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Summary 

Chronic Kidney Disease – Mineral Bone Disorder (CKD-MBD) is a common complication of 

advanced chronic kidney disease (CKD). Bone abnormalities of CKD-MBD are known as renal 

osteodystrophy (ROD) and are characterised by abnormal bone turnover and mineralization. 

ROD results in bone microstructural and mechanical changes which increases bone fragility. 

Thus, fracture risk is increased and subsequent mortality is high in these patients. Correct 

diagnosis of ROD is required before potential treatment to reduce fracture risk can be 

commenced. This can only be done with bone biopsy which is the gold standard test but this 

is an invasive and painful procedure. We conducted a cross sectional study with the primary 

aim of testing new non-invasive tests to diagnose and classify ROD as shown on bone 

biopsy.  

Sixty-nine advanced CKD stages 4-5D and their age and gender-matched healthy controls 

were recruited. All participants had blood samples collected for bone turnover markers 

(BTMs) analysis and had bone scan using high resolution peripheral quantitative computed 

tomography (HR-pQCT). Forty-three CKD patients had trans-iliac bone biopsy samples 

evaluable for histomorphometry. We also used a new technique using HR-pQCT to 

simultaneously assess bone and vascular calcification (VC) relationship in CKD. 

We found that advanced CKD patients have worse bone microstructure compared to 

controls. Importantly, BTMs such as bone alkaline phosphatase (bALP), intact procollagen 

type 1 N-terminal propeptide (intact PINP) and tartrate-resistant acid phosphatase 5b 

(TRAP5b), and bone imaging of radius using HR-pQCT were able to discriminate low bone 

turnover in advanced CKD patients. These non-invasive tests are robust diagnostic tools and 

have the potential to be translated into clinical practice. We also found that ankle arteries 
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VC was associated with worse bone microstructure of cortical bone at the tibia. These non-

invasive tests could be instrumental in further research into treatment to reduce fracture 

risk in advanced CKD. 
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1.1 Chronic Kidney Disease 

1.1.1 Prevalence 

Chronic kidney disease (CKD) is increasingly common worldwide. In England alone, moderate 

to severe CKD affects 6% of the population which is equivalent to 2.6 million people {PHE 

2014}. Meanwhile, National Health and Nutrition Examination Study (NHANES 1988-1994) 

showed that CKD affected 10% of the United States of America (USA) population and this 

prevalence had increased to 13% in the NHANES 1999-2004 {Coresh et al 2007}. This was 

equivalent to 26 million adults in the USA and 700,000 of those had severe CKD. 

Increasing CKD prevalence is associated with risk factors such as ageing, diabetes, obesity and 

hypertension. Although moderate to severe CKD is rare (0.2%) in those below the age of 40 

years, the NHANES data showed that a quarter of adults ages 70 or above had moderate to 

severe CKD {Coresh et al 2003}. The trend is similar in England where only 2% of those below 

the age of 65 years had moderate to severe CKD but a third of those over the age of 75 were 

affected {PHE 2014}. Given our ageing population, the prevalence of moderate to severe CKD 

in England alone is expected to increase to 3.2 million people in 2021 and 4.2 million in 2036. 

 

1.1.2 Classification 

CKD severity is classified based on estimated glomerular filtration rate (eGFR) which is a 

measure of excretory renal function and is derived from serum creatinine (Cr). Cr is produced 

at a fairly constant rate from the muscles and is excreted by the kidneys through glomerular 

filtration with a degree of proximal tubular secretion. Serum Cr alone is a poor reflection of 

kidney function as the level only becomes elevated when around 40% of GFR is lost. There 
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are also a number of non-renal determinants of Cr including individual’s muscle mass and 

dietary protein intake. Meanwhile, eGFR calculation using CKD-EPI (Chronic Kidney Disease 

Epidemiology Collaboration) equation takes into account Cr, gender, body weight and race 

which gives a better estimation of glomerular filtration rate {Levey et al 2009}. Table 1.1 

shows the classification of CKD based on eGFR categories as set out by the National Institute 

of Clinical Excellence (NICE) and Kidney Disease: Improving Global Outcomes (KDIGO) 

guidelines {Kidney Disease: Improving Global Outcomes 2013; NICE 2014}.  

 

Table 1.1 

Chronic kidney disease (CKD) categories based on estimated glomerular filtration rate 

(eGFR). Taken from KDIGO CKD Guideline 2012. 

CKD categories eGFR range (ml/min/1.73m2) Description 

Stage 1 ≥ 90 Normal 

Stage 2 60 – 89 Mildly decreased 

Stage 3a 45 – 59 Mildly to moderately decreased 

Stage 3b 30 – 44 Moderately to severely decreased 

Stage 4 15 - 29 Severely decreased 

Stage 5 (or 5D) <15 (or on dialysis) Kidney failure 

 

1.1.3 Complications 

Chronic kidney disease-mineral and bone disorder (CKD-MBD) is a common complication of 

CKD. The term CKD-MBD was first introduced by KDIGO in 2005 to describe a constellation of 

biochemical, bone, and vascular abnormalities associated with CKD (Figure 1.1) {S. Moe et al 

2006}. It is defined as a systemic disorder of bone and mineral metabolism due to CKD 

manifested by either one or a combination of the following: (1) abnormalities of calcium, 
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phosphorus, parathyroid hormone (PTH), or vitamin D metabolism; (2) abnormalities in bone 

turnover, mineralization, volume, linear growth, or strength; and (3) vascular or other soft 

tissue calcification. A Clinical Practice Guideline for the Diagnosis, Evaluation, Prevention, and 

Treatment of CKD-MBD was published by KDIGO in 2009 and an update was published in 2017 

{KDIGO 2009; KDIGO 2017}.  

 

Figure 1.1  

Manifestations of Chronic Kidney Disease - Mineral Bone Disorder (CKD-MBD) {KDIGO 

2009}. 

 

 

Other complications of CKD are anaemia, fluid and electrolyte abnormalities, metabolic 

acidosis, hypertension, cardiovascular disease and malnutrition. Importantly, CKD is 

associated with increased mortality. A systematic review by Tonelli et al showed that the risk 

of mortality in those with mild to moderate CKD is 2 - 4 times higher than those without CKD 

{Tonelli et al 2006}. A Swedish population based cohort study involving over 5500 patients 



21 
 

with CKD 4 and 5 pre-dialysis, haemodialysis and peritoneal dialysis (PD) patients also showed 

that the risk of mortality is increased 4 times in pre-dialysis CKD, 9 times in PD and 13 times 

in haemodialysis patients compared to age and gender-matched general population controls 

{Neovius et al 2014}. 

Cause of death in advanced CKD is mainly cardiovascular disease which includes heart failure, 

thromboembolic events and arrhythmia. Reports have shown that 30% of deaths in renal 

replacement therapy (RRT) patients in the United Kingdom (UK) and 50% of deaths in RRT 

patients in the USA are due to cardiovascular disease {Methven et al 2017; USRDS 2015}. 

Other main causes of death in these patients included malignancy and infection. 

The cost of RRT which includes dialysis or kidney transplantation is substantial. The National 

Health Service (NHS) in the UK spends 3% of its total budget on renal care. There were 63,162 

patients with end stage renal disease receiving RRT in the UK in 2016 {MacNeill et al 2017}. 

The average cost of care for a dialysis patient is £31,000 annually and for a renal transplant 

patient, the cost is £22,000 in the first year and £3,000 annually thereafter {Li et al 2015}. 

 

1.2 Pathogenesis of CKD-MBD 

1.2.1 Overview 

There are a number of CKD-MBD biochemical changes which occur as CKD progresses as 

summarised in Figure 1.2. One of the earliest changes is an increase in the phosphaturic 

hormone fibroblast growth factor 23 (FGF23) which starts in the early stages of CKD with one 

study showing that a third of CKD stage 1 and nearly half of CKD stage 2 patients have raised 

FGF23 level whilst parathyroid hormone (PTH) level remained normal {Evenepoel et al 2010}. 
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A number of studies consistently showed that FGF23 rise is well established by the time eGFR 

is less than 60 ml/min/1.73m2 and there is an exponential increase in its level in stage 5 CKD 

and dialysis  {Evenepoel et al 2010; Wolf 2010}. The rise in FGF23 in early CKD is quickly 

followed by a reduction in 1,25-dihydroxyvitamin D (calcitriol) but both of these markers are 

not measured routinely in clinical practice {O. M. Gutierrez et al 2008; Isakova et al 2011}. 

This is partly because the methodology is challenging and partly because it is currently unclear 

if early intervention affects patient-related outcomes.  

Secondary hyperparathyroidism (SHPT) is usually detected when eGFR is less than 45 

mls/min/1.73m2. PTH measurement is routinely available and normal reference range is well 

established. KDIGO CKD-MBD guidelines have also recommended a range of target PTH level 

as uncontrolled SHPT is associated with increased mortality {Floege et al 2011}. However, it 

is now accepted that SHPT is a relatively late change in CKD-MBD compared to FGF23 and 

calcitriol. The final detectable biochemical change is hyperphosphataemia which is usually 

observed in CKD stage 4 - 5D. Importantly, all these biochemical abnormalities ubiquitously 

worsen on dialysis and are associated with worse outcomes such as mortality {Block et al 

2004; Tentori et al 2008}. 
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Figure 1.2 

An overview of the onset of biochemical abnormalities with CKD progression {Wolf 2010}. 

 

 

1.2.2 FGF23 and Phosphate 

FGF23 is a hormone produced mainly by osteocytes but some are also produced by 

osteoblasts. It regulates phosphate handling via its high affinity to bind with its co-receptor, 

klotho, in the kidneys to promote phosphaturia by inhibiting the sodium-phosphate co-

transporter in the proximal tubule {Saito et al 2003}. Another important FGF23 action is the 

inhibition of 1α-hydroxylase activity in the kidneys and increased 24-hydroxylase activity 

which in turn reduces the level of calcitriol {Antoniucci et al 2006; O. Gutierrez et al 2005; 

Hasegawa et al 2010}. This is shown in Figure 1.3. Low calcitriol level impairs intestinal 

absorption of phosphate. 
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Figure 1.3 

FGF23 roles in Vitamin D metabolism in CKD-MBD. Taken from SIMPLIFIED Study 

presentation slide by Hiemstra T (https://slideplayer.com/slide/10843676/) 

 

 

The importance of FGF23 in phosphate regulation is demonstrated in various genetic 

conditions. FGF23 excess in X-linked hypophosphataemia, autosomal dominant 

hypophosphotaemic rickets and tumor-induced osteomalacia results in severe 

hypophosphataemia due to renal phosphate wasting. In contrast, reduced production of 

intact FGF23 in tumoral calcinosis results in hyperphosphataemia. FGF23 production is also 

sensitive to dietary phosphate intake. A study in healthy men showed that dietary phosphate 

supplementation increases FGF23 and urinary fractional excretion of phosphate whereas 

dietary phosphate restriction has the opposite effects {Antoniucci et al 2006}. 
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Controversies exist on the aetiology of the sustained FGF23 rise in early CKD which eventually 

reaches extremely high level (in the 1000s) in dialysis patients. Hyperphosphataemia does not 

occur in early CKD but increased urinary excretion of phosphate is observed which suggests a 

compensatory mechanism in which FGF23 plays a crucial role {Craver et al 2007}.  A number 

of studies have shown that although serum phosphate is still within the normal range, there 

is an inverse relationship between serum phosphate and kidney function {Evenepoel et al 

2010; O. Gutierrez et al 2005; Isakova et al 2011}. At the same time, urinary phosphate 

excretion increases (measured as daily urinary phosphate and fractional excretion of 

phosphate) with worsening CKD and it is independently associated with FGF23 increase. This 

supports the hypothesis that the FGF23 rise in early CKD is driven by relatively small increases 

in serum phosphate. Another possibility is the reduction in FGF23 degradation in CKD 

{Bhattacharyya et al 2012; Shimada et al 2010}. A study showed that FGF23 expression by 

osteocytes in bone was increased in CKD stages 2 - 5D compared to normal controls but FGF23 

expression was similar across all CKD stages including dialysis despite the exponential rise in 

circulating FGF23 found in advanced CKD {Pereira et al 2009}. However, the exact mechanism 

suppressing FGF23 degradation in CKD is unknown and its excretion in the urine and clearance 

by dialysis is minimal {Isakova et al 2011}. As CKD progresses and less viable nephrons are 

available, the phosphaturic effect of FGF23 is blunted leading to hyperphosphataemia.  

Hyperphosphataemia and high FGF23 are important as these biochemical markers have also 

been associated with increased mortality {Block et al 2004; Isakova et al 2018}. The 

association between hyperphosphataemia and increased mortality is likely via increased 

vascular calcification {Cozzolino et al 2005; Jono et al 2000; Reynolds et al 2004; Scialla et al 

2013}. The association between FGF23 and mortality is most likely via left ventricular 

hypertrophy (LVH) rather than vascular calcification {Faul et al 2011; Sarmento-Dias et al 
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2016; Scialla et al 2013}. LVH is an important mechanism for congestive heart failure and 

arrhythmia which can cause sudden death. A cohort of 1525 CKD patients with moderate to 

severe CKD from the Chronic Renal Insufficiency Cohort (CRIC) study had annual 

measurement of FGF23 over 5 years {Isakova et al 2018}. A higher baseline or a higher time-

varying FGF23 was independently associated with increased risk of mortality.  

 

1.2.3 Vitamin D 

Vitamin D measured in clinical practice is 25-hydroxyvitamin D (calcidiol) which is the 

precursor to active 1,25-dihydroxyvitamin D (calcitriol). Calcitriol can be measured but this is 

usually done in research setting only. Vitamin D exists in two forms; vitamin D3 

(cholecalciferol) and vitamin D2 (ergocalciferol) as shown in Figure 1.3. Majority (90%) of 

vitamin D in human is made in the skin, when exposed to sunlight, in the form of vitamin D3 

{Holick et al 2008}. Only 10% of Vitamin D is sourced from diet; either in the form of vitamin 

D3 (e.g. oily fish, egg yolk, cheese and beef liver) or D2 (e.g. plants and fungi). Calcidiol 

measured in clinical practice is also called ‘total 25-hydroxyvitamin D’ as it measures both 

vitamin D3 and D2 that have undergone 25-hydroxylation in the liver. Calcidiol then undergoes 

1α-hydroxylation in the proximal tubule epithelial cells in the kidneys to form calcitriol. 

Calcitriol has direct effects on multiple organs such as the parathyroid glands, the skeleton, 

the kidneys and the intestine when it binds to its Vitamin D receptors {Bikle 2012}. This is 

shown in Figure 1.4.  
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Figure 1.4 

Calcitriol effects on multiple organs. 

 

However, measuring calcitriol is challenging as it has a short half-life and low plasma 

concentration (1,000 times lower than calcidiol concentration). Therefore, calcidiol level 

remains the only measurement routinely available to assess vitamin D status. This may seem 

to be a straight forward approach to assess vitamin D status based on the fact that calcidiol is 

the precursor to calcitriol. Thus, calcidiol level is expected to have a positive relationship with 

serum calcium and negatively with PTH. However, the association between total calcidiol we 

measure in clinical practice and calcium and PTH have been inconsistent and this may be 

explained by the free hormone hypothesis {Bhan et al 2012; Gonzalez et al 2004; Taal et al 

2014; Urena-Torres et al 2011}. 

Most calcidiol (85 – 90%) in circulation is tightly bound to vitamin D binding protein (VDBP) 

as it is lipophilic. Some is loosely bound to albumin (10 – 15%) and only < 1% exists in free 

form. The free hormone hypothesis suggests that the free hormone (albumin-bound and free 
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hormone) is the biologically active (bioavailable) hormone as it is able to cross plasma 

membrane due to its small size and lipid permeability {Mendel 1989}. The bioavailable 

hormone was found to have better correlation with calcium and PTH than total calcidiol {Bhan 

et al 2012}. Bioavailable hormone can be measured but the methods are technically 

challenging. It can be calculated using an equation but that would still require measurement 

of VDBP which is not done in clinical practice {Bikle et al 1986; Powe et al 2011}. Furthermore, 

the calculated bioavailable calcidiol varied considerably from measured bioavailable calcidiol 

and only the measured level was shown to be related to PTH {J. B. Schwartz et al 2014}. 

However, the discovery of megalin suggests that the free hormone hypothesis may be more 

important in other 1α-hydroxylation sites but not in the kidneys. In the kidneys, 

calcidiol/VDBP complex is filtered in the glomerulus and the complex is internalised into the 

renal proximal tubule by megalin {Nykjaer et al 1999}. Megalin is an endocytic receptor which 

sits on the luminal surface of tubular epithelial cells. Therefore, 1α-hydroxylation of calcidiol 

in the kidneys involves total calcidiol and not just the free hormone. 

Calcidiol insufficiency and deficiency is common in CKD with the prevalence of up to 90% in 

dialysis population {Gonzalez et al 2004; Oh et al 2012}. This is often multi-factorial and may 

include (1) reduced exposure to sunshine due to reduced mobility/increased frailty, (2) 

dietary restrictions such as low phosphate diet, (3) poor appetite due to uraemia, (4) reduced 

25-hydroxylation in the liver due to secondary hyperparathyroidism and (5) reduced VDBP 

level through heavy proteinuria/nephrotic syndrome or reduced production in malnutrition 

or inflammation {Doorenbos et al 2012; Laing et al 2002; Michaud et al 2010; Webb et al 

1989}.  
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Calcitriol level is also reduced in CKD and this is partly due to reduced synthesis because of 

deficiency of its precursor (calcidiol < 10 ng/mL). However, calcitriol level continues to fall 

with progressive CKD even when calcidiol level is stable and only in the insufficiency range 

(calcidiol 10 – 30 ng/mL) {O. Gutierrez et al 2005}. This was previously thought to be related 

to less 1α-hydroxylase activity due to reduced kidney mass in CKD. However, the decline in 

calcitriol level occurs early in CKD and precedes other CKD complications related to reduce 

kidney mass such as renal anaemia. Meanwhile, FGF23 rise occurs early in CKD even in those 

with normal calcidiol level and FGF23 has been shown to be an important predictor of 

calcitriol level, independent of kidney function {Evenepoel et al 2010; O. Gutierrez et al 2005; 

Isakova et al 2011; Taal et al 2014}.  

There is now an improved understanding on the role that FGF23 plays in vitamin D 

metabolism (Figure 1.3). FGF23 inhibits 1α-hydroxylation in the kidneys and simultaneously 

increases clearance of calcitriol by increasing 24-hydroxylase activity {Hasegawa et al 2010; 

Shimada et al 2004}. Some local 1α-hydroxylation occurs in extra-renal sites such as 

macrophages, colon, prostate and lungs but kidneys are the primary site {Mawer et al 1994; 

G. G. Schwartz et al 1998; Tangpricha et al 2001}. It should also be noted that 24-hydroxylation 

removes both calcitriol and calcidiol from circulation.  

Calcidiol deficiency is a well-known cause of rickets in children and osteomalacia in adults 

although this is now rare in the developed world. Calcidiol and calcitriol deficiency in CKD is 

important as it worsens SHPT. Furthermore, an observational study showed an association 

between calcidiol and calcitriol deficiency with increased risk of mortality in dialysis 

population {Wolf et al 2007}. Observational studies support the use of Vitamin D 

supplementation to control SHPT in CKD but interventional studies have shown variable 
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outcomes. A meta-analysis by Palmer et al showed that vitamin D compounds do not 

consistently reduce PTH and beneficial patient-centred outcomes are unproven {Palmer et al 

2007}. Furthermore, a recent randomised controlled trial, J-DAVID study, involving 976 

haemodialysis patients showed that there is no survival benefit with active vitamin D 

supplementation but the patients enrolled had iPTH ≤ 180 pg/mL {Shoji et al 2018}. Therefore, 

uncertainties remain whether vitamin D supplementation is beneficial in CKD with more 

severe SHPT. 

 

1.2.4 Secondary Hyperparathyroidism 

Parathyroid glands have two main receptors which regulate PTH release. Low calcitriol level 

in CKD is sensed by vitamin D receptor (VDR) on parathyroid glands which stimulates the 

release of PTH and this is known as secondary hyperparathyroidism (SHPT) {Silver et al 1986}. 

Hypocalcaemia may also occur in advanced CKD due to low calcitriol level and this is sensed 

by the calcium sensing receptor (CaSR) on parathyroid gland to stimulate PTH production 

{Brown 2000}. Figure 1.5 summarises the pathophysiology of SHPT in CKD. 

PTH acts directly on bone in response to hypocalcaemia to promote skeletal calcium release 

via bone resorption. PTH also acts directly on the kidneys by promoting renal tubular re-

absorption of calcium and increasing 1α-hydroxylation of calcidiol to make calcitriol. In turn, 

calcitriol promotes intestinal absorption of calcium. These mechanisms maintain normal 

calcium level via a negative feedback in healthy individuals. In advanced CKD, normal or mild 

hypocalcaemia is often observed despite SHPT and this is due to abnormal vitamin D 

metabolism as previously mentioned.  
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Figure 1.5 

Pathophysiology of secondary hyperparathyroidism in CKD-MBD. 

 

SHPT is a physiological change associated with CKD but uncontrolled SHPT may be harmful. 

PTH level that is too high or too low is associated with increased mortality in dialysis patients 

{Floege et al 2011}. The lowest mortality risk is associated with PTH level between 100 – 600 

pg/mL (i.e. 2 – 9 times the upper limit of normal for the assay). It is well known that PTH has 

a direct effect on bone where it stimulates bone turnover. However, CKD patients with SHPT 

can have low, normal or high bone turnover. Abnormal bone turnover can impact on bone 

strength and increases the risk of fracture.  

SHPT can be detected as early as CKD stage 3 where raised serum PTH is mainly due to 

increased secretion by parathyroid gland but also partly due to accumulation of PTH 

fragments. PTH has 84 amino acids sequence with a molecular weight of 9500 Daltons. It has 

a short half-life of a few minutes once it is released from parathyroid gland into the 

circulation. It is then metabolised in the liver and kidneys into two main fragments; the N-
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terminal and the C-terminal fragments. The N-terminal fragment is fully metabolised in the 

liver and the C-terminal fragments are usually cleared by the kidneys, thus it accumulates in 

advanced CKD {Murray et al 2005}.  

There are various PTH assays which have been developed over the last few decades with the 

aim of improving its sensitivity and specificity to detect biologically active PTH molecule 

(Figure 1.6). First generation PTH assays detect either the N-terminal or the C-terminal end 

of the molecule which also means that the whole molecule and its inactive fragments (mostly 

the C-terminal fragments) are measured. Second generation assays measure the full length 

PTH, which is called ‘intact PTH’ (iPTH). However, the assays detect both 1-84 PTH molecule 

and the 7-84 PTH fragments {Torres 2006}. This large amino-truncated PTH fragment was 

initially thought to be biologically inactive but animal studies have shown that 1-84 PTH 

increases bone resorption when injected into parathyroidectomised rats whilst 7-84 PTH 

fragments antagonizes the effect of 1-84 PTH in bone {Huan et al 2006; Slatopolsky et al 2000}. 

This may explain why CKD patients seem to demonstrate skeletal resistance to PTH where 

bone turnover is suppressed despite SHPT. 

Third generation PTH assays, also known as ‘whole’ PTH assays, measure mainly 1-84 PTH 

molecules. The assays also detect a post-translational modified form of PTH 1-84 in region 15-

20 by phosphorylation of a serine residue known as non-truncated amino-terminal PTH (N-

PTH) {Eastell et al 2014}. N-PTH represents up to 15% of PTH detected by the assays in 

advanced CKD. It is not yet clear whether the whole PTH assays will better predict underlying 

bone disease in CKD or patient-centred outcomes such as mortality when compared to iPTH 

assays {Coen, Bonucci, et al 2002; Lehmann et al 2008; Monier-Faugere et al 2001}. Therefore, 

iPTH assays remain the assays commonly used in clinical practice. 
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Figure 1.6 

Three generations of PTH assays detecting different parts of the PTH molecule {Eastell et 

al 2014}. 

 

 

1.2.5 Treatment of Secondary Hyperparathyroidism 

Severe SHPT have important consequence because a number of studies in dialysis patients 

showed that patients with iPTH > 600 pg/mL had the highest risk of mortality {Block et al 2004; 

Tentori et al 2008}. Very low iPTH is also associated with mortality as shown by U-shaped 

association between PTH level and mortality in dialysis patients {Floege et al 2011}. PTH and 

risk of fracture also has a U-shaped association where iPTH level that is too low or too high is 

associated with increased fracture risk {Fishbane et al 2016; Jadoul et al 2006}. Danese et al 

assessed USRDS data involving 9007 dialysis patients and found a weak U-shaped association 

between iPTH and fracture, with the lowest risk found at around iPTH 300 pg/mL {Danese et 
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al 2006}. Iimori et al examined 485 dialysis patients and found that the risk of fracture is 3.5 

times higher with iPTH  < 150 pg/mL and 6 times higher with iPTH > 300 pg/mL when 

compared to those with iPTH level 150 – 300 pg/mL (i.e. 2 – 5 times the upper limit of normal 

for the assay) {Iimori et al 2012}. 

Findings from these observational studies led to KDIGO CKD-MBD guideline recommendation 

that iPTH level is maintained between 2 to 9 times the upper limit of normal for the assay in 

dialysis patients {KDIGO 2009}. This equates to around 150 – 600 pg/mL (or 15 – 60 pmol/L). 

There is no specific recommendation for PTH level in pre-dialysis CKD due to lack of evidence 

between PTH level and patient-centred outcomes. 

Most SHPT treatment focuses on lowering iPTH level although there is no evidence so far that 

reducing PTH improves mortality or fracture risk in advanced CKD. The Evaluation of 

Cinacalcet HCl Therapy to Lower Cardiovascular Events (EVOLVE) trial recruited 3883 

haemodialysis patients with SHPT (median iPTH 690 pg/mL) who were randomised to receive 

cinacalcet or placebo. Trial participants received study drug over a two year period and was 

followed up for up to 5 years. The trial showed that cinacalcet did not reduce the risk of death 

or the rate of clinical fracture {Chertow et al 2012; S. M. Moe et al 2014}. However, prevention 

of uncontrolled SHPT may still be important as shown by the observational studies.  

Initial treatment for SHPT addresses phosphate intake by restricting dietary phosphate. 

Dietary restriction is often difficult to sustain or becomes inadequate as CKD progresses. 

Therefore, phosphate binders are required and these could be calcium-based or non-calcium 

based binders {KDIGO 2017}. At the same time, calcidiol insufficiency/deficiency requires 

plain vitamin D supplementation. The use of active vitamin D supplementation such as 

alfacalcidol or calcitriol is only recommended for dialysis patients who have worsening SHPT 
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despite sufficient calcidiol levels. This is due to concerns regarding vascular calcification with 

the use of supplementary active vitamin D. 

The next line of treatment aims to lower PTH level in those patients with level above the 

recommended range who are no longer responding to the treatment outlined above. These 

patients are likely to have tertiary hyperparathyroidism where a solitary nodule or nodules in 

parathyroid glands become autonomous. Hypercalcaemia often ensues because the nodules 

have markedly reduced calcium-sensing receptor (CaSR) and vitamin D receptor (VDR) 

sensitivities.  There are two main approaches to lower PTH level; medical by using 

calcimimetic or surgical by parathyroidectomy. Calcimimetic increases the sensitivity of CaSR 

in parathyroid glands to extra cellular calcium concentrations, leading to a reduction in 

circulating PTH.  In the UK, cinacalcet is not part of routine treatment for SHPT largely due to 

cost. The National Institute of Health and Care Excellence (NICE) guideline recommends its 

use in patients with uncontrolled SHPT (iPTH > 800 pg/ml) refractory to standard therapy with 

normal or high adjusted serum calcium or in whom the risk of surgical parathyroidectomy 

outweighs the benefit {NICE 2007}. In those patients deemed fit for surgical intervention, 

parathyroidectomy should be considered as there is evidence of potential survival benefit 

after parathyroidectomy {Iwamoto et al 2012; Sharma et al 2012}. However, one 

retrospective study involving 235 dialysis patients who underwent parathyroidectomy 

suggested that patients with persistently very low PTH level (iPTH < 46 pg/mL) post-

parathyroidectomy had increased 5-year mortality {Fotheringham et al 2011}.    
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1.3 Bone in Chronic Kidney Disease 

1.3.1 Fracture 

CKD patients have increased risk of fracture which is associated with increased morbidity and 

mortality. A number of studies suggest that even minimal kidney impairment is associated 

with increased risk of bone loss and fracture {Fried et al 2007; Jamal et al 2010; Kinsella et al 

2010}. Indeed, an analysis of the Third NHANES data suggested that the association between 

prevalent hip fracture and CKD was stronger than many conventional risk factors for fracture 

such as bone mineral density (BMD), gender, race and age {Nickolas et al 2006}. 

The Third NHANES data showed that the prevalence of hip fracture in pre-dialysis CKD is 2-3 

times greater than in the general population {Nickolas et al 2006}. Large cohort studies have 

shown that the incidence of hip fracture in advanced CKD (eGFR 15 - 30 ml/min/1.73m2) is up 

to 4 times higher compared to those with eGFR > 60 ml/min/1.73m2 and this is similar to the 

incidence in dialysis patients {Dooley et al 2008; Kim et al 2016}. Dialysis patients with fracture 

also have an associated 2.5 times higher risk of mortality compared to the general population 

{Alem et al 2000; Coco et al 2000}.  

The health care cost of fragility fracture in CKD is substantial. The number of hospital 

admissions for hip fracture is higher amongst dialysis compared to non-dialysis CKD which is 

higher those with normal kidney function {Kim et al 2016}. Fracture-related hospitalisation 

cost in the USA in 2010 was around $660 million for CKD and dialysis patients but this did not 

include their aftercare which is also substantial as more than 4 in 5 patients were discharged 

to nursing or intermediary care. A 2010 French National Hospital Database study showed that 

mean length hospital stay was 5 days longer in dialysis compared to non-dialysis patients and 
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thus, the cost of hospital stay was higher (Euro 8,500 versus Euro 7,000 respectively) {Maravic 

et al 2014}. In the UK, the estimated annual cost of all fragility fractures is £2 billion but 

fracture cost specifically in CKD is unknown {Burge 2001}. 

Fractures occur when applied load (force) exceeds bone strength. The risk of fracture is also 

determined by falls which is increasingly appreciated as an important risk factor in patients 

with CKD. The risk of serious fall injuries which resulted in fracture, brain injury or joint 

dislocation increases with worsening CKD {Bowling et al 2016}. The possible mechanisms 

include frailty and sarcopaenia {Moorthi et al 2017}. The Fracture Triangle summarises the 

relationship between force, bone strength and falls (Figure 1.7).  

 

Figure 1.7 

Fracture Triangle and the determinants of bone strength which is affected by CKD. 

 

 



38 
 

Bone strength is determined by bone quantity and bone quality {NIH 2001}. Bone quantity 

which can be reflected by BMD or bone volume is determined by peak bone mass in early 

adulthood and amount of bone loss. Meanwhile, bone quality is reflected by microstructure 

and mechanical properties which are determined by bone turnover and mineralization. In 

CKD-MBD, abnormalities of bone quality and quantity are not closely linked which may 

explain why BMD alone is unable to predict fracture risk in advanced CKD. 

 

1.3.2 Bone Physiology in Health and CKD 

Bone undergoes mostly remodelling with minimal bone modelling in adults. Bone remodelling 

is under the influence of several factors such as PTH, vitamin D, cortisol, thyroid hormone, sex 

hormones such as oestrogen and testosterone, and growth hormones such as insulin-like 

growth factor 1 (IGF-1). Bone remodelling in healthy adults occurs at a fairly constant rate 

with each remodelling cycle of a bone mineral unit taking around 4 months to complete and 

a whole adult skeleton would be remodelled within 10 years. Remodelling is important for 

removal of old bone, repair of micro-cracks and adaptation to changes in biomechanical force 

(e.g. physical activity and weight gain) with new bone which is mechanically stronger. Bone 

remodelling is also involved in maintaining serum calcium-phosphate balance as skeleton is 

the biggest calcium and phosphate reservoir.  

Bone remodelling starts with activation of bone lining cells and differentiation of osteoclast 

(OC) precursor which is derived from haematopoietic stem cells {Miller et al 1989}. The 

maturation and activation of OC precursor are critically dependent on the activity of receptor-

activator of NF-B ligand (RANKL) and macrophage-colony stimulating factor 
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{Fujikawa et al 2001; Lacey et al 1998}. RANKL is released by osteoblasts (OB) and activates 

its receptor-activator of NF-B (RANK), which is expressed on pre-osteoclasts, leading to OC 

proliferation and activation as shown in Figure 1.8. This process can be attenuated by 

osteoprotegerin which is an endogenous inhibitor of RANK, also produced by OB {D'Amelio et 

al 2009}. The mature OC attaches itself to the bone surface by αβ integrin which is mediated 

by Src kinase to create a seal between itself and the bone surface. This microenvironment 

enables the collagenolytic enzymes such as cathepsin K and tartrate-resistant acid 

phosphatase 5b (TRAP5b) to digest bone matrix.  

 

Figure 1.8 

Osteoclast activation by RANKL and its inhibition by RANKL decoy receptor 

osteoprotegerin. 
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When OC is activated for bone resorption, OB activation follows and this process is tightly 

coupled in bone remodelling {Nakamura et al 2003}. Coupling has a temporal and spacial 

relationship which leads to several proposed mechanisms.  Bone matrix-derived factors such 

as IGF-1 and bone morphogenic proteins which are released during matrix degradation has 

been shown to promote OB activation {G. Chen et al 2012; Crane et al 2014}. Other proposed 

mechanisms involved cell to cell contact and cytokines released by OC {Ikeda et al 2014}. 

OB is derived from mesenchymal stem cells and its differentiation to mature OB is modulated 

by the Wnt/β-catenin pathyway which is shown in Figure 1.9. This is known as the canonical 

(classical) pathway where Wnt protein binds to frizzled receptor and its co-receptor LRP5/6 

on pre-OB. This leads to translocation of β-catenin into the cell nucleus where it acts on target 

genes to promote OB differentiation. There are endogenous inhibitors of this process such as 

sclerostin (produced by osteocytes) and Dickkopf-1 (Dkk-1, produced by OB) which bind to 

LRP5/6. 

OB lays down type I collagen during bone formation and there are molecules released into 

the circulation during collagen linkage which are N-terminal (PINP) and C-terminal (PICP) 

peptides. The new unmineralized bone is known as osteoid and undergoes mineralization 

under the influence of bone alkaline phosphatase (bALP) enzyme and a protein called 

osteocalcin which are both produced by OB {Price et al 1980; Whyte 1994}. Mineralization 

with hydroxyapatite crystals is also under the influence of calcium, phosphate, pyrophosphate 

and vitamin D. Primary mineralization takes 2-3 months and the bone mineral unit 

remodelling cycle is complete. Secondary mineralization continues beyond this point and may 

even take years to complete during which there is a slower increase in crystal number and 

size {Bala et al 2010}.  
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Figure 1.9 

Osteoblast activation by the Wnt/β-catenin pathway. 

 

In CKD, bone remodelling and modelling are affected by abnormalities of bone turnover (too 

high or too low) and mineralization which is known as renal osteodystrophy (ROD). In high 

bone turnover disease, bone is being replaced at a faster rate before mineralization is 

complete and often resorption exceeds bone formation which may explain the resulting bone 

loss. The latter has been demonstrated by a study using mouse model which showed that 

gene expression of proteins involved in OC differentiation and function such as RANK, RANKL, 

cathepsin K and TRAP5b rise from early stages of CKD before the onset of SHPT {Sabbagh et 

al 2012}. In the later stages of CKD, there is also a reduction in gene expression for proteins 

involved in OB differentiation and bone mineralization such as bALP and osteocalcin. 

Furthermore, an in vitro study showed that FGF23 together with soluble klotho directly inhibit 

the Wnt/B-catenin pathway for OB differentiation {Carrillo-Lopez et al 2016}. Thus, bone 
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formation is relatively suppressed compared to bone resorption even in high bone turnover 

ROD. 

 In low bone turnover/adynamic bone disease, bone remodelling is minimal or absent which 

means that old bones are not replaced, micro-cracks are not repaired and the skeleton is less 

adapted to changes in mechanical force. Delayed mineralization could also happen when 

bone turnover is high (mixed bone disease) or low (osteomalacia). 

 

1.3.3 Renal Osteodystrophy and Osteoporosis in CKD 

Renal osteodystrophy (ROD) is used exclusively to define bone abnormalities associated with 

CKD. ROD is a spectrum of bone disease characterised by bone turnover and mineralization 

abnormalities seen on bone histomorphometry (Table 1.2). Osteitis fibrosa is a state of high 

bone turnover and normal mineralization which is often associated with bone marrow 

fibrosis. High bone turnover combined with abnormal bone mineralization is known as mixed 

bone disease. Meanwhile, low bone turnover and abnormal mineralization is known as 

osteomalacia. Finally, low bone turnover and normal mineralization is known as adynamic 

bone disease (ABD). Strictly speaking ABD should only be used for bone biopsy which shows 

absent bone turnover (i.e. no tetracycline label uptake and no OC or OB). However, a 

spectrum of low to absent bone turnover is often categorised together and labelled as ABD. 

An extensive literature review of bone biopsy studies between 1983 and 2006 by KDIGO 

showed that over 80% of CKD stages 3-5 patients had ROD and the prevalence was up to 98% 

in dialysis patients {KDIGO 2009}. The predominant type of ROD was high bone turnover 

disease (50 – 65%) such as osteitis fibrosa and mixed bone disease. Meanwhile, the 
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prevalence of osteomalacia was only around 10%. The largest bone biopsy series was 

published by Araujo et al involving 2340 bone biopsies performed between 1985 and 2001 in 

Brazil which showed that 68% of patients had high bone turnover {Araujo et al 2003}. 

However, the biopsies were performed in symptomatic dialysis patients for diagnostic 

purposes which may explain the high proportion of high bone turnover disease. 

 

Table 1.2 

Classification of ROD subtypes based on bone turnover and mineralization abnormalities. 

ROD subtype Turnover Mineralization Volume 

Osteitis fibrosa High Normal May be low, 

normal or 

high 

Mixed bone disease High Abnormal 

Adynamic bone disease (ABD) Low Normal 

Osteomalacia Low Abnormal 

 

The natural history of ROD has probably changed from predominantly high bone turnover to 

predominantly low bone turnover. More recent studies by Malluche et al and Sprague et al 

involving 630 and 490 dialysis patients respectively demonstrated that up to 60% had low 

bone turnover or ABD {Malluche et al 2011; Sprague et al 2016}. Furthermore, osteomalacia 

is becoming less frequent which is consistent with less aluminium toxicity as a result of 

improved dialysis water treatment, less use of aluminium-based phosphate binders and an 

increased use of vitamin D to control SHPT {Araujo et al 2003}.  

Abnormal bone turnover in CKD may be an important risk factor for fracture as it may affect 

bone quality and quantity. Material and nano-mechanical abnormalities such as reduced 

mineral to matrix ratio and lower bone stiffness have been observed in high turnover bone 
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disease; whereas microstructural abnormalities such as lower trabecular bone volume and 

reduced trabecular thickness have been observed in low turnover bone disease {Malluche et 

al 2012}. Piraino et al assessed bone biopsy from 31 dialysis patients and found similar 

fracture history in those with low and high bone turnover {Piraino et al 1988}. The largest 

bone biopsy series published by Araujo et al also showed no difference in fracture frequency 

between low and high bone turnover although it is unclear whether this is based on fracture 

history or incident fracture {Araujo et al 2003}. Overall, there is no large prospective study 

assessing the relationship between abnormal bone turnover and fracture incidence. 

Patients with low bone volume on bone biopsy are expected to have an increased risk of 

fracture. However, no bone biopsy study has proven this association because bone biopsy 

study is difficult to conduct and it would require a large number of participants to assess 

fracture outcome. Nonetheless, the KDIGO CKD-MBD guideline recommends the inclusion of 

bone volume assessment and that bone histomorphometry should be reported using the TMV 

(turnover, mineralization, and volume) classification (Table 1.2) {S. Moe et al 2006}.  

There is a considerable overlap in the prevalence of osteoporosis and ROD as both may be 

present in CKD which is common in the elderly. The Third NHANES data showed that 61% of 

women with osteoporosis had CKD stage 3 and 23% had CKD stage 4 {Klawansky et al 2003}. 

Osteoporosis is defined by bone mineral density (BMD) T-score < -2.5 as measured on dual 

energy X-ray absorptiometry (DXA). BMD T-score is the number of standard deviations above 

or below the average BMD value for healthy young gender-matched adults. The clinical utility 

of DXA in evaluating those at increased risk of fracture and monitoring response to treatment 

is well established in the general population {Austin et al 2012; Jacques et al 2012; Kanis et al 

2010}. However, the ability of BMD measured by DXA in CKD population to predict fracture 
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risk is weak as the overall fracture risk in advanced CKD not only relates to low BMD but also 

due to ROD which affects bone quality {Hsu et al 2002; Jamal et al 2002; Piraino et al 1988}. 

Accurate diagnosis of osteoporosis and ROD subtypes in CKD is challenging but it is needed to 

guide treatment decision to reduce fracture risk. 

 

1.3.4 Bone-specific Treatment to Reduce Fracture Risk 

Patients with mild to moderate CKD without obvious CKD-MBD biochemical abnormalities 

(such as SHPT) and low BMD consistent with osteoporosis are less likely to have overt ROD 

(i.e. their bone turnover and mineralization may be normal). BMD seems to predict fracture 

in those with eGFR > 30 ml/min/1.73m2 with absent biochemical abnormalities associated 

with CKD-MBD {Yenchek et al 2012}. Bone-specific management should be focussed on 

osteoporosis treatment to reduce fracture risk which includes anti-resorptive (e.g. 

bisphosphonate or denosumab) or anabolic (e.g. teriparatide) agents. 

In contrast, patients with advanced CKD (eGFR < 30 ml/min/1.73m2) with CKD-MBD 

biochemical abnormalities and low BMD (osteopaenia or osteoporosis) are more likely to 

have ROD. Bone-specific management so far has focussed on controlling SHPT and using 

vitamin D supplementation although there is no evidence from interventional study to show 

that these approaches reduce fracture risk. Furthermore, patients with advanced CKD and 

SHPT may have low bone turnover ROD and controlling the SHPT may result in ABD which is 

also detrimental to bone health. 

Overall, accurate diagnosis of ROD subtypes is crucial before considering any bone specific 

treatment. This is even more important in those who have suffered fragility fracture as it is 
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well known that a previous fracture is a good predictor of future fractures {Kanis et al 2018}. 

Previously, bone-specific treatment to reduce fracture risk in advanced CKD have been limited 

as bisphosphonates are contraindicated in patients with eGFR < 30 ml/min/1.73m2. This is 

because bisphosphonates have been associated with worsening kidney function due to acute 

tubular necrosis and nephrotic range proteinuria due to focal segmental glomerulosclerosis 

{Toussaint, Elder, et al 2009}. However, denosumab is now available and not contra-indicated 

in CKD although the risk of hypocalcaemia is high in advanced CKD {Block et al 2012}. 

Denosumab is an antibody to RANKL and thus, it is an anti-resorptive treatment which 

suppresses bone turnover. Denosumab should not be given to patients with pre-existing low 

bone turnover or ABD. On the other hand, teriparatide is a recombinant PTH and thus it is an 

anabolic agent which stimulates bone turnover. Teriparatide is not contraindicated in 

advanced CKD but it should not to be given to patients with pre-existing high bone turnover. 

It is now possible to use these treatment options in advanced CKD but evidence on their 

fracture risk reduction in this population is limited. Large randomised controlled trials of 

denosumab and teriparatide have largely excluded advanced CKD patients with SHPT. 

Additionally, these agents need to be tailored to individual bone turnover status as incorrect 

diagnosis of ROD subtypes and treatment may cause further damage to bone health. A large 

interventional trial using these agents tailored to individuals’ bone turnover status to assess 

fracture outcome is unlikely to happen when bone biopsy is still required to diagnose ROD 

subtypes. Therefore, further research into non-invasive tests to replace bone biopsy is 

required to address this limiting step in such clinical trial. 
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1.4 Diagnostic Test for Renal Osteodystrophy 

1.4.1 Bone Biopsy 

Bone biopsy is the gold standard test to diagnose ROD as there are currently no biomarkers 

or imaging tools that can accurately predict ROD subtypes. Trans-iliac bone biopsy carries low 

risk of morbidity and so far there is no known mortality {Hernandez et al 2008}. The KDIGO 

CKD-MBD guideline recommends performing bone biopsy in various settings such as 

persistent bone pain, unexplained fractures, unexplained hypercalcaemia, unexplained 

hypophosphatemia and possible aluminium toxicity {KDIGO 2009}. The guideline also 

specifies that bone biopsy is required prior to therapy with anti-resorptive agents in patients 

with CKD-MBD. 

Bone biopsy can be assessed quantitatively and reported using histomorphometry 

standardised nomenclature, symbols and units as published by the American Society of Bone 

Mineral Research Histomorphometry Nomenclature Committee in 1987 {Parfitt et al 1987}. 

The published nomenclature included static and dynamic parameters. Dynamic parameters 

give an indication of bone turnover and mineralization over time (rate) but requires 

tetracycline bone labelling beforehand. This unified system of terminology allows direct 

comparison between bone biopsy studies. There are semi-automated histomorphometry 

software systems available but it is still time and labour-consuming process which requires 

the expertise of bone technicians. Therefore, most bone biopsies in clinical setting are 

assessed using qualitative method which is quicker but this method is non-standardised and 

has a high degree of inter-assessor variability.  
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Quantitative histomorphometry parameters of bone turnover, mineralization and volume 

require normal reference ranges to determine normal/abnormal parameters for classification 

of ROD subtypes. There is no unifying consensus on normal reference ranges worldwide and 

there is also a debate that normal range may differ between different ethnicities and 

geography. Furthermore, normal range in healthy adults may differ with each decade of life 

and gender. The group with extensive publications on bone biopsies of ROD led by Hartmut 

Malluche published normal reference values in 1982 {Malluche et al 1982}. The study 

examined bone biopsy parameters from each decade of life (first to eighth) from 84 normal 

American subjects using quantitative histomorphometry. The bone biopsies were taken from 

63 men and 21 women (12 were pre-menopausal). Each decade of life group had between 5 

to 19 subjects. However, only static parameters were obtained as the subjects were deceased. 

Subsequently, the same group published a reference range for dynamic parameters of bone 

turnover and mineralization in adults {Malluche et al 2011}. Normal bone turnover was 

defined as bone formation rate/bone surface (BFR/BS) of 1.8 – 3.8 mm3/cm2/year (or 18 – 38 

µm3/µm2/year) and normal mineralization was defined as osteoid thickness (O.Th) ≤ 20 µm 

and mineralization lag time (MLT) ≤ 50 days. Normal bone volume in the study was defined 

as bone volume/tissue volume (BV/TV) 16.8 – 22.9%. 

Parfitt et al examined bone mineralization in 142 healthy women aged 20 – 74 years who 

received double tetracycline labelling prior to biopsy {Parfitt et al 1997}. The study included 

34 black (19 pre-menopausal, 15 post-menopausal) and 108 white (42 pre-menopausal, 66 

post-menopausal) women. The study reported O.Th < 20 µm and MLT < 100 days for this 

group of healthy women. There are countries such as Brazil and Venezuela which have used 

their own reference ranges in a multi-centre bone biopsy study {Sprague et al 2016}. There is 

no UK-specific reference ranges but adopting the reference ranges published by Malluche et 
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al and Parfitt et al is reasonable given that both countries (the UK and the USA) have 

predominantly Caucasian population. 

There are some limitations inherent to bone biopsy which is mostly performed on unilateral 

iliac crest. It is easy to access the iliac crest and it is not in close proximity to blood vessels or 

nerves. However, bone sample from this site may not be representative of the whole skeleton 

as shown by Hiller et al {Hiller et al 2017}. The group examined bone biopsy samples from the 

iliac crest, proximal tibia and lumbar spine from 10 cadavers and found that there was no 

correlation between bone volume/tissue volume (BV/TV) of the three sites. However, earlier 

studies showed that iliac crest BV/TV had moderate to strong association with lumbar spine 

BV/TV {Amling et al 1996; Dempster et al 1993; Thomsen et al 2002}. Iliac crest BV/TV was 

also weakly associated with proximal femur BV/TV {Fazzalari et al 1989}. Overall, iliac crest 

BV/TV cannot infer the same results for other skeletal sites.  

Furthermore, pelvic bone fracture is extremely rare in CKD unlike other fracture sites such as 

the hip, ankle, wrist and lumbar spine {Wagner et al 2014}. However, bone biopsy of common 

fracture sites such as the lumbar spine is not possible and have high risk of complications. 

Taking bone biopsy intra-operatively during fracture fixation such as in hip fracture is not 

recommended as the bone surrounding the fracture may have also sustained damage.  

It is acceptable to obtain bone biopsy sample from either the right or the left iliac crest but 

we need to be aware of the potential difference between the two sides. Studies by Parisien 

et al and Chappard et al involving paired iliac crest bone biopsy samples from 30 cadavers 

showed that there was 11 - 15% intra-individual variability between the two sides {Chappard 

et al 2008; Parisien et al 1988}.  
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It is important that interpretation of bone biopsy results takes these limitations into 

consideration especially when deciding treatment options. All the studies mentioned above 

only assessed bone volume which is a static measurement. Tetracycline bone labelling was 

not possible as the studies examined cadavers. No studies have assessed bone turnover or 

mineralization status at different skeletal sites or in paired samples from both iliac crests using 

bone biopsy samples.  

Although bone biopsy is the gold standard test for ROD, it is rarely performed as it is an 

invasive and painful procedure. Furthermore, very few centres have the expertise to perform 

the procedure and carry out quantitative histomorphometry {Evenepoel et al 2017}. ROD also 

moves from one subtype to another under the influence of worsening CKD, worsening SHPT, 

PTH resistance in bone, and treatment such as phosphate binder, vitamin D and calcimimetic 

{Coen et al 1996}. Repeated bone biopsy to monitor these treatment effects on bone is almost 

impossible. Hence, further research is needed to find non-invasive tools which can predict 

bone histomorphometry features of ROD. 

 

1.4.2 Overview of Non-invasive Tests 

Serum calcium and phosphate are poor predictors for ROD as the levels are maintained in the 

normal range even in advanced CKD by mechanisms already discussed. PTH is also a poor 

predictor of ROD although extremely high (greater than 600 pg/mL) or extremely low (less 

than 100 pg/mL) iPTH level may predict high or low bone turnover respectively in CKD {Garrett 

et al 2013}. However, the majority of CKD patients have PTH level between these values 

where bone turnover may still be abnormal. A study by Ferreira et al involving 91 

haemodialysis patients found that half of the patients had ABD despite having median iPTH 
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range of 150-400 pg/mL over a one-year period prior to bone biopsy {Ferreira et al 2008}. 

Barretto et al studied 101 haemodialysis patients and found that 10 - 15% of patients had low 

bone turnover despite having iPTH > 300 pg/mL {F. C. Barreto et al 2008}. The positive 

predictive value (PPV) for iPTH > 300 pg/ml for identifying high bone turnover ROD was only 

62% in that study. The PPV may be improved with higher cut off level as shown by Herberth 

et al involving 141 dialysis patients {Herberth et al 2009}. iPTH ≥ 420 pg/mL was found to have 

an 84% PPV for identifying high bone turnover. Despite this seemingly favourable PPV for 

identifying high bone turnover, iPTH is still not robust enough as a diagnostic test. 

Furthermore, these studies were performed in haemodialysis patients only and may not be 

applicable to pre-dialysis CKD with SHPT.  Meanwhile, iPTH < 150 pg/mL had hugely variable 

PPV (51 – 97%) for identifying low bone turnover in dialysis patients {F. C. Barreto et al 2008; 

Carmen Sanchez et al 2000; Urena et al 1996}. Overall, these routinely available biochemical 

tests are unable to predict bone turnover status accurately but bone turnover markers (BTMs) 

may have better accuracy as these are markers which are directly released from bone.  

Bone imaging may also have a role in predicting ROD subtypes given all the structural changes 

associated with abnormal bone turnover and mineralization. DXA is a widely available bone 

imaging technique which measures BMD for the assessment of osteoporosis and fracture risk 

in the general population. However, its role in predicting ROD subtypes is poor as BMD 

measured on DXA has been found to be low or normal in all subtypes of ROD {Gerakis et al 

2000; Piraino et al 1988}. Bone imaging technique which can measure bone microstructure 

such as that seen on bone biopsy has been coined as virtual bone biopsy and may have a 

better accuracy to predict ROD subtypes. 



52 
 

Advances in bone imaging technology and the development of new BTMs present 

opportunities for less invasive alternatives to bone biopsy but these need further evaluation 

in CKD. Studies directly comparing these non-invasive tools with bone histomorphometry are 

rare. Most studies compared novel BTMs with other bone markers or imaging but not directly 

with bone histomorphometry. Furthermore, most studies examined haemodialysis patients 

only and excluded peritoneal dialysis and pre-dialysis CKD patients. 

 

1.4.3 Bone Turnover Markers (BTMs) 

There are several circulating BTMs which are released directly from bone during bone 

remodelling and modelling (Table 1.3). However, their use in clinical practice is not currently 

recommended due to limited evidence on their correlation with bone histomorphometry or 

fracture risk in CKD. Furthermore, some of the bone turnover markers are excreted by the 

kidneys and thus, may accumulate in advanced CKD. Hence, further research into their 

diagnostic accuracy in this population is needed. 

 

Bone Resorption Markers 

C-terminal and N-terminal telopeptides of type I collagen (CTX and NTX) are released during 

collagen degradation. Although these are released during degradation of type I collagen from 

anywhere in the body, the skeleton is by far the biggest site of type I collagen. Thus, measured 

CTX and NTX reflect bone resorption. These markers accumulate in advanced CKD but a 

number of studies found that there is a significant negative association between these 
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markers and BMD in CKD {Hamano et al 2009; Nakashima et al 2005; Okuno et al 2005}. This 

suggests that high bone turnover ROD is associated with bone loss as reflected by low BMD. 

 

Table 1.3 

Bone turnover markers released during bone resorption and bone formation. 

 

Serum tartrate-resistant acid phosphatase 5b (TRAP5b) could be a better predictor of bone 

resorption in CKD as it does not accumulate in renal impairment {Yamada et al 2008}. TRAP5b 

is released by OC during bone matrix degradation and it is also released into the circulation 

where it is degraded into fragments and then removed by the liver. A study by Lehmann et al 

using bone biopsy from 96 dialysis patients showed that TRAP5b had moderate predictive 

value for high bone turnover {Lehmann et al 2008}. However, TRAP5b was unable to predict 

high bone turnover in pre-dialysis CKD. 

Bone Resorption Markers 

C-terminal telopeptide of type I collagen (CTX) 

N-terminal telopeptide of type I collagen (NTX) 

Tartrate-resistant acid phosphatase 5b (TRAP5b)* 

Osteoprotegerin§ 

 

Bone Formation Markers 

Bone alkaline phosphatase (bALP)* 

N-terminal procollagen type I peptide (PINP)* 

C-terminal procollagen type I peptide (PICP) 

Osteocalcin§ 

Sclerostin 

Symbols: *bone turnover markers which do not accumulate in advanced CKD,§ bone 

regulatory markers. 
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Osteoprotegerin (OPG) is an endogenous inhibitor of RANKL and thereby attenuates OC 

activation and bone resorption {D'Amelio et al 2009}. Although OPG accumulates in CKD and 

is not removed by haemodialysis, there is evidence from one study in 39 haemodialysis 

patients showing that it has significant negative correlation with bone turnover on 

histomorphometry {Coen, Ballanti, et al 2002; Kazama et al 2002}. Assays to measure serum 

RANKL are available but the stability of this molecule remains inconclusive and reference 

ranges have not been established {Rogers et al 2005}. 

 

Bone Formation Markers 

Bone alkaline phosphatase (bALP) is exclusively produced by bone and is metabolized in the 

liver. Thus, bALP level is not affected by CKD or dialysis {Sardiwal et al 2012}. BALP shows 

positive correlation with bone turnover on histomorphometry and when measured 

simultaneously with PTH, markedly high or low values predict underlying bone turnover 

{Magnusson et al 2001; Moore et al 2009; Urena et al 1996}. Although bALP is the most 

reliable BTM studied in advanced CKD so far, its level could fall even though PTH level remains 

high e.g. with vitamin D supplementation {Palmer et al 2007}. A combination of bALP and 

markers other than PTH may improve the sensitivity of bALP in predicting bone turnover in 

patients with SHPT {Takano et al 2011}. 

Type I collagen synthesis during bone formation releases N-terminal (PINP) and C-terminal 

(PICP) peptides into the circulation. Figure 1.10 shows type I procollagen structure and its 

PINP and PICP domains. Circulating PINP is present in trimeric and monomeric forms; trimeric 

(intact) PINP does not accumulate in CKD {Ueda et al 2002}. No studies have so far compared 

these two propeptides of PINP directly with bone histomorphometry but intact PINP has 
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shown strong correlation with other BTMs {Ueda et al 2002}.  A small study found a positive 

association between PICP and bone turnover on histomorphometry {Eriksen et al 1993}. 

However, no similar study has been repeated in CKD, probably because PICP is a less stable 

peptide with a short half-life. 

 

Figure 1.10 

Type I procollagen and the domains representing biochemical markers {Marcius M 2006}. 

 

 

Sclerostin and Dickkopf-1 (Dkk-1) are inhibitors of the Wnt/β-catenin signalling pathway for 

OB differentiation. A study by Cejka et al which involved 60 dialysis patients found that 

sclerostin was negatively associated with bone turnover on histomorphometry {Cejka, 

Herberth, et al 2011}. The same study found that Dkk-1 level was not related to any bone 

turnover parameters. 

Finally, osteocalcin is produced by OB and therefore, a marker of bone formation. However, 

it also accumulates in advanced CKD {Delmas et al 1983}. Two studies in haemodialysis 
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patients showed that osteocalcin can predict low bone turnover but bALP which does not 

accumulate in CKD had better diagnostic accuracy than osteocalcin {Coen et al 1998; 

Couttenye et al 1996}.  

 

Other Bone-related Markers 

High FGF23 has been shown to be associated with poor skeletal mineralisation in conditions 

such as hereditary or acquired hypophosphatemic rickets and osteomalacia. However, its role 

to predict abnormal bone mineralization in ROD is unknown. Although FGF23 is produced 

mainly by osteocytes, some is released by osteoblasts. It is also important to note that FGF23 

release is not dependent on bone turnover {Andrukhova et al 2018; Pereira et al 2009; 

Wesseling-Perry et al 2009}. An animal study showed that FGF23 suppresses alkaline 

phosphatase in CKD and impairs mineralization {Andrukhova et al 2018}. In contrast, a study 

involving 32 paediatric and young adults with CKD stages 2-5D showed that bone expression 

of FGF23 was associated with improved mineralization {Pereira et al 2009}. Therefore, the 

effect of high circulating FGF23 on the skeleton remains inconclusive. 

 

1.4.4 Bone Imaging 

Dual Energy X-ray Absorptiometry (DXA) 

ROD is associated with bone microstructural changes. Typically, high bone turnover results in 

thinner and more porous cortical bone, but it may also result in thickened trabecular bone 

{Malluche et al 2011; Nickolas et al 2013}. Despite these changes, the change in BMD assessed 
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by DXA may be very little or absent because DXA is a 2-dimensional imaging technique which 

cannot discriminate between cortical and trabecular bone.  BMD measured on DXA has been 

found to be low or normal in all subtypes of ROD {Gerakis et al 2000; Piraino et al 1988}. 

Furthermore, BMD could be overestimated in CKD due to VC. For example, lumbar spine BMD 

could be overestimated by the presence of abdominal aortic calcification (AAC) which is highly 

prevalent in advanced CKD {Honkanen et al 2008}. Overall, BMD by DXA is unable to predict 

ROD subtypes. 

The sensitivity and specificity of DXA in predicting ROD on bone histomorphometry may be 

improved by using specialist software known as trabecular bone score (TBS) which can be 

derived from DXA lumbar spine scans. This is an index of microarchitecture derived from grey 

level variations in the DXA image and it correlates with trabecular number and separation 

{Pothuaud et al 2008}. TBS derived from lumbar spine DXA has never been assessed directly 

with bone biopsy in CKD and the effect of AAC on TBS is unknown. 

 

Computed Tomography (CT) 

Peripheral quantitative computerised tomography (pQCT) is able to discriminate cortical from 

trabecular bone; and allows accurate calculation of volumetric BMD for each bone 

compartment. Recently, the development of high-resolution pQCT (HR-pQCT) has enabled an 

even more powerful analysis of bone microstructure in each bone compartment such as 

trabecular number and thickness and cortical thickness and porosity. Cross-sectional studies 

have indicated that HR-pQCT identifies abnormal trabecular microstructure and BMD in CKD 

and dialysis patients {Bacchetta et al 2010; Cejka, Patsch, et al 2011; Negri et al 2012; Nickolas 

et al 2010}. Longitudinal and cross-sectional studies using HR-pQCT suggest that there is a 
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significant reduction in cortical area, density and thickness as well as an increase in cortical 

porosity in CKD and dialysis patients {Negri et al 2012; Nickolas et al 2013}. These findings are 

important as suggested by one study involving 74 dialysis patients by Cejka et al {Cejka, 

Patsch, et al 2011}. The study found that virtually all parameters of bone microstructure were 

significantly associated with previous fragility fracture whilst there was no significant 

association between fracture and BMD on DXA. Whilst HR-pQCT may offer a more accurate 

assessment of bone microstructure in CKD, no studies have assessed direct relationship 

between imaging abnormalities with underlying bone histomorphometry in ROD. 

 

1.5 Vascular Calcification in CKD 

1.5.1 Prevalence and Complications 

Vascular calcification (VC) is highly prevalent in CKD with around 50 - 90% of CKD stages 3-5D 

patients having evidence of VC {KDIGO 2009}. This prevalence is much higher than the general 

population as demonstrated by Rodrigues-Garcia et al {Rodriguez-Garcia et al 2009}. The 

study enrolled 193 haemodialysis patients and 624 participants from a random-based general 

population cohort and showed a significantly higher prevalence of aortic calcification in 

haemodialysis patients (79% versus 38%).  

VC presence in CKD is important as it is associated with increased cardiovascular and all-cause 

mortality {Z. Chen et al 2016; Lamarche et al 2018; Matsuoka et al 2004; Rodriguez-Garcia et 

al 2009; Shantouf et al 2010}. Data from United States Renal Data System (USRDS) 

consistently reported that half of dialysis and kidney transplant patients died from 

cardiovascular disease {USRDS 2015; USRDS 2018}. The predominant cardiovascular deaths 
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were due to congestive heart failure and arrhythmia/cardiac arrest rather than deaths due to 

thromboembolic events.  

VC is also associated with fractures which probably compounds increased mortality risk in 

these patients {Fusaro et al 2013; Rodriguez-Garcia et al 2009}. Rodrigues-Garcia et al found 

that dialysis patients with VC had 4 - 7 times increased rate of prevalent vertebral fractures 

compared to those without VC {Rodriguez-Garcia et al 2009}. The study also found that 

prevalent vertebral fracture was independently associated with mortality after 2 years of 

follow up, particularly in women with vertebral fracture who had 6 times increased risk of 

mortality compared to women without vertebral fracture. 

 

1.5.2 Pathogenesis 

It is likely that multiple factors result in VC in CKD (Figure 1.11). It is thought that the 

transformation of vascular smooth muscle cells (VSMCs) into osteoblast-like cells allows 

mineral deposition in the vasculature similar to that in bone formation {Jono et al 2000}. 

This cellular transformation is partly under the influence of hyperphosphataemia and 

hypercalcaemia {Reynolds et al 2004}. However, CKD patients could still have severe VC 

despite persistently normal serum phosphate and calcium levels which suggests that there 

must be other promoters of VC process. These may include alkaline phosphatase, vitamin D, 

osteocalcin and bone mineralizing proteins. Inflammation has also been identified as a 

promoter of VC. VSMCs death may be increased in CKD by factors such as uraemia and 

calcium-phosphate abnormalities and in turn, this leads to local inflammation that releases 

cytokines which promotes VC. 
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There are a number of endogenous VC inhibitors in the circulation which prevents 

spontaneous calcification of extra-skeletal tissues such as Fetuin A and Matrix Gla protein 

(MGP) {Ketteler, Wanner, et al 2003}. It is proposed that there is a greater imbalance between 

VC promoters and these circulating VC inhibitors in CKD. Deficiency of these proteins is 

common in CKD and has been associated with VC {H. Y. Chen et al 2016; Cranenburg et al 

2009; Kanbay et al 2010}.  

Vitamin K deficiency is also common in CKD due to low dietary intake and this may play a role 

in VC {Cranenburg et al 2012}. Vitamin K is a substrate for the Vitamin-K dependent 

carboxylase enzyme which converts specific glutamic acid residues of a small number of 

proteins to glutamic carboxyl by the addition of CO2. Vitamin K2, but not vitamin K1, is 

responsible for regulating MGP which is a Gla containing protein {Fusaro et al 2011}. In 

vitamin K2 deficiency, an increase in the level of dephosphorylated-uncarboxylated MGP (dp-

uc MGP) which is an inactive VC inhibitor is observed {Cranenburg et al 2012}. Dp-uc MGP has 

been shown to be associated with VC {Cranenburg et al 2009}. Furthermore, randomised 

controlled trials in dialysis patients have shown that vitamin K2 therapy leads to a reduction 

in dp-uc MGP level {Caluwe et al 2014; Westenfeld et al 2012}. Meanwhile, vitamin K 

antagonist (VKA) such as warfarin is associated with increased VC and high dp-uc MGP level 

{Fusaro et al 2015; Reynolds et al 2004}. Dp-uc MGP level falls after stopping the VKA 

{Delanaye et al 2015}. 

 

 



61 
 

Figure 1.11 

Pathophysiological mechanisms which promote vascular calcification in CKD {Evrard et al 

2015}. 
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1.5.3 Relationship with Biochemistry and Bone Abnormalities 

Hormones which regulate mineral metabolism (i.e. PTH, vitamin D and FGF23) are probably 

involved in VC process although the relationship is unclear. Furthermore, VC may relate to 

the treatment used to treat biochemical abnormalities of CKD-MBD. Calcium-based 

phosphate binders are widely used in managing hyperphosphatemia in advance CKD but 

there has been serious concerns regarding positive calcium balance and worsening VC {Block 

et al 2012}. This led to a growing number of studies assessing the impact of calcium-based 

versus non-calcium based phosphate binders in CKD. A meta-analysis by Jamal et al showed 

that non-calcium-based binders had a 22% reduction in all-cause mortality in dialysis and pre-

dialysis CKD when compared to calcium-based phosphate binders {Jamal et al 2013}. A recent 

systematic review by Ruospo et al showed that a non-calcium based phosphate binder, i.e. 

sevelamer, lowers all-cause mortality by 50% in dialysis patients when compared to calcium-

based phosphate binders {Ruospo et al 2018}. 

There may also be a link between VC and bone abnormalities in CKD. London et al showed 

that VC is associated with low bone turnover in a study involving 58 dialysis patients {London 

et al 2004}. VC and bone turnover relationship is further supported by a one-year prospective 

study in 64 dialysis patients which showed that VC progression may be attenuated if bone 

turnover change towards normal from a baseline of high or low bone turnover {D. V. Barreto 

et al 2008}. However, other studies found that VC relates to low bone volume rather than 

abnormal bone turnover or mineralization {Adragao et al 2009; Barreto et al 2005}. Further 

studies are needed to confirm the VC and bone relationship as previous studies are limited 

and mainly involved dialysis patients only.  
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1.5.4 Treatment 

Well established treatment to control SHPT such as phosphate binders and cinacalcet have 

not been shown to reverse VC although some have shown attenuation of VC progression. 

Although Ruospo et al systematic review showed a reduction in mortality in dialysis patients 

using sevelamer compared to those using calcium-based phosphate binders, no effect could 

be ascertained about the impact of phosphate binders on VC due to limited number of studies 

reporting on VC outcome {Ruospo et al 2018}.  

Cinacalcet is effective in controlling severe SHPT but its benefit on VC is uncertain. ADVANCE 

Trial which randomised patients into cinacalcet plus low dose vitamin D or vitamin D alone 

showed that there was no significant difference in coronary artery calcification score between 

the groups over a one-year period {Raggi et al 2011}. Following that, EVOLVE trial which was 

a double-blind, placebo-controlled trial randomised 3883 haemodialysis patients with 

moderate to severe SHPT to cinacalcet or placebo {Wheeler et al 2014}. There was no 

significant difference in fatal and non-fatal cardiovascular events of any type (atherosclerotic 

or non-atherosclerotic) between the groups. These findings suggest that VC reversal may not 

be possible once VC is well established and thus, cardiovascular benefit was not seen. Future 

studies into treatment of VC may need to focus on early VC prevention in the early stages of 

CKD and this may also involve simultaneous assessment of ROD. In the first instance, a more 

sensitive VC imaging test rather than the currently recommended lateral abdominal X-ray is 

needed as a screening tool for VC in CKD. Ideally, the imaging technique should be able to 

simultaneously assess VC and bone microstructure but with relatively low dose radiation. 
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1.6 Summary 

CKD-MBD is highly prevalent in CKD and is associated with increased risk of fracture, 

cardiovascular disease and mortality. CKD-MBD biochemical abnormalities lead to bone 

abnormalities of ROD but clinical practice so far has focused on correction of SHPT without 

accurate information on bone turnover and mineralization from bone biopsy. Furthermore, 

bone-specific treatment to reduce fracture risk could only be initiated after confirmation of 

ROD subtypes which currently could only be diagnosed on bone biopsy. Routinely available 

surrogate markers such as PTH, calcium and phosphate, and bone imaging technique such as 

DXA are unable to predict bone turnover and mineralization abnormalities of ROD. Advances 

in imaging technology and new bone biomarkers present opportunities for less invasive 

alternatives to bone biopsy but these need further evaluation in CKD. The use of these tests 

alone or in combination can only be established by determining their ability to predict bone 

histomorphometry parameters on bone biopsy.  
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1.7 Study Aims and Hypothesis 

Aim 1: 

To evaluate the role of high resolution bone imaging and bone biomarkers as an alternative 

to bone biopsy to diagnose and classify ROD in advanced CKD. 

 

Objectives: 

 To describe bone histomorphometry patterns of advanced CKD 

 To describe the bone microstructural changes detected on imaging in advanced CKD 

 To describe the level of bone turnover markers (BTMs) in advanced CKD 

 To test the diagnostic accuracy of bone imaging and BTMs to identify advanced CKD 

patients with ROD 

 

Hypothesis 1: 

Bone imaging and BTMs are able to diagnose and classify ROD in advanced CKD better than 

the routinely available iPTH. 

 

Aim 2: 

To assess the relationship between vascular calcification (VC) and its biomarkers and bone 

characteristics in advanced CKD. 
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Objectives: 

 To describe VC severity in advanced CKD 

 To describe the relationship between VC and its biomarkers in advanced CKD 

 To describe the relationship between VC and bone characteristics detected on imaging 

and bone biopsy in advanced CKD 

 

Hypothesis 2: 

VC is associated with its biomarkers, bone microstructure on imaging and bone biopsy 

measurements of turnover, mineralization and volume.  
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2.1 Study Design and Participants 

This was a cross-sectional study in patients with CKD stages 4-5D (eGFR < 30ml/min/1.73m2), 

aged between 30 and 80 years old who were under the care of nephrologists at the Sheffield 

Kidney Institute, Sheffield Teaching Hospitals NHS Foundation Trust. CKD patients with earlier 

stages of CKD are less likely to have ROD and therefore, were excluded from the study. 

Patients younger than 30 years old were excluded to ensure that only mature adult skeletons 

were assessed. 

The exclusion criteria included patients who had fracture or any orthopaedic surgery in the 

preceding six months; started or changed the dose of phosphate binders, vitamin D (plain or 

active metabolites) or calcimimetic within four weeks of study entry; received anti-resorptive 

agents (such as bisphosphonates or denosumab) or systemic glucocorticoid in the preceding 

six months; previously received anabolic agent such as teriparatide; and pregnancy or 

breastfeeding. Additionally, patients with known allergy to tetracycline, demeclocycline or 

bupivacaine local anaesthetic were excluded because these were required for bone biopsy 

procedure. Patients on warfarin or ticagrelor were excluded because of potential increased 

risk of bleeding after bone biopsy. Patients on aspirin, clopidogrel or dipyridamole could be 

enrolled but the medication was stopped at least 5 days before bone biopsy providing that 

they did not have coronary angioplasty and stenting in the last 12 months. 

We also recruited age and gender-matched control participants with eGFR ≥ 60 

ml/min/1.73m². The age match was within +/- 2 years from the age of each CKD patient. The 

exclusion criteria included fracture or any orthopaedic procedure within 6 months of study 

entry; known osteoporosis or low impact fracture; have a functioning kidney transplant; 

started or changed the dose of vitamin D; have received bisphosphonates, denosumab or 
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systemic glucocorticoid within 6 months of study entry; have previously received teriparatide; 

and pregnancy or breastfeeding,  

We collected medical and demographic data using an approved fracture risk questionnaire 

(Appendix 1). The study adhered to the Declaration of Helsinki and was approved by the South 

Yorkshire Research Ethics Committee (REC ref: 13/YH/0078). All participants were recruited 

solely for research and gave written informed consent for the study. CKD patients were re-

consented prior to bone biopsy using the Sheffield Teaching Hospitals NHS Foundation Trust 

approved consent form for medical procedure. Our first participant was recruited in July 2013 

and the final participant completed the final study visit in May 2015. 

 

2.2 Bone Biopsy 

2.2.1 Bone Biopsy Procedure 

Bone biopsy was only performed in CKD patients because the control participants were 

unlikely to have bone turnover, mineralization or volume abnormalities on bone biopsy.  To 

assess mineralisation and bone turnover, patients received four days of tetracycline (250mg, 

four times a day) and after a 10-day intermission, a further two days of demeclocycline 

(300mg, twice a day). Trans-iliac bone biopsy was performed within 2 - 4 days of the last dose 

of demeclocycline.  Each participant was supplied with a schedule clearly indicating the date, 

type and dose of antibiotic to be taken. The participants marked the doses they had taken on 

the schedule and this was checked by the operator before the procedure to ensure the doses 

were taken correctly. 
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Double tetracycline labelling allowed the identification of two fluorescent labels, 

circumscribing areas of new bone formed during the labelling intermission, when viewed 

under fluorescent microscopy. The distance between the two labels determined the mineral 

apposition rate (MAR). MAR was used to calculate bone formation rate/bone surface (BFR/BS) 

which was the main assessment of bone turnover status. 

Patients on aspirin were advised to stop the aspirin 5 days prior to the procedure. Bone 

biopsy for haemodialysis patients was performed the day after a dialysis session to reduce 

the risk of bleeding and haematoma with heparin exposure. Peritoneal dialysis (PD) patients 

did not have PD fluid dwell when they attended for the procedure. Iliac crest biopsy was 

obtained with patient lying supine and most biopsies were performed on the right iliac crest 

as shown in Figure 2.1. 

 

Figure 2.1 

Bone biopsy procedure and the Jamshidi bone biopsy trephine and needle used. 
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The anterior superior iliac crest was identified and marked. The biopsy entry site was marked 

2cm posterior and inferior to the crest. Our modified trans-iliac bone biopsy technique under 

local anaesthetic (0.5% bupivacaine with adrenaline) used an 8-gauge Jamshidi 4mm trephine 

and needle. The trephine and needle were inserted together through a small incision in the 

skin, in an oblique angle pointing towards the opposite shoulder. The needle was removed 

once it had made firm contact with the bone, leaving the cutting trephine firmly in contact 

with the periosteum. The trephine was rotated clockwise and counter-clockwise with steady 

pressure through the full depth of the iliac crest. The sample was extracted from the iliac crest 

by first rotating the trephine 360° clockwise and then slowly rotating counter-clockwise until 

the sample was freed. A gauze was immediately applied with firm pressure on the biopsy site. 

A blue dye was applied gently at the end of the bone sample which was visible at the tip of 

the trephine to indicate the inner cortical bone. A blunt extractor was then inserted through 

the top of the trephine to gently push the bone core out. The undecalcified (in its natural 

state) bone sample was immediately placed in 70% ethanol and shielded from light to 

preserve fluorescent tetracycline dye within the sample.  

 

2.2.2 Pain Assessment 

Pain assessment was performed using the visual analogue scale (VAS). The scale is based on 

a 100mm horizontal line with a statement at each end for ‘no pain’ and ‘severe pain’ (Figure 

2.2). Patients were asked to score their pain level before the procedure. As soon as procedure 

was completed, patients were asked to score their pain during the procedure and again 10 

minutes later. On Day 2 post-procedure, patients received a phone call from the research 

nurse to remind them to score their pain level and send back the VAS sheet through the post. 
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The nurse also checked for any procedure-related complications and advised patients to re-

commence aspirin if they were originally on it. 

 

Figure 2.2 

Visual Analogue Scale measuring 100mm (not to scale) at four different time points 

 

 

2.2.3 MicroCT 

After at least 48 hours immersion in 70% ethanol solution, trabecular bone microarchitecture 

of the core biopsy sample was assessed using microCT. The core bone sample was removed 

from the solution and wrapped in cling-film to prevent it from drying out. It was inserted 

vertically into the scanner in a holder mounted on a brass plinth with the inner cortex, which 

was marked externally with blue dye, facing the base of the plinth. Using the Skyscan 1172 

MicroCT scanner, the entire bone sample was scanned at 4.3 µm resolution with a 360° 
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rotation. After completion of scanning, the scan images were reconstructed using Skyscan 

NRecon software and the reconstructed files were analysed using Skyscan CTAn software. A 

region of interest (ROI) for trabecular bone analysis was created to exclude the cortex and 

any bone crush artefact around the edges of the biopsy (Figure 2.3). The ROI image processing 

was then performed to assess tissue volume, bone volume, trabecular thickness, trabecular 

number and trabecular separation. 

 

Figure 2.3 

The region of interest selection for bone biopsy microCT trabecular bone analysis. 

 

A region of interest (ROI) for microCT analysis was created as follows: (A) The length of the 
trabecular bone compartment (excluding the cortex) was determined on screen and the 
midline of the trabecular compartment was calculated; (B) a length of trabecular bone 1.5mm 
above and 1.5mm below the midline (total length 3mm) was selected for analysis; (C) the ROI 
for trabecular analysis was drawn using the round ROI tool, and was re-sized to a diameter of 
2.3mm to exclude any bone crush artefact around the edges of the biopsy. The ROI was re-
drawn if necessary at different levels to check that any edge crush artefact was excluded. 
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2.2.4 Sample Preparation and Histomorphometry 

After microCT, the sample was placed in 80%, 90% and 100% ethanol in turn for at least one 

week in each solution while remained shielded from light at all time. The sample was then 

infiltrated and embedded in LR White medium grade resin. The resin block was sectioned at 

6 μm thickness using a microtome and for each level sectioned, one sample was prepared for 

fluorescent microscopy and one sample for light microscopy. Samples were viewed under 

fluorescent microscopy as shown in Figure 2.4 to identify double tetracycline labelling which 

appear as two fluorescent labels circumscribing areas of new bone formed. Samples for light 

microscopy to assess the other histomorphometry quantitative parameters were stained with 

Masson Goldner trichrome.  

The samples were analysed using the Bioquant Osteo histomorphometry system (Bioquant 

Image Analysis Corporation, Nashville, Tennessee, USA) which uses histomorphometry 

standardised nomenclature, symbols and units as published by the American Society of Bone 

Mineral Research (Table 2.1) {Parfitt et al 1987}. This unified system of terminology also 

defines the methodology for each measurement and thus, allows comparison between bone 

biopsy studies.  
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Figure 2.4 

Bone biopsy histology sections from CKD patients in this study. 

 

Examples of bone biopsy histology sections: (A) a section viewed under fluorescent microscopy 

showing double tetracycline labels (white arrows), separated by new bone which was formed 

during the labelling intermission; (B) a section stained with Masson Goldner trichrome viewed 

under light microscopy showing thin trabeculae (blue), areas of osteoid (red) and tunnelling 

resorption in the cortex. 

 

Table 2.1 

Dynamic and static nomenclature and units commonly reported on bone 

histomorphometry. Taken from Recker et al 2012. 

Symbols: § the obliquity correction factor (π/4) is applied to convert the thickness expression 

into 3-dimensional measurement. Abbreviations: iL.Wi, interlabel width; N.iL.Wi, number of 

interlabel widths measured; dL.Pm, double label perimeter; sL.Pm, single label perimeter; 

B.Pm, bone perimeter; Ob.Pm, osteoblast perimeter; Oc.Pm, osteoclast perimeter; E.Pm; 

erosion perimeter; O.Pm, osteoid perimeter; O.Ar, osteoid area; O.Wi, osteoid width; N.O.Wi, 

number of osteoid widths measured; B.Ar, bone area; Tt.Ar, tissue area measured; BS/TV, 

bone surface/tissue volume. 
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The samples in this study fulfilled the histomorphometry minimum acceptable total section 

area in the standard analysis region of 30 mm2 {Recker et al 2011}. Quantitative 

histomorphometry analysis was performed by a single operator to avoid inter-observer 

variation. Normal bone turnover was defined as bone formation rate/bone surface (BFR/BS) 

of 18-38 µm3/µm2/year {Malluche et al 2011}.  

Normal mineralization was defined as osteoid thickness (O.Th) < 20µm and mineralization lag 

time (MLT) < 100 days {Malluche et al 2011; Parfitt et al 1997}. Other mineralization 

parameters such as osteoid maturation time (OMT) < 40 days and osteoid volume/bone 

volume (OV/BV) < 12% were also defined as normal {Lehmann et al 2005; Lima et al 2014}. 

Normal bone volume was defined as bone volume/tissue volume (BV/TV) 16.8 - 22.9% 

{Malluche et al 2011}.  

 

2.3 Imaging 

2.3.1 Dual-energy X-ray Absorptiometry (DXA) 

Principles of DXA 

DXA techniques are based on the attenuation of photon energy by bone mineral and soft 

tissue {NOS 2005; Puumalainen et al 1976}. Photon energy attenuation occurs by 

photoelectric absorption and Compton scattering as shown in Figure 2.5. In photoelectric 

absorption, the incident photon energy provides all its energy to an electron and therefore 

disappears. In Compton scattering, only part of the photon energy is given to an electron and 

the interaction produces a scattered photon whose direction has changed and whose energy 
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is reduced. In both situations, photon energy is absorbed by tissue through the electron and 

it loses kinetic energy in ionising atoms of the tissue. 

Figure 2.5 

Incident photon energy attenuation by (A) photoelectric absorption and (B) Compton 

scattering {NOS 2005}.  

 

 

The transmitted intensity of an incident beam depends on the photon energy of the incident 

beam and the composition, density and thickness of the material it passes through. This is 

described by an exponential law: 

Ir = Ii exp (- vx) 

where Ir is the transmitted intensity, Ii is the incident intensity, v is a property of the tissue 

known as the linear attenuation coefficient and x is the thickness of the tissue. The mass 

attenuation coefficient of different tissue materials is shown in Figure 2.6. 
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Figure 2.6 

Variation of mass attenuation coefficients with photon energy {Allen 2014}. 

 

Soft tissue includes muscle, fat, blood and skin which have similar attenuation as they have 

similar density and mainly composed of carbon, hydrogen and oxygen. Bone mineral have 

greater attenuation because it has a higher density and includes higher atomic number 

elements such as calcium and phosphate. Bone mineral (calcium hydroxyapatite) is also 

distinct from other bone tissue such as collagen and bone marrow.  

During DXA scanning, a bone profile is generated in pixel map as the source (which emits X-

ray radiation) and detector (which detects X-ray that have not been absorbed) move linearly 

across the scanned area (Figure 2.7). An edge detection algorithm is used to identify the bone 

edges. The bone density is determined for each pixel of the area being scanned. Areal BMD 

(g/cm2) is the mean bone density of these pixels. 
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Figure 2.7 

Bone profile observed as the X-ray moves linearly across the patient, and the 

corresponding tissue density profiles {Crabtree 2007}. 
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Measurement technique 

DXA scan in this study was performed using Hologic Discovery A densitometer (Hologic Inc, 

Bedford MA, USA) in the array (fan beam) mode. We measured areal BMD for the hip, lumbar 

spine and forearm which are the usual fracture sites. 

Hip 

Hip scan was performed on the non-dominant side unless there was a previous fracture or 

orthopaedic surgery. The patient was laid supine and a positioner was used to hold the hip 

internally rotated by 25°. The radiation dose was 5µSv. 

 

Figure 2.8 

A positioner used during proximal femur DXA scanning 

 

 

Lumbar Spine 

The patient was positioned supine with their legs elevated over a block to reduce lumbar 

lordosis as shown in Figure 2.9. Their arms were raised above their head to keep clear of the 

lateral scanning field. The patient’s lumbar spine was scanned in the antero-posterior (A-P) 
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and lateral projections. The lateral projection was used for Vertebral Fracture Assessment 

and abdominal aortic calcification score. The radiation dose was 2µSv. 

 

Figure 2.9 

Positioning of patient for A-P (left image) and lateral (right image) lumbar spine DXA scan. 

 

 

Forearm 

Forearm scan was performed on the non-dominant side unless there had been a previous 

fracture or an arterio-venous (A-V) fistula present in which case the opposite side was 

scanned. This is because the presence of an A-V fistula has been associated with lower BMD 

compared to the non-fistula side {Muxi et al 2009}.The patient was seated on the opposite 

side from the C-arm of the scanner with their side against the table and the arm resting on 

the table top. An arm support with straps kept the arm in a secure position (Figure 2.10). The 

radiation dose was 2µSv. One CKD patient did not have a forearm scan due to previous 

bilateral wrist fractures. 
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Figure 2.10 

Forearm positioning during DXA scanning 

 

 

Image Analysis 

The hip scan image was checked for proper patient positioning. With internal rotation, the 

lesser trochanter should be small but visible. The region of interest (ROI) for the hip was a 

rectangle placed with its superior border 5 lines above the head of the femur, its inferior 

border 10 lines below the lesser trochanter, its medial border 5 lines from the medial side of 

the head of the femur and its lateral border 5 lines from the lateral edge of the greater 

trochanter (Figure 2.11). The total hip was indicated by the outer outline of the bone 

margins. The midline was placed along the central axis of the hip. The neck of femur box 

was placed close to (but not touching) the greater trochanter. The trochanteric line was 

placed inferior to the maximum curve of the greater trochanter. The Ward’s area was 

placed automatically by the software. 
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Figure 2.11 

The region of interest on hip DXA image. 

 

 

Lumbar spine scans were checked for vertebral fracture and other causes leading to falsely 

high BMD such as degenerative changes and osteophytes.  The ROI for the AP lumbar spine 

image was placed from the T12/L1 intervertebral space to the L4/L5 intervertebral space 

(Figure 2.12). The vertebral lines were placed in the remaining intervertebral spaces in 

between. The decision to exclude vertebrae from further analysis was done in accordance to 

the recommendations by the National Osteoporosis Society 2011. A clearly abnormal 

vertebrae such as fracture were excluded. A T-score difference of more than 1 standard 

deviation between adjacent vertebrae was also indicative of BMD result that was likely to be 

inaccurate. A minimum of two evaluable vertebrae was required for analysis. One CKD patient 

lumbar spine scan in this study was excluded due to multiple vertebral fractures. 
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Figure 2.12 

Region of interest on lumbar spine DXA image. 

 

 

For the forearm ROI, the reference line was placed at the distal tip of the ulna styloid process 

as shown in Figure 2.13. The forearm ROI was divided into three regions called ultradistal 

(UD), middistal (MID) and 1/3 radius. The UD ROI did not contain the radial endplate and 

measured 15 mm in length proximal to the radial endplate. 1/3 radius ROI was 20 mm in 

length centred at a distance equal to 1/3 of the forearm length measured from the distal tip 

of the ulna. The MID ROI was between UD and 1/3 radius ROIs.  
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Figure 2.13 

The region of interest on the forearm DXA scan image 

 

 

Mean areal BMD (g/cm2) for lumbar spine (L1-4), total hip and 1/3 radius were calculated 

using Hologic APEX software (version 3.4.2). BMD T-score is the number of standard 

deviations (SD) above or below the average BMD value for healthy young gender-matched 

adults. BMD T-score was calculated by the software using the formula:  

BMD T-score = (observed BMD – young normal BMD) / (SD of young normal BMD) 

The young normal (peak) BMD reference data for lumbar spine and forearm is gender specific 

and was provided by the manufacturer. The young normal BMD reference data for the hip 

was taken from the Third National Health and Nutrition Examination Survey (NHANES III) 

database for women/men aged 30 years old. This is in accordance with recommendations by 

the International Committee for Standards in Bone Measurement.  
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BMD Z-score is the number of standard deviations above or below the average BMD value for 

age and gender-matched healthy adults. The age and gender-matched BMD reference data 

for all three sites was provided by the manufacturer. BMD Z-score was calculated by the 

manufacturer software using the formula:  

BMD Z-score = (observed BMD – age and gender-matched BMD) / (SD of age and gender-

matched BMD) 

 

Quality Control 

A device-specific anthropomorphic spine phantom is scanned daily for quality control 

(Figure 2.14). A weekly scan of European Spine Phantom (Quality Assurance in Radiology 

and Medicine, Moehrendorf, Germany) is also performed. In vivo precision for DXA BMD in 

our centre is 1.6% for lumbar spine, 1.5% for total hip, 2.9% for femoral neck, 1.7% for 1/3 

radius and 1.5% for total radius and ulna.  
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Figure 2.14 

Quality assurance plots for Hologic Discovery A densitometer during the study period (July 

2013 – May 2015). Area (i), BMC (ii), BMD (iii). 
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2.3.2 High Resolution Peripheral Quantitative Computed Tomography (HR-pQCT) 

Principles of HR-pQCT 

Quantitative computed tomography (QCT) uses the same principles as DXA where the 

attenuation of X-ray beam is used to calculate the density of tissue that it passes through. It 

uses a standard X-ray computed tomography (CT) scanner with a calibration standard to 

convert Hounsfield Units of the CT image to bone mineral density. QCT has the advantage of 

measuring the tissue density of known thickness to give a three-dimensional information and 

to allow a true measurement of volumetric BMD (mg/cm3). It also allows the differentiation 

of cortical from trabecular bone which may be advantageous for assessing bone changes 

associated with ROD. 

High resolution peripheral QCT (HR-pQCT) has a much higher resolution (82 μm) than QCT (1-

2 mm) but with a smaller field of view. It is only used at peripheral skeletal sites such as wrist 

(for distal radius) and ankle (for distal tibia). Scanning takes 3 minutes for each site and the 

effective radiation dose during each scan is 3 µSV. Spine or hip QCT would involve a higher 

effective dose of radiation (200 – 400 µSV).  

 

Measurement Technique 

The distal radius and tibia were scanned using HR-pQCT (XtremeCT, Scanco Medical AG, 

Zurich, Switzerland) using a standard protocol. Scans were performed on the non-dominant 

forearm and lower leg unless there had been a previous fracture or an arterio-venous (A-V) 

fistula present in which case the opposite side was scanned. The forearm or lower leg was 

positioned horizontally in the scan gantry, immobilised in a carbon cast. 
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A scout view scan was initially performed to identify anatomical landmarks and to define a 

9.02 mm ROI (Figure 2.16). A reference line was manually placed on the notch of the articular 

surface of the distal radius and on the endplate of the distal tibia. The first image slice was 

scanned 9.5 mm proximal to the radius reference line and 22.5 mm proximal to the tibia 

reference line.  

HR-pQCT scans were acquired in the high-resolution mode (image matrix = 1,536 x 1,536) 

using a source potential of 60 kVp, a tube current of 900 mA, and an integration time of 100 

ms. Each scan resulted in the acquisition of a total of 110 image slices (stack height = 9.02 

mm) at an isotropic resolution of 82 μm. A maximum of one repeat scan at either or both 

anatomical sites was performed in the event of patient movement. 

 

Figure 2.15 

A volunteer undergoing a radius scan on HR-pQCT. 
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Figure 2.16 

A scout view scan for radius (left image) and tibia (right image). 

 

 

Image Analysis 

All images were graded by a single operator. Images were visually graded using a grading 

scheme described by Engelke et al (Figure 2.17); grade 1 (perfect), grade 2 (slight movement), 

grade 3 (moderate movement) and grade 4 (significant movement) {Engelke et al 2012}. Any 

images with an unacceptable degree of movement artefact (grade 4) were excluded from 

further analysis. We excluded images of 9 radii from controls, 11 radii from CKD, one tibia 

from control and two tibiae from CKD due to movement artefact. One CKD patient did not 

have radius HR-pQCT performed due to previous bilateral wrist fractures. 

HR-pQCT images were analysed using the manufacturer standard software (Scanco Medical 

AG, version 6.0). The two-dimensional image stack was reconstructed into three-dimensional 

image which then underwent a validated auto-segmentation method to separate cortical 

from trabecular bone (Figure 2.18).  
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Figure 2.17 

HR-pQCT scan images of the radius and images grading scheme {Paggiosi et al 2014}.  

 

From left to right: GI = perfect, G2 = slight movement, G3 = moderate movement, and G4 = 

significant movement (unacceptable image quality). 

 

Figure 2.18 

Segmentation of cortical bone from trabecular bone of the radius (left) and tibia (right) 

{Nickolas et al 2010}.  
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Volumetric bone mineral density (vBMD, mg/cm3) were calculated as the average of bone 

densities for the total bone, trabecular bone and cortical bone. Most of trabecular bone 

microstructural measurements were derived rather than directly measured from the images 

because HR-pQCT resolution is relatively close to the size of individual trabeculae. The bone 

volume fraction (BV/TV, %) was determined from trabecular vBMD assuming that the density 

of fully mineralized bone is 1200mg HA/cm3. BV/TV was calculated using the formula: 

BV/TV (%) = (vBMD/1200) x 100 

The average number of trabeculae (Tb.N, 1/mm) was directly measured from the images. 

Average trabecular thickness and separation were calculated using the formulae: 

Trabecular thickness (Tb.Th, mm) = (BV/TV)/Tb.N 

Trabecular separation (Tb.Sp, mm) = (1 - BV/TV)/Tb.N 

Cortical thickness (Ct.Th, mm) was directly measured from the images following segmentation 

of cortical bone from trabecular bone. Cortical BV/TV (%) was calculated using the same 

formula as for trabecular BV/TV. The extended cortical measurement was performed for 

cortical porosity. The cortical bone image was binarized and cortical porosity was calculated 

as the percentage of void voxels from the total cortical voxels {Burghardt et al 2010}.  

 

Quality Control 

A device-specific phantom was scanned daily for quality control. Our centre in vivo precisions 

of HR-pQCT were reported to be 0.2 - 5.5% for bone density, 1.2 - 7.0% for microstructural 
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and 3.4 - 20.3% for extended cortical bone measurements at both the radius and tibia 

{Paggiosi et al 2014}.  

Quality assurance was performed by the scanning operator to ensure that the vBMD matches 

the known vBMD measurements on the phantom (i.e. 0, 100, 200, 400 and 800 mgHA/cm3) 

(Figure 2.19). The microstructure phantom was also used to ensure the spatial resolution was 

within the range specified for the phantom. 

 

Figure 2.19 

Device-specific HR-pQCT phantoms to test vBMD (left) and spatial resolution (right). 

 

 

2.3.3 Vascular Calcification Imaging 

Abdominal Aortic Calcification (AAC) 

AAC was assessed from lateral spine Vertebral Fracture Assessment (VFA) images acquired 

using DXA. VFA uses single-energy images of the thoraco-lumbar spine in the lateral supine 
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position. The VFA images were scored by a single experienced operator using an 8-point 

scale (AAC-8) as shown in Figure 2.20. The AAC-8 scale estimates the total length of 

calcification on the anterior and posterior walls of the abdominal aorta in front of vertebrae 

L1 to L4 as described by Kaupilla et al {Kauppila et al 1997}. The semi-quantitative scoring 

system is as follows: 0, no calcification seen; 1, if the total length of calcification is equal to 

the height of 1 vertebra or less; 2, if the total length of calcification is >1 vertebra but ≤ the 

height of 2 vertebrae; 3, if the total length of calcification is >2 vertebrae but ≤ the height of 

3 vertebrae; and finally 4, if the total length of calcification is >3 vertebrae. Each anterior 

and posterior walls were scored from 0 to 4, thus the total score ranged from 0 to 8.  

There are three different scoring systems described by Kaupilla et al; AAC-24, AAC-8 and AAC-

4 scores. There were no significant differences between the scoring systems when they were 

used to measure AAC severity in 617 men and women at baseline and follow up 25 years later 

{Kauppila et al 1997}. AAC-8 scoring method on the VFA has high diagnostic accuracy for 

detecting AAC when compared with the standard lateral abdominal radiograph {Schousboe 

et al 2007}. A total of 5 VFA images could not be assessed for AAC due to increased body size 

and the resulting poor VFA images. 
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Figure 2.20 

AAC scoring systems using lateral lumbar X-ray {Kauppila et al 1997}.  

 

 

Ankle Arteries Calcification 

Ankle vascular calcification (VC) was assessed from HR-pQCT images of distal tibia as shown 

in Figure 2.21. All images were graded by a single experienced operator, and any images with 

unacceptable degree of movement artefact (motion grade 4) were excluded from further 

analysis. A semi-automated software (version 6.5) determined the presence or absence of 

arterial calcification in the areas corresponding to the anatomical position of anterior tibial 

artery, posterior tibial artery, interosseous branches or smaller intramuscular or 

subcutaneous arterioles {Patsch et al 2014}.  
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Figure 2.21 

A cross-sectional axial image from distal tibia HR-pQCT which also shows vascular 

calcification in the ankle arteries. 

 

This image shows circular hyperdensity shapes corresponding to anatomical territory of 

arteries in the ankle. Symbols: A, anterior tibial artery; B, posterior tibial artery; C, perforating 

branch of peroneal artery; D, peroneal artery. 

 

Arterial calcifications were defined as tubular hyperdensity structure of circular, semi-circular, 

or crescent-like shape. Bones corresponding to tibia and fibula, cutaneous calcifications 

(which usually appear as a hyperdense spot rather than tubular shape) and other non-vascular 

soft tissue calcifications were excluded from the ROI (Figure 2.22). Each image slice was then 

checked by the operator to ensure that the ROI included the calcified arteries only. The 

operator may still have to do minor manual adjustment of the vascular contour if there was 

enlargement due to bone movement artefact, or presence of adjacent cutaneous or soft 
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tissue calcification. The calcification mass for the length of the scan image (9.02 mm) was 

calculated using the formula:  

VC mass (mgHA) = [total volume of vascular calcification (mm3) x mean calcification density 

(mgHA/cm3)]/1000 

Scans with absent vascular calcification were recorded as zero mgHA. Typical post-scan 

processing time for ankle VC assessment per participant was 10-20 minutes. A total of three 

HR-pQCT scans could not be assessed for ankle VC due to movement artefact. 

 

Figure 2.22 

Non-vascular, high-density regions that should be excluded from quantitative analysis 

of vascular calcifications {Patsch et al 2014}. 

 

Examples of findings that can mimic arterial calcifications are shown above and highlighted 

with arrows A) intra-cutaneous spotted calcifications, B) non-vascular, most likely post- 

traumatic soft tissue calcification, C) focal pixel artefact, D) skeletal motion artefacts. 
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2.4 Biochemistry 

Fasting blood samples were collected once between 7 and 10 am after an overnight fast from 

10pm the night before. For haemodialysis patients, fasting blood samples were taken on the 

day after their routine haemodialysis session. Peritoneal dialysis (PD) is a continuous renal 

replacement therapy, thus no specific day was required for fasting blood sample collection 

from PD patients.  

Blood samples were collected in SST II tubes (for serum sample) and K3-EDTA tubes (for 

plasma sample). One SST II sample tube was sent to the biochemistry laboratory at the 

Northern General Hospital soon after collection for creatinine, calcium, phosphate and total 

alkaline phosphatase analysis. The rest of the samples were left to clot for 30 minutes and 

then centrifuged for 10 minutes at 3000 rpm and 4°C temperature. Serum and plasma 

samples were then divided into 1 ml aliquots and stored at -800C until the end of the study. 

Biochemical analyses for bone turnover markers and vascular calcification biomarkers were 

performed at the Bone Biochemistry Laboratory, Mellanby Centre for Bone Research, the 

University of Sheffield. The samples were assayed in duplicates when using manual assays. 

 

2.4.1 Principles of Immunoassays 

Most biomarker concentrations in this study were measured using immunoassays. 

Immunoassay has a monoclonal antibody which binds to its antigen at a specific site of the 

analyte molecule. The antibody has a high affinity for the antigen and thus provides a specific 

and accurate test. The quantity of the antibody-bound antigen can be measured using 

labelled antigen or labelled antibody. The label may have an enzyme (e.g. enzyme 
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immunoassay [EIA] or enzyme-linked immunosorbent assay [ELISA]) or a radioisotope which 

is known as radioimmunoassay (RIA). Most of the assays are sandwich assays where antigen 

in the sample is bound to the antibody site and then a labelled antibody is bound to the 

antigen (Figure 2.23). The amount of labelled antibody is then measured which is directly 

proportional to the concentration of antigen (analyte). 

                         

Figure 2.23 

Principles of sandwich immunoassay. Taken from http://www.novateinbio.com/3-elisa-

kits. 

 

Abbreviations: Ab, antibody; Ag, antigen; HRP, horseradish peroxidase.  
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Enzyme Immunoassay (EIA) or Enzyme-linked Immunosorbent Assay (ELISA) 

ELISA is a widely used EIA and uses the same principal methods as EIA. ELISA method used in 

this study was a plate-based assay technique using commercially available kits. Some kits had 

pre-coated plates, otherwise the method began with a careful coating step and incubation 

with capture antibody which was adsorbed onto a 96-well polystyrene wells. The plate then 

underwent a series of washes using manufacturer-provided washer solution to remove any 

excess unbound antibody. Then a substrate (participant sample) was added for further 

incubation. The capture antibody was specific for the antigen of interest (analyte) and had a 

high affinity for the antigen. Thus, the antigen was immobilized on the plate surface. The non-

bound molecules could then be washed away with a series of washes. Then a detection 

antibody was added which bound to the target antigen already immobilized on the plate. 

Finally, a chromogenic substrate which fluoresce when light was shone upon it was added to 

allow measurement of the amount of antigen present. This was measured using 

spectrophotometer and is known as absorbance. The concentration of an analyte can be 

determined by converting its absorbance using a standard curve constructed from antigens 

of known concentration. An example of a standard curve is shown in Figure 2.24. 
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Figure 2.24 

An example of a standard curve constructed using five standard samples for converting 

absorbance to analyte concentration. Taken from intact FGF23 ELISA (Immutopics, Quidel, 

California, USA). 

 

Chemiluminescent Immunoassay (CLIA) 

The principles of CLIA is similar to ELISA but the substrate added in the final step is an enzyme 

which creates a chemical reaction. As the excited state of the chemical reaction returns to 

resting state, it emits a photon of light instead of developing a particular colour (as described 

for ELISA). The photon is detected by a specific spectrometry. Luminescence is converted to 

antigen concentration through a standard curve. 

 

Electrochemiluminescence Immunoassay (ECLIA) 

ECLIA has the same principles as CLIA but it does not depend on chemical reaction to emit 

light. Instead, a voltage is applied to the electrode covering the plate surface to induce 
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chemiluminescence which can then be measured by a photomultiplier. The analyte 

concentration can be converted from the luminescence using a standard curve. 

 

2.4.2 Principles of Enzymatic Assay 

In enzymatic assay, an enzyme acts by catalysing a specific reaction of the substrate to be 

assayed. One of the reactants, products or the rate of the reaction can be measured and then 

converted to the concentration of the substrate.  

 

2.4.3 CKD-MBD Biochemistry 

Calcium, Phosphate and Creatinine 

Serum calcium, phosphate and creatinine were analysed on Roche Cobas c701/702 

autoanalyser (Roche Diagnostics, England, UK) on the same day as blood sample collection. 

The analysis was performed in the Laboratory Medicine Department at the Northern General 

Hospital which complies with its internal and external quality control management. The intra-

assay and inter-assay coefficient of variations (CVs) for all the biochemistry tested were ≤5%.  

Serum calcium was analysed using the NM-BAPTA method. Calcium ions reacted with 

5‑nitro‑5’‑methyl‑BAPTA (NM-BAPTA) under alkaline conditions to form a complex. This 

complex reacted in the second step with ethylenediamine tetraacetic acid (EDTA). The change 

in absorbance was directly proportional to the calcium concentration and was measured 

photometrically. Serum albumin-adjusted calcium was automatically calculated using serum 

albumin of 43 g/L as the normal value.  
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The formula is: 

Serum albumin-adjusted calcium (mmol/L) = Serum calcium (mmol/L) + [0.0172 x (43 g/L – 

serum albumin g/L)] 

Serum phosphate was analysed using a method based on the reaction of phosphate ions with 

ammonium molybdate to form a phosphomolybdate complex. With careful pH control, this 

complex formed molybdenum blue which can be measured at 600 to 700 nm wavelength 

using a spectrophotometer. 

Calcium x phosphate product was calculated using the formula: 

Calcium x phosphate product (mmol2/L2) = serum albumin-adjusted calcium (mmol/L) x serum 

phosphate (mmol/L) 

Serum creatinine was analysed using the kinetic colorimetric assay which is based on the Jaffé 

method. In alkaline solution, creatinine formed a yellow-orange complex with picrate. The 

rate of dye formation was proportional to the creatinine concentration in the specimen. 

Estimated glomerular filtration rate (eGFR) was calculated using Modification of Diet in Renal 

Disease (MDRD) study equation which was used by our biochemistry lab during the study 

period. The formula from the MDRD study is shown below {Levey et al 1999}. The MDRD 

equation preceded the CKD-EPI equation.  

MDRD eGFR formula (ml/min/1.73m2) = 186 x [(PCr)/88.4]-1.154 x (age)-0.203 x (0.742 if female) 

x (1.210 if African American) 
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Intact Parathyroid Hormone (iPTH) 

Serum iPTH was analysed using the CLIA method on the Immuno Diagnostic Systems (IDS) 

iSYS autoanalyser (IDS, Boldon, UK). Two polyclonal antibodies against human PTH were 

utilised. An antibody recognising the C-terminal region (amino acids 39-84) was used as the 

capture antibody. For detection, an acridinium conjugated antibody recognising the N-

terminal region (amino acids 13-34) was used. In addition to full-length PTH (amino acids 1-

84), the large PTH fragment (amino acids 7-84) was also detected.  

Assay precision evaluated by the manufacturer used 3 serum controls which were assayed 

using three lots of reagents in duplicate, twice per day for 20 days on three instruments. The 

manufacturer reported an inter-assay CV of ≤ 8%. In-house quality control (QC) was 

performed prior to the sample analysis for the study. QC was performed using 3 control 

samples provided by the manufacturer (serum-like matrix) with known concentrations of iPTH 

(low, normal, high) and one in-house serum sample. The in-house inter-assay CV was < 7%. 

The assay range was 5 – 5000 pg/mL. 

 

25-hydroxyvitamin D 

Serum total 25-hydroxyvitamin D (25(OH)D) was analysed using the CLIA method on the IDS 

iSYS autoanalyser. Samples were subjected to a pre-treatment step to denature the vitamin 

D binding protein (VDBP). The treated samples were then neutralised in assay buffer and a 

specific anti-25(OH)D antibody labelled with acridinium was added. Following an incubation 

step, magnetic particles linked to 25(OH)D were added. Following a further incubation step, 

the magnetic particles were “captured” using a magnet. After a washing step and addition of 
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trigger reagents, the light emitted by the acridinium label was measured using spectrometer. 

The luminescence was inversely proportional to the concentration of 25(OH)D in the original 

sample. Assay precision evaluated by the manufacturer used three serum controls (6.7, 25.8, 

and 74.4 ng/mL) which were assayed using three lots of reagents in quadruplicate once per 

day for 20 days on two instruments. The manufacturer reported an inter-assay CV of < 17%. 

In-house QC was performed prior to the analysis for the study samples using three control 

samples provided by the manufacturer with varying levels of 25(OH)D and one in-house 

serum sample. The in-house inter-assay CV was < 7%. The assay range was 5 – 140 ng/mL. 

 

Fibroblast Growth Factor 23 (FGF23) 

Plasma intact FGF23 was analysed using Immutopics Human FGF23 (Intact) ELISA manual kit 

(Quidel, California, US). This sandwich assay uses biotinylated monoclonal antibody for 

capture and enzyme-conjugated (horseradish peroxidase) antibody for detection. The sample 

was firstly incubated with biotinylated antibody in a streptavidin-coated microtitre well. After 

washing to remove unbound antibody, the well was incubated with the enzyme-conjugated 

antibody. Following another wash, the enzyme antibody bound to the well was incubated 

with a substrate solution in a timed reaction and then measured using spectrophotometer at 

450 nm wavelength. The enzymatic activity of the antibody complex bound to the well was 

directly proportional to the amount of FGF23 in the sample. The concentration of FGF23 in 

the sample was determined using a standard curve. 

Assay precision evaluated by the manufacturer used two samples of different FGF23 

concentrations in 20 duplicates measured by a single assay and duplicates from two samples 

measured by 20 assays. The manufacturer provided intra-assay CV was < 4% and the inter-
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assay CV was ≤ 9%. Samples from this study were measured in duplicates and the intra-assay 

CV was < 5%. QC was performed using two control samples provided by the manufacturer 

and one in-house plasma sample. The in-house intra-assay CV was < 5%. The assay lower limit 

of detection was 1.5 pg/mL. Six CKD samples had levels between the highest standard (30,000 

pg/mL) and 500,000 pg/mL. We were unable to re-assay the samples post dilution. Therefore, 

the samples were recorded as 30,000pg/mL. 

 

2.4.4 Bone Turnover Markers 

Alkaline Phosphatase (ALP) 

Serum total ALP (tALP) was analysed on Roche Cobas c701/702 analyser (Roche Diagnostics, 

England) on the same day as blood sample collection using an enzymatic assay. P-nitrophenyl 

phosphate (colourless) was cleaved by ALP into phosphate and p-nitrophenol. The p-

nitrophenol (yellow) released was directly proportional to the catalytic ALP activity. It was 

determined by measuring the absorbance at 409 nm wavelength. The intra-assay and inter-

assay CVs for tALP were ≤ 5%. 

Serum bone ALP (bALP) was analysed using the Ostase BAP assay on IDS iSYS autoanalyser.  

This assay uses the ELISA method. Samples were added to a biotin labelled BAP-specific 

monoclonal antibody. Following an incubation step, magnetic particles labelled with 

streptavidin were added. Following a second incubation step, the magnetic particles were 

captured by a magnet and a wash step performed to remove unbound bALP. Then it was 

incubated with an enzyme substrate. The amount of substrate turnover (enzyme activity) was 

determined using spectrophotometer by measuring the absorbance at different time points. 
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The signal was proportional to the amount of bALP present in the test sample. Assay precision 

evaluated by the manufacturer used five serum samples which were assayed using three lots 

of reagents in duplicate twice per day for 20 days on two instruments. The manufacturer 

reported an inter-assay CV of ≤ 9%. QC was performed using three control samples provided 

by the manufacturer with varying levels of bALP and one in-house serum sample. The in-

house inter-assay CV was < 7%. The assay range was 1 – 75 µg/mL. 

 

N-terminal Procollagen Type I Propeptide (PINP) 

We measured serum PINP using two different assays. Total PINP assay measures the trimeric 

and monomeric forms of PINP, whereas intact PINP assay measures the trimeric form of PINP 

only.  

Total PINP was analysed using the ECLIA method on the Cobas e411 automated analyser 

(Roche Diagnostics, Germany). The sample was firstly incubated with biotinylated monoclonal 

PINP-specific antibody. Then microparticles and a monoclonal PINP-specific antibody labelled 

with a ruthenium were added to form a sandwich complex. The interaction of biotin and 

streptavidin formed the solid phase which were then captured by electrodes. The mixture 

was then aspirated into the measuring cell where the streptavidin-labelled microparticles 

were magnetically captured onto the surface of the electrode. Unbound substances were 

removed with washer solution. Application of a voltage to the electrode then induced 

chemiluminescent emission which was measured by a photomultiplier. Substrate 

concentration was determined via a calibration curve. Assay precision evaluated by the 

manufacturer used three different pooled human sera and three control samples, 6 times 

daily for 10 days. The manufacturer reported an inter-assay CV of < 4%. QC was performed 
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using three control samples provided by the manufacturer and one in-house sample. The in-

house inter-assay CV was < 7%. The assay range was 5 - 1200 ng/mL. 

Intact PINP was analysed using the CLIA method on the IDS iSYS autoanalyser. Samples were 

incubated with a biotinylated anti-PINP monoclonal antibody, an acridinium labelled 

monoclonal antibody, streptavidin labelled magnetic particles and an assay buffer. The 

magnetic particles were captured using a magnet and a wash step performed. Trigger 

reagents were added and the resulting light emitted by the acridinium label was directly 

proportional to the concentration of intact PINP in the original sample. Assay precision 

evaluated by the manufacturer used three serum controls which were assayed using three 

lots of reagents in quadruplicate once per day for 20 days on two analysers. The manufacturer 

reported an inter-assay CV of ≤ 6%. QC was performed using three control samples with 

varying levels of PINP provided by the manufacturer and one in-house serum sample. The in-

house inter-assay CV was < 7%. The assay range was 2 - 230 ng/mL. 

 

Osteocalcin 

Serum osteocalcin was analysed using IDS iSYS N-mid Osteocalcin assay which is based the 

CLIA method. Two highly specific monoclonal antibodies against human osteocalcin were 

utilised. An antibody recognising the mid-region (amino acids 20-29) was used as the capture 

antibody and for detection, an acridinium conjugated antibody recognising the N-terminal 

region (amino acids 10-16) was used. In addition to intact osteocalcin (amino acid 1-49), the 

N-terminal-Mid fragment (amino acids 1-43) was also detected. Samples were incubated with 

both labelled antibodies for a period of time. Streptavidin coated magnetic particles were 

then added and following a further incubation step, the particles were captured using a 
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magnet. After a washing step and addition of trigger reagents, the light emitted by the 

acridinium label was measured using a spectrometer. The luminescence was directly 

proportional to the concentration of osteocalcin in the original sample. Assay precision 

evaluated by the manufacturer used six serum controls which were assayed using three lots 

of reagents in duplicate twice per day for 20 days on two instruments. The manufacturer 

reported an inter-assay CV of < 9.5%. QC was performed using three control samples with 

varying degree of osteocalcin level provided by the manufacturer and one in-house serum 

sample. The in-house inter-assay CV was < 7%. The assay range was 2 - 200 ng/mL. 

 

C-terminal Telopeptide of Type I Collagen (CTX) 

Serum CTX was analysed using the IDS iSYS autoanalyser CTX-I (CrossLaps) assay which uses 

the CLIA method. Two highly specific monoclonal antibodies were used. The antibodies were 

against the amino acid sequence of EKAHD-ß-GGR, where the aspartic acid residue was (D) ß-

isomerized. In order to obtain a specific signal in IDS iSYS CTX-I assay, two chains of EKAHD-ß-

GGR must be cross-linked.  Samples were incubated with both labelled antibodies for a period 

of time. Streptavidin coated magnetic particles were then added and following a further 

incubation step, the particles were “captured” using a magnet. After a washing step and 

addition of trigger reagents, the light emitted by the acridinium label was measured using a 

spectrometer. The luminescence was directly proportional to the concentration of CTX-I in 

the original sample. Assay precision evaluated by the manufacturer used five serum controls 

which were assayed using three lots of reagents in duplicate twice per day for 20 days on 

three analysers. The manufacturer reported an inter-assay CV of < 9%. QC was performed 

using three control samples with varying degree of CTX level provided by the manufacturer 
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and one in-house serum sample. The in-house inter-assay CV was < 7%. The assay range was 

0.033 – 6.000 ng/mL. 

 

Tartrate-resistant acid phosphatase 5b (TRAP5b) 

Serum TRAP5b was analysed using the IDS iSYS autoanalyser TRAcP 5b (BoneTRAP) assay 

which uses the ELISA method. Serum sample was added to a biotinylated anti-TRAcP antibody 

and magnetic particles labelled with Streptavidin and incubated. Following a wash step the 

magnetic particles, bound to the biotinylated antibody-TRAcP complex, were captured using 

a magnet. A further wash step was performed to remove any unbound analyte. An enzyme 

substrate was then added for further incubation. The amount of substrate turnover was 

determined spectrophotometrically by measuring the absorbance at different time points. 

The signal was directly proportional to the amount of TRAcP 5b present in the original sample. 

Assay precision evaluated by the manufacturer used four serum controls assayed using three 

lots of reagents in quadruplicate once per day for 20 days on two systems. The manufacturer 

reported an inter-assay CV of 5 - 14%. QC was performed using three control samples 

provided by the manufacturer and one in-house serum sample. The in-house inter-assay CV 

was < 7%. The assay range was 0.9 – 14.0 U/L. 

 

Osteoprotegerin (OPG) 

Serum OPG was analysed using a manual ELISA kit by Biomedica (Vienna, Austria). The sample 

was incubated with analyte-specific biotinylated antibody. The analyte and the labelled 

derivative competed for the binding site on the biotinylated antibody. Streptavidin conjugate 
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was added to bind the immunocomplexes. Unbound reagent was washed away using 

manufacturer provided wash buffer. The substrate was added for further incubation. After a 

specified time, stop solution was added and the absorbance was read immediately using 450 

nm wavelength. A standard curve was constructed from which sample concentration was 

obtained. Assay precision evaluated by the manufacturer used 4 samples of known 

concentration measured 8 times on one assay kit and 4 samples which were measured by 3 

assay kit lots.  The manufacturer reported an inter-assay CV of ≤ 9%. Samples from this study 

were analysed in duplicates and the intra-assay CV was < 5%. QC was performed using one 

control sample provided by the manufacturer and one in-house serum sample. The in-house 

inter-assay CV was < 7%. The assay range was 0 – 22 pmol/L. 

 

2.4.5 Vascular Calcification Markers 

Matrix Gla Protein (MGP) 

Two species of matrix Gla protein (MGP) were measured using Immuno Diagnostic Systems 

(IDS) assays; these were total uncarboxylated (t-uc) MGP and dephosphorylated-

uncarboxylated (dp-uc) MGP.  

Plasma t-uc MGP was analysed using manual ELISA kit from IDS. Antibody specific for ucMGP 

had been pre-coated onto a microplate. Standards and samples were pipetted into the wells 

and any ucMGP present was bound by the immobilized antibody. After removing any 

unbound substances, a biotin-conjugated antibody specific for ucMGP was added to the wells. 

After washing, avidin conjugated Horseradish Peroxidase (HRP) was added to the wells. 

Following a wash to remove any unbound avidin-enzyme reagent, a substrate solution was 
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added to the wells and colour developed in proportion to the amount of ucMGP bound in the 

initial step. The colour development was stopped and the intensity of the colour was 

measured. The manufacture reported an inter-assay CV of < 11%. QC was performed using 

three control samples provided by the manufacturer and one in-house plasma sample. The 

in-house intra-assay CV was < 5%. 

Plasma dp-uc MGP was analysed using the IDS iSYS autoanalyser InaKtif MGP assay which 

uses the CLIA method. Plasma sample was incubated with magnetic particles coated with 

murine monoclonal antibodies dpMGP, an acridinium labelled murine monoclonal antibodies 

ucMGP and an assay buffer. The magnetic particles were captured using a magnet and a wash 

step performed to remove any unbound analyte. Trigger reagents were added; the resulting 

light emitted by the acridinium label was directly proportional to the concentration of dp-

ucMGP in the original sample. 

Assay precision evaluated by the manufacturer used 7 plasma controls/samples assayed in 

duplicate, twice per day for 20 days on one system. The manufacturer reported an inter-assay 

CV of ≤ 8.2%. QC was performed using three control samples provided by the manufacturer 

and one in-house plasma sample. The in-house inter-assay CV was <7%. The assay range was 

300 – 12,000 pmol/L. 

 

Fetuin A 

Fetuin A was measured using manual ELISA kit by BioVendor (Brno, Czech Republic). The 

standards, quality controls and samples were incubated in microplate wells pre-coated with 

polyclonal anti-human fetuin A antibody. After 60 minutes incubation and washing, polyclonal 
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anti-human fetuin A antibody, conjugated with horseradish peroxidase (HRP) was added to 

the wells and incubated for 60 minutes with captured fetuin A. Following another washing 

step, the remaining HRP conjugate was allowed to react with the substrate solution. The 

reaction was stopped by addition of acidic solution and absorbance of the resulting yellow 

product was measured. The absorbance was proportional to the concentration of fetuin A. A 

standard curve was constructed by plotting absorbance values against concentrations of 

standards. Concentrations of participant samples were determined using this standard curve. 

Assay precision evaluated by the manufacturer used two samples of known concentration 

measured 8 times on one assay kit and two samples which were measured by 6 assay kit lots.  

The manufacturer reported intra-assay CV of < 4% and inter-assay CV of < 6.5%. Samples from 

this study were measured in duplicates. The in-house intra-assay CV was < 5%. QC was 

performed using two control samples (low and high concentrations) provided by the 

manufacturer. The in-house inter-assay CV was < 7%. The assay range was 2 – 100 ng/mL.  

 

2.5 Statistical Analysis 

All statistical analyses were performed by computer using IBM SPSS Statistics software 

(version 22, IBM Corp, New York, USA) and MedCalc Statistical software (version 16.8.4, 

MedCalc Software, Ostend, Belgium).  

 

2.5.1 Normality Testing 

Data were checked for normal or skewed distribution. Data with a normal distribution forms 

a symmetrical bell-shaped distribution where the peak of the curve lies above the mean and 
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median, and 95% of the data lies within 1.96 standard deviations above and below the mean. 

Further assessment for normal distribution was done by checking that the ratio of skewness 

to its standard error lies within -2 to +2 and that the ratio of kurtosis to its standard error also 

lies within -2 to +2. Samples of data with normal distribution allow the use of parametric 

statistical tests. Samples of data with skewed distribution require the use of non-parametric 

tests. Where this is not possible, the data can be transformed using log10 and the resulting 

normal distribution data can be tested using parametric tests. 

 

2.5.2 Summary Statistics 

We calculated mean and standard deviation for normal distribution data or median and 

interquartile range for data with skewed distribution. 

 

2.5.3 Testing Group Differences 

The comparison of characteristics of CKD and controls was done using one of these statistical 

tests. Student t-test was used to compare the mean values of two independent sets of data 

which have normal distribution. Mann-Whitney U test was used to compare the median 

values of two independent sets of data which have skewed distribution. Chi-squared test was 

used to compare group difference for categorical data. p<0.05 was used to indicate statistical 

significance. 

Where there were more than two groups for comparison e.g. low, normal and high bone 

turnover groups, we used one-way analysis of variance (ANOVA) to compare variables with 

normal distribution and post-hoc Tukey analysis for pairwise comparison. Kruskall-Wallis test 
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was used to compare more than two groups with variables which have skewed distribution. 

Post-hoc analysis for pairwise comparison was performed using Mann-Whitney U test. 

 

2.5.4 Testing Relationship between Variables 

The direction (positive or negative) and strength of associations between two continuous 

variables were tested using one of these two statistical tests. Pearson’s correlation was used 

to determine the association between two independent variables with normal distribution. 

Spearman rank correlation was used to determine the association between two independent 

variables where at least one set of data had skewed distribution. The correlation coefficient 

(rho) for both tests can lie between -1 and +1. Negative value indicates inverse association. A 

rho value of exactly -1 or +1 indicates a perfect linear association whereas a rho value close 

to zero indicates no association. p<0.05 was used to indicate statistical significance. 

Multiple correlation was used to determine how well a dependent variable can be predicted 

using a linear function of a set of other variables. Multiple correlation is based on Pearson’s 

correlation and its correlation coefficient (R2) can lie between 0 and 1. The higher value 

indicates better predictability of the dependent variable by the independent variables.  

 

2.5.5 Z-scores 

DXA BMD T-score calculation and the reference data used have already been described in this 

chapter. DXA BMD Z-scores were obtained from the Hologic software which used a larger 

number of participants to represent the normal population. 
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However, there is no large reference data for HR-pQCT measurements to enable the 

calculation of T-scores (the number of standard deviations from the mean of gender-matched 

young) or Z-scores (the number of standard deviations from the mean of age and gender-

matched controls). Z-scores are particularly useful to indicate how different the result is 

compared to controls with similar age and gender. When we examined the relationship 

between HR-pQCT measurements and bone turnover (BFR/BS), we wanted to control for the 

effect of age and gender on bone microarchitecture measured on HR-pQCT. Thus we 

calculated the HR-pQCT measurement Z-scores. We selected 43 controls in this study who 

were age- and gender-matched to the 43 CKD patients with bone histomorphometry data. 

The control group mean and standard deviation were calculated. The Z-scores of HR-pQCT 

measurements were calculated using the formula: 

Z-score = [(CKD patient value) – (control group mean)] / control group standard deviation  

 

2.5.6 Receiver Operating Characteristic (ROC) Analysis 

ROC analysis is used to assess the diagnostic accuracy of a test to identify patients with a 

disease. ROC analysis is based on the dichotomous (yes or no) answer which requires a 

diagnostic threshold to differentiate those with the disease from those without. 

To test the diagnostic accuracy of non-invasive tests (e.g. bone turnover markers or bone 

imaging) to identify patients with low bone turnover in this study, the CKD patients were 

firstly grouped into ‘Low’ and ‘Not Low’ bone turnover categories based on BFR/BS as shown 

on histomorphometry. BFR/BS < 18 µm3/µm2/year is ‘Low’ bone turnover and BFR/BS ≥ 18 
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µm3/µm2/year is ‘Not Low’ bone turnover which included patients with normal and high bone 

turnover.  

Similarly, to test the diagnostic accuracy of non-invasive tests to identify patients with high 

bone turnover, the CKD patients were grouped into ‘High’ and ‘Not High’ bone turnover 

categories. BFR/BS > 38 µm3/µm2/year is ‘High’ bone turnover and BFR/BS ≤ 38 µm3/µm2/year 

is ‘Not High’ bone turnover which included patients with normal and low bone turnover. The 

proportion of patients with low bone turnover (26%) and high bone turnover (40%) in this 

study were used as the prevalence of the disease. 

For a hypothetical perfect diagnostic test, the probability distributions of test results 

indicating presence or absence of the disease do not overlap and the chosen threshold value 

is in between the distributions. This is shown in Figure 2.25. In reality, most diagnostic tests 

probability distribution of those with and without the disease overlap (Figure 2.26). It means 

that any threshold value will lead to misclassification of some patients with the disease as 

normal, and some normal patients as diseased. 
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Figure 2.25 

The probability distributions of the results of a hypothetical perfect diagnostic test {van 

Erkel et al 1998}. 

 

Figure 2.26 

Realistic probability distributions of the results of a diagnostic test showing an overlap of 

those with and without the condition {van Erkel et al 1998}.  
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Figure 2.27 summarises the formulae used to calculate sensitivity, specificity, and predictive 

values of a diagnostic test. A lower threshold value for a diagnostic test decreases the number 

of false negative results but at the same time, increases the number of false positive results. 

This approach increases sensitivity but reduces the specificity of the test. Meanwhile, a higher 

threshold value for the diagnostic test increases the number of false negatives and decreases 

the number of false positive results. This approach reduces sensitivity but increases specificity 

of the test. Overall, there is a trade-off between sensitivity and specificity for any given 

threshold value. 

 

Figure 2.27 

Diagnostic test summary statistics and the formulae used. 

 

Abbreviations: TP, true positive; FP, false positive; TN, true negative; FP, false positive; PPV, 

positive predictive value; NPV, negative predictive value.  
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The ROC curve is a graphical representation of the reciprocal relationship between sensitivity 

and specificity, calculated for all possible threshold values of the diagnostic test (Figure 2.28). 

The vertical axis shows the sensitivity and the horizontal axis shows 1 – specificity. Each point 

on the ROC curve represents the combination of sensitivity and specificity at a given threshold 

value. Youden index is the point on the ROC curve where the optimum sensitivity and 

specificity of the test lies when sensitivity and specificity are given equal weight. The Youden 

index is associated with a threshold for the diagnostic test. The positive and negative 

predictive values can also calculated for this threshold. 

 

Figure 2.28 

(a) The ROC curve and (b) graphical presentation of the different threshold values (1 - 5) 

corresponding with points on the ROC curve {van Erkel et al 1998}. 
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The area under the ROC curve (AUC) reflects the diagnostic accuracy of a test and is used for 

comparison between diagnostic tests. The diagnostic accuracy classification based on AUC is 

0.6-0.7 as poor, 0.7-0.8 as fair, 0.8-0.9 as good and 0.9-1.0 as excellent diagnostic accuracy. 

Comparison of ROC AUCs is performed using non-parametric Wilcoxon test to determine if 

one diagnostic test was significantly better than the other. The null hypothesis (i.e. the two 

diagnostic tests had similar accuracy) was rejected if p<0.05. Two diagnostic tests can also be 

combined to determine if a combination of tests has improved diagnostic accuracy. 

Combining two tests (variables) is performed using a linear regression analysis to give a new 

set of variable which can then be tested using ROC analysis. 

Although diagnostic accuracy classification based on AUC is widely used, it is important to be 

aware that AUC may be subjected to measurement errors which would result in a biased 

estimate. In general, a large measurement error would result in estimated AUC being lower 

than the true AUC, classifying the diagnostic tool as inaccurate when it is actually useful 

{Schisterman et al 2001} . There are 4 potential sources of measurement error in a diagnostic 

study; the participants (e.g. through selection bias or disease verification bias), the situation 

(e.g. temporal change), the measurer (e.g. inter-observer variability and use of automated 

versus manual assays) and the laboratory equipment performance (e.g. coefficient of 

variation and limit of detection). Although measurement errors cannot be totally eliminated, 

we had taken steps to reduce it in this study.  
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Advanced CKD 
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3.1 Introduction 

Renal osteodystrophy (ROD) is a common complication of chronic kidney disease (CKD) which 

affects bone quality through changes in bone turnover, mineralization and microarchitecture 

{Malluche et al 2012}. The changes lead to increased risk of fractures with associated 

increased mortality in CKD {Block et al 2004; Kim et al 2016; Tentori et al 2014}. Treatment to 

reduce fracture risk in advanced CKD can only be initiated after accurate diagnosis of ROD 

{KDIGO 2009}.  ROD is a spectrum of bone disease and bone biopsy is the gold standard 

diagnostic test because it directly assesses the abnormalities in a tissue sample. Quantitative 

bone histomorphometry using the TMV classification assesses bone turnover (T), 

mineralization (M) and volume (V) {S. Moe et al 2006}.  

Bone biopsy is an invasive procedure which makes collecting large number of samples for 

research difficult and time consuming. Some studies reported large number of samples 

(greater than 500) which were collected over a number of years, but often involved multiple 

centres for sample collection and analysis, and may have been performed for clinical 

indication which could have introduced bias {Malluche et al 2011; Sprague et al 2016}. 

Another way of obtaining a large number of bone biopsy sample is to perform bone biopsies 

during renal transplantation. This approach is also preferred by renal patients as they are 

already under general anaesthetic. Tetracycline bone labelling is possible prior to living-donor 

renal transplantation but not for transplantation from deceased donors, who constitute the 

majority of the cases, due to the unpredictability of deceased donor transplantation. This has 

led to some studies using static parameters to assess bone turnover status although normal 

ranges have not been fully defined {Lehmann et al 2005; Viaene et al 2016}. Table 2.1 shows 
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all dynamic and static parameters commonly reported on histomorphometry using 

standardised nomenclature and the formulae used to derive those parameters. 

The aims of this chapter were to describe the bone histomorphometry features of advanced 

CKD patients who underwent a bone biopsy and to test if histomorphometry static 

parameters can replace dynamic parameters in diagnosing ROD. 

 

3.2 Methodology 

3.2.1 Bone Biopsy Procedure, MicroCT and Histomorphometry 

The bone biopsy technique, bone biopsy-related pain assessment, bone sample preparation, 

microCT and histomorphometry techniques have been described in the Chapter 2 of this 

thesis 

 

3.2.2 Statistical Analysis 

Data are presented as mean (standard deviation, SD) or median (interquartile range, IQR). 

Differences between low, normal and high bone turnover groups were tested using one-way 

ANOVA or Kruskal-Wallis test depending on the distribution of the variables. The associations 

between bone turnover (BFR/BS) and other continuous variables were tested using Pearson’s 

correlation. p<0.05 indicates statistical significance. 

Additional statistical method used in this chapter was Kappa (κ) statistic to test that the 

histomorphometry static measurements were truly independent of the dynamic 

measurement of bone turnover. It estimates the agreement between dynamic and static 
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measurements, controlling for random chance {McHugh 2012}. A 95% confidence intervals 

which crosses zero indicates that there is no agreement between the dynamic and static 

measurements (i.e. all measurements were independent of each other). Kappa statistics was 

performed using IBM SPSS Statistics software (version 22, IBM Corp, New York, USA). 

We also performed method comparison analysis for trabecular bone volume measurement 

using histomorphometry and microCT. Bland-Altman plot and Passing & Bablok regression 

method on MedCalc (version 18.10) were used. The Bland-Altman plot displayed a scatter 

diagram of the differences plotted against the averages of the two measurements. The plot 

was used to visualize any relationship between the differences and the magnitude of 

measurements, to identify any systematic bias and possible outliers.  

The Passing-Bablok procedure fits the parameters a and b of the linear equation y = a + b x 

using non-parametric methods. The coefficient b is calculated by taking the shifted median of 

all slopes of the straight lines between any two points, disregarding lines for which the points 

are identical or b = -1. The median is shifted based on the number of slopes where b < -1 to 

create an unbiased estimator. The intercept a is calculated by a = median ( yi - b xi ). Passing 

and Bablok also defined a method for calculating a 95% confidence interval for both a and b. 

The Passing-Bablok procedure is valid only when a linear relationship exist between x and y, 

which can be assessed by a Cusum test. The results are interpreted as follows; if 0 is in the CI 

of a, and 1 is in the CI of b, the two methods are comparable within the investigated 

concentration range. If 0 is not in the CI of a, there is a systematic difference and if 1 is not in 

the CI of b then there is a proportional difference between the two methods.  
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3.3 Results 

3.3.1 Patient Characteristics, Pain Score and Sample Adequacy 

Out of 69 CKD patients, 54 patients had bone biopsy performed/attempted but samples were 

only obtained from 49 patients. 15 patients did not have bone biopsy due to side effects from 

tetracycline antibiotic (N=5), withdrawal of consent (N=9) and one patient died prior to bone 

biopsy due to haemorrhagic stroke which was unrelated to the study. Side effects of 

tetracycline antibiotics included nausea, vomiting, loss of appetite and loose stool which were 

known side effects. The symptoms resolved within a few days of stopping the antibiotic.  

45 out of 54 patients (83%), who had bone biopsy performed/attempted, completed the 

visual analogue scale (VAS). Figure 3.1 shows the pain score at different time points. Pain 

score during the procedure was significantly higher compared to pre-procedure pain score 

(p<0.001) although the level of pain varied greatly within the group (mean [SD] was 43 [27] 

mm). The pain level improved 10 minutes post-procedure (median (IQR) was 4 [0- 12.5] mm) 

although not completely back to baseline level (p=0.001). Pain level reported 2 days post-

procedure was similar to that at 10 minutes post-procedure. Very few patients required 

simple painkillers such as paracetamol in the 48-hour period post procedure. 

Only 43 out of 49 samples obtained were evaluable for histomorphometry.  The remaining 6 

samples were reviewed by a second assessor (Dr David Hughes, Consultant Clinical 

Histopathologist, Sheffield Teaching Hospitals NHS Trust) who confirmed that they were 

unsuitable for histomorphometry as the samples mainly contained soft tissue.   
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Figure 3.2 summarises the number of patients for each ROD subtype as characterised by bone 

turnover and mineralization status. Amongst the 43 patients with evaluable bone samples, 28 

(65%) were pre-dialysis CKD, mean (SD) age was 59 (12) years, 77% were male, 26% had 

diabetes, and 26% had previous fragility fracture. All 43 samples evaluable for 

histomorphometry met the minimum acceptable total section area in the standard analysis 

region of 30 mm2. In this study, the median (IQR) for total section area was 36.14 (32.22 – 

41.27) mm2. 

 

 Figure 3.1 

Pain score using Visual Analogue Scale at different time points (N= 45) 
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Figure 3.2 

ROD subtypes in advanced CKD as classified by bone turnover (T), mineralization (M) and 

volume (V) status. 

 

 

3.3.2 Bone Turnover 

We had a wide range of bone turnover in our samples; median (IQR) for BFR/BS was 32.12 

(17.76 – 48.25) µm3/µm2/year. Patients were divided into low (26%), normal (34%) and high 

(40%) bone turnover categories based on BFR/BS < 18, between 18 and 38, and > 38 

µm3/µm2/year respectively. This is shown in Table 3.1. 

Mineral apposition rate (MAR) and mineralising surface/bone surface (MS/BS) which were 

used to calculate BFR/BS were also significantly different across the bone turnover categories. 

Post hoc analysis showed that MAR and MS/BS were significantly different for all pairwise 

comparisons except for MAR between low and normal bone turnover categories. Static 

parameters of bone turnover such as osteoclast surface/bone surface (OcS/BS), osteoblast 

surface/bone surface (ObS/BS) and erosion surface/bone surface (ES/BS) only had weak to 
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moderate positive correlations with BFR/BS (Figure 3.3) and hence, did not show significant 

differences across the bone turnover categories. OcS/BS and ES/BS which measured 

osteoclasts and its erosion surfaces showed strong positive correlation (rho= 0.816, p<0.001). 

 

Figure 3.3 

Associations between dynamic and static parameters of bone turnover. 
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Table 3.1 

Dynamic and static parameters on bone histomorphometry in low, normal and high bone 
turnover groups (N=43) 

Parameters Low (N=11) Normal (N=15) High (N=17) P value 

BFR/BS 
(µm3/µm2/year) 

13.79 (3.59 – 15.49) 27.51 (22.48 – 32.18) 67.41 (46.46 – 112.45) <0.001 a 

MAR (µm/day) 0.720 (0.396) 1.002 (0.349) 1.302 (0.256) <0.001 b,c 

MS/BS (%) 3.83 (2.53 – 5.41) 7.81 (5.32 – 8.77) 14.56 (9.31 – 20.81) <0.001 a 

ObS/BS (%) 0.56 (0.04 – 2.02) 1.61 (1.10 – 2.27) 2.51 (0.98 – 3.67) 0.07 

OcS/BS (%) 0.85 (0.41 – 1.67) 1.11 (0.58 – 1.36) 1.16 (0.77 – 2.05) 0.4 

ES/BS (%) 7.53 (6.25) 7.59 (3.60) 9.53 (4.03) 0.4 

OS/BS (%) 29.12 (14.08) 38.61 (18.57) 46.82 (22.93) 0.08 

OV/BV (%) 2.21 (1.43 – 5.49) 5.46 (2.62 – 7.62) 6.93 (3.08 – 12.59) 0.01 b 

MLT (days) 55.6 (21.1 – 192) 41.1 (25.6 – 62.8) 27.4 (15.1 – 36.9) <0.01 b,c 

OMT (days) 6.9 (6.0) 8.0 (3.2) 8.7 (2.8) 0.5 

O.Th (µm) 7.29 (1.97) 8.91 (2.36) 10.84 (3.16) <0.01 b 

BV/TV (%) 23.88 (18.12 – 28.61) 20.10 (15.39 – 24.17) 19.42 (18.30 – 24.46) 0.5 

Trab Th (µm) 160 (33.2) 143.6 (39.7) 140.9 (20.6) 0.3 

Symbols indicating statistically significant post hoc analysis for aall pairwise comparisons, 

bpairwise comparison between low and high bone turnover groups, and cpairwise comparison 

between normal and high bone turnover groups. 
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3.3.3 Bone Mineralization 

There was no significant correlation between mineralization lag time (MLT) and osteoid 

maturation time (OMT) although both are dynamic parameters of mineralization. Osteoid 

thickness (O.Th) which is a static parameter of mineralization was moderately correlated with 

OMT (rho = 0.544, p<0.001) but it did not correlate with MLT. Osteoid surface/bone surface 

(OS/BS) and osteoid volume/bone volume (OV/BV) showed strong positive correlation (rho = 

0.906, p<0.001). However, only OV/BV was correlated with O.Th (rho = 0.62, p<0.01). 

None of the patients in this study had abnormal mineralization. All patients had O.Th < 20 µm 

although 7 patients had MLT > 100 days. These 7 patients also had OMT < 40 days and OV/BV 

< 12% which further support that they have normal mineralization status. In fact, all our 

patients had normal OMT with mean (SD) of 8.0 (3.9) days.  

Static mineralization parameters were then assessed for their association with bone turnover 

(BFR/BS). O.Th, OV/BV and OS/BS showed positive correlations with BFR/BS (Figure 3.4). 

When patients were divided into low, normal and high bone turnover categories, only O.Th 

and OV/BV showed significant differences across the bone turnover categories (Table 3.1) 

Post hoc analysis showed that the parameters were significantly different between low and 

high bone turnover categories.  
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Figure 3.4 

Associations between dynamic parameter of bone turnover and static parameters of 

mineralization

 

 

Mineralization dynamic parameters were also assessed for their association with bone 

turnover. There was a moderate negative association between MLT and BFR/BS (rho = -0.415, 

p<0.01). MLT was also significantly different across the bone turnover categories (Table 3.1). 

Post hoc analysis showed that MLT was different for ‘low versus high’ and ‘normal versus 

high’ bone turnover categories. The relationship between MLT and BFR/BS is better visualized 

in Figure 3.5 which shows that prolonged MLT (greater than 100 days) can occur in some 

patients with normal and low bone turnover but all patients with high bone turnover (BFR/BS 

> 38 µm3/µm2/year) had normal MLT. There was no correlation between OMT and BFR/BS.  
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Figure 3.5 

Distribution of patients based on bone turnover (BFR/BS) and mineralization lag time (MLT). 

 

Prolonged MLT was found in 7 patients with normal/low bone turnover (blue shaded area) but 

all patients with high bone turnover had normal MLT (red shaded area). 

 

3.3.4 Bone Volume 

Bone volume/tissue volume (BV/TV) was strongly correlated with trabecular thickness (Tb.Th) 

(rho = 0.730, p<0.001). BV/TV and Tb.Th did not correlate with age and both parameters had 

similar distribution in male and female groups, indicating that there was no age and gender 

effects on these parameters. Only 7 out of 43 patients (16%) had low bone volume as defined 

by BV/TV < 16.8%. Amongst the 7 patients with low bone volume, 6 were pre-dialysis CKD and 
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one patient was on peritoneal dialysis, mean (SD) age was 56 (15) years, all were males and 

two had history of fragility fracture. No correlation was found between BV/TV and BFR/BS. 

We also measured trabecular bone volume of the core biopsy sample using microCT and 

found that BV/TV on microCT and BV/TV on histomorphometry were highly correlated (rho = 

0.904, p<0.001).  Similarly to BV/TV on histomorphometry, there was no correlation between 

BV/TV measured by microCT with BFR/BS. 

Methods comparison between measuring BV/TV on histomorphometry and microCT is shown 

in Figure 3.6. Passing-Bablock regression showed that BV/TV on microCT measured lower 

than BV/TV on histomorphometry [MicroCT BV/TV = -3.13 + 1.10 (Histo BV/TV)] but the two 

methods were interchangeable (Cusum test of linearity p=0.53 which indicated no deviation 

from linearity). The Bland-Altman plot showed no bias between the mean differences of the 

two methods. Passing-Bablock regression analysis of trabecular number showed that there 

was a proportional difference in trabecular number detected by the two methods (Figure 

3.7). Meanwhile, there was no difference for trabecular thickness detected by the two 

methods (Figure 3.8). 
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Figure 3.6 

Method comparison for bone volume assessment of bone biopsy using histomorphometry 

and microCT. 

 

(A) Passing-Bablock regression equation: MicroCT BV/TV = -3.13 + 1.10 (Histo BV/TV) 

Intercept (95% CI) = -3.13 (-8.01 to -0.22). Both methods differ by this constant amount. 

Slope (95% CI) = 1.10 (0.95 to 1.37). No proportional difference between the two methods. 

Cusum test of linearity p = 0.53. No significant deviation from linearity. 

(B) Bland-Altman plot: no bias 
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Figure 3.7 

Method comparison for trabecular number in bone biopsy using histomorphometry and 

microCT. 

 

(A) Passing-Bablock regression equation: MicroCT Trab N = -0.49 + 1.31 (Histo Trab N) 

Intercept (95% CI) = -0.49 (-0.99 to -0.10). Both methods differ by this constant amount. 

Slope (95% CI) = 1.31 (1.07 to 1.66). There is proportional difference between the two methods. 

Cusum test of linearity p = 0.53. No significant deviation from linearity. 

(B) Bland-Altman plot: no bias. 
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Figure 3.8 

Method comparison for trabecular thickness in bone biopsy using histomorphometry and 

microCT. 

 

(A) Passing-Bablock regression equation: MicroCT Trab Th = 0.03 + 0.80 (Histo Trab Th) 

Intercept (95% CI) = 0.03 (-0.01 to 0.05). Both methods do not differ by this constant amount. 

Slope (95% CI) = 0.80 (0.61 to 1.04). No proportional difference between the two methods. 

Cusum test of linearity p=0.53. No significant deviation from linearity. 

(B) Bland-Altman plot: no bias. 

 

3.3.5 Diagnostic Accuracy of Static Parameters to Identify Low and High Bone 

Turnover 

Using static parameters in receiver operating characteristics (ROC) analysis to identify low 

bone turnover as assessed by BFR/BS, we found that OV/BV had area under the ROC curve 

(AUC) of 0.764 and O.Th had AUC of 0.770 (Figure 3.9). The other static parameters had non-

significant AUCs. For identifying high bone turnover, osteoblast surface/bone surface 
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(ObS/BS) had AUC 0.697, OV/BV had AUC 0.719 and O.Th had AUC 0.744 for predicting high 

bone turnover (Figure 3.10). Diagnostic accuracy summary statistics for identifying low and 

high bone turnover using these static parameters are shown in Table 3.2. 

 

Figure 3.9 

Receiver operating characteristics (ROC) curves for predicting low bone turnover 

 

Figure 3.10 

Receiver operating characteristics (ROC) curves for predicting high bone turnover 
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Table 3.2 

Receiver operating characteristics (ROC) summary statistics for predicting low and high 

bone turnover using static parameters. 

Static 

parameters 

AUC (95% CI) Youden 

criterion 

Sensitivity 

(%) 

Specificity 

(%) 

PPV 

(%) 

NPV 

(%) 
For predicting low bone turnover 

OV/BV 0.764 (0.610 – 0.880) ≤ 2.4% 64 84 58 87 

O.Th 0.770 (0.616 – 0.884) ≤ 7.7 µm 73 78 53 89 

 

For predicting high bone turnover 

ObS/BS 0.697 (0.538 – 0.827) > 2.3% 59 89 77 77 

OV/BV 0.719 (0.562 – 0.846) > 8.4% 41 100 100 72 

O.Th 0.744 (0.588 – 0.865) > 8.1 µm 88 54 56 88 

 

OV/BV and O.Th have fairly similar AUCs for differentiating low and high bone turnover (AUCs 

0.70 – 0.80). Using Kappa (κ) statistic, we tested whether the static measurements of osteoid 

were truly independent of the dynamic measurement of bone turnover. The linear weighted 

κ (95% CI) for agreement between BFR/BS and OV/BV was 0.04 (-0.01 to 0.10). The linear 

weighted κ (95% CI) for agreement between BFR/BS and O.Th was 0.06 (-0.003 to 0.12). The 

95% CI crossed zero, thus there was no agreement between BFR/BS and the two static 

parameters (i.e. all measurements were independent of each other). 
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3.4 Discussion 

Bone biopsy is the gold standard test to diagnose ROD but it is invasive and painful; thus 

limiting its use as a diagnostic tool. The traditionally used 7 – 8 mm diameter Bordier trephine 

needle would require sedation/general anaesthetic and a hospital stay after bone biopsy. 

However, a modified trans-iliac bone biopsy technique using a smaller 4 mm inner diameter 

Jamshidi needle has allowed this procedure to be done under local anaesthetic as a day case 

procedure. This technique is preferred in our centre and in around 40% of bone biopsy centres 

in Europe {Evenepoel et al 2017}.  

Despite using a smaller biopsy needle, there was significant pain experienced by our 

participants during the procedure. The level of pain varied greatly within the group which may 

reflect different pain tolerance between individuals. The bone biopsy site, the use of 

disposable single-use Jamshidi bone biopsy needle, the bone biopsy operator and the 

technique were the same for all participants. There was some pain/discomfort reported after 

2 days, fairly similar to the level reported 10 minutes post procedure. No studies have 

previously reported the level of pain experienced by participants of trans-iliac bone biopsy. 

The closest comparison can be made with one study which assessed pain relating to bone 

marrow biopsy using VAS {Tanasale et al 2013}. Their 202 participants reported pain 

experienced at 5 minutes post procedure with a median of 19 mm on the VAS. This is around 

halfway between our results for pain score ‘during’ and ‘10-minutes post procedure’. Thus 

suggesting that pain relating to bone biopsy under local anaesthetic from anterior-inferior or 

posterior iliac approach are fairly similar. There was no biopsy associated morbidity or 

mortality in our study. Worldwide morbidity associated with bone biopsy is extremely rare 

and mortality has never been reported {Hernandez et al 2008; Malluche et al 1994}.  
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88% of samples obtained in this study were adequate for histomorphometry analysis; falling 

within the range of previously reported 74 – 99% sample adequacy in other studies {Behets 

et al 2014; Malluche et al 2011; Viaene et al 2016}. The inadequate samples contained mainly 

soft tissue and this could have been due to patient or operator-dependent factors. However, 

the findings of inadequate sample did not cluster in the early stage of this study to suggest 

operator’s experience as a factor. 

The dynamic assessment of bone turnover on bone biopsy uses double tetracycline labelling 

to measure MAR which is required to calculate BFR/BS or activation frequency (Ac.f). We used 

BFR/BS to assess bone turnover and the proportion of patients with low, normal and high 

bone turnover in this study was similar to previous studies {Bervoets et al 2003; Couttenye et 

al 1996}. BFR/BS has been reported with or without Ac.f to determine bone turnover status 

in other studies {Malluche et al 2011; Malluche et al 2008}. Ac.f was not assessed in our study 

and thus, we cannot confirm its association with BFR/BS. Ac.f represents the probability that 

a new bone remodelling cycle will be initiated at any site on the trabecular bone surface. It is 

calculated by dividing BFR/BS by wall thickness and thus, it is a highly derived parameter 

which has inherent issues in calculation, assumptions and interpretation {Recker et al 2011}. 

There is no evidence to suggest that Ac.f measurement is superior to BFR/BS in the 

assessment of bone turnover. Furthermore, measuring wall thickness requires a dedicated 

section stained with Toluidine blue at each level sectioned for histomorphometry. This would 

have increased the risk of not having adequate sample to fulfil the minimum acceptable 

criteria for tissue area for histomorphometry given that we used a smaller diameter needle. 

Ac.f is not a routine histomorphometry measurement in clinical setting. 
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Some studies have used static parameters to assess bone turnover status. Lehmann et al 

studied 132 patients with CKD stages 3 - 5 who had bone biopsy {Lehmann et al 2005}. Only 

95 patients (72%) had tetracycline prior to bone biopsy. Static parameters OcS/BS and ObS/BS 

were used to classify patients into low, normal and high bone turnover; OcS/BS < 1%, 1 - 2.1% 

and > 2.1% respectively and ObS/BS < 1%, 1 - 3.2% and > 3.2% respectively. A decade later, 

Viaene et al published a study of 81 end stage renal disease patients who were having renal 

transplantation {Viaene et al 2016}. Tetracycline bone labelling was not possible at the time 

of bone biopsy and static parameter ObS/BS was used to classify patients into low (< 1%), 

normal (1 - 3.2%) and high (> 3.2%) bone turnover. These thresholds were similar to the 

Lehman et al study although these were based on their previously unpublished data on a 

separate cohort of 27 dialysis patients where ObS/BS showed modest correlation with BFR/BS 

(rho = 0.64).  

There is an increasing preference to obtain bone biopsy for research during renal 

transplantation but this method has its limitations. Firstly, it only includes renal transplant 

recipients and effectively exclude more frail and elderly patients who are more likely to have 

worse bone health. Secondly, the accuracy of using purely static parameters to diagnose renal 

osteodystrophy is unknown. Hence, we assessed the diagnostic accuracy of static parameters 

for identifying bone turnover status in our samples as assessed by dynamic parameter 

BFR/BS.  

We found that ObS/BS, O.Th and OV/BV can identify patients with high bone turnover with 

statistically significant AUCs. O.Th and OV/BV also have statistically significant AUCs for 

identifying low bone turnover. However, all AUCs were below 0.80 which means that these 

static parameters are not robust enough as diagnostic tests to replace BFR/BS. They cannot 
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determine bone turnover status accurately and should not be used to guide treatment 

decisions.  

We used BFR/BS as a measure of bone turnover and adopted the previously published normal 

range {Malluche et al 2011; Sprague et al 2016}. However, normal range of BFR/BS is generally 

inconsistent and varied across bone biopsy studies due to geographical variance, race and 

local experience {Parfitt 2003; Sprague et al 2016}. It is almost impossible to establish normal 

range because it would require bone biopsies from living, healthy people. Furthermore, 

normal range in healthy adults may differ with each decade of life and gender. The difficulties 

in establishing normal range inevitably results in the difficulties in establishing abnormalities. 

We did not explore whether the static parameters in our study had higher accuracy if different 

ranges and units of BFR/BS were applied.  

Malluche et al examined bone biopsy samples from each decade of life (first to eighth) from 

84 normal American subjects using quantitative histomorphometry {Malluche et al 1982}. The 

number of bone biopsy samples obtained for each decade of life ranged from 5 to 19 samples. 

There was no difference in bone histomorphometry measurements between pre-menopausal 

women and their age-matched men suggesting that there was no gender difference in bone 

histomorphometry in the young. Bone density of the samples gradually increased during 

childhood to early adulthood, peaked in the third decade of life and gradually declined 

reaching its lowest value in the eighth decade. Only static parameters were obtained in this 

study as the subjects were deceased. Subsequently, the same author used a reference range 

for dynamic parameters of bone turnover and mineralization in adults based on further 

studies of healthy adults {Malluche et al 2011}.  



145 
 

Another study which examined bone biopsies from healthy adults was published by Parfitt et 

al {Parfitt et al 1997}. The study involved 142 normal women; 61 were pre-menopausal and 

81 were post-menopausal women. The participants had bone labelling which allowed the 

measurements of dynamic and static parameters but the study was focussed on bone 

mineralization assessment. 

Osteomalacia is a subtype of ROD characterized by low bone turnover and abnormal 

mineralization. However, there is no consensus about the exact definition of abnormal 

mineralization in CKD patients {Ott 2008}. Generally, 2 criteria must be fulfilled using O.Th for 

static measurement, and MLT or OMT for dynamic measurement of mineralization. O.Th > 

12.5 µm indicates early abnormal mineralization whereas O.Th > 20 µm indicates established 

abnormal mineralization {Lima et al 2014; Malluche et al 2011; Ok et al 2016; Parfitt et al 

1997; Parfitt et al 2004}. The clinical implications of this difference is unknown. One study 

used MLT > 50 days {Malluche et al 2011}, but others used MLT > 100 days or OMT > 40 days 

to define abnormal mineralization {Lima et al 2014; Ok et al 2016; Parfitt et al 1997}. Given 

all the different thresholds, we pre-specified that O.Th > 20 µm and MLT > 100 days define 

abnormal mineralization in this study. Based on these strict criteria, none of our patients had 

abnormal mineralization. This is not unusual as the prevalence of osteomalacia is low (5 - 

10%) {KDIGO 2009}. Other studies have also reported the absence of osteomalacia in their 

cohort {Coen et al 1998; Moore et al 2009; Yessayan et al 2017}. 

Although all our patients had normal mineralization status, 7 patients had prolonged MLT > 

100 days but normal OMT. One possible explanation for the difference is that MLT takes into 

account mineralizing surfaces involved whereas OMT does not. In an example of high bone 

turnover state, more bone mineral units are active and therefore, more bone surfaces are 
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involved in the process of resorption, formation and mineralization. Hence, MLT becomes 

shorter in those with high bone turnover as we observed in our study (Figure 3.5). Overall, 

MLT has the advantage of providing a more comprehensive assessment of mineralization but 

it is very dependent on bone turnover. Meanwhile, OMT was fairly similar across all bone 

turnover categories in our study. This begs the question of which dynamic parameter (MLT or 

OMT) is better suited to assess mineralization. Our study has not managed to answer this 

question given that all our patients had normal O.Th and OMT.  

The classification of ROD subtypes is defined mainly by bone turnover and mineralization 

status. Bone volume assessment is also recommended as patients with low bone volume are 

expected to have increased risk of fracture {KDIGO 2009; S. Moe et al 2006}.  Bone volume 

correlates well with BMD at other skeletal sites and studies have found that low BMD at the 

spine, radius and tibia are associated with fracture in CKD {Nickolas et al 2011; West et al 

2015}. Osteoporosis can also occur in patients with advanced CKD, so ROD and osteoporosis 

can co-exist {Cunningham et al 2004; Klawansky et al 2003}. However, there is no evidence so 

far that low bone volume on iliac crest bone biopsy is associated with fracture.  

There is contradicting evidence on the relationship between bone turnover and bone volume 

{Malluche et al 2012; Schober et al 1998}. In our study, bone volume on histomorphometry 

had no relationship with bone turnover. This supports the notion that bone volume is a 

separate entity to low or high bone turnover ROD {Ott 2008}. Risk factors for osteoporosis 

such as age, gender and corticosteroid use were addressed in this study. We excluded patients 

taking oral corticosteroid. We also found that bone volume on histomorphometry was not 

affected by age or gender, although it is known that bone microarchitecture and BMD of other 

skeletal sites are affected by these factors {Amin et al 2012}.  
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Despite the lack of relationship between bone volume on histomorphometry and bone 

turnover, it does not mean that there is no relationship between bone volume at other 

skeletal sites and bone turnover. High risk fracture sites in CKD-MBD are the hip, lumbar spine 

and distal bones (wrist and ankle) whereas iliac bone fracture is extremely rare {Wagner et al 

2014}. Furthermore, Hiller et al showed that bone volume from trans-iliac bone biopsy is not 

comparable to bone volume from proximal tibia and lumbar spine bone biopsies {Hiller et al 

2017}. Hence, bone volume assessment on bone biopsy may be useful but it may not be 

representative of other skeletal sites. This limitation is important when interpreting bone 

biopsy results and deciding on treatment options. 

New developments of microCT have opened up possibilities that bone volume assessment of 

biopsy samples could be done quicker and without sample preparation that is required for 

histomorphometry. Another advantage of microCT is its ability to measure bone volume of 

the whole trabecular bone area in a core biopsy sample whereas histomorphometry bone 

volume assessment is limited to the number of sections prepared to fulfil the minimum 

acceptable criteria of tissue area. One limitation of microCT is it only detects calcified bone 

and not osteoid {Pereira et al 2015}. This limitation is particularly important when assessing 

advanced CKD patients who may have osteomalacia.  

In our study where all patients had normal mineralization status, we have shown that bone 

volume measured on microCT was highly correlated to that measured on histomorphometry. 

When we compared the two methods, microCT measured lower bone volume compared to 

histomorphometry but the two methods were interchangeable. Further analysis revealed 

that the difference was due to lower trabecular number detected by microCT. Meanwhile, no 

difference was detected for trabecular thickness. These findings are likely due to the 
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difference in the image resolution of microCT (4.3 µm) and histomorphometry which uses 

light microscopy (0.4 to 0.7 µm). 

Similarly to our results, a study by Uchiyama et al involving 15 adult patients with various 

metabolic bone diseases showed that bone volume on microCT and histomorphometry were 

highly correlated (rho ≥ 0.9) {Uchiyama et al 1997}.  However, the two methods showed a 

lower correlation (rho = 0.7) in bone volume in a study involving 68 paediatric dialysis patients 

where majority of them had osteomalacia {Pereira et al 2015}. This highlights the limitation 

of microCT as described above. Another study showed that bone volume assessment by 

histomorphometry and microCT of biopsies from three different skeletal sites (iliac crest, tibia 

and lumbar spine) were comparable {Hiller et al 2017}. Overall, microCT may be a useful 

alternative and complimentary tool to assess bone volume.  

There are several strengths in our study. We included CKD stages 4-5 and dialysis patients and 

thus, our findings are applicable to dialysis and non-dialysis advanced CKD. Bone biopsy was 

performed purely for research rather than for specific clinical indications. Hence, the patients 

in this study were representative of our clinical experience where most advanced CKD 

patients with ROD are asymptomatic. All our patients received tetracycline bone labelling 

which allowed dynamic assessment of bone turnover and mineralization. Finally, the 

proportion of our patients with low, normal and high bone turnover was similar to previous 

studies.  

There are also several limitations; this was a single centre observational study with a small 

number of samples evaluable for histomorphometry. All histomorphometry was performed 

by a single operator and we did not have a second independent assessor to assess intra-

observer variability. We selected 5 random histology sections to re-measure osteoid thickness 
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and mineralization lag time and the measurements performed by the single operator were 

similar to the initial measurements (data not shown). The initial classification of ROD in those 

5 patients did not change.  The operator was blinded to participants’ characteristics and 

histomorphometry analysis was semi-automated, thus histomorphometry assessment in this 

study was unlikely to be subjected to bias.  

We used bone biopsy needles with smaller diameter (4 mm). There has been no direct 

comparison between small (less than 5 mm) and large (7 – 8 mm) diameter bone biopsy 

samples for the diagnosis of ROD. Previous experience by histopathologists suggested that 

bone changes such as high or low bone turnover, or abnormal mineralization is usually not 

subtle in ROD. Hence, samples fulfilling the minimal acceptable tissue area (30 mm2) in the 

standard analysis region for histomorphometry is adequate to make a diagnosis of ROD as 

recommended by the International Bone and Mineral Society {Recker et al 2011}. It is unusual 

for histomorphometry operators to section a specimen to exhaustion beyond the required 

minimal acceptable tissue area. One example which may prompt an operator to do extra 

sections is when there is total absence of tetracycline label in the standard analysis region 

when the patients have confirmed that tetracycline had been taken as instructed. However, 

this extended label search is not recommended as the gain of finding the label is small 

compared to the extra work required and it does not change the diagnosis of low/absent bone 

turnover {Foldes et al 1990; Recker et al 2011}. Nonetheless, we must acknowledge the 

limitations of bone biopsy which are universal to any tissue biopsy procedure. This includes 

sampling error, single site sampling and limited tissue which mean that the sample may not 

be representative of the whole skeleton.  
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We did not measure activation frequency (Ac.f) as discussed above and we did not do 

aluminium staining on the samples. The likelihood of aluminium toxicity in our patients was 

low because the use of aluminium-based phosphate binders in our centre was extremely rare 

and modern dialysis water treatment ensured that aluminium exposure was minimised. 

Importantly, all our patients had normal mineralization status. 

To conclude, there was a wide range of bone turnover in advanced CKD patients who had 

bone biopsy in this study and the proportions of low, normal and high bone turnover patients 

were similar to previously published studies. All patients had normal bone mineralization and 

only 16% had low bone volume. Double tetracycline bone labelling is important for the 

assessment of bone turnover and mineralization in bone biopsy sample. Static parameters 

are not robust enough to replace the dynamic parameters to classify patients into ROD 

subtypes. Correct diagnosis is paramount as it can affect treatment decisions and it allows 

direct comparison between research studies. Ideally, these findings need to be confirmed in 

bigger studies using similar patient population but bone biopsy studies have its challenges. 

This work supports the call for a consensus on normal ranges for static and dynamic 

parameters of bone turnover and mineralization which are not yet fully defined. 

 

 
 

 

 

 

  



151 
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Advanced CKD 
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4.1 Introduction 

CKD patients have increased risk of fracture which is associated with increased morbidity and 

mortality. Moderate to severe CKD is associated with a two-fold increase in hip fracture risk 

as shown by the Third NHANES data involving over 6000 participants {Nickolas et al 2006}. A 

large observational study, Dialysis Outcomes and Practice Pattern Study (DOPPS), showed 

that fracture risk is even higher in dialysis patients. DOPPS, which involved nearly 35,000 

haemodialysis patients, showed an excess fracture risk of 3-8 fold compared to the general 

population {Tentori et al 2014}. The incidence of fracture in dialysis population is 150 – 450 

fractures per 10,000 patient-years whereas the incidence is 40 – 100 fractures per 10, 000 

person-years in the general population {Curtis et al 2016; Tentori et al 2014}. Furthermore, 

mortality and re-hospitalisation rates are also increased 2-9 times in the first year after a 

fracture compared to the overall haemodialysis population {Tentori et al 2014}.   

This increased risk of fracture in advanced CKD is due to a combination of poor bone quality 

due to ROD and low BMD. ROD is associated with bone microstructural, material and 

nanomechanical abnormalities leading to poor bone strength {Malluche et al 2012}. Bone 

microstructure also worsens with worsening CKD such that dialysis patients have thinner 

cortical bone compared to pre-dialysis CKD {Carvalho et al 2016}. Even in patients with stable 

CKD over 2-years (i.e. already on dialysis or with little CKD progression), BMD and bone 

microstructure worsens with time {Malluche et al 2017; Nickolas et al 2013; West et al 2015}. 

This indicates that prolonged exposure to CKD-MBD biochemical abnormalities such as SHPT 

results in bone loss and those patients who subsequently fractured had even greater bone 

loss. 
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Although low BMD can be detected by DXA, some of the bone changes associated with ROD 

such as bone microstructural impairment could only be detected using high resolution bone 

imaging. A meta-analysis of 13 studies in CKD stages 3-5D showed that BMD was significantly 

lower in patients with fractures compared to those without fractures, independent of dialysis 

status {Bucur et al 2015}. Nickolas et al also showed that advanced CKD patients with fracture 

not only had lower BMD but also worse bone microstructure at the distal radius and tibia as 

measured by HR-pQCT {Nickolas et al 2010}. However, Cejka et al showed that BMD by DXA 

was not associated with fracture but bone microarchitecture was, especially of distal tibia 

{Cejka, Patsch, et al 2011}. This highlights that BMD alone may not identify patients with 

increased fracture risk. This could be because the magnitude of difference in BMD is not as 

large as the difference in bone microstructure between patients who had fracture and those 

without fracture {Nickolas et al 2010}.  

Trabecular bone score (TBS) is a grey-level index derived from lumbar spine (LS) DXA images 

and may give a better estimate of trabecular microstructure in the LS vertebrae {Pothuaud et 

al 2008}. A study in moderate CKD patients suggests that fracture risk was associated with 

TBS but not BMD {Naylor et al 2016}. However, it is well known that LS BMD is often over-

estimated in advanced CKD who have high prevalence of abdominal aortic calcification (AAC). 

Whether TBS is equally affected as LS BMD by AAC severity in this population needs further 

evaluation. 

Bone biopsy from iliac bone is the gold standard test to diagnose ROD. Classically, bone 

turnover and mineralization status on biopsy were used to classify ROD subtypes. In 2009, the 

KDIGO CKD-MBD guideline recommended that bone volume assessment is included in bone 

biopsy analyses and this is known as the TMV (turnover, mineralization and volume) 
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classification {KDIGO 2009}. The recommendation was made because patients with low bone 

volume on bone biopsy is also thought to have increased risk of fracture. However, bone 

biopsy is invasive and painful. Bone imaging could be a non-invasive alternative to bone 

biopsy but the exact relationship between iliac bone microstructure and bone microstructure 

elsewhere is not entirely certain. 

The main aims of this chapter were to assess bone microstructure in advanced CKD and to 

assess if bone imaging could be a non-invasive alternative to bone volume assessment on 

biopsy. 

 

4.2 Methodology 

4.2.1 Bone Imaging 

Recruitment of participants and bone imaging methods using DXA and HR-pQCT have been 

described in Chapter 2 of this thesis.  AAC assessment using lateral LS DXA has also been 

described to assess its impact on LS BMD and TBS. 

TBS values were obtained using LS DXA images using TBS iNsight software (version 3.0.2.0, 

Medimaps, Pessac, France). TBS is based on the pixel gray-level variations in the DXA image 

using the same LS BMD region of interest (Figure 4.1). A two-dimensional projection image of 

a porous trabecular structure has a low number of gray-level variations of high amplitude, 

whereas the projection of a well-structured trabecular bone produces an image with a large 

number of gray-level variations of small amplitude. TBS was derived from an experimental 

variogram of those projected images, calculated as the sum of the squared gray-level 

differences between pixels at a specific distance and angle. TBS was then calculated as the 
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slope of the log-log transform of the variogram {Pothuaud et al 2008}. TBS was calculated as 

the mean value of the individual measurement of vertebrae L1 - L4. TBS has a short-term in 

vivo precision of 1.4 - 2.1% {Briot et al 2013; Hans et al 2011}. Participants in this study were 

divided into three TBS categories; TBS < 1.23 which is associated with high risk, TBS between 

1.23 and 1.31 which is associated with moderate risk and TBS > 1.31 which is associated with 

low risk of major osteoporotic fracture {McCloskey et al 2016}. 

 

Figure 4.1 

Examples of gray-level variations detected by TBS software. Taken from 

https://www.medimapsgroup.com 
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4.2.2 Statistical Analysis 

In this chapter, we divided participants into low BMD and normal BMD groups based on areal 

BMD T-score for TH and 1/3 radius measured by DXA. According to WHO criteria, osteoporosis 

is defined by BMD T-score < -2.5 and osteopenia is defined by BMD T-score between -1.0 and 

-2.5. Low BMD group in this study had T-score < -1.0 (i.e. osteopaenia and osteoporosis) and 

normal BMD group had T-score ≥ -1.0.  

Statistical analysis used in this chapter have been described in Chapter 2. Data are presented 

as mean (standard deviation, SD) or median (interquartile range, IQR). Group differences 

were tested using Student t test for continuous variables with normal distribution, Mann-

Whitney U test for continuous variables with skewed distribution and Chi squared test for 

categorical variables. We used Pearson’s correlation to test the relationship between two 

continuous variables. ROC analysis was used to test diagnostic accuracy of bone imaging 

measurements using DXA and HR-pQCT to identify CKD patients with low bone volume on 

trans-iliac bone biopsy. 
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4.3 Results 

4.3.1 Participants’ Demographics 

69 advanced CKD stages 4-5D patients and 68 age and gender-matched control participants 

were recruited into the study. Demographics of each group are shown in Table 4.1. There 

were 44 pre-dialysis CKD stages 4-5 patients with median (IQR) eGFR of 13 (11 - 16) 

ml/min/1.73m2 and 25 dialysis patients (haemodialysis and peritoneal dialysis). Median (IQR) 

eGFR for controls was 81 (72 to >90) ml/min/1.73m2.  

 

4.3.2 Bone Microstructure in CKD and Controls 

On HR-pQCT, CKD patients had lower total, cortical and trabecular volumetric BMD at the 

distal radius and distal tibia compared to controls (Table 4.1). CKD patients also had thinner 

trabeculae and lower trabecular bone volume (bone volume/tissue volume [BV/TV]) at both 

sites. Additionally, CKD patients had thinner cortical bone at the distal tibia.  

Mean total hip (TH) BMD T-score by DXA was significantly lower in CKD compared to controls. 

However, BMD T-score for 1/3 radius and lumbar spine (LS) were similar in CKD and controls. 

The number of CKD patients and controls with normal BMD (T-score ≥ -1.0) and low BMD (T-

score < -1.0) for TH and 1/3 radius are shown in Figure 4.2. 

LS BMD by DXA was likely to have been overestimated in CKD as 48% (N=33) had AAC 

detected. Meanwhile, only 22% (N=15) of controls had AAC detected and they had 

significantly lower AAC score compared to CKD (1.04 [0.05 - 16.52] in CKD versus 0 [0 - 0.55] 

mgHA in controls, p<0.001).  
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Table 4.1 

Demographics and imaging parameters in CKD patients and control participants. 

Variables CKD (N=69) Control (N=68) p values 

Age, years 62 (12) 62 (12)  

Male, N 53 53  

BMI (kg/m2) 27 (4.1) 28 (4.3) 0.3 

Diabetes 28% 0% <0.001 

Previous fragility fracture 22% 7% <0.05 

    

HRpQCT distal radius    

Total vBMD (mg/cm3) 266.2 (75.56) 308.47 (74.2) 0.003 

Cortical vBMD (mg/cm3) 782.58 (110.66) 821.04 (88.7) 0.04 

Trabecular vBMD (mg/cm3) 156.69 (46.17) 184.6 (41.42) 0.001 

Cortical thickness (mm) 0.61 (0.27) 0.71 (0.26) 0.06 

Cortical porosity (%) 3.0 (2.3 – 4.2) 3.2 (2.0 – 3.8) 0.4 

Cortical BV/TV (%) 90.0 (85.4 – 92.1) 90.7 (88.6 – 93.4) 0.1 

Trabecular thickness (mm) 0.064 (0.012) 0.073 (0.013) <0.001 

Trabecular number (1/mm) 2.01 (0.363) 2.11 (0.296) 0.14 

Trabecular separation 

(mm) 

0.434 (0.371 – 0.496) 0.4 (0.349 – 0.443) 0.06 

Trabecular BV/TV (%) 13.1 (3.8) 15.4 (3.5) 0.001 

    

HRpQCT distal tibia    

Total vBMD (mg/cm3) 276.99 (63.67) 314.97 (61.2) 0.001 

Cortical vBMD (mg/cm3) 819.85 (88.67) 858.7 (67.89) 0.005 

Trabecular vBMD (mg/cm3) 172.12 (41.06) 189.99 (41.12) 0.01 

Cortical thickness (mm) 1.05 (0.36) 1.25 (0.35) 0.001 

Cortical porosity (%) 7.1 (5.7 – 10.4) 6.8 (4.7 – 10.3) 0.2 

Cortical BV/TV (%) 86.2 (6.0) 88.1 (4.9) 0.05 

Trabecular thickness (mm) 0.075 (0.014) 0.081 (0.013) 0.01 

Trabecular number (1/mm) 1.92 (0.35) 1.97 (0.4) 0.4 

Trabecular separation 

(mm) 

0.444 (0.395 – 0.522) 0.425 (0.359 – 0.523) 0.2 

Trabecular BV/TV (%) 14.3 (3.4) 15.8 (3.4) 0.01 

    

DXA BMD T-score    

Total hip -0.9 (1.0) -0.1 (1.1) <0.001 

1/3 radius -1.0 (1.5) -0.8 (1.5) 0.4 

Lumbar spine -0.4 (1.7) -0.4 (1.6) 0.98 

LS TBS 1.28 (0.14) 1.32 (0.14) 0.1 
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Figure 4.2 

The number of CKD and controls with normal and low BMD measured by DXA.   

 

 

Mean TBS from lumbar spine DXA was also similar in CKD and controls but there were more 

CKD patients with low TBS (TBS < 1.23) compared to controls (Figure 4.3). TBS positively 

correlated with LS BMD T-score in both groups (Pearson’s rho = 0.475, p<0.001 in CKD and 

rho = 0.451, p<0.001 in controls). We also found that TBS positively correlated with LS BMD 

T-score in CKD patients with AAC (N= 32, rho = 0.499, p=0.004) and without AAC (N= 32, rho 

0.425, p<0.05). Meanwhile in the control group, TBS correlated with LS BMD T-score only in 

controls without AAC (N=52, rho = 0.51, p<0.001). No associations were found between TBS 

and AAC in CKD and controls. 

TBS in CKD correlated weakly with TH BMD T-score (rho = 0.248, p<0.05) but not with 1/3 

radius BMD T-score (rho = 0.220, p=0.07). TBS in the control group positively correlated with 

BMD T-score at both sites (rho = 0.355, p<0.01 for TH and rho = 0.368, p<0.01 for 1/3 radius). 
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Figure 4.3 

The number of CKD and control participants based on TBS categories.   

 

 

4.3.3 Bone Microstructure in CKD patients with Low BMD on DXA 

TH and 1/3 radius BMD T-scores on DXA were positively correlated in CKD (rho = 0.494, 

p<0.001) (Figure 4.4). CKD patients with low TH BMD (T-score < -1.0) had worse trabecular 

microstructure at distal radius measured by HR-pQCT compared to those with normal TH 

BMD; there were thinner trabeculae and lower trabecular number (Table 4.2). There was no 

difference in distal radius cortical bone microstructure. CKD with low TH BMD also had worse 

bone microstructure at the distal tibia affecting both trabecular and cortical bone 

compartments. There were lower trabecular number and thinner trabeculae as well as 

thinner and more porous cortical bone. 
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Table 4.2 

Differences in bone microstructure measured by HR-pQCT between CKD patients with 

normal and low TH BMD on DXA 

Variables Normal TH BMD Low TH BMD p values 

Number of patients, N 40 29  

 

HRpQCT distal radius 

   

HRpQCT distal radius    

Total vBMD (mg/cm3) 290 (70) 236 (72) <0.01 

Cortical vBMD (mg/cm3) 800 (96) 760 (125) NS 

Trabecular vBMD (mg/cm3) 179 (38) 129 (41) <0.001 

Cortical thickness (mm) 0.67 (0.27) 0.55 (0.26) NS 

Cortical porosity (%) 3.0 (2.3 to 4.2) 3.2 (1.9 to 4.3) NS 

Cortical BV/TV (%) 90.8 (85.7 to 92.5) 89.8 (84.8 to 91.1) NS 

Trabecular thickness (mm) 0.069 (0.011) 0.058 (0.011) 0.001 

Trabecular number (1/mm) 2.12 (0.25) 1.82 (0.40) <0.001 

Trabecular separation (mm) 0.403 (0.348 to 0.445) 0.496 (0.409 to 0.547) <0.001 

Trabecular BV/TV (%) 14.9 (3.2) 10.7 (3.4) <0.001 

    

HRpQCT distal tibia    

Total vBMD (mg/cm3) 306 (53) 239 (57) <0.001 

Cortical vBMD (mg/cm3) 849 (74) 781 (92) <0.01 

Trabecular vBMD (mg/cm3) 189 (33) 150 (40) <0.001 

Cortical thickness (mm) 1.20 (0.32) 0.86 (0.31) <0.001 

Cortical porosity (%) 6.4 (5.1 to 8.9) 8.9 (6.3 to 12.2) <0.05 

Cortical BV/TV (%) 88.0 (5.7) 84.2 (6.0) <0.05 

Trabecular thickness (mm) 0.078 (0.012) 0.071 (0.016) <0.05 

Trabecular number (1/mm) 2.03 (0.34) 1.77 (0.32) <0.01 

Trabecular separation (mm) 0.426 (0.355 to 0.500) 0.476 (0.434 to 0.571) <0.01 

Trabecular BV/TV (%) 15.8 (2.8) 12.5 (3.3) <0.001 
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Figure 4.4 

The relationship between total hip and 1/3 radius BMD T-scores in CKD. 

 

 

CKD patients with low 1/3 radius BMD (T-score < -1.0) had thinner cortical bone and lower 

trabecular number at the ultradistal radius when measured by HR-pQCT compared to CKD 

with normal BMD (Table 4.3). There was no difference in cortical porosity or trabecular 

thickness. CKD patients with low 1/3 radius BMD also had worse bone microstructure in both 

the trabecular and cortical bone compartments of the distal tibia measured by HR-pQCT. The 

trabecular number was lower and cortical bone was thinner and more porous. The 

relationship between LS DXA BMD T-score and bone microstructure at distal radius and tibia 

in CKD was not analysed because of high percentage of CKD patients with AAC present. 
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Table 4.3 

Differences in BMD and microstructure measured by HR-pQCT between CKD with normal 

and low 1/3 radius BMD. 

Variables Normal 1/3 radius BMD Low 1/3 radius BMD p values 

Number of patients, N 36 32  

 

HRpQCT distal radius 

   

HRpQCT distal radius    

Total vBMD (mg/cm3) 290 (76) 242 (68) <0.05 

Cortical vBMD (mg/cm3) 813 (95) 754 (118) <0.05 

Trabecular vBMD (mg/cm3) 173 (42) 141 (45) <0.01 

Cortical thickness (mm) 0.69 (0.27) 0.54 (0.25) <0.05 

Cortical porosity (%) 2.9 (1.7 to 4.2) 3.1 (2.6 to 4.3) NS 

Cortical BV/TV (%) 90.0 (86.5 to 92.4) 89.2 (83.6 to 91.1) NS 

Trabecular thickness (mm) 0.066 (0.011) 0.063 (0.013) NS 

Trabecular number (1/mm) 2.18 (0.24) 1.86 (0.39) <0.001 

Trabecular separation (mm) 0.402 (0.348 to 0.495) 0.473 (0.399 to 0.540) 0.001 

Trabecular BV/TV (%) 14.4 (3.5) 11.8 (3.8) <0.01 

    

HRpQCT distal tibia    

Total vBMD (mg/cm3) 294 (59) 258 (65) <0.05 

Cortical vBMD (mg/cm3) 859 (70) 779 (88) <0.001 

Trabecular vBMD (mg/cm3) 176 (38) 167 (45) NS 

Cortical thickness (mm) 1.18 (0.32) 0.93 (0.35) <0.01 

Cortical porosity (%) 6.1 (5.0 to 8.5) 8.9 (6.4 to 11.5) <0.01 

Cortical BV/TV (%) 88.3 (5.2) 84.1 (6.2) <0.01 

Trabecular thickness (mm) 0.073 (0.014) 0.077 (0.014) NS 

Trabecular number (1/mm) 2.02 (0.32) 1.79 (0.37) <0.01 

Trabecular separation (mm) 0.443 (0.377 to 0.499) 0.498 (0.399 to 0.559) <0.05 

Trabecular BV/TV (%) 14.7 (3.1) 13.9 (3.8) NS 
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4.3.4 Relationship between Bone Microstructure on Bone Biopsy and Bone 

Imaging 

43 out of 69 CKD patients had trans-iliac bone biopsy evaluable for histomorphometry. 

Trabecular bone volume/tissue volume (BV/TV) on bone biopsy was similar in males and 

females and there was no association with age. Bone biopsy BV/TV positively correlated with 

TH T-score (rho = 0.368, p<0.05) but no correlation was found with 1/3 radius T-score. 

CKD patients with low TH BMD measured by DXA had lower trabecular BV/TV on biopsy 

compared to patients with normal TH BMD (19.3 [16.2 - 22.1] and 23.6 [19.2 - 30.9] % 

respectively, p<0.01) (Figure 4.5). This is due to thinner trabeculae on bone biopsy (0.135 

[0.029] mm versus 0.156 [0.031] mm, p<0.05) but trabecular number was similar to those 

with normal TH BMD. Bone biopsy trabecular BV/TV, trabecular thickness and trabecular 

number did not correlate with bone microstructure of distal radius and tibia measured by HR-

pQCT. 

Figure 4.5 

Bone volume and trabecular thickness in bone biopsy samples from CKD patients with 

normal and low total hip BMD measured by DXA. 
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Seven out of 43 patients (16%) had low trabecular BV/TV defined by BV/TV < 16.8% on bone 

biopsy. ROC analysis showed that TH T-score by DXA had an AUC (95% CI) of 0.692 (0.533 - 

0.824) for identifying patients with low BV/TV.  The Youden criterion for TH T-score was ≤ -

0.4 which had 100% sensitivity, 40% specificity, 24% positive predictive value (PPV) and 100% 

negative predictive value (NPV) for identifying patients with low BV/TV on biopsy. AUC for 1/3 

radius T-score was not significant.  

On HR-pQCT, only cortical porosity had significant AUCs for identifying CKD with low BV/TV 

on bone biopsy; AUC (95% CI) of 0.722 (0.548 - 0.858) for distal radius and 0.690 (0.528 - 

0.823) for distal tibia. In comparison of ROC curves analysis, AUCs for TH T-score and cortical 

porosity by HR-pQCT were similar (p>0.05). ROC analysis was also performed using the 

combined TH T-score and cortical porosity to determine if the AUCs could be improved. This 

revealed exactly the same AUCs as that of cortical porosity at the distal radius and tibia. 

 

4.4 Discussion 

We found that advanced CKD patients have lower BMD and worse bone microstructure when 

compared to age and gender-matched healthy controls. This is consistent with findings in 

studies involving pre-dialysis CKD and dialysis patients. Bachetta et al examined 70 patients 

with CKD stages 2 - 4 using HR-pQCT and compared them with gender and age-matched 

population-based cohorts who had normal renal function {Bacchetta et al 2010}. The study 

found that even mild to moderate CKD patients had trabecular and cortical bone impairment 

such as less trabeculae and thinner cortical bone. These bone microstructure impairment are 

also found in dialysis patients and are often more severe than those in pre-dialysis CKD 

{Carvalho et al 2016; Cejka, Patsch, et al 2011; Negri et al 2012}. 
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Trabecular bone impairment could be due to thinning of trabeculae, loss of trabecular 

number or both {Khosla et al 2006}. Greater bone resorption than bone formation in bone 

remodelling underlies these abnormalities. The lower trabecular BMD and bone volume in 

advanced CKD in this study is due to thinner trabeculae rather than lower trabecular number. 

This finding was consistent at the distal radius and tibia although PTH effects on bone usually 

result in both thinner trabeculae and lower trabecular number {Stein et al 2013}. Our study 

also showed that cortical bone thinning in CKD only occurs at the tibia but not at the radius. 

This could be due to higher mechanical force going through the tibia compared to the radius, 

thus the tibial cortical bone is thicker and can be more accurately measured {Frank et al 2012}.  

When BMD was measured by DXA in our study, only TH BMD T-score was lower in CKD than 

control. There was no difference at the other two skeletal sites between CKD and control. Our 

finding is similar to a study by Negri et al which showed that dialysis patients had significantly 

lower TH BMD T-score but not for 1/3 radius when compared to age- and gender- matched 

controls {Negri et al 2012}. However, they found that LS BMD T-score was also lower in dialysis 

patients. In contrast to our study and Negri et al study, Urena et al showed that dialysis 

patients had significantly lower BMD at mid radius but not at the femoral neck or LS when 

compared to age- and gender-matched population {Urena et al 2003}. Therefore, low BMD in 

advanced CKD is not consistent across all skeletal sites measured by DXA. Similar to our study, 

the studies by Negri et al and Urena et al recruited patients with a wide range of iPTH and 

ALP. Thus, it is uncertain if high bone turnover associated with SHPT would be more likely to 

have lower BMD at certain skeletal sites only. 

Similar BMD T-score at 1/3 radius was observed in our CKD and controls despite significant 

differences in BMD by HR-pQCT at the distal radius. This contrasting finding is likely due to 
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the different bone types at these two different locations within the radius. The 1/3 radius 

measured by DXA mainly consists of cortical bone (greater than 90%) whereas ultradistal 

radius measured by HR-pQCT has less cortical bone (around 75%) {Wahner et al 1985}. We 

have demonstrated on HR-pQCT of distal radius that trabecular bone was significantly 

impaired in CKD whereas cortical bone measurements were similar in both groups, consistent 

with similar BMD at 1/3 radius measured by DXA. Similar BMD at LS in CKD and controls in 

this study was probably due to the overestimation of BMD in CKD who have AAC. DXA is a 2-

dimensional imaging which cannot differentiate increased density detected from bone or 

other extra-skeletal calcification such as vascular calcification. It is well known that AAC 

predisposes to artefactual overestimate of LS BMD {Drinka et al 1992}. 

Spine TBS may give a better estimate of trabecular microstructure in the LS vertebrae than 

BMD as shown in a study by Krueger et al involving 429 non-CKD women {Krueger et al 2014}. 

The study showed that TBS and LS BMD were weakly correlated but TBS of 1.30 identified 

70% of women with fracture who did not have osteoporosis when assessed by BMD. The 

Canadian Multicentre Osteoporosis Study (CaMOS) also showed that TBS is associated with 

higher fracture risk in those with moderate CKD, independent of BMD {Naylor et al 2016}. A 

meta-analysis by McCloskey et al which utilized data from nearly 18,000 participants showed 

that TBS < 1.23 was associated with highest risk of major osteoporotic fracture {McCloskey et 

al 2016}. The studies did not involve advanced CKD but some had studied the effect of age on 

bone. Therefore, some participants may have had mild to moderate CKD. In our study, more 

CKD patients had TBS < 1.23 compared to controls despite similar mean TBS in the two groups. 

Meanwhile, other studies have reported lower TBS in dialysis patients compared to healthy 

controls {Yavropoulou et al 2017; Yoon et al 2018}.  
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TBS was positively associated with LS BMD in this study but no relationship was found 

between TBS and AAC score. Meanwhile, a study by Aleksova et al involving 146 patients with 

CKD stages 5-5D showed that TBS was positively associated with LS BMD and inversely 

associated with AAC score {Aleksova, Kurniawan, & Elder 2018; Aleksova, Kurniawan, Vucak-

Dzumhur, et al 2018}. Further study is needed to confirm the exact relationship between TBS 

and LS bone microstructure in advanced CKD population who have high prevalence and more 

severe AAC. 

DXA BMD T-score (rather than absolute BMD value) is reported widely in clinical practice to 

determine if an individual has normal or low BMD. T-score is the number of standard 

deviation that individual’s BMD is above or below the mean of 30-year old men/women. 

According to WHO criteria, osteoporosis is defined by BMD T-score < -2.5 and osteopenia is 

defined by BMD T-score between -1.0 and -2.5. Rather than reporting on associations 

between BMD T-score and bone microstructure as previously reported by other studies, we 

explored the difference in bone microstructure in CKD with normal (T-score ≥ -1.0) and low 

BMD (T-score < -1.0). We found that CKD patients with low BMD at the hip or 1/3 radius also 

had worse bone microstructure at the radius and tibia. Cortical bone tended to be thinner 

and more porous, and trabecular bone tended to be thinner and there were less trabeculae. 

Thus far, our results suggest that there were significant bone microstructure abnormalities in 

patients who have low BMD by DXA. 

Bone volume assessment is recommended by the KDIGO CKD-MBD guideline in addition to 

bone turnover and mineralization assessment of bone biopsy to diagnose ROD. Meanwhile, 

the usual fracture sites for CKD are the hip, vertebrae, wrist and ankle but pelvic bone fracture 

(i.e. bone biopsy site) is extremely rare. Thus, clinical relevance of bone volume assessment 
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on biopsy is questionable. However, we have shown that there is a positive relationship 

between iliac bone biopsy trabecular bone volume and TH BMD T-score.  Further analysis 

showed that patients with low TH BMD T-score had low iliac bone volume due to thinner 

trabeculae and not because of lower trabecular number. In contrast, a study by Adragao et al 

involving 38 haemodialysis patients showed that femoral neck BMD by DXA was not 

associated with trabecular bone volume of iliac bone biopsy {Adragao et al 2010}. This 

difference may be because Adragao et al measured femoral neck BMD and our study 

measured TH BMD. TH BMD measurement is known to have lower precision error and smaller 

BMD change with hip rotation compared to femoral neck BMD {Rosenthall 2004}. A study by 

Cohen et al in non-CKD patients showed that TH BMD and iliac bone volume had similar 

association as shown in our study {Cohen et al 2010}. 

Despite the relationship between trabecular bone volume on bone biopsy and TH BMD T-

score, we found that there was no relationship between bone volume on biopsy and BMD or 

bone microstructure of the peripheral bones (distal radius and tibia). A study by Cohen et al 

examined 54 non-CKD adults and showed that trabecular bone volume on bone biopsy was 

only modestly associated with trabecular bone microstructure of distal radius on HR-pQCT ( 

rho = 0.3) {Cohen et al 2010}. Marques et al examined 31 CKD patients who were mostly on 

dialysis and have SHPT, and also found only modest associations between trabecular bone 

structure on biopsy and trabecular microstructure of distal radius by HR-pQCT {Marques et al 

2017}. Our results indicate that bone microstructure on bone biopsy and HR-pQCT of 

peripheral bones correlate poorly which may be due to the different functions of these bones. 

The tibia, and to a lesser extent the radius, are load-bearing bones whereas the iliac crest is 

non-weight bearing.  
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The proportion of our CKD patients with low bone volume on bone biopsy is the same as in 

the study by Adragao et al which indicated that CKD patients in our study was representative 

of advanced CKD population {Adragao et al 2010}. Our CKD participants were enrolled purely 

for research and not for any medical indications such as bone pain or unexplained fracture. 

We also used the same cut off value of BV/TV < 16.8% as Adragao et al to diagnose low 

trabecular bone volume on biopsy. This cut off value was taken from historical 

histomorphometric results of 84 normal individuals published by Malluche et al {Malluche et 

al 1982}. We found that TH BMD T-score could identify patients with low bone volume on 

bone biopsy but the AUC was < 0.80 which meant that TH BMD T-score is not robust enough 

as a clinical diagnostic test. A study by Blomquist et al involving 46 dialysis patients reported 

that TH BMD had AUC of 0.75 to identify patients with low bone volume on bone biopsy 

{Blomquist et al 2015}. It should be noted that 80% of patients in that study were assessed as 

having low bone volume on bone biopsy and it was based on qualitative assessment rather 

than quantitative histomorphometry. 

Cortical porosity measurement using HR-pQCT could also identify patients with low bone 

volume on biopsy in our study. Again, the AUCs were < 0.80 and thus, not robust enough as 

an alternative to bone biopsy. The diagnostic accuracies of TH BMD by DXA and cortical 

porosity measurements by HR-pQCT were similar and combining the two imaging techniques 

did not improve their diagnostic accuracy. This is important because it shows that HR-pQCT 

did not perform better than DXA in identifying advanced CKD with low bone volume on 

biopsy. Overall, both imaging techniques are still not robust enough to replace trans-iliac 

bone biopsy but this may be due to the fact that we were scanning bone sites (peripheral 

skeleton) which were away from the biopsy site (axial skeleton). Furthermore, Hiller et al also 
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showed in a small study of 12 cadavers that there was significant intra-individual 

heterogeneity of bone microstructure from one bone site to another {Hiller et al 2017}.  

This study has several limitations. We had small sample size for CKD patients with bone biopsy 

data but nonetheless, we have shown that the proportion of patients with low bone volume 

was similar to other study. We did not perform quantitative computed tomography (QCT) of 

LS vertebrae to determine its BMD separate from AAC. Lateral LS DXA was performed but we 

did not measure LS BMD using these lateral view images. Although this has been done in 

previous studies to separate LS BMD from AAC, anterior-posterior view of LS images is the 

gold standard for measuring BMD by DXA and lateral view can under-estimate BMD 

{Toussaint et al 2010}. We analysed the results of our pre-dialysis and dialysis patients 

together although dialysis patients may have worse bone microstructure {Carvalho et al 

2016}. Furthermore, our dialysis patients included haemodialysis (HD) and peritoneal dialysis 

(PD) patients; and HD patients may have worse bone microarchitecture than PD patients 

{Pelletier et al 2012}. However, analysing the subgroups would have resulted in small 

numbers and thus, our findings need to be interpreted in the context of CKD stages 4-5D. 

This study also has several strengths; we were able to show the difference between bone 

microstructure in advanced CKD and their age and gender-matched healthy controls. We 

simultaneously performed bone imaging using DXA and HR-pQCT and thus were able to show 

the relationship between the different bones in CKD. Finally, we performed bone biopsy, 

which is an invasive procedure, in asymptomatic patients who were representative of most 

advanced CKD patients in clinical practice. 

Conclusion, TH BMD T-score by DXA is associated with bone microstructural impairment in 

advanced CKD. CKD patients with low TH BMD have lower BMD and worse bone 
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microstructure in the peripheral skeleton and lower bone volume on trans-iliac bone biopsy. 

Bone imaging is currently not robust enough to be an alternative to bone volume assessment 

on bone biopsy despite the improvement in imaging techniques. 
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5.1 Introduction 

ROD is characterized by abnormal bone turnover, mineralization and volume which can only 

be assessed on bone histomorphometry (gold standard test) {KDIGO 2009}. However, bone 

biopsy is invasive and rarely performed due to patients’ reluctance or limited expertise in the 

procedure and bone histomorphometry.  Hence, current clinical practice still relies on iPTH 

although it has been shown to have low sensitivity and specificity to assess bone turnover {F. 

C. Barreto et al 2008; Herberth et al 2009; Sprague et al 2016}. The poor diagnostic accuracy 

of iPTH limits its use to guide therapies that target BMD or bone turnover.  

Very high levels of both bALP and iPTH are strongly predictive of high bone turnover in CKD 

{Bervoets et al 2003; Coen et al 1998; Couttenye et al 1996; Fletcher et al 1997; Lehmann et 

al 2008; Sprague et al 2016; Urena et al 1996}. However, bALP has better predictive ability 

than iPTH for low bone turnover {Bervoets et al 2003; Couttenye et al 1996; Sprague et al 

2016; Urena et al 1996}. There are other bone turnover biomarkers which are directly 

released during the process of bone resorption (e.g. collagen type 1 cross-linked C-

telopeptide [CTX] and tartrate-resistant acid phosphatase 5b [TRAP5b]) and bone formation 

(e.g. procollagen type I N-terminal propeptide [PINP]), thus are potentially more accurate in 

assessing bone turnover in CKD. 

The changes in BMD and microarchitecture associated with high or low bone turnover cannot 

be adequately assessed by DXA which is a 2-dimensional imaging technique {Nickolas et al 

2013}. However, HR-pQCT can detect microstructural changes in both the cortical and 

trabecular bone compartments. Previous studies using HR-pQCT showed that CKD patients 

had thinner cortical bone and lower trabecular bone volume compared to healthy controls 

{Bacchetta et al 2010; Cejka, Patsch, et al 2011; Negri et al 2012}.   
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The emergence of bone biomarkers and HR-pQCT offer the possibility of replacing bone 

biopsy, but their diagnostic accuracy for predicting bone turnover in advanced CKD is 

unknown. We aimed to simultaneously test if biomarkers and HR-pQCT can identify advanced 

CKD patients with low and high bone turnover as shown on histomorphometry. We also 

tested whether these non-invasive tests have better diagnostic accuracy than iPTH. 

 

5.2 Methodology 

5.2.1 Study Design and Population 

This was a cross-sectional study in CKD stages 4 - 5 (including dialysis) patients, aged 30-80 

years old. The exclusion criteria included fracture/orthopaedic surgery in the preceding six 

months; started/changed the dose of phosphate binders, vitamin D or calcimimetics within 

four weeks of study entry; and received anti-resorptive, anabolic agent or systemic 

glucocorticoid in the preceding six months. All patients attending our Nephrology centre who 

fulfilled the inclusion and exclusion criteria were invited to take part in the study. We also 

recruited age- and gender-matched controls with estimated glomerular filtration rate (eGFR) 

≥60 ml/min/1.73m². The exclusion criteria were similar to CKD group and we also excluded 

participants with known osteoporosis. The study adhered to the Declaration of Helsinki and 

was approved by the South Yorkshire Research Ethics Committee. All participants gave 

written informed consent. All samples and imaging studies were obtained purely for research 

and are summarised below. The full methodology is described in Chapter 2 of this thesis. 
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5.2.2 Bone Biomarkers 

Fasting morning blood samples were taken, stored at -800C and analysed at the end of the 

study. For haemodialysis patients, blood samples were taken on the day after their 

haemodialysis session. We measured serum iPTH, bALP, intact PINP, CTX, TRAP5b and 25-

hydroxyvitamin D using the IDS-iSYS auto-analyser (Immunodiagnostic Systems, United 

Kingdom). Total PINP was measured using the Cobas e411 automated immunoassay (Roche 

Diagnostics, Germany). We measured fasting serum calcium, phosphate, total alkaline 

phosphatase (tALP) and creatinine on Roche Cobas c701/702 analyser (Roche Diagnostics, 

England) on the same day as sample collection. eGFR was calculated using the Modification 

of Diet in Renal Disease (MDRD) equation. 

 

5.2.3 Bone Imaging 

HR-pQCT of the distal radius and tibia were performed using XtremeCT (Scanco Medical AG, 

Switzerland) using a standard protocol. The images were analysed with standard software 

(Scanco Medical AG, version 6.0) for volumetric BMD (mg/cm3) and microarchitectural 

parameters. The extended cortical measurement was also performed.  

DXA of the lumbar spine (L1 - 4), hip and forearm were performed using Hologic Discovery A 

densitometer (Hologic Inc, USA).  Mean areal BMD (g/cm2) was calculated using Hologic APEX 

software (version 3.4.2).  
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5.2.4 Bone Biopsy and Histomorphometry 

Trans-iliac bone biopsy was only performed in CKD patients using tetracycline bone labelling. 

A trans-iliac bone biopsy was performed under local anaesthetic using an 8-gauge Jamshidi 

4mm trephine and needle. The samples were analysed using the Bioquant Osteo 

histomorphometry system (Bioquant Image Analysis Corporation) which uses standardised 

nomenclature {Parfitt et al 1987}. The samples fulfilled the histomorphometry minimum 

acceptable total section area in the standard analysis region of 30mm2 {Recker et al 2011}. All 

histomorphometry analysis was performed by a single operator and normal bone turnover 

was defined as BFR/BS of 18-38 um3/um2/year {Malluche et al 2011}. 

 

5.2.5 Statistical Analysis 

To examine the relationship between HR-pQCT measurements and BFR/BS, we used HR-pQCT 

Z-scores to control for the effect of age and gender on bone microarchitecture. We selected 

43 controls who were age- and gender-matched to the 43 CKD patients with bone 

histomorphometry and the control mean and standard deviation were calculated. The Z-

scores were obtained by subtracting the control group mean from HR-pQCT raw values in CKD 

patients, which was then divided by the control group standard deviation.  DXA BMD Z-scores 

were obtained from the Hologic software which uses a larger number of participants to 

represent the normal population. 

For receiver operating characteristic (ROC) analysis to assess the diagnostic accuracy of BTMs 

and imaging, CKD patients were grouped into Low/Not Low and High/Not High bone turnover 

categories based on bone turnover on histomorphometry (BFR/BS). The proportion of low 
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bone turnover (26%) and high bone turnover (40%) in this study were used as the prevalence 

of the disease. We classified area under the ROC curve (AUC) of 0.6-0.7 as poor, 0.7-0.8 as 

fair, 0.8-0.9 as good and 0.9-1.0 as excellent diagnostic accuracy. Combining variables for ROC 

analysis were performed using regression analysis. Diagnostic accuracy summary statistics 

included sensitivity and specificity.  We also included the Youden criteria which is the cut off 

level that optimizes the diagnostic tool differentiating ability when equal weight is given to 

sensitivity and specificity. The associated positive (PPV) and negative predictive values (NPV) 

for the Youden criteria were also specified.  

 

5.3 Results 

5.3.1 Participants and the Bone Turnover on Histomorphometry 

The demographics of 69 advanced CKD stages 4 - 5 (including dialysis) patients and 68 age- 

and gender-matched control participants are shown in Table 5.1. There were 44 pre-dialysis 

CKD patients with median (IQR) eGFR of 13 (11 - 16) ml/min/1.73m2 and 25 dialysis patients 

(haemodialysis and PD). Median (IQR) eGFR for controls was 81 (72 to >90) ml/min/1.73m2.  

49 bone biopsies were performed but only 43 samples were adequate for histomorphometry 

analysis. Amongst these 43 patients, 28 (65%) were pre-dialysis CKD, mean (SD) age was 59 

(12) years, 77% were male, 26% had diabetes, and 26% had previous fragility fracture. Their 

current medications are shown in Table 5.2 but none were taking calcimimetics. Based on 

BFR/BS on histomorphometry, 26% of patients had low, 34% had normal and 40% had high 

bone turnover.  
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Table 5.1 

Demographics, biomarkers and imaging parameters in CKD and controls. 

Variables CKD (N=69) Control (N=68) p values 

Age, years 62 (12) 62 (12)  

Male, N 53 53  

BMI (kg/m2) 27 (4.1) 28 (4.3) 0.3 

Diabetes 28% 0% <0.001 

Previous fragility fracture 22% 7% <0.05 
    
Biomarkers    

iPTH (pg/mL) 188 (121 – 280) 32 (27 – 45) <0.001 

Intact PINP (ng/mL) 67.5 (42.8 – 107.7) 38.5 (31.8 – 55.3) <0.001 

Total PINP (ng/mL) 125 (72.8 – 237.2) 41.4 (33.7 – 56.7) <0.001 

bALP (µg/L) 22.3 (16.6 – 33.3) 17 (12.9 – 20.2) <0.001 

tALP (IU/L) 88 (73 – 126) 65.5 (55.3 – 78) <0.001 

CTX (ng/mL) 1.49 (0.76 – 2.39) 0.27 (0.19 – 0.5) <0.001 

TRAP5b (U/L) 4.9 (3.2 – 6.9) 3.8 (3.3 – 4.5) 0.001 

Adjusted calcium (mmol/L) 2.28 (0.15) 2.28 (0.07) 0.9 

Phosphate (mmol/L) 1.53 (0.3) 1.06 (0.15) <0.001 

25-hydroxyvitamin D (ng/mL) 22.9 (9.4) 23.9 (7.0) 0.5 
    
HRpQCT distal radius    

Total vBMD (mg/cm3) 266.2 (75.56) 308.47 (74.2) 0.003 

Cortical vBMD (mg/cm3) 782.58 (110.66) 821.04 (88.7) 0.04 

Trabecular vBMD (mg/cm3) 156.69 (46.17) 184.6 (41.42) 0.001 

Cortical thickness (mm) 0.61 (0.27) 0.71 (0.26) 0.06 

Cortical porosity (%) 3.0 (2.3 – 4.2) 3.2 (2.0 – 3.8) 0.4 

Cortical BV/TV (%) 90.0 (85.4 – 92.1) 90.7 (88.6 – 93.4) 0.1 

Trabecular thickness (mm) 0.064 (0.012) 0.073 (0.013) <0.001 

Trabecular number (1/mm) 2.01 (0.363) 2.11 (0.296) 0.14 

Trabecular separation (mm) 0.434 (0.371 – 0.496) 0.4 (0.349 – 0.443) 0.06 

Trabecular BV/TV (%) 13.1 (3.8) 15.4 (3.5) 0.001 
    
HRpQCT distal tibia    

Total vBMD (mg/cm3) 276.99 (63.67) 314.97 (61.2) 0.001 

Cortical vBMD (mg/cm3) 819.85 (88.67) 858.7 (67.89) 0.005 

Trabecular vBMD (mg/cm3) 172.12 (41.06) 189.99 (41.12) 0.01 

Cortical thickness (mm) 1.05 (0.36) 1.25 (0.35) 0.001 

Cortical porosity (%) 7.1 (5.7 – 10.4) 6.8 (4.7 – 10.3) 0.2 

Cortical BV/TV (%) 86.2 (6.0) 88.1 (4.9) 0.05 

Trabecular thickness (mm) 0.075 (0.014) 0.081 (0.013) 0.01 

Trabecular number (1/mm) 1.92 (0.35) 1.97 (0.4) 0.4 

Trabecular separation (mm) 0.444 (0.395 – 0.522) 0.425 (0.359 – 0.523) 0.2 

Trabecular BV/TV (%) 14.3 (3.4) 15.8 (3.4) 0.01 
    
DXA BMD Z-score    

Forearm -0.4 (1.5) 0.2 (1.4) 0.02 

Total hip -0.2 (1.0) 0.6 (1.1) <0.001 

Lumbar spine 0.4 (1.7) 0.5 (1.6) 0.7 
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Table 5.2 

Biomarkers and imaging parameters for low, normal and high bone turnover categories in 

CKD (N = 43). 

Variables Low (N=11) Normal (N=15) High (N=17) p value 

BFR/BS 
(um3/um2/day) 

13.8 (3.6 – 15.5) 27.5 (22.5 – 32.2) 67.4 (46.5 – 112.5) <0.001 

     

Medications     

Vitamin D 45% 13% 47%  

Calcium-based 
phosphate binder 

9% 20% 41%  

Non-Calcium based 
phosphate binder 

0% 7% 6%  

     

Biomarkers     

iPTH (pg/mL) 172 (119 – 292) 172 (86 – 194) 347 (161 – 381) <0.05 

Intact PINP (ng/mL) 44.1 (29.2 -68.4) 81.1 (54.3 – 92.4) 107.9 (63.5 – 182) <0.005 

Total PINP (ng/mL) 76.3 (51.7 – 159.3) 127.3 (68.4 – 221.7) 214 (110.6 – 403) <0.05 

bALP (µg/L) 17.7 (5.6) 25.9 (8.7) 34.4 (13.3) <0.005 

tALP (IU/L) 82 (53 – 86) 94 (82 – 127) 115 (82 – 156) <0.05 

CTX (ng/mL) 1.01 (0.68) 1.46 (0.67) 2.65 (1.68) <0.005 

TRAP5b (U/L) 3.2 (2.9 – 4.3) 5.2 (3.2 – 7.4 ) 5.8 (4.8 – 8.5) <0.05 

Adjusted calcium 
(mmol/L) 

2.27 (2.22 – 2.33) 2.32 (2.26 – 2.35) 2.24 (2.14 – 2.40) 0.6 

Phosphate 
(mmol/L) 

1.48 (1.30 – 1.77) 1.61 (1.43 – 1.83) 1.30 (1.25 – 1.55) 0.1 

25-hydroxyvitamin 
D (ng/mL) 

23 (9.9) 23.7 (8.2) 22.6 (10.3) 0.95 

     

HR-pQCT radius  
Z-score 

    

Total vBMD -0.11 (0.63) -1.06 (0.66) -0.97 (1.08) <0.05 

Cortical vBMD 0.49 (-0.47  to 0.9) -0.63 (-1.4 to -0.14) -0.84 (-1.67 to 0.15) 0.09 

Trabecular vBMD -0.31 (0.83) -1.03 (0.57) -1.11 (1.31) 0.16 

Cortical thickness 0.07 (0.8) -0.76 (0.82) -0.64 (0.98) 0.1 

Cortical porosity -0.51 (-0.95 to -0.02) -0.12 (-0.94 to 1.58) 0.10 (-0.47 to 0.90) 0.15 

Cortical BV/TV 0.72 (-0.08 to 0.97) -0.2 (-1.48 to 0.27) -0.23 (-1.46 to 0.27) <0.05 

Trabecular 
thickness 

-0.43 (-0.82 to -0.18) -1.14 (-1.57 to -0.79) -1.21 (-1.77 to 0.11) 0.07 

Trabecular number -0.03 (1.01) -0.11 (0.84) -0.66 (1.58) 0.39 

Trabecular 
separation 

-0.13 (-0.5 to 0.71) 0.30 (-0.39 to 0.55) 0.59 (-0.50 to 1.18) 0.5 

Trabecular BV/TV -0.30 (0.82) -1.01 (0.57) -1.09 (1.31) 0.17 
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HR-pQCT tibia  
Z-score 

    

Total vBMD -0.34 (0.91) -1.05 (0.90) -0.92 (1.13) 0.21 

Cortical vBMD 0.26 (-0.93 to 0.44) -0.60 (-2.0 to 0.31) -0.21 (-2.0 to 0.13) 0.13 

Trabecular vBMD -0.48 (0.92) -0.63 (0.88) -0.70 (1.11) 0.86 

Cortical thickness -0.18 (0.92) -1.1 (0.86) -0.86 (1.16) 0.1 

Cortical porosity -0.31 (0.52) 0.43 (1.26) 0.31 (1.17) 0.23 

Cortical BV/TV 0.36 (-0.15 to 0.73) -0.43 (-1.82 to 0.70) 0.14 (-2.12 to 0.37) 0.17 

Trabecular 
thickness 

-0.70 (-0.87 to 0.23) -0.93 (-1.62 to 0.21) -0.78 (-1.66 to 0.14) 0.44 

Trabecular number -0.31 (1.23) -0.03 (0.76) -0.07 (0.92) 0.74 

Trabecular 
separation 

0.56 (-0.75 to 0.84) -0.09 (-0.30 to 0.55) -0.04 (-0.44 to 0.52) 0.66 

Trabecular BV/TV -0.46 (0.91) -0.60 (0.88) -0.67 (1.10) 0.86 

     

DXA BMD Z-score     

Forearm -0.24 (0.88) -0.31 (0.99) -0.94 (1.33) 0.18 

Total hip -0.07 (0.76) -0.35 (0.96) -0.38 (1.05) 0.68 

Lumbar spine -0.10 (-0.5 to 0.6) 0.2 (-0.8 to 1.0) 0 (-0.8 to 1.3) 0.86 

 

5.3.2 Biomarkers and Imaging in CKD and Controls 

CKD patients had significantly higher biomarker levels compared to controls (Table 5.1). On 

HR-pQCT, CKD patients had lower volumetric BMD, and lower trabecular thickness and 

trabecular bone volume at the distal radius and distal tibia compared to controls. Additionally, 

CKD patients had thinner cortical bone at the tibia. Figure 5.1 shows examples of 3-

dimensional reconstruction of HR-pQCT images at both sites in this study. 

Areal BMD Z-score by DXA at the forearm and total hip were also lower in CKD compared to 

controls (Table 5.1). 59% of the CKD group had osteopaenia (T score -1.0 to -2.5), and 25% 

had osteoporosis (T score < -2.5) as assessed by BMD at the three sites. In the control group, 

51% had osteopaenia, and 12% had osteoporosis.   
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Figure 5.1 

Examples of HR-pQCT 3-dimensional images of distal radius and distal tibia from a control 

participant and a CKD patient in this study. This CKD patient demonstrated trabecular bone 

impairment whereas the control participant had normal bone microarchitecture. 

 

 

5.3.3 Relationship between Bone Turnover on Histomorphometry and 

Biomarkers and Imaging in CKD 

In 43 CKD patients with bone histomorphometry data, all biomarkers were significantly 

correlated with each other (Table 5.3). iPTH was positively associated with BFR/BS (rho =  

0.42, p<0.01) but the other biomarkers showed higher correlations with bone turnover 

(Figure 5.2). There were significant differences for all the biomarkers between low, normal 

and high bone turnover categories (Table 5.2). 
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Table 5.3 

Correlations between all bone turnover markers in 43 advanced CKD patients with bone 

histomorphometry data. 

 Intact PINP Total PINP bALP tALP CTX TRAP5b 

iPTH 0.619 0.523 0.621 0.508 0.567 0.504 

Intact PINP  0.813 0.866 0.762 0.732 0.741 

Total PINP   0.749 0.698 0.591 0.575 

bALP    0.869 0.710 0.672 

tALP     0.542 0.548 

CTX      0.709 

All Spearman’s rho correlations are significant at ≤0.001 (2-tailed). 

 

Figure 5.2 

All biomarkers showed positive correlations with bone turnover on histomorphometry. 
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Bone turnover on histomorphometry was negatively associated with radius Z-scores for BMD 

and microarchitecture (Figure 5.3) but no significant associations were found with tibia HR-

pQCT Z-scores. Differences were only significant for radius HR-pQCT total BMD and cortical 

bone volume (p<0.05) between the three bone turnover categories (Table 5.2). On DXA, only 

the forearm BMD Z-score was significantly associated with bone turnover (rho = -0.307, 

p<0.05). No significant differences were found for DXA BMD Z-scores between the bone 

turnover categories. 

 

Figure 5.3 

Distal radius HR-pQCT parameters showed negative correlations with bone turnover on 

histomorphometry (N = 43). 
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5.3.4 Diagnostic Accuracy of Biomarkers and Imaging for Low Bone Turnover 

In ROC analysis for discriminating Low from Not Low bone turnover, AUC for bALP was 0.824, 

intact PINP was 0.794 and TRAP5b were 0.799 (Table 5.4). These AUCs were significantly 

better (p<0.05) than AUC for iPTH which was 0.563 (Figure 5.4). Combining biomarkers did 

not improve the AUC. 

Radius HR-pQCT Z-scores for total BMD and cortical bone volume had AUC of 0.811 and 0.802 

respectively for discriminating low bone turnover (Figure 5.4). However, these AUCs were not 

significantly better than iPTH AUC. Tibia HR-pQCT Z-scores only had AUCs ≤0.70. All three sites 

DXA BMD Z-scores also had non-significant AUCs (Table 5.5). Combining bALP and radius total 

BMD Z-score did not improve the AUC (Table 5.4). 

 

Table 5.4 

Diagnostic accuracy of biomarkers and radius HR-pQCT for identifying patients with low 

bone turnover. 

Variables AUC (95% CI) Criterion 
Sensitivity 

(%) 
Specificity 

(%) 
PPV 
(%) 

NPV 
(%) 

Biomarkers 

iPTH 0.563 (0.401 to 0.715) ≤183 pg/mL 70 53 32 85 

Intact PINP 0.794 (0.641 to 0.903) ≤57 ng/mL 80 75 50 92 

Total PINP 0.719 (0.557 to 0.848) ≤124 ng/mL 80 68 44 91 

bALP 0.824 (0.671 to 0.926) ≤21 µg/L 89 77 53 96 

tALP 0.753 (0.598 to 0.871) ≤88 IU/L 91 63 46 95 

CTX 0.766 (0.610 to 0.882) ≤0.84 ng/mL 60 84 55 87 

TRAP5b 0.799 (0.643 to 0.909) ≤4.6 U/L 89 71 47 96 

 

Radius HR-pQCT Z-score 

Total vBMD 0.811 (0.646 – 0.922) >-1.0 100 59 45 100 

Cortical BV/TV 0.802 (0.636 – 0.916) > -0.2 89 63 44 94 

 

Combined variables 
bALP & radius 
total vBMD Z-
score 

0.797 (0.621 – 0.916) Not available 100 58 39 100 
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Figure 5.4 

Biomarkers and distal radius HR-pQCT parameters can discriminate CKD patients with low 

bone turnover. Receiver operating characteristic curves show that the biomarkers bALP, 

intact PINP and TRAP5b (panel A) performed significantly better than iPTH in discriminating 

patients with low bone turnover. Distal radius HR-pQCT parameters (panel B) were not 

significantly better than iPTH despite area under the curves being >0.80. 

 

 

Table 5.5 

Diagnostic accuracy of DXA areal BMD Z-scores for identifying advanced CKD patients with 

low and high bone turnover (N=43). 

Areal BMD Z-score AUC (95% CI) 

Low bone turnover  

Forearm 0.645 (0.483 – 0.786) 

Total hip 0.598 (0.438 – 0.744) 

Lumbar spine 0.554 (0.395 – 0.705) 

  

High bone turnover  

Forearm 0.685 (0.523 – 0.819) 

Total hip 0.580 (0.420 – 0.729) 

Lumbar spine 0.533 (0.375 – 0.686) 
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5.3.5 Diagnostic Accuracy of Biomarkers and Imaging for High Bone Turnover 

In ROC analysis for discriminating High from Not High bone turnover, iPTH had an AUC of 0.76 

which was similar to AUCs for the other biomarkers (Table 5.6). Combining biomarkers did 

not improve the AUC. All bone imaging parameters also had non-significant AUCs (Table 5.5 

and Table 5.7).  

 

Table 5.6 

Diagnostic accuracy of biomarkers for identifying patients with high bone turnover. 

Biomarkers AUC (95% CI) Criterion 
Sensitivity 

(%) 
Specificity 

(%) 
PPV 
(%) 

NPV 
(%) 

iPTH 0.760 (0.603 to 0.878) >327 pg/mL 53 96 90 75 

Intact PINP 0.765 (0.609 to 0.882) >107 ng/mL 53 92 82 74 

Total PINP 0.725 (0.563 to 0.853) >142ng/mL 75 68 60 81 

bALP 0.750 (0.588 to 0.873) >31 µg/L 56 83 69 74 

tALP 0.670 (0.510 to 0.805) >102 IU/L 65 73 61 76 

CTX 0.762 (0.606 to 0.880) >2.39 ng/mL 53 96 90 75 

TRAP5b 0.710 (0.545 to 0.842) >4.6 U/L 81 58 57 82 

 

Table 5.7 

Diagnostic accuracy of HR-pQCT Z-scores for identifying advanced CKD patients with high 

bone turnover (N = 43). 

HR-pQCT Z-scores 
Distal radius AUC  
(95% CI) 

Distal tibia AUC  
(95% CI) 

Total vBMD 0.627 (0.450 – 0.782) 0.553 (0.392 – 0.706) 

Cortical vBMD 0.569 (0.394 – 0.732) 0.579 (0.417 – 0.729) 

Trabecular vBMD 0.625 (0.448 – 0.780) 0.541 (0.381 – 0.696) 

Cortical thickness 0.552 (0.377 – 0.717)  0.525 (0.365 – 0.681) 

Cortical porosity 0.627 (0.450 – 0.782) 0.548 (0.387 – 0.702) 

Cortical BV/TV 0.628 (0.451 – 0.783) 0.576 (0.414 – 0.727) 

Trabecular thickness 0.583 (0.407 – 0.744) 0.575 (0.413 – 0.726) 

Trabecular number 0.603 (0.427 – 0.762) 0.541 (0.381 – 0.696) 

Trabecular separation 0.614 (0.438 – 0.771) 0.533 (0.373 – 0.688) 

Trabecular BV/TV 0.628 (0.451 – 0.783) 0.542 (0.382 – 0.697) 
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5.4 Discussion 

This is the first study to simultaneously compare biomarkers and HR-pQCT to bone 

histomorphometry to determine their diagnostic accuracy in discriminating bone turnover 

status in advanced CKD patients. BALP and radius HR-pQCT can discriminate low bone 

turnover, with their AUCs being >0.80. We also found that iPTH, all the biomarkers and bone 

imaging had similarly suboptimal diagnostic accuracy for discriminating high bone turnover. 

BALP, intact PINP and TRAP5b can discriminate patients with low bone turnover better than 

iPTH, most likely because they do not accumulate in advanced CKD {Koivula et al 2010; 

Yamada et al 2008}. Secondary hyperparathyroidism is a common complication in advanced 

CKD and has a major role in CKD mineral bone disorder (CKD-MBD) {KDIGO 2009}. iPTH is a 

poor diagnostic test to discriminate low bone turnover in advanced CKD patients, partly due 

to the assay used. A second generation iPTH assay measures the whole (1-84) PTH molecule 

and the (7-84) PTH fragment. The fragment accumulates in CKD and has an antagonistic effect 

on bone turnover {Slatopolsky et al 2000}. Despite those limitations, iPTH can still discriminate 

high bone turnover with similar accuracy as other biomarkers used in this study. iPTH has 90% 

positive predictive value (PPV) for high bone turnover which is consistent with previous 

studies {Fletcher et al 1997; Lehmann et al 2008; Urena et al 1996}. The optimal cut off value 

for discriminating high bone turnover in this study is five times the upper limit of normal, 

whereas KDIGO CKD-MBD guideline recommends that iPTH level is maintained 2 - 9 times the 

upper limit of normal in dialysis patients {KDIGO 2009}. The number of dialysis patients in our 

study was too small for further analysis to make a comparison. 

In this study, bALP had AUC > 0.80 and has better diagnostic accuracy for low bone turnover 

than iPTH which are consistent with previous studies {Bervoets et al 2003; Coen et al 1998; 
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Couttenye et al 1996; Urena et al 1996}. BALP and other biomarkers in this study had 

consistently low PPV but high NPV for the optimal threshold (criterion) for low bone turnover. 

We also found that bALP only had 69% PPV for discriminating high bone turnover whereas 

previous studies found > 90% PPV {Fletcher et al 1997; Lehmann et al 2008; Urena et al 1996}.  

Sprague et al. recently published diagnostic accuracy of biomarkers in predicting bone 

turnover in 492 dialysis patients from four countries {Sprague et al 2016}. They showed that 

iPTH had similar diagnostic accuracy to bALP and PINP in predicting high bone turnover. They 

found that bALP and iPTH had the highest diagnostic accuracy for low bone turnover but we 

found that iPTH to be a poor diagnostic test for low bone turnover. They also found that 

combining iPTH and bALP improved the discrimination of both low and high bone turnover 

but this was not the case in our study. There are differences between the study and ours; 

firstly, we included pre-dialysis and dialysis patients which may account for the different 

proportion of patients with low bone turnover. Although our sample size was smaller, the 

proportion of patients with low bone turnover was similar to other studies {Bervoets et al 

2003; Couttenye et al 1996}. In contrast, Sprague et al. reported that around 60% of patients 

had low bone turnover but most of their biopsies were performed for clinical indication 

whereas ours were collected purely for research. Our histomorphometry analysis was 

performed by a single operator to avoid inter-observer variability whereas Sprague et al. had 

bone histomorphometry analysed in several centres with different ranges of bone turnover 

defined as normal. The assays used for iPTH and bALP were also different from ours and 

Sprague et al used total PINP whereas we evaluated total and intact PINP separately.  

PINP is cleaved off from type I collagen during bone formation process. Total PINP assay 

measures the trimeric propeptide and its monomeric fragments, whilst the intact PINP assay 
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only measures the trimeric propeptide {Koivula et al 2010}. The trimeric propeptide is cleared 

from circulation by liver endothelial cells {Melkko et al 1994}, whereas the monomeric 

fragments are cleared by the kidneys, hence the fragments accumulate in advanced CKD 

{Koivula et al 2010}. We have shown that in advanced CKD, (1) only intact PINP can 

discriminate low bone turnover better than iPTH and (2) both have suboptimal diagnostic 

accuracy for high bone turnover. Although total PINP is often used in the field of osteoporosis, 

we do not recommend its use to assess bone turnover in advanced CKD. 

Biomarker profile in dialysis patients may differ from that in non-dialysis CKD even with similar 

bone turnover status because biomarkers, such as CTX, may be dialysed {Alvarez et al 2004}. 

Hence, our haemodialysis patients had blood sample taken the day after a dialysis session but 

we did not assess residual renal function. These issues may have introduced bias in our study. 

However, the number of pre-dialysis patients was small with <10 patients each in the low and 

high bone turnover categories which made further analysis in this subgroup questionable.  

CKD patients in our study had lower BMD on HR-pQCT compared to controls which was mostly 

due to trabecular bone impairment. Additionally, CKD patients also had thinner cortical bone 

at the tibia. Previous studies also found that CKD had lower BMD on HR-pQCT compared to 

controls due to both trabecular and cortical bone impairment {Bacchetta et al 2010; Cejka, 

Patsch, et al 2011; Negri et al 2012}.  However, we did not match our control participants’ 

BMD to CKD patients and we excluded participants with known osteoporosis which may have 

introduced bias.  

We found that radius BMD and microarchitecture were negatively associated with bone 

turnover in advanced CKD. Negri et al. showed similar trend on HR-pQCT in female dialysis 

patients but they used biomarkers as measures of bone turnover rather than bone 
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histomorphometry {Negri et al 2012}. We also found that normal and high bone turnover CKD 

patients had significantly lower radius BMD compared to those with low bone turnover, 

mostly due to lower cortical bone volume. Gerakis et al. described similar finding using DXA 

in haemodialysis patients who had a bone biopsy {Gerakis et al 2000}. We did not find any 

difference in DXA BMD between bone turnover categories. Importantly, DXA was unable to 

discriminate bone turnover status in advanced CKD. 

Distal radius HR-pQCT can discriminate low bone turnover from non-low bone turnover 

patients in this study. However, it is important to recognise that the effects of bone turnover 

on microarchitecture are dynamic whereas HR-pQCT is a static test. Thus the cross-sectional 

use of HR-pQCT is perhaps more appropriate in assessing bone volume (static measurement) 

rather than bone turnover (dynamic measurement) {Marques et al 2017}. Nevertheless, the 

use of bone imaging could be complementary to biomarkers in discriminating bone turnover 

status and deciding treatment decisions, for example, in osteoporotic CKD. 

We included pre-dialysis and dialysis CKD patients and we assessed bone turnover using the 

gold standard bone biopsy but there were several limitations to our study. This was a single 

centre observational study with a small number of participants. However, the proportion of 

patients with low/high bone turnover was similar to previous studies, and we had a broad 

range of bone turnover which is important in assessing diagnostic test accuracy. We were 

unable to assess pre-dialysis and dialysis patients separately. Hence, our results must be 

interpreted in the context of CKD stages 4-5 and dialysis.  

We have interpreted AUC > 0.80 as having good diagnostic accuracy but we need to be 

mindful that AUC values are approximate. As with any discriminative or predictive tool, AUC 
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is also subjected to inaccuracy. The interpretation also needs to take into account the 

importance of missing or misclassifying the diagnosis of ROD using these non-invasive tests. 

In conclusion, bALP, intact PINP, TRAP5b and radius HR-pQCT were able to discriminate low 

bone turnover in advanced CKD patients. Despite poor diagnostic accuracy for low bone 

turnover, iPTH can discriminate high bone turnover with similar accuracy to other biomarkers 

in this study. In clinical practice, iPTH and bALP remain the diagnostic tests of choice to 

discriminate high and low bone turnover. However, we believe that all four biomarkers and 

radius HR-pQCT can potentially be used for patient selection in clinical trials in advanced CKD 

as we continue to search for bone-specific treatment to reduce fracture risk in this population. 
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6.1 Introduction 

Vascular calcification (VC) is part of CKD-MBD, which is an important complication of CKD 

{KDIGO 2009}. VC is highly prevalent in CKD and its severity increases with worsening CKD {J. 

Chen et al 2017; M. Sigrist et al 2006}.  Around 50 - 90% of CKD stages 3-5D had evidence of 

VC and it is associated with increased cardiovascular and all-cause mortality {Z. Chen et al 

2016; Lamarche et al 2018; Matsuoka et al 2004; Rodriguez-Garcia et al 2009; Shantouf et al 

2010}. Data from United States Renal Data System (USRDS) consistently reported that half of 

dialysis and kidney transplant patients died from cardiovascular disease {USRDS 2015; USRDS 

2018}. VC is also associated with fractures which probably compounds increased mortality 

risk in these patients {H. Y. Chen et al 2016; Fusaro et al 2013; Rodriguez-Garcia et al 2009}.  

VC is not exclusive to CKD patients as post mortem study of the general population showed 

that the majority of atherosclerotic plaques in the intimal arterial layer had calcification. 

However, calcification in the media layer of arteries, or arteriosclerosis, is the predominant 

pattern of calcification in CKD {Gross et al 2007; Schwarz et al 2000}. The systemic nature of 

media calcification is highlighted by its presence not only in coronary arteries, but also in the 

large aorta and other peripheral arteries in advanced CKD {Gross et al 2007; S. M. Moe et al 

2002; Qureshi et al 2015; N. Wang et al 2008}. Media calcification leads to vessel stiffness 

which in turn causes end organ damage such as left ventricular hypertrophy, cardiac 

dysfunction and failure {Toussaint, Lau, et al 2009}. Annual data from USRDS shows that 

cardiovascular deaths are mainly due to non-thromboembolic events {USRDS 2015}.  

VC in CKD is a complex process which involves interactions between calcium and phosphate, 

vascular calcification promoters and inhibitors, bone abnormalities of ROD, local and 

systemic inflammation, oxidative stress and various uremic toxins. It is likely that all these 
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factors work synergistically to initiate and then allow the progression of VC in CKD. There is 

uncertainty if some factors play a bigger role than others. A review by Evrard et al 

summarises the complex pathophysiological mechanisms (Figure 1.11) which promotes 

VSMCs transformation into osteoblast-like cells and hydroxyapatite crystal growth in VC 

{Evrard et al 2015}. There is growing knowledge on circulating inhibitors of VC such as 

matrix Gla protein (MGP) and fetuin A. MGP inhibits calcium crystal growth and prevents 

osteoblastic differentiation of VSMCs {Roy et al 2002}. Fetuin A prevents spontaneous 

precipitation of calcium-phosphate product in the vasculature and other extra-skeletal 

tissue {Schafer et al 2003}. A number of studies in dialysis patients have consistently shown 

that low serum fetuin A is associated with VC {H. Y. Chen et al 2016; Kanbay et al 2010; 

Stenvinkel et al 2005; A. Y. Wang et al 2005}. 

There are also circulating markers which are released from bone, such as osteocalcin and 

osteoprotegerin (OPG), which may have effects on VSMCs. Osteocalcin may be a VC promoter 

as high osteocalcin level stimulates VSMCs differentiation and mineralization in experimental 

model {Idelevich et al 2011}. OPG inhibits osteoclast differentiation and maturation in bone 

but circulating OPG may be a VC inhibitor.  Experimental studies have shown that OPG 

reduces osteoblastic transformation of VSMCs and blocks alkaline phosphatase (ALP) activity 

to prevent bone matrix formation and mineralization in the vasculature {Orita et al 2007; Zhou 

et al 2013}. The evidence for these biomarkers relationship with VC is still limited but VC is 

thought to be the result of an imbalance between these circulating promoters and inhibitors.   

KDIGO CKD-MBD guideline suggests that a lateral abdominal X-ray can be used to detect the 

presence of VC as a reasonable alternative to computed tomography (CT) based imaging 

{KDIGO 2017}. Although CT is more sensitive, lateral abdominal X-ray has much lower 
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radiation dose (0.3 mSv) than CT (2 - 10 mSv). Lateral lumbar spine images using DXA can also 

be used to assess abdominal aortic calcification (AAC) and has low radiation dose (0.05 mSv) 

{Schousboe et al 2006}. Meanwhile, HR-pQCT of distal radius and tibia has steadily been used 

in more research into the effects of CKD on bone microarchitecture over the last decade. It 

has high resolution and low radiation dose (0.003 mSV) and peripheral arteries calcification is 

often seen as incidental findings on the scan images. Patsch et al developed a quantitative 

method to measure peripheral arteries calcification on HR-pQCT images {Patsch et al 2014}. 

The technique using HR-pQCT images of the ankle (distal tibia) was validated against coronary 

artery calcification quantified by multi-detector CT in 46 haemodialysis patients. There was a 

significant positive correlations between the two methods (rho = 0.6).  

However, it is unclear if HR-pQCT would identify more advanced CKD patients with VC 

compared to DXA detection of AAC. The relationship between ankle VC and VC biomarkers 

and bone structure is also unknown. Therefore, the aims of our study were: 

1. To compare the presence and severity of vascular calcification in abdominal aorta 

using DXA and peripheral (ankle) arteries using HR-pQCT in CKD and controls 

2. To assess the relationship between ankle VC and its biomarkers in CKD 

3. To assess the relationship between ankle VC and bone structure (on imaging and bone 

biopsy) in CKD. 
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6.2 Methodology 

6.2.1 Vascular Calcification and Bone Imaging 

Participants’ demographics, bone imaging techniques using DXA and HR-pQCT, and bone 

biopsy technique have been described in Chapter 2 of this thesis. VC was assessed for the 

abdominal aorta and ankle arteries. AAC images were obtained from lateral lumbar spine DXA 

and ankle VC images were obtained from distal tibia HR-pQCT. The scoring method and VC 

mass quantification have been described in Chapter 2. 

 

6.2.2 Vascular Calcification Biomarkers 

The full assay methodologies have been described in Chapter 2 of this thesis. We measured 

osteocalcin using the automated Immuno Diagnostic Systems (IDS) iSYS N-mid osteocalcin 

assay. Fetuin A was measured using ELISA by Biovendor. Both species of MGP were measures 

using IDS assays; these were total uncarboxylated (t-uc) MGP and dephosphorylated-

uncarboxylated (dp-uc) MGP. Osteoprotegerin (OPG) was measured using ELISA by Biomedica 

and intact FGF23 was measured using ELISA by Immutopics. We also measured serum 

adjusted calcium, phosphate, iPTH and tALP, bALP and 25-hydroxyvitamin D using methods 

that have been fully described in Chapter 2.  

 

6.2.3 Statistical Analysis 

Full statistical analysis has been described in Chapter 2 of this thesis.  Data are presented as 

mean (standard deviation, SD) or median (interquartile range, IQR). Group differences 
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between CKD and controls were tested using Students t test or Mann-Whitney U test 

depending on the distribution of the variables, or Chi squared test for categorical variables. 

Ankle VC and AAC have skewed distribution, therefore its relationship with biomarkers and 

imaging measurements were tested using Spearman’s correlation for univariate analysis. For 

multivariate analysis, variables with skewed distribution were firstly log10 transformed before 

multiple correlation test was performed. ROC analysis was performed to determine the 

diagnostic accuracy of VC biomarkers in identifying CKD patients with ankle VC. p<0.05 

indicated statistical significance. 

 

6.3 Results 

6.3.1 Vascular Calcification in CKD and Controls 

We recruited 69 CKD stages 4-5D and 68 age- and gender-matched control participants who 

had eGFR > 60ml/min/1.73m2. Higher proportion of CKD patients had AAC and ankle VC than 

healthy controls (Table 6.1). More CKD patients had ankle VC (75%) than AAC (48%) detected 

but the difference was not statistically significant (p = 0.25). The number of CKD patients with 

vascular calcification detected at both or one of the two sites is shown in Figure 6.1. CKD 

patients also had significantly higher ankle VC mass and AAC score compared to controls. 

Ankle VC mass and AAC score were weakly correlated in both groups but only reached 

statistical significance in CKD (rho = 0.28, p<0.05 in CKD and rho = 0.24, p=0.05 in controls). 

The relationship in CKD group is shown in Figure 6.2. 
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Table 6.1 

Vascular calcification characteristics in CKD and controls. 

Vascular calcification CKD (N=69) Controls (N=68) p value 

Imaging    

AAC detected, N (%) 33 (48%) 15 (22%) 0.001 

AAC score 1 (0 – 3) 0 (0 – 0) <0.001 

Ankle VC detected, N (%) 52 (75%) 21 (31%) <0.001 

Ankle VC, mgHA 1.043 (0.05 – 16.52) 0 (0 - 0.55) <0.001 

    

Biochemistry    

Adjusted calcium, mmol/L 2.28 (0.15) 2.28 (0.07) 0.9 

Phosphate, mmol/L 1.53 (0.3) 1.06 (0.15) <0.001 

Ca x PO4, mmol2/L2 3.33 (2.97 – 3.91) 2.39 (2.17 – 2.64) <0.001 

25-hydrovitamin D, ng/ml 22.9 (9.4) 23.9 (7.0) 0.5 

iPTH, pg/ml 188 (121 – 280) 32 (27 – 45) <0.001 

Intact FGF23, pg/ml 484 (258 – 2437) 59 (47 – 72) <0.001 

tALP, IU/L 88 (73 – 126) 66 (55 – 78) <0.001 

bALP, µg/L 22 (17 – 33) 17 (13 – 20) <0.001 

Osteocalcin, ng/ml 105 (59) 16 (5) <0.001 

OPG, pmol/L 8.16 (5.60 – 11.17) 4.06 (3.23 – 5.03) <0.001 

t-uc MGP, nmol/L 2064 (1257 – 2903) 4919 (3194 – 6773) <0.001 

dp-uc MGP, pmol/L 1479 (1055 – 2148) 443 (346 – 557) <0.001 

Fetuin A, µg/ml 239 (39) 266 (49) 0.001 

 

Figure 6.1 

The number of CKD patients with detectable vascular calcification in the ankle arteries 

(ankle VC) and abdominal aorta (AAC). 
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Figure 6.2 

Relationship between AAC score and ankle VC in CKD patients. 

 

 

Ankle VC and AAC were positively correlated with age in CKD (rho = 0.41, p=0.001 and rho = 

0.35, p<0.01 respectively). In the control group, only ankle VC correlated with age (rho= 0.29, 

p<0.05). 28% of advanced CKD patients had diabetes mellitus (type 1 and type 2) whereas 

none in the control group had diabetes. CKD patients with diabetes had significantly higher 

ankle VC compared to non-diabetic CKD (median [IQR] of 24.07 [3.42 – 61.30] vs 0.23 [0- 3.78] 

mgHA, p<0.001) (Figure 6.3). There was no difference between AAC score in CKD patients 

with and without diabetes.  
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Figure 6.3 

Ankle VC mass in advanced CKD patients with and without diabetes. 

 

 

6.3.2 Vascular Calcification Biomarkers 

We found that CKD had significantly higher levels of serum phosphate, calcium x phosphate 

(CaxPO4) product, iPTH and intact FGF23 than the controls (Table 6.1). Serum adjusted 

calcium and 25-hydroxyvitamin D levels were similar in both groups. The vascular calcification 

markers tALP, bALP, osteocalcin, OPG and dp-uc MGP were also significantly higher in CKD 

than controls. Meanwhile, other markers such as fetuin A and t-uc MGP were significantly 

lower in CKD than controls. 

The relationship between vascular calcification and its biomarkers was only analysed for ankle 

VC given that a higher proportion of CKD had ankle VC rather than AAC. Ankle VC positively 

correlated with serum phosphate, CaxPO4 product, iPTH, intact FGF23, tALP, bALP, 
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osteocalcin, OPG and dp-uc MGP (Table 6.2). There was also a trend towards negative 

correlation with fetuin A (rho -0.229, p=0.07). 

 

Table 6.2 

Relationships between vascular calcification and its biomarkers in CKD. 

Biomarkers Ankle VC (N=67) p values 

Adjusted calcium 0.032 0.8 

Phosphate 0.286 <0.05 

Ca x PO4 0.308 0.01 

25-hydroxyvitamin D -0.083 0.5 

iPTH 0.381 <0.01 

Intact FGF23 0.397 0.001 

tALP 0.411 <0.001 

bALP 0.286 <0.05 

Osteocalcin 0.317 <0.05 

OPG 0.395 0.001 

t-uc MGP 0.03 0.8 

dp-uc MGP 0.308 <0.05 

Fetuin A -0.229 0.07 

 

ROC analysis for identifying CKD patients with ankle VC showed that a number of markers had 

AUC ranging between 0.66 and 0.73 (Table 6.3). These markers are phosphate, CaxPO4 

product, iPTH, intact FGF23, tALP, osteocalcin, OPG and dp-uc MGP. In ROC AUC comparison 

analysis, none of these markers had significantly higher AUC than the other. Furthermore, 

combinations of biomarkers did not improve the AUC.  
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Table 6.3 

Diagnostic accuracy of biomarkers for identifying patients with ankle VC. 

Biomarkers AUC (95% CI) Criterion 
Sensitivity 

(%) 
Specificity 

(%) 
PPV 
(%) 

NPV 
(%) 

Phosphate 0.692 (0.568 -0.799) >1.44 mmol/L 65 73 90 38 

Ca x PO4 0.710 (0.587 – 0.815) >3.31 mmol2/L2 62 80 91 38 

iPTH 0.725 (0.602 – 0.828) >194 pg/mL 59 100 100 42 

Intact FGF23 0.722 (0.598 – 0.825) >408 pg/mL 67 80 92 41 

tALP 0.662 (0.536 – 0.773) >124 IU/L 35 100 100 31 

Osteocalcin 0.676 (0.547 – 0.789) >104 ng/mL 50 93 96 37 

OPG 0.715 (0.586 – 0.822) >6.54 pmol/L 77 67 88 48 

dp-uc MGP 0.690 (0.560 – 0.802) >1497 pmol/L 60 93 97 41 

 

6.3.3 Vascular Calcification and Bone Microstructure 

Ankle VC in CKD had statistically significant correlations with distal tibia cortical bone 

microstructure measured by HR-pQCT (Table 6.4). Ankle VC was associated with lower cortical 

bone BMD and bone volume, and thinner and more porous cortical bone. No association was 

found with trabecular bone of distal tibia. 

Ankle VC only weakly correlated with distal radius cortical BV/TV measured by HR-pQCT (rho 

= -0.27, p<0.05). There were only trends towards lower BMD, thinner and more porous 

cortical bone of distal radius on HR-pQCT. Ankle VC in CKD did not correlate with DXA BMD T-

score for total hip. There was a trend towards negative correlation with 1/3 distal radius BMD 

T-score (rho = -0.22, p = 0.07).  
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Table 6.4 

Relationships between ankle VC and bone characteristics on imaging in CKD. 

Imaging sites Ankle VC (N=67) 

DXA BMD T-score Rho p values 

Total hip -0.17 0.2 

1/3 distal radius -0.22 0.07 

   

HR-pQCT radius   

Total vBMD -0.24 0.08 

Cortical vBMD -0.23 0.09 

Trabecular vBMD -0.12 0.4 

Cortical thickness -0.24 0.08 

Cortical porosity 0.23 0.09 

Cortical BV/TV -0.27 <0.05 

Trabecular thickness -0.12 0.4 

Trabecular number -0.10 0.5 

Trabecular separation 0.12 0.4 

Trabecular BV/TV -0.12 0.4 

   

HR-pQCT tibia   

Total vBMD -0.23 0.07 

Cortical vBMD -0.44 <0.001 

Trabecular vBMD 0.05 0.7 

Cortical thickness -0.35 <0.01 

Cortical porosity 0.40 0.001 

Cortical BV/TV -0.50 <0.001 

Trabecular thickness 0.03 0.8 

Trabecular number 0.02 0.9 

Trabecular separation -0.06 0.6 

Trabecular BV/TV 0.05 0.7 
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6.3.4 Vascular Calcification and Bone Biopsy 

43 out of 69 CKD participants had evaluable bone biopsy samples for histomorphometry. 

There was no correlation between ankle VC and bone turnover (BFR/BS). All patients with 

bone biopsy data in this study had normal mineralization status based on O.Th < 20 µm and 

MLT < 100 days. Ankle VC did not correlate with these mineralization parameters. Bone 

volume/tissue volume (BV/TV) on histomorphometry was also not correlated with ankle VC. 

All the correlations remained non-significant when patients without ankle VC were excluded. 

Overall, ankle VC did not correlate with bone turnover, mineralization or volume on bone 

histomorphometry in this study. 

 

6.3.5 Independent Factors for Vascular Calcification 

Univariate analyses identified a number of factors which significantly correlated with ankle 

VC in CKD. In multivariate analysis using all these significant variables and eGFR, the adjusted 

R2 was 0.617 which meant that 61.7% of ankle VC variability was explained by the combination 

of all the variables listed in Table 6.5. However, none of the variables reached statistical 

significance to be an independent factor for ankle VC.  
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Table 6.5 

Multivariate analysis of the factors associated with ankle VC in CKD. The model R2 = 0.617. 

Variables Standardised coefficients, β p values 

Demographics   

Age 0.431 0.80 

eGFR 0.171 0.49 

Diabetes 0.386 0.07 

   

Biomarkers   

Phosphate 0.846 0.07 

Log CaxPO4 -0.371 0.41 

Log iPTH -0.171 0.56 

Log intact FGF23 0.377 0.09 

Log tALP -0.178 0.72 

Log bALP 0.563 0.31 

Osteocalcin -0.045 0.89 

OPG -0.077 0.74 

Log dp-uc MGP -0.042 0.86 

   

HR-pQCT tibia   

Cortical vBMD 0.723 0.30 

Cortical thickness -0.050 0.89 

Log cortical porosity 0.000 1.0 

Cortical BV/TV -0.581 0.26 
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6.4 Discussion 

Advanced CKD patients stages 4 - 5D had more VC than their age and gender-matched healthy 

controls in this study which is consistent with previously published studies {Krasniak et al 

2007; Rodriguez-Garcia et al 2009}. A study by Rodrigues-Garcia et al involving 193 dialysis 

patients showed that the prevalence of aortic calcification was 79% compared to 38% in the 

general population {Rodriguez-Garcia et al 2009}. These proportions are similar to the ankle 

VC detected in the CKD and control groups in our study. However, ankle VC mass in the CKD 

group of our study was lower (median of 1.04 mgHA) than ankle VC mass reported by Patsch 

et al (median of 6.65 mgHA) {Patsch et al 2014}. This was expected because they studied 

dialysis patients only and we included pre-dialysis and dialysis patients in our study.  

Age is a known strong risk factor for VC and previous studies in dialysis patients showed 

increasing severity of vascular calcification with age, often regardless of other factors such as 

dialysis vintage, dyslipidaemia, PTH level and hypertension {Adragao et al 2009; Fabbian et al 

2005; Krasniak et al 2007; S. M. Moe et al 2003; Nitta et al 2018}. However, young or 

paediatric patients with advanced CKD also has VC {Kanbay et al 2010; Shroff et al 2008}, 

suggesting that other factors also play active roles in VC. Diabetes mellitus is another strong 

risk factor as shown by previous studies in dialysis and non-dialysis CKD {Garcia-Canton et al 

2011; Gorriz et al 2015; Malluche et al 2015; Patsch et al 2014}. Diabetes is associated with 2 

- 5 times increased likelihood of having more severe VC. In our study, we found that age was 

associated with ankle VC and AAC in CKD. However, CKD patients with diabetes had more 

severe ankle VC whereas there was no difference in AAC score between CKD with and without 

diabetes. This suggested that ankle VC was an active process rather than just passive changes 

associated with ageing. The relationships between ankle VC and the risk factors assessed in 
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CKD in our study is summarised in Figure 6.4. Although collectively these factors explain 62% 

of the variability in ankle VC mass, none of the factors was identified as an independent factor 

for ankle VC which confirms that ankle VC in advanced CKD is multi-factorial. 

 

Figure 6.4 

Summary of the relationships between ankle VC and its biomarkers and bone in CKD. 

 

 

There are biochemical abnormalities of CKD-MBD which are promoters of vascular 

calcification, namely calcium, phosphate, iPTH and alkaline phosphatases.  A study by Block 

et al using a database with over 40,000 haemodialysis patients showed that abnormalities of 

these CKD-MBD biochemistry were associated with increased mortality {Block et al 2004}. 

Hypercalcaemia and hyperphosphataemia are known to be positively associated with VC 

{London et al 2008; Raggi et al 2002} . The Chronic Renal Insufficiency Cohort (CRIC) study was 

a large study involving 1500 patients with mild-moderate CKD which showed that serum 

phosphate was associated with the prevalence and severity of coronary arteries calcification 
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{Scialla et al 2013}. In our study, serum phosphate in CKD was higher than healthy controls 

and it was positively associated with ankle VC. Raised serum phosphate encourages vascular 

smooth muscles cells (VSMCs) to differentiate into osteogenic phenotype, leading to mineral 

deposition {Giachelli 2003; Jono et al 2000}.  

CKD patients in our study had similar serum calcium as healthy controls and it was not 

associated with ankle VC. However, CaxPO4 product was positively associated with ankle VC. 

An ex vivo study by Shroff et al assessing human blood vessels from pre-dialysis and dialysis 

patients showed that only the combination of high calcium and high phosphate medium (and 

therefore, high CaxPO4 product) increased VC significantly in these patients {Shroff et al 

2010}. This suggested that CaxPO4 product play a role in VC in advanced CKD. However, there 

are also a number of studies that found no relationship between VC and CaxPO4 product. A 

study by Sigrist et al also showed that calcium, phosphate and CaxPO4 product were not 

associated with VC progression in CKD stages 4-5D {M. K. Sigrist et al 2007}. Furthermore, a 

study by Fabian et al showed that CaxPO4 product was similar in dialysis patients with and 

without AAC {Fabbian et al 2005}. VC and CaxPO4 product relationship was also assessed in 

an interventional trial called Treat to Goal Study which assessed VC progression in 200 dialysis 

patients who were randomised to calcium-based phosphate binder and sevelamer (non-

calcium based binder) {Chertow et al 2002}. Calcium-based binder group had higher serum 

calcium level and higher VC progression despite similar serum phosphate and CaxPO4 product 

levels in both groups. These contrasting findings have only emphasised that calcium, 

phosphate and CaxPO4 product should still be simultaneously assessed in relation to VC. 

CKD patients in our study had similar 25-hydroxyvitamin D level as healthy controls and it was 

not associated with ankle VC. VC association with 25-hydroxyvitamin D have been mixed; 
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some studies showed no associations {Kanbay et al 2010; Ulutas et al 2018}, but most showed 

inverse association between VC and 25-hydroxyvitamin D level {Fusaro et al 2013; Garcia-

Canton et al 2011; Krasniak et al 2007; S. Y. Lee et al 2012; Matias et al 2009; F. Wang et al 

2015}.  

High tALP and bALP are known to promote VSMCs transformation into osteoblast-like cells in 

experimental model {N. X. Chen et al 2002}. In our study, CKD patients had significantly higher 

tALP and bALP than healthy controls although it is known that alkaline phosphatases levels 

are not affected by reduced renal clearance {Magnusson et al 2001}. We found that both 

markers were positively associated with ankle VC. Previous studies showed that the 

association between alkaline phosphatases and VC have been mixed. Morena et al reported 

that tALP was positively associated with moderate to severe VC in pre-dialysis CKD although 

the association was not found with bALP {Morena et al 2015}. Ishimura et al did not assess 

tALP but found that bALP was positively associated with VC in dialysis patients {Ishimura et al 

2014}. Sigrist et al also found that tALP was associated with VC progression over 24-months 

in dialysis and pre-dialysis CKD {M. K. Sigrist et al 2007}. Despite these supportive findings on 

the relationship of alkaline phosphatases and VC, several studies did not find any relationship 

between these markers and VC on imaging {D. V. Barreto et al 2008; Jean et al 2009; Ozkok 

et al 2012}. Furthermore, a study by Qureshi et al also did not show tALP and bALP association 

with biopsy proven VC of the inferior epigastric artery {Qureshi et al 2015}.  

SHPT and extremely high FGF23 level are the main hormone abnormalities in CKD-MBD. PTH 

and FGF23 levels rise in response to reduced renal function, reduced renal phosphate 

excretion, and abnormal vitamin D metabolism. Thus, phosphate, PTH and FGF23 are also 

surrogate markers of reduced renal function and it is difficult to infer causal relationship 
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between these markers and VC. In our study, both iPTH and intact FGF23 were positively 

associated with ankle VC. A recent experimental study showed that high PTH medium 

promotes osteoblastic transformation of endothelial cells {Cheng et al 2018}. Furthermore, 

PTH effect on VC may also be indirect via increased bone turnover with secondary 

hyperparathyroidism which releases phosphate from bone and promotes VC. Malluche et al 

showed that the presence and progression of VC was associated with iPTH > 540 pg/mL in a 

study of 213 dialysis patients {Malluche et al 2015}. Although bone biopsy was not performed, 

this level of iPTH is almost certainly associated with high bone turnover. However, VC has also 

been associated with low bone turnover or adynamic bone disease. In a study of 58 dialysis 

patients, London et al showed that severe VC was associated with low PTH and low bone 

turnover confirmed on histomorphometry {London et al 2004}. Another study by Tomiyama 

et al also showed similar association in pre-dialysis CKD {Tomiyama et al 2010}. It is likely that 

reduced phosphate uptake by bone in low bone turnover ROD leads to hyperphosphatemia 

which promotes VC. Despite the positive association between VC and iPTH in our study, we 

did not find any relationship between VC and bone turnover on histomorphometry. 

We found that intact FGF23 was positively associated with ankle VC in our study. It is likely 

that this relationship was indirect through serum phosphate. FGF23 is produced by osteocytes 

in the bone and its main action is via its high affinity to bind with its co-receptor, klotho, in 

the kidneys to promote phosphaturia {Saito et al 2003}. Klotho is not found in VSMCs and two 

in vitro studies also showed that it was phosphate, and not FGF23, which induced VC {Jimbo 

et al 2014; Scialla et al 2013; van Venrooij et al 2014}.  

In addition to the VC promoters discussed so far, there is growing knowledge on circulating 

inhibitors of VC (e.g. MGP and fetuin A) but the evidence is still limited. MGP is a VC inhibitor 
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which is produced by VSMCs and endothelial cells {Luo et al 1997; Schlieper et al 2010}. MGP 

inhibits calcium crystal growth locally and prevents osteoblastic differentiation of VSMCs {Roy 

et al 2002}. MGP is dependent on vitamin K for its activation and undergoes two post-

translational modifications: glutamate carboxylation and serine phosphorylation {Schurgers 

et al 2007}. The active forms of this inhibitor is the carboxylated and/or phosphorylated MGP. 

We measured two different species of MGP in this study; total uncarboxylated (t-uc) MGP 

and dephosphorylated-uncarboxylated (dp-uc) MGP. The t-uc MGP detected is mainly in the 

phosphorylated form which is an active VC inhibitor. We found that CKD patients had lower 

level of t-uc MGP compared to healthy controls but it was not associated with ankle VC mass 

in CKD. A study by Cranenburg et al also showed that t-uc MGP level was lower in dialysis 

patients compared to healthy controls {Cranenburg et al 2009}. Unlike our findings, they 

found that t-uc MGP was inversely associated with VC in dialysis patients.  

The other MGP species measured in our study was the dp-uc MGP which is the inactive VC 

inhibitor. We found that its level was significantly higher in CKD compared to healthy controls 

and it was positively associated with ankle VC. This is consistent with findings by Schurgers et 

al where dp-uc MGP was significantly associated with aortic calcification in 107 patients with 

CKD stages 2 - 5D {Schurgers et al 2010}. The evidence is very limited to suggest if dp-uc MGP 

may be a better marker for VC compared to t-uc MGP in both pre-dialysis and dialysis patients. 

Fetuin A, also known as alpha- 2 Heremans Schmid glycoprotein, is a potent systemic VC 

inhibitor which is produced by the liver. Circulating fetuin A prevents spontaneous 

precipitation of calcium-phosphate product in the vasculature and in other extra-skeletal 

tissues {Schafer et al 2003}. It inhibits VC via several mechanisms: (1) Fetuin A is incorporated 

intracellularly in VSMC to inhibit calcification, (2) prevents VSMC apoptosis and (3) 
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encourages the uptake of apoptotic VSMC by adjacent viable VSMC and thus, reduces local 

inflammation which is another factor promoting VC {Reynolds et al 2005; Schlieper et al 

2010}. A number of studies predominantly in dialysis patients consistently showed that low 

serum fetuin A was associated with VC {H. Y. Chen et al 2016; Kanbay et al 2010; Stenvinkel 

et al 2005; A. Y. Wang et al 2005}. We only found a trend towards lower fetuin A with 

increasing ankle VC mass in our study. This may have been due to small number of patients 

and we included pre-dialysis and dialysis patients. It is well known that dialysis patients tend 

to have more severe VC than pre-dialysis CKD {M. Sigrist et al 2006}. Another possible 

explanation may be due to the relationship between fetuin A and inflammation which was 

not assessed in our study. Fetuin A and C-reactive protein (CRP) are predominantly made in 

the liver and they have an inverse relationship {Ketteler, Bongartz, et al 2003; Lebreton et al 

1979; Stenvinkel et al 2005; A. Y. Wang et al 2005}. Inflammation is a known promoter of VC 

and CRP has been positively associated with VC in a number of studies involving dialysis 

patients {Ishimura et al 2004; Krasniak et al 2007; Stompor et al 2003}. When assessed 

simultaneously, it was CRP but not fetuin A which was independently associated with VC in 

dialysis patients {Jung et al 2006; Schlieper et al 2009}. 

There are also circulating markers released from bone which may have effects on VSMCs (e.g. 

osteocalcin and OPG). Osteocalcin is produced primarily by osteoblasts and thus, is also a 

marker of bone formation. It is a vitamin K-dependent protein which has a high affinity for 

hydroxyapatite and has been found in calcified atherosclerotic plaque and calcified aortic 

valve {Hauschka et al 1989; Levy et al 1983}. The exact role of osteocalcin in VC is not fully 

understood but it is thought to be a VC promoter as high osteocalcin level stimulates VSMCs 

differentiation and mineralization in experimental model {Idelevich et al 2011}. We found that 

osteocalcin level was significantly higher in advanced CKD than in controls. The marked 
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increase is due to a combination of high bone turnover disease in some of our CKD patients 

and accumulation of osteocalcin with reduced renal clearance {Yamada et al 2008}. Although 

some osteocalcin is removed during dialysis, the level rebounds within several hours {Carlson 

et al 2017}. We found that osteocalcin was positively associated with ankle VC, thus 

supporting the evidence that osteocalcin is a VC promoter. However, findings from other 

studies have been different to ours despite only involving dialysis patients who were expected 

to have higher osteocalcin level than pre-dialysis CKD. Three studies found no relationship 

and one study found an inverse association between osteocalcin and VC {Avila et al 2017; 

Fusaro et al 2017; Ishimura et al 2014; Ramirez-Sandoval et al 2016}. 

Another bone marker which may have effects on VC in CKD is OPG. It is produced mainly by 

osteoblasts and can be detected in the circulation, but it can also be produced locally by 

VSMCs {Bucay et al 1998}. OPG is a decoy receptor for RANKL and prevents osteoclast 

differentiation in bone {Lacey et al 1998}. Via the same mechanism, it is also thought to block 

the remodelling process in VC {Bucay et al 1998}. Furthermore, OPG can also reduce 

osteoblastic transformation of VSMCs and block ALP activity to prevent bone matrix 

formation and mineralization in the vasculature as shown in experimental studies {Orita et al 

2007; Zhou et al 2013}. Consistent with the mechanisms described, an animal study showed 

that OPG was inversely associated with VC {Bennett et al 2006}. However, human studies have 

shown the opposite, even in those without CKD {Schoppet et al 2003}. Our study and others 

showed that OPG was positively associated with VC in pre-dialysis and dialysis patients {Avila 

et al 2017; S. M. Lee et al 2017; Morena et al 2015; Nascimento et al 2014; Nitta et al 2003; 

Ozkok et al 2012; Pateinakis et al 2013; Ramirez-Sandoval et al 2016}. Although OPG is 

excreted by the kidneys and is not removed by dialysis, studies in dialysis patients showed 

that those with VC had significantly higher OPG level than those without VC {D. V. Barreto et 
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al 2008; Jean et al 2009; Kazama et al 2002; Morena et al 2015}. There are two possible 

explanations for these conflicting observations. OPG secreted by VSMCs may be a local VC 

inhibitor but higher circulating OPG level may not have the same protective effect {Morena 

et al 2012}. OPG production by VSMCs could also be a compensatory mechanism to 

inflammation from pre-existing VC, thus higher level is observed with increasing VC severity 

{Deuell et al 2012}.  

Assessment of ankle VC using HR-pQCT is only available in a few research centre and is 

currently not available in clinical practice. In this study, we have identified a number of 

markers which were associated with ankle VC in CKD. Furthermore, we found that biomarkers 

such as phosphate, CaxPO4 product, iPTH, intact FGF23, tALP, osteocalcin, OPG and dp-uc 

MGP can identify CKD patients with ankle VC. However, these biomarkers are not robust 

enough as diagnostic tests because their AUCs were <0.80. Therefore, imaging of VC is still 

the only way of assessing the presence of VC. 

The bone-vascular abnormalities are an important sequelae of CKD-MBD. In a study involving 

193 dialysis patients, Rodriguez-Garcia et al showed that patients with VC had 6 times higher 

risk of vertebral fractures than those without {Rodriguez-Garcia et al 2009}. Female patients 

with vertebral fractures in the study also had 5 times increased risk of mortality. More 

recently, Chen et al reported a study involving 685 dialysis patients and found that patients 

with VC had double the risk of fractures compared to those without VC {H. Y. Chen et al 2016}. 

This may be partly explained by the association between lower BMD and VC in these patients 

{Adragao et al 2008; Z. Chen et al 2016; Malluche et al 2015}. A longitudinal study also showed 

that VC progression was associated with bone loss in CKD {Watanabe et al 2012}. 

Simultaneous assessment of bone and VC at the distal tibia using HR-pQCT in our study 
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revealed that lower cortical BMD and worse cortical bone microarchitecture at the tibia were 

associated with ankle VC. Meanwhile, ankle VC had no relationship with total hip BMD or 

distal radius BMD and microstructure. Our findings are similar to a study by Cejka et al which 

assessed coronary artery calcification (CAC) and bone characteristics using DXA and HR-pQCT 

in 66 dialysis patients {Cejka et al 2014}. The study found that high CAC was associated with 

lower BMD and lower trabecular bone volume at the distal tibia. No association was found 

between CAC and DXA BMD. Our study and Cejka et al study confirmed that VC was associated 

with lower BMD and microarchitecture of distal tibia only but not with the sites typically 

assessed using DXA. 

Studies assessing the direct relationship between VC and bone turnover, mineralization and 

microstructure using bone biopsy is very limited. Two studies in dialysis patients found that 

low bone volume on iliac bone biopsy, but not bone turnover, was associated with increased 

VC {Adragao et al 2009; Barreto et al 2005}. However, we did not find any relationship 

between VC and bone turnover, mineralization or volume on bone biopsy in our study. This 

could be due to small number of patients with bone biopsy data and the inclusion of pre-

dialysis and dialysis CKD. Dialysis patients tend to have worse VC and worse bone 

characteristics than pre-dialysis CKD. 

There are several strengths in this study. We used two different imaging techniques (DXA and 

HR-pQCT) which allowed simultaneous assessment of VC and bone. Assessment of ankle VC 

using HR-pQCT is relatively new but it has been validated against the more sensitive VC 

imaging using computed tomography of coronary arteries in CKD {Patsch et al 2014}. There is 

also growing evidence on the importance of bone microstructure assessment in CKD-MBD 

which can be done using HR-pQCT.  We also assessed the relationship between VC and bone 
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in CKD using bone biopsy to determine the direct association between VC and bone turnover, 

mineralization and volume. Finally, we simultaneously assessed VC, its biomarkers and bone 

characteristics in CKD and healthy controls.  

There are also several limitations to our study. We did not assess coronary artery calcification 

using computed tomography in this study but VC is a systemic process. Inflammation is a 

known promoter of VC but we did not assess this in our study. We also did not assess other 

factors such as hyperlipidaemia or hypercholectrolemia but evidence showed that VC in 

advanced CKD is independent of these traditional VC risk factors {Fabbian et al 2005; Krasniak 

et al 2007}. We also had a small number of patients with bone biopsy data but bone biopsy 

was not performed with the primary aim to assess its relationship with VC in this study. 

To conclude, ankle VC assessed by HR-pQCT is an alternative method to detect VC in advanced 

CKD. Ankle VC in CKD was associated with age, diabetes, mineral abnormalities, VC 

promoters, low BMD and worse bone microarchitecture. Currently, no interventions involving 

the correction of biochemical abnormalities in CKD-MBD could reverse VC once it is 

established although there is some evidence of VC attenuation. Given the high risk of 

cardiovascular disease and fracture in advanced CKD, future research on the bone-vascular 

effects of bone-specific therapy in advanced CKD is needed. HR-pQCT will allow simultaneous 

assessment of bone microarchitecture and VC in these patients. 
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Fracture risk is increased in patients with advanced CKD due to bone turnover and 

mineralization abnormalities known as renal osteodystrophy (ROD). It is common in this 

patient population and results in bone microstructural and mechanical changes which are 

associated with increased bone fragility. Bone-specific treatment to reduce fracture risk have 

been used in patients with osteoporosis with clear benefit on fracture risk reduction. Some 

of these treatment (e.g. denosumab and teriparatide) are not contraindicated in advanced 

CKD but a bone biopsy (gold standard test) is required to diagnose their bone turnover before 

commencing treatment. This would allow the treatment to be tailored to individuals bone 

turnover status. For example, denosumab is an antiresorptive agent and therefore, should 

only be given to patients with normal or high bone turnover. Meanwhile, teriparatide is an 

anabolic agent which should be avoided in patients with high bone turnover disease. 

However, bone biopsy is rarely performed because it is invasive and painful. Repeated bone 

biopsy to assess treatment effect is also impossible. Therefore, there is a real need to explore 

if new non-invasive techniques of assessing bone turnover and microstructure could replace 

the role of bone biopsy to diagnose and classify ROD. 

We have answered this question by simultaneously testing the diagnostic accuracy of novel 

bone turnover markers (BTMs) and high resolution bone imaging to predict ROD subtypes. 

We found that BTMs such as bALP, intact PINP and TRAP5b, and bone imaging of distal radius 

using HR-pQCT were able to discriminate low bone turnover in advanced CKD patients. These 

non-invasive tests are robust as diagnostic tools and have the potential to be translated into 

clinical practice. 

Vascular calcification (VC) is also common in advanced CKD. Although ROD and VC are both 

part of CKD-MBD, their direct relationship is uncertain due to limited number of studies 
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especially those involving bone biopsy. We assessed this relationship in advanced CKD 

patients by using a new quantitative method of measuring VC in the ankle arteries and directly 

assessing its severity with bone biopsy and bone microstructure using HR-pQCT. We found 

that ankle VC was associated with worse bone microstructure of cortical bone at the distal 

tibia. We also found that ankle VC was associated with CKD-MBD serum biochemistry such as 

phosphate, iPTH and intact FGF23; mineralization markers such as ALP and osteocalcin; and 

inactive vascular calcification inhibitor such as dp-uc MGP. 

The major strength of this study is bone biopsy which is the gold standard test to diagnose 

ROD. Furthermore, our bone biopsy histomorphometry included both dynamic and static 

measurements to assess bone turnover, mineralization and volume as recommended by 

KDIGO CKD-MBD guideline. Participant recruitment into a bone biopsy study is challenging 

but we managed to recruit all participants purely for research and not for clinical indications. 

Therefore, our participants were representative of advanced CKD population with CKD-MBD 

who are mostly asymptomatic. Furthermore, we used HR-pQCT scan to assess bone 

microstructure in the peripheral bones which are also known fracture sites in CKD. Our 

simultaneous assessment of VC and bone microstructure by HR-pQCT is new but important 

in advanced CKD in whom VC and ROD are common. HR-pQCT is only available in a small 

number of centres worldwide which are focussed on bone research.  

There are several limitations to this study. This was a single centre observational study with a 

small number of participants. For the primary aim of assessing diagnostic accuracy of non-

invasive tests to predict ROD subtypes on bone biopsy, we managed to recruit a 

representative sample of advanced CKD patients with ROD. The proportion of patients with 

low, normal and high bone turnover was similar to previously published studies, and we had 
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a broad range of bone turnover which is important in assessing diagnostic test accuracy. 

However, we were unable to assess pre-dialysis CKD and dialysis patients separately, or 

haemodialysis and peritoneal dialysis separately because of small sample size. Small sample 

size in bone biopsy study is not exclusive to our study. This has been acknowledged by the 

CKD-MBD Working Group under the European Renal Association and European Dialysis and 

Transplant Association (ERA-EDTA). We have established collaboration with other European 

centres to collect all bone biopsy data from CKD into a registry known as the European ROD 

(EUROD) Initiatives under the umbrella of ERA-EDTA. 

Our bone histomorphometry analysis was only performed for trabecular bone. Some bone 

samples were missing the inner cortex when the biopsy sample was extracted from the 

patients. All samples had the outer cortex but the risk of crush artefact on the outer cortex is 

higher. Cortical bone analysis such as bone thickness and volume may be useful in CKD 

because cortical bone microstructure is affected in CKD. However, information on bone 

turnover and mineralization which are required for ROD classification should be obtained 

from trabecular bone as it is the more metabolically active bone compartment. 

Histomorphometry limited to trabecular bone is also the standard analysis in clinical setting. 

We found that distal radius HR-pQCT can discriminate low bone turnover from non-low bone 

turnover patients in this study. However, we recognise that the effects of bone turnover on 

microstructure are dynamic and may take a long time (potentially up to a couple of years) to 

show the associated changes. Meanwhile, any imaging technique is a static test. Thus, the 

cross-sectional use of HR-pQCT is perhaps more appropriate in assessing bone volume (static 

measurement) rather than bone turnover (dynamic measurement). This could be confirmed 

with a longitudinal study assessing bone turnover on bone biopsy and bone microstructure 
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using HR-pQCT. However, a study using repeated bone biopsy is challenging for the reasons 

already mentioned.  

The future direction of my research may involve the use of the non-invasive diagnostic tools 

identified in this study to assess the treatment effect of bone specific therapy in advanced 

CKD. Bisphosphonates used to be the only treatment to reduce fracture risk but it is 

contraindicated in advanced CKD. New treatment, namely denosumab and teriparatide, have 

been developed over the last decade and are not contraindicated in advanced CKD. However, 

these treatment has different effect on bone turnover (anti-resorptive versus anabolic) and 

therefore must be tailored appropriately to patients bone turnover status. Incorrect 

treatment, for example further suppression of low bone turnover by denosumab in patients 

with pre-existing low bone turnover/ABD may be detrimental to bone health. This tailored 

approach and its benefit to bone and fracture risk need further research. This could be done 

in a randomised clinical trial in which bone turnover markers we have identified could predict 

participants’ baseline bone turnover status. Assessing fracture outcome in this clinical trial 

would require a large number of participants and costly. However, the use of BTMs and HR-

pQCT as surrogate markers could improve our understanding of the mechanism and 

structural changes by which these new treatment may reduce fracture risk in advanced CKD. 

Furthermore, denosumab often requires supplementary calcium and vitamin D to prevent 

severe hypocalcaemia in advanced CKD and there is a concern that these may also worsen 

VC. HR-pQCT would allow simultaneous assessment of bone and VC in this type of clinical 

trial. 

The use of BTMs to identify ROD may also be used in future research to further understand a 

particular type of ROD. Historically, the predominant ROD is high bone turnover disease but 
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this may have changed now to predominantly low bone turnover/ABD as demonstrated by 

two large bone biopsy series published in the last decade. Whilst PTH is known to be the main 

drive for high bone turnover disease, the exact mechanisms leading to ABD is not fully 

understood. The reason why advanced CKD patients with similar degree of SHPT may have 

different ROD subtypes is unknown. Our study has shown that CKD patients with low bone 

turnover disease have better bone microstructure compared to those with high bone 

turnover disease. However, bone quality, which is one the main determinants of bone 

strength, in ABD is unknown. BTMs and HR-pQCT can be used towards further research to 

answer these questions. 
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Renal Bone Study 

Protocol reference: STH17141 

Lifestyle Questionnaire 

 

 

 

Please fill in this form as best you can. It will take approximately 20 minutes. If you need any 

help filling in this form please ask when you attend for your appointment. 

 

 

About You 

 

First Name: ........................................... Middle Initial..........  Surname..................……….....  

Address: ..........................................................................................…………………………….......  

.......................................................................................................................................…...  

Telephone number: ....................…..………......(home)  

.......................…………………(work/mobile)  

Gender: male / female    

Occupation (current or before retirement): ………………………….……………...………........……….....  

Date of Birth:   ...........  / ............  / ...............  Age:…………...........………..... 

GP name: ….…...........................................................................……....…….......……........…...  

GP address: …………............................................................................……………...........…….. 

..................................................................................................................................……. 

………………………………………………………………………………………………………………………………………. 
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About your lifestyle 

How much milk do you use each day (e.g. in drinks, on cereal)?  

Less than ½ pint      ½ to 1 pint        More than 1 pint    

   

How often do you eat cheese and/or yoghurt?  

Never        Less than once a week            Once/twice a week           Most days    

 

Do you take any of these supplements?  

Cod Liver Oil          Glucosamine            Chondroitin         Multivitamins      

Calcium            Vitamin D            Other (please state)........................................... 

 

On average, how often do you spend at least half an hour out of doors?   

Never        Less than once a week           Once/twice a week            Most days   

   

Do you take regular exercise, including activity at work?  

YES      NO    

If YES: What type of exercise (e.g. walking, gardening)............................................................. 

How long do you exercise for each day _  _  hours   _  _  minutes 

On how many days of the week do you exercise?     _   days 

  

Do you drink alcohol? 

YES      NO    

If YES: How many days a week do you drink alcohol?      _   days 

On average, how many units of alcohol do you have each week?    _  _  units 

(1 unit = a  single measure of whisky, 1/3 of a pint of beer or ½ a standard glass of red wine) 

  

Do you smoke?   

YES     NOT NOW, but in the past        NEVER      

If YES:    How long have you smoked for?    _  _  years    _  _  months 

If NOT NOW:   How old were you when you stopped?    _  _  years 
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About your health 

 

Do you have any other health problems diagnosed by your GP or at hospital?  

YES      NO    

If YES, please describe............................................................................................................ 

................................................................................................................................................ 

................................................................................................................................................ 

................................................................................................................................................ 

 

Have you ever had any operations? 

YES       NO    

If YES, please describe (with dates if possible)…................................................................... 

.................................................................................................................................…………... 

................................................................................................................................………….... 

………………………………………………………………………………………………………………………………………… 

 

Are you currently taking any medication?     

YES       NO    

If YES, please list all tablets, medicines, creams, inhalers and injections that you are taking, 

with doses if possible.  Please include prescribed treatment and treatment you buy yourself.  

Medication Dose 

  

  

  

  

  

  

  

 



253 
 

 

 

Have you ever taken steroid tablets (e.g. prednisolone)  

YES          NOT NOW, but in the past       NO        

If YES: Approximately when did you start taking them?    _  _  years    _  _  months ago  

What dose are you taking?…………………………………………………………................................  

What is the highest dose that you have taken?.................................………………………….  

If NOT NOW: Approximately when did you stop?     _  _  years    _  _  months ago 

   

Are you allergic to anything?  

YES         NO    

If YES: What you are allergic to?.............................................................................................. 

 

 

Have you taken treatment to make your bones stronger? 

(e.g. Alendronate, Alendronic acid (Fosamax), Etidronate (Didronel PMO), Ibandronate  

(Bonviva), Risedronate (Actonel), Raloxifene (Evista), Strontium ranelate (Protelos),  

Teriparatide (Forsteo), Zoledronate (Aclasta))      

YES         NOT NOW, but in the past         NO    

If YES: Which one(s) …………………….............................................……….……………………………….... 

When did you start taking them?    _  _  years    _  _  months ago 

If NOT NOW: When did you stop taking them?   _  _  years    _  _  months ago  
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Fractures 

Have you ever broken or fractured any bones?   

YES          NO    

If YES, please fill in the table below:  

Which bone? 
Age broken 

or fractured 
How did it happen? How was it treated? 

    

    

    

    

   

Have you had any falls in the last 6 months?    

YES          NO    

If YES:  How many?……...……………………………………. 

Did you fall because you felt dizzy or had a blackout? (please give details)................... 

..…….……………................................………..................................................................................…

…..................................…….…......................................................................................  

 

 

Have you ever had severe back pain lasting more than a few days?  

YES         NO    

If YES: When and how do you think it started? ......................................................................... 

.................................................................................……..............................….................  

   

Have you had any back or spine x-rays taken in the last 12 months?  

YES         NO    

If YES: At which hospital? ……………….............................................................................…………. 
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Family history 

Do any of your close relatives have osteoporosis (thin bones)?  

YES      NO      

If YES: What is their relationship to you? ..........……………………………………………...... 

   

Have any of your close relatives broken a hip?  

YES      NO      

If YES: What is their relationship to you? ..................................................................  

How old were they when they broke their hip?   _  _  years  

 

Reproductive Health (females only) 
 

How old were you when your periods started?     _  _  years 

  

Are you still having regular periods (8 or more each year)?  

YES      NO    

If NO:  How old were you when you had your last period?  _  _  years  

   

Did your periods ever stop for more than 3 months? (except during pregnancy and at the 

menopause)     YES      NO      

If YES: Please say when and why ............................……………………………………………................ 

............................................................................................................................................... 

 

Have you ever used any of the following forms of contraception? 

Combined oral contraceptive pill       YES now      NOT NOW, but in the past    NEVER    

If NOT NOW: How long did you have them for?    _  _  years    _  _  months 

  When did you stop taking them?     _  _  years    _  _  months 

 

Contraceptive injections  YES now      NOT NOW, but in the past    NEVER    

If NOT NOW: How long did you have them for?    _  _  years    _  _  months 
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  When did you stop taking them?     _  _  years    _  _  months 

 

How many pregnancies beyond 20 weeks have you had?    _  _   

 

Have you ever breast fed?   

YES      NO                

If YES: How many children have you breast fed?  _  _ 

 Approximately how long did you breast feed each child for? _  _  months   

 When did you last stop breast feeding?  _  _  years    _  _  months ago 

 

Do you experience menopausal symptoms now?  

YES      NO                

Have you ever taken Hormone Replacement Therapy (HRT)?  

YES now          NOT NOW, but in the past    NO       

If YES now or NOT NOW: How old were you when you started taking it?  _  _  years     

     How old were you when you stopped taking it? _  _  years     

  

Have you had a hysterectomy?  

YES      NO    

If YES: How old were you?  _  _  years 

   Had your periods stopped before you had the hysterectomy?  YES      NO      

Did you experience menopausal symptoms after the hysterectomy? (e.g. flushing, night 

sweats)  YES      NO      

If YES, when:  Straight away    Months later    Years later    

 

Have you had either of your ovaries removed?  

YES      NO    

If YES:  How old were you?   _  _  years  

How many ovaries were removed?  One     Two    

Thank you for completing this questionnaire. 


