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Abstract

This thesis contains a body of work using N-body simulations and numerical methods to

study star forming regions.

It begins by introducing relevant topics, such as the basic picture of star formation, the en-

vironment(s) that stars form in, stellar dynamics, and statistical methods of analysing star forming

regions. In the following chapter information is provided surrounding the computational methods

used by the field to simulate star forming regions. N-body simulations are described in particular

detail.

This alternative format thesis then includes the paper ‘How do binary clusters form?’

(Arnold et al. 2017) which details a study into the origins of binary clusters. Using N-body sim-

ulations it concludes that binary clusters may originate from single star forming regions which

divide in two.

The next paper presented in this alternative format thesis is ‘A method to analyse velocity

structure’ (Arnold & Goodwin 2019), which presents a statistical method for analysing the velocity

structure of star forming regions (although the method also has wider capabilities).

The third paper presented is ‘The velocity structure of Cygnus OB2’ (Arnold et al. 2019;

submitted) which applies the method presented in Arnold & Goodwin (2019) to observations of the

Cygnus OB2 association. The results are used to investigate and interpret the region’s dynamical

history.

The fourth paper presented is ‘Dynamical evolution of star-forming regions: III. Unbound

stars and predictions for Gaia’ (Schoettler et al. 2019), a study conducted in conjunction with C.

Schoettler and a number of others. My contribution to this project is clearly outlined at the start of

this chapter.
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Chapter 1

Introduction

1.1 Motivation

Stars are one of the fundamental building blocks of the observable universe. They generate the

bulk of the universe’s light, synthesise its metals, and provide the necessary conditions for planet

formation; planets are born in the dusty disks around forming/newly formed stars. As such, theo-

ries of planet formation depend strongly on the process of star formation. They are also impacted

by the evolution of the regions stars form in, for example disks are photoevaporated by time spent

in close proximity to massive stars, and also may be destroyed by supernovae. For these reasons,

and many others, star formation and the evolution of star forming regions is of great scientific

interest.

1.2 The basic picture of star formation

Stars form from large clouds of molecular gas, which are discussed in more detail in section 1.3.1.

As an example the Taurus region’s molecular cloud is shown in Fig. 1.1. These clouds contract

under the force of their own self-gravity and/or due to compression by supersonic shocks. These

mechanisms compete with turbulence as well as thermal and magnetic pressures within the cloud,

which support it against collapse. At large size scales the pressure forces dominate, but at smaller

scales pressure is overwhelmed by self-gravity. The transition between these two regimes occurs

where the size scale equals a Jeans radius (Jeans 1902).

This can be derived for a cloud of point masses by solving for the length scale at

which kinetic and potential energies are such that there is virial equilibrium. More details

8



1.2. THE BASIC PICTURE OF STAR FORMATION 9

regarding virial equilibrium can be found in section 1.2.1 but for now we simply state that in

virial equilibrium:

KE = −
PE
2

(1.1)

The kinetic energy of such a cloud is 3
2 NkBT and the potential energy can be derived

by integrating an energy element over the volume of the cloud. dE is the potential energy of

a small mass dM on the edge of a sphere of mass M:

dE = −
GM(r)

r
dM (1.2)

M(r) is simply the volume of a sphere of radius r multiplied density of the gas ρ0.

Similarly dM is the volume element of a sphere multiplied by density. As such the potential

energy of the cloud is:

PE = −
(4π)2

3
Gρ2

∫ R

0
r4dr = −

(4πρ0)2

3
R5

5
(1.3)

By substituting in for the mass of a sphere of density ρ0 and radius R this can be

expressed as

PE = −
3
5

GM2

R
(1.4)

By substituting the kinetic and potential energies into equation 1.1, using the fact the

N is equal to M divided by the mass per particle, m, and rearranging we find

kBT
m

= −
GM
5R

. (1.5)

By eliminating M as density times the volume of the sphere and substituting in a0,

the isothermal speed of sound, which is such that its square is equal to the left hand side of

equation 1.5 we can solve for R, which is the Jeans radius:

RJ = a0

√
15

4πGρ0
(1.6)

The mass within a spherical region of the cloud of this radius is referred to as a Jeans mass, which
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Figure 1.1: An image of the Taurus molecular cloud produced from data collected using Herschel
to look at a wavelength of 250 µm. This data is presented in Palmeirim et al. (2013). It is clear
from this image that the distribution of gas is highly non-homogeneous.

is simply the volume of a sphere with radius RJ multiplied by the gas density:

MJ =
4π
3

R3
Jρ0. (1.7)

By bringing some of the constants inside the square root and expressing 15 as 5 × 3

this can be rewritten as

MJ = a3
0

√(
4πρ0

3

)2 (
5 × 3

4πGρ0

)3

. (1.8)

Many of the terms can now be cancelled. The resulting constant in the numerator is

375, and the resulting equation is:

MJ = a3
0

√
375

4πG3ρ0
. (1.9)

Dense condensations of gas called clumps with radii of around RJ (of order 1 pc) become

unstable and begin to contract within the cloud. Note that as a clump within the cloud collapses

the environment within that clump, e.g. pressure, changes too and the Jeans length is reduced.

This can lead independent regions within the collapsing clump to self gravitate in turn, leading to

contraction at multiple scales which is called fragmentation (Klessen et al. 1998).

The timescale that the cloud collapse occurs on is referred to as the free-fall timescale tff:
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II

Figure 1.2: A diagram outlining the major steps and scales in star formation as described in section
1.2. This image is adapted from Griffiths (2018).

tff =

√
3π

32Gρ
. (1.10)

Within these collapsing clumps particularly dense regions with masses around one M� form

called cores. Similarly to clumps these are dense condensations of gas, the difference being that

cores are typically gravitationally bound. Cores have temperatures of ∼ T = 10 K (Andre et al.

2000), masses up to 10s of M�, and sizes of order 105 AU (Ward-Thompson et al. 1999). Some are

starless, but others are prestellar cores or protostellar cores also known as ‘class 0’ objects (André

et al. 2009). These are the objects which evolve to become stars via a process presented in Larson

(1969) which will be described in more detail here.

The stages of this evolution are divided into classes from 0 to III. The classification of

young stellar objects (YSOs) into classes is done according to features of their spectral energy

distribution (SED) and their bolometric temperature (Tbol) (Lada & Wilking 1984; Greene et al.

1994; Chen et al. 1995; Enoch et al. 2009). Reviews on this topic can be found in Evans (1999),

Lada & Lada (2003), McKee & Ostriker (2007), Kennicutt & Evans (2012) and Motte et al. (2018).

A cartoon of this evolution is shown in Fig. 1.2, and a summary of the classes is provided here:

• Class 0: Prestellar core. This is a dense core with a disk embedded in a thick envelope. As

such it is not yet a fully fledged star but a protostar. At this stage more material is in the

envelope than in the protostar itself. The core is about ∼ 105 years old.

• Class I: An accreting protostar with a disk. By this point (a few × 105 years since the star

began to form) more material is in the protostar than remains in the envelope. Note that the

presence of a disk is recognised by the shape of its SED.
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• Class II: Classical T Tauri star which is a pre main sequence (PMS) star with an age of a

few 106 years. The YSO is no longer ‘embedded’ (surrounded by a large amount of dust

and gas) so is much easier to observe from this point onward. It also has a disk.

• Class III: Weak line T Tauri which is also a kind of PMS star. These objects have little of

their disk remaining and are around 107 years old. It is worth noting that PMS lifetimes

are shorter for more massive stars.

Once stars have formed in a GMC (Giant Molecular Cloud) their feedback (especially

from massive stars) causes the remainder of the gas they are embedded in to be pushed away. This

process is referred to as gas expulsion and is discussed further in section 1.4. This leaves the stars

that have formed exposed. As time passes the expelled molecular gas reforms/merges into a new

GMC and the process repeats. A diagram of this process is shown in Fig. 1.3.

1.2.1 Key concepts

There are a number of key parameters and concepts of great importance to our understanding of

star formation (in addition to those already outlined above such as free fall time and the Jeans

mass). These will be mentioned in various places within this introduction, so we outline them

here.

Perhaps the most important is the virial factor, which is the ratio of the stars in a star

forming region’s kinetic energies to the potential energy of the region. According to the

virial theorem structures that are stable, i.e. neither expanding or collapsing have viral ratios of

∼ -0.5. If the virial factor is < -0.5 i.e. the region is ‘subvirial’ the system will likely undergo

collapse. If it is > -0.5 the region is ‘supervirial’ and will most likely expand. Further if the virial

factor is > 1 this means the region is unbound and its members will most likely disperse into the

field.

The virial theorem can be derived by defining a variable I which is
∑

mr2 for the stars

in a region. From this we can find

1
2

d2I
dt2 =

∑
mv2 +

∑
mra (1.11)

The first term on the right hand side is 2 times the kinetic energy of the system, and the

second is the sum of the forces in the system multiplied by r, which is equal to the potential
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(a) Giant Molecular Cloud

(b) Cloudlets and Cores

(c) Embedded Star Formation

(d) Giant Star    -Forming Region

The Cycle 
of Star Formation

Figure 1.3: A diagram outlining the lifecycle of GMCs and how they relate to star formation. This
image is taken from Gouliermis (2018). Part a) shows a GMC. In part b) gas condensations of
∼ Jeans length size form and develop cores. In part c) stars form from these cores and in part d)
feedback mechanisms expel the remaining molecular gas they are embedded within. This expeled
gas may form part of other GMCs in the future, and the cycle restarts.
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energy of the system.

1
2

d2I
dt2 = 2KE + PE (1.12)

If this equation is integrated over a long time T and divided by T the average of the

right hand quantities are obtained:

1
2T

[
dI
dt

]T

0
= 〈2KE〉 + 〈PE〉 (1.13)

Because T is long and for a bound system dI
dt must be finite the left hand side must be

0, so for a bound system

−KE
PE

= 0.5. (1.14)

Also on the topic of stellar dynamics there are two important timescales to mention; the

crossing time of a region (tcross), and its two body relaxation time (trelax). The crossing time is the

approximate time it takes a star to cross from one side of a region that has radius R to the other.

This is given by

tcross =
2R
σ

(1.15)

where σ is the velocity dispersion of the region, i.e. the root mean square of its stellar velocities.

The relaxation time is a little more involved. Stars in a star forming region exert gravitational

forces on one another, changing their velocities. The two body relaxation time is the expected

time for the magnitude of the changes to a star’s velocity due to gravitational interactions with

other stars to equal the magnitude of the star’s initial velocity. The relaxation time is related to the

crossing time such that

trelax =
Ntcross

10ln(N)
(1.16)

where N is the number of stars in the region (Binney & Tremaine 1987).
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1.3 The environment(s) stars form in

1.3.1 Giant molecular clouds

In this work the term ‘association’ is used to specifically describe distributed, unbound groups

of stars, and the word ‘cluster’ is used to describe bound, centrally condensed groups of stars.

The term ‘star forming region’ is used to describe both associations and clusters. Also note that

associations may contain clusters.

Stars form in giant molecular clouds (GMCs) (Blitz 1993; Evans et al. 2009; Lada et al.

2010), which are clouds of mainly molecular hydrogen and helium. It is usually not possible to

observe the hydrogen and helium, however molecular clouds also contain dust (Rosolowsky &

Blitz 2005) and molecules such as CO (Heyer & Dame 2015), which are more easily detected and

can be used to ‘trace’ the less easily observed hydrogen and helium gas content.

Molecular clouds have temperatures of around 10s of Kelvin and their masses span many

orders of magnitude from 102 - 107M� (Brand & Wouterloot 1995; Heyer et al. 2001; Rosolowsky

et al. 2008). The mass spectrums of GMCs approximately follow M−2, however there is evidence

they may vary with their environment (Engargiola et al. 2003; Colombo et al. 2014). It is difficult

to accurately measure the sizes of GMCs due to the inherent limitations of 2D observations of 3D

objects, and because they typically do not have clear boundaries. They typically range from 101 -

102 pc in radius (see Fig. 1.4 taken from Fukui & Kawamura (2010)).

The dynamics of GMCs are not simple (Zuckerman & Evans 1974); they are dominated by

turbulent motion (Vázquez-Semadeni et al. 1997; Elmegreen & Scalo 2004; Scalo & Elmegreen

2004; McKee & Ostriker 2007; Ballesteros-Paredes et al. 2007; Hennebelle & Falgarone 2012).

This turbulent motion can be approximated assuming the gas is an incompressible fluid, as out-

lined in Kolmogorov (1941) which describes how kinetic energy can be transferred from large

to small scales until the scales are small enough that it can be dissipated. There have also been

studies investigating turbulence in compressible fluids in order to better understand the dynamics

of molecular clouds (Porter et al. 1992, 1994). Other models of turbulence, such as the pressure-

less Burgers turbulence are also used (Burgers 1939; Bec & Khanin 2007). It it worth noting that

observationally this picture becomes considerably more complex (McKee & Ostriker 2007).

In a turbulent environment velocity dispersion in GMCs scales with their size (Larson 1981;

Heyer & Brunt 2004), see Fig. 1.4. Given the sizes of GMCs these velocity dispersions are suffi-
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Figure 1.4: This figure is taken from Fukui & Kawamura (2010). It shows the log of the radii in
parsecs of GMCs in a number of galaxies against their velocity dispersion. The data for this plot
was assembled from a number of other papers, Solomon et al. (1987), Dame et al. (2001), Mizuno
et al. (2001), Rosolowsky et al. (2001), Engargiola et al. (2003), Leroy et al. (2006), and Fukui
et al. (2008). The grey dashed line shows this same relation for GMCs found in the inner
Milky Way (Solomon et al. 1987).
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ciently large that motions are often supersonic, resulting in shocks (Crutcher 1999; Padoan et al.

1999, 2004). Filamentary structure is also found within these clouds both observationally (Bally

et al. 1987; Nutter et al. 2008; Arzoumanian et al. 2011; Hacar & Tafalla 2011; André 2017) and in

simulations (Gómez & Vázquez-Semadeni 2014; Vázquez-Semadeni et al. 2017; Zamora-Avilés

et al. 2017). Further, young stellar objects are often observed within these filaments (Hartmann

2002; Teixeira et al. 2006; Chira et al. 2018) implying that star formation rates are elevated within

them due to their high density.

1.3.2 The initial conditions of star forming regions

Stars sometimes form in dense (& 1 M� pc−3) clusters (Lada et al. 1991) and sometimes as more

diffuse associations (de Zeeuw et al. 1997; Wright et al. 2014). Two major models of star formation

have been proposed: hierarchical and monolithic. In the monolithic model of star formation the

vast majority of stars form in dense stellar clusters (Zuckerman & Evans 1974; Krumholz & Tan

2007; Evans et al. 2009), but only around 7 % of these clusters survive beyond around 10 Myr

(Lada & Lada 2003). The rest of the clusters are dissolved when gas expulsion (discussed in

section 1.4) occurs. Therefore the monolithic model requires that gas expulsion be highly efficient

at destroying star clusters. Gas expulsion is the result of the impacts of massive stars on the region.

In the monolithic model massive stars form close to one another i.e. they are primordially mass

segregated (Murray & Lin 1996; Fischer et al. 1998; de Grijs et al. 2002) via a process such as

competitive accretion (Bonnell et al. 2001).

However the monolithic model of star formation cannot explain the existence of young

associations that have no kinematic signatures of expansion (such as Cygnus OB2 (Wright et al.

2014)) or other dynamical evolution (Gieles & Portegies Zwart 2011). Such associations have

been observed which are 10s of pc across and only a few Myr old (Wright et al. 2014, 2016). If

these associations formed as dense star clusters (∼ 1 pc across) and expanded to this size as per

the monolithic model we would expect to see the stars moving systematically outwards from the

centre and we do not (Wright et al. 2014).

On the other hand in the hierarchical model (Efremov & Elmegreen 1998) the process

of star formation occurs across a large range of densities and spatial scales (Bressert et al. 2010;

Bonnell et al. 2011; Gutermuth et al. 2011; Burkert & Hartmann 2013; Gouliermis 2018) via cloud

fragmentation, and takes a crossing time or so (Elmegreen 2000). This model permits the existence
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of both dense stellar clusters and diffuse, non-expanding associations, with gas expulsion maybe

or maybe not playing a large roll in the evolution of star forming regions. In this model massive

stars form in ‘random’ locations rather than forming close together and become mass segregated

via dynamical interactions (McMillan et al. 2007; Allison et al. 2009b; Domı́nguez et al. 2017).

There is also some evidence of massive stars forming in isolation i.e. away from any region

that is concurrently forming other stars (de Wit et al. 2005). However closer studies of such

apparently isolated stars have found the stars are in fact the most massive members of low mass

(. 100 M�) star clusters (Parker & Goodwin 2007; Stephens et al. 2017). It is also hypothesised

that these apparently isolated stars are in fact ‘runaway’ stars, i.e. stars that formed in a star cluster

but were ejected at very high velocities (> 30 km s−1) via dynamical interactions (Blaauw 1961;

Gvaramadze et al. 2009; Lennon et al. 2018; Massey et al. 2018). Regardless of the origins of

apparently isolated stars, it appears that the vast majority of young stars form in the presence of

other young stars in GMCs.

1.4 The evolution of star forming regions

In order to begin to understand the evolution of star forming regions (as well as other related topics

of interest such as planet formation), there are a myriad of interrelated processes and factors to

consider. For example massive stars have a profound impact on the evolution of their star forming

regions in multiple ways. The pressure of the radiation they output can substantially impact the

surrounding region (Krumholz & Matzner 2009), and feedback from their stellar winds injects

momentum into their surrounding medium (Hansen et al. 2012; Raskutti et al. 2016; Grudić et al.

2018). Aditionally, the UV photons they output photoevaporate their surroundings (Fatuzzo &

Adams 2008) which can impact planet formation by eroding the protoplanetary disks of nearby

stars (Nicholson et al. 2019).

Finally, massive stars impact their environments when they go supernova. Supernovae can

enrich nearby protoplanetary disks (Adams et al. 2004; Nicholson & Parker 2017) which influ-

ences planet formation, but the most dramatic way that supernovae influence their environments

is via their shockwaves. Supernova shockwaves push the gas around them outwards, leaving an

empty bubble around them, e.g. Camps-Fariña et al. (2016), and these bubbles can expand to the

size of an entire star forming region. A simulation of such an occurrence is shown in Fig. 1.5,
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Figure 1.5: This figure is taken from Kim et al. (2011). It shows a hydrodynamic simulation of the
ISM in which supernovae have occurred and the expanding shells around them are apparent. The
figure is colour coded by gas density with redder gas being more dense and bluer gas less dense.

which is taken from Kim et al. (2011).

This process of gas being pushed out of a star forming region by supernovae shockwaves,

stellar winds, and/or photoevaporation (Dale et al. 2012) is called gas expulsion. The swift removal

of a significant amount of gas rapidly lowers the potential energy of the region, resulting in its virial

factor increasing and the cluster expanding dramatically or even becoming unbound and dissolving

into the field (Tutukov 1978; Hills 1980; Goodwin & Bastian 2006; Baumgardt & Kroupa 2007;

Moeckel & Bate 2010; Pfalzner & Kaczmarek 2013; Brinkmann et al. 2017).

Whether a cluster survives gas expulsion or not depends partly on the star formation effi-

cency (SFE) with increased SFE resulting in higher survival probability. However it also depends

much more strongly on the virial state of the cluster immediately before the onset of gas expulsion,

with higher virial ratios decreasing the probability of survival (Goodwin 2009). A cluster that does

survive may do so only partially- losing a large number of stars to the field but retaining a small

bound core (Goodwin & Bastian 2006).

However it has also been argued that in regions with dense substructures the impact of gas

expulsion is minimal. This is because within the substructures gas is depleted as it is accreted

onto the YSOs so the substructures become gas poor. As there is little gas in these substructures

its removal (via gas expulsion) has little impact on their virial state, and the substructures remain

gas-poor and in approximate virial equilibrium up to scales of order 0.5-1 pc (Kruijssen et al.
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2012).

The impact of multiple stellar systems on the dynamics of their resident regions must also

be considered as such systems can contain a great deal of potential energy. This energy can

be extracted from the binary system by three-body interactions with other members of the

region, altering the virial ratio of the region as a whole. Such three body interactions can

also eject stars from the region entirely (Hut 1993; Gvaramadze et al. 2012) if the multiple is

wide enough. If there is a small separation between the members of a multiple then from

the perspective of other stars in the region in appears to be a single point mass and they do

not ‘see’ its potential energy. Further, the initial multiple fraction of stars is observed to be high

(Simon et al. 1995; Kouwenhoven et al. 2007; Eggleton & Tokovinin 2008; Reipurth et al. 2014),

and is even higher for massive stars (Duchêne et al. 2001; Raghavan et al. 2010; Sana et al. 2013)

though whether this is primordial or due to dynamics is debated (Pfalzner & Olczak 2007). As a

result the initial distribution of periods of multiple systems has been a topic of interest (Zinnecker

& Yorke 2007; Kroupa & Petr-Gotzens 2011; Duchene & Kraus 2013), as has the evolution of the

binary population of a region with age (Connelley et al. 2008; King et al. 2012a,b).

The myriad dynamic processes outlined in this section (particularly supernovae) destroy

the GMCs stars form from on timescales of order a crossing time (∼ 5 Myrs) (Elmegreen 2000;

Hartmann 2001, 2003; Larson 2003), causing star formation to cease. Further, these processes

cross a huge range of time and spatial scales. For example the photoevaporation of disks depends

on the interactions of individual photons and molecules over nanometers and a fraction of a

second, whereas stars take millions of years to evolve and gravitationally influence objects parsecs

away from themselves. This range of scales makes star forming regions very difficult to study.

The field has developed tools to assist with the investigation of these regions, and among the

most powerful of these are computer simulations, which allow the evolution of regions with given

(initial) conditions to be studied. Additionally, simulations circumvent one of the major difficulties

associated with studying the evolution of star clusters: these clusters take millions of years to

change significantly so changes cannot be observed in a human lifespan. Simulations, however,

can be used to study the entire lifetime of a region in a way that is not possible observationally.

N-body simulations are used extensively in this thesis. A description of how these work

and why N-body simulations are used (as opposed to other methods of simulation) can be found

in the next chapter.
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1.5 Generating artificial star forming regions for simulations

In order to simulate the evolution of star forming regions artificial star forming regions must be

generated. Here we outline different approaches that are taken to doing this and how they are

based on what is known about the environments stars form in and the process of star formation.

1.5.1 Stellar positions and velocities

A number of different methods have been used for setting up the initial conditions of star forming

regions for simulations. One such method is the box fractal method which attempts to simulate

hierarchical star formation. Fractals are used because in the hierarchical model star formation

is self similar on different scales, and this is a property which is shared by fractals. Detailed

descriptions of the box fractal method presented in Goodwin & Whitworth (2004) can be found in

chapter 3 and 4, but because it is used repeatedly in this thesis we also outline it here.

Simply put box fractals are built outwards from a single ‘parent’ star in the centre of a

box. The box is divided into smaller boxes, and a ‘child’ star is put in the centre of each of them.

Some of these child stars a randomly deleted. For those stars which survive the process repeats.

They become parents so their boxes are subdivided and new child stars are created and randomly

deleted within them. This is repeated for as may generations as necessary to produce the necessary

number of stars. The probability the children survive their generation’s culling is dictated by the

user. If the probability is high the resulting stellar distribution will be relatively smooth, if it is low

the distribution will be highly substructured.

The distributions generated by the box fractal method also have velocity structure. The

initial parent star is given some velocity and its children inherit it plus a random component.

When those (surviving) children become parents their offspring inherit their velocity, again plus a

random component and so on. By this method on average stars that are close to each other have

similar velocities, and stars that are far apart tend to have very different velocities. This is velocity

substructure.

Another fractal-based method is proposed by Lomax et al. (2018). It generates star forming

regions by first generating a fractal Brownian motion probability distribution, and then randomly

sampling it to get stellar positions.

Another commonly used way of setting up the initial conditions of a region is to make a
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Plummer sphere (Plummer 1911) which is a spherical, centrally concentrated distribution. This

distribution was modeled to reproduce observations of globular clusters. Setting up simulations of

star forming regions will be discussed further in section 1.7 and chapter 2.

1.5.2 The Initial Mass Function (IMF)

Attempts to understand star formation have to be able to explain observed properties of stars that

have formed. The most crucial property in determining both the evolution of a star and its impact

on its surroundings is its mass. The IMF is the distribution of masses that stars form with, and it

is therefore a topic of considerable scientific curiosity. Some observations have found evidence

the IMF is invariant across all star forming environments (Bastian et al. 2010; Offner et al. 2014),

however other findings have disagreed (Jeffries 2012; Kroupa et al. 2013; Dib 2014). In either

case it seems fair to say that the IMF of resolved populations is at least surprisingly constant

across a very wide range of star forming environments (we do not discuss the IMF of unresolved

populations of stars, such as those in high redshift galaxies, in this work).

Under the assumption that the IMF is universal there have been a number of attempts to

mathematically characterise it. Such characterisations are extremely useful for simulating star

forming regions. The earliest of these formulations is a power law presented by Salpeter (1955)

which empirically fits the high mass slope of the IMF. This is built upon by Kroupa (2001) which

instead uses three power law slopes to approximate a peak. The Chabrier formulation of the IMF

(Chabrier 2003) has a lognormal distribution at low masses before transitioning to a power law

slope at high masses, and the Maschberger IMF (Maschberger 2013) is broadly the same but with

a more easily implemented mathematical form.

A comparison of the Salpeter, Kroupa, Chabrier, and Maschberger IMFs can be seen in

Fig. 1.6.

1.6 Binary clusters

It is observed that star clusters are sometimes found in close pairs, and statistical arguments show

that the number of aparent pairs is far higher than would be expected if clusters are randomly

distributed (Rozhavskii et al. 1976; Bhatia & Hatzidimitriou 1988; Bhatia et al. 1991). From this

it is concluded that some clusters are in binary or multiple systems, known as binary clusters.
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Figure 1.6: The probability density functions for the Kroupa (blue dashed line) Chabrier (green
line), and Maschberger (black line) IMFs. At high masses (& 1 M�) all three of these approx-
imately match the Salpeter slope. Key masses used in the different models are marked on this
figure, which is taken from Maschberger (2013).
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Further studies have estimated that the fraction of star clusters in binaries/multiples is around

10 % (Hatzidimitriou & Bhatia 1990; Pietrzynski & Udalski 2000; De La Fuente Marcos & de

La Fuente Marcos 2009). The separation of young star forming regions into binary cluster(-like

structures) is also observed in N-body simulations, e.g. in Goodwin & Whitworth (2004), Parker

et al. (2014), and chapter 3 of this thesis.

1.6.1 Observed features of binary clusters

Binary clusters are generally found to be young (of order 107 years old or less) (Kontizas et al.

1993; Pietrzynski & Udalski 2000; De La Fuente Marcos & de La Fuente Marcos 2009; Palma

et al. 2016) and the clusters that make up the binary are often have similar ages (Kontizas et al.

1993; Pietrzynski & Udalski 2000) and radii (Bhatia et al. 1991; Pietrzynski & Udalski 2000) as

their partners.

‘Bridges’ of stars between the two components of a binary cluster are sometimes observed.

These features have mostly been observed between coeval binary clusters (i.e. the clusters that

make up the binary are the same age as each other) such as NGC 2136 / NGC 2137 (Hilker et al.

1995; Mucciarelli et al. 2012), SL 537 / SL 538 (Bica et al. 1996; Dieball & Grebel 1998), SL

387 / SL 385 (Vallenari et al. 1998), and SL 353 / SL 349 (Dieball et al. 2000). However bridges

have also been observed between non-coeval binaries e.g. Sersic 13-N and Sersic 13-S (Minniti

et al. 2004), though the possibility remains that such apparent bridges may not be real but instead

a chance line up with stellar overdensities in the foreground/background.

1.6.2 The formation of binary clusters

Models of binary cluster formation generally assume that the clusters that form a binary were

always distinct, but formed near one another. From this starting point, theoretical predictions can

be made about the lifespan of binary clusters. This lifespan is predicted to be ∼ 107 years by many

independent studies (Sugimoto & Makino 1989; Bhatia 1990; De Oliveira et al. 1998; Portegies

Zwart & Rusli 2007; Priyatikanto et al. 2016). These simulations show that after this the clusters

would most likely merge if they are gravitationally bound, or, if they formed far enough apart,

disperse. It bears noting that the early stages of a cluster merger appear similar to a binary cluster

with a bridge between its members (Dieball & Grebel 1998).

Observations find coeval binary clusters older than these predictions can explain, for exam-
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ple Leon et al. (1999) finds ages ranging from 106−109 Myr in a sample of coeval binary clusters.

This is the overmerging problem.

One model of binary cluster formation is given by Fujimoto & Kumai (1997) which sug-

gests that binary clusters form as a result of gas cloud collisions triggering fragmentation in two

or more close regions. This would explain why many binary clusters are coeval but cannot ex-

plain observed binary clusters in areas with low velocity dispersions, as it requires large velocity

amplitudes to form them. Further, this model fails to solve the overmerging problem.

Another model states that binary clusters form by tidal capture, and that the likelihood

of this is increased by resonant trapping (Dehnen 1998). Resonant trapping is a gravitational

effect of the galactic disk, which creates stable ‘islands’ of phase space. Clusters within these

islands can capture each other more easily due to the small difference between the phases of their

galactic orbits. This model permits binary clusters with ages of > 107 years to form via this capture

process, making the overmerging problem moot. However this model also predicts that the clusters

that make up a binary would generally have different ages to one another, and this is counter to

observations as outlined in section 1.6.1.

1.7 Stellar dynamics

Binary clusters are a phenomenon of stellar spatial distributions, but there are a great many other

properties that are important to consider when specifying and studying the state of a star forming

region. One of the most important of these other factors to consider is the region’s stellar veloc-

ity distribution. This aspect of star forming regions has historically been less well studied than

the stellar spatial distributions because of the increased observational difficulties presented when

studying stellar velocities.

• In order to measure the proper motions of stars they must be relatively close to us and have

very accurate astrometric measurements over a period of time.

• Radial velocity measurements require spectra to be taken so that the relative Doppler shifts

of stars in a region can be calculated. For stars in multiple systems multi-epoch data is

necessary so that the orbital contribution to each star’s radial velocity can be modeled and

accounted for. Even with multi-epoch data this process is difficult and introduces uncertain-

ties.
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Despite the difficulties stellar velocity studies present they are still conducted and much

has been learned from them. For example studies have found kinematic substructure in young

star forming regions (Fűrész et al. 2006; Jeffries et al. 2014; Tobin et al. 2015; Wright et al.

2016). This informs our understanding of, and allows us to put constraints on, how these regions

form. For example, the discovery of two kinematically distinct populations is used as evidence

for multiple epochs of star formation in Gamma Velorum (Jeffries et al. 2014; Franciosini et al.

2018). The velocity distributions of prestellar cores have also been studied (André et al. 2007) to

better characterise the initial conditions of star forming regions. Further studies have compared

the velocity structures of molecular gas and young stars in star forming regions and found that

they are correlated (Fűrész et al. 2008).

Studies of velocities within star forming regions have also been undertaken from a theo-

retical standpoint. It is found that star cluster evolution is an extremely stochastic process, i.e.

statistically identical clusters can evolve to be entirely different to one another (Parker & Goodwin

2012). However, general trends can be observed. For example, clusters with a low virial ratio

tend to collapse, which destroys their substructure. On the other hand, supervirial clusters gener-

ally expand, and their substructure can survive for several crossing times (Goodwin & Whitworth

2004). It is worth noting that as a cluster expands its crossing time changes (Bastian et al. 2008).

Therefore a cluster’s age in terms of its current crossing time does not necessarily represent how

dynamically evolved it is.

The virial state of young star clusters is of considerable interest for differentiating between

the hierarchical and monolithic models of star formation, which are discussed in section 1.3.2. The

monolithic model predicts that most star clusters become supervirial and dissolve, but this is not

required by the hierarchical model. The virial ratio of a region also may or may not be drastically

impacted by the process of gas expulsion, as discussed in section 1.4.

The virial state of a region is related to its velocity dispersion as kinetic energy is propor-

tional to the square of the region’s velocity dispersion and the region’s virial factor is the ratio of

its potential and kinetic energies. Hydrodynamical simulations find that the velocity dispersion of

stars that form from a molecular cloud is approximately a factor of five smaller than the veloc-

ity dispersion of the cloud itself (Offner et al. 2009) which is useful when considering the initial

conditions of these regions.

This is a very exciting time for the field of stellar kinematic studies. The existence and
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longer time-baselines for proper motion studies, and even more excitingly, the advent of Gaia

means that high quality stellar velocity data is being produced at an unprecedented rate. For

example Gaia surveys over a billion stars and DR2 provides velocity measurements with errors

around 0.3 - 1 km s−1 for a G dwarf at a distance of 1 kpc. See table 1.1 taken from Lindegren

et al. (2018) for more detailed information on the properties and accuracies of sources recorded in

Gaia DR2. However, attempts to analyse velocity data have faced difficulties. Several approaches

have been attempted, however they have largely depended on subjective, by-eye judgements of the

properties of dynamical structures in star forming regions (Galli et al. 2013; Wright et al. 2016; Da

Rio et al. 2017; Wright & Mamajek 2018; Kounkel et al. 2018). Such qualitative analysis makes

it difficult to rigorously compare regions to each other or to theoretical models, and therefore is

of limited use for confidently advancing our understanding of the process of star formation. More

quantitative methods of analysing kinematic structure are required.

1.8 Statistical methods

As discussed (see section 1.7) in order to most usefully analyse datasets (both observational and

simulated) statistical methods are required. As such a variety of different methods have been

developed by the field to quantify different properties of interest in star forming regions.

It is observed that rather than being randomly distributed within star forming regions mas-

sive stars appear to be located systematically closer to one another than would be expected by

chance (Hillenbrand 1997; Gennaro et al. 2011; Kirk & Myers 2011; Pang et al. 2013; Gavagnin

et al. 2017; Plunkett et al. 2018). This phenomenon is referred to as mass segregation, and its

origin has been the subject of much debate; is it primordial or the result of dynamics? In order

to effectively study how the degree of mass segregation in star forming regions varies with age it

must be quantified and several parameters have been developed to do so.

Allison et al. (2009a) presents theΛ parameter, which uses minimum spanning trees (MSTs)

to quantify mass segregation. A MST is the shortest possible set of edges that connects a group

of points. Λ is the ratio of the mean of the edge length in an MST of random stars (〈lnorm〉) to the

mean edge length in an MST of the most massive stars (lmassive):

ΛMS R =
〈lnorm〉

lmassive
. (1.17)
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By this definition a cluster is mass segregated if Λ is greater than 1.

Allison et al. (2009b) applies Λ to simulations of young star forming regions and shows that

clusters can dynamically mass segregate within a few Myr, meaning primordial mass segregation

isn’t necessary to explain mass segregation observed in regions older than this. A follow up paper,

Allison et al. (2010), uses simulations to explore parameter space and finds mass segregation

correlates with both low virial ratios and high levels of substructure. It also shows that mass

segregation can cause a multiple of massive stars to form (similar to the one we see in the ONC),

and that the decay of this multiple can destroy its host cluster.

Maschberger & Clarke (2011) proposes calculating Λ using median edge lengths rather than

means, which reduces the effects of outliers. A different modification to Λ is proposed in Olczak

et al. (2011). They propose using the geometric mean rather than the arithmetic mean. Again, the

goal of this modification is to reduce the effects of outliers.

Maschberger & Clarke (2011) also proposes another parameter that attempts to quantify

mass segregation, Σ. It is a measure of local surface density of each star:

Σ =
5
πr2

6

(1.18)

where r6 is the distance to the 6th nearest neighbour to the star. They apply this Σ to data from

simulations, and show that massive stars generally have higher Σ than less massive ones. This

indicates that massive stars in their simulations are preferentially found in densely populated areas

which often (but not always) signifies mass segregation.

Another property of star forming regions that there have been attempts to quantify is the

degree of spatial substructure. One such attempt is made in Cartwright & Whitworth (2004) which

presents the Q parameter, which is the ratio of the mean edge length in the cluster’s MST (m̄) to

the average distance between stars in the cluster (s̄).

Q =
m̄
s̄

(1.19)

Low values of Q (0.45 - 0.7) are evidence of subclustering, and the lower the Q the higher the

degree of substructure. Qs greater than 0.8 indicate regions are centrally concentrated. The higher

the value of Q the more centrally concentrated the region is.

Another method of quantifying spatial substructure is the INDICATE method presented by
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Buckner et al. (2019) which generates an index I for each star. Broadly, I is a measure of how

many stars are within a given distance of a certain star compared to the number that would be

expected in a uniform stellar distribution. It is calculated by generating a random distribution of

points and calculating the average distance of each star to the Nth nearest of these points, where N

is chosen by the user. This average distance is r̄. For each star, j, the number of other stars within

r̄ is calculated, this is called Nr. I for star j using nearest neighbour number N is defined as

I j,N =
Nr

N
(1.20)

High I indicates that a star is in a clustered environment, and the method has the advantage of

being scale independent.

An example of statistical parameters being used to study and compare star forming regions

can be found in Parker et al. (2014). Here the changes in Σ, Λ (in its original form), and Q are

observed as simulated clusters evolve. Σ of the most massive stars is always found to be higher

than the median Σ for all stars. Λ only becomes significant in regions with subvirial and/or clumpy

initial conditions. Q is plotted against Λ and Σ, and clusters with different initial conditions are

found to evolve (or not evolve) across these plots differently. Inspection of these figures shows

that Q tends to increase with time if the initial conditions are virial or subvirial and to stay around

the same if they are supervirial. Σ tends to increase in all cases, and Λ tends to increase if regions

are not supervirial.

By combining statistical methods (such as those outlined in this section) with data (real or

simulated) we can come to meaningful conclusions about the process of star formation (Alfaro &

Román-Zúñiga 2018; Lomax et al. 2018; Busquet et al. 2019; Cantat-Gaudin et al. 2019; Reiter &

Parker 2019; Rodrı́guez et al. 2019).

1.9 Major ongoing issues in the field.

Some of the most significant issues facing the field have already been discussed, such as the

origin and possible invariance of the IMF (see section 1.5.2), and the mechanism by which

star clusters form (see section 1.3.2). Many other questions facing the field are on longer

timescales than the lifetimes of individual star forming regions, however.

How the process of star formation has changed with the aging of the universe is one
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such question. At high redshift there is evidence galactic mergers play a significant role

(Stewart et al. 2009; Perret et al. 2014). As such the study of the kinematic signatures of

early galaxies has been valuable in constraining the earliest epoch of star formation (Barnes

& Hernquist 1996) but there is still work to be done. The chemistry of this population of

stars, known as population III stars, is of particular importance as their metallicity has a

significant knock on impact for later populations (Maio et al. 2011) although this is not fully

understood. Further, stars at the highest redshifts had significantly higher masses than is the

case in the present day (Bromm et al. 2002; Yoshida et al. 2008) increasing the relevance of

their supernovae.

Nevertheless the next earliest generation of stars (population II stars) formed from

gas with metallicities as low as of order 10−4 (Schneider et al. 2003; Latif et al. 2016) and as

such are metal poor. They are often found in globular clusters which themselves present a

number of ongoing challenges to the field. Specifically very little is understood about how

these dense, centrally condensed clusters form. They are generally found at redshifts < 2,

(star formation is thought to have peaked at around a redshift of 2 (Hopkins & Beacom

2006)) however observation of high mass (104-108 M�) clusters with ages less than a Gyr

means their formation may continue into the present day in galaxy mergers (Bastian et al.

2006; Kruijssen 2014). The possible presence of stars with distinct sets of ages in globular

clusters (referred to as multiple populations) is also of considerable interest to the field with

regards to studying the formation and evolution of globular clusters (Gratton et al. 2012;

Bastian & Lardo 2018).

The age distribution and spatial variation of star clusters within individual galaxies

is also a topic of interest as it informs our understanding of the conditions under which

star formation occurs and how galaxies evolve (Chandar et al. 2017; Piskunov et al. 2018).

The cluster mass function is a key aspect of this and studies comparing it within different

galaxies/galactocentric radii (González-Lópezlira et al. 2012; Pflamm-Altenburg et al. 2013)

has been useful in terms of constraining how environment impacts the probability/properties

of star clusters formed, however these relationships and their physical origins remain not

fully understood. Such studies have also offered evidence that cluster’s survival times are

mass dependent (Lamers et al. 2005; Adamo & Bastian 2018; Messa et al. 2018). The positive

relationship between cluster radius and mass has also been a topic of study (Ryon et al. 2015)
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and is of considerable curiosity because cluster density is thought to play a significant role in

planet formation. This is due to the increased rate of encounters and density of photoionising

UV photons in high density star dorming regions, which can erode/disrupt planet-forming

disks (see section 1.4).

Reducing time and spacial scales once more, down to the scales of individudal stars,

while the main sequence of stars is relatively well understood their births and deaths still

contain many mysteries despite extensive study. The evolution of stars on the HR-diagram

prior to the zero age of the main sequence is unclear (Palla 2005), though the study of lithium

abundances has been of use in investigating this pre main sequence evolution (Xing 2010).

With regards to the ultimate fates of stars while it clear mass is the most critical factor in

determining when and how a star will ‘die’ the exact mechanisms remain unclear, especially

for type Ia supernovae (Sarbadhicary et al. 2019; Seitenzahl et al. 2019; Soker 2019).

On a technical note, perhaps the most pressing questions facing the field relate to how

it must adapt to embrace a new era of big-data astrophysics. This paradigm change, while

tremendously exciting, presents numerous challenges. We must first consider what it is that

makes data big, which can be broadly split into three features as per Garofalo et al. (2017):

volume, variety, and velocity.

• Volume: the raw number of bytes in a dataset becomes difficult to manage at large

scales, and cannot be managed effectively with conventional methods used for smaller

datasets.

• Variety: astrophysical data comes in countless forms and from a huge number of

sources. Using these dataselts together effectively presents a challenge given most are

not immediately compatible.

• Velocity: The speeds at which data is gathered may exceed the speed at which data can

practically and usefully stored. As such high-speed pipelines are required.

The first of these we will discuss is volume, i.e. simply how to physically store and

process such large datasets. For example, FAST generates 20 petabytes per year (Yue & Li

2019), and the data output of LSST over ten years of operation is expected to be in excess

of 85 petabytes (LSST Science Collaboration 2009). To put that in perspective as of 2017
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the entirely of YouTube’s video database totaled 15 petabytes. That said, this is not an en-

tirely untried regime for scientific research; CERN’s data centre holds over 230 petabytes

(CERN Science Collaboration 2018). That is not to say that the challenges presented to as-

trophysics by big data have already been solved, but that an interdisciplinary approach to

these problems would be advantageous (Hu & Zhang 2017; Kremer et al. 2017).

Obviously it is impossible for these datasets to be analysed entirely manually by hu-

mans, they are simply too large. As such while machine learning has been made use of by as-

trophysics for a long time (Tagliaferri et al. 2003; Baron 2019) it is being employed more and

more commonly in order to relive some of this burden (Lochner et al. 2016; Ravanbakhsh

et al. 2016). In part this is because of its wider accessibility for example via DAMEWARE

(Data Mining and Exploration Web Application REsource) (Brescia et al. 2016), an online

data mining framework.

However access to methods and resources is only part of the problem; machine learn-

ing itself presents new challenges to the field, specifically how can it be used for maximum

efficiency and reliability. As Allen et al. (2019) phrases it ‘New tools come with new failure

modes, and machine learning [sic] poses the temptation to choose expediency over under-

standing. A common complaint about machine learning [sic] methods is that they are black

boxes that cannot lead to physical understanding’

Next we move on to the issue of variety. This issue is two-fold. The first component

is the huge number of sources of data, and how these can be curated and used effectively

(Mickaelian 2016). The second is the variety of computing platforms and environments used

to handle different varieties of data. Cloud computing platforms in particular present op-

portunities and challenges (Landoni 2019), and are used both for data analysis e.g. Hong

et al. (2019) and management (Blanco-Cuaresma et al. 2019). Cloud resources are offered by

Amazon, Google, and Microsoft, amongst others commercial options such as Apache Spark

and Hadoop. Additionally some resources have been developed specifically for scientific re-

search, such as SciServer (Taghizadeh-Popp et al. 2020). The question of how to identify and

utalise the best of these tools for a specific problem does not have an obvious answer.

Lastly there is the problem of data velocity. Many of the issues related to this also

concern the data volume so we will not restate them, simply highlight real-time discovery

campaigns as a particularly vulnerable part of the field to this issue (Allen et al. 2019).
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Related to the issue of the computing challenges posed to astrophysics by big data are

the mathematical issues posed by it. Statistical methods are having to evolve to cope with

a data-driven paradigm (Buhlmann & van de Geer 2018; Galeano & Peña 2019). Using

statistics to tackle large and complex datasets is one of the main themes of this thesis, which

will be further discussed below.

1.10 Unifying themes of this thesis

With these issues in mind this thesis, while made up of a number of distinct projects, has a

number of unifying themes which will now be outlined.

1.10.1 Using simulations to study the evolution of star forming regions

The projects in this thesis make use of N-body simulations to study different aspects of how

star forming regions evolve. Chapter 3 investigates the morphological evolution of some

some simulated star forming regions into two distinct clumps, and argues this is how binary

clusters form. It also contains a parameter space study in which a large number of simula-

tions are used to study the impact of the initial conditions of a region on its probability of

undergoing different modes of morphological evolution.

Chapter 4 is concerned with studying velocity structure and makes use of simulations

to test a method of quantifying this. It also uses simulations with known and characteris-

tic velocity structures to benchmark the method’s performance when faced with simulated

observational constraints. Chapter 5 uses this method to investigate how Cygnus OB2 may

have formed/evolved. It highlights the region’s high velocity dispersion and very limited ve-

locity structure to suggest that most stars in the observed field of view likely did not form in

that part of the Cygnus OB2 region

Chapter 6 uses simulations to explore how stars are ejected from star forming regions

with a focus on how different properties of the stars and region correlate with this. No high

mass runaway stars are found, supporting the idea discussed in section 1.3.2 that apparently

isolated high mass stars are not in fact runaways but instead the most massive members of

low-mass clusters.
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1.10.2 The dynamics of star forming regions

Chapter 3 we find that distinct regions with very different velocities can develop from single

star forming regions. Further we find that in order for this to occur there must be velocity

substructure of some sort in the region’s initial conditions. Two realistic methods of generat-

ing initial velocity substructure are applied (one imposes a turbulent velocity field, the other

uses inherited velocities to mimic how velocities are inherited from the molecular gas stars

form from) and both result in binary cluster formation. However no binary clusters form in

another set of simulations in which there is no initial velocity structure.

Chapter 4 is concerned with the development of a technique to study how velocities are

structured in star forming regions. This technique calculates how different stellar velocities

are on average as a function of how far apart the stars are and produces a figure. Velocity

‘difference’ can be defined in different ways which highlight different aspects of a region’s

velocity structure. Two definitions, referred to the magnitude and directional definitions are

used. The former acts as a raw measure of the magnitude of the difference between velocity

vectors, while the latter highlights regions which are expanding/contracting and how sub-

regions are moving relative to one another.

Chapter 5 applies the method presented in chapter 4 to investigate the velocity struc-

ture of Cygnus OB2. Velocity substructure is found on scales < 0.5 pc which may indicate

the presence of bound sub-groups on this size scale. No evidence of systematic expansion or

collapse is found in any part of the region.

Chapter 6 looks into the ejection of stars from young star forming regions. Ejected

stars by their very definition have velocities that are very different to their regions of origin,

and chapter 6 looks into how these high velocity amplitudes come to be.

1.10.3 Using statistical methods to exploit data

Chapter 3 includes and analyses a set of 450 simulations which are made up of 50 of each

of 9 different sets of initial conditions. These initial conditions cover a small area of 2D

parameter space. Three different initial virial ratios are used for the simulations, one of

which is subvirial, (0.3), one of which is virialised (0.5), and one of which is supervirial (0.7)

Additionally, three different initial degrees of substructure are imposed by specifying the

fractal dimension of the initial conditions, D as 1.6, 2.2 and 2.9.
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Without any processing, just the raw data of positions and velocities at given timesteps,

the evolutionary patterns of these simulations are inscrutable. In order to analyse the out-

comes of this set of simulations they are classified into different evolutionary patterns. The

correlation of different patterns with different initial conditions can then be more readily

studied by conventional statistics. However the process of classification is labour intensive

and while a large sample size is necessary to provide reliable results this study approaches

the limits of what can be achieved without automation. As such this acts as a case study on

the limits of conventional statistical methods for analysing such sets of N-body simulations.

In chapter 4 a new statistical technique for analysing velocity structure in star form-

ing regions is presented. It is also tested on synthetic datasets and its performance when

faced with realistic simulated observational constraints, such as missing data from low mass

stars, observational uncertainties, and binary systems is assessed. The method is found to be

resilient against all of these and in chapter 5 it is applied to a real dataset.

Chapter 6 makes use of a number of different statistical techniques to study stellar

ejections, such as cumulative distribution plots and violin plots. This demonstrates how a

statistical technique does not necessarily have to provide a single numerical output to be a

valuable tool for data analysis.

1.11 Summary

In conclusion star formation and the evolution of star forming regions are extremely complex,

rapidly-evolving fields of research. Findings in these arenas have major implications for other

fields, for example by informing our understanding of the conditions necessary for life to develop.

This thesis makes use of simulations and statistical techniques to explore a number of open

questions in this field, particularly those related to stellar dynamics.
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Chapter 2

N-body simulations

2.1 Definition

The N-body problem involves N point mass particles interacting via gravity. It is a referred to as

a ‘problem’ because it has no analytic solution when N > 2 except in special cases, however an

approximate solution can be found using N-body simulations. In star forming regions stellar-

stellar interactions are dominated by gravity. The typical distances between stars vastly exceed

the scales of the stars themselves; R� = 6.96 ×108 m while young star clusters are typically

of order 1 pc (3.09 ×1016 m). As a result tidal forces can be neglected. This in combination

with the fact that stars are smooth spheroids means they can be well approximated in sim-

ulations by point mass particles. As such these simulations are uniquely well suited for studying

the evolution of star forming regions.

Because N-body simulations rely on very simple physics they are relatively quick to per-

form, however neglecting all forces but gravity does limit the physics they can incorporate. A

review of N-body simulations can be found in Dehnen & Read (2011). The main N-body simula-

tion code I will be using is kira which is part of the starlab package presented in Portegies Zwart

et al. (2001), however other N-body codes exist such as nbody6 (Aarseth 2003). kira is chosen for

this work because of features it incorporates to improve the speed and accuracy of simula-

tions (which are discussed further in Section 2.3.2), and because of existing familiarity with

it in the Sheffield astrogroup.
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2.2 Solving the N-body problem

N-body simulations take the positions and velocities of point masses and calculates the forces they

exert on one another according to Newton’s law of universal gravitation. According to this law

the gravitational force stars i and j exert on each other is:

Fi j =
Gmim j

| ri j2 |
r̂i j (2.1)

Where G is the gravitational constant, m is mass, and ri j is the distance between stars i and j. From

these forces the future positions and velocities of the particles after some timestep are estimated.

This is repeated over many timesteps until the system has been evolved to the desired age or some

other criterion is met. Using this method for a given set of initial conditions a simulation of how

a region would evolve is generated. To advance the simulation by a timestep these simulations

make use of a fourth order Hermite integrator which is outlined below.

2.2.1 Fourth Order Hermite integrator

This section is based on Aarseth (2003), Allison (2010) and Dehnen & Read (2011). The fourth

order Hermite integrator is also known as the Predict-Evaluate-Correct (PEC) scheme. As the

name suggests it has three steps; predict, evaluate, and correct.

2.2.2 Predict

Use a simple Taylor series to predict each particles’ position x and velocity ẋ after one timestep

∆t, where t is time and a is acceleration.

xt+∆t = xt + ẋt∆t +
1
2

at∆t2 +
1
6

ȧt∆t3, (2.2)

ẋt+∆t = ẋt + at∆t +
1
2

ȧt∆t2. (2.3)

2.2.3 Evaluate

From these predicted positions and velocities, evaluate what acceleration and jerk (the time deriva-

tive of acceleration) each particle will experience at t + ∆t (Dehnen & Read 2011). This involves
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calculating the force exerted on each particle (indexed by i) by every other particle (index j). G is

the gravitational constant.

ai,t+∆t = −G
N∑

i, j

m j
xi,t+∆t − xj,t+∆t

|xi,t+∆t − x j,t+∆t|
3 , (2.4)

ȧi,t+∆t = −G
N∑

i, j

m j

x2
i j,t+∆t ẋi j,t+∆t − 3xi j,t+∆t(xi j,t+∆t · ẋi j,t+∆t)

|xi,t+∆t − x j,t+∆t|
5 . (2.5)

N.B the notation in equation 2.5 is such that ẋi j,t+∆t is the velocity vector between stars

i and j at time t + ∆t.

2.2.4 Correct

Use these values for at+∆t and ȧt+∆t to calculate more accurate values for xt+∆t and ẋt+∆t. This is

done by first expanding the Taylor series for position, velocity, acceleration and jerk:

xt+∆t = xt + ẋt∆t +
1
2

at∆t2 +
1
6

ȧt∆t3 +
1
24

ät∆t4, (2.6)

ẋt+∆t = ẋt + at∆t +
1
2

ȧt∆t2 +
1
6

ät∆t3 +
1
24

...a t∆t4, (2.7)

at+∆t = at + ȧt∆t +
1
2

ät∆t2 +
1
6

...a t∆t3, (2.8)

ȧt+∆t = ȧt + ät∆t +
1
2

...a t∆t2, (2.9)

and then eliminating ät and
...a t to find

xt+∆t = xt +
1
2

(ẋt+∆t + ẋt)∆t +
1
12

(at − at+∆t)∆t2, (2.10)

ẋt+∆t = ẋt +
1
2

(ȧt+∆t + at)∆t +
1
12

(ȧt − ȧt+∆t)∆t2. (2.11)

Finally, substitute at+∆t and ȧt+∆t as estimated in the evaluate step into these equations to

obtain the corrected position and velocity after the timestep. This process is repeated for as many
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timesteps as necessary to evolve the region to a desired age.

2.3 Techniques to improve speed and accuracy

2.3.1 Variable timesteps

The choice of how long a timestep, ∆t, to use is a critical one, and it contains an unavoidable

trade-off. The shorter ∆t is the more accurate the resulting simulation will be. This is because the

terms which are not calculated in the Taylor series (and therefore introduce error into the results)

all depend on ∆t taken to increasingly high powers. Therefore the smaller ∆t is the smaller error

is introduced.

However the drawback of having a small ∆t is that it is more computationally expensive.

For example, if a simulation is to evolve a star forming region to an age of 10 Myr in timesteps

of 0.1 Myr the positions and velocities of the stars only need to be recalculated 100 times. If the

timestep is 0.01 Myr then this increases to 1000 and the simulation will take ten times longer to

run.

Variable timesteps are a computational tool used to try to maximise accuracy while min-

imising runtime by not using a ‘one size fits all’ timestep. Instead ∆t is varied between stars

depending on the rate at which their acceleration and its time derivatives are changing. Stars

which are experiencing rapid changes in their accelerations are regularly updated (i.e. they are

evaluated with small timesteps) in order to produce reliable results. In contrast stars with more

slowly changing accelerations, such as those in low density regions, are evaluated with much

longer timesteps.

The procedure for advancing a simulation from time t to time t+∆t using variable timesteps

is now described. This explanation will refer to a diagram of the process shown in Fig. 2.1 to

improve clarity. Simulations have different ‘levels’ of timesteps, the highest of which is the full

∆t. The next is ∆t
2 , and the next ∆t

4 and so on with ∆t divided by increasing powers of two. Only

three levels ( ∆t, ∆t
2 , and ∆t

4 ) are shown in Fig. 2.1 to prevent the figure becoming crowded, but any

number of levels can be used. At time t (the far left hand side of Fig. 2.1) the conditions each star

is experiencing are assessed and the best level of timestep for them is chosen.

Once the stars have all been allocated to levels the simulation is advanced. The process of

advancing a simulation at a given time is as follows:
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t + ∆tt t + ½∆tt + ¼∆t t + ¾∆t

Timestep: ∆t

Time:

Timestep: ½∆t

Timestep: ¼∆t

Figure 2.1: A diagram of how an N-body simulation is updated with variable timesteps. In this
figure time progresses from left to right starting at t and ending at t + ∆t. It shows three levels
of timesteps, once every ∆t (top), once every ∆t

2 (middle), and once every ∆t
4 (bottom). Coloured

circles show where the positions and velocities of stars are recalculated between t and t + ∆t.
These are green on the ∆t timestep level, orange on the ∆t

2 timestep level and red on the ∆t
4 level.

Solid circles are used where the stars are updated by taking into account the forces exerted on
them by all other stars via the fourth order Hermite integrator. Hollow circles are used where
stellar positions and velocities are updated using only the star’s previously calculated spatial and
dynamical properties.

1. Advance the positions and velocities of all the stars by the smallest timestep.

(a) For stars evaluated on this timestep update them by taking into account the forces

exerted on them by all the other stars using the fourth order Hermite integrator. These

types of updates are shown by solid circles in Fig. 2.1.

(b) For stars evaluated on timesteps longer than this calculate their new position and ve-

locity using previously calculated values of their position and kinematic properties.

These types of updates are shown by hollow circles in Fig. 2.1.

2. If stars on more than one timestep level have been updated then, if appropriate, stars can be

swapped between these levels. For example at ∆t
2 both stars with timesteps of ∆t

4 and ∆t
2 are

updated. This swapping is illustrated by double-headed arrows in Fig. 2.1.

3. Return to step 1.

2.3.2 Other techniques employed by kira to improve speed and accuracy

N-body simulations make use of other ‘tricks’ to improve their performance. One such trick is to

convert their input into N-body units by doing things such as setting commonly used values such

as the gravitational constant G and the total mass in the system M to 1 as outlined in Hénon (1971).
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Figure 2.2: A system of ten particles for which a tree has been built. This figure is adapted from
educational materials developed by Prof. Frans Pretorius for Princeton university, which can be
viewed here http://physics.princeton.edu/˜fpretori/Nbody/intro.htm.

Doing this frees up more bytes to define useful information within the simulation. If, for example,

masses were stored in kg bytes would need to be occupied storing a power of ∼ 1030. By removing

that need those bytes can instead store additional decimal places of simulation parameters, such

as stellar masses. Because of the chaotic nature of dynamical systems small improvements

in accuracy can propagate exponentially over many timesteps and have a large impact on

simulation results.

Another method used to speed up N-body simulations (albeit at the cost of some accuracy)

is to make use of computational trees. Trees divide the physical space the simulation takes place
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over into subregions, which themselves are subdivided into smaller regions if they contain multiple

particles and so on. An illustration of such a tree for a system of ten particles is shown in Fig. 2.2.

This example shows a Barnes-Hut tree (Barnes & Hut 1986), the type used by kira, although other

methods of constructing trees exist. As you can see in this figure particle 1 is alone in its region so

the region is not subdivided further. In contrast particles 2, 3, and 4 are in the same subregion so

the region is subdivided once, which isolates particle 2, and then again to isolate particles 3 and 4.

A further level of region subdivision is necessary to isolate particles 7 and 8.

In each subregion the total mass, location of the centre of mass, and the quadropole and

octopole moments of the cell are calculated. These can be used instead of calculating the impacts

of the individual stars in some cases, which saves time. For example in Fig. 2.2 particle 1 is very

far away from particles 6, 7 and 8, and as such it is likely the gravitational force they exert on it

will be weak. Therefore instead of laboriously calculating the gravitational forces each of these

three particles exert on particle 1 the total mass and centre of mass of their subregion (which was

calculated when building the tree) can be used instead, speeding up the calculation at the cost of a

small amount of accuracy.

2.4 Other methods of simulating star forming regions

Adaptive mesh refinement (AMR) (Berger & Jameson 1985) and smoothed particle hydrodynam-

ics (SPH) (Gingold & Monaghan 1977) are two more sophisticated methods used to simulate star

forming regions. They incorporate more physics, but require increased complexity and runtime.

Further, such complex simulations are often vulnerable to effects such as artificial viscosity which

distort their output. Hybrid N-body/SPH codes have been created, such as seren (Hubber et al.

2011). The bridging of the N-body and SPH methods is improved in Hubber et al. (2013). More

recently seren has been succeeded by gandalf (Hubber & Rosotti 2016).

Further details on alternative methods of simulating star forming regions are not provided

here as they are not used in this thesis.

The major exclusions from kira are gas and stellar evolution. However both of these

can be approximated within kira. For gas this is done by including a crude background

potential energy to mimic the potential that would be induced by the presence of gas.

Stellar evolution can be mimicked by reducing the masses of stars as a function of time,
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however the simulations in this paper are mostly too short for stellar evolution to have a large

impact (∼ 10 Myr or so). Further they had few enough stars (∼ 1000) that each simulation

was only likely to contain very few high mass stars, which are most strongly impacted by

stellar evolution. As a result this feature of kira is not used.



Chapter 3

The origins of binary clusters

3.1 Summary

This chapter presents the paper ‘How do binary clusters form?’ (Arnold et al. 2017). In this work

N-body simulations are performed and it is demonstrated that single star forming regions can di-

vide into binary (or higher-order multiple) clusters. It is proposed that this may be the mechanism

by which binary/multiple clusters form in reality. It is further demonstrated that velocity substruc-

ture in the initial conditions is required for such division to occur. Finally a parameter space study

is conducted and the rates and properties of multiple cluster formation are recorded. It is found

that in order for binary clusters to form a region must typically be at or above a virial ratio of 0.5.

It is also found that the primary determinant of the mass ratios of multiple clusters that form is the

initial degree of substructure in the region, and this relationship is nonlinear.

3.2 Description of my contribution to this work

The original idea for this paper was devised by S. Goodwin, who also provided advice as this study

was conducted. Further he provided guidance on the writing of the paper, and feedback/editing on

multiple drafts. An interface provided by D. Griffiths was used to assist in setting up and running

the simulations presented in this paper. Additional feedback on the paper was provided by R.

Parker. Otherwise the work presented in this chapter is my own.
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3.3 The paper

The published version of Arnold et al. (2017) is presented here:
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ABSTRACT
Approximately 10 per cent of star clusters are found in pairs, known as binary clusters. We
propose a mechanism for binary cluster formation; we use N-body simulations to show that
velocity substructure in a single (even fairly smooth) region can cause binary clusters to
form. This process is highly stochastic and it is not obvious from a region’s initial conditions
whether a binary will form and, if it does, which stars will end up in which cluster. We find the
probability that a region will divide is mainly determined by its virial ratio, and a virial ratio
above ‘equilibrium’ is generally necessary for binary formation. We also find that the mass
ratio of the two clusters is strongly influenced by the initial degree of spatial substructure in
the region.

Key words: stars: formation – stars: kinematics and dynamics – open clusters and associa-
tions: general.

1 IN T RO D U C T I O N

Star clusters are fascinating objects as they provide crucial tracers of
the star formation and chemical and dynamical histories of galaxies.
Most star clusters are thought to form in a single star formation event
and remain as coherent bound entities following this event. (If they
disperse rapidly they are not ‘star clusters’ under this definition.)

An interesting observation is that star clusters are quite often
found in pairs or higher-order systems (Rozhavskii, Kuz’mina &
Vasilevskii 1976). Such pairs are an expected result of chance line-
ups (clusters far from each other appearing to be close due to viewing
angle; e.g. Conrad et al. 2017). However, once the effects of chance
line-ups are accounted for a surplus of cluster pairs is still observed,
indicating that at least some of them are related objects which are
physically close to one another. Studies of the Large Magellanic
Cloud (LMC) and Small Magellanic Cloud (SMC) appear to show
that roughly 10 per cent of clusters are in such pairs, which are
known as binary clusters (Pietrzynski & Udalski 2000). The fraction
of binary clusters in the Milky Way has been found to be lower than
this by some studies (Subramaniam et al. 1995) and about the same
by others (De La Fuente Marcos & de La Fuente Marcos 2009).

Binary clusters are systematically younger than single clusters,
e.g. half of the clusters in binaries identified by De La Fuente
Marcos & de La Fuente Marcos (2009) are <25 Myr old, and
almost all of these are in coeval pairs (see also Dieball, Müller
& Grebel 2002; Palma et al. 2016). This is not an unusual result;
the clusters that constitute a binary are often coeval (e.g. Kontizas,
Kontizas & Michalitsianos 1993; Mucciarelli et al. 2012). The most
obvious explanation for pairs of clusters with very similar ages is
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that their formation was linked in some way, but the origins of these
pairs are not understood.

Some multiplicity may be expected as a natural consequence of
structure in molecular clouds (e.g. Elmegreen & Falgarone 1996).
This paper presents an additional mechanism for binary cluster
formation: the division of a single star-forming region (as seen
to some degree in e.g. Goodwin & Whitworth 2004 and Parker
et al. 2014).

In this paper, we present a series of N-body simulations. We show
that, at least for some initial conditions, binary clusters are a fairly
common outcome of the dynamical evolution of these systems. We
describe our initial conditions in Section 2, present detailed results
from a small set of simulations in Section 3, conduct a parameter
space study in Section 4 and conclude in Section 5.

2 M E T H O D

We perform purely N-body simulations of fractal distributions using
the KIRA integrator, which is a part of STARLAB (Portegies Zwart
et al. 1999; Portegies Zwart et al. 2001). Our simulations include no
gas, no stellar evolution and no external tidal fields. As such, they are
very simple numerical experiments, but we argue that they capture
all of the essential physics of a possible binary cluster formation
mechanism. We run the simulations for 20 Myr.

2.1 Positions and masses

Artificial young star-forming regions are constructed using the
box fractal method, which is described in detail in Goodwin &
Whitworth (2004). In brief, box fractals are generated by creating
a cube and placing a ‘parent’ star at its centre. The cube is divided
into subcubes, which have ‘child’ stars placed at their centres, with
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How do binary clusters form? 2499

Figure 1. A set of initial conditions demonstrating velocity structure in a
region with 100 stars and a radius of 1 pc. The red dots indicate the positions
of stars, and their velocity vectors are denoted by black arrows.

noise added to avoid a grid-like structure. Parent stars are deleted,
and the children become the new generation of parents. This process
is repeated until the desired number of stars, N, has been overpro-
duced. Finally, a sphere of radius R is cut from the initial box, and
stars are randomly deleted until the N stars remain. We take regions
with N = 1000 and R = 2 pc as our ‘standard’. The degree of sub-
structure (space-filling) is set by the fractal dimension D (e.g. 1.6 is
very substructured and 3 is roughly uniform density).

The stars are assigned masses drawn randomly from the
Maschberger IMF (Maschberger 2013) with the scale parameter
μ = 0.2 M� and the high mass exponent αIMF = 2.3. The low
mass exponent is calculated using β = 1.4. The lower and upper
mass limits used are 0.1 and 50 M�, respectively. The Maschberger
IMF is similar to the Chabrier IMF (Chabrier 2003) and the Kroupa
IMF (Kroupa 2002).

2.2 Velocity structure

As will become apparent later in the results, the velocity structure
of the fractal is very important. The gas from which stars form is
known to have a complex (turbulent) structure (Larson 1981), and
the stars in young regions appear to retain this structure (e.g. Fűrész
et al. 2006; Jeffries et al. 2014; Tobin et al. 2015; Wright et al. 2016).

To mimic this, we assign star velocities such that the regions are
velocity coherent; stars that form near each other have initially sim-
ilar velocities. We do this by one of two methods: either inheriting
velocities from their parents as the fractal is generated (this is the
main method used) or by imposing velocities from a divergence-free
turbulent velocity field.

Inherited velocities: Following Goodwin & Whitworth (2004),
parent stars at the first level are given a random velocity. Child stars
inherit their parent’s velocity plus a random component that scales
with the depth in the fractal (i.e. the random component is large at
the higher levels and becomes smaller). This creates a velocity field
in which stars that are close together in space tend to have initially
similar velocities.

Fig. 1 shows an N = 100 fractal produced by this method. Star
positions are indicated by red dots plotted in three-dimensional
space and their velocities by arrows. As can be seen, the velocity
field has local ‘coherence’. For example, the stars on the upper far

Table 1. Letters are used to describe the initial conditions in
each set of simulations. Two parameters are varied: the fractal
dimension D and the virial ratio (i.e. the ratio of kinetic
to potential energy) αvir. Highly substructured simulations
(D = 1.6) are denoted by the letter ‘H’, moderate substructure
(D = 2.2) is denoted by the letter ‘M’ and smooth structure
(D = 2.9) by ‘S’. Simulations of cool regions (αvir = 0.3) are
denoted by ‘C’, virialized regions (αvir = 0.5) are denoted
by ‘V’ and warm regions (αvir = 0.7) by ‘W’.

D
1.6 2.2 2.9

0.3 HC MC SC
αvir 0.5 HV MV SV

0.7 HW MW SW

left of the figure are all moving to the right, while on the lower far
left there is a group of four stars moving downwards and slightly to
the left.

Turbulent velocity fields: We generate divergence-free turbulent
velocity fields with a power spectrum P(k) = k−α for the region,
where α = 2 (e.g. Burkert & Bodenheimer 2000; Lomax et al. 2014).
The initial positions of the stars are mapped on to these fields, and
they are assigned the field velocity at their locations.

2.3 Virial ratio

Finally, the velocities are scaled to set the desired virial ratio,
αvir = T/|�| (where T is the total kinetic energy and � is the
total potential energy).

2.4 Ensembles

We perform simulations with fractal dimensions of D = 1.6, 2.2
and 2.9. We describe the simulations as highly substructured (‘H’)
when D = 1.6, as moderately substructured (‘M’) when D = 2.2,
and as smooth (‘S’) when D = 2.9. The velocities are scaled to have
a virial ratio of αvir = 0.3 (cool, ‘C’), 0.5 (virialized, ‘V’) or 0.7
(warm, ‘W’).

We refer to the initial conditions of a simulation by these identi-
fying letters, e.g. ‘MW’ is a moderately substructured, warm region
(D = 2.2, αvir = 0.7). A summary of the simulations is shown in
Table 1.

For each set of initial conditions, we run an ensemble of 50
simulations in which only the random number seed used to set the
initial conditions is changed.

2.5 Cluster finding

In the Appendix, we describe our cluster-finding algorithm. This
is used to distinguish bound ‘clusters’ within our larger regions as
they evolve. It is able to determine which stars are locally bound
to a particular object and which are ‘halo’ stars. The algorithm is
not perfect and sometimes struggles when applied to regions with
ambiguous or unusual morphologies. However, it allows us to avoid
‘by-eye’ determinations of membership when the region evolves to
a distinct single or a binary cluster, which occurs in the vast majority
of cases.
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2500 B. Arnold et al.

3 TH E F O R M ATI O N O F A B I NA RY C L U S T E R

First, we will examine the process of binary cluster formation in a
small set of simulations. This allows us to investigate the process
in detail. Twelve MW simulations (D = 2.2, αvir = 0.7) are chosen
at random for this; binary cluster formation is fairly common in
the MW ensemble, and the number 12 is chosen to produce an
easily readable figure. Later, we will examine parameter space to
see which initial conditions are most likely to form binary clusters.

3.1 An ensemble of moderately substructured, warm regions

In Fig. 2, we show the stellar distributions of each of the 12 regions
after 20 Myr. The distributions are presented in the x–y projection in
35 pc × 35 pc boxes. All these simulations use inherited velocities
(see Section 2.2).

A visual inspection of Fig. 2 shows that distinct binary clusters
form in four of the 12 realizations, as shown in panels (c), (d), (g),
and (i).1

Simulation (f) has an overdensity at coordinates roughly −2 pc,
−7 pc, which could be a small companion cluster. Despite the other
structure in the region and the significant halo, our cluster-finding
algorithm does distinguish it as a distinct entity. We therefore define
simulation (f) as a binary cluster.

Simulations (a), (b), (h), (j), (k) and (l) have evolved into single,
central star clusters.

Simulation (e) has also evolved into a single cluster but is elon-
gated. Elongated clusters are discussed later in Section 4.3.

It is important to remember that all 12 simulations had statistically
the same initial conditions, only the random number seed has been
changed. The wide range of morphologies apparent at the end of
the simulations is not particularly surprising as the evolution of
substructured initial conditions is known to be highly stochastic
(Allison et al. 2010; Parker & Goodwin 2012).

3.2 Future evolution

We may naively expect binary clusters to orbit one another in the
same manner as binary stars do; however, in these simulations the
two clusters move directly apart and are usually unbound from
each other. At the end of the simulations, two of the binaries are
unbound, two are just unbound and one is bound. The bound bi-
nary could recombine at some point in the future. In fact, such
recombinations are observed in the full ensemble of simulations
and discussed in Section 4. In reality, such mergers may be less
likely as the Galactic potential could shear the clusters away from
each other.

Typically, the relative velocities of the clusters in our simulations
are only ∼1 km s−1, so they could remain observationally associated
for many tens of Myr even if they are formally unbound.

3.3 The division of a star-forming region

We now examine how binary clusters form in more detail. In Fig. 3,
we show the evolution of the region from panel (c) of Fig. 2 for
the first 2 Myr of its evolution in steps of 0.4 Myr (in panel (c)

1 Interestingly, in (c), (d) and (g) there are ‘bridges’ of stars linking the
two clusters. These ‘bridges’ are present when viewed in 3D suggesting
they are real features. Similar ‘bridges’ have been found in observations of
binary clusters (Dieball & Grebel 1998; Dieball & Grebel 2000; Minniti
et al. 2004).

of Fig. 2 the region is 20 Myr old). We identify the two clusters
at 3 Myr when they are distinct, well-separated entities with our
cluster-finding algorithm. Then, at each time we colour code the
stars by which cluster they will eventually be members of: blue for
the cluster on the left, red for the cluster on the right and black for
unbound to either cluster. Therefore, all of the red stars in the top
left panel at 0 Myr are the same stars as are coloured red in the
final panel (and all panels in-between). For each star, we also plot
its velocity vector (an arrow pointing from the position of the star).

It is immediately obvious from inspection of Fig. 3 that the stars
from each cluster are initially very well mixed. The red and blue stars
(that will end up in the right- and left-hand clusters, respectively) are
each found everywhere in the region at 0 Myr. Without the colour
coding (which is based on where we know they will be in the future),
from the positions of the stars alone it would be (a) impossible to tell
that this region would evolve into a binary cluster and (b) impossible
to tell which stars would end up in which clusters. This is true for
all the simulations in this paper.

As the region evolves, the stars that will end up in each cluster
begin to separate out into two distinct sub-clusters. At 0.4 Myr, there
has been some separation; while the three classes of stars are still
generally mixed, clumps of just red or blue stars have begun to form.
After 0.8 Myr, there has been further separation, and these clumps
appear to have grown. By 1.2 Myr, the blue stars are predominantly
on the left and the red stars on the right. At 1.6 Myr, the two groups
of stars have formed roughly spherical shapes, but it is not until
2 Myr that clusters are well separated.

This behaviour appears to be the result of the initial velocity
coherence. Inspection of Fig. 3 shows that whilst the red and blue
points are initially mixed, they are not completely randomly dis-
tributed. Even at the very beginning, there are small groups of
either red or blue stars with low velocity dispersion. These groups
go on to merge with other groups with (usually) similar velocities.
The details of the velocity structure in this particular case mean
that a significant number of stars move in roughly the same two
directions. In cases where the velocity structure is such that they
tend to move in many different directions a single cluster is formed.

We run 50 simulations with the same input parameters as the
previous set, i.e. moderately substructured and warm, but the ve-
locities are randomized. As one would expect, all 50 of the regions
evolve into single clusters. This confirms that velocity structure is
necessary for a binary cluster to form.

Given the importance of velocity structure to the formation of
binary clusters, it is reasonable to wonder to what extent this might
be an artefact of the (somewhat unphysical) generation of velocity
coherence via inheritance. To test this, we re-run the 12 simulations
with coherence set-up using a different method: velocities are sam-
pled from a turbulent velocity field (see Section 2.2). The initial
spatial distributions of the simulations are unchanged.

Binary clusters form in two of these simulations (example shown
in Fig. 4). In Fig. 5, we show the initial conditions of the realization
that evolves into the binary cluster in Fig. 4: the blue stars are
those that end up in the left-hand cluster, the red stars end up in
the right-hand cluster and black stars are unbound to either cluster
(cf. Fig. 3).

There is arguably less mixing in Fig. 5 than in the first panel of
Fig. 3; the blue points are mostly initially close together towards
the upper centre. However, without the colour coding, it is still
not obvious that this part of the initial conditions will produce a
separate cluster. So, as was the case in the simulations with inherited
velocities, we argue that from the initial conditions (a) it is not at
all obvious whether a binary cluster will be produced, and (b) it is
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How do binary clusters form? 2501

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 2. 35 pc × 35 pc x–y projections of 12 realizations of warm, moderately substructured initial conditions that have been evolved for 20 Myr. The only
difference between realizations is the random number seed used. Every realization contains 1000 stars.
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2502 B. Arnold et al.

Figure 3. Snapshots at 0 Myr, 0.4 Myr, 0.8 Myr, 1.2 Myr, 1.6 Myr and 2 Myr of the simulation (c) from Fig. 2. Stars are represented by arrows plotted in
3 pc × 3 pc × 3 pc boxes. The arrow’s positions indicate star’s positions in space and the arrow’s directions indicate the star’s velocities. The arrows are colour
coded: blue if the star is in the left-hand cluster after the region finishes dividing, red if it is in the right cluster after the division and black means the star is
unbound.
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How do binary clusters form? 2503

Figure 4. A 20 pc × 20 pc x–y projection of a simulation with initially
turbulent velocities after 20 Myr. The region has developed into a binary
cluster.

impossible to say which stars will end up in which clusters (or be
unbound).

To review, binary clusters form in 2/12 simulations that use a tur-
bulent velocity field, compared to 5/12 binary clusters from inher-
ited velocities. This test consists of too few simulations to estimate

the different rates of binary formation using each of the methods,
and a detailed investigation of different methods of setting-up ve-
locity coherence is beyond the scope of this paper. The important
points here are as follows:

(1) Velocity coherence is necessary for binary clusters to form.
(2) Two independent methods are used to generate coherence and

binary formation results from both. Therefore, our results are not
an artefact of the method used to initialize velocity structure.

4 PARAMETER SPAC E STUDY

In this section, we explore parameter space to probe which initial
conditions can form binary clusters and investigate the properties
of the binary clusters which form.

As described in Section 2, nine ensembles of 50 simulations are
performed. The fractal dimension D is varied such that D = 1.6, 2.2
or 2.9 (highly substructured (H), moderately substructured (M) and
smooth (S)). The virial factor αvir is varied such that αvir = 0.3, 0.5
or 0.7 (cool (C), virialized (V) or warm (W)). The simulations are
run for 20 Myr and are summarized in Table 1.

4.1 Which initial conditions produce binary clusters?

We classify the final state of each simulation as one of the three
basic categories.

Binary clusters: Two clearly distinguished clusters as identified by
the cluster finder and/or by eye. (In highly ambiguous cases when the
cluster finder struggles preference is given to the by-eye conclusion.)
Note that 4 of our 450 simulations develop triple clusters. For the
sake of simplicity, we classify these as binary clusters.

Turbulent initial conditions

Figure 5. The initial conditions of the simulation shown in Fig. 4, which evolves into a binary cluster. Inspection of the figure clearly shows velocity coherence,
which is produced by mapping the positions of the stars on to a turbulent velocity field. The colour coding is the same as described in Fig. 3.
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Single clusters: One significant cluster (often with an unbound
‘halo’ of stars).
Binary merger: A region that is a single cluster at 20 Myr but was
a binary cluster at some earlier time. This may be because a binary
cluster formed and then merged into a single cluster, or one of
the two clusters dissolved. Therefore, depending on the time of an
observation, they could be seen by an observer as a (young) binary
or a single cluster.2

The classifications of the HV and HW simulations should be
treated with some caution as their long-lived substructure makes
several of them difficult to classify. Four of the 450 simulations
in this parameter space study are deemed ‘unclassifiable’ and are
omitted.

In Fig. 6, we present the fractions of regions which evolve into sin-
gle, binary-merger and binary clusters. These fractions approximate
the probability of each outcome, and the multinomial distribution is
used to calculate to 1σ confidence where the true probability lies,
which is indicated in Fig. 6 by error bars.

The top panel of Fig. 6 shows the results for the highly sub-
structured (D = 1.6) ensembles with virial ratios αvir = 0.3, 0.5
and 0.7 on the x-axis. The green circles are the fraction of single
clusters, yellow diamonds are the fraction of binary mergers and
red diamonds are the fraction of binary clusters. The middle panel
of Fig. 6 is the same plot but for the moderately substructured
(D = 2.2) ensembles, and the bottom panel is for smooth (D = 2.9)
ensembles.

Each panel of Fig. 6 shows the same essential behaviour: binary
clusters are more common as the virial ratio increases.

When the regions are dynamically cool (αvir = 0.3, the left most
results in each panel), almost all the simulations form a single clus-
ter. This is as expected, as a dynamically cool distribution will col-
lapse and erase substructure (Allison et al. 2009; Parker et al. 2014).
However, the cool ensembles also produce some binary mergers;
even though these regions are collapsing, velocity structure can
allow them to ‘divide’ for some amount of time.

When regions have a moderate virial ratio (αvir = 0.5, the middle
results in each panel), the fraction of regions which evolves into sin-
gle clusters drops, and the fraction that evolves into binary mergers
increases concurrently. The exception to this is the H simulations,
where both binaries and binary mergers form.

When the regions are dynamically warm (αvir = 0.7, the right
most results in each panel), the fraction of single clusters drops
again and the fraction of binary mergers drops somewhat at all
levels of substructure. In contrast, the fraction of binary clusters
increases.

The main result from ensembles of different initial conditions as
summarized in Fig. 6 are as follows:

(1) Higher αvir increases the probability that a region will divide.
(2) Binary clusters mainly form in dynamically warm regions.

4.2 ‘Micro-clusters’

Regions do not always divide into a clean binary or single clusters.
In particular, the highly substructured regions (D = 1.6), especially
with a high virial ratio (αvir = 0.5, 0.7), can often form several small,
bound objects that we refer to as ‘micro-clusters’. Fig. 7 shows an

2 The longest observed interlude between division and recombination of a
binary merger in these simulations is ∼20 Myr. At the other extreme, some
binary mergers separate so briefly they are only ‘binary clusters’ for ∼1 Myr.

Figure 6. The fraction of regions which evolve into single, binary-merger
and binary clusters for each set of simulations. The highly substructured (H)
simulation results are shown in the top panel, the moderately substructured
(M) simulations in the middle panel and the smooth (S) simulations in the
bottom panel. The x-axis separates the simulations by their virial ratio αvir

(0.3, 0.5 or 0.7). The fraction of regions in a given set of simulations which
evolves into single clusters is indicated by green circles. The fraction of
binary mergers is indicated by wide yellow diamonds, and the fraction of
binary clusters is shown by narrow red diamonds.
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How do binary clusters form? 2505

Figure 7. A highly substructured, dynamically warm region that has
been evolved for 20 Myr. The star’s positions are indicated by dots in a
40 pc × 40 pc × 40 pc box. The simulation has developed numerous long-
lived overdensities. We call these overdensities ‘micro-clusters’, and they
are highlighted by red arrows.

Figure 8. An initially smooth, virialized region after evolving for 3 Myr. It
has developed an elongated shape that collapses back into a sphere within
the next few Myr.

example of an HW simulation at 20 Myr with four micro-clusters
(indicated by the red arrows).

Whilst these micro-clusters are able to survive 20 Myr, they will
have short lifetimes because they only contain tens of members
so their two-body relaxation time is very short. Nevertheless, they
could be observed around young clusters and mistaken for inde-
pendent objects instead of potential evidence that the region was
initially highly substructured.

4.3 Elongated clusters

Some S regions undergo a period of elongation followed by collapse
within the first ∼5 Myr. This is observed mainly in S simulations
and is most common when αvir is high. An example is shown in
Fig. 8.

4.4 Cluster mass ratios

We determine the mass ratios of the binary clusters (and binary
mergers when they are distinct entities) using the cluster-finding al-

Figure 9. Cumulative distribution functions of the cluster mass ratios. The
CDF for highly substructured (H) simulations is plotted by a black line, the
moderately substructured (M) simulations by a magenta line and the smooth
(S) simulations by a red line.

gorithm. In highly ambiguous cases, where the algorithm struggles,
the cluster memberships are determined by eye. This means that in
some cases a particular mass ratio should be treated with caution.
However, the trends we describe should not be affected by a small
number of ambiguities. Note that we define mass ratios as the mass
of the lighter cluster divided by the mass of the heavier one. There-
fore, if the cluster masses are very different the mass ratio is low,
and if their masses are fairly equal the mass ratio is high, with a
maximum of unity.

The cumulative distribution functions (CDFs) of highly substruc-
tured (H, black line), moderately substructured (M, purple line) and
smooth (S, red line) binary mass ratios are shown in Fig. 9. Most
binary clusters are from warm simulations (αvir = 0.7) as these are
the ensembles that produce the vast majority of binary clusters.

From Fig. 9, it is clear that the mass ratio distributions for each
level of substructure are distinct (a KS test gives a P-value < 10−4

for any pair of distributions, confirming that they are statistically
different).

Binary clusters that form from highly substructured initial condi-
tions (H, black line) tend to have low mass ratios (i.e. very unequal
cluster masses), almost all between 0.1 and 0.4 (median 0.3).

Binary clusters that form from smooth initial conditions (S, red
line) have higher mass ratios, almost all between 0.3 and 0.6 (median
0.44).

Binary clusters that form from moderately substructured initial
conditions (M, purple line) have generally higher mass ratios still,
ranging mostly between 0.4 and 0.8 (median 0.54).

We may have expected to see a sequence in mass ratio distribu-
tions which moves from highly substructured, to moderately sub-
structured, to smooth. Instead, the smooth region’s mass ratios are
intermediate between those of the highly and moderately substruc-
tured regions.

We explain this by first considering the smooth regions (red line)
as a baseline. They have no spatial structure so their mass ratios are
entirely due to velocity structure.

The moderately substructured regions contain fairly large spatial
structures, which themselves are correlated with the velocity struc-
ture. As a result, there are often natural ‘starting points’ for sizable
portions of the regions to separate from the rest, resulting in more
even mass ratios.
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In contrast, the highly substructured regions contain many small
spatial structures which may divide from the main cluster, resulting
in many low mass ratio systems.

4.5 Comparison with observations

Probably, the best-known binary clusters, h and χ Per, have a mass
ratio of 0.76 (masses of 3700 and 2800 M�, respectively (Slesnick,
Hillenbrand & Massey 2002), which, from Fig. 9, suggests moderate
initial substructure. However, this is only a single binary cluster,
which may not be representative of the conditions that the majority
binary clusters form from.

A catalogue of well-measured mass ratios could potentially pro-
vide observational clues as to the initial conditions of the regions
that produce real-world binary clusters. Unfortunately, the current
state of observational data cannot provide good constraints (Conrad
et al. 2017). However, if more than one mechanism is responsible for
binary cluster formation, the cluster mass ratio distribution would
be a combination of those produced by all different mechanisms
and would be much harder to interpret.

5 C O N C L U S I O N S

We perform ensembles of N-body simulations of N = 1000, R = 2 pc
regions, which have evolved for 20 Myr. These regions start with
fractal dimensions of D = 1.6, 2.0 or 2.9 (from highly substructured
to smooth) and virial ratios (the ratio of kinetic to potential energy)
of αvir = 0.3, 0.5 or 0.7 (from cool to warm). The velocities of stars
are ‘coherent’; stars that are initially close together tend to have
similar velocities.

We find that single star-forming regions can dynamically evolve
into binary clusters (although this is not necessarily the only way
binary clusters may form). We find that initial velocity structure is
necessary for a region to divide, and in all cases it is essentially
impossible to determine from the initial state of a region:

(1) If a binary cluster will form (although most of the regions
that do form binaries are initially dynamically warm (αvir = 0.7)).

(2) Which stars will end up in which component of the binary
cluster.

The two clusters move directly apart from one another with rela-
tive velocities typically ∼1 km s−1, so pairs will appear associated
for tens of Myr. In some cases, the clusters remain bound to one
another and recombine at a later time. We describe these as binary
mergers, and they are most common in regions that begin in virial
equilibrium.

We find that the level of initial spatial structure in a region strongly
influences the mass ratio of a resulting binary cluster. High levels
of initial substructure tend to result in very unequal masses (mass
ratios 0.2–0.4), no initial spatial substructure results in slightly more
equal mass ratios (0.3–0.6) and moderate substructure in even more
equal mass ratios (0.4–0.8).
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APPENDI X: THE C LUSTER-FI NDI NG
A L G O R I T H M

We briefly describe how clusters are identified in a snapshot of the
simulation.

(i) Step 1: Distinguish areas of high stellar density.
Space is divided into equally sized boxes by a three-dimensional

grid. The resolution of this grid is initially low, and it is increased
until 75 per cent of the stars are contained within at least 20 boxes.
This resolution distinguishes areas of high stellar density without
being too fine or coarse.

(ii) Step 2: Find the position of a cluster.
The box containing the most stars is located. By definition, clus-

ters are regions with many stars so this box will be at, or close to,
the centre of a cluster. The centre of mass and the centre of velocity
of the stars in this box are calculated. The mass of stars in this box
is used to crudely estimate the mass of the cluster.

(iii) Step 3: Identify cluster members.
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How do binary clusters form? 2507

The programme goes through each star and calculates its kinetic
and potential energy relative to the position, velocity and mass
determined in step 2. Bound stars are identified as cluster members.

(iv) Step 4: Identify further cluster members.
The centre of mass, centre of velocity and total mass of

the cluster members are calculated. Step 3 is repeated using
these values, i.e. the kinetic and potential energy of each star
relative to the position, velocity and mass is calculated to identify
further members.

(v) Step 5: Find additional clusters.
Repeat steps 2–5. In order to prevent the same cluster being identi-
fied multiple times, stars that have already been identified as mem-
bers of a cluster are excluded in step 2. Therefore, when all the
clusters have been identified the box containing the most stars, as
identified in step 2, contains so few stars that it could not reasonably
be the centre of a new cluster. The programme stops searching for

additional clusters after that point. Any remaining stars are deter-
mined to be unbound.

(vi) Step 6: Clean-up.
This step prevents the order in which the clusters are identi-

fied from influencing the final membership lists. All information
on which stars belong to which cluster is thrown away; only the
positions, masses and velocities of the clusters are retained. The
potential and kinetic energy of each star compared to these clusters
is calculated to determine which cluster (if any) the star is most
strongly bound to. This produces the final membership list for each
cluster. The mass, centre of mass and centre of velocity of each
cluster are recalculated using this membership list.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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Chapter 4

Quantifying velocity structure

4.1 Summary

This chapter presents ‘A method to analyse velocity structure’ (Arnold & Goodwin 2019). In

this work a quantitative method of analysing the kinematic structure of star forming regions is

presented. It is tested on a variety of datasets, and its features are demonstrated. The impact of

various observational constraints on the output of the method is assessed. These constraints are:

• incomplete data due to non-observations of faint, low mass stars;

• observational uncertainties on measured stellar velocities and

• the orbital velocity components of binary star systems

The method is found to be robust against all these constraints.

4.2 Description of my contribution to this work

I developed and tested this method, and wrote a piece of open source software that applies the

method to a user-provided dataset. This software, vsat, can be found at https://github.com/

r-j-arnold/VSAT. S. Goodwin gave feedback and did some editing on drafts of this paper,

however I was lead author and produced the overwhelming majority of the paper content, including

all the figures.
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4.3. THE PAPER 58

4.3 The paper

The full published version of Arnold & Goodwin (2019) is provided below. An addendum to

footnote 4 of this paper is provided here. The median uncertainties on the velocities of indi-

vidual stars with five parameter solutions at a magnitude of G = 16 is given as a guide. It is

0.096 mas yr−1 in the RA direction and 0.082 mas yr−1 in Dec.
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ABSTRACT
We present a new method of analysing and quantifying velocity structure in star-forming
regions suitable for the rapidly increasing quantity and quality of stellar position–velocity
data. The method can be applied to data in any number of dimensions, does not require the
centre or characteristic size (e.g. radius) of the region to be determined, and can be applied to
regions with any underlying density and velocity structure. We test the method on a variety
of example data sets and show it is robust with realistic observational uncertainties and
selection effects. This method identifies velocity structures/scales in a region, and allows a
direct comparison to be made between regions.

Key words: methods: data analysis – methods: statistical – stars: formation – stars: kinemat-
ics and dynamics – open clusters and associations: general.

1 IN T RO D U C T I O N

Star-forming regions are an important part of our understanding of
the Universe. Their formation and evolution has important implica-
tions for our grasp of planet formation, star formation, and stellar
evolution.

In an effort to understand these regions and their evolution,
several methods have been developed for quantifying aspects of
their spatial structure. For example, the Q parameter (Cartwright &
Whitworth 2004) describes the degree of spatial substructure in
a region which aids investigations into how substructured regions
evolve. The � (Allison et al. 2009) and � (Maschberger & Clarke
2011) parameters evaluate the degree of mass segregation in a
region which has significant implications for our understanding
of how massive stars form, how clusters form, and how clusters
evolve.

Such methods of quantifying spatial structure have proved valu-
able and are well used, but there are not corresponding widely used
methods for quantifying velocity structure. In the absence of such
methods, several approaches have been used. The most basic ap-
proach is to look at the raw velocity data, often in the form of
arrows overplotted on physical space, e.g. Galli et al. (2013) and
Kounkel et al. (2018). This is taken further in Wright et al. (2016)
and Wright & Mamajek (2018) which colour code arrows according
to their direction. This approach can be helpful for getting a sense
of a region’s velocity structure, but does not provide an objective
output that quantifies it. As a result, interpretation based on this
alone is often subjective. Wright et al. (2016) and Wright & Ma-
majek (2018) also perform spatial correlation tests to confirm the
presence of kinematic substructure in their data sets, but these tests
can say little about the distribution of that substructure.

� E-mail: rjarnold1@sheffield.ac.uk

Alfaro & González (2016) present a minimum-spanning-tree-
based method of quantifying kinematic substructure. This method
also provides graphical indications of how this substructure is dis-
tributed. However, it is primarily designed for (and solely applied
to) radial velocity data sets.

Another tool that has been used to study velocity structure is
the PPV (position–position–velocity) diagram which plots stellar
positions on two axes and one velocity component on a third, e.g
Da Rio et al. (2017). Efforts to include extra velocity components
using, for example, colour-coding or different-sized data points
generally make the diagram far too complex to reasonably interpret.
It is also difficult to display multidimensional errorbars. This limits
the usefulness of PPV diagrams when the third spatial component
and/or additional velocity components are measured.

The lack of objective, quantitative tools for studying kinematic
substructure can in part be attributed to a previous absence of sig-
nificant quantities of high-quality velocity data. However, the next
few years will see a revolution in kinematic data for Galactic astro-
physics due to Gaia, large multi-object spectroscopy radial velocity
surveys, and longer time–baseline proper motion studies. With more
and more position–velocity data becoming available, we need tools
with which to analyse and interpret it.

In this paper, we introduce a new method for analysing velocity
structure, borrowing from the concept of variograms (a tool used in
geology), which are based on principles introduced in Krige (1951),
and formalized in Matheron (1963). Here, the method is discussed in
the context of analysing velocity structure in star-forming regions,
but the method is extremely general and can be applied to regions of
any size and morphology. This makes it well suited for objectively
comparing very different regions. The method can also be applied to
data sets in any number of dimensions without additional difficulty
and it does not demand that the position and velocity data are
in the same number of dimensions. High-dimensional data sets

C© 2018 The Author(s)
Published by Oxford University Press on behalf of the Royal Astronomical Society
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Analysing velocity structure 3895

are often hard to visualize and apprehend, so this method aids
the interpretation of such data sets (e.g. as provided by Gaia). Its
quantative nature also makes it well suited for objectively analysing
the degree of kinematic substructure in a region. Examples of data
sets that this method could be applied to include Wright et al.
(2016), Gagné & Faherty (2018), Franciosini et al. (2018), Kuhn
et al. (2018), and Wright & Mamajek (2018).

A program called the Velocity Structure Analysis Tool, VSAT,
which runs this method is available at https://github.com/r-j-arnol
d/VSAT.

2 TH E V S AT M E T H O D

We outline the method below before applying it to a variety of test
data sets.

In brief, for every possible pair of stars, the distance between
them (�r) is calculated along with the pairs velocity difference
(�v). Pairs are then sorted into �r bins. In each bin, the mean �v

of the pairs it contains is calculated. These mean �v values are then
plotted against their corresponding �r values. The values and shape
of this distribution can be used to understand the velocity structure
of the region and can be directly compared with those produced for
any other region (i.e. they are in informative physical values of km
s−1 and parsecs).

The method is applied twice, each using a different definition
of velocity difference, �v, which highlight different aspects of a
region’s velocity structure. The first definition is referred to as the
magnitude definition, �vM. If star i has velocity vector vi and star j
has velocity vector vj then �vM is the magnitude of their difference,
| vi − vj |. We stress that �vM is the magnitude of the difference of
the star’s velocities, and not the difference of the magnitudes. The
equation to calculate �vM (assuming two dimensions for simplicity)
is:

�vijM =
√

(vxi − vxj )2 + (vyi − vyj )2. (1)

As �vM is a magnitude, it is always positive.
The other definition of �v is referred to as the directional defini-

tion, �vD. It is the rate at which the distance between the stars, �r,
is changing, i.e. it is how fast the stars are moving towards/away
from one another. This value is positive if �r is increasing (stars are
moving away from each other), negative if �r is decreasing (they
are moving towards each other), and zero if they are not moving
relative to each other. As such, this could be considered a measure
of velocity divergence. In two dimensions, the equation to calculate
�vD is:

�vijD = (xi − xj )(vxi − vxj ) + (yi − yj )(vyi − vyj )

�rij

. (2)

This definition is particularly useful for investigating if a region
(or structures within a region) are expanding or collapsing.

The method makes no assumptions about the underlying distri-
bution of the star’s positions or velocities and does not require the
region’s radius or centre to be defined. We show in Section 5 that it is
relatively insensitive to even quite large observational uncertainties
and biases, and works reasonably even when N is small (<100).

Throughout, we will assume that the data we are dealing with
is 2D velocities (proper motion) and 2D positions: i.e. what would
be provided by Gaia with good precision (and what is also simple
to present in a figure). It is trivial to extend the method to full
6D information from simulations, or to add radial velocities (with
a different uncertainty), or indeed any combination of spatial and
velocity dimensions.

A full step-by-step explanation of the method now follows.

(i) Calculate �r and �v for every possible pair of stars.
For any pair of stars i and j, their separation �rij is (in 2D):

�rij =
√

(xi − xj )2 + (yi − yj )2. (3)

Calculate �v using either the magnitude or directional definition as
desired. Note that as all measures are relative, the frame of reference
is irrelevant (i.e. there is no need to shift into a centre-of-mass or
-velocity frame).

(ii) Calculate errors on �v.
If there are observational errors, propagate them to calculate σ�vij

,
the error on each �vij. A measurement �vij has weight

wij = 1

σ 2
�vij

. (4)

Observational errors on stellar positions are typically much smaller
than on their velocities, so they are neglected in this paper.

(iii) Sort the pairs into �r bins.
Each bin should contain a significant (>>30) number of pairings,
but because the number of pairings scales as N2 (where N is the
number of stars in the data set) even fairly low N will result in
a relatively large number of pairings. As long as the number of
pairings in each bin is large, the bin widths have very little impact
on the results (in the examples shown later, we use bins of width
0.1 parsecs and most bins contain > 1000 pairs).

(iv) For each �r bin, calculate the mean �v of the pairs it
contains, �v(�r).
This gives the mean velocity difference of stars separated by a given
�r.
In the case that there are observational errors, use the weighted mean
for this step. The uncertainty on this mean due to observational
errors is:

σobs =
√

1∑
wij

, (5)

where the sum is over the pairs of stars ij in the bin.
(v) Calculate errors due to stochasticity.

The value of �v(�r) calculated for each bin obviously depends on
the precise positions and velocities of the stars.
However, even in ‘perfect’ data, there is a stochastic error due
to the sampling of an underlying distribution with N points. The
uncertainty due to stochasticity in each bin is the standard error of
the �v values in the bin, σ stochastic, which is calculated by

σstochastic = σ�v(�r)√
npairs

, (6)

where σ�v(�r) is the standard deviation of the �v values in the bin,
and npairs is the number of pairs of stars in the bin.
If there are observational errors, then the stochastic error must use
the weighted standard deviation of the �v:

σ�v(�r) =
√∑

wij (�vij − �v(�r))2
∑

wij

, (7)

where the sums are over pairs ij in the bin.
(vi) Combine the errors.

Combine the stochastic errors with the observational errors cal-
culated in step (iv) to get the total error on �v(�r) in each
bin:

σtotal =
√

σ 2
obs + σ 2

stochastic. (8)
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3896 B. Arnold and S. P. Goodwin

Figure 1. An artificial region with random velocities projected on to a
6 parsecs by 6 parsecs box in the x–y plane. Each star is represented by a
dot with an arrow showing its velocity.

Figure 2. An artificial region projected on to a 6 parsecs by 6 parsecs box
in the x–y plane. Each star is represented by a dot with an arrow showing its
velocity. The velocity of each star is the negative of its position in order to
produce a very simple collapsing velocity structure.

(vii) Plot �v(�r) with errorbars.
Produce a plot using the magnitude definition �vijM and the direc-
tional definition �vijD.

As we will show, these plots contain a significant amount of quan-
titative and qualitative information on the spatial-velocity structure
of a distribution.

To help illustrate the step by step explanation, we apply the
method to two simple cases shown in Figs 1 and 2, both of which
have 500 stars with Gaussian random positions. In Fig. 1, the ve-

Figure 3. Physical separation, �r, plotted against velocity difference as
calculated by the magnitude definition, �vM, for the region shown in Fig. 1
in orange, and for the region shown in Fig. 2 in blue.

locities are also drawn randomly from a Gaussian, so there is no
correlation between a star’s position and its velocity. In Fig. 2, the
star’s velocities are the negative of their positions to create a ‘col-
lapsing’ distribution. We provide more realistic examples later, but
these suffice to illustrate the method.

Fig. 3 shows �vM plotted against �r for for the random (orange
line) and simple collapsing (blue line) distributions shown in Figs 1
and 2.

The orange line is flat which shows that in the region with random
velocities there is no velocity structure on any spatial scale. This
is as expected as in this region there is no correlation between the
distance between two stars and their velocity difference. It is worth
noting that from Fig. 1 the eye can be fooled into thinking that the
locations of high velocity stars are biased towards the centre. This
is an artefact of there being more stars near the centre, and so there
is a greater chance of a high-velocity star appearing there. This
highlights the need for objective numerical methods for analysing
velocity structure.

The blue line (collapsing region) is more interesting. Because
the velocities in this region are the negative of the star’s position,
the difference in two star’s velocities is directly proportional to
how far apart they are. Therefore, we expect a linear relationship
between �r and �vM, and this is clearly visible in Fig. 3. Inspection
of Fig. 2 confirms that in this region stars that are very close to
one another (low �r) have practically identical velocities, so low
velocity differences �vM. As a result in Fig. 3, �vM is low at low
�r. In contrast, inspection of Fig. 2 shows that stars that are far
apart (high �r) have very different velocities (high �vM), which is
reflected in Fig. 3.

In Fig. 4, �vD(�r) is plotted for the random and collapsing
distributions shown in Figs 1 and 2. Recall that by this definition,
negative �vD means the stars are moving towards one another, and
positive �vD means the stars are moving apart.

For the random velocity distribution (orange line) �vD(�r) is flat,
again showing no preferred scales or trends. It has a value of roughly
zero showing no global expansion or contraction as expected given
the velocities were drawn from a Gaussian distribution centred on
zero.

The blue line (collapsing distribution) is entirely negative indi-
cating that at all separations stars are moving towards each other.
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Analysing velocity structure 3897

Figure 4. This plot shows physical separation, �r, against velocity differ-
ence as calculated by the directional definition, �vD, for the region shown
in Fig. 1 in orange, and for the region shown in Fig. 2 in blue.

Again, given that this region is collapsing that is expected. We also
see that �vD becomes more negative as �r increases. This is be-
cause stars that are further apart are moving towards each other
faster in this region.

We draw the readers’ attention to the increase in the error with
�r visible in Figs 3 and 4. This is due to the decreasing number of
pairs in bins with larger and larger �r. As a result, npairs is low for
very high �r bins and from equation (6) the uncertainties are larger.

3 PLU MMER SPH E R E S

The examples used above are very simplistic. In this section, we
apply the method to the more realistic case of Plummer spheres.

We generate a Plummer sphere using the method of Aarseth,
Henon & Wielen (1974), with 1000 stars and a half mass radius
of 2 parsecs. We scale the velocities by three different factors to
produce one Plummer sphere with virial ratio αvir = 0.3 (sub-
virial), one with αvir = 0.5 (virialized), and one with αvir = 0.7
(super-virial). Here, αvir = T/|�|, where T is the kinetic energy, and
� is the potential energy.

We would expect a sub-virial distribution to collapse and a super-
virial distribution to expand but we have not imposed this in any
way other than by scaling all velocities by the appropriate factor.
We run an N-body simulation of each Plummer sphere for 1 Myr in
order to allow them to start to adapt to the imposed virial ratios.

Fig. 5 shows �vM(�r), and Fig. 6 �vD(�r) for all three Plummer
spheres. In both figures, the green lines are used for the αvir = 0.3
Plummer sphere, orange for the αvir = 0.5 Plummer sphere, and
blue for the αvir = 0.7 Plummer sphere.

In Fig. 5 all three lines have the same shape: large �vM at low
�r which decreases towards high �r. The reason for this is that
Plummer spheres have a high central velocity dispersion (at the
deepest part of the potential) which decreases at larger radii. The
majority of pairs of stars with low �r are located in the core as,
by definition, this area is dense and so contains many stars that are
close together. These low �r pairs are therefore made up of stars
with a high velocity dispersion so any two star’s velocity vectors
are likely to be very different, and the magnitude of this difference,
�vM, will be large. In contrast, stars that make up high �r pairs are
predominantly located in the halo, where the velocity dispersion is
smaller, so �vM is low.

Figure 5. Plot showing �vM(�r) for three Plummer spheres. The x-axis
is the physical separation �r and the y-axis is the velocity difference �vM.
�vM(�r) of the αvir = 0.7 case is shown by a blue line, the αvir = 0.5 case
by an orange line, and the αvir = 0.3 case by a green line.

Figure 6. Plot showing �vD(�r) for three Plummer spheres. The x-axis
is the physical separation �r and the y-axis is the velocity difference �vD.
�vD(�r) of the αvir = 0.7 case is shown by a blue line, the αvir = 0.5 case
by an orange line, and the αvir = 0.3 case by a green line.

There is a clear vertical offset between Plummer spheres with
higher virial ratios in this figure. This is because, as virial ratio is
the ratio of kinetic to potential energies, stars in regions with high
virial ratios will have higher speeds on average. Therefore, velocity
differences between pairs of stars in those regions are more likely
to be high.

Otherwise, the velocity structures of the three Plummer spheres
are near-identical according to �vM. There is a ‘kink’ present in
all three lines at �r ∼11 parsecs. This is just a peculiar feature
of this particular Plummer sphere realization (a similar feature is
not present in Plummer spheres generated with different random
number seeds).

In Fig. 6, we show �v(�r) for each of the Plummer spheres using
the directional definition �vD. While in Fig. 5 all three Plummer
spheres showed the same velocity structure with only a vertical
offset due to their virial ratio, here the three Plummer spheres appear
quite different.

Recall that positive �vD is indicative of expansion, and a negative
value is indicative of collapse. The blue line (αvir = 0.7) has values
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3898 B. Arnold and S. P. Goodwin

Figure 7. Plot showing �vD(�r) for the αvir = 0.7 Plummer sphere. The
true velocity structure is shown in blue. After the velocities are randomly
shuffled between stars, the recalulated velocity structure is plotted in grey.
The x-axis is the physical separation �r and the y-axis is the velocity
difference �vD.

that are generally positive, the orange line (αvir = 0.5) is roughly
flat, and the green line (αvir = 0.3) is always negative.

We examine the αvir = 0.5 Plummer sphere (orange line) first.
For separations of less than 10 parsecs (i.e. separations that contain
the majority of the pairs of stars), �vD is flat, showing that stars are
equally likely to be moving towards each other as away from each
other. This is as would be expected for a region that is in neither
bulk expansion nor contraction. At separations above 10 parsecs,
the stars are generally moving towards each other. This may be due
to stars with such extreme separations being mainly found in the
extreme halo of the Plummer sphere, and they are being attracted
back towards the centre. As a result, they are moving towards each
other on average. However, given the size of the error bars, it is also
possible the apparent inconsistency of the velocity structure with
zero at large separations is an artefact of stochasticity.

For the collapsing (αvir = 0.3) case, the line is below zero at
every separation. That means, at every separation, on average, the
stars are moving closer together.

The expanding case has positive �vD at separations below
∼10 parsecs; on average, stars at these separation are moving away
from each other. As in the αvir = 0.5 case, stars with extreme sep-
arations are found to be moving towards one another. Again, this
may be due to stars on the outskirts being attracted back towards
the centre or it may due to a combination of stochasticity and large
error bars at high �r.

Uncertainty over whether a feature is real or an ‘artefact’ can
be an issue in bins where npairs is low, as is typically the case
in large �r bins. To examine whether this feature is significant,
velocities are shuffled randomly between stars which removes any
real velocity structure from the data. The method is then reapplied
and any ‘features’ observed in the result must be due to stochasticity.
This is done 10 times and the results are plotted in grey in Fig. 7.
The actual velocity structure is again plotted in blue for comparison.

From Fig. 7, it is is clear that any ‘features’ in the actual velocity
stucture of the αvir = 0.7 Plummer sphere at �r > ∼9 parsecs are
not significant. The same analysis is applied to the αvir = 0.3 and
αvir = 0.5 Plummer spheres. In the αvir = 0.3 case, all features are
found to be significant up to �r ∼ 13 parsecs, and in the αvir = 0.5
case, the structure is found to be consistent with the randomized
cases (so no systematic expansion or contraction) at all �rs.

Figure 8. A distribution with low substructure generated by the box fractal
method projected into a 1.8 parsec × 1.8 parsec box. Each star is represented
by an arrow. The position of the arrow corresponds to the position of the
star and the arrow itself indicates the star’s velocity.

3.1 Interpreting observations

If an observer observed the three spherical clusters in this section,
they would find them to be very similar in their spatial structure. An
analysis of their velocity magnitudes �vM would show a structure
such as in Fig. 5 and it would be possible to say that they each
have a Plummer-like velocity distribution. Additionally, an analysis
of �vD(�r) would show that one is expanding, another collapsing,
and the other appears static.

4 C OMPLEX SUBSTRUCTURED R EGIONS

Plummer spheres are fairly simple example distributions. We now
apply the method to complex substructured distributions generated
by the box fractal method.

A full description of the box fractal method is available in Good-
win & Whitworth (2004); however, a brief overview is given here.
A single ‘parent’ star is placed in the centre of a box, and then
the box is divided into smaller boxes. The probability that each of
these smaller boxes has of containing a ‘child’ star is chosen by the
user. If the probability is low the fractal will have a high degree of
substructure, and if the probability is large the fractal will be more
smooth. If a box does contain a child star, it is placed approximately
in the centre of the box (noise is added to the position to avoid an
obviously gridlike structure). The velocity of the child star is the
same as its parent’s velocity plus some random component. After
this, each child star becomes a parent and the process is repeated to
produce the desired number of stars (extra stars can be deleted at
random).

Note that here we are only interested in investigating the appli-
cation of the VSAT method to substructured distributions, so the
absolute values of e.g. radius and virial ratio are unimportant.

4.1 Distributions with low substructure

An example of a fractal with low substructure and 1000 stars is
shown in Fig. 8 and the arrows show 2D velocity vectors. Clear
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Analysing velocity structure 3899

Figure 9. The velocity structure of the distribution with low substructure
shown in Fig. 8. The velocity structure �vM(�r) is shown by a blue line
and �vD(�r) by an orange line.

structure in both the positions and velocities of the stars is obvious,
but too complex to interpret by eye in any meaningful way. It is pos-
sible to tell there is substructure, but without other information the
eye could not reasonably judge the degree of velocity substructure
or how it is distributed.

In Fig. 9, we show the magnitude (blue line) and directional (or-
ange line) �v(�r) plots for the fractal in Fig. 8 (note that everything
is done in 2D).

�vM(�r) (blue line), is ∼2 km s−1 when the separations are
low, rising to ∼3 km s−1 at separations of ∼0.7 parsecs and then
remaining roughly constant.

This initial increase of �vM with �r is because, as described
above, when child stars are produced they inherit most of their ve-
locities from their parents, plus a random component. As a result, in
the completed distributions, the stars closest together have very sim-
ilar velocity vectors, so the magnitude of their difference, �vM, is
small. Stars further away from each other are very distantly ‘related’
so have very different velocity vectors and their �vM is big.

The 0.7 parsecs length scale is significant because it is the ap-
proximate radius of the distribution. Stars separated by this length
scale or greater are generated from different ‘child stars’ of the
very first generation in the production of the fractal. The random
changes applied at each generation after that average to a net ad-
ditional difference of zero, so �vM remains roughly flat at �r ≥
0.7 parsecs.

The directional velocity structure, �vD(�r) (orange line), is al-
ways positive meaning that stars tend to move away from each other
on all scales. There is some structure in �vD showing that expan-
sion increases on scales up to 0.5 parsecs, then is roughly even,
before increasing again on scales of >1 parsec.

Fig. 10 shows �vM(�r) (top panel) and �vD(�r) (bottom panel)
for nine distributions statistically identical to that in Fig. 8 (only the
random number seed used to generate the distributions has been
changed). Each distribution has the same colour in both panels.

In the top panel of Fig. 10, every distribution’s velocity magnitude
structure has the same basic shape: low �vM at small separations
which increases with separation to up to around 0.7 parsecs and then
is roughly flat. That said, the details of each individual line (distri-
bution) are different, and some show ‘structure’ at larger scales.

In the bottom panel of Fig. 10, some distributions have predomi-
nantly negative (collapsing) �vD and some predominantly positive

Figure 10. This figure shows �vM(�r) (top panel) and �vD(�r) (bottom
panel) of nine distributions with low substructure generated by the box
fractal method.

(expanding) because the box fractal method does not preferentially
make either expanding or collapsing distributions. There are fea-
tures visible on individual lines in this plot, reflecting that individual
distributions (and parts of individual distributions) do have some ve-
locity structure.

4.2 Highly substructured distributions

We now examine in detail a distribution with high substructure,
illustrated in Fig. 11, again with arrows showing the 2D velocities.
This distribution has very clear spatial and velocity structure on a
variety of scales. Highly substructured distributions are produced
using the box fractal method by reducing the probability of each box
containing a ‘child’ star. The resulting distribution is less smooth as
stars only continue to be generated in boxes that do have children.

The velocity structure of the highly substructured distribution
from Fig. 11 is shown in Fig. 12, where �vM(�r) is shown by the
blue line and �vD(�r) is shown in orange.

Broadly, the �vM(�r) of the highly substructured distribution
has the same shape as �vM(�r) of the distribution with low sub-
structure: �vM increases with �r and then plateaus. However, as
we would expect, in the highly substructured case, the line has ad-
ditional features, including a plateau at ∼ 0.3 parsecs and a dip at
�r > 1.1 parsecs. As will be shown in Fig. 14 and discussed later,
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3900 B. Arnold and S. P. Goodwin

Figure 11. A highly substructured distribution generated by the box fractal
method projected into a 1.8 parsec × 1.8 parsec box. Each star is represented
by an arrow. The position of the arrow corresponds to the position of the
star and the arrow itself indicates the star’s velocity.

Figure 12. The velocity structure of the distribution with high substructure
shown in Fig. 11. The velocity structure �vM(�r) is shown by a blue line
and �vD(�r) by an orange line.

the features in �v(�r) due to the velocity substructure are often
significant in the highly substructured distributions.

The �vD(�r) of the distribution in Fig. 11 will now be examined
in detail in order to demonstrate using the velocity structure plots to
investigate the detailed dynamical structure of a region (recall that
this is the orange line in Fig. 12). Inspection of this figure shows
a ‘peak’ in �vD between �r ∼ 0.3 and �r ∼ 0.6 parsecs and a
‘trough’ in �vD between �r ∼ 0.8 and �r ∼ 1.2 parsecs.

To interpret these features, we can consider which stars contribute
more than others in these separation ranges. For example, if a star
is in densely populated area, it would be part of many low �r
pairs and would appear many times in low �r bins. Understanding
which stars are contributing most heavily to the interesting regions
of the velocity structure (in this example’s case 0.3–0.6 parsecs and
0.8–1.2 parsecs) helps us to understand the structure. Accordingly,

Figure 13. This figure shows the highly sustructured distribution from
Fig. 11. The stars are colour-coded according to how many times they
appear in �r bins between 0.3 and 0.6 parsecs (top panel), and between 0.8
and 1.2 parsecs (bottom panel).

the number of times each star appears in �r bins between 0.3 and
0.6 parsecs is counted. The fractal is plotted with the stars colour-
coded by their counts in these bins in the top panel of Fig. 13. The
same is done for the �r bins between 0.8 and 1.2 parsecs in the
bottom panel of Fig. 13.

First, we will look at the simpler case, which for this distribution
is the �r 0.8–1.2 parsecs range, where �vD is negative. Inspection
of the bottom panel of Fig. 13 shows that two clumps contribute
strongly to these bins. These clumps have been circled in blue
and black on the figure for clarity. Comparison of this figure with
Fig. 11 shows that these clumps are moving towards each other,
therefore �vD is negative in this �r range. From this analysis,
we can anticipate that these clumps will continue to move towards
one another (at least in the short term, and in the 2D plane we are
observing – we have no idea here about the third dimension of either
position or velocity).

The 0.3–0.6 parsecs range is more complicated. Inspection of the
top panel of Fig. 13 shows that stars in a small clump at coordi-
nates around (0.15, 0.15) parsecs which has been circled in black
contribute most often to these bins. The stars in several surrounding
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Analysing velocity structure 3901

clumps also contribute significantly, and these clumps have also
been circled for clarity.

By comparing Fig. 11 and the top panel of Fig. 13, we see that
the stars in the central clump (black circle) have a bulk motion
downwards on the figure (this direction is defined as ‘south’ for
simplicity). To the north, there are two clumps, one circled in orange
which is moving to the north-west, and the other one circled in blue
moving east. Therefore, these three clumps are all moving away
from each other, resulting in �vD being positive. In particular, the
clump circled in orange is moving directly away from the main
body of the distribution. In the short term, we would expect this
clump to continue to separate from the majority of the distribution
(at least in this projection).

There is one other clump with stars which contribute significantly
to the 0.3–0.6 parsecs �r bins, which is in the south and circled in
green. This clump is moving northeast, directly towards the central
clump and the clump circled in blue (so negative �vD) and away
from the clump circled in orange (positive �vD). Although the �vD

contribution from stars in this clump is mostly negative, the number
of stars it contains is small, so it is easy to explain why the mean
�vD in the 0.3-0.6 parsecs �r range is positive. It seems likely that
the black- and green-circled clumps will continue to move towards
each other in the short term.

In summary, with only the raw stellar positions and velocities
shown in Fig. 11, the complex velocity structure of the distribution
is very difficult to understand or make judgements on by eye. The
method presented in this paper has been used to explore and interpret
the dynamical state of this distribution and make predictions about
its short-term future.

For the purpose of comparison, nine additional highly substruc-
tured regions are generated using the same method but different
random number seeds. These region’s velocity structures are shown
in Fig. 14 where the top panel shows �vM(�r) and the bottom panel
�vD(�r).

The first feature of note is that there is much less structure in
both panels of Fig. 10 than in their corresponding panels in Fig. 14,
which reflects the significant velocity substructure in this latter set of
distributions. This is useful because while it is easy to distinguish
the differing levels of spatial structure in Figs 8 and 11 by eye
the distributions are too complex to tell simply by looking if the
velocity structures are different. Therefore, even if the actual degree
of velocity structure in each set of distributions were unknown,
we could still say with confidence that there is significantly more
velocity structure in this latter set.

We also note that in Fig. 14 each individual line in both panels
appears quite different from the others. This is unsurprising as the
distributions are produced using different random number seeds so
each is unique, and the distributions are highly substructured so two
statistically identical distributions may have very different forms .1

In the top panel (�vM), the velocity structures show a general
upwards trend; although individual structures show significant de-
viation from this (as was mentioned in the discussion of Fig. 12)
on the whole �vM correlates positivity with �r. This increase of
�vM with �r is a result of the box fractal generation method which
produces distributions where stars that are near one another have
similar velocities and stars that are far apart have very different ve-
locities. The magnitude of the features on each line makes it difficult
to say with confidence if there is a plateau at large �r.

1This raises the question as to if these distributions are indeed ‘the same’,
however, that is a discussion beyond the scope of this paper.

Figure 14. This figure shows the velocity structure �vM(�r) (top panel)
and �vD(�r) (bottom panel) of nine highly substructured distributions gen-
erated by the box fractal method.

In the bottom panel, as is the case in Fig. 10, some distributions
have predominantly negative �vD and some predominantly positive
�vD as the box fractal method is not biased towards making either
expanding or collapsing distributions.

5 IN C L U D I N G O B S E RVAT I O NA L
UNCERTAI NTI ES

In this section, we test whether the method is robust when faced
with imperfect data.

The velocity structure of a simulated star cluster is measured, then
observational errors are applied to the data, and the velocity struc-
ture is re-calculated. The ‘true’ velocity structure and ‘observed’
velocity structure are then compared. A simulation with an unusual
spatial and velocity evolution is used to make this more challenging.

The cluster is taken from Arnold et al. (2017). That paper gives
all the details of the simulations, but this cluster contains N = 1000
stars with masses drawn from the Maschberger IMF (Maschberger
2013) using a lower limit of 0.1 M� and an upper limit of 50 M�.
It has been evolved for 2 Myr and has split into a binary cluster as
shown in Fig. 15.

Although the results presented here concern only this cluster, the
same procedure has been applied to a variety of other simulated
clusters, and similar results are found.
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3902 B. Arnold and S. P. Goodwin

Figure 15. A cluster from a simulation with an unusual velocity evolution.
Observational errors are applied to this cluster and the ‘true’ and ‘observed’
velocity structures are compared.

5.1 Velocity uncertainties

As stated in Section 2, this paper only considers errors on velocities
as they are typically significantly larger than errors on positions.
We also assume that all stars in the analysis are true members of the
cluster. Later, we remove low-mass stars and examine the impact
on the results, but do not add ‘contaminants’ (how important these
are will vary significantly depending on the observational data set).

Observational uncertainties are simulated by replacing each star’s
‘true’ velocity with an ‘observed’ velocity with an associated error.
The observed velocity is drawn from a Gaussian centred on the
true velocity. The width of the Gaussian used is the observational
uncertainty being simulated, σ sim (i.e. the true velocity usually lies
within the error bar of the observed velocity). This is done for
the x, y, and z components of the velocity separately, i.e. the true
x velocity of a star is replaced with an observed x velocity, etc.
Here, σ sim values of 0, 0.4, 0.8, 1.2, and 1.6 km s−1 are used.
The σ sim = 0 km s−1 case is the true velocity structure as there
is no observational uncertainty (although it still has an uncertainty
associated with stochasticity as in all previous cases).

For each σ sim, the observed �vM(�r) and �vD(�r) are calcu-
lated. These are shown in Fig. 16 where the velocity structure with
σ sim = 0 km s−1 is shown by the blue line, 0.4 km s−1 is the orange
line, 0.8 km s−1 is the green line, 1.2 km s−1 is the red line, and
1.6 km s−1 is the purple line.

From inspection of the top panel, it is clear that the mean �vM,
�vM, that is found increases with observational uncertainty from
∼2 km s−1 when there is no observational error, o ∼2.2 km s−1

when the error is σ sim = 0.4 km s−1, and as σ sim increases this
trend continues.2 The reason for this is that uncertainties in the
velocities cause the velocity dispersion to be artificially inflated. As
a result, the observed difference between any two velocity vectors is
more likely to be larger rather than smaller than the ‘true’ difference.

2Note that this increase is not equal to σsim
√

2 as may be expected.

The inflation of �vM by observational error is not of great im-
portance. Much of the useful information regarding the velocity
structure of a cluster using the magnitude definition is contained in
the shape of the �vM(�r) line, not its placement on the �vM-axis.
Therefore, it is reasonable to analyse �vM(�r) to investigate a re-
gion’s velocity structure without correcting for inflation of �vM.
Nevertheless, for the interested reader, the inflation of �vM by ob-
servational error is discussed in the appendix, which also describes
how this it can be corrected using Monte Carlo methods.

For the mean time, the lines are shifted such that in every case
their �vM matches that of the true velocity structure (σ sim = 0 km
s−1),3 Fig. 17.

This figure shows a good agreement between the shape of the
observed velocity structures. As the observational uncertainty in-
creases, the observed velocity structure reproduces the true velocity
structure less well, but the overall structure remains essentially
recognisable even in the cases where the simulated uncertainty on
each velocity component is greater than the 3D velocity dispersion
of the cluster (1.53 km s−1). From this, we conclude that the method
deals well with observational uncertainty up to and potentially be-
yond the point where the errors are as large as the velocity dispersion
of the region. For Gaia, velocity uncertainties depend largely on the
apparent magnitude of the source. Table B.1 in Lindegren et al.
(2018) gives median values of these uncertainties as a function of
apparent magnitude for Gaia DR2. For a G-dwarf at ∼1 kpc, we
would expect errors in proper motion of around 0.3–1 km s−1.4

In the bottom panel of Fig. 16, we show the directional velocity
structure �vD(�r) (with the lines for different errors having the
same colours as in the top panel). What is obvious here is that the
observational errors have essentially no effect on the directional
structure. This is because even with uncertainties the apparent di-
rections of motion are usually roughly correct, and errors between
pairs tend to average out rather than sum (as they did above). (Note
that we assume the errors are uniform across our ‘field of view’, if
they are not this could introduce a bias but we have not investigated
this potential effect.)

5.2 Mass cutoffs

A probable bias in observations is to not observe low-mass stars as
they are typically faint. (Note here that larger errors on fainter star’s
velocities would be included in the error propagation). We examine
the effect of selection limits by removing stars of increasingly high
mass from our region.

The region has 1000 stars in total which reduces to 428 stars of
>0.3 M�, 207 stars of >0.6 M�, 128 stars of >0.9 M�, and only
83 stars of >1.2 M� (these mass limits are rather arbitrary and are
just chosen as examples).

Fig. 18 shows the different �vM(�r) (top panel), and �vD(�r)
(bottom panel) plots. Different coloured lines represent different
mass limits as described in the figure.

From Fig. 18, we see that the same basic velocity structure is
observed at all mass limits for both �vM(�r) and �vD(�r). There
does appear to be a sytematic increase in the amplitude of both
�vM(�r) and �vD(�r) at high �r and high mass cutoff. This

3The Monte Carlo method works well, but not perfectly. Overlaying the
lines exactly allows their features to be compared more easily by eye.
4The random error in DR2 for G magnitudes of 15–17 is ∼0.06–0.2 mas
yr−1, however there is also a systematic error at the close angular separations
we are interested in of ∼0.1 mas yr−1 (see Lindegren et al. (2018) for details).
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Analysing velocity structure 3903

Figure 16. The velocity structure of the cluster in Fig. 15 with simulated observational uncertainties applied. The top panel shows �vM(�r) and the bottom
panel shows �vD(�r). In both panels, a blue line is used for the true velocity structure, orange for a simulated observational uncertainty of 0.4 km s−1, green
for 0.8 km s−1, red for 1.2 km s−1, and purple for 1.6 km s−1.

Figure 17. Top panel of Fig. 16 with each line shifted such that their �vM matches that of the true velocity structure.
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3904 B. Arnold and S. P. Goodwin

Figure 18. The velocity structure of the cluster in Fig. 15 as measured by the method using different mass cutoffs. The top panel shows �vM(�r) and the
bottom panel shows �vD(�r). In both panels, the blue line is the result using all stars, the orange line using stars above 0.3 M�, green uses those above 0.6
M�, red above 0.9 M�, and purple above 1.2 M�.

apparent increase is not observed in other simulations from the same
set. It is therefore determined to be a peculiarity of this particular
simulation like the apparent ‘kink’ observed in Fig. 5.

The overall robustness of the measured velocity structure against
mass cutoffs is encouraging, especially considering the 1.2 M�
cutoff leaves only 83 of the cluster’s original 1000 stars remaining,
but it is still able to reproduce the shape of the true underlying
velocity structure reasonably well.

That each of our lines for different mass limits are very similar
shows that in this simulation they all trace a similar velocity ‘field’.
This may not be the case in reality, for example in some regions the
star’s spacial and velocity distributions may be a functions of mass
(mass segregated regions being an obvious example).

Nevertheless, we can only measure the velocity structure of the
stars which are detected, and from these tests this appears to be
robust.

As the mass of the cut-off increases, the level of noise increases
which is unsurprising as fewer stars survive the higher the cutoff.

When there are large error bars as a result of low-N, the random-
ization approach used in Section 3 could be used to confirm which
features in the observed structure are significant.

6 MULTIPLE STELLAR SYSTEMS

So far, we have assumed all stars are single. However, in obser-
vational data and more realistic simulations, many stars will be in
binaries or higher-order multiples. Multiple systems, particularly
those in close orbits, often have high orbital velocities. However,
from the point of view of the global velocity structure of a region, a
system’s centre of mass velocity better describes the motion of the
stars over time than their individual velocities. Here, the impact of
binary systems on the velocity structure returned by the method is
examined (higher order multiples are not included for the sake of
simplicity).

This is done by first generating a distribution of 5000 artificial
binary systems. This large number is chosen to dampen noise due

MNRAS 483, 3894–3909 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/483/3/3894/5251842 by U
niversity of Sheffield user on 14 M

ay 2019



Analysing velocity structure 3905

to stochasticity within the distribution. As a result, fluctuations
observed in the results can be confidently attributed to the impact
of binary systems.

The binary systems are generated as follows. The mass of the
primary star is drawn from the Maschberger IMF (Maschberger
2013). The mass ratio of the system is drawn from a uniform dis-
tribution between 0.2 and 1 (Raghavan et al. 2010) and the mass of
the primary is multiplied by this factor to produce the mass of the
secondary. The period, P of the system is drawn from a lognormal
distribution centred on log P = 5.03 with a standard deviation of
2.28 (here P is in days (d)) (Raghavan et al. 2010). From this, the
semimajor axis of the system is calculated. Orbits are circular and
the phase and inclination angle of the system are chosen randomly.
The position and velocity of the system’s centre of mass are also
drawn randomly, the position from a uniform distribution within a
1 parsec × 1 parsec × 1 parsec cube, and the velocity from a Gaus-
sian distribution with a standard deviation of 3 km s−1 in a random
direction.

Synthetic proper motion and radial velocity measurements are
then generated from this distribution. Proper motion measurements
are produced by evolving the distribution forwards by 5 years (grav-
itational forces exerted on the systems by each other are neglected
because of the shortness of this time-scale). The change in each
star’s position in the x−y plane is used to calculate its observed
proper motion. Stars’s radial velocities are taken to be their instan-
taneous velocities in the z-direction.

In Fig. 19, we show the velocity structure of this distribution of
binaries. In the left column, are the results using proper motion
(2D) velocities, and in the right column are results using radial (1D)
velocities velocities. The top row uses �vM for each case, and the
bottom row uses �vD.

In all four panels, the results using the system centre of mass ve-
locities are shown by black lines. The centre of mass velocities more
accurately describe the distribution’s underlying velocity structure
than the velocities of the individual stars which contain an orbital
component. All four of these black lines are generally flat as ex-
pected for a random velocity field. There is a slight deviation from
this at large �r because as �r increases fewer and fewer systems in
the 1 parsec square box are sufficiently far apart to populate these
bins, making them vulnerable to stochasticity (see earlier).

The other coloured lines in Fig. 19 are the velocity structure recal-
culated using the individual velocities of (some) stars. To model ob-
servational limitations, we remove some fraction, fUn, of the lowest-
mass (hence lowest luminosity) stars. For fUn = 0 (blue lines), all
primaries and companions are observed. For an unobserved frac-
tion fUn = 0.25 (orange lines), the 25 per cent lowest-mass stars
are ‘unobserved’ and are not included in the velocity structure cal-
culation, and similarly for fUn = 0.5 (green lines), and fUn = 0.75
(red lines).

Note that (as described earlier) as the size of the region is 1 parsec-
by-1 parsec any features on scales greater than 1 parsec should be
ignored (or at least taken with extreme caution).

We also note that the results described here reflect the impact
of binary stars in the worst case scenario: the binary fraction is
100 per cent, and only a single epoch of radial velocity data is
used. Nine other distributions, each with 5000 binary systems, are
produced and analysed as described here. Their results show the
same general trends as the one presented in this paper.

We will first discuss the results using �vM (top row of Fig. 19).
In both the cases, where the proper motions (left-hand panel) and
the radial velocities (right-hand panel) are used, the flat shape of
the centre of mass determination of �vM(�r) (the black lines)

is largely retained by the results using stellar velocities (coloured
lines). As is to be expected, this agreement is poorer when fUn is
high (and so more stars are unobserved), and at large �r (where
bins contain fewer pairs and the impact of a small number of stars
can be more important). As a result, artificial structure is visible
at high fUn and �r. In Fig. 19, particularly in the radial velocity
case, this artificial structure predominantly increases �vM. In the
nine other realizations of the distribution, however, there is an even
spread between cases where the artificial structure increases and
decreases �vM.

It is clear from the figure that the results using stellar velocities
are off-set to higher �vM. This is due to an inflation of the ‘velocity
dispersion’ from the extra velocity components from binary motion.
The degree of the inflation is larger in the radial velocity case
than the proper motion case as orbital motions, particularly in tight
binaries, can add significant instantaneous component to the stellar
velocity but these are somewhat ‘washed out’ by the time baseline
of proper motion observations. As discussed in Section 5.1, the
inflation of �vM has minimal impact on the interpretation of the
distribution’s velocity structure. Overall, the agreement between
the velocity structure of the region as calculated using the centre of
mass velocities, and the structure using the stellar velocities is good
for all but the highest fUn and �r.

The bottom row of Fig. 19 shows �vD(�r) using proper motions
(left-hand panel) and radial velocities (right-hand panel). In both
cases the directional velocity structure is extremely similar for the
centres of mass (black lines), and complete or fairly complete binary
samples (blue and orange lines): a flat distribution at zero �vD.
When half, or more, of low-mass stars are unobserved (fUn = 0.5
green line, fUn = 0.75 red line), some artificial structure appears.
For most �rs, this structure has an amplitude below 0.3 km s−1, so
would almost certainly be lost in the noise of real data. As in the
�vM results, the artificial structure can both increase or decrease
�vD, and is most severe at high �r.

For the case presented in Fig. 19, the fUn = 0.5 results using the
proper motions (left panel, green line) is startlingly well behaved.
This is a quirk of the binary distribution presented here; in general,
there is some artificial structure in the fUn = 0.5 results. In the radial
velocity results, there is more deviation, which is more typical.

It is worth reiterating that in the case of radial velocities a single
epoch of observations is assumed. If there were multiple epochs, an
observer could potentially estimate binary system’s centre of mass
velocity, even if only one star is observed. If an orbital solution
cannot be found but a fluctuation in a star’s radial velocity is ob-
served, the suspected binary could be removed from the data set.
This prevents contamination of the calculated velocity structure by
an unknown orbital component and, as was shown in Section 5.2,
the method is robust even when a high fraction of stars are not
observed.

As described, there are 10 000 stars in the distribution used
to produce Fig. 19 and this large N is chosen to dampen noise
due to the stochasticity in the distribution (except, as discussed, at
high �r where npairs unavoidably becomes low). However, many
observational data sets have much lower N. For comparison, the
procedure described above is repeated for a distribution of 1000
stars (500 binary systems). The results are shown in Fig. 20.

The velocity structure as calculated using the system’s centres
of mass velocities is less flat than in Fig. 19 due to the increase
in stochasticity caused by lower N. The velocity structure of the
systems themselves is not of interest here however; it is the degree
of agreement between it and the velocity structure calculated using
the stellar velocities that is being examined.
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3906 B. Arnold and S. P. Goodwin

Figure 19. The velocity structure of a distribution of 5000 binary systems. The top two panels use the �vM definition and the bottom two �vD. The left-hand
column calculates the velocity structure using synthetic proper motion data, and the right hand one synthetic radial velocity data. In all four panels, the black
lines are the velocity structure calculated using the centre of mass velocities of the binary systems. The other lines use the velocities of the individual stars. The
blue lines are the velocity structure calculated when all stars in the sample are observed (the unobserved fraction fUn is zero). The orange lines are the results
when fUn is 0.25, the green when fUn is 0.5, and the red when fUn is 0.75.

Inspection of Fig. 20 shows the results are noisier and have
larger uncertainties than those in Fig. 19 which can be attributed
to the lower N. Nevertheless, the agreement is relatively good
between the results using centre of mass velocities and stel-
lar velocities although, as was the case in Fig. 19, this be-
comes worse at high �r and fUn, and there is an increase in
�vM with fUn. Again, nine other distributions of 500 binary sys-
tems were generated and show the same general trends as in
Fig. 20.

We now summarize the effect of binaries. Binaries ‘inflate’ �vM

with respect to the binary centre of mass determination (exactly
by how much depends on the binary population); however, the
overall structure of �vM remains similar even when a significant
fraction of low-mass stars are unobserved. The level and structure
of �vD remains very similar, though there are deviations when the
‘unobservable’ fraction is very high.

What is recomforting is that the VSAT method is capable of
extracting real structure from even a single epoch of radial velocity
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Analysing velocity structure 3907

Figure 20. This figure has the same structure as Fig. 19 but it shows the velocity structure of a distribution of 500 binary systems rather than 5000. The top
panels use the �vM definition and the bottom panels �vD. The left column calculates the velocity structure using proper motions, and the right-hand one uses
radial velocities. The black lines show the velocity structure calculated using the binary system’s centre of mass velocities, and the other lines are the velocity
structure as calculated using the velocities of the individual stars. The blue lines use all stars in the sample, the orange lines are the results when fUn is 0.25,
the green when fUn is 0.5, and the red when fUn is 0.75.

data contaminated with binary motions. Such an analysis should be
treated with rather more caution than proper motion data or multi-
epoch radial velocity data, but it still contains useful information.

7 C O N C L U S I O N S

In this paper, we present a method of examining the velocity struc-
ture of star-forming regions by plotting the physical separation of
pairs of stars (�r) against their mean velocity difference (�v).

Distributions of �v(�r) for different regions can be directly com-
pared to each other. Two definitions of �v are used, the ’magnitude’
definition (�vM), and the ‘directional’ definition (�vD).

This method does not require the region’s centre or radius to be
defined, requires no assumptions about the region’s morphology,
and can be applied to data in any number of dimensions in any
frame of reference. The method also includes the treatment of ob-
servational errors, and is shown to be useful even for data with large
errors.
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3908 B. Arnold and S. P. Goodwin

The output from the method requires some interpretation, and
we have shown a number of examples of how to interpret more
complex data. This is of particular relevance as we enter this new
era of an unprecedented quantity and quality of velocity data.

Although this method was created for the purpose of investigating
velocity structure in star-forming regions, it is extremely generic;
there is no reason the data it is applied to must be r and v of stars.
This makes it a potential tool for investigating very different data
sets.

A Python program which runs the method, the Velocity Structure
Analysis Tool, VSAT, can be found at https://github.com/r-j-arnold/
VSAT. In the near future, we intend to publish a paper demonstrating
the application of this method to observational data (Arnold et al.,
in preparation).
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APP EN D IX: C OR R E C T ING IN FLATI O N

The increase in �vM with uncertainty will now be explained in
more detail. As only the magnitude definition of �v is affected, the
M subscript will be dropped to avoid overly long subscripts in this
appendix.

The true velocities of stars in a region (vT) have some distribution.
A cartoon, idealized picture of this is shown by a blue line in Fig. A1,
where the x-axis is velocity, and the y-axis is the probability of a
star having a given velocity. Due to observational uncertainties, it is
impossible to perfectly measure the true velocities vT, and instead
we observe velocities vobs. The effect of observational uncertainties
is to smear out the true velocity distribution. The observed velocity
distribution is shown by the orange line in Fig. A1 for our cartoon

Figure A1. Cartoon depicting the broadening of the observed velocity
distribution due to observational uncertainties. The x-axis shows a range of
velocities and the y-axis their probability. A true velocity distribution (in
blue) is broadened into the observed velocity distribution (in orange).

case. Notice that the observed velocity distribution is wider that the
true velocity distribution.

When the velocity difference between two stars in a region is
measured this can be thought of as drawing two velocities from the
velocity distribution and calculating the difference between them. If
the distribution is narrow, then the range of likely velocities is small
so the two velocities drawn will usually have a small difference
between them, therefore �v will be small. In contrast, if the distri-
bution is wide it is more likely that any two values drawn will be
very different, so �v will be large. As discussed, the observed ve-
locity distribution is wider than the true velocity distribution, so the
observed mean velocity difference between pairs of stars (�vobs) is
larger than the true mean velocity difference between pairs of stars
(�vT). Because the width of the vobs distribution increases with
uncertainty, so does �vobs. This is why in the top panel of Fig. 16
there is a positive correlation between �v and σ sim.

As discussed above, observational errors broaden the observed
velocity distribution, so the true velocity distribution can be crudely
approximated by a narrower version of the observed velocity dis-
tribution. In brief, the observed velocity distribution is narrowed by
different amounts and Monte Carlo methods are used to find which
width best reproduces the observed velocity distribution once obser-
vational errors are applied. Many velocities are then drawn from this
best-fitting distribution, and �v is calculated. This is the estimated
value of �vT given the observed velocities and the errors.

The exact method used will now be described in more detail.
Diagrams shown in Fig. A2 are referred to to aid this description.
For both of these plots the x-axis is velocity, and the y-axis is
probability. They show how the method would be applied to some
cartoon non-Gaussian velocity distribution (the black line in the
left-hand panel of Fig. A2).

First a Gaussian kernel is applied to the observed velocities to
produce a probability density function (pdf) of the observed veloc-
ities (red line in both panels of Fig. A2). It is assumed that the true
velocities pdf is the same shape, but narrower. How much narrower
is unknown, and though it can be analytically calculated if the dis-
tributions are Gaussian that will often not be the case. Instead, many
different widths are tested, each model being a ‘guess’ at the true
velocity structure. To prevent Fig. A2 becoming overcrowded, only
three models are shown (blue dashed lines). In this diagram, it is
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Analysing velocity structure 3909

Figure A2. Diagrams aiding the explanation of how to correct for �v inflation by observational uncertainties. For both the left-hand and right-hand panels, the
x-axis is velocity and the y-axis is probability. The left-hand panel depicts a true velocity distribution (black line), the observed velocity distribution (red line)
and three models of the true non-Gaussian velocity distribution using different widths (blue dashed lines). The right-hand panel shows the observed velocity
distribution (red line), and the simulated observations assuming each of the models from the left-hand panel (blue dashed lines).

obvious that the first is much wider than the vT distribution, the
second is almost exactly right, and the third is much narrower. In
reality vT would be unknown, so it is not so easy to compare.

For each model, N velocities are drawn and observational un-
certainties are applied as per the method described earlier in this
section. The distributions of these simulated velocity observations
are what we would expect to observe if the model were the true dis-
tribution. This is repeated many times (100 in this paper) in order to
obtain reliable results. The right-hand panel of Fig. A2 shows how
these simulated observational distributions compare to the actual
observed distribution. If the model the velocities are drawn from is
a good match for the true velocity distribution, then the simulated
observations distribution will replicate the actually observed distri-
bution well. From the left-hand panel of Fig. A2, it is evident that
width 1 is too large, width 2 is approximately correct, and width
3 too narrow, and this is reflected in the right-hand panel. Clearly,
the simulated observations using width 2 is the best match to the
observations, and so is taken to be a good approximation of the true
velocity structure.

Now that the true velocity distribution has been modelled, a large
number of velocities are drawn from it and �v is calculated. This
�v is the estimated value of �vT.

To quantify how accurate this is, the method is applied to five
very different simulated regions, A, B, C, D, and E. For each, the
true �vT is calculated, then observational uncertainties are applied,
and the Monte Carlo method is used to estimate �vT from the ob-
served velocities. This is done for observational uncertainties (σ sim)
between 0.1 and 1.6 km s−1 in steps of 0.1 km s−1. In each case, the
difference between the true �vT and the value of �vT estimated us-
ing the Monte Carlo method is computed. This difference is referred
to as the inaccuracy. For each of the five simulations, inaccuracy is
plotted against σ sim, which is shown in Fig. A3.

From Fig. A3, we see a rough correlation between σ sim and in-
accuracy, which is expected. More importantly, we see that the
inaccuracy observed is low, typically �0.1 km s−1 except for ex-
tremely high uncertainties. We therefore conclude that �vT can be
recovered from the observed velocities with reasonably high accu-

racy. Unfortunately, exact error limits can’t be calculated because
error is introduced by the assumption that the true velocity distribu-
tion has the exact same shape as the observed velocity distribution,
it is only narrower. This assumption will never be perfectly true
but only close, and without knowing the true velocity structure
it is impossible to know how close. Therefore, the error can’t be
quantified.

Nevertheless, it has been shown this method can reproduce �vT

with reasonable accuracy if the errors on the velocity measurements
are not too high. Also, as stated earlier, �vT is largely irrelevant to
interpretation of the velocity structure when �vM is used, it is the
shape which contains the majority of the information.

Figure A3. Plot showing the inaccuracy of the value of �vT estimated
using the Monte Carlo method. The x-axis is the observational uncertainty
applied to the data and the y-axis is the inaccuracy. Different colours are
used for each of the five simulations tested.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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4.4 Comparison to similar statistics

As stated in the paper the method presented in this chapter has similarities with variograms

(Matheron 1963), which are mathematically equivalent to structure functions (Simonetti

et al. 1985). The difference lies in the fact the method presented here looks at the varia-

tion in the mean of the difference of some statistic (in this case velocity) at different scales,

whereas structure functions look at the mean of the square of the difference. For the method

presented here squaring would be counterproductive as in some cases velocity difference can

be negative as well as positive, so taking the square would reduce the method’s utility.

The calculation of meaningful errors for both the method presented here and for

structure functions presents a mathematical challenge. The number of possible pairs from N

stars (or other kind of datapoint) is proportional to N2; so clearly the differences for all the

pairs are not a collection of independent measurements. This counter to what is assumed by

most common error calculation methods. As such we take a two-pronged approach to eval-

uating errors on this method. The first uses conventional mathematical approaches despite

these issues, and the resulting uncertainties can be taken as a lower limit on the true uncer-

tainties. The second randomly shuffles velocities between stars to remove any true structure,

and re-applies the method. This is done multiple times to give an idea of the magnitude of

apparent structure that may be ‘measured’ even when no true structure is present. Structure

in the unshuffled data that exceeds these bounds is judged to be significant.

Another mathematical challenge both this method and structure functions share is

reduced reliability at large scales of whatever property is being measured (whether it is

time, distance, or something else entirely) where the number of pairs to take the average

over becomes small. See Collier & Peterson (2001) and Emmanoulopoulos et al. (2010) for

a discussion of this relating to time series data. Because of this when using the method

presented in this chapter results at large separations should be treated with caution.



Chapter 5

The velocity structure of Cygnus OB2

5.1 Summary

This chapter presents the paper ‘The velocity structure of Cygnus OB2’ (Arnold et al. 2019;

submitted). This method applies the VSAT method presented in Arnold & Goodwin (2019) to

observational data of the central part of the Cygnus OB2 star forming region. The dataset is first

presented in Wright et al. (2010). Using the VSAT method the velocity structure of the region

is analysed. No evidence of systematic expansion or contraction is found at any scale. Velocity

structure is found on scales smaller than 0.5 parsecs; on average stars closer than this to each other

have more similar velocity vectors than stars at larger separations. At larger scales we find the

velocity structure is consistent with a random velocity field. The implications of these results are

then discussed.

5.2 Description of my contribution to this work

I performed a preliminary analysis of the dataset, which was provided by N. Wright, and removed

stars that were likely not representative of the velocity structure of the region. I then applied

the VSAT method to the revised dataset and analysed the results. This analysis was aided by

conversations and ideas from S. Goodwin. I produced all figures in the paper aside from Fig. 1,

and wrote the majority of the text aside from that in the discussion and conclusions and a small

part of the methods section. Feedback was provided by S. Goodwin and N. Wright, and was used

to revise the text.
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5.3 The paper

The submitted version of this paper is presented below.



MNRAS 000, 1–6 (2019) Preprint 13 January 2020 Compiled using MNRAS LATEX style file v3.0

The velocity structure of Cygnus OB2

Becky Arnold,1? Simon P. Goodwin1 and Nick J. Wright2
1Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, UK
2Astrophysics Group, Keele University, Keele, Staffordshire, ST5 5BG, UK

Accepted XXX. Received YYY; in original form ZZZ

ABSTRACT
The kinematic structure of the Cygnus OB2 association is investigated. No evidence of sys-
tematic expansion or contraction is found at any scale within the region. Stars that are within
∼ 0.5 parsecs of one another are found to have more similar velocities than would be expected
by random chance, and so it is concluded that velocity substructure exists on these scales.
At larger scales velocity substructure is not found. We hypothesise that bound substructures
exist on scales of ∼ 0.5 parsecs, despite the region as a whole being unbound. We further
hypothesise that any velocity substructure that existed on scales > 0.5 parsecs has been erased.
The results of this study are then compared to those of other kinematic studies of Cygnus OB2.

Key words: stars: kinematics and dynamics – open clusters and associations: general – stars:
formation

1 INTRODUCTION

Star forming regions are the focus of a great deal of scientific in-
terest, and for good reason. They inform our understanding of how
stars are born and how their environments evolve. Their study is
also vital for our comprehension of the conditions that planets form
in, and the type/number of planets which may exist in the universe.

Spatial and dynamical structure are perhaps the most impor-
tant aspects defining a star forming region, but can be difficult to
interpret. A number of statistical methods have been developed to
quantify different aspects of the spatial structure of these regions
(Allison et al. 2009; Cartwright 2009; Maschberger & Clarke 2011;
Buckner et al. 2019), but they don’t touch upon its velocity struc-
ture. However the Velocity Structure Analysis Tool (VSAT) (Arnold
& Goodwin 2019) does, and it is used in this paper to investigate
the velocity structure of Cygnus OB2, which has previously had
relatively little statistical kinematic analysis.

Cygnus OB2 lies at a distance of approximately 1400 parsecs
(Hanson 2003; Rygl et al. 2012; Berlanas et al. 2019), and has an
estimated stellar mass of order 104 M� (Drew et al. 2008; Wright
et al. 2010). Estimates of the region’s age vary, for example Massey
et al. (1995) find an age of 1-3 Myr and Wright et al. (2015) find an
age up up to 7 Myr with star formation peaking 4-5 Myr ago. Given
a number of estimates it seems relatively certain that the age of the
region lies somewhere between 1 and 7 Myr.

This region is chosen because it has been extensively studied,
(Massey&Thompson 1991;Knödlseder 2000;Comerón et al. 2008;
Kiminki et al. 2015; Roquette et al. 2017; Berlanas et al. 2018,
2019) meaning there is a large amount of observational data already
available. There have also been studies focused on its spatial and
kinematic structure (Wright et al. 2014, 2016; Winter et al. 2019).

? rebeccajasmi@umass.edu

This is useful as it allows findings relating to the kinematic structure
of the region which are achieved using different techniques to be
compared to see if they are consistent.

The structure of this paper is as follows. In section 2 the meth-
ods used to collect and analyse the data are outlined. In section 3
the results of the analysis are reported and in section 4 they are dis-
cussed. Finally in section 5 the conclusions drawn from the results
are summarised.

2 METHODS

2.1 Data collection

For this work we use the X-ray selected sample of Cygnus OB2
members presented byWright&Drake (2009) for the central portion
of the association. X-rays provide a largely unbiased diagnostic of
youth that is effective for separating young association members
from older field stars, and Wright et al. (2010) made further efforts
to identify and remove foreground contaminants from the sample.
Proper motions for these stars were derived by Wright et al. (2016)
as part of the DANCe (Dynamical Analysis of Nearby Clusters)
project (Bouy et al. 2013).

The sample includes many of the known high-mass O-type
stars in Cygnus OB2 with masses up to 100 M� , as well as low-
mass stars down to 0.1 M� . The sample is estimated to be mostly
complete to∼ 0.8 M� (Wright et al. 2014), and can be seen in Fig. 1.
In this figure each star is shown as a dot with a line. The location of
the dot indicates the location of the star and the length and direction
of the line indicates the star’s velocity. Visual inspection of the
figure shows a small number of stars with velocities far greater than
most. To investigate this we conduct an exploratory analysis of the
data.

© 2019 The Authors
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Figure 1. A plot of the data collected from the Cygnus OB2 region. The survey area of the X-ray observations of Wright & Drake (2009) is outlined by a grey
dashed line. Each star is represented by a dot with a line. The position of the dot indicates the position of the star in RA (x-axis) and Dec (y-axis). The length
and direction of the line coming from each dot indicates that star’s velocity vector. Stars which are removed from the sample (as discussed in section 2.1) are
shown by grey dots and vectors.

2.2 Exploratory analysis

Fig. 2 shows a scatter plot of the stellar velocities. As was the case
for Fig. 1 it is visually apparent there are a small number of outliers.
Additionally Fig. 3 shows a histogram with the stars binned by the
number of standard deviations their speed is from this mean stellar
speed, and from this it is clear there is a small number of stars which
have speeds many standard deviations in excess of the mean stellar
speed of the dataset. Note that in Fig. 3 the y-axis is logarithmic in
order to make bins with few entries more easily visible.

The presence of extreme velocity outliers is also noted in
Wright et al. (2016) where this dataset was first presented. That
work concludes that these outliers are most likely due to:

• background/foreground stars that have beenmistaken formem-
bers of Cygnus OB2
• stars ejected from Cygnus OB2 by dynamical events such as

the disruption of binary systems
• stars now in the region ofCygnusOB2but originating in nearby

star clusters/associations which dispersed.

MNRAS 000, 1–6 (2019)
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Figure 2. The RA and Dec stellar velocities plotted against one another.
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Figure 3. A histogram of the number of standard deviations stellar speeds
are from the mean stellar speed in the Cygnus OB2 dataset. On the x-axis
is number of standard deviations away from the mean. On the y-axis is the
number of stars in each bin of the histogram. In order to ensure bins with a
small number entries remain clearly visible the y-axis is logarithmic.

Regardless of their origin it is clear there is a small number of
the 873 stars with very different velocities to the rest of the sample.
Further, it seems unlikely that they are representative of the region’s
underlying velocity structure. Due to this, stars with speeds more
than three standard deviations from the mean stellar speed in the
dataset (a total of eight stars) are removed. This removal has very
little impact on the results, and the effects it does have are discussed
later. The removed stars are shown in grey in Fig. 1 and outside the
grey inset in Fig. 2

In Fig. 2 velocities appear to be centrally concentrated but,
particularly in the inset, there is no further obvious velocity structure
apparent. To further investigate the velocity structure we plot stellar
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Figure 4. A scatterplot of stellar speeds plotted against their distance from
the centre of the region. The polynomial that best fits this data is shown by
a black line

speeds against their distances from the centre, see Fig. 4. The centre
is defined here as the mean position of the stars.

There appears to be a peak in this distribution of points towards
the centre of the plot but it is difficult to asses meaningfully by eye.
To better understand it polynomials of increasing degrees are fitted,
the adjusted R2 coefficient is used to assess the goodness of each
fit. This coefficient penalises additional degrees of freedom, which
prevents overfitting. A 3rd degree polynomial is found to provide
the best fit, and is shown by a black line on Fig. 4. Note that we do
not argue that the data originated from this function, or even that
this polynomial is a good fit. We only use it as a guide to better
interpret the data. The best fitting polynomial does contain a peak
which is located at 2.56 pc indicating stars with high speeds are
preferentially located at moderate distances from the centre.

2.3 Data analysis

The VSAT method (Arnold & Goodwin 2019) is applied to anal-
yse the velocity structure of the dataset in more detail. In brief the
method is as follows: for every possible pair of stars this method
calculates the distance between them (∆r) and their velocity dif-
ference (∆v). To clarify, here a ‘pair of stars’ does not necessarily
refer to a binary system, but just to any two stars in the region. The
pairs are then binned by ∆r and within each bin the average ∆v is
calculated. Finally these are plotted against each other.

This method is applied twice, each time using a different defi-
nition of the velocity difference between two stars ∆v. The first case
is referred to as the magnitude definition, ∆vM, and it is defined
as the magnitude of the difference between the two star’s velocity
vectors. Therefore for stars a and b ∆vM is calculated as:

∆vabM = |va − vb | (1)

This definition is particularly useful as a raw measure of how
similar/different stellar velocity vectors are.

The second way ∆v is defined is as the time differential of ∆r ,
i.e. the rate at which the distance between the stars is changing. This
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is referred to as the directional definition, ∆vD. For stars a and b
this is

∆vabD =
(ra − rb) · (va − vb)

∆rab
. (2)

In this definition if the stars are moving away from each other
∆r increases so ∆vD is positive, and if the stars are moving towards
each other ∆r decreases and ∆vD is negative. This definition is
particularly useful for studying if regions or sub-regions are under-
going expansion/collapse. It as also useful for studying the relative
motions of different substructures within a region. Both of these
things are helpful in discerning the dynamical state of a region and
its history.

In order to facilitate the calculation of these parameters the
data is converted fromRA,Dec, and propermotions into a Cartesian
coordinate scheme. The Python package astropy is used to perform
this conversion.

3 RESULTS

3.1 Magnitude definition: ∆vM

The VSAT method is applied to the dataset using the magnitude
definition ∆vM. The results are shown by the blue line in Fig. 5.
On the x-axis of this figure is the distance between stars in parsecs,
∆r , and on the y-axis is the average magnitude of the difference
between stellar velocity vectors, ∆vM, in km s−1.

To demonstrate the degree of statistical noise the velocity vec-
tors are randomly swapped between stars to remove any velocity
structure. The method is re-run and the results recorded. This is
done 1000 times. The area containing the central 1σ of results
is shown by a shaded grey region in Fig. 5. Features in the non-
randomised results (blue line) on scales smaller than the spread of
these randomised results (grey area) are not significant as they are
within the fluctuations in measured velocity structure due to pure
stochasticity.

Inspection of Fig. 5 shows a dip at scales < 0.5 parsecs1. This
means that stars closer to each other than this tend to have similar
velocity vectors relative to the velocities across the whole region
studied.

Between ∼0.5 - 5.5 parsecs the measured velocity structure
(blue) is almost completely flat; there is no change in the magnitude
of the difference between stellar velocity vectors as a function of
how far apart they are. Further, the small fluctuations from flatness
that are observed are almost entirely within the 1σ bounds of those
resulting from the regions where velocity structure has been re-
moved by random shuffling (grey area). Therefore we conclude that
there does not appear to be any velocity structure at these scales.

For ∆r > 5.5 parsecs ∆vM dips again. However, the results
at these large scales are noisy and have high uncertainties. This is
largely due to the fact that only stars on the outermost edges of
the dataset are far enough apart to have such high ∆r . Because

1 This feature is not visible if stars that are sigma clipped in section 2.1
are included. This is because, due to their locations, these stars feature in a
disproportionately large number of low ∆r pairs, and the < 0.5 parsec scale
is particularly badly impacted. The sigma clipped stars have very different
velocities to the rest of the dataset so their over representation causes an
artificial increase in ∆vM. This explains their impact on the < 0.5 parsec
feature.
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Figure 5. The velocity structure of Cygnus OB2 as determined by the VSAT
method (Arnold & Goodwin 2019) (blue line). The area containing the
central 1σ of the results of 1000 randomised cases is shown in grey. The
x-axis shows the separation between stars in parsecs ∆r , and on the y-axis
is the average velocity difference of stellar pairs as defined by the magnitude
definition of velocity difference, ∆vM, in km s−1.

of the morphology of the region which has lower stellar den-
sity towards its outskirts this means that there are fewer stellar
pairs to populate these bins at large separations, and the results at
∆r & 5.5 parsecs are highly dependent on the exact velocity vec-
tors of a small number of stars. Therefore although the measured
‘structure’ exceeds the bounds of the results with randomised ve-
locity structures we cannot confidently determine whether velocity
structure is or is not present at ∆r beyond 5.5 parsecs.

3.2 Directional definition: ∆vD

The VSATmethod is now applied using the directional definition of
the velocity difference, ∆vD. Recall that in this definition the more
rapidly stars tend to move away from each other the more positive
∆vD is, and the more rapidly stars tend to move towards each other
the more negative it is. The results are shown by the blue line in Fig.
62. As in Fig. 5 the x-axis shows distance between pairs of stars,
∆r , in parsecs. The directional velocity difference ∆vD is given on
the y-axis in km s−1. As in section 3.1 velocity vectors are then
randomly shuffled between stars to remove any velocity structure,
and the VSAT method is re-applied. This is done 1000 times. The
1σ boundary of the results is plotted in grey on Fig. 6. This is
done to give an idea of the amplitude of apparent velocity structures
which in fact result from statistical noise.

The velocity structure of the region as measured using the
directional definition of velocity difference does not fluctuate a
great deal as a function of ∆r . The blue line in Fig. 6 is largely flat,
and the results are consistent with ∆vD = 0 (no net expansion or
contraction) for ∆r < 3.5 parsecs. For ∆r between 3.5 and 6 parsecs

2 These results are virtually indistinguishable from the results if the eight
stars removed in section 2.1 are included. The only impact is minor changes
to the exact fluctuations of the lines in Fig. 6, but the same overall trend is
observed. This is as expected: if the clipped stars are truly not members of
Cygnus OB2 they should have more or less random directions, so no net
impact on the results of the directional definition ∆vD.
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Figure 6. The velocity structure of Cygnus OB2 as determined by the VSAT
method (Arnold & Goodwin 2019) (blue line). The area containing the
central 1σ of the results of 1000 randomised cases is shown in grey. The
x-axis shows the separation between stars in parsecs ∆r , and on the y-axis
is the average velocity difference of stellar pairs as defined by the directional
definition of velocity difference, ∆vD, in km s−1.

∆vD is only very slightly above 0, and stays within the bounds of
the randomised cases with no velocity structure.

At ∆r > 6 parsecs the results show a positive correlation
between ∆r and ∆vD. Only stars on opposite sides of the dataset
and close to its edges are far enough apart to populate these high ∆r
bins. Additionally, as stated, positive ∆vD indicating a stellar pair
is moving apart. Therefore this result implies that stars towards the
fringes of the dataset are moving outwards, i.e that the region is
expanding from it edges. However, for reasons discussed in section
3.1 VSAT is not reliable beyond ∆r = 5.5 parsecs for this dataset
because of low number statistics. Therefore an additional test is
conducted to verify whether this apparent expansion is real.

First all the stars that are present in ∆r > 6 parsecs bins (we
will call these fringe stars) are identified, and how many times they
appear in those bins is recorded. Next the centre of the dataset is
determined by taking the average position of all stars. The direction
of each fringe star’s velocity relative relative to the centre of the
dataset if then calculated, with 0◦ indicating the star is moving
radially outwards, 90◦ that it is moving tangentially, and 180◦ that is
moving radially outwards. If fringe stars are moving systematically
outwards then we expect thier mean angle to be < 90±2.90◦. Note
2.90◦ is the expected standard deviation of the mean of a uniform
distribution between 0 and 180◦ given the number of datapoints.

The mean angle of the fringe star’s velocity directions are
calculated. This mean is weighted by how many times each star
appears in ∆r > 6 parsecs bins, as recorded earlier. The mean
is 88.00◦, however this is within the expected standard deviation,
2.90◦. Therefore we conclude there is no expansion from the edges
of the dataset.

4 DISCUSSION

The results of our VSAT analysis of this part of Cygnus OB2 can
be summarised as follows:

• there is velocity structure on scales < 0.5 parsecs;

• scales > 0.5 parsecs and < 5.5 parsecs are consistent with a
random velocity field.

The grey areas on Fig. 5 and Fig. 6 show the 1 σ boundaries of
the results using 1000 different realisations of randomly shuffling
the velocities of stars. The only place where the actual data (the
blue line) does not fall within the range of the randomised data
at ∆rs for which we have reliable results (i.e. < 5.5 parsecs) is on
scales of < 0.5 parsecs for the magnitude definition shown in Fig. 5.
Therefore, the onlyway inwhich the data departs from a randomised
velocity field is that stars closer together than 0.5 parsecs have very
similar velocity vectors. As discussed we expect the method to
be sensitive to velocity structures on scales < 5.5 parsecs, so the
lack of any reliable ‘signal’ above 0.5 parsecs implies there is no
velocity structure present on these scales.

This result is possibly not particularly surprising given
what we know about Cygnus OB2. A size-scale of ∼ 0.5–1 par-
secs is expected for bound groups of stars. It is the typical size
of star clusters (see e.g. Portegies Zwart, McMillan & Gieles
(2010)), the size of a typical molecular clump (Beuther et al.
2007), and is seen locally e.g. in Taurus (Gomez et al. 1993).
Therefore, what we are probably seeing at < 0.5 parsec scales
aremany (probably fairly low-N) bound groups3 which, because
they are bound, have more similar velocity vectors than would
be expected by chance as shown in Fig. 5. It is likely that some
stars have become unbound from the groups since they formed
due to dynamical interactions, and that these groups formed
with somewhat higher N and larger size. However due to the
youth of this region it is unlikely that the N and size of these
groups has changed a great deal since their formation.

Note that we determine that the groups themselves must be
bound because in order for unbound stars with similar veloc-
ities to remain within around 0.5 parsecs of each other for at
least 3 Myr (the approximate region age) they must have a ve-
locity dispersion of . 0.17 km s−1. This is implausibly low; it is
more than a factor of 4 smaller than would be predicted for the
velocity dispersion of molecular gas over the same size region by
Larson’s laws. Therefore we determine that such groups must
be bound.

Given the large global 3D velocity dispersion of Cygnus OB2
of ∼ 20 km s−1 (Wright et al. 2016) and typical age of a few Myrs
(Massey et al. 1995; Wright et al. 2015) stars, or bound groups, will
have moved 10s of parsecs from their birth sites. Therefore, stars
we presently observe in this field of view (very roughly 10-by-10
parsecs) are unlikely to have formed within it.

That we are observing stars/groups that have moved a signif-
icant distance (possibly larger than our field of view) from where
they formed means that observing a velocity field that is consistent
with being random on all scales that are not bound is what we might
well expect.

A large-scale random velocity field with many ‘embedded’
∼ 0.5 parsec bound groups is consistent with the high degree of
spatial structure found by Wright et al. (2014) (they measure the
Cartwright &Whitworth (2004) Q-parameter to be 0.4–0.5). It also
fits the finding of Griffiths, Goodwin & Caballero-Nieves (2018)
that the number of wide massive binaries in Cygnus OB2 suggests
many (at least 30) different sites of massive star formation across
the entire association.

It is worth noting that Winter, Clarke & Rosotti (2019) suggest
a model for Cygnus OB2 as a superposition of four expanding

3 It is not clear to us if they deserve the title ‘clusters’
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clusters. Their Figure 8(a) looks to the eye to be moderately similar
to our Fig. 1. However, it might well lack the 0.5 parsec structures
we find in the real data (as that scale was not imposed in their initial
conditions and it is difficult to see how it could arise dynamically).
A possible avenue for future work could be to analyse a variety of
different idealised initial conditions to see which best-fit the real
data.

5 CONCLUSIONS

We analyse the positions and proper motions of stars in a region
of Cygnus OB2 from Wright et al. (2014) using the VSAT method
presented in Arnold & Goodwin (2019).

Our main findings are:

• Stars within 0.5 parsecs of each other have significantly similar
velocities.
• At all reliable scales larger than 0.5 parsecs velocities are con-

sistent with a random distribution.
• There is no evidence of systematic expansion or collapse in

this part of Cygnus OB2.

This suggests that we are observing many (presumably primor-
dial) bound structures on scales < 0.5 parsecs (‘groups’ or small
‘clusters’). However, any initial velocity structure on scales larger
than 0.5 parsecs has been erased by stars having moved 10s of par-
secs in the few Myr since they formed. Within this region we see
no significant evidence for global expansion or contraction (but we
note this is only the central part of Cygnus OB2).
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Chapter 6

The properties of ejected stars

6.1 Summary

This chapter presents the paper ‘Dynamical evolution of star-forming regions: III. Unbound stars

and predictions for Gaia’ (Schoettler et al. 2019). In this paper N-body simulations of star forming

regions with different initial conditions are performed and the properties of stars that become

unbound from the regions are studied. No high mass runaway stars (see section 1.3 of this thesis)

are observed, however lower mass ”walkaway stars” (stars ejected from the cluster with velocities

5 - 30 km s−1) are. Further the properties and fractions of ejected stars are found to correlate with

the initial conditions of the simulated regions.

6.2 Description of my contribution to this work

In some of the simulations performed in this work multiple clusters (mainly binary clusters) form.

See section 1.6 and the entirety of chapter 3 for more information on such clusters. This presents

additional difficulties to the problem of identifying which stars are unbound:

• It must be determined if more than one cluster is present, and if so how many.

• If more than one cluster is present their memberships must be determined.

In the course of my work on Arnold et al. (2017) (presented in chapter 3) I developed a piece

of software which algorithmically identified the number of clusters in a simulation snapshot, and

determined the membership of each based on boundedness arguments. I modified this software to

be more user friendly, provided it to C. Schoettler, and trained her on its use, abilities, and potential
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weaknesses. By making use of this software she was able to find which stars are unbound from

any cluster in simulations where multiple clusters form. This allowed the properties of unbound

stars to be studied in the full set of simulations, not just those that formed single concentrated star

clusters.

I also contributed to this work by reviewing multiple drafts and providing feedback.

6.3 The paper

The full published version of the paper is presented below.
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ABSTRACT
We use N-body simulations to probe the early phases of the dynamical evolution of star-forming
regions and focus on mass and velocity distributions of unbound stars. In this parameter space
study, we vary the initial virial ratio and degree of spatial and kinematic substructure and
analyse the fraction of stars that become unbound in two different mass classes (above and
below 8 M�). We find that the fraction of unbound stars differs depending on the initial
conditions. After 10 Myr, in initially highly subvirial, substructured simulations, the high-
mass and lower mass unbound fractions are similar at ∼23 per cent. In initially virialized,
substructured simulations, we find only ∼16 per cent of all high-mass stars are unbound,
whereas ∼37 per cent of all lower mass stars are. The velocity distributions of unbound
stars only show differences for extremely different initial conditions. The distributions are
dominated by large numbers of lower mass stars becoming unbound just above the escape
velocity of ∼3 km s−1 with unbound high-mass stars moving faster on average than lower
mass unbound stars. We see no high-mass runaway stars (velocity > 30 km s−1) from any
of our initial conditions and only an occasional lower mass runaway star from initially
subvirial/substructured simulations. In our simulations, we find a small number of lower
mass walkaway stars (with velocity 5–30 km s−1) from all of our initial conditions. These
walkaway stars should be observable around many nearby star-forming regions with Gaia.

Key words: methods: numerical – stars: formation – stars: kinematics and dynamics – open
clusters and associations: general.

1 IN T RO D U C T I O N

The majority of stars do not form in isolation but in environments
where stellar densities are higher than in the Galactic field (Lada &
Lada 2003; Bressert et al. 2010). Depending on the initial conditions
in these star-forming regions, they either evolve into bound clusters
or unbound groups. Most stars born in clusters do not remain
there past an age of 10 million years (Myr) and only about
10 per cent are observed in gravitationally bound clusters at this
age (Lada & Lada 2003). Young stars that are not members of
bound clusters are usually observed in unbound groups of stars (i.e.
associations; Blaauw 1964) before they disperse into the Galactic
field.

� E-mail: cschoettler1@sheffield.ac.uk
† Royal Society Dorothy Hodgkin Fellow.

For the last two decades, the prevailing view has been that bound
star clusters are fundamental units of star formation – in that most
stars form in these dense, embedded environments until gas exhaus-
tion (Longmore et al. 2014) or residual gas expulsion conclude star
formation. Gas expulsion can also lead to the cluster’s dissolution
(Tutukov 1978; Lada, Margulis & Dearborn 1984; Goodwin 1997;
Goodwin & Bastian 2006; Longmore et al. 2014; Shukirgaliyev
et al. 2018). In this scenario, associations must have formed as
single or multiple clusters and expanded into their unbound state
(so-called monolithic star formation; e.g. Kroupa, Aarseth & Hurley
2001; Baumgardt & Kroupa 2007). An alternative view is that
depending on the initial conditions of the molecular clouds, clusters
or associations are formed when smaller clustered regions with
differing stellar densities assemble hierarchically. These smaller
groups of stars are the result of hierarchical fragmentation of the
molecular clouds. In this scenario, star formation can lead to the
formation of a dense, bound star cluster but can also result in lower

C© 2019 The Author(s)
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density, unbound associations (so-called hierarchical star formation;
e.g. Bonnell et al. 2011; Kruijssen 2012). Recent work has shown
that associations are unlikely to be dissolved clusters, supporting
the latter star formation scenario (e.g. Wright et al. 2016; Ward &
Kruijssen 2018; Wright & Mamajek 2018).

One way of testing these two scenarios observationally is to
determine the initial density (i.e. spatial structure) and virial
ratio (i.e. velocity structure) of star-forming regions. This remains
difficult as dynamical evolution can lead to significant changes to
star-forming regions over a short period of time (e.g. Allison et al.
2010; Park, Goodwin & Kim 2018) such as a rapid reduction in
density in regions with initially high stellar densities (e.g. Marks &
Kroupa 2012; Parker 2014). Initial substructure can be erased (e.g.
Goodwin & Whitworth 2004; Allison et al. 2010; Jaehnig, Da Rio &
Tan 2015), the location of the most massive stars can change due to
dynamical mass segregation (e.g. Allison et al. 2009; Parker et al.
2014), and primordial binary systems can be destroyed (e.g. Kroupa
1995; Marks & Kroupa 2012; Parker & Goodwin 2012; Duchêne
et al. 2018). A dense phase can also have disruptive effects on
protoplanetary discs and young planetary systems around stars in
star-forming regions (e.g. Bonnell et al. 2001; Adams et al. 2006;
Parker & Quanz 2012; Winter et al. 2018; Nicholson et al. 2019).

Our earlier work showed that information from the spatial
distribution of star-forming regions can be used to distinguish the
initial bound/unbound state (initial virial ratio; Parker et al. 2014;
Paper I). Parker & Wright (2016; Paper II) showed that using
radial velocity dispersion in combination with a spatial structure
diagnostic (Q-parameter; Cartwright & Whitworth 2004) can help
constrain initial conditions in star-forming regions with high local
densities. In this paper, we will focus on stars that become unbound
from young star-forming regions.

Observationally, unbound stars are easiest to identify when their
velocities are higher than their surroundings and they have high
mass and therefore high luminosity, such as OB stars. These stars
have a mass of at least 8 M� and short lifetimes of up to a few
tens Myr, with the most massive stars undergoing core-collapse
supernovae after only a few Myr (Zinnecker & Yorke 2007). Most
star-forming regions dissolve after only a few tens Myr but they
can still outlive the massive stars located within them (Portegies
Zwart, McMillan & Gieles 2010). As a consequence, OB stars
should not be found outside these regions. However, there are
OB stars found far outside star-forming regions moving at much
higher velocities than normally expected. These OB stars have been
termed runaway stars by Blaauw (1961). They show a peculiar
velocity (i.e. velocity relative to a rest frame) in excess of ∼30–
40 km s−1 and/or are located at large distances from any star-
forming regions or the Galactic plane (e.g. Blaauw 1956, 1961;
Stone 1991; Hoogerwerf, de Bruijne & de Zeeuw 2001; de Wit
et al. 2005; Eldridge, Langer & Tout 2011; Drew et al. 2018).
Almost all currently identified runaway stars are high-mass stars
(see the recent catalogue in Tetzlaff, Neuhäuser & Hohle 2011).
Low-mass runaway star detections remain rare (Poveda, Allen &
Hernández-Alcántara 2005; de la Fuente Marcos & de la Fuente
Marcos 2018). A lower velocity limit for runaway stars has been
suggested by Eldridge et al. (2011) at ∼5 km s−1, as stars ejected
with this velocity can still travel a considerable distance in just
a few Myr and end up tens of pc from any star-forming regions,
satisfying distance-based runaway star definitions (e.g. de Wit et al.
2005). This subset of slower runaway stars has recently been termed
walkaway stars (de Mink et al. 2014).

Runaway and walkaway stars are thought to be the result of
the same two ejection mechanisms. Blaauw (1961) suggested that

ejection of these stars is due to the binary supernova mechanism.
This posits that in a close binary, the secondary star is ejected when
the more massive primary reaches the end of its life and undergoes a
core-collapse supernova. With a high enough kick velocity from the
supernova, the main-sequence companion gets ejected due to binary
disruption, almost always leaving an ejected singleton star. Poveda,
Ruiz & Allen (1967) suggested an alternative mechanism due to
dynamical interaction. In dense star-forming regions, stars interact
with each other dynamically and close encounters between three or
even four stars can lead to ejection of one or two of them. When a
single, massive star interacts with a binary where the secondary is a
lower mass star, the single star can replace this secondary binary star,
which is then ejected from the star cluster at a similar maximum
velocity than in the binary supernova mechanism (Gvaramadze,
Gualandris & Portegies Zwart 2009).

In this paper, we use pure N-body simulations with differing
initial conditions to investigate if the number and velocity distri-
butions of unbound stars can allow us to place constraints on the
initial density and velocity structure in star-forming regions. We
aim to make predictions for observations of fast unbound stars from
young star-forming regions that can be probed with Gaia Data
Release 2 (DR2) (Gaia Collaboration 2018). DR2 contains five-
parameter astrometry (position, parallax, and proper motion) for
over 1.3 billion sources down to an apparent G-magnitude limit
of G ≈ 21, whereas radial velocity information is only available
for brighter sources (∼7.2 million; Gaia Collaboration 2018). Our
simulations provide us with 6D-parameter space results (position
and velocity), but we focus on the 2D-plane and 2D-velocity, i.e.
tangential velocity, that calculated from proper motion and distance
(or parallax) in observations.

This paper is organized as follows. In Section 2, we present
the initial conditions used for the N-body simulations and our
definition of unbound stars. Section 3 is dedicated to the results
with a discussion of these results in Section 4, followed by our
conclusions in Section 5.

2 ME T H O D S

2.1 Initial conditions

Our simulated star-forming regions are set up with 1000 systems
per simulation distributed across an initial radius of 1 pc. All
systems are initially single stars (no primordial binaries) and their
masses are randomly sampled for every single simulation from
the Maschberger (2013) initial mass function (IMF). This form of
the IMF combines the Salpeter (1955) power-law slope for stars
with masses above 1 M� with a Chabrier (2005) lognormal IMF
approximation at the lower mass end. The Maschberger IMF is
described by a probability density function with three parameters
α = 2.3 (power-law exponent for higher mass stars), β = 1.4
(describing the IMF slope of lower mass stars), and μ= 0.2 (average
stellar mass; Maschberger 2013):

p(m) ∝

(
m

μ

)−α

⎛
⎝1 +

(
m

μ

)1−α
⎞
⎠

β
. (1)

We sample stellar masses m between 0.1 M� (we do not include
brown dwarfs) and 50 M�, resulting in total masses between ∼500
and 700 M� for each of our star-forming regions.
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Unbound stars and predictions for Gaia 4617

The spatial structure is set up following the method described
in Goodwin & Whitworth (2004). It uses fractal distributions to
define the observed substructure in young star-forming regions
using a single parameter, the fractal dimension D. Starting with
a cube with side Ndiv = 2, a parent particle is placed at the centre.
This first parent cube is subdivided into equal-sized N3

div subcubes
with a first-generation descendant in each centre. Depending on
the survival probability N

(D−3)
div that is set by the fractal dimension

D, these descendants can become parents themselves. For a low
fractal dimension fewer descendants become parents, whereas
more descendants survive when using a high fractal dimension.
Descendants that do not survive are deleted along with their parent.
The positions of the surviving particles are adjusted by adding a
small amount of noise. This process continues until more stars than
required are generated within the original cube. We cut a sphere
from this cube and reduce the remaining stars down to the required
number by random deletion.

We use a set of four different fractal dimensions for our simu-
lations to investigate a wide parameter space. Starting with highly
substructured star-forming regions (D = 1.6), we then gradually
reduce the level of substructure (D = 2.0 and D = 2.6) finishing
with a roughly uniform, smooth sphere (D = 3.0).

Like the spatial structure, the velocity structure in our simulations
is also set up to mimic observed star formation environments.
Molecular gas clouds show turbulence that can be passed down
to the stars that form from them. The velocity dispersion increases
with the size of the clouds. In molecular clouds, large velocity
dispersions can occur on large scales, whereas on small scales
there are smaller dispersions, i.e. similar velocities (Larson 1981).
Star formation occurs in filamentary structures within these gas
clouds, where the velocity dispersion is low (André et al. 2014).
To represent this velocity structure in our simulations, we follow
Goodwin & Whitworth (2004), which results in close stars with
similar velocities and distant stars with different velocities. The
process starts by assigning a random velocity to the parents. The
next generation inherits this velocity, which is in turn adjusted
by a random component that gets smaller with every following
generation. The velocities of the stars are finally scaled to five
different global virial ratios. The global virial ratio αvir describes
the ratio of total kinetic energy T of all stars to the modulus of the
total potential energy Ω of all stars, αvir = T /|Ω|. A star-forming
region in virial equilibrium has a global virial ratio αvir = 0.5, with
subvirial regions at values below and supervirial ones above.

In our parameter space, we investigate star-forming regions
initially in virial equilibrium as well as two regions that are initially
subvirial (αvir = 0.1 and αvir = 0.3) and two supervirial (αvir = 1.0
and αvir = 1.5) initial settings. These global virial ratios describe
the bulk motion of the stars as a whole. On local scales, stars have
similar, correlated velocities, meaning star-forming regions can be
locally subvirial even if they are not subvirial on a global scale. This
can lead to local, but not global collapse during the early dynamical
evolution of the star-forming region (Allison et al. 2010; Parker &
Wright 2016).

We use the N-body integrator kira from the Starlab package
(Portegies Zwart et al. 1999, 2001) to evolve our star-forming
regions over a defined time period. The integrator uses an input
N-body system defined by our initial conditions and evolves it
overtime giving output at different snapshots. The motion of the
stars in the simulations is followed using a fourth-order, block-
time-step Hermite scheme (Makino & Aarseth 1992).

With four different initial fractal dimensions and five different
initial virial ratios, we run 20 simulations of each of the 20

combinations for a time period of 10 Myr to cover the early phases
of the evolution of a star-forming region. The only changes within
the simulations sharing the same initial conditions are the random
number seed used to initiate the creation of the fractal (i.e. initial
positions and velocities of stars) and the sampling of stellar masses
from the IMF. For each set of initial conditions, we combine the
results of all 20 simulations, thus creating a larger data set for
analysis. Our star-forming regions do not have a gas potential and
there is no external/tidal field applied. The stars do not undergo
stellar evolution and are not in primordial binaries or initially mass
segregated. This allows us to identify the effects of different initial
spatial and velocity substructure on the unbound population from
young star-forming regions. In future work, we will include both
stellar evolution and primordial binaries to quantify the effect each
has on stars becoming unbound from these regions.

2.2 Unbound stars and fractions by mass class

We consider a star i to be unbound once it has positive total energy
(i.e. its kinetic energy Ti is larger than the modulus of its potential
energy Ωi). Its kinetic energy is given by

Ti = 1

2
mi |vi − vcr|2, (2)

where mi is the mass of star i and vi and vcr are the velocity vectors of
this star and of the centre of the region, respectively. The potential
energy of the star i is given by the sum of the potential energy
between star i and every other star j:

�i = −
∑

i �=j

Gmimj

rij

, (3)

where G is the gravitational constant, mi and mj are the stellar
masses of i and j, respectively, and rij is the distance between them.
After identifying all unbound stars in each snapshot, we divide
them up into two mass classes [low/intermediate-mass (<8 M�) and
high-mass (≥8 M�) stars]. We then calculate unbound fractions by
normalizing the number of unbound stars (UB) by the total number
of stars (TOT) in that specific mass class (MC):

Unbound fraction = NMC,UB

NMC,TOT
. (4)

We estimate the standard error of the mean (SE) as a representation
of the uncertainty connected to the unbound fractions, where s is
the sample standard deviation and n is the number of simulations:

SE = s√
n

. (5)

The uncertainty is caused by the stochastic nature of the underly-
ing dynamical evolution (Allison et al. 2010; Parker et al. 2014). In
our parameter space study, this different evolution is evident in the
different unbound fractions from statistically identical, individual
simulations as shown in Fig. 1. This figure illustrates how different
the unbound fractions can be for 10 simulations with the same
initial conditions [initially subvirial (αvir = 0.3) and high levels of
substructure (D = 1.6)]. The different lines represent the fractions
of unbound stars as a function of time and in this example they
can increase over the simulation time to values between ∼18 and
48 per cent after 10 Myr.
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4618 C. Schoettler et al.

Figure 1. Unbound fractions from 10 simulations (initially subvirial αvir

= 0.3, with high level of initial substructure D = 1.6) showing the spread of
the unbound fractions between statistically identical simulations.

3 R ESULTS

For the following analysis of velocities, we focus on 2D-velocities
to allow us to make predictions for proper motion observations,
such as from the recent Gaia DR2 (Gaia Collaboration 2018). In
observations, we have a fixed 2D-plane, whereas the choice of 2D-
plane from simulations is arbitrary. The 2D-velocity results shown
in this section represent the tangential velocity in the xy-plane (i.e.
calculated as the motion across the sky would be in observations),
however, any other choice of 2D-plane gives us the same results
after considering statistical noise.

3.1 Cumulative 2D-velocity distributions of all stars

We first focus on the cumulative distributions of the 2D-velocities
and analyse how these evolve over the time period covered by
our simulations. For each set of initial conditions, the cumulative
distributions contain all stars from 20 simulations. In Fig. 2, we
see the evolution of the cumulative distributions of the 2D-velocity
at four different times from the left-hand to the right-hand column
(0, 1, 5, and 10 Myr). From the top row to the bottom, we see that
the four different fractal dimensions at 0 Myr show almost identical
cumulative velocity distributions for all five initial virial ratios. This
is to be expected as the virial ratio acts as a scaling factor for the
initial velocities.

During the first 1 Myr, star-forming regions that are initially
highly to moderately substructured (D ≤ 2.0) collapse and undergo
violent relaxation (e.g. Lynden-Bell 1967; van Albada 1982; Funato,
Makino & Ebisuzaki 1992; McMillan, Vesperini & Portegies Zwart
2007; Moeckel & Bonnell 2009; Allison et al. 2010; Spera &
Capuzzo-Dolcetta 2017) with subvirial regions (αvir < 0.5) col-
lapsing rapidly to form bound, spherical clusters (Parker et al.
2014). Some of the initially virialized regions (αvir = 0.5) undergo
a local collapse in regions of high substructure. Even though they
are initially virialized on a global scale, they can be subvirial locally
resulting in a localized collapse. Star-forming regions with little or
no initial substructure (D ≥ 2.6) collapse only when they are also
initially subvirial.

At 1 Myr (second column), the velocity distributions of different
initial virial ratios show similar velocities for identical levels of
initial substructure. Initially, highly subvirial regions (αvir = 0.1)
that are slowest at the start of the simulations attain similar velocities
to initially virialized and supervirial regions when D ≤ 2.0 or higher

velocities when D ≥ 2.6. Violent relaxation leads to an increase in
velocity, which is highest in highly subvirial, substructured initial
conditions.

After 5 and 10 Myr (third and fourth column), in initially more
substructured regions (D ≤ 2.0) the evolution of the cumulative
distributions follows a similar pattern. The bound, initially sub-
virial, or virialized regions (αvir ≤ 0.5) have very similar veloc-
ity distributions as the initially subvirial regions approach virial
equilibrium after violent relaxation. Initially, supervirial regions
(αvir > 0.5) remain unbound and at higher average velocities. The
difference between the subvirial/virial and supervirial distributions
becomes clearer the older the simulated regions get, as the initially
subvirial/virialized regions slow down compared to the initially
supervirial ones.

Star-forming regions with less substructure initially (D ≥ 2.6)
do not show the clear separation of velocity distributions between
subvirial/virial and supervirial initial ratios. Only initially highly
supervirial regions (αvir = 1.5) have a velocity distribution at later
times that can be distinguished from those with lower virial ratios.
The initially smooth, sphere-like regions (D = 3.0) still show a
grouping together of the velocity distributions after 5 Myr. The two
initially supervirial distributions (αvir = 1.0 and 1.5) are located
either side of the initially subvirial and virialized ones. Despite
both being supervirial, they exhibit considerably different velocity
distributions. Moderately supervirial regions (αvir = 1.0) have the
slowest, whereas highly supervirial regions (αvir = 1.5) have the
fastest cumulative 2D-velocities. This behaviour continues for the
remaining 5 Myr and at the end of our simulations the moderately
supervirial cases are still indistinguishable from those of initially
subvirial/virialized (αvir ≤ 0.5) cases.

3.1.1 Long-term evolution of initially smooth star-forming regions

For these initially smooth star-forming regions (D = 3.0), we
follow the evolution of their cumulative distributions for a longer
time period. We evaluate if they evolve differently or just more
slowly than initially more substructured star-forming regions. The
evolution of these smooth regions is shown at 10, 25, 50, and
100 Myr in Fig. 3.

The cumulative distributions for initially subvirial and virialized
regions (αvir ≤ 0.5) continue to be similar as they are in a state
of virial equilibrium. The velocity distribution for the moderately
supervirial regions (αvir = 1.0, red) starts to become distinguishable
from the initially subvirial/virialized regions after 50 Myr, as these
regions slow down compared to the moderately supervirial one.

But even after 100 Myr, the velocities of moderately supervirial
regions are still much closer to those of initially subvirial/virial
star-forming regions than the highly supervirial scenario. Initially
smooth, supervirial star-forming regions appear to evolve in a
similar fashion than the more substructured regions but on a
much longer time-scale. The long-term evolution of the cumulative
distributions shows that the average velocities decrease at later times
for initially subvirial/virialized regions, as the global gravitational
field of the bound clusters causes stars to decelerate.

3.2 Unbound fractions of stars from initially subvirial and
virialized regions

In this section, we turn to unbound fractions for initially subvirial
and virialized star-forming regions (αvir ≤ 0.5). We exclude the
two supervirial scenarios as in these globally unbound, expanding
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Unbound stars and predictions for Gaia 4619

Figure 2. Cumulative 2D-velocity distributions at four different simulation times (in columns: 0, 1, 5, 10 Myr) and for the different initial condition sets. Each
row represents a different fractal dimension from D = 1.6 (top row) to D = 3.0 (bottom row). The five different initial virial ratios [αvir = 0.1 (blue), αvir

= 0.3 (orange), αvir = 0.5 (green), αvir = 1.0 (red), and αvir = 1.5 (purple)] are shown in each panel for each fractal dimension and time.

regions most stars are born unbound. In our simulations, we do not
have any stellar evolution, so stars can only become unbound due to
dynamical interactions with other stars (Poveda et al. 1967) and not
from supernova kicks (Blaauw 1961). In the absence of an external
tidal field, lower mass stars mainly become unbound due to effects
of two-body relaxation (Binney & Tremaine 2008), whereas high-
mass stars require dynamical interactions with other high-mass stars
in binaries or higher order multiple systems (e.g. trapezium-like) to
become unbound (Allison & Goodwin 2011; Parker et al. 2016).

3.2.1 Effects of different levels of substructure in regions with the
same initial virial ratio

In Fig. 4, unbound fractions for star-forming regions with an initially
highly subvirial ratio (αvir = 0.1) are shown in the first column. With
high levels of initial substructure (D = 1.6, first row) stars in both
mass classes show similar unbound fractions from 5 Myr to the
end of the simulations. These regions, regardless of initial degree
of substructure, will undergo rapid collapse and violent relaxation.
While low/intermediate-mass stars become unbound early in the
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4620 C. Schoettler et al.

Figure 3. Long-term evolution of the cumulative 2D-velocity distributions at four different simulation times (10, 25, 50, and 100 Myr) for the five different
initial virial ratios [αvir = 0.1 (blue), αvir = 0.3 (orange), αvir = 0.5 (green), αvir = 1.0 (red), and αvir = 1.5 (purple)] and constant fractal dimension (D = 3.0).

simulations, high-mass stars show a more gradual increase and
match the lower mass unbound fraction at ∼5 Myr. The lower mass
unbound fraction decreases with less initial substructure and settles
on the same level of ∼20 per cent for more moderate amounts of
initial substructure (D = 2.0–3.0) after 10 Myr. At the end of our
simulations, the high-mass unbound fractions in the four initial
substructure scenarios reach final values between 22 ± 3 per cent
and 28 ± 4 per cent.

We see a delay in high-mass stars becoming unbound that
increases the lower the level of initial substructure (i.e. higher
fractal dimension D) in initially highly subvirial regions (αvir = 0.1,
first column). In these simulations, the degree of collapse reduces
with lower amounts of initial substructure, resulting in a longer
formation time for multiple star systems that can eject massive
stars. The low/intermediate-mass stars also show a delay in stars
becoming unbound for D = 2.6–3.0. The delay is most obvious
in regions with no initial substructure (D = 3.0, bottom row).
On average, only seven stars (all are low/intermediate-mass) per
simulation become unbound in the first ∼0.5 Myr. The lack of
initial substructure combined with the low initial virial ratio appears
to result in a ‘balanced’ collapse that keeps virtually all stars in a
bound configuration for a short period of time (∼0.5 Myr).

In initially moderately subvirial simulations (αvir = 0.3, second
column), the star-forming regions undergo an initial collapse but the
degree of collapse is lower when compared to the highly subvirial
simulations. We decrease the level of initial substructure and see a
significant decrease in the low/intermediate-mass unbound fraction
for every change in fractal dimension. After 10 Myr, the high-mass
unbound fractions only slightly decrease (from 20 ± 4 per cent to
19 ± 3 per cent) for regions with initially high or moderate levels of
substructure (D ≤ 2.0). Further decreasing the initial substructure
reduces the high-mass unbound fraction to 16 ± 2 per cent (D = 2.6)
and 12 ± 3 per cent (D = 3.0). The high-mass unbound fractions
are only different for simulations with higher (D ≤ 2.0) and no
initial substructure (D = 3.0).

In regions with initial fractal dimensions D = 2.0-3.0, high-mass
stars do not become unbound early in the simulations. The collapse
happens fastest in initially highly substructured star-forming regions
(D = 1.6) and high-mass stars can become unbound much earlier
than in less substructured star-forming regions. The lower the
level of initial substructure, the longer it takes to form dynamical
multiples that can eject high-mass stars (Allison & Goodwin
2011). Our simulations suggest that it can take over 3 Myr longer
for high-mass stars to become unbound when there is a lack of

initial substructure in moderately subvirial initial conditions (lower,
middle panels).

In all simulations that are initially virialized (αvir = 0.5,
third column), regardless of substructure, the unbound fraction of
low/intermediate-mass stars is at least double the fraction of un-
bound high-mass stars after 10 Myr, which reaches 16 ± 3 per cent
in initially highly substructured regions (D = 1.6). In these star-
forming regions, 37 ± 3 per cent of all low/intermediate-mass stars
become unbound at the end of our simulations.

Initially virialized, highly substructured star-forming regions can
collapse locally and binary clusters can form (Arnold et al. 2017).
Binary clusters are a pairing of star clusters that are physically
close to each other in space (Rozhavskii, Kuz’mina & Vasilevskii
1976; Pietrzynski & Udalski 2000; de La Fuente Marcos & de
La Fuente Marcos 2009; Priyatikanto et al. 2016; Zhong et al.
2019). They can be a result of the dynamical evolution of young
star-forming regions as shown by Arnold et al. (2017). We see
these binary clusters at the end of more than half of the 20
simulations and they appear to have an effect on the unbound
fractions. The presence of binary clusters lowers the subcluster
potential energy, effectively creating two smaller clusters with
smaller potential wells. In consequence, stars require lower kinetic
energy to become unbound. This increases the low/intermediate-
mass unbound fraction, but does not affect the high-mass unbound
fraction in the same way. Due to the form of the IMF, there is a
much smaller number of high-mass stars present in our simulations.
During the localized collapse into binary clusters, these high-mass
stars can move to different local regions, reducing the likelihood of
creating dynamical multiple systems that can eject high-mass stars
from our regions.

We do find a higher unbound fraction for high-mass stars than
low/intermediate-mass stars in several simulations with initially
virialized, highly substructured conditions (αvir = 0.5, D = 1.6)
that do not result in the creation of binary clusters. In indi-
vidual simulations where binary clusters are present, we see a
higher than average fraction (∼30 per cent compared to the average
value of ∼16 per cent) of unbound high-mass stars when the
low/intermediate-mass unbound fraction is high as well (∼40–
70 per cent) or when the absolute number of high-mass stars is high
to begin with (i.e. nine or more high-mass stars per simulation). This
increases the chances of forming high-mass dynamical multiple
systems, which would lead to more ejections.

Lower levels of initial substructure or smooth regions (D = 2.0–
3.0) that are initially virialized (αvir = 0.5) do not form binary
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Unbound stars and predictions for Gaia 4621

Figure 4. Unbound fractions by mass class for initially subvirial and virialized star-forming regions (αvir ≤ 0.5). Each row represents a different fractal
dimension starting from D = 1.6 (top row) to D = 3.0 (bottom row). The columns show the three subvirial and virial initial ratios. The red points represent the
unbound fraction of low/intermediate-mass stars (<8 M�) over the simulation time, whereas the yellow points represent the unbound fraction of high-mass
stars (>8 M�). The uncertainties of the fractions are calculated using the standard error of the mean (equation 5).

clusters (Arnold et al. 2017). In our simulations, this considerably
reduces the unbound fractions. Star-forming regions that are initially
in virial equilibrium and smooth (D = 3.0) undergo very little
dynamical evolution and most of the stars (∼87 per cent) remain
bound throughout the simulations.

3.2.2 Effects of different initial virial ratios in regions with the
same levels of substructure

For star-forming regions with a high degree of initial substructure
(D = 1.6, first row in Fig. 4), increasing the initial virial ratio has the

opposite effect on the unbound fractions in the two mass classes.
The increase in initial kinetic energy (higher virial ratio) in the
regions decreases the fraction of unbound high-mass stars, whereas
it increases the fraction of low/intermediate-mass unbound stars.
While an initially highly subvirial region (αvir = 0.1) has the same
unbound fraction after 10 Myr in both mass classes, the more virial-
ized a highly substructured region is initially the higher its unbound
fraction of low/intermediate-mass stars and the lower its high-mass
unbound fraction. The low/intermediate-mass unbound fraction is
highest in initially virialized regions due to the presence of binary
clusters.
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In regions with a lower level of initial substructure (D = 2.0,
second row), differences in initial virial ratio have no effect on
the low/intermediate-mass unbound fractions, which are virtually
the same for all three initial virial ratio scenarios (values between
19 ± 1 per cent and 21 ± 2 per cent) at 10 Myr. The high-mass un-
bound fraction is highest in the initially most subvirial regions
(αvir = 0.1). The degree of collapse is highest here and unstable
multiple star systems can form quickly. After about 6 Myr, the high-
mass unbound fraction reaches 21 ± 3 per cent and starts to level
out (22 ± 3 per cent at 10 Myr), suggesting that unstable multiple
star systems are no longer present or do not lead to any further
high-mass star ejections. The initially more moderate, subvirial
(αvir = 0.3) simulations have a similar high-mass unbound fraction
than the virialized case in the first ∼6 Myr of the simulations
(10 ± 2 per cent versus 9 ± 2 per cent). The difference in initial virial
ratio (αvir = 0.3 versus 0.5) appears to have no effect on the early
evolution of these simulated regions. Later in the simulation, the
initially moderately subvirial (αvir = 0.3) regions continue to eject
high-mass stars and reach an unbound fraction of 19 ± 3 per cent
after 10 Myr, which is a similar value than in the highly subvirial
case (αvir = 0.1), whereas the high-mass unbound fraction in
initially virialized regions levels out after ∼7 Myr and remains at
10 ± 2 per cent to the end of the simulations at 10 Myr.

At low levels of or no initial substructure (D = 2.6 and 3.0, third
and fourth row), the low/intermediate-mass unbound fractions are
highest when the regions are initially highly subvirial (αvir = 0.1)
as these regions collapse initially. Even though the moderately
subvirial (αvir = 0.3) regions initially collapse, this does not result
in a higher low/intermediate unbound fraction than in the initially
virialized regions that do not undergo collapse. When there is little
or no initial substructure, star-forming regions will only collapse
when the initial virial ratio is subvirial. The collapse increases the
likelihood that unstable multiple systems form, which facilitates the
ejection of high-mass stars. With higher initial virial ratios, these
multiple systems take longer to form or do not form at all. As
a result, high-mass stars take longer to become unbound and the
final unbound fractions at 10 Myr are lower the more virialized and
smooth the regions are initially.

3.3 2D-velocity of unbound stars from initially subvirial and
virialized star-forming regions

3.3.1 Cumulative 2D-velocity distributions

In Fig. 5, we show the 2D-velocity cumulative distributions for
unbound stars from initially subvirial/virialized regions (αvir ≤ 0.5)
with a high level of initial substructure (D = 1.6) at 10 Myr. As we
have seen for all (bound and unbound) stars in Fig. 2, the cumulative
distributions in initially subvirial/virialized simulations are very
similar for all four initial fractal dimensions. The cumulative
distributions of unbound stars in Fig. 5 show a similar picture of very
similar distributions for a fractal dimension of D = 1.6 (initially
highly substructured regions). Even for these initially substructured
regions where we see a more dynamic early evolution (i.e. violent
relaxation and initial collapse), it is difficult to distinguish between
different initial virial ratios at the end of the simulations.

Allison (2012) analysed the spatial and velocity distributions
of very different initial conditions after 4 Myr with a smaller, but
similar, set of initial conditions. He found that the cumulative
velocity distributions differ between the initial conditions and that
the initially moderately subvirial, substructured simulations result
in higher velocity unbound stars compared with initially virialized

Figure 5. Cumulative distributions for unbound stars showing the 2D-
velocities at 10 Myr with initial fractal dimension D = 1.6 for initially
subvirial and virialized clusters. The distributions for αvir = 0.1 (blue), αvir

= 0.3 (orange), and αvir = 0.5 (green) are shown zoomed-in to the central
part of the curve, highlighting that for these initial conditions, the velocities
of the unbound stars do not differ much between different virial ratios for
the same degree of initial spatial and kinematic substructure.

Figure 6. Cumulative distributions for unbound stars showing the 2D-
velocities at 10 Myr for an initially highly substructured and subvirial region
with D = 1.6 and αvir = 0.1 (blue) and an initially almost smooth and
virialized region with D = 2.6 and αvir = 0.5 (green). The comparison
illustrates that the more substructured and subvirial a star-forming region is
initially, the faster the unbound stars escape.

simulations with a low level of substructure. Fig. 6 illustrates the
cumulative velocity distributions of very different initial conditions
after 10 Myr: initially highly substructured and highly subvirial
simulations (D = 1.6; αvir = 0.1; blue) compared to simulations
with a low level of substructure that are initially virialized (D
= 2.6; αvir = 0.5; green). We also find that unbound stars from
substructured, subvirial regions are moving at higher 2D-velocities
(after 10 Myr), however, the differences between the distributions
are not quite as large as in Allison (2012). This highlights that
cumulative velocity distributions can only distinguish between
vastly different initial spatial and velocity conditions.

MNRAS 487, 4615–4630 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/487/4/4615/5509598 by U
niversity of Sheffield user on 20 August 2019
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3.3.2 Violin plots of 2D-velocity distributions

Violin plots are a data visualization technique that combines a box
plot with a density trace or a kernel density estimate (Hintze &
Nelson 1998). Like box plots, violin plots also show the median
and interquartile range for a variable, as well as any asymmetries
and outlier data. They can be useful when comparing distributions of
a variable (2D-velocity) over different categories (initial conditions
for star-forming regions). Unlike box plots, violin plots include all
data from the underlying distribution and give information about
the shape of the distribution. They show all peaks and the position
of those peaks, their amplitude, and give insight into any presence
of clustering in the data. The outer shape represents all data, with
the widest parts corresponding to the value (i.e. 2D-velocity) with
the highest probability of occurring in the population (Hintze &
Nelson 1998), which can be also interpreted as the most common
2D-velocity in our case.

Fig. 7 shows the 2D-velocity distributions on a log scale for all
initially subvirial and virialized regions (left to right) and all four
fractal dimensions (decreasing degree of initial substructure – top
to bottom) after 10 Myr. The plots include all unbound stars from 20
simulations combined and represent an average. The wider each of
the violin plots is at any point, the more stars are likely to have this
2D-velocity. For each fractal dimension (in each row), the width
of the violin plot is scaled by the total number of unbound stars
for this initial virial ratio. For two violin plots with the same total
number of unbound stars, the widest part will have the same width.
However, the absolute number of stars with this velocity can be
different, e.g. for fractal dimension D = 2.0 (second row) the blue
(αvir = 0.1) and green (αvir = 0.5) violin plots both contain a total
of ∼4100 unbound stars from 20 simulations each, resulting in the
widest part of their violin plots having the same width in Fig. 7.
Due to difference in the distributions, there are ∼80 more stars at
the most common velocity for the initially virialized (green) violin
plot.

The thick vertical bar in the centre represents the interquartile
range with the white dot representing the median. The thin long
vertical line represents the 95 confidence interval. We use a
bandwidth following the Silverman (1986) reference rule to smooth
our data for the violin plots.1 The violin plots are cut at the low-
velocity end and only show the actual data points there, instead of
the tails of the underlying Gaussian kernel density estimate. This
allows us to identify the lowest actual 2D-velocity directly from the
plot and avoids the appearance of negative 2D-velocities.

Initially, highly substructured regions (D = 1.6; Fig. 7 first row)
have a large number of unbound stars for all three initial virial ratios.
The fastest stars are ejected from initially highly subvirial regions
(αvir = 0.1, blue) with the peak velocity reaching ∼70 km s−1.
These regions have fewer unbound stars (∼260 per simulation)
in total and fewer stars at similar velocities with a wider spread of
velocities around ∼1 km s−1 compared to the two higher virial ratio
scenarios. Despite these differences, the median velocity is similar
(∼1.5 km s−1) to the other two scenarios (∼1.3 km s−1 – both for
αvir = 0.3 and 0.5). A large number of unbound stars from highly
substructured, moderately subvirial regions (αvir = 0.3, orange)
move at a similar 2D-velocity of ∼1 km s−1 after 10 Myr, creating
noticeable arms in the violin plots. The total number of unbound
stars increases to ∼300 per simulation. The arms become most
pronounced in the initially virialized case (αvir = 0.5, green) with

1https://seaborn.pydata.org/generated/seaborn.violinplot.html

∼370 unbound stars per simulation. Despite the increase in the
total number of unbound stars, the most common velocity remains
around ∼1 km s−1. The higher the initial virial ratio in initially
highly substructured regions, the more likely it is that unbound
stars are moving with more similar velocities, whereas unbound
stars are more evenly spread over different velocities in initially
more subvirial regions.

With a lower level of initial substructure (D = 2.0, second
row), the shape of the distributions changes for all three initial
virial ratios. The shape of the velocity distributions of the two
initially subvirial scenarios (αvir < 0.5) is now almost identical. The
violin plot for highly subvirial regions is wider than the moderately
subvirial scenario, meaning more stars become unbound (20 more
stars per simulation). We see the pronounced arms in the violin
plots now also for highly subvirial regions with less spread in
the 2D-velocities. The fastest stars from the two subvirial regions
now only reach ∼30 km s−1 and their median velocities are almost
identical (∼1.3 km s−1). In initially virialized regions (αvir = 0.5,
green), the arms in the 2D-velocity become even more pronounced
at ∼1 km s−1. The maximum velocity is lower (∼13 km s−1) than
in the subvirial cases (∼30 km s−1), however, the median velocity
remains similar (∼1.2 km s−1).

In regions with little or no initial substructure (D ≥ 2.6, third and
fourth row), initially highly subvirial regions (αvir = 0.1) show a
similar violin shape to the more substructured regions (D = 2.0)
and also have a similar number of unbound stars (∼200–210 per
simulation). The sizes of the violins shrink considerably (i.e. fewer
unbound stars) for initially moderately subvirial (αvir = 0.3) and
virialized (αvir = 0.5) regions and we see ∼90–130 unbound stars
per simulation. This indicates a much less dynamical early evolution
with the number of unbound stars only ∼30 per cent of what they
are in simulations with the highest level of initial substructure.
Despite this, the violins retain their overall familiar shape of having
arms around the most common velocity of ∼1 km s−1 and a median
velocity (∼1.2–1.3 km s−1), which is similar to all other initial
conditions.

Our unbound definition is based on stars reaching the escape
velocity (total positive energy) from the star-forming regions, which
is ∼3 km s−1 in our simulated regions. In Fig. 7, we see that the
minimum 2D-velocity of unbound stars can be as low as ∼0.03 km s
−1 after 10 Myr. Once unbound stars leave the denser parts of
a star-forming region, they interact with fewer or no other stars
and slow down gradually. However, the apparent slowdown in our
simulations by up to two orders of magnitude is likely due to
projection effects. Fig. 8 shows violin plots for two, very different
initial conditions (blue – initially highly subvirial, substructured,
and green – initially virialized, no substructure) at three different
times during the simulations. Already after 1 Myr, a low-velocity tail
forms in 2D-space that extends to velocities an order of magnitude
lower than the escape velocity. In full 3D-velocity space in Fig. 9,
we see that after 1 Myr the lowest velocities are only 1–2 km s−1

lower than the escape velocity. This suggests that unbound stars slow
down, however, not to the extent suggested by the 2D-velocities.

This 2D-projection effect could affect cluster membership iden-
tification when observing proper motion (or 1D-radial velocity) in
isolation. Depending on relative position to the cluster, these ‘slow’
unbound stars could be identified as not having originated from the
cluster at all due to being too far away or still bound due to their cen-
tral location in the star-forming region. However, our simulations
suggest that only ∼1 per cent of these unbound stars with low 2D-
velocities are located in the central parts of star-forming regions after
10 Myr. This limits the extent of mistakenly assigning membership
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4624 C. Schoettler et al.

Figure 7. Violin plots showing the 2D-velocity distributions of unbound stars at 10 Myr from all initially subvirial and virialized regions [αvir = 0.1 (blue),
αvir = 0.3 (orange)] and virialized [αvir = 0.5 (green)]. The violins are scaled by count; the wider the violins are at any point the more stars in our regions have
this 2D-velocity. The larger the violins overall, the more stars have become unbound during the simulation time. The thick vertical bar in the centre shows the
interquartile range with the white dot representing the median. The long vertical line represents the 95 per cent confidence interval.

to ‘slow’ unbound stars, when only proper motion information is
available.

In Fig. 10, we use split violin plots to show the 2D-velocities
separately for the two mass classes. The plots are now scaled to
the same width as we have at most ∼40 unbound high-mass stars
compared with over 7000 lower-mass unbound stars from a set of
20 simulations. The widest part of each half still represents the 2D-
velocity with the highest probability of occurring. The dashed lines
represent the median and the interquartile range, the 95 per cent
confidence interval is no longer identified on the plots. The violin
plots are again cut at the low-velocity end and only show the actual
data points, instead of the tails of the underlying Gaussian kernel
density estimate. This allows us to identify the lowest actual 2D-

velocity directly from the plot and avoids the appearance of negative
2D-velocities.

In Fig. 10, we see that the shape of the low/intermediate-mass
violins is nearly identical to the shape of the total population of
unbound stars in Fig. 7 as most unbound stars are lower mass.
Due to the low number of unbound high-mass stars, the velocity
distributions of unbound high-mass stars can have a jagged outline
depending on the bandwidth used. We use the same bandwidth
setting (following Silverman 1986) as in Fig. 7 resulting in the
right half (unbound high-mass stars) of our split violin plots
in Fig. 10 appearing as a smooth distribution despite the small
sample size. A small sample size can make conclusions from
violin plots unreliable and we limit our interpretation of them to

MNRAS 487, 4615–4630 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/487/4/4615/5509598 by U
niversity of Sheffield user on 20 August 2019



Unbound stars and predictions for Gaia 4625

Figure 8. Violin plots showing 2D-velocity (xy-plane) distributions of
unbound stars at three simulation times for two selected initial conditions
[initially subvirial, substructured (blue) and initially virialized with no
substructure (green)].

general differences in median, minimum, and maximum velocity
between the two mass classes. To gain more insight into the velocity
distributions of unbound high-mass stars using violin plots would
require an increase in the sample size, i.e. a much higher number of
simulations.

For all initial condition scenarios at 10 Myr, high-mass unbound
stars have a higher median (and interquartile range) than the
low/intermediate-mass stars and also a much higher minimum 2D-
velocity. The mechanism for high-mass stars to become unbound
is different to that of low/intermediate-mass stars. High-mass stars
will only become unbound from our star-forming regions after a
dynamical interaction with other massive stars in multiples. These
dynamical interactions make unbound high-mass stars move faster
on average, however, the fastest stars are in fact from the low-mass
end. The differences in 2D-velocities between the mass classes are
present in all initial condition combinations, so is not affected by
the initial spatial or velocity structure in the star-forming regions.

3.4 Runaway and walkaway stars

Finally, we analyse how effective star-forming regions with different
initial conditions are at ejecting runaway and walkaway stars. We
only use 2D-velocity and the lower boundary value of 30 km s−1

(e.g. Blaauw 1956; Stone 1991; de Wit et al. 2005; Eldridge
et al. 2011) for our runaway definition and velocities between

Figure 9. Violin plots showing 3D-velocity distributions of unbound stars at
three simulation times for two selected initial conditions [initially subvirial,
substructured (blue) and initially virialized with no substructure (green)].

5 and 30 km s−1 for walkaways (Eldridge et al. 2011; de Mink
et al. 2014).

Fig. 11 shows all stars from 20 simulations per initial condition
moving with a 2D-velocity (xy-plane) above 30 km s−1. All of them
are from the low end of the mass spectrum, not a single runaway
star is more massive than 0.5 M�. We have the highest number of
runaway stars from initially highly substructured, subvirial regions
(αvir = 0.1, D = 1.6) regardless of the choice of 2D-plane. Only
the fastest one is present in all three 2D-planes and is moving with
a 2D-velocity between 50 and 70 km s−1 depending on the choice
of plane. The other two runaways have lower velocities between
30 and 40 km s−1. With at most three ejected runaways from a set
of 20 simulations, we see that regardless of the initial velocity or
spatial structure, runaway stars are rare from our chosen initial
conditions.

Going to walkaway velocities (5–30 km s−1) produces a few high-
mass walkaways and a large number of low-mass walkaways across
all initial conditions. Fig. 12 shows all walkaways from the 20
simulations across each initial condition set. The more violent
the early evolution of a star-forming region is, the higher the
number of walkaway stars. In the most violently evolving initial
condition set-up – initially highly substructured (D = 1.6) and
highly subvirial (αvir = 0.1), we have on average ∼0.5 high-
mass walkaways per simulation and ∼20 low/intermediate-mass
walkaways per simulation.

The lower the initial level of substructure (larger fractal dimen-
sion D), the lower the overall number of walkaway stars, with
initially more subvirial regions (Fig. 12 top row) producing more
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4626 C. Schoettler et al.

Figure 10. Violin plots showing the 2D-velocity distributions of unbound stars at 10 Myr split by mass class [low/intermediate-mass – left half, high-mass –
right half) from all initially subvirial and virialized clusters (αvir = 0.1 (blue), αvir = 0.3 (orange)] and virialized [αvir = 0.5 (green)]. All plots are scaled to
have the same width as there is only a very small number of unbound high-mass stars. The widest part of the each violin half represents the 2D-velocity with
the highest probability. The dashed lines represent the median and the interquartile range; the 95 per cent confidence interval is no longer shown.

walkaway stars, which are also ejected earlier in the simulations.
We see a number of temporary walkaways that appear as walkaways
only for a few snapshots. These are stars ejected just at the
minimum walkaway velocity. After ejection, they slow down and
disappear from our plots once they drop below 5 km s−1 (minimum
walkaway velocity), however, this does not mean that they have
been recaptured by the star-forming region. Initially virialized star-
forming regions with no substructure (αvir = 0.5, D = 3.0 – bottom
right-hand panel) produce on average only two low/intermediate-
mass walkaways per simulation. This is an order of magnitude fewer

walkaway stars than in the initial condition scenario [initially highly
substructured (D = 1.6), highly subvirial (αvir = 0.1) – top left-hand
panel] that produces the largest number of walkaway stars.

4 D ISCUSSION

We summarize the results of our N-body simulations as follows.
Cumulative velocity distributions of star-forming regions with
different initial conditions have limited usefulness in clearly dis-
tinguishing between different initial spatial and velocity structure.
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Unbound stars and predictions for Gaia 4627

Figure 11. Runaway stars (2D-velocity > 30 km s−1) by mass over the simulation time for the four fractal dimensions and the three different initial virial
ratios: subvirial [αvir = 0.1 (blue) and αvir = 0.3 (orange)] and virialized [αvir = 0.5 (green)]. The y-axis is limited to 1 M�, as all of our runaway stars have
very low mass.

Figure 12. Walkaway stars (2D-velocity: 5–30 km s−1) by mass (using a log scale) over the simulation time for the four fractal dimensions and the three
different initial virial ratios: subvirial [αvir = 0.1 (blue, top row) and αvir = 0.3 (orange, middle row)] and virialized [αvir = 0.5 (green, bottom row)]. A few
stars (the single points) are only identified as walkaways for a few snapshots; this is due to them being ejected close to the lower walkaway velocity boundary
and slowing down to fall below the boundary shortly after ejection.
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When comparing the long-term evolution of regions with different
levels of initial substructure, regions with high levels of initial
substructure evolve very quickly kinematically, with supervirial
regions (unbound by definition) showing the fastest 2D-velocities.
The cumulative velocity distributions of unbound stars from initially
subvirial and virialized simulations are difficult to distinguish after
10 Myr and only show differences for extremely different initial
conditions (see Fig. 6).

The unbound fraction differs considerably for different combi-
nations of initial spatial and velocity structure. This suggests that
the unbound population around young, bound star clusters could
possibly be used to draw conclusions about the initial conditions.
Around initially smooth (D = 3.0), virialized (αvir = 0.5) star-
forming regions, we find a low number of ejected stars (slow
walkaways, but no runaways) and virtually no unbound high-mass
stars after 10 Myr. Around initially substructured, subvirial regions
that have undergone violent relaxation, we find a large number of
unbound low/intermediate-mass stars. We also find a few high-
mass ejected stars (at walkaway velocities) and one low-mass
runaway star in 3 of the 20 simulations. The unbound fractions
are possibly influenced by our choice of initial density as higher
densities increase the likelihood of encountering and interacting
with other stars.

Initial densities can differ greatly from those currently observed
due to the amount of dynamical evolution that a region undergoes.
The level of spatial substructure in a region can constrain the
dynamical evolution of regions with different initial densities – the
higher the initial density, the quicker substructure is erased (Parker
2014). Our simulated star-forming regions have been set up with a
high, median local initial density (103–104 M� pc−3).

After about 1 Myr, regions with initial spatial substructure have
evolved into smooth, centrally concentrated regions, whose den-
sities can be directly compared to observed star-forming regions.
The density in our simulations after a few Myr is 101–103 M� pc−3

(Parker 2014) comparable to many nearby star-forming regions
where observed present-day densities do not exceed ∼400 M� pc−3

(e.g. Marks & Kroupa 2012).
High-mass stars are less likely to become unbound than

low/intermediate-mass stars if a region is not initially very sub-
virial. When they do escape from their birth environment they do
so at higher average velocity and often become walkaway stars
(>5 km s−1). With our chosen initial conditions, high-mass stars do
not reach the velocity regime of runaway stars. Only the evolution
of star-forming regions that are initially subvirial (αvir < 0.5) and/or
substructured (D ≤ 2.0) is dynamic enough to produce any runaway
stars, all of which are low mass. This is in apparent contrast
to observations, where due to observational bias, predominantly
high-mass runaways are found (Tetzlaff et al. 2011) as they are
more luminous and easier to observe. Historically, the definition
of runaway stars is based on OB stars (Blaauw 1961), following
Tetzlaff et al. (2011), we suggest to extend this definition to lower
mass stars. Lower mass stars appear to reach runaway velocities
more often than higher mass stars and these could be found around
many young star-forming regions when testing our predictions with
Gaia DR2 (Gaia Collaboration 2018).

Using data from Gaia DR1 (Gaia Collaboration 2016), Wareing
et al. (2018) report that two of the most massive stars (HD46223 and
HD46106) in NGC2244 are moving away from each other and from
the centre of this young cluster at a larger velocity than the other
cluster stars. They suggest that HD46223 has been ejected from the
cluster, possibly due to dynamical interactions with other massive
stars in the centre. The inferred velocity of 1.38 km s−1 from its

proper motion (Wareing et al. 2018) is far below the lower velocity
boundary for walkway stars and it is unclear if this star is actually
unbound. Our simulated star-forming regions (1000 single stars)
have an escape velocity of ∼3 km s−1. NGC2244 is estimated to
have ∼2000 members (Wang et al. 2008) suggesting that HD46223
might not have reached escape velocity and might still be bound to
the cluster despite its apparent ejection. In our simulations, we also
see massive stars moving outwards after dynamical interactions at
velocities higher than their surroundings. If they are moving more
slowly than the escape velocity, they will remain bound to the
cluster, slow down, and eventually return in direction of the cluster
centre.

Violin plots show that the velocity distributions do indeed differ
between initial conditions, particularly when the regions are initially
highly substructured. These distributions also indicate that the vast
majority of low/intermediate-mass stars become unbound at just
around the escape velocity. We show that 2D-velocity information
appears to be an underestimate of the full 3D-velocity for a propor-
tion of unbound stars. This can have implications for membership
determination of young star-forming regions, where full velocity
parameter space information is not available. The Gaia DR2 data
set (Gaia Collaboration 2018) contains a much larger number of
stars only with proper motion data, missing information about the
radial velocity for many fainter stars. If the 2D-velocity is indeed
an underestimate of the full space velocity for some stars, we might
mistakenly assign a cluster membership to stars with slow proper
motions or not be able to trace back stars to their birth cluster.

Escaping, ejected, or unbound stars from simulations have been
studied previously (e.g. Fujii & Portegies Zwart 2011; Weidner,
Bonnell & Moeckel 2011; Allison 2012; Moyano Loyola & Hurley
2013; Oh & Kroupa 2016; Wang, Kroupa & Jerabkova 2019). Alli-
son (2012) found a similar connection between unbound stars (i.e.
number, velocity, spatial distribution) and the initial substructure
and virial ratio with a more limited set of initial conditions. Other
studies (Weidner et al. 2011; Oh & Kroupa 2016) used Plummer
spheres (Plummer 1911) to set up the initial spatial distribution of
the clusters and included primordial binaries. The conclusion from
these studies was that the number and mass fraction of unbound
stars depend strongly on the initial cluster radius or initial density
and to a lesser extent on the parameters of the primordial binaries
(Weidner et al. 2011; Oh & Kroupa 2016) or the initial virial ratio
(Weidner et al. 2011). With their inclusion of primordial binaries,
the results of these studies are not directly comparable to ours.

Our results show that differences in the initial spatial and kine-
matic substructure can have a considerable effect on the fraction,
the velocity, and the masses of unbound stars. Due to the lack of
stellar evolution in our short simulation time of 10 Myr, we miss
the effects of supernova kicks causing stars to become unbound
due to the binary supernova ejection mechanism (Blaauw 1961). In
our simulations, binaries will only form dynamically (i.e. are not
present from the beginning of our simulations) and we may therefore
be underestimating the impact of the dynamic ejection mechanism
(Poveda et al. 1967) as we only find a few lower mass runaway stars.
Moyano Loyola & Hurley (2013) showed that a higher fraction of
primordial binaries increases the number of higher velocity (20–
100 km s−1) stars.

5 C O N C L U S I O N S

In this paper, we present N-body simulations of star-forming regions
set up with a range of different initial spatial and velocity structures.
We investigate if the dynamical evolution results in differences in
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the unbound population after 10 Myr. The conclusions from our
simulations are summarized as follows:

(i) Cumulative 2D-velocity distributions of all stars in simulated
star-forming regions cannot provide strong insights into the long-
term evolution of star-forming regions with differing initial spatial
and velocity structure. When focusing on unbound stars, clear
differences in the cumulative distributions are only found when
comparing vastly different initial conditions.

(ii) Unbound fractions of stars of different masses show clear
differences between the initial conditions and could prove useful
to distinguish between initial spatial and velocity structures. Only
when a region is initially very subvirial can we expect to find a
higher fraction of unbound high-mass stars than low/intermediate-
mass stars in the vicinity of the region.

(iii) If high-mass stars manage to escape their birth region, they
are likely to reach at least walkaway velocities. However, based on
our simulations, not every young star-forming region will create a
high-mass runaway or walkaway star.

(iv) Most low/intermediate-mass stars leave the regions at ve-
locities just above the escape velocity. However, the fastest stars
from our simulations are also low/intermediate-mass stars. We see a
number of low/intermediate-mass walkaway stars from every initial
condition set. This number increases for regions that evolve more
dynamically (more initial substructure and lower virial ratio). As a
result, we should find at least a small number of these stars around
virtually every young and high-density star-forming region. The
fact that most observed fast stars are still high mass is very likely
due to observational bias/limitations. This changes with Gaia DR2
where five-parameter space astrometry for stars down to subsolar
mass is already available for star-forming regions nearby (Gaia
Collaboration 2018). We will use these data to search for walkaway
and runaway stars from young star-forming regions in a future paper.
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T., Napiwotzki R., 2018, MNRAS, 480, 2109
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Chapter 7

Conclusions

In Arnold et al. (2017) we discuss the formation of pairs of star clusters, which are known as

binary clusters. We use N-body simulations of star forming regions to demonstrate that if a region

has spatial substructure, and a virial ratio & 0.5 then they can divide into multiple (most commonly

two) distinct regions. We argue that this mechanism may be how binary clusters form. As such

this work offers a potential explanation as to how approximately 10 % of star clusters (see

chapter 1) form.

Further this model makes an observable prediction that can be tested; in this mode

of binary cluster formation the clusters that form the binary move apart from one another.

This is in contrast to other models of binary cluster formation outlined in chapter 1 which

either do not predict any systematic relative velocity between the two clusters, or predict that

they will orbit one another and so their relative motions will be tangential. This provides the

opportunity for this model to be either observationally supported or ruled out. This will be

discussed further in Section 7.1. We also demonstrate that velocity substructure is necessary in

order for binary clusters to form by this mechanism. This further demonstrates the importance

of understanding and analysing dynamical data in order to investigate the past (and potential

futures) of star forming regions.

In Arnold & Goodwin (2019) we present a statistical method for quantifying the velocity

structure of star forming regions, the lack of which has been impeding the field as discussed in

chapters 1, 4 and 5. This method works by calculating the velocity difference (∆v) and distance

between (∆r) every possible pair of stars in the region. Pairs are then binned by ∆r and the average

∆v in each bin is calculated. Finally ∆r is plotted against these averaged ∆vs. Different definitions
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of ∆v are used to study different aspects of the region’s velocity structure. The features of this

method are demonstrated, and it is shown to be robust against incomplete data, large uncertainties

in stellar velocities, and the presence of binary stars.

This method can be applied without modification to regions of any size, number of

stars, age and morphology. As such it offers an avenue by which the velocity structures of

very different star forming regions can be quantitatively compared. This opens the way for

more systematic studies of how the dynamics of star forming regions evolve, and what they

can tell us about the origins of star forming regions and stars themselves. Also, its output

is both quantitative and minimally labour-intensive to obtain, as opposed to many other

methods that have been attempted to analyse velocity structure which require subjective

visual analysis. As such it has the advantage that it can be applied to very large numbers of

regions quickly, which is key in this new era of big data astrophysics (as discussed in chapter

1).

In Arnold et al. (2019); submitted we apply the method presented in Arnold & Goodwin

(2019) to observations of the Cygnus OB2 star forming region, which are presented in Wright

et al. (2010). The region these observations cover has a size of around 10 × 10 pc, an age of a few

Myr, and a velocity dispersion of ∼ 20 km s−1. Evidence of velocity structure on scales smaller

than 0.5 pc is found. Given this we argue that bound structures exist on scales < 0.5 pc. We also

argue that given the age, size, and velocity dispersion of the region it is likely that most of the stars

currently observed in it formed 10s of pc from their present positions. We contend that this is why

there is no velocity structure at scales larger than 0.5 pc.

Additionally, no evidence of systematic expansion or collapse is found on any scale. From

this we argue that these observations are inconsistent with this region being the expanded remnant

of a much denser cluster, and therefore are not compatible with the monolithic model of star

formation Therefore this paper provides further evidence for the ongoing debate about how

star forming regions originate, as well as acting as a case study in the analysis of the velocity

structure of star forming regions using the VSAT method presented in chapter 4.

In Schoettler et al. (2019) N-body simulations of star forming regions are performed. Stars

that become unbound from their regions over the course of the simulation are recorded and their

properties assessed. No high mass runaway stars are observed, although some lower mass walk-

away stars are. This work was conducted with the assistance of code adapted from that used in
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Arnold et al. (2017) to study the formation and properties of binary clusters. The findings of this

paper support ongoing arguments (discussed in section 1) that apparently isolated high mass

stars are in fact the most massive members of small, low-mass clusters as opposed to being

truly isolated having been ejected at high velocities from more massive star forming regions.

7.1 Further work

As discussed, if binary clusters form via the division of single star forming regions as predicted

in Arnold et al. (2017) then we expect the two clusters that form a binary system to be moving

away from each other. A natural extension to this work is to test this prediction by studying the

velocity structures of observed binary clusters. If the relative velocities of clusters that form a

binary are found to be systematically away from one another this would provide evidence in

support of this model of binary cluster formation.

Another avenue of future work lies in applying the method presented in Arnold & Goodwin

(2019) to investigate and interpret the velocity structures of other star forming regions. By taking

advantage of this method’s properties that make it quick to apply, particularly well suited

to the quantitative comparison of very different regions, and the enormous data reservoirs

offered by Gaia in the future a systematic study of a large number of star forming regions

using this method seems natural. Pursuing this may help in advancing our understanding of the

formation and evolution of star forming regions.
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Alfaro, E. J. & Román-Zúñiga, C. G. 2018, MNRAS, 478, L110

Allen, G., Andreoni, I., Bachelet, E., et al. 2019, Deep Learning for Multi-Messenger Astro-

physics: A Gateway for Discovery in the Big Data Era

Allison, R. J. 2010, PhD thesis, University of Sheffield, Hicks Building, Hounsfield Rd, Sheffield,

UK, S3 7RH

Allison, R. J., Goodwin, S. P., Parker, R. J., et al. 2009b, ApJ, 700, L99

Allison, R. J., Goodwin, S. P., Parker, R. J., Portegies Zwart, S. F., & de Grijs, R. 2010, MNRAS,

407, 1098

Allison, R. J., Goodwin, S. P., Parker, R. J., et al. 2009a, MNRAS, 395, 1449
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Fűrész, G., Hartmann, L. W., Szentgyorgyi, A. H., et al. 2006, ApJ, 648, 1090

Fischer, P., Pryor, C., Murray, S., Mateo, M., & Richtler, T. 1998, AJ, 115, 592

Franciosini, E., Sacco, G. G., Jeffries, R. D., et al. 2018, A&A, 616, L12

Fujimoto, M. & Kumai, Y. 1997, AJ, 113, 249

Fukui, Y. & Kawamura, A. 2010, ARAA, 48, 547

Fukui, Y., Kawamura, A., Minamidani, T., et al. 2008, ApJS, 178, 56

Galeano, P. & Peña, D. 2019, TEST, 28, 289



BIBLIOGRAPHY 110

Galli, P. A. B., Bertout, C., Teixeira, R., & Ducourant, C. 2013, A&A, 558, A77

Garofalo, M., Botta, A., & Ventre, G. 2017, in IAU Symposium, Vol. 325, Astroinformatics, ed.

M. Brescia, S. G. Djorgovski, E. D. Feigelson, G. Longo, & S. Cavuoti, 345–348

Gavagnin, E., Bleuler, A., Rosdahl, J., & Teyssier, R. 2017, MNRAS, 472, 4155

Gennaro, M., Brandner, W., Stolte, A., & Henning, T. 2011, MNRAS, 412, 2469

Gieles, M. & Portegies Zwart, S. F. 2011, MNRAS, 410, L6

Gingold, R. A. & Monaghan, J. J. 1977, MNRAS, 181, 375
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