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Abstract 

Chapter One consists of an introduction to supramolecular chemistry and supramolecular 

photochemistry. With particular focus on metal-organic cages and their application in catalysis 

and photocatalysis. 

Chapter Two describes the synthesis of an Os(II) cage, photophysical properties and guest 

binding. Successful synthesis of water soluble [Os4Zn4(L
nap)12]X16 coordination cage complex 

(where Lnap = bidentate pyrdiyl-pyrazole chelating ligand with a 1,5-dinaphthalene spacer and 

X = perchlorate or chloride) and [Os(Lme)3]X2 (where Lme = methyl pyridyl-pyrazole and X = 

potassium hexafluorophospate or chloride). Both show strong visible absorption and emission 

at 630 nm. As well as reversible oxidation at 0.7 V and 0.6 V respectively. In addition, binding 

in the cavity of five guests is presented through X-ray crystallography, NMR titrations and 

luminescence titrations. 

Chapter Three displays the evidence of photoinduced electron transfer detected by UV/vis 

transient absorption (TA) spectroscopy of three host.guest complexes. Ultrafast TA 

spectroscopy measurements show formation of a charge-separated Os(III)/guest•- state, due to 

cage-to-guest photoinduced electron transfer. The states are formed within 13-21 ps and decay 

within 185-205 ps. Control experiments with a competing guest show that binding is required 

for the electron transfer to occur, as well as use of [Os(Lme)3]X2 which shows that the Os(II) 

unit needs to be assembled in the cage structure for PET to occur.  

Chapter Four details the study of binding of disulfide guests and looks for evidence of photo-

induced electron transfer between cage and guest. The study indicates that there is a two-step 

binding profile for the binding of a selection of four aryl-disulfide guests. Binding with 

[Os4Zn4(L
nap)12]X16, [Cd8(L

w)12](NO3)16 and [Co8(L
nap)12]Cl16 has been analysed with 

consistent binding constants of 103 – 105 M-1 via different mediums: X-ray crystallography, 

NMR titration and luminescence titrations. 

Chapter Five describes the use of [Os4Zn4(L
nap)12]X16 to affect the catalysis of 5-

nitrobenzisoxazole and the effects of changing the oxidation state of the cage. 

[Os4Zn4(L
nap)12]X16 and [Co8(L

w)12](BF4)16 similarly catalyse the Kemp elimination of 5-

nitrobenzisoxazole with a rate enhancement of 6 and 4 respectively, at pH 8.2. Control tests 

using a competitive binder also show an unexplained rate enhancement. Additionally, oxidised 

Os(III) cage catalyses the Kemp elimination reaction at a similar rate to the Os(II) cage.  
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1.1 Supramolecular Chemistry 

Supramolecular chemistry is the study of interactions beyond the molecule. This generally refers to 

the bonding, organisation and properties of complex assemblies of molecules held together by non-

covalent interactions. Including cycles, cages and knots as well as nanowires, DNA, proteins and 

molecular machines, there are a huge range of applications for these molecules in all areas of science, 

from biology to materials science.1 Early studies in supramolecular chemistry developed from the 

study of simple host-guest chemistry of crown ethers to self-assembly of far more elaborate structures 

and now to the study of their functions, making supramolecular chemistry a very dynamic area of 

chemical studies. 

1.1.1 Self-assembly 

Self-assembly is the process by which an organized structure spontaneously forms from individual 

components as a result of specific, local interactions among the components.1 Formation of the 

resulting supramolecules is entropically unfavourable as there is a large loss in the number of degrees 

of freedom upon combining several molecules into one larger structure. However, as additional non-

covalent interactions are produced in the supramolecular assembly, formation of the supramolecule 

does also provide some enthalpic compensation. In addition, for true self-assembly to occur, the 

interactions need to be weak and form reversibly, in order to allow the system to move towards the 

true thermodynamic minimum by allowing ‘incorrect’ assemblies to break and re-form.2 

1.1.1.1 Self-assembly in nature 

Self-assembly is highly prevalent in nature, with many famous examples including (i) the DNA 

(deoxyribonucleic acid) structure, whereby the complementary interactions between the two strands 

give rise to this unique self-assembled double helix (figure 1.1.1), and (ii) the tobacco mosaic virus, 

which is made up of a central strand of DNA surrounded by 2130 identical protein units which 

assemble reversibly under the correct conditions. When the virus particle is decomposed into its 

individual components and then mixed under physiological conditions, it then perfectly reforms to 

form the same complex structure, from all >2000 parts, with the same functionality, showing the real 

power of self-assembly.1,3  
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These are examples of strict self-assembly in which the product formation is completely reversible, 

because the self-assembled structure is purely based on weak non-covalent interactions, resulting in 

the thermodynamic product being formed. In contrast to this, self-assembly with covalent 

modifications can sometimes occur, which involves the formation of covalent linkages, this can entail 

the covalent formation of a precursor or post-assembly covalent modification. For example, the 

biosynthesis of insulin involves the formation of irreversible disulphide linkages post self-assembly of 

the polypeptide chains.1 In general, this type of self-assembly is irreversible and so the thermodynamic 

minimum product is not necessarily formed. 

 

Figure 1.1.1: Double helix structure of DNA.4 

1.1.1.2 Synthetic self-assembled cages 

The incorporation of metal ions into the self-assembly of supramolecules is beneficial as they provide 

a range of predictable geometries and bond angles, bringing some predictability to formation of 

structures. In addition, where labile metal ions are used, the metal-ligand bond lability allows for fast 

and efficient assembly, without the need for a template and multistep syntheses. The use of metal ions 

is also advantageous because of the functionality that metal ions may bring to the molecule, including 

photo-activity, magnetism, and redox properties. 
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Three-dimensional coordination cages, in which a central cavity is surrounded by an array of metal 

ions and bridging ligands, have been of great interest within supramolecular chemistry. Saalfrank was 

a pioneer in this field, giving the first example of a self-assembled coordination cage in 1988.5 An 

M4L6 tetrahedron, with four magnesium(II) ions and six bridging bis-enolate ligands, was fortuitously 

prepared  through the condensation of diethyl malonate and methylmagnesium bromide (figure 

1.1.2a).5 From this, the field has expanded dramatically, with recent impressive examples being 

Fujita’s M30L60 and M48L96 'nanocages'; these were rationally designed based on a bipyridyl-type 

bridging ligand, which were designed to have a small bend between the termini which gives a slight 

degree of curvature to the cage (bend angle, θ = 152°), arising from combination with Pd(II) ions 

(figure 1.1.2b).6 Since then, many groups have delved into this exciting area and produced a large array 

of shapes and sizes of self-assembled cages, with various different functionalities, based on 

combination of rigid components to form specific geometries.7 

                            

Figure 1.1.2: (a) Depiction of Saalfrank’s M4L6 tetrahedron and (b) Crystal structure of Fujita group 

Pd30L60 coordination sphere (right). (Reprinted with permission from ref. 6. Copyright 2016 Springer 

Nature.)  

1.1.1.3 Mixed-metal cages 

The majority of cages contain only two types of component (one type of metal ion and one type of 

ligand), which limits the functionality that can be incorporated into such molecules. Mixed-metal 

coordination cages are an ideal way to increase the range of functional behaviour, as the use of more 

than one type of metal can expand the range of photophysical, electrochemical and magnetic properties 
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displayed by a cage. The synthesis of heterometallic cages is dependent on the kinetic lability of the 

metals used, and such cages can either be formed through a kinetic or thermodynamic control approach. 

The Ward group has previously made use of the kinetic control approach, whereby they use inert 

ruthenium(II) or osmium(II) metal ions, which are functionalised with pendant ligands (figure 1.1.3) 

to give a mononuclear ‘complex ligand’ with pendant binding sites.  These 'complex ligands' with 

vacant binding sites are then mixed with a labile metal, for example silver(I), cadmium(II) or cobalt(II) 

which connect the vacant binding sites to produce a series of different cage structures which all contain 

two different types of metal centre.8,9,10,11 The most elaborate of these designs is depicted in figure 

1.1.3, which – as well as incorporating two different types of metal ion – also comprises two different 

ligands. The application of ditopic ligands which have pendant binding sites means that the self-

assembly of the [Ru4Cd12(L
a)12(L

b)12]
32+ cage is possible, which can incorporate the useful redox and 

photophysical properties of inert second and third row d-block transition metals.12  

 

Figure 1.1.3: Ward group [M16L24]
32+ cage, made up of four components. (Ref.12 - published by the 

Royal Society of Chemistry) 

A thermodynamically controlled approach has also been applied to the design of 3D coordination 

structures. This approach utilises the hard-soft acid-base principles, with 'hard' metals and 'hard' 

ligands connecting to each other and soft metal ions binding preferentially to soft ligands. Thus, 

employment of unsymmetrical ligands is important incorporating a mixture of hard and soft binding 

sites which will select for different types of metal ion. An example of this approach, without the use 

of pre-formed ligands, is from the Nitschke group, who were able to use 62 subcomponents to form a 
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single cubic structure of Fe8Pt6L24 (figure 1.1.4). To form this structure, the individual components 

were modified so that a symmetrical ligand could not form and that the two metals would favour 

different binding sites, this utilised hard/soft preferences as well as the preference of Fe(II) for low-

spin octahedral geometry and of Pt(II) for square planar geometries. This enabled a one-pot synthesis 

with 96 new bonds being formed, which shows the strength of thermodynamic control on making 

complex heterometallic structures. 

           

Figure 1.1.4: Fe8Pt6L24 cage from subcomponent assembly, with one ligand to indicate coordination 

modes (reproduced with permission from ref. 14).  

1.1.2 Host-guest chemistry 

Host-guest chemistry is synonymous with supramolecular chemistry and cages. It involves the non-

covalent interaction between a host molecule and a particular guest, in order to produce a host:guest 

supramolecule.1 The origins of host-guest chemistry come from the study of macrocycles including 

crown ethers, beginning in 1987 (figure 1.1.5), with the ultimate aim to mimic the ability of enzymes 

to specifically recognise and catalyse reactions.13,14  

M = various salts of alkali and earth metals 

Figure 1.1.5: Pederson’s pioneering crown ether host:guest supramolecule. 
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Enzyme binding works through a ‘lock and key’ mechanism which was first recognised in 1894 by 

Emil Fischer, who described that binding of substrates must be selective, through analysis of the 

receptor-substrate mechanism of enzymes.15 This is the basis of molecular recognition and shows that 

the guest must have a size or shape complementary to the host in question. In addition to this, in 1958, 

Daniel Koshland proposed the induced-fit model.16 This suggests that when the active site on the 

enzyme makes contact with the substrate, the enzyme host then moulds itself to the shape of the 

substrate. This is in contrast to the lock and key mechanism where the enzyme doesn’t alter its shape 

upon substrate binding. Both theories are accepted and the induced-fit model builds on the original 

discovery of substrate recognition.17   

To construct a stable host-guest complex with a metal ion guest, the chelate and macrocyclic effects 

mean that there should be as many donor atoms as possible. This is because the interactions are weak 

compared to covalent interactions, so the cumulative effect of many of these interactions are needed 

for the resultant binding energy between host and guest to be significant.1 The effectiveness of the 

macrocyclic effect in polydentate ligand hosts is due to the preorganisation of large molecules, 

meaning that there is less entropic and enthalpic costs of guest binding, compared to a long open-chain 

ligand for example. This effect is shown in Pedersen’s example above, where all six oxygen atoms of 

the cyclic ether are turned inward to provide dipole-to-ion bonds between host and guest.18 

Since these early days, host-guest chemistry has developed enormously, with a large variety of host 

structures, and many different guests, ranging from alkali salts, to organic and inorganic compounds. 

This progression has forwarded the applications of host-guest chemistry and molecular recognition to 

sensors,19–23 catalysis,24–29 encapsulation of unstable species,7,30,31 and drug delivery.32–35  

1.1.2.1 Guest binding in cages 

Molecular coordination cages have proven to constitute an exciting branch of supramolecular 

chemistry, not only due to their ability to utilise the power of self-assembly to produce remarkably 

complex structures, but because their large central cavities allow for the potential of host:guest (H.G) 

chemistry to occur; the confined spaces may provide an unusual and unique environment for guest 

molecules. 
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As previously stated, guest binding in a host cavity depends on the intermolecular forces between host 

and guest: these include hydrogen bonding, electrostatic interactions, non-polar interactions between 

aromatic regions, and solvophobic interactions.36 These interactions vary in their strength, with ion-

dipole interactions, like in the crown ether above, being the strongest at 50-200 kJ mol-1; with hydrogen 

bonds (H-bonds) also having the ability to be fairly strong at 4-120 kJ mol-1, because these are a kind 

of dipole-dipole interaction whereby a hydrogen atom attached to an electronegative atom is attracted 

to a neighbouring dipole.1 π-π stacking is the next strongest interaction at 0-50 kJ mol-1, and is when 

an electrostatic interaction occurs between aromatic rings, in which the negative electrostatic potential 

on one ring aligns with the positive electrostatic potential of another ring. Lastly, Van der Waals forces 

are around <5 kJ mol-1 and arise from the polarisation of electron clouds by an adjacent atom to give 

transient dipoles.1  

 

Figure 1.1.6: X-ray crystal structure of molecular ice in a coordination cage cavity.38 (Reprinted 

with permission from ref. 38. Copyright 2005 American Chemical Society.) 

Solvophobic interactions are particularly important in host/guest binding, however they aren’t strictly 

a force, and occur predominantly due to the entropy increase upon H/G binding. In water these 

solvophobic interactions are known as the hydrophobic effect and play a key role in guest binding.  

The ‘iceberg’ model is based on the observation that water has the ability to aggregate to form 

hydrogen-bonded networks. Thus when water molecules are in contact with hydrophobic molecules, 

ordered arrays of water molecules spontaneously form at the surface, so that when the surfaces of host 



Chapter 1 - Introduction 

 

9 

 

and guest molecules come together, the ordered array of water molecules around the hydrophobic 

surfaces is released back into the bulk solution, which as a result increases the entropy.37,38  This release 

of water molecules can also result in favourable enthalpy changes if the water molecules can form 

more H-bonds in solution than they can around the hydrophobic surface, this means that the 

hydrophobic effect can have an unpredictable combination of entropy and enthalpy changes in 

different systems.39,40 

As well as this, the size of the guest has an important influence on binding inside the cavity. The work 

of Rebek is fundamental in this by quantifying the volume that a guest must take up within the cavity. 

Rebek found that the optimal volume of the guest should be 55 ± 9 % of the volume of the cavity to 

give the greatest binding strength in the liquid phase, as the host-guest interactions are optimised.41 

This is reflected in the packing coefficient of most organic solvents, as about 55% of the space in these 

solvents is occupied by molecules, in liquids such as methanol, acetonitrile and chloroform.42 However 

this is not an upper limit, as it was also found that filling of up to 70 % can be achieved if there are 

suitable hydrogen bonds in play, as they make up for the decrease in entropy from the limitation of 

thermal motion, and increase the enthalpic contribution.41 

Binding constants 

To determine the extent to which guest binding occurs inside a cage host, binding is quantified by 

determining the binding constant. The binding constant, K, is a measure of thermodynamic stability of 

a host.guest system compared to the separate species, and as shown in equation (1) (where [HG] = 

conc. of host•guest, [H] = conc. of host, [G] = conc. of guest).  It is often seen as a ratio between the 

concentrations of each species in the equilibrium. The higher the binding constant, the higher the 

concentration of H•G complex compared to unbound material, which therefore means a more stable 

system. The Pedersen example above, in figure 1.1.5 has a very large binding constant of 1.2 x 106 M-

1 (in ethanol) with K+ as the metal ion, showing that this host has a high affinity for the guest when the 

H•G complex is formed.43,44,13 

𝐾 =  
[HG]

[H][G]
     (1)   
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Titrations are a common tool in determining the binding constants of guests in cage cavities and can 

be determined using various methodologies, with the most common being NMR or luminescence 

spectroscopy. 

Titrations are generally performed whereby one component, the guest, is added in small portions to a 

second component, the host, while monitoring a certain physical property such as change in NMR 

chemical shift or luminescence intensity that is sensitive to the supramolecular interaction(s) of 

interest.45 The resulting information is then analysed and fitted to binding models to obtain information 

such as the binding constant. The most common type of binding is 1:1 and so for example in 1H NMR 

spectra, we will observe the behaviour shown in equation 2, upon titration (where ∆δ = change in 

chemical shift and δ∆HG = δHG - δH). 

∆𝛿 =  𝛿∆𝐻𝐺 (
[𝐻𝐺]

[𝐻]
)      (2)         

1.1.2.2 Coordination cage enabled catalysis  

As previously stated, there are many applications of host-guest chemistry including drug delivery34,20,46 

and sensing,23,22,47 with one of the most exciting applications being reaction catalysis.7,27,48–52 Catalysis 

using H•G assemblies is of prime importance in achieving the goal of mimicking enzyme ability. Cages 

have the potential to be a powerful tool for accelerating reactions, due to the unique enclosed space, 

within which the effective molarity of bimolecular reactions is increased, so that the intramolecular 

forces can have an effect greater than the intermolecular forces and thus accelerate the rate of reaction 

(as the reactants will be isolated from the bulk solvent).31 Cages also have the ability to stabilize 

transition states of the guests (sometimes more strongly than the ground state) and accommodate 

uncommon confirmations of such guests, allowing for an increase in reaction rates and a higher 

probability of unique reactions.27 

In contrast to this, there are many challenges to finding suitable reactions and hosts to use in cage-

enabled catalysis.  Processes like product inhibition can occur, where the product ends up binding more 

strongly to the inside of the cage compared to the reactants, as well as impediments such as new 

reaction products being too large to then leave the cage. Therefore, determining the complementary 

host/guest/products combination is critical.31 
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Although there are many examples of the use of cages to facilitate new reactions, there have been 

relatively few examples of existing reactions that have been greatly accelerated by cages. One of the 

first examples of cage catalysis was by Fujita and co-workers in 2006. They utilised an M6L4 cage to 

investigate the Diels-Alder reaction of anthracene and N-cyclohexylmaleimide. This led to 

regioselectivity of the 1,4-product by pre-organising the substrates, however the reaction was non-

catalytic due to product inhibition. More recently the Fujita group have developed a chiral M6L4 cage, 

to achieve the asymmetric [2+2] olefin cross-photoaddition of fluoroanthene and maleimide. 

Fluoroanthene tends to be inert to photochemical pericyclic reactions, however when combined in the 

cage, due to preorganisation the reaction proceeds.29,53 In the past year the group has also developed a 

system for cascade reactions, using two separate cages in solution, which are internally functionalised 

with catalysts, thus protecting their active sites from unwanted reactivity (figure 1.1.7).54  The reactions 

that they have cascaded are an allylic oxidation followed by a Diels-Alder cyclization to enable 

controlled synthesis of an asymmetric ring. This is unique, as usually the catalysts (for oxidation and 

for the Diels-Alder reaction) wouldn’t be compatible with each other in the same solution, as typically 

the Diels-Alder catalyst will be oxidised by the oxidation catalyst. However, by using an M12L24 cage, 

where they have covalently pre-linked the catalyst to the bent ditopic ligand and then formed the cage, 

they have created a protected environment in the cage cavity of 24 catalytic sites.   

 

Figure 1.1.7: Cascade catalysis scheme utilising two functionalised cage molecules. (Reprinted with 

permission from ref. 52. Copyright 2017 American Chemical Society.) 

Another very recent example of cage catalysis has been performed by the Cui group, who in 2018 

made two cages of [Zn8L6](OTf)16 structure, which contain six tetrakis-bidentate ligands and eight 

zinc(II)tris(pyridylimine) (TPE) centres, where the tetrakis units differ in size between the two cages, 

resulting in a TPE-faced cage with a tuneable cavity size.55 Using these cages, the group have 
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performed a sequential condensation and cyclization of anthranilamides with aldehydes (figure 1.1.8). 

This reaction produces bent shaped 2,3-dihyroquinazolinones, with a rate acceleration of 38000-fold. 

The unfavourable nonplanar configuration of the product expels it from the cage cavity and the 

acceleration is attributed to strength of binding affinity for the reactants in the cage cavity. The group 

has also done some work in which they have synthesised a collection of chiral coordination cages, 

which have been efficient supramolecular catalysts for sequential asymmetric alkene 

epoxidation/epoxide ring-opening reactions, which have up to 99.9% ee.56 

 

Figure 1.1.8: Cascade reaction of bound anthranilamide with an aldehyde in a Zn8L6 cage.55   
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1.2 Supramolecular Photochemistry 

Supramolecular chemistry is associated with the intermolecular interactions between assemblies of 

molecules; supramolecular photochemistry, on the other hand, is related to the nature of the excited 

states of both the host and guest molecules formed upon photo-excitation.57 For example, in a 

supramolecular system with two units, A and B, photoexcitation must either lead to a case where the 

excited states formed are localized on either A or B, or where the excitation leads to electron or energy 

transfer from A to B. The two components are spectroscopically distinct, which contrasts with the 

behaviour of a large molecular system where the excited state may be delocalized over the whole 

system. 

1.2.1 Photoinduced electron transfer 

Natural photosynthesis has inspired studies into photoinduced electron transfer in artificial assemblies, 

due to the photosynthetic processes in plants and bacteria that efficiently harvest solar energy.58 Both 

photoinduced electron and energy transfer steps are involved in natural photosynthesis.  Consequently, 

it is an appealing area in which to research as there is the potential to utilise the sun’s light to produce 

solar fuels (when solar energy is converted into chemical energy in the form of chemicals) and perform 

photocatalysis.59 If such behaviour could be mimicked in an artificial system, then it should be possible 

to harness solar energy in a similar way to plants, which is of prime importance due to the need of 

renewable energy sources to meet the world’s increasing energy demand. 

1.2.1.1 Artificial photosynthesis 

Photosynthesis is a very complex process, in which plants successfully convert light, CO2 and H2O 

into energy (ATP) and fuel (sugars).60 In plants, antennae systems are used that comprise a 

chromophore (i.e. chlorophyll) that strongly absorbs light and initiates the light cycle shown in figure 

1.2.1. The antenna then transfers energy to the reaction centre, through the proteins, where charge 

separation occurs between a donor (D) and acceptor (A). This electron transfer then generates oxidising 

and reducing centres which then facilitates the production of carbohydrates (by reduction of CO2) and 

oxygen (by oxidation of water).61  
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Figure 1.2.1: Light and dark (Calvin) cycles of photosynthesis. 

As photosynthesis involves multiple processes it is hard to mimic, as charges need to be 

stored/accumulated, so they can produce enough energy to affect reactions, and can then be released 

on demand. In artificial photosynthesis, the aim is to split water to H2 and O2,  and reduce carbon 

dioxide to produce fuels such as carbon monoxide and methanol.61 However these reactions are multi-

electron processes (table 1.2.1), and so in consequence are hard to control, as there is a need to prevent 

recombination of one electron / hole pair while another is generated. Therefore, for this to be successful 

there must be efficient separation of charges. In nature, this is achieved by a series of electron donors 

and acceptors held together by a protein structure, which facilitates this movement of charge.60 

Supramolecular structures are therefore an interesting possibility for mimicking photosynthesis, as 

they have the potential to create charge separated states which might perform useful onward reactions.   

Table 1.2.1: Multielectron reactions occurring in natural and artificial photosynthetic systems.62 

Energy storing reaction ne- 

2 H2O → H2 + H2O2 2 

2 H2O → 2 H2 + O2 4 

2 H2O + 2 NAD+ → 2 NADH/H+ + O2 4 

CO2 + 2 H2O → CH3OH + 3/2 O2 6 

CO2 + 2 H2O → CH4 + 2 O2 8 

6 CO2 + 6 H2O → C6H12O6 + 6 O2 24 

H2O CO2 

O2 

Light 

[CH2O]n 
 sugars 

Chloroplast 

ADP and NADP
+
 

ATP and NADPH 

Light cycle Dark cycle 

Chloroplast 
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1.2.2 Photophysical properties of coordination cages 

In order for a coordination cage to be photophysically active, there must be at least one chromophoric 

component that absorbs light and has an excited state with a significant lifetime – whether this be 

through the metal ions or aromatic ligands.63 The interest for this area is tremendous as a cage-based 

host/guest assembly provides a large array of chromophoric units surrounding a non-covalently bound 

guest molecule. This high concentration of photoactive units around a bound guest is special, as the 

close proximity might lead to interactions between the excited states of the individual components that 

could not be achieved in simpler covalently bonded assemblies. Applications arising from this new 

field may include solar energy harvesting, solar fuel generation and photocatalysis. For this, the ability 

to perform multiple photoinduced electron- transfer processes in a single assembly, with several light-

harvesting units interacting with a single electron-accepting unit, is of fundamental importance. 

1.2.2.1 Luminescent cages 

The photophysical activity of cages is generally related to either the use of luminescent metal ions at 

the vertices, or the use of organic fluorophores as bridging ligands along the cage edges between the 

vertices; here we discuss a few examples of some different types of luminescent cages.63   

Transition metals as luminophores in cages 

The use of second or third row d-block transition metals with strong luminescence [Re(I), Ru(II), 

Os(II), Ir(III), Pt(II), etc.] as metal vertex units in cages has been widely researched.63–68 However, an 

issue with the use of d-block metals is that as they are generally of either low-spin d6 or d8 electronic 

configuration, so they tend to be kinetically inert which precludes their use in the self-assembly 

reactions which normally require mild conditions; however a range of luminescent cages have been 

formed. Here we discuss some examples of three of the main transition metals used (ruthenium, iridium 

and osmium). 

Beves et al. have employed the use of ruthenium(II) in preparing two cages based on [Ru(2,2’,6’,2’’-

terpyridine)2]
2+ units which have been furnished with pendant pyridyl groups; these inert components 

then form a cage by assembly of the pendant pyridyl units with additional square planar Pd(II) 

complexes (figure 1.2.2).69 The photophysical properties of the initial ruthenium complexes are 
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preserved on cage formation, with emission from the 3MLCT excited state appearing at 640 nm, with 

lifetimes of between 1.2-1.3 ns.  

 

Figure 1.2.2: Ruthenium and palladium metal cornered cage. (Ref. 64 – Published by the Royal 

Society of Chemistry.) 

This is an example of the use of pre-formed metal 'complexes-as-ligands' to self-assemble into a cage 

by addition of a labile metal ion (in this case palladium(II)).  As previously discussed, the Ward group 

has also used this technique to produce mixed-metal cages with metal-based functionalities. In this 

case, Ru(II) and Os(II) ions have been used to lend their redox and luminescence properties to a cubic 

cage structure. An interesting point with both the ruthenium and osmium cages made by the Ward 

group (figure 1.2.3) is that the mononuclear Ru/Os tris-diimine complex units are statistically formed 

as a 3:1 mixture of fac and mer isomers, which is the exact combination needed to form this cubic cage. 

Additionally the cage [Os4Cd4L12](ClO4)16 shows long-lived luminescence at 625 nm, which – together 

with its redox properties and the excited-state energy content – makes it a good excited-state 

photoelectron donor.9,10 
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Figure 1.2.3: Crystal structure of the cubic Ru4Cd4L12 cage, which is analogous to the Os(II) 

version. (Ref. 9 – Published by the Royal Society of Chemistry.) 

As well as the use of Ru(II) and Os(II) metal ions as cage vertices, Lusby has reported an iridium(III) 

cage (figure 1.2.4) of octahedral shape, formed from six [Ir(ppy2)]
+ units (ppy = 2-phenylatopyridine) 

and four 1,3,5-tricyanobenzene (tcb) faces.70 This cage was shown to have enhanced luminescence 

properties compared to the mononuclear Ir(III) complex, which may be due to the inhibition of non-

radiative deactivation pathways in the rigid cage. 

 

Figure 1.2.4: Lusby’s [(Ir(ppy)2)6(tcb)4](OTf)6 octahedral cage.70 (Adapted with permission from 

ref. 65. Copyright 2012 American Chemical Society.) 
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Lanthanides as luminophores in cages 

Lanthanides are promising metal ions to be used in luminescent cages as they are labile, unlike low-

spin d6 and d8 transition metals, and they can also be highly luminescent due to their f-f excited states.63 

The majority of cages formed in this way are tetrahedra, with many examples coming from Duan and 

He,71,72 as well as the Hamacek group,73 with examples of Eu(III) and Ce(IV) cages reported. 

Another group that makes use of lanthanide ions in cages is that of Sun, using four Eu(III) ions as 

corners, with either 4 or 6 pyridine-2,6-dicarboxamide based ligands (figure 1.2.5).19,74 These cages 

are highly fluorescent and have shown to be useful in sensing different nitroaromatic explosives, 

especially picric acid, which can by sensed using luminescence changes form the cage at the parts per 

billion (ppb) level.75  

 

Figure 1.2.5: (a) X-ray crystal structure of a Eu4L6 cage and (b) highlight of the π-π stacking 

between the ligands of the cage. (Reproduced from ref. 70 with permission from The Royal Society 

of Chemistry.) 

Organic ligands as fluorophores in cages 

Organic fluorophores can provide a simple way of incorporating luminescence into cages.63 When 

using organic fluorophores, it is essential that they are combined with metal ions that won’t quench 

their fluorescence. The examples shown here give a range of organic ligands that make different shapes 

of cage and have different applications; sensing, photovoltaics and drug delivery.  
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Kuhn and co-workers have developed cages with rigid bis-monodentate pyridyl ligands and Pt/Pd 

metal (II) ions (figure 1.2.6).35 These rigid ligands are highly fluorescent and can be used to encase 

cisplatin for anticancer applications; however upon cage formation the ligands' fluorescence is partly 

quenched. To combat this problem, so that cisplatin and other guests can be more easily sensed, the 

use of endo- and exo- functionalising groups have been used.46,66 Endo- and exo- functionalisation has 

also been used by Crowley et al. who have used ‘click’ mechanisms to attach organic and metal based 

functional groups to Pd2L4 cages.76,77 

 

Figure 1.2.6: Kuhn group M2L4 cage with polyaromatic ligands. (Ref. 61 – Published by the Royal 

Society of Chemistry.)  

Stang et al. have prepared Pt(II) cages with three types of component: eight Pt(II) acceptors, two 

tetraphenylethene (TPE) ligands and four linear dipyridyl ligands. The rigidity of the TPE ligands leads 

to strong luminescence and the ability to sense an amino acid.20,78 The Nitschke group have 

additionally synthesised M4L6 cages based on Zn(II) or Fe(II) vertices and 4,4-difluoro-4-bora-3a,4a-

diaza-s-indacene (BODIPY) and pyrene as the organic fluorophores (figure 1.2.7).22 This collection of 

cages has then been tuned, along with its guest binding, to enhance its fluorescence emission and has 

been found to be able to sense anions: these cages can also produce white light emission by using a 

combination of host and guest luminophores with different emission colours. 
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Figure 1.2.7: Self-assembly of tetrahedral M4L6 coordination cage from three components. 

(Reproduced from ref. 20 with permission from the Royal Society of Chemistry.) 

Schwarzer and Clever have synthesised a set of group 10 palladium-based [Pd4L8]
8+ cages, with either 

donor and/or acceptor ligands in interpenetrated double cages (figure 1.2.8). These cages have then 

been studied through time-resolved IR (TRIR) spectroscopy and UV/Vis transient absorption (TA) 

spectroscopy.79,80 They have been shown to form a charge-separated state when both donor and 

acceptor ligands are included in the architecture, as this close proximity allows for photoinduced 

ligand-to-ligand charge transfer (LLCT) to occur.80 Through this unique work, they hope to apply these 

interpenetrated cages to photovoltaic devices and photo-/electrocatalysis. 

  

Figure 1.2.8: Mixed-ligand double cages, [Pd4DmA8-m]8+, with photoinduced electron transfer 

between the donor and acceptor ligands. (Reprinted with permission from ref. 75. Copyright 2016 

American Chemical Society.) 
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1.2.2.2 Photoinduced processes involving both host and guest 

Photoinduced reactions involving both the host and the guest are at the cutting edge of what self-

assembled luminescent cages can do. This novel approach to electron and energy transfer in 

supramolecular assemblies merges the fields of supramolecular chemistry and photochemistry. Due to 

the high concentration of chromophores provided by the cage surrounding a bound guest, the potential 

for the photocatalysis of various reactions involving bound guests, using this unique ability to control 

spatial and kinetic factors associated with the electron transfer, is an exciting development for artificial 

photosynthesis.  

 

Figure 1.2.9: Left: Ward group, energy- and electron transfer from napthyl group on ligand of cubic 

cage to guest compounds. (Ref. 76 – published by the Royal Society of Chemistry.) Right: 

Absorbance spectra of caged-coronene, free coronene, and empty trigonal prismatic host. (Reprinted 

with permission from ref. 77. Copyright 2015 American Chemical Society.) 

The first step in this study is to study if any photoinduced interactions are occurring between a cage 

and guest. This can be studied using a variety of methods including transient absorption (TA) 

spectroscopy and time-resolved infra-red (TRIR) spectroscopy. A handful of research groups have 

managed to observe these processes: the Ward, Stang, Zysman-Colman and Nitschke groups, have 

successfully observed interactions in this way. The Ward group, as shown by figure 1.2.9 (left), have 

made cages based on Cd(II) vertices with fluorescent organic ligands spanning the edges, based on 

pyridyl groups with a naphthalene spacer group.81 These cages are shown to exhibit energy or electron 

transfer from the ligand excited states to the guest, dependent on the properties of the guest. Stang and 

co-workers demonstrated enhanced emission of a guest coronene when bound in a Pt6 cage.82 The cage 
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itself is non-emissive but due to the addition of the coronene, it then participates in a newly formed 

core-to-cage charge transfer state (figure 1.2.9 (right)).  

The Zysman-Colman group prepared a luminescent [Pd6L12](BF4)12 cage with a ligand that undergoes 

thermally activated delayed fluorescence (TADF), that is made up of a 3,6-di(pyridine-4-yl)-9H-

carboazole donor and benzophenone acceptor connected by a ligand scaffold.83 The cage structure has 

been shown to encapsulate fluorescein and rose Bengal guests (figure 1.2.10); and it was shown that 

when fluorescein is the guest there is significant quenching of the emission from the ligand in the cage 

structure, suggesting that photoinduced electron transfer between the cage and the guest is occurring. 

However when rose Bengal is bound in the cage, there is not only quenching of the cage donor, but 

also enhancement of the emission of the rose Bengal guest, which suggests that an energy transfer 

process is happening from the cage to the guest.83 

 

Figure 1.2.10: Luminescent [Pd6L12]
12+ cage that encapsulates dyes and displays cage-to-guest 

photoinduced electron/energy transfer. (Reprinted with permission from ref. 78. Copyright 2018 

American Chemical Society.) 

In addition to these studies, the Nitschke group have synthesised a set of MII
4L6 cages which contain 

a mixture of different bis-(aminophenyl) (BODIPY) moieties or pure BODIPY units (as seen in figure 

1.2.7).84 These BODIPY units are emissive and the cages can be synthesised with either ZnII or FeII
 as 

the metal ion corners, and can encapsulate either C60 or C70 fullerenes.84 The studies of the excited 

states of the cage alone proved that there are excitonic interactions between the ligands, which is due 

to there being electronic delocalization through the metal centres. However, when the fullerene units 

are encapsulated, host to guest photoinduced electron transfer occurs and this competes with the 

delocalization process.84 
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Moreover, a couple of groups have managed to utilise photoinduced electron transfer processes to 

perform hydrogen reduction. The Duan group have used a redox active Co(III) cage, which was paired 

with an organic dye as a guest; the encapsulation leads to electron transfer from the photosensitiser 

(dye) to the catalytic reduction site of the Co(III), which then has a high enough reduction potential to 

effect proton reduction and generate H2 (figure 1.2.12).85  The group has also performed some 

additional work on an Fe(II)-based cage which is set to encapsulate similar dyes and also perform 

photo-reduction.86 

 

Figure 1.2.12: Scheme for the synthesis of a Co4L4 cage and encapsulation of dye for proton 

reduction. (Reprinted with permission from ref. 80. Copyright 2015 American Chemical Society.)

 

Figure 1.2.13: Photocatalytic proton reduction through [FeFe] hydrogenase encapsulated in Fe4(Zn-

L)6 cage.87 
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The Reek group have used an Fe4(Zn-L)6 cage developed by the Nitschke group, containing a 

porphyrin-based ligand to produce molecular hydrogen (figure 1.2.13).87 The cage encapsulates a 

synthetic pyridyl-phosphole-appended [FeFe] hydrogenase mimic.  This was shown by TRIR studies 

to perform electron transfer from cage to guest; consequently, when in acidic solution and irradiated 

with visible light, it can catalyse proton reduction. The driving force for guest binding is the 

pyridyl/Zn(II)-porphyrin interaction.87 

1.2.2.3 Photoinduced reactions of bound guests 

Furthering these studies, a few groups have managed to perform photoinduced reactions on bound 

guests to achieve unique products. Su and Han have synthesised a novel Pd6(RuL3)8 cage which utilises 

the Ru(II) units as photoactive centres.88 They exploited the properties of this cage for hydrogen 

evolution, whereby the chromophoric ruthenium centre absorbs light whose energy cascades to the 

catalytic sites of the Pd(II) metal centres via electron transfer from MLCT states to an ILCT state, and 

then to an LMCT state which finally catalyses the reduction of water.89 Recently these cages have also 

proved to show a regio- and enantioselective photodimerisation of  3-bromo-2-naphthol to give the S-

enantiomer of the 1,4-coupled naphthol (figure 1.2.14).90 This 1,4-coupling is unusual but is promoted 

by the confinement in the cage: it is however unclear whether the cage plays a part in the electron 

transfer process or whether it just confines the guest in a chiral environment. 

 

Figure 1.2.14: Regio- and enantioselective photodimerisation of 3-bromo-2-naphthol with 

[Pd6(RuL3)8].
90  
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Fujita and his group have also shown evidence of a system in which both cage and guest are involved 

in photoinduced electron transfer. Figure 1.2.15 shows how the triazine chromophore of the cage is 

excited and increases its oxidative capability, at which point an electron is transferred to the excited-

state of the cage from the adamantane group which forms a radical cation.  This adamantane radical 

cation can then react with water or oxygen to give an oxidised alcohol or hydroperoxide product.91 

The Fujita group have more recently shown a unique reaction of various cyclopropane containing guest 

molecules in which a methylene group is cleaved from the ring, leading to an unnatural alkene 

molecule.92 This occurs in a similar way to the reaction with adamantane:  under UV irradiation, the 

cyclopropane guest transfers an electron to the photo-excited host, and then this guest radical reacts 

further to produce the new product molecule. They found that this reaction only worked if the 

cyclopropane unit was adjacent to either an alkane or a phenyl ring.92  

  

Figure 1.2.15: Structure of Fujita’s M6L4 cage and proposed PET mechanism for the photooxidation 

of adamantane in the cavity. (Reprinted with permission from ref. 86. Copyright 2009 American 

Chemical Society.) 

Finally, Raymond and co-workers used a Ga4L6 cage for which photoinduced electron transfer 

triggered pericyclic rearrangement of cinnamylammonium guest.93 This rearrangement, like the above 

demethylation and photodimerisation, requires both guest encapsulation and electron transfer between 

cage and guest to occur (figure 1.2.16).  
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Figure 1.2.16:  Photosensitization of an allylic 1,3-rearrangement of encapsulated 

cinnamylammonium guest using a M4L6
12- cage. (Reprinted with permission from ref. 88. Copyright 

2015 American Chemical Society). 

These examples of photoinduced reactions of bound guests and photointeractions between host and 

guest are the state of the art in cage photochemistry. They show the potential of new applications of 

cages in hydrogen evolution, the design of photovoltaics and the catalysis of unique chemical reactions. 

This thesis aims to build on these ideas through the synthesis of a water-soluble osmium-based cage 

that can participate in photoinduced electron transfer and can photocatalyse unique reactions, for light-

harvesting and photocatalysis applications. 
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 Introduction 

The Ward group have synthesised a large variety of cages in the past few years, with various 

different metals and pyridyl-pyrazole based bridging ligands.1,2,3 The cage that has offered the 

most functionality and stability has been the cubic-shaped cage, which contains 8 metal ions at 

the vertices and 12 ligand molecules spanning each of the edges. Initially this cage contained 

8 Co(II) or 8 Cd(II) corners, along with the ligand (Lnap) in which the two pyridyl pyrazole 

units are separated by a 1,5-dimethyl naphthalene spacer.  16 counter ions balance the 16+ 

charge of the coordinated metal ions.4,3  This cage has many uses as it has a large enough cavity 

(407 Å3)  to encapsulate guests and a 4 Å wide portal on each of the six faces, allowing guest 

molecules to leave and enter.  This cage has the additional bonus of being very stable in solution 

even over a wide pH range.5 These properties allow the strength of different guest binding to 

be measured. 

A limitation of this cage is poor water solubility.  Solubility in water is desirable as it allows 

guests to bind strongly via the hydrophobic effect.  In contrast binding in organic solvents e.g. 

acetonitrile, was found to be driven by hydrogen bonding interactions with the cage interior 

surface and is therefore much weaker.6,7 To counteract this problem, a modified cage was 

synthesised where the ligand had externally-directed CH2OH groups attached to the pyridyl 

ring.6 These 24 OH groups allowed the cage to dissolve in water. Since then the group has also 

found that changing the counter ion associated with the cage from BF4 or ClO4 to Cl leads to a 

water-soluble cage.8 Having optimised guest binding in this way, the next aim was to 

incorporate some functionality into the cage itself, rather than it being just a vessel for guest 

binding. Some work in the group has included the use of the Cd(II)-based cage to perform 

photoinduced electron or energy transfer to bound guests - through the excited-state properties 

of the naphthalene spacer in the ligands of the cage.9 In addition to this Os(II) and Ru(II)-based 

cages have also been synthesised to incorporate transition metal properties into the cage e.g. 

photophysical and redox capabilities.10–12 

As discussed in chapter 1, kinetically inert transition metals such as Ru(II) and Os(II) need to 

be incorporated into cage structures in a stepwise manner to generate mixed-metal systems, as 

they are highly kinetically inert. However, cage formation depends on lability for self assembly 

to occur. Stemming from this, a group of Os(II) and Ru(II) cages were synthesised, as depicted 
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in scheme 2.1.1. Initial studies of their redox and photophysical properties was undertaken. 

This worked showed that these cages retain the redox activity of the separate metal centres, 

and the Os(II) containing cages additionally show the characteristic metal centred 

phosphorescence of a 3MLCT excited state.  

 

Scheme 2.1.1: The stepwise synthesis of heterometallic cubic cages:  combination of four 

pre-formed, kinetically inert [(Ma)(Lnap)3]
2+ units (Ma = Ru, Os) with four labile ions (Mb)2+ 

(Mb = Co, Cd) to give [(Ma)4(M
b)4(L

nap)12]
16+

. 

The work in this chapter looks at exploiting these useful metal-centred properties, as well as 

evaluating guest binding of the new transition metal cage complexes. In this study, the focus is 

on Os(II) over the more common Ru(II), as previous work showed that the Os(II) 

tris(pyrazolyl-pyridine) unit has a long-lived 3MLCT excited state and is a good photo-electron 

donor. In contrast the equivalent Ru(II) complexes show no useful photophysical activity, due 

to the 3MLCT and dd states being similar in energy, so provide a rapid deactivation pathway.  

The Os(II) complex, has a higher crystal field splitting due to Os(II) being a third-row ion and 

having more extended d-orbitals (5d instead of 4d), so the dd state is too high in energy to 

deactivate the 3MLCT state - which is therefore long-lived and phosphorescent. This chapter 

focuses on the synthesis of a water soluble version of an Os4Zn4 based cubic cage and 

characterisation of the redox/photophysical properties, as well as quantifying guest binding 

within the cavity.  
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 Results and Discussion 

2.2.1 Synthesis and characterisation 

To meet the aims of synthesising and characterising a water soluble cubic cage, incorporating 

Os(II) units, the mononuclear coordination ‘corner complex’ needs to be based on 

([Os(Lnap)3]X2 units) (where 'Lnap' is a bidentate pyrazole-pyridine chelating ligand). To do this, 

each Os(II) ion is coordinated to three bis-bidentate ligands via one terminus of each ligand, 

with each ligand having a pendant bidentate binding site: this kinetically inert 'complex ligand' 

can then go on to propagate the self-assembly process using coordination of the pendant sites 

to a labile metal ion. Figure 2.2.1 shows the target complex, which consists of three identical 

bis-bidentate ligands that are composed of two chelating pyridyl-pyrazole units bonded to a 

naphthalene-1,5-diyl aromatic spacer, which are complexed to an Os(II) ion. The ligand was 

synthesised according to a literature method in a high yield of 83%;3 mononuclear 

[Os(Lnap)3]X2 was also initially prepared according to a literature method, however the yield 

was very low, at 3%.11 This synthesis involved the reaction of OsCl3.6H2O with five 

equivalents of L in ethylene glycol at reflux for 3 days, followed by anion metathesis, and 

purification through column chromatography. However due to the low yield, the reaction was 

first optimised by use of a microwave reactor, which – as well as increasing the yield to 13% 

– meant that the reaction time also decreased to 6 hours.  

 

Figure 2.2.1: Diagram depicting the [OsL3]
2+ 'corner' complex. 
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Despite the increased yield, 13% was still not optimum so different avenues were pursued to 

try to increase this. It was noted that the majority of side-products being formed were expected 

to be multi-nuclear complexes with a high charge as they had a high affinity to silica compared 

to the pure mononuclear complex with only a 2+ charge; characterisation of these by-products 

was attempted, however was not successful.  Formation of polynuclear complexes implies that 

some ligands are binding two Os(II) ions, despite a 5:1 ligand:Os(II) ratio being used.  In 

consequence of this, synthesis of the mononuclear complex was attempted via a dropping 

method by which a dilute solution of the starting reagent, OsCl3.6H2O in ethylene glycol, was 

slowly added over 6 hours into a solution of excess ligand and left to reflux for 12 hours. This 

method ensures that ligand is always in large excess and should minimise formation of 

undesired dinuclear Os(II) complexes.  This improved the yield to 24 %, which is the same as 

the previously published figure.11 Figure 2.2.2 is the 1H NMR spectra of [Os(Lnap)3](PF6)2 and 

shows the 1:3 ratio of fac and mer isomers, as depicted by the H6 protons on the pyridyl group. 

As a consequence to this ratio, scheme 2.1.1, shows that a 1:3 fac:mer ratio is exactly what is 

required to form the cubic cage structure, in which the 3 mer OsL3 units and 1 fac unit, are 

accompanied by 3 labile Zn(II) mer corners and 1 fac corner. 

 

Figure 2.2.2: 1H NMR spectrum of the H6 protons on the pyridyl group of Lnap in the 

[Os(Lnap)3](PF6)2 in CD3CN. 
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Once isolated, the [Os(Lnap)3](PF6)2 molecule underwent a self-assembly reaction with 

Zn(ClO4)2 to form the complete cage structure. This reaction can be achieved in a couple of 

hours by stirring the reagents in nitromethane, under ambient conditions; which is then 

followed by slow crystallization from nitromethane/diisopropyl ether to produce deep red X-

ray quality crystals; with the only product formed being the [Os4Zn4(L
nap)12](ClO4)16 cubic cage 

structure shown in figure 2.2.3.  

 

Figure 2.2.3: Crystal structures of [Os4Zn4(L
nap)12](ClO4)16. (a) 6 [ClO4]

-
 ions occupying 

each window (b) Os(II) corners in pink and Zn(II) corners in beige (c) space-filling view. 

The crystals obtained from the liquid-liquid diffusion were analysed through X-ray 

crystallography. Figure 2.2.3 shows the structure of the cage that was determined by Alexander 

Metherell (University of Sheffield). This structure is similar to the approximately cubic 

structure of the other [M8L12]
16+ cages which have the same bridging ligand (Lnap) and the same 

8:12 ratio of metals to ligands.12,11 There is also similar extensive inter-ligand π-stacking with 

alternating arrays of electron-deficient (pyrazolyl-pyridine) and electron-rich (naphthyl) 

groups, with metal–metal separations of 11.2 and 11.3 Å along the edges of the cube. In this 
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case, like the published case of [Ru4Co4(L
nap)12](BF4)16, the metal sites are indistinguishable 

crystallographically, as the cage is disordered over the two orientations.11 This means that the 

metal occupancy at each site is 50%, which is probably due to Os(II)-N and Zn(II)-N bond 

distances being similar (Metal-N: mer: 2.08–2.16 Å, fac: 2.15 and 2.17 Å). As shown by 

structure (a), the ClO4
- ions are located in the windows of the faces, with no guest molecule in 

the cavity.  The S6
 symmetry arises from the arrangement of two fac and six mer tris-chelate 

sites such that the complex has both a C3 axis and an inversion centre.  

To adapt the cage to being water-soluble, [Os4Zn4(L
nap)12](ClO4)16 was converted from the 

perchlorate salt to the chloride salt, by stirring a suspension of the cage in water, with an excess 

of Dowex anion exchange resin, to give a red aqueous solution of [Os4Zn4(L
nap)12]Cl16 

(Os•Zn). Unlike previous Os(II)-based cages synthesised by the group, Zn(II) is used as the 

second labile metal instead of Cd(II), as anion exchange with chloride to give the water-soluble 

chloride form of the cage does not result in decomposition.  In contrast, the isostructural Os4Cd4 

cage, that has been published previously, decomposes following anion exchange to the chloride 

salt, possibly due to the high affinity of chloride for Cd(II). Additionally, Cd and Zn are both 

d10 so don’t quench the excited state of the Os(II) vertices, whereas Co(II) (d7) does. Also, as 

described in section 2.1, the alternative ligand, Lw, used to infer water solubilty on the cages 

could not be used, as the -CH3OH groups do not remain intact during the [Os(Lnap)3](PF6)2 

synthesis, which requires temperatures of 200 °C. 

Characterisation of the cage by 1H NMR spectroscopy is difficult due to the large number of 

proton environments. The low symmetry of the complex gives four independent ligands with 

no internal symmetry, generating 88 independent proton environments, mostly in the aromatic 

region.12 However, formation of the Os•Zn cage is supported by a diffusion-ordered 

spectroscopy (DOSY) experiment (Fig. 2.2.4) which shows that all protons have a single 

diffusion rate of log D = -9.8 m2s-1; with an extra peak for the residual D2O solvent peak at δ 

4.79 ppm. This single diffusion rate is characteristic of an assembled cage and is quite different 

to the much less negative values of log D = -9.1 m2s-1 for mononuclear  [Os(Lnap)3](PF6)2 shown 

in previous work.11  For comparison the Os•Cd cage diffuses at log D = -9.6 m2s-1.11 

Electrospray (ES) mass spectrometry was also used to characterise the cage and a characteristic 
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sequence of signals for {Os4Zn4(L
nap)12(ClO4)16‑n}

n+ appeared for n = 4, 5, 6 due to sequential 

loss of anions from the intact complex cage cation.  

 

Figure 2.2.4:  400 MHz 1H NMR and DOSY spectra of Os•Zn (chloride salt) in D2O at 298 

K. 

In addition to the synthesis of [Os(Lnap)3](PF6)2 and [Os4Zn4(L
nap)12]Cl16, a third Os(II) 

complex ([Os(LMe)3]
2+ [LMe = 1-Methyl-3-(2-pyridyl)pyrazole]) was synthesised, to be used for 

comparison with the two previous molecules, in terms of its spectral properties. [Os(LMe)3]
2+ 

was produced to eliminate any substituent effects arising from the napthyl units, on the redox 

and photophysical properties of Os(II) complex units in the cage. The initial attempt to prepare 

[Os(LMe)3]
2+ (figure 2.1.5), required methylation of the free  ligand 3-(2-pyridyl)pyrazole, on 

the pyrazole ring.  However, upon reaction, the doubly methylated ligand was actually the 

major product (figure 2.2.5), as characterized by 1H NMR and mass spectrometry. Synthesis 

of [Os(LMe)3]
2+ was then attempted by producing [Os(pypzH)3](PF6)2 first, which effectively 

protects the nitrogen atom on the pyridyl ring by coordination to Os(II).  Once this complex 

was obtained, the coordinated 3-(2-pyridyl)pyrazole ligand could then be subsequently 

methylated on the pyrazolyl ring. Fortunately, this route was successful. Initial preparation of 

[Os(pypzH)3][PF6]2 through a microwave reaction at 200 ºC for 3 hours followed by 
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purification through silica column chromatography gave a yield of 67%. The second step, 

methylation with MeI in MeCN to give [Os(LMe)3]
2+

, proceeded with a 96 % yield. The 1H 

NMR spectrum showed the presence of four distinct ligand environments (figure 2.2.6), 

consistent with the expected 3:1 mer:fac ratio; the formulation was also confirmed by GC-MS.  

                                

Figure 2.2.5: [Os(LMe)3]
2+ and 1-Methyl-3-(2-pyridyl(1-methyl))pyrazole iodide. 

 

Figure 2.2.6:  1H NMR (400 MHz, CD3CN) of [Os(LMe)3](PF6)2 showing the four 

environments for each type of proton arising from the mixture of fac and mer isomers.  
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2.2.1.1 Redox and photophysical properties 

To enable the use of Os•Zn or the two mononuclear Os(II) complexes in different 

photochemical applications, it was first needed to determine their redox and photophysical 

properties. Figure 2.2.7 shows the UV/vis spectra of the three Os(II) complexes.  The three 

molecules show similar absorption between 340 – 640 nm, with a high intensity spin-allowed 

1MLCT absorption between 380 - 450 nm and lower intensity spin-forbidden 3MLCT 

absorptions between 490 – 600 nm. The spectra are similar in each case, as it is reflective of 

the Os(II)–tris(pyridyl-pyrazole) core unit, which all 3 complexes contain. However, the 

extinction coefficients of the MLCT absorptions are vastly different, with [Os(Lnap)3]Cl2 and 

[Os(LMe)3]Cl2 having coefficients of ε = 9300 M-1 cm-1 and ε = 5800 M-1 cm-1 at 428 nm, but 

the Os•Zn cage giving an ε = 24000 M-1 cm-1, reflecting the presence of four Os(II) 

chromophores in the cage.  

 

Figure 2.2.7: UV/vis spectra of [Os4Zn4(L
nap)12]Cl16 (black), [Os(Lnap)3]Cl2 (red) and 

[Os(LMe)3]Cl2 (blue). 
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Cyclic voltammetry of [Os4Zn4(L
nap)12]Cl16 shows a chemically reversible Os(II)/Os(III) 

couple at 0.71 V (vs. SCE) in water (figure 2.2.8). This is less positive than a similar ruthenium 

based cage ([Ru4Cd4(L
nap)12](ClO4)16) where the corresponding Ru(II)/Ru(III) couple has a 

potential of 1.12 V (vs. SCE).12 Differences like this are common for isostructural Ru(II) and 

Os(II) structures, as Os(II) has lower ionisation energy indicating its ability to be a better 

electron donor and is hence more easily oxidised. Also from previous work by the group, it has 

been shown that all four Os(II) units in the cage oxidise and reduce simultaneously, otherwise 

the redox wave would be broader or even split into multiple one electron components.11 

[Os(Lnap)3]Cl2 behaves very similarly to Os•Zn, with only a small shift (10 mV) of the 

Os(II)/Os(III) couple to more positive potential compared to the cage. The reversibility of this 

process and the stability of Os(III) are essential prerequisites for use of Os•Zn as a photoredox 

catalyst for bound guests. The oxidation potential of [Os(LMe)3]Cl2 is shifted more and is 

roughly 100 mV less positive than that of the cage and of [Os(Lnap)3]Cl2.  

 

Figure 2.2.8:  Cyclic voltammograms of Os•Zn (black), [Os(Lnap)3]Cl2 (red) and 

[Os(LMe)3]Cl2 (blue), in H2O, vs. an Ag/AgCl reference electrode. 

The luminescence spectra (figure 2.2.9) of the complexes show similar emission characteristics 

to one another.  Emission maxima vary over the narrow range of 635 – 660 nm. The broad and 

unstructured emission signal is typical of 3MLCT-based emission, as are the long lifetimes that 
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indicate spin-forbidden decay from the triplet state.  In comparison, the standard [Os(bipy)3]
2+ 

complex shows emission at 734 nm, which is lower in energy than that of these complexes. 

[Os(LMe)3]Cl2 has the lowest energy emission of the three complexes at 655 nm; it should 

therefore be the least good electron donor, as its excited state has the lowest energy content; 

however, this ability also depends on the redox potential. Luminescence spectra at 77K showed 

that the excited state energy of the 3MLCT state of the Os(pypz)3 unit is around 16000 cm-1 (2 

eV). Therefore, according to Rehm and Weller, if the Os(II)/Os(III) couple is at +0.71 V (vs. 

SCE) (as shown above) then there is ca. 1.3 eV of energy available to reduce a guest.11,13 No 

naphthalene based emission was observed when exciting the cage at 290 nm – the naphthalene 

based absorption maximum – only Os-based 3MLCT emission was detected. This confirms that 

any higher-energy ligand-based excited states that may initially form, undergo fast 

intramolecular energy transfer to the Os(II)-diimine units at the cage vertices from which the 

characteristic 3MLCT phosphorescence occurs. 

 

Figure 2.2.9: Luminescence spectrum of [Os4Zn4(L
nap)12]Cl16 (black), [Os(Lnap)3]Cl2 (red) 

and [Os(LMe)3]Cl2 (blue) in D2O, excited at 550 nm (where the absorbance equalled 0.2 for 

all three complexes). 
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In addition, this luminescence in water has a monoexponential decay, with a lifetime of 337 

ns: using a second lifetime component does not enhance the quality of the fit. On the other 

hand, the luminescence from both [Os(Lnap)3]Cl2 and [Os(LMe)3]Cl2 show biexponential decay, 

with the ratio of the amplitudes of the components corresponding approximately to the 3:1 

mixture of fac and mer isomers (as shown in figure 2.2.10). [Os(Lnap)3]Cl2 having a lifetime of 

354 ns and 183 ns and [Os(LMe)3]Cl2 having even shorter lifetimes of 206 ns and 97 ns.  

Table 2.2.1 shows a summary of the redox and photophysical properties for the three 

complexes, with the three complexes having similar absorption, emission and oxidation values. 

However, there are distinct differences in the amplitudes of the absorption and emission of the 

cage compared to the mononuclear complexes. 

 

Figure 2.2.10:  Time-resolved luminescence decay traces from aqueous solutions of (a) 

[Os(LMe)3]Cl2, (b) [Os(Lnap)3]Cl2 and (c) Os•Zn.  Measured data are black dots; best fit 

curves are shown by red lines; residuals from the fits are shown in red at the bottom. 
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Table 2.2.1: Summary of redox and photophysical properties of [Os4Zn4(L
nap)12]Cl16, 

[Os(Lnap)3]Cl2 and [Os(Lme)3]Cl2; obtained in an aerated aqueous solution at RT. 

 
Absorption max /nm 

(10-3, L mol-1 cm-1) 

Emission 

max /nma 

Emission 

 /ns (esd)b 

E1/2 (Os2+/Os3+) 

/V vs. SCEc 

[Os4Zn4(L
nap)12]Cl16 400 (sh), 428 (23.5), 

512 (7.2), 559 (sh) 

638 337 (24) 0.75 (60 mV)d 

[Os(Lnap)3]Cl2 398 (sh), 424 (9.3), 

513 (2.6), 561 (sh) 

636 183 (12), 

354 (17) 

0.74 (80 mV) 

[Os(Lme)3]Cl2 395 (sh), 430 (5.7),  

515 (1.5), 565 (sh) 

655 97 (2), 206 

(2) 

0.63 (60 mV) 

a Excitation at 550 nm 

b Obtained using 410 nm, ca. 100 ps pulsed excitation 

c Measured vs. Ag/AgCl reference electrode, calculated using E1/2(Ag/AgCl) = +0.045 V vs. 

SCE.  

d Anodic/cathodic peak separation.  

2.2.2 Guest binding 

Guest binding in the central cavity is an imperative requirement for applications of cage 

structures. The guest binding in the Co(II)-based cubic cage [Co8(L
nap)12]

16+, synthesised 

previously by the Ward group, has been well studied, so the shape and size limitations of guest 

binding in this cavity are well known.4,7 This Co(II) cage is structurally analogous to the Os4Zn4 

used for this work, only differing in the nature of metal corner atoms, [8 x Co(II) rather than 

four Os(II) and four Zn(II) ions]. From comparing the two crystal structures, the cages have 

very similar cubic structures and cavity size (volume: ~407 Å), with each face having a circular 

window of diameter ca. 4 Å to allow guest entry and exit.5 For guest binding to occur, Rebek 

demonstrated that host-guest interactions are maximised when the guest fills approximately 55 

% of the total volume of the cavity: therefore for this cubic cage, the ideal guest volume is 

around 224 Å.14 There are a number of ways to measure guest binding and here we use both 

NMR and luminescence titrations.15  



Chapter 2 – Synthesis, Characterisation and Guest Binding of an Os(II) Coordination Cage 

 

47 

 

The guest molecules used for this work are in figure 2.2.11 and are all electron-accepting cyclic 

organic species. These guests were chosen so that future work of photophysical/photochemical 

applications could be exploited via photoinduced electron transfer between the excited state of 

the Os(II) units in the cage (electron donors) and bound guests (electron acceptors). To 

determine whether these guests are of suitable size and hydrophobicity to bind in the cage, they 

were screened through a modelling/calculation process using the docking programme GOLD, 

to estimate the binding constants of different guest molecules.16 The guests below were all 

predicted to bind, with a range of binding constants from 102 – 104 M-1, with the two benzyl 

alcohols portraying the weakest binding due to the hydrophilic hydroxy groups and with 

nitronaphthalene showing the strongest binding due to the delocalising nitro group allowing 

for high hydrophobicity. 

 

Figure 2.2.11: Chemical structures of  3-nitrobenzyl alcohol, 4-methyl -2,5-dinitrobenzyl 

alcohol, 1,4-naphthoquinone, 3,4,5,6-tetrachlorobenzoquinone and 1,2,4,5-

tetracyanobenzene. 

2.2.2.1 Luminescence quenching 

From observation of the cage’s photophysical properties and its ability to be a good excited-

state electron donor, experiments were undertaken to look at the quenching of the luminescence 

of the cage, which should occur as a result of the electron-accepting guests binding in the cage 
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cavity. We would expect quenching to occur as a consequence of photoinduced electron 

transfer between the cage excited state and the guest. The simplified Jablonski diagram (figure 

2.2.12) shows the two routes of deactivation for the cage structure. When the guest is not 

present (1), the excited state decays via a radiative pathway from the 3MLCT state (the normal 

phosphorescent emission).  However, in the presence of the guest (2), electron transfer should 

occur to the guest to form a short-lived charge-separated cage•+/guest•- excited state whose 

resultant decay is non-radiative, thereby quenching the emission. As discussed briefly in 

section 2.2.1, the 3MLCT excited state of Os•Zn has an excited state energy of ca. 2 eV and 

given the ease of oxidation of Os(II) to Os(III) (0.7 V); we would expect Os•Zn to effect PET 

to any guest that has a reduction potential less negative than ca. -1.3 V vs SCE. All five of 

these guests (G) are sufficiently good electron acceptors to quench the Os-based MLCT excited 

state to give short-lived Os(III)/G•− charge-separated states (table 2.2.2). 

 

Figure 2.2.12: Illustrative Jablonski diagram to demonstrate the deactivation of the excited 

state of [Os4Zn4(L
nap)12]Cl16 by a bound guest G. 

Luminescence titrations using the Os•Zn cage, involving addition and binding of guests, were 

performed in water: increasing amounts of each guest were added to a stock concentration of 

the cage and through the progressive quenching of the cage luminescence as the guests bind a 

binding constant could be determined. Figure 2.2.13 shows an example of the quenching of the 

[Os4Zn4(L
nap)12]Cl16 cage, with 1,4-naphthoquinone as a guest, with a steady decrease in the 

E 

Os(III)/G•− 

MLCT (cage) 

Ground state 

(2) 

non-radiative 

(1)  

radiative 

PET 
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luminescence of the cage as more guest was added. The inset shows the 1:1 binding curve that 

has been fit to the data, with decrease in luminescence intensity versus the increase in guest 

concentration.  Each guest showed similar quenching (figures included in appendices) and all 

of the data was fit to a 1:1 binding model, with the binding constants obtained shown in table 

2.2.2.  

 

Figure 2.2.13: (a) Luminescence titration of [Os4Zn4(L
nap)12]Cl16 (0.025 mM) with 1,4-

naphthoquinone as guest in H2O, excitation at 550 nm, up to the point at which cage is ca. 

90% occupied by guest. 

Time-resolved measurements were taken during the titrations of the guests, 1,4-

naphthoquinone and 1,2,4,5-tetracyanobenzene. In this system, when the encapsulated guest is 

an electron acceptor we would expect static quenching to occur as a complex is formed between 

the cage and the guest. However, there is the potential for dynamic quenching due to collision 

of cage with quencher in the solution. Note that these two cage/guest systems do not ever reach 

100% guest occupancy, due to the limitations arising from the water solubility of the guests 

used. The Stern-Volmer plot, depicted in figure 2.2.14, shows that there is a mixture of static 

and dynamic quenching happening in both cage/guest systems, due to the curvature of the I0/I 

component. In addition to this, there is also no indication of any short-lived emission 
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components appearing associated with guest binding, which indicates that guest binding results 

in complete quenching of the Os-based emission from each cage. 

 

Figure 2.2.14: Stern-Volmer plots associated with quenching of Os•Zn by 1,4-

naphthoquinone (left) and 1,2,4,5-tetracyanobenzene (right). 

2.2.2.2 NMR binding studies 

In addition to the luminescence quenching studies performed on the cage/guest systems, 

measurements of the binding of these guests was performed through NMR spectroscopy to 

confirm the results of the 1:1 binding constants obtained from luminescence titrations. 

Unfortunately, due to the substantial overlap of cage and guest peaks in the aromatic region of 

the NMR spectrum, and the large number of inequivalent proton environments in the Os4Zn4 

cage, NMR titrations with this cage were not practicable. Therefore, titrations could be 

performed using the analogous Co(II) based cage [Co8 L
nap)12]Cl16 which is isostructural and 

paramagnetic, allowing the shift of host peaks on guest binding (fast exchange case) or the 

formation of new host/guest peaks on guest binding (slow exchange case) to be observed easily, 

enabling binding constants to be calculated (figure 2.2.15). In addition to this wide spread of 

1H signals; in the negative ppm region of the spectrum, -1 to -12 ppm, we can also observe new 

signals associated with bound guests when the host/guest complex forms. This is due to the 

guest now being surrounded by 8 paramagnetic Co(II) ions, which causes a substantial change 

in the guest protons chemical shift. Evidence for this is shown in previous work by the group 

where full characterisation of NMR spectra is performed to assign each peak in the spectrum 

of free host and host/guest complexes.4  
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Figure 2.2.15: Paramagnetic 1H NMR spectrum of ([Co8 L
nap)12]Cl16). 

NMR titrations were performed in a similar way to the luminescence titrations: the guest was 

dissolved in a stock solution of cage and this is then titrated in increasing portions into a cage 

sample. The difference between the processing of the binding constants, associated with these 

experiments, is that the guest can be in either fast or slow exchange in the cage cavity on the 

NMR timescale. For fast exchange cases, the fitting of a 1:1 binding isotherm is the same as 

for the luminescence measurements, where the shift in host peaks is compared to the increase 

in [G]. On the other hand, for slow exchange, where separate sets of signals can be resolved of 

free cage and cage/guest complexes, binding constants can be determined by integration of the 

separate sets of signals. 

For the guests in figure 2.2.11, addition of NQ, NN and TCNB to the Co8 cage all resulted in 

the appearance of new peaks in the NMR spectrum relating to the host/guest complex rather 

than just the free host. This is shown in figure 2.2.16, where as the free host signal intensities 

diminish, new host.guest peaks appear for the host containing a bound guest.  Deconvolution 

and integration of these peaks was attempted, however the results were unreliable with the 

binding constants for each addition varying over quite a large range, which is thought to 

potentially be due to the chloride counter-anion which can compete for guest binding in a way 

that is non-linear with concentration.17 
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Figure 2.2.16: 1H NMR spectra of titration of the addition of up to 16 equivalents of TCNB 

into [Co8(L
nap)12]Cl16 (0.15 mM in D2O), showing the grow in of host.guest peaks. 

As the binding constants could not be reliably determined through deconvolution of free/bound 

cage NMR signals, and as these guests actually appear to exchange in the cage in a time that 

borders that of the NMR timescale, there also appears to be a shift in the host peaks as more 

guest is added. Figure 2.2.17 shows an example of this, where the same regions of the NMR 

spectra, of NQ, NN and TCNB guest titrations are compared, with a clear increase in intensity 

of host.guest peaks as well as a change in chemical shift of the host peaks. This shift of host 

peaks was fit to a 1:1 binding isotherm, where comparable binding constants to that of the 

luminescence titration were obtained (table 2.2.2).  

As described, in some cases we can also see evidence for the shifting of the bound guest signals 

from the aromatic region (6 - 9 ppm) to the negative chemical shift region, as the guest binds 

into the cage. With NQ, NN and TCNB there was evidence of these new peaks, seen in figure 

2.2.17, confirming that guest binding is in slow exchange in these three cases. In contrast to 

these three guests, the two nitrobenzyl alcohol guest appeared to bind purely in fast exchange, 

with the binding constants being determined by the shift in ppm upon titration (table 2.2.2). 
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Figure 2.2.17: NMR titration of NN, TCNB and NQ into [Co8(L
nap)12]Cl16 (0.15 mM in D2O) 

between 77-83 ppm, showing the shift of host peaks and the grow in of host.guest peaks 

 

Figure 2.2.17:  400 MHz 1H NMR spectra recorded during titration of (a) NN, (b) NQ and 

(c) TCNB (up to 16 equivalents of each) into [Co8(L
nap)12]Cl16 (0.15 mM in D2O).  Sharper 

new signals associated with bound guest (labelled *). 

A summary of the binding constants is shown in table 2.2.2, with the binding constants 

determined from luminescence spectroscopy and NMR spectroscopy correlating well with each 

other and are of the same order of magnitude, indicating that the guests selected do bind with 
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a 1:1 fit. The absolute values of the binding constants of ca. 103 M-1 are to be expected for 

these guests, which are of similar size to each other and have a similar hydrophobic surface 

area. 

Table 2.2.2: Summary of binding constants of five guests and reduction potentials. 

 
K(lum) /M-1 K(NMR) /M-1 EA/A- /V vs SCE 

1,4-naphthoquinone 2000 2000 -0.7118 

1,2,4,5-tetracyanobenzene 4000 3000 -0.6619 

1-nitronaphthalene 8000 3000 -0.99 

3-nitrobenzyl alcohol 2000 2000 -0.46 

4-methyl-3,5-dinitrobenzyl alcohol 2000 3000 - 

 

2.2.2.3 X-ray crystallography 

Lastly, to conclude the characterisation of the binding of these guests, X-ray crystallography 

techniques were employed to determine if solid state guest binding could be observed and if 

so, to determine how the guest might sit in the cavity. Again, for this, the Co(II) based 

[Co8(L
nap)12](BF4)16 cage was used as an analogue for Os•Zn, as its use in crystal soaking 

methods have previously been developed by the group for X-ray studies. For this experiment, 

the host/guest complex of [Co8(L
nap)12](BF4)16 and TCNB was prepared using a “crystalline 

sponge” method, where crystals of empty host are treated with a concentrated solution of guest 

in methanol, which are then mounted on the diffractometer.20,7  

Figure 2.2.18 shows the crystal structure of H•TCNB, where H is the host 

([Co8(L
nap)12](BF4)16), with a TCNB guest positioned in the centre of the cavity, across the 

inversion centre. Two of the opposing cyano groups are directed into the two H-bond donor 

pockets of the fac metal vertices. This means that these two N atoms form weak CH···N 

interactions with the convergent set of CH protons, that lie close to the cationic metal centres 

and the guest is anchored by this at either end – the first time this has been seen in a cage/guest 

complex of this family.  There are non-bonded C···N separations of 3.38-3.40 Å and CN···HC 

distances of the range 2.48−2.75 Å.  The non-bonded N(15G)···Co(4) separation of 5.33 Å is 

comparable to other guests whose electron-rich regions lie in this hydrogen-bond donor pocket. 
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This type of H-bonding interaction occurs in all cage/guest complexes that we have structurally 

characterized and anchors the guests in place.21,22  

 

Figure 2.2.18: Crystal structure of the cage/guest adduct [Co8(L
nap)12](BF4)16•0.66(TCNB). 

Top: Complete cage.  Bottom: The guest and the two opposed fac-tris(chelate) metal complex 

vertices that form the hydrogen bond donor pockets.   
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 Conclusions 

There are two main conclusions from this work. Firstly, a successful synthetic procedure has 

been developed to produce an Os4Zn4 cubic cage that contains both Os(II)-based 

photosensitisers and is water-soluble to facilitate guest binding.  It has been characterised 

through DOSY NMR spectroscopy, mass spectrometry and X-ray crystallography. This cage 

has also been shown to have useful photophysical and redox properties, where it has the 

potential to be a good photo-electron donor to bound guests: it undergoes reversible 

Os(II)/Os(III) redox processes and shows long-lived 3MLCT emission in the visible region.  

The Os4Zn4 cage can successfully be converted to the chloride salt, which is thus soluble in 

water. This has allowed for studies on host-guest binding with various organic guest molecules. 

This has shown that the bound electron-accepting guests can quench the emission of the cage, 

which suggests that there is photo-induced electron transfer that can occur between the 

components of the cage/guest complexes. In addition to this, guest binding has also been 

proven through NMR titrations, where the shift of cage signals has been monitored and an X-

ray crystal of Cage.TCNB confirms guest binding.  
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 Experimental 

2.4.1 Experimental Techniques 

Nuclear Magnetic Resonance (NMR) Spectroscopy 

One-dimensional 1H NMR and two-dimensional DOSY spectra were recorded using a Bruker 

Avance III HD 400 spectrometer. Spectroscopic grade deuterated solvents were used and all 

spectra were calibrated using residual solvent peaks. All chemical shifts are quoted in ppm and 

the following abbreviations are used when reporting the spectra; br – broad, s – singlet, d – 

doublet, dd – doublet of doublets, ddd – doublet of double doublets, t – triplet, td – triplet of 

doublets, tt – triplet of triplets, m – multiplet.  

Mass Spectrometry 

Mass spectra were obtained from the University of Sheffield Mass Spectrometry Service. 

Electrospray ionisation (ES) spectra were recorded on an MicroMass LCT spectrometer and 

Electron ionisation (EI) spectra were recorded on a VG AutoSpec mass spectrometer. All 

measurements were taken at room temperature. 

UV-visible Absorption Spectroscopy 

UV/vis spectra were recorded on a Varian Cary 50 Bio UV-visible spectrophotometer and were 

baseline corrected, with the samples in solution in a quartz cuvette, with a 1 cm path length. 

Extinction coefficients (ε) were calculated from a linear plot of absorbance (at a particular 

wavelength) against concentration in accordance with the Beer Lambert law (equation 2.1).  

A = εcl 

), l 1-cm1 -= extinction coefficient (M εA = absorbance, The Beer Lambert law. Equation 2.1: 

= path length (cm), c = concentraion (M) 

Emission Spectroscopy 

Emission spectra were obtained from a Horiba John Yvon Fluoromax-4 spectrofluorometer 

and were corrected using correction files included within the FluorEssenceTM software. Analyte 
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solutions were contained within quartz cuvettes of 1 cm pathlength and of sufficient dilution 

with an optical density of no more than 0.2 at the excitation wavelength.  

Lifetime measurements 

Luminescence lifetimes were measured in air-equilibrated H2O solutions by the time-correlated 

single-photon counting method, using an Edinburgh Instruments ‘Mini-τ’ instrument using a 

405 nm, ~70 ps pulsed diode laser excitation source, and with the decay data fitted using the 

supplied software. 

Cyclic Voltammetry 

Cyclic voltammetry was performed in an electrolyte solution of water and 0.1 M NaCl. The 

potential was controlled with an Emstat3+ Potentiostat using PSTrace software. A solvent 

saturated atmosphere of nitrogen was used to degas the sample and all samples were recorded 

under an inert atmosphere of nitrogen. The electrodes used were a glassy carbon working 

electrode, a platinum wire counter electrode and an Ag/AgCl reference electrode. All potentials 

are quoted versus SCE and scan rates of 10-100 mV s-1 were used.  

NMR titrations 

[Co8(L
nap)12](Cl)16 was prepared according to previously published methods.23 For all 

host/guest binding experiments samples were prepared as follows. A stock host solution of 

[Co8L12](Cl)16 (0.1 – 0.2 mM) in D2O  was used and each guest is individually dissolved in 2.5 

ml of the host solution; the mass of guest used varied with the desired concentration and 

solubility of each guest. All binding experiments were performed three separate times; the 

values for binding constants quoted are the average of the three measurements rounded to 1 

significant figure. For the fast exchange cases, the changes in chemical shift were plotted and 

fitted to a 1:1 host:guest binding model. For the slow exchange cases, where separate sets of 

signals for free cage and cage/guest peaks are observed, binding constants were determined by 

deconvolution and integration of the signals. The NMR data was processed using either Bruker 

Topspin 3.2 or 4.0.3 and was fitted to binding isotherms using 14allMaster.xls, which is a 

macro-based Excel fitting program written by Christopher A. Hunter (University of 

Cambridge). 
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Luminescence titrations 

Luminescence titrations were performed by preparing a stock solution of [Os4Zn4(L
nap)12](Cl)16 

(0.025 mM) in deionised water. Guest solutions (0.3 - 3 mM) were made up using stock host 

solution (5 ml) and added in small portions to the quartz cuvette containing the host solution, 

with a luminescence spectrum measured after each addition. Luminescence spectra were 

recorded on a Horiba Jobin Yvon Fluoromax 4 spectrophotometer, with excitation at 550 nm 

and an emission window of 570 – 850 nm. Changes in luminescence intensity with added guest 

concentration were fitted to a 1:1 host:guest binding model. 

X-ray crystallography 

[Os4Zn4(L
nap)12](ClO4)16 diffraction data was collected by Alex Metherell (University of 

Sheffield) on a Bruker Apex-II diffractometer at the University of Sheffield. In each case a 

crystal was removed from the mother liquor, coated with oil, and transferred quickly into a 

stream of cold nitrogen, on the diffractometer to prevent any decomposition due to solvent loss. 

In all cases, after integration of the raw data, and before merging, an empirical absorption 

correction was applied (SADABS) based on comparison of multiple symmetry-equivalent 

measurements.24 The structures were solved by direct methods and refined by full-matrix least 

squares on weighted F2 values for all reflections using the SHELX suite of programs.25 

[Co8(L
nap)12](BF4)16•0.66(TCNB) diffraction data was collected by Stephen Argent and 

Christopher Taylor (University of Warwick) on beamline i-19 at the Diamond Light Source. 

Single crystals of [Co8(L
nap)12)](BF4)16 used for determination of the structure of the 

[Co8(L
nap)12)](BF4)16•TCNB adduct were prepared as described previously.7 The details of the 

refinement performed by Christopher Taylor are described in the published paper associated 

with this chapter.26 
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2.4.2 Synthetic procedures 

Starting Materials 

Metal salts, all organic reagents and guests were purchased from Alfa or Sigma-Aldrich and 

used as received. The ligand L and [Co8(L
nap)12)]Cl16 were prepared according to the published 

methods.3  

Synthesis of [Os(Lnap)3](PF6)2 

L (0.68 g, 1.49 mmol) was dissolved in ethylene glycol (70 ml) by heating to reflux for 1 hour. 

Then OsCl3.6H2O (0.05 g, 0.14 mmol), dissolved in additional ethylene glycol (70 ml) and 

water (2 ml) was slowly dropped into the solution of L for 6 hours and left to reflux for 24 

hours. After cooling to room temperature a saturated aqueous solution of KPF6 was added to 

precipitate the crude product, which was collected by filtration. The filtrate was washed with 

water and then was dissolved in acetonitrile and purified by column chromatography on silica 

by elution with acetonitrile (MeCN)/water/saturated aqueous KNO3 (100 : 4 : 2, v/v/v). The 

main red band was collected and solvent was removed to give a dark red precipitate. The 

product was dissolved in water and aqueous KPF6 was added and solvent extraction was 

performed using dichloromethane (DCM) to yield pure [Os(Lnap)3](PF6)2, from which the 

solvent was removed in vacuo. Yield: 0.06 g, 0.03 mmol, 24%. ESMS: m/z 1664 (M − PF6)
+, 

760 (M − 2PF6)
2+. UV/Vis in MeCN [λmax/nm (10−3 ε/M−1 cm−1)]: 555 (sh), 510 (sh), 425 

(12.5), 400 (sh), 283 (80.4), 226 (149). For conversion to the water-soluble chloride salt, 

[Os(Lnap)3](PF6)2 (30 mg, 0.015 mmol) was mixed with 1x2 Dowex, in distilled water (15 ml) 

and left to stir at room temperature for 4 hours, until the complex had completely dissolved.  

The sample was filtered through a microporous filter before use.  

Synthesis of [Os4Zn4(Lnap)12](ClO4)16 

[Os(Lnap)3](PF6)2 (0.032 g, 0.018 mmol) and Zn(ClO4)2·6H2O (0.067 g, 0.18 mmol) were 

stirred in nitromethane (15 ml)  overnight. The mixture was filtered and then crystallised by 

slow diffusion of di-isopropyl ether into the MeNO2 solution. The pure crystalline product was 

collected by filtration and washed with di-isopropyl ether, methanol, and diethyl ether. Yield: 

0.050 g, 0.005 mmol, 21%. ESMS: m/z 1220.4 (M − 6ClO4)
6+; 1482.2 (M − 5ClO4)

5+; 1881.3 

(M − 4ClO4)
4+ (most intense component of isotope cluster given in each case). For conversion 
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to the water-soluble chloride salt Os•Zn, [Os4Zn4(L
nap)12](ClO4)16 (26 mg, 0.004 mmol) was 

mixed with 1x2 Dowex, in distilled water (15 ml) and left to stir at room temperature for 4 

hours, until the complex had completely dissolved.  The sample was filtered through a 

microporous filter before use. UV/Vis in H2O [λmax/nm (10−3 ε/M−1 cm−1)]: 555 (sh), 510 (sh), 

426 (48), 400 (sh), 287 (310), 227 (560).   

Synthesis of [Os(LH)3](PF6)2 (mixture of fac and mer isomers).  

 3-(2-Pyridyl)pyrazole (0.166 g, 1.14 mmol), OsCl3.6H2O (0.106 g, 0.30 mmol) and ethylene 

glycol (7 ml) were combined in a 10 ml microwave tube, which was then heated in a microwave 

synthesiser (Discovery S, CEM Microwave Technology) to 200 °C for 3h. The solution was 

allowed to cool and an aqueous solution of KPF6 (30 ml) was added. The resulting suspension 

was then filtered over celite to yield a brown precipitate and a red solution. The solution was 

then extracted with several portions of DCM and the solvent was removed in vacuo. The 

resultant precipitate was next purified using column chromatography on silica by elution with 

MeCN/water/saturated aqueous KNO3 (100:5:1, v/v/v) and the first red band was collected and 

the solvent removed in vacuo. The product was dissolved in water, and aqueous KPF6 and 

DCM were added to perform a solvent extraction of the hexafluorophosphate salt of the 

complex into DCM. The solvent was removed by evaporation and the pure product was then 

dried in vacuo. Yield: 0.185 g, 0.20 mmol, 67 %.  The 1H NMR spectrum is broadened by 

hydrogen-bonding aggregation in solution, but the number of signals is consistent with the 1:3 

ratio of fac:mer isomers which results in four distinct ligand environments with equal 

likelihood.15  1H NMR (400 MHz, CD3CN): δ 8.12 (m, 4H), 7.75 (m, 4H), 7.72 (m, 4H), 7.59 

– 7.50 (m, 2H), 7.42 (m, 2H), 7.21 – 7.04 (m, 8H). ESMS: m/z 626.1 (M – 2PF6 – H+)1+, 313.6 

(M – 2PF6)
2+. 

Synthesis of [Os(Lme)3](PF6)2.   

[Os(LH)3](PF6)2 (0.185 g, 0.2 mmol) was dissolved in MeCN (50 ml), to which Cs2CO3 (0.470 

g, 1.4 mmol) and methyl iodide (0.67 ml, 10.8 mmol) were added and the solution was left to 

reflux for 18 hours. The mixture was left to cool, excess Cs2CO3 was filtered off, and then the 

solvent was removed in vacuo. The resultant precipitate was then purified using column 

chromatography on silica by elution with MeCN/water/saturated aqueous KNO3 (100:10:2, 

v/v/v). The main red band was collected and dissolved in water; addition of aqueous KPF6 and 
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DCM allowed solvent extraction of the hexafluorophosphate salt into DCM to be performed. 

Evaporation of the solvent afforded a pure red precipitate. Yield: 0.184 g, 0.19 mmol, 96 %. 

1H NMR (400 MHz, CD3CN): δ 8.14 (m, 4H), 7.86 – 7.70 (m, 4H), 7.68 (m, 4H), 7.66 (d, 1H), 

7.57 (d, 1H), 7.36 (d, 1H), 7.31 (d, 1H), 7.24 – 7.10 (m, 8H), 3.21 (s, 3H), 3.16 (s, 3H), 3.11 

(s, 3H), 3.06 (s, 3H). ESMS: m/z 334.6 (M – 2PF6)
2+. [Os(Lme)3](PF6)2 could be converted to 

its water-soluble chloride salt by ion-exchange with Dowex 1x2 resin, as described above for 

the Os•Zn cage.” 
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 Appendix 

2.6.1 Luminescence titration curves 

 

Figure 2.6.1: Luminescence titration of [Os4Zn4(L
nap)12]Cl16 with 1,2,4,5-tetracyanobenzene 

as guest in H2O, and an inset of the associated 1:1 binding curve. 

 

Figure 2.6.2: Luminescence titration of [Os4Zn4(L
nap)12]Cl16  with 1-nitronaphthalene as 

guest in H2O, and an inset of the associated 1:1 binding curve (quenching limited by 

solubility). 
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Figure 2.6.3: Luminescence titration of [Os4Zn4(L
nap)12]Cl16  with 3-nitrobenzyl alcohol as 

guest in H2O, and an inset of the associated 1:1 binding curve. 

 

 

Figure 2.6.4: Luminescence titration of [Os4Zn4(L
nap)12]Cl16  with 3-methyl-4,5-dinitrobenzyl 

alcohol as guest in H2O, and an inset of the associated 1:1 binding curve. 
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2.6.2 X-ray crystallography data 

Table 2.6.1: Crystal data and structure refinement for Os•Zn (perchlorate salt).  

Nominal formulation [Os4Zn4(L
nap)12](ClO4)16•2MeNO2•4H2O  

Empirical formula C338H278Cl16N74O72Os4Zn4 

Formula weight 8117.80 

Temperature 100(2) K 

Wavelength 0.71073 Å 

Crystal system Trigonal 

Space group R-3 

Unit cell dimensions a = 28.814(2) Å           α = 90˚ 

b = 28.814(2) Å           β = 90˚ 

c = 52.971(4) Å           γ = 120˚ 

Volume 38087(6) Å3 

Z 3 

Density (calculated) 1.062 Mg/m3 

Absorption coefficient 1.328 mm-1 

Crystal size 0.32 x 0.21 x 0.16 mm3 

Theta range for data collection 0.902 to 19.826˚ 

Index ranges -27<=h<=27, -24<=k<=27, -50<=l<=49 

Reflections collected 86465 

Independent reflections 7688 [R(int) = 0.1465] 

Completeness to theta = 19.826˚ 99.6 % 

Absorption correction Semi-empirical from equivalents 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 7688 / 582 / 726 

Goodness-of-fit on F2 1.616 

Final R indices [I > 2σ(I)] R1 = 0.134, wR2 = 0.393 

R indices (all data) R1 = 0.193, wR2 = 0.438 

 

Data were collected at the University of Sheffield on a Bruker Apex II diffractometer with a 

CCD detector. CCDC deposition number: 1871131 14  
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Table 2.6.2: Crystal data and structure refinement for [Co8(L
nap)12](BF4)16•0.66(TCNB).  

Nominal formulation [Co8(L
nap)12](ClO4)16•(TCNB)0.66•(MeOH)38(H2O)2 

Empirical formula C380.4H421.3N74.6O40B16Co8 

Formula weight 8538.07 

Temperature 100(2) K 

Wavelength 0.6889 Å (synchrotron) 

Crystal system Monoclinic 

Space group C2/c 

Unit cell dimensions a = 32.99046(15) Å                α = 90˚  

b = 29.89184(14) Å                β = 95.8843(4)˚ 

c = 39.71423(18) Å                γ = 90˚ 

Volume 38957.7(2) Å3 

Z 4 

Density (calculated) 1.456 Mg/m3 

Absorption coefficient 0.41 mm-1 

Crystal size 0.80 x 0.70 x 0.16 mm3 

Theta range for data collection 0.89 to 36.091˚ 

Index ranges -55<=h<=54, -50<=k<=49, -64<=l<=67 

Reflections collected 420787 

Independent reflections 94621 [R(int) = 0.058] 

Completeness to theta = 

36.091˚ 

92.8 % 

Absorption correction Semi-empirical from equivalents 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 94621 / 5859 / 2331 

Goodness-of-fit on F2 0.974 

Final R indices [I > 2σ(I)] R1 = 0.080, wR2 = 0.259 

R indices (all data) R1 = 0.132, wR2 = 0.292 

 

Data were collected at beamline i-19 at the Diamond Light Source. CCDC deposition number: 

1884249 
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 Introduction  

Photoinduced electron transfer from the array of chromophores in a cage assembly, to bound 

guests, is an important topic to study as it can give rise to the possibility of new photo-catalytic 

reactions of host/guest complexes. As the inside of a cage is quite a different environment from 

the bulk solution phase where reactions normally happen, reactions that can occur in this 

environment have the potential to follow different pathways from those occurring in the bulk 

solution.1 Combining this with the availability of chromophores incorporated in the cage 

structure means that, with the possibility of cage-to-guest photoinduced electron transfer new 

avenues can be opened in the area of photochemistry and photocatalysis. For this to be possible, 

we first need to demonstrate that photoinduced electron transfer can occur within the host/guest 

systems.  

To do this, and detect potentially very short-lived species, pump-probe techniques can be 

employed.  Pump-probe spectroscopy is used to study the dynamic processes in chemical 

compounds.2 It operates by 'pumping' the desired complex with a short-lived pulse of 

electromagnetic radiation to produce the excited state, and then detecting ('probing') the 

resultant excited state with a separate pulse at a range of different time delays after the 

excitation.3 Also known as transient absorption spectroscopy, this technique is used to observe 

the dynamics and electronic properties of the excited state in question.  Often this may just be 

information on the lifetime of the excited state, which corresponds to how long it takes for the 

charges to recombine and the transient absorption signal associated with the excited state to 

disappear. This information is very useful for understanding how complexes interact with light 

and the processes that are involved with this. 

3.1.1 Previous group work 

Previous work in the group has included the study of an octanuclear cadmium-based cage 

([Cd8(L
napW)12]

16+), which has naphthalene-based emission from the array of twelve ligands.4 

This cage has been shown to perform photoinduced electron transfer or photoinduced energy 

transfer to bound guests. Fluorescence titrations showed quenching of the cage fluorescence 

on titration with energy- or electron-accepting guests which occupy the cavity.  In addition, in 

in one instance, UV/vis transient absorption spectroscopy demonstrated the appearance of a 



Chapter 3 – Photoinduced Electron Transfer Between Os(II) Cage and Bound Guests 

 

71 

 

short-lived charge-separated (naphthyl)•+/(TCNB)•– state arising from cage-to-guest 

photoinduced electron-transfer following excitation of the naphthyl groups.4  

3.1.2 Aim 

From the work in chapter 2, given the substantial quenching of the cage luminescence (Os•Zn), 

in the presence of appropriate guests, the studies reported in this chapter explore the excited-

state behaviour of the Os•Zn cage and the cage/guest assemblies using ultrafast UV/vis 

transient absorption (TA) spectroscopy. Due to the relative redox potentials of Os•Zn and the 

guests (the excited-state Os unit is a good electron donor and the guests are good electron 

acceptors), we would expect PET to occur from the cage to the guest, generating charge-

separated H+/G- pairs (scheme 3.1.1). These can then be detected using TA spectroscopy and 

their lifetimes measured, as the characteristic spectroscopic signatures of the radical species 

that are formed can be probed and analysed. These results can then inform further potential 

developments, such as possible photo-redox catalysis or simultaneous multiple electron 

transfer. In this work, the transient absorption experiments were performed in aqueous 

solutions, with ~40 fs pulses at 400 nm excitation wavelength.  

 

Scheme 3.1.1: Scheme to show general process of guest encapsulation and photoinduced 

electron transfer between host and guest. 
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 Results and Discussion 

3.2.1 Transient absorption studies of Os•Zn and Os(Lme)3  

Firstly, UV/Vis transient absorption spectra of Os•Zn were recorded. The aqueous cage 

solution was excited at 400 nm, using 3 mW / 40 fs pulses, and probed in the UV/vis absorption 

range (350-700 nm) at a sequence of time delays up to 7.5 ns after excitation. The set of spectra 

shown in figure 3.2.1 was produced. The major bleaches at 425 nm and 490 – 590 nm reflect 

the loss of the MLCT absorptions of the ground state absorption spectrum, whereas the peaks 

at 360 nm and 620 nm are associated with new transient species being formed. The absorption 

at 360 nm has been tentatively assigned to the pyridyl-pyrazole•- (pypz) radical anion as this is 

the spectral region characteristic of ligand-centred radicals: however, there is no definite 

confirmation of this assignment, as the reduction of pypz complexes is irreversible, so they 

cannot be investigated by spectro-electrochemistry. Nevertheless, we would expect changes in 

the π-π* absorption manifold in the UV/Vis region when a ligand is transiently reduced to its 

radical anion in the excited state. 

 

Figure 3.2.1: Transient absorption spectra of Os•Zn at a series of time delays from 1 ps - 5 

ns in H2O, following 400 nm, 40 fs pulse excitation. 
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Assignment of the 620 nm excited-state absorption comes from the analysis of previous 

spectro-electrochemical studies of an analogous cage, [Os4Cd4(L
nap)12](ClO4)16, performed by 

Ashley Wragg (figure 3.2.2). This experiment showed the formation of the OsIII cage species 

using UV/vis absorption spectroscopy. As is clear in figure 3.2.2a, the OsII-based MLCT bands 

at 400-600 nm reduce in magnitude and a new band relating to the OsIII oxidised species appears 

at ~650 nm. This difference is made even clearer when the OsII cage spectrum is subtracted 

from that of the OsIII cage (figure 3.2.2b): the changes in the spectra following metal-centred 

oxidation now match the appearance of the TA spectrum in figure 3.2.1. Therefore, the 

transient at 620 nm can reasonably be assigned to the transient oxidation of an OsII vertex to 

OsIII in the MLCT excited state.   

 

Figure 3.2.2: (a) UV/Vis spectra of the Os4Cd4 cage in the fully reduced OsII form (black), 

and the fully oxidised OsIII form (red). (b) Difference between the two UV/Vis spectra 

showing spectroscopic changes associated with oxidation of OsII to OsIII. 

 

To study the kinetics of the Os•Zn cage excited state, global analysis was performed on the 

TA data, using the program Glotaran v.1.5.1.5 The lifetime data could be fitted to a 3-

component model.  A long-lived (>50 ns) component is ascribed to the normal slow decay of 

the 3MLCT excited state.  In principle this lifetime should match what we see form 

luminescence emission (337 ns, chapter 2).  A large difference in these two values is expected 

however, as the short 5 ns time scale of the TA experiment cannot extrapolate the data for a 

large enough time period to give an accurate (337 ns) value of this very long-lived component.  
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The global analysis of the data also revealed two additional faster processes that were not 

detected by time-resolved luminescence measurements, one with a lifetime of <1 ps and the 

other with a lifetime of ~1 ns. The shorter of these lifetimes is likely to be due to vibrational 

cooling;6 and the 1 ns component is proposed to be due to a structural distortion of the metal 

coordination sphere in the excited state, which decays fairly slowly due to the rigidity of the 

cage structure.  Figure 3.2.3 shows the decay-associated spectra of the complex, i.e. the 

absorption profile associated with each of the lifetime components of the system. 

 

 

Figure 3.2.3: Decay-associated spectra for the free cage Os•Zn in aqueous solution fitted to a 

3-component sequential model. The figure on the left shows the original spectra, whereas the 

figure on the right is normalised. 

The mononuclear complex [Os(Lme)3]Cl2 is a good mononuclear model for the OsII
 corner units 

of the cage, and its behaviour can be compared with those of Os•Zn to determine the origins 

of the excited state behaviour. Figure 3.2.4 shows the set of TA spectra at different time delays 

after excitation of [Os(Lme)3]Cl2, which are very similar to the spectra of Os•Zn, with the same 

bleaches at 435 and 490-590 nm, as well as the equivalent transients at 360 nm and 620 nm, 

showing the typical formation and decay of a 3MLCT state.  



Chapter 3 – Photoinduced Electron Transfer Between Os(II) Cage and Bound Guests 

 

75 

 

 

Figure 3.2.4: Transient absorption spectra of [Os(Lme)3]Cl2 at a series of time delays from 1 

ps - 5 ns in H2O, following 400 nm, 40 fs pulse excitation. 

As with Os•Zn, the transient spectrum does not decay completely within the 5 ns time scale, 

with neither the transients nor the bleaches returning fully to the ground state. This again 

suggests the presence of a much longer-lived component: as it has already been determined 

through emission experiments, from which the lifetimes of [Os(Lme)3]Cl2 were found to be 97 

and 206 ns (relating to the fac and mer isomers, chapter 2). For this work, the data was modelled 

using global analysis, with a 3-component model being used and the 2 long-lived components 

(97 and 206 ns) were fixed as just one long-lived component. Figure 3.2.5 shows the decay-

associated spectra of [Os(Lme)3]Cl2, in which the long lifetime component has fit to the value 

of 30 ns, and there are two shorter-lived species of 1 ps and 140 ps. Again, the shortest decay 

constant is attributed to vibrational cooling; and the 140 ps constant is potentially associated 

with a distortion of the metal coordination sphere in the excited state. Overall, the excited-state 

behaviour of the Os(II) centre in [Os(Lme)3]Cl2 is very similar to that of the Os(II) centres in 

Os•Zn, which  confirms that the naphthalene spacer of Lnap and the pendant pyrazolyl-pyridine 

units, that are coordinated to Zn(II) ions which complete the cage assembly, have very little 

effect on the photophysical properties of the OsII units in the complete cage.   
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Figure 3.2.5: Decay-associated spectra for [Os(Lme)3]Cl2 in aqueous solution fitted to a 3-

component sequential model. The figure on the left shows the original spectra, whereas the 

figure on the right is normalised. 

3.2.2 Photoinduced electron transfer within host/guest assemblies 

As shown in chapter 2, it has been proven by NMR, luminescence spectroscopy and X-ray 

crystallography that a variety aromatic organic molecules can bind inside the Os•Zn cavity. 

For studying the photoinduced electron transfer in these cage/guest assemblies, there are some 

requirements of the guests as follows; they need to bind in the cage (size, shape, water 

solubility), they need to be sufficiently electron accepting (electron-deficient aromatic ring) 

and also that their associated radical anion has a characteristic absorption in the UV/visible 

region of the electromagnetic spectrum to allow detection by UV/Vis TA spectroscopy. 

As discussed previously, when the guest binds in the cage and the cage is irradiated with light 

to photo-excite the Os(II) units, it is expected that photoinduced electron transfer will occur 

from the cage to the electron accepting guest, to form a cage•+/guest•- state. Therefore, to 

observe this transition state, the absorption profile of the guest radical anion needs to be 

determined, as well as the oxidised cage profile. The latter was discussed in section 3.2.1, with 

the cage oxidation appearing at ~620 nm. For this work, 3 guests have been selected (as 

depicted in scheme 3.2.1), including 1,2,4,5-tetracyanobenzene (TCNB), 1,4-naphthoquinone 

(NQ) and 1-nitronaphthalene (NN). These guests are all of appropriate size and hydrophobicity 

to bind in the cage and their properties that were discussed in chapter 2 and are described in 



Chapter 3 – Photoinduced Electron Transfer Between Os(II) Cage and Bound Guests 

 

77 

 

table 3.2.1.  They are all sufficiently electron accepting to quench the Os-based MLCT excited 

state (reduction potentials <1.3 V vs. SCE).  

 

Scheme 3.2.1: Structural formulae of guests used in this work [1,2,4,5-tetracyanobenzene 

(TCNB), 1,4-naphthoquinone (NQ), and 1-nitronaphthalene (NN)]. 

 

Table 3.2.1: Redox and photophysical properties of the three guest molecules; TCNB, NQ, 

NN, and their binding constants inside the cage cavity (all determined in this work, unless 

referenced). 

 
EA/A- / V 

vs. SCE 

K (lum) 

/M-1 

K (NMR) 

/M-1 

λmax /nm 

(G) 

λmax /nm 

(G radical anion) 

TCNB -0.66[7] 4 x 103 3 x 103 300, 330[7] 462 (436, 414, 375, 354)[7] 

NQ -0.71[8] 2 x 103 2 x 103 340, 440[8] 390, 550[8] 

NN -0.99 8 x 103 3 x 103 340 465, 272 

 

The absorption spectrum of each guest radical anion needs to be determined, so that the TA 

spectra of the H•+/G•- states can be assigned. For TCNB and NQ these values were readily 

found in literature from previous studies on these molecules.7,8 However, for NN these values 

were less easily found, so a spectroelectrochemistry experiment was performed, where a 

solution of NN in acetonitrile was cooled to -20 °C and reduced in situ at a potential beyond 

its first reduction potential (-1.0 V) potential,  until the absorption spectrum had stopped 

changing. The spectrum in figure 3.2.6 was achieved, which shows the neutral NN absorption 
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as a dark grey line and the reduced species as a red line. There is a clear increase in absorption 

at 465 nm, where there is a new sharp peak, as well as an increased absorption at 220 nm.  

 

Figure 3.2.6:  UV/Vis absorption data from a spectroelectrochemistry experiment showing 

neutral NN (black line) and the mono-reduced radical anion NN•– (red line). 

3.2.2.1 Transient absorption spectra of the host/guest assemblies 

To perform the transient absorption studies on the host/guest complexes (H•G), a maximum 

concentration of guest (0.4-1.5 mM) was dissolved in cage solution (0.15 mM) in water, so that 

a significant proportion of cage molecules were filled with bound guest (>70%, determined 

through the individual binding constants (table 3.2.1)). Ideally, close to 100% of the cage would 

contain bound guest, however this was prevented by the lack of water solubility of the guests 

that limited the concentrations that could be achieved.  To be consistent with the studies of free 

Os•Zn, all of the experiments were performed by exciting the solution at 400 nm, with 3mW / 

40 ps pulses, and a random stepping order of delay times was used to minimise any 

compounding effects of probing the sample at consequent delay times. The delay periods were 

-5 to 5000 ps, and all of the solutions were stirred whilst the experiments were performed to 

minimise any spot degradation from the laser. The occurrence of any photoinduced electron 

transfer will be signalled by differences between the TA spectral features and the kinetic 

behaviour of free Os•Zn and the Os•Zn/guest complexes. 
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1,2,4,5-Tetracyanobenzene as guest 

TCNB was the first guest to be studied, due to its high intensity sharp absorption band of the 

radical anion at around 460 nm. Upon excitation of the Os•Zn/TCNB complex,  the TA spectra 

in figure 3.2.7 were observed, which on initial inspection, look very similar to that of the free 

cage Os•Zn. The strong excited-state absorption from the ca. 30% of unoccupied cage in the 

solution masks any less intense and shorter-lived cage/guest signals that may be occurring. 

However, when looking more closely, there is a small bulge in the TA spectra in the region of 

450-460 nm, where you would expect to see a transient signal associated with the radical anion 

of the guest.  

 

Figure 3.2.7: Transient absorption spectra of Os•Zn/TCNB at a series of time delays from 1 

ps – 5 ns. 

To determine if there is any indication of PET, further analysis needed to be completed to 

remove any contribution of the unoccupied cage. To do this, subtractions of the data were 

performed, taking the spectrum associated with the longest time delay (5 ns) from the spectra 

recorded at shorter delay times, to try to uncover any shorter-lived components. Figure 3.2.8 

shows the result of this, starting at a minimum of 1 ps up to 1 ns, with arbitrary delays chosen 

in between. There is a large transient signal appearing at about 465 nm and a smaller peak at 

640 nm. The peak at 465 nm clearly relates to the radical anion absorbance of TCNB (462 nm 
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in the literature), and the broad peak at 640 nm can be assigned to the formation of OsIII as 

previously discussed. What is also clear is that there appears to be a grow-in of the 465 nm 

peak between 1 ps to 50 ps: it grows to maximum intensity by 50 ps and has decayed by 1 ns.  

 

Figure 3.2.8: Spectral subtractions of Os•Zn/TCNB TA spectrum at 5 ns delay from various 

shorter time delays  

To then uncover the decay kinetics of this state, global analysis was performed and the results 

compared with the kinetic behaviour of free Os•Zn.  A 4-component model was fit (figure 

3.2.9). A long lifetime component (>20 ns) was attributed to the unoccupied cage; and the sub-

ps component was again assigned to vibrational cooling. In addition to these decay constants, 

two additional constants were associated with the spectra, with values of 40 ps and 170 ps. The 

shorter of these is assigned to the grow-in of the Os3+/guest•- charge-separated state, as a 

consequence of forward PET from the 3MLCT state of one of the OsII units of the cage to the 

guest molecule. The 170 ps component is then attributed to the decay of this Os3+/guest•- excited 

state by back electron-transfer and is consistent with “geminate recombination” of a short-lived 

charge-separated state. The spectral features of the decay-associated spectra associated with 

these lifetime components also confirms the assignment of the decay constants to these states, 

as we can see a negative bleach at 465 nm relating to the grow-in of the radical anion and a 

transient of the decay of this radical anion at 465 nm (similar to figure 3.2.8 above).   
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Figure 3.2.9: Decay-associated spectra (DAS) derived from TA data of Os•Zn/TCNB 

system showing the spectra associated with the four components of the global fit. Left: 

original DAS data, Right:  normalised DAS with maximum positive and negative features 

fitting within a scale of ∆OD ±1.   

To double check this assignment, single point kinetic analysis at 465 nm was also performed 

(figure 3.2.10) using Origin 2017 software. We can clearly see a grow-in of this signal until 

~50 ps and then a decay which occurs over ca. 200 ps, subsequently leading into the long-lived 

decay of the 3MLCT of Os•Zn. This complete set of analysis shows strong evidence for PET 

from the cage to the guest that was initially proposed. 

  

Figure 3.2.10: Left: observed single-point kinetics at 465 nm (black trace) with the result of 

the 4-component sequential global fit (red trace) superimposed. Right: an expansion of the 

early-time data showing the grow-in of the charge-separated state. 
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1,4-Naphthoquinone as guest 

To extend the scope of this study two more cage/guest systems were analysed. The radical 

anion of 1,4-naphthoquinone (NQ) •– has a very different anion absorption spectrum from that 

of (TCNB)•–: rather than a sharp absorption peak at ca. 460 nm it has a broader absorption band 

centred at 390 nm and a less intense broad band between 500 - 600 nm. Initially, it was hoped 

that the absorption band at 390 nm would be visible in the charge-separated excited state as it 

has a higher intensity than the broad band between 500 – 600 nm, however due to the sample 

being excited at 400 nm, the scatter from the excitation beam masked the 390 – 410 nm region 

in the TA spectrum, obscuring this signal. 

 

Figure 3.2.11: Spectral subtractions of Os•Zn/NQ TA spectrum at 5 ns delay from spectra 

recorded at various shorter time delays, revealing the absorption feature generated by the 

(NQ)•– species 

As shown with TCNB, no obvious differences were apparent in the primarily-generated TA 

data, between free Os•Zn and the Os•Zn/NQ systems, so careful subtractions of the data were 

once again necessary to detect any evidence of the Os3+/guest•- charge-separated state. 

Subtractions of the spectrum recorded after the longest time delay (5 ns) from the spectra 

recorded at a series of shorter time delays (figure 3.2.11), were performed and revealed a broad 

transient signal between 500 – 600 nm. This peak is consistent with the corresponding broad 
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peak in the absorption spectrum of the radical anion of (NQ)•–.8  In contrast to the Os•Zn/TCNB 

system, the Os•Zn/NQ system does not provide clear evidence of the expected grow-in of the 

charge-separated state.  The reason for this is unclear, but it may be due to the lower intensity 

of the signal being monitored in the (NQ)•– absorption spectrum. 

To ascertain the kinetic profile of the Os•Zn/NQ system and to see if there is any evidence of 

a grow-in and decay of the Os3+/(NQ)•- state, global analysis was once again performed. A 

four-component model was fit - with the decay-associated spectra shown in figure 3.2.12. Once 

again, there is a long lifetime component of >20 ns associated with the free cage present in the 

cage/guest equilibrium; and a sub-ps lifetime component due to vibrational cooling. These are 

joined by a 14 ps component, which we can now attribute to the grow-in of the Os3+/(NQ)•- 

charge-separated state, and a 240 ps component attributed to the decay of Os3+/(NQ)•- by back 

electron-transfer.  The shape of these spectra are harder to match to the absorption profile of 

free NQ•-, due to their broadness, as they do not stand out clearly against the background decay 

of unoccupied Os•Zn cage. 

 

Figure 3.2.12:  Decay-associated spectra (DAS) derived from TA spectroscopic data of the 

Os•Zn/NQ system showing the spectra associated with the four components of the global fit. 

Left: DAS data, Right: normalised DAS with maximum positive and negative features fitting 

within a scale of ∆OD ±1.   

Single point kinetic analysis at 550 nm (the middle of the NQ•– radical anion peak), was 

performed, which show a grow-in of the peak until ~20 ps and then a decay until ~500 ps 

(figure 3.2.13). This is in reasonable agreement with the DAS and shows comparable behaviour 

to the Os•Zn/TCNB system. 
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Figure 3.2.13: Left: observed single-point kinetics at 550 nm (black trace) with the result of 

the 4-component sequential global fit (red trace) superimposed. Right: an expansion of the 

early-time data showing the grow-in of the charge-separated state. 

1-Nitronaphthalene as guest 

1-nitronaphthalene (NN) was the final system to be tested and it proved challenging to use as 

a guest, due to its poor water solubility. Therefore, the concentration of NN that could be used 

was only 0.4 mM compared to 1.5 mM with TCNB and NQ. This meant that the fraction of 

Os•Zn cages that had guests bound was only 65 % compared to >77% for TCNB and NQ, 

meaning in turn that any signals arising from the Os•Zn•+/NN•- charge-separated state should 

be weaker. Despite this, TA experiments were performed and, as before, subtractions of the 

TA spectrum recorded after a 5 ns delay, from spectra recorded with shorter time delays, was 

achieved (figure 3.2.14) and revealed a clear transient signal characteristic of NN•-. As expected 

from the spectro-electrochemistry experiment, this radical anion peak is at around 470 nm, 

confirming the presence of NN•-. In addition to this, there is a corresponding broad signal at 

630 nm, which is assumed to be associated with the presence of Os3+. 
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Figure 3.2.14: Spectral subtractions of Os•Zn/NN TA spectrum at 5 ns delay from various 

shorter time delays.  

The time-resolved decay of the Os•Zn/NN complex was fit to a 4-component decay model, 

revealing four associated decay lifetimes (figure 3.2.15): unoccupied cage (67 ns), vibrational 

cooling (1.2 ps), grow-in of Os•Zn•+/NN•- state (19 ps) and decay of Os•Zn•+/NN•- state (225 

ps). This behaviour is exactly similar to what was observed in the other two cage/guest systems 

with the grow-in and decay lifetimes for the charge-separated state consistent with what was 

observed using TCNB and NQ. With the spectra associated with these decays, there is the usual 

shape for the very short and long lifetime components; and we can also observe a maximum in 

the spectra of the 225 ps component at ~470 nm, which can be plausibly assigned to the 

transient signal of the NN•– species. 
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Figure 3.2.15:  Decay-associated spectra (DAS) derived from TA spectroscopic data of the 

Os•Zn/NN system showing the spectra associated with the four components of the global fit. 

Left: original DAS, Right: normalised DAS with maximum positive and negative features 

fitting within a scale of ∆OD ±1. 

 

The single point kinetic traces were also recorded for the peak at 470 nm, where once again a 

grow-in with a lifetime of ~20 ps is revealed, which then decays with a lifetime of ~200 ps, 

indicative of the “geminate recombination” of the charge-separated state (figure 3.2.16).  

 

 

Figure 3.2.16: Left: observed single-point kinetics at 470 nm (black trace) with the result of 

the 4-component sequential global fit (red trace) superimposed. Right: an expansion of the 

early-time data showing the grow-in of the charge-separated state.  
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3.2.2.2 Comparison of three cage/guest assemblies 

As a summary and comparison of the three different guest assemblies used, figure 3.2.17 shows 

the key transient signals of the charge-separated state, relating to the spectrum of the oxidised 

cage (Os3+ centre) cage cation and to the spectrum of each radical anion. This figure provides 

a clear illustration of the similarities/differences between the transient absorption spectra of the 

three cage/guest assemblies.    

 

Figure 3.2.17: Transient absorption spectra obtained by subtracting spectra at selected 

shorter time delays (5 ps to 1 ns) from a spectrum with a time delay of 5 ns, for the 

complexes of Os•Zn with the 3 different guests (i) TCNB, (ii) NN and (iii) NQ. Arrows 

denote the direction of change with time. 
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Table 3.2.2 provides a summary of the lifetimes of the grow-in and decay processes of the 

charge-separated states. These values are from the analyses of different samples, which have 

all undergone multiple independent fits, and averaged to get a mean value and standard 

deviation. The values of these lifetimes are all within error of each other and the grow-in 

averages to ~20 ps, with the subsequent decay rate being ~200 ps. This would suggest that the 

same forward PET and geminate recombination processes are happening within each sample. 

The small variations in these values could be due to the different electron accepting ability of 

the guests (table 3.2.1), and different geometries for the cage/guest complexes.  

Table 3.2.2: Summary of lifetimes of the grow-in and decay of the Os•Zn•+/guest•- charge-

separated state 

 

Grow-in and decay 

lifetimes for 

Os3+/G•– state /ps 

TCNB 

21 ± 14 (grow-in) 

205 ± 60 (decay) 

NQ 

13 ± 4 (grow-in) 

185 ± 95 (decay) 

NN 

18 ± 5 (grow-in) 

185 ± 75 (decay) 

 

To fully analyse the appearance of the decay-associated spectra of the geminate recombination 

step, the respective decay associated spectra of the >20 ns constant was subtracted from the 

~200 ps component for each of the 3 guests (figure 3.2.18). This analysis proves that the ~200 
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ps decay component is conclusively related to the disappearance of the transient of the TA 

spectrum of the charge-separated Os3+/G•– species in every case.   

 

Figure 3.2.18: Excited-state spectra of each of the three Os•Zn/guest complex assemblies, 

obtained by subtracting the spectrum associated with the long decay constant from the 

spectrum associated with short decay constant to emphasize the short-lived components 

(TCNB, purple; NN, red; NQ, green). 

3.2.2.3 Control experiments 

Finally, control experiments were performed to confirm that the features in the TA spectra were 

due to PET in the cage/guest assemblies and not just from excitation of the guest alone. Control 

experiments also confirm that the charge-separated states arise because of the guest being 

bound inside the cage cavity and are not just associated with guest interaction with the external 

surface of the cage or by collisional interactions of the chromophore and quencher in solution. 

Firstly, the guests were excited in TA experiments on their own, in an aqueous solution, without 

the presence of the cage, and probed using the same experimental conditions. As TCNB and 

NN don’t absorb/absorb very minimally in the ground state at 400 nm the resultant spectra had 

no significant new peaks, and it can therefore be concluded that the TCNB•- and NN•- peaks 

observed in the presence of Os•Zn cage were not due to direct excitation of these guest 

molecules. NQ on the other hand, does absorb at 400 nm, however, as shown in figure 3.2.19, 

the transient feature that occurs is at 650 nm, which doesn’t overlap with the 500  - 600 nm 
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transient region that is present in the Os•Zn/NQ system. It is therefore clear that direct 

excitation of NQ was not responsible for the results discussed in section 3.2.2.  

 

Figure 3.2.19: Transient absorption spectra of 1,4-naphthoquinone in water, at time delays of 

1 ps – 5 ns. 

Secondly, to prove that this excited state was being formed from interactions that are happening 

within the cage, as opposed to just collisional effects, a strongly binding non-redox active 

competing guest was added to the solution. Cylcoundecaonone (C11) is known to bind in the 

cage with binding constants of the order of 106 M-1, which is far higher to that of the guests 

used in this study, so will displace the other guests from the cage and allow the original free 

cage dynamics to be restored. 

For this experiment, the Os•Zn/TCNB complex was used, as its charge-separated state showed 

the most prominent spectral differences compared to free Os•Zn, due to the sharp and intense 

absorption peak of (TCNB)•– and the reasonable water solubility of this guest. Figure 3.2.20 

(blue line) shows the single point kinetics of Os•Zn/TCNB at 460 nm after excitation, as seen 

before in figure 3.2.10, with clear grow-in and decays of the charge separated state. As well as 

this, the black line represents the single point kinetics of the empty Os•Zn cage at 460 nm, 

with the charge-separated state clearly being absent. The green line represents the single point 

kinetic curve recorded at 460 nm which is observed when cycloundecanone is added to the 

solution of Os•Zn/TCNB, displacing the guest from the cavity. From this, the loss of the short-
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lived grow-in and decay components of the charge-separated state are clearly apparent and the 

restoration of the free cage excited state kinetics is observed. This confirms that the ~20 ps and 

~200 ps components in each case (cf. blue line in Fig. 3.2.20), are associated with PET from 

the cage to the guest inside the cavity and this does not occur when C11 is bound and the TCNB 

guest is free in solution.  

 

 

Figure 3.2.20: Excited state decay kinetics obtained from transient absorption spectroscopy 

data from the Os•Zn/TCNB complex in water, at 460 nm. The traces correspond to free 

Os•Zn (black); the Os•Zn/TCNB complex (blue); and Os•Zn/TCNB/cycloundecanone 

(green). 

Finally, the results of the TA experiment from the Os•Zn/TCNB system were compared with 

those from a similar experiment on the [Os(Lme)3]Cl2/TCNB. For this, Os•Zn was replaced 

with 4 equivalents of [Os(Lme)3]Cl2, so that the same number of OsII chromophores were 

present in solution and so that there was the same optical density of the solution upon 

excitation. Figure 3.2.21 shows the data subtractions that were a result of this, showing that 

there is no longer a peak at 465 nm associated with the (TCNB)•– radical anion. This confirms 

that it is not only the presence of the OsII chromophores in the cage, that accounts for the 
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Os3+/G•– excited state formation, and that the assembly of these chromophores into the cage 

structure is actually essential for the PET process to occur. 

  

 

Figure 3.2.21: Transient absorption spectra obtained by subtracting the spectrum recorded of 

the longest time delay (5 ns) from the spectra at shorter time delays (1 ps to 1 ns). Top: 

Os•Zn/TCNB system. Bottom: [Os(Lme)3]Cl2 /TCNB system.  
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 Conclusions 

The Os•Zn cage and [Os(Lme)3]Cl2 complex exhibit similar transient absorption profiles, with 

long-lived decay kinetics (>20 ns) associated with decay of the expected 3MLCT state, as well 

as shorter lived components (1 ns and 140 ps respectively), assigned tentatively to the distortion 

of the metal coordination sphere, as well as an additional sub-ps vibrational cooling component. 

The cage/guest assemblies are capable of effecting photoinduced electron-transfer from the 

Os•Zn cage to any of three different electron-deficient aromatic guests. These guests bind in 

the cage cavity, and in each case give an Os•Zn•+/guest•- charge-separated state with a lifetime 

of ~200 ps.  The transient absorption spectra identified spectral features associated with the 

guest radical anion for each system and separate grow-in and decay processes were seen for 

each of these states. Control tests proved that the guest needed to be bound inside the cage 

cavity for these processes to occur, because addition of a competing (photophysically innocent) 

guest removed the short-lived spectral features associated with Os•Zn•+/guest•- formation and 

additionally, the control experiment where the cage was replaced with [Os(Lme)3]Cl2 units, 

confirms this.  

The ability of these photoactive cages to bind a guest in a cavity surrounded by multiple 

luminophores, and to then be involved in photophysical processes with bound guests, offers 

interesting possibilities in areas such as photoredox catalysis of bound guests, and even 

multiple accumulative electron transfer. 
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 Experimental 

3.4.1 Experimental techniques 

UV/Vis Spectroelectrochemical measurements  

Spectroelectrochemical measurements were performed using a home-built OTTLE cell in dry 

acetonitrile at 253 K,9 with a Pt mesh working electrode, a Pt wire counter electrode and Ag 

wire pseudo-reference electrode. The UV/vis spectra were performed using a Cary 5000 

spectrophotometer. 

Transient Absorption Spectroscopy 

The ultrafast transient absorption setup used consists of a commercial detection instrument 

(Helios, Ultrafast Systems) and the following laser system: a Ti:Sapphire regenerative 

amplifier (Spitfire ACE PA-40, Spectra-Physics) providing 800 nm pulses (40 fs fwhm, 10 

kHz, 1.2mJ).  Sample excitation was provided by doubling a portion of the 800 nm output, in 

a β-barium borate crystal within a commercially available doubler/tripler (TimePlate, Photop 

Technologies), yielding 400 nm pulses. White light supercontinuum probe pulses were 

generated in situ using a portion of the Ti:Sapphire amplifier output, focused onto a CaF2 crystal, 

allowing for the generation of light spanning 340 nm – 720 nm. Detection was performed with 

a CMOS sensor for UV/Vis spectra. The pump and probe polarisations were set to a magic 

angle geometry. The data processing was performed using Origin 2017 and Glotaran 1.5.1.5 

Samples were all made up in distilled water, with [Os4Zn4(L
nap)12]Cl16 (0.15 mM) or 

[Os(Lme)3]Cl2 (0.6 mM), and guests 1,2,4,5-tetracyanobenzene (1.5 mM), 1,4-naphthoquinone 

(1.5 mM) and 1-nitronaphthalene (0.4 mM).  
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 Introduction 

Single electron transfer has been well studied for many years, with photo-induced electron 

transfer reactions being some of the best understood processes in chemistry.1 While single 

electron transfer is important in many chemical and biological systems, the exploration of 

electron transfer (ET) is developing from single one-electron reactions to coupled multistep 

and multi-particle processes, for example, multi-electron redox chemistry. Multi-electron 

events are vital for the applications of molecular electronics, solar energy conversion and fuel 

cells.1 Biological enzymes partake in multi-electron catalysis, for example, cytochrome 

oxidase reduces O2 by four electrons; these reactions are very complex and the enzymes 

organise multi-electron delivery and stabilize reactive intermediates, as well as coupling 

covalent bond chemistry.1  

Coupled electron transfer reactions also play a key role in biological energy conversion 

processes, most importantly the synthesis of adenosine triphosphate (ATP) from adenosine 

diphosphate (ADP) using primary energy sources (e.g. light/food).2 Multi-electron transfer is 

also of upmost importance for solar energy photochemistry, e.g. CO2 reduction and water 

oxidation, which are multi-electron redox processes.3 For these reasons, the research into multi-

electron processes in both molecules and molecular assemblies is a topic of high current 

importance.  

One area that is of key interest is the competition between sequential and concerted 

mechanisms. Stepwise ET mechanisms typically occur through the process summarised in 

equation 1, where two-electron transfer happens through the formation of an intermediate 

radical anion, or less typically through equation 2, which mimics a concerted mechanism 

(equation 3), where both one-electron transfer steps occur within a collision complex and no 

evidence of a radical anion reaction intermediate appears.4 

D2- + A ⇋ [D2-···A] ⇋ [D-···A-] ⇋ D- + A- ⇋ [D-···A-] ⇋ [D···A2-] ⇋ D + A2-   (1) 

Conventional stepwise mechanism 

D2- + A ⇋ [D2-···A] ⇋ [D-···A-] ⇋ [D···A2-] ⇋ D + A2-      (2) 

Unconventional stepwise mechanism 

D2- + A ⇋ [D2-···A] ⇋ [D···A2-] ⇋ D + A2-        (3) 
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Concerted mechanism 

In photo-redox catalysis, multi-electron transfer can potentially lead to products that are 

inaccessible via single-electron transfer mechanisms. The aim of this work is to use the cage 

to bind a substrate in the cavity so that it is close to a large number of sensitisers (much higher 

effective local concentration than in solution). This will then allow multiple photo-induced 

electron transfer (PET) to/from a guest, thus opening up the possibility of a wide range of 

photo-induced reactions. The transfer of two (or more) electrons to a single acceptor  is a major 

challenge in photocatalysis. Two sequential 1 e- transfers might be possible if the 1st and 2nd 

reduction potentials of the guest are similar, with the mono-reduced species being stabilised 

(e.g. by a structural rearrangement) before the second reduction takes place. Or simultaneous 

transfer of 2 e- might occur, this can be done heterogeneously using semiconductors e.g. TiO2 

as an electron reservoir.5 However, to do this homogenously, the requirement is that two 

chromophores must be close to the substrate at the same time and be excited simultaneously as 

illustrated by the example of two porphyrins donors linked by a naphthalenediimide (NDI) 

acceptor, which gives doubly reduced (NDI)2- under high laser intensities.6 This could 

potentially be achieved with a cage/guest system, where there are multiple chromophores that 

surround a single guest. 

If two electron transfer processes occur, then it would provide unprecedented examples of 

multi-electron, homogeneous, photocatalytic reductions that use the energy of light to build up 

multiple electron equivalents in the form of stable reduced species to form new types of solar 

fuel, arising from the use of a coordination cage as both host and multi-electron photosensitiser. 

Another interest would be to look at guests that might undergo a reaction after initial one-

electron reduction.  If the guest radical anion can undergo a reaction, and the products are more 

weakly bound in the cage cavity than the starting material to allow turnover, then we have the 

possibility for a photocatalytic cycle.  Importantly, whatever reaction that occurs, needs to 

proceed on a timescale that is fast compared to the lifetime of the charge-separated state, or it 

will not be able to compete with back electron-transfer (geminate recombination), which 

suggests that a unimolecular reaction such as bond cleavage for the initially-generated radical 

anion might be a good target.  We have therefore examined the guest binding properties of a 

range of aromatic Ar-S-S-Ar (Ar = aryl group) disulfides, with different substituents, in the 

cage cavity. Disulfides are known to interconvert between disulfides and thiols in a two-

electron / two-proton process, this reversible process is important in a variety of chemical and 
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biochemical situations, including the oxidation of cysteine and the vulcanization of rubber.7–10 

The general reaction scheme for this conversion is shown in equation 4. 

RSSR + 2H+ + 2e- → 2RSH         (4) 

There are two different methods for the two-electron transfer.  The first is in equation 5, with 

two electrons moving to the disulphide to generate two thiolate anions. This process generally 

happens in aprotic solvents and is irreversible.4 

RSSR + 2e- → 2RS-           (5) 

Secondly, the reaction can also proceed via a three-step mechanism (eq. 6, 7) where the radical 

anion of the disulfide is initially formed: this can then dissociate to a radical thiol and a thiolate 

anion. The radical can then be reduced further via a second electron step, which generally 

occurs at a potential 0.5 V more positive than the first reduction of the disulphide.11 

RSSR + e- ⇋ RSSR•- → RS• + RS-         (6) 

RS• + e- → RS-           (7) 

This mechanism is more thermodynamically and kinetically likely than the simultaneous 2e- 

process. RSSR•- has a unique 3-electron bond between the two sulphur atoms: (RS∴SR)-; where 

two of the electrons are in a -bonding orbital, but the third is in the antibonding σ* orbital, 

and the electronic σ-σ* transition typically occurs between 380-450 nm.12 This bond formally 

has a bond order of 0.5 and so is weaker than a normal 2-electron bond, so dissociates fairly 

easily to RS• + RS-.  

4.1.1 Aims 

The aims of this work are to use the photo-active cages [Os4Zn4(L
nap)12]Cl16 and 

[Cd8(L
w)12](NO3)16 as hosts for hydrophobic disulfide guests, to determine whether cage-to-

guest photoinduced electron transfer processes are possible; which then might give 

photocatalytic cleavage of the guest disulfide, with the interesting possibility of a two-electron 

process being possible. 

  



Chapter 4 – Photophysical Interactions and Binding of Aryl Disulfides in Cubic Cages 

 

100 

 

 Results and Discussion 

4.2.1 Binding of disulfide guests 

 

Scheme 4.2.1: Chemical structures of the 2,2’-dipyridyl disulfide (G2py), bis(4-

methoxyphenyl)disulfide (G4OMe), 4-nitrophenyl disulfide (G4NO2) and bis(4-

chlorophenyl)disulfide (G4Cl).  

The set of disulfide guests used in this study are illustrated in scheme 4.2.1. These various aryl 

disulfides show different electron accepting abilities for example: the nitro group is electron 

withdrawing and the methoxy group is electron donating, thereby allowing a variety of 

situations to be studied.  Some of these guests had their binding constants in the cage predicted 

using the GOLD molecular docking software.13 The results of these calculations, in table 4.2.1, 

show that the predicted binding constants are quite high (104 – 106 M-1). The algorithm takes 

into account a range of factors to predict guest binding, including steric clashes between cage 

and guest, burial of polar groups in a non-polar environment, torsional strain induced on the 

ligand, matching of hydrophobic surfaces and loss of ligand flexibility.13 With this set of aryl 

disulfide guests, the high binding constants were shown to be mainly due to the high 

hydrophobicity of the guests and in the case of bis(4-methoxyphenyl)disulfide (G4OMe) - which 

has a slightly lower predicted binding constant than the others – there was also a larger loss of 

ligand mobility compared to the other guests, as the molecule contains a larger number of 

rotatable bonds. 
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Figure 4.2.1: 1:1 binding curve of a 1H NMR titration of G4Cl into [Co8(L
nap)12]Cl16, fitting 

multiple  host peak shifts at different ppm (31 ppm (blue), 66 ppm (black), 15 ppm (green), -

11 ppm (red)) against [G4Cl].  

Real binding constants of guests in the cage cavity were measured using 1H NMR spectroscopic 

titrations. As with previous work, the paramagnetic [Co8(L
nap)12]Cl16 cage was used to perform 

these titrations due to the dispersion of host peaks over a wide chemical shift range due to the 

cage paramagnetism. The results of this showed that all four disulfides were in fast exchange 

on the NMR timescale with just a steady shift in the position of some of the host cage signals 

observed as the titration progressed and not separate signals of free and bound cage, which 

would occur if free and bound guests were in slow exchange. The Δδ shifts for each guest were 

plotted against guest concentration and a binding constant was determined, assuming a 1:1 

binding stoichiometry (figure 4.2.1). The titrations were repeated three times each and the 

binding constants were fit to shifts of more than three of the host signals. 

Table 4.2.1 indicates the binding constants for each guest, which range from 103 – 104 M-1, 

with 2,2’-dipyridyl disulfide (G2py) having the lowest value: K = 103 M-1. This is due to G2py 

being more hydrophilic than the other substituted disulfides because of the 2-pyridyl units, 

therefore it binds less strongly. The prediction of the binding constants from GOLD differs 

slightly to the measured results, apart from in the case of G4OMe, which aligns well to the 

prediction. This suggests that maybe the binding method is slightly different to what is expected 

or that the software did not correctly predict the flexibility of the S-S bond. 
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Table 4.2.1: Binding constants and redox potentials of substituted aryl disulfide guests. 

 K (GOLD) / 

M-1 

K (NMR) / 

M-1 

E1/2 vs. SCE / V 

bis(4-chlorophenyl)disulfide 2 x 106 5 x 104 -1.43 (DMF)[14] 

bis(4-methoxyphenyl)disulfide 8 x 104 3 x 104 -1.71 (DMF)[14] 

2,2’-dipyridyl disulfide 3 x 105 3 x 103 -0.81 (DMSO)[15] 

4-nitrophenyl disulfide - 3 x 104 -0.79 (DMF)[14], -0.60 

(DMSO)[15] 

 

To understand if binding could be observed in the solid state, measurements of crystal 

structures of the disulfide guests bound in the host cage was attempted. For this G2py was used 

as it has a clear hydrogen bonding unit which makes it easier for the guest to be taken up into 

the host cage unit in ‘crystalline sponge’ experiments.16 The work for this was performed at 

Diamond Light Source by Christopher Taylor, who also determined the crystal structure. 

Figure 4.2.2 shows the crystal structure of the cage/guest assembly where one G2py molecule 

is positioned in the cavity of the cage, as well as two methanol molecules. The N and S atoms 

of the guest are directed into one of the fac tris-chelate metal vertices, as shown in the lower 

image in figure 4.2.2. This allows the lone pair on the N atom of G2py to participate in a network 

of weak CH···N interactions (in the range of 2.59-2.98 Å), with a set of the convergent CH 

protons of the cage, that lie close to the metal centres. One of the S atoms of the disulfide atoms 

on G2py also interacts with a CH proton of the cage with a distance of 2.82 Å. In addition to 

this, there are interactions of a methanol molecule with the opposite fac site, CH···OH, with a 

range of 2.52-2.90 Å. 
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Figure 4.2.2: Three views of the crystal structure of [Co8(L
nap)12](BF4)16•G2py adduct. Top: 

two views of the complete cage (excluding H atoms) showing the position and orientation of 

the guest and 2 methanols. Lower: a view showing the guest and two MeOH molecules in 

between the two opposed fac-tris(chelate) metal complex vertices of the cage. 
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4.2.2 Luminescence quenching 

The binding of the guests and photophysical effects on the cage upon guest binding were also 

examined by luminescence titrations. Initially [Os4Zn4(L
nap)12]Cl16 was used as the host. If 

photoinduced electron transfer to the guest was occurring we would expect the addition of the 

disulfide guest to substantially quench the emission of the Os(II) cage’s excited state.  

On addition of small portions of guest during the titration, what was actually observed was an 

initial increase in emission intensity, which was then followed by a decrease in intensity (figure 

4.2.3). The titrations in this work were repeated at least 2 times and gave consistent results.  

With 4-nitrophenyl disulfide (G4NO2) and G2py as guests, the result of the titration was a net 

decrease in emission intensity by the end of the titration; with the other two guests, the intensity 

decrease, in the later stages of the titration, approximately returned to the initial intensity value 

for the free host.  Notably the two guests that gave the largest quenching were those with the 

least negative reduction potentials of the four guests (table 4.2.1), as G4NO2 is the easiest to 

reduce, -0.6 V vs. SCE (in DMSO) and G2py the second easiest with a reduction potential of -

0.8 V vs. SCE (in DMSO).  We would expect the most easily reduced guests to most effectively 

quench the cage emission by photo-induced electron transfer. It was shown earlier that the cage 

excited state can reduce guests whose reduction potentials are no more negative than -1.3 V 

(vs. SCE): given that the reduction potentials of bis(4-chlorophenyl)disulfide (G4Cl) and G4OMe 

are -1.4 V and -1.7 V respectively we would not expect any photo-induced electron transfer 

quenching to occur with these two guests.  

The two-stage change in emission intensity (increase and then decrease during the titration) is 

surprising.  The initial increase suggests that during this phase the cage rigidity is being 

enhanced, as the reduction in vibrational flexibility is known to limit non-radiative decay 

pathways, thereby enhancing the observed emission intensity.17  This implies a two-step 

binding process with initial binding of guest to the cage exterior surface, enhancing the 

emission followed by cavity binding as the guest concentration increases, reducing the 

emission.  This would require that the exterior surface binding have a higher binding constant 

than the interior surface binding. 
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Figure 4.2.3: Luminescence titrations of guests, (a) G4NO2, (b) G4Cl, (c) G2py and (d) G4OMe, 

into [Os4Zn4(L
nap)12]Cl16 cage.   

To study this interesting effect further, the same titration experiments were performed with the 

isostructural Cd(II) cage [Cd8(L
w)12](NO3)16, where Lw is the same molecule as Lnap, but 

additionally functionalised with -3.+CH2OH groups on the pyridyl rings to enable water 

solubility.  The cubic architectures and cavity size / shape, and hence guest binding properties, 

are the same between the two.  Using the Cd(II) cage – which exhibits fluorescence from the 

naphthalene groups in the ligand – will allow us to see if this two-phase change in luminescence 

behaviour is the same for both types of luminescent cage and is therefore a general effect rather 

than being associated solely with the Os4Zn4 cage. 

From previous work by the group, it is known that [Cd8(L
w)12](NO3)16 has UV/vis absorption 

maxima at 295 nm (ε = 7.3 x 104 M-1 cm-1) and 210 nm (2.4 x 105 M-1 cm-1).17 So to perform 

the fluorescence titrations, the cage was excited at 325 nm, which produced the expected 

naphthalene-based fluorescence band at 400 nm. The same set of guests were titrated into 

solutions of the Cd(II) cage as before, and the titration results are in figure 4.2.4. We see that 

(a) 

(d) (c) 

(b) 
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these titrations also resulted in an initial increase in cage emission followed by a decrease to a 

limiting value. Again, this indicates that the initial increase in cage emission intensity could be 

due to interaction of the disulfide with exterior surface of the cage, rigidifying it and increasing 

luminescence by minimising vibrational deactivation pathways.  Guest binding in the cavity 

with a smaller association constant then follows this phase, and causes quenching as the guest 

is held close to all the chromophores in the cage.  The initial interaction of the guest with the 

exterior surface of the cage is also driven by the hydrophobic effect, in the same way as any 

hydrophobic species tend to aggregate in water. It is thought that this increase in rigidity is then 

outweighed by quenching affects from the internally bound guests, hence why the 

luminescence intensity decreases in the later stages of the titrations. 

 

Figure 4.2.4: Luminescence titrations of guests, (a) G4NO2, (b) G4Cl, (c) G2py and (d) G4OMe, 

into [Cd8(L
w)12](NO3)16 cage.   

To compare the results from using the two different cages, the graphs in figure 4.2.5 were 

produced by normalising the change in intensity and plotting this against guest concentration. 

(a) 

(d) (c) 

(b) 
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The red lines relate to the titrations using [Os4Zn4(L
nap)12]Cl16, and the grey lines relate to use 

of [Cd8(L
w)12](NO3)16 as the host cage. When using the Cd(II) cage we see that the emission is 

quenched by the end of the titration to a greater extent than when using the Os(II) cage. This 

makes sense as the Cd(II) cage is a better excited-state electron donor as naphthalene is known 

to have an oxidation potential of ~1.5 V (to give its radical cation), and the excited state energy 

content of this cage is measured to be 3.5 eV.17 So from the Rehm-Weller equation, we expect 

the cage excited state to reduce guests whose reduction potentials are up to -2.0 eV, whereas 

the Os(II) cage can only reduce guests which reduce by -1.3 V.17,18  

With regard to the titration of Os•Zn with G4OMe, the results are slightly unusual with there 

being a very small increase in intensity followed by a decrease of nearly 20% which plateaus 

after 1 equivalent of guest is added. You would not expect G4OMe to participate in electron 

transfer with Os•Zn, and so the reduction in intensity could be due to mechanical effects of 

G4OMe binding in the cage rather than any photo-interaction between the two molecules. This 

is indicated by the intensity rapidly plateauing after 1 equivalent is added, whereas with G4NO2 

the data never plateaus, suggesting if more guest were added quenching would continue. The 

lack of a significant rise in intensity for G4OMe is also interesting if you relate it to the 

comparison of binding constants that GOLD predicted and those from NMR. These results 

showed that G4OMe was the only guest that gave comparative binding constant figures, which 

indicates that maybe the external association of G4OMe with the cage is less significant than 

with the other guests, as it more closely follows the predicted binding pattern. 

When using [Cd8(L
w)12](NO3)16 as the cage; there is clearly a larger quenching effect with all 

four guests that are added to the solution, in line with the reasoning (above) that the naphthyl 

chromophores in this cage are a stronger electron donor.  Thus, with G2py there is a 40% 

reduction in intensity, with G4NO2 a nearly 30% reduction, and with G4OMe and G4Cl a 15% 

reduction. This trend follows the pattern of reduction potentials for the guests, apart from with 

G4NO2, which has poor solubility so the limiting concentration was low.  What is interesting, is 

that the Os(II) cage and the Cd(II) cage both require, with many of the guests, a similar 

concentration of a particular guest to reach the maximum luminescence intensity in the early 

stages of the titration. Which suggests that the binding constant of each disulfide with the cage 

exterior is similar in each case (i.e. it the external does not depend on the type of cage, but on 

the type of guest).  The only exception to this is when using G4OMe, which causes a large 

increase in intensity with the Cd(II) cage, which does not happen with the Os(II) cage. The 

reason for this is unclear and requires further work to understand.  
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Figure 4.2.5: Comparisons of change in intensity versus guest concentration from titrations 

using cages, [Cd8(L
w)12](NO3)16 (grey line) and [Os4Zn4(L

nap)12]Cl16 (red line), and the 

guests, clockwise from top left: G4NO2, G4Cl, G4OMe and G2py. 

To understand what type of quenching is occurring in these cage/guest systems (static or 

dynamic), the luminescence lifetime of the complex was measured during two of the 

[Cd8(L
w)12](NO3)16  titrations, with G4Cl and G4OMe. The empty cage [Cd8(L

w)12](NO3)16 shows 

emission with two lifetime components of 4 ns and 10 ns.17 The 10 ns component is expected 

to relate to the decay of a naphthalene singlet state and the 4 ns component is thought to be due 

to the exciplex-like emission arising because of the extensive π-stacking between the 

alternating electron-rich naphthyl units and electron-deficient pyridyl-pyrzole units of the 

ligands in the cage.17,19 Therefore, when measuring the lifetimes of luminescence from the 

cage/guest complexes with this cage, the data was fit to two lifetime components. The Stern-

Volmer plots for these titrations were based on the shorter component. Figure 4.2.6 shows the 

results. When the intensity is increasing, the lifetime also increases, which supports the 



Chapter 4 – Photophysical Interactions and Binding of Aryl Disulfides in Cubic Cages 

 

109 

 

suggestion that there is a decrease in non-radiative decay when the cage is more rigid. However, 

when the intensity starts to decrease the lifetime also decreases. The observed sublinear 

dependence of τ0/τ vs. concentration of G4OMe, suggests that both dynamic and static quenching 

processes are occurring. However, with G4Cl, there are not enough points in the plot to 

determine whether τ0/τ depends linearly on the concentration of the guest, thus the 

contributions of static vs dynamic quenching cannot be estimated. In chapter 2, Stern-Volmer 

plots with Os•Zn and 1,4-naphthoquinone/1,2,4,5-tetracyanobenzene showed that there is 

static quenching due to the bound guest, but there is also some dynamic quenching. 

 

 

Figure 4.2.6: Stern-Volmer plot from titrations of G4Cl (left) and G4OMe (right) into 

[Cd8(L
w)12](NO3)16.   

Another way to confirm whether the decrease in luminescence intensity during the second 

phase of the titrations, is related to the guest binding in the cage, is to fit the change in intensity 

vs. guest concentration to a 1:1 binding curve. The results of this analysis were fairly consistent 

with that of the 1H NMR titrations and the comparison of the results can be seen in table 4.2.2. 

When performing the 1H NMR titrations you don’t observe the two-step binding behaviour, 

possibly due to the slow timescale of NMR compared to luminescence, meaning that NMR 

shows the ensemble average. Relating the results of both techniques give quite good 

consistency with the use of three different cages, with only the binding constants of G4NO2 

being a lot higher from luminescence titrations compared to NMR. This could be due to the 

very low concentrations used, which give these binding constants a larger error than that of the 

more water soluble disulfides. The similarity of the calculated binding constants from the decay 
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phase of the luminescence titrations with the results of the NMR titrations suggests that the 

decrease in luminescence intensity is indeed due to guest binding. In addition to this, in a couple 

of cases the rise of the emission intensity could be fitted to a 1:1 binding curve; for both G4Cl 

and G2py this binding constant is slightly larger than that of the decay, which is expected, as 

this process initially outweighs the internal binding in the luminescence titrations. 

Unfortunately, the rise could not be fitted in all cases due to the lack of data points of this 

region.  

Table 4.2.2: Comparison of the binding constants of several disulfides with three analogous 

cages, obtained by luminescence and 1H NMR titrations. 

 K /M-1 

[Co8(L
nap)12]Cl16 

– NMR 

[Os4Zn4(L
nap)12]Cl16 

– luminescence 

[Cd8(L
w)12](NO3)16 

– luminescence 

4-nitrophenyl disulfide 3 x 104 6 x 105 2 x 104 

Bis(4-chlorophenyl)disulfide 5 x 104 6 x 104
 (rise 6 x 105) 2 x 105 

Bis(4-methoxyphenyl)disulfide 3 x 104 2 x 104 5 x 104 

2,2’-dipyridyldisulfide 3 x 103 1 x 104 (rise 4 x 104) 2 x 103 

 

4.2.3 Evidence for photoinduced electron transfer  

To investigate further if electron transfer between the host cages and disulfide guests was 

taking place, UV/vis transient absorption (TA) spectroscopy was performed, which allows one 

to observe the dynamics of the excited state and to determine if any new charge separated states 

are formed. Initially, [Cd8(L
w)12](NO3)16  was used due to it being a stronger electron donor, 

and due to it undergoing electron-transfer quenching with all four disulfides. However, the TA 

spectra for [Cd8(L
w)12](NO3)16 exhibits quite unusual excited state dynamics, due to the 

aforementioned exciplex-like state from the π-stacked array of ligands (figure 4.2.7). This 

produces a TA spectrum where there are no ground state bleaches when exciting at 310 nm; 

instead what is observed is two broad transient states that are related to the singlet naphthyl 

excited state at 360 nm and a broad feature at 550 nm relating to the exciplex-like state. The 
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decay behaviour was previously found to be bi-exponential with time constants of 32(±11) ps 

and 1130(±150) ps.17 Therefore when adding the disulphide guests, due to the large component 

of free (unquenched) cage, there would have to be a clear strong transient absorption peak to 

stand out from the background intensity associated with the excited state of the empty cage. If 

PET occurred we  would expect to observe peaks for the reduced guest RSSR•- between 420-

470 nm; or a peak for RS•- at ~500 nm.20,21  

 

Figure 4.2.7: Transient absorption spectra, at time delays of 1 ps – 5 ns, of 

[Cd8(L
w)12](NO3)16 (left) and [Cd8(L

w)12](NO3)16  and G4OMe (right).  

However, as free [Cd8(L
w)12](NO3)16 has a large excited-state absorbance over this region, no 

distinctive new features, corresponding to the expected transiently reduced guests, could be 

discerned when viewing at the complexes of G4OMe (figure 4.2.7), G2py (figure 4.7.1) and G4NO2 

(figure 4.7.2) with this cage. In addition to this, no subtractions of the background 

[Cd8(L
w)12](NO3)16 spectra could be performed like in the previous work with 

[Os4Zn4(L
nap)12]Cl16, as there are no bleaches in the spectra to normalise the data to. Therefore, 

global analysis was undertaken to see if any new decay components could be observed 

corresponding to cage/guest charge-separated excited states. However, no new decay 

components could be distinguished as the large amount of free cage masked any new states 

formed. The expected absorbance peaks for photo-generated RSSR•- or RS•- are broad and 

cannot, if they are present, be differentiated from the broad [Cd8(L
w)12](NO3)16 excited state 

absorbance. Therefore, in future it is advised that when using [Cd8(L
w)12](NO3)16 to study 

electron transfer to bound guests, it would be beneficial if the guest radical anion has a sharp 

absorption feature that is more easily distinguishable in a TA spectrum; as well as higher guest 

water solubility, to enable a larger concentration of H.G complex to be formed. Another 
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complication with [Cd8(L
w)12](NO3)16,  is that in this example the cage is excited at 320 nm, 

which is also in the region where the organic guests absorb, so direct excitation of the guest 

confuses the issue further (figure 4.6.1) – this is the reason for the difference in appearance of 

figures 4.2.7, 4.6.1 and 4.6.2.  

 

Figure 4.2.8: Subtraction of transient absorption spectra at 5 ns time delay from shorter time 

delays of complexes of [Os4Zn4(L
nap)12]Cl16 with G2py (left), G4OMe (right) and G4NO2 

(bottom).  This should remove any long-lived transient signals from free cage and leave any 

new short-lived transients arising from cage-to-guest electron transfer.  

UV/vis TA spectroscopy was also performed using Os•Zn as the host cage for the disulfide 

guests. The use of the Os-based cage allows for excitation in the visible region at 400 nm (into 

the Os-based 1MLCT absorption manifold) where there is no direct excitation of the disulfide 

guests. Firstly, G4NO2 was looked at, as this guest is the easiest to reduce. As was shown before, 

with TA experiments using Os•Zn, there is a significant amount of free cage in the equilibrium 

mixture at the low concentrations of guest, therefore careful analysis of the data to subtract 

transient signals associated with free cage on its own was needed to reveal any new 



Chapter 4 – Photophysical Interactions and Binding of Aryl Disulfides in Cubic Cages 

 

113 

 

components. Figure 4.2.8 shows the results of the subtractions, using G4OMe, G2py and G4NO2. 

We would hope to see a new feature corresponding to the guest radical anion following 

photoinduced electron transfer between the cage and the easily reduced guests G2py and G4NO2, 

and no feature for G4OMe, as it should not be reduced by the cage-excited state; however, we 

could not detect any new transient signals at all. Global analysis also produced no indication 

of additional decay components. These results are not expected, however could be due to the 

small concentrations of guests used (much smaller than the previous work, 0.2 mM compared 

to 1.5 mM, because of the limited water solubility) or also due to the lack of quenching 

observed because of the exterior binding effect.  
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 Conclusions 

In summary, we have observed an interesting two-step binding profile for a set of substituted 

aryl disulfide guests interacting with the octanuclear cubic cages. An initial interaction of the 

guest with the exterior surface of the cage results in an initial increase in cage-based emission 

intensity; this is followed by a second binding event which partly quenches the luminescence, 

consistent with the guest binding inside the cage with a smaller binding constant (K = 103 – 

105 M-1). The two most electron-deficient and easily-reduced of these guests have been shown 

to partly quench the emission of the Os4Zn4 cage; and all four guests partly quench the emission 

of the Cd8 cage, in both cases suggesting the occurrence of photoinduced electron transfer. 

However, the charge-separated states that we would expect to see could not be observed via 

TA spectroscopy. Probably because the poor solubility of these guests in water meant that, the 

concentration of bound cage/guest complex in the equilibrium mixtures was low. 

A few suggestions for future work, directly related to the use of disulfide molecules as guests, 

could be to use mixed-solvent systems to increase the solubility of the guests to allow for higher 

concentrations of guests to be used. There has already been some work carried out by the group 

into the use of mixed-solvents including H2O/acetonitrile, H2O/methanol and H2O/DMSO. 

Another suggestion is to perform the work in a degassed environment, so that oxygen does not 

affect any longer timescale processes that might occur in the dissociation/reduction process, 

and to test the effects with and without oxygen. 

Alternatively, to study the potential of two-electron transfer processes, different guests could 

be used that do not show such complicated binding within the cages. Quinone-type guests e.g. 

tetrachlorobenzoquinone and naphthoquinone could be appropriate substrates to explore 2 e- 

reduction, via two successive 1 e- reductions which are both at potentials sufficiently positive 

to be easily effected by PET from the Os(II) units. With a reaction of: Q → SQ•- → 

(catecholate)2-. 1,4-naphthoquinone has been used in this work (chapter 3) already and showed 

single photo-induced electron transfer; this guest could then be used to study the effect of power 

level on the electron transfer process as it is already known to bind in the cage and participate 

in photo-interactions. Increasing the power inputted into the system is known to increase the 

chance of 2-electron transfer.6 Another possibility could be to look at photo-catalysed reactions 

like nitrobenzene to aniline, or phenyl boronic acid to phenol. Trial work on this has already 

been started with the interest that photocatalytic reactions on bound guests will be faster than 

those when the substrate is free in solution.  
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 Experimental 

4.4.1 Experimental techniques 

NMR titration 

[Co8L12](Cl)16 was prepared according to previously published methods.22 A stock host 

solution of [Co8L12](Cl)16 (0.15 mM) in D2O  was used and the guests (0.15 - 0.80 mM) were 

dissolved in 2.5 ml of the host solution and gradually titrated into the host solution. The changes 

in chemical shift were plotted and fitted to a 1:1 host:guest binding model. The NMR data was 

processed using Bruker Topspin 4.0.3 and was fitted to binding isotherms using 14allMaster.xls, 

which is a macro-based Excel fitting program written by Christopher A. Hunter (University of 

Cambridge). 

Luminescence titrations 

Luminescence titrations were performed by preparing a stock solution of [Os4Zn4L12](Cl)16 

(0.025 mM) or [Cd8(L
w)12](NO3)16 (0.100 mM) in deionised water. Guest solutions (0.10 – 1.5 

mM) were made up using stock host solution (5 ml) and added in small portions to the quartz 

cuvette containing the host solution, with a luminescence spectrum measured after each 

addition. Luminescence spectra were recorded on a Horiba Jobin Yvon Fluoromax 4 

spectrophotometer, with excitation at 550 nm and an emission window of 570 – 850 nm for 

[Os4Zn4L12](Cl)16 and excitation at 325 nm, with a measurement window of 340 – 630 nm for 

[Cd8(L
w)12](NO3)16. Changes in luminescence intensity with added guest concentration were 

fitted to a 1:1 host:guest binding model.  

Transient Absorption Spectroscopy 

The ultrafast transient absorption setup used consists of a commercial detection instrument 

(Helios, Ultrafast Systems) and the following laser system: a Ti:Sapphire regenerative 

amplifier (Spitfire ACE PA-40, Spectra-Physics) providing 800 nm pulses (40 fs fwhm, 10 

kHz, 1.2mJ).  Sample excitation at 400 nm was provided by doubling a portion of the 800 nm 

output, in a β-barium borate crystal within a commercially available doubler/tripler (TimePlate, 

Photop Technologies), yielding 400 nm pulses or 320 nm pulses were generated by a travelling-

wave optical parametric amplifier of superfluorescence (TOPAS prime, Light Conversion) 

pumped by the 800 nm output. The pump pulses were focussed onto the sample cell, to a spot 

diameter of ≤ 0.3 mm and the pump pulse energy (3 mW) was controlled using a variable 
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attenuation neutral-density filter wheel and the sample solution was stirred using a magnetic 

stirrer bar. 

White light supercontinuum probe pulses were generated in situ using a portion of the 

Ti:Sapphire amplifier output, focused onto a CaF2 crystal, allowing for the generation of light 

spanning 340 nm – 720 nm. Prior to generation of the white light, the 800 nm pulses were 

passed through a computer controlled optical delay line (DDS300, ThorLabs), which provides 

8 ns of delay, with a temporal resolution of 1.67 fs. Detection was performed with a CMOS 

sensor for UV/Vis spectra. The pump and probe polarisations were set to a magic angle 

geometry. The data processing was performed using Origin 2017 and Glotaran 1.5.1.23  

Samples were all in distilled water, with [Os4Zn4(L
nap)12]Cl16 (0.15 mM) or [Cd8(L

w)12](NO3)16 

(0.15 mM), and guests (0.2 – 0.6 mM). Samples containing [Os4Zn4(L
nap)12]Cl16 were excited 

at 400 nm and samples containing [Cd8(L
w)12](NO3)16 were pumped at 320 nm. Guests were 

also excited separately at 320 nm.  

Lifetime measurements 

Luminescence lifetimes were measured in air-equilibrated H2O solutions by the time-correlated 

single-photon counting method, using an Edinburgh Instruments ‘Mini-τ’ instrument using a 

405 nm, ~70 ps pulsed diode laser excitation source, and with the decay data fitted using the 

supplied software. 

X-ray crystallography  

The [Co8(L
nap)12](BF4)16•2,2’-dypridyl disulfide diffraction data was collected and refined by 

Christopher Taylor (University of Warwick). The data was collected at the UK Diamond Light 

Source Synchrotron facility (proposal MT19876). The structure determination suffered from 

the usual weak scattering characteristic of crystals of this type, associated with large unit cells 

and disorder of solvents/anions. The X-ray diffraction limit of the crystal was set at 0.69 Å 

resolution (SHEL 999). Large solvent-accessible voids containing diffuse electron density that 

could not be satisfactorily modelled were accounted for using the SQUEEZE command in 

PLATON. Full details of the refinement and treatment of this structure, including software 

used, are given in the CIF.  
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4.4.2 Synthetic procedures 

Materials 

 [Os4Zn4(Lnap)12]Cl16, [Co8L12](Cl)16 and [Cd8(L
w)12](NO3)16 were all prepared according to 

previously published methods.24–26 Single crystals of [Co8(L
nap)12)](BF4)16 used for 

determination of the structure of the [Co8(L
nap)12)](BF4)16•2,2’-dipyridyl disulfide adduct were 

also prepared as described previously.27 All other reagents were purchased from Sigma-Aldrich 

or Alfa-Aesar and used as received. 
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 Appendix 

Table 4.6.1: Crystal data and structure refinement for [Co8(L
nap)12](BF4)12•2,2’-dipyridyl 

disulfide. 

Identification code DMWMSv3-130_F56_PydiSulph_sq 

Empirical formula C378.65H417.32B16Co8F64N73.08O37.25S1.08 

Formula weight 8483.10 

Temperature/K 100(1) 

Crystal system monoclinic 

Space group C2/c 

a/Å 32.81236(7) 

b/Å 30.21497(6) 

c/Å 40.09564(8) 

α/° 90.0 

β/° 96.33120(19) 

γ/° 90.0 

Volume/Å3 39509.35(10) 

Z 4 

ρcalcg/cm3 1.426 

μ/mm-1 0.410 

F(000) 17552.0 

Crystal size/mm3 0.1 × 0.1 × 0.1 

Radiation Synchrotron (λ = 0.6889) 

2Θ range for data collection/° 1.982 to 59.894 

Index ranges -47 ≤ h ≤ 47, -43 ≤ k ≤ 43, -58 ≤ l ≤ 58 

Reflections collected 348244 

Independent reflections 62856 [Rint = 0.0629, Rsigma = 0.0602] 

Data/restraints/parameters 62856/6404/2425 

Goodness-of-fit on F2 1.106 

Final R indexes [I>=2σ (I)] R1 = 0.0675, wR2 = 0.2193 

Final R indexes [all data] R1 = 0.0929, wR2 = 0.2383 

Largest diff. peak/hole / e Å-3 1.42/-0.97 
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Figure 4.6.1: Transient absorption spectra at time delays from 1 ps – 5 ns, of 

[Cd8(L
w)12](NO3)16 and G2py (top) and aqueous G2py (bottom), exciting at 320 nm.  
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Figure 4.6.2: Transient absorption spectra at time delays of 1 ps – 5 ns, of 

[Cd8(L
w)12](NO3)16 and G4NO2. 
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 Introduction  

5.1.1 Catalysis in cages 

Similarly to some enzymes, cages provide specific hydrophobic cavities to bind substrates and 

catalyse reactions on bound guests through a range of mechanisms, which include different 

noncovalent interactions.1 The properties of cages – in particular the internal 

microenvironments associated with their cavities that are different from the properties of bulk 

solution – has meant that cages can be very effective catalysts. Showing, in some cases, 

substantial acceleration of the reaction rates for bound guests, enhanced reactivity and 

selectivity in the reactions, and changes to the reaction mechanisms and product 

distributions.2,3 Catalysis can arise for many reasons including an increase in effective local 

concentrations of species when two species are co-located in a confined space; separation of 

guests from solvents or other reagents; control of the conformation of the bound guest; and 

shifting the equilibrium position of a reaction.2 

Substantial increases in rates of catalysed reactions, compared to uncatalysed reactions, are 

possible. Two prominent examples of this have been demonstrated in different reactions by the 

Raymond group and the Ward group, with rate accelerations in the range 105 – 107 fold, which 

is similar to the rate acceleration achievable by some enzymes.4,5  

 

Scheme 5.1.1: Nazarov cyclisation reaction catalysed by [Ga4L6]
12-. (Reprinted with 

permission from ref. 4. Copyright 2010 American Chemical Society.) 

The Raymond group demonstrated the catalysed Nazarov cyclisation of 1,4-pentadien-3-ols, 

using a tetrahedral Ga(III)-based cage (scheme 5.1.1).4 The rate enhancement is up to 2.1 x 106 

higher than that of the uncatalysed reaction. Through further mechanistic studies of both the 

uncatalysed and catalysed reactions, it was proven that this rate acceleration was largely due to 
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the stabilisation of the transition state inside the cage, as well as the enhanced basicity of the 

hydroxyl group on the pentadienol caused by encapsulation.6 This enhanced basicity occurs, as 

the Raymond cage is 12- charge, so when guests are bound inside, they attract protons more 

easily, as the protons are enticed by the high negative charge of the host. 

The Ward group's example catalyses the Kemp elimination of 1,2-benzisoxazole using a cubic 

[Co8(L
w)12](BF4)16 cage (figure 5.1.1).5 The Kemp elimination has been widely studied, as it 

can be adapted to a large range of reaction rates and acts as a sensitive probe for biological and 

artificial catalytic systems.7–10 The mechanism of rate acceleration, in this case, was found to 

be due to the aggregation of -OH groups around the cage (that has a 16+ charge), which 

therefore increased the effective concentration of –OH around the guest, when it was bound in 

the cage, thus rapidly increasing the rate of reaction.5  

 

Figure 5.1.1: Mechanism of the Kemp elimination catalysed by [Co8(L
w)12](BF4)16. 

(Reprinted with permission from ref. 5. Copyright 2016 Springer Nature.) 
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5.1.2 Effects of charge on cage catalysis 

Another interesting consequence of cage-based catalysis is that it can depend on the charge on 

the cage. The previous two examples of cage-based catalysis rely on the charge of the cage to 

accumulate counter-ions, which participate in the catalytic reaction.  It follows that if the charge 

of a host cage can be varied, the catalysis should also be affected.  The most notable example 

of this so far has also been by the Raymond group, where two analogous M4L6 cages were 

synthesised, which have charges of 12– and 8– (figure 5.1.2a). The work uses the previously 

mentioned [GaIII
4L6]

12- cage and a new [SiIV
4L6]

8- cage, where all that differs between the 

isostructural complexes is the nature of the metal and hence the charge.11 When performing an 

Aza-Cope rearrangement (figure 5.1.2b), which had been formerly shown to be catalysed in 

the Ga(III) cage with an 850-fold rate enhancement,12 the catalysis in the two cages was 

comparable and was found to be driven by steric effects (i.e. constrictive binding, the folding 

up of the substrate to fit inside the cavity).2 However when performing the Nazarov cyclisation, 

there was a 680-fold difference in rates of catalysis between the two cages, with the more highly 

charged Ga(III) cage showing higher rates of catalysis. This is thought to be due to the Nazarov 

cyclisation requiring a protonation of the substrate and thus the generated carbocation, being 

more highly stabilised by the 12- charged cage (figure 5.1.2).11 

 

Figure 5.1.2: (a) Structures of [Ga(III)4L6]
12- and [Si(IV)4L6]

8- cages. (b) Aza-Cope 

rearrangement and Nazarov cyclisation reactions. (Reprinted with permission from ref. 2. 

Copyright 2018 American Chemical Society.) 
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5.1.3 Aims 

The aims of the work in this chapter are:  

(i) To provide a facile way to monitor the Kemp elimination reaction catalysed in our cubic 

coordination cage, by UV/Vis spectroscopy, rather than by NMR. This would be based on the 

use of 5-nitrobenzisoxazole as a substrate rather than 1,2-benzisoxazole, as the 2-cyano-4-

nitrophenolate product that accumulates is coloured. This would make monitoring the reaction 

much quicker and easier, with the possibility to measure multiple sets of conditions in a single 

experiment using a UV/Vis plate reader. 

(ii) Secondly, to determine whether the Os(II)/Os(III) redox swing in [Os4Zn4(Lnap)12]Cl16 – 

which would change the charge on the cage form 16+ to 20+ – can have an effect on the rate 

of the cage-based catalysed reactions by modulating the accumulation of hydroxide ions around 

the cage surface as the charge changes.  
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 Results and Discussion 

For this work, we have used 5-nitrobenzisoxazole as the substrate for the Kemp elimination. 

The first step is the synthesis of this using a previously published method, whereby 1,2-

benzisoxazole undergoes nitration using H2SO4/HNO3 and is recrystallized in ethanol.13 Once 

this was synthesised, tests were needed to determine whether 5-nitrobenzisoxazole would bind 

within the cage cavity. As 1H NMR titrations using [Co8(L
nap)12]Cl16 showed good consistent 

results with data obtained in parallel from luminescence titrations in previous work, this 

method was again used to determine the strength of binding with this guest. Figure 5.2.1 shows 

the results of the 1H NMR titration, where the guest is shown to be in fast exchange as there is 

a shift of host peaks as more guest is added. The titration was performed in similar conditions 

to previous work, except that the titration was carried out at pH ~ 4 to prevent the base-

catalysed elimination reaction from occurring during the titration. This change in chemical shift 

of host signals with concentration of added guest produced a binding curve, which could be 

fitted to a 1:1 model. The binding constant derived from this was determined to be K = 2 x 104 

M-1. This is higher than that previously found for 1,2-benzisoxazole in the same cage (K = 4 x 

103 M-1).5 This may be due to the lower water solubility (greater hydrophobicity) afforded to 

the 5-nitrobenzisoxazole guest, by the presence of the nitro substituent, which will increase its 

affinity for the hydrophobic cage cavity. This effect (stronger binding afforded by the presence 

of nitro groups) has been seen when using other nitrated guests too.  A negative effect of this 

is that the guest can only be used at lower concentrations because of its limited solubility.  

 

Figure 5.2.1: 1H NMR titration of 5-nitrobenzisoxazole in [Co8(L
nap)12]Cl16 and the 

associated 1:1 binding curve. 

In addition to the 1H NMR titration, an X-ray crystal structure was obtained by Christopher 

Taylor (Univ. of Warwick) of 5-nitrobenzisoxazole bound in [Co8(L
nap)12](BF4)16 (figure 
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5.2.2). The figures shows that there is a stacked pair of two 5-nitrobenzisoxazole guests. These 

guest molecules are orientated so that the electron-rich nitro-groups from the guests are 

directed into the two opposing fac-pockets of the cage. The C-H protons associated with this 

fac tris-chelate Co(II) centre are hydrogen-bond donors and the dotted lines in the figure shows 

the H···O interactions (2.50 – 2.98 Å) of  N-O with the cage protons.  

 

 

Figure 5.2.2: Three views of the crystal structure of [Co8(L
nap)12](BF4)16•2(5-nitro-1,2-

benzisoxazole) adduct. Top: two views of the compete cage (excluding H atoms) (left: one 

space-filling guest and one stick guest, right: showing the hydrogen-bond connections). 

Lower: a view of the two guests between the opposed fac-tris(chelate) metal complex 

vertices of the cage. 
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5.2.1 Uncatalysed reaction 

Now that it has been shown that 5-nitrobenzisoxazole can bind in the cage, the Kemp 

elimination reaction needs to be studied. The reaction proceeds via the mechanism shown in 

scheme 5.2.1. It is a base-catalysed E2 elimination under basic conditions, and gives rise to the 

2-cyano-4-nitrophenolate anion. The nitro group stabilises the negative charge on the oxygen 

and the charge-transfer nature of the π-π* transition makes this anion strongly coloured. 

 

Scheme 5.2.1: Kemp elimination reaction of 5-nitrobenzisoxazole. 

With 1,2-benzisoxazole as substrate for this reaction, the 2-cyanophenolate product has its 

absorption maximum at 325 nm – this cannot be observed conveniently by UV/Vis 

spectroscopy as it is obscured by the strong absorption of the host cage.  However the addition 

of the nitro group red-shifts the maximum phenolate absorption to 380 nm, and the extinction 

coefficient also increases from 5980 M-1cm-1 (325 nm) compared to 15800 M-1cm-1 (380 nm).10 

This shift allows for easier analysis when performing UV/vis spectroscopy, as it moves the 

peak away from the high intensity UV region, to the generally lower intensity visible region 

where it can be conveniently monitored as it grows in during the reaction.  

When monitoring the background elimination reaction in basic water, there is a clear difference 

between the starting material and product. The graph in figure 5.2.3 shows that as the peak at 

280 nm of 5-nitrobenzisoxazole falls, the product peak from 2-cyano-4-nitrophenolate grows 

in at 380 nm.  

This background reaction was performed at pH 9.2 with a borax buffer, which is known to be 

stable with the cage complex.5 As this is a base catalysed reaction, pH has a large effect, so the 

rates of reaction were determined at various basic conditions. For this work, pH 8, 9 and 10 

were used, as they are all within the limit of stability of the cage and give a spread of pH values 

large enough to show the differences between catalysed and uncatalysed reactions. 
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Figure 5.2.3: UV/vis spectra of uncatalysed reaction of 5-nitrobenzisoxazole with hydroxide 

at pH 9.2. 

The reaction is first order in OH- under basic conditions and figure 5.2.4 shows how the product 

appears over time at the three different pH values. The observed rates increase in a linear 

relationship of pH versus log(kobs) as expected, with the rate at pH 10 being much faster than 

that observed at pH 8. Another interesting observation is that these rates are a lot faster than 

for 1,2-benzisoxazole, with the reaction of unsubstituted benzisoaxole at pH 10.2 having a 

log(kobs) = -5.1 compared to the value here of -3.4 for 5-nitro-benzisoxazole. This is in 

agreement with initial work by Kemp in 1973, which showed that the elimination reaction with 

5-nitrobenzisoxazole occurred much faster than the reaction of unsubstituted 1,2-

benzisoxazole, where kOH- = 15 M-1 s-1 compared to kOH- = 0.33 M-1 s-1, respectively.10 In his 

work, the associated pKa values of the relevant cyanophenolate products were also determined, 

which are 4.1 for 2-cyano-4-nitrophenolate and 6.9 for 2-cyanophenolate.10 This lower pKa 

value of 2-cyano-4-nitrophenolate shows that it is effectively a better leaving group, therefore 

making the reaction proceed faster. 
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Figure 5.2.4: Comparison of reaction progress profiles of the uncatalysed Kemp elimination 

reaction of 5-nitrobenzisoxazole at various pH and a table of pH versus log(kobs). 

5.2.2  Catalysed reaction 

The studies on the uncatalysed reaction showed that the background reaction proceeds at a 

fairly high reaction rate relative to the much slower background reaction rate of unsubstituted 

benzisoxasole. So for this work, in order to minimise the effects of the high background 

reaction rate for free substrate, high concentrations of cage were needed, as well as low guest 

concentrations, so that there was little ‘free’ guest and so that the background (uncatalysed) 

pathway was therefore minimised. This is often referred to as sub-saturation conditions and is 

regularly used in enzyme kinetics experiments since it greatly simplifies the experiment.14  

However, as the Os•Zn cage used in this research has such high UV/Vis extinction coefficient, 

to attain the required concentration of 0.15 mM without having too high an optical density, a 

UV/vis cuvette with a shorter path length was needed: so a 2 mm cuvette has been used. This 

is so that the observed increase in the product at 380 nm can be detected above the strong cage 

absorption. Figure 5.2.5 shows the absorption profile of the cage, the starting material and the 

product. The cage absorbs across the range of 200-600 nm, so when examining reactions of 

organic molecules, it would be hard to find a guest whose absorption spectrum does not 

significantly overlap with the cage absorption. However, by using a cuvette of 0.2 cm path 

length instead of 1 cm, the absorption of the solution can be reduced without reducing its 

concentration. The figure shows that the absorption of the 2-cyano-4-nitrophenolate product at 

380 nm occurs in a low-absorbing part of the cage spectrum, so as it accumulates it can be 

detected above the baseline absorption of the cage. 
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Figure 5.2.5: UV/vis spectra comparison of [Os4Zn4(Lnap)12]Cl16, 5-nitro-1,2-

benzisoxazole and 2-cyano-4-nitrophenolate.   

Reaction conditions were first determined at pH 9.2 using a borax buffer. The pH was checked 

at the start and end of the reactions, to confirm that the buffer was working and that the pH was 

not changing throughout the measurements.  

As the reaction was performed in a 2 mm cuvette: the reaction could not be stirred in situ, 

however the temperature was controlled at 25 ºC. Initially the whole UV/Vis spectrum (200-

800 nm) was recorded at every time interval to see if the reaction was behaving in the expected 

way and once this was confirmed; the reaction was subsequently monitored by just measuring 

the absorption increase at 380 nm. To analyse the data, plots of [product] vs. time were derived, 

as well as plots of log[starting material] vs. time. The plots of log[starting material] vs. time 

were then fit to a straight line to determine the rates of reaction. This could be done, as the first 

2 hours of the experiment showed pseudo first-order rate behaviour. Despite the usual 

Michaelis-Menten equation that is used for looking at enzyme kinetics, for this work – as the 

guest concentration was so small and because the percentage of bound cage does not change 

that much at these concentrations – then we can approximate simple first order behaviour. 
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Looking at the first results of these catalysis experiments, figure 5.2.6 shows the reaction rate 

profile of the catalysed (with Os•Zn cage) and uncatalysed (no cage) reactions at pH 9.2. These 

figures show a clear increase in reaction rate in the presence of catalyst, with kcat = 2.0 x 10-4 s-

1 and kuncat = 8.1 x 10-5 s-1 (the measurements have all been repeated at least 3 times). This 

suggests that the Os•Zn cage does catalyse this reaction, probably by the same mechanism as 

was previously observed with [Co8(L
w)12](BF4)16. However, the rate enhancement (kcat/kuncat) 

for this experiment, is only 3, which is very low compared to the previous work with 1,2-

benzisoxazole which showed a rate enhancement of 105 at pH 9. This difference in 

enhancement could potentially be due to the large increase in rate of the uncatalysed 

(background) of 5-nitrobenzisoxazole, or it could also arise from different mechanistic factors. 

 

Figure 5.2.6: Comparison of rate profiles at pH 9, of Os•Zn catalysed and uncatalysed 

reactions. 

To see if this rate enhancement could be improved, the reaction was performed at pH 8.2, as 

the background reaction is slower at lower pH.  If the mechanism of catalysis is the same as 

that in the previous work using 1,2-benzisoxazole as substrate, then slowing down the 

background reaction should give a larger kcat/kuncat value.  

Figure 5.2.7 shows the comparison of rate curves for the cage catalysed and background 

reaction at pH 8.2. Again, there is an increase in rate of reaction for the catalysed (2.1 x 10-4 s-

1) compared to that of the uncatalysed (3.4 x 10-5 s-1) reaction. This equates to a rate 

enhancement of 6, which is still low, but is significantly higher than the rate enhancement 

recorded at pH 9.2 (3). What is also interesting is that the values of kcat at pH 8 and 9 are quite 

similar to each other (pH 8: 2.0 x 10-4 s-1 and pH 9: 2.1 x 10-4 s-1). This is also the case with the 

results of the previous work using 1,2-benzisoxazole, which showed that the cage catalysed 
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reaction was unaffected by pH as the reaction sphere of -OH around the cage was already 

saturated with hydroxide ions by pH 8, so the local hydroxide concentration was fairly constant.  

 

Figure 5.2.7: Comparison of rate profiles at pH 8.2, of the Os•Zn catalysed and uncatalysed 

reactions. 

5.2.3 Method of catalysis 

To investigate the catalysis in more detail a few control experiments were performed. Firstly, 

the use of a competitively binding guest (cycloundecanone) was achieved, which has been 

proven to bind strongly within the cage cavity in water (106 M-1) and so we would expect it to 

displace a more weakly binding guest like 5-nitrobenzisoxazole (K ≈ 104 M-1) from the cavity. 

In this case, we would expect the rate to drop to that of the uncatalysed reaction as the substrate 

will be expelled from the cavity and free in solution. 

However, the results show (figure 5.2.8) a slight increase (by a factor of 2.3) in reaction rate 

when cycloundecanone (C11) is added to the solution (the overall rate increases from 2.1 x 10-

4 s-1 to 4.9 x 10-4 s-1). The reason for this is unclear and suggests that the mechanism for the 

reaction with 5-nitrobenzisoxasole is different from that of 1,2-benzisoxazole, where the 

addition of cycloundecanone fully inhibited the reaction.5 
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Figure 5.2.8: Comparison of rate profiles at pH 8.2, of the Os•Zn catalysed reaction without 

(left) and with (right) added cycloundecanone. 

To determine whether this effect was due to the difference between the Os(II) based cage and 

the Co(II) based cage, the reaction was performed with [Co8(L
w)12](BF4)16 under the same 

reaction conditions. This would show whether the difference in behaviour is specifically 

associated with the Os(II) cage and also whether the use of a chloride counter ion in this work 

has a large effect on the rates. Because previous work has shown that the addition of chloride 

is known to decrease the rate of reaction by displacing hydroxide ions from around the cage 

surface.16,10,17 Chloride ions (compared to hydroxide ions) are preferentially bound to the 

interface region of cationic micelles (typically 10 fold9,18) and so in this case, chloride displaces 

the hydroxides in the cage windows therefore inhibiting the reaction as hydroxide surface 

binding is crucial for catalysis to occur. 

Figure 5.2.9 shows the comparison between the reaction profiles of the reaction of 

[Co8(L
w)12](BF4)16 with and without cycloundecanone. As observed above, there is also a clear 

increase in rate (factor of 5) upon addition of the supposedly inhibiting guest. Also notable is 

the similarity in rate of the Os•Zn-catalysed reaction in the presence of cycloundecanone (4.9 

x 10-4 s-1), and the [Co8(L
w)12](BF4)16-catalysed reaction in the presence of cycloundecanone 

(5.6 x 10-4 s-1). We also note that the reaction rate when using [Co8(L
w)12](BF4)16 is similar to 

that obtained using Os•Zn as catalyst, which is unexpected as the chloride counter-anion in the 

latter case was thought to have the potential to inhibit the reaction rate slightly. 
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Figure 5.2.9: Comparison of rate profiles at pH 8.2, of [Co8(L
w)12](BF4)16 and 

[Co8(L
w)12](BF4)16 and cycloundecanone catalysis reactions. 

Overall the slight increase in reaction rate in the presence of cycloundecanone suggests that the 

substrate when bound inside the cavity does not react effectively, possibly because it is not in 

an optimal orientation with respect to the layer of hydroxides around it. Therefore, the cage 

actually inhibits the reaction by protecting the substrate.  On displacement of the substrate from 

the cage cavity using cycloundecanone the reaction is accelerated slightly because it now 

occurs at the exterior surface of the cage, with which it can associate via hydrophobic 

interactions, bringing the nitrobenzisoxazole into the region of locally high hydroxide 

concentration.  Other members of the group have recently obtained evidence for catalysed 

reactions actually occurring at the external surface of the cage in a similar way using 

phosphotriester substrates.19 

One way of testing this theory would be to lower the concentration of the cage and increase the 

concentration of starting material. This would give an indication on how large an effect the 

cage has on catalysis and differentiating that to the effects due to starting material, product and 

cycloundecanone. Another useful control experiment would be to use a small tetrahedral cage 

that cannot accommodate the guest but still has a charged exterior surface, and see whether the 

cage still acted as a catalyst.  

What is also interesting is how different the behaviour is between 5-nitrobenzisoxasole and 

1,2-benzisoxazole;0 this could potentially be due to how the substrate binds in the cage and 

how available the active site is in terms of being correctly positioned in the cavity to interact 

with external hydroxide ions. It would be interesting to monitor the reaction via NMR 
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spectroscopy to determine whether there is any additional interactions or any additional 

products being formed, this can be done using [Co8(L
w)12](BF4)16 due to it being paramagnetic 

and spreading out the proton peaks which simplifies analysis. 

5.2.4 Catalysis with oxidised cage 

In addition to these findings, the reason why Os•Zn was of interest for this work, was because 

it could potentially be used as a redox-switchable catalyst, whereby increasing the oxidation 

state of the cage could lead to an increase in the concentration of hydroxide ions that aggregate 

around the cage (figure 5.2.10). Thus if the mechanism were the same as in the previous work, 

then this could lead to an increase in catalysis. For this use, Os•Zn has an obvious advantage 

over [Co8(L
w)12](BF4)16, as with Os•Zn, the Os(III) oxidation state is readily accessible and 

has long-term stability, which is not the case for the Co(II) based cage. 

 

Figure 5.2.10: Depiction of Os•Zn cage with 16 anions vs. with 20 anions. 

The first method of oxidation that was tried was electrochemical. The cage has an oxidation 

potential of +0.7 V for the Os(II)/Os(III) couple (vs. SCE in H2O). Using a 1 cm path length 

cuvette into which was placed; a Pt gauze working electrode, an Ag wire reference electrode 

and a Pt wire counter electrode, the working electrode potential was held at +1 V and changes 

in the resulting UV/Vis spectra were monitored (figure 5.2.11). The results showed that the 

cage took quite a long time to fully oxidise due to the volume of material in the cuvette, leading 

to inefficient mass transport of material to the electrode surface.  In addition, the oxidised 

material did not stay oxidised for a long time, but spontaneously re-reduced in air. We could 

avoid these issues by using a much thinner (0.5 mm path length) cuvette designed for 
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spectroelectrochemistry (OTTLE cell),20 which would allow all of the solution around the Pt 

gauze to be oxidised quickly.  However, addition of the substrate (5-nitrobenzisoxazole) and 

efficient mixing of the solution would be difficult. These issues are all mechanical and would 

require an adaption of the experimental setup, which can be easily done if more time allowed 

and if enough material was synthesised. 

 

Figure 5.2.11: Cyclic voltammogram of Os•Zn oxidation and UV/vis spectra from a 

spectroelectrochemistry experiment. 

To avoid these difficulties associated with performing the catalysis while simultaneously 

performing electrochemical oxidation of the catalyst, we decided to test whether the cage could 

be oxidised through chemical methods. Therefore, it was decided to see if there were any 

appropriate chemical oxidants. The first chemical oxidant tried was ammonium persulfate, 

which had been shown previously to successfully oxidise the cage. In first use, where 2 

equivalents of oxidant were added [as each cage has 4 Os(II) units, and the persulfate ion is a 

2-electron oxidant] the cage took 20 mins to oxidise and then stayed oxidised for ~10 minutes 

before spontaneous re-reduction in aqueous solution (figure 5.2.12). This change was observed 

by following the change in absorbance of the cage at 380 nm (where 2-cyano-4-nitrophenolate 

absorbs). As shown in figure 5.2.11, the cage absorbance significantly decreases once oxidised 

and then returns (in air) to the original Os(II) absorbance. The amount of oxidant used was 

adjusted and increased to a level which maintained the cage in its fully oxidised state, without 

precipitation, for long enough to perform a catalytic reaction with. This led to the cage being 

oxidised fully in 30 mins, and then stayed oxidised for 1-2 hours (at pH 9.2). If a neutral or 

lower pH was used then the cage would be more stable in solution and will stay oxidised for 
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longer, for example at pH 2 the cage does not revert to Os(II) at all: however, unfortunately, 

basic conditions are needed for the elimination reaction. 

Using an inert atmosphere slightly improved the lifetime of the oxidised form of the cage. 

However, this presented practical difficulties associated with the addition of the solid guest 

substrate into the UV/Vis cuvette to monitor the reaction and most significantly, cuvettes with 

a Youngs tap fitted did not fit inside the temperature controlled UV/Vis spectrometers.  

 

Figure 5.2.12: Left: graph showing the change in absorbance (at 380 nm) over time of 

Os•Zn upon addition of ammonium persulfate oxidant of various concentrations. Right – 

expanded graph of the change in absorbance (0-120 mins).  

Despite these hurdles, the oxidised cage was stable enough at high pH for a period of time long 

enough to measure the accumulation of 2-cyano-4-nitrophenolate product. At pH 9.2, the rates 

of reaction catalysed by the oxidised and non-oxidised cages are essentially the same (kcat = 

2.3 x 10-4 s-1 and 2.0 x 10-4 s-1 respectively) and so no increase in catalysis could be observed 

(figure 5.2.13) as the cage was oxidised from 16+ to 20+.  To investigate this work further, it 

could be beneficial to use unsubstituted 1,2-benzisoxazole as the substrate, as the catalysed 

reaction is much faster and any rate changes associated with changes in cage oxidation state 

would be easier to detect.  Accumulation of 2-cyanophenolate is not easy to follow by UV/Vis 

spectroscopy, due to overlap with strong absorbance from the cage; therefore, these 

experiments would need to be done through NMR spectroscopy, with (ideally) an electrode 

array in the NMR tube that allowed the cage to be oxidised in situ in the NMR instrument - a 

formidable experimental challenge.  
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Figure 5.2.13: Comparison of rate profiles at pH 9.2, of Os(II)•Zn (left) and Os(III)•Zn 

(right) catalysed reactions (Kemp elimination with 5-nitrobenzisoxazole). 
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 Conclusions 

In summary, the heterometallic cage, Os•Zn, catalyses the Kemp elimination reaction of 5-

nitrobenzisoxazole with a rate enhancement of 6 times, at pH 8.2.  The isostructural Co(II)-

based cage [Co8(L
w)12](BF4)16 similarly enhances the rate of this reaction by a factor of 4. 

However, control tests using a competitively binding guest, which blocks the access of the 

substrate to the cavity, showed that expulsion of the substrate from the cavity actually slightly 

increased the reaction rate. Suggesting that the reaction proceeds more effectively at the 

exterior surface of the cage rather than inside the cavity, possibly because of issues associated 

with correct positioning / orientation of the bound guest. 

In addition, it has been found that the Os(II) units of Os•Zn, at basic pH, can be oxidised to 

Os(III) and this can be achieved through electrochemical or chemical means. This oxidised 

cage containing four Os(III) ions, with a charge of 20+ rather than 16+, has been found not to 

enhance the rate of catalysis beyond that of the Os(II) cage – in contrast to what Raymond and 

co-workers observed in a different cage-catalysed reaction by changing the charge on the cage.  

To determine the effect of the increased oxidation state of this cage on catalysis, a different 

reaction will need to be studied or the mechanism of this reaction will need to be determined 

first. Attempts have been made to follow the much faster elimination of 1,2-benzisoxazole 

catalysed by Os•Zn via 1H NMR spectroscopy, but reaction conditions need to be adapted as 

the signals of starting material, 1,2-benzisoxazole, and the subsequent product (2-

cyanophenolate) were masked by the aromatic 1H signals of the Os•Zn cage.  

Further work would be to determine the mechanism of the cage-catalysed reaction of 5-

nitrobenzisoxazole; through varying the concentrations/equilibrium of cage and guest, 

performing the catalysis with a smaller, non-binding tetrahedral cage to study the effect of the 

exterior surface and also by following the reaction by 1H NMR spectroscopy to verify the 

reaction products. Further work relating to the investigation of charge dependence on catalysis 

would be to; develop the electrochemical oxidation of Os•Zn, optimise the Os•Zn catalysis of 

1,2-benzisoxasole (by NMR) and also to explore the use of chromium as a metal corner in 

cubic cages (to utilise its various oxidation states). 

This work has shown that Os(II) cages can utilise the Os(II)/Os(III) swing for redox-based 

modulation of catalysis as well as the long-lived electron-donor excited state for applications 

in photocatalysis.  
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 Experimental 

5.4.1 Experimental techniques 

NMR titration  

[Co8L12](Cl)16 was prepared according to previously published methods.21 A stock host 

solution of [Co8L12](Cl)16 (0.15 mM) in D2O  was used and 5-nitro-1,2-benzisoxazole (0.183 

mg, 0.45 mM) was dissolved in 2.5 ml of the host solution and a drop of gaseous Hydrochloric 

acid added to give a pH of 4. The changes in chemical shift with increasing concentration of 

guest were plotted and fitted to a 1:1 host:guest binding model. The NMR data was processed 

using either Bruker Topspin 4.0.3 and was fitted to binding isotherms using 14allMaster.xls, 

which is a macro-based Excel fitting program written by Prof. Christopher A. Hunter 

(University of Cambridge). 

Monitoring the reaction 

5-nitro-1,2-benzisoxazole (0.015 – 0.017 mg, 0.13 – 0.15 mM) was added to buffered cage 

([Os4Zn4(Lnap)12]Cl16 or [Co8(L
w)12](BF4)16) solution (0.15 mM, 0.7 ml), sonicated for 10 

seconds and then pipetted into a 0.2 mm path length cuvette. When performing the reaction 

with Os(III), the reaction conditions were the same aside from the addition of ammonium 

persulfate (40 μL of 42 mM solution) to [Os4Zn4(Lnap)12]Cl16 25 minutes before the addition 

of guest. Also when performing the control experiments with the competitive binder, 

cycloundecanone (2 μL, 15 mM) was added to the cage solution and sonicated before adding 

the guest. To control the pH a borate buffer was used, with the concentrations being; borax 

10 mM for pH 9.2; borax/boric acid 2 mM/20 mM for pH 8.2 and borax/NaOH 10 

mM/25mM at pH 10.2.  

The catalysed reactions were followed by UV/vis spectroscopy, either using a Cary 50 

spectrometer or a temperature controlled (25 °C) Cary 300 bio spectrometer. The 

experiments were initially monitored using the Scanning Kinetics function, where the 

whole UV/vis spectrum (200 -800 nm) was measured every 2 minutes, then once the 

conditions were determined the Kinetics function was used and the product grow in was 

monitored at 380 nm. Each experiment was repeated at least 3 times and the resultant rate 

constants were averaged. To obtain kuncat and kcat, log(starting material) against time was 

fit to a linear equation.  
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UV/vis Spectroelectrochemistry measurements 

Spectroelectrochemical measurements were performed using an open top 1 cm path length 

cuvette, with a Pt mesh working electrode, a Pt coil counter electrode and Ag wire pseudo-

reference electrode. The UV/vis spectra were performed using a Cary 5000 spectrophotometer. 

[Os4Zn4(Lnap)12]Cl16 (50 μM) was buffered to pH 8.55 using a borate (borax/boric acid) 

buffer and the measurements were performed in both degassed (N2) and non-degassed 

conditions, with no difference in results under either conditions. 

X-ray Crystallography 

The [Co8(L
nap)12](BF4)16•2(5-nitrobenzisoxazole) diffraction data was collected and refined by 

Christopher Taylor (University of Warwick). The data was collected at the UK Diamond Light 

Source Synchrotron facility (proposal MT19876). The structure determination suffered from 

the usual weak scattering characteristic of crystals of this type, associated with large unit cells 

and disorder of solvents/anions. The X-ray diffraction limit of the crystal was set at 0.69 Å 

resolution (SHEL 999). Large solvent-accessible voids containing diffuse electron density that 

could not be satisfactorily modelled were accounted for using the SQUEEZE command in 

PLATON. Full details of the refinement and treatment of this structure, including software 

used, are given in the CIF.  

5.4.2 Synthetic procedures 

Starting materials 

5-nitro-1,2-benzisoxazole, [Os4Zn4(Lnap)12]Cl16, [Co8L12](Cl)16 and [Co8(L
w)12](BF4)16 were 

all prepared according to previously published methods.13,16,22,23 Single crystals of 

[Co8(L
nap)12)](BF4)16 used for determination of the structure of the [Co8(L

nap)12)](BF4)16•5-

nitrobenzisoxazole adduct were also prepared as described previously.15 All other reagents 

were purchased from Sigma-Aldrich or Flourochem and used as received. 

Chemical cage oxidation 

To determine the appropriate conditions for oxidising [Os4Zn4(Lnap)12]Cl16, various volumes 

(5 – 50 μL) of Ammonium persulfate(aq) solution (42 mM) were added to buffered cage. 

The oxidation was followed by UV/vis spectroscopy using a Cary 50 or Cary 5000 
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spectrometer and the reactions were performed in degassed (Ar) and non-degassed conditions, 

with the oxidation product being more stable when the solution was degassed. 
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 Appendix 

Table 5.6.1: Crystal data and structure refinement for [Co8(L
nap)12](BF4)16•2(5-

nitrobenzisoxazole). 

Identification code DMWMSv6-103_sq 

Empirical formula C374.84H392.48B14.2Cl1.8Co8F56.8N74.24O34.36 

Formula weight 8255.24 

Temperature/K 100(1) 

Crystal system monoclinic 

Space group C2/c 

a/Å 33.12481(19) 

b/Å 30.0412(2) 

c/Å 40.1650(3) 

α/° 90.0 

β/° 95.9731(6) 

γ/° 90.0 

Volume/Å3 39751.6(3) 

Z 4 

ρcalcg/cm3 1.379 

μ/mm-1 0.409 

F(000) 17060.0 

Crystal size/mm3 0.13 × 0.1 × 0.08 

Radiation Synchrotron (λ = 0.6889) 

2Θ range for data collection/° 1.972 to 59.894 

Index ranges -48 ≤ h ≤ 48, -43 ≤ k ≤ 43, -58 ≤ l ≤ 58 

Reflections collected 342014 

Independent reflections 63327 [Rint = 0.0778, Rsigma = 0.0672] 

Data/restraints/parameters 63327/6797/2523 

Goodness-of-fit on F2 1.038 

Final R indexes [I>=2σ (I)] R1 = 0.0886, wR2 = 0.2897 

Final R indexes [all data] R1 = 0.1387, wR2 = 0.3254 

Largest diff. peak/hole / e Å-3 1.33/-0.74 

 


