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Abstract 

Solvent-based post-combustion capture (PCC) is a well-developed technology for CO2 

capture from power plants and industry. A reliable model that captures the dynamics 

of the solvent-based capture process is essential to implement suitable control system 

design. Typically, first principles models are used, however, they usually require 

comprehensive knowledge and in-depth understanding of the process. In addition, the 

high computational time required and high complexity of the first principles models 

makes it unsuitable for control system design implementation. This thesis is aimed at 

the development of a reliable dynamic model via system identification technique as 

well as a suitable process control strategy for the solvent-based post-combustion CO2 

capture process.  

The nonlinear autoregressive with exogenous (NARX) inputs model is employed to 

represent the relationship between the input variables and output variables as two 

multiple-input single-output (MISO) sub-systems. The forward regression with 

orthogonal least squares (FROLS) algorithm is implemented to select an accurate 

model structure that best describes the dynamics within the process. The prediction 

performance of the identified NARX models is promising and shows that the models 

capture the underlying dynamics of the CO2 capture process.  

The model obtained was adopted for various process control system design of the 

solvent-based PCC process (conventional PI, MPC, and NMPC). For the conventional 

PI controller design, multivariable control analysis was carried out to determine a 

suitable control structure. Control performance evaluation of the control schemes 

reveals that the NMPC scheme was suitable to control the solvent-based PCC process 
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at flexible operations. Findings obtained from the thesis underlines the advancement 

in dynamic modelling and control implementation of solvent-based PCC process. 

Keywords: Solvent-based post-combustion capture; chemical absorption; System 

Identification; NARX; FROLS-ERR, control structure configuration, conventional PI, 

MPC, NMPC 
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1 Introduction 

This chapter introduces the study on the system identification and process control of 

the solvent-based post-combustion CO2 capture process. Sections 1.1 and 1.2 

describe the background and motivation of the study. Section1.3 presents the aim and 

objectives of this thesis. The novel contributions, scope of study and research 

methodology are detailed in Sections 1.4, 1.5 and 1.6 respectively. Section 1.7 

presents the outline of the thesis.  

1.1 Background 

1.1.1 Energy Demand, Climate change and CCUS 

The increased world population and economic activities around the world have led to 

an increased global energy demand. This has resulted in increased electricity 

consumed in 2018 as shown in Figure 1-1.Although, renewable energy is predicted to 

become dominant in global energy mix (Mac Dowell & Staffell, 2015), fossil fuels still 

contributes the largest share in meeting global energy demands. 

 

Figure 1-1 World electricity consumption by various countries from 2000 -2018 (Enerdata, 

2019) 
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Fossil fuel combustion for electricity and heat generation is the biggest culprit for 

anthropogenic CO2 emission (Figure 1-2) which is regarded as a major contributor to 

global warming (Lawal et al., 2010; Huaman & Jun, 2014; Coent, 2017). Atmospheric 

CO2 levels, which stands currently at about 407.4ppm, could reach catastrophic level 

by 2100 if present trends in emission continues unabated as shown in Figure 1-3 

(Lindsey, 2019). The consequences could range from rise in global average 

temperature to a series of severe impact on agriculture, water security and sea level 

(Huaman & Jun, 2014).  

There is now a global commitment to reduce CO2 emission. At the COP21 in 2015, 

196 countries historically agreed to support role out of CO2 abatement technologies to 

keep global temperature rise below 2oC above pre-industrial levels and to pursue 

efforts to limit the temperature rise further to 1.5oC. 

 

Figure 1-2 World CO2 emission from fuel combustion by sectors in 2016 (Coent, 2017). Note: 

this shows allocation of electricity and heat end-use sectors. 
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Figure 1-3 Global average atmospheric CO2 from 1994-2019 (Lindsey, 2019)  

The IEA in its BLUE Map scenario proposed a portfolio of technologies for reducing 

CO2 emission from the power sector shown in Figure 1-4 (Huaman & Jun, 2014). 

Carbon capture, CO2 utilisation and storage (CCUS) is considered the most strategic 

technology for sustainably and economically meeting carbon emission reduction 

targets (CERTs) for 2050 (Huaman & Jun, 2014; GCCS, 2017). The global Institute of 

CCS in a new report confirm that the PARIS agreement cannot be met in a cost 

effective manner without CCUS (Global CCS institute, 2017).  

CCUS mainly involves separation of CO2, the transportation, utilisation and storage 

(Wang et al., 2011). CO2 is first separated from effluent gases generated from 

industrial energy processes through one of the three approaches: post-combustion 

capture, pre-combustion capture and oxy-fuel process (Wang et al., 2011). The 

captured CO2 is then transferred to either a plant where CO2 is converted to other 

products or a stored underground in geological formations (Zhu, 2019).   
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Figure 1-4 technology options to reduce CO2 emission in power generation (Huaman & Jun, 

2014) 

The post-combustion capture (PCC) technology  is the most matured of the capture 

technologies (Bui et al., 2014). This is attributed to their suitability to be retrofitted to 

existing power plants and their capacity to treat flue gas with low CO2 partial pressure, 

(Lawal et al., 2010). The PCC technology is the focus of this thesis and therefore will 

be discussed in further details below. 

1.1.2 Post-combustion CO2 capture process 

The PCC process removes CO2 in flue gases emanating from fossil fuel combustion 

(Leung et al., 2014). This process is placed after the removal of contaminants in the 

flue gas such as NOx, SOx and particulate matters as shown in Figure 1-5.   
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Figure 1-5 Schematic diagram of a power plant  with post-combustion CO2 capture (Wang et 
al., 2017) 

The PCC process employs several separation technologies for CO2 capture namely: 

(a) Adsorption; (b) Absorption; (c) Cryogenic separation and (d) Membrane separation. 

1.1.2.1 Adsorption 

The adsorption process involves selective separation of CO2 using a solid sorbent 

material (Harker et al., 2002; Wang et al., 2011; Lee & Park, 2015). The sorbent 

material can be regenerated either through temperature swing (TSA) (Tlili et al., 2009; 

Pirngruber et al., 2013), pressure swing adsorption (PSA) (Ishibashi et al., 1996; 

Hasan et al., 2012), electrical swing adsorption (ESA) (Grande & Rodrigues, 2008) or 

a combination of the technologies.  

Although the adsorption enthalpy for this technology is generally low leading to low 

regeneration energy requirement, the CO2 selectivity and adsorptive capacity are low 

(Álvarez-Gutiérrez et al., 2017; Yu et al., 2017). This has limited their application on a 

commercial scale to treat a large amount of flue gas, despite its maturity in the 

chemical Industry (Samanta et al., 2012). 
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1.1.2.2 Cryogenic separation  

In the cryogenic separation process, the flue gas firstly goes through a condensing 

heat exchanger where it is cooled and dried. The dry flue gas is then compressed via 

a compressor. The flue gas is further cooled to a temperature (between -120oC to -

135oC) slightly above the point where CO2 forms a solid, which is separated via a solid-

gas separator. The solid CO2 is reheated and pressurized via a pump to a safe location 

(Burt et al., 2010). The cryogenic separation process has advantages of no chemical 

absorbents or adsorbents as well as no large pressure difference needed and a high 

CO2 purity can be achieved. However, the cryogenic separation process is considered 

expensive and also not realistic technology for PCC due to the high refrigeration cost 

(Annaland et al., 2015). Thus, this has made the technology not commercially viable. 

1.1.2.3 Membrane separation 

This is a technology, which involves the selective separation of specific components 

from a gas stream (Olajire, 2010). In a solvent-based PCC process, the membrane 

technology utilizes a membrane contactor to separate CO2 from flue gas. The 

membrane contactor contains membranes, which are semi-permeable barriers that 

enable separation of specific components via various mechanisms (Zhao et al., 2016). 

The membrane mainly filters CO2 gas component from the flue gas. 

The membrane technology is seen to be a more promising technology than the 

conventional absorption technology for CO2 capture (Mansourizadeh & Ismail, 2009; 

Zhang et al., 2015), but it has mostly been demonstrated at laboratory scale (Zhao et 

al., 2016). This is due to critical challenges from plugging by impurities and membrane 

wetting which affects the mass transfer and consequently the CO2 capture 

performance (Zhao et al., 2016).  
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1.1.2.4 Physical Absorption  

In physical absorption process, a solvent absorbs CO2 physically according to Henry’s 

law (Olajire, 2010; Wang et al., 2011). Physical solvents use organic solvents absorbs 

acid gas components physically rather than reacting chemically (Olajire, 2010). CO2 

removal by physical absorption is based on the solubility of CO2 in the solvents, which 

depends on the partial pressure and temperature of the feed gas (Olajire, 2010; Wang 

et al., 2011). The physical absorption occurs at higher CO2 partial pressure and low 

temperature and thus not suitable for a post-combustion capture system (Wang et al., 

2011). The solvent is regenerated by either heat application or pressure reduction. 

The energy requirement for regeneration is low due to the weak interaction between 

CO2 and the absorbent (Olajire, 2010). Commercial physical solvents include Selexol 

(dimethyl ether of polyethylene glycol), Rectisol (methanol), propylene carbonate and 

N-methyl-2-pryrollidone gas (Olajire, 2010; Wang et al., 2011).  

1.1.2.5 Chemical Absorption 

The chemical absorption process is a technology widely applied in natural gas and 

chemical industries, where CO2 partial pressure is low in the gas stream (Asif et al., 

2018). The chemical absorption process has been commercialized to capture CO2 

from large-scale fossil-fuel power plant. Some completed projects still in operation 

include SaskPower Boundary Dam Carbon Capture and Petra Nova Carbon Capture 

(Akinola et al., 2019). Commonly used chemical solvents include aqueous 

alkanoamines (MEA, DEA, MDEA, etc.), piperazine (GPSA, 2004). Among which 

aqueous MEA is the most widely used solvent. Figure 1-6 gives a schematic process 

flow diagram of a chemical absorption process. Flue gas from fossil fuel-fired power 

plants flows into absorber bottom and it encounters lean solvent counter-currently, 

where the solvent chemically absorbs CO2. The rich solvent is regenerated in the 



8 
 

stripper using heat input from steam taken out from the power plant after going through 

a heat exchange (Lawal et al., 2010; Wang et al., 2011). It was recommended by 

Lucquiaud & Gibbins, (2011) that the steam extraction point should be between the 

Intermediate pressure (IP) and low pressure (LP) turbines to obtain maximum power 

output. Aqueous solution of the solvent from the bottom of stripper is recycled back 

into the absorber while CO2 from the stripper top is compressed and transported via a 

pipeline for either underground storage or utilized for enhanced oil recovery (EOR), 

chemical and food manufacturing (Abu-Zahra et al., 2007). The flue gas from coal-

fired power plant goes through a Flue Gas Desulphurization (FGD) unit to remove SOx 

and either a Selective Catalytic Reduction (SCR), Selective Non-catalytic Reduction 

(SNCR) or low NOx burners to remove NOx, before flowing into the absorber, based 

on environmental regulations (Wang et al., 2011).  

Chemical absorption is selected as the most suitable technology due to its 

technological maturity and capability to be retrofitted in an existing power plant (Lawal 

et al., 2010).  Despite its maturity, the issue of its large energy requirement for solvent 

regeneration has been a major concern. This is because a large amount of steam from 

the coal-fired power plant is extracted to meet this requirement, resulting in a lower 

net power generated by the power plant, thereby reducing its efficiency (Wall, 2007; 

Skorek-Osikowska et al., 2012; Goto et al., 2013). This study will focus on the chemical 

absorption process. 

MEA has generally been considered as a benchmark for solvents adopted in PCC 

through on chemical absorption process (Oko et al.,  2017). However, the solvent 

regeneration requirement has been a major challenge. In addition, the corrosive and 

degradable nature of MEA solvent in the presence of the flue gas by-products such as 

SOx and NOx will increase electricity production cost (Bui et al., 2014). Thus, the need 
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to develop strategies to enhance the energy efficiency of the capture plant through 

developing an environmentally friendly solvent that has high reaction rate with CO2 

and low energy requirement for regeneration. Many solvents have been developed or 

under development to tackle the drawbacks of the conventional MEA solvent (Cadena 

et al., 2004; Mokhtarani et al., 2009; Bandrés et al., 2010; Supasitmongkol & Styring, 

2010; Llovell et al., 2012; Tomida et al., 2013; Huang et al., 2014, Zacchello et al., 

2017; Isa et al., 2018; Oko et al., 2018; Akinola et al., 2019). More investigations are 

required to have a better understanding of the reaction mechanism of new solvents. 

For this PhD study, MEA is selected to capture CO2 from flue gas in the PCC process 

based on chemical absorption. 

 

Figure 1-6  Process flow diagram of the chemical absorption plant (Lawal et al., 2010) 
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1.2 Motivations for this study 

Stringent environmental legislations around the world to reduce CO2 emissions have 

prompted the need to deploy new energy sources such as nuclear and renewable 

energy. This will bring a significant shift in the dominant role of fossil fuel, especially 

coal, in the energy system and the need for flexible operation of coal-fired power 

plants(Mac Dowell & Staffell, 2015). The flexible operation of the coal-fired plant will 

lead to fluctuation in the flue gas flowrate and composition flowing to the absorption 

column, as well as steam to the reboiler. This introduces disturbances into the capture 

plant, thus affecting the dynamics of the solvent-based PCC plant. The flexible 

operation of the solvent-based PCC plant (i.e. variation of the capture rate in 

accordance with electricity demand) is important to cope with the power plant 

operation. Investigation of the solvent-based PCC plant response to disturbances 

during various flexible operation modes such as start-up, shutdown and load following 

attention (Chalmers et al., 2009; Cohen et al., 2011; Wiley et al., 2011; Bui et al., 2014; 

Mac Dowell and Shah, 2014). In addition, a suitable control strategy is required for the 

solvent-based PCC plant to handle these disturbances. 

An accurate dynamic model is required to have a comprehensive study of the CO2 

capture process (especially interactions between the coal-fired power plant and 

capture plant), optimize the operational procedure for dynamic periods (such as start-

up and shutdown operation) and develop a suitable process control strategy. Many 

studies on dynamic modelling of a solvent-based PCC were carried out on first 

principles models (Lawal et al., 2009, 2010, 2012, Biliyok et al., 2012a, 2012b; Mac 

Dowell et al., 2013; Mac Dowell and Shah, 2014). Challenges with high computational 

time when developing a detailed solvent-based PCC capture model especially when 

integrated with coal-fired power plant and its high level of complexity makes it difficult 
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to implement relevant process control strategies. Thus, simplification of the first 

principles model is required to reduce the computational time for simulation (Peng et 

al., 2003; Oko et al., 2015). This has significantly motivated the use of data-driven 

modeling approach via system identification techniques, to represent the solvent-

based PCC model. This involves constructing a suitable model that best describes the 

relationship between the process input and output variables. 

1.3 Aim and Objectives of this study 

This research is aimed at the development of a reliable dynamic model via system 

identification technique as well as a suitable process control strategy for the solvent-

based post-combustion CO2 capture plant. The research objectives include the 

following: 

 To provide a comprehensive review of current research status in dynamic 

modelling, system identification and control of solvent-based PCC plant. 

 To carry out data collection from the first principles solvent-based PCC model 

at pilot scale. 

  To carry out a data-driven dynamic model development via nonlinear system 

identification of the solvent-based PCC process.  

 To develop a conventional PI control scheme on the identified solvent-based 

PCC model.  

 To develop a linear model predictive control (MPC) scheme on the identified 

solvent-based PCC model. 

 To develop a nonlinear model predictive control (NMPC) scheme on the 

identified solvent-based PCC model. 
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1.4 Novel Contribution of the Thesis  

Extensive studies have been carried out on model development via system 

identification and controllability analysis of the solvent-based PCC plant. Most of these 

studies have represented the CO2 capture process as a linear model (Dunia et al., 

2011; Nittaya et al., 2014a; Sahraei & Ricardez-Sandoval, 2014; Luu et al., 2015; 

Mehleria et al., 2015; He et al., 2016). However, the capture process exhibits highly 

nonlinear behaviour (Manaf et al., 2016). As a result, existing linear models fail to 

capture the process dynamics especially during large load variation scenarios 

encountered during flexible operation (He et al., 2016). Only a few studies have 

represented the CO2 capture process as nonlinear model (Sipöcz et al., 2011; Li et al., 

2015, 2017; Abdul Manaf et al., 2016). However, the techniques adopted for the 

nonlinear model development in these studies is developed on the basis of an 

assumed model order. Model developed based this assumption might contain 

irrelevant model terms that does not have significant effect on the process output.   

In contrast, this thesis proposes a nonlinear transparent parsimonious NARX model 

that captures the relationship between the input variables and output variables in the 

CO2 capture process. This is developed using forward regression orthogonal least 

square (FROLS) algorithm. This algorithm selects the important model terms one by 

one, in a stepwise manner, based on their significance, which is measured using a 

simple but useful index called the error reduction ratio (ERR). In addition, new linear 

(PI and MPC) and NMPC control schemes are developed, implemented and compared 

using the model developed through FROLS-ERR algorithm. 
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1.5 Scope of this study 

 

Figure 1-7 scope of the study  

The study is mainly focused on the solvent-based PCC process (see Figure 1-7). The 

scope of the study is limited to data-driven modelling via system identification and 

control of the solvent-based PCC process. The study utilizes the first principles model 

developed at pilot scale by Lawal et al., (2010). It should be noted that the following 

are outside the battery limit of the study: 

 Power plant model development  

 CO2 compression and transport design 

  Flue gas desulphurization (FGD) design 

The interconnectivity of the power plant to the CO2 capture plant includes the flue gas 

stream to the absorber and the steam draw-off at the IP/LP crossover configuration in 

the power plant to the reboiler located at the regeneration column. In this research, it 

was ensured that the variation in the process condition of these streams reflect the 

operational changes in the power plant.  

 

 

 

 

 
 
 

 System identification 

 Control design and 
implementation 

 Control Performance 
evaluation 
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1.6 Research methodology and tools used for the study 

1.6.1 Research methodology  

 

Figure 1-8 Overview of Research methodology (in the Figure, ‘DM’ refers to ‘Dynamic 
Modelling’; ‘SI’ refers to ‘system identification’; ‘CD’ refers to-control design   

The control scheme design and implementation on the solvent-based PCC process is 

essential to adequately handle process interactions with the system. Figure 1-8 gives 

an overview of the research methodology. 

1.6.2 Software tools used for the study 

1.6.2.1 gPROMS®  

gPROMS® (general PROcess Modelling System) is an advanced process modelling 

platform for creating and managing custom (equation-based) models ranging from a 

single unit to entire process and optimization environment. In this study, the first 

principles gPROMS® model developed by Lawal et al., (2010) at pilot scale was utilized 
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to obtain a dynamic operational data. It was referred to in chapter 3 in the nonlinear 

system identification of the solvent-based PCC model. The gPROMS model utilised 

have been validated both in steady-state and dynamic operation (Biliyok et al., 2012a; 

Lawal et al., 2010). Thus, the dynamic model is reliable to be adopted for this study.  

1.6.2.2 Matlab® Toolbox/ Simulink®  

Matlab® (Matrix laboratory) is a high-performance technical computing language. It 

allows for the integration of computation, visualization and programming in a user-

friendly interface (Mathworks, 2019). This enables algorithm development, data 

analysis, modelling and simulation. Simulink® is an additional block diagram 

environment for model based design and simulation (MathWorks, 2015).  The Matlab®/ 

Simulink® was adopted to carry out the following: 

 Development of the forward regression least square (FROLS) algorithm as the 

nonlinear system identification technique using Matlab scripts. 

 State representation of the solvent-based PCC process in Simulink® 

environment. 

 Convention PI control scheme design and implementation in Simulink® 

environment. 

 MPC scheme design and implementation in Simulink® environment. 

 NMPC scheme and implementation using Matlab® script. 

1.7 Outline of the Thesis 

Chapter 2 presents a comprehensive literature review on past and current research 

activities (both experimental and computational) on dynamic model development, 

system identification and process control design of the solvent-based PCC process.  
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Chapter 3 presents the nonlinear system identification of the solvent-based PCC 

process using the FROLS-ERR algorithm. This chapter focused on the process data 

acquisition and implementation of system identification technique on the data 

acquired. Identified models obtained were evaluated based on prediction efficiency 

(PE) evaluation, statistical analysis and process dynamic analysis to ensure that the 

identified models capture the essential dynamics of the solvent-based PCC process. 

Chapter 4 presents the multivariable control design of the solvent-based PCC process 

using the conventional PI controller. In this chapter, state-space realisation of the 

identified CO2 capture model and multivariable control structure analysis were 

discussed. In the end, the performance evaluation of the conventional PI control 

scheme was investigated. 

Chapter 5 presents the design and implementation of a linear model predictive control 

(MPC) scheme on the solvent-based PCC process. The model linearization of the 

solvent-based PCC model was discussed as well as the MPC design. The 

performance evaluation of the MPC scheme on the solvent-based PCC process model 

under different scenarios was investigated. 

Chapter 6 presents the design and implementation of nonlinear model predictive 

control (NMPC) on the solvent-based PCC process. NMPC utilizes the identified 

nonlinear CO2 capture model. The chapter details the NMPC design. Control 

performance evaluation of the NMPC scheme was also investigated. 

Chapter 7 draws the conclusion of the study and gives recommendation for future 

work. 
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2 Literature review 

2.1 Introduction  

The chapter is aimed at giving a summary of recent research activities on dynamic 

modelling (steady state and dynamic), system identification and process control of the 

solvent-based PCC process. Section 2.2 presented a review of existing pilot and 

commercially deployed PCC plant. Review of recent studies on the model 

development of solvent-based PCC process (first principles and data-driven modelling 

(SI) approach is  presented in Section 2.3. Section 2.4 presented a review of current 

studies on process control system design of the solvent-based PCC process. The 

summary of the literature review is presented in section 2.5. 

2.2 Review of Pilot plants and commercially deployed plants 

2.2.1 Review of solvent-based post-combustion CO2 capture pilot plants  

This section summarizes recent R&D activities on post-combustion CO2 pilot plant. 

Past R&D activities on pilot scale PCC plant was summarized by Wang et al., (2011), 

Mumford et al., (2015) and Oko et al., (2017). A few successful operational pilot PCC 

plant integrated with power plant are shown chronologically in Table 2-1. The solvent-

based PCC pilot plant test bridge the gap between lab-scale experiments and 

commercialised scale plants (Mumford et al., 2015). Various Investigations are carried 

out during pilot plant studies, which include solvent evaluation (either single amine, 

amine-based blends or proprietary solvents), corrosion studies, solvent degradation, 

operation study and process energy efficiency (Chi & Rochelle, 2002; Cottrell & Feron, 

2011; Faber et al., 2011; Lepaumier et al., 2011; Seibert et al., 2011; Rabensteiner et 

al., 2014; Stec et al., 2016). CO2 captured during the tests were either vented to the 

atmosphere (Radgen et al., 2014; Thimsen et al., 2014; Lee et al., 2015), transported 
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for EOR (CCS, 2016; Wu et al.2016), stored underground (Hirata et al., 2014; Tanaka 

et al., 2014) or sold commercially (Wang & Xu, 2014). The successes documented in 

the demonstration plant has led to the commercialisation of some of its technologies.  

In the United Kingdom, a recent milestone attained in solvent-based PCC 

development is the capture of CO2 from a biomass-fired power plant at Drax Power 

Station using a proprietary solvent developed by C-Capture Ltd  (Drax, 2019). Analysis 

is being carried out based on data obtained from the pilot plant to understand the 

potential of the technology and how it can be scaled up (Drax, 2019).   
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Table 2-1 Summary of operational solvent-based PCC Pilot plant integrated into a power plant  

s/n Project location Company 
Capacity (Amt 

of CO2 
captured) 

Cost 
Operation

al date 
Reference 

1 Shengli China Sinopec 0.04Mt/yr N/A 2007 Wu et al.(2016) 

2 
Sigma Power Ariake 

Mikawa 
Japan Toshiba Corporation 10 t/day N/A 2009 Ohashi et al. (2011) 

3 Shidongkou China Huaneng 0.1 Mt/yr US$24M 2009 Wang & Xu, (2014) 

4 jilin China PetroChina 0.2Mt/yr US$ 11M 2009 CCS, (2016) 

5 Plant Barry 
Alabama, 

USA 
Southern Energy 0.1-0.15 Mt/yr N/A 2011 Hirata et al., (2014) 

6 Wilhelmshaven Germany E.ON 70t/day N/A 2012 
Radgen et al., 

(2014) 

7 Mongstad Norway Statoil 0.1 Mt/yr N/A 2012 
Thimsen et al., 

(2014) 

8 Boryeong Station 
South 
Korea 

Korea Electric Power 
Corporation (KEPCO) 

2t/day (phase1) 

200t/day 
(phase2) 

US $42M 2013 Lee et al., (2015) 

9 Tomakomai  Japan JCCS 45kt/yr US $70M 2015 
Tanaka et al., 

(2014) 
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2.2.2 Commercial deployment of solvent-based PCC plant 

Commercial large-scale solvent-based PCC plant has been widely deployed in various 

industries (mostly natural gas processing plant) across the world. Most recently, 2 

large scale PCC facilities became operational (Quest and Abu Dhabi CCS) attached 

to steam methane reformer (SMR) for hydrogen production and iron& steel production 

respectively. Despite the deployment of large-scale PCC facilities in various industrial 

sectors, this section only focuses on the deployment of large-scale PCC plants to 

power plants. For deployment of large-scale PCC plants to an existing power 

generation plant, the boundary Dam CCS plant in Canada and Petra Nova CCS plant 

in USA are the only operational CCS projects based on the chemical absorption 

process. Table 2-2 shows the specification of both operational CCS facilities. 

Table 2-2 Specifications of both Boundary Dam and Petra Nova CCS project (Mantripragada 
et al., 2019) 

Parameter Boundary Dam CCS plant Petra Nova CCS plant 

Location Saskatchewan, Canada Texas, USA 

New or Retrofit Retrofit Retrofit 

Gross Capacity (MW) 160 240 

Net capacity (MW) 
110 240 (+ excess power from 

cogeneration plant) 

Coal type Lignite Sub-bituminous 

Capture level 90% 90% 

Capacity of CO2 

captured  

1 million t/yr 1.4 million t/yr 

CO2 fate EOR EOR 

Solvent Cansolv KS-1 
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Parameter Boundary Dam CCS plant Petra Nova CCS plant 

Regeneration 

Steam from the power plant Natural gas co-generation 

(70MW using GE 7 EA 

turbine, half the power for 

CCS, rest sold to grid) 

Project capital cost US $1.3B US $1B 

As shown in Table 2-2, the main difference between Boundary Dam and Petra Nova 

CCS plant is the configuration of the regeneration steam source and auxiliary 

electricity. This affects the overall performance and cost of CO2 capture 

(Mantripragada et al., 2019). The Boundary Dam plant uses steam from the primary 

steam cycle, which reduces the power rate of the coal-fired power plant, for solvent 

regeneration (Mantripragada et al., 2019). Thus, increasing its cost of electricity 

generation. However, the Petra Nova plant utilizes a dedicated natural gas combined 

cycle (NGCC) power plant to supply regeneration energy (Mantripragada et al., 2019). 

Although it does not cause a parasitic load on the coal-fired power -plant, the net power 

station output increases as the NGCC power electrical output exceeds the demand for 

the CO2 capture system (Mantripragada et al., 2019). This brings about additional 

capital investment, operating expenses and CO2 emissions (Mantripragada et al.,  

2019).   

A few large-scale CCS projects at the early development stage include; Sinopec 

Shengli power plant CCS project (China) and Caledonia Clean Energy Project (United 

kingdom) (GCCS, 2019). 

2.2.3 Summary 

The solvent-based post-combustion CO2 capture technology based on chemical 

absorption is the first and only commercial technology that is operational for large-

scale coal-fired power plant. This technology has been widely tested in pilot-scale 



22 
 

plants. Some completed solvent-based PCC projects attached to power plants include 

SaskPower Boundary Dam carbon capture and Petra Nova carbon capture Projects 

(Mumford et al., 2015; Mantripragada et al., 2019).  Despite the commercial 

deployment of this technology, the cost of each project was unacceptably high (Oko 

et al., 2017). Thus, there has been a quest to reduce the CO2 capture cost by either 

process reconfiguration, new solvent development or both to improve the overall plant 

performance (Joel et al., 2014; Oko et al., 2017). To assess the technical and 

economic performance of each approach, technical and economic analysis via 

modelling and simulation are required. This is due to the convenience and cost-

effectiveness of adopting the modelling approach. This is further expounded upon in 

the next section. 

2.3 Model Development of the solvent-based post-combustion CO2 capture 

process 

This section details the model development of the solvent-based post-combustion CO2 

capture based on different approaches namely, first principles and data-driven 

modelling approach. The first principles approach utilizes chemical engineering 

principles to develop a mathematical model while the data-driven modelling approach 

uses the operational data from the process to obtain a mathematical model that relates 

the input variables with the out variables.  

2.3.1 First principles modelling approach 

The solvent-based post-combustion CO2 capture process involves gas-liquid mass 

transfer and chemical reactions occurring simultaneously. For model development via 

first principles approach, the gas-liquid mass transfer can be described based on 

either equilibrium based approach or rate-based approach. The equilibrium-based 
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approach assumes theoretical stages, where liquid and vapour attain equilibrium 

(Lawal et al., 2009). The gas-liquid equilibrium is rarely attained. As such, the 

assumption is unrealistic. Thus, each stage performance can be adjusted by using a 

tray efficiency correction factor to reflect a real stage performance. The rate-based 

approach gives a more accurate representation of the gas-liquid mass transfer within 

each column. For the rate-based approach, gas-liquid mass transfer is described using 

either two-film theory (Kvamsdal et al., 2009; Lawal et al., 2009, 2010; Harun et al., 

2011; Biliyok et al., 2012b) or penetration theory (Rahimpour & Kashkooli, 2004). 

Extensive details on these theories are readily available in literature Aroonwilas & 

Veawab, (2016). 

The chemical reaction of CO2 with chemical solvent is, however, described by either 

3 major reaction mechanism, namely zwitterion, termolecular and base-catalyzed 

hydration. Extensive details of these reaction mechanisms are available in literature 

(Da Silva & Svendsen, 2005). For the first principles model approach, CO2 reaction 

kinetics can be expressed as an approximation, assuming the reaction reaches 

equilibrium. This assumption is sufficient for fast reacting chemical solvent such as 

MEA (Lawal et al., 2010). For slow reacting chemical solvents, such as DEA and 

MDEA, the assumption is not sufficient and thus an accurate reaction kinetics 

description is required (Zhang et al., 2009). This is simplified by assuming pseudo first-

order reaction and introducing enhancement factor that accounts for the kinetics 

(Kvamsdal et al., 2009). 

Based on the combined mass transfer and chemical kinetics description, model 

development of the solvent-based PCC can be classified into 5 different levels of 

complexities as shown in Figure 2-1 (Kenig et al., 2001). Level 1 is considered to be 

the least accurate while level 5 is considered to be the most accurate. This is because 
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level 5 adopts a rate-based approach for mass transfer and the accurate reaction 

kinetics. 

The model development of the solvent-based PCC process are also classified as 

either steady models or dynamic models. Reviews on this model classification are 

presented in the next 2 sections.  

 

Figure 2-1 Representation of the level of complexity when modelling solvent-based PCC 
(Lawal et al., 2009) 

 

2.3.1.1 Current status on steady-state modelling of post-combustion capture 

plant  

Evaluation of a process plant performance through commercially available simulation 

software packages are proven to be a cost-efficient and timely approach (Bui et al., 

2014). The steady-state model development of solvent-based PCC plant is utilized for 

technical performance and economic impact on power plant. Several studies available 

1 2 
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in literature utilizes the solvent-based PCC steady-state model to investigate the 

following to improve the CO2 capture plant efficiency and cost: 

 Solvent performance evaluation (Abu-Zahra et al., 2007; 2007b) 

 Process configuration modification of both packed columns (Karimi et al.,  2011; 

Ahn et al., 2013; Joel et al., 2014). 

 Process integration with power plant (Aroonwilas & Veawab, 2007, 2009; 

Lucquiaud & Gibbins, 2011;  Liu et al., 2015;  Luo et al., 2015;  Alcaráz-

Calderon et al., 2019) 

 Scale-up studies ( Canepa et al., 2013; Agbonghae et al., 2014; Luo & Wang, 

2017). 

Commercially available software used to carry out these studies include Aspen 

Plus®, Aspen HYSYS® and Honeywell Unisim. Findings from these studies 

revealed that key parameters that affect the CO2 capture efficiency, as well as cost, 

include the specific heat duty at the stripper and L/G ratio in the absorber. Ahn et 

al., (2013) proposed an amine-based process modification design where the heat 

duty is reduced to as low as around 2.22 MJ/kgCO2 from that attained in the 

conventional configuration (3.52 MJ/kgCO2). This leads to a significant reduction in 

the energy penalty, which in turn reduces the operating cost of the capture plant. 

However, the modifications in the plant might increase the capital cost based on 

the complication of design. Studies on solvent performance revealed the need to 

develop new chemical solvents that are environmentally friendly, highly reactive 

with CO2 and requires low energy for regeneration (Zhou et al., 2010). 

Most investigations on the solvent-based PCC plant at steady state condition 

considered the plant at baseload. This highlights the limitation of the steady-state 

model development as the CO2 capture plant is required to operate at flexible mode 
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to take advantage of the peak and off-peak electricity demand of the power plant. 

Thus, dynamic model development is required to investigate the dynamic 

operations such as start-up, shutdown and load following. 

2.3.1.2 Current status of dynamic modelling of solvent-based post-combustion 

capture plant  

Despite numerous studies on the evaluation of the technical and economic impact of 

solvent-based PCC process on power plant through modelling and simulation under 

steady-state conditions, development of a dynamic model is essential to capture the 

nonlinear behaviour of the PCC plant. This includes capturing process variables 

interactions within the capture plant and the influence of disturbances from the power 

plant on the capture plant (Manaf et al., 2016). 

Several studies on dynamic model development of solvent-based PCC have been 

carried. Research focus started with development of a single component of the PCC 

plant (either Absorber or stripper) (Kvamsdal et al., 2009; Lawal et al., 2009; Ziaii et 

al., 2009; Greer et al., 2010), then advanced into model development of a standalone 

PCC plant (Lawal et al., 2010; Harun et al., 2011;Gaspar & Cormos, 2012; Jayarathna 

et al., 2013) and integration of the capture plant with coal-fired power plant (Lawal et 

al., 2012; Bui et al., 2013; Jayarathna et al., 2013; Mac Dowell & Shah, 2013; Posch 

& Haider, 2013; Gardarsdóttir et al., 2015).  

Commercially available simulation software used to carry out these studies are 

gPROMS® ( Kvamsdal et al., 2009; Lawal et al., 2010; Harun et al., 2011; Mac Dowell 

et al., 2013; Mac Dowell & Shah, 2014; Walters et al., 2016), Aspen Plus® dynamics 

(Lin et al., 2011; Fan et al., 2015; Zhang et al., 2016), Aspen HYSYS® (Sahraei & 

Ricardez-Sandoval, 2014), Modelica® ( Prolss et al., 2011; Åkesson et al., 2012) and 
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Matlab® (Greer et al., 2010; Gaspar & Cormos, 2012; Enaasen et al., 2013; Jayarathna 

et al., 2013). 

Most researchers adopted E-NRTL physical property method to describe the vapour-

liquid equilibrium, the chemical reaction and the physical properties of the system. In 

some of these studies, chemical reactions within the column were assumed to attain 

chemical equilibrium at the interface (Biliyok et al., 2012b) while others described the 

chemical reaction kinetics using an enhancement factor (Harun et al., 2011). Other 

physical property methods used by other researchers were Wilson-NRF (Gáspár & 

Cormoş, 2011) and SAFT-VR (Mac Dowell et al., 2013). The SAFT-VR equation of 

state (EOS) model is said to eliminate the need to describe the chemical reactions 

within the column (Luu et al.,  2015; Mac Dowell & Shah, 2014).  

Validation of these dynamic solvent-based PCC models developed is required to 

ensure the accuracy of the model. Although most dynamic solvent-based PCC models 

were validated under steady conditions using Dugas, (2006) data from the pilot plant 

in separation research program (SRP) at the University of Texas at Austin, it is 

essential that dynamic validation is carried out. This is to ensure that the model 

developed predicts accurate dynamic responses. Despite insufficient dynamic 

experimental data for dynamic validation of solvent-based PCC models developed, 

there have been a few validations of solvent-based PCC models against dynamic pilot 

plant data. Biliyok et al., (2012a;2012b) validated dynamic solvent-based PCC model 

developed by Lawal et al., (2010) using dynamic experimental data from the pilot plant 

at the University of Texas at Austin. Three cases were considered for comparison, 

using the absorber temperature profile, reboiler duty and CO2 concentration in the 

treated gas as parameters to be compared. The model satisfactorily predicted the 

dynamic behaviour of the pilot plant (Biliyok et al., 2012a, 2012b). Dynamic validation 
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carried out by Flø et al., (2015) demonstrated satisfactory agreement with Gloshaugen 

pilot plant data. Other studies on dynamic validation of a solvent-based PCC model 

with pilot plant data are Gaspar et al., (2016) and Bui et al., (2016). 

Dynamic analysis of solvent-based PCC model is necessary to investigate the 

feasibility of flexible operation of a capture plant integrated with power plant and 

understand the PCC dynamic behaviour under different scenarios such as start-up, 

shutdown and varying load. As it was earlier established, the flexible operation of 

power plant imposes disturbances on process parameters, which affect the PCC 

process dynamic performance. One of these parameters is power plant load change, 

which results in a change in the flue gas flowrate and a variation in the steam supplied 

for solvent regeneration to the reboiler. Change in the energy source also can lead to 

an alteration in flue gas CO2 composition sent to the PCC plant. Other process 

parameters that affect the capture plant performance are solvent residence time within 

each column, CO2 lean loading, liquid/gas (L/G) ratio and solvent concentration and 

flowrate. Analysis carried out by Lawal et al., (2010) on the absorber alone indicated 

that the absorber performance is more sensitive to L/G and the stripper performance 

is influenced by the reboiler duty. The importance of maintaining the right water 

balance within the solvent-based PCC system to avoid operational issues such as 

corrosion was highlighted. Similar observations on the importance of water balance 

within the PCC system were reported by Biliyok et al., (2012b) and Kvamsdal et al., 

(2009). A study from Biliyok et al., (2012b) also indicated that the absorber 

performance is influenced by the flue gas composition. An increase in the flue gas 

moisture content resulted in a reduction in the capture level and changes the shape of 

the temperature profile within the absorber.  
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Various studies on dynamic analysis using the solvent-based PCC model (Lawal et 

al., 2010; Harun et al., 2011; Lin et al., 2011; Mac Dowell & Shah, 2013) showed that 

the flue gas flowrate affects the capture plant efficiency if the lean solvent flow rate is 

fixed, indicating that a flue gas flowrate increase will result in a reduction in the L/G 

ratio, which ultimately reduces the capture level. Lin et al., (2011) and Mac Dowell & 

Shah, (2013) pointed out the influence of lean solvent temperature on the capture 

efficiency. Analysis by Mac Dowell & Shah, (2013) also showed that a decrease in 

lean solvent flowrate (when flue gas flowrate doesn’t change) reduces the CO2 capture 

efficiency as well as shifts the region of temperature bulge within the column. 

 Lawal et al., (2012) integrated a power plant model with a scaled-up solvent-based 

PCC model and investigated the effects of MEA concentration, power plant output and 

CO2 capture level on the overall plant performance. Results from this study showed 

that the capture plant has a slower response compared to the power plant.  

Peng et al., (2003) and Oko et al., (2015) highlighted challenges with high 

computational period when simulating a detailed rate-based solvent-based PCC 

model especially when integrated with a coal-fired power plant. This makes it difficult 

to implement relevant process control strategies. Thus, simplification of the solvent-

based PCC model is required to reduce the computational time for simulation. Oko et 

al., (2015) simplified a detailed rate-based solvent-based PCC model by replacing 

non-linear algebraic correlations used to determine the wetted area and gas-phase 

mass transfer coefficient within the packed column with a constant, the liquid phase 

mass transfer coefficient with a linear correlation against pressure, temperature and 

superficial mass velocity. PCC model simplification carried out by Prolss et al., (2011) 

for implementation of a NMPC involved replacement of the chemical equilibrium 

computation, and enthalpy expression with a semi-empirical algebraic correlation 
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while the mass transfer expressions, specific heat capacities and liquid density were 

assumed to be constant.  

Recently, there has been an emergence of data-driven modelling approach to develop 

solvent-based PCC model. This involves estimating a model from process operational 

data. Further details are discussed in the next section.  

2.3.2 Data-driven modelling approach- System identification (SI) 

SI is a data-driven model development approach, which involves the use of 

experimental data to develop a mathematical model that represents accurately the 

system dynamics (solvent-based PCC plant) without the knowledge of the physical 

system behaviour (see Figure 2-2). The model (system) is determined, based on input-

output data, within a set of class systems to which the model is identical (Zhu, 2001). 

Input-output data are collected during an identification test, which is designed to 

ensure that the data measured contains relevant information about the system that is 

useful to the user (Zhu, 2001). A suitable model structure is selected within the set of 

model term candidate (Ljung, 1987; Zhu, 2001). The model parameters are obtained 

based on an error criterion (loss function) specified (Zhu, 2001). Data-driven model 

developed are classified as either linear model or nonlinear model. 
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Figure 2-2 SI approach (Solomatine & Ostfeld, 2008) 

2.3.2.1 Linear SI 

Linear models are used to represent systems that are linear in nature (i.e. the systems 

that satisfy the superposition principle). Linear SI approach can be categorised into 

non-parametric identification and parametric identification. The non-parametric 

identification approach uses correlations and spectral analysis to obtain estimates of 

the impulse response or frequency response system (Ljung, 1987). This provide 

insight for parametric identification techniques to estimate the model. 

The parametric identification techniques adopt the use of a model structure, parameter 

estimation and model validation (Ljung, 1987). The parametric techniques gained 

much attention due to the need for control system development (Billings, 2013). 

Common models in SI are black-box model, grey-box model and user-defined model 

(Zhu, 2001; Ljung, 1987). The black-box model assumes the system is completely 

unknown and the model parameters are adjusted without considering the background 

of the physical system. Parametric identification approach is usually adopted for a 

black-box model (Zhu, 2001; Ljung, 1987). The grey-box model uses some obtained 
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information about the process dynamics or some known physical parameters of the 

system to estimate the unknown parameters (Zhu, 2001; Ljung, 1987). User-defined 

model is adopted when it is assumed that the physical system cannot be accurately 

represented by either a black-box model or a grey-box model (Zhu, 2001; Ljung, 

1987).  

2.3.2.2 Nonlinear SI 

Nonlinear systems are primarily defined as a system that does not satisfy the 

superposition principle (Billings, 2013; Ljung, 1987). The broad definition of nonlinear 

systems makes it nearly impossible to write down a description that accurately 

captures all classes that exist under the definition of nonlinear systems.  Several 

authors, in the early years, have focused on specific classes of nonlinear systems. 

These specific classes are well defined but are limited. A few of these nonlinear 

systems classes include Volterra series, Wiener and Hammerstein models.  

The Volterra series represents mildly nonlinear systems as a series of multi-

summations, or integrals in the continuous-time, of the Volterra kernels and inputs 

(Billings, 2013). Though Volterra series is used as a method of analysing nonlinear 

systems, it is challenging for SI due to the following:  

1) Assumption on the number of terms and special inputs, which might not accurately 

define or be realistic for some real processes and  

2) Large amount of data required to accurately give a good estimate.  

This shortcomings brought about various forms of block-structured nonlinear models, 

which include wiener and Hammerstein models. The wiener model consists of a linear 

dynamic element followed by a static nonlinear element, which is considered to 

describe a wide range of nonlinear behaviour (Norquay et al., 1998; Billings, 2013). 
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The Hammerstein model is the reverse combination where the static nonlinear 

characteristics is before the linear dynamic element. A combination of the block-

structured models include sandwich models, where the static nonlinear model is 

between two linear models, and a Hammerstein-wiener model, where a linear model 

is between two static nonlinear models (Zhu, 2001; Billings, 2013). Too many 

assumptions are required on these forms of model to be fitted and if little prior 

knowledge on the system dynamics is known, application of such models will be 

inadequate to capture the system dynamics (Billings, 2013).  This led to a new 

representation of a wide class of nonlinear systems, called Nonlinear Auto-Regressive 

Moving Average with eXogenous input (NARMAX), introduced by Billings and 

Leontaritis (1981).  

2.3.2.2.1  NARMAX 

The NARMAX model is defined as (Billings, 2013; Leontaritis & Billings, 1985): 

𝑦(𝑡) = 𝑓(𝑦(𝑡 − 1), 𝑦(𝑡 − 2),… , 𝑦(𝑡 − 𝑛𝑦), 𝑢(𝑡 − 𝑑), 𝑢(𝑡 − 𝑑 − 1),… , 𝑢(𝑡 − 𝑑

− 𝑛𝑢), 𝑒(𝑡 − 1), 𝑒(𝑡 − 2), … , 𝑒(𝑡 − 𝑛𝑒) + 𝑒(𝑡) 
2-1 

Where 𝑦(𝑡), 𝑢(𝑡) and 𝑒(𝑡) are the system output, input and noise sequences 

respectively. 𝑛𝑦, 𝑛𝑢 and 𝑛𝑒 are the maximum lags for the system output, input and 

noise. 𝑓(∙) represents a nonlinear function, which is generally unknown but can be 

approximated using various types of nonlinear forms and 𝑑 is the time delay. This 

model is basically an expansion of the past outputs, inputs and noise terms. A standout 

attribute is the inclusion of past output terms in its expansion unlike the Volterra series 

model that expands the current output in terms of the past inputs only.  Also, less data 

are needed to adequately estimate the system. Many existing linear and nonlinear 

model including ARX, ARMAX, Volterra and block-structured model can conveniently 
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be represented as subclasses of the NARMAX model. Many results and algorithms 

have been derived based on the NARMAX description.  

There are many function expansions available to approximate the nonlinear function, 

𝑓(. ). A few of these expansions include polynomial models, rational models, wavelet 

expansion, radial basis function (RBF) networks. The most popular expansion is the 

polynomial model. This is due to the ease of implementation and the transparency of 

the model, which makes it possible to relate it to the underlying system. It is used to 

describe a wide range of nonlinear systems. NARMAX model can be represented in 

the polynomial form as: 

𝑦(𝑡) = 𝜃0 + ∑ 𝑓𝑖1(𝑥𝑖1(𝑡))

𝑛

𝑖𝑖=1

+ ∑ ∑ 𝑓𝑖1𝑖2  (𝑥𝑖1(𝑡), 𝑥𝑖2(𝑡)) + ⋯

𝑛

𝑖2=𝑖1

𝑛

𝑖𝑖=1

+ ∑ …

𝑛

𝑖1=1

∑ 𝑓𝑖1𝑖2… 𝑖𝑙(𝑥𝑖1(𝑡),

𝑛

𝑖𝑙=𝑖𝑙−1

 𝑥𝑖2(𝑡), … , 𝑥𝑖𝑙(𝑡))  +  𝑒(𝑡) 

2-2 

Where 𝑙 is the degree of polynomial nonlinearity. 

𝑓𝑖1𝑖2… 𝑖1(𝑥𝑖1(𝑡), 𝑥𝑖2(𝑡), … , 𝑥𝑖𝑙(𝑡) =  𝜃𝑖1𝑖2…𝑖𝑚∏ 𝑥𝑖𝑘(𝑡), 1 ≤ 𝑚 ≤ 𝑙𝑚
𝑘=1  

2-3 
 

𝑥𝑚(𝑡) =

{
 

 
𝑦(𝑡 − 𝑚)

𝑢 (𝑘 − (𝑚 − 𝑛𝑦))

𝑒 (𝑡 − (𝑚 − 𝑛𝑦 − 𝑛𝑢))

 

1 ≤ 𝑚 ≤ 𝑛𝑦
𝑛𝑦 + 1 ≤ 𝑚 ≤ 𝑛𝑦 + 𝑛𝑢

𝑛𝑦 + 𝑛𝑢 + 1 ≤ 𝑚 ≤ 𝑛𝑦 + 𝑛𝑢 + 𝑛𝑒

 
2-4 

𝜃𝑖1𝑖2…𝑖𝑚 are model parameters. Equation 2-2 can be explicitly written as 
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𝑦(𝑡) =  𝜃0 + ∑ 𝜃𝑖1

𝑛

𝑖𝑖=1

 𝑥𝑖1(𝑡) + ∑ ∑ 𝜃𝑖1𝑖2  𝑥𝑖1(𝑡)

𝑛

𝑖2=𝑖1

𝑛

𝑖1=1

𝑥𝑖2(𝑡) + ⋯

+ ∑ …

𝑛

𝑖1=1

 ∑ 𝜃𝑖1𝑖2…𝑖𝑙  𝑥𝑙1(𝑡)

𝑛

𝑖𝑙=𝑖𝑙−1

𝑥𝑙2(𝑡)… 𝑥𝑙𝑙(𝑡) + 𝑒(𝑡) 

2-5 

A special case of the NARMAX model is the NARX model, where the noise dependent 

model terms are excluded. Thus, equation 2-4 becomes   

𝑥𝑚(𝑡) = {
𝑦(𝑡 − 𝑚)

𝑢 (𝑘 − (𝑚 − 𝑛𝑦))
  

1 ≤ 𝑚 ≤ 𝑛𝑦
𝑛𝑦 + 1 ≤ 𝑚 ≤ 𝑛𝑦 + 𝑛𝑢

 
2-6 

The total number of potential model terms in the polynomial NARX model is  

𝑀 =
(𝑛 + 𝑙)!

(𝑛! 𝑙!)
 

2-7 

where = 𝑛𝑦 + 𝑛𝑢 . The total number of potential model terms can be large, especially 

when the degree of nonlinearity is large. This increases the complexity of the model 

developed. The structure detection step in the NARMAX approach identifies significant 

model terms among the full candidate model terms that should be included in the 

model. Further details on other nonlinear function expansions can be found in relevant 

publications (Billings & Zhu, 1991, 1994; Billings & Wei, 2005; Billings, 2013).  

2.3.2.2.1.1 Multiple-input multiple-output (MIMO) system  

The solvent-based PCC plant is seen as a multivariable system due to the interactions 

between the various variables. The capture plant also has more than one input and 

output variables. Thus, the solvent-based PCC plant is best represented as a MIMO 

system. Previous sections have been focused on single-input single-output (SISO) 

system. The SISO system is easily extended to a MIMO system as follows: 
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𝑢𝑖
[𝑡−1]

= [𝑢𝑖(𝑡 − 1), 𝑢𝑖(𝑡 − 2), … , 𝑢𝑖(𝑡 − 𝑛𝑢)] 

𝑖 = 1,2, … , 𝑟; 𝑗 = 1,2, … 𝑠 
2-8 

𝑦𝑗
[𝑡−1]

= [𝑦𝑗(𝑡 − 1), 𝑦𝑗(𝑡 − 2), … , 𝑦𝑗(𝑡 − 𝑛𝑦)] 

Where 𝑟 is the number of input variables and 𝑠 is the number of output variables. The 

NARX representation of MIMO system is shown below(Billings, Chen, & Korenbergs, 

1989; Billings, 2013): 

𝑦1(𝑡) = 𝐹1 [𝑦1
[𝑡−1], … , 𝑦𝑠

[𝑡−1], … , 𝑢1
[𝑡−1], … . , 𝑢𝑟

[𝑡−1]] + 𝑒1(𝑡) 

2-9 

𝑦2(𝑡) = 𝐹2 [𝑦1
[𝑡−1], … , 𝑦𝑠

[𝑡−1], … , 𝑢1
[𝑡−1], … . , 𝑢𝑟

[𝑡−1]] + 𝑒2(𝑡) 

⋮ 

𝑦𝑠(𝑡) = 𝐹𝑠 [𝑦1
[𝑡−1], … , 𝑦𝑠

[𝑡−1], … , 𝑢1
[𝑡−1], … . , 𝑢𝑟

[𝑡−1]] + 𝑒𝑠(𝑡) 

Where 𝐹1[. ], 𝐹2[. ] ,…, 𝐹𝑠 are nonlinear functions that can be specified and 

implemented as a polynomial expansion. The models are obtained by estimating each 

model as a multiple-input single-output model (MISO) system. 

2.3.2.2.1.2  NARMAX SI Approach 

NARMAX SI approach includes several steps: (1) Identification tests or experiments, 

2) Structure detection, (3) Parameter estimation, (5) Performance evaluation, which 

involves model validation, prediction and analysis. The identification test involves 

exciting and collecting control relevant information about the process dynamics and 

its surroundings ( Ljung, 1987; Zhu, 2001). The process input is perturbed by sending 

carefully designed test signals, either pseudo-random binary sequence (PRBS), 

generalized binary noise (GBN) or filtered white noise and sum of sinusoids (Zhu, 
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2001). Details of the design of these input test signals can be obtained from Zhu, 

(2001) and Ljung, (1987). Data collected are used to estimate the best model fit. It is 

necessary that after data has been collected from the identification test, the data 

undergo a pre-treatment like peak shaving, signal slicing, high-pass and low-pass 

filtering and scaling & offset correction (Ljung, 1987; Zhu, 2001). 

Model structure detection is the core part of NARMAX SI approach. This involves 

selection of significant model terms sequentially that can accurately capture the 

system dynamics. It is numerically efficient and will lead to simple parsimonious model 

that adequately describes the underlying dynamics (Billings, 2013). This is achieved 

by using the orthogonal least squares (OLS) algorithm and its derivatives (Billings et 

al., 1988; Chen et al, 1989), which include the forward regression with orthogonal least 

square algorithm (FROLS) (Wei et al.,  2004; Li et al., 2013).  

The FROLS algorithm has been widely discussed and applied in various literature 

(Billings et al., 1989; Wei et al., 2004; Billings, 2013).  The FROLS algorithm essentially 

selects and ranks candidate model terms based on their significance for a system 

expressed as a linear in parameter model (Billings et al., 1989; Wei et al., 2004; 

Billings, 2013). A measure of significance for the candidate model terms is the error 

reduction ratio (ERR) criterion. ERR is a measure of the explained desired output 

variance increment for each model term (Wei et al., 2004; Billings, 2013). Consider 

the linear in parameter model 

𝑦𝑠(𝑡) =  ∑𝜑𝑠𝑗𝑥𝑠𝑗(𝑡) + 𝑒𝑠(𝑡)

𝑀𝑠

𝑗=1

 
2-10 
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where 𝑦𝑠(𝑡), 𝑥𝑠𝑗(𝑡), 𝜑𝑠𝑗 and 𝑀𝑠, with (𝑠 = 1,2,3; 𝑗 = 1,2, … ,𝑀𝑠),  are the response signal 

(output), regressors, model parameter and number of model terms.  Equation 2-10 

can be written in a compact form as: 

𝑌 = 𝑃Φ + 𝜉 
2-11 

where 𝑌 = [𝑦(1), 𝑦(2). . , 𝑦(𝑁)]𝑇 is the measured output vector at N time instants, 𝑃 =

[𝑃1, 𝑃2, . . , 𝑃𝑀] is a matrix whose 𝑗th column 𝑃𝑗 = [𝑃(1), 𝑃(2), . . , 𝑃(𝑁)]𝑇 is a vector 

formed by the 𝑗th candidate model term 𝜑𝑗, with 𝑗=1, 2, …, M. Φ = [𝜃1, 𝜃2, . . , 𝜃𝑀]
𝑇 is 

the parameter vector and 𝜉  is the modelling error vector. M is the number of candidate 

model terms (or the number of candidate basis vectors). The regression matrix 𝑃 is 

assumed to be full rank in columns and can be orthogonally decomposed as 

𝑃 = 𝑊𝐴 
2-12 

where 𝐴 is an 𝑀 × 𝑀 unit upper triangular matrix and 𝑊 is an 𝑁 ×𝑀 matrix with 

orthogonal columns 𝑤1, 𝑤2, . . , 𝑤𝑀. It should be noted that the condition for the above 

assumption is that the data collected for identification contains sufficient information 

on the process dynamics. This is by ensuring the data is large enough and sampled 

correctly. Equation 2-12 can be expressed as: 

𝑌 = (𝑃𝐴−1)(AΦ) + 𝜉 = 𝑊𝐺 + 𝜉 
2-13 

where 𝐺 = [𝑔1, 𝑔2, … , 𝑔𝑀]
𝑇 is an auxiliary parameter vector, which is calculated from 𝑌 

and  𝑊 by means of orthogonality property as follows: 

𝑔𝑖 =
〈𝑌,𝑤𝑖〉

〈𝑤𝑖, 𝑤𝑖〉
 

2-14 
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with 𝑖=1, 2, …, M, the parameter vector Φ is related by the equation 𝐺 = AΦ. The error 

reduction ratio (ERR), which provides an effective means for seeking in a subset of 

significant model term, is calculated as  

𝐸𝑅𝑅𝑖 =
〈𝑌, 𝑤𝑖〉

2

〈𝑌, 𝑌〉 〈𝑤𝑖, 𝑤𝑖〉
 × 100% 

2-15 

The significant model terms are selected in a forward-regression pattern as shown in 

the algorithm steps (Wei et al., 2004; Billings, 2013): 

Step 1: = [𝑃1, 𝑃2, … . , 𝑃𝑀], 𝜎 = 𝑦T𝑦 . 

For 𝑚 = 1,2,… ,𝑀, calculate 

𝑃𝑚 = 𝑤𝑚 

𝑔𝑚
(1)
=
𝑦T𝑤𝑚
𝑤𝑚𝑇𝑤𝑚

 

𝐸𝑅𝑅(1)[𝑚] =
(𝑦T𝑤𝑚)

2

𝜎 (𝑤𝑚𝑇𝑤𝑚)
 × 100% 

𝑙(1) = 𝑎𝑟𝑔 max
1≤𝑚≤𝑀

{𝐸𝑅𝑅(1)[𝑚]} 

End 

𝑎11 = 1 

𝑤1 = 𝑤𝑙1 

 𝑔1 = 𝑔𝑙1
(1)

 

𝑒𝑟𝑟[1] = 𝐸𝑅𝑅(1)[𝑙1] 

Step s (s ≥ 2): let 𝑚 ≠ 𝑙1,𝑚 ≠ 𝑙2, … ,𝑚 ≠ 𝑙𝑠−1, 

For 𝑚 = 1,2,… ,𝑀, calculate 
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𝑤𝑚
(𝑠)
= 𝑃𝑚 −∑

𝑃𝑚
T𝑞𝑖

𝑞𝑖
T𝑞𝑖

𝑠−1

𝑖=1

 𝑞𝑖, 𝑃𝑗 ∈ 𝐷 − 𝐷𝑚−1 

𝑔𝑚
(𝑠)
=

𝑦T𝑤𝑚
(𝑠)

(𝑤𝑚
(𝑠)
)T 𝑤𝑚

(𝑠)
 

𝐸𝑅𝑅(𝑠)[𝑚] =
(𝑦T𝑤𝑚

(𝑠)
)2

𝜎 ((𝑤𝑚
(𝑠)
)T𝑤𝑚

(𝑠)
)
 × 100% 

𝑙(𝑠) = 𝑎𝑟𝑔 max
1≤𝑚≤𝑀

{𝐸𝑅𝑅(𝑠)[𝑚]} 

End 

𝑤𝑠 = 𝑤𝑙𝑠
(𝑠)

 

 𝑔𝑠 = 𝑔𝑙𝑠
(𝑠)

 

𝑒𝑟𝑟[𝑠] = 𝐸𝑅𝑅(𝑠)[𝑙𝑠] 

𝑎𝑖,𝑠 =
(𝑤𝑖

T𝑃𝑙𝑠)

(𝑤𝑖
T𝑤𝑖)

 , 𝑖 = 1,2, … , 𝑠 − 1 

𝑎𝑠𝑠 = 1 

Parameter vector, Φ, is calculated  AΦ = G, where 𝐺 = [𝑔1, 𝑔2, … , 𝑔𝑀𝑜]
T and A is 

defined as: 

𝐴 =  [ 
1 ⋯ 𝑎1𝑀𝑜
⋮ ⋱ ⋮
0 ⋯ 1

 ] 

 

Determination of the number of model terms is important for dynamic modelling and 

various model selection criteria have been proposed in the literature. In this study, the 
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Bayesian information criterion (BIC) is used to determine the number of model terms 

(Wei & Billings, 2009).  

𝐵𝐼𝐶 (𝑛) = [1 + 
𝑛 ln(𝑁)

𝑁 − 𝑛
]𝑀𝑆𝐸(𝑛) 

2-16 

where 𝑁 is the number of samples in the training data set, 𝑛 is the effective number of 

model terms, 𝑀𝑆𝐸(𝑛) is the mean square error associated with the 𝑛 -terms model. 

BIC is commonly used to avoid over-fitting through the penalty factor [
𝑛 ln(𝑁)

𝑁−𝑛
]. 

The performance of identified models is evaluated based on the prediction efficiency 

and statistical analysis. The model prediction performance can be categorised into the 

one-step-ahead (OSA) prediction and multi-step prediction output (MSP). The OSA 

prediction performance is primarily based on the mean squared error validation 

methods and might give a misleading performance, making it not sufficient to give a 

reliable assertion on the performance of the identified model. MSP performance, on 

the other hand, will help detect the quality of the identified model by exposing the built-

up errors with the identified model (Akinola et al., 2019). Only the first few known 

measured data are used to initialise the model. Prediction efficiency of the identified 

models is calculated as: 

VAF = [1 −
var(𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒 − 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡)

var (𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒)
]  × 100% 

2-17 

 where 𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒  is the measured output of the test data and 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡 is the one-step-

ahead prediction/ multi-step prediction output. 

Statistical analysis involves the evaluation of the identified model in terms of R, R2 and 

adjusted R2 of the identified models. R, which is the multiple correlation coefficient, is 

a measure of how much the combination of model terms in each identified model 
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correlates with the respective output variables. The multiple correlation coefficient, R, 

value is within the range 0 and 1. As the R-value is closer to 1, this indicates that the 

input and output variables are highly correlated. When the R-value is closer to 0, the 

input and output variables are not correlated. The R2 represents the portion of variance 

in the response variable that is explained by the combination of model terms, while the 

adjusted R2 is a measure of the accuracy of a model across different samples. R, R2 

and adjusted R2 are calculated as follows: 

𝑅 = 
𝑁 ∑𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡 − ∑𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒 ∑𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡

√𝑁∑𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒2 − (∑𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒)
2√𝑁∑𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡

2 − (∑𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡)
2

 

2-18 

𝑅2 = 1 −
𝑆𝑆𝐸

𝑆𝑆𝑇
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𝑅𝑎𝑑𝑗
2 = 1 − (

𝑁 − 1

𝑁 − 𝑛
)
𝑆𝑆𝐸

𝑆𝑆𝑇
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Where 𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒  is the measured output; 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡 is the multi-step prediction (MSP);  

𝑆𝑆𝐸 is the sum of squares error; 𝑆𝑆𝑇 is the total sum of squares; 𝑁 is the number of 

observations and 𝑛 is the number of model terms. 

 

2.3.2.3 Current status on SI of PCC process plant 

The application of SI approach for the modelling solvent-based PCC plant is beginning 

to gain much attention (Wu et al., 2010; Dunia et al.,  2011; Zhou et al., 2012; Arce et 

al., 2012; Li et al., 2015; Luu et al., 2015; Manaf et al., 2016). This is due to the ease 

of implementation compared to the first principles model, which requires a lot of 

computational time. The complexity of the first principles model also limits its use for 

process control strategy. 
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At early years, the SI technique was adopted to obtain a linear model that represents 

the solvent-based PCC plant using Matlab® for controllability study and process control 

implementation. Arce et al. (2012) focused on the application of advanced control 

strategies for flexible operation of the solvent regeneration system and developed 

linear transfer function models to represent the regeneration system. Data were 

collected from a first principles model. The identified model were shown to duplicate 

the dynamic behaviour of the solvent regenerative system. Luu et al., (2015) also used 

a linear first order plus delay time (FOPDT) transfer function model to represent the 

PCC system as 4 (inputs) x 3 (outputs) MIMO model for controllability study.  The 

MIMO model contains a series of sub-models, which are SISO models. Step input 

signals were sent to the input variables while the output variables were recorded (Luu 

et al., 2015). Data collected were fitted into the FOPDT transfer function model 

structure (Luu et al., 2015).  It should be noted that for these studies and others, the 

input variable signals were carefully developed to not excite the nonlinearity within the 

capture process. The step input signal used in Luu et al., (2015), for example, 

linearizes the nonlinearity within the system. However, a major concern is the inability 

of the identified linear model to adequately capture the nonlinear dynamics of the PCC 

plant, as it is known that the PCC plant exhibits nonlinear dynamics (Manaf et al., 

2016; Wu et al., 2018) . Thus, the need for nonlinear SI is vital. 

In the quest to obtain an accurate model to capture underlying dynamics of the PCC 

plant, Li et al., (2015, 2017) used bootstrap aggregated neural networks, which is a 

form of non-parametric SI, to develop a PCC model. These studies indicated that the 

neural network model, developed using data collected from a first principles model, 

could accurately predict the CO2 capture rate and CO2 capture level. Li et al., (2017) 

included an extreme learning machine feature to the bootstrap aggregated neural 
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network, which assigns weights between the input and hidden layers and obtains 

weights between the hidden and output layer. Although this gave a major improvement 

to the model developed, the computational burden is increase for optimisation studies 

and NMPC implementation due to complexity of the model as a result of the large 

number of hidden neurons. 

 Manaf et al., (2016) developed a mathematical model of an amine-based PCC plant 

using nonlinear ARX SI approach. The amine-based PCC plant was characterized as 

a multivariable 4 x 3 black-box model under wavelet nonlinearity class to capture the 

nonlinearity within the model. In this study, the nonlinear SI was carried out for major 

equipment within the amine-based PCC plant such as the absorber, heat exchanger 

and stripper individually using the SI Matlab® toolbox. The models obtained were then 

linked using Simulink software package. This is to observe interactions between the 

input and output variables of each model. Data were obtained from PCC pilot plant. 

The study showed that the identified model gave a similar PCC dynamic behaviour 

compared to the pilot plant. It should be noted that the prediction performance of the 

identified model was evaluated based on one-step-ahead (OSA) prediction. OSA 

prediction is not sufficient to give a reliable assessment of the prediction performance 

of the identified model. In addition, the model order was assumed. This might result in 

obtaining models that are complex or omission of relevant model terms. However, the 

SI approach with the use of FROLS algorithm helps to determine the simplest model 

that capture adequately the underlying dynamics of the capture process. 

 



45 
 

2.3.3 Summary 

Dynamic (first principles) models are necessary to carry out comprehensive dynamic 

studies on the capture plant and optimize operational procedure for dynamic periods 

within the capture plant. The rate-based modelling approach is considered to give a 

more accurate result compared to the equilibrium based modelling. Model validation 

with dynamic data from pilot plant is essential to ensure model accuracy and reliability. 

Analysis from literature indicates that the solvent-based PCC plant is a much slower 

process compared to the power plant and an appropriate control strategy is essential 

to minimize constraints on the power plant. The implementation of process control 

strategies requires simplification of the first principles solvent-based PCC model to 

reduce the computational time for simulation, which has resulted in the emergence of 

data-driven modelling approach through SI. The SI approach, which involves 

estimating a model from the process operational data, enables the control 

implementation. Various researchers adopted the SI approach to estimate linear 

model, which is only valid around its operating points. This linear identified model does 

not capture the nonlinearity within the capture plant. Just a few papers have focused 

on the use of nonlinear SI approach to estimate the solvent-based PCC process. In 

these studies, the model order was assumed. This assumption might result in including 

or omitting model terms that are relevant to the process output accuracy. However, 

the nonlinear SI approach with the use of FROLS algorithm helps to determine the 

adequate model terms that best capture adequately the underlying dynamics of the 

capture process. 
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2.4 Process Control System Design for PCC Plant: Multivariable System 

The control system design involves control structure selection, controller selection and 

controller design and tuning. This section reviews previous studies on the control 

system design of a solvent-based PCC process. 

The complex nature of the chemical process plants like the solvent-based PCC plant 

has prompted the need to implement an appropriate control philosophy focused mainly 

on structural decisions in the control system design. Control structure selection mainly 

involves selection of both primary and secondary controlled variables, selection of 

manipulated variables, selection of measurements, selection of control configuration 

and selection of controller type (Skogestad, 2004). Control structure can be generally 

categorised into decentralised and centralised control structure (Skogestad & 

Postlethwaite, 2007).  

Figure 2-3 shows a control hierarchy system in a chemical plant. The regulatory control 

layer, which mainly contains SISO feedback and feedforward control loops, control the 

process to reach its steady-state.  The supervisory control layer assigns set points for 

the individual control loops within the regulatory control layer. The supervisory control 

layer’s purpose is to keep the primary controlled output variables at optimal set points. 

The local and site-wide optimization assigns the optimal set-points for the supervisory 

control layer based on economic and environmental factors. This local and site-wide 

optimization are beyond the scope of this research.  
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Figure 2-3 Control Hierarchy system in a chemical plant (Skogestad, 2004) 

 

The selection of controlled variables entails selecting variables to be controlled at 

given set points, which are assigned at a higher layer in the control hierarchy system. 

Control configuration selection mainly involves selecting the appropriate pair of 

controlled and manipulated variables so that there are no limiting/conflicting 

interactions within the control system. The pairing of input-output variables is 

determined through either relative gain array (RGA) or insight from the process 

dynamics (process oriented). 
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2.4.1 Control structure configuration 

There are two major approaches to implement the control structure configuration 

which are mathematically oriented approach and process-oriented approach (Larsson 

& Skogestad, 2000).  

2.4.1.1 Mathematical oriented approach 

The mathematically oriented approach is a two-stage method, which are Top-down 

and bottom-up analysis (Skogestad, 2004). Details of this approach can be obtained 

in Skogestad, (2004). For the mathematical oriented approach, the input-output pairing 

is determined using the RGA analysis. The RGA is a variable pairing tool proposed by 

Bristol, (1966). RGA is a measure of the SISO control loop interactions in a control 

structure. The RGA is a dimensionless matrix. This is defined as: 

λij =

(
δci

δmj
⁄ )

m

 

(
δci

δmj
⁄ )

c

= Gp, ij (s). (Gp
−1)ij

T (s) For i, j = 1,2,…,N 
2-21 

 RGA are unaffected by scaling and provide a quantitative comparison of how each 

manipulated variable affects each controlled variable. 

2.4.1.1.1  Niederlinski Index (NI) and Morari Index of Integral controllability (MIC) 

Niederlinski Index (NI) and Morari index of integral controllability (MIC) analyses the 

stability of the selected control loop pairings at steady state (s=0). NI is calculated as 

follows: 

𝑁𝐼 =
det (𝐺𝑝(0))

∏ 𝐺𝑃,𝑖𝑖(0)
𝑁
𝐼=1

 2-22 
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For all the SISO controllers that have positive loop gains and contains integral action, 

a negative NI indicates that the control structure will be closed-loop unstable. Thus, 

any input-output pairing with negative NI should be eliminated.  

MIC is calculated as  

𝑀𝐼𝐶 =  𝜆𝐺𝑝+(0) 2-23 

Where 𝜆𝐺𝑝+(0) is the vector of the eigenvalues of the process at steady state 𝐺𝑝
+(0). 

This is obtained by adjusting the signs so that all the diagonal elements are positive. 

Just as NI, a negative  𝜆𝐺𝑝+(0) will give an unstable control configuration, for all SISO 

controllers containing positive loop gains and integral action. Thus, a configuration 

with a negative MIC is to be eliminated. 

2.4.1.2 Process Oriented approach 

The process-oriented approach, which is mostly implemented in the process industry, 

designs the control structure based on insight gained from the process dynamics 

(Nittaya et al., 2014b). Details on the approach can be seen in publications (Luyben 

et al., 1997; Larsson & Skogestad, 2000; Nittaya et al., 2014b). In this thesis, both 

approaches were explored to select the appropriate control configuration. 

2.4.2 Type of Control  

2.4.2.1 Traditional PID control 

The traditional Proportional –Integral –Derivative controller is a feedback control loop 

mechanism widely adopted in industrial control system (Khare & Singh, 2010). The 

transfer function of the basic form of PID controller is (Stephanopoulos, 1984) 
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𝐺𝑐(𝑠) = 𝐾𝑐(1 + 
1

𝜏𝐼𝑠
+ 𝜏𝐷𝑠) 2-24 

Where 𝐾𝑐 is the proportional gain of the controller; 𝜏𝐼 is the integral time constant and 

𝜏𝐷 is the derivative time constant (Stephanopoulos, 1984). Thus, the control input (u) 

the process plant from the controller is given as: 

𝑢(𝑡) = 𝐾𝑐𝑒(𝑡) + 
𝐾𝑐
𝜏𝐼
∫ 𝑒(𝑡) 𝑑𝑡
𝑡

0

+ 𝐾𝑐𝜏𝐷
𝑑𝑒

𝑑𝑡
 

2-25 

Variation of the PID control include P controller, PI controller and PID controller. In 

most industrial feedback control applications, PI controller is mostly adopted, where 

the derivative time constant is zero.  The different approaches for tuning the PID 

control parameters include open-loop tuning, closed-loop tuning and model-based 

tuning. Further details on PID tuning can be found in relevant literature (Luyben, 1986; 

Lee & Edgar, 2005; Vu & Lee, 2010). Major characteristics of the closed-loop step 

response that assess the control performance and robustness include (Poorani & 

Anand, 2013; Stephanopoulos, 1984): 

 rise time (i.e. time required for the plant output to rise beyond 90% of the desired 

level for the first time),  

 overshoot (i.e. how much the peak level is higher than the steady-state, 

normalized against the steady-state) and  

 Settling time (time for the system to attain its new steady-state).  

2.4.2.2 Model Predictive Control 

Model predictive control (MPC) is majorly adopted for the centralised control scheme. 

The multivariable control approach requires an accurate process model to predict 

explicitly the output (Camacho & Alba, 2013). The control actions of the manipulated 
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variables are determined to minimize the objective function formulated (Camacho & 

Bordons, 2012; Camacho & Alba, 2013). The application of MPC controllers in the 

process industry has been successful despite the difficulty in implementing them 

compared to the PID controller. Extensive reviews on various MPC strategy 

development and implementation in the process industry are available in literature 

(Marco et al., 1997; Roberts, 2000; Grancharova & Johansen, 2004; Bequette, 2007;  

Camacho & Bordons, 2007; Garriga & Soroush, 2010; Al-Gherwi et al., 2011). 

2.4.3 Current Status on Control system design on solvent-based PCC process 

Extensive studies on control system design and implementation of a solvent-based 

PCC process have been carried out. This mainly includes decentralised and 

centralised control schemes   (Lin et al., 2011, 2012; Panahi & Skogestad, 2011, 2012; 

Nittaya et al., 2014b).  

For decentralised control scheme, Lin et al., (2011) investigated a plant-wide control 

of a solvent-based PCC process using dynamic simulation on Aspen Plus® dynamics.  

The publication came up with a multi-loop control structure, CO2 removal percentage 

– lean solvent flowrate, reboiler liquid level – make-up water flowrate and reboiler 

temperature – reboiler duty. The decision was informed by preliminary analysis carried 

out to understand the process dynamics. Results from dynamic simulation revealed 

that the set point target (CO2 removal percentage) was attained under disturbances 

(flue gas flowrate, CO2 concentration and H2O concentration) while the optimum lean 

loading is kept fixed. Using reboiler duty as a manipulated variable to control reboiler 

temperature seems impractical in a real capture plant making the control scheme 

infeasible. Lin et al., (2012) compared two control scheme, variation of lean solvent 

flow (VLSF) and variation of lean solvent loading (VLSL) using a scaled-up capture 

plant integrated with a power plant steam cycle. It was concluded that VLSL control 
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scheme was preferable because it is able to maintain stable hydraulics in both packed 

columns within the capture plant during flexible operation.  The unavailability of 

competent and efficient CO2 loading measuring instrument makes the VLSL control 

scheme difficult to be implemented on a real capture plant. 

Panahi & Skogestad, (2011,2012) adopted the mathematical oriented approach 

proposed by Skogestad, (2004) to develop control schemes for a solvent-based PCC 

plant. Panahi & Skogestad, (2011) adopted a self-optimizing method to select the best-

controlled variables (CVs) under three different operational regions (low, mid and high 

flue gas flowrate). Panahi & Skogestad, (2012) later proposed four control schemes 

based on a plant-wide approach. The publication concluded that the dynamic 

performance of best control scheme was comparable to MPC and was preferred due 

to its simplicity in implementation.  

Nittaya et al., (2014b) proposed three process control structures for the PCC dynamic 

model developed by Harun et al., (2011). The first control structure was designed 

based on the RGA analysis while the other two control structures were designed based 

on process heuristics approach. Performance evaluation of the control structure 

reveals that although the control objectives were attained with each structure, the 

second control structure (pairing CO2 removal percentage with solvent flowrate and 

reboiler temperature with reboiler duty) gave a better performance than other control 

structures. Nittaya et al., (2014b) also highlighted that the control structure designed 

based on RGA analysis gave a poor performance because the analysis does not 

consider the process dynamics. 

Performance evaluation by Sahraei & Ricardez-Sandoval, (2014) on two control 

structures (decentralized multi-loop control structure and centralised MPC control 

structure) based on set point tracking and disturbance rejection indicated that the 
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centralised MPC control structure recovered faster than the decentralised control 

structure. Control configuration (input-output variables pairing) within the 

decentralised control structure to minimize interactions between the loops were based 

on RGA analysis 

Manaf et al., (2016) proposed a decentralised control structure based on RGA and 

MIC analysis. Findings from the multivariable control analysis (RGA and MIC) 

suggested that CO2 capture efficiency was controlled by lean solvent flowrate and 

energy performance was controlled by reboiler heat duty, which is similar to what was 

proposed by Nittaya et al., (2014b) 

Gaspar et al., (2016) adopted a similar approach with Sahraei & Ricardez-Sandoval, 

(2014) to develop a decentralized control structure comparing the capture process 

with MEA with the capture process with PZ. They concluded that the PZ- based 

capture process could reject more disturbances with less room for change in the 

manipulated variables. For the decentralised control structure, PI controllers is 

implemented for each loop pairing ( Panahi & Skogestad, 2011; Lin et al., 2012; Ziaii, 

2012; Nittaya et al., 2014a,2014b; Sahraei & Ricardez-Sandoval, 2014; Luu et al., 

2015; Manaf et al., 2016). The benefit of multivariable PI controller includes its 

simplified implementation & design, fault tolerance and flexible operability(Jones & 

Hengue, 2009). However, it should be noted that the implementation of PI control on 

a multivariable system could be extremely problematic depending on the level of 

process interactions within the system especially during large load changes or 

disturbances. Findings from  Sahraei & Ricardez-Sandoval, (2014)  exposes issues 

with the decentralised control scheme with PI controller in comparison with 

multivariable MPC control scheme. MPC control scheme recovered faster than the 

decentralised control scheme. The issue of process loop interactions can be 
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suppressed by adding de-couplers to the control system, which might complicate the 

PID tuning (Jones & Hengue, 2009). Another alternative is to implement a 

multivariable centralised controller such as MPC or NMPC to handle the interactions 

within the process adequately. 

There are several studies on multivariable centralised control scheme design and 

implementation on the solvent-based PCC process. Most of these studies focused on 

the implementation of MPC scheme (Panahi & Skogestad, 2012; Sahraei & Ricardez-

Sandoval, 2014; Mehleri et al., 2015; Luu et al., 2015; He et al.,  2016; Wu et al., 2018, 

2019). The MPC scheme utilizes a linear model to predict the system dynamics 

(Findeisen & Allgöwer, 2002). Performance evaluation comparison with decentralised 

multi-loop control scheme showed that the MPC scheme gave a better and faster 

performance (Sahraei & Ricardez-Sandoval, 2014; Luu et al., 2015; Wu et al., 2018). 

However, the solvent-based PCC process is inherently nonlinear (Manaf et al., 2016). 

In addition, the CO2 capture process might have to run at extremely tight specification 

due to strigent environmental restrictions as well as the large load variation during 

flexible operation because of demanding economic considerations. For this case, the 

CO2 capture process might operate outside the boundary where the linear model is 

not able to adequately predict the process dynamics and the nonlinear model is 

needed (Findeisen & Allgöwer, 2002). This motivates the use of nonlinear model 

predictive control (NMPC).  

Only a few studies on NMPC design and implementation for the solvent-based PCC 

process are available in literature (Åkesson et al., 2012; Zhang et al., 2018; Hauger et 

al., 2019). Åkesson et al., (2012) implemented NMPC scheme on a solvent-based 

PCC process using first principles model developed by Prölß et al., (2011) in 
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modelica®. The high computational time and complexity of the model limited its 

application online. This has lead to the need for the simplification of the solvent-based 

PCC model for NMPC implementation. Zhang et al., (2018) implemented NMPC 

scheme on a nonlinear addiitve autoregressive with exogenous input (NAARX model). 

In this publication, the  nonlinear model was assumed to be first-order model with cross 

terms. Results revealed that the NAARX model could not accurately predict the output 

of the dynamic simulation for a wide operating range. The perfomance of the NMPC 

scheme is largely dependent on the accuracy of the nonlinear model used. The  

FROLS-EER algorithm could be implemented to select model terms that best 

described the capture process dynamics for the nonlinear model development, which 

improves the accuracy of the model. Thus, studies on the design, implementation and 

performance evaluation of NMPC scheme on a solvent-based PCC process  in 

comparison with linear controller (PI and MPC) using model developed through 

FROLS-ERR algorithm should be explored.  

2.5 Summary 

This chapter reviewed various research aspects of the solvent-based post-combustion 

CO2 capture process. This includes reviews on pilot plants, commercially deployed 

CO2 capture plant, model development (first principles and data-driven approach) and 

process control system design of the CO2 capture process. The concluding remarks 

are as follows: 

 Extensive R&D on the solvent-based PCC pilot plants have been carried out. 

In addition, only two (2) commercial large-scale solvent-based PCC plants 

attached to a power generation plant are operational. However, the limitations 

on the process modification of the pilot-scale plant highlight the relevance of 

model development and simulation. 



56 
 

 Extensive studies have been carried out on the model development of the 

process via the first principles approach. The limitation of high computational 

time and high complexity has resulted in the need for a simplified model for 

process control design and implementation. This has brought about the need 

for model development via a data-driven approach. 

 Most studies represented the solvent-based PCC as a linear model. However, 

the capture process exhibits highly nonlinear behaviour (Manaf et al., 2016; Wu 

et al., 2018) and the linear model tends to deviate when it exceeds the linear 

operating region boundary. This highlights the need for the development of a 

nonlinear model through SI to accurately capture the dynamics of the solvent-

based PCC process. 

 Few studies on the nonlinear SI of the solvent-based PCC were based on 

assuming the model order (mostly first order). This assumption might result to 

inclusion of model terms that do not have significant effect on the process 

output. Thus, making the model complex and affecting the accuracy of the 

model.   

 The FROLS algorithm can determine the important model regressors (model 

terms), in a stepwise manner, based on their significance. To our knowledge, 

the advantages and potentials of nonlinear SI techniques, especially dynamic 

NARMAX models identification with the FROLS-ERR algorithm, have not been 

explored for solvent-based PCC process.  

 Increased power generation from renewable energy source and stringent 

environmental regulations (such as attaining the CO2 emission reduction 

targets) has resulted in the need for extensive study of the NMPC scheme on 

the solvent-based PCC process to handle process interactions within the 
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capture process, in response to large power plant load variation, during flexible 

operation. 

 Comparison between linear controllers (e.g. PI and MPC) using the model 

developed through FROLS-ERR algorithm and nonlinear controller has not 

been performed. 
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3 Non-linear SI of solvent-based post-combustion CO2 capture process1 

3.1 Introduction 

This chapter describes a nonlinear SI approach for the solvent-based PCC process 

using the forward regression orthogonal least-squares - error reduction ratio (FROLS-

ERR) algorithm. The solvent-based PCC process is represented using a nonlinear 

autoregressive with exogenous input (NARX) model. The FROLS algorithm was 

adopted to develop a transparent NARX model that captures the relationship between 

the input variables and output variables in the PCC process. The algorithm was used 

to identify and rank key model terms that contribute to the response variable based on 

the ERR and eliminate model terms with the least contribution to the system output. 

The FROLS-ERR algorithm has been extensively used in the literature (Macedo et al., 

2015 ;Dantas et al., 2016) as an effective SI technique for different systems. The 

required process operation data for performing SI were obtained through simulation 

using a detailed and validated first principles model of a solvent-based PCC process 

implemented in gPROMS Model Builder®. Section 3.2 provides a summary of the first 

principles dynamic model of the solvent-based PCC process developed in gPROMS 

Model Builder®. Sections 3.3 and 3.4 focused on the process data acquisition from the 

gPROMS® model and the SI implementation using the data acquired. Performance 

evaluation as well as process dynamic analysis was carried out using the identified 

model developed in sections 3.5 and 3.6. 

                                            
1 Most of this Chapter has been published in Akinola, T. E., Oko, E., Gu, Y., Wei, H.-L., & Wang, M. 
(2019). Non-linear system identification of solvent-based post-combustion CO2 capture process. Fuel, 
239, 1213–1223 
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3.2 The first principles dynamic model for solvent-based PCC process 

The first principles model of the solvent-based PCC process was developed by Lawal 

et al.,(2010) and validated dynamically in Biliyok et al., (2012). The process has an 

absorber and a regenerator as the major unit operations (see Figure 1-6).  

For the absorber and regenerator model, the mass transfer are described using 

two-film theory (rate-based approach). Thus, the vapour-liquid interaction is 

categorised into five regions, which are bulk liquid, liquid film, bulk vapour,  

vapour film and vapour-liquid interface region (Oko, 2015).  

The vapour and liquid bulk region was described using one-dimensional distributed 

energy and mass conservation equations.  In the bulk vapour model, energy and mass 

hold-ups were neglected due to the relatively small vapour phase residence time in 

the absorber compared with the liquid phase residence time. In addition, it is assumed 

that the chemical reactions of CO2 with MEA takes place only via liquid phase 

reactions within liquid film. Thus, the heat of absorption is only accounted for in the 

liquid film. Lawal et al., (2010) used the Maxwell–Stefan formulation to 

determine the mass fluxes of components in both the vapour and the liquid film. The 

mass transfer coefficients in the liquid and vapour films were determined by 

correlations given by Onda et al., (1968). 

 Mass and energy hold-up in the liquid and vapour film 

region was not accounted for (Oko, 2015). The interface model is based on the 

equilibrium between liquid and vapour phases (Oko, 2015). The equilibrium molar 

compositions of the components in the vapour and liquid phases are estimated based 

on the vapour and liquid fugacity coeffiecients. The CO2-MEA-H2O reactions are 

assumed to reach equilibrium at the interface. This assumption is reasonable for a 
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fast-reacting solvent such as MEA.  Additional assumptions made include plug flow 

regime, linear pressure drop along the column, and negligible solvent degradation 

(Oko, 2015).  Heat loss to the regenerator surroundings is taken into consideration 

while the heat loss around the absorber is neglected. This is because of the 

regenerator higher operating temperature (up to 120oC) compared with the absorber 

(40oC-70oC) (Oko, 2015). 

Lawal et al. (2010) carried out the physical property estimation using Multiflash 

physical property package for estimation of viscosities, enthalpies and densities, while 

the fugacity coefficient calculations in the reboiler and condenser were estimated using 

the Electrolyte Non-random-two-liquid (NTRL) model. The absorber was linked to the 

regenerator by including the following auxiliary unit operation models: Lean MEA 

storage Tank; Rich MEA pump; Lean/Rich MEA heat Exchanger; Lean MEA cooler. 

Modelling details of each auxiliary unit operation can be seen in Biliyok et al., (2012b) 

and Lawal et al., (2010, 2012). 

3.3 Process data acquisition  

3.3.1 Selection of Input and Output Variables 

The input and output variables were selected based on the control objectives of the 

solvent-based PCC process. The input variables are manipulated variables and 

measured disturbance(s) while output variables are controlled variables. The key 

control objective in the capture process is to minimize energy consumption while 

maintaining environmental regulations (maintaining corresponding CO2 capture level) 

at varying operating conditions through a flexible control strategy, especially when a 

disturbance is introduced to the system. 
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The output variables were selected based on control requirements of the solvent-

based PCC process highlighted above. Key variables sensitive to the control 

objectives are CO2 capture level and solvent regeneration energy. The CO2 capture 

level (CCL) is expressed mathematically as follows:  

CO2 − CL(%) = (1 −
𝑛𝐶𝑂2
𝐴𝐵𝑆𝑜𝑢𝑡  × 𝐹𝐹𝐺

𝐴𝐵𝑆𝑜𝑢𝑡

𝑛𝐶𝑂2
𝐴𝐵𝑆𝑖𝑛  × 𝐹𝐹𝐺

𝐴𝐵𝑆𝑖𝑛
) × 100% 

3-1                      

where, 𝑛𝐶𝑂2
𝐴𝐵𝑆𝑜𝑢𝑡,𝐹𝐶𝑂2

𝐴𝐵𝑆𝑜𝑢𝑡,𝑛𝐶𝑂2
𝐴𝐵𝑆𝑖𝑛  ,𝐹𝐶𝑂2

𝐴𝐵𝑆𝑖𝑛   are CO2 mass fraction at the absorber gas outlet, 

flue gas flowrate at the absorber gas outlet, CO2 mass fraction at the absorber gas 

inlet and flue gas flowrate at the absorber gas inlet respectively. For this study, the 

capture level is selected as a key output variable (CO2 -CL).  

The solvent regeneration energy, which accounts for the bulk of the energy 

consumption, is a measure of energy utilised in the regenerator, where most of the 

energy consumption takes place, thus dictates the operational cost of the capture 

process. The solvent regeneration energy is mathematically expressed as: 

RE (
MJ

kg𝐶𝑂2
) =  

𝑄𝑟
𝐹𝐶𝑂2 _𝑟𝑒𝑔𝑒𝑛_𝑣𝑎𝑝_𝑜𝑢𝑡𝑙𝑒𝑡

 
3-2                      

Where 𝑄𝑟 and 𝐹𝐶𝑂2 _𝑟𝑒𝑔𝑒𝑛_𝑣𝑎𝑝_𝑜𝑢𝑡𝑙𝑒𝑡 are reboiler duty and CO2 mass flowrate at the 

regenerator outlet. A good measure of the regeneration energy is the reboiler 

temperature. For this study, the reboiler temperature (Y2) was selected as an output 

variable. This is due to ease of measurement in real-time. In addition, controlling the 

reboiler temperature is relevant to limiting solvent degradation in the reboiler (Davis & 

Rochelle, 2009). Hence, a safe and reliable operation of the capture process is 

guaranteed.  
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The selection of input variables was based on the principle that key input variables 

should have a significant effect on the output variables via step analysis of the first 

principles model available in literature (Lawal et al., 2010). Key input variables 

selected for this study includes flue gas flowrate, lean solvent flowrate and steam 

flowrate. Thus, the solvent-based PCC process was represented as a 3-input and 2-

output system.  

 

Figure 3-1 Multiple Input Single Output MEA based PCC Model 

 

3.3.2 Input signal design and Data Collection 

The input signals for each input variable were designed to cover a wide amplitude 

range and frequency bandwidth capturing the PCC process nonlinear dynamics. For 

a multivariable system like the solvent-based PCC process, it is essential that the input 

signal is designed so that the system is excited in all gain directions (more importantly 
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the weak gain direction) to limit the relative uncertainties associated with gain 

directions (Häggblom & Böling, 1998). Uniformly distributed random noise signals 

were developed for each input variable. The range for each input variable as well as 

signal characterization based on the crest factor (CF) and performance index for 

perturbation signals (PIPS) are shown in Table 3-1. These parameters give 

measurement of the goodness of the energy distribution along the span of the signal.  

Table 3-1 CF and PIPS for each input variable 

Input variable range Crest Factor (CF)  PIPS (%) 

Flue gas flowrate, u1 0.12kg/s – 0.2kg/s 2.137 51.562 

Lean solvent flowrate, u2 0.66kg/s – 0.86kg/s 1.579 64.117 

Steam flowrate, u3 0.024kg/s – 0.063kg/s 1.877 56.842 

 

Each signal was sent to each input variable simultaneously at a sample time of 60s. 

The gPROMS® model was run for a simulation period of 86400s (24hr) to get 1440 

data set. Data obtained were carefully observed and outliers were removed. Outliers 

includes data that reflects initialization of the gPROMs model at start time and within 

run time. Data obtained were standardised and centralised to equalise the energy 

content on each input signal. Figure 3-2 shows the data obtained from solvent-based 

PCC model developed in gPROMS. Figure 3-3 displays the power spectrum 

distribution of each input variable across a wide frequency range (0 – 3.5 rad/s). This 

is to show that the energy content of each input signal is uniform. The power spectrum 

is mainly focused around the lower frequency region.  

The whole data were split into estimation data (75%) and validation (test) data (25%). 

The estimation (training) data were used for model construction, whereas the test data 
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were used to test the model performance in predicting capture level, (CO2-CL),(y1) and 

reboiler temperature (Treb), (y2). The input variables used for this model development 

are flue gas flowrate (u1), lean solvent flowrate (u2) and steam flowrate (u3).  

 

Figure 3-2 Input-output data obtained from an MEA-based PCC model developed in gPROMS; 
CO2-CL: CO2 Capture level; Treb: reboiler temperature 
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Figure 3-3 Power spectrum distribution across frequency range on each input variable 

 

3.4 SI 

3.4.1 NARX SI using FROLS 

The multivariable NARX input model, which is a special form of NARMAX, is adopted 

to represent the solvent-based PCC process. The MISO-NARX model is described as: 

𝑦(𝑡) = 𝑓 (𝑦(𝑡 − 1),… , 𝑦(𝑡 − 𝑛𝑦), 𝑢1(𝑡), 𝑢1(𝑡 − 1), … , 𝑢1(𝑡 − 𝑛𝑢), … , 𝑢𝑟(𝑡), 𝑢𝑟(𝑡

− 1), … , 𝑢𝑟(𝑡 − 𝑛𝑢) )   +  𝑒(𝑡) 
3-3 
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 where 𝑟 is the number of external input signals; 𝑦(𝑡),𝑢𝑗(𝑡), and 𝑒(𝑡), with 𝑗 = 1,2, … , 𝑟 

and 𝑡 = 1,2, … ,𝑁 are measured system output, input and unmeasurable noise 

sequences, respectively; 𝑛𝑦 and 𝑛𝑢 are the maximum lags in the output and input; 𝑓(∙) 

represents a nonlinear function, which is generally unknown but can be approximated 

using various types of nonlinear forms. Polynomial expansion of 𝑓(∙) is most 

commonly used due to its good properties including transparency and easy 

interpretation of the model (Billings, 2013). 

The solvent-based PCC process considered in the present study is a typical MIMO 

system, involving three inputs (flue gas flowrate, lean solvent flowrate and steam 

flowrate) and two outputs (CO2-CL and Treb). For this study, the identification of the 

MIMO system was achieved by estimating one model for each output variable. This is 

to avoid an excessively complex model and ill-conditioned identification problem. The 

MIMO system can be represented as two MISO sub-systems, each of which can be 

represented using the NARX model as: 

𝑦1(𝑡) = 𝑓 (𝑦1(𝑡 − 1), … , 𝑦1(𝑡 − 𝑛𝑦), 𝑢1(𝑡), 𝑢1(𝑡 − 1), … , 𝑢1(𝑡 − 𝑛𝑢),… , 𝑢𝑟(𝑡), 𝑢𝑟(𝑡

− 1), … , 𝑢𝑟(𝑡 − 𝑛𝑢) )   +  𝑒1(𝑡) 
3-4 

𝑦2(𝑡) = 𝑓 (𝑦2(𝑡 − 1), … , 𝑦2(𝑡 − 𝑛𝑦), 𝑢1(𝑡), 𝑢1(𝑡 − 1), … , 𝑢1(𝑡 − 𝑛𝑢), … , 𝑢𝑟(𝑡), 𝑢𝑟(𝑡

− 1), … , 𝑢𝑟(𝑡 − 𝑛𝑢) )   + 𝑒2(𝑡) 
3-5 

where 𝑟 =3, 𝑢1 = flue gas flowrate (kg/s), 𝑢2 = Lean MEA flowrate (kg/s), 𝑢3 = steam 

flowrate (kg/s), and  𝑒1 and 𝑒2 are unmeasurable noise sequences. Each MISO model 

can be re-arranged into a linear-in-the-parameters form as (Billings et al., 1988): 
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𝑦𝑟(𝑡) =  ∑𝜑𝑟𝑗𝑥𝑟𝑗(𝑡) + 𝑒𝑟(𝑡)

𝑀𝑟

𝑗=1

 
3-6              

where 𝑦𝑟(𝑡), 𝑥𝑟𝑗(𝑡), 𝜑𝑟𝑗 and 𝑀𝑟, with (𝑟 = 1,2,3; 𝑗 = 1,2, … ,𝑀𝑟),  are the response 

signal (output), regressors, model parameter and number of model terms. It should be 

noted that each 𝜑𝑟𝑗 was built using lagged input and lagged output variables, such 

as 𝑦2(𝑡 − 1), 𝑦1(𝑡 − 1)
2, 𝑢2(𝑡 − 1)𝑢3(𝑡 − 1).  

FROLS was adopted to select significant model terms for each MISO sub-system 

based on ERR. Details on FROLS algorithm procedure for model structure selection 

is discussed in section 2.3.2.2.1.2. 

3.4.2 Model term candidate development 

This section discusses the term candidate development for the NARX model. For both 

subsystem 1 and subsystem 2, the maximum time lags for the input and output 

variables were chosen to be  𝑛𝑦 = 𝑛𝑢 = 2  and degree of nonlinearity be 2. The values 

of  𝑛𝑦 𝑎𝑛𝑑 𝑛𝑢  and nonlinearity degree for both sub-systems are large enough to cover 

the PCC process dynamics. A model term candidate dictionary D is a set consisting of 

a great number of model building blocks (i.e., candidate model terms) (Wei & Billings, 

2008). 

The dictionaries of candidate model terms were defined as follows: 

𝐷0
𝑢 = 𝐷0,2,0,2 , 𝐷0

1 = 𝐷2,2,0,2   

𝐷1
𝑢 = 𝐷0,2,1,2 , 𝐷1

1 = 𝐷2,2,1,2   

D𝑛𝑦,𝑛𝑢,𝑛𝑘,𝑙 = {𝑥1
𝑖1(𝑡)… . . 𝑥𝑙

𝑖𝑗(𝑡) ∶ 𝑥
𝑗

𝑖𝑗  ∈ 𝑉𝑛𝑦,𝑛𝑢,𝑛𝑘 , 1 ≤ 𝑗 ≤ 𝑙,   0 ≤ 𝑖𝑗 ≤ 𝑙, } 

𝑉𝑛𝑦,𝑛𝑢,𝑛𝑘 = {𝑦(𝑡 − 1),… , 𝑦(𝑡 − 𝑛𝑦), 𝑢(𝑡 − 𝑛𝑘), … , 𝑢(𝑡 − 𝑛𝑘 − 𝑛𝑢 + 1)} 
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Here, the two dictionaries  D0
u  and D1

u  only contain candidate model terms formed 

by all input variables alone (i.e., 𝑢1(𝑡), 𝑢2(𝑡), 𝑢3(𝑡) and their lagged versions such 

as  𝑢1(𝑡 − 1), 𝑢2(𝑡 − 2)) but do not include autoregressive terms such as   𝑦(𝑡 −

1),… , 𝑦(𝑡 − 𝑛𝑘) with 𝑛𝑘 = 0 and 1 respectively. The other two dictionaries, D0
1 and D1

1, 

however, contain candidate model terms formed by all the lagged input and output 

variables. The main purpose that we separately treated these two groups of model 

candidates (with and without autoregressive variables) is to test whether feedback 

signals from the system outputs play an obviously important role in explaining the 

system’s inherent dynamics. 

Using the above 4 dictionaries, a total of 4 models, different model structures, were 

identified for each sub-system. The model terms were ranked in accordance with their 

level of significance (measured by ERR index) to the response variable in each sub-

model. the BIC is used to determine the number of model terms(Wei & Billings, 2009). 

The minimum BIC (n) is adopted as the basis for selecting the model length. Thus, the 

FROLS algorithm stops its iteration at minimum BIC. Each model identified from the 

different model term dictionaries were compared based on OSA prediction and MSP. 

The models that best predict the system outputs were selected based on the MSP 

performance criterion.  

3.5 Performance Evaluation 

3.5.1 Sub-model 1 

Sub-model 1 represents a MISO system to predict CO2 capture level (CO2-CL). Tables 

3-2 – 3-5 give details of various model structures selected for each model term 

dictionary (D1
u, D1

1, D0
u, D0

1) using FROLS algorithm along with the parameter 

estimates and BIC. It can be deduced from the sum of error reduction ratio (SERR), 
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that the list of model terms selected from dictionaries D1
1 gave the best explanation 

(99.98%) of the response variable variation compared to the identified model 

developed from other dictionaries (see Table 3-3).  

Furthermore, comparisons of the identified models obtained from the different model 

dictionaries were carried out to assess the predictive ability of the models. Each model 

was applied to the test data for CO2 Capture level (CO2-CL). The associated OSA 

predictions and MSP are calculated and shown in Figures 3-4 – 3-7, where the solid 

line represents the original measurements and the dashed red and blue lines are for 

the OSA and MSP respectively.   

As shown in Figure 3-4 and 3-6, models M1
u (see Table 3-2) and model M0

u (see 

Table 3-4) gave similar MSP and OSA performance. This is because these models 

only use exogenous inputs (u1(t-1),…,ur(t-1),…,ur(t-n)) and do not use any 

autoregressive terms (y(t-1),…,y(t-n)). For models that only use exogenous inputs 

(without using autoregressive terms), their MSP and OSA predictions are always the 

same. Models M1
1and M0

1 (see Table 3-3 and Table 3-5 respectively), however, 

involve both auto-regressive variables and exogenous input variables. Comparing 

Figures 3-4 – 3-7, it can be seen that model M1
1 gave the best prediction performance 

(Figure 3-5), indicating that M1
1 contains the appropriate model terms that capture the 

system dynamics. For M0
1, there was disparity between the MSP and OSA prediction 

performances. This is because  M0
1 does not contain the most appropriate model 

terms that can well capture the system dynamics. For such a deficient model, its MSP 

performance will usually deteriorate because the accumulative error can be 

significantly augmented through an iterative computation procedure when updating 

the system output variable. The OSA performance of such a deficient model, however, 
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normally does not suffer from any error accumulation and propagation. The 

discrepancy between MSP and OSA shown in Figure 3-7 is mainly caused by the error 

propagation and augmentation due to the deficiency of the model. MSP is often used 

to test the validity and stability of a dynamic model that cannot be easily revealed by 

OSA. 

The variance accounted for (VAF), also called the prediction efficiency (PE), of the 

identified sub-models are shown in Table 3-6.  VAF (PE) is calculated as: 

VAF = [1 −
var(𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒 − 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡)

var (𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒)
]  × 100% 

3-7              

where 𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒  is the measured output of the test data and 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡 is the OSA 

prediction/ MSP output. Among the 4 models, M1
u, M1

1, M0
uM0

1 (obtained based upon 

the 4 dictionaries,D1
u, D1

1, D0
u, D0

1), It can be seen from Table 3-6 that model M1
1 

gave the best performance compared to the other 3 models with a prediction efficiency 

of 99.9% and 98.3% in terms of  OSA and MPO respectively (see Figure 3-5). This 

indicates that the underlying dynamics between the inputs and the output (CO2 capture 

level) is captured by model M1
1. Thus, model M1

1 was selected to represent sub-

system 1.  From Table 3-3, the system model can be written as: 

y1 = 1.50 y1(t − 1) + 0.0336 u3(t − 2) − 0.469 y1(t − 2) + …

− 3.15 y1(t − 2)u1(t − 1) 
3-8              

Table 3-2 Identified model (M1
u) structures from D1

u for sub-model 1 using FROLS algorithm 

s/n Model Terms Parameter Estimates ERR (%) BIC 

1 u3(t-2) 2.43E+03 3.78E+01 6.30E-01 

2 u2(t-1)*u3(t-1) -5.13E+03 7.22E+00 5.61E-01 

3 u1(t-1)*u2(t-1) 2.09E+03 7.58E+00 4.87E-01 

4 u1(t-2) -1.47E+02 1.12E+00 4.79E-01 

5 u1(t-1)*u1(t-1) 1.12E+04 3.16E+00 4.49E-01 

6 u2(t-1)*u2(t-1) -8.90E+01 2.09E+00 4.30E-01 
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s/n Model Terms Parameter Estimates ERR (%) BIC 

7 u2(t-2) 2.78E+01 4.67E-01 4.28E-01 

8 u3(t-1)*u3(t-1) 3.15E+04 6.11E-01 4.25E-01 

9 u1(t-1) -5.25E+03 2.18E-01 4.25E-01 

 

 

Figure 3-4 Comparison of the model predictions (OSA and MSP(10)) and measurements over 
the test data for sub-model 1 using  M1

u. Note: MSP(10) indicates 10-step ahead prediction.  

 

Table 3-3 Identified model (M1
1) structures from D1

1 for sub-model 1 using FROLS algorithm 

s/n Model Terms Parameter Estimates ERR (%) BIC 

1 y1(t-1) 1.50E+00 9.97E+01 2.85E-03 

2 u3(t-2) 3.36E+02 5.57E-02 2.30E-03 

3 y1(t-2) -4.69E-01 2.48E-02 2.06E-03 

4 u3(t-1) -3.68E+02 1.78E-02 1.89E-03 

5 y1(t-1)*u1(t-1) -7.22E+00 6.23E-03 1.84E-03 

6 y1(t-2)* u1(t-2) -1.47E+00 2.93E-02 1.55E-03 

7 u2(t-2) -4.42E+01 3.08E-03 1.53E-03 

8 u2(t-1) 3.88E+01 5.79E-02 9.20E-04 

9 u1(t-1) 2.49E+01 2.45E-03 9.00E-04 

10 u1(t-2) -6.90E+00 5.51E-02 3.13E-04 

11 u2(t-1)*u3(t-2) 2.12E+02 8.12E-04 3.06E-04 



72 
 

s/n Model Terms Parameter Estimates ERR (%) BIC 

12 u2(t-2)*u3(t-2) -5.57E+02 2.56E-03 2.80E-04 

13 u1(t-2)*u2(t-1) -1.34E+03 2.11E-04 2.80E-04 

14 u1(t-1)*u2(t-1) 1.29E+03 1.37E-03 2.67E-04 

15 u1(t-2)*u2(t-2) 1.24E+03 2.46E-04 2.66E-04 

16 u1(t-1)*u2(t-2) -1.20E+03 1.95E-03 2.45E-04 

17 y1(t-1)*u1(t-2) 5.31E+00 3.01E-04 2.44E-04 

18 u2(t-1)*u3(t-1) 4.70E+02 2.95E-04 2.42E-04 

19 y1(t-1)*u3(t-1) -1.95E-01 1.61E-04 2.42E-04 

20 y1(t-2)*u1(t-1) 3.15E+00 9.11E-05 2.42E-04 

 

 

Figure 3-5 Comparison of the model predictions (OSA and MSP) and measurements over the 

test data for sub-model 1 using  M1
1. Note: MSP(10) indicates 10-step ahead prediction. 

 

Table 3-4 Identified model (M0
u) structures from D0

u for sub-model 1 using FROLS algorithm 

s/n 
Model Terms 

Parameter Estimates 
ERR (%) BIC 

1 
u3(t-1) 

1.36E+04 
3.56E+01 6.53E-01 

2 
u2(t-1)*u3(t-1) 

-1.36E+04 
7.55E+00 5.80E-01 
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s/n 
Model Terms 

Parameter Estimates 
ERR (%) BIC 

3 
u1(t-1)*u2(t) 

6.05E+02 
7.65E+00 5.06E-01 

4 
u1(t)*u1(t) 

1.55E+03 
1.09E+00 4.98E-01 

5 
u1(t-1) 

-1.19E+03 
3.26E+00 4.67E-01 

6 
u2(t-1)*u2(t-1) 

-6.98E+02 
2.04E+00 4.49E-01 

7 
u2(t-1) 

1.58E+03 
5.46E-01 4.46E-01 

8 
u3(t)*u3(t-1) 

-1.95E+04 
7.14E-01 4.42E-01 

9 
u2(t)*u3(t) 

-6.79E-02 
3.30E-01 4.41E-01 

10 
constant 

1.36E+04 
1.63E-01 4.42E-01 

 

 

Figure 3-6 Comparison of the model predictions (OSA and MSP) and measurements over the 
test data for sub-model 1 using  M0

u. Note: MSP(10) indicates 10-step ahead prediction. 
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Table 3-5 Identified model (M0
1) structures from D0

1 for sub-model 1 using FROLS algorithm 

s/n Model Terms Parameter Estimates ERR (%) BIC 

1 y1(t-1) -1.11256 9.97E+01 2.85E-03 
2 y1(t-2) 45.87308 5.12E-02 2.35E-03 
3 u3(t-1) -125.003 1.72E-02 2.19E-03 
4 u1(t) 136.2412 6.03E-03 2.14E-03 
5 u1(t-1) -1.27043 5.70E-03 2.10E-03 
6 y1(t-1)*u1(t-1) 4.932979 1.87E-03 2.09E-03 
7 y1(t-2)*u1(t) 0.006381 2.43E-03 2.08E-03 
8 y1(t-1)*u2(t-1) -3.94866 1.31E-03 2.08E-03 
9 y1(t-1)*u1(t) -1.11256 1.08E-03 2.08E-03 

 

 

Figure 3-7 Comparison of the model predictions (OSA and MSP) and measurements over the 

test data for sub-model 1 using  M0
1. Note: MSP(10) indicates 10-step ahead prediction. 

 

 

 



75 
 

Table 3-6 VAF (and PE) for the Identified sub-model 1 (OSA and MSP) 

Identified Models OSA (%VAF) MSP (%VAF) 

M1
u 31.0003 31.0003 

M1
1 99.9090 98.2652 

M0
u 49.5279 49.5279 

M0
1 99.8699 97.8917 

 

3.5.2 Sub-model 2 

The details of the models for sub-system 2, obtained from each model term dictionary 

based on FROLS algorithm, are summarized in Tables 3-7 – 3-10. OSA predictions 

and multi-step prediction (MSP) generated by these models, together with the true 

values (i.e. the system output measurements as test data), are shown in Figure 3-8 – 

3-11, respectively. Also, the prediction efficiency for each identified model is tabulated 

in Table 3-11. 

It was observed from Table 3.11 that  M1
1 (obtained from D1

1) out-performed the other 

3 models with a prediction efficiency of 99.994% and 99.587% based on OSA 

prediction and MSP (see Figure 3-9) and was selected as a suitable model to predict 

the reboiler temperature. Thus, from Table 3-8, the model should be written as: 

y2 = 1.67 y2(t − 1) − 0.687 y2(t − 2) + 0.0219 u3(t − 1) + …

− 0.428 u1(t − 2) 
3-9              

Table 3-7 Identified model (M1
𝑢) structures from D1

u for sub-model 2 using FROLS algorithm 

s/n Model Terms Parameter Estimates ERR (%) BIC 

1 u3(t-2) 3.57E+03 8.12E+01 1.83E-01 

2 u2(t-2) 7.28E+01 6.14E+00 1.24E-01 

3 u1(t-2)*u1(t-2) 2.38E+03 9.60E-01 1.16E-01 

4 u3(t-2)*u3(t-2) -1.58E+04 9.84E-01 1.07E-01 

5 u2(t-2)*u3(t-2) -1.82E+03 7.30E-01 1.00E-01 

6 u1(t-2) -7.89E+02 9.88E-01 9.07E-02 
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s/n Model Terms Parameter Estimates ERR (%) BIC 

7 constant 3.26E+02 1.98E-01 8.93E-02 

8 u2(t-1)*u2(t-2) -1.06E+01 9.18E-02 8.89E-02 

9 u3(t-1) 6.69E+01 2.32E-02 8.93E-02 

 

 

 

Figure 3-8 Comparison of the model predictions (OSA and MSP) and measurements over the 

test data for sub-model 2 using  M1
u. Note: MSP(10) indicates 10-step ahead prediction. 

Table 3-8 Identified model (M1
1) structures from D1

1 for sub-model 2 using FROLS algorithm 

s/n Model Terms Parameter Estimates ERR (%) BIC 

1 y2(t-1) 1.67E+00 9.96E+01 3.68E-03 

2 y2(t-2) -6.87E-01 2.40E-01 1.35E-03 

3 u3(t-1) 2.19E+02 2.65E-02 1.09E-03 

4 u3(t-2) -1.86E+02 8.42E-02 2.61E-04 

5 u2(t-1) -5.24E+00 9.02E-04 2.54E-04 

6 u3(t-1)*u3(t-2) -4.88E+03 8.89E-04 2.47E-04 

7 u3(t-2)*u3(t-2) 5.51E+03 1.00E-02 1.47E-04 

8 u3(t-1)*u3(t-1) -1.05E+03 4.47E-04 1.43E-04 
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s/n Model Terms Parameter Estimates ERR (%) BIC 

9 constant 7.48E+00 4.93E-04 1.39E-04 

10 u2(t-2)*u3(t-1) 3.18E+02 3.83E-04 1.36E-04 

11 u2(t-2)*u3(t-2) -3.66E+02 1.33E-03 1.23E-04 

12 u2(t-1)*u3(t-2) 7.66E+01 1.02E-04 1.22E-04 

13 u2(t-2) 2.95E+00 8.13E-05 1.22E-04 

14 u1(t-2) -4.28E-01 7.13E-05 1.22E-04 

 

 

Figure 3-9 Comparison of the model predictions (OSA and MSP) and measurements over the 

test data for sub-model 2 using  M1
1. Note: MSP(10) indicates 10-step ahead prediction. 

Table 3-9 Identified model (M0
𝑢) structures from D0

𝑢 for sub-model 2 using FROLS algorithm 

s/n Model Terms Parameter Estimates ERR (%) BIC 

1 u3(t-1) 3.80E+03 7.91E+01 2.03E-01 

2 u2(t-1) 6.72E+01 5.67E+00 1.49E-01 

3 u1(t-1)*u1(t-1) 2.53E+03 1.07E+00 1.40E-01 

4 u3(t-1)*u3(t-1) -1.55E+04 9.42E-01 1.31E-01 

5 u2(t)*u3(t) -1.13E+02 9.80E-01 1.22E-01 

6 u1(t-1) -8.36E+02 9.53E-01 1.13E-01 
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s/n Model Terms Parameter Estimates ERR (%) BIC 

7 Constant  3.27E+02 1.57E-01 1.13E-01 

8 u2(t)*u2(t) 2.15E+00 9.01E-02 1.12E-01 

9 u2(t-1)*u3(t-1) -1.97E+03 3.13E-02 1.13E-01 

 

  

Figure 3-10 Comparison of the model predictions (OSA and MSP) and measurements over 

the test data for sub-model 2 using  M0
𝑢. Note: MSP(10) indicates 10-step ahead prediction. 

Table 3-10 Identified model (M0
1) structures from D0

1 for sub-model 2 using FROLS algorithm 

s/n Model Terms Parameter Estimates ERR (%) BIC 

1 y2(t-1) -9.30E+00 9.96E+01 3.68E-03 

2 y2(t-2) 7.96E+00 2.40E-01 1.35E-03 

3 u3(t-1) 1.92E+03 2.65E-02 1.09E-03 

4 u2(t-1) -3.30E+00 2.57E-02 8.44E-04 

5 y2(t-2)*u3(t-1) -4.84E+00 6.19E-03 7.88E-04 

6 constant 4.41E+02 1.96E-02 5.95E-04 

7 y2(t-1)*y2(t-1) 2.42E-02 4.74E-03 5.51E-04 

8 u2(t)*u3(t-1) 8.89E+01 2.24E-03 5.32E-04 

9 y2(t-1)*y2(t-2) -2.11E-02 2.97E-03 5.05E-04 

10 u1(t-1)*u2(t) 4.04E+01 1.39E-03 4.94E-04 

11 u2(t)*u2(t) -7.54E+00 1.04E-03 4.86E-04 

12 y2(t-1)*u1(t-1) 6.28E-01 1.22E-03 4.76E-04 
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13 u1(t-1) -2.74E+02 1.48E-03 4.64E-04 

14 u1(t-1)*u1(t-1) 5.18E+01 5.59E-04 4.61E-04 

15 u3(t-1)*u3(t-1) -2.09E+02 3.79E-04 4.60E-04 

16 u1(t-1)*u3(t-1) -2.99E+02 1.92E-04 4.61E-04 

 

 

Figure 3-11 Comparison of the model predictions (OSA and MSP) and measurements over 

the test data for sub-model 2 using  M0
1. Note: MSP(10) indicates 10-step ahead prediction. 

 
Table 3-11 VAF (and PE) for the Identified sub-model 1 (OSA and MSP) 

Identified Models OSA (%VAF) MSP (%VAF) 

M1
u 86.5313 86.5313 

M1
1 99.9937 99.5870 

M0
u 84.1887 84.1887 

M0
1 99.9529 98.5890 
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3.5.3 Statistical Analysis 

Statistical analysis was carryout on the suitable NARX models obtained using FROLS 

algorithm to represent the underlying dynamics between key variables in the solvent-

based CO2 capture plant. Table 3-12 shows the values of R, R2 and adjusted R2 of the 

identified models. R, which is the multiple correlation coefficient, is a measure of how 

much the combination of model terms in each identified model correlates with the 

respective output variables. The R2 represents the portion of variance in the response 

variable that is explained by the combination of model terms, while the adjusted R2 is 

a measure of the accuracy of a model across different samples (Zhou et al., 2008). R, 

R2 and adjusted R2 are calculated as follows 

𝑅 =
𝑁 ∑𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡 − ∑𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒 ∑𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡

√𝑁∑𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒2 − (∑𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒)2  √𝑁 ∑𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡
2 − (∑𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡)2

 
3-10 

𝑅2 = 1 − 
𝑆𝑆𝐸

𝑆𝑆𝑇
 3-11 

𝑅𝑎𝑑𝑗
2 = 1 − (

𝑁 − 1

𝑁 − 𝑛
)
𝑆𝑆𝐸

𝑆𝑆𝑇
 3-12 

 

Where 𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒  is the measured output; 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡 is the multi-step prediction;  𝑆𝑆𝐸 is 

the sum of squares error; 𝑆𝑆𝑇 is the total sum of squares; 𝑁 is the number of 

observations and 𝑛 is the number of terms. The R-value for sub-model1 (1.0000) and 

sub-model 2 (1.0000) indicates that the combination of model terms in each identified 

model are highly correlated with the response variables. The R2 value signifies that 

model 1 can explain 99.98% of the variation in CO2 capture level (CO2-CL) and model 

2 can explain 99.99% of the variation in reboiler temperature (Treb). The values of 
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adjusted R2 indicates that the identified NARX models has high accuracy of prediction 

even across different samples.  

Table 3-12 Statistical performance of the Identified NARX model 

Identified Model 𝑅 𝑅2 𝑅𝑎𝑑𝑗
2  

Sub-model 1 1.0000 0.9998 0.9998 

Sub-model 2 1.0000 0.9999 0.9999 

3.6 Process dynamics analysis 

This section discusses the dynamic analysis carried out on the identified MEA based 

PCC model. Output responses plot for both the first principles model and the identified 

model were compared. This is to ensure that the identified model captures the basic 

dynamics of the CO2 capture system. The following dynamic operational analysis were 

carried out: 

 A step increase in flue gas flowrate to the absorber 

 A step increase in lean solvent mass flowrate to the absorber 

 A step increase in steam flowrate to the reboiler in regenerator 

3.6.1 Increase in flue gas flowrate to the absorption column  

The effect of the flue gas flowrate increase to the absorber on the CO2 capture 

identified model outputs (CO2-CL, Treb) was investigated. The change in flue gas 

flowrate reflects the variation in the power plant output attached to the capture process 

and thus considered as a disturbance to the capture process. The flue gas flowrate 

was increased with 10% step change at simulation time of 30000s (8.33hr) and 

remained constant for the rest of the simulation period. Other input variables (lean 

solvent (MEA) flowrate and steam flowrate) were kept constant throughout the 

simulation time.  
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From Figure 3-12, the CO2 capture level decreases significantly in a very short period, 

as flue gas flowrate increases.  At the same period, reboiler temperature is slightly 

reduced.  This indicates that flue gas flowrate has an immediate and significant effect 

on the CO2 capture level but a slight effect on the reboiler temperature. The dynamic 

trends of the identified model aligns with the first principles (gPROMS) model 

responses.   

 

Figure 3-12 Output response to flue gas flowrate (kg/s) increase to the absorber: gPROMS 
model  

3.6.2 Increase in lean solvent (MEA) flow rate  

Similar investigation on the effect of lean solvent flowrate on the CO2 capture 

(identified and first principles) model outputs. A 10% step increase in lean solvent 
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flowrate was effected at a simulation time of 30000s (8.33hr) while other input 

variables were left constant.  

A sharp increase in CO2 capture level was observed (see Figure 3-13) immediately 

after the step change was introduced.  This is accompanied by a slow reduction in the 

CO2 capture level until a new steady-state point is attained. A slow but significant 

decrease in the reboiler temperature was observed as lean solvent (MEA) flowrate 

increases (see Figure 3-13). Similar dynamic behaviour was observed for the first 

principles model as shown in Figure 3-13.  

 

Figure 3-13 Output responses to a 10% step increase of  lean solvent (MEA) flowrate (kg/s) 
to the absorber 
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3.6.3 Increase in steam flowrate to the reboiler   

This section details the effect of the steam flowrate to the reboiler on the PCC model. 

Steam supplied to the reboiler is extracted from the power plant.  An increase of 10% 

in steam flowrate was introduced at a simulation time of 30000s (8.33hr) and was 

maintained to the end of the simulation time.  

It was observed that the steam flowrate had a significant but slow effect on both CO2 

capture level and reboiler temperature (see Figure 3-14). Both the CO2 capture level 

and reboiler temperature increases for a long period as the step increment is 

introduced to the steam flowrate.  Similar dynamic behavioural trend is also observed 

in the first principles model. 

 

Figure 3-14 Output responses to a 10% step increase in steam flowrate (kg/s) 
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3.7 Summary  

In this chapter, a parsimonious polynomial NARX model was developed to predict the 

dynamic responses of an MEA-based PCC plant (3-input and 2-output) using the 

FROLS-ERR algorithm. Process operational data was obtained from gPROMS model 

developed by Lawal et al.,(2010) for the SI implementation. The amine-based PCC 

plant was represented as two MISO sub-systems (3-input and 2-output). The key 

findings for this chapter are summarised as follows: 

 The FROLS-ERR algorithm proved to be a powerful tool in selecting the most 

significant model terms for representing and predicting the response variables 

(CO2-CL and Treb). These model terms were ranked based on ERR. This gives 

a simple and transparent mathematical representation of the systems where 

we can clearly know how the system outputs depend on the variables and their 

interactions.  

 Identified models obtained from the different model term dictionaries were 

compared, in which the best model was selected based on the performance of 

MSP and OSA prediction.  M1
1gave the best performances based on the 

prediction efficiency of both OSA and MPO for both subsystem-1 and 

subsystem-2.  Statistical analysis of the identified model for each subsystem 

was carried out successfully.  

 Process dynamic analysis of identified NARX models developed in comparison 

with the first principles (gPROMS®) model was carried out successfully. It was 

concluded that the identified model captures the underlying dynamics of the 

sub-systems.   
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4 Multivariable PI control Design on the solvent-based post-combustion CO2 

capture process  

4.1 Introduction 

This chapter describes the multivariable control design of the solvent-based PCC 

process model using the conventional PI controller. This includes development, 

implementation and performance evaluation of the decentralised control scheme on 

the CO2 capture process. Multivariable controllability analysis was carried out on the 

identified model (developed in chapter 3) to develop potential suitable control structure 

configurations. This involved using 2 approaches (RGA analysis and process oriented 

approach). PI control was developed, implemented and evaluated based on set point 

tracking and disturbance rejection performance.  

The state-space realisation of the identified CO2 capture model and multivariable 

control structure analysis were presented in section 4.2 and 4.3 respectively. In section 

4.4 and 4.5, the conventional PI control design and performance evaluation for the 

control structure were presented.  

4.2 State-space realisation of the solvent-based PCC model 

This section describes the state-space realisation of the solvent-based PCC model, 

which is represented as a multi-input multi-output polynomial NARX model. The NARX 

model is expressed as shown. 
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𝑦1(𝑡) = 𝑎1𝑦1(𝑡 − 1) + 𝑏1𝑢3(𝑡 − 2) + 𝑎2𝑦1(𝑡 − 2) + 𝑏2𝑢3(𝑡 − 1)

+ 𝑐1  𝑦1(𝑡 − 1)𝑢1(𝑡 − 1) +  𝑐2  𝑦1(𝑡 − 2)𝑢1(𝑡 − 2)

+ 𝑏3𝑢2(𝑡 − 2) + 𝑏4𝑢2(𝑡 − 1) + 𝑏5𝑢1(𝑡 − 1) + 𝑏6𝑢1(𝑡 − 2)

+ 𝑐3𝑢2(𝑡 − 1)𝑢3(𝑡 − 2) + 𝑐4𝑢2(𝑡 − 2)𝑢3(𝑡 − 2)

+ 𝑐5𝑢1(𝑡 − 2)𝑢2(𝑡 − 1) + 𝑐6𝑢1(𝑡 − 1)𝑢2(𝑡 − 1)

+ 𝑐7𝑢1(𝑡 − 2)𝑢2(𝑡 − 2) + 𝑐8𝑢1(𝑡 − 1)𝑢2(𝑡 − 2)

+ 𝑐9𝑦1(𝑡 − 1)𝑢1(𝑡 − 2) + 𝑐10𝑢2(𝑡 − 1)𝑢3(𝑡 − 1)

+ 𝑐11𝑦1(𝑡 − 1)𝑢3(𝑡 − 1) + 𝑐12 𝑦1(𝑡 − 2)𝑢1(𝑡 − 1) + 𝑑 

4-1 

𝑦2(𝑡) = 𝑎11 𝑦2(𝑡 − 1) +  𝑎21𝑦2(𝑡 − 2) + 𝑏11 𝑢3(𝑡 − 1) + 𝑏21 𝑢3(𝑡 − 2)

+ 𝑏31 𝑢2(𝑡 − 1) + 𝑐11 𝑢3(𝑡 − 1)𝑢3(𝑡 − 2)

+ 𝑐21𝑢3(𝑡 − 2)𝑢3(𝑡 − 2) + 𝑐31 𝑢3(𝑡 − 1)𝑢3(𝑡 − 1) + 𝑑1

+  𝑐41 𝑢2(𝑡 − 2)𝑢3(𝑡 − 1) + 𝑐51 𝑢2(𝑡 − 2)𝑢3(𝑡 − 2)

+ 𝑐61 𝑢2(𝑡 − 1)𝑢3(𝑡 − 2) + 𝑏41 𝑢2(𝑡 − 2) + 𝑏51 𝑢1(𝑡 − 2) 

4-2 

The simple and transparent attribute of the polynomial NARX model has made the SI 

approach suitable. Despite the desirable attributes of the polynomial NARX, it is not 

suitable for many dynamic analysis and control applications (Sadegh, 2001). However, 

state models are often adopted for feedback control designs and stability analysis 

(Sadegh & Maqueira, 1994; Levin & Narendra, 1993). Hence the need for the state-

space realisation of the nonlinear model.  The state-space realisation of the nonlinear 

model includes the following (Kotta & Sadegh, 2002; Sadegh, 2001): 

 Model reduction (i.e. observation representation of the model). 

 State-space realisation of the observable representation of the model.  
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4.2.1 Model Reduction  

This section details the determination of an observable representation of the identified 

model. This section adopted the procedural algorithm developed by  Sadegh, (2001) 

to determine if the necessary condition to attain models that possess an observable 

state realisation. The algorithm is detailed as follows (Sadegh, 2001): 

Step 1:  Express model as an input/ output (i/o) map given as: 

𝑓(𝑦1, … , 𝑦𝑛, 𝑢1, … 𝑢𝑛) 

Step 2: compute the scalar values for 𝛼𝑖,𝑗 and 𝛽𝑖,𝑗, where are obtained as follows: 

𝛼𝑖,𝑗(𝑦, 𝑢, 𝑣) ∶=  𝛾𝑗(𝑦𝑖, … , 𝑦𝑛, 𝑓1(𝑦, 𝑢, 𝑣), … , 𝑓𝑖−1(𝑦, 𝑢, 𝑣), 𝑢𝑖, … , 𝑢𝑛, 𝑣1, … , 𝑣𝑖−1) 4-3 

𝛽𝑖,𝑗(𝑦, 𝑢, 𝑣) ∶=  𝛾𝑛+𝑗(𝑦𝑖 , … , 𝑦𝑛, 𝑓1(𝑦, 𝑢, 𝑣), … , 𝑓𝑖−1(𝑦, 𝑢, 𝑣), 𝑢𝑖 , … , 𝑢𝑛, 𝑣1, … , 𝑣𝑖−1) 4-4 

Where 𝛾𝑗(𝑦𝑖, … , 𝑦𝑛, 𝑢𝑖 , … , 𝑢𝑛) and 𝛾𝑛+𝑗(𝑦𝑖, … , 𝑦𝑛, 𝑢𝑖 , … , 𝑢𝑛) are the partial derivative of 

𝑓(𝑦1, … , 𝑦𝑛, 𝑢1, … 𝑢𝑛) with respect to 𝑦 and 𝑢 respectively. Move to the next step if 

𝛼𝑖,1(𝑦, 𝑢, 𝑣) ≠ 0 for 𝑖 = 1,… , 𝑛. If not, the i/o map does not possess an observable state. 

Step 3: for 𝑖 = 1,…𝑛 and 𝑗 = 2, … , 𝑛 − 𝑖 + 1 compute  

�̅�𝑖,𝑗 ≔
𝛼𝑖,𝑗

𝛼𝑖,1
 ;     �̅�𝑖,𝑗 ≔

𝛽𝑖,𝑗

𝛼𝑖,1
     

4-5 

Step 4: for 𝑘 = 0,… , 𝑛 − 1 and 𝑖 = 1,… , 𝑛 − 𝑘 compute  

𝑀𝑖,𝑖+𝑘 = �̅�𝑖,𝑘+1 −∑�̅�𝑖,𝑗+1𝑀𝑖+𝑗,𝑖+𝑘

𝑘

𝑗=1

 
4-6 

Step 5: the i/o maps has an observable state if 𝐷𝑣𝑙𝑀𝑖,𝑗(𝑦, 𝑢, 𝑣) =0, 𝑙 = 1,… , 𝑖 − 1, 𝑣 =

(𝑣1, … , 𝑣𝑛). Where 𝐷𝑣𝑙 is the partial derivative of 𝑀𝑖,𝑗(𝑦, 𝑢, 𝑣)  with respect to 𝑣. 
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Thus, the i/o map has an observable state-space representation of order 𝑛, if; 

1. 𝛼𝑖,1(𝑦, 𝑢, 𝑣) is nonzero for 𝑖 = 1 , … , 𝑛; 

2. 𝑀𝑖,𝑗(𝑦, 𝑢, 𝑣) for 𝑖 = 2,… , 𝑛, 𝑗 = 𝑖, … , 𝑛 are independent of 𝑣1, … , 𝑣𝑖−1 

The algorithms were implemented as follows: 

The polynomial model in equations 4-1 and 4-2 can be expressed as: 

𝑦𝑖(𝑡) = 𝑓(𝑦𝑖(𝑡 − 2), 𝑦𝑖(𝑡 − 1), 𝑢𝑗(𝑡 − 2), 𝑢𝑗(𝑡 − 1)) 4-7 

Where 𝑖 and 𝑗 represent the number of output and input variables respectively. As the 

CO2 capture process was identified as two (2) MISO system in chapter 3, equation 4-

7 can be rewritten as:  

𝑦1(𝑡) = 𝑓(𝑦1(𝑡 − 2), 𝑦1(𝑡 − 1), 𝑢𝑗(𝑡 − 2), 𝑢𝑗(𝑡 − 1)) 4-8 

𝑦2(𝑡) = 𝑓(𝑦2(𝑡 − 2), 𝑦2(𝑡 − 1), 𝑢𝑗(𝑡 − 2), 𝑢𝑗(𝑡 − 1)) 4-9 

Where  

𝑓 (𝑦1(𝑡 − 2), 𝑦1(𝑡 − 1), 𝑢𝑗(𝑡 − 2), 𝑢𝑗(𝑡 − 1))

= 𝑎1 𝑦1
2 + 𝑏1  𝑢3

1 + 𝑎2  𝑦1
1 + 𝑏2  𝑢3

2 + 𝑐1 𝑦1
2 𝑢1

2 + 𝑐2  𝑦1
1 𝑢1

1

+ 𝑏3 𝑢2
1 + 𝑏4  𝑢2

2 + 𝑏5  𝑢1
2 + 𝑏6  𝑢1

1 + 𝑐3  𝑢2
2 𝑢3

1 + 𝑐4   𝑢2
1 𝑢3

1

+ 𝑐5  𝑢1
1 𝑢2

2 + 𝑐6 𝑢1
2 𝑢2

2 + 𝑐7 𝑢1
1 𝑢2

1 + 𝑐8   𝑢1
2 𝑢2

1 + 𝑐9  𝑦1
2 𝑢1

1

+ 𝑐10  𝑢2
2 𝑢3

2 + 𝑐11  𝑦1
2 𝑢3

2 + 𝑐12  𝑦1
1 𝑢1

2 + 𝑑  

4-10 
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𝑓 (𝑦2(𝑡 − 2), 𝑦2(𝑡 − 1), 𝑢𝑗(𝑡 − 2), 𝑢𝑗(𝑡 − 1))

= 𝑎11 𝑦2
2 + 𝑎21  𝑦2

1 + 𝑏11  𝑢3
2 + 𝑏21  𝑢3

1 + 𝑐11 𝑢3
2 𝑢3

1 + 𝑐21  𝑢3
1 𝑢3

1

+ 𝑐31  𝑢3
2 𝑢3

2 + 𝑑1 +  𝑐41 𝑢2
1 𝑢3

2 + 𝑐51  𝑢2
1 𝑢3

1 + 𝑐61 𝑢2
2 𝑢3

1

+ 𝑏41 𝑢2
1 + 𝑏51 𝑢1

1 

4-11 

Following step 2, 𝛼𝑖,𝑗 and 𝛽𝑖,𝑗 are computed as follows: 

For equation 4-10, 

𝛼1,1 =  𝑎2 + 𝑐2 𝑢1
1 + 𝑐12  𝑢1

2 

4-12 

𝛼1,2 =  𝑎1 + 𝑐1 𝑢1
2 + 𝑐9  𝑢1

1 + 𝑐11 𝑢3
2 

𝛼2,1 =  𝑎2 + 𝑐2 𝑢1
2 + 𝑐12 𝑣1 

𝛼2,2 =  𝑎1 + 𝑐1 𝑣1 + 𝑐9  𝑢1
2 + 𝑐11𝑣3 

𝛽1,1
1 = 𝑏6 + 𝑐2 𝑦1

1 + 𝑐5 𝑢2
2 + 𝑐7𝑢2

1 + 𝑐9 𝑦1
2  

𝛽1,2
1 = 𝑏5 + 𝑐1 𝑦1

2 + 𝑐5 𝑢1
1 + 𝑐6 𝑢2

2 + 𝑐8 𝑢2
1 + 𝑐12 𝑦1

1 

𝛽2,1
1 = 𝑏6 + 𝑐2 𝑦1

2 + 𝑐5 𝑣2 + 𝑐7𝑢2
2 + 𝑐9 𝑓(𝑦1

1, 𝑦1
2, 𝑢1

1, 𝑢1
2, 𝑢2

1, 𝑢2
2, 𝑢3

1, 𝑢3
2) 

𝛽2,2
1 = 𝑏5 + 𝑐1 𝑓(𝑦1

1, 𝑦1
2, 𝑢1

1, 𝑢1
2, 𝑢2

1, 𝑢2
2, 𝑢3

1, 𝑢3
2) + 𝑐5 𝑢1

2 + 𝑐6 𝑣2 + 𝑐8 𝑢2
2 + 𝑐12 𝑦1

2 

𝛽1,1
2 = 𝑏3 + 𝑐4 𝑢3

1 + 𝑐7 𝑢1
1 + 𝑐8𝑢1

2  

𝛽1,2
2 = 𝑏4 + 𝑐10 𝑢3

2 + 𝑐5 𝑢1
1 + 𝑐6 𝑢1

2 

𝛽2,1
2 = 𝑏3 + 𝑐4 𝑢3

2 + 𝑐7𝑢1
2 + 𝑐8𝑣1 

𝛽2,2
2 = 𝑏4 + 𝑐10𝑣3  + 𝑐5 𝑢1

2 + 𝑐6𝑣1 

𝛽1,1
3 = 𝑏1 + 𝑐3 𝑢2

2 + 𝑐4 𝑢2
1  

𝛽1,2
3 = 𝑏2 + 𝑐10 𝑢2

2 + 𝑐11 𝑦1
2 

𝛽2,1
3 = 𝑏1 + 𝑐3𝑣2 + 𝑐4 𝑢2

2 

𝛽2,2
3 = 𝑏2 + 𝑐10𝑣2 + 𝑐11 𝑓(𝑦1

1, 𝑦1
2, 𝑢1

1, 𝑢1
2, 𝑢2

1, 𝑢2
2, 𝑢3

1, 𝑢3
2) 
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For equation 4-11, 

𝛼1,1 =  𝑎21 

4-13 

𝛼1,2 =  𝑎11 

𝛼2,1 =  𝑎21 

𝛼2,2 =  𝑎11 

𝛽1,1
1 = 𝑏51  

𝛽1,2
1 = 0 

𝛽2,1
1 = 𝑏51 

𝛽2,2
1 = 0 

𝛽1,1
2 = 𝑏41 + 𝑐41 𝑢3

2 + 𝑐51 𝑢3
1  

𝛽1,2
2 = 𝑏31 + 𝑐61 𝑢3

1 

𝛽2,1
2 = 𝑏41 + 𝑐41 𝑣3 + 𝑐51 𝑢3

2  

𝛽2,2
2 = 𝑏31 + 𝑐61 𝑢3

2 

𝛽1,1
3 = 𝑏21 + 𝑐11 𝑢3

2 + 𝑐21 𝑢3
1 + 𝑐51 𝑢2

1 + 𝑐61 𝑢2
2  

𝛽1,2
3 = 𝑏11 + 𝑐11 𝑢3

1 + 𝑐31 𝑢3
2 + 𝑐41 𝑢2

1 

𝛽2,1
3 = 𝑏21 + 𝑐11 𝑣3 + 𝑐21 𝑢3

2 + 𝑐51 𝑢2
2 + 𝑐61𝑣2  

𝛽2,2
3 = 𝑏11 + 𝑐11 𝑢3

2 + 𝑐31 𝑣3 + 𝑐41 𝑢2
2 

Using steps 3 and 4, the elements that need to be checked for 𝑣 independence is: 

�̅�2,1
𝑚 =

𝛽2,1
𝑚

𝛼2,1
𝑛  

4-14 

Where 𝑚  and n are the number of input and output variables respectively. This is then 

rewritten as follows: 

�̅�2,1
1 =

𝛽2,1
1

𝛼2,1
1 =

𝑏6 + 𝑐2 𝑦1
2 + 𝑐5 𝑣2 + 𝑐7𝑢2

2 + 𝑐9 𝑓(𝑦1
1, 𝑦1

2, 𝑢1
1, 𝑢1

2, 𝑢2
1, 𝑢2

2, 𝑢3
1, 𝑢3

2)

 𝑎2 + 𝑐2 𝑢1
2 + 𝑐12 𝑣1

 
4-15 
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�̅�2,1
2 =

𝛽2,1
2

𝛼2,1
1 =

𝑏3 + 𝑐4 𝑢3
2 + 𝑐7𝑢1

2 + 𝑐8𝑣1

 𝑎2 + 𝑐2 𝑢1
2 + 𝑐12 𝑣1

 

�̅�2,1
3 =

𝛽2,1
3

𝛼2,1
1 =

𝑏1 + 𝑐3𝑣2 + 𝑐4 𝑢2
2

 𝑎2 + 𝑐2 𝑢1
2 + 𝑐12 𝑣1

 

And   

�̅�2,1
1 =

𝛽2,1
1

𝛼2,1
2 =

𝑏51

𝑎21
 

4-16 
�̅�2,1
2 =

𝛽2,1
2

𝛼2,1
2 =

𝑏41 + 𝑐41 𝑣3 + 𝑐51 𝑢3
2 

 𝑎21
 

�̅�2,1
3 =

𝛽2,1
3

𝛼2,1
2 =

𝑏21 + 𝑐11 𝑣3 + 𝑐21 𝑢3
2 + 𝑐51 𝑢2

2 + 𝑐61𝑣2
 𝑎21

 

For equations 4-15 and 4-16, the conditions for the independence of 𝑣1 ,𝑣2 and 𝑣3 are 

satisfied if 𝑐3 = 𝑐5 = 𝑐8 =  𝑐12 = 0  and 𝑐41 = 𝑐11 = 𝑐61 = 0 for both models 

respectively.  Thus, the models are reduced to the following: 

 

𝑦1(𝑡) = 𝑎1𝑦1(𝑡 − 1) + 𝑏1𝑢3(𝑡 − 2) + 𝑎2𝑦1(𝑡 − 2) + 𝑏2𝑢3(𝑡 − 1)

+ 𝑐1  𝑦1(𝑡 − 1)𝑢1(𝑡 − 1) +  𝑐2  𝑦1(𝑡 − 2)𝑢1(𝑡 − 2)

+ 𝑏3𝑢2(𝑡 − 2) + 𝑏4𝑢2(𝑡 − 1) + 𝑏5𝑢1(𝑡 − 1) + 𝑏6𝑢1(𝑡 − 2)

+ 𝑐4𝑢2(𝑡 − 2)𝑢3(𝑡 − 2) + 𝑐6𝑢1(𝑡 − 1)𝑢2(𝑡 − 1)

+ 𝑐7𝑢1(𝑡 − 2)𝑢2(𝑡 − 2) + 𝑐9𝑦1(𝑡 − 1)𝑢1(𝑡 − 2)

+ 𝑐10𝑢2(𝑡 − 1)𝑢3(𝑡 − 1) + 𝑐11𝑦1(𝑡 − 1)𝑢3(𝑡 − 1) + 𝑑  

4-17 
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𝑦2(𝑡) = 𝑎11 𝑦2(𝑡 − 1) +  𝑎21𝑦2(𝑡 − 2) + 𝑏11 𝑢3(𝑡 − 1) + 𝑏21 𝑢3(𝑡 − 2)

+ 𝑏31 𝑢2(𝑡 − 1) + 𝑐21𝑢3(𝑡 − 2)𝑢3(𝑡 − 2)

+ 𝑐31 𝑢3(𝑡 − 1)𝑢3(𝑡 − 1) + 𝑐51 𝑢2(𝑡 − 2)𝑢3(𝑡 − 2)

+ 𝑏41 𝑢2(𝑡 − 2) + 𝑏51 𝑢1(𝑡 − 2) + 𝑑1 

4-18 

The parameters of each model term was re-estimated (see Table 4-1). The state 

realization of the observable i/o map representation was carried out in the next section. 

Table 4-1 re-evaluated parameters for the observable i/o map representation of CO2 capture 
model  

Sub-system 1 Sub-system 2 

𝑎1 1.33071 𝑎11 1.66322 

𝑎2 -0.30590 𝑎21 -0.68343 

𝑏1 350.72538 𝑏11 282.04840 

𝑏2 373.71848 𝑏21 -251.35450 

𝑏3 -14.21754 𝑏31 -2.36230 

𝑏4 7.57860 𝑏41 0.12312 

𝑏5 -169.52542 𝑏51 -0.35492 

𝑏6 178.52496 𝑐21 1002.96807 

𝑐1 -2.38873 𝑐31 -1379.39709 

𝑐2 0.68108 𝑐51 28.13632 

𝑐4 -365.18678 𝑑1 7.86578 

𝑐6 191.65801   

𝑐7 -193.17331   

𝑐9 1.50097   

𝑐10 482.89666   

𝑐11 -0.21862   

𝑑 1.90568   

 

4.2.2 Classical state-space realisation 

This section focuses on the state-space realisation of observable i/o map 

representation of the nonlinear model (see equations 4-17 and 4-18). The classical 

state-space realization was carried out following Kotta & Sadegh, (2002). The state 

components are shown: 
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Output 1: CO2 capture level (CO2-CL) 

𝑥1(𝑡) =  𝑦1(𝑡) 

𝑥2(𝑡) =  𝑦1(𝑡 + 1) − 𝑎1𝑦1(𝑡) − 𝑏2𝑢3(𝑡) − 𝑐1𝑦1(𝑡)𝑢1(𝑡) − 𝑏4𝑢2(𝑡) − 𝑏5𝑢1(𝑡)
− 𝑐6 𝑢1(𝑡)𝑢2(𝑡) − 𝑐10 𝑢2(𝑡)𝑢3(𝑡) −   𝑐11 𝑥1(𝑡)𝑢3(𝑡) − 𝑑 

 
Output 2: Reboiler Temperature (Treb) 

𝑥3(𝑡) =  𝑦2(𝑡) 

𝑥4(𝑡) =  𝑦2(𝑡 + 1) − 𝑎11 𝑦2(𝑡) − 𝑏11 𝑢3(𝑡) − 𝑏31 𝑢2(𝑡) − 𝑐31 𝑢3(𝑡)𝑢3(𝑡) − 𝑑1 

 

Shifting the equations above one-step forward the following was obtained: 

𝑥1(𝑡 + 1) =  𝑥2(𝑡) + 𝑎1𝑥1(𝑡) + 𝑏2𝑢3(𝑡) + 𝑐1𝑥1(𝑡)𝑢1(𝑡) + 𝑏4𝑢2(𝑡) + 𝑏5𝑢1(𝑡)

+ 𝑐6 𝑢1(𝑡)𝑢2(𝑡) + 𝑐10 𝑢2(𝑡)𝑢3(𝑡) +   𝑐11 𝑥1(𝑡)𝑢3(𝑡) + 𝑑  

𝑥2(𝑡 + 1) =  𝑎2 𝑥1(𝑡) + 𝑏1 𝑢3(𝑡) + 𝑏3 𝑢2(𝑡) + 𝑏6 𝑢1(𝑡) + 𝑐2 𝑥1(𝑡)𝑢1(𝑡)

+ 𝑐4 𝑢2(𝑡)𝑢3(𝑡) + 𝑐7 𝑢1(𝑡)𝑢2(𝑡) + 𝑐6 𝑥1(𝑡 + 1)𝑢1(𝑡) 

𝑥3(𝑡 + 1) =  𝑥4(𝑡) + 𝑎11 𝑥3(𝑡) + 𝑏11 𝑢3(𝑡) + 𝑏31 𝑢2(𝑡) + 𝑐31 𝑢3(𝑡)𝑢3(𝑡) + 𝑑1 

𝑥4(𝑡 + 1) =  𝑎21 𝑥3(𝑡) + 𝑏21 𝑢3(𝑡) + 𝑏41 𝑢2(𝑡) + 𝑐21 𝑢3(𝑡)𝑢3(𝑡) + 𝑐51 𝑢2(𝑡)𝑢3(𝑡)

+ 𝑏51𝑢1(𝑡) 

𝑦1(𝑡) =  𝑥1(𝑡) 

𝑦2(𝑡) =  𝑥3(𝑡) 

Step change analysis was carried out on the nonlinear state-space model was carried 

out to ensure that it captures the dynamics of the solvent-based PCC process. Figure 

4-1 shows output responses to the step-change implemented on each input variable. 
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From Figure 4-1, it was observed that the nonlinear state-space realisation captures 

the inherent dynamics of the capture model as the step analysis of the state space 

model aligns with the step dynamics of the first principles model discussed in section 

3.6 and reported in literature (Wu et al., 2018). The nonlinear state-space model was 

adopted for the control structure analysis.   

 

Figure 4-1 Output responses to step-change implemented on each input variable: for each 
input variables a step change of +10% was introduced one at a time. 

 

4.3 Multivariable Control structure design and analysis  

The solvent-based PCC model, which is a multivariable system, is very difficult to 

control due to the interactions between inputs and outputs, which affects the process 
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performance. Hence, the control structure analysis of the multivariable system is 

necessary to appropriately select the right loop pairings that minimize the interactions 

within the system. This section details the methodology involved in selecting the 

appropriate loop-pairing configuration within the CO2 capture process. For the solvent-

based PCC model, the controlled (output) variables include: 

 CO2 capture level (CO2 –CL) and 

  Reboiler temperature (Treb)  

The manipulated variables includes: 

 lean solvent flow rate and  

 steam flowrate,  

The disturbance variables is identified as: 

 Flue gas flowrate  

Thus, the capture model is identified as a (3 X 2) multivariable nonlinear system.  

Figure 4-2 shows the capture process model represented as a multivariable block 

system in Simulink. Two approaches adopted for the loop pairing selection includes: 

 Relative gain array (RGA) analysis  

 Process oriented approach 

4.3.1 RGA analysis  

RGA analysis was adopted to investigate the interactions within the solvent-based 

CO2 capture model. RGA analysis was carried out at different steady-state conditions. 

Following RGA formulation in section 2.4.1.1 (equation 2-24), the RGA at each steady-

state condition (SSC) is shown in Table 4-2.  The steady-state gain for each SS 



97 
 

condition is determined by introducing a 10% step to the manipulated variables (lean 

solvent flowrate and steam flowrate). 

Table 4-2 RGA at different steady-state condition; FGF: flue gas flowrate; LSF: lean solvent 
flowrate; SF: steam flowrate 

Steady-
state 
condition 

Input variable values Output variable 
values 

RGA 
FGF 
(kg/s) 

LSF 
(kg/s) 

SF 
(kg/s) 

CO2-CL 
(%) 

Treb (K) 

SSC 1 0.14 0.76 0.047 75.19 382.6 [
−0.8508 1.8508
1.8508 −0.8508

] 

SSC 2 0.16 0.76 0.047 66.89 382.2 [
−0.8086 1.8086
1.8086 −0.8086

] 

SSC 3 0.18 0.76 0.047 61.62 381.9 [
−0.7950 1.7950
1.7950 −0.7950

] 

 

As shown in Table 4-2, The RGA analysis suggests that the off-diagonal pairing should 

be selected as the appropriate control configuration. This indicates that CO2 –CL 

should be controlled using steam flowrate while reboiler temperature (Treb) should be 

controlled using lean solvent flowrate. This finding was similar to what was obtained 

by Nittaya et al., (2014a). This off-diagonal pairing is maintained for the different 

steady-state conditions, as the RGA element values are positive. Loop interactions 

within this pairing are expected as the off-diagonal elements are greater than 1.  

Niederlinsky Index (NI) and Morari Index of Integral Controllability (MIC) are 

determined to certify the suitability of the pairing. The steady-state gain (G (0)) is re-

ordered such that the paired variables were diagonal. The NI values shown in Table 

4-3 are positive, indicating that the system is stable in close-loop. The negative MIC 

values for Treb controlled variable eliminates the control configuration suggested by 

RGA analysis. The negative MIC indicates that the proposed loop pairings cannot 
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maintain the robustness and stability of the closed-loop system when tuned. Hence, 

an alternative approach is adopted to select a suitable control configuration.  

Table 4-3 NI and MIC values for the RGA pairings; SSC-steady state condition 

SSC NI MIC 

1 0.5403 [3.2222E
3

−24.6717
] 

2 0.5529 [2.6303E
3

−25.2778
] 

3 0.5571 [2.2168E
3

−25.5025
] 

4.3.2 Process-oriented approach 

Insight from the process (step) dynamics of the solvent-based CO2 capture model. 

Process dynamic analysis of the CO2 capture model revealed that both the lean 

solvent flowrate and steam flowrate has a significant effect on the controlled variables 

(CO2 –CL and Treb) (Lawal et al., 2010).  It was observed that the lean solvent flowrate 

has a quick effect on the CO2 capture level, while the steam flowrate has a slow effect 

on the CO2 capture level (Lawal et al., 2010). The reverse effect of the respective 

manipulated variables on reboiler temperature was observed. This indicates that the 

CO2-CL set point will be recovered faster when controlled using lean solvent flowrate 

(Nittaya et al., 2014a). Thus, this approach suggests that CO2-CL is controlled using 

lean solvent flowrate, while the reboiler temperature (Treb) is controlled using steam 

flowrate. Similar loop pairing has been suggested by other researchers  (Wu et al., 

2018; Mechleri et al., 2017). This control configuration is shown below: 

CO2-CL - LSF 

Treb - SF 

The controller design of each loop pairing is carried out in the next section. 
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Figure 4-2 Solvent-based PCC model on Simlink®  environment 
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4.4 Controller design  

In this section, a Conventional PI controller is designed for each looping paring. Figure 

4-3 shows the schematic implementation of the Conventional PI controllers on the 

capture process model. The measurement sensor and actuator for each loop paring 

were assumed to be unity gain (1). Conventional PI control parameters were tuned 

using MATLAB PID tuner app. The conventional PI control parameters are shown in 

Table 4-4. 

Table 4-4  Conventional PI Control Parameters for each loop pairing  

CO2-CL - LSF 
P 0.0099743 

I 3.4604950e-06 

Treb - SF 
P 0.0014937 

I 7.5053490-06 

 

The PI control parameters for each loop pairing were updated into the Simulink model. 

Performance evaluation of the control configuration based on disturbance rejection 

and set point tracking was carried out in the next section. 

4.5 Decentralised Control Performance Evaluation 

The section details the performance evaluation of the conventional PI-control 

configuration proposed. The control configuration was evaluated under various 

scenarios for disturbance rejection and set-point tracking. These include: 

Disturbance rejection: 

 Scenario 1: 10% step increase in the flue gas flowrate. 
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Figure 4-3 Design and implementation of PI controller on the PCC model; FGF-flue gas flowrate ; LSF-  lean solvent  flowrate; SF- steam flowrate;   
CO2-CL – CO2 capture level ; Treb – Reboiler  temperature. 
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Set-point tracking  

 Scenario 2: CO2 capture level (CO2 –CL) step increase 

 Scenario 3: Reboiler temperature (Treb) step increase 

For all scenarios, the desired closed-loop control performance  target is to attain less 

overshoot, fast response and quick settling time (within minutes).For each scenario, 

the performance was evaluated based on integral squared error (ISE) of the controlled 

variables against its respective set-points (Nittaya et al., 2014a) and settling time. This 

is calculated as: 

𝐼𝑆𝐸(𝐶𝑉) =  ∫ (𝐶𝑉𝑆𝑃 − 𝐶𝑉(𝑡))
2𝑑𝑡

𝑡𝑓𝑖𝑛𝑎𝑙

𝑡=0

 4-19 

4.5.1 Disturbance rejection (scenario 1) 

This section evaluates the performance of the CO2 capture plant-control system in a 

scenario where there is a change in the flue gas flowrate, which is recognised as a 

disturbance variable. This reflects a change in the power plant load. In this section, a 

10% step increase in flue gas flowrate was introduced at simulation time 18000s (5hr) 

to the CO2 capture model. The controlled variable (CO2-CL and Treb) set points are 

maintained at the nominal operating conditions (66.89% CO2-CL and 382.2K Treb). The 

controlled variables were monitored to observe the disturbance rejection performance 

of the decentralised control strategy. 

Figure 4.4 showed the disturbance rejection performance of the conventional PI 

control configuration to a 10% step increase of the flue gas flowrate. It was observed 

that the PI control scheme rejects the effect of the flue gas flowrate on the controlled 

variables. A point of concern is the settling time (9hrs) for the controlled variables 

(especially CO2-CL) to attain steady-state. Settling time around similar region was 
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recorded by Nittaya et al., (2014b) . As can be seen in Table 4.4, the conventional PI 

has a sluggish performance on the CO2-CL controlled variable. This is a major 

limitation of the conventional PI controller, as a fast controller performance is required 

to quickly deal with the flexibility of the CO2 capture plant.  

A slight reduction in the reboiler temperature (Treb) was observed, which was 

immediately counteracted by the steam flowrate. The minimal effect of flue gas 

flowrate on reboiler temperature (Treb) enabled the performance of the PI control 

scheme on the loop.  

 

Figure 4-4 Close-loop capture model response, to a 10% step change in flue gas flowrate   

 

T
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b
, 
K
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Table 4-5 Performance evaluation of the conventional PI control scheme 

Scenarios 

Controlled variables 

CO2 capture level (CO2-CL) Reboiler Temperature (Treb) 

ISE Settling time  ISE Settling time  

1 269.50 9hr 0.684 0.52hr 

2 7499.71 8.75hr 14.184 0.67hr 

3 1606.97 > 10hr 15.907 2.28hr 

 

4.5.2 Set-point tracking (Scenarios 2 &3) 

This section evaluates the set-point tracking performance of the Decentralised control 

strategy. In this section, two (2) scenarios were considered;  

4.5.2.1 Scenario 2 

In this section, the CO2 capture level (CO2-CL) set point was increased from the 

nominal operating condition to 90%. The reboiler temperature (Treb) setpoint is 

maintained at its nominal value. In this scenario, the CO2 capture level set point was 

increased to 90% at a simulation time of 18000s (5hr) to the closed-loop system. This 

attained by using the step change in the CO2 capture level set point. As shown in 

Figure 4-5 and Table 4-5, the conventional PI control scheme requires 8.75hr to 

achieve the new CO2 capture level set point. Similar challenge as regards sluggish 

performance of the conventional PI control although the controlled variables attain 

their respective set-points. The increase in lean solvent flowrate to attain the new CO2 

capture level resulted in a reduction in the reboiler temperature (Treb). However, the 

Treb – SF loop was able to adequately offset and adjust the reboiler temperature (Treb) 

controlled variable to its set point. 
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Figure 4-5 Closed-loop output responses to an increase in CO2-CL (%)  

4.5.2.2 Scenario 3 

This scenario reviews the conventional PI control scheme closed-loop performance 

when the reboiler temperature (Treb) set point was increased from its nominal operating 

point to 385K and CO2-CL set point is maintaining at its nominal operational condition. 

This scenario was achieved by introducing a step increase in the reboiler temperature 

(Treb) controlled variable at a simulation time of 18000s (5hr). 

 It can be observed from Fig 4-6 that the conventional PI control scheme was not able 

to meet all the control objectives (CO2-CL). Although the new reboiler temperature 

(Treb) set point was attained by manipulating the steam flowrate, an increase in steam 

flowrate resulted in a significant increase in CO2 –CL controlled variable. The CO2-CL 

–LSF loop was not able to adequately track CO2 –CL to its set point. 

T
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b
, 
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Figure 4-6 Closed-loop output responses to an increase in reboiler temperature (Treb)  

4.6 Summary  

In this Chapter, multivariable process control analysis and design of the solvent-based 

CO2 capture process was carried out. This entails selecting an appropriate process 

control configuration and evaluating its performance under various scenarios. The 

identified nonlinear CO2 capture model was adopted for the control analysis and 

implementation. The observable state-space realization of the nonlinear model was 

obtained for ease of control analysis. The following conclusions for this chapter are 

summarised as follows: 

 RGA analysis was insufficient on the selection of an appropriate control 

configuration. The control configuration suggested by RGA analysis failed to 

meet the MIC criteria, which makes the closed-loop system unstable when the 

PI control is tuned. 

T
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b
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 Process-oriented insight approach was adopted to select an appropriate control 

configuration (loop pairing). The loop pairing is shown below:   

CO2 − CL → LSF 

𝑇𝑟𝑒𝑏  → SF 

A conventional PI control was design and implemented on the control scheme.  

 The control scheme performance was evaluated under 3 scenarios based on 

ISE and settling for the controlled variable to attain steady-state condition. 

 The conventional PI control scheme demonstrated a sluggish closed-loop 

performance under scenarios 1 and 2, although it was able to achieve its control 

objective. The settling time of the PI control under these scenarios was very 

large. 

 The closed-loop performance of conventional PI control scheme under scenario 

3 was weak due to its inability to deal with loop interactions within the capture 

model (i.e. maintaining CO2-CL set-point). This call for the implementation of 

the model predictive control (MPC), which was implemented in the next Chapter      
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5 Linear model predictive control design and implementation on the solvent-

based PCC process 

5.1 Introduction 

The chapter focuses on the design and implementation of a linear model predictive 

control (MPC) scheme on the solvent-based PCC process. As highlighted in the 

previous Chapter 4, the conventional PI control scheme gave a poor control 

performance based on its settling time and inability to handle loop interactions within 

the CO2 capture process. The model predictive control (MPC) is a multivariable control 

scheme that has the advantage of being able to handle interactions within the 

process(Camacho & Alba, 2013). Thus, its implementation is becoming popular both 

in the industry and in academia (Zhang et al., 2016; He et al., 2016; Wu et al., 2018). 

The MPC scheme uses a linear model to obtain control sequences that best achieve 

the desired output by optimizing the control objective function (Wu et al., 2018; 

Camacho & Alba, 2013). MPC scheme performance was evaluated under different 

scenarios in comparison with the conventional PI-control scheme. Scenarios 

considered for control scheme performance in this chapter differs from what has been 

considered in chapter 4 as these scenarios are to reflect the flexible operation of 

solvent-based PCC process  away from the nominal conditions (such as ramp change 

in flue gas flowrate , ramp change in CO2-CL and variation of flue gas flowrate and 

CO2-CL simultaneously).  

In this chapter, section 5.2 describes the linearization of the solvent-based CO2 

capture model, while section 5.3 the MPC control scheme design for the capture 

process. The performance of the MPC scheme is evaluated in section 5.4. 
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5.2 Model Linearization  

This section focuses on the linearization of the solvent-based PCC model developed 

via a nonlinear SI approach. The identified nonlinear model was represented as a 

Simulink model (see Figure 4-2). The nonlinear Simulink model was linearized around 

the operating point shown in Table 5-1 to obtain a discrete linear state-space model. 

This was carried out using the linear analysis toolbox in simulink. 

Table 5-1 Linearization operating point 

Input variables 

Flue gas flowrate 0.16 kg/s 

Lean solvent flowrate 0.76 kg/s 

Steam flowrate 0.047 kg/s 

Output variables 
CO2 capture level (CO2-CL) 66.89 % 

Reboiler Temperature (Treb) 382.2 K 

  

The discrete linear state-space model obtained with a sampling period (Ts) of 60s is 

given below equation 5-1: 

A = [ 

0.9382 1
0.0284 0.2402

0                0
0                0

    0                     0
 0                  0

1.663 1
−0.6834 0

] 

5-1 
B =  [

−181.4 60.94 −21.13
−132.1
0

−0.03549

−47.65
−2.362
1.446

68.11
152.4
−135.7

]  

C = [
1 0 0 0
0 0 1 0

] 

D = [
0 0 0 0
0 0 0 0

]  
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To ensure that the linear model capture the essential dynamics of the CO2 capture 

process and is suitable for the MPC scheme, a step analysis was carried out.  A step 

change of ± 10% was applied to each input variable while the output response was 

observed.  Figure 5-1 shows the normalised step responses. 

 

Figure 5-1 Step response plot of the discrete linear state-space model.  

It was observed that the step response plot, shown in Figure 5-1, followed similar 

dynamic trends in response to step input change reported in literature (Wu et al., 

2019).  This indicates that the linear discrete state-space model captures the essential 

dynamic trend of the CO2 capture process. Hence, it is adopted as the prediction 

model for the implementation of the multivariable linear model predictive control (MPC) 

scheme.  
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5.3 Multivariable MPC Control scheme design  

This section discusses the development of a multivariable MPC controller. This entails 

adopting a linear discrete state-space model as the prediction model, obtaining the 

objective function and control law.  

A general formulation for a linear constrained multivariable MPC algorithm is as follows 

(Camacho & Alba, 2013): 

min
△𝑢,..,△𝑢𝑡+𝑁𝑢−1

∑ (�̂�𝑡+𝑖 − �̂�𝑡+𝑖)
𝑇𝑅(�̂�𝑡+𝑖

𝑁𝑝

𝑖=1
− �̂�𝑡+𝑖) + ∑ △ �̂�𝑡+𝑖

𝑇
𝑁𝑢

𝑖=0
𝑄∆�̂�𝑡+𝑖  

5-2 

Subject to: 

�̂�𝑡+1 = 𝐴�̂�𝑡 + 𝐵�̂�𝑡 

�̂�𝑡 = 𝐶�̂�𝑡 

�̂�𝑚𝑖𝑛 ≤ �̂�𝑡 ≤ �̂�𝑚𝑎𝑥 

�̂�𝑚𝑖𝑛 ≤ �̂�𝑡 ≤ �̂�𝑚𝑎𝑥 

△ �̂�𝑚𝑖𝑛 ≤△ �̂�𝑡 ≤△ �̂�𝑚𝑎𝑥 

where �̂�𝑡+𝑖 represents the predicted outputs (CO2 –CL and Treb) at (𝑡 + 𝑖)th time instant 

and ∆�̂�(𝑡+1)
𝑇  represents the manipulated variables rate (lean solvent flowrate  and 

steam flowrate) to achieve the targeted controlled variables close to the set-point 

condition �̂�(𝑡+1) at (𝑡 + 𝑖)th time instant. The upper and lower bounds for both controlled 

and manipulated variables are represented as �̂�𝑚𝑖𝑛, �̂�𝑚𝑎𝑥, �̂�𝑚𝑖𝑛, �̂�𝑚𝑎𝑥 respectively. The 

weights assigned to the manipulated and controlled variables were represented as 𝑄 

and 𝑅 respectively. Q and R were chosen to give a closed-loop performance based 

on robustness and stability. Q and R values are chosen such that the cost function is 

minimized. �̂�𝑡 is the state vector of the linear state-space model of the CO2 capture 

process at time instant t and A, B, C are the model matrices of the linear state space 
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prediction model.  The state-space model is augmented by introducing an integrator 

(as differentiated state vectors) into the form below (Skogestad & Postlethwaite, 2007): 

[
∆𝑥(𝑡+1)
𝑦(𝑡+1)

] = [
𝐴 𝑜2𝑋4

𝑇

𝐶 𝐴 𝐼2𝑥2
] [
∆𝑥(𝑡)
𝑦(𝑡)

] + [
𝐵
𝐶 𝐵

] ∆𝑢(𝑡) 

5-3 

𝑦(𝑡) = [𝑜2𝑋4 𝐼2𝑋2] [
∆𝑥(𝑡)
𝑦(𝑡)

] 

Where 𝐼2𝑋2 is an identity matrix with dimension corresponding to the number of output 

variables and o is a 2x4 zero matrix. The above equation can be re-written as: 

�̂�(𝑡+1) = �̂��̂�(𝑡) + �̂�∆�̂�(𝑡)  

5-4 

𝑦(𝑡) = �̂��̂�(𝑡) 

The state observer is used to estimate the state vector based on feedback principle to 

offset the state space error as shown below: 

�̂�(𝑡+1) = 𝐴�̂�(𝑡) + 𝐵∆�̂�(𝑡) + 𝐾𝑜𝑏(𝑦(𝑡) − 𝐶�̂�(𝑡))  5-5 

Where 𝐾𝑜𝑏 is the observer gain matrix adopted to offset the error between the 

measured and predicted output using the state estimate. 𝑁𝑃 and 𝑁𝑢 are the prediction 

and control horizons used to compute the predicted output variables and 

corresponding manipulated variables in the MPC framework. Np and Nu were selected 

to satisfy the condition such that the difference between Np and Nu is larger than the 

maximum total delay of the model.   

5.3.1 MPC tuning design and Implementation 

The MPC control strategy on the solvent-based CO2 capture model was implemented 

in Simulink as shown in Figure 5-2.  
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Figure 5-2 Implementation of MPC control strategy on the solvent-based PCC (identified) model;  FGF-flue gas flowrate ; LSF-  lean solvent  
flowrate; SF- steam flowrate;   CO2-CL – CO2 capture level ; Treb – Reboiler  temperature; DV- disturbance variables; MV-manipulated variables; 
CV-controlled variables. 
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Tables 5-2, 5-3 and 5-4 show the nominal operating conditions, process constraints 

and tuning parameters in the MPC formulation. The sampling time was the same as 

the nonlinear model (60s). The horizon parameters and weights were selected such 

that the quadratic programming (QP) Hessian matrix is positive definite and the 

computational time is minimized.  

Table 5-2 Nominal operating condition 

Operating conditions Nominal value 

CO2 capture rate (CO2-CL) 66.89% 

Reboiler Temperature (Treb) 382.2K 

Flue gas flowrate  0.16 kg/s 

Lean solvent flowrate 0.76 kg/s 

Steam flowrate 0.047 kg/s 

 

Table 5-3 Process constraints 

Manipulated variables �̂�𝑚𝑖𝑛 ∆�̂�𝑚𝑖𝑛 �̂�𝑚𝑎𝑥 ∆�̂�𝑚𝑎𝑥 

Lean solvent flowrate (MV1) 0.2 kg/s -0.007kg/s 1.0 kg/s 0.007kg/s 

Steam flowrate (MV2) 0.01 kg/s -0.001kg/s 0.1 kg/s 0.001kg/s 

Controlled variables �̂�𝑚𝑖𝑛 �̂�𝑚𝑎𝑥 

CO2 capture level ( CV1) 30% 100% 

CO2 lean loading (CV2) 370K 400k 
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Table 5-4 MPC control scheme-tuning parameters 

𝑁𝑃 10 

𝑁𝑢 2 

𝑇𝑠 60s 

Weights (Q) Weights (R) 

MV1 rate 0.1 CV1 10 

MV2 rate 0.1 CV2 100 

 

5.4 Performance Evaluation 

The section discuss the performance evaluation of MPC strategy implemented on the 

solvent-based CO2 capture model under various scenarios, which are listed as follows: 

 Scenario 1: ramp change in the flue gas flowrate 

 Scenario 2: ramp change in the CO2 capture level  

 Scenario 3: variation in the flue gas flowrate and CO2 capture level 

Performance evaluation under these scenarios 1 and 2 were carried out to assess the 

capability of the MPC for disturbance rejection (scenario 1) and set point tracking 

(scenario 2) in comparison with PI control scheme. Performance evaluation under 

scenario 3 was assess the capability of each control scheme to track the controlled 

variables effectively while there are changes in the flue gas flowrate simultaneously. 

The MPC control scheme performance was compared with the conventional PI control 

scheme based on integral square error (ISE) related to the controlled variables (CVs). 

However, it is essential to note that excessive changes in the manipulated variables 

to minimize the CVs performance measures is undesirable. Thus, each MV effort was 

evaluated based on the sum of squared deviation.  
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Figure 5-3 Closed-loop performance to a 20% ramp change in flue gas flowrate for 3hr (10800s). LMPC – linear model predictive control; conv 
PI – conventional PI control; SP – set point; DV – disturbance variable
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5.4.1 Scenario 1 

This section discusses the MPC control performance on the solvent-based CO2 

capture process under a ramp change in the flue gas flowrate. The controlled variables 

(CO2-CL and Treb) set point were maintained at the nominal operating condition 

(66.89% and 382.2K respectively). The variation in the flue gas flowrate reflects the 

variation in power plant load. For the scenario, a 20% increment in the flue gas flowrate 

was introduced at 5hr (18000s) simulation time for a period of 3hr (10800s) at a 

ramping rate of 0.1%/min. 

Figure 5-3 showed that the MPC scheme was able to reject the effect of flue gas 

flowrate on the controlled variables (CO2-CL and Treb) faster than the conventional PI 

control scheme. 

Also shown in Table 5-5, is the integral squared – error (ISE). This showed that the 

MPC scheme has a smaller deviation to the controlled variable set points compared 

with the convention PI control, indicating that the MPC scheme was able to effectively 

handle the interaction within the CO2 capture process. As the flue gas flow rate 

increases, the MPC was able to estimate the disturbance variable effect and quickly 

activate the corresponding manipulated variables to offset its effect. As shown in 

Figure 5-3, with the use of MPC scheme on the solvent-based PCC model was able 

to run smoothly. The sum of squared deviation for each MVs shown in Table 5-6 

revealed that MPC scheme requires more effort on the respective manipulated 

variables to attain the desired controlled variable set points compared with the PI 

control scheme. It should be noted that for the MPC, the MVs did not violate the 

deviation constraints shown in Table 5.3. 
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5.4.2 Scenario 2 

For this scenario, the MPC control performance was considered when ramp change 

is introduced to the CO2 capture level set point in comparison with the conventional PI 

control scheme. This scenario reflects the peak electricity price period, where more 

steam is needed for power generation and less CO2 capture is required to be 

economical (Flø et al, 2016). At simulation time (5hr) 18000s, the CO2 capture level 

set point was reduced from 66.89% to 61% at a ramping rate of 0.03%/min. under this 

scenario, the reboiler temperature set point is maintained at its nominal operating point 

(383.2K), while the flue gas flowrate is constant. 

The plot shown in Figure 5-4 revealed that the MPC gave a better performance than 

the conventional PI control scheme for the scenario considered. The MPC scheme 

was able to achieve the control objective while the conventional PI control was unable 

to attain a suitable control performance. For the MPC control scheme, the respective 

manipulated variables (lean solvent flowrate and steam flowrate) were adequately 

adjusted to achieve the CO2 capture level set point. Details of the performance 

evaluation parameter for this is given in Table 5-5. Similar trends as scenario 1 on the 

sum of squared deviation for MVs was observed in this scenario. 

Table 5-5 summary of the closed-loop control performance evaluation for control schemes 
(MPC vs PI) 

Scenario 

ISE 

MPC PI 

CVs CO2-CL Treb CO2-CL Treb 

Scenario 1 0.4573 0.0187 488.0628 0.5054 

Scenario 2 0.7655 0.1842 600.1386 0.4669 

Scenario 3 20.1073 1.4205 4872.1123 5.3425 
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Figure 5-4 Closed-loop performance to  a decrease in CO2-CL  for 3hr (10800s). LMPC – linear model predictive control; conv PI – conventional 
PI control; SP – set point; DV – disturbance variable
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Table 5-6 sum of squared deviation of MVs for each control scheme (MPC vs PI) 

Scenario 

Sum of squared deviation 

MPC PI 

MVs LSF RSF LSF RSF 

Scenario 1 4.45E-05 1.56E-07 4.19E-05 1.53E-07 

Scenario 2 6.35E-05 2.00E-07 2.97E-05 9.48E-08 

Scenario 3 2.06E-03 4.83E-06 8.17E-04 1.10E-06 

 

5.4.3 Scenario 3 

The final scenario considers the variation of the CO2 capture level in accordance with 

the electricity price trends. This reflects the operation of the solvent-based CO2 

capture process to accommodate the flexible operation of the power plant (which 

includes off-peak and peak electricity periods). In this case study, the CO2 capture 

level setpoint is varied between 61% and 90% as well as the flue gas flowrate 

(disturbance variable) (0.14kg/s – 0.19kg/s). Initially, the CO2 capture level is 

maintained at the nominal operating point. The CO2 capture level setpoint follows 

scheduling instructions at simulation time’s t= 3hr (10800s), 11hr (39600s), 19hr 

(68400s) and 22hr (72260s). At simulation time 3hr, 11hr and 19hr, a ramp was 

introduced to CO2-CL set point at a rate of 0.03%/min, 0.09%/min and 0.33%/min. at 

simulation time 22hr, a step change was introduced to the CO2 level set point. During 

this case study (scenario), Treb set point was maintained at its nominal operating point.  

As shown in Figure 5-5, the MPC gave a better control performance (see Table 5-5) 

in comparison to conventional PI control scheme when CO2 capture level changes 

within the region 61% - 90%. However, both control schemes struggle to effectively 

maintain Treb at its nominal operating condition. In addition, the MPC control 
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performance is depleted for a wide range of flexible operation (Wu et al., 2018). This 

is because the wide range flexible operation induces the nonlinearity within the CO2 

capture process, which is not dynamically captured by the approximate linear model 

and thus cannot be appropriately handled by the MPC control scheme (Manaf et al., 

2016; Wu et al., 2018). Hence, NMPC is required to be handled nonlinearities during 

the wide range of flexible operation given the large variation of the power plant 

operation as power generation from renewable energy sources are supplied to the 

Grid.  
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Figure 5-5 Closed-loop performance to  a variation in CO2-CL  for 24hr (86400s). LMPC – linear model predictive control; conv PI – conventional 
PI control; SP – set point; DV – disturbance variable 
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5.5 Summary 

This chapter focused on the design and implementation of a linear model predictive 

control (MPC) scheme on the solvent-based post-combustion CO2 capture process.  

The MPC scheme uses a linear model, which captures the essential dynamics of the 

CO2 capture process, for its implementation. The MPC scheme was evaluated in 

comparison with the conventional PI control scheme under three different scenarios 

(case studies). The conclusion is summarised as follows: 

 For all scenarios considered in this chapter, the MPC scheme gave a better 

control performance compared to the conventional PI control scheme as it is 

able to handle the interactions within the process in comparison with the 

conventional PI control scheme. Thus, the MPC scheme avoids a sluggish 

response to the controlled variable setpoint changes. 

 For all scenarios, MPC control scheme required more MV effort compared with 

PI control. Although the constraints on the deviation were not violated for both 

control schemes.   

 For Scenario 3, the MPC scheme struggled to maintain the reboiler temperature 

(Treb) at its set point. Major due to the inability to adequately handle the variation 

in the flue gas flowrate (disturbance variable) and CO2 capture level set-point 

simultaneously. 

 A wide flexible operation range triggers the nonlinearities within the CO2 

capture process and cannot be handled appropriately by the MPC scheme 

(Manaf et al., 2016; Wu et al., 2018).  Hence, a NMPC is adopted to deal with 

the nonlinearity issues under a wide range of flexible operation. 
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6 Nonlinear model predictive control design for the solvent-based PCC 

process 

6.1 Introduction  

This chapter discusses the design and implementation of a nonlinear model predictive 

control (NMPC) in the solvent-based CO2 capture process. The increased addition of 

renewable energy in the electricity generation mix (Mechleri et al., 2017) is predicted 

to bring about more changes in power plant operation such as frequent ramps, 

shutdown and start-up operation(Mac Dowell & Staffell, 2015).  As a result, it is 

important for the solvent-based CO2 capture process to be operated flexibly in 

accordance with the host power plant load.  This is achieved through the 

implementation of an appropriate control strategy (scheme) in the process. Previously, 

Chapters 4 and 5 focused on the implementation of a conventional PI control and MPC 

scheme. The MPC scheme gave a better performance. The MPC scheme, which is 

widely accepted in the industry, utilizes the linear model for its implementation. The 

MPC scheme works well within an operational range of the capture process where its 

nonlinearities are minimized. When a large disturbance (flue gas flowrate) is 

introduced to the capture process or the controlled variable set-points are varied within 

the flexible operation range where large nonlinearities are present, the MPC will be 

unable to effectively control the capture process, as the linear model is unable to 

capture the nonlinearity of the CO2 capture process. Hence, NMPC scheme is adopted 

to handle nonlinearities of the solvent-based CO2 capture process. 

The NMPC utilities the nonlinear model for its implementation on the solvent-based 

CO2 capture process. It is important to note that the structure of the nonlinear model 

is important for the development of the NMPC scheme. In this chapter, NMPC scheme 



125 
 

utilizes the parsimonious NARX model developed via nonlinear SI in Chapter 3. The 

observable state-space representation of the NARX model was obtained in chapter 4. 

The control performance of the NMPC scheme was evaluated in comparison with MPC 

and conventional PI control schemes under different flexible operation scenarios. 

6.2 Nonlinear model predictive control (NMPC) formulation 

This section discusses the development of a multivariable NMPC Control strategy. 

The schematic diagram of the NMPC scheme on the solvent-based PCC process  is 

shown in Figure 6-1. This entails adopting the nonlinear state-space model as the 

prediction model. NMPC adopts the standard cost function as the objective function. 

The constrained standard cost function is expressed below: 

min
△𝑢,..,△�̂�𝑡+𝑁𝑢−1

∑ (�̂�𝑡+𝑖 − �̂�𝑡+𝑖)
𝑇𝑄(�̂�𝑡+𝑖

𝑁𝑝

𝑖=1
− �̂�𝑡+𝑖) + ∑ △ �̂�𝑡+𝑖

𝑇
𝑁𝑢

𝑖=0
𝑅∆�̂�𝑡+𝑖 

6-1 

Subject to: 

�̂�𝑡+1 = 𝑓(�̂�𝑡, �̂�𝑡) 

�̂�𝑡+1 = 𝑔(�̂�𝑡+1) 

�̂�𝑚𝑖𝑛 ≤ �̂�𝑡 ≤ �̂�𝑚𝑎𝑥 

�̂�𝑚𝑖𝑛 ≤ �̂�𝑡 ≤ �̂�𝑚𝑎𝑥 

△ �̂�𝑚𝑖𝑛 ≤△ �̂�𝑡 ≤△ �̂�𝑚𝑎𝑥 

 

 where �̂�𝑡+𝑖 represents the predicted outputs (CO2 capture level and reboiler 

temperature) at (𝑡 + 𝑖)th time instant and ∆�̂�(𝑡+1)
𝑇  represents manipulated variable rates 

(lean solvent flowrate  and steam flowrate) to achieve the target-controlled variables 

close to the set-point condition �̂�(𝑡+1). The upper and lower bounds for both 
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manipulated and controlled variables are represented as �̂�𝑚𝑖𝑛, �̂�𝑚𝑎𝑥 , �̂�𝑚𝑖𝑛, �̂�𝑚𝑎𝑥 

respectively. The weights assigned to the controlled and manipulated variables rate 

were represented as 𝑄 and 𝑅 respectively.  �̂�𝑡 represents the current state vector of 

the nonlinear state-space model of the solvent-based PCC process obtained as shown 

in equation 6-2. The tables below show the nominal operating condition, process 

constraints and NMPC formulation parameter respectively. 

𝑥1(𝑡 + 1) =  𝑥2(𝑡) + 𝑎1𝑥1(𝑡) + 𝑏2𝑢3(𝑡) + 𝑐1𝑥1(𝑡)𝑢1(𝑡) + 𝑏4𝑢2(𝑡) + 𝑏5𝑢1(𝑡)

+ 𝑐6 𝑢1(𝑡)𝑢2(𝑡) + 𝑐10 𝑢2(𝑡)𝑢3(𝑡) +   𝑐11 𝑥1(𝑡)𝑢3(𝑡) + 𝑑  

6-2 

𝑥2(𝑡 + 1) =  𝑎2 𝑥1(𝑡) + 𝑏1 𝑢3(𝑡) + 𝑏3 𝑢2(𝑡) + 𝑏6 𝑢1(𝑡) + 𝑐2 𝑥1(𝑡)𝑢1(𝑡)

+ 𝑐4 𝑢2(𝑡)𝑢3(𝑡) + 𝑐7 𝑢1(𝑡)𝑢2(𝑡) + 𝑐6 𝑥1(𝑡 + 1)𝑢1(𝑡) 

𝑥3(𝑡 + 1) =  𝑥4(𝑡) + 𝑎11 𝑥3(𝑡) + 𝑏11 𝑢3(𝑡) + 𝑏31 𝑢2(𝑡) + 𝑐31 𝑢3(𝑡)𝑢3(𝑡) + 𝑑1 

𝑥4(𝑡 + 1) =  𝑎21 𝑥3(𝑡) + 𝑏21 𝑢3(𝑡) + 𝑏41 𝑢2(𝑡) + 𝑐21 𝑢3(𝑡)𝑢3(𝑡)

+ 𝑐51 𝑢2(𝑡)𝑢3(𝑡) + 𝑏51𝑢1(𝑡) 

𝑦1(𝑡) =  𝑥1(𝑡) 

𝑦2(𝑡) =  𝑥3(𝑡) 
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Figure 6-1 Schematic diagram of NMPC scheme on the solvent-based PCC model; FGF-flue gas flowrate ; LSF-  lean solvent  flowrate; SF- 
steam flowrate;   CO2-CL – CO2 capture level ; Treb – Reboiler  temperature; DV- disturbance variables; MV-manipulated variables; CV-controlled 
variables. 
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where 𝑦1(𝑡) and 𝑦2(𝑡) respresents CO2 capture level and reboiler temperature 

respectively. 𝑢1(𝑡) , 𝑢2(𝑡)  and 𝑢3(𝑡) represents flue gas flowrate (kg/s), lean solvent 

flowrate (kg/s) and steam flowrate (kg/s). Tables 6-1, 6-2 and 6-3 show the nominal 

operating conditions, Process constraints and NMPC formulation parameters. As 

explain in Chapter 5, the NMPC formulation parameter were selected to closed-loop 

performance based on robustness and stability. 

Table 6-1 Nominal operating condition 

Operating conditions Nominal value 

Initial state condition (x0) [66.2302;0.574568; 380.2222;- 268.297] 

Manipulated variables 

Lean solvent flowrate  0.76 kg/s 

Steam flowrate  0.047 kg/s 

Disturbance variable 

Flue gas flowrate  0.16 kg/s 

Output variables 

CO2 capture level (CO2-CL) 66.89 (%) 

Reboiler Temperature (Treb) 382.22K 

 

Table 6-2 Process constraints 

Manipulated variables �̂�𝑚𝑖𝑛 ∆�̂�𝑚𝑖𝑛 �̂�𝑚𝑎𝑥 ∆�̂�𝑚𝑎𝑥 

Lean solvent flowrate (MV1) 0.2 kg/s -0.007 kg/s 1.0 kg/s 0.007 kg/s 

Steam flowrate (MV2) 0.01 kg/s -0.001 kg/s 0.1 kg/s 0.001 kg/s 

Controlled variables �̂�𝑚𝑖𝑛 �̂�𝑚𝑎𝑥 

CO2 -CL  (CV1) 30 (%) 100 (%) 

Treb  (CV2) 370 (K) 400 (K) 
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Table 6-3 NMPC formulation parameters 

𝑁𝑃 10 

𝑁𝑢 2 

Weights (Q) Weights (R) 

MV1 0.1 CV1 10 

MV2 0.1 CV2 100 

 

6.3 Performance Evaluation 

The section discuss the performance evaluation of NMPC strategy implemented on 

the solvent-based PCC model under various flexible operation scenarios, which are 

listed as follows: 

 Scenario 1: variation in the flue gas flowrate 

 Scenario 2: variation in the controlled variables (CO2-CL and Treb) and flue gas 

flowrate simultaneously 

6.3.1 Scenario 1  

This section evaluates the control performance of NMPC strategy on the solvent-

based CO2 capture process in a scenario where there is fluctuation in the flue gas 

flowrate, which is recognised as a disturbance variable. This reflects the flexible 

operation of the power plant attached to the capture plant. 
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Figure 6-2 Closed-loop performance to  a variation in flue gas flowrate for 24hr (86400s). LMPC – linear model predictive control; conv PI – 
conventional PI control; NMPC – nonlinear MPC; SP – set point; DV – disturbance variable 
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In this section, flue gas flowrate was varied as shown in Figure 6-2, while the controlled 

variable set points (CO2-CL and Treb) were maintained at the nominal operating 

condition. The controlled variables were monitored to observe the disturbance 

rejection performance of the NMPC strategy in comparison with MPC and PI control 

scheme using the integral squared error (ISE) as a performance index. Given the 

strong variation in the flue gas flowrate, a large variation in the MVs to achieve to 

control is expected. Thus, to avoid excessive changes in the MVs (which can damage 

the action element in the control system), Process constraint was implemented on the 

deviation of each MVs as shown in Table 6.2. 

The closed-loop control performance for the control strategies is shown in Figure 6-2. 

For CO2 capture level control, the NMPC scheme gave a better control performance 

than the MPC and PI control scheme. The lowest ISE value for the NMPC strategy 

shown in Table 6-4 indicates the NMPC scheme deviation from the set-point compared 

to other control schemes (MPC and PI). The MPC gave a better performance than the 

conventional PI control scheme.  

For the reboiler temperature control, the linear MPC and NMPC scheme gave a similar 

performance, which was better than the PI control scheme. Although MPC and NMPC 

scheme gave a similar performance, the smaller ISE value for the linear MPC indicates 

that it possesses a smaller deviation from the set point compared with the NMPC 

scheme. The significant overshoots observed in the NMPC scheme (Figure 6.2) 

reflects the larger ISE compared to MPC, although the NMPC settles faster compared 

MPC. The NMPC scheme gave a better overall control performance on the solvent-

based CO2 capture process. 
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Table 6-4 Summary of the closed-loop control performance evaluation for control schemes 
(NMPC vs MPC vs PI) 

Scenario 

ISE 

NMPC MPC PI 

CVs CO2-CL Treb CO2-CL Treb CO2-CL Treb 

Scenario 1 207.393 10.756 621.315 7.678 1761.070 18.743 

Scenario 2 1.11E+04 105.005 1.33E+07 2.17E+03 6.21E+07 2.47E+05 

 

6.3.2 Scenario 2 

This scenario focuses on the control system performance under strong variation in the 

operation of controlled variables (especially CO2 -CL) as well as the variation in the 

flue gas flowrate. This scenario reflects the penetration of renewable energy sources 

into the grid, where the solvent-based CO2 capture process is required to 

accommodate the flexible operation of the power plant in response to stringent 

demand of the Grid. 

Along with the same disturbance (i.e. flue gas flowrate variation) in scenario 1, the 

CO2 capture level set point was varied at time t = 10800s from 66.89% to 45%, t = 

36000s from 45% to 60%, t = 48000s from 60% to 80%, t = 57000s from 80% to 90% 

and t = 75600s from 90% to 95%. In addition, the reboiler temperature set point was 

varied from 382.2K to 387K and to 389K at time t= 46800s, t= 57000s and t= 75600s 

respectively as shown in Figure 6-3. 

The MPC and PI control scheme were not able to achieve the control objective under 

this scenario as shown in Figure 6.3 and Table 6.4. This is attributed to large 

nonlinearity triggered within process due to a wide and frequent variation in the 

controlled variables set point (CO2-CL and Treb) and disturbance variable (flue gas 

flowrate). This brought about severe degradation and instability in the closed-loop 
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performance for both PI control and MPC.  On the other hand, results shown in Figure 

6.3 and Table 6.4 demonstrated that NMPC scheme is able to handle wide variation 

in the flue gas flowrate while effectively tracking the controlled variables set point 

effectively. 
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Figure 6-3 NMPC closed-loop performance to a variation in CO2-CL  and flue gas flowrate for 24hr (86400s).  LMPC – linear model predictive 
control; conv PI – conventional PI control; NMPC – nonlinear MPC; SP – set point; DV – disturbance variable 
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6.4 Summary 

This chapter focused on the design and implementation of a nonlinear model 

predictive control (NMPC) scheme on the solvent-based post-combustion CO2 capture 

process. The large load variation in the power plant operation due to the increased 

penetration of electricity generated by renewable sources supplied to the Grid has 

resulted in the need for the NMPC scheme. The NMPC scheme adopted the nonlinear 

model for its implementation. The NMPC scheme was evaluated under two (2) 

different scenarios (case studies).  

The MPC and PI control scheme gave a poor control performance for a large variation 

in the controlled variable set-points, as they are unable to handle the nonlinearities 

triggered within the CO2 capture model at the large flexible operation region. The 

NMPC scheme gave a good control performance, as it is able to handle the 

nonlinearities within the solvent-based PCC process. 
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7 Conclusion and Recommendation 

7.1 Conclusion 

In this thesis, non-linear model predictive control (NMPC) system was developed for 

a solvent-based PCC process using an identified model derived based on the FROLS-

ERR algorithm. From an extensive literature review, presented in Chapter 2, it was 

found that: 

 Existing SI studies for solvent-based PCC process are based on linear models. 

As the process is strongly nonlinear, these identified models could fail to 

capture the process dynamics accurately under wide load varying scenario. 

 Nonlinear SI application in solvent-based PCC process are often based on the 

assumption of the model order. This approach could result in the inclusion of 

irrelevant model terms, making the model unnecessarily complex. 

 The FROLS-ERR algorithm can determine the model terms in a stepwise 

manner, based on their significance. This algorithm have not been explored for 

solvent-based PCC process. 

 Study on NMPC scheme on the solvent-based PCC process to handle process 

interactions in response to large load variation during flexible operation is 

essential due to high penetration of power generation from renewable energy 

source to the national grid and stringent environmental regulations. 

 Comparison between linear controllers (e.g. PI and MPC) and nonlinear 

controller (NMPC) using model developed through FROLS-ERR algorithm has 

not been performed. 
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Based on the conclusions from the literature review, the research was divided into 

different tasks. Key conclusions from these tasks are presented in section 7.1.1 – 

7.1.4. 

7.1.1 Nonlinear SI of the solvent-based PCC process 

In contrast to existing studies, a parsimonious polynomial NARX model was developed 

to predict the dynamic responses of an amine-based PCC plant (3-inputs and 2-

outputs) using the FROLS-ERR algorithm. The process operating data used for the 

model development was obtained through model simulation using a first principles 

model implemented in gPROMS model by Lawal et al.,(2010). The FROLS-ERR 

algorithm proved to be a powerful tool in selecting the most significant model terms for 

representing and predicting the response variables (CO2-CL and Treb). These model 

terms were ranked based on ERR. This gives a simple and transparent mathematical 

representation of the systems where we can clearly know how the system outputs 

depend on the variables and their interactions. Prediction efficiency evaluation as well 

as process dynamic analysis of identified NARX models developed in comparison with 

the first principles (gPROMS®) model were carried out successfully. It was concluded 

that the identified model captures the underlying dynamics of the capture process. 

7.1.2 Multivariable conventional PI control scheme 

Chapter 4 presented the multivariable process control analysis and PI control design 

of the solvent-based CO2 capture process. The identified nonlinear PCC model was 

adopted for the multivariable control analysis and PI control implementation. The 

observable state-space realization of the nonlinear model was obtained for ease of 

control analysis. The appropriate control configuration (loop pairing) based on the 

multivariable control configuration analysis was selected to be CO2 capture level 
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controlled by manipulating the lean solvent flowrate (CO2-CL-LSF)  and reboiler 

temperature controlled by manipulated by steam flowrate to the reboiler (Treb – SF).  

The conventional PI control scheme demonstrated a sluggish closed-loop 

performance under scenarios 1 and 2, although it was able to achieve the respective 

set-points. The settling time of the PI control under these scenarios was large. For 

scenario 3, the PI control scheme had complications with handling loop interactions 

within the capture model.  

7.1.3 MPC scheme 

Chapter 5 presented the linear model predictive control (MPC) scheme design and 

implementation on the solvent-based PCC process. The MPC scheme was evaluated 

in comparison with the conventional PI control scheme under 3 different scenarios 

(case studies). For all scenarios considered, the MPC scheme gave a better control 

performance compared to the conventional PI control scheme, as it is able to handle 

the interactions within the process in comparison with the conventional PI control 

scheme. Thus, the MPC scheme avoids a sluggish response to the controlled variable 

set-point changes. However, the incapability of the MPC scheme to adequately control 

the capture model for a wide range flexible operation mode was highlighted due to the 

inability of the linear model to capture the accurate process dynamics of the wide 

flexible operating mode.   

7.1.4 NMPC scheme 

The design and implementation of a nonlinear model predictive control (NMPC) 

scheme on the solvent-based post-combustion CO2 capture process was presented 

in Chapter 6. The NMPC scheme was evaluated under 2 different scenarios (case 

studies). Performance evaluation of the NMPC scheme in comparison with 
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conventional PI and MPC revealed it was capable of handling interactions within the 

capture process at wide (large disturbance and frequent set-point change) flexible 

operation. 

7.2 Recommendation for future study 

The following areas are recommended for further research on the nonlinear SI and 

control of solvent-based PCC process. 

 The data-driven model development of the solvent-based PCC process through 

nonlinear SI utilizes data obtained from the detailed rate-based PCC model by 

developed Lawal et al., 2010. In the rate-based model, CO2 kinetics was 

assumed to attain equilibrium. This does not reflect what is obtainable in a real 

plant. Thus, it will be interesting to utilize data obtained from pilot-scale PCC 

plant (like the UKCCSRC PACT facilities) for data-driven model development 

via nonlinear SI. 

 In This thesis, Identified nonlinear model was developed representing the 

solvent-based PCC process as 2 sub-systems with 3 inputs and 2 outputs. 

While the model developed cannot be applied for more than 3 inputs and 2 

outputs, the model building method and associated (FROLS) algorithms  are 

not restricted to the small number of input and output variables and can be 

easily extended to many input and output variables to represent the power plant 

integrated with solvent-based PCC process.  Although the interaction with the 

power plant is reflected in the variation of flue gas flowrate and steam flowrate, 

further research on the data-driven model development of the power plant 

integrated with the capture process via nonlinear SI technique based on FROLS 

algorithms. 
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 Further investigation to demonstrate real-time implementation of the NMPC on 

an industrial scale solvent-based PCC process utilizing nonlinear model 

developed via FROLS algorithms should be carried out. This is to ascertain the 

reliable use of NMPC as the control performance of the NMPC can be erratic 

mainly due to the nonlinear model mismatch with the industrial scale capture 

process. The ease of been able to update the model developed based on 

FROLS algorithm using the plant data, it will to investigate how the reliability of 

the NMPC real time performance on an industrial scale solvent-based PCC 

plant is improved. 

 As the world is shifting to the application of Artificial intelligence and with the 

advancement of software and algorithm, it will be interesting to explore the 

application of AI in model development and process control of the solvent-

based CO2 capture process.  An interesting area is the use of machine learning 

tools for uncertainty quantification of the data-driven model developed to 

represent the solvent-based CO2 capture process. 
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