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Abstract

Magnetic buoyancy has been suggested as a probable mechanism for

the rise of flux tubes through the solar convection zone to emerge

as the structures we observe at the surface. The large scale of these

structures, however, implies that rising flux interacts with the effects

of the small-scale, turbulent convection in the region through which

they pass in such a way as to preserve the large scale variation. With

this motivation, we consider the linear stability of a horizontal layer

to magnetic buoyancy, as a model for the escape of field from the solar

tachocline.

We assume a turbulent region in the upper part of the layer and

a non-turbulent region below. The effects of turbulent convective

motion are captured via the turbulent pumping and turbulent dif-

fusion effects implied by mean field dynamo theory. We produce a

self-consistent equilibrium state given these effects, and solve for lin-

ear perturbations to this state. We consider the effects of parameter

changes and of the vertical profiles of the turbulent effects on the

growth rate, horizontal scale, and vertical variation of perturbations.

We find that for stronger turbulent effects in the upper part of the

layer, 2D interchange modes are preferred over 3D modes. We also

apply the turbulent pumping and turbulent diffusion preferentially

to larger horizontal scales, in light of the assumption of mean field

theory. However, we find that the primary effect of the turbulent

pumping and diffusion on stability for our parameters is via their in-

fluence on the initial equilibrium field gradient, as opposed to their

action directly on the perturbations.



In addition, following the asymptotic approach of Gilman (1970), we

consider the non-diffusive case for modes with small spatial scale, to

derive an analytic expression for the growth rate, given the effect of

mean field turbulent pumping. In the small-scale, non-diffusive limit

we find that, when the turbulent pumping is included, the stability

is no longer determined by an effective vertically dependent disper-

sion relation but instead by a second order ODE for 3D modes, and

first order for interchange. We focus on the interchange case and

compare with the more general non-diffusive case, with no small-scale

assumption, and find a third order eigenvalue problem for interchange

modes. We consider two third order model problems in relation to this

system, which we solve asymptotically in the limit of small turbulent

pumping. We then consider a local approximation to the non-diffusive

linear system and derive dispersion relations for the cases of first an

isothermal and then an adiabatic system.
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Chapter 1

Introduction

1.1 The Sun

Throughout human history, we have been looking up at the Sun and making

observations of it. Even before the advent of the modern scientific method, we

have made informal observations of its position and the changes it may undergo;

after all, the Sun has always been vital to human existence, providing the energy

required by all life on earth. As technology advanced, however, multiple civilisa-

tions began to formalise their observations. The Babylonians regularly recorded

the incidence of solar eclipses in the 8th century BC, though their very first eclipse

observations go back several centuries earlier.

However, at around the same time, Chinese astronomers were able to measure

a more ephemeral solar phenomenon: the first recorded observations of sunspots

date from around 800BC. Sunspots appear as darkened patches on the solar disc,

usually appearing in pairs or other more complex groupings. They are visible to

the naked eye or through a filter or a solar telescope, though historically, they

would have first been viewed through smoke or fog, or on an image of the solar

disc projected through a lens onto a screen. Sunspots are dynamic features with

a lifetime that can vary from the order of days to months. Over this timescale,

they are observed to move across the surface of the solar disc in a west-to-east

direction, travelling with the Sun’s rotation.
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Although we have ancient and medieval records of sunspots, the earliest mea-

surements we have that are relatively regular and accurate by modern standards

date from around the early 17th century, when the telescope was invented and

came into greater use. Telescope observations of sunspots were first taken in 1611,

by Thomas Harriot and independently by Johannes and David Fabricius, as well

as by Galileo Galilei and Christoph Scheiner. However, probably the best-known

early sunspot observations are those of Galileo, who made meticulous drawings of

sunspots over their lifetimes, from which it was easily possible to see their motion

across the solar disc.

Over the following centuries, sunspot observations became even more system-

atic, and several observational laws were developed to describe how and where

they formed. One thing that quickly became apparent over decades of sunspot

measurements was the fact that their incidence is subject to a cycle: over the

timescale of approximately eleven years, the number of sunspots can be seen to

peak and then fall, only to begin the cycle again. Over the course of this cycle,

the average location of sunspots is observed to move from higher latitudes to

lower, as the cycle moves towards solar maximum. We also observe that sunspots

often come in pairs, orientated at a characteristic angle, relative to the equator,

which varies over the course of the solar cycle. These observations are key to our

modern understanding of how the solar magnetic field is created and maintained.

It was Hale (1908) who first suggested that sunspots are inherently associated

with magnetic field, and may be used as indicators of variation in the Sun’s

large-scale field over the course of the solar cycle. Sunspots appear at locations

where tubes of strong magnetic flux pierce the solar surface, inhibiting convection

in a localised area. They appear darker than the surrounding material because

these regions are cooler, producing lower levels of emission than the surround-

ing material. This understanding of sunspots also explains why they tend to

occur in pairs, or sometimes more complex configurations: a sunspot pair corre-

sponds with the two “footpoints” of a loop of magnetic field, emerging partially

from beneath the solar surface. This is a product of the fact that magnetic fields

are divergence free (∇ ·B = 0), and so the field lines cannot have “ends”, but
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1.2 The Solar Cycle

must rather be connected back to the Sun’s field itself. However, although more

accurate observations across the electromagnetic spectrum have given us an ever-

increasing level of detail in our observations of the magnetic structure that exists

on the surface of the Sun, there remain the questions of what actually drives this

cycle, and what processes set the timescale over which it operates. This leads

to the more fundamental question of the origin of the Sun’s magnetic field itself,

and how it is maintained over time. This is the problem of the solar dynamo,

and it is one that may be addressed both theoretically and computationally, in

order to compare with observations.

As well as being theoretically and mathematically rich and challenging, the study

of the solar dynamo is also potentially of great practical importance. Today, we

know that the solar cycle and variations in the solar magnetic field associated

with it give rise to what is referred to as “space weather”: changes in the mag-

netic field of the solar wind due to material that is expelled from solar active

regions, which are both more common, and more prone to eruptive events such

as flares and coronal mass ejections, at times of high solar activity.

Such events have the potential to have a large effect on our lives, in the modern

world especially, as they can disrupt the communications technologies and power

grids upon which we all rely. Thus, it is now more important than ever to study

the solar magnetic field, its origins, and its behaviour, not only as a matter of

pure scientific interest but as a way to help us understand and mitigate against

the possible danger posed by living close to the star that sustains and facilitates

life and civilisation as we know it.

1.2 The Solar Cycle

The phrase “solar cycle” is often conflated with the sunspot cycle, though the

two are distinct: the sunspot cycle measures simply the incidence of sunspots

and their number, and lasts approximately eleven years. However, following the

realisation that sunspots are magnetic in origin, it has been shown that the full

solar cycle itself lasts twice this long, as after each sunspot cycle the magnetic
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Figure 1.1: Sunspot butterfly diagram (Royal Observatory Greenwich/NOAA),

showing the change in the average latitude of sunspots over the course of the

solar cycle. Note that the magnetic field switches polarity with each sunspot

cycle, giving rise to the full twenty-two year magnetic cycle.

field of the Sun reverses, so a “full” solar cycle lasts approximately twenty-two

years.

The cycle is most clearly visualised by plotting the incidence of sunspots by lat-

itude as a function of time. By this metric, we may see the number of sunspots

increase and their average latitude decrease approaching sunspot maximum. This

type of plot is known as a “butterfly diagram”, shown in Figure 1.1 for data cov-

ering the twentieth century. To understand this variation, we must consider the

internal structure and rotation profile of the Sun.

1.2.1 Solar Structure and the Effects of Differential Ro-

tation

We will briefly summarise the structure of the Sun, and then discuss the issues

that motivate the work presented here. We are able to use both theoretical and

observational approaches in combination to better understand the internal regions

of the Sun. With the advent of helioseismology, it has become possible to study

the solar interior all the more easily. Helioseismology uses measured oscillations

of the Sun to infer its internal structure and motion, and has been invaluable in

providing data to motivate and support theoretical work.
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Figure 1.2: Observed differential rotation velocity of the solar convection

zone, from helioseismological measurements averaged over the period 1995-2009

(NSO/GONG, 2009).

The Sun has a convective envelope that accounts for the outer 28.7% of its ra-

dius (Christensen-Dalsgaard et al., 1991), surrounding the non-convecting radi-

ation zone below. Within the radiation zone is the core, where fusion reactions

produce heating in the Sun. However, it is primarily the outer convective enve-

lope and just below it that we shall concern ourselves with here, rather than the

deep interior of the Sun. In the convection zone, turbulent convection is present,

as well as differential rotation.

The convective motion is the source of the magnetic structure we see emerg-

ing over the course of the solar cycle. The convection zone undergoes differential

rotation, with a rotation period of approximately 24.5 days at the equator, com-

pared with approximately 36 days at the poles; see Figure 1.2 for the associated

rotation frequency profile, showing the difference between high and low latitudes.

Between the radiation and the convection zones, there is an interface layer that
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is known as the tachocline, and it is the region of this boundary that we shall

mainly focus on in this work. The existence of an outer convection zone region

separated from the radiative interior is not, in itself, a consequence of rotation;

rather, the temperature gradient in the outer regions of Sun-like stars makes this

region susceptible to convective instability according the to Schwarzschild crite-

rion that predicts the onset of such an instability.

However, as discussed by Spiegel (1972), due to the coupling of the magnetic

field in the convection zone to that of the outflowing solar wind and its escaping

flux, it is expected that some external layer of the Sun be spun down by this

process. This led to the idea of a region where convective motion acts to spin

down the rotation, giving rise to a departure from solid body rotation in a specific

upper region with a defined boundary near the base of the convection zone.

The existence of such a boundary was confirmed via helioseismological measure-

ments in the following decades, showing a sharp change in azimuthal velocity as

a function of depth. Its position, rotation, and other properties were constrained

by observational work such as that of Duvall et al. (1984), Brown (1985), Duvall

et al. (1986), Brown & Morrow (1987), Kosovichev (1988), Brown (1989), Dziem-

bowski (1989), Basu et al. (1994), and Charbonneau et al. (1999). In describing

the structure and evolution of this region, Spiegel & Zahn (1992) were the first

to apply the name “tachocline” — in analogue to the concept of an oceanic ther-

mocline, over which temperature changes abruptly — denoting a narrow region

of high velocity gradient.

Because of the abrupt change in velocity, the tachocline is a layer of strong ve-

locity shear. For this reason, it is thought to be the location of the solar dynamo

process, which requires strong velocity shear in order to “wind up” poloidal field

(field in the radial and meridional directions) to toroidal field (in the azimuthal

direction, for an axisymmetric field; see Section 1.4.3 for further discussion and

definitions) over the course of the solar cycle. The link between the base of the

convection zone and the dynamo process had been noted for some time (for ex-

ample in the work of Spiegel & Weiss (1980), Golub et al. (1981), and Gilman
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et al. (1989)). As a result of this conclusion, Parker (1993) developed a model of

a dynamo process that operated at this interface.

To understand the link between strong velocity shear and the dynamo, imag-

ine a simple model of the solar magnetic field where all of the field lines are

poloidal. In a fluid with very high electrical conductivity — which is generally

the case in astrophysical systems — magnetic flux is what is known as “frozen in”

to the flow, meaning that the field lines move with the flow of the material they

penetrate. In fact, both radial and latitudinal shear is present in the tachocline

region, and both are able to generate toroidal field from poloidal. Thus, under

the effect of differential rotation such as that shown in Figure 1.2, the velocity

shear results in a conversion of poloidal to toroidal field.

However, this “winding up” of toroidal field — known as the ω-effect — ultimately

produces a toroidal field of sufficient strength that it becomes unstable. As the

toroidal field rises through the convection zone, it becomes susceptible to insta-

bilities, a process which is responsible for the structures that we see emerging

from the solar surface, that also result in the formation of sunspots.

Such a model lacks much of the complexity that we observe in the Sun, but

it is useful for illustrative purposes, as it goes some way towards explaining the

variation that we see over the course of the solar cycle. The number and complex-

ity of active regions (typically associated with sunspot pairs or groups) on the

solar surface increases approaching solar maximum, as velocity shear increasingly

destabilises the underlying field. Furthermore, the average orientation of the line

connecting sunspot pairs — which becomes more parallel to the equator, i.e. more

toroidal, over the course of the cycle — is also consistent with this picture, be-

cause as the field is sheared it becomes increasingly toroidal, as previously stated.

This model is of course extremely limited; for a start, it does not include the

effects of convective motion that we observe occurring in the convection zone,

nor does it fully explain the driving mechanism of this process, and how it is

maintained, and the physical origin of the time and spatial scales involved.
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It also highlights another important question facing any model that hopes to ex-

plain the solar dynamo process. Differential rotation acts as a source of toroidal

field, converted from poloidal field; however, in order to have a closed, cyclical

process the poloidal field must somehow be regenerated from toroidal field. This

fundamental question will be discussed in more detail in Section 1.4.2.

These issues all fall under the larger question of the operation of the solar dy-

namo. We will discuss dynamo theory and modelling approaches later. However,

we may first ask an associated question based on observation of the field that the

dynamo produces: how can we explain the magnetic structure that we are able to

observe as emerging over the course of the solar cycle, given the motion present

in the convection zone? We are able to observe flux rising, but we aim to explain

and characterise this rise and its physical mechanisms. We can further break this

down into two separate questions: firstly, how does the field initially escape, and

secondly, how does it rise through the convection zone. This work is motivated

by the first of these questions. Fortunately, we have a strong candidate for the

mechanism of the escape of field from the base of the convection zone: the effect

of magnetic buoyancy. In the main body of this work, we consider the effect

of turbulent convection on the linear stability to magnetic buoyancy of a layer

of field at the base of the convection zone. However, we will first consider the

physical effect of magnetic buoyancy itself, and the instability of an equilibrium

field to which it gives rise.

1.3 Magnetic Buoyancy

Within astrophysics, there are several usages of the term magnetic buoyancy,

which refer to slightly different physical mechanisms. For our purposes, we will

consider the magnetic buoyancy instability resulting from the stratification of the

magnetic field and the density under gravity.

Note that sometimes the term magnetic buoyancy is also used to refer to a re-

lated physical effect, that is, the lack of equilibrium of an isolated tube of flux in
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a non-magnetic atmosphere, described by Parker (1955a). “Magnetic buoyancy”,

in this sense, is a result of the pressure balance on a flux tube creating a lack of

mechanical equilibrium. For an isolated flux tube permeated by a field B, the

field gives rise to an additional magnetic pressure within the tube. Thus, total

pressure within the tube is the sum of the thermal and the magnetic pressure.

Outside the tube, where there is no field, the total pressure is given only by the

thermal pressure. If we assume the system is in pressure equilibrium, however,

the pressure within the tube is required to be equal to that outside, giving a

higher thermal pressure outside than inside, and therefore a decreased density

within the tube under isothermal conditions. This difference in density means

that the tube is subject to an additional upwards buoyancy force as a result of

the field.

This effect, however, is more accurately referred to as a lack of equilibrium than

an instability, as an instability is typically the effect of a perturbation to an

equilibrium state. The magnetic buoyancy instability, as it is usually referred

to, occurs in an atmosphere containing not isolated flux tubes but a vertically-

stratified, horizontal field, that is horizontally homogeneous.

Below, we consider the criteria for the instability of such a stratified layer in

magnetohydrostatic equilibrium. The magnetic buoyancy instability is in many

ways analogous to the non-magnetic case, for a parcel of gas within a stratified

atmosphere; here, the stability is determined by a buoyancy frequency, derived

using a parcel argument, and we can make an equivalent argument for the mag-

netic case.

1.3.1 Linear Magnetic Buoyancy Instability

We shall consider the magnetic buoyancy instability in a layer of stratified field

in equilibrium; see the review by Hughes (2007) for further discussion. The linear

stability of such a system can be quantified using an argument based on fluid

parcels. Initially, we make the assumptions that there is no diffusion within the
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system, and that the field lines do not bend. Consider an atmosphere in equilib-

rium, in a Cartesian coordinate system (x, y, z), under vertical gravity g = −gez.
If we take a fluid parcel permeated by a horizontal magnetic field B = B(z)ex,

then raise it from height z to z + δz, we will see changes in the pressure, density

and field within the parcel given by p 7→ p + δp, ρ 7→ ρ + δρ, and B 7→ B + δB,

where the notation δA represents the change in quantity A. Assuming the parcel

moves adiabatically (Acheson, 1979), the motion is subject to

δp

p
= γ

δρ

ρ
, (1.1)

where γ denotes the ratio of the specific heats. Also, by conservation of mass and

magnetic flux,
δB

B
=
δρ

ρ
. (1.2)

In addition, we assume that the motion is slow in comparison to the adiabatic

sound speed, such that pressure balance is maintained and the parcel is always

in mechanical equilibrium with its surroundings. Thus, pressure balance gives:

δp+
BδB

µ0

= dp+
BdB

µ0

, (1.3)

where µ0 is the magnetic permeability, and the notation dA represents the change

in quantity A of the surrounding background state, external to the moving parcel.

For instability, we require δρ < dρ. From this, we can derive the following

criterion for instability:

−gv
2
A

c2

d

dz
ln

(
B

ρ

)
> N2. (1.4)

Here, vA is the Alfvén speed and c is the adiabatic sound speed. The quantity N

is the Brunt-Väisälä frequency, given by

N2 =
g

γ

d

dz
ln(pρ−γ). (1.5)

Equation (1.4) is analogous to the Schwarzschild criterion for instability in a

non-magnetised fluid layer, though in this case the initial assumption of hydro-

static equilibrium takes into account the magnetic field and the additional pres-

sure it creates. Note that in the non-magnetic case, B = 0, (1.4) reduces to
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the Schwarzschild criterion for convective instability, N2 < 0. However, crite-

rion (1.4) tells us an important feature of the magnetic buoyancy instability; that

in the magnetic case, a stratified layer with N2 > 0 can be unstable, in contrast

to when B = 0.

We may also derive a similar criterion for the 3D instability. We seek to find

the stability of horizontally periodic modes whose scale is defined by horizontal

wavenumbers kx and ky. The criterion given by (1.4) is specific to the instability

of so-called interchange modes, with kx = 0. In the interchange instability the

field lines do not bend but are carried with a fluid parcel as it moves. However,

there is also an analogous criterion for 3D modes, originally derived by Newcomb

(1961), and written in the following form by Thomas & Nye (1975):

−gv
2
A

c2

d

dz
ln(B) > N2. (1.6)

If we compare (1.4) and (1.6), we can see that 3D modes are more easily desta-

bilised than interchange modes; that is to say, owing to the presence of the
d
dz

ln
(
B
ρ

)
term in (1.4), the instability of interchange modes places a requirement

on the gradients of both density and magnetic field. However, the instability of

3D modes depends only on d
dz

ln(B), i.e. only on the field gradient. Thus there is

a less restrictive requirement for 3D modes to be destabilised. It is for this reason

that we may expect parameter regimes in which the only modes that are unstable

are 3D. Furthermore, Newcomb (1961) showed that the most unstable 3D modes

are those in the limit kx → 0. This is significant as the limiting case for kx → 0 is

not equal to the interchange mode case, with kx = 0, but has large-scale variation

in the x-direction (see Hughes & Cattaneo (1987) for further discussion of the

physical arguments underlying the preference for 3D modes).

1.3.2 Diffusive Case

The previous discussion of magnetic buoyancy has neglected any diffusive effects.

However, if we consider a local analysis of the instability of a vertically stratified

field, with horizontally periodic perturbations defined by wavenumbers kx and

ky, it is also possible to include diffusive effects in the analysis. Gilman (1970),
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and Acheson (1979) used a local approximation and extended the stability crite-

rion in the case of small kx, i.e., 3D modes with long wavelength in the direction

of the field lines. However, the criterion for their stability is not equal to that

of the case of interchange modes. The criterion for the interchange instability

(analogous to (1.4)) is:

− g
c2

d

dz
ln

(
B

ρ

)
>
η

κ

γN2

v2
A

, (1.7)

where η is the magnetic and κ the thermal diffusivity. For 3D modes, the criterion,

analogous to (1.6), is:

− g
c2

d

dz
ln(B) > k2

x

(
1 +

k2
z

k2
y

)
η

κ

γN2

v2
A

. (1.8)

These criteria are based on a local approximation, which assumes the background

state varies over a long spatial scale in comparison to the scales defined by kx,

ky, and kz. Note that in the diffusive case of 3D modes, instability depends on

the scale of the modes in x, y, and z.

1.3.3 Linear magnetic buoyancy instability: previous work

We shall now briefly discuss some of the existing literature on the linear mag-

netic buoyancy instability, especially work that places it in a solar context. For

a literature review that is more extensive and broader in scope, however, refer

to Hughes (2007).

Kruskal & Schwarzschild (1954) proposed a mechanism for the instability of a

layer of field with a discontinuous field strength in the vertical direction, and fol-

lowing this, Newcomb (1961) described the instability of a stratified atmosphere

and considered the criteria for linear stability to magnetic buoyancy. Newcomb

showed that in the absence of diffusion or rotation, 3D modes of the instability

are more easily destabilised than 2D interchange modes, despite the bending of

the field lines required — as opposed to simple translation of the field lines in the

perpendicular direction — to produce the 3D instability. Later, Thomas & Nye

(1975) extended this analysis, writing the stability criteria in the form in which
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1.3 Magnetic Buoyancy

we commonly refer to them, that of (1.6).

Gilman (1970) considered the diffusionless case of the instability in the asymp-

totic limit of small horizontal scale, deriving stability criteria and other relations

for this system. Tayler (1973) considered stability of perturbations to a toroidal

field in a star. Parker (1975) considered magnetic buoyancy as a mechanism for

the rise of large-scale flux in the context of a dynamo process, in order to infer

the location of dynamo action in an astrophysical body comparable to the Sun.

Acheson (1979) considered the effects of both stratification and rapid rotation

on the instability, finding that stratification is expected to have a strongly stabil-

ising effect in the parameter regime of the Sun’s radiative zone, while in the upper

part of the convection zone, rapid rotation is expected to suppress the magnetic

buoyancy instability.

Hughes (1985) considered the linear stability of the magneto-Boussinesq equa-

tions in a plane layer, identifying a new mode of the instability previously thought

stable: he showed that instability was possible for d
dz

ln(B
ρ

) > 0, allowing insta-

bility of fields that increased with height. Hughes & Cattaneo (1987) considered

linear stability to the interchange versus undular instabilities, offering a physical

explanation for the preference for 3D modes. They showed that, since for inter-

change modes, the density fluctuations depend on the total pressure (the sum of

the gas and magnetic pressure) whereas for undular modes they depend only on

the gas pressure, this allows for circumstances where the interchange instability is

more stable than the undular, even though the undular instability requires work

to be done against magnetic tension while the interchange does not. Mizerski

et al. (2013) considered the diffusionless problem studied by Gilman (1970), seek-

ing to understand the broader context for Gilman’s small-scale results, and their

relation to the more general magnetic buoyancy instability problem.
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1. INTRODUCTION

1.3.4 Nonlinear simulation

As well as the work on the linear regime detailed above, there have also been a

number of studies of the nonlinear evolution of the instability, by way of numerical

simulation. Cattaneo & Hughes (1988) numerically simulated the nonlinear in-

terchange instability in a layer of field in a convectively stable atmosphere, with

both static and rotating basic states. The numerical simulations of Matthews

et al. (1995) showed the initial linear development of the instability in a layer

of field to be largely 2D, and that the onset of the 3D instability was associated

with the transition to nonlinear behaviour. They also showed that this transition

to a 3D instability did not occur for isolated rising flux tubes, and that therefore

the 3D instability onsets as a result of nonlinear interaction between adjacent

flux tubes in such a system. Similarly, Wissink et al. (2000) numerically simu-

lated the nonlinear evolution of the magnetic buoyancy instability in a layer of

field, and found that the development of the nonlinear instability is such that the

structure produced grows increasingly 3D with time. The 3D problem was also

addressed by Kersalé et al. (2007), who considered the nonlinear instability of a

linearly stratified layer. They found that coherent magnetic structures may be

formed in their configuration by an inherently nonlinear mechanism, driven by

the boundary conditions imposed on the system.

In an effort to better understand the instability in a solar context, Vasil & Brum-

mell (2008) considered the nonlinear magnetic buoyancy instability in a layer of

toroidal field, created by applying shear to a weaker poloidal field, in order to

model the way that the ω-effect acts on the solar poloidal magnetic field and

how this may affect the buoyant rising flux. In this configuration, they found the

system to be less susceptible to magnetic buoyancy instability than in other work

that did not use such a velocity shear.

Barker et al. (2012) combined simulation of the magnetic buoyancy instability,

of both a plain slab of magnetic field and a shear-generated layer, with the γ

turbulent pumping velocity that results from mean field dynamo theory: see Sec-

tion 1.4.4 for a fuller discussion of the γ effect and its origin. Following this

14



1.3 Magnetic Buoyancy

work, we will include this effect in our study of the linear regime, along with the

additional turbulent diffusivity that goes with it. We will justify the inclusion of

these effects, and discuss how they emerge from dynamo theory and the idea of

mean field turbulence, in Section 1.4.4.

1.3.5 Rising flux tubes in the convection zone

When he first proposed the idea of magnetic buoyancy as a mechanism for rising

flux, Parker (1955a) suggested that it could provide a plausible mechanism for

the formation of sunspots from the solar toroidal field, providing explanations of

all the features of sunspot occurrence that we see over the course of the solar cycle

in terms of this effect. Indeed, the emergence of magnetic flux ropes from the

surface of the Sun as the “loop” structures that we observe appears suggestively

similar to an instability of the underlying flux tubes, causing them to rise in a

spatially periodic way, with a given horizontal scale. However, there is a prob-

lem to do with the region of turbulent convection through which the large-scale

magnetic structure must pass: the turbulent motion in the convection zone has

a much smaller spatial scale than that of the rising magnetic structures, prompt-

ing the question of how the field maintains this larger scale of variation, without

being subject to a turbulent “shredding” effect that would produce smaller-scale

variation from the larger.

Magnetic buoyancy instability theory does not, in itself, provide any kind of

“threshold” field for the instability, however, we require that the rising field be

strong enough to withstand this turbulent shredding effect. Therefore, it seems

probable that there is some other effect playing a role in destabilising sufficiently

strong field. One candidate for this is the turbulent pumping effect of mean field

dynamo theory. In an effort to motivate this, we shall now discuss mean field

theory and the solar dynamo problem in greater depth.
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1.4 Mean Field Dynamo Theory

1.4.1 Motivation: the Solar Dynamo Problem

One argument for the existence of a dynamo process involves timescales, namely

the comparison between the age of the object and its characteristic Ohmic decay

time, τη ∼ L2/η, where L is a characteristic length scale of the system and η is

the magnetic diffusivity. This corresponds to the timescale over which an object’s

magnetic field would decay if not regenerated in some way. If the age of an ob-

ject is longer than this decay time, and it has an observed magnetic field, then it

follows that this field cannot be a “fossil” field, left behind from its formation but

in the process of dying away, and must have some mechanism to regenerate itself.

This would require some kind of dynamo process, i.e. a flow of material within

the body that acts to produce and maintain its own self-consistent magnetic field.

For the Earth, for example, the Ohmic decay timescale is of the order τη ∼ 104

years. This is much shorter than the length of time for which Earth is known to

have had a magnetic field, which is of the order ∼ 109 years. This implies that if

the Earth’s magnetic field were not being regenerated in some way, then it would

have decayed away very early in the planet’s lifetime. This implies that some

process must be maintaining the field, necessitating the existence of a dynamo.

Interestingly, in the Sun we cannot make such an argument by timescales of

age alone; both the Ohmic decay timescale of the Sun and its age are of the order

∼ 109−1010 years. So, from an argument of timescales alone, the Sun could poten-

tially have a fossil field. However, as discussed, the Sun has an observed magnetic

cycle, involving the reversal of its global magnetic field that occurs approximately

every eleven years. This is much less than the Ohmic decay timescale, and so

we may assume that this cycle is a product of a dynamo process that maintains

the Sun’s magnetic field, as it is very difficult to reconcile such cyclical variation

with the slow Ohmic decay of a fossil field. Such an argument tells us that the

much shorter-time variation seen in the form of the solar cycle is an important
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1.4 Mean Field Dynamo Theory

consequence of how the solar dynamo operates, and any dynamo process we may

postulate must be able to explain it.

1.4.2 The Kinematic Dynamo Problem

If a given flow of magnetised fluid is able to induce its own magnetic field, such

that it does not decay at large time, then it is said to act as a dynamo. Specif-

ically, the condition for dynamo action is that over long timescales, the total

magnetic energy of the system is bounded below by a positive number; in a flow

that acts as what is known as a “dynamic” dynamo, the velocity flow is fully

self-consistent in allowing this.

Although the dynamic dynamo problem may be simply stated in this way, it

is, both numerically and analytically, extremely difficult to solve. For this rea-

son, theorists have invoked a simpler variation on this full problem, in which the

flow velocity field is prescribed, as opposed to emerging self-consistently from the

magnetic field solution. This is known as the “kinematic” dynamo problem, and

it is in solving this problem that most effort has been concentrated in the area.

Essentially, it considers the MHD induction equation:

∂B

∂t
= ∇× (u×B)−∇× (η∇×B), (1.9)

and seeks to find a velocity field u(x, t) for which B does not decay as t→∞.

Several systems have been shown to act as kinematic dynamos, with a fixed u(x, t)

defined as a function of space and time, including several in spherical geometry,

which may be used to model astrophysical dynamos. For example, Choudhuri

et al. (1995) proposed a solar dynamo model with meridional circulation, in or-

der to produce simulated butterfly diagrams that could be compared with the

real solar cycle. There were also advances in the more general field of dynamo

theory; Glatzmaier & Roberts (1995) produced a 3D convective MHD dynamo

model, for a geodynamo-like system. However, we will focus on the approach de-

tailed by Steenbeck et al. (1966), as well as subsequent papers by the same authors

(see translation by Roberts & Stix (1971)) and further detailed by Moffatt (1978)
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and Moffatt & Dormy (2019); that of a mean field dynamo. (See Krause & Rädler

(1980) and Dormy & Soward (2007) for further discussion and examples.) This

has allowed several types of kinematic dynamo systems to be developed. How-

ever, for our purposes, we will consider the approach to characterising turbulence

inherent to this area: the concept of mean field turbulence, and the net effects

implied by it as a way to construct a linear model of an otherwise complicated,

nonlinear, turbulent system.

1.4.3 Implications of differential rotation

It is useful to define the field on the Sun (or any spherical body) in terms of

two quantities, the toroidal and poloidal components of the field, BT and BP .

We are able to make this decomposition because of the solenoidality of the field,

∇·B = 0. If we write the field as the sum B = BT +BP , we can define BT and

BP in terms of two scalar potentials, T and P . In terms of the radial vector r:

BT = ∇× (rT (r)), (1.10)

BP = ∇×∇× (rP (r)). (1.11)

It follows from this that the toroidal and poloidal field components have the

properties

r ·BT = 0, (1.12)

r · ∇ ×BP = 0. (1.13)

For an axisymmetric field, the toroidal field is equivalent to the azimuthal com-

ponent, and the poloidal field is essentially all the non-azimuthal field, composed

of the radial and meridional components. Using cylindrical polar coordinates

(s, φ, z), we can write the toroidal and poloidal field components as follows:

BT = Bφeφ, (1.14)

BP = ∇× Aeφ, (1.15)

where Aeφ a vector potential corresponding to the poloidal component of B.

Similarly, we may write the velocity as the sum of a poloidal (meridional) com-

ponent um and a toroidal component given by the spatially-dependent angular
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1.4 Mean Field Dynamo Theory

velocity resulting from differential rotation:

u = um(s, z) + sΩ(s, z)eφ. (1.16)

Under these assumptions, we may take the toroidal and poloidal components of

the induction equation, (1.9), and find that the field and the associated vector

potential satisfy:

∂

∂t

(
Bφ

s

)
= BP · ∇Ω−∇ ·

(
Bφ

s
um

)
+

(
η

s

)(
∇2 − 1

s2

)
Bφ, (1.17)

∂

∂t
(sA) = −um · ∇(sA) + sη

(
∇2 − 1

s2

)
A. (1.18)

Note also that we have assumed constant magnetic diffusivity η here, and will

continue to make this assumption from now on. The first of these equations quan-

tifies the idea of the toroidal field being geometrically “wound up” from poloidal

field, with a source term for toroidal field proportional to BP . However, there is

no such source term for the poloidal field, suggesting that under these assump-

tions the poloidal component decays to zero at large t. The idea that the field of

the Sun is all toroidal is not consistent with observations. Furthermore, given the

solenoidal condition on the field, the limiting case of a fully toroidal field with

no poloidal field at large time would be axisymmetric. Such a field would not

be able to sustain the dynamo process, by Cowling’s theorem (Cowling, 1933),

which states that an axisymmetric field cannot be maintained by dynamo action

given an axisymmetric flow.

It is for all of these reasons that we require some other effect that acts as a source

term for poloidal field in order to produce a system that can act as a dynamo.

The requirement for a poloidal source term motivates the mean field approach.

Although Parker (1955b) had detailed a similar concept several years earlier, the

groundwork for this approach was laid when Steenbeck et al. (1966) proposed

a way of characterising the turbulent motion of an electrically conducting fluid

permeated by a magnetic field, approximating the net effects of turbulence using

a mean electromotive force (EMF) quantity, an idea upon which they expanded

in subsequent papers. Moffatt (1978) proposed the idea of a mean-field dynamo
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in the sense and the notation that we use here. Golub et al. (1981) referred to

models of the emergence of small- and large-scale flux structure, and how it could

be reconciled with observational evidence of variation over the course of the solar

cycle.

We will now consider the mean field approximation to characterise the turbu-

lence. We will also discuss the argument for the existence of the α effect, in order

to provide a poloidal source term in Equation (1.18).

1.4.4 Mean Field Turbulence: Mathematical Formulation

The mean field approach is based on the assumption that the flow is separated

into large- and small-scale variations in field and velocity, where the small-scale

variations average to zero over the length scale of the larger ones. With this

assumption, we may then take averages of quantities over an intermediate scale.

The total field and velocity B(x, t) and U(x, t) are written as:

B(x, t) = B0(x, t) + b(x, t), (1.19)

U(x, t) = U 0(x, t) + u(x, t), (1.20)

where B0(x, t) and U 0(x, t) are the large-scale field and velocity as functions of

position and time, and b(x, t) and u(x, t) are the small-scale fluctuations.

This means that the induction equation, too, can be separated into two parts,

one for the mean field B0 and one for the fluctuating field b (Moffatt, 1978).

∂B0

∂t
= ∇× (U 0 ×B0) +∇× E + η∇2B0, (1.21)

∂b

∂t
= ∇× (U 0 × b) +∇× (u×B0) +∇×G+ η∇2b, (1.22)

where E = 〈u× b〉, and G = u× b− 〈u× b〉, with the notation 〈Q〉 indicating

the spatial average of quantity Q. The quantity ∇× E is a new addition to the

induction equation for the mean field (Equation (1.21)) due to the interaction

of the fluctuating velocity and magnetic field, representing an additional EMF
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(electromotive force). We assume separation of scales, and we neglect small-

scale dynamo action, both for simplicity, and because there is no well-established

theory about what form this contribution should take. (In addition, it seems

likely that small-scale dynamo action is not a prevalent effect within the stably

stratified region upon which we focus; see Cattaneo & Hughes (2009) as well

as the review by Hughes (2018), however, for further discussion of the topic.)

Neglecting small-scale dynamo action, we note that the mean EMF is linear in

the mean field. Due to the large scale of the mean field, we assume that successive

derivatives decrease with increasing order. With these assumptions, we can write

E in terms of the mean field and its derivatives as follows:

Ei = αijBj + βijk
∂Bj

∂xk
+ · · · . (1.23)

If we now assume, for the sake of simplicity, that the turbulence is homogeneous

and isotropic, then the tensor quantities αij and βijk take the form αij = αδij and

βijk = βεijk. We may isolate the antisymmetric part of αij, writing it as γjεijk,

and allowing us to write:

Ei = αδijBj + γjεijkBk + βεijk
∂Bj

∂xk
+ · · · . (1.24)

We may then rewrite the induction equation for the mean field in terms of these

newly-defined quantities, as follows:

∂B0

∂t
= ∇× (αB0) +∇× ((U 0 + γγ)×B0)−∇× ((η + β)∇×B0). (1.25)

See Moffatt & Dormy (2019) for further mathematical details and discussion of

this expansion. Crucially, this form does not explicitly depend on the turbulent

quantities b(x, t) and u(x, t), and therefore we may consider the net effect of

the turbulence on the mean field without having to explicitly simulate the full

turbulent motion of the system. In this form of the induction equation, there are

three new quantities compared to (1.9), namely α, β, and γγ.

The quantity α is a pseudo-scalar, and therefore is required to change sign under

a parity transformation, such as that from a right- to left-handed reference frame,
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or vice-versa. However, α is also a statistical property of the turbulent, fluctuat-

ing velocity field u, therefore must also be invariant under a transformation of u.

Let us consider, specifically, the parity transform of mirror reflection, for which

u′ = −u. If u is mirror symmetric, then all of its statistical properties must be

invariant under this transformation, including α. Therefore, we require α = 0 if

u has mirror symmetry.

β takes the form of an additional diffusivity, the “turbulent diffusivity” that

is a net effect of the turbulence on the mean field. The quantity γγ is a vector

with the form of an additional advection velocity acting on the mean field, and

is known as the turbulent pumping velocity. It is the γ and β effects upon which

we will primarily focus in the work presented here.

1.4.5 Past work on mean field turbulent effects

There have been a number of studies that have considered the turbulent trans-

port effects we have just described in relation to the solar dynamo. Drobyshevski

& Yuferev (1974) proposed the related effect of topological pumping, whereby

magnetic flux in a convecting layer is subject to a non-zero net transport effect

due to asymmetry between upwards and downwards flows in convection cells. Af-

ter initially characterising them some years prior (Moffatt, 1978), Moffatt (1983)

calculated the strength of mean transport effects with specific consideration for

the role of helicity, focusing on calculating α and β in the astrophysical regime

of large magnetic Reynolds number. Cattaneo et al. (1988) discussed this effect

and how scalar and vector magnetic fields can be subject to different effective

velocities under the effect of convection. Ossendrijver et al. (2002) quantified the

turbulent pumping effect on the mean field, as a function of various physical pa-

rameters and effects. Plunian & Rädler (2002) found expressions for components

of the α tensor in the case of the Roberts dynamo flow (Roberts, 1970), in terms

of the magnetic Reynolds number and the length scales of the system.

Cattaneo & Hughes (2006) considered magneto-Boussinesq convection in a ro-

tating layer, in order to understand the effect of rotation on convection in such

22



1.4 Mean Field Dynamo Theory

a regime, in relation to dynamo processes, and calculated the strength of the

resulting α effect. Mason et al. (2008) considered the effect of γ in two different

kinematic dynamo models for the base of the solar convection zone, while Hughes

& Proctor (2010) focused on the β turbulent diffusivity effect, specifically acting

on a time-dependent mean field. Davies & Hughes (2011) calculated the mean

field EMF resulting from magnetic buoyancy as the mechanism behind the rise

of the large scale field, under a variety of conditions.

This mean field kinematic dynamo approach is not, however, without its diffi-

culties, highlighted in greater detail by the review of Hughes (2018). Writing

the mean field induction equation in the form (1.25) requires that the term in

Equation (1.22) containing G be neglected, and the circumstances in which this

is possible do not necessarily reflect physical reality in the systems to which

the approximation is applied. A common assumption is the so-called first order

smoothing approximation, which holds in the case of magnetic Reynolds number

Rm ∼ UL/η � 1, in which case it may be assumed that G = O(Rm), and

thus this term may be neglected in comparison to the diffusive term. However,

in the solar convection zone, this does not hold as we expect Rm ∼ 106 − 1010.

(See Ossendrijver (2003) and Hood & Hughes (2011) for further discussion of

dimensionless parameters and estimates of their values in the solar convection

zone.) Indeed, Rm� 1 is generally typical of astrophysical systems.

Alternatively, one could also eliminate the G term by assuming that the cor-

relation between u and b is only on a short timescale: this is known as the “short

sudden” approximation, and it is valid if the dimensionless quantity S = Uτc/L

is small. However, we expect S ∼ O(1) in the region under consideration.

Furthermore, as Hughes & Cattaneo (2008) pointed out, the scale of the sys-

tem (and thus the computational domain of simulations) is of critical importance

to the calculated strength of the α effect in numerical simulations of convection in

a rotating layer. They found that larger domains require a shorter time-average

in order to arrive at a constant strength of the α effect, implying that the choice

of simulation geometry is a major determining factor in the results.
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Nevertheless, with all these difficulties in mind, we consider the magnetic buoy-

ancy instability under the effect of mean field turbulence. As previously discussed

with regard to work on magnetic buoyancy, Barker et al. (2012) applied a γ ef-

fect to numerical simulations of the nonlinear magnetic buoyancy instability in

a layer modelling the region of the base of the solar convection zone, using a

downwards advection velocity. We will use a similar approach for the γ effect as

applied to the linear stability problem. In the numerical simulations of Tobias

et al. (1998a), the effect of convection was found to give a net downwards trans-

port of flux and magnetic energy, when applied to a horizontal layer of uniform

field. Thus, for our purposes we consider the turbulent pumping velocity to be

directed downwards. This is opposite to the direction of the rise of flux via the

magnetic buoyancy instability, producing an arrangement where the two effects

act directionally counter to one another in the region that we consider. The pic-

ture is also further complicated by the addition of the turbulent diffusivity β,

which, while not directional, is spatially dependent due to the spatial variation

of the turbulence.

We do not include α in the present work, as this is an additional layer of com-

plexity. Furthermore, as previously discussed, α is an effect that can be non-zero

only in a rotating system, and the model system we consider does not include

rotation. However, in the solar convection zone in reality, rotation is expected

to be of importance. Thus, there are certainly grounds for the inclusion of α in

future extensions to this analysis.

In our set-up of the problem, we consider the linear stability to magnetic buoy-

ancy of a layer of field acted upon in an upper region by a turbulent diffusivity

and a downwards turbulent pumping velocity. Both γ and β are applied according

to a step-like profile in order to model the abrupt decline of turbulence outside

of the convection zone. Such a system has not been studied before, except in the

numerical simulations of Barker et al. (2012), who added the turbulent pumping

effect γ to the nonlinear magnetic buoyancy problem, beginning with a slab of
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field acted upon from above by the turbulent pumping effect. They then numer-

ically simulated the time evolution of this configuration by magnetic buoyancy,

subject to the γ effect. By contrast, in this work, we concentrate on the linear

evolution of the instability, under the effects of both γ and β, with a basic state

that represents an equilibrium under these effects.

We will first solve for an equilibrium field under given vertical profiles of γ and β

and subject to a variety of boundary conditions, in order to discern the effect of

γ and β on the basic state. We will also discuss the physical relevance of various

basic states considered. From this, we choose an equilibrium state that will be

used as the basis for stability analysis. As an additional consideration, we show

that for a given basic state, while γ and β that support it as an equilibrium state

of the system can, formally, be found as a function of z, they do not necessarily

model the region of the solar convection zone well, and thus we justify our choice

of prescribing γ and β and letting the equilibrium field depend on their spatial

variation.

Following our analysis of the basic states, we introduce linear perturbations,

with horizontally periodic variation. We solve the system for the most unstable

mode, including its growth rate, horizontal scale, and vertical dependence, and

we consider how this depends on the strengths of the γ and β effects, including

their relative strengths. We also consider the effect on the instability of varying

the field strength parameter in the system. In addition to this, in order to better

understand the question of scale dependence of the instability and validity of the

mean field approximation, we also consider the application of γ and β on a basis

that is dependent on scale. This is to try to understand to what extent the role

of γ and β in determining the equilibrium basic state is primarily responsible for

the change in stability we see, compared to the direct effect of γ and β on the

perturbed quantities.

We also consider, analytically, a special case of the instability; the diffusion-

less, isothermal case. We derive analogous expressions to those of Gilman (1970)
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and Mizerski et al. (2013), in terms of the growth rate and horizontal wavenum-

bers, the vertical velocity profile, and the basic states, given the turbulent pump-

ing effect. Given the complexity of the resulting third order system in the latter

case, we discuss two simpler third order model problems, finding numerical and

analytical solutions in the asymptotic limit γ → 0. We also apply a local analysis

approach following that of Acheson (1979), in order to derive local dispersion

relations for the interchange system under both isothermal and adiabatic condi-

tions.

First, however, we lay out the mathematical basis for the following analysis,

including notation and the full equations of the system.

1.5 Mathematical Formulation

1.5.1 Coordinate system

We will work in a Cartesian box defined by (x, y, z) with −z corresponding to

the radial direction, i.e. with the top of the layer located at z = 0. x is in the

meridional direction and y is azimuthal. We will consider a layer of height d, such

that the base of the layer is at z = d. (Note that this is opposite to the direction of

z as discussed in Section 1.3.1 and as detailed in the work of, for example, Acheson

(1979), who used z as height; we will instead follow the convention of Cattaneo &

Hughes (1988) and use z as depth from now on.) Thus, g = gez, and the initial

magnetic field points in the x-direction and is vertically stratified.

1.5.2 MHD Equations

We consider first the MHD equations in their dimensional form. These are the

induction equation (note the addition of the turbulent pumping and turbulent dif-

fusion effects), the momentum equation, the energy equation, mass conservation,
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1.5 Mathematical Formulation

and the gas law.

∂B

∂t
= ∇× ((u+ γγ)×B)−∇× ((η + β)∇×B), (1.26)

ρ
Du

Dt
= −∇p+

1

µ0

(∇×B)×B + µ∇ · τ + ρg, (1.27)

cvρ
DT

Dt
= −p∇ · u+ k∇2T + µ

∂ui
∂xj

τij +
η

µ0

(∇×B)2, (1.28)

∂ρ

∂t
= −∇ · (ρu), (1.29)

p = RρT. (1.30)

Here, the quantity τ refers to the viscous stress tensor, given by:

τij =
∂ui
∂xj

+
∂uj
∂xi
− 2

3
δij
∂uk
∂xk

. (1.31)

In addition to this, the parameter k is the thermal conductivity, cv the heat

capacity at constant volume, µ is the shear viscosity, η is the magnetic diffusivity,

g is the gravitational field strength, R is the gas constant, and µ0 the magnetic

permeability constant.

1.5.3 Dimensionless Form

We scale the temperature, density, pressure, and magnetic field with their values

at the top of the layer, To, ρo, po and Bo, distances with the layer depth d, and

times with the sound travel time d/
√
RTo.
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This gives the following system of nonlinear, dimensionless equations:

∂B

∂t
= ∇× ((u+ γγ)×B)−∇× ((ζoCk + β)∇×B), (1.32)

∂

∂t
(ρu) = −∇

(
p+

F

2
|B|2

)
+∇ · (FBB − ρuu+ σCkτ )

+ θ(m+ 1)ρez, (1.33)

∂T

∂t
= −u · ∇T − (Γ− 1)T∇ · u+

ΓCk
ρ
∇2T

+
Ck(Γ− 1)

ρ

(σ
2
||τ ||2 + Fζo|(∇×B)|2

)
, (1.34)

∂ρ

∂t
= −∇ · (ρu), (1.35)

p = ρT. (1.36)

Note that here we use the notation Γ = cp/cv for the heat capacity ratio (also

known as the adiabatic index), as we use γ to represent the turbulent pumping

effect. The quantity θ represents the equilibrium temperature gradient in the

absence of a magnetic field, and m is the polytropic index, given in terms of the

adiabatic index by m = 1
Γ−1

. This leaves the system with seven dimensionless

parameters, defined in terms of quantities taken at the top of the layer, as well as

a new thermal conductivity quantity κ, given by κ = k/ρocp, the shear viscosity

µ, and the magnetic diffusivity η. The dimensionless parameters are, Prandtl

number σ:

σ =
µcp
κ
, (1.37)

ratio of the magnetic to thermal diffusivity at the top of the layer ζo:

ζo =
ηρocp
κ

, (1.38)

dimensionless thermal diffusivity Ck:

Ck =
κ

ρocpd
√
RTo

, (1.39)

and dimensionless field strength F (related to the plasma βp at the top of the

layer by F = 2/βp):

F =
B2
o

RToρoµ0

. (1.40)
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1.5 Mathematical Formulation

Note that here we follow the notation of Barker et al. (2012), however, this

scaling has been used previously by Cattaneo & Hughes (1988) and Matthews

et al. (1995).
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Chapter 2

Equilibrium Basic State

2.1 Equilibrium States of the System

In this Chapter, we consider the equilibrium magnetic field of the system, in or-

der to select a basic state field to which we will later apply linear perturbations.

Given that, as we have discussed, we intend to consider the linear stability to

magnetic buoyancy subject to the effects of turbulent pumping and turbulent

diffusion, we shall begin from a basic state that is an equilibrium under these

effects. This is in contrast with previous work on the linear magnetic buoyancy

instability that does not include γ and β, in which the basic state field has been

prescribed directly; for example, Kersalé et al. (2007) used a linearly stratified

magnetic field as the basis for linear stability analysis, and Matthews et al. (1995)

used a slab of constant field embedded in a non-magnetic atmosphere. Both of

these are equilibria over the timescale of the problem; the former indefinitely, and

the latter having a diffusion timescale much less than the growth rate of the linear

instability, making its decay negligible over the course of the time considered in

the problem. However, given the presence of γ and β in the induction equation

in our system, we will take a slightly different approach.

In order to find a vertically-stratified equilibrium field consistent with γ and

β, we will prescribe only the parameters and the vertical variation of the γ and β

effects, which we choose to model the variation in turbulent motion at the base

of the convection zone. We will then solve the induction equation (1.32) for the
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2. EQUILIBRIUM BASIC STATE

equilibrium field with ∂B̄
∂t

= 0, under conditions of zero flow velocity, ū = 0.

(Note that throughout this work we will denote the basic state of the system

with an overbar, i.e. B̄, ū, and therefore we will also use this notation to refer

to the equilibrium quantities discussed in this Chapter.) From this, we can solve

the energy equation (1.34) at equilibrium for the basic state temperature T̄ . We

may then eliminate p̄ by the gas law (1.36), and then, from magnetohydrostatic

pressure balance (the z-component of Equation (1.33), for equilibrium) we may

find the corresponding density ρ̄.

To produce a self-consistent equilibrium basic state field, we consider the di-

mensionless induction equation (1.32) under equilibrium conditions, i.e. ∂B̄
∂t

= 0

and u = 0, given by

∇× (γγ × B̄)−∇× ((ζoCk + β)∇× B̄) = 0. (2.1)

As previously discussed, we choose a vertically stratified field in the x-direction,

B̄ = B̄(z)ex, as well as γγ = γ(z)ez, β = β(z). Equation (2.1) then becomes:

(ζoCk + β)
d2B̄

dz2
+

(
dβ

dz
− γ
)

dB̄

dz
− dγ

dz
B̄ = 0. (2.2)

This is a second order ODE, allowing us to solve for B̄(z) given γ(z), β(z), and

the parameters ζo and Ck. It also allows a choice of two boundary conditions,

which will be discussed in detail later in this Chapter.

Note that we may also write down the “uncurled” form of Equation (2.1), which

is equivalent to the integral of Equation (2.2) and is given by

(ζoCk + β)
dB̄

dz
− γB̄ = c, (2.3)

where c is a constant, free to be determined by the boundary conditions. The

usefulness of this form will become apparent in Section 2.6.1.
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2.2 Choice of γ(z) and β(z) profiles

2.2 Choice of γ(z) and β(z) profiles

2.2.1 Standard “step” functional form of γ and β

As discussed in Chapter 1, we apply the turbulent pumping γ and the turbulent

diffusivity β in order to model the mean effects of turbulence resulting from

turbulent convection. We choose the profiles of γ and β in order to model the

distribution of turbulent motion at the base of the solar convection zone, spanning

the region of the tachocline and into the non-convecting region below. Let us first

consider the γ effect. For reasons also described in Chapter 1, we will take γγ as

a downwards velocity, i.e. in the positive z-direction. As for the z-dependence,

we aim to model the incidence of turbulence across a region spanning the base

of the convection zone. Therefore, we consider a horizontal layer with effectively

constant turbulence in some upper region, dropping off abruptly below with the

decrease in turbulent convection. To model this, we choose the following profile:

γ(z) =
γm
2

(1 + tanh(a(zi − z))), (2.4)

following Barker et al. (2012), pictured in Figure 2.1. Note that the shape of this

profile is controlled by three parameters, γm, a and zi. γm is equivalent to the

magnitude of the turbulent pumping effect, in relation to the sound speed used

to scale the MHD equations, and γ(0) = γm. a is effectively the “gradient” in the

narrow region over which γ → 0. It controls the width of the transition region

between the turbulent and non-turbulent regions. (Note that the a → ∞ limit

of this profile corresponds to a step function.) The final parameter, zi, gives the

position at which the transition is located, with 0 ≤ zi ≤ 1. We will assume

β(z), the turbulent diffusion effect, to have the same functional form as γ(z), and

unless otherwise stated, to be proportional to γ(z) according to

β(z) =
βm
2

(1 + tanh(a(zi − z))). (2.5)

We make this choice because γ and β are both the result of assuming mean field

turbulence as detailed in Chapter 1, and we aim to model both effects as spatially

coincident with the turbulent region at the top of the layer, and thus with each

other. Additionally, for the purposes of this Chapter it may be assumed that
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2. EQUILIBRIUM BASIC STATE

Figure 2.1: The vertical γ(z) profile given by (2.4), with γm = 0.1, a = 30, and

zi = 0.5.

βm = γm. Initially, we will also assume that γ and β have the same value of zi;

however in Section 2.10, for the sake of comparison, we will also consider the two

effects as extending over different distances into the layer.

2.2.2 “Top hat” functional form of γ(z) and β(z)

At this point, we introduce an additional functional form for γ and β, which

we will refer to as a “top hat” profile, in contrast to the “step” profile give in

Section 2.2. These are given by

γ(z) =
γm
2

(tanh(a(z − zi1)− tanh(a(z − zi2))), (2.6)

and

β(z) =
βm
2

(tanh(a(z − zi1)− tanh(a(z − zi2))). (2.7)

The top hat form of γ is shown in Figure 2.2. The use and importance of these

forms of γ and β will become clear in Section 2.4, and we will discuss their physical

relevance to the problem there. However, for now we will use the step forms of γ

and β unless stated otherwise.

2.3 Choice of Boundary Conditions

Besides freedom in the choice of γ and β, there is also a freedom of choice in

the boundary conditions when solving Equation (2.2) for the basic state. It is
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2.3 Choice of Boundary Conditions

Figure 2.2: The modified form of γ given by (2.6), with γm = 0.1, a = 30,

zi1 = 0.1, and zi2 = 0.5.

necessary to consider which boundary conditions are most physically realistic if

the goal is to model a region at the base of the convection zone.

One possible choice may be to fix the flux of the field within the layer, restricting

it to some set value, for which we choose 1. We define the flux φ(z) according to

φ(z) =

∫ z

0

B̄(z′)dz′, (2.8)

and take the boundary condition φ(1) = 1 in order to fix the flux in the layer.

Note that this type of integral boundary condition may be implemented in a

standard numerical BVP solver (such as Matlab’s bvp4c solver, which we have

used throughout our consideration of the basic states) by writing Equation (2.2)

as a third order boundary value problem in φ rather than B̄, and then apply-

ing φ(0) = 0, φ(1) = 1, and one additional boundary condition. Subsequently,

however, we will discuss the numerical solutions in terms of B̄(z) rather than φ(z).

This type of integral boundary condition prevents the field from growing ex-

cessively in magnitude, limiting how much field the γ pumping effect at the top

of the layer can “draw down” from above and outside the domain. (This effect,

whereby a large amount of field is drawn into the layer, is discussed alongside the

results presented in Section 2.4.) However, fixing the flux still leaves a free choice

of one other boundary condition. We will consider various other choices for this
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2. EQUILIBRIUM BASIC STATE

final boundary condition, including Dirichlet and Neumann conditions, as well

as considering the effect of applying the boundary conditions at the top versus

the bottom of the layer. We will then discuss which sets of boundary conditions

produce results that best reflect the physical reality we plan to model.

We will begin, however, by choosing boundary conditions that do not include

the requirement of constant flux, in order to demonstrate the physical motivation

for using such a condition.

2.4 B̄′(0) = 1, B̄(0) = 0

Figure 2.3: Variation of equilibrium field for B̄′(0) = 1 and B̄(0) = 0, γ = β with

varying amplitude given by (2.4) and (2.5).

First we consider a case which does not involve constant flux, but merely fixes

the value of the field as zero, and its gradient as some fixed value λ, at the top

of the layer. Here we have chosen λ = 1 for the gradient. We assume the “step

function-like” γ and β profiles given by (2.4) and (2.5), with zi = 0.5 and a = 30.
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2.4 B̄′(0) = 1, B̄(0) = 0

Figure 2.4: Variation of equilibrium field for B̄′(0) = 1 and B̄(0) = 0, γ = β with

varying amplitude given by (2.6) and (2.7), with zi1 = 0.1 and zi2 = 0.5.

It can be seen that here, the choice of the form of γ and β makes a large difference

to the gradient of the field at the base of the layer, if not its functional form. The

gradient and the size of the field increase greatly as the pumping and turbulent

diffusion strength γm is increased. This is due to the presence of pumping at the

very top of the layer, which for these boundary conditions is able to “draw in”

an effectively unlimited amount of field if it acts at the boundary, as no limit is

placed on the total flux in the layer.

It is this effect that motivates us to consider the top hat profiles for γ and β,

discussed in Section 2.2.2. Let us now apply γ and β according to (2.6) and (2.7)

with zi1 = 0.1 and zi2 = 0.5, such that there is a small gap between the top of

the layer and the point at which γ and β become significant. Note that we still

set βm = γm here. Compare the magnitude of the field at the bottom of the

layer in Figures 2.3 and 2.4; the step profile γ and β give a maximum value of B̄

(Figure 2.3) that is of the order 102 larger than that in the case of the top hat

profile (Figure 2.4), due to field being brought into this layer. When γ and β are
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absent in a small region at the very top of the layer as in the case of the top hat

profiles, we do not see the same scale of increase with γm and βm.

The effect of such a “drawing in” of field is to increase the total field gradi-

ent dramatically, especially in the lower section of the layer where γ and β are

effectively absent. If used as a basic state for linear stability analysis, this could

result in the instability being extremely sensitive to small changes in the size of

the γ and β effects in this region. This would arguably constitute an unphysical

situation as the instability is not expected to depend so strongly on effects present

in the small region surrounding the upper boundary.

Removing the pumping and turbulent diffusion effects from the top of the layer

as in the case of the top hat γ and β, however, ensures that the large increase in

the field gradient with γm does not occur to the same extent; the gradient and

value of the field at the bottom of the layer do increase overall, but remain of the

same order of magnitude as when γ = β = 0.

Physically speaking, if a boundary condition set such as this is chosen, it would

be beneficial to use a pumping of the top hat form that “cuts off” just below the

top of the layer. This would ensure that the field gradient is not overly sensitive

to the strength of the pumping, as in this example. However, as we will see, we

may also make use of a boundary condition that constrains the flux in the layer

in order to prevent such a problem entirely.

2.5 B̄′(0) = 1, φ(1) = 1

As a variation on the previous case, we may consider the case where the gradient

of the field is still fixed at the top of the layer, but instead of fixing the field

at zero, we assume the total flux in the layer, given by (2.8), is constant; we

set φ(1) = 1. This prevents the value of the field at the base of the layer from

increasing without limit as more field is pumped in from the upper boundary.

It can be seen that such a choice makes a marked difference, for both the step and
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(a) (b)

Figure 2.5: Variation of equilibrium field for B̄′(0) = 1 and constant flux, γ = β

with varying amplitude, for (a) step profile and (b) top hat profile with zi1 = 0.1

and zi2 = 0.5.

top hat γ profiles (see Figure 2.5). In the case of the step profile, the gradient at

the bottom of the layer changes sign for some value of γm, which depends on the

other parameters of the problem (see Section 2.6.1 for further explanation of this

change in field direction). This does not occur, however, for the top hat field.

Thus the top hat field for this boundary condition set may represent a more

physically appropriate basic state field. (That is to say, a state that does not

display any behaviour inconsistent with what we know of the mean field in the

solar convection zone. See Section 2.14 for further discussion.) We can see from

Figure 2.5b that top hat γ and β do not give reversals of sign or large changes in

gradient resulting from small changes in γm, and that the form of the resulting

field is not completely determined by conditions at the top of the layer, which,

in the real system, represents some arbitrary point within the convection zone.

2.6 B̄′(0) = 0, φ(1) = 1

We consider a similar case to the previous one, however we now fix the field gradi-

ent at zero at the top of the layer. In Figure 2.6a, for the step γ and β effects, the

change in the sign of the gradient still occurs, though it occurs at a lower value
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(a) (b)

Figure 2.6: Variation of equilibrium field for B̄′(0) = 0 and constant flux, γ = β

with varying amplitude, for (a) step profile and (b) top hat profile with zi1 = 0.1

and zi2 = 0.5.

of γm for the same parameters. In addition, the gradient in the upper half of the

layer — where the step pumping effect acts — is zero, and the field is simply a

constant that depends on the pumping strength.

However, for the top hat γ and β case, introducing a small region of no pumping

and turbulent diffusion at the top of the layer allows the field to have a gradient

in the pumping region. It also changes the gradient at the lower boundary, in-

cluding a change in its sign for larger values of γm, with respect to the equivalent

case for a step γ.

In the case of the solar convection zone, this dependence on γm would mean

that there would be a complete reversal of the direction of the mean field at

some radius, as the strength of the pumping effect varies. However, physically

speaking, we do not want to consider a mean field that contains large-scale re-

versals of sign with radius. This would constitute an unphysical scenario for

the solar case, because it is improbable that dynamo action would result from a

field effectively containing “shells” of different sign of mean field. Thus, we seek a

basic state for our linear stability analysis that does not exhibit such dependence.
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In the limit of large a, we may also use an analytic approach to try to understand

why fixing the gradient gives rise to this behaviour.

2.6.1 Analytic solution for step functions γ = β, B̄′(0) = 0,

φ(1) = 1

We will also give some consideration to an analytic solution in the limit a→∞,

to compare with the numerical solution. In the limit of large gradient a, the

form of γ and β given by Equation (2.4) becomes a true step function. With this

assumption, it is possible to approximate the function γ as a constant value of

γm in the range 0 ≤ z < zi and zero in zi < z ≤ 1. Using this approximation,

it is possible to obtain an analytic solution to Equation (2.2), for the regions on

each side of zi. We require that the solution is continuous at this boundary, so

that the induction equation can be solved. This acts as a matching condition for

the solutions on either side of zi.

Additionally, we may use the induction equation in the integrated form given

by (2.3) to obtain a second jump condition. From the induction equation at

equilibrium in the form (2.3), we find that the quantity (ζoCk + β)B̄′ − γB̄ must

be constant everywhere, including at the interface. The jump conditions are,

therefore:

[B̄]zi = 0, (2.9)

[(ζoCk + β)B̄′ − γB̄]zi = 0. (2.10)

We may use these two conditions at zi, along with the two chosen boundary con-

ditions, to match the solutions at the interface and obtain a continuous, analytic

estimate for the field.

Let us consider the case of constant flux and B̄′(0) = 0 boundary conditions;

a similar argument is possible for the more general B̄′(0) = λ case, but is more

mathematically involved, so for the sake of example, in the coming analysis we
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will consider λ = 0. The equivalent result for λ 6= 0, however, is given in Ap-

pendix A.

For equilibrium:

(ζoCk + β)B̄′′ + (β′ − γ)B̄′ − γ′B̄ = 0.

Also, take:

β = γ =

{
γm = constant 0 ≤ z < zi
0 zi < z ≤ 1

.

At z = zi, the jump conditions given by Equations (2.9) and (2.10) apply. In

addition, we select boundary conditions:

φ(1) =

∫ 1

0

B̄(z)dz = 1, (2.11)

B̄′(0) = 0. (2.12)

Initially, we solve for the two regions separately.

Firstly, for 0 ≤ z < zi:

(ζoCk + γm)B̄′′ − γmB̄′ = 0,

so that

B̄ = P +Q exp

(
γmz

ζoCk + γm

)
.

Applying the boundary condition B̄′(0) = 0 gives Q = 0, and here

B̄ = P = constant.

Secondly, for zi < z ≤ 1:

B̄′′ = 0,

B̄ = R + Sz.

Then, applying condition (2.9), i.e. continuity of the field at zi, gives:

P −R− Szi = 0. (2.13)
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The other jump condition, (2.10), allows us to obtain:

γmP + ζoCkS = 0. (2.14)

Finally the constant flux condition gives:∫ zi

0

Pdz +

∫ 1

zi

R + Szdz = 1,

i.e.

Pzi +R(1− zi) +
S

2
(1− z2

i ) = 1. (2.15)

Here, (2.14) gives P = − ζoCk
γm

S, and (2.13) gives R = −( ζoCk
γm

+ zi)S.

Therefore Equation (2.15) becomes(
−ζoCkzi

γm
−
(
ζoCk
γm

+ zi

)
(1− zi) +

1

2
− z2

i

2

)
S = 1,

giving, finally,

S =

(
−ζoCk
γm

+
(1− zi)2

2

)−1

. (2.16)

Similarly, from equations (2.14) and (2.13):

P = −ζoCk
γm

(
−ζoCk
γm

+
(1− zi)2

2

)−1

, (2.17)

R = −
(
ζoCk
γm

+ zi

)(
−ζoCk
γm

+
(1− zi)2

2

)−1

. (2.18)

From this analysis, we can see that this set of boundary conditions gives rise to a

constant equilibrium field in the region where pumping is present, and a linearly

varying field where it is absent. Note the form of the coefficient S, the gradient

of the linear section of the field, in the lower part of the layer; with fixed values

of ζo, Ck, and zi, S →∞ for a value of γm given by:

γm =
2ζoCk

(1− zi)2
. (2.19)

Approaching this value of the pumping strength, the gradient at the bottom of

the layer approaches infinity, and changes sign. This can be seen in the numerical
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Figure 2.7: The variation of the equilibrium field, calculated numerically for

B̄′(0) = 0 and constant flux boundary conditions, and pumping and turbulent

diffusion γ = β given by Equation (2.4), with parameters zi = 0.5 and a = 1000.

Compare with the numerical result for a step-like γ and β for the same boundary

conditions, presented in Figure 2.6a.

results by plotting the basic state for varying values of γm.

Taking a much larger value of a allows us to compare with the analytic ap-

proximation, as the limit of large a is effectively a step function. We plot the

numerical solution for a = 1000 in Figure 2.7, allowing us to see that the gra-

dient at the lower end of the layer changes sign. Equation (2.19) allows us to

calculate the approximate value at which this occurs, taking parameter values

of zi = 0.5, ζo = 0.05 and Ck = 0.01. We obtain a value of γm = 0.004, which

is also seen in the numerical profiles shown in Figure 2.7. In addition, the sign

of the constant value in the upper half of the layer changes in accordance with

that of the gradient in the lower half, as the analytic approximation also predicts.

We may also carry out a similar analysis for the top hat profiles for γ and β.

In the top hat case, the analysis is similar but the matching conditions are ap-

plied at both interfaces. This gives a system of six linear equations to solve (which
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(a) (b)

Figure 2.8: Semi-analytic field profiles for B̄′(0) = 0, constant flux boundary

conditions, with γ = β given by (a) step function and (b) top hat function

between zi1 = 0.1 and zi2 = 0.5.

maintain the two jump conditions at each interface, as well as the constant flux

boundary condition and one additional boundary condition) as opposed to four

in the case of the step profile. In order to simplify the analysis in this case, we

solve this system numerically, giving rise to what we will call the “semi-analytic”

approximation to the solution in the limit a→∞, shown in Figure 2.8.

This shows the variation of the semi-analytic solution for infinitely steep step and

top hat profiles of γ and β. This may be compared with the numerical calculation

of the equilibrium field for both of these forms of γ and β, shown in Figure 2.6.

We can see that the case of the equilibrium field for the step γ, the analytically

predicted form matches the numerical form well, showing a similar constant value

in the pumping region at the top of the layer, and linear variation outside it. The

change in the sign of the gradient that we noted before is still present, and occurs

at approximately the same pumping strength γm.

In the case of the top hat γ and β profiles, however, the form is qualitatively

different as compared to the numerical results for a = 30 in Figure 2.6b, specifi-

cally for larger γm. Analytical considerations predict a constant value of the field
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Figure 2.9: Numerically calculated profiles for B̄′(0) = 0, constant flux, and top

hat γ, with a = 1000.

below the “top hat” pumping region, however, in the numerical plot we see a

negative gradient, which becomes quite significant as γm increases.

This deviation from the analytical form is a product of the fact that the ana-

lytic approximation assumes that — in terms of γ given by (2.4) as used in the

numerical calculation — the quantity a, which quantifies the gradient with which

the field drops to zero at the edges of the pumping region, is infinite. This, how-

ever, is not the case in the original numerical case, for which we take a value of

a = 30. We may find a numerical profile that approaches the analytical one by

taking a larger value of a = 1000, shown in Figure 2.9. Here, the only thing that

has been changed compared to Figure 2.6b is that a has been changed from 30 to

1000. The effect, however, is significant; the numerically calculated field in this

case is effectively constant at the bottom of the layer, as predicted by the analytic

approximation. This demonstrates that the validity of the numerical solution can

in some cases depend strongly on the value of a. In many cases — indeed, in the

case of the step pumping for this boundary condition — the value of a makes little

difference to the general form of the equilibrium field apart from the change in

the “sharpness” with which the switch from one field regime to the other occurs.

However, in the top hat case, the effect is significant in both a qualitative and a
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quantitative sense. This sensitivity to a in the resulting field gradient must be

taken into account when considering this boundary condition for use in the cal-

culation of the basic state for the stability problem. The instability is driven by

field gradient, and so using such a boundary condition may potentially result in

positive or negative changes in stability driven by changing the effective “width”

of the transition region.

Moreover, the change in the direction of the field with γm also poses problems

with using this field to represent the basic state of the physical system. A large

change in direction of the field for some value of γm means that physically, such

a boundary condition may not be a suitable choice. In the context of the so-

lar magnetic field, it seems improbable that dynamo action would give rise to a

large-scale reversal in direction of the background field over radius, which would

be the physical analogue for such a dependence on the strength of the turbulent

pumping effect. Nevertheless, this case provides an example of the method by

which an analytical comparison can be made.

2.7 B̄(0) = 0, φ(1) = 1

Here we consider a Dirichlet condition, namely, zero field at the top of the layer.

We also fix the total flux as in Sections 2.5 and 2.6. The numerically calculated

equilibrium fields are shown in Figure 2.10.

In both the step and top hat cases, these boundary conditions produce a positive

gradient in every part of the layer, which is larger where pumping and turbulent

diffusion are not present. This case also gives the most similar behaviour for step

and top hat profiles, as the field is fixed at the top of the layer, so having a small

region with low γ and β surrounding this fixed B̄ point makes little difference to

the final profile.

Such a boundary condition may be the best choice to minimise the dependence of

the equilibrium field on the condition at the top of the layer, while still allowing

sensitivity to the pumping strength.
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(a) (b)

Figure 2.10: Variation of equilibrium field for B̄(0) = 0 and constant flux, γ = β

with varying amplitude, for (a) step profile and (b) top hat profile with zi1 = 0.1

and zi2 = 0.5.

2.7.1 Semi-analytic comparison for B̄(0) = 0, φ(1) = 1

In this Section, we will once more apply the semi-analytic approach to the calcu-

lation of the basic state, which corresponds to the a→∞ limit of the numerical

calculation.

In the case of B̄(0) = 0 and constant flux, the semi-analytic field profiles (Fig-

ure 2.11) are qualitatively similar in form to the numerically calculated versions

shown in Figure 2.10. The main difference is that the overall change in field across

the layer (i.e. the field at the bottom of the layer) is larger in the numerical case.

In consequence, in the case of the numerically calculated field, the gradient in the

upper part of the layer is lower, in order to maintain the constant flux condition.

Again, this change in the field gradient has implications for the behaviour of

the instability, as it affects the variation of the field gradient as a function of z.

However, unlike in the case of B̄′(0) = λ as considered previously, the gradient at

the bottom of the layer increases monotonically with γ, as opposed to changing

sign as in cases such as B̄′(0) = 0, 1.
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(a) (b)

Figure 2.11: Semi-analytic field profiles for B̄(0) = 0, constant flux boundary

conditions, with γ = β given by (a) step function and (b) top hat function

between zi1 = 0.1 and zi2 = 0.5.

2.7.2 Analytic form of the equilibrium field for B̄(0) = 0,

φ(1) = 1

To understand the variation in the field gradient as a function of γm and why it

differs from the Neumann condition case, let us use a similar analytic approach

to that described in Section 2.6.1. Using the same notation as in Section 2.6.1

for the general form of the equilibrium field in the case of step functions γ and

β, we have:

B̄ =

{
P +Q exp

(
γmz

ζoCk+γm

)
0 ≤ z < zi,

R + Sz zi < z ≤ 1.

We can then once more apply the matching conditions and the boundary con-

ditions of constant flux and B̄(0) = 0, to obtain analytic expressions for the
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coefficients P , Q, R, and S:

P =

((
2 +

ζoCk
γm

)
− γm

2ζoCk
(zi − 1)2 −

(
2 +

ζoCk
γm
− zi

)
exp

(
γzi

ζoCk + γm

))−1

, (2.20)

Q = −
((

2 +
ζoCk
γm

)
− γm

2ζoCk
(zi − 1)2 −

(
2 +

ζoCk
γm
− zi

)
exp

(
γzi

ζoCk + γm

))−1

, (2.21)

R =

(
1− exp

(
γzi

ζoCk + γm

)
+
γmzi
ζoCk

)((
2 +

ζoCk
γm

)
− γm

2ζoCk
(zi − 1)2

−
(

2 +
ζoCk
γm
− zi

)
exp

(
γzi

ζoCk + γm

))−1

, (2.22)

S = − γm
ζoCk

((
2 +

ζoCk
γm

)
− γm

2ζoCk
(zi − 1)2

−
(

2 +
ζoCk
γm
− zi

)
exp

(
γzi

ζoCk + γm

))−1

. (2.23)

We seek to understand the γm dependence of these coefficients. Plotting (2.20) –

(2.23) as a function of γm (see Figure 2.12), for example parameter values of

ζo = 0.05 and Ck = 0.01, we can see that each of the coefficients varies mono-

tonically with γm, which is also consistent with the variation we see when we

calculate the equilibrium state numerically (see Figure 2.10). However, they also

appear to diverge as γm → 0. This raises a question about the convergence of the

full solution in this limit, which we may address with an asymptotic analysis.

First, however, consider the case of γ = β = 0, corresponding to γm = 0 here.

In this case, (2.2) reduces to B̄′′ = 0. Solving this and applying the boundary

conditions, we expect a solution B̄ = 2z when γm = 0. However, naively, it is not

immediately clear how the coefficients P , Q, S, and R, which appear divergent in

this limit, produce this simple linear solution in the limit γm → 0. In the event

though, they do produce a convergent linear solution in this limit, and we shall

show this via asymptotic analysis.

Let us approximate the coefficients P , Q, R, and S in the limit γm → 0. We must

take a second order approximation for the exponential term in this instance, i.e.:

exp

(
γmzi

ζoCk + γm

)
= 1 +

γmzi
ζoCk + γm

+
γ2
mz

2
i

2!(ζoCk + γm)2
+ o(γ2

m). (2.24)
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Substituting into the expression for the coefficients P , Q, R, and S, we rearrange

and find that, to leading order:

P → −2ζoCk
γm

, (2.25)

Q → 2ζoCk
γm

, (2.26)

R → −(2− zi)ziγm
ζoCk

, (2.27)

S → 2, as γm → 0. (2.28)

Thus, we can immediately see that for the solution for zi < z ≤ 1 (in the region

of γ = β = 0):

lim
γm→ 0

B̄right = lim
γm→ 0

(
2z − (2− zi)ziγm

ζoCk

)
= 2z. (2.29)

For 0 ≤ z < zi, we may also make the same second order approximation to the

exponential to allow us to find the behaviour as γm → 0:

lim
γm→ 0

B̄left = lim
γm→ 0

(
− 2ζoCk

γm
+

2ζoCk
γm

exp

(
γmz

ζoCk + γm

))
(2.30)

= lim
γm→ 0

(
− 2ζoCk

γm
+

2ζoCk
γm

(
1 +

γmz

ζoCk + γm
+

γ2
mz

2

2!(ζoCk + γm)2
+ o(γ2

m)

))
= lim

γm→ 0

(
2ζoCkz

ζoCk + γm
+

ζoCkγmz
2

(ζoCk + γm)2
+ o(γm)

)
= 2z.

Here we can see that even though the individual coefficients P and Q diverge in

the limit γm → 0, the solution does not, but goes to B̄ = 2z as expected. In

Figure 2.13 we compare the approximate forms (2.25) – (2.28) as γm → 0 with

the full forms of coefficients (2.20) – (2.23).

Thus, we have shown that the boundary conditions B̄(0) = 0 and constant flux

produce a solution that does not diverge for any value of γm, nor does it depend

strongly on the effect of γ and β at the very top of the layer. Both these prop-

erties make this type of equilibrium state a strong contender for use as a basic

state in the linear stability problem. However, so far we have only considered the

application of Dirichlet and Neumann conditions at the top of the layer. Now,

we will consider the results of applying them at the bottom.
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Figure 2.12: Coefficients P , Q, R, and S as a function of γm in the case of

constant flux and B̄(0) = 0 boundary conditions, assuming a step function form

for γ = β, with ζo = 0.01 and Ck = 0.01.

Figure 2.13: Absolute values of coefficients P , Q, S, and R as a function of small

γm, compared with their full analytic forms, (2.20) – (2.23), in the limit γm → 0.
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2.8 B̄′(1) = 1, φ(1) = 1

(a) (b)

Figure 2.14: Variation of equilibrium field for B̄′(1) = 1 and constant flux, γ = β

with varying amplitude, for (a) step profile and (b) top hat profile with zi1 = 0.1

and zi2 = 0.5.

So far, all the scenarios considered have fixed the additional boundary condition

at the top of the layer, leaving only the constant flux condition to determine what

occurs at the bottom. But for comparison, we may also consider a case where the

gradient is fixed at the bottom of the layer, as we have plotted in Figure 2.14.

In such a scenario, sensitivity of the equilibrium field to the pumping and turbu-

lent diffusion effects is decreased in general, with the field never varying far from

the linear form it takes when no pumping or turbulent diffusion are present. For

this reason, it also makes very little difference whether we use a step or top hat

profile in this case, and the field is always close to linear for γm = O(1).

2.8.1 Semi-analytic comparison for B̄′(1) = 1, φ(1) = 1

In the case of B̄′(1) = 1 and constant flux, the field depends little on whether γ

and β are present at the very top of the layer (and therefore on whether the step

or top hat profile is used for γ and β), or on their amplitude γm within the range
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(a) (b)

Figure 2.15: Semi-analytic field profiles for B̄′(1) = 1, constant flux boundary

conditions, with γ = β given by (a) step function and (b) top hat function between

zi1 = 0.1 and zi2 = 0.5.

considered. Indeed, this is also true of the numerically calculated profiles; in this

case the equilibrium field has very little sensitivity to γ and β, and the analytic

consideration confirms this (see Figure 2.15).

Furthermore, as γm increases, the equilibrium field seems to approach a limit-

ing profile, with the higher few values of γm giving almost identical equilibria.

This lack of sensitivity to the γ and β may result from the fact that the lo-

cation, close to the top of the layer, where the γ and β effects are present is not

where the boundary condition is applied. Thus the field is able to assume a form

that is not too dissimilar to the linear form, with non-zero gradient, that it would

take were γ and β absent. However, so far we have only considered a non-zero

gradient for this field. We will now consider how this changes when we fix the

gradient to be zero at the bottom of the layer.
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(a) (b)

Figure 2.16: Variation of equilibrium field for B̄′(1) = 0 and constant flux, γ = β

with varying amplitude, for (a) step profile and (b) top hat profile with zi1 = 0.1

and zi2 = 0.5.

2.9 B̄′(1) = 0, φ(1) = 1

In this case, the results for step and top hat profiles of γ and β are broadly similar

to each other (see Figure 2.16), as the boundary condition does not act at the

top of the layer, which is where the two forms differ.

The effect of setting the gradient to zero at the bottom of the layer is to force the

field to assume a constant value in the lower region of the layer where neither γ

nor β are present. It also increases the sensitivity of the magnitude of the field

to γm once more, making this case potentially of more interest than that of fixing

the field gradient at the bottom to some non-zero value.

2.9.1 Semi-analytic comparison for B̄′(1) = 0, φ(1) = 1

In this case, the analytically calculated profiles (Figure 2.17) for this boundary

condition are fairly consistent with the numerical estimate (Figure 2.16) both

qualitatively and quantitatively. The resulting field gradient and magnitude do

not depend strongly on how “sharply” the step or top hat profiles vary. Further-

more, in all cases the field is necessarily fixed at a constant value at the bottom
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(a) (b)

Figure 2.17: Semi-analytic field profiles for B̄′(1) = 0, constant flux boundary

conditions, with γ = β given by (a) step function and (b) top hat function between

zi1 = 0.1 and zi2 = 0.5.

of the layer, since this is required by the boundary condition. The solution also

shows more “sensitivity” in the gradient and value of the field at the base of the

layer than the case of B̄′(1) = 1 discussed in Section 2.8. As far as fixing the

gradient at the bottom of the layer is concerned, this choice of boundary condi-

tions does not exhibit unphysical behaviour for any limiting value of γm, while

still being sensitive to the strength of the γ and β effects. Thus, it can also be

considered as a potentially useful basic state for the linear stability problem.

We have studied the equilibrium field under several different choices of boundary

condition, for γ = β present in the upper part of the layer. Now, we seek a better

understanding of each effect as it acts individually on B̄.

2.10 Shifting the interfaces of γ and β in the

z-direction

We have considered so far the effect of varying the strength of the pumping and

the turbulent diffusion effects, and whether they are present at the top of the
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layer. However, throughout this analysis, we have maintained the condition that

γ and β are proportional to one another. Physically, this is a reasonable assump-

tion for the base of the solar convection zone, as both γ and β are products of

turbulence, and may therefore be expected to coincide in spatial location. How-

ever, the γ and β effects result from different aspects of turbulent convection, and

their spatial coincidence is not inherent to their derivation from the mean field

induction equation (Section 1.4.4) but is rather a simplifying assumption that

we have made for the purposes of this work. For these reasons, it is also worth

giving consideration to cases in which they do not exactly coincide. Thus, we will

consider the effects of having γ and β “cut off” at different points in the layer, to

better understand the individual effects that each has on the equilibrium field.

We will use a step γ and β, and we will consider the effect of shifting the values of

zi in Equations (2.4) and (2.5). We still assume γ and β have the same amplitude

γm, but now we define a value of ziγ and ziβ, so that this “cut-off point” of each

profile can be varied individually in z. Therefore, γ and β are given by

γ(z) =
γm
2

(1− tanh(a(z − ziγ))), (2.31)

β(z) =
βm
2

(1− tanh(a(z − ziβ))), (2.32)

where βm = γm. Assuming these forms of the pumping and turbulent diffusion

effects, we will consider the effect of varying ziγ and ziβ, and once again solve

numerically for various choices of boundary conditions. Note that throughout

this Section, we take γm = βm = 0.1.

2.10.1 B̄′(0) = 0, φ(1) = 1

We begin with the case where the field gradient is fixed at the top of the layer,

with the flux held constant. We take a value of ziγ (not necessarily equal to 0.5,

as before) and shift the value of ziβ across the z domain. As an example, we first

consider the case of ziγ = 0.25 (see Figure 2.18).

The case here of ziβ = 0 approximates the case where there is no β effect present

in the layer. This means that in a region of constant γ the field would be expected
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Figure 2.18: Numerically calculated equilibrium fields for ziγ = 0.25, with con-

stant flux and B̄′(0) = 0 boundary conditions.

to obey B̄′ = 0, or in other words to be constant. This is indeed what we see for

the case of ziβ = 0 in 2.18; the constant value of the field takes a different value

in the regions where γ is zero compared to non-zero, with a step at the interface.

In fact, we may explain this in terms of the induction equation (2.2). We may

take β = β′ = 0 and obtain

ζoCkB̄
′′ − γB̄′ − γ′B̄ = 0, (2.33)

which, for small diffusivity ζoCk, we can approximate to first order as d
dz

(γB̄) = 0,

giving γB̄ = constant. (Note that we may discount the possibility of a boundary

layer solution to (2.33) in this instance. Due to the opposite signs of the first two

terms, any such boundary layer would be located at z = 1. In the region of the

base of the layer, however, for the cases we consider here we have γ ∼ 0, and,

indeed, γ � ζoCk, which means that Equation (2.33) does not become singular.)

This implies that the field should, to first order, appear as the inverse of the step

function γ, i.e. it should appear as a smoothed step function itself. This is in

fact what we see in the numerically calculated profiles, shown in Figure 2.18.
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For ziβ = 0.25, the problem is essentially equivalent to one that we have already

considered; the case where γ and β are equal, for arbitrary zi. (See Section 2.6.1.)

In this case we see an exponential profile in the region where both are present

and a linear profile where both are absent. Because of the boundary condition,

the coefficient multiplying exponential term in the left hand side solution would

be zero for this case. This, however, is also consistent with the analytic consid-

erations put forward in Section 2.6.1.

In the case of ziβ = 0.5, there is a region where only the β effect is present.

However, since β is constant there, the field still obeys B̄′′ = 0 in this region, and

because there is constant field in the upper part of the layer (with both γ and

β effects) the field is effectively constant in the region with only β too. Again,

in Figure 2.18 we see that the field is linear with non-zero gradient in the region

where neither γ nor β are present.

For ziβ = 0.75, the situation is similar, though there is a small non-zero gradient

in the region between where the γ and β effects fall off to zero. The gradient

at the base of the layer is also higher, to maintain the constant flux boundary

condition. Physically, we can consider this as turbulent diffusion acting to confine

the majority of the field in the section of the layer where the pumping effect does

not act, so that the field does not “see” the effect of γ.

We see a similar effect in the case of ziβ = 1. This case is somewhat equiva-

lent to having a constant diffusion effect throughout the layer, and, as expected,

gives rise to a constant field in the region where γ is present, and a linearly

varying one elsewhere. However, the gradient at the base of the layer (i.e. close

to z = 1) has now changed sign; this is also a consequence of the constant flux

boundary condition.

These results, for ziγ = 0.25 and variable ziβ, are representative of the kind

of equilibrium field profiles we obtain for cases with ziγ 6= ziβ. We may also

consider the example case with ziγ = 0.75, shown in Figure 2.19. It is worth

noting that for the case of ziγ = 0.75, ziβ = 0, the solution does not converge
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Figure 2.19: Numerically calculated equilibrium fields for ziγ = 0.75, with con-

stant flux and B̄′(0) = 0 boundary conditions.

for this set of boundary conditions. This is true for cases with ziγ greater than

ziβ, with a difference larger than approximately 0.5. Numerically, this is due to

the constant flux boundary condition giving rise to a large gradient at the point

where γ → 0, which the numerical scheme struggles to resolve. Furthermore,

such cases correspond to a potentially unphysical situation; one in which there is

a large region where only the turbulent pumping acts, with no turbulent diffu-

sion. Since the turbulence that gives rise to the pumping effect also creates the

turbulent diffusion, this situation is unphysical, therefore we may discount it in

this analysis, even though it is still theoretically a valid solution to the induction

equation for equilibrium.

Another effect that is evident for ziγ = 0.75 that was not as clear for the case

of ziγ = 0.25 is the behaviour of the field for ziβ < ziγ. It can be seen from the

results shown in Figure 2.19 that the profiles for ziβ = 0.25 and ziβ = 0.5 overlap

each other; the equilibrium field does not change between the two. In general, if

there is a significant (here, greater than about 0.25) separation between the two,

with β only present within the region where γ acts, then the value of ziβ does
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not have a significant effect on the equilibrium field. Physically, this corresponds

to a situation where the pumping acts to confine most of the flux in a smaller

region in the lower part of the layer, where it cannot interact with the turbulent

diffusion effect. Thus the position where β is cut off has no significant effect on

the field, so long as it is not present outside the pumping region.

2.10.2 B̄′(1) = 1, φ(1) = 1

Figure 2.20: Numerically calculated equilibrium fields for ziγ = 0.25, with con-

stant flux and B̄′(1) = 1 boundary conditions.

We may also consider a case where the gradient of the field is fixed not at the top

of the layer but at the bottom. We will vary ziγ and ziβ in the same way as in

Section 2.10.1, and again we will consider the cases of ziγ = 0.25 and ziγ = 0.75

as illustrative examples. (See Figures 2.20 and 2.21.)

In the case of ziγ = 0.25 (Figure 2.20), we see a step-like field for ziβ = 0,

though — unlike the equivalent case for B̄′(0) = 0 — now the field is linear with

a gradient of 1 in the region where neither effect is present, as specified by the

boundary condition.
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Figure 2.21: Numerically calculated equilibrium fields for ziγ = 0.75, with con-

stant flux and B̄′(1) = 1 boundary conditions.

Furthermore, with a fixed gradient in the lower part of the layer, the gradi-

ent cannot increase as the turbulent diffusion is present in a larger upper region

of the layer, allowing the sharp transition to be diffusively “smoothed”. Thus,

to maintain the required flux, the gradient of the fields varies less between the

different regions in the layer than before.

In the case of ziγ = 0.75 (Figure 2.21), we see again that the cases with ziβ < ziγ

show no variation with ziβ, being all simply a step-like function, though with the

gradient fixed according to the boundary condition at the base of the layer. This

is consistent with the idea that if there is no turbulent diffusion present in the

region where there is no turbulent pumping, the field does not “see” the β effect

at all because γ has confined it to the bottom of the layer outside of where β is

present. The cases of ziβ & ziγ (see the cases of ziβ = 0.75, 1 in Figure 2.21) are

much closer to linear, as β is able to smooth the gradient of the field.
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2.11 Constant β: numerical and analytical re-

sults

We may also consider the case where β is constant across the layer. This is also

the limit, as a→∞, of the case of ziβ = 1 in the above considerations. However,

it is also a valuable problem to study in itself, as it allows once again for an

analytic approach to determine the effect on the equilibrium field of varying the

location of the γ effect. We will consider γ to be given by (2.31), with constant

β = γm, taking γm = 0.1.

2.11.1 Constant β = γm with B̄′(0) = 0, φ(1) = 1

Figure 2.22: Numerically calculated equilibrium fields for constant β = γm = 0.1,

with variable ziγ, and B̄′(0) = 0 and constant flux boundary conditions.

In the case of the boundary conditions B′(0) = 0 and constant flux, the analytic

estimate of the equilibrium field — assuming infinite γ gradient at the interface

between turbulent and non-turbulent regions, or a → ∞— may be found us-

ing the matching conditions (2.9) and (2.10). By solving on either side of the
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boundary, we again obtain:

B̄ =

{
P +Q exp( γmz

ζoCk+γm
) 0 ≤ z < ziγ,

R + Sz ziγ < z ≤ 1.

Applying the boundary and jump conditions in an equivalent way to that de-

scribed in Section 2.6.1, we can find analytic expressions for the constants P , Q,

R and S. By analogy with the case of β = γ, we obtain:

P =
−( ζoCk

γm
+ 1)

−( ζoCk
γm

+ 1) + 1
2
(1− ziγ)2

, (2.34)

Q = 0, (2.35)

R =
−( ζoCk

γm
+ 1 + ziγ)

−( ζoCk
γm

+ 1) + 1
2
(1− ziγ)2

, (2.36)

S =
1

−( ζoCk
γm

+ 1) + 1
2
(1− ziγ)2

. (2.37)

These analytic expressions help in explaining the forms of the numerically cal-

culated equilibrium fields shown in Figure 2.22. Most clearly, we see that the

field is in each case constant in the region where γ is present; this is required

by the boundary condition B̄′(0) = 0, which sets Q = 0 and thus removes the

exponential term from the solution in this region. It is also possible to see the

dependence of the value of this constant field in this part of the layer (i.e. P ,

given by (2.34)) on the value of ziγ. Note also the dependence of the gradient S

at z > ziγ.

The case of ziγ = 0 in Figure 2.22 appears to be the exception to this vari-

ation; the field is effectively linear, as we expect, but its gradient is of lower

magnitude than we expect given the monotonic variation with ziγ of analytic

coefficients (2.34) – (2.37). These coefficients, however, only apply in the limit

a → ∞, and indeed, the assumption that the field can be matched using (2.9)

and (2.10) only holds if there are two distinct regions of the domain with, effec-

tively, constant non-zero and zero γ respectively. However, in the case of ziγ = 0

and finite a (for this numerical case we have used a = 30) the only region of γ

is the small transition region near the top of the layer, with large negative γ′.
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Figure 2.23: Numerically calculated equilibrium fields for constant β = γm = 0.1,

with variable ziγ, and B̄′(0) = 1 and constant flux boundary conditions.

This is not the assumption under which coefficients (2.34) – (2.37) are derived,

which may account for the non-monotonic change in the gradient in this case as

compared with the others displayed in Figure 2.22.

2.11.2 Constant β, B̄′(0) = 1, φ(1) = 1

Let us now consider fixing the gradient at the top of the layer as a non-zero value.

In the numerical results for this case, (Figure 2.23) we may once again see that

the field varies exponentially in the region where both γ and β are present and

linearly where there is only diffusion, as there is no requirement that sets Q = 0.

However, the boundary condition B̄′(0) = 1 ensures that the field gradient is

positive and the field is maximised at the bottom of the layer. The gradient is

largest for ziγ = 1, i.e. the case when both γ and β are effectively constant across

the layer.
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Figure 2.24: Equilibrium fields for constant β = γm = 0.1, with variable ziγ, and

B̄′(1) = 1 and constant flux boundary conditions.

2.11.3 Constant β, B̄′(1) = 1, φ(1) = 1

We may also fix the gradient at the bottom of the layer, for constant β (Fig-

ure 2.24). From the results we see that this makes the gradient at the top of

the layer, and the value of the field at either end, less dependent on ziγ. This

behaviour is similar to the case of B̄′(1) = 1 (Figure 2.14) for proportional γ and

β; this boundary condition in general reduces the sensitivity of the equilibrium

field to the pumping and turbulent diffusion effects, so varying ziγ has less effect

in general.

2.12 Finding γ required to produce a given field,

given β

So far, we have calculated the equilibrium magnetic field resulting from prescribed

γ(z) and β(z). However, using the equilibrium form of the induction equation

given by (2.2), the reverse process may also be carried out; (2.2) may be rear-
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Figure 2.25: The three forms of B̄ involved in the inverse analysis. Upper: top

hat profile, middle: step profile, lower: sandwich profile.

ranged to give γ (or, alternatively, β) for a given equilibrium field, as long as β

(or γ) is specified. This means that a given B̄(z) profile could be specified, and

the γ (or β) required to produce this profile may then be determined.

The motivation for addressing this problem is that other work that incorporates

γ and β into such a system has not started from an equilibrium state that takes

their effect into account. Instead, other work (for example, Barker et al. (2012),

in which a prescribed slab of field is acted upon by a step-like γ acting from above

it) has used prescribed forms for the basic state B̄. These states, however, do not

constitute an equilibrium under the turbulent effects γ and β. We will consider

such prescribed states, and whether they may feasibly be generated by the action

of some form of γ and β. It is common for other work on magnetic buoyancy

instabilities to use a top hat field, so we will consider the form of γ required to

create one, given various functional forms of β. For the sake of comparison, we

will also consider two other functional forms of the field, and find γ required to

ensure that they represent equilibria. These are step function field, and a “sand-

wich” field, pictured in Figure 2.25.

Making no assumption about the proportionality of γ and β now, we consider the
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induction equation for equilibrium, specifically in the form given by (2.3). We

may set c = 0; in this problem, this acts as a statement of a boundary condition

by fixing the relationship between B̄ and B̄′, thus allowing γ to be found. With

this choice, we may rearrange to give the relation

d

dz
(ln B̄) =

γ

β + ζoCk
. (2.38)

This allows a given B̄ profile to be used to produce an estimate for either γ or β,

provided the other is known. Here we solve for γ, using several types of β profile.

These are:

• β given by the same step-like tanh function as we have previously considered

(Equation (2.5)), with βm = 0.1, a = 30 and zi = 0.5.

• Linear: β = βm(1− z).

• Exponential: β = βme
−z.

Each of these are applied to the “top hat”, “sandwich” and “step” profiles of B̄,

i.e.

• Top hat profile: B̄ = Bo(tanh(a(z − zo))− tanh(a(z − zi))).

• Sandwich profile: B̄ = −Bo(tanh(a(z − zo))− tanh(a(z − zi))− 2).

• Step profile: B̄ = Bo(tanh(a(z − zs)) + 1).

In these cases, the parameters are taken to have values of Bo = 0.5, a = 100,

zo = 0.25, zs = 0.5, zi = 0.75, giving the profiles for B̄ shown in Figure 2.25.

In order to calculate γ, it is necessary to find d
dz

(ln B̄), equivalent to B̄′/B̄. This

may be calculated analytically.

For the top hat and step profiles, the limit of B̄′/B̄ is, numerically, convergent

everywhere. In the case of the sandwich profile however, the quantity B̄′/B̄ cre-

ates a numerical problem in the region zo < z < zi. As both B̄ and B̄′ approach

zero within this region, the quantity B̄′/B̄ is subject to a large numerical error
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Figure 2.26: γ required to produce a step field, given various forms of β. From

top to bottom: with tanh, exponential, linear β.

and causes the solution to diverge if we define this quantity explicitly as the ratio

of B̄ and B̄′, as for the top hat and step profiles. Thus, we approximate the

quantity d
dz

(ln B̄) = B̄′/B̄ for small B̄, defined by B̄ < ε, ε = 10−12. We use the

approximation

d

dz
(ln B̄) ≈ −2a+ 4a

exp(2a(2z − zo − zi))
1 + exp(2a(2z − zo − zi))

, (2.39)

which can be found by expanding the stated form of the sandwich B̄ profile in a

region where exp(−a(z − zo)), exp(−a(z − zi))� 1, which holds true in a region

that contains the B̄ < ε region where we apply the approximation.

By applying each of the β profiles to the fields described above, with ζoCk = 10−5,

γ may be calculated for each combination of B̄ and β. The results are shown in

Figures 2.26, 2.27, and 2.28.

In general, we find that positive γ is necessary above the required position of the

field. Because γ acts downwards, and the diffusion effects of β and ζoCk have

no preferred direction, in cases where the field must be pumped upwards (i.e. a
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Figure 2.27: γ required to produce a top hat field, given various forms of β. From

top to bottom: with tanh, exponential, linear β.

Figure 2.28: γ required to produce a sandwich field, given various forms of β.

From top to bottom: with tanh, exponential, linear β.
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region of no field must be maintained below a region where field is present) we

require γ < 0, i.e. an upwards pumping effect.

Let us first consider the case where we produce a step function-like B̄, with

the required γ shown in Figure 2.26. To maintain this field as an equilibrium, we

require non-zero γ to be present in the upper part of the layer. This corresponds

to a positive, downwards advection velocity in the section of the domain where

we require the effectively constant, non-zero part of the field to exist. In this

case, the effect of β is to vary the required functional form of the γ effect in the

region where γ is present.

Now let us consider the case of the top hat field, with the resulting γ shown

in Figure 2.27. To produce a top hat profile between two points in the domain

(in this case zo = 0.25 and zi = 0.75) we still require a non-zero γ effect above

the location of the top hat. The functional form of γ in this region is modulated

by the form of β. However, once the field has been pumped down by γ into the

region within the top hat field layer, it must be maintained within that region;

given the presence of β (and the much lesser ζoCk diffusivity effect) the field could

still feasibly diffuse out of this region. Thus, the presence of a secondary region of

non-zero γ is required, which is in this case a negative velocity. This corresponds

to an upwards advection in this region, whose functional form corresponds to

that of β for each individual case. Note that this is also true in the case of the

tanh form of β shown in the top plot of Figure 2.27; though it is not evident on

the scale shown, there is a region of approximately constant γ ∼ −0.2 required

for z & 0.75, i.e. outside of the top hat region. In this case, however, a lower

magnitude of pumping is required in this position to maintain the top hat B̄

profile than for exponential or linear β.

Similarly, in the case of the sandwich field (see Figure 2.28), we also see a region

of γ < 0 just below the top boundary of the central region where the field must

be zero. This is necessary to keep the upper part of the field from diffusing back

into the gap. However, we also require there to be a step-like portion of the

field at the bottom of the layer, which requires an additional region of positive
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(downwards) γ just above this boundary.

In all of these cases, the general effect of β is to modulate the magnitude of

γ required. If we return to Equation (2.38), this is more intuitively clear; since

the molecular diffusivity is small in magnitude in comparison to β, the quantity

B̄′/B̄ is essentially proportional to γ/β. We have shown that it is generally pos-

sible to construct a pumping profile in z that will give rise to a variety of different

forms of field at equilibrium, given a prescribed form for the turbulent diffusivity

β. However, not all of the scenarios considered in this reversal of the equilibrium

problem are equally physically relevant to the region of the base of the solar con-

vection zone. In particular, those required to produce the sandwich-type field all

require regions of both positive and negative γ, a scenario that would imply sev-

eral layers in which the mean field is pumped variously upwards and downwards.

This scenario in particular is not consistent with the action of turbulence, as it

would imply not only a turbulent region in the centre of the layer surrounded by

stably stratified regions, but one with the pumping effect changing sign some-

where within it.

The γ profiles required to produce a top hat equilibrium field are more physi-

cally plausible given this picture, in that they are maximised at the same point

as the respective β profiles used to produce them. However, in these cases, we

still obtain a change of sign of γ in two cases, those of linearly and exponentially

varying γ, as well as two distinct “regions” of non-zero γ, this time at both the

top and the bottom of the layer. This would also imply a region of turbulent

motion at the bottom of the layer, which again is not the physical scenario we

aim to model. In the case of top hat field and step β, the situation is closer to

being physically realistic; we have a turbulent γ and β both present at the top

of the layer but not in the lower part. In this case, however, while β is cut off at

a point within the layer that is defined by the prescribed form, the cut-off point

of the required γ depends on where the specified top hat field is non-zero, which

results in a region where β is present but γ is not. This is not consistent with

there being a region of turbulent motion which gives rise to both effects.
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The case of the step field, which drops to zero at the same point as the β ef-

fect, is closer still to the scenario that we aim to model; namely, that of a layer

of turbulence characterised by effectively constant γ and β above a transition

region where the turbulent motion falls rapidly to zero, characterised by a lack

of γ and β effect. The step field case results in γ effects that are confined to the

upper part of the layer, coincident with the maximum value of β. In addition,

the calculated field, assuming step β, also gives a constant γ in the region where

the γ effect is non-zero, which is most representative of a region of effectively

constant turbulent motion, which had been our assumption when addressing the

equilibrium problem directly.

This implies that of the scenarios considered in this “reverse” analysis of equi-

librium, the most physically useful is the scenario of step β giving rise to step

B̄, i.e. an equilibrium field that is present and effectively constant in the region

where the turbulent effects are not present.

In this inverse problem treatment, the action of β is at a different spatial lo-

cation to γ, since in all the cases we have considered, β is maximised at the top

of the layer. This is not consistent with the physical picture of γ and β being

spatially coincident, as we assume for the majority of this work. However, as a

modelling approach in itself it is at least internally consistent. The results of this

analysis, however, while not directly relevant to the scenario we wish to consider

in the larger linear stability problem, serve to demonstrate that it is in general

possible to find a γ that gives rise to a given B̄ (such as those prescribed in other,

similar work, as discussed in Section 2.1), with some prescribed form of β.

2.13 Other Basic States of the System

The solution to Equation (2.1) gives an equilibrium state of the magnetic field,

subject to the effects of γ and β. This solution has been the primary focus of

this Chapter; however, in order to make use of B̄ as the basic state for the linear

stability problem, we must also find the corresponding basic states for the other

properties of the system, namely, velocity, pressure, temperature, and density.
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(a)

(b)

Figure 2.29: (a) Temperature, density and pressure equilibrium states for γm = 0,

and (b) difference in equilibrium states for non-zero γ = β, for F = 0.001.

We have already assumed that for the initial equilibrium, ū = 0, and we may

eliminate the pressure p̄(z) by means of the gas law (1.36). Then, in order to

find T̄ (z) and ρ̄(z) we may return to the full equations of the system and use the

assumption of magnetohydrostatic equilibrium to find the remaining basic states.

2.13.1 Temperature Equilibrium State

We consider the time-independent energy equation (Equation (1.34), with ∂T̄
∂t

= 0)

and set ū = 0. With this assumption, the temperature equilibrium state T̄ (z) is

fixed by the Ohmic heating term, such that:

∇2T̄ +
(Γ− 1)

Γ
Fζo|(∇× B̄)|2 = 0. (2.40)

74



2.13 Other Basic States of the System

(a)

(b)

Figure 2.30: (a) Temperature, density and pressure equilibrium states for γm = 0,

and (b) difference in equilibrium states for non-zero γ = β, for F = 0.00001.

With our assumptions about the form of the equilibrium states, however, this

equation takes the form of a simple second order ODE for T̄ :

d2T̄

dz2
= −(Γ− 1)

Γ
Fζo

(
dB̄

dz

)2

. (2.41)

This may be solved numerically given the form of B̄(z), and two boundary con-

ditions for T̄ . Following Barker et al. (2012), we choose boundary conditions

T̄ (0) = 1 and T̄ (1) = 1 + θ.

Note that for a linear field — which is an equilibrium field in the absence of the

turbulent γ and β effects — the temperature equilibrium state is simply quadratic

in z.
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2.13.2 Density Equilibrium State

Similarly, we find the z-dependence of the density ρ̄(z) given magnetohydrostatic

equilibrium. Under this condition, the vertical component of the momentum

equation (Equation (1.33)) gives:

−∇
(
p̄+

F

2
|B̄|2

)
+ θ(m+ 1)ρ̄ = 0. (2.42)

Assuming a perfect gas and z-dependent equilibrium states, we obtain:

T̄
dρ̄

dz
+ ρ̄

(
dT̄

dz
− θ(m+ 1)

)
= −FB̄dB̄

dz
. (2.43)

If B̄ and T̄ are known, the first order ODE (2.43) may be solved for ρ̄; however,

we require a boundary condition, for which we choose ρ̄(0) = 1. (Note that an-

other possible choice would have been to fix the total mass in the layer, rather

than the total magnetic flux. This alternative scenario may give different results,

but it is not obvious, without carrying out the full linear stability analysis, how

it would affect the stability problem. This, however, represents a possible area of

further study.)

Note that the calculation of T̄ and ρ̄ is not very sensitive to γm for the cho-

sen parameters and boundary conditions. In Figure 2.29, the basic states for T̄0,

ρ̄0 and p̄0 (as calculated from the B̄ states shown in Figure 2.10a) for γm = 0,

and then for γm > 0 the difference from these γ = β = 0 values is shown. The

equivalent results for F = 10−5 are shown in Figure 2.30; the significance of

these parameter values will be further discussed in Chapter 3. The calculation

of the temperature and density equilibrium states, however, is predicated on our

knowledge of B̄, and so as we conclude our consideration of the equilibrium states

of the system, we will summarise and offer some further discussion of the most

appropriate B̄ to use in the linear stability problem.

2.14 Summary and Conclusions

We have considered the mean field induction equation under the assumption of

equilibrium under the action of turbulent pumping and turbulent diffusion effects,
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and solved for an equilibrium field with a view to finding a viable basic state field

for linear stability analysis. We have considered various boundary conditions,

and varied the form and strength of the turbulent effects, in order to gain an un-

derstanding of how these factors shape the equilibrium field. Where possible, we

have considered analytic approximations, in order to compare with the numerical

solution to the second order linear ODE.

As an aside, we have also considered the inverse problem, and found that it

is possible to generate γ(z) that will produce a given field, under various assump-

tions for the form of β(z).

All of this, however, is motivated by the desire to better understand the pos-

sible equilibrium states for a layer of field, in order to choose a suitable basic

state for the linear analysis of stability to magnetic buoyancy. We require that

the basic state exhibit no unphysical behaviour, assuming that the layer we aim

to model is situated at the base of the solar convection zone, with the pumping

and turbulent diffusion effects acting from above. We therefore exclude cases in

which the direction of the field gradient changes sign or goes to infinity for some

value of the pumping strength.

We also reject as unphysical, cases where the pumping at the top of the layer

is able to draw in an effectively unlimited amount of field from above; numeri-

cally, this issue may be solved either by leaving a small region with no pumping

at the very top of the layer (which may also be an unphysical assumption in

itself, given the fact that pumping is due to turbulent motion in the convection

zone above) or fixing the total flux within the layer using an integral boundary

condition.

Finally, for the purposes of finding how the turbulent effects interact with mag-

netic buoyancy in the perturbed equilibrium state, we require that the field is

sensitive to the parameters of the γ and β profiles, at least to an extent. How-

ever, choosing a case in which the field is extremely sensitive to the parameters (in

the sense that it becomes qualitatively different in form due to small changes, or a
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variation in one specific point in the layer) is likely not a desirable scenario either.

In light of these considerations, it seems that the use of a constant flux boundary

condition, along with either a B̄(0) = 0 or B̄′(1) = 0 boundary condition, is the

best choice. The constant flux condition places a limit on the integral of the

field, ensuring that the pumping effect does not act to draw a large amount of

field into the layer. Additionally, in both of these cases the form of the field does

not depend on whether there is a small layer around z = 0 where there are no

turbulent effects.

This last point is of interest because, ideally, we would like to avoid having to

rely on there being a thin, non-turbulent region at the top of the layer; physically

speaking, there is no reason for a configuration resembling the top hat γ profile

to be present in the region of the base of the convection zone, as this would imply

a thin layer within the convection zone in which there is no turbulent convection,

which is less physically representative of the situation we want to consider than

having the pumping and turbulent diffusion effects extend to the top of the layer.

Thus, we may narrow the choice down to the cases of B̄(0) = 0 or B̄′(1) = 0,

each combined with a constant flux boundary condition. Of these two sets of

boundary conditions, we may then choose between setting the value of the field

at the top of the layer, or its gradient at the lower end. In terms of which of

these options should be used as a basic state in the linear stability analysis, the

former (B̄(0) = 0, constant flux) is likely to be the better option. This is because

stability to magnetic buoyancy depends on the field gradient. In the B̄(0) = 0

case where we fix the value of the field rather than its gradient, the gradient

of the field is everywhere a function of the strength of the turbulent effects, γ.

However, if we fix the gradient at the bottom of the layer (the case B̄′(1) = 0),

owing to the form of the induction equation in the region without the turbulent

effects we find a field with a constant (in this case zero) gradient in this region.

This field is not a function of the strength of the turbulent effects. Since the goal

is to look at the effect of the turbulent pumping and turbulent diffusion on the

stability of the layer, then using a case where the gradient is set by the boundary
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condition at the outset in a large section of the layer may not be the best case to

consider. Thus, for the purpose of the linear stability analysis, we shall consider

the stability of a layer with boundary conditions B̄(0) = 0 and φ(1) = 1. (Note

that an equivalent study could be carried out using B̄′(1) = 0 and φ(1) = 1.

For the sake of simplicity, however, we shall consider only one set of boundary

conditions for the basic state, i.e. B̄(0) = 0 and φ(1) = 1.)

With the resulting form of B̄(z), and the T̄ (z) and ρ̄(z) profiles that follow from

it (with the implicit p̄(z), and ū = 0) we will, in the following Chapters, examine

the linear stability of the system to magnetic buoyancy.
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Chapter 3

Linear Stability of Equilibrium

Basic States

3.1 Linear Stability Analysis

As discussed in Chapter 2, we shall consider an equilibrium magnetic field under

the effects of γ and β, subject to linear perturbations. We solve for the basic state

B̄ choosing the boundary conditions B̄(0) = 0 and φ(1) = 1 (see Section 2.7, Fig-

ure 2.10a, as well as Section 2.14 for discussion) where φ(z), the total integrated

magnetic flux, is given by (2.8). We solve the induction equation under equilib-

rium conditions for B̄(z), subject to the effects of γ(z) and β(z) given by (2.4)

and (2.5). We may then solve for the temperature and density basic states T̄ (z)

and ρ̄(z), eliminating the pressure p̄(z) by means of the gas law, as described in

Section 2.13.

With the equilibrium states B̄(z), T̄ (z), and ρ̄(z), we may perturb the system

and find its linear stability. We perturb the three components of the field and

velocity, as well as the temperature and density, according to:

B = B̄ + b̃ = (B̄ + b̃x)ex + b̃yey + b̃zez, (3.1)

u = 0 + ũex + ṽey + w̃ez, (3.2)

T = T̄ + T̃ , (3.3)

ρ = ρ̄+ ρ̃. (3.4)
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We consider perturbations of the general form:

ξ̃ = ξ̂(z)est+ikxx+ikyy. (3.5)

The perturbations are horizontally periodic, with horizontal scales in the x- and

y-directions defined by the inverse of the wavenumbers kx and ky. The vertical

dependence of the perturbations is captured by the functions ξ̂(z), which are

to be determined. The time dependence is exponential, and characterised by

growth rate s. For instability, <(s) > 0, allowing exponential growth; modes

with <(s) < 0 are stable. We aim to find the most unstable mode, which is that

with the largest positive value of <(s), as this is the mode that will come to

dominate the system at large t.

Note that for the purposes of this Chapter, we will apply γ and β independently

of the scale of perturbations, i.e. with the same magnitude for all kx and ky, as

well as to the basic states. It may be argued, due to the nature of γ and β as

mean field effects (see Section 1.4.4), that they should strictly be applied only to

the largest scales of variation in the system: this corresponds to the basic state

and potentially also the larger scales of the perturbations as defined by near-zero

kx and ky. Therefore, it may be the case that applying γ and β to perturbations

of all scales as well as to the basic states misrepresents their effect on the system.

Scale-dependent treatment of the effects of γ and β, however, will be the focus

of Chapter 4; for now, we will consider γ and β as scale-independent effects in

order to gain a broad understanding of their effect on the linear stability of the

equilibrium states of the system.

With this in mind, we recall that the system we will solve is given by the linearised

forms of Equations (1.32) – (1.36). For the purposes of our system, the real and

imaginary parts become decoupled from one another under the assumption that

the perturbations have the form (3.5), giving two equivalent systems with the

same solution. In order to avoid the additional numerical cost of essentially solv-

ing the system twice, we simply choose one of these two decoupled systems to
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solve, which is equivalent to solving with the following perturbations:

b̃x = b̂x(z) cos(kxx) sin(kyy)est, (3.6)

b̃y = b̂y(z) sin(kxx) cos(kyy)est, (3.7)

b̃z = b̂z(z) sin(kxx) sin(kyy)est, (3.8)

ũ = û(z) sin(kxx) sin(kyy)est, (3.9)

ṽ = v̂(z) cos(kxx) cos(kyy)est, (3.10)

w̃ = ŵ(z) cos(kxx) sin(kyy)est, (3.11)

T̃ = T̂ (z) cos(kxx) sin(kyy)est, (3.12)

ρ̃ = ρ̂(z) cos(kxx) sin(kyy)est. (3.13)

Under these assumptions, the stability of a given mode depends on its horizontal

scale. Thus, for a given set of parameters we vary the horizontal wavenumbers

to find the stability properties as a function of kx and ky. The global maximum

of Re(s) in kx-ky space sets the scale of the most unstable mode of the system,

or the typical horizontal scale of the instability.

3.1.1 Linearised System

With the assumption that the perturbations are small, we linearise in the per-

turbed quantities, giving eight linear PDEs:

∂tb̃x = ((ζoCk + β)(∂2
x + ∂2

y + ∂2
z ) + β′∂z − γ′ − γ∂z)b̃x − β′∂xb̃z − B̄∂yṽ

− (B̄′ + B̄∂z)w̃, (3.14)

∂tb̃y = ((ζoCk + β)(∂2
x + ∂2

y + ∂2
z ) + β′∂z − γ′ − γ∂z)b̃y − β′∂y b̃z + B̄∂xṽ, (3.15)

∂tb̃z = ((ζoCk + β)(∂2
x + ∂2

y + ∂2
z )− γ∂z)b̃z + B̄∂xw̃, (3.16)

ρ̄∂tũ = FB̄′b̃z + σCk

((
4

3
∂2
x + ∂2

y + ∂2
z

)
ũ+

1

3
∂x∂yṽ +

1

3
∂x∂zw̃

)
− ρ̄∂xT̃ − T̄ ∂xρ̃, (3.17)

ρ̄∂tṽ = −FB̄∂y b̃x + FB̄∂xb̃y + σCk

(
1

3
∂x∂yũ+

(
∂2
x +

4

3
∂2
y + ∂2

z

)
ṽ +

1

3
∂y∂zw̃

)
− ρ̄∂yT̃ − T̄ ∂yρ̃, (3.18)
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ρ̄∂tw̃ = −F (B̄′ + B̄∂z)b̃x + FB̄∂xb̃z + σCk

(
1

3
∂x∂zũ+

1

3
∂y∂zṽ

+

(
∂2
x + ∂2

y +
4

3
∂2
z

)
w̃

)
− (ρ̄∂z + ρ̄′)T̃ − (T̄ ′ + T̄ ∂z − θ(m+ 1))ρ̃, (3.19)

∂tT̃ =
2B̄′Ck(γ − 1)Fζo

ρ̄
(∂z b̃x − ∂xb̃z)− (γ − 1)T̄ (∂xũ+ ∂yṽ + ∂zw̃)− T̄ ′w̃

+
γCk
ρ̄

(∂2
x + ∂2

y + ∂2
z )T̃ , (3.20)

∂tρ̃ = −ρ̄∂xũ− ρ̄∂yṽ − (ρ̄′ + ρ̄∂z)w̃. (3.21)

Owing to the form of the perturbations, we may reduce the x-, y-, and t-

derivatives simply to algebraic terms, leaving us with a system of ODEs in terms

of the z-dependent functions ξ̂(z). In this system, the growth rate s acts as an

eigenvalue, and in fact the system takes the form

Lξ̂ = sξ̂, (3.22)

where L is a linear differential operator, s is the growth rate, and ξ̂ is a solution

vector of the combined ξ̂(z) of the perturbed quantities.

We may solve the system numerically, subject to appropriate boundary condi-

tions for each ξ̂(z). We choose the boundary conditions:

b̂x, b̂y,
db̂z
dz

= 0, (3.23)

dû

dz
,
dv̂

dz
, ŵ = 0, (3.24)

T̂ = 0, (3.25)

at z = 0, 1.

Note that there is some freedom in the choice of boundary conditions, so long

as ∇ · b̂ = 0 is satisfied at each boundary. Throughout this work, however, we

have chosen those given by (3.23). b̂x(0) = 0 is consistent with the basic state

boundary condition B̄(0) = B̄x(0) = 0, and also fixes the boundary conditions for

b̂y and b̂z given ∇ · b̂ = 0 at z = 0 (and we take the same conditions at z = 1 for

the sake of convenience). For the velocity, we use stress-free, impermeable bound-

ary conditions. The temperature perturbation is fixed at zero at the boundaries.
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Note that the form of the system does not require a boundary condition to be

placed on ρ̂.

We construct the composite linear operator matrix L using Chebyshev differ-

entiation matrices, following Trefethen (2000), apply the boundary conditions,

and solve the eigenvalue problem on a grid of N = 100 Chebyshev nodes, using

Matlab’s inbuilt eigenvalue solver. This uses either a Cholesky factorisation or

a QZ algorithm method to solve generalised eigenvalue problems, depending on

the properties of the matrices involved. Of the modes we obtain for each eigen-

value solution, we select the mode with the largest <(s), i.e. the most unstable

mode for a given set of parameters and horizontal spatial scale.

In the remainder of this chapter, we will first consider the case of γ = β given

by (2.4) and (2.5), and, for the sake of convenience, we will characterise the

amplitude of both effects as γm.

3.2 Parameters

Throughout this analysis, we will keep the values of the dimensionless parameters

of the system (defined by (1.37) - (1.40), and those of the γ and β profiles) fixed

apart from γm, for various values of the dimensionless field strength F . Our

chosen parameter values are shown in Table 3.1.

3.3 Linear stability for γ = β = 0

Let us first, for the sake of comparison, discuss the case where γ and β are not

present. In the standard, non-turbulent case where both effects are zero, we have

the equilibrium state as an analytic function, a linear profile given by B̄ = 2z

for the boundary conditions B̄(0) = 0, φ(1) = 1. In general, for this basic

state the most unstable mode is 3D, with a growth rate and horizontal scale that

depend on the value of the dimensionless field strength F , as shown in Figure 3.1.
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Parameter Value

σ 0.005

ζo 0.01

Ck 0.01

F Variable

θ 2

m 1.505

Γ 5/3

a 30

zi 0.5

γm Variable

Table 3.1: Parameter values used in the linear stability analysis, following the

values used by Barker et al. (2012).

The growth rate of the most unstable mode increases with increasing F , in the

range we have considered (see Figure 3.1c). However, the mode of maximum

growth rate also changes in horizontal scale, defined by wavenumbers kx (Fig-

ure 3.1a) and ky (Figure 3.1b), with increasing field strength.

For the lowest F value that we consider here, F = 10−7, we see that the mode of

“maximum growth rate” in the system has <(s) = 0 and occurs at kx = ky = 0,

which is a reflection of the fact that at such low field strength, all scales of the

system are stable. Increasing F from this value, however, the first onset of the

instability is undular, with ky = 0. Further increasing the field strength, the least

stable mode becomes 3D (kx, ky 6= 0). Even larger values of F (F ≥ 1, of the

cases studied here) produce an interchange instability, with kx = 0.

We may explain this change in the form of the instability by considering the

physical requirements for destabilising interchange and undular modes, as well

as their structure. Undular modes require bending of the field lines to be desta-

bilised, which requires work to be done against magnetic tension. Interchange

modes do not require this, and therefore it may be expected that the interchange
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3.3 Linear stability for γ = β = 0

(a) (b) (c)

Figure 3.1: F -dependence of the scale and growth rate of the most unstable mode,

when γ = β = 0. (a), (b): horizontal wavenumbers kx and ky, (c): growth rate

Re(s) of the most unstable mode, as a function of F .

Figure 3.2: Normalised b̂x for the most unstable mode, with γ = β = 0.
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instability should come to dominate over the undular and 3D instabilities when

the field strength F , and therefore the magnetic tension effect, is greater. In

other words, the increased field strength is able to suppress the undular instabil-

ity, and then eventually also the 3D instability. (Note that Hughes & Cattaneo

(1987) showed that it is also possible to find parameter regimes where 3D/undular

modes are unstable but interchange modes are stable, though our choice of mag-

netic field basic state does not fall within such regimes and therefore does not give

rise to the destabilisation of undular modes in preference to interchange. We will,

however, discuss a case for which undular modes are destabilised in Section 4.4.2.)

In addition, the form of the perturbation eigenfunctions of the most unstable

mode is dependent on the value of F . We consider the b̂x eigenfunction, and plot

its variation in the layer in Figure 3.2. For F = 1, the b̂x eigenfunction peaks in

the upper part of the layer, at approximately z = 0.25. For lower F , this peak

becomes narrower, and slightly higher in the layer for F = 0.1. If F is further

decreased, however, the peak grows wider again and moves towards the bottom of

the layer, a change that corresponds to the change from an interchange maximum

when F = 1 to a 3D mode for lower F . Furthermore, we also see a change in the

form of the b̂x eigenfunction for the low-F case where the maximum is undular;

in this regime, the b̂x perturbation reverses and has a local minimum in the lower

part of the layer.

3.4 γ = β 6= 0

Having studied the stability of the system with no γ and β effects, we now consider

the case of γ = β given by (2.4) and (2.5), acting on the basic state and the

perturbations as described in Chapter 1. As the value of γm is increased (and

thus γ and β are applied), we see a change in the horizontal scale of the most

unstable mode, as well as a change from 3D to interchange (Figure 3.1). Once

an interchange mode is reached, further increasing γm causes the most unstable

mode (i.e. the maximum of <(s) as a function of kx and ky) to move to larger

ky, or to smaller scale in y. We demonstrate this by considering an example

case at the parameter value F = 10−3, which is representative of the higher F
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3.4 γ = β 6= 0

regime within the range we have considered, and then we will consider the case

of F = 10−5 as a comparison.

3.4.1 F = 10−3

The increase in γ and β increases the growth rate of all the unstable modes of the

system, and changes the most unstable mode from 3D to interchange, as shown in

Figure 3.3. It also affects the form of the eigenfunctions, moving the location of

the maximum of b̂x towards the bottom of the layer, out of the turbulent region.

Note that in the contour plots in Figure 3.3, as well as all subsequent plots of this

type, the position of the most unstable mode is marked with a cross, ×. Note

also that although formally, we term <(s) as the “growth rate”, the modes solved

for here have purely real s, barring in some cases a much smaller imaginary com-

ponent that is the result of numerical error in the eigenvalue solver. This is true

for all of the results shown in this Chapter and the next. Physically speaking,

this means that the instability has no oscillatory component.

We can explain these changes with γm by considering the effect of γ and β on

the equilibrium basic state. In the case of larger γm, we see an increased field

gradient at the bottom of the layer at equilibrium. In our linear analysis, the

perturbations are effectively concentrated in, or “confined” to, this high field gra-

dient region when γm 6= 0. This suggests that this increased gradient of the basic

state is responsible for the change in stability as we increase γm. In addition, in-

stability to magnetic buoyancy is known analytically to depend on field gradient;

see stability criteria (1.4) – (1.8).

We may also consider the perturbations; we will look at b̂x, as its behaviour

is indicative of the general effect on the perturbations of adding γ and β (see Fig-

ure 3.5). When no γ and β are present, we obtain a b̂x perturbation that peaks in

the upper part of the layer, however the variation is relatively smooth. Contrast,

however, the case of non-zero γ and β; in this case, the basic state is approxi-

mated by a constant (close to zero) value in the region where γ and β are applied,

then an effectively linear profile below the point at which they are cut off. This
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Figure 3.3: Growth rate <(s) as a function of kx and ky for various values of γm,

for F = 10−3, with γ = β applied to the basic states and equally to perturbations

of all scales.
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3.4 γ = β 6= 0

Figure 3.4: Basic states for ζo = 0.01, Ck = 0.01, with γ = β.

Figure 3.5: Normalised b̂x perturbations for the mode of maximum growth rate,

for F = 10−3, γ = β (contour plots shown in Figure 3.3).
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suggests that in the region without γ and β, we may see a b̂x profile analogous

to that across the full layer when γ = β = 0, and in the region where they are

present we may expect b̂x to be small and relatively constant. In other words, for

γm 6= 0 we expect that the perturbation be “concentrated” in the region of larger

B̄′, and this is in fact the result that we do see, especially as γm increases. As the

γ and β effects are increased in magnitude, we see the perturbations increasingly

confined to the area below the level at which γ and β are applied, where there is

higher basic state field gradient, and only the molecular diffusion is present.

In addition, from these results, we can see that the change in stability and the

change in the form of the eigenfunctions is much more significant for lower values

of γm. This is especially the case for the larger F cases studied.

Let us consider again the results shown in Figures 3.3 and 3.5. In both the

growth rate contour plots and the vertical variation of b̂x, there is a marked dif-

ference between the contour plots in kx and ky, the form of the perturbations,

and the growth rate of the most unstable mode, when moving between no γ and

β effects (γm = 0) and their lowest value considered, i.e. γm = 10−3. This can be

ascribed in large part to the change in the basic state with the application of a

low level of γ and β.

As discussed in Chapter 2, the greatest effect on the equilibrium state due to

the addition of γ = β occurs for low γm. This is because ordinarily, we choose

to take the molecular diffusivity ζoCk = 10−4 (see Table 3.1) as much less than

the maximum value of β, given here by γm. However, there is a regime for which

γm ∼ ζoCk, which occurs here between our two sampled values of γm = 0 and

γm = 10−3. It is in this regime that the basic state changes fastest with γm

(see Figure 3.4, as well as discussion in Section 2.7.2) which is why in this case

we see the largest change in stability with application of low levels of γ and β.

Furthermore, it suggests that the effect of γ and β on the form of the basic state

is critical to understanding the instability, which we will discuss in greater detail

in Section 4.1. As an example, compare the basic states (Figure 3.4) used, and

note that the difference in the basic state decreases as γm is increased. Compare
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3.4 γ = β 6= 0

the perturbed b̂x shown in Figure 3.5, which also become more similar to each

other for larger γm.

The results suggest that the regime of most variation in the instability with γm

in the F = 10−3 regime is that of low γ and β, which we consider as γm . ζoCk.

We thus consider this regime in greater detail, with the contour plots of growth

rate of the instability as a function of horizontal scale shown in Figure 3.6, with

the corresponding basic states and b̂x perturbations shown in Figures 3.7 and 3.8.

From this we can see that it is for γm ∼ ζoCk that the previously discussed

change in the form of the instability — from 3D to interchange — occurs. The

change in the form of the perturbations b̂x also reflects this, with a more gradual

transition in the form and position of the peak of the perturbed field, though

it is also interesting to note that the greatest “transition” in the shape of the

perturbations appears to be between the values γm = 10−5 and 10−4, rather than

between γm = 5 × 10−4 and 10−3, which is where the switch to an interchange

mode occurs for this parameter set. The key point of interest here, however, is

for F = 10−3 this transition in the form of instability occurs for low γm; this,

however, is not true for lower F , as we will see in the next Section.

3.4.2 F = 10−5

In contrast to the case of F = 10−3, we now consider the case of low F , for which

we will take F = 10−5 as an example. Note that the basic states do not depend

on the value of F , and so the perturbations are to the same basic states as we

considered for F = 10−3, pictured in Figure 3.4. Note also that, as we saw in the

γ = β = 0 case considered in Section 3.3, for this low F regime the b̂x pertur-

bation takes a slightly different form (see Figure 3.10), changing sign within the

layer.

We find, however, that adding γ and β results in b̂x similar to those for the

higher F regime, peaking in the lower part of the layer for which the basic state

field gradient is large and not showing the same reversal in the perturbed b̂x.
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Figure 3.6: Growth rate <(s) as a function of kx and ky for various values of γm,

for F = 10−3, with γ = β applied to the basic states and equally to perturbations

of all scales, and γm ≤ 10−3.
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Figure 3.7: Basic states for ζo = 0.01, Ck = 0.01, with γ = β and γm ≤ 10−3.

Figure 3.8: Normalised b̂x perturbations for the mode of maximum growth rate,

for F = 10−3, γ = β, with γm ≤ 10−3 (contour plots shown in Figure 3.6).

95



3. LINEAR STABILITY OF EQUILIBRIUM BASIC STATES

−0.016 −0.016
−0.014 −0.014
−0.012 −0.012

−0.01 −0.01
−0.008 −0.008

−0.006 −0.006

−0.004 −0.004

−0.002
−0.002

0

k
x

k y

γ
m

=0

0 0.5 1 1.5 2
0

5

10

15

20

25

30

35

40 −0.016 −0.016
−0.014 −0.014
−0.012 −0.012

−0.01 −0.01
−0.008 −0.008
−0.006 −0.006

−0.004
−0.004

−0.002

−0.002

00

k
x

k y

γ
m

=0.001

0 0.5 1 1.5 2
0

5

10

15

20

25

30

35

40

−0.016 −0.016
−0.014 −0.014
−0.012 −0.012

−0.01 −0.01
−0.008 −0.008
−0.006

−0.006
−0.004

−0.004
−0.002

−0.002

0 00

k
x

k y

γ
m

=0.01

0 0.5 1 1.5 2
0

5

10

15

20

25

30

35

40 −0.016 −0.016
−0.014 −0.014
−0.012 −0.012

−0.01 −0.01
−0.008 −0.008
−0.006

−0.006
−0.004

−0.004
−0.002

−0.002

0
0

0

k
x

k y

γ
m

=0.05

0 0.5 1 1.5 2
0

5

10

15

20

25

30

35

40

−0.016 −0.016
−0.014 −0.014
−0.012 −0.012

−0.01 −0.01
−0.008 −0.008
−0.006

−0.006
−0.004

−0.004
−0.002

−0.002

0
0

0

k
x

k y

γ
m

=0.1

0 0.5 1 1.5 2
0

5

10

15

20

25

30

35

40 −0.016 −0.016
−0.014 −0.014
−0.012 −0.012

−0.01 −0.01
−0.008 −0.008
−0.006

−0.006
−0.004

−0.004
−0.002

−0.002

0

0
0

k
x

k y

γ
m

=1

0 0.5 1 1.5 2
0

5

10

15

20

25

30

35

40

Figure 3.9: Growth rate <(s) as a function of kx and ky with various values of γm,

for F = 10−5, with γ = β applied to the basic states and equally to perturbations

of all scales.
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Figure 3.10: Normalised b̂x perturbations for the mode of maximum growth rate,

for F = 10−5, γ = β.

Similarly to the case of F = 10−3, we see an increase in growth rate of the

most unstable mode with increasing γm, as well as overall lower growth rates

than for higher F ; see Figure 3.13. However, in the contour plots in Figure 3.9,

we no longer see the change in the most unstable mode from 3D to interchange;

instead we see the position of the most unstable mode increasing slightly in kx

and ky in this regime, with the mode in question remaining 3D.

In general, for this case of F = 10−5, we see a lower dependence on γm in the form

and growth rate of the instability. This may seem, initially, counter-intuitive, as

the parameter F does not multiply the γ or β terms in the induction equa-

tion (see Equations (3.14) – (3.16)). However, the field strength F multiplies the

basic state magnetic field and its gradient in the momentum and energy equa-

tions, (3.17) – (3.20). Given, as we have seen in Section 3.4.1, the fact that the

stability depends strongly on the basic state magnetic field and specifically its

gradient, the results for lower F are suggestive of two things; first, that the effect

of γ and β on the system is primarily via their effect on the basic state, rather

than via their explicit appearance in the perturbation equations, and second,
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that the effect of the basic state may be the most important factor affecting the

stability of the system.

In the next Section, in order to further understand this we will look more broadly

at how the field strength F affects the interaction of γ and β with the instability,

using a range of different F values.

3.5 Effect of varying F

We will consider the variation in the horizontal scale and growth rate of the most

unstable mode as a function of γm, as it varies with the field strength F . First,

we will seek to understand the effect on the horizontal scale of the instability,

as defined by the wavenumbers kx and ky. For each field strength considered,

in Figure 3.11, we plot the kx and ky value of the most unstable mode — in the

same kx-ky space considered in the contour plots 3.3 and 3.9 — for increasing

γm. From this, we are able to discern a “path” in kx-ky space taken by the most

unstable mode as a result of the addition of more γ and β. Comparing the plots

in Figure 3.11 reveals the effect of F .

The “general” path of the most unstable mode with γm begins at kx = ky = 0,

continues to larger kx and ky, then begins to decrease in kx again, moving to-

wards interchange modes at kx = 0, with ky still increasing. Once an interchange

mode is reached, the only change seen is an increase in ky, as in general the 3D

instability is not present for γm above some maximum value, which depends on

F . The overall effect of F is to determine, effectively, where on this general curve

the most unstable mode “begins” when γm = 0, and where it ends up once we

reach the maximum value of γm under consideration.

Returning, for example, to the results of Sections 3.4.1 and 3.4.2, the instability

with F = 10−3 is in the region of the curve where the most unstable mode is

3D with no γ or β present, but has made the transition to interchange by the
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Figure 3.11: Horizontal scale of the most unstable mode for various values of F ,

for comparison with equivalent contour plots shown in Figures 3.3 for F = 10−3

and 3.9 for F = 10−5.
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(a) (b)

Figure 3.12: (a) kx and (b) ky of the most unstable mode as a function of γm,

for various values F . Note that γm = 0 values are plotted with circles on the

vertical axis. Note also that in (a), the value of kx is zero for all γm in the cases

of F = 10−1, 10−2, 10−3, as in these cases the most unstable mode is interchange.

time γm = 0.001 is reached (Figure 3.3 and 3.11, middle left). In the case of

F = 10−5, however, (Figure 3.9 and 3.11, bottom left) we see the most unstable

mode simply has an increase in kx and ky, suggesting that in this regime it has

not yet reached the maximum value of kx that we have discussed. This implies

that if we further increased the value of γm in the case of F = 10−5, we would

at some point see a further increase in kx and then a decrease, culminating in an

interchange instability for some large value of γm. Note, however, for F . 10−6

the instability is suppressed to the extent that all scales are effectively stable (i.e.

their growth rate <(s) ∼ 0, subject to a small numerical error) thus we do not

see this variation. As a summary, we plot the kx and ky values of these most

unstable modes in Figure 3.12.

Note also that in the high field strength case of F = 10−1, we see a slight de-

viation from the trend described above for the case of very low γm; in the case

of γm . 10−4 and F = 10−1 the kx and ky variation does not follow the same

progression with γm towards an interchange mode. This may be the result of
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Figure 3.13: Growth rate of the most unstable mode as a function of γm. Note

that γm = 0 values are plotted with circles on the vertical axis.

another effect at high field strength, which may warrant further investigation.

We may also plot the growth rate of these most unstable modes of the insta-

bility for fixed F , as a function of γm (Figure 3.13). This allows us to see that

the functional form of the maximum growth rate <(s) is broadly similar for each

value of F , though the size of the growth rates is larger for higher F values. This

is true despite the variation in the horizontal scale of the instability that we have

just discussed.

3.6 Separating the effects of γ and β

We will now explore the separate effects of γ and β, in contrast to the previously

considered cases for which we always assumed that γ = β. We will first consider

the extremes, of either only γ or only β. The former of these cases, i.e. that of

γ but no β, may be considered unphysical as we expect turbulent pumping to
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Figure 3.14: Growth rates of the most unstable mode for the case of β = qγ, with

the additional case of γ = 0, with fixed F = 10−3.

necessarily give rise to a turbulent diffusion; however, it is important to consider

the ratio between the two, and it is informative to be able to separate the two

effects.

We consider γ and β given by (2.4) and (2.5); however, we no longer assume

that βm = γm. Instead we will take βm = qγm, for some constant q, and therefore

β(z) = qγ(z). We will consider q = 0 (equivalent to βm = 0, γm 6= 0), q = 0.1,

q = 1 (i.e. the previously considered βm = γm case, as a comparison), q = 10, and

a case where βm = 0, γm 6= 0, effectively corresponding to q =∞. In Figures 3.14

and 3.15 we plot the growth rates and horizontal wavenumbers of the most un-

stable mode for these cases, for the sake of comparison between them, before

discussing each q 6= 1 case in more detail. Note that throughout the remainder

of this Chapter we will consider the higher F regime as detailed in the previous

Sections, taking a fixed value of F = 10−3, so the results may be compared with

those in Section 3.4.1.
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(a) (b)

Figure 3.15: (a) kx and (b) ky for the most unstable mode in the case β = qγ,

with the additional case of γ = 0, for F = 10−3.

3.6.1 β = 0

We consider the case where q = 0, i.e. when β = 0 but γ is still given by (2.4). In

Figure 3.16 we show the contours in kx-ky space, as well as the basic states and

the b̂x perturbations (Figure 3.17) of the most unstable mode in each case. (For

growth rate, kx, and ky of the most unstable modes, see Figures 3.14 and 3.15.)

The basic state is given by a “step-like” field, with γ pumping the flux down into

the non-turbulent lower half of the layer where the field is effectively constant at

equilibrium, as there is no turbulent diffusion. Due to the constant flux boundary

condition, the maximum field at the base of the layer is not significantly higher

for larger γm; however, the gradient at the cutoff point is much greater.

A high enough gradient at this interface effectively introduces a discontinuity

in the basic state magnetic field, when the transition region is on the scale of

the numerical grid, and it is for this reason that for γm = 1 a numerically con-

verged solution to the perturbation equations can no longer be found. We still

include the basic state for this case in Figure 3.17a in order to demonstrate this

behaviour; note, however, that we do not obtain a solution for γm > 0.1 in this

case. Indeed, we can see the form of b̂x becoming increasingly sharply peaked
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Figure 3.16: Growth rate <(s) as a function of kx and ky at various values of γm

with β = 0, for F = 10−3.
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(a) (b)

Figure 3.17: (a) Equilibrium basic states and (b) normalised b̂x perturbations for

the most unstable mode in the cases shown in Figure 3.16, for βm = 0.

at the point where the field has high gradient. We shall consider a less extreme

(and more numerically tractable) case that also demonstrates something of this

behaviour in Section 3.6.4.

For lower γm, however, the solution is more easily resolved and we can see that,

in terms of the growth rate and the horizontal scale of the instability at least,

the behaviour of the instability under increasing levels of γm is not that different

from the case in which we have both γ and β. We still see the change from 3D to

interchange as γm increases (contour plots shown in Figure 3.16), and the growth

rate (Figure 3.14) is somewhat higher, but has a similar functional form. It is

mostly in the form of the resulting eigenfunctions that the difference from the

case of γ = β is noticeable.

3.6.2 γ = 0

We now consider the case where we have a β effect but no γ effect, equivalent

to q = ∞ in the notation described in Section 3.6. We will increase βm in the

same way as we have previously treated γm, while this time keeping γm fixed

at zero. In this situation, we obtain a basic state (Figure 3.19a) which is qual-
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Figure 3.18: Growth rate <(s) as a function of kx and ky for various values of βm

with γ = 0, for F = 10−3.
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(a) (b)

Figure 3.19: (a) Equilibrium basic states and (b) normalised b̂x perturbations for

the most unstable mode in the cases shown in Figure 3.18, for γ = 0.

itatively similar to the case of equal γ and β, with most of the flux distributed

linearly in the lower part of the layer, and with the gradient at the base of the

layer increasing as βm is increased. Also, following the case of γ = β, we see

the change from 3D to interchange as the most unstable mode occurring between

βm = 0 and βm = 0.001 (Figure 3.18). Both the contour plots and the form

of the perturbations (Figure 3.19b) are similar to those in the case of γ = β.

Likewise, the growth rate and horizontal scale of the instability (see Figures 3.14

and 3.15) are similar in this case. This seems to imply that β is the dominant

effect in determining the basic state and also its stability in this parameter regime.

This importance of β is not immediately obvious from the form of the equa-

tion for the basic state given by (2.2), however, the role of β is more evident

when we consider what happens when it is absent. Consider the basic states for

γ = 0 shown in Figure 3.19a compared to those with β = 0 shown in Figure 3.17a,

for example. In the case where γ = 0, as discussed in Section 2.10.1, when β ∼ 0

and γ acts alone apart from a small constant molecular diffusivity, we find that

the basic state field is effectively constant where γ is constant, being proportional

to 1/γ. Furthermore, with boundary condition B̄(0) = 0, the constant value is

fixed at effectively zero at the top of the layer, a dependence borne out by the
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basic states shown in Figure 3.17a. However, in the case of non-zero β — with

little dependence on the value of γm — the magnetic field can have a non-zero

gradient and indeed a non-zero value at the top of the layer. This situation,

shown in Figure 3.19a as well as being the case for the γ = β basic states studied

previously, is less sensitive to the value of γ, allowing γ = 0 states to have a

similar stability to the equivalent cases with non-zero γ.

Having considered the two extreme cases of only γ and only β, we will now

discuss some “intermediate” cases and vary the ratio between the two effects. We

will still consider β = qγ, with proportionality constant q, for q = 10 and q = 0.1.

3.6.3 β > γ

The case where β = 10γ is similar to several of those that we have already dis-

cussed, in the sense that we see a linear profile in the lower half of the layer,

with increasing gradient, where molecular diffusion is the dominant effect. In the

upper half of the layer, β is the dominant effect. However, the amount of flux

here is very small, especially for β much greater than the molecular diffusion. The

contour plots for various values of γm (with βm = qγ, q = 10) are shown in Fig-

ure 3.20, with the corresponding perturbation profiles b̂x plotted in Figure 3.21b.

We also plot the basic states in Figure 3.21a. These basic states are not greatly

different, either qualitatively or quantitatively, from the case where the two ef-

fects act equally (Figure 3.4), other than the field gradient being slightly higher

for lower values of γm when β(z) = 10γ. Thus, we do not expect the instability

to be very strongly affected, and if we consider the contour plots in kx-ky space,

shown in Figure 3.20, we see that this is indeed the case. In fact, in terms of the

growth rate (Figure 3.14), both cases are also similar to the case of γ = 0.

We will now compare the case of β < γ, using the example case of β = 0.1γ.

3.6.4 β < γ

This case provides a clearer insight into the effect of field gradients on the insta-

bility. For the basic state (Figure 3.22a) we see that the flux within the region
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Figure 3.20: Growth rate <(s) as a function of kx and ky for various values of γm

with β = 10γ, for F = 10−3.
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(a) (b)

Figure 3.21: (a) Equilibrium basic states and (b) normalised b̂x perturbations for

the most unstable mode in the cases shown in Figure 3.20, for βm = 10γm.

(a) (b)

Figure 3.22: (a) Equilibrium basic states and (b) normalised b̂x perturbations for

the most unstable mode in the cases shown in Figure 3.23, for βm = 0.1γm.
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Figure 3.23: Growth rate <(s) as a function of kx and ky for various values of γm

with β = 0.1γ, for F = 10−3.
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where γ and β are present is distributed in a profile reminiscent of the exponen-

tial variation one might expect from analytic considerations in this region (see

the discussion on basic states, Chapter 2), and of comparable size to the approx-

imately linear distribution in the lower part of the layer.

This gives rise to a basic state with a high gradient once more in the central

region over which γ and β go to zero; see Figure 3.22a. Also, note that in the

case of γm = 0.001 and β = 0.1γ, β is comparable in size to the value of the

molecular diffusion, ζoCk = 10−4.

With this in mind, we consider the stability. Unlike in the other cases, we do not

see the immediate switch from a 3D mode to an interchange mode as γ and β

are increased. Rather, the most unstable mode moves towards kx = 0, and then

back to larger kx again, before becoming an interchange mode for γm = 1. This

last is the result of the fact that for γm = 1, we have β of order 0.1 which is now

dominant over the molecular diffusion, and so the basic state field looks similar to

the cases discussed previously, with minimal curvature of the field in the region

where γ and β are present.

We may also consider the form of the perturbation eigenfunctions b̂x, shown

in Figure 3.22b. The perturbations show a distinct peak concentrated around

the point in the layer at which the gradient of the basic state is maximised. In

regions of effectively constant B̄′ (for the clearest examples see the linear profile

for γ = β = 0, as well as the close-to-linear lower portion of the basic state for

γm = 1), we see a fairly smooth variation in b̂x. In Figure 3.24, we plot the gradi-

ent of the basic state B̄ as a function of z; note the correspondence in the maxima

of these profiles with the location of the perturbation maxima in Figure 3.22b, for

which the case of γm = 0.01 (and, correspondingly, βm = 0.1) is a good example.

Such a correspondence gives further evidence that the gradient of the basic state

is the primary determining factor in the stability and form of the perturbations

to the system.

However, it is not necessarily clear why the form of the instability is so different
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Figure 3.24: Gradients of the basic states for β = 0.1γ.

in the case of q = 0.1; the basic states and b̂x eigenfunctions for βm = 0.1γm are

at least qualitatively similar to those for β = 0 (Figure 3.17), albeit smoother in

the case of βm = 0.1γm. This suggests that the change from 3D to interchange

modes that we observe can be driven — or prevented — by small changes in the

gradient around the boundary between the two regions, with a dependence that

is not necessarily clear from this analysis alone. Finding a full explanation for

this would be a matter for further study.

3.7 Summary

In this Chapter, we have considered the linear stability of an equilibrium basic

state with boundary conditions B̄(0) = 0 and φ(1) = 1, under the turbulent

pumping and turbulent diffusion effects characteristic of mean field turbulence

in the upper part of a horizontal layer. Broadly, we find that the addition of

increased levels of turbulence (given by the “amplitude”, γm, of the functional

forms of γ and β) has the effect of changing the most unstable mode of the system

from a 3D mode to a 2D, kx = 0, interchange mode, as well as increasing the

growth rate of the instability overall. This is consistent with the idea that the
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stability of the layer is heavily dependent on field gradient, since with increasing

γm, the gradient of the equilibrium state at the base of the layer is larger. We

have considered how this transition from 3D to 2D instability is affected by the

field strength F , as well as the effect of varying the ratio between the strength

of γ and β. This has raised questions about to what extent the instability is

driven by the action of γ and β on the basic states versus on the perturbations

themselves.

We may, however, ask how much of the behaviour we see is due to the effect

of γ and β on the perturbations directly, and how much is by way of the use of

an equilibrium basic state that depends on γ and β. For that matter, we may

also question the assumption that γ and β should be applied equally to all scales

of variation in the system; after all, by construction, they are effects that appear

in the induction equation for the mean field only. Thus, in the next Chapter,

we consider the scale dependence of the effects of γ and β on the instability,

and compare the effects of γ and β via the basic state versus on the perturbed

quantities directly.
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Chapter 4

Scale Dependence of the

Instability

4.1 Effect of γ and β on the basic state versus

the perturbations

As we have discussed in Section 1.4.4, the turbulent pumping and turbulent dif-

fusion effects are derived by making a mean field approximation, and appear in

the equation for the large-scale mean field. This means that, physically speaking,

they are expected to act on the largest scales of variation of the field only.

In Chapter 3, we made the approximation that the γ and β effects apply at

all scales, that is, they act on both the basic states of the system and all scales

of the perturbations. This assumption was made as a first approximation, and

with the goal of coming to a general understanding of the effects of γ and β on

the instability. However, the implicit assumption behind applying γ and β in this

way is that all scales of the instability are larger than the scale of the charac-

teristic size of the convection cells in the turbulently convecting region. There is

no reason to suppose that this is true, and it is in fact likely not to be the case.

Therefore, in this Chapter, we shall consider ways in which we may differentiate

between small and large scales of variation in our application of γ and β in the

linear stability problem.
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4. SCALE DEPENDENCE OF THE INSTABILITY

We may, for instance, think of the basic state as corresponding to the mean

field, or the largest scale of variation in the system, and the perturbations to the

smaller scales. With this assumption, we may model the mean field nature of

the γ and β effects by applying them only to the basic state, solving the system

of perturbation equations without explicit dependence on γ and β. However,

the mean field approximation also contains the assumption that there is a clear

separation of scales between the large-scale mean field and the small-scale fluctu-

ations. In our analysis, though, there is less of a division; the perturbations are

spread in scale over a large range. This represents an additional departure from

the mean field picture inherent in the methodology of Chapter 3. However, since

there is not necessarily a large difference between the length scales of the basic

state and the largest perturbation scales, we may also consider applying the γ

and β effects to the larger scales of the perturbations — effectively considering

them as part of the large-scale “mean field” — on a basis that depends on the

value of kx and ky.

Therefore, we will also consider a case in which γ and β are applied to the

basic states and also to the larger scale perturbations. This may be considered

an “intermediate” approach, between applying γ and β equally to all scales (the

case we have considered previously) and the other extreme, which is having only

the basic states subject to the γ and β effects. Both of these, however, may be

considered refinements to the physical accuracy of the approach we have taken

in Chapter 3.

In order to compare the effect of γ and β with regards to the different scale

of the problem, we will consider the cases:

1. γ and β act only on the basic state.

2. γ and β act on perturbations on a scale dependent basis, with their effect

greatest in magnitude for kx = ky = 0.

3. γ and β act only on the perturbations: an artificial, physically unrealistic

comparison case.
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4.2 Applying γ and β only to the basic state

This will allow us to understand the relative effects of γ and β on the perturbations

directly, versus implicitly via the basic state, separating these two effects on the

instability that were not necessarily differentiated in the previous analysis. It will

also help us to better understand the strong dependence on the basic state seen

in results in Chapter 3. Note that for simplicity we will only consider the case of

γ = β. We will also use the same parameter values as in Chapter 3, which are

listed in Table 3.1.

4.2 Applying γ and β only to the basic state

We may argue that formally, the fact that the turbulent pumping and turbulent

diffusion effects appear in the mean field induction equation and act on the large-

scale mean field implies that to properly model the system, they should only be

applied to the largest scale of variation present in the system. Therefore, for the

sake of comparison with the simple, all-scales approach of Chapter 3, let us now

consider the mean field as corresponding to the basic state B̄, and apply γ and

β only to the equilibrium basic state, leaving them out of the equations for the

perturbed system (3.14) – (3.21).

When we carry out this calculation numerically, we produce results that may

be compared with those presented in Chapter 3. We find that in fact, the results

are, broadly, very similar to those for the case where we apply γ and β to all

scales as in Chapter 3. We include, as an example, the contour plots for the

cases of F = 10−3 (Figure 4.3) and F = 10−5 (Figure 4.4), for comparison with

Figures 3.3 and 3.9 respectively. By comparing the two cases, we can see that

the effect on the instability of applying γ and β in this way is small enough to

be almost impossible to see by eye on such a diagram, both in terms of growth

rates and horizontal scales of the most unstable mode.

In order to better quantify this result we plot the growth rate of the instabil-

ity at different values of F , in Figure 4.1. Given the visual similarity of these

growth rate results to those of the equivalent case (Figure 3.13) for γ = β ap-

plied to all scales, we may also plot an “error” quantity, to see more easily the
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4. SCALE DEPENDENCE OF THE INSTABILITY

Figure 4.1: Growth rate of the most unstable mode when γ and β are applied

only to the basic state, F = 10−1, 10−2, 10−3, 10−4, 10−5.

difference. We refer to the growth rate of the most unstable mode when γ and

β are applied to both the basic state and the perturbations as <(sB+b), and the

equivalent growth rate when γ and β are applied only to the basic state (the re-

sults plotted in Figure 4.1) as <(sB). With this notation, we plot the normalised

difference,

Difference =
<(sB+b)−<(sB)

<(sB+b)
, (4.1)

as a function of γm, in Figure 4.2. From this we can see that for the “high F”

cases (F & 10−3, as discussed in the previous Chapter) the behaviour is somewhat

different than for the lower F cases. Thus we consider the two separately.

4.2.1 High F Regime

We consider first the cases of F = 10−1, 10−2, 10−3. We show the contour plots

for the case of F = 10−3 in Figure 4.3 as an example. We also show the growth

rates of the most unstable modes in Figures 4.1, and the fractional difference

from the results when γ and β are applied to all scales in Figure 4.2a. For this
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4.2 Applying γ and β only to the basic state

(a) (b)

Figure 4.2: Normalised difference in the growth rate of the most unstable mode

when γ and β are applied to all scales versus applied only to the basic state, for

(a) F = 10−1, 10−2, 10−3, and (b) F = 10−4, 10−5. Note that the division of these

results into two plots is in part to differentiate the two F regimes discussed in

Section 3.5, which also exist in this case, and in part for convenience as the value

of the quantity defined by Equation (4.1) is of a different order of magnitude in

the two regimes, especially in the case of F = 10−5.

high F regime, the quantity (4.1) is negative, and decreases in magnitude as

γm increases. Also, the effect of larger F is to decrease the magnitude of this

error. (Note that because we select the most unstable mode such that <(sB+b)

and <(sB) are always positive, the sign of (4.1) indicates whether the addition

of the γ and β effects to the perturbed quantities is stabilising or not; if (4.1) is

positive, the effect of γ and β on the perturbations is destabilising, and if (4.1)

is negative, γ and β acting on the perturbations have a stabilising effect.)

This implies that in the case of the interchange maxima, the effect of γ and

β on the perturbations is stabilising, though small in comparison to the destabil-

ising effect of γ and β on the basic state. This is consistent with the idea that

the predominant factor in destabilising the system is the form of the basic state,

as implied by the similarity between the contour plots 4.3 compared to 3.3. Fur-

thermore, it shows that this effect is greater for lower F in this regime, though

this is likely to be a product of the fact that lower F gives lower growth rates in

general.
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Figure 4.3: Contour plots for F = 10−3 and various values of γm, with γ = β

applied only to the basic state; cf. Figure 3.3.
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4.3 Scale-dependent γ and β

4.2.2 Low F Regime

The regime of lower field strength, F = 10−4, 10−5, (contour plots shown in Fig-

ure 4.4 for the case of F = 10−5, with growth rates of the most unstable mode

and associated fractional difference from application of γ and β to all scales in

Figures 4.1 and 4.2b) is characterised by the most unstable mode remaining 3D

for higher levels of γ and β. In this case the effect of increasing γm is stabil-

ising, as the gradient of (4.1) with respect to γm is negative. We consider the

two cases shown in Figure 4.2b. For F = 10−4, <(sB+b) − <(sB) < 0 still, but

in this case the effect of additional γm further stabilises the system, since the

gradient is negative. In the case of F = 10−5, the gradient is of larger magni-

tude and remains negative. However, in this case we in fact see it pass through

<(sB+b)−<(sB) = 0, i.e. low levels of γ and β on the perturbations are actually

destabilising, while higher levels are, as before, stabilising. This, however, may

simply be due to the fact that for this value of F the system is less unstable

in general, and the difference is only an order of magnitude or so less than the

growth rates themselves.

Overall, this analysis very much supports the idea that the growth rate and

horizontal scale of the most unstable mode are much more dependent on the

basic state than on the effect of γ and β on the perturbations. Here, we have

considered the perturbations as a whole, regardless of scale. However, we may

also consider larger-scale perturbations to be part of the “mean field” variation

and thus subject to γ and β. In the next section, we apply γ and β on the basis

of kx and ky.

4.3 Scale-dependent γ and β

In the mean field approximation, we make the assumption of separation of scales;

that is to say, we assume that the largest scale of variation is much larger than

the small-scale turbulent motion, such that we may take spatial averages over an

intermediate scale that is separated from both the small and the large compo-

nents. This is the assumption upon which the derivation of the γ and β effects
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Figure 4.4: Contour plots for F = 10−5 and various values of γm, with γ = β

applied only to the basic state; cf. Figure 3.9.
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4.3 Scale-dependent γ and β

is based. In a real system, however, we see many scales of variation with no such

clear separation of scales. Thus, we consider the case where the basic state is

not the only variation that may be considered “large-scale” under the mean field

approximation; if it is the case that the turbulence does not, in fact, have a clear

separation of scales, it is possible that the larger scales of the perturbations may

also be counted as “mean field”, if we are to apply the mean field approximation

to such a system.

We shall take account of this possibility by applying γ and β to both the ba-

sic state and preferentially to the largest scale perturbations. We multiply γ and

β by a function of kx and ky that peaks at kx = ky = 0, though what form this

function takes is a matter of choice. We apply γ and β to the basic state and

the perturbations, but when applying to perturbed quantities we multiply by a

factor, to obtain γp, the γ effect as it applies to the perturbations:

γp =

(
1

1 + k2
x + k2

y

)
γm
2

(1 + tanh(a(zi − z))), (4.2)

where we assume a = 30 and zi = 0.5. Once more, we take βp = γp for the β

effect acting on the perturbed quantities. With this assumption, we solve the

linear system (3.14) – (3.21) as before for all F previously considered, and show

the case of F = 10−3 as an example in Figure 4.5.

We obtain results that, again, look very similar to those of Section 3.4, and,

indeed, those of Section 4.2; the scaling of γ and β on the perturbations is not

apparent in the contour plots shown in Figure 4.5.

We also consider the growth rate (Figure 4.6) and the difference in the growth

rate from the “standard” case considered in the previous chapter, in which γ

and β are applied to all scales. We define this fractional difference analogously

to (4.1), but instead of <(sB) we substitute <(sB+bk), the growth rate for the

most unstable mode of the instability with γ and β applied to the perturbations

according to (4.2). We plot this quantity in Figure 4.7.
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Figure 4.5: Contour plots for F = 10−3 for various values of γm, with γ =

β applied to the basic state according to (2.4), (2.5) and to the perturbations

according to (4.2).
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4.3 Scale-dependent γ and β

Figure 4.6: Growth rate of the most unstable mode when γ and β are applied to

the perturbations according to (4.2), for F = 10−1, 10−2, 10−3, 10−4, 10−5.

(a) (b)

Figure 4.7: Fractional variation of the growth rate of the most unstable mode

when γ and β are applied to the perturbations according to (4.2), compared

to equal application to all scales, for (a) F = 10−1, 10−2, 10−3, and (b) F =

10−4, 10−5.
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4. SCALE DEPENDENCE OF THE INSTABILITY

These results are very similar to those in Section 4.2. This may be expected,

as we have already shown that the direct effect of γ and β on the perturbed

quantities is very much outweighed by their effect on the instability via the basic

state. Therefore, it is natural to assume that the case where we “soften” the

effect on the perturbations should be even more marginal than removing it en-

tirely. This is indeed the result we find, and the case of γ and β applied according

to (4.2) may be considered an intermediate case between those of Sections 3.4

and 4.2.

We may also characterise the effect of γ and β on the perturbations in a more

direct way, by considering the effect of γ and β on the perturbations alone, in

isolation from their effect on the basic state. In the next section, we will fix a

basic state that is independent of γ and β and consider the action of the turbulent

effects on the perturbed quantities alone. This kind of analysis is somewhat arti-

ficial with respect to a physical system, however, it serves as a useful comparison

case.

4.4 Prescribed Basic States

4.4.1 B̄ = 2z

Previously, we have applied γ and β to all scales of the system, then to only the

largest scale, given by the basic state, in order to reflect the mean field nature

of these effects. As an intermediate case, we have also applied γ and β to the

basic state and preferentially to the largest perturbation scales. We found little

difference in the results in these cases (except for a small, generally stabilising,

effect of γ and β as they act directly on the perturbations) suggesting that the

primary mechanism for the destabilisation of the layer by γ and β is via their

effect on the field gradient at equilibrium.

However, we may also test this conclusion by taking an approach that is ef-

fectively the opposite extreme: instead of perturbing only the basic state, we

shall take a basic state that is an equilibrium when γ and β are absent, and
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Figure 4.8: Growth rate <(s) as a function of kx and ky for various values of γm,

for F = 10−3, with prescribed basic state B̄ = 2z.
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4. SCALE DEPENDENCE OF THE INSTABILITY

Figure 4.9: Normalised b̂x perturbations for the case of B̄ = 2z, for the most

unstable modes in the cases shown in Figure 4.8.

Figure 4.10: Growth rate of the most unstable mode for prescribed basic state

B̄ = 2z.
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4.4 Prescribed Basic States

(a) (b)

Figure 4.11: Horizontal scales (a) kx and (b) ky of the most unstable mode for

prescribed basic state B̄ = 2z, with γm = 0 values plotted on the vertical axis.

Note the lack of transition to interchange modes at higher γm.

apply γ and β only to the perturbations. Although this is an unphysical case, it

allows us to separate the much smaller effect of γ and β on the perturbations only.

Thus, we will prescribe a basic state B̄ = 2z, which is an equilibrium in the

absence of γ and β, and is subject to the same boundary conditions as the equi-

librium basic states we have considered. Artificially introducing this basic state,

we will solve perturbation equations (3.14) – (3.21) as before.

The differences are apparent in the contour plots, shown in Figure 4.8, as com-

pared to those in Figures 3.3, i.e. the case where the γ and β effect are applied to

both the basic state and the perturbations for otherwise identical parameter val-

ues. For the basic state B̄ = 2z, we do not see the same destabilisation resulting

from increased γ and β as we do in the case of the self-consistent basic state, nor

do we see the change in the most unstable mode from 3D to interchange (see kx

and ky of the most unstable mode, shown in Figure 4.11), as discussed in Chap-

ter 3. Most significantly, when applied to the perturbations only, γ and β have a

stabilising effect (see Figure 4.10), for all values of F considered. In comparison
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4. SCALE DEPENDENCE OF THE INSTABILITY

with the destabilising effect when γ and β act on the basic states, however, this

stabilising effect on the perturbations is small, which is why it was not apparent

from the results of the analysis with a basic state subject to γ and β. The idea

of the effect of γ and β on the perturbations being stabilising when separated

from the much larger destabilising effect of γ and β on the basic state, however,

is consistent with the results in Sections 4.2 and 4.3. Note, however, that the

spatial forms of the b̂x perturbations (Figure 4.9) for γm > 0 do still appear to

be governed by the effects of γ and β, being effectively confined to the lower part

of the layer as γm increases. This effect, however, is not as strong as that seen

in the case of varying field gradient, shown in Figure 3.5. It suggests, however,

that while the basic state is the main factor in determining the growth rate and

horizontal scale of the instability, the vertical location of the perturbation is more

directly affected by the terms in the linear system itself.

4.4.2 Magnetic slab between z = 0.6 and z = 0.8

Though it does not use a self-consistent equilibrium basic state, this case is of

interest in relation to the magnetic “slab” or top hat field commonly used in

numerical simulations of such systems, for example by Barker et al. (2012). Fol-

lowing this study, we prescribe a basic state of the form:

B = Bo(tanh(aB(z − z1))− tanh(aB(z − z2))) (4.3)

where Bo = 0.5, aB = 30, z1 = 0.6 and z2 = 0.8. This creates a top hat profile,

shown in Figure 4.12, above which γ and β fall to zero. The region of greatest

field is 0.6 . z . 0.8, which is below the region where the γ and β effects act

within the layer (0 ≤ z . 0.5), though due to the “gradient” parameters a and

aB being non-infinite, there is some overlap present.

In order to make a comparison, we first consider the case of such a top hat

field without the effects of γ and β. We find that in this case, the most unstable

mode is an interchange mode (see Figure 4.13). However, there is also another

local maximum in <(s); this occurs for ky = 0, i.e. there is another peak in

instability for 2D undular modes.
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4.4 Prescribed Basic States

Figure 4.12: The top hat field given by Equation (4.3), with Bo = 0.5, aB = 30,

z1 = 0.6 and z2 = 0.8.

Furthermore, as we increase γ and β, we find that these 2D undular modes

grow more unstable, even as interchange modes become less so. We find that

increasing the value of γm has several effects: first, it decreases the growth rate

of interchange modes, as is the case for the B̄ = 2z prescribed basic state. This

is consistent with the idea that the change in the basic state under the action

of γ and β is responsible for the large increase in instability we see in the fully-

consistent cases. However, in this case, where 2D undular modes are already

present in the system, they grow more unstable under the effect of γ and β on

the perturbed quantities alone. Furthermore, when large enough γ and β are

applied there comes a point at which the undular maximum on the ky = 0 axis

becomes a global maximum, implying that 2D undular modes should come to

dominate over interchange modes at some threshold γm. This means that apply-

ing greater γ and β effects changes the spatial form of the instability under these

conditions.

Also, in this case, though we do have unstable 3D modes (kx, ky 6= 0), they

are not the most unstable in the system for any of the cases we have considered.

This is the case for both F = 10−2 and F = 10−3, though the change in the

nature of the instability is more sensitive to γ and β (i.e. occurs at a lower γm)

for F = 10−3 (shown as an example case in Figure 4.13), as we may expect from
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Figure 4.13: Growth rate contour plots for various values of γm, for the case

F = 10−3, with prescribed “top hat” basic state. Note the global maxima (marked

with a cross) are interchange modes for γm = 0 and γm = 0.001 only. For higher

γm the interchange maximum is a local one, and the fastest growing mode is 2D

undular, with ky = 0.
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4.4 Prescribed Basic States

(a) (b)

Figure 4.14: Comparison of (a) interchange (kx = 0) and (b) 2D undular (ky = 0)

instability maxima for a prescribed top hat basic state, with various values of γm

and for F = 10−3.

the discussion of the effect of field strength F in Chapter 3.

We also notice that the change in stability is not linear in γm. Consider Fig-

ure 4.14, in which we plot the value of <(s) along both the ky- and kx-axes of

the contour plots in Figure 4.13, corresponding to interchange and 2D undular

modes respectively. From this, it becomes clear that there is a “saturation” effect

occurring as the strength of the γ and β effects are increased. In the case of inter-

change modes (Figure 4.14a), as γm is increased, the value of the growth rate as a

function of ky approaches a constant profile with <(s) < 0, i.e. the limit of large

γm gives stable interchange modes, whose stability is then unchanged as γ and β

are further increased. By contrast, for 2D undular modes (Figure 4.14b), we see

the stability shift with the application of larger amplitudes of γ and β; the shape

of the profile of <(s) remains approximately the same, however it becomes larger

in amplitude, corresponding to the destabilisation of 2D undular modes — and

their eventual dominance over the interchange and 3D instabilities — that we

have discussed. We still see a limiting <(s) profile (as a function of kx) emerging
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4. SCALE DEPENDENCE OF THE INSTABILITY

for increasing γm; however, there is not such a clear limiting profile for the undu-

lar maxima in Figure 4.14b as we see for the interchange maxima in Figure 4.14a.

The destabilisation of 2D undular modes is of note because Hughes & Catta-

neo (1987) showed that in general, 2D undular modes of the magnetic buoyancy

instability are less easily destabilised than 3D or interchange modes. This conclu-

sion is also borne out by our other linear stability results for a system with γ and

β effects present, discussed throughout Chapters 3 and 4, where 3D and inter-

change modes are preferred over 2D undular modes. In the case of the prescribed

top hat basic state field with γ and β effects of sufficient strength, however, we

find that 2D undular modes are not only destabilised, but, in fact, preferred over

interchange and 3D modes for some threshold level of γm. The physical expla-

nation for this is not clear from our analysis alone, but represents grounds for

future study in order to come to a fuller understanding of the prevalence of 2D

undular modes under such circumstances.

In general, the destabilisation of undular modes for the top hat basic state —

in contrast to the other cases with γ and β we have studied — shows that the use

of a top hat basic state field, which is artificially imposed and does not represent

an equilibrium under the effects of γ and β, is able to significantly change the

nature of the instability. Therefore, our results indicate that care should be taken

when making use of such top hat fields in other work in the area, lest the choice

of basic state introduce additional effects that would not be present in the case

of an equilibrium field.

4.5 Conclusions

We have considered the γ and β effects as they act on the basic state in compar-

ison to their action on the perturbations, seeking to understand how they affect

the linear stability in each case. Building on the results presented in Chapter 3,

it is clear that the basic state field — and its gradient — is the most important

factor in determining the stability of such a layer to linear perturbations. The

effect of γ and β on the basic state is destabilising when such a basic state is
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perturbed. The effect on the perturbations themselves, however — though much

smaller in magnitude — is stabilising. We have also shown that the change in the

most unstable mode from 3D to interchange with the application of increasing γ

and β is driven by their effect on the basic state alone. We have considered pre-

scribed fields that are not consistent with equilibrium under γ and β, and found

that the stability properties of the system under increasing γm differ considerably

from the equivalent parameter case with an equilibrium basic state as discussed

in Chapter 3.

From a physical point of view, the idea that the action of γ and β on the basic

state, and indeed the choice of basic state in general, is critically important in

determining the stability is consistent with our assumptions about γ and β; these

effects are derived from the assumption that they act on the large-scale mean

field. Therefore, the importance of the effects of γ and β on the basic state lends

additional legitimacy to the idea of treating the basic state as analogous to the

mean field in the physical system we consider. Furthermore, we have shown that

the action of γ and β on the small-scale perturbed quantities is not a dominant

effect and can potentially be neglected in future work. Equally, though, this

analysis demonstrates that the basic state — although it is not the sole factor

at work; see Figure 4.9 — is critical in determining the growth rate and spatial

form of the instability, and therefore must be carefully chosen to reflect physical

reality.
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Chapter 5

An Analytic Approach to the

Diffusionless Instability

We consider the diffusionless case of the magnetic buoyancy instability. The

mechanism for the classical, non-oscillating instability (see, for example, New-

comb, 1961) does not itself rely critically on diffusive effects to function, and

so we may remove them in order to simplify the system. In addition, the dif-

fusionless case has been studied in the past, because under the assumption of

non-diffusivity it is possible to derive analytic results with much greater ease

than for the full problem discussed in Chapters 3 and 4. We aim to add the tur-

bulent pumping γ, to understand its effect on existing analytical relations for the

system. We will seek to extend the analytic approaches of Gilman (1970) — for

the small-scale limit — and Mizerski et al. (2013) — for the interchange instabil-

ity of any scale — to a system that includes the γ turbulent pumping effect. We

shall also analyse two model problems to understand the mathematical structure

of the third order system that results from the latter case. Additionally, follow-

ing Acheson (1979), we will perform a local analysis to find a dispersion relation

for the diffusionless interchange instability.

5.1 Large ky limit

Gilman (1970) considered the asymptotic limit of large ky (i.e. small-scale vari-

ation) in the isothermal system and in the absence of magnetic and viscous dif-
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fusion effects. (It should be noted that, given the isothermality of the system,

the thermal diffusivity is in fact infinite. However, we refer to this system as

diffusionless here for the sake of convenience of discussion.) Taking the dominant

balance of terms in the perturbation equations and rearranging the system under

this assumption, Gilman obtained an algebraic equation for the growth rate (see

Section 5.1.2 for further discussion). This relation depends on the stratified basic

states of the system, implying a different dispersion relation at each height, which

is both physically unconventional and quite different from the usual form of the

system, that of a system of coupled ODEs.

This approach is considerably different from that of finding the solution to a

system of perturbation equations, as discussed in Chapters 3 and 4. We will,

however, extend such an approach to our system given by (3.14) – (3.21). We

consider the diffusionless, isothermal case in the ky → ∞ limit, with the turbu-

lent pumping γ as an additional effect.

5.1.1 Diffusionless case, in the limit ky →∞

Consider the perturbed system (3.14) – (3.21). We assume an isothermal system

as discussed previously, and remove the magnetic and viscous diffusivity terms,

to obtain:

sb̂x = − d

dz
(γb̂x)− B̄ikyv̂ −

d

dz
(B̄ŵ), (5.1)

sb̂y = − d

dz
(γb̂y) + B̄ikxv̂, (5.2)

sb̂z = −γ d

dz
b̂z + B̄ikxŵ, (5.3)

sρ̄û = FB̄′b̂z − T̄ ikxρ̂, (5.4)

sρ̄v̂ = −FB̄iky b̂x + FB̂ikxb̂y − T̄ ikyρ̂, (5.5)

sρ̄ŵ = −F d

dz
(B̄b̂x) + FB̄ikxb̂z −

d

dz
(T̄ ρ̂) + θ(m+ 1)ρ̂, (5.6)

sρ̂ = −ρ̄ikxû− ρ̄ikyv̂ −
d

dz
(ρ̄ŵ). (5.7)
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5.1 Large ky limit

Now, following Gilman’s analysis, we make the approximation ky →∞. In order

for the b̂x and ρ̂ terms in (5.5) to remain finite, we require:

FB̄b̂x + T̄ ρ̂ = 0, (5.8)

which is a statement of the fact that the perturbation to the total pressure (i.e.

the combination of magnetic and thermal pressure pressure perturbations) is zero.

Following from this, (5.6) becomes:

sρ̄ŵ = FB̄ikxb̂z + θ(m+ 1)ρ̂, (5.9)

and from (5.1), we require that v̂ ∼ O(k−1
y ), after which it follows from (5.5) that

b̂y ∼ O(k−1
y ). We may eliminate the ikyv̂ terms in (5.1) and (5.7), to obtain:

ρ̄

(
sb̂x +

d

dz
(γb̂x)

)
− B̄ρ̄ikxû+ B̄ρ̄

d

dz

(
ln

(
B̄

ρ̄

))
ŵ − B̄sρ̂ = 0. (5.10)

Equations (5.3), (5.4), (5.8), (5.9), and (5.10) form a closed system of five linear

ODEs. The system in the ky →∞ limit is second order, and may be reduced to

two coupled equations in, say, ŵ and b̂z:

(sρ̄ŵ − FB̄ikxb̂z)
(
s2(FB̄2 + T̄ ρ̄) + sρ̄γ′T̄ + FB̄2T̄ k2

x − sγT̄ ρ̄
d

dz
ln B̄

)
(5.11)

+sγT̄ ρ̄

(
s

d

dz
(ρ̄ŵ)− Fikx

d

dz
(B̄b̂z)

)
+FB̄2θ(m+ 1)

(
FB̄′ikxb̂z − sρ̄

d

dz
ln

(
B̄

ρ̄

)
ŵ

)
= 0,(

s+ γ
d

dz

)
b̂z − B̄ikxŵ = 0. (5.12)

These equations are of the form

A1b̂z + A2b̂
′
z + A3ŵ + A4ŵ

′ = 0, (5.13)

A5b̂z + A6b̂
′
z + A7ŵ = 0, (5.14)

where

A1 = −FB̄ikx(s2(FB̄2 + T̄ ρ̄) + sρ̄γ′T̄ + FB̄2T̄ k2
x)− F 2B̄2B̄′ikxθ(m+ 1), (5.15)

A2 = −sγT̄ ρ̄F ikxB̄, (5.16)

A3 = sρ̄(s2(FB̄2 + T̄ ρ̄) + sρ̄γ′T̄ + FB̄2T̄ k2
x − sγT̄ ρ̄

d

dz
ln B̄)

+ s2γT̄ ρ̄ρ̄′ − sρ̄F B̄2θ(m+ 1)
d

dz
ln

(
B̄

ρ̄

)
, (5.17)
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A4 = s2γT̄ ρ̄2, (5.18)

A5 = s, (5.19)

A6 = γ, (5.20)

A7 = −B̄ikx. (5.21)

We may then eliminate b̂z to obtain a second order ODE of the form:

g2(z)ŵ′′ + g1(z)ŵ′ + g0(z)ŵ = 0, (5.22)

with

g0 = (A6A
′
1 − A2A

′
5)(A6A3 − A2A7)

− (A6(A1 + A′2)− A2(A5 + A′1))(A5A3 − A1A7)

+ (A2A5 − A6A1)(A6A
′
3 − A2A

′
7), (5.23)

g1 = (A6A
′
1 − A2A

′
5)A6A4 − (A6(A1 + A′2)− A2(A5 + A′6))A5A4

+ (A2A5 − A6A1)(A6(A3 + A′4)− A2A7), (5.24)

g2 = (A6A1 − A2A5)A6A4. (5.25)

From coefficients (5.15) – (5.21), A2, A4, and A6 are proportional to γ, so we can

see that g0 = O(γ), g1 = O(γ2), and g2 = O(γ3) as γ → 0. This explains the

reversion to an algebraic problem in this limit. However, when kx = 0 (i.e. for

interchange modes), Equations (5.11) and (5.12) become decoupled and we are

left with a first order system given by a single equation in ŵ. We shall now look

at each of these cases in more detail.

5.1.2 3D system, with γ = 0.

This is the case considered by Gilman (1970), which we will briefly summarise.

If we take γ = 0 in (5.22), the z-derivatives vanish and the equation becomes

simply algebraic. As previously noted in Section 5.1, we may then write a depth-

dependent dispersion relation for the instability, given by:(
T̄ +

FB̄2

ρ̄

)
s4 +

FB̄2

ρ̄

((
2T̄ +

FB̄2

ρ̄

)
k2
x − θ(m+ 1)

d

dz
ln

(
B̄

ρ̄

))
s2

+k2
x

F 2B̄2

ρ̄2

(
k2
xT̄ − θ(m+ 1)

d

dz
ln B̄

)
= 0. (5.26)
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5.1 Large ky limit

This is the equation derived by Gilman, and from it come the standard stability

criteria for magnetic buoyancy. Gilman showed that, for stationary instability

(s2 > 0) of diffusionless 3D modes in the limit ky →∞, we require

0 < k2
x <

θ(m+ 1)

T̄

d

dz
ln B̄. (5.27)

In addition to this, for interchange modes (kx = 0), Equation (5.26) tells us that

the condition for instability is

FB̄2θ(m+ 1)

T̄ ρ̄+ FB̄2

d

dz
ln

(
B̄

ρ̄

)
> 0. (5.28)

This is equivalent to the form of the stability criteria discussed in Section 1.3.1.

We shall now consider the case of non-zero γ, our extension of this work on the

system.

5.1.3 Interchange system with γ 6= 0

When kx = 0, (5.11) and (5.12) become decoupled, and the system may be

characterised by a single first order equation when γ 6= 0:

sγT̄ ρ̄
dŵ

dz
+

(
s2(FB̄2 + T̄ ρ̄)+sγT̄ ρ̄

d

dz
ln

(
γρ̄

B̄

)
−FB̄2θ(m+1)

d

dz
ln

(
B̄

ρ̄

))
ŵ = 0.

(5.29)

This has the form of a first order ODE in ŵ. Note that if γ = 0, the criterion for

instability (i.e. s2 > 0) reduces once more to (5.28), as expected.

When γ is non-zero, we may solve (5.29) using an integrating factor to obtain:

ŵ=ŵo exp

(∫ (s2(FB̄2 + T̄ ρ̄) + sγT̄ ρ̄ d
dz

ln(γρ̄
B̄

)− FB̄2θ(m+ 1) d
dz

ln( B̄
ρ̄

)

sγT̄ ρ̄

)
dz

)
,

(5.30)

where ŵo is a constant to be determined by the boundary condition on ŵ, and s is

the unknown eigenvalue. Note that the addition of γ necessitates the imposition

of boundary conditions on ŵ; in this case one boundary condition, and in the

case of kx 6= 0 (see Equation (5.22)), two boundary conditions.
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Note also that Equation (5.29) is quadratic in s:

s2
(
(FB̄2 + T̄ ρ̄)ŵ

)
+s

(
γT̄ ρ̄ŵ

d

dz
ln

(
γρ̄ŵ

B̄

))
−
(
FB̄2θ(m+1)

d

dz
ln

(
B̄

ρ̄

)
ŵ

)
= 0,

(5.31)

and that this relation is also depth-dependent. Given that the eigenfunction

ŵ is still unknown, though, we cannot solve for s in terms of the basic states

as before. However, by setting s = 0, we may find the following criterion for

marginal stability:
d

dz
ln

(
B̄

ρ̄

)
= 0, (5.32)

which is the same as the condition for marginal stability in the diffusionless

criterion for interchange instability when γ = 0, (1.4). Thus, the criterion for

marginal stability is not affected directly by the action of γ, but by the effect

of γ on the basic states B̄ and ρ̄. This suggests that the action of γ on the

basic state — and specifically the increase in field gradient due to the addition of

turbulent pumping — is the main factor that determines how γ destabilises the

system to magnetic buoyancy. This result is consistent with our linear stability

analysis (Chapters 3 and 4), and therefore suggests that this diffusionless system

is of value as a simpler model for the diffusive system.

5.2 Comparison with the diffusionless interchange

system for finite ky

So far, for the diffusionless case we have considered the limit ky →∞, and found

an analogous result to that of Gilman (1970). However, it is useful to consider

how this fits in with the more general interchange instability in the diffusionless

limit. Mizerski et al. (2013) sought to relate the case studied by Gilman, in

which the instability is governed by a depth-dependent dispersion relation, to

the solution to the full eigenvalue problem for finite ky. We will follow their

approach, for the interchange instability with an additional γ effect (without

taking the asymptotic limit ky → ∞), and discuss two model systems, to try to

capture the same behaviour we may see in the more complex problem.
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5.2 Comparison with the diffusionless interchange system for finite ky

5.2.1 Interchange case

Following Mizerski et al. (2013), we consider again the diffusionless, isothermal

case, according to Equations (5.1) – (5.7). However, we will make no assumption

about the size of ky at this point.

For simplicity, we consider the interchange case of the linear instability. We

have the following linearised system:

sb̂x = − d

dz
(γb̂x)− B̄ikyv̂ −

d

dz
(B̄ŵ), (5.33)

sρ̄v̂ = −FB̄iky b̂x − T̄ ikyρ̂, (5.34)

sρ̄ŵ = − d

dz
(FB̄b̂x + T̄ ρ̂) + θ(m+ 1)ρ̂, (5.35)

sρ̂ = −ikyρ̄v̂ −
d

dz
(ρ̄ŵ). (5.36)

We may eliminate v̂ and ρ̂ to derive a system in the form of two coupled equations

in b̂x and ŵ. This system is third order — rather than second order, as in the

ky →∞ limit — and takes the form of two coupled ODEs of the form:

α1b̂x + α2b̂
′
x + α3ŵ + α4ŵ

′ = 0, (5.37)

α5b̂x + α6b̂
′
x + α7ŵ + α8ŵ

′ + α9ŵ
′′ = 0, (5.38)

with z-dependent coefficients α1, ..., α9 that depend on the basic states, the pa-

rameters of the problem, on ky and the growth rate s. These are given by:

α1 = ρ̄(s2 + k2
yT )(s+ γ′) + sFB̄2k2

y, (5.39)

α2 = ρ̄(s2 + k2
yT )γ, (5.40)

α3 = ρ̄B̄′(s2 + k2
yT )− B̄ρ̄′k2

yT̄ , (5.41)

α4 = s2ρ̄B̄, (5.42)

α5 = s2FB̄′ + FB̄θ(m+ 1)k2
y, (5.43)

α6 = s2FB̄, (5.44)

α7 = sρ̄(s2 + k2
yT̄ ) + sρ̄′θ(m+ 1)− sρ̄′′T̄ , (5.45)

α8 = sρ̄θ(m+ 1)− 2sρ̄′T̄ , (5.46)

α9 = −sρ̄T̄ . (5.47)
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Using this notation we may solve this system numerically. However, we may also

write the system as a single third order equation in ŵ. In this arrangement, the

coefficient of the highest order derivative ŵ′′′ is given by:

−α2α9 = sT̄ ρ̄2(s2 + k2
yT̄ )γ. (5.48)

This is proportional to γ, so we may see immediately that the problem changes

from a third order to a second order problem for γ = 0, as the coefficients of the

lower order terms, (5.51) – (5.52), do not become zero when γ = 0. The fact that

the addition of a γ effect makes the equation third order is of note because third

order systems are unusual, physically; with the additional requirement of a third

boundary condition, an additional asymmetry is introduced. There is also the

question of what boundary condition we should choose to meet this requirement,

which we will address later for the case of a model third order system.

In addition, we may further look at the ky−dependence of the coefficients. Moti-

vated by understanding the limit assumed by Gilman, we will find the dominant

balance of terms as ky →∞, and recover (5.29). First, we note that this system

is of the form:

f3(z)ŵ′′′ + f2(z)ŵ′′ + f1(z)ŵ′ + f0(z)ŵ = 0. (5.49)

Using symbolic computation, we may find the forms of the coefficient functions:

f0 = χ
[(
B̄Fs2

(
(γ′′ρ̄+ ρ̄′ (γ′ + s))

(
T̄ ky

2 + s2
)

+ 2B̄F B̄′ky
2s
)

(5.50)

− γρ̄
(
FB̄′θ(m+ 1)ky

2 + FB̄′′s2
) (
T̄ ky

2 + s2
)) (

B̄Fs2
(
B̄′ρ̄

(
T̄ ky

2 + s2
)

− B̄T̄ ρ̄′ky
2
)
− γρ̄

(
T̄ ky

2 + s2
) (
ρ̄′sθ(m+ 1)− T̄ ρ̄′′s+ ρ̄s

(
T̄ ky

2 + s2
)))

−
((
B̄Fθ(m+ 1)ky

2 + FB̄′s2
) (
B̄′ρ̄

(
T̄ ky

2 + s2
)
− B̄T̄ ρ̄′ky2

)
−
(
ρ̄ (γ′ + s)

(
T̄ ky

2 + s2
)

+ B̄2Fky
2s
) (
ρ̄′sθ(m+ 1)− T̄ ρ̄′′s

+ ρ̄s
(
T̄ ky

2 + s2
))) (

B̄Fs2
((
T̄ ky

2 + s2
)

(ρ̄′γ + γ′ρ̄)

+ ρ̄ (γ′ + s)
(
T̄ ky

2 + s2
)

+ B̄2Fky
2s
)
− γρ̄

(
B̄Fθ(m+ 1)ky

2

+ 2FB̄′s2
) (
T̄ ky

2 + s2
))
−
(
γρ̄
(
B̄Fθ(m+ 1)ky

2 + FB̄′s2
) (
T̄ ky

2 + s2
)

− B̄Fs2
(
ρ̄ (γ′ + s)

(
T̄ ky

2 + s2
)

+ B̄2Fky
2s
)) (

γρ̄
(
T̄ ky

2 + s2
)

(ρ̄′′sθ(m+ 1)

− T̄ ρ̄′′′s+ ρ̄′s
(
T̄ ky

2 + s2
))
− B̄Fs2

((
T̄ ky

2 + s2
) (
B̄′ρ̄′ + B̄′′ρ̄

)
− T̄ ky

2
(
B̄ρ̄′′ + B̄′ρ̄′

)))]
,
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f1 = χ
[(
B̄Fs2

(
(γ′′ρ̄+ ρ̄′ (γ′ + s))

(
T̄ ky

2 + s2
)

+ 2B̄F B̄′ky
2s
)

(5.51)

− γρ̄
(
FB̄′θ(m+ 1)ky

2 + FB̄′′s2
) (
T̄ ky

2 + s2
)) (

B̄2F ρ̄s4

+ γρ̄
(
2T̄ ρ̄′s− ρ̄sθ(m+ 1)

) (
T̄ ky

2 + s2
))
−
((
ρ̄ (γ′ + s)

(
T̄ ky

2 + s2
)

+ B̄2Fky
2s
) (

2T̄ ρ̄′s− ρ̄sθ(m+ 1)
)

+ B̄ρ̄s2
(
B̄Fθ(m+ 1)ky

2

+ FB̄′s2
)) (

B̄Fs2
((
T̄ ky

2 + s2
)

(ρ̄′γ + γ′ρ̄) + ρ̄ (γ′ + s)
(
T̄ ky

2 + s2
)

+ B̄2Fky
2s
)
− γρ̄

(
B̄Fθ(m+ 1)ky

2 + 2FB̄′s2
) (
T̄ ky

2 + s2
))

−
(
γρ̄
(
B̄Fθ(m+ 1)ky

2 + FB̄′s2
) (
T̄ ky

2 + s2
)
− B̄Fs2

(
ρ̄ (γ′ + s)

(
T̄ ky

2 + s2
)

+ B̄2Fky
2s
)) (

γρ̄
(
T̄ ky

2 + s2
) (

2ρ̄′sθ(m+ 1)− 3T̄ ρ̄′′s+ ρ̄s
(
T̄ ky

2 + s2
))

− B̄Fs2
(
s2
(
B̄ρ̄′ + B̄′ρ̄

)
+ B̄′ρ̄

(
T̄ ky

2 + s2
)
− B̄T̄ ρ̄′ky2

))]
,

f2 =χ
[(
γρ̄
(
B̄Fθ(m+ 1)ky

2 + FB̄′s2
) (
T̄ ky

2 + s2
)
− B̄Fs2

(
ρ̄ (γ′ + s)

(
T̄ ky

2 + s2
)

+ B̄2Fky
2s
)) (

B̄2F ρ̄s4 + γρ̄
(
3T̄ ρ̄′s− ρ̄sθ(m+ 1)

) (
T̄ ky

2 + s2
))

− T̄ ρ̄s
(
ρ̄ (γ′ + s)

(
T̄ ky

2 + s2
)

+ B̄2Fky
2s
) (
B̄Fs2

((
T̄ ky

2 + s2
)

(ρ̄′γ + γ′ρ̄)

+ ρ̄ (γ′ + s)
(
T̄ ky

2 + s2
)

+ B̄2Fky
2s
)
− γρ̄

(
B̄Fθ(m+ 1)ky

2 + 2FB̄′s2
) (
T̄ ky

2 + s2
))

+ T̄ γρ̄2s
(
B̄Fs2

(
(γ′′ρ̄+ ρ̄′ (γ′ + s))

(
T̄ ky

2 + s2
)

+ 2B̄F B̄′ky
2s
)

− γρ̄
(
FB̄′θ(m+ 1)ky

2 + FB̄′′s2
) (
T̄ ky

2 + s2
)) (

T̄ ky
2 + s2

)]
, (5.52)

f3 = T̄ γρ̄2s
(
T̄ ky

2 + s2
)
, (5.53)

where

χ =
[
γρ̄
(
B̄Fθ(m+ 1)ky

2 + FB̄′s2
) (
T̄ ky

2 + s2
)

(5.54)

− B̄Fs2
(
ρ̄ (γ′ + s)

(
T̄ ky

2 + s2
)

+ B̄2Fky
2s
)]−1

= [α2α5 − α1α6]−1 .

In order to find the large ky behaviour, we rearrange the coefficients in powers

of k2
y. To facilitate this computation, we multiply through by χ−1, which is

biquadratic in ky. With this, we are able to obtain the following coefficients:

(α2α5 − α1α6)f0 = C08(z)k8
y + C06(z)k6

y + C04(z)k4
y + C02(z)k2

y + C00(z), (5.55)

(α2α5 − α1α6)f1 = C18(z)k8
y + C16(z)k6

y + C14(z)k4
y + C12(z)k2

y + C10(z), (5.56)

(α2α5 − α1α6)f2 = C26(z)k6
y + C24(z)k4

y + C22(z)k2
y + C20(z), (5.57)

(α2α5 − α1α6)f3 = C36(z)k6
y + C34(z)k4

y + C32(z)k2
y + C30(z), (5.58)
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where Cij represents the coefficient of kjy in the ith order term in Equation (5.49).

For the large ky limit, the dominant balance is between O(k8
y) terms, i.e.

ŵ′ +
C08(z)

C18(z)
ŵ = 0. (5.59)

The relevant quantity in this limit is thus C08(z)
C18(z)

. This is given by

C08(z)

C18(z)
=
s2(FB̄2 + T̄ ρ̄) + sT̄ ρ̄γ d

dz
ln(γρ̄

B̄
)− FB̄2θ(m+ 1) d

dz
ln( B̄

ρ̄
)

sT̄ ρ̄γ
, (5.60)

which demonstrates that (5.59) is equivalent to (5.29), showing that (5.49) re-

duces to (5.29) in the limit ky →∞, as expected.

We have obtained a full analytic form for the equation governing the diffusionless

interchange instability. However, beyond showing that the highest order term is

proportional to γ — and therefore that the application of γ changes the order

of the problem — the complex dependence of coefficients (5.51) – (5.53) makes it

difficult to see the full effect of γ beyond the fact that, presumably, the system

has a boundary layer solution in the limit γ → 0. However, we may take the

approach of Mizerski et al. (2013) and seek to understand a simpler model prob-

lem that captures some of the behaviour of the full system. In our case, we shall

consider the asymptotic limit γ → 0, in order to understand the emergence of

the boundary layer as a result of a third derivative term proportional to γ in a

model system.

5.3 Model problem

5.3.1 Simplified third order eigenvalue model problem

Given the complex γ-dependence of the coefficients (5.51) – (5.52), the full system

detailed above is not easy to understand fully as γ → 0. Therefore, we attempt

to find a simpler system that exhibits some of the same behaviour. We seek a

third-order eigenvalue problem with a small parameter ε multiplying the highest
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order term, which will have a boundary layer solution as ε→ 0. We consider the

ODE

ε
d3y

dz3
+

d2y

dz2
+ λ2y = 0, (5.61)

as ε→ 0, with eigenvalue λ. We solve on an interval 0 ≤ z ≤ 1, and, because of

the signs of the first two terms, we expect a boundary layer at the z = 0 end of

the domain. Let us, initially, select the boundary conditions:

y(0) = 0, (5.62)

y(1) = 0, (5.63)

y′(0) = 0. (5.64)

First, we may solve for the outer solution, by taking ε = 0. In this limit, the

outer equation is:
d2y

dz2
+ λ2y = 0, (5.65)

with solution

yout = χ1 cos(λz) + χ2 sin(λz), (5.66)

where χ1, χ2 are arbitrary constants. Then, by the outer boundary condition

yout(1) = 0, we have χ1 = −χ2 tan(λ). This gives the form of the outer solution

as:

yout = χ(sin(λz)− tan(λ) cos(λz)), (5.67)

where we now have only one arbitrary constant, χ. We may find the inner solution

by defining a boundary layer coordinate s = z/ε. With this, we obtain the inner

equation
d3y

ds3
+

d2y

ds2
= 0, (5.68)

the solution to which is given by

yin = β1e
− z
ε + β2

z

ε
+ β3, (5.69)

where β1, β2, β3 are arbitrary constants. We apply the inner boundary conditions

yin(0) = 0 and y′in(0) = 0 to find

yin = β
(
e−

z
ε +

z

ε
− 1
)
, (5.70)
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with arbitrary constant β. We may now match the inner and outer solutions by

introducing a variable of intermediate scale, η = z/εα, where 0 < α < 1. Then

we take the limit ε → 0, at fixed η. In this limit, the inner and outer solutions

become

yin ∼ β(εα−1η − 1), (5.71)

yout ∼ χ(λεαη − tan(λ)). (5.72)

Matching the O(1) terms gives us a relation between the constants β and χ.

Additionally, since (5.71) and (5.72) must hold for all η, we may also match the

remaining O(η) terms. By these matchings we obtain two linear relations:

−β = −χ tan(λ), (5.73)

βεα−1 = χλεα, (5.74)

from which we may eliminate the unknown constants, giving the relation between

ε and the eigenvalues:

tan(λ) = ελ. (5.75)

In this case, it is possible to see the effect of ε on the system; the solutions are

perturbations to the solutions of tan(λo) = 0 (which are given by λo = nπ, for

integer n), for small ε.

We may also construct the composite solution for this system. We have the

intermediate solution

yint ∼ β

(
z

ε
− 1

)
. (5.76)

We also know the relation between constants β and χ, given by (5.74), so let

us choose β = tan(λ), χ = 1. Therefore, the full composite solution (given by

yc = yin + yout − yint) is

yc(z) = tan(λ)(e−
z
ε − cos(λz)) + sin(λz). (5.77)

We may check this approximate solution by solving (5.75) for λ numerically, and

then using the result to construct (5.77) as ε→ 0, as well as to show that, as we

expect, it no longer obeys the boundary conditions in the ε = O(1) regime.
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5.3 Model problem

Figure 5.1: λ(ε), the numerically calculated solution to tan(λ) = ελ for initial

guess λo = π.

Starting with the initial estimate of λo = π (the lowest order solution to the

unperturbed equation tan(λ) = 0) we are able to find λ as a function of ε nu-

merically, by means of the Matlab function “fsolve”, which solves systems of

nonlinear equations, applying a trust-region dogleg algorithm to systems that

may be written in terms of a square matrix. The resulting eigenvalues are shown

in Figure 5.1. Using the corresponding values of λ we are then able to construct

yc(z) (Figure 5.2). We consider the range of ε ∼ 10−2 and lower to be “small”

ε as compared to ε = O(1), as this distinction makes the difference in whether

yc obeys the boundary condition visually apparent: see Figure 5.2a compared to

Figure 5.2b. Note that when ε → O(1) (Figure 5.2b), the boundary condition

y(1) = 0 is no longer satisfied. This is because the fulfilment of this condition

requires that the quantity e−
1
ε be transcendentally small, which is only the case

as ε→ 0.

We may also find the “error” in the calculation by substituting the solution back

into (5.61). The quantity

εy′′′ + y′′ + λ2y = λ2 tan(λ)e−
z
ε − ελ3(cos(λz) + tan(λ) sin(λz)) (5.78)

should be proportional to −ε cos(λz) as ε → 0. In Figure 5.3, we scale this by

a factor of 1/ε for the sake of comparison, showing the deviation from the form
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(a) (b)

Figure 5.2: The composite solution yc, given by (5.77), in the regime of (a) small

ε in which it holds, and (b) in the regime of ε→ O(1) in which it breaks down.

Figure 5.3: “Error” in the ε→ 0 solution, given by (5.78) multiplied by a factor

of 1/ε.
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− cos(λz) outside of the small ε regime.

Thus, we have constructed the composite solution given by (5.77), showing that

it satisfies (5.61) and the boundary conditions (5.62) – (5.64), as we expect, in

the limit ε → 0. In the next section we will compare the numerical solution to

this approximate form of the solution.

5.3.2 Numerical solution to (5.61) for y′(0) = 0

We solve Equation (5.61) numerically, with boundary conditions (5.62) – (5.64).

We also use a normalisation condition y′′(0) = 1 to fix the amplitude of the so-

lutions. The results, for small and O(1) values of ε, are shown in Figure 5.4, and

the corresponding eigenvalues in Figure 5.5.

The numerical solution necessarily obeys the boundary conditions for all ε. This

is in contrast to the approximate solution yc given by (5.77), which only obeys

the boundary condition y(1) = 0 in the ε→ 0 regime. Therefore, we may use the

numerical solution as a point of comparison for the solution yc, to understand

how it breaks down as ε→ O(1).

In the case of ε→ 0 (Figure 5.4a), the numerical solution takes a similar form to

that of the approximation yc (Figure 5.2a); its amplitude, however, is different.

This is likely due to the normalisation condition used in the numerical solver.

Given the linearity of the problem, however, the amplitude is arbitrary. In order

to compare the numerical solution more easily with yc in the limit ε → 0, we

may normalise the solutions and compare for given values of ε. In Figure 5.6, we

compare the asymptotic and numerical solutions (otherwise shown in Figures 5.2

and 5.4 respectively), normalised to 1, in order to see more easily that they be-

come identical as ε→ 0.

The eigenvalues (Figure 5.5) also approach the initial guess of λo = π (which

we choose since it is the solution of (5.75) when ε = 0, i.e. λo = nπ for n = 1,

thus fixing the mode found by the numerical scheme as the lowest order mode) as
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(a) (b)

Figure 5.4: Numerical solutions to Equation (5.61), for (a) small ε, and (b)

ε = O(1). Compare with asymptotic approximation (5.77), plotted in Figure 5.2.

Figure 5.5: Numerically calculated eigenvalues λ for Equation (5.61), using initial

guess λo = π. Compare with the solution to tan(λ) = ελ, shown in Figure 5.1.
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Figure 5.6: Comparison of the numerical solution shown in Figure 5.4 (blue)

with the analytically constructed solution in the asymptotic limit ε → 0 (ma-

roon, dashed). Both solutions have been normalised to show more easily their

convergence as ε→ 0.

Figure 5.7: Difference in eigenvalues between the numerical and asymptotic cases

(blue), with ε2 dependence overplotted (orange, dashed).
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ε → 0. The functional dependence λ(ε), however, is not the same as that of the

solution to tan(λ) = ελ (Figure 5.1) used to construct yc for ε ∼ O(1). We may,

however, plot the difference in the eigenvalues from the asymptotic solution. In

Figure 5.7 we plot the difference λ−λt, where tanλt = ελt gives the eigenvalue in

the asymptotic limit ε→ 0, i.e. the eigenvalues shown in Figure 5.1. We overplot

a curve proportional to ε2, which has a dependence close to that of λ−λt as ε→ 0.

Of course, in a boundary layer problem such as (5.61), the choice of bound-

ary condition is important in determining the form the solution will take. We

will now consider a different choice of boundary condition, solving numerically

for the case where the gradient of the solution is fixed at the other end of the

domain.

5.3.3 Numerical solution to (5.61) for y′(1) = 0

We also solve the numerical problem with the boundary condition y′(1) = 0, in

order to understand the effect of fixing the gradient at the opposite boundary of

the layer. We find fully numerical solutions for both ε � 1 and the ε = O(1)

regime, which are shown in Figure 5.8. Additionally, the associated eigenvalues

λ2(ε) are shown in Figure 5.9.

Although we cannot find an analytical solution using the same asymptotic match-

ing process as in Section 5.3.1, we are able to find a numerical solution, which

is quite different — in both functional form and eigenvalues as a function of ε —

from the analytical solution when y′(0) = 0. The eigenvalues in this case are not

real but purely imaginary, as shown in Figure 5.9. The value of λ2 is not mono-

tonically increasing with ε, but has a maximum of λ2 ∼ −22.31 at ε ∼ 0.1705.

The solution is also increasingly localised close to z = 0 (i.e. in the boundary

layer region) as ε→ 0, in contrast to the case of y′(0) = 0.
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(a) (b)

Figure 5.8: Numerical solution to Equation (5.61) with boundary conditions

y(0) = 0, y(1) = 0, y′(1) = 0, for (a) small ε and (b) ε = O(1).

Figure 5.9: λ2 eigenvalues corresponding to the solutions shown in Figure 5.8.
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5.4 A more complex third order model problem

We may also consider a different third order eigenvalue model problem that is

slightly more complex but perhaps more reflective of the full diffusionless inter-

change system. The problem we choose is equivalent to that presented by Mizerski

et al. (2013), but with two additional terms proportional to γ. As a simplified

model for the diffusionless system in the absence of γ, Mizerski et al. considered:

d2f

dz2
− k2[(σ − σmax) + (z − zmax)2]f = 0, (5.79)

where σ is an eigenvalue corresponding to the solution f , and σmax and zmax are

parameters. This form was chosen for several reasons; firstly, because it models

the second order problem containing a parameter k and an unknown eigenvalue

σ, which serves as a model for the second order ODE in the case of diffusionless

interchange modes with growth rate s. Secondly, the k-dependence of Equa-

tion (5.79) allowed Mizerski et al. (2013) to consider the limit k →∞, in which,

in the full problem, the system becomes algebraic as discussed by Gilman (1970).

The form of Equation (5.79) also demonstrates this, as well as allowing the mean-

ing of the growth rate σ in this limit to become apparent. Changing variables

makes it apparent that (5.79) is in fact a form of the parabolic cylinder equation.

In an effort to understand the effect of γ on such a simplified model problem,

we add two new terms proportional to γ to Equation (5.79), one of which con-

tains a third derivative in accordance with the form of (5.49). This results in the

following third order problem:

γ
d3f

dz3
+

d2f

dz2
− γk2 df

dz
− k2[(σ − σmax) + (z − zmax)2]f = 0, (5.80)

with the form of the two additional terms chosen for dimensional consistency.

Note that unlike in the full problem, we assume γ to be spatially constant, and

equivalent to ε in (5.61). We may apply the same method to solve this as used

in Section 5.3.1, in the limit γ → 0, with boundary conditions

f(0) = 0, (5.81)

f(1) = 0, (5.82)

f ′(0) = 0. (5.83)
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Again we solve on an interval 0 ≤ z ≤ 1, and expect a boundary layer at z = 0.

The equation for the outer solution is:

d2f

dz2
− k2[(σ − σmax) + (z − zmax)2]f = 0. (5.84)

This is equivalent to the parabolic cylinder equation, which has the general form

d2f

dx2
−
(

1

4
x2 + a

)
f = 0, (5.85)

after change of variables

x =
√

2k(z − zmax), (5.86)

a =
k(σ − σmax)

2
(5.87)

(see Mizerski et al., 2013). The solutions are parabolic cylinder functions, with

the form

y1 =
∞∑

n=even

An
xn

n!
, (5.88)

y2 =
∞∑

n=odd

An
xn

n!
, (5.89)

where the coefficients An are given by

An+2 = aAn +
1

4
n(n− 1)An−2, (5.90)

with A0 = A1 = 1, A2 = A3 = a (Abramowitz & Stegun, 1964).

We may write the outer solution as a sum of these parabolic cylinder functions:

fout = χ1y1 + χ2y2. (5.91)

Applying the outer boundary condition (at z = 1), fout(1) = 0, we find that

χ2 = −y1(1)
y2(1)

χ1, and therefore we can write:

fout = χ

(
y1 −

y1(1)

y2(1)
y2

)
, (5.92)
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for arbitrary constant χ. Now that we have obtained the outer solution, let us

consider the inner solution. Defining the boundary layer coordinate s = z/γ

yields the same form of the inner equation as before, i.e. (5.69). This is:

d3f

ds3
+

d2f

ds2
= 0, (5.93)

which has a solution of the form:

fin = β1e
− z
γ + β2

z

γ
+ β3. (5.94)

Again, as in the previous example, the inner boundary conditions fin(0) = 0 and

f ′in(0) = 0 allow us, respectively, to fix the constants β3 = −β1 and β2 = β1. We

may then write the inner solution as

fin = β(e−
z
γ +

z

γ
− 1). (5.95)

We may now match the inner and outer solutions. We introduce the variable of

intermediate scale, η = z/γα, where 0 < α < 1, and take the limit γ → 0, at

fixed η. In this case, we obtain:

fin ∼ β(γα−1η − 1), (5.96)

fout ∼ χ
([ ∞∑

n=even

An
n!

(zmax
√

2k)n +
y1(1)

y2(1)

∞∑
n=odd

An
n!

(zmax
√

2k)n
]

(5.97)

− γαη
√

2k
[ ∞∑
n=even

An
(n− 1)!

(zmax
√

2k)n−1 +
y1(1)

y2(1)

∞∑
n=odd

An
(n− 1)!

(zmax
√

2k)n−1
])
.

Matching O(1) terms gives the relation:

−β = χ
( ∞∑
n=even

An
n!

(zmax
√

2k)n +
y1(1)

y2(1)

∞∑
n=odd

An
n!

(zmax
√

2k)n
)
, (5.98)

while matching O(η) terms gives:

βγα−1 = −χγα
√

2k
( ∞∑
n=even

An
(n− 1)!

(zmax
√

2k)n−1+
y1(1)

y2(1)

∞∑
n=odd

An
(n− 1)!

(zmax
√

2k)n−1
)
.

(5.99)

158



5.4 A more complex third order model problem

We may then eliminate constants β and χ and obtain an implicit equation for

the eigenvalues σ in terms of An, γ and k:

[ ∞∑
n=even

An
n!

(zmax
√

2k)n +
y1(1)

y2(1)

∞∑
n=odd

An
n!

(zmax
√

2k)n
]

− γ
√

2k
[ ∞∑
n=even

An
(n− 1)!

(zmax
√

2k)n−1 +
y1(1)

y2(1)

∞∑
n=odd

An
(n− 1)!

(zmax
√

2k)n−1
]

= 0.

(5.100)

This is the analogue of (5.75), relating the eigenvalues to the small parameter, in

this case γ. Also, from the O(1) matching relation (5.98), we know the propor-

tionality of the coefficients β and χ, so we may choose

β = −
[ ∞∑
n=even

An
n!

(zmax
√

2k)n +
y1(1)

y2(1)

∞∑
n=odd

An
n!

(zmax
√

2k)n
]

= −y1(0) +
y1(1)

y2(1)
y2(0), (5.101)

χ = 1. (5.102)

Therefore, the composite solution is:

fc(z) = −
(
y1(0)− y1(1)

y2(1)
y2(0)

)
e−

z
γ + y1(z)− y1(1)

y2(1)
y2(z), (5.103)

which obeys the boundary conditions in the limit γ → 0, given (5.100). This

composite solution may be constructed by solving (5.100) for the eigenvalues σ,

and then using these eigenvalues to construct the parabolic cylinder functions

y1 and y2 using an analogous method to that for the simpler model problem of

Section 5.3.1. However, given that this requires a numerical solution in order to

find σ that is then used to construct fc, it is not a “true” analytical solution, so

instead we may just find the numerical solution directly.

5.4.1 Numerical solution

We solve (5.80) numerically, for boundary conditions (5.81) – (5.83), along with

the normalisation condition f ′′(0) = 1 in order to fix the amplitude. Starting

from the parabolic cylinder function solutions to (5.84), we use a continuation

method to find the solution for increasing γ. We plot the normalised solutions in
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(a) (b)

(c) (d)

Figure 5.10: Numerical solutions to Equation (5.80), for (a) γ = 10−2, (b) γ =

10−3, (c) γ = 10−4, and (d) γ = 10−5.
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(a) (b)

Figure 5.11: Eigenvalues σ(γ) corresponding to the numerical solutions plotted

in Figure 5.10. Note that the plots of (a) k = 1 and (b) k > 1 are separated due

to the difference in scale of the values of σ.

Figure 5.12: Eigenvalues σ(0, k) for γ = 0, corresponding to the eigenvalues of

the parabolic cylinder equation, i.e. the outer equation (cf. Figure 5.13).
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Figure 5.10, and the eigenvalues σ in Figure 5.11.

We can see that as γ → 0, the solution is more localised close to zmax = 0.5.

In other words, larger γ “shifts” the solution to larger z, an effect that is also

larger for higher k. Greater values of k give more peaked solutions, as is the

case with the general, unperturbed parabolic cylinder functions. However, the

boundary layer part of the solution, present in a region with thickness of order

∼ γ, is no longer clearly visible once we reach the smaller values of γ shown in

Figures 5.10c and 5.10d.

Note that it is not the case that the numerical scheme — in this case a fourth

order collocation method — merely fails to resolve a boundary layer structure as

γ → 0; with the expected size of the boundary layer region on the order of γ, we

have considered grid spacings on the order of 10−3γ in the region z ∼ 0 where

we expect the boundary layer, which should be able to resolve a boundary layer

structure similar to that evident in the numerical solutions in Section 5.3.3, if one

were present. However, we see no similar large peak in the boundary layer region

as γ → 0 in the numerical solution to (5.80) shown in Figure 5.10.

Let us now consider the eigenvalues of (5.80), shown in Figure 5.11. We can

see that these are also dependent on k and γ; for one thing, the value of σ when

γ = 0 tends to σmax = 1 for increasing k. (Note that this is also clear in Fig-

ure 5.12, in which the eigenvalues for γ = 0 are shown as a function of k.) For

non-zero γ, the curve σ(γ) has a negative gradient, which is of greater magnitude

for lower k.

In order to better understand the γ-dependence of the eigenvalues, however, in

Figure 5.13, we plot the quantity σ(γ, k) − σ(0, k), where we denote the corre-

sponding parabolic cylinder function eigenvalue (i.e. the eigenvalue of the outer

solution) by σ(0, k): these eigenvalues are plotted, for the sake of comparison,

in Figure 5.12. Note that σ(γ, k) − σ(0, k) depends on both γ and k, accord-

ing to a power law for larger k. By plotting this data on logarithmic scales in

k and γ, however (Figure 5.14), we may overplot lines of constant gradient in
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Figure 5.13: The variation of σ(γ, k)− σ(0, k) as a function of k and γ, showing

the deviation from the parabolic cylinder function eigenvalues due to non-zero γ.

order to show that the quantity σ(γ, k)− σ(0, k) is approximately constant for γ

proportional to k−1, for large k (dashed lines). From this, we find that for large

k, σ(γ, k) − σ(0, k) is proportional to γk. It is not clear how this dependence

arises from the form of Equation (5.80), or indeed what the dominant balance of

terms is that gives rise to it in the large k regime. Future work on such a model

problem, however, could address this issue.

In addition to the dependence of σ(γ, k) − σ(0, k) for large k, although it is

less apparent on the scale of Figure 5.13, in Figure 5.14 we can see a different

power law dependence for small k. We overplot lines with γ proportional to k2

(dotted lines), which suggest that there is some dependence on such a power law,

with σ(γ, k) − σ(0, k) proportional to γ/k2 at low k (with our parameters, for

about k . 8). The resolution at low k, however, is too low to be able to say for

certain whether this is a true dependence or the result of a numerical artifact.

This, however, constitutes an area for further study.

This type of analysis may also be applied to the full diffusionless interchange
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Figure 5.14: σ(γ, k)−σ(0, k) as a function of ln(k) and ln(γ), with arbitrary colour

values assigned to constant values of σ(γ, k) − σo(k). Dashed lines correspond

to constant γk, and dotted lines to constant γ/k2, showing the approximate

dependence for high and low k, respectively.

system given by Equation (5.49). The eigenvalue relation giving the growth rate

in terms of γ would be much more complex, but we would see a similar boundary

layer type solution forming in the limit γ → 0. This, too, is a matter for further

work in this area.

We will now return to the full system, and use a local analysis approach to

understand the instability.

5.5 Local Approximation

Now we take a local approximation, an approach that can allow the derivation

of analytic stability criteria (see, for example, the work of Acheson (1979), and

Hughes, 1985), for the linear stability of a small region. Such an approach is valid

when the background states vary slowly over the region considered, and in this

circumstance, it can allow us to gain insight into the nature of the instability. We
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consider perturbations of the general form:

ξ̃ = ξ̂ exp(st+ ikxx+ ikyy + ikzz). (5.104)

Note that as opposed to all previous cases, where ξ̂ was a function of z and

encapsulated the vertical dependence (see definition (3.5)), the perturbations

are now assumed to be periodic in z, and therefore ξ̂ is a constant. Allowing

perturbations of this form gives a system of algebraic equations, rather than

ODEs, which allows a dispersion relation for the system to be derived. This

approach is not without its limitations, which we will discuss in greater detail in

Section 5.5.4. However, we shall consider two interchange systems, in order to

try to understand the effect of adding γ and β to the instability problem.

5.5.1 Isothermal, interchange system

In the first instance, for simplicity we will consider interchange modes, as well

as removing magnetic and viscous diffusion terms and the temperature pertur-

bation. Note that we refer to this case as “isothermal” even though we assume

that the background temperature profile T̄ can have non-zero gradient; the rea-

son for this is on one hand to differentiate it from the adiabatic case discussed

in Section 5.5.3, but on the other hand, physically, we may characterise this

case as effectively having infinite thermal diffusivity, such that temperature per-

turbations decay immediately. There may, however, still be a spatially varying

background temperature profile that is stably stratified, and therefore we allow

a non-zero value of T̄ ′ to appear in the equations. Thus, this case, like much

of the “isothermal” analysis in this Chapter, is not strictly diffusionless; for our

purposes, however, we will refer to it as such for the sake of expediency.

These assumptions give the following system of algebraic equations:

(s+ β(k2
y + k2

z) + ikz(γ − β′) + γ′)b̂x + B̄ikyv̂ + (B̄′ + ikzB̄)ŵ = 0, (5.105)

ikyFB̄b̂x + sρ̄v̂ + ikyT̄ ρ̂ = 0, (5.106)

F (B̄′ + ikzB̄)b̂x + sρ̄ŵ + (T̄ ′ + ikzT̄ − θ(m+ 1))ρ̂ = 0, (5.107)

ikyρ̄v̂ + (ρ̄′ + ikzρ̄)ŵ + sρ̂ = 0. (5.108)

165



5. AN ANALYTIC APPROACH TO THE DIFFUSIONLESS
INSTABILITY

The fact that these equations are algebraic allows us to obtain the dispersion

relation analytically. Eliminating the perturbed quantities gives a dispersion

relation which is quartic in s:

ρ̄s4 + ρ̄(β(k2
y + k2

z) + ikz(γ − β′) + γ′)s3 +

−((ρ̄′ + ikzρ̄)(T̄ ′ + ikzT̄ − θ(m+ 1)) + F (B̄′ + ikzB̄)2 − (FB̄2 + T̄ ρ̄)k2
y)s

2

−(β(k2
y + k2

z) + ikz(γ − β′) + γ′)((ρ̄′ + ikzρ̄)(T̄ ′ + ikzT̄ − θ(m+ 1))− k2
yT̄ ρ̄)s

−Fk2
yB̄

2 d

dz
ln

(
B̄

ρ̄

)(
θ(m+ 1) + T̄

d

dz
ln

(
B̄

T̄

))
= 0. (5.109)

Equation (5.109) is of the form

f4s
4 + Pγ,βf3s

3 + f2s
2 + Pγ,βf1s+ f0 = 0, (5.110)

where terms of order s3 and s1 are multiplied by a factor of

Pγ,β ≡ β(k2
y + k2

z) + ikz(γ − β′) + γ′, (5.111)

and the functions f0 − f4 are given by

f0 = −Fk2
yB̄

2 d

dz
ln

(
B̄

ρ̄

)(
θ(m+ 1) + T̄

d

dz
ln

(
B̄

T̄

))
, (5.112)

f1 = −((ρ̄′ + ikzρ̄)(T̄ ′ + ikzT̄ − θ(m+ 1))− k2
yT̄ ρ̄), (5.113)

f2 = −((ρ̄′ + ikzρ̄)(T̄ ′ + ikzT̄ − θ(m+ 1)) + F (B̄′ + ikzB̄)2

− (FB̄2 + T̄ ρ̄)k2
y), (5.114)

f3 = ρ̄, (5.115)

f4 = ρ̄. (5.116)

From the form of Equation (5.110), we may immediately see that the condition

for marginal stability (corresponding to s = 0) is given by f0 = 0. Note that

all of the dependence on γ and β is contained within Pγ,β. When no γ and β

effects are present, in this case, the equation simply becomes biquadratic, i.e. for

Pγ,β = 0:

f4s
4 + f2s

2 + f0 = 0. (5.117)

We may also note that the condition for instability, s2 > 0, is given by f0 < 0,

i.e.
d

dz
ln

(
B̄

ρ̄

)(
θ(m+ 1) + T̄

d

dz
ln

(
B̄

T̄

))
> 0. (5.118)
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Note the modification to the standard diffusionless criterion for instability in the

case of interchange modes (1.4), as well as the isothermal, large ky case considered

by Gilman (1970), given by (5.28). In criterion (5.118), the stability depends not

only on the density and magnetic field gradients, but also on the temperature

gradient of the basic state, which is allowed in this case to be non-zero.

We may also find the non-zero solution, so, for Pγ,β = 0, given by

so = ±
√
s2
± = ±

√
−f2 ±

√
f 2

2 − 4f4f0

2f4

, (5.119)

where the four solutions so are two pairs given by so = ±s+ ,±s− .

In the case of Pγ,β 6= 0, while the condition for marginal stability, s = 0, is

still given by f0 = 0, we cannot obtain the solution to the full quartic dispersion

relation for a general growth rate. Given solution (5.119), however, we are able

to find a perturbative solution to (5.110) for small values of |Pγ,β|. Let us take

small values of γ and β such that

Pγ,β = εP̂ , (5.120)

for ε � 1, with P̂ a complex, O(1) function. We may perturb the solutions so

given by (5.119), according to

so 7→ so + εP̂ ŝo +O(ε2). (5.121)

We substitute this into the dispersion relation (5.110) to obtain

f4(so + εP̂ ŝo +O(ε2))4 + εP̂ f3(so + εP̂ ŝo +O(ε2))3 (5.122)

+f2(so + εP̂ ŝo +O(ε2))2 + εP̂ f1(so + εP̂ ŝo +O(ε2)) + f0 = 0.

Taking the balance of O(ε0) terms, we obtain

f4s
4
o + f2s

2
o + f0 = 0, (5.123)

which simply gives the definition of so, as we expect. If we take the next balance

of terms, O(ε), we have

4f4s
3
oP̂ ŝo + f3s

3
oP̂ + 2f2soŝoP̂ + f1soP̂ = 0, (5.124)
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from which we may obtain an expression for ŝo:

ŝo = −
(

f3s
2
o + f1

4f4s2
o + 2f2

)
. (5.125)

Thus, for γ, β � 1, we have derived a perturbative solution to Equation (5.110)

about the Pγ,β = 0 solution so given by (5.119). Given, however, that ŝo is a

complex function that depends sensitively on the functions f0 − f4, we may not,

in general, say whether the effect of such a perturbation will be stabilising or

destabilising, or, indeed, whether oscillatory or growing modes or both will be

affected: this depends on the spatial dependence of the basic states chosen.

5.5.2 Isothermal 3D system

If we make the same assumptions but no longer specify that kx = 0, then in the

same way we obtain a set of seven linear algebraic equations:

(s+ β(k2
x + k2

y + k2
z) + ikz(γ − β′) + γ′)b̂x + β′ikxb̂z + B̄ikyv̂

+(B̄′ + ikzB̄)ŵ = 0, (5.126)

(s+ β(k2
x + k2

y + k2
z) + ikz(γ − β′) + γ′)b̂y + β′iky b̂z − B̄ikxv̂ = 0, (5.127)

(s+ β(k2
x + k2

y + k2
z) + ikzγ)b̂z − B̄ikxŵ = 0, (5.128)

−FB̄′b̂z + sρ̄û+ T̄ ikxρ̂ = 0, (5.129)

FB̄iky b̂x − FB̄ikxb̂y + sρ̄v̂ + T̄ ikyρ̂ = 0, (5.130)

F (B̄′ + ikzB̄)b̂x − FB̄ikxb̂z + sρ̄ŵ + (T̄ ′ + ikzT̄ − θ(m+ 1))ρ̂ = 0, (5.131)

ρ̄ikxû+ ρ̄ikyv̂ + (ρ̄′ + ikzρ̄)ŵ + sρ̂ = 0. (5.132)

Equations (5.126) – (5.132) lead to the following seventh order dispersion relation:

g7s
7 + g6s

6 + g5s
5 + g4s

4 + g3s
3 + g2s

2 + g1s+ g0 = 0. (5.133)

Owing to their length, the coefficients g0−g7 are written out in full in Appendix B,

to which the reader may refer. Marginal stability for non-zero γ and β is given by

g0 = 0. Note also that the coefficients g0, g2, g4 and g6 of the even power terms

depend on γ and β in such a way that they are all zero when γ, β = 0. The de-

pendence, however, cannot be characterised in terms of a single factor analogous
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to (5.111) as in the interchange case. Nevertheless, in the case of γ = β = 0,

the dispersion relation becomes cubic in s2. While a solution can, formally, be

found, and its perturbative modification to the growth rate for γ, β � 1 (analo-

gous to (5.125) for the 3D case) can also be obtained, this would be much more

mathematically involved.

Instead, we shall consider another interchange system, based on slightly different

physical assumptions.

5.5.3 Adiabatic, interchange system

We now include temperature perturbation T̃ in order to model more closely the

full system, although we still exclude diffusive effects apart from β. This intro-

duces an additional equation to satisfy, the energy equation for T̃ . We consider

the following interchange system:

∂tb̃x = (β(∂2
y + ∂2

z ) + β′∂z − γ′ − γ∂z)b̃x − B̄∂yṽ − (B̄′ + B̄∂z)w̃, (5.134)

ρ̄∂tṽ = −FB̄∂y b̃x − ρ̄∂yT̃ − T̄ ∂yρ̃, (5.135)

ρ̄∂tw̃ = −F (B̄′ + B̄∂z)b̃x − (ρ̄′ + ρ̄∂z)T̃ − (T̄ ′ + T̄ ∂z − θ(m+ 1))ρ̃, (5.136)

∂tT̃ = −(Γ− 1)T̄ ∂yṽ − ((Γ− 1)T̄ ∂z + T̄ ′)w̃, (5.137)

∂tρ̃ = −ρ̄∂yṽ − (ρ̄′ + ρ̄∂z)w̃. (5.138)

Applying interchange perturbations of the form

ξ̃ = ξ̂ exp(st+ ikyy + ikzz), (5.139)

leads to the algebraic system:

(s+ β(k2
y + k2

z) + ikz(γ − β′) + γ′)b̂x + B̄ikyv̂ + (B̄′ + ikzB̄)ŵ = 0, (5.140)

ikyFB̄b̂x + sρ̄v̂ + ikyρ̄T̂ + ikyT̄ ρ̂ = 0, (5.141)

F (B̄′ + ikzB̄)b̂x + sρ̄ŵ + (ρ̄′ + ikzρ̄)T̂ + (T̄ ′ + ikzT̄ − θ(m+ 1))ρ̂ = 0, (5.142)

(Γ− 1)T̄ ikyv̂ + (T̄ ′ + ikz(Γ− 1)T̄ )ŵ + sT̂ = 0, (5.143)

ikyρ̄v̂ + (ρ̄′ + ikzρ̄)ŵ + sρ̂ = 0. (5.144)
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Thus we may once more find a dispersion relation, which is in this case quintic

in s.

ρ̄2s5 + ρ̄2(β(k2
y + k2

z) + ikz(γ − β′) + γ′)s4 (5.145)

+ρ̄(k2
y(FB̄

2 + ΓT̄ ρ̄)− F (B̄′ + ikzB̄)2 − (ρ̄′ + ikzρ̄)(2T̄ ′ + ΓikzT̄ − θ(m+ 1)))s3

+ρ̄(β(k2
y + k2

z) + ikz(γ − β′) + γ′)(k2
yΓT̄ ρ̄− (ρ̄′ + ikzρ̄)(2T̄ ′ + ΓikzT̄ − θ(m+ 1)))s2

−ρ̄k2
y

(
θ(m+ 1)(FB̄2 d

dz
ln

(
B̄

ρ̄

)
+ T̄ ρ̄

d

dz
ln(T̄ ρ̄

1−Γ

))

+FB̄2T̄
d

dz
ln

(
B̄

ρ̄

)
d

dz
ln

(
B̄Γ

T̄ 2

)
+ T̄ 2ρ̄

d

dz
ln
( ρ̄
T̄

) d

dz
ln(T̄ ρ̄

1−Γ

)

)
s

−k2
yT̄ ρ̄

2(β(k2
y + k2

z) + ikz(γ − β′) + γ′)

(
T̄

d

dz
ln
( ρ̄
T̄

)
+ θ(m+ 1)

)
d

dz
ln(T̄ ρ̄

1−Γ

) = 0.

Here, we once more notice that the even powers of s are all multiplied by a factor

of

Pγ,β ≡ β(k2
y + k2

z) + ikz(γ − β′) + γ′, (5.146)

which is zero when the γ and β effects are not present. Since there is no other

dependence on γ or β in this dispersion relation, we may consider two cases:

Pγ,β = 0 (γ = 0 and β = 0) and Pγ,β 6= 0 (γ 6= 0 and/or β 6= 0). We shall

consider the two cases separately.

Following the same approach as for the isothermal interchange instability, we

may write the dispersion relation in the form:

α5s
5 + α4Pγ,βs

4 + α3s
3 + α2Pγ,βs

2 + α1s+ α0Pγ,β = 0, (5.147)

where Pγ,β is given by (5.146) and, dividing (5.145) through by a factor of ρ̄,

α0 = −k2
yT̄ ρ̄

(
T̄

d

dz
ln
( ρ̄
T̄

)
+ θ(m+ 1)

)
d

dz
ln(T̄ ρ̄

1−Γ

), (5.148)

α1 = −k2
y

(
θ(m+ 1)

(
FB̄2 d

dz
ln

(
B̄

ρ̄

)
+ T̄ ρ̄

d

dz
ln(T̄ ρ̄

1−Γ

)

)
(5.149)

+ F B̄2T̄
d

dz
ln

(
B̄

ρ̄

)
d

dz
ln

(
B̄Γ

T̄ 2

)
+ T̄ 2ρ̄

d

dz
ln
( ρ̄
T̄

) d

dz
ln(T̄ ρ̄

1−Γ

)

)
,

α2 = (k2
yΓT̄ ρ̄− (ρ̄′ + ikzρ̄)(2T̄ ′ + ΓikzT̄ − θ(m+ 1))), (5.150)
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α3 = (k2
y(FB̄

2 + ΓT̄ ρ̄)− F (B̄′ + ikzB̄)2

− (ρ̄′ + ikzρ̄)(2T̄ ′ + ΓikzT̄ − θ(m+ 1))), (5.151)

α4 = ρ̄, (5.152)

α5 = ρ̄. (5.153)

We shall now consider separately the cases of Pγ,β = 0 and Pγ,β 6= 0, in order to

discern the effect of γ and β on the instability. In the case of γ, β = 0, implying

that Pγ,β = 0, the dispersion relation given by (5.147) becomes:

α5s
5 + α3s

3 + α1s = 0. (5.154)

This has one root given by s = 0, corresponding to marginal stability. The other

solutions are given by a biquadratic equation in s2:

α5s
4 + α3s

2 + α1 = 0, (5.155)

where α3 is complex, while α5 and α1 are real. Note that the dispersion rela-

tion (5.155) is not of the same form as the dispersion relation for instability in

the magneto-Boussinesq system found by Hughes (1985), which is quadratic in s.

However, it is likely the difference is due to the presence of additional modes in

our system that are not evident under the Boussinesq approximation. Likewise,

we may compare (5.155) to the results of Acheson (1979), who found a quadratic

dispersion relation under the assumption that the scales of perturbation quanti-

ties, as defined by the wavenumbers, are much larger than the variation of the

basic state, allowing the perturbation ρ̃ to be neglected in the mass conservation

equation. We, however, make no such assumption about the size of ky and kz,

explaining the difference in the form of the dispersion relation (5.155) from Ache-

son’s (see also Acheson (1978) for further discussion of comparative scales).

We may find the solutions to (5.155) by making use of the fact that it is bi-

quadratic. Using the quadratic formula, we obtain, for γ = β = 0, solutions:

so = ±
√
s2
± = ±

√
−α3 ±

√
α2

3 − 4α5α1

2α5

. (5.156)
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As in the isothermal case, the roots are given by two pairs with so = ±s+ ,±s− .

Note that for α1 = 0, we obtain either an additional so = 0 solution (marginal

stability), or a solution so = ±
√
−α3/α5, and therefore we cannot say that the

criterion α1 = 0 guarantees marginal stability. Indeed, in excluding the s = 0

solution to the dispersion relation in the form (5.154), and by dividing by s in

order to obtain the biquadratic form (5.155), we have already implicitly made the

assumption that s is non-zero; it is for this reason that we are unable to apply

a similar method to that applied by Hughes (1985) to the magneto-Boussinesq

equations, in order to find an analogous stability criterion in this instance. Note

also that so may be complex, implying an oscillatory instability for some choices

of basic state.

Let us choose α1 6= 0 such that s 6= 0; this may correspond to a stable or unsta-

ble state, which may also have an oscillatory component. We will now consider

the effect of a small increase in γ and/or β from zero on such a case. We now

consider the case of Pγ,β 6= 0, in which the dispersion relation is given by (5.147).

Marginal stability is given by α0 = 0, i.e.(
θ(m+ 1) + T̄

d

dz
ln
( ρ̄
T̄

)) d

dz
ln(T̄ ρ̄

1−Γ

) = 0. (5.157)

Note that although this form of the condition may lack explicit dependence on

B̄, the marginal stability may be affected by the magnetic field via its effect on

the equilibrium basic states T̄ and ρ̄. Indeed, given the forms of the basic states

T̄ and ρ̄ discussed in Section 2.13 and their derivation from B̄ for magnetohy-

drostatic equilibrium, the condition (5.157) may also be written to show explicit

dependence on B̄. Using the gas law (1.36) to eliminate T̄ , as well as the as-

sumption of magnetohydrostatic equilibrium (2.42) originally used to derive the

density basic state, we may write the condition for marginal stability (5.157) in

the form (
2p̄

d

dz
ln ρ̄+ FB̄2 d

dz
ln B̄

)
d

dz
ln(p̄ρ̄

−Γ

) = 0. (5.158)

From (5.158), we can see that the criterion for marginal stability does indeed

depend on B̄, with implicit dependence on γ and β via their effect on the equi-

librium basic state. Equally though, this criterion for marginal stability is also
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reliant on γ and β in the sense that it only applies at all if γ and β are non-

zero, by the form of the dispersion relation (5.147); if γ, β = 0, (5.158) does not

give marginal stability, as we revert to the Pγ,β = 0 case discussed previously,

characterised by the dispersion relation (5.154). As soon as γ and/or β become

non-zero, however, the criterion (5.158) applies.

We now return to considering Equation (5.147). The full quintic dispersion rela-

tion cannot be solved analytically for a general growth rate, as Equation (5.155)

can. Given the solution (5.156), however, we are able to find a perturbative solu-

tion to (5.147) for small values of |Pγ,β|, using the same method as in Section 5.5.1.

Let us take small values of γ and β such that

Pγ,β = εP̂ , (5.159)

for ε� 1, with P̂ the complex form of Pγ,β involving γ and β. We may perturb

the solutions so given by (5.156), according to

so 7→ so + εP̂ ŝo +O(ε2). (5.160)

We substitute this into the dispersion relation (5.147) to obtain

α5(so + εP̂ ŝo +O(ε2))5 + α4εP̂ (so + εP̂ ŝo +O(ε2))4 + α3(so + εP̂ ŝo +O(ε2))3

+α2εP̂ (so + εP̂ ŝo +O(ε2))2 + α1(so + εP̂ ŝo +O(ε2)) + α0εP̂ = 0. (5.161)

Note that the O(1) balance of terms gives

α5s
5
o + α3s

3
o + α1so = 0, (5.162)

which is equivalent to Equation (5.154). Taking the next balance, of O(ε) terms,

gives:

5α5s
4
oŝo + α4s

4
o + 3α3s

2
oŝo + α2s

2
o + α1ŝo + α0 = 0, (5.163)

which allows us to find ŝo:

ŝo = −
(

α4s
4
o + α2s

2
o + α0

5α5s4
o + 3α3s2

o + α1

)
, (5.164)

giving the form of the first order perturbation to the solution when γ, β 6= 0 and

� 1. Given the dependence of coefficients (5.148) – (5.153), it is not immediately
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clear whether such a perturbation is stabilising or destabilising; as in the isother-

mal case, the sign of Pγ,β ŝo depends on the form and gradients of the basic states

in a sensitive way, as well as the scale of the instability given by ky and kz, and

the parameters chosen. It should, however, be possible to construct a set of basic

states for which the real part of Pγ,β ŝo is a positive perturbation to the solutions

so, and thus γ and β further destabilise the system to stationary instability.

In addition to this, given that Pγ,β, α2 and α3 are complex functions, it is also

possible that the addition of γ and β amplifies oscillatory modes, or, if we re-

strict so to real values, destabilises them. This would be a potential area for

future extensions of this work. However, any such future analysis should take

into account the limitations of the local approach as we have applied it, as we

shall now discuss.

5.5.4 Applicability of the Local Approximation

A local analysis such as that presented here is applicable only in a given set of

circumstances. First of all, we require the background states to vary slowly in

the system, which is not inconsistent with the systems we consider here. More

pertinent, however, is the addition of a directional velocity γ to the system. In

the linearised system we have considered, the addition of γ, a downwards-directed

velocity, breaks the reflectional symmetry in the vertical direction. However, in

cases where the reflectional symmetry is broken in a finite domain, a local analy-

sis only yields correct results if the criterion for absolute instability is considered.

This is as opposed to convective instability, which onsets before absolute insta-

bility. An early proponent of this distinction was Briggs (1964) (see the review

of Huerre & Monkewitz (1990) for further discussion). Convective instability is

associated with systems where the group velocity of disturbances is non-zero.

This means that, at a given point, the instability structure may be seen to grow

although it is only moving past that point, and will decay once again. Absolute

instability, on the other hand, requires that there is a growing instability at every

point in the domain, and is a more restrictive criterion than convective instability.
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In terms of a system akin to that stated above, the criterion for absolute in-

stability requires that the dispersion relation have a double root, which is found

in terms of the wavenumber k (in the case of our analysis, where the local approx-

imation is taken in the vertical direction, this corresponds to kz). However, meet-

ing this condition for a double root means that we must allow the wavenumber to

be complex in order to satisfy this double root criterion for absolute instability.

(Refer to the works cited above as well as Soward & Jones (1983), Couairon &

Chomaz (1997), Meunier et al. (1997), and Tobias et al. (1998b), for further de-

tails and examples of the use of convective and absolute instability to determine

global instability in a finite domain.)

In a system such as above, owing to symmetry breaking by the addition of γ,

the local approximation is only accurate for a finite domain when we consider

the full absolute instability. Thus, the fact that we have not allowed kz to be

complex represents a major limitation to our approach.

5.6 Conclusions

In this chapter we have considered the diffusionless case of the instability. We

have sought to understand several previously-studied systems with the inclusion

of γ, in order to find how this additional effect changes the form of the analytical

relations governing the system.

We have extended the asymptotic analysis of Gilman (1970), to include an addi-

tional γ effect present in the induction equation. We have shown that in the case

of the 3D instability with γ 6= 0, we obtain a second-order ODE rather than the

algebraic equation that emerges when γ = 0, as in Gilman’s original work. We

also show that for interchange modes, the equation becomes a first order ODE

in terms of the perturbed quantities, which is also an eigenvalue problem in the

growth rate s. The criterion for marginal stability, however, still has the same

dependence on the gradient of the density and magnetic field basic states, offering

support to the idea that the primary way that the γ effect destabilises the system

to magnetic buoyancy is via its effect on the initial equilibrium.
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In an effort to bridge the gap between this small-scale case and the more general

diffusionless system, we then consider the interchange instability — following Miz-

erski et al. (2013) — with an additional γ effect. We find that the equation for

the perturbation velocity ŵ becomes a third order ODE in this case, with a high-

est order coefficient proportional to γ. This suggests a boundary layer eigenvalue

problem as γ → 0.

We consider two model third order eigenvalue problems, finding that by using

asymptotic matching at the boundary layer, we may find a relation that gives

the eigenvalues in terms of the value of γ, an approach that would also work for

the full system. This analysis also shows that the boundary conditions must be

carefully chosen, as in the case of a boundary layer solution, fixing the gradient

(for example) at the opposite end of the domain can completely change the form

of the solution obtained.

Finally, we have taken a local approximation to the form of the instability, pro-

vided our domain is confined to a region in which the spatial variation of the

background states is small compared to the size of the region under considera-

tion. With this assumption, we are able to derive dispersion relations for the

instability. We consider several cases: an isothermal case, for both interchange

and 3D modes, and an adiabatic interchange case.

In the first of these cases, that of the isothermal interchange instability, we show

that the dispersion relation is quartic in s for γ 6= 0 and/or β 6= 0, and that the

γ and β effects appear in a factor of the form Pγ,β = β(k2
y + k2

z) + ikz(γ− β′) + γ′

that multiplies the s1 and s3 terms, thus reducing the system to biquadratic when

γ = β = 0. In addition, we find that the dispersion relation for 3D modes in this

case is a seventh order polynomial, which becomes cubic in s2 for γ = β = 0.

We also consider the case of interchange modes in the adiabatic system. In

this case, we obtain a quintic dispersion relation, in which the even power terms

are multiplied by Pγ,β. Therefore, once again we obtain a biquadratic dispersion
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relation when γ = β = 0. We solve this, and then find the perturbed form of

the roots when γ, β ∼ ε � 1, in terms of the coefficients of the initial quintic

dispersion relation.

The main limitation of such an approach as regards the system with γ, is the

broken symmetry introduced by the directional turbulent pumping effect. As

discussed in Section 5.5.4, a local analysis such as that we consider here is only

able to produce correct stability criteria in a system with broken reflectional sym-

metry in a finite domain if a full analysis of the absolute instability is carried out,

for which we would require an additional criterion; that the dispersion relation has

a double root. To be fully consistent, such an analysis would require a complex

vertical wavenumber. Therefore, this approach should be treated with caution

as a method for deriving stability criteria. It is, however, still demonstrative of

the effect of γ and β on the system, and the full consideration of the absolute

instability of such a system represents grounds for future work.

This consideration of the magnetic buoyancy instability of a diffusionless sys-

tem has been motivated by extant mathematically interesting results under the

non-diffusive assumption, such as that of Gilman and subsequent related work.

In considering the diffusionless case, we aim to understand how the inclusion of

γ affects such analytic results, and thus how it may act on the instability as a

whole. However, as we have discussed in Chapters 2 and 3, it is possible that

applying γ without an associated β effect produces a basic state that is at best

unphysical, and may also be numerically problematic, given the fact that discon-

tinuities in the basic state field can more easily arise without β (or the standard

molecular diffusivity) to “smooth” them. Furthermore, there are other diffusive

effects present in the full system, such as viscous diffusion terms. While we have

assumed that these constitute relatively small effects throughout the rest of this

analysis (see parameter values, Table 3.1), we have shown that especially in the

absence of β, the molecular magnetic diffusivity is critical to being able to solve

for the magnetic field basic state. Given the importance of the gradient of the

basic state that we have discussed elsewhere, this may represent a significant

difficulty.
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Chapter 6

Conclusions and Discussion

We have extended previous magnetic buoyancy instability studies by incorporat-

ing the effect of the overlying turbulent convection. We do this by introducing the

turbulent pumping and a turbulent diffusion effects, which arise from mean field

electrodynamics, in the upper part of a layer of magnetic field, with a view to mod-

elling the region of the solar tachocline. We have first considered an equilibrium

state under these effects, seeking to understand the effect of choice of boundary

conditions, parameters, and spatial form of the turbulent effects on this state. We

have then sought to determine the scale-dependence of the instability, considering

the comparative effect of the turbulent pumping and turbulent diffusion on the

system. We analyse both their influence on the equilibrium basic state itself, and

their effect on the perturbed linear system. Throughout this analysis, we have

found that the nature of the basic state is the most important factor in determin-

ing the growth rate and horizontal and vertical spatial structure of the instability.

We have also considered the diffusionless case, using analytic methods to derive

results analogous to existing relations that have been found for the instability,

but with the additional effect of the turbulent pumping γ. We have studied the

full diffusionless interchange instability, and considered model problems to un-

derstand better the effect of the addition of turbulent pumping, showing that

here the presence of γ leads to the formation of a boundary layer. Finally, we

have taken a local approximation in the diffusionless case, and derived analytic

dispersion relations involving γ for isothermal and adiabatic systems. We also
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comment on the limit of the applicability of this local approach.

We will now discuss the results of each part of this work, as well as its limi-

tations, and ways in which it could be extended in future.

6.1 Equilibrium Basic States

We have considered the mean field induction equation in the presence of turbulent

diffusion and turbulent pumping, under conditions of magnetohydrostatic equi-

librium. We have solved this problem subject to a variety of different boundary

conditions, in an effort to try to find a physically sensible equilibrium field to use

as the basic state for the full linear stability problem. We have compared nu-

merical solutions of the second-order ODE for the equilibrium field with analytic

and semi-analytic estimates in order to gain an understanding of the behaviour

of the equilibrium as a function of the strength of the γ and β effects, as well as

the location at which they are “switched off” within the layer.

As a result of this basic state analysis, for our instability studies we have chosen a

basic state with a fixed magnetic field value of zero at the top of the layer, as well

as a boundary condition that fixes the total magnetic flux within the domain.

This, however, is not the only valid choice, and given the later result that the

linear stability depends strongly on the basic state it would certainly be possible

and valuable to extend this work by exploring more equilibrium states in greater

detail, both analytically and numerically.

6.2 Linear Stability Analysis: Conclusions

6.2.1 Action of γ = β on the basic state and perturbed

quantities in combination

The addition of γ and β, with “amplitude” γm representing additional turbulence

in the upper part of the layer, in general has the effect of destabilising the system

to magnetic buoyancy, primarily via its effect on the equilibrium field. In general,
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the effect of increased levels of γ and β is to increase the growth rate of the linear

instability overall — by increasing the gradient of the basic state field — and to

change the most unstable mode from a 3D to an interchange mode. This latter

effect, however, is more rapid with the increase in the amount of turbulence when

the field strength parameter F is larger.

6.2.2 Effect of varying field strength F

We show that the most unstable mode traces out a path in kx-ky space, from 3D

(in general) to an interchange mode as γm increases. However, for higher F this

transition to interchange is much faster, i.e. lower values of γm are required to

make the most unstable mode an interchange mode.

6.2.3 Varying the relative strength of γ and β

We consider cases where γ and β act on both the basic state and the perturba-

tions, with the two effects proportional to one another. We find evidence that the

greatest effect on the horizontal scale and growth rate of the instability comes via

the effect of the field gradient of the basic state, with the perturbation profiles

centred around the region where the gradient of the basic state is the highest.

This is particularly well exemplified by the case of β = 0.1γ, which we have

studied in more detail in Section 3.6.4.

6.2.4 Scale dependence of the instability

Throughout this work, we have represented the region of turbulence by the turbu-

lent pumping and turbulent diffusion effects. By their formal derivation, however,

these are strictly mean field effects. Applying γ and β equally to all scales of the

instability carries the implicit assumption that all scales that are unstable are of

the large, mean field scale, i.e. large compared to the typical scale of the tur-

bulent convective motion. This is likely not to be the case at the base of the

convection zone. Therefore, we seek to understand the effect of applying γ and

β preferentially to the larger scales of the instability.
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Given that the mean field — by definition the largest scale of variation in the

system — can be said to correspond to the basic state in the terminology of the

linear stability problem, we have considered the comparative action of the γ and

β effects on the basic state versus their influence on the perturbations. By com-

paring cases where the turbulent effects are applied to the basic state only, to the

basic state and preferentially to the large-scale perturbations, or to the perturbed

quantities alone (an artificial case meant for comparison only) we demonstrate

that the primary factor affecting the instability and how it interacts with γ and

β is the basic state.

6.2.5 Prescribed basic states

For the sake of comparison, we also consider prescribed basic states that do not

depend on γ and β. First, as discussed above, we consider perturbations acted

upon by γ and β, but applied to the linear equilibrium state of the field when

the turbulent effects are not present. In this case, we find that the “shift” to

interchange modes as the most unstable modes, which we have previously dis-

cussed, does not occur, nor does the increase in the growth rate of the instability

as γm increases. In fact, we see a slight stabilising effect with increasing γm; this

suppression of the instability in the case of prescribed linear basic state, however,

is small compared with the change in the growth rate via the action of γ and β

on the equilibrium field.

We also consider the action of γ and β on a prescribed “top hat” field, moti-

vated by the instances within the literature when such fields have been used as

the basis for linear stability analysis and nonlinear simulation. We find that in

the case of this form of basic state field, subject to γ and β on the perturbed

quantities, 2D undular modes (those with ky = 0) are increasingly destabilised

with increasing γm. This leads to a secondary local maximum of the growth rate

in kx-ky space, which becomes even more unstable than the most unstable inter-

change mode if large enough γ and β effects are introduced. This change in the

form of the instability from interchange to 2D undular only occurs in this case of

all those we have studied, and is likely due to the high field gradient at the upper
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and lower boundaries of the “top hat” function basic state.

Note that the top hat function prescribed in this case does not represent an

equilibrium field under the effects of γ and β, but was chosen following the choice

of functional form of magnetic field by Barker et al. (2012) as the initial state for

their nonlinear simulation. As we showed in Section 2.12, however, it is possible

to produce a top hat field that represents equilibrium for some functional forms

of γ and β. The forms of γ and β required, however, do not model a physical

system where a downwards turbulent pumping velocity and an associated turbu-

lent diffusion is present in the upper part of a layer but not below, and so we

do not use the associated magnetic field profile as the basic state for the linear

stability problem. However, it may also be valuable as a comparison to address

the stability problem with a top hat basic state field with the γ and β profiles

shown to sustain it as an equilibrium, in order to fully understand the stability

of the system under these conditions.

In general, we conclude that the effect of turbulent transport on the basic state

field is the primary determining factor in the stability of the system to magnetic

buoyancy, and using a self-consistent equilibrium field is expected to be invaluable

if we seek to understand the properties of the instability.

6.3 Diffusionless Case: Conclusions

6.3.1 Diffusionless, small scale limit

We have sought to find an analogous result to that of Gilman (1970) for the

interchange instability in the asymptotic limit ky → 0, with an additional γ effect.

We find that, where Gilman derived an algebraic “dispersion relation” depending

on the basic states of the system, with γ present the vertical derivatives cannot

be eliminated in the same way. Instead we obtain a first order ODE in terms of

the vertical velocity perturbation, with γ multiplying the derivative term. Note,

however, that the criterion for marginal stability is not explicitly changed by the

addition of γ. This implies that the onset of instability at least, in this case, is
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only implicitly affected by γ, via the action of γ on the equilibrium states. This

can be said to be broadly consistent with what we find in the preceding numerical

work, where γ primarily affects the instability via its effect on the equilibrium

basic state.

6.3.2 Diffusionless interchange instability

We also consider the diffusionless interchange instability without the small-scale

assumption, in order to better understand how this limiting case relates to the full

system. By analogy to the initial approach of Mizerski et al. (2013), before making

any assumption about the size of ky we consider the diffusionless instability with

the addition of a γ effect. Without γ the system is second order; adding γ,

however, makes the equation for the vertical velocity a third order ODE. This

increase in the order of the equation implies a boundary layer solution as γ → 0.

Owing to the complex dependence of the coefficients on γ in the full system,

we consider two model problems that exhibit equivalent asymptotic behaviour

in order to understand the effect of γ on such a system. We solve these model

systems for several different choices of boundary condition, and find analytic and

numerical solutions.

6.3.3 Local Analysis

By a similar approach to that applied by Acheson (1979) and Hughes (1985), we

take a local approximation to the system, and assume periodicity of perturbed

quantities in the vertical direction as well as the horizontal. This assumption

allows the linearised equations to be written as an algebraic system, which then

allows the derivation of a dispersion relation, and of criteria for instability. We

include the γ and β effects in the induction equation, to understand their effects

on the instability in analytical terms. We consider two types of system, in the

case of zero viscous and molecular magnetic diffusion terms; first, an “isothermal”

system, in which the thermal diffusivity is effectively infinite and therefore tem-

perature perturbations cannot grow, but rather decay fast enough that they are

not included in the system. Despite this, the background temperature profile may

still be vertically stratified. In this case, for interchange modes we find that the
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dispersion relation is quartic, becoming biquadratic for the case of γ = β = 0. We

also derive the associated criterion for stationary instability of interchange modes,

and derive the perturbation to the solutions to the γ = β = 0 dispersion relation

in the asymptotic limit of small γ and β, showing that the turbulent effects can

be stabilising or destabilising, and, indeed, are capable of destabilising oscillatory

modes as well as the growing instability. In addition, we find that the 3D dis-

persion relation is seventh order, with coefficients presented in full in Appendix B.

We also consider the case of the adiabatic interchange instability with the addi-

tion of γ and β. In this case we obtain a quintic dispersion relation, which again

reduces to a biquadratic form when γ = β = 0. We solve this perturbatively in

the case of small γ and β, and show that again the effect of the perturbations

may be stabilising or destabilising, in a way that depends on a complex function

of the basic states of the system. In addition to this, we show that the criterion

for marginal stability is given by a different function of the basic states in the case

of non-zero γ and/or β, as opposed to the equivalent criterion when γ = β = 0.

We also show that although the addition of γ and β changes the criterion for the

onset of interchange instability, nevertheless all of the dependence on γ and β in

this criterion is implicit, introduced via the assumption that the basic state field

B̄ is a function of γ and β.

The results of such a local approximation, however, must be treated with caution

under these circumstances. As discussed in Section 5.5.4, in order to correctly

impose the more stringent condition that we are considering the onset of absolute,

rather than merely convective instability — required by the reflectional symme-

try breaking that results from the presence of the downwards advection velocity

γ, for a finite domain such as that of our analysis — we strictly require a complex

wavenumber kz in order to impose the condition that the system must have a

double root at the onset of absolute instability.
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6.4 Limitations

6.4.1 Parameter Regime

As is inevitably the case with numerical work in this area, we are not able to

access true astrophysical parameter regimes in such a study, specifically in terms

of the magnetic and fluid Reynolds numbers. Converting into our notation and

using the definitions of our dimensionless parameters (see Section 1.5.3) to find

the magnetic Reynolds number, we have

Rm ∼ UL

η
∼
√
RTodρocp
κζo

∼ 1

Ckζo
∼ 104,

and a fluid Reynolds number of

Re ∼ UL

ν
∼
√
RTodρocp
κσ

∼ 1

Ckσ
∼ 2× 104,

as well as the magnetic Prandtl number,

Pm ∼ Rm

Re
∼ 0.5,

for our parameter values of ζo = 0.01, Ck = 0.01, and σ = 0.005. However, in the

case of the solar convection zone the values of these quantities are expected to fall

within ranges of Rm ∼ 106−1010, Re ∼ 109−1013, and Pm ∼ 10−3 − 10−6 (Hood

& Hughes (2011), Ossendrijver, 2003). The fact that the physically correct pa-

rameter range is currently numerically inaccessible is an issue that is persistent

for analyses such as this. However, we may at least reach the parameter ranges of

Rm,Re� 1 and Pm < 1, allowing us to gain some insight into the characteristics

of such instabilities in astrophysical contexts.

6.4.2 Validity of the Mean Field Approximation

Throughout this work, we have assumed that the turbulent convection exhibits

a separation of scales, i.e., that the largest scale of the field (the mean field) is

much larger than the scale of turbulent variation, such that over an intermediate

scale the turbulent fluctuations average to zero. However, there is no reason why

such a clear division should be present in the solar convection zone, in which we

see a spectrum of scales of variation in the region of turbulent convection.
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6.4.3 Basic state boundary conditions

When calculating the basic state, we chose the boundary condition B̄(0) = 0,

as well as fixing the integrated magnetic flux over the interval concerned. Given

that it is not fully known what the “real” boundary conditions are in this region

of the Sun, the conditions we have chosen may be as physically realistic as any

other choice we may make. With this in mind, the boundary conditions were

chosen because they produced physically meaningful basic states that are not in-

consistent with what we know of the magnetic field in the solar convection zone,

rather than because the boundary conditions are inherently physically meaning-

ful or imposed by some specific property of the region in themselves. Fixing the

flux prevents the numerical scheme from arriving at the zero solution. It also

prevents the value of the field gradient from increasing by orders of magnitude

at the base of the layer when additional γ and β are added: that is to say, it

places an upper limit on the amount of field “drawn in” from above, which is a

physically reasonable requirement even though it is imposed artificially.

The B̄(0) = 0 boundary condition, meanwhile, was chosen because fixing the

value of the field at the top of the layer was found preferable to fixing its gra-

dient, as in the latter case the application of higher levels of γ and β can give

rise to large increases in the field gradient for some levels of turbulence. It is

not a physical scenario to have the field tend to −∞ for some given finite value

of γm and reverse before becoming finite again, and so the boundary condition

B̄(0) = 0 was chosen because it provided “well behaved” solutions that did not

exhibit this property. However, it may also be valuable to consider equilibrium

fields with Dirichlet boundary conditions fixed at the bottom of the layer, as it

may be more physically reasonable for the field to be “fixed” in the radiative

zone, below the level of the tachocline, than in the convection zone above.

More research is needed to be able to fix a boundary condition that more ac-

curately represents the physical reality in this region, especially given the result

that the gradient of the equilibrium basic state — determined by solving with γ

and β — strongly determines the linear stability to magnetic buoyancy.
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6.5 Extensions of the Research

6.5.1 Rotation

None of the analysis in this thesis has involved rotation. In the real solar con-

vection zone, however, rotation and the Coriolis effect may be significant. We

may consider the importance of rotation by comparing the growth time of the

instability to the rotation time of the Sun, which is on the order of about 27 days

when an average is taken over the differential rotation profile, with a minimum

value of approximately 24.5 days at the equator as discussed in Chapter 1. Let

us consider the growth rates of the instability found in Chapters 3 and 4 (see

Figures 3.13 and 4.1). We may scale the growth time of the instability (given by

<(s)−1) with the sound travel time, to produce a dimensional growth time. We

consider the linear growth of the instability within the tachocline region. The

sound travel time across this region, which makes up approximately 0.04% of the

solar radius, is given by:

τs =
0.04R�
cs

≈ 121 seconds,

where the solar radius R� = 6.96×108 m, and the sound speed in the region of the

solar tachocline cs = 2.3 × 105 ms−1 (Gough, 2007). From this, we find that the

maximum dimensionless growth rate of the instability that we find, <(s) ∼ 1.5

(for F = 10−1, in Figure 3.13), gives a growth time on the order of 1.3 minutes.

This is much less than the average rotational period, over which rotational effects

become significant, so they can be neglected in this case. Likewise, for the case

of F = 10−3, with typical growth rates of the order <(s) ∼ 0.1, we find a typical

growth time of approximately 20.2 minutes, a timescale over which the rotation is

similarly insignificant. By contrast, however, in the case of F = 10−5, we obtain

a typical growth rate <(s) ∼ 10−4, giving a growth time of approximately 14

days. This, clearly, is closer to being on the order of the timescale of the rotation

period, and so in the case of low field strength F , rotation may be a significant

factor in the evolution of the instability and should not be neglected in this pa-

rameter regime.
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In general, future work could include a Coriolis term in the momentum equa-

tion in order to quantify its effect on the instability under the turbulent effects

we have studied. In addition, the γ and β effects themselves are understood to

depend on rotation, so future research on similar systems would benefit from

considering its effect regardless.

6.5.2 α Effect

This analysis has included the γ and β effects that result from applying the

mean field approximation in order to characterise the turbulence in the region

considered. However, it does not include the α effect present in Equation (1.25).

The reason for this is that the consideration of α would have introduced another

level of complexity, and is outside the scope of this analysis. Including it, however,

may constitute a logical progression of this work.

6.5.3 Nonlinear Regime

All the results presented here have been obtained under the assumption of a linear

stability analysis. Once such instabilities have been allowed to evolve for a time,

however, nonlinear effects quickly begin to become significant. Therefore, there is

also a need to extend this work into the nonlinear regime, to build on the results

presented here by means of time-dependent simulation. Future work could make

use of an equilibrium state similar to the one we have discussed, and simulate its

time evolution under the effect of turbulence.

6.6 Concluding Remarks

The study of the solar magnetic field is a current and rapidly expanding area of

research, driven by ever-improving computational power. Understanding mag-

netohydrodynamic instabilities under the action of turbulence, and modelling

turbulent convection with the mean field approach is but one small aspect of

this. In future, we hope that numerical, theoretical, and observational lines of

enquiry will be combined to improve our understanding of such instability pro-

cesses, and how they relate to the solar dynamo. Furthermore, owing to the Sun’s
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proximity we have a relative abundance of observational evidence to inform and

support our theoretical understanding of the dynamo process.

Of course, with an understanding of the solar dynamo we pave the way for un-

derstanding other astrophysical dynamo processes such as planetary dynamos,

or stellar dynamos for stars of different mass and convective structure than our

own, or the dynamo processes occurring in astrophysical discs. Instabilities drive

such processes, and studying them broadens our understanding of astrophysical

objects and how their magnetic fields are produced and maintained.
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Appendix A

Analytic solution for step

functions γ = β, B̄′(0) = λ, φ(1) = 1

We consider a case analogous to that of Section 2.6.1, though instead of B̄′(0) = 0,

we take the more general boundary condition B̄′(0) = λ. With this and the con-

stant flux condition φ(1) = 1, we solve the equilibrium induction equation, (2.2),

for step functions γ and β with jump conditions (2.9) and (2.10), using the same

method as in Section 2.6.1.

Recall that for equilibrium,

(ζoCk + β)B̄′′ + (β′ − γ)B̄′ − γ′B̄ = 0,

and we assume:

β = γ =

{
γm = constant 0 ≤ z < zi
0 zi < z ≤ 1

.

The chosen boundary conditions are

φ(1) =

∫ 1

0

B̄(z)dz = 1, (A.1)

B̄′(0) = λ, (A.2)

where λ is a constant. As before, we solve for each region of the domain separately

and obtain

B̄ =

{
P + Q exp

(
γmz

ζoCk+γm

)
0 ≤ z < zi

R + Sz zi < z ≤ 1
.
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B̄′(0) = λ, φ(1) = 1

Applying the boundary condition B̄′(0) = λ gives an expression for Q:

Q =
λ(ζoCk + γm)

γm
. (A.3)

We then apply the jump condition (2.9) to find

P +Q exp

(
γmzi

ζoCk + γm

)
−R− Szi = 0. (A.4)

Applying (2.10) gives

γmP + ζoCkS = 0. (A.5)

Finally, we may apply the constant flux boundary condition φ(1) = 1 to obtain

Pzi+Q

(
ζoCk + γm

γm

)(
exp

(
γmzi

ζoCk + γm

)
+ 1

)
+R(1−zi)+

S

2
(1−z2

i ) = 1. (A.6)

Solving these equations simultaneously in the same way as in Section 2.6.1, we

find:

S =

(
1− λ(ζoCk+γm)

γm

((
ζoCk
γm

+ 2− zi
)

exp
(

γmz
ζoCk+γm

)
− ζoCk

γm
− 1
))

(
− ζoCk

γm
+ (1−zi)2

2

) , (A.7)

P = −ζoCk
γm

S, (A.8)

R =
λ(ζoCk + γm)

γm
exp

(
γmzi

ζoCk + γm

)
−
(
zi +

ζoCk
γm

)
S, (A.9)

Q =
λ(ζoCk + γm)

γm
. (A.10)

Note that as expected, these coefficients reduce to the forms (2.16) – (2.18), as

well as Q = 0, when λ→ 0, which is the case discussed in Section 2.6.1. The case

considered numerically in Section 2.5 is approximated in the analytical (a → 0)

limit by the solution presented here with λ = 1.
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Appendix B

Coefficients of the dispersion

relation for the 3D isothermal

instability

For Equation (5.133) in Chapter 5, the coefficient functions g0 − g7, derived by

means of symbolic computation, are given by

g0 = B̄2 F 2 ρ̄ kx
2
(
B̄2 T̄ γ′ kx

4 − T̄ β B̄′2 ky4 − T̄ B̄′2 γ′ ky2 + T̄ B̄′2 β′ ky
2 kz i (B.1)

− T̄ B̄′2 γ kx
2 kz i− T̄ B̄′2 γ ky2 kz i+ B̄2 T̄ β kx

2 ky
4 + B̄2 T̄ β kx

4 ky
2

+ B̄2 T̄ β kx
2 kz

4 + B̄2 T̄ β kx
4 kz

2 + B̄2 T̄ γ′ kx
2 ky

2 + B̄2 T̄ γ kx
2 kz

3 i

− T̄ β B̄′2 kx
2 ky

2 − T̄ β B̄′2 kx2 kz
2 − T̄ β B̄′2 ky2 kz

2 + B̄ T̄ B̄′ β′ kx
4

+ B̄ β B̄′ T̄ ′ ky
4 + B̄ B̄′ T̄ ′ γ′ kx

2 + B̄ B̄′ T̄ ′ γ′ ky
2 − B̄ β B̄′ ky

4 θ(m+ 1)

− B̄ B̄′ γ′ kx
2 θ(m+ 1)− B̄ B̄′ γ′ ky

2 θ(m+ 1) + B̄2 T̄ γ kx
4 kz i

− B̄ B̄′ T̄ ′ β′ kx
2 kz i− B̄ B̄′ T̄ ′ β′ ky

2 kz i+ B̄ B̄′ T̄ ′ γ kx
2 kz i+ B̄ B̄′ T̄ ′ γ ky

2 kz i

+ B̄ B̄′ β′ kx
2 kz θ(m+ 1) i+ B̄ B̄′ β′ ky

2 kz θ(m+ 1) i− B̄ B̄′ γ kx
2 kz θ(m+ 1) i

− B̄ B̄′ γ ky
2 kz θ(m+ 1) i+ 2 B̄2 T̄ β kx

2 ky
2 kz

2 − B̄ T̄ β B̄′ kx
2 kz

3 i

+ B̄ T̄ B̄′ β′ kx
2 ky

2 + B̄ T̄ B̄′ β′ kx
2 kz

2 + B̄ T̄ B̄′ γ kx
2 kz

2 + B̄ β B̄′ T̄ ′ kx
2 ky

2

+ B̄ β B̄′ T̄ ′ kx
2 kz

2 + B̄ β B̄′ T̄ ′ ky
2 kz

2 − B̄ β B̄′ kx
2 ky

2 θ(m+ 1)

− B̄ β B̄′ kx
2 kz

2 θ(m+ 1)− B̄ β B̄′ ky
2 kz

2 θ(m+ 1) + B̄2 T̄ γ kx
2 ky

2 kz i

+ B̄ T̄ B̄′ γ′ kx
2 kz i− B̄ T̄ β B̄′ kx

2 ky
2 kz i

)
,
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g1 = T̄ β3 ρ̄3 ky
8 + T̄ β3 ρ̄3 kz

8 − T̄ ρ̄3 γ3 kz
5 i− β3 T̄ ′ ρ̄3 kz

7 i− T̄ ′ ρ̄3 γ3 kz
4 (B.2)

+ β3 ρ̄3 kz
7 θ(m+ 1) i+ ρ̄3 γ3 kz

4 θ(m+ 1) + B̄4 F 2 ρ̄ γ′ kx
4 − T̄ β β′2 ρ̄3 kz

6

− T̄ β2 β′ ρ̄3 kz
7 2i− T̄ β3 ρ̄′ ρ̄2 kz

7 i+ T̄ β ρ̄3 γ′
2
ky

4 + 2 T̄ β2 ρ̄3 γ′ ky
6

+ T̄ β ρ̄3γ′
2
kz

4 + 2T̄ β2ρ̄3γ′kz
6 − 3T̄ βρ̄3γ2kz

6 + T̄ β2ρ̄3γkz
73i

+ T̄ β′ρ̄3γ2kz
52i− T̄ β′2ρ̄3γkz

5i− T̄ ρ̄′ρ̄2γ3kz
4 + T̄ ρ̄3γ′

2
γkz

3i

− 2T̄ ρ̄3γ′γ2kz
4 + βT̄ ′β′

2
ρ̄3kz

5i− 2β2T̄ ′β′ρ̄3kz
6 − β3T̄ ′ρ̄′ρ̄2ky

6

− β3T̄ ′ρ̄′ρ̄2kz
6 − βT̄ ′ρ̄3γ′

2
kz

3i− β2T̄ ′ρ̄3γ′kz
52i+ βT̄ ′ρ̄3γ2kz

53i

+ 3β2T̄ ′ρ̄3γkz
6 + 2T̄ ′β′ρ̄3γ2kz

4 − T̄ ′β′2ρ̄3γkz
4 + T̄ ′ρ̄′ρ̄2γ3kz

3i

+ T̄ ′ρ̄3γ′
2
γkz

2 + T̄ ′ρ̄3γ′γ2kz
32i− β3T̄ ′ρ̄3ky

6kzi− ββ′2ρ̄3kz
5θ(m+ 1)i

+ 2β2β′ρ̄3kz
6θ(m+ 1) + β3ρ̄′ρ̄2ky

6θ(m+ 1) + β3ρ̄′ρ̄2kz
6θ(m+ 1)

+ βρ̄3γ′
2
kz

3θ(m+ 1)i+ β2ρ̄3γ′kz
5θ(m+ 1)2i− βρ̄3γ2kz

5θ(m+ 1)3i

− 3β2ρ̄3γkz
6θ(m+ 1)− 2β′ρ̄3γ2kz

4θ(m+ 1) + β′
2
ρ̄3γkz

4θ(m+ 1)

− ρ̄′ρ̄2γ3kz
3θ(m+ 1)i− ρ̄3γ′

2
γkz

2θ(m+ 1)− ρ̄3γ′γ2kz
3θ(m+ 1)2i

+ β3ρ̄3ky
6kzθ(m+ 1)i+ T̄ β3ρ̄3kx

2ky
6 + T̄ β3ρ̄3kx

2kz
6 + 4T̄ β3ρ̄3ky

2kz
6

+ 6T̄ β3ρ̄3ky
4kz

4 + 4T̄ β3ρ̄3ky
6kz

2 − T̄ ρ̄3γ3kx
2kz

3i− T̄ ρ̄3γ3ky
2kz

3i

− β3T̄ ′ρ̄3ky
2kz

53i− β3T̄ ′ρ̄3ky
4kz

33i+ β3ρ̄3ky
2kz

5θ(m+ 1)3i

+ β3ρ̄3ky
4kz

3θ(m+ 1)3i+ B̄4F 2βρ̄kx
2ky

4 + B̄4F 2βρ̄kx
4ky

2

+ B̄4F 2βρ̄kx
2kz

4 + B̄4F 2βρ̄kx
4kz

2 + B̄4F 2ρ̄γ′kx
2ky

2 + B̄4F 2ρ̄γkx
2kz

3i

− T̄ ββ′
2
ρ̄3kx

2kz
4 − T̄ β2β′ρ̄3kx

2kz
52i− 2T̄ ββ′

2
ρ̄3ky

2kz
4 − T̄ ββ′2ρ̄3ky

4kz
2

− T̄ β2β′ρ̄3ky
2kz

56i− T̄ β2β′ρ̄3ky
4kz

36i− T̄ β3ρ̄′ρ̄2ky
2kz

53i

− T̄ β3ρ̄′ρ̄2ky
4kz

33i+ T̄ βρ̄3γ′
2
kx

2ky
2 + 2T̄ β2ρ̄3γ′kx

2ky
4 + T̄ βρ̄3γ′

2
kx

2kz
2

+ 2T̄ β2ρ̄3γ′kx
2kz

4 + 2T̄ βρ̄3γ′
2
ky

2kz
2 + 6T̄ β2ρ̄3γ′ky

2kz
4 + 6T̄ β2ρ̄3γ′ky

4kz
2

− 3T̄ βρ̄3γ2kx
2kz

4 + T̄ β2ρ̄3γkx
2kz

53i− 6T̄ βρ̄3γ2ky
2kz

4 − 3T̄ βρ̄3γ2ky
4kz

2

+ T̄ β2ρ̄3γky
2kz

59i+ T̄ β2ρ̄3γky
4kz

39i+ T̄ β′ρ̄3γ2kx
2kz

32i− T̄ β′2ρ̄3γkx
2kz

3i

+ T̄ β′ρ̄3γ2ky
2kz

32i− T̄ β′2ρ̄3γky
2kz

3i− 2T̄ ρ̄3γ′γ2kx
2kz

2 − 2T̄ ρ̄3γ′γ2ky
2kz

2

+ βT̄ ′β′
2
ρ̄3ky

2kz
3i− 4β2T̄ ′β′ρ̄3ky

2kz
4 − 2β2T̄ ′β′ρ̄3ky

4kz
2 − 3β3T̄ ′ρ̄′ρ̄2ky

2kz
4

− 3β3T̄ ′ρ̄′ρ̄2ky
4kz

2 − β2T̄ ′ρ̄3γ′ky
2kz

34i+ βT̄ ′ρ̄3γ2ky
2kz

33i+ 6β2T̄ ′ρ̄3γky
2kz

4

+ 3β2T̄ ′ρ̄3γky
4kz

2 − ββ′2ρ̄3ky
2kz

3θ(m+ 1)i+ 4β2β′ρ̄3ky
2kz

4θ(m+ 1)

+ 2β2β′ρ̄3ky
4kz

2θ(m+ 1) + 3β3ρ̄′ρ̄2ky
2kz

4θ(m+ 1) + 3β3ρ̄′ρ̄2ky
4kz

2θ(m+ 1)

+ β2ρ̄3γ′ky
2kz

3θ(m+ 1)4i− βρ̄3γ2ky
2kz

3θ(m+ 1)3i− 6β2ρ̄3γky
2kz

4θ(m+ 1)
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− 3β2ρ̄3γky
4kz

2θ(m+ 1)− T̄ ββ′ρ̄3γ′kz
52i+ 4T̄ ββ′ρ̄3γkz

6 + T̄ βρ̄3γ′γkz
54i

+ 2T̄ β′ρ̄3γ′γkz
4 − 2βT̄ ′β′ρ̄3γ′kz

4 − βT̄ ′β′ρ̄3γkz
54i+ 4βT̄ ′ρ̄3γ′γkz

4

− T̄ ′β′ρ̄3γ′γkz
32i− T̄ ′ρ̄′ρ̄2γ′

2
γkzi+ 2ββ′ρ̄3γ′kz

4θ(m+ 1) + 3B̄2FT̄ ρ̄2γ′kx
4

+ ββ′ρ̄3γkz
5θ(m+ 1)4i− 4βρ̄3γ′γkz

4θ(m+ 1) + β′ρ̄3γ′γkz
3θ(m+ 1)2i

+ ρ̄′ρ̄2γ′
2
γkzθ(m+ 1)i+ 3T̄ β3ρ̄3kx

2ky
2kz

4 + 3T̄ β3ρ̄3kx
2ky

4kz
2

+ B̄3F 2B̄′β′ρ̄kx
4 + B̄4F 2ρ̄γkx

4kzi− 2FT̄βB̄′2ρ̄2ky
4 − FT̄ B̄′2ρ̄2γ′kx

2

− FT̄ B̄′2ρ̄2γ′ky
2 + T̄ ββ′

2
ρ̄′ρ̄2kz

5i− 2T̄ β2β′ρ̄′ρ̄2kz
6 − T̄ βρ̄′ρ̄2γ′

2
kz

3i

− T̄ β2ρ̄′ρ̄2γ′kz
52i+ T̄ βρ̄′ρ̄2γ2kz

53i+ 3T̄ β2ρ̄′ρ̄2γkz
6 + 2T̄ β′ρ̄′ρ̄2γ2kz

4

− T̄ β′
2
ρ̄′ρ̄2γkz

4 + T̄ ρ̄′ρ̄2γ′
2
γkz

2 + T̄ ρ̄′ρ̄2γ′γ2kz
32i− T̄ β2β′ρ̄3ky

6kz2i

− T̄ β3ρ̄′ρ̄2ky
6kzi+ T̄ β2ρ̄3γky

6kz3i+ T̄ ρ̄3γ′
2
γkx

2kzi+ T̄ ρ̄3γ′
2
γky

2kzi

+ βT̄ ′β′
2
ρ̄′ρ̄2kz

4 + β2T̄ ′β′ρ̄′ρ̄2kz
52i− βT̄ ′ρ̄′ρ̄2γ′

2
ky

2 − 2β2T̄ ′ρ̄′ρ̄2γ′ky
4

− βT̄ ′ρ̄′ρ̄2γ′
2
kz

2 − 2β2T̄ ′ρ̄′ρ̄2γ′kz
4 + 3βT̄ ′ρ̄′ρ̄2γ2kz

4 − β2T̄ ′ρ̄′ρ̄2γkz
53i

− T̄ ′β′ρ̄′ρ̄2γ2kz
32i+ T̄ ′β′

2
ρ̄′ρ̄2γkz

3i+ 2T̄ ′ρ̄′ρ̄2γ′γ2kz
2 − βT̄ ′ρ̄3γ′

2
ky

2kzi

− β2T̄ ′ρ̄3γ′ky
4kz2i− ββ′2ρ̄′ρ̄2kz

4θ(m+ 1)− β2β′ρ̄′ρ̄2kz
5θ(m+ 1)2i

+ βρ̄′ρ̄2γ′
2
ky

2θ(m+ 1) + 2β2ρ̄′ρ̄2γ′ky
4θ(m+ 1) + βρ̄′ρ̄2γ′

2
kz

2θ(m+ 1)

+ 2β2ρ̄′ρ̄2γ′kz
4θ(m+ 1)− 3βρ̄′ρ̄2γ2kz

4θ(m+ 1) + β2ρ̄′ρ̄2γkz
5θ(m+ 1)3i

+ β′ρ̄′ρ̄2γ2kz
3θ(m+ 1)2i− β′2ρ̄′ρ̄2γkz

3θ(m+ 1)i− 2ρ̄′ρ̄2γ′γ2kz
2θ(m+ 1)

+ βρ̄3γ′
2
ky

2kzθ(m+ 1)i+ β2ρ̄3γ′ky
4kzθ(m+ 1)2i− 3T̄ βρ̄3γ2kx

2ky
2kz

2

+ T̄ β2ρ̄3γkx
2ky

2kz
36i− B̄2FT̄ ′ρ̄2γ′kx

2kzi+ B̄2F ρ̄2γ′kx
2kzθ(m+ 1)i

+ FT̄ B̄′2β′ρ̄2kx
2kzi+ FT̄ B̄′2β′ρ̄2ky

2kzi− FT̄ B̄′2ρ̄2γkx
2kz2i

− FT̄ B̄′2ρ̄2γky
2kz2i− T̄ ββ′ρ̄3γ′kx

2kz
32i− T̄ ββ′ρ̄3γ′ky

2kz
34i

− T̄ βρ̄′ρ̄2γ′
2
ky

2kzi− T̄ β2ρ̄′ρ̄2γ′ky
4kz2i+ 4T̄ ββ′ρ̄3γkx

2kz
4

+ 8T̄ ββ′ρ̄3γky
2kz

4 + 4T̄ ββ′ρ̄3γky
4kz

2 + T̄ βρ̄3γ′γkx
2kz

34i+ T̄ βρ̄3γ′γky
2kz

38i

+ 2T̄ β′ρ̄3γ′γkx
2kz

2 + 2T̄ β′ρ̄3γ′γky
2kz

2 + β2T̄ ′β′ρ̄′ρ̄2ky
4kz2i

− 2βT̄ ′β′ρ̄3γ′ky
2kz

2 − βT̄ ′β′ρ̄3γky
2kz

34i− β2T̄ ′ρ̄′ρ̄2γky
4kz3i

+ 4βT̄ ′ρ̄3γ′γky
2kz

2 + 4B̄2FT̄βρ̄2kx
2ky

4 + 4B̄2FT̄βρ̄2kx
4ky

2

+ 4B̄2FT̄βρ̄2kx
2kz

4 + 4B̄2FT̄βρ̄2kx
4kz

2 − β2β′ρ̄′ρ̄2ky
4kzθ(m+ 1)2i

+ 2ββ′ρ̄3γ′ky
2kz

2θ(m+ 1)− B̄2FT̄β′ρ̄2kx
2kz

32i+ 3B̄2FT̄ ρ̄2γ′kx
2ky

2

+ 2B̄2FT̄ ρ̄2γ′kx
2kz

2 + ββ′ρ̄3γky
2kz

3θ(m+ 1)4i+ β2ρ̄′ρ̄2γky
4kzθ(m+ 1)3i
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− 4βρ̄3γ′γky
2kz

2θ(m+ 1) + B̄2FT̄ ρ̄2γkx
2kz

34i− B̄3F 2βB̄′ρ̄kx
2kz

32i

− B̄2FβT̄ ′ρ̄2kx
2kz

32i+ B̄3F 2B̄′β′ρ̄kx
2ky

2 − B̄2FT̄ ′β′ρ̄2kx
2kz

2

− B̄2F 2B̄′2ρ̄γkx
2kzi+ 2B̄3F 2B̄′ρ̄γkx

2kz
2 + 2B̄2FT̄ ′ρ̄2γkx

2kz
2

+ B̄4F 2ρ̄γkx
2ky

2kzi+ B̄2Fβρ̄2kx
2kz

3θ(m+ 1)2i− 2FT̄βB̄′2ρ̄2kx
2ky

2

− 2FT̄βB̄′2ρ̄2kx
2kz

2 − 2FT̄βB̄′2ρ̄2ky
2kz

2 + B̄2Fβ′ρ̄2kx
2kz

2θ(m+ 1)

− 2B̄2F ρ̄2γkx
2kz

2θ(m+ 1) + B̄F T̄ B̄′β′ρ̄2kx
4 + T̄ ββ′

2
ρ̄′ρ̄2ky

2kz
3i

− 4T̄ β2β′ρ̄′ρ̄2ky
2kz

4 − 2T̄ β2β′ρ̄′ρ̄2ky
4kz

2 − T̄ β2ρ̄′ρ̄2γ′ky
2kz

34i

+ T̄ βρ̄′ρ̄2γ2ky
2kz

33i+ 6T̄ β2ρ̄′ρ̄2γky
2kz

4 + 3T̄ β2ρ̄′ρ̄2γky
4kz

2

− T̄ β2β′ρ̄3kx
2ky

4kz2i+ 2B̄FβB̄′T̄ ′ρ̄2ky
4 − 2B̄2FβT̄ ′ρ̄′ρ̄ky

4

+ T̄ β2ρ̄3γkx
2ky

4kz3i+ 2B̄F B̄′T̄ ′ρ̄2γ′kx
2 + B̄F B̄′T̄ ′ρ̄2γ′ky

2 − B̄2FT̄ ′ρ̄′ρ̄γ′kx
2

− B̄2FT̄ ′ρ̄′ρ̄γ′ky
2 + βT̄ ′β′

2
ρ̄′ρ̄2ky

2kz
2 + β2T̄ ′β′ρ̄′ρ̄2ky

2kz
34i

− 4β2T̄ ′ρ̄′ρ̄2γ′ky
2kz

2 + 3βT̄ ′ρ̄′ρ̄2γ2ky
2kz

2 − β2T̄ ′ρ̄′ρ̄2γky
2kz

36i

− 2B̄FβB̄′ρ̄2ky
4θ(m+ 1) + 2B̄2Fβρ̄′ρ̄ky

4θ(m+ 1)− 2B̄F B̄′ρ̄2γ′kx
2θ(m+ 1)

− B̄F B̄′ρ̄2γ′ky
2θ(m+ 1) + B̄2F ρ̄′ρ̄γ′kx

2θ(m+ 1) + B̄2F ρ̄′ρ̄γ′ky
2θ(m+ 1)

− ββ′
2
ρ̄′ρ̄2ky

2kz
2θ(m+ 1)− β2β′ρ̄′ρ̄2ky

2kz
3θ(m+ 1)4i+ 4β2ρ̄′ρ̄2γ′ky

2kz
2θ(m+ 1)

− 3βρ̄′ρ̄2γ2ky
2kz

2θ(m+ 1) + β2ρ̄′ρ̄2γky
2kz

3θ(m+ 1)6i− B̄2F 2βB̄′2ρ̄kx
2ky

2

− B̄2F 2βB̄′2ρ̄kx
2kz

2 + 2B̄4F 2βρ̄kx
2ky

2kz
2 − 2T̄ ββ′ρ̄′ρ̄2γ′kz

4 − T̄ ββ′ρ̄′ρ̄2γkz
54i

+ 4T̄ βρ̄′ρ̄2γ′γkz
4 − T̄ β′ρ̄′ρ̄2γ′γkz

32i− T̄ ββ′ρ̄3γ′ky
4kz2i+ T̄ βρ̄3γ′γky

4kz4i

+ βT̄ ′β′ρ̄′ρ̄2γ′kz
32i− 4βT̄ ′β′ρ̄′ρ̄2γkz

4 − βT̄ ′ρ̄′ρ̄2γ′γkz
34i− 2T̄ ′β′ρ̄′ρ̄2γ′γkz

2

− ββ′ρ̄′ρ̄2γ′kz
3θ(m+ 1)2i+ 4ββ′ρ̄′ρ̄2γkz

4θ(m+ 1) + βρ̄′ρ̄2γ′γkz
3θ(m+ 1)4i

+ 2β′ρ̄′ρ̄2γ′γkz
2θ(m+ 1)− B̄2FT̄β′ρ̄2kx

4kz2i+ B̄2FT̄ ρ̄2γkx
4kz4i

− T̄ ββ′
2
ρ̄3kx

2ky
2kz

2 − T̄ β2β′ρ̄3kx
2ky

2kz
34i+ 4T̄ β2ρ̄3γ′kx

2ky
2kz

2

+ 4T̄ ββ′ρ̄3γkx
2ky

2kz
2 − B̄F B̄′T̄ ′β′ρ̄2kx

2kz2i− B̄F B̄′T̄ ′β′ρ̄2ky
2kzi

+ B̄2FT̄ ′β′ρ̄′ρ̄kx
2kzi+ B̄2FT̄ ′β′ρ̄′ρ̄ky

2kzi+ B̄F B̄′T̄ ′ρ̄2γkx
2kz2i

+ B̄F B̄′T̄ ′ρ̄2γky
2kz2i− B̄2FT̄ ′ρ̄′ρ̄γkx

2kz2i− B̄2FT̄ ′ρ̄′ρ̄γky
2kz2i

+ B̄F B̄′β′ρ̄2kx
2kzθ(m+ 1)2i+ B̄F B̄′β′ρ̄2ky

2kzθ(m+ 1)i

− B̄2Fβ′ρ̄′ρ̄kx
2kzθ(m+ 1)i− B̄2Fβ′ρ̄′ρ̄ky

2kzθ(m+ 1)i

− B̄F B̄′ρ̄2γkx
2kzθ(m+ 1)2i− B̄F B̄′ρ̄2γky

2kzθ(m+ 1)2i

+ B̄2F ρ̄′ρ̄γkx
2kzθ(m+ 1)2i+ B̄2F ρ̄′ρ̄γky

2kzθ(m+ 1)2i
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+ 8B̄2FT̄βρ̄2kx
2ky

2kz
2 + βT̄ ′β′ρ̄′ρ̄2γ′ky

2kz2i− βT̄ ′ρ̄′ρ̄2γ′γky
2kz4i

− B̄F T̄βB̄′ρ̄2kx
2kz

32i− B̄2FT̄βρ̄′ρ̄kx
2kz

32i− ββ′ρ̄′ρ̄2γ′ky
2kzθ(m+ 1)2i

+ B̄F T̄ B̄′β′ρ̄2kx
2ky

2 − B̄2FT̄β′ρ̄′ρ̄kx
2kz

2 + βρ̄′ρ̄2γ′γky
2kzθ(m+ 1)4i

+ 2B̄F T̄ B̄′ρ̄2γkx
2kz

2 + 2B̄2FT̄ ρ̄′ρ̄γkx
2kz

2 + 2B̄FβB̄′T̄ ′ρ̄2kx
2ky

2

+ 2B̄FβB̄′T̄ ′ρ̄2kx
2kz

2 + 2B̄FβB̄′T̄ ′ρ̄2ky
2kz

2 − 2B̄2FβT̄ ′ρ̄′ρ̄kx
2ky

2

− 2B̄2FβT̄ ′ρ̄′ρ̄kx
2kz

2 − 2B̄2FβT̄ ′ρ̄′ρ̄ky
2kz

2 − 2B̄FβB̄′ρ̄2kx
2ky

2θ(m+ 1)

− 2B̄FβB̄′ρ̄2kx
2kz

2θ(m+ 1)− 2B̄FβB̄′ρ̄2ky
2kz

2θ(m+ 1)

+ 2B̄2Fβρ̄′ρ̄kx
2ky

2θ(m+ 1) + 2B̄2Fβρ̄′ρ̄kx
2kz

2θ(m+ 1)

+ 2B̄2Fβρ̄′ρ̄ky
2kz

2θ(m+ 1) + 2B̄F T̄βB̄′ρ̄′ρ̄ky
4 + B̄F T̄ B̄′ρ̄′ρ̄γ′ky

2

− 2T̄ ββ′ρ̄′ρ̄2γ′ky
2kz

2 − T̄ ββ′ρ̄′ρ̄2γky
2kz

34i+ 4T̄ βρ̄′ρ̄2γ′γky
2kz

2

− T̄ ββ′ρ̄3γ′kx
2ky

2kz2i+ T̄ βρ̄3γ′γkx
2ky

2kz4i− 4βT̄ ′β′ρ̄′ρ̄2γky
2kz

2

+ 4ββ′ρ̄′ρ̄2γky
2kz

2θ(m+ 1)− B̄2FT̄β′ρ̄2kx
2ky

2kz2i+ B̄2FT̄ ρ̄2γkx
2ky

2kz4i

− B̄3F 2βB̄′ρ̄kx
2ky

2kz2i− B̄2FβT̄ ′ρ̄2kx
2ky

2kz2i+ B̄2Fβρ̄2kx
2ky

2kzθ(m+ 1)2i

− B̄2FT̄ ρ̄′ρ̄γ′kx
2kzi− B̄F T̄ B̄′β′ρ̄′ρ̄ky2kzi+ B̄F T̄ B̄′ρ̄′ρ̄γky

2kz2i

+ 2B̄F T̄βB̄′ρ̄′ρ̄ky
2kz

2 − B̄F T̄βB̄′ρ̄2kx
2ky

2kz2i− B̄2FT̄βρ̄′ρ̄kx
2ky

2kz2i,

g2 = T̄ β3ρ̄3ky
8 + T̄ β3ρ̄3kz

8 − T̄ ρ̄3γ3kz
5i− β3T̄ ′ρ̄3kz

7i− T̄ ′ρ̄3γ3kz
4 (B.3)

+ β3ρ̄3kz
7θ(m+ 1)i+ ρ̄3γ3kz

4θ(m+ 1) + B̄4F 2ρ̄γ′kx
4 − T̄ ββ′2ρ̄3kz

6

− T̄ β2β′ρ̄3kz
72i− T̄ β3ρ̄′ρ̄2kz

7i+ T̄ βρ̄3γ′
2
ky

4 + 2T̄ β2ρ̄3γ′ky
6

+ T̄ βρ̄3γ′
2
kz

4 + 2T̄ β2ρ̄3γ′kz
6 − 3T̄ βρ̄3γ2kz

6 + T̄ β2ρ̄3γkz
73i

+ T̄ β′ρ̄3γ2kz
52i− T̄ β′2ρ̄3γkz

5i− T̄ ρ̄′ρ̄2γ3kz
4 + T̄ ρ̄3γ′

2
γkz

3i

− 2T̄ ρ̄3γ′γ2kz
4 + βT̄ ′β′

2
ρ̄3kz

5i− 2β2T̄ ′β′ρ̄3kz
6 − β3T̄ ′ρ̄′ρ̄2ky

6

− β3T̄ ′ρ̄′ρ̄2kz
6 − βT̄ ′ρ̄3γ′

2
kz

3i− β2T̄ ′ρ̄3γ′kz
52i+ βT̄ ′ρ̄3γ2kz

53i

+ 3β2T̄ ′ρ̄3γkz
6 + 2T̄ ′β′ρ̄3γ2kz

4 − T̄ ′β′2ρ̄3γkz
4 + T̄ ′ρ̄′ρ̄2γ3kz

3i

+ T̄ ′ρ̄3γ′
2
γkz

2 + T̄ ′ρ̄3γ′γ2kz
32i− β3T̄ ′ρ̄3ky

6kzi− ββ′2ρ̄3kz
5θ(m+ 1)i

+ 2β2β′ρ̄3kz
6θ(m+ 1) + β3ρ̄′ρ̄2ky

6θ(m+ 1) + β3ρ̄′ρ̄2kz
6θ(m+ 1)

+ βρ̄3γ′
2
kz

3θ(m+ 1)i+ β2ρ̄3γ′kz
5θ(m+ 1)2i− βρ̄3γ2kz

5θ(m+ 1)3i
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− 3β2ρ̄3γkz
6θ(m+ 1)− 2β′ρ̄3γ2kz

4θ(m+ 1) + β′
2
ρ̄3γkz

4θ(m+ 1)

− ρ̄′ρ̄2γ3kz
3θ(m+ 1)i− ρ̄3γ′

2
γkz

2θ(m+ 1)− ρ̄3γ′γ2kz
3θ(m+ 1)2i

+ β3ρ̄3ky
6kzθ(m+ 1)i+ T̄ β3ρ̄3kx

2ky
6 + T̄ β3ρ̄3kx

2kz
6 + 4T̄ β3ρ̄3ky

2kz
6

+ 6T̄ β3ρ̄3ky
4kz

4 + 4T̄ β3ρ̄3ky
6kz

2 − T̄ ρ̄3γ3kx
2kz

3i− T̄ ρ̄3γ3ky
2kz

3i

− β3T̄ ′ρ̄3ky
2kz

53i− β3T̄ ′ρ̄3ky
4kz

33i+ β3ρ̄3ky
2kz

5θ(m+ 1)3i

+ β3ρ̄3ky
4kz

3θ(m+ 1)3i+ B̄4F 2βρ̄kx
2ky

4 + B̄4F 2βρ̄kx
4ky

2

+ B̄4F 2βρ̄kx
2kz

4 + B̄4F 2βρ̄kx
4kz

2 + B̄4F 2ρ̄γ′kx
2ky

2 + B̄4F 2ρ̄γkx
2kz

3i

− T̄ ββ′
2
ρ̄3kx

2kz
4 − T̄ β2β′ρ̄3kx

2kz
52i− 2T̄ ββ′

2
ρ̄3ky

2kz
4 − T̄ ββ′2ρ̄3ky

4kz
2

− T̄ β2β′ρ̄3ky
2kz

56i− T̄ β2β′ρ̄3ky
4kz

36i− T̄ β3ρ̄′ρ̄2ky
2kz

53i

− T̄ β3ρ̄′ρ̄2ky
4kz

33i+ T̄ βρ̄3γ′
2
kx

2ky
2 + 2T̄ β2ρ̄3γ′kx

2ky
4 + T̄ βρ̄3γ′

2
kx

2kz
2

+ 2T̄ β2ρ̄3γ′kx
2kz

4 + 2T̄ βρ̄3γ′
2
ky

2kz
2 + 6T̄ β2ρ̄3γ′ky

2kz
4

+ 6T̄ β2ρ̄3γ′ky
4kz

2 − 3T̄ βρ̄3γ2kx
2kz

4 + T̄ β2ρ̄3γkx
2kz

53i

− 6T̄ βρ̄3γ2ky
2kz

4 − 3T̄ βρ̄3γ2ky
4kz

2 + T̄ β2ρ̄3γky
2kz

59i

+ T̄ β2ρ̄3γky
4kz

39i+ T̄ β′ρ̄3γ2kx
2kz

32i− T̄ β′2ρ̄3γkx
2kz

3i

+ T̄ β′ρ̄3γ2ky
2kz

32i− T̄ β′2ρ̄3γky
2kz

3i− 2T̄ ρ̄3γ′γ2kx
2kz

2

− 2T̄ ρ̄3γ′γ2ky
2kz

2 + βT̄ ′β′
2
ρ̄3ky

2kz
3i− 4β2T̄ ′β′ρ̄3ky

2kz
4

− 2β2T̄ ′β′ρ̄3ky
4kz

2 − 3β3T̄ ′ρ̄′ρ̄2ky
2kz

4 − 3β3T̄ ′ρ̄′ρ̄2ky
4kz

2

− β2T̄ ′ρ̄3γ′ky
2kz

34i+ βT̄ ′ρ̄3γ2ky
2kz

33i+ 6β2T̄ ′ρ̄3γky
2kz

4

+ 3β2T̄ ′ρ̄3γky
4kz

2 − ββ′2ρ̄3ky
2kz

3θ(m+ 1)i+ 4β2β′ρ̄3ky
2kz

4θ(m+ 1)

+ 2β2β′ρ̄3ky
4kz

2θ(m+ 1) + 3β3ρ̄′ρ̄2ky
2kz

4θ(m+ 1) + 3β3ρ̄′ρ̄2ky
4kz

2θ(m+ 1)

+ β2ρ̄3γ′ky
2kz

3θ(m+ 1)4i− βρ̄3γ2ky
2kz

3θ(m+ 1)3i− 6β2ρ̄3γky
2kz

4θ(m+ 1)

− 3β2ρ̄3γky
4kz

2θ(m+ 1)− T̄ ββ′ρ̄3γ′kz
52i+ 4T̄ ββ′ρ̄3γkz

6 + T̄ βρ̄3γ′γkz
54i

+ 2T̄ β′ρ̄3γ′γkz
4 − 2βT̄ ′β′ρ̄3γ′kz

4 − βT̄ ′β′ρ̄3γkz
54i+ 4βT̄ ′ρ̄3γ′γkz

4

− T̄ ′β′ρ̄3γ′γkz
32i− T̄ ′ρ̄′ρ̄2γ′

2
γkzi+ 2ββ′ρ̄3γ′kz

4θ(m+ 1) + 3B̄2FT̄ ρ̄2γ′kx
4

+ ββ′ρ̄3γkz
5θ(m+ 1)4i− 4βρ̄3γ′γkz

4θ(m+ 1) + β′ρ̄3γ′γkz
3θ(m+ 1)2i

+ ρ̄′ρ̄2γ′
2
γkzθ(m+ 1)i+ 3T̄ β3ρ̄3kx

2ky
2kz

4 + 3T̄ β3ρ̄3kx
2ky

4kz
2

+ B̄3F 2B̄′β′ρ̄kx
4 + B̄4F 2ρ̄γkx

4kzi− 2FT̄βB̄′2ρ̄2ky
4 − FT̄ B̄′2ρ̄2γ′kx

2

− FT̄ B̄′2ρ̄2γ′ky
2 + T̄ ββ′

2
ρ̄′ρ̄2kz

5i− 2T̄ β2β′ρ̄′ρ̄2kz
6 − T̄ βρ̄′ρ̄2γ′

2
kz

3i
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− T̄ β2ρ̄′ρ̄2γ′kz
52i+ T̄ βρ̄′ρ̄2γ2kz

53i+ 3T̄ β2ρ̄′ρ̄2γkz
6 + 2T̄ β′ρ̄′ρ̄2γ2kz

4

− T̄ β′
2
ρ̄′ρ̄2γkz

4 + T̄ ρ̄′ρ̄2γ′
2
γkz

2 + T̄ ρ̄′ρ̄2γ′γ2kz
32i− T̄ β2β′ρ̄3ky

6kz2i

− T̄ β3ρ̄′ρ̄2ky
6kzi+ T̄ β2ρ̄3γky

6kz3i+ T̄ ρ̄3γ′
2
γkx

2kzi+ T̄ ρ̄3γ′
2
γky

2kzi

+ βT̄ ′β′
2
ρ̄′ρ̄2kz

4 + β2T̄ ′β′ρ̄′ρ̄2kz
52i− βT̄ ′ρ̄′ρ̄2γ′

2
ky

2 − 2β2T̄ ′ρ̄′ρ̄2γ′ky
4

− βT̄ ′ρ̄′ρ̄2γ′
2
kz

2 − 2β2T̄ ′ρ̄′ρ̄2γ′kz
4 + 3βT̄ ′ρ̄′ρ̄2γ2kz

4 − β2T̄ ′ρ̄′ρ̄2γkz
53i

− T̄ ′β′ρ̄′ρ̄2γ2kz
32i+ T̄ ′β′

2
ρ̄′ρ̄2γkz

3i+ 2T̄ ′ρ̄′ρ̄2γ′γ2kz
2 − βT̄ ′ρ̄3γ′

2
ky

2kzi

− β2T̄ ′ρ̄3γ′ky
4kz2i− ββ′2ρ̄′ρ̄2kz

4θ(m+ 1)− β2β′ρ̄′ρ̄2kz
5θ(m+ 1)2i

+ βρ̄′ρ̄2γ′
2
ky

2θ(m+ 1) + 2β2ρ̄′ρ̄2γ′ky
4θ(m+ 1) + βρ̄′ρ̄2γ′

2
kz

2θ(m+ 1)

+ 2β2ρ̄′ρ̄2γ′kz
4θ(m+ 1)− 3βρ̄′ρ̄2γ2kz

4θ(m+ 1) + β2ρ̄′ρ̄2γkz
5θ(m+ 1)3i

+ β′ρ̄′ρ̄2γ2kz
3θ(m+ 1)2i− β′2ρ̄′ρ̄2γkz

3θ(m+ 1)i− 2ρ̄′ρ̄2γ′γ2kz
2θ(m+ 1)

+ βρ̄3γ′
2
ky

2kzθ(m+ 1)i+ β2ρ̄3γ′ky
4kzθ(m+ 1)2i− 3T̄ βρ̄3γ2kx

2ky
2kz

2

+ T̄ β2ρ̄3γkx
2ky

2kz
36i− B̄2FT̄ ′ρ̄2γ′kx

2kzi+ B̄2F ρ̄2γ′kx
2kzθ(m+ 1)i

+ FT̄ B̄′2β′ρ̄2kx
2kzi+ FT̄ B̄′2β′ρ̄2ky

2kzi− FT̄ B̄′2ρ̄2γkx
2kz2i

− FT̄ B̄′2ρ̄2γky
2kz2i− T̄ ββ′ρ̄3γ′kx

2kz
32i− T̄ ββ′ρ̄3γ′ky

2kz
34i

− T̄ βρ̄′ρ̄2γ′
2
ky

2kzi− T̄ β2ρ̄′ρ̄2γ′ky
4kz2i+ 4T̄ ββ′ρ̄3γkx

2kz
4

+ 8T̄ ββ′ρ̄3γky
2kz

4 + 4T̄ ββ′ρ̄3γky
4kz

2 + T̄ βρ̄3γ′γkx
2kz

34i

+ T̄ βρ̄3γ′γky
2kz

38i+ 2T̄ β′ρ̄3γ′γkx
2kz

2 + 2T̄ β′ρ̄3γ′γky
2kz

2

+ β2T̄ ′β′ρ̄′ρ̄2ky
4kz2i− 2βT̄ ′β′ρ̄3γ′ky

2kz
2 − βT̄ ′β′ρ̄3γky

2kz
34i

− β2T̄ ′ρ̄′ρ̄2γky
4kz3i+ 4βT̄ ′ρ̄3γ′γky

2kz
2 + 4B̄2FT̄βρ̄2kx

2ky
4

+ 4B̄2FT̄βρ̄2kx
4ky

2 + 4B̄2FT̄βρ̄2kx
2kz

4 + 4B̄2FT̄βρ̄2kx
4kz

2

− β2β′ρ̄′ρ̄2ky
4kzθ(m+ 1)2i+ 2ββ′ρ̄3γ′ky

2kz
2θ(m+ 1)− B̄2FT̄β′ρ̄2kx

2kz
32i

+ 3B̄2FT̄ ρ̄2γ′kx
2ky

2 + 2B̄2FT̄ ρ̄2γ′kx
2kz

2 + ββ′ρ̄3γky
2kz

3θ(m+ 1)4i

+ β2ρ̄′ρ̄2γky
4kzθ(m+ 1)3i− 4βρ̄3γ′γky

2kz
2θ(m+ 1) + B̄2FT̄ ρ̄2γkx

2kz
34i

− B̄3F 2βB̄′ρ̄kx
2kz

32i− B̄2FβT̄ ′ρ̄2kx
2kz

32i+ B̄3F 2B̄′β′ρ̄kx
2ky

2

− B̄2FT̄ ′β′ρ̄2kx
2kz

2 − B̄2F 2B̄′2ρ̄γkx
2kzi+ 2B̄3F 2B̄′ρ̄γkx

2kz
2

+ 2B̄2FT̄ ′ρ̄2γkx
2kz

2 + B̄4F 2ρ̄γkx
2ky

2kzi+ B̄2Fβρ̄2kx
2kz

3θ(m+ 1)2i

− 2FT̄βB̄′2ρ̄2kx
2ky

2 − 2FT̄βB̄′2ρ̄2kx
2kz

2 − 2FT̄βB̄′2ρ̄2ky
2kz

2
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+ B̄2Fβ′ρ̄2kx
2kz

2θ(m+ 1)− 2B̄2F ρ̄2γkx
2kz

2θ(m+ 1) + B̄F T̄ B̄′β′ρ̄2kx
4

+ T̄ ββ′
2
ρ̄′ρ̄2ky

2kz
3i− 4T̄ β2β′ρ̄′ρ̄2ky

2kz
4 − 2T̄ β2β′ρ̄′ρ̄2ky

4kz
2

− T̄ β2ρ̄′ρ̄2γ′ky
2kz

34i+ T̄ βρ̄′ρ̄2γ2ky
2kz

33i+ 6T̄ β2ρ̄′ρ̄2γky
2kz

4

+ 3T̄ β2ρ̄′ρ̄2γky
4kz

2 − T̄ β2β′ρ̄3kx
2ky

4kz2i+ 2B̄FβB̄′T̄ ′ρ̄2ky
4

− 2B̄2FβT̄ ′ρ̄′ρ̄ky
4 + T̄ β2ρ̄3γkx

2ky
4kz3i+ 2B̄F B̄′T̄ ′ρ̄2γ′kx

2

+ B̄F B̄′T̄ ′ρ̄2γ′ky
2 − B̄2FT̄ ′ρ̄′ρ̄γ′kx

2 − B̄2FT̄ ′ρ̄′ρ̄γ′ky
2 + βT̄ ′β′

2
ρ̄′ρ̄2ky

2kz
2

+ β2T̄ ′β′ρ̄′ρ̄2ky
2kz

34i− 4β2T̄ ′ρ̄′ρ̄2γ′ky
2kz

2 + 3βT̄ ′ρ̄′ρ̄2γ2ky
2kz

2

− β2T̄ ′ρ̄′ρ̄2γky
2kz

36i− 2B̄FβB̄′ρ̄2ky
4θ(m+ 1) + 2B̄2Fβρ̄′ρ̄ky

4θ(m+ 1)

− 2B̄F B̄′ρ̄2γ′kx
2θ(m+ 1)− B̄F B̄′ρ̄2γ′ky

2θ(m+ 1) + B̄2F ρ̄′ρ̄γ′kx
2θ(m+ 1)

+ B̄2F ρ̄′ρ̄γ′ky
2θ(m+ 1)− ββ′2ρ̄′ρ̄2ky

2kz
2θ(m+ 1)

− β2β′ρ̄′ρ̄2ky
2kz

3θ(m+ 1)4i+ 4β2ρ̄′ρ̄2γ′ky
2kz

2θ(m+ 1)

− 3βρ̄′ρ̄2γ2ky
2kz

2θ(m+ 1) + β2ρ̄′ρ̄2γky
2kz

3θ(m+ 1)6i

− B̄2F 2βB̄′2ρ̄kx
2ky

2 − B̄2F 2βB̄′2ρ̄kx
2kz

2 + 2B̄4F 2βρ̄kx
2ky

2kz
2

− 2T̄ ββ′ρ̄′ρ̄2γ′kz
4 − T̄ ββ′ρ̄′ρ̄2γkz

54i+ 4T̄ βρ̄′ρ̄2γ′γkz
4

− T̄ β′ρ̄′ρ̄2γ′γkz
32i− T̄ ββ′ρ̄3γ′ky

4kz2i+ T̄ βρ̄3γ′γky
4kz4i

+ βT̄ ′β′ρ̄′ρ̄2γ′kz
32i− 4βT̄ ′β′ρ̄′ρ̄2γkz

4 − βT̄ ′ρ̄′ρ̄2γ′γkz
34i

− 2T̄ ′β′ρ̄′ρ̄2γ′γkz
2 − ββ′ρ̄′ρ̄2γ′kz

3θ(m+ 1)2i+ 4ββ′ρ̄′ρ̄2γkz
4θ(m+ 1)

+ βρ̄′ρ̄2γ′γkz
3θ(m+ 1)4i+ 2β′ρ̄′ρ̄2γ′γkz

2θ(m+ 1)− B̄2FT̄β′ρ̄2kx
4kz2i

+ B̄2FT̄ ρ̄2γkx
4kz4i− T̄ ββ′2ρ̄3kx

2ky
2kz

2 − T̄ β2β′ρ̄3kx
2ky

2kz
34i

+ 4T̄ β2ρ̄3γ′kx
2ky

2kz
2 + 4T̄ ββ′ρ̄3γkx

2ky
2kz

2 − B̄F B̄′T̄ ′β′ρ̄2kx
2kz2i

− B̄F B̄′T̄ ′β′ρ̄2ky
2kzi+ B̄2FT̄ ′β′ρ̄′ρ̄kx

2kzi+ B̄2FT̄ ′β′ρ̄′ρ̄ky
2kzi

+ B̄F B̄′T̄ ′ρ̄2γkx
2kz2i+ B̄F B̄′T̄ ′ρ̄2γky

2kz2i− B̄2FT̄ ′ρ̄′ρ̄γkx
2kz2i

− B̄2FT̄ ′ρ̄′ρ̄γky
2kz2i+ B̄F B̄′β′ρ̄2kx

2kzθ(m+ 1)2i

+ B̄F B̄′β′ρ̄2ky
2kzθ(m+ 1)i− B̄2Fβ′ρ̄′ρ̄kx

2kzθ(m+ 1)i

− B̄2Fβ′ρ̄′ρ̄ky
2kzθ(m+ 1)i− B̄F B̄′ρ̄2γkx

2kzθ(m+ 1)2i

− B̄F B̄′ρ̄2γky
2kzθ(m+ 1)2i+ B̄2F ρ̄′ρ̄γkx

2kzθ(m+ 1)2i

+ B̄2F ρ̄′ρ̄γky
2kzθ(m+ 1)2i+ 8B̄2FT̄βρ̄2kx

2ky
2kz

2

+ βT̄ ′β′ρ̄′ρ̄2γ′ky
2kz2i− βT̄ ′ρ̄′ρ̄2γ′γky

2kz4i− B̄F T̄βB̄′ρ̄2kx
2kz

32i

− B̄2FT̄βρ̄′ρ̄kx
2kz

32i− ββ′ρ̄′ρ̄2γ′ky
2kzθ(m+ 1)2i+ B̄F T̄ B̄′β′ρ̄2kx

2ky
2
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− B̄2FT̄β′ρ̄′ρ̄kx
2kz

2 + βρ̄′ρ̄2γ′γky
2kzθ(m+ 1)4i+ 2B̄F T̄ B̄′ρ̄2γkx

2kz
2

+ 2B̄2FT̄ ρ̄′ρ̄γkx
2kz

2 + 2B̄FβB̄′T̄ ′ρ̄2kx
2ky

2 + 2B̄FβB̄′T̄ ′ρ̄2kx
2kz

2

+ 2B̄FβB̄′T̄ ′ρ̄2ky
2kz

2 − 2B̄2FβT̄ ′ρ̄′ρ̄kx
2ky

2 − 2B̄2FβT̄ ′ρ̄′ρ̄kx
2kz

2

− 2B̄2FβT̄ ′ρ̄′ρ̄ky
2kz

2 − 2B̄FβB̄′ρ̄2kx
2ky

2θ(m+ 1)

− 2B̄FβB̄′ρ̄2kx
2kz

2θ(m+ 1)− 2B̄FβB̄′ρ̄2ky
2kz

2θ(m+ 1)

+ 2B̄2Fβρ̄′ρ̄kx
2ky

2θ(m+ 1) + 2B̄2Fβρ̄′ρ̄kx
2kz

2θ(m+ 1)

+ 2B̄2Fβρ̄′ρ̄ky
2kz

2θ(m+ 1) + 2B̄F T̄βB̄′ρ̄′ρ̄ky
4 + B̄F T̄ B̄′ρ̄′ρ̄γ′ky

2

− 2T̄ ββ′ρ̄′ρ̄2γ′ky
2kz

2 − T̄ ββ′ρ̄′ρ̄2γky
2kz

34i+ 4T̄ βρ̄′ρ̄2γ′γky
2kz

2

− T̄ ββ′ρ̄3γ′kx
2ky

2kz2i+ T̄ βρ̄3γ′γkx
2ky

2kz4i− 4βT̄ ′β′ρ̄′ρ̄2γky
2kz

2

+ 4ββ′ρ̄′ρ̄2γky
2kz

2θ(m+ 1)− B̄2FT̄β′ρ̄2kx
2ky

2kz2i+ B̄2FT̄ ρ̄2γkx
2ky

2kz4i

− B̄3F 2βB̄′ρ̄kx
2ky

2kz2i− B̄2FβT̄ ′ρ̄2kx
2ky

2kz2i

+ B̄2Fβρ̄2kx
2ky

2kzθ(m+ 1)2i− B̄2FT̄ ρ̄′ρ̄γ′kx
2kzi

− B̄F T̄ B̄′β′ρ̄′ρ̄ky
2kzi+ B̄F T̄ B̄′ρ̄′ρ̄γky

2kz2i+ 2B̄F T̄βB̄′ρ̄′ρ̄ky
2kz

2

− B̄F T̄βB̄′ρ̄2kx
2ky

2kz2i− B̄2FT̄βρ̄′ρ̄kx
2ky

2kz2i,

g3 = 3T̄ β2ρ̄3ky
6 + 3T̄ β2ρ̄3kz

6 − T̄ β′2ρ̄3kz
4 + T̄ ρ̄3γ′

2
kx

2 (B.4)

+ T̄ ρ̄3γ′
2
ky

2 + T̄ ρ̄3γ′
2
kz

2 − 3T̄ ρ̄3γ2kz
4 − β2T̄ ′ρ̄3kz

53i

+ T̄ ′β′
2
ρ̄3kz

3i+ T̄ ′ρ̄3γ2kz
33i+ β2ρ̄3kz

5θ(m+ 1)3i

− β′
2
ρ̄3kz

3θ(m+ 1)i− ρ̄3γ2kz
3θ(m+ 1)3i− T̄ ′ρ̄′ρ̄2γ′

2

− T̄ ′ρ̄3γ′
2
kzi+ ρ̄′ρ̄2γ′

2
θ(m+ 1) + ρ̄3γ′

2
kzθ(m+ 1)i

+ B̄4F 2ρ̄kx
4 − T̄ ββ′ρ̄3kz

54i+ 4T̄ βρ̄3γ′ky
4 + 4T̄ βρ̄3γ′kz

4

− T̄ β′ρ̄3γ′kz
32i− T̄ ρ̄′ρ̄2γ′

2
kzi+ T̄ βρ̄3γkz

56i+ 4T̄ β′ρ̄3γkz
4

+ T̄ ρ̄3γ′γkz
34i− 4βT̄ ′β′ρ̄3kz

4 − βT̄ ′ρ̄3γ′kz
34i− 2T̄ ′β′ρ̄3γ′kz

2

+ 6βT̄ ′ρ̄3γkz
4 − T̄ ′β′ρ̄3γkz

34i+ 4T̄ ′ρ̄3γ′γkz
2 + 4ββ′ρ̄3kz

4θ(m+ 1)

+ βρ̄3γ′kz
3θ(m+ 1)4i+ 2B̄2FT̄ ρ̄2kx

4 + 2β′ρ̄3γ′kz
2θ(m+ 1)

− 6βρ̄3γkz
4θ(m+ 1) + β′ρ̄3γkz

3θ(m+ 1)4i− 4ρ̄3γ′γkz
2θ(m+ 1)

− FT̄ B̄′2ρ̄2kx
2 − FT̄ B̄′2ρ̄2ky

2 − T̄ β2ρ̄′ρ̄2kz
53i+ T̄ β′

2
ρ̄′ρ̄2kz

3i

+ T̄ ρ̄′ρ̄2γ2kz
33i− 3β2T̄ ′ρ̄′ρ̄2ky

4 − 3β2T̄ ′ρ̄′ρ̄2kz
4 + T̄ ′β′

2
ρ̄′ρ̄2kz

2
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+ 3T̄ ′ρ̄′ρ̄2γ2kz
2 − β2T̄ ′ρ̄3ky

4kz3i+ 3β2ρ̄′ρ̄2ky
4θ(m+ 1)

+ 3β2ρ̄′ρ̄2kz
4θ(m+ 1)− β′2ρ̄′ρ̄2kz

2θ(m+ 1)− 3ρ̄′ρ̄2γ2kz
2θ(m+ 1)

+ β2ρ̄3ky
4kzθ(m+ 1)3i+ B̄2Fβ2ρ̄2ky

6 + B̄2Fβ2ρ̄2kz
6

− B̄2F 2B̄′2ρ̄kx
2 + B̄2F ρ̄2γ′

2
kx

2 − B̄2F ρ̄2γ2kz
4 + B̄4F 2ρ̄kx

2ky
2

+ B̄4F 2ρ̄kx
2kz

2 − Fβ2B̄′2ρ̄2ky
4 − Fβ2B̄′2ρ̄2kz

4 + FB̄′2ρ̄2γ2kz
2

+ 3T̄ β2ρ̄3kx
2ky

4 + 3T̄ β2ρ̄3kx
2kz

4 + 9T̄ β2ρ̄3ky
2kz

4 + 9T̄ β2ρ̄3ky
4kz

2

− T̄ β′
2
ρ̄3kx

2kz
2 − T̄ β′2ρ̄3ky

2kz
2 − 3T̄ ρ̄3γ2kx

2kz
2 − 3T̄ ρ̄3γ2ky

2kz
2

− β2T̄ ′ρ̄3ky
2kz

36i+ β2ρ̄3ky
2kz

3θ(m+ 1)6i+ T̄ ′β′ρ̄′ρ̄2γ′kz2i

− T̄ ′ρ̄′ρ̄2γ′γkz4i− β′ρ̄′ρ̄2γ′kzθ(m+ 1)2i+ ρ̄′ρ̄2γ′γkzθ(m+ 1)4i

− T̄ β2ρ̄′ρ̄2ky
2kz

36i+ B̄F B̄′T̄ ′ρ̄2kx
2 + B̄F B̄′T̄ ′ρ̄2ky

2 − B̄2FT̄ ′ρ̄′ρ̄kx
2

− B̄2FT̄ ′ρ̄′ρ̄ky
2 − 6β2T̄ ′ρ̄′ρ̄2ky

2kz
2 − B̄F B̄′ρ̄2kx

2θ(m+ 1)

− B̄F B̄′ρ̄2ky
2θ(m+ 1) + B̄2F ρ̄′ρ̄kx

2θ(m+ 1) + B̄2F ρ̄′ρ̄ky
2θ(m+ 1)

+ 6β2ρ̄′ρ̄2ky
2kz

2θ(m+ 1) + 2B̄2Fβ2ρ̄2kx
2ky

4 + 2B̄2Fβ2ρ̄2kx
2kz

4

+ 3B̄2Fβ2ρ̄2ky
2kz

4 + 3B̄2Fβ2ρ̄2ky
4kz

2 − FB̄′2ρ̄2γ′γkzi

− 2B̄2F ρ̄2γ2kx
2kz

2 − B̄2F ρ̄2γ2ky
2kz

2 − 4T̄ ββ′ρ̄′ρ̄2kz
4

− T̄ βρ̄′ρ̄2γ′kz
34i− 2T̄ β′ρ̄′ρ̄2γ′kz

2 + 6T̄ βρ̄′ρ̄2γkz
4 − T̄ β′ρ̄′ρ̄2γkz

34i

+ 4T̄ ρ̄′ρ̄2γ′γkz
2 − T̄ ββ′ρ̄3ky

4kz4i− T̄ β′ρ̄3γ′kx
2kz2i

− T̄ β′ρ̄3γ′ky
2kz2i+ T̄ βρ̄3γky

4kz6i+ T̄ ρ̄3γ′γkx
2kz4i

+ T̄ ρ̄3γ′γky
2kz4i+ βT̄ ′β′ρ̄′ρ̄2kz

34i− 4βT̄ ′ρ̄′ρ̄2γ′ky
2 − 4βT̄ ′ρ̄′ρ̄2γ′kz

2

− βT̄ ′ρ̄′ρ̄2γkz
36i− 4T̄ ′β′ρ̄′ρ̄2γkz

2 − βT̄ ′ρ̄3γ′ky
2kz4i

− 2Fβ2B̄′2ρ̄2ky
2kz

2 − ββ′ρ̄′ρ̄2kz
3θ(m+ 1)4i+ 4βρ̄′ρ̄2γ′ky

2θ(m+ 1)

+ 4βρ̄′ρ̄2γ′kz
2θ(m+ 1) + βρ̄′ρ̄2γkz

3θ(m+ 1)6i+ 4β′ρ̄′ρ̄2γkz
2θ(m+ 1)

+ βρ̄3γ′ky
2kzθ(m+ 1)4i+ 6T̄ β2ρ̄3kx

2ky
2kz

2 − B̄Fβ2B̄′ρ̄2kz
52i

− B̄2Fββ′ρ̄2kz
5i+ B̄2Fβρ̄2γ′ky

4 + B̄2Fβρ̄2γ′kz
4 + B̄2Fβρ̄2γkz

52i

+ B̄F B̄′ρ̄2γ2kz
32i+ B̄2Fβ′ρ̄2γkz

4 + B̄2F ρ̄2γ′γkz
3i− B̄3F 2B̄′ρ̄kx

2kz2i

− B̄2FT̄ ′ρ̄2kx
2kzi+ B̄2F ρ̄2kx

2kzθ(m+ 1)i+ FβB̄′2β′ρ̄2kz
3i
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− FβB̄′2ρ̄2γ′ky
2 − FβB̄′2ρ̄2γ′kz

2 − FβB̄′2ρ̄2γkz
32i− FB̄′2β′ρ̄2γkz

2

− T̄ ββ′ρ̄3kx
2kz

34i− T̄ ββ′ρ̄3ky
2kz

38i− T̄ β2ρ̄′ρ̄2ky
4kz3i

+ 4T̄ βρ̄3γ′kx
2ky

2 + 4T̄ βρ̄3γ′kx
2kz

2 + 8T̄ βρ̄3γ′ky
2kz

2 + T̄ βρ̄3γkx
2kz

36i

+ T̄ βρ̄3γky
2kz

312i+ 4T̄ β′ρ̄3γkx
2kz

2 + 4T̄ β′ρ̄3γky
2kz

2 − 4βT̄ ′β′ρ̄3ky
2kz

2

+ 6βT̄ ′ρ̄3γky
2kz

2 + 4ββ′ρ̄3ky
2kz

2θ(m+ 1) + 2B̄2FT̄ ρ̄2kx
2ky

2

+ 2B̄2FT̄ ρ̄2kx
2kz

2 − 6βρ̄3γky
2kz

2θ(m+ 1)− B̄Fβ2B̄′ρ̄2ky
4kz2i

− B̄2Fββ′ρ̄2ky
4kzi− B̄F B̄′β′2ρ̄2kx

2kzi− B̄2Fβ′ρ̄2γ′kx
2kzi

+ B̄2Fβρ̄2γky
4kz2i+ B̄2F ρ̄2γ′γkx

2kz3i+ B̄2F ρ̄2γ′γky
2kzi

+ FβB̄′2β′ρ̄2ky
2kzi− FβB̄′2ρ̄2γky

2kz2i+ 4B̄2Fβ2ρ̄2kx
2ky

2kz
2

+ B̄F T̄ B̄′ρ̄′ρ̄ky
2 − 4T̄ ββ′ρ̄′ρ̄2ky

2kz
2 + 6T̄ βρ̄′ρ̄2γky

2kz
2

− T̄ ββ′ρ̄3kx
2ky

2kz4i+ T̄ βρ̄3γkx
2ky

2kz6i− B̄Fβ2B̄′ρ̄2ky
2kz

34i

− B̄2Fββ′ρ̄2kx
2kz

32i− B̄2Fββ′ρ̄2ky
2kz

32i+ 3B̄2Fβρ̄2γ′kx
2ky

2

+ 3B̄2Fβρ̄2γ′kx
2kz

2 + 2B̄2Fβρ̄2γ′ky
2kz

2 + B̄2Fβρ̄2γkx
2kz

34i

+ B̄2Fβρ̄2γky
2kz

34i+ 2B̄2Fβ′ρ̄2γkx
2kz

2 + B̄2Fβ′ρ̄2γky
2kz

2

− B̄F T̄ B̄′ρ̄2kx
2kzi− B̄2FT̄ ρ̄′ρ̄kx

2kzi− 2B̄FβB̄′β′ρ̄2kz
4

− B̄FβB̄′ρ̄2γ′kz
32i+ B̄F B̄′β′ρ̄2γ′kx

2 + 4B̄FβB̄′ρ̄2γkz
4

− B̄F B̄′β′ρ̄2γkz
32i+ 2B̄F B̄′ρ̄2γ′γkz

2 − T̄ βρ̄′ρ̄2γ′ky
2kz4i

+ βT̄ ′β′ρ̄′ρ̄2ky
2kz4i− βT̄ ′ρ̄′ρ̄2γky

2kz6i− ββ′ρ̄′ρ̄2ky
2kzθ(m+ 1)4i

+ βρ̄′ρ̄2γky
2kzθ(m+ 1)6i− B̄FβB̄′ρ̄2γ′ky

2kz2i+ B̄F B̄′β′ρ̄2γkx
2kzi

+ B̄FβB̄′β′ρ̄2kx
2ky

2 + B̄FβB̄′β′ρ̄2kx
2kz

2 − 2B̄FβB̄′β′ρ̄2ky
2kz

2

+ 4B̄FβB̄′ρ̄2γky
2kz

2 − B̄2Fββ′ρ̄2kx
2ky

2kz2i+ B̄2Fβρ̄2γkx
2ky

2kz4i,

g4 = ρ̄2
(
β3ρ̄ky

6 + β3ρ̄kz
6 − ρ̄γ3kz

3i− 2T̄ ′ρ̄′γ′ + 2ρ̄′γ′θ(m+ 1) (B.5)

− FB̄′2γ′ − β′ρ̄′kzθ(m+ 1)2i+ ρ̄γ′kzθ(m+ 1)2i+ ρ̄′γkzθ(m+ 1)3i

+ 3β3ρ̄ky
2kz

4 + 3β3ρ̄ky
4kz

2 + FB̄′2β′kzi− FB̄′2γkz2i

− T̄ βρ̄′kz
33i+ 3T̄ βρ̄ky

4 + 3T̄ βρ̄kz
4 − 2T̄ β′ρ̄′kz

2 − T̄ β′ρ̄kz32i

+ 2T̄ ρ̄γ′kx
2 + 2T̄ ρ̄γ′ky

2 + 2T̄ ρ̄γ′kz
2 + 3T̄ ρ̄′γkz

2 + T̄ ρ̄γkz
33i

− 3βT̄ ′ρ̄′ky
2 − 3βT̄ ′ρ̄′kz

2 − βT̄ ′ρ̄kz33i− 2T̄ ′β′ρ̄kz
2 + 3T̄ ′ρ̄γkz

2

+ ρ̄γ′
2
γkzi+ 3βρ̄′ky

2θ(m+ 1) + 3βρ̄′kz
2θ(m+ 1) + βρ̄kz

3θ(m+ 1)3i
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+ 2β′ρ̄kz
2θ(m+ 1)− 3ρ̄γkz

2θ(m+ 1) + 2B̄2Fβky
4 + 2B̄2Fβkz

4

− B̄2Fβ′kz
3i+ 3B̄2Fγ′kx

2 + B̄2Fγ′ky
2 + B̄2Fγ′kz

2 + B̄2Fγkz
32i

− 2FβB̄′2ky
2 − 2FβB̄′2kz

2 − ββ′2ρ̄kz4 − β2β′ρ̄kz
52i+ βρ̄γ′

2
ky

2

+ 2β2ρ̄γ′ky
4 + βρ̄γ′

2
kz

2 + 2β2ρ̄γ′kz
4 − 3βρ̄γ2kz

4 + β2ρ̄γkz
53i

+ β′ρ̄γ2kz
32i− β′2ρ̄γkz3i− 2ρ̄γ′γ2kz

2 − T̄ ρ̄′γ′kz2i+ T̄ ′β′ρ̄′kz2i

− T̄ ′ρ̄γ′kz2i− T̄ ′ρ̄′γkz3i+ 3T̄ βρ̄kx
2ky

2 + 3T̄ βρ̄kx
2kz

2 + 6T̄ βρ̄ky
2kz

2

− B̄F B̄′γ′kz2i− β2β′ρ̄ky
4kz2i+ β2ρ̄γky

4kz3i+ 4B̄2Fβkx
2ky

2

+ 4B̄2Fβkx
2kz

2 + 4B̄2Fβky
2kz

2 − B̄FβB̄′kz34i+ B̄F B̄′β′kx
2

− 2B̄F B̄′β′kz
2 + 4B̄F B̄′γkz

2 − ββ′2ρ̄ky2kz
2 − β2β′ρ̄ky

2kz
34i

+ 4β2ρ̄γ′ky
2kz

2 − 3βρ̄γ2ky
2kz

2 + β2ρ̄γky
2kz

36i− T̄ βρ̄′ky2kz3i

− T̄ β′ρ̄kx
2kz2i− T̄ β′ρ̄ky2kz2i+ T̄ ρ̄γkx

2kz3i+ T̄ ρ̄γky
2kz3i

− ββ′ρ̄γ′kz
32i+ 4ββ′ρ̄γkz

4 + βρ̄γ′γkz
34i+ 2β′ρ̄γ′γkz

2

− βT̄ ′ρ̄ky
2kz3i+ βρ̄ky

2kzθ(m+ 1)3i− B̄2Fβ′kx
2kz2i− B̄2Fβ′ky

2kzi

+ B̄2Fγkx
2kz4i+ B̄2Fγky

2kz2i− ββ′ρ̄γ′ky2kz2i+ βρ̄γ′γky
2kz4i

+ 4ββ′ρ̄γky
2kz

2 − B̄FβB̄′ky2kz4i
)
,

g5 = ρ̄2
(
ρ̄′θ(m+ 1)− T̄ ′ρ̄′ − FB̄′2 + ρ̄γ′

2
+ 2B̄2Fkx

2 + B̄2Fky
2 (B.6)

+ B̄2Fkz
2 + 3β2ρ̄ky

4 + 3β2ρ̄kz
4 − β′2ρ̄kz2 − 3ρ̄γ2kz

2 − T̄ ρ̄′kzi

− T̄ ′ρ̄kzi+ ρ̄kzθ(m+ 1)i+ T̄ ρ̄kx
2 + T̄ ρ̄ky

2 + T̄ ρ̄kz
2 + 6β2ρ̄ky

2kz
2

− ββ′ρ̄kz
34i+ 4βρ̄γ′ky

2 + 4βρ̄γ′kz
2 + βρ̄γkz

36i+ 4β′ρ̄γkz
2

− B̄F B̄′kz2i− β′ρ̄γ′kz2i+ ρ̄γ′γkz4i− ββ′ρ̄ky2kz4i+ βρ̄γky
2kz6i

)
,

g6 = ρ̄3
(
2γ′ + ikz(3γ − 2β′) + 3β(k2

y + k2
z)
)
, (B.7)

g7 = ρ̄3. (B.8)
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