfer theories for predicting the stress and displacement 

distributions in a cross-ply laminate or a general symmetric laminate containing ply 

cracks in a single ply group, under in-plane biaxial loading or bending. The out-of

plane shear stresses were assumed to be linear functions of the through-thickness 

coordinate in each layer. A system of ordinary differential equations were derived by 

satisfying exactly the equilibrium equations, the stress-strain relations and four 

compatibility equations (strain-displacement relations), as well as satisfying the 

remaining two compatibility equations in an averaging way. The stress and 

displacement solutions were then obtained by solving the ordinary differential 

equations numerically. The stress-free conditions at the crack surfaces can be 

satisfied exactly, but the displacement boundary conditions for the uncracked layers 

are specified in an averaging way. In order to reduce such an approximation, the ply 

refinement technique was recommended of subdividing each ply in the laminate by a 

set of n elemental layers having the same thickness and properties. It is expected that 

a highly accurate prediction for a stiffness reduction due to ply cracking can be made 

by conducting a well-fine ply subdivision (Zhang and Herrmann, 1998).

Abdelrahman and Nayfeh (1999) presented a simple approximate elasticity model to 

study the stress transfer and stiffness reduction in orthogonally cracked laminates. 

Using approximate distributions for some of the field variables which automatically 

satisfy symmetry and interface conditions, the behaviour of the three dimensional 

laminate is described by two coupled partial differential equations. Once the stress 

free crack surface boundary conditions are imposed and the stress field components 

are obtained. Expressions for the reduction in the residual Young's modulus and 

shear modulus from crack initiation to crack saturation were derived from the stress 

field solutions.

The aforementioned semi-analytical method (Zhang et al., 2006a; 2006b) was used 

not only to evaluate stress singularities in the vicinity of free edges, but also to study 

stress transfer near transverse cracks in cross-ply laminates. In addition, by using the
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constitutive equations of laminates in the Classical Laminate Theory and the stress 

analysis, the thermoelastic property degradation induced by transverse cracking was 

predicted in Zhang et al. (2006a).

2.2.1.4. Laminate Plate Theories

Apart from the shear lag analysis, Zhang and Herrmann (1998) employed the first- 

order shear deformation laminate theory to evaluate the stress and displacement 

fields within the ECM laminates. In comparison with the shear lag analysis, the 

laminate plate theory solutions satisfy the equilibrium equations more accurately and 

satisfy the continuity conditions of both displacements and stresses at the interfaces 

between sub-layers exactly. The method was used to predict stiffness degradations in 

symmetric laminates containing a cracked mid-layer. Furthermore Zhang and 

Herrmann (1999) extended this method to model the stiffness degradation induced by 

multilayer intralaminar cracking in general symmetric composite laminates.

Whitney (2000) used a stress based laminate plate theory to model each ply of a 

bidirectional laminate. The model considers the effect of transverse shear and normal 

stresses. All nine independent effective elastic constants of cracked cross-ply 

laminates were determined. Whitney (2001) proposed a global/local model to 

determine the effective thermoelastic constants of balanced angle-ply laminates with 

transverse cracking. The global model is a displacement based, higher order 

laminated plate theory, while the local model is a stress based plate theory.

2.2.1.5. Finite Element Methods

Yuan and Selek (1993) developed a singular hybrid finite element model to study the 

stress singularity and stiffness reduction in symmetric composite laminates with 

transverse cracking. Formulation of the problem is based upon the method of 

eigenfunction expansion and Lekhnitskii’s complex variable potentials for 

generalised plane strain deformation. For numerical analysis, a singular hybrid 

element was formulated on the basis of the variational principle of a modified hybrid 

functional to account for the crack tip singularities. The singular hybrid element 

model exhibited very good prediction of the stress field, especially in the singular
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domain near the transverse cracks where conventional finite element method failed to 
model the stress distribution accurately.

Li et al. (1994) presented a finite strip method to analyse the stress fields and 

stiffness reduction of transversely cracked laminates. The approach is based on a 

generalised plane strain approach and can be used to study general lay-up laminates 

under general loading. This approach is similar to the displacement based finite 

element method with discretisation only in the thickness direction. Therefore it could 

be integrated with a displacement-based analysis of damaged laminated structures. In 

their numerical results only symmetric laminates were analysed.

Leblond et al. (1996) applied finite-element analyses to the investigation of 

transverse cracking in cross-ply laminates. Stress and strain distributions were 

obtained for a given damage state and applied load by using 2D and 3D elements for 

the case where the cracks cross the full specimen width. Eight-node elements with 

linear interpolation of displacement were used in 3D investigation. A plane strain 

state associated with four-node elements was considered in 2D investigations. The 

results obtained in 2D and 3D investigations do not show any significant differences.

Tong et al. (1997b) simulated the occurrence of cracks in quasi-isotropic laminates 

by using generalised plane-strain finite element models, which includes the effect of 

finite strain in the infinite length direction. The loss of stiffness due to matrix 

cracking was predicted and detailed stress distributions were examined. The 

interlaminar shear stress close to the crack tip, influenced by the singularity, was 
discarded in the numerical results.

In order to validate their variational models, Rebiere et al. (2001) also proposed a 

three-dimensional finite element method to study the stress transfer and stiffness 

loss. An 8 nodal volume anisotropic element was used with linear interpolation. For a 

more detailed study of the stress field, the mesh is improved in the vicinity of crack 

planes and interfaces. However the FEM can not give a distribution of interlaminar 

shear stress in good agreement with the variational methods.

Chapter 2 Literature Review
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The state space finite element method (Ye et al., 2004) mentioned in Section 2.1.3 

can also provide excellent approximations to the stress singularities in the vicinity of 

localised stress-free surfaces, e.g., transverse ply cracks. A numerical comparison 

was made between their new results and those of McCartney and Pierse (1997a) to 

validate the solution of ply cracking problem.

A review of various stress-distribution models for the analysis of composite 

laminates with transverse ply cracks has been made in the preceding discussions. 

Shear lag analysis is considered as the simplest and most commonly used model 

however it sometimes can not predict an accurate stress field and has limited 

application in general cases. On the contrary, the later appeared methods, i.e. the 

variational approach, the approximate elasticity solution, the laminate plate theory 

and finite element method, are more complicated but a highly accurate prediction can 

be obtained. However, almost none of the existing models can handle composite 

laminates with general lay-ups and stacking sequences.

2.2.2. Property Degradation due to Transverse Cracking

An immediate effect of transverse cracking is to cause a degradation of thermoelastic 

constants. The effective thermoelastic properties of cracked composite laminates 

have been estimated as functions of transverse crack density by various approaches. 

These can be classified in two groups by the method of formulating constitutive 

relations of the cracked laminate. The first approach is to evaluate the stress 

distribution in a representative volume element (RVE) between neighbouring cracks 

and deduce the relationship between the applied loads and laminate overall response. 

The stress distribution will satisfy the boundary conditions and equilibrium equations 

near the crack surfaces. The second approach is to evaluate the locally averaged 

constitutive properties from a damaged local volume so that the effect of the internal 

damage is reflected in the constitutive equations rather than boundary conditions 

(Han and Hahn, 1989).

2.2.2.I. Stress Analysis Based Models

In the stress analysis based models, the stress and displacement field in a 

representative volume element (RVE) between two neighbouring cracks is first
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evaluated by a stress transfer model. Then the overall deformation and applied load 

or the average strains and stresses of the RVE can be calculated. By using the 

effective constitutive equations or stress strain relations of a cracked laminate, the 

effective thermoelastic constants can finally be determined. In this procedure, stress 

analysis is a prerequisite to predict effective thermoelastic properties and determines 

the accuracy of the prediction. According to the method of evaluating stress and 

displacement distribution, the stress analysis based models can be further classified 

as the shear lag analysis, the variational approach, the approximate elasticity 

solution, the laminate plate theory and finite element method, which have been 

reviewed in Section 2.2.1.

2.2.2.2. Local Damaged Methods

Continuum damage mechanics (CDM) lays its foundation on basic thermodynamics 

by introducing a set of independent internal state variables describing the state of 

damage. The continuum damage models require certain material constants, to be 

determined experimentally, in addition to the usual elastic moduli of the undamaged 

composite. The additional constants may be interpreted as the additional basic 

material characteristics needed for the description of the material response in a wider 

frame (Talreja et al., 1992). Beginning with Talreja (1985) who developed stiffness- 

transverse cracking relationships using a continuum damage model, Talreja (1986) 

considered two modes of damage: the matrix cracking and delamination. 

Relationships between the overall stiffness properties and the intensity of damage in 

the individual modes were determined. Talreja (1992) reported the results of an 

experimental investigation and used the continuum damage model to analyse the test 

data. Since the model accounts for the effect of cracks on the composite stiffness 

through certain material constants, it provides a means for distinguishing between the 

matrices of different toughness by the resulting values of the constants. Allen et al. 

(1987a; 1987b) also proposed a continuum mechanics model to predict the stiffness 

loss in composite laminates. The model was specialised for the case of matrix cracks 

in symmetric cross-ply laminates. As well as Talreja’s theory, the approach depends 

on the damage state which has to be determined experimentally.
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Although the continuum damage approaches allow, in principle, the treatment of 

matrix cracking in off-axis plies of any orientation. However, certain material 

coefficients are usually to be determined experimentally for each laminate 

configuration considered. To avoid this practical limitation, therefore some 

combination theories were proposed. Tay and Lim (1996) developed a computer 

algorithm which combined CDM and FEM to predict stiffness loss in cross-ply 

laminates. The finite element method was used to determine the effect of damage 

accumulation on the internal state variables. Tay and Lim (1996) extended the theory 

to the analysis of transverse cracks in more general symmetric laminates. Talreja 

(1996) proposed a synergistic damage mechanics approach, which utilises 

micromechanics results in a continuum damage mechanics formulation, and 

illustrated its use in describing deformational response of [±0/9O°2]s laminates. Varna 

et al. (2001) used the synergistic approach to predict stiffness reduction of [±0/904]s 

laminates under longitudinal tensile loading. The constraint of 0 plies on transverse 

cracks in 90° plies is represented by a crack-opening displacement (COD) parameter 

in the CDM model and is expressed in terms of the ply properties and ply thickness 

ratios on the basis of a finite-element calculation.

2.2.3. Initiation and Propagation of Transverse Cracking

The ultimate failure of a composite laminate follows the occurrence of transverse 

cracking, longitudinal cracking, delamination, and fibre breaking. Transverse 

cracking is usually the most common damage mode observed in composite materials. 

The initiation and propagation of transverse cracks in composite laminates have been 

studied in the last few decades. These extensive investigations consist of 

experimental and analytical studies.

2.2.3.I. Experimental Studies

Garrett and Bailey (1977), Parvizi et al. (1978), Bailey et al. (1979) and Bailey and 

Parvizi (1981) are amongst the earliest researchers who carried out extensive 

experiments to observe transverse cracks. They found that the cracks formed in a 

direction parallel to the transverse reinforcement and the thickness of the 90° plies 

affects the entire cracking process. At large inner-ply thicknesses the specimens
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showed uniform transverse cracking, and at very low inner-ply thicknesses this 

transverse cracking could be suppressed completely prior to total specimen failure.

Flaggs and Kural (1982) presented the results of an experimental study which 

confirmed that the constrained transverse cracking phenomena observed in 90° ply of 

uniaxially loaded [0°/90°]s composite laminates was also exhibited by the more 

general [0/9O°]s class of composite laminates. Experiments showed that by 

increasing the stiffness of neighbouring laminae or, alternatively, by decreasing the 

thickness of the 90° laminae, greatly enhanced in situ transverse matrix strengths 

could be obtained, which would not have been predicted by the traditional stress (or 
strain) failure criteria.

Takeda and Ogihara (1994) investigated the effects of temperature on the fracture 

process in CFRP cross-ply laminates. The transverse crack density was measured at 

room temperature and 80°C. Thermal residual strains which had important effects on 

the failure process were measured by the ply separation method.

Naim and Hu (1992), Liu and Naim (1992) and Nairn et al. (1993) did a series of 

experiments to record the crack density as a function of applied load. Some 

interesting results were concluded. For all laminates, the characteristic cracking 

curve has no cracks until some onset stress that corresponds to the initiation of 

cracking. After the initial crack, the crack density typically increases very rapidly. At 

high crack density, the cracking slows down and approaches a saturation damage 

state. The onset stress decreases as the thickness of the 90° plies increases. On 

continued loading, however, the situation reverses-thinner 90° ply groups eventually 

develop more cracks than thicker 90° ply groups. In other words, the saturation crack 

density is inversely related to the thickness of the 90° plies. However the transverse 

cracking properties of a laminate are not just a property of the thickness of the 90° 

plies. The properties also depend on the thickness and mechanical properties of the 

supporting plies (Naim, 2000).

Tong et al. (1997a) reported an experimental study on matrix crack growth behaviour 

in cross-ply [0°/90°]s and quasi-isotropic [07907-457+45°]s GRP laminates.
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Although the initiation strains for the two laminates are similar, the transverse crack 

accumulation processes differ significantly. Reductions in elastic properties due to 

transverse cracking in quasi-isotropic laminates were less significant than those in 
cross-ply laminates.

Joffe and Varna (1999) carried out a tensile test to investigate the transverse cracking 

development in Glass Fibre (GF)/Epoxy (EP) laminates with lay-up [±e/90°4]s, 0=0°, 

15° ,30°, 40°. For these four lay-ups, the first transverse cracks appeared at 

approximately the same strain level, while with the increasing fibre orientation angle, 

the crack density decreased. Varna et al. (1999) studied damage in off-axis plies of 

composite laminates by examining the configuration [O7±04/O°i/2]s with 0=25°, 40°, 

55°, 70° and 90°. It was found that for the values of 0=55°, 70° and 90°, where the 

stress in the off-axis plies normal to the fibres is tensile, ply cracks along fibre 

directions initiate and increase in number, while for other 0 values, no ply cracks 

were found at any axial tensile load until failure. The axial Young’s modulus and 

Poisson’s ratio were, however, found to change with the applied load.

Yokozeki et al. (2002) studied the damage process of transverse cracks in cross-ply 

and quasi-isotropic CFRP laminates under static loading. In the case of cross-ply 

laminates simultaneous growth of edge crack density and widthwise propagation 

could be observed. However, in quasi-isotropic CFRP laminates, widthwise 

propagation of edge cracks is suppressed until the higher strain level is attained, after 

edge crack densities saturate. Yokozeki et al. (2005) investigated crack accumulation 

in multiple plies of [O/02/9O°]s laminates (0=30°, 45° and 60°). The experimental 

results indicate that intersecting angle between the contiguous cracked plies (i.e. 90° 

and 0-ply) has significant effects on the process of 0-ply crack formation. When the 

intersecting angle is small, micro-formed cracks are observed before propagation in 

the fibre direction as the cases of 0= 45° and 60°. However, developed cracks mainly 

form in the cases of large intersecting angles.

Most experimental investigations show that the first damage mode is usually 

transverse cracking. Both the thickness of 90° layers and stiffness of constrained 

layers affect the initiation and propagation of transverse cracks. The onset stress
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decreases as the thickness of the 90° plies increases or the stiffness of neighbouring 

layers decreases. Two particular states can characterise this damage mode: its 

initiation or occurrence of the first transverse crack on the one hand and the 

saturation state when no more transverse crack can be created on the other hand. The 

saturation crack density is inversely proportional to the thickness of the 90° plies.

2.2.3.2. Analytical Studies

Most early work on transverse cracking assumed that cracks form when the stress or 

strain reaches the transverse strength of the ply material. More recent work employed 

energy methods based on fracture mechanics to evaluate matrix cracking. According 

to the cracking propagation criteria, the analytical studies consist of the strength 

based approach and the energy based approach. Among the strength based models 

are some statistical strength methods to account for the variations in material 

strength.

(1) Strength Based Approach

A common method for designing with composites to avoid failures is strength based 

theory. In strength based theory, it is assumed that the new cracks form when the 

maximum stress or strain reaches the strength of those plies. Furthermore, it is 

usually assumed that the ply cracking stress or strain can be measured from 

experiments.

Garrett and Bailey (1977) assumed that the transverse ply has a unique breaking 

strain, etli, and strength crtu. If a stress is applied in a direction parallel to the 

longitudinal plies, the transverse ply will fail at a stress ertu. Using the same strength 

criteria, Parvizi and Bailey (1978) reported more detailed studies for a glass fibre 

reinforced epoxy composite. Leblond et al. (1996) studied the multiplication of 

transverse cracks as a function of the applied stress in cross-ply laminates. The crack 

development is assumed to be controlled by the fracture stress in the 90° plies.

However the strength based theory usually can not provide a good prediction of 

transverse cracking because the stresses or strains in the transverse plies at the onset 

of matrix cracking are not constant between laminates with different lay-ups. In other 

words, there is no strength based models that can be used to predict transverse
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cracking process unless the ply strength properties are treated as in situ properties 

that depend on laminate configurations.

In fact, the strength of a ply varies from place to place throughout a composite 

laminate. Uniform ply strength is just an ideal state and does not match the real 

strength distribution. For this reason there are a few attempts to use statistical 

models, which account for the variations of strength in composite laminates, to 

predict progression of transverse cracking. Manders et al. (1983) considered a 

Weibull distribution of the strength along the 90° layer. The Weibull parameters 

(shape and scale parameters) of the 90° ply were obtained by measuring crack space. 

Fukunaga et al. (1984a; 1984b) derived formulae for determining first cracking, 

subsequent multiple cracking and ultimate fracture by the statistical approach. Peters 

(1984) found the Weibull parameters from the number of cracks, assuming that the 

90° ply consists of a chain of elements with a critical length. Ochiai et al. (1992) 

presented an operatively equivalent Peters method to estimate Weibull parameters. 

Berthelot and Corre (2000) used a pseudo-normal distribution to describe the 

strength distribution in the 90 layer. Sun et al. (2003) adopted Weibull distribution to 

predict transverse cracking propagation in high temperature composite laminates.

Although the statistical analyses have a better description of the strength distribution 

in laminates than the conventional strength methods, they still require an individual 

test programme for each stacking sequence of a laminate and therefore the practical 
applications of this method are limited.

(2) Energy Based Approach

Due to the drawbacks and limitations of strength based methods, the majority of 

recent work used energy methods based on fracture mechanics to predict transverse 

cracking. Most energy models use a representative volume element (RVE) to predict 

next crack formation when the energy released due to crack formation reaches the 

critical strain energy release rate Gc. For the same type of laminates with different 

configurations, the value of Gc almost keeps constant, it can therefore predict results 

for a wide variety of laminates from a single value of Gc.
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Parvizi et al. (1978) demonstrated that a simple shear lag analysis used in 

conjunction with the Griffith energy criterion can be used to accurately predict 

matrix cracking. Flaggs (1985) made use of a strain energy release rate fracture 

criteria in conjunction with an approximate two-dimensional shear-lag model to 

predict tensile matrix failure. Wang et al (1985) employed the energy release rate 

method of classical fracture mechanics to model various matrix crack interactions. 

Dvorak and Laws (1987) investigated the first ply failure using a critical energy 

release rate criteria and later Laws and Dvorak (1988) presented a model for 

progressive transverse cracking based on statistical fracture mechanics. Naim (1989; 

2000), Liu and Naim, (1992) and Naim and Hu (1992) carried out a series of study 

on the matrix cracking on the basis of a finite fracture mechanics. Zhang et al. (1992) 

and Fan and Zhang (1993) proposed the equivalent constraint model (ECM) in which 

the energy release rate due to transverse ply cracking, incorporating residual thermal 

stresses, is derived. McCartney (1998; 2002; 2004; 2005) investigated ply crack 

development in a variety of lay-ups, from cross-ply to general symmetric laminates, 

subjected to axial extension or mixed mode loading. Smith and Ogin (1999) 

calculated the applied bending moment at transverse crack onset under flexural 

loading using a fracture mechanics approach. Gudmundson and Alpman (2000) 

evaluated the experimental observations of crack initiation and growth in an off-axis 

loaded tensile specimen by developing the FE model and approximate formulae for 

energy release rates. Joffe et al. (2001) used a crack-closure technique to calculate 

the energy release caused by cracking. A Monte-Carlo simulation in incremental 

strain-controlled loading is used to model the transverse cracking process. The 90° 

layer is divided in to a large number of elements and a critical energy release rate Gc 

is assigned to each element according to Weibull distribution. Yokozeki el al. (2002) 

employed energy release rate to investigate crack initiation and propagation across 

the specimen width. Energy release rates associated with crack propagation in the 

width direction are calculated using three-dimensional FEA. Subsequently Yokozeki 

et al. (2005) used the same method to study microcracking behaviours induced by 

matrix cracks in adjacent ply. Lim and Li (2005) calculated energy release rates for 

transverse cracking and delamination under the generalised plane strain condition. 

By applying the minimum strain energy density criterion to a non-linear FE analysis, 

Sirivedin et al. (2006) predicted matrix crack propagation in continuous-carbon 
fibre/epoxy composites.
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In summary, the energy based analysis can correlate most experimental results in 

extensive composite laminates with different materials properties and lay-ups. The 

energy release rate was verified to be a very good material parameter which 

characterises matrix cracking propagation.

2.3. Sum m ary

In this chapter, the investigations on two types of material discontinuities in 

composite materials, free edges and transverse cracks, are reviewed. For the free 

edge effects, investigators focused their work on evaluating the stress singularities in 

the vicinity of free edges. These include analytical, numerical or semi-analytical 

methods. For transverse cracking problem, the issues about stress transfer, property 

degradation and transverse crack propagation are extensively reviewed. The stress 

transfer is a prerequisite to predict property degradation or transverse crack 

propagation. As a result, an accurate stress analysis is essential to assess the damage 

of composite laminates. Some remarks about the existing stress transfer approaches 

and transverse cracking propagation methods are also made.
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Chapter 3. Approaches and Modelling

In this chapter, a brief introduction of approaches and modelling used in the thesis is 

provided. Further details can be found in Ye (2002), Lekhnitskii (1963), Kolldr and 

Springer (2003), Adolfsson and Gudmundson (1997), and Kanninen and Popelar 

(1985). The applications of these theories to the stress transfer, the property 

degradation and the transverse cracking propagation of composite laminates will be 

presented in subsequent chapters.

3.1. State Space M ethod and Application to Stress Analysis

The term ‘state space’ is often used in connection with linear control systems where 

the principal concern is the relationship between inputs (or source) and outputs (or 

responses). In practice, these systems may be electrical, hydraulic, mechanical, 

pneumatic, thermal, or a mixture of these. For example, the state of a continuous 

system can best be represented by a single-input, single-output, linear electrical net 

work whose structure is known. The input to, and the output of, the network are both 

functions of time. Since the network is known, complete knowledge of the input over 

a time interval is sometimes sufficient to determine the output over the same time 

interval (Ye, 2002).

For three-dimensional analyses of composite laminates, the use of state equations has 

many advantages. For example, in a laminate, if the displacements and transverse 

stresses at the top surface of the laminate as are taken the initial state of the system, 

after introducing boundary conditions, the displacements and stresses at the bottom 

surface of the plate may be found and the displacements and stresses at an arbitrary 

interface of the laminate can be traced as ‘the past history of the system’ (Ye, 2002).

The concept of state space and solutions of state variable equations or state equations 

will be briefly introduced in the following. This method is fundamentally important 

to the stress analysis parts of the thesis. The theories presented herein have been
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discussed in Ye (2002) and DeRusso et al. (1998), where rigorous mathematical 
proofs of these theories are provided.

3.1.1. Concept of State and State Variables

Consider a mechanical system in Fig. 3.1. The corresponding elements are a spring, a

Fig. 3.1 A spring-damper-mass system

By means of Newton’s second law, the mathematical model which describes the 
motion of the system are given by

m x(t) + c x(t) + kx(t) = F(t) q  i )

where the dots designate time derivatives; t denotes time. The three constant 

coefficients m, c and k represent, respectively, mass, damping constant and force 

constant of spring. F(t) is the force at time t. In order to determine the future position 

x(t) of the mass, a prerequisite is the position and velocity of the mass at an arbitrary 
time instant to.

By letting

*i(0 = *(0

x2(t) = x(t)

The second order linear differential Eq. (3.1) can be converted to the 
matrix form

(3.2)

following
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d_
dt (3.3)

Eq. (3.3) is a first-order linear differential equation system. The equation governs the 

behaviour of the state of the system and is called the state variable equation or state 

equation of the system. The column vector containing x \(/) and xi{t) is called the 

state vector. Each component of the vector is called a state variable, i.e. the position 

x\(f) and velocity X2(/) are two state variables of the spring-mass-damper system in 
Fig. 3.1.

The notion of a system is rather broad, and is not restricted to simple mechanical 

systems. In general all these systems can be described by a similar mathematical 

form. In analogy with Eq. (3.3), the definition of a general form of the state space 

equation can be expressed as follows

set of elements x\(t), xi{t).....  xn(t). [A] is an nxn  constant matrix called the

coefficient matrix or system matrix in the literature. [B] is an n x 1 column vector. 

(u(i)} is input of the system. As long as the state of the system at time to, 

{*(*„)} .together with the input {u(/)} are known, the output of the system is uniquely 

determined for t t t 0.

Eq. (3.4) is called a linear time-invariant system since the system is characterised by 

two matrices, [A] and [B], which are independent of time. The solution of Eq. (3.4) 

will be discussed in the following section.

3.1.2. Solutions for a Linear Time-invariant System

If the dimension of Eq. (3.4) is one, i.e. a scalar differential equation

where a and b are constant. Based on the classical solution method of a linear 

differential equation, the solution of Eq. (3.5) can be written as

(x(r)} = [a ]{x(0}+  [b ]{u(0} (3.4)

where the column vector (x(/)} is the state vector of the system and it consists of a

x(t) = ax(t) + bu(t) (3.5)
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t

x(t) = ea'x(0) + ea' (3 6 )
0

where tor0 is assumed. In analogy with the scalar case, the solution of Eq. (3.4) can 

be written as

{x(0} = e[A1' (x(0)} + eIA1' fe-**1’[B] {u(x)}rft
0

or

{x(0} = e[A1'{x(0)} + jeIA,<'-T)[B]{u(T)}Jx
0

Eq. (3.8) is the complete solution of Eq. (3.4). The matrix exponential e[A]' is called 

transition matrix, transfer matrix or fundamental matrix in the literature. The 

calculation of e[A]' can be found in Moler and Van Loan (1978; 2003) and Ye (2002).

3.1.3. Application of State Equation to Stress Analysis

From Section 3.1.1, it has been seen that the mechanical behaviour of the spring- 

damper-mass system shown in Figure 3.1 can be described by a state equation of 

time co-ordinate t. The state variables of the equation are the displacement and its 

derivative with respect to t. In analogy with this, the stress state of an elastic body in 

a three-dimensional space can also be described by a state equation with respect to 

one of the three orthogonal co-ordinates, e.g. the z coordinate in the rectangular co

ordinate system. The state vector, therefore, may include displacements and stresses 

with respect to the z co-ordinate. The state equation of this form has been used to 

solve shell problems (see Soldatos and Hadjigeorgiou, 1990; Fan and Ye, 1990a, b). 

Since the state vector contains the derivatives of displacements with respect to z, it is 

natural to convert these derivatives to relative strains and then stresses. In 

consequence, the displacements and the stresses relative to the z-direction may also 

be used as the state variables in the state vector. In the case of a plate bending 

problem, for instance, if the z-direction is taken as the transverse direction, the state 

vector will contain three displacements of the plate and the three transverse stresses 

(Fan and Ye, 1990a, b). It is also possible to construct the state equation in other 

different forms, for example, in the one used by Tam and Wang (2001), where the 

transverse stresses in the state vector are all multiplied by the transverse co-ordinate 

(Ye, 2002).

(3.7)

(3.8)
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At the beginning of the last decade, Soldatos and Hadjigeorgiou (1990) and Fan and 

Ye (1990a; 1990b) started applying the state space method systematically to the 

solutions of various plates and shells composed of laminated composite materials. 

Employing the same method, Ye and Soldatos (1994a) developed a detailed, three- 

dimensional stress and displacement analysis of transversely loaded, laminated 

complete hollow cylinders and open cylindrical panels having a symmetric or an 
antisymmetric cross-ply lay-up.

The volume of research publications in this area has increased significantly over the 

last few years. Khdeir and Reddy (1990; 1997) used state variable equation method 

for the solution of two-dimensional plate bending problems. Wang et al (2000) 

investigated stress decay in laminates due to edge effects through a state space 

formulation. Tam (2002a; 2002b; 2002c) formulated a series of state space equations 

for rectilinear anisotropy, cylindrical anisotropy and piezothemoelasticity. Chen et 

al,(2003) and Chen and Kang Yong (2004) developed exact solutions of cross-ply 

and angle-ply laminates with interfacial damage via the state space method.

An application of the state space method to evaluate stress singularities near free 

edges and transverse cracks in general cross-ply and angle-ply composite laminates 

has been developed by Zhang et al. (2006b; Submission) as a part of his PhD project 

and will be presented in Chapters 4 and 5.

3.2. Generalised Plane Strain Deformation

3.2.1. Introduction of Generalised Plane Strain Deformation

There are circumstances in an anisotropic elastic body when the stresses and strains 

do not vary in a certain direction. This direction is designated by the ^-direction in a 

Cartesian x-y-z coordinate system. Although the stresses and strains do not vary 

along y, they may vary in planes perpendicular to the ^-axis. This condition is 

referred to as generalised plane strain condition.

An isotropic body under such conditions would experience plane deformation: the x- 

z planes of the cross section remain plane and perpendicular to the y  axis, the out-of

plane shear strain yxy and yyz are zero. In a body made of an anisotropic material these
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planes do not necessarily remain plane and these out-of-plane shear strains are not 

necessarily zero. We can only assert that all components of stresses and strains will 

not depend on y. The deformation of such a body which corresponds to plane 

deformation in an isotropic body is called generalised plane deformation. When the 

generalised plane strain condition exists, the three-dimensional analysis simplifies 

considerably.

In the following, the equilibrium equations, and the stress-strain relationships of an 

anisotropic material are presented when the generalised plane strain conditions are 

satisfied.

3.2.2. Formulations of Generalised Plane Strain Deformation

Generalised plane strain deformation requires that the strains do not vary along the 

longitudinal axis y. Thus

fa« = 0 ,
8z„ i

= 0 , 8s--^- = 0
dy dy dy

ds„ 8s 8s „= 0 , xt = 0 , —— — 0
dy dy dy

Since the strain components are independent of y, the stress components are also 

independent of>\ and so

do
" "0 ,

Sa„
— -̂ = 0, fa«

8y dy dy

da da „ da
— 2L = 0, —^  = 0, y*

dy dy dy

(3.10)

Then the equilibrium equations become

fa»
dx

fay
dx 

da „

da
+ —  + / , = 0ôz

8a
8z

8a

-  + /,= o

8x 8 z ■ + / .=  o

(3.11)

where f x, f y, and f z are the body force per unit volume in the x, y  and z directions, 

respectively. For a generally anisotropic material the stress-strain relationships may 

be written in partitioned form, as follows
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where C'v are the stiffness coefficients that can be expressed in terms of Young’s 

moduli, Poisson’s ratios and shear moduli.

3.3. Effective Therm oelastic Properties o f Com posite Laminates

The effective thermoelastic constants of composite laminates are of great interest in 

engineering applications. In practice the Classical Laminate Theory (CLT) is usually 

employed to determine the thermoelastic properties. The Classical Laminate Theory 

uses the Kirchhoff-Love assumptions, which require that straight lines, perpendicular 

to the midplane before deformation, remain straight, inextensible and perpendicular 

to the midplane after deformation.

Fig. 3.2 gives the coordinate system which is used in the Classical Laminate Theory. 

The x-y-z coordinate system is assumed to have its origin on the mid-surface of the 

plate, and the mid-surface lies in the x-y plane. The stress resultants, in-plane forces 

Ni and moments M\ (per unit length), are also shown in the figure (/=*, y, xy).
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Ny

Fig. 3.2 Stress resultants of the loads applied to a composite laminate

3.3.1. Stiffness Matrices of Composite Laminates

For a generally anisotropic plane the relationships between the stress resultants and 

the overall deformation of the laminate due to applied mechanical and thermal loads 

follow

A
Br (3.14a)

where

' A , A i A t X Bn B A i D n D u
[ A ]  = A  2 A 22 A 6 ,  [ B ]  = Bn B 22 A e , [ D ]  = D n a . D u

_ A ô A t A t A b 26 B * A . A * A .

-----v—II __
_

/
-v--

---
s* 5 h

r >

M y ■> I6) =  •

' -----
v

—

II

___
A_ ky

.V r--
- ;v *-

{a} = [a, a 2 a 3 a 4 a 5 a j r

(3.14b)

[A], [B], and [D] are the stiffness matrices of the laminate; el and el are the mid-

plane strains in the x and y  directions respectively; e°xy is the mid-plane shear strain

in the x-y plane; kx and ky are the bending curvatures experienced by the mid-surface 

in the x-z and y-z planes, respectively; kxy is the twisting curvature caused by out-of

50



Chapter 3 Approaches and Modelling

plane twisting of the mid-surface; ax (/=1 , 2 ,..., 6 ) are effective thermal expansion 

coefficients of the laminate; and AT\s a temperature change.

The elements of the stiffness matrices are defined as (i,j= 1, 2, 6 )

- f f . 'jS ie ;» .« - * : . , ) .  q .mc)

where N  is the total number of layers in the laminate; z*, z*-i are the distances from 

the neutral axial to the two surfaces of the Ath ply; and Q'tj are the reduced stiffness

constants, which can be expressed by
C Crt - r '  n y» ~^u c (/,;= 1 , 2 , 6 ) (3.14d)

where C'. are stiffness coefficients that can be expressed in terms of Young’s 

moduli, Poisson’s ratios, shear moduli and the fibre orientation 0(See Appendix B).

By inverting Eq (3.14), we obtain the strains and curvatures in terms of the in-plane 

forces, bending moments and thermal loading

¡N]a b 
bT d M

+ {a}AT (3.15a)

where

«u «12 «16 ¿„ bn ¿,6 ¿„ dn d\6
[a] = «,2 «2 2 «26 ,[b] = bi2 bn ¿26 , and [d] = d\ 2 d21 d1& (3.15b)

_«.6 «26 «66. K ¿26 ¿66 .¿, 6 d* ¿66

are compliance matrices and are related to the [A], [B], and [D] matrices by

’ « „ « 1 2 « 1 6 ¿ 1 , ¿ 1 2 ¿ 1 6  ' X An A 5 ,i Bn Bn
« 1 2 « 2 2 « 2 6 ¿ 1 2 ¿ 2 2 ¿ 2 6 A A A 5 , 2 Bn Bn
« . 6 « 2 6 « 6 6 ¿ 1 6 ¿ 2 6 ¿ 6 6 A A26 A6 5 , 6 Bn 5 6 6

¿u ¿ 2 , ¿ 6 , dn ¿ 1 2 ¿ 1 6 Bn Bl2 5 , 6 Dn Dn Dn
¿ 1 2 ¿ 2 2 ¿ 6 2 dn ¿ 2 2 ¿ 2 6 Bn Bn Bn Dn Dn Dn

. ¿ • 6 ¿ 2 6 ¿ 6 6 ¿ 1 6 ¿ 2 6 ¿ 6 6 . X Bn ^ 6 6 Dn Dn D(n

51



Chapter 3 Approaches and Modelling

3.3.2. Coupling in Composite Laminates

As mentioned before the [A], [B], and [D] matrices represent the stiffness of a 

laminate and describe the response of the laminate to in-plane forces and moments. 

In details

Ay is the in-plane stiffness that relate the in-plane forces Nx, Ny, Nxy to the in- 

plane deformations ex, e°y, exy.

By is the in-plane-out-of-plane coupling stiffness that relate the in-plane 

forces Nx, Ny, to the curvatures kx, ky, kxy and the moments Mx, My, Mxy 

to the in-plane deformations ex, ey, e°xy.

Dy is the bending stiffness that relate the moments Mx, My, Mxy to the 
curvatures kx, ky, kxy.

Examination of the [A], [B], and [D] matrices shows that different types of couplings 

may occur as discussed below.

Extension-shear coupling. When the elements A l6 and A26 are not zero, in-plane 

normal forces Nx and Ny cause shear deformation e%, and a twist force Nxy causes 

elongations in the x andy directions.

Bending-twist coupling. When the elements Dl6 and Z>26 are not zero, bending 

moments Mx and My cause twist of the laminate kxy, and a twist moment Mxy causes 

curvatures in the x-z and y-z planes.

Extension-twist and bending-shear coupling. When the elements B, 6 and B26 are 

not zero, in-plane normal forces Nx and Ny cause twist kxy, and bending moments MXf 

My result in shear deformation exy.

In-plane-out-of-plane coupling. When the elements Btj are not zero, in-plane forces 

Nx, Ay, and Nxy cause out-of-plane deformations (curvatures) of the laminate, and 

moments Mx, My, and Mxy cause in-plane deformation in the x-y plane.

The preceding four coupling types are characteristic of composite materials and do 

not occur in homogeneous isotropic materials (Kolldr and Springer, 2003).
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3.3.3. Effective Thermoelastic Constants of Composite Laminates

The thermoelastic properties of a laminate are basically expressed in terms of the 

components of the 6><6 laminate compliances and the 6 x 1 vector of thermal 

expansion coefficients. Before give the definitions of these engineering constants, a 

transformation needs to be applied to ensure that all the compliance coefficients have 

been normalised to the necessary unit of [length2/force]. A matrix [S] of equivalent

laminate compliances is obtained by use of the total laminate thickness H  as 

(Adolfsson and Gudmundson, 1997)

[S] =

H 2
H[ a] — [bl ’ là] [bf

H 2 ,
Lt 1*

^ [ d i
12 J

Jbf [d] (3.17)

Similarly, to let all thermal expansion coefficients have the same unit of 

[1/temperature], a 6 x1 vector of equivalent thermal expansion coefficients [a] is 

introduced as

[a] = a, a 2 (3.18)

From the compliance matrix [S], which is homogeneous with respect to dimension, 

the extension and shear moduli o f the laminate are defined as

2 , 6.
an (3.19)

The bending and twisting moduli of the laminate are defined as

F ,= i - , / =  1 , 2 , 6 .
du (3.20)

The extension-extension and extension-shear coupling ratios of the laminate are 

defined as

vÿ = - , i , j - 1 , 2 , 6 . iV j.
an (3.21)

The bending-bending and bending-twisting coupling ratios of the laminate are 

defined as

h,y l',y-l, 2 , 6 . j* ; .
da (3.22)
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The in-plane-out-of-plane coupling ratios of the laminate are defined as

tp = - i 1  and = -  = L . i . j = U  2, 6.
Ou d J/ (3.23)

The thermal expansion coefficients are simply expressed as the components a, (z'=l, 

2 , . . 6 )  o f the vector [a].

For symmetric laminates, all the components in the stiffness matrix [B] and 

compliance matrix [b] are zero, thus there exists no in-plane-out-of-plane coupling. 

In this case, the extension and shear moduli E\, Ei and £ 3  reduce to the ordinary in

plane Young’s moduli and shear modulus, respectively.

The above effective thermoelastic constants will be used in Chapter 6  to characterise 
stiffness degradation due to transverse cracking.

3.4. The Energy Release Rate

Because of the conservative nature of many loadings and the reversible nature of 

elastic materials, energy principles represent important concepts in the theory of 

elasticity. These principles have played a fundamental role in the development of 

many of the concepts in fracture mechanics (Kanninen and Popelar, 1985). Some of 
the most pertinent principles are reviewed in this section.

3.4.1. Strain Energy and Complementary Strain Energy

The strain energy density is the stored internal energy per unit volume in a body 

upon which work has been done. If the internal energy is zero in the unstressed state, 
the strain energy density in the stressed state is

t / = |{CT}Tit{£}

For a linear elastic material, substituting the stress-strain relationships into 

and integrating the equation gives the expression

(3.24) 

Eq. (3.24)

(3.25)

Integration o f the strain energy density over a given volume provides the strain 

energy of the body
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C/ = ̂ iJJ{£}T[C]{e}^l  y (3.26)

The complementary strain energy density is defined by

Uc = J{e}Tc/{a}

Following the same procedure as used for strain energy, the 
energy density over a given volume is

(3.27)

complementary strain

1 y (3.28)

For a linear elastic material, the work done by the body forces and tractions acting 

through the displacements from the unstressed state to the final equilibrium 

configuration is equal to twice the strain energy or the complementary strain energy 
of the body.

3.4.2. Total Potential Energy and Total Complementary Potential

Energy

The total potential energy 77 is defined by the difference of the strain energy 7 /and 
potential of external forces, i.e.

n  = U ~ V (3.29)

where V is the potential of the external forces, while prescribed displacements will
not contribute to it. The expression of V is

V = £ f 8 + \ \ \ { f } r {u}dV + f{p}r{«}d!s
y .v„ (3.30)

where on the right-hand side of the equation the first term represents the potential of 

prescribed concentrated forces F , the second term is the potential of body forces 

{/}, and the third term is the potential of prescribed surface tractions Q} on the 

boundary Sa.

The total complementary potential energy r is defined by the difference of the 

complementary strain energy Uc and the potential of prescribed displacements
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where Vc is the potential of the external displacements, while prescribed forces will 
not contribute to it. The expression of Vc is

K = j{u}r{p}ds
s. (3.32)

where {«} is the prescribed displacement fields on the boundary Su, and {p} is the 

reaction on Su.

3.4.3. The Energy Release Rate

Griffith (1920) approached the fracture of an ideally brittle material from a 

thermodynamic viewpoint. He postulated that during an increment of crack extension 

dA there can be no change in the total energy E composed of the sum of the total 
potential energy of deformation n  and the surface energy S; that is,

dE ~ dll + dS — 0 23)

The surface energy S  is the potential energy of the surface of the crack. The equation 

states that when a crack is able to propagate enough to fracture a material, the gain in 

the surface energy is equal to the loss of total potential energy

Irwin (1957) proposed an energy approach for fracture that is essentially equivalent 

to the Griffith model, while Irwin’s approach is more convenient for solving 

engineering problems. The energy release rate G is defined by

r __an_
dA (3.34)

G is the rate of change in the total potential energy within the crack area A. Since G 

is obtained from the derivative of a potential, it is also called the crack extension 
force or the crack driving force (Anderson, 2005).

In general for an elastic body the sum of the total potential energy and the total 

complementary potential energy n  vanishes (Lim and Li, 2005). Thus, G can also
be expressed as

G = ~ .
dA (3.35)
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Chapter 4. Free Edge and Transverse Cracking 

Effects in Cross-ply Laminates

4.1. Introduction

In cross-ply laminates fibres are only in the 0° and 90° directions. The cross-ply 

profile is one of the important profiles that are used to characterise composite 

material properties. The stacking sequence of composite laminates may be symmetric 

or nonsymmetric. For most designs of composite laminates, symmetric lay-ups about 

the middle-plane are often desirable in order to avoid the coupling effects between 

in-plane and out-of-plane loading. However, many practical applications require 

nonsymmetric laminates to specifically achieve the design requirements, e.g. the use 

of nonsymmetric laminates in a wind blade to produce a twisty and smooth shape 

and to reduce the buckling phenomena. Relatively less attention has been addressed 

to the analysis of interlaminar stresses in nonsymmetric laminates in the literature. 

Also little work has been done on the thermal stress problem associated with residual 

stresses resulting from manufacture at high temperature, although interlaminar 

thermal stresses may be more significant than the stresses due to mechanical loading.

In this chapter, a semi-analytical method is presented to evaluate the interlaminar 

stress singularities near free edges and transverse cracks in general cross-ply 

laminates subjected to biaxial extension, bending or/and thermal loading. The 

method is based on a state space representation of the three dimensional equations in 

elasticity and applied to generalised plane strain deformation and, therefore, the 

stress analysis can be simplified as a quasi-three-dimensional problem.

First a state space equation is developed for the free edge effect in a single 

orthotropic lamina. By establishing a recursive relationship between the state vectors 

on the upper and lower surfaces of an interface, the state space equation can then be 

extended to a multi-layer cross-ply laminate. After introducing the boundary 

conditions for free edges or transverse cracks, all the displacement and stress
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components can finally be obtained. The applications of the method are 

demonstrated by numerical solutions and comparisons are made with other models.

4.2. Theoretical M odelling o f Cross-ply Lam inates

4.2.1. Stresses in an Orthotropic Lamina

Consider a single-layer lamina with constant thickness h, width L and infinite length 

in the Cartesian x-y-z coordinate system (Fig. 4.1). The displacements in the x, y  and 

z directions are denoted by u, v and w, respectively. Suppose that the plate is 

subjected to a uniaxial tension by the application of a constant longitudinal strain e0 

in the y  direction and a uniform temperature variation, AT . The plate is made of a 

linearly elastic orthotropic material whose material axes of orthotropy coincide with 

the axes of the adopted co-ordinate system.

Fig. 4.1 Nomenclature of a single-layered lamina subjected to a uniaxial extension 

and uniform thermal loading.

(a) Stress-strain relations

The basic constitutive equation for thermo-elastic stress analysis is (Herakovich, 

1998)

{a}=[C]({e}-{8 r }) (41)

Here, the matrices [C], {f} and { /}  are stiffness matrix, mechanical strains and 

thermal strains, respectively; for a linearly elastic orthotropic material,
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Cu C,3 0 0 0
C„ G 22 C» 0 0 0
Cu C23 C33 0 0 0
0 0 0 CM 0 0
0 0 0 0 ciS 0
0 0 0 0 0 Cm

(4.2)

where the Cy are stiffness coefficients that can be expressed in terms of elastic 

moduli, shear moduli and Poisson’s ratios (See Appendix A for further details).

{e} = [£xx Eyy Ezz EyZ E „ £ Xy] ON

\ f T } =  { o } A T (4.4)

{a} = [ax a y az 0 0 0]T
(4.5)

where ax, ay and az are the coefficients of thermal expansion relative to the x, y, z 

directions, respectively.

(b) Equilibrium equations

daxx , f a » t o „  + ——
dx dy dz

daxy . t o y y . t o y ,

dx dy d z
dvxi , t o y , t o  „  

+ ---2-
dx dy d z

(4.6)

(c) Strain-displacement relations

‘y*

_5u dv dw
dx' £!2~~dz
dw dv du dw duC *■““  ̂ __t
dy dz ' ** dz dx ’ xy dy

(4.7)

Because the plate is subjected to a uniform extension £■„ in the y  direction, it follows 

that

e

8

8

yy

y*

xy

dv

_ dw dv 
dy 8z 
du dv_ _ +  _o
dy dx

(4.8)
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As a result, we can conclude from Eqs. (4.1), (4.7) and (4.8) that oyz= crxy=0 and the 

other six variables, u, w, axz, azz, oxx, ayy, are all independent of y. The stress analysis 

is then restricted to a generalised plane strain problem.

To facilitate the following deduction process, let

<x = d /d x , Ct = ~~C\3 / C33, C 2 = Cu — C\3 / C33, 

C3 = C 12 -Q3C23/C33 ,C 4 = C22 -CI3/C33 5 

c5 = —1C23 / C33, Cf — 1 / C33, Cg = 1 / C j5

(4.9)

From the third equation of Eq. (4.1) and Eq.(4.7), the following relation is obtained

dw
dz

= C,aw + C1csa +C5e0 -(C,a, +C5a -a ,)AT

Substituting Eq. (4.10) into the first equation of Eq. (4.1) yields 

&xx  =  c 2 a u  -  c \ a zz + C 2e o ~ (c 2 a x  + C 3a y ) A T

(4.10)

(4.11)

Inserting Eq.(4.11) into the first and third equations of Eq.(4.6) and considering Eq. 

(4.10) along with the fifth equation of Eq.(4.1), we can obtain the following first 

order non-homogenous partial differential equation system

(4.12)

u 0 - a c . 0  '
r 3u 0

5 w C, a 0 0 c , w • 4- • C5e0 -(<7 ,01, +C5â , -a,)AT
dz -C 2 a 2 0 0 C,a

T
0

0 0 - a 0 0

Assuming that the displacement in the x direction u can be expressed as

2 *'u(x, z) = u (X, z) + Um (z) 1 - (4.13)

where u(x,z) and t/(0)(z) are two unknown displacement functions that can be 

determined by imposing boundary conditions. The introduction of the second term is 

to ensure that the non-zero displacements at free edges can be satisfied. In this 

method, U(0\z )  is the main unknown function. The following derivations will focus 

on the determination of the unknown functions.

Introducing Eq. (4.13) into Eq. (4.12) yields

| ! fH g ]{f}+ {b} (414a)

where

60



Chapter 4 Interlaminar Stresses in Cross-ply Laminates

{B} = dUm(z) 
d z

1 -  — 
L

7 C
C5s0 -(C ,ax + C5<x - a f)AT — - ^ (0)(z),0,0

{ij=[w w a„ a j  .

(4.14b)

(4.14c)

and [G] is the 4x4 matrix shown in Eq. (4.12). For the displacements and stresses in 

{F}, the following Fourier series expansions are assumed

u U m ( z )  sin(£c)
w

CO

- y

W m ( z ) c o s ( $ c )
>

a xz
L-à
m=0

Zm(z)cos(£r).

(4.15)

where, £ = m n/L , L is the length of the plate in the x direction. There are two reasons 

why these particular forms of displacements and stresses are assigned. On the one 

hand, the boundary conditions can be satisfied automatically. On the other hand, the 

sinusoidal or cosinoidal term can be eliminated during further derivations. In the case 

of a uniformly distributed extension and thermal loading, the displacement in the x 

direction u is zero at x=L/2. Hence, the integer m in Eq. (4.15) takes only even 

numbers, i.e. m = 0, 2, 4, ... . In addition, from the first equation of Eq. (4.15), the 

displacement ü is zero at x=0 and L. At the free edges, the displacement is not 

necessary to be zero. The second term of Eq. (4.3) was then introduced to satisfy the 
non-zero displacements at free edges.

Substituting Eq. (4.15) into Eq. (4.14a) and expanding also the x co-ordinate in {B} 

into a Fourier series, as follows

2L ^  cos mtt . mnx¿.u v-* wus/wji . muxx = -------- >  -------------- s i n ---------
it ÎTo m L

, 2  - A  1 - c o s w ï ï  . mitx
1 = ----------- sin— -ntZo rn L

(4.16)

one has the following non-homogenous state space equation for an arbitrary value of 

m

dz

where

{Fm(z)}= k 0 0  T O  T O  T O f

(4.17a)

(4.17b)
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[G j =

0 % C. 0

C& 0 0 C7

0 0 -C&
0 0 -% 0

{B0(*)} =
2C,0,C5e0 -(C xa x +Cia y - a i ) A T - ^ U m(z),0,Q

2 „ dU(0)(z) n—  (1 + coswm)---------- 0  0  0
mn dz ,(m = 2,4, • • •)

The solution of Eq.(4.17a) can be written as

{F- (z)} = [D.(z)]{F- (0)} + {H.(z)}

where

[DM — 0[Gm]g

0

In particular, at z=h,

(4.17c)

(4.17d) 

(4.17e)

(4.18a)

(* e [ 0 ,A]) (4.18b)

fcW)=[D.(*)]{F.(0))+(H.(A)} (4.19)

where [Dm(/z)] is called transfer matrix that can be calculated either analytically or
I

numerically. The calculation of the two constant matrices, [dw(/j)] and {h„(/j)}, in 

Eq. (4.18) can be found from Ye (2002) or Moler and Van Loan (2003). It is worth 

mentioning that {n„(hj\ still contains unknown functions t / (0)(z), which can only be 

determined by introducing the boundary conditions.

4.2.2. Stresses in a Cross-ply Laminate

Consider an infinite long multi-layered cross-ply laminated plate of thickness H  and 

width L (Fig. 4.2). The plate is subjected to a uniaxial tension by application of a 

constant longitudinal strain, e0, and a uniform temperature variation, at .

In order to find the solution of the problem, we must evaluate first the unknown 

displacement function, t/(0)(z), appearing in Eqs. (4.13) and (4.17). If the fictitious 

sub-layers of the laminate are all sufficiently thin, it is reasonable to assume that the 

displacement t/(0)(z) within the thin layer is linearly distributed in the z direction, i.e.
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(4.20)

where U~ and U] are the values of v f \ z )  at the upper and bottom surfaces of the 

yth thin layer.

For this thick multi-layered laminated plate, we may imagine that it is composed of N 

fictitious sub-layers, each of which may have different thickness. However, it is 

assumed that the thickness of all the fictitious sub-layers approach zero uniformly as 

N approaches infinity. Assuming, in addition, that different sub-layers may be 

composed of different orthotropic materials, two types of material interfaces are 

distinguished in the plate; the fictitious interfaces which separate sub-layers with the 

same material properties and the real ones that separate sub-layers composed of 
different materials.

Fig. 4.2 Nomenclature of a cross-ply laminate subjected to a uniaxial tension and 
uniform thermal loading.

Upon choosing a suitably large value of N, each individual sub-layer becomes 

sufficiently thin and, as a result, Eqs. (4.17)-(4.19) are considered to be adequate for 

the solutions of these layers. The state space equation and the form of solution of the 
yth sub-layer then become

d_
d z

{FmU)}7 -  [cm]y {Fm(z)}y + {Bm(r)}y
(4.21)
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where

f a , ( 4  =etC4 l{F<,(0)}, + Je[C’1/,_t){B„(T)}.rfx
0

= [Dm( 4 { F»(0 )};+ K ( 2)L

fc.V)}j=P.V) W-V> X m(z) Zm(z)l

[G„l =

0 % C. 0

C& 0 0 C7

c242 0 0 -C x\
0 0 -4 0

{B0(*)}y = 

{ * M j  =

( ze[0,hj ] )
(4.22a)

2 C
0,C5e0 -(C .a, +C5a , - a , W - = ^ U (0)(z),0,0

La

2 dUm(z) n------ (l + cosmn)------- —  0 0 0
mn dz ,(m = 2,4, ■ • •)

(4.22b)

(4.22c)

(4.22d)

(4.22e)

In particular, at z=h,

(4.23)

With appropriate continuity requirements imposed at all the real and fictitious 

interfaces, a solution for the entire laminate can be formulated. Also, the solution can 

be found to the required accuracy by increasing the total number of the thin layers, 
subjected to satisfy boundary conditions.

Inserting Eq. (4.20) into Eqs. (4.22d) and (4.22e), vector in Eq. (4.21) can be

expressed as

(B0(Z)}; = 

{B M j  =

0,C5£0 ~{Cxax +C5ay - a t )&T- 2Ct (
U^ - f )+u^ T  A o 1j nj

4 UJ- Uj
mn h:

0 0 0 , {m = 2 , 4,-- )

(4.24)

(4.25)

By introducing the following continuity conditions at all interfaces, i.e.,

(4.26)
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and then using Eqs.(4.23) and (4.26) recursively, a relationship between the state 

vectors on the bottom and top surfaces of the plate is established as follows

=|d„L (F»(0)}, + fo ]  (4.27a)

where

(4.27b)

(4.27c)

(Fm(0)}, and {Fm (/?„)} „are, respectively, the state vectors at the top and bottom surfaces

of the laminated plate. Upon using the traction free conditions at the top and bottom 

surfaces, the following stress conditions are obtained

k < u  m i T=(o, o)t

k ( 0), zM '< o , or

Substituting Eq. (4.28) into Eq. (4.27) yields the following linear algebraic equation 

system

A .  A ,
A , A

u - \ _ K
jr .l W-4

(4.29)

where D y and H mi are the relevant elements in [d„] and {Hm}, respectively.

Eq.(4.29) is a set of linear algebraic equations in terms of the two displacement 

components, Um and wm, at the top surface. The free terms of Eq. (4.29), Hml and

Hm , contain u~ and U ]  (/'= 1, 2 introduced in Eq.(4.20). Because of the

continuity of U (0)( z )  at the interface between the y'th and the (/+l)th sub-layers, the

relationships, u j  =U~+l (J=l, are obtained. Hence, the number of unknown

constants is then reduced to (N+\). These constants are determined by introducing 

appropriate boundary conditions.

65



Chapter 4 Interlaminar Stresses in Cross-ply Laminates

4.3. Geometry and Material Discontinuity

4.3.1. Free Edges of a Cross-ply Laminate Subjected to Axial Extension

Typical composite laminates with free edges are shown in Figs. 1.2 and 4.2. The free 

edge conditions at x=0, L are as follows

=<*»= 0 (4.30)

It can be seen from Eqs. (4.8) and (4.15) that CT„=aJ(), = 0  are satisfied

automatically along the free edges (x=0, L). The remaining boundary condition to be

satisfied at the free edges is = 0 . In order to impose the condition at the two free

edges, we introduce Eq. (4.13) into Eq.(4.11). As a result, the normal stress in the x
direction is expressed as follows

_ 2 Um
<*» =C 2a w - C 1CTa +C,s 0 - ( C 2a r +C3a y)A7’ - C 2— —  (4.31)

L

After substituting Eq. (4.15) into Eq. (4.31), we obtain for the jth  sub-layer

= Z  (2) " c iz *( 4  cos^  + [c 3e<> " (c :a *+ C3a , )&Tl  ~
2 C, U(0) (z) (4.32)

->j

Due to symmetry, we only need to impose the condition at jc=0. Thus, from Eq. 
(4.32), we obtain the following condition

2 1 ClZm(z)]̂  + [c3e0 - (C2a x + C3<xy)AT - (4.33)

It has been mentioned in the previous section that Eq. (4.29) contains unknown 

constants Uj and U) (J=l, 2, . . . ,  N). To evaluate for the constants, we first consider

the continuity of Ui0\z )  at the interface between the jth  and the (/+l)th sub-layers. 

From Eq.(4.20), the following relationship is obtained

u ) = u ~j+1 (y = 1,2,---, Af — 1) (4,34)

Hence, there exist only (N+1) independent unknown constants. In order to evaluate 

these constants and also the two displacement components of the top surface (see 

Eq.(4.29)), the traction free condition Eq. (4.33) must be satisfied at the edges of all 

interfaces, including the fictitious and material interfaces. This can be done by 

introducing z-coordinates of the interfaces, zJt into Eq.(4.33) (with zi=0 and zN+\=H)
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E l c m W - C Ä «  I  + [c,s„-(C ia ;> +C1a,)A7’]. -
m

l [ c J5t7.(zJ)-C ,Z .(r1)], +[c ,e„-(C 2a , +C,a,)A7-] -
m

j\c £ Ü m (z, ) -  C,Z„(z,)l + [c,e0 -  (C, a , + C , « , ^  -

2 C,
z

2 C 
. Z

2 C

C/(0)(z,)

■t/(0)(z2)

= 0

=  0
f

=  0
(4.35)

+[C3e0 (C2&x +C3a >)A7’]. — 2 C.
Z^ (0)( ^ +I) = 0

This process yields (A^+l) independent linear algebraic equations. Along with the two 

equations from Eq.(4.29), the two displacement components and the (A+l) unknown 

constants can finally be solved. Once the equation system is solved, all the 

displacements and stresses can be obtained by substituting the solutions to the 
iterative Eqs. (4.23) and (4.26).

4.3.2. Transverse Cracks in a Cross-ply Laminate

4.3.2.I. Under In-plane Biaxial Extension and Thermal Loading

When a cross-ply laminate is subjected to biaxial tension and a uniform temperature 

variation, transverse ply cracks appear parallel to the fibres and across the entire 

width from edge to edge. For example the [0°m/90on/0os] laminate shown in Fig. 4.3 

displays an array of periodic cracks in the 90°„ layers, where the subscripts denote 

the number of such layers. Assuming that the distribution of the cracks is equally 

spaced, a representative element (see Fig. 4.4) can be taken out from two 

neighbouring cracks to predict the stress and displacement fields. In Fig. 4.4 a global 

rectangular Cartesian co-ordinate system x-z is chosen for the element.

In order to use the recursive formulations the representative element is further 

divided into N  fictitious sub-layers. Again, each sub-layer may have different 

thickness and different sub-layers may be composed of different orthotropic 
materials.
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Fig. 4.3 Schematic of a [0°m/90on/0os] laminate with an array of transverse ply cracks 
in 90°, layers.

Fig. 4.4 A representative element of a [0°m/90on/0os] cracked laminate subjected to 
in-plane extension and thermal loading.

For the cracked layers at x=0, L the crack surfaces are traction free, i.e.

<*»=°v = o » = 0  (4.36)

From Eqs. (4.36) and (4.30), it is seen that the boundary conditions of transverse 

cracks are the same as those of free edges. As a result Eq. (4.33) can be used directly 
to satisfy the crack surface condition.

For the uncracked layers at x=0, L, due to the fact that the laminate is subjected to a 

uniform extension and thermal loading, the longitudinal displacement of an arbitrary 
yth layer in the x direction remains constant, that is

u(0,z) -  u0, u(L,z) = —u0 (4 37)

Because of symmetry we only consider the boundary condition at x=0. Substituting 

Eq. (4.36) and x=0 into the first equation of Eq. (4.15) and Eq. (4.13) yields
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w(0 ,z)= = « 0 (4.38a)

or

w(0 ,z) = i /<O)(z) = wo

From the equilibrium of the internal and external forces, we have

Jct̂ z = F0

(4.38b)

(4.39)H

Introducing Eq. (4.32) and x=0 into Eq. (4.39)

It has been mentioned in the previous section that Eq. (4.29) contains (AM-1) 

unknown constants. Assume that the cracked ply contains Nc fictitious sub-layers. In 

the uncracked layers, there is only one unknown constant u0. In addition to the (Nc- 

1) unknown constants in the cracked ply, then the number of independent unknown 

constants is further reduced to Nc in Eq. (4.29). In order to evaluate these constants 

ancl also the two displacement components of the top surface (see Eq.(4.29)), where

the traction free condition Eq. (4.33) must be satisfied at the crack surfaces of the 
(Nc-1) interfaces.

where zc. ( /-I, 2, ..., Nc-l) denotes the z coordinates of interfaces within the cracked 

layers. This process yields (A^-l) independent linear algebraic equations. Along with 

Eq. (4.40) and the two equations from Eq. (4.29), the two displacement components 

and the Nc unknown constants can finally be solved. All the displacements and

(4.41)
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stresses can be obtained by substituting the solutions to the iterative Eqs. (4.23) and 
(4.26).

4.3.2.2. Under Out-of-plane Bending

Fig. 4.5 A representative element of a [0°ni/90on/0os/90V0oi] cracked laminate 
subjected to bending.

When a cross-ply laminate is subjected to bending, M, transverse ply cracks often 

appear in the tensile 90° layers. For example, Fig. 4.5 shows that a representative 

element taken from a [0om/90on/0os/90ok/0oi] laminate under bending displays ply 
cracks in the upper 90°n layers.

For the cracked layers at x=0, L the crack surfaces are traction free. Hence Eq. (4.33) 
can be used directly to satisfy the crack surface condition.

For the uncracked layers, the displacement u is assumed to be linear function of the 
through-thickness z coordinate, i.e.

u(0 ,r) = u0( l-4 -)z (4.42)

where i/o is the longitude displacement of the top surface in the x direction and z* is 

the z-coordinate of the neutral axial of the cracked laminate. Substituting Eq. (4.42) 

and x=0 into the first equation of Eq. (4.15) and Eq. (4.13) yields

i/(0, z) = ¿U„,(z) sin(^xO) + U<0)(z) 1 - 2 x 0
= « o d - 4 ) (4.43a)

or

70



Chapter 4 Interlaminar Stresses in Cross-ply Laminates

u(0,z) = U(0)(z) = u0( \- 4 )  (4.43b)
z

For the cracked laminate subjected to pure bending, two equilibrium equations exist 

atx= 0

\ a*dz = 0  (4.44a)

J ct„  (z -  z* )dz = M  (4.44b)

Introducing Eq. (4.32) and x=0 into Eq (4.44) 

| Z [ c !?C?.W - C 1Z ,(2 ) 1 + [c,eD-(C ,a , +C,a,)A7']j -
'V

2 C,
~I7<0) (z) \dz = 0 (4.45a)

f
J  + IC 3eo - (C aa ,  +C 3a ,)A r], -

(z -  z ’)dz = A/

2 CL tt<. 0)C/l0, (z)
(4.45b)

Once again assume that the upper cracked ply contains Nc fictitious sub-layers. In the 

uncracked layers, there are two unknown constants: u0 and z . In addition to the (Nc- 

1) unknown constants in the cracked ply, there exists (jVc + 1) unknown constants in 

Eq. (4.29). In order to evaluate these constants and also the two displacement 

components of the top surface (see Eq.(4.29)), employing the traction free condition ( 

Eq. (4.33)) at the crack surface yields (TV̂ -l) independent linear algebraic equations 

(the same as Eq. (4.41)). Along with Eqs. (4.45a), (4.45b) and the two equations 

from Eq. (4.29), the two displacement components and the (Nc+1) unknown 

constants can finally be solved.
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4.4. Numerical Results

In what follows several numerical examples of free edge and transverse crack effects 

are presented for symmetric and nonsymmetric cross-ply laminates subjected to 

uniform axial extension, thermal loading and/or bending. The convergence study of 

the stresses in the vicinity of free edges is presented first. The interlaminar stress 

distributions near free edges and transverse cracks subjected to different loading 
cases are then presented.

4.4.1. Free Edge Effects

4.4.1.1. Convergence Study

To study the convergence of the stresses near free edges, one simple laminate 

[0790°]s subjected to a uniform constant axial strain s0 is considered. The following 

elastic stiffnesses are assumed 

Cu = C33 =15300N/mm2, C22 =140000Ar/mm2,

C44 = C55 = 5900N/mm2, C12 = C23 = 3900N/mm2, (4.46)

CJ3 =3300N/mm2

The laminate has a width L, and thickness h, where L=\0h. All material layers have 

equal thickness hi4 and are idealised as homogeneous orthotropic layers. In order to 

obtain an accurate result near the free edge, the number of terms m included in the 

Fourier series expansion (see Eq. (4.15)) and the number of layer refinement N  must 

be taken sufficiently large.

Fig'. 4.6 and Fig. 4.7 show the convergence of the numerical values of errand cr„ at 

the 0790° interface against different N  with w=400 and different m with N=40, 

respectively. It is seen that the oa is noticeably dependent on N  and m. It can also be 

seen that the convergence of <r22 is faster than aX2. Even for the shear stress crX2, the

difference between w=400 and w=600 is not significant. In the following studies, 

therefore, results are obtained by taking m=400 and JV=40.
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(a) Interlaminar shear stresses

(b) Interlaminar normal stresses

Fig. 4.6 Convergence of interlaminar stresses at 0°/90° interface in [0°/90°]s laminate

under uniform axial strain against different N  with w=400.
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(a) Interlaminar shear stresses

(b) Interlaminar normal stresses

Fig. 4.7 Convergence of interlaminar stresses at 0790° interface in [0790°]s laminate

under uniform axial strain against different m  with 77=40.

74



Chapter 4 Interlaminar Stresses in Cross-ply Laminates

4.4.I.2. Uniform Axial Extension

Using the material property shown in Section 4.4.1.1 with L=4h, numerical examples 

are presented here for symmetric and nonsymmetrical cross-ply laminates subjected 

to a uniform axial extension e0. The graphic solutions are also compared with those 

obtained by Ye et al. (2004) and Wang et al. (2000).

From Fig. 4.8 it is seen that the interlaminar shear stress a„ rises toward the free 

edge but decreases rather sharply to zero at x=0. This is often attributed to a possible 

singularity at the 0790° interface. It is evident from the curves that tr„ exhibits 

singular behaviour at the free edge and the plane stress assumption used in the 

Classical Laminate Theory (CLT) is no more valid here. However, the interlaminar 

stresses approach to zero after x >  1.5/». This illuminates that the interlaminar stress 

disturbance occurs only near the free edge. These results agree well with those of Ye 

et al. (2004) and Wang et al. (2000), while significant differences are observed for 

axz in the region very close at the free edge. It is worth mentioning that Wang’s 

results do not satisfy the traction free conditions at x=0 .

The through thickness distributions of azzzi the free edge of [0790°]s and 

[079070790°] laminates are shown in Fig. 4.9. The Figure demonstrates the 

influence of stacking sequence on the interlaminar normal stress. The singular 

behaviour at the intersection of the interface and the free edge is evident in both 

curves in the form of stress concentrations and steep gradients. Although the 

interlaminar normal stresses are tensile at the 0790° interfaces in both laminates, the 

maximum interlaminar normal stress of [079070790°] laminate is larger than that of 

[0790°]s. For the nonsymmetric laminate, the interlaminar normal stress is 

compressive in the lower 0 ° layer.
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(a) Interlaminar shear stresses

(b) Interlaminar normal stresses

Fig. 4.8 Distribution of interlaminar stresses at the 0790° interface in [0790°]s

laminate under uniform axial strain.
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Fig. 4.9 Through the thickness distribution of interlaminar normal stress in [0790°]s 

and [079070790°] laminates under uniform axial strain.

4.4.I.3. Uniform Thermal Loading

To apply the state space method to solve free edge problems under thermal loading 

and compare with the results of other investigators, A laminate under a uniform 

temperature increment AT and with the ply configuration [9070°]s is considered. A 

typical high-modulus graphite/epoxy lamina is used for the material properties as 

follows (Pipes and Pagano, 1970)

EL=\37.9GPa, Ef=\4.48GPa,

Gu=5.87GPa, vLf= vn  =0.21, (4 4^

£*¿=0.36x10'7°C, £*7=28.8x10'6/°C.

The geometry of the laminate is assumed to have the width L, and thickness h, with 

L=4h. Also each of the material layers is of equal thickness hi4.

The variations of interlaminar stresses and <r22 at the 9070° interface are 

displayed in Fig. 4.10. Except for the region very close to the free edge, the present 

results of ct,2 agree well with those of Tahani and Nosier (2003b). It is to be noted 

that although Tahani and Nosier’s results may be improved by increasing the number
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of sub-layers in each lamina, the numerical value of ox, cannot satisfy the traction 

free conditions along x=0.

(a) Interlaminar shear stresses

(b) Interlaminar normal stresses

Fig. 4.10 Distribution of interlaminar stresses at the 9070° interface in a [90o/0°]s 

laminate due to a temperature change.
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4.4.I.4. Bending Deformation

In this example, the numerical results of a [0°/90°]s laminate under bending 

deformation are shown in Fig. 4.11. The material properties are the same as the one 

in Section 4.4.1.3, while herein the laminate is subjected to a bending curvature 

0x=A/h in the infinite longitudinal direction.

The interlaminar shear and normal stresses at the top 0°/90° interface are compared 

with the eigenfunction solutions by Yin (1994b) and the finite element solutions by 

Yi (1997). It can bee seen that a good agreement between these solutions has been 

obtained. For the interlaminar shear stresses the present method agrees better with 

Yin’s eigenfunction analysis. This may be attribute to the nature of analytical 

methods is more accurate than the numerical approach.

As pointed out by Yin (1994b), the results for the bending deformation is close to 

that for the uniform axial extension. This may be expected because a bending 

curvature 0x=4/h yields an axial strain %=£&= 1 on the top 0° /90° interface.
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(a) Interlaminar shear stresses

(b) Interlaminar normal stresses

Fig. 4.11 Distribution of interlaminar stresses at the 0790° interface in a [0790°]s 

laminate due to bending deformation in the infinite longitudinal direction.
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4.4.2. Transverse Cracking Effects

4.4.2.1. Uniform Axial Extension and Thermal Loading

As a part of validation of the present method, the interfacial shear and normal 

stresses at the interface between 0° ply and 90° ply of a four ply [0°/90°]s 

Graphite/Epoxy laminate are calculated and compared with the results obtained by 

McCartney and Pierse (1997a). A two-dimensional analytical mode has been 

established by McCartney and Pierse (1997a) to evaluate stress transfer in such a 

cracked laminate. The laminate is subjected to a uniaxial average stress of 

a = 0 .2GPa, and a uniform thermal load of Af = -120°C. The material properties 

used in the calculations for the graphite/epoxy laminates are as follows

EL=\44.nGPa, Ef=9.58GPa,

Gu=4J85GPa, vif= vrr =0.31, (4.48)

«¿=-0.72x10'6/°C, «7=27x10'6/°C.

The laminate has a crack separation space 1=4.0 mm and an equal ply thickness 

hpiy=0.25mm.

Chapter 4 Interlaminar Stresses in Cross-ply Laminates

Fig. 4.12 shows the interlaminar stresses a„ and at the 0790° interface. Fig. 4.13 

presents through thickness distributions of axial stress and the displacement u in the 

transverse crack plane at x=0, respectively. Due to symmetry, only the distributions 

across top half of the element are plotted. In Fig. 4.13(a) the horizontal displacement 

from the present solution remains constant along the uncracked surface 

( 0  < z/h  < 0.25), while the result obtained by McCartney and Pierse (1997a) varies 

slightly near the crack tip which violates the assumption of uniform displacements in 

uncracked layers. It is seen from Fig. 4.13(b) that McCartney and Pierse’s method 

has difficulty in computing axial stress in the region by showing oscillation near the 

cracked tip. This difficulty has been overcome by the present approach.
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(a) Interlaminar shear stresses

(b) Interlaminar normal stresses

Fig. 4.12 Distribution of interlaminar stresses at the 0790° interface in a [0790°]s 

laminate with transverse cracks under uniform axial strain and thermal loading.
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(a) Distribution of the displacement u.

(b) Axial stress distribution

Fig. 4.13 Through thickness distributions of the axial stress and the displacement u in 

the transverse crack plane at x=0 in a [0°/90°]s laminate with transverse cracks under 

uniform axial strain and thermal loading.
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4.4.2.2. Bending and Thermal Loading

Another example to verify the present method is a symmetric cross-ply Glass/Epoxy 

laminate with a [07907079070°] configuration and uniformly distributed transverse 

cracks in the upper 90° layer (Fig. 4.5). The separation distance of the cracks is 

Z=1.0mm. Each material ply has an equal thickness, i.e. /?piy=0.2mm, and the 
following material properties are used

El=45.6GPci, Ef=l6.2GPa,

Gu=5.&3GPa, vlt^0.278, vtt=0.4, (4.49)

« ¿ = 8 .6 x 1 0'7 ° C ,  « 7= 2 6 .4 x 1 0'6/ °C .

A bending moment per unit length of 1.0 KN is applied together with a uniform 

temperature difference AT=-\00°C. The moment is applied in such a way that the 

cracked 90° ply is in tension. This example was previously studied by McCartney 

and Pierse (1997b). The present results of axial stress and displacement u in the crack 

plane at x=0 are compared with those of McCartney and Pierse (1997b) in Fig 4.14.

It is seen from Fig. 4.14(a) that the axial stress is exactly zero in the region of the 

crack surface (0.2<z//k 0.4), and that there appears to be stress singularities near the 

crack tips. In the region of the uncracked 90° ply, the axial stress varies linearly as 

expected in the undamaged layers. In the Fig. 4.14(b), the crack opening 

displacement is clearly seen and a uniform displacement distribution is shown for the 

uncracked plies. Once again, excellent agreement is observed between the two 

methods.
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(a) Axial stress distribution

(b) Distribution of the displacement u

Fig. 4.14 Through thickness distributions of axial stress and displacement in the 

transverse crack plane at x=0 in a [07907079070°] laminate under bending and 

thermal loading, with transverse cracks in the upper 90° ply.
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4.5. Conclusions

A semi-analytical method has been presented to evaluate three-dimensional 

interlaminar stresses near free edges and transverse cracks in general cross-ply 

laminates subjected to uniform axial extension, thermal loading and/or bending. The 

method is based on a state space representation of the three-dimensional equations of 

elasticity and applied to a quasi-three-dimensional problem and, therefore, the stress 

analysis can be simplified as a generalised plane strain problem. Numerical solutions 

were obtained using layer refinement in the through thickness direction and Fourier 

series expansion in the width direction.

The applications of the method were shown by numerical examples. The 

convergence of the new method was assessed with respect to the number of Fourier 

terms used in expansion as well as layer refinement. It was observed that the 

numerical results converged very fast. Comparisons have been carried out to validate 

the method. The present results showed good approximation to stress singularities in 

the vicinity of free edges and crack tips.

The present method has many advantages in evaluating interlaminar stresses in 

composite laminates. It takes account of all the stress components and independent 

material constants. Since the recursive formulation (see Eq. 4.27) was used to derive 

the state equations of laminated plates, the dimension of the final state equations (see 

Eq. 4.29) does not depend on the number of layers of a laminate. As a consequence, 

this method is particularly suitable to solve stress concentration problems of multi

layered composites. The method always provides continuous distributions of both 

displacements and transverse stresses across interfaces between layers. By this 

approach, a laminate may be composed of an arbitrary number of orthotropic layers, 

each of which may have different material property and thickness. As demonstrated 

in the free edge problem, the model is valid for nonsymmetrical cross-ply laminates. 

For the case of the cracked laminate under bending, although the layup is symmetric, 

in fact the geometry is an nonsymmetric profile because the transverse cracks only 

appears in top 90° layers.
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Chapter 5. Free Edge and Transverse Cracking 

Effects in Angle-ply Laminates

5.1. Introduction

In the Chapter 4, a state space method has been developed successfully to evaluate 

the interlaminar stress singularities near free edges and transverse cracks in cross-ply 

laminates. From the viewpoint of computational mechanics, the cross-ply layup is the 

simplest case because there is no extension-shear coupling in the constitutive 

equations of a lamina. However in practical applications, the use of composite 

laminates is not limited to cross-ply profiles, and extensive angle-ply laminates are 

also being used to in order to meet some specific demands. On the basis of the 

methodology in the previous Chapter, a more sophisticated state space method will 

be developed to study the free edge and transverse crack effects in general angle-ply 

laminates under in-plane and/or thermal loading. Because the extension-shear 

coupling exists in the angle-ply laminates, the stress components oyz and <rxy do not 

vanish and therefore have to be considered in the new formulations. This will 

increase the complexities in both theoretical and numerical aspects of the model. On 

the one hand, the displacement and stress expressions need to satisfy the boundary 

conditions. On the other hand, their Fourier series expansions could be eliminated for 
further derivations.

In analogy with the cross-ply laminate, a state space equation is first developed for 

the free edge problem in a single off-axis lamina. By establishing a recursive 

relationship between the state vectors on the upper and lower surfaces of an 

interface, the state space equation can then be extended to a multi-layer angle-ply 

laminate. After introducing the boundary conditions for free edges and transverse 

cracks, all the displacement and stress components can finally be evaluated. The 

applications of the method are demonstrated by numerical solutions and comparisons 
are made with other approaches in the literature.
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5.2. Theoretical M odelling of Angle-ply Laminates

5.2.1. Stresses in an Off-axis Lamina

Consider an off-axis lamina (Fig. 5.1) with principal directions (1-2-3) in the global 

x-y-z coordinate system. The lamina has constant thickness /?, width L and infinite 

length. The displacements in the x, y  and z directions are denoted by u, v and w, 

respectively. Suppose that the lamina is subjected to a uniform temperature change 

AT and a uniform tension by the application of a constant longitudinal strain in the y  

direction, e0. The lamina is made of a homogeneous, monoclinic and linearly elastic 

material whose principal directions, i.e., fibre direction 1 has an angle of 0 to the x 

axis.

Fig. 5.1 Nomenclature of an off-axis lamina subjected to a uniaxial tension and 

uniform thermal loading.

(a) Stress-strain relations

The basic constitutive equation for thermo-elastic stress analysis is (Herakovich, 

1998)

Here, the matrices [C'j, {f} and { /}  are stiffness matrix, mechanical strains and 

thermal strains, respectively; for a linearly elastic monoclinic material,

^  h

~T

{0}=[C']({8}-{87}) (5.1)
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[C'] =

~c'-ll c*-12 c'-n 0 0 c  ~'-lé
c'-'12 c'-22 c'-'23 0 0 ĉ26
c*—13 c'-'23 C'-n 0 0 c*-36

0 0 0 c'-44 c'-45 0 (5
0 0 0 c— 45 c*-55 0

cL*-16 c 26 c'-'36 0 0 C

where the C\ are stiffness coefficients that can be expressed in terms of Young’s

moduli, Poisson’s ratios, shear moduli and the fibre orientation 0 (See Appendix B 
for further details)

fc} [ * „  £ y y  £ zz £ y z  £ xz £ x y Ÿ

Vr }={«}A7

{a}  = [ax a y a z 0 0 a xyf

(5.3)

(5.4)

(5.5)

where ax , ay , az and axy are the coefficients of axial thermal expansion relative to 

the x, y, z directions and shear thermal expansion, respectively.

(b) Equilibrium equations

a°xr , ôa*y | 8ga
dx d y  dz

= 0

da da
—— + "  Æ - odx d y  d z  
da da

(5.6)

dx

(c) Strain-displacement relations

du

+ _ ^ + ^ = 0

e„ =

e._ =

dy dz

dv
dx ’
dw dv

= V =•

du dw

dw
dz

du dv
d y ' dz' +

(5.7)

Considering that the lamina is subjecteded to a uniform extension £0 in the y  

direction, it follows that

dv
= £n

(5.8)dy=£°

Then the generalised plane strain deformation is assumed such that all components of 
stress and strain do not depend upony. Hence Eq. (5.6) reduces to
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do do 
— -  + — 2 - = 0

dx dz
do „ do 
— -  + — — = 0 

dx dz
do do 
— -  + — — = 0  

dx dz

(5.9)

To facilitate the following deduction process, let

a = 81 dx, c, = -c ;3/c 33, c 2 = c'u - c ; 3J i c 33,

c 3 = c ; 2 - c ' ]3c 23i c '33, c 4 = c'22- c ' 2l / c 33,  c 5 = - c ; 3/ c 33,

C6 = - C ’36/C^3, C7 =1 IC'33, c 8 = t /c ;5,

c 9 = c ;6 -  c{3c 36 / c ; 3, c 10 = c ; 6 -  c'23c 36 / c ; 3 ,

Cji = C45/ A, C12 = C44/ A , C]3 = C's5/A,

Ch = c ’tb ~ C36 /c 33, a = C45 -  c ;4c ;5,

c a =(C1a I +C5a >+C6a ^ - a J).

(5.10)

From the third equation of Eq. (5.1) and Eq. (5.7), the following relation is obtained
dw

= C,a u + C6av + C2o B + C5e0 — CaAT (5 11)

By substituting Eq. (5.11) into the first, second and sixth equations of Eq. (5.1), the 
in-plane stresses can be expressed as

yy

*yj

Cj a C9 a -C, 
C3a C10 a  -C 5 
C9a CHa -  C6

' « 
u ’<V

/>

V CO 0 1

C-o.

Ci<xt + C3o.y + C9a „  1
Cj&x + C4cij,
Cjdx + CiqCXj, +C14a J9,j

AT (5.12)

Inserting Eq. (5.12) into Eq. (5.6) and considering Eq. (5.11) as well as the fourth 

and fifth equations of Eq. (5.1), the following first order partial differential equation 
can be obtained

d_
dz

M
V
w

■ =

0 0 - a - c a 0
0 0 0 c „ -C 13 0

C, a Q a 0 0 0 C ,
-C 2 a* -C, a J 0 0 0 C, a
-C 9 a 2 -C 14a J 0 0 0 C6a

0 0 0 - a 0 0

M 0
V 0

- IV
> + •Cse0-C aAT

0
0

J 0 ̂ J

(5-13)

Assuming that displacements u, and v can be expressed, respectively, as
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u(x, z) = u (x, z) + Uw (z) 1 - 2x

v(x,y,z) = v(x,z) + Vm (z) 1 - 2 x/
+ W

(5.14)

where t/(0)(z) and K(0)(z) are unknown boundary displacements that can be 

determined by imposing traction free conditions along stress free surfaces (see 

Section 5.3 the geometry and material discontinuity). Here the displacement function 

of u is the same as the one for cross-ply laminates. Due to the extension-shear 

coupling in angle-ply laminates, displacements v, which is constant in cross-ply 

laminates, varies in the x-z plane. In analogy to t /(0)(z), the introduction of V(0,(z) is 

to satisfy the non-zero boundary displacements in the y  direction at free edges.

Introducing Eq. (5.14) into Eq. (5.13) yields

¿ { f }"[g ]{f ) + {b} (5.15a)

where

{B} = dUm(z) 
d z

2  C
|,C5e0 -C abT — f-U m (z),0 ,0 ,0 ,0  ;

L

(f}=[s v w a„

(5.15b)

(5.15c)

and [G] is the 6 x6  matrix shown in Eq. (5.13). For the displacements and stresses in 

{F}, the following Fourier series expansions are assumed
* « 

u tf-(*)sin(Çx)
V K„,(z)sm(^)
w 00

= 2
0',„(*)cos(£x)

»
<*« m= 0 x »(^)sin(^c)

F„(2)sin(^c)

.CT«. .z»(^)cos(^c)

where ¿¡ = mn/L. The advantage of these particular Fourier series forms is that the 

sinusoidal and cosinoidal terms can be eliminated when deriving the state space 

equations. In the case of a uniform extension, the displacement in the x direction u is 

zero at x=L/2. Hence, the integer m in Eq. (5.16) and the remaining formulations 
takes only even numbers, i.e. m = 0 , 2 ,4 , . . .  .
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By introducing Eqs. (5.14) and (5.16) into Eq. (5.13) and expanding x  and 1 in the 

polynomial function of Eq. (5.14) into Fourier series, as follows

2L ^  cos mn . trmx x = ----- > --------- sin------
7E m=Q YYX £

, 2 A 1  -cos/wt . mnx
l = ------------ sin-—

TC JW L
(5.17)

the following non-homogenous state space equation for an arbitrary value of m is 
obtained

d :{F.W } = [G .]iF.W ) + {B.(i)}
d z

where

¡Fm(4 = k ,(* ) Vm®  Wm(z) Xm(z) Ym(z) Zm(z)f

[Gj =

(B0U)} =

{»„«)} =

0 0 4 -Cn Cn 0

0 0 0 C» - c ]} 0

C£ C& 0 0 0 C7

e g e g 0 0 0 -■c,4
C g e g 0 0 0 - Q4

0 0 0 -4 0 0

e«“ CaA T- 2£x
L Ul0)(z) ~ ^  

L
.yw

- 2 _ (1 + cosw, )^ ^ )_ J _ (1 + COs ^ ) i ^ >0 ,0 ,0,0
mn dz mn dz

iT

The solution of the non-homogenous state space Eq. (5.18a) is 

{F.(2)} = [D.(Z)]{F.(0)}+{H.(2)}

where

[Dm(z)]=eIc~]’{FJ0)},

{ H J z ) j = f e ^ > { B K(z)jdx

(5.18a)

(5.18b)

(5.18c)

(5.18d) 

(5.18e)

(5.19a)

( 2 e[0,h]) ($' 19b)

In particular, at z=h,

{F»W}=k(A)fe(Q)}+{Hw(A)}
(y .¿UJ

where [D.ffl] is called transfer matrix that can be calculated either analytically or 

numerically. The calculation of the two constant matrices, and {H. W), in

Eq. (5.19) can be found from Ye (2002) or Moler and Van Loan (2003).
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5.2.2. Stresses in an Angie-ply Laminate

Fig. 5.2 shows a multi-layered angle-ply laminate of thickness H, width L and 

infinite length in the y  direction. Again the laminate is subjected to a constant 

longitudinal strain e0 and a uniform thermal loading AT. To evaluate the stress 

transfer in the angle-ply laminate, the similar procedure applied to cross-ply 

laminates is used again. The solutions of Eq. (5.18) are based on the division of the 

plate into N  fictitious sub-layers, each of which may have different thickness and 

material properties. Nevertheless, the thickness of all the fictitious sub-layers become 

very thin and approach zero uniformly if N is assigned to a large value. Assuming 

that each sub-layer is homogeneous and made of a monoclinic elastic materials, and 

therefore two types of material interfaces are identified in the plate: the fictitious 

interfaces which separate the same material layers and the real ones that separate the 

different material layers.

Fig. 5.2 Nomenclature of an anlge-ply laminate subjected to a uniaxial tension and 

uniform thermal loading.

If a suitably large value of N  is assigned, each individual sub-layer becomes 

sufficiently thin and, consequently, Eqs. (5.18)-(5.20) are considered to be adequate 

for the solutions of these thin layers. Moreover, the boundary conditions can be 

satisfied in an approximately continuous way along the thickness of the laminate. 

The state space equation and the form of solution of an arbitrary sub-layer, e.g., the

A-

H
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j'th one whose thickness is hj, can easily be obtained by replacing h with hj in Eqs. 

(5.18H5-20). The state space equation of the /th  sub-layer then becomes

¿{FM i  =[G„i {Fm(z)}; + {Bm(z)},
(5.21)

{Fm(z)}; =elG”l l {Fm(0)}; + y G’,1̂ " ){Bm(T)}/x .
0

= [l>M( 4 { F B(0)}; + {HM(z)}J ze[0,Ay]
(5.22)

In particular, at z-hj,

(5.23)

After repeating the above process for all individual sub-layers and with appropriate 

continuity requirements imposed at all the real and fictitious interfaces, a solution for 

the entire laminate can be formulated. Also, the solution can be found to the required 

accuracy by increasing the total number of the thin layers, subjected to satisfy 
boundary conditions.

In order to find the solution of the problem, we must evaluate first the unknown 

displacements, t/(0)(z) and F(0)(z) in Eq. (5.18). If the fictitious sub-layers of the 

laminate are all sufficiently thin, it is reasonable to assume that the displacements,

u m (z) and F(0)(z) within the thin layer are linearly distributed in the z direction, i.e.

UiJ0)(z) = U-J( l - ~ )  + U*

f; o, (z) = f; (  i - — ) + v ;
/ , z e [ 0 , hj], (5-24)

hj

where C/J, U j, and V~, V* are the values of u f \ z )  and v f \ z )  at the top and bottom

surfaces of the jth  thin layer, respectively. Inserting Eq. (5.24) into Eqs. (5.18d) and 

(5.18e), vector (b „ ( z )} , in Eq. (5.21) can be expressed as

{■»„«I, =[0 ,0 ,Css0 -C .A Z -^S . c / ; ( l - f )  + l/;T* Z
Jj

2 a
V nJ nj J

» ze[0 , hA,
,0 ,0 ,0 ]"

(5.25a)

4  u - j -u ;
mn hj mn ,0 ,0 ,0 ,0{»„(*)}, = ,(m=2, 4, 6...). (5.25b)
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By introducing the following continuity conditions at all interfaces, i.e.,

{Fm(0)};+1 =K(A>)).,;=1,2,..., N-1, (5.26)

and then using Eqs.(5.23) and (5.26) recursively, a relationship between the state 

vectors on the bottom and top surfaces of the plate is established as follows

{F„(A»>}„ =[d„L {F,(0)|, +{h ,} (5.27a)

where

(5.27b)

(5.27c)

{f„(/0 L and iF»(°)}i are> respectively, the state vectors at the bottom and top surfaces

of the laminated plate. Upon using the traction free conditions at the top and bottom 

surfaces, the following stress conditions are obtained

k (0 )  F„(0) Z„(0)f«[0 0 Of

' i w  K M  W W « 0 of

Substituting Eq. (5.28) into Eq. (5.27) yields the following linear algebraic equation 
system

A , A : A  3' U m

A , A * a 3 4 V ,. > =  —

A , A , A 3 W m
1 H m 6

(5.29)

where Dv and Hml are the relevant elements in [p jand  {HJ/respectively.

Eq.(5.29) is a set of linear algebraic equations in terms of the three displacement 

components, Um, vm and Wm, at the top surface. The free terms of Eq. (5.29), Hm4, 

HmS and Hm6, contain 4 x N unknown constants, U], U], VJ, and Vj (/=1,

introduced in Eq.(5.24). Because of the continuity of U(0)(z) and K(0)(z) at the 

interface between the7 th and the (/+l)th sub-layers, the relationships,^ =UJ+I and 

VJ=V-+X <7=1, 2,. ••N-1), are obtained. Hence, the number of unknown constants is
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then reduced to 2(N+l). These constants are determined by introducing appropriate 
boundary conditions.

5.3. G eom etry and M aterial Discontinuity

5.3.2. Free Edges of an Angle-ply Laminate under Axial Extension

Typical composite laminates with free edges are shown in Fig. 1.2 and Fig. 5.2. The 
free edge conditions at x=0, L are as follows

®»=CTV=®»=0 (5.30)

It can be seen from Eqs. (5.16) that = 0 is satisfied automatically along the free 

edges (x=0 , 1 ). The remaining boundary condition to be satisfied at the free edges is 

= 0 . In order to impose the condition at the two free edges, we introduce

Eqs. (5.14) into Eq.(5.12). As a result, the two in-plane stresses are expressed as 

follows

= C2au + C9av -  Claa + C3e0 -  (C2ax + C3ay + C9axy)AT 

= Qa« + c .4«v -  C6cts + C10e0 -  (C9a , + Cioay + Cuaxy)AT

_ 2 Q[/«»(Z)+ 2Ç>±v <°)(z)
L L

(5.31)

After substituting Eq. (5.16) into Eq. (5.31) and imposing the condition x=0, we 

obtain for the jth  sub-layer

IJ

2 C.+[c,s, - (Cm , +C,a,+C,a )̂i7'|- 

- Z [ « t / . ( r ) + C ,4 r . ( 2 ) - C ,Z .( 4
m

+ b.oeo -(C 9a x + Cwa y + C14a^)Ar], -

Um(z)+2£*-V(0)(z) L L = 0

(5.32)

^ U (0)( z ) + ^ - V (0)(z) 
L L = 0

It has been mentioned before that Eq. (5.29) contains 2(AT+1) unknown constants. In 

order to evaluate them and also the three displacement components of the top surface 

(see Eq. (5.29)), the traction free conditions Eq. (5.32) are imposed at the edges of all 

interfaces, including the ftctitious and real material interfaces. This can be done by 

introducing z-coordinates of the interfaces, z„ into Eq.(5.32). This process yields
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2(jV+1) independent linear algebraic equations. Along with the three equations from 

Eq. (5.29), the three displacement components and the 2(N+\) unknown constants 

can finally be solved. Once the equation system is solved, all the displacements and 

stresses can be obtained by substituting the solutions to the state space equations in 
Section 5.2.2.

5.3.3. Transverse Cracks in an Angle-ply Lam inate under In-planc 
loading

Fig. 5.3 Schematic of a [0°m/9O°n/<|)os] laminate with an array of transverse ply cracks 
in 90°„ layers.
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Fig. 5.4 A representative element of a [eV 90V +°J laminate with ply cracks in 90°, 
layers.

When a general angle-ply laminate is subjected to a tension perpendicular to the 

fibres in the 90° layers, transverse ply cracks appear parallel to the fibres and across 

the entire width from edge to edge. For example the [0V 9O V f>j laminate (Fig. 

5.3) under unifonn biaxial extension, and F„  and shear loading,.?,, displays an 

array of periodic cracks in the 90°, layers, where the subscripts denote the number of
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the real plies within a ply group. It is worth mentioning that the number of separate 

ply groups may be larger than the number of fibre orientations when the plies having 

the same fibre orientation are stacked separately in several consecutive ply groups, 

e.g. 90° plies in the [0°/90o/30o/90o/0°] lay-up. Assuming that the distribution of the 

cracks is equally spaced, a representative element (Fig. 5.4) can be taken out from 

two neighbouring cracks to predict the stress and displacement fields.

In order to use the recursive formulations the representative element is further 

divided into N  fictitious sub-layers. Again, each sub-layer may have different 

thickness and may be composed of different monoclinic materials.

For the cracked layers at x=0, L the boundary conditions are traction free, which are 

the same as those of free edge. As a result Eq. (5.32) can be used directly to satisfy 

the crack surface condition.

For the uncracked layers at x=0, X, due to the fact that the laminate is subjected to 

uniform biaxial extension, shear and thermal loading, the displacements of an 

arbitrary layer, u and v, remain constant, i.e.

Jk(0, y , z) = u0 f u(L, y, z) = -u0 
1 v(0,y,z) = v0 ’ \v(L,y,z) = -v0 (5.33)

Due to symmetry, only the boundary conditions at x=0 in the plane of y=0 are 

considered. Substituting Eq. (5.33) and Eq. (5.16) into Eq. (5.14) yields

2 x0 ^«(0,0, z) = X  U« sin(  ̂x 0) + Um (z) 1 -

v(0,0, z) = £  Vm (z)isinft:x 0).+ F (0) (z) 1 - 2x0 + en x 0  = v„
(5.34a)

or

M(0 ,0 ,2 ) = t /<O)(z) = Mo
v(0,0,2) = F(o)(2) = vo

(5.34b)

From the equilibrium of the internal and external forces, the following equation 

exists
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(5.35a)

or

- £/(0) (z) + y (0) (z)
L

\dz = Fn

X [ c ^ [ / m(z) + C 1̂ F M( 2 ) - C 6Z„(z)]> +[ci0E0 - ( C 9a ,  +  C 10a ,  + C ua v )Ar].
(5.35b)

2£ l C/('»(z) + ̂ h F(o,(z)
-i

dz = S„

According to Eq. (5.34) uQ and v0 are two unknown constants in the uncracked 

layers. Assume that the cracked ply contains Nc fictitious sub-layers. Then there exist 

(Nc -1) interfaces which result in 2(NC -1) unknown constants in the cracked layers. 

In addition to the two unknown constants in the uncracked layers, there are 2NC 

independent unknown constants in Eq. (5.29). In order to evaluate these constants 

and also the three displacement components of the top surface (see Eq. (5.29)), the 

traction free condition, Eq. (5.32), are imposed at the intersections between the crack 

surface and the (Ac-1) interfaces. This process yields 2 (^-1) independent linear 

algebraic equations. Along with Eq. (5.35) and the three equations from Eq. (5.29), 

the three displacement components and the 2NC unknown constants can finally be 

solved.

5.4. Num erical Results

5.4.1. Free Edge Effects

To validate the state space method for angle-ply laminates, a [+45°/-45°]s graphite- 

epoxy laminate is first studied. The laminate is subjected to a uniform axial strain e„

in the infinite longitudinal direction. The material properties used in the calculations
for the graphite/epoxy laminate are as follows
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EL=m.9GPa, Ef=\4.4%GPa,

Glt= G n =5 .S lG P a ,v u = v jT = 0 .2 \ ,   ̂ ^

The geometry of the laminate is assumed to have the width L, and thickness h, with 

L=4h. Each of the material layers is of equal thickness hi4.

The numerical results of this example have been obtained and published by several 

researchers (Pipes and Pagano, 1970; Wang and Crossman, 1977; Wang and Choi, 

1982a, b) in the literature. The present solutions are presented in Fig. 5.5-Fig. 5.11 

and have been compared with results in the above publications. No comparisons have 

been made to aa and csa because they are not available in these publications.

The distributions of three interlaminar stresses and a a at the +457-45°are

shown in Fig. 5.5-Fig. 5.7. It is evident from the curves that all three interlaminar 

stresses exhibit singular behaviour near the free edge, however they approach to zero 

after x>1.5/*. This confirms that the interlaminar stress disturbance occurs only in the 

vicinity of the free edge. The results of oa and agree well with those of Wang

and Choi (1982b) in Fig. 5.6 and Fig. 5.7, respectively.

Fig. 5.8-Fig. 5.10 illustrate the distributions of three in-plane stresses o , ct , and 

at the height of z=h/4. Among them the present results of and are

compared with those of Wang and Crossman (1977) and Pipes and Pagano (1970), 

respectively, in Fig. 5.9 and Fig. 5.10. A higher level of stress concentration is 

observed from the current results. The disparities between these results are partly due 

to the fact that the number of sub-layers used in the present analysis is greater than 

that of the two other works.

In Fig. 5.11 a comparison of the through thickness distribution of displacement v at 

the free edge is made between present method and Wang and Crossman (1977)’s 

finite element method. Due to symmetry, only the displacements across the top half 

of the laminate are plotted. It is seen that Wang and Crossman’s result shows small 

oscillations both above and below the +457-45° interface, while the present solution
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has no such defect. Apart from the oscillations, the two curves match well with each 

other.

Fig. 5.5 Distribution of interlaminar shear stress axz at the +457-45° interface in a 

[+457-45°]s laminate under uniform axial strain.

Fig. 5.6 Distribution of interlaminar shear stress o)Z at the +457-45° interface in a 

[+45%45°]s laminate under uniform axial strain.
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Fig. 5.7 Distribution of interlaminar normal stress a„ at the +45°/-45° interface in a 

[+45°/-45°]s laminate under uniform axial strain.

Fig. 5.8 Distribution of the axial stress axx at z=A/4 in a [+45°/-45°]s laminate under 

uniform axial strain.
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Fig. 5.9 Distribution of the axial stress a w atz=/?/4 in a [+457-45°]s laminate under 

uniform axial strain.

Fig. 5.10 Distribution of the in-plane shear stress a xy atz=/?/4 in a [+457-45°]s 

laminate under uniform axial strain.
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Fig. 5.11 Through thickness distribution of displacement v at the free edge x=0 in a 

[+45°/-45°]s laminate under uniform axial strain.

5.4.2. Stress T ransfer near Transverse Cracks

5.4.2.1 . Numerical Results for Symmetric Laminates

To further validate the current method for transverse crack problems a [30°/90°] 

graphite/epoxy laminate with the following material properties and a transverse crack 

separation L=8h is calculated. The ply thickness is assumed to be 0.127 mm and the 

laminate is subjected to a uniform axial strain e„ = c0 perpendicular to the 90° plies

EL=\44.1%GPa, Ej=9.58GPa,

G¿1=4.19, GjT =3.31GPa, ^  ^

vLT= 0.31, v77-=0.42

The present numerical results of six stress components ov- av, a  0  n  *  

shown in Fig. 5.12-Fig. 5.17, respectively. Some of present results have been 

compared with Yuan and Selek (1993)’s finite element solutions. Fig. 5.12-Fig. 5.14 

show the distribution of interlaminar shear and normal stresses, gxz, ayz, and <x„ along 

the 30790° interface. All these stresses are responsible for the onset of domination 

along the interface. Again it is observed that they are highly singular near the crack
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tip and vanish in the far field. The present results agree well with those of Yuan and 

Selek (1993), while significant differences are observed for aX! in the region very 

close to the crack tip in Fig. 5.12. This is attribution to the fact that Yuan and Selek’s 

results do not satisfy <r„=o at x=0. The three in-plane stresses axx, axy along the

mid-plane are shown in Fig. 5.15-Fig. 5.17, in which crxx, and ayy have been 

compared with Yuan and Selek’s solutions. Very good agreements are observed.

5.4.2.2. Numerical Results for Nonsymmetric Laminates

After the above validation in the symmetric layup, the stress and displacement fields 

of an nonsymmetric [30o/90°/30o/90°] graphite/epoxy laminate are also investigated 

by using the same material properties, crack separation space and loading conditions. 

Generally speaking, the distributions of interlaminar and in-plane stresses in the 

[30790°/30790°] laminate have similarly graphic shapes to those in the above 

symmetric layups. They all exhibit stress singularities near the crack surface and 

approach to a constant in the far fields. To avoid duplication, these distributions are 

not presented here. Significant differences are observed in the through thickness 

distributions because of the effects of different layups.

In order to demonstrate the influence of stacking sequence, the through thickness 

distributions of interlaminar stresses cryz, crzz, axial stress crxx, and displacement u at 

x= 0  in both the symmetric and nonsymmetric laminates are shown in Fig. 5.18-Fig. 

5.21, respectively. The singular behaviour at the interfaces is evident in all figures in 

the form of stress concentrations or steep gradients. Except ayz the maximum stresses 

and displacement of the nonsymmetric laminate are larger than those of the 

symmetric counterpart. It appears that the local stress concentrations in the anti

symmetric laminate are more sensitive than that in the symmetric case. Moreover, 

the maximum stresses always occur in the lower 30790° interface and the maximum 

displacement u is found at the bottom surface. In addition, it can be seen from Fig. 

5.18 that the interlaminar shear stress ayz exhibits a very interesting distribution. It 

vanishes within the uncracked layers, but appears in the cracked layers. On the 

contrary, the axial stress crxx (Fig. 5.20) only appears within the uncracked plies and 

approaches to zero on the crack surfaces.
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After the above comparisons in axial extension case, the present method is then 

applied to study cracked laminates under shear deformation. The numerical results of 

the above symmetric and nonsymmetric laminates subjected to a uniform shear strain 
eyx =y0 are shown in Fig. 5.22-Fig. 5.31.

The distribu ons of interlaminar stresses > u„ and in-plane stresses aa ,

a w, along the top 30790° interfaces are shown in Fig. 5.22-Fig. 5.27. Once

again, all stresses demonstrate singularities near the crack tip and vanish or approach 

to a constant in the far fields. There are no much differences in the distributions 

between nonsymmetric and symmetric laminates. It is also observed that the in-plane 

shear stress a v , is more significant than the other counterparts. The interlaminar

shear stress a^  is even larger than the interlaminar normal stress a„ .

It is noted that the graphic solutions display oscillations in Fig. 5.22-Fig. 5.27. These 

oscillations could not be smoothed even using a large value of m. However it does 

not mean that the present analytical methodology is not suitable to evaluate stress 

distributions under shear loading. The oscillations may be caused by the present 

numerical algorithm to calculate the transfer matrix [Dm(^)] in Eq. (5.19). The built- 

in Matlab function ‘expm’ is used in the calculations. It is believed that the 

oscillation problem can be overcomed by using an appropriate numerical method to 

compute [Dm (/*)]. This is out of scope of the present study and will not be further 

discussed here.

Fig. 5.28-Fig. 5.31 show the through thickness distributions of interlaminar stresses 

cryz, Ozz, the in-plane stress crxy, and displacement v at x=0. In general the distribution 

patterns of the stresses under shear deformation are similar to those under extension. 

Once again, the maximum stresses always occur in the lower 30790° interface and 

the maximum displacement u is found at the bottom surface. The interlaminar shear 

stress Cyz (Fig. 5.28) vanishes within uncracked layers but appears in the cracked 

layers. The dominant in-plane shear stress axy (Fig. 5.30) only exists in uncracked 

layers. However it can be seen that the effects of stacking sequence on the maximum 

stresses and displacement under shearing are not as significant as that observed from
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the extension case. The maximum values are very similar between the symmetric and 

nonsymmetric layups.

Fig. 5.12 Distribution of interlaminar shear stress a>xz at the 30790° interlace in a 

[30°/90°]s laminate with transverse cracks under uniform axial strain so.

Fig. 5.13 Distribution of interlaminar shear stress <ryz at the 30790° interface in a 

[30°/90°]s laminate with transverse cracks under uniform axial strain So.
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Fig. 5.14 Distribution of interlaminar normal stress a,z at the 30790° interface in a 

[30°/90°]s laminate with transverse cracks under uniform axial strain £«.

Fig. 5.15 Distribution of the axial stress c„  at the midplane in a [30°/90°]s laminate

with transverse cracks under uniform axial strain %
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Fig. 5.16 Distribution of the axial stress a)y at the midplane in a [30790°]s laminate 

with transverse cracks under uniform axial strain so.

Fig. 5.17 Distribution of the in-plane shear stress at the midplane in a [30790°]s

laminate with transverse cracks under uniform axial strain £q.
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Fig. 5.18 Through thickness distribution of interlaminar shear stress crr  in the crack

plane at x=0 in [30790°]s and [30790°/30H/90°] laminates with transverse cracks 
under uniform axial strain £q.

Fig. 5.19 Through thickness distribution of interlaminar normal stress ct„ in the

crack plane at x - 0  in [30°/90°]s and [30o/90°/30H/90°] laminates with transverse
cracks under uniform axial strain %
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Fig. 5.20 Through thickness distribution of axial stress a xx in the crack plane at x=0

in [30°/90°]s and [30°/90°/30H/90°] laminates with transverse cracks under uniform 
axial strain sq.

Fig. 5.21 Through thickness distribution of the displacement u in the crack plane at

x=0 in [30°/90°]s and [30°/90730°/90°] laminates with transverse cracks under
uniform axial strain sq.
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Fig. 5.22 Distribution of interlaminar shear stress crxz at the 30790° interface in a 

[30°/90°]s laminate with transverse cracks under shear strain yo-

Fig. 5-23 Distribution of interlaminar shear stress cryz at the 30790° interface in a

[30°/90°]s laminate with transverse cracks under shear strain y0.
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Fig. 5.24 Distribution of interlaminar normal stress a,,, at the 30790° interface in a 

[30790°]s laminate with transverse cracks under shear strain y0-

Fig. 5.25 Distribution of axial stress <jxx at the 30790° interface in a [30790°]s

laminate with transverse cracks under shear strain y0.
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Fig. 5.26 Distribution of axial stress cryy at the 30790° interlace in a [30°/90°]s 

laminate with transverse cracks under shear strain y0.

Fig. 5.27 Distribution of in-plane shear stress a xy at the 30790° interface in a

[30790°]s laminate with transverse cracks under shear strain y0-
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Fig. 5.28 Through thickness distribution of interlaminar shear stress c r in the crack

plane at *=0 in [30°/90°]s and [30790730790°] laminates with transverse cracks 

under uniform shear strain y0.

Fig. 5.29 Through thickness distribution of interlaminar normal stress o„ in the

crack plane at *=0 in [30790°], and [30790730790“] laminates with transverse

cracks under uniform shear strain y0.
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Fig. 5.30 Through thickness distribution of in-plane shear stress a >r in the crack

plane at x=0 in [30790°]s and [30790°/307901’] laminates with transverse cracks 
under uniform shear strain yo.

Fig. 5.31 Through thickness distribution of the displacement v in the crack plane at

x=0 in [30°/90°]s and [30o/90°/30o/90°] laminates with transverse cracks under
uniform shear strain yo.
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5.5. Conclusions

On the basis of the state space method for cross-ply composite laminates, a new 

model, in which all three interlaminar stresses are included, has been developed to 

predict three-dimensional stresses and displacements near free edges and transverse 

ply cracks in general angle-ply laminates subjected to in-plane and/or uniform 

thermal loading. Once again, a generalised plane strain deformation is adopted. The 

challenge of the new model is to find suitable displacement expressions and in-plane 

Fourier series expansions for all state variables, which must satisfy the boundary 

conditions and could be eliminated during further derivations. To meet the 

requirements, some new variables were introduced, including one unknown 

boundary displacement components F°(z) (See Eq. (5.14)) and two state variables v 

and cTyZ (See Eq. (5.16)) associated with appropriate Fourier series expansions. 

Numerical solutions were obtained by using layer refinement in the through 

thickness direction and Fourier series expansion in the x direction.

Comparisons with other available results were carried out to validate the present 

predictions. The numerical results for symmetric laminates showed good 

approximations to the singularities near free edges and crack surfaces. The 

predictions in general angle-ply laminates under a shear deformation, which are 

revealed for the first time in the literature, can be dealt with without further 

difficulties. To the author’s best knowledge none of the existing analytical models 

published in the literature have the capability of stress analysis in nonsymmetric 

angle-ply laminates with transverse multi-ply cracks under biaxial extension, shear 

and/or thermal loading. The numerical results for both nonsymmetric laminates 

under an axial strain and general laminates under in plane shearing can be further 

used as benchmarks for validating new analytical and numerical models.

Once again by this method, an angle-ply laminate may be composed of an arbitrary 

number of monoclinic layers and each layer may have different material property and 

thickness. The method always guarantees continuous distributions of both 

displacements and interlaminar stresses across interfaces between material layers. 

Although the new introduced variables increase the complexity of the mathematical 

model, it is still highly efficient because the dimension of the state space equation is
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only 6 x6  and the dimension of the final equation (see Eq.5.29) is independent of the 

number of material layers. Thus, this method is particularly suitable to solve stress 

concentration problems of multi-layered angle-ply composites.

Because of universality of the new proposed method, it also can be used to analyse 

cross-ply laminates. For cross-ply laminates, the extension-shear coupling does not 

exist. Thus the two variables V°(z) and <jyz will vanish in the present method to 

calculate cross-ply laminates. This will lead to the same formulations as those 

introduced in Chapter 4. In fact the state space method for cross-ply laminates can be 

treated as a special case of the method in this Chapter.
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Chapter 6. Thermoelastic Property Degradation due 

to Transverse Cracking

6.1. Introduction

An immediate effect of transverse cracking is to cause degradation in stiffness and 

thermal expansion coefficients of composite laminates. In order to design a structure 

which can tolerate property reduction due to the formation of matrix cracks, the 

predictions of the effective thermoelastic constants of cracked laminates are of great 
interest in engineering applications.

In Chapters 4 and 5, the stress and displacement distributions in cross-ply and angle- 

ply laminates were investigated by using the state space methods. In this Chapter, the 

effective thermoelastic properties of cracked laminates will be predicted as functions 

of transverse crack density on the basis of the stress and displacement fields. Because 

the transverse cracks are assumed to be equally spaced, a representative element 

between neighbouring cracks can be taken out to evaluate the effective thermoelastic 

property of the entire laminate. Since the state space method has been verified to 

provide very accurate stress evaluations, high quality predictions of thermoelastic 
constants are also expected.

Using the Classical Laminate Theory of undamaged composite laminates, the 

equivalent stiffness and compliance matrices of cracked laminates are given first. 

Then the effective stiffness and thermal expansion coefficients of cracked laminates 

are defined using the compliance matrices. By applying the state space method to 

some specially prescribed loading cases, the effective thermoelastic constants can 

then be calculated. Extensive numerical results of the degradations of thermoelastic 

constants in general cross-ply and symmetric angle-ply laminates are presented. Most 

of them are compared with solutions of other models and experimental data in the 

literature. Parts of the work introduced in this Chapter have been published in Zhang 
et al. (2006a; Accepted).
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6.2. Theoretical Formulations

6.2.1. Stiffness Matrices of Cracked Composite Laminates

6.2.1.1. General Laminates

Considering an angle-ply laminate (Fig. 5.3) containing uniform transverse cracks, 

the response of an element (Fig. 5.4) between neighbouring cracks can represent the 

deformation of the entire laminate. According to the Classical Laminate Theory 

introduced in Section 3.3.1, it is assumed that the overall deformation of the cracked 

laminate and the applied mechanical and thermal loading follow that

X ' * Ac AU AcAn AcAIS Bn Bn Bis'
/

a  ;
\

N , An An AcA2S Bn Bn Bis a 2

K a ;6 Au a ;6 Bis Bis Bis c t t 3
■AT

M x
► — « ► —  «

K Bn b ;6 Dl\ Dn Dis t t 4
M y Bn Bn Bu £>h Dn Dis k y <
X . K BU Bis Dis Dis Dis. V k*y. “ S. >

where letters with the superscript ‘c’ indicate properties of laminates with transverse 

cracks. Then the corresponding compliance matrix of the general cracked laminate is 
expressed by

V ] [b‘ ] '[A'] PH
[bc]r [dc] [B‘f [De]. (6 .2 a)

where

X « n < X b n bis d n d n d i s '

[ac] = < 2 a h < ,[b‘] = b n b n K s ,[<H = d n d n d is

* ls °26 bis bis b is d is d i s d is

X À°̂12 À C " ■̂16 X, B n Bis D u D l2 D is '

[Ac] = A n A n Als ,[BC] = B n B n Bis D n D n D is

Als A ls A ls. Bis Bis Bis D is D is D is

(6 .2 b)

The components of the effective 6><6 laminate compliance matrix as well as the 6 x1 

vector of thermal expansion coefficients remain to be determined. For certain ply 

stacking sequences, some of the couplings do not occur and the stiffness and 
compliance matrices become simpler.
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6.2.I.2. General Cross-ply Laminates

In a general cross-ply laminate with transverse cracks, there are no extension-shear, 

bending-twist, extension-twist and shear-bending couplings. Therefore the stiffness 

and compliance matrices of such a laminate e.g. [0°/90°3] become

4 e, Ac" l2 0 Bn Bn 0  ' < 2 0 bn bn 0  '
Ac"22 0 Bn Bn 0 «12 «22 0 bn bn 0

0 0 A* 0 0 BL 0 0 0 0 bU
K Bn 0 A , A C2 0 b'n bn 0 dCn dn 0

Bn B]2 0 Dn A C2 0 bn bn 0 dn dn 0

0 0 BL 0 0 DL 0 0 b l 0 0 d l.

(6.3)

6.2.I.3. General Symmetric Laminates

In a general symmetric laminate with transverse cracks, there is no in-plane and out- 

of-plane coupling. Therefore the stiffness and compliance matrices of such a 

laminate e.g. [30790°2]s become

An a ;6 0 0 0 ' V , <2 < 0 0 o '

An A~22 Ao 0 0 0 <2 «26 0 0 0

A AL 0 0 0 < «26 «66 0 0 0
0 0 0 Dn D'n a ; 0 0 0 dn dn <6
0 0 0 Dn Dn A * 0 0 0 dn dn <r»
0 0 0 d ;6 d ;6 DL 0 0 0 <6 d‘u

(6.4)

6.2.I.4. Symmetric Cross-ply Laminates

In the case of symmetric cross-ply laminates, the behaviours of general cross-ply and 

symmetric laminates combine together. Then the stiffness and compliance matrices 

of such a laminate e.g. [0790°2]s become

'An An 0 0 0 0 ' «n «12 0 0 0 o '

An a;2 0 0 0 0 «.C2 «22 0 0 0 0
0 0 AL 0 0 0 0 0 «¿6 0 0 0
0 0 0 Dn Afj 0 0 0 0 dn dn 0
0 0 0 AT. Dn 0 0 0 0 dn dn 0
0 0 0 0 0 DL. 0 0 0 0 0 dl6.

(6.5)
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6.2.1.5. Antisymmetric Cross-ply Laminates

An antisymmetric cross-ply laminate is that which has an even number of orthotropic 

layers with principle material directions alternating at 0 ° or 90° to the laminate axes. 

For every 0° layer of a given thickness and location, there is a 90° layer of the same 

thickness and location on the other side of the midplane. The stiffness and 

compliance matrices of such a laminate e.g. [0°/90o2/0o2/90°] become

---
--

1
“ 

t) An 0 K 0 0 ‘ V , <2 0 bn bn 0 '
AcA12 A , 0 0 - K 0 <2 <2 0 bn bn 0
0 0 Als 0 0 0 0 0 <6 0 0 0

K 0 0 4 ' A , 0 bn 0 d'n dn 0
0 - K 0 Dn Dn 0 bcn ¿22 0 dn dCn 0
0 0 0 0 0 DL. 0 0 0 0 0 d l.

Note that the zero coefficients in stiffness matrix [Bc] may not have corresponding 

ones in compliance matrix [bc] of such laminates.

6.2.2. Effective Thermoelastic Constants of Cracked Laminates

The effective thermoelastic constants of cracked laminates can be derived by using 

the definitions for uncracked laminates mentioned in Section 3.3.3. Similarly the 

thermoelastic properties of a cracked laminate are expressed in terms of the 

components of the 6 x6  laminate compliances and the 6 x 1 vector of thermal 

expansion coefficients. A transformation needs to be applied to ensure that all the 

properties are principally of the same dimension. A matrix [Sc] of equivalent 

laminate compliances is obtained by use of the total laminate thickness H  as

where

IS‘] =

H 2
H[ ac] T [b'] V i [bc]

H 1 T
L T [b 1

— [dc] 
12

[b‘ ]T \ dc ].

p r  ]« # [••] , m ~ [ b c], [<n=“ [d‘]

(6.7a)

(6.7b)

Similarly, a 6x1 vector of equivalent thermal expansion coefficients [cc‘] is

introduced as
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a ' = a a, a, H c H c— a —a
2 4 2 5

H
a . (6.8)

From the compliance matrix [Se], the effective thermoelastic constants of cracked 

laminates, i.e. effective elastic and shear moduli, effective bending and twisting 

moduli, effective extension-extension and extension-shear coupling ratios, effective 

bending-bending and bending-twisting coupling ratios, and in-plane-out-of-plane 

coupling ratios can be defined as the corresponding Eqs. (3.19-3.23), respectively, 
for uncracked laminates.

In the present analysis, the effective thermoelastic properties of cracked cross-ply 

laminates and the effective in-plane thermoelastic constants of symmetric angle-ply 

laminates will be predicted. The details of these effective properties are introduced as 

follows.

6.2.2.I. Effective Thermoclastic Constants of Cross-ply Laminates

Fig. 6.1 Nomenclature of a cross-ply laminate subjected to in-plane extension and 
out-of-plane bending.

In a cross-ply laminate with uniform transverse cracks, the extension-shear and 

bending-twisting couplings vanish (see Eq (6.3)). Considering the laminate is under 

in-plane extension and out-of-plane bending (Fig. 6.1), the relationship between 

overall deformation and applied loading of the laminate reduces to
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bu b
bn

dn
dn

bn

dn

X ' a;
Ny a 2

K a:
My a v

>AT (6.9)

The engineering constants are defined as

MC

1 Fc - 1 v. _ <2 \,c «,e2
Ha'w ’ IIac22 ’ v ’ V yx - ?

12 F c 12 nc - d n <2
/ / X , > r y *\xy ~ d C ’ 1>Jr d n  ’

1 1 £ Hb'n -  - a\c - / X 2
’ 9,,. 2a;, ’ 9 yx - 2a‘2 ’ 9 yy 2a;2

6b;, , , , C 6bn 66‘,
Y11C 6 ^

Hd'u ’ H dcn > MV “
^  ’1 9 W /W‘2

(6. 10)

where Ex and Ey are effective Young’s moduli; v ,̂ and v ,̂ are effective Poisson’s 

ratios; Fxc and Fcy are effective flexural moduli; and p ;  and p;., are effective 

flexural coupling coefficients; q>; and (/, j=x, y) are effective extension-flexure 

and flexure-extension coupling coefficients, respectively.

6 .2 .2.2. Effective In-plane Thcrmoclastic Constants of Symmetric Laminates

Fig. 6.2 Nomenclature of a symmetric laminate subjected to in-plane loading.
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In a symmetric laminate with uniform transverse cracks, there exists no in-plane-out- 

of-plane coupling. Considering the laminate is subjected to in-plane loading (Fig. 

6 .2 ), the in-plane strains are related only to in-plane forces as follows

CO
H

 
©

« n <

r  >

K
f  N

• = <2 « 2 2 « 2 6
*

N y t t 2

kJ < « 2 6 n , \ “ 3 .

( 6. 11)

Analogous to Eq. (6.10), the following relations are obtained

e ;
1

K
i

Gc
l

//«;, y Ha'22 ‘ *y
H a l

v c*y _c 5 v cy*
= _ < _

■ v« = - f k
«22 «66

Vexs c 9
au

Vey*

c
_ «26

c ’ 
«22

■ K
_ «26 

«¿6

(6.12)

where G% is the effective shear modulus; and and v ; are effective

extension-shear coupling coefficients.

6.2.3. Calculation of Effective Thermoelastic Constants

In order to calculate the effective thermoelastic constants, the related compliances of 

cracked laminates must be first solved. These compliances can be determined by the 

solutions of stress and displacement fields in cracked laminates under specially 

prescribed loading cases. In term of the stress analysis in Chapters 4 and 5, the 

calculations of effective thermoelastic constants fall into two categories.

6.2.3.I. Cross-ply Laminates under In-plane Extension and Bending

According to the constitutive equation (Eq. (6.9)) of cracked cross-ply laminates, the 

following five loading cases are used to calculate the compliances in Eq. (6.9).

[ K H y M „ M y A T ] - - = [1 0 0 0 0 ] (6.13a)
[ N x N y M x M y A T ] - - = [0 1 0 0 0 ] (6.13b)

[ N x N y M x M y A T ] - - = [0 0 1 0 0 ] (6.13c)
[ N , N y M x M y A T ] - - = [0 0 0 1 0 ] (6.13d)
[ H x N y M x M y A T ]  = [o 0 0 0 1] (6.13e)

125



Chapter 6 Thermoelastic Property Degradation

where Eqs. (6.13a), (6.13b), (6.13c), (6.13d), and (6.13e), respectively, represent the 

loading conditions in which a cracked laminate is subjected to a unit force in the x- 

direction, a unit force in the ^-direction, a unit bending moment in the x-z plane, a 

unit bending moment in the y-z plane, and a unit uniform temperature increase. The 

stress analysis of all these loading conditions has been demonstrated by numerical 

examples in Section 4.4. By using the displacement solutions of the stress analysis, 
the mid-plane strains and curvatures can be determined by

0 u(0,H / 2)
8 , = -----------
r 1 / 2 (6.14a)

s°y =e0(H/2)
(6.14b)

u(0,H)-u(0,Q) 
x HU 2 (6.14c)

j. e0{H)-e  o(0) 
'  H (6.14d)

where the definitions of the displacement u and strain eo can be found in Eqs. (4.13) 

and (4.8), respectively; H  and L are the thickness and width of the laminate (see Fig. 

4.2).

Substituting the five sets of prescribed loading Eqs (6.13) into Eq. (6.9), all the 

compliances and effective thermal expansion coefficients are determined, 

respectively, as
c 0 < = < > b ^ = k „ b : 2=ky (6.15a)
c 0 

« 1 2 < = < > b c2]=kx>bc21=ky (6.15b)
r c  _ 0  

”  e :t 9 b2\ =  » ^ i i  =kx, d [ 2 =  ky (6.15c)

bc = e °  U12 b-n—Zyt d n  =  kx, d \ 2 -  ky (6.15d)
c 0

a ,  = 6 , , “ 2 =K> <  a \= k r (6.15e)

Then all the effective engineering constants of cracked cross-ply laminates can be 

calculated by Eq. (6.10).
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6.2.3.2. Symmetric Laminates under In-plane Loading

According to the in-plane constitutive equation (Eq. (6.11)) of cracked symmetric

laminates, the following four loading cases are used to calculate the compliances in

Eq. (6.11).

[Nx Ny Nxy AT] = [\ 0 0 0] (6.16a)

[Nx Ny Nxy A 7>[0 1 0 0] (6.16b)

[Nx Ny Nxy Ar] = [0 0 1 0] (6.16c)

[Nx Ny Nxy Af] = [0 0 0 1] (6.16d)

where Eqs. (6.16a), (6.16b), (6.16c), and (6.16d), respectively, represent the loading 

conditions in which a cracked laminate is subjected to a unit force in the jc-direction,

a unit force in the y-direction, a unit shear in the x-y plane, and a unit uniform
temperature increase. By using the stress analysis in Chapter 5, the displacement 

fields are obtained and can then be used to calculate the mid-plane strains

o u(0,H / 2)E, = -----------
x 1 / 2 (6.17a)

e° =v(L/2,\ ,H /2) (6.17b)
„o v(0,0, H) 

L12 (6.17c)

where the expressions of the displacements u and v can be found in Eq. (5.14).

Substituting the four sets of prescribed loading Eqs (6.16) into Eq. (6.11), all the 

compliances and effective thermal expansion coefficients are determined,

respectively, as

<i = e°> < 2  =<» < 6 = < (6.18a)

< 2  = C  <  «26 = < (6.18b)

(6.18c)

<  =e°,> a c2 =e% a , =s^ (6.18d)

Then all the effective in-plane engineering constants of cracked symmetric laminates 
can be calculated by Eq. (6 .12).
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6.3. Num erical Results

6.3.1. Cross-ply Laminates

The method proposed above is illustrated by numerical examples. The material 

properties and dimensions used in this section are given in Table 6.1. To enable 

comparisons to be made with the results available in the literature, the thermoelastic 

constants of the damaged laminates are normalised by the stiffness of the undamaged 

laminates which is indicated by a superscript ‘°’ and plotted with respect to the 

transverse crack density.

Table 6.1 Material properties and dimensions

Material 6.1 Material 6.2 Material 6.3 Material 6.4

Type Graphite/epoxy Glass/epoxy Glass/epoxy Graphite/epoxy

El 144.78 GPa 41.7 GPa 45.6 GPa 132.0 GPa

Ej 9.58 GPa 13.0 GPa 16.2 GPa 10.8 GPa

Vlt 0.31 0.30 0.278 0.24

Wt 0.55 0.42 0.4 0.4

Gl t 4.785 GPa 3.4 GPa 5.83 GPa 5.7 GPa

Gtt 3.090 GPa 4.58 GPa 5.83 GPa 5.7 GPa

a\ -0.72x10'6/°C 8.6x10'6/°C ■ -O.llxlO 'Vc

0-1 27.0x10'6/°C 26.4x10*6/°C 27.2x10'6/°C

Hpiy 0.127 mm 0.203 mm 0.25 mm 0.14 mm

6.3.1.1. Symmetric Cross-ply Laminates

Numerical examples are first presented for symmetric cross-ply laminates containing 

transverse cracks. Using the Material 6 .1 , Material 6.2, and Material 6.3 in Table 6.1, 

the effective Young’s modulus and the effective Poisson’s ratio as a function of 

crack density have been predicted in a [ 0  W ] ,  graphite/epoxy laminate, a [ 0  W j ] ,

graphite/epoxy laminate, and a [O W ,] , glass/epoxy laminate, respectively. These

numerical results are plotted in Fig. 6.3-Fig. 6.8.
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To validate the present predictions, some of the present solutions are compared with 

other numerical and experimental results subjected to availability. These 

comparisons are shown in Fig. 6.3, Fig. 6.5, Fig. 6.7, and Fig. 6 .8 . Among these 

results, McCartney et al.(2000) assumed a generalised plane strain deformation as 

well. Yuan and Selek (1993) employed a finite element method. Groves et al. (1987) 

and Reifsnider and Highsmith (1982) used experimental methods. In general the 

present predictions agree well with these analytical or experimental results, while in 

Fig. 6.7 for large values of crack density the analytical solutions overestimate the 

axial stiffness. This is because the analytical models consider only pure transverse 

cracking damage and other forms of damage such as fiber matrix interfacial sliding 

that may effect the laminate stiffness during testing are neglected (McCartney et al., 
2000) .

Using the Material 6.4 in Table 6.1, the degradation of the flexural modulus has been 

calculated as a function of crack density for a glass/epoxy laminate of the type 

[0°/90o2/0790o2/0°]. The result is compared with that of McCartney and Pierse 

(1997b) in Fig. 6.9. The transverse cracks were assumed to be uniformly distributed 

in only one of the 90°2 layers in the tension zone. This takes account of the crack 

closing-up effect in the compression zone. An excellent agreement is obtained 

between the present solution and McCartney and Pierse (1997b)’s prediction.

The changes in the effective thermal expansion coefficients (TEC) of [0Y90°]S, 

[0°2/90°2]s and [0790°3]s graphite/epoxy laminates are predicted. The laminates are 

made of the Material 6.1 in Table 6.1. Fig. 6.10 shows excellent agreements between 

the present solutions and Lim and Hong (1989)’s finite element results.
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Fig. 6.3 Dependence of the normalised Young’s modulus on the crack density in a 

[0°/90°]s graphite/epoxy laminate with transverse cracks.

Fig. 6.4 Dependence of the normalised Poisson’s ratio on the crack density in a

[0°/90°]s graphite/epoxy laminate with transverse cracks.
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Fig. 6.5 Dependence of the normalised Young’s modulus on the crack density in a 

[0°/90°3]s graphite/epoxy laminate with transverse cracks.

Fig. 6.6 Dependence of the normalised Poisson’s ratio on the crack density in a

[0°/90°3]s graphite/epoxy laminate with transverse cracks.
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Fig. 6.7 Dependence of the normalised Young’s modulus on the crack density in a 

[0°/90°3]s glass/epoxy laminate with transverse cracks.

Fig. 6.8 Dependence of the normalised Poisson’s ratio on the crack density in a

[0°/90°3]s glass/epoxy laminate with transverse cracks.
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Fig. 6.9 Dependence of the flexural modulus on the crack density in a 

[0°/90o2/0o/90o2/0°] glass/epoxy laminate with transverse cracks.

Fig. 6.10 Dependence of the normalised flexural modulus on the crack density in

symmetric graphite/epoxy laminates with transverse cracks.
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6.3.1.2. Nonsymmetric Cross-ply Laminates

The effects of transverse cracking on the stiffness degradation in an nonsymmetric 

[0°/90°/0790°] graphite/epoxy laminate are presented in this example. The material 

properties and dimensions used in this example are given in the Material 6.1 of Table 

6.1. To the author’s best knowledge, there are no available results of stress-based 

stiffness degradation for nonsymmetric cross-ply laminates in existing publications. 

Through Dr Ye’s research collaboration, Dr Neil McCartney, the National Physical 

Laboratory (NPL), calculated this example using a physically based damage model. 

The comparisons between present results and McCartney’s predictions are shown in 

Fig. 6.11-Fig. 6.15. It can be seen that the agreement between the present solutions 

and McCartney’s results is very good. Similar to changes in symmetric laminates, the 

effective Young’s modulus, Poisson’s ratio, flexural modulus, and flexural coupling 

coefficient show obvious degradations in Fig. 6.11-Fig. 6.14, respectively. The 

nonsymmetric layup characterise its difference in the non-vanishing extension- 

flexure coupling coefficient in Fig. 6.15. On the contrary to other properties, the 

extension-flexure coupling coefficient ascends with the increase of crack density.

Fig. 6.11 Dependence of the normalised Young’s modulus on the crack density in a

[079070790°] graphite/epoxy laminate with transverse cracks.
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Fig. 6.12 Dependence of the normalised Poisson’s ratio on the crack density in a 

[0°/90o/0°/90o] graphite/epoxy laminate with transverse cracks.

Fig. 6.13 Dependence of the normalised flexural modulus on the crack density in a

[0o/90°/0°/90o] graphite/epoxy laminate with transverse cracks.
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Fig. 6.14 Dependence of the normalised flexural coupling coefficient on the crack 

density in a [0°/90o/0°/90o] graphite/epoxy laminate with transverse cracks.

Fig. 6.15 Dependence of the normalised extension-flexure coupling coefficient on

the crack density in a [0°/90o/0°/90o] graphite/epoxy laminate with transverse cracks.
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6.3.2. Symmetric Angle-ply Laminates

In order to validate the methodology in angle-ply laminates, a group of balanced 

glass fiber/epoxy laminates with layup [±079O°4]S, 0 =0 , 15, 30, 40, are considered. 

All plies of the laminates have the same thickness 0.144mm, and have the following 
material properties.

£ L=44.73GPa, £T=12.76GPa,

GLT=5.8GPa, Grr=4.49GPa, (6 19)
^7=0.297, v*rx=0.42.

Joffe and Varna (1999) predicted stiffness reduction of such laminates by shear lag 

model, variational approach, and finite element (FE) method. They also carried out 

experiments to measure changes of the effective Young’s moduli and the effective 

Poisson’s ratios. Fig. 6.16-Fig. 6.23 show the results of present method, shear lag-2 

model, FE analysis and experiment data. For the purpose of comparison, the effective 

thermoelastic constants of the damaged laminates are normalized by those of the 
undamaged ones that are indicated by a superscript ‘° \

It can be seen from Fig. 6.16-Fig. 6.21 that the agreements between the theoretical 

models and experimental data are reasonably good. Generally speaking, the present 

method slightly underestimates the properties degradation. The reason for this is that 

the analytical model only includes damage due to transverse cracking and ignores 

other forms of damage such as fiber matrix interfacial sliding that reduces the 

stiffness during a test. None of the models is comparable with the test results for the 

[±40790°4]s laminate in Fig. 6.22 and Fig. 6.23. This may be attributed to the early 

damage occurring in outer layers of the laminate that is not included in the models 

(Joffe and Varna, 1999). The effective shear moduli of these glass fiber/epoxy 

laminates are presented in Fig. 6.24 without available results to compare with. As 

indicated in the figure, there is a descending tendency for shear moduli reduction 
with the increase of fiber orientation.

McCartney (1996; 2000) derived various inter-relationships for the thermoelastic 

constants of cracked and uncracked general symmetric laminates. It is expected that

137



Chapter 6 Thermoelastic Property Degradation

high quality results will obey these relationships. In order to further validate the 

present method, the numerical solutions of the above four symmetric glass 

fiber/epoxy laminates with lay-up [±0°/9O°4]s, 6=0, 15, 30, 40, are tested by the 

. following inter-relationship (McCartney, 2000).

<  v »
E l  E K  p) ,

1 1 ~ k (6.20)
E CM  El

where p represents the crack density; k is a laminate constant that is independent of 

the crack density p. The expression of k is

k = K
K 1 -Vvvir

(6.21)

Eqs. (6.20) and (6.21) can be found as Eqs. (115) and (116) in McCartney (2000).

Table 6.2 Inter-relationship test results
Crack density (cracks/mm)

0 0.0625 0.125 0.25 0.375 0.5 0.625 0.75

E% (GPa) 19.317 18.458 17.935 17.094 16.336 15.646 15.052 14.581
1“^oO

r-<noo Vxy 0.0907 0.0831 0.0785 0.0711 0.0645 0.0584 0.0532 0.0490
Ox0O

O
9

Eq. (6.20)* N/A 0.0790 0.0790 0.0790 0.0790 0.0790 0.0790 0.0790
+1. a Error (%)b N/A 0.62% 0.62% 0.62% 0.62% 0.62% 0.62% 0.62%

Ex (GPa) 18.118 17.255 16.725 15.881 15.127 14.445 13.860 13.397
*oO oo Vxy 0.1041 0.0965 0.0918 0.0844 0.0778 0.0718 0.0666 0.0626

oin o
9

Eq. (6.20)* N/A 0.05521 0.05520 0.05520 0.05520 0.05520 0.05520 0.05520
4 Error (%)b N/A 0.74% 0.73% 0.73% 0.73% 0.73% 0.72% 0.72%

£ x(GPa) 15.240 15.233 14.358 13.803 12.947 12.204 11.543 10.981
vrOO co Vxy 0.1286 0.1286 0.1210 0.1162 0.1088 0.1023 0.0966 0.0917

0O
oo
© Eq. (6.20)’ N/A 0.00342 0.00342 0.00343 0.00343 0.00343 0.00343 0.00343

S X Error (%)b N/A 0.48% 0.50% 0.55% 0.57% 0.58% 0.60% 0.62%

o £ x (GPa) 13.227 12.314 11.731 10.860 10.121 9.477 8.934 8.505
0o

00co Vxy 0.1356 0.1279 0.1231 0.1157 0.1095 0.1041 0.0996 0.0960
O' <N0o O

o Eq. (6.20)* N/A -0.02463 -0.02463 -0.02464 -0.02464 -0.02464 -0.02464 -0.02464
HH, Í Error (%)b N/A 1.01% 1.02% 1.03% 1.03% 1.04% 1.05% 1.06%

8 The left side value of Eq. (6.20).b Error (%)=(The left side value of Eq (6.20)-k)fk.
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The effective Young’s moduli, the effective Poisson’s rations and the inter

relationship test results of all the four lay-ups are listed in Table 6.2. It is found that 

the present predictions satisfy the inter-relationship within a very small error.

A quasi-isotropic carbon fiber reinforced epoxy [-45°/45o/0°/90o]s laminate is 

considered by McCartney (1996). The thermoelastic constants for a unidirectional 
ply are

Each ply has the thickness 0.125mm. McCartney (1996) calculated the stiffness 

degradation with ply refinement parameter (n=l-5). It was considered that the 

number of sub-layers (n=5) in each ply appear to converge sufficiently to provide an 

accurate prediction. In consequence McCartney (1996)’s predictions by using ply 

refinement parameter (n=5) are adopted in this and the following examples. The 

effective Young’s modulus, Poisson’s ratio and shear modulus as a function of crack 

density are plotted in Fig. 6.25-Fig. 6.27, respectively. As seen from the figures, the 

present results are always smaller than the values of the effective elastic constants 

predicted by McCartney (1996) in low crack densities but almost very close to 

McCartney (1996)’s predictions towards high crack densities. In general, the 

collation between the results of these two methods is very good.

McCartney (1996) also calculated the effective thermoelastic constant degradations 

of an unbalanced glass/epoxy laminate [30790°]s with ply cracks in 90° plies. The 

ply thickness is 0.25mm and the material properties are as follows

For an unbalanced symmetric laminate, there exists a tension-shear coupling. Fig. 

6.28-Fig. 6.31 show the comparisons of the stiffness reductions, including the 

effective Young’s modulus, Poisson’s ratio, shear modulus, and tension-shear 

coupling coefficient. Fig. 6.32 and Fig. 6.33 show the results of the effective axial

£ L=136.6GPa, £T=9.79GPa, 

GLT=6.474GPa, Gn=3.364GPa, 

vti^O.286, vrx=0.455.
(6.22)

Ei~45.6GPa, Ej— 16.2GPa, Glt—5.83GPa, 

Grr=5.786GPa, v̂ t=0.297, Vn^O.42, 

«l=8.6x10'6/°C, «1=26.4x1 0'6/°C.
(6.23)
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and shear thermal expansion coefficient, respectively. It is seen that except the shear 

thermal expansion coefficient a3 all the effective thermoelastic constants decrease 

with an increasing crack density. Very good agreements are observed between the 

present results and McCartney (1996)’s predictions. Both McCartney’s and the 

present models assumed a generalised plane strain deformation. A significant 

difference between the two models is that the present solution matched the boundary 

displacement conditions of the uncracked layers exactly while McCartney’s solution 
only satisfied those in an average sense.

Fig. 6.16 Dependence of the normalised Young’s modulus on the crack density in a 

±̂0°/90o4]s glass/epoxy laminate with transverse cracks.
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Fig. 6.17 Dependence of the normalised Poisson's ratio on the crack density in a 

j-±0‘790o4]s glass/epoxy laminate with transverse cracks.

Fig. 6.18 Dependence of the normalised Young’s modulus on the crack density in a

[±15°/90°4]s glass/epoxy laminate with transverse cracks.
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Crack Density (Cracks/mm)

Fig. 6.19 Dependence of the normalised Poisson’s ratio on the crack density in a 

[±1 5 7 9 0 °4]s glass/epoxy laminate with transverse cracks.

Fig. 6.20 Dependence of the normalised Young’s modulus on the crack density in a

[±30o/9O°4]s glass/epoxy laminate with transverse cracks.
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Fig. 6.21 Dependence of the normalised Poisson’s ratio on the crack density in a 

[±30°/90°4]s glass/epoxy laminate with transverse cracks.

Fig. 6.22 Dependence of the normalised Young’s modulus on the crack density in a

j+40o/9Oo4]s glass/epoxy laminate with transverse cracks.

143



Chapter 6 Thermoelastic Property Degradation

Fig. 6.23 Dependence of the normalised Poisson’s ratio on the crack density in a 

[+40790°4]s glass/epoxy laminate with transverse cracks.

Fig. 6.24 Dependence of the normalised shear moduli on the crack density in a group
of glass/epoxy laminates with transverse cracks.
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Crack Density (Cracks/mm)
Fig. 6.25 Dependence of the effective Young’s modulus on the crack density in a 

[_45°/+45o/0°/90o]s carbon/epoxy laminate with transverse cracks.

Crack Density (Cracks/mm)
Fig 6.26 Dependence of the effective Poisson’s ratio on the crack density in a

[_45°/+45o/0°/90o]s carbon/epoxy laminate with transverse cracks.
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Crack Density (Cracks/mm)
Fig. 6.27 Dependence of the effective shear modulus on the crack density in a 

[ _ 45o/ + 4570° / 90o] s carbon/epoxy laminate with transverse cracks.

Crack Density (Cracks/mm)
Fig. 6.28 Dependence of the effective Young’s modulus on the crack density in a

[30°/90°]s glass/epoxy laminate with transverse cracks.
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Crack Density (Cracks/mm)
Fig. 6.29 Dependence of the effective Poisson’s ratio on the crack density in a 

[30°/90°]s glass/epoxy laminate with transverse cracks.

Crack Density (Cracks/mm)
Fig. 6.30 Dependence of the effective shear modulus on the crack density in a

[30°/90°]s glass/epoxy laminate with transverse cracks.
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Crack Density (Cracks/mm)
Fig. 6.31 Dependence of the effective extension-shear coupling coefficient on the 

crack density in a [30°/90°]s glass/epoxy laminate with transverse cracks.

Crack Density (Cracks/mm)
Fig. 6.32 Dependence of the effective axial thermal expansion coefficient on the

crack density in a [30°/90°]s glass/epoxy laminate with transverse cracks.
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Crack Density (Cracks/mm)
Fig. 6.33 Dependence of the effective shear thermal expansion coefficient on the 

crack density in a [30°/90°]s glass/epoxy laminate with transverse cracks.

6.4. Conclusions

In this Chapter, the effective thermoelastic properties of composite laminates with 

uniform transverse cracks were derived on the basis of the Classical Laminate 

Theory. First, the equivalent stiffness and compliance matrices of cracked laminates 

were given in general laminates and some selected cases. This is, in fact, a 

homogenisation process, in which the effective properties of a cracked laminate were 

smoothed into the equivalent properties of a homogeneous plate. Then by using the 

corresponding compliances, the effective thermoelastic constants of cracked 

laminates were defined. In term of their coupling characteristics, the effective 

engineering constants in cross-ply and general symmetric laminates were given in 

detail. Finally, the effective thermoelastic constants were determined by solving the 

stress and displacement distributions in cracked laminates under some specially 

designed loading conditions. Numerical results were also presented and most of them 

were compared with available solutions of other models or experimental data.

It can be seen from the numerical validations that the proposed method provides 

accurate predictions of stiffness degradation in cracked cross-ply and symmetric
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laminates. Although the stiffness degradation due to transverse cracking in 

nonsymmetric cross-ply laminates has no published data available to date, the 

present solutions for such laminate were validated by McCartney’s unpublished 

results. Once again, a very good agreement was observed. These results, therefore, 

can be used as benchmarks for validating new analytical and numerical methods.

Because the stiffness determined methodology herein is based on the stress analysis 

introduced in Chapters 4 and 5, the method and results in this Chapter can be 

regarded as an application of the stress analysis in the engineering practice. 

Meanwhile, the stress transfer models, state space methods, were also verified by the 
current examples indirectly.
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Chapter 7. Propagation of Transverse Cracking in 
Laminates

7.1. Introduction

Transverse cracking has long been recognised as an important damage mechanism in 

composite laminates. The initiation and propagation of transverse cracking has been 

studied extensively in the past few decades. In this chapter, an energy method based 

on fracture mechanics, combined with the aforementioned stress analysis, is used to 

predict the development of transverse cracks in both symmetric and nonsymmetric 

laminates. Further to an application of the stress transfer model in predicting stiffness 

degradation in the engineering practice, this is another one in evaluating transverse 
crack multiplication.

The stress transfer models in Chapters 4 and 5 fall into two categories: cross-ply and 

angle-ply laminates. Since the stress analysis of cross-ply laminates can be regarded 

as one special case of angle-ply laminates, the theoretical formulations in this chapter 

are only derived for angle-ply laminates. However it covers all the aspects of cross- 
ply laminates.

Firstly formulations of the total complementary potential energy of a representative 

element between two neighbouring transverse cracks are derived. Then the energy 

release rate during the transverse crack propagation is given in an idealised crack 

state. By introducing the crack propagation criterion, the crack density as a function 

of applied average stress can then be predicted. In the end the proposed method is 

demonstrated by numerical examples and is validated by other results and 
experimental data.
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7.2. Theoretical Formulations based on Fracture Mechanics

In Section 3.4, some fundamental principles in fracture mechanics have been 

introduced. Herein these principles are used to predict transverse crack propagation 
in composite materials.

7.2.1. The Total Complementary Potential Energy of a Representative 

Element

Fig. 5.4 shows a representative element which is taken out from two neighbouring 

cracks in a [0°m/9O°n/̂ )os] composite laminates. The stress analysis has been carried 

out on this idealised element in Chapter 5, where the laminate is assumed to consist 

of N  fictitious sub-layers. The complementary strain energy Uc of this representative 

element is

v,= y .u:
i (7.1)

where the superscript ^  means theyth sub-layer and UJC is the complementary strain 

energy of theyth sub-layer of the representative element. Using the stresses obtained 

in Chapter 5, C// per unit length in they  direction can be obtained by Eq. (3.28) as

~~Z { {[{al [C'J 1 {a} + AT {a}T {a}l dxdz 
^ 0 0

where

<a> = [ff-  0* a =

{a} = [ocx a y a 2 0 0 a ^ ]T

the matrix [C] is stiffness matrix (See Appendix B) and AT is the change in 

temperature.

(7.2a)

(7.2b)

(7.2c)

Consider the laminate is under a uniformly prescribed strain eo in the y  direction. The 

potential of the prescribed strain eq can be obtained by Eq. (3.32)

K=IKJ (7.3)
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Then the total complementary potential energy of this representative element is given 

as the difference of the complementary strain energy Uc and the potential of 
prescribed displacements Vc (See Eq. (3.36)).

It can be noted that the last term in Eq. (7.4) is the difference between a generalised 

plane strain and a plane strain problem.

7.2.2. The Energy Release Rate due to Transverse Cracking

The energy release rate is a well established crack propagation criterion in fracture 

mechanics. It is used to predict the transverse cracking development in the present 

study. The energy release rate G can be calculated either by the total potential energy 

or by the total complementary potential energy, i.e. Eqs. (3.34) and (3.35). The later 

will be used in the present study.

Consider a composite laminate is subjected to external loading and there are a large 

number of transverse cracks in the 90° layers. The entire length of the laminate is Le 

and the thickness of cracked layers is Hc. Fig. 7.1 shows the propagation process of 

the transverse cracks from state (a) to state (b), which is then idealised into state (c). 

In state (a), it is assumed that there exist k uniformly spaced transverse cracks in the 

laminate. Therefore the crack density in this state is

EoCT̂, dxdz (7.4)
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r

L_________ „L

-------

a

(C) n----------
li—__ ----------li_____j

Fig. 7.1 Nomenclature of the propagation process of transverse cracks and the 
idealised uniform distribution state.

With the changes of external loading, a new transverse crack forms and the state (a) 

turns to state (b). The number of the transverse cracks increases from k to (£+1). In 

order to simplify the analysis, state (b) is idealised to state (c), in which the (*+l) 

cracks are equally spaced. Then the crack density in state (c) is

During the transverse cracking process, the crack surface area increment is 2//c. By 
Eq. (3.35) the energy release rate from state (a) to state (b) is

_ r(ptj - r ( p t)
2HC

{k + 1)Tr (pttl ) -  kTr (pk ) (7.7)
2 Hc

__ 4P*+ ir,(P*+ ,)-4PX(Pt)
2HC
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where r(pt+l) and r(pt ) are the total complementary potential energies of the entire 

laminate at crack densities pt+1 and pt , respectively; rr(p*+1) and r,(pt ) are the 

total complementary potential energies of the representative element at crack 

densities p*+1 and pt , respectively.

7.2.3. The Transverse Crack Propagation Criterion

A new crack will form if the energy released due to crack formation reaches the 

critical energy release rate Gc, i.e.

(7.8)

Gc is a material property and has units of energy per unit area. It can be measured by 

an experiment method.

Fig. 7.2 Flowchart of calculating the critical cracking load for a given crack density.

Fig. 7.2 is a flowchart showing how to determine the critical cracking load for a 

given crack density. First input an initial load to carry out a stress analysis by using 

the stress transfer model in Chapter 5. Then calculate the energy release rate G of the
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laminate by Eq. (7.7) and compare it with Gc. If G>GC, decrease the load value to 

recalculate the energy release rate until G=GC. If G<GC, increase the load value to 

recalculate the energy release rate until G=GC. If G=GC, then output the load, i.e. the 

critical cracking load, for the given crack density.

7.3. Numerical Results

The formulations and criterion proposed above are applied to predict the transverse 

cracking in composite laminates with different configurations, including symmetric 

cross-ply laminates, symmetric angle-ply laminates and nonsymmetric laminates. 

The material properties and dimension of these laminates (Liu and Nairn, 1992; Joffe 

et al., 2001) are given in Table 7.1. Effects of the residual thermal stresses are 

included in the analysis. AT is the difference between the room temperature and the 

cure temperature. Table 7.1 also lists the critical energy release rate Gc for each 

material.

Table 7.1 Material properties and dimensions

Material 7.1 Material 7.2 Material 7.3 Material 7.4

Type
Fiberite

934/T300
Avimid® K 

Polymer/IM6

Hercules

3501-6/AS4
Glass/epoxy

El 128 GPa 134 GPa 130 GPa 44.73 GPa
Ei 7.2 GPa 9.8 GPa 9.7 GPa 12.76 GPa

H.T 0.3 0.3 0.3 0.297

Vn 0.5 0.5 0.5 0.42

Glt 4.0 GPa 5.5 GPa 5.0 GPa 5.8 GPa

Gtt 2.4 GPa 3.6 GPa 3.6 GPa 4.49 GPa

«1 -0.09x10'6/°C -0.09x10’6/°C -0.09x10‘6/°C 8.6x10‘6/°C
0.2 28.8xl0'6/°C 28.8xlO'6/°C 28.8xlO*6/°C 22.1x10'6/°C
AT -125 °C -225 °C -125 °C i © © n

Go 690 J/m2 960 J/m2 240 J/m2 610 J/m2

Le 50mm 50mm 50mm 50mm

/ / p l y 0.154 mm 0.154 mm 0.154 mm 0.144 mm
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7.3.1. Symmetric Laminates under Tension

The crack densities as a function of applied average stresses for symmetric cross-ply 

laminates are plotted in Fig. 7.3-Fig. 7.8. Herein, the applied average stresses refer to 

the axial tension per unit length in the x  direction divided by the height H  of a 

laminate. The results of Liu and Narin (1992)’s variational method and experimental 

data are also shown in these figures to validate the present predictions. In general, 

both present and Liu and Narin (1992)’s results agree well with the experimental 

data, while the present predictions fit better in low crack densities.

By using Material 7.1, the numerical results of [0V90°2]S and [0o2/90°4]s laminates 

are plotted in Fig. 7.3 and Fig. 7.4, respectively. As can be seen, using a single value 

of Gc, the predictions of two different layups collate well with the experimental data. 

This indicates that the critical energy release rate is a material property which 

characterises transverse crack propagation in composite materials. In addition, the 

difference between the two laminates lies in the thickness of 90° layers. It can be 

seen that the cracks formed earlier in the laminate with thicker 90° layers. This 

indicates that the onset stress is inversely proportional to the thickness of 90° layers. 

After the initial crack, the crack density increases very rapidly and then gradually 

slows down in the high crack density.

Fig. 7.5 and Fig. 7.6 show the solutions of [0790°2]s and [0 °2/9 0 °2]s laminates made 

of Material 7.2. For these two laminates, which have the same thickness of 90° 

layers, the transverse cracks initiated earlier in the [0790°2]s laminate. This suggests 

that the supporting layers restrain transverse cracking process and the onset stress is 

proportional to the thickness of supporting layers.

The numerical results of two laminates with layups [0790°2]s and [0°2/90o4]s are 

shown in Fig. 7.7 and Fig. 7.8 by using Material 7.3. Although the thickness ratio of 

0° to 90° layer in the two laminates is the same, the onset stress of transverse cracks 

is different. The laminate with thicker 90° layers is more prone to the formation of 

matrix cracks.
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The dependence of the crack density on the applied average stress in a series of 

symmetric angle-ply laminates with layups [±e790°4]s (0=0, 15, 30) are presented in 

Fig. 7.9-Fig. 7.11. The laminates are made of Material 7.4 in Table 7.1. The present 

results are compared with Joffe et al. (2001)’s Monte-Carlo simulations and their 

experimental data. Once again very good agreements are observed in these figures. It 

can be seen that the cracks initiated earliest in [±30790°4]s, then in [±15790°4]s, and 

last in [±0790°4]s laminate. The reason is that the onset stress is enhanced by 

increasing the stiffness of supporting layers, which constrain cracking process in 

neighbouring layers.

7.3.2. Nonsymmetric Laminates under Tension

The predictions of transverse crack propagation in two nonsymmetric laminates are 

carried out. The first laminate is constructed by replacing one set of 90°4 layers in the 

above [±30790°4]s laminate with 0°4 layers. Thus the new layup becomes 

[+30790V 0 V + 30°]. The numerical results are shown in Fig. 7.12. In comparison 

with Fig. 7.11, the onset stress is greatly enhanced. The other laminate has layup 

[30790730790°] and the material properties of Eq. (5.37), with AT=0, Gc=900 J/m2, 

and I e=50mm. Both 90° layers are assumed to have transverse cracks and the crack 

distributions are identical. Fig. 7.13 shows the crack density as a function of the 

applied average stress in the laminate. No comparisons have been made in Fig. 7.12 

and Fig. 7.13, because the present solutions are believed to be the first ones to predict 

transverse crack propagation in nonsymmetric laminates. Therefore these results can 

be used as benchmarks for testing new models.

7.3.3. Laminates under Tension and Shearing

To study the effects of shearing on the transverse cracking, a symmetric and an 

nonsymmetric cracked laminates under a combination of tension and shearing are 

analysed by using the material properties of Eq. (5.37). A series of curves are shown 

in Fig. 7.14 to demonstrate the effects of different shear stresses on the transverse 

cracking process in the symmetric [30790790730°] laminate under an axial tension. 

The values of the shear stresses are -100, -50, 0, 50 and 100 MPa. It can be seen that 

the shear stress, has significant effects on the initiation and development of transverse 

cracks. With the increase of the shear stress, the general trend of the initiation
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stresses is enhanced. Moreover, two negative shear stresses make the whole cracking 

form earlier and they are dangerous in the practical application. On the contrary, two 

positive shear stresses restrain the transverse cracking and they are safe to the 
laminate.

A series of graphic results of an nonsymmetric [30790°/30790°J laminate are shown 

in Fig. 7.15. As can be seen, the effects of shearing are similar to the symmetric 

layup. Nevertheless, under the same loading condition the crack initiation stress of 

the nonsymmetric laminate is slightly larger than that of the symmetric case. This 

may be because the thickness of single continuous 90° layers in the symmetric 

laminate is larger than that in nonsymmetric laminate and a thicker 90° layer is more 

prone to crack formation.

Fig. 7.3 Dependence of the crack density on the applied average stress in a Fiberite 

934/T300 [0°2/90°2]s laminate with transverse cracks.
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Fig. 7.4 Dependence of the crack density on the applied average stress in a Fiberite 

934/T300 [0°2/90°4]s laminate with transverse cracks.

Fig. 7.5 Dependence of the crack density on the applied average stress in a Hercules

3501-6/AS4 [0790°2]s laminate with transverse cracks.
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Fig. 7.6 Dependence of the crack density on the applied average stress in a Hercules 

3501-6/AS4 [0°2/90°2]s laminate with transverse cracks.

Fig. 7.7 Dependence of the crack density on the applied average stress in a Avimid K.

Polymer/IM6 [0°/90°2]s laminate with transverse cracks.
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Fig. 7.8 Dependence of the crack density on the applied average stress in a Avimid K 

Polymer/IM6 [0V90°4]S laminate with transverse cracks.

Fig. 7.9 Dependence of the crack density on the applied average stress in a

[0V90°4]s glass/epoxy laminate with transverse cracks.
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Fig. 7.10 Dependence of the crack density on the applied average stress in a 

[±1 5 °/90°4]s glass/epoxy laminate with transverse cracks.

Fig. 7.11 Dependence of the crack density on the applied average stress in a

[±30°/90°4]s glass/epoxy laminate with transverse cracks.
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Fig. 7.12 Dependence of the crack density on the applied average stress in an 

nonsymmetric [±30790o4/0V+30°] glass/epoxy laminate with transverse cracks.

Fig. 7.13 Dependence of the crack density on the applied average stress in an

nonsymmetric [30o/90°/30o/90°] graphite/epoxy laminate with transverse cracks.
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Applied Average Stress (MPa)

Fig. 7.14 Dependence of the crack density on the applied average stress in a 

[30o/90°/90o/30°] graphite/epoxy laminate with different shear stresses ar)l.

Applied Average Stress (MPa)

Fig. 7.15 Dependence of the crack density on the applied average stress in an

nonsymmetric [30<790<730°/90°] graphite/epoxy laminate with different shear

stresses a v .
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7.4. Conclusions

By using an energy method, an approach based on the state space stress analysis to 

predict the propagation of transverse cracking in general composite laminates has 

been proposed. In conjunction with the stress analysis, the energy release rate due to 

transverse cracking was derived in a laminate with an idealised uniform crack 

distribution. A new crack forms when the energy release rate approaches the critical 

energy release rate, which is a material property characterising transverse cracking. 

Numerical results for both symmetric and nonsymmetric laminates under tension 

were presented and the symmetric ones were compared with other numerical results 

and experimental data. The present energy based method was verified to provide 

good predictions of transverse crack propagation. The transverse cracking in 

laminates under a combination of tension and shearing is also studied. It is found that 

shearing has significant effects on the cracking process. With regard to the transverse 

cracking in nonsymmetric laminates and the effects of shearing, there are no 

published results to date. As a result, the present solutions can serve as benchmarks 
to test new theories and methods.

It is noted that the transverse cracking process was simplified as a crack density 

increment in a uniformly spaced state, while the nature of the crack multiplication in 

reality is stochastic. Therefore, a statistical approach should be resorted to modelling 

the transverse cracking. Some statistical approaches to the problem have been 

reviewed in Section 2.2.3. The integration of computational methods and 

probabilistic approach can predict the uncertainties in the cracking process, but it will 

not be pursued in this thesis. This topic is left as a suggested future work.

Further to Chapter 6, which is an application of the stress analysis in stiffness 

degradation, this Chapter is another application of the stress transfer model in 

predicating transverse cracking propagation. Again the state space method was 

indirectly verified to be a highly accurate method.

166



Chapter 8 Conclusions and Future Work

Chapter 8. Conclusions and Future Work

The objectives of the current work were to develop a new analytical model to 

evaluate the stress distributions near free edges and transverse cracks, to assess the 

degradation of thermoelastic properties due to transverse cracking, and to predict the 

propagation of transverse cracking in composite laminates. The main achievements 

and results of the work are now summarised, and areas needing future work are 

suggested.

8.1. Sum m ary o f W ork Presented

In the present work the following main points have been presented:

• A Stress Transfer Model for General Cross-ply Laminates

A semi-analytical method, the state space method, was developed to evaluate the 

stress distributions near free edges and transverse cracks. The method is based on a 

state space representation of elasticity under a generalised plane strain condition. The 

approach is capable of calculating interlaminar stress singularities in general cross- 

ply laminates subjected to uniform axial extension, bending and/or thermal loading. 

Numerical results were obtained by using layer refinement technique in the through 

thickness direction and Fourier series expansion in the width direction. The present 

solutions showed good approximation to interlaminar stress singularities in the 

vicinity of free edge and transverse cracks. Although this stress transfer model is 

only a preliminary step to develop a sophisticated model for angle-ply laminates, the 

results for nonsymmetric cross-ply laminates are even difficult to obtain by many 

other methods.

• A Stress Transfer Model for General Angle-ply Laminates

Further to the state space method for cross-ply composite laminates, a more 

sophisticated stress transfer model was developed for general angle-ply laminates 

under in-plane and/or thermal loading. In this new model, the stress components oyz 

and oxy, which vanished in cross-ply laminates, was included to reflect the stress
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state in angle-ply laminates. Again, the model is based on a generalised plane strain 

condition. In order to find suitable displacement expressions and Fourier series 

expansions, which have to satisfy the boundary conditions and also could be 

eliminated during further derivations, some new variables were introduced. Because 

of universality of the method, it also can be used to analyse cross-ply laminates. In 

fact, the state space method for cross-ply laminates can be regarded as a special case 
of the method for angle-ply cases..

Numerical results were obtained by using the same layer refinement as in cross-ply 

laminates. Through comparisons with other results in symmetric angle-ply laminates, 

the present method was validated to provide an accurate stress analysis. In addition, 

the current state space method is not restricted to the symmetric layup and 

meanwhile can consider in-plane shear loading. The numerical results for 

nonsymmetric angle-ply laminates under in-plane extension and those for general 

angle-ply laminates under shear deformation were all revealed for the first time in the 

literature. Therefore, these results can be served as benchmarks for testing new 

models and this is an important contribution of the present work.

The application of the state space method to evaluate interlaminar stresses in 

composite laminates has many advantages. Firstly, it takes account of all the stress 

components and independent material constants. Secondly, the method always 

guarantees continuous distributions of both displacements and interlaminar stresses 

across interfaces between material layers. Thirdly, the method is highly efficient 

because the dimension of the final equations (see Eqs.4.29 and 5.29) is independent 

of the number of material layers. Thus, this method is particularly suitable to 

evaluate stress singularities in laminates with a large number of layers. Lastly, by this 

method, a laminate may be composed of an arbitrary number of monoclinic layers 

and each layer may have different material property and thickness.

• Thermoelastic Property Degradation due to Transverse Cracking

As a practical application of the stress analysis, the effective thermoelastic property 

degradation due to transverse cracking was assessed on the basis of the Classical 

Laminate Theory. The constitutive equations for a cracked laminate were assumed to 

have the same form as those of an undamaged laminate. In fact, this is a process to

Chapter 8 Conclusions and Future Work
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homogenise a cracked laminate to a homogeneous plate. In term of their coupling 

characteristics, the effective thermoelastic constants of cross-ply and general 

symmetric laminates were defined by the compliance matrices and the compliance 

coefficients were calculated by the stress analysis of some specially designed loading 

conditions.

Numerical examples were presented in cross-ply and symmetric angle-ply laminates. 

Through comparisons with results of other models or experimental data, the present 

method was validated to provide accurate predictions of thermoelastic property 

degradation. It is noted that the numerical results for nonsymmetric cross-ply 

laminates were compared with McCartney’s solutions via private communication and 

no such results in the published literature can be found. Therefore, it is also one of 

the contributions of the present work.

• Propagation of Transverse Cracking

As another practical application of stress transfer model, the propagation of 

transverse cracking was predicted by using an energy method. The energy release 

rate due to transverse cracking was derived under idealised crack states, in which the 

crack density increased uniformly. A new crack form when the energy release rate 

reaches a critical value with the increment of the applied load. Then the applied load 

at the critical state is the one triggers crack propagation. The method was 

demonstrated by numerical results and those of symmetric laminates were compared 

with available results and experimental data. The predictions of transverse cracking 

for nonsymmetric laminates under tension and the numerical results considering a 

combination of tension and shearing are new in the literature and they are the third 

contribution of this thesis.

8.2. Suggestions for Future W ork

The thesis has developed a semi-analytical method to evaluate the stress transfer near 

free edges and transverse cracks, and has applied the stress analysis to assess 

stiffness degradation due to transverse cracking and to predict propagation of 

transverse cracking in composite laminates. However, there still exists room for 
future work, which is discussed as follows.
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• Stress analysis under triaxial loading and twisting

The present stress analysis considers the laminate subjected to in-plane loading, 

bending and/or thermal loading, while the through-thickness loading and twisting are 

not included. Both loading cases can be considered by describing the boundary 

conditions properly. The through-thickness loading can be introduced by imposing 

the traction conditions at the top and bottom surfaces. The twisting moment is a 

resultant of the in-plane shear stress and distance, thus by giving the shear stress a 

suitable distribution in the crack plane, the twisting moment could be obtained by 

integrating the product of the shear stress and distance. After adding these two 

loading cases to the present work, most practical loading conditions are covered.

• Stress Analysis of Laminated Cylindrical Shells

The present state space method can be extended to evaluate stress transfer near free 

edges and circumferential cracks in laminated cylindrical shells. Because the 

geometry of cylindrical shells is more complex than that of plates, the radial 

coordinates will be introduced to the coefficient matrix [G] to reflect the shape 

effects. As a result the state space equation turns from the present linear time- 

invariant system into a linear time-varying system, which is considered more 

difficult to solve. However, a successive approximation method (Soldatos and 

Hadjigeorgiou, 1990) can be used to solve the time-varying system.

• Stiffness degradation in nonsymmetric angle-ply laminates.

In this thesis, the assessment of thermoelastic property degradation due to transverse 

cracking is limited to cross-ply and symmetric angle-ply laminates. The 

nonsymmetric angle-ply laminates are out of the scope of the present study. The 

reason is that the present stress analysis for angle-ply laminates does not consider 

bending and twisting conditions, so that the in-plane and out-of-plane coupling 

coefficients in the compliance matrix can not be determined. If the stress analysis 

under bending and twisting is provided, the stiffness degradation in nonsymmetric 

angle-ply laminates can be calculated following the similar procedure in Chapter 6.

• Stiffness degradation in the through thickness direction.

In the present study, the constitutive equations of laminates in the Classical Laminate 

Theory were used to assess the stiffness degradation due to transverse cracking.

170



Chapter 8 Conclusions and Future Work

Because of the restrictions of the Classical Laminate Theory, only the in-plane 

stiffness can be determined. The present stress analysis is three dimensional, it is 

capable of evaluating the through thickness stress and displacement components. 

Therefore, if a three dimensional relationship between the overall deformations and 

the applied loading is used, the stiffness degradation in the through thickness 
direction can then be determined.

• Statistical model to predict the transverse cracking

It has been noted in Chapter 7 that the transverse cracking process was assumed to be 

a crack density increment in an idealised uniform state. However the transverse 

cracks usually initiate at the flaws of composite materials. Since in reality the 

distribution of these flaws is stochastic, therefore a statistical approach is typically 

used to model the nondeterministic progressive transverse cracking. The integration 

of the present energy based method and a statistical approach is able to predict the 
uncertainties during the transverse cracking process.

• Ply cracking in multiple orientations

The present stress transfer model was developed for transverse cracking that occurs 

in a single orientation. In order that the present method has opportunities for much 

wider practical applications, so that ply cracking in any plies of the laminate should 

be modelled. Extending the current state space method to evaluate stress transfer in 

laminates with ply cracking in multiple orientations will have mathematical 

difficulties when describing the complex geometry and boundary conditions. 

However by using a homogenisation approach, it is feasible to predict the effective 

thermoelastic properties and stress-strain behaviour in such a laminate. The method 

will involve homogenising the effective properties of each cracked layer into an 

equivalent homogeneous ply having the same properties. The present stress analysis 

can be used to predict the equivalent properties of each discretely cracked layer. 

Then the entire properties of the damaged laminate will be determined by an 

undamaged laminate analysis.

• Effects of delamination

The present work focuses on the study of intralaminar material discontinuities, i.e. 

free edges and transverse cracks. Delamination is an interlaminar material 

discontinuity which often occurs at free edges and crack tips. The state space method
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can be extended to investigate the delamination problem by employing a general 

spring-layer model, which has been adopted by Chen et al. (2003) to analyse a 

simply supported, cross-ply laminate with bonding imperfections. The general 

spring-layer model will introduce an interfacial transfer matrix to the present state 

space equation. This will not bring too much computational complexes and the 

present solution procedure can be followed to study the stress field near 
delamination.
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Appendices

Appendix A. Stiffness Coefficients of an Orthotropic Lamina

In Eq. (4.2), the stiffness coefficients Cy can be expressed by the engineering 

constants as follows

1 V2 3 V 32

e 2e 3a (A.l)
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v„ +v„v2, 

E2E} A
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where E\, E% and £ 3  denote the orthotropic moduli of an lamina relative to the x, y, 

and z directions, respectively; G23, G13 and G12 are the orthotropic shear moduli in 

the y-z, x-z and x-y planes, respectively; vy is the Poisson’s ratio for strain in the j  

direction when stressed in the z direction.
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Appendix B. Stiffness Coefficients of an Off-axis Lamina

In Eq. (5.2), the stiffness coefficients of an off-axis lamina (Fig. 5.1) whose fibre 

direction makes an angle 6 with the x direction can be expressed as

C'u = Cn cos40 + C22sin40 + 2(C12 + 2C66)sin2 0cos2 0 ^g ^

C'j = (CU + C22 -4C 66)sin2 0cos20 + C12(sin40 + cos40) ^g j)

O,, = C13 cos2 0 + Cj3 sin2 6 ^g 3 ^

c ;6 =(C„ -C l2 -2C66)sin0cos3 i9-i-(C12-C 22 + 2C66)sin3 0cos0 (g 4 ) 

C22 = Cllsin40 + 2(C12 + 2C56)sin2 0cos20 + C22cos40 (g 5 )

C'a = Cu sin2 0 + C23 cos2 6 (gg)

C'26 = (Cn-C 12-2 C Js in 30cos0 + (C12 -C 22 + 2C66)sin0cos30 (B.7) 

C;6 =(C,3 -C 23)sin0 cos0  (gg)

C'4 = C44 cos2 0 + C55 sin2 0 (g 9 )

C'<i =(Css-C 44)sin0cos0 (g 10)

C;5 =C44sin20 + C55cos20 (B11)

=(C„ + C22 - 2 (C12 + C66))sin2 0cos20 + C66(sin40 + cos4 0) (B.12)
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