
 

 

 

RECONCILING SCIENCE AND POLITICS IN MARINE 

RESOURCE MANAGEMENT 

 

Bethan Christine O'Leary 

 

Thesis submitted for the Degree of  

Doctor of Philosophy 

 

 

 

 

University of York 

Environment Department 

 

February 2012 

 



 
 

 

 



3 
 

Abstract  

Fishery resources are in principle renewable, but modern fisheries are typically 

characterised by excessive fishing effort, fleet overcapacity, illegal, unregulated and 

unreported (IUU) fishing along with deficient governance. This has led to growing 

trends of unsustainability. Fisheries management is a social and political process 

which aims to regulate human activities within the constraints of the biological 

ecosystem in which it operates. But the incorporation of sustainability into fishery 

practices around the world has to date generally failed. In this thesis I explore the 

relationship between science and politics in several different spheres of marine 

resource management. 

Analysis of the extent to which European politicians have adhered to scientific 

recommendations on annual total allowable catches (TACs) from 1987 to 2011 for 

11 stocks revealed that in 68% of decisions TACs were set higher than 

recommendations. Politically-adjusted TACs averaged 33-37% above scientifically 

advised levels. A simple stochastic model indicated that such politically-driven 

decision-making dramatically reduces stock sustainability. With 88% of European 

fish stocks overexploited relative to maximum sustainable yield targets, I conclude 

that political mismanagement must bear a considerable share of the responsibility for 

this decline. 

Whilst the practice of political adjustment of scientific advice reveals the negative 

political impact on management and its failure to integrate science into management, 

the establishment of marine protected areas (MPAs) shows the relationship between 

science and politics in a more positive light. MPAs are increasingly being 

established to protect and rebuild coastal and marine ecosystems. However, the 

process of establishing these areas is not simple, particularly in areas beyond 

national jurisdiction (ABNJ) where few MPAs currently exist. Nevertheless, in 2010 

the OSPAR Commission successfully established six MPAs forming the world's first 

network of MPAs in ABNJ. I summarise how this network was created, identify the 

main challenges, and offer a series of key lessons learned, highlighting approaches 

that may also be effective for similar efforts in the future. This success story was 

driven by strong political commitment and based on the best available science, and 
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serves as an example of the positive integration of science into management by 

politicians. 

The difficult relationship between science and politics is illustrated clearly by the 

story of the Atlantic bluefin tuna (Thunnus thynnus). This species has become the 

quintessential example of overfishing and general mismanagement of the world’s 

fisheries. An age-structured spatial model of the two stocks of Atlantic bluefin tuna 

highlighted the importance of taking area and stock movement into consideration 

when determining total allowable catches for the Atlantic bluefin tuna fisheries. The 

western bluefin stock was found to be more sensitive to assumptions of stock 

movement and mixing than the eastern populations, corroborating previous research. 

My results also indicated that to maximise the total catches of bluefin in perpetuity, 

it may be better to cease fishing in the western Atlantic and to only target individuals 

in the eastern Atlantic. The estimated timeframes for recovery are found to be 

medium to long term if fishing were halted today (within 20 years for both stocks to 

attain their BMSY) and it is estimated that a 34% reduction in fishing mortality on both 

stocks is the minimum required decrease to ensure recovery. The aim of this model 

is to further research on the integration of science into a political management 

system in order to create a sustainable fishery. 

In this thesis I identify several important requirements for sustainable fisheries 

management, namely: the need for a sound scientific basis, stakeholder engagement 

and cooperation, and strong political commitment and willingness. 
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1.1. Introduction 

“The future of everything we have accomplished since our intelligence evolved will 

depend on the wisdom of our actions over the next few years” (Wright 2004) 

Fishery resources are renewable but limited by the environmental capacity of the 

ecosystem they inhabit. Fisheries are based on the extraction of wildlife and as a 

result fishing pressure has to be controlled within the limits of the ecosystem. If 

fishing effort rises above sustainable levels it will at best increase to the point of 

economic unprofitability. At worst it may result in a total stock collapse and drive 

ecosystem phase shifts. Modern fisheries are characterised by overcapacity of fishing 

fleets and the current scale of exploitation is considered to be far too intensive to be 

sustainable in many fisheries (Villasante and Sumaila 2010; Standal and Utne 2011). 

Despite large economic and social investments, without marine living resources the 

fishing sector would cease to exist. Therefore to disregard the state of marine 

ecosystems and organisms when investing and legislating on fishing and aquaculture 

would be very short-sighted.  

The declining trends seen in world fisheries have become a major cause for concern. 

Much evidence now indicates the overexploitation of the global oceans and 

continuous absolute and relative increases in collapsed stocks are being predicted 

(Froese and Kesner-Reyes 2002; Worm et al. 2006; Froese et al. 2009). Currently 

28% of all fish stocks monitored are considered to be overexploited, depleted (3%) 

or recovering from depletion (1%) while 53% are fully exploited with no scope for 

further expansion (FAO 2010b). It has been estimated that the global reservoir of 

unexploited fishable stocks is likely to be exhausted by 2020 (Froese et al. 2009). 

The FAO1 (2010b) considers that the maximum potential for wild capture fisheries 

has probably now been reached and is advocating stronger management to ensure 

ecosystems are not degraded further.  

With millions of people around the world depending on fisheries for their livelihoods 

and as a major protein source (FAO 2010b) the potential collapse of fish stocks and 

the continuing degradation of the marine environment would have far-reaching, and 

devastating, consequences. The growing evidence of the impacts of fishing has led to 

                                                      
1 Food and Agriculture Organisation 
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the conclusion that many marine ecosystems are overfished and improvements in 

management are essential (Sutinen and Soboil 2001). As part of the reform of 

management holistic approaches incorporating industry, conservation and other 

stakeholders of the oceans are necessary to rebuild stocks. In this introduction I will 

highlight the impacts of fishing on the marine environment, discuss current fisheries 

management practices and introduce the concepts of this research thesis. 

1.2. Impacts of fishing on the marine environment  

Modern day commercial fishing has been recognised as a leading environmental and 

socio-economic problem, having far-reaching impacts in the marine realm (Jackson 

et al. 2001; Lotze et al. 2006; Worm et al. 2006; Daskalov 2008; Worm et al. 2009). 

The most straightforward effect that fishing has on exploited populations is to 

directly reduce the abundance of targeted species through harvesting. In addition 

however, exploited species have been shown to exhibit a higher temporal variability 

in abundance than unexploited species (Hsieh et al. 2006; Anderson et al. 2008). 

Fisheries selectively remove large and old individuals which results in a truncation 

of age-structure and this is increases population variability. Older and larger fish 

produce an increased quantity and quality of eggs than smaller and younger 

individuals (Berkeley et al. 2004). Consequently, selectively removing these 

individuals acts to reduce the reproductive capability of the population. In addition, 

so as to increase the survival rate of larvae under variable environmental conditions 

many fish species use bet-hedging strategies. For example, some species exhibit age-

related difference in spawning localities and time (Hsieh et al. 2006). When fishing 

undermines these bet-hedging strategies populations lose their ability to dampen 

environmental stochasticity and populations more closely track short-term 

environmental variability (Anderson et al. 2008). The biomass of species is also 

affected by fishing. Global large predatory fish biomass is considered to be only 

~10% of pre-industrial levels (Myers and Worm 2003, 2005).  

Comparisons of fished and unfished areas have consistently shown that diversity and 

biomass of marine organisms are higher in the unfished areas (Koslow et al. 2001; 

Halpern 2003; Hiddink et al. 2006). As well as local diversity effects, predator 

diversity has declined between 10% and 50% in all oceans over the past 50 years, 
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coinciding with increases in fishing pressure (Worm et al. 2005). Biodiversity has 

been linked to ecosystem resilience (Worm et al. 2006) and concern has been raised 

regarding the loss of some species and the stability of an ecosystem (Hooper et al. 

2005). How much the loss of a species affects an ecosystem will depend on its 

functional role; whilst some may be lost without any great change within the 

ecosystem others may cause ecosystem structure to shift (Roberts 1995). The loss of 

species diversity as a result of fishing may lead to a reduction in ecological integrity 

promoting phase shifts to another, perhaps less desirable state (e.g. Steneck et al. 

2002). 

In addition, fishing techniques have been shown to impact the structure of 

ecosystems. Fishing preferentially targets large, slow-growing species which are the 

most vulnerable to fishing. As traditional stocks decline fishers move to smaller, 

previously less favoured species (Kaiser et al. 2005), a pattern that has been termed 

'fishing down the food web' (Pauly et al. 2002). Within global landings there has 

been a decline of 0.05-0.10 trophic levels2 per decade indicating the slow removal of 

large, long-lived fishes from the oceans (Pauly et al. 2002). The result is a change to 

the ecosystem structure which allows the dominance of previously suppressed 

species which may, or may not, be exploited by humans (Pauly et al. 2002). It may 

also have the effect of driving the evolution of a species to smaller, faster maturing 

individuals (Caddy and Garibaldi 2000; Grift et al. 2003; Sharpe and Hendry 2009).  

Reducing the biomass of large older individuals through fishing also has 

consequences for the reproductive output of the stock, as this varies with size and 

age. The fecundity (number of eggs per unit of body mass) of fishes increases 

exponentially with body size and evidence indicates that the eggs of large, older 

females are often larger and contain more oil than smaller females leading to 60-80% 

better survival rates (Berkeley et al. 2004; Scott et al. 2006; Field et al. 2008). The 

removal of large organisms from size spectrum3 has been shown to shift the steady 

state of marine ecosystems from stability to instability (Plank and Law 2011). This 

follows from observations that it may be deleterious to remove the Big, Old, Fat, 

                                                      
2 Trophic levels describe the position a fish or invertebrate occupies within the ecosystem. It 
expresses the number of steps they are removed from algae (which occupies a trophic level of 1). 
Most food fishes have a trophic level ranging from 3.0 - 4.5 (Pauly et al. 2002). 
3
 Size spectrum refers to the frequency distribution of all individuals across the spectrum of body 

mass, irrespective of their taxonomic identity (Datta et al. 2010). 
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Female Fish (BOFFF) and changes in size and age structures of marine species 

resulting from fishing may have a profound influence on the potential for future 

generations (Law 2007). In fact, Rochet and Benoît (2012) have suggested that 

selective fishing also destabilises community trophic dynamics. There is a theory 

therefore that rather than simply reducing fishing pressure exploitation should be 

balanced across trophic levels to maintain ecosystem trophic structure (Law et al. 

2012, Rochet and Benoît 2012, Bundy et al. 2005). 

In terms of marine extinctions, few have been documented in the past due to the 

difficulty of detection (Dulvy et al. 2003). In addition, up until the late nineteenth 

and early twentieth century the belief that the seas were inexhaustible was commonly 

held (Pauly et al. 2003), limiting investigation into marine extinctions. However, 

evidence suggests that marine extinctions are likely to have been underestimated and 

are becoming more common (Roberts and Hawkins 1999; Dulvy et al. 2003; 

Hutchings and Reynolds 2004). There is also much evidence of local and regional 

extirpations indicating the reduction of range for many species (e.g. MacKenzie and 

Myers 2007; Lotze and Worm 2008; Robinson and Frid 2008). Commercially 

important species may be fished down to a vulnerable level because of their 

economic value and non-targeted species may be threatened through bycatch 

(Cheung et al. 2005). The direct (e.g. removal of biomass) and indirect (e.g. habitat 

destruction) effects of fishing may therefore be placing marine species under greater 

threat of extirpation and extinction. 

On land, habitat loss and fragmentation is the most frequently cited factor in the 

increasing rate of species becoming threatened or extinct (Pimm et al. 1995; Brooks 

et al. 2002). The destruction of marine habitats through fishing and other activities 

such as coastal habitat destruction and conversion are therefore also likely to 

contribute reduced marine abundance or diversity. Many fishing techniques have the 

capability of altering, removing or destroying the complex, three-dimensional 

physical structure on the seabed through the capture of attached species such as cold-

water corals or seafans (Harrington et al. 2005; Biju Kumar and Deepthi 2006). This 

directly removes hard substrata and disturbs ecological communities that have 

developed sometimes over thousands of years (Roberts 2002). The disturbance to 
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these habitats may affect structural and functional biodiversity and community 

composition (Biju Kumar and Deepthi 2006).  

To a large degree the abundance of an organism is a function of the quality and 

quantity of suitable habitat available to it either directly, through habitat niches or 

indirectly, through the quality and quantity of prey. The degradation of benthic 

habitats, both directly (e.g. through the process of trawling) and indirectly (e.g. 

siltation) can have negative consequences for fish yield by causing a redistribution of 

species and by reducing the potential production of that ecosystem (Turner et al. 

1999). 

1.3. Fisheries management 

The overall aim of fishery management is to facilitate sustainable fishery systems, 

i.e. to ensure that conditions necessary for marine resource renewal are provided. 

Fisheries management is a social and political process that is constrained by the 

biological systems in which it operates and to date fisheries management has 

generally failed to incorporate sustainability into fisheries around the world (Sutinen 

and Soboil 2001). The next section provides a brief overview of the major features 

and problems of fisheries management. 

Single-species tools in a multispecies world 

The invention of modern fisheries science is often attributed to Beverton and Holt 

(1957), who formalised theory of exploitation for different fish life histories and 

brought together existing ideas about Maximum Sustainable Yield (MSY) and 

surplus production. MSY is a yield estimation based on the ‘surplus yield’ model 

where the objective is to take the maximum possible catch that can be maintained 

under favourable conditions (Hilborn and Walters 1992; Mace 2001). In theory, 

catching fish can increase the productivity of a stock as at low population densities 

there is an exponential growth in population size until resources becoming limiting 

and growth slows, eventually to zero at the carrying capacity of the environment. As 

fishing effort is applied, the biomass of the population decreases and growth rate 

therefore increases due to reduced population density and competition for resources. 

The maximum growth rates occur at intermediate population sizes as at low 

population densities growth rate may become negative due to Allee effects 
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(Liermann and Hilborn 2001; Jensen et al. 2012). MSY is formed under the 

assumption that when a population is at half of its unexploited biomass (BMSY) its 

population growth rates are highest, and consequently it represents the quantity of 

stock that can be removed in perpetuity without the stock declining or collapsing 

(Mace 2001). The concept of MSY therefore leads to a conflict between 

maximisation and sustainability – the higher the harvest rate is set the more fragile 

the sustainability leaving no margin for error. Should environmental variation and 

stochastic events occur while the population is at half of its unexploited biomass the 

stock can quickly be driven towards collapse. Typically, within management BMSY 

acts as a trigger reference point below which catches are systematically reduced to 

reach zero at a limit biomass (BLIM) (Froese et al. 2011). This is the point at which 

the reproductive capacity of the stock is endangered. Precautionary target biomasses 

that are larger than that which produces MSY may therefore be applied in 

accordance with Annex II of the UN Fish Stocks Agreement (1995)4. 

As a result of the MSY concept, fishery management to date has largely been 

conducted on a single-species approach aiming to maintain fisheries production and 

target stocks using a variety of controls on fishing effort and catch (Sutinen and 

Soboil 2001). Types of regulatory measures include temporal and spatial restrictions 

on catch or fishing effort, annually adjusted quotas in the form of total allowable 

catches (TACs), technical restrictions and minimum landing sizes of species 

(Holland 2003). These measures often result in high grading of target species and the 

discarding of undersized or over-quota commercially important species, thereby 

increasing the fishing mortality being imparted on the system (Kristofersson and 

Rickertsen 2009; Poos et al. 2010; Bellido et al. 2011). 

The majority of fisheries actually operate in a multispecies environment. As species 

have different intrinsic abilities to accommodate fishing mortality their individual 

MSY curves are very different. Consequently, there will be a spectrum of responses 

to fishing within the ecosystem (Kaufman et al. 2004; Pinnegar et al. 2005). If 

fishing effort is matched to reach the MSY for the most resilient species the other 

species (often caught using the same gear) may become overexploited or very 

overexploited. The least resilient species is known as the ‘weakest link’ (Pinnegar et 

                                                      
4 Annex II of the United Nations Fish Stocks Agreement (1995) specifies that the fishing mortality 
which generates MSY should be regarded as the minimum standard for limit reference points. 
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al. 2005) as, if effort was only matched to this species, then catch of other species 

would decrease significantly (Kaufman et al. 2004). 

Traditional management, therefore, often fails to consider the indirect effects of 

fisheries on the whole ecosystem (e.g. habitat, food supply, non-target species), at 

least until there is a problem with that fishery (Walters 1998; Sutinen and Soboil 

2001; Lindenmayer et al. 2007). It has been argued that had science advisors and 

managers considered more of the ecosystem in decision-making, and tried to 

minimise the impact of politics on the fishing industry, then mistakes might have 

been foreseen and avoided (Cardinale and Svedäng 2008; Rice 2008).  

The recognition that multispecies considerations need to be incorporated into fishery 

management is now widespread and is central to the concept of ecosystem-based 

fishery management (EBFM) (McLeod et al. 2005). Despite ecologists frequently 

stating the importance of modelling ecosystems rather than individual species, the 

majority of models simulate a single-species world due to the increased 

complications of modelling multiple dynamic trophic levels (Fleming and Alexander 

2003; Armstrong 2007). Whilst multi-species modelling appears to offer greater 

insight into ecosystems they come with a multitude of problems (Hollowed et al. 

2000). As the models become more detailed and complex there is a greater potential 

for serious issues of confounding to appear, there is an increased reliance on 

statistical (often deficient) data, and the inclusion of multiple potential confounding 

variables often leads to considerable obfuscation of the results. In practice therefore, 

single species models are still the dominant tool worldwide for providing timely and 

reliable scientific advice regarding the management of commercially valuable stocks. 

Data deficiency and uncertainty 

Data are often deficient within fisheries science and management and estimates of 

biomass are full of inaccuracies (Walters 1998; Chen et al. 2003; Kraak et al. 2010). 

Difficulties in estimating the abundance of fish during scientific assessments from 

survey and fisheries data, together with the application of these data into simple 

stock-assessment models will always result in some uncertainty. As Hilborn and 

Walters (1992) maintained, “you cannot determine the potential yield from a fish 

stock without overexploiting it”. Fisheries management tools require biological 
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information and due to uncertainty these tools are often not used effectively with, for 

example, excessively high TACs being set by fisheries managers (Walters 1998; 

Cardinale and Svedäng 2008). 

Establishing management strategies such as TACs is often difficult as a result of the 

inherent uncertainty within science (Kraak et al. 2010; Hauge 2011). This 

uncertainty stems from difficulties in data collection, a lack of knowledge regarding 

stock-recruitment relationships and connectivity between stocks as well as variable 

environmental conditions and anthropogenic stresses. These uncertainties are great 

for those stocks and environments within national exclusive economic zones but are 

even greater for areas outside of national jurisdiction (the high seas) and are 

compounded by political difficulties. 

The establishment of marine protected areas (MPAs) has been suggested as a way to 

reduce uncertainty and act as a buffer against unfavourable environmental conditions 

and poor management (Lauck et al. 1998; Grafton and Kompas 2005). A MPA may 

be defined as “Any area of intertidal or sub-tidal terrain, together with its overlying 

water and associated flora, fauna, historical and cultural features, which has been 

reserved by law or other effective means to protect part of all of the enclosed 

environment” (Kelleher 1999). However, while there are global targets to establish 

MPAs5 in practice it is still found that politicians want a strong scientific 

underpinning in order to designate areas for protection, at least in the high seas 

(O'Leary et al. 2012). 

Political adjustment and harvest control rules 

Today, MSY provides a reference against which exploitation can be measured (using 

the fishing mortality and biomass at which MSY (BMSY) is achieved providing a limit 

reference point to managers (Punt and Smith 2001).  Often, as in the European Union 

(EU), total allowable catches (TACs) are used to control fisheries landings and are 

                                                      
5 These include commitments to establish representative networks of MPAs by 2012 at the World 
Summit on Sustainable Development (WSSD) in 2002, and subsequent United Nations General 
Assembly (UNGA) resolutions and Convention on Biological Diversity (CBD) decisions. In 
particular the latest target by the CBD is that "By 2020, at least 17 per cent of terrestrial and inland 
water, and 10 per cent of coastal and marine areas, especially areas of particular importance for 
biodiversity and ecosystem services, are conserved through effectively and equitably managed, 
ecologically representative and well-connected systems of protected areas and other effective area-
based conservation measures, and integrated into the wider landscapes and seascapes" (target 11, 
http://www.cbd.int/sp/targets/). 
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set according to the perceived stock size and the estimated harvest rate (Punt and 

Smith 2001; Pitchford et al. 2007). TACs are often recommended by scientists and 

are then adjusted and agreed by politicians and managers either on an ad hoc basis or 

according to harvest control rules (HCRs). 

HCRs were developed in order to minimise ad hoc political decisions and to develop 

the precautionary approach into feasible fisheries management by the scientific 

working groups of the International Council for the Exploration of the Seas (ICES) 

and the Northwest Atlantic Fisheries Organisation (NAFO) among others (Serchuk 

et al. 1997; NAFO 2002; ICES 2008). HCRs are sets of well-defined rules that can 

be used for determining quotas or fishing effort developed according to the status of 

the resource being managed and the implementation of reference points based on 

fishing mortality and biomass (Mace 2001; Apostolaki and Hillary 2009). 

Traditional harvesting strategies are simple HCRs which use only one parameter, i.e. 

constant harvest rate (del Valle and Astorkiza 2007). The use of increasingly 

complex, or multi-parameter, HCRs are now being suggested and used by scientists 

(del Valle and Astorkiza 2007; ICES 2008). HCRs may reduce uncertainty as, if the 

management policy is expressed as a HCR then it allows the TAC to be determined 

unambiguously with no “wiggle room” for interpretation by politicians and 

managers (ICES 2008). 

Within European fisheries, politically influenced ‘quota-bargaining’ is often seen 

(Daw and Gray 2005; Roberts et al. 2005; Pitchford et al. 2007) although HCRs are 

used for some species such as the Northeast Arctic Haddock (Apostolaki and Hillary 

2009). Competitive quota-bargaining in Europe often results in TACs being set 

unrealistically high by politicians (Roberts et al. 2005; Cardinale and Svedäng 

2008). For example, previous work has estimated that in Europe fishery ministers 

usually set TACs 15-30% higher than recommended by fisheries scientists (Roberts 

et al. 2005). Further overshooting of TACs through illegal landings, legally 

permitted overshoot and discarding then occurs which acts to compound the 

problems of excessive catches (Cardinale and Svedäng 2008). This leaves biomass 

vulnerable to be driven down towards collapse. In addition, when combined with 

environmental variation, one or more years of poor environmental conditions 

combined with continuing effort might bring the population below the biological 
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replenishment level and collapse may then be inevitable (Grafton et al. 2005). The 

inability of scientists to make confident predictions of collapse is often regarded as a 

justification for taking large harvests and even for increasing harvests (FAO 1996; 

Punt and Smith 2001). For example, Beverton and Holt identified exploitation rates 

on many North Sea stocks to be unsustainable as early as 1957 (Beverton and Holt 

1957) and yet these high rates have persisted, despite repeated scientific advice that 

lower exploitation rates would lead to higher yields (Karagiannakos 1996). 

Economic discounting  

According to Clark (1973a, b, 1990) it is ‘economically rational’ (the maximisation 

of discounted net returns) to exploit populations to the point of extinction as a result 

of discounting (i.e. where future returns are weighted less heavily than present 

returns, and often the discount factors are small corresponding to a short time 

horizon). In fact, within economic analyses the discount rate influences the optimal 

harvesting strategy dramatically and often leads to the collapse or extinction of 

exploited populations (e.g. Clark 1990, Sethi and Thompson 2000).  

To overcome the problems of a fixed discount rate, it has been suggested that the 

discount rate should decline over time, known as hyperbolic discounting, to protect 

natural resources (e.g. Cropper and Laibson 1999, Shogren and Settle 2004, Voinov 

and Farley 2007). In this case the planner would reduce stock levels early on when 

the discount rate is high and intend to compensate for this by allowing the stock to 

recover when the discount rate is lower. This acts to increase the weight on benefits 

in the distant future and may provide greater protection of resources for future 

generations. Duncan et al. (2011) applied hyperbolic discounting to the Peruvian 

anchovy fishery in the 1970’s. They showed that while this can lead to a sustainable 

fishery, if the planner ends up repeatedly restarting the optimisation this drives the 

stock down to the point where it becomes optimal to harvest the stock to extinction. 

This process of re-optimising policy is thought to have contributed to the collapse of 

the North Atlantic cod (Duncan et al. 2011). 

The concept of applying economic discounting to life support systems, of which 

natural resources (and biodiversity) are included, has been criticised, largely on the 

controversy of the balance between present and future, i.e. intergenerational equity 



25 
 

and efficient use of capital (Heal 1997). However, investigations into the effect of 

discounting shows, and at least partly explains, the dire consequences of ‘business as 

usual’ in the exploitation of natural resources (Clark 1973a, b, 1990, Duncan et al. 

2011).  

1.4. New directions for marine resource management  

The recognition of the ineffectiveness of past and present fisheries management to 

impart sustainability into marine ecosystems and the fisheries they support is well 

recognised. Sustainability has been an aim of most governments since the World 

Summit on Sustainable Development in 2002 where a target was set to restore all 

fish stocks to their MSY levels by 2015 (UN 2002). It has been estimated that global 

fisheries contribute at least $50 billion less to the global economy than they would if 

stocks were returned to their MSY (Arnason et al. 2009; Holt 2009). While some 

stocks are showing signs of recovery after improved management efforts (e.g. 

Northeast Arctic stocks, Diamond and Beukers-Stewart 2011) it is also increasingly 

recognised that impacts from climate change, biodiversity loss, pollution, coastal 

development and habitat loss and fragmentation compound the problems caused by 

overexploitation and may affect stock recovery. The unprecedented challenges 

facing sustainable management of the oceans require scientists, practitioners and 

citizens to embrace a broader vision for marine management encompassing 

environmental and socio-economic well-being.  

Interest in ecosystem-based fisheries management (EBFM) has therefore increased 

with the aim to incorporate sustainability into fishing activities and development 

(Cardinale and Svedäng 2008). Early studies of the effects of fishing, and traditional 

management techniques were founded on short-term dynamics of target fish 

populations, considered independently of the ecosystem as a whole (Sutinen and 

Soboil 2001; García et al. 2003). The aim of EBFM is to recognise the 

interconnectedness within and between systems, while integrating ecological, social 

and economic positions (McLeod et al. 2005). Whilst management policies 

considering all ecosystem components would be extremely data intensive and as 

such unrealistic, EBFM is considered to be a management tool that needs to be 

supported by, and based on, the best scientific advice available. EBFM therefore can 

be used to make an informed decision while invoking the precautionary approach.  



26 
 

EBFM places an ecological priority on fisheries management as this is thought to be 

essential for the long-term socio-economic sustainability of the fishing industry. It is 

essentially a new direction in marine resource management where the order of 

management priorities is reversed to start with the ecosystem rather than the target 

species. However, it is recognised that an ecological priority will likely clash with 

the needs of economic and social objectives in the short-term (e.g. CEC 2009; 

Standal and Utne 2011).  

It is likely that the implementation of holistic management under the guise of EBFM 

will employ a number of tools that emphasise both protection and use and which 

incorporate the precautionary approach. These tools might include those aimed at 

creating incentives for stewardship and collaboration (e.g. individual transferable 

quotas) and area-based management tools (e.g. marine protected areas and ocean 

zoning).   

Accounting for climate change 

Based upon current scientific evidence, emissions of greenhouse gases from human 

activities are projected to cause significant global climate change during the 21st 

Century (IPCC 2007). This is likely to create novel challenges for marine 

ecosystems and resource management. Ocean temperature changes will influence 

organism metabolism, alter ecological processes (e.g. productivity), and expand or 

contract species’ geographical distributions (e.g. Perry et al. 2005; Pörtner and Knust 

2007; Brander 2010). Increased carbon dioxide concentrations lower pH, which will 

alter ocean carbonate chemistry (Doney et al. 2009). Changes in precipitation and 

sea-level rise will have consequences for surface runoff and coastal ecosystem (e.g. 

mangroves) flooding (Hoegh-Guldberg and Bruno 2011). Patterns of wind and water 

circulation are also likely to change, influencing upwelling, the transfer of nutrients 

and oxygen, and ocean temperatures (Hoegh-Guldberg and Bruno 2011). Future 

management and conservation of the marine environment and fisheries will therefore 

need to incorporate plans to adapt to climate change (Heller and Zavaleta 2009). 

Broadly speaking, such plans will require improved regional planning and 

coordination, expanded spatial and temporal perspectives, incorporation of climate 

change scenarios into all planning, and greater coordination between policy and 
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management institutions to address multiple threats (Heller and Zavaleta 2009; Link 

et al. 2011).  

1.5. Organisation of the thesis  

The problems faced by fishers and the marine environment alike, i.e. declining 

catches and degraded ecosystems, have led to the re-evaluation of fisheries 

management. In order to help stocks recover, rebuild lost ecosystem resilience and 

ultimately improve the fishing industry, fisheries management needs to evolve - 

incorporating science-based management with an ecological focus so as to maintain 

human well-being into the future.   

The aim of this thesis was to explore relationships between science and politics in 

ocean management using statistical analysis, simulation modelling and practical 

experience. I examine the impact of political decision-making on European fisheries 

together with the scientific and political process of establishing marine protected 

areas as one conservation tool within the high seas. I then develop a model that will 

allow investigation into the sustainable management of the Atlantic bluefin tuna 

(Thunnus thynnus) and ways of bringing together science and politics in this 

situation. 

The following chapters comprise the analytical part of this research. I first present an 

historical overview and analysis regarding the role of politicians in fisheries 

regulation, specifically the annual setting of TACs. I then proceed to further this 

investigation through the development of a deterministic model in order to untangle 

the role of political adjustment to TACs from additional influencing factors such as 

discarding and bycatch. I then discuss scientific and political difficulties of 

establishing marine protected areas (MPAs) in data deficient areas such as the high 

seas. For this I use OSPAR and the North-East Atlantic as a case study, where the 

first network of high seas MPAs was established in 2010. Continuing the theme of 

the high seas, I then develop a spatial model for the high seas straddling stocks of the 

Atlantic bluefin tuna. This model allows analysis of the impact that political 

adjustment has had on the status of both the western and eastern stocks as well as 

contributing to current discussions regarding the application of marine reserves for 

migratory and far-ranging species. The final part of my thesis brings together the 
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results and discusses the process of bringing together science and politics in marine 

resource management. 
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2.1. Abstract 

In this chapter I analyse the extent to which European politicians have adhered to 

scientific recommendations on annual total allowable catches (TACs) from 1987 to 

2011, covering most of the period of the Common Fisheries Policy (CFP). For the 11 

stocks examined, I find that TACs were set higher than scientific recommendations 

in 68% of decisions. These politically-adjusted TACs averaged 33-37% above 

scientifically recommended levels. In addition, I find no evidence that the 2002 

reform of the CFP improved decision-making, as was claimed at the time. For the 

stocks examined, scientific recommendations advising zero-catch (moratorium) were 

not followed on any occasion; a TAC was always implemented in contradiction to 

the scientific advice. The management zone most prone to political adjustment was 

the Spanish, Portuguese and Bay of Biscay zone (division VIII/IX). The waters 

around Iceland (division Va) were the least prone to political adjustment.  

I find that political decisions to overrule scientific advice are endemic within the 

fisheries decision-making process in Europe. With increasing numbers of moratoria 

being advised, this implies that current decision-making practices and policies are 

failing to impart sustainability into fish stocks. I argue that the annual negotiation 

and setting of TACs needs to be changed, moving away from political debates 

between the European Commission and national fisheries ministers. Instead, I 

advocate that long-term sustainability should be prioritised. When setting TACs 

scientific advice should be followed and adherence to scientific recommendations 

should be legally binding to remove the temptation to set TACs higher than the 

ecosystem can support. 

2.2. Introduction 

Setting total allowable catches (TACs) underpins resource management and 

conservation within the Common Fisheries Policy (CFP) (Karagiannakos 1996), 

under which European fisheries have been managed since 1983 (Roberts 2007). 

Initially this resulted in major growth in the size of the Community fleet and overall 

catches increased until the mid-1980s (Pauly and Maclean 2002). At this time, many 

of the Community’s most important fish stocks, such as cod, haddock and whiting, 

declined (Pauly and Maclean 2002). This led to a reappraisal of the CFP with the aim 
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of rebuilding fish stocks and fisheries yields. As part of this initiative, Community 

financial aid was redirected towards fleet modernisation, reducing capacity, 

implementing protected marine areas, and expanding markets to include more 

species (Council Regulation (EEC) No 4028/86). Twenty years on, despite these 

provisions, many stocks have continued to decline and many shortcomings of the 

CFP have been recognised (e.g. Daw and Gray 2005; Khalilian et al. 2010). At the 

turn of the century (2002) the CFP was reviewed with the intention of a radical 

overhaul and reform of practices. Amongst other issues, the Commission of the 

European Council highlighted the application of the TAC system as a key factor in 

the failure of the CFP to incorporate sustainability into fishery resources (CEC 

2001). The short term perspective and the failure of the system to follow scientific 

advice were noted as the major weaknesses. Together with changing policy, the CFP 

has been affected by the continuing expansion of the European Union placing 

additional pressures on resources and complicating decision-making processes 

(Kyriacou 2009). During the implementation of the 2002 reform, ten countries6 

entered the community in May 2004 resulting in the largest single expansion of the 

EU7.  

In theory, total allowable catches are set according to scientific advice provided by 

the International Council for the Exploration of the Sea (ICES), and the Scientific, 

Technical and Economic Committee on Fisheries (STECF) which is appointed by 

the European Commission. Every year, scientists provide stock assessments for the 

different management zones in European waters and recommend TACs to the 

European Commission for each stock and zone; fisheries ministers then set the 

legally binding TACs and negotiate to divide them amongst fishing nations (Figure 

1).  

 

 

 

                                                      
6 Cyprus, Czech Republic, Estonia, Hungary, Latvia, Lithuania, Malta, Poland, Slovakia and Slovenia 
7http://ec.europa.eu/enlargement/archives/pdf/press_corner/publications/key_issues_from15_to_25_e
n.pdf 



32 
 

Figure 1. Flowchart describing the annual TAC setting cycle 

 

Scientific advice is provided by the Advisory Committee (ACOM) of ICES and the Scientific, 

Technical and Economic Committee on Fisheries (STECF) appointed by the European Commission. 

Redrawn from Keltz and Bailey (2009) 

The aim of this chapter is to explore the relationship between science and politics 

within this decision-making system by examining the impact of political adjustment, 

i.e. the degree to which ministers adjust scientifically-recommended TACs within 

European fisheries. This impact is explored through an analytical appraisal of 

available data from 1987 to the present.  

2.3. Existing research into the TAC management system 

Previous research has highlighted the impact of political decisions in the TAC 

management system. Karagiannakos (1996) examined the importance of TACs as a 

conservation measure for six demersal North Sea fish stocks; cod, haddock, sole, 

plaice, whiting and saithe, between 1980-1992. Investigating the scientifically 

recommended TAC, the TAC agreed by the Council, the actual catch and the 

spawning stock biomass (SSB), fish landings were found to follow changes in the 

SSB rather than changes in the TACs. Therefore, the catch was more affected by the 

condition of the stock rather than the TACs, indicating a weak correlation between 

TACs and landings. In addition, it was found that the TAC system generates 

wasteful practices such as high grading and discarding. The lack of fishermen’s 
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compliance with the TAC system and political pressures in deciding TACs were also 

highlighted as failings. For these reasons, Karagiannakos (1996) concluded that the 

TAC system did not contribute significantly to the sustainability objective of the 

CFP for the stocks studied.  

Daan (1997) investigated the effectiveness of TAC management for two flatfish 

stocks (sole and plaice) in the North Sea between 1979-1996. In this evaluation, the 

reliability of the scientific assessment, the deviation between scientifically advised 

TACs and implemented TACs and enforcement issues were addressed. In all he 

found that attempts to constrain fishing mortality using TACs had failed. If anything, 

the implementation of TACs made the situation worse, with exploitation rates 

increasing after the introduction of the CFP in 1983. Daan (1997) identified the 

following failings in the TAC system: a) TACs control landings rather than total 

catches, and in a multispecies fishery they may encourage discarding, b) non-

compliance leads to a deterioration in the quality of catch statistics entering stock 

assessments, and c) political negotiations undermine the TAC setting process. In 

particular Daan (1997) acknowledged that the ad hoc decision-making process 

encourages non-compliance as it fails to impart any long-term certainty for the 

industry on which fishers can base their economic strategy.  

Maguire (2001) concluded that it is the uncertainty surrounding stock assessments 

and the implementation of the TACs that result in the failure of the TAC system to 

guarantee the sustainability of the resource. Elaborating on the implementation 

process, Roberts et al. (2005) state that fishery ministers usually set TACs 15-30% 

higher than recommended by fisheries scientists in order to reduce the impacts of 

TAC reductions on fishing communities. However, whilst this may reduce the 

impacts in the short term, the impacts may be more strongly felt in the future when 

greater reductions need to be made in response to declining stocks (Roberts et al. 

2005). An evaluation by Rice and Cooper (2003) of the management of flatfish 

fisheries around the globe found that more than any other factor examined, failure to 

comply with scientific advice greatly increased the risk of unsustainability. 

Del Valle and Astorkiza (2007) considered the process of TAC decision-making 

rather than the discrepancy between advised and agreed TACs. They observed the 

large number of agents that intervene to decide the agreed TAC, finding that the 
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decision is made in an arena of many actors and institutions, all with their own often 

conflicting interests. Due to the biological and social complexity involved in the 

TAC setting process considerable divergence from scientific recommendations may 

therefore be expected. Within this study they identified a need to minimise the effect 

of perverse external pressures on the decision-making process through, for example, 

the use of harvest control rules (HCRs). They argue that HCRs help to remove the 

final responsibility for decision-making from politicians due to the presence of clear 

established rules. 

Reiss et al. (2010) studied the linkage between TACs and fishing effort in the mixed 

fisheries of the North Sea. They concluded that variation in TACs has minimal 

impact on fishing effort and that as a result the use of TACs as the principal tool to 

regulate fishing activity is inadequate due to non-compliance. 

These papers all identify the same issues with the TAC management system 

employed by European fisheries: that of a short-term ad hoc decision-making 

process that has provided incentives for high-grading, discarding and non-

compliance within fisheries. This research aims to expand these studies through a 

more complete analysis of stocks in European Union waters. With the second reform 

of the CFP due to take place in 2012 (CEC 2009; Surís-Regueiro et al. 2011) it is 

hoped that this research will provide further evidence to managers and policy makers 

of the need to reform the current TAC system and more fully integrate science into 

policy. 

2.4. Aims and objectives 

The main aim of this research is to examine the history of the TAC setting process 

for a variety of stocks to determine the degree of discrepancy between advised and 

agreed quotas. Specifically the following questions will be asked: 

1. To what extent are scientifically recommended TACs disregarded in the final 

TAC setting process? 

2. Are some species more prone to higher levels of political adjustment than 

others? 
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3. Is political adjustment more evident for some management zones than others?  

4. If differences between species and zones are found, what might be driving 

these differences? 

5. What impact have the CFP reform and EU expansion had on political 

adjustment levels? 

2.5. Methodology 

2.5.1. Data 

Data on advised and agreed TACs were obtained from a variety of sources including 

the ICES online advice archives8 and official EU Council Regulations9 and bilateral 

agreements10. The ICES data detail the recommended catch corresponding to 

scientific advice and the TACs implemented by the Council of Ministers. The 

database currently runs from 1987 to 2011, but it does not always contain continuous 

time-series for all stocks, because the required information is not always available. 

Scientific advice may not be consistently given for a variety of reasons, for instance 

the stocks were not considered, the advice was combined with that of other stocks, or 

the advice was phrased in text rather than numbers. Council Regulations and the 

documents relating to bilateral agreements between the EU and other nations were 

used to obtain data for the 2011 fishery and to validate ICES records.  

In total, data were available for 44 stocks of 11 fish species across 9 management 

zones. The species analysed were; cod (Gadus morhua), plaice (Pleuronectes 

platessa), haddock (Melanogrammus aeglefinus), megrim (Lepidorhombus spp.), 

saithe (Pollachius virens), herring (Clupea harengus), sole (Solea spp.), hake 

(Merluccius merluccius), nephrops (Nephrops norvegicus), sprat (Sprattus sprattus) 

and whiting (Merlangius merlangus). These species were chosen because the EU 

manages them under a TAC system, they have economic importance and they are 

                                                      
8 http://www.ices.dk/advice/icesadvice.asp 
9 e.g. EU (2010b). COUNCIL REGULATION (EU) No 23/2010 of 14 January 2010 fixing for 2010 
the fishing opportunities for certain fish stocks and groups of fish stocks, applicable in EU waters and, 
for EU vessels, in waters where catch limitations are required and amending Regulations (EC) 
No 1359/2008, (EC) No 754/2009, (EC) No 1226/2009 and (EC) No 1287/2009. Official Journal of 
the European Union. 
10 EU (2010a). Agreed record of conclusions of fisheries consultations between the European Union 
and Norway for 2010. Brussels. 
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publically recognisable. Stocks for which there was a mismatch between the advice 

and TAC areas were excluded from the list. For example if the advice referred to 

area VIId and the TAC was set for area VIId and VIIe these stocks were removed 

from the calculations. The 9 management zones considered were the Baltic sub-areas 

22-32, Skagerrak and Kattegat (IIIa), North Sea (IV), Northeast Arctic sub-areas I & 

II, Icelandic division Va, Clyde and Rockall (VI), West of the British Isles and the 

English Channel (VII), Irish Sea (VIIa), Spain, Portugal and the Bay of Biscay (VIII 

& IX) (Figure 2). These zones were aggregated from smaller management sub-areas 

for which ICES advised TACs. 

Figure 2. Map of the nine management zones used in this study  

 

To attempt to explain any trends that might be found between species or zones, data 

were also collected on fish price categories from fishbase11, employment data from 

                                                      
11 www.fishbase.org, last updated 2010. 
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Salz and Macfadyen (2007) and national websites12 and seafood consumption 

patterns from FAOSTAT13. From these data, regional dependency patterns could be 

identified and compared to political adjustment levels for each zone. In addition, the 

proportion of stocks assessed in this study for each zone were identified as being 

within or outside safe biological limits so as to determine whether political 

adjustment is leading to a depletion of species14. 

2.5.2. Statistical analysis 

Political adjustment 

A political adjustment index (PAI) was calculated as a measure of the degree to 

which ministers’ adjust scientifically recommended TACs. This was determined by 

calculating the percentage by which the official TACs differed from the advised 

TACs for all decisions made for all stocks in all years (PAI = ((agreed TAC – 

advised TAC)/advised TAC)*100). If science advised a TAC of zero, it was not 

possible to calculate the deviation from the TAC as dividing an agreed TAC by zero 

gives an infinite percentage for the PAI. Hence, where a moratorium was advised, 

the recommended TAC was set to zero and where a positive TAC was implemented 

in the same year the PAI was arbitrarily set to 100%. In order to account for this 

arbitrary figure, data were analysed both including and excluding moratoria years. A 

chi-squared test was used to determine whether decisions subject to adjustment 

above recommended TACs significantly outweighed those set below recommended 

TACs or those subjected to no adjustment. 

Comparisons of political adjustment amongst species and management zones were 

made in order to determine whether some species and zones were more prone to 

adjustment than others. The average adjustment across the stocks of each species 

was calculated using two indices: a summation index and a mean index (see Table 1 

for methodology). In the case of hake, only one stock was included in the analysis 

and therefore only the summation index was calculated. Trends of political 

                                                      
12 Icelandic data obtained from http://www.statice.is/Statistics/Wages,-income-and-labour-
market/Labour-market, Norweigian data from http://www.ssb.no/fiskeri_havbruk_en/, and Russian 
data from http://www.gks.ru/bgd/regl/b09_12/IssWWW.exe/stg/d01/06-03.htm.  
13 http://faostat.fao.org/site/354/default.aspx, last updated 2010. 
14 Identified from the 2010 ICES advice for each species. 
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adjustment were also examined for each management zone through the aggregation 

of species’ data for each area.  

Table 1. Methodology for calculating the summation and mean PAI 

(a) Data on advised and agreed TACs for each species are separated by 

management zone 

The table below is therefore replicated for each zone (i.e. Z1, Z2, ... Z5) data were 

gathered for. 

 
Advised 

TAC 

Agreed 

TAC 
PAI 

1987   ��������		�
�������		�
�������		�
 �*100 
2011   

(b) Methodology for calculating the summation political adjustment index 

Firstly, the data for advised and agreed TACs were added each year across zones. 

Z1,AdvisedTAC,1987	+	Z2,AdvisedTAC,1987	+	…	+	Z5,AdvisedTAC,1987 = ƩAdvisedTACs for all zones 

Z1,AgreedTAC,1987 + Z2,AgreedTAC,1987 + … + Z5,AgreedTAC,1987 = ƩAgreedTACs for all zones 

This was repeated for all years, 1987-2011. 

Secondly, the summation PAI was calculated for each year from these values, i.e. 

��∑ ������ 	�
&'()�∑ ������ 	�
&'()�
∑ ������ 	�
&'() �*100 = Summation PAI1987 

This was also repeated for all years, 1987-2011. 

Finally, the average summation PAI1987-2011 was calculated, i.e. 

��∑ *+,,-./01�2&'()345&&�
6+,7�� /8 9�-�� � 

(c) Methodology for calculating the mean political adjustment index 

To calculate the mean PAI the third column in the table presented in (a) above is used. 

For each year the PAI for each zone is summed to produce a mean PAI for that year, i.e. 

�:∑ ;<=>?,&'() ,@ ;A=>?,&'() ,@ … @ ;B=>?,&'(),C
6+,7�� /8 ;/0�� � = Mean PAI1987 

This was replicated for each year, 1987-2011. 

The average mean PAI1987-2011 was then calculated, i.e. ��∑ D�-01�2&'()345&&�
6+,7�� /8 9�-�� � 
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Inferential statistics were applied to test whether there was a significant difference 

between the amounts of adjustment of TACs for the different species’ and 

management zones’. Both sets of data were tested for normality and homogeneity of 

variances and were found to violate these assumptions. Consequently the non-

parametric Kruskal-Wallis test was used to test for differences among species and 

the Mann-Whitney U test was used to determine where any differences lay between 

species or zones.  

To determine the effect of the CFP reform in 2002 and the expansion of the EU in 

2004 on political adjustment the PAIs were compared for the years prior to 2004 and 

those of 2004-2011. Whilst the CFP reform was finalised in 2002, it came into force 

on January 1st 2003 and therefore the first TAC negotiations to take place under the 

new policy were in December 2003 concerning the 2004 fishery. With 10 new 

countries joining the EU in May 2004, these two events were considered as one 

within the analyses as a result of their close succession. The data were again found to 

violate the assumptions of homogeneity and normality and the Mann-Whitney test 

was used to test for a difference between the year sets as well as to test the effect of 

the events on the PAIs of individual species and zones. All statistical tests were 

implemented using R (R 2008). 

2.6. Results 

Political adjustment by species 

A large variation in the political adjustment of TACs both within, and between 

different stocks and species was found. Figure 3 and Figure 415 illustrate the 

variation in political adjustment that can be found in the same species, nephrops, 

within different management sub-areas. Within Division IXa the agreed TACs have 

been consistently higher than those advised until the last two years in the time series 

(Figure 3). It appears that the adjustment became smaller as the nephrops stock 

became more depleted. In contrast, the scientific recommendations were more 

closely followed for nephrops in Division VIa until 2007 (Figure 4) which appears to 

have mirrored a more stable stock level. After 2007, both scientifically 

recommended and agreed TACs increased however the agreed TACs have since 
                                                      
15 No explicit TACs were recommended for the 2011 fishing season for either the IXa stock. 
Consequently, the political adjustment level for 2011 could not be calculated. 
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been set higher than those scientifically recommended. A rapid decline in the level of 

agreed TACs has been seen since, falling back towards recommended levels. The 

size of the stocks is not directly comparable however as the area of division VIa is 

71,717km2 greater than that of division IXa. 

Figure 3. Advised and agreed TACs for the Division IXa nephrops fishery 

 

Figure 4. Advised and agreed TACs for the Division VIa nephrops fishery 

 

Overall, in 68% of ministers’ decisions TACs were implemented higher than the 

scientific recommendations. On average the adjusted TACs were set 33-37% (mean 
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index lower end of range, summation index higher end) above catch levels 

recommended as safe by scientists. Of the remaining decisions, 14% of agreed TACs 

decisions were set lower than advised, while in 18% of cases the agreed TACs were 

set equal to those advised. The difference in these proportions is significant, χ² (2, 

N=877) = 480.45, p < 0.001, indicating that the process of political adjustment leads 

to ministers augmenting advised TACs far more often than reducing or accepting the 

scientific advice. It is interesting to note that in some cases ministers set TACs lower 

than advised. On average these were set 12% lower than advised from 1987 to 2011. 

Setting TACs lower than advised may be an attempt to compensate for exceeding the 

scientific advice elsewhere or it may be driven by industry demand for certain 

species over others. 

The Mann-Whitney U test was used to test whether including the moratoria data 

years (and therefore the arbitrary 100% PAI value used when advised TACs were 

zero) in the analysis would significantly affect the results. The influence of including 

the moratoria years was found to be non-significant (U=317480, p>0.01). 

Scientifically, advising a moratorium is a serious action because it indicates that a 

stock is badly depleted. Ignoring this advice therefore shows a high level of political 

intervention. Consequently, the moratoria years have been included in all of the 

following analyses. 

The level of political adjustment varied between species (Figure 5). A significant 

difference was found between the PAI of all species using the Kruskal-Wallis test 

(H10=64.28, p<0.01). In order to determine where the differences lay the Mann-

Whitney U test was applied (Figure 6).  
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Figure 5. Average political adjustment indices by species with standard error bars 

 
Figure 6. Variance around the mean PAI of each species (1987-2011) and significant 

differences as tested by Mann-Whitney U (p<0.01)  

 

The shaded bars indicate the mean PAI value for each species. Error bars indicate the variance of 

values around the mean. Horizontal lines indicate non-significant Mann-Whitney U values between 

species, i.e. Nephrops does not have a significant number of annual mean political adjustment 

records larger than those of megrim, whiting, cod or sprat but is significantly larger than sole, 

herring, saithe, plaice and haddock. Hake is left out of this analysis as only a summation PAI value 

could be calculated due to limited data. See Appendix 1 for detailed statistical values. 
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Those species for which scientific advice has been followed least (less than 20% of 

advice accepted) are cod, hake and plaice (Figure 7). In the case of cod, 84% of 

advice was overruled and TACs were implemented up to 355% over those advised. 

Even for saithe, where scientific advice has most often been implemented, 45% of 

advice was overruled and TACs up to 143% over those advised were set in some 

areas. However, whilst a high percentage of advice might be adjusted the 

recommended TACs might only be adjusted slightly. For example, although cod 

ranks highest in terms of the percentage of scientific advice adjusted (Figure 7), this 

species has a similar mean PAI (41%) as that of whiting (45%) (Figure 5) for which 

only 56% of advice has been adjusted over the timeframe studied. Consequently it is 

important to examine multiple analyses to determine trends. 

Figure 7. Percentage of scientific advice accepted or adjusted by the Council of 

Ministers for each species 

 

An examination of the percentage of advice accepted or adjusted by ministers each 

year showed no evidence of improvement in decision-making over time or of 

changes in decision-making after the 2002 reform (Figure 8). The average PAI 

across all stocks each year of the agreed TAC relative to those scientifically 

recommended was also examined (Figure 9). No evidence of improvement in 
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decision-making over time was found or of changes in decision-making after the 

2002 reform (U=50, N=26, p=0.3). 

Figure 8. Percentage of scientific advice accepted or adjusted by the Council of 

Ministers each year between 1987-2011 

 

Figure 9. Average political adjustment index between 1987-2011 
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The average overshoot across all stocks each year of the agreed TAC relative to 

those scientifically recommended was also examined for both the mean and 

summation indices (Figure 10). This showed no discernible trend over the period 

analysed. The peaks shown in the summation index during 1993 and 2000 are the 

result of anomalously high levels of political adjustment for certain species in 

specific areas compared with other years. In 1993 the peaks are the result of high 

adjustment levels for cod (95% in the north-east Arctic), saithe (122% in sub-area VI 

(later amalgamated with the North Sea)), and hake (1100% in Spain, Portugal and 

the Bay of Biscay). The 2000 peak is the result of high adjustment levels for cod 

(255% in the north-east Arctic), haddock (68% in the north-east Arctic) and whiting 

(167% in Skagerrak & Kattegat). These are not picked up to as great an extent by the 

mean index due to the relative low levels of political adjustment in other areas 

balancing the higher values out and creating a lower index. No significant difference 

can be found after the CFP reform in 2002 (U=50, N=26, p=0.3). 

Figure 10. Average agreed TAC overshoot relative to scientific advice 

 

If a moratorium was advised, it was not possible to calculate the political adjustment 

level and therefore if a TAC was implemented an arbitrary 100% PAI value was 

applied. Figures for the percentage of stocks per year for which moratorium was 

advised show that from 2000 the percentage increased from 5% to a maximum of 
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22% in 2007 and 2009 before falling to 12.5% in 2011 (Figure 11). For the stocks 

studied no recommendation for moratoria were followed; a TAC was always set. 

Figure 11. Proportion of stocks for which a moratorium was advised 

 

Changes in 2011 

Since 2010 Maria Damanaki has been the EU Commissioner for Maritime Affairs 

and Fisheries. Widely known to support stricter determination of fishing quotas and 

a radical reform of the CFP in 2012 she has been quoted as saying "taking science as 

our starting point is the only possible approach" (Damanaki 2010). To the potential 

for limited reform and action she responded in an interview that "First, we will not 

have fish. Second, there is no second. It is as simple as that" (Rankin 2010). 

Following such tough words the proposal from the European Commission was 

expected to be uncompromising and based on scientific advice. The TACs set for the 

2010 fishing season and those for the 2011 season for all stocks where data were 

available were therefore compared. These results are summarised in Table 2. While 

progress for some stocks has been made, most noticeably for hake in area VIIc and 

IXa (-82.63%) and nephrops in area VIa (-71.12%), there are still high levels of 

political adjustment for the 2011 TACs. Maria Damanaki’s response to the 2011 

TACs was that there is "disappointing news on some quota levels" (Anon 2011). 

From this it is clear that a reform of TAC decision-making is needed to place a legal 

requirement on politicians to follow scientific advice or else competitive bargaining 

will continue. 
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Table 2. Difference between the PAI for TACs set for the 2010 and 2011 fishing 

season 

Stock Area PAI 2010 PAI 2011 

PAI Difference 

Positive 

change 

Negative 

change 

Cod VIIa 100* 100*  0 

 I & II 5.11 0 -5.11  

 Va 11.11 0 -11.11  

 IIIa 100* 100*  0 

Plaice VIIa 1.69 1.69  0 

 VIIf-g 36.67 0 -36.67  

 IIIa -20.47 24.23  44.69 

Haddock Va 10.53 -1.96 -12.49  

 I & II 0 0 0  

Megrim VIIIc & IXa 43 44.61  1.607 

Saithe Va 47.06 25 -22.06  

 I & II 0 0 0  

Herring VIIa 0 10  10 

Sole VIId 32.26 0.25 -32.01  

 VIIIa,b -1.45 1.19  2.64 

Hake VIIIc & IXa 89.8 7.16 -82.63  

Nephrops IIIa 0 10  10 

 VIa 85.41 14.29 -71.12  

 VIIIc 100* 100*  0 

 VIIIa,b 14.68 14.68  0 

Whiting IV 89.66 56.13 -33.54  

* refers to PAIs where a moratorium was advised 

Those stocks not included in this analysis were: Cod in area IV and 22-32; Plaice in IV; Haddock in 

IV; Saithe in IV; Herring in Va, VIaN, VIaS and the Norwegian spring-spawn herring; Sole in IIIa, 

VIIa, VIIe, VIIf-g and IV; Nephrops in IXa; Sprat in IIIa, 22-32 and IV; and Whiting in VIIa and IIIa. 

These stocks could not be compared for these years due to a TAC not being explicitly advised in one 

or the other year (advice was based on scenarios rather than an explicit TAC). 'Positive change' in 

PAI refers to those decisions where the PAI has been reduced or maintained (when following 

scientific advice). 'Negative change' in PAI refers to those decisions where the PAI has been 

increased or maintained (when not following scientific advice). These classifications have been put in 

purely for visual purposes. 
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Fish prices 

Some fish species command a higher market value and are consequently of greater 

economic importance than others. The market value of each species analysed was 

obtained in order to investigate whether the higher the value of the species the 

greater the level of political adjustment. Table 3 categorises fish species in terms of 

price as calculated by Sumaila et al. (2007) for FishBase16. The species are ranked in 

order of decreasing average PAI. PAI tends to decrease with decreasing market 

value; however sole and plaice represent two anomalies to this trend. 

Table 3. Average PAI and price category for each species analysed 

Species Price Category Average PAI 

(1987-2010) 

Hake High 128 

Megrim Very high 70 

Nephrops Very high 83 

Whiting Medium 45 

Cod Medium 41 

Sprat Low 24 

Sole Very high 19 

Herring Low 16 

Saithe Low 12 

Plaice Medium 11 

Haddock Low 10 

Price category data from FishBase, calculated according to ex-vessel prices (the price that fishers 

receive when they sell their catch) by Sumaila et al. (2007). The categories are defined on a 

percentile basis, i.e. the data are sorted from high to low values and subdivided to 20% groups, 

according to the number of pre-defined categories (e.g. low, medium, high, very high). The group that 

falls into the highest 20% is assigned to the category 'very high' and the last 20% into the 'low' 

category. Colour coded by price category. Average PAI refers to the mean index except for hake 

where only the summation index could be calculated due to limited data.  

 

                                                      
16 as defined by Fishbase (www.fishbase.org)  
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Status of assessed stocks 

The proportion of stocks assessed for each zone were identified as being within or 

outside safe biological limits17 so as to determine whether political adjustment is 

linked to depletion of species. There are a number of gaps within the data where 

ICES has not set any reference points for the stocks. Consequently in many of the 

zones a high proportion of the stocks analysed are assessed as being unknown. In 

general, the higher the level of political adjustment, the greater the proportion of 

stocks fall outside safe biological limits (Figure 12). However, the low and uneven 

number of stocks examined for each area together with the high level of data gaps 

make it difficult to draw robust conclusions, particularly as some of the most 

valuable stocks remain unassessed (such as two stocks of nephrops around Spain, 

Portugal and the Bay of Biscay and cod within the waters of Iceland). 

 

 

 

 

 

 

 

 

 

 

 

 

                                                      
17 Identified from the 2010 ICES advice for each species 
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Figure 12. Status of assessed stocks in each management zone 

 

A stock is considered to be outside 'Safe Biological Limits' when the Spawning Stock Biomass is 

below a biomass precautionary approach reference point (Bpa). The status of the stock is stated as 

unknown if this reference point has been undefined or no data are available. Numbers indicate the 

number of stocks assessed within this study for each zone. 

Political adjustment by management zone 

The analysis of the average PAIs by management zone are shown in Figure 13. The 

Spanish, Portuguese and Bay of Biscay zone (division VIII/IX) has a higher average 

level of political adjustment than elsewhere. Iceland (division Va) shows the lowest 

average PAI. 
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Figure 13. Average political adjustment indices by management zone  

Average PAI values for the zones are as follows (in descending order): 1. Spain, Portugal and the 

Bay of Biscay (division VIII/IX) = 107.47; 2. Baltic (sub-areas 22-32) = 68.68; 3.  Irish Sea (VIIa) = 

30.48; 4. Skagerrak & Kattegat (division IIIa) = 25.35; 5. West of the British Isles & English Channel 

(VII) = 24.54; 6. North Sea (IV) = 22.18; 7. Clyde & Rockall (VI) = 19.35; 8. North-East Arctic (sub-

areas I & II) = 16.82; 9. Iceland (division Va) = 9.01. 

A significant difference was found in the level of political adjustment between zones 

using the Kruskal-Wallis test (H8=72.52, p<0.01). In order to determine where the 

differences lie the Mann-Whitney U test was applied. Those zones found to have 

significant differences are detailed within Figure 14. 
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Figure 14. Variance around the mean PAI of each management zone (1987-2011) 

and significant differences as tested by Mann-Whitney U (p<0.01) 

 

The shaded bars indicate the mean PAI value for each management zone. Error bars indicate the 

variance of values around the mean. Horizontal lines indicate non-significant Mann-Whitney U 

values between zones, i.e. Spain, Portugal and the Bay of Biscay (division VIII/IX) does not have a 

significant number of annual mean political adjustment records larger than that of the Baltic but does 

compared to all other zones. See Appendix 1 for detailed statistical values. 

Regional dependency 

In order to investigate regional dependency within EU fisheries the EU 

commissioned a study (Salz and Macfadyen 2007) building of that on Salz et al. 

(2006) regarding employment within the fisheries sector. These studies showed that 

the fisheries sector accounts for a low share of the total jobs in all Member States 

(Figure 15 and Table 4). In general those zones with a higher PAI are bordered by 

countries with greater levels of employment within the fishing sector, although data 

were not available for Icelandic and Northeast Arctic waters. In terms of 

employment in the EU fishery sector as a whole, the four most important countries 

are Spain, France, Italy and Greece, which account for 51% of the EU total (Salz and 
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Macfadyen 2007). Even in localities which are traditionally highly dependent on 

fishing, the proportion of people employed within the fisheries sector is low and 

declining (Salz and Macfadyen 2007; STECF 2009; Villasante 2010). At regional 

level, fisheries were identified as playing an important role as a source of 

employment in some key areas; notably, Galicia (Spain), Algarve (Portugal) and 

North-East Scotland (UK)18 (Salz and Macfadyen 2007). Iceland was found to 

support the highest fisheries percentage of total employment for all countries at 

4.09%19. 

Another measure of regional dependency is the cultural value a country places on 

their fisheries. At 87.4 kg/year Iceland has the highest per capita seafood 

consumption with Portugal following at 54.8 kg/year (FAO 2010a). From the data 

available, there appears to be no correlation between employment and seafood 

consumption. For example, Estonia has the second highest fisheries employment 

level but only ranks 20th in terms of consumption. However, with the exception of 

Icelandic waters, zones with highest average PAIs correspond with the countries 

surrounding them having higher employment and seafood consumption rates (Figure 

15). 

While the EU currently has five Mediterranean member states (Spain, France, Italy, 

Greece and Cyprus), this region has not been considered within this research. In 

general, catch limits or quotas are not applicable within the Mediterranean, with the 

exception of limits on bluefin tuna that have been introduced in response to 

recommendations by the International Commission on Conservation of Atlantic 

Tuna (ICCAT)20 (Cacaud 2005). Consequently, while these countries are illustrated 

on all maps for accuracy, national waters within the Mediterranean are not 

considered.  

 

                                                      
18 In 2004 1.9% of populations within the Algarve and Galicia were employed in fishing, the Algarve 
has a dependency rate on the fisheries sector of 5.1% and Galicia 4.1%. The North-East Scotland has 
a dependency rate of 2.3% employing 0.7% of its population in fishing (Salz and Macfadyen 2007).  
19 Data obtained from Statistics Iceland: http://www.statice.is/Statistics/Wages,-income-and-labour-
market/Labour-market  
20 http://www.eubusiness.com/news-eu/fisheries-management.175 
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Figure 15. Average political adjustment indices, national employment and 

consumption rates 

 

Seafood consumption data are from FAOSTAT and is based on the year 2007. Employment data are 

taken from Salz and Macfadyen (2007) and are based on data from 2005, the most recently available 

data from the EU.  

Table 4. Employment by main region and fisheries sub-sector within the EU  

Region Name Fisheries Sector (total 

no. employed) 

Percentage of regional 

employment 

North Sea 47500 0.2 

Baltic Sea 54000 0.4 

Atlantic Areas 138000 0.6 

Data based on employment within the regions fisheries in 2005, i.e. North Sea data are based on 

those countries that fish within the area. Reproduced from Salz and Macfadyen (2007) 
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The effect of the CFP reform and EU expansion 

Mann-Whitney U tests comparing the pre-reform and post-reform average PAIs 

found no significant difference between the years before the reform and expansion, 

and those after. This was the case both between all species (U=545, N=873, p=0.13) 

and management zones (U=513, N=825, p=0.13). In addition, no species showed 

significant differences between pre- and post-reform periods. The PAIs for haddock, 

megrim, saithe, herring, hake, sprat and whiting were lower after the reform and 

expansion, while cod, plaice, sole and nephrops had higher PAIs after the events 

(Table 5).  

In addition, none of the management zones were found to have been significantly 

affected by these events. The PAIs for the Spanish, Portuguese and Bay of Biscay 

management zone together with the North East Arctic were found to be lower after 

the reform and expansion, while the PAIs for all other zones were seen to increase 

(Table 5). These patterns suggest that the reform and expansion events may have had 

a largely detrimental effect within management zones, compounding the problem of 

political adjustment. 
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Table 5. Summary of results comparing the PAI pre- and post-reform 

 
Pre 2002 

reform 

Post 2002 

reform 

Overall 

Average total PAI (%) 27 (± 12) 38 (± 14) 33 (± 8) 

Average PAI (%) for each zone* 

1. Spain, Portugal & Bay of Biscay 

2. Baltic 

3. Irish Sea 

4. Skagerrak & Kattegat 

5. West of the British Isles & English 

Channel 

6. North Sea 

7. Clyde & Rockall 

8. N.E. Arctic 

9. Iceland 

 

121( ± 24) 

53 (± 8) 

23 (± 3) 

24 (± 4) 

10 (± 2) 

 

19 (± 3) 

14 (± 3) 

24 (± 6) 

8 (± 2) 

 

92 (± 30) 

104 (± 33) 

44 (± 10) 

25 (± 6) 

61 (± 11) 

 

28 (± 6) 

35 (± 7) 

3 (± 3) 

11 (± 7) 

 

107 (± 19) 

69 (± 12) 

30 (± 4) 

25 (± 3) 

25 (± 4) 

 

22 (± 3) 

19 (± 3) 

17 (± 5) 

9 (± 2) 

Average PAI (%) for each species* 

1. Hake 

2. Megrim 

3. Nephrops 

4. Cod 

Whiting 

5. Sprat 

6. Sole 

7. Herring 

8. Saithe 

Plaice 

9. Haddock 

 

152 (± 80) 

170 (± 31) 

76 (± 20) 

28 (± 5) 

42 (± 8) 

55 (± 11) 

12 (± 2) 

13 (± 3) 

13 (± 3) 

8 (± 2) 

13 (± 3) 

 

99 (± 1) 

22 (± 59) 

113 (± 48) 

70 (± 11) 

45 (± 11) 

5 (± 10) 

39 (± 10) 

25 (± 7) 

8 (± 11) 

19 (± 11) 

2 (± 3) 

 

134 (± 53) 

90 (± 7) 

88 (± 21) 

43 (± 5) 

43 (± 7) 

42 (± 9) 

20 (± 4) 

17 (± 3) 

12 (± 4) 

12 (± 4) 

10 (± 2) 

%  of decisions TACs set higher than 

recommended 

71 (± 3) 64 (± 6) 68 (± 3) 

% of decisions TACs set lower than 

recommended 

10 (± 2) 18 (± 5) 14 (± 3) 

% of decisions  TACs set according to 

scientific advice 

19 (± 4) 18 (± 4) 18 (± 3) 

Number of moratoria implemented/total 

number recommended 

0/13 0/59 0/72 

* Listed in descending order of average overall PAI, ± standard error 
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2.7. Discussion 

In the majority (68%) of TAC setting decisions taken by the Council of Ministers 

from 1987 to 2011, TACs were implemented higher than those recommended by 

ICES. On average the adjusted TACs were set 33-37% (mean - summation index) 

above catch levels recommended as safe by scientists. This disregard for the 

scientific advice undermines the scientific basis for management, as well as 

endangering fish stocks and the fisheries that depend on them. In turn, this has led to 

a lack of confidence in the governance systems in place by both the public and 

industry (Pita et al. 2010; Mackinson et al. 2011). In 1983 Leigh (p.90) stated that 

“the sum of member states’ demands added up to more than the total amount of fish 

available. In the bad old days […] (this) led to the inflating of TACs, followed by 

overfishing". From this analysis it is clear that this situation has still not been 

resolved. However, in 14% of decisions the agreed TACs were actually set lower 

than those advised. Those species for which decisions were most often set lower than 

advised were haddock (26% of all decisions), saithe (24%) and sprat (29%). These 

were set lower by 8%, 9% and 18% respectively when averaged across all areas and 

the whole timeframe (1987-2011). Setting TACs lower than advised may be an 

attempt to compensate for exceeding the scientific advice elsewhere or it may be 

driven by industry demand for certain species over others. For example, haddock, 

saithe and sprat all have a lower market value than other species such as hake, 

megrim and nephrops and therefore they may be subject to less industry demand and 

reductions may be more acceptable.   

This evaluation of the integration of scientific advice into decision-making was 

based on a comparison of the official TAC set with the original scientific advice. 

Investigating the level of political adjustment relative to the scientific advice (Figure 

10) shows no obvious convergence over time, and no reduction in political 

adjustment after the CFP reform in 2002. The increase in the number of stocks for 

which moratoria were advised (Figure 11) from 2000 provides a complementary 

measure to that of the PAI. Advocating a moratorium is a serious action and often 

the last resort for scientific advisors. However the gravity of this action appears not 

to be appreciated by the political community as, for the stocks assessed here, no 

zero-catch advice was accepted; a TAC was always implemented. This shows either 
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naivety in managing natural resources, a lack of trust in scientific assessments or 

reflects the short-term goals of politicians and the industry they oversee. Whilst the 

fishing seasons of 2010 and 2011 indicate a greater integration of scientific advice, 

this may be the result of advice being based on scenarios rather than explicit TACs, 

as well as recovering fisheries. Overall however, the increasing number of advised 

moratoria paints a worrying picture for the deterioration of stocks. 

Scientific advice is least often followed when reduced catches are advised. One of 

the reasons often identified to explain this is that reducing landings has a short-term 

economic cost on the fisheries sector (Roberts et al. 2005). Managers may deviate 

from scientific advice to limit inter-annual variations in landings as they disrupt 

market chains and eventually result in less profitability (Patterson and Résimont 

2007). However, while setting landings higher than recommended may reduce 

impacts in the short-term, this is likely to increase the cost to fishers in the future 

when more drastic measures may be needed to rebuild the stock (Shertzer and Prager 

2007). Whilst ensuring the long-term sustainability of the resource is in the interest 

of fishers and the fisheries sector economic perspectives (e.g. discounting (Clark 

1973a, b, 1990; Sanchirico et al. 2006) and markets (Patterson and Résimont 2007) 

provide good reasons why long-term objectives may fail to take precedence when 

setting TACs (Daw and Gray 2005).  

A second problem that has been identified with the current TAC system is related to 

the electoral politics of fisheries ministers (Daw and Gray 2005; Cardinale and 

Svedäng 2008) and the competitive bargaining forum within which ministers 

operate. Being democratically elected national politicians, their careers are 

maintained through popularity amongst their electorate. This may influence their 

decisions so as to avoid contentious issues that may create unemployment or short-

term economic losses and reject long-term policies, the benefits of which will not be 

felt during their period of office (Daw and Gray 2005). Indeed, the fisheries 

ministers may consider raising the TACs above those recommended as a service to 

their respective national industry (Corten 1996). The current decision-making 

process leads to the paradox of ministers' acting to protect both their national and 

personal interests while at the same time needing to allocate quotas among member 

states for mutual benefit and to achieve conservation goals. As the Rt. Hon. John 
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Gummer, a former UK Minister of Agriculture, Fisheries and Food and the Secretary 

of State for the Environment, put it; "If you are a fisheries minister you sit around the 

table arguing about fishermen - not about fish. You're there to represent your 

fishermen. You're there to ensure that if there are ten fish you get your share and if 

possible a bit more. The arguments aren't about conservation, unless of course you 

are arguing about another country” (NIA 2001). With ministers taking this stance it 

is unsurprising that agreements are often difficult to reach and TACs are adjusted. 

In 2003 the EU is estimated to have spent approximately 1.2 billion US$ of public 

money on beneficial (and necessary) subsidies that promote fishery resource 

conservation and management; such as scientific research, stock assessments, 

establishing marine protected areas and ensuring compliance (Sumaila et al. 2010). 

Over the last 2 decades, ICES has produced numerous scientific documents for the 

EU on the status of fish stocks, advising management strategies and recommending 

TACs. However, for the species studied within this paper, only 32% of the relevant 

recommendations have been accepted and implemented. Sustainability of fisheries 

can only be achieved by effective application of scientific advice. 

Often the justification by fisheries ministers to adjust scientifically recommended 

TACs is that uncertainty is inherent within stock assessment (Sovacool 2009; 

Khalilian et al. 2010), and that scientific advice is based solely on the biological 

aspects of the fishery neglecting to take socio-economic aspects into account (Aps et 

al. 2007). While the uncertainty inherent in stock assessment is not denied (e.g. 

Hauge 2011) and it is true that socio-economic aspects are not taken into account 

when calculating TACs, in the long-term the industry would be best served by 

following scientific advice to create stable sustainable yields.    

In general, the higher the level of political adjustment the greater the proportion of 

stocks which fall outside safe biological limits. However, with the high level of data 

deficiency it is difficult to reach robust conclusions, particularly as some of the most 

valuable stocks remain unassessed by ICES. This is a problem that has often been 

commented on, and with 61% of stocks within the Northeast Atlantic unassessed it is 

no wonder that it is difficult to determine trends within many fisheries (e.g. 

Beddington et al. 2007). 
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The two management zones most prone to political adjustment are the Spanish, 

Portuguese and Bay of Biscay zone (division VIII/IX) and the Baltic Sea (sub-areas 

22-32) (Figure 13). The waters around Iceland (division Va) are the least prone to 

political adjustment. These results indicate that regional differences are driving the 

average PAIs for the management zones. 

Within the process of setting TACs the notion that preference should be given to 

countries or regions dependent on fishing is prominent ('relative stability'), although 

definitions or quantifications of dependency are limited (Hoel and Kvalvik 2006; 

Anderson et al. 2009). Despite this, in an attempt to investigate trends in 

dependency, I analysed statistics for regional employment and consumption (Figure 

15 and Table 4). These data clearly show that the management zones at greater risk 

of political adjustment are for the most part those with the highest rates of fishery 

employment and seafood consumption. In particular, the high dependence on fishing 

in the southern Atlantic area and Baltic areas provides further evidence for the 

hypothesis that regions with higher dependence on fishing for employment are likely 

to exert more pressure on politicians, resulting in high political adjustment rates. 

However, Iceland presents an anomaly in this trend. Whilst following scientific 

advice most closely, Iceland appears able to support the highest employment and 

consumption rates (Figure 15), at the same time maintaining stocks above safe 

biological limits (Figure 12).  

Icelandic waters often represent an anomaly within the datasets presented, having the 

lowest PAI and some of the healthiest stocks whilst being able to support a high 

regional dependency on fishing (Figure 13 and Figure 15). Iceland, together with 

Norway, are only members of the European Economic Area rather than the European 

Union. This enables these countries to gain free access to European markets, except 

for fish and agricultural products as these were excluded from the agreement. 

Consequently, the fisheries within Icelandic and Norwegian waters are managed 

exclusively by these national governments and bilateral agreements between 

themselves and the EU. Thus there are many differences between the management of 

the fisheries in Icelandic and Norwegian waters and the rest of European waters 

including discard bans and a mix of effort and quota regulations (Eliasen et al. 2009; 

Johnsen and Eliasen 2011). In the aftermath of the collapse of the herring fishery and 
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declining pelagic stocks in Nordic waters, Iceland and Norway introduced rights-

based management schemes in the form of licenses and individual transferable 

quotas (ITQs) during the 1970s (Jakobsson and Steffánsson 1999, Eliassen et al. 

2009). These schemes have been constantly updated in the years since; by 1991 all 

Icelandic fisheries were managed using ITQs and as of 2009 most Norwegian stocks 

of economic importance had adopted this system (Eliasen et al. 2009). Particularly in 

Iceland the economic performance of the fishing fleet has improved significantly 

with the application of the ITQ system, and fisheries are among the most profitable 

economic sectors in Iceland. In addition to implementing rights-based management 

however, Iceland also has a history of implementing the precautionary approach to 

fisheries management and following scientific advice, even when this will cause 

short-term economic losses (e.g. Rosenberg 2003). For example, in 2011 Iceland 

banned virtually all halibut fishing because of fears regarding the state of the stock21. 

Whilst some inferences regarding the effect of regional dependency on political 

adjustment rates can be made, the analysis of employment and consumption statistics 

only provides an indication of regional dependency on the fishery sector. For 

example, these data fail to consider the value of the nations’ fisheries or the 

availability of alternative employment.  

The EU committed at the World Summit on Sustainable Development in 2002 to 

develop sustainable fisheries and restore fish stocks by 2015. It has been estimated 

that even if fishing had been completely halted in 2010 we would still overshoot this 

target by 30 years (Froese and Proelß 2010). Since 1983, when the CFP came into 

force, sustainability has been the core goal of fisheries management; however, 

management under the CFP has only driven many stocks further away from this 

objective. These results corroborate previous analyses showing that the CFP has 

failed to have any clear positive effect on marine fish stock development (Sparholt et 

al. 2007).  

The decline of European fish stocks is well-documented, with 88% now 

overexploited relative to maximum sustainable yield targets and 46% fished outside 

safe biological limits (Condé et al. 2010). It is clear from this analysis that the 

political mismanagement of fisheries must bear considerable responsibility for this 

                                                      
21 http://www.fishupdate.com/news/fullstory.php/aid/16812 
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decline. Further responsibility must lie with other management failures such as poor 

quota management, heavy subsidies, discards policy, high grading and non-

compliance with fishery regulations.  

Evidence for the unsustainable outcome of the process used within the EU to 

determine fisheries TACs can be found elsewhere. Competitive bargaining is also 

endemic in many regional fisheries management organisations, such as the 

International Commission for the Conservation of Atlantic Tunas (ICCAT) (e.g. 

Sumaila and Huang 2012).  The performance of ICCAT in managing those stocks for 

which they are responsible, such as the Atlantic bluefin tuna, has been unsatisfactory 

to say the least (Cullis-Suzuki and Pauly 2010). In fact, competitive bargaining has 

led to TACs becoming so over-inflated that they are now delivering what many see 

as the institutionalised extinction of a species (Safina and Klinger 2008; Korman 

2011). In contrast to those management zones within European waters, Icelandic and 

Norwegian fisheries were found to have been subject to lower levels of political 

adjustment than those managed by the EU (Table 1 and Figure 13). Aside from the 

key differences in their policies on discarding and their use of individual transferable 

quotas, competitive bargaining is not present in the same force as that which the EU 

must deal with. Iceland and Norway are members of the European Economic Area 

rather than the EU and consequently their fisheries are subject to singular rather than 

multi-jurisdictional management (Johnsen and Eliasen 2011). There are therefore 

less 'players' with their own interests around the negotiating table competing for 

quotas and this seems to have delivered greater cohesion between science and 

politics in these areas, contributing to largely healthier stocks. 

The effect of the CFP reform and EU expansion 

I found no significant evidence that the CFP reform in 2002 improved decision-

making (see Figure 10, Figure 11 and Table 5). In addition, the increased number of 

stocks for which moratoria were advised (and ignored) indicates declines in stock 

health and a continuing disregard for a tool of last resort by managers. I argue that 

this provides ample evidence that the previous reform of the CFP was a failure in 

sustainability terms.  
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It is possible that the potential benefits of the CFP reform have not been realised as a 

result of the expansion of the EU to include ten new member states in 2004. New 

members will contribute to the TAC decision-making process and may therefore 

worsen political adjustment by incorporating more delegates, each bringing their 

own interests to the table (del Valle and Astorkiza 2007). With a further expansion 

of the EU in 2007 to include Romania and Bulgaria this issue is likely to have 

worsened. The close timing of the reform and expansion events meant that whilst 

this is possible it could not be tested for.  

Reviews of the 2002 CFP reform have been critical (e.g. Gray and Hatchard 2003; 

Penas 2007; Symes 2007).  One of the main aims of the reform was to tackle the lack 

of stakeholder participation, highlighted as being an “internal systemic weakness” in 

the reform Green Paper on the CFP (CEC 2001). In addition, the need to reduce the 

power that member states exert in the Council of Ministers has long been recognised 

(Holden 1994; Symes 1997). While the 2002 reform recognised the need to increase 

stakeholder participation and decentralise authority, it has been argued that instead of 

accomplishing this, the reform actually reinforced the top-down authority of the 

European Commission, failing both to devolve power to the lowest competent 

authorities and to involve stakeholders within decision-making (Gray and Hatchard 

2003; Symes 2007). Aims to reduce the powers of the Commission and the Council 

of Ministers therefore fell by the wayside and policy formation remained entrenched 

within them (Penas 2007).  

A separate issue within fisheries management is the inherent problem of enforcement 

(Beddington et al. 2007). In order for fishery regulations to be successful 

management needs to encourage compliance. Involving stakeholders in a co-

management system has been suggested as a way to achieve this (Browman and 

Stergiou 2004) although this method has also been heavily criticised (Gray 2005). 

Assigning rights to shares in the fishery through ITQs aims to tackle the tragedy of 

the commons problem (Hilborn 2004), as well as removing competitive TACs 

(Sovacool 2009), and has been successful in promoting resource ownership 

elsewhere (Sissenwine and Mace 2001; Beddington et al. 2007; Eliasen et al. 2009). 

The theory is that by assigning property rights to individual fishers, corporations or 

communities, the incentives are redirected from increasing fishing intensity to 
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efficient use and conservation of the resource (Ostrom 2008). The use of resource 

rights and ITQs may therefore help to devolve power and alter the economic rules 

that currently govern the fishing industry. 

2.8. Conclusions and policy recommendations 

Political decisions to overrule scientific advice are endemic within the fisheries 

decision-making process in Europe (and many other management bodies, such as 

RFMOs). With increasing numbers of moratoria being advised this implies that 

current decision-making practices and policies are failing to impart sustainability 

into fish stocks. However, not all species, zones or areas were prone to the same 

degree of political adjustment. This may be at least partly explained by market prices 

and regional dependency. The highest levels of political adjustment were generally 

implemented for those species with higher market prices, while zones most 

susceptible to adjustment were those with the highest regional dependence on fishing 

for employment.  

The annual negotiation and setting of TACs needs to be changed, moving away from 

political debates between the Commission and national fisheries ministers. Instead, I 

advocate that long-term sustainability should be prioritised. When setting TACs 

scientific advice should be followed, and in setting quotas socio-economic interests 

should be considered. The use of rights-based management should be considered and 

adherence to scientific recommendations should be legally binding to remove the 

temptation to set TACs higher than the ecosystem can support. I also recommend 

that TACs should be set slightly lower than scientifically advised in order to allow 

for environmental variability, perturbations in the system and fluctuations in stock 

level.  
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3.1. Abstract 

In this chapter I develop a stochastic single species biomass model, extended to 

include a total allowable catch (TAC) management system to investigate the impact 

of systematically setting TACs higher than recommended as safe by scientists. I 

model the effects of such politically-driven decision-making on stock sustainability 

for two stocks with differing life history characteristics; an early maturing species 

with a high fecundity and a late maturing species with a low fecundity. My results 

suggest that political adjustment of scientific recommendations dramatically 

increases the probability of a stock collapsing within 40 years in both an 

environment that is highly variable and in one that is more stable. When additional 

mortality is present in the form of juvenile bycatch the risk of collapse within 40 

years increases in some cases to almost 100%. At both levels of environmental 

variability the risk of collapse is reduced considerably by following scientific advice.  

Consequently, I propose that historical political adjustment of scientific 

recommendations has contributed to the overexploitation of European fisheries since 

the beginning of the Common Fisheries Policy 24 years ago. The importance of 

basing management targets on precautionary limits is also highlighted. 

With 88% of European fish stocks overexploited relative to maximum sustainable 

yield targets, I conclude that political mismanagement regarding the integration of 

scientific advice must bear a considerable share of the responsibility for this decline. 

3.2. Introduction 

In the previous chapter I have shown that political adjustment to scientifically 

recommended total allowable catches (TACs) within European fisheries has been 

rife. In the majority of TAC setting decisions taken by the Council of Ministers 

between 1987 and 2011 (68%), TACs were implemented higher than those 

recommended by the International Council for the Exploration of the Sea (ICES) and 

the Scientific, Technical and Economic Committee on Fisheries (STECF). The 

degree to which ministers adjusted scientifically recommended TACs was between 

33-37% above safe recommendations. Supposing scientific advice constitutes 

reliable and accurate guidance to the number of fish it is safe to remove from a stock, 
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this suggests that the implementation of TACs within the EU could be contributing 

to the lack of sustainability of fish stocks within EU waters.  

This chapter continues the analysis of the impact of political adjustment on TACs 

through the development of a stochastic lagged recruitment, survival, growth model. 

I aim to separate the issue of political adjustment from any potential external factors, 

such as non-compliance (by fishers to TACs), discarding and high-grading, to more 

readily examine the extent of its impact.  

3.3. Existing modelling analyses of the TAC management system and the impact 

of TACs on fisheries 

Whilst there are other studies in the fisheries management literature investigating the 

issue of political adjustment (Karagiannakos 1996; Daan 1997; Maguire 2001; del 

Valle and Astorkiza 2007; Reiss et al. 2010) few have taken a modelling approach. 

Cardinale and Svedäng (2008) provide evidence that the short-term perspective of 

fisheries policy holds a large part of the blame for the failure of the TAC system. 

Analysing data on stock status, scientific advice and implemented TACs for 18 

stocks of gadoids in the North East Atlantic between 1987 and 2005 the deviation 

between advised and implemented TACs was determined. Using a deterministic 

single-species model they found that if scientific advice is applied, the stock is 

maintained at a relatively healthy state. Consequently, they conclude that even in the 

face of uncertainty within stock assessment, it is the practice of ignoring the advice 

that has led to the decline in marine resources. 

Hamon et al. (2007) presented a management strategy evaluation case study of the 

North Sea roundfish fisheries investigating TACs in mixed fisheries under 

alternative assumptions of fisherman behaviour. They found that single-stock 

management objectives cannot be accomplished by TACs because of conflicting 

incentives to fishing fleets. Using a dynamic state variable model, Poos et al. (2010) 

examined the effect of restrictive quotas on the spatio-temporal allocation and 

discarding of marketable fish in the beam-trawl fishery for sole and plaice. They 

found that in a multispecies fishery, raising quota restrictions for one species may 

result in increased discarding of marketable fish as well as encouraging the practise 

of high-grading. Constraining the quota of one species was also found to shift fishing 
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effort away from areas with high catches of that species towards areas with 

profitable catches of other species not constrained by quotas. Restrictive quotas were 

therefore found to influence the spatial distribution of fishing effort and discarding 

behaviour, particularly as they allow fishers to continue fishing in a multispecies 

fishery even if one of the quotas is exhausted. Not only is this detrimental to the fish 

stocks and the fishers, over-quota discarding also disrupts the link between catches 

and landings in mixed fisheries and therefore may corrupt the basis of scientific 

advice and increase the risk of stock collapse (Rijnsdorp et al. 2007). 

Whilst limited, these studies corroborate statistical evidence (outlined in Chapter 2) 

that the TAC management system has failed to impart sustainability into European 

fisheries, at least partly as a result of the process of political adjustment. This 

research investigates this subject further using stochastic modelling processes with 

political adjustment based on the average level of political adjustment in decisions 

since 1987. Since random fluctuations are inherent in populations and their 

environment, stochastic modelling was applied so as to incorporate chance variation 

as an integral component of the model, particularly when examining risk. It is hoped 

that this research will provide further evidence helpful to improving the TAC system 

during the next reform of the CFP in 2012 (CEC 2009). 

3.4. Aims and objectives 

The aim of this research was to explore the impact of political adjustment in a 

fishery over a management timeframe. By analysing the results of the fishery model 

the following questions may be addressed: 

1. What is the risk of collapse for species with different life history 

characteristics (i.e. early maturing and fecund vs. late maturing and less 

fecund) over a 40 year timeframe if the scientifically recommended TACs are 

consistently raised at a number of political adjustment levels? 

2. How does environmental variability affect the resilience of each species to 

overfishing? 
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3.5. Methodology 

A stochastic, single-species biomass model was developed to investigate the impact 

that historical political adjustment to recommended TACs may have had on the 

status of European stocks over the period of the CFP. The model was based on a 

lagged recruitment, survival and growth model (Hilborn and Mangel 1997) and 

extended to incorporate a TAC management system. Within this model the following 

assumptions were made: 

1. Fishing takes place as a pulse event each year, as the model runs in discrete 

time.  

2. Mature individuals have the same weight, fecundity and survival rate. 

3. Recruitment follows the form of the Beverton-Holt stock recruitment curve. 

4. There is knife-edge selectivity, i.e. fish reach sexual maturity and become 

vulnerable to the fishing gear at the same age. 

5. Vulnerability to harvest is independent of age above the age-at-maturity. 

6. Natural mortality is independent of age above the age-at-maturity. 

7. The fishing quota is always filled unless the stock collapses; there is no factor 

relating ease of capture with density dependence included in the model. 

The model used is an approximation of the delay-difference model of Deriso (1980). 

Delay-difference models provide an intermediate option between age-aggregated and 

more complicated (age- and size-structured) models, being based on assumptions 

that allow age-structured dynamics to be simplified to a single equation (equation 

3.1). These models are useful when a ‘realistic’ model is needed that allows for 

generalised species characteristics but does not need to be species-specific or rely on 

large amounts of data. 

Scenarios considered 

The model was run to determine the impact of political adjustment on two stocks 

with differing life history characteristics. Two types of life history characteristics 
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were examined; an early maturing species with a high fecundity and a late maturing 

species with a low fecundity. These scenarios were used to investigate the impact of 

continuously adjusting scientifically recommended TACs by fixed percentages over 

40 years, a realistic management timeframe.  

The additional impact of juvenile mortality from bycatch and discarding was also 

considered. In general, demersal fisheries typically experience higher bycatch and 

discard rates than pelagic fisheries (Alverson et al., 1994), with estimates reaching 

up to 94% for cod (ICES, 2009)  compared to 11% for herring (Pierce et al., 2002). 

Our modelling used an intermediate bycatch value of 50%. Juveniles were 

considered to be immature fish which are not subject to the TAC. Juvenile bycatch 

was introduced into the system through recruitment adjustments during each year of 

a simulation run.  

Model structure: 

A lagged recruitment, survival and growth model (Hilborn and Mangel 1997) was 

used to model the dynamics of two hypothetical fish stocks with different life history 

characteristics. Fish population dynamics are described in terms of biomass. In its 

discrete form this model can be expressed as: 

E.@< = GE. + H. − J.     (3.1)           
 

Where s describes the change in biomass (B) of the stock from one year (t) to the 

next (t+1) (i.e. survivorship from natural mortality only); R represents the 

recruitment to the population in year t and C is the catch taken from the stock in year 

t.  

Recruitment is a main driving force of fisheries stock assessment models and is 

typically modelled by including a random component around the stock-recruitment 

relationship that describes the deviation of recruitment from the curve (Iles 1994). 

The levels of recruitment usually drive absolute biomass and consequently are 

important for forward projections and for calculating management quantities, such as 

maximum sustainable yield (MSY) (Haltuch et al. 2008).  The variability within 

recruitment often contributes substantially to the difficulty, and the uncertainty, in 

predicting future stock biomass and catch (Iles 1994; Haltuch et al. 2008). 
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Recruitment is related to spawning stock biomass (SSB), however the relationship is 

often not clear. At a very low SSB it is likely that there is a strong relationship 

between recruitment and stock size however at high SSB and for the level of biomass 

corresponding to management targets, data often suggests no relationship between 

SSB and recruitment (Needle 2002; Megrey et al. 2005). This difficulty in detecting 

relationships is the result of large variability in recruitment levels caused by other 

factors than SSB, such as environmental conditions and density dependent factors 

(reduced resources, increased disease, cannibalism) (Needle 2002; Megrey et al. 

2005; Cury et al. 2008). 

There are a variety of stock-recruitment relationships defined within the literature 

(Beverton and Holt 1957; Cushing 1971; Ricker 1975; Deriso 1980; Schnute 1985; 

Barrowman and Myers 2000). However the Beverton and Holt (1957) and Ricker 

(1975) models are most commonly used in fisheries stock assessment models 

(Cadigan 2009). The Beverton-Holt model represents a near constant recruitment at 

high SSB and recruitment declines at low SSB and the basic property is that average 

recruitment constantly increases toward an asymptote as SSB increases. The 

relationship is based on the assumption that juvenile competition results in a 

mortality rate that is linearly dependent upon the number of fish alive at any time in 

the cohort. Consequently, as the spawning stock increases, the individuals disappear 

faster, e.g. competition for food and space results in fewer recruits (Beverton and 

Holt 1957).  

One drawback to the original Beverton-Holt recruitment curve formula (H. =
�KE.�/�M + E.�) is that any change in the parameters α and β results in a different 

unfished equilibrium (i.e. carrying capacity). Consequently, the slope of the stock 

recruitment curve cannot be adjusted to see whether making it steeper affects the 

behaviour, without also changing the virgin biomass. Following Mace and Doonan 

(1988) and Hilborn and Mangel (1997) the parameters α and β were therefore 

redefined to include a steepness parameter (z) to represent how steeply the stock-

recruitment curve ascends (see equation 3.4 and 3.5). The term ‘steepness’ was first 

defined by Mace and Doonan (1988) and represents the recruitment, relative to 

recruitment at equilibrium in the absence of fishing, that occurs when spawner 

abundance has been reduced to 20% of its virgin level (B0). A high steepness value (z 
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= 0.99) indicates almost constant recruitment that is essentially independent of the 

spawning stock biomass, while a low steepness value of (z = 0.20) produces a 

proportional relationship between recruitment and spawning stock. This method of 

re-parameterising the stock-recruitment relationship allows the steepness of the 

curve to be altered while maintaining the same carrying capacity for the environment 

(Figure 16). Therefore, an investigation can be made into the impact of different z 

values on the sustainable and unsustainable yields. 

Figure 16. The characterisation of the Beverton–Holt stock–recruit relationship 

using the steepness parameter, z, for z = 0.2, 0.7 and 0.99 

 

Recruitment (Rt) can be expressed as: 

H. = NO3P
Q@RNO3P            (3.2) 

Here, L refers to the time lag in years between birth and recruitment to the fishery. 

Recruitment in year t therefore depends on the stock biomass L years earlier. 

Consequently, two distinct age groups are modelled; recruits, i.e. fish aged less than 

L, and fish older than L years which are fecund, i.e. capable of producing new 

biomass. 

Fisheries are highly dynamic systems subject to a variety of biological and 

environmental controls and managed through imperfect science and management 
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errors. Consequently, these systems should be evaluated using stochastic models. 

Stochasticity (σ) is introduced into the system through recruitment during each year 

of a simulation run. Recruitment is calculated using a deterministic equation 

(equation 3.2) which is then multiplied by a value drawn randomly from a uniform 

distribution spanning –1 to 1 and scaled by a standard deviation value, of which 

variance is manually adjusted to reach the required stochasticity levels, becoming 

equation 3.3. 

H. = � NO3P
Q@RNO3P� . �1 + T�                       (3.3) 

Two levels of stochasticity were investigated, high and low. High stochasticity was 

set according to the level of variation that led to a 10% chance of stock collapse from 

BMSY within 20 years. This scenario therefore produces highly variable recruitment 

which is realistic for many species (Needle 2002). The low level of stochasticity was 

defined by the variation that led to a 0.5% probability of collapse from BMSY within 

20 years, producing a correspondingly low variation in recruitment.  

The re-parameterisation of Beverton-Holt to include a z value defines the parameters 

α and β as (Mace and Doonan 1988): 

K = N5
U5 V1 − �W�X.A

X.YW �Z     (3.4) 

M = W�X.A
X.Y[U5      (3.5) 

where HX = EX�1 − G�.                                (3.6) 

Within this model the biomass at MSY (BMSY), and the MSY itself, are defined as 

(Hilborn and Mangel 1997): 

ED*\ = <
R V] Q

�<��� − KZ       (3.7) 

^_` = ED*\ �G − 1 + <
Q@RNabc�            (3.8) 
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A second dynamic element was integrated into this model by incorporating 

fluctuating catch quotas in direct response to the stock’s biomass in each year to 

represent the TAC system. Scientific recommendations were taken to be the amount 

that the catch level needed to be altered (reduced, increased or maintained) in order 

to maintain stocks at their MSY biomass (BMSY). Should the biomass of the stock fall 

below a set limit (BLIM) the recommended quotas assumed a proportional decrease 

(Figure 17). Scientifically recommended TACs were set to MSY above BLIM and then 

adjusted once the biomass (B) reaches or falls below this level, aiming to rebuild the 

stock to BMSY. The TAC was calculated by equation 3.9 where BLIM is defined as 

BMSY and 0.1B0 represents the ‘collapse’ threshold. 

deJ = �NO�X.<N5×D*\
NP?a�X.<N5 �         (3.9)            

BLIM was set at BMSY because in a well-managed fishery the target is to maintain the 

stock at BMSY and therefore once the stock biomass falls below this level the TACs 

should be adjusted to allow the stock to rebuild to this level. Setting BLIM to BMSY is a 

conservative estimate of the status of stocks today as in many cases stocks have been 

driven below this level (Beddington et al. 2007). Political adjustment was modelled 

by multiplying the recommended TAC (equation 3.9) by the desired level, e.g. 

recommended TAC * 10%. Throughout each simulation the level of political 

adjustment was held constant. 
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Figure 17. Schematic diagram representing the TAC system 

 

 

 

 

 

 

 

 

 

 

B represents spawning stock biomass; BLIM  the biomass limit; BMSY the biomass level corresponding 

to MSY; and 0.1B0 the level at which the population is considered to have collapsed (10% virgin 

biomass).  

The additional mortality associated with discarding juveniles caught as bycatch 

within the fishery was also considered as in many fisheries juveniles are taken as 

bycatch and discarded22. Juveniles were considered to be those fish under L years 

which are not subject to the TAC. Juvenile bycatch is introduced into the model by 

adjusting recruitment during each year of a simulation run. Recruitment is calculated 

initially via equation 3.3 and then scaled by the juvenile bycatch rate (j) (equation 

3.10). 

H. = g� NO3P
Q@RNO3P� . �1 + T�	h i     (3.10) 

Table 6 shows the parameter values used for these simulations.    

                                                      
22 e.g. In 2008, 94% of 1 year old cod, 73% of 2 year old, 64% of 3 year old and 12% of 4 year old 

cod, were caught and discarded in the North Sea, Eastern Channel and Skagerrak (ICES advice 2009) 

0.1B0          B       BLIM                BMSY 

MSY 
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Table 6. Parameter values for simulations 
 

Parameter Value Description 

Virgin biomass, 

B0 

100 Also referred to as environmental carrying capacity. 

Biomass referred to throughout as a percentage of 

carrying capacity. 

Survivorship, s 0.88 Survivorship was taken to be a function of natural 

mortality, taken as 0.2 based on estimates by Pauly 

(1980), and growth in mass of surviving individuals 

each year, taken to be 10%. Units: survival 

probability per year per individual 

Steepness of 

stock-recruitment 

curve, z 

0.4, 0.7 Represents how steeply the Beverton-Holt stock 

recruitment curve ascends. No units -dimensionless. 

α 0.8929, 

3.125 

Recruit production parameter 

β 0.0744, 

0.0521 

Recruit production parameter 

Lag time, L 2, 5 Lag time (years) between birth and recruitment. 

BLIM BMSY The biomass level at which the TAC system is 

implemented. 

Population 

collapse 

0.1B0 10% of virgin biomass (Worm et al. 2006) 

Juvenile bycatch 

rate, j 

0.5 Proportion of juveniles caught as bycatch. 

 



77 
 

The model was run until the stock collapsed (defined as ≤ 0.1B0 (Worm et al. 2006)) 

or for a maximum of 100 years. For each scenario 10,000 simulations were 

completed. All model simulations were run from an initial biomass of BMSY. This 

model was implemented in MATLAB (Mathworks 2008).   

3.6. Results 

Simulations were run for political adjustment levels of 0-50% in 1% increments. To 

examine the effect of current decision-making practices, results for adjustment levels 

of 33% and 37% were extracted for two TAC setting scenarios. These two values 

were chosen as a result of earlier statistical analyses which concluded that on 

average the adjusted TACs were set 33-37% above catch levels recommended as 

safe by scientists. In addition, the model was run to examine the impact of including 

a juvenile bycatch rate of 0.5. It is recognised that in some fisheries, juvenile bycatch 

may reach levels of 94%23 and so the value of 50% was chosen in order to act as a 

conservative estimate. 

 

 

 

 

 

 

 

 

 

                                                      
23 E.g. In 2008, 94% of 1 year old cod were caught and discarded in the North Sea, Eastern Channel 
and Skagerrak (ICES advice 2009). 
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Figure 18. The effect of political adjustment on the probability of stock collapse within 40 years in modelled scenarios. 
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Probability of collapse for (A) an early 

maturing species. (B) an early maturing 

species when 50% of juveniles are caught as 

bycatch. (C) a late maturing species. (D) a 

late maturing species when 50% of juveniles 

are caught as bycatch. All scenarios show 

lower resilience to political adjustment when 

subject to high environmental variability 

(dashed lines) compared to low (solid lines). 

The probability of collapse at average levels 

of political adjustment is indicated by the 

solid (33%) and dotted (37%) vertical and 

horizontal lines. 
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Figure 18(A) shows that an early-maturing, highly fecund species has a 36-44% 

chance of collapse within 40 years in a low stochasticity environment when adjusting 

the TACs by 33-37%. This risk increases to 71-77% at the higher level of 

environmental variability. At both levels of environmental variability, the risk of 

collapse is reduced considerably by following the scientific advice. Within a less 

variable environment the risk of collapse within 40 years remains under 2% when 

fishing at the scientifically advised level. At the higher level of stochasticity the risk 

remains high being 17% even at MSY. However, this is still a considerable reduction 

from 77%. 

A late-maturing, low fecundity species appears to show a higher resilience to 

political adjustment, with the risk of collapse within 40 years at low stochasticity 

being only 5-6% and at high being 36-38% (Figure 18(C)). These somewhat counter-

intuitive results are discussed later in this chapter. In general however, politically 

adjusting scientifically recommended TACs is shown to increase the risk of stock 

collapse whatever the species, sometimes to precariously high levels where only a 

succession of good recruitment years will maintain the stock. 

When juvenile bycatch mortality is included within the simulations, the risk of 

collapse within 40 years increases as expected, in some cases to almost 100% 

(Figure 18(B,D)). The early maturing, more fecund species again appears to be more 

susceptible to political adjustment to TACs. However, both species show between an 

83-99% risk of collapse at both levels of stochasticity. Following the scientifically 

advised TACs leads to a reduction in the risk of collapse to between 55-87%.  

3.7. Discussion 

Increasing environmental variability increases the risk of fishery stock collapse even 

when following scientific advice, no matter the characteristic of the stock. 

Anthropogenic climate change is likely to increase environmental variability in the 

future and place increasing pressure on marine species (Hoegh-Guldberg and Bruno 

2011). Consequently, the balance between exploiting at maximum sustainable yield 

and overexploitation will become harder to manage. However, at any level of 

stochasticity following the scientific advice offers a much more sustainable solution 

for fishers than when TACs are adjusted upwards. In addition, politically adjusting 
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scientifically recommended TACs is shown to increase the risk of stock collapse 

whatever the species, sometimes to extreme levels where only a succession of good 

recruitment years will maintain the stock. Including the bycatch of juveniles into the 

model simulations increases the risk of species collapse, in some cases to almost 

100% within 40 years. This indicates the importance of selective fishing techniques 

and the need to limit juvenile bycatch within fisheries. 

The model shows that political decisions to adjust advised TACs undermines their 

use and their scientific basis. Results also indicate that basing TACs on MSY targets 

is insufficient to maintain sustainable stocks under environmental uncertainty and 

bycatch scenarios. Consequently, failing to follow these advised TACs compounds 

the problem and moves the risk of stock collapse over 40-year timeframes from 

likely, when scientific advice based on MSY is followed, to a near certainty, under 

political adjustment scenarios. 

While the general trends are as expected, at first glance the model results appear to 

be counter-intuitive, with the early maturing more fecund species appearing to be 

less resilient to political adjustment than the later maturing less fecund species 

(Figure 18). In fact, per extra tonnage of catch, the later maturing, less fecund 

species is less resistant to political adjustment. The model is designed to take into 

account specific fecundity parameters through the Beverton-Holt stock-recruitment 

relationship. Consequently the BMSY and MSY targets, together with the subsequent 

recommended TACs are determined in relation to the stock characteristics. The later 

maturing less fecund species therefore supports a smaller MSY than a faster 

maturing more fecund species (Figure 19). Consequently, a percentage increase on 

the recommended TAC each year to represent the political adjustment level results in 

a much smaller extra tonnage of catch taken for the later maturing species than the 

same percentage increase on the TAC for the faster maturing species. In addition, 

BMSY for the late maturing species is a higher proportion of unexploited biomass than 

for the early maturing species. Because of this, management of early maturing 

species is more precarious since the gap between BMSY and a state of collapse is less 

(Figure 20). The higher starting biomass (BMSY) and the lower absolute MSY for the 

later maturing species therefore makes it appear as if the stock is more resilient in the 

time to collapse curves.  
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Figure 19. Catch biomass curve explaining the model results 

 

 

 

 

 

 

 

 

 

 

 

 

Here the line M represents natural mortality at 20% of the stock per year. B0 is the carrying capacity 

population. The red line corresponds to 10%B0, or the level at which the population collapses. The 

blue line represents the later maturing less fecund species, the purple line the early maturing more 

fecund species. MSY is calculated to be the ‘surplus’ population above mortality. The double-headed 

arrows represent the MSY for each species. Note the difference in the BMSY values, the distance 

between each BMSY and 10%B0 and in the size (tonnage) of the MSY for each species. 

Figure 20. Relationship between MSY management targets and stock biomass 
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Any fisheries policy that aims to promote long-term industry viability must promote 

the sustainable use of fish stocks. Regulations should therefore be based on 

transparent science-based decision-making rather than a discretionary political 

decision-making process. Coherent laws and regulations should be established that 

offer economic incentives to ensure compliance by fishers, and enforcement of the 

legal framework should be guaranteed. Currently, the CFP fails to achieve this. The 

lack of transparency of the decision-making process regarding TACs is evident. 

Furthermore the lack of effective control and enforcement has been highlighted by 

the Commission itself in its Green Paper; "[f]isheries control has generally been 

weak, penalties are not dissuasive and inspections not frequent enough to encourage 

compliance" (CEC 2009). 

The mechanisms that enable the joint participation of the EC/EU and its member 

states in multilateral agreements are complex. Within fisheries, competences for 

negotiation of total allowable catches and other management strategies are mixed 

(i.e. authority is shared between member states and the European Commission, 

known as "mixity" (McGoldrick 1997; Leal-Arcas 2004)). In the case of fisheries 

member states have determined the extent to which the EC may enter the bargaining 

process. To date, this is limited to the formulation of proposals for TACs based on 

scientific advice from ICES and STECF. Mixity is a common and widespread 

practice in EU policy, especially in areas of outstanding transdisciplinary character 

(Frank 2007). However, this may result in conflicting relationships between EC and 

domestic law. Presumably, it is because of short-term and domestic political 

considerations (e.g. re-election probability, promotion probability, influence of 

interest groups) that TACs are consistently set higher than those recommended by 

ICES (Khalilian et al. 2010).  Even after the 2002 reform of the CFP, TACs 

systematically exceeded those suggested by scientists (Daw and Gray 2005, and see 

Chapter 2). This unwillingness to integrate scientific advice into TAC decision-

making practices is at least partly driven by the threat of short-term economic 

hardship and increased unemployment in the fisheries sector overriding the concern 

about collapsing fish stocks in the long run (Roberts et al. 2005; Patterson and 

Résimont 2007). However, even political economists emphasise that long-term rules 

generally outperform discretionary decision-making (Kydland and Prescott 1977; 

Franchino and Rahming 2003). The Commission has itself concluded that the 
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decision-making process of the CFP needs to be brought in line with other EU 

policies with a "clear hierarchy between fundamental principles and technical 

implementation" (CEC 2009). In addition, relative stability contributes to political 

pressures to raise TACs. The principle of relative stability (established in 1983) 

provides a distribution guideline for quotas between the Member States (Princen 

2010). The Commission states that this "creates inflationary pressure on TACs 

because a Member State that wants a higher quota has no other option but to seek an 

increase of the whole Community TAC" (CEC 2009). 

The status currently afforded environmental issues in the European agenda is 

significant24. As fishing is a factor of ecological disturbance within marine 

ecosystems the incorporation of an increasing number of environmental provisions 

and conservation policies in fisheries agreements and policy programmes has been 

seen (Princen 2010). TACs have been identified as the cornerstone of conservation 

policy within the Common Fisheries Policy (CFP) (Karagiannakos 1996). However, 

mixity within TAC negotiations has resulted in individual actors trying to maximise 

their allocation, often (in the case of TACs) to the detriment of the purpose of the 

community (i.e. the inflation of scientifically recommended TACs).  

In order to overcome this, effort regulation has been suggested as a viable alternative 

to the quota system (Rossiter and Stead 2003; Cotter 2010). The major advantage 

that effort limitations (e.g. days-at-sea, fleet capacity) have over TACs and quotas 

are the ease by which they may be monitored. However, effort regulation often 

triggers technological progress to move in a detrimental direction ('technological 

creep'), i.e. fishers may develop methods to catch more fish in shorter time periods 

(Baudron et al. 2010). Consequently, effort regulations have to be constantly 

adjusted to account for fishing power. As a TAC system is independent of 

technology level they only need to be adjusted to recruitment and stock size. Under 

the CFP, fishers are currently forced to discard fish caught over-quota or under-sized 

resulting in additional, and unaccounted for, fishing mortality (Johnsen and Eliasen 

2011). As discards are often not recorded this unaccounted mortality undermines the 

effectiveness of the TAC system and the credibility of the CFP's sustainability goal. 

An individual transferable quota (ITQ) system, combined with the prohibition of 

                                                      
24

 The EU currently has over 600 pieces of legislation that encompass the environment. Summaries of 
all legislation may be found at http://europa.eu/legislation_summaries/environment/index_en.htm  
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discards may therefore be suitable to solve the problem of relative stability. This 

would reinstate the link between landings and mortality improving the accuracy of 

stock assessment science. While TACs should be set according to scientific advice 

(taking into account mixed species and ecosystem impacts) and the initial allocation 

of fishing quotas according to the principle of relative stability, ITQs would allow 

quota's to be redistributed according to market values. 

The results of this research serve to enhance that of the previous chapter and expand 

the modelling literature of the TAC system and the impact of political adjustment. 

They show that even when all other factors are optimal (i.e. compliance by fishers to 

TACs, no discards or bycatch) political adjustment leads to declining stocks and 

increases the risk of fishery collapse.  

Model limitations 

This model assumes that scientists have perfect information about the status of the 

stock biomass every year. The knowledge of scientists regarding stock status 

depends on the predictability of the stock-recruitment relationship as well as on the 

accuracy of catch reporting and the available information on discard rates. 

Consequently, the accuracy of recommended TACs is fraught with uncertainty and 

subject to potentially significant errors (Kraak et al. 2010; Hauge 2011). This model 

fails to take this uncertainty into account. A stochastic element could have been 

added to the recommended TACs every year in order to account for this, however 

this was omitted in order to present a 'best-case' scenario. 

A discrete time model was used to describe fishery dynamics, however natural 

mortality and exploitation occur continuously throughout the year. Consequently, 

these processes would be more appropriately modelled in continuous time. 

Continuous time was not chosen as it was deemed unnecessary for the purposes of 

this model and because of the increased computational complexity it adds. As few 

differences between discrete and continuous time models  of fishery dynamics have 

been found in long run equilibrium results (e.g. Hannesson 1998) I felt that the use 

of continuous time was unwarranted.  

This model examines the general state of spawning stock biomass of a single species 

by considering the whole population to have generalised life characteristics of recruit 
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production and survival. Large (and therefore the more fecund) fish are more 

vulnerable to fishing and consequently one impact of exploitation is to reduce the 

reproductive capacity of a stock (Pauly et al. 2002; Kaiser et al. 2005; Conover et al. 

2009). In reality this may help to drive stocks down faster as a result of fewer 

recruits. However, this model cannot be used to investigate the change in 

reproductive capacity of a population as a result of selective fishing.  

Political adjustment levels were set deterministically at a fixed value every year. In 

reality, the amount by which TACs are adjusted from those recommended each year 

varies considerably. A stochastic element could have been added to simulate this, 

however, in order to facilitate direct comparison between political adjustment levels 

this approach was not taken. In addition, fishers were only allowed to take the agreed 

TAC. Therefore, no considerations of the practice of discarding, high-grading or 

illegal landings were made. When juvenile bycatch was considered this only served 

to drive the stock down faster and a reasonable assumption would be that other 

wasteful practices encouraged by the TAC system would lead to similar results. This 

could be investigated in the future.  

Within the model stochasticity is set to increase linearly with biomass. Within the 

literature stochasticity is often normally distributed around the deterministic 

behaviour and scaled by the square root of the size of the deterministic (in this case 

recruitment) equation (McKane and Newman 2005; Datta et al. 2010). Using this 

scaling means that as population size increases, the absolute magnitude of the 

variability increases although relative magnitude decreases (i.e. there is more 

fluctuation in numbers with increasing population size although the effect is less 

noticeable due to the larger population size). Upon reflection, this may be a more 

appropriate way to add stochasticity into this model. Appendix 4 details my response 

to a comment by Cook et al. (in review) on the published article which presented 

these results. In this, cod and herring are taken as case studies and stochasticity is 

applied using a lognormal distribution.  

3.8. Conclusions and policy recommendations 

Fishers are faced with multiple risks to their business; the unpredictability of future 

catch rates, prices and costs as well as dependence on management decisions, many 
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of which are highly erratic. While the former are largely beyond the control of 

fisheries managers, effective fisheries management should reduce uncertainty about 

future catches and increase the sustainability of stocks. Since the introduction of the 

CFP and TAC system, the integration of scientific knowledge into fisheries 

management decisions has been shown to be haphazard and often disregarded 

completely (Chapter 2). Without the integration of scientific advice in decision-

making there is little chance that new approaches to management such as the 

ecosystem approach to fisheries management will achieve their objectives. The 

results obtained using this model show that political decisions not to follow 

scientists’ recommendations are a leading cause of increased risk of stock collapse. 

This implies that political adjustment of TACs contributes to the CFP’s failure to 

secure sustainable fish stocks. Consequently, I propose that historical political 

adjustment of scientific recommendations has contributed to the overexploitation of 

European fisheries since the beginning of the Common Fisheries Policy 40 years 

ago.  

The key lesson to take from this and previous research, is that ignoring scientific 

advice translates into stocks being largely overexploited while the reverse does not. 

The lack of an adequate governance system to implement TACs is one of the main 

obstacles to sustainable fisheries policy. While the 2002 reform failed to tackle these 

issues it is hoped that the upcoming reform in 2012 will address its governance 

failures. However, despite the many criticisms of the TAC system, it is likely to 

remain in European fisheries management within the reform of the CFP in 2012 for 

two reasons; firstly, the TAC system represents one of the key components of 

fisheries management throughout the world and secondly, it forms the basis of the 

ITQ system, seen as one of the shining hopes for incorporating sustainability into 

fisheries (del Valle and Astorkiza 2007). There is consequently a need to find 

mechanisms to minimise the effect of perverse external pressures in taking the final 

TAC decision. Unless this issue is resolved, the second reform of the CFP is likely to 

be as ineffective as the first, and how embarrassing would it be if the 2020 review of 

the CFP came out with the same conclusions as the 1994 review? That, "on the basis 

of whether the conservation policy has achieved its political objectives, the 

conservation policy can only be adjudged a total success. [...] In contrast, it has been 

an almost total practical failure" (Holden 1994p. 167). Political success being the 
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status quo approach to managing fish stocks and the pacification of conflicts between 

European states regarding access to fishing grounds. Practical failure with regards to 

the protection and conservation of endangered fish stocks and manage other stocks 

sustainably.  
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4.1. Preface 

The previous two chapters have highlighted one difficulty faced when managing 

fisheries in a political system. This chapter presents a success story of the 

harmonisation of a political and scientific process to achieve a common goal in order 

to show how the systems may complement each other.  

In the instance presented here, the combination of a strong political mandate and a 

scientific basis led to a significant outcome - the establishment of the world’s first 

network of high seas marine protected areas. Without one or the other this outcome 

is unlikely to have been achieved.  

The remainder of this chapter takes the form of a paper published in Marine Policy 

(O'Leary et al. 2012). 

4.2. Abstract 

Marine protected areas (MPAs) are increasingly being established to protect and 

rebuild coastal and marine ecosystems. However, while the high seas are 

increasingly subject to exploitation, globally few MPAs exist in areas beyond 

national jurisdiction. In 2010 a substantial step forward was made in the protection 

of high seas ecosystems with 286,200 km2 of the North-East Atlantic established as 

six MPAs. Here a summary is presented of how the world's first network of high 

seas marine protected areas was created under the OSPAR Convention, the main 

challenges, and a series of key lessons learned, aiming to highlight approaches that 

also may be effective for similar efforts in the future. It is concluded that the 

designation of these six MPAs is just the start of the process and to achieve 

ecological coherence and representativity in the North-East Atlantic, the network 

will have to be complemented over time by additional MPA sites.  

4.3. Introduction 

In September 2010 OSPAR ministers from 15 European nations took an 

unprecedented step and established the world’s first network of marine protected 
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areas on the high seas. They declared six protected areas25 that together cover 

286,200 km2 of the North-East Atlantic, larger than the combined land area of 

OSPAR’s six smallest Contracting Parties26. In this paper, how this achievement was 

accomplished is described. 

Spatial planning has become one essential tool to manage human activities and 

conserve the marine environment (Ardron et al. 2008; Gaines et al. 2010). As part of 

a suite of management measures many national governments are committed to 

establishing networks of MPAs under both national and international law and 

agreements27. This commitment to establish MPAs is driven by international 

concern. Multilateral agreements promote MPAs as a measure to conserve and 

protect marine biodiversity, help reduce the decline of biomass of the oceans and the 

risk of fisheries collapse and to ameliorate the negative impacts of human activities 

such as cable laying (CBD 2008; Kar and Chakraborty 2009; Gaines et al. 2010). 

Legally, areas beyond national jurisdiction (ABNJ) are composed of the High Seas 

(waters beyond the zones of national jurisdiction28) and the Area (the seabed, ocean 

floor and subsoil thereof beyond the limits of national jurisdiction29). For those 

ABNJ, the United Nations General Assembly (UNGA) Resolutions of 2004 (59/25), 

2006 (61/105) and 2009 (64/72) in particular have driven the urgency for the 

protection of vulnerable marine ecosystems (VMEs) from destructive bottom fishing. 

In response to these resolutions some regional fisheries management organisations 

(RFMOs), such as the North-East Atlantic Fisheries Commission (NEAFC), have 

                                                      
25 The Charlie-Gibbs South MPA, Josephine Seamount High Seas MPA, the Mid-Atlantic Ridge 
North of the Azores High Seas MPA, Altair Seamount High Seas MPA, Anitaltair Seamount High 
Seas MPA and the Milne Seamount Complex MPA. 
26 Listed in ascending size order: Luxembourg, Belgium, Netherlands, Switzerland, Ireland, Portugal. 
27 These include commitments to establish representative networks of MPAs by 2012 at the World 
Summit on Sustainable Development (WSSD) in 2002, and subsequent United Nations General 
Assembly (UNGA) resolutions and Convention on Biological Diversity (CBD) decisions. In 
particular the latest target by the CBD is that "By 2020, at least 17 per cent of terrestrial and inland 
water, and 10 per cent of coastal and marine areas, especially areas of particular importance for 
biodiversity and ecosystem services, are conserved through effectively and equitably managed, 
ecologically representative and well-connected systems of protected areas and other effective area-
based conservation measures, and integrated into the wider landscapes and seascapes" (target 11, 
http://www.cbd.int/sp/targets/). 
28 United Nations Convention of the Law of the Sea (UNCLOS) Article 1(1)(1) 
29 UNCLOS Article 86 
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adopted spatial conservation measures to protect VMEs from bottom trawling30 

(Benn et al. 2010; NEAFC 2010).  

Effective spatial planning of marine areas relies on spatially explicit data and 

knowledge in order to define boundaries and designate areas that are biologically 

important and socially and economically acceptable (Costello et al. 2010). 

Systematic science-based approaches for MPA selection are encouraged, with 

varying degrees of implementation, in an effort to achieve conservation objectives at 

a low cost (Margules and Pressey 2000; Ban et al. 2009). However, often the 

necessary data are few, particularly in ABNJ as these regions have been much less 

studied compared to habitats closer to coastlines (Harris et al. 2007; Howell 2010; 

Auster et al. 2011). Nonetheless, there is mounting evidence in ABNJ, as well as 

from Exclusive Economic Zones (EEZ) or near-shore waters to indicate that present 

human activities are causing serious damage to a wide variety of habitats in ABNJ  

(e.g. Schlacher et al. 2010). In addition, many deep-sea species possess 

characteristics such as slow growth and late maturity, which make them extremely 

vulnerable to fishing (Cheung et al. 2007). Deep-sea biogenic habitats also show 

high vulnerability to extractive human activities due to the slow growth rates and 

extreme longevity of their constituent species (Roberts 2002). As resources from 

shallower marine environments become further depleted, deep-sea exploitation is 

increasingly more attractive and feasible due to technological advances (UNEP 

2007) strengthening the imperative to conserve biota at risk from fishing and 

emerging anthropogenic activities such as deep-sea mining.  

The North-East Atlantic is considered to be heavily impacted by human activities 

(Halpern et al. 2008; Benn et al. 2010). Within this area the OSPAR Commission 

(OSPAR)31 has an obligation and a mandate to protect marine biodiversity. Acting 

under the overarching legal framework of the United Nations Convention on the Law 

of the Sea (UNCLOS)32 OSPAR is an example of regional seas cooperation, 

whereby States can collectively decide to adopt measures to protect the marine 

                                                      
30 See http://www.neafc.org/managing_fisheries for more information regarding current closed areas 
to bottom fishing. 
31 The 1992 OSPAR Convention (entry into force 1998) consolidated the 1972 Oslo Convention (to 
control pollution from dumping) and 1974 Paris Convention (to control pollution from land-based 
sources and has a mandate to protect and conserve the marine environment of the North-east Atlantic. 
32 United Nations Convention on the Law of the Sea, Montego Bay, 10 December 1982, in force 16 
November 1994 , 1833 United Nations Treaty Series 396; www.un.org/Depts/los  
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environment. In 1995 the Convention on Biological Diversity (CBD) Jakarta 

Mandate on Marine and Coastal Biodiversity obliged Parties to establish a global 

network of MPAs (CBD 1995). This commitment was further elaborated to include 

the deadline of 2012 for the establishment of representative networks as agreed by 

the World Summit on Sustainable Development (WSSD) in 2002. In order to 

contribute to this target a joint OSPAR and Helsinki Commission (HELCOM) 

agreement was adopted in 2003 to create an “ecologically coherent33 network of 

well-managed MPAs” by 201034. Approximately 40% of the OSPAR maritime area 

falls within ABNJ and as such, this commitment included a clear remit to identify 

and designate MPAs in ABNJ. However, the pursuit of MPAs within the national 

waters of each Contracting Party preceded those in ABNJ, mainly for pragmatic 

reasons; i.e. there is clear national ownership and therefore responsibility for 

conservation. How to go about designating protected areas in ABNJ was less clear, 

though it was recognised as necessary due to the huge offshore gap in 

representativity and ecological coherence that resulted from the approach adopted 

(OSPAR 2007).  

 

 

 

 

 

 

 

 

                                                      
33 A definition of ecological coherence of MPA network has been agreed by the meeting of the 
working group on MPA, Species and Habitats (MASH) in Norway, 5-8 October 2004. The network  
should therefore be based on 14 recommendations including key criteria (e.g. connectivity of  
MPAs, representativity of critical habitats and species, etc.) 
34 OSPAR Recommendation 2003/3; Record of the Joint Ministerial Meeting of Helsinki & OSPAR 
Commissions 2003. 
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Figure 21. The current network of OSPAR MPAs and fishery closures implemented 

by the North East Atlantic Fisheries Commission 

  

Map courtesy of Mirko Hauswirth of the German Federal Agency for Nature Conservation 

(BfN) 

4.4. Establishing the scientific case for protection and gaining political support 

As early as 2000, the Worldwide Fund for Nature (WWF), acting as an Observer 

Organisation within OSPAR, campaigned to protect sites in ABNJ within the 

OSPAR maritime area (Christiansen 2006). WWF conceived and presented a 

proposal for the Charlie-Gibbs Fracture Zone (CGFZ), a large area of the Mid-

Atlantic Ridge, to be protected on account of its vulnerability to human activities. To 

be taken forward, OSPAR Rules of Procedure (OSPAR 2005) require any Observer 

proposal to be supported by a Contracting Party. In 2007, the Netherlands co-
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supported the proposal to consider the CGFZ as a 'pilot' in order to provide the 

impetus to build up the scientific case according to the criteria and conservation 

principles established by OSPAR and other international fora (e.g. the Food and 

Agriculture Organisation (FAO) and CBD)35.  

Under the auspices of OSPAR's expert group on MPAs, the latest scientific findings 

were used to strengthen the original WWF proposal, and scientific experts advised 

on the application of the agreed set of OSPAR ecological selection criteria 

(Czybulka and Kersandt 2000). The development of a comprehensive background 

document for a CGFZ MPA (Christiansen 2006) convinced more Contracting Parties 

to support and co-sponsor the proposal in 2008. At this time the OSPAR 

Commission also agreed on a roadmap setting out considerations and steps leading 

up to the possible adoption of MPAs in ABNJ in 201036. Specifically, this roadmap 

was drawn up in connection with the CGFZ MPA; however, by analogy it provided a 

useful framework for any future proposal.  

OSPAR's competencies for management of human activities include scientific 

research, cable-laying, dumping of waste, construction of installations and artificial 

islands and deep-sea tourism but do not extend to fishing, mining or shipping 

(Czybulka and Kersandt 2000; Owen 2006). Consequently, in order to create a 

network of MPAs in ABNJ it is essential for OSPAR to work with other 

international organisations that have a legal competence over activities within their 

Regulatory Area.  The roadmap set out timeframes for work to be carried by the 

relevant OSPAR bodies as well as the premise for involving other Competent 

Authorities37. 

With the deadline of 2010 fast approaching the requirement to select sites for MPAs 

in ABNJ had become more obvious and urgent. In 2007, Germany, as convenor of 

the OSPAR MPA group, commissioned a scoping report from the University of 

York in the UK to investigate potential sites for high seas MPAs in the wider 

Atlantic Region. The aim of this report was to identify sites representative of the 

various biogeographic areas within the Wider Atlantic Region. This report identified 

                                                      
35 Subsequently, in 2008 France, Portugal and Germany also agreed to support the proposal. 
36 Summary Record OSPAR 2008; (OSPAR 08/24/1-E); www.ospar.org  
37 See: General outline of roadmap for further work on the Charlie-Gibbs Fracture Zone (CGFZ)/Mid 

Atlantic Ridge proposal 2008/09 (ibid. Annex 10) 
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eight further potential MPA sites38 by reviewing scientific literature, mapping 

significant and vulnerable marine habitats, consulting with scientists familiar with 

the region, and prioritising areas currently within reach of serious impact (mainly 

fishable depth zones; 2000m delimits the maximum fishing depth of the predominant 

past and present fishing activities (Bailey et al. 2009). On the basis of this work, in 

2009 OSPAR accepted 'in principle' the scientific case and conservation objectives 

for seven potential MPAs (the Rockall and Hatton Banks proposal having been set 

aside in 2008 due to unsettled ownership disputes), which included the CGFZ whose 

boundaries were enlarged from the WWF proposal to capture a wider range of 

habitats off the Mid-Atlantic Ridge39. Essential to maintaining the momentum 

throughout this process was the role of a lead agency and political 'champion' to 

move MPAs in ABNJ higher up the political agenda, to facilitate collaboration and 

to overcome difficulties or delays in the implementation of the MPAs. The CGFZ 

proposal owes a lot to the early and lasting support of the Netherlands, and 

subsequently other OSPAR Contacting Parties. Consequently Germany, as the 

convenor of the OSPAR MPA group since 1998, ensured that the momentum of the 

process was maintained as well as providing funding for the external scoping study 

leading to the additional area proposals.  

Meanwhile, in accordance with the roadmap, OSPAR sought to formalise working 

relationships with other key competent authorities including the International 

Maritime Organisation (IMO), the International Seabed Authority (ISA) and the 

North-East Atlantic Fisheries Commission (NEAFC). The adoption of formal 

Memoranda of Understanding40 between these organisations strengthened attempts 

to broker a prospective ‘collective arrangement’ for the potential management of 

selected areas in ABNJ.  

This process ultimately led to a significant political outcome with the first network 

of MPAs in the high seas being designated in the course of the OSPAR Ministerial 

Meeting (20-24 September 2010; Bergen, Norway). Throughout the process a 

number of scientific and political challenges were encountered. Below these 

                                                      
38 Reykjanes Ridge, Southern Mid-Atlantic Ridge, Charlie-Gibbs Fracture Zone, Rockall and Hatton 
Banks, Altair seamount, Antialtair seamount, Milne seamount and Josephine seamount. 
39 The CGFZ was approved "in principle" (without conservation objectives) a year earlier. 
40 See www.ospar.org “International cooperation”. 
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challenges are discussed and lessons learned from this pioneering process are 

highlighted in order to inform future MPA designations in ABNJ. 

4.5. Scientific challenges to site selection and nomination proforma 

4.5.1. Data deficiency 

Scientific knowledge of biodiversity is limited. Only a fraction of the planet’s 

species have been formally described and only fragmentary information about the 

geographical distributions of most species exists (Brito 2010). Within the high seas 

available data are limited to a few areas and species of known interest, to nautical 

maps (i.e. depth contours), to satellite measurements (i.e. sea surface height 

anomalies, oceanographic and primary productivity data) and to broad biogeographic 

regions (Harris et al. 2007; Howell 2010).  

With the availability of ecological data so limited, the utility of a science-based 

approach to MPA selection lies in the proposal of potential sites that warrant 

protection either based upon specific, sometimes fragmentary knowledge, if 

available, or through reasonable inference from similar sites. In the extensive review 

of the North-East Atlantic carried out by the University of York and collaborators, 

the available ecological data were insufficient in most areas to conclusively support 

the nomination of specific sites of conservation importance. For example, few 

scientific studies mention the Milne seamount complex by name and little biological 

information is available (OSPAR 2010b). It was nominated and protected largely on 

the basis of inferred importance to biodiversity from similar habitats and places 

around the world, from its isolated position relative to the Mid-Atlantic Ridge, and 

from the known vulnerability to fishing of similar habitats in other places, some of 

them nearby (e.g. Corner Rise seamount (Waller et al. 2007)). However, although 

there was a significant lack of biodiversity knowledge for the majority of areas in the 

North-East Atlantic, the project MAR-ECO41, an element of the Census of Marine 

Life, was completed during the timeframe of these proposals (2004-2010). This 

project aimed to enhance understanding of the occurrence, distribution and ecology 

of animals and animal communities along the Mid-Atlantic Ridge between Iceland 

and the Azores. The knowledge gained from this research was invaluable in making 

                                                      
41 http://www.mar-eco.no/ 
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the scientific case for the proposed MPAs42. Nevertheless, within the remainder of 

the North-East Atlantic much flexibility existed as to where to place the MPAs to 

protect both known and unknown biodiversity and features effectively. 

When data are poor, scoping can be informed through stakeholder engagement, 

synthesis from disparate or informal sources, and understanding from similar 

ecosystems. If scientific data alone are relied on to make the case for protection, then 

the MPA network is unlikely to take into account known, but poorly documented 

areas of ecological importance, as well as a full range of representative sites. In part, 

this is the result of research becoming focused on certain areas of specific interest, 

often with the advantage of existent time-series data, rather than new areas or those 

that are more common (Sastre and Lobo 2009). Consequently, sites would be likely 

to be protected because they are well-studied, rather than because they are 

representative of the habitat or biodiversity or threatened by potential adverse effects 

of human activities. In the case of the OSPAR MPA network available information 

was often greater for sites subject to fishing, so sites prioritised according to these 

data were mostly those at greatest risk of impact. 

This flexibility also applied to the determination of boundaries for sites proposed, 

particularly as conditions in the marine environment are dynamic. When selecting 

MPA dimensions and boundaries consideration was given to the size of the feature 

being protected, the vulnerability of the feature, the potential acceptability of the 

boundaries and their practicality and enforceability. Vulnerability of the area was 

determined according to the depths affected by current and potential future fishing 

practices. To increase international acceptability for proposed MPAs sites were also 

chosen taking into account the closures to bottom fishing by the North East Atlantic 

Fisheries Commission43 (Figure 21). In parallel to OSPAR, NEAFC was also 

developing site proposals for additional closures in the North-East Atlantic in 

recognition of the UN Resolution 61/105. During the selection process a member of 

NEAFC was also a member of the OSPAR MPA group. This allowed for the 

delivery of a more coherent high seas network, with the final set of MPA sites 

                                                      
42 Results from the MAR-ECO project have been presented in 22 papers published in two special 
journal editions: Deep-Sea Research II (2008), 55(1-2):1-268  and Marine Biology Research (2008), 
4(1-2):1-163. 
43 At the time these proposals were developed the closures were located on the Hatton Bank, 
Logachev Mounds, North-west Rockall and the West Rockall Mounds, the Altair Seamount, 
Antialtair Seamount, Fraday Seamount, Hekate Seamount and a section of the Reykjanes Ridge. 
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established from NEAFC and OSPAR being closely aligned geographically (Figure 

21). In order to fulfil practicality and enforceability criteria, boundaries were kept as 

straight as possible to simplify management and compliance within proposed 

protected areas.  

4.5.2. Criteria for selection 

In 2003 OSPAR adopted scientific criteria to guide the identification and selection of 

MPAs in the OSPAR maritime area as well as scientific guidance for designing 

representative networks of MPAs (OSPAR 2003a, b). Following this, in 2009 the 

Conference of the Parties to the CBD adopted their own set of scientific criteria to 

identify ecologically or biologically significant marine areas (EBSAs) in need of 

protection44. These criteria include naturalness, biogeographic importance, 

ecological importance, scientific importance and practicality/feasibility. Based on 

these evidence was gathered in order to identify important sites and to develop 

detailed proposals for each candidate MPA.  

The prior development and adoption of scientific guidelines and criteria for selecting 

MPAs in ABNJ was essential to the successful designation of the areas. Without 

them, it would not have been possible to produce acceptable proposals and gain 

political agreement. However, when researching and writing the proposals, the 

question of weighting among criteria became apparent. OSPAR states that "an area 

qualifies for selection as an MPA if it meets several but not necessarily all of the [...] 

criteria" (OSPAR 2003b). Whilst this implies that not all criteria must be met for an 

area to be considered ecologically or biologically important, and maintaining 

flexibility in this has its own advantages, in practice it turned out that it was better to 

provide evidence that a site could meet many of the criteria. 

4.5.3. How much evidence is enough? 

Whilst establishing the scientific case for each MPA the question of how much 

evidence was sufficient to justify protection of a site was raised. No guidelines exist 

regarding the quantity or quality of supporting evidence so the proposals written 

were test cases for OSPAR Contracting Parties with the aim to make them as 

comprehensive as possible (based on the best available expert knowledge). The sites 

                                                      
44 Decision IX/20, annexes I & II. Marine and Coastal Biodiversity (2008) 



 

99 
 

chosen for nomination were selected largely as a result of the greater volume of 

scientific knowledge available for these areas, as well as assessment of the need for 

protection based on vulnerability to existing and potential future impacts. Future 

proposals for high seas MPAs in the North-East Atlantic or elsewhere, particularly 

those addressing gaps in representativity, are likely to be subject to greater levels of 

inference if there is less specific knowledge of the areas. It is therefore important that 

this issue be recognised when future proposals are received. 

4.6. Legal and political challenges 

4.6.1. Scientific uncertainty 

Gaining political support for data-poor management in the high seas is imperative. 

The paucity of data in the high seas will not be solved in the near future (Harris et al. 

2007; Howell 2010) and scientific research usually lags behind exploitation (e.g. 

Brewin et al. 2007). With concern over human impacts increasing (Benn et al. 

2010), conservation actions cannot wait for the availability of completely reliable 

and comprehensive datasets on biodiversity and the impacts from human activities, 

especially since such impacts may be irreversible in the deep sea on meaningful 

human timescales (Roberts 2002; Waller et al. 2007). Under the umbrella of the 

precautionary principle, which is explicitly set out in international conventions and 

agreements including the law of the sea (UNCLOS), CBD and OSPAR, this lack of 

specific knowledge coupled with the more certain costs of inaction could be 

considered the main justification for large protected areas in the high seas. However, 

such characteristics make political action challenging, and bold action from 

politicians will be necessary. Even if the inferences are found to be incorrect at a 

later date, precautionary data-poor management will likely safeguard biodiversity 

better than the alternative of no management at all.  

4.6.2. Complexities introduced by Outer Continental Shelf submissions 

UNCLOS grants sovereign rights to all coastal States to explore and exploit the 

natural resources of their continental shelves which may extend to 200nm from the 

baseline. However, Article 76 of UNCLOS provided a mechanism for coastal States 

to seek to establish an extended outer limit to their continental shelf beyond 
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200nm45. The deadline for submissions to the UN Commission on the Limits of the 

Continental Shelf (UNCLCS) was set to be ten years after ascending to the 

Convention, which for the Member States of OSPAR fell in May 2009. 

Areas beyond national jurisdiction (ABNJ) comprise the pelagic realm that falls 

beyond exclusive economic zones (200nm) and, as of the decisions taken by 

UNCLCS, the seafloor beyond the outer continental shelf boundaries (also 

commonly referred to as the extended continental shelf) (ISA 2010; Salpin and 

Germani 2010). Renewed legal uncertainty was introduced to the OSPAR MPA 

selection process in 2009 as a consequence of submissions of several OSPAR 

Contracting Parties to the UNCLCS to extend continental shelves within the OSPAR 

maritime area. These submissions created some confusion as to how MPAs with dual 

legislation (the water column under international legislation and national legislation 

being applied for the seafloor) could function. 

In the North-East Atlantic all coastal states whose Exclusive Economic Zone borders 

the high seas have made individual, partial, joint and/or sometimes overlapping 

submissions to UNCLCS46. Following these submissions all but one of the OSPAR 

sites proposed for protection based on the available science were found to have a 

seabed falling partly or fully under national jurisdiction if submissions were 

successful (see Figure 21). The complexities arising as a result of these submissions 

include: complex jurisdictional issues until the UNCLCS has completed its work and 

issued recommendations, dual legislation and unsettled disputes as to the 

delimitation of the outer limits of extended continental shelves (e.g. the Rockall and 

Hatton Banks).  

Although at first glance the dual legal regimes of the seabed and the water column 

appear to be legally difficult to co-manage, in practice success boils down to a 

willingness of States to engage cooperatively with the competent authorities. 

OSPAR and Portugal worked together and agreed to develop common management 

strategies for the Josephine Seamount, the Mid-Atlantic Ridge North of the Azores, 

                                                      
45 Up to 350nm from its coastline or 100 miles from where the sea reaches a depth of 2,500m, and 
where specified geological conditions exist. See: 
http://www.un.org/Depts/los/convention_agreements/texts/unclos/part6.htm 
46 For details of claims see: http://www.un.org/Depts/los/clcs_new/commission_submissions.htm 
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Altair Seamount and Antialtair Seamount MPAs47. All of these candidate MPAs fell 

within the ambit of the Portuguese submission to extend the limits of their 

continental shelves. 

Nonetheless, outstanding outer continental shelf submissions in other parts of the 

OSPAR maritime area have presented difficulties for MPA designations, where 

Contracting Parties to OSPAR were not yet willing to enter into such co-

management discussions. The options that OSPAR has for designating MPAs in 

ABNJ where extended continental shelf submissions exist are as follows: firstly, to 

postpone MPA designation until the UNCLCS has completed its work and the legal 

uncertainty has been removed, which present estimates suggest could take 23 years 

(Albuquerque 2010). This approach would fail to apply the precautionary principle 

as well as prevent global targets for marine protection to be reached in international 

waters. Secondly, to establish MPAs in areas not subject to outer continental shelf 

submissions, a pragmatic and realistic option although this would limit the 

ecological coherence of networks as well as leaving a large proportion of the high 

seas unprotected until submissions are resolved. Thirdly, to establish MPAs which 

only protect the water column overlying the seabed that is subject to outer 

continental shelf submissions, an option that is likely to raise legal issues and 

unlikely to find the support of the OSPAR Contracting Parties who have submitted 

seabed submissions under those waters (OSPAR 2010c). Lastly, as in the above 

example with regard to sites that fell within the Portuguese submissions, OSPAR 

could with the support of the relevant Contracting Parties, establish MPAs without 

prejudice to the outcome of the UNCLCS submissions, which would be subject to 

review, once the UNCLCS decision and outer continental shelf limits were 

established.  

This final option was considered most preferable by OSPAR for the CGFZ MPA 

(which is subject to a seabed submission by Iceland); however, political consensus 

was not achieved in respect of the whole area proposed as a candidate MPA. In the 

end, the Charlie-Gibbs South MPA was designated for those areas lying outside the 

Icelandic submission, with the provision that the remaining area (Charlie-Gibbs 

North) would be reconsidered as a MPA subject to a more lengthy political process. 

                                                      
47 OSPAR Recommendations 2010/14, 2010/15, 2010/16 and 2010/17. 
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Other OSPAR MPAs such as those protecting Josephine Seamount, the Mid-Atlantic 

Ridge North of the Azores, Altair Seamount and Antialtair Seamount were 

designated by both OSPAR (for the waters overlying the seabed) and Portugal (for 

the seabed)48. Without the support of Portugal for these MPAs the current OSPAR 

network of high seas MPAs is unlikely to have been established. 

Until the UNCLCS has made its recommendations and States have established the 

limits of their continental shelf these issues will continue. Consequently, the 

establishment and management of MPAs in ABNJ will in such circumstances require 

cooperation and willingness between coastal States and competent organisations. 

4.6.3. Stakeholder engagement 

For a MPA to achieve its objectives, specifically that of conservation and protection, 

the coherent management of the seabed together with the water column is essential. 

Activities that occur in either realm will most likely impact the flora and fauna of the 

other (Salpin and Germani 2010). Consequently, it is essential that international 

organisations work together to develop management objectives and plans. Given that 

the management of human activities in the high seas of the North-East Atlantic fall 

under the competencies of a number of international organisations and conventions a 

broad understanding for MPA designation and management was needed. This also 

facilitates the move from a sectoral to an integrated ecosystem-based approach and 

extensive dialogue between OSPAR and other competent authorities49 was necessary 

to accomplish this.  

MPAs in ABNJ need to be established within the context of the legal status of the 

area, including specific interests, rights and competencies of organisations, 

communities and coastal states (Salpin and Germani 2010). Marine conservation 

efforts are often hindered by the difficulties in addressing multiple, and often 

conflicting uses (Harris et al. 2007). Within the North-East Atlantic competent 

authorities include the International Maritime Organisation (IMO), International 

                                                      
48 OSPAR Decisions 2010/3; 2010/4; 2010/5;2010/6 
49 Other Competent Authorities for the high seas of the North-East Atlantic are: the North-east 
Atlantic Fisheries commission (NEAFC), the International Seabed Authority (ISA), the International 
Maritime Organisation (IMO), the International Commission for the Conservation of Atlantic Tunas 
(ICCAT), the North Atlantic Salmon Conservation Organisation (NASCO) and the North Atlantic 
Marine Mammal Commission (NAMMCO) 
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Seabed Authority (ISA) and the North-East Atlantic Fisheries Commission 

(NEAFC). So as to build a framework for the prolonged cooperation on the 

protection of MPAs in ABNJ and to initiate the first efforts towards multi-sectoral 

management, OSPAR sought to consult these key stakeholders during the 

nomination proforma stage50. Long-term cooperation between such stakeholders is 

essential for MPAs in ABNJ to achieve their objectives given the legal weakness of 

governance at a global level (there is currently no mechanism for MPA creation 

under UNCLOS). In addition, when data are poor, management can be informed 

through a stakeholder engagement process in order to increase acceptance and 

therefore compliance.  

4.7. Lessons learned 

The conservation and management of the high seas poses a new challenge to policy-

makers and requires the application of international cooperation and political will. 

Despite the novelty of the process of high seas MPA designation OSPAR made swift 

progress because the Contracting Parties had already well-established cooperative 

relationships on issues of environmental protection. In particular, the target of 

establishing an OSPAR MPA network had been thoroughly endorsed and all but one 

of the coastal Contracting Parties51 have now designated MPAs within national 

waters, albeit in varying number, coverage and distribution (OSPAR 2010a). Within 

the high seas balancing the trade-off between knowledge acquisition and 

conservation action is particularly acute. With limited data available for marine 

species and ecosystems within the high seas the precautionary principle has to be 

embraced in order to protect biodiversity. Throughout the process for the North-East 

Atlantic OSPAR embraced the precautionary principle designating areas, such as the 

Milne Seamount Complex MPA, on the basis of very little site-specific information, 

using instead inferential information from other similar places. Aiding this approach 

was the lack of significant economic activity in the areas proposed, and the parallel 

action undertaken by NEAFC as a result of the UNGA Resolution 61/105 and high 

                                                      
50 See: General outline of roadmap for further work on the Charlie-Gibbs Fracture Zone (CGFZ)/Mid 

Atlantic Ridge proposal 2008/09 (Summary Record OSPAR 2008; (OSPAR 08/24/1-E), Annex 10; 
www.ospar.org  
51 Several OSPAR Contracting Parties are not North-East Atlantic littoral states (Switzerland, 
Luxembourg, Finland).  
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level international statements made regarding the need to protect the high seas (e.g. 

through the CBD and FAO). 

As it stands, this network of high seas MPAs falls short of OSPAR's target of 

ecological coherence. OSPAR has defined ecological coherence as including the 

necessity for the network to represent all types of habitat and species and for that 

network to exhibit connectivity (Ardron 2008; OSPAR 2010a). Assessing the 

ecological coherence of the MPA network is difficult due to the lack of detailed 

ecological data (OSPAR 2010a). However, the network is not yet spatially well-

distributed across the wider Atlantic and key habitats, such as the abyssal plain, are 

not adequately represented. Indeed, only 3.15% of OSPAR’s maritime area currently 

falls within MPAs52 falling short of the global commitment to protect at least 10% of 

each biogeographic region53 (although in 2010 the CBD put back this target to 2020 

(CBD COP10, Nagoya, Japan)). If the network is not well-distributed across space 

then it is likely that the network will not exhibit connectivity or representativity of 

ecoregions and habitats. Furthermore, the UN Resolution of 2006 (61/105) mandated 

the protection of all vulnerable deep sea ecosystems from fishing. This can 

reasonably be interpreted to mean that all seamount and other vulnerable habitats 

should be protected which is not the case at present. Justifiably, this network focused 

on only a subset of the habitats present in the region based on knowledge and the 

immediate need for protection, further sites will need to move beyond this. 

Recognising that the original target of achieving an ecologically coherent network of 

well-managed MPAs by 2010 has been missed, OSPAR has agreed a new deadline 

of 2012 for the establishment of a coherent network, with effective management of 

sites to be in place by 2016 at the latest54. Over the next two years the network (both 

within national waters and ABNJ) will therefore need to be extended.  

Key lessons learned from this experience of high seas MPA designation include the 

following: 

1. Targets and deadlines are essential to motivate action. The 2010 deadline 

set at an OSPAR ministerial conference helped spur OSPAR Contracting 

                                                      
52 Report of the Ministerial Meeting 2010 (OSPAR/MMC 2010); www.ospar.org 
53 2002 World Summit on Sustainable Development 
54 Report of the Ministerial Meeting 2010 (OSPAR/MMC 2010); www.ospar.org 
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Parties to seek the necessary knowledge and to gather the political drive to 

designate sites also in ABNJ. 

2. An adopted set of criteria is needed to focus site nominations as well as a 

clearly identified selection process and agreed conservation objectives for 

the MPAs. Roadmaps can be a useful tool to help focus actions. 

3. A “Champion” organisation and/or Contracting Party/Parties can help move 

the process forward by raising awareness of the gaps in political endeavours 

and putting forward the necessary options and tools to redeem these. In short, 

they build confidence that the goal is achievable. The non-governmental 

organisation (NGO) WWF played a critical role in bringing the CGFZ to the 

attention of OSPAR and consequently in initiating the process of considering 

MPAs in ABNJ. After support for the proposals was expressed from other 

Contacting Parties, Germany, as chair of the OSPAR MPA group, assumed 

this role driving the process politically. 

4. Independent evaluation(s) of proposed MPAs in ABNJ are useful to 

remove questions of bias and to add further scientific credence. In this case, 

all of the proposals for MPAs in ABNJ underwent ICES reviews as well as 

reviews from an ad hoc OSPAR advisory panel, and a separate independent 

study. These evaluations provided further scientific consensus regarding the 

sites proposed. 

5. Transparency: Presenting the evidence base clearly in the form of 

nomination proformas to justify MPA selection is essential. Whilst scientific 

data in ABNJ are still limited, a scarcity of data on specific features or 

habitats in particular places should not be construed as grounds to delay 

implementation of needed protection. Instead, the precautionary principle 

should be invoked, as noted in UN General Assembly Resolution 
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A/RES/61/105 of 200655, to protect vulnerable sites before the damage done 

to them increases to a point beyond the possibility of recovery. The 

acceptance of data limitations is an essential pre-condition to progress as the 

spatial scale of high seas MPAs in ABNJ is unlikely to be matched by 

adequate data coverage. 

6. Synergistic policy drivers: The interplay of parallel processes and 

momentum can have significant positive effects. The establishment of the 

earlier North East Atlantic Fisheries Commission fisheries closures in the 

North-East Atlantic can be considered, at least in part, as a response to 

requirements arising from UNGA Resolution 61/105 on sustainable fisheries. 

These closures helped pave the way for the OSPAR MPAs, which in turn 

may have encouraged the additional NEAFC fisheries closures.  

7. Cooperation amongst competent authorities is essential for MPA 

designation in ABNJ as well as for future management of the sites. The 

process of designating the OSPAR MPAs has led to greater cooperation and 

discussion between all key competent authorities. Particularly in the case of 

the Charlie-Gibbs South MPA, where a meeting between NEAFC, 

International Maritime Organisation, International Seabed Authority and 

OSPAR during spring 2010 was devoted to the discussion of co-

management. Effective management of these areas will be key to achieving 

conservation objectives as set out by OSPAR and will require continued 

close cooperation amongst competent authorities and sustained political will. 

8. Allow sufficient time: Like creating MPAs in national waters, designating 

MPAs in ABNJ is time consuming. It is a process of building momentum - 

identifying a lead country or countries, gathering the scientific rationale, 

convincing co-sponsors, raising awareness and achieving consensus.  

                                                      
55 UN General Assembly Resolution A/RES/61/105 of 2006, paragraph 80. “Calls upon States to take 

action immediately, individually and through regional fisheries management organizations and 

arrangements, and consistent with the precautionary approach and ecosystem approaches, to 

sustainably manage fish stocks and protect vulnerable marine ecosystems, including seamounts, 

hydrothermal vents and cold water corals, from destructive fishing practices, recognizing the immense 

importance and value of deep sea ecosystems and the biodiversity they contain” 
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9. Strong political commitment and willingness are required to enable 

Contracting Parties to collaborate and cooperate on work to implement high 

seas MPA networks. The potential extension of the continental shelves of 

coastal states currently enhances legal uncertainty over the governance of 

some high seas MPAs. Without such commitment, legal conflicts such as 

unregulated boundary issues may be intractable and without such willingness 

legal complexities may be used as reasons to deter engagement. 

10. Regional Seas Conventions such as OSPAR provide a valuable platform to 

facilitate cooperation and communication among Contracting Parties as well 

as with other competent authorities for the establishment of high seas MPA 

networks. In the current absence of a global implementing agreement for 

MPAs under UNCLOS, such bodies may represent a promising approach to 

achieving protection in ABNJ. 

11. Compliance: Designating MPAs is just the start of a process. Whether these 

MPAs can deliver agreed conservation objectives and improve the target of 

sustainable management of the oceans depends on long-term collaborative 

arrangements between those institutions and organisations with legal 

competence over the areas. Multiparty monitoring, control and surveillance 

plans, combined with the political and social will for compliance, will 

therefore be essential. 

4.8. Conclusions  

The OSPAR high seas MPAs represent the first elements of an ecologically coherent 

network of MPAs in ABNJ setting a global precedent and as such are to be 

commended. However, this is only a start. It is likely that habitats, both within and 

beyond fishing depth are not represented and further representative protection of the 

North-East Atlantic is needed. As such, a gap analysis should be undertaken (and is 

now underway) such that this initial network can be complemented over time 

through the designation of additional MPA sites in order to become fully 

ecologically coherent and representative. For these sites to become part of a well-

managed network of MPAs (in conjunction with coastal MPAs), many challenges lie 

ahead. Sustained political will, increased human and financial capacity, and 
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improved governance and stakeholder engagement and compliance will need to be 

secured. Nonetheless, this is a significant global step forward in the process of multi-

sectoral and sustainable management of the high seas. 

4.9. Acknowledgements 

The original scoping report was conducted in association with the Scottish 

Association of Marine Science and the PP Shirshov Institute of Oceanology in the 

Russian Federation. The authors would like to thank Andrew Davies, Tina 

Molodtsova and Melanie O’Rourke for their contributions of data and advice during 

the nomination proforma stage.  We would also like to acknowledge the OSPAR 

Contracting Parties (and the members of the OSPAR MPA group) for their efforts 

throughout the designation process. 

The manuscript benefitted from a presentation given to the International Seabed 

Authority in November 2010 and a report submitted to the United Nations 

Environment Program as a briefing paper in September 2010. 

The map provided as Figure 21 in this article, has been prepared by Mirko Hauswirth 

of the German Federal Agency for Nature Conservation (BfN). 

  



 

109 
 

 

 

Chapter 5.  

 

Is Sustainable Management of the 

Eastern and Western Populations of 

Atlantic Bluefin Tuna (Thunnus 

thynnus) Possible?  

  



 

110 
 

5.1. Abstract 

The Atlantic bluefin tuna (Thunnus thynnus) has become the quintessential example 

of overfishing and general mismanagement of the world’s fisheries, suffering from 

political quota adjustment, a lack of scientific integration into management and other 

problems such as illegal, unreported and unregulated (IUU) fishing. In this chapter I 

develop a spatial model of the eastern and western stocks of Atlantic bluefin tuna to 

explore its sustainable management. I investigate the importance of accounting for 

spatial information within management parameters and model the predicted recovery 

timeframe for the two stocks to reach their biomass corresponding to maximum 

sustainable yield (BMSY) under different management scenarios within a deterministic 

regime. My results highlight the importance of taking area and stock movement into 

consideration when determining total allowable catches for the Atlantic bluefin tuna 

fisheries. In particular, my results suggest that the western bluefin stock is more 

sensitive to assumptions of stock movement and mixing than the eastern populations, 

corroborating previous research. My results also indicate that to maximise the total 

catches of bluefin in perpetuity, it may be better to cease fishing in the western 

Atlantic and to only target individuals in the eastern Atlantic. The estimated 

timeframes for recovery are found to be medium to long term if fishing were halted 

today (20 years for both stocks to attain their BMSY) and it is estimated that a 34% 

reduction in fishing mortality on both stocks is the minimum required decrease to 

ensure recovery. 

5.2. Introduction 

The Atlantic bluefin tuna (bluefin) is one of the most highly prized and argued over 

species in the world. Large individuals may reach over 650kg (Block et al. 2005), 

can live up to 40 years (Boustany et al. 2008) and are heavily targeted for the 

Japanese raw fish market where they may fetch prices of over $100,000 each at 

auction (Stokstad 2010). The current record price was set in January 2012 at 

$736,00056. 

The species inhabits the pelagic environment of the North Atlantic in both the 

temperate and tropical waters. While long seasonal migrations to foraging grounds 

                                                      
56 http://www.bbc.co.uk/news/world-asia-pacific-16421231 
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throughout this range have been observed, two distinct stocks are believed to exist; 

one in the western Atlantic and Gulf of Mexico, and one in the eastern Atlantic and 

Mediterranean. Larval surveys indicate two major breeding grounds, the 

Mediterranean Sea and the Gulf of Mexico and natal homing has been observed 

through tagging studies (Block et al. 2005; Boustany et al. 2008). Recent genetic 

evidence has also come to light supporting these concepts (Carlsson et al. 2007). To 

complicate matters for both stock assessments and fisheries management, the two 

populations mix when foraging. Mediterranean-spawning fish may therefore be 

caught while foraging in the western Atlantic (Block et al. 2001) and vice versa. 

Consequently, accurate stock assessments for the different populations are difficult 

and may be artificially inflated as a result of mixing (Reeb 2010).  

The decline of both stocks of Atlantic bluefin tuna is well documented with the 

eastern Atlantic adult population falling by 90% (Walli et al. 2009) and the western 

population by 82% since 1970 (ICCAT 2010a), leading to both the eastern and 

western Atlantic populations being classified as ‘critically endangered’ (IUCN57 

criterion) (Druon 2010). Bluefin are vulnerable to concentrated fishing efforts due to 

their predictably high concentrations at feeding and spawning locations. For 

instance, Walli et al. (2009) observed that only 10% of all trans-Atlantic (i.e. those 

fish tracked to the east of the 45º management line) bluefin tuna that were tagged 

and returned to the Mediterranean Sea to spawn were not caught. Other natural 

characteristics such as late reproduction, large size at reproduction and a long life 

span decrease the resilience of this species to high rates of exploitation (Ottolenghi et 

al. 2004; Fromentin and Ravier 2005).  

Whilst continuing exploitation increases the risk of collapse, the huge commercial 

importance of the Atlantic bluefin tuna means there is a lack of political will to take 

effective action to rebuild the populations (Fromentin and Ravier 2005). This is 

illustrated by the recent failure (18 March 2010) to implement an Appendix I CITES 

listing and a temporary international trade ban (Stokstad 2010). Although this failure 

has led to more stringent management measures being implemented, there remains a 

great deal of international concern over the fate of the bluefin and its fishery (e.g. 

Webster 2011). Management of the bluefin currently falls under the remit of the 

                                                      
57 International Union for Conservation of Nature 
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International Commission for the Conservation of Atlantic Tunas (ICCAT) which 

was established in the late 1960s. Throughout its history ICCAT has encountered 

problems in implementing sustainable bluefin management. These include 

uncertainty over stock assessments, political pressure to maintain high catches as a 

result of the tuna’s high value and illegal, unreported and unregulated (IUU) fishing 

(e.g. Fromentin and Ravier 2005; Webster 2011; Sumaila and Huang 2012). Political 

adjustment to the total allowable catch (TAC) setting process and IUU fishing have 

compounded the problems of overcapacity and overexploitation (De Stefano and 

Van der Heijden 2007; ICCAT 2010a; Sumaila and Huang 2012). For example, 

between 2003 and 2010 the eastern fishery was subjected to average political 

adjustment levels of 110% (calculated with the political adjustment index presented 

in Chapter 2 using data from Sumaila and Huang 2012). Generally, the fishing 

industry continues to catch well above these levels (ICCAT 2010a). Estimates of 

IUU fishing are uncertain but it has been suggested that catch levels may actually be 

double the TACs set by ICCAT (ICCAT 2010a). In addition, non-ICCAT members 

may also fish for bluefin, contributing to the IUU catch (Safina 1993; Sumaila and 

Huang 2012). Whilst recovery plans for both populations have been put in place 

(ICCAT 1998, 2006) it has been suggested that the stocks remain at risk from over-

harvesting unless new conservation measures are implemented (e.g. MacKenzie et 

al. 2008; Armsworth et al. 2010; ICCAT 2010b). 

Bluefin tuna has become the most demanded and expensive tuna species on the 

world market (Ottolenghi 2008). Atlantic bluefin tuna make up only a small 

proportion of the approximately 80 million tonnes of fish caught globally each year 

in marine fisheries (FAO 2010b). Nevertheless, they make up a disproportionate 

amount of the value in the sale of global marine resources (Greenpeace 2007) and 

once on the consumer market, the value of bluefin sales is likely to be in the billions 

of dollars (Issenberg 2007). The Atlantic bluefin tuna thus crystallises most of the 

problems of many fisheries (i.e. overcapacity; IUU fishing; high market value; open 

access in international waters; deficient governance) and has become the 

quintessential example of overfishing and general mismanagement of the world's 

fisheries. New management strategies are therefore needed in order to prevent the 

collapse of these stocks. 
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The increasing priority for more spatially explicit and integrated management 

between the two stocks of the Atlantic bluefin prompted ICCAT to develop 

alternatives to the two-stock, two-zone management regime (i.e. where the two 

stocks were considered separate with no mixing past the 45º boundary in the 

Atlantic). A two-stock, six-zone model was proposed in order to more accurately 

match the known life cycles of the two stocks and allow mixing rates between the 

two stocks to be considered within regulations (Apostolaki et al. 2003). 

Several characteristics make this a useful operating model for population dynamics 

and the evaluation of spatial management systems for the Atlantic bluefin tuna. For 

example, the population dynamics of the two stocks are modelled in considerably 

more detail than standard stock assessment models; quarterly time steps allow for 

seasonal variations in the spatial distribution of fish and fishing effort. Also fish 

movements by age and stock can be simulated. More recently the Standing 

Committee on Research and Statistics (SCRS) of ICCAT presented a spatial, Multi-

stock Age-Structured Tag-integrated stock assessment model (MAST) which models 

both stocks simultaneously in four areas58 (Taylor et al. 2009). However, despite 

advances, ICCAT continues to use virtual population analysis (VPA) for stock 

assessments due to reliability issues (ICCAT 2008) and the difficulties in identifying 

plausible parameterisations to fit historic trends in bluefin abundance as well as time-

specific area-movements of both fish and fishers (Apostolaki et al. 2004; McAllister 

et al. 2004). Whilst useful, VPA-based projections have a tendency to be positively 

biased to higher stock levels and to underestimate uncertainty (Patterson et al. 2000; 

McAllister and Babcock 2002). 

The main findings of Apostolaki et al. (2003; 2004; 2005) were that assumptions 

regarding movement patterns can considerably affect model predictions for the status 

of both stocks. In particular, the western stock shows a higher sensitivity to changes 

in movement patterns and often predictions regarding current status and the 

prospects for rebuilding the western stock are dependent on the movement scenario 

used. Consequently they suggest that ignoring the complexity in bluefin movement 

patterns could lead to overestimation of the productivity or recovery potential of the 

western stock. 

                                                      
58 SCRS/2008/097 
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In this chapter I develop a population dynamics model that tests the sustainability of 

the Atlantic bluefin tuna fishery under different biological and fishery scenarios, 

based on stock assessments and published biological data. The model simulates the 

dynamics of the two bluefin tuna stocks (eastern and western) in the North Atlantic, 

accounting for differences in the biology of the two populations and in their trans-

Atlantic migrations. 

5.3. Purpose and aims of the study 

This research aims to develop a model incorporating the eastern and western Atlantic 

bluefin tuna stocks in order to provide insights into the dynamics of the two 

populations and their fisheries. The development of this model will allow the 

probable negative impact of political adjustment to the TACs of this fishery to be 

examined. In addition it will enable exploration of the potentially positive political 

effect of establishing marine protected areas, and investigation into the possibility 

that MPAs may buffer the effect of political adjustment, resulting in a sustainable 

fishery.  

Development of this model will hopefully lead to further research into the 

sustainable management of the Atlantic bluefin tuna. Within this Chapter the model 

is used to evaluate the potential fishery yields that may be obtained by applying 

different management assumptions and two movement scenarios. Potential 

timeframes for recovery of the two stocks are also indicated for various catch 

scenarios.  

Differing biological and exploitation scenarios may be considered, as the model 

accounts for the differences in the biology and behaviour of the two populations. 

However, within this chapter only one biological scenario is presented (described in 

the methodology section) in order to showcase some example results. T. thynnus has 

been selected as a case study for the following reasons; it represents a problem of 

immediate policy concern, it is subjected to political adjustment to TACs and MPAs 

have been suggested as one method that may aid the recovery of the species 

(Sumaila and Huang 2012). With increasing public awareness of the issues 

surrounding the bluefin tuna and with recent criticism of its management, ICCAT 

will have to act to restore public faith and to rebuild tuna populations. This study 
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aims to provide a stimulus for further research into the Atlantic bluefin tuna and how 

the populations may be rebuilt to achieve sustainability. 

The key research questions were: 

1. What is the maximum sustainable yield (MSY) for both western and eastern 

populations, when the TAC for each is only removed from that respective 

population (i.e. taking the population as a whole in the absence of location 

considerations or mixing)? 

2. How does fishing at the individual MSY level for each population affect the 

other population in the more realistic scenario where catches can be taken 

from either population depending on the location of the fish? 

3. What is the MSY for each population when the TAC for each is only 

removed from the respective population and is taken based on historical 

catches for each area and proportionally from the population present in each 

area? 

4. What are the optimum levels of exploitation when managing the stocks 

together, as opposed to management based on the calculation of separate 

MSYs? 

5. How long would it take both populations to recover to their biomass 

corresponding to MSY and virgin biomass from their present day levels if 

fishing was (a) completely halted, (b) reduced by 10%, (c) reduced by 20% 

or (d) reduced by 50%? 

These questions will be examined under a deterministic regime. In the longer term, 

resources subjected to stochasticity tend to require more conservative management 

and the steady state harvest becomes lower than the deterministic level (Poudel et al. 

2011). Whilst the inclusion of stochastic processes within fisheries models has 

become more common, deterministic models remain a useful tool in analysing trends 

in population as a response to different events. Deterministic modelling outputs also 

provide valuable baselines which may be compared to stochastic results, particularly 

when uncertainty is present regarding the level of stochasticity a system experiences. 

For these analyses the deterministic baseline results are therefore calculated.  
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5.4. Methodology 

An age-structured, five-area, monthly time step biomass model was developed to 

simulate the dynamics of the two bluefin tuna stocks in the North Atlantic, taking 

into account the mixing of the two stocks and their movement between areas. The 

use of an age-structured model allowed for differences in the biology, behaviour and 

exploitation of fish of different ages to be considered. A spatial model was 

developed in order to increase the realism in the simulation of fish movement and to 

examine the dynamics of the two stocks and the effects of exploitation on the stock 

sizes. In 2001 the SCRS stated that a spatial model should not exceed 5 or 6 areas 

and recommended that the key areas to distinguish were the Gulf of Mexico, 

Mediterranean Sea, Western, Central and Eastern Atlantic (SCRS 2002). At this 

meeting they suggested a model of 6 areas be considered. However, after researching 

the available data on movement patterns a 5 area model was designed. This was in 

order to simplify assumptions about movement patterns as there is limited tagging 

data for the eastern Atlantic population. As more accurate movement data becomes 

available the model could be extended to incorporate a greater number of areas. 

Input parameters were based on those used within the most recent Atlantic bluefin 

tuna stock assessment (ICCAT 2010b). Movement of the stocks was simplified from 

Block et al. (2005) and Rooker et al. (2007), the main findings of which are 

summarised in Table 7. The main life history traits of bluefin tuna are stated as 

follows: yearly spawning (1 cohort per year), life span of 20+ years, maturity occurs 

at 4 years for the eastern population and at 9 years for the western population 

(ICCAT 2010a). The natural mortality vector for each population was based on 

values adopted by the SCRS Bluefin Tuna Working Group (ICCAT 2010b). More 

detailed information is available for the natural mortality (µ) of the eastern 

population and is therefore age-specific but time- and area-invariant (i.e. µ=0.49 for 

age 1, µ=0.24 for ages 2 to 5, µ=0.2 for age 6, µ=0.175 for age 7, µ=0.15 for age 8, 

µ=0.125 for age 9 and µ=0.1 for ages 10+, in units of yr-1 in each case). For the 

western population mortality is assumed to be age-independent and is taken to be 

0.14yr-1. The model framework and movement patterns of the two populations 

between areas are illustrated within Figure 22. 
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Table 7. Summary of Atlantic bluefin tuna movements as described by Block et al. 

(2005) and Rooker et al. (2007) 

Block et al. 2005 

• Identified two populations with distinct spawning areas; Gulf of Mexico and 

Mediterranean Sea. 

• Mixing zones were found to be primarily in the western and central Atlantic. 

• No mixing occurred in spawning areas. 

• Only adult tuna moved into known spawning grounds. 

Western population 

• Spawning is estimated to occur between April and June. 

• After leaving the western spawning area, tuna concentrate in the western and 

central Atlantic. 

• The central and eastern Atlantic are foraging areas for western spawners 

Eastern population 

• Tuna that migrated to the Mediterranean Sea resided in the western Atlantic 

foraging grounds for 0.5 to 3 years before leaving.  

• Spawning occurs between May and July, but may include August. 

• Once an eastern spawned bluefin tuna migrates to the Mediterranean Sea it is 

unlikely to return to the western Atlantic.  

• Summer movements of adults into and out of the Mediterranean Sea from the 

east Atlantic were observed, together with foraging in the central Atlantic.  

Rooker et al. 2007 

• Spawning occurs mainly in the Mediterranean Sea and Gulf of Mexico. 

• Adults may be found outside of spawning areas during spawning times. 

• Eastern Atlantic tagging efforts have been sporadic; total number of tags 

deployed is about one-third of that in the western Atlantic. 

• No mixing occurs in spawning areas. Substantial mixing along the North 

American coastline and central North Atlantic is noted. 

Western population 

• Spawning occurs in the Gulf of Mexico between April and June. 

• Over 99% of juveniles (< 4 years) tagged in the western Atlantic have been 

recaptured in the western Atlantic. Estimated west-east transatlantic 

migration rates are 22.8% and 12.6% for fish aged 4-8 and >8 respectively. 

Eastern population 

• Spawning occurs in the Mediterranean between May and July. 

• ~10% of juveniles tagged in the eastern Atlantic have been recaptured in the 

western Atlantic; significant exchange of juveniles between the 

Mediterranean Sea and the eastern Atlantic is indicated. 

• Data from tagging of fish in the eastern Atlantic is insufficient to characterise 

east to west movement of older individuals. 

Only summaries of conclusions regarding movement patterns have been reproduced within this table. 
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Figure 22. Schematic diagram of the model framework 

 

 

 

 

 

 

 

 

  

Solid lines represent movement patterns, dashed lines recruitment. Western populations occupy the 

Gulf of Mexico between April and June. 1 year old recruits enter the population and then move in 

July to the western Atlantic where they remain until they reach maturity and return as adults in April. 

Adults move into the Gulf of Mexico in April, spawn in May and move to the Central Atlantic to feed 

in July where they remain until they return to spawn the following year. Eastern populations occupy 

the Mediterranean Sea between May and July.1 year old recruits enter the population and then move 

in August to either the western Atlantic or the eastern Atlantic where they remain until they reach 

maturity and return as adults in May. Adults move into the Mediterranean in May, spawn in June and 

move to the Central Atlantic to feed in August where they remain until they return to spawn the 

following year. Natural mortality is independent of area and occurs at the beginning of every month.   

The use of a detailed model requires information such as catch by area and time 

period and movement rates of fish by age, area and time. Not all of this information 

is available or it is characterised by considerable uncertainty. Therefore assumptions 

have to be made. Within this model these include: 

1. The western and eastern stocks are considered to be separate populations that 

may mix while foraging but not contribute to each other’s population in 

terms of recruitment. 

2. The spawning grounds are solely utilised by the population which spawns in 

them (i.e. western population fish do not enter the Mediterranean Sea and 

vice versa.). 
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3. Juveniles do not remain or enter the two spawning areas. 

4. Only two spawning areas exist within this model; sub-spawning areas such as 

those found within the Mediterranean Sea (Reeb 2010) are not considered. 

However, the model could be extended to include further spawning 

areas/sub-areas in the future. 

5. Recruitment is based on the Beverton-Holt stock-recruitment curve and 

occurs at discrete time intervals (i.e. spawning times) and only within 

designated spawning areas. 

6. Growth follows the von Bertalanffy growth relationship. 

7. All adult fish spawn each year (no skipped spawning takes place). 

 

Model structure  

The spawning stock biomass of each population is calculated on an annual basis and 

a year consists of twelve time steps. Movement and natural mortality are 

instantaneous processes that take place at the beginning of every month where 

appropriate. Movement patterns follow those described in Figure 22. In its discrete 

form the population dynamics can be expressed as:  

j,-@<,�,.@< = j,-,�,.:1 − k,-,.C + H,.    (5.1) 

where the change in number of fish, Ni,a,r,t, of stock i and age a, in area r, at the 

beginning of time step t, after movement has occurred is known, is the result of 

survivorship from natural mortality (µi,a,t) at age by stock per time step, and the 

recruitment to the population. All western individuals aged 9 or greater and eastern 

individuals aged 4 or greater are assumed to be mature. Parameters are defined in 

Table 8 and parameter values are given in Table 11. 

The biomass of fish that spawn in each of the spawning areas at time, t, is calculated 

as the product of the total number of spawners (i.e mature fish) times the 

corresponding weight, wi,a. 

E,-,. = ∑ :j,-,.l,-C-mno-p-mnO     (5.2) 

The weight of fish at age a, wi,a, of fish is calculated as a function of length (von 

Bertalanffy 1938): 
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q,-,. = q,r[1 − t�uv:.�.5,vC]     (5.3) 

l,-,. = l,r[1 − t�uv:.�.5,vC]7v     (5.4) 

where q,r, x, and t0,I are constants for each stock. These relationships allow 

fecundity to be weighted according to the size of the fish. By multiplying the 

population density in each age class by the specific weight of individuals in that 

class, the spawning stock biomass is weighted according to the distribution of fish 

across the population. For example, if the population is dominated by small young 

fish, the spawning stock biomass will be less than when there is a greater number of 

larger older fish.  

Estimates of the stock recruitment relationship for the Atlantic bluefin tuna stocks 

remain highly uncertain within stock assessments (ICCAT 2008). However models 

are often based on the Beverton and Holt stock recruitment relationship because it 

represents a near constant level of recruitment at high spawner abundance and 

recruitment declines at low spawner abundance levels (Beverton and Holt 1957) (e.g. 

Apostolaki et al. 2003; ICCAT 2010b). For the Atlantic bluefin tuna the SCRS 

explore two models of spawner-recruit relationships: the two-line (low recruitment 

scenario) and the Beverton and Holt spawner-recruit formulation (high recruitment 

scenario) (ICCAT 2010b). The two-line model assumes recruitment increases 

linearly with SSB from zero with no spawners to a maximum value (RMAX) when 

SSB reaches a certain threshold. This threshold is set at the average SSB during 

1990-1995 as this is the period with the lowest estimated SSB. The SCRS calculates 

RMAX as the geometric mean recruitment during 1976-2006 (the recruitment estimates 

for the previous three years are thought to be unreliable so were not used). The 

SCRS have fit the Beverton-Holt model to SSB and recruitment estimates for the 

period 1971-2006 (ICCAT 2010b). The model presented here is based on the 

Beverton-Holt relationship; however it would be possible to extend the model to test 

different spawner-recruit relationships such as those explored by Needle (2002). 

The original Beverton-Holt stock-recruitment relationship 

( ) ( )atiiatiiti BBR ,,,,1, / +=+ βα , was re-parameterised in terms of steepness (z) and virgin 

spawning biomass (females only) (B0) (Mace and Doonan 1988). This was to allow 

changes in the fecundity characteristics of the stock to be explored without altering 
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B0, enabling comparisons between the impact of management parameters and 

different stock recruitment relationships. The Beverton-Holt (1957) stock 

recruitment function related the biomass of spawners to the number of recruits at 

time, t: 

H,.@< = V Nv,O,n
Q@RNv,O,nZ	    (5.5) 

where α and β are constants that can be calculated if the virgin spawning biomass, 

B0, and recruitment, R0, are known:  

K = EX � <U5 − BW�<yU5W�    (5.6) 

M = �BW�<�y�WU5�                       (5.7) 

where z is the steepness of the stock-recruit relationship and is equal to the fraction 

of the recruits under virgin conditions, R0 (the recruitment corresponding to B0), that 

are expected when the spawning biomass is reduced to 20% of B0. In the absence of 

detailed information on steepness (z) the steepness of both stocks was set to 0.75. 

This value was based on the 0.7 value applied by Apostolaki et al. (2003) and the 

values of 0.75 and 0.9 used by Fromentin and Kell (2007). These values are 

considered to make biological sense for tuna (Kell and Fromentin 2009); the SCRS 

believe that 0.75 is the more appropriate estimate59. Sustainable yield estimates have 

been shown to depend on the steepness value chosen – the higher the steepness, the 

larger the yields and the better the recovery potential of the resource (Butterworth et 

al. 2003; Fromentin 2009). The value 0.75 was therefore chosen in order to avoid an 

overly high recovery potential for the two stocks and to conform to base scenarios 

run by the SCRS. The model was also run for steepness values of 0.7 and 0.9 to 

investigate the sensitivity of the stocks to assumptions regarding z, however the 

dynamics were found to be similar. With a higher z value (z = 0.9) the populations 

support a higher catch and recover faster once fishing pressures are removed than 

with a lower z value (z = 0.7). As it is the population dynamics of the stocks that is 

of interest within this study rather than the absolute values of catch, biomass or time, 

                                                      
59 Extension of the 2009 SCRS meeting to consider the status of Atlantic bluefin tuna populations 
with respect to CITES biological listing criteria, Doc. No. PA2-604/3009.: 
http://iccat.int/Documents/Meetings/Docs/PA2-604%20ENG.pdf 
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the results are presented for the intermediate and more biologically appropriate value 

of z = 0.75. 

The virgin biomass level (B0) was set at 221,000 tonnes for the western population 

and 11 million tonnes for the eastern stock. These levels were based on recent SCRS 

estimates, however the results should not be considered to reflect the actual status of 

the stock as the virgin biomass conditions of the Atlantic bluefin tuna are 

controversial (SCRS 2010). However, the qualitative differences between the 

movement and management scenarios and between the eastern and western stocks 

are unlikely to be affected by this scale parameter.  

R0 is defined as HX = z�<�z�(EX for the western stock and ∑:k-py@,.5E-py@,.5C +∑:k-p<:|,.5E-p<:|,.5C for the eastern stock. 

If R0 is known then the number of fish at age, under virgin conditions, for the 

western stock is calculated as: 

j-�� = }HX																																																																												~ = ~<																j-pA:-mno3&�� = j-p<�1 − k�<�-mno34 													~ = ~A: ~,-��<j-mno�� = ��<�z�nmno3& ∙6n�&z � 																													~ = ~,-�											�       (5.8) 

The number of fish at age, under virgin conditions, for the eastern stock is calculated 

as: 

j-�� =
���
��HX																																																																																							~ = ~<																j-pA:-mno3&�� = j-p<:1 − k-p<:-mno34C<�-mno34 					~ = ~A: ~,-��<j-mno�� = V:<�znmnO3&Cnmno3& ∙6n�&zn�&' Z 																													~ = ~,-�											���

��
    (5.9) 

The above equations assume that all fish of each stock occupy a single area. The 

spatial distribution of fish at the beginning of each simulation run was set according 

to the following rules: 

• All western juveniles, aged between 1 and amat-1, were located in the western 

Atlantic; 

• All western adults, aged between amat and amax, were placed in the central 

Atlantic; 
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• Half of the eastern juveniles, aged between 1 and amat-1, were situated in the 

eastern Atlantic and half in the western Atlantic; and 

• All eastern adults, aged between amat and amax, were located in the central 

Atlantic. 

The population in the first year of a simulation run is assumed to be a fraction, ∅�,� of 

the virgin population: 

j,-,�,. = ∅,- ∙ j,-,�,.��
        (5.10) 

If the time step (t) corresponds to the spawning period (April - June for the western 

stock and May-July for the eastern stock), it is assumed that the sexually mature fish 

move into the area in the first month, spawn in the second and exit in the third. 

Immature fish remain in the area that they occupied at the beginning of the spawning 

period. Adults from the western stock move to the Gulf of Mexico to spawn while 

those from the eastern stock move to the Mediterranean Sea. Movement between 

areas is an instantaneous process that takes place at the end of the appropriate time 

step (see Figure 22). 
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Table 8. List of parameters 

Symbol Parameter description 

a Age 

i Stock 

t Time 

B0 Spawning stock biomass under virgin conditions 

µ Natural mortality 

z Steepness of stock-recruitment curve, no units -

dimensionless 

R Recruitment 

R0 Recruitment under virgin conditions 

α, β Constants of the Beverton-Holt stock recruitment function 

l Fish length 

qr von Bertalanffy parameter. Defines the asymptotic or 

maximum body length size. 

K von Bertalanffy parameter known as the Brady growth 

coefficient. Defines the growth rate toward the maximum. 

t0 von Bertalanffy parameter. Shifts the growth curve along 

the age axis to allow for apparent nonzero body length at 

age zero. 

w Fish weight. 

lr Defines the asymptotic or maximum body weight size. 

b von Bertalanffy parameter. 
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Fishing was assumed to take place annually and be an instantaneous process 

occurring in the middle of each year. Catches were based on averages of longline 

and purse seine catch data from 1998-2008 for the Atlantic bluefin tuna (the most 

recent database available from ICCAT60). Data were assigned to the model areas and 

averaged over the ten year period to gain a perspective into the true location of 

catches. Total catches were set to equal the TAC and the proportion of catches 

recorded in each area annually was calculated. However, disadvantages exist with 

using these data: 

1. Catches (total and location) may be misreported by fishers. 

2. Fish caught on the eastern side of the 45º line separating the management of 

the two stocks are recorded as fish from the eastern population and TAC, and 

vice versa. 

3. This database does not include estimates of illegal fishing. 

The MSY was calculated separately for each stock assuming the western TAC was 

taken only from the western population and vice versa, and that individual areas 

would not affect the MSY. The target for managing both fish stocks was set to be 

50% of their respective virgin population sizes (Caddy and Mahon 1995) and catches 

were assumed to be taken proportionally from each age class. All age classes (1-20+) 

were assumed to be exploitable by fishers. MSY was calculated iteratively using a 

bisection method61 (Press 1992). 

Annual catches for each stock were then set to the corresponding MSY and the 

proportion of the MSY (or TAC) for each area was taken in the middle of the year 

after all spawning had taken place. Where no mixing took place catches were taken 

proportionally according to age class from either the western or eastern population 

present in each area (Table 9). In each area where the two stocks mixed (i.e. the 

western and central Atlantic (see Figure 22) catches were taken from both 

populations according to the proportion of each stock present at that time (Table 9). 

As no fish were present in the two spawning areas (the Gulf of Mexico and 

Mediterranean) at this time (all mature fish are assumed to spawn), these catches 

were taken from the respective adult populations present in the central Atlantic, i.e. 

                                                      
60 This database is freely available from http://iccat.int/en/accesingdb.htm 
61 The bisection method is a root-finding which repeatedly bisects an interval and then selects a 
subinterval in which a root must lie for further processing (Press 1992).  
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the Gulf of Mexico catches were taken from the western stock and the Mediterranean 

catches were taken from the eastern stock. Table 10 lists the proportions of each 

TAC taken from each area annually. Table 9 describes the methodologies for taking 

catches based on area and mixing. 

The optimum levels of catch required to maximise the catch for the western, eastern 

or total fishery yield were also calculated iteratively using a bisection method. The 

initial catch levels were set at zero for the minimum possible catch (CMIN) and at the 

total exploitable population value for the maximum possible catch (CMAX). At the 

end of each simulation run, the catch levels for the western and eastern Atlantic were 

recorded if both populations remained above 0.5B0. If either population fell below 

0.5B0, no sustainable catch level was recorded. From the resulting matrix of 

sustainable combinations of western and eastern catch levels, the combination of 

western and eastern catches which provided the maximum western, eastern or total 

yield was found. Using these values the catch parameter could then be adjusted to 

reduce the interval between CMIN and CMAX until optimal combinations were found. 

Note that despite the different growth curves for each stock, catches for each age 

class were assumed to be taken from the same age class of the other stock; i.e. if the 

western TAC for age class 1 was 2 units and 1 of these units was taken from the 

eastern population this unit would also be taken from age class 1 for the eastern 

population. 
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Table 9. Methodology for removing catches based on area with no stock mixing, and 

area with stock mixing 
 

Methodology for removing catches from the two stocks separately (i.e. western 

TAC from western stock and vice versa) taking area into account: 

 

deJ� = ����������	��	���~q	deJ	�~�t�	����	~�t~	e	�Gtt	d~�qt	8� 
d��~q	����q~����	��	~�t~	e =�e<:AX 

����������	��	��Gℎ	��	t~�ℎ	~�t	�q~GG	�~�
= 	 ~<d��~q	����q~����	��	e…	 ~Ad��~q	����q~����	��	e…	 ~AXd��~q	����q~����	��	e 

J~��ℎ	��	~�t~	e	�����������~qq�	��	~�t	�q~GG	�~�� 		= 	deJ� ∗ ����������	��	��Gℎ	��	t~�ℎ	~�t	�q~GG Ht�~�����	����q~����	��	~�t~	e	~��t�	�~��ℎtG = e<:AX − 	J~��ℎ	��	~�t~	e		 
 

Methodology for removing catches from the two stocks taking area and mixing 

into account. 

 deJ� = ����������	��	���~q	deJ	�~�t�	����	~�t~	e	�Gtt	d~�qt	8� 
d��~q	����q~����	��	~�t~	e =�e�<,<:AX +	�e�A,<:AX 

where s1 and s2 represent the western and eastern stocks. ����������	��	ltG�t��	��Gℎ	��	t~�ℎ	~�t	�q~GG	�~�
= 	 G1-p<d��~q	����q~����	��	e…	 G1-pAd��~q	����q~����	��	e…	 G1-pAXd��~q	����q~����	��	e 

����������	��	t~G�t��	��Gℎ	��	t~�ℎ	~�t	�q~GG	�~�
= 	 G2-p<d��~q	����q~����	��	e…	 G2-pAd��~q	����q~����	��	e…	 G2-pAXd��~q	����q~����	��	e 

J~��ℎ	��	ltG�t��	��Gℎ	��	~�t~	e	:����������~qq�	��	~�t	�q~GG	�~�C 	= 	deJ� ∗ ����������	��	ltG�t��	��Gℎ	��	t~�ℎ	~�t	�q~GG J~��ℎ	��	t~G�t��	��Gℎ	��	~�t~	e	:����������~qq�	��	~�t	�q~GG	�~�C 	= 	deJ� ∗ ����������	��	t~G�t��	��Gℎ	��	t~�ℎ	~�t	�q~GG Ht�~�����	ltG�t��	����q~����	��	~�t~	e	~��t�	�~��ℎtG= e<:AX − 	J~��ℎ	��	ltG�t��	��Gℎ	��	~�t~	e		 Ht�~�����	t~G�t��	����q~����	��	~�t~	e	~��t�	�~��ℎtG= e<:AX − 	J~��ℎ	��	t~G�t��	��Gℎ	��	~�t~	e		 
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Table 10. Proportion of total allowable catch (TAC) taken annually from each area 

and stock 

Area Proportion of TAC 

Eastern Atlantic 0.14*eastern TAC 

Western Atlantic 0.55*western TAC 

Central Atlantic 0.03*eastern TAC + 0.35*western TAC 

Mediterranean* 0.83*eastern TAC 

Gulf of Mexico* 0.1*western TAC 

* These catches were taken from their respective populations in the central Atlantic. 

Input parameters and assumptions 

The values of the input parameters used for the calculations are shown in Table 11. 

These values are intended to accurately reflect current knowledge about the Atlantic 

bluefin tuna biology and are the values used by ICCAT in its most recent stock 

assessment (ICCAT 2010b). However, there is considerable uncertainty within these 

values. For example, it has been suggested that the age of maturity for the western 

population may be as late as 11 (Rooker et al. 2007) or 12 (Safina and Klinger 2008) 

and that the virgin biomass may fall between 80,000-221,000 tonnes for the western 

stock and 825,000-2.81 million tonnes for the eastern stock (although for a steepness 

level of 0.75 estimates usually fall between 1-11.7 million tonnes for the eastern 

stock) (SCRS 2010).  

Fishery catches were based on average historical catches east and west of 45º from 

1998-2008. Catches were available in quarterly format and were totalled to produce 

annual catches.  
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Table 11. Input parameter values and assumptions used in the model  

Parameter Western Stock Value Eastern Stock Value 

Age at maturity  9 4 

Natural mortality 0.14 yr-1 0.49 age 1, 0.24 age 2-5, 0.2 

age 6, 0.175 age 7, 0.15 age 8, 

0.125 age 9, 0.1 age 10+ 

Virgin spawning 

stock biomass (B0) 

221,000t 11,000,000t 

 

BMSY 0.5 B0 0.5 B0 

Spawning season April-June May-July 

Spawning area Gulf of Mexico Mediterranean Sea 

Length (L)/age 

relationship 

qr = 315 

K = 0.089 

t0 = -0.093 

qr = 319 

K = 0.093 

t0 = -0.093 

Weight (W) (Kg) 

/length (cm) 

relationship 

W = 2.861·10-5*L2.929 

 

< 100 cm: 

W = 2.95·10-5*L2.899 

≥ 100 cm: 

W = 1.96·10-5*L3.009 

Longevity 20+ 20+ 

Stock-recruitment 

relationship 

Beverton-Holt 

Steepness (z) 0.75 0.75 

See ICCAT (2010b) for detailed references for each parameter. 

Scenarios considered 

1. Scenario 1 

No juvenile mixing of the two populations occurs in any area at any 

point of the simulation.  

2. Scenario 2 

10% of eastern Atlantic juveniles move to the western Atlantic where 

they mix with the juveniles of the western stock. 
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Movement of stocks was simplified from data published by Block et al. (2005) and 

Rooker (2007). Within both scenarios all adults of both western and eastern stocks 

reside in the central Atlantic apart from during the spawning season where they 

move to their respective spawning grounds. Catches are always taken proportionally 

to the population present in each age class in each area and are based on the average 

percentage calculated from the last 10 years of available catch data (1998-2008) of 

the TAC (or MSY for these scenarios) that are taken from each area. Both scenarios 

use the same biological characteristics (i.e. B0, z, µ, age of maturity, target biomass) 

as described above. The aim of presenting the results for these two scenarios is to 

begin to examine the effect of assumptions regarding movement and mixing of the 

two stocks on sustainable management and to showcase some initial results for this 

model.   

All simulations were run in Matlab (Mathworks 2008). 

5.5. Results 

Question 1: What is the maximum sustainable yield (MSY) for both western and 

eastern populations, when the TAC for each is only removed from that respective 

population (i.e. taking the population as a whole in the absence of location 

considerations or mixing)? 

The MSY for each stock was determined assuming the western TAC was taken only 

from the western population and vice versa. The proportion of the total population in 

each age class for each stock was calculated and the TAC was taken proportionally 

based on age class. By taking the population of each stock as a whole, no 

consideration of the spatial distribution of the fish was made. Based on the biological 

characteristics described above (i.e. B0, z, µ, age of maturity, target biomass) MSY 

was calculated iteratively using a bisection method to be approximately 6,000t for 

the western stock and 216,000 tonnes for the eastern stock giving a total theoretical 

catch of 222,000 tonnes. This allowed the western population to be maintained at the 

target biomass (or biomass corresponding to MSY) of 111,000 tonnes and the 

eastern at 6 million tonnes. This remains the same for both movement scenarios 

because catches are only taken from the whole population irrespective of location. It 

is worth noting however that these values are theoretical based on the estimated 
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virgin biomass of the two populations and that currently present values of biomass in 

the wild are far lower than these (ICCAT 2010b). 

Question 2: How does fishing at the individual MSY level for each population affect 

the other if catches can be taken from either population depending on the location of 

the fish? 

Figure 23 shows the impact on spawning stock biomass when the MSY catch was 

taken from the two populations where (a) area was accounted for but the two MSY 

catch levels were still only taken from their respective populations, and (b) where the 

catch was taken proportionally between area and the stock present in each area (see 

Table 9 for methodology) according to the quotas established in Table 10 for both 

mixing scenarios.  

The results for both movement scenarios are very similar. This indicates that the 

movement of 10% of eastern Atlantic juveniles to the western Atlantic area is not 

enough to have a significant impact on the status of either population. Instead the 

results indicate that it is the movement patterns and population localities as a whole 

that are important within management (compare the blue solid and the red dashed 

lines in Figure 23) rather than a small percentage of juveniles moving across, for 

these scenarios. Figure 23 shows that when either area or mixing between the two 

stocks (with the subsequent capture of western individuals being counted towards the 

eastern TAC and vice versa) is not taken into account into the calculation, neither 

population of Atlantic bluefin tuna is maintained at BMSY, for either movement 

scenario.  

When area is taken into account (Table 9) during the extraction of catches, but the 

western TAC is still only taken from the western stock and vice versa, both 

populations fall below the target biomass of 0.5B0 (Figure 23 solid blue line). When 

the catches are taken proportionally from each age class according to both 

populations present in each area (Figure 23 red dashed line) the western stock is 

shown to be buffered by the eastern population allowing it to maintain a higher SSB 

(Figure 23a and 3c) whereas the eastern population is only marginally affected by 

the western stock (Figure 23d).  
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Figure 23. Impact of taking the MSY catch, when calculated without taking area or 

mixing into account, for the (a and c) western and (b and d) eastern stocks with and 

without mixing for the two movement scenarios  

(a) Movement Scenario 1 (b) Movement Scenario 1 

(c) Movement Scenario 2 (d) Movement Scenario 2 

The black solid line represents the BMSY for each stock. The magenta dash-dot line indicates the SSB 

corresponding to the MSY when catches are taken from the population as a whole not taking into 

account area or the mixing of the two stocks. The blue solid line indicates the SSB when the MSY 

catch is taken proportionally from each age class of the appropriate stock in each area. The red 

dashed line indicates the SSB when the MSY catch is taken proportionally from each age class 

according to both populations present in each area. 

Question 3: What is the MSY for each population when the TAC for each is only 

removed from the respective population and is taken based on historical catches for 

each area and proportionally from the population present in each area? 

In order to validate these results, the MSY for each stock was determined assuming 

the western TAC was taken only from the western population and vice versa and that 

catches were taken proportionally from the population present in each area (Table 9).  



 

133 
 

Based on the same biological characteristics as used in the previous calculation, 

MSY was calculated to be 5,000t for the western stock and 165,000t for the eastern 

stock under both movement scenarios. This gives a total theoretical sustainable yield 

of 170,000t - a decrease of 52,000t from the total MSY calculated when area and 

mixing were not taken into account. This decrease stems from the additional 

mortality of western juveniles and eastern adults as a consequence of the distribution 

of catches (Table 10).  

Figure 24 shows the impact of setting the TAC to the MSY catches for the western 

and eastern stocks for both movement scenarios (a) ensuring catches only come from 

their respective populations present in each area and (b) taking the catches 

proportionally from both populations present in each area.  

The trends for both movement scenarios were found to be the same – the western 

SSB is maintained at a much higher level than its BMSY while the eastern SSB falls 

below target. This supports the results drawn from Figure 23, that the western 

population is buffered substantially by the eastern population allowing it to maintain 

a higher SSB than its respective TAC would allow. These results also indicate that 

the western stock has a higher sensitivity to assumptions about movement than the 

eastern stock. 
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Figure 24. Impact of taking the MSY catch, when calculated with no mixing of the 

two stocks assumed to take place but area being taken into account, on spawning 

stock biomass of the (a and c) western and (b and d) eastern stocks when the model 

is run taking into account both area and stock mixing 

(a) Movement Scenario 1 (b) Movement Scenario 1 

  

(c) Movement Scenario 2 (d) Movement Scenario 2 

  

The black solid line represents the BMSY for each stock. The blue solid line shows SSB maintained 

when the model is run with no mixing being taken into account by the MSY calculation. The red 

dashed line shows the SSB that is maintained when the model is run using the same MSY levels for 

each stock but taking mixing of the two populations into account. 

Question 4: What are the optimum levels of exploitation when managing the stocks 

together as opposed to their separate MSYs? 

The above results show that neither stock is maintained at BMSY when extracting the 

catches calculated when area but not mixing is taken into account. However, the total 

yield of Atlantic bluefin tuna is not maximised. Table 12 presents a summary of the 

MSY totals calculated for each stock according to two mixing scenarios (1 - no 

mixing of juveniles, and 2 - 10% of eastern Atlantic juveniles move to the western 

Atlantic). The model was run with the aim of maximising (a) the total yield taken 
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from the western Atlantic62, (b) the total yield taken from the eastern Atlantic and (c) 

the total combined yield across the Atlantic when both stocks may be caught (see 

p126 for methodology).  

Table 12. Summary of the MSY calculated for each stock according to the mixing 

scenarios of (1) no mixing and (2) 10% of eastern Atlantic juveniles move to the 

western Atlantic 

MSY Scenario 
Movement 

Scenario 

Western 

Atlantic 

MSY (t) 

Eastern 

Atlantic 

MSY (t) 

Total 

Theoretical 

Yield (t) 

(a) Calculated annually 
taking area and stock 
mixing into account, but 
trying to maximise the 
western Atlantic catch 

1 21,910 0 21,910 

2 41,470 0 41,470 

(b) Calculated annually 
taking area and stock 
mixing into account, but 
trying to maximise the 
eastern Atlantic catch 

1 0 1,091,817 1,091,817 

2 0 1,091,824 1,091,824 

(c) Calculated annually 
taking area and stock 
mixing into account, but 
trying to maximise the 
catch of both fisheries 

 
1 
 

10,730 161,269 171,999 

2 15,174 157,325 172,499 

Overall, the increase in MSY for the western stock from original calculations (see 

results for Questions 1 and 3) under MSY scenarios a and c is unsurprising. Previous 

simulations have shown that the western stock is buffered by the eastern stock (see 

Figure 23 and Figure 24). The increase in catch is therefore likely to be due to the 

presence of the eastern population in the western and central Atlantic, from which 

90% of total western fisheries catches are taken.  

The sensitivity of the eastern Atlantic stock to the two movement scenarios presented 

here appears to be much lower than that of the western. Very little variation is seen 

in the MSYs calculated in scenarios b and c. For scenario b, the small increase in 

yield found for movement scenario 2 is probably due to the additional biomass of 

juveniles (1-3 year olds) surviving to adulthood as a result of their movement out of 

the eastern Atlantic fishery to the western Atlantic. For scenario c, the slight 

                                                      
62 Due to mixing of the two stocks being taken into account MSY is now being calculated for the 
western and eastern Atlantic catches rather than the two stocks. 
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decrease in yield is the result of fewer available juveniles in the eastern Atlantic as 

well as the increased western catch made possible by the buffering effect of the 

eastern population on the western stock. The reduction in catches for the eastern 

Atlantic would therefore be the result of additional eastern population catches being 

taken from the western and central Atlantic areas but being counted towards the 

western Atlantic catch. However, in a stochastic world these small variations are 

unlikely to matter due to the natural variations in recruitment and survivorship. 

Question 5: How long would it take both populations to recover to their biomass 

corresponding to MSY and virgin biomass from their present day levels if fishing 

was (a) completely halted, (b) reduced by 10%, (c) reduced by 20% or (d) reduced 

by 50%? 

While these results should not be taken as absolute values for the fishery they do 

indicate that catches of T.thynnus could be much greater than present day yields63 if 

the two stocks were allowed to recover to their BMSY. It is therefore interesting to 

examine the question of how long it would take both populations to recover from 

their present day levels if all fishing were completely halted or reduced.  

Estimates indicate that the western and eastern populations have fallen by 82% and 

90% respectively since 1970 (Walli et al. 2009; ICCAT 2010a). As these stocks were 

being exploited prior to 1970 (Fonteneau 2009) it is likely that both populations have 

experienced an even greater total decline. However, depleting the stocks by these 

amounts and projecting recovery timeframes from present day levels should provide 

an indication of the expected timeframes for recovery. 

Initially, the fishing effort appropriate to produce present day biomass levels needed 

to be identified. During simulation runs threshold SSBs were found. In movement 

scenario 1, when the western stock attained approximately 83,000 tonnes and the 

eastern 2 million tonnes both stocks became unable to support further catches 

sustainably. In movement scenario 2, these threshold levels were lower for the 

western stock at 63,000 tonnes and higher for the eastern stock at 2.4 million tonnes. 

The difference in these levels highlights the effect of mixing. The changes seen in 

the threshold biomasses between movement scenarios stem from the shifting 

                                                      
63 TACs for 2011 were set at 12,900t for the eastern Atlantic stock and 1,750t for the western Atlantic 
stock. 
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interdependencies of the stocks depending upon the movement assumptions made. 

When no eastern Atlantic juveniles move to the western Atlantic (movement 

scenario 1) the western stock is no longer buffered by the eastern population and the 

biomass available for capture in the western Atlantic is reduced. The threshold 

biomass is therefore higher under movement scenario 1 as western catches are lower 

which maintains a greater biomass. Under movement scenario 1 eastern juveniles are 

not caught and counted towards the western TAC. Consequently there is a greater 

availability of juvenile biomass in the eastern Atlantic and the stock can support 

higher catches which drives the SSB lower. If fishing levels were set to those that 

reduce the stocks to their present day levels under either movement scenario a 

sustainable biomass was therefore not achieved and both stocks continued to decline. 

Figure 25 shows the predicted future biomasses of each population for both 

movement scenarios according to a number of catch scenarios, (1) a status quo 

scenario, (2) if fishing were reduced overall by (a) 10% (b) 20% and (c) 50% from 

present day levels and (3) if fishing were completely halted. 

Movement scenario 1 results:  

In the status quo scenario the SSB of both stocks were found to reduce to zero within 

40 years. If all fishing were halted today, the model predicts that the western stock 

would recover to its BMSY  within 8 years and to its virgin biomass level (SSB0) in 65 

years. The eastern stock is predicted to recover to its BMSY in 19 years and SSB0 in 88 

years with the complete cessation of fishing. However, it is unlikely to become 

politically or economically acceptable for fishing of Atlantic bluefin tuna to be 

completely halted. Consequently it is worth examining the effect of reducing present 

day fishing levels. If the entire fishery (east and west) underwent a 10% reduction in 

total catches both stocks would still fail to recover to a more sustainable level and 

instead this only doubles the time it takes for both stocks to reach zero. If the whole 

Atlantic bluefin tuna fishery underwent a 20% reduction in catches the western 

fishery would recover to BMSY in 67 years however the eastern stock would fail to 

reach BMSY. A 50% reduction would ensure both stocks recovered to BMSY within 50 

years at which point the total catches would be able to increase to MSY. 

While the expected timeframe for recovery is relatively short (from a conservation 

point of view) it is unlikely to be socially or politically acceptable to put half the 
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fishery out of business. In order to eventually reach BMSY and therefore be able to 

maximise catches, the model predicts that the western stock would require a 15% 

reduction in total catch to be able to rebuild to its BMSY in 180 years. However, the 

eastern stock would remain below its BMSY at this level. In order for both stocks to 

rebuild to their respective BMSY a reduction of 34% of the total catch would be 

necessary. At this level, the eastern stock would rebuild within 124 years and the 

western within 25 years. 

Movement scenario 2 results: 

In the status quo scenario the SSB of both stocks were found to reduce to zero within 

50 years. If all fishing were halted today, the model predicts that the western and 

eastern stocks would recover to their BMSY within 10 and 18 years respectively and to 

their virgin biomass levels in 73 and 77 years. If the entire fishery (east and west) 

underwent a 10% or 20% reduction in total catches both stocks would recover to a 

more sustainable level within 200 years. However, the catches would have to remain 

at this level in order to maintain this biomass as any increase would lead to both 

stocks declining. In order to be able to maximise catches in the future both stocks 

would need to rebuild to BMSY. A 50% reduction in the fishery now would allow this 

target to be reached within 50 years.  

In order to minimise the total loss to the fishery and allow both stocks to eventually 

reach BMSY the model predicts that the western stock would require a 23.5% 

reduction in total catch to be able to rebuild to its BMSY in 180 years. However, the 

eastern stock would remain below its BMSY at this level. In order for both stocks to 

rebuild to their respective BMSY a reduction of 33.5% of the total catch would be 

necessary. At this level, the eastern stock would rebuild within 180 years and the 

western within 40 years. 
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Figure 25. Predicted SSB of (a and c) the western and (b and d) the eastern stock 

from present day levels according to 3 catch scenarios, (1) status quo (black dashed 

line), (2) 10% (red dashed line), 20% (blue dashed line) and 50% (magenta solid 

line) reduction in catches from present day levels and (3) if fishing were completely 

halted (blue solid line) 

(a) Movement Scenario 1 (b) Movement Scenario 1 

(c) Movement Scenario 2 (d) Movement Scenario 2 

The black solid line indicates the BMSY for each stock. The red solid line indicates the virgin biomass 

level. N.B. The starting biomass for the western population movement scenario 1 had to be set at 

0.3SSB0 rather than 0.1SSB0 as no catch levels could be found that reduced both populations to their 

target levels. If the western catch level was taken to reduce the stock to 0.18SSB0 the eastern 

population would collapse. Consequently the western stock starting biomass was set higher and the 

eastern fishery preferentially set to present day levels as this fishery is considered more important 

economically. The results presented in (a) therefore are likely to be biased towards a quicker 

recovery than if the starting biomass was 0.18SSB0. 
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5.6. Discussion 

This chapter develops a model incorporating the eastern and western Atlantic bluefin 

tuna stocks for use in assessing the inter-dynamics of the two populations of the 

Atlantic bluefin tuna and their fisheries. In this section the results to the 5 research 

questions posed are summarised and further work is discussed. 

Question 1: What is the maximum sustainable yield (MSY) for both western and 

eastern populations, when the TAC for each is only removed from that respective 

population (i.e. taking the population as a whole in the absence of location 

considerations or mixing)? 

Under these assumptions the western Atlantic stocks MSY is 6,000t and the eastern 

Atlantic stocks is 216,000t giving a total theoretical yield of 222,000t. 

Question 2: How does fishing at the individual MSY level for each population affect 

the other if catches can be taken from either population depending on the location of 

the fish? 

When the model is run taking average area catches into account but no mixing of 

stocks, both population’s SSB fall below the target biomass of BMSY. This suggests 

that once more complex spatial considerations are taken into account this method of 

MSY calculation is inappropriate.  

The results for both movement scenarios are very similar. When either area or 

mixing between the two stocks is not taken into account in the calculation, neither 

population of Atlantic bluefin tuna in either movement scenario is maintained at 

BMSY. When the catches are taken from whichever stock is present in each area, the 

western stock is shown to be buffered by the eastern population allowing it to 

maintain a higher SSB. The eastern population, however, is only marginally affected 

by the western stock maintaining a slightly lower SSB than BMSY. The results for the 

movement scenarios examined here suggest that the western population is more 

sensitive to assumptions regarding movement than the eastern stock. 
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Question 3: What is the MSY for each population when the TAC for each is only 

removed from the respective population and is taken based on historical catches for 

each area and proportionally from the population present in each area? 

With catches taken proportionally from the population present in each area, the MSY 

for both stocks decreases in either movement scenario. The MSY for the western 

stock decreases by 1,000t to 5,000t, and the MSY for the eastern stock decreases by 

50,000t to 165,000t. This gives a total theoretical sustainable yield of 171,000t - a 

decrease of 52,000t from the MSY calculated when area and movement were not 

taken into account.  

The declines seen in the MSYs are due to the spatial distribution of the two stocks. 

Whereas previously the catches were taken from their respective populations 

proportionally across all age classes, in this calculation the catches are divided into 

the different areas (Table 10). Consequently, for the western stock, 55% of the total 

catch is taken from the western Atlantic, where only juveniles are present, and 45% 

is taken from the adult population. As a greater proportion of the catch is taken from 

the juvenile population, fewer make it to spawn, so the MSY is lower. For the 

eastern stock, 14% of the total catch is taken from the eastern Atlantic and 86% is 

taken from the adult population. Consequently the fishing mortality rate on juveniles 

and adults is altered from the even mortality rate experienced in both the juvenile 

and adult populations in a non-spatially adjusted model to an uneven rate. 

Question 4: What are the optimum levels of exploitation when managing the stocks 

together as opposed to separately? 

In order to maximise the total yield from the species as a whole, analyses suggest 

that it would be better to maximise the eastern Atlantic catch and halt fishing in the 

western Atlantic. Maximising the eastern Atlantic catch produces a total yield about 

6 times greater than that taken when the total fisheries yield across the whole 

Atlantic is maximised and 26 times greater than that taken when the western Atlantic 

catch is maximised. When catches are only taken from the eastern population the 

western stock is able to remain above BMSY and may be maintained even with higher 

eastern Atlantic catches because the majority of catches are taken from the 

Mediterranean where the western stock is never present. When catches are taken 

from both populations the western stock reaches BMSY much earlier than the eastern 
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stock and falls below BMSY if greater catches are taken from the eastern stock (due to 

the buffering of the western stock to eastern catches). The results provide additional 

support to the conclusion that the western population has a greater sensitivity to 

assumptions regarding movement than the eastern stock.  

Question 5: How long would it take both populations to recover to their biomass 

corresponding to MSY and virgin biomass from their present day levels if fishing 

was (a) completely halted, (b) reduced by 10%, (c) reduced by 20% or (d) reduced 

by 50%? 

If all fishing were completely halted it would take less than 20 years for both 

populations to recover to their respective BMSY levels and up to 88 years to rebuild to 

their virgin biomass levels when following a deterministic path under either 

movement scenario. While this expected timeframe for recovery is short (from a 

biological and conservation point of view), a complete moratorium on Atlantic 

bluefin tuna fishing is unlikely to be socially or politically acceptable. In addition, 

multi-decadal timescales are very long in the scheme of fisheries management and 

when perceived in terms of a fisher’s livelihood. This perception of time can be seen 

in ICCAT’s 2010 Atlantic bluefin tuna stock assessment where scientists state that 

“For a long lived species such as bluefin tuna, it will take some time (> 10 years) to 

realize the benefit [of reducing catches]”. For many people outside of the fishing 

industry, reducing catches to enable the recovery of a population nearing collapse 

would see 10 years as a reasonable timeframe. However, from a fisher’s point of 

view, the same time period would mean almost a generation of fisherman affected. 

Managers will therefore have to balance these socio-economic concerns with the 

issue of rebuilding populations.  Table 13 summarises the recovery timeframes for 

different levels of catch reduction.  
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Table 13. Summary of the predicted timeframes for recovery following a reduction 

in present day fishing effort 

Fishing scenario Stock 
Movement 

scenario 

Time to reach 

BMSY (years) 

Time to reach 

SSB0 (years) 

(a) completely 

halted 

Western 1 8 65 

2 10 73 

Eastern 1 19 88 

2 18 77 

(b) -10% off total 

catches 

Western 1   

2   

Eastern 1   

2   

(c) -20% off total 

catches 

Western 1 67  

2   

Eastern 1   

2   

(d) -50% off total 

catches 

Western 1 15  

2 22  

Eastern 1 44  

2 41  

Where no number is recorded, the population failed to reach the target levels. 

In order to minimise the disruption to the fishing industry whilst allowing both 

stocks to rebuild to BMSY, catch reductions of about 34% would be required under 

either movement scenario. However, the lower reduction in catches means that the 

impact of reduced catches will be felt for longer as it will take up to 180 years for 

both stocks to rebuild to BMSY. This highlights the need for the fishing industry and 

politicians managing fisheries to determine the balance between short-term losses 

and long-term gains. 

Main conclusions from results 

From these results the main conclusions based on the two movement scenarios 

presented are: 
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• The western stock appears more sensitive to assumptions of stock movement 

and mixing than the eastern population supporting suggestions from previous 

analyses (e.g. Apostolaki et al. 2003; Apostolaki et al. 2004; Apostolaki et al. 

2005; Safina and Klinger 2008). 

• It is important to take area and stock movement considerations into account 

as much as possible when determining total allowable catches for the Atlantic 

bluefin tuna fisheries. 

• In order to maximise the total catches of Atlantic bluefin tuna it may be better 

to cease fishing in the western Atlantic and to try to maximise the total catch 

from the eastern stock.  While retaining both the western and eastern Atlantic 

fisheries may be more socially and politically acceptable, aims to maximise 

the total catch from each population result in a much reduced total yield. 

• If a moratorium were placed on both Atlantic bluefin fisheries today, the 

timeframe for recovery (assuming no negative environmental conditions or 

capture within other fisheries) is medium to long-term (approximately 20 

years for the eastern stock and 10 years for the western stock).  

• A 34% reduction is the minimum required decrease in total catches for both 

stocks to rebuild to BMSY. However, this increases the timeframe for recovery 

substantially; 124 years for the eastern stock and 25 years for the western 

population under movement scenario 1, and 180 years for the eastern stock 

and 40 years for the western stock under movement scenario 2.  

Further work 

The model developed within this chapter may become a powerful tool to determine 

possible outcomes of management scenarios on the recovery and sustainable 

management of the Atlantic bluefin tuna. The results presented here answer the 

initial research questions posed, however the model has considerable potential for 

further development. 

Of particular interest would be an examination of the impact of political adjustment 

on total allowable catches (TACs). As discussed previously, the Atlantic bluefin tuna 

TACs have been subjected to high levels of political adjustment to scientifically 

advised TACs. Based on the results presented in Chapter 3 it is hypothesised that this 

can only have had a negative impact on these stocks. Therefore the political 
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legalisation of overexploitation in these fisheries may take a considerable share of 

the blame when discussing the current poor status of the stocks. It would be 

interesting to run the model using the actual percentage overshoots each year from 

advised TACs to examine the potential historical impact that these decisions may 

have had. However, no database currently exists examining the historical trends of 

political adjustment for the Atlantic bluefin tuna. The availability of these data from 

ICCAT is limited and would require significant time spent searching stock 

assessment papers and advice from SCRS as well as the cooperation of ICCAT to 

gain documents published prior to 2009 as these are not available online64.  

To continue the theme of this thesis it would be interesting to run the model again 

adding the historical levels of political adjustment and incorporating marine 

protected areas into the management of the stocks. Chapter 4 showed that the 

establishment of high seas MPAs can be a positive, scientifically based political 

process and with current targets to establish these areas this has now become a 

feasible management strategy. This model may be used to identify key areas and 

timings (i.e. particular months) for protection and that MPAs may be able to buffer 

stocks against the negative process of political adjustment. The model may then be 

run into the future to examine the potential impact of implementing MPAs on stock 

recovery in a situation of status quo political TAC setting and scientifically based 

TAC setting. 

Further movement, biological and exploitation scenarios may be considered by this 

model. Table 14 lists the model scenarios and variables that may be varied in future 

model simulations. In particular, scenarios that include movement of the western 

population into the east Atlantic might have very different implications for the status 

of the western stock. In addition to investigating additional movement scenarios, 

more complex management issues could also be explored under both deterministic 

and stochastic regimes. For the results presented within this chapter, fishing gears 

were amalgamated. Future development of the model could separate these into 

separate gears (e.g. purse seine, longline, etc) in order to allow differences in gear-

specific catchabilities and localities to be considered. Economic analyses might then 

be conducted. 

                                                      
64 http://www.iccat.int/en/assess.htm 
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Movement Scenarios 

• Movement patterns between areas 

• Age dependent movement 

• Stochastic movement 

Biological Scenarios 

• Beverton-Holt steepness value 

• Type of stock-recruitment relationship 

• Stochastic stock-recruitment relationship 

• Proportion of the adult populations that spawn each year (to 

investigate the impact of the skipped spawning hypothesis) 

• Age at maturity 

• Growth mode, length-weight conversions 

Exploitation Scenarios 

• Separation of gear types 

• Gear specific localities and selectivities 

• Catch bias to favour older larger individuals 

• Age of exploitation 

• Marine protected areas – displacement (redistribution) of the effort 

from these areas or the removal of this effort 

• TAC system introduced – political adjustment levels 

Economic Scenarios 

• Future work should also develop the model in order to be able to 

examine the economic impact of political adjustment, marine 

protected areas, etc. 

Further research areas might therefore include: the impact of political adjustment; 

the application of marine protected areas as part of a management plan together with 

investigations into the most beneficial locations and total area to protect; the 

relationship between catches by gear and stock rebuilding; and economic analyses. 

Table 14. List of model scenarios and variables that may be varied under different 

simulation scenarios 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.6. Conclusions 

The system simulated here is an approximation of the real Atlantic bluefin tuna 

fishery based on available data. It cannot encompass the full complexity of the actual 
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biological or fisheries dynamics and management across the Atlantic. However, it 

provides a useful starting point for the analysis of complex management issues and 

an investigation into the impacts of management strategies such as spatial 

management - experiments that are hard to conduct in the field and require vast 

amounts of research. While the model presented here is not yet reliable for stock 

assessments due to a paucity of data, it is useful for determining trends, proportional 

changes and the response of populations to different management strategies.  

The aim of developing this model was to help advance research into sustainable 

management of the Atlantic bluefin tuna as this is an issue that urgently needs 

attention. I have presented evidence on two currently conflicting political influences 

on fisheries management – the largely negative impact of political adjustment to total 

allowable catches and the positive impact of establishing marine protected areas. In 

the future this model may be used to examine whether these forces might be more 

closely aligned in order to create viable fisheries in the present whilst enabling 

recovery of stocks to ensure long-term sustainability. 
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6.1. Introduction  

Worldwide, natural resources are suffering from overexploitation and unsustainable 

use. As human populations increase, so will the demand for resources. Marine 

resource managers must therefore find ways to achieve sustainable targets for marine 

populations in order to ensure the continuous supply of seafood long into the future. 

In order to achieve this, resource managers and policy makers will have to re-

evaluate their relationship with science together with their priorities for management. 

In this thesis I have examined the difficult relationship between science and politics 

within the context of the total allowable catch (TAC) system of Europe and the 

process of establishing marine protected areas (MPAs) in the high seas. I also 

developed a model with the aim of bringing together these issues in the management 

of a trans-oceanic species, the Atlantic bluefin tuna. 

This final chapter presents an overview of the scientific contributions and policy 

implications of these studies. The potential for further work on each of these research 

topics is discussed and several important requirements for sustainable marine 

resource management are identified. 

6.2. Political adjustment in European fisheries  

The extent to which European politicians have adhered to scientific 

recommendations on annual total allowable catches (TACs) from 1987-2011 was 

analysed in Chapter 2. Whilst political adjustment to TACs can be seen worldwide, 

Europe was chosen as a case study due to the planned reform of the Common 

Fisheries Policy (CFP) in 2012. For the 11 stocks examined, TACs were set higher 

than scientific recommendations in 68% of decisions. On average, politically-

adjusted TACs averaged 33-37% above scientifically recommended levels and there 

was no evidence that the previous reform of the CFP in 2002 improved decision-

making. This analysis was expanded in Chapter 3 to model the effects of such 

politically-driven decision-making on stock sustainability and it was found that 

political adjustment of scientific recommendations dramatically increase the 

probability of a stock collapsing within 40 years. Scenarios showed that that basing 

TACs on MSY targets is insufficient to maintain sustainable stocks under 

environmental uncertainty and bycatch. This problem is then further compounded by 
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politically adjusting recommended TACs, reducing the likelihood of maintaining 

stocks at a sustainable level. Appendix 2, Appendix 3 and Appendix 4 present the 

published results from this research. 

The practice of political adjustment reveals the negative political impact on 

management and its failure to integrate science into management. However, there are 

instances where political decisions for management are driven by, and based on, 

scientific knowledge. The establishment of the marine protected areas in areas 

beyond national jurisdiction of the North-East Atlantic is one such instance.  

6.3. Establishing marine protected areas in areas beyond national jurisdiction 

Marine protected areas, or fisheries closures, may be implemented as part of the 

precautionary principle. It has been suggested that whilst providing valuable habitat 

protection (Lubchenco et al. 2003) reserves may act as insurance against failed 

management, either through human miscalculation, stochastic events or 

environmental changes and may act to reduce uncertainty and instability within 

fisheries (Bohnsack 1996; Lauck et al. 1998; Grafton and Kompas 2005). In general, 

modelling studies have shown that as migration increases, the ability of MPAs to 

protect stocks from collapse decreases (Le Quesne and Codling 2009). However 

some studies provide evidence that reserves produce greater than expected yields 

irrespective of migration level (West et al. 2009) and that fisheries closures, when 

combined with other management measures to improve the sustainability of a stock, 

would increase the long term profits of the fishery (Armsworth et al. 2010). The 

general consensus in the scientific community is that MPAs are a useful tool for 

biodiversity conservation (as they increase the density, diversity, biomass and size of 

organisms, and allow the restoration of habitats (Halpern 2003; Stewart et al. 2009; 

Lotze et al. 2011)) while the merits of closures to benefit fisheries remains debated 

(e.g. Bess and Rallapudi 2007; Gray 2010). Despite this, targets have been set to 

establish a global network of MPAs65 and consequently there are growing efforts to 

choose and establish these areas.  

                                                      
65 For example, in 1995 Convention on Biological Diversity (CBD) Jakarta Mandate on Marine and 
Coastal Biodiversity obliged Parties to establish a global network of MPAs. This commitment was 
further elaborated to include the deadline of 2012 for the establishment of representative networks as 
agreed by the World Summit on Sustainable Development (WSSD) in 2002. 
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The process of establishing MPAs however is not simple, particularly in areas 

beyond national jurisdiction (ABNJ). MPAs are legal constructions created for the 

purpose of regulating human activity in specific geographical areas. Ideally, 

successful planning and establishment of MPAs depends on involvement of all 

affected parties from the start of the planning process as well as a firm scientific and 

legal basis. Chapter 4 discusses the process undertaken to establish the beginnings of 

a network of MPAs in ABNJ in the North-East Atlantic together with the scientific 

and legal challenges that had to be overcome. This Chapter emphasises lessons 

learned which may aid similar efforts elsewhere. However, while overcoming the 

challenges described and designating the set of MPAs presented in Chapter 4 is a 

significant step forwards, the potential benefits of these sites will only be realised if 

they are well-managed and ultimately this will require sustained political will, 

sufficient human and financial capacity, strong governance and stakeholder 

engagement as well as compliance from those persons utilising the North-East 

Atlantic.  

This success story was driven by strong political commitment and based on the best 

available science. The positive integration of science into management by politicians 

ultimately ended up with a significant outcome. 

6.4. Sustainable management of the Atlantic bluefin tuna 

Political adjustment and competitive bargaining is endemic in Regional Fisheries 

Management Organisations across the globe. The performance of the International 

Commission for the Conservation of Atlantic Tunas (ICCAT) in managing stocks, 

such as the Atlantic bluefin tuna (Thunnus thynnus), has been highly unsatisfactory 

(Cullis-Suzuki and Pauly 2010). Competitive bargaining has led to quotas for this 

species becoming so over-inflated that they are now delivering what many see as the 

institutionalised extinction of a species (Safina and Klinger, 2008; Korman, 2011). 

It has been identified that new management strategies are needed in order to prevent 

the collapse of the Atlantic bluefin tuna (e.g. MacKenzie et al. 2008; Armsworth et 

al. 2010; ICCAT 2010b). Possible strategies range from the listing of the species on 

Appendix 1 of CITES (although the most recent attempt in 2010 failed to achieve 

this) to stronger enforcement of the current TAC system to the creation of marine 
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protected areas/fisheries closures. Should ICCAT apply fisheries closures as part of a 

rebuilding strategy for the Atlantic bluefin tuna similar challenges to those presented 

in Chapter 4 may have to be overcome.  

This study develops a spatial model of the two stocks of Atlantic bluefin tuna with 

the aim of continuing research into the integration of science into a political 

management system to create a sustainable fishery. Initial results suggest that 

assumptions regarding the movement patterns of the two stocks may considerably 

affect model predictions for the status of both stocks, although particularly for the 

western stock. In addition, if fishing were reduced simulations indicate that the 

timeframe for recovery is often within a human lifespan and that once recovered 

catches, and therefore profits, will be much greater. If politicians were to reprioritise 

their main concerns from short-term aims to longer-term goals and to more fully 

incorporate science into management sustainable and more profitable Atlantic 

bluefin tuna fisheries might be achieved. However, greater application and analysis 

of this model is needed before policy may be suggested. 

6.4. Policy implications 

Political adjustment in European fisheries 

The European Commission, on 22 April 2009, published a Green Paper on the 

Common Fisheries Policy which marked the start for the next reform, likely to be in 

effect by 2013 (CEC 2009). Following a consultation period, proposals to reform 

were released that include a phase out of fish discarding, broadening of multi-year 

species management plans, better data collection and a move to ecosystem based 

management66. Although the decision-making process was criticised in the Green 

Paper (2009), and the impact of “high political pressure to increase short-term 

fishing opportunities at the expense of […] sustainability” (CEC 2009: p7) was 

identified, proposed reforms leave untouched political competitive bargaining over 

total allowable catches. Consequently, the new proposals place no obligation on 

decision makers to achieve the sustainability to which the policy aspires. The results 

presented in Chapter 2 suggest that without this obligation the pattern of political 

adjustment is unlikely to change, as seen in the 2002 reform of the CFP. The model 

                                                      
66

 http://ec.europa.eu/fisheries/reform/ 
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analysis of Chapter 3 provides support to this suggesting that the 2012 reform is 

likely to be similarly ineffective unless decision-making is changed so that catch 

allocations are based on science rather than politics. The implication of this research 

stretches beyond European fisheries and the 2012 CFP reform as competitive 

bargaining and political adjustment may be seen in fisheries around the world. This 

research shows that robust science should play an integral role in the drive towards 

fisheries sustainability and is thus essential, not optional. From this research it is 

suggested that scientific assessments should be used to set politically binding limits 

on catch sizes within which politicians can negotiate to divide scientifically 

appropriate quotas among member states. 

Establishing marine protected areas in areas beyond national jurisdiction 

The major goal and policy outcome of this research was the designation of the first 

network of high seas marine protected areas created under the OSPAR Convention. 

However, with global targets to establish well-managed networks of MPAs 

throughout the oceans this forms only the first step in this process. It is hoped that by 

disseminating the process undertaken to achieve this goal this will aid further 

establishment of MPA networks by providing inspiration on what can be achieved 

and guidance on how to overcome some of the challenges likely to be faced. 

Sustainable management of the Atlantic bluefin tuna 

The model presented within this thesis may become a powerful tool to determine 

possible outcomes of management scenarios on the recovery and sustainable 

management of the Atlantic bluefin tuna. Further investigation into the impact of 

political adjustment on stock status together with an examination of the potential 

benefits of MPAs for recovery would provide useful information for ICCAT and 

may provide impetus for future policy changes. 

The current management of the two stocks of Atlantic bluefin tuna assumes very 

little mixing (1-2%) of the populations takes place (Apostolaki et al. 2003; ICCAT 

2010b). Estimates of mixing are based on a few tagged individuals and are highly 

variable ranging from 2-20% for the western stock and 1-10% for the eastern 

population (Rooker et al. 2007). The two movement scenarios analysed in Chapter 5 

show the effect that assumptions regarding movement may have on management 
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parameter estimates and targets. It is therefore important for ICCAT to consider 

assumptions regarding movement in future policies. Further investigation into the 

movement patterns through tagging studies of both stocks of Atlantic bluefin tuna 

would therefore be useful.  

6.5. Further work 

Political adjustment in European fisheries 

The analysis of total allowable catches in European fisheries presented in Chapter 2 

is based upon averages on political adjustment for the 11 species examined. Future 

work to investigate the impact on specific species and stocks would be interesting as 

it would allow the economic impact of political adjustment to be determined, i.e. the 

cost of not following scientific advice could be determined. This would provide a 

valuable contribution to this work as the impact on fisheries and people would be 

made more relevant rather than simply presenting the biological evidence for fish 

species. 

The model designed for Chapter 3 shows that political decisions to adjust advised 

TACs undermines their use and their scientific basis. However, models are always 

simplifications of reality and this one is no exception. The specific limitations to this 

model are listed on page 83 of this thesis. Further work could be completed by 

extending this model to incorporate greater uncertainty (for example with scientific 

advice), to investigate the impact of different life-history (e.g. fecundity, growth) 

characteristics, and to set political adjustment levels stochastically around a mean to 

try to incorporate the reality of fluctuating levels of adjustment each year. 

Whilst these extensions might improve the ‘reality’ of the model, it is still felt that 

the general results presented here would not change. More interesting would be to 

develop the model into an age- and size-structured one which would allow the model 

to then investigate the impact of fisheries selectivity on stocks under a politically-

driven total allowable catch system. In addition the incorporation of economics into 

the model would allow future trends to be predicted with regards to the continuing 

impact of setting total allowable catches higher than scientifically recommended and 

allow the comparison to a policy which fully incorporates scientific 

recommendations. 
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Establishing marine protected areas in areas beyond national jurisdiction 

The network established represents the first elements of an ecologically coherent 

network of MPAs in areas beyond national jurisdiction. However, this is only a start 

and in order to create a representative network additional complementary sites will 

be needed. In addition, without the proper management MPAs are unlikely to deliver 

in their objectives and therefore appropriate management plans need to be 

developed. Nonetheless, it is hoped that this initial process has strengthened political 

will and will pave the way for future sites both in the North-East Atlantic and 

elsewhere.  

Sustainable management of the Atlantic bluefin tuna 

The results presented in Chapter 5 begin to explore the implications of movement 

assumptions on the predicted recovery of the two stocks of Atlantic bluefin tuna. 

However, the movement, biological and exploitation scenarios considered here are 

limited by the available data and as such the model has the potential to be explored 

much further. 

Chapter 5 details specific additional research questions that may be answered by this 

model in the future however, to tie in with the theme of this thesis regarding the 

relationship between science and politics it is felt that immediate analysis of the 

impact of political adjustment on stock status would be interesting. Comparing these 

results to the status of stocks had science been followed would provide a basis for 

economic analysis to be carried out to investigate the cost of failing to follow 

scientific advice. In addition, future management strategies to rebuild the tuna 

populations may include the application of high seas marine protected areas. In 

Chapter 4 I have shown that the process of establishing MPAs may foster a positive 

relationship between science and politics. Within ICCAT themselves spatial 

management measures have already been discussed. Consequently, this model may 

provide useful data regarding the potential benefits of locating MPAs in different 

areas and at different times.  
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6.6. Concluding remarks 

Overexploitation and unsustainable use characterises many fish stocks around the 

world. Improvements to management and utilisation of the world’s marine resources 

are required. In this thesis I have shown the negative and positive relationship that 

science and politics may have in marine resource management. In the case presented 

in Chapter 4, I have shown that the integration of science into a political goal can 

have a major positive outcome. Where science fails to be integrated into policy, the 

negative effects can be seen as has been shown in the European decision-making 

system of total allowable catches. The research conducted within this thesis has 

contributed to the goal of sustainable marine management. In addition this work has 

also directly influenced policy. From this research several important requirements 

for sustainable fisheries management have been identified which include:  

• A scientific basis for fisheries management. Scientific stock assessments 

and the resulting recommendations are unbiased and based on best available 

knowledge and data. In the EU and many other regional management bodies 

total allowable catch limits are often set undermining this advice to prevent 

short-term economic losses. However, in the long run this leads to 

unsustainable levels of exploitation, declining stocks and greater. Scientific 

advice for catch limits therefore must be followed and the practice of political 

adjustment to these limits must be eliminated. 

• Stakeholder engagement and cooperation: Establishing new management 

strategies depends on cooperation amongst all affected parties. During the 

OSPAR process this was found to be essential not only for the designation of 

the network but also for their future management. As currently being seen in 

the Common Fisheries Policy reform this is likely to result in considerable 

debate and not all parties will be satisfied with all aspects of the final 

outcome. However, consultation provides a platform where compromises and 

assurances can be made and consequently greater buy in to changes is likely 

to be achieved. 

• Strong political commitment and willingness are required to change 

policies and improve management.  Without these targets and deadlines are 

unlikely to be established and management is unlikely to improve. Without 
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such commitment conflicts and complexities may become intractable and 

used as reasons to deter engagement.   

This thesis has shown that when there is a positive relationship between science and 

politics significant outcomes can be achieved while a negative relationship may be 

detrimental to both the fish stocks and the fisheries which rely on them. It is hoped 

that future research into the Atlantic bluefin tuna using the model presented in 

Chapter 5 will provide insights into ways to change the largely negative relationship 

seen to date within ICCAT into a positive one resulting in sustainable fisheries while 

limiting the short-term socio-economic impacts.  
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Appendix 1.  

Appendix 1 details the Mann-Whitney U values to complement Figure 6 and Figure 

15 in Chapter 2 on pages 40 and 50 respectively. 

Mann-Whitney U values for comparisons of zones where p<0.01 

Management Zones U, Z and N 

values 

p value 

and effect 

size (r) 

Mean 

rank 

Baltic Sea (sub-areas 22-32) 

Clyde & Rockall (VI) 

U = 1882, 
Z = 3.61,  
N = 119 

p = 0.0002,  
r = 0.33 

145.81 
111.19 

Baltic Sea (sub-areas 22-32) 

Iceland (Va) 

U = 612,  
Z = 4.67, 
N = 126 

p = 1x10-6,  
r = 0.42 

179.75 
77.25 

Baltic Sea (sub-areas 22-32) 

Northeast Arctic (sub-areas I & II) 

U = 549,  
Z = -3.84,  
N = 103 

p = 8x10-5, 
r= 0.38 

174.85 
82.15 
 

Baltic Sea (sub-areas 22-32) 

North Sea (IV) 

U = 946,  
Z = 3.28,  
N = 55 

p = 0.0009,  
r = 0.44 

179.48 
77.52 

Baltic Sea (sub-areas 22-32) 

Skagerrak & Kattegat (IIIa) 

U = 772,  
Z = -2.95,  
N = 112 

p = 0.0029,  
r = 0.29 

175.45 
81.55 

Baltic Sea (sub-areas 22-32) 

West of the British Isles & English Channel (VII) 

U = 2659.5, 
Z = 3.48,  
N = 158 

p = 0.0004,  
r = 0.28 

181.75 
75.25 

Iceland (Va) 

Irish Sea (VIIa) 

U = 7211.5, 
Z = 3.77,  
N = 214 

p = 0.0001,  
r =  0.26 

128.82 
128.18 

Northeast Arctic (sub-areas I & II) 

Spain, Portugal & the Bay of Biscay (VIII/IX) 

U = 2151, 
Z = -5.42, 
N = 188 

p = 3x10-8,  
r = 0.40 

132.52 
124.48 

Skagerrak & Kattegat (IIIa) 

Spain, Portugal & the Bay of Biscay (VIII/IX) 

U = 3056.5,  
Z = -4.11,  
N = 197 

p = 3x10-5,  
r = 0.50 

130.61 
126.39 

Spain, Portugal & the Bay of Biscay (VIII/IX) 

Clyde & Rockall (VI) 

U = 2971, 
Z = -4.80, 
N = 204 

p = 5x10-7  
r = 0.35 

132.4 
124.55 
 

Spain, Portugal & the Bay of Biscay (VIII/IX) 

Iceland (Va) 

U = 2496, 
Z = -6.70,  
N = 211 

p = 4x10-12,  
r = 0.46 

142.45 
114.55 
 

Spain, Portugal & the Bay of Biscay (VIII/IX) 

Irish Sea (VIIa) 

U = 5057, 
Z = -3.37,  
N = 235 

p = 0.0007, 
r = 0.22 

144.00 
112.99 

Spain, Portugal & the Bay of Biscay (VIII/IX) 

North Sea (IV) 

U = 3766.5,  
Z = -4.74,  
N = 140 

p = 2x10-6, 
r = 0.40 

141.51 
115.49 

Spain, Portugal & the Bay of Biscay (VIII/IX) 

West of the British Isles & English Channel (VII) 

U = 4543, 
Z = -5.02,  
N = 243 

p = 4x10-7,  
r = 0.32 

155.21 
101.79 
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Mann-Whitney U values for comparisons of mean PAI values for species where 

p<0.01  

Species U, Z and N values p value and effect 

size (r) 

Mean rank 

Megrim 

Plaice 

U = 232, Z = 3.25,  
N = 36 

p = 0.0007, r =  0.54 36.28 
14.72 

Megrim 

Haddock 

U = 232, Z = -3.25,  
N = 36 

p = 0.0007, r = 0.54 36.28 
14.72 

Megrim 

Saithe 

U = 225, Z = 3.01,  
N = 36 

p = 0.002, r= 0.50 36.00 
15.00 

Whiting 

Plaice 

U = 387, Z = -4.47, 
N = 42 

p = 1x10-6, r = 0.69 36.48 
14.52 

Whiting 

Sole 

U = 356, Z = -3.68,  
N = 42 

p = 0.0001, r = 0.57 35.24 
15.76 

Whiting 

Haddock 

U = 399, Z = -4.78, 
N = 42 

p = 9x10-8, r = 0.74 36.96 
14.04 

Whiting 

Herring 

U = 377, Z = -4.22, 
N = 42 

p = 6x10-6, r = 0.65 36.08 
14.92 

Whiting 

Saithe 

U = 388, Z = -4.50,  
N = 42 

p = 8x10-7, r = 0.69 36.52 
14.48 

Cod 

Plaice 

U = 507, Z = 3.77,  
N = 50 

p = 9x10-5, r = 0.53 33.28 
17.72 

Cod  

Sole 

U = 454, Z = 2.75,  
N = 50 

p = 0.005, r = 0.39 31.16 
19.84 

Cod 

Haddock 

U = 520, Z = 4.03,  
N = 50 

p = 2x10-5, r = 0.57 33.80 
17.20 

Cod 

Herring 

U = 477, Z = 3.19, 
N = 50 

p = 0.001, r = 0.45 32.08 
18.92 

Cod  

Saithe 

U = 512, Z = 3.87, 
N = 50 

p = 5x10-5, r = 0.55 33.48 
17.52 

Nephrops 

Plaice 

U =461, Z = 4.82,  
N = 45 

p = 1x10-7, r = 0.72 36.44 
14.56 

Nephrops 

Sole 

U = 436, Z = 4.25,  
N = 45 

p = 6x10-6, r = 0.63 35.44 
15.56 

Nephrops 

Haddock 

U = 474, Z = -5.12, 
N = 45 

p = 7x10-9, r = 0.76 36.96 
14.04 

Nephrops 

Herring 

U = 452, Z = -4.61 
N = 45 

p = 5x10-7, r = 0.69 36.08 
14.92 

Nephrops 

Saithe 

U = 458, Z = 4.75,  
N = 45 

p = 2x10-7, r = 0.71 36.32 
14.68 
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Appendix 2.  

 

Appendix 2 reproduces a research paper published in Marine Pollution Bulletin 2011 

based on the work presented in chapters 2 and 3 of this thesis. The reference of this 

article is: O’Leary, B.C. Smart, J.C.R., Neale, F.C., Hawkins, J.P., Newman, S., 

Milman, A.C., Roberts, C.M., 2011. Fisheries Mismanagement. Mar. Pollut. Bull. 

62,2642-2648. 
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Abstract 

We analysed the extent to which European politicians have adhered to scientific 

recommendations on annual total allowable catches (TACs) from 1987 to 2011, 

covering most of the period of the Common Fisheries Policy (CFP). For the 11 

stocks examined, TACs were set higher than scientific recommendations in 68% of 

decisions. Politically-adjusted TACs averaged 33% above scientifically 

recommended levels. There was no evidence that the 2002 reform of the CFP 

improved decision-making, as was claimed at the time. We modelled the effects of 

such politically-driven decision-making on stock sustainability. Our results suggest 

that political adjustment of scientific recommendations dramatically increases the 

probability of a stock collapsing within 40 years.  

In 2012 European fisheries policy will undergo a once-a-decade reform. Ten years 

ago radical reforms were promised but the changes failed to improve sustainability.  

It is likely that the 2012 reform will be similarly ineffective unless decision-making 

is changed so that catch allocations are based on science rather than politics. 
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Fisheries management,  

Total allowable catch, quotas, TAC 

Political adjustment 

 

 



 

162 
 

1. Introduction 

The complex and expensive system for managing European fisheries is one of the 

world's least successful, with many stocks now seriously depleted (Condé et al., 

2010). The last reform of the Common Fisheries Policy (CFP) in 2002 did little to 

halt stock declines and the degradation of European seas (Froese and Proelß, 2010). 

In recognition of these high profile deficiencies, the European Commission Green 

Paper on the 2012 Reform of the CFP, published in 2009 (CEC, 2009), called for 

radical reform, and since then the CFP has been under review. Much attention has 

focussed on discarding, with a high profile media campaign against this practice, and 

on economic incentives such as catch shares to encourage the industry to fish more 

responsibly (Costello et al., 2008). However, based on the analyses we present in 

this paper, we contend that none of these measures will succeed in achieving 

sustainability unless the process for catch allocation is reformed to place science at 

the heart of decision-making.  

Total allowable catches (TACs) and quotas have been the cornerstone of resource 

management within the CFP. Even with the continuing shift to multi-annual plans, 

TACs remain the practical basis for management, with the TACs being determined 

by fisheries ministers annually according to a set of rules laid out in each multi-

annual plan (EU 2009). Scientists assess stocks in European waters each year and 

recommend TACs to the European Commission for each stock and fishing zone. 

Fisheries ministers then meet to negotiate TACs and allocate quotas amongst 

member nations. This decision-making process leads to the paradox of ministers' 

protecting national interests while attempting to allocate quotas among member 

states for mutual benefit and to achieve conservation goals. As the Rt. Hon. John 

Gummer, a former UK Fisheries Minister and Secretary of State for the 

Environment, put it, "If you are a fisheries minister you sit around the table arguing 

about fishermen - not about fish. You are there to represent your fishermen. You are 

there to ensure that if there are 10 fish you get your share and if possible a bit more. 

The arguments are not about conservation, unless of course you are arguing about 

another country” (NIA, 2001). This type of stance has led to ministers' consistently 

setting TACs higher than advised scientifically (Piet et al., 2010; Villasante et al., 

2010).  
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We analysed historical TAC setting between 1987 and 2011 for 11 species across 

nine management zones to assess the degree to which politicians choose to adjust 

scientifically recommended TACs. Failure to follow scientific advice may be a major 

weakness, and possibly a fatal flaw, of the CFP. To assess the degree to which 

political adjustment may affect stock status, we then modelled the effects of 

politically driven decision-making for two different fish life histories under different 

scenarios of background environmental variability and juvenile bycatch. 

2. Methods 

2.1. Data collection 

Data on advised and agreed TACs were obtained from the ICES online advice 

archives67 and official EU Council Regulations (EU 2010a) and bilateral agreements 

(EU 2010b). In total, data were collected for 44 stocks of 11 fish species across nine 

management zones. The species analysed were cod (Gadus morhua), plaice 

(Pleuronectes platessa), haddock (Melanogrammus aeglefinus), megrim 

(Lepidorhombus spp.), saithe (Pollachius virens), herring (Clupea harengus), sole 

(Solea spp.), hake (Merluccius merluccius), nephrops (Nephrops norvegicus), sprat 

(Sprattus sprattus) and whiting (Merlangius merlangus). These species were chosen 

because the EU manages them under a TAC system. Stocks for which there was a 

mismatch between the areas for which TACs were advised by ICES and those for 

which TACs were set by ministers were excluded from our analysis. For example if 

the advice referred to area VIId and the TAC was set for areas VIId and VIIe these 

stocks were removed from the calculations. The nine management zones considered 

were the Baltic sub-areas 22-32, Skagerrak and Kattegat (IIIa), North Sea (IV), 

Northeast Arctic subareas I and II, Icelandic division Va, Clyde and Rockall (VI), 

West of the British Isles and the English Channel (VII), Irish Sea (VIIa), Spain, 

Portugal and the Bay of Biscay (VIII and IX). 

2.2. Statistical analysis 

A political adjustment index (PAI) was calculated as a measure of the degree to 

which ministers adjusted scientifically recommended TACs. This was the percentage 

                                                      
67 http://www.ices.dk/advice/icesadvice.asp 
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by which the official TACs differed from the advised TACs for all decisions made 

for all stocks in all years (PAI = ((agreed TAC – advised TAC)/advised TAC) x 100. 

If science advised a TAC of zero (i.e. a moratorium), it was not possible to calculate 

the PAI as the percentage deviation from the advised TAC. Therefore, where a 

positive TAC was implemented when a moratorium had been advised in the same 

year, the PAI was arbitrarily set to 100%. In order to account for this arbitrary 

assignment, the data were analysed with moratoria years both included and excluded. 

A chi-squared test was used to determine whether decisions in which TACs were 

adjusted upwards significantly outweighed those in which TACs were adjusted 

downwards or those subjected to no adjustment. 

Statistical comparisons of political adjustment amongst species and management 

zones were made using the Mann-Whitney U test in order to determine whether 

some species and areas were more prone to adjustment than others. The average 

adjustment across the stocks of each species was calculated for each year by taking 

the mean of the stocks’ PAIs across the different management areas. In the case of 

hake, only one stock was included in the analysis. These figures were used to 

investigate temporal trends in political adjustment for each species. Differences in 

levels of political adjustment among management zones were compared by taking 

the mean of the PAIs for stocks present in the respective zones annually.  

To determine the effect of the CFP reform in 2002, and the expansion of the EU in 

2004, on political adjustment, the PAIs were compared for the years prior to 2004 

and for the period 2004-2011. Whilst the CFP reform was finalised in 2002, it only 

came into force on January 1st 2003 and therefore the first TAC negotiations to take 

place under the new policy were those held in December 2003 concerning the TACs 

for the 2004 fishery. 

All statistical tests were implemented using R (R Development Core Team, 2008). 

2.3. Simulation modelling 

A stochastic, single-species biomass model was developed to investigate the 

consequences of political adjustment on the recommended TACs. The model was 

based on a lagged recruitment, survival and growth model (Hilborn and Mangel, 

1997) and extended to incorporate a TAC management system (see Appendix for 
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mathematical framework and parameter values). Two life histories were examined: 

an early maturing species with prolific recruitment, such as herring, and a late 

maturing species with lower recruitment, such as cod. The impacts of continuously 

exceeding scientifically recommended TACs by fixed percentages over a 

management timeframe of 40 years were examined under two scenarios: the first 

included juvenile bycatch mortality, the second excluded it.  

Recruitment each year was calculated according to the Beverton Holt (1957) stock-

recruitment relationship and stochasticity was introduced in this component of the 

model to represent natural environmental variability. In the model, TACs were set 

annually and simulated scientific recommendations were generated as the equivalent 

harvest level required to maintain stocks at the biomass which corresponded to the 

MSY (BMSY) for the species and stock concerned. Should the biomass of the stock in 

the model fall below a species- and stock-specific minimum biomass limit (BLIM) the 

scientifically recommended quotas assumed that a proportional decrease in fishing 

mortality would be required to recover biomass. For biomasses above BLIM, 

scientifically recommended TACs were set to MSY and then reduced (proportional 

to the undershoot below BLIM) once the biomass reached, or fell below, BLIM in order 

to rebuild the stock to BMSY. 

In the results reported here BLIM was set at BMSY. This level was chosen because in a 

well-managed fishery the catch target is set to maintain the stock at BMSY and 

therefore once the stock biomass falls below BMSY the TACs should be adjusted to 

allow the stock to rebuild to this level. Political adjustment was modelled by 

multiplying the scientifically recommended TAC by the adjustment level. 

Simulations were run for political adjustment levels of 0-50% in 1% increments. The 

level of political adjustment was held constant over the full timeframe for each 

simulation. 

We also considered the effect of juvenile bycatch as in many fisheries juveniles are 

taken as bycatch and discarded. In general, demersal fisheries typically experience 

higher by-catch and discard rates than pelagic fisheries (Alverson et al., 1994), with 

estimates reaching up to 94% for cod (ICES, 2009)  compared to 11% for herring 

(Pierce et al., 2002). Our modelling used an intermediate bycatch value of 50%. 

Juveniles were considered to be immature fish which are not subject to the TAC. 
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Juvenile bycatch was introduced into the system through recruitment adjustments 

during each year of a simulation run.  

The model was run for each species until the stock collapsed (defined as depletion to 

10% or less of the unexploited biomass) or for a maximum of 100 years. For each 

scenario 10,000 simulations were completed. The model was implemented in 

MATLAB (Mathworks, 2010).   

3. Results 

3.1. Levels of political adjustment of TACs 

Table 1 summarises decisions made between 1987 and 2011 for 11 quota-managed 

fish species across nine management zones. In 68% of decisions ministers set TACs 

higher than the scientific recommendation. Only in 14% of cases were TACs set 

lower than advised; the remainder followed scientific advice. The difference in these 

proportions is significant [χ²(2, N = 877) = 480.45, p < 0.001] indicating that the 

process of political adjustment leads to ministers increasing scientifically advised 

TACs far more often than setting TACs at or below the scientifically advised level. 

On average, politically-adjusted TACs were 33% above the catch levels 

recommended as being safe by scientists. However, for some stocks TACs were 

routinely set more than 100% above scientific advice, and in one case – hake (Spain, 

Portugal and the Bay of Biscay management zone, sub-areas VIIIc and IXa) – 

scientific advice was exceeded by 1100% (Table 2).  
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Table 1. Decision-making and use of scientific advice under the Common Fisheries 

Policy from 1987-2011. Figures are shown ± 1 standard error.  

 

Pre-2002 

Reform 

Post-

2002 

Reform 

Overall 

 

Average Political Adjustment Index (PAI) (%) 

 

Average PAI (%) by fishing area* 

1. Spain, Portugal & Bay of Biscay 
2. Baltic 
3. Irish Sea 
4. Skagerrak & Kattegat 
5. West of the British Isles & English Channel 
6. North Sea 
7. Clyde & Rockall 
8. N.E. Arctic 
9. Iceland 

* Listed in descending order of average overall PAI 
 

%  of decisions TACs set higher than 

recommended 

 

% of decisions TACs set lower than recommended 

 

% of decisions  TACs set according to scientific 

advice 

 

Number of moratoria implemented/total number 

recommended 

 

 
27 ± 12 
 
 
121 ± 24 
53 ± 8 
23 ± 3 
24 ± 4 
10 ± 2 
 
19 ± 3 
14 ± 3 
24 ± 6 
8 ± 2 
 
 
71 ± 3 
 
 
10 ± 2 
 
19 ± 4 
 
 
0/13 

 
38 ± 14 
 
 
92 ± 30 
104 ± 33 
44 ± 10 
25 ± 6 
61 ± 11 
 
28 ± 6 
35 ± 7 
3 ± 3 
11 ± 7 
 
 
64 ± 6 
 
 
18 ± 5 
 
18 ± 4 
 
 
0/59 

 
33 ± 8 
 
 
107 ± 19 
69 ± 12 
30 ± 4 
25 ± 3 
25 ± 4 
 
22 ± 3 
19 ± 3 
17 ± 5 
9 ± 2 
 
 
68 ± 3 
 
 
14 ± 3 
 
18 ± 3 
 
 
0/72 
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Table 2. Minimum and Maximum PAI for each species in the period 1987-2011. 

Species 

Extremes of PAI in time 

series (%) 

Minimum Maximum 

Cod 

Plaice 

Haddock 

Megrim 

Saithe 

Herring 

Sole 

Hake 

Nephrops 

Sprat 

Whiting 

-6 

-16 

-8 

-2 

-10 

-5 

1 

-5 

9 

-12 

13 

98 

50 

40 

286 

65 

51 

51 

1100 

283 

58 

111 

The 2002 CFP reform was meant to improve decision-making but our analysis found 

no evidence of progress (Fig. 1 and Fig. 2), other than a slight decrease in the 

percentage of TACs set higher than scientific advice and greater concordance with 

advice in the North-East Arctic area (Table 1). Instead, the majority of areas actually 

showed an increase in political adjustment to scientifically recommended TACs after 

the 2002 reform. However, Mann-Whitney U tests to compare the pre 2002-reform 

and post-reform PAIs found no significant difference in the level of PAI between the 

years before the reform and those after. This was the case for PAI averaged across all 

species (U=545, N = 873, p=0.13) and across management zones (U=513, N = 825, 

p>0.1). In addition, no individual species or management zones had significantly 

different levels of PAI during the pre- and post-reform periods. In addition, post-

2002 there was a sharp increase in the number of fishing moratoria advised (which 

were all overruled), indicating continued disregard of scientific advice (Table 1 and 

Fig. 3).  
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Fig. 1. Extent to which scientific advice was accepted or adjusted by the Council of 

Ministers each year between 1987-2011 (expressed via a political adjustment index, 

PAI =((agreed TAC – advised TAC)/advised TAC)*100). 

 

Fig. 2. Average political adjustment index across species between 1987 and 2011. 
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Fig. 3. Percentage of stocks for which moratoria were advised between 1987 and 

2011. 

 

A significant difference was found in the level of political adjustment between 

management zones using the Kruskal-Wallis test (H8=72.52, p<0.01). The two 

management zones most prone to political adjustment are the Spanish, Portuguese 

and Bay of Biscay zone (division VIII/IX) (107%) and the Baltic Sea (sub-areas 22-

32) (69%). The waters around Iceland (division Va) are the least prone to political 

adjustment (9%) (Table 1). These results indicate that regional differences, such as 

differences in management, may be driving average PAI for different management 

zones. 

It is possible that the potential benefits of the CFP reform have not been realised due 

to the expansion of the EU to include ten new member states in 200468. New 

members are likely to have participated in the TAC decision-making process and this 

could have increased political adjustment simply by increasing the number of 

delegates, each bringing their own interests to the table (Thomson 2009). With 

subsequent expansion of the EU in 2007 to include Romania and Bulgaria this issue 

is likely to have become more prominent. The near coincidence in the timing of CFP 

reform and EU expansion meant that the two events could not be separated in our 

analysis.  

                                                      
68 Cyprus, Czech Republic, Estonia, Hungary, Latvia, Lithuania, Malta, Poland, Slovakia and 
Slovenia 
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The percentage of stocks for which moratoria were advised increased from 5% in 

2000 to a maximum of 22% in 2007 and 2009 (Fig. 3). Advising a moratorium is a 

serious action, often regarded as a last resort by stock assessors. However, politicians 

appear not to appreciate the imminent risk of stock collapse which such a move 

implies as, for the stocks examined here, this zero-catch advice was not followed on 

any occasion; a TAC was always implemented in contradiction to the scientific 

advice. This could suggest naivety in managing natural resources, a lack of trust in 

scientific assessments or it may reflect the short-term goals of politicians and the 

industry which they oversee. The high number of moratoria advised in recent years 

paints a worrying picture of stock deterioration. 

3.2. Simulation modelling 

Figure 4 shows the calculated probabilities of stock collapse within 40 years, with 

and without political adjustment of TACs, for the early and late maturing fish life 

histories modelled. 
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Fig. 4. The effect of political adjustment on the probability of stock collapse within 

40 years in modelled scenarios. (a) Probability of collapse for an early maturing 

species (such as herring). (b) Probability of collapse for an early maturing species 

when 50% of juveniles are caught as bycatch before recruitment to the targeted 

fishery. (c) Probability of collapse for a late maturing species (such as cod). (d) 

Probability of collapse for a late maturing species when 50% of juveniles are caught 

as bycatch before recruitment to the targeted fishery. All scenarios show lower 

resilience to political adjustment when subject to high environmental variability 

(solid lines) compared to low environmental variability (dashed lines). The 

probability of collapse at average levels of political adjustment observed under the 

Common Fisheries Policy (33%) is indicated by the solid vertical and horizontal 

lines. Details of the model can be found in the Appendix. 

 

Our results suggest that environmental variability (modelled as variable recruitment 

success) increases the risk of fishery collapse, even when scientific advice is 

followed for both fish life histories. However, at both the levels of variability 

modelled, following scientific advice reduces the risk of collapse and promotes 

sustainability. Including juvenile bycatch in model simulations increases the risk of 
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collapse within 40 years, in some cases increasing that risk to almost 100%. This 

emphasises the importance of efficient and target-specific fishing techniques and the 

need to limit juvenile bycatch within fisheries.  

Under all scenarios, early maturing species appear to have less resilience to political 

adjustment than the later maturing species on the basis of probability of collapse 

within 40 years. The model takes into account species-specific fecundity parameters 

through the Beverton-Holt stock-recruitment relationship. Consequently, BMSY for the 

late maturing species is a higher proportion of unexploited biomass than for the early 

maturing species. Because of this, management of early maturing species is more 

precarious since the gap between BMSY and a state of collapse is lower, in 

proportional terms. 

Our simulation results also confirm what managers already know: even if scientific 

advice is followed, it is difficult to manage fisheries sustainably in variable natural 

environments (Shelton and Mangel 2011). However, when we introduced TAC 

setting which mirrors the political adjustment seen under the CFP, the probability of 

stock collapse over a 40 year time horizon increases dramatically. When juvenile 

bycatch is included to reflect the situation in mixed species fisheries such as those 

for cod and haddock, the probability of collapse within 40 years for both of the 

modelled life-histories rose to between 83% and 99% (Fig. 4b and 4d). More 

worrying still is that these scenarios are 'best-case', in that the scientific advice 

within our model is based on perfect knowledge of stock status. In reality advice is 

generated in the face of uncertain stock sizes and fishing mortality rates. 

Often the justification which fisheries ministers quote when adjusting scientifically 

recommended TACs is that uncertainty is inherent within stock assessment 

(Sovacool 2009, Khalilian et al. 2010), and that scientific advice is based solely on 

the biological aspects of the fishery and neglects socio-economic issues (Aps et al. 

2007). While the uncertainty inherent in stock assessment cannot be denied (e.g. 

Hauge 2011), and it is agreed that TAC calculations ignore socio-economic issues, it 

could be argued that in the long-term the industry would be best served by following 

scientific advice to re-establish stocks from which higher yields could be extracted 

sustainably in the future. 
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4. Discussion 

Since 1983, when the CFP came into force, sustainability has been the stated core 

goal of EU fishery policy. However, management under the CFP has driven many 

stocks further away from this objective. A meta-analysis of European fish stocks 

during the past half century showed that the CFP has failed to have any clear positive 

effect on marine fish stocks (Sparholt et al., 2007).  The decline of European fish 

stocks is well-documented, with 88% now overexploited relative to maximum 

sustainable yield targets and 46% fished outside safe biological limits (Condé et al., 

2010). Recent studies (Piet et al., 2010; Villasante et al., 2010) and our own 

research, reveal the scale of overshoot that competitive ministerial bargaining driven 

by short-term national interests has produced. It is clear from our analysis that 

political mismanagement must bear a considerable share of the responsibility for this 

decline. Decision-making by competitive bargaining has shown a reckless disregard 

for scientific advice which has been produced at a high cost to taxpayers. The 

remainder of the blame could be attributed to other management failures such as the 

shortcomings of quota management, heavy subsidies, high levels of discarding, high 

grading and non-compliance with fishery regulations. No matter how well these 

other deficiencies are addressed in the forthcoming reform of the CFP, productive 

and sustainable fisheries will not be achieved if Fisheries Ministers’ cavalier 

disregard for scientific advice continues. Over the long-term, our simulation 

modelling suggests that such behaviour virtually guarantees the collapse of fish 

stocks, thus the practice amounts to institutionalised mismanagement of fisheries. 

The EU commits considerable expenditure towards promoting resource conservation 

in fisheries through scientific research, stock assessments and in ensuring 

compliance with regulations and quota allocations; US$1.2 billion in 2003, 

according to one estimate (Sumaila et al., 2010). In view of the sidelining of science 

in decision-making, it has to be questioned whether these expenditures are being 

allowed to deliver value for money. Our results, and those of others (e.g. Cardinale 

and Svedäng 2008), show that even with the uncertainty inherent in stock 

assessments, scientific research and advice should nevertheless be accepted because 

this provides the best opportunity to minimise the risk of stock collapse and 

maximise the long-term benefits from sustainable fishing. In reality, fisheries science 
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is currently forced to act as a stakeholder around the political negotiating table rather 

than the lynchpin of management success. Consequently, political decisions are 

made in denial of biological reality.  

Decision-making under the CFP should engage in a wider debate on the proper role 

of science in the management of renewable natural resources; should scientific 

advice be just another angle of a many-faceted political calculus, or should it be the 

foundation of a rationality which constrains political bargaining within the scope of 

natural productivity? There are good reasons to conclude the latter. No matter how 

much politicians might wish it otherwise, you cannot cheat nature out of more than 

she can produce, nor can you negotiate with her to increase production. If scientific 

advice is not followed, no amount of fine-tuning of harvest control rules or fishing 

methods will safeguard fisheries.  

Similar failings extend far outside the European Union. Competitive bargaining is 

endemic in regional fisheries management organisations across the globe. For 

example, the performance of the International Commission for the Conservation of 

Atlantic Tunas (ICCAT) in managing stocks, such as the Atlantic bluefin tuna, has 

been highly unsatisfactory (Cullis-Suzuki and Pauly, 2010). Competitive bargaining 

has led to quotas for this species becoming so over-inflated that they are now 

delivering what many see as the institutionalised extinction of a species (Safina and 

Klinger, 2008; Korman, 2011).  

In direct contrast, Icelandic and Norwegian fisheries have been subject to lower 

levels of political adjustment than those managed by the European Commission 

(Table 1). Aside from progressive policies on discards and the use of individual 

transferable quotas, fishery decision making in these regions appears to show a high 

level of respect for scientific advice and competitive bargaining appears much 

reduced (Eliasen et al. 2009). For example, Iceland has a long history of pre-

emptively cutting quotas for groundfish, such as cod and saithe, following scientific 

concern regarding poor recruitment (Christensen et al. 2009). Such respect for 

science may have helped to maintain stocks and prevent overfishing when the 

number of recruits entering the fishery is low. Iceland and Norway are members of 

the European Economic Area rather than the European Union, and consequently 

their fisheries are subject to singular rather than multi-jurisdictional management 
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(Johnsen and Eliasen, 2011). There are therefore fewer 'players' around the 

negotiating table competing for quotas and the improved cohesion between science 

and politics which appears to have resulted has contributed to largely healthier 

stocks.  

Fishers face multiple risks to their businesses: environmental variability, 

environmental change, unpredictable future catch levels, market prices and costs as 

well as a dependence on management decisions, many of which are erratic. While 

the environment is beyond the managers’ control, science-based management offers 

the best way to reduce uncertainty about future catches and increase long-term 

revenues and sustainability.  

The 2012 reform of the CFP is critical to the future of European fisheries because in 

another ten years some stocks and fisheries may be depleted beyond recovery. To 

accomplish the vision set out in the European Commission’s 2009 Green Paper, 

"rampant overfishing" needs to end. This must begin with a respect for scientific 

advice. We suggest that scientific assessments should be used to set politically 

binding limits on catch sizes within which politicians can negotiate, not with nature, 

but with their peers to divide scientifically appropriate quotas among member states. 

If scientific advice continues to be sidelined, the 2012 reform of the CFP will once 

again fail to deliver sustainable and productive fisheries. On an increasingly crowded 

planet, it is now imperative that we adopt decision-making processes that enhance 

rather than undermine the sustainability of food production and natural capital. 
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Appendix 

Fish population dynamics are described in terms of biomass. In its discrete form this 

model can be expressed as: 

E.@< = GE. + H. − J.     (A.1) 
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Where s describes the change in biomass (B) of the stock from one year (t) to the 

next (t+1) as a result of survivorship in the face of natural mortality only; R 

represents the recruitment to the population in year t and C is the catch taken from 

the stock in year t.  

Recruitment (Rt) is derived from a re-parameterised version of the Beverton-Holt 

(1957) stock recruitment relationship which includes a steepness parameter (z) (Mace 

and Doonan, 1988) to represent recruitment, relative to the recruitment at 

equilibrium in the absence of fishing, that occurs when spawner abundance has been 

reduced to 20% of its virgin level (B0). A high steepness value (z= 0.99) indicates 

almost constant recruitment that is essentially independent of the spawning stock 

biomass, while a low steepness value (z= 0.20) produces a proportional relationship 

between recruitment and spawning stock (Mace and Doonan, 1988). This method of 

re-parameterising the stock recruitment relationship allows the steepness of the curve 

to be altered while maintaining the same carrying capacity for the environment. 

Stochasticity (σ) is introduced into the system via the recruitment equation for each 

year of a simulation run. Recruitment is calculated using a deterministic equation 

which is then multiplied by a value drawn randomly from a uniform distribution 

spanning –1 to 1.  

The reparameterisation of Beverton-Holt to include a z value defines the parameters 

α and β (necessary to calculate recruitment (Eq. (A.4)) as: 

K = N5
U5 V1 − �W�X.A

X.YW �Z     (A.2) 

M = W�X.A
X.YU5      (A.3) 

 Recruitment can thus be expressed as:  

H. = � NO3P
Q@RNO3P� T                       (A.4) 

where HX = EX�1 − G�.                 (A.5) 
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Here, L refers to the time lag in years between birth and recruitment to the fishery. 

Recruitment in year t therefore depends on the stock biomass L years earlier. 

Consequently, two distinct age groups are modelled; recruits, i.e. fish aged less than 

L, and fish older than L years which are fecund, i.e. capable of producing new 

biomass. 

Two levels of stochasticity were investigated, high and low. High stochasticity was 

set according to the level of variation that led to a 10% chance of stock collapse 

within 20 years. This scenario therefore produces highly variable recruitment which 

is realistic for many species (Needle, 2002). The low level of stochasticity was 

defined by the variation that led to a 0.5% probability of collapse within 20 years, 

producing a correspondingly low variation in recruitment.  

Within this model the biomass at MSY (BMSY), and the MSY itself, are defined as: 

ED*\ = <
R ] Q

<�� − K       (A.6) 

^_` = ED*\ �G − 1 + <
Q@RNabc�            (A.7) 

A second dynamic element was integrated into this model by incorporating 

fluctuating catch quotas in direct response to the stock biomass in each year to 

represent political adjustment of the TAC system. The TAC was calculated by Eq. 

(A.9) where BLIM is defined as BMSY and 0.1B0 represents the ‘collapse’ threshold. 

deJ = �NO�X.<N5×D*\
NP?a�X.<N5 �         (A.8) 

Juvenile bycatch is introduced into the model by adjusting recruitment during each 

year of a simulation run. Recruitment is calculated initially via Eq. (A.4) and then 

scaled by the juvenile bycatch rate (j) to produce: 

H. = g� NO3P
Q@RNO3P� Th     (A.9) 

Table 3 shows the parameter values used for our simulations. 
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Table 3. Parameter values for simulations 

Parameter 

 
Virgin biomass, B0 
 
 
 
Survivorship, s  
 
 
 
 
 
Steepness of stock-
recruitment curve, z 
 
 

α 

 

 

β 

 
 
Lag time, L 

 

 

BLIM 

 
 
Population collapse 
 
Juvenile bycatch 
rate, j 

Value 
 
100 
 
 
 
0.88 
 
 
 
 
 
0.4, 0.7 
 
 
 
0.8929, 
3.125 
 
0.0744, 
0.0521 
 
2, 5 
 

 

BMSY 
 
 
0.1B0 

 
0.5 

Description 
 
Also referred to as environmental carrying 
capacity. Biomass is referred to throughout as a 
percentage of carrying capacity. 
 
Survivorship was taken to be a function of natural 
mortality, taken as 0.2 based on estimates by Pauly 
(1980), and growth in mass of surviving 
individuals each year, taken to be 10%. Units: 
survival probability per year per individual. 
 
Represents how steeply the Beverton-Holt stock 
recruitment curve ascends. No units - 
dimensionless. 
 
Recruit production parameter. 
 
 
Recruit production parameter. 
 
 
Lag time in years between reproduction and 
recruitment to the fishery. 
 
The biomass level at which the TAC system is 
implemented. 
 
10% of virgin biomass (Worm et. al., 2006). 
 
Proportion of juveniles caught as bycatch. 
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Appendix 3.  

Appendix 3 reproduces a letter published in Nature 2011 based on the work 

presented in chapters 2 and 3 of this thesis and published in response to Froese 

(2011). The reference of this article is: O’Leary, B.C., Roberts, C.M., 2011. Fishery 

reform: ban political haggling. Nature. 475: 454. 

 

Fishery reform: ban political haggling 

We applaud proposals by the European Commission to reform the Common 

Fisheries Policy by phasing out fish discarding, broadening multi-year species-

management plans, improving data collection and moving to ecosystem-based 

management (Nature 475, 7; 2011). But one vital reform has been missed: 

bargaining over total allowable catches should be banned and decision-makers 

should be compelled to follow scientific advice.  

Politicians have habitually overruled scientific advice on fisheries since inception of 

the EC policy in the 1980s, setting total allowable catches one-third higher than 

recommended levels. Placing short-term political expediency and industry lobbying 

ahead of long-term sustainability threatens food security and the health of future 

generations.  

Science provides the best tools for maximizing immediate benefits from fishing 

without squandering future opportunities. Let politicians argue for their national 

share of what nature can provide, rather than adopting policies that undermine the 

biological basis of food production. Politicians must cede their power over fisheries 

if they are properly to serve the public interest. 

 

Bethan C. O’Leary, Callum Roberts University of York, UK. 

callum.roberts@york.ac.uk  
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Appendix 4.  

Appendix 4 reproduces a Response to a Comment on the article ‘Fisheries 

Mismanagement’ by Cook et al. (in review). 

 

 

Response to Cook et al. Comment on “Fisheries Mismanagement” 

 

Bethan C. O'Leary*a, James C.R. Smarta, Fiona C. Nealea, Julie P. Hawkinsa, 

Stephanie Newmana١, Amy C. Milman a, Samik Dattab Callum M. Robertsa  

a Environment Department, University of York, York, YO10 5DD, UK. 

bcol500@york.ac.uk, jcs@dmu.dk, f_c_neale@hotmail.co.uk, 

julie.hawkins@york.ac.uk, SNewman@ieep.eu, amymilman@gmail.com, 

callum.roberts@york.ac.uk, Tel: 01904 434327, Fax: 01904 432998.  

b School of Life Sciences, Gibbet Hill Campus, The University of Warwick, 

Coventry, CV4 7AL. S.Datta@warwick.ac.uk 

*Corresponding author. 

 

 

In O’Leary et al. (2011) we presented an analysis of 24 years of historical data 

regarding political decision-making on fisheries total allowable catches (TACs) 

within Europe, together with a simple stochastic model examining the impact that 

this could have had on the status of European fish stocks.  In response to Cook et al. 

(in review) we agree some minor corrections to our article ‘Fisheries 

Mismanagement’ are appropriate. However, the major premise of their comments 

that our conclusions are flawed is incorrect.  

                                                      
١ Present address: Institute of European Environmental Policy, 15 Queen Anne's Gate, London, 
SW1H 9BU, UK. Tel: 020 7340 0928 
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Cook et al. (in review) state that from our simulations we had concluded that the 

consequence of continuing to set total allowable catches (TACs) above scientific 

advice will lead to the collapse of stocks in the next 40 years. They misinterpreted 

the paper as we did not state this. Instead the model indicated, based on our 

calculated values of political inflation of TACs above scientific advice, that such 

decision making would substantially increase the likelihood of stock collapse over a 

forty-year timeframe. We therefore concluded that political decision making has 

likely contributed to the poor state of European fisheries resources today.  

Cook et al. (in review) made six key comments on our article. These are reiterated 

below for clarity prior to giving our response to each.  

1. There are errors in the equations that describe the model. 

Cook et al. (in review) did spot typographical errors in the equations that describe 

our model. We have rectified these and the amended equations may be found in the 

appendix to this paper (equations A.1 to A.9). However, the results in the paper were 

based on the correct equations and so are unaffected. In addition, the following print 

errors were made. The results presented in Table 1 were shifted down a line so that 

the North Sea results and those below it were not in line with the appropriate side 

headings. This blank space should actually fall where it is stated that the results are 

“listed in descending order of average overall PAI”. The heading for Figure 4 should 

read that the high stochasticity results are represented by dashed lines and the low 

stochasticity results by solid lines.   

As recognised by Cook et al. (in review) equation A.4 as written in the original 

paper ‘Fisheries Mismanagement’, would lead to low levels of recruitment due to the 

presence of the Beverton-Holt parameters alpha and beta in the denominator. The 

corrected equation for beta (Equation A.3 as written in the appendix) limits this 

effect due to the presence of z within the denominator. With regards to the zero and 

negative values that may be produced by this equation (due to sigma being able to 

take values between -1 and 1) this was included to allow the equation to represent 

particularly bad years of recruitment due to environmental variability or other 

negative shock events.  
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2. The stochastic noise used to simulate recruitment variability is unrealistic. 

As Cook et al. (in review) points out, we used a uniform error distribution where all 

events within a specified range are equally likely. While Cook et al. (in review) 

highlight that this means that very poor recruitment is as likely as average 

recruitment, it also means that very good recruitment is just as likely. However, log-

normal or gamma distributions are often used and so we ran the model again with 

this formulation of recruitment variability, as recommended by Cook et al. (in 

review). We present in Figure 1 and Table 1 the results of applying our reformulated 

model to the species cod and herring using a lognormal distribution for recruitment 

variability, based on data from Myers et al. 1999. Table 2 lists the parameter values 

used for these simulations.  

The effect of changing the method of applying stochasticity and using specific 

recruitment variability parameters acts to lower the probabilities of collapse. When 

compared to the original (non-species specific) results presented in O’Leary et al. 

(2011) the general trends are similar in that the probability of collapse increases with 

increasing political adjustment and that increasing unaccounted juvenile mortality 

increases the probability of collapse sharply for both species (Figure 1 and Table 1). 

The exact probabilities of collapse are however not directly comparable due to the 

different life history characteristics being examined. Whilst the probabilities of 

collapse are found to be lower using our reformulated model our conclusions hold. In 

reality, as there is likely to be greater levels of uncertainty, both within the stock-

assessments that determine scientific advice and the mortality associated with the 

fisheries catches themselves, the higher unaccounted mortality scenarios are felt to 

more realistically represent true fishery conditions.  

3. The model is forced to produce high stock collapse rates without reference to real 

parameter values. 

We manipulated the amount of recruitment variability to represent the impact of 

exploiting fish stocks subject to both stable and highly variable environmental 

conditions. Because the fish stocks originally modelled were hypothetical examples, 

assignation of specific recruitment variability parameters was as an issue. We also 

gave consideration to the fact that fishing can elevate the variability of recruitment in 

exploited species (Hsieh et al. 2006). Our conclusion was that selecting a 10% 
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chance of stock collapse under management at maximum sustainable yield would 

represent a combination of environmental and anthropogenically-caused variability. 

However, we accept the concern of Cook et al. (in review) that this is an arbitrary 

choice of level of collapse and their argument that a more realistic way to approach 

the parameterisation of environmental variability is to parameterise the recruitment 

error distribution from observations. Consequently our new simulations specifically 

use cod and herring as examples with recruitment variability parameterised 

according to Myers et al. (1999) (Figure 1, Table 1).  

The data analysed within O’Leary et al. (2011) provides ample evidence of the 

historical trends of risky fisheries decision-making. Over the period that the 

Common Fisheries Policy has been in place, 68% of the decisions set TACs higher 

than scientific recommendations. The aim of our model was to provide evidence that 

politicians’ consistent disregard for scientific advice has contributed to the current 

status of European fish stocks by examining several simple scenarios. Maximum 

sustainable yield (MSY) was used as a base fishing rate for these scenarios due to its 

simple theoretical basis. The parameters within our model were set according to the 

concept of MSY and based upon Mace and Doonan’s (1988) re-parameterisation. 

The scenarios investigated within our paper were not intended as complex stock 

assessment predictions but provide accessible simulations of factors which have 

contributed to the current situation.  

4. The life history characteristics of the model fish stocks are not representative of 

the fish species concerned. 

In our paper 'Fisheries Mismanagement' we write that according to the model 

simulations, “early maturing species appear to have less resilience to political 

adjustment than the later maturing species”. We then go on to clarify that 

management of the “early maturing species is more precarious” because of the 

application of specific fecundity parameters through the Beverton-Holt stock-

recruitment relationship. However, Cook et al. (in review) state that we argue that 

late maturing species are more vulnerable to fishing than early maturing species. 

This was not our conclusion. Following on from this, Cook et al. (in review) make 

note of our use of virgin biomass or carrying capacity and provide a full explanation 

of the effect this has on the relative biomass at MSY (BMSY) of each life history 
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characteristic. Within our paper we allude to this by stating that the “BMSY for the late 

maturing species is a higher proportion of unexploited biomass than for the early 

maturing species”. Cook et al. (in review) only provide a more detailed description 

of this effect. We agree that the result is that we compare the performance of two 

values of steepness and the effect of different ages of maturity, rather than full life 

history traits. However, in order to compare the effect on two differing species 

directly, other characteristics such as age-related mortality and fecundity would have 

to be taken into account. This goes beyond the aim of the model. In addition, it is 

worth noting that the examples of cod and herring as a late and early maturing 

species respectively were intended to provide an illustration for the general reader 

rather than specific case studies. The simulations presented in this response intend to 

go some way further into representing more realistic populations of and herring.  

In addition, Cook et al. (in review) argue that the arbitrary (and admittedly 

unrealistic) value of 100 assigned to the virgin biomass of both species fails to 

capture full life-history traits and their comment suggests that allowing these values 

to vary by species would alter the results of the model. However, further simulations 

presented in Figure 1(a and b) indicate that the model is unaffected by changing 

levels of virgin biomass. Instead, the probability of collapse remains constant (slight 

variations are due to the stochastic nature of this model) for each species at all levels 

of virgin biomass.  

Figure 1 and Table 1 show that when no additional juvenile mortality is present the 

probability of collapse for herring is 1% when scientific advice is followed (MSY) 

and 10% at a political adjustment level of 33%. The probability of collapse for cod is 

0% at MSY and 5% at a political adjustment level of 33%. When unaccounted 

juvenile fishing mortality is applied, the probability of collapse increases 

dramatically to between 23-41% under a 20% mortality scenario and between 68-

100% under a 50% mortality scenario (Figure 1 and Table 1). Whilst these are lower 

than those from our original results, once even the lower level of unaccounted 

juvenile mortality is applied they are still worryingly high and political adjustment 

represents a poor management strategy.  
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Figure 1. The effect of political adjustment on the probability of stock collapse within 40 years in modelled scenarios  
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(b)  
(d) 

(a) Probability of collapse for herring where 

unexploited biomass, B0 = 100, 1000 and 

3,000,000, (b) Probability of collapse for 

herring when 20% and 50% of juveniles 

experience unaccounted mortality before 

recruitment to the targeted fishery where B0 = 

100, (c) Probability of collapse for cod where 

B0 = 100 and 300,000, (d) Probability of 

collapse for cod when 20% and 50% of 

juveniles experience unaccounted mortality 

before recruitment to the targeted fishery where 

B0 = 100. Scenarios a and c show that the value 

assigned to B0 has no effect on the probability 

of collapse results. Scenarios b and d only show 

the results for B0 = 100 to improve the clarity of 

presentation. Full results for all values of B0 are 

presented in Table 15. The probability of 

collapse at average levels of political 

adjustment observed under the Common 

Fisheries Policy (33%) is indicated by the solid 

vertical and horizontal lines. Details of the 

model can be found in the Appendices of 

O'Leary et al. 2011 and this paper (recruitment 

equation A.10 replaces equation A.9 for this 

simulation). 
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Table 1. Probability of Collapse (%) when Scientific Advice is Followed (MSY) and 

when TACs are adjusted by the average PAI (33%) with and without unaccounted 

juvenile mortality for herring and cod. 

Herring 

 No unaccounted 

juvenile mortality 

Unaccounted juvenile mortality level 

20% 50% 

MSY 33% MSY 33% MSY 33% 

B0 = 100 0.82 10.35 3.23 25.37 20.12 70.28 

B0 = 1000 0.84 8.94 2.81 23.70 19.52 68.10 

B0 = 
3,000,000 

0.91 9.07 2.98 22.78 19.92 68.21 

Cod 

 No unaccounted 

juvenile mortality 

Unaccounted juvenile mortality level 

20% 50% 

MSY 33% MSY 33% MSY 33% 

B0 = 100 0 4.78 1.04 42.73 63.48 99.80 

B0 = 300,000 0 4.53 1.02 40.51 57.54 99.59 
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Table 2. Parameter values for simulations 

Parameter Value Description 

Herring Cod 

Virgin 
biomass, B0 

100  
1000 
3,000,000 

100  
300,000 

Also referred to as carrying capacity. We 
modelled the virgin biomass of herring at 
100, 1000 and 3,000,000 and cod at 100 
and 300,000. These values were chosen 
according to the estimates of North Sea 
cod and herring suggested by Cook et al. 

(in review) of 300,000 tonnes and 
3,000,000 tonnes respectively. The value 
of 1000 for herring was to examine 
whether there was any difference from our 
initial value of 100 and a biomass an order 
of magnitude greater. 

Survivorship, s 0.88 0.88 Survivorship was taken to be a function of 
natural morality, taken as 0.2 based on 
estimates by Pauly (1980), and growth in 
mass of surviving individuals each year, 
taken to be 10%. 

Steepness of 
stock-
recruitment 
curve, z 

0.74 0.84 Represents how steeply the Beverton-Holt 
stock recruitment curve ascends. Values 
taken from Myers et al. (1999). 

α 0.3968 0.732 Recruit production parameter 

β 0.0794 
0.0794 
2.65-5 

0.076 
0.0076 
2.53-6 

Recruit production parameter 

Lag time, L 3 4 Lag time in years between reproduction 
and recruitment to the fishery. 
Estimates for North Sea cod by Nash et al. 

(2010) indicate the age-at-50% maturity 
falling between 2 to 4.5 years with 
females maturing older than males. 
ICES estimates that on average North Sea 
Herring matures at age 369). 

BLIM BMSY The biomass level at which the TAC 
system is implemented. 

Lognormal 
distribution 
parameters 

Mean = 
0.73, 
Variance = 
1.31 

Mean = 0.84 
Variance = 
0.37 

See Myers et al. (1999). Mean values are 
logged.  

Population 
collapse 

0.1B0 10% of virgin biomass (Worm et al. 
2006). 

Unaccounted 
juvenile 
mortality rate, j 

20%  
50% 

Proportion of juveniles caught through 
unaccounted mortality.  
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 ICES HAWG Report 2010, Annex 3 – Stock Annex North Sea Herring. Available at: 

http://www.ices.dk/reports/ACOM/2010/HAWG/Annex-03%20Stock%20Annex%20-

%20North%20Sea%20Herring.pdf 
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5. The assumption that increasing the TAC always increases the out-turn catch is 

incorrect. 

Cook et al. (in review) highlight the fact that the TAC is often taken from both 

mature and immature fish and argue that consequently our simulations of juvenile 

bycatch were unrealistic. We agree that landings are often made which include 

juvenile fish and these count towards the overall TAC for that species. It is also true 

that juvenile fish may be a component of the calculated MSY. In fact, it has been 

suggested that it would be better to exploit the whole age structure of a species rather 

than targeting the larger older individuals of a population (Law et al. 2012). 

However, whilst this may be the case we modelled additional juvenile bycatch (and 

mortality) to the ‘adult’ TAC as often juveniles are discarded due to being 

undersized or low value (known as high grading) (Gillis et al. 1995; Catchpole et al. 

2005). Even if the value of 50% used within our simulations is high as claimed by 

Cook et al. (in review) the point of running these scenarios was to illustrate that 

over-quota mortality, be it juvenile mortality, the result of high grading or illegal, 

unreported and unregulated fishing, will worsen the situation created by politicians 

when they consistently ignore scientific advice in decision-making. The simulations 

presented here show that even if the unaccounted juvenile mortality rate is lower at 

20%, the probability of collapse still rises considerably with political adjustment 

(Figure 1 and Table 1).  

Cook et al. (in review) also argue that the uncertainties relating to stock assessment, 

modelling and implementation are such that the simplistic target of managing 

fisheries at BMSY may not succeed in maintaining a sustainable fishery. We do not 

dispute this and also recognise that ICES harvest control rules (HCRs) are tested to 

include various considerations of uncertainty. Within our simulations, for simplicity 

we assumed scientists have perfect knowledge regarding the status of stocks. 

Consequently, for our purposes BMSY was deemed to be an appropriate target. In 

addition, Cook et al. (in review) argue that the simple HCR we applied to our model 

in O’Leary et al. (2011) may be inherently risk prone. The HCR used is based on the 

concept of MSY, with a precautionary biomass of BMSY. TACs decline proportionally 

when stocks fall below BMSY and are set to zero when stock size reaches 10% of B0. 

In fact, a similar HCR was presented by Froese et al. (2011) as a more sustainable 
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method of calculating total allowable catches within European fisheries. Froese et al. 

(2011) showed that the application of this type of rule could have prevented past 

fisheries collapses and would be able to deal with strong cyclic variations in 

recruitment. Consequently, while our HCR may not reflect those used in the 

management of many stocks at present, we think it is a valid generic model to 

evaluate trends over time. 

6. The assumption that juvenile fish are excluded from the TAC is incorrect. 

Further, taking examples from the North Sea and the West of Scotland, Cook et al. 

(in review) argue that while our dataset shows that for the stocks studied 68% of 

decisions set total allowable catches higher than scientifically recommended, actual 

out-turn catch achieved is often below the overall TAC set, taking examples from the 

North Sea and the West of Scotland. The mean shortfall of catch they report is -0.17, 

a value that is approximately half of the mean TAC inflation factor that we report in 

O’Leary et al. (2011). Consequently, their argument that this catch shortfall balances 

out our TAC inflation factor is wanting. In addition, it is worth asking why these 

TACs are not filled. Presumably this is not because fishers note the inflation factor 

and seek to reduce their catches back in line with scientific advice. Instead, it is more 

likely that catches are misreported (Simmonds 2007; Zeller et al. 2011), TACs are 

too high for the stocks present (either scientifically or politically) resulting in 

apparent underutilisation (Karagiannakos 1996), or catches may be constrained by 

TACs for other targeted fisheries or by TACs for bycatch species (Andersen et al. 

2009).  

Summary 

In summary, while Cook et al. (in review) highlight some inaccuracies in our paper 

(i.e. typographical errors in the equations, the application of stochasticity) their main 

criticisms of our paper are invalid having misinterpreted both the conclusions that we 

made and the aim of our model. The aim of our model was to explore the 

implications of politically-motivated fisheries decision making, and its conclusion 

was that this amount to systematic fisheries mismanagement. Cook et al. (in review) 

claim that we “blame managers and politicians for mis-management based on a 

poorly constructed model”. Actually, we blame managers and politicians for 
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mismanagement on the basis of our analysis of historical data on decisions. Of this 

historical data analysis Cook et al. (in review) make no mention except to show that 

often the actual (reported) landings are below the agreed TAC. While this may be the 

case in some areas, this is unlikely to mean that fishing mortality (direct or indirect, 

legal or illegal) falls below those TACs. Our model does not predict the collapse of 

stocks within the next 40 years as Cook et al. (in review) interpreted. Instead it was 

designed to illustrate that systematically exceeding scientific advice regarding total 

allowable catches may have serious consequences for the status of stocks. The 

reanalyses with the modified model show here indicate that our main conclusions are 

robust: past decision-making by fisheries ministers’ has contributed considerably to 

the poor state of many fish stocks within European waters and that unless politicians 

are legally bound to follow scientific recommendations after the 2012 reform of the 

Common Fisheries Policy, the reform is unlikely to produce sustainable and 

productive fisheries in the future. 

Appendix 

The model described within O’Leary et al (2011) ‘Fisheries Mismanagement’ and 

this paper is summarised here. Equations A.1 to A.9 provide the structure of the 

original model corrected for typographical errors. Equations A.1 to A.8 and A.10 

describe the model presented within this manuscript for cod and herring. 

Fish population dynamics are described in terms of biomass. In its discrete form this 

model can be expressed as: 

E.@< = GE. + H. − J.                           (A.1) 

Where s describes the change in biomass (B) of the stock from one year (t) to the 

next (t+1) as a result of survivorship in the face of natural mortality only; R 

represents the recruitment to the population in year t and C is the catch taken from 

the stock in year t.  

Recruitment (Rt) is derived from a re-parameterised version of the Beverton-Holt 

(1957) stock recruitment relationship which includes a steepness parameter (z) (Mace 

and Doonan, 1988) to represent recruitment, relative to the recruitment at 

equilibrium in the absence of fishing, that occurs when spawner abundance has been 

reduced to 20% of its virgin level (B0). The reparameterisation of Beverton-Holt to 
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include a z value defines the parameters α and β (necessary to calculate recruitment 

as: 

K = N5
U5 V1 − �W�X.A

X.YW �Z                                        (A.2) 

M = W�X.A
X.Y[U5                            (A.3) 

Recruitment can thus be represented deterministically as: 

H. = � NO3P
Q@RNO3P�                               (A.4) 

where HX = EX�1 − G�.                                                    (A.5) 

Here, L refers to the time lag in years between birth and recruitment to the fishery. 

Recruitment in year t therefore depends on the stock biomass L years earlier. 

Consequently, two distinct age groups are modelled; recruits, i.e. fish aged less than 

L, and fish older than L years which are fecund, i.e. capable of producing new 

biomass. 

Within this model the biomass at MSY (BMSY), and the MSY itself, are defined as: 

ED*\ = <
R V] Q

�<��� − KZ                 (A.6) 

^_` = ED*\ �G − 1 + <
Q@RNabc�                      (A.7) 

The TAC was calculated by equation A.8 where BLIM is defined as BMSY and 0.1B0 

represents the ‘collapse’ threshold. 

deJ = �NO�X.<N5×D*\
NP?a�X.<N5 �                    (A.8) 

In our original model, stochasticity (σ) was introduced into the system via the 

recruitment equation for each year of a simulation run. Recruitment was calculated 

using the deterministic equation which was then multiplied by a value drawn 

randomly from a uniform distribution spanning –1 to 1. Juvenile bycatch was then 

introduced into the model by adjusting recruitment during each year of a simulation 

run (equation A.9). 
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H. = g� NO3P
Q@RNO3P� . �1 + T�	h i              (A.9) 

For the model presented within this manuscript, recruitment variability was assumed 

to follow a lognormal distribution and applied through the multiplication of a 

randomly drawn number (ln(r)). Unaccounted juvenile mortality (u) (previously 

referred to as juvenile bycatch) was introduced by adjusting recruitment accordingly.  

H. = g� NO3PQ@RNO3P� . q����	h�                        (A.10) 
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Acronyms and Abbreviations 

ABNJ Areas Beyond National Jurisdiction 

ACOM Advisory Committee (ICES) 

BLIM Biomass limit reference point 

BMSY Biomass corresponding to MSY 

Bpa Biomass precautionary approach reference point 

CBD Convention on Biological Diversity 

CFP Common Fisheries Policy 

CGFZ Charlie Gibbs Fracture Zone 

CMAX Maximum possible catch 

CMIN Minimum possible catch 

CPUE Catch per unit effort 

EBFM Ecosystem-Based Fishery Management 

EBSA Ecologically Biologically Significant Area 

EEZ Exclusive Economic Zone 

EU European Union 

FAO Food and Agriculture Organisation 

HCR Harvest Control Rule 

HELCOM 
Helsinki Commission  

(Baltic marine environment protection commission) 

ICCAT International Commission for the Conservation of Atlantic Tunas 

ICES International Council for the Exploration of the Sea 

IMO International Maritime Organisation 

ISA International Seabed Authority 

ITQ Individual Transferable Quota 

IUU Illegal, Unregulated and Unreported Fishing 

MAST Multi-stock Age-Structured Tag-integrated stock assessment model 

MPA Marine Protected Area 

MSY Maximum Sustainable Yield 

NAFO Northwest Atlantic Fisheries Organisation 

NAMMCO North Atlantic Marine Mammal Commission 

NASCO North Atlantic Salmon Conservation Organisation 

NEAFC North-East Atlantic Fisheries Commission 
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OSPAR 

Oslo-Paris Convention.  

(Conservation body responsible for the marine environment of the 

North-East Atlantic) 

PAI Political Adjustment Index 

RFMO Regional Fisheries Management Organisation 

SCRS Standing Committee on Research and Statistics 

SSB Spawning Stock Biomass 

STECF Scientific, Technical and Economic Committee on Fisheries 

TAC Total Allowable Catch 

VME Vulnerable Marine Ecosystem 

VPA Virtual Population Analysis 

WSSD World Summit on Sustainable Development 

WWF Worldwide Fund for Nature 

UNCLCS United Nations Commission on the Limits of the Continental Shelf 

UNCLOS United Nations Convention on the Law of the Sea 

UNGA United Nations General Assembly 
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