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Abstract 

Dye transfer in the laundry occurs whereby dye molecules are removed from darker garments and 

deposit onto lighter garments. This results in greying and discolouration of the lighter coloured 

garments, shortening the lifespan of the clothing, or resulting in the need to separate washes into 

‘light’ and ‘dark’ laundry loads. Therefore, dye transfer inhibitors are added to laundry detergent 

formulations to prevent dye transfer and preserve the appearance of consumer garments. 

This thesis explores a variety of means to combat dye transfer, including biopolymeric particles and 

synthetic polymers which act in a variety of ways to preserve garment appearance. Firstly, 

biopolymeric hydrogels were investigated for their ability to adsorb dyes from aqueous solution. 

Chitosan hydrogels were found to be particularly effective, owing to the presence of free primary 

amine groups which may electrostatically attract anionic dye molecules. Therefore, microsphere 

biopolymer particles were explored for their ability to encapsulate dye molecules in simulated 

laundry wash loads to prevent dye transfer. It was found that dye transfer was reduced in the 

presence of anionic particles, suggesting the particles deposit onto the fabric and repel dye 

deposition. 

Polymers which were designed to interact with the fabric and repel dye deposition were then 

researched, and methoxy-poly(ethylene glycol)-co-polyesters were found to be effective at 

preventing the deposition of indigo dye, alongside methoxy-poly(ethylene glycol)-co-poly(amino 

acid)s. Polymers based on -benzyl-L-glutamate were found to be most effective at preventing the 

deposition of indigo. The synthetic polymers therefore provide a large amount of scope for future 

detergent applications of dye transfer inhibition polymeric agents. 
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Chapter 1. Introduction 

1.1 Dye Transfer  

Dye transfer occurs in the laundry process, whereby a ‘fugitive’ dye molecule detaches from one 

fabric and deposits on another garment.1,2 This leads to the greying and discolouration of lighter 

garments. Dye bleeding is caused by a number of factors, including the pH of the aqueous medium, 

fabric agitation, washing time and temperature.3 This problem is particularly noticeable for the non-

reactive classes of dyes, which are non-covalently bound to the garment, that are used to colour 

fabrics such as cotton. These classes include direct, sulfur and vat dyes, which alongside reactive 

dyes account for 85% of the dyes that are used to colour cotton fabrics.4,5 In addition, fibrillation of 

cellulosic fibres can occur, whereby mechanical damage is caused to the fibre that results in 

coloured fibrils detaching and depositing onto another garment, causing colour change.6 

1.2 Fibre Types 

Six of the main commercial fibre types used in modern clothing are: regenerated celluloses, cotton, 

nylon, polyester, acrylic and wool. These fibres will be investigated in this thesis, owing to their 

popularity.7,8 The wide variety of fibre types and blends, together with their varied properties, 

provide a complex challenge to preventing dye transfer in the laundering process. 

1.2.1 Cellulosic Fibres 

Fibres such as acetate, modal, viscose and lyocell are regenerated cellulosic fibres.9,10 These are 

differentiated by how cellulose pulp is processed to create the polysaccharidic fibre (Figure 1-1).7,11 

Cotton and linen, however, are naturally occurring cellulosic fibres, grown by plants with no 

chemical modification. Due to their high hydroxy content and irregular fibre structure, cellulosic 
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fibres are hydrophilic, and therefore absorb relatively large amounts of water.12,13 By assessing the 

dye transfer onto regenerated cellulose and cotton, it is possible to predict the affinity of this class 

of fibres for dye deposition. 

Figure 1-1. Structure of cellulose repeat unit. 

1.2.2 Nylon 

Nylons are a family of polyamides, whereby nylon-6,6 and nylon-6 are the two most commonly used 

fibres for garments, however many other varieties are available.7,14 Nylon-6,6 and nylon-6 are 

aliphatic polyamides containing six carbon atoms in their respective monomers. There are two main 

routes to produce nylon fibres: through a polycondensation reaction between adipic acid, a six 

carbon dicarboxylic acid, and hexamethylene diamine to produce nylon-6,6 or; via ring opening of 

ε-caprolactam to produce nylon-6 (Figure 1-2).15,16 

Figure 1-2 Top: Reaction of adipic acid with hexamethylene diamine to produce nylon-6,6. Bottom: 

Ring opening of ε-caprolactam to produce nylon-6. 

Due to the amide groups generated in the polymerisations, both nylon-6 and nylon-6,6 contain 

hydrogen bond donors and acceptors. Due to the synthetic nature of the fibres, the polymers are 
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more crystalline than those of natural origin, and therefore have fewer sites available for the 

association of water, resulting in an hydrophobic fibre.13 Nylon therefore may interact with dye 

molecules through either hydrogen bonding or through hydrophobic interactions.17 

1.2.3 Polyester 

Polyester fabric is formed from a synthetic, hydrophobic fibre of poly(ethylene terephthalate).18,19 

It is produced by the condensation of terephthalic acid or dimethyl terephthalate with ethylene 

glycol to produce an aromatic polymer (Figure 1-3). 

Figure 1-3 Condensation reaction between dimethyl terephthalate and ethylene glycol to produce 

PET. 

Polyester-dye interactions may occur due to hydrogen bonding via the ester bond, π-π interactions 

due to the aromatic groups presented by the polymer, and hydrophobic interactions. 

1.2.4 Acrylic 

Acrylic fabrics are synthetic fibres composed of at least 85% acrylonitrile monomer (Figure 1-4), 

below this the fabric is termed ‘modacrylic’.20,21 The difference between the various types of acrylic 

fibres is due to the presence of a variety of comonomers such as vinylidene chloride, methyl 

acrylate, vinyl acetate, styrene, and methyl methacrylate, or the inclusion of grafted poly(vinyl 

pyrrolidone).22 The inclusion of the various other monomer units causes significant variations in 

properties of the modacrylic class of fibres, therefore only acrylic fibres will be investigated in these 

studies. 
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Figure 1-4 Repeat unit of polyacrylonitrile. 

Polyacrylonitrile forms a pseudo-crystalline structure within the fibre, thereby meaning the fabric is 

less hydrophobic than other synthetic fibres as it is a less rigidly structured polymer than nylon and 

polyester, and so has a reduced degree of packing of polymer chains.7 Additionally, the nitrile group 

provides the capability for a charged dye to interact via ion-dipole interactions. 

1.2.5 Wool 

Wool is formed from a naturally occurring protein, keratin, which is woven to produce wool fabrics. 

Wool is an hydrophilic fibre, able to absorb up to 200% its dry weight in water.17 As it is a protein 

based fibre, the primary structure of wool contains a variety of amino acid residues, which have 

varying R groups, such as methyl groups in the amino acid alanine, acid groups in glutamic acid or 

amine groups in lysine (Figure 1-5). These R groups enable the keratin to form secondary and tertiary 

structures, and also provide binding sites for external species such as dyes or detergent additives.23 

Wool provides a particularly complex problem for dye transfer, owing to its complex chemical 

composition and the rough, scaly structure of the fibre itself. 

Figure 1-5 Generic structure of a polypeptide which can have various functional groups at the ‘R’ 

position (red) and the R groups of alanine, glutamic acid and lysine respectively. 

Whereby, R may = 
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Silk fibres are also naturally occurring protein fibres, however these fabrics are commonly dry 

cleaned, and therefore dye transfer onto silks in the wash is a less common issue.13 Consequently, 

this fabric will not be investigated as part of this research. 

1.3 Common Dye Classes 

1.3.1 Direct Dyes 

Direct dyes are anionic and commonly water-soluble.24 They are considered to be easy to use, cost 

effective and provide a good colour range for cotton fabrics.25,26 The dyeing of cotton with direct 

dyes occurs in two steps: adsorption of the dye to the surface of the fibre, followed by dye 

penetration into the fibre by diffusion. Because direct dyes are water-soluble and possess good 

substantivity for the cotton fibres, diffusion of the dye into the fibre often occurs rapidly.27 This may 

result in a patchy, unlevel, dyed fabric. In order to control the levelness of the dyeing, a lower 

temperature may be used in the first instance to ensure that adsorption of the dye to the fibre 

occurs. Increasing the temperature and the pH then allows controlled dye diffusion into the fibre.24 

A high pH will reduce the charge barrier between anionic dyes and a fabric surface populated with 

hydroxy groups, such as cellulose. Additionally, auxillaries may be used in the dyeing process to 

reduce the diffusion rate, such as surfactants that encapsulate or complex the dye, allowing time 

for an evenly dyed effect to develop.28 

Since cotton contains hydroxy groups which can deprotonate in water, anion-anion repulsion may 

occur between the dye and the cotton.29 Because the dye is not fixed to the fibre by a covalent bond 

and experiences ionic repulsions, which can be interrupted by surfactants, direct dyes can give poor 

wash fastness.30,31 The wash fastness may be improved with pre- or post-treatment of the cotton 

either to create cationic groups at the surface, reducing the ionic repulsion, or to fix the dye to the 

fibre.29,32 However, this procedure is energy consuming, which alongside the environmental impact 
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of the use of auxiliaries and electrolytes, and the poor wash fastness of direct dyes, nullifies the 

benefits of low cost direct dyes. Therefore, attention has moved to other classes of dye for cotton 

dyeing. 

1.3.2 Disperse Dyes 

Disperse dyes are used to dye polyester, acrylic and nylon fabrics via a two-step process whereby 

the fabric is added to a dye bath at 140 °C, and then the excess dye is removed by the action of a 

reducing agent.33 Disperse dyes are used for dyeing hydrophobic fabrics, such as polyester, and as 

such are non-ionic and aromatic in nature. The dye molecules therefore lack solubilising groups, and 

are typically smaller than other dye classes.34 Due to this, auxiliary dispersion agents in the dye bath 

are required to enable the dissolution of the dyes at high temperatures, which then allows the 

adsorption of the dye onto the fibre surface, before finally becoming incorporated into the fibre 

structure.35 The need to remove residual, unbound dye from the dye bath results in the potential 

for coloured, polluted effluents from the dye houses, as well as for surface residual dye to remain 

on the fabric and thus cause colour change on laundering of the finished garment with other 

clothes.36 

1.3.3 Sulfur Dyes 

Sulfur dyes possess superior wash fastness compared to direct dyes and have excellent colour 

properties for darker hues. For example C.I. Sulfur Black 1 (SB1) is the most widely used black dye 

for cotton.37,38 However, the structures of commercial sulfur dyes are relatively unknown as the dye 

is brought about by addition of disulfur and sodium sulfide to nitro-substituted phenols to create 

sulfur linkages between the chromophores.4,37 Therefore, the dye can have a varying extended 
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structure owing to different disulfide linkage positions and amounts.38 For example, SB1 is formed 

from 2,4-dinitrophenol (Figure 1-6).39 

Figure 1-6 Conversion of 2,4-dinitrophenol into a proposed structure for C.I. Sulfur Black 1. 

In dyeing cotton, sulfur dyes are reduced by cleavage of the disulfide bonds, using sodium sulfide as 

the reducing agent, to produce the water-soluble, leuco form of the dye, which can diffuse into the 

cotton fibre.29,37,38 The dye is then oxidised to its water-insoluble, parent form and becomes trapped 

within the cotton fibre, giving the colour moderate wash fastness.29,40 Thus the dye is mechanically 

entrapped within the fibre due to its insolubility in aqueous media.27 However, the disulfide bonds 

render sulfur dye vulnerable to hydrolysis, resulting in colour fading with ageing and laundering of 

the garment.37,40,41 

In a similar manner to direct dyes, sulfur dyes added to cellulosic fibres can undergo after-treatment 

using cationic fixing agents to improve wash fastness.42 However, there are environmental concerns 

about the use of fixing agents and electrolytes, as well as unease surrounding the use of sodium 

sulfide as a reducing agent, since toxic hydrogen sulfide may be released.6,38 Additionally, any dye 

left unoxidised is anionic and therefore more readily soluble in water, resulting in greater chance of 

colour change in the laundry upon liberation from the fabric.31 The processing history of the fabric 

is a key issue in dye transfer, but is relatively unknown by clothing manufacturers. 

1.3.4 Vat Dyes 

Vat dyes are largely water-insoluble and, in a similar manner to sulfur dyes, must be reduced to their 

soluble leuco form using sodium dithionite, in order to penetrate cotton fibres.43,44 The dye is then 
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oxidised, reforming the parent structure within the fibre. Vat dyes can be further reduced to their 

acid leuco form, which may be used for dyeing polyamide fibres, including nylon. The dyeing 

procedure of acid-leuco vat dyes combines the redox chemistry of vat dyeing, with the adsorptive 

characteristics of direct dyeing.45 This indicates the applicability of vat dyes to many kinds of textile 

production. However, the large amount of sodium dithionite required to exhaust the dye onto the 

fibre raises serious environmental concern. 

Vat dyes are more expensive than sulfur dyes, and have limited brightness and range of colours 

available.4 However, they show improved light and wash fastness relative to sulfur and direct 

dyes.4,43 Because of this, vat dyes are one of the more important classes of dyes in the textile 

industry; although their use declined with the advent of reactive dyes there is renewed interest in 

natural dyes such as indigo.46,47 Indigo is one of the more commonly known and used vat dyes (Figure 

1-7), used for dyeing denim fibres. 

Figure 1-7 a). Structure of indigo and b). Structure of its alkali leuco form. 

1.3.5 Reactive Dyes 

Reactive dyes are anionic, water-soluble dyes that are unique to the other classes of dye because 

they are designed to covalently bind to cellulosic fibres. 48,49 This results in apparent good to 

excellent wash fastness, alongside other favourable properties such as ease of application and bright 

colour options.4,50 As such, they have become widely used in the dyeing industry over the past two 

decades and are a popular class of dye.51 There are a variety of types of reactive dyes, the most 

a b 
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common using a vinyl sulfone group to react with the hydroxy groups on cotton (Figure 1-8), as well 

as chlorotriazine reactive dyes.52 

Since both the dye and the cellulosic fibre are anionic in the aqueous dye bath, large amounts of 

salts, such as sodium chloride, are used in the dyeing process to promote dyeing of the fibre.53 

Additionally, due to their reactivity towards hydroxy nucleophiles, reactive dyes are prone to 

hydrolysis in the dye bath, whereby the reactive terminus of the dye reacts with free hydroxy anions 

of deprotonated water, removing the reactivity of the dye irreversibly.53 This can lead to highly 

coloured and often toxic effluent that cannot be used further for dyeing, combined with high 

concentrations of salt and other auxiliaries.54 Alongside this, the fabric dyed may have unreacted or 

hydrolysed dye associated with it that is not covalently bound, which may lead to dye transfer 

problems on laundering.54 

Figure 1-8 Covalent binding of a vinyl sulfone reactive dye to a hydroxy nucleophile. 

The R’ group shown in Figure 1-8 relates to the relevant chromophore for the desired dye, while R’’ 

may be any hydroxy containing molecule such as cellulose, but also may be a hydroxy anion, 

resulting in the hydrolysis of the dye. 

1.3.6 Acid Dyes 

Acid dyes are used primarily for the dyeing of naturally occurring protein fibres such as wool and 

silk.55 The dye molecules are water-soluble and contain carboxylate or sulfonate groups to create 

ionic bonds with the fibre, however this requires an acidic dye bath to protonate amine groups 

present in the fibre, in order to allow the ion-ion interaction.56 Due to the reliance on weak 
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electrostatic interactions to dye the fibres, acid dyes have poor wash fastness. This may be improved 

by post treatment of the fibres with tannic acid which complexes with the protein fibre.57 

1.3.7 Basic Dyes 

Basic dyes are water-soluble, cationic dyes with affinity to cellulosic fibres such as cotton or paper, 

as well as wool, acrylic, nylon and polyeter.58,59 Analogously to acid dyes, the fibre must be 

deprotonated to produce an anion capable of electrostatically interacting with the dye molecule, 

which contains amine groups that may be protonated, or cationic groups such as quaternary 

amines.60 Due to the reliance on weak electrostatic interactions which do not penetrate the fibre 

surface, the dye molecules are gradually removed through subsequent washings and therefore 

exhibit poor wash fastness.59 

1.4 Measuring Dye Transfer 

The extent of dye transfer can be quantitatively analysed by colourimetry with a spectrophotometer 

using the Commission Internationale de l’Eclairage (CIE) L*a*b* system, based upon additive colour 

mixing of red, green and blue hues.61 The CIE LAB three-dimensional colour space is able to provide 

coordinates for the measured colour, along the lightness axis (L*), the green to red axis (a*) and the 

blue to yellow axis (b*), whereby the lightness axis goes from dark to light (0 to 100). A schematic 

diagram of the three-dimensional axes is shown in Figure 1-9. This allows the determination of the 

CIE L*a*b* values for the colour of the garment, before and after washing. 
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Figure 1-9 Schematic showing the CIE LAB axes. 

The CIE LAB colour space is perceptibly uniform, whereby the perceptual difference to the human 

eye between two colour coordinates is related to a measure of Euclidean distance.62,63 These 

coordinate points can then be compared before and after washing, and the change in colour (ΔE) 

can be calculated (Equation 1).64 

Equation 1 Determination of ΔE using CIELAB 1976. 

 

∆𝐸 = √(∆𝐿∗)2 + (∆𝑎∗)2 +  (∆𝑏∗)2 

 

1.5 Dye Transfer Inhibitors 

Dye transfer inhibitors (DTIs) are added to laundry detergent formulations to prevent discolouration 

of lighter garments due to the transfer of fugitive dyes from darker coloured garments. There are 

three reported mechanisms of DTI action: degradation or adsorption of the dye once it is in the 

laundry liquor; prevention of the release of the dye from the donor fabric, and; prevention of the 

fugitive dye in the laundry liquor from depositing onto the fabric, via a blocking mechanism.1,65 
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1.5.1 Bleaching Agents as Dye Transfer Inhibitors 

Bleaching and degradation of the fugitive dye allows for the decolouration of the wash liquor, and 

therefore preventing colour change caused by dye transfer. Since the rate of bleaching is 

significantly higher than the rate of dye adsorption by the acceptor fabrics, there is no risk of the 

dye depositing onto the fabric before it has been decoloured.66 Hazenkamp et al. investigated three 

different manganese-salen oxidative catalysts (Figure 1-10) for the decolourisation of C.I. Reactive 

Black 5 (RB5) in aqueous solution to simulate a wash liquor.  

Figure 1-10 Structure of three manganese-salen complexes investigated for bleaching of laundry 

wash liquor. 

Commonly, the use of a bleaching agent in a detergent causes the dye on the fabric to fade as well 

as damaging the fibres.65,66 Additionally, the oxidising agent can interfere with the additional laundry 

detergent components, and are subject to degradation over the period of the wash.67 Hazenkamp 

et al. found that of the three catalysts, b and c did cause garment fading, however, a was able to 

decolour the wash liquor without significantly affecting the colour of the garment.66 Catalyst a is 

shown to have a slower rate of bleaching to the other two catalysts, at 2x10-3 s-1, in comparison to 

9x10-3 and 13x10-3 s-1 for catalysts b and c respectively, which may explain the reduced garment 

fading of catalyst a. However, this rate is sufficient to compete with the rate of dye adsorption onto 

the receiver fabric, and shows the fine-tuned balance between the rate of bleaching and the rate of 

dye adsorption that is required for bleaching-type DTIs to be effective. The authors do not provide 

a b c 
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an explanation as to why one catalyst is more active than another, but the paper finds that the 

activity and stability are not mutually exclusive, and as such a finely-tuned catalyst can be produced. 

While this is an encouraging result for DTI bleaching agents, the study only investigates RB5. This is 

therefore not representative of a wash load as a whole, and would require further investigation to 

observe the effects on other types of dyes. Additionally, the authors found that the activity of the 

catalyst reduced over the period of the wash, set at 30 minutes. Since many washes on a 

conventional UK washing machine are in excess of one hour, this is not a sufficiently long activity for 

the catalyst to act. 

1.5.2 Dye Binding Dye Transfer Inhibitors 

In order to prevent damage to the fibres of the garment, and to eliminate the reduced efficacy of a 

bleaching agent as the wash proceeds, polymers such as poly(vinyl pyrrolidone) (PVP) are commonly 

used to prevent dye transfer in the wash.68,69,70 PVP complexes the dye molecules and prevents them 

from depositing onto the receiver fabric. However, DTIs that work by binding the dye in the wash 

liquor have also been found to remove the dye from the fabric, resulting in poorer wash fastness 

than is expected of the dye, and thus garment fading.71  

Alternatively, the dye binding may occur on a physical substrate, typically a non-woven fabric swatch 

which can be incorporated into the laundry load and removed on completion of the wash, or may 

be a crosslinked PVP nanoparticle.65,72,73 The swatch may contain polymeric dye adsorbants, such as 

PVP or chitosan, which attract the fugitive dye to the fabric and bind it.67 However, this is 

inconvenient for the consumer as it results in the need to remove the swatch from the wash load 

once it is completed, and thus creates a waste product. Additionally, as the substrate cannot be 

uniformly mixed throughout the wash liquor, it cannot give a uniform DTI effect for the garments in 
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the wash. It therefore has reduced efficacy in comparison to a water-soluble DTI agent which can 

be dispersed evenly throughout the laundry liquor. 

1.5.3 Dye Fixatives as Dye Transfer Inhibitors 

The inclusion of a fixing agent in the detergent formulation, to prevent the dye from bleeding into 

the wash liquor, provides a method of reducing dye transfer without promoting dye loss. An 

example of this was reported by Clariant Produkte GmbH, whereby small molecule polyamines such 

as ethylenediamine, diethylenetriamine and triethylenetetramine were reacted with dicyandiamide 

and formaldehyde.71 This creates a dicyandiamide-formaldehyde polymer, which are commonly 

used as flocculants as well as dye fixing agents (Figure 1-11).74 

Figure 1-11 Generic structure of dicyandiamide-formaldehyde polymer. 

The patent claims that the DTI molecules are also able to bind fugitive dye in the wash liquor, and 

thus prevent them from depositing onto receiver fabrics, giving the DTI molecule a secondary mode 

of action to further improve its efficacy. A white swatch of fabric was washed with a black swatch in 

the absence and presence of the DTI molecule. Without the DTI molecule, the ΔE was found to be 

35.1. This value was reduced to 27.8 when the wash was conducted in the presence of the DTI, with 

a reduction in ΔE of 21%. 

However, these DTI agents are for use in a detergent formulation that preferably includes a non-

ionic surfactant, rather than an anionic surfactant.71 This may be due to ion-ion interactions 

between the cationic DTI molecule and the anionic surfactant that would cause the DTI efficacy, as 

well as the surfactant cleansing efficacy, to be reduced. This is therefore not suitable for a 
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formulation which incorporates an anionic surfactant, such as those used in contemporary 

detergents formulations due to their superior cleaning properties. 

Carbohydrates have been modified to contain cationic groups in order to protect the colour of the 

garments and prevent dye bleeding.75,76 For example, imidazole modified cellulose was found to 

perform well for cotton dyed with three different direct dyes.76 The reduced dye fading is attributed 

to the interaction of the carbohydrate with the fibre of the dyed garment, preventing the loss of the 

dye or pigment associated with the fibre.75 These compounds are also able to reduce physical 

damage to the fibre caused by agitation in the wash, providing a secondary benefit.77 However, this 

type of DTI additive is also not compatible with detergent formulations which contain anionic 

surfactants.75 

1.5.4 Dye Blocking Type Dye Transfer Inhibitors 

Henkel proposed water-soluble molecules and polymers that can interact with the fabric and block 

adsorption of the dye, without affecting the properties of the fabric after washing. An example of 

these DTIs are oligourea molecules.78,79 These are formed by reacting a diisocyanate, such as 

toluene-2,4-diisocyanate, with a diamine, such as 2,4-diaminobenezenesulfonic acid, to produce an 

oligomer, capped by phenylisocyanate units (Figure 1-12). 

 

Figure 1-12 Structure of oligourea formed from the reaction of phenylisocyanate, 2,4-

diaminobenezenesulfonic acid and toluene-2,4-diisocyanate. 
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The oligourea molecule was tested for its ability to prevent dye transfer onto a polyamide receiver 

fabric, against C.I. Acid Blue 113, C.I. Direct Orange 39 and C.I. Disperse Blue 79. The extent of 

staining was measured on a scale of one to five, one being the most stained, and five being the least 

stained.79 It was found that in the absence of the oligourea compound, staining onto the polyamide 

fabric was found to be 1.8, 3.0 and 3.1 respectively for the three dyes. In the presence of the 

oligo(urea) however, the staining was reduced, giving staining values of 4.1, 4.6 and 4.1.79 This shows 

a clear improvement in the dye transfer onto the polyamide fabric in the presence of these dyes. 

However, only three dyes in total, and no other receiver fabrics, were tested. 

1.6 Summary, Aims and Objectives 

It is clear that the wide variety of fabric types and dye classes creates a complex issue for preventing 

or reducing dye transfer in the laundering process of garments. The key properties of the fabrics 

discussed have been identified as hydrophilicity or hydrophobicity, and the chemical functionality 

of the fibres, which will be investigated for their effects in the prevention or promotion of dye 

transfer. A selection of dye classes has been identified and these will be assessed for their chemical 

properties. Comparisons will be drawn between these properties and the discolouration caused 

onto different fabric types. This will enable the essential features of a successful DTI to be elucidated 

and the DTI production and performance analysis to be conducted. Such a material must be 

compatible within a detergent formulation and effective against a variety of dye classes, for a variety 

of fibre types. A range of DTI polymer types will be investigated, and therefore each chapter in this 

thesis will examine the benefits of the polymer class, and the DTI mechanism it uses. Therefore, 

each chapter will individually explore the literature of the relevant DTI mechanism and polymer class 

and will then observe any DTI efficacy, and potential improvements, of the polymers examined. 
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Chapter 2. Materials 

2.12 Materials 

All materials were used without further purification. Chemicals used are listed in Table 2-1 and Table 

2-2. The solvents used have been listed in Table 2-3. 

Table 2-1 A list of chemicals used in the experimental work. 

Chemical Supplier Chemical Supplier 

Benzoylated dialysis tubing 

(Mw cut off 2 kDa) 
Sigma-Aldrich methoxy-PEG750 Sigma-Aldrich 

Butylated hydroxytoluene Sigma-Aldrich 1,2-Propanediol Sigma-Aldrich 

Calcium chloride (>93%) Sigma-Aldrich Tartaric acid Sigma-Aldrich 

Chitosan powder (low 

molecular weight), 
Sigma-Aldrich 

Titanium(IV) 

isopropoxide 
Sigma-Aldrich 

C.I. Disperse Orange 3 (90%) Sigma-Aldrich HCl (approx. 37%) Fisher Scientific 

C.I. Reactive Black 5 (≥50%) Sigma-Aldrich NaOH pellets Fisher Scientific 

Dimethyl terephthalate Sigma-Aldrich α-Pinene Fisher Scientific 

Glycidyl trimethylammonium 

chloride (>98%) 
Sigma-Aldrich 

Microcrystalline 

cellulose 
Aldrich 

Glycerol Sigma-Aldrich methoxy-PEG5000 Aldrich 
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Table 2-2 A list of chemicals used in the experimental work. 

Chemical Supplier Chemical Supplier 

Anhydrous N,N’-

dimethylformamide 
Alfa Aesar 

N-(3-diemethylaminopropyl)-

N’-ethylcarbodiimide 

hydrochloride (98%) 

Alfa Aesar 

Alginic acid sodium salt Alfa Aesar Pentaerythritol Alfa Aesar 

2,2-Dimethyl-1,3-

propanediol 
Alfa Aesar L-Phenylalanine Alfa Aesar 

Ethylene Glycol Alfa Aesar Triphosgene Alfa Aesar 

Methylene blue Alfa Aesar 
Tris(hydroxymethyl)aminome

thane 
Alfa Aesar 

methoxy-PEG22-NH2 (MW: 

1000 g mol-1) 
Alfa Aesar 

2-Amino-2-methyl-1,3-

propanediol 
ACROS Organic 

methoxy-PEG113-NH2 (MW: 

5000 g mol-1) 
Alfa Aesar Citric acid monohydrate ACROS Organic 

methoxy-PEG295-NH2 (MW: 

13000 g mol-1) 
Alfa Aesar Crystal violet ACROS Organic 

methoxy-PEG13000 Alfa Aesar N-ε-carboxybenzyl-L-lysine ACROS Organic 

γ-Benzyl-L-glutamic acid Fluorochem methoxy-PEG500 ACROS Organic 

C.I. Disperse Blue 3 ChemCruz Nanocellulose gel Borregaard 

Sodium tripolyphosphate Sigma   
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Table 2-3 A list of solvents used in the experiments. 

Chemical Supplier 

d6-DMSO Euriso-top 

d-CDCl3 Sigma-Aldrich 

Chloroform Sigma-Aldrich 

Diethyl ether Sigma-Aldrich 

Tetrahydrofuran Sigma-Aldrich 

Hexane Sigma-Aldrich 

Ethyl acetate VWR International 

Acetone (reagent grade) VWR International 

Ethanol VWR International 

Anhydrous ethyl acetate Fisher Scientific 

Anhydrous 

tetrahydrofuran 
Fisher Scientific 

2.13 Dye Bleeding Fabrics 

Indigo (310 g m-2), C.I. Sulfur Black 1 (420 g m-2) and C.I. Direct Orange 39 (90 g m-2) dye bleeding 

fabrics were purchased from Swissatest Testmaterialien AG (Switzerland). C.I. Reactive Red 141 

(180 g m-2), C.I. Reactive Brown 7 (90 g m-2), C.I. Reactive Black 5 (180 g m-2) and C.I. Direct Black 22 

(90 g m-2) were supplied by the Centre for Test Materials BV (Netherlands). Dye bleeding fabrics 

were cut to 5x10 cm swatches for each wash. Multifibre swatches (5x10 cm) were supplied by SDC 

Enterprises (Bradford, UK). 
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Chapter 3. Analysis of Dyes for Dye Transfer Inhibition 

Studies 

Abstract 

Poly(vinyl pyrrolidone) is a commonly used dye transfer inhibitor in commercial laundry detergent 

formulations. The capability of poly(vinyl pyrrolidone) to prevent the dye transfer of six key dyes, 

that were identified by Procter and Gamble as causing a high level of discolouration when washed 

with lighter coloured garments, was determined. To confirm that fabric discolouration caused by the 

particular dye molecule of interest, a swatch of fabric dyed with one of each of the key dyes was 

washed with plain water, and the extract characterised by FTIR spectroscopy and UV-Visible 

spectroscopy. In each case, the dye was found to be the expected compound, except in the case of 

indigo which was found to be anionic and water-soluble. The dyed fabrics were washed with PVP 

alongside a multifibre swatch to observe any colour change caused by the dye onto six receiver fabric 

types, and to determine the effectiveness of poly(vinyl pyrrolidone) as a dye transfer inhibitor. 

3.1 Introduction 

Several key dyes were identified in-house at the Procter and Gamble (P&G) Newcastle Innovation 

Centre as causing particularly noticeable dye transfer in the laundry. The identified dyes are outlined 

in Table 3-1. 
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Table 3-1 Six dyes identified by P&G for dye transfer testing. 

Dye 

Indigo 

C.I. Sulfur Black 1 

C.I. Direct Orange 39 

C.I. Reactive Red 141 

C.I. Reactive Black 5 

C.I. Reactive Brown 7 

 

In particular, indigo was identified by P&G as causing the worst discolouration, as well as being one 

of the most commonly used dyes in the fashion industry for the dyeing of denim. Indigo was 

therefore the focus of the studies for this thesis, and the first test for the efficacy of any dye transfer 

inhibitors (DTI) developed. The additional five dyes were also used as indicators of success of any 

DTIs developed in this research, once a positive result for indigo was obtained. This chapter analyses 

the dye solution created when the dyes bleed into the wash water. The colour change caused by 

the dye alone and in the presence of poly(vinyl pyrrolidone) (PVP), a commonly used DTI agent, is 

evaluated in order to assess the efficacy of PVP as a DTI.  

3.1.1 Poly(Vinyl Pyrrolidone) for Dye Transfer Inhibition 

PVP has been widely used as a dye transfer inhibitor in laundry detergent formulations (Figure 3-1).1–

3 This is due to the water-solubility of PVP and its ability to complex dyes.4 The nitrogen atoms in 

PVP protonate and bind fugitive anionic dye molecules in the wash water, maintaining the dye in 

solution, thereby preventing deposition onto other garments.5 
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Figure 3-1 Repeat unit of poly(vinyl pyrrolidone). 

However, PVP is affected by anionic surfactants present in the detergent formulation due to the 

surfactant competing with the dye to bind to PVP, thus reducing efficacy.6 PVP is not affected by the 

presence of non-ionic surfactants, but, anionic surfactants are preferred in detergent formulations 

due to their superior cleaning qualities, processability into powdered forms and foaming 

qualities.5,7–9 It is therefore necessary to develop new DTI polymers that can act on vat, sulfur and 

reactive dye classes, but do not strongly interact with anionic surfactants. These polymers may work 

by the adsorption or complexation of dyes. They may also deposit on the fabric to form a barrier, 

preventing dye deposition physically.10 

Oakes and Dixon investigated PVP alongside four other water-soluble polymers: zwitterionic poly(4-

vinylpyridine-N-oxide) (PVP-NO),poly(N-carboxymethyl-4-vinylpyridinium chloride) (PCM-VPy), 

cationic poly(diallyldimethyl ammonium chloride) (PDADMAC) and poly(vinyl imidazole) which, like 

PVP, can be protonated to become cationic (Figure 3-2).3 

Figure 3-2 Repeat unit of a). Poly(vinylpyridine-N-oxide) (PVP-NO), b). Poly(N-carboxymethyl-4-

vinylpyridinium chloride) (PCM-VPy) c) Poly(vinyl imidazole) and d). Poly(diallydimethyl ammonium 

chloride) (PDADMAC). 

a b c d 
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Several model dyes were tested for their deposition onto cotton, and the inhibition of dye 

deposition by the five polymers.3 It was proposed that the dyes were preferentially adsorbed onto 

the polymers rather than to cotton, due to the ability of the polymer to ‘wrap’ around the dye. 

Additionally, the authors suggest that the dye is adsorbed by electrostatic interactions and hydrogen 

bonding rather than by hydrophobic interactions between the dye and the polymer, evidenced by 

the observed superior efficacy of PDADMAC as a DTI, followed by PVP-NO, PVP, PVI, and finally PCM-

VPy as the least effective. This suggests that employing a cationic polymer is important for effective 

dye binding, rather than solely relying on dye encapsulation by hydrophobic interactions within 

surfactant micelles.  

3.1.2 Effect of Anionic Surfactants on DTI Efficacy 

The effect of the anionic surfactant sodium dodecyl sulfate (SDS) on the efficacy of the five DTI 

polymers stated in Section 3.1.1 was also investigated by Oakes and Dixon.3 SDS is an amphiphilic 

molecule with a hydrocarbon chain attached to a sulfate head group. They found that the addition 

of SDS in sufficient concentrations caused PVP-NO to lose all efficacy as a DTI polymer against the 

dye C.I. Direct Red 80, with dye deposition being equivalent to that obtained without polymer 

addition. 

Oakes and Dixon carried out a study to compare SDS to zwitterionic surfactant sulfobetaine, and 

non-ionic Synperonic A7, for their effect on the DTI PVP-NO. SDS was the most disruptive to the DTI 

efficacy of PVP-NO, followed by the zwitterionic surfactant.3 The non-ionic surfactant did not affect 

DTI efficacy, indicating that dye-surfactant competition for binding to the polymer only occurs with 

ionic surfactants. This study indicates the many factors to be considered when designing a polymer 

as a DTI. However, only direct dyes were investigated, which are less common since the advent of 

reactive dyes.11 Since other dyes, including vat dyes such as indigo, are known to redeposit, it is 
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important to examine the effects of PVP-type DTI polymers for their efficacy against a range of 

common dyes. 

3.1.3 Dyes and Dye Transfer Assessment 

The dyes identified by P&G were extracted from dye bleeding fabrics into water, and the aqueous 

dye solutions were analysed by UV-Vis, which were then lyophilised and the FTIR spectra of the 

dried samples were obtained. The dye bleeding fabrics are industry standards which are designed 

for wash fastness testing, and were supplied by Swissatest Testmaterialien AG (Switzerland) and the 

Centre for Test Materials BV (Netherlands). The analysis of the dye wash solutions was carried out 

to characterise the chemical dye species that is washed from the fabric and causes garment 

discolouration.  

Additionally, in order to understand the interaction between the dyes, PVP DTI polymer and the 

fibres, a simulation wash of PVP solution and the dye bleeding fabric was performed. The simulated 

washes were in accordance with the British Standard ISO 105-C06:2010, which was performed using 

a James Heal GyroWash2. A swatch of the chosen dye bleeding fabric, 25 ball bearings and 50 mL of 

a polymer solution were all places into a stainless steel container alongside a swatch with six 

different adjacent fabrics (a ‘multifibre swatch’). This was sealed and placed on a rotor in a water 

bath (the GyroWash) set to 40 °C, and the mixture was spun for 30 minutes at 40 rpm. The colour 

change onto the multifibre swatch was determined by spectrophotometry and compared to the 

colour change of a wash without polymer, in deionised water. This enabled the effectiveness of PVP 

as a DTI to be determined against a range of dyes.  
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3.2 Experimental 

3.2.1 Fourier Transformed Infrared (FTIR) Spectroscopy 

Infrared spectra were obtained on a Bruker Platinum FTIR-ATR spectrometer, using a diamond 

attenuated total reflectance (ATR) accessory, completing 32 scans in total. Bruker OPUS7.0 software 

was used to analyse the spectra. TRIOS software was used to plot and analyse the data. 

3.2.2 Ultraviolet-Visible (UV-Vis) Spectrophotometry 

UV-Vis readings were carried out on an Agilent Technologies Cary 100 UV-Vis spectrophotometer, 

whereby an absorbance scan from 190 to 750 nm was performed. Samples were analysed in a 

quartz 1 mL UV-Vis cuvette. The samples were in the deionised water the dye was extracted in. 

3.2.3 Centrifugation, Sample Drying and Lyophilisation 

Samples were separated by centrifuge with an MSE Mistral 3000i at 21 °C, 1000 rpm. A Buchi R-210 

rotary evaporator and a FiStream vacuum oven were used to remove solvent and dry samples. 

Samples were lyophilised using a VirTis BenchTop Pro freeze dryer (SP Scientific). 

3.2.4 GyroWash2 Studies 

Multifibre and dye bleeder washes were performed on a James Heal GyroWash2 set at 40 °C, for 30 

minutes at 40 rpm. The multifibre and dye bleeding fabrics were cut to 4x10 cm swatches and 

washed in deionised water (50 mL) or polymer solution (50 mL, 0.1 mg mL-1), with 25 ball bearings. 

Colour changes were measured using a Spectraflash DataColor unit, which measured the L*, a* and 

b* coordinates, which can be compared to an unwashed sample to give a colour change (ΔE) value. 

Measurements were made under D65 lighting. 
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3.2.5 Dye Extraction 

For each dye, a swatch of dye bleeding fabric (4x10 cm) was added to deionised water (50 mL) and 

washed on a James Heal Gyrowash2 at 40°C for 30 minutes at 40 rpm. The resulting solution was 

analysed by UV-Vis spectroscopy, before lyophilisation. The resulting solid was analysed by FTIR 

spectroscopy. 

3.2.6 Poly(Vinyl Pyrrolidone) Wash Studies 

A swatch of dye bleeding fabric (4x10 cm) was added to an aqueous solution of PVP (50 mL, 

0.1 mg mL-1), alongside a multifibre swatch (4x10 cm) and 25 ball bearings. This was then washed 

using a James Heal Gyrowash2 at 40°C for 30 minutes at 40 rpm. The multifibre swatch was then air 

dried and the L*a*b* coordinates measured. 

3.3 Results and Discussion 

The six key dyes outlined were extracted from their respective dye bleeding fabrics. The wash 

extract was then directly analysed by UV-Vis spectroscopy. The various dye solutions were then 

lyophilised to yield a solid that was analysed by FTIR. 
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3.3.1 Characterisation of Indigo 

Indigo dye on cotton fabric was extracted and analysed to confirm the structure and properties of 

the dye moiety. Indigo is a vat dye with a known structure shown in Figure 3-3. The compound that 

was extracted may be compared and assessed for its similarity to the theoretical structure to 

confirm the form of the indigo that causes discolouration. As the extract was moderately water-

soluble, when indigo itself is not, it was proposed that the dye may have been modified to improve 

solubility or may be present in its leuco form. 

Figure 3-3 Structure of a). Indigo b). Leuco-indigo and c). Indigo carmine. 

Firstly, the wash extract of indigo dye bleeding fabric was analysed by UV-Vis spectroscopy and the 

absorbance in the visible region observed (Figure 3-4). 

a b 

c 
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Figure 3-4 Visible region spectrum of indigo dye extract. 

Figure 3-4 shows that the λmax of the indigo dye wash extract is 695 nm, confirming that the dye 

transmits in the blue region. The literature λmax of indigo is 682-6 nm, which shows that the λmax 

value of the extract is of a longer wavelength.12,13 The indigo dye extract was also analysed by FTIR 

(Figure 3-5) 

Figure 3-5 FTIR spectrum of indigo dye extract. 
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The FTIR in Figure 3-5 shows the presence of amine and aromatic groups, as expected within the 

known indigo structure. The absence of sulfonate groups indicates that it is not the water-soluble 

indigo carmine, and therefore provides further evidence the dye is in the leuco form, which enables 

water-solubility. The indigo dye bleeding fabric was then washed with PVP to assess the colour 

change caused in the presence of the DTI polymer (Figure 3-6). 

Figure 3-6 A comparison of the colour change caused by indigo in the absence of a DTI polymer, 

and in the presence of PVP. 

From Figure 3-6, it can be seen that PVP has no effect on the colour change caused to the various 

fabrics by indigo. This is shown by the similar ΔE values between the multifibre swatch washed 

without polymer, and that washed with PVP, both with an indigo dye bleeding swatch. 

3.3.2 Characterisation of C.I. Sulfur Black 1 

C.I. Sulfur Black 1 (SB1) is a sulfur dye that has an inexact structure. However, the proposed structure 

contains a planar, aromatic scaffold and thiol, amine and hydroxy functional groups (Figure 3-7). 
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The leuco form of the dye is produced by the reduction of the SB1 molecule with Na2S, in order to 

solubilise the dye to enable textile dyeing to occur.14 

Figure 3-7 Proposed structure of C.I. Sulfur Black 1 and the formation of its leuco form. 

The visible spectrum of SB1 wash extract was collected and analysed (Figure 3-8). 

Figure 3-8 Visible spectrum of SB1 wash extract. 
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As SB1 is a black dye, it absorbs across the entire visible region, as indicated in Figure 3-8 where a 

discrete λmax is not observable due to low level absorption across all wavelengths. The FTIR spectrum 

for the SB1 extract was obtained (Figure 3-9). 

Figure 3-9 FTIR spectrum of SB1 dye extract. 

The FTIR in Figure 3-9 shows the presence of an aromatic group, hydroxy groups and amine groups. 

However, a thiol group is not observable, confirming the inconsistency of commercial SB1. An SB1 

dye bleeding fabric swatch was washed with PVP to assess the efficacy of the polymer as a DTI 

against SB1 (Figure 3-10). 
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Figure 3-10 A comparison of the colour change caused by SB1 in the absence of a DTI polymer, and 

in the presence of PVP. 

From Figure 3-10 it can be seen that PVP does not reduce the colour change caused by SB1. A 

worsened dye deposition is observed for nylon, whereby the colour change increases from 13.13 

without polymer, to 17.72 in the presence of PVP, a 25.9% increase. 

3.3.3 Characterisation of C.I. Direct Orange 39 

C.I. Direct Orange 39 (DO39) on cotton fabric was extracted and characterised. The direct dye has a 

known structure, shown in Figure 3-11. 

Figure 3-11 Structure of C.I. Direct Orange 39. 
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The dye extract was firstly analysed by visible spectroscopy (Figure 3-12). 

Figure 3-12 Visible region spectrum of DO39 dye extract. 

Figure 3-12 shows that DO39 absorbs in the visible region across 400-500 nm, thereby transmitting 

an orange colour. This is in agreement with the literature value λmax of 414 nm.15 An FTIR spectrum 

of the DO39 dye extract was obtained (Figure 3-13). 

Figure 3-13 FTIR spectrum of DO39 dye extract. 
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The FTIR spectrum of DO39 in Figure 3-13 confirms the presence of amine, aromatic, and sulfonate 

groups. DO39 was then washed with PVP to observe any DTI effects (Figure 3-14). 

Figure 3-14 A comparison of the colour change caused by DO39 in the absence of a DTI polymer, 

and in the presence of PVP. 

Figure 3-14 shows that PVP reduces the colour change caused by DO39. Cotton shows a 40.7% 

reduction in colour change, and nylon a 31.7% reduction. This is expected as PVP is designed to 

complex direct dyes via electrostatic interactions, and prevent them from depositing onto the fabric, 

reducing colour change. 
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3.3.4 Characterisation of C.I. Reactive Red 141 

C.I. Reactive Red 141 (RR141) is a chlorotriazine reactive dye, the structure of which is shown in 

Figure 3-15. 

Figure 3-15 Structure of C.I. Reactive Red 141. 

The extract was analysed by visible spectroscopy (Figure 3-16). 

Figure 3-16 Visible region spectrum of RR141 dye extract. 
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From Figure 3-16 it can be seen that RR141 has a λmax in the region of 523-555 nm. This value is in 

agreement with the literature value of 532 nm.15 An FTIR spectrum of the dye extract was then 

assessed (Figure 3-17). 

Figure 3-17 FTIR spectrum of RR141 dye extract. 

From Figure 3-17 it can be seen that the dye extract from the RR141 dye bleeding fabric contains 

the expected groups attributed to the dye molecule, such imine, aromatic, and sulfonate groups. An 

RR141 dye bleeding fabric swatch was then washed with PVP and the colour change compared to 

that without polymer (Figure 3-18). 
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Figure 3-18 A comparison of the colour change caused by RR141 in the absence of a DTI polymer, 

and in the presence of PVP. 

It can be seen from Figure 3-18 that PVP is effective at reducing colour change caused by RR141 

onto most fabric types. For example, the colour change on nylon in the absence of polymer is 2.90, 

whereas in the presence of PVP is it reduced to 1.19, a 59.0% reduction in colour change. This shows 

that PVP type DTIs which complex the dye may be effective against RR141. 

3.3.5 Characterisation of C.I. Reactive Black 5 

The structure of C.I. Reactive Black 5 (RB5) is shown in Figure 3-19. The dye is a vinyl sulfone reactive 

dye. 

Figure 3-19 Structure of C.I. Reactive Black 5. 
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The visible spectrum of the dye extract was then analysed (Figure 3-20). 

Figure 3-20 Visible region spectrum of RB5 dye extract. 

RB5 is a blue coloured dye, which is confirmed in Figure 3-20 by a λmax of 606 nm. This is in agreement 

with the reported literature value of 597 nm.15 An FTIR spectrum of the RB5 dye extract was 

obtained (Figure 3-21). 

Figure 3-21 FTIR spectrum of RB5 dye extract. 
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The dye extracted from the dye bleeding fabric was found to contain the expected functional groups 

associated with RB5, such as sulfonate, hydroxy, amine and aromatic groups. The RB5 dye bleeding 

fabric was then washed with PVP to observe any DTI effects (Figure 3-22). 

Figure 3-22 A comparison of the colour change caused by RB5 in the absence of a DTI polymer, and 

in the presence of PVP. 

Overall, PVP does not reduce the colour change caused by RB5 except for cotton, which shows a 

32.0% reduction in mean colour change, and polyester which shows a 31.7% reduction. This again 

shows that PVP is capable of complexing RB5, and reducing the colour change onto cotton, which 

RB5 is designed to dye and shows the highest level of discolouration in the absence of polymer. This 

may be due to the sulfonate groups in RB5, that may be capable of complexing with the amine 

groups in the PVP. 
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3.3.6 Characterisation of C.I. Reactive Brown 7 

C.I. Reactive Brown 7 (RB7) is a chlorotriazine reactive dye, the structure of which is shown in Figure 

3-23. 

Figure 3-23 Structure of C.I. Reactive Brown 7. 

The FTIR spectrum of the RB7 dye extract was then assessed (Figure 3-24). 

Figure 3-24 Visible region spectrum of RB7 dye extract. 

RB7 is a brown dye, and the λmax is found to be 457 nm, as shown in Figure 3-24. Brown light is 

absorbed across most wavelengths of light towards the red region. The spectrum shows that the 

dye is absorbing in the orange region specifically, rather than being a broad range across many 

wavelengths. The RB7 dye extract was also analysed by FTIR (Figure 3-25). 
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Figure 3-25 FTIR spectrum of RB7 dye extract. 

The FTIR of RB7 dye extract in Figure 3-25 confirms the presence of hydroxy, amine, imine, aromatic 

and sulfonate functional groups, which are present in the RB7 known structure. This suggests the 

colourising moiety is the known structure of RB7. The RB7 dye bleeding fabric was then washed with 

PVP (Figure 3-26). 

Figure 3-26 A comparison of the colour change caused by RB7 in the absence of a DTI polymer, and 

in the presence of PVP. 

From Figure 3-26 it can be seen that PVP does not have an overall effect on the colour change caused 

by RB7. This is evidenced by the similar ΔE values in the absence of polymer and in the presence of 
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PVP for each fabric type. This is surprising as PVP was effective at preventing colour change caused 

by RR141 and RB5, two similar dyes, onto nylon in particular. This therefore highlights the need to 

develop new DTI polymers to prevent dye transfer of dyes that PVP is not effective against. 

3.4 Conclusion 

Six dyes were extracted from industry standard dye bleeding fabrics and individually characterised 

by UV-Vis, and FTIR. This was to confirm that the structure of the molecule causing colour change is 

the known dye structure. The analysis confirmed the structures to be those of the expected dye 

except in the case of indigo and SB1. Indigo was found to be moderately water-soluble, which may 

mean that the indigo dye released from the cotton contains solubilising groups, and SB1 has an 

unknown structure which cannot therefore be confirmed. 

Dye bleeding fabrics were then washed with PVP and a multifibre swatch, which acts as a receiver 

fabric for the dye. The colour change of the multifibre swatch was compared between the wash with 

PVP and a wash in plain, deionised water. Overall, it was found that indigo, SB1 and RB7 were not 

affected by the presence of PVP. However, DO39 and RR141 showed a reduction in colour change, 

particularly onto nylon, in the presence of PVP. As all the dyes are anionic, it may be expected that 

PVP is able to complex with all the dyes and prevent them from discolouring the multifibre swatches. 

However, the two dyes which showed reduced colour change with PVP, RR141 and DO39, are 

extremely water-soluble dyes. Therefore, the efficacy of the complexation of the dye and PVP may 

be reliant on the hydrophilicity of the dyes. Additionally, dye molecule size was not found to affect 

the ability of PVP to complex it, as DO39 is a small molecule whereas RR141 is a large extended 

structure. These results confirm that PVP is ineffective as a DTI agent against a range of 

commercially-deployed dye molecules, and that new DTIs must be developed in order to reduce the 

dye transfer of many common dyes, including indigo, in laundry. 
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Chapter 4. Biopolymeric Hydrogel Materials for Use as 

Dye Adsorbants 

This chapter is based on work published as: 

Boardman S. J., Lad R., Green D. C. and Thornton P. D. Chitosan hydrogels for targeted dye and 

protein adsorption. Journal of Applied Polymer Science. 2017 134 (21) 

Abstract 

Polymer hydrogels were investigated for application in dye transfer inhibition in laundry, as well 

as dye bath clean-up of effluent from industrial dyeing. Biopolymer-based hydrogels were 

created owing to their ease of formation, low cost and low environmental impact. Chitosan 

hydrogels were found to be particularly effective for the adsorption of C.I. Reactive Black 5. 

However, C.I. Disperse Blue 3 and C.I. Disperse Orange 3 showed less significant adsorption to 

chitosan hydrogels, indicating the need for electrostatic interaction between the biopolymer and 

the dye. Alginate, chitosan and cellulose hydrogels were then tested for their ability to adsorb 

basic dyes, crystal violet and methylene blue. Cellulose was found to adsorb 83% of the crystal 

violet presented within 150 minutes. 

4.1 Introduction 

4.1.1 Reactive Dyes 

Reactive dyes are unique to other classes of dye as they are designed to covalently bind to 

cellulosic fibres by an esterification reaction, which improves wash fastness.1 They also possess 

favourable properties such as high water-solubility, ease of application and bright colour 

options.2 As such they have become widely used in the dyeing industry over the past three 

decades and are a popular class of dye.3 Procter and Gamble initially identified C.I. Reactive Black 
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5 as a key dye in causing dye transfer in the laundry process, as well as being highly popular, and 

therefore will be the main focus of this chapter. 

4.1.2 C.I. Reactive Black 5 

The extended aromatic structures of reactive dyes dictate that they are chemically stable.3,4 This 

is a particular problem for C.I. Reactive Black 5 (RB5, Figure 4-1), which is a commonly used 

reactive dye but is toxic to aquatic life, deeming its environmental accumulation highly damaging 

to wildlife and ecosystems.5 The reactive dye undergoes hydrolysis in the aqueous dye bath, 

meaning only 80% of the dye reacts with the fibre, creating a demand for dye-bath clean-up of 

the resulting coloured effluent.6 The new found prevalence and unique properties of reactive 

dyes mean they are resistant to previously implemented dye bath clean-up methods such as 

biodegradation.3 New methods must therefore be implemented to remove RB5 from dye bath 

waste water before its release into the environment, in order to prevent ecological harm. In 

addition, RB5 has an observed dye transfer effect in laundry that is caused by the removal of 

dye molecules from a garment before subsequent deposition onto alternative, often lighter 

garments, leading to greying of lighter clothing in the laundry cycle.7 

Figure 4-1 Structure of C.I. Reactive Black 5. 

4.1.3 Dye Clean-Up 

Highly-effective methods to adsorb RB5 are greatly sought after for application in dye clean-up 

and advanced laundry care applications.8 A number of innovative approaches have been 
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reported to-date, including oxidation,9 ion-exchange,10 photocatalytic degradation11 and 

membrane filtration.12 In particular, the adsorption of RB5 molecules as an effective dye 

retrieval process has been investigated extensively, owing to its ease, speed and simplicity.3,13–

15 Activated carbon is an effective adsorbent for the removal of dyes and metal ions from waste 

water; however the materials produced are often deemed cost-prohibitive for use in dye clean-

up.16–19 Consequently, there is an urgent requirement for the development of cost-effective 

materials that are capable of effectual dye adsorption. Polymeric materials offer a particularly 

effective, easy and simple method of dye retrieval by adsorption.20–22 The development of 

economically viable polymeric materials that efficiently adsorb and sequester dyes are therefore 

highly sought. 

4.1.4 Chitosan 

Chitosan boasts numerous advantageous features that make its use as a dye adsorbent suitable. 

Firstly, chitosan is produced by the deacetylation of the polysaccharide chitin, which is the 

second most abundant biopolymer, and a waste material from the food industry (Figure 4-2). 

Therefore, the economic case for using chitosan is highly compelling for this application.4,14 

 

Figure 4-2 Left: Structure of chitin, and Right: Structure of chitosan, showing the deacetylated 

unit. 

Secondly, chitosan exhibits extensive amine functionality. Primary amines may be exploited for 

chemical modification, but can also be used for the binding of groups by non-covalent 

interactions.23 In solutions of pH levels lower than the pKa value of the d-glucosamine unit of 

chitosan (6.5–7.0), electrostatic attraction between anionic RB5 and cationic chitosan enables 
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polymer-dye conjugation. However, chitosan-RB5 adsorption may also occur in aqueous 

solutions that have a pH level above pH 7 due to the formation of hydrogen bonds.14 

4.1.5 Chitosan Beads and Flakes 

Much research has been carried out concerning the use of chitosan as an adsorbent for reactive 

dyes such as RB5.14,24,25 Chitosan beads and flakes have been at the forefront of this research, 

for example Ong and Seou investigated the effects of solution pH, time, RB5 concentration and 

agitation on RB5 adsorption by chitosan beads.26 Through adsorption studies, the optimal 

solution pH for RB5 adsorption was found to be pH 6. However, the pH of zero charge for the 

chitosan beads was found to be pH 8, above which the surface charge becomes negative. 

Therefore, RB5 is still adsorbed at pH 8; the typical pH of a laundry detergent. 

Sakkayawong et al. investigated the adsorptive properties of chitosan powder under caustic 

conditions using synthetic reactive dye wastewater (SRDW).27 SRDW was adsorbed by chitosan 

at pH 6-11 by 96-98%, and by 99% at pH 2-5, therefore only showing a minor reduction in 

efficacy between optimal acidic conditions and in alkaline conditions. SRDW adsorption was 

deduced by infrared spectroscopy (IR) to be because of covalent bonding under caustic 

conditions between the reactive group of the dye and the hydroxy group of the chitosan, 

analogous to the dyeing process of reactive dyes to cellulosic fibres (Figure 4-3).27,28 This suggests 

that it is not only the amine functional groups of the chitosan that serve to adsorb dyes, but also 

the hydroxy groups under alkaline conditions, making chitosan an ideal material for dye clean 

up. While this study does not detail RB5 specifically, it does observe generic reactive dye solution 

of SRDW therefore suggesting that RB5 would be included within this broad term. 

Figure 4-3 Vinyl sulfone dye reacting with hydroxy group of cellulose or chitosan. 
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4.1.6 Chemically Modified Chitosan 

As a polyamine, chitosan provides many sites along the polymer backbone for functionalisation 

and chemical modification. This may be used advantageously for RB5 adsorption. 

Elwakeel et al. investigated chitosan resins modified with 1,1,1,3,3,3-hexafloro-2-bis(3-amino-

2-hydroxyphenyl)propane, 3-amino-1,2,4-triazole-5-thiol or melamine, all designed to chelate 

RB5 molecules.2 They report that it is not only the charge on the chitosan backbone that affects 

uptake, but also the availability of the amine groups for electrostatic interaction with charged 

RB5 molecules. They found the less sterically hindered, but also most basic, amine groups were 

located on the chitosan modified with 1,1,1,3,3,3-hexafloro-2-bis(3-amino-2-hydroxyphenyl) 

propane (Figure 4-4). This showed the highest level of RB5 uptake, despite having the lowest 

nitrogen content, as observed via elemental analysis. Additionally, the study found that 

adsorption heavily relied on the solution pH. At solution pH below pH 3, the RB5 dye molecules 

do not readily dissociate to form a negatively charged species and therefore cannot 

electrostatically interact with the chitosan, however above pH 3, protonation of the chitosan 

begins to decrease. They therefore suggest that pH 3 is the optimum conditions for dye 

adsorption. For the intended application of chitosan to dye transfer inhibition pH 3 is too low, 

as laundry detergents are typically alkaline. 

Figure 4-4 Structure of 1,1,1,3,3,3-hexafluoro-2-bis(3-amino-2-hydroxyphenyl) propane 

Chitosan modified with poly(propylene imine) dendrimers attached to the backbone were 

investigated for their adsorption capacity of RB5.29 The chitosan was first modified to N-

carboxyethyl chitosan, and from the carboxylate group the dendrimer was added via an amide 

bond. This modification adds seven amine terminals, where previously there was only one. At 
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pH 2, RB5 uptake was 98.7%, however, at pH 6 RB5 uptake was limited to 55%. This may be due 

to the need for more acidic conditions to protonate the vastly increased number of amine 

groups, and indicates that this type of system is not suitable for the intended applications. 

4.1.7 Chitosan Composites 

Umpuch and Sakaew investigated the intercalation of chitosan with the mineral clay 

montmorillonite.30 The intercalation of the chitosan with the clay provides chemical and 

mechanical stability to the adsorbent without the need to crosslink or graft to the polymer chain. 

The authors argue that because the amine sites become blocked on chemical modification of 

chitosan, its efficacy as an adsorbent is reduced as there are fewer protonated groups to interact 

with the RB5 dye molecules. Montmorillonite was selected for its high cationic exchange 

capacity; when chitosan was intercalated with the clay it exhibited an improved sorption 

capacity to montmorillonite alone. The sorption capacity was found to decrease with increasing 

pH, due to decreased protonation of the amine sites as expected. However, the range of 

adsorption occurred over a wide solution pH range of pH 2 – 10. Therefore, while adsorption 

may not be at its optimum, it still occurs at alkaline pH like those commonly used in laundry.  

Additionally, a cellulose-chitosan composite was considered for its RB5 adsorbance by El-

Zawahry et al.6 Cellulose is the world’s most abundant biopolymer, and can be extracted from 

plants including the Eichhornia crassipes which is considered to be a problematic weed in Egypt. 

Cellulose therefore provides comparable economic favourability to chitosan. A chitosan-

cellulose composite was formed and TiO2 nanoparticles were incorporated to improve 

hydrophilicity and dispersity of the cellulose chains. The composite reached a maximum RB5 

adsorption at pH 2 of 95%, however at pH 8 there was 65% uptake. The authors argue that the 

observed adsorption occurring at high pH is evidence for hydrogen bonding between RB5 and 

the composite, as electrostatic interactions would be reduced due to the amine groups 

becoming deprotonated. Whilst this study does not compare the efficacy of the composite in 
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comparison to cellulose or chitosan alone, it is clear the role of the amine groups in chitosan is 

not the only factor to consider for adsorption of RB5. 

4.1.8 Chitosan for Reactive Black 5 Degradation 

As well as adsorption, RB5 degradation also provides a promising route to dye-bath clean up, as 

long as the products obtained are not harmful.31 An alternative to chitosan as an adsorbant is its 

use as a support for the reversible immobilisation of laccase, as studied by Bayramroglu et al.32 

Laccase is a copper containing enzyme that oxidises organic compounds, such as dyes like RB5. 

Chitosan was selected as a support as it can be modified with itaconic acid, which then chelates 

the copper ion of the laccase, immobilising it. Chitosan was selected not just because of its high 

functionality for modification, but also due to its natural origin and biodegradability. The 

optimum solution pH for activity of the laccase enzyme was found to shift from pH 4 when a 

free enzyme to pH 5.5 on immobilisation. Enzyme activity was also found to occur over a broader 

solution pH range for the immobilised enzyme. The degradation of RB5 was found to be 19% 

without a chemical mediator, and 43% in the presence of the degradation mediator 

acetosyringone. The study compared three dyes: RB5, Methyl Orange and Cibacron Blue F3GA 

all of which have extended aromatic compounds and sulfonate groups. The latter two dyes were 

found to undergo more extensive degradation (87% and 69%, respectively) upon interaction 

with the acetosyringone mediator. However, this study strongly indicates the value of 

immobilised enzymes in decolourisation of waste dye water, either in industry or in a laundry 

medium. 

In addition to the immobilisation of enzymes, chitosan has been used to create chitosan-Cu(II)-

Fe(III) complexes in a 1:1:1 ratio as reported by Rashid et al.31 in order to catalyse the 

degradation of RB5 and other azo dyes with hydrogen peroxide, in conjunction with dye 

adsorption. The chitosan bimetal complex with hydrogen peroxide was found to remove RB5 

from solution by 88.6% within ten minutes, compared to chitosan alone which only removed 
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32.2% and chitosan with hydrogen peroxide which removed 38.5% in the same time. The 

sorption capacity of the complex was examined in the absence of hydrogen peroxide and was 

found to be 527 mg g-1 of the adsorbent, having reached equilibrium within ten minutes. This 

result indicates the value of the complex simply as an adsorbant without the catalytic 

degradation of the dye. At pH 8, approximately 70% dye removal was observed within ten 

minutes, highlighting the fast-acting nature of the adsorbent even at higher pH. However, the 

use of hydrogen peroxide may provide contamination dangers to the environment itself and is 

not suitable for a laundry application. The use of the complex purely as an adsorbent may 

provide an interesting possibility, however. 

4.1.9 Chitosan Hydrogels 

Chitosan hydrogels are a widely explored material in biomedical applications, such as wound 

dressings.33,34 However, they are infrequently applied to dye bath clean up applications, despite 

the wide use of chitosan in this field. A hydrogel is defined as a cross-linked network with the 

ability to withhold a large amount of water in its structure, without dissolving.35,36 This is brought 

about by the balance between the amount of hydrophilic groups on the polymer backbone, and 

its crosslinked nature resisting dissolution. This in turn, creates materials which can possess over 

90% water content but do not flow like a liquid, providing interesting properties that may be 

exploited in many fields of chemistry. Polysaccharides, such as chitosan, are able to form 

physical hydrogels, whereby they do not require covalent crosslinking, but instead form non-

covalent crosslinks between the polymer chains.  
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4.1.10 Alginate and Cellulose Hydrogels 

Alginate and cellulose are biopolymers that are capable of forming hydrogels. Alginate is 

extracted from seaweed, and as such is widely available, meanwhile, cellulose is the most 

abundant biopolymer available.37–39 As alginate contains acid groups (Figure 4-5), alginate 

hydrogels will provide an insight into the effects of the acid groups in comparison to the amine 

groups of chitosan. Alginate has been investigated for its ability to adsorb dyes in the form of 

beads, composite hydrogels with polyacrylamide and microcapsules with chitosan.40–43 There is 

therefore scope to examine the efficacy of an alginate hydrogel for its ability to adsorb pollutant 

dyes. Cellulose only contains hydroxy groups (Figure 4-5) and therefore may allow for the 

observation of the benefits or drawbacks of the amine or acid functional groups in the hydrogels. 

Cellulose has been widely researched as an adsorbant for dyes, in particular chemically modified 

cellulose, as well as membranes, fibres and beads.44–49 

Figure 4-5 Structures of Left: Alginate Right: Cellulose. 

4.1.11 Aims and Objectives 

Chitosan hydrogels may provide a beneficial system which may be used for RB5 adsorption. The 

use of a physical chitosan hydrogels in unbuffered water for RB5 adsorption provides an 

economical, as well as ecological, route to dye uptake. Without chemical modification or 

addition, the risk of chemicals released to the environment is non-existent, and therefore is a 

credible option for ecological applications of the material. Additionally, hydrogels have a low 

chitosan content, usually less than 10% of the material weight, further adding to the economic 

benefits. 
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Physically crosslinked chitosan hydrogels were selected as a potential adsorbent for targeted 

RB5 uptake, and their ability to adsorb RB5 dye solution examined by UV-Visible spectroscopy. 

The hydrogels will also be applied to encapsulation and controlled release of protein molecules. 

This will be investigated by the hydrogel uptake of albumin, and pH-mediated protein release. 

This second function highlights the significant promise and versatility that the reported 

hydrogels have to be used as vehicles for the pH-mediated release of protein molecules for 

potential medicinal and personal care applications. Additional hydrogel-forming biopolymers 

alginate and cellulose will also be investigated for their ability to adsorb various dyes, alongside 

chitosan, and comparisons drawn between the three biopolymers. 

4.2 Experimental 

4.2.1 Ultraviolet-Visible Spectrophotometry 

UV-Vis readings were carried out on an Agilent Technologies Cary 100 UV-Vis 

spectrophotometer, whereby an absorbance scan from 190 to 750 nm was performed. 

Samples were analysed in a quartz 1 mL UV-Vis cuvette. The uptake UV-Vis spectra were 

measured in deionised water, and the release studies were in ethanol. 

4.2.2 Rheology Measurements 

Rheological measurements were carried out at 25 °C using a stress-controlled AR 1500ex 

rheometer (TA instruments). The instrument was equipped with a steel-parallel plate geometry 

(40 mm in diameter) with the geometry gap distance maintained at 500 µm. 

4.2.3 Optical Microscopy 

A Nikon SMZ 1500 optical microscope imaged dye adsorption into chitosan hydrogels. 

Brightfield (illumination from fluorescent tube light box in transmission mode) image 

sequences were obtained using NIS-Advanced software-controlled operation of Nikon DS-Fi2 

full colour CCD camera/DS-U3 controller system. Fluorescent microscopy for time-drive studies 
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of FITC-tagged albumin sequestration in chitosan hydrogels was conducted on Zeiss Observer 

Z1 with Zeiss LD A Pln 5x/0.15 Ph1 objective. Brightfield (full spectral illumination in 

transmission mode, intensity attenuated to avoid saturation) and fluorescence (filtered 

excitation light “GFP” centred at 488 nm, unfiltered emitted light detected in greyscale) image 

sequences were obtained using Zeiss Zen software-controlled operation of Zeiss Axiocam 

ICm1. Pixel intensity analysis was performed using ImageJ software.  

4.2.4 pH Measurements 

pH measurements were recorded using a Checker portable pH meter by Hanna Instruments. 

4.2.5 Centrifugation, Sample Drying and Lyophilisation 

Samples were separated by centrifuge with an MSE Mistral 3000i at 25 °C, 1000 rpm. A Buchi R-

210 rotary evaporator and a FiStream vacuum oven were used to remove solvent and dry 

samples. Samples were lyophilised using a VirTis BenchTop Pro freeze dryer (SP Scientific). 

4.2.6 Formation of Chitosan Hydrogels 

Varying amounts of chitosan powder (Table 4-1) was added to deionised water (15 mL) with 

stirring. Concentrated HCl (0.3 mL) was then added, followed by ethanol (15 mL). This formed 

an off white, viscous liquid. The solution was placed in a vacuum oven for 24 hours at 30 °C. This 

solution was then added to aqueous NaOH solution (1 mol dm-3, 75 mL) producing a white 

suspension, that was left for 24 hours at room temperature. The gel formed was separated from 

the remaining NaOH solution by centrifugation. The gels were then dialysed against water for 

48 hours to decrease the solution pH to pH 7. 
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Table 4-1 Three chitosan hydrogels with their initial chitosan mass and water content. 

Name Chitosan Mass (g) Mass of Gel Produced (g) Water Content (%) 

Hydrogel 1 0.30 13.70 97.8 

Hydrogel 2 0.50 14.18 96.5 

Hydrogel 3 0.75 15.10 95.0 

4.2.6.1 Chitosan Hydrogel Formation in the Presence of Reactive Black 5  

The process described for Hydrogel 3 was then repeated, but RB5 (0.02 g) was included to form 

a hydrogel that contained RB5. Yield = 11.20 g 

4.2.6.2 Adsorption of Reactive Black 5 by Chitosan Hydrogels 

A sample of each chitosan hydrogel (0.5 g) was added to RB5 aqueous solution (4 mL,   

0.1 mg mL-1) and a sample of the supernatant was extracted (1 mL) at regular time intervals. The 

supernatant sample was immediately analysed by UV-Vis and the concentration of % dye uptake 

was determined using an RB5 calibration curve. 

4.2.6.3 Release of Reactive Black 5 from Chitosan Hydrogels 

Chitosan hydrogel formed in the presence of RB5 (0.5 g) was added to pH 3 Tris buffered 

aqueous solution. After 48 hours, no release of the dye was observed visually. 

Hydrogel (0.5 g) loaded by an external solution of RB5 was incubated with various organic and 

aqueous solvents (5 mL) to assess the release of RB5. The solvents tested were: ethanol, 

methanol, ethyl acetate, water, DMF, THF, acetone, diethyl ether, phosphate buffered saline 

solution (pH 7.4), tris buffered pH 3 solution, Fairy detergent (1 mg mL-1). 

4.2.6.4 Adsorption of FITC-Albumin by Chitosan Hydrogels 

Each hydrogel (0.5 g) was added to a FITC-albumin aqueous solution (2 mL, 0.5 mg mL-1). At 

regular time intervals the absorbance of the external FITC-albumin solution was measured via 
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UV-Vis spectroscopy. The decreasing absorbance with time indicated the uptake of albumin by 

the hydrogel. 

4.2.6.5 Release of FITC-Albumin from Chitosan Hydrogels 

The hydrogels (0.5 g) were added to pH 5 and pH 3 solution (1 mL). The external solution was 

drained at regular time intervals for analysis and replaced with fresh solution (1 mL). The 

samples were analysed via UV-Vis spectroscopy to determine the extent of FITC-albumin 

release. 

4.2.6.6 Adsorption of Disperse Dyes by Chitosan Hydrogels 

Hydrogels 1, 2 and 3 were analysed for their ability to adsorb both C.I. Disperse Blue 3 and C.I. 

Disperse Orange 3. An aqueous solution of each dye (0.05 mg mL-1, 2 mL) was added to each 

hydrogel (0.5 g). A sample of the external dye solution (0.5 mL) was analysed via UV-Vis 

spectroscopy at regular time intervals before being added back to the hydrogel to continue the 

adsorption study. 

4.2.6.7 Release of Disperse Dyes from Chitosan Hydrogels 

The hydrogels were washed with deionised water (20 mL) to remove surface dye. They were 

then added to ethanol (1 mL) which was removed after 30 seconds and replaced with fresh 

ethanol (1 mL). The UV-Vis spectrum of each sample of ethanol was measured and a cumulative 

absorbance was obtained. 

4.2.6.8 Adsorption of Indigo and SB1 by Chitosan Hydrogel 

Indigo dye bleeding fabric was washed at 40 °C for 30 minutes at 400 rpm in deionised water on 

a James Heal GyroWash2. The wash water containing Indigo dye (2 mL) was added to chitosan 

Hydrogel 3 (1 g). The same procedure was also carried out for C.I. Sulfur Black 1 (SB1) dye 

bleeding fabric. 
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4.2.7 Formation of Cellulose Hydrogel 

Cellulose powder (0.5 g, Table 4-2) was suspended in 10% NaOH (aq) solution (12.5 mL) for 

3.5 hours. This suspension was then frozen with N2(l) and left to thaw with stirring for 72 hours. 

This yielded a clear, viscous liquid. Yield = 14.45 g. pH 12. The liquids were then dialysed against 

deionised water for four days which formed a brittle, compact, white gel. 

Table 4-2 Cellulose hydrogel with initial cellulose mass and water content. 

4.2.7.1 Adsorption of Reactive Black 5 by a Cellulose Hydrogel 

Cellulose Hydrogel 4 (0.75 g) was injected with RB5(aq) solution (0.5 mL, 1 mg mL-1). The gel did 

not appear to adsorb any dye initially. After 24 hours, the gel had completely turned blue 

however, the supernatant was also still coloured blue suggesting low level affinity for the dye 

by the cellulose. 

4.2.7.2 Indigo and SB1 Adsorption by a Cellulose Hydrogel 

Indigo dye bleeding fabric was washed at 40 °C for 30 minutes at 400 rpm in deionised water on 

a James Heal GyroWash2. The wash water containing indigo dye (2 mL) was added to cellulose 

Hydrogel 4 (1 g). The hydrogel was incubated for 24 hours in the dye extract solution. 

4.2.8 Formation of Alginate Hydrogel 

Alginic acid sodium salt powder (0.2 g) was dissolved in deionised water (10 mL). Calcium 

chloride solution of varying concentrations (Table 4-3) were added dropwise to the alginate 

solution to immerse the alginate. This mixture was then stored at 5 °C for 12 hours and then 

rinsed with deionised water to remove excess calcium chloride. This formed three alginate 

hydrogels. 

 

Name Cellulose Mass (g) Mass of Gel Produced (g) Water Content (%) 

Hydrogel 4 0.50 5.0 95.0 
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Table 4-3 Three alginate hydrogels and the concentration of CaCl2 used for crosslinking. 

Name 
Alginic Acid 

Mass (g) 

CaCl2 Concentration 

(g mol-1) 

Mass of Gel 

Produced (g) 

Water Content 

(%) 

Hydrogel 5 0.20 0.0150 6.3 98.36 

Hydrogel 6 0.20 0.0225 6.1 97.72 

Hydrogel 7 0.20 0.0300 5.2 96.15 

4.2.9 Adsorption of Basic Dyes by Alginate, Cellulose and Chitosan Hydrogels 

The hydrogels (0.5 g) were added to crystal violet or methylene blue solution (2 mL,             

0.01 mg mL-1). A sample was taken of the external dye solution at regular time intervals and a 

UV-Vis spectrum obtained. This was then returned to the solution the hydrogel was stored in to 

allow further adsorption to occur. 

4.2.9.1 Release of Basic Dyes by Alginate Hydrogels 

The hydrogels (0.5 g) were added to ethanol (1 mL). After 30 seconds the ethanol was removed 

and replaced with fresh ethanol. This was repeated until total release of the dye occurred. The 

removed ethanol solution aliquots were analysed by UV-Vis spectroscopy and the cumulative 

release determined. 

4.3 Results and Discussion 

A number of materials were produced that possess appropriate features to be considered 

suitable for use as dye adsorbents. Such features include having appropriate chemical properties 

for dye adsorption, ease of formation and the capability to produce the materials from 

renewable feedstock. 

4.3.1 Chitosan Hydrogels 

Initially, chitosan-based hydrogels were created with the rationale that the primary amine 

groups within the polymer structure may enable the material to participate in electrostatic 

interactions and/or hydrogen bonding with target dye molecules. 
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4.3.1.1 Chitosan Hydrogel Formation 

The pKa value of the d-glucosamine units of chitosan enables physical hydrogel formation as first 

reported by Ladet et al.36 Dissolving chitosan in acidic solution, before returning the solution to 

neutral pH enabled the spontaneous formation of three different chitosan hydrogels. 

4.3.1.2 Rheological Studies 

The formation of the hydrogels was confirmed by a frequency sweep performed at 25 °C. This 

measures the storage modulus (G’) and the loss modulus (G’’) of the material in response to an 

applied frequency (Figure 4-6). The G’ of an ideal gel dominates the G’’, which indicates it will 

flow over a prolonged period of time. 
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Figure 4-6 Rheological analysis of chitosan hydrogels a). Hydrogel 1, b). Hydrogel 2, and c). 

Hydrogel 3. 

In Figure 4-6 it can be observed for all three chitosan hydrogels, that the G’ value is larger than 

the G’’ by an order of magnitude. The results of the rheological analysis therefore confirm the 

successful formation of hydrogels in each instance. The increasing amount of chitosan in the 

hydrogels increases the overall strength of the hydrogels. This is observable in the greater 

difference between the G’ and G’’ of Hydrogel 2 and 3 than that of Hydrogel 1. 
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4.3.1.3 Adsorption of C.I. Reactive Black 5 by Chitosan Hydrogels 

The zeta potential of chitosan at pH 7 was measured to be 12±4.5 mV, which is in agreement 

with reported values.50 Consequently, chitosan possesses an overall positive charge under 

neutral conditions, and therefore electrostatic interactions may be used for the adsorption of 

anionic species, for instance RB5. Hydrogelation of chitosan provides a convenient physical form 

for the adsorption of RB5, avoiding the need for chemical modification of the chitosan, and the 

use of organic solvents in material production. As such, chitosan hydrogels provide an ideal 

material, created by relatively green chemistry, which may be applied to wastewater 

purification. 

4.3.1.4 UV-Visible Spectroscopy Studies 

The capability of Hydrogels 1, 2 and 3 to adsorb and withhold RB5 was investigated. The three 

hydrogels were added to aqueous RB5 stock solution and the absorbance at 598 nm by the 

external RB5 solution was periodically measured via UV-Vis spectroscopy (Figure 4-7).  

Figure 4-7 The uptake of RB5 solution by the three chitosan hydrogels. 

In Figure 4-7, Hydrogel 1 shows the most rapid adsorption, with 93% absorption achieved within 

300 minutes. However, the other two hydrogels are also effective adsorbants: Hydrogel 2 gives 

a dye uptake of 83% after 300 minutes and Hydrogel 3 shows 74% uptake. 
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4.3.1.5 Optical Microscopy 

In order to monitor RB5 uptake visually, optical microscopy was employed to observe RB5 

uptake from aqueous solution (0.1 mg mL-1) by Hydrogel 2 over a period of 15 hours (Figure 4-8). 

ImageJ software can be used to analyse the mean pixel intensity of the images generated. It 

provides a tool for selecting an area of the hydrogel within the image, and determining the mean 

pixel intensity of this area. As such, the pixel intensity within the hydrogel can show the 

adsorption of the dye within it, and this data can be plotted against time to monitor dye 

adsorption by the hydrogel in real time (Figure 4-8). 

Figure 4-8 Top: ImageJ pixel intensity analysis within the hydrogel area. Bottom: Optical 

microscope image sequence of RB5 adsorption by Chitosan Hydrogel 2. The numbers represent 

the time (minutes) of hydrogel submersion within the dye solution. 

The data in Figure 4-8 shows a decrease in pixel intensity of 77% over the first 300 minutes of 

incubation, before progression to 88% pixel intensity decrease after 945 minutes, thus signifying 

RB5 adsorption. This corresponds with the UV-Vis data produced, and further confirms the 

adsorption of RB5 by the chitosan hydrogel. Figure 4-8 also shows images of the chitosan 

hydrogel at 0 minutes (Left) and the same hydrogel following 900 minutes of immersion in RB5 
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solution (Right). After 22 hours the surrounding solution is colourless suggesting complete dye 

uptake by the hydrogel. 

4.3.1.6 Reactive Black 5 Desorption 

For the intended applications of waste dye adsorption and dye transfer inhibition, the hydrogel 

must not discharge the RB5 molecules back into solution. To test the capability of Hydrogel 3 to 

withhold RB5 molecules, the loaded hydrogel (0.38 mg in 0.5 g hydrogel) was stored in aqueous 

solutions of pH 3, 5, 7, 8 and pH 12 water (5 mL) for 24 hours without agitation at room 

temperature. Additional samples of Hydrogel 3 (0.5 g) were independently stored in a series of 

solvents (5 mL) at room temperature: chloroform, hexane, ethyl acetate, acetone, diethyl ether, 

ethanol and THF. The hydrogels were left for 24 hours to visually observe any release of the dye. 

Neither varying the solvent or the pH of aqueous solutions caused the dye to be released after 

72 hours. This confirms the strong interaction between RB5 and the hydrogel, and the 

appropriateness of these materials for their intended applications. 

4.3.1.7 Adsorption of FITC-Albumin by Chitosan Hydrogels 

The chitosan hydrogels were then investigated for their ability to adsorb the model protein 

albumin via UV-Vis and fluorescence microscopy, which was possible due to the fluorescent tag, 

fluorescein isothiocyanate (FITC), conjugated to albumin (Figure 4-9). Hydrogels are particularly 

useful for the delivery of protein molecules that would otherwise need to be administered 

intravenously. Consequently, it is envisaged that the chitosan hydrogels produced may be used 

for the pH-triggered release of therapeutic protein guest molecules, which is of medicinal 

relevance, or may be employed as a dressing for chronic wounds. Chronic wounds show high 

levels of the protein elastase, which prevents wound healing.51,52 Therefore, the adsorption and 

removal of proteins by polymeric hydrogel dressings has gained attention.52–55 
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Figure 4-9 Main: Adsorption of FITC-albumin by three chitosan hydrogels; Insert: Fluorescence 

microscope image a). Before and b). After 12 hours incubation. 

From Figure 4-9, it can be seen that the protein shows almost complete adsorption to the 

hydrogels after five hours. Hydrogel 2 plateaus at 85% uptake, whereas Hydrogel 3 shows the 

greatest amount of protein uptake of 95%. The fluorescence microscopy images show the 

albumin initially outside the hydrogel area (the hydrogel is the dark area in the bottom right 

corner of the image), and after 12 hours shows the preferential sequestration of the albumin 

within the hydrogel. Since the albumin is anionically charged, this rapid and almost complete 

adsorption further provides evidence for the significance of electrostatic intermolecular bonding 

for payload uptake by the chitosan hydrogels. 

4.3.1.8 pH-Mediated Protein Release from Chitosan Hydrogels 

In contrast to the hydrogels loaded with RB5, hydrogels loaded with FITC-labelled albumin were 

able to release the payload when stored in acidic solution (pH 3). This is due to the solution pH 

being below the isoelectric point of albumin (pH 4.3) and causing protein denaturation. The loss 

of the charge on the protein below its isoelectric point results in the loss of the electrostatic 

interactions between the chitosan and the protein, causing protein release. Washing of the FITC-

albumin-loaded hydrogels with a series of solvents including ethanol, DMF, pH 7 solution and 
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pH 5 solution did not cause payload release. FITC-albumin may be released in its non-anionic 

form but cannot be released from chitosan hydrogels, by conventional washing methods, when 

it is present in its natural anionic form. 

Protein release into acidic media was imaged by fluorescence microscopy over a 10 hour period, 

whereby the fluorescence is seen to be discharged from the hydrogel to the surrounding 

medium (Figure 4-10). 

Figure 4-10 Top: ImageJ pixel intensity analysis within hydrogel area. Bottom: Fluorescent 

microscope images a). At the start b). During and c). After FITC-albumin release from Chitosan 

Hydrogel 2. The area of interest used for ImageJ analysis is the superimposed line in green on 

the hydrogel images. 

Figure 4-10 shows an initial increase and subsequent decrease in pixel intensity within the 

hydrogel. This may be due to the albumin travelling to the extremity of the hydrogel prior to 

release when first exposed to pH 3 solution. The pixel intensity then decreases below the original 

level, demonstrating that there is a reduced FITC-albumin concentration in the hydrogel, and 

thus the albumin has been released. As the microscope slide is a closed system the hydrogel is 

not totally decolourised after 10 hours, as an equilibrium between the hydrogel and the 
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surrounding solution is established. Nevertheless, FITC-albumin expulsion from the hydrogel is 

clearly observable. 

4.3.1.9 Adsorption of C. I. Disperse Blue 3 and C. I. Disperse Orange 3 by Chitosan 

Hydrogels 

Disperse dyes are sparingly water-soluble dyes, that are capable of dyeing synthetic fibres such 

as polyesters and acetate. During the dyeing process, some of the dye will deposit on the surface 

of the fibre, instead of undergoing fixation, and as such this can lead to dye redeposition in the 

laundry. Additionally, the dye bath effluent produced by the dyeing process is harmful to the 

environment. Therefore, chitosan hydrogels were investigated for their ability to adsorb two 

disperse dyes: C.I. Disperse Blue 3 (DB3) and C.I. Disperse Orange 3 (DO3) (Figure 4-11). 

Figure 4-11 Structures of a). C.I. Disperse Blue 3 and b). C.I. Disperse Orange 3. 

Unlike RB5, the two disperse dyes do not possess a charge, but are capable of hydrogen bonding 

with the chitosan. 
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The capability of the chitosan hydrogels to adsorb DB3 and DO3 was investigated via UV-Vis 

spectroscopy as 594 nm and 443 nm respectively (Figure 4-12).  

Figure 4-12 Top: Adsorption of DO3 at 443 nm; Bottom: Adsorption of DB3 at 594 nm. 

Figure 4-12 shows that for DO3 adsorption, 36% dye uptake was achieved within 300 minutes, 

as assessed by UV-Vis spectroscopy, however DB3 adsorption was less effective, with 21% 

achieved in the same amount of time. Nevertheless, this result does serve to highlight that 

chitosan hydrogels are effective adsorbants for alternative dye classes to reactive dyes. Figure 

4-13 shows the hydrogels loaded with DO3 (Left) and DB3 (Right). 
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Figure 4-13 Optical microscopy image of Hydrogel 2 loaded with Left: C.I Disperse Orange 3 

and; Right: C.I. Disperse Blue 3. 

4.3.1.10 Release of Disperse Dyes by Chitosan Hydrogels 

The release of the two disperse dyes, DO3 and DB3, from Hydrogel 2 was then investigated 

(Figure 4-14). The hydrogels did not show release of the dyes in water, therefore ethanol was 

used as a release medium owing to the superior solubility of the disperse dyes in ethanol 

compared to water. Release of the dyes in ethanol is particularly useful due to its low boiling 

point, allowing for easy recovery of the dye and the solvent.  
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Figure 4-14 Top: Release of DO3 in ethanol at 443 nm; Bottom: Release of DB3 in ethanol at 

594 nm. 

Figure 4-14 shows that unlike for RB5, the two disperse dyes were rapidly released from the 

hydrogel when washed with ethanol. This demonstrates that the hydrogels may be recycled and 

used again when used to capture DB3 and DO3, an advantageous feature for adsorbents used 

in wastewater treatment. 

4.3.1.11 Adsorption of Indigo by Chitosan Hydrogels 

Indigo dye bleeding fabric was heated and agitated in water to extract Indigo dye. The capability 

of Chitosan Hydrogel 2 to adsorb and retain the extracted indigo was then assessed via UV-Vis 

spectroscopy at 603 nm (Figure 4-15). 
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Figure 4-15 Adsorption of indigo wash extract by Chitosan Hydrogel 2. 

In Figure 4-15, the chitosan hydrogel shows 15% absorbance of the indigo extract over 75 

minutes of static incubation. The adsorption of indigo dye is not as rapid as that of RB5, however, 

it shows the hydrogel is capable of adsorbing this common dye to some extent. 

4.3.1.12 Adsorption of C. I. Sulfur Black 1 by Chitosan Hydrogels 

C.I. Sulfur Black 1 (SB1) was extracted from a dye bleeding fabric by agitation and heating in 

water. The affinity of the Chitosan Hydrogel 2 for SB1 was then assessed by UV-Vis spectroscopy 

at 599 nm (Figure 4-16). 

Figure 4-16 Adsorption of SB1 wash extract by Chitosan Hydrogel 2. 

SB1 shows a fast rate of adsorption in Figure 4-16, reaching 31% uptake within 55 minutes. This 

may be due to anionic charge density provided by the nitro groups of SB1 that are able to 

electrostatically interact with the amine groups of chitosan. 
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4.3.2 Cellulose Hydrogels  

Cellulose was selected as a hydrogelator owing to its abundance as a biopolymer, and the polar 

hydroxy groups which may form hydrogen bonds with appropriate target molecules. However, 

cellulose does not have amine groups as chitosan does, and so it is anticipated that the capability 

of cellulose hydrogels to adsorb anionic dye molecules such as RB5 would be limited, but their 

capability to adsorb cationic basic dyes may be investigated (Section 4.3.4.4) 

4.3.2.1 Cellulose Hydrogel Formation 

A cellulose hydrogel was produced using a freeze-thaw method. This was then investigated by 

rheological analysis to confirm production of a hydrogel (Figure 4-17). 

Figure 4-17 Rheological analysis of a cellulose hydrogel. 

In Figure 4-17, the G’ dominates the G’’, thus indicating gelation has occurred successfully. 

4.3.3 Alginate Hydrogels 

4.3.3.1 Alginate Hydrogel Formation 

Three alginate hydrogels were formed following the procedure described by Ko, Sfeir and 

Kumta, whereby alginic acid is dissolved in water and calcium chloride solution is added, creating 

Ca2+ physical crosslinks.37 The rheological properties of the hydrogels were evaluated (Figure 

4-18). 
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Figure 4-18 Rheology studies for alginate hydrogels a). Hydrogel 5, b), Hydrogel 6 and c). 

Hydrogel 7. 

All three hydrogels in Figure 4-18 show a G’ that dominates the G’’, therefore indicating that a 

hydrogel has formed in each case. 

4.3.4 Adsorption of Basic Dyes by Biopolymeric Hydrogels 

Two cationic, basic dyes methylene blue (MB) and crystal violet (CV) were investigated for their 

ability to adsorb independently to alginate, chitosan and cellulose hydrogels (Figure 4-19). 
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Figure 4-19 Structure of a). Methylene blue and b). Crystal violet. 

Methylene blue and crystal violet are commonly used dyes for cellulose and silk colouration, as 

well as a biological staining, and both are gaining increasing interest as pharmaceuticals. 

However, they are both hazardous when released into the environment and must therefore be 

removed from aqueous effluents. 

4.3.4.1 Adsorption by Alginate Hydrogels 

The biopolymer alginate is anionic and as such it was expected to adsorb the cationic dyes in 

preference to the chitosan, which contains amines groups and would be expected to repel the 

dyes. Therefore, an alginate hydrogel was investigated for adsorption of crystal violet and 

methylene blue as analysed by UV-Vis at 590 nm and 670 nm respectively (Figure 4-20). 

  

a b 
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Figure 4-20 Adsorption by alginate Hydrogel 6 of a). Crystal violet at 590 nm and b). Methylene 

blue at 670 nm. 

Alginate shows a far superior adsorption for crystal violet than for methylene blue in Figure 4-20, 

achieving 58% and 24% adsorption in 180 minutes respectively. Again, this may be due to the 

properties of the dyes, for example methylene blue is an extended, planar aromatic dye, unlike 

crystal violet which has more of a three-dimensional structure. This may mean crystal violet is 

less inclined to aggregate and is therefore more likely to penetrate the hydrogel. 
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4.3.4.2 Release of Basic Dyes by Alginate Hydrogels 

Release of methylene blue and crystal violet was achieved by the introduction of ethanol, which 

the dyes are soluble in. The dye release rates were determined by UV-Vis spectroscopy (Figure 

4-21). 

Figure 4-21 Top: Release of crystal violet and, Bottom: Release of methylene blue from alginate 

Hydrogel 6. 

In Figure 4-21, crystal violet shows slower desorption from the hydrogel than methylene blue. 

This provides further evidence for the greater affinity of crystal violet for the hydrogel than 

methylene blue. Both dyes show rapid desorption in ethanol, within three and a half minutes. 
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4.3.4.3 Adsorption by Chitosan Hydrogels 

Adsorption of the two basic dyes, crystal violet and methylene blue, by Chitosan Hydrogel 2 was 

then investigated (Figure 4-22). 

Figure 4-22 Adsorption by Chitosan Hydrogel 2, Top: Crystal violet at 590 nm and Bottom: 

Methylene blue at 670 nm. 

Methylene blue showed no adsorption to the chitosan hydrogel, however, crystal violet showed 

better adsorption, reaching 30% after 150 minutes in Figure 4-22. This is not as promising as 

adsorption by the alginate hydrogel (52% after 150 minutes). Therefore, it can be concluded that 

electrostatic interactions between the dye and polymer chains is key to quick and effective dye 

adsorption. 
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4.3.4.4 Adsorption of Basic Dyes by a Cellulose Hydrogel 

A cellulose hydrogel was investigated for its ability to adsorb basic dyes. This was observed via 

UV-Vis spectroscopy (Figure 4-23). 

Figure 4-23 Top: Adsorption of crystal violet 590 nm and Bottom: Adsorption of methylene blue 

670 nm by a cellulose hydrogel. 

From Figure 4-23, it can be observed that crystal violet shows rapid adsorption to cellulose, 

achieving 75% within 30 minutes. 45% of methylene blue was adsorbed in the same time. This 

result is a significant improvement from both alginate and chitosan hydrogels. Release of crystal 

violet and methylene blue by the cellulose hydrogel on incubation with ethanol was not 

achieved, further confirming the affinity of the hydrogel for the dyes tested. 
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4.4 Conclusion 

Initially chitosan, cellulose and alginate hydrogels were investigated for their adsorptive 

properties towards various classes of dyes. From the work undertaken, it has become apparent 

that dye adsorption is considerably aided by attractive electrostatic interactions. This is 

observable through the research into chitosan hydrogels and their adsorption of RB5 and 

disperse dyes. Chitosan Hydrogel 2 was able to adsorb 83% of a RB5 solution within 5 hours, 

whereas it only achieved 36% DO3 and 21% DB3 adsorption in this time. As the two disperse 

dyes are not charged, and RB5 is anionic it can be inferred this result is related to the charge. 

This conclusion is further corroborated by the inability of the hydrogel to release RB5 in pH 3 

solution, however, FITC-albumin was able to be released at this pH, owing to it being below the 

isoelectric point of the protein. As such, the protein is no longer charged, and the electrostatic 

interactions are removed. 

Additionally, two cationic, basic dyes were investigated for their adsorptive properties towards 

alginate hydrogels, and chitosan hydrogels. 58% of crystal violet and 25% of methylene blue 

were adsorbed within 180 minutes by an alginate hydrogel, whereas the chitosan hydrogel 

showed 30% adsorption of crystal violet, and only 1% of methylene blue. The preference of the 

two dyes for alginate again suggest electrostatic interactions are necessary for dye adsorption. 

The chitosan hydrogels showed good adsorptive properties towards indigo and C.I. Sulfur Black 

1 wash extract. Indigo wash extract was adsorbed by 15% in 80 minutes, while SB1 was adsorbed 

by 31% in just 55 minutes. As SB1 possesses an anionically charged nitro group, it may be able 

to be adsorbed faster than uncharged indigo. This further indicates the requirement for 

attractive electrostatic interactions in the adsorption of dyes by polymer hydrogels. 
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Chapter 5. Modified Biopolymers and Biopolymeric 

Particles for Use as Dye Scavengers 

Abstract 

In order to produce a dye scavenging polymer or polymeric particle, chitosan and cellulose were 

modified to give various materials capable of preferentially adsorbing dyes in aqueous solution, 

thus reducing colour change in the laundry. Cellulose was modified with glycidyl 

trimethylammonium chloride, an epoxide containing a quaternary amine, to observe the effects 

of charge on dye transfer inhibition efficacy against indigo dye. In addition, physically and 

chemically crosslinked chitosan particles were formed and tested for their ability to prevent dye 

transfer. The particles with a negative zeta potential, and free acid groups, were found to reduce 

colour change. It was observed that the relationship between the charges of the dyes and the 

polymeric materials was key to preventing dye transfer. 

5.1 Introduction 

From the work in the previous chapter, chitosan, alginate and cellulose were found to effectively 

adsorb dyes in aqueous solution to decolour water. However, the hydrogel form may not be 

readily applied to the desired application of laundry dye transfer inhibition, as inclusion within 

a detergent formulation is not readily feasible and a hydrogel residue may remain on the clothes 

after washing. However, polymers or polymeric particles based on biopolymers such as 

cellulose, alginate or chitosan, may be able to act as adsorbants to scavenge the dyes in the 

wash liquor, and therefore prevent the dye depositing onto the fabric, reducing fabric colour 

change. These biopolymers are non-toxic, abundant in nature, and biodegradable.1 Additionally, 

chitosan has antimicrobial properties which may provide a secondary benefit in a laundry 

application.2 
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5.1.1 Glycidyl Trimethylammonium Chloride-Modified Cellulouse 

Glycidyl trimethylammonium chloride (GTAC) is a quaternary amine containing epoxide which 

can be grafted by ring-opening to hydroxy containing polymers in order to impart amine 

functionality (Figure 5-1). Cellulose contains hydroxy groups throughout its structure, therefore 

under basic conditions the hydroxy groups can react via nucleophilic substitution by an SN2 

pathway. This allows the ring-opening of the epoxide in GTAC, which introduces the quaternary 

amine to the cellulose structure through a newly created ether bond. 

Figure 5-1 Nucleophilic substitution of glycidyl trimethylammonium chloride. 

It was proposed that GTAC-modified cellulose would adsorb negatively charged dyes in the 

laundry wash preferentially, preventing dye transfer in the wash. 

5.1.2 Chitosan Particles 

The ability of a chitosan-based material to adsorb dyes from aqueous solution was assessed in 

the previous chapter, however the hydrogel form may not be readily applied to a laundry 

application as it may break apart from agitation in the laundry cycle, as well as creating an 

inconvenient waste product for the consumer to dispose of. Therefore, chitosan particles that 

can be added to a detergent formulation and washed away at the end of the laundry cycle were 

proposed to create a DTI that is convenient for the consumer, while maintaining the benefits of 

the hydrogel. Chitosan particles would be able to adsorb the dye from the wash liquor, thus 

preventing the deposition of the dye onto the fabric. 

5.1.2.1 Physically Crosslinked Chitosan Particles 

Chitosan particles can be created, whereby the crosslinks are formed through non-covalent 

bonding, such as electrostatic interactions between the amines of chitosan and a polyanion. 
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Chitosan-polyethyleneimine microspheres were investigated for their ability to entrap anionic 

DNA for vaccination against hepatitis B.3 Polyethyleneimine was used to complex the DNA and 

condense it into nanoparticles, which was then entrapped in chitosan to form particles. To 

render the chitosan more hydrophilic, it was chemically modified with mannose to impart water-

solubility, and both non-modified and modified chitosan particles were tested for their release 

of the DNA complex. The microspheres with modified chitosan were found to release 40% of the 

DNA over 14 days, whereas the non-modified chitosan microspheres released 10% over the 

same period of time, showing that the controlled in vitro release of the DNA can be tuned. 

Tripolyphosphate (TPP, Figure 5-2) is a polyanion which has been widely reported for its ability 

to form electrostatic crosslinks with chitosan.4–6 Chitosan-TPP particles have been assessed for 

a variety of applications, including for controlled drug delivery.7 Shu and Zhu reported the 

formation of chitosan-TPP particles which, when coated with alginate, form a complex film. The 

particles provided an improved controlled release profile of the model drug, which achieved 

90% loading.7 The model drug used was a poorly water-soluble dye, brilliant blue, and therefore 

the efficacy of the chitosan-TPP particles to adsorb the dye provides scope for the application 

to dye transfer inhibition in laundry detergents. 

Chitosan-TPP particles were also assessed for their antimicrobial activity by Pan et al.8 The study 

found that chitosan-TPP particles had a greater antimicrobial activity against a range of bacteria, 

such as Staphylococcus aureus and Escherichia coli, compared to chitosan alone. Chitosan is an 

effective antimicrobial, and may provide a significant secondary benefit to its inclusion in 

detergent formulations.9 
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Figure 5-2 Structure of tripolyphosphate. 

Polyelectrolyte complexes may be formed between two polymers containing oppositely charged 

groups, for example the amine groups on chitosan with the acid groups on alginate, and have 

been explored for their ability to encapsulate drugs for controlled release applications.10–13 

Katuwavila et al. compared chitosan-alginate particles to chitosan-TPP particles for their 

encapsulation efficiency of anti-cancer drug doxorubicin, and found that the polyelectrolyte 

particles were 95% more efficient at drug loading, and a higher cumulative drug release. As 

doxorubicin has an aromatic and rigid structure (Figure 5-3) it is comparable to dye molecules, 

and therefore these results suggest that the chitosan-alginate particles may also be effective 

dye transfer inhibitors. Consequently, such particles will be analysed and tested for their DTI 

efficacy, alongside chitosan-TPP particles. 

Figure 5-3 Structure of doxorubicin. 

5.1.2.2 Chemically Crosslinked Chitosan Particles 

Chitosan particles may also be formed by chemical crosslinking, whereby a multivalent molecule 

reacts to form covalent bonds with two chitosan chains, yielding a crosslinked particle. 
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Chitosan may be crosslinked by reaction with glutaraldehyde, a small molecule dialdehyde, to 

form imine crosslinks (Figure 5-4).14 

Figure 5-4 Structure of glutaraldehyde. 

Crosslinked chitosan has been widely investigated for its ability to immobilise proteins, 

encapsulate drugs, and for its ability to adsorb dyes and other pollutants, in the form of an 

aerogel as well as nanoparticles.15–18 For example, Riegger et al. investigated the use of chitosan-

glutaraldehyde nanoparticles for their ability to adsorb the painkiller diclofenac (Figure 5-5), 

achieving a rapid sorption rate of less than two minutes. As with doxorubicin, diclofenac has 

aromatic groups and is structurally similar to dye molecules; the effective encapsulation of the 

drug provides scope for encapsulation of dye molecules as well. 

Figure 5-5 Structure of diclofenac. 

Additionally, the amine group present in chitosan may form an amide by reaction with carboxylic 

acids via a coupling reaction using N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide 

hydrochloride (EDC·HCl, Figure 5-6). 
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Figure 5-6 EDC coupling to form an amide bond between a primary amine and a carboxylic 

acid. 

Dicarboxylic acids can therefore be used as crosslinkers of chitosan.19 Bodnar, Hartmann and 

Borbely reported the formation of chitosan particles using EDC coupling of naturally occurring 

dicarboxylic acids: citric acid, tartaric acid, succinic acid and malic acid (Figure 5-7). 

 

Figure 5-7 Left: Citric acid and Right: Tartaric acid. 

Through this route, a variety of charged particles can be achieved. A polycationic material may 

be produced on the crosslinking of chitosan with a low level of dicarboxylic acid, where the 

remaining amine groups are not involved in crosslinking. On further crosslinking, the amine 

groups may become fully reacted to yield a neutral, non-ionic particle. Citric acid contains three 

carboxylic acid groups and therefore is able to crosslink chitosan and create polyampholytic 

particles, if there are free amine groups present on the chitosan and free acid groups on the 

citric acid. On further addition of citric acid, a polyanionic particle will be produced if all the 

amine groups react, leaving just carboxylate groups from the citric acid. This may provide a route 
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to creating particles which are capable of scavenging anionic and cationic dyes from the wash 

liquor in order to prevent dye transfer. Therefore, citric acid crosslinked chitosan particles were 

made and tested against a variety of dyes for their dye transfer inhibition (DTI) efficacy, as well 

as chitosan-tartaric acid particles. As the same molar amounts of citric acid or tartaric acid were 

added, analogous particles were made. Therefore, the tartaric acid particles contain fewer 

hydroxy groups, and serve as a comparison to the chitosan-citric acid particles. 

5.2 Experimental 

5.2.1 Fourier Transformed Infrared (FTIR) Spectroscopy 

Infrared spectra were obtained on a Bruker Platinum FTIR-ATR spectrometer, using a diamond 

attenuated total reflectance (ATR) accessory, completing 32 scans in total. Bruker OPUS7.0 

software was used to analyse the spectra. TRIOS software was used to plot and analyse the data. 

5.2.2 Dynamic Light Scattering (DLS) and Zeta Potential Measurements 

A Malvern Instrument ZetaSizer Nano ZSP with a 4mW He-Ne laser at 633 nm, and using an 

avalanche photodiode detector. The scattered light was collected at an angle of 173o. 

Measurements were run in triplicate and obtained at 25 °C, using a measurement position of 

2.00 mm. Zeta potential values were measured in a folder capillary zeta cell in deionised water. 

5.2.3 Centrifugation, Sample Drying and Lyophilisation 

Samples were separated by centrifuge with an MSE Mistral 3000i at 25 °C, 1000 rpm. A Buchi R-

210 rotary evaporator and a FiStream vacuum oven were used to remove solvent and dry 

samples. Samples were lyophilised using a VirTis BenchTop Pro freeze dryer (SP Scientific). 

5.2.4 GyroWash2 Studies 

Multifibre and dye bleeder washes were performed on a James Heal GyroWash2 set at 40 °C, for 

30 minutes at 40 rpm. The multifibre and dye bleeding fabrics were cut to 4x10 cm swatches 
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and washed in deionised water (50 mL) or polymer solution (50 mL, 0.1 mg mL-1), with 25 ball 

bearings. Colour changes were measured using a Spectraflash DataColor unit, which measured 

the L* a* and b* coordinates, which can be compared to an unwashed sample to give a colour 

change (ΔE) value. Measurements were made under D65 lighting. 

5.2.5 Nanocellulose Modified with Glycidyl Trimethylammonium Chloride 

5.2.5.1 Low GTAC Modification of Nanocellulose 

An aqueous sodium hydroxide solution (0.140 g in 0.3 mL) was added to nanocellulose gel (4 g, 

2.8% nanocellulose in water) and was stirred for one hour. Glycidyl trimethylammonium 

chloride (GTAC, 0.213 mg, 0.014 mmol) was added dropwise and left to stir for four hours. The 

resulting suspension was washed via centrifugation four times with deionised water (40 mL) and 

lyophilised. Yield: 0.0825 g 

FTIR (cm-1): 3338 (N-H), 3277 (O-H, alcohol), 2902 (C-H, alkyl), 1653 (N-H, bending), 1454 (C-H, 

alkyl), 1427 (O-H, bending), 1335 (O-H, bending), 1315 (C-N, amine), 1160 (C-O, ether), 1052 (C-

N, amine). 

5.2.5.2 High GTAC Modification of Nanocellulose 

An aqueous sodium hydroxide solution (0.140 g in 0.3 mL) was added to nanocellulose gel (4 g, 

2.8% nanocellulose in water) and was stirred for one hour. GTAC (0.47 mg, 0.031 mmol) was 

added dropwise and left to stir for four hours. The resulting suspension was washed via 

centrifugation four times with deionised water (40 mL) and lyophilised. Yield: 0.095 g 

FTIR (cm-1): 3339 (N-H), 3278 (O-H, alcohol), 2902 (C-H, alkyl), 1636 (N-H, bending), 1471 (C-H, 

alkyl), 1427 (O-H, bending), 1366 (O-H, bending), 1314 (C-N, amine), 1124 (C-O, ether), 1054 (C-

N, amine). 
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5.2.6 Formation of Chitosan Particles Crosslinked with Tripolyphosphate 

5.2.6.1 17% TPP to Chitosan by Mass 

Chitosan was dispersed in deionised water (100 mL, 1 mg mL-1). The pH was adjusted to 4.5 using 

concentrated acetic acid and was stirred for one hour to allow the chitosan to dissolve. 

Separately, sodium tripolyphosphate (TPP) was dissolved in deionised water (20 mL, 1 mg mL-1) 

and also stirred for one hour. The TPP solution was added dropwise to the chitosan solution with 

stirring. The combined solution was diluted with deionised water (840 mL) in order to produce 

a final chitosan concentration of 0.1 mg mL-1. This gave an opalescent solution. Portions of this 

solution (50 mL) were directly used in the colour change studies. 

5.2.6.2 14% TPP to Chitosan by Mass 

Chitosan was dispersed in deionised water (24 mL, 1 mg mL-1). The pH was adjusted to 4.5 using 

concentrated acetic acid and was stirred for one hour to allow the chitosan to dissolve. 

Separately, TPP was dissolved in deionised water (4 mL, 1 mg mL-1) and also stirred for one hour. 

The TPP solution was added dropwise to the chitosan solution with stirring. The combined 

solution was diluted with deionised water (206.4 mL) in order to produce a final chitosan 

concentration of 0.1 mg mL-1. This gave an opalescent solution. Portions of this solution (50 mL) 

were directly used in the colour change studies. 

5.2.6.3 12% TPP to Chitosan by Mass 

Chitosan was dispersed in deionised water (21 mL, 1 mg mL-1). The pH was adjusted to 4.5 using 

concentrated acetic acid and was stirred for one hour to allow the chitosan to dissolve. 

Separately, TPP was dissolved in deionised water (3 mL, 1 mg mL-1) and also stirred for one hour. 

The TPP solution was added dropwise to the chitosan solution with stirring. The combined 

solution was diluted with deionised water (183.75 mL) in order to produce a final chitosan 



97 
 

concentration of 0.1 mg mL-1. This gave an opalescent solution. Portions of this solution (50 mL) 

were directly used in the colour change studies. 

5.2.7 Formation of Chitosan Particles Crosslinked with Citric Acid  

5.2.7.1 10% Citric Acid to Chitosan by Molar Ratio of Reactive Chitosan Groups 

Chitosan was dispersed in deionised water (10 mL, 0.25 mg mL-1). The pH of the resultant 

dispersion was adjusted to 4.5 using concentrated acetic acid and was stirred for one hour to 

allow the chitosan to dissolve. Separately, citric acid monohydrate was dissolved in deionised 

water (5 mL, 4.8 mg mL-1) the pH was then adjusted to 6.5 using 1M NaOH(aq). N-(3-

dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride (EDC∙HCl, 89 mg, 0.46 mmol) was 

then added and the mixture was stirred for 30 minutes at 0 °C. This was then added dropwise 

to the chitosan solution and stirred at room temperature for 24 hours. This formed an 

opalescent solution which was then dialysed for 5 days against deionised water with regular 

changes of the external water. The product was then lyophilised to give a white solid powder. 

Yield: 0.3652 g 

FTIR (cm-1): 3322 (N-H), 3212 (O-H, carboxylic acid), 2873 (C-H, alkyl), 1717 (C=O, carboxylic acid), 

1615 (N-H, bending), 1372 (O-H, bending, carboxylic acid), 1056 (C-N, amine). 

5.2.7.2 25% Citric Acid to Chitosan by Molar Ratio of Reactive Chitosan Groups 

Chitosan was dispersed in deionised water (10 mL, 0.25 mg mL-1). The pH of the resultant 

dispersion was adjusted to 4.5 using concentrated acetic acid and was stirred for one hour to 

allow the chitosan to dissolve. Separately, citric acid monohydrate was dissolved in deionised 

water (5 mL, 12.2 mg mL-1) the pH was then adjusted to 6.5 using 1M NaOH(aq). EDC∙HCl (0.22 g, 

1.14 mmol) was then added and the mixture was stirred for 30 minutes at 0 °C. This was then 

added dropwise to the chitosan solution and stirred at room temperature for 24 hours. This 

formed an opalescent solution which was then dialysed for 5 days against deionised water with 
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regular changes of the external water. The product was then lyophilised to give a white solid 

powder. Yield: 0.2885 g 

FTIR (cm-1): 3393 (N-H), 3212 (O-H, carboxylic acid), 2873 (C-H, alkyl), 1713 (C=O, carboxylic acid), 

1641 (N-H, bending), 1376 (O-H, bending, carboxylic acid), 1046 (C-N, amine). 

5.2.7.3 50% Citric Acid to Chitosan by Molar Ratio of Reactive Chitosan Groups 

Chitosan was dispersed in deionised water (10 mL, 0.25 mg mL-1). The pH of the resultant 

dispersion was adjusted to 4.5 using concentrated acetic acid and was stirred for one hour to 

allow the chitosan to dissolve. Separately, citric acid monohydrate was dissolved in deionised 

water (5 mL, 24 mg mL-1) the pH was then adjusted to 6.5 using 1M NaOH(aq). EDC∙HCl (0.45 g, 

2.34 mmol) was then added and the mixture was stirred for 30 minutes at 0 °C. This was then 

added to the chitosan solution and stirred at room temperature for 24 hours. This formed a 

white suspension which was then dialysed for 5 days against deionised water with regular 

changes of the external water. The product was then lyophilised to give a white solid powder. 

Yield: 0.3121 g 

FTIR (cm-1): 3350 (N-H), 3212 (O-H, carboxylic acid), 2891 (C-H, alkyl), 1723 (C=O, carboxylic acid), 

1649 (N-H, bending), 1368 (O-H, bending, carboxylic acid), 1066 (C-N, amine). 

5.2.8 Formation of Chitosan Particles Crosslinked with Tartaric Acid 

5.2.8.1 10% Tartaric Acid to Chitosan by Molar Ratio of Reactive Chitosan Groups 

Chitosan was dispersed in deionised water (10 mL, 0.25 mg mL-1). The pH of the resultant 

dispersion was adjusted to 4.5 using concentrated acetic acid and was stirred for one hour to 

allow the chitosan to dissolve. Separately, tartaric acid was dissolved in deionised water (5 mL, 

3.8 mg mL-1) the pH was then adjusted to 6.5 using 1M NaOH(aq). EDC∙HCl (0.096 g, 0.50 mmol) 

was then added and the mixture was stirred for 30 minutes at 0 °C. This was then added 
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dropwise to the chitosan solution and stirred at room temperature for 24 hours. This formed a 

clear solution which was then dialysed for 5 days against deionised water with regular changes 

of the external water. The product was then lyophilised to give a white solid powder. Yield: 

0.2885 g 

FTIR (cm-1): 3363 (N-H), 3258 (O-H, carboxylic acid), 2895 (C-H, alkyl), 2869 (C-H, alkyl), 1743 

(C=O, carboxylic acid), 1625 (N-H, bending), 1374 (O-H, bending, carboxylic acid), 1062 (C-N, 

amine). 

5.2.8.2 25% Tartaric Acid to Chitosan by Molar Ratio of Reactive Chitosan Groups 

Chitosan was dispersed in deionised water (10 mL, 0.25 mg mL-1). The pH of the resultant 

dispersion was adjusted to 4.5 using concentrated acetic acid and was stirred for one hour to 

allow the chitosan to dissolve. Separately, tartaric acid was dissolved in deionised water (5 mL, 

9.4 mg mL-1) the pH was then adjusted to 6.5 using 1M NaOH(aq). EDC∙HCl (0.24 g, 1.25 mmol) 

was then added and the mixture was stirred for 30 minutes at 0 °C. This was then added 

dropwise to the chitosan solution and stirred at room temperature for 24 hours. This formed a 

clear solution which was then dialysed for 5 days against deionised water with regular changes 

of the external water. The product was then lyophilised to give a white solid powder. Yield: 

0.2816 g 

FTIR (cm-1): 3369 (N-H), 3263 (O-H, carboxylic acid), 2926 (C-H, alkyl), 2873 (C-H, alkyl), 1733 

(C=O, carboxylic acid), 1643 (N-H, bending), 1317 (O-H, bending, carboxylic acid), 1062 (C-N, 

amine). 

5.2.8.3 50% Tartaric Acid to Chitosan by Molar Ratio of Reactive Chitosan Groups 

Chitosan was dispersed in deionised water (10 mL, 0.25 mg mL-1). The pH of the resultant 

dispersion was adjusted to 4.5 using concentrated acetic acid and was stirred for one hour to 

allow the chitosan to dissolve. Separately, tartaric acid was dissolved in deionised water (5 mL, 
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18.8 mg mL-1) the pH was then adjusted to 6.5 using 1M NaOH(aq). EDC∙HCl (0.48 g, 2.50 mmol) 

was then added and the mixture was stirred for 30 minutes at 0 °C. This was then added 

dropwise to the chitosan solution and stirred at room temperature for 24 hours. This formed a 

clear solution which was then dialysed for 5 days against deionised water with regular changes 

of the external water. The product was then lyophilised to give a white solid powder. Yield: 

0.2483 g 

FTIR (cm-1): 3409 (N-H), 3234 (O-H, carboxylic acid), 2928 (C-H, alkyl), 2863 (C-H, alkyl), 1745 

(C=O, carboxylic acid), 1635 (N-H, bending), 1313 (O-H, bending, carboxylic acid), 1064 (C-N, 

amine). 

5.2.9 Formation of Chitosan-Alginate Particles 

5.2.9.1 1:2 Chitosan to Alginate by Mass 

Chitosan was dispersed in deionised water (17 mL, 1 mg mL-1). The pH of the resultant dispersion 

was adjusted to 4.5 using concentrated acetic acid and stirred for one hour to allow the chitosan 

to dissolve. Separately, a solution of sodium alginate in deionised water (34 mL, 1 mg mL-1) was 

stirred for one hour following the addition of calcium chloride (0.06 mg) dissolved in deionised 

water (1 mL). The chitosan solution was added dropwise to the alginate solution and the 

resulting, clear, solution was stirred for 24 hours. This solution was then diluted by the further 

addition of deionised water (448 mL) to give a final concentration of 0.1 mg mL-1. Portions of 

this solution (50 mL) were then used directly in the washing studies. 

5.2.9.2 1:1 Chitosan to Alginate by Mass 

Chitosan was dispersed in deionised water (25 mL, 1 mg mL-1). The pH of the resultant dispersion 

was adjusted to 4.5 using concentrated acetic acid and stirred for one hour to allow the chitosan 

to dissolve. Separately, a solution of sodium alginate in deionised water (25 mL, 1 mg mL-1) was 

stirred for one hour following the addition of calcium chloride (0.05 mg) dissolved in deionised 
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water (1 mL). The chitosan solution was added dropwise to the alginate solution and the 

resulting, clear, solution was stirred for 24 hours. This solution was then diluted by the further 

addition of deionised water (449 mL) to give a final concentration of 0.1 mg mL-1. Portions of 

this solution (50 mL) were then used directly in the washing studies. 

5.2.9.3 2:1 Chitosan to Alginate by Mass 

Chitosan was dispersed in deionised water (34 mL, 1 mg mL-1). The pH of the resultant dispersion 

was adjusted to 4.5 using concentrated acetic acid and stirred for one hour to allow the chitosan 

to dissolve. Separately, a solution of sodium alginate in deionised water (17 mL, 1 mg mL-1) was 

stirred for one hour following the addition of calcium chloride (0.05 mg) dissolved in deionised 

water (1 mL). The chitosan solution was added dropwise to the alginate solution and the 

resulting, clear, solution was stirred for 24 hours. This solution was then diluted by the further 

addition of deionised water (448 mL) to give a final concentration of 0.1 mg mL-1. Portions of 

this solution (50 mL) were then used directly in the washing studies. 

5.3 Results and Discussion 

5.3.1 Modification of Nanocellulose with GTAC 

Nanocellulose was successfully modified with GTAC via ring-opening of GTAC onto the hydroxy 

groups of nanocellulose.20 This reaction was performed with a ‘high’ level of GTAC modification 

and a ‘low’ level to yield two products. Pei et al. show the successful grafting of the GTAC moiety 

through FTIR analysis, by showing the development of a new peak at 1480 cm-1 corresponding 

to the trimethyl group of the GTAC. The peak is shown to increase in intensity with increasing 

level of GTAC modification. This developed peak is also observable in the FTIR of the two 

modified nanocelluloses produced, the spectra of which are shown in Figure 5-8. 
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Figure 5-8 FTIR spectrum of nanocellulose (green), GTAC-nanocellulose modified to lower 

extent (red) and GTAC-nanocellulose modified to a higher extent (blue). 

The FTIR spectrum in Figure 5-8 shows the developing trimethyl peak associated with the GTAC, 

highlighted by a box. The samples were extensively washed with water by centrifugation, 

whereby the GTAC-cellulose was mixed vigorously with water, centrifuged and the supernatant 

discarded. This process was repeated four additional times. Therefore, covalent grafting of the 

GTAC to the cellulose is confirmed. As the product is not soluble in NMR solvents, it is not 

possible to obtain an NMR spectrum to help confirm the structure. 

The zeta potential values of the polymers were measured and are shown in Table 5-1. 

Table 5-1 Zeta potentials of nanocellulose and GTAC modified nanocellulose to a low and a high 

degree. 

Sample Zeta Potential (mV) 

Nanocellulose -19±0.3 

GTAC-Nanocellulose (low) +20±0.2 

GTAC-Nanocellulose (high) +25±0.1 

 

The increasingly positive zeta potential with increasing GTAC content indicates the successful 

modification of the nanocellulose. 

120012501300135014001450150015501600
120012501300135014001450150015501600

Wavenumber / cm-1
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5.3.1.1 GTAC-Nanocellulose for Dye Transfer Inhibition 

The two GTAC-modified nanocellulose samples were then dispersed in water and washed with 

indigo dye bleeding fabric and the colour changes measured. These results were compared to 

non-modified nanocellulose to observe any effects the GTAC moiety causes (Figure 5-9). 

Figure 5-9 A comparison of the colour change caused by indigo in the presence of 

nanocellulose, and two GTAC-modified nanocellulose samples. 

Figure 5-9 indicates that non-modified nanocellulose gives effective dye transfer inhibition for 

regenerated cellulose, cotton and nylon fibres, a 53.8%, 53.4% and 43.8% reduction in colour 

change, respectively. This result suggests that the nanocellulose interacts with the cellulosic and 

nylon fibres and thus prevents dye deposition by blocking adsorption sites. However, for the 

higher level of GTAC modification of nanocellulose, dye transfer is seen to increase for cotton 

from 8.58 in the presence of no polymer, to 12.97, a 51.2% increase. Additionally, while the 

colour change of wool is not significantly altered on addition of unmodified nanocellulose, it 

increased from a mean ΔE value of 14.1 to 22.1 for the nanocellulose modified to a higher extent, 

a 36.1% increase. This suggests that cationic GTAC-nanocellulose deposits onto the fabric and 

attracts the dye molecule to the surface. This is further evidenced by the anionic nanocellulose 

reducing dye deposition, conceivably due to the electrostatic repulsion of the anionic dye 
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molecules. These results are highlighted in Figure 5-10 whereby the dye deposition can be 

visually observed. 

Figure 5-10 Photograph of multifibre swatches washed with indigo dye bleeding fabric. From 

left to right the swatches are washed without polymer, with GTAC-nanocellulose (low) and 

GTAC-nanocellulose (high). 

From Figure 5-10 it can be seen that the GTAC-nanocellulose modified to a higher extent (right) 

shows a deeper blue colour across the fabric types than that without polymer (left). This shows 

that dye deposition is worsened in the presence of the modified nanocellulose. 

GTAC-nanocellulose modified to a higher extent was also washed with C.I. Sulfur Black 1 (SB1) 

to observe if the polymer provided benefits for this dye, having worsened indigo deposition 

(Figure 5-11). 

  

Regenerated 
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Cotton 

Nylon 

Polyester 

Acrylic 

Wool 
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Figure 5-11 A comparison of the colour change caused by SB1 in the presence of nanocellulose, 

and a GTAC-modified nanocellulose sample. 

Neither nanocellulose or the GTAC modified nanocellulose display a reduction in colour change 

for nylon, and neither show a significant decrease for the other fibre types, suggesting that SB1 

is not blocked by the nanocellulose as indigo was. SB1 may have improved penetration of the 

fabric fibres, resulting in the lack of DTI efficacy observed for the GTAC-nanocellulose samples. 

These results suggest the GTAC-nanocellulose deposits onto the fabric attracting the dye to the 

fabric surface and causing a worsened fabric colour change. 

5.3.3 Chitosan-TPP Particle Formation 

Chitosan-TPP particles were formed in three percentages by mass of TPP to chitosan: 17%, 14% 

and 12%.21 It was proposed that chitosan particles are capable of electrostatically interacting 

with the dye molecules in the wash liquor to adsorb the dye preferentially and thus reduce 

colour change. 

The samples were diluted with deionised water to give a concentration of 0.1 mg mL-1, and their 

dimensions measured via dynamic light scattering (DLS). The zeta potential values of the 
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solutions were also collected (Table 5-2). An average of three measurements was taken for each 

solution. 

Table 5-2. Average size and zeta potentials of three chitosan-TPP particle solutions. 

TPP % by 

Mass 

Average Hydrodynamic 

Size (d.nm) 

PDI Zeta Potential 

(mV) 

17 250±16 0.45 +29±2.3 

14 363±21 0.44 +29±1.2 

12 247±1.2 0.39 +35±1.6 

 

From Table 5-2 it can be observed that particles have formed which are of comparable 

hydrodynamic sizes in diameter. The largest amount of chitosan in the sample proportionally 

(12% TPP) gave the highest, most positive zeta potential as expected. However, the zeta 

potential values of the 17% TPP and 14% TPPP samples are similar. 

5.3.3.1 Chitosan-TPP Particles for Dye Transfer Inhibition 

The three chitosan-TPP solutions were tested for their efficacy as indigo dye transfer inhibitors. 

The colour changes were measured and compared for the three particle solutions (Figure 5-12). 

Figure 5-12 A comparison of the colour change caused by indigo in the presence of three 

chitosan-TPP particle solutions. 
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Figure 5-12 shows that the 12% TPP-chitosan particle solution has a worsening effect on indigo 

dye deposition for the hydrophilic fibres. For acrylic fibres, a 57.1% increase in colour change 

(ΔE) is observed, and cotton gave a 39.4% increase. Additionally, for wool a 28.2% increase in ΔE 

is observed. Meanwhile, the 17% TPP-chitosan solution shows a 43.6% reduced colour change 

for nylon and polyester shows a 44.3% decrease. However, the cotton, acrylic and wool values 

exhibit little change. The small difference in zeta potential (Table 5-2) between 17% and 14% 

TPP-chitosan particle solutions reflects the similar colour change results. This indicates that the 

lower, less positive, zeta potential of the solutions results in a more effective DTI. This may be 

because the chitosan-TPP particles deposit onto the fabric and repel or attract the dye 

molecules. In particular, the 12% TPP-chitosan particles have fewer crosslinks, resulting in more 

free amine sites able to interact with dye molecules. The free amines may also hydrogen bond 

with the fabrics to a greater extent than the 17% TPP-chitosan particles, and therefore will draw 

the dye molecules to the fabric, similarly to the GTAC-nanocellulose in Section 5.3.1. 

The 17% TPP-chitosan solution was then tested for its ability to prevent the transfer of additional 

dyes. Firstly, C.I. Sulfur Black 1 (SB1) was tested (Figure 5-13). 

 

 



108 
 

Figure 5-13 A comparison of the colour change caused by SB1 in the presence of no polymer, 

and the 17% TPP-chitosan particle solution. 

From Figure 5-13 it can be observed that the TPP-chitosan particles significantly worsen dye 

deposition of SB1 on all fabric types. Cotton shows particular discolouration, giving a 74.7% 

increase in colour change in comparison to the wash without any polymer. Polyester also shows 

a significant colour change of 71.8%, which is in contrast to the reduced colour change caused 

by indigo in the presence of the 17% TPP-chitosan particle solution. Where the 17% TPP-chitosan 

particles are able to block dye deposition of indigo, they may enable the attraction of SB1 to the 

fabric and to penetrate the fibres, where the indigo is unable to. This suggests that for SB1, the 

amount of free amine groups in the 17% TPP-chitosan particle solution is sufficient to create an 

attraction to the particles and thus the fabric, but is insufficient for the less charged indigo. 
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Secondly, the solution was tested for its efficacy against the redeposition of C.I. Direct Orange 

39 (DO39, Figure 5-14). 

Figure 5-14 A comparison of the colour change caused by DO39 in the presence of the 17% TPP-

chitosan particle solution. 

Figure 5-14 shows that the chitosan-TPP particle solution reduces colour change on cellulose, 

cotton and nylon fibres. Nylon shows a particularly significant reduction in colour change, from 

24.1 to 9.6, a 60.1% reduction in colour change. This is particularly encouraging as DO39 causes 

a high level of discolouration onto nylon in comparison to other fabric types. It is therefore likely 

that the chitosan-TPP particles are able to repel the dye molecules from the fabric surface. 

Alternatively, the DO39 and indigo molecules are small and therefore the chitosan-TPP particles 

may be capable of encapsulating them in the wash liquor. This may not be possible for larger 

dye species which may explain the differing effects between indigo, SB1 and DO39. 
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The 17% TPP-chitosan solution was then tested against C.I. Reactive Red 141 (RR141, Figure 

5-15). 

Figure 5-15 A comparison of the colour change caused by RR141 in the presence of the 17% 

TPP-chitosan particle solution. 

Similarly to SB1, Figure 5-15 shows that RR141 causes an increased colour change in the 

presence of the chitosan particles on all fabric types, in particular cotton, showing a 48.8% 

increase in colour change from 2.2 to 4.3. This suggests that RR141 interacts in a similar manner 

to SB1, whereby the chitosan-TPP particles increase attraction between the dye to the fabric 

surface. RR141 is a larger dye molecule than DO39 and indigo, and therefore the particles may 

not be able to encapsulate the dye, but instead cause it to deposit onto the fabric surface due 

to its higher molecular weight. 
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Finally, the 17% TPP-chitosan solution was tested against C.I. Reactive Black 5 (RB5, Figure 5-16). 

Figure 5-16 A comparison of the colour change caused by RB5 in the presence of the 17% TPP-

chitosan particle solution. 

In the absence of polymer, RB5 does not cause a high level of discolouration in comparison to 

indigo, however the colour change is seen to worsen for nylon, acrylic and wool in the presence 

of chitosan-TPP particles. Nylon gives an 83% increase in colour change, acrylic a 49.0% increase, 

and wool give the largest increase at 72.7%. RB5 is a larger dye molecule than DO39 and indigo, 

so it is less likely to be encapsulated, and is highly water-soluble and anionic. This suggests, 

similarly to RR141 and SB1, that the chitosan particles facilitate interaction between highly 

charged, highly soluble dyes, and the fabric surface. 

In summary, for the larger and more anionic dyes, the dye deposition is worsened on inclusion 

of the chitosan-TPP particle solution. However, for the smaller, less anionic dye molecules like 

DO39 and indigo, the 17% TPP-chitosan particle solution exhibits a clear DTI benefit. This may 

be due to the smaller size enabling encapsulation of the dyes, or may be due to reduced 

electrostatic interactions between the dye and the particles when deposited onto the fabric. 
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5.3.3.2 Chitosan-TPP Particles as Dye Scavengers and Dye Fixatives 

It was proposed that a sacrificial swatch may be made, doped with the 12% TPP-chitosan particle 

solution in order to preferentially attract the fugitive dye molecules, to prevent colour change 

in the wash onto the garment. To investigate whether the chitosan-TPP particles could be used 

to create a dye scavenging swatch to act as a ‘colour catcher’ in the laundry, a swatch of white 

cotton was pre-treated by soaking in the 12% TPP-chitosan particle solution and then air dried. 

This was then washed in plain deionised water with a dye bleeding indigo swatch and a 

multifibre swatch. The colour change caused by indigo onto the multifibre swatch was 

measured. This was compared to a wash that included a plain cotton swatch that was not pre-

treated in the chitosan-TPP solution (Figure 5-17). 

Figure 5-17 A comparison of the colour change caused by indigo in the presence of a cotton 

swatch which was previously treated by a 12% TPP-chitosan particle solution, and that with a 

cotton swatch that was not pre-treated. 

Figure 5-17 shows there is little effect caused by including a doped cotton swatch to act as a 

sacrificial dye scavenger, in comparison to a non-doped swatch, as none of the fabric types show 

any significant increase or decrease in colour change in the presence of the doped swatch. This 

shows that the swatch does not preferentially adsorb indigo dye from the wash solution, despite 

the affinity indigo has for the particles. 
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Secondly, the particle solutions were tested for their ability to act as a potential dye fixative, to 

prevent the dye from bleeding from the fabric in the first place. An indigo dye bleeding swatch 

was pre-treated in a 12% TPP-chitosan solution and dried, and then washed in deionised water 

with a multifibre. This was compared to a wash where the denim was pre-soaked in deionised 

water only, in order to ensure any benefits observed were not due simply to dye being removed 

in the soaking process (Figure 5-18). 

Figure 5-18 A comparison of the colour change caused by indigo dye bleeding fabric which was 

previously treated by a 12% TPP-chitosan particle solution, and that with a dye bleeding swatch 

that was pre-soaked in plain, deionised water. 

By pre-treating the dye bleeding fabric with the particle solution, a reduced colour change is 

observed for nylon fabric, reducing in colour change caused by a dye bleeding fabric pre-soaked 

in deionised water. The colour change for nylon is reduced from 9.34 to 3.83, a 59.0% decrease. 

This benefit does not extend across all fibre types and therefore does not imply that the particles 

are acting as a dye fixative, but does suggest that the particles are deposited on the dye bleeding 

fabric and are preventing dye transfer in the subsequent wash. This provides further evidence 

to support the worsened colour change observed in Section 5.3.3, that may be caused by the 

particles interacting with the dye and drawing the molecules to the fabric surface. 
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5.3.4 Chemically Crosslinked Chitosan Particle Formation 

Chitosan was chemically modified with citric acid and tartaric acid in varying ratios via EDC 

coupling.19 As crosslinked chitosan is insoluble in NMR solvents, modification was confirmed by 

FTIR analysis and through measurement of the zeta potential values of each sample, when 

compared to unmodified chitosan. The FTIR spectra of the citric acid and tartaric acid modified 

chitosan samples are shown in Figure 5-19 and Figure 5-20. 

Figure 5-19 A comparison of the FTIR spectra of chitosan to the chitosan modified with citric 

acid by 10%, 25% and 50%. 

 

Figure 5-20 A comparison of the FTIR spectra of chitosan to the chitosan modified with tartaric 

acid by 10%, 25% and 50%. 
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Each modified chitosan showed a larger relative intensity in the region of 1690 cm-1 relating to 

the C=O of the newly formed amide bond from the reaction of the carboxylic acid with the amine 

groups in chitosan. This is in comparison to the peak at 1029 cm-1 which is assigned to the amine 

peak in the chitosan, for the C-N bond which is not affected by the introduction of the 

crosslinker. 

Successful chitosan crosslinking is further confirmed by the zeta potential values of the six 

products. As citric acid has three acid groups, the varying levels of citric acid were expected to 

produce ampholytic particle solutions, whereby the free amine groups of the chitosan and the 

acid groups were evident. If all the amine groups reacted, this would produce an anionic particle 

solution. The zeta potential values were measured, and the size of the particles measured via 

DLS (Table 5-3). 

Table 5-3 Average size and zeta potential of chitosan-citric acid and chitosan-tartaric acid 

particle solutions. 

Acid % by Mass 
Average Hydrodynamic 

Size (d.nm) 

PDI Zeta Potential 

(mV) 

10% Citric Acid  549±51 0.48 +11±0.2 

25% Citric Acid 233±42 0.82 +5.0±0.9 

50% Citric Acid 405±165 0.54 +2.7±1.2 

10% Tartaric Acid 578±95 0.50 +18±0.6 

25% Tartaric Acid 493±74 0.65 +8.3±2.5 

50% Tartaric Acid 726±98 0.55 +4.6±1.0 

 

From Table 5-3 it can be seen that the zeta potential of the particles becomes less positive as 

the acid content increases. This is due to a reduced number of amine sites in the chitosan, as 

they have successfully reacted with the citric acid and tartaric acid crosslinker molecules. 
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5.3.4.1 Chemically Crosslinked Chitosan Particles for Dye Transfer Inhibition 

The chitosan-citric acid particles were then tested for their ability to prevent indigo dye transfer 

(Figure 5-21). 

Figure 5-21 A comparison of the colour change caused by indigo in the presence of three 

chitosan-citric acid particle solution. 

Figure 5-21 shows that on increasing citric acid modification of the chitosan, the colour change 

caused by indigo reduces. This is also proportional to the zeta potential reducing, as outlined in 

Table 5-3. The least modified chitosan does not have a significant effect on colour change 

overall. However, the 25% and 50% citric acid-chitosan particles show a reduction in colour 

change, particularly onto nylon a 39.7% and 62.7% reduction in colour change. This suggests 

that the particles are depositing onto the fabric and repelling the dye, whereas the 10% citric 

acid-chitosan particles do not have sufficient free acid groups to repel the dye molecules from 

the surface of the fabric. This is similar to the chitosan-TPP particle solutions, whereby the 12% 

TPP-chitosan particles were found to worsen dye deposition of indigo, when the more 

crosslinked 17% TPP-chitosan particles reduced colour change. 
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The chitosan-tartaric acid particles were also tested for their ability to prevent indigo dye 

transfer (Figure 5-22). 

Figure 5-22 A comparison of the colour change caused by indigo in the presence of three 

chitosan-tartaric acid particle solution. 

Unlike the citric acid containing particles, the 10% tartaric acid-chitosan particles show a 

worsening effect for the colour change caused by indigo onto all fabric types. Onto nylon, the 

colour change is increased by 34.5%, and onto wool by 43.0%. The 50% tartaric acid-chitosan 

particles do not increase or decrease colour change significantly over all the fabric types. As 

tartaric acid only contains two carboxylic acid groups, both may be reacted with the free amine 

groups of chitosan to reduce the overall zeta, without introducing free acid groups. This is 

indicated by the overall more positive zeta potential values for the tartaric acid containing 

particles, than the citric acid containing particles shown in Table 5-3. For example, the 10% 

tartaric acid containing particles have a zeta potential value of +18 mV, whereas the 10% citric 

acid containing particles have a value of +11 mV. This may mean that the dye is not being 

repelled by free acid groups from the fabric surface. 

In order to assess the efficacy of the particles for other dyes, one particle solution of either 

chitosan-citric acid and chitosan-tartaric acid were washed with C.I. Sulfur Black 1 (SB1), C.I. 

Direct Orange 39 (DO39) and C.I. Reactive Red 141 (RR141). 
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Firstly, SB1 was investigated (Figure 5-23). 

Figure 5-23 A comparison of the colour change caused by SB1 in the presence of a chitosan-

citric acid and a chitosan-tartaric acid particle solution. 

Figure 5-23 shows that the citric acid particles are capable of reducing deposition of the SB1 dye 

onto nylon by 16.1% but worsens colour change onto cotton by 49.5%. The tartaric acid particles 

worsen dye deposition onto all fibre types except nylon. The worsened colour change may be 

explained as citric acid and tartaric acid are reducing agents, which may produce the leuco form 

of SB1. This therefore would increase dye deposition of the SB1, particularly onto cotton fibres, 

as the dye is able to penetrate the fibres and bring about a colour change. 

Secondly, DO39 was washed with the chitosan-citric acid and chitosan-tartaric acid particles 

(Figure 5-24). 
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Figure 5-24 A comparison of the colour change caused by DO39 in the presence of a chitosan-

citric acid and a chitosan-tartaric acid particle solution. 

As for SB1, the chitosan-citric acid and chitosan-tartaric acid particles are seen to reduce colour 

change caused by DO39 onto nylon. The citric acid particles reduce the colour change by 24.6% 

on nylon, and the tartaric acid particles give a 46.2% reduction. The improved efficacy of the 

tartaric acid particles may suggest they are able to adsorb the dye and remain in solution, 

similarly to PVP which is found to be effective at preventing DO39 deposition, as observed in 

Chapter 3. As DO39 has a small structure and a negative zeta potential, it can be expected that 

the particles would repel the dye from depositing onto the fabric. As the tartaric acid particles 

are have fewer anionic groups than the citric acid particles, the repulsive forces between the 

dye and particle are weaker, and as such the DTI effect is less overall across the fibre types, 

despite a larger reduction onto nylon. 
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Finally, the particles were tested for their ability to prevent the dye deposition of RR141 (Figure 

5-25). 

Figure 5-25 A comparison of the colour change caused by RR141 in the presence of a chitosan-

citric acid and a chitosan-tartaric acid particle solution. 

Colour change by RR141 is found to increase in the presence of the tartaric acid-containing 

particles onto all fibre types, as shown in Figure 5-25. In particular, dye deposition is worsened 

onto cotton and wool, by 75.7% and 81.4% respectively. Colour change is increased in the 

presence of the citric acid particles, but to a lesser extent than the tartaric acid particles. The 

particle may not have a sufficient number of anionic groups to repel the dyes from the fabric 

surface, but the free amines in chitosan may attract the dye to the fabric, worsening deposition. 

5.3.5 Chitosan-Alginate Particle Formation 

As chitosan possesses primary amine groups and alginate has free carboxylic acid groups, 

physically crosslinked particles may form between the two biopolymers.10 Particles containing 

three ratios of chitosan to alginate were produced and their zeta potential values collected and 

their particle sizes were measured via DLS (Table 5-4). 
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Table 5-4 Average size and zeta potential of three chitosan-alginate particle solutions. 

Chitosan to 

Alginate Ratio 

Average Hydrodynamic 

Size (d.nm) 

PDI Zeta Potential 

(mV) 

1:2 482±24 0.58 -39±0.1 

1:1 580±79 0.94 -22±0.0 

2:1 2436±170 0.36 +28±0.2 

 

Table 5-4 shows that on increasing the chitosan amount, the more positive the zeta potential 

value of the nanoparticle dispersion becomes, indicating more free amine groups present in the 

particle solution. Additionally, the particle size diameter is shown to increase with increasing 

chitosan content. 

5.3.5.1 Chitosan-Alginate Particles for Dye Transfer Inhibition 

Firstly, chitosan and alginate were dispersed in water and washed with indigo dye bleeding 

fabric for comparison with the particle solutions (Figure 5-26). 

Figure 5-26 A comparison of the colour change caused by indigo in the presence of chitosan 

and alginate. 

Figure 5-26 shows that chitosan and alginate alone are effective at preventing the dye 

deposition of indigo. Chitosan is not soluble in water, and therefore a dispersion was used to 

0

5

10

15

20

R
. C

el
lu

lo
se

C
o

tt
o

n

N
yl

o
n

P
o

ly
es

te
r

A
cr

yl
ic

W
o

o
l

R
. C

el
lu

lo
se

C
o

tt
o

n

N
yl

o
n

P
o

ly
es

te
r

A
cr

yl
ic

W
o

o
l

R
. C

el
lu

lo
se

C
o

tt
o

n

N
yl

o
n

P
o

ly
es

te
r

A
cr

yl
ic

W
o

o
l

No Polymer Chitosan Alginate

Δ
E



122 
 

carry out the washes. The dispersion was found to have a zeta potential of +13 mV. The low zeta 

potential value indicates that the chitosan is not soluble in water and indicates an unstable 

dispersion, which has a cationic surface charge. While chitosan shows a reduced colour change 

for all dyes, on visual inspection of the fabric chitosan aggregates are observed on the fabric 

which have adsorbed the dye and are therefore blue in colour. In contrast, alginate is water-

soluble, and the zeta potential value of –44 mV reflects the stability and solubility of alginate in 

water. Therefore, it was expected that chitosan-alginate particles would enable the 

solubilisation and thus stability of the chitosan, and bring about effective dye transfer inhibition 

of both anionic and cationic dyes. 

The chitosan-alginate particles were then washed with indigo dye bleeding fabric and the colour 

change was measured (Figure 5-27). 

Figure 5-27 A comparison of the colour change caused by indigo in the presence of three 

chitosan-alginate particle solutions. 

From Figure 5-27 it can be observed that the chitosan to alginate particles have an effect on dye 

deposition onto all fabric types. For example, the 1:2 ratio, with a high alginate content, shows 

a 67.7% reduction in colour change onto cotton, and 67.2% decrease onto polyester. This 

suggests that the particles deposit onto the fabric and repel the dye, owing to the overall 

negative zeta potential of the high alginate content particles. This result is in contrast to the 
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overall lack of effect caused by the 2:1 ratio, with high chitosan content, which shows a mean 

increase in colour change caused by indigo onto cotton, acrylic and wool of 32.1%, 24.5% and 

22.6%, respectively. This further provides evidence that the particles deposit onto the fabric, 

and in this case attract the dye to the fabric surface, due to the overall positive charge of the 2:1 

chitosan-alginate particles. 

The three chitosan-alginate particle solutions were then tested against C.I. Sulfur Black 1 (SB1, 

Figure 5-28). 

Figure 5-28 A comparison of the colour change caused by SB1 in the presence of three chitosan-

alginate particle solutions. 

Figure 5-28 shows that the chitosan-alginate particles reduce the colour change caused by SB1 

onto nylon, the fibre type most discoloured by SB1. For the chitosan to alginate 1:1 ratio, nylon 

shows a 27.6% decrease in colour change. This benefit is not observed across all the fibre types, 

however. Cotton shows a worsened discolouration for the 1:1 ratio, the colour change increasing 

from 4.58 to 7.43, a 38.4% increase. As SB1 is a cotton dye, this result may suggest that the 

particle solution is aiding the dyeing of the receiver fabric with the fugitive SB1 molecule. SB1 is 

applied to cotton when reduced, therefore the conditions created by the particle solution may 

be sufficiently acidic to cause the dye the penetrate the cotton fibres and thus worsen colour 

change. 
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The chitosan-alginate particles were also tested against C.I. Direct Orange 39 (DO39, Figure 

5-29). 

Figure 5-29 A comparison of the colour change caused by DO39 in the presence of three 

chitosan-alginate particle solutions. 

For DO39, the 1:2 and 1:1 chitosan-alginate particles do not have a significant effect on colour 

change. Unlike for indigo, this shows that the particles do not repel the dye from depositing onto 

the fabric. Additionally, the worsened effect observed for the 2:1 particle solution suggests that 

the particles are again depositing onto the fabric and drawing the dye to the fibre, causing 

discolouration. For example, the colour change onto polyester is increased from 5.40 to 11.55, 

a 53.2% increase. As the 2:1 particle solution had a positive zeta potential, this suggests the 

particles interact with the fibres and draw the dye molecules to it. 

5.4 Conclusion 

The GTAC-nanocelluloses do not reduce colour change caused by indigo on various fibre types. 

In particular, the nanocellulose modified to a high extent with GTAC, and therefore the most 

positively charged, was found to worsen indigo dye deposition onto cotton and wool with a 

33.8% and 36.1% increase in colour change, respectively. This indicates that the GTAC-

nanocellulose deposited onto the fabric surface and attracted the dye to the fabric, increasing 

discolouration.  
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Chitosan particles were investigated for their ability to preferentially adsorb dyes in the wash to 

prevent dye deposition. Initially, physically crosslinked particles were formed using TPP, a 

polyanion, to crosslink with the amine groups on chitosan. Particles containing three ratios of 

chitosan to TPP were formed and tested for their ability to prevent dye transfer. The particles 

with the lowest ratio of chitosan to TPP were found to reduce dye deposition of indigo, whereas 

those with fewer crosslinks at a higher chitosan to TPP ratio were found to worsen dye 

deposition. This suggests that the interactions between the dye and the polymer, as well as the 

polymer and the fabric, are important to consider. The increased extent of the attraction 

between the dye and the polymer may also increase the affinity of the dye to the fabric, thus 

causing a worsened dye deposition overall. 

Following these results, polymeric particles with an overall negative zeta potential were 

explored, in order to repel the dyes from the fabric rather than scavenging the dye in the wash 

liquor. Chitosan was physically crosslinked with citric acid, which contains three acid groups, and 

tartaric acid, which contains two acid groups. This was in order to create particles with varying 

levels of primary amine groups provided by the chitosan, and carboxylic acid groups provided 

by the crosslinker. The citric acid particles containing the highest amount of free acid groups 

were found to be more effective dye transfer inhibitors against indigo and DO39 dyes.  

Finally, chitosan-alginate physically crosslinked particles were formed and tested. Analogous to 

the citric acid crosslinked particles, the particles with the higher alginate content and therefore 

the greater amount of acid groups, were successful DTIs against indigo. This again supports the 

rationale that the particles deposit onto the fabric and repel the dye from depositing. 
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Chapter 6. mPEG Terminated Polyesters for Use as 

Dye Transfer Inhibitors 

This chapter is based on work which has been filed provisionally for a patent by P&G as: 

WO patent application Cleaning Compositions, submitted June 2019 

Abstract 

Polymeric dye transfer inhibitors may interact with a fabric surface in the laundry and block the 

deposition of fugitive dyes. Therefore, a range of dye transfer inhibitors were produced by 

polycondensation reactions that are effective in preventing the transfer of unbound indigo dye 

to a variety of fibre types. Amphiphilic block copolymers are reported that contain sections 

designed to promote polymer-fabric interactions, and hydrophilic poly(ethylene glycol) sections 

that inhibit indigo-fabric interaction. Such polymers were found to hold great promise for 

inclusion within laundry detergent formulations as dye transfer inhibitors. 

6.1 Introduction 

Previous results reported in this thesis have shown that biopolymeric particles are capable of 

reducing dye transfer when they deposit onto fabric, and can repel or block the deposition of 

the dye onto the fabric. However, the particles were expected to encapsulate the dye in solution, 

rather than depositing onto the fabric. Due to this, some dye deposition was worsened by the 

presence of the biopolymeric particles that deposit onto the fabric and attract the dye to the 

fabric surface. Therefore, polymers which interact with the fabric to block or repel dye 

deposition will be investigated, in particular, methoxy-poly(ethylene glycol)-co-polyesters, due 

to their amphiphilic nature and ability to interact with common fabrics. 
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6.1.1 Block Copolymer Polyesters for Antifouling Applications 

Block copolymers containing polyesters have been explored as anti-fouling coatings of ship hulls 

to prevent the attachment of marine organisms, as well as in biomedical applications for protein 

and cell-adhesion resistance.1–4  

Zheng et al. investigated the mechanism of action of anti-fouling coatings by molecular 

simulations of the interactive forces between the protein and water molecules bound by the 

coating.5 The coating forms a self-assembled monolayer, which attracts a hydration layer of 

tightly bound water molecules at the surface. They found that it was the water molecules that 

repel the protein, not the polymer, but that a polymer capable of extensively hydrogen bonding 

to water molecules exhibits repulsion of the protein. A more flexible polymer chain was found 

to exert greater repulsive forces on proteins. This is because the disordered monolayer allows a 

greater number of water molecules to penetrate the surface.5 Therefore in order to achieve a 

successful anti-fouling coating the hydration layer, and thus the hydrophilic block, is key.6 

Li et al. reported the synthesis of hydrophilic polyesters bearing oligo(ethylene glycol)methyl-

ether functionality. The polyesters were synthesised via ring opening polymerisation of δ-

valerolactones for use in preventing non-specific protein adsorption in biomedical applications.1 

The authors selected aliphatic polyesters for their biodegradability as the ester bond is 

susceptible to hydrolysis, and their biocompatibility. A polyester was tested for its anti-fouling 

ability by forming a self-assembled monolayer onto a gold surface. They found that the polyester 

was capable of preventing the adsorption of bovine serum albumin to a similar extent as a 

surface coated with methoxy-poly(ethylene glycol) (mPEG), a commonly used anti-fouling 

polymer.1 The two coated surfaces were both hydrophilic, as confirmed by their contact angles 

of 48.7o for the polyester and 31.8o for the mPEG surface. This study shows the ability of 

polyesters in anti-fouling coatings, and reiterates the importance of an hydrophilic component 

in order to be successful in this application. 
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Water-soluble polyesters may therefore be applied to dye transfer inhibition as they may 

prevent deposition of dyes onto fabrics in an analogous manner. 

6.1.2 Block Copolymer Polyesters for Drug Delivery 

Amphiphilic block-copolymer polyesters have been widely investigated for their ability to form 

micelles to enable drug delivery of pharmaceuticals that otherwise have low solubility, and thus 

low bioavailability, once delivered to the body.7–10 Micelle formation occurs when an amphiphilic 

diblock copolymer self-assembles in solution. The hydrophilic block forms a shell in which the 

hydrophobic section, or ‘core’, is protected from the aqueous environment, creating a core-shell 

particle.11,12 The interior of the micelle is an hydrophobic environment which can be exploited 

to deliver drugs that are insoluble in aqueous media to the body, which is an aqueous system.13 

The ester bond in polyesters is prone to hydrolysis and therefore is ideal for controlled release 

applications in drug delivery.10,14 

Poly-3-hydroxybutyrate is a polyester that degrades via hydrolysis of the ester bond into D-3-

hydroxybutyrate, which occurs naturally in human blood. It was selected by Luo et al. for use as 

the hydrophobic block, when modified to poly[(R)-3-hydroxybutyrate-(R)-3-hydroxyhexanoate], 

in a copolymer with PEG and poly(propylene glycol) (PPG) in order to create thermosensitive 

micelles.15 PEG was selected to impart hydrophilicity to the polymer, and to allow polymer self-

assembly into micelles, the formation of which was confirmed by transmission electron 

microscopy (TEM). The blood compatibility of the selected anticancer drug docetaxel was found 

to improve when encapsulated by the novel polyester copolymer, in comparison to commercial 

formulations using surfactants such as Tween 80. The drug-loaded polymeric micelles were 

found to inhibit melanoma growth in in vivo studies.15 

Siafaka et al. investigated the formation of nanoparticles by PEG-poly(propylene succinate) (PPS) 

copolymers functionalised with folic acid, in order to encapsulate ixabepilone, an anticancer 

drug.16 PPS is a biocompatible polyester with a higher biodegradation rate than that of 
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commonly used poly(lactic acid), poly(glycolic acid) and poly(ε-caprolactone), due to its low 

degree of crystallinity.14 Folic acid was conjugated to the PEG-PPS copolymers in order to provide 

targeting capability of the self-assembled nanoparticles for cancer cells. The nanoparticles were 

found to enter HeLA cancer cells, which exhibit a folic acid receptor. Additionally, the 

encapsulated drug was found to show a greater release of the drug by 55%, in comparison to 

the free drug, indicating the improved solubility.16 This demonstrates the polyester polymers are 

capable of encapsulating the drug molecule, as well as then delivering it via targeted delivery 

using the folic acid receptor on HeLa cells. 

Owing to the structural similarity of drug molecules to dye molecules, amphiphilic block 

copolymers may therefore be used to encapsulate dye molecules, in order to act as dye transfer 

inhibitors (DTIs). 

6.1.3 Block Copolymer Polyesters in Laundry Detergent Formulations 

Methoxy-poly(ethylene glycol)-co-poly(ester)s were produced using dimethyl terephthalate and 

a diol as the monomers for the polyester block, by Koch et al. as reported in a patent, which 

indicates a commercially viable class of polymers that have shown a dye transfer inhibition effect 

against indigo dye onto nylon thread.17 

This polymer was designed to prevent the redeposition of indigo in the stonewashing process of 

denim treatment, but a similar polymer concept may be adapted for use as a DTI in laundry 

detergents. Due to its high hydrophobicity, traditional PVP-type DTIs are not effective against 

the redeposition of indigo. The polyester block is able to interact with hydrophobic fibres such 

as polyamides, while the PEG block creates a physical barrier, preventing dye redeposition by 

blocking dye adsorption sites. 
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The patent however does not provide colour change results, and specifies the polymers were 

designed to prevent indigo dye transfer onto polyamide fabrics specifically.17 It is therefore 

necessary to test the polymers with alternative dyes onto different fabric types, and optimise 

the polymer through structural modification. From this, the mode of action of the polymer can 

be confirmed in order to assess the efficacy of the mechanism, and therefore the type of DTI 

polymer. 

In addition, amphiphilic polyesters have been used as soil release polymers in detergent 

formulations.18,19 Soil release polymers are added to detergent formulations in order to improve 

the cleaning qualities of the detergent, since the advent of synthetic fabrics such as polyester 

and quick, cold water wash cycles, traditional detergents have lost efficacy.20 Because of the 

hydrophobic nature of polyester fabric, it interacts favourably with oily substances which create 

soils on the garment that are difficult to disperse into the laundry liquor.21,22 This is different to 

hydrophilic fibres such as cotton which readily adsorb water, and expel oily soils. Polyester 

fabrics are therefore surface modified to increase the hydrophilicity and thus improve the 

removal of oily stains and soils in the laundering process. However, through subsequent washes, 

the surface treatment can be removed and therefore results in increased soiling.23 Soil release 

polymers are used to improve the cleaning quality of detergents for hydrophobic fabric, by 

increasing the surface hydrophilicity of the hydrophobic fibres again.24 The polymers are 

designed to interact with, and deposit onto, the fibres in the laundry wash. This prevents soil 

deposition by creating a hydration layer, analogous to anti-biofouling polymers, which repels 

soils from redepositing onto the fibres in the wash, as well as protecting the fabric from future 

soiling.25 Cationic polyester soil release polymers were also found to act as effective fabric 

softening agents and antistatic agents, when added to a rinse-added fabric conditioning 

formulation.26,27 However, the late addition in the laundering process would prevent the efficacy 

of the polymer as a dye transfer inhibitor, but indicates the potential secondary benefits 

provided by the soil release type polymers.  
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The polyester block of the copolymer is formed by the polycondensation reaction between a 

diol, e.g. ethylene glycol, and dimethyl terephthalate (Figure 6-1). This may then be reacted with 

methoxy-poly(ethylene glycol) (mPEG) at each chain terminus to produce an mPEG capped 

polyester. 

 

Figure 6-1 Two-step polycondensation reaction to form poly(ethylene terephthalate) from 

dimethyl terephthalate and ethylene glycol. 

The diol, highlighted in red in Figure 6-1, may be substituted for alternative diols which also 

contain different functional groups, in order to optimise the polymer properties and improve 

the efficacy of the DTI polymer. This eliminates the need for post-modification of the polymer 

by including the additional functionality in the one-pot synthesis. 

This chapter will focus on testing three polymers based of those reported in the patent outlined 

by Koch et al. with various dyes, and onto multiple fabric types. This was done by synthesising 

the polymers and testing their DTI efficacy by washing a strip of a dye bleeding fabric and a 

multifibre together in a solution of the polymer in water. This simulates the laundry conditions, 

rather than a stonewashing scenario, and determine if such polymers are suitable for 

incorporation within laundry detergent formulations. 

Experiments will then focus on determining the mode of action of the polymers by altering the 

hydrophilicity and hydrophobicity of the DTI to observe the effect on the DTI efficacy. A 

worsened DTI efficacy on increasing the hydrophilicity will show that the polymer favours 

residence in the aqueous phase of the laundry liquor, and therefore does not interact with the 
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fabric. This would suggest that the original polymer interacts with the fabric, and thus works via 

a dye blocking mechanism of action. 

Finally, a series of polymers will be synthesised incorporating various functionality into the 

polymer by selecting different diols and triols as monomers for the polyester synthesis. This will 

allow for an examination of the interactions and properties the polymer requires in order to be 

a successful DTI. 

6.2 Experimental 

6.2.1 Nuclear Magnetic Resonance (NMR) Spectroscopy 

All 1H NMR spectra obtained were recorded using a Bruker AVANCE 500 spectrometer at 

500 MHz, for 128 scans. NMR spectra were obtained using 500 MHz Norell® NMR tubes. 

MestreNova® Research Lab software was used to analyse and integrate the spectra, and the 

chemical shifts were reference to trimethylsilane at 0 ppm. 

6.2.2 Fourier Transformed Infrared (FTIR) Spectroscopy 

Infrared spectra were obtained on a Bruker Platinum FTIR-ATR spectrometer, using a diamond 

attenuated total reflectance (ATR) accessory, completing 32 scans in total. Bruker OPUS7.0 

software was used to analyse the spectra. TRIOS software was used to plot and analyse the data. 

6.2.3 Centrifugation, Sample Drying and Lyophilisation 

Samples were separated by centrifuge with an MSE Mistral 3000i at 25 °C, 1000 rpm. A Buchi R-

210 rotary evaporator and a FiStream vacuum oven were used to remove solvent and dry 

samples. Samples were lyophilised using a VirTis BenchTop Pro freeze dryer (SP Scientific). 

6.2.4 Scanning Electron Microscopy (SEM) 

SEM analyses were carried out with a JEOL JSM-6610LV microscope (Oxford Instruments), using 

a field emission electron gun as an electron source. The fabric samples were mounted onto a 
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stub and a Quorum Q150RS sputter coater was used to give a 30 µm gold coat over the sample 

to provide surface conductivity. 

6.2.5 Advanced Polymer Chromatography (APC) 

Waters ACQUITY Advanced Polymer Chromatography was used to determine the molecular 

weight of the polymers. The polymers were dissolved in THF (1 mg mL-1) and passed through a 

0.22 µm PTFE filter. The values are calibrated to poly(methyl methacrylate) standards. An 

ACQUITY APC AQ column was used which is packed with bridged poly(ethylene) hybrid particles. 

An ACQUITY refractive index detector was used. The column was heated to 40 °C and the flow 

rate set to 0.5 mL min-1. THF was run through the column for 2 minutes prior to each run. 

Empower 3 software was used to calculate the molecular weight. 

6.2.6 GyroWash2 Studies 

Multifibre and dye bleeder washes were performed on a James Heal GyroWash2 set at 40 °C, for 

30 minutes at 40 rpm. The multifibre and dye bleeding fabrics were cut to 4x10 cm swatches, 

and washed in deionised water (50 mL) or polymer solution (50 mL, 0.1 mg mL-1), with 25 ball 

bearings. Colour changes were measured using a Spectraflash DataColor unit, which measured 

the L* a* and b* coordinates, which can be compared to an unwashed sample to give a colour 

change (ΔE) value. Measurements were made under D65 lighting. 

6.2.7 Overall synthetic procedure of mPEG-polyesters 

For all polymers, all reagents were weighed into a three necked round bottom flask, fitted with 

a distillation head, bridge and flask, with an internal thermometer and placed under a constant 

flow of N2(g). The reaction mixture was heated to 150 °C and over 48 hours was slowly raised to 

210 °C. This temperature was maintained for a further 72 hours. The reaction product was then 

allowed to cool and was dissolved in deionised water (100 mL) before being dialysed for 5 days 

and then dried in vacuo. The individual conditions and reagents are outlined for each polymer. 
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6.2.7.1 mPEG500-polyester containing 1,2-propanediol (DTI1) synthesis 

mPEG500 (11.06 g, 22.12 mmol), dimethyl terephthalate (2.29 g, 11.79 mol), 1,2-propanediol 

(1.79 g, 23.52 mol), butylated hydroxytoluene (0.013 g, 0.059 mmol) and Ti(IV) isopropoxide 

(0.013 mL, 0.042 mmol) were weighed and placed in a three-neck round bottom flask. The 

reaction procedure outline in Section 6.2.1 was then followed. Yield: 15.16 g, light brown oil. 

Mw: 3046 Da, PDI: 1.02 

1H NMR (500 MHz, DMSO) δ 8.23 – 7.89 (m, 10H, ArH), 4.68 – 4.52 (m, 2H, CH), 4.43 (dd, J = 16.4, 

11.9 Hz, 9H, CH3), 3.84 – 3.35 (m, 178H, CH2), 3.24 (t, J = 5.7 Hz, 15H, CH3), 1.53 – 0.92 (m, 3H, 

CH2). 

FTIR (cm-1): 3550 (-O-H, alcohol), 2863 (-C-H, alkyl), 1719 (-C=O, ester), 1270 (-C-O, aromatic 

ester), 1095 (-C-O, alcohol), 942 (-C=C-, alkene) 732 (-C-H, aromatic).  

6.2.7.2 mPEG500-polyester containing glycerol and ethylene glycol (DTI2) synthesis 

mPEG500 (8.83 g, 17.66 mmol), dimethyl terephthalate (5.34 g, 27.50 mol), glycerol (2.28 g, 

24.76 mmol), ethylene glycol (0.69 g, 11.12 mmol), butylated hydroxytoluene (0.01 g, 

0.059 mmol) and Ti(IV) isopropoxide (0.01 mL, 0.042 mmol) were weighed and placed in a three-

neck round bottom flask. The reaction procedure outline in Section 6.2.1 was then followed. 

Yield: 8.76 g, brown viscous liquid. Mw: 3729 Da, PDI: 1.06 

1H NMR (500 MHz, CDCl3) δ 8.34 – 7.77 (m, 4H, ArH), 4.96 – 4.61 (m, 1H, CH), 4.59 – 4.23 (m, 3H, 

CH2), 3.99 – 3.48 (m, 16H. CH2), 3.40 (d, J = 29.5 Hz, 1H, CH3), 2.50 (s, 3H, OH). 

FTIR (cm-1): 3489 (O-H, alcohol), 2871 (C-H, alkyl), 1719 (C=O, ester), 1250 (C-O, aromatic ester), 

1095 (C-O, alcohol), 942 (C=C, alkene) 730 (C-H, aromatic).  
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6.2.7.3 mPEG500-polyester containing glycerol and 2,2'-dimethyl-1,3-propanediol (DTI3) 

synthesis 

mPEG500 (12.80 g,  25.60 mmol), dimethyl terephthalate (7.76 g, 39.96 mmol), glycerol (2.21 g, 

24.00 mmol), 2,2’-dimethyl-1,3-propanediol (2.90 g, 27.84 mmol), butylated hydroxytoluene 

(0.02 g, 0.12 mmol) and Ti(IV) isopropoxide (0.02 mL, 0.084 mmol) were weighed and placed in 

a three-neck round bottom flask. The reaction procedure outline in Section 6.2.1 was then 

followed. Yield: 15.73 g, brown viscous liquid. Mw: 4451 Da, PDI: 1.11 

1H NMR (500 MHz, CDCl3) δ 8.09 (dd, J = 7.2, 2.4 Hz, 7H, ArH), 4.70 (s, 1H, CH), 4.59 – 4.37 (m, 

4H, CH2), 4.32 – 4.14 (m, 3H, CH2), 3.87 – 3.48 (m, 40H, CH2), 3.37 (d, J = 1.1 Hz, 3H, CH3), 2.69 – 

2.13 (m, 2H, OH), 1.31 – 0.92 (m, 5H, CH3). 

FTIR (cm-1): 3497 (O-H, alcohol), 3285 (O-H, alcohol), 2869 (C-H, alkyl), 1717 (C=O, ester), 1246 

(C-O, aromatic ester), 1091 (C-O, alcohol), 1015 (OC=O, anhydride), 944 (C=C, alkene) 728 (C-H, 

aromatic). 

6.2.7.4 mPEG750-polyester containing glycerol and 2,2'-dimethyl-1,3-propanediol (DTI4) 

synthesis 

mPEG750 (12.67 g, 0.0169 mol), dimethyl terephthalate (5.13 g, 0.0264 mol), glycerol (1.46 g, 

0.0159 mol), 2,2’-dimethyl-1,3-propanediol (1.92 g, 0.0184 mol), butylated hydroxytoluene 

(0.013 g, 0.059 mmol) and Ti(IV) isopropoxide (0.013 mL, 0.042  mmol) were weighed and 

placed in a three-neck round bottom flask. The reaction procedure outline in Section 6.2.1 was 

then followed. Yield: 16.57 g brown oil. Mw: 4907 Da, PDI: 1.56 

1H NMR (501 MHz, CDCl3) δ 8.18 – 7.93 (m, 40H, ArH), 4.65 (d, J = 33.2 Hz, 3H, CH), 4.48 (d, J = 

4.6 Hz, 21H, CH2), 4.34 – 4.02 (m, 21H, CH2), 3.86 – 3.45 (m, 393H, CH2), 3.37 (d, J = 9.0 Hz, 18H, 

CH3), 2.46 (s, 17H, OH), 1.30 – 0.84 (m, 26H, CH3). 
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FTIR (cm-1): 3495 (O-H, alcohol), 2866 (C-H, alkyl), 1718 (C=O, ester), 1268 (C-O, aromatic ester), 

1095 (C-O, alcohol), 947 (C=C, alkene) 730 (C-H, aromatic). 

6.2.7.5 mPEG5000-polyester containing glycerol and 2,2'-dimethyl-1,3-propanediol (DTI5) 

synthesis 

mPEG5000 (12.80 g, 2.56 mmol), dimethyl terephthalate (0.776 g, 4.00 mmol), glycerol (0.221 g, 

2.40 mmol), 2,2’-dimethyl-1,3-propanediol (0.290 g, 2.78 mmol), butylated hydroxytoluene 

(0.002 g, 0.00908 mmol) and Ti(IV) isopropoxide (0.01 mL, 0.0338 mmol) were weighed and 

placed in a three-neck round bottom flask. The reaction procedure outline in Section 6.2.1 was 

then followed. Yield: 12.27 g brown solid. Mw: 1675 Da, PDI: 1.05 

1H NMR (501 MHz, CDCl3) δ 8.14 – 7.91 (m, 11H, ArH), 4.66 (t, J = 11.0 Hz, 1H, CH), 4.48 – 4.37 

(m, 5H, CH2), 4.28 – 4.06 (m, 13H, CH2), 4.03 – 3.33 (m, 558H, CH2), 3.30 (s, 5H, CH3), 2.91 (s, 10H, 

OH), 1.38 – 0.54 (m, 6H, CH3). 

FTIR (cm-1): 3481 (O-H, alcohol), 2877 (C-H, alkyl), 1721 (C=O, ester), 1466 (C-H, alkane), 1341 

(O-H, alcohol), 1280 (C-O, aromatic ester), 1101 (C-O, alcohol), 958 (C=C, alkene), 842 (C-H, 

aromatic). 

6.2.7.6 mPEG500-polyester containing glycerol and 2,2'-dimethyl-1,3-propanediol at 1.5 

times the molar ratio (DTI6) synthesis 

mPEG500 (6.40 g, 0.0128 mol), dimethyl terephthalate (5.83 g, 0.0302 mol), glycerol (1.66 g, 

0.0180 mol), 2,2’-dimethyl-1,3-propanediol (2.17 g, 0.0208 mol), butylated hydroxytoluene 

(0.02 g, 0.0908 mmol) and Ti(IV) isopropoxide (0.02 mL, 0.0676 mmol) were weighed and placed 

in a three-neck round bottom flask. The reaction procedure outline in Section 6.2.1 was then 

followed. Yield: 12.03 g brown oil. Mw: 3117 Da, PDI: 1.02 
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1H NMR (501 MHz, CDCl3) δ 8.25 – 7.96 (m, 9H, ArH), 4.74 (d, J = 38.6 Hz, 1H, CH), 4.59 – 4.32 

(m, 4H, CH2), 4.32 – 4.16 (m, 4H, CH2), 3.91 – 3.47 (m, 28H, CH2), 3.37 (d, J = 1.9 Hz, 2H, CH3), 

1.34 – 0.92 (m, 8H, CH3). 

FTIR (cm-1): 3491 (-O-H, alcohol), 2867 (-C-H, alkyl), 1715 (-C=O, ester), 1605 (-C=C-, conjugated 

alkene), 1456 (-C-H, alkane), 1370 (-O-H, alcohol), 1264 (-C-O, aromatic ester), 1095 (-C-O, 

alcohol), 1015 (-C=C-, alkene), 728 (-C-H, aromatic). 

6.2.7.7 mPEG500-polyester containing pentaerythritol and 2,2'-dimethyl-1,3-propanediol 

(DTI7) synthesis 

mPEG500 (12.81 g, 0.02562 mol), dimethyl terephthalate (7.77 g, 0.0400 mol), pentaerythritol 

(3.27 g, 0.0240 mol), 2,2'-dimethyl-1,3-propanediol (2.91 g, 0.0279 mol), butylated 

hydroxytoluene (0.02 g, 0.0908 mmol) and Ti(IV) isopropoxide (0.02 mL, 0.0676 mmol) were 

weighed and placed in a three-neck round bottom flask. The reaction procedure outline in 

Section 6.2.1 was then followed. Yield: 22.80 g light brown oil. Mw: 4316 Da, PDI: 1.12 

1H NMR (501 MHz, CDCl3) δ 8.17 – 7.91 (m, 9H, ArH), 4.64 – 4.34 (m, 6H, CH2), 4.30 – 4.04 (m, 

4H, CH2), 3.87 – 3.42 (m, 89H, CH2), 3.34 (s, 7H, CH3), 2.80 (s, 5H, OH), 1.24 – 0.78 (m, 7H, CH3). 

FTIR (cm-1): 3470 (O-H, alcohol), 2866 (C-H, alkyl), 1718 (C=O, ester), 1452 (C-H, alkane), 1349 

(O-H, alcohol), 1264 (C-O, aromatic ester), 1091 (C-O, alcohol), 1016 (C=C, alkene), 941 (C=C, 

alkene), 849 (C-H, aromatic), 730 (C-H, aromatic). 

6.2.7.8 mPEG750-polyester containing pentaerythritol and 2,2'-dimethyl-1,3-propanediol 

(DTI8) synthesis 

mPEG750 (9.61 g, 0.0128 mol), dimethyl terephthalate (3.89 g, 0.0200 mol), pentaerythritol 

(1.64 g, 0.0120 mol), 2,2'-dimethyl-1,3-propanediol (1.46 g, 0.014 mol), butylated 

hydroxytoluene (0.01 g, 0.0454 mmol) and Ti(IV) isopropoxide (0.01 mL, 0.0338 mmol) were 
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weighed and placed in a three-neck round bottom flask. The reaction procedure outline in 

Section 6.2.1 was then followed. Yield: 11.43 g brown oil. Mw: 2206 Da, PDI: 1.13 

1H NMR (500 MHz, CDCl3) δ 8.28 – 7.75 (m, 25H, ArH), 4.66 – 4.35 (m, 18H, CH2), 4.20 (dd, J = 

24.3, 14.2 Hz, 4H, CH2), 3.99 – 3.41 (m, 319H, CH2), 3.35 (s, 14H, CH3), 2.42 (s, 30H, OH), 1.50 – 

0.69 (m, 9H, CH3). 

FTIR (cm-1): 3478 (O-H, alcohol), 2871 (C-H, alkyl), 1721 (C=O, ester), 1455 (C-H, alkane), 1349 

(O-H, alcohol), 1268 (C-O, aromatic ester), 1090 (C-O, alcohol), 1017 (C=C, alkene), 948 (C=C, 

alkene), 844 (C-H, aromatic), 730 (C-H, aromatic). 

6.2.7.9 mPEG500-polyester containing ethylene glycol and 2-amino-2-methyl-1,3-

propanediol (DTI9) synthesis 

mPEG500 (12.78 g, 0.0256 mol), dimethyl terephthalate (7.77 g, 0.0400 mol), ethylene glycol 

(1.48 g, 0.0238 mol), 2-amino-2-methyl-1,3-propanediol (2.92 g, 0.0278 mol), butylated 

hydroxytoluene (0.02 g, 0.0908 mmol) and Ti(IV) isopropoxide (0.02 mL, 0.0676 mmol) were 

weighed and placed in a three-neck round bottom flask. The reaction procedure outline in 

Section 6.2.1 was then followed. Yield: 10.51 g, amber oil. Mw: 3377 Da, PDI: 1.03 

1H NMR (500 MHz, DMSO) δ 8.20 – 7.81 (m, 17H, Ar), 4.68 – 4.07 (m, 16H, CH2), 3.76 (dt, J = 45.8, 

22.7 Hz, 7H, CH2), 3.70 – 3.29 (m, 133H, CH2), 3.28 – 3.17 (m, 11H, CH3), 1.50 – 1.38 (m, 5H, CH3), 

1.27 – 1.20 (m, 3H, NH). 

FTIR (cm-1): 3481 (O-H, alcohol), 3303 (N-H, stretching), 2863 (C-H, alkyl), 1717 (C=O, ester), 1645 

(N-H bending), 1409 (C-H, alkane), 1270 (C-O, aromatic ester), 1095 (C-O, alcohol), 1017 (C=C, 

alkene), 713 (C-H, aromatic). 
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6.2.7.10 mPEG500-polyester containing ethylene glycol and diethanolamine (DTI10) 

synthesis 

mPEG500 (12.81 g, 0.02562 mol), dimethyl terephthalate (7.77 g, 0.0400 mol), ethylene glycol 

(1.51 g, 0.0243 mol), diethanolamine (2.91 g, 0.0280 mol), butylated hydroxytoluene (0.02 g, 

0.0908 mmol) and Ti(IV) isopropoxide (0.02 mL, 0.0676 mmol) were weighed and placed in a 

three-neck round bottom flask. The reaction procedure outline in Section 6.2.1 was then 

followed. Yield: 15.08 g, brown oil. Mw: 5841 Da, PDI: 1.27 

1H NMR (501 MHz, CDCl3) δ 8.15 – 7.89 (m, 30H, ArH), 7.48 – 7.31 (m, 3H, NH), 4.72 – 4.56 (m, 

14H, CH2), 4.44 (dd, J = 5.4, 4.1 Hz, 15H, CH2), 4.06 – 3.37 (m, 219H, CH2), 3.31 (s, 18H, CH3). 

FTIR (cm-1): 3495 (O-H, alcohol), 3320 (N-H, stretching), 2867 (C-H, alkyl), 1715 (C=O, ester), 1635 

(N-H bending), 1409 (C-H, alkane), 1250 (C-O, aromatic ester), 1095 (C-O, alcohol), 1017 (C=C, 

alkene), 730 (C-H, aromatic). 

6.2.7.11 mPEG500-polyester containing ethylene glycol and pentanediol (DTI11) synthesis 

mPEG500 (12.81 g, 0.0256 mol), dimethyl terephthalate (7.77 g, 0.0400 mol), ethylene glycol 

(1.51 g, 0.0243 mol), pentanediol (2.91 g, 0.280 mol), butylated hydroxytoluene (0.02 g, 

0.0908 mmol) and Ti(IV) isopropoxide (0.02 mL, 0.0676 mmol) were weighed and placed in a 

three-neck round bottom flask. The reaction procedure outline in Section 6.2.1 was then 

followed. Yield: 19.46 g brown oil. Mw: 4409 Da, PDI: 1.11 

1H NMR (501 MHz, CDCl3) δ 8.23 – 7.93 (m, 15H, ArH), 4.70 (d, J = 16.1 Hz, 2H, CH2), 4.56 – 4.25 

(m, 13H, CH2), 3.98 – 3.89 (m, 2H, CH2), 3.86 – 3.47 (m, 88H, CH2), 3.35 (s, 7H, CH3), 1.96 – 1.39 

(m, 14H, CH2). 

FTIR (cm-1): 3501 (O-H, alcohol), 2867 (C-H, alkyl), 1713 (C=O, ester), 1409 (C-H, alkane), 1270 

(C-O, aromatic ester), 1099 (C-O, alcohol), 1019 (C=C, alkene), 726 (C-H, aromatic). 
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6.2.7.12 mPEG500-polyester containing glycerol and 2-amino-2-methyl-1,3-propanediol 

(DTI12) synthesis 

mPEG500 (12.78 g, 0.0256 mol), dimethyl terephthalate (7.77 g, 0.0400 mol), glycerol (2.21 g, 

0.0240 mol), 2-amino-2-methyl-1,3-propanediol (2.92 g, 0.277 mol), butylated hydroxytoluene 

(0.02 g, 0.0908 mmol) and Ti(IV) isopropoxide (0.02 mL, 0.0676 mmol) were weighed and placed 

in a three-neck round bottom flask. The reaction procedure outline in Section 6.2.1 was then 

followed. Yield: 19.75 g amber-brown oil. Mw: 2117, PDI: 1.11 

1H NMR (501 MHz, CDCl3) δ 8.17 – 7.80 (m, 58H, ArH), 4.78 – 4.61 (m, 4H, CH), 4.57 – 4.31 (m, 

45H, CH2), 4.12 (ddd, J = 16.8, 11.5, 8.6 Hz, 11H, CH2), 3.90 – 3.44 (m, 326H, CH2), 3.36 (d, J = 1.2 

Hz, 22H, CH3), 2.11 (d, J = 79.3 Hz, 11H, OH), 1.69 – 1.39 (m, 19H, CH3), 1.30 (dd, J = 25.5, 22.6 

Hz, 8H, NH). 

FTIR (cm-1): 3468 (-O-H, alcohol), 3278 (-N-H) 2867 (-C-H, alkyl), 1718 (-C=O, ester), 1645 (-N-H, 

bending), 1409 (-O-H, alcohol), 1264 (-C-O, aromatic ester), 1099 (-C-O, alcohol), 1017 (-C=C-, 

alkene), 844 (-C-H, aromatic), 732 (-C-H, aromatic).  

6.2.7.13 mPEG500-polyester containing glycerol and diethanolamine (DTI13) synthesis 

mPEG500 (12.81 g, 0.02562 mol), dimethyl terephthalate (7.77 g, 0.0400 mol), glycerol (2.24 g, 

0.0243 mol), diethanolamine (2.98 g, 0.0283 mol), butylated hydroxytoluene (0.02 g, 

0.0908 mmol) and Ti(IV) isopropoxide (0.02 mL, 0.0676 mmol) were weighed and placed in a 

three-neck round bottom flask. The reaction procedure outline in Section 6.2.1 was then 

followed. Yield: 17.48 g brown oil. Mw: 4943 Da, PDI: 1.16 

1H NMR (501 MHz, CDCl3) δ 8.07 (s, 140H, ArH), 7.42 (s, 4H, NH), 4.72 (d, J = 29.0 Hz, 11H, CH), 

4.66 (s, 24H, CH2), 4.46 (s, 80H, CH2), 4.36 (s, 14H, CH2), 3.95 – 3.43 (m, 917H, CH2), 3.33 (s, 79H, 

CH3), 3.17 (s, 74H, OH). 
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FTIR (cm-1): 3480 (O-H, alcohol), 2867 (C-H, alkyl), 1717 (C=O, ester), 1639 (N-H, bending), 1454 

(C-H, alkane), 1350 (O-H, alcohol), 1250 (C-O, aromatic ester), 1095 (C-O, alcohol), 1015 (C=C, 

alkene), 730 (C-H, aromatic). 

6.2.7.14 mPEG500-polyester containing tris(hydroxymethyl)aminomethane and 2,2'-

dimethyl-1,3-propanediol (DTI14) synthesis 

mPEG500 (12.81 g, 0.02562 mol), dimethyl terephthalate (7.77 g, 0.0400 mol), 2,2'-dimethyl-1,3-

propanediol (2.91 g, 0.0279 mol), tris(hydroxymethyl)aminomethane (2.91 g, 0.0240 mol), 

butylated hydroxytoluene (0.02 g, 0.0908 mmol) and Ti(IV) isopropoxide (0.02 mL, 

0.0676 mmol) were weighed and placed in a three-neck round bottom flask. The reaction 

procedure outline in Section 6.2.1 was then followed. Yield: 17.72 g brown oil. Mw: 6799 Da, PDI: 

1.30 

1H NMR (501 MHz, CDCl3) δ 8.19 – 7.81 (m, 18H, ArH), 4.58 (t, J = 34.6 Hz, 5H, CH2), 4.53 – 4.39 

(m, 10H, CH2), 4.32 – 4.15 (m, 3H, CH2), 3.98 – 3.45 (m, 91H, CH2), 3.37 (d, J = 1.5 Hz, 7H, CH3), 

1.81 (s, 4H, OH), 1.26 – 0.92 (m, 5H, CH3). 

FTIR (cm-1): 3448 (O-H, alcohol), 2869 (C-H, alkyl), 1718 (C=O, ester), 1650 (N-H, bending), 1456 

(C-H, alkane), 1408 (O-H, bending), 1265 (C-O, aromatic ester), 1098 (C-O, alcohol), 1016 (C=C, 

alkene), 949 (C=C, alkene ), 853 (C-H, aromatic), 730 (C-H, aromatic). 

6.2.7.15 mPEG500-polyester containing tris(hydroxymethyl)aminomethane and ethylene 

glycol (DTI15) synthesis 

mPEG500 (8.83 g, 0.0177 mol), dimethyl terephthalate (5.34 g, 0.0275 mol), ethylene glycol 

(1.00 g, 0.0161 mol), tris(hydroxymethyl)aminomethane (3.00 g, 0.0248 mol), butylated 

hydroxytoluene (0.01 g, 0.0454 mmol) and Ti(IV) isopropoxide (0.01 mL, 0.0338 mmol) were 

weighed and placed in a three-neck round bottom flask. The reaction procedure outline in 

Section 6.2.1 was then followed. Yield: 9.90 g brown oil. MW: 3458 Da, PDI: 1.32 
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1H NMR (500 MHz, CDCl3) δ 8.10 – 7.43 (m, 4H, ArH), 4.90 – 4.50 (m, 5H, CH2), 4.41 (dd, J = 22.1, 

18.6 Hz, 3H, CH2), 3.94 – 3.34 (m, 25H, CH2), 3.30 (s, 2H, CH3). 

FTIR (cm-1): 3448 (O-H, alcohol), 2867 (C-H, alkyl), 1719 (C=O, ester), 1643 (N-H, bending), 1458 

(C-H, alkane), 1409 (O-H, bending), 1264 (C-O, aromatic ester), 1091 (C-O, alcohol), 1015 (C=C, 

alkene), 952 (C=C, alkene ), 864 (C-H, aromatic), 711 (C-H, aromatic). 

6.2.8 Consumer Load Testing 

Miele W3922 washing machines set to a short cotton cycle (1 hour 25 mins) were used to 

perform the wash tests. Ariel Compact HDL liquid laundry detergent (35 mL) was added to each 

wash load, alongside DTI polymer solution (0.1 mg mL-1, 100 ppm) per wash. For the Ariel only 

washes, the same protocol was followed, however no polymer solution was added. In each wash 

a tracer fabric with 20 types of white fabrics were added in order to assess the level of 

discolouration. Following the completion of the wash, the colour change values were measured 

by spectrophotometry. 

6.3 Results and Discussion 

6.3.1 mPEG-co-Polyesters for Blocking Dye Deposition 

Initially, three water-soluble polyesters (DTI1, 2 and 3) were synthesised, each containing a 

range of different monomers to be incorporated into the backbone. Each polymer contained 

mPEG500 to impart water solubility. The polyester was formed by reacting dimethyl 

terephthalate (DMT) with different diols or glycerol, a triol, in order to impart different 

properties. The diols used included 2,2’-dimethyl-1,3-propanediol, ethylene glycol and 1,2-

propanediol (Figure 6-2). Glycerol was used to create a branched polymer network, owing to its 

tri-functionality. It was anticipated that the hydoxyl groups may improve interaction with the 
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fibres through hydrogen bonding. The polymers and the monomers included in them are set out 

in Appendix 1. 

Figure 6-2. Left to right: 2,2’-dimethyl-1,3-propanediol, glycerol, ethylene glycol and 1,2-

propanediol. 

The polyester backbone of DTI1 was based on 1,2-propanediol, with dimethyl terephthalate and 

mPEG500. A proton NMR was obtained to confirm the structure (Figure 6-3). 

Figure 6-3 1H NMR spectrum of 1,2-propanediol containing polymer (DTI1) in DMSO-d6. 

Figure 6-3 shows the inclusion of the 1,2-propandiol into the structure of the polymer indicated 

by the presence of the peaks d, e and f which correspond the protons in the 1,2-propanediol 

monomer. The aromatic to PEG ratio was calculated as 1:18. The FTIR also confirmed the 

structure (Appendix 2). 



146 
 

DTI2 was synthesised with glycerol and ethylene glycol. A proton NMR confirmed the structure 

(Figure 6-4). 

Figure 6-4 1H NMR spectrum of glycerol and ethylene glycol containing polymer (DTI2) in CDCl3. 

From Figure 6-4 it can be seen that the hydroxy group relating to the glycerol is not entirely 

reacted. The expectation was that the polymer would branch at the hydroxy site, however, the 

presence of the -OH peak labelled g shows that this has not occurred. An hydroxy peak in the 

FTIR spectrum of DTI2 also indicates that extensive branching has not occurred (Appendix 3). 

The aromatic to PEG ratio was calculated and found to be 1:4. 

DTI3 was synthesised with 2,2’-dimethyl-1,3-propanediol and glycerol. This was also analysed 

by 1H NMR (Figure 6-5). 

Figure 6-5 1H NMR spectrum of 2,2’-dimethyl-1,3-propanediol and glycerol containing polymer 

(DTI3) in CDCl3. 
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Figure 6-5 shows both the 2,2'-dimethyl-1,3-propanediol and the glycerol were successfully 

incorporated into the polymer structure. However, as with DTI2 the spectrum shows an hydroxy 

peak, labelled g, which indicates the glycerol has not branched. Therefore, the effect of the 

presence of the free hydroxy group will be observed, alongside the added steric bulk of the 2,2'-

dimethyl-1,3-propanediol monomer in comparison to the ethylene glycol analogue in DTI2. The 

aromatic to PEG ratio was calculated as 1:6. The FTIR also confirmed the structure of DTI3, 

showing an hydroxy peak (Appendix 4). 

The three polymers were then investigated for their ability to prevent dye deposition, in 

particular against indigo and C.I. Sulfur Black 1 (SB1) dye bleeding fabrics. 

6.3.1.1 Indigo Dye Transfer Inhibition by DTI1, 2 and 3 

The three polymers were washed with an indigo dye bleeding fabric and a multifibre. The colour 

change caused by indigo onto the multifibre swatch was measured and compared, in order to 

ascertain the extent of any benefits given by the polymers (Figure 6-6). 

Figure 6-6 A comparison of colour change caused by indigo in the presence of DTI1, 2 and 3. 

Figure 6-6 shows that DTI2 and 3 out-perform DTI1, with DTI3 showing the overall best efficacy, 

including a reduction in colour change of over 50% on cotton and wool. This is a surprising result 

as the polymers are expected to interact with the hydrophobic fibres through hydrophobic 
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interactions of the polyester segment and the receiver fabric, blocking dye adsorption sites. The 

added benefit of efficacy for the hydrophilic fibres such as cotton and wool suggest hydrogen 

bonding should be to considered in the design of DTI polymers of this class. Additionally, the 

increasing level of steric bulk and branching is an important consideration, indicating the bulkier 

the polymer, the more effective it is as blocking dye deposition. 

6.3.1.2 SB1 Dye Transfer Inhibition by DTI1, 2 and 3 

In addition to indigo, SB1 was also investigated for its dye transfer properties in the presence of 

the three polymers (DTI1, 2 and 3) (Figure 6-7). 

Figure 6-7 A comparison of colour change caused by SB1 in the presence of DTI1, 2 and 3. 

From Figure 6-7 it can be seen that none of the polymers reduced colour change caused by SB1. 

This indicates therefore that the properties of the dye are an important consideration, as well 

as considering the fibre properties. It is therefore clear that while a blocking mechanism of 

action may work for some dyes such as Indigo, it will be necessary to employ other DTI polymers 

in order to prevent deposition of other dyes, such as SB1. 
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6.3.1.3 Dye Transfer Inhibition by DTI3 for Further Dyes 

From the colour change study with indigo, DTI3 was selected as the most promising DTI 

candidate. This was therefore tested for its efficacy and C.I. Direct Orange 39 (DO39), C.I. 

Reactive Red 141 (RR141) and C.I. Reactive Black 5 (RB5). 

DTI3 was tested for its DTI efficacy against DO39 (Figure 6-8).  

Figure 6-8 A comparison of colour change caused by DO39 in the absence of polymer and in the 

presence DTI3. 

Figure 6-8 shows that DTI3 has limited efficacy against DO39, but shows a reduced mean colour 

change for nylon, polyester and wool. Nylon shows a reduction in colour change from 24.13 to 

21.00, a 17.1% reduction. It is encouraging that DTI3 is able to reduce dye deposition for DO39 

unlike for SB1, and again indicates the complex nature of dye transfer inhibition and the many 

considerations in polymer design. 
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RR141 was also tested with DTI3 (Figure 6-9). 

Figure 6-9 A comparison of colour change caused by RR141 in the absence of polymer and in 

the presence DTI3. 

Without any polymer, RR141 does not cause as much colour change as DO39, SB1 or indigo, 

reaching a ΔE of 3.00 for nylon and 3.13 for wool. DTI3 reduces the colour change onto all fibres 

as shown in Figure 6-9, with a 60% reduction onto nylon and 85% onto wool. This is highly 

promising result as it shows the colour change can be brought below a value of one with DTI3, 

and is effective across the whole range of fibre types, particularly cotton, showing a 65.8% 

reduction, which the reactive dye is designed to dye. 

RB5 also shows a lower but significant level of colour change (Figure 6-10). 

  

0

0.5

1

1.5

2

2.5

3

3.5

4

R
. C

el
lu

lo
se

C
o

tt
o

n

N
yl

o
n

P
o

ly
es

te
r

A
cr

yl
ic

W
o

o
l

R
. C

el
lu

lo
se

C
o

tt
o

n

N
yl

o
n

P
o

ly
es

te
r

A
cr

yl
ic

W
o

o
l

No Polymer DTI3

Δ
E



151 
 

Figure 6-10 A comparison of colour change caused by RB5 in the absence of polymer and in the 

presence DTI3. 

As with RR141, the colour change caused by RB5 is reduced to below one with DTI3, for all but 

one fibre type, regenerated cellulose, as seen in Figure 6-10. The reduction in colour change for 

cotton and polyester are particularly significant, giving a 57.1% reduction, and 62.5% 

respectively. 

The results for the five dyes analysed indicate that nylon is the fibre that is subject to the greatest 

overall colour change in the absence of polymer. Therefore, future polymer designs may be 

focused on targeting the reduction in dye deposition onto nylon. This may be done by designing 

DTI polymers that are capable of hydrogen bonding with the nylon fibre, such as polyamides or 

amine containing polymers, like the nylon itself. 

6.3.2 Mode of Action of DTI3 

DTI3 has been found to be a successful DTI polymer, particularly against indigo. However, it is 

unclear whether the polymer works via a blocking mechanism, whereby it interacts with the 

fabric, or by complexation or encapsulation of the dye in the wash solution.  

In order to investigate the mode of action of DTI3, a variety of methods were implemented. 

Firstly, pre-treatments of the polymer onto the fabric were carried out, and secondly, alternative 
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polymers based on DTI3 were synthesised with varying length of hydrophilic and hydrophobic 

blocks. 

6.3.2.1 DTI3 Pre-Treatment Studies 

In order to assess if DTI3 interacts with the fibre in the wash, and if it remains on the fabric after 

washing, multifibre swatches were washed with the polymer either once or twice before being 

washed with a dye bleeding fabric in plain, deionised water, in the absence of additional 

polymer. It was proposed that if the DTI efficacy is maintained in the final wash, polymer-fabric 

interaction has occurred in the previous washes in the presence of DTI3. This will be observable 

by comparable ΔE values for all washes, including the final wash cycle in which DTI3 is not added. 

The wash conditions of the pre-treatment washes are outlined in Table 6-1. 

Table 6-1 The wash conditions of the DTI3 pre-treatment study showing whether the dye 

bleeding swatch or the polymer were present in the wash. 

Sample Name 
Wash 1 Wash 2 Wash 3 

Dye Bleeding 
Swatch 

DTI3 
Dye Bleeding 

Swatch 
DTI3 

Dye Bleeding 
Swatch 

DTI3 

1 Pre-treatment No Yes Yes No N/A N/A 

2 Pre-treatments No Yes No Yes Yes No 

 



153 
 

The colour change results of these tests were compared to that of a wash without polymer, and 

a standard DTI3 wash with no pre-treatment (Figure 6-11). 

Figure 6-11 A comparison of the colour change caused by indigo dye bleeder onto a multifibre 

swatch, without polymer, with DTI3, after one pre-treatment of DTI3 and after two pre-

treatment cycles of DTI3. 

From Figure 6-11 it can be seen that the two pre-treatment studies show a reduced colour 

change to that without polymer. This indicates the mode of action of DTI3 to be one of a blocking 

mechanism, whereby the polymer deposits on the fabric in the wash and prevents deposition 

by blocking the adsorption sites on the fabric. These results prove the polymer is deposited onto 

the fabric and is maintaining some DTI efficacy in the second and third washes.  

The cellulosic fibres, however, show a reduced efficacy in the pre-treatment studies. This is 

shown by the colour change onto cotton going from 3.50 for a regular wash with DTI3, to 5.37 

for the first pre-treatment wash, and 7.36 for the second pre-treatment wash. This suggests that 

the polymer washes off the hydrophilic fibres to a greater extent than the hydrophobic fibres, 

as expected owing to their similarity to soil release polymers. 

To observe if the polymer is significantly deposited onto the fabric to the point where it might 

cause an effect on the feel of the fabric, SEM images were obtained of cotton, nylon, polyester 

and wool after washing with DTI3, and having been washed with plain water (Figure 6-12). 
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Figure 6-12 SEM images of cotton, nylon, polyester and wool treated either with plain water, or 

DTI3 aqueous solution. 

It may have been expected to see a sticky residue of the polymer on the fabrics, however Figure 

6-12 shows that there are no observable deposits of the polymer onto them. 

Without polymer With DTI3 

Cotton 

Nylon 

Polyester 

Wool 
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6.3.2.3 Effect of varying mPEG chain length in DTI3 

Two polymers were synthesised whereby the molar ratio of the mPEG block to the polyester 

block was kept consistent, but the molecular weight of the mPEG was changed from        

500 g mol-1 to either 750 g mol-1 (DTI4) or 5000 g mol-1 (DTI5). This was in order to observe what 

effect modifying the hydrophilicity of the polymer would have on the performance of the 

polymer as a DTI agent. Successful synthesis of the polymers was confirmed by 1H NMR (Figure 

6-13 and Figure 6-14).  

Figure 6-13 1H NMR of DTI3 with mPEG750 in place of mPEG500 (DTI4) in CDCl3. 

 

Figure 6-141H NMR of DTI3 with mPEG5000 in place of mPEG500 (DTI5) in CDCl3. 

Both spectra in Figure 6-13 and Figure 6-14 are integrated relative to the PEG block, whereby 

the peak at 3.5-3.75 ppm has a set integration for the number of known protons in the PEG 

block. For mPEG500 this is 44, for mPEG750 it is 66 and mPEG5000 it is 352. From the NMR spectra 

it can be observed that the two polymers are of similar chemical composition, both possessing 
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the same peaks in similar integration ratios, except peak b which relates to the PEG block. For 

example, the peak relating to the methyl groups (peak e) at 1 ppm both have an integration of 

approx. 4, showing that a similar amount of 2,2'-dimethyl-1,3-propanediol has been 

incorporated into each polymer. The FTIR spectra showed hydroxy, aromatic, methyl and 

ethylene group peaks (Appendix 5 and Appendix 6). 

The ratio of aromatic groups to the PEG block for each polymer was calculated in order to 

observe the ratio of hydrophobicity to hydrophilicity. For DTI4, peak c is integrated at 6.55 to 

the PEG block at 44. Therefore, the ratio is 1:7 for DTI4. This is in contrast to DTI5, where the 

ratio is calculated as 1:51. This therefore shows the vast difference in hydrophilicity of the two 

polymers and allows for the determination of the effect of hydrophilicity on polymer DTI 

performance. 

The two polymers were washed with indigo dye bleeding fabric to assess their DTI efficacy 

(Figure 6-15). 
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Figure 6-15 A comparison of the colour change caused by indigo in the presence of DTI3, and 

DTI4 or DTI5. 

From Figure 6-15 it can be observed that the hydrophilicity of the polymer has a moderate effect 

on the efficacy of the polymer as a DTI. By increasing the molecular weight of the mPEG block 

to 750 g mol-1 (DTI4) there is a mild improvement in the mean colour change value, particularly 

on nylon and polyester in comparison to that of the original polymer. For nylon, a 35.0% 

decrease from the original polymer to DTI4 is observed, and a 48.8% decrease for polyester. 

However, the values for regenerated cellulose and cotton are consistent with each other for the 

two polymers. 

In contrast, there is a moderate worsening effect in mean colour change for all fibre types when 

the hydrophilicity is significantly increased to 5000 g mol-1 (DTI5), particularly for nylon and 

polyester. Polyester shows a 10.1% increase from DTI3 to DTI5 for the colour change caused by 

indigo, and nylon gives a 12.1% increase. The increased hydrophilic character of the polymer 

suggests polymer-water interactions are favoured over polymer-fabric interactions. As the DTI 

efficacy reduces when mPEG5000 is included in the formulation (DTI5), it may be hypothesised 

that the polymer does not complex the dye in the wash water, but blocks the deposition of the 

dye onto the fabric in the case of DTI3 and DTI4. 
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These results highlight that the hydrophilic-hydrophobic balance of the polymer is an important 

consideration of this type of DTI agent, as well as giving evidence for a mode of action whereby 

the polymer interacts with the fibre and blocks dye deposition, rather than encapsulating or 

complexing the dye in the wash solution. 

6.3.2.4 Effect of Increasing the Polyester Chain Length 

A further polymer was synthesised based on DTI3, containing mPEG500 but with the molar ratio 

of the polyester block increased by 50% relative to the PEG content, in order to further assess 

the effect of the hydrophobic-hydrophilic balance (DTI6). The polymer was found to be insoluble 

in water. This polymer was analysed by 1H NMR (Figure 6-16). 

Figure 6-16 1H NMR of DTI3 with 50% increase in polyester starting materials (DTI6) in CDCl3. 

The 1H NMR in Figure 6-16 shows the successful synthesis of the polymer, as the integrations of 

the peaks associated with the polyester block are approximately. twice the integration of those 

in DTI3. For example, the peak labelled c in both the spectra goes from an integration value of 8 

for DTI3 to 14.36 ppm for DTI6, showing that DTI6 has increased polyester content. The aromatic 

to hydrophilic ratio was also calculated for DTI6 and was found to be 1:3 and therefore shows 

an increased hydrophobic content in comparison to that of DTI3 (1:6). The FTIR spectrum further 

confirmed the structure of DTI6 (Appendix 7). 
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This polymer was dispersed in water and washed with indigo dye bleeding fabric and compared 

to DTI3 (Figure 6-17). 

Figure 6-17 A comparison of the colour change caused by indigo in the presence of DTI3, and 

that with 50% increased polyester content (DTI6). 

From Figure 6-17 it can be observed that increasing the hydrophobic content of the polymer, 

moderately increases the mean colour change for the hydrophilic fibres in comparison to DTI3. 

For example, the colour change onto cotton is increased by 26.6% from DTI3 to DTI6. This 

therefore provides further evidence that the polymer interacts with the fibres in order to reduce 

colour change. This is not counter balanced by an improvement in colour change for the 

hydrophobic fibre types in comparison to DTI3, which have similar ΔE values for DTI6. 

6.3.3 Effect of Polyester Block Modification on Indigo Dye Transfer 

Attempts to produce more effective DTIs, by including monomers that add branching and/or 

amine groups to the polymer where then made. Due to the success of DTI3, it was hypothesised 

that the inclusion of glycerol in the polymer backbone provided a branched polymer with greater 

steric bulk, which was a more effective DTI compared to the linear analogue. Therefore, alcohol 

containing monomers pentaerythritol, 2-amino-2-methyl-1,3-propanediol, diethanolamine and 
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tris(hydroxymethyl) aminomethane were incorporated into the polymer structures (Figure 

6-18). 

Figure 6-18 Left to right: Pentaerythritol, 2-amino-2-methyl-1,3-propanediol, diethanolamine 

and tris(hydroxymethyl)aminomethane. 

6.3.3.1 Pentaerythritol Containing Polymers 

Pentaerythritol replaced glycerol in the DTI3 formulation to observe the effect of increasing the 

branching further (DTI7). The inclusion of the pentaerythritol was confirmed by 1H NMR (Figure 

6-19). 

Figure 6-19 1H NMR of pentaerythritol containing polymer DTI7 in CDCl3. 

The 1H NMR spectrum shows a small hydroxy peak at 2.75 ppm (Figure 6-19), which indicates 

that not all the hydroxy groups of the pentaerythritol have reacted. The incorporation of hydroxy 

groups provides further hydrogen bonding capability to the polymer, and may therefore be 

exploited for polymer-fibre interaction, as well as enhanced polymer solubility in aqueous 

solution. Consequently, it may be predicted that anionic dyes will be repelled from DTI7 treated 

fibres. The aromatic group to PEG block ratio was calculated to be 1:10. The FTIR spectrum of 

DTI7 also showed an hydroxy peak, alongside aromatic, ethylene, aromatic and methyl group 

peaks (Appendix 8). 

A second polymer (DTI8) was synthesised with mPEG750 and pentaerythritol that possessed 

enhanced water-solubility compared to DTI7 and the 1H NMR spectrum obtained (Figure 6-20). 
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Figure 6-20 1H NMR spectrum of mPEG750 and pentaerythritol containing polymer (DTI8) in 

CDCl3. 

The 1H NMR spectrum of DTI8 shows an hydroxy peak labelled g at 2.5 ppm, which again shows 

the presence of free hydroxy groups in the polymer backbone. This is confirmed by the presence 

of an hydroxy peak in the FTIR spectrum of the polymer. The aromatic groups to PEG block 

content were found to be in the ratio of 1:13, which shows a moderate increase in hydrophilicity 

to DTI7. The FTIR spectrum further confirmed the structure of DTI8 (Appendix 9). 

The two polymers were then investigated for their ability to prevent the dye transfer of indigo 

(Figure 6-21). 

Figure 6-21 A comparison of the colour change caused by indigo in the presence of the 

pentaerythritol containing polymer with mPEG500 (DTI7) and mPEG750 (DTI8). 
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It can be observed from Figure 6-21 that both polymers are effective DTI agents against indigo, 

particularly for hydrophobic fibres, nylon and polyester. Colour change onto nylon reduces from 

a mean value of 13.98 in the absence of polymer to 4.80 in the presence of DTI8, and from 13.98 

to 4.72 for polyester. This result is also an improvement on the mean colour change caused by 

indigo in the presence of DTI3 (7.42 and 7.46 respectively). 

6.3.3.2 Primary and Secondary Amine Containing Polymers 

Further polymers were produced in order to generate ever-more effective DTIs. The primary 

amine containing 2-amino-2-methyl-1,3-propanediol, and secondary amine diethanolamine 

were incorporated into the formulation of DTI2 (DTI9 and DTI10, respectively), and the polymer 

structures confirmed by 1H NMR (Figure 6-22 and Figure 6-23). 
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Figure 6-22 1H NMR spectrum of the 2-amino-2-methyl-1,3-propanediol containing polymer 

(DTI9) in DMSO-d6. 

The 1H NMR spectrum in Figure 6-22 shows the incorporation of the amine monomer into the 

polymer structure by the presence of the peak labelled f. The amine peak is observable in the 

polymer FTIR spectrum (Appendix 10). The aromatic to PEG ratio was calculated as 1:8.  

Figure 6-23 1H NMR spectrum of the diethanolamine containing polymer (DTI10) in CDCl3. 

Figure 6-23 shows the successful incorporation of the diethanolamine into the polymer 

structure, due to the presence of the ethylene peaks relating to the diethanolamine monomer 

labelled e and f. The inclusion of the amine is confirmed in the FTIR spectrum of the polymer 

(Appendix 11). The aromatic to PEG block ratio was found to be 1:7, showing therefore a similar 

hydrophilicity to DTI9.  
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The polymers were tested for their DTI efficacy against indigo (Figure 6-24). 

Figure 6-24 A comparison of the colour change caused by indigo in the presence of DTI3, the 2-

amino-2-methyl-1,3-propanediol containing polymer (DTI9) and the diethanolamine containing 

polymer (DTI10). 

From Figure 6-24 it can be observed that DTI10 has improved DTI efficacy compared to DTI3 

against indigo. In particular, a reduction in colour change by 45.6% for nylon is observed, 

between DTI3 and DTI10. Additionally, a 66.5% reduction in colour change for polyester is seen 

for DTI10 in comparison to DTI3. DTI9 is also an effective DTI, however, it is not as effective as 

DTI3 or DTI10 in general. 

The polymer containing diethanolamine (DTI10) was found to be more effective at preventing 

dye transfer caused by indigo dye bleeding fabric than DTI3. In order to assess whether this 

improvement was due to the hydrogen bonding capability of the amine, or the increased 

monomer length of diethanolamine in comparison to glycerol, pentanediol was substituted into 

the structure (DTI11). Pentanediol is a diol of a comparative molar mass to diethanolamine. The 

structure of the polymer was confirmed by 1H NMR (Figure 6-25). 

  

0

2

4

6

8

10

12

14

16

18

R
. C

el
lu

lo
se

C
o

tt
o

n

N
yl

o
n

P
o

ly
es

te
r

A
cr

yl
ic

W
o

o
l

R
. C

el
lu

lo
se

C
o

tt
o

n

N
yl

o
n

P
o

ly
es

te
r

A
cr

yl
ic

W
o

o
l

R
. C

el
lu

lo
se

C
o

tt
o

n

N
yl

o
n

P
o

ly
es

te
r

A
cr

yl
ic

W
o

o
l

R
. C

el
lu

lo
se

C
o

tt
o

n

N
yl

o
n

P
o

ly
es

te
r

A
cr

yl
ic

W
o

o
l

No Polymer DTI3 DTI9 DTI10

Δ
E



165 
 

 

Figure 6-25 1H NMR spectrum of the pentanediol containing polymer (DTI11) in CDCl3. 

Figure 6-25 shows the pentanediol is included in the polymer structure by the presence of the 

peaks at e, f, and g. The aromatic to PEG ratio was calculated as 1:6. The FTIR spectrum also 

confirmed the inclusion of the pentanediol (Appendix 12). 

The pentanediol containing polymer was then tested for its ability to prevent the dye transfer 

of indigo, and compared to the diethanolamine containing polymer (Figure 6-26). 

Figure 6-26 A comparison of the colour change caused by indigo in the presence of the 

diethanolamine containing polymer (DTI10) and the pentanediol containing polymer (DTI11). 

Figure 6-26 shows that whilst DTI11 remains an effective DTI against indigo, it is not as effective 

as the diethanolamine-containing polymer (DTI10). For example, DTI10 has a ΔE for nylon of 4.0, 

whereas this increases to 6.8 for DTI11. DTI11 shows a lower colour change across all fibre types 
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compared to DTI10, showing that the additional hydrogen bonding site the diethanolamine 

provides may improve the efficacy further, particularly for nylon, polyester and wool. 

In order to assess if the inclusion of free hydroxy groups would improve the efficacy of DTI9 and 

DTI10, the ethylene glycol was replaced by glycerol to synthesise DTI12 and DTI13. The 

successful synthesis was confirmed by 1H NMR (Figure 6-27 and Figure 6-28). 

 

Figure 6-27 1H NMR spectrum of the 2-amino-2-methyl-1,3-propanediol and glycerol containing 

polymer (DTI12) in CDCl3. 

From Figure 6-27 the inclusion of glycerol and the amine into the structure is confirmed. The 

hydroxy peak labelled e shows the glycerol is not completely reacted or branched. The amine 

and hydroxy group can be observed via the FTIR spectrum (Appendix 13). The aromatic to PEG 

ratio was calculated as 1:6. 
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Figure 6-28 1H NMR spectrum of the diethanolamine and glycerol containing polymer (DTI13) in 

CDCl3. 

The 1H NMR spectrum of DTI13 in Figure 6-28 shows the inclusion of the glycerol and 

diethanolamine into the polymer structure. The hydroxy peak labelled f shows the glycerol is 

again not fully reacted and therefore not fully branched. The peaks labelled g, h and i show the 

inclusion of the amine contaiming monomer into the polymer. The aromatic to PEG ratio was 

calculated and found to be 1:7. The FTIR spectrum further confirmed the structure (Appendix 

14). 

DTI12 and DTI13 were tested for their DTI efficacy against indigo in order to assess the effect of 

branching and amine inclusion on the ability of the polymer to prevent dye transfer (Figure 

6-29). 
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Figure 6-29 A comparison of the colour change caused by indigo in the presence of the 2-

amino-2-methyl-1,3-propanediol and glycerol containing polymer (DTI12) and the 

diethanolamine and glycerol containing polymer (DTI13). 

Figure 6-29 shows that DTI13 is an effective DTI agent, particularly for polyester, whereby the 

colour change reduces to 3.32, from 14.0 in the absence of polymer, a 76.3% reduction. This 

result is, however, less effective than that of DTI10, which shows an 82.1% overall reduction in 

colour change caused by indigo onto polyester (Figure 6-24). These results are in agreement 

with the results from the pentaerythritol-containing polymers, whereby the polymers did not 

improve on DTI efficacy against indigo in comparison to those with glycerol. However, the 

presence of free hydroxy groups is important for DTI efficacy, as evidenced by the superior 

efficacy of DTI3 in comparison to DTI1, which does not contain hydroxy groups. 
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Following the results of DTI13 it was proposed that tris(hydroxymethyl)aminomethane be 

incorporated into the polymer structure to provide branching and hydrogen bonding sites. 

Tris(hydroxymethyl)aminomethane contains a primary amine and three hydroxy groups. The 

polymer is able to branch, and presents an amine group which may interact with the fibres of 

the receiver fabric. The monomer was incorporated into the structure of DTI2 and DTI3 in place 

of glycerol (producing DTI14 and DTI15), and the successful synthesis was confirmed by 1H NMR 

(Figure 6-30 and Figure 6-31). 

Figure 6-30 1H NMR spectrum of the tris(hydroxymethyl)aminomethane and 2,2’-dimethyl-1,3-

propanediol containing polymer (DTI14) in CDCl3. 

The inclusion of tris(hydroxymethyl)aminomethane into the polymer structure is indicated by 

the presence of the hydroxy peak labelled g and the methylene peaks labelled f and h. This was 

also confirmed by FTIR of the polymer (Appendix 15). The ratio of aromatic groups to PEG was 

calculated as 1:5.  
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Figure 6-31 1H NMR spectrum of the tris(hydroxymethyl)aminomethane and ethylene glycol 

containing polymer (DTI15) in CDCl3. 

The 1H NMR spectrum in Figure 6-31 shows the presence of the methylene groups f and h in the 

polymer, indicating the inclusion of the amine containing monomer. The hydroxy and amine 

peak is observable in the FTIR of the polymer (Appendix 16). The aromatic group to PEG block 

ratio was found to be 1:6.  

The two polymers were tested for their DTI efficacy against indigo (Figure 6-32). 

Figure 6-32 A comparison of the colour change caused by indigo in the presence of two 

tris(hydroxymethyl)aminomethane containing polymers. 

Figure 6-32 indicates that the tris(hydroxymethyl)aminomethane containing polymers are both 

highly successful DTI agents, as both show a reduction in colour change caused by indigo for all 

fibre types. DTI15 gives a mean colour change reduction of 78.5% and 75.0% onto nylon and 
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polyester respectively. Additionally, cotton is reduced by 60.8% and wool by 75.7%. This broad 

range of efficacy against indigo suggests that the inclusion of both amine and hydroxy groups 

into the polymer, in one monomeric unit, provides significant advantage. 

6.3.3.3 Effect of Polyester Block Modification on Dye Transfer Inhibition of Further Dyes 

Due to the efficacy of DTI8, 9, 10, 12, 13, 14 and 15 against indigo, they were tested for their 

ability to prevent the colour change caused by C.I. Sulfur Black 1, C.I. Direct Orange 39, C.I. 

Reactive Red141 and C.I. Reactive Black 5. 

6.3.3.4 Dye Transfer Inhibition of DTI8 

Firstly, DTI8 was then tested for its ability to prevent dye transfer of C.I. Sulfur Black 1 (SB1, 

Figure 6-33). 

Figure 6-33 A comparison of the colour change caused by SB1 in the presence of the 

pentaerythritol and mPEG750 polymer (DTI8). 

In Figure 6-33, it can be observed that DTI8 increases colour change of SB1 onto cotton by 47.1% 

and 23.8% for wool, but decreases the mean colour change onto nylon by 11.2%. The reduction 

in colour change onto nylon and polyester show that the polymer is interacting with those 

fabrics and preventing dye deposition. 

DTI8 was also tested against C.I. Direct Orange 39 (DO39, Figure 6-34). 
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Figure 6-34 A comparison of the colour change caused by DO39 in the presence of the 

pentaerythritol and mPEG750 polymer (DTI8). 

Figure 6-34 shows that the colour change caused by DO39 reduces in the presence of DTI8 for 

polyester, which shows a 33.1% decrease in colour change, and for wool which gives a 26.0% 

decrease. Acrylic also shows a 21.0% decrease in colour change. While it does not significantly 

reduce the colour change onto nylon, which shows the highest level of discolouration, this result 

is encouraging as it has efficacy for hydrophobic and hydrophilic fibre types. 

DTI8 was then tested against C.I. Reactive Red 141 (RR141, Figure 6-35). 

Figure 6-35 A comparison of the colour change caused by RR141 in the presence of the 

pentaerythritol and mPEG750 polymer (DTI8). 
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From Figure 6-35 it can be seen that DTI8 does not reduce colour change caused by RR141, 

except onto cotton, which shows a 22.3% decrease in colour change. However, this is 

counterbalanced by a worsened colour change onto nylon, acrylic and wool by 17.2%, 35.0% 

and 31.3% respectively. 

The reduced efficacy of DTI8 against the additional dyes in comparison to indigo indicate the 

variety of interactions that prevent dye transfer. The presence of hydroxy groups in the 

pentaerythritol may not significantly improve the interaction between the polymer and the 

fabric surface, therefore. 

6.3.3.5 DTI Efficacy of DTI9 and DTI10 

DTI9 and DTI10 were then tested against SB1 (Figure 6-36). 

Figure 6-36 A comparison of the colour change caused by SB1 in the presence of the 2-amino-2-

methyl-1,3-propanediol containing polymer (DTI9) and the diethanolamine containing polymer 

(DTI10). 

Figure 6-36 shows that neither DTI9 nor DTI10 have significant efficacy at preventing the dye 

transfer of SB1. This is shown by the similar ΔE values for the fibres for both polymers and in the 

absence of polymer. 
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DTI9 and DTI10 were then tested against DO39 (Figure 6-37). 

Figure 6-37 A comparison of the colour change caused by DO39 in the presence of DTI3, the 2-

amino-2-methyl-1,3-propanediol containing polymer (DTI9) and the diethanolamine containing 

polymer (DTI10). 

Figure 6-37 shows that for the cellulosic fibres, which direct dyes are very effective at dyeing, 

there is not a significant reduction in colour change. However, DTI10 provides an improvement 

in colour change for the nylon and polyester fibres, showing a reduction in colour change by 

17.7% and 58.0% respectively. This is encouraging as DO39 shows a high level of discolouration 

onto nylon. 

DTI10 was then tested against RR141 (Figure 6-38). 

Figure 6-38 A comparison of the colour change caused by RR141 in the presence of the 

diethanolamine containing polymer (DTI10). 
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It can be seen from Figure 6-38 that DTI10 does not provide DTI efficacy against RR141. The 

mean values for DTI10 are higher for all fabric types except cotton, however, the error bars 

overlap for all fibre types except wool. The colour change is increased onto wool by 56.0%. This 

therefore suggests that the polymer is interacting with the wool fibres and drawing the dye to 

the fabric. 

DTI10 was also tested against C.I. Reactive Black 5 (RB5, Figure 6-39). 

Figure 6-39 A comparison of the colour change caused by RB5 in the presence of the 

diethanolamine containing polymer (DTI10). 

Figure 6-39 shows that DTI10 reduces colour change caused by RB5 onto cellulosic fibres and 

polyester. Cotton shows a decrease in mean colour change by 56.4%, and polyester by 24.7%. 

RB5 is particularly effective at dyeing and discolouring cotton so the reduction in colour change 

to below a ΔE of one is a significant improvement and shows that the mPEG-co-polyester DTI 

polymers are interacting with the hydrophilic, as well as hydrophobic, fibres. 

The diethanolamine containing polymers show an improved efficacy against the additional dyes 

to the pentaerythritol polymers in the previous section, indicated particularly by the DO39 and 

RB5 results. This therefore suggests that the inclusion of the amine group is improving 

interaction between the fabric and the polymer, and more effectively blocking dye deposition. 

0

0.5

1

1.5

2

2.5

R
. C

el
lu

lo
se

C
o

tt
o

n

N
yl

o
n

P
o

ly
es

te
r

A
cr

yl
ic

W
o

o
l

R
. C

el
lu

lo
se

C
o

tt
o

n

N
yl

o
n

P
o

ly
es

te
r

A
cr

yl
ic

W
o

o
l

No Polymer DTI10

Δ
E



176 
 

However, the mean increase in the deposition of RR141 may suggest that the amine groups in 

the polymer are attracting the negatively charged dye molecule to the fabric surface. 

6.3.3.6 DTI Efficacy of DTI12 and DTI13 

DTI12 and DTI13 were tested for DTI efficacy against SB1 (Figure 6-40). 

Figure 6-40 A comparison of the colour change caused by SB1 in the presence of the 2-amino-2-

methyl-1,3-propanediol and glycerol containing polymer (DTI12) and the diethanolamine and 

glycerol containing polymer (DTI13). 

Figure 6-40 shows that both DTI12 and DTI13 have limited DTI efficacy against SB1. A mean 

reduction in colour change is observed for nylon, giving a 19.7% and 8.84% reduction, 

respectively, for the two polymers. This is a good result, due to the significant discolouration 

SB1 produces on nylon fabrics. However, the mean colour change is worsened onto the cotton 

fabrics. 
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DTI12 and DTI13 were tested against DO39 (Figure 6-41). 

Figure 6-41 A comparison of the colour change caused by DO39 in the presence of the 2-amino-

2-methyl-1,3-propanediol and glycerol containing polymer (DTI12) and the diethanolamine and 

glycerol containing polymer (DTI13). 

DTI13 is seen to reduce colour change caused by DO39 in Figure 6-41, particularly onto nylon 

and polyester, whereby it shows a 10.2% and 55.6% reduction respectively. Again, since DO39 

causes a significant degree of discolouration onto nylon, this improvement is encouraging. The 

improvement onto nylon and polyester indicates that the DTI polymer is interaction with the 

hydrophobic fibres, to block dye deposition more effectively than for the hydrophilic fibres. 

DTI12 and DTI13 were washed with RR141 to observe any DTI efficacy (Figure 6-42). 
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Figure 6-42 A comparison of the colour change caused by RR141 in the presence of the 2-

amino-2-methyl-1,3-propanediol and glycerol containing polymer (DTI12) and the 

diethanolamine and glycerol containing polymer (DTI13). 

From Figure 6-42 it can be seen that the overall dye deposition of RR141 is not reduced in the 

presence of DTI12 or DTI13. For both DTI polymers, a moderate decrease in mean colour change 

is observed onto cotton, DTI12 gives a 9.55% reduction and DTI13 gives a 24.5% reduction. 

However, this is outweighed by a significant increase in colour change onto wool for both DTI12 

and DTI13, giving a 61.2% and 49.1% increase respectively. 

The results for DTI12 and DTI13 show that the inclusion of the glycerol monomer into the 

polymer structure does not overall reduce dye deposition of the additional dyes studied. 
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6.3.3.7 DTI Efficacy of DTI14 and DTI15 

DTI14 and DTI15 were then washed with SB1 dye bleeding fabric to test the DTI efficacy of the 

polymers (Figure 6-43). 

Figure 6-43 A comparison of the colour change caused by SB1 in the presence of two 

tris(hydroxymethyl)aminomethane containing polymers. 

Figure 6-43 shows that the polymers are not effective at preventing the deposition of SB1 dye. 

In fact, the dye deposition of SB1 onto cotton fibres is seen to increase by 49.1% for DTI14 and 

52.4% for DTI15. 

DTI14 and DTI15 were then investigated for their DTI efficacy against DO39 (Figure 6-44). 

Figure 6-44 A comparison of the colour change caused by DO39 in the presence of two 

tris(hydroxymethyl)aminomethane containing polymers. 
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DTI15 is effective at reducing colour change of DO39 onto the cellulosic fibres and nylon. The 

mean colour change onto nylon is reduced by 4.8% for DTI14 and 18.4% for DTI15. Additionally, 

DTI15 shows a reduction in colour change onto polyester and wool by 31.6% and 33.3% 

respectively. The range of fibres that the polymer is effective for shows the polymer is versatile 

in its DTI action. 

The two polymers were also tested against RR141 (Figure 6-45). 

Figure 6-45 A comparison of the colour change caused by RR141 in the presence of two 

tris(hydroxymethyl)aminomethane containing polymers. 

Finally, Figure 6-45 shows the colour change caused by RR141 in the presence of DTI14 and 

DTI15. The dye deposition is found to worsen on average for each fibre type except cotton, for 

both polymers. DTI15 shows a reduction in mean colour change onto cotton of 18%. However, 

wool is seen to be discoloured by a 45.9% increase in colour change for DTI15. 

These results show that the amine and hydroxy containing polymer does not improve dye 

deposition to a great extent for any dye types. Therefore, the results in this section suggest that 

the inclusion of a secondary amine containing monomer improves colour change caused by 

DO39 and RB5. However, when also polymerised with glycerol, this efficacy is lost. This therefore 

suggests that the polymers may be binding the DO39 in the wash solution, analogously to PVP 

to prevent dye transfer, and the inclusion of hydroxy groups reduces the complexation. 
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However, the inclusion of the amine appears to worsen the dye deposition of RR141, whereas 

the pentaerythritol containing polymer improves colour change onto cotton fibres but worsens 

deposition onto wool. This therefore indicates that the polymer is not encapsulating the dye, as 

it would reduce colour change across all fabric types. Colour change caused by SB1 is not found 

to significantly reduce in the presence of any polymers, but a small improvement for nylon is 

observed for the pentaerythritol containing polymer. Again, this suggests that the dye is being 

repelled from the fabric surface.  

A trend is observed for SB1 and RR141, whereby an improvement in colour change on one fabric 

type for a dye is counterbalanced by a worsened effect of the dye deposition onto another 

fabric. For example, DTI8 improves deposition of SB1 onto nylon, but worsens onto cotton. 

Additionally, RR141 deposition is reduced onto cotton for DTI13 but worsened onto wool. This 

may be due to an excess of dye in the wash liquor that was preventing from depositing onto one 

fabric, and thus deposits onto another. 

The various polymers may therefore interact with the different dyes by various modes of action. 

By improving interaction of a polymer to a specific fabric type, this may reduce the interactions 

of the polymer with another fabric type. Additionally, the polymers may work by differing 

methods, this is seen by the efficacy of some polymers for DO39, which is effectively 

encapsulated by PVP, and the lack of DTI efficacy of for other dyes.  

6.3.4 Consumer Trial Testing 

In order to obtain a more realistic value for colour change whereby the complexity of the various 

fabric and dyes is taken into account, consumer testing of real laundry loads was performed. 
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DTI3, DTI10 and DTI15 were tested on consumer loads at the Procter and Gamble Newcastle 

Innovation Centre. Each polymer was added to 20 consumer wash loads alongside regular Ariel 

detergent, and a ‘tracer’. The tracer was a swatch of fabric with 20 white fabrics of varying 

compositions attached. This was dried on completion of the wash cycle and the colour change 

values were measured, compiling the results of the various fabric types. The results of the 

consumer wash loads are shown in Figure 6-46. 

Figure 6-46 A comparison of the efficacy of DTI3, DTI10 and DTI15 on consumer wash loads. 

From Figure 6-46 it can be seen that DTI3 is the overall most effective DTI polymer. According 

to P&G, a ΔE greater than 1.7 is an observable difference, therefore the DTI3 values all reduce 

colour change to below this value. The results of the consumer trials and the results for the 

additional dyes except indigo indicate that a compromise must be made for overall efficacy of 

the DTI polymer. This therefore indicates that the polymers that are most effective at reducing 

colour change for indigo overall, may not be the most effective polymer all round. 

6.4 Conclusion 

Several novel polymers were successfully synthesised that have potential for use as DTIs against 

indigo dye. All the polymers created were designed to present a central polyester region 

intended for fibre interaction, and terminal hydrophilic regions that were intended to form a 
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hydration layer that prevents fibre-dye interaction. In all instances it was imperative that the 

polymer presented excellent dispersibility in aqueous solution. Initially, the glycerol containing 

polymer, DTI3, was found to be a highly effective DTI against indigo, showing a mean reduction 

of 50% in colour change for cotton. It was proposed that the presence of unreacted hydroxy 

groups from the inclusion of glycerol into the polymer provided the polymer with increased 

hydrogen bonding capability that improved fibre-polymer interactions. Further testing revealed 

that the polymer deposits onto multifibre swatches, as DTI efficacy was maintained in further 

washes in which polymer was not added. This provides evidence that the DTI is effective due to 

the DTI adsorption onto the fabric, preventing dye deposition. Further polymers were 

synthesised that are also excellent candidates for use as DTIs. DTI10 incorporated 

diethanolamine into the polymer structure, and revealed a significant reduction in dye transfer 

caused by indigo; providing an 82% reduction in colour change onto polyester. Additionally, 

DTI15, which incorporated tris(hydroxymethyl)aminomethane into the polymer structure, 

showed an 80% reduction for the colour change caused by indigo onto nylon fabric. Three 

polymers were then taken forward to consumer trials, and DTI3 was found the perform best, 

despite DTI15 providing superior efficacy against indigo. The positive results presented 

demonstrate the significant potential that relatively small concentrations of amphiphilic 

copolymers have as DTIs, and their potential for inclusion in commercial laundry detergent 

formulations. 
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Chapter 7. mPEG-Poly(Amino Acid)s Synthesised via N-

Carboxyanhydride Ring Opening Polymerisation 

for Dye Transfer Inhibition 

This chapter is based on work published as: 

Mohamed H. A., Khuphe M., Boardman S. J., Shepherd S., Phillips R. M., Thornton P. D. and 

Willans C. E., Polymer encapsulation of anticancer silver-N-heterocyclic carbene complexes, RSC 

Advances, 2018, 8, 10474 - 10477 

Abstract 

N-Carboxyanhydride ring opening polymerisation is a controlled method of synthesising 

poly(amino acid)s. A series of diblock copolymers polymerised from methoxy-poly(ethylene 

glycol)-amine macroinitiators were synthesised, containing repeat units of L-phenylalanine, γ-

benzyl-L-glutamate and N-ε-carboxybenzyl-L-lysine as the poly(amino acid) block. These 

polymers were investigated for their efficacy as dye transfer inhibitors for indigo dye in the 

laundry process. Polymers containing poly(γ-benzyl-L-glutamate) were found to be the most 

effective against indigo, however, in contrast the polymers containing poly(L-phenylalanine) 

were found to be overall the most effective against other dyes. This shows that poly(amino acid)s 

may be expanded upon to produce DTIs that can protect against a range of dyes for a range of 

fabrics in detergent formulations. 

7.1 Introduction 

Amino acids can be polymerised to form random or coded copolymers such as polypeptides, or 

chains of a single amino acid repeat unit, such as poly(amino acid)s, which may form a block in 
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a larger block copolymer.1,2 Amino acids each have a unique R group which imparts varying 

functionality to the monomer, such as an acid, amine or aromatic group. The various 

functionalities available when using amino acids as monomers allows for a large range of 

polymers with a variety of properties and functionalities to be produced, including amphiphilic 

polymers. As poly(amino acid)s are derived from amino acids, they are biocompatible, 

biodegradable and renewable.3 Due to these desirable properties, such polymers have attracted 

interest in a variety of applications including drug delivery, biomimetics, biosensors and tissue 

scaffolds.4–8 Poly(amino acid)s provide a route to producing polymers that can be included in 

detergent formulations, and to observe the effects of varying functionality on dye transfer 

inhibition (DTI) efficacy, through the use of particular amino acids as monomers, namely 

glutamic acid, lysine and phenylalanine. Each repeat unit of the polymer contains a peptide bond 

capable of hydrogen bonding with the fabric, as well as any additional functionality provided by 

the R group of the amino acid, which may allow for interaction between the fabric and the 

polymer, in order to block dye deposition. 

7.1.1 N-Carboxyanhydride Ring Opening Polymerisation 

N-Carboxyanhydride (NCA) ring opening polymerisation (ROP) is a relatively facile robust 

method to producing poly(amino acid)s, negating the need for the laborious Merrifield solid 

phase synthesis used for poly(peptide) synthesis.1,9 The desired amino acid is converted into a 

cyclic monomer, an NCA, via the Fuchs-Farthing method whereby triphosgene reacts with the 

amino acid to cyclise it in good yields, while limonene or α-pinene act as a scavenger for 

hydrochloric acid produced in the reaction.10,11 The reaction proceeds via an intermediate N-

chloroformyl amino acid, which upon the loss of an HCl moiety, produces the cyclised amino 

acid monomer (Figure 7-1). 
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Figure 7-1 Reaction scheme of the synthesis of an NCA monomer via the Fuchs-Farthing method, 

the R group of the amino acid is highlighted in blue. 

Upon isolation and purification, the NCA monomer may be polymerised via ROP to produce the 

desired poly(amino acid). NCA ROP proceeds via living anionic polymerisation, meaning the NCA 

monomer polymerises until it is depleted, generating an active chain end on the elimination of 

CO2.12 Living polymerisations provide a controlled route to well-defined polymer synthesis.13,14 

This is because the rate of initiation is greater than the rate of propagation. This results in 

instantaneous initiation of the polymer chain, and the propagation of each chain occurs at the 

same rate, resulting with a narrow polydispersity index (PDI).15,16 NCA ROP therefore gives a 

reliable, highly defined product.17 

NCA ROP is initiated by a nucleophile amine, often a primary amine group, which may be on the 

terminus of an existing polymer chain, an initiator, or may be a pendant group on a surface. This 

allows for the grafting of the poly(amino acid) onto existing surfaces18 or with amine terminated 

polymers (Figure 7-2).16,19 It also enables the formation of copolymers with biologically relevant 

structures, such as carbohydrates, to produce glycopolypeptides.20 This allows for a wide range 

of potential products such as amphiphilic polymers. These can be produced by a number of ways 

such as: grafting an hydrophilic poly(amino acid) to an hydrophobic one, or; using an hydrophilic 

block such as methoxy-poly(ethylene glycol)-amine (mPEG-NH2) as a macroinitiator for the 

polymerisation of an hydrophobic NCA monomer. NCA ROP may also be used simply to 

introduce blocks of varying functionality into the polymer structure.21 
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Figure 7-2 Reaction scheme of N-carboxyanhydride ring opening polymerisation initiated from 

methoxy-PEG-NH2 showing the generation of the free amine terminus associated with the amino 

acid residue (red) to allow for propagation of the polymerisation. 

The poly(amino acid)s synthesised are degradable into non-toxic amino acids.2,16,22,23 This 

therefore provides a more environmentally-friendly route to producing polymers for laundry 

detergent, where the effluent generated is released into the environment. 

7.1.2 Use of Poly(Amino Acid)s in Laundry Applications 

Poly(amino acids) are used in detergent formulations, particularly in order to preserve the 

integrity and therefore the appearance of the fibres of a garment, and to reduce physical 

damage to the garment fibres on the laundering process.24 It is also claimed that some 

poly(amino acid)s such as polylysine can reduce colour fading, caused by dye molecules 

becoming dislodged when damage to the garment fibres occurs.24 The free amine in the lysine 

residue can also be used to react with ‘benefit’ agents such as a perfume, antibacterial agents, 

or brighteners.25,26 While polylysine is used in detergent formulations, there is no indication of 

the use of it as a dye transfer inhibitor. This gives a potential secondary advantage to the use of 

polylysine, while still protecting the fibres. Poly(amino acid)s containing aspartic acid, glutamic 

acid, lysine or ornithine repeat units, have been found to enhance cleaning of soils and clays 

from garments when included in detergent formulations, showing that they also possess 

cleansing properties that may act synergistically with surfactants in the laundry process.27–29 
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Diblock copolymers synthesised via NCA ROP of lysine and phenylalanine have been found to 

possess antimicrobial properties.30 Additionally, polylysine, polyarginine and polyhistidine, as 

well as random copolymers thereof, are used in detergent formulations as anti-microbial 

agents.31,32 Therefore the application of poly(amino acid)s as DTIs could provide a route to 

secondary benefits of their use. 

It is therefore of interest to investigate water-soluble poly(amino acid)s for their ability to 

prevent dye transfer in the wash, as this may provide an additional benefit to their use in laundry 

detergents, alongside those already outlined. Therefore, a series of mPEG-b-poly(amino acid)s 

was synthesised based on lysine, phenylalanine and glutamic acid. These three amino acids were 

selected owing to their varying functionalities, in order to observe the effect, if any of these 

functional groups on the DTI efficacy of the polymers. The polymers were synthesised via NCA 

ROP using an mPEG-NH2 macroinitiator in order to impart functionality, and to mimic the 

successful mPEG-poly(ester) DTI polymers outlined previously. 

7.2 Experimental 

7.2.1 Nuclear Magnetic Resonance (NMR) Spectroscopy 

All 1H NMR spectra obtained were recorded using a Bruker AVANCE 500 spectrometer at 

500 MHz, for 128 scans. NMR spectra were obtained using 500 MHz Norell® NMR tubes. 

MestreNova® Research Lab software was used to analyse and integrate the spectra, and the 

chemical shifts were reference to trimethylsilane at 0 ppm. 

7.2.2 Fourier Transformed Infrared (FTIR) Spectroscopy 

Infrared spectra were obtained on a Bruker Platinum FTIR-ATR spectrometer, using a diamond 

attenuated total reflectance (ATR) accessory, completing 32 scans in total. Bruker OPUS7.0 

software was used to analyse the spectra. TRIOS software was used to plot and analyse the data. 
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7.2.3 Centrifugation, Sample Drying and Lyophilisation 

Samples were separated by centrifuge with an MSE Mistral 3000i at 25 °C, 1000 rpm. A Buchi R-

210 rotary evaporator and a FiStream vacuum oven were used to remove solvent and dry 

samples. Samples were lyophilised using a VirTis BenchTop Pro freeze dryer (SP Scientific). 

7.2.4 Dynamic Light Scattering (DLS) 

A Malvern Instrument ZetaSizer Nano ZSP with a 4mW He-Ne laser at 633 nm, and using an 

avalanche photodiode detector. The scattered light was collected at an angle of 173o. 

Measurements were run in triplicate and obtained at 25 °C, using a measurement position of 

2.00 mm. 

7.2.5 GyroWash2 Studies 

Multifibre and dye bleeder washes were performed on a James Heal GyroWash2 set at 40 °C, for 

30 minutes at 40 rpm. The multifibre and dye bleeding fabrics were cut to 4x10 cm swatches, 

and washed in deionised water (50 mL) or polymer solution (50 mL, 0.1 mg mL-1), with 25 ball 

bearings. Colour changes were measured using a Spectraflash DataColor unit, which measured 

the L* a* and b* coordinates, which can be compared to an unwashed sample to give a colour 

change (ΔE) value. Measurements were made under D65 lighting. 

7.2.6 Synthesis of N-carboxyanhydride monomers 

7.2.6.1 Synthesis of L-phenylalanine N-carboxyanhydride 

A round bottom flask with a magnetic stirrer was fitted with a reflux 

condenser and dropping funnel. Under an inert atmosphere, triphosgene 

(3.81 g, 12.8 mmol) in anhydrous THF (20 mL) was added dropwise to α-

pinene (4.02 g, 30.7 mmol) and L-phenylalanine (5 g, 30.3 mmol) in anhydrous THF (80 mL) and 

stirred under reflux for 2 hours. Approximately one third of solvent was removed in vacuo. The 

solution was then added to cold hexane (150 mL) and a white crystalline solid was precipitated 



192 
 

out. The precipitate was collected by gravity filtration and dried in vacuo. A white crystalline 

material was yielded. IR and NMR spectra were obtained. Yield: 4.33 g, 22.6 mmol, 74.9% 

1H NMR (500 MHz, DMSO) δ 9.20 (s, 1H, NH), 7.45-7.30 (m, 5H, ArH), 4.76 (s, 1H, αCH), 3.2 (s, 

2H, CH2). 

FTIR (cm-1): 3277 (N-H, amine), 2922 (C-H, alkyl), 1847 (-C=O, anhydride), 1766 (-C=O, anhydride), 

1454 (C=C, Ar), 1295 (C-O, anhydride), 1117 (C-O, anhydride), 917 (C=C, Ar), 752(C-H, Ar), 699 

(C-H, Ar). 

7.2.6.2 Synthesis of γ-benzyl-L-glutamate N-carboxyanhydride 

A round bottom flask with a magnetic stirrer was fitted with a 

reflux condenser and dropping funnel. Under an inert 

atmosphere, triphosgene (2.08 g, 7.02 mmol) in anhydrous 

ethyl acetate (20 mL) was added dropwise to α-pinene (1.91 g, 14.05 mmol) and γ-benzyl-L-

glutamate (5 g, 21.07 mmol) in anhydrous ethyl acetate (80 mL) and stirred under reflux for 2 

hours. Approximately one third of solvent was removed in vacuo. The solution was then added 

to cold hexane (150 mL) and a white crystalline solid was precipitated out. The precipitate was 

collected by gravity filtration and dried in vacuo. A white crystalline material was yielded. IR and 

NMR spectra were obtained. Yield: 4.89 g, 18.8 mmol, 88% 

1H NMR (500 MHz, DMSO) δ 7.45 – 7.12 (m, 5H, ArH), 5.19 – 4.88 (m, 2H, CH2), 4.04 (dd, J = 56.5, 

49.4 Hz, 1H, αCH), 2.20 (s, 2H, CH2), 2.09 – 1.65 (m, 2H, CH2). 

FTIR (cm-1): 3320 (N-H), 3032 (C-H, alkyl), 2936 (C-H, alkyl), 2865 (C-H, alkyl), 1847 (C=O, 

anhydride), 1774 (C=O, anhydride), 1529 (C=C, Ar), 1255 (C-O, anhydride), 925 (C=C, Ar), 740 (C-

H, Ar). 
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7.2.6.3 Synthesis of N-ε-carboxybenzyl-L-lysine N-carboxyanhydride 

A round bottom flask with a magnetic stirrer was fitted 

with a reflux condenser and dropping funnel. Under an 

inert atmosphere, triphosgene (1.76 g, 5.95 mmol) in 

anhydrous ethyl acetate (20 mL) was added dropwise to α-pinene (1.61 g, 11.89 mmol) and N-

ε-carboxybenzyl-L-lysine (5 g, 17.84 mmol) in anhydrous ethyl acetate (80 mL) and stirred under 

reflux for 2 hours. Approximately one third of solvent was removed in vacuo. The solution was 

then added to cold hexane (150 mL) and a white crystalline solid was precipitated out. The 

precipitate was collected by gravity filtration and dried in vacuo. A white crystalline material was 

yielded. IR and NMR spectra were obtained. Yield: 4.83 g, 15.77 mmol, 88% 

1H NMR (500 MHz, DMSO) δ 9.10 (s, 1H, NH), 7.53 – 7.16 (m, 6H, ArH), 5.00 (s, 2H, CH2), 4.57 – 

4.32 (m, 1H, α), 2.99 (dd, J = 12.1, 6.1 Hz, 2H, CH2), 1.88 – 1.56 (m, 2H, CH2), 1.49 – 1.20 (m, 4H, 

CH2). 

FTIR (cm-1): 3338 (N-H), 3032 (C-H, alkyl), 2942 (C-H, alkyl), 2869 (C-H, alkyl), 1853 (-C=O, 

anhydride), 1770 (-C=O, anhydride), 1546 (C=C, Ar), 1137 (C-O, anhydride), 938 (C=C, Ar), 748 

(C-H, Ar). 

7.2.7 NCA ROP of Phe NCA with mPEG22-NH2 Macroinitiator 

7.2.7.1 Synthesis of mPEG22-b-poly(L-phenylalanine)3 (SJB105) 

A Schlenk tube was degassed and backfilled with N2(g) and loaded with mPEG22-NH2 (0.1 g, 

0.1 mmol) and L-phenylalanine NCA (0.096 g, 0.5 mmol). Anhydrous DMF (20 mL) was added 

and the reaction was stirred under a constant stream of N2(g) for seven days at room 

temperature. The reaction mix was precipitated into ice cold diethyl ether (150 mL) and 

incubated at -5 °C for 24 hours. The mixture was then centrifuged and the supernatant 
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decanted. The product was washed three time with ice cold ethyl acetate and centrifuged. The 

resulting off-white solid was dried in vacuo at 50 °C for 48 hours. Yield: 0.1733 g. 

1H NMR (500 MHz, DMSO) δ 7.31 – 7.07 (m, 15H, ArH), 4.54 (s, 3H, CH), 3.98 – 3.41 (m, 88H, 

CH2), 3.24 (s, 3H, CH3), 2.92 (dd, J = 34.2, 12.3 Hz, 6H, CH2). 

FTIR (cm-1): 3328 (N-H), 3287 (N-H), 3026 (C-H, alkyl), 2865 (C-H, alkyl), 1664 (C=O, amide), 1631 

(C=C, Ar), 1519 (C=C, Ar), 1243 (C-N, amide), 1097 (C-O, aliphatic ether), 946 (C=C, Ar), 695 (C-H, 

Ar). 

7.2.7.2 Synthesis of mPEG22-b-poly(L-phenylalanine)4 (SJB104) 

A Schlenk tube was degassed and backfilled with N2(g) and loaded with mPEG22-NH2 (0.1 g, 

0.1 mmol) and L-phenylalanine NCA (0.287 g, 1.5 mmol). Anhydrous DMF (20 mL) was added 

and the reaction was stirred under a constant stream of N2(g) for seven days at room 

temperature. The reaction mix was precipitated into ice cold diethyl ether (150 mL) and 

incubated at -5 °C for 24 hours. The mixture was then centrifuged and the supernatant 

decanted. The product was washed three time with ice cold ethyl acetate and centrifuged. The 

resulting off-white solid was dried in vacuo at 50 °C for 48 hours. Yield: 0.3454 g. 

1H NMR (500 MHz, DMSO) δ 7.20 (d, J = 17.1 Hz, 20H, ArH), 4.52 (s, 4H, CH), 3.45 (d, J = 46.5 Hz, 

88H, CH2), 3.24 (s, 3H, CH3), 2.94 (s, 9H, CH2). 

FTIR (cm-1): 3320 (N-H), 3283 (N-H), 3030 (C-H, alkyl), 2863 (C-H, alkyl), 1662 (C=O, amide), 1631 

(C=C, Ar), 1515 (C=C, Ar), 1239 (C-N, amide), 1105 (C-O, aliphatic ether), 697 (C-H, Ar). 

7.2.7.3 Synthesis of mPEG22-b-poly(L-phenylalanine)5 (SJB95) 

A Schlenk tube was degassed and backfilled with N2(g) and loaded with mPEG22-NH2 (0.1 g, 

0.1 mmol) and L-phenylalanine NCA (0.191 g, 1.0 mmol). Anhydrous DMF (20 mL) was added 

and the reaction was stirred under a constant stream of N2(g) for seven days at room 

temperature. The reaction mix was precipitated into ice cold diethyl ether (150 mL) and 
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incubated at -5 °C for 24 hours. The mixture was then centrifuged and the supernatant 

decanted. The product was washed three time with ice cold ethyl acetate and centrifuged. The 

resulting off-white solid was dried in vacuo at 50 °C for 48 hours. Yield: 0.2602 g. 

1H NMR (500 MHz, DMSO) δ 7.39 – 6.97 (m, 25H, ArH), 4.53 (s, 5H, CH), 3.47 (d, J = 31.2 Hz, 88H, 

CH2), 3.24 (s, 3H, CH3), 2.92 (d, J = 20.7 Hz, 10H, CH2). 

FTIR (cm-1): 3324 (N-H), 3285 (N-H), 3028 (C-H, alkyl), 2865 (C-H, alkyl), 1662 (C=O, amide), 1629 

(C=C, Ar), 1519 (C=C, Ar), 1241 (C-N, amide), 1103 (C-O, aliphatic ether), 695 (C-H, Ar). 

7.2.8 NCA ROP of BLG NCA with mPEG22-NH2 Macroinitiator 

7.2.8.1 Synthesis of mPEG22-b-poly(γ-benzyl-L-glutamate)3 (SJB101p) 

A Schlenk tube was degassed and backfilled with N2(g) and loaded with mPEG22-NH2 (0.1 g, 

0.1 mmol) and γ-benzyl-L-glutamate NCA (0.263 g, 1.0 mmol). Anhydrous DMF (20 mL) was 

added and the reaction was stirred under a constant stream of N2(g) for seven days at room 

temperature. The reaction mix was precipitated into ice cold diethyl ether (150 mL) and 

incubated at -5 °C for 24 hours. The mixture was then centrifuged and the supernatant 

decanted. The product was washed three time with ice cold ethyl acetate and centrifuged. The 

resulting off-white solid was dried in vacuo at 50 °C for 48 hours. Yield: 0.1306 g. 

1H NMR (500 MHz, DMSO) δ 7.33 (t, J = 19.3 Hz, 20H, ArH), 5.05 (t, J = 18.0 Hz, 8H, CH2), 4.26 (d, 

J = 12.7 Hz, 3H, CH), 3.73 – 3.39 (m, 88H, CH2), 3.24 (s, 3H, CH3), 2.00 – 1.63 (m, 10H, CH2). 

FTIR (cm-1): 3287 (N-H), 3034 (C-H, alkyl), 2873 (C-H, alkyl), 1729 (C=O, benzyl), 1649 (C=O, 

amide), 1543 (C=C, Ar), 1454 (C-H, alkyl), 1343 (C-N, amide), 1239 (C-N, amide), 1142 (C-O, 

aliphatic ether), 1101 (C-O, aliphatic ether), 950 (C=C, Ar), 697 (C-H, Ar). 
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7.2.8.2 Synthesis of mPEG22-b-poly(γ-benzyl-L-glutamate)7 (SJB100p) 

A Schlenk tube was degassed and backfilled with N2(g) and loaded with mPEG22-NH2 (0.1 g, 

0.1 mmol) and γ-benzyl-L-glutamate NCA (0.132 g, 0.5 mmol). Anhydrous DMF (20 mL) was 

added and the reaction was stirred under a constant stream of N2(g) for seven days at room 

temperature. The reaction mix was precipitated into ice cold diethyl ether (150 mL) and 

incubated at -5 °C for 24 hours. The mixture was then centrifuged and the supernatant 

decanted. The product was washed three time with ice cold ethyl acetate and centrifuged. The 

resulting off-white solid was dried in vacuo at 50 °C for 48 hours. Yield: 0.1398 g. 

1H NMR (500 MHz, DMSO) δ 7.30 (d, J = 30.5 Hz, 34H, ArH), 5.07 (s, 13H, CH2), 4.20 (d, J = 56.4 

Hz, 2H, CH), 3.75 – 3.41 (m, 88H, CH2), 3.24 (s, 3H, CH3), 1.88 (d, J = 48.4 Hz, 12H, CH2). 

FTIR (cm-1): 3287 (N-H), 3030 (C-H, alkyl), 2867 (C-H, alkyl), 1731 (C=O, benzyl), 1649 (C=O, 

amide), 1625 (C=C, Ar), 1545 (C=C, Ar), 1452 (C-H, alkyl), 1248 (C-N, amide), 1160 (C-O, aliphatic 

ether), 1095 (C-O, aliphatic ether), 697 (C-H, Ar). 

7.2.8.3 Synthesis of mPEG22-b-poly(γ-benzyl-L-glutamate)23 (SJB102p) 

A Schlenk tube was degassed and backfilled with N2(g) and loaded with mPEG22-NH2 (0.1 g, 

0.1 mmol) and γ-benzyl-L-glutamate NCA (0.395 g, 1.5 mmol). Anhydrous DMF (20 mL) was 

added and the reaction was stirred under a constant stream of N2(g) for seven days at room 

temperature. The reaction mix was precipitated into ice cold diethyl ether (150 mL) and 

incubated at -5 °C for 24 hours. The mixture was then centrifuged and the supernatant 

decanted. The product was washed three time with ice cold ethyl acetate and centrifuged. The 

resulting off-white solid was dried in vacuo at 50 °C for 48 hours. Yield: 0.4653 g. 

1H NMR (500 MHz, DMSO) δ 7.31 (dd, J = 18.6, 12.1 Hz, 115H, ArH), 5.25 – 4.84 (m, 45H, CH2), 

4.13 – 3.73 (m, 15H, CH), 3.48 (d, J = 20.1 Hz, 88H, CH2), 3.24 (s, 3H, CH3), 2.30 – 1.73 (m, 60H, 

CH2). 
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FTIR (cm-1): 3287 (N-H), 3034 (C-H, alkyl), 2873 (C-H, alkyl), 2865(N-H), 1729 (C=O, benzyl), 1651 

(C=O, amide), 1547 (C=C, Ar), 1454 (C-H, alkyl), 1388 (C-N, amide), 1244 (C-N, amide), 1156 (C-

O, aliphatic ether), 1117 (C-O, aliphatic ether), 952 (C=C, Ar), 744 (C-H, Ar), 693 (C-H, Ar). 

7.2.8.4 Deprotection of mPEG22-b-poly(γ-benzyl-L-glutamate)23 

mPEG22-b-PBLG23 (0.5 g, 0.077 mmol) was added to a mixture of trifluoroacetic acid (7 mL) and 

hydrogen bromide in acetic acid (33%, 3 mL) and stirred for 48 hours. The resulting mixture was 

precipitated into ice cold diethyl ether (20 mL) and stored at -5 °C for a further 24 hours. The 

mixture was then centrifuged and the supernatant decanted. The product was washed three 

time with ice cold diethyl ether and centrifuged. The product was washed three time with ice 

cold ethyl acetate and centrifuged. The resulting creamy orange solid was dried in vacuo at 50 OC 

for 48 hours. 

1H NMR (500 MHz, DMSO) δ 4.31 – 3.89 (m, 30H, CH), 3.51 (s, 88H, CH2), 3.21 (d, J = 26.0 Hz, 3H, 

CH3), 2.26 (t, J = 29.0 Hz, 53H, OH), 2.07 – 1.59 (m, 40H, CH2). 

FTIR (cm-1): 3065 (broad, O-H, carboxylic acid),3285 (N-H), 3065 (C-H, alkyl), 2910 (C-H, alkyl), 

2865(N-H), 1706 (C=O, carboxylic acid), 1649 (C=O, amide), 1545 (C=C, Ar), 1407 (C-H, alkyl), 

1248 (C-N, amide), 1168 (C-O, aliphatic ether), 1080 (C-O, aliphatic ether), 946 (C=C, Ar), 789 (C-

H, Ar), 609 (C-H, Ar). 

7.2.8.5 Synthesis of mPEG22-b-poly(γ-benzyl-L-glutamate)43 (SJB116p) 

A Schlenk tube was degassed and backfilled with N2(g) and loaded with mPEG22-NH2 (0.1 g, 

0.1 mmol) and γ-benzyl-L-glutamate NCA (0.789 g, 3.0 mmol). Anhydrous DMF (20 mL) was 

added and the reaction was stirred under a constant stream of N2(g) for seven days at room 

temperature. The reaction mix was precipitated into ice cold diethyl ether (150 mL) and 

incubated at -5 °C for 24 hours. The mixture was then centrifuged and the supernatant 
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decanted. The product was washed three time with ice cold ethyl acetate and centrifuged. The 

resulting off-white solid was dried in vacuo at 50 °C for 48 hours. Yield: 0.4481 g.  

1H NMR (500 MHz, DMSO) δ 7.31 (dd, J = 16.9, 11.7 Hz, 214H, ArH), 5.03 (d, J = 26.9 Hz, 81H, 

CH2), 3.93 (dd, J = 85.2, 46.5 Hz, 34H, CH), 3.62 – 3.40 (m, 88H, CH2), 3.24 (s, 3H, CH3), 2.04 (dd, 

J = 91.5, 63.9 Hz, 114H, CH2). 

FTIR (cm-1): 3283 (N-H), 3030 (C-H, alkyl), 2869 (C-H, alkyl), 2865(), 1731 (C=O, benzyl), 1647 

(C=O, amide), 1541 (C=C, Ar), 1452 (C-H, alkyl), 1384 (C-N, amide), 1244 (C-N, amide), 1164(C-O, 

aliphatic ether), 958 (C=C, Ar), 738 (C-H, Ar), 693 (C-H, Ar). 

7.2.9 NCA ROP of BLG NCA with mPEG113-NH2 Macroinitiator 

7.2.9.1 Synthesis of mPEG113-b-poly(γ-benzyl-L-glutamate)12 (SJB118p) 

A Schlenk tube was degassed and backfilled with N2(g) and loaded with mPEG113-NH2 (0.1 g, 

0.02 mmol) and γ-benzyl-L-glutamate NCA (0.0789 g, 0.3 mmol). Anhydrous DMF (20 mL) was 

added and the reaction was stirred under a constant stream of N2(g) for seven days at room 

temperature. The reaction mix was precipitated into ice cold diethyl ether (150 mL) and 

incubated at -5 °C for 24 hours. The mixture was then centrifuged and the supernatant 

decanted. The product was washed three time with ice cold ethyl acetate and centrifuged. The 

resulting off-white solid was dried in vacuo at 50 °C for 48 hours. Yield: 0.3568 g. 

1H NMR (500 MHz, DMSO) δ 7.30 (d, J = 23.6 Hz, 60H, ArH), 5.06 (s, 284H, CH2), 3.92 (s, 7H, CH), 

3.51 (s, 440H, CH2), 3.24 (s, 3H, CH3), 2.01 (d, J = 7.5 Hz, 22H, CH2). 

FTIR (cm-1): 3283 (N-H), 2877 (C-H, alkyl), 1731 (C=O, benzyl), 1651 (C=O, amide), 1547 (C=C, Ar), 

1466 (C-H, alkyl), 1341 (C-N, amide), 1278 (C-N, amide), 1239 (C-O, aliphatic ether), 1099 (C-O, 

aliphatic ether), 958 (C=C, Ar), 842 (C-H, Ar), 697 (C-H, Ar). 



199 
 

7.2.10 NCA ROP of BLG NCA with mPEG295-NH2 Macroinitiator 

7.2.10.1 Synthesis of mPEG295-b-poly(γ-benzyl-L-glutamate)25 (SJB117p) 

A Schlenk tube was degassed and backfilled with N2(g) and loaded with mPEG295-NH2 (0.1 g, 

0.00769 mmol) and γ-benzyl-L-glutamate NCA (0.0304 g, 0.12 mmol). Anhydrous DMF (20 mL) 

was added and the reaction was stirred under a constant stream of N2(g) for seven days at room 

temperature. The reaction mix was precipitated into ice cold diethyl ether (150 mL) and 

incubated at -5 °C for 24 hours. The mixture was then centrifuged and the supernatant 

decanted. The product was washed three time with ice cold ethyl acetate and centrifuged. The 

resulting off-white solid was dried in vacuo at 50 °C for 48 hours. Yield: 0.3130 g. 

1H NMR (500 MHz, DMSO) δ 7.26 (s, 123H, ArH), 5.04 (s, 47H, CH2), 4.42 – 4.09 (m, 11H, CH), 

3.47 (d, J = 32.8 Hz, 1144H, CH2), 3.25 – 3.24 (m, 3H, CH3), 2.13 – 1.78 (m, 123H, CH2). 

FTIR (cm-1): 3285 (N-H), 2887 (C-H, alkyl), 1729 (C=O, benzyl), 1655 (C=O, amide), 1464 (C-H, 

alkyl), 1341 (C-N, amide), 1276 (C-N, amide), 1237 (C-O, aliphatic ether), 1091 (C-O, aliphatic 

ether), 956 (C=C, Ar), 842 (C-H, Ar). 

7.2.11 NCA ROP of Z-Lys NCA with mPEG22-NH2 Macroinitiator 

7.2.11.1 Synthesis of mPEG22-b-poly(N-ε-carboxybenzyl-L-lysine)2 (SJB122p) 

A Schlenk tube was degassed and backfilled with N2(g) and loaded with mPEG22-NH2 (0.05 g, 

0.05 mmol) and N-ε-carboxybenzyl-L-lysine NCA (0.46 g, 1.5 mmol). Anhydrous DMF (20 mL) 

was added and the reaction was stirred under a constant stream of N2(g) for seven days at room 

temperature. The reaction mix was precipitated into ice cold diethyl ether (150 mL) and 

incubated at -5 °C for 24 hours. The mixture was then centrifuged and the supernatant 

decanted. The product was washed three time with ice cold ethyl acetate and centrifuged. The 

resulting off-white solid was dried in vacuo at 50 °C for 48 hours. Yield: 0.1495 g. 
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1H NMR (500 MHz, DMSO) δ 7.96 (s, 2H, NH), 7.58 – 7.11 (m, 10H, ArH), 5.01 (s, 4H, CH2), 3.91 – 

3.47 (m, 88H, CH2), 3.24 (d, J = 1.8 Hz, 3H, CH3), 2.93 (dd, J = 44.8, 9.9 Hz, 10H, CH2), 1.84 – 1.16 

(m, 15H, CH2). 

FTIR (cm-1): 3338 (N-H), 3032 (C-H, alkyl), 2867 (C-H, alkyl), 1686 (C=O, amide), 1454 (C-H, alkyl), 

1343 (C-N, amide), 1239 (C-N, amide), 1103 (C-O, aliphatic ether), 946 (C=C, Ar), 842 (C-H, Ar). 

7.2.11.2 Synthesis of mPEG22-b-poly(N-ε-carboxybenzyl-L-lysine)3 (SJB120p) 

A Schlenk tube was degassed and backfilled with N2(g) and loaded with mPEG22-NH2 (0.05 g, 

0.05 mmol) and N-ε-carboxybenzyl-L-lysine NCA (0.153 g, 0.5 mmol). Anhydrous DMF (20 mL) 

was added and the reaction was stirred under a constant stream of N2(g) for seven days at room 

temperature. The reaction mix was precipitated into ice cold diethyl ether (150 mL) and 

incubated at -5 °C for 24 hours. The mixture was then centrifuged and the supernatant 

decanted. The product was washed three time with ice cold ethyl acetate and centrifuged. The 

resulting off-white solid was dried in vacuo at 50 °C for 48 hours. Yield: 0.1687 g. 

1H NMR (500 MHz, DMSO) δ 8.14 (s, 3H, NH), 7.52 – 7.06 (m, 14H, ArH), 5.01 (s, 5H, CH2), 3.54 

(d, J = 23.3 Hz, 88H, CH2), 3.25 (s, 3H, CH3), 2.99 (s, 5H, CH2), 1.80 – 1.20 (m, 16H, CH2). 

FTIR (cm-1): 3509 (N-H), 3311 (N-H), 3034 (C-H, alkyl), 2867 (C-H, alkyl), 1704 (C=O, amide), 1688 

(N-H, bending, amine), 1535 (C=C, Ar), 1454 (C-H, alkyl), 1341 (C-N, amide), 1244 (C-N, amide), 

1095 (C-O, aliphatic ether), 950 (C=C, Ar), 844 (C-H, Ar), 699 (C-H, Ar). 

7.2.11.3 Synthesis of mPEG22-b-poly(N-ε-carboxybenzyl-L-lysine)6 (SJB121p) 

A Schlenk tube was degassed and backfilled with N2(g) and loaded with mPEG22-NH2 (0.1 g, 

0.1 mmol) and N-ε-carboxybenzyl-L-lysine NCA (0.153 g, 0.5 mmol). Anhydrous DMF (20 mL) 

was added and the reaction was stirred under a constant stream of N2(g) for seven days at room 

temperature. The reaction mix was precipitated into ice cold diethyl ether (150 mL) and 

incubated at -5 °C for 24 hours. The mixture was then centrifuged and the supernatant 
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decanted. The product was washed three time with ice cold ethyl acetate and centrifuged. The 

resulting off-white solid was dried in vacuo at 50 °C for 48 hours. Yield: 0.2376 g. 

1H NMR (500 MHz, DMSO) δ 8.27 – 7.94 (m, 5H, NH), 7.27 (d, J = 50.5 Hz, 30H, ArH), 5.00 (s, 10H, 

CH2), 3.51 (s, 88H, CH2), 3.24 (s, 3H, CH3), 3.07 – 2.86 (m, 10H, CH2), 1.76 – 1.04 (m, 32H, CH2). 

FTIR (cm-1): 3491 (N-H), 3295 (N-H), 3067 (C-H, alkyl), 2867 (C-H, alkyl), 1686 (C=O, amide), 1627 

(N-H, bending, amine), 1539 (C=C, Ar), 1454 (C-H, alkyl), 1343 (C-N, amide), 1252 (C-N, amide), 

1103 (C-O, aliphatic ether), 946 (C=C, Ar), 842 (C-H, Ar), 695 (C-H, Ar). 

7.3 Results and Discussion 

A variety of diblock copolymers were synthesised via NCA ROP, using methoxy-PEG-amine 

(mPEG-NH2) as the macroinitiator. To do this, three amino acids were converted into NCAs in 

order to create the poly(amino acid) block. The three amino acids selected were γ-benzyl-L-

glutamate, N-ε-carboxybenzyl-L-lysine and L-phenylalanine. These were chosen owing to their 

differing functionality of acid, amine and aromatic groups, in order to assess the key interactions 

required to improve dye transfer inhibition (DTI). 

The poly(amino acid) block was expected to interact with the fibres by intermolecular forces 

such as hydrogen bonds, while the PEG block creates an hydration layer between the fabric and 

the aqueous wash solution to prevent dye deposition via a blocking mechanism, analogous to 

PEG-based anti-fouling surface coatings.33,34 The amide groups in the poly(amino acid) chain 

were expected to hydrogen bond with the fibres. It was also expected that the aromatic groups 

of the phenylalanine would provide additional intermolecular interactions through hydrophobic 

interactions and π-π stacking to the fibres containing aromatic groups, such as polyester and 

wool. Whereas the acid groups in glutamate and the amine groups in lysine would provide 

additional hydrogen bonding capability, beyond the peptide bonds already present in the 

poly(amino acid) backbone. 
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7.3.1 mPEG22-b-poly(L-phenylalanine)n Polymers 

Firstly, the phenylalanine NCA monomer was successfully synthesised, as confirmed by 1H NMR 

and FTIR analysis (Appendix 17 and Appendix 18). Then three mPEG22-b-poly(L-phenylalanine)n 

polymers were synthesised, in order to observe the effect of the inclusion of aromatic groups 

on DTI efficacy, as well as the amphiphilic nature of the polymers. Phenylalanine (Phe) NCA was 

reacted with mPEG22-NH2 to produce three polymers with differing lengths of the poly(Phe) 

chain, creating an amphiphilic diblock copolymer. The successful synthesis was confirmed by 1H 

NMR and FTIR shown in Figure 7-3 and Figure 7-4 respectively. 

Figure 7-3 1H NMR spectra of three mPEG22-b-poly(L-phenylalanine)n polymers in DMSO-d6. 
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The 1H NMR spectra in Figure 7-3 show the PEG block and the aromatic groups of the Phe block, 

confirming the successful synthesis of the polymers. 

Figure 7-4 FTIR spectra of three mPEG22-b-poly(L-phenylalanine)n polymers. 

The FTIR spectrum shows the presence of the amide alongside the ether group of PEG, further 

confirming the grafting of the poly(Phe) block to the PEG. The number of Phe repeat units was 

determined by comparing the 1H NMR integration value of the aromatic peak of the 

phenylalanine unit, representing five protons, to the peak for the PEG protons at 3.5 ppm, 

representing 88 protons. The calculated poly(Phe) block lengths of the three polymers are 

outlined in Table 7-1 alongside the zeta potential values of the polymers in water. 

Table 7-1 The calculated Phe chain lengths of three mPEG22-b-poly(Phe) polymers synthesised. 

Polymer 
PEG peak 

Integration 

Phe peak 

Integration 

Number of 

Phe Units 

PEG:Phe 

Ratio 

SJB105 88 15.17 3 7.3:1 

SJB104 88 20.34 4 5.5:1 

SJB95 88 24.52 5 4.4:1 

As the polymerisation reaction proceeds, the polymer is precipitated from solution due to its 

increasing insolubility, and therefore the length of the Phe chain becomes limited. 

N-H 
C-H 

C=O 

C-N 

C-O C=C 

SJB105 

SJB104 

SJB95 
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These polymers were then tested for their DTI efficacy against indigo, by washing with an indigo 

dye bleeding fabric swatch, a multifibre strip (which is the receiving fabric for dye deposition), 

and a polymer aqueous solution (50 mL, 0.1 mg mL-1), along with 25 ball bearings, at 40 °C for 

30 minutes at 40 rpm. The colour change (ΔE) caused by indigo on the variety of fabrics on the 

multifibre swatch was measured and compared for each polymer DTI solution (Figure 7-5). 

Figure 7-5 A comparison of the colour change caused by indigo in the presence of three mPEG22-

b-poly(Phe)n polymers. 

Figure 7-5 shows the mPEG22-b-poly(L-phenylalanine)n polymers possess some DTI efficacy, 

particularly for nylon and polyester fibre types. This is shown by a 39.5% reduction in ΔE for 

nylon, from 13.89 without a DTI polymer, to a mean value of 8.41 with mPEG22-b-poly(Phe)4. 

This efficacy is also evident for polyester for mPEG22-b-poly(Phe)3 and mPEG22-b-poly(Phe)4, 

showing a reduction in ΔE from 13.98 to 10.92 and 9.59 respectively (21.9% and 31.4% 

reduction). The reduced efficacy for the hydrophilic fibres shows that the polymer may interact 

with the fibre by hydrophobic interactions, or π-π stacking with the polyester fibres, in order to 

block dye deposition and prevent colour change. 
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7.3.2 mPEG22-b-poly(γ-benzyl-L-glutamate)n Polymers 

Due to the reduced solubility of poly(Phe) in various polymerisation solvents such as DMF and 

chloroform as the reaction proceeds, and due to the limited DTI efficacy of the mPEG-b-

poly(Phe) polymers, poly(amino acid)s with greater solubility in polar solvents were created. This 

allows for the synthesis of longer poly(amino acid) chains, as well as the introduction of various 

R groups on the amino acid. Therefore, γ-benzyl-L-glutamate was converted into an NCA 

monomer, rather than the unprotected L-glutamic acid (Glu). The successful synthesis of the BLG 

NCA was confirmed by 1H NMR and FTIR (Appendix 19 and Appendix 20). This was then 

polymerised via NCA ROP using mPEG22-NH2 as a macroinitiator, yielding three polymers with 

blocks of poly(γ-benzyl-L-glutamate) (PBLG) of varying chain lengths. The successful synthesis of 

the polymers was confirmed by 1H NMR ( 

Figure 7-6) and FTIR (Figure 7-7). 

Figure 7-6 1H NMR spectra of three mPEG22-b-poly(γ-benzyl-L-glutamate)n polymers in DMSO-d6. 

The 1H NMR spectra show the PEG block, alongside the aromatic groups and methyl groups 

associated with the BLG block. 
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Figure 7-7 FTIR spectra of three mPEG22-b-poly(γ-benzyl-L-glutamate)n polymers. 

The FTIR spectrum shows the presence of the amide alongside the ether group of PEG, further 

confirming the grafting of the poly(BLG) block to the PEG. The number of PBLG repeat units was 

determined by comparing the 1H NMR integration value of the aromatic peak of the benzyl group 

representing five protons, to the PEG peak at 3.5 ppm representing 88 protons. The block length 

of the PBLG chains of the three mPEG22-b-PBLGn polymers are outlined in  

Table 7-2. 

Table 7-2 The calculated PBLG chain lengths of three mPEG22-b-PBLGn polymers synthesised. 

Polymer 
PEG peak 

Integration 

PBLG peak 

Integration 

Number of 

PBLG Units 

PEG:PBLG 

Ratio 

SJB101p 88 15.68 3 7.3:1 

SJB100p 88 34.09 7 3.1:1 

SJB102p 88 114.88 23 1:1 

Polymer 
PEG peak 

Integration 

PBLG peak 

Integration 

Number of 

PBLG Units 

PEG:PBLG 

Ratio 

SJB101p 88 15.68 3 7.3:1 

SJB100p 88 34.09 7 3.1:1 

SJB102p 88 114.88 23 1:1 

N-H 
C-H 

C=O 

C-N 

C-O C=C 

SJB101p 

SJB100p 

SJB102p 
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The three polymers were washed with an indigo dye bleeding swatch in order to assess their DTI 

efficacy (Figure 7-8). The polymers were not deprotected before the washes and as such were 

amphiphilic, due to the hydrophobic nature of the PBLG block. 

Figure 7-8 A comparison of the colour change caused by indigo in the presence of three mPEG22-

b-PBLGn polymers. 

From Figure 7-8 it can be observed that the mPEG22-b-PBLGn polymers provide a significant DTI 

effect against indigo, in particular for the nylon and polyester fabric types. mPEG22-b-PBLG23 

shows a reduction in colour change for nylon from 13.89 to 5.54, a 60.1% reduction, while for 

polyester there is a 53.4% reduction. This shows an even greater efficacy than the mPEG22-b-

poly(Phe)n polymers outlined in Section 7.3.1, which indicates the additional capability of the 

PBLG unit to hydrogen bond, as well as π-π stacking provided by the protecting group, offers 

increased opportunity for the polymer to interact with the fabric and thus block dye deposition. 

This again highlights the importance of hydrogen bonding capability in the polymers used for 

DTI agents. 

In order to increase the number of groups available for hydrogen bonding and π-π stacking, a 

further polymer was synthesised further increasing the size of the PBLG block. The resulting 

polymer was characterised using 1H NMR and FTIR (Appendix 21 and Appendix 22). This was 

found to have been successfully synthesised with a chain length of 43 units (Table 7-3). 
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Table 7-3 The calculated PBLG chain length of the mPEG22-b-PBLG polymer synthesised with a 

larger BLG block. 

 

 

This polymer was then tested for its DTI efficacy against indigo and compared to mPEG22-b-

PBLG23 (Figure 7-9). 

Figure 7-9 A plot to show the colour change caused by indigo in the presence of an mPEG22-b-

PBLG polymer with an increased PBLG content. 

It can be observed from Figure 7-9 that increasing the BLG chain length does not further improve 

DTI efficacy from mPEG22-b-PBLG23, however it still offers an effective DTI for nylon and polyester 

fabric types (52.6% and 33.4% reduction respectively). 
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In order to assess the effect of an anionic polymer, with increased water solubility, mPEG22-b-

PBLG23 was deprotected to give mPEG22-b-poly(glutamic acid) (Glu), which was confirmed by 1H 

NMR (Appendix 27). The ability of the polymer to prevent dye transfer of indigo was assessed 

and compared with its protected analogue (Figure 7-10). 

Figure 7-10 A comparison of the colour change caused by indigo in the presence of mPEG22-b-

PBLG23 and mPEG22-b-poly(Glu)23. 

On deprotection of the PBLG block, the DTI efficacy is reduced, shown in Figure 7-10 by the 

increased colour change from the protected polymer. For example, where nylon shows a 60.1% 

reduction in colour change for mPEG22-b-PBLG23, mPEG22-b-poly(Glu)23 only shows a decrease of 

12.9%. On average across the fibre types there is little improvement, or there is a worsening of 

the dye deposition caused in the presence of mPEG22-b-poly(Glu)23 from the absence of polymer. 

This indicates that the free acid groups of the poly(Glu) block does not provide any benefit to 

the DTI effect of the polymer, as well as removing the π-π stacking capability provided by the 

benzyl protecting group. This may also be due to the increased water-solubility of the polymer 

on deprotection, and as such a reduced tendency to interact with the fabric to block dye 

deposition, but rather to remain in the aqueous phase. 
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7.3.3 mPEG-b-poly(γ-benzyl-L-glutamate)n Polymers with Varying mPEG Chain Length 

Due to the success of the mPEG22-b-PBLGn polymers outlined in Section 7.3.2, and their ability 

to prevent indigo dye transfer, two additional polymers were synthesised and characterised with 

1H NMR and FTIR (Appendix 23 to Appendix 26). mPEG113-NH2 and mPEG295-NH2 were used as 

macroinitators for γ-benzyl-L-glutamate NCA, the block lengths of which are calculated in  

Table 7-4. 

Table 7-4 The calculated BLG chain lengths of the mPEG113-b-PBLG and mPEG295-b-PBLG polymers 

synthesised. 

 

 

 

These polymers were then investigated for their ability to prevent dye transfer of indigo (Figure 

7-11). 

Figure 7-11 A comparison of the colour change caused by indigo in the presence of mPEG22-b-

PBLG23, mPEG113-b-PBLG12 and mPEG295-b-PBLG25. 
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SJB118p 440 60.49 12 9.4:1 

SJB117p 1144 123.78 25 11.8:1 
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From Figure 7-11 it can be observed that increasing the polymer molecular weight overall, in 

these cases, does not significantly improve or reduce the DTI efficacy. However, the polymers 

are still effective as DTI agents, particularly for nylon and polyester. For example, mPEG295-b-

PBLG25 exhibits a mean colour change of 5.89 for nylon, which is a reduction of 57.6%, in 

comparison to mPEG22-b-PBLG23 which gave a 60.1% decrease. This shows the polymer still 

interacts with the fabric on increasing PEG content, which increases water-solubility of the 

polymer. A lower molecular weight PEG block is therefore found to be sufficient to prevent dye 

transfer. This result, alongside that of the polymer with an increased PBLG chain length (mPEG22-

b-PBLG43), show that hydrophilicity is a key parameter to consider in the design of DTI polymers. 

7.3.4 mPEG22-b-poly(N-ε-carboxybenzyl-L-lysine)n Polymers 

To investigate the effect of additional amine groups in the poly(amino acid) chain, three mPEG22-

b-poly(N-ε-carboxybenzyl-L-lysine)n polymers were synthesised. The NCA was successfully 

synthesised as confirmed by 1H NMR and FTIR (Appendix 28 and Appendix 29). The pendant 

amine group of the lysine (Lys) was protected with a carboxybenzyl (Z) protecting group in order 

to ensure the Z-Lys NCA monomer only reacted at the amine in the amino acid backbone, and 

not at the pendant amine site. The successful synthesis of the polymers was confirmed by 1H 

NMR (Figure 7-12) and FTIR (Figure 7-13). 
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Figure 7-12 1H NMR spectra of three mPEG22-b-poly(N-ε-carboxybenzyl-L-lysine)n polymers in 

DMSO-d6. 

The 1H NMR spectra show the presence of the PEG group, alongside the aromatic and amide 

groups present in the Z-Lys chain. 

Figure 7-13 FTIR spectra of three mPEG22-b-poly(N-ε-carboxybenzyl-L-lysine)n polymers. 
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The FTIR spectrum shows the presence of the amide alongside the ether group of PEG, further 

confirming the grafting of the poly(Z-Lys) block to the PEG. The number of Z-Lys units was 

determined by comparing the 1H NMR integration of the Z peak representing five protons, to 

the PEG peak representing 88 protons at 3.2 ppm (Table 7-5). 

Table 7-5 The calculated Z-Lys chain lengths of three mPEG-b-poly(Z-Lys)n polymers synthesised. 

Polymer 
PEG peak 

Integration 

Z-Lys peak 

Integration 

Number of 

Z-Lys Units 

PEG:Z-Lys 

Ratio 

SJB122p 88 10.02 2 11:1 

SJB120p 88 13.64 3 7.3:1 

SJB121p 88 29.34 6 3.7:1 

 

The short length of the lysine chains is due to increased steric hindrance of the polymer as the 

polymerisation proceeds, preventing further polymerisation. 

The three polymers were then tested for their DTI efficacy against indigo dye (Figure 7-14). 

Figure 7-14 A comparison of the colour change caused by indigo in the presence of four mPEG22-

b-poly(Z-Lys) polymers. 

From Figure 7-14 it can be seen that the mPEG22-b-poly(Z-Lys) polymers are effective DTI 

polymers against indigo, in particular mPEG22-b-poly(Z-Lys)2, which shows a reduction in colour 
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change from 13.89 to 6.79 for nylon fabric, a reduction of 51.1%, and also shows a 38.7% 

reduction for polyester. This is more effective than the mPEG22-b-poly(Phe)n polymers, but less 

effective than the mPEG22-b-PBLGn polymers. 

This shows that the additional hydrogen bonding capability provided by the PBLG and the Z-Lys 

polymer backbones, in comparison to the Phe containing polymers, is necessary to provide 

significant DTI efficacy. A key difference between the BLG and the Z-Lys polymers is the 

increased molecular weight and steric bulk of the Z-Lys repeat unit. This therefore means in a 

0.1 mg mL-1 solution, there are fewer polymer chains because the effective concentration is 

reduced, and therefore fewer hydrogen bonding groups in the polymer available to bring about 

a DTI effect. 

7.3.5 Further Colour Change Testing of mPEG-b-poly(amino acid)s  

To further examine the efficacy of the mPEG-b-poly(amino acid)s outlined in this chapter, one 

polymer from each class previously outline was investigated for its DTI efficacy against C.I. Direct 

Orange 39 (DO39), C.I. Sulfur Black 1 (SB1) and C.I. Reactive Red 141 (RR141). The polymers were 

then compared against each other for each dye. 

Firstly, SB1 was investigated, for mPEG22-b-poly(Phe)4, mPEG22-b-PBLG23 and mPEG22-b-poly(Z-

Lys)6 (Figure 7-15). 
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Figure 7-15 A comparison of the colour change caused by SB1 in the presence of mPEG22-b-

poly(Phe)4, mPEG22-b-PBLG23 and mPEG22-b-poly(Z-Lys)6 polymers. 

Figure 7-15 shows the mPEG22-b-poly(Phe)4 has an improved DTI efficacy against SB1 for nylon 

fabric, which is particularly discoloured by SB1 in the absence of polymer, reducing from 13.1 to 

11.5, a 12.7% reduction. However, deposition is worsened onto cotton and wool by 41.9% and 

29.7% respectively. The PBLG and Z-Lys based polymers, however, do not show an improvement 

in discolouration caused by SB1. In particular, a worsening effect on colour change is observed 

for the Z-Lys polymer for all the fabric types. The polymer may interact with the fibres in order 

to block indigo dye deposition of indigo, but this interaction may enable the deposition of the 

SB1 dye, through ionic interactions. This may explain the worsening effect observed for SB1, 

where there is an improvement for indigo. 
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The polymers were then tested against DO39 (Figure 7-16). 

Figure 7-16 A comparison of the colour change caused by DO39 in the presence of mPEG22-b-

poly(Phe)5, mPEG22-b-PBLG23 and mPEG22-b-poly(Z-Lys)6 polymers. 

Similarly to SB1, mPEG22-b-poly(Phe)4 shows a reduction in colour change caused by DO39, onto 

nylon in particular. The colour change is reduced from 24.13 to 21.43, an 11.2% reduction This 

is in contrast to the PBLG polymer which shows no improvement, and even worsens the colour 

change onto nylon by 17.5%, and to the Z-Lys polymer which worsens the deposition onto nylon, 

polyester and acrylic. As DO39 is a highly water-soluble dye, this shows that the polymers which 

were effective against indigo, are less effective against a more water-soluble dye. 
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Finally, the polymers were tested for the DTI efficacy against RR141 (Figure 7-17). 

Figure 7-17 A comparison of the colour change caused by RR141 in the presence of mPEG22-b-

poly(Phe)4, mPEG22-b-PBLG23 and mPEG22-b-poly(Z-Lys)6 polymers. 

From Figure 7-17 it can be observed that the presence of all three of the polymers has an overall 

worsening effect on the discolouration caused by RR141. This is particularly evident on nylon 

fibres, for example mPEG22-b-PBLG23 shows a 60.9% increase in colour change. The polymers 

may facilitate the deposition of the highly anionic, water-soluble dye by reducing the charge 

barrier between the anionic fabric and the dye. 

However, RR141 does not show the same degree of discolouration as the previously mentioned 

dyes, and therefore the discolouration caused in the presence of the polymer is only a marginally 

significant colour change to the naked eye, with a ‘just noticeable difference’ being a ΔE of 1. 

7.4 Conclusion 

A variety of block copolymers were synthesised successfully via NCA ROP of three amino acids: 

L-phenylalanine, γ-benzyl-L-glutamate and N-ε-carboxybenzyl-L-lysine. Firstly, the mPEG22-b-

poly(Phe) polymers were investigated for their ability to prevent dye transfer of indigo dye. They 

were found to be moderately effective, particularly for nylon and polyester fabric types, with a 
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reduction in a colour change of 40% and 31% respectively, in the presence of mPEG22-b-

poly(Phe)4. 

Secondly, mPEG22-b-PBLGn polymers were tested for their DTI efficacy against indigo. Overall, 

the PBLG polymers were more effective DTIs against indigo than the Phe polymers, showing a 

60% reduction in colour change for nylon, and 54% reduction for polyester. mPEG22-b-poly(γ-

benzyl-L-glutamate)43 was synthesised, however it was not found to improve on the efficacy of 

the shorter PBLG polymers, this shows that increased molecular weight, and hydrophobicity, 

does not encumber efficacy. A further two polymers were synthesised, from mPEG113-NH2 and 

mPEG295-NH2 macroinitiators, in order to investigate the effects of the PEG to PBLG ratio. These 

polymers were not found to be overall more or less effective than the shorter mPEG chain 

polymers, and therefore shows that while the water-solubility of the polymer is important, the 

molecular weight of the polymer does not have a large impact on the efficacy. mPEG22-b-

poly(Glu)23 gave similar results to tests performed without polymer, revealing that the 

deprotected polymer lacked efficacy. This may be due to the free acid groups of the glutamic 

acid preferring to interact with the aqueous phase of the wash liquor, and therefore meaning it 

does not interact with the fabric to prevent deposition of the dye. This therefore shows that the 

amphiphilic nature of the protected polymer is important. This is also beneficial for the final 

product as a reduced number of synthetic steps, by negating the need for the deprotection step, 

is more cost-effective. 

Three mPEG22-b-poly(Z-Lys) polymers were synthesised and tested against indigo. These were 

found to be more effective than the Phe based polymers, but less effective than the BLG based 

polymers. The most effective Z-Lys polymer (mPEG22-b-poly(Z-Lys)2) showed a reduction in 

colour change onto nylon of 51% and a reduction onto polyester of 39%. This suggests that the 

increased steric bulk and molecular weight of the Z-Lys monomer in comparison to the γ-benzyl-

L-glutamate monomer may cause a moderate hindrance to the DTI efficacy. 
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Finally, one polymer from each class was tested against SB1, DO39 and RR141. For SB1 and 

DO39, the Phe based polymer was found to be most effective, bringing about a reduction in 

colour change onto nylon of 15% and 11% respectively. However, no polymer was found to be 

effective against RR141. This serves to highlight the complexity of the nature of the polymer-

fibre-dye interaction and how best to combat it. 
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Conclusion 

A variety of mechanisms to prevent dye transfer in laundry washes have been explored in this thesis. 

This was in order to produce a polymeric additive which may be included in a detergent formulation 

or otherwise incorporated into a laundry wash load. 

Initially, research focused on adsorbants for dye sequestration in order to remove the dye from the 

laundry liquor. Hydrogels formed from the biopolymers chitosan, cellulose and alginate were 

formed and examined for their ability to adsorb dyes, as determined by UV-Visible spectroscopy. 

Biopolymers were selected for their natural abundance, low cost and renewable origins. Chitosan 

was found to adsorb anionic dye C.I. Reactive Black 5 rapidly, as well as FITC-albumin, indicating the 

wide-ranging applications that the hydrogels may be applied to. The hydrogel was able to release 

the FITC-albumin, but not the dye. Alginate hydrogels were able to adsorb and release the cationic 

dyes methylene blue and crystal violet, two dyes that chitosan hydrogels demonstrated little affinity 

towards. This showed the scope of biopolymers to sequester dyes, and so biopolymeric particles 

were explored for their ability to be added to detergent formulations, for ease of use. Biopolymeric 

particles formed of chitosan and alginate were found to worsen indigo dye deposition where the 

charge of the particles formed was net positive, but reduced dye deposition when net negative. 

Therefore, this result indicated that the particles were not sequestering the dye and maintaining it 

in solution, but rather were depositing onto the fabric surface and attracting or repelling the dye. 

Therefore, polymers that were designed to interact with the fabric and block dye deposition were 

investigated. A series of methoxy-poly(ethylene glycol)-co-polyesters were synthesised and varying 

functional groups incorporated into the polymer backbone, in order to tune the interaction between 

the fabric and the polymer. It was found that the inclusion of amine and hydroxy groups that are 
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capable of potentially hydrogen bonding with the fabric effectively, prevented the dye transfer of 

indigo in particular. Following this work, methoxy-poly(ethylene glycol)-b-poly(amino acid)s were 

synthesised via N-carboxyanhydride ring-opening polymerisation of the amino acids L-

phenylalanine, γ-benzyl-L-glutamate and N-ε-carboxybenzyl-L-lysine. The polymers that contained 

γ-benzyl-L-glutamate blocks were found to be most effective at preventing the dye transfer of 

indigo, but those with phenylalanine chains were found to be the most effective against a range of 

dyes tested. 

This research therefore shows the wide scope of polymeric additives to prevent dye transfer in the 

laundry. Future work may focus further on developing neutrally charged polymers that may interact 

with fabrics but have no net charge and thus prevent interaction with the dyes by either electrostatic 

repulsion or attraction. This is because dyes have a variety of charges and therefore the most 

effective method to reduce colour change across the dye classes may be to prevent interaction 

between the dye and DTI polymer. Such a system may be at the expense of the most effective 

polymer against indigo, the dye which causes the highest level of discolouration, however, to obtain 

a broad span of efficacy, a compromise may be necessary. Many of the polymers developed may be 

included in a specific ‘denim care’ detergent formulation. Alternatively, a detergent may be 

developed which contains two classes of dye transfer inhibitor which act by different mechanism of 

action. This may allow the two to act synergistically to prevent dye deposition by blocking dye 

deposition and by complexation or encapsulation. 
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Appendices 

Appendix 1 Table of DTI polymers and their constituent monomers 

 DTI1 DTI2 DTI3 DTI4 DTI5 DTI6 DTI7 DTI8 DTI9 DTI10 DTI11 DTI12 DTI13 DTI14 DTI15 

Ethylene Glycol        

1,2-Propanediol              

2,2'-Dimethyl-1,3-
propanediol 

      

Glycerol       

Pentaerythritol             

2-Amino-2-methyl-
1,3-propanediol 

           

Diethanolamine            

Pentanediol              

Tris(hydroxymethyl) 
aminomethane 

             

 

Appendix 2. FTIR spectrum of DTI1. 

 

Appendix 3. FTIR spectrum of DTI2. 
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Appendix 4. FTIR spectrum of DTI3. 

 

Appendix 5. FTIR spectrum of DTI4. 

 

Appendix 6. FTIR spectrum of DTI5. 
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Appendix 7. FTIR spectrum of DTI6. 

 

Appendix 8. FTIR spectrum of DTI7. 

 

Appendix 9. FTIR spectrum of DTI8. 
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Appendix 10. FTIR spectrum of DTI9. 

 

Appendix 11. FTIR spectrum of DTI10. 

 

Appendix 12. FTIR spectrum of DTI11. 
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Appendix 13. FTIR spectrum of DTI12. 

 

Appendix 14. FTIR spectrum of DTI13. 

 

Appendix 15. FTIR spectrum of DTI14. 
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Appendix 16. FTIR spectrum of DTI15. 

 

Appendix 17. 1H NMR L-Phenylalanine NCA in DMSO-d6. 
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Appendix 18. FTIR spectrum of L-Phenylalanine NCA. 

Appendix 19. 1H NMR γ-Benzyl-L-Glutamic Acid NCA in DMSO-d6. 

 

Appendix 20. FTIR spectrum of γ-Benzyl-L-Glutamic Acid NCA. 
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Appendix 21. 1H NMR mPEG22-NH-poly(BLGA)43 in DMSO-d6. 

 

Appendix 22. FTIR mPEG22-NH-poly(BLGA)43. 

 

Appendix 23. 1H NMR mPEG113-NH-poly(BLGA)12 in DMSO-d6. 
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Appendix 24. FTIR mPEG113-NH-poly(BLGA)12. 

 

Appendix 25. 1H NMR mPEG295-NH-poly(BLGA)25 in DMSO-d6. 

 

Appendix 26. FTIR mPEG295-NH-poly(BLGA)25. 
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Appendix 27. 1H NMR mPEG22-NH-poly(Glu)23 in DMSO-d6. 

 

Appendix 28. 1H NMR N-ε-carboxybenzyl-L-Lysine NCA in DMSO-d6. 

 

Appendix 29. FTIR spectrum of N-ε-carboxybenzyl-L-Lysine NCA. 
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