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Summary 

 

Research into risk factors for fracture have found that children who have narrower bones 

and lower bone mass are more likely to fracture than those with larger bones. Increased 

bone mass following whole body vibration has been demonstrated in postmenopausal 

women, young women with low bone mass and children with disabling conditions such as 

cerebral palsy. However little is known of the acute bone response to WBV in healthy 

children. 

 

This thesis will determine the range and rate of the acute bone response to WBV in 

apparently healthy boys and in boys with a history of fracture. Boys were randomised to 10 

minutes of WBV on 1, 3, or 5 consecutive days delivered by the Juvent 1000 (low magnitude, 

high frequency), Galileo Med M (high magnitude, high frequency) platforms or control. 

Fasted blood samples were collected pre- and post-vibration, on day 8 (and day 12 in the 

fracture cohort only) for markers of bone turnover, OPG and sclerostin. 

 

P1NP and CTX increased from baseline to day 8 in the boys with no prior fracture by 25.1% 

and 10.9% respectively, but not in those who have a history of fracture. At day 12 the boys 

with a history of fracture demonstrated a non-significant decrease in CTX of 5%. No change 

was observed in either group in sclerostin, with a trend towards an increase in OPG in the 

boys with no prior fracture only at day 8.  

 

This is a novel finding showing that apparently healthy pre-pubertal boys with a history of 

fracture do not respond to loading in the same way as those who have not fractured. If 

reduced responsiveness is present prior to fracture and is related to reduced bone accrual, 

this could to some extent explain increased fracture susceptibility in some children.  
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1. Hypothesis and aims of thesis 
 

Research into risk factors for fracture have found that children who have narrower bones 

and lower bone mass are more likely to fracture than those with larger bones. Increased 

bone mass following whole body vibration has been demonstrated in postmenopausal 

women, young women with low bone mass and children with disabling conditions such as 

cerebral palsy. However skeletal benefits of WBV are not conclusive across all vibration 

studies, either in terms of the size of the effect or in its site specificity, and a number of 

studies have failed to show any skeletal benefits at all. This will be discussed in detail in 

Chapter 3, following an overview of bone in Chapter 2. 

 

In healthy adult populations little or no effect of WBV on bone outcomes has been 

demonstrated, either in the immediate or longer term periods. Exercise studies show that 

the response from loading is greater in children than in adults suggesting that the response 

of bone to WBV may also be greater in the growing skeleton. However there are no 

published data on the acute effect of WBV in apparently healthy paediatric populations. It is 

not known if the bone response to vibration in such children would be similar to that seen in 

children with reduced bone mass.  

 

Whilst the role of WBV as a therapeutic intervention to improve bone health is not clear, an 

alternative use for vibration would be as part of a stimulatory test to assess the skeleton’s   

responsiveness to mechanical loading, similar to cardiac stress training using a treadmill. Use 

of such a form of testing could be advantageous if acute changes in bone formation or 

resorption were predictive of longer term response to pharmacological or other therapeutic 

interventions. The response to a standardised mechanical load could be assessed before, 

during and after an intervention in a variety of disease states both within and between 

groups of individuals. Such a test could also be used during clinical trials as a means to 

ensure that response to mechanical loading has not been abrogated by the new bone 

targeted compounds that are being developed. Knowledge of the acute paediatric bone 

response to WBV could be used to support the development of use of WBV in this manner. 
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Over the course of 2 studies (Chapters 6 and 7) this thesis will explore the acute response of 

bone to WBV to test the hypothesis that short term mechanical stimulation in the form of 

WBV will result in a change in bone turnover markers in an apparently healthy paediatric 

population.   

 

The aims of these studies are to characterise the response of bone to whole body vibration, 

more specifically to identify the rate and range of response in a paediatric population. To 

further understand the acute bone response to WBV, the response of bone turnover 

markers in healthy boys with no prior fracture will be compared to those who have a history 

of having sustained at least one fracture. An exploratory aim is to compare different 

magnitudes of vibration (low magnitude <1g and high magnitude >1g) delivered on 2 

different types of vibrating platforms to identify if any response is dependent on the size and 

method of delivery of the vibration signal. By characterising the acute bone response to 

WBV in a paediatric population, this thesis will generate new knowledge further contributing 

to what is already known about this type of intervention and will provide further scope on 

how it can be most effectively used in a clinical and/or paediatric setting. 
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2. Bone 
 

2.1. Function 
 

Bone has a number of functions. It provides support for soft tissues and point of 

attachments for muscles and tendons to give the body shape and form. When muscles 

contract, bones serve as levers to enable movement of parts of, or of the whole body. The 

rigid structure provides protection of the internal organs, for example the ribs protect the 

heart and lungs and the cranial bones of the brain. Additionally bone provides storage of 

several minerals such as calcium and phosphorus, and houses the marrow that has the 

function of producing cells. To serve these purposes bones vary significantly in shape and 

size, and need to be lightweight yet strong.   

 

Classification of bones is based on shape with the human skeleton having five types; long 

bones which are longer than they are wide and include the femur and smaller bones such as 

the carpals; short bones are more cuboidal in shape such as those in the feet and hands; flat 

bones which are thin and curved such as in the skull; irregular bones are those that do not fit 

other shape categories such as the vertebra; and sesamoid bones which are found in 

tendons. This report will focus on long bones (femur, tibia and radius) and irregular bones 

(vertebrae). 

 

 

2.2. Composition 

 

Bone is a composite material made up mostly of a fibrous protein densely surrounded by 

mineral, along with water, living cells and blood vessels. The mineral, hydroxyapatite, is a 

crystalline form of calcium phosphate and accounts for 50-70% of bone, with the fibrous 

protein collagen (type 1) accounting for 20-40%. Collagen chains are twisted into triple 

helices which are linked together with covalent bonds into fibrils. The fibrils are arranged in 

layers and the mineral is deposited in between the layers (1). The mineral gives bone 
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stiffness, but is very brittle and on its own can be easily crushed. The collagen provides 

strength. 

 

Bone is composed of a hard outer layer of densely packed compact bone, the cortical bone 

and an inner core of spongy trabecular bone. Covering the outside of the cortical bone is a 

membrane called the periosteum, whilst the inside is covered with a lining surface called the 

endosteum. 

 

Cortical bone is organised into cylindrical shapes called osteons. Osteons are made up of 

concentric layers of lamellar bone surrounding a central (Haversian) canal that houses blood 

vessels and nerves. Distributed between the lamellar bone are small spaces (lacunae) 

containing osteocytes (mechanosensing cells). The lacunae are linked to each other by canals 

called canaliculi to provide a network throughout the bone. Processes radiate from the 

osteocyte into the canaliculi which also contain extracellular fluid allowing the osteocytes to 

communicate with other cells within the bone tissues (2).  

 

   

 

 

The inner core is made up of spongy, trabecular bone, which is formed in plate and rod-like 

struts with spaces in between. Like cortical bone the trabecular are also made up of lamellar 

bone containing lacunae and osteocytes. The spaces in between the struts are filled with 

marrow which provides a blood supply and nutrients to the bone. This organisation of 

trabecular bone allows for a material that is both strong and light. 

Figure 1 Cortical and trabecular bone. Image in the Public Domain taken from 
http://en.wikipedia.org/wiki/File:Illu_compact_spongy_bone.jpg 
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Irregular bones are made up mainly of trabecular bone, with a thin cortical layer that 

provides support and protection. In long bones the shaft, diaphysis, is hollow and narrower 

than at the ends. The diaphysis widens out to the metaphysis and above this, separated by 

the growth plate, the epiphysis rounds off the ends of the long bone. This region is filled with 

trabecular bone covered by a thin layer of cortical bone. Along the diaphysis the cortical 

bone is thicker than it is at the ends to help resist the stress of loads placed upon it (3).  

 

Three types of bone cells are contained within or along the bone surfaces and are 

responsible for growth, maintenance, and repair of bone tissue; osteoblasts, osteoclasts, and 

osteocytes. 

 

Osteoblasts are the bone cells involved in bone formation. They originate from 

mesenchymal stem cells, and through a process of proliferation and differentiation, 

precursor cells mature into osteoblasts (4). The mature osteoblasts are responsible for the 

synthesis of the bone matrix and subsequent mineralization. During formation of the matrix 

some of the osteoblasts become trapped and differentiate into osteocytes (see below). 

Others at the end of the formation period will remain on the surface as bone lining cells (5, 

6).  

 

Osteoclasts are large multinucleated cells responsible for bone resorption. They are derived 

from the same haematopoietic lineage as macrophages (5). Osteoblasts have an indirect role 

in bone resorption through their production of receptor activator of nuclear factor-κB ligand 

(RANKL) and osteoprotegerin (OPG). RANKL binds to the RANK receptors on the osteoclast 

precursor cells allowing osteoclast formation and activation. OPG is the decoy receptor for 

RANKL, by blocking the interaction of RANK – RANKL, OPG interferes with the formation and 

survival of osteoclasts (7). Mature osteoclasts settle onto the bone surface and form a 

ruffled border where the cell is in contact with the bone (8). Through this, acid and 

proteolytic enzymes are secreted to mediate bone resorption. At the end of the resorption 

osteoclasts undergo apoptosis (5, 6). 
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The third type of bone cells, osteocytes, are terminally differentiated osteoblasts. They are 

located in the lacunae throughout the bone matrix and are able to communicate with other 

cells within the bone via processes that radiate from the cell body into the canaliculi (as 

stated above). Osteocytes are thought to be important in detecting, and co-ordinating 

responses of the bone to mechanical loading, sending out biochemical signals that influence 

bone formation and resorption (2, 7). Located within fluid filled spaces osteocytes sense the 

fluid flow and sheer stresses that are the result of bone deformation due to mechanical 

loading. Mechanically sensitive ion channels, G protein-coupled-receptors or focal adhesion 

complexes are thought to have a mechanosensing role within the bone cells (9, 10). Tension 

and stretch on the cell membrane instigates calcium signalling and the activation of a 

number of complex pathways that regulate the bone response to loading. Gap junctions and 

hemichannels, specifically connexin 34, enable intercellular communication between the 

bone cells and the passage of small signalling molecules (11, 12). Reported immediate and 

short term signalling responses to loading are an increase in cellular calcium concentrations 

and release of adenosine triphosphate, closely followed by Prostaglandin E2 and nitric oxide 

release, and then activation of extracellular signal-related kinase 1/2 (ERK 1/2). Later, down 

regulation of SOST/DKK1 occurs. Disruption of these events has been shown to inhibit bone 

formation (10, 13, 14). Sclerostin, a protein encoded by the SOST gene and secreted by the 

osteocytes, inhibits bone formation through the Wnt signalling pathway, which plays a key 

role in the regulation of bone formation. Secretion of sclerostin by the osteocytes is 

inhibited by mechanical loading and therefore sclerostin is considered to be a key factor in 

the anabolic response of bone to loading (12, 14, 15). 

 

 

2.3. Bone Modelling and Remodelling 

 

Bone, even after growth is completed is active. As stated above bone cells are constantly 

working to maintain, repair and adapt bone to the loads placed upon it. This is managed 

through processes of modelling and remodelling. 

 

Bone remodelling, briefly, is a process whereby damaged (fatigued) or old bone is replaced 

with new. This occurs in a closely coupled cycle of activation, resorption, reversal, formation 
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and quiescence, see figure 2 (16). During the activation phase recruitment of osteoclast 

precursor cells and infiltration of the bone lining cells occurs. This leads to the attachment of 

the mature osteoclasts to the bone surface and resorption of the bone matrix creating 

resorption pits. The resorption phase is completed with osteoclast apoptosis.  During 

reversal, signals are sent out to recruit osteoblasts to these resorption pits. Recruitment of 

the osteoblasts leads to the formation phase whereby new bone replaces that which has 

been taken away during resorption. On completion of this remodelling cycle the bone 

reverts back to a resting or quiescent phase (16). Resorption takes only a few weeks, 

whereas the formation occurs over several months (6). 

 

 

Figure 2 Bone remodelling cycle 

 

Bone modelling is a process whereby formation and resorption is carried out independently 

to shape or reshape bone as is seen during growth or in response to mechanical loading (16, 

17). Increased bone formation occurs in response to loading at skeletal sites experiencing 

the greatest loads (stresses) (18), and is repeatedly demonstrated by the changes in bone 

geometry and size as seen in the playing and non-playing arms in competitive tennis players 

(10). Expansion of the periosteal circumference occurs to increase bone size and therefore 

strength, whilst endosteal resorption occurs to expand the cavity of the bone ensuring 

 

 

  

 

Quiescence 
 

Activation Formation 

Resorption Reversal 
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structural efficiency (10). Even within the same bone, formation is targeted at regions under 

the greatest load, showing that modelling is targeted to where it is needed the most (18). 

Bone modelling due to growth is stimulated by a number of essential hormones. Growth 

hormone and insulin like growth factor 1 (IGF-1) are required for longitudinal bone growth, 

having crucial functions in the proliferation and stimulation of cartilage cells, growth at the 

epiphyseal plate and formation of collagen (19). Following longitudinal bone growth 

reshaping of the bone occurs to maintain its shape. During puberty, sex steroids influence 

further bone modelling. Periosteal expansion and changes within the trabecular 

microarchitecture are driven by testosterone in boys, with increases in bone size driven by 

IGF-1 in girls. Oestrogen also drives bone length through the accrual of bone mineral (20). 

Exercise itself has an influence directly on bone modelling through the process of increased 

loading, but additionally contributes to increased growth hormone secretion (20). 

 

2.4. Biomechanics of Bone 

 

  Stress, Strain 

It has been suggested that the most important property of bone is stiffness (21). Bone needs 

to be stiff enough so as not to bend too much under the various loads it is subjected to. 

Additionally it needs to be strong, a measure of the load it can bear before breaking. A load 

(stress) placed upon bone will result in a deformation (strain) even if the load is small. The 

stress, which is the force per unit area measured in pascals or megapascals (Pa or MPa), can 

be in compression, tension or shear, depending on how the load is applied. The resultant 

strain is reported as a percentage change in length or relative deformation (µstrain).  A 

deformation of 1% = 0.01 strain = 10,000 µstrain (22, 23). 

 

The relationship between stress and strain is shown in a load-deformation (stress-strain) 

curve. The load-deformation curve is divided at the yield point into an elastic region and 

plastic region. The yield point is the point below which bone can withstand a strain 

(deformation) and return to its normal size once the load has been removed, the elastic 

region. Above this point, the plastic region, bone is unable to recover from the deformation 

and permanent damage to the bone occurs. 
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Figure 3 Stress strain curve 

 

An increased yield load therefore demonstrates that the bone can withstand a greater load 

before damage occurs and thus is an indicator of increased toughness. Young’s modulus of 

elasticity is a measure of the linear part of the stress-strain curve. The steeper this section 

the stiffer the material. Therefore an increase in the Young’s modulus demonstrates an 

increased stiffness, which results in an increased resistance to deformation (23, 24). 

 

 Mechanostat Theory 

Wolffs law first described the strong influence of function on the skeleton, acknowledging 

that bone responds and adapts to the loads placed upon it. Other than trauma and impulsive 

loads such as jumping from a height, the greatest loads on bone usually come from muscle 

contracting (25, 26).  

 

Frost proposed a theory known as the Mechanostat, whereby strain thresholds control 

modelling and remodelling of bone in such a way as to ensure the minimum amount of bone 

tissue provides an optimum level of bone strength (25, 27). More mass than required to 

meet habitual daily loads would incur additional energy expenditure, create unnecessary 

bulk and weight and be inefficient (21, 28).  

 

The Mechanostat theory states that thresholds exist that make the strains on a bone 

determine the bone strength (size, mineralisation and architecture). These strains switch on 
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and off the biological mechanisms that increase or decrease its strength. He referred to 

these thresholds as minimum effective strain for modelling (MESm) and remodelling (MESr). 

This theory proposes that strains experienced above the MESm will switch on modelling to 

strengthen the bone. Strains below the MESr will switch on disuse-mode remodelling 

whereby removal of bone occurs to reduce bone strength. The amount of strain required to 

reach the MESm is greater than for the MESr, where strains fall between these two 

thresholds a conservation mode of remodelling occurs and existing bone mass and strength 

is preserved (25, 27, 29). This is a dynamic process whereby changes in habitual daily loading 

may result in strains that move above or below the MES thresholds. 

 

When strains exceed the MESm and the bone strengthens, under the same load the strain is 

subsequently reduced in the stronger bone. This reduced strain will then fall below the 

MESm threshold and modelling will switch off as further bone accrual is not required to 

meet the loading demand. Bone will revert back to the conservation mode of remodelling to 

maintain the adapted size and mass. 

 

The same is the case when strains fall below the MESr, but in reverse. The disuse-mode of 

remodelling will result in a smaller weaker bone that under the same load will experience 

increased strains. Once these strains exceed the MESr disuse-mode remodelling will switch 

off as the bone will have reached an optimum strength and mass for the load it is placed 

under and further bone loss is not necessary. Therefore keeping habitual daily loads 

constant, that is between these two thresholds, will maintain bone mass and size. 

 

It is thought that the low magnitude high frequency loads caused by muscles contracting 

during activities such as standing are just as important to bone adaptation as the more 

sporadic high magnitude loads caused by for example weight lifting (30).  

 

  Bone Adaptation to Unloading and Loading 

There is much in the literature supporting the theory of bone adaptation to loading and 

unloading. This will not be discussed in detail here as this is not the focus of this report, 

however it is relevant in understanding the importance of loading (and ultimately vibration 

as a means of loading) on bone. 
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Following periods of bed rest in healthy male adults, loss of bone mass (bone mineral 

content – see section 2.5.2) has been observed in the leg (31), more specifically at the tibia, 

with the epiphyseal regions showing the greatest loss (32, 33). This has occurred following as 

little as 35 days of bed rest. Loss in bone density at the trochanter and total hip measured by 

dual-energy x-ray absorptiometry (DXA) has occurred after as little as 21 days of bed rest 

(34, 35). Although a small amount of bone loss in the forearm has been reported in one 

study (33) this has not been shown elsewhere (34-36). Bone loss during space flight in excess 

of that seen due to bed rest, has also been well documented with losses shown to occur at 

the spine, femur, legs and pelvis (36). 

 

The effects of unloading by bed rest and space flight has also been seen in bone formation 

and resorption measured by serum and urinary markers of bone turnover. Formation has 

decreased (37, 38) and resorption increased (38-40) demonstrating the disuse-mode of 

remodelling as suggested by Frost above. This has occurred from as early as two days 

(resorption) from commencing bed rest (40) though the time of change in markers has 

varied according to the markers measured and due to the time points of sample collection. 

In girls with anorexia nervosa bed rest has resulted in a decrease in bone formation as early 

as three days (41). Others have reported no change or only minimal decreases in bone 

formation but acknowledge that there is still an uncoupling of the remodelling cycle and 

bone loss will occur as resorption exceeds formation (36, 40, 42, 43). 

 

On return to weight bearing bone losses and changes in resorption markers are shown to 

return to baseline levels. However the time to recovery of bone loss takes longer than time 

taken for the loss due to disuse to occur, with suggestions of recovery occurring after 90 

days of re-ambulation (31, 44). Resorption markers tend to return to pre bed rest levels by 

about 7 days (31, 38, 44), however there then appears to be a secondary transient increase 

after 2-3 weeks of re-ambulation. The formation markers have been shown to increase after 

return to weight bearing (31, 34, 36, 42) taking as long as 180 days to then return to baseline 

levels (44). 
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However this report is concerned with effects of loading on bone. Whilst the unloading 

literature supports the argument of bone as a dynamic organ that responds to increases and 

decreases in loading, only loading activities will be considered from here on. A number of 

exercise studies have indicated the impact of increased loading on bone and these will be 

discussed in Chapter 4. Chapter 3 will discuss the effects of WBV loading and report 

outcomes measured in bone. 

 

 

2.5. Measuring Bone Properties and Activity 

 

When evaluating the effect of an intervention on bone health a number of factors must be 

considered. The effect on size, shape, architecture, organisation, quality and quantity of 

bone are important features. A variety of methods has been used to investigate bone 

properties and activity, some of these will be outlined below. 

 

 Size  

A simple measure of a whole bone is its size. This can easily be performed using plain x-ray 

to assess the length and width of the bone. Size is an important property as a bigger bone is 

a stronger bone. Doubling the size of the diameter of a bone will increase the (bending) 

strength by approximately eight times (29). Cortical thickness is also important and can be 

measured with more accuracy and detail using computed tomography (CT). This method of 

imaging can clearly differentiate between trabecular and cortical bone and can be used to 

calculate geometrical parameters such as the cross sectional area which is associated with 

bone strength. 

 

 Mass and Density 

The terms bone mass and bone density are often used interchangeably and this can lead to 

confusion when assessing bone. Bone mass, referred to as bone mineral content (BMC) is 

concerned with the amount of bone present. Bone mineral density (BMD), however, is the 

amount of bone in a given area or volume (g/cm2 or g/cm3). Both mass and density can be 

assessed by dual-energy x-ray absorptiometry (DXA) or CT.  
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DXA, the method most used in clinical practice to measure BMD, is a measure of high and 

low energy x-rays transmitted through the body that discriminate between bone and soft 

tissue to calculate an areal bone mineral density (aBMD) and bone area; BMC is calculated 

aBMD x bone area (45). Its advantages include short scan times, low radiation doses, 

precision and wide availability of trained technicians and equipment (46). The World Health 

Organisation (WHO) classification of osteoporosis is based on bone densitometry measured 

using DXA. The level for diagnosis in adults  is a T-score of ≤-2.5 SD below the young adult 

mean at the femoral neck (47), though other sites such as the lumbar spine and total hip can 

be used. In paediatric populations a diagnosis of osteoporosis should only be made when 

low bone mass adjusted for age and body size is present (a Z-score ≤-2.0) and there is a 

clinically significant fracture history (48).  

 

CT can also be used to measure mass and density. Clinically it is used less than DXA due to 

higher radiation exposure and the need for repeated assessment, though is often used in 

research as less examinations are likely to be required. Although the radiation exposure is 

greater, Quantitative CT (QCT) has a number of advantages over DXA. DXA which measures a 

two dimensional areal BMD is affected by bone size, this can be problematic in short 

individuals or growing children. QCT is not size dependent as it measures a volumetric BMD 

(vBMD) (49). Additionally it can provide structural and geometrical parameters of bone, and 

unlike DXA is able to measure BMD at the trabecular and cortical compartment level rather 

than BMD of bone as a single unit. As trabecular bone is more metabolically active than 

cortical bone this enables QCT to be more sensitive to changes than DXA (50). 

 

 Architecture 

Advances in QCT techniques have made it possible for parameters beyond density and 

geometry to be assessed. Detailed quantification of trabecula scale, topology and 

orientation can occur. These include amongst others, parameters such as trabecular number 

(Tb.N), thickness (Tb.Th) and separation (Tb.Sp), shape, connectivity, and orientation. The 

resolution to obtain these images is high, needing to be equal to or finer than the trabecular 

(51). At central skeletal sites the doses of ionising radiation required to obtain these images 

can be high, though similar to other types of x-ray imaging such as spinal radiographs (50). 
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However high-resolution peripheral QCT (HRpQCT) has been developed to measure 

architecture at the distal tibia or radius in vivo. 

 

Historically histomorphometry techniques (microscopic analysis of bone tissue) have been 

used to measure bone architecture. However samples are analysed ex vivo, either biopsy 

samples from humans or whole bone samples from animals. The samples have to be 

processed and prepared, slices cut and placed onto slides. Micro-CT (µCT) which is at the 

highest end of the resolution spectrum of CT imaging can obtain similar static parameters of 

bone architecture to histomorphometry. Samples can be analysed whole so remain intact, 

though these still need to be ex vivo and only biopsy or small whole bone samples can be 

imaged at present. Both histomorphometry techniques and µCT are currently used in 

research. 

 

 Material Properties 

In addition to the size and structure mentioned above, bone material needs to be of 

sufficient quality to serve its purpose. For this reason investigators may look to measure 

biomechanical parameters of bone. 

 

Biomechanical tests such as loading a bone or piece of bone in compression or via three 

point bending are used to measure the strength and stiffness of bone.  These methods 

correspond to the loads that are most likely to be placed on bone in daily activities, such as 

normal weight bearing, movement, falls and trauma. 

 

Finite element modelling, which is analysis of the structural or mechanical performance of 

an object using a computer programme, can be used to simulate loading conditions and 

monitor the response of bone.  

 

Mineral density backscattered electron microscopy and toughness atomic force microscopy 

can also be utilised to assess material properties of bone but will not be discussed further 

here. 
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 Cellular Activity 

Histomorphometry can be used to measure dynamic indices and therefore cellular activity as 

well as structural parameters of bone tissue. The most commonly reported dynamic indices 

in animal vibration studies are mineral apposition rate (MAR), mineralising surface/bone 

surface (MS/BS) and bone formation rate. MAR and MS/BS look at the speed and extent of 

mineralisation activity on the bone surface (52). A labelling agent is ingested or injected at 

two time points to deposit fluorescent labels at sites where bone is actively mineralising 

(53). MS/BS is a percentage of the surface that is labelled, whereas MAR is a measure of the 

distance between the surfaces that are doubly labelled (53). Bone formation rate is a 

measure of the volume or surface of bone formed per unit of time (54), calculated from the 

MS/BS. 

 

Bone turnover markers (BTM) reflect the extent of bone formation and resorption and are 

also used to measure cellular activity. The breakdown products of formation activity can be 

detected in serum and of resorption in serum and urine. The markers that can be measured 

are listed in table 1. Recent research using BTMs as outcome measures have focused 

primarily on pro-collagen type 1 N-terminal propeptide (P1NP), bone specific alkaline 

phosphatase (BSALP),  osteocalcin (OC), the C and N-terminal telopeptides of type 1 collagen 

(CTx, and NTx), and the pyridinolines (PYD and DPD). Analysis or imaging of samples and 

whole bones will give a picture of the skeletal activity at those sites only. BTMs are not site 

specific so give a picture of whole skeletal activity. This may be of relevance in certain 

metabolic bone conditions where treatment and monitoring is required throughout the 

skeleton.  
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Table 1 Bone turnover markers used in research and clinical practice 

Formation Marker Resorption Marker (Serum) Resorption Marker (Urine) 

Pro-collagen type 1 N-terminal 
propeptide (P1NP) 

C-terminal telopeptide of type 1 
collagen (CTX) 

C-terminal telopeptide of type 1 
collagen (CTX) 

Osteocalcin (OC) C-telopeptide-1 (1CTP) N-terminal telopeptide of type 1 
collagen (NTX) 

Bone specific alkaline 
phosphatase (BSALP) 

Pyridinoline (PYD) Pyridinoline (PYD) 

Pro-collagen type 1 C-terminal 
propeptide (P1CP) 

Deoxypyridinoline (DPD) Deoxypyridinoline (DPD) 

  Tartrate-resistant acid 
phosphatase (TRAP) 

Hydroxyproline (Hyp) 

  Receptor activator of nuclear 
factor-κB ligand (RANKL) 

Hydroxylysine (Hyl) 

  Osteoprotegerin (OPG)             
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3. Vibration Therapy 
 

3.1.  Types of Platforms 
 

A variety of platforms to provide WBV therapy are now commercially available (this thesis 

will focus mainly on two). The main difference between these platforms is the method of 

delivery of the vibration stimulation. Vibration can be applied in a synchronous vertical or 

side-alternating direction. The Galileo vibration platforms (Novotec Medical GmbH, 

Pforzheim, Germany) are side alternating, working like a seesaw so that when standing on 

the platform as one end tilts downwards the other end tilts upwards (Figure 4). This motion 

is designed to mimic gait experienced during walking. Synchronous platforms such as the 

Juvent 1000 Dynamic motion therapy platform (Marodyne, Lakeland, Florida, USA) deliver a 

direct synchronous vertical vibration. 

 

 

 

Figure 4 Top panel shows the Galileo platform, images from http://www.galileo-training.com/de-
english/products/galileo-training-devices/vibration-training.html. Bottom panel shows Juvent 1000 
platform 
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Juvent platforms, as stated by the manufacturer, deliver low magnitude high frequency 

(LMHF) WBV at a frequency of 32-37Hz, acceleration of 0.3g (where 1g = earth’s 

gravitational field, or 9.8 m/s2) and a displacement (amplitude) of 0.085mm. The Galileo 

Med M enables the user to set the frequency on the control panel from a range of 12-27Hz 

and the amplitude ranging from 0-4.5mm peak to peak by adjusting foot position on the 

platform to deliver high magnitude high frequency (HMHF) WBV. The acceleration will 

therefore be dependent on these two factors, though it has been reported to be as much as 

15g (55). As the Galileo platform delivers side alternating WBV the amount of force 

transmitted through the body will be dependent on site and posture. Standing in a very 

erect position with legs straight (not recommended by the manufacturer) will mean that 

some  acceleration will be felt in the upper body and head, with the knees bent this is 

diminished.  

 

Strain within the human adult tibia (measured from an implanted strain gauge) following 

WBV delivered by the Juvent platform has been reported as tensile strain of 100 µε to 150µε 

and compressive strain of -70µε, and in the Galileo 900 platform at 15Hz and an amplitude 

of 5mm this has been reported as 300µε to 600µε and -250µε to -400µε (tensile and 

compressive strain respectively). The strains recorded in the Juvent platform are comparable 

to walking, whereas in the Galileo these are comparable to jumping (56). 

 

Listed side effects of the vibration platforms by the manufacturers are; skin lesions/blisters 

on contact parts, itching, nausea and dizziness, quick temporary drop in blood pressure, and 

drop in blood sugar in diabetics for the Galileo with none listed for the Juvent (discussed 

further in section 3.6.2). It is advised that WBV is contraindicated or should be used with 

caution in the following conditions: 

Pregnancy 

Congestive heart failure  

History of deep vein thrombosis and/or pulmonary embolism 

History of thrombophlebitis within 5 years  

Sensitivity to motion sickness 

Known retinal conditions 
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Joint implants 

Pacemakers and implantable cardioverter defibrillators 

Treatment/surgery for spinal conditions 

Acute inflammation in the musculoskeletal system or recent fracture 

Acute migraine 

Directly post-surgery 

Rheumatoid arthritis 

Gall, bladder and kidney stones 

Epilepsy 

 

 

3.2. How the Platforms Work 
 

There are two theories as to how WBV has an anabolic effect on bone. One suggestion is 

that the vibration causes low level strains to occur directly on the bone. Though the bone 

deformation (strain) is small the high frequency magnifies the signal, elevating 

intramedullary pressure and increasing fluid flow out of the bone (57). The shear stresses 

arising from fluid flow through the extracellular spaces in the canaliculi and lacunae (58) are 

thought to be detected by the osteocytes (the mechanosensing cells) which send out signals 

that cause osteoblasts and osteoclasts to be activated (2, 7).  

 

The second school of thought is that WBV is osteogenic through the musculoskeletal forces 

acting on the body (59). As stated previously the greatest loads on bone come from the 

muscles (25). When standing on the platform the vibrations are transmitted into the 

muscles. Muscle spindles are stimulated by this vibration and activate the motoneurons 

which results in involuntary muscular contractions, known as the ‘tonic vibration reflex’. This 

reflex activity (short rapid changes in muscle length) detected as a degree of muscle 

stiffness, is an attempt to dampen the vibration occurring within the tissues (60-63). 
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3.3. Animal Models 
 

Development of WBV interventions has been led by work from animal models, most of 

which have delivered LMHF synchronous WBV vibration. Studies have focused on adult and 

growing animal models and in some cases animals have additionally been exposed to 

ovariectomy or unloading. The reduced oestrogen levels caused by ovariectomy are 

associated with bone loss. As discussed in Chapter 2 disuse, which in the animal studies 

reviewed here is a result of hind-limb unloading, is also associated with bone loss. These 

models therefore consider not only the potential of vibration to increase bone, but also to 

prevent bone loss. Variations in the protocols used makes direct comparison between 

studies complicated, this will be discussed later in section 3.5, and different outcomes have 

been reported as presented below. 

 

 Biomechanics 

In compression testing (Table 2) femoral bone from sheep exposed to LMHF WBV 

demonstrated increases in stiffness and failure strength of 12.1% and 26.7% respectively 

(64). This was confirmed by finite element modelling using the same data, which also 

showed increased stiffness in the anterior-posterior and medio-lateral directions of cubes of 

bone sampled from the femoral condyle (65). Work in rats also showed an increase in 

maximum load before fracture however it was dependent on the frequency of WBV (66) 

with only animals exposed to a higher frequency of 45Hz showing a significant difference. In 

the fourth lumbar vertebra of rats an increased Young’s Modulus (measure of stiffness) and 

increased yield load (measure of toughness) has also been demonstrated (67). 

 

Unlike compression testing, three point bending tests have generated contradictory results 

with a number of studies showing no effects of WBV on strength and stiffness in the tibia 

and femur (Table 2) (68-70). These studies exposed rats to WBV at frequencies of 50-90Hz. 

In other experiments when exposed to lower frequencies at 17Hz and 45Hz bending strength 

was increased by 12% and 8% respectively in the tibia (66), though not at 30Hz, suggesting 

that there may be an optimum frequency to improve bone strength. Young’s modulus was 

shown to be higher in adult rats exposed to WBV compared to those not by as much as 
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Table 2 Biomechanical testing 

 

Author, year Sample studied, 
age  

Groups studied WBV duration WBV 
parameters 

Mechanical 
test 

Change in experimental group Sites 
studied 

Brouwers et 
al 2010 

23 Wistar rats, 
female, 6 
months old 

1. Sham OVX                       
2. OVX                                  
3. OVX+WBV 

20 mins x2, x5 
weekly for 6/52 

0.3g, 90Hz 3 point-
bending 

NS tibia 

de Oliveira et 
al 2010 

30 Wistar rats, 
male, 3 months 
old 

1. Control                             
2. Glucocorticoids 
3.Glucocorticoids+WBV  

30 mins x5 
weekly for 9/52 

1g, 60Hz 3 point-
bending 

NS tibia 

Flieger et al 
1998 

32 Wistar rats, 
female, 12 
weeks old 

1. Sham OVX,                      
2. Sham WBV                      
3. OVX                                  
4. OVX+WBV 

30 mins x5 
weekly for 12/52 

2g, 50Hz 3 point-
bending 

NS tibia, 
femur 

Jing et al 
2016 

24 diabetic 
mice, male, 12 
weeks old 

1. diabetic 
db/dbcontrol                
2. diabetic db/db+WBV         
3. WT control 

60 mins daily for 
12 weeks 

0.5g, 45Hz 3 point-
bending 

+20.5% max load, +24.6% yield 
load, +42.1% stiffness in 
db/db+WBV v db/db 

femur 

Judex et al 
2003 

18 sheep, 
female, 6-8yrs 
old 

1. Control                             
2. WBV 

20 mins x5 
weekly for 12 
months 

0.3g, 30Hz Compression 
testing- 
Finite 
element 
modelling 

+17% Stiffnes in longitudinal 
direction, +29% in anterior-
posterior, +37% in medial-lateral 
direction 

femur 

Oxlund et al 
2003 

81 Wistar rats, 
female, 12 
months old 

1. control,                             
2. sham OVX                       
3. OVX                                 
4-6. OVX+WBV 

30 mins daily for 
90 days 

0.5g 17Hz, 
1.5g 30 Hz, 
or3.0g 
45Hz 

3 point-
bending,    
compression 
testing 

Bending (tibia) @ 17 and 45Hz 
max bending strength +12% and 
+8%,    Compression (femur) 
@45Hz max load +19%, @17, 30, 
45Hz max stress +15%, +17%, 
and +17% 

tibia, 
femur 

Rubin et al 
2002 

18 sheep, 
female, 6-8yrs 
old 

1. Control                              
2. WBV 

20 mins x5 
weekly for 12 
months 

0.3g, 30Hz 
 
 
 
 

Compression 
testing 

+12.1% Stiffness in longitudinal 
direction,  +26.7% failure 
strength in longitudinal direction 

femur 
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Author, year Sample studied, 
age  

Groups studied WBV duration WBV 
parameters 

Mechanical 
test 

Change in experimental group Sites 
studied 

Sehmisch et 
al 2009 

60 Sprague 
Dawley rats, 
female, 6 
months old 

1. Sham OVX,                      
2. Sham WBV,                     
3. OVX,                                 
4. OVX+WBV 

15 mins daily for 
5/52 

0.5g, 90Hz Compression 
testing 

Yield load, Youngs modulus 
increased 

LS 

Vanleene et 
al 2013 

24 B6C3Fe wild 
type, 24 B6C3Fe 
oim mice, 
female, 2 weeks 
old 

1. Wild type WBV              
2. Wild type Sham                        
3. OIM WBV                       
4. OIM Sham 

15mins x5 
weekly for 
5weeks 

0.3g, 45Hz 3 point-
bending 

+11.2% stiffness, +10.8% yield 
load in wild type WBV v wild 
type (did not reach significance 
in oim WBV v oim sham) 

femur 

Yang et al 
2009 

49 Sprague 
Dawley rats, 
male, adult 

1. Control for 28 days,                    
2. HLU for 28 days,             
3. WBV 28days,                  
4. HLU+WBV for 
28days,                          
5. Control 49days,               
6. HLU 28days then 
load bearing 21days,                  
7. HLU 28days then 
wbv 21days 

15 mins daily for 
28 days or 21 
days post HLU 

0.1-1.0g, 
10-60Hz 

3 point-
bending 

After 28 days +27.7%  elastic 
modulus, (+43.3% HLU+WBV v 
HLU),   HLU inhibited stiffness 
and ultimate force 35.3% and 
19.6%,          Days 29-49 
(recovery) stiffness and ultimate 
stress +19.9% and +9.8% in HLU 
then WBV v HLU then load 
bearing 

femur 

Brouwers WBV commenced 8 weeks post OVX, Sehmisch WBV commenced 3 months post OVX, Rubin 1cm cubes harvested from medial condyle of left 
femur 

HLU – hindlimb unloading, NS – not significant, OVX – ovariectomy, oim - osteogenesis imperfecta WBV – whole body vibration 
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27.7% (71). In leptin receptor deficient (db/db) mice and skeletally immature mice stiffness 

has been increased by 42.1% and 11.2% following 12 and 5 weeks of WBV respectively at 

45Hz (72, 73), increases in yield loads of 24.6% and 10.8% were also observed in these 

models. When comparing two groups that had undergone hind limb unloading the group 

exposed to 15 minutes of WBV in addition to unloading had a 43.3% higher Young’s 

modulus. Rats returned to weight bearing after 28 days of hind limb unloading had greater 

stiffness and strength when exposed to WBV also, though this did not reach control levels 

(71). 

 

The lack of accord in the results from the biomechanical tests may be reflective of the type 

of bone being studied; trabecular bone is assessed by compression testing and cortical bone 

by three point bending. Therefore the consensus of results in compression testing 

illustrates that trabecular bone may be more responsive to vibration than cortical bone. 

 

 Bone Mineral Density 

Most often interventions concerned with bone health report changes in BMD, the animal 

studies reflect this. A significant mean increase of 0.017g/cm2 in tibial aBMD has been 

demonstrated in adult sheep exposed to 29 weeks of WBV compared to a decrease of 

0.030g/cm2 in controls (Table 3). A trend that was apparent though not significant after 54 

weeks (57). Positive effects of WBV on aBMD have also been observed in bone loss models.  

In the early post-ovariectomy period (five weeks) WBV has been shown to diminish bone 

loss in the femur and tibia in rats by as much as 17% (69). Likewise the effect of unloading 

on aBMD has been suppressed in rats concurrently exposed to WBV by 10.1% and 7.1% in 

the femur and tibia respectively compared to rats exposed to unloading only (71). 

 

However these findings are not conclusive, other studies have shown no change in aBMD as 

a result of WBV in the whole body or tibia of young adult and aged mice (74). Comparison 

of rats exposed to WBV with and without glucocorticoid steroids and controls also showed 

no difference in aBMD in the tibia (70). Although it has been demonstrated that WBV is able 

to suppress the effects of unloading, this intervention has been unable to restore aBMD to 

control levels following a period of unloading (71). 
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Table 3 Characteristics of animal studies measuring DXA 

 

Author, 
year 

Sample 
studied, age  

Groups studied WBV 
duration 

WBV 
parameters 

Change in aBMD Sites studied 

de Oliveira 
et al 10 

30 Wistar 
rats, male, 3 
months old 

1. Control                        
2. Glucocorticoid           
3. Glucocorticoid+WBV 

30 mins x5 
weekly for 
9/52 

1g, 60Hz NS Tibia 

Flieger et al 
1998 

32 Wistar 
rats, female, 
12 weeks old 

1. Sham OVX,                    
2. Sham WBV,                
3. OVX,                           
4. OVX+WBV 

30 mins x5 
weekly for 
12/52 

2g, 50Hz NS Sham-V v Sham-C                           
Loss of BMD in OVX v sham                
At 5/52 OVX 13.8-17% < OVX+WBV 
@ femur and tibial metaphysis 

femur, tibia 

Lynch et al 
2009 

82 BALB/c 
mice, male, 
7/12 or 22/12 

1. 7/12 sham,                  
2. 7/12 0.3g,                    
3. 7/12 1.0g,                    
4. 22/12 sham,                
5. 22/12 0.3g,                  
6. 22/12 1.0g 

15 mins x5 
weekly for 
5/52 

0.3 or 1.0g, 
90Hz 

NSa  tibia, whole 
body 

Rubin et al 
2002 

18 sheep, 
female, 6-8yrs 
old 

1. Control                        
2. WBV 

20 mins x5 
weekly for 12 
months 

0.3g, 30Hz At 29/52 WBV 0.044% > control @ 
tibia 

Femur (ex vivo), 
tibia 

Yang et al 
2009 

49 Sprague 
Dawley rats, 
male, adult 

1. Control for 28 days,                    
2. HLU for 28 days,       
3. WBV 28days,             
4. HLU+WBV for 
28days,                           
5. Control 49days,         
6. HLU 28days then 
load bearing 21days,                
7. HLU 28days then 
WBV 21days 

15 mins daily 
for 28 days 
or 21 days 
post HLU 

0.1-1.0g, 10-
60Hz 

NS - control v WBV                             
HLU @ femur -18.8%, tibia -16.7%, LS 
-29.1% v control                         
HLU+WBV @ femur +10.1% and tibia 
+7.1% v HLU                             
HLU+WBV < control                               
28 days HLU then WBV or load 
bearing 21 days < control 

femur, tibia, LS 

aSignificant 5% increase in BMC of tibia of 7 month old mice exposed to WBV
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Total volumetric bone mineral density (vBMD) measured by pQCT, of the proximal femur of 

sheep was not improved by WBV (57). However, when this was separated into cortical and 

trabecular compartments, trabecular density was 34.2% greater in the experimental 

animals. Volumetric bone density loss in rat tibial trabecular and cortical bone caused by 

ovariectomy was not prevented by WBV (75). This model did though show a greater cortical 

area in the ovariectomised rats exposed to WBV at 30Hz, 0.3g compared to those not, 

indicative of an attempt to strengthen bone by size if not by density. 

 

The findings from these studies are mixed. Of the five studies reported above only one (57) 

demonstrated a change in aBMD or vBMD in healthy animals. It could be suggested that 

WBV in animal models may be most beneficial in preventing bone loss as opposed to 

increasing bone density, as measured by DXA or QCT. 

 

 Bone Morphology 

Areal and volumetric BMD does not give a complete picture of the response of bone tissue 

to WBV. pQCT offers more detail than DXA by differentiating between trabecular and 

cortical bone, though µCT as stated before can provide even further detail of the structure 

and configuration of bone tissue. Evidence of improvements in the amount of trabecular 

bone following WBV has been shown measured by µCT . Sheep exposed to one year of WBV 

have shown an increase in trabecular bone volume/tissue volume (BV/TV) of 10.2% at the 

femoral condyles (64). A similar though not significant trend was shown in the distal femora 

in mice, with a significant increase of 43% BV/TV in the proximal tibia of the same animals 

(76). In disease models, diabetes and osteogenesis imperfecta, increases of BV/TV of up to 

72.3% in the femur and tibia have been shown (72, 73). Other papers have failed to confirm 

these findings (Table 4).  

 

However bone strength is not only concerned with the amount of bone present. Bone 

distribution, orientation, and shape may be important in terms of strength and stiffness. 

Alterations in trabecular number (Tb.N), trabecular thickness (Tb.Th), trabecular separation 

(Tb.Sp), connectivity and trabecular shape have been demonstrated. In the femur increases 

in Tb.N of 8.3-54.4% (64, 72) and of Tb.Th by +11% (77) have been shown. At the tibia a  
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Table 4 Characteristics of animal studies using µCT 

 

   
Trabecular Cortical 

Author Site Model BV/TV Tb.Th Tb.N Tb.Sp Conn.D SMI (TBPf) Ct.Ar Ec.Ar Ps.Ar Ct.Th 

Brouwers et al 
2009  

Tibia 
OVX 

NS NS NS NS NS NS na na na NS 

Femur NS 4% NS NS NS -43% na na na na 
Chritiansen et al 
2006a 

Tibia adult +43% +12.1% -11.1% +5.9% na 
 

na na na na 

Femoral Condoyle NS -8.4% -4.6% NS na 
 

na na na na 

Distal femur NS NS -9.3% +9.7% na 
 

na na na na 

Proximal femur NS NS NS NS na NS na na na na 

Vertebra - L5 NS NS NS NS na NS na na na na 
de Oliveira et al 
2010 

Tibia Glucocorticoid 
steroids 

NS NS +29.8% -26.5% na na na na na na 

Garman et al 
2006b 

Tibia local vibration NS NS NS NS NS NS +8.4% NS NS +8.2% 

Gnyubkin et al 
2016 

Femur adolescent NS NS NS NS NS NS +6% na na +5% 

Vertebra - L2 NS NS NS NS NS NS na na na na 
Jing et al 2016 Femur diabetic mice +72.3% NS +54.4% -37.3% na na +28.7% na na +26.6% 

Judex et al 2007 Femur (epiphysis) OVX NS +11% NS na -35% na na na na na 

Lynch et al 2010 Tibia adult v aged NS NS NS NS NS NS NS NS na NS 

Rubin et al 02 Femoral condyle adult +10.2% NS +8.3% -11.3% na -24.2% na na na na 
Vanleene et al 
2013 

Femur Osteogenesis 
imperfecta mice 

NS NS na NS na na Inc na na Inc 

Tibia Inc NS na NS na na Inc na na Inc 

Xie et al 2006 Tibia adolescent NS NS NS NS NS NS NS NS NS na 

Xie et al 2008 Tibia adolescent NS NS NS NS NS NS +11% +12% +12% NS 
aControl versus 0.1g WBV group only, bVibration applied to tibia only - not WBV 

       Inc - increased (values not reported), na - not applicable/data not reported, NS - not significant 
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similar increase in Tb.Th was found although a decrease in Tb.N was shown (76). When 

comparing rats treated with glucocorticoid steroids those exposed to WBV did demonstrate 

greater tibial Tb.N of +30%, though this was still 24% less than for the rats in the control 

group (70). There is some contradiction in the findings presented here and also from other 

studies (see Table 4), with different methodologies being used. Though these findings 

suggest that WBV has an effect on bone, it is not clear whether more, thinner trabecular is 

more important than less, thicker structures (21).  

 

Indices of connectivity (connectivity density and trabecular pattern bone factor), which is 

seen as important in bone strength (78), have shown contradictory results. Structure model 

index (SMI) is a measure of the shape of the trabecular struts. This increased in rats 

following ovariectomy (68) indicative of the more rod-like trabecular that is associated with 

osteopenia. In this study the rats exposed to WBV had a significantly lower SMI than those 

not suggesting the prevention of deterioration in bone trabecular structure. 

 

Less data is available on cortical bone changes due to WBV, although significant increases in 

cortical area of up to 11% have been demonstrated in mice tibiae and 28.7% in femora (72, 

79, 80), similar to findings from pQCT assessment (75), and cortical thickness (72, 80) which 

will enhance the strength of the bone. In these instances the mice were adolescent 

(including adolescent diabetic) or the vibration stimulus was applied directly to the limb and 

therefore may have been more receptive to the vibration signal.  

 

The µCT findings are however potentially indicative of modelling of bone tissue into a 

structurally stronger organ in response to WBV. 

 

 Histomorphometry 

Further, microscopic analysis of slices of bone tissue to assess for dynamic changes in bone 

tissue has also been reported, with the main focus on MAR, MS/BS, and bone formation 

rate (Table 5). 

 

 



 

39 
 
 

 

MAR & MS/BS 

In the papers reviewed here two demonstrated a significant effect on MAR at the femur 

versus controls; an increase of 60% in cortical endosteum in growing mice following 3 

weeks of WBV (81) and of 171.6%  in trabecular at the epiphysis in adolescent diabetic mice 

(72). Both groups represent a time of rapid bone turnover due to longitudinal growth and 

therefore may have been more receptive to the vibration signal. 

 

MS/BS in trabecular bone of the tibia and femur was as much as 2.4 fold greater as a result 

of a vibration intervention (30, 57, 72, 79-81). In cortical tibial bone an increase of 20% was 

seen as a result of vibration applied directly to the leg in mice (80) with a similar increase in 

an osteogenesis imperfecta mouse model (73). This is in contrast to the lack of a vibration 

effect seen in ovariectomy models. 

 

Disuse suppressed MAR and MS/BS. These values were however normalised to that of 

weight bearing controls in the group of rats exposed to disuse with ten minutes a day of 

WBV (30). 

 

BFR 

Animal models (adolescent, adult and ovariectomy) have demonstrated an increase in the 

bone formation rate with bone surface as referent (BFR/BS) at the tibial metaphysis (77, 

82), tibial mid diaphysis (66), femur (though referent not consistently stated) (57, 72, 81) 

and vertebra (81) as a result of WBV. An increase in BFR/BS of 88% has also been shown in 

the tibia when non-weight bearing vibration was applied directly to the legs of mice (80), 

suggesting that the increase is not reliant on body weight to enhance the vibratory signal.  

 

Rats exposed to ten minutes a day of WBV showed an increase in tibial BFR/BV of 97% over 

controls (30). This study also looked at unloading; all groups exposed to disuse had 

suppressed BFR/BV compared to normal weight bearing. However for the disuse and ten 

minutes a day WBV group BFR/BV was only 7% below the normal weight bearing (control)
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Table 5 Histomorphometry analysis of animal studies 

 
        Trabecular Cortical 

  Animal Model Site BFR/BS MS/BS MAR BFR/BS MS/BS MAR 

Garman et al 06 C57BL/6J mice Adult- local 
vibration 

Tibia metaphysis for 
Tb. diaphysis for Ct. 

+88% +64% NS NS +20% NS 

Gnyubkin et al 
2016 

C57BL/6J mice 7 weeks old Femur Inc Inc Inc na na +60% 

Vertebra L2 Inc na Inc na na na 

Judex et al 02 BALB/cByJ mice Adult Tibia metaphysis +32.1% na NS na na na 

Judex et al 07 Sprague-Dawley rats OVX Tibia metaphysis +159% NS NS +31% NS NS 

Jing et al 2016 Diabetic db/dbmice 12 weeks old Femur +238.6% +171.6% +21.7% na na na 

Lynch et al 10 BALB/c mice Adult, Aged Tibia metaphysis for 
Tb. diaphysis for Ct. 

NS NS NS na NS na 

Oxlund et al 03 Wistar rats OVX Tibia diaphysis na na na +84% NS NS 

Rubin et al 02 Warhill Sheep Adult Femur (proximal) +2.1 fold +2.4 fold na na na na 

Rubin et al 01 Sprague-Dawley rats Disuse Tibia metaphysis +97% +76% NS na na na 

Rubinacci et al 08 Sprague-Dawley rats OVX Tibia diaphysis na na na NS na na 

Vanleene et al 
2013 

Osteogenesis 
imperfecta mice 

3 weeks old Tibia NS NS NS NS +17.2% NS 

Xie et al 06 BALB/cByJ mice Adolescent Tibia metaphysis NS na NS +30% na NS 

Xie et al 08 BALB/cByJ mice Adolescent Tibia metaphysis NS +75% NS na na na 

Inc - increased (values not reported), na - not applicable/data not reported, NS - not significant       

Garman- vibration to tibia only and ?low bone density strain of mice 
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group, demonstrating normalisation of the bone formation rate due to ten minutes a day of 

WBV. 

 

In ovariectomy models increases in BFR/BS of 31% and 84% were detected in tibial cortical 

bone (66, 82). Loss of oestrogen is associated with an increase in cortical width and these 

animals may therefore have been more receptive to the vibration signal. In an adolescent 

mouse model bone formation rate declined over the duration of the study in the age-

matched versus baseline controls by 70% (82). Bone formation measured by bone turnover 

markers decreases in the later stages of puberty (83-85), therefore this was an expected 

finding. However this decline was attenuated by WBV with mice exposed to vibration 

demonstrating a BFR/BS 30% greater than age-matched controls 

 

Increased bone formation due to WBV has not been conclusively proven. A number of 

studies have identified no significant differences between groups. Judex et al showed that 

significant differences in bone formation rates was dependent on the referent used and the 

mouse model investigated, in their study low, mid, or high bone mineral density genotypes. 

Additionally the vibration parameters used may determine significance of the results. Bone 

formation rate was only significantly increased at 90Hz and not 45Hz compared to controls 

(86). 

 

Bone Resorption 

Whilst the effects of WBV on bone resorption have not been extensively considered, when 

investigating effects in adolescent mice, an age related decrease in osteoclastic activity of 

25% in the tibial epiphysis was found, with a further decline of 31% in the mice exposed to 

WBV (82). A decline of 33% was detected in the tibial metaphysis though this region did not 

demonstrate an age related effect. These findings have though been contradicted by a non-

significant effect of WBV on osteoclastic activity in this region (74, 79). 

 

 Biochemistry 

Many of the procedures reported above that investigate bone responses to WBV require 

collection of partial or whole bone samples. They are therefore very invasive and cannot be 
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easily measured in humans. For this reason biochemical markers of bone turnover are used 

extensively for monitoring in clinical practice and to assess bone response to therapy. As 

changes can be observed directly within site specific bone tissue in animal models, less 

attention has been paid to serum biochemical markers. However it useful where they have 

been measured to acknowledge findings as this will help with translation of data from the 

bench to bedside. Also it may help to make sense of the serum changes observed in 

humans which are a measure of global skeletal change rather than site specific change.  

 

No difference between animals exposed to WBV and controls were observed in the bone 

formation marker alkaline phosphatase (ALP) (67, 71, 87). However when comparing rats 

that underwent hind-limb unloading, those exposed to 15 minutes of daily WBV in addition 

to the unloading had a greater ALP than those not (71), suggesting that WBV may have a 

protective effect against bone loss. Changes in osteocalcin (OCN) were mixed with no 

evidence of a response in adult rats exposed to 6 weeks or less WBV (67, 87, 88), but an 

increase in leptin-receptor deficient db/db mice and ovariectomised rats versus controls 

after 8-12 weeks of intervention (72, 89, 90). P1NP was shown to be increased following 7 

days of WBV in rats (91). Additional groups in this study were immobilised for 2 weeks in 

hind-limb pelvipedal casts; no difference was detected in P1NP between the groups 

exposed to WBV or sham WBV following casting, suggesting that a short period of WBV 

does not have a superior remobilisation effect.  

 

Bone resorption measured by serum pyridinoline (PYD) was not different between groups 

exposed to WBV and those not (71). Normal weight bearing compared to WBV following a 

period of hind-limb unloading resulted in a PYD level 48.7% less in the WBV group, 

indicating less bone resorption. This was similar to the group who were normal weight 

bearing throughout the study. TRACP 5b and CTX were reduced in db/db mice and were not 

different to wild type controls, suggesting that 12 weeks of WBV can normalise bone 

resorption in this group (72). Inconclusively CTX has been shown to be increased following 7 

days of WBV (91), decreased (up to 50% lower than controls) following 12 weeks and 6 

months of WBV (72, 88), and not changed following 8 weeks of WBV versus controls (90). 

Potentially indicating a transient increase in bone resorption that tapers out and results in a 
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decrease over longer periods of WBV. No changes were observed in serum sclerostin (81) 

or RANKL (88). 

 

 

3.4.  Human studies 
 

 Bone mineral density 

A number of skeletal sites that reflect those measured in clinical practice have been 

investigated for changes in BMD. Participants exposed to WBV have shown increased aBMD 

measured by DXA in response to WBV at the lumbar spine, femoral neck and total hip 

(Appendix 1). 

 

Changes in spine BMD from baseline in groups exposed to WBV have been reported to be 

as high as +10.2% (92), with a net benefit of up to 3.35% in the treatment groups versus 

control groups (93). However findings have been variable and contradictory between 

studies, also significant differences between intervention and control groups have not 

consistently been shown (92, 94-103). Factors in addition to WBV may have influenced 

outcomes, for example one study using HMHF WBV (92) included concurrent treatment 

with Bisphosphonate therapy which is known to increase spine BMD. Two studies (LMHF 

WBV) recruited adolescents and young women with low bone mass (94, 104); bone mass 

accrual in the spine continues into early adulthood (105-107). A third study demonstrated 

an effect of  HMHF WBV on spine BMD only in the group exposed to both WBV and 

resistance training (97).  Other studies showing increases in BMD have included concurrent 

treatment with calcium and Vitamin D or physiotherapy; all but 1 of these studies were 

unable to demonstrate a difference between the WBV and control groups (94, 100, 102, 

108-111). Compliance to the intervention and weight have also been shown to be 

important factors when evaluating changes in lumbar spine BMD following WBV (93, 110). 

 

When considering other skeletal sites, BMD response at the total hip and femoral neck 

appears to be as variable between studies, though increases at the femoral neck and hip of 

up to 4% have been observed in groups exposed to both HMHF and LMHF WBV (97, 100, 

108, 111-117). However difference in response between intervention and control groups 
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have been demonstrated in only a small number of studies (reported in 3 studies) with no 

difference between groups reported considerably more often (17 studies). At the radius no 

change in BMD (93, 101, 115) or loss of 3.5% compared to controls (108) has been 

reported, supporting the view that WBV has a beneficial effect on bone mass at weight 

bearing skeletal sites rather than a global systemic effect. Whilst there is some evidence to 

support an increase in BMD in response to WBV across weight-bearing skeletal sites this is 

clearly not consistent. A number of studies have failed to demonstrate within or between 

group BMD responses to WBV across varied skeletal sites (96, 101, 118-120). 

 

To date a treatment effect of WBV on aBMD has not been shown in young healthy 

populations. Firstly this population has not been studied in detail despite the importance 

given in the literature to understanding and promoting bone health at an early age to 

protect bone health in old age. Secondly it has been suggested that in populations where 

bone mass is within normal limits an anabolic effect of WBV may not be seen. The lack of 

consistency in the findings of BMD measured by DXA could be due to the use of various 

vibration platforms, differing study protocols and intervention strategies, or the inability of 

DXA to detect small changes in BMD. Where trabecular rather than cortical changes have 

occurred (trabecular bone is more metabolically active) these may not be detected by DXA. 

 

QCT 

Though more sensitive to change a smaller number of studies have measured bone 

outcomes using QCT, most likely due to it being utilized less than DXA in the clinical setting 

for assessment of bone metabolism and monitoring of treatment. In research settings the 

effect of WBV on lumbar spine vBMD has been contradictory (Table 6). An increase of 3.8% 

over controls was detected in young women with low bone mass who complied most with 

the intervention (94), but not in older adults (121) or children with disabling conditions 

including cerebral palsy (122, 123). The lack of effect in the paediatric populations may 

reflect shorter intervention durations and fewer episodes of WBV. Additionally the children 

with disabling conditions, although able to stand independently, had limited mobility. 

Altered standing stance and posture may have limited the transmissibility of the vibration 

signal to the spine. As bone mass accrual in the spine continues into early adulthood, this 
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Table 6 Characteristics of studies measuring QCT 

 

Author, year 
Sample studied, 
age  N= 

Concomitant 
therapy WBV duration WBV parameters 

Control 
group 

Change versus 
controls 

Sites 
studied 

Gilsanz et al 
2006 

Females with low 
bone mass, 15-
20yrs 

48 Calcium 
carbonate 
500mg 

10mins daily for 
12/12 

Vertical, 30Hz, 
0.3g 

Yes +3.9% net benefit LSa         
+2.9% net benefit 
femoral cortical area 

spine, 
femur 

Gomez-Cabello 
et al 2014 

Elderly 49  7.5mins x3 weekly 
for 11 weeks 

Power Plate, 
40Hz, 2mm 

Yes -0.89% net loss vBMD 
tibia 

Tibia, 
radius 

Hogler et al 2017 Osteogenesis 
Imperfecta,       5-
16yrs 

24 Bisphosphonate 
naïve, >2yrs, or 
6/12 post 

3x3mins x2 daily for 
5/12 

Galileo 20-25Hz 
amplitude 1-3 

Age 
matched 
controls 

NS tibia 

Kiel et al 2015 Older adults 174 Calcium 
1000mg,  
Vitamin D 800iu 

10 mins daily for 
24-36/12 

Vertical, 37Hz, 
0.3g 

Yes NS lumbar 
spine, hip 

Lam et al 2012 Females with 
osteopenia and 
idiopathic 
scoliosis, 15-
25yrs 

149  20mins x5weekly 
for 12/12 

Vertical,30Hz, 
0.3g 

Yes 0.084mm greater  
increase in tibial 
cortical perimeter 

Tibia, 
radius 

Liphardt 2015 Postmenopausal, 
osteopenic,     
50-65yrs 

42  10mins x2-3 weekly 
for 12/12 

Galileo, 20Hz, 3-
4mm 

Yes NS Radius, 
tibia 

Pitukcheewanont 
et al 2006 

Girls with low 
bone density, 9.7 
+/-1.5yrs 

8  30mins x3weekly 
for 8/52 

Vertical, 30Hz, 
0.3g 

No +6.2% LS , +2.1% femur 
(not versus controls) 

LS, femur 
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Author, year 
Sample studied, 
age  N= 

Concomitant 
therapy WBV duration WBV parameters 

Control 
group 

Change versus 
controls 

Sites 
studied 

Russo et al 2003  Postmenopausal,  29 Calcium 
carbonate 1g, 
Vitamin D 
0.25µg 

3-6mins x2 weekly 
for 6/12 

Galileo, 12-28Hz, 
0.1-10g 

Yes NS tibia 

Soderpalm et al 
2013 

Duchenes 
Muscular 
dystrophy          
5-12yrs 

6 Not stated 2mins x2-3 weekly 
for 2 weeks, then 
6mins for 12 weeks 

Galileo 16-24 Hz, 
2.1-4.6g, 4mm 

No NS tibia 

Slatkovska et al 
2011 

Postmenopausal, 
44-79yrs 

202 Calcium 
1200mg, 
Vitamin D 100iu 

20mins daily for 
12/12 

30Hz 0.3g, 90Hz 
0.3g or control 

Yes NS, but greater 
decrease in tibial tbth, 
tbsp, and increase in 
tbno in >60yrs or>10 
yrs since menopause 

tibia, 
radius 

Torvinen et al 
2003 

Healthy non-
athletic, 19-38yrs  

56 No 4mins x3-5 weekly 
for 8/12 

Vertical, 25-45Hz, 
2-8g, 2mm 

Yes NS tibia 

Ward et al 2004 Disabling 
conditions,        4-
19yrs 

20 No 10mins x5 weekly 
for 6/12 

Vertical, 90Hz, 
0.3g 

Yes +17.7% net benefit 
tibia 

spine, 
tibia 

Wren et al 2010 Cerebral Palsy, 6-
12 yrs 

31 Not stated 10mins daily for 
6/12 then 6/12 off 
platform 

Juvent, 30Hz, 0.3g Yes - 
crossover 

tibial CtBA increased 
more during WBV 
(8.5%) than standing 
(4.9%) 

spine, 
tibia 

LS - lumbar spine, NS - not significant, tbth - trabecular thickness, tbsp - trabecular separation, tbno - trabecular number 
aPer protocol analysis, lowest compliers pooled with controls 
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may partly explain the discrepancy in the response between the young women and older 

adults. 

 

 A beneficial effect of WBV on tibial volumetric trabecular bone mineral density (vTBMD) 

was found, with a +17.7% greater change in the intervention than control group in the 

children with disabling conditions (122), whereas in the elderly a net loss of 0.9% was 

observed (95). Increases in femoral and tibial cortical area of 2.9% and 3.6% have been 

shown in the young women and children with cerebral palsy respectively (94, 123) and in 

tibial cortical perimeter of 0.14mm in adolescents with osteopenia and idiopathic scoliosis 

(104). However, other studies have failed to detect any differences in change between the 

intervention and control groups at the spine, tibia or hip (96, 99-101, 120, 121, 124). The 4 

studies that measured the radius were unable to detect any change compared to controls 

(95, 99, 100, 104) again supporting the view that non-weight bearing sites may not respond 

to WBV. The difference in findings may reflect the varied populations observed; children 

with disabling conditions, young women with low bone mass, healthy adults, 

postmenopausal women and older adults. Length of duration of WBV either in months, or 

minutes of the intervention, does not seem to effect the significance of the findings. Of 

interest the 3 studies in the younger populations that observed differences in response 

between the intervention groups and controls were conducted on low magnitude platforms, 

no differences were observed in those exposed to high magnitude platforms.  

 

Whilst a significant increase in vBMD was found in the spine of young women with low bone 

mass compared to controls this was not detected when measured by DXA, highlighting the 

increased sensitivity of QCT in detecting change. The lack of consistency in findings from 

both DXA and QCT studies strongly support the need for further investigation of this 

intervention. Other outcomes should be considered to support or refute current findings. 

 

 Bone Turnover Markers 

Clinically biochemical markers of bone turnover are used in addition to DXA to assess bone 

metabolism and patient response to therapy. Bone formation or resorption can be 

measured in serum and urine to provide a picture of remodelling or modelling activity (125) 
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and therefore response of bone to unloading and loading conditions. The rate of bone 

turnover measured using biochemical markers is associated with BMD and fracture risk, 

particularly in postmenopausal women (126-128). As changes in bone turnover markers can 

be detected more rapidly than changes in BMD measured by DXA or QCT, they are ideally 

suited to evaluating short term effects of interventions on bone metabolism. 

 

A number of different bone turnover markers have been measured in response to WBV in 

human studies. Similar to outcomes measured by DXA and QCT findings are diverse. A large 

number of studies have reported no change in bone turnover markers in response to WBV 

and/or no difference in the response between intervention and control groups (101, 108, 

112, 115, 120, 121, 124, 129-131), whereas others have shown evidence of a significant 

response to WBV (92, 93, 97, 117, 132-137). However findings are not consistent between 

these studies with some showing changes in specific markers that others do not. Most 

commonly the bone formation markers measured have included osteocalcin, bone specific 

alkaline phosphatase (BSALP), and P1NP. The variety of markers should capture different 

periods of the bone formation process and therefore should detect both acute and longer 

term formation activity. Five studies that detected changes in bone formation included an 

increase in osteocalcin of approximately 10% following 1 episode of WBV (137) that was not 

detected in other studies at time points ranging from 3-12 months; an increase in P1NP of 

up to 35% at 12 weeks (132) that was not detected following 1 exposure and up to 2 years 

of intervention; an increase in BSALP of 16.6% at 8 weeks (138) and in alkaline phosphatase 

(not bone specific) of 24% at 3 months (117); and a decrease in alkaline phosphatase of 28% 

in postmenopausal women on concomitant bisphosphonate therapy (92). Bisphosphonate 

therapy is associated with a decrease in bone turnover markers (139), and was the most 

likely cause of the decrease in bone formation in this last study as there was no difference in 

response between the WBV and control groups. Evidence of increased bone formation 

following WBV measured by biochemical markers is therefore very limited. The variance in 

sampling time points may partially explain why some studies have been able to observe 

changes whereas others have not. It is likely that any response to WBV in bone turnover 

markers is transient and not sustained over long periods of time. 
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The resorption markers have more consistently but still not conclusively shown a reduction 

in bone resorption following WBV. CTX, NTX and hydroxyproline have decreased by as much 

as 12.6-30.9%, 34.6-56.7% and 3% respectively following a single episode and up to 12 

months of WBV (92, 93, 131, 133, 135, 136). TRAP5b has been shown to increase 

immediately post vibration then decrease by 3.8-9.9% in line with other resorption markers 

(131, 135). Changes that have been detected in bone turnover markers have occurred in 

girls with low bone density, younger healthy adults and postmenopausal women. 

Populations that have not demonstrated a response in bone resorption markers are mixed 

and include healthy younger and older adults, postmenopausal and oestrogen deficient 

women, adults with osteoporosis and chronic stroke, and younger adults with low bone 

mass. Two studies investigating paediatric populations, Duchene’s Muscular Dystrophy and 

severe motor disability, failed to demonstrate a response in either bone formation or 

resorption markers. A third study in overweight pre-pubertal boys observed an increase in 

CTX in the control group with no change in the intervention group, suggesting an abrogation 

of resorption following WBV.  

 

In all cases where change following WBV has been seen it has indicated an uncoupling of 

bone turnover in favour of bone gain either by increased formation or a reduction in bone 

resorption. Beneficial effects on bone turnover markers have generally been observed in 

healthy populations rather than those with conditions known to impact bone metabolism, 

but not to date in a healthy paediatric population. 

 

Other biochemical markers associated with bone remodelling have also been investigated to 

identify the likely pathways involved in response to WBV loading. Osteopontin, which 

initiates the ruffled border in osteoclastic bone resorption and has a role in 

osteoclastogenesis, was shown to be decreased after 16 weeks of twice weekly WBV plus 

resistive exercise in healthy adult females (97), indicating a negative effect on bone 

resorption and possible explanation for decreased CTX observed in other studies. Sclerostin, 

an important inhibitor of bone formation expressed by the mechanosensing osteocytes, has 

also been measured. In healthy younger men and postmenopausal women following 8 

weeks and 1 episode of WBV respectively no change in sclerostin was observed. However in 
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younger healthy women sclerostin was shown to increase by 91% at 10 minutes post 

vibration on day 1 and decrease at the same time point on day 5 by 31% with an increase 

over the 5 days in the pre WBV level (140). Whilst this indicates an immediate response to 

WBV it does not explain the increase in bone formation that has been observed in the 

limited number of studies discussed above.  

 

BTMs in Non WBV exercise 

WBV has been proposed as an alternative method of exercise to load bone. Where the 

effect of WBV on bone turnover markers has been inconclusive, studies investigating 

traditional methods of exercise may offer some clarification as results have been more 

consistent. A transient rise in the formation marker osteocalcin of 11% and in the resorption 

marker CTX of 16% has been demonstrated in male adult cyclists after fifty minutes of using 

a cycle ergometer (141). In this same group BSALP increased by 12% as early as thirty 

minutes after commencing the exercise. All of the bone markers returned to pre exercise 

levels within 15 minutes of recovery. This demonstrates an immediate effect on bone 

formation and resorption that is limited to the period of exercise and immediate recovery 

only. Though not significant a similar trend was detected in P1NP in pre and late pubertal 

boys immediately post cycling and in early to mid-pubertal boys sixty minutes post cycling 

(142). 

 

In contrast another study showed no change or a decrease in osteocalcin and P1NP, and no 

change in CTx and TRAP after 60 minutes of varying intensities on a cycle ergometer in adult 

athletes and controls (143). This contradiction in findings may possibly be due to the fact 

that as demonstrated by Maimoun et al levels could return to baseline within 15 mins of 

recovery; these samples were taken at 3 and 24 hours post exercise and may have missed 

the period during which a change in biomarkers could be demonstrated. In a polymetric 

jumping study boys and young men however did show changes 24 hours post-exercise in 

BSALP of +24.4% and +9.9%, in NTX of +23.5% and -5%, and in OPG of 5.1% and 16.1%. No 

change was detected in RANKL (144). Although the differences between the boys and men 

was not statistically significant the boys do appear to have a more pronounced response. 

The difference in the response at 24 hours between the 2 studies may be due to the 
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different types of exercise being assessed, high impact loading versus non-weight bearing 

activity. Treadmill running for 60 minutes in adult males at varying intensities demonstrated 

increases in P1NP of up to 31% during exercise but not in recovery, decreases in OCN of up 

to 5%, and increases in BSALP of 1-7% 3 and 4 days post exercise (145). OPG increased 

during exercise and recovery and was maintained 3 days post. CTX decreased during 

exercise and up to 3 hours of recovery though this may reflect the circadian rhythm rather 

than an exercise effect.  

 

In assessing ongoing levels of activity on bone turnover markers, boys aged 12-18years old 

who regularly participate in a variety of sports have demonstrated a higher rate of bone 

formation (BSALP) than non-active boys (146). Interestingly boys participating in swimming 

sports had the highest BSALP levels, though it was the boys who played weight bearing 

sports that had a greater aBMD. In adult females both bone formation and aBMD at 

selected sites were greater in those undertaking high and medium impact sports as opposed 

to non-impact sports, as would be expected (147). 

 

In a cross-sectional study of habitual physical activity in preadolescent girls, P1NP and BSALP 

was found to be higher and CTX lower in those who undertook higher levels of physical 

activity compared to lower levels of physical activity (18,695 +/-1244 and 7633 +/-1099 

steps a day respectively measured by a pedometer over 7 days), with no difference in OCN 

(148). A higher level of unstructured physical activity (measured by questionnaire) is also 

positively associated with OCN and BSALP in adolescence (149). 

 

Intense military training has been shown to increase the formation markers BSALP and P1NP 

from baseline at 2 months in both men and women (P1NP by 5.2% in men and 20.6% in 

women, BSALP by approximately 11-16%). The resorption markers CTx and tartrate-resistant 

acid phosphate (TRAP5b) also increased between 0 and 2 months. CTx returned to baseline 

levels at 4 months, whilst the formation markers remained elevated (150).  

 

Increased BSALP, osteocalcin and CTx has been shown elsewhere (151, 152) but these 

programmes included an element of weight loss which is associated with an increase in 
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bone resorption and formation, and may have hidden any true effect of exercise. Though it 

is believed that the degree of resorption seen in one of these studies was less than would 

have been expected through weight loss alone and therefore exercise may have had a 

protective effect on bone by limiting the amount of resorption.  

 

Bone remodelling is conducted in closely controlled bone modelling units, with the degree 

of resorption and formation finely coupled. What is not clear from these WBV and exercise 

studies, though has been suggested (147), is whether there is an uncoupling of this process 

resulting in greater formation than resorption. Changes in formation and resorption markers 

may not be significant per se but when considered alongside each other may have a 

significant effect on bone accrual during remodelling and modelling activity.  

 

 

3.5. Variation in Vibration Regimes 
 

It is clearly evident from all the studies that have been reviewed that there is inconsistency 

in reported outcomes and methodologies. To fully elucidate the impact of WBV loading on 

bone the type of platform used, the parameters (amplitude, frequency, acceleration) 

utilised and magnitude of the signal, the duration of interventions, exposure time to WBV, 

and populations studied should be considered. 

 

  Synchronous or Side-Alternating Parameters 

A variety of platforms have been used in these studies delivering either synchronous, side-

alternating, or combination vibration. The Juvent platform delivers a low magnitude signal 

below 1g. Other synchronous platforms and the Galileo side-alternating platform deliver 

forces that are much greater than this, reported as being up to 15g (55). Four studies have 

directly compared magnitude and method of WBV delivery as a means to assess superiority 

of one device over another or as a means to prove that WBV is anabolic to bone regardless 

of magnitude or method of delivery. In healthy young men a decrease in bone resorption 

(CTX) was observed in the Galileo (at 3.8g) but not Juvent (0.3g) group, however the change 

from baseline was not different between the platform groups (133). Similarly Corrie et al 

were unable in older adults to demonstrate a difference in bone formation response (P1NP) 
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between the Power Plate (synchronous) at 1.5g and Galileo at 3.6g (132). Likewise no 

differences between platform groups in aBMD change were observed in postmenopausal 

women when comparing Vibrafit (vertical) and Qionic (rotational) platforms both at 8g 

(110), and Juvent and Galileo (at ~1g) platforms (116). Only 1 of the studies was powered to 

detect between group differences but due to participant withdrawals did not have sufficient 

numbers in each group to achieve this. The two theories of how the platforms work in terms 

of strain (deformation) directly on bone creating shear stresses arising from fluid flow within 

the bone tissue, or indirectly via musculoskeletal forces attempting to dampen the vibration 

signal have not been clearly addressed. Currently evidence suggests that method of 

vibration delivery or magnitude of the signal in adults does not alter bone response to WBV. 

 

 Platform Parameters 

Between the studies there is also great variability in the platform parameters; frequency, 

amplitude, and acceleration of the WBV (Table 7). Low magnitude platforms have generally 

delivered WBV (as stated) at frequencies of 30Hz but from 12-90Hz, amplitude (where 

reported) <0.1-0.5mm, and acceleration of 0.2-0.9g. High magnitude synchronous platforms 

have delivered WBV at 20-50Hz, 1-6mm, and 1.5-8g, and high magnitude side-alternating 

platforms have used 12.5-30Hz, 0.7-4.2mm, and 1-10g. It is difficult to make a definitive 

conclusion on the effectiveness of WBV when different parameters are used and the 

different studies present conflicting results. Improvements in bone stiffness and strength 

and in aBMD in the animal studies have been seen at frequencies of 50Hz or less only 

suggesting that there is a dose limiting effect. To determine if there is a similar limiting 

effect across all the parameters requires further investigation. 

 

 Duration of Intervention 

The duration of the intervention has also varied between the studies. This is in terms of the 

length of time that the studies have been conducted over and the periods of exposure to 

the intervention. WBV has been applied for as little as two to thirteen weeks in animal 

models with the exception of one study lasting twelve months. In human studies the 

intervention has mostly occurred from three to twelve months, however a small number of 

studies have investigated only a single episode of WBV. The overall shorter duration of 
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animal studies is most likely due to the fact that the use of far more invasive techniques 

than in the human studies means outcomes can be detected earlier. The life span of the 

animals used is shorter than that of humans and any age related changes in bone health will 

be detected over a shorter time period. Human studies of less than 11 weeks duration have 

not assessed bone outcomes using DXA or QCT. To detect significant changes using DXA or 

QCT the measurements need to be taken at separated time points that allow for changes to 

be greater than the least significant change.  

 

Table 7 WBV study parameters 

 

  High magnitude 
synchronous platforms  

High magnitude side-
alternating platforms 

Low magnitude platforms 

Number of studies 
including type of 
platform* 

16 15 14 

Frequency (Hz) 20-50 12.5-30 12, 37, 32-37, 90 

Amplitude (mm) 1-6 0.7-4.2 0.085, 0.5 

Acceleration (g) 1.5-8 1-10 0.2-0.9 

Minutes 1.5-30 3-13.5 10-30 

Episodes of WBV 
(day or week) 

1-5 1-5 twice weekly - twice daily 

Duration 
(weeks/months) 

once only - 12 months once only - 12 months 8 weeks-36 months 

Study populations Overwieght pre-pubertal 
boys 

Children with Duchene's 
Muscular Dystrophy 

Children with disabling 
conditions 

 Postmenopausal 
osteoporosis 

Children with Cerebral 
Palsy 

Children with Cerebral 
Palsy 

 Postmenopausal eostrogen 
deficient 

Children with 
Osteogenesis Imperfecta 

Postmenopausal 

 Postmenopausal Postmenopausal 
osteoporosis 

Older adults 

 Obese postmenopausal Postmenopausal 
osteopenic 

Females with low bone 
mass 

 Chronic stroke Postmenopausal Healthy young men 

 Elderly Elderly  

 Healthy 19-38yrs Healthy young women  

  Healthy young women Healthy young men   

* 4 studies investigated 2 different types of platforms  
 

  

 Frequency of  WBV exposure 

The frequency of exposure to WBV has varied from as little as once only and once a week to 

daily, and the period of exposures from 1.5 to 30 minutes at a time. This makes comparisons 
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of the studies very difficult as the actual total time that the animals or humans have been 

exposed to WBV is vastly different. Additionally reporting and accounting for participant 

compliance to the intervention is variable.  

 

  Cycles/rest periods 

Some loading studies have looked at insertion of rest periods and the most effective 

number of cycles required to elicit bone responses to loading.  Insertion of rest periods 

appears to increase the anabolic response of bone at the periosteal and endocortical 

surfaces (153). Strain magnitudes of 1000-1600 µє delivered as 10-250 loading cycles were 

investigated showing that at the lower end of the ranges a four point bending load in mice 

was barely stimulatory, though resulted in a greater response when 10 second rest intervals 

were inserted. Robling et al (154) also found short rest intervals of 14 seconds to be 

effective when delivering 36 loading cycles, resulting in endocortical MS and BFR/BS that 

were 66-109% higher than in rats exposed to no, 3.5, or 7 second rest periods between each 

load. Insertion of longer rest periods when delivering 360 load cycles divided into four bouts 

of 90 cycles showed an 8 hour rest period to increase BFR/BS by 125% compared to no rest 

and by 102% with 0.5 hour recovery. It has been suggested that the bone response to 

loading saturates quickly and that rest periods allow the cells to recover their sensitivity to 

the mechanical signal (155). Therefore to obtain an osteogenic effect a lower number of 

cycles and lower strain magnitudes can be used when rest periods are inserted (156, 157). 

 

The vibration studies reviewed here used a variety of regimes for time on and off the 

vibration platforms.  Overall the animal models applied vibration over one cycle at each 

time, for example 10 minutes once a day, though two studies did provide WBV twice a day 

(67, 68) and one delivered the vibration over nine cycles (further detail was not given) (71). 

The studies concerning humans varied. Some followed the same pattern as with the animal 

studies, two separated the vibration into two cycles delivered twice a day, one specifying at 

least 10 hours between cycles. A number of protocols inserted short rest periods between 

cycles of 30 seconds to 2 minutes (or length unspecified) that stayed the same or reduced 

over time. It is likely that rest periods have been used in some instances as training to the 

platforms or for comfort. Other protocols either did not include rest periods or did not 
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report them. It is possible that insertion of rest periods may increase bone response to WBV 

to a level of significance that is not detected when rest periods have not been used. 

However, as suggested above this makes evaluation of the outcomes of these studies 

difficult. In addition to frequency, amplitude, acceleration and duration of WBV, cycles and 

rest periods should also be considered when comparing the reported findings. 

 

  Variability in study populations   

The models or populations investigated have ranged in age, health, and physical abilities, 

often with small sample sizes used. In the animal models different species have been 

investigated. Though data collected from animal models can be used to inform human 

research, it may not be appropriate to directly apply findings especially in regard of growth 

and development (158-160).  

 

In regard of the human studies, when evaluating BMD, which is the most used clinical 

assessment of bone health, increases as a result of WBV have been demonstrated in 

postmenopausal women, low bone mass cohorts, children with severe motor and disabling 

conditions, older adults, elderly and in combination with resistance training. Positive effects 

have not been reported in healthy populations, but WBV has not been assessed in healthy 

children. Gains in bone health, mass and strength, due to exercise and mechanical usage are 

greater in childhood than in adulthood (25, 161), suggesting that bone in children is more 

responsive to loading. It is possible therefore that a WBV intervention delivered over a 

period of time prior to the attainment of peak bone mass could be more effective also.  

 

Having considered the variation in the vibration regimens and parameters used it is 

apparent that further work is required to make sense of the data collected to date. There is 

clearly some evidence to support the beneficial effects of WBV on bone, however no strong 

conclusions can be made, a consensus held by a small number of systematic reviews of WBV 

in older adults and children with disabilities (162-166). Further studies are required to clarify 

the optimal therapeutic regimens to ensure the safest and most effective outcomes of WBV 

interventions.   

 



 

57 
 
 

3.6. Safety 

 

  ISO guidelines 

Before any medical equipment can be introduced to the clinical environment its 

effectiveness, appropriateness and safety must be established. Many studies in the realm of 

occupational medicine have looked at the dangerous and undesirable effects of WBV on the 

human body. Negative effects have been reported in a number of physiological systems 

including the spine, peripheral nervous system, digestive system, visual and vestibular 

system, female reproductive system, and also to the foetus in pregnancy (167-170). 

International standards have been devised as to the acceptable levels of vibration that 

people can be exposed to, ISO 2631-1. Investigation into the amount of exposure as 

experienced during typical WBV training regimes has shown that the estimated vibration 

dose value on both side-alternating and synchronous (high magnitude) platforms may 

exceed the recommended daily exposure as per the ISO guidelines (167). This view has been 

supported by others, however they argue that the high transmissibility of the signal can be 

minimised (171). Maintaining a squat or semi-squat posture whilst standing on the platform 

is preferable and sitting or lying on vibrating platforms should be avoided. It should also be 

noted that the ISO guidelines were based on data collected regarding vibration in seated 

occupational environments and is likely that the limits cannot be directly transferred to 

WBV in therapy or rehabilitation (59). WBV should however be used with caution. 

 

  Side effects of WBV therapy 

Minimal side effects have been reported in the use of vibration platforms to deliver WBV. 

Where side effects have occurred they have resolved quickly once exposure to the 

intervention has been removed. Faintness, a seasick like reaction, headache, itchiness of the 

feet, and localised pain at the end of a medullary rod have been reported (93, 167, 169, 

172). 

 

In a cystic fibrosis study evaluating the effects of WBV a number of adverse events were 

reported (173). These included a discomfort in the head during vibration, a manifestation of 

diabetes mellitus, joint effusions of the knee, and in a patient with an intravenous port, a 
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new thrombosis of the superior vena cava. These effects could be explained however as 

resulting from the participants’ underlying diseases and therefore it is unclear if they can be 

attributed to the vibration intervention. This does though make it clear that the health or 

disease state of the persons exposed to WBV must be considered prior to embarking on 

such an intervention. 

 

Generally in all the studies reported the vibration intervention has been well tolerated. At 

the end of one placebo controlled trial, participants were asked to guess whether they had 

been exposed to the intervention (synchronous WBV) or placebo (93). Approximately 30% 

of the control group wrongly thought the intervention, and even 20% of those exposed to 

WBV could not tell. Although WBV regimes have been well tolerated compliance has been 

variable (94, 122, 174) with reports of compliance as low as 1%. 
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4. Relevance in childhood 
 

4.1.  Variation of WBV studies in childhood 
 

The effect of WBV on bone in paediatric populations has only been investigated in a small 

number of studies to date with conflicting results. Only 3 out of 11 were able to detect any 

beneficial effect of WBV measured by DXA or QCT compared to controls (104, 122, 123); 3 

were unable to demonstrate any response to WBV at all (96, 118, 120); the remaining 5 

demonstrated improvements that were not significantly different to controls or studies did 

not include a control group (94, 109, 129, 134, 138). Similarly conflicting results were found 

in bone turnover markers. Therefore understanding of the effects of WBV on the growing 

skeleton is limited. If WBV is considered to be an alternative method of physical activity to 

load bones, then the literature regarding more traditional types of exercise can be used to 

guide understanding of the importance of exercise on bone health in paediatric and 

adolescent populations. For a number of years leaders in the field of bone health have been 

postulating the importance of optimal bone health in childhood as a means to protect bone 

health in later life, especially in regard of the expected bone loss and potential for fractures. 

This is working from the premise that the more bone that is accrued during childhood the 

longer it will take for bone loss to become clinically significant in adulthood.  

 

 

4.2.  Effects of exercise on bone during childhood 
 

Positive effects of exercise on bone have repeatedly been demonstrated in childhood and 

adolescence. Elite pre pubertal gymnasts have demonstrated significantly greater aBMD at 

total body, spine, legs and arms compared to controls and have continued to increase aBMD 

30-85% more rapidly over a twelve month period (except at the arm) (175). Comparison of 

the playing and non-playing arms in forty-seven competitive tennis players showed an 

increase in BMC of 12% at the humerus in pre-pubertal players, with a similar difference 

seen in the peri- and post-pubertal players (176). In the pre-pubertal group cortical area was 

8-11% greater in the playing arm. Similar findings have been demonstrated in male tennis 
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players with increases in BMC at the playing humerus of 17%, 27.5%, and 18.1% in the pre-, 

peri-, and post-pubertal groups (177). Increases in cortical area of 12-32.7% were detected 

across the three groups and as with BMC the greatest difference was seen in the peri-

pubertal players. 

 

Studies looking at less intense exercise regimes (the above athletes participated in tennis for 

6-14 hours a week or up to 36 hours a week of gymnastics), have also demonstrated 

differences in bone parameters as a result of physical activity. Increases in aBMD at the 

femoral neck (178), and in BMC at the proximal femur, femoral neck, lumbar spine, total 

body, legs and distal forearm have been reported (179-184) as a result of interventions such 

as jumping, aerobics, and other weight bearing exercise. Non-interventional studies, 

whereby participants have self-selected and self-reported physical activity levels, have also 

demonstrated positive associations with bone mineral accrual across different skeletal sites 

(TB, LS, femoral neck and hip BMC). In the first of these studies weight bearing physical 

activity levels were greater than the 3 hours a week recommended by the US Health and 

Human Services department (185). The second study demonstrated that the greatest effects 

of physical activity were in those reporting vigorous physical activity compared to those 

reporting low physical activity (finding sports outside of school quite hard to extremely hard 

versus not hard at all to a bit hard) (186); highlighting that although some exercise is good 

more is better. Physical activity in childhood has also been positively associated with indices 

of bone strength (187, 188). 

 

However the findings from these studies have varied by their extent, skeletal sites, and 

gender of participants. Additionally differences between intervention and control groups 

have not been demonstrated across all pubertal stages. Some studies have failed to detect 

an effect of reported physical activity or exercise intervention strategies on bone size, mass 

or biomechanical changes in pre-pubertal girls (189-191) or early pubertal girls (191). In a 

study where peri-pubertal female dancers demonstrated greater BMC versus controls at the 

total body, femoral neck, lumbar spine and lower limbs of 0.6% to 1.3%, the pre-pubertal 

dancers only showed an increase (of 4%) in the femoral neck (192). Moreover pre- but not 

post-menarcheal girls have been found to be responsive to a nine month step aerobic 
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programme (181). Pubertal stage of boys has also been shown to influence bone response 

to activity. A daily jumping intervention was effective at increasing the bone strength index 

in pre- but not early pubertal boys (187). As mentioned before the humerus in peri-pubertal 

boys appeared more responsive to playing tennis than the pre- and post-pubertal boys 

(177). 

 

Additionally outcomes have also differed between boys and girls with some intervention 

strategies resulting in benefits to bone health in girls that were not seen in boys (forearm) 

(179) and vice versa (weight bearing sites) (187, 191). 

 

This inconsistency in detecting a positive association of exercise and bone outcomes in the 

different gender and pubertal groups suggests that there may be a time during growth 

when bone is the most responsive to loading. It has been suggested that the early pubertal 

period rather than pre- or post- results in greater increases in bone parameters (193). This 

view has been supported by others who suggest that physical activity is associated with 

greater bone mineral accrual around the period of peak height velocity and peak BMC 

velocity, which occurs during early to mid-puberty (183, 194). With girls reaching maturity 

before boys it is important to note that the window of opportunity to increase bone mass or 

size beyond that expected by growth alone may be shorter in girls. 

 

 

4.3.  Maintenance of bone into adulthood 
 

Much debate has occurred over the maintenance of the gains seen in bone mass during 

childhood and adolescence into adulthood, and also following the cessation of exercise or 

study interventions. Bass et al (98) in their study of elite gymnasts found that the greater 

aBMD versus controls observed with active gymnasts was maintained 8 years from 

retirement by 6-16% at the total body, spine, legs and arms. Boys who started a sport 

activity at a mean of 8.7 years of age and played for an average of 5.4 years, showed 

improved bone outcomes 3.4 years after ceasing to be active versus boys who were always 

inactive (195). At the tibia and radius periosteal circumference was 3.2% and 2.1% greater, 

and trabecular vBMD 3.5% and 5.3% greater respectively. One year after cessation of a 9 
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month jumping intervention girls had a percentage increase in LS BMC that was 6% greater 

than controls (196). In contrast the 2% gain in LS BMD in male and female children who 

participated in a 7 month jumping intervention disappeared as early as 7 months from 

cessation of jumping (197). This group did maintain an increase in hip BMC 7 years post 

intervention though it had dropped from 3.6% to 1.4% (198). 

 

Other studies have reported a smaller change in LS BMC and aBMD in young females who 

discontinued physical activity for at least a year during the 3 to 7 year period of a 7 year 

follow up (199). More so this group lost BMC and aBMD at the femoral neck supporting 

other evidence that continuing activity is required to maintain the gains in bone mass due to 

exercise. However it is not reported whether this loss resulted in bone mass being the same 

as, less or greater than controls.  

 

 As with the vibration studies comparison of the reported bone outcomes from exercise 

studies is complex. Intervention strategies have varied in duration and intensity, methods of 

assessment and reporting have differed, study populations have differed and study designs 

have not been consistent. However the data presented here suggest that quick, easy and 

cheap physical activity interventions can have a positive effect on bone health in pre- and 

early pubertal children (180). It is still not clear if the beneficial effects of loading exercise on 

bone are maintained into adulthood or indeed what exercise regime is best in terms of 

duration, intensity, and frequency (200). Despite this it has been suggested that 

recommending exercise during growth may help to develop a habitual active lifestyle and 

promote bone health in adulthood (194). Further work in this area of bone health is 

required, and additionally the role that WBV can play in this arena should be considered. 
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5. Fractures in Children 
 

Much of the drive for improving bone health in adulthood is to reduce the burden and 

economic impact of fracture particularly in older age. As previously stated leaders in the 

field of bone research now recognise that fracture prevention should occur over the life 

course and establishing good bone health in childhood is of paramount importance. 

Nonetheless interventions to better understand and improve fracture incidence in later life 

are also important for bone health during childhood. This chapter will highlight a number of 

factors that are associated with fractures in childhood demonstrating the complexity of the 

issues surrounding bone health in paediatric populations. 

 

5.1. Incidence and type of fractures in childhood 
 

Fractures in children are common. Approximately 50% of children will sustain a fracture 

during growth (201-203), corresponding to a fracture incidence of 103-197/10,000 person 

years for girls and 162-257/10,000 person years for boys (204-208). The consequences of 

fractures during childhood include missed days at school, activity restriction (5-26 days 

depending on site of fracture), hospital appointments, and clinical complications such as 

compartment syndrome, growth disturbance, and impaired peak bone mass accrual (209-

212). 

 

Fracture incidence has increased over time. Landin et al (208) reported a two-fold increase 

in the risk of fracture in boys and girls over the thirty year period from 1950 to 1979. The 

same increase was reported in Japanese school children comparing the period of 1979- 

1987 and 1999-2007 (213). Specifically an increase in forearm fracture incidence in boys of 

32% from 1999-2001 compared to 1969-1971 and 56% over the same time periods in girls 

has been reported in the US (214) and an increase of a 31% in girls in Sweden comparing 

data from 1993-1994 to the 1975-1979 data reported by Landin et al (206). However despite 

the increase in forearm fractures an overall decrease in fracture incidence in children was 

reported in this later study. The observed increase in fracture incidence is thought to be 
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associated with an increase in sports participation, with the greater increase in girls 

reflecting a greater number of girls participating in organised sports. 

 

As highlighted above, boys are more likely to fracture than girls, with approximately 60% of 

fractures in children 0-16 years old occurring in males. The average age at fracture is 11-14 

years for boys and 8-11 years for girls (202, 204, 205, 214) and at all ages boys have a higher 

rate of fracture than girls (215). The age at increased risk of fracture for boys and girls 

corresponds to early-mid stages of puberty (207) and the period of peak height velocity. This 

period of relative skeletal fragility is thought to be due to a period of high linear growth with 

a lag in bone mineralisation and cross sectional changes in bone area that leave bone less 

resistant to bending and fracture (216-218). That peak BMC velocity has been documented 

to occur approximately 0.7 years after peak height velocity supports this argument (183). 

Additionally in early adolescence changes in behaviour such as increased risk taking and 

uptake of vigorous physical activity are thought to impact fracture risk, especially in males.  

 

Across the studies reporting fracture incidence, upper limb fractures are the most 

frequently reported fractures (nearly two thirds of all fractures) during childhood with 

forearm fractures, in particular distal radius/ulna, being the most common followed by the 

hand/fingers and humerus. The least reported fractures occur at the pelvis/hip and spine 

(202, 204, 205, 215, 219, 220). 

 

 

5.2. Associations and risk factors for fracture in childhood 
 

 Bone mass and bone size 

Fractures are more common in children with low bone mass. Case-control studies have 

repeatedly but not conclusively shown bone mass to be associated with risk of fracture in 

childhood (221, 222). In prospective studies where children have undergone bone mass 

assessment and subsequently been observed for episodes of fracture BMD, BMC, bone area 

and width have been shown to be lower in the children who have gone on to fracture than 

in those who have not. Observing children for future fracture episodes increases the 

likelihood that lower bone mass increases the risk of fracture rather than fracture resulting 
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in a decrease in bone mass (223). Measured by DXA, BMD at the radial diaphysis and 

metaphysis, femoral neck, femoral diaphysis, total hip, and lumbar spine in boys (202) and 

TB in boys and girls (224) has been shown to be lower in those who went on to fracture. 

Lower BMC has been detected in girls at the radial diaphysis and metaphysis, LS and femoral 

trochanter but not femoral neck or diaphysis (225). Also in girls bone area and width at the 

radial diaphysis (in pre-pubertal girls) and LS (at pubertal maturity) has been shown to be 

reduced in those who subsequently fractured (225).  

 

pQCT measurements from prospective studies support the data obtained by DXA. vBMD has 

been shown to be lower at the distal radius in girls during pubertal growth and into early 

adulthood who experienced an upper limb fracture (223). In boys tibial HR-pQCT recorded 

at 15.2 years showed a lower distal trabecular vBMD and trabecular number, with increased 

trabecular spacing (202) and reduced bone strength (stiffness and failure load). Stiffness, 

failure load and apparent modulus were also lower (-9.2%, -8.6% and -11.2% respectively) in 

females at 20.4 years who had experienced a fracture during observation over the previous 

12 years (226).  

 

Each SD decrease in BMD at the radius, femoral neck, femoral diaphysis, total hip and LS 

increases the risk of fracture expressed as an odds ratio by 1.46-1.64 at age 7.4 years and by 

1.62-1.90 at 15.2 years (not at the radius) (202). This inverse association was also detected 

in humeral aBMD and adjusted vBMD. Each SD decrease in TBLH BMC increases the risk of 

fracture in the subsequent 2 year period by 89% (220), with lower TB and spine BMC and 

BMD at 8 years of age being a predictor for upper limb fracture for up to 8 years (224). More 

specifically reduction in BMD at the hip, spine and TB in girls and at the radius in boys is 

associated with increased risk of upper limb fracture but not lower limb fractures (227). 

Greater bone length of the radius has also been identified as an indicator for upper limb 

fracture (223), supported by findings that boys with a history of forearm fracture were taller 

than boys with a history of other fractures or no fracture (186).  

 

The difference in BMD and BMC between those who have fractured and those who have not 

is also affected by puberty with some of the differences only present at a certain stage(s) of 
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development. In pre-pubertal girls (Tanner stage 1) BMC at the radial diaphysis was lower, 

at early puberty (Tanner stage 2) BMC was also lower at the LS, and at pubertal maturity 

(Tanner stage 5) BMC was decreased in the ultradistal radius, LS and femoral trochanter in 

the girls who fractured over the course of the 8.5 year observation period. Additionally BMC 

accrual at the radial diaphysis during pubertal growth was reduced, and calculated BMC 

over height gain at the ultradistal radius and LS was lower in the girls who fractured (225). 

Later menarcheal age has also been observed as a risk factor for fracture, with an inverse 

association between later menarche and lower aBMD at the radius in childhood and 

adolescence (226). In boys the differences in bone detected at 15.2 years (lower tibial 

vBMD, trabecular number and reduced bone strength) (202) was not present at 22.6 years 

of age (228) suggesting that bone deficits in males who fracture during childhood are 

resolved by the end of adolescence. In contrast females from this study at age 20.4 years, 

who had fractured during growth, had lower vBMD, trabecular bone density and trabecular 

thickness at the distal radius (-7.2 to -9.6%) than in those who had not. Measures of bone 

strength, (stiffness, failure load and apparent modulus -9.2%, -8.6% and -11.2% respectively) 

were also lower in this group (226). This difference between genders in resolution of bone 

deficits is important when considering bone health and fracture risk in later life. 

 

Clarke et al (229) have further considered bone mass and level of trauma. They found that in 

children experiencing fracture due to low level trauma TB BMD, BMC and BA, and humeral 

estimated vBMD was lower than in children who had not fractured. Even in children who 

fractured as a result of moderate/severe trauma parameters of bone fragility (humeral 

estimated vBMD and TB bone mass for bone size) were lower than controls. 

 

Farr et al (230) in their review paper have reported a 11-13% reduction in bone strength 

estimated by micro finite element analysis in 8-15 years old who had a mild trauma distal 

forearm fracture compared to controls and reductions in CtTh of 13-14% and CtA of 23-26%. 

Those who fractured due to moderate trauma had ‘similar values’ to controls. 
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 Physical activity 

Physical activity has been shown to increase BMC and BMD across various skeletal sites in 

childhood (discussed in Chapter 4); increased BMC and BMD has been shown to reduce risk 

of fracture as discussed above. Therefore there is an assumption that physical activity will 

have a protective effect on risk of fracture. However the association between physical 

activity and fracture risk is not so clear.  

 

A school based physical activity intervention programme in a Swedish population has shown 

a decrease in fracture risk following 8 years of the intervention (40 minutes a day of teacher 

led physical activity compared to the standard 60 minutes a week) (231). However in the 

first year following the intervention fracture risk increased. Other studies have shown no 

difference in physical activity levels between those who have fractured and those who have 

not (186, 202) or indeed have shown that increased physical activity is in fact a risk factor 

for fracture (232). Physical activity intensity and frequency in particular are related to 

fracture risk  with participation in competitive sports being higher in pre-pubertal children 

who had fractured compared to those who had not (233). The risk of fracture is doubled in 

children undertaking vigorous physical activity (including running, dance, gymnastics, 

swimming) at least once daily compared to less than four times a week (234). This increased 

risk is seen in children regardless of vBMD and bone size relative to body size therefore 

suggesting that it is not an effect of weaker or smaller bones that causes fractures to occur 

in this group. Girls who participate in more than 8 hours a week of physical activity 

compared to those taking part in less than 4 hours are also at double the risk of fracture. 

Again it is the intensity of physical activity that is driving the increase risk of fracture, in this 

study each hour of high-impact activity (including running, football, 

cheerleading/gymnastics, basketball) increased the risk of stress fracture by 8% (HR = 1.08; 

95% CI, 1.05-1.12) (235). However the results from an Australian population based case-

control study (children aged 9-16 years) only showed an increased risk of forearm fracture in 

boys, with a risk reduction in girls who participated in sports (high-risk, competitive and 

contact sports, boys; high-risk and non-contact sports girls) (236). Differences in type of 

sports activity, contact and competitive, may account for some of the difference observed in 

fracture risk between males and females. It has been suggested that vigorous physical 
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activity predisposes children to falls and trauma therefore increasing their risk of fracture 

and this overrides the beneficial osteogenic effects of physical activity in reducing fracture 

risk in children (234). 

 

Less surprisingly sedentary behaviour is also associated with increased fracture risk. The 

same Australian study discussed above looked at hours spent television, computer or video 

viewing and found a dose-dependent association between this and forearm fractures. 

Additionally they found that light physical activity was associated with a reduction in 

forearm fractures (independent of bone strength assessed by DXA)(236). Weight-bearing 

exercise calculated as an activity score has been shown to be protective of recurrent 

fractures, with children aged 4-16 years who sustained recurrent fractures having a lower 

score (less weight bearing exercise) than those having only 1 or no fracture (237). Also in 

this study general activity levels (measured by METS metabolic equivalents) were lower in 

the group who recurrently fractured compared to those who had sustained only 1 fracture. 

 

Confusingly physical activity therefore has been shown to both increase and decrease the 

risk of fracture. Most studies looking at the osteogenic value of physical activity have not 

had fracture risk as an outcome but rather the effects on bone mass and size as mentioned 

previously. Certainly there are few studies that have implemented a physical activity 

intervention and recorded fracture as the main outcome. The Swedish school study 

discussed here has produced many publications reporting over time though it was only the 

more recent paper that demonstrated a positive effect of a non-specific physical activity 

intervention on fracture risk.  

 

 Environmental and societal 

Many other factors thought to be associated with risk of fracture have been investigated. 

The role of calcium and Vitamin D in skeletal homeostasis has been reported in detail. 

Dietary calcium and Vitamin D has been clearly shown to be important in paediatric bone 

health and therefore its effect on fracture risk has been considered. Across a number of 

studies it has been shown that children with a history of fracture or recurrent fractures have 

reduced milk consumption (smaller volumes and less frequently), adverse symptoms to 
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cow’s milk, and lower calcium intake from dairy products than age-matched controls (237-

239) particularly in children aged 6-15 years. Even where no difference in calcium 

consumption between fracture and control groups was found in a New Zealand population, 

more boys in the fracture group had a calcium intake below recommended levels than 

controls (240).  

 

There is some evidence to suggest an association between low serum Vitamin D levels and 

increased risk of fracture (241-243), though this has not been shown conclusively across 

cross-sectional and case-control studies (244-246). Vitamin D supplementation however, 

has been shown to be associated with a decreased risk of fracture in childhood (244). In 

regard of recent interest in maternal and neo-natal Vitamin D status on fracture risk, studies 

have failed to show an association between childhood fractures and early life Vitamin D 

levels (247), despite evidence of maternal non-supplementation and deficiency/insufficiency 

leading to reduced BMC, whole body area and BMD at birth (248) lasting up to 9 years of 

age (249). The most reliable means to test Vitamin D status and fracture incidence would be 

through intervention studies, however the duration of observation and number of 

participants required for such studies make such trials unfeasible (246).  

 

Carbonated beverage intake as a dietary risk factor has also been considered, with increased 

intake associated with an increased risk of fracture (237), and more specifically regarding 

cola beverages and forearm fractures (250). This has been hypothesised though not proven 

to be due to carbonated drinks replacing milk consumption, but regardless of milk 

consumption carbonated drink intake is a risk factor for fracture. 

 

Obesity has also been clearly associated with risk of fracture. Children who fracture are 

more likely to have a higher BMI, fat mass, percentage body fat, are likely to be heavier 

and/or overweight than age matched controls (237-240). With a 1.5 fold increased risk of 

fracture at any site and of 1.7 at the forearm (251). However in pre-pubertal children fat 

mass is positively associated with gains in TB BMC with overweight children having greater 

measure of bone strength. By late adolescence, particularly in girls, there is however a 

negative association between increased fat mass and bone size and reduced strength. It is 
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thought that fat accumulation during childhood may have a detrimental effect on bone 

strength. The findings are not consistent across all studies with studies assessing bone 

microstructural parameters and strength using micro finite element analysis showing no 

difference between lean and obese children (252). Despite the discussion regarding bone 

mass, bone strength and obesity, consistently being over-weight or obese has been shown 

to increase the risk of fracture in childhood. It has been suggested that this may be caused 

by an increased number of falls in this group or by the increased body weight resulting in an 

increased load to bone mass ratio (251, 252). In obese children TB BMD may be age-

appropriate but insufficient for their weight. 

 

Children from lower socioeconomic backgrounds or with parents of lower levels of 

educational attainment appear to be over represented in groups of those who have 

fractured versus those who have not. However there is insufficient data to be clear on an 

association between this and risk of fracture (215). 
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6. Methodology 
 

6.1. Study 1 - Acute Response of Bone to whole Body Vibration in Healthy Pre-
Pubertal Boys  

 

Study 1 was published in the journal of Musculoskeletal and Neuronal Interactions 

(Appendix 2) (253). 

 

 Research Aims and Purpose 

The purpose of this three phase randomised comparative pilot study was to determine the 

range and rate of the acute bone responses in apparently healthy boys to standing on a 

vibrating platform. Previous studies in paediatric populations have focused on the longer 

term use of vibrating platforms with primary outcomes concerning change in bone mass 

and/or muscle function. However little is known of how soon bone responds to a single 

exposure to vibration or consecutive daily short term exposure to vibration.  

 

Additionally there is a paucity of data regarding the effects of vibration in healthy children. 

Bone outcomes have been investigated in children with disabling conditions such as cerebral 

palsy and Duchene’s Muscular Dystrophy, osteogenesis imperfecta, low bone mass 

conditions, and in overweight boys over periods of a eight weeks to twelve months. To date 

no data has been collected on the effect of vibration in healthy pre-pubertal boys. There is 

also limited data available on bone turnover markers in children exposed to WBV. 

 

A number of devices are now readily available to deliver WBV. Only a small number of 

studies have directly compared different vibration devices, none in a paediatric population. 

Vibration regimes have varied significantly between the published studies making it difficult 

to make direct comparisons of the effectiveness of the platforms and any differences that 

may result from the different magnitude of vibration. This study compared two of the 

commercially available platforms, the Juvent MDT 1000 (Marodyne, Lakeland, Florida, USA) 

and the Galileo Med M (Novotec Medical GmbH, Pforzheim, Germany). The first delivers low 

magnitude synchronous vibration, the second provides a high magnitude side-alternating 

stimulus. 
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To gain a broader understanding of how the two devices work, either directly on bone tissue 

or via musculoskeletal forces, this study also measured skin surface temperature in the 

lower legs using an infra-red thermography camera pre- and post-vibration, as a surrogate 

measure for blood flow and muscle activity. 

 

 Hypotheses 

1. Ten minutes of WBV in pre-pubertal boys will result in a change in serum bone turnover 

markers P1NP and CTx. 

2. An increase in skin surface temperature pre and post intervention will occur, which will 

be dependent on the type of vibration platform used (high or low magnitude vibration). 

 

 Ethical Approval and funding 

Ethical approval for this study was obtained from South Humber Research Ethics 

Committee. Funding was awarded by Sheffield Children’s Hospital Charity to a total of 

£22,420. 

 

 Study Design 

The final version of the study protocol, patient and parent/guardian information sheets, and 

parent letters can be found in Appendices 3 and 4. 

 

Phase 1 

Twelve boys stood on either the Juvent or Galileo platform for ten minutes on one occasion 

(Figure 5). Blood samples were taken prior to the intervention, ten minutes and sixty 

minutes post  
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Figure 5 Participant involvement - phase 1 

 

intervention. A validated questionnaire (254) regarding exercise and sport activity over the 

seven days previous to the study visit was administered during the intervention. Thermal 

images were taken immediately pre- and post-intervention to measure skin surface 
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temperature. All visits occurred in the mornings at the Clinical Research Facility at Sheffield 

Children’s Hospital and were completed by the researcher. 

 

Phase 2 

In phase 2 24 boys were exposed to 3 or 5 days of vibration on either the Juvent or Galileo 

platform (Figures 6 and 7). There were 4 groups in phase 2; Group a) 3 days Juvent vibration 

(n=6), Group b) 5 days Juvent vibration (n=6), group c) 3 days Galileo vibration (n=6), and 

group d) 5 days Galileo vibration (n=6). Blood samples were taken immediately pre- and 10 

minutes post- vibration on days 1 and 3 in all groups and on day 5 from the boys in the 5 day 

group. A blood sample was also collected on days 5 and 8 in the 3 day groups and 5 day 

groups respectively at times corresponding to the pre-vibration blood samples. The 

variation in the timing of the last samples in each group (either 2 or 3 days post-vibration) 

reflected the need to fit in with the boys’ school and family commitments (sample timing 

was planned to allow normal school attendance and avoid weekend attendance). Study 

visits took place in the child’s home before school or at school before lessons began which 

ever was the most convenient for the study participants. The researcher carried out all 

study visits and was present for the full duration of study visits to ensure compliance to the 

study protocol. 

 

Phase 3 

A control group was recruited to account for potential change in bone turnover markers and 

skin surface temperature over time. 18 boys were recruited to phase 3. Thermal images 

were captured before and after standing on a non-vibrating platform in the same cycles as 

boys standing on the platforms in phase 1 (as described below in section6.1.13). Blood 

samples were collected at 30 minute intervals (0 to 120 minutes) to cover the duration of 

the intervention in the boys in phase 1. The samples collected at 0, 30 and 90 minutes 

corresponded to the pre-, 10 minutes post-, and 60 minutes post-vibration samples 

respectively and were used for comparison between the control and intervention groups. As 

with phase 1, all visits occurred in the mornings at the Clinical Research Facility at Sheffield 

Children’s Hospital and were completed by the researcher. 
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Figure 6 Participant involvement - phase 2, 3 days WBV (groups a and c) 
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Figure 7 Participant involvement - phase 2, 5 days WBV (groups b and d) 
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 Participant Recruitment 

In total 64 pre-pubertal boys aged 9-12 years were recruited. Participants were recruited 

from local schools. The Head teacher was approached for permission for letters to be given 

to pupils and parents inviting them to participate in the study. Contact details for the study 

team were included in the letters so that parents could contact the team if they wished for 

their children to participate. An invitation for participation in the study was also sent via 

email to staff working at Sheffield Children's NHS Foundation Trust, the University of 

Sheffield, and Sheffield Teaching Hospitals NHS Foundation Trust asking for interested 

persons to contact the research team for further information. 

 

Information sheets detailing the study procedures and contact details for the study team 

were posted out to potential participants and their parents who expressed an interest in the 

study prior to their attendance. Age appropriate information sheets were included for the 

participants. A minimum of 24 hours was given for participants to consider their 

involvement. Parents and participants were given the opportunity to discuss the study 

further with the research team prior to giving consent. Screening for the inclusion/exclusion 

criteria was done by interview. Written informed consent for the study was obtained from a 

parent/legal guardian and assent from the child prior to any study procedures. 

 

  Inclusion/Exclusion Criteria 

Inclusion criteria: 

White Caucasian 

Aged 9-12yrs (pre-pubertal) 

First language English 

 

Exclusion criteria: 

Pre-existing chronic illness 

Known bone disease 

History of one or more fractures 

Recent (last 12 months) or current treatment likely to affect bone – not including inhaled or 

intermittent oral therapy with steroids for asthma 
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Balance problems 

Continuing involvement in more than one other research study 

 

As a small pilot study funding for this study was limited and a decision was made to restrict 

recruitment to pre-pubertal children only. This would eliminate any potential effect of the 

different pubertal stages on bone turnover markers and bone response to loading (as 

discussed in chapter 4), therefore reducing the required sample size and study costs. Initial 

planned recruitment was from local secondary schools of participants aged 11-12 years. As 

the reported age of onset of puberty in girls is from 10 years, and later in boys from 11.5 

years (255, 256), most girls would not be eligible for study inclusion; it was decided to focus 

the study on boys only. Once recruitment was extended to include primary schools and 

therefore a lower age group, the study was still restricted to boys only to eliminate any 

gender effect. 

 

 Randomisation 

In phase 1 participants were randomly allocated to either the Juvent (low magnitude) or 

Galileo (high magnitude) platforms. In phase 2 they were also randomised to 3 or 5 

consecutive days of ten minutes of WBV. Randomisation in phase 1 was by the participants 

selecting and opening an opaque envelope containing the randomisation code. In Phase 2 a 

similar system applied of successive opening of envelopes, however a block randomisation 

system was used. This was to ensure that equal numbers of boys were allocated to the 4 

intervention groups; Juvent for 3 consecutive days, Juvent for 5 consecutive days, Galileo for 

3 consecutive days, and Galileo for 5 consecutive days. 

 

Neither the researchers nor participants were blinded to the intervention groups as the 

platforms look different and provide the vibration stimulus in different ways. The Juvent 

platform provides vertical vibration that is of such low magnitude it is hardly detectable. The 

Galileo platform delivers side-alternating vibration of a higher magnitude.  

 

The participants were supervised during the vibration at each visit so compliance to the 

intervention was be monitored.  
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 Pubertal Status Assessment 

Pubertal status was determined during interview by self-assessment using a gender 

appropriate validated pictorial scale depicting the different stages of puberty (Appendix 5) 

(257). Although it is recognised that assessment of pubertal status by an experienced 

clinician is the most accurate way to assess the stage of pubertal development, self-

assessment of puberty is frequently used in research. Self-assessment by the child is often 

the most convenient method and is much less embarrassing for the child. Self-assessment 

through the use of line drawings has been shown to be reliable with good to substantial 

agreement of stage of puberty being established between self and clinician assessment 

(258, 259). Within some age groups reliability has been questioned with the suggestion that 

there is a tendency for children to overestimate pubertal stage in early puberty and 

underestimate in mid to late puberty (259-261). As the study required participants to be 

pre-pubertal, it was felt that if the boys did over estimate their stage of puberty they would 

have excluded themselves from the study. The researcher was aware that this could have 

made recruitment more difficult although it added confidence that only suitable boys were 

included in the study. However only 8 boys were excluded from the study on the basis of 

their Tanner stage. 

 

 Vibration Regime 

On each occasion WBV occurred for 10 minutes divided into 4 cycles of two minutes thirty 

seconds separated by a 30 second rest period. The boys stepped off the platforms for the 30 

second rest period and stepped back on again for each vibration cycle. It is recognised that 

the response of bone to loading can be enhanced by the insertion of rest periods as 

discussed in Chapter 3.  

 

Often researchers have allowed a run in period whereby participants gradually increase the 

duration of the WBV to familiarise themselves with the devices and for comfort. As this 

study investigated the immediate response of bone, WBV could not be gradually increased. 

Therefore it was felt inserting brief rest periods would also serve a purpose of participant 

comfort. 
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The Juvent platform delivers a set frequency, acceleration and amplitude of vibration (listed 

in table 8) with only the duration of vibration being controlled by the user. In contrast 

parameters for the Galileo can be altered by the user; WBV on the Galileo platform was 

delivered at the settings below for participant comfort.  

 

Table 8 Platform parameters for phase 1 and 2 

  Frequency Acceleration Amplitude 

Juvent 1000 32-37Hz 0.3g (low magnitude) 0.085mm (displacement) 

Galileo Med M 20Hz 6.4g (high magnitude) 4mm 

 

WBV was delivered on 1, 3, or 5 consecutive days to ascertain the rate of bone response to 

vibration. Prior to this study it was not known how soon bone in this population would 

respond to this mechanical stimulation. Studies in children and adults exposed to other 

exercise interventions have detected changes in bone turnover markers after only one 

episode. Unloading studies have demonstrated changes following 3 days of bedrest. On this 

basis it was decided to have the 3 groups. It was considered that the low magnitude group 

may take longer to respond than the high magnitude group, it was felt that 5 days would be 

sufficient time to detect any changes from baseline. 

 

 Exercise Questionnaire 

A validated questionnaire (254) regarding exercise and sport activity over the 7 days 

previous to the study visit was completed during the intervention (Appendix 6). The 

questions asked in the Godin-Shepard Leisure –Time questionnaire are considered to 

successfully discriminate between active and sedentary people (254). Reliability and validity 

of this tool to assess physical activity in children has been demonstrated (262). The boys 

were asked two questions regarding the frequency of strenuous, moderate, or mild exercise 

undertaken for at least fifteen minutes during their free time. Activity undertaken during 

physical education lessons was not included. Strenuous exercise is defined as exercise that 

causes the heart to beat rapidly, moderate exercise as not exhausting, and mild exercise as 

minimal effort. The frequencies of the types of exercise given in answer to these questions 

were then multiplied by the anticipated metabolic equivalents (METs) of nine, five, and 
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three for strenuous, moderate, and mild exercise respectively, to provide a score for 

comparison. The participants were asked to continue with their usual levels of activity for 

the duration of the study. 

 

 Weight and Height 

Weight and height were recorded at day 1 of the study and from this body mass index (BMI) 

was calculated for each boy. Weight was measured to the nearest 0.1kg with the participant 

wearing light clothing using electronic balance scales (Seca GmbH & Co, Hamburg, 

Germany). Participants were asked to remove additional layers of clothing beyond 

trousers/shorts or t-shirts and to empty their pockets of any items such as keys, phones etc. 

Height was measured to the nearest 0.1cm without shoes using a portable stadiometer 

(Leicester height measure, Invicta, Leicester, UK). 

 

 Blood Sampling 

The bone turnover markers Pro-collagen type 1 N-terminal propeptide (P1NP) and C-

terminal cross-linked telopeptide of type 1 collagen (CTx) were measured for bone 

formation and bone resorption at each sampling time point as stated previously. P1NP is a 

measure of the formation of type 1 collagen. As the collagen molecules are formed, prior to 

assembly into fibrils, the ends are cleaved off by enzymes and released into the blood 

stream (139)(ASBMR). As bone is resorbed the crosslinks that form bonds between the 

collagen fibrils are released. Some have fragments of collagen attached; these are 

telopeptides which can be measured in urine or serum, NTx and CTx (125, 263); only CTx 

was measured in this study. An additional bone formation marker Osteocalcin (OCN), a non-

collagenous protein expressed by mature osteoblasts (264), was measured at baseline and 

on day 8 in the boys who received 5 days of vibration. This was decided after the study had 

been completed using left over serum. There was insufficient sample to measure at the 

intermediate time points. The majority of osteocalcin which is found in the bone matrix, 

though some will enter the circulation, is an important factor in matrix mineralisation (264) 

and would therefore be expected to be detected in serum later in the course of bone 

formation than P1NP.   
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In addition factors known to affect bone turnover, sclerostin (bone formation) and 

osteoprotegerin (bone resorption) were also measured. As discussed in Chapter 2, 

sclerostin, expressed by osteocytes in response to mechanical loading, is a key factor in the 

anabolic response of bone to loading. OPG is the decoy receptor for RANKL, by blocking the 

interaction of RANK – RANKL, OPG interferes with the formation and survival of osteoclasts 

(7) and therefore has an important impact on bone resorption activity. 

 

Samples were collected between 7.30am and 10.30am in a fasted state as is recommended 

to reduce variability in samples due to food intake and circadian rhythm (265, 266). Sample 

timing occurred so that all the samples for each individual patient were collected at 

approximately the same time. 

 

Bone formation markers need to be measured from serum. P1NP is a stable marker as it can 

tolerate prolonged frozen storage and transport without degradation of the propeptides 

(263). CTx was chosen as the resorption marker due to its stability and reliability as long as 

the above criteria for collection are met. Resorption markers can be measured in urine also 

but their intra-individual variability is large. Since the time points between sampling in this 

study were small the likelihood of collecting or detecting a change in urine markers was very 

small and likely to be confounded by factors such as incomplete prior voiding. Additionally 

as the boys underwent venepuncture for the formation marker, only a small extra amount 

of blood was needed to be collected and this reduced the number of procedures that the 

boys were subjected to. 

 

2mls of blood was collected from the participants and transferred into a blood bottle 

containing a serum separating gel. This was left for at least 30 minutes to allow the sample 

to clot and then placed in a centrifuge and spun at approximately 3500rpm for 15 minutes. 

Serum was then be aliquoted into 1.5ml Sarstedt tubes and frozen at -80oC until analysis. To 

ensure stability of the samples they were frozen within two hours of collection. No freeze 

thaw cycles occurred other than for sample assays. All tubes were labelled with the patient 

study identification number, date of collection and time point. 
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P1NP, OCN and CTx was measured using electrochemiluminescence Immunoassay (Elecsys 

total P1NP kit; intraassay %CV <1.7% and Elecsys β-CrossLaps/serum kit; intraassay % CV 

2.8-8.4%, Cobas E411, Roche Diagnostics, UK, and OCN; intrasaay %CV 1.4-3.3% Cobas E411, 

Roche Diagnostics, Germany). Sclerostin and OPG was measured using manual enzyme-

linked immunosorbent assays (Sclerostin Enzyme Immunoassay; intraassay %CV <7%, 

Biomedica Gruppe, Germany and OPG ELISA; intraassay %CV 2.5-4.9%, BioVendor, Czech 

Republic; intraassay %CV 2.5-4.9%). Assays were performed by Dr Fatma Gossiel at the 

Mellanby Bone Centre, University of Sheffield as per the manufacturer’s guidelines. 

 

 Thermal Imaging 

A secondary outcome of skin surface temperature of the lower legs was measured using a 

Land Guide M4 hand held thermal imaging camera (temperature range -20oC-250oC and a 

sensitivity of 0.12oC, CV 2%, Asten Instruments Limited, England). Lower limb temperature 

change following WBV has been demonstrated in a small number of studies using skin 

probes (267), via a thermometer inserted directly in to the active muscle (vastus lateralis) 

(268), and also using thermal imaging cameras (269, 270). Varying exercise studies have also 

demonstrated the utility of thermal imaging to measure temperature change over the 

region of the active muscles in healthy adults (271-274). To date there are no published data 

in a paediatric population. Thermal images were taken immediately pre- and post-

intervention during phase 1 and phase 3 of the study only, whilst the boys were standing on 

the platform. Boys in the control group (phase 3) were asked to stand on and off the Juvent 

platform, which was not turned on, in the same cycle as the boys exposed to vibration, that 

is 2.5 minutes on 30 seconds off. The camera was aimed at the back of their legs to include 

behind the posterior knee down to the bottom of their feet as the area of interest was the 

gastrocnemius and soleus muscles. They were asked to wear shorts so that the lower legs 

were fully exposed. The same room was used for the thermal imaging (and WBV), with 

windows closed to exclude draughts and the blinds drawn to reduce heat from the sun, 

room temperature was recorded. The vibrating platforms were left in position for use and 

the thermal image captured by the researcher from the wall behind the platforms. 
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Images were analysed using the manufacturer’s software. A within subject temperature 

difference pre- and post-vibration was reported with type of vibration platform as covariant. 

 

 Statistical Analysis 

No sample size calculation was performed for this study as it was pilot study to determine 

the range of responses to the period of vibration. Therefore it was not possible to estimate 

the number of participants needed. The decision to recruit thirty-six participants, twelve to 

phase 1 and twelve to each of the three and five consecutive days of vibration in phase 2, 

was based on recommendations in current literature regarding sample sizes for pilot studies 

(275, 276). Twelve participants were recruited per group (1, 3 or 5 days of WBV) to assess 

the primary endpoint of bone turnover marker change in the intervention versus control 

group, comparison between platforms was exploratory (6 boys per platform per days of 

WBV). Eighteen participants were recruited for phase 3 to match the number of boys 

exposed to each platform for at least one day. 

 

SPSS version 19 (IBM, New York) was used for the statistical analysis. Baseline characteristics 

of each group were considered but formal statistical testing was not performed. Both within 

group change (pre- to post-vibration) and between group differences in bone biomarkers 

(P1NP, CTx, OPG and sclerostin) were analysed. A repeated measures ANOVA was used to 

assess within group changes in the phase 1 up to 60 minutes post-vibration. Day 1 data from 

phase 1 and phase 2 groups were combined to assess the immediate bone biomarker 

response to vibration (sampling time points pre- and 10 minutes post-vibration). Paired t-

tests were used to test for change within a group from pre- to immediately post-vibration 

on each day (days 1, 3, and 5). 

 

Changes between the high and low magnitude vibration and control groups on day 1 pre- to 

immediately post-vibration were compared using ANOVA and ANCOVA, adjusting for 

baseline bone turnover markers, number of days of vibration, age and activity score. 

Imbalances in the baseline activity score were observed between the groups, therefore this 

was included as a covariate. Adjustment for days of vibration was included to account for 
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the recruitment of groups of subjects in successive phases. This adjust for the potential 

differences between the boys recruited in the different phases.  

 

Day 1 data was also analysed for changes pre- to 60 minutes post-vibration in the bone 

biomarkers between groups and on days 3 and 5 pre- to immediately post-vibration using 

ANOVA and ANCOVA (adjusting for baseline bone turnover marker). No other covariates 

were included due to a lack of power. The comparison for day 3 and 5 data did not include 

phase 1 or phase 3 participants as data was only collected from these boys on 1 day. 

 

Change in bone markers (P1NP, CTX and OCN) and bone cell derived factors (OPG, 

sclerostin) after 5 days of vibration were combined across the WBV groups due to limited 

data. Paired t-tests were used to test for change from baseline using day 1 pre-vibration and 

day 8 measurements. 

 

To account for camera temperature drift between the recorded images, the post-image 

temperature was adjusted and within participant temperature change pre to post WBV 

reported as the outcome. For each participants’ pre- and post-image a reference area not 

expected to change in temperature over the short time lapse between the images (i.e. 

where the camera was pointed at the wall) was determined with the region temperature 

recording used to adjust for any camera drift. 

 

  

6.2. Study 2 – Acute Response of Bone to whole Body vibration in Pre-Pubertal 
Boys with a History of Fracture 

 

Study 2 was designed on the completion of Study 1 to further investigate the acute 

response of bone to WBV.  
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 Research Aims and Purpose 

The primary aim of this study was to determine the acute skeletal response to high or low 

magnitude whole body vibration in boys who have a history of having sustained at least one 

fracture. A second purpose was to determine if bone in this group of children responds to 

vibration in the short term in the same way as it does in boys who have not previously 

fractured. Data collected from this fracture cohort was compared to data collected in study 

1 investigating the bone response to WBV in apparently healthy pre-pubertal boys. 

 

 Hypotheses 

1. Ten minutes of WBV on five consecutive days in pre-pubertal boys with a history of 

fracture will result in a change in the serum bone turnover markers P1NP and CTx at day 8. 

2. The response of the serum bone turnover markers in boys with a history of fracture will 

be different to that of the healthy boys in Study 1. 

 

 Ethical Approval and Funding 

Ethical approval for this study was obtained from Yorkshire and the Humber - Leeds West 

Research Ethics Committee. Funding for this study was awarded by Orthopaedic Research 

UK to a total of £73,040.22. The study was adopted and listed on the NIHR Clinical Research 

Network Portfolio as ‘Vibration in boys with a history of fracture’ number 91811. 

 

 Study Design 

The results of study 1 informed the design of study 2. Appendices 7 and 8 contain the final 

version of the study protocol, patient and parent/guardian information sheets, and parent 

letters. The increase in P1NP and CTx detected at day 8 only, determined that in study 2 all 

the boys were exposed to 5 consecutive days of WBV (Figure 8). Blood samples were 

collected at the same time points as boys exposed to 5 days of WBV in study 1. However an 

additional sample was collected at day 12 to see if the response detected at day 8 was still 

present a week after 5 consecutive days of 10 minutes WBV. Thermal imaging was not 

measured in study 2. 
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Figure 8 Participant involvement in study 2 
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 Participant Recruitment 

Participants were recruited from local schools and youth/activity clubs.  As for Study 1 the 

Head teacher/club leader was approached for permission to display an advertisement for 

the study and for letters to be given to pupils and parents inviting them to participate in the 

study. Contact details for the study team were included so that parents could contact the 

team if they wished for their child/children to participate. An invitation for participation in 

the study was also sent via email to staff working at Sheffield Children's NHS Foundation 

Trust, the University of Sheffield, Sheffield Hallam University, and Sheffield Teaching 

Hospitals NHS Foundation Trust asking for interested persons to contact the research team 

for further information. In addition to the above methods in Study 2 boys were also 

recruited from Out-patient (OPD) and Emergency (ED) departments at Sheffield Children’s 

Hospital. Boys aged 7-13 years who attended fracture clinic or ED were approached to see if 

they were interested. As participants had to have had no recent fractures (within 6 months) 

details of those that were attending due to a fracture were kept on a future participants list 

and contacted again as they approached 6 months post fracture to see if they still wished to 

take part. Boys who had attended fracture clinics more than 6 months previously were also 

identified from the orthopaedic lists; their GP was asked to forward on a letter to them 

inviting them to participate in the study. An advertisement for the study was displayed in 

the Hospital and through the media, including social media and on Sheffield Children’s NHS 

Foundation Trust website. 

 

 Inclusion/Exclusion Criteria 

The inclusion/exclusion criteria for study 2 were similar to the criteria for study 1. Where as 

in study 1 boys with a history of one or more fracture were excluded from the study, this 

became a requirement for inclusion in study 2. However participants were excluded if the 

fracture was current or a healing fracture. This was to ensure that the WBV intervention did 

not impact on fracture healing and also to ensure that the bone marker measurements were 

not affected by bone remodelling following the fracture. We required the boys to be at least 

6 months post their last fracture. Additionally the fracture, or at least one of the fractures if 

the boys had sustained 2 or more, had to be the result of mild or moderate trauma as 
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categorised by Landin (229) (Appendix 9). Fracture(s) history was as reported by the parent 

or participant and was not radiologically verified. The age range for study 2 was extended to 

include pre-pubertal boys aged 7-13 years. Recruitment to study 1 was slow, extending the 

age range allowed recruitment from a larger pool of potential participants. 

 Randomisation 

Participants were randomly allocated to either the Galileo or Juvent platform. 

Randomisation occurred by the participants selecting and opening an opaque envelope 

containing the name of the platform they have been allocated to. As with study 1 neither 

the researchers nor participants were blinded to the intervention groups as the platforms 

look and deliver the vibration stimulus differently (synchronous or side-alternating). 

 

 Pubertal Status Assessment 

Pubertal stage was self-assessed to ensure that participants were at pubertal Tanner stage 1 

as discussed previously. 

 

 Vibration Regime 

As in Study 1 WBV occurred for 10 minutes divided into 4 cycles of two minutes thirty 

seconds separated by a 30 second rest period. The boys stepped off the platforms for the 30 

second rest period and stepped back on again for each vibration cycle. The settings used for 

the platforms are listed in table 8 above. 

 

 Exercise Questionnaire 

The Godin-Shepard Leisure –Time questionnaire was again used to ascertain physical 

activity levels in the 7 days prior to standing on the platforms. 

 

 Weight and Height 

Weight and height were recorded as described in section 6.1.11. 
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 Blood Sampling 

As discussed in section 6.1.12 P1NP, CTx, OPG, and Sclerostin were collected in a fasted 

state pre- and 10 minutes post-vibration and on days 8 and 12, coinciding with the timing of 

the pre-vibration samples. 

 

 Statistical Analysis 

No sample size calculation was performed for this study as it was pilot study to determine 

the range of responses to the period of vibration in boys with a history of fracture. 

Therefore it was not possible to estimate the number of participants needed. It was decided 

to recruit 12 boys to each of the platform groups (Juvent and Galileo) based on 

recommendations in current literature regarding sample sizes for pilot studies (275, 276). 

SPSS version 24 (IBM, New York) was used for the statistical analysis. Baseline characteristics 

of the boys with a history of fracture were considered but no formal testing was performed. 

Both within group change (pre- to post- vibration) and between group differences in bone 

biomarkers (P1NP, CTX, OPG and sclerostin) were analysed. Paired t-tests were used to test 

for within group change from pre- to 10 minutes post-vibration on each day (days 1, 3, and 

5) and at days 8 and 12 from baseline. Independent samples t-test was used to compare 

between group differences at the same time points.  

 

Data from boys exposed to 5 days of WBV in study 1 was used to compare any difference in 

the response of bone to WBV in boys with a history of fracture and those without (healthy 

boys). Differences in baseline characteristics between the fracture and non-fracture groups 

were explored using independent samples t-tests.  

 

Changes (unadjusted) in bone markers (P1NP, CTX and OCN) and bone cell derived factors (OPG, 

sclerostin) after 5 days of vibration were compared between the fracture and non-fracture groups 

using independent samples t-tests. ANCOVA was used to adjust for age, activity score and baseline 

bone turnover markers as in study 1. Imbalances in the baseline activity score between fractures and 

non-fractures was observed and the age range for study 2 was expanded over the course of 

recruitment, therefore these were included as covariates. 
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7. Results 
 

7.1. Study 1 - Acute Response of Bone to whole Body Vibration in Healthy Pre-
Pubertal Boys  

 

 Baseline Characteristics 

In total 64 boys consented to study participation. Of these 8 were excluded on the basis of 

pubertal stage, 2 withdrew consent prior to data collection and commencement of the 

intervention, and 3 withdrew due to difficulties in obtaining blood samples on day 1. Data 

were collected and analysed on 51 boys in total; 12 boys in phase 1 (1 day only of WBV), 24 

boys in phase 2 (3 or 5 days of WBV), and 15 boys in the control group (no WBV). No 

participants were siblings. The baseline characteristics of each group are shown in Table 9. 

Age, height, body mass index (BMI), and weight were similar between the groups. The 

activity scores appear to be different across the intervention groups with the Galileo group 

scoring higher; it should be noted that these scores have a large standard deviation (SD). 

Baseline P1NP, osteocalcin, CTX, OPG, and sclerostin values were also similar between the 

groups. The time taken between the pre and post vibration samples on day 1 was slightly 

longer in the Juvent group. One boy in this group felt faint after cannulation and rested prior 

to standing on the vibration platform, accounting for the greater time lag and larger SD in 

this group. None of the boys reported current or recent use of oral steroids for asthma. 

 

 Bone turnover markers – changes across individual cycles of vibration 

Values of P1NP, osteocalcin and CTX for each participant are listed in Appendix 10. 

 

Within control group (n=14) 

P1NP decreased by 7.8% (CI -13.4 to -2.2; p=0.008, paired t-test) at 10 minutes, and by 

12.0% (CI -19.3 to -4.7; p=0.04) at 60 minutes compared to baseline. Osteocalcin was not 

measured. CTX decreased by 12.0% (CI -19.3 to -4.7; p=0.04) at 10 minutes and by 7.0% (CI -

13.7 to-0.4; p=0.03) at 60 minutes (Table 10, actual sampling time points were 0, 30 and 90 

minutes to correspond to pre-, 10 minutes and 60 minutes post-vibration samples 

respectively in the low and high magnitude intervention groups).   
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Table 9 Baseline characteristics of participants by intervention group 

  Juvent (low magnitude) 
platform n=18 

  
Galileo (high 

magnitude) platform 
n=18 

  Control n=15* 

  Mean SD n   Mean SD n   Mean SD n 

Age (years) 10.4 0.8 18   10.4 0.9 18   10.8 0.6 15 

Height (cm) 141.8 6.5 18 
 

145.4 8.5 18 
 

143.2 7 15 

Weight (kg) 34.3 4 18 
 

37.1 6.8 18 
 

38.6 10.9 15 

Body Mass Index (kg m2) 17.1 1.7 18 
 

17.4 1.8 18 
 

18.6 4.1 15 

Activity score (METS 
units) 

79 25 18 
 

94 33 18 
 

67 26 15 

P1NP Day 1 pre (ng/ml) 671.5 281.1 18 
 

794.5 204.6 17 
 

679.5 186.5 14 

OCN Day 1 pre (ng/ml) 86.4 15.5 5 
 

88.3 32.2 5 
 

- - - 

CTX Day 1 pre (ng/ml) 1.85 0.55 18 
 

2 0.48 17 
 

1.91 0.4 14 

OPG Day 1Pre (pmol/L) 3.67 0.53 16 
 

3.71 0.97 17 
 

3.07 0.46 14 

Sclerostin Day 1 Pre 
(pmol/L) 

25.54 6.25 16 
 

29.13 6.22 17 
 

24.25 7.11 14 

Time between samples 
day 1 (minutes) 

33.06 17.01 17 
 

29.76 5.21 17 
 

31.07 2.27 14 

SD= standard deviation, n= number of participants, *sample collected on 14 
participants 

          

METS: metabolic equivalents 

P1NP: pro-collagen type 1 N-terminal propeptide 

OCN: osteocalcin 

           CTX: C-terminal cross-linked telopeptide of type 1 collagen 

OPG: osteoprotegerin 

           SCL: sclerostin                       
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Table 10 Change in serum P1NP and CTX values from baseline at 10 and 60 minutes post WBV by platform group 

    Day 1 Mean change (unadjusted)   

    Controla    Juvent (low magnitude) platform   Galileo (high magnitude) platform   p value 

  mean (95% CI) n mean (95% CI) n mean (95% CI) n ANOVA 

P1NP 10min post  -61.3 (-103.9 to -18.8) 14 -67.6 (-108.7 to -26.5) 17 -71.3 (-164.5 to 21.8) 16 0.97 

ng/ml 60min post -83.7 (-135.1 to -32.2) 14 -58.5 (-160.1 to 43.0) 6 -16.5 (-172.4 to 139.4) 5 0.43 

         

CTX  10min post  -0.11 (-0.21 to 0.05) 14 -0.17 (-0.25 to -0.09) 17 -0.08 (-0.21 to 0.05) 16 0.36 

ng/ml 60min post -0.14 (-0.27 to -0.02) 14 -0.17 (-0.37 to 0.03) 6 -0.07 (-0.15 to 0.01) 5 0.64 

Day 1 Adjusted mean change (adjusted*) 

              ANCOVA 

P1NP 10min post  -71.6 (-160.4 to 17.3) 14 -70.7 (-122.6 to -18.9) 17 -64.8 (-121.6 to -8.0) 16 0.91 

ng/ml 60min post -76.6 (-131.4 to -21.7) 14 -75.6 (-155.4 to 4.1) 6 -15.8 (-123.4 to 91.7) 5 0.17 

         

CTX 10min post  -0.11 (-0.27 to 0.05) 14 -0.17 (-0.26 to -0.07) 17 -0.09 (-0.19 to 0.01) 16 0.14 

ng/ml 60min post -0.15 (-0.26 to -0.03) 14 -0.20 (-0.37 to -0.03) 6 -0.02 (-0.25 to -0.21) 5 0.59 

*Adjusted for baseline CTX/P1NP, length of treatment, age, activity score, time between samples 
CI= confidence interval 
aSamples in the control group were collected at 0, 30 and 90 minutes to correspond to pre-, 10 and 60 minutes post-vibration respectively 
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Within low magnitude group, first cycle of vibration (n=17) 

P1NP decreased by 7.9% (CI -14.0 to -1.9; p=0.003, paired t-test) at 10 minutes, and by 

0.18% (CI -20.6 to 21.0; p=0.20) at 60 minutes (n=5). CTX decreased by 6.2% (CI -12.2 to -0.2; 

p=0.04) at 10 minutes post WBV and by 9.4% (CI -21.1 to 2.2; p=0.08, not statistically 

significant) at 60 minutes post vibration (actual values Table 10). 

 

Within high magnitude group, first cycle of vibration (n=16) 

No change was seen in P1NP (decreased by 6.8%, CI -18.4 to 4.9; p=0.1) at 10 minutes, or at 

60 minutes (+6.04%, CI -9.2 to 21.3; p=0.78; n=6). Neither was there a change in CTX at 10 

minutes (n=16; 3.6% decrease observed, CI -9.9 to 2.8; p=0.2) or 60 minutes (2.6% decrease; 

CI -5.4 to 0.1; p=0.08; actual values Table 10). 

 

Changes across individual vibration cycles; Day 3 and Day 5 

On day 3 P1NP decreased pre to post vibration in the low magnitude group (n=11) by 17.5% 

(CI -22.6 to -12.5; p<0.001) and in the high magnitude group (n=10) by 13.3% (CI -20.2 to -

6.3; p=0.004). CTX decreased following WBV in the low magnitude group by 6.2% (CI -10.4 

to -2.1; p=0.007; n=11), but did not change in the high magnitude group (day 3: 3.4% 

decrease observed, CI -8.1 to 1.3 p=0.2; n=10; actual values Table 11).  

 

Day 5 showed a decrease following WBV in P1NP in the low magnitude group (n=5) of 15.9% 

(CI -20.2 to -6.3; p=0.008) and in the high magnitude group (n=4) of 10.6% (CI -20.2 to -0.9; 

p=0.05). CTX decreased following WBV in the low magnitude group by 8.1% (CI -10.3 to -5.7; 

p=0.004; n=5) and was unchanged in the high magnitude group (0.5% increase observed, CI 

-16.5 to 17.4; p=0.9; n=4; actual values Table 11). 

 

 Differences in bone marker responses between platforms 

There were no differences between the control and platform groups in the day 1 P1NP and 

CTX response to vibration (ANOVA and adjusted ANCOVA; table 11). There was also no 

difference between the platform groups in response to WBV on days 3 and 5 from 

immediately pre-vibration to 10 minutes after vibration (no control data collected) though 

as on day 1 within group changes were detected, as shown above. 
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Table 11 Mean bone turnover marker (P1NP, CTX) values pre and post WBV on days 1, 3, 5 

    Juvent (low magnitude) platform Galileo (high magnitude) platform Control# 

    n Mean SD p value n Mean SD p value n Mean SD p value 

P1NP 
ng/ml 

Day 1 pre 17 669.8 289.7 0.003 16 786.8 208.8 0.12 14 697.5 186.5 0.008 

Day 1 10 mins post 602.2 245.5 
  

715.4 191.6 
  

618.2 141.7 
 

Day 1 pre* 6 600.6 409.7 0.2 5 830.1 287.3 0.78 14 697.5 186.5 0.04 

Day 1 60 mins post 542.1 332.7 
  

813.6 249.4 
  

595.8 194.5 
 

Day 3 pre 11 703.2 184.4 <0.001 10 749.8 122 0.004 
 

- - 
 

Day 3 post 575.6 139.3 
  

646.8 103.8 
  

- - 
 

Day 5 pre 5 712.6 212.7 0.008 4 763.7 169.4 0.05 
 

- - 
 

Day 5 post 608.9 225 
  

681 145 
  

- - 
 

                          

CTx 
ng/ml 

Day 1 pre 17 1.83 0.56 <0.001 16 2 0.5 0.2 14 1.91 0.4 0.04 

Day 1 10 mins post 1.67 0.49 
  

1.93 0.5 
  

1.8 0.45 
 

Day 1 pre* 6 1.71 0.73 0.08 5 2.4 0.59 0.08 14 1.91 0.4 0.03 

Day 1 60 mins post 1.54 0.65 
  

2.34 0.56 
  

1.76 0.39 
 

Day 3 pre 11 1.89 0.51 0.007 10 1.93 0.3 0.2 
 

- - 
 

Day 3 post 1.76 0.47 
  

1.86 0.28 
  

- - 
 

Day 5 pre 5 1.91 0.66 0.004 5 1.99 0.16 0.9 
 

- - 
 

Day 5 post 1.76 0.62 
  

2.01 0.33 
  

- - 
 

                          

Mean pre and post WBV P1NP and CTx per intervention group for samples included in the paired t-test analysis of pre and post values on each day of sample 
collection 

SD - standard deviation, N - number of participant samples included in the analysis 

*Only participants allocated to 1 day of WBV or control group had blood collected at 60 minutes post WBV (or equivalent time in the control group);  these 6 
boys are a subgroup of the 17 measured on day 1, #Samples collected at 0, 30 and 90 minutes to correspond to pre, 10 and 60 minutes post  
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 Changes in bone turnover markers from baseline after 5 days of vibration 

In contrast to the decrease shown in the immediate pre to post WBV time period, boys 

exposed to 5 consecutive days of WBV (platform groups combined, n=11, measurements on 

day 8 vs baseline measurements) had a significant increase in P1NP of 25.1% (CI 12.3 to 

38.0; paired t-test p=0.005; Figure 9). No significant change was detected in the formation 

marker OCN (measured at day 1 and day 8 in the 5 day subjects only n=11; change +11.5% 

CI -8.3 to 31.2; p=0.2; Figure 9). At day 8, CTX was greater in the boys exposed to 5 days of 

WBV on both of the platforms than at baseline with an increase of 10.9% (CI 3.6 to 18.2; 

paired t-test p=0.009; Figure 9). 

 

   

 

Figure 9 Box and whisker plots illustrating the absolute values of P1NP (top left), osteocalcin (top 
right) and CTX (bottom left) at baseline and day 8 for boys exposed to 5 consecutive days of WBV 

 

P=0.005 

 

p=0.009  
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 OPG and Sclerostin 

OPG and sclerostin values for each participant are listed in Appendix 10. 

 

No changes were observed in OPG or sclerostin within or between groups at 10 or 60 

minutes post-vibration on day 1. Combining the platform groups and comparing to the 

control group did not alter the significance of the results. 

 

Within low magnitude group (n=6) 

No change was observed in OPG at 10 minutes post-vibration (decreased by 2.3%, CI -10.7 

to 6.1; p=0.5) or 60 minutes post-vibration (-0.8%, CI -8.0 to 6.5; p=0.8). Sclerostin similarly 

did not change (-5.7%, CI -15.8 to 4.4; p=0.2 and 1.1%, CI -8.4 to 10.6; p=0.6 at 10 and 60 

minutes respectively). 

 

Within high magnitude group (n=5) 

No response to WBV was observed in OPG or sclerostin within the high magnitude group. 

OPG change of -0.9% (CI -17.1 to 15.3; p=0.8) at 10 minutes and -6.6% (CI -21.1 to 7.8; 

p=0.2) at 60 minutes; sclerostin increased 3.9% (CI -15.5 to 23.3; p=0.5) at 10 minutes and 

+8.8% (CI -16.9 to 34.5; p=0.5) at 60 minutes. 

 

Within control group (n=14) 

The control group also did not show a change in OPG or sclerostin over the equivalent time 

period to the vibration groups. OPG change at 10 minutes of -5.3% (CI -12.6 to 1.9; p=0.1) 

and -3.5% (CI -11.6 to 4.6; p=0.3) at 60 minutes. Sclerostin was +3.3% (CI -8.8 to 15.4; p=0.9) 

and -2.8% (CI -11.1 to 5.4; p=0.2) at 10 and 60 minutes respectively. 

 

Change from baseline: Day 3 and 5 (platform groups both n=10) 

OPG and sclerostin were also measured pre-vibration on days 3 and 5. As in the immediate 

pre- to post vibration period, on day 3 and day 5 no change was detected in either 

biochemical marker. At day 3 OPG response was +3.2% (CI -8.0 to 14.4; p=0.5) in the low 

magnitude group and -4.8% (CI -12.4 to 2.7; p=0.7) in the high magnitude group, sclerostin 

response was +3.6% (CI -6.4 to 13.5; p=0.3) and +3.6% (CI -4.1 to 11.3; p=0.5) respectively.  



 

98 
 
 

 

On day 5 OPG change was +0.7% (CI -8.3 to 9.7; p=0.6) and -2.9% (CI -10.8 to4.9; p=0.9) and 

sclerostin +11.1% (CI -3.4 to 25.6; p=0.3) and -1.9% (CI -8.1 to 4.4; p=0.1) in the low and high 

magnitude groups.  

 

Change from baseline: Day 8 (platform groups combined n=11) 

OPG showed a trend for an increase of 7.2% (CI -1.4 to 15.8; p=0.08) on day 8 compared to 

baseline (Figure 10).  No change was detected in sclerostin (+8.2%, CI -5.65 to 21.88; p=0.3). 

 

Together with no within group difference in OPG and sclerostin, no difference was detected 

at any time point between groups.  

 

    

Figure 10 Boxplots illustrating the absolute values OPG (left) and Sclerostin (right) at baseline and 
day 8 for boys exposed to 5 consecutive days of WBV 

 

 

 Thermal Imaging 

Thermal images were captured on 7 boys (randomly selected) in the control group and on 

all boys exposed to 1 day only of vibration (n=12). However it was not possible to compare 

images in 2 of the boys due to difficulties in marking the outlines of the regions of interest, 

and these were excluded from the analysis. Images therefore were analysed on 5 boys 

exposed to each of the vibrating platforms and 7 boys from the control group. The change in 
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skin surface temperature pre- to post vibration ranged from -1oC to 1.6oC (mean 0.3oC, CI -

0.4 to 1.1) in the control group, 1.4oC to 4.2oC (mean 2.9oC, CI 1.5 to 4.4) in the high 

magnitude group, and 0.2oC to 2.8oC (mean 0.9oC, CI -0.4 to 2.3) in the low magnitude 

group. There was a significant difference in the response of the boys in the high magnitude 

group compared to the control (p=0.002) and low magnitude groups (p=0.02; ANOVA, 

bonferroni post hoc test). In addition, when visually assessing the pre and post images, a 

difference in the temperature distribution was seen in the boys exposed to the high 

magnitude platform that was not seen in the control or low magnitude groups (Figure 11). 

 

 Adverse Events 

WBV was well tolerated by the study participants. Minimal side effects were reported; 

itching or “weird feeling” in the calves or legs (high magnitude), tickling sensation in the feet 

(low magnitude) and anxiety in relation to cannulation. In all cases these resolved on or 

shortly after completion of the WBV. At this time it is not clear the exact number of 

participants who experienced these side effects as the study documentation where this was 

recorded has been destroyed in line with the study sponsor requirements (5 years from the 

end of study completion). However from recall less than half of the participants reported 

any side effects. 
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a)        

b)        

Figure 11 a) Thermal images taken immediately before (left panels) and after (right panels) vibration 
in the Juvent (top), Galileo (middle), and control (bottom) groups. b) Boxplots showing comparison 
of the pre- to post-vibration temperature change between the groups 
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7.2. Study 2 – Acute Response of Bone to whole Body vibration in Pre-Pubertal 
Boys with a History of Fracture 

 

 Baseline Characteristics 

Twenty boys consented to participate in study 2. As with study 1 no participants were 

siblings and none of the boys reported current or recent use of oral steroids for asthma. 

Two withdrew, 1 due to refusing to have blood samples taken after consent had been 

obtained; 1 due to difficulties cannulating on day 1. Data was not collected on these 2 

participants. Due to difficulties in recruitment (discussed in Chapter 9) the target of 24 was 

not reached. A decision was made following statistician advice that sufficient data was 

collected from 18 boys to answer the hypothesis and to end the study prior to reaching the 

target. A statistically significant result was seen at day 8 in 11 data sets in study 1; complete 

data at day 8 was collected in 15 boys in study 2 (due to difficulties in cannulation samples 

were not collected from 3 participants). 

 

The baseline characteristics between the Juvent and Galileo groups appear to be similar 

(Table 12) although the Juvent group were slightly older. The activity scores were almost 

identical but in both groups the standard deviation is large. Similar P1NP and CTX scores 

were seen in the groups however the standard deviation in the Juvent group was larger than 

that of the Galileo group.  
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Table 12 Baseline characteristics by platform 

  
Low magnitude platform 

n=10 
  

High magnitude platform 
n=8 

  

  Mean SD n   Mean SD n   

Age (years) 11.1 1.41 10   10.3 1.20 9   
Height (cm) 146.3 10.46 10 

 
144.0 5.93 7 

 
Weight (kg) 39.8 11.12 10 

 
39.5 7.59 7 

 
Body Mass Index (kg m2) 18.3 3.65 10 

 
19.0 3.18 7 

 
Activity score (METS units) 64.7 25.90 10 

 
64.8 27.68 8 

 
P1NP Day 1 pre (ng/ml) 595.4 203.71 10 

 
577.9 72.70 8 

 
CTX Day 1 pre (ng/ml) 1.9 0.45 10 

 
2.02 0.13 8 

 
OPG Day 1Pre (pmol/L) 3.79 0.69 9 

 
4.47 0.57 8 

 
Sclerostin Day 1 Pre (pmol/L) 33.01 7.55 9 

 
41.33 15.78 8 

 
 Median Range n  Median Range n  
Months since last fracture  17.5 6-39 8  9 6-44 8  
History of>1 fracture - - 5  - - 3  
SD= standard deviation, n= number of participants     

METS: metabolic equivalents                 

P1NP: pro-collagen type 1 N-terminal propeptide 

OCN: osteocalcin 

        CTX: C-terminal cross-linked telopeptide of type 1 collagen 

OPG: osteoprotegerin 

        SCL: sclerostin                 

 

Type and severity of fractures 

Thirty-two episodes of trauma resulted in 41 fractures for the 18 boys (at least 6 months 

prior to study inclusion). Of the 18 boys, 10 boys had 1 episode of trauma resulting in a 

fracture or fractures, 3 had 2 episodes of trauma, 4 had 3, and 1 had 4. More fractures 

occurred in the wrist (20 out of 41) than at any other site. In total 32 fractures occurred in 

the upper limbs including the hand and fingers, 8 occurred in lower limbs including the feet 

and toes with 1 other (nose). The severity of trauma was classified as mild for 19 of the 

episodes, moderate for 11 and not recorded for 2. The 19 mild episodes of trauma 

accounted for 22 of the fractures and the 11 moderate episodes accounted for 17.  

 

Table 13 Number of trauma episode and fractures by platform 

  
Low magnitude 

platform 
High magnitude 

platform 

Mild trauma episodes 10 9 

Moderate trauma episodes 8 3 

Number of fractures 26 15 

Trauma severity not recorded for 2 episodes   
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Baseline characteristics comparing study 1 to study 2  

Only data from the boys in study 1 who were exposed to 5 days of WBV has been used as 

the comparison for the data collected in study 2 due to comparable vibration exposure. 

Table 14 shows the baseline characteristics for the fracture and non-fracture groups split by 

platform. Within the fracture and non-fracture groups the baseline characteristics were 

similar across the low and high magnitude platforms. The exceptions to this were sclerostin 

and OPG. The baseline sclerostin in the non-fracture group was lower in the boys exposed to 

the low magnitude platform compared to the high magnitude platform (mean 22.16 [SD 

2.46] versus 27.01 [SD 3.94] p=0.04). In the fracture groups OPG was lower in the boys 

exposed to low magnitude platform (mean 3.79 [SD 0.67] versus 4.47 [0.57] p=0.04). Due to 

the similarities between the platforms within both the fracture and non-fracture groups, the 

platform data were combined so that analysis was made between the fracture and non-

fracture groups.  



 

 
 
 

1
0
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Table 14 Baseline characteristics by platform, fracture and non-fracture groups exposed to 5 days of WBV 

    

  Non fracture   Fracture 

  
Low magnitude 

platform n=6 
  

High magnitude 
platform n=6 

  
Low magnitude 
platform n=10 

  
High magnitude 
platform n=10 

  Mean SD n   Mean SD n   Mean SD n   Mean SD n 

Age (years) 9.9 0.36 6   10.1 0.33 6   11.1 1.41 10   10.3 1.20 9 

Height (cm) 139.4 4.91 6 
 

143.2 4.74 6 
 

146.3 10.46 10 
 

144.0 5.93 7 

Weight (kg) 35.1 3.83 6 
 

36.7 4.44 6 
 

39.8 11.12 10 
 

39.5 7.59 7 

Body Mass Index (kg m2) 18.1 2.1 6 
 

17.8 1.8 6 
 

18.3 3.65 10 
 

19.0 3.18 7 

Activity score (METS units) 87.7 27.18 6 
 

81.5 19.29 6 
 

64.7 25.90 10 
 

64.8 27.68 8 

P1NP Day 1 pre (ng/ml) 691.2 238.91 6 
 

742.68 121.42 6 
 

595.4 203.71 10 
 

577.9 72.70 8 

CTX Day 1 pre (ng/ml) 1.9 0.46 6 
 

1.8 0.24 6 
 

1.9 0.45 10 
 

2.02 0.13 8 

OPG Day 1Pre (pmol/L) 3.4 0.45 5 
 

3.66 0.65 6 
 

3.79 0.69 9 
 

4.47 0.57 8 

Scl Day 1 Pre (pmol/L) 22.2 2.46 5 
 

27 3.94 6 
 

33.01 7.55 9 
 

41.33 15.78 8 

SD= standard deviation, n= number of participants                   

METS: metabolic equivalents         
P1NP: pro-collagen type 1 N-terminal propeptide 

    CTX: C-terminal cross-linked telopeptide of type 1 collagen 

    OPG: osteoprotegerin 

               SCL: sclerostin                               
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When comparing the boys with a history of fracture and the non-fracture groups, the non-

fracture boys had a higher activity score (84.6 [SD 22.7] versus 64.7 [SD 25.9] p=0.04), higher 

P1NP (716.9 [SD 182.7] versus 587.6 [SD 155.7] p=0.05), lower OPG (3.55 [SD 0.55] versus 

4.11 [SD 0.67] p=0.03, and lower sclerostin (24.01 [SD 4.07] versus 36.92 [SD 12.48] 

p=0.001) at baseline (table 15 and figure 12). The difference in age between the fracture 

and non-fracture groups did not reach significance. No difference in CTX was observed 

between the groups. 

 

Table 15 Baseline characteristics by fracture and non-fracture groups exposed to 5 days of WBV 

  Non Fracture Fracture         

  Mean SD n Mean SD n 
Mean 

Difference 
95% CI 
lower 

95% CI 
upper 

p 
value 

Age (years) 10.0 0.35 12 10.7 1.34 19 0.66 -1.34 0.08 0.053 
Height (cm) 141.3 5.02 12 145.4 8.72 17 4.06 -9.81 1.69 0.16 
Weight (kg) 35.9 4.05 12 39.7 9.58 17 3.81 -9.19 1.57 0.16 
Body Mass 
Index (kg m2) 18 1.85 12 18.6 3.38 17 0.63 -2.65 1.38 0.52 
Activity score 
(METS units) 84.6 22.70 12 64.7 25.90 18 19.86 1.01 38.71 0.04 
P1NP Day 1 
pre (ng/ml) 716.93 182.67 12 587.63 155.65 18 129.3 1.97 256.62 0.047 
CTX Day 1 pre 
(ng/ml) 1.86 0.36 12 1.95 0.34 18 0.09 -0.36 0.18 0.49 
OPG Day 1Pre 
(pmol/L) 3.55 0.55 11 4.11 0.67 17 0.56 -1.08 -0.05 0.033 
SCL Day 1 Pre 
(pmol/L) 24.01 4.07 11 36.92 12.48 17 12.12 -18.92 -5.32 0.001 

SD= standard deviation, n= number of participants       

METS: metabolic equivalents       

P1NP: pro-collagen type 1 N-terminal propeptide 

   CTX: C-terminal cross-linked telopeptide of type 1 collagen 

   OPG: osteoprotegerin 

   SCL: sclerostin       
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Figure 12 Boxplots illustrating baseline characteristics by fracture and non-fracture groups 

 

Correlation of baseline characteristics 

No correlation was found between age, height, weight, or activity score and P1NP. Though 

there was positive correlation between P1NP and CTX (r=0.598; p=0.03) at baseline. A 

positive correlation was also found between CTX and age (r=0.519; p=0.03) but no other 

baseline characteristics. A negative correlation between P1NP and weight (r=-0.33; p=0.08) 

p=0.053 

 
 

p=0.04 

p=0.047 p=0.03 

 

p=0.001 
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and a positive correlation between sclerostin and height (r=0.339; p=0.08) did not reach 

statistical significance. 

 

 Changes from baseline after 5 days of vibration 

Values of P1NP, CTX, OPG and sclerostin for each participant are listed in Appendix 11. 

 

There was no change in P1NP at day 8 (following 5 days of WBV) from baseline in boys with 

a history of fracture according to mode of vibration: low magnitude -0.3% (CI -7.0 to 6.4; 

paired t-test p=0.9; n=9), high magnitude 3.7% (CI -16.1 to 23.5; paired t-test p=0.7; n=6). 

However there was a difference in the response of P1NP between the fracture and non-

fracture groups (figure 13). The boys without prior fracture (n=11) had a significant increase 

in P1NP of 25% (CI 12.3 to 38.0; paired t-test p=0.005) compared to 1.3% (CI -6.0 to 8.6; 

paired t-test p=0.8; n=15) in the boys with a history of fracture (mean difference 23.8; CI 

10.8 to 36.9; independent samples t-test p=0.001). 

 

CTX showed a similar trend with no change at day 8 from baseline in the low magnitude 

fracture group (-1.7%; CI -6.2 to 2.7; paired t-test p=0.5; n=9) or high magnitude fracture 

group (0.5%; -21.3 to 22.2; paired t-test p=0.9; n=6). As with the formation marker a 

difference in the CTX response of healthy boys (+10.9% 3.6 to 18.2; paired t-test p=0.009, 

n=11) compared to the boys with a history of fracture (-0.9%; CI -8.2 to 6.5; paired t-test 

p=0.9; n=15) was observed (mean difference 11.8%, CI 1.7 to 21.8; independent samples t-

test p=0.02). The difference between the fracture and non-fracture groups in both P1NP and 

CTX remained after adjusting for baseline P1NP/CTX, age, and activity score. 
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Figure 13 Boxplots illustrating the absolute values of P1NP (top left) and CTX (top right) on days 1, 8, 
and 12 of WBV in boys with a history of fracture (study 2), and percentage change in P1NP (bottom 
left) and CTX (bottom right) from baseline at day 8 by fracture and non-fracture group 

 

 Change from baseline at day 12 

At day 12 there was no change from baseline in P1NP in the boys with a history of fracture 

(0.33%; CI-7.82 to 8.49; p=0.7; n=17). According to mode of vibration the change observed 

in P1NP was -0.8% (CI -13.0 to 11.4; paired t-test p=0.5; n=10) in the low magnitude group 

and 2.0% (CI -12.0 to 16.1; paired t-test p=0.8; n=7) in the high magnitude group. The 

response was not different between the two groups. P1NP was not measured at day 12 in 

the non-fracture group so no comparison can be made.  

 

As with P1NP there was also no change in CTX at day 12 (-5.04%; CI -11.49 to 1.41; p=0.07) 

However when split by platform group CTX decreased by 7.4% (CI -15.4 to 0.6; paired t-test 

p=0.02; n=10) in the low magnitude group but was not changed in the high magnitude 

group (-1.6%; CI 14.9 to 11.8; paired t-test p=0.8; n=7). No difference in response between 

p=0.001 

  

p=0.02 
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the two platforms groups was observed. CTX was not measured in the non-fracture group at 

day 12. 

 

 Bone turnover markers – changes across individual cycles of vibration 

Within fracture group 

Day 1 

Looking at the data from boys with a history of fracture only, on day 1 P1NP decreased pre-

to 10 minutes post WBV in the low magnitude group (n=9) by 11.5% (CI -20.65 to -2.32; 

paired t-test p=0.04) with no change in the high magnitude group (n=8; 6.8% decrease 

observed, CI -15.59 to 1.95; p=0.1). CTX also decreased following WBV by 10.0% (CI -14.76 

to -5.30; p=0.001) in the low magnitude group and by -6.4% (CI -12.01 to -0.78; p=0.03) in 

the high magnitude group. There was no difference in the response of P1NP or CTX to WBV 

between the platform groups.  

 

   
 

Figure 14 Boxplots illustrating P1NP and CTX pre- to 10 minutes post-WBV on day 1 by platform 

 

Day 3 

On day 3 pre-to post WBV P1NP decreased by 19.4% (CI -27.78 to -11.11; p=0.02) in the low 

magnitude group (n=10) and by 10.5% (CI -18.44 to -2.54; p=0.02) in the high magnitude 

group (n=6). CTX decreased by 12.7% (CI -16.29 to -9.13; p<0.001) in the low magnitude 

group and by 7.6% (CI -11.07 to -4.04; p=0.002) in the high magnitude group. Whilst there 

was no difference in the response of P1NP to WBV between the platform groups, there was 

p=0.04 

 

 
p=0.001 

 

p=0.03 
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a significant difference in the response of CTX between the groups (mean difference -5.2%, 

CI -10.13 to -0.19; p=0.04). 

 

   

Figure 15 Boxplots illustrating P1NP and CTX pre- to 10 minutes post-WBV on day 3 by platform 

 

Day 5 

On day 5 there was no change in P1NP in the low magnitude group (observed decrease of 

8.0%, CI -31.83 to 15.92; p=0.2; n=6), there was an observed decrease of 9.5% in the high 

magnitude that approached significance (CI -19.93 to 0.99; p=0.07; n=6). CTX decreased by 

8.1% (CI -15.51 to -0.71; p=0.05) in the low magnitude group and by 9.0% (CI -11.90 to -6.07; 

p=0.002) in the high magnitude group. As with day 1 there was no difference in the 

response of P1NP and CTX to WBV between the platform groups. 

 

   

Figure 16 Boxplots illustrating P1NP and CTX pre- to 10 minutes post-WBV on day 5 by platform 

 

 
 

 
 

 
 

p=0.02 

p=0.02 

p<0.001 p=0.002 

 
 

p=0.05 p=0.002 
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Between groups fracture versus non-fracture 

Day 1 

In the non-fracture group there was no change in P1NP (observed decrease of 3.6%, CI -

14.01 to 6.71; p=0.3; n=10) on day 1, and a decrease of 9.3% (CI -15.05 to -3.54; p=0.01) in 

the fracture group (n=17). There was also no change in CTX in the non-fracture group 

(observed decrease of 3.0%, CI -9.82 to 3.89; p=0.2) with a decrease of 8.3% (CI -11.66 to -

4.98; p<0.001) in the fracture group. There was no difference in the response between the 

fracture groups in either P1NP or CTX on Day 1 (Table 16). 

 

Day 3 

On Day 3 P1NP in the non-fractures (n=10) decreased by 17.8% (CI -24.74 to -10.88; 

p=0.001) and in the fractures (n=16) by 16.1% (CI -21.94 to -10.24; p=0.005). There was also 

a decrease in CTX in both groups, the non-fracture group decreased by 6.4% (CI -10.82 to -

1.94; p=0.01) and fracture group decreased by 10.8% (CI -13.47 to -8.09; p<0.001). Whilst 

there was no difference between the groups in the response of P1NP to WBV, CTX showed a 

near significant between group difference (mean difference 4.4%, CI -0.19 to 8.98; p=0.06). 

 

Day 5  

Both groups had a decrease in P1NP pre to post WBV on day 5, the non-fracture group (n=9) 

decreased by 13.6% (CI 19.81 to -7.29; p<0.001) and fracture group (n=12) decreased by 

8.7% (CI -19.36 to 1.94; p=0.03). There was no change in CTX in the non-fracture group 

(observed decrease of 4.3% (CI -10.41 to 1.92; p=0.2) and a decrease in the fracture group of 

8.5% (CI -11.81 to -5.29; p<0.001). As on day 1 there was no difference between the groups 

in the response of P1NP or CTX. 

 

Pre WBV bone turnover marker values 

Pre WBV P1NP and CTX was not different on days 1, 3, and 5 within either the non-fracture 

or fracture groups or the 2 groups combined, any pre- to post-vibration changes observed 

had returned to baseline by the next time point. In the fracture boys the mean (SD) P1NP on 

day 1 was 567.4ng/ml (136.9), 574.7ng/ml (146.3) on day 3 and 549.0ng/ml (166.0) on day 5 

(ANOVA, n=13; p=0.5). For the non-fracture boys this was 707.5ngml (198.7) on day 1, 
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729.9ng/ml (189.0) on day 3 and 735.3ng/ml (184.7) on day 5 (ANOVA, n=9; p=0.8). CTX in 

the fracture boys was 1.86ng/ml (0.34) on day 1, 1.94ng/ml (0.28) on day 3 and 1.87ng/ml 

(0.39) on day 5 (ANOVA, n=13; p=0.5). In the non-fracture group CTX was 1.87ng/ml (0.39) 

on day 1, 1.95ng/ml (0.34) on day 3 and 1.95ng/l (0.48) on day 5 (ANOVA, n=9; p=0.7). No 

difference in pre-vibration values was observed over the three time points when compared 

by platform or fracture groups. 

 

Table 16 Changes pre- to post-vibration on days 1, 3, and 5 

    Non Fracture Fracture 

  
n  Mean SD p value n Mean SD p value 

P1NP 
ng/ml 

Day 1 pre 10 698.5 189.5 0.3 17 572.4 146.0 0.01 

Day 1 10 mins post 10 658.0 144.5 
 

17 513.5 122.5 
 Day 3 pre 10 728.8 178.8 0.001 16 611.6 204.5 0.005 

Day 3 10 mins post 10 596.0 142.1 
 

16 502.2 129.8 
 Day 5 pre 9 735.3 184.7 <0.001 12 516.3 161.2 0.03 

Day 5 10 mins post 9 640.9 186.1 
 

12 460.8 108.1 
 

CTX 
ng/ml 

Day 1 pre 10 1.83 0.39 0.2 17 1.96 0.35 <0.001 

Day 1 10 mins post 10 1.76 0.29 
 

17 1.79 0.31 
 Day 3 pre 10 1.93 0.34 0.01 16 1.96 0.34 <0.001 

Day 3 10 mins post 10 1.8 0.32 
 

16 1.75 0.3 
 Day 5 pre 9 1.95 0.48 0.2 12 1.83 0.38 <0.001 

Day 5 post 9 1.87 0.5   12 1.66 0.29   

 

 OPG and Sclerostin 

There was no change in OPG at day 8 (+5.9%; CI -3.4 to 15.2; paired t-test p=0.2, n=14) or 

day 12 (-1.2%; CI -8.4 to 6.0; p=0.6, n=16) from baseline in the boys with a history of fracture 

(Figure 17). Similarly there was no change in sclerostin from baseline at day 8 or day 12 

(+4.3%; CI -8.1 to 16.6; paired t-test p=0.7, n=14 and +5.4%; CI -6.7 to 17.4; p=0.7, n=16 

respectively). No change was observed either within or between platform groups. This was 

similar to the lack of response seen in the healthy boys at day 8 from study 1. 

 

 Adverse Events 

As with Study 1, WBV was well tolerated by the study participants. Nine boys reported a 

total of 18 adverse events during WBV. Itching in the legs, feet and ankles (3 boys in the 

high and 1 boy in the low magnitude group), feet tingling (1 boy high magnitude), “pins and 
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needles” in the legs (1 boy high magnitude), feeling faint and/or dizzy (4 boys low 

magnitude), and feeling sick (3 boys low magnitude) were reported. Itching and tingling was 

reported on more than one occasion for 4 of the 5 boys. The 3 boys who reported feeling 

sick also reported feeling faint and/or dizzy, this was once only for each boy. One boy 

reported feeling dizzy much later in the day so it is not clear if this was related to the WBV. 

In all cases any adverse events resolved on completion of, or shortly after the completion of, 

the WBV session. All participants were happy to continue with the study. 

 

        
 

   

 

     

Figure 17 Boxplots illustrating the absolute values of OPG (top left) and Sclerostin (top right) at 
baseline, day 8 and day 12 in boys with a history of fracture (study 2), and percentage change in OPG 
(bottom left) and sclerostin (bottom right) from baseline at day 8 by fracture and non-fracture 
groups 
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7.3. Summary of findings 
 

In the boys with no prior fracture P1NP and CTX decreased over time in the control group, at 

10 minutes post WBV only in the low magnitude group but not in the high magnitude group. 

On days 3 and 5 P1NP decreased pre- to post WBV in both intervention groups whilst CTX 

decreased in the low magnitude group only. No difference between group responses was 

detected. In contrast to the immediate pre- to post WBV periods, by day 8 boys exposed to 

5 consecutive days of WBV (low and high magnitude groups combined) showed a significant 

increase in both P1NP and CTX. No within or between groups difference was detected in 

OPG or sclerostin at any time point, though there was a trend for an increase in OPG on day 

8 (low and high magnitude groups combined). 

 

In boys with a history of fracture P1NP decreased pre to post WBV on day 1 in the low 

magnitude group but not the high magnitude group, on day 3 it decreased in both groups, 

whereas no change occurred in either group on day 5. No difference was observed between 

the group responses. CTX decreased in both groups on days 1, 3 and 5, with a decrease that 

was greater in the low magnitude group on day 3. No change was observed in P1NP at days 

8 or 12, or in CTX at day 8, however there was a trend for a decrease in CTX at day 12. In 

accord with the boys with no prior fracture, no change was detected in OPG or sclerostin. 

 

When comparing groups by fracture history (platform groups combined) P1NP decreased in 

the fracture group on days 1, 3 and 5, and on days 3 and 5 in the non-fracture boys; the 

response was not different between the groups.  CTX also decreased on each of the 3 days 

in the fracture group, but only on day 3 in the boys with no prior fracture. There was a trend 

for a greater decrease in the fracture group on day 3, but no difference between groups on 

days 1 or 5. On day 8 the response of both P1NP and CTX was markedly different between 

the 2 groups with an increase in both bone turnover markers in boys with no prior fracture 

that was not seen in those with a history of fracture.  
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8. Discussion  
 

Five consecutive days of WBV in the boys without a history of fracture (low and high 

magnitude groups combined) increased the bone formation marker P1NP by 25.1% and 

bone resorption marker CTX by 10.9% between baseline and day 8. The second formation 

marker osteocalcin was unchanged. OPG showed a trend towards an increase over the same 

time period and should be associated with reduced bone resorption which was not seen in 

our results. Sclerostin, a key inhibitor of bone formation, was unchanged at day 8 and is 

likewise unable to explain our observation of increased P1NP. This study demonstrates that 

WBV provides a relatively quick and easy means to measure and assess the response of 

bone to loading in a paediatric population.  

 

In our second study, boys with a history of fracture demonstrated no response in bone 

turnover markers to mechanical stimulation at day 8. At day 12 however there was a trend 

for a decrease of 5% in the bone resorption marker CTX. No change was observed in P1NP 

or the associated bone factors OPG and sclerostin. This difference in response of bone to 

WBV in boys with and without a history of fracture is a novel finding showing that 

apparently healthy pre-pubertal boys with a history of fracture do not respond to loading in 

the same way as those who have not fractured.  

 

Differences between the 2 groups were also observed in the biochemical markers at 

baseline. P1NP was 20% lower, whilst OPG and sclerostin were 15% and 50% higher 

respectively in the boys with a history of fracture. CTX was not different between the 2 

groups. The higher level of sclerostin may have made the boys less receptive to the anabolic 

effect of loading on bone which was shown by change in P1NP at day 8 and may partly 

explain why boys with a history of fracture do not respond to loading in the same way as 

those who have not. However sclerostin does not appear to be the regulator of the bone 

formation response here following WBV. The same level of bone resorption (CTX), with a 

reduced level of bone formation (P1NP) detected at baseline in the boys with a history of 

fracture, could be indicative of reduced bone accrual in this population. This in combination 
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with the reduced response to loading could to some extent explain increased fracture 

susceptibility in some children. 

 

The response to loading observed in the biochemical markers was not altered by magnitude 

of WBV. However change in skin surface temperature following WBV was different between 

groups; the high magnitude side-alternating platform group had a greater increase in skin 

surface temperature than the low magnitude synchronous platform and control groups 

(increase of 10%, 2.8% and 1.1% respectively). It is not clear if bone responds to vibration 

directly within the bone tissue or indirectly via musculoskeletal forces. An increase in skin 

surface temperature, a surrogate measure of muscle activation, would suggest the latter. 

Nevertheless the increase in bone turnover markers seen in both platform groups would 

suggest muscle activation is not a prerequisite for bone to respond to mechanical 

stimulation. 

 

 

8.1. Difference in response of boys with and without a history of fracture 
 

Whilst the difference in response of bone turnover markers in boys with and without a 

history of fracture has been clearly shown by our data, the reason for the difference is not 

so easily explained. In our cohort the boys were exposed to vibration as recently as 6 

months and up to 3.5 years post fracture and we cannot be certain that the reduced 

response to loading would have been the same prior to their fractures. We cannot discount 

that the reduced loading response is as a result of sustaining a fracture(s) rather than a 

contributing factor to fracture. Participants were required to be at least 6 months post 

fracture at the time of vibration to limit any possibility of ongoing fracture healing altering 

the bone response to loading or obscuring changes in bone turnover marker levels. P1NP 

and CTX are known to be elevated post fracture peaking at 4 and 12 weeks (CTX and P1NP 

respectively) before decreasing, levels may nonetheless remain elevated for up to a year 

(277, 278). At baseline CTX was not different between our fracture and non-fracture groups 

and P1NP was in fact lower in the fracture group. It is therefore unlikely that fracture 

healing could be the cause of the difference in bone turnover marker response between the 

2 groups. 
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Physical activity has an anabolic effect on bone shown repeatedly in studies measuring bone 

size, mass and strength. In our cohort, the boys who had experienced fracture(s) were less 

physically active in the week prior to WBV. It is possible that this is the cause of lower bone 

formation (P1NP) in this group at baseline. In a cross-sectional study of habitual physical 

activity in preadolescent girls P1NP was found to be higher in those who undertook higher 

levels of physical activity compared to lower levels of physical activity (18,695 +/-1244 and 

7633 +/-1099 steps a day respectively) (148). The boys were asked to maintain their normal 

level of physical activity during their exposure to WBV. If the boys without a history of 

fracture continued to be more active over the vibration period (concurrent physical activity 

was not measured), this in combination with the 5 days of vibration could have resulted in 

the increase seen in P1NP at day 8. However Humphries et al (97) in their study of healthy 

young women found no difference after 16 weeks in either bone outcomes measured by 

DXA or serum bone markers between WBV only and WBV plus resistive exercise groups, 

suggesting that additional exercise may not explain the difference in response seen in our 

study. 

 

The trend towards a decrease in bone resorption of 5% at day 12 but lack of response at day 

8 might suggest that the response of bone to WBV takes longer to reach the level of 

significance in boys with a history of fracture. Additionally the increase in CTX of 10.9% seen 

at day 8 (it was not measured at day 12) in boys with no prior fracture is a response of 

greater magnitude, suggesting that these boys may not only respond more quickly but also 

be more receptive to the vibration signal than those with a history of fracture. The direction 

of response also differed with the fracture group response indicating a decrease in 

resorption activity. The reduction in CTX with absence of change in P1NP could be indicative 

that in boys with a history of fracture bone responds to WBV by slowing down remodelling 

activity. In the boys with no prior fractures increases in both CTX and P1NP were observed, 

due to the short period of time it is unlikely formation change is a result of remodelling 

activity, but would reflect instigation of independent pockets of bone modelling in response 

to WBV. Either way bone turnover response indicates a positive effect of WBV on bone. As 

no change was observed in bone formation in the boys with a history of fracture it could be 

suggested that WBV serves the purpose of preventing bone loss in this population as 
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opposed to prompting bone formation. However, as the response of CTX in the boys with a 

history of fracture was not conclusive, the result did not reach significance, this is only 

speculation and needs further investigation. Therefore it is also possible that 5 days of WBV 

was not sufficient time to elicit a response in this group. 

 

Alternatively the magnitude of the load may not have been sufficient to produce a response 

in boys with a history of fracture. We compared two different magnitudes of vibration, 0.3g 

in the Juvent groups (low) and 6.4g in the Galileo groups (high), a difference in response 

between the low and high magnitude vibration groups both in and between boys with and 

without a history of fracture was not observed. Other studies comparing different 

magnitudes of vibration have similarly been unable to establish a difference in response of 

bone turnover markers to magnitude of vibration. Data from older adults exposed to 

different levels of high magnitude vibration (Galileo platform at 3.6g or Powerplate platform 

at 1.5g) 3 times a week for 12 weeks, demonstrated increases in P1NP of 35% and 26% 

respectively that was not different between platform groups (132). Similarly Elmantaser et 

al 2012 (133) did not report a significant difference in response of CTX in a high magnitude 

group (Galileo, 3.8g) compared to a low magnitude group (Juvent, 0.3g) following 8 weeks of 

WBV in healthy adult males. This is despite a decrease in CTX in the Galileo group but not in 

the Juvent group. We also observed in a decrease in CTX of 7.4% in the Galileo group that 

was not present in the Juvent group (day 12 in boys with a history of fracture only) and 

likewise the response between the 2 groups was not different. Whilst our data also did not 

show a significant difference between the platform groups at day 8 (or any time point other 

than in CTX pre- to 10 minutes post- WBV on day 3), the data at this time point does suggest 

that the boys exposed to the high magnitude platform (both fracture and non-fracture 

groups) may have had a greater percent increase in P1NP than those exposed to the low 

magnitude platform (4% and 5.2% greater increase in boys with and without history of 

fracture respectively). A similar effect at 12 weeks (9% greater effect in the high magnitude 

group) was observed by Corrie et al (132). With larger sample sizes, the above 2 adult 

studies only had 60 and 10 participants respectively, a difference between platform groups 

and therefore vibration magnitude might become apparent.  
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Chapter 5 highlights a number of factors associated with fractures and fracture risk that may 

be pertinent to the different response to vibration seen here in boys with and without a 

history of fracture. All the boys in our studies were pre-pubertal, Tanner stage 1, so 

differences in stage of puberty and/or growth cannot explain the difference in response 

between our 2 groups; height and weight were similar between the groups. Also discussed 

in Chapter 4 there is much evidence to support an association of pubertal-stage and bone 

accrual following exercise, it is possible that a similar effect could occur on response to WBV 

loading. With a larger sample size it would be appropriate to consider level of trauma 

resulting in fracture and the response to WBV. Farr et al (230) have suggested that children 

who fracture following mild trauma have stronger evidence of bone fragility than those who 

have not fractured. It could be in this group of children specifically that the response to 

mechanical stimulation is attenuated. Other factors known to affect fracture risk such as 

dietary, environmental and genetic factors were not measured in our cohort and therefore 

cannot be ruled out as possible influences on group differences. 

 

The suggested association of low serum Vitamin D and fracture risk discussed in Chapter 5, 

is further supported by Borg et al (279) who demonstrated in a murine model that vitamin D 

deficiency in early life leads to decreased bone strength. Additionally they found evidence of 

a reduced response of growing bone to mechanical loading with effects continuing into 

adult life. Work by a colleague within the Academic Unit of Child Health, Sujatha Gopal, 

looking at the effect of WBV in 4-5year children whose mothers were given Vitamin D 

supplementation or placebo is just completed and due to be presented at the International 

Conference on Children’s Bone Health in June 2019. This cohort of patients were recruited 

from the MAVIDOS study which has demonstrated that children born in winter months 

(December to February) to mothers who received Vitamin D supplementation during 

pregnancy had greater BMC, whole body area and BMD (mean difference 5.5g, 11.5cm2, and 

0.01g/cm2 respectively) at birth than those born to mothers who received placebo (248). 

Even at 9 years of age maternal serum Vitamin D deficiency/insufficiency, reduced 

ultraviolet-B exposure and lack of Vitamin D supplementation in late pregnancy are 

associated with reduced whole body BMC, BA and BMD, and LS BMC and BMD (249). Taken 

with the observations by Borg et al early life Vitamin D deficiency if present may in part 
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explain the reduced response to loading seen in our fracture cohort. Of interest more boys 

in the fracture group were exposed to WBV during the months of December to May when 

there is a greater risk of serum Vitamin D insufficiency in British children (280, 281) than in 

the non-fracture group (10 out of 17 boys, and 5 out of 11 respectively). However neither 

maternal Vitamin D status at birth nor participant Vitamin D were measured in our cohort 

and therefore cannot be confirmed or disputed as the cause of reduced response to loading 

in boys with a history of fracture.  

 

 

8.2. Day 8 change in boys without prior fracture 
 

The greater increase over the eight day period in the formation marker as opposed to the 

resorption marker (in the boys with a history of fracture only) suggests that there is an 

uncoupling of bone turnover in favour of formation in response to vibration. These changes 

are consistent with the reported effects of increased activation of the canonical wnt-

signalling pathway through LRP5/6 where bone formation is increased and there is 

increased osteoblastic expression of osteoprotegerin. Our data indicated this with a trend 

towards an increase in OPG in the boys without a history of fracture. However increased 

expression of OPG should also be associated with reduced bone resorption which is not 

confirmed by our CTX results. 

 

Only a small number of studies have investigated the response of bone turnover markers to 

WBV in a paediatric population. In girls with low bone density an increase in BSALP of 16.6% 

was detected following 8 weeks of WBV (138), similar to the increase in our healthy boys. 

Two paediatric studies, one in children with Duchene’s Muscular Dystrophy and another in 

children with severe motor disability where WBV occurred over 3-6 months, were unable to 

detect any bone turnover response (120, 129). A third study in overweight boys also didn’t 

find a response after 10 weeks of high magnitude vibration (134), however this was 

different to the control group who saw an increase in CTX of 11%, suggesting abrogation of 

bone resorption following WBV. This is in contrast to our healthy boys exposed to vibration 

where resorption measured by CTX was increased. Increased bone resorption with no 

change in formation in the overweight control group indicates uncoupling of bone turnover 
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in favour of bone loss. Attenuation of resorption with no change in formation in the 

overweight boys exposed to WBV would have a protective effect via an uncoupling of bone 

turnover in favour of formation as we found in our cohort.  

 

A greater number of studies regarding the effect of WBV on bone turnover markers have 

been conducted in a variety of adult populations. In accord with our results, Corrie et al 

(132) found an increase in P1NP following 12 weeks of WBV that was 25-36% greater than 

controls (dependent on platform as discussed above in section 8.1), but no change in CTX. In 

contrast to the increase we saw in resorption, Turner et al (136) showed a 34% decrease in 

urinary NTx following 6 weeks of WBV in postmenopausal women, a third of whom had 

osteoporosis. In a similar population Iwamoto et al (92) also found a reduction in NTx, 

however participants were concomitantly receiving Alendronate, a bisphosphonate whose 

function is to reduce bone turnover, this may have obscured or diminished any vibration 

effect. Following one episode of vibration and resistive exercise Sherk et al (135) also found 

a decrease in CTX in healthy young women exposed to one episode of high magnitude 

synchronous WBV. The decrease was greater at 30 minutes post exercise when the women 

were exposed to WBV immediately prior to resistance exercise than following resistance 

exercise only (-12.5% vs -1.3%). In a similar study healthy young men showed a decrease in 

CTX immediately post WBV, but unlike in the women CTX was not different between the 

groups post exercise (WBV immediately prior to resistive exercise versus resistive exercise 

only) (131). In both of these studies TRAP5b, another marker of bone resorption, appeared 

to increase immediately post WBV, however when corrected for plasma volume there was 

no change in the women and a decrease of 9.9% in the men as there was with CTX. Neither 

study showed a change in bone formation markers in response to WBV. Whether in accord 

or contrast to our findings these studies nonetheless demonstrate a change in bone 

turnover markers that suggests an uncoupling of bone turnover in favour of formation as we 

found in our healthy paediatric population. In contrast Rubin et al (282) found only a slight 

decrease of 3% in the resorption marker hydroxyproline in their active vibration group with 

a much greater decrease in the placebo group of 16%. The difference between the 2 groups 

(postmenopausal women) in the resorption marker would suggest greater bone loss in the 
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WBV group, this however contradicts their DXA outcomes whereby the intervention group 

had less bone loss then the placebo group.   

 

The second bone formation marker we measured in the boys without a history of fracture, 

osteocalcin, did not change over the period of observation. This may be because osteocalcin 

is produced later in the process of endochondral ossification, when mineralisation is taking 

place. By contrast, P1NP is produced early in the bone formation process, when the osteoid 

matrix is being formed and deposited. Other studies have also been unable to detect a 

change in osteocalcin following 10 weeks to 12 months of WBV (101, 115, 117, 133, 134, 

282, 283). It is possible that a change was not detected in these studies as the formation 

marker was measured too late and the level may have returned to a pre WBV value. Bowtell 

et al (137) detected a change in osteocalcin at 48 hours post vibration in healthy adult 

females exposed to a single episode of WBV. Osteocalcin was measured 72 hours post-

vibration in our cohort and only in the boys exposed to 5 days of vibration. WBV may 

therefore only elicit a transient increase in this formation marker. 

 

Our focus on healthy children and the response of bone in the growing skeleton rather than 

on a fully developed skeleton may explain some differences seen between our results and 

those of others. The increase in resorption and greater increase in formation in our group, 

not typically seen in the adult populations, may reflect the enhanced response to loading 

that has been well reported in the growing as opposed to adult skeleton. Eight separate 

papers (101, 108, 120, 121, 124, 129, 130, 283) found no change in bone markers following 

3 months to 3 years WBV in healthy young adults, older adults, adults with history of chronic 

stroke, children with motor disabilities and postmenopausal women. However, this may 

reflect the adaptation of bone structure and bone remodelling to the continuing stimulus 

over a prolonged period. Bone response to loading is more apparent in the initial stages of 

loading with no further benefit of continuous loading; over time bone formation levels will 

return to normal (284) and this could be reflected by the studies above. In considering 

Frost’s Mechanostat Theory once bone has responded to the increased load, and size, mass 

or microarchitectural adaptions have occurred reducing strain to normal levels, a new 

equilibrium will be set and bone modelling would cease. 
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 Pathway for change in bone formation and resorption 

Sclerostin is widely recognised to be a key inhibitor of bone formation by the canonical wnt-

signalling pathway through LRP5/6 (285) and is an important factor in bone response to 

mechanical loading (286). However no significant change in serum sclerostin was detected 

either over time or between our fracture and platform groups (or within the fracture or 

non-fracture groups by platform) and could not therefore explain our observations of 

increased P1NP in the boys without a history of fracture.  Similarly no change in sclerostin 

was seen in healthy adult males following 8 weeks of WBV (133) or in postmenopausal 

women following 1 episode of WBV (287). In contrast Cidem et al (140) demonstrated in 

healthy women an increase in sclerostin pre- to 10 minutes post-vibration on day 1 and a 

decrease over the same period on day 5. As we did not measure sclerostin immediately pre- 

to post-vibration on days 3 or 5 it is not apparent if a similar response occurred in our 

cohort. Furthermore a gradual increase in pre-vibration levels over the 5 days of WBV was 

observed by Cidem et al that we did not; bone formation markers were not measured in the 

healthy women therefore a corresponding change in bone formation cannot be ascertained. 

In contrast in vitro mechanical vibration of primary rabbit osteoblasts has shown decreased 

sclerostin gene expression (288) and animal studies have shown down-regulation of 

sclerostin production at sites of new bone formation following even short periods of 

mechanical loading (18, 286). Sclerostin response has been shown to be dose dependent 

with sections of greater strain along the ulnar diaphysis (proximal, mid-shaft and distal 

regions) and cross section (medial, lateral and central cortex) showing a greater reduction in 

sclerostin positive osteocytes with a corresponding strain dependent increase in bone 

formation across the same sites (18). Circulating serum sclerostin was however unchanged 

following loading despite the observed decrease in SOST and sclerostin expression. 

Therefore the lack of response in sclerostin observed in our cohort of pre-pubertal boys may 

be due to changes in serum sclerostin not reflecting accurately or quickly on changes 

occurring at a tissue level.  

 

Alternatively activity in other signalling pathways or regulators of the wnt-signalling 

pathway may explain the acute response of bone formation and resorption observed in our 

cohort. Like sclerostin, DKK-1 and WISE are highly expressed in osteocytes, and bind to 
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LRP5/6 preventing binding of Wnt and the subsequent activation of the Wnt β-catenin 

signalling pathway (12, 289). Loss of function studies of the LRP5/6 complex have repeatedly 

demonstrated low bone mass phenotypes and likewise high bone mass in gain of function 

mutations (290). Other compounds such as nitric oxide and prostaglandin E2 also produced 

by the osteocytes in response to mechanical stimulation have a positive role in bone 

formation regulation (14) via crosstalk with the wnt-signalling pathway (12). Noncanonical 

Wnt signalling pathways such as the planar cell polarity, Rho/Rac GTPase, and Gprotein-

coupled receptor signalling pathways are also thought to have a role in skeletal 

development but are less understood than the canonical Wnt βcatenin signalling pathway. 

Other pathways considered to control bone formation include the bone morphogenetic 

protein (BMP) signalling pathway via expression of Runt-related transcription factor 2 

(Runx2) which is crucial for osteoblast differentiation, and the sympathetic nervous system 

which negatively regulates bone formation and increases bone resorption through 

stimulation of the β2 adrenergic receptor (14). In addition to these pathways hormonal 

interactions with the bone cells occur resulting in regulation of bone formation and 

resorption. PTH prevents osteoblast and osteocyte apoptosis increasing osteoblast number 

and bone formation, and by interaction via the PTH-PTHR1 complex with LRP6, initiates 

signalling in the absence of Wnt-ligands (289). Additionally PTH has a resorptive effect 

through enhancing the expression of RANKL.  Insulin-like growth factor 1 (IGF-1) has a role in 

osteoclastogenesis and therefore resorption directly through the IGF receptor and 

upregulation of RANKL. Expression of RANKL is also stimulated in the presence of the active 

form of Vitamin D, 1,25 VitD3. The role of Vitamin D via the Vitamin D receptor as both an 

anabolic and catabolic hormone in bone homeostasis has been described with its 

importance in the role of RANKL expression thought to be dependent on the maturation of 

the osteoblast (291).  The number of pathways, compounds and bone cell interactions 

involved in bone modelling and remodelling activity highlight a complicated physiological 

process involved in bone response to mechanical loading.  

 

In addition to measuring sclerostin, we measured OPG at baseline, day 5 and day 8, and 

additionally at day 12 in the boys with a history of fracture.  No change was detected in OPG 

at any time point in the boys with a history of fracture. OPG did however show a trend 
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towards an increase from baseline at day 8 in boys without a history of fracture.  OPG 

expressed by osteoblasts is the decoy receptor for RANKL which is sited on the surface of 

osteoblasts and osteoblast precursors. RANKL/RANK signaling is essential for osteoclast 

proliferation and activation, by interacting with the RANK receptor on osteoclast precursors 

OPG plays a pivotal role in osteoclast differentiation and its resorptive activity (292). OPG 

should be associated with reduced bone resorption which was not seen in our results where 

bone resorption measured by CTX in fact increased in the boys without a history of fracture. 

The ratio of OPG/RANKL is considered to be important in determining bone mass (293), 

however RANKL was not measured in our cohort as at the time of designing the study the 

assays for measuring this in serum were not seen to be very reliable.   

 

 

8.3. Daily pre- to 10 minutes post- vibration change 
 

Bone turnover markers were also measured pre- and 10 minutes post-vibration on days 1, 3 

and 5 of the intervention to ascertain the rate and range of bone response to WBV. An 

immediate decrease in P1NP and CTX pre- to post vibration on days 1, 3, and 5 was 

observed in most of the groups (control group measured on day 1 only, and vibration groups 

split by platform and fracture). On day 1 P1NP and CTX decreased in the control group at 30 

mins and 90 minutes (corresponding to 10 and 60 minutes post WBV), at 10 mins post WBV 

in the low magnitude groups, but not in the high magnitude groups, this is regardless of 

fracture history. Samples were collected in a fasted state between 07:30 and 10:00 am to 

reduce biological variability, as discussed in Chapter 6. Decreases in P1NP and CTX of up to 

12% were observed in the control group; the size of change is similar to that reported due to 

the circadian variation (294, 295) and was therefore not unexpected. Other controllable 

factors thought to effect bone turnover markers, such as lifestyle factors (specifically 

smoking and alcohol) and intense physical activity the day before sampling, (277) were not 

accounted for, but were unlikely to be relevant in this cohort and were not different 

between groups for the duration of the participants’ study involvement. Dietary factors, as 

discussed in section 8.1, were also not measured, however the baseline values (including 

height, weight, and BMI) between the control and platform groups were similar. 
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Stress hormone effects of venepuncture and cannulation have been reported, showing 

elevated salivary cortisol levels before and 20-30 minutes after cannulation in children 

(296). Many of the boys in our study were anxious about the blood sampling process 

(observed by or as voiced to the researcher) and it is likely that a similar response would 

occur in our cohort; cortisol was not however measured. Serum cortisone and cortisol levels 

are negatively correlated with the bone formation marker osteocalcin, with a positive or no 

correlation with CTX and urinary NTx (297-299). The inhibitive effect of corticosteroids on 

bone formation has been widely reported. However there is very little data to support an 

acute cortisol effect on bone turnover markers. The impact on osteocalcin is the most 

widely reported but we did not measure this in the control group. It is not possible to state 

whether or not the stress effects of cannulation could have influenced the bone turnover 

markers in our control or platform groups (including any effect on bone response to loading) 

over the time period measured. 

 

As with time of sampling and fasting, any stress hormone affect would be expected to be 

similar between the control and platform groups. The change in bone turnover markers in 

the platform groups did point towards a diminished reduction in P1NP and CTX at 60 

minutes post WBV (90 minute sample in the controls), with an increase in P1NP in the high 

magnitude group, however this was not significant within the groups and was not 

significantly different to the response over time in the controls; the bone turnover marker 

change in the controls was therefore similar to that of the boys exposed to WBV.  

 

Pre- to post vibration on day 3 there was no decrease in CTX in the high magnitude no 

fracture group, whilst the decrease observed in the high magnitude fracture group was less 

than that observed in the low magnitude fracture group. Possibly suggesting that there is a 

trend for high magnitude WBV to limit bone resorption over the time period measured; the 

post-vibration sample was collected approximately 30 minutes after the pre-vibration 

sample. As on day 3, again on day 5 CTX did not decrease in the high magnitude no fracture 

group, but did in all others. P1NP did not decrease pre- to post-vibration in the low 

magnitude fracture group. Other than the day 3 CTX pre- to post vibration change there was 
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no difference in the response to vibration between groups. P1NP and CTX returned to the 

baseline (day 1 pre vibration) values prior to vibration on days 3 and 5.  

 

As stated above participants were fasted on each day that blood sampling occurred as is the 

correct approach to reduce variability in bone turnover markers, specifically CTX (265, 266). 

However any possible effect of fasting on bone response to WBV was not considered. 

Fasting occurred on days 1, 3 and 5 but was not required on days 2 and 4 despite exposure 

to WBV on each of these days. An increase in CTX following endurance cycling has been 

shown in non-fasted elite male athletes (300), which was not shown in our fasted cohort in 

the immediate pre- to post vibration period. However this study specifically measured an 

oral calcium dose effect on bone resorption (demonstrating suppression of the rise in CTX) 

and did not compare a fed/fasted state. In support of the design of our studies, response of 

bone turnover markers to acute weight-bearing exercise regimes in adults (running, 

resistance training and plyometric exercise) does not appear to be affected by a fed or 

fasting state (301, 302). Three consecutive days of 60 minutes treadmill running at 

restricted energy intake compared to a balanced energy intake in healthy adult males 

showed a decrease in P1NP but no difference in NTx from pre-exercise to 1 day post-

exercise (303). We saw a similar response in P1NP in the immediate pre- to post vibration 

period, but an opposite effect 3 days post vibration in our study. However the boys in our 

study did not have their energy intake restricted over the period of the 5 day WBV 

intervention. Other than an overnight fast prior to blood sampling there were no other 

dietary restrictions; all the boys ate breakfast following blood sampling and were instructed 

to eat as normal up until bedtime the night prior to sampling. There is little reported 

evidence to suggest that the response of bone turnover markers to WBV would have been 

altered in a non-fasted state in our cohort. 

 

Whilst the daily pre- to post vibration results in our cohort are interesting they are not 

conclusive of what is happening to bone turnover immediately following WBV. One reason 

for this could be the small number of participants; bone turnover data was collected from as 

few as 4 in the no fracture high magnitude group on day 5 with a maximum group size of 10 

in the low magnitude fracture group on day 3. Due to the small numbers data were 
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compared by platform or fracture groups but not both. On day 1 the comparison with the 

control group included study 1 data only. Where changes from the boys with a history of 

fracture is reported compared to boys without, only data from boys exposed to the full 5 

days of vibration is included in the analysis. Within the groups the SD were quite large, the 

variance in the data highlights that more participants would be needed in each group to 

sufficiently power a study to detect any statistically significant differences either between 

the platform groups or between boys with and without a history of fracture. As pilot studies 

neither study 1 nor 2 were powered to detect a significant change, the purpose of the 

studies was to assess the range and rate of the response of bone to WBV in the pre-pubertal 

boys. Prior to this work it was not known how soon a response to WBV could be detected in 

healthy boys or what size of response could be expected. 

 

 

8.4. Differences in baseline characteristics 
 

Baseline differences between the boys who had previously fractured and those who had not 

were observed in P1NP, OPG and sclerostin, but not CTX. P1NP was 20% lower whilst OPG 

and sclerostin were 15% and 50% higher respectively in the boys with a history of fracture. 

The 20% reduction in bone formation (P1NP) with a similar level of bone resorption (CTX) at 

baseline indicates uncoupling of bone turnover that could result in reduced bone accrual 

and potentially reduced bone mass in boys with a history of fracture. As discussed 

previously (in chapter 5) these are associated with increased risk of fractures (202, 220, 223-

225, 227) and therefore may partly explain the fracture susceptibility in this group. This is 

however stated with caution as we did not measure bone size and mass in our cohort. It is 

possible that an inherent abrogated response to loading is the cause of the discrepancy 

between the 2 groups in the biochemical markers at baseline.  

The higher level of sclerostin at baseline may have made the boys less receptive to or 

blocked the anabolic effect of the additional WBV load on bone which was shown by change 

in P1NP at day 8 in the boys with no prior fracture. This may partly explain why boys with a 

history of fracture do not respond to loading in the same way as those without. The effect of 

increased sclerostin expression on reduced bone formation has been widely reported (14, 

15) and P1NP and sclerostin levels at baseline in our fracture cohort would correspond with 
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this. The difference in baseline sclerostin levels between the fracture and non-fracture 

groups may highlight a role of sclerostin in adolescent radial fractures as suggested by 

Kirmani et al (304) who observed in boys and young men a positive correlation between 

serum sclerostin and apparent cortical porosity of the radius, which peaks at the time of 

greatest incidence of radial fractures in childhood. However the lack of change observed in 

sclerostin at day 8 in both groups and the absence of a correlation between changes in 

sclerostin and P1NP would suggest that sclerostin is not the regulator of the bone formation 

response seen in P1NP in our study.  

 

In addition to the differences in sclerostin and P1NP at baseline between the 2 groups, OPG 

was greater in the boys with a history of fracture. This increase cannot be explained by bone 

formation (increased osteoblast activity) as you would expect to see an increase in both 

OPG and P1NP if this was the case; P1NP was lower. Additionally with a greater level of OPG 

a decrease in bone resorption would be expected which was not shown in our results; CTX 

was similar between the 2 groups. The lack of effect of OPG on CTX at baseline is similar to 

lack of effect that change in OPG following WBV had on change in CTX (both increased, 

though increase in OPG was not significant). 

 

 Interpretation of markers of bone metabolism and their association with bone mass is 

complicated in children by the fact that closely coupled remodelling activity is occurring 

alongside independent modelling activity whereby bone size and mass is increased due to 

childhood growth (305). Biochemical markers are unable to differentiate between local 

tissue activity and whole skeletal changes, therefore site specific pockets of reduced or 

increased bone activity due to loading may also be obscured by activity due to growth. 

Evidence of association of bone turnover markers and BMD, BMC and bone accrual velocity 

in children is mixed, with studies demonstrating evidence of bone turnover markers being 

positively (178, 306-308) negatively (83, 308-312) or not associated (307, 313, 314) with 

BMD, BMC and bone mineral accrual at different skeletal sites and stages of puberty. 

Negative associations between bone turnover markers and bone mass during early to mid-

puberty may be partly explained by the reported 0.7 year delay in peak BMC velocity that 

follows peak height velocity (183). Bone turnover markers reflect rapid alterations to bone 
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metabolism whereas it takes longer to detect any change in bone measured by DXA or 

HRpQCT.  By recruiting only pre-pubertal boys we would expect to control for this, 

nonetheless the self-reporting of pubertal stage may not have been as accurate a predictor 

of pubertal stage as expected. The boys ranged in age from 9.6-10.5 years in the non-

fracture group and 8.3-13.1 years in the fracture group, hormonal effects of puberty on 

bone may have begun even though the boys assessed themselves as pre-pubertal. Baseline 

P1NP and CTX in both the fracture and non-fracture groups was greater than some other 

reported values pre-puberty (307, 315, 316) suggesting that in fact our cohort of boys were 

likely to be pubertal. The age range of the boys in the fracture group was larger, if in fact 

this group included boys in the early- to mid-stages of puberty we would expect to see 

increases in both P1NP and CTX in this group as demonstrated in reference curves for 

pubertal stage (84, 317). CTX was not however elevated in this group suggesting that 

pubertal effects are not the reason for difference in bone formation in this group. It is 

possible that the boys with a history of fracture were having a period of higher growth 

velocity which is seen in children who are heavier and taller for age. The boys with a history 

of fracture were heavier (3.8kg) and taller (4.1cm), but also slightly older (0.7 years); 

differences between the 2 groups in height and weight were not significant and age only 

approached significance (p=0.053). Greater growth velocity would be reflected in increased 

bone turnover markers (305) which was not shown in CTX in our groups.  

 

Any effect of the difference in the physical activity levels in the week prior to baseline 

between those who had fractured and those who had not (discussed in section 8.1) should 

also not be overlooked. As discussed in Chapter 3, higher levels of habitual physical activity 

are associated with an increase in bone formation markers including P1NP (146-149), and 

may therefore explain the difference in baseline P1NP in the 2 groups. Although the boys 

were recalling their physical activity over only the 7 days prior to the WBV intervention, 

anecdotally this was generally consistent with their usual activity levels. Exercise effects on 

bone resorption markers are less well-defined with observation of both increased and 

decreased CTX, though more intense exercise regimes are associated with higher levels of 

CTX (148, 150, 318-320); not seen in our cohort. OPG, which was higher in the boys with a 

history of fracture, has been shown to be higher in postmenopausal women who have 
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undertaken a 1 year exercise programme compared to controls (319), this is in contrast to 

our less active group, but not in adolescent gymnasts (321). Likewise the difference in 

sclerostin is not easily explained by the difference in activity levels between our 2 groups of 

boys. When comparing less intense physical activity participation, lower levels of sclerostin 

have been observed in more active groups than in sedentary groups (322), as seen in our 

cohort. However sclerostin has also been shown to be higher in adult and adolescent weight 

bearing athletes than non-athletic controls (318, 323). Again the intensity of the physical 

activity (professional football players and more than 4 hours a week of weight-bearing 

exercise compared to less than 2) may have impacted on the sclerostin concentrations. In 

our cohort for most of the boys time spent participating in physical activity during leisure 

time was less than 4 hours (as voiced to the researcher but not recorded). Unlike with P1NP, 

differences in baseline sclerostin and OPG between our fracture and non-fracture groups 

may not therefore be explained by their physical activity levels. As no significant correlations 

were found between the biochemical markers and physical activity score either at baseline 

or in change from baseline this is not unexpected. Lack of correlation could be due to the 

small sample size in our studies being unable to detect any association between the 

measures or a true absence of any associations.  

 

 

8.5. Thermal imaging 
 

In addition to bone biomarkers, in study 1 we measured the effect of WBV on skin surface 

temperature over the lower legs in a sub-group of the healthy boys pre and post vibration 

on day 1, as a surrogate measure of muscle activation. The mechanism of the bone response 

to WBV is thought to be due to a direct response within the bone tissue to loading or via 

muscle; either by contractions loading the bone or due to increased muscle mass and/ or 

force increasing load to bone (324). Increased muscle activity and blood flow as a result of 

WBV have been reported in a number of studies (62, 325-330). Our aim was to determine if 

muscle activation following WBV was different between the low and high magnitude 

groups. Although we found no difference between groups in bone turnover marker 

response in the immediate pre to post vibration period, thermal imaging detected a 10% 



 

132 
 
 

increase in skin surface temperature in boys exposed to the high magnitude platform that 

was significantly different to the 2.8% increase in the low magnitude platform and 1.1% 

increase in the controls. Skin surface temperature has been shown to be increased in 

passive vibration (331) as well as weight bearing vibration (267) suggesting that some 

degree of muscle activation occurs regardless of the magnitude or method of the 

stimulation. Nevertheless, our results suggest muscle activation is not a prerequisite for 

bone to respond to mechanical stimulation. 

 

 

8.6. Discussion conclusions 
 

The aim of these studies was to identify the rate and range of response of bone to WBV in 

apparently healthy pre-pubertal boys. We have shown that in apparently healthy boys 10 

minutes of WBV on 5 consecutive days is sufficient to increase the bone formation marker 

P1NP by 25.1% and the bone resorption marker CTX by 10.9%. Demonstrating that WBV 

provides a quick and easy means to assess bone response to loading in a paediatric 

population. As the response observed cannot be explained here by sclerostin or OPG, other 

pathways could be involved in the bone response to vibration in this group. However the 

lack of any response may be due to these pilot studies not being powered to detect this 

change, a larger sample size may be required.  

 

A novel finding of this work is that boys with a history of one or more fracture do not 

respond to loading in the same way as boys with no prior fracture. Five consecutive days of 

WBV was not sufficient to elicit a bone response in boys who have fractured. If reduced 

responsiveness is present prior to fracture and is related to reduced bone accrual, this could 

to some extent explain increased fracture susceptibility in some children. Baseline 

differences observed in P1NP, sclerostin and OPG between the 2 groups suggest that there 

could be an inherent difference in bone response to habitual daily loads, though this is not 

clear as difference in P1NP at baseline may partly be explained by the increased activity 

score recorded in the boys with no prior fracture.  
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 Whereas history of fracture did have an effect on bone response, the magnitude or mode 

of vibration did not. No difference was detected in bone turnover markers or bone factors 

between groups when compared by platform type only. In the immediate pre- to post 

vibration periods within group changes were seen in the control and low magnitude 

platform groups but not the high magnitude group in the boys with no prior fracture. A 

difference in skin surface temperature change following WBV was recorded on day 1 in a 

sub group of boys with no prior fracture, suggesting a difference in muscle activation 

between platform groups, however as stated this did not translate into a difference in 

response of the bone turnover markers. Due to high individual intra-variability in bone 

turnover markers larger sample sizes may be required for differences between platform 

effects, if they exist, to become apparent. 
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9. Lessons learnt and future work 
 

9.1. Recruitment 
 

Recruitment to both the healthy boys study and the boys with a history of fracture study 

proved more difficult than anticipated. The initial plan for study 1 was that the study visits 

would take place in secondary schools, as it was thought that they would be more amenable 

to blood sampling occurring within school than in primary schools. For that reason the initial 

age for recruitment was 11-12 years old. As the target population was pre-pubertal children 

(to prevent the confounder of pubertal stage) boys and not girls were targeted as the onset 

of puberty in girls is reported to occur from age 10 and girls would therefore not be eligible 

for recruitment; onset of puberty is later in boys from 11.5 years (255, 256). Permission to 

conduct study visits in school needed to be obtained from the Head teachers. This proved to 

be very difficult; where the researcher was able to speak to them most were reluctant to get 

involved. It quickly became apparent that having a contact in a school provided easier 

access to the Head teacher. In one case within 24 hours of a parent approaching their child’s 

school on behalf of the study team permission was granted to distribute the invitation 

letters. The researcher had been trying to seek permission from this same school for over 

two weeks. Due to this barrier the researcher went back to the REC and requested that 

study visits could take place in school or at the participants own home. Additionally the age 

range was extended to include 9-12 year olds to increase the number of schools that could 

be approached, as primary schools could then also be targeted. This proved fruitful with 22 

out of 40 primary schools that we contacted agreeing to hand out a total of 1095 letters on 

our behalf to pupils. This was compared to only 1 out of 8 secondary schools agreeing to 

help. Additionally, the researcher learnt to approach all suitable schools at the same time 

rather than waiting for a response from each individual school before approaching the next. 

 

Recruitment was still slow so once we had permission to conduct study visits in participants 

homes we went back to the REC to request that we could approach other organisations such 

as sports clubs and youth groups to disseminate invitation letters to the study on our behalf. 
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Study 1 was expected to take 9 months to complete, difficulties in recruitment almost 

doubled the time to completion. 

It was anticipated that recruitment to study 2 would be more straightforward and in 

keeping with the study plan, as we had learnt numerous lessons from study 1. Despite the 

lessons learnt, recruitment remained a challenge throughout study 2. The initial recruitment 

strategies were incorporated into the study design. However as only a small number of boys 

were ineligible for study 1 due to a history of fracture, it was felt that these strategies were 

not the most effective use of time. Therefore in addition children who attended the 

Emergency Department (ED) and Out-patient Department (OPD) at Sheffield Children’s 

Hospital (SCH) were approached for Study 2. Fracture clinic lists were screened for potential 

participants and any attenders in ED, regardless of reason for attendance, were approached 

if appropriate. Recruiting in this manner was time consuming and demotivating. Often 

patients were not available in clinic/ED, could not be found in the department, had lengthy 

consultations with their clinician whilst the researcher was waiting to discuss the study with 

them, did not attend for appointments, or had appointments at times when the research 

staff were not available to approach them. When potential participants were approached 

many were not interested in taking part in research. Over a 2 year period (August 2015 to 

September 2017) 666 children were identified from clinic/ED bookings. Some of these did 

not meet the inclusion criteria, or did not attend their appointments. 180 of the boys 

declined to take part when first approached, 33 took away information sheets for further 

consideration and only 7 of these took part in the study. Again the researcher went back to 

REC to extend the age range to 7-13 years olds in an attempt to increase recruitment. We 

had found when approaching potential participants that younger siblings were sometimes 

keen to take part but were in these circumstances excluded on the basis of fracture history 

and age. Originally we had thought that blood sampling would be too big a burden for the 

younger children. The top of the age range was increased but the criteria of pre-pubertal 

status was still required for study inclusion. 

 

Blood sampling had the biggest impact on refusal to participate in the study. Many were 

discouraged due to the nature and timing of the study procedures. Once we completed the 

data analysis from study 1 we considered reducing the number of sampling time points in 
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study 2 to correspond to significant time points in study 1; day1, day 8 and the additional 

day 12 samples. However we had a flurry of interest in the study and it was thought the 

recruitment target would be met. Study visits needed to occur in the mornings with 

participants fasted for the blood sampling, for many families study visits before work and 

school were too difficult to complete. We had anticipated that this would be difficult and 

obtained approval for study visits to occur at school or in the participants home rather than 

at SCH, however this was still not possible for some families.  Ultimately the target of 24 

participants was not met but as this was a pilot study it was decided that the data collected 

on 20 participants would be sufficient to meet the requirements of study 2. For future work 

careful consideration should be given to the timing and number of samples required, 

keeping this to the absolute minimum required to answer the research question. Experience 

would suggest that this may help to improve participant recruitment. However for some of 

the children approached for these studies it was clearly not the number of blood samples to 

be collected that was the issue, but that blood samples were collected at all. 

 

In addition to difficulties in recruitment due to lack of interest, the researcher had 2 periods 

of maternity leave during study 2. Staff within the Clinical Research Facility at SCH were 

allocated to work on the study but due to conflicting workloads and the time consuming 

nature of approaching potential participants, recruitment stalled. Over this 29 month period 

only 2 boys were recruited.  

 

9.2. Study design 
 

 Blood sampling 

1, 3 or 5 days WBV on one of two platforms or control was a complicated study design. The 

number of days were chosen as it was not known how soon a response of bone to the 

vibration could be detected, timings were guided by other studies looking at exercise or 

unloading. Sample size for the studies was low, whilst interesting results were observed on 

the daily pre- to post-vibration values a clear effect of WBV on bone markers response 

between fracture and/or platform groups was not identified. Future work would require 

sample size calculations to sufficiently power the study. 
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Samples were not collected from all the participants at all time points. Reasons for this were 

due to difficulties cannulating and therefore being unable to obtain pre- and post-WBV 

samples or the cannula not working for post-WBV sampling. This resulted in complete data 

sets on only 8 out of 12 boys exposed to 5 days of WBV in study 1 and only 10 out of 18 in 

study 2. Reducing the number of sampling time points would limit the number of 

incomplete data sets but it may not be possible to exclude missing samples entirely. Missing 

data was not replaced or accounted for and therefore only complete data sets were used in 

the statistical testing limiting the sample size. For example in a small number of participants 

difficulties occurred in obtaining samples on day 5. These participants were excluded from 

the day 5 pre- to post-vibration analysis but were included at other time points such as 

change from baseline at day 8. Whilst missing data can lead to bias in studies, in this case 

the missing data was completely random (failure of the cannula/cannulation) and not as a 

result of participant non-compliance, adverse events, or factors likely to influence the 

response of bone to WBV. However, due to the large variance in the bone turnover marker 

values and the small sample sizes it is possible that even 1 or 2 missing values may influence 

the significance of the results. As these 2 studies were exploratory pilot studies to identify 

the rate and range of bone response to WBV they were not powered to detect changes. The 

recommendation for pilot studies to have sample sizes of 12 was followed, in study 1 

samples were obtained from only 11 participants on day 8 however in study 2 this was 17 

participants. Despite this a significant effect of WBV on P1NP and CTX was still observed in 

study 1. The sample sizes for the platform groups were too small to draw definitive 

conclusions on any difference in bone response due to method or magnitude of WBV.  

 

The final sample on the boys with no prior fracture was obtained at day 8. Based on the 

increase in the bone turnover markers at day 8, it was decided to collect a later sample in 

study 2 to observe if any changes at day 8 were maintained at day 12 or had returned to 

baseline values. As no change was observed at day 8 (though there was a trend towards a 

decrease in CTX) this question was not answered. However it is unlikely that the increases 

seen in P1NP and CTX would have been observed for long after cessation of the WBV 

intervention. In future studies observing for the duration of increase in bone turnover 

markers could help to guide clinicians in determining appropriate duration of WBV 
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interventions. It is possible that WBV could be used as an intermittent tool for increasing 

bone mass rather than as a continuous long term therapy. If intermittent bursts of WBV are 

more beneficial this may increase patient compliance, reduce costs as less platforms would 

be required, and decrease the therapy burden on patients. Additionally WBV could be used 

as a short term intervention at times of greater need.  

 

The study in the boys with no prior fracture commenced in 2009 and in the boys with a 

history of fracture in 2011. The initial study design included measuring just P1NP and CTX, 

osteocalcin, OPG, and sclerostin were included when it was recognised that there was 

sufficient serum left over for further testing. This restricted measurement to only when any 

leftover serum was available, which was not all time points for all participants. Measuring 

RANKL alongside OPG was considered, however advice at that time from the laboratory 

conducting the sample assays was that the assay for measuring RANKL in serum was not 

considered a reliable test. Improvements in the assays would now merit observation of 

RANKL alongside OPG to assess the RANKL/OPG ratio to help explain the increase in 

resorption that was measured in the boys with no prior fracture. Other factors associated 

with bone turnover such as DKK1, WISE, PTH, and Vitamin D could also be assessed to 

determine the pathways that regulate the response of bone to WBV in pre-pubertal boys. 

 

 

 Baseline assessments 

Baseline differences in the biochemical markers between the boys with a history of fracture 

and those without were greater than expected and only provide a snap shot of bone 

turnover at that time. Assessment of bone volume and density would have given a clearer 

picture of differences in bone health between the 2 groups. By recruiting boys with a history 

of fracture an assumption was being made based on literature that these boys may have 

smaller bones and/or lower bone mass than the boys without. Assessment by DXA or QCT 

would have confirmed this, however there were insufficient funds to cover the cost of DXA 

or QCT. Additionally to include participants based on fracture history and bone mass would 

have meant recruiting a higher number of participants in the first instance anticipating that 

some would not meet the inclusion criteria based on bone mass. As discussed above 



 

139 
 
 

recruitment was already difficult and it is likely that this would have added to this. DXA or 

QCT assessment would give a more thorough picture of the participants and would be 

useful for future work. The purpose of these studies were however exploratory to inform 

the design and sample size and direction of future work. 

 

Additional assessment of other factors known to influence fracture risk would have been 

useful for a more thorough comparison between the boys with a history of fracture and 

those without. A more detailed physical activity questionnaire to identify number of hours 

and intensity of physical activity would have been useful as would dietary evaluation and 

information on Vitamin D status. However given the small sample sizes in these studies it 

would have been difficult to come to strong conclusions about the effect of these on the 

difference in response between the 2 groups of boys.  

 

 Pubertal stage, gender and ethnicity 

Studies 1 and 2 looked at the effect of WBV on pre-pubertal boys only. However as 

highlighted in Chapter 8 Baseline P1NP and CTX in both the fracture and non-fracture 

groups was greater than some other pre-pubertal reported values, suggesting that in fact 

our cohort of boys were likely to be pubertal. This reflects the limitation of self-assessment 

of tanner stage used in our studies. Self-assessment of pubertal stage is often used in 

research as it is perceived to be more acceptable to participants and more convenient than 

clinician assessment. However it is recognised that under and over estimation of pubertal 

stage occurs when self-assessment is utilized, and is acknowledged to only be reliable to 

within one tanner stage (332, 333). Clinician assessment is accepted as the gold standard 

though was not possible in our studies. Serum assessment of growth and sex hormones 

(luteinizing hormone, follicle stimulating hormone, and/or testosterone) could have 

occurred to further clarify pubertal status as blood samples were already being obtained at 

baseline. The plan to include only pre-pubertal boys in the studies was primarily to eliminate 

any effect of gender and puberty on bone response to vibration and to reduce the number 

of participants that would be required to control for this. Studies regarding exercise in 

childhood, as discussed in Chapter 4, highlight the differences observed in changes in bone 

mass and size following exercise or in physically active children at differing stages of puberty 
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and between genders. Whilst greater benefits have been seen at pre-puberty in boys but 

not girls, it has been suggested that early puberty around the time of peak height and peak 

BMC velocity may be the optimum time for greater increases in bone parameters. If the 

purpose of WBV interventions are to increase bone mass in childhood with an aim of 

improving bone health in adulthood and older age, then determining the optimum pubertal 

stage in boys and girls to deliver WBV could be of great importance. Future work should 

therefore look at response of bone to vibration across all stages of childhood and 

adolescence, and even into the period of continuing bone mass accrual in early adulthood. 

 

Alongside this ethnicity for the studies was limited to white Caucasian boys. As with gender 

and pubertal stage more participants would be required to control for any potential 

differences in response due to ethnicity. It is possible that ethnicity may impact on the 

response of bone to WBV. However this has not been fully explored in current published 

studies of WBV and could be considered in future larger studies looking at the acute 

response of bone to WBV. The decision to limit recruitment to white Caucasian boys only 

was based on the fact that this is the main ethnicity of the population of Sheffield and 

therefore would provide a larger sample of boys to participate in the study. 

 

 

9.3. Positioning on platforms 
 

Boys were asked to stand on the vibrating platforms with their knees slightly bent as is 

recommended for the Galileo platform. It was decided that the same stance should be used 

for both devices, however this may have dampened the effect of the low magnitude 

vibration signal delivered by the Juvent platform. The advice for this platform is to stand in a 

relaxed upright posture with legs straight and feet positioned beneath the shoulders. 

Although no differences were detected between the Juvent and Galileo platforms at any 

time points responses occurred in the Galileo platform that were not detected in the Juvent 

platform. This may in part be due to incorrect stance on the platform. 
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9.4. Thermal imaging 
 

Thermal imaging was recorded in a clinical room with a window. Though the blinds were 

closed to reduce the effect on the room temperature of draughts or sunlight this could not 

be completely reduced. Ideally thermal imaging should be recorded in an imaging suite to 

limit variations in environmental factors. Additionally the platforms and cameras were not 

fixed in the room as it was used for other purposes also, therefore the distance between the 

platform and child and the camera was not constant between participants and this may 

have resulted in a variation in the recordings. However the camera and platform positions 

did not move during each study visit, the distance between the camera and platform for the 

pre- and post-WBV images was constant for individual participants. The pre- and post-

vibration readings on each participant were taken 12 minutes apart therefore there was 

unlikely to be a significant change in the room temperature. Room temperature was 

however, measured and accounted for in the analysis and we restricted entry/exit from the 

room during the whole process of recording the thermal images; that is from the first image 

immediately pre-vibration, during vibration, up until the immediately post-vibration image 

was taken. The number of people in the room was restricted to the participant, parent, 

researcher and camera technician. 

 

 

9.5. Future work 
 

Whilst our findings clearly highlight that bone responds to a short term WBV intervention, it 

is restricted to a small defined population, healthy pre-pubertal boys. This was proof of 

concept work. In order to generate normative data regarding the acute response of bone to 

WBV much larger studies across different ages, gender and ethnicities would need to be 

undertaken. This should also incorporate some of the earlier suggestions made in this 

chapter including increased physical activity and dietary assessment, inclusion of other 

biochemical markers to help identify the pathways involved in mechanosensing activity, 

longer duration of blood sampling to identify how long the response is maintained, and 

measurement of bone size and mass. 
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In further investigation of the acute response of bone to WBV in boys or other populations 

with a history of fracture, it would be appropriate to explore any correlation of response to 

WBV with level of trauma resulting in fracture. As discussed in Chapter 5 it has been 

suggested that children who fracture following mild trauma have stronger evidence of bone 

fragility. It would be interesting to see if in this group bone is also less responsive to loading. 
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10. Conclusions 

 

At the start of this PhD only 3 studies had been reported on WBV in paediatric populations. 

There was belief that this intervention could be used as a therapeutic agent in the 

management of bone diseases in childhood either independently or concomitantly with 

pharmaceutical therapy. However over the last 10 years more studies have come to light 

that question the use of this intervention in paediatric populations to improve bone health. 

As discussed in this thesis, findings from studies are inconclusive and contradictory. In 

addition to longer term WBV interventions, short term effects of WBV have been 

investigated in healthy adult populations, but not in paediatric populations. The studies 

undertaken for this PhD are to our knowledge the first to consider the acute response of 

bone to WBV in healthy pre-pubertal boys and to compare the response between boys who 

have a history of fracture and those who do not.  

 

We have shown increased bone turnover measured by P1NP (+25.1%) and CTX (+10.9%) 

following 5 consecutive days of WBV in healthy pre-pubertal boys; this response was 

regardless of the method (synchronous or side-alternating) or magnitude (less than or 

greater than 1g) of WBV. No response was observed in boys with a history of fracture. The 

difference in response of bone to WBV in boys with and without a history of fracture is a 

novel finding showing that apparently healthy pre-pubertal boys with a history of fracture 

do not respond to loading in the same way as those who have not fractured. As no 

significant change was detected in serum sclerostin we are unable here to explain our 

observation of increased P1NP in boys without prior fracture. Differences between the 2 

groups of boys were also observed in biochemical markers at baseline (P1NP, OPG and 

sclerostin) suggesting that boys with a history of fracture have reduced bone formation. 

Reduced response to loading if associated with reduced bone accrual could to some extent 

explain fracture susceptibility in some children. 

 

Our studies demonstrate that WBV can provide a relatively quick and easy means to 

measure and assess the response of bone to loading in a paediatric population. WBV could 

be used as a tool to assess skeletal health, rather than as a therapeutic intervention, 
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particularly in identifying those at risk of fragility fractures. It could be used to target bone 

health strategies such as dietary adjustments and supplementation, or falls prevention 

programmes in those most at need. Identifying those that are less responsive to loading 

early will enable clinicians to promote fracture prevention strategies for patients over the 

life course with an aim to reducing the burden and economic impact of fracture particularly 

in older age. 
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12. Appendices 
 

12.1. Appendix 1 Human WBV Studies – DXA 
 

Table 17 Human studies measuring DXA outcomes 

Author, year Sample studied, 
age  

Sample 
number 

Concomitant 
therapy 

WBV duration WBV 
parameters 

Control 
group 

Change from baseline Change versus 
controls 

Sites studied 

Beck et al 2006 Females with low 
bone mass, 18-
45yrs 

4 No 10mins x2 daily 
for 12/12 

Optimass 
1000, 30Hz, 
0.2g 

No +2.03% femur  NA TB, LS,  proximal 
femur, distal 
radius 

Beck et al 2010 Postmenopausal,  47  15mins x2 
weekly (J), 
3mins x2 
x2weekly (G) for 
8/12 

Juvent 30Hz, 
0.3g, Galileo 
12.5Hz, 1g 

Yes (3 
groups, J, G 
& control 

-6.0% trochanter BMC,    
-5.7% LS BMC, -6.6% LS 
area - controls                  
-2.1% TB BMC, -1.4% 
forearm BMD, +2.3% 
femoral neck area - 
Juvent 

NS TB, femoral neck, 
trochanter, 
forearm 

Bemben et al  
2010 

Postmenopausal, 
55-75yrs 

55 Calcium 
1500mg 

15secs then 60 
secs x2 x3 
weekly for 8/12 

Power Plate 
30Hz-40Hz, 2-
4mm, 2.16-
2.8g 

Resistance 
training (RT), 
WBV+RT, or 
control 

-1.48% radius -WBV+RT 
+2.07% radius-control,    
-0.72%, -0.33%, -0.29% 
right total hip and           -
1.36%, -0.35%,-0.24% 
right femoral neck -
WBV+RT, RT, control  

net 3.55% loss 
radius in 
WBV+RT 

LS, femoral neck, 
trochanter, total 
hip, forearm 

Gilsanz et al 2006 Females with low 
bone mass, 15-
20yrs 

48 Calcium 
carbonate 
500mg 

10mins daily for 
12/12 

Vertical, 30Hz, 
0.3g 

Yes +0.02 g/cm2  LS in both 
groups 

NS TB, LS  

Gomez-Cabello et 
al 2014 

Elderly, >65yrs 49  7.5mins x3 
weekly for 11 
weeks 

Power Plate, 
40Hz, 2mm 

Yes TB area +1.5% WBV, 
+1.1% control 

NS TB, LS, hip, 
Femoral neck 
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Author, year Sample studied, 
age  

Sample 
number 

Concomitant 
therapy 

WBV duration WBV 
parameters 

Control 
group 

Change from baseline Change versus 
controls 

Sites studied 

Gusi et al 2006 Postmenopausal, 
66yrs (mean age) 

28 No 6mins x3 
weekly for 8/12 

Galileo, 
12.6Hz, 3mm 

Walking 
control 
group 

+0.02 gr.m-2  femoral 
neck 

+4.3% femoral 
neck 

LS, femur 

Hogler et al 2017 Osteogenesis 
Imperfecta, 5-
16yrs 

24 Bisphosphonate 
naïve, >2yrs, or 
6/12 post 

3x3mins x2 
daily for 5/12 

Galileo 20-
25Hz 
amplitude 1-3 

Age matched 
controls 

NS NS TB, LS, hip 

Humphries et al 
2009 

Healthy females, 
18-30yrs  

27 1 group + 
resistance 
training (RT)a  

1.5-3mins x2 
weekly for 4/12 

NEMES 
(vertical), 
50Hz, 1-6mm 

Yes +2.7% femur-WBV      
+2.0% femur-WBV+RT           
+1.0% LS-WBV+RT 

NS LS, femoral neck 

Iwamoto et al 
2005 

Postmenopausal 
ostoeporosis, 55-
88yrs 

50 Alendronate 4mins x1 
weekly for 
12/12 

Galileo, 20Hz, 
0.7-4.2mm 

Yes +10.2% LS-WBV      
+8.4% LS-control 

NS LS 

Kilebrant et al 
2015 

Severe motor 
disability, 5.1-
16.3yrs 

19  x2 weekly for 
6/12 

Hoppolek, a 
self-controlled 
dynamic 
platform with 
vibration, 
jumps and 
rotatio 5-15 
mins, 0.2mm, 
40-42Hz 

No TB BMC & BMD inc 
@6/12, TB BMC inc 
@12/12, LS & 
calcaneous no change 

 TB, LS, calcaneous 

Lam et al 2012 Females with 
osteopenia and 
idiopathic 
scoliosis, 15-25yrs 

149  20mins 
x5weekly for 
12/12 

Vertical,30Hz, 
0.3g 

Yes Dominant FN 
+0.015g/cm2 BMD, 
+1.17g/cm2  LS BMC 

 LS, femoral necks 

Lai et al 2013 Postmenopausal, 
46-69yrs 

28 No 5mins x3 
weekly, for 
6/12 

LV-1000, 30Hz, 
3.2g 

Yes +2.03% WBV, -0.05% 
controls 

net 2.08% gain LS 
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Author, year Sample studied, 
age  

Sample 
number 

Concomitant 
therapy 

WBV duration WBV 
parameters 

Control 
group 

Change from baseline Change versus 
controls 

Sites studied 

Leung et al 2013 Postmenopausal, 
>60yrs 

710  20mins, x5 
weekly for 18 
months 

35Hz, 0.3g, 
<0.1mm 

Yes LS +0.08% WBV, -0.64% 
controls                              
hip -1.86% WBV, -1.89% 
controls 

NS LS, hip 

Liphardt 2015 postmenopausal, 
osteopenic, 50-
65yrs 

42  10mins x2-3 
weekly for 
12/12 

Galileo, 20Hz, 
3-4mm 

Yes aBMD femoral neck dec 
@ 16/12 &20/12 

 NS LS, femoral neck 

Ruan et al 2008 Postmenopausal 
osteoporsis, 50's-
70'syrs 

94 No 10mins x5 
weekly for 6/12 

ZD-10 
(vertical) 30Hz, 
5mm 

Yes +4.3% LS                   
+3.2% femoral neck 

NA LS, femoral neck 

Rubin et al 2004 Postmenopausal, 
47-64yrs 

56 No 10mins x2 daily 
for 12/12 

Vertical, 30Hz, 
0.2g 

Yes NA +3.5% LS LS, proximal 
femur, distal 
radius 

Ruck et al 2010 Cerebral Palsy, 6-
12yrs 

20 Physiotherapy 9mins x5 
weekly for 6/12 

Galileo, up to 
18Hz, up to 
4mm, up to 
2.6g 

Yes NS difference of 
0.06g/cm2 in 
favour of 
control at 
femoral neck 
(diaphysis) 

LS, distal femur 

Santin_Medeiros 
et al 2015 

71-93yrs 37 Not recorded x2 weekly for 
8/12 

Fitvibe 20Hz, 
2mm 

Yes NS NS total hip 

Slatkovska et al 
2011 

Postmenopausal, 
44-79yrs 

202 Calcium 
1200mg, 
Vitamin D 
1000iu 

20mins daily for 
12/12 

30Hz 0.3g, 
90Hz 0.3g or 
control 

Yes -0.008g/cm2 LS 30Hz             
-0.006g/cm2 LS 90Hz        
-0.007g/cm2 LS control   -
0.006g/cm2 femoral neck 
30Hz  

NS LS, femoral neck, 
total hip 
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Author, year Sample studied, 
age  

Sample 
number 

Concomitant 
therapy 

WBV duration WBV 
parameters 

Control 
group 

Change from baseline Change versus 
controls 

Sites studied 

Soderpalm et al 
2013 

Duchenne 
Muscular 
Dystrophy,            
5.7-12.5yrs 

6 No 2mins for 2 
weeks then 
6mins x2-3 
weekly for 3/12 

Galileo, 4mm,  
20-24Hz, 3.2-
4.6g 

No NS NA TB, LS, hip, left 
heel 

Stark et al 2010 Cerebral Palsy, 
9.7yrs 

78 Physiotherapy 9mins x2 daily 
for 6/12  

Galileo, Hz and 
mm variable 

No +2.3% TB BMD                 
+5.7% TB BMC 

NA TB 

Torvinen et al 
2003 

Healthy non-
athletic, 19-38yrs  

56 No 4mins x3-5 
weekly for 8/12 

Vertical, 25-
45Hz, 2-8g, 
2mm 

Yes NS NS LS, femur, 
calcaneus, distal 
radius 

Verschueren et al 
2004 

Postmenopausal 
osteoporosis, 58-
74yrs 

70 No max 30mins x3 
weekly for 6/12 

Power Plate,       
35-40Hz,        
1.7-2.5mm 

Yes, 1 group 
resistance 
training only 

+0.93% hip +1.5% hip TB, total hip 

Verschueren et al 
2011 

Postmenopausal, 
>70yrs 

113 Calcium 
1000mg and 
Vit D 880 or 
1600IU/day 

up to 12 mins 
x3 weekly for 
6/12 

Power Plate, 
30-40Hz, 1.6-
2.2g,  

Yes, 4 groups 
-WBV with 
high/low 
dose Vit D 
and high/low 
dose Vit D 

+0.75-0.88% hip NS Hip 

Von Stengel et al 
2011 

Postmenopausal, 
>65yrs 

151 Calcium 
1500mg, 
Vitamin D 44 
IE 

6mins +training 
x2 weekly for 
6/12, and 
training x2 
weekly 

Vibrafit 
(vertical) 25Hz 
1.7mm 

Yes, Training 
group (TG), 
WBV+TG, 
controls 

+1.5% in WBV +2.1% TG 
LS 

NS LS, femur 

Von Stengel et al 
2011 

Postmenopausal, 
65-70yrs 

108 Calcium 
1200mg, 
Vitamin D 
800iu             
WBV+ 
strength 
training 

15mins x3 
weekly for 
12/12, plus 
exercises on the 
platform 

Vibrafit 
(vertical) 35Hz 
1.7mm, 
Quionic 
(rotational) 
12.5Hz 12mm, 
both ~8g 

Yes +0.7% LS rotational                      LS rotational 
increase v 
control no 
change was 
significant         
femoral neck 
NS 

LS, femoral neck 
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Author, year Sample studied, 
age  

Sample 
number 

Concomitant 
therapy 

WBV duration WBV 
parameters 

Control 
group 

Change from baseline Change versus 
controls 

Sites studied 

Zaki et al 2014 Obese 
postmenopausal, 
50-68yrs 

80  10mins 
+resistive 
exercise x3 
weekly for 8/12 

OMA-701A 
(side-
alternating), 
16Hz 

Yes, 
resistance 
training 

+1.03-1.16% in WBV 
+1.02-1.08 in controls at 
all sites except femoral 
neck 

NS LS, femoral neck, 
greater trochanter, 
ward's triangle 

Zha et al 12 Adults 50-60yrs 
and seniors 
+65yrs, 51-93yrs 

68, (53 
female) 

No 20mins x3 
weekly for 6/12 

custom 
vertical and 
tilting, 0.3g-
0.8g, 45-55Hz 

Adult and 
senior 
controls 

+2.52% and +1.63% LS - 
seniors and adults WBV 
+3.22% and +2.06% 
femoral neck - seniors 
and adults WBV               -
0.44% femoral neck - 
seniors control 

Greater 
increase in 
WBV compared 
to controls 
Increase in 
seniors in LS 
greater than 
adults 

LS, right femoral 
neck 

          LS - lumbar spine, NA - not available, NS - not significant, TB - total body, WBV - whole body vibration 
   a3 groups: WBV, WBV+RT, control 

        bWhen accounting for compliance and weight <65Kg 
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12.2. Appendix 2 Study 1 Paper 
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12.3. Appendix 3 Study 1 Protocol (Final Version) 
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12.4. Appendix 4 Study 1 Participant Documents (Final Versions) 
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12.5. Appendix 5 Pubertal Assessment 
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12.6. Appendix 6 Exercise Questionnaire 
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12.7. Appendix 7 Study 2 Protocol (Final Version) 
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12.8. Appendix 8 Study 2 Participant Documents (Final Versions) 
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12.9. Appendix 9 Trauma Levels 
 

Categories of Landin’s Modified Trauma Levels  

 
Descriptives indicating slight trauma 
 Falling to the ground from <0.5m (standing height) 
 Falling to a resilient surface (rubber or sand) from 0.5 – 3m 
 Falling from a bed or a cot 
 Playing injuries including playground scuffles 
 Low-energy sporting injuries such as ball sports, wrestling, judo, karate, and  
 gymnastics 
 
Descriptives including moderate trauma 
 Falling to concrete or other non-resilient surface from 0.5 – 3m 
 Falling from a bunkbed 
 Baby being dropped to the floor by an adult 
 Falling downstairs 
 Falling from a bicycle or horseback 
 Falling from swings or slides or similar playground equipment 
 Child being hit by a bicycle 
 Falls while moving on skateboards, skis, rollerblades, or skates 
 
Descriptives indicating severe trauma 
 Falling from a height exceeding 3m 
 All traffic accidents not already mentioned 
 Being hit by a moving heavy object 
 
 
Clark EM, Ness AR, Tobias JH (2008) Bone fragility contributes to the risk of fracture in children, even 
after moderate and severe trauma. JBMR 23; 2, 173-179 
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12.10. Appendix 10 Study 1 P1NP, OCN, CTX, OPG and Sclerostin Values by participant 
 

Table 18 Phase 1 and 2 WBV groups P1NP and osteocalcin by participant 

      P1NP ng/ml Osteocalcin ng/ml 

  Study no Platform Day 1 Pre 
10 

mins 
60 

mins Day 3 Pre Day 3 Post Day 5 Pre Day 5 Post Day 8 
Day 1 Day 8 

I day 
WBV  

3 J 655.3 511.6 551.3 NA NA NA NA NA NA NA 

4 G 642.5 856.0 826.5 NA NA NA NA NA NA NA 

6 G 588.2 554.6 552.6 NA NA NA NA NA NA NA 

7 G 634.4 671.9 593.6 NA NA NA NA NA NA NA 

9 J 299.1 282.6 262.5 NA NA NA NA NA NA NA 

10 J 1,356.8 1,228.8 1,159.6 NA NA NA NA NA NA NA 

11 G 1,179.6 1,115.6 1,153.6 NA NA NA NA NA NA NA 

13 J 241.8 255.4 242.4 NA NA NA NA NA NA NA 

14 J 654.3 565.7 557.3 NA NA NA NA NA NA NA 

15 G 1,106.0 784.2 941.9 NA NA NA NA NA NA NA 

16 J 396.1 433.9 479.2 NA NA NA NA NA NA NA 

3 days 
WBV 

201 J 539.7 443.2 NA 535.1 476.8 473.3 NA NA NA NA 

202 G 442.1 452.9 NA 591.9 - 494.4 NA NA NA NA 

206 G 968.2 860.3 NA 885.2 657.8 944.8 NA NA NA NA 

210 J 985.5 871.3 NA 873.2 802.7 953.3 NA NA NA NA 

211 G 824.4 918.1 NA 772.5 681.7 989.8 NA NA NA NA 

215 J 922.6 719.1 NA 783.7 622.0 632.3 NA NA NA NA 

216 G 942.9 902.2 NA 759.9 771.8 819.1 NA NA NA NA 

217 J 701.1 - NA - - - NA NA NA NA 

219 J 666.0 487.8 NA 552.2 489.5 642.6 NA NA NA NA 

220 J 617.5 536.7 NA 556.6 487.9 - NA NA NA NA 

222 G 691.3 344.5 NA 564.0 515.4 664.7 NA NA NA NA 

225 G 1,030.0 635.8 NA 830.4 657.0 641.4 NA NA NA NA 

226 J 606.0 672.3 NA 833.0 677.1 835.2 NA NA NA NA 

5 Days 
WBV 

203 G 846.2 626.2 NA 971.0 783.8 1,008.0 888.0 1,102.0 139.30 113.60 

205 J 652.0 584.8 NA 533.2 431.3 507.8 384.5 738.6 83.20 76.30 
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207 G 753.9 678.2 NA 638.7 540.5 691.9 670.5 872.7 70.40 72.80 

208 J 416.8 455.4 NA 587.2 400.0 583.2 423.0 613.0 78.90 83.00 

213 G 621.9 622.1 NA 679.8 534.0 621.0 562.2 705.2 - 77.30 

214 J 1,027.0 913.5 NA 856.3 680.3 1,049.0 925.8 1,050.0 112.00 141.20 

218 G 700.0 639.3 NA 678.0 - 733.9 603.3 742.4 98.80 90.70 

221 G 616.6 785.2 NA 663.1 564.8 - - 817.5 75.50 87.10 

227 J 893.2 805.1 NA 1,063.0 766.2 779.3 735.5 1,068.0 87.20 101.50 

228 J 456.9 469.7 NA 562.1 497.6 643.9 575.6 590.2 70.90 87.10 

229 G 917.5 - NA 733.6 761.2 - - 1,534.4 57.40 120.60 

G - Galileo, J - Juvent, NA - not applicable, - missing sample 
        

Table 19 Phase 3 control group P1NP by participant 

  P1NP ng/ml 

Study no 0 minsa 30 minsb 60 mins 90 minsc 120 mins 

301 532.9 495.1 436.3 414.8 414.2 

302 799.9 703.6 638.5 590.3 657.4 

303 726.0 599.7 440.1 497.4 507.0 

305 1,128.0 930.1 1,022.0 1,135.0 1,129.0 

306 714.0 671.6 595.8 563.8 - 

307 437.7 506.3 379.4 434.2 434.3 

309 665.1 641.5 603.7 574.3 611.4 

310 521.5 462.8 448.9 470.1 469.1 

312 673.4 710.5 898.2 676.8 633.7 

314 659.7 644.7 661.7 705.5 726.0 

316 723.7 682.8 696.5 591.2 642.8 

317 387.1 341.3 398.3 397.1 372.1 

318 664.2 560.0 533.5 483.8 564.2 

319 879.7 704.3 763.2 807.2 741.1 
a- corresponds to pre WBV, b - corresponds to 10 mins post WBV, c - corresponds to 60 mins post 
WBV 
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Table 20 Phase 1 and 2 WBV groups CTX by participant 

      CTX ng/ml 

  
Study no Platform Day 1 Pre 

10 
mins 

60 
mins Day 3 Pre Day 3 Post Day 5 Pre Day 5 Post 

Day 
8 

I day 
WBV  

3 J 1.71 1.49 1.39 NA NA NA NA NA 

4 G 2.78 3.07 2.78 NA NA NA NA NA 

6 G 1.80 1.87 1.77 NA NA NA NA NA 

7 G 1.87 1.86 1.84 NA NA NA NA NA 

9 J 0.98 0.92 0.95 NA NA NA NA NA 

10 J 2.84 2.60 2.60 NA NA NA NA NA 

11 G 3.18 2.83 3.04 NA NA NA NA NA 

13 J 1.03 0.94 0.84 NA NA NA NA NA 

14 J 2.26 2.11 1.88 NA NA NA NA NA 

15 G 2.39 2.07 2.26 NA NA NA NA NA 

16 J 1.44 1.37 1.57 NA NA NA NA NA 

3 days 
WBV 

201 J 1.73 1.60 NA 1.37 1.40 1.23 NA NA 

202 G 1.42 1.38 NA 1.73 - 1.67 NA NA 

206 G 2.17 2.21 NA 2.32 2.18 2.50 NA NA 

210 J 2.59 2.05 NA 2.70 2.70 2.81 NA NA 

211 G 1.98 2.07 NA 1.87 1.81 1.70 NA NA 

215 J 2.41 2.36 NA 2.39 2.22 2.21 NA NA 

216 G 1.95 1.89 NA 1.88 2.00 1.81 NA NA 

217 J 2.09 - NA - - - NA NA 

219 J 1.38 1.30 NA 1.26 1.24 0.82 NA NA 

220 J 1.52 1.43 NA 1.45 1.47 - NA NA 

222 G 1.36 0.98 NA 1.35 1.31 1.30 NA NA 

225 G 2.39 1.74 NA 2.33 1.94 1.84 NA NA 

226 J 1.83 1.42 NA 1.90 1.69 2.02 NA NA 

5 Days 
WBV 

203 G 1.98 1.90 NA 2.15 2.24 2.21 2.46 2.20 

205 J 1.79 1.46 NA 1.62 1.47 1.47 1.35 1.78 

207 G 2.07 2.01 NA 1.87 1.90 1.84 1.89 2.24 

208 J 1.59 1.62 NA 2.06 1.80 1.91 1.76 1.84 

213 G 1.58 1.55 NA 1.96 1.80 1.94 1.98 1.56 
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214 J 2.70 2.36 NA 2.68 2.39 3.06 2.82 3.19 

218 G 1.68 1.67 NA 1.86 - 1.97 1.69 1.92 

221 G 1.46 1.72 NA 1.62 1.54 - - 1.45 

227 J 2.08 1.91 NA 1.84 1.55 1.64 1.55 2.14 

228 J 1.38 1.37 NA 1.51 1.45 1.49 1.33 1.62 

229 G 1.91 - NA 1.97 1.89 - - 2.57 

G - Galileo, J - Juvent, NA - not applicable, - missing sample 
     

 

Table 21 Phase 3 controls CTX by participant 

  CTX ng/ml 

Study no 0 minsa 30 minsb 60 mins 90 minsc 120 mins 

301 1.77 1.75 1.60 1.59 1.59 

302 2.18 1.93 1.69 1.61 1.68 

303 2.12 1.95 1.85 2.05 2.13 

305 2.84 2.60 2.40 2.56 2.49 

306 1.57 1.09 1.02 1.22 - 

307 1.35 1.32 1.17 1.46 1.56 

309 1.88 1.97 1.81 1.76 1.92 

310 1.60 1.61 1.56 1.60 1.62 

312 2.36 2.39 2.73 2.47 2.10 

314 1.73 1.81 1.79 1.87 1.79 

316 2.13 2.24 2.25 1.92 1.71 

317 1.41 1.11 1.20 1.45 1.54 

318 1.75 1.52 1.50 1.31 1.36 

319 1.99 1.85 1.69 1.81 1.74 
a- corresponds to pre WBV, b - corresponds to 10 mins post WBV, c - corresponds to 60 mins post 
WBV 
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Table 22 Phase 1 and 2 WBV groups OPG by participant 

   

OPG pmol/L 

  Study no Platform Day 1 Pre 10 mins 60 mins Day 3 Pre Day 5 Pre Day 8 

I Day 
WBV  

3 J 4.05 3.95 4.29 NA NA NA 
4 G 2.97 2.96 2.97 NA NA NA 
6 G 3.20 3.01 2.50 NA NA NA 
7 G 3.04 3.67 3.31 NA NA NA 
9 J 3.73 3.75 4.01 NA NA NA 

10 J 3.33 3.55 3.24 NA NA NA 
11 G 3.49 3.32 3.18 NA NA NA 
13 J 3.96 3.89 3.51 NA NA NA 
14 J 3.75 3.10 3.60 NA NA NA 
15 G 3.43 2.95 3.04 NA NA NA 
16 J 3.86 3.88 3.86 NA NA NA 

3 Days 
WBV 

201 J 3.07 NA NA 3.20 3.07 NA 

202 G 2.20 NA NA 2.16 1.92 NA 

206 G 4.15 NA NA 3.07 3.61 NA 

210 J 3.36 NA NA 3.65 3.79 NA 

211 G 4.46 NA NA 4.13 4.40 NA 

215 J 4.55 NA NA 3.95 3.98 NA 

216 G 3.24 NA NA 2.88 3.05 NA 

217 J - NA NA - - NA 

219 J 4.77 NA NA 4.47 4.12 NA 

220 J - NA NA - - NA 

222 G 6.55 NA NA 7.01 6.96 NA 

225 G 4.31 NA NA 3.76 3.41 NA 

226 J 3.22 NA NA 3.29 3.51 NA 

5 Days 
WBV 

203 G 3.13 NA NA 3.46 3.52 3.84 

205 J 3.65 NA NA 2.71 2.83 3.22 

207 G 4.11 NA NA 4.19 4.48 4.24 

208 J 3.11 NA NA 3.78 3.37 3.55 

213 G 3.25 NA NA 3.13 2.99 3.03 

214 J 3.24 NA NA 3.39 3.72 3.88 

218 G 3.11 NA NA 2.95 3.26 3.03 

221 G 3.64 NA NA 3.73 - 4.53 

227 J 2.98 NA NA 3.22 3.14 2.87 

228 J 4.08 NA NA 5.22 4.30 4.76 

229 G 4.73 NA NA 3.95 - 4.89 

Controls* 

301 C 3.15 2.69 3.54 NA NA NA 
302 C 2.76 2.44 2.55 NA NA NA 
303 C 3.15 2.77 2.97 NA NA NA 
305 C 2.97 2.68 2.99 NA NA NA 
306 C 4.12 3.38 3.00 NA NA NA 
307 C 2.97 2.26 2.66 NA NA NA 
309 C 2.59 2.72 2.88 NA NA NA 
310 C 3.05 2.80 2.74 NA NA NA 
312 C 2.48 2.50 2.57 NA NA NA 
314 C 2.68 2.78 3.13 NA NA NA 
316 C 3.68 3.26 2.72 NA NA NA 
317 C 3.62 3.29 3.36 NA NA NA 
318 C 2.98 3.66 2.59 NA NA NA 
319 C 2.71 3.02 3.08 NA NA NA 

G - Galileo, J - Juvent, C – control, NA - not applicable, - missing  sample, * - samples at 0,30 and 90 minutes on day 1 
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Table 23 Phase 1 and 2 WBV groups sclerostin by participant 

   

Sclerostin pmol/L 

  Study no Platform Day 1 Pre 10 mins 60 mins Day 3 Pre Day 5 Pre Day 8 

I Day 
WBV  

3 J 33.25 34.32 39.11 NA NA NA 
4 G 28.36 36.29 40.74 NA NA NA 
6 G 30.42 27.83 27.86 NA NA NA 
7 G 44.08 49.05 42.27 NA NA NA 
9 J 16.53 15.72 15.11 NA NA NA 

10 J 31.01 25.96 29.51 NA NA NA 
11 G 27.23 26.12 29.85 NA NA NA 
13 J 21.14 22.82 21.81 NA NA NA 
14 J 21.65 19.13 21.78 NA NA NA 
15 G 19.27 17.90 19.87 NA NA NA 
16 J 32.80 28.70 32.35 NA NA NA 

3 Days 
WBV 

201 J 18.69 NA NA 21.46 22.39 NA 

202 G 20.42 NA NA 24.21 18.38 NA 

206 G 28.49 NA NA 25.76 24.54 NA 

210 J 25.34 NA NA 24.49 32.97 NA 

211 G 38.19 NA NA 42.27 43.46 NA 

215 J 38.47 NA NA 42.32 37.45 NA 

216 G 32.86 NA NA 31.46 31.66 NA 

217 J - NA NA - - NA 

219 J 28.51 NA NA 23.53 27.40 NA 

220 J - NA NA - - NA 

222 G 32.15 NA NA 36.92 31.65 NA 

225 G 31.76 NA NA 29.40 27.60 NA 

226 J 30.39 NA NA 33.63 34.14 NA 

5 Days 
WBV 

203 G 28.74 NA NA 27.00 29.87 22.92 
205 J 24.16 NA NA 23.90 22.73 21.86 
203 G 28.74 NA NA 27.00 29.87 22.92 
205 J 24.16 NA NA 23.90 22.73 21.86 
213 G 26.95 NA NA 30.99 26.54 24.77 
214 J 23.49 NA NA 22.38 26.89 29.93 
218 G 30.45 NA NA 32.86 30.76 27.73 
221 G 24.01 NA NA 24.58 - 26.86 
227 J 23.83 NA NA 22.30 19.19 22.00 
228 J 18.39 NA NA 24.39 27.73 24.62 
229 G 31.02 NA NA 27.91 - 43.56 

Controls* 

301 C 25.11 30.20 25.86 NA NA NA 

302 C 29.20 25.59 26.62 NA NA NA 

303 C 30.37 29.71 25.96 NA NA NA 

305 C 32.08 26.66 25.61 NA NA NA 

306 C 18.34 16.51 15.90 NA NA NA 

307 C 13.68 21.98 15.04 NA NA NA 

309 C 27.60 25.27 24.61 NA NA NA 

310 C 19.95 20.77 24.21 NA NA NA 

312 C 34.15 34.76 34.93 NA NA NA 

314 C 15.20 17.88 18.48 NA NA NA 

316 C 17.42 17.44 17.31 NA NA NA 

317 C 34.64 33.03 32.74 NA NA NA 

318 C 21.37 16.67 15.75 NA NA NA 

319 C 20.42 24.03 20.89 NA NA NA 
        G - Galileo, J - Juvent, C – control, NA - not applicable, - missing sample, * - samples at 0, 30 and 90 minutes on day 1 
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12.11. Appendix 11 Study 2 P1NP, CTX, OPG and Sclerostin Values by Participant 
 

Table 24 No fracture and fracture groups P1NP by participant 

      P1NP ng/ml 

  Study no Platform Day 1 pre Day 1 post Day 3 pre Day 3 post Day 5 pre Day 5 post Day 8 Day 12 

No fracture 

203 G 846.2 626.2 971.0 783.8 1008.0 888.0 1102.0 NA 

205 J 652.0 584.8 533.2 431.3 507.8 384.5 738.6 NA 

207 G 753.9 678.2 638.7 540.5 691.9 670.5 872.7 NA 

208 J 416.8 455.4 587.2 400.0 583.2 423.0 613.0 NA 

213 G 621.9 622.1 679.8 534.0 621.0 562.2 705.2 NA 

214 J 1027.0 913.5 856.3 680.3 1049.0 925.8 1050.0 NA 

217 J 701.1 - - - - - 
 

NA 

218 G 700.0 639.3 678.0 - 733.9 603.3 742.4 NA 

221 G 616.6 785.2 663.1 564.8 - - 817.5 NA 

227 J 893.2 805.1 1063.0 766.2 779.3 735.5 1068.0 NA 

228 J 456.9 469.7 562.1 497.6 643.9 575.6 590.2 NA 

229 G 917.5 - 733.6 761.2 - - 1534.4 NA 

Fracture 

401 J 574.3 531.8 557.2 520.0 546.6 536.3 539.6 470.5 

402 G 534.9 429.2 449.0 378.6 559.9 444.4 639.7 503.4 

403 G 475.6 465.6 - - 637.3 529.8 559.9 608.0 

404 G 725.8 798.7 738.6 620.0 722.7 - - 807.1 

405 J 444.4 343.6 409.8 330.0 450.2 326.3 428.3 399.8 

406 G 558.3 534.2 - - - - - - 

408 G 554.1 561.8 645.0 576.3 535.3 505.9 591.0 565.2 

409 J 447.8 417.6 543.9 407.3 - - 421.7 443.3 

410 G 577.0 541.7 608.4 622.3 555.0 587.0 652.5 603.7 

411 J 697.0 604.9 726.7 603.8 714.2 517.0 - 819.4 

412 G 576.2 460.6 537.4 445.6 518.1 436.8 550.9 546.7 

413 J 524.7 552.2 598.5 486.6 616.2 552.7 607.7 626.0 

414 G 621.0 536.3 527.1 496.7 535.1 514.2 432.1 492.9 

415 J 300.5 286.5 336.9 293.8 263.7 226.4 316.7 369.4 

416 J 828.3 680.6 867.4 771.0 856.4 - 916.3 730.8 

418 J 417.6 409.5 469.3 357.1 263.5 352.4 383.7 444.5 

419 J 873.5 575.5 1200.0 621.9 - - 833.7 820.7 

420 J 846.3 - 570.0 503.8 - - 793.1 612.2 

G - Galileo, J - Juvent, NA - not applicable, - missing sample 
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Table 25 No fracture and fracture groups CTX by participant 

      CTX ng/ml 
  Study no Platform Day 1 pre Day 1 post Day 3 pre Day 3 post Day 5 pre Day 5 post Day 8 Day 12 

No fracture 

203 G 1.98 1.90 2.15 2.24 2.21 2.460 2.20 NA 

205 J 1.79 1.46 1.62 1.47 1.47 1.350 1.78 NA 

207 G 2.07 2.01 1.87 1.90 1.84 1.890 2.24 NA 

208 J 1.59 1.62 2.06 1.80 1.91 1.760 1.84 NA 

213 G 1.58 1.55 1.96 1.80 1.94 1.980 1.56 NA 

214 J 2.70 2.36 2.68 2.39 3.06 2.820 3.19 NA 

217 J 2.09 - - - - - - NA 

218 G 1.68 1.67 1.86 - 1.97 1.690 1.92 NA 

221 G 1.46 1.72 1.62 1.54 - - 1.45 NA 

227 J 2.08 1.91 1.84 1.55 1.64 1.550 2.14 NA 

228 J 1.38 1.37 1.51 1.45 1.49 1.330 1.62 NA 

229 G 1.91 - 1.97 1.89 - - 2.57 NA 

Fracture 

401 J 1.63 1.45 2.02 1.80 1.86 1.670 1.70 1.51 

402 G 1.99 1.73 1.92 1.78 2.13 1.890 2.08 1.89 

403 G 2.31 2.24 - - 2.13 1.870 2.44 2.14 

404 G 1.99 2.05 2.36 2.22 2.20 - - 2.33 

405 J 1.91 1.59 1.91 1.66 1.90 1.670 1.88 1.80 

406 G 1.96 1.74 - - - - - - 

408 G 1.86 1.88 2.15 1.97 1.92 1.800 2.36 2.00 

409 J 1.94 1.81 1.71 1.54 - - 1.68 1.75 

410 G 2.06 2.00 2.15 2.10 2.24 2.000 2.27 2.31 

411 J 2.15 1.98 2.02 1.82 2.19 1.800 - 1.96 

412 G 1.93 1.72 1.66 1.51 1.60 1.510 1.73 1.48 

413 J 2.27 1.96 1.91 1.76 1.90 1.760 2.25 1.96 

414 G 2.05 1.76 1.94 1.70 1.91 1.760 1.35 1.80 

415 J 1.18 1.23 1.27 1.17 1.06 1.020 1.10 1.41 

416 J 2.24 1.97 2.17 1.92 2.21 - 2.35 2.27 

418 J 1.25 1.09 1.71 1.32 1.15 1.180 1.19 1.07 

419 J 2.57 2.22 2.77 2.21 - - 2.61 2.18 

420 J 1.82 - 1.69 1.47 - - 1.84 1.45 

G - Galileo, J - Juvent, NA - not applicable, - missing sample 
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Table 26 No fracture and fracture groups OPG by participant 

      OPG pmol/L 

  Study no Platform Day 1 pre Day 3 pre Day 5 pre Day 8 Day 12 

No fracture 

203 G 3.130 3.460 3.520 3.840 NA 

205 J 3.650 2.710 2.830 3.220 NA 

207 G 4.110 4.190 4.480 4.240 NA 

208 J 3.110 3.780 3.370 3.550 NA 

213 G 3.250 3.130 2.990 3.030 NA 

214 J 3.240 3.390 3.720 3.880 NA 

217 J - - - - NA 

218 G 3.110 2.950 3.260 3.030 NA 

221 G 3.640 3.730 - 4.530 NA 

227 J 2.980 3.220 3.140 2.870 NA 

228 J 4.080 5.220 4.300 4.760 NA 

229 G 4.730 3.950 - 4.890 NA 

Fracture 

401 J 5.346 NA 5.198 5.933 4.826 

402 G 3.937 NA 4.845 5.089 4.499 

403 G 3.556 NA 3.663 3.468 3.403 

404 G 4.729 NA 4.489 - 4.572 

405 J 3.576 NA 3.828 4.665 3.934 

406 G 5.297 NA - - - 

408 G 4.111 NA 4.143 2.964 2.921 

409 J 4.249 NA - 4.960 3.465 

410 G 4.592 NA 4.598 4.938 4.188 

411 J 3.273 NA 3.682 - 3.715 

412 G 4.919 NA 4.011 4.063 4.624 

413 J 3.124 NA 3.045 3.369 3.335 

414 G 4.622 NA 4.541 4.827 4.824 

415 J 3.402 NA 3.769 3.887 3.173 

416 J 3.773 NA 4.093 4.093 3.241 

418 J 3.803 NA 3.282 4.161 4.595 

419 J 3.591 NA - 3.256 3.982 

420 J - NA - - 3.781 

G - Galileo, J - Juvent, NA - not applicable, - missing sample 
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Table 27 No fracture and fracture groups sclerostin by participant 

      Sclerostin pmol/L 

  Study no Platform Day 1 pre Day 3 pre Day 5 pre Day 8 Day 12 

No fracture 

203 G 28.74 27.00 29.87 22.92 NA 

205 J 24.16 23.90 22.73 21.86 NA 

207 G 20.88 20.08 22.14 22.54 NA 

208 J 20.93 21.02 24.21 25.55 NA 

213 G 26.95 30.99 26.54 24.77 NA 

214 J 23.49 22.38 26.89 29.93 NA 

217 J - - - - NA 

218 G 30.45 32.86 30.76 27.73 NA 

221 G 24.01 24.58 - 26.86 NA 

227 J 23.83 22.30 19.19 22.00 NA 

228 J 18.39 24.39 27.73 24.62 NA 

229 G 31.02 27.91 - 43.56 NA 

Fracture 

401 J 35.35 NA 33.86 29.80 30.51 

402 G 53.37 NA 47.93 59.56 44.54 

403 G 24.72 NA 27.70 29.34 34.10 

404 G 36.53 NA 34.68 - 41.69 

405 J 47.28 NA 37.00 34.78 36.01 

406 G 22.40 NA - - - 

408 G 70.57 NA 62.27 58.96 66.38 

409 J 22.23 NA - 24.28 25.96 

410 G 35.49 NA 34.68 41.96 36.63 

411 J 24.17 NA 31.81 - 27.96 

412 G 48.18 NA 47.24 67.62 45.81 

413 J 39.10 NA 28.15 35.85 37.61 

414 G 39.34 NA 39.34 27.81 33.73 

415 J 31.75 NA 43.19 39.77 52.85 

416 J 33.31 NA 37.61 31.06 31.96 

418 J 29.54 NA 22.05 33.57 31.64 

419 J 34.39 NA - 43.28 38.48 

420 J - NA - - 35.80 

G - Galileo, J - Juvent, NA - not applicable, - missing sample 
    

 


