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Abstract 
 

E. coli is a highly diverse commensal and environmental organism also associated with a 

broad range of infectious diseases. The work presented in this thesis provides insights 

into the evolutionary history and genetic diversity of the species through using up-to-date 

genetically representative sets of genomes. Chapter 3 provides insights into the E. coli 

pan genome, rates of recombination, the clonal phylogeny, genes associated with major 

evolutionary diversification events, and identifies a potential new phylogenetic group, 

tentatively labelled ‘G’. Chapter 4 provides evidence to support the use of a novel 256-

gene E. coli core gene multi-locus sequence type (MLST) schema as reliable for 

assigning clonal and phylogenetic groups to strains in evolutionary studies, and as an 

alternative to using a core gene phylogeny, other core gene MLST schemas, or 7-15 locus 

MLST or multiplex schema methods. A novel 7-gene MLST schema and a 10-locus 

multiplex schema were also developed and presented which are inferred at their current 

stage of development to provide 100% correct phylogenetic group assignment to E. coli 

strains. Chapter 5 is an investigation to determine presence and evolutionary insights of 

genes strongly associated with decreases in ureter contractility observed during the early 

E. coli colonisation stages of mild to severe urinary tract infections. Contractility decrease 

phenotypes were found to be significantly linked to strains with genes from a specific set 

including those encoding two haemolysin operons, nitric oxide stress resistance proteins, 

and zinc and potassium uptake proteins. The final research chapter reported an analysis of 

the evolutionary history and genetic diversity of the E. coli type three secretion system 2 

locus (ETT2), and the associated eip cluster. Previously unreported ETT2 cluster genes 

were identified in the genus Citrobacter, the species E. fergusonii, and the E. coli cryptic 

clades. Widespread truncations and deletions were found in specific lineages, together 

with multiple horizontal transfer events of ETT2 genes in group C-I strains. 
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Chapter 1: Introduction 
 

1.1. Escherichia coli 
 

Escherichia coli is a highly diverse facultatively anaerobic Gram negative bacterial species 

found in the environment and within animals (Savageau 1983). The bacterium is commonly 

present as an innocuous commensal organism in the mammalian gut, but there are also 

pathogenic forms that can cause mild to severe infection in hosts (Kaper et al. 2004). 

However, there is not a clear distinction between ‘commensal’ and ‘pathogenic’ E. coli as 

some commensals will cause disease if present in a particular site, such as the urinary tract 

in mammals but not in the intestinal region (Donnenberg 2002). Similarly, O157:H7 is a 

commensal ‘strain’ (defined as bacterial cells descended from a single genetically 

homogenous cell colony (Dijkshoorn et al. 2000)) in cows, but is pathogenic in humans 

(Jay et al. 2007).  

Although uncommon, commensal forms of E. coli can be transformed by the acquisition of 

sequence regions from pathogenic forms by horizontal transfer (HT). These can be in the 

form of insertions containing one to ten genes or ‘genomic island’ mobile genetic elements 

(MGEs) up to 200 kb in length containing genes, and can encode a huge variety of proteins, 

some of which are termed virulence-associated factors (VAFs) as they can initiate and 

maintain disease symptoms in the host upon their expression (Ngeleka et al. 1996, Sussman 

1997). Some types of VAFs include adhesins, toxins, secretion systems, membrane 

transporters, signalling structures, degradative enzymes, and capsules, which from the 

bacterial point of view, can be considered as “fitness factors”, which enable virulent strains 

to infect hosts, overcome immune defences and exploit additional niches within the host, 

to promote survival and proliferation (Kaper et al. 2004).  
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Pathogenic E. coli are classified into different pathovars (Table 1.1), collectively capable 

of producing an extensive range of pathologies in human and animal hosts (Dobrindt et al. 

2004). To humans, most E. coli pathovars represent a mild health risk in the western world, 

but some are potentially life-threatening (Croxen et al. 2013). However elsewhere they are 

more of an issue, such as with enterotoxigenic E. coli (ETEC)-mediated diarrhoea being 

the cause of significant mortality in under 5s in sub-Saharan Africa and south Asia (Kotloff 

et al. 2013). Pathogenic E. coli have been studied for over one hundred years because of 

their affinity with human disease (Kaper et al. 2004). E. coli deemed to cause the same 

pathologies are denoted with the same pathovar identity, with VAFs which can be highly 

diverse and present, absent, exclusive to the pathovar, or present in multiple pathovars. 

Pathovars active within the intestinal area are denoted diarrhoeagenic E. coli (DEC), while 

those active in host bodily regions outside the intestines are denoted extraintestinal 

pathogenic E. coli (ExPEC) (Dobrindt 2005, Kohler and Dobrindt 2011). 
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Table 1.1. Details of the twelve defined E. coli pathovars 

 

 

1.2. Molecular evolution and phylogenetics  
 

Genes are the physical and functional structures of heredity which are inherited directly 

from ancestors. Although replication mechanisms work to create identical copies of a DNA 

strand, mutational errors occur leaving substitutions (e.g. A instead of T), insertions (e.g. a 

new A between CG), or deletions (e.g. CGC to CC) in the copied sequence at a semi-

predictable rate. When comparing related sequences, it is often ambiguous whether an 

insertion has occurred in one sequence, or a deletion has occurred in the other, so insertions 

and deletions are collectively referred to as ‘indels’. When an indel occurs in a gene, it can 

have a significant impact on the structure of the protein it encodes. Within a gene, each set 

of 3 adjacent nucleotides from the start are each referred to as a ‘codon’ (Crick 1968, 

Streisinger et al. 1966, Wang et al. 2001, Koonin and Novozhilov 2009). Codons make up 

the genetic code of a gene and each codon directly contributes to determining the structure 

of the protein that the gene encodes as it is the order of the codons which give proteins their 

unique function (Crick 1968, Streisinger et al. 1966, Wang et al. 2001). Codons are 

Pathovar Pathovar

acronym

Disease(s) 

associated

Example strain

Adherent invasive E. coli AIEC Crohn’s disease LF82

Diffusely adherent E. coli DAEC Diarrhoeal disease A22

Enterotoxigenic E. coli ETEC Diarrhoeal disease E24377A

Enteropathogenic E. coli

(typical and atypical)

tEPEC,

aEPEC

Diarrhoeal disease B171

O26: H11 C814-67

Enteroinvasive E. coli EIEC Bacillary dysentery 53638

Enteroaggregative E. coli EAEC Hemorrhagic colitis (HC),

haemolytic uremic syndrome (HUS)

55989

Enterohemorrhagic E. coli EHEC Hemorrhagic colitis,

haemolytic uremic syndrome

O157:H7 EDL933

Avian pathogenic E. coli APEC Avian colibacillosis APEC O1

Neonatal

Meningitis-associated E. coli

NMEC Neonatal meningitis RS218

Septicaemia-associated E. coli SEPEC Septicaemia, bloodstream infection SEPEC 06

Uropathogenic E. coli UPEC Urinary tract infections (UTI),

Kidney failure, bloodstream infection

CFT073

Mammary pathogenic E. coli MPEC Mastitis P4

Extraintestinal

pathogenic 

E. coli

(ExPEC) 

Diarrhoeagenic

E. coli  (DEC)
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assigned from the start of the gene sequence in sets of the 3 adjacent nucleotides so bases 

1, 2, and 3 are assigned a specific codon, and bases 4, 5, and 6 are assigned the next codon. 

Start and stop codons are the first and last codons assigned for a gene sequence and mark 

the start and end of translation of a gene sequence into a protein sequence. When bases that 

are not in multiples of 3 are inserted or deleted, there is a shift in the reading frame, meaning 

that different codons are present along the rest of the coding sequence, and a different 

amino acid sequence is encoded (Streisinger et al. 1966, Koonin and Novozhilov 2009). 

For example, CCCTCT encodes Phenylalanine then Leucine, but a deletion of the second 

‘C’ (CCTCT-) produces Proline and two left over bases ‘CT’. Although indels can produce 

new functionality for a gene, they more commonly halt translation through causing the 

introduction of a premature stop codon (Streisinger et al. 1966). Proteins with halted 

translation are shorter and typically exhibit partial or no functionality (Streisinger et al. 

1966).  

When a base substitution occurs in a codon within a gene sequence, there is no truncation 

and the sequence length is retained (Crick 1968, Streisinger et al. 1966). However, if the 

substitution introduces or removes a start or stop codon, then this will lead to premature 

truncation or elongation of the gene sequence. All other base substitutions within a coding 

sequence can be classified as synonymous or non-synonymous depending on how that 

substitution affects the codon in which it lies (Crick 1968, Streisinger et al. 1966, Koonin 

and Novozhilov 2009, Copeland 2003). Synonymous substitutions produce the same amino 

acid despite the codon changing because of the redundancy in the code (for example a 

change from CAT to CAC will still encode Histidine) and the resulting protein is 

unchanged by the substitution (Crick 1968). Nonsynonymous substitutions produce a 

different amino acid with the new codon (AGC produces Serine, but AGA produces 

Arginine), and results in the substitution of a single amino acid in the encoded protein. This 
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single change will either not affect the protein (neutral effect), impede its function 

(deleterious effect), or improve it (beneficial effect). Fitness is a concept which describes 

a bacterial cell’s ability to replicate and survive in an environment (Subashchandrabose et 

al. 2015, Barrick et al. 2009). A quantification of the contribution of a gene to the fitness 

of the organism is often termed the fitness value or score (Barrick et al. 2009. Rubin et al. 

2015). A deleterious mutation in a gene with a high contribution to the fitness of the 

organism would result in a reduced ability of the cell to replicate and survive in its current 

environment (Barrick et al. 2009, Rubin et al. 2015, Wiles et al. 2013). However, a 

beneficial mutation would improve it while a neutral mutation would not change its ability 

(Barrick et al. 2009, Wiles et al. 2013). Genes with a high fitness value may be subject to 

‘positive selection’ whereby bacterial cells with the mutated gene preferentially replicate 

and survive over those without it, making the gene increasingly common in the population 

(Barrick et al. 2009, Wiles et al. 2013). This also occurs after gene duplication events 

through errors in DNA replication and repair (Yamanaka et al. 1998, Fyodor et al. 2002). 

Mutations caused by duplications, indels, and substitutions are therefore a significant 

driving force behind evolutionary development (Barrick et al. 2009, Fyodor et al. 2002). 

However specific E. coli genes encoding ‘housekeeping’ functions such as those relating 

to aerobic respiration (arcA), RNA polymerase production (rpoS), and cell membrane, 

nucleus, and transport system-associated functions essential to general cell survival 

typically exhibit stronger selection against nonsynonymous substitutions than other genes 

(Viscidi and Demma 2003, Reid et al. 2000). This is because they have high fitness values 

in their current states, meaning that almost all nonsynonymous substitutions will be 

deleterious (Viscidi and Demma 2003). Selection against deleterious substitutions is 

referred to as “purifying selection” (Jordan et al. 2002). 
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1.2.1. Horizontal transfer via mobile genetic elements 
 

Horizontal transfer (HT) is an important factor in the molecular biology of bacteria and 

must be considered when making inferences about the evolutionary history of a species or 

simply the relatedness of a set of strains (Didelot et al. 2012). It is a process which allows 

genes from a donor genome or plasmid to be acquired by recipient cell genomes or cell 

plasmids (Hanahan 1983, Ochman et al. 2000). E. coli genomes include many “accessory 

genes” which are not conserved across all strains. These genes are important for survival 

in specific environments and are commonly found on MGEs such as insertion sequence 

(IS) elements, plasmids, and prophage (Dobrindt et al. 2004, Thomson et al. 2004). MGEs 

facilitate the phenomena of HT and enable the transfer of DNA segments ranging from a 

few bases to individual genes or operons (adjacent genes with products functioning as a 

single unit) and even genomic “islands” spanning several hundred kilobases (Ochman et 

al. 2000, Ren et al. 2004). Genes acquired via HT can be incorporated into the genome via 

a process called homologous recombination (referred to just as ‘recombination’ in this 

thesis) and may replace the native copy of that gene (Didelot and Maiden 2010) (Nehra et 

al. 2017).  

1.2.2. Conjugation, transformation, and transduction 
 

Conjugation, transformation, and transduction are the mechanisms by which genetic 

material is transferred between two bacterial cells in HT. Conjugation is the physical 

genetic transfer of DNA through a mating pore which spans between the membranes of 

both cells. (Guglielmini et al. 2011). Generally, MGE segments of up to 100 kb are 

transferred in conjugation. Plasmids (linear or circular double stranded extrachromosomal 

DNA) are often transferred through the pore and are common vectors of DNA transfer in 

conjugation (Burrus et al. 2002). Transferred DNA may then be inserted into the genome 
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through the activity of MGEs such as transposons, insertion sequences, and phage genes, 

or replace an existing sequence via recombination. 

Transformation is where naked DNA strands from the surrounding intercellular 

environment (typically left after cell lysis) are taken up by the cell and incorporated into 

the genome via insertion or recombination (Hanahan et al. 1983, Ochman et al. 2000). Only 

a minority percentage of bacterial cells in a uniform or mixed population can uptake this 

DNA. Such “competent cells” express factors including cell wall modifications that allow 

DNA to be bound and uptaken into the cell (Hanahan, 1983; Nielsen & Van Elsas, 2001). 

The acquired DNA may then be inserted into the genome through MGE activity or replace 

an existing sequence via recombination (Hanahan et al. 1983, Ochman et al. 2000). 

Transduction is the transfer of DNA between bacteria mediated by bacterial viruses called 

bacteriophages (Schicklmaier and Schmieger 1995, Ochman et al. 2000). With generalised 

transduction, a random section of bacterial DNA sequence becomes enclosed in a viral 

capsid protein (also referred to as a viral envelope) during viral packaging in an infected 

donor cell (Ochman et al. 2000). This can occur via ‘headful packaging’ whereby the 

bacteriophage tends to incorporate non-viral DNA into its genome if there is size capacity 

(≤110 kb) in its capsid (Coren et al. 1995). Upon replication of the bacteriophage, lysis of 

the donor, and subsequent infection of another bacterium, recombination occurs between 

the donor DNA sequence transferred during infection and the recipient genome’s 

homologous DNA sequence after the virus takes control of the cell in order to replicate its 

own DNA (Goh et al. 2016, Ochman et al. 2000). In specialised transduction, the 

bacteriophage inserts its DNA into the host chromosome (called a ‘prophage’ once 

integrated) through involvement of the bacterial RecA and RecBCD enzymes, and the 

prophage is then replicated with the surrounding bacterial genome (Thomason et al. 2007, 

Chen et al. 2018). Then during induction, viral DNA is enzymatically excised and is 
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packaged in a protein capsid to form a bacteriophage particle (Goh et al. 2016, Ochman et 

al. 2000). When the phage genes excise from the host chromosome, host chromosomal 

DNA can be erroneously incorporated into the bacteriophage genome by imprecise 

excision followed by packaging where a protein capsule surrounds the DNA to become 

part of the bacteriophage (Chen et al. 218, Ochman et al. 2000). The bacteriophage then 

replicates, lyses the cell, matures, and reinfects a different recipient cell, inserting its 

prophage-host DNA sequence mix into the genome which becomes integrated with other 

chromosomal genes (Chen et al. 2018, Ochman et al. 2000). A recipient cell with the 

integrated DNA is referred to as lysogenic cell (Goh et al. 2016). The quantity of DNA 

transferred in transduction events is limited by the phage capsule size but can reach 100 kb 

(Thomason et al. 2007, Ochman et al. 2000). 

1.2.3. Insertion sequences 
 

Insertion sequence elements are MGEs which facilitate self-transposition, typically shorter 

than 2.5 kb and commonly found on plasmids or inserted into bacterial chromosomes that 

encode genes (Mahillon and Chandler 1998, Mahillon et al. 1999). Their structure usually 

includes a central transposase gene (Tpase) and a promotor sequence which initiates 

transcription of the Tpase gene, surrounded by inverted repeated base (IR) sequences that 

define the IS element borders (Mahillon and Chandler, 1998). In E. coli IRs range from 10 

to 40 bp in length (Mahillon et al. 1999). IS elements typically only encode functions which 

mediate their own translocation; movement of the whole sequence which can hop between 

locations within the same genome or between genomes through insertion at the point of a 

target sequence, with the central Tpase genes carrying out the transposition (Mahillon and 

Chandler, 1998; Mahillon et al. 1999). The donor sequence can then be transcribed and 

translated with surrounding genes (Mahillon et al. 1999). IS elements additionally have a 

role in gene deletion in bacterial genomes. When two copies of the same IS element exist 
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in the same genome, recombination can occur between the repeat sequences in the IS which 

can lead to a deletion of genes situated between the repeat sequences. IS elements thus can 

play an important role in initiating genome HT, deletions, rearrangement, and 

diversification (Siguier et al. 2006). 

In a long-term evolution study (Lee et al. 2016), 41 copies of ISs from 14 families were 

found between 520 E. coli strains descended from a founding E. coli strain labelled PFM2. 

The study monitored genome rearrangements with lengths of 1-40 kb in all isolates over a 

total of 2.2 million generations and found 758 novel insertions and 98 recombination events 

to have occurred as a result of the ISs (Lee et al. 2016). A similar study identified 110 

rearrangements with lengths of ≥5 kb over 40,000 generations including 82 deletions and 

19 inversions in strains descended from E. coli strains REL606 or REL607 (Raeside et al. 

2014). In nature, such rearrangements can disturb the set genome order of ancestral genes 

and cause significant levels of gene loss and the creation of pseudogenes (gene 

inactivation). HT of genes is thought to be balanced by gene loss mediated by 

recombination between IS elements, so bacterial genome size will not increase continually 

(Parkhill et al. 2001). An example of this can be seen in Bordetella and Yersinia pestis 

where strains with smaller genomes were found to have more ISs than those with larger 

genomes (Parkhill et al. 2001). 

1.2.4. Genomic Islands 
 

Genomic islands (GIs) are distinct chromosomal elements 9 to 200 kb in length, which are 

often flanked by short repeats, IS elements or transfer RNA (tRNA) genes. GIs are often 

found inserted alongside tRNA genes, and typically have a GC content that differs from 

the core genomic regions (Kaper et al. 2004, Ochman et al. 2000). The higher integration 

activity is due to the presence of genes that encode transposases and integrases, enzymes 
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which catalyse the insertion of mobile genetic elements into the recipient strain 

chromosome (Dobrindt et al. 2004). GIs were originally identified as clusters of genes 

encoding VAFs, referred to as “pathogenicity islands” (PIs; Hacker et al. 1997, Buchrieser 

et al. 1998, Kaper and Hacker 1999), but the availability of complete genome sequences 

indicated the presence of chromosomal insertions which had no obvious link to 

pathogenicity (Perna et al. 2001), hence the adoption of the more general term GIs.  

A PI may confer upon the host strain a specific virulence phenotype due to the nature of 

the encoded proteins. One medically important and well-characterised E. coli PI is the 

Locus for Enterocyte Effacement (LEE). The LEE is a principal virulence system present 

in the genomes of enteropathogenic E. coli (EPEC) and enterohaemorrhagic E. coli (EHEC) 

(Nataro and Kaper, 1998). It encodes a Type III secretion system which acts as a “molecular 

syringe”, to secrete virulence-associated factors from the bacterial cell to the host across 

both the bacterial and host cell membranes. The LEE can be found on plasmids or within 

the chromosome, inserted alongside the pheU, selC, or pheV tRNA genes (Deng et al. 2001, 

Jores et al. 2004). It is 35.6 kb in length with a G+C content of 38.4%, far lower than the 

E. coli genome average of 50.8% (Frankel et al. 1998). 

1.2.5. Phylogenetics and the evolutionary tree 
 

Substitutions and indels of chromosomal genes and MGEs are an important source of 

information used for deducing the genetic and evolutionary relationships between a set of 

bacterial strains (Duchêne et al. 2016, Woese 2000). Since Charles Darwin drew the first 

diagrammatic tree of evolutionary relationships, branching depictions of genetic kinship 

have been described in the same way in the form of phylogenetic trees (phylogenies) 

(Woese 2000). Today molecular phylogenies provide a highly informative estimation of 

molecular genetic relatedness between bacterial isolates or genomes which can be used to 



23 

 

address research questions relating to pathogenicity and evolution (Woese 2000). Modern 

molecular phylogenetics uses the distribution of substitutions between aligned nucleotide 

sequences to determine their respective evolutionary distances to one another, and to infer 

the evolutionary relationships between them (Chatzou et al. 2016). Phylogenetic trees 

include external (or leaf) nodes representing the sequenced organism, internal nodes 

representing inferred ancestral sequences, branch lines representing evolutionary distance 

that connects nodes to their ancestors, and branch support values which are a measure of 

the statistical support for the grouping of the descendent leaf nodes based on the input DNA 

sequences (Ahrenfeldt et al. 2017) (Figure 1.1). The branching pattern of the tree is referred 

to as its “topology”. 

 

Figure 1.1. Diagram of a phylogenetic tree for five bacterial strains. Leaf nodes are shown 

as black circles and inferred ancestral (internal) nodes are shown as blue circles. The lines 

connecting nodes are branches. The numbers adjacent to the internal branches are example 

branch support values, which are measures of statistical support for the grouping of the 

descendent nodes under each internal node, expressed as a percentage. 
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1.2.6. Phylogeny and recombination 

 

The possibility of recombination via HT should be considered when evolutionary 

relationships of bacterial strains are being inferred using a phylogenetic tree (Escobar-

paramo et al. 2003, Didelot et al. 2010). A phylogenetic tree constructed using DNA 

sequences from genes which have undergone recombination may exhibit a different 

topology to that constructed using DNA from genes which have not undergone 

recombination (Didelot et al. 2010). This is because a recombination event between two 

isolates means that the recipient appears to cluster more closely with the donor strain in the 

phylogeny obtained from the recombinant gene sequences. However, the two strains in fact 

have a different phylogenetic relationship if inferred using DNA sequences not involved in 

recombination, which reflects the “true” evolutionary relationships between the isolates 

(Figure 1.2) (Didelot and Maiden 2010). 

 
 

Figure 1.2. Diagram illustrating the phylogenetic effects of horizontal transfer (HT) via 

recombination. Left: the phylogeny created using gene sequence without a history of 

recombination with an arrow showing the point at which a previously present gene is 

acquired by strain 1 from strain 2 in a homologous recombination event. Right: A 

phylogeny constructed from the gene affected by the recombination event, showing that 

strains 1 and 2 are clustered more closely than in the first phylogeny but have diverged 

independently since the recombination event. 
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Recombination has implications for the determination of a bacterial species phylogeny 

(Didelot and Maiden 2010). Bacteria clonally reproduce through binary fission so a 

bacterial species phylogeny depicts inferred binary fission events as internal nodes in the 

phylogeny (Didelot and Maiden 2010). The species phylogeny is referred to as the ‘clonal 

phylogeny’ (Wieler et al. 1997), which is the term used throughout this thesis. However, to 

construct a clonal phylogeny recombinant core genome sequence must be removed prior to 

phylogeny construction (Didelot et al. 2010). 

1.2.7. Whole genome sequencing of bacteria 
 

Whole genome sequencing of E. coli is an important way to study the genetic diversity, 

evolutionary history, and virulence of a set of isolates. The first complete bacterial genome 

(Haemophilus influenzae) was sequenced in 1995 (Fleischmann et al. 1995) using Sanger 

sequencing (Sanger et al. 1977). At that time genome sequencing was not scalable due to 

the costs associated with the Sanger method and the coverage produced in sequenced reads 

was also limited and not consistently detailed (Woolley and Mathies 1995, Ruan et al. 1995, 

Loman et al. 2012). In 2005 the first high-throughput sequencing technologies (HTS; also 

referred to as ‘next-generation’ sequencing, NGS) were developed which produced much 

longer read lengths, removing the requirement for a reference genome. Initially the most 

widely used HTS platform for bacterial sequencing was the Roche 454 (Margulies et al. 

2005) (read length 700-800 bp). However, the technology was found to have a high rate of 

indel errors (Loman et al. 2012) meaning it was superseded by Illumina sequencing (read 

lengths 200-300 bp). Illumina sequencing is the currently most used technology and 

involves fragmenting DNA, attachment of adaptor DNA, cluster generation in a unique 

cluster growth and bridge amplification step, and a single-base at a time imaging method 

of sequencing and included analysis of basecalls and read data as part of each run. The 

technology overall provides greater accuracy at reporting indel regions than the Roche 454 
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sequencer (Loman et al. 2012, Quainoo et al. 2017). Additionally, two alternative 

technologies have most recently been developed for use in high-throughput sequencing; 

the PacBio platform (Rhoads and Au 2015) and the pocket-sized MinION sequencer (Jain 

et al. 2016). The PacBio platform provides a single-molecule, real-time de-novo 

sequencing approach and was designed to produce longer read lengths than existing 

technologies (>10 kb) which allows it to produce single-contig bacterial genomes (Rhoads 

and Au 2015). However, the PacBIO exhibits a comparatively high error rate in repeat 

sequence regions so is currently most suitable for metagenomic studies where high-

throughput sequencing is required and where errors in repeat sequences can still allow 

identification of a sequence to the species level (Loman et al. 2012). The MinION is a 

portable sequencer weighing less than 100 g which has allowed new remote research 

possibilities and can produce reads of lengths 100-300 kb (Mikheyev et al. 2014). However, 

it currently exhibits a significant error rate in sequence deletion regions (Mikheyev et al. 

2014) so it and the PacBIO technologies require development. However, the speed at which 

sequencing technologies are being developed (Quainoo et al. 2017) indicate that the pace 

of bacterial whole genome sequencing is likely to continue and increase in the future as 

costs decrease and higher quality sequences are produced more efficiently than previously 

(Loman et al. 2012). 

1.2. E. coli genetic diversity and evolutionary history 
 

This section provides a discussion of previous research efforts to determine the genetic 

diversity present across the E. coli species and the major evolutionary events which have 

characterised its evolutionary history.  
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1.3.1. E. coli genome structure and diversity 
 

Studies of E. coli strain genomes indicate that the E. coli species genome varies 

considerably in size, ranging from 4.6 Mb to 5.5 Mb (Bergthorsson et al. 1995, 

Bergthorsson and Ochman 1998). The first E. coli genome sequence to be published was 

of strain K-12 MG1655 (Blattner et al. 1997), followed by strains O157: H7 Sakai (Hayashi 

et al. 2001) and O157:H7 EDL933 (Perna et al. 2001) around the same time and then strain 

CFT073 (Welch et al. 2002). Comparisons of these genomes to one another revealed that 

the E. coli genome exhibits a shared co-linear backbone which is ‘punctuated’ by hundreds 

of genomic islands many of which are shared between strains K-12 MG1655 and O157:H7 

EDL933 (Perna et al. 2001) (Figure 1.3) and CFT073 (Welch et al. 2002).  
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Figure 1.3. Circular diagram of the O157:H7 EDL933 genome (outer circle) compared to 

that of the str. K-12 MG1655 genome (inner circle) with their shared co-linear core genome 

backbone (blue middle circle). Positions of sequences comprising individual genes and 

genomic islands specific to EDL933 are in red and those specific to K-12 MG1655 are in 

green. Genes and genomic islands which are shared by both genomes are in tan and purple 

and those in the same position in both as in EDL933 are detailed in the core genome 

backbone. Functional annotations for proteins encoded by example genes and islands are 

detailed next to the outer ring. Edited from Figure 1 of Perna et al. (2001) (Reprinted and 

adapted by permission from Springer Nature [COPYRIGHT] 2001). 

 

 

 

E. coli str. O157:H7 EDL933

and str. K-12 MG1655
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The term pan genome was coined by Tettelin et al. (2005) to describe all genes that are 

present in the chromosomes of a set of strains. The term can be used for a given set of 

strains or for all strains of a bacterial species (the species pan genome). The pan genome 

can be divided into the dispensable genome (Medini et al. 2005), also referred to as the 

variable (Lukjancenko et al. 2010), or accessory (Touchon et al. 2009) genome, and the 

core genome. The dispensable genome comprises of genes which are present in the species, 

but which are absent from the genomes of one or more strains. The core genome comprises 

of genes which are present as orthologues (typically defined as genes which have ≥ 80%, 

≥ 85%, ≥ 90%, or ≥ 95% amino acid identity to one another, depending on the analysis), 

present in 100% of genomes (strict definition) or ≥ 99% of genomes (permissive definition 

to account for core genes which have been deleted in 1% of strains, the definition used in 

this thesis) of a genome set (core genes to the set) or species (core genes to the species) 

(Touchon et al. 2009, Lukjancenko et al. 2010). A pan and core genome plot created by 

Lukjancenko et al. (2010) showed that the change in pan genome, illustrated by the 

cumulative number of gene families identified across genomes, rises with the addition of 

each E. coli genome (Figure 1.4). In the plot the core genome is illustrated as the conserved 

number of gene families identified across genomes which decrease with each genome. 
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Figure 1.4. Pan and core genome plot showing that the change in pan genome, illustrated 

by the cumulative number of gene families identified, rises with the addition of each 

genome. The core genome is illustrated as the conserved number of gene families identified 

which decrease with each additional genome. The number of gene families identified with 

each new genome which are previously unseen are also shown as bars. Edited from Figure 

4 of Lukjancenko and Wassenaar (2010), Creative Commons use: http://creativecommons 

.org/licenses/by /2.0/. 

 

Using complete genome sequences, previous studies have reported the E. coli pan genome 

and accessory genome to effectively be infinite and encode a broad range of functions 

(Touchon et al. 2009). Conversely, core genes are likely to be responsible for functions 

relating to basic metabolism, replication, translation, and transcription (Touchon et al. 



31 

 

2009, Rasko et al. 2008, Chaudhuri et al. 2010). Genome content differences between 

strains occur primarily through gene duplication and subsequent divergence of one copy 

(Teichman and Babu 2004) or through acquisition via HT from other lineages (Dobrindt et 

al. 2004). Genome content differences provide evidence for the accessory genome, which 

allows for specific adaptation to the range of changing habitats where E. coli are found 

(Monk and Bosi 2018, Tenaillon et al. 2010, Dobrindt et al. 2004).  

1.3.2. The E. coli species phylogeny 
 

Efforts to determine the E. coli species phylogeny (or clonal phylogeny) date back over 40 

years (Milkman 1973). A species phylogeny is useful as a point of reference for genetic 

diversity and population genetics studies. E. coli phylogenetics started with the 

measurement of electrophoretic mobility of the same set of enzymes from different strains, 

and quantifying diversity based on the observed variation in electrophoretic profiles 

(Milkman 1973). A given number of selected cellular soluble metabolic proteins are first 

extracted from isolate cells and then placed into starch gel which has a current passed 

through it (Selander et al. 1986). Gels are prepared by using 48g starch to 420 ml of gel 

buffer (no. 2901-02; Connaught Laboratories as used by Selander et al. (1986)) and a 

constant voltage of 100-350 V is passed through the gel for the duration of the experiment 

(Selander et al. 1986). Optimum electrophoretic conditions for each enzyme of a given 

bacterial species can be determined prior to analysis through trialling a range of buffers 

with differing PH values (Selander et al. 1973, Selander et al. 1986). Gels are then 

incubated at 37 degrees centigrade in the dark for a period to 10 minutes to four hours until 

the point where electrophoresed and stained enzymes appear on the gel as defined narrow 

bands (Tenover et al. 1994, Maslow et al. 1994). Variations in electrophoretic mobility of 

the enzymes are then interpreted as reflections of amino acid substitutions in the enzymes 

which alter protein charge and motility through the gel under influence of a current 
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(Tenover et al. 1994, Maslow et al. 1994). Phylogenetic relationships among strains are 

inferred based on measured distances of enzymes in the gel from the point of origin and 

from one another and are assigned numbers to aid with this process (Selander et al. 1973, 

Selander et al. 1986).  

The most noted weaknesses of MLEE was that carrying it out was regarded as technically 

demanding in terms of time and was not always accessible due to the expense of the 

resources required to carry it out (Maslow et al. 1993, Tenover et al. 1994). It was also 

reported to not achieve adequate levels of discrimination between loosely related isolates 

in epidemiological studies (Maslow et al. 1993, Tenover et al. 1994). For example, when 

used to analyse pyelonephritis patients infected with UPEC, virulent strains were 

represented in MLEE by a limited number of closely related lineages which were difficult 

to distinguish (Maslow et al. 1993). However, the approach did provide sufficient utility at 

the time of its development for distinguishing bacterial strains and isolates (Ochman and 

Selaner 1984). It became the standard approach for quantifying E. coli diversity, and a 

series of similar E. coli MLEE studies over the following years increasingly supported the 

hypothesis that the species evolved clonally with little recombination (Ochman and Selaner 

1984, Whittam et al. 1983). The MLEE findings led Ochman and Selander (1984) to create 

the 72-strain E. coli reference (ECOR) collection, which consists of strains isolated from 

17 mammals including humans and chosen to represent the electrophoretic enzyme 

diversity seen across all E. coli. Midpoint rooting (selection of the longest branch in the 

phylogeny to be the out group root) of a phylogeny constructed using 38 enzyme loci from 

these strains by Herzer et al. (1990) defined the four groups A, B1, B2, and D with several 

unclassifiable strains as group E (Figure 1.5). A group named C had also previously been 

defined in earlier analyses, though this study revealed it is not a well-defined phylogenetic 

group and so it is no longer recognised (Chaudhuri and Henderson 2012). 
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Figure 1.5. MLEE phylogeny of 38 enzyme loci using 72 strains of the ECOR collection 

constructed by Chaudhuri and Henderson (2012) using the neighbor-joining method 

(Saitou and Nei, 1987), equivalent to Figure 1 in Herzer et al. (1990) (used with permission 

from Elsevier). The scale bar on the bottom left indicates the number of substitutions per 

site represented by the branch length shown. 
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The major MLEE phylo-groups identified by Herzer et al. (1990) have since been supported 

by variation across nucleotide sequences of a 29.9 kb gene cluster in a genomic location 

separate from the genes encoding the enzymes used (Ren et al. 2004). Moreover, Clermont 

et al. (2000) developed a diagnostic method, a triplex PCR, for efficiently characterizing 

strains into one of the four groups with an 85-90% accuracy rate using variation in the 

sequenced genes chuA, yjA, or sequence TSPE4.C to differentiate the 4 groups. This was 

updated in 2013, with an updated quadruplex PCR method to include previously 

unincluded groups denoted E and D2/F and divergent clades C-I, C-III, C-IV and C-V using 

the gene arpA additionally in PCR (Clermont et al. 2013). 

MLEE data was surpassed in accuracy by the availability of nucleotide and amino acid 

sequence data, which have a markedly reduced probability of convergence, where distantly 

related strains by chance show a similar phenotype and cluster together, which falsely 

indicates that the strains are more closely related than they are (Bisercic et al. 1991). 

Phylogenetic analysis of sequence data facilitated studies to investigate genetic diversity. 

Initially this was done on individual genes, but this led to the development of multi-locus 

sequence typing (MLST), which involves phylogenetic analysis using multiple genes to 

phylogenetically place strains usually with a number called a ‘sequence type’. The 

approach is carried out by first designing oligodeoxyribonucleotide (oligo) primer 

sequences which are constructed to be complementary to the desired genes which will be 

used in the MLST analysis (Escobar-Paramo et al. 2004). Oligos are then subjected to the 

polymerase chain reaction and are used to generate DNA fragments which have 

overlapping ends, which then combine in a fusion reaction where the overlapping ends 

anneal. This causes the 3’overlap of each strand which then serves as a primer for the 3’ 

component of the complementary strand (Ho et al. 1989). Further amplification of the 

fusion product then occurs to produce a final amplicon product which is then DNA 
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sequenced (Ho et al. 1989, Maiden et al. 2013). Computational phylogenetic analysis of 

these sequences then follows to determine the genetic relationships of the sequences and 

assign the sequence type based on the isolate or strain position in the phylogeny topology 

(Maiden et al. 2013). The development of MLST meant that isolates could be 

phylogenetically typed using a greater quantity of information compared to MLEE by using 

base polymorphisms compared to electrophoretic profiles, which yielded greater typing 

accuracy (Maiden et al. 2013). The comparatively superior phylogenetic typing accuracy 

that the approach provided meant it became widely adopted (Maiden et al. 2013). Four 

different E. coli MLST schemas currently exist, all of which use ‘housekeeping’ genes that 

are inferred to be involved in metabolic functions (Maiden et al. 2013) (Table 1.2): 

Achtman (7 genes), which is the most commonly used (Clermont et al. 2015, Wirth et al. 

2006), Pasteur (8 genes) (http://www.pasteur.fr/recherche/enopole/PF8/mlst/EColi.html), 

and EcMLST, which consists of two schemas, one of 7 genes, and one of 15 (Qi et al. 

2004).  

Table 1.2. Four widely used MLST schemas used to phylogenetically place E. coli. 

 

In an MLST study, Escobar-Paramo et al. (2004) used the sequences of 6 genes from the 

Pasteur schema (trpA, trpB, pabB, putP, icd, and polB) from 98 isolates and produced a 

tree topology similar to the MLEE phylogenies, but with group B2 as the outgroup rather 

MLST 

schema

Genes Origin Website

Achtman adk, fumC, gyrB, icd, 

mdh, purA, recA

Warwick Medical 

School

http://mlst.warwick.ac.uk/dbs/

Ecoli

Pasteur dinB, icdA, pabB, polB, 

putP, trpA, trpB, uidA

Pasteur Institute http://www.pasteur.fr/recherche/

enopole/PF8/mlst/EColi.html

EcMLST: 7 

genes

aspC, clpX, fadD, icdA, 

lysP, mdh, uidA

Michigan State 

University

http://www.shigatox.net/ecmlst/

cgi-bin/index

EcMLST: 15 

genes

aspC, clpX, fadD, icdA, 

lysP, mdh, uidA, mtlD, 

mutS, rpoS, grpE, dnaG, 

cyaA, arcA, aroE

Michigan State 

University

http://www.shigatox.net/ecmlst/

cgi-bin/index
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than group A (Figure 1.6). This topology is largely supported by an unrooted phylogeny 

generated by Turrientes et al (2014) when the Achtman schema was used with a set of 80 

E. coli strains (Figure 1.7). However, in the Achtman-based phylogeny group A was split 

across two clades rather than clustering as a monophyletic group. Group B2 is connected 

to the other groups by the longest branch. 
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Figure 1.6. MLST phylogeny based on 6 chromosomal loci using 98 E. coli strains which 

includes strains from the ECOR collection. E. coli phylogenetic groups are labelled A-E 

(Figure 1 of Escobar-Paramo et al. 2004, used with permission from Oxford University 

Press). Percentage bootstrap support values are shown on internal branches. The scale bar 

on the bottom left indicates the number of substitutions per site represented by the branch 

length shown. 
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Figure 1.7. Unrooted phylogenetic tree constructed using genes from the Achtman schema 

from 80 E. coli strains. Phylogenetic groups are labelled A-E. Edited from Figure 2 of 

Turrientes et al. (2014), Creative Commons use: http://creative commons.org 

/licenses/by/4.0/. The scale bar indicates the number of substitutions per site represented 

by the branch length shown. 

 

A weakness of MLST is that it is inherently limited for phylogenetic reconstruction (Been 

et al. 2015). This is because using a restricted selection of core or housekeeping genes to 

construct a clonal phylogeny can mean that informative sequences are excluded. Such 

informative sequence may support genetic divergence or close relationship between groups 

of isolates and excluding it can introduce inaccuracy through falsely indicating strains are 

more closely or distantly related than they are (Chaudhuri and Henderson 2012). There is 
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also a chance that some of the included genes have previously been subject to 

recombination via HT, and since only a limited number of 7-15 genes are included in the 

analysis, any recombinant sequences may disproportionately affect the inferred phylogeny. 

This is because recombinant sequence will show a false indication of the isolates position 

in the phylogeny where its gene sequence will cluster more closely to gene sequence used 

in the phylogeny that resembles the recombinant sequence. For an isolate, the greater the 

ratio of recombinant to non-recombinant sequence, the greater the likelihood that the isolate 

exhibits a phylogenetic position which more closely resembles that of the donor of the 

recombinant sequence (Chaudhuri and Henderson 2012).  

One way to circumvent these limitations is to create a core genome phylogeny (also referred 

to as a whole genome sequence (WGS) phylogeny) using all shared genes, which is more 

likely to be representative of the clonal species phylogeny than a phylogeny inferred using 

a subset of the core genes. This is because the quantity of recombinant sequence compared 

to non-recombinant sequence is likely to be lower when an increased number of genes are 

included. In a phylogeny constructed using these genes, the recombinant sequence 

therefore contributes significantly less to phylogenetic signal and topology than the 

recombination-free sequence (Touchon et al. 2009, Chaudhuri and Henderson 2012). A 

strength of the approach is the comparatively larger quantity of informative sequence 

included. It makes core genome phylogenetic typing a method that provides a superior 

accuracy than both MLST and MLEE approaches (Quainoo et al. 2017, Chaudhuri and 

Henderson 2012). This has resulted in a tendency demand for its increased use in genetic 

studies of E. coli and other bacteria (Nyolm et al. 2015, Ferdous et al. 2016, Quainoo et al. 

2017). However, a weakness of the approach is that it requires access to sequencing 

technology capable of sequencing whole genomes and a computer with the processing 

power required to conduct phylogenetic analysis using whole core genome sequences 
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(Tenaillon et al. 2010, Quainoo et al. 2017). The time required to conduct phylogenetic 

analysis of core genomes can be prohibitively lengthy without a capable computer 

(Quainoo et al. 2017). However, sequencing technologies and capable computers are 

becoming increasingly available with the decreasing costs of equipment responsible for 

increased processing capabilities (Quainoo et al. 2017) 

The first E. coli core genome phylogeny was published by Touchon et al. (2009) (Figure 

1.8) using an alignment of 1,878 core genes. In this phylogeny the root strain was selected 

via midpoint rooting whereby the longest branch in the phylogeny is selected to be the root. 

The root split group D into two, with one half clustering with group B2 as an out group, 

and the other half clustering with groups A, B1, and E.  

However, Kaas et al. (2012) constructed a phylogeny using 1,278 core genes (equivalent 

to ~1.28Mb) from 186 E. coli strains (Figure 1.9). Like the phylogeny by Touchon et al. 

(2009) the phylogeny defined a similar topology to the MLEE and MLST trees, although a 

division of group D (labelled as F and referred in later papers as D2/F) was reported as 

found by Touchon et al (2009) and with D2/F and B2 representing out groups to other A-

E branches. The phylogeny agreed with the definition of seven major phylogenetic groups: 

A, B1, B2, D1, D2/F, E, and C-I (Walk et al. 2009, Clermont et al. 2000, 2013). It included 

group C-I, which clustered as an out group to the A-E strains (Figure 1.9). The group is 

from a larger clade comprising of phylogenetic groups C-I, C-III, C-IV, and C-V (Luo et 

al. 2011) (Figure 1.10). This clade of highly diverse ‘environmental E. coli’ are newly 

characterized and are currently not well studied but appear to exhibit a degree of genetic 

isolation from one another. Genetic isolation was inferred based on the relative greater 

number of synonymous substitutions per site observed for pairs cryptic clade strains 

compared to pairs of strains from groups A-E in an alignment of 1,910 core genes. The 

authors inferred the divergence had occurred as result of ecological separation functioning 
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as a barrier that prevented the exchange of genetic material between strains of different 

groups (Luo et al. 2011).  

 

Figure 1.8. Rooted core genome phylogenetic tree of 14 E. coli and 6 Shigella strains as 

reconstructed from the sequences of 1,878 core genes. Percentage bootstrap support values 

are shown on internal branches. The scale bar on the bottom left indicates the number of 

substitutions per site represented by the branch length shown genes (Figure 4 from Touchon 

et al. 2009, used with permission from PLOS Genetics). 
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Figure 1.9. A midpoint rooted E. coli phylogeny constructed using 1,278 core genes 

(equivalent to ~1.28Mb) from 186 E. coli strains. Major phylogenetic groups are defined 

to the right. Percentage bootstrap support values are shown on internal branches. The scale 

bar indicates the number of substitutions per site represented by the branch length shown 

(Figure 6 of Kaas et al. 2012, Creative Commons use: http://creativecommons. 

org/licenses/by /2.0/). 
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Figure 1.10. Whole-genome unrooted phylogenetic tree of 24 Escherichia genomes and 

Salmonella typhi using 1,910 core gene nucleotide sequences. It shows the divergent 

position of groups C I-V relative to A-E group E. coli strains. The scale bar indicates the 

number of substitutions per site represented by the branch length shown (Figure 2 of Luo 

et al. 2011, used with permission from PNAS).  

 

Chaudhuri and Henderson (2012) also constructed a core genome phylogeny using a 2.78 

Mb alignment (equivalent to ~2,780 genes) of 20 E. coli and 4 Shigella genomes (Figure 
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1.11). The phylogeny defined an identical topology of A-E groups and group C-I as found 

by Kaas et al. (2012) (Figure 1.9). 

 

 

Figure 1.11. Whole-genome unrooted phylogenetic tree of 24 Escherichia genomes and 

Salmonella typhi of complete and draft whole-genome sequences. The major phylogenetic 

groups are defined A-E. Percentage bootstrap support values are shown on internal 

branches. The scale bar indicates the number of substitutions per site represented by the 

branch length shown (Figure 4 from Chaudhuri and Henderson 2012, used with permission 

from Elsevier). 
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This same topology was also reported in a recent core genome phylogeny by Dunne et al. 

(2017) of 29 E. coli and 4 Shigella genomes constructed using 2,173 core genes (Figure 

1.12), and in a phylogeny by McNally et al. (2013) (Figure 1.13) based on a 2.3 Mb 

alignment of 62 E. coli genomes. 

 

Figure 1.12. A rooted phylogeny of 29 E. coli and 4 Shigella genomes constructed using 

2,173 core genes (equivalent to ~2.17Mb). Major phylogenetic groups are labelled to the 

right. Percentage bootstrap support values are shown on internal branches. The scale bar 

indicates the number of substitutions per site represented by the branch length shown 

(Figure 3 from Dunne et al. 2017, used with permission from Microbial Genomics). 

 

 

 



46 

 

 

 

Figure 1.13. A circular core genome phylogeny of 62 E. coli strains constructed using a 

2.3 Mb alignment. Major phylogenetic groups are labelled. The scale bar indicates the 

number of substitutions per site represented by the branch length shown (Figure 1 of 

McNally et al. 2013, Creative Commons use: https://creativecommons.org/licenses/by-

nc/4.0/). 

 

A core genome phylogeny is not likely to be fully consistent with the clonal species 

phylogeny (Tenallion et al. 2010). This is because it includes both recombinant and 

recombination-free sequence so the former may distort the underlying phylogenetic signal 

of clonal relationships during phylogeny construction (Tenallion et al. 2010). 
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Recombination can include events which occurred between ancestral lineages and or more 

recent inter/intra-phylogenetic group recombination events between strains (Tenallion et 

al. 2010). However, the inclusion of all clonal sequence in a core genome phylogeny does 

reduce the relative proportion of recombinant signal present in the data relative to the 

underlying clonal signal in the data when a phylogeny is being constructed making it a 

more reliable depiction of the clonal phylogeny than using a limited gene set as with MLST 

(Tenallion et al. 2010). Nonetheless to truly determine the E. coli clonal phylogeny, 

recombinant sequence must be removed from the core genome alignment prior to 

phylogenetic construction. Didelot and Falush (2006) developed a program “ClonalFrame” 

to remove recombinant sequences from MLST datasets. It uses substitution and indel 

information in a core genome alignment to construct an inferred phylogenetic tree and 

ancestral sequences, outputting a phylogeny which is inferred to be most supported by the 

underlying signal of clonal relationships in the data (Didelot and Falush. 2006). It was used 

by Didelot et al. (2012) to construct the E. coli clonal species phylogeny of A, B1, E, and 

B2 groups using core genes with a concatenated length of 3.3 Mb from 27 genomes (Figure 

1.14). The phylogeny of the four groups described a topology which was essentially the 

same to that published by Kaas et al. (2012), Chaudhuri and Henderson et al. (2013), and 

Dunne et al. (2017). This was also the case for a ClonalFrame phylogeny constructed using 

8 housekeeping genes by Tenaillon et al. (2010) with a 4,095 bp alignment from 72 E. coli 

genomes (Figure 1.15). Interestingly all 6 A-E groups had similar topologies as the core 

gene phylogenies seen in the three mentioned studies indicating with the Didelot et al. 

(2012) phylogeny (Figure 1.12), that the best estimations of the E. coli core genome 

phylogeny are essentially the same to best estimations of the clonal species phylogeny. 
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Figure 1.14. Rooted E. coli clonal species phylogeny of core genes with a total alignment 

length of 3.3 Mb using ClonalFrame (see main text) (Figure 4a from Didelot et al. 2012, 

Creative Commons use: http://creativecommons.org/licenses/by/4.0/). 
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Figure 1.15. Rooted circular E. coli clonal species phylogeny constructed with a 4,095 bp 

alignment of 8 housekeeping genes in 72 E. coli genomes obtained using ClonalFrame (see 

main text), Group D is referred to as D1, and F as D2/F in the main text (Figure 3 from 

Tenaillon et al. 2010, used with permission from Springer Nature [COPYRIGHT] 2012). 
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1.3.3. Variability of the accessory genome across the A-E E. coli phylogenetic 

groups 
 

Studies by Didelot et al. (2012) and Kaas et al. (2012) illustrated gene content variations 

between the phylogenetic groups. Trees which clustered strains based on shared accessory 

gene contents between A, B1, E, and B2 (Figure 1.16), and all 6 A-E groups (Figure 1.17) 

were constructed to achieve this respectively. Didelot et al. (2012) reported group E to 

exhibit the most unique group pan genome consistent with the finding by Touchon et al. 

(2009) that group E exhibited the largest number of accessory genes. Groups A was 

clustered with a split group B1 as a single group indicating the two groups share a high 

number of genes. This finding was also reported in the dengrogram published by Kaas et 

al. (2012). However, group B2 and not E was reported as having the most unique group 

pan genome. 
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Figure 1.16. Shared accessory gene presence between 27 E. coli strains of the phylogenetic 

groups A, B1, E, and B2 illustrated as a cluster dendrogram tree which clusters strains 

based on shared gene contents (Figure 4b from Didelot et al. 2012, Creative Commons use: 

http://creativecommons.org/licenses/by/4.0/). 

 



52 

 

 

Figure 1.17. Shared accessory gene presence of 186 E. coli from phylogenetic groups A, 

B1, E, D1, D2, and B2 illustrated as a cluster dendrogram tree which clusters strains based 

on shared gene contents. Clustering of the phylogenetic groups A and B1 together, and B2 

as identified in a core genome phylogeny are labelled (Figure 7 in Kaas et al. 2012, used 

with permission from Springer Nature [COPYRIGHT] 2012). 
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1.2.4. Recombination between and within A-E phylogenetic groups, and 

speciation 
 

E. coli were originally thought to have evolved with little to no recombination (Ochman 

and Selander 1984, Whittam et al. 1983). However, more recent studies have found 

recombination to have significantly contributed to the diversity of the species seen today 

in phylogenetic groups A-E (Gonzalez-Gonzalez et al. 2013). In a study of recombination 

in a 2.3 Mb core genome (where core here was defined as 100% presence across strains of 

a given gene) of 62 E. coli genomes McNally et al. (2013) reported 6,680 intragroup and 

4,678 intergroup recombination events (where each event involved genomic segments 

containing at least 1 gene) across the six phylogenetic groups defined with a core genome 

phylogeny (Figure 1.13) (Table 1.3). 

Table 1.3. The number of intragroup and intergroup recombination events for each of the 

E. coli phylogenetic groups A, B1, E, and B2 as inferred by McNally et al. (2013).  

   

Didelot et al. (2012) carried out a similar analysis within the 3.3 Mb core genome of 27 

complete genomes from the four groups A, B1, E, and B2 defined using a core genome 

phylogeny (where core here was defined as 100% presence across strains of a given gene, 

Figure 1.14). 18,590 intragroup (A: 2,151, B1: 6,443, E: 46, B2: 9,950) and 13,666 

intergroup recombination events were reported (Table 1.4). 

Group Intragroup events Intergroup events

A 2,637 1,879

B1 958 1,117

E 584 438

D1 0 79

D2 143 261

B2 2,358 904
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Table 1.4. The number of intragroup (18,590 total) and intergroup (13,666 total) 

recombination events each of the E. coli phylogenetic groups A, B1, E, and B2 are 

associated with, and the number of intergroup recombination events inferred to have 

occurred between each pair of the four groups (last four columns) inferred by Didelot et al. 

(2012). 

 

Both studies’ results are not fully consistent on whether there is a bias of intragroup or 

intergroup events for each of the phylogenetic groups A-E. In the McNally et al. (2013) 

study groups A, E, and B2 exhibited more intragroup recombination but in the latter study, 

it was only group B2. Where a group was found to exhibit increased intragroup compared 

to intergroup recombination it was suggested by authors that they are evolutionarily 

diverging away from the other respective A-E groups (McNally et al. 2013, Didelot et al. 

2012). However, neither study provided details of gene functions encoded by recombinant 

regions (only quantities of contiguous core genome regions) so it is difficult to draw 

conclusions about the evolutionary mechanisms underlying each of the biases. 

Didelot et al. (2012) speculated that the intragroup recombination bias seen in their results 

of the groups A+B1, E, and B2 may be explained by an adaptation of each group to separate 

ecological niches or reproductive cycles. This is also consistent with Touchon et al’s (2009) 

finding that groups A+B1 and B2 are metabolically diverging. It was further suggested that 

disruption of normal genetic flow which usually reduces intragroup diversification could 

result in speciation of the three lineages in the future (Didelot et al. 2012). The gene 

presence tree (Figure 1.16) supports this suggestion as groups A and B1 are clustered 

together as a single group, whereas groups E and B2 form separate monophyletic groups 

Group Intragroup Intergroup A B1 E B2

A 2,151 9,005 2,151

B1 6,443 10,556 6,058 6,443

E 46 548 155 230 46

B2 9,950 7,223 2,792 4,268 163 9,950
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indicating the three groups exhibit distinct gene contents (Didelot et al. 2012). Figure 1.17 

similarly shows A+B1 and B2 clustering as separate groups (Kaas et al. 2012).  

1.2.5. Recombination between ancestral lineages 
 

The McNally et al. (2013) study uniquely includes an analysis of E. coli recombination 

including that between ancestral lineages. The authors constructed a phylogeny using core 

genome sequences identified as both recent and ancestral recombination using the program 

BratNextGen (Martinnen et al. 2011). BratNextGen determines recombination through 

clustering 5 kb sections of a core genome (where core here was defined as 100% presence 

across strains of a given gene) based on nucleotide similarity before construction of a 

‘shared ancestry tree’ which represented the inferred pattern of clonal inheritance of strains 

using the clustered sequences (Martinnen et al. 2011). To infer both recent and ancestral 

recombination, nucleotide variations are then analysed between strains descended from 

major groups of this ancestry tree (Martinnen et al. 2011). The phylogeny constructed using 

all recombinant core genome sequence (Figure 1.18) was consistent with a core genome 

phylogeny of the same strains (Figure 1.13) other than group D1’s position. The author 

suggested that this indicated there was no significant recombination between phylogenetic 

groups at the core genome level (McNally et al. 2013).  
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Figure 1.18. Circular maximum likelihood phylogeny of recombinant core genome regions 

identified by McNally et al. (2013). Major E. coli phylogenetic groups are labelled A-E. 

The scale bar indicates the number of substitutions per site represented by the branch length 

shown. Creative Commons use: https://creativecommons.org/licenses/by-nc/4.0/ 
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1.4. This thesis 
 

The overall aim of this thesis was to explore the evolutionary history and genetic diversity 

of E. coli using all publicly available E. coli genome sequences to contribute to the 

understanding of the species and impact the way it is viewed and studied. This aim was 

approached in the work presented across Chapters 3, 4, 5, and 6 in different ways. Of the 

work presented in Chapter 3, the overall aim was to create a reference set of E. coli genome 

sequences representative of the full genetic and sample diversity available across all 

publicly available sequences. It was then to use the reference set to determine an up-to-date 

E. coli clonal frame phylogeny and to test the objectives designed to produce specific 

information about E. coli evolution. This was followed by Chapter 4, for which the overall 

aim of the work presented was to explore evidence to support the preferential use of a 

proposed core gene MLST schema with specific benefits in increased accuracy and reduced 

analysis time compared to existing schemas. The work presented in Chapter 5 focused on 

pathogenicity within a specific lineage of 20 group B2 UPEC strains, analysed through 

computational analysis of genomes and phenotype data. The overall aim of the work was 

to reveal the genetic basis to UPEC ureter contractility inhibition phenotypes and provide 

insights about the evolution of such phenotypes. The work presented in the final research 

chapter focused on the evolution of the E. coli type three secretion system II (ETT2) and 

eip gene clusters which have been previously described as having genotypes subject to 

mutational attrition and implicated in virulence. The overall aim of the work was to present 

an up-to-date account of the evolutionary history and genetic diversity of these clusters and 

to test objectives designed to confirm the results of previous research, provide a deeper 

understanding of how their various genotypes evolved, and infer any likely ETT2 or eip 

cluster phenotypes based on genotype.  
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Chapter 2: General Methods 
 

2.1. General nucleotide and protein sequence manipulation 
 

Custom programs for sequence manipulation were written in the programming language 

Perl (version 5, Wall 1994) using BioPerl modules (Stajich et al. 2002) or Python (version 

3, Sanner et al. 1999) using Biopython modules (Cock et al. 2009) depending on program 

requirements. Structure of input and output files and parameters were defined and the 

optimal way to parse nucleotide and protein sequences to produce the desired manipulated 

output was planned. Programs were written using a text editor within a Linux BASH 

computing environment and tested on a reduced version of the file which would be analysed 

by the program. Parallelisation of programs was implemented using GNU Parallel (Tange 

2011), a command line tool which allowed processes to be distributed across multiple 

cores. Graphical plots were displayed using R (R core team 2013). 

2.2. Obtaining bacterial strain genome sequences 
 

Complete and draft bacterial genome sequences were downloaded in GenBank or plain 

FASTA format from GenBank at the National Centre for Biotechnology Information 

(NCBI) accessible via https://www.ncbi.nlm.nih.gov.  

2.3. Filtering genome sequences by assembly quality 
 

Genomes were filtered based on genome assembly quality so had to have an ‘N50’, i.e. 

size-ordered median contig length, of 100,000 bases to pass filtering. Filtered out genomes 

were replaced with a genome with higher assembly quality.  
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2.4. Filtering genome sequences by sample information 
 

Genomes were filtered firstly based on author, isolate, and strain name information to 

remove closely-related strains, indicated by slight differences in the strain name. To do this, 

strain names were programmatically checked for identical strings of letters and 

identification numbers and subsequently manually inspected. Genomes published by the 

same author and which originated from identical isolation sources were also filtered to 

prevent the inclusion of groups of genome sequences with limited genetic diversity. This 

was facilitated by a program which reported genomes with similar author and sampling 

information based on identical strings of letters and numbers in the annotated genome 

sequence files, followed by manual inspection. 

2.5. Annotation of gene sequences using Prokka  
 

To standardise coding sequence annotations for downloaded strain genomes, Prokka 

(Seemann 2014) was used. Prokka is a prokaryotic genome annotation pipeline that 

predicted and functionally annotated bacterial genomic features to the strain genome 

sequences. Prokka used BLAST+ (Altschul et al. 1990) for homology searches, Prodigal 

(Hyatt 2010) for coding sequence prediction, RNAmmer (Lagesen et al. 2007) for 

annotation of rRNA genes, Aragorn (Laslett and Canback 2004) for annotation of tRNA 

genes, SignalP (Petersen et al. 2011) to identify signal peptides, and Infernal (Kolbe and 

Eddy 2011) to predict potential non-coding RNA genes. Genes with no predicted function 

were annotated as “hypothetical protein”. 

2.6. Annotation of gene sequences: Non-Prokka methods 
 

Annotations for gene sequences were obtained by carrying out a protein BLAST to identify 

orthologues in E. coli genomes annotated by the Wellcome Trust Sanger Institute, which 
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have high quality manually inspected annotations. These were the strains E2348/69 (Iguchi 

et al. 2009), 042 (Chaudhuri et al. 2010), and H10407 (Crossman et al. 2010) with GenBank 

accessions FM180568, FN554766, and FN649414 respectively. Two other genomes with 

high-quality annotation were also used for this purpose, strains K-12 MG1655 (Blattner et 

al. 1997) and O157 H7 Sakai (Hayashi et al. 2001) with GenBank accessions U00096 and 

BA000007 respectively. Information about metabolic profiling was obtained for genes 

present in E. coli genome sequences 042 and K-12 MG1655 as these data have been made 

available by Chaudhuri et al. (2010) and Feist et al. (2007) respectively. Next, putative 

bacterial cell functional information relevant to molecular, pathogenic, and ecosystem 

related molecular pathways was obtained for each gene (where available) using the online 

service: Kyoto Encyclopedia of Genes and Genomes (KEGG, Kanehisa and Goto 2000). 

2.7. Pan genome analysis using Roary 
 

Roary (Page et al. 2015) was used to carry out pan-genome analysis to compile a pan-

genome and identify core genes (present in ≥99% of strains) and genes shared across all 

strain genome combinations across the strain genome set. Prior to running Roary analysis, 

a set of genome sequences with standardised annotations obtained using Prokka (Seemann 

2014) was collated. These were used as input for Roary, and a predetermined appropriate 

user-specified percentage identity cut off was specified as a parameter to be used for 

identifying pairs of orthologues during analysis. 

In analysis using the Prokka-annotated genome set, Roary first extracted coding sequence 

coordinates, then collated protein sequences. It then carried out filtering to remove 

incomplete sequences and pre-clustering using CD-HIT (Fu et al. 2012). The protein 

sequences were then subjected to an all-against-all protein BLAST and matches meeting 

the user specified percentage identity criterion were recorded. Match sequences were then 



61 

 

subjected to clustering with MCL (Enright et al. 2002) and merged with the earlier pre-

clustering results generated with CD-HIT. Next, conserved gene neighbourhood 

information was used to group orthologous sets of sequences and split paralogues into 

groups of true orthologues (Page et al. 2015). Roary produced individual gene and 

concatenated core gene sequence alignments and gene presence and absence data for all 

strain combinations. These alignments and information were then kept for later use in 

relevant analyses.  

2.8 Using BLAST to obtain a set of orthologous gene sequences 
 

Reference protein sequences were collated using a Python program which employed the 

module Biopython (Cock et al. 2009) which extracted specified protein sequences from an 

annotated genome sequence using a list of gene names as input. Genome sequences that 

were to be searched for the reference sequences were then prepared. This involved 

extracting all protein sequences for each strain genome from an annotated GenBank or 

Prokka file. Protein BLAST (Altschul et al. 1997) analysis was then used to detect localised 

sequence alignments which were optimal between the genome sequences and the reference 

sequences. For BLAST analysis using a given reference sequence, computation began with 

separation of each triplet of reference sequence amino acids and detection of their 

frequency within each genome sequence, location of occurrence, and details of cases where 

one of the three residues in the triplet differs. Next matches to each triplet were identified 

and alignment scores were computed with length and identity statistics for matches of the 

whole reference sequence to a location within each of the genome sequences (Altschul et 

al. 1997). Using an in-house program named ‘Mutualbest’, the reciprocal BLAST analysis 

was then performed where the protein sequences of a given genome took the place of the 

reference gene (Tatusov et al. 1997). The results of both analyses were then compared. If 
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the best hit matches for the original reference gene to a protein sequence in the first BLAST 

analysis were reciprocated in the second BLAST analysis (i.e. the reference gene was the 

best hit for the same protein), the program reported the original reference gene and the 

protein to be orthologue matches. If the BLAST amino acid identity between the 

orthologues was greater than the predetermined cut-off, the genes were recorded as true 

orthologues. The orthologue matches for the given reference gene were then extracted from 

the BLAST result files in either protein or nucleotide sequence format. 

2.9. Nucleotide and amino acid alignment using Muscle 
 

To carry out an alignment of nucleotide or amino acid orthologue or homologue gene 

sequences to a reference sequence, all gene sequences were first collated into a single file. 

Using the input file, Muscle (Edgar et al. 2004) was run with default parameters for a “100 

iterations: slow accurate” analysis. In Muscle analysis, the similarity of each pair of 

sequences was first determined using k-mer (short adjacent sets of residues with specific 

states) counting and through global alignment of each pair of sequences to calculate a 

fractional identity for the pair. Distance estimates were then obtained by computing a 

triangular distance matrix from sequence similarities between sequence pairs. A distance 

rooted tree was then constructed from the matrix and progressive alignment followed using 

the order of branching in the tree as a guide, which resulted in a multiple alignment. 

Similarity between sequence pairs was then determined using the fractional identity 

information computed from each pairs’ mutual alignment in the current alignment. Using 

this information, construction of a second tree then occurred using a Kimura distance 

algorithm-based method. The new and first tree were then compared, and ancestral tree 

nodes in the new tree in which branching order differs were simultaneously identified. This 

was repeated until the number of branches differing in the new tree compared to the first 
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tree did not decrease any further before progressive alignment followed using the new tree 

as a guide. Next, iterative refinement of the new multiple sequence alignment occurred. In 

each iteration internal branches were removed to divide sequences into two subsets of 

putatively clustered strains before the multiple alignment profile of each subset was 

extracted and columns containing no residues were discarded. The two profiles were then 

re-aligned to one another using profile to profile alignment and a summed alignment score 

was calculated. If the score for those two exact profiles was higher than that of a previous 

iteration, the new alignment was kept but discarded if not. Once all internal branches had 

been used for dividing sequences into subsets and no observed score change was seen or if 

a user defined iteration number was reached this last phase terminated, otherwise it was 

repeated, before the new multiple sequence alignment was outputted (Edgar et al. 2004). 

Finished Muscle alignments were manually inspected, and minor corrections were made if 

necessary using Seaview (Galtier et al. 1996), an alignment editing tool that differentially 

colours residues for ease of viewing. 

2.10. Maximum Likelihood phylogeny construction using RAxML 
 

RAxML (version 8, Stamatakis et al 2014) was used for maximum likelihood phylogeny 

construction. As a parameter, the general time reversible model of nucleotide substitution 

was used with nucleotide alignments, which has six parameters that allow a different rate 

of substitution for each pair of nucleotides (Zwickl and Holder 2004). For amino acid 

alignments the WAG model was used, a model based on empirical observation of amino 

acid exchangeability in families of closely related amino acids (Whelan and Goldman 

2001). 100 bootstrap replicates were selected as a parameter prior to analysis, meaning 

analysis would be repeated 100 times to provide a measure of support for each constructed 

branch in the phylogeny. In analysis, RAxML first employed the principle of likelihood, 
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which is the probability of observing the patterns in the sequence data given the 

assumptions used in either the GTR or WAG substitution models and a particular topology 

(Graur et al. 2000). The likelihood was calculated for each alignment site by consideration 

of each unknown ancestral state and calculation of their associated probabilities. Several 

hypothetical trees were trialled, and the likelihood of each was calculated as the product of 

the likelihood values for all alignment sites. This was calculated as the sum of the 

logarithms of the likelihoods for each site, or log likelihood (lnL). The analysis was 

repeated 100 times (specified with the 100 bootstrap replicates parameter) and the 

phylogenetic branches which were supported most frequently across all 100 analysis 

replicates were included in the final outputted phylogeny. 
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Chapter 3: Insights into the evolution of Escherichia coli 
 

3.1. Introduction 

 

5,623 E. coli whole genome sequences from diverse sources have been published and 

deposited in GenBank, with an increased proportion of these published in the last 10 years 

(Jiang et al. 2014, Tang 2016, Hur and Young 2015, Lawsin et al. 2017, Messerer 2016). 

This is most likely due to progressive developments in and decreasing costs of bacterial 

whole genome sequencing (Quainoo et al. 2017). These E. coli genome sequences 

collectively represent an unprecedented degree of sample diversity. They were sampled 

from a wide range of hosts and environments worldwide and likely represent previously 

unreported genetic diversity. Previous genetic evolutionary research was limited by lack of 

diverse sequences and additionally relatively recently, computational resources capable of 

genomic analysis of hundreds of genomes over hours or days (Quainoo et al. 2017). The 

purpose of the work in this chapter was to make use of the available genome sequence data 

and produce an up-to-date narrative describing deduced major E. coli evolutionary events 

through addressing a hypothesis, an overall aim, and objectives using a computer with up-

to-date processing capabilities for genomic analysis. I predicted that the full dataset of 

5,623 E.coli genomes is too large for practical computational analysis within reasonable 

times, but the sample and genetic diversity present within the full set can instead be 

represented using a carefully selected subset of 100 genomes. Producing a species 

phylogeny using a genome set representative of the species such as this is arguably the most 

important component of any study of a species’ evolutionary history. Species phylogenies 

are also reference frameworks for which other evolutionary investigations are based upon. 

In the case of E. coli, determining the species phylogeny involves determining the clonal 

frame phylogeny, which is constructed by excluding recombinant core gene sequence and 
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only using the remaining sequence in phylogeny construction. This is sequence which has 

a history of vertical inheritance which depicts the clonal frame.  

3.1.1. Hypothesis 

 

The hypothesis for the work presented this chapter was designed to determine if the 

deduced clonal frame phylogeny created using an up-to date set of E. coli strain genomes 

is consistent with previous accounts of the E. coli clonal frame phylogeny published by 

Didelot et al. 2012 and Tenaillon et al. 2010 (Figure 1.14, Figure 1.15). 

The E. coli clonal frame phylogeny constructed using an up-to-date representative set of E. 

coli genome sequences depicts consistency with the established clonal frame phylogeny for 

groups A-E and the core gene phylogeny for cryptic clade groups, by exhibiting a 

divergence pattern of six major E. coli phylogeny groups and four cryptic clade groups 

which have an established clustering pattern (Figure 3.1).  

 

Figure 3.1. Established phylogenetic clustering patterns observed in the clonal frame 

phylogeny for E. coli phylogenetic groups A-E and the core gene phylogeny for cryptic 

clade groups. 
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3.1.2. Aims and objectives 

 

The overall aim was to create a reference set of E. coli genome sequences representative of 

the full sample and genetic diversity available across all publicly available sequences as of 

January 2018. To use the reference set to determine the E. coli clonal frame phylogeny and 

to test the following objectives designed to produce specific information about E. coli 

evolution: 

1. To determine the prevalence and type of recombination events which occurred 

between the major phylogenetic group ancestors (pre-divergence; before major 

groups diverged), compared to more recently between strains or lineages of separate 

groups (post-divergence; after major groups diverged). 

2. Identify what proportion of each E. coli major phylogenetic group’s pan genome is 

shared with that of each other group. 

3. Identify which specific genes can be deduced to have most contributed to the 

divergence of each E. coli major phylogenetic group, and to what functional 

categories do they belong. 

3.2. Methods 
 

3.2.1 Filtering strain genomes based on phylogenetic diversity 
 

To filter strain genomes by the relative amount of phylogenetic diversity they contribute, a 

given strain genome was selected manually from the total number of strain genomes on the 

basis of its position in a phylogeny. Strains represented in the phylogeny which were 

separated by a relative longer branch than those separating other strains or clusters of strains 

were manually picked from the phylogeny to create a set of phylogenetically diverse strain 

genomes.  
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3.2.2 Assigning E. coli phylogenetic groups to strains 
 

A given E. coli strain genome was assigned a phylogenetic group manually on the basis of 

its relative, close phylogenetic clustering proximity to a published phylogenetic group 

representative, all of which have a complete genome sequence, other than those for groups 

C-III, C-IV, and C-V (Table 3.1).  

Table 3.1. Details of published strain genomes which represent the E. coli phylogenetic 

groups A-E and cryptic clade groups C-I to C-V. 

 

3.2.3. Quartet analysis 
 

Individual core gene alignments which comprised the core gene alignment outputted by 

Roary were extracted. A new reordered core gene alignment was constructed by 

concatenating gene alignments using the order that each gene was observed in the strain 

genome K-12 substr. MG1655 as a guide. The reordered core gene alignment was used as 

input into quartet analysis, which was a method based on quartet phylogenetic inference 

(Strimmer and Von Haeseler 1997). Prior to analysis the alignment was divided into sliding 

window sections of size 10 kb. The analysis worked by taking four individual sequences 

(one from each phylogenetic group) from each 10 kb section and reporting which of the 

Phylogenetic group Representative GenBank Accession

A str. K-12 substr. MG1655 U00096

B1 O104:H4 str. 2009EL-2050 CP003297

B2 O127:H6 str. E2348/69 FM180568

D1 042 BA000007

D2 SMS 3 5 FN554766

E O157:H7 str. Sakai substr RIMD 0509952 CP000970

C-I TW10509 GL872204

C-III RCE03 JUDX00000000

C-IV TW11588 AEMF00000000

C-V TW09308 AEME00000000
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three possible 4-taxa unrooted phylogenetic trees were supported by different 10 kb 

sections (Figure 3.2). The analysis was repeated for different combinations of sequences. 

Figure 3.2. The three possible unrooted phylogenies for four phylogenetic groups 

represented by numerals i, ii, iii, and iv. 

 

The method was implemented in Python version 3 (Sanner et al. 1999), using the Python 

module ETE Toolkit (Huerta-Cepas et al. 2016). For each window, the method cycled 

through strains of a specific “test” phylogenetic group and each strain was compared in 

turn with a consistent set of 3 reference strains chosen from 3 other phylogenetic groups to 

create a quartet phylogeny of the four strains. The best supported topology and the bootstrap 

support value for the middle branch was recorded for each quartet. If bootstrap values were 

≥ 50% the quartet phylogeny was considered for further analysis. The pre-divergence 

phylogenetic clustering pattern for the four groups for each window was taken to be the 

pattern exhibited by ≥ 50% (the majority) of quartet phylogenies computed for that 

window. The alternative clustering patterns for each section were then recorded as post-

divergence recombination events for each analysis between the given four phylogenetic 

groups. For example, if phylogenetic group A clusters with group E and D1 with B2 ((A, 

E) (D1, B2)) in ≥ 50% of quartets within a particular window it is considered the pre-

divergence clustering pattern for that window section and clustering of A with D1 or B2 

relative to E would be considered evidence of post-divergence recombination clustering 

pattern occurring in that window region. If no single pattern made up ≥50% of the quartet 
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phylogenies the window was deemed phylogenetically unresolved and excluded from 

further analysis.  

For a single window, the pre-divergence clustering pattern was deduced as that present in 

≥ 50% of quartets. For a whole quartet analysis, the pre-divergence clustering pattern for 

the four phylogenetic groups was determined to be the most prevalent pre-divergence 

pattern across windows in the analysis. For the whole E. coli species, the pre-divergence 

clustering pattern (the E. coli clonal frame clustering pattern) was defined as the most 

prevalent pre-divergence clustering pattern observed across all 35 possible quartet analyses 

of different combinations of phylogenetic groups. The other clustering patterns were 

therefore considered as pre-divergence recombinant clustering patterns and taken as 

evidence of pre-divergence recombination events. These pre-divergence clustering patterns 

were observable in single quartet analyses between sets of four phylogenetic groups and in 

individual windows within a given quartet analysis. 

3.2.4. Obtaining the pan genome for each phylogenetic group and identifying 

unique and shared genes 
 

A program was written to process the gene presence/absence data file produced by Roary 

and extract information for a set of strains from a specific phylogenetic group (or groups). 

The program calculated the group pan genome size, the number of core and accessory genes 

present, and the number of core and accessory genes which were unique or highly enriched 

within the group, as well as the number shared with each of the other groups. 
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3.2.5. Determining genes unique and highly enriched in phylogenetic groups and 

clades with an in-house program 

 

An in-house program was written that took the gene presence absence data file outputted 

by Roary as input with a list of strain names to analyse for the given phylogenetic group 

or groups. The program cycled through genes present for each strain and identified genes 

present in and unique to ≥ 90% of strains of each of the phylogenetic groups or group of 

phylogenetic groups (a clade).  

3.3. Results 
 

3.3.1. Creating a reference set of E. coli genome sequences representative of 

available sample and genetic diversity 
 

A literature review was conducted, after which 5,623 complete and draft E. coli genome 

sequences were downloaded. After filtering for genome assembly quality, this was reduced 

to 4,923, and after filtering to remove genomes with identical sample information to other 

genomes, the number was reduced to 4,170. To determine how phylogenetically diverse 

the 4,170 strain genomes were in relation to each other, it was necessary to observe 

phylogenetic branch lengths separating strain genomes in a core gene phylogeny. 

Construction of a complete core genome phylogeny from all 4,170 genomes was inferred 

to have not been possible with the available computational resources, so it was decided an 

alignment of 500 core E. coli genes from each of the 4,170 genomes would be obtained. 

Using 500 genes was a compromise which included sufficient polymorphic nucleotide sites 

to produce a phylogeny representative of the core genome phylogeny, whilst remaining 

potentially computationally tractable. 

To obtain orthologues for 500 E. coli individual core genes from each of the 4,170 

genomes, reference core genes were first compiled from E. coli K-12 substr. MG1655 
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(GenBank accession U00096). To identify their orthologues in the other 4,169 genomes, it 

was first necessary to determine an appropriate amino acid identity cut-off value to apply 

in a BLAST analysis. To do this, a mutual best hit and second best hit analysis was carried 

out (Tatusov et al. 1997) between all gene sequences (protein format) encoded by the 

reference genomes (Table 3.1) for each phylogenetic group. Based on the mutual best hit 

analysis, the appropriate E. coli identity cut-off value for identifying an orthologue for a 

given gene sequence in BLAST was determined to be 95% identity (Figure 3.3). The reason 

for this was because across comparisons in the mutual best plots, 95% was observed to 

mark the sequence identity value between where the greatest dip from best to second best 

hit matches occurred. 
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Figure 3.3. Histogram of percentage amino acid identity for mutual best and second-best 

BLAST hits between representatives of the phylogenetic groups A-E. For each comparison 

in a-e, the best hits (blue) represent matches between potentially orthologous genes and 

second-best hits (red) represent matches between non-orthologous genes. Both plots are 

transparent, so the overlap can be seen. The percentage identity value at which orthologues 

can be identified between strains of these groups was determined to be the crossover point 

between the distributions, estimated at 95% for all group comparisons. 
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A BLAST analysis of all gene sequences in protein format was performed using the 500 E. 

coli reference core genes against the 4,170 genome sequences and the 95% identity cut-off 

deduced as appropriate for identifying E. coli orthologue sequences. The output of the 

BLAST analysis was inspected and orthologues for E. coli reference core genes present in 

100% of the 4,170 strains were retained. A gene from E. coli strain genome K-12 substr. 

MG1655 was extracted and used for identifying orthologues followed by BLAST report 

inspection and the process continued until orthologues for 500 E. coli reference core genes 

were collated from each of the 4,170 genomes. The 500 orthologue groups were 

concatenated, aligned using Muscle and construction of a maximum likelihood phylogeny 

was attempted using RAxML. However, this proved to be computationally too complex. 

Smaller numbers of genes were also investigated: 50, 80, 120, 150, 300. It was determined 

that using orthologues from 120 E. coli reference core was an optimal compromise of 

maximising phylogenetic information, whilst maintaining a reasonable time to compute the 

phylogeny.  

On inspecting the phylogeny of the 120 concatenated and aligned core genes (Figure 3.4), 

of particular interest was a clade of 29 strains that did not cluster closely with groups A, 

B1, E, D1, D2, or B2. These were labelled as the putative group G. Two strains did not 

cluster with any phylogenetic group (labelled in blue in Figure 3.4). The available genomes 

from the cryptic clade phylogenetic groups C-I to C-V (27 genomes) were considered too 

few to fully represent the diversity of those groups, so were excluded from the 120-gene 

phylogeny and further analysis. 

After genomes from phylogenetic groups A-G were sampled for phylogenetic diversity 

using the 120-core gene phylogeny as a guide, 723 diverse genomes were chosen. After 

further sampling for pathovar and sample diversity, a preliminary set of genomes from 50 

commensal, environmental, and laboratory strains, and 50 pathogenic strains were selected. 
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This set of 100 strains (highlighted with red dots in Figure 3.4 and listed in full in Table 

3.2) represented the full phylogenetic and sample diversity observed in the original 4,170 

strains and are the focus of the subsequent work in this chapter.  
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Figure 3.4. Unrooted RAxML maximum likelihood phylogeny constructed using an 

alignment of 120 core genes (167,376 bp) from 4,170 E. coli strain genomes obtained from 

GenBank with an N50 greater than 100,000 bp. The major phylogenetic groups are labelled 

A, B1, E, D1, D2, B2 in the outer ring, with gaps in this ring indicating group borders. 29 

strains that did not cluster closely with those in A, B1, E, D1, D2, or B2, and are clustered 

as a sister group to B2 are labelled G. 50 commensal, environmental, and laboratory strains 

and 50 pathogenic strains were chosen from these strains to be a set of 100 A-G group 

strains that represent all E. coli phylogenetic diversity and are labelled here with a red dot. 

2 strains which did not cluster with any group are labelled with a blue dot. The scale bar at 

the top shows the number of substitutions per site represented by branches of the indicated 

length. 

 

 

A

B1

B2

G
D2

D1

E



77 

 

Table 3.2. Strain information for the 50 commensal, environmental, and laboratory strains, 

and 50 pathogenic strains in the 100 E. coli strain set representing phylogenetic groups A-

G.

 

Group Strain name Pathovar or environment Genome

length (bp)

GC 

content (%)

Accession

A 101-1 EAEC 4,979,723 50.63 AAMK00000000

A 1303 MPEC 4,948,797 50.73 CP009166

A 25 Water 4,766,232 50.79 CXYK00000000

A 53638 EIEC 5,066,886 51.10 AAKB00000000

A ATCC_8739 Commensal (human) 4,746,218 50.87 CP000946

A cattle16 Commensal (non human) 4,740,871 50.85 LVLZ00000000

A CFSAN026836 Water 5,344,232 50.52 LDCY00000000

A D6-117 MPEC 4,787,132 50.78 CCCP00000000

A H1 Water 4,826,483 50.89 CP010160

A H10407 ETEC 5,153,435 50.76 FN649414

A H5 Water 4,833,228 50.75 CP010169

A HS Commensal (human) 4,643,537 50.82 CP000802

A S1 Soil 4,707,208 50.84 CP010226

A S30 Soil 5,072,853 50.67 CP010231

A S43 Soil 5,043,711 50.64 CP010237

A str. K-12 substr. MG1655 Laboratory 4,641,652 50.79 U00096

A UMNK88 ETEC 5,186,406 50.72 CP002729

A VL2732 MPEC 4,664,032 50.65 JTFD00000000

B1 3.5-R3 Commensal (human) 5,184,306 50.65 MOZF00000000

B1 APECO78 APEC 4,798,433 50.68 NC_020163

B1 C11 Commensal (non human) 5,414,571 50.83 CP010133

B1 C2 Commensal (non human) 4,818,237 50.73 CP010117

B1 C5 Commensal (non human) 5,633,965 50.45 CP010122

B1 D6 Commensal (non human) 4,910,852 50.92 CP010148

B1 E10019 EIEC 5,376,124 50.72 AAJW02000000

B1 E267 Commensal (human) 4,281,347 51.00 ADIN00000000

B1 ECC-1470 MPEC 4,803,751 50.78 CP010344

B1 ECOR29 Commensal (non human) 4,952,372 50.57 LYAH00000000

B1 ECOR45 Commensal (non human) 4,710,028 50.68 LYCD00000000

B1 ECOR58 Commensal (non human) 5,421,303 50.11 LYCY00000000

B1 ECOR67 Commensal (non human) 4,757,712 50.87 LYDN00000000

B1 ECOR68 Commensal (non human) 4,986,911 50.67 LYDF00000000

B1 H14 Water 4,735,489 50.76 CP010177

B1 H15 Water 4,857,969 50.82 CP010178

B1 H3 Water 4,679,162 50.81 CP010167

B1 M10 Commensal (non human) 4,954,801 50.81 CP010200

B1 M18 2 Commensal (non human) 5,160,136 50.52 CP010219

B1 O104:H4 str. 2009EL-2050 EAEC 5,438,174 50.59 CP003297

B1 O111:H- str. 11128 EHEC 5,371,077 50.62 AP010960

B1 O139:H28 str. E24377A ETEC 5,249,287 50.56 JXRF00000000

B1 O1O3:H2 str. 12009 EHEC 5,524,860 50.63 AP010958

B1 O96:H19 CFSAN029787 EIEC 4,947,515 50.75 CP011416.1

B1 S10 Soil 4,886,210 50.77 CP010229

B1 S3 Soil 4,632,368 50.66 CP010228

B1 S42 Soil 4,838,808 50.86 CP010236

B1 S50 Soil 4,981,720 50.71 CP010238

B1 S56 Soil 4,992,522 50.84 CP010242

B1 St_Olav17 STEC 5,452,601 50.49 JYKT00000000
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Table 3.2 continued. 

1. https://datacommons.anu.edu.au/DataCommons/rest/records/anudc:5410/data/B2 12-1-

TI12.gbk 

Group Strain name Pathovar or environment Genome

length (bp)

GC 

content (%)

Accession

E 400654 EPEC 5,408,807 50.22 CYBM00000000

E AF85 MPEC 5,305,698 50.58 MIVV00000000

E B185 Commensal (human) 5,106,856 50.60 ACXF00000000

E C161 11 EAEC 5,254,629 50.45 AIAI00000000

E D6-113 MPEC 5,082,312 50.51 CCCO00000000

E O157:H16 str. Santai EHEC 5,104,557 50.60 CP007592

E O157:H7 str. Sakai substr RIMD 0509952 EHEC 5,594,477 50.48 BA000007.2

E O169:H41 str. F9792 ETEC 4,923,453 50.41 JHJJ00000000

D1 042 EAEC 5,241,977 50.56 FN554766

D1 B354 Commensal (human) 4,831,929 50.55 ACXG00000000

D1 C1 Commensal (non human) 4,843,023 50.54 CP010116

D1 C4 Commensal (non human) 4,989,757 50.57 CP010121

D1 EC2 ExPEC 5,018,127 50.55 JFJL0000000

D1 ECOR48 Commensal (human) 5,426,246 50.42 LYCA00000000

D1 TA255 Commensal (human) 4,883,612 50.62 ADJG00000000

D1 TA280 Commensal (human) 5,258,156 50.59 ADBA00000000

D1 UMN026 UPEC 5,202,090 50.72 CU928163

D1 upec-213 UPEC 4,946,350 50.46 JSKZ00000000

D2 24.1-R1 Commensal (human) 5,076,999 50.38 MOYU00000000

D2 BIDMC 19C UPEC 5,523,477 50.43 AXLI01000000 

D2 HVH 87_4 Bacteremia 5,502,156 50.54 AVVI01000000

D2 IAI39 UPEC 5,132,068 50.63 CU928164

D2 SMS35 Soil 5,068,389 50.50 CP000970

D2 swine65 Commensal (non human) 5,140,443 50.30 LVOP00000000

D2 UCI 57 UPEC 5,036,717 50.65 JMVT00000000

G 71 Commensal (non human) 4,836,112 50.87 CXXK00000000

G APECO2-211 APEC 5,112,508 50.63 CP006834

G cattle19 Commensal (non human) 5,372,330 50.42 LVMC00000000

G CFSAN026806 STEC 5,160,057 50.69 LHCQ00000000

G HVH 79 (4-2512823) Bacteremia 5,113,135 50.72 AVVC01000000

G KTE75 UPEC 5,734,748 50.62 ANUO01000000

G MDR 56 Commensal (human) 4,978,170 50.82 CP019903

B2 173 Commensal (human) 4,927,547 50.63 LM996590

B2 536 UPEC 4,938,920 50.52 CP000247.1

B2 403128 EPEC 4,915,103 50.52 CXZV01000000

B2 200135 aEPEC EPEC 4,887,438 50.62 CYBG01000000

B2 401480 aEPEC EPEC 4,878,079 50.57 CYGR00000000

B2 B2 12-1-TI12 AIEC 5,017,481 50.51 1.

B2 B671 Commensal (human) 5,075,767 50.67 ADIP00000000

B2 blood-10-1310 Bacteremia 5,569,438 50.32 JSPY00000000

B2 C262 10 EAEC 4,727,165 50.53 AIAP00000000

B2 C796 10 EPEC 4,626,542 50.75 AIBS00000000

B2 CFT073 UPEC 5,231,148 50.48 AE014075.1

B2 ECOR65 Commensal (non human) 4,944,210 50.76 LYDD00000000

B2 H588 Commensal (human) 4,719,304 50.67 ADIQ00000000

B2 HVH 193 (4-3331423) Bacteremia 4,998,133 50.63 AVYT01000000

B2 NMECO18 NMEC 5,002,781 50.75 CP007275

B2 O127:H6 str. E2348/69 EPEC 5,069,678 50.52 FM180568

B2 O83:H1 str. NRG857C AIEC 4,894,875 50.69 CP001855

B2 SCB-11 NMEC 5,105,498 50.48 JSYT00000000

B2 SE15 Commensal (human) 4,717,338 50.74 AP009378

B2 TOP382-2 Commensal (human) 5,094,267 50.41 AOQD00000000
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To confirm the phylogenetic diversity of all strains in the 100-strain genome set, it was 

necessary to conduct pan genome analysis and use the resultant core genome alignment to 

create a core genome phylogeny through conducting phylogenetic analysis. To ensure 

consistent annotations for the pan genome analysis, the 100 genomes were all reannotated 

using Prokka, and pan genome analysis was conducted using Roary using the 95% 

orthologue identity as an inputted parameter. 

Roary produced a 2.34 Mb core gene alignment, and from this an E. coli core gene 

phylogeny was constructed using RAxML (Figure 3.5). In this phylogeny groups G and B2 

clustered together as an outgroup to the remaining strains. Group D2 was the next to branch 

off, followed by group D1 and group E, with groups A and B1 clustering together. There 

was 100% bootstrap support for the basal branches of all 7 phylogenetic groups. The 

phylogeny was consistent with the results of the 120 gene phylogeny for all 4,170 strains, 

so the set of 100 genomes was confirmed for use in all subsequent analyses.  
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Figure 3.5. Midpoint rooted phylogeny of the 100 genome E. coli reference set. The tree 

was constructed by maximum likelihood analysis of a 2,338,727 bp core genome alignment 

obtained from 50 commensal, laboratory and environmental isolates and 50 pathogenic E. 

coli strains chosen to represent the full phylogenetic diversity of E. coli. Percentage 

bootstrap support values are shown on internal branches. The scale bar on the bottom left 

indicates the number of substitutions per site represented by the branch length shown. 

Major phylogenetic groups are labelled, including a sister group to group B2 which is 

putatively labelled group G.  
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The final set of 100 E. coli strains genomes exhibited broad diversity in terms of 

phylogenetic group, genome length, and type of isolate (pathogenic, commensal, laboratory 

or environmental). Pathogenic strains were selected to maximise the diversity of pathovars 

(Table 3.2, Figure 3.6). 

 

Figure 3.6. The number of strains from the 100 E. coli set of strain genomes from 

phylogenetic groups A-G grouped according to pathovar, or the commensal or 

environmental source of isolation. The set includes 50 pathogenic and 50 commensal, 

environmental, and laboratory strains. Pathogenic E. coli acronyms are as follows: STEC: 

Shiga toxigenic E. coli, AIEC: adherent-invasive E. coli, EAEC: enteroaggregative E. coli, 

EHEC: enterohaemorrhagic E. coli, EIEC: enteroinvasive E. coli, EPEC: enteropathogenic 

E. coli, ETEC: enterotoxigenic E. coli, APEC: avian pathogenic E. coli, MPEC: mammary 

pathogenic E. coli, NMEC: neonatal meningitis-associated E. coli, UPEC: uropathogenic 

E. coli. 
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3.3.2. Estimating the E. coli clonal frame phylogeny 

 

To infer the E. coli clonal frame phylogeny, an analysis named ‘quartet analysis’ was first 

applied, using the core gene alignment which was produced by Roary pan genome analysis 

using the 100 set of E. coli strain genomes, as input. The quartet analysis produced 35 plots, 

one for each quartet analysis, detailing the clustering patterns of 10 kb windows, between 

sets of 4 groups along the core gene alignment (Figure 3.7).  
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Figure 3.7. Quartet clustering patterns obtained for 10 kb windows across the core genome 

alignment. Plots are shown for all possible quartet combinations from E. coli phylogenetic 

groups A-G. The x axis represents the position along the core genome alignment (2,350,705 

bp), ordered as in strain str. K-12 MG1655. Each row of the figure shows the topologies 

for a unique quartet of strains, for 235 non-overlapping windows across the core genome 

alignment. The topologies are coloured in accordance with their relationships as shown in 

the legend. The rows are separated into sections (separated by white lines), within which a 

consistent set of reference strains contribute three of each quartet. The fourth member of 

the quartet is varied in each row, with the subsections (separated by black lines) indicating 

which of the four taxa is varied. Quartets are coloured only if the middle branch is supported 

by ≥50% bootstrap support otherwise it is shown as white. The row labelled ‘Anc’ indicates 

the clustering pattern deduced to be pre-divergence for the four phylogenetic groups based 

on a single clustering pattern’s presence in >50% of quartets for a section.  

 

The quartet analysis plots showed that the 3 possible phylogenetic group pre-divergence 

clustering patterns were found to have all occurred across core genes in 14 different quartet 

analyses (Figure 3.7). Pre-divergence clustering pattern 1 (as depicted in Figure 3.2) was 

the pattern for 100% of core genes in 16 analyses, ≥ 90% of core genes in 22 analyses, ≥ 

70% of core genes in 25 analyses, and ≥ 50% of core genes in all 35 analyses (Table 3.3). 

This was in comparison to cluster patterns 2 and 3 which were observed in 20-42% of core 

genes for 7 analyses for cluster pattern 2 for and 8 analyses for cluster pattern 3 (Table 3.3). 

Clustering pattern 1 was therefore found to be the clonal clustering pattern for E. coli 

phylogenetic groups A-G (Figure 3.8). 

Figure 3.8. Diagrammatic tree indicating the inferred clonal frame clustering pattern for E. 

coli phylogenetic groups A-G. 
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Table 3.3. The number of core genome genes associated with each of the three pre-

divergence clustering patterns in each of the 35 quartet phylogeny analyses. * 

 

* The total number of core genes used in each quartet analysis of the 2,493 genes 

which made up the core gene alignment is the sum of the values in all 3 ‘genes’ 

columns for each analysis. The number in the ‘genes’ column for a given 

clustering pattern is the number of core genes used in that analysis with quartet 

phylogeny topologies which exhibited that clustering pattern. The ‘percentage 

genes’ value for each clustering pattern for each analysis is the percentage of 

genes with quartet phylogenies which exhibited that clustering pattern, of the total 

number of core genes used in that quartet analysis. 

 

Quartet 

analysis
Quartet 

phylogeny

Genes Perc. 

genes

Quartet 

phylogeny

Genes Perc. 

genes

Quartet 

phylogeny

Genes Perc. 

genes

1 (A,B1),(D1,B2) 2,484  100   (A,D1),(B1,B2) 0 0 (A,B2),(B1,D1) 0 0

2 (A,B1),(D1,D2) 2,475  100   (A,D1),(B1,D2) 0 0 (A,D2),(B1,D1) 0 0

3 (A,B1),(D1,G) 2,484  100   (A,D1),(B1,G) 0 0 (A,G),(B1,D1) 0 0

4 (A,B1),(D2,B2) 2,483  100   (A,D2),(B1,B2) 0 0 (A,B2),(B1,D2) 0 0

5 (A,B1),(D2,G) 2,493  100   (A,D2),(B1,G) 0 0 (A,G),(B1,D2) 0 0

6 (A,B1),(E,B2) 2,068  94     (A,E),(B1,B2) 98      4 (A,B2),(B1,E) 43      2

7 (A,B1),(E,D1) 2,040  94     (A,E),(B1,D1) 117    5 (A,D1),(B1,E) 22      1

8 (A,B1),(E,D2) 1,976  94     (A,E),(B1,D2) 105    5 (A,D2),(B1,E) 22      1

9 (A,B1),(E,G) 1,978  91     (A,E),(B1,G) 141    6 (A,G),(B1,E) 60      3

10 (A,B1),(G,B2) 2,493  100   (A,G),(B1,B2) 0 0 (A,B2),(B1,G) 0 0

11 (A,D1),(D2,B2) 1,498  67     (A,D2),(D1,B2) 35      2 (A,B2),(D1,D2) 703    31

12 (A,D1),(D2,G) 1,049  58     (A,D2),(D1,G) 497    27 (A,G),(D1,D2) 264    15

13 (A,D1),(G,B2) 1,522  66     (A,G),(D1,B2) 0 0 (A,B2),(D1,G) 782    34

14 (A,D2),(G,B2) 1,079  51     (A,G),(D2,B2) 613    29 (A,B2),(D2,G) 425    20

15 (A,E),(D1,B2) 2,467  100   (A,D1),(E,B2) 0 0 (A,B2),(E,D1) 0 0

16 (A,E),(D1,D2) 2,475  100   (A,D1),(E,D2) 0 0 (A,D2),(E,D1) 0 0

17 (A,E),(D1,G) 2,493  100   (A,D1),(E,G) 0 0 (A,G),(E,D1) 0 0

18 (A,E),(D2,B2) 2,493  100   (A,D2),(E,B2) 0 0 (A,B2),(E,D2) 0 0

19 (A,E),(D2,G) 2,478  100   (A,D2),(E,G) 0 0 (A,G),(E,D2) 0 0

20 (A,E),(G,B2) 2,493  100   (A,G),(E,B2) 0 0 (A,B2),(E,G) 0 0

21 (B1,D1),(D2,B2) 1,541  70     (B1,D2),(D1,B2) 47      2 (B1,B2),(D1,D2) 627    28

22 (B1,D1),(D2,G) 1,063  55     (B1,D2),(D1,G) 555    29 (B1,G),(D1,D2) 319    16

23 (B1,D1),(G,B2) 1,589  70     (B1,G),(D1,B2) 0 0 (B1,B2),(D1,G) 668    30

24 (B1,D2),(G,B2) 1,077  51     (B1,G),(D2,B2) 663    31 (B1,B2),(D2,G) 374    18

25 (B1,E),(D1,B2) 2,425  99     (B1,D1),(E,B2) 24      1 (B1,B2),(E,D1) 0 0

26 (B1,E),(D1,D2) 2,475  100   (B1,D1),(E,D2) 0 0 (B1,D2),(E,D1) 0 0

27 (B1,E),(D1,G) 2,486  100   (B1,D1),(E,G) 0 0 (B1,G),(E,D1) 0 0

28 (B1,E),(D2,B2) 2,483  100   (B1,D2),(E,B2) 0 0 (B1,B2),(E,D2) 0 0

29 (B1,E),(D2,G) 2,479  100   (B1,D2),(E,G) 0 0 (B1,G),(E,D2) 0 0

30 (B1,E),(G,B2) 2,479  99     (B1,G),(E,B2) 14      1 (B1,B2),(E,G) 0 0

31 (D1,D2),(G,B2) 1,254  57     (D1,G),(D2,B2) 932    42 (D1,B2),(D2,G) 32      1

32 (E,D1),(D2,B2) 1,482  68     (E,D2),(D1,B2) 22      1 (E,B2),(D1,D2) 682    31

33 (E,D1),(D2,G) 1,007  54     (E,D2),(D1,G) 601    32 (E,G),(D1,D2) 265    14

34 (E,D1),(G,B2) 1,599  70     (E,G),(D1,B2) 0 0 (E,B2),(D1,G) 686    30

35 (E,D2),(G,B2) 1,055  52     (E,G),(D2,B2) 561    28 (E,B2),(D2,G) 398    20

Cluster pattern 1 Cluster pattern 2 Cluster pattern 3
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To create a clonal frame phylogeny, core gene sequence alignments were extracted from 

the core gene alignment if they had an inferred history of the clonal frame clustering pattern 

(clustering pattern 1) across all 35 quartet analyses. This amounted to 250,000 bp of gene 

sequence alignment from 256 genes, which was then successfully used to construct an E. 

coli core gene phylogeny using RAxML (Figure 3.9). The clustering pattern in this robust 

phylogenetic analysis was identical to that predicted by the quartet analysis (Figure 3.8). 
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Figure 3.9. A robust maximum likelihood midpoint rooted phylogeny of the 100 E. coli 

strain reference set from phylogenetic groups A-G. The tree was constructed using RaxML 

from a 250,000 bp alignment of phylogenetically reliable core genome sequence derived 

from windows from 256 genes which showed a consistent cluster pattern 1 topology across 

all 35 quartet analyses, the clonal frame clustering pattern. Percentage bootstrap support 

values are shown on internal branches. The scale bar indicates the number of substitutions 

per site represented by the branch length shown. 
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3.3.3. Characterising pre-divergence and post-divergence recombination events 

between the major phylogenetic groups 
 

To address objective 1, it was necessary to determine the number of E. coli core genes with 

a reported history of both phylogenetic group pre-divergence and post-divergence 

recombination. This information was taken from the results of the quartet analysis. 

Clustering pattern 1 represented the proposed clonal frame phylogeny (Figure 3.8), and 

clustering patterns 2 and 3 (as depicted in Figure 3.2) were evidence of pre-divergence 

inter-group recombination events affecting core genes. 19 of 35 quartet analyses 

collectively showed that 46% of core E. coli genes exhibited at least some evidence of pre-

divergence recombination (figure breakdown not shown, events inferred from genes 

included in analysis for each quartet analysis for the recombinant patterns 2 and 3 shown 

in Table 3.3). The difference in recombinant compared to non-recombinant clustering 

relationships for a given set of four groups can be seen when comparing the former in Table 

3.3 (patterns 2 and 3) to the latter in the E. coli clonal frame phylogeny (Figure 3.8). 

By inspecting the results of the quartet analysis for evidence of post-divergence 

recombination between phylogenetic groups it was found that 94% of core E. coli genes 

exhibited evidence of post-divergence recombination (cluster patterns 2 and 3, as depicted 

in Figure 3.2) between strains of particular differing phylogenetic groups. The difference 

in recombinant compared to non-recombinant clustering relationships for a given set of 

four groups can be seen when comparing the former in Table 3.4 (patterns 2 and 3) to the 

latter in the E. coli clonal frame phylogeny (Figure 3.8). 
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Table 3.4. The number of core genes with a reported history of each of the three post-

divergence recombination clustering patterns for four given phylogenetic groups in each of 

all 35 quartet phylogeny analyses. Each row is one quartet analysis. * 

 

* The total number of core genes used in each quartet analysis of the 2,493 genes 

which made up the core gene alignment is the sum of the values in all 3 ‘genes’ 

columns for each analysis. The number in the ‘genes’ column for a given 

clustering pattern is the number of core genes used in that analysis with quartet 

phylogeny topologies which exhibited that clustering pattern. The ‘percentage 

genes’ value for each clustering pattern for each analysis is the percentage of 

genes with quartet phylogenies which exhibited that clustering pattern, of the total 

number of core genes used in that quartet analysis. 

Quartet 

analysis

Quartet 

phylogeny

Genes Perc. 

genes

Quartet 

phylogeny

Genes Perc. 

genes

Quartet 

phylogeny

Genes Perc. 

genes

1 (A,B1),(D1,B2) 9       1       (A,D1),(B1,B2) 556    50     (A,B2),(B1,D1) 552    49      

2 (A,B1),(D1,D2) 18      2       (A,D1),(B1,D2) 440    45     (A,D2),(B1,D1) 520    53      

3 (A,B1),(D1,G) 9       1       (A,D1),(B1,G) 477    52     (A,G),(B1,D1) 438    47      

4 (A,B1),(D2,B2) 10      2       (A,D2),(B1,B2) 378    58     (A,B2),(B1,D2) 267    41      

5 (A,B1),(D2,G) 0 -    (A,D2),(B1,G) 458    58     (A,G),(B1,D2) 327    42      

6 (A,B1),(E,B2) 425    9       (A,E),(B1,B2) 2,064 45     (A,B2),(B1,E) 2,134 46      

7 (A,B1),(E,D1) 453    10     (A,E),(B1,D1) 2,090 44     (A,D1),(B1,E) 2,169 46      

8 (A,B1),(E,D2) 517    11     (A,E),(B1,D2) 2,058 43     (A,D2),(B1,E) 2,159 46      

9 (A,B1),(E,G) 515    11     (A,E),(B1,G) 2,054 44     (A,G),(B1,E) 2,074 45      

10 (A,B1),(G,B2) 0 -    (A,G),(B1,B2) 278    44     (A,B2),(B1,G) 358    56      

11 (A,D1),(D2,B2) 936    23     (A,D2),(D1,B2) 1,625 40     (A,B2),(D1,D2) 1,519 37      

12 (A,D1),(D2,G) 1,398 27     (A,D2),(D1,G) 1,831 35     (A,G),(D1,D2) 2,011 38      

13 (A,D1),(G,B2) 913    26     (A,G),(D1,B2) 1,322 37     (A,B2),(D1,G) 1,332 37      

14 (A,D2),(G,B2) 1,252 28     (A,G),(D2,B2) 1,649 37     (A,B2),(D2,G) 1,557 35      

15 (A,E),(D1,B2) 26      1       (A,D1),(E,B2) 1,056 54     (A,B2),(E,D1) 858    44      

16 (A,E),(D1,D2) 18      1       (A,D1),(E,D2) 498    41     (A,D2),(E,D1) 708    58      

17 (A,E),(D1,G) 0 -    (A,D1),(E,G) 620    50     (A,G),(E,D1) 628    50      

18 (A,E),(D2,B2) 0 -    (A,D2),(E,B2) 482    62     (A,B2),(E,D2) 295    38      

19 (A,E),(D2,G) 15      2       (A,D2),(E,G) 499    58     (A,G),(E,D2) 343    40      

20 (A,E),(G,B2) 0 -    (A,G),(E,B2) 438    55     (A,B2),(E,G) 356    45      

21 (B1,D1),(D2,B2) 903    22     (B1,D2),(D1,B2) 1,588 39     (B1,B2),(D1,D2) 1,552 38      

22 (B1,D1),(D2,G) 1,379 26     (B1,D2),(D1,G) 1,835 35     (B1,G),(D1,D2) 2,035 39      

23 (B1,D1),(G,B2) 834    23     (B1,G),(D1,B2) 1,341 37     (B1,B2),(D1,G) 1,443 40      

24 (B1,D2),(G,B2) 1,314 30     (B1,G),(D2,B2) 1,587 36     (B1,B2),(D2,G) 1,495 34      

25 (B1,E),(D1,B2) 68      3       (B1,D1),(E,B2) 1,025 51     (B1,B2),(E,D1) 901    45      

26 (B1,E),(D1,D2) 18      1       (B1,D1),(E,D2) 692    50     (B1,D2),(E,D1) 676    49      

27 (B1,E),(D1,G) 7       1       (B1,D1),(E,G) 587    48     (B1,G),(E,D1) 618    51      

28 (B1,E),(D2,B2) 10      1       (B1,D2),(E,B2) 525    59     (B1,B2),(E,D2) 355    40      

29 (B1,E),(D2,G) 14      1       (B1,D2),(E,G) 515    53     (B1,G),(E,D2) 450    46      

30 (B1,E),(G,B2) 14      2       (B1,G),(E,B2) 400    50     (B1,B2),(E,G) 383    48      

31 (D1,D2),(G,B2) 1,132 27     (D1,G),(D2,B2) 1,429 35     (D1,B2),(D2,G) 1,575 38      

32 (E,D1),(D2,B2) 925    23     (E,D2),(D1,B2) 1,500 38     (E,B2),(D1,D2) 1,565 39      

33 (E,D1),(D2,G) 1,451 27     (E,D2),(D1,G) 1,805 34     (E,G),(D1,D2) 2,106 39      

34 (E,D1),(G,B2) 830    23     (E,G),(D1,B2) 1,356 37     (E,B2),(D1,G) 1,446 40      

35 (E,D2),(G,B2) 1,322 29     (E,G),(D2,B2) 1,715 37     (E,B2),(D2,G) 1,547 34      

Cluster pattern 1 Cluster pattern 2 Cluster pattern 3
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3.3.4. Determining the proportion of each E. coli major phylogenetic group’s pan 

genome that is shared with that of each other group 

 

To address objective 2, it was necessary to determine the number of genes in the pan 

genome of each group, and the number of core and accessory genes unique to each group 

or shared with other groups, by post-processing the results of the pan genome analysis 

carried out by Roary using a written in-house program. When E. coli core genes conserved 

across all strains of all phylogenetic groups were deducted, this analysis showed that group 

B1 had the largest group pan genome (14,221 genes) and group G the smallest (6,218 

genes). The same groups also exhibited the fewest and most group core genes of all groups 

(339 and 1,132 for B1 and G respectively). Groups E, D1, and D2 exhibited similar number 

of group core genes (762, 748, and 775 respectively). Groups A, B1, and D1 did not exhibit 

any group-specific core genes, while groups B2 and G exhibited 19 and 16 respectively, 

and groups E and D2 each exhibited 8. Groups A, B1, and B2 exhibited the largest number 

of group accessory genes (9,330, 13,882, and 9,684 respectively) and group G exhibited 

the fewest across groups (5,086). Groups A, B1, and B2 also exhibited the greatest number 

of group-specific accessory genes (3,241, 5,414, and 3,347 respectively) and group D2 the 

fewest (1,227) (Table 3.5).  

Table 3.5. The number of pan, core, and accessory genes present in each E. coli 

phylogenetic group A-G. 

  

  

*  Note that E. coli core genes conserved across all strains of all phylogenetic 

groups are not included in these figures. 

Category (PG = per genome) A B1 E D1 D2 G B2

Number of genomes in group 18 30 8 10 7 7 20

Group pan-genome size* 9,791 14,221 7,456 7,292 6,501 6,218 10,247

Number of group core genes * 461 339 762 748 775 1,132 536

 - Of which unique to group 0 0 8 0 8 16 19

 - Of which present in other groups 461 339 754 748 767 1,116 517

Number of group accessory genes * 9,330 13,882 6,694 6,544 5,727 5,086 9,684

 - Of which unique to group 3241 5,414 1,683 1,556 1,227 1,329 3,347

 - Of which present in other groups 6,089 8,468 5,011 4,988 4,500 3,757 6,337

Av. number of group accessory genes PG * 518 463 837 654 818 727 484

 - Of which unique to group 180 180 210 156 175 190 167

 - Of which present in other groups 338 282 626 499 643 537 317
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When investigating the proportion of group core genes (genes core to the group and core, 

non-core, or absent in other groups) shared between pairs of phylogenetic groups (Table 

3.6), specific results can be highlighted. Group A was found to share the highest percentage 

of its core genes with groups B1 and E (99.57 and 94.36) and the lowest percentage with 

groups G and B2 (82 and 82.86). The relative greater proportion of genes shared between 

groups A, B1, and E compared to between groups A, G and B2 is consistent with groups A 

clustering more closely with groups B1 and E compared to G and B2 in the inferred clonal 

frame phylogeny (Figure 3.8). This consistency of shared group core genes with clonal 

frame phylogeny was also shown for other groups. Groups B1, E, D1, D2, and B2 shared 

most group core genes with groups they are closely related to and shared to fewest with 

more distantly related groups (Table 3.6, Figure 3.8). Of note was that group B1 shared the 

most group core genes with groups A and E (99.57 and 94.36). Group E shared the greatest 

percentage of its group core genes with groups B1 and D1 (94.49 and 96.59) and the lowest 

percentage with groups G and B2 (86.48 and 85.43). Group D1 shared the greatest 

percentage of its group core genes with groups E and D2 (96.52 and 97.53) and the lowest 

percentage with groups G and B2 (88.1 and 87.48). Group D2 shared the greatest 

percentage of its group core genes with groups D1 and E (96.26 and 90.06) and the lowest 

percentage with groups A and G (86.84 and 85.29). Group B2 shared the greatest 

percentage of its group core genes with groups D2, D1, and G (92.9, 92.72, and 92.72) and 

the lowest percentage with groups A and B1 (84.19 and 86.86) across groups. However, 

group G shared the greatest percentage of its group core genes with groups D1 and B2 

(92.49 and 92.4) despite clustering closer to group D2 than D1, and the lowest percentage 

with groups A and E (84.72 and 84.19). 
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Table 3.6. The percentage of group core genes of each E. coli phylogenetic group which 

are present in other groups.  

 

 * E. coli core genes conserved across all strains of all phylogenetic groups are not 

included in these figures. 

When the proportion of group accessory genes shared between pairs of phylogenetic groups 

were determined (Table 3.7), specific results could also be highlighted. Unlike with core 

genes, the pattern of shared accessory genes was not consistent with the E. coli 

phylogenetic group relationships in the clonal frame phylogeny (Figure 3.10). Group A 

shared the largest percentage of its group accessory genes with groups B1 and B2 (51.67 

and 38.47) despite clustering closer to E and D1 than B2. Group B1 shared the greatest 

percentage of its group accessory genes with groups A and B2 (35.59% and 33.94%) 

despite clustering closer to E and D1 than B2. Group E shared the greatest percentage of 

its group accessory genes with groups B1 and B2 (59.4% and 44.5%) despite clustering 

closer to groups A, and E than B2. Group D2 shared the greatest percentage of its group 

accessory genes with groups B1 and B2 (54.48% and 50.81%) despite clustering closer to 

G than B1, and the lowest percentage with groups E and G (40.72% and 40.02%) despite 

clustering in a separate clade to groups A B1 and D1 and adjacently to group G. Group G 

shares the greatest percentage of its group accessory genes with groups B1 and B2 (53.99% 

and 43.26%) despite clustering closer to group D2 than B1. Group B2 shared the greatest 

percentage of its accessory genes with groups A and B1 (36.11% and 46.3%) despite 

clustering adjacently to groups D2 and G and the lowest percentage with groups D2 and G 

(31.65% and 28.13%) despite clustering adjacently to them. 

Group Core genes * A (18) B1 (30) E (8) D1 (10) D2 (7) G (7) B2 (20)

A 461 - 99.57 94.36 94.14 89.59 82 82.86

B1 339 100 - 93.51 91.74 89.68 76.4 76.99

E 762 93.44 94.49 - 96.59 93.83 86.48 85.43

D1 748 90.51 91.04 96.52 - 97.73 88.1 85.43

D2 775 86.84 88.77 90.06 96.26 - 85.29 87.48

G 1132 84.72 88.25 84.19 92.49 89.75 - 92.4

B2 536 84.19 86.86 88.28 92.72 92.9 92.72 -
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Table 3.7. The percentage of accessory genes present within strains of each phylogenetic 

group which are also present in other groups.  

 

* Values are the number of accessory genes present across strains of each given 

phylogenetic group. 

 

3.3.5. Determining genes unique and highly enriched (≥ 90% presence) in E. coli 

phylogenetic groups  

 

84 genes were found to be unique to specific phylogenetic groups or groups of phylogenetic 

groups and present in at least 90% of group members (Figure 3.10, Table 3.8). Group B1-

specific genes included genes annotated as encoding a pilus protein, an ABC transporter, 

and an ATP-binding transporter. Group E had 8 group-specific genes, 7 of which encoded 

proteins with environmental interaction functions located over three gene clusters (E-1, E-

2, E-3) (here defined as sets of genes within 10 kb of each other). Group D1 had 8 group-

specific genes, 2 of which encoded proteins of metabolism-related function. Group G 

exhibited 15 group-specific genes, 7 of which encoded proteins with environmental 

interaction functions located on 2 gene clusters (G-1, G-2). Group B2 exhibited 25 group-

specific genes, including 13 which encoded proteins with metabolic-associated functions 

and 5 which encoded proteins with membrane transport-associated functions, all located 

across 4 gene clusters (B2-1, B2-2, B2-3, B2-4). Groups A+B1 together exhibited 5 specific 

genes, 2 of which encoded proteins with membrane transport-associated functions. Groups 

A+B1+E together exhibited 8 specific genes, 3 of which encoded proteins of metabolic-

associated functions and 2 encoded proteins with environmental interaction-associated 

Group Accessory genes * A (18) B1 (30) E (8) D1 (10) D2 (7) G (7) B2 (20)

A 9,330                      - 51.67 35.1 34.23 31.18 27.78 38.47

B1 13,882                    35.59 - 31.55 29.08 25.24 25.11 33.94

E 6,694                      44.79 59.41 - 41.69 34.58 33.43 44.5

D1 6,544                      45.09 56.04 42.86 - 41.47 35.36 49.8

D2 5,727                      46.25 54.48 40.72 47.13 - 40.02 50.81

G 5,086                      39.54 53.99 38.22 37.87 38.08 - 43.26

B2 9,684                      36.11 46.3 32.35 34.86 31.65 28.13 -
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functions. Groups A+B1+E+D1 exhibited 5 specific genes, one of which encoded a protein 

with metabolism associated function and another with membrane transport-associated 

function. Groups G+B2 exhibited 6 specific genes, 2 of which encoded proteins with 

metabolism-associated functions and 2 encoding proteins with regulation-associated 

functions. 

 

Figure 3.10. The E. coli clonal frame phylogeny with the number of genes which are 

unique to and present in ≥90% of strains for each phylogenetic group, superimposed onto 

that groups’ pre-divergence lineage. Presence of the genes in that lineage alone is indicated 

with the number in green at the base of the lineage. The scale bar indicates the number of 

substitutions per site represented by the branch length shown. 
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Table 3.8. Genes found to be unique to specific phylogenetic groups or groups of 

phylogenetic groups and present in at least 90% of group members. *  

 

* Genes found in groups B1, E, D2, G, B2, A+B1, A+B1+E, A+B1+E+D1, and G+B2 

are shown. For each gene, details of a reference strain, its locus ID, the name of the 

associated gene cluster (if any), the gene annotation, and the functional category of 

the encoded protein is shown. 

 

 

Group Reference 

strain

Reference 

locus ID

Cluster Annotation Functional 

group

O3M_03525 - CblD like pilus biogenesis initiator  Env. interaction

O3M_03750 - Uncharacterised protein -

O3M_11160 - ABC transporter, ATP-binding protein Memb. transport

O3M_14800 - ATP-binding transport component Metabolic

ECs0140 Fimbrial protein Env. interaction

ECs0146 methyldihydropteridine diphosphokinase Metabolic

ECs3220 Probable fimbrial chaperone protein papD Env. interaction

ECs3221 Fimbrial usher Env. interaction

ECs3222 Type 1 fimbiral protein Env. interaction

ECs4426 Probable fimbrial subunit LpfE Env. interaction

ECs4430 Probable fimbrial chaperone LpfB Env. interaction

ECs4431 Probable major fimbrial subunit LpfA Env. interaction

EcSMS35_2123 - Uncharacterised protein YccE -

EcSMS35_2178 - Fimbrial-like adhesin protein Env. interaction

EcSMS35_2489 ATP-binding protein Metabolic

EcSMS35_2490 TIGR02646 family protein Metabolic

EcSMS35_2659 - RatA-like protein  -

EcSMS35_3798 - Uncharacterised protein YhiS -

EcSMS35_4085 - Probable type III effector protein Memb. transport

EcSMS35_4475 - Shikimate 5-dehydrogenase Metabolic

B1200_03710 - Uncharacterised protein -

B1200_04105 - Uncharacterised protein -

B1200_12150 - Uncharacterised protein -

B1200_18530 - Uncharacterised protein -

B1200_24130 DUF2544 domain-containing protein -

B1200_24135 Fimbrial protein YfcP Env. interaction

B1200_24140 Fimbrial protein Env. interaction

B1200_24145 Fimbrial protein YfcR Env. interaction

B1200_24150 Fimbrial periplasmic chaperone protein Env. interaction

B1200_24155 Fimbrial assembly usher protein Env. interaction

B1200_24160 Fimbrial-like adhesin protein Env. interaction

B1200_26610 Rhs Vgr Type IV secretion protein Env. interaction

B1200_26615 N-acetylmuramoyl-L-alanine amidase Metabolic

B1200_26620 Uncharacterised protein -

B1200_26645 - Uncharacterised protein -

D2-1

B1
O104:H4 str. 

2009EL-2050

E

D2 SMS35

O157:H7 str. 

Sakai substr 

RIMD 

O509952

MDR 56G G-1

G-2

E-1

E-2

E-2

E-3
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Table 3.8 continued. 

Group Reference 

strain

Reference 

locus ID

Cluster Annotation Functional 

group

E2348C_0562 Citrate transporter family protein Memb. transport

E2348C_0563 Antitoxin family protein Metabolic

E2348C_0564 Glycosyl hydrolase Metabolic

E2348C_0566 Dihydrodipicolinate synthase Metabolic

E2348C_0567 Iron-containing alcohol dehydrogenase  Metabolic

E2348C_0568 Inner membrane protein  Memb. structure

E2348C_0569 Probable pyridoxine phosphate biosynthetic protein Metabolic

E2348C_0570 DeoR family transcriptional regulator Regulation

E2348C_1924 - Uncharacterized protein YeaR -

E2348C_3671 - Uncharacterised protein -

E2348C_3834 - Probable decarboxylase Metabolic

E2348C_4317 Malate synthase A Metabolic

E2348C_4322 Uncharacterised protein -

E2348C_4370 2-oxoglutarate dehydrogenase E1 component  Metabolic

E2348C_4371 succinyltransferase of 2-oxoglutarate dehydrogenase Metabolic

E2348C_4372 Dihydrolipoyl dehydrogenase Metabolic

E2348C_4373 Succinate--CoA ligase subunit beta , sucC Metabolic

E2348C_4374 Succinate--CoA ligase subunit alpha, sucD Metabolic

E2348C_4375 DASS family sodium-coupled anion symporter Memb. transport

E2348C_4376 L-lactate dehydrogenase Metabolic

E2348C_4377 C4-dicarboxylate transcriptional regulatory protein Regulation

E2348C_4378 Sensory histidine kinase in two-component system  Signalling

E2348C_4402 Probable ABC transporter family protein Memb. transport

E2348C_4404 Putative dipeptide/nickel transporterYddQ  Memb. transport

E2348C_4405 ABC transporter membrane permease Memb. transport

b1196 - Uncharacterised protein -

b3715 - 6-phosphogluconate phosphatase YieH Metabolic

b4038 - Probable type III effector protein  Memb. transport

b4555 - Uncharacterised protein YicS -

b4661 - Outer membrane usher protein Memb. transport

b0608 - Predicted oxidoreductase, Zn-dependent Metabolic

b1537 - Nicotinamide-nucleotide amidohydrolase PncC Metabolic

b1877 - PF07007 family protein -

b2824 - DUF2509 domain-containing protein -

b3143 Periplasmic pilin chaperone  Env. interaction

b3145 Fimbrial protein Env. interaction

b3890 - Antitoxin component, ribbon-helix-helix fold protein  Metabolic

b4031 - D-xylose transporter XylE  Memb. transport

b1001 - Uncharacterised protein -

b1202 - Autotransporter outer membrane beta-barrel protein  Memb. transport

b1465 - Nitrate reductase A subunit gamma Metabolic

b3516 - YccE family protein  -

b4045 - UPF0337 protein YjbJ -

E2348C_0022 - NhaR DNA-binding transcriptional activator  Regulation

E2348C_2412 - GNAT family N-acetyltransferase Metabolic

E2348C_4027 - Inner membrane protein CbrB Memb. structure

E2348C_4248 - Cytoplasmic protein Cytoplasm

E2348C_4528 - Type II toxin-antitoxin system HipA family toxin Metabolic

E2348C_4631 - Anti-adapter protein IraD Regulation

B2-2

str. K-12 

subtr. 

MG1655 AB1E-1

A+B1    

+E+D1

str. K-12 

subtr. 

MG1655

G+B2
O127:H6 str. 

E2348/69

B2
O127:H6 str. 

E2348/69

B2-1

B2-3

B2-4

A+B1

str. K-12 

subtr. 

MG1655

A+B1

+E

-
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3.4. Discussion 
 

The purpose of the work presented in this chapter was to make use of E. coli genome 

sequence data to produce an up-to-date narrative describing E. coli evolution. The narrative 

was to be based on the results of addressing a hypothesis, an overall aim, and 3 objectives 

using a computer with up-to-date processing capabilities for genomic analysis. 

Before main analyses were started it was necessary to determine the appropriate identity 

cut-off for use in a BLAST analysis to identify E. coli orthologues of the same gene. As 

reported, it was determined to be 95%. However, pan genome analysis of the reference set 

of 100 E. coli genomes using a lower value of 80% produced a comparable core gene 

phylogeny with an identical topology to that based on 95% identity (results not shown). 

There was also no difference in the reported results in the quartet analysis, results regarding 

inferred history of recombination, the proportion of shared genes between phylogenetic 

groups after rounding of numbers, and the specific genes which were unique and core to 

90% of strain genomes in certain phylogenetic groups or groups of phylogenetic groups 

(results not shown). This indicated that the results of these analyses were robust to the 

slightly arbitrary choice of identity cut-off. However, for the results presented here the cut-

off of 95% was applied for orthologue identification, because this value was more 

conservative and likely to have reduced the number of cases of false orthologue pairs being 

reported. 

Creation of a set of E. coli strain genomes which represented full phylogenetic and sample 

diversity for use in analyses was approached by using filtering the available 5,623 strain 

genomes down to 100. After filtering for genome sequence assembly quality, phylogenetic 

diversity was maximised in the final set by selecting strain genomes which were separated 

by relative long phylogenetic branches as observed in a core gene phylogeny. Sample 



107 

 

diversity was maximised in the final set by selecting genomes which represented the twelve 

major E. coli pathovars, together with commensals (human and varied non-human sources), 

laboratory strains, and environmental isolates from soil and water. This filtering process 

made it likely that the size of the E. coli pan genome was maximized for the 100 genome 

set and included E. coli pan genome genes which collectively encoded the widest possible 

range of functions. Creating this strain set of 100 addressed the first part of the principal 

aim, which was to create an up-to-date E. coli strain set representative of the available 

phylogenetic and sample diversity. 

Genomes from cryptic clade groups C-I, C-III, C-IV, and C-V were not sufficiently 

abundant to represent their groups in the evolutionary studies which were carried out in this 

work. However, it is likely that in future the sequencing of more diverse samples will allow 

the creation of a phylogenetically diverse genome set for the cryptic clades.  

Given the data produced in this chapter it is possible to propose an up to-date narrative of 

E. coli evolutionary history. After divergence away from the ancestor of the cryptic clade 

E. coli, it can be proposed that the first lineage subsequently diverged into group D2 and a 

lineage which later diverged into groups G and B2. The second lineage diverged into the 

outgroup D1, followed by group E, leaving a single lineage which diverged into groups A 

and B1 (Figure 3.9, see Figure 3.12 For the proposed E. coli clonal frame clustering 

pattern). Through creating a representative E. coli strain set and using it to construct this E. 

coli clonal frame phylogeny, the principal aim was addressed.  

It can be inferred that the lineage ancestor genome of G+B2 contained 6 genes encoding 

proteins linked to environmental stress tolerance and increased adaptation to stress which 

were absent in other E. coli lineage ancestor genomes at the time of their respective 

diversifications. The presence of these genes, either gained in that lineage or more 
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ancestrally, might have been the cause for divergence away from the ancestor of groups 

A+B1+E+D1. These included a gene encoding the type II toxin-antitoxin system HipA 

protein that may be involved in an altruistic cell death mechanism or DNA sequence 

stabilisation and stress tolerance processes (Schumacher et al. 2009). The G+B2 ancestor 

also encoded the anti-adapter protein IraD which has been found to work to increase the 

stability of the stigma stress factor RpoS during oxidative stress to contribute to overall 

increased oxidative stress resistance (Bougdour et al. 2008). The adaptations provided by 

these genes may have contributed to the divergence of the lineage ancestor of groups G and 

B2. The divergence of the group G ancestor from the group B2 ancestor may then have 

occurred as a result of the acquisition of 15 genes with metabolic, environmental 

interaction, or pathogenic functions. These genes were absent in other ancestral lineages at 

the time of their respective divergences. They included 6 fimbrial-function encoding genes 

on a 7-gene cluster which imply presence of a unique fimbrial system. The system can be 

proposed to have collectively provided an environmental motility or host colonisation 

function in the lineage ancestor, based on previous functional characterisation work on E. 

coli fimbriae (Korea et al. 2010). The lineage ancestor of group B2 was found to have 

exhibited the most of any phylogenetic group pre-divergence lineage; 25 genes, including 

four gene clusters (cluster B2-1, B2-2, B2-3, B2-4) which were absent in other ancestral 

lineages at the time of their respective divergences. These included 13 genes with 

metabolic-encoding functions including sucCD homologues involved in the tricarboxylic 

acid pathway, and metabolic functions. It can be speculated that these genes provided the 

ancestor of group B2 with a suite of novel metabolic capabilities which likely allowed it to 

diversify itself significantly away from other E. coli in terms of environmental interaction, 

metabolism, cell structure, regulation, and habitat usage.  



109 

 

The ancestor of A+B1+E+D1 can be inferred to have exhibited 5 genes which contributed 

to diversification from the ancestor of groups D2+G+B2 and were absent in other ancestral 

lineages at the time of their respective divergences. One gene encodes a nitrate reductase 

A subunit gamma protein, which is a membrane-bound anaerobic respiratory enzyme 

which is used to process nitrate to nitrite and generate energy (MacGregor 1974). It is 

plausible that this gene provided novel nitrate-based energy yield metabolic capabilities, 

which along with other genes contributed to lineage diversification. The diversification of 

the ancestor of lineage of A+B1+E away from the ancestral lineage for group D1 lineage 

can be speculated to have occurred as a result of the presence of 8 genes unique to the 

lineage and absent in other lineage ancestors at the time of their respective divergences. 

These included a periplasmic pilin chaperone and fimbrial protein which likely enhanced 

E. coli to bacteria or host cell contact to enhance survival and allowed exchange of DNA 

in the case of the former (Giron et al. 1991), and a D-xylose transporter protein which 

enable the accumulation of sugar against a concentration gradient (Sun et al. 2012); a 

potentially crucial adaptation for surviving when environmental sugar resources are lower 

than within the cell.  

The divergence of group E away from the lineage ancestor of groups A+B1 can be proposed 

to be due in part to the presence of 7 fimbrial function-encoding genes which were absent 

in other ancestral lineages at the time of their respective divergences. Fimbriae have been 

implicated as important for environmental motility and host infection in numerous studies 

and specifically the lpfABE genes which include these have previously been found to 

enable interaction with eukaryotic host cell through assisting in microcolony formation 

(Torres et al. 2002). It can be suggested that group E diverged in order to occupy previously 

uncolonized habitat in the form of animal host cells most through use of unique fimbriae 

structures not present in related E. coli. Group B1 divergence away from group A can be 
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proposed to have occurred through the presence of 4 genes which that were absent in other 

ancestral lineages at the time of their respective divergences, and include a gene encoding 

a pilus biogenesis initiator protein. Pilus systems in E. coli have been previously found to 

increase the frequency of horizontal gene transfer (Marklund et al. 2002) so the ability of 

the ancestral lineage colony to uptake genes more regularly than other colonies can be 

speculated to have contributed to this divergence. By inferring which gene gain events are 

likely have been important contributors to the divergence of each E. coli phylogenetic 

group A-G, the third objective was addressed.  

The quartet recombination analyses indicated that both post-divergence recombination 

(occurring after the divergence of major phylogenetic groups) and pre-divergence 

recombination (occurring before the divergence of major phylogenetic groups) can be 

inferred to have played a role in shaping the core gene genetic diversity between 

phylogenetic groups A-G. 46% of core genes can be hypothesised to have undergone 

recombination between at least 2 phylogenetic group ancestral lineage strains before they 

each diversified into their respective phylogenetic groups (pre-divergence recombination). 

After the divergence of phylogenetic groups (post-divergence recombination), 96% of core 

genes can be deduced to have undergone recombination between at least 2 strains of 

different phylogenetic groups. This difference can be speculated to be possibly the result 

of increased closer physical proximity and clonal expansion of populations, which provided 

increased opportunity for genetic exchange via recombination between groups in more 

recent evolutionary history after groups diverged. By producing these findings regarding 

the prevalence of pre-divergence and post-divergence recombination between phylogenetic 

group ancestral lineages, the first objective was addressed.  

It can be proposed on the basis of analysis that E. coli groups exchanged genes via 

horizontal transfer to the extent where 21%-39% of group accessory genes are now unique 
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to a given phylogenetic group. Groups B2, B1, and A can be inferred to have become the 

most genetically diverse groups as each were found to exhibit the greatest number of group 

accessory genes unique to their groups and the largest group pan genomes. In contrast, 

groups D2 and G diversified least in terms of gaining unique genes and exhibited the 

smallest pan genomes. This is likely to indicate that groups A, B1, and B2 evolved to 

survive and grow in number in a wider range of habitats and environments than groups D2 

and G. This diversification can be speculated to have been possible because of genes gained 

in the respective ancestral lineages of phylogenetic groups A+B1, B1, and B2. Obtaining 

these findings regarding the determined proportion of shared accessory and core genes 

between strain genomes of phylogenetic groups addressed the second objective.  

In summary, the hypothesis, principal aim and objectives were addressed which resulted in 

the creation of an up-to-date narrative describing the major events occurring during E. coli 

evolution. Non-cryptic clade E. coli were found to have diverged into 7 instead of 6 major 

phylogenetic groups (Figure 3.9). The divergence of 5 of these groups (all but A and D2) 

was associated with the presence of between 4 and 25 genes with functions associated with 

metabolism, stress tolerance, and virulence. Since group divergence, groups B2, B1, and A 

were found to be the most genetically diverse groups with the largest pan genomes 

indicating these groups exhibit adaptations to a broader range of habitats and environments 

than the other groups. 46% of core E. coli genes can be inferred to have undergone pre-

divergence inter-group recombination. This was compared to 96% of genes exhibiting post-

divergence inter-group recombination. This difference is possibly the result of increased 

physical proximity and clonal expansion of colonies, which increased opportunity for 

genetic exchange via recombination between strains from different evolutionary groups 

post-divergence. However, testing this hypothesis would require further investigation.  
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Chapter 4: Novel E. coli phylogenetic group assignment methods 

 

4.1. Introduction 
 

Phylogenetic group assignment began with the development of multi-locus sequence typing 

to study phylogenetic relationships of Neisseria meningitidis strains (Maiden et al. 1998). 

E. coli phylogenetic group assignment has become a standard approach for characterising 

genetic relationships between E. coli strains since MLST was first developed (Tenaillon et 

al. 2010, Maiden et al. 1998). For E. coli, the traditional principal methods, which employ 

multiple sequence loci for phylogenetic group assignment, are multi-locus sequence typing 

(MLST) (Maiden et al. 1998) (7-15 loci, Table 4.1) and the 4-loci Clermont quadruplex 

PCR method (referred to as “Clermont PCR” in this thesis; Clermont et al. 2013, Table 

4.2). Their use is still commonplace, as demonstrated by recent use of the MLST schemas 

in studies by Matamouros et al. (2018), Janecko et al. (2018), Carter and Pham (2018), and 

use of the Clermont multiplex by Cho et al. (2018), Zahara et al. (2018), and Garcia et al. 

(2018). However, I predicted that the fewer number of loci involved and the moderate 

likelihood of recombination affecting the loci included in each method means multiplex 

and 7-15 loci MLST schemas may not reliably provide the same clonal group assignment 

as a core gene phylogeny provides. This was because a core gene phylogeny provides the 

most accurate representation of clonal inheritance patterns within a species other than if 

recombinant sequences are removed prior to phylogeny construction (Tenaillon et al. 

2010). This is as with a core gene phylogeny all possible loci are considered which 

minimises the potential influence of recombination (Tenaillon et al. 2010).  
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Table 4.1. Details of the four most commonly used E. coli MLST schemas. 

 

 

 

Table 4.2. Details of the Clermont multiplex method, showing the presence/absence of the 

four loci in each phylogenetic group. 

 

E. coli researchers are increasingly using a phylogeny constructed from all core gene 

sequences in the form of a core gene MLST (cgMLST) instead of a traditional MLST 

employing 7-15 reference loci (Maiden et al. 2013) to conduct E. coli clonal group 

assignment. Clonal group assignment using a cgMLST schema can be done using the core 

genes from a specific set of E. coli strain genomes under study to construct a core gene 

phylogeny (Grönthal et al. 2018, Pietsch et al. 2018, Zhou et al. 2017, Allen et al. 2017). It 

can also be done through using a set of reference E. coli core genes from an established 

cgMLST schema for public use, such as that offered by the Enterobase database hosted at 

the Warwick Medical School (http://enterobase.warwick.ac.uk), or for commercial use as 

is offered by ‘1928’ (2,500 gene cgMLST, https://1928diagnostics.com/product_resources/ 

escherichia-coli/#) and Ridom (cgMLST based on 3,152 genes from the E. coli Sakai strain 

MLST 

schema

Genes Origin Website

Achtman adk, fumC, gyrB, icd, 

mdh, purA, recA

Warwick Medical 

School

http://enterobase.warwick.ac.uk/species/ecoli/

download_7_gene

Pasteur dinB, icdA, pabB, polB, 

putP, trpA, trpB, uidA

Pasteur Institute http://bigsdb.pasteur.fr/perl/bigsdb/bigsdb.pl?db=pub

mlst_ecoli_seqdef_public&page=downloadAlleles

EcMLST: 7 

genes

aspC, clpX, fadD, icdA, 

lysP, mdh, uidA

Michigan State 

University

http://shigatox.net/ecmlst/cgi-bin/da

EcMLST: 15 

genes

aspC, clpX, fadD, icdA, 

lysP, mdh, uidA, mtlD, 

mutS, rpoS, grpE, dnaG, 

cyaA, arcA, aroE

Michigan State 

University

http://shigatox.net/ecmlst/cgi-bin/da

Fragment

name

Length 

(bp)
A B1 D1/E D2 B2 B2 E/C-I

C-I/

C-III

C-III/

C-IV/C-V

arpA 400 + + + - - - + - -

chuA 288 - - + + + + + - + (476bp)

yjaA 211 - - - - + - + + -

TspE4.C2 152 - + +/- - +/- + - - -
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genome, https://www.cgmlst.org/ ncs/schema/8896773/). Further to this, the Bacterial 

Isolate Genome Sequence Database (BIGSdb) can be used which combines available 

cgMLST reference sequences with database bacterial genome sequence data and database 

information regarding isolate sample, phenotype, and encoded protein functional 

annotations to provide a BISGdb sequence type (Jolley and Maiden 2015). BIGSdb 

sequence types can be used to assign E. coli clonal groups and membership of a clonal 

complex like a cgMLST does, but also be used to provide information about likely 

phenotypes based on BLAST database matches to gene sequences.  

The increased use of whole-genome sequence data with cgMLST schemas and BIGSdb is 

most likely due to decreasing costs of whole-genome sequencing each year (Quinoo et al. 

2017). However, the cgMLST employs most or all core reference genes and so some are 

likely to be included which have a history of recombination. This means existing cgMLST 

methods cannot be used to reliably place strains phylogenetically (including providing a 

clonal group and clonal complex assignment). In Chapter 3 it was reported that 256 genes 

(comprising of 250,000 bp) of core E. coli gene sequence were free of recombination 

between phylogenetic groups and could be used to construct an inferred E. coli clonal frame 

phylogeny using phylogenetic construction. At its current stage of testing based on the work 

presented in Chapter 3, it can be inferred that these 256 genes would produce 100% E. coli 

clonal group assignment if used as a standalone cgMLST and employ fewer reference genes 

than cgMLST which are typically used by researchers. This means it would provide greater 

phylogenetic accuracy and would require a lesser computational time to run due to the 

reduced number of sequences to analyse, compared to existing standard cgMLSTs. With 

further testing it can also be determined if the cgMLST could be used to assign clonal 

complexes at the sub-phylogenetic group level. I predicted that this cgMLST could be used 

to assign E. coli clonal groups reliably either as a standalone cgMLST or implemented as 
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part of BIGSdb to provide the E. coli clonal group assignment component of a BIGSdb 

sequence type. 

 The purpose of the work in this chapter was to explore evidence to support the preferential 

use of this cgMLST through addressing a hypothesis, an overall aim, and objectives. 

Evidence was explored because, as the cgMLST employs a relatively fewer number of 

recombination-free genes over alternative cgMLST schemas, it is likely to exhibit greater 

reliability of clonal group assignment compared to the 7-15 loci MLST and multiplex 

schemas. It also has the potential to be developed into an in-silico stand-alone schema or 

implemented as part of a program such as BIGSdb to be used as an efficient E. coli clonal 

group tool. 

4.1.1. Hypothesis 
 

The hypothesis of the work presented in this chapter was designed to support the 

preferential use of the proposed 256 cgMLST for E. coli clonal group assignment through 

comparing it to novelly created alternative MLST schemas comprised of the same or a 

fewer number of genes which have a history of both recombination and no recombination: 

Created novel alternative MLST schemas must be comprised of a greater number of 

randomly selected core E. coli genes with a history of both no recombination and 

recombination, than the number of recombination-free E. coli core genes used in the 

cgMLST (256), to reliably achieve 100% correct clonal group assignment of all E. coli 

strain genomes. 

4.1.2. Overall aim and objectives 

 

The overall aim was to explore evidence to support the preferential use of the proposed 256 

cgMLST for E. coli clonal group assignment through addressing the hypothesis. It was to 
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also address the following objective, designed to determine if it is possible to create an 

MLST and multiplex schema using a limited number of 7-15 recombination-free loci based 

on those in the proposed cgMLST for use in the place of the proposed cgMLST. These 

schemas would be designed for stand-alone use when time is limited. This is because, if 

hundreds or thousands cgMLST sequences (1 per E. coli strain genome) require processing, 

it could take an impractical amount of computational time with most modern computers 

(Quainoo et al. 2017): 

1. To develop a novel in-silico 7-15 gene MLST schema and in-silico 4-gene novel 

multiplex schema devised using genes identified as free from recombination in 

Chapter 3.  

4.2. Methods 
 

4.2.1. Obtaining reference gene sequences for an E. coli MLST schema  
 

An in-house program was used which identified E. coli core gene sequences genes (≥99% 

presence) in a reference strain genome using a gene presence and absence file generated 

from a Roary analysis as a guide. The reference genome was a PROKKA-annotated E. coli 

strain K-12 substr. MG166 (GenBank accession U00096) genome sequence. After 

identification of all E. coli core genes present in strain K-12 genome sequence, the program 

then randomly sorted the genes and printed out a user-specified number (N) of them. These 

printed N gene sequences were then taken to be the reference gene sequences for an MLST 

schema of size N reference gene sequences. 
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4.3. Results 
 

4.3.1. Novel alternative MLST schema analysis 
 

In order to support the use of the proposed cgMLST over alternative MLST schemas 

comprised of a similar or fewer number of genes, comprising of genes with a history or 

recombination and no recombination, it was necessary to test the accuracy of such MLST 

schemas at group assignment. For E. coli groups A-G this was clonal group assignment as 

clonal groups had already been established for the reference set of 100 E. coli strains in 

Chapter 3. Assigning E. coli cryptic clade groups C-I, C-III, C-IV, and C-V strains was 

also tested but for phylogenetic groups instead of clonal groups as no clonal group analysis 

was carried out in Chapter 3 for the cryptic clade E. coli. To do this, a set of 20 genomes 

from the 4 cryptic clade phylogenetic groups C-I to C-V were defined. They were selected 

as a representative sample from the 27 genomes identified as belonging to the 4 groups in 

Chapter 3. This was done firstly by carrying out pan genome analysis with Roary using the 

27 strain genomes and constructing a phylogeny using RAxML with the resulting 2.04 Mb 

core gene alignment (Figure 4.1). Strains which were separated from one another by long 

branches were then selected for the set of 20 strains (highlighted with a red dot in Figure 

4.1, Table 4.3). To observe the phylogenetic placement of the 20 cryptic clade strains in 

relation to those from groups A-G, a core gene phylogeny was required. This was obtained 

by conducting pan genome analysis using the 20 strains with the 100 E. coli set of strains 

representing groups A-G defined in Chapter 3. The resulting 1.86 Mb core gene alignment 

was then used to construct a phylogeny using RAxML (Figure 4.2). Cryptic clade group C-

I was shown to cluster as an out group to the remaining strains of groups A-G. A clade 

comprising groups C-III and C-IV was the next to branch off, followed by group C-V. 

There was 100% bootstrap support for the basal branches of all 11 phylogenetic groups. 
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Figure 4.1. Unrooted RAxML maximum likelihood phylogeny constructed using a core 

gene alignment (2,039,093 bp) from 27 E. coli cryptic clade strain genomes obtained from 

GenBank with an N50 greater than 100,000 bp. Major Phylogenetic groups are labelled C-

I, C-III, C-IV, C-V in the outer ring, with gaps in the ring indicating group borders. 20 

strains chosen to represent the phylogenetic diversity are labelled with a red dot. The scale 

bar at the top indicates the number of substitutions per site associated with the indicated 

branch length. 
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Table 4.3. Phylogenetic group, strain name, pathovar or environment of isolation, 

genome length, % GC content, and GenBank accession of the 20 strains chosen for the set 

of phylogenetically diverse cryptic clade strain representatives. 

 

 

Group Strain name Pathovar or environment Genome length (bp) GC content (%) GenBank Accession

C-I 100885 ETEC 5,372,525                  50.41 LRKR00000000

C-I 103199 ETEC 5,505,323                  50.46 LRMC00000000

C-I 2 011 08 S1 C1 Commensal (human) 5,331,782                  50.21 JMGQ00000000

C-I 2 156 04 S3 C2 Commensal (human) 4,981,016                  50.33 JNPK00000000

C-I 602720 ETEC 5,245,139                  50.36 LRKY00000000

C-I ED1914 ETEC/STEC 5,415,711                  50.25 JZDN00000000

C-I FE95160 ETEC/STEC 5,426,902                  50.21 LFZI00000000

C-I TW10509 ETEC 5,353,499                  50.34 GL872204

C-I STEC 7v ETEC/STEC 5,195,833                  50.41 AEXD00000000

C-III RCE03 AIEC 4,534,466                  50.59 JUDX00000000

C-III KTE114 UPEC 4,693,951                  50.55 ASTS00000000

C-III KTE31 UPEC 4,514,939                  50.65 ASTZ00000000

C-IV 1 176 05 S3 C2 Commensal (human) 4,457,844                  50.67 JHDF00000000

C-IV TW11588 Water 4,463,584                  50.57 AEMF00000000

C-V B116 Bacteraemic 4,576,704                  50.35 LRWW00000000

C-V KTE11 UPEC 4,486,744                  50.49 ANSR00000000

C-V KTE159 UPEC 4,776,266                  50.26 ASVR00000000

C-V KTE52 UPEC 4,615,592                  50.32 ASUT00000000

C-V KTE96 UPEC 4,592,997                  50.4 ASVD00000000

C-V TW09308 Water 4,809,826                  50.28 AEME00000000
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Figure 4.2 A RAxML maximum likelihood midpoint rooted phylogeny constructed using 

1,865213 bp of core genome sequence from 100 E. coli strains of phylogenetic groups A-

G defined in Chapter 3, and 20 E. coli strains of cryptic clade phylogenetic groups. 

Percentage bootstrap support values are shown on internal branches. The scale bar on the 

bottom left indicates the number of substitutions per site represented by the branch length 

shown. Major phylogenetic groups are labelled, including the sister group to group B2 

which is putatively labelled group G. 

 

To conduct novel alternative MLST schema analysis using the 100 strains from groups A-

G and 20 from the cryptic clade groups, core gene alignments were obtained from the 

previously conducted pan genome analysis using these strain’s genomes. Using these core 

gene alignments, a total of 1500 unique MLST schemas were next created for use with the 

120 strain genomes. This was firstly done by defining their reference gene sequences, 

which took the place of loci in the Achtman, Pasteur, and EcMLST schemas. MLST 

schemas were created with reference gene sequences numbering 7, 15, 25, 50, 100, 200, 

300, 400, 500, 600, 700, 800, 900, and 1000. To obtain reference gene sequences for a 

single schema, the method to obtain reference gene sequences for an E. coli MLST schema 

was carried out. For this, the output of the Roary analysis was used as input, the number of 

reference gene sequences to be included for the MLST schema, such as ‘7’, were defined 

as a parameter. The method was repeated 100 times for MLST schemas of each of the sizes, 

where each time the desired number of randomly selected genes to include in the MLST 

schema was specified to the program. The result was the creation of 1500 unique MLST 

schemas. These alternative MLST schemas were created novelly and consisted of fewer E. 

coli core gene sequences (as in the Achtman, Pasteur, and EcMLST schemas) or the same 

or more E. coli core gene sequences (as in typically used cgMLST schemas) than the 

proposed 256 gene cgMLST. MLST schema genes were also randomly selected E. coli 

core reference genes as would occur in an existing cgMLST and MLST schema, so 

reference genes have both a history of no recombination and recombination. 
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Next, orthologues for gene sequences of each MLST schemas were obtained from the 2 E. 

coli strain sets representing E. coli phylogenetic groups A-G (100 strain genomes) and the 

cryptic clade groups C-I to C-V (20 strain genomes) using BLAST to obtain a set of 

orthologue sequences. After this, a 120-strain phylogeny was constructed for each of the 

1500 MLST schemas. This was carried out by first concatenating the 120 orthologue 

sequences for a given MLST reference gene sequence to one another and aligning them 

using Muscle. Next, gene alignments were concatenated together to produce 1500 separate 

alignments, one for each MLST schema (where 120 orthologue sequences were present for 

each MLST reference gene sequence in the schema). Phylogenetic construction of each 

alignment using RAxML then occurred. 

Next, topological consistency of each MLST phylogeny to the clonal frame phylogeny 

was assessed using ETE Toolkit (Huerta-Cepas et al. 2016). Consistency to the clonal 

frame phylogeny was recorded if the phylogeny adhered to two criteria: 

i) The clade containing all strains of a given phylogenetic group must include 

zero (strict analysis; 100% consistency) or no more than 10%, 30%, and 

50% (permissive analyses; ≤ 100% consistency) strains of other 

phylogenetic groups. 

ii) Inferred ancestral nodes of phylogenetic groups must exhibit the same 

topology as in the inferred clonal frame phylogeny from Chapter 3 for 

phylogenetic groups A-G (Figure 4.3) and as in the core gene phylogeny 

from Chapter 3 for cryptic clade groups C-I to C-V (Figure 4.2).  
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Topologies of MLST schemas which fulfilled these criteria were then reviewed manually. 

 

Figure 4.3. The inferred E. coli clonal frame phylogeny as reported in Chapter 3, showing 

the phylogenetic relationships of the 7 major phylogenetic groups A-G. Percentage 

bootstrap support values are shown on internal branches. The scale bar indicates the number 

of substitutions per site represented by the branch length shown. Major phylogenetic groups 

are labelled, including the sister group to group B2 which is putatively labelled group G. 
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The analysis reported that the percentage of MLST schema phylogenies with a 

phylogenetic group topology that was 50%, 70%, 90%, and 100% consistent with that of 

the clonal frame phylogeny for E. coli strains from phylogenetic groups A-G and consistent 

with the core gene phylogeny for strains from the cryptic clade groups C-I to C-V (Figure 

4.2), increased with the number of reference gene sequences employed by the MLST 

schema (Table 4.4). This was the case up until 800 genes were employed by an MLST 

schema for both 90% and 100% consistency analyses. At this point and with the addition 

of further reference gene sequences employed by the MLST schema, 100% of phylogenies 

exhibited a topology which was 100% consistent to the intergroup topology of the clonal 

species phylogeny. 50% and 70% consistency in all MLST schema phylogenies was 

reached with the use of 200 and 600 genes respectively. No 5-gene MLST phylogenies 

exhibited 50% consistency to the clonal frame phylogeny (phylogenetic groups A-G) or 

core gene phylogeny (cryptic clade groups C-I to C-V) (Table 4.4). 
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Table 4.4. Results of the novel alternative MLST schema analysis. 

 

 

4.3.2. Creating a 7-15 locus MLST schema for clonal group assignment 
 

The objective of this chapter included creating a 7-15 locus MLST schema for use in E. 

coli clonal group assignment when the option of using a cgMLST is unavailable. To do 

this, the results of the novel alternative MLST schema analysis were inspected. Of the 1500 

unique MLST schemas reported by the novel alternative MLST schema analysis, MLST 

schemas were selected which placed 100% of 100 strain genomes from phylogenetic 

groups A-G into their correct clonal group and 100% of cryptic clade strain genomes into 

their phylogenetic group as determined in the core gene phylogeny (Figure 4.2). These 

schemas were also selected on the basis that they exhibited relatively higher phylogenetic 

diversity than schemas employing the same number of reference gene sequences. This 

phylogenetic diversity was determined manually by inspecting phylogenetic branch lengths 

Genes

in MLST
>= 50% >= 70% >= 90% 100%

5 0 0 0 0

7 3 2 1 1

15 14 5 5 5

25 35 25 21 21

50 65 59 48 46

100 91 87 81 81

200 100 99 90 90

300 100 97 93 93

400 100 99 95 95

500 100 98 96 96

600 100 100 100 100

700 100 100 99 99

800 100 100 100 100

900 100 100 100 100

1000 100 100 100 100

Percentage consistency with core genome phylogeny (N=100)
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separating pairs of phylogenetic groups in the MLST schema phylogeny. Of the MLST 

schemas which fitted these criteria, a single schema was chosen based on the low number 

of 7 reference gene sequences that it employed (Table 4.5, Figure 4.4). The selection of a 

7-gene schema was decided on the logic that analysis with an MLST schema employing 

fewer reference gene sequences would be completed in a shorter time period compared to 

using an MLST schema which employed more genes, given the same number of strain 

genomes to be used in MLST analysis. To determine if the quantity of gene sequence bases 

used in the chosen MLST schema could be reduced further, a version of the chosen MLST 

schema was created where each reference gene sequence was reduced to a locus sequence 

with a length of a maximum size of 400 bases. These locus sequences represented the most 

phylogenetically diverse gene sequence region for each gene across the 120 strain genomes. 

However, the resulting 7-locus sequence phylogeny was determined to provide inferior 

phylogenetic resolution to the complete gene phylogeny (Figure 4.3) as clonal groups B2 

and G, and D1 and D2 were indistinguishable (Figure 4.5). 

Table 4.5. Gene and locus name, sequence length, and gene product of the 7 genes in E. 

coli strain str. K-12 MG 1655 (GenBank accession U00096) which make up the proposed 

novel in-silico MLST schema. 

 

 

 

 

Gene name:

str. K-12 MG 1655

Locus name:

str. K-12 MG 1655

Sequence 

length (bp)

Gene product

ruvA b1861 612 Component of RuvABC resolvasome

tcdA b2812 807 tRNA threonylcarbamoyladenosine dehydratase

ybgS b0753 381 Putative periplasmic protein

ydjZ b1752 708 TVP38/TMEM64 family inner membrane protein

yhjK b3529 1,989 Cyclic-di-GMP phosphodiesterase

yidH b3676 348 DUF202 family inner membrane protein

ypfG b2466 1,044 DUF1176 family protein
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Figure 4.4. A maximum likelihood phylogeny of the novel proposed in-silico 7-gene 

MLST schema used with 100 E. coli from phylogenetic groups A-G and 20 from cryptic 

glade groups C-I to C-V with labelled major phylogenetic groups to the right. The 

phylogeny was constructed using a concatenated alignment of 5,889 bp from the gene 

sequences of ruvA, tcdA, ybgS, ydjZ, yhjK, yidH, and ypfG. Percentage bootstrap support 

values are shown on internal branches. The scale bar on the bottom left indicates the 

number of substitutions per site represented by the branch length shown. 
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Figure 4.5. RAxML maximum likelihood phylogeny constructed using 400 bp sequence 

sections from each of the 7 genes ruvA, tcdA, ybgS, ydjZ, yhjK, yidH, and ypfG of the 7-

gene in-silico MLST. Strains of groups D1 (dark blue) D2 (orange), G (yellow), and B2 

(red) are highlighted showing the close clustering and relative short branches connecting 

strains of groups D1 and D2, and G and B2 to the point that strains of group D1 are 

indistinguishable from those of D2 and those of G from those of B2. Percentage bootstrap 

support values are shown on internal branches. The scale bar on the bottom left indicates 

the number of substitutions per site represented by the branch length shown. 

 

4.3.3. The novel multiplex phylogenetic-group assignment schema 

 

Part of the objective was to determine if it was possible to create a novel multiplex 

phylogenetic-group assignment schema with 4 loci. To address this, the output of the gene 

presence and absence file generated in the Roary pan genome analysis was inspected using 

an in-house program. The gene presence and absence file detailed gene presence for 100 

strain genomes from E. coli phylogenetic groups A-G and 20 strain genomes from E. coli 

cryptic clade groups C-I to C-V (11 phylogenetic groups total). The program was used to 

identify genes in the file which were present in all members of each phylogenetic group 

(group core genes). The program then reported which of these genes were either present in 

at least 2 phylogenetic groups and absent in all other groups, or absent in at least 2 

phylogenetic groups and present in all other groups (as in Clermont PCR). The program 

then combined the presence and absence combinations of these genes to report 4 genes 

which could be used in combination to assign a given strain genome its correct clonal group 

based on the combined presence and absence patterns of the 4 genes. 

The analysis of genes across the pan genome of all E. coli phylogenetic groups revealed 

that a novel schema of 4 genes to correctly assign strains to each of the 11 phylogenetic 

groups was not possible. This was because no single gene was unique to 100% of strain 

genomes in group A and the following multiple phylogenetic group combinations: 

A+B1+E+D1+D2, D1+D2+G+B2, D2+G+B2, G+B2+C-I, G+B2+C-I+C+III, G+B2+C-
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I+C-III+C-IV, G+B2+C-I+CIII+C-IV+C-V, and C-I+C-III. It was determined that 100% 

strain genome presence in groups A and or at least one of these multiple phylogenetic group 

combinations would have been required for a 4-gene multiplex schema to be possible. As 

an alternative to a 4-gene multiplex schema, 10 gene markers were reported which were 

found to be effective at assigning strains to their correct clonal phylogenetic group, with 

the exception of distinguishing A and B1, when searched for in genomes in specific 

combinations (Table 4.6). 
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4.4. Discussion 
   

The purpose of the work in this chapter was to explore evidence to support the preferential 

use of the proposed 256 gene 250,000 bp cgMLST. This cgMLST provided 100% correct 

clonal group assignment to the set of 100 strain genomes representing E. coli groups A-G 

as a result of employing reference gene sequence without a history of recombination 

between phylogenetic groups, and provided 100% correct phylogenetic assignment of 

cryptic clade groups, as based on a core gene phylogeny (see Figure 4.2). This 256 gene 

cgMLST schema also employed a reduced number of reference gene sequences than that 

employed by typically used ad hoc, publicly and privately available cgMLST schemas. 

In the novel alternative MLST schema analysis, each unique MLST schema was created 

novelly and either consisted of less E. coli core gene sequences than the proposed 256 gene 

cgMLST (as in the Achtman, Pasteur, and EcMLST schemas) or the same or more E. coli 

core reference gene sequences than the proposed 256 gene cgMLST (as in typically used 

cgMLST schemas). MLST schema genes were also randomly selected E. coli core 

reference genes as would occur in existing cgMLST and MLST schemas, so reference 

genes have both a history of no recombination and recombination. The analysis showed 

that after the inclusion of any randomly selected 800 reference gene sequences in any given 

schema, strain genomes were assigned the correct clonal or cryptic clade phylogenetic 

group 100% of the time. In contrast, ≥ 50% correct clonal or cryptic clade phylogenetic 

group assignment was achieved with the inclusion of at least 200 genes. This finding 

indicated that a typically used cgMLST, either created based on a given set of strain’s core 

genes, or one used from a public or private database, would need to employ at least 800 

genes to provide correct clonal group assignment to E. coli strain genomes from 

phylogenetic groups A-G or correct phylogenetic group assignment to cryptic clade strain 
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genomes. As the random novel MLST schema analysis showed 800 genes must be used in 

a schema for reliable correct clonal group assignment, the hypothesis was addressed and 

accepted as this is greater than the 256 used in the cgMLST. It can be inferred that use of 

the proposed cgMLST either as a standalone computational cgMLST within its own 

publicly available downloadable application or use as part of in silico sequence typing 

analysis for BIGSdb would be superior to typical cgMLST methods in terms of accuracy 

in phylogenetic and clonal group assignment and computational analysis time required to 

complete analysis. At the current stage of testing, it can therefore be suggested that the 

proposed 256 gene cgMLST be used preferentially for E. coli clonal group assignment for 

strains from phylogenetic groups A-G. When a greater number of strain genome sequences 

representing the E. coli cryptic clade groups are available, further testing can be carried out 

to determine if the cgMLST reference genes are free of recombination in cryptic clade 

groups C-I to C-V, but at the current stage of testing the proposed cgMLST does adequately 

assign phylogenetic groups, as determined by construction of a core gene phylogeny (see 

Figure 4.2). The cgMLST could either be implemented as a part of BIGSdb sequence typing 

for E. coli genome sequences, or as a standalone MLST with functionality in a publicly 

available program, where a user provides an E. coli genome sequence and BLAST is 

implemented to determine the correct clonal group assignment for the genome sequence. 

Further testing can also be carried out in future to determine if the proposed cgMLST can 

reliably assign to clonal complexes (clades at the sub-phylogenetic group level). Exploring 

evidence to support the preferential use of the proposed cgMLST for E. coli clonal group 

assignment addressed the first part of the principal aim. 

The second part of the overall aim was to address an objective, designed to determine if a 

novel in-silico 7-15 gene MLST schema and in-silico 4-gene novel multiplex schema E. 

coli clonal group assignment schemas could be developed using genes identified as free 
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from recombination in Chapter 3. The first part of the objective was to develop the 7-15 

gene MLST. The novel 7 gene MLST schema presented provides 100% correct clonal 

group assignment for strain genomes from phylogenetic groups A-G and 100% correct 

assignment of phylogenetic groups for strain genomes from E. coli cryptic clade groups C-

I to C-V. At the current stage of testing, it can therefore be proposed that the 7 gene MLST 

schema can be used either as a standalone computational cgMLST within its own publicly 

available downloadable application or use as part of in silico sequence typing analysis for 

BIGSdb. It can also be inferred to be suitable as an alternative for when the proposed 256 

gene cgMLST cannot be used due to computational analysis time limitations. By creating 

a 7 gene MLST which can be used to assign E. coli phylogenetic groups, the first part of 

the objective was addressed. 

The second part of the objective was to determine it was possible to create a novel 4-loci 

multiplex schema to correctly assign clonal or phylogenetic groups to E. coli strain 

genomes. As a 4-locus novel multiplex schema could not be determined, it can be suggested 

that the 10 markers determined which can correctly assign clonal or phylogenetic groups 

to E. coli strain genomes be used with Clermont PCR, to resolve unresolved group 

assignments or as an extra checking measure using 1-3 loci out of the available 10. Given 

this, additional characterisation would be required to differentiate groups A and B1 with 

this approach. However, further work to identify intergenic regions might reveal 

appropriate sequence regions which can be used as a multiplex schema to differentiate all 

clonal and phylogenetic groups using only 4 loci. By investigating whether it was possible 

to create a 4-locus novel multiplex schema for use as an alternative to the proposed 256 

gene cgMLST, the second part of the objective was addressed. 

In summary, the random novel MLST schema analysis revealed that a significant 

proportion of the core genome (800 genes) must be obtained to reliably assign strains to 
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the correct clonal or phylogenetic group in the resulting phylogeny. Based on these factors 

it can therefore be recommended that the proposed 256 cgMLST should be used 

preferentially over typical cgMLST methods and approaches, all of which employ a greater 

number of reference gene sequences. However, if the number of strain or isolate genome 

sequences which require clonal or phylogenetic group assignment numbers hundreds or 

thousands, then it can be proposed that the determined 7-gene MLST can be used as an 

alternative approach to assigning E. coli clonal or phylogenetic groups. Like the proposed 

256 gene cgMLST, the 7-gene MLST could either be implemented as a part of BIGSdb 

sequence typing for E. coli genome sequences sequence typing, or as a standalone MLST 

with functionality in a publicly available program, where a user provides an E. coli genome 

sequence and BLAST is implemented to determine the correct clonal group assignment for 

the genome sequence. Although development of a 4-loci novel multiplex for use as an 

alternative to the 256 gene MLST was not possible, 10 gene loci were reported which could 

be used to differentiate strains of all groups apart from those belonging to groups A and 

B1. It was proposed that these could be used as an option for computationally assigning 

clonal groups to E. coli from phylogenetic groups A-G and phylogenetic groups, as 

determined in the core gene phylogeny, to cryptic clade groups C-I to C-V as an addition 

to either the cgMLST or 7-gene MLST approaches, and carried out in a similar 

computational in-silico manner as them also. 
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Chapter 5: The evolutionary dynamics of bacterial genes important 

for urinary tract infection in a murine model 
 

5.1. Introduction 
 

Extraintestinal pathogenic E. coli (ExPEC) is an E. coli pathovar which represents a broad 

range of disease phenotypes and undergoes HT to spread VAFs (Foxman 2002). 

Uropathogenic E. coli (UPEC) is a subgroup of ExPEC which has attracted research 

attention for several decades as the subgroup are the principal and most significant causes 

of bacterial-mediated urinary tract infections (UTIs) (Wiles et al. 2013, Bingen et al. 1997, 

Picard et al. 1999, Salipante et al. 2015). UTIs are a highly ubiquitous set of disorders 

caused mostly by UPEC and represent a serious public health problem (reviewed in 

Foxman 2010). UPEC are the principal cause of UTIs for up to 90% of non-hospitalized 

patients and up to 50% of hospital-acquired (nosocomial) UTIs (Srinivasan et al. 2003, 

Tartof et al. 2005). Around 150 million people are affected worldwide each year which 

costs care centres an estimated 6 billion USD (equivalent to 4.9 billion GBP) per year 

(Stamm and Norrby 2001). 

UPEC are believed to enter the body first via the faecal-oral route and are thought to 

maintain a reservoir population in the human intestine (Russo et al. 1995) where they 

faecally exit the body and can come into contact with the entrance to the urinary tract (Wiles 

et al. 2008). UPEC typically ascend the urethra and colonise the bladder and lower urinary 

tract causing cystitis, and in some cases, they subsequently ascend the ureters to colonise 

the kidneys causing pyelonephritis (Wiles et al. 2008). Bacterial recognition receptors on 

immune cells may then detect the presence of the UPEC structures including flagellum and 

peptidoglycan and lipopolysaccharide structures before initiating bacterial-induced 

signalling pathways (Mulvey et al. 2000). This detection stimulates the host immune 
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system to respond with an inflammatory response which includes recruitment of 

neutrophils and immune cells capable of carrying out phagocytosis of bacterial cells 

(Haraoka et al. 1999), cytokine production (Mulvey et al. 2000), exfoliation of epithelial 

cells which may be colonised by UPEC (Floyd et al. 2010), and production of reactive 

oxygen such as nitric oxide which contribute to bacterial cell death through mediating cell 

DNA degradation by inhibition of oxidative phosphorylation (Floyd et al. 2012, Mulvey et 

al. 2000). However, UPEC have evolved mechanisms to evade these responses in many 

cases (Foxman 2002, Floyd et al. 2010).  

UTIs can be contracted in people of any age or gender (Magliano et al. 2011, Litwin et al. 

2005), but are more common in females; an estimated 33% of women develop UTI 

infections by age 24 (Foxman 2002). UTI incidence has also been reported to range 

between 10% to 30% in elderly hospitalised people and also be a major cause of morbidity 

in infant boys (Cove Smith and Almond 2007). UTIs are clinically described as either 

uncomplicated or complicated (Hooton and Stamm 1997). Uncomplicated UTIs include 

lower UTIs (cystitis) and upper UTIs (pyelonephritis) (Ronald 2002), and typically occur 

in individuals with healthy urinary tracts where there are no blockages (Foxman 2010). 

Complicated UTIs are associated with physiological abnormalities which obstruct urine 

flow such as renal failure, presence of polyps, or valve damage (Melekos and Naber 2000), 

or the presence of a catheter which can be used as a substrate for colonisation by UPEC 

(Warren 2001).  

The virulence of UPEC is determined by the presence, number, and type of specific VAFs 

(Dobrindt 2005), which provide heightened fitness in a host environment and allows them 

to outcompete other bacteria, and colonise key extraintestinal anatomical regions (Wiles et 

al. 2008). Well studied UPEC VAFs include adhesins (Slavchev et al. 2009), toxins (Russo 

et al. 1995), immune evasion factors (Davis et al. 2006), iron acquisition factors (Crosa 
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1989), flagella (Haiko and Westerlund Wikström 2013), and surface polysaccharide 

capsules (Kusecek et al. 1984). 

UPEC can use adhesin proteins to adhere to host anatomical structures such as the intestine 

epithelium when colonising the intestines (Mulvey et al. 2002), or capillary endothelium, 

urethra or ureter epithelium as a primary step in UTI pathogenesis (Klemm and Schembri 

2000). This prevents their removal by the natural blood or urine flow of the host (Klemm 

and Schembri 2000). UPEC adhesion to a range of host tissues is mediated by fimbrial and 

afimbrial adhesins which exhibit overlapping roles in pathogenesis (Slavchev et al. 2009). 

P and type 1 fimbriae are the principal identified fimbriae adhesin types associated with 

UPEC (Slavchev et al. 2009), but other adhesins also exist including F1C and S adhesins 

and afrimbrial types (Lane and Mobley 2007) such as the Dr antigen-binding adhesins Afa 

and DraBC (Servin 2005). Another important adhesin is Antigen 43, which was found to 

significantly promote aggregation and biofilm growth and is associated with long-term 

persistence of UPEC in a murine model (Schembru et al. 2001). The adhesive property of 

UPEC means colonisation is initiated by adhesion to host cells (Katouli 2010), followed by 

development of local inflammation via induction of immune cell responses which the 

colonising UPEC next encounter (Johnson 1991). 

The most studied UPEC toxins are α-haemolysin (HlyA) (Velasco et al. 2018), the 

cytotoxic necrotising factor 1 (CNF1) (Reppin et al. 2017) and the secreted autotransporter 

toxin (SAT) (Toloza et al. 2015). HlyA self-assembles transmembrane pores in host cells 

which directly results in the lysis or apoptosis of the affected cells as consequence of pore 

leakage. This leads to iron release which is crucial for the growth and proliferation of the 

bacterial cell that expressed the HlyA (Velasco et al. 2018). HlyA has also been implicated 

in host immune evasion (Dhakal and Mulvey 2012) and shown to stimulate the clearance 

of bladder urothelial cell surfaces and mediate rapid colonisation of the bacterial cell with 
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expressed the HlyA in the recently cleared area (Smith et al. 2008, Floyd et al. 2010). CNF1 

is a toxin used in renal cell invasion and expressed by up to 30% of pyelonephritis-causing 

UPEC strains (Bien et al. 2012). It has previously been found to stimulate the formation of 

actin stress fibres and membrane ruffles in renal cells thereby facilitating intracellular host 

cell access (Bien et al. 2012). It also prevents host immune activity by initiating apoptosis 

of bladder epithelial cells (Mills et al. 2000) and contributing to the down-regulation of 

phagocytosis the through targeting of the Rho family GTPase Rac2 which is critical for 

phagocytosis regulation in immune cells (Davis et al. 2005). The SAT toxin is an important 

toxin for pyelonephritis-causing UPEC (Guyer et al. 2002) and has previously been found 

to alter host cell signalling cascades (Dhakal et al. 2008), alter the host inflammatory 

response (Dhakal et al. 2008), and cause toxicity to renal and bladder cells (Bien et al. 

2012). 

In mammalian hosts, extracellular iron is low as it is sequestered in cells or attached to 

proteins such as lactoferrin (Masson et al. 1969, Litwin et al. 1993) and transferrin on 

mucosal surfaces (Anderson and Vulpe 2009), and haemoglobin in erythrocytes (Porcheron 

et al. 2013). Iron is crucial for UPEC growth and proliferation and employing iron 

acquisition factors such as siderophores to obtain iron from the environment are an 

important part of pathogenesis (Litwin and Calderwood 1993). Siderophores compete with 

host immune defences to uptake iron released from environmental lactoferrins and 

transferrins (Litwin and Calderwood 1993). In a study of 221 UPEC isolate genomes, 

Salipante et al. (2013) found 18 iron metabolism-associated ExPEC VAFs present in 80-

100% of UPEC strains. Siderophores that UPEC use include the salmochelin, 

yersiniabactin, aerobactin, and enterobactin systems (Johnson et al. 2007). The first of 

which has been found to be important for UPEC pathogenesis for strain UTI89 

communities growing in bladder epithelial cells in mice (Reigstad et al. 2007). 
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Yersiniabactin was found to be important for cystitis and pyelonephritis infection, as 

preventing yersiniabactin uptake was found to reduce infection development (Braumbaugh 

et al. 2015). Lastly, the aerobactin and enterobactin siderophore systems have previously 

been found to significantly contribute to of UPEC strain 83972 in an iron-deficient medium 

(Watts et al. 2012). 

Flagella are macromolecular filamentous organelles used for bacterial motility through 

fluids or across surfaces (Terashima et al. 2008) and are thought to be used for moving into 

and up the urinary tract in UTIs (Floyd et al. 2010). They also play a role in biofilm 

formation (Pratt and kolter 1998), adhesion to host cells (Girón et al. 2002), and protein 

export (Young et al. 1999, Haiko and Westerlund Wikström 2013). They are comprised of 

three subunits: a basal support, hook, and filament (Terashima et al. 2008, Wright et al. 

2015, Pratt and Kotler 1998, Bien et al. 2012). After entry to the urinary tract, flagella also 

allow bacteria to ascend from the lower urinary tract to the kidney renal duct cells (Bens et 

al. 2014) and previous studies indicated that at least 70% and up to 90% of UTIs are caused 

by UPEC expressing flagella when in contact with epithelial cell surface of the urinary tract 

(Bien et al. 2012).  

On the cell surface, UPEC express polysaccharide structures including lipopolysaccharides 

(LPS) (Schilling et al. 2001), and polysaccharide capsules (Anderson et al. 2010) that are 

linked to pathogenesis (Bien et al. 2012). LPS stimulates the proinflammatory response in 

UTIs (Säve et al. 2010). However, their role in inducing ascending UTIs is unclear (Bien 

et al. 2012). Mutations in LPS gene dsbA reduced UPEC attachment to form biofilms, 

suggesting a role for LPS in biofilm formation (Genevaux et al. 1999), an important part of 

host-defence resistance for UPEC (Pratt and Kolter 1998). Polysaccharide capsules have 

been implicated in preventing phagocytosis through impairment of antibody protein 

binding (Howard and Glynn 1971) and protecting cells from bactericides present in human 
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blood (Raksha et al. 2003). In a previous study, 7 genes encoding polysaccharide capsules 

were also found to be prevalent in 50%-80% of 221 UPEC strains analysed by Salipante et 

al. (2013). 

Uropathogenic E. coli (UPEC) have received research attention for several decades 

(Yamamoto 2007, Gomez-Cruz et al. 2018). Despite this there remains a lack of 

understanding regarding UPEC infection of the upper urinary tract, specifically the 

mechanism by which UPEC impair contraction prior to colonisation (Floyd et al. 2012). 

Mammalian ureters naturally contract via peristalsis to transport urine from the kidneys to 

the bladder and prevent infection but UPEC-mediated impairment of contraction has been 

observed (Grana et al. 1968, Teague and Boyarsky 1968). This UPEC-mediated 

impairment causes ureter contraction to weaken and become less regular (Grana et al. 1968, 

Teague and Boyarsky 1968). The consequence of the ureters reduced movement means the 

UPEC can then more easily attach to and colonise the ureter cell surface (Grana et al. 1968, 

Teague and Boyarsky 1968). After ureter colonisation, UPEC are typically then able to 

ascend the ureter and colonise the kidneys, resulting in a longer term and more severe UTI 

and potentially the development of pyelonephritis (Grana et al. 1968, Teague and Boyarsky 

1968). Colonising the ureter is a crucial part of UPEC pathogenesis and an increased 

understanding of it has the potential to contribute to the development of novel UTI 

therapeutics. 

Dr Rachel Floyd and Professor Craig Winstanley of the Institute of Infection and Global 

Health at the University of Liverpool have previously investigated the UPEC-associated 

impairment of ureter contraction by developing a model which experimentally measures 

UPEC-mediated decreases in rat ureter contractility and has been shown to be comparable 

in response to human ureters (Floyd et al. 2010). Ureter contraction occurs through 

excitation from propagated action potentials across the epithelial cells which causes 
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calcium ion (Ca2+) transit into ureteric cells. The model involves isolating and mounting 

rat ureters to steel hooks in a physiological saline solution (pH 7.4 with composition (in 

mM) including 154 NaCl, 5.6 KCl, 1.2 MgSO4, 2 CaCl2, 8 glucose, and 10.9 HEPES) 

which provide 5-7V electrical pulses. Ureter contractions are measured as they naturally 

respond to electrical pulses with and without inoculation of specific UPEC strains. 

Previously the model has revealed time-dependent contractility impairment over 5 hours 

with the UPEC strains J96 and 536 by 89% and 87% respectively (Floyd et al. 2010) and 

by 96.75, 87.93, 78.03, 75.98, 42.18, 9.47 % for UPEC strains UTI89, CFT073, EC958, 

M160, M9, and M12, respectively (Floyd et al. 2012), relative to the sterile control level 

inhibition of 6.00% and 8.77% in each respective study. The latter study produced evidence 

implicating the hlyCABD operon and the gene fimH in UPEC-mediated contractility 

impairment, but it was recognised that a study employing a greater number of strains was 

needed to fully understand the genetic basis behind ureter contractility impairment 

phenotypes (Floyd et al. 2012). To address this need, 20 UPEC strains of were collated, 16 

of which were isolated from the Royal Liverpool University Hospital (Table 5.1).  
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Table 5.1. Uropathogenic strain genomes used in this chapter 

 

The 20 strains were subjected to the rat ureter contractility experimental model over 9 hours 

and the 16 hospital strains were whole genome sequenced, then all genome sequences were 

provided to me for analysis. ‘TG2’: a laboratory and non-pathogenic strain of E. coli called 

K-12 TG2 was used as a first control and a sterile version of the experiment model denoted 

‘Krebs’ was used as a second control. The phenotype analysis provided by Dr Floyd and 

Professor Winstanley illustrated decreases in ureter contractility associated with the 21 

strains and the sterile control over 9 hours (data for strains associated with contractility 

decreases of 0%-30% and 30%-100% at hour 9 are shown in Figures 5.1a and Figure 5.1b 

respectively). 

Source or GenBank 

accession if present

Strain name Year of isolation 

15U 2010

20U 2010

28U 2010

9U 2010

B10 2008

B21 2008

B23 2008

B34 2008

M12 2007

M157 2009

M159 2009

M172 2009

M195 2009

M22 2007

M3 2007

M9 2007

CP000247.1 536 1983

AE014075.1 CFT073 2002

ALIN00000000 J96 1981

CP000243.1 UTI89 2001

Royal University 

Liverpool Hospital, UK



145 

 

 

Figure 5.1a. Results of 20 closely related UPEC strains subjected to the rat ureter 

contractility model. Experiments are shown where over 9 hours the percentage ureter 

contraction associated with strains ranged from 100%-70% (also interpreted as a decrease 

in ureter contractility of 0%-30% associated with each strain). For strains where replicates 

were conducted a boxplot showing the mean and standard deviation of values at each hour 

is shown instead of a single line. Positive control runs of the model are labelled ‘Krebs’: a 

sterile physiological saline solution (pH 7.4 with composition (in mM) including 154 NaCl, 

5.6 KCl, 1.2 MgSO4, 2 CaCl2, 8 glucose, and 10.9 HEPES), and ‘TG2’: a laboratory and 

non-pathogenic strain of E. coli called K-12 TG2. Data produced and provided by Dr 

Rachel Floyd and Professor Craig Winstanley.
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Figure 5.1b. Results of 20 closely related UPEC strains subjected to the rat ureter contractility model. Experiments are shown where over 9 hours 

the percentage ureter contraction associated with strains ranged from 100%-0% (also interpreted as a decrease in ureter contractility of 0%-100% 

associated with each strain). Only strains associated with ureter contractility of ≥70% (contractility decreases of 30%-100%) at hour 9 are shown, 

the remaining strains are shown in Figure 5.1a. For strains where replicates were conducted a boxplot showing the mean and standard deviation 

of values at each hour is shown instead of a single line. Positive control runs of the model are labelled ‘Krebs’: a sterile physiological saline 

solution (pH 7.4 with composition (in mM) including 154 NaCl, 5.6 KCl, 1.2 MgSO4, 2 CaCl2, 8 glucose, and 10.9 HEPES), and ‘TG2’: a 

laboratory and non-pathogenic strain of E. coli called K-12 TG2. Data produced and provided by Dr Rachel Floyd and Professor Craig Winstanley.
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The purpose of the work in this chapter was to use the phenotype and genome sequence data 

for the 20 UPEC strains to provide insights into the genetic and evolutionary basis of E. coli 

ureter contractility inhibition phenotypes.  

5.1.1. Hypothesis 

 

The hypothesis of this chapter was designed to determine the genetic differences between 

UPEC strains which are associated with the observed phenotypic patterns of ureter contractility 

inhibition: 

Genetic differences between UPEC strains are significantly associated with the observed 

phenotypic patterns of ureter contractility inhibition: 

 

5.1.2. Overall aim and objectives 

 

The overall aim was to determine genetic differences which are significantly associated with 

observed differences in ureter contractility inhibition phenotypes across the 20 UPEC strains. 

The aim addresses two objectives, designed to produce specific information about the evolution 

of these ureter contractility inhibition phenotypes: 

4. To determine if HT has contributed to the phenotypic differences observed across 

strains. 

5. To use phenotype-associated gene information to infer the mechanism of action 

underlying each observed phenotype pattern. 
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5.2. Methods 
 

5.2.1. Preparing strain cultures for use in the phenotype experiment 
 

To obtain standardised isolate cultures for the 16 UPEC isolates obtained from the Royal 

University Hospital Liverpool, Dr Rachel Floyd and Professor Craig streaked strain isolates 

onto agar plates, which were then incubated overnight at 37°C to ensure optimal colony growth. 

Following static serial passage, strain cultures were pelleted at 5,000 xg for 5 minutes at 4°C. 

The pellet was resuspended in sterile physiological saline (pH 7.4 with composition (in mM) 

including 154 NaCl, 5.6 KCl, 1.2 MgSO4, 2 CaCl2, 8 glucose, and 10.9 HEPES) and was 

diluted until the OD600 for each strain corresponded to 1–2 × 107 colony-forming units (CFU) 

per 50 µL. The resulting solution for each strain was then used in the phenotype experiment  

5.2.2. Defining phenotypic groups  
 

Phenotypic groups reflecting the observed patterns of decreases in ureter contractility were 

defined based on two criteria. Firstly, the number of hours following infection, for which two 

time points were considered, 5h and 9h post-infection, to distinguish “early” and “late” effects. 

Secondly the percentage decrease in the amplitude of ureter contraction grouped into the 

phenotypes: “weak” (a decrease in contractility of 8% - 100% (control level was 7%)), “mild” 

(a decrease in contractility of 20% - 100%), “moderate” (a decrease in contractility of 40% - 

100%), “strong” (a decrease in contractility of 60% - 100%) and “severe” (a decrease in 

contractility of 80% - 100%). The strains exhibiting stronger phenotypes were included in the 

weaker groups to account for the possibility of genes with cumulative effects on contractility. 

 

 



149 

 

5.2.3. Identifying genes significantly associated with phenotype groups 

 

Genes significantly associated with strains of the phenotype groups were identified in gene 

enrichment analysis using Scoary (Brynildsrud et al. 2016), which took the output of Roary 

and conducted a Fisher’s exact test (Fisher 1922, Agresti 1992) for each gene to determine 

whether its presence was significantly associated with one or more of the defined phenotypic 

traits. 

5.3. Results 
 

5.3.1. Selection of 20 UPEC strains and obtaining cultures and genome sequences 
 

The 16 UPEC strains from the Royal University Liverpool Hospital were chosen for study 

because they have been isolated from patient urinary tract infections of varying severity (Table 

5.1). Based on this the 20 strains were collectively thought by Dr Rachel Floyd and Professor 

Craig Winstanley to have an accurate representation of the range of UTI virulence-associated 

E. coli genes observable which cause ureter contractility inhibition phenotypes. The four 

additional strains 536, CFT073, J96, and UTI89 were also chosen for inclusion in the study 

due to their previously reported association with severe UPEC infections (Knapp et al. 1986, 

Kao et al. 1997, Blum et al. 1995, Mulvey et al. 2001). Strain isolates and genome sequences 

were previously available for strains UTI89, CFT073, 536, and J96, but the remaining 16 

strains were sampled from the Royal Liverpool University Hospital and whole genome 

sequenced at the University of Liverpool (Table 5.1).  

5.3.2. Pan genome analysis and creation of core gene phylogeny 
 

To identify shared genes across the 20-strain set the assembled genome sequences were 

standardly annotated with Prokka and the pan genome determined by Roary with a 95% amino 

acid identity value. To determine the phylogenetic relationships of the 20 strain genomes in 
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relation to the set of 100 E. coli genomes representing phylogenetic groups A-G (Chapter 3), 

the set of 100 were also included in the pan genome analysis. The core gene alignment 

generated by Roary was then used to construct a phylogeny using RAxML (Figure 5.2). The 

core gene phylogeny showed that the 20 strains clustered within phylogenetic group B2, 18 of 

which clustered into two clusters each containing 9 strains (Figure 5.2). Strains 536 and J96 

each clustered adjacently to one of the clusters. To determine the relatedness of the 20 strains 

one another based on gene content, a dendrogram depicting strains clustered by the size of 

shared gene contents was also constructed using the post-analysis tools provided by Roary 

(Figure 5.3). The most notable difference between the core gene phylogeny and the dendrogram 

clustering strains by shared accessory gene content was the altered position of strain J96 

between the two as it clusters more closely with 9 strains in the latter which it does not cluster 

with in the former (Figure 5.3). 
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Figure 5.2. RAxML maximum likelihood midpoint rooted phylogeny constructed using a 1.8 

Mb core genome alignment. The tree shows the phylogenetic placement of strains of the 20 

UPEC strains across phylogenetic group B2 clustered with the E. coli strains representative of 

phylogenetic groups A-G (Chapter 3). Different colours highlight the topological position of 

the 20 UPEC strains spread over four distinct lineages of the group. The blue cluster also 

includes the UPEC strain NMECO18 which is not in the set of 20 UPEC strains. Percentage 

bootstrap support values are shown on internal branches. The scale bar on the bottom left 

indicates the number of substitutions per site represented by the branch length shown. 
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Figure 5.3. Midpoint rooted phylogenies constructed using (a) a 3.62 Mb core gene alignment 

(RAxML maximum likelihood phylogeny) (and (b) shared accessory gene content for the 20 

strain UPEC set. Percentage bootstrap support values are shown on internal branches. The scale 

bar indicates the number of substitutions per site (a) and the distance in terms of number of 

shared genes (b), represented by the branch length shown. 
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5.3.3. Assigning phenotype groups to each of the 20 UPEC strains 
 

In order to the identify genes responsible for the range of observed phenotypes, strains were 

grouped based on the ureter contractility inhibition phenotypes they were associated with. This 

enabled genes which were significantly enriched within the groups of strain genomes to be 

identified. Such genes were then inferred to be involved in the presentation of the group’s 

exhibited phenotype. It was decided that strain groups should be defined based on their mean 

percentage ureter contractility inhibition phenotypes between ranges observed at 5-hour and 9-

hour time points to account for “early” and “late” effects. The grouping system was designed 

so phenotype groups overlapped, and strains were assignable to multiple phenotype groups so 

that genes significantly associated with multiple phenotype groups could be identified. As both 

the sterile positive control ‘Krebs’ and laboratory strain E. coli K-12 TG2 were associated with 

a mean ureter contractility decrease of up to 7% after 9 hours, control level was determined to 

be 7%. Due to this, the lowest percentage ureter contractility decrease assigned to a phenotype 

was 8% (the case for the phenotypes; 1A and 2A) (Table 5.2).  

Table 5.2. Details of the ureter contractility decrease phenotype groups to which the 20 UPEC 

strains were assignable to based on their exhibited phenotypes.  

Group 1: mean percentage contractility after 5 hours into ureter phenotype experiment 

 

 

 

Phenotype 

Group

Phenotype: ureter 

contractility decrease 

Strains in group - exhibit phenotype Strains not in group - do not exhibit phenotype

1A 8% - 100%               

(control level 7%) 

15U, 20U, 536, B10, B21, CFT073, J96, M3, M9, 

M22, M157, M159, M172,  M195, UTI89   

9U, 28U, B23, B34, K-12 TG2, M12

1B 20% - 100% 536, CFT073, B21, J96, M157, M159, M172, 

M195, UTI89

9U, 15U, 20U, 28U, B10, B23, B34, K-12 TG2, M3, M9, 

M12, M22

1C 60% - 100% 536, J96, M157, M159, M195 9U, 15U, 20U, 28U, B10, B21, B23, B34, CFT073, K-12 

TG2, M3, M9, M12, M22, M172, UTI89

1D 80% - 100% 536, J96, M159 9U, 15U, 20U, 28U, B10, B21, B23, B34, CFT073, K-12 

TG2, M3, M9, M12, M22, M157, M159, M172, UTI89
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Group 2: mean percentage contractility after 9 hours into ureter phenotype experiment 

 

 

 

 

5.3.4. Identifying and reporting information about phenotype-associated genes 
 

To determine the presence of genes significantly associated with specific phenotype groups, 

gene enrichment analysis was performed using the output provided by Roary pan genome 

analysis. The result of this was a list of genes significantly associated with strains in each of 

the defined phenotype groups. Genes significantly associated with a specific phenotype were 

identified for phenotypes 1A (8%-100% contractility decrease after 5 hrs (control level 7%)), 

1B (20%-100% contractility decrease after 5 hrs), 1C (60% - 100% contractility decrease after 

5 hrs), 1D (80% - 100% contractility decrease after 5 hrs), 2A (8%-100% contractility decrease 

after 9 hrs (control level 7%)), 2B (20%-100% contractility decrease after 9 hrs), 2C (40%-

100% contractility decrease after 9 hrs), 2D (60%-100% contractility decrease after 9 hrs), 2E 

(80%-100% contractility decrease after 9 hrs). Genes identified as significantly associated with 

strains from a certain phenotype group by Scoary were separated into those clustered (within 

10kb) on the reference strain chromosome, and those which were not. To identify the functional 

roles for proteins encoded by each of the identified genes it was necessary to obtain functional 

annotations from multiple sources which were additional to those already provided using 

Prokka. To carry this out, reference protein sequences for genes previously identified as 

important for ExPEC and UPEC virulence with functional annotations were collated for use in 

Phenotype 

Group

Phenotype: ureter 

contractility decrease 

Strains in group - exhibit phenotype Strains not in group - do not exhibit phenotype

2A 8% - 100%               

(control level 7%) 

9U, 15U, 20U, 536, B10, B21, B23, B34, CFT072, J96, M3, 

M9, M12, M22, M157, M159, M172, M195, UTI89

28U, K-12 TG2

2B 20% - 100% 9U, 15U, 20U, 536, B10, B21, B34, CFT073, J96, M3, M9, 

M157, M159, M172, M195, UTI89

28U, B23, K-12 TG2, M12, M22

2C 40% - 100% 9U, 536, B10, B21, B34, CFT073, J96, M3, M9, M157, 

M159, M172, M195, UTI89,  

15U, 20U, 28U, B23, K-12 TG2, M12, M22

2D 60% - 100% 9U, 536, B34, CFT073, J96,  B10, B21, M3, M157, M159, 

M172, M195, UTI89 

15U, 20U, 28U, B23, K-12 TG2, M9, M12, M22

2E 80% - 100% 536, B10, B21, CFT073, J96, M3, M157, M159, M172, 

M195, UTI89

9U, 15U, 20U, 28U, B23, B34, K-12 TG2, M9, 

M12, M22
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a BLAST analysis to determine if any were orthologues or homologues of the proteins encoded 

by the identified genes. The reference protein sequences of 116 genes encoding known ExPEC 

VAFs and 2,238 putative UPEC virulence fitness genes (PFGs) present in seven different 

published data sets (Phan et al. 2013, Wiles et al. 2013, and Subashchandrabose et al. 2013, 

Salipante et al. 2014) were collated in total. Protein sequences from these sets were selected 

for this study as collectively they could provide unparalleled insight into the genetic basis to 

the phenotypes exhibited by UPEC. The known ExPEC VAF sequences were provided by 

Salipante et al. (2013). The PFGs were taken from studies using Transposon sequencing 

(TnSeq) or Transposon Directed Insertion Sequencing (TraDIS) (Landridge et al. 2009, van 

Opijnen 2009) to identify genes putatively associated with infection in UPEC models of 

infection. These include genes identified by Phan et al. (2013), Wiles et al. (2013), and 

Subashchandrabose et al. (2013). Phan et al. (2013) used TraDIS to identify 56 fitness genes 

associated with UPEC strain EC958 survival in human blood serum survival, and 

Subashchandrabose et al. (2013) used TraDIS to identify 334 fitness genes associated UPEC 

strain CFT073 survival in a murine model of bacteraemia. Similarly, Wiles et al. (2013) used 

TnSeq to identify 1,940 associated with UPEC strain F11 survival in zebrafish, of which 970 

were associated with survival in the zebrafish embryo, 772 survival in blood, 122 survival in 

the pericardial cavity (PC), and 76 survival within multiple niches.  

Reference protein sequences for the 116 ExPEC VAF-encoding genes were obtained from 

Supplementary dataset 9 published by Salipante et al. (2013). Reference protein sequences for 

PFGs listed in Table 2 of Phan et al. (2013) were extracted from the E. coli strain EC958 

genome (GenBank accession HG941718), and the encoded protein sequence determined. 

Similarly, PFGs listed in Supplementary Table 2 of Subashchandrabose et al. (2013) were 

extracted from the E. coli strain CFT073 genome (AE014075), and PFGs listed in 

Supplementary Table 2 of Wiles et al. (2013) were extracted from the genome of E. coli strain 
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F11 (GenBank accession: AAJU00000000). All protein sequences across the 7 data sets were 

then concatenated together into a single file to simulate protein coding sequences of a genome 

sequence. Annotations for protein sequences in the file were then obtained using Prokka and 

non-Prokka methods (use of Sanger manually-annotated E. coli genomes and the KEGG 

database). 

 

Genes associated with phenotypes observed after 5 hours 

 

The gene enrichment analysis revealed 33 genes to be significantly associated phenotype 

groups observed after 5 hours into the phenotype experiment. For group 1A - strains exhibiting 

8%-100% contractility decrease after 5 hrs (control level 7%), 13 genes were found to be 

significantly associated with strains in this group (Table 5.3). The gene of locus ID ECP_2028 

in str. 536 (inferred hypothetical protein) was present in 9 of 15 strains (and present in 6 non-

1A strains and absent in 9 non-1A strains, p=0.0186, Fisher’s exact test (Fisher 1922, Agresti 

1992)). Two gene clusters were inferred to be associated with the phenotype group 1A, one 

consisting of 9 genes denoted cluster 1A1 in Table 5.3, and one of 2 genes denoted cluster 1A2. 

The 9 genes comprising the cluster denoted 1A1 are present together on the chromosome in 8 

of 15 phenotype group 1A strains (20U, 536, CFT073, J96, M157, M172, M9, UTI89) and 

absent in all other strains (p = 0.0456, Fisher’s exact test). The 9 genes form a 12,318 bp gene 

cluster which has a conserved structure (Figure 5.4). These genes (locus IDs c3564-c3574 in 

str. CFT073) were found to be the hlyCABD operon, which have previously been associated 

with ExPEC virulence (Velasco et al. 2018). A gene also associated with phenotype group 1A 

strains (locus ID c3564 in str. CFT073, inferred two-component sensor protein KdpD) was also 

found to be a homologue of a putative fitness gene (PFG) (locus ID EcF11_0725 in str. F11) 

reported as associated with infection of multiple bodily niches of zebrafish by Wiles et al. 

(2013). 3 other genes were present in 11 of 15 phenotype group 1A strains and in 1 non-1A 
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strain, two of which were denoted as cluster 1A2 in Table 5.3 and included a gene (locus ID 

ECP_4581 in str. 536) encoding haemolysin transport protein ShlB.  

Table 5.3. Genes significantly associated with strains from phenotype group 1A: mean ureter 

contractility decrease after 5 hrs of 8%-100%. 

 

 

 

 

Figure 5.4. A 9 gene cluster identified as significantly associated with strains exhibiting 

phenotype 1A: ureter contractility decrease of 8% - 100% (control level 7%) exhibited after 5 

hours as it occurs in strain CFT073 (shown as gene cluster 1A1 in Table 5.3). Gene locus IDs 

as in strain 536 (bottom). Gene names or descriptions of protein functions where a gene name 

is unavailable were provided based on protein sequence identity to known proteins (top). 

 

Phylogenies for an example gene (locus ID ECP_4581 in str. 536) encoding haemolysin 

transporter protein ShlB (Figure 5.5) and the 9 gene cluster denoted 1A1 (Figure 5.6) 

respectively each displayed topologies which were inconsistent with that for the same strains 

in their core genome phylogeny. For gene ECP_4581 (inferred shlB), strain 536 and UTI89 

and strains 536 and J96 clustered closer to one another than in the core genome phylogeny. 

Reference

strain

Gene locus in 

reference strain

Grouped 

gene 

cluster

Group 

strains

present in

Group 

strains

absent in

Non-

group 

strains

present in

Non-

group 

strains

absent in

Naïve p 

value

Inferred annotation based on identity to 

genes of known function 

Gene and protein name 

based on identity to 

genes of known 

function 536 ECP_2028 - 9 6 0 6 0.0186 Hypothetical protein -

c3564 8 7 0 6 0.0456 Two-component sensor protein kdpD , KdpD

c3565

8 7 0 6 0.0456

Putative two-component response regulator,

alkaline phosphatase synthesis transcriptional 

regulatory protein

phoP , PhoP

c3566 8 7 0 6 0.0456 Prokaryote cytochrome b561 -

c3567 8 7 0 6 0.0456 Oxidoreductase -

c3568 8 7 0 6 0.0456 Hypothetical protein -

c3569
8 7 0 6 0.0456

Hemolysin C, Hemolysin-activating lysine-

acyltransferase HlyC

hlyC , HlyC

c3570 8 7 0 6 0.0456 Hemolysin A hlyA , HlyA

c3573
8 7 0 6 0.0456

Hemolysin B, Alpha-hemolysin translocation 

ATP-binding protein HlyB

hlyB , HlyB

c3574 8 7 0 6 0.0456 Hemolysin D, Hemolysin secretion protein D hlyD , HlyD

ECP_4584 11 4 1 5 0.0464 Putative DNA-binding protein -

ECP_4581 11 4 1 5 0.0464 Hemolysin transporter protein shlB , ShlB

ECP_1138 - 11 4 1 5 0.0464 RNA polymerase-binding transcription factor dksA , DksA

CFT073

536

1A1

1A2
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The remaining strains were clustered together in a manner consistent for both phylogenies. For 

the 9 gene cluster strains M172, M159, M9, and 20U clustered together in the cluster phylogeny 

as in the core genome phylogeny. However, strain CFT073 clustered more closely to strain J96 

than the former strains. Strains TOP382 2, SCB-11, B2 12-1-TI12, and ECOR 48 were all also 

closely clustered with strain UTI89 and with one another in the cluster phylogeny compared to 

the core genome phylogeny, the latter of which, strain ECOR 48 was the outgroup strain. 

Figure 5.5. Maximum likelihood phylogeny constructed using an alignment of 1,773 bp of 

gene ECP_04581 (lous ID str. 536) encoding haemolysin transport protein ShlB from 12 UPEC 

strains (left). For topological comparison the core genome phylogeny of all 20 UPEC strains 

shown first in Figure 5.2a is shown (right). Strains common to the gene phylogeny are 

highlighted in blue in the core gene phylogeny. Percentage bootstrap support values are shown 

on internal branches. The scale bar indicates the number of substitutions per site represented 

by the branch length shown. 
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Figure 5.6. Maximum likelihood phylogenies constructed using (a) 12,318 bp of the 9 gene 

cluster 1A1 found in 8 of the 21 analysed strains and significantly associated with phenotype 

1A and (b) a core gene phylogeny constructed using a 3.3 Mb core genome alignment from the 

same strains. Other than the 8 strains, this cluster is found in 3 group B2 strains (B2 12-1-TI12 

(AIEC), SCB-11 (NMEC), and TOP382 2 (commensal human) and 1 group D1 strain: ECOR 

48 (commensal human) (highlighted blue in both phylogenies). Percentage bootstrap support 

values are shown on internal branches. The scale bar indicates the number of substitutions per 

site represented by the branch length shown. 

 

Phenotype group 1B was assigned to strains exhibiting 20%-100% contractility decrease after 

5 hours (Table 5.4) and three genes were significantly associated with the phenotype. Each of 

these genes were present in a different set of strains. Two were annotated as hypothetical 

proteins, one of which was found to be a homologue of a PFG (locus ID EcF11_3640 in str. 

F11) identified by Wiles et al. (2013) as significantly associated with increased survival in a 

pericardial model of zebrafish infection. The single annotated gene (locus ID ECP_0316 in str. 

536, present in 536, J96, M157, M172, and UTI89) encoded a low-affinity zinc transport 

protein which was present with a gene encoding a hypothetical protein in 5 of 9 phenotype 

group 1B strains and absent in 4 group 1B strains. This gene was also absent in 1B strains, and 
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absent in 12 non-1B group strains (p=0.0062, Fisher’s exact test). In a phylogeny constructed 

using orthologues of this gene a topology is displayed which is inconsistent with the core 

genome phylogeny (Figure 5.7). Strain 536 clustered closer to strain M172 relative to M157, 

and both 536 and J96 are clustered significantly closer to the other strains in the gene phylogeny 

compared to in the core genome phylogeny. 

Table 5.4. Genes significantly associated with phenotype 1B: mean ureter contractility 

decrease of 20% - 100% exhibited after 5 hours.  

 

 

 

 

 

 

Reference

strain

Gene locus in 

reference strain

Grouped 

gene 

cluster

Group 

strains

present in

Group 

strains

absent in

Non-

group 

strains

present in

Non-

group 

strains

absent in

Naïve p 

value

Inferred annotation based on identity to 

genes of known function 

Gene and protein name 

based on identity to 

genes of known 

function ECP_3019 - 5 4 0 12 0.0062 Conserved hypothetical protein -

ECP_0316 - 5 4 0 12 0.0062 Low-affinity zinc transport protein  -

ECP_2043 - 6 3 1 11 0.0158 DUF932 domain protein; unknown function -

536
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Figure 5.7. Maximum likelihood phylogeny constructed using 300 bp of gene ECP_0316 

(locus ID str. 536) which encodes a low-affinity zinc transport protein. For topological 

comparison the core genome phylogeny of all 20 UPEC strains is also shown. Strains common 

to the gene phylogeny are highlighted in blue in the core gene phylogeny. Percentage bootstrap 

support values are shown on internal branches. The scale bar indicates the number of 

substitutions per site represented by the branch length shown. 
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Phenotype group 1C was assigned to strains exhibiting a 60%-100% contractility decrease after 

5 hours (Table 5.5) and 4 genes were significantly associated with the phenotype. These 

included 2 genes clustered together (cluster 1C1 in Table 5.5) which encode the 16S 

methyltransferase protein KsgA and a hydrolase enzyme (locus ID M157_00002 and 

M157_00003). This cluster was present only in strains M157, M159, and M195 out of the 20 

UPEC strains analysed and the E. coli K012 TG2 control strain. Another gene associated with 

phenotype 1C was annotated as an uncharacterised protein (locus ID M157_03942 in str. 

M157), and the fourth gene (locus ID ECP_1146 in str. 536) encodes a transcriptional regulator 

and is present only in strains 536, J96, M157. All 4 genes are present in 3 of 5 phenotype 1C 

strains, absent from non-1C strains, and absent in 2 phenotype 1C strains (p = 0.0075 phenotype 

association, Fisher’s exact test (Fisher 1922, Agresti 1992)). The 1C1 gene with locus ID 

M157_00003 (inferred to encode a hydrolase protein) was found to be a homologue of a PFG 

(locus ID EcF11_2058 in str. F11) associated with increased survival in a bacteraemic model 

of zebrafish infection (Wiles et al. 2013). 

Table 5.5. Genes significantly associated with phenotype 1C: mean ureter contractility 

decrease of 60% - 100% exhibited after 5 hours.  

 

 

 

 

Reference

strain

Gene locus in 

reference strain

Grouped 

gene 

cluster

Group 

strains

present in

Group 

strains

absent in

Non-

group 

strains

present in

Non-

group 

strains

absent in

Naïve p 

value

Inferred annotation based on identity to 

genes of known function 

Gene and protein name 

based on identity to 

genes of known 

function 536 ECP_1146 - 3 2 0 16 0.0075 Helix-turn-helix transcriptional regulator -

M157_00003 3 2 0 16 0.0075 Hydrolase -

M157_00002 3 2 0 16 0.0075 16S ribosomal RNA methyltransferase ksgA , KsgA

M157_03942 - 3 2 0 16 0.0075 Uncharacterised protein -

M157 1C1
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Phenotype group 1D was assigned to strains exhibiting an 80%-100% contractility decrease 

after 5 hours (Table 5.6) and 13 genes were significantly associated with the phenotype, all of 

which were present in group strains 536 and J96 only. The genes included 2 clusters of 8 and 

3 genes (labelled as clusters 1D1 and 1D2 in Table 5.6). Cluster 1D1, as it occurs in the strain 

536 chromosome, is shown in Figure 5.8. It consists of genes encoding a second copy of the 

hlyCABD operon distinct from that detailed under the phenotype 1A section (hlyI), and denoted 

hlyII (genes with locus IDs ECP_3826 – ECP_3829 in str. 536). The cluster also contains genes 

encoding two ABC transporter ATP-binding proteins, a putative periplasmic solute binding 

protein, and a hypothetical protein (locus ID ECP_3822 – ECP_3825 in str. 536). Gene cluster 

1D2 included 2 genes encoding proteins not yet characterised, one of which (locus ID 2812 in 

str. 536) was found to be a homologue of a PFG gene (locus ID 1892 in str. CFT073) associated 

with survival in a bacteraemia model of infection (Subashchandrabose et al. 2013). The third 

ID2 gene encodes a putative membrane protein (locus ID ECP_2813 in str. 536). Two 

additional genes associated with phenotype 1D encoded an uncharacterised protein (locus ID 

ECP_03514) and a 50S ribosome-binding GTPase protein (locus ID ECP_3008 in str. 536) 

which was found to be a homologue of a gene associated with survival in a zebrafish embryo 

model of infection using UPEC strain F11 (Wiles et al. 2013).  
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Table 5.6. Genes significantly associated with phenotype 1D: mean ureter contractility 

decrease of 80% - 100% exhibited after 5 hours.  

 

 

Figure 5.8. The 8 gene cluster 1D1, identified as significantly associated with strains exhibiting 

phenotype 1D and unique to strains 536 and J96. Gene locus IDs as in strain 536 (bottom). 

Gene names or descriptions of protein functions where a gene name is unavailable were 

provided based on protein sequence identity to known proteins (top). 

 

Genes associated with phenotypes observed after 9 hours 

 

The gene enrichment analysis revealed 8 genes to be significantly associated phenotype groups 

observed after 9 hours into the phenotype experiment. For group 2A, a cluster of 2 genes 

(labelled as 2A1 in Table 5.7) were found to be significantly associated with strains in group 

2A (8%-100% contractility decrease after 9 hours (control level 7%)). The genes were both 

Reference

strain

Gene locus in 

reference strain

Grouped 

gene 

cluster

Group 

strains

present in

Group 

strains

absent in

Non-

group 

strains

present in

Non-

group 

strains

absent in

Naïve p 

value

Inferred annotation based on identity to 

genes of known function 

Gene and protein name 

based on identity to 

genes of known 

function ECP_3822 2 1 0 18 0.0143 Putative ABC transporter ATP-binding protein  -

ECP_3823 2 1 0 18 0.0143 Putative ABC transporter ATP-binding protein  -

ECP_3824 2 1 0 18 0.0143 Putative periplasmic solute binding protein -

ECP_3825 2 1 0 18 0.0143 Hypothetical protein

ECP_3826
2 1 0 18 0.0143

Hemolysin C, Hemolysin-activating lysine-

acyltransferase HlyC

hlyC , HlyC

ECP_3827 2 1 0 18 0.0143 Hemolysin A hlyA , HlyA

ECP_3828
2 1 0 18 0.0143

Hemolysin B, Alpha-hemolysin translocation 

ATP-binding protein HlyB

hlyB , HlyB

ECP_3829 2 1 0 18 0.0143 Hemolysin D, Hemolysin secretion protein D hlyD , HlyD

ECP_2811 2 1 0 18 0.0143 Uncharacterised protein -

ECP_2812 2 1 0 18 0.0143 Uncharacterised protein -

ECP_2813 2 1 0 18 0.0143 Putative membrane protein -

ECP_3008 - 2 1 0 18 0.0143 50S ribosome-binding GTPase -

ECP_3514 - 2 1 0 18 0.0143 Uncharacterised protein -

536

1D1

1D2
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predicted to encode proteins of uncharacterised function, which were present in all 19 group 

2A1 strains and absent from all non-2A1 strains.  

For group 2B (strains exhibiting 20%-100% contractility decrease after 9 hours), 2 genes were 

reported as present in all 16, present in 2 non-2B strains, and absent in 3 non-2B strains 

(phenotype association p=0.0075, Fisher’s exact test (Fisher 1922, Agresti 1992)). One of these 

genes encodes an uncharacterised protein, and the other (locus ID ECP_1139 in str. 536) was 

found to be a homologue of the ExPEC VAF-encoding gene usp which encodes the 

uropathogenic specific protein Usp. Usp is a bacteriocin-like genotoxin which provokes DNA 

damage to mammalian cells (Nipic et al. 2013). It is also a homologue of a gene (locus ID 

04304 in str. F11) significantly associated with survival in a zebrafish bacteraemia model of 

infection in strain F11 (Wiles et al. 2013). A phylogeny of gene ECP_0113 shows a topology 

which is broadly consistent with that of the core genome phylogeny (Figure 5.9). In both 

phylogenies strains 536 and J9 are most closely related to the same cluster of 9 strains but are 

separated from the by a long branch relative to other branches in the respective trees.  

For group 2C (strains exhibiting 40%-100% contractility decrease after 9 hours) a gene present 

in 8 of 15 phenotype strains was identified which encodes a cell membrane glycotransferase 

(locus ID RG58_00590 in str. M9, Table 5.7). No genes were found to be significantly 

associated with phenotype 2D (strains exhibiting a ureter contractility decrease of 60%-100% 

contractility after 9 hours). For phenotype 2E (strains exhibiting a ureter contractility decrease 

of 80%-100% contractility after 9 hours) 3 genes were identified as significantly associated, 

two of which encode uncharacterised proteins. The other gene encodes GTPase binding protein 

Der (locus ID ECP_3850 str. 536) (Table 5.7).  
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Table 5.7. Genes significantly associated with phenotypes of group 2: mean contractility 

decrease of 8% - 100% after 9 hours (group 2A), 20% - 100% after 9 hours (group 2B), 40% - 

100% after 9 hours (group 2C), and 80% - 100% after 9 hours (group 2E). No genes were found 

to be significantly associated with phenotype 2D.  

 

 

 

 

Figure 5.9. Maximum likelihood phylogenies constructed using an alignment of 1,782 bp of 

gene ECP_0113 (locus ID str. 536) from 18 strains, which encodes the uropathogenic specific 

protein Usp. For topological comparison the core genome phylogeny of all 20 UPEC strains is 

also shown. Percentage bootstrap support values are shown on internal branches. The scale bar 

indicates the number of substitutions per site represented by the branch length shown. 

 

 

Group Reference

strain

Gene locus in 

reference strain

Grouped 

gene 

cluster

Group 

strains

present in

Group 

strains

absent in

Non-

group 

strains

present in

Non-

group 

strains

absent in

Naïve p 

value

Inferred annotation based on identity to 

genes of known function 

Gene and protein name 

based on identity to 

genes of known 

function ECP_1137 19 0 0 2 0.0048 DUF4222 domain protein; unknown function -

ECP_1139 19 0 0 2 0.0048 DUF1317 domain protein; unknown function -

ECP_3864 - 16 0 2 3 0.0075 Uncharacterised protein -

ECP_0113 - 16 0 2 3 0.0075 Uropathogenic specific protein usP , UsP

2C M9 RG58_00590 - 8 6 0 7 0.0180 Cell membrane glycotransferase -

ECP_2042 11 0 4 6 0.0039 Uncharacterised protein -

ECP_2041 11 0 4 6 0.0039 Uncharacterised protein -

ECP_3850 - 6 5 0 10 0.0124 GTPase binding protein deR , DeR

2E

2A

2E1

536

536

536

2A1

2B
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5.4. Discussion 
 

The purpose of the work in this chapter was to use ureter contractility inhibition phenotype and 

genome sequence data provided by Dr Rachel Floyd and Professor Craig Winstanley for the 

20 tested UPEC strains to provide insights into the genetic and evolutionary basis of E. coli 

ureter contractility inhibition phenotypes. This was approached by conducting analysis to 

address a hypothesis, an overall aim, and 3 objectives using an up-to-date computer capable of 

high-throughput genomic analysis. The hypothesis was effectively addressed by analysing 

strain genome sequence data together with each strain’s phenotype at 5-hour and 9-hour time 

points to determine genes which were significantly associated with phenotypes. By addressing 

the hypothesis, the first part of the overall aim: to determine genetic differences which are 

significantly associated with observed differences in ureter contractility inhibition phenotypes 

across the 20 UPEC strains, was addressed. The results of the analysis are discussed in the 

following sections, by 5 and 9-hour time point and by devised phenotype group. 

Genes associated with mean decrease in ureter contractility by UPEC strains of 8% - 100% 

after 9 hours (control level 7%) (phenotype group 1A) can be considered those associated with 

the most severe virulence phenotypes as they contributed to a relatively rapid decrease in ureter 

contractility. Perhaps the most noteworthy group 1A genes identified are those encoding a 

haemolysin operon hlyCABD (denoted hlyI) which are fully present in 8 strains and absent in 

the remaining 13 strains analysed. The 4 genes encode and facilitate the secretion of the pore-

forming alpha-haemolysin, a well-known ExPEC VAF (Velasco et al. 2018), that has 

previously been clinically associated with an increased severity of human urinary tract 

infections (UTIs) (Marrs et al. 2005). Alpha-haemolysin has been found to initiate the 

exfoliation of human bladder urothelial cells within the first stages of infection (Smith et al. 

2006). Floyd et al. (2010) found this to be a crucial part of UPEC infection. The outer ureter 
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urothelial facet cells were experimentally observed to be exfoliated by strain J96 after 5 hours, 

which was thought to allow colonisation of the underlying urothelial cells. Furthermore, the 

transmembrane pores which alpha haemolysin generates have been found to alter calcium 

oscillations in renal cells which can cause messenger signalling responses in the host cell 

(Uhlen et al. 1997). Urothelial cells modulate contraction of the underlying smooth muscle 

(Mastrangelo et al. 2007). Due to this, the host cell modulation of cell signalling by alpha-

haemolysin to reduce muscle contractility was inferred by Floyd et al. (2010) to be a potentially 

important factor in infection of urothelial cells by UPEC. Specifically, secreted alpha 

haemolysin was proposed to play a role in relaxation of the underlying smooth muscle of 

urothelial cells via altering signalling in urothelial cells. Alpha-haemolysing pore formation 

and subsequent urothelial cell lysis or underlying smooth muscle relaxation mediated by cell 

signalling modulation might therefore be an explanation for the phenotype. The phylogeny of 

the 9-gene cluster (referred to as 1A1, Figure 5.6) which includes this operon revealed a 

topology for strains different to that of the core genome phylogeny (Figure 5.3a). The close 

clustering of strains M17, 20U, M157, and M9 with strain 536 suggests that the gene cluster 

may have transferred to the lineage leading to the 4 strains from an ancestor of UPEC strain 

536 and subsequently evolved in a clonal manner. Also, the close clustering of strain CFT073 

to strain relative to others indicates the HT of the cluster between the lineages leading to 

CFT073 and the cluster of strains including 536 and J96. The close clustering of non-UPEC 

strains B2 12-1-TI12, TOP382 2, SCB-11, and ECOR 48 with strain UTI89 relative to others 

compared to the core genome phylogeny indicates the former 4 strains potentially acquired the 

cluster from an ancestor of UTI89, as they have not been associated with a UPEC phenotype. 

However, this is speculative as the direction of HT is difficult to infer. These data suggest that 

the virulence-associated cluster has been horizontally acquired by strains in multiple events 
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and that it might provide the recipient strains with an at least mild ureter-contractility decrease 

phenotype. 

A gene encoding the haemolysin transporter protein ShlB (locus ID ECP_4581 in str. 536) was 

also present in 11 of 15 phenotype 1A strains. ShlB interacts with cell-bound haemolysin and 

is crucial for haemolysin secretion (Braun et al. 1991) so its presence adds further support for 

the role of hlyI operon genes hlyCABD in causing phenotype 1A. The phylogeny constructed 

using ShlB nucleotide sequence (Figure 5.5) shows that strains J96, 536, and UTI89 cluster 

closer than in the core genome phylogeny, suggesting that at least 2 of the 3 strains may have 

acquired the gene horizontally. Other strains with the gene appear to have inherited it in a clonal 

manner as their phylogenetic relationships are consistent to those in the core genome 

phylogeny.  

Inference of haemolysin-mediated damage of urothelial facet cells by UPEC might also be used 

to directly explain phenotype 1A when urothelial host response is considered. Urothelial cells 

have been found to show heightened nitric oxide (NO) production as a bactericidal response to 

infection with varied effectiveness (Poljakic and Pearson 2003). Floyd et al. (2010) suggested 

that exfoliation of ureter urothelial cells may cause NO to be released and come into contact 

with the ureter smooth muscle cells. As NO is a muscle relaxant (Hosoki et al. 1997) it was 

hypothesised that increased alpha-haemolysin expression would result in a gradual NO-

mediated decrease in ureter contractility over time. Another gene encoding an oxidoreductase 

(locus ID c3567 in str. CFT073) associated with phenotype 1A might also fit in with this 

hypothesis. Nitric oxide is toxic to E. coli in high quantities and is typically detoxified through 

the use of a reductase enzyme (Gomes et al. 2002). As the gene in question has not yet been 

ascribed a specific oxidoreductase function it can be speculated that the gene may work to 

detoxify NO the cell is exposed to as a result of the alpha-haemolysin activity. 
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Another notable gene (locus ID c3564 in str. CFT073) significantly associated with phenotype 

1A encodes the KdpD sensor protein that regulates the kdpABC operon (Epstein. 2015). This 

operon expresses a transport ATPase with a high affinity for potassium which will transport 

potassium into cells when cell growth is limited through a lack of potassium (Epstein. 2015). 

The gene may be being used to transport potassium into the cell to promote fast growth and 

enhance colonisation speed. However, it might also be proposed that the Kdp operon could be 

used to directly reduce ureter contractility. Floyd et al. (2010) reported that strain J96 infection 

was associated with potassium leaving ureter muscle cells, resulting in a state of prolonged 

muscular contraction where depolarisation does not reoccur, and contraction occurs 

increasingly weakly compared to uninfected tissue. The kdpABC operon could be acting to 

uptake potassium into the cell with high affinity, hence depriving surrounding muscle cells of 

potassium. This would prevent effective depolarisation of the muscle cells and gradually reduce 

contractility over time with increased bacterial growth. The gene was also identified by Wiles 

et al. (2013) as being required for survival within multiple niches during zebrafish ExPEC 

infection, which emphasises its potential virulence association. 

For phenotype 1B (a mean ureter contractility decrease of 20% - 100% after 5 hours) the only 

gene with a functional annotation determined as significantly associated with the phenotype 

encodes a low-affinity zinc transport protein. Zinc is an important metal for E. coli growth and 

is used in enzymatic function, protein synthesis, and replication (Palmer and Skaar 2016). Zinc 

is also often sequestered in mammalian cells (Jesse et al. 2014) so is likely to have low 

availability in the ureter and hence it is plausible that a zinc-uptake transport protein would 

contribute significantly to rates of growth, proliferation, and colonisation of host cells. In a 

phylogeny of this gene (Figure 5.7), the close clustering of strains M172, 536, and M157 

indicate HT of the gene from one lineage to the others. HT can similarly be inferred between 
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the lineages of strains J96 and UTI89. This suggests that the acquisition of this zinc transport 

gene has potentially contributed to a more significant ureter contractility phenotype. 

Phenotype 1C was found exhibited by the 5 strains 536, J96, M157, M159, and M195, which 

exhibited a mean ureter contractility decrease of 60%-100% after 5 hours in the experiment. 

Genes significantly associated with this phenotype are potentially more likely to have a 

virulence association than those associated with phenotypes 1A and 1B, as this is a more severe 

phenotype. A gene from this group of note was found in strains M157, M159, M195. The gene 

(locus ID M157_00002 in str. M157) encodes the 16S ribosomal RNA methyltransferase 

protein KsgA. This has previously been found to have a role in protecting against oxidative 

stress damage to DNA, which helps to prevent mutations in E. coli (Zhang-Akiyama et al. 

2009). This might explain the gene’s significant association with the phenotype. Zhang-

Akiyama et al. (2009) found that the KsgA protein was important for preventing DNA mutation 

and that deactivation of the gene encoding KsgA increased the rate of spontaneous mutation in 

E. coli strain KSR7. It can be speculated that if strains are encountering oxidative stress such 

as the NO possibly provided from urothelial cells (Floyd et al. 2010), KsgA may help to 

maintain growth rates despite NO presence upon urothelial cell invasion. Interestingly strains 

M159 and M195 lack the oxidoreductase-encoding gene associated with phenotype 1A so this 

gene might exist to serve a similar function in virulence conditions. The occurrence of the gene 

in only these strains indicates it likely was acquired via HT from one lineage to the other two, 

thereby providing the recipient strains with a gene which contributed to phenotype 1C. 

The 3 strains 536, J96, and M159 grouped into group 1D are those which exhibited a mean 

ureter contractility decrease of 80% - 100% after 5 hours. Genes significantly associated with 

this phenotype can thus be inferred to contribute to the most rapid and significant ureter 

contractility decrease phenotype. Of note is that a second hlyCABD operon was among the 

highlighted genes (operon denoted hlyII), present in only strains 536 and J96 (Nagy 2006, 
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Velasco et al. 2018). A more severe phenotype in these two strains is consistent with both 

carrying a second hlyCABD operon. In a study of strain J96, Velasco et al. (2018) determined 

that hlyII is regulated by the regulator Zur that is encoded by the gene zur, but the first hlyCABD 

operon (hlyI) is not regulated by it. Zur was also found to only regulate hlyII in the presence of 

low levels of zinc. It was hypothesised that the system has evolved to encourage a cycle of 

rapid haemolysin-mediated cell lysis in the presence of low zinc and subsequent growth from 

the newly released zinc from the lysed host cells. Low levels of environmental zinc, due to host 

cell sequestration, are thought to cause hlyII expression which results in increased cell lysis 

when combined with the expression of hlyI. The released zinc is then taken up from lysed host 

cells, and a subsequent burst in cell growth occurs until environmental zinc is again depleted, 

after-which the cycle repeats. It can be speculated that in this experiment the system could be 

acting where urothelial cells are being lysed and zinc is being taken up by the zinc transporter 

found to be associated with phenotype 1B (which included strain J96). This could explain the 

significantly higher rate of ureter contractility decrease observed for strains J96 and 536. 

Similarly, membrane bound genes including str. 536 locus ID ECP_3822 – ECP_3824, 

encoding putative ABC transporter ATP-binding proteins and a putative periplasmic solute 

binding protein, were also found only in strains 536 and J96. These three transport-related 

genes could also be involved in uptake of zinc, but the transporter substrate has not been 

characterised so it could be any extracellular ion or lysed urothelial cell component which 

promotes increased growth rate. 

Group 2 was comprised of strains which exhibited ureter contractility decrease phenotypes 

after 9 hours. Eight genes were identified as significantly associated with the 4 phenotypes 2A 

(ureter contractility decrease of 8% - 100% after hour 9 (control level 7%)), 2B (ureter 

contractility decrease of 20% - 100% after hour 9), 2C (ureter contractility decrease of 40% - 

100% after hour 9, and 2E (ureter contractility decrease of 80% - 100% after hour 9). No genes 
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were found to be associated with group 2D. Only 3 group 2 genes could be functionally 

annotated. One gene of note (locus ID 00108 in str. 536) was significantly associated with 

contractility of less than 80% after 9 hours. It encoded the uropathogenic specific protein Usp 

which is a known ExPEC VAF and was a homologue of a gene significantly associated with 

UPEC strain F11 survival (locus ID EcF11_4304) in a zebrafish bacteraemia model of infection 

(Wiles et al. 2013). Usp has been functionally characterised as a bacteriocin-like genotoxin 

(Nipic et al. 2013), a group of toxins which cause DNA damage. As all 16 phenotype 2A strains 

possessed the gene and only 2 of 5 non-2A strains have it, it is possible the toxin has a broad 

effect in contributing to ureter contractility phenotypes through causing urothelial cell death. 

A phylogeny of the gene (Figure 5.9) indicates that the gene is unlikely to have been 

horizontally transferred between the 20 UPEC strains. This is evident because the strain 

relationships in the phylogeny constructed using the gene sequence are consistent with those 

in the core genome phylogeny. This suggests that the gene was clonally inherited and was 

deleted in strains 28U and B23. 

Another noteworthy gene (locus ID RG58_00590 in str. M9) encodes a cell membrane 

glycotransferase significantly associated with strains exhibiting a ureter contractility decrease 

of 40%-100%. Glycotransferases are known to contribute to membrane and cell wall formation 

(Ha et al. 2000) so it can be speculated that the enzyme could potentially be involved in 

providing additional membrane structure which aids in the avoidance of host cell defences, but 

this would require confirmation through experimentation.  

The phenotype-associated genes identified in this work indicate that a decrease in the amplitude 

of ureter contractility is necessary for UPEC colonisation of and proliferation within ureters. 

However, the phenotypic differences observed in the experiment do not appear to be the result 

of a single set of genes. The results of this investigation indicated that the range of phenotypes 

observed in the experiment after 5 hours are the result of the expression of a range of genes 
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shared across different subsets of strains which have been acquired through HT in many cases. 

The phylogeny constructed based on gene content (Figure 5.3b) indicated that HT is a common 

phenomenon between strains 536 and J96 but not between the other strains. This is as the other 

non-536 and J96 strains were consistently positioned in both the gene content and the core 

genome phylogeny. 

It can be inferred that a phenotype is associated with the presence of the 9-gene cluster 1A1, 

containing genes located adjacently on the chromosome which include the haemolysin operon, 

an oxidoreductase which potentially reduces oxidative stress, and the kdpD operon associated 

with potassium uptake, an effect which may directly reduce ureter muscle contractility. This 

was the case for strains 20U, 536, CFT073, J96, M157, M172, M9, UTI89. However, 7 strains 

with phenotype 1A did not possess the cluster (15U, B10, B21, M159, M22, M3, and M195). 

Strains 15U, B10, and B21 possessed genes encoding the putative DNA binding protein (locus 

ID ECP_4584 in str. 536), a gene encodes a haemolysin transporter protein: ShlB (locus ID 

ECP_4581 in str. 536), and a gene encoding RNA polymerase-binding transcription factor 

DksA (locus ID ECP_1138 in str. 536) which they shared with strains that possess cluster 1A1. 

However, of strains with cluster 1A1 and which exhibited phenotype 1B, UTI89 and J96 did 

not possess the phenotype 1B genes ECP_3019 (locus ID str. 536) and ECP_2043 (locus ID 

str. 536) but B21 did, and strain CFT073 did not possess ECP_0316 (encoding a low-affinity 

zinc transport protein). This indicates that a differential presence of genes were responsible for 

phenotypes 1B. This is similarly the case with phenotype 1C where strains M159 and M195 

did not possess phenotype 1C gene encoding putative transcriptional regulator ECP_1146 

(locus ID str. 536) present in strains 536, J96, and M157 and strains 536 and J96 did not possess 

phenotype 1C genes M157_00002 (locus ID in str. M157, encoding the protein KsgA), 

M157_00003 (locus ID in str. M157, encoding a hydrolase protein), and M157_03942 (locus 

ID str. M157) but strains M157, M159, M195 do. 
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On the basis of these results, for strain 20U, phenotype 1A can be inferred to be caused at least 

in part through use of the hlyI operon, an oxidoredictase, KdpD encoded by the 9-gene cluster 

denoted 1A1 and with genes ECP_4584, ECP_4581, and ECP_1138 (locus ID str. 536) which 

encode a putative DNA-binding protein, haemolysin transporter protein ShlB, and RNA 

polymerase-binding transcription factor DksA respectively. For strain 15U, phenotype 1A can 

be inferred to be caused in part by the latter 3 genes only. For strain B21 phenotype 1B can be 

inferred to have been caused in part by genes ECP_4584, ECP_1138, ECP_3019, and 

ECP_2043 (locus ID str. 536) encoding the DNA binding protein, DksA, and two proteins with 

unknown functions. For strain CFT073 the same genes are inferred to result in phenotype 1B, 

but with the addition of the 9-gene cluster. For strains M172 and UTI89 it is all the same genes 

as for CFT073 with ECP_0316 (locus ID in str. 536) which encodes a low-affinity zinc 

transport protein in addition, but without ECP_3019 for strain UTI89. For strains 536 and J96 

phenotype 1D can be inferred to be caused in part by the 9-gene cluster denoted 1A1 which 

included the hlyI operon, ECP_4584, ECP_4581, ECP_1138, ECP_0316, ECP_1146 (encoding 

a transcriptional regulator) (locus IDs in str. 536), the 8-gene cluster 1D1 which included the 

hlyII operon, the 3-gene cluster 1D2, ECP_3008 (locus ID str. 536, encoding a 50S ribosome-

binding GTPase), and ECP_3514 (locus ID str. 536, uncharacterised protein). In addition to 

these genes, all UPEC strains but 16 phenotype 2B strains may have employed gene ECP_0113 

(locus ID str. 536); encoding the uropathogenic specific protein and 8 phenotype 2C strains 

may have employed gene RG58_00590 (locus ID str. M9) encoding a cell-membrane 

glycotransferase to carry out decreases in ureter contractility. 

To corroborate the inferred link the highlighted genes have in contributing to different ureter 

contractility decrease phenotypes, direct experimental investigation of the impact of each gene 

within the rat ureter model would be desirable. This could be carried out through knocking out 

the genes to cause loss of function and comparing the ureter contractility decrease phenotypes 
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of the strains to the wild type strains without the change. This would provide evidence as to the 

relative contribution of each gene in causing the range of phenotypes seen. Many of the genes 

identified have an uncharacterised function. Further work to characterise the molecular 

function of these proteins would therefore also be an important part of detailing the specific 

contribution of each gene identified in the investigation in causing ureter contractility decrease 

phenotypes. 

To reflect on the representativeness of the phenotypes exhibited by the 20 UPEC strains 

employed in this study relative to those in existence in UPEC strains, it can be inferred that the 

strains were suitably representative for the purposes of addressing the hypothesis, overall aim, 

and objectives of this study. This is as 33 genes were identified to have a significant association 

in contributing to a multiple number of independent and overlapping ureter contractility 

inhibition phenotypes. This number of phenotype-associated genes and phenotypes were 

obtained as information from strains isolated from a UPEC infections ranging from mild to 

severe severity across three decades, and this information indicates that there is a case to be 

made for their representativeness to the range of UPEC strains in existence. However, to 

quantify their specific representativeness to UPEC in existence, it would be of benefit to repeat 

the investigation using a greater number of perhaps 100 representative UPEC strains isolated 

from UPEC infections of ranging severity, across a broader range of locations and time points 

and compare the phenotype-associated genes and phenotypes in the study to those highlighted 

in this study. 

The results indicate that each of the ureter contractility inhibition phenotypic groups are caused 

by the specific highlighted genes highlighted. This finding supports the hypothesis. The first 

objective, to determine if HT has contributed to the phenotypic differences observed across 

strains was also addressed by the analysis. This was as the results from the phenotype-

associated gene phylogenies indicated that horizontal gene transfer of specific genes can be 



178 

 

inferred to have contributed to the observed phenotypes across the 20 UPEC strains. Lastly, 

the second objective, to use phenotype-associated gene information to infer the mechanism of 

action underlying each observed phenotype pattern was addressed also. This was as in the 

discussion the proposed mechanisms of action underlying each of the devised phenotype 

groups were speculated based on the information obtained in analysis about phenotype-

associated genes. Addressing the hypothesis and both objectives meant that the overall aim was 

addressed. 

In summary, the hypothesis, overall aim, and objectives were effectively carried out through 

the conducting of an analysis into the genetic basis to UPEC ureter contractility inhibition 

phenotypes. The analysis compared the genomic contents of strains across the groups and this 

highlighted genes which are significantly associated with a range of phenotypes expressed over 

9 hours. It can be concluded that multiple phenotypes are the result of the expression of a range 

of genes shared across different subsets of strains that have been acquired through HT in many 

cases. Out of the genes identified, of note is a 9-gene island, denoted ‘1A1’ which can be 

proposed to contribute to the phenotype in 8 strains through the use of the hlyI operon, a KdpD 

operon regulator present in 8 strains which allows the uptake of potassium and may directly 

inhibit ureter contractility, and an oxidoreductase enzyme which may be involved in reducing 

the impact of oxidative stress defences initiated by host cells. Also of note was the identification 

of the two previously reported haemolysin operons (denoted hlyI and hlyII, Velasco et al. 2018) 

as part of an 8 gene cluster in UPEC strains 536 and J96, which exhibited the earliest decreases 

in ureter contractility. The hlyI and hlyII operons were inferred to have played a significant role 

in strains 536 and J96 exhibiting a more severe phenotype than other strains by hour 5. To 

continue this research, experimental investigation into the impact that each gene highlighted in 

this work has within the rat ureter model, using mutant knock-out experimentation would also 
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be preferable. It would also be of value to confirm the representativeness of the strain set used 

in this study by repeating the study using a greater number of perhaps 100 UPEC strains. 
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Chapter 6: Insights into the evolutionary history of the second  

E. coli type three secretion system (ETT2) and eip gene clusters 
 

6.1. Introduction 
 

In this final research chapter, work is presented regarding the evolutionary history of two 

associated E. coli genetic clusters which have potential clinical relevance, ETT2 and eip. 

Previous studies have hinted at them having a complex evolutionary history involving gene 

loss-of function and deletion mutations within multiple independent lineages since their 

acquisition in the ancestor of E. coli and E. alberii. The purpose of the work in this chapter was 

to revisit the story and present an up-to-date account of the cluster’s evolutionary history 

revealing the extent of its complex evolution and genotypic diversity using the set of 120 

phylogenetically diverse E. coli strains described in Chapter 3 and 200 other species 

representatives of the Enterobacteriaceae family, and through addressing a hypothesis, an 

overall aim, and objectives. The result was an account of the manner in which the clusters 

evolved, their distribution, genotypic variants of each, observed within the major E. coli 

evolutionary lineages, and the types of potentially active VAF–encoding genes present in 

strains of each of the major E. coli phylogenetic lineages.  

6.1.1. Type three secretion systems 

 

A well-studied bacterial cell-surface structure which is encoded by highly conserved genes 

contained in genomic islands (GI), is the type III secretion system (T3SS) (Blocker et al. 2003, 

Cornells 2000, Hueck 1998). Type III protein secretion is one of eight types of secretion used 

by Gram-negative bacteria, each associated with a protein structure. (Cornells 2000, Pallen et 

al. 2003). T3SSs function as a multiprotein molecular syringe termed the “needle complex”, 

which harnesses the hydrolysis of ATP to export effector proteins from the E. coli cytoplasm 

across the inner membrane, periplasmic space, and outer membrane barriers through to targeted 
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eukaryotic cell membrane and into its cytoplasm. (Kenny 2001, Pallen et al. 2003). The 

structure and genes share some similarity to those of the hook-basal body complex of the 

bacterial flagellum used for motility, including a polymeric hollow fibre secured to the outer 

surface, a similarity which allowed early researchers to attribute some function to the T3SS 

(Aizawa 1996) (Figure 6.1). 

 
 

Figure 6.1. Diagram showing homologous components of a flagellar system and type III 

secretion system structure. Separate structural components are in separate colours, and 

components which share sequence or functional homology between the flagellar and the T3SS 

structure are in the same colour. The T3SS is shown transporting virulence associated T3SS 

effector proteins from within the bacterial cell, across the inner membrane, peptidoglycan layer, 

the outer membrane, and through the extracellular space and across the host membrane into the 

host cell (adapted from Figure 1 of Blocker et al. 2003). 

 

Transcription and translation of GI containing genes which encode a T3SS involves 

hierarchical gene regulation to initiate complex protein interactions and control effector protein 

secretion (Gerlach et al. 2007). Effector proteins transported into eukaryote cells by T3SS are 

recognised not just as VAFs but comprise a wide range of functional roles including a 
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contribution towards a symbiotic relationship between bacterium and host, although not within 

E. coli (Blocker et al. 2003). T3SSs within some pathogenic bacteria have been found to be 

involved with the delivery of VAFs that initiate the onset of disease symptoms (Muller et al. 

2001). This has underlined the important role that the T3SS has in some major bacterial 

diseases (Blocker et al. 2003, Keyser et al. 2008, Muller et al. 2001). 

Examples of well-characterised bacterial T3SSs include: the Mxi-Spa system from Shigella, 

the YscYop complex of the genus Yersinia, the system encoded by the locus for enterocyte 

effacement (LEE) in attaching and effacing strains of Citrobacter rodentium, EPEC and EHEC, 

and two T3SSs of interest found in Salmonella enterica and encoded by PIs named Salmonella 

pathogenicity island 1 and 2 (SPI-1 and SPI-2) (McNamara et al. 1998, McDaniel and Kaper 

1997, Jerse et al. 1990, Leimbach et al. 2013). Two medically important E. coli pathovars to 

humans, EHEC and EPEC, possess a T3SS which transports proteins regarded as VAFs (Kenny 

2001, McDaniel et al. 1995). Such pathogenic E. coli inject these T3SS effector proteins into 

host intestinal cells which elicit a histopathological effect on them termed attaching-effacing 

(A/E) lesions (Jarvis et al. 1995, Kenny 2001). These are characterised by functionally 

damaged microvilli, and pedestals which protrude from the host cell apical membrane which 

cup bacteria individually, facilitating the attachment of bacteria to the host apical cell surface 

and allowing the bacterium to grow and proliferate (McDaniel and Kaper 1997, McNamara et 

al. 1998).  

6.1.2. The Second E. coli Type Three Secretion System (ETT2) 

 

All genes necessary for EPEC and EHEC A/E lesion formation, including those encoding T3SS 

structural and secreted proteins, are contained within the LEE, a chromosomally-encoded 35 

kb PI (McDaniel and Kaper et al. 1997, Zhang et al. 2004). However, genome sequencing of 

two strains of EHEC O157:H7 strain EDL933 (Perna et al. 2001) and Sakai (Hayashi et al. 

2001) revealed the existence of a GI potentially encoding components of a second T3SS, 
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termed E. coli T3SS 2 (ETT2) (with the LEE-encoded system defined as E. coli T3SS 1). ETT2 

is a 29.9 kb gene cluster integrated at the yqeG-glyU tRNA locus, and containing 35 genes, 

some of which are homologous to the S. enterica SPI1 T3SS (Ren et al. 2004) (Figure 6.2).  

 

Figure 6.2. The 33 gene ETT2 genomic island structure, as present in E. coli strain 042, with 

structural homologues to the SpI-1 and SpI-3 genomic islands in Salmonella enterica subsp. 

enterica serovar Typhimurium LT2. Genes are drawn are arrows pointing downstream or 

upstream depending on whether presence is on the forward or reverse strand respectively. 

Genes are coloured by their putative gene products (adapted from Ren et al. 2004, used with 

permission from the American Society for Microbiology). 

 

ETT2 was first reported as a 14.6 kb insertion relative to the laboratory strain K-12 MG1655 

(Perna et al. 2001, Hayashi et al. 2001). However, it was later hypothesised to be a 14.6 kb 

deletion in K-12 with a reassessment of the cluster length to 17 kb (ECs3714 Sakai 

nomenclature) by Ren et al. (2004). Fragments of the cluster were found in EHEC and STEC 

strains with complete absence in non-pathogenic E. coli (Makino et al. 2003), but this length 

was disputed by Hartleib et al. (2003) who reported the boundary to be further upstream 

(ECs3703 (rmbA/yqeH): Sakai genome nomenclature), changing the length to 29.9kb. The 

position was resolved as here as Hartleib et al. (2003) reported a conserved cluster structure 

from this boundary point across genomes which exhibited ETT2 genes in an analysis of 245 

strains (Hartleib et al. 2003). Ren et al. (2004) studied G+C content, and Sakai ETT2 gene 

homologues, through using tiling path PCR (TP-PCR) in non-genome sequenced strains to 
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generate a more representative account of the cluster length and evolution. This involved 

amplifying and sequencing the complete ETT2 chromosomal region and by using primers 

designed to amplify overlapping ~5 kb fragments of ETT2 spanning a certain region. After 

this, a long PCR was used on the resulting sample to produce an amplicon of a given ETT2 

cluster genotype type. Next, a long PCR for each genotype type using the genotype amplicon 

was used to detect each genotype in other strains. They included primers flanking absent 

regions for that genotype type. A short PCR which spanned the ETT2 PI flanking sequences 

was also used alongside this to screen for complete ETT2 cluster absence. The 29.9 kb length 

was supported and an accurate account of the cluster in O157:H7 (complete), K-12 (14.6 kb 

deletion), and CFT073 (complete absence) was defined (Figure 6.3). 

 

Figure 6.3. A schematic representation comparing the ETT2 gene cluster and flanking genes 

in the first three ETT2 genotypes discovered (O157:H7 EDL933, K12 MG655, and CFTO73). 

Genes are drawn are arrows pointing downstream or upstream depending on whether presence 

is on the forward or reverse strand respectively. ETT2 genes are coloured blue and flanking or 

non-ETT2 genes are coloured white. K-12 MG655 can be seen to possess around half the 

cluster genes relative to O157:H7, and CFT073 possesses none relative to O157:H7 (Adapted 

from Chaudhuri and Pallen 2006).  

 

ETT2 clusters were found to be more widespread in E. coli than the LEE and interestingly 

present in whole or in part in a majority of the 163 representative E. coli strains investigated 

(Ren et al. 2004). A complete ETT2 cluster and those with a characteristic 8.7 kb deletion were 

the most common genotypes (seen only in the major phylogenetic groups A and B1 (the 8.7 kb 
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deletion was included within the boundaries of the 14.6 kb deletion observed in group A strain 

K-12 MG1655)). This 8.7 kb genotype was thought to result from deletion of the region during 

homologous recombination, as 7 bp repeats are found flanking the deleted region in O157:H7. 

IS1, IS2, and IS3 elements were recorded at the sites of deletions in many strains carrying 

ETT2 also, suggesting homologous recombination between IS elements after their insertion 

might be the primary mechanism of ETT2 gene cluster attrition (through deletion) in strains 

with partial to near complete clusters (Figure 6.4, Ren et al. 2004) 
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Figure 6.4. Genotypic structural diversity in the ETT2 gene cluster in selected E. coli and 

Shigella strains. ETT2 cluster genes are all coloured non-grey, with homologous genes aligned 

vertically and deletions indicated by dots. The complete sequence is seen in both strains 

O157:H7 strain Sakai and 042, strain O111:NM strain B171 represents E. coli with the 8.7 kb 

deletion, and  K12 strain MG1655, S. sonnei strain 53 G, and S. flexneri strain 2a 301 represent 

varying degrees of sequence deletion. UPEC CFT073 represents complete cluster absence 

common in UPEC. The 7 bp repeats are highlighted in complete strains, and insertions 

associated with IS elements relative to the complete cluster are highlighted in yellow with 

dashed lines (Figure 2 in Ren et al. 2004, used with permission from the American Society for 

Microbiology). 
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Ren et al. (2004) rejected the hypothesis that ETT2-associated genes might be a marker of 

virulence, as complete ETT2 clusters were found in some commensal strains. Multiple 

deactivating frameshift mutations resulting from indels were also found in many strains in 

different lineages including EHEC O157:H7, but not EAEC strain 042 (Ren et al. 2004). ETT2 

sequence deletions appeared alternatively to be a marker of E. coli phylogenetic ancestry, 

because the cluster is absent from the early diverging B2 group and exhibits varying degrees 

of mutational attrition and gene loss in all other major phylogenetic lineages including of the 

same genes in separate events (Ren et al. 2004). This was observed by superimposing the TP-

PCR ETT2 genotype data onto a whole-genome phylogeny reconstruction, constructed using 

neighbor-joining analysis of multilocus enzyme electrophoresis (MLEE) data (Figure 6.5, Ren 

et al. 2004).  
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Figure 6.5. TP-PCR ETT2 cluster results of the three main genotypes; absence of any cluster 

genes (dashes), a characteristic 8.7 kb deletion (grey), or full ETT2 cluster (bold) superimposed 

phylogenetically onto the whole genome MLEE phylogeny. The major phylogenetic groups 

are labelled, and circles indicate presence of the eip cluster (Figure 5 in Ren et al. 2004, used 

with permission from the American Society for Microbiology). The scale bar indicates the 

number of substitutions per site represented by the branch length shown. 

 

Consistent with Ren et al. (2014), a recent study by Wang et al. (2016b) found ETT2 to have 

undergone widespread attrition when ETT2 genotypes were characterised in 245 APEC strains 

(8.7 kb genotype)
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using eight tiling-path PCR (TP-PCR). Five different genotypic isoforms were identified in 

58% of strains including an 042-like ETT2 DNA sequence. Genotypic isoforms included 

isoform A: 042-like, isoform B: a 4.99 kb deletion, isoform C: a 4.99 kb deletion and a 1.33 kb 

IS transposase insertion, isoform D: a 5.68 kb deletion, and isoform E: an 8.47 kb deletion. 

Between phylogenetic groups, four genotypes were found in groups A and B1, and five 

genotypes were found in groups D and B2 when phylogenetic group assignment was carried 

out by the triplex Clermont PCR method (Clermont et al., 2000). Nine D1 and 5 B2 strains had 

042-like ETT2 sequences, type B and C isoforms were most common in group A, and type E 

isoforms most common in group B1. Other E. coli studies which have reported incomplete 

ETT2 genotypes include that by Cheng et al. (2012), Huja et al. (2015), Prager et al. (2004). 

Huja et al. (2015) reported genotypes in five avian pathogenic E. coli which included a 

proposed deletion of the same six-gene region from eivA to the end of the island in four strains, 

when ETT2 gene presence was determined through the creation and use of E. coli strain O157 

H7 Sakai PCR primers for each gene. Prager et al. (2004) described four new ETT2 genotypes 

identified from E. coli O138:H−, O139:H1, and O147:H6 strains, which were isolated from 

oedema cases in humans, pigs, and goats. Significant gene deletions were inferred to have 

occurred since four of five of the islands exhibited deletions of at least five genes. The presence 

of ETT2 gene homologues was inferred through using PCR primers targeted at the start, 

middle, and end of the island designed from yqeH to tRNA glyU using E. coli O157:H7 strain 

Sakai. Cheng et al. (2012) more recently described ten incomplete ETT2 genotypes in an 

analysis of 168 pathogenic E. coli isolated from pigs with colibacillus or cows with mastitis. 

ETT2 gene presence was carried out through the design and use of 33 PCR primers designed 

using the genome sequence of E. coli strain O157:H7 strain Sakai as well. A notable finding 

was that nine of the ten genotypes exhibited the same proposed six-gene deletion of genes eivC 

to 3074. Perhaps the most interesting ETT2 genotype finding is that an almost complete 042-
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like genotype was identified in 13 of 31 Escherichia albertii strains located adjacent to the 

same trnA glyU locus as in E. coli strain 042 (Ooka et al. 2015). The presence of ETT2 in E. 

albertii was taken to indicate that the island was acquired by the ancestral lineage of E. coli 

and E. albertii prior to the divergence of the two species (Ooka et al. 2015). Table 6.1 shows 

the ETT2 genotypes reported for each of these studies. 

Table 6.1. All published genotypes of ETT2 island genes present in one or more strains, 

reported in six separate studies. ETT2 gene names and strain groups for each genome are 

labelled as they occur in E. coli strain 042. Dark blue and light blue indicates complete and 

partial presence of genes respectively. 

6.1.3. ETT2 genes and virulence 

Several studies have found evidence indicating that some ETT2 genes are implicated in 

virulence, which is in contrast to the suggestion of Ren et al. (2004) that ETT2 is a disused 

pathogenicity island. Zhang et al. (2004) found that mutational inactivation of two ETT2 cluster 
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regulatory genes etrA and eivF each significantly increased secretion of proteins encoded by 

the LEE (Zhang et al. 2004). This resulted in an increase in adhesive A/E towards human 

intestinal cells. Studies where microarrays and transcriptional fusions were used show that 

these two genes negatively affect transcription of the genes within the O157:H7 LEE (Zhang 

et al. 2004). In a separate EHEC strain O26:H, expression of the etrA and eivF genes was found 

to suppress protein secretion under LEE-inducing conditions. These findings suggested that the 

ETT2 cluster has a regulatory influence on gene expression in the LEE, and provided the first 

primary evidence of the existence of cross-regulation between T3SSs (Zhang et al. 2004). Also, 

a recent study by Wang et al. (2017) found that creation of an etrA mutant in avian pathogenic 

E. coli strain APCE94 was associated with significantly reduced rates of etrA mutant colony

population growth and virulence when the etrA mutants were injected as a culture into in avian 

hosts compared to the etrA mutant free wild type. Disruption of etrA also reduced expression 

levels for fimbriae-associated genes, which slowed motility and resulted in an increased 

expression of pro-inflammatory cytokine immune genes when in macrophages, compared to 

wild type strains. Another ETT2 regulator, etrB (previously known as ygeK) has also been 

found to be potentially highly important for enterohaemorrhagic E. coli virulence (Luzander et 

al. 2016). In a study, the product of etrB directly interacted with the ler regulatory region which 

activates LEE expression to facilitate A/E lesion formation. Furthermore, etrB was found to be 

regulated by the transcription factor QseA encoded by the gene qseA, indicating that qseA, ler, 

and etrB are part of a regulatory circuit implicated in colonization of host intestinal region 

(Luzander et al. 2016). 

Non-regulator ETT2 genes have also been found to be potentially implicated in pathogenicity: 

eivC, a gene encoding a putative invasion protein homologous to a group of ATPases, has been 

shown to demonstrate ATPase activity, which is important for T3SS function (Wang et al. 

2016). eivC mutants were prepared in avian pathogenic E. coli strain APEC94. The disruption 
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of eivC led to reduced flagella expression and production and increased fimbriae expression 

and production on the bacteria surface, decreasing overall cell motility (Wang et al. 2016). 

Also, eivC disruption resulted in attenuated virulence of E. coli strains and reduced resistance 

to immune system factors present in avian host blood. All effects of eivC disruption were 

restored once a complete eivC gene was complemented into eivC mutant strains using 

transformation. Similarly, a disruption of ETT2 genes eprHIJK which encode a putative T3SS 

inner membrane ring, a lipoprotein precursor, in 11 extraintestinal pathogenic E. coli strains 

isolated from septicemia and meningitis patients, led to significantly reduced virulence when 

injected into 1-day old chickens compared to E. coli with non-disrupted eprHIJK genes, which 

caused 75% mortality (n = 8) after eight days (Ideses et al. 2005). The virulence phenotype was 

restored after complementation with intact eprHIJK genes into the mutants, and all ETT2 

genotypes included the same ~5 kb deletion between eivA and eivF and premature stop codons 

in several genes (Ideses et al. 2005). A later study also investigated the effect of disrupting the 

eprHIJK gene region in four strains of avian pathogenic E. coli of different origins. Huja et al. 

(2015) found the region was essential for strain survival in host blood and the region was found 

in all four strains of differing origin. Strains with a disrupted eprHIJK gene region grew 

significantly slower in host blood serum than those without the disruption. Based on this 

finding, it was suggested that the ETT2 island most likely is not involved in secretion in the 

strains as premature stop codons had disrupted several genes in each genotype including ygeF, 

ygeH, ygeI, 3074, eivH, epaS and deletions occurred in eivE, eivG, and eivF. As eprHIJK 

putatively encode an inner membrane protein ring, it was proposed that intact eprHIJK genes 

at least were involved in enhancing structural properties of the bacterial outer surface which 

aided in survival within host blood. 

 



193 

 

6.1.4. The eip gene cluster 

 

Ren et al. (2004) identified a second 20.9 kb six-gene cluster referred to as the eip gene cluster 

(Figure 6.6), which was at a separate locus from ETT2, but which also contained homologues 

of Salmonella T3SS SPI-1 genes (Figure 6.6). Short PCRs targeting fragments were spaced 

throughout the eip cluster and applied to the ECOR strains, and presence was mapped onto the 

MLEE phylogeny (Figure 6.5). The eip cluster was only present in strains with complete ETT2 

clusters and it was unique to phylogenetic groups D and E. The eilA gene encodes a regulator 

which Sheikh et al. (2006) found increased expression of seven genes: eip locus genes eipB, 

eipC, eipD, eicA, and air, and ETT2 genes eivF, and eivA in E. coli strain 042. eilA mutants 

were overall less adherent to epithelial cells, and this association led to the hypothesis that the 

cluster was acquired in association with ETT2 in a duplication event after the ETT2-eip system 

diverged from the T3SS S. enterica SPI-1 island after E. coli group B2 diverged (Sheikh et al. 

2006, Ren et al. 2004).  

 

Figure 6.6. The 20.9 kb six-gene eip locus, with genes coloured as blue arrows as they appear 

in E. coli strain 042. Arrows pointing right and left indicate genes on the forward and reverse 

strands, respectively. Functional annotations are provided under each gene (adapted from 

Sheikh et al. 2006). 
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6.1.5. Investigation of the ETT2 and eip gene cluster 
 

In the interest of confirming results of previous research and further developing a deeper 

understanding of the evolution of ETT2 and eip cluster genotypes and likely phenotypes across 

E. coli, a new investigation of the gene clusters in light of new genome sequence data was 

necessary. In this chapter, an aim and its hypothesis and three research questions were 

addressed using three bacterial strain sets in order to carry out the investigation. These included 

the two previously used phylogenetically diverse strain sets of 100 E. coli strains and 20 cryptic 

clade strains introduced in Chapter 4 and a new set consisting of 200 strain representatives of 

species from across the Enterobacteriaceae. Carrying out this work using these strains was 

important from an evolutionary biology perspective. Firstly, in terms of understanding when 

the clusters first appeared and how structure changed through gene truncations, deletions, and 

how inheritance occurred between E. coli phylogenetic group lineages. Any new findings can 

be added to and used to support or disprove previously hypotheses of ETT2 and eip cluster 

evolution. Secondly, in terms of understanding if core presence of intact functional ETT2 and 

eip cluster genes can be linked with phylogenetic group, so that it may be possible to infer a 

likely cluster-related pathogenic or non-pathogenic phenotype in a strain based on its 

phylogenetic group assignment. 
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6.1.6. Hypothesis 
 

The hypothesis of this chapter was designed to confirm the hypothesis that ETT2 genotypes 

can be used as a phylogenetic marker as proposed by Ren et al. (2004): 

ETT2 cluster genotypes can be used as markers of E. coli phylogenetic ancestry. 

6.1.7. Aims and objectives 

 

The overall aim was to present an up-to-date account of ETT2 and eip cluster evolutionary 

history and genetic diversity. Principally it was to test the hypothesis ETT2 genotypes can be 

used as a phylogenetic marker as proposed by Ren et al. (2004) using a diverse set of E. coli 

strains and members of Enterobacteriaceae. It was also to test the following objectives 

designed to confirm the results of previous research, provide a deeper understanding of how 

the ETT2 and eip cluster genotypes evolved, infer any likely ETT2 or eip cluster phenotypes 

based on genotype, and determine if such phenotypes are phylogenetically correlated. 

1. Determine if the number of separate ETT2 and eip cluster genotypes present across E. 

coli evolutionary lineages is greater than that reported in previous studies. 

2. Identify if the evolutionary point of origin for the ETT2 and eip clusters is as inferred 

in previous studies (in the ancestor of E. coli and E. albertii for the ETT2 cluster and 

for the eip cluster in a duplication event at the same time). 

3. Determine likely pathogenic or non-pathogenic ETT2 and eip cluster phenotypes for 

strains based on genotypes and infer if such likely phenotypes can be inferred for strains 

based on their phylogenetic group assignment. 
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6.2. Methods 

 
There are no methods specific to this chapter. 

 

6.3. Results 
 

6.3.1. Selection of a non-coli Escherichia strain set 

 

To select strains for investigating the presence of ETT2 and eip locus genes, the data set of 120 

phylogenetically diverse E. coli representing groups A-G C-I to C-V which were collated in 

Chapter 3 were employed. A selection of 200 other bacteria from Enterobacteriaceae, was also 

collated to determine if ETT2 and eip locus genes existed in species members of the family 

other than E. coli and E. albertii which have been previously not recorded. Genomes from 

members of Enterobacteriaceae were obtained from GenBank and filtered for genome 

assembly quality. A core gene alignment was obtained using Roary, which was then 

constructed into a phylogeny using RAxML (representative shown in Figure 6.7). The resulting 

phylogeny was then filtered for phylogenetic diversity (as for the E. coli 100-strain set, Chapter 

3) to obtain the 200 strain Enterobacteriaceae genome set, which included 74 species from 45 

genera (Table 6.2). In a core genome phylogeny of strains from this set sharing a core genome 

of 1,031,741 bp, the groups Citrobacter, E. albertii, and E. fergusonii were shown to be most 

closely related to E. coli relative to other groups (Figure 6.7). Due to this, 25, 7, and 3 strains 

from these groups respectively were chosen to be in the 200 Enterobacteriaceae strain set (a 

proportionally larger number than other groups) (Figure 6.7, Figure 6.8, Figure 6.9, Table 6.2).  
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Figure 6.7. Midpoint rooted phylogeny of bacterial genomes in the family Enterobacteriaceae 

most closely related to E. coli. The tree was created by RAxML maximum likelihood analysis 

of a 1,031,741 bp core genome alignment generated using Roary pan genome analysis. The 

phylogeny shows that E. albertii, E. fergusonii, and Citrobacter strains are the closest relatives 

of E. coli other than Salmonella strains. Percentage bootstrap support values are shown on 

internal branches. The scale bar indicates the number of substitutions per site represented by 

the branch length shown. 
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Figure 6.8. Midpoint rooted RAxML maximum likelihood phylogeny of 120 randomly 

selected core genes present across 35 strains. E. albertii and E. fergusonii phylogenetic species 

groups are labelled in the outer ring, with gaps in the ring indicating group borders. 10 strains 

were chosen from these 35 to be a set of phylogenetically representative non-coli Escherichia 

to check for ETT2 and eip locus gene presence and are labelled with a red dot. The scale bar 

indicates the number of substitutions per site represented by the branch length shown. 
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Figure 6.9. Midpoint rooted RAxML maximum likelihood phylogeny of 120 randomly 

selected core genes present across 117 Citrobacter strains obtained from GenBank. 

Phylogenetic species groups are labelled in the outer ring C. amalonaticus, C. Braakii, C. 

farmerii, C. freundii, C. koseri, C. pasteuri, C. rodentium, C. sedlakii, C. werkmenii, C. 

youngae, and C. sp. (no species name given), with gaps in the ring indicating group borders. 

25 strains were chosen from these 117 to be a set of phylogenetically representative Citrobacter 

to check for ETT2 and eip locus gene presence and are labelled with a red dot. The scale bar 

indicates the number of substitutions per site represented by the branch length shown. 
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Table 6.2. Species names, strain names, and accession numbers for 200 selected genome 

representatives of the family Enterobacteriaceae comprising of 74 species from 45 genera 

chosen for investigating ETT2 gene presence, including 10 non-coli Escherichia and 25 

Citrobacter previously selected strains. All genomes have an N50 greater than 100 kb.  

 

 

 

 

Species and strain name Accession

Arsenophonus sp. CB CP013920

Brenneria goodwinii OBR1 CGIG00000000

Budvicia aquatica DSM 5075 ATCC 35567 ATYS00000000

Cedecea neteri M006 CP009458

Cedecea neteri ND14a CP009459

Cedecea neteri  SSMD04 CP009451

Citrobacter amalonaticus  FDAARGOS 122 CP014015

Citrobacter amalonaticus FDAARGOS 166 LORU00000000

Citrobacter amalonaticus  L8A JMQQ00000000

Citrobacter amalonaticus Y19 CP011132

Citrobacter braakii 641 SENT JUYY00000000

Citrobacter braakii  GTA CB04 JRHL00000000

Citrobacter braakii SCC4 MTCP00000000

Citrobacter farmeri GTC 1319 BBMX00000000

Citrobacter freundii 4 7 47CFAA JH414876

Citrobacter freundii  B38 CP016762

Citrobacter freundii BD CP018810

Citrobacter freundii CAV1321 CP011612

Citrobacter freundii CF04 BDFL00000000

Citrobacter freundii P10159 CP012554

Citrobacter freundii RU2 BHI16 JRTJ00000000

Citrobacter freundii UCI 31 KI929269

Citrobacter koseri  2 LK931336

Citrobacter koseri ATCC BAA 895 CP000822

Citrobacter koseri DNF00568 KQ959519

Citrobacter pasteurii CIP 55 13 CDHL00000000

Citrobacter rodentium ICC168 FN543502

Citrobacter sedlakii  NBRC 105722 BBNB00000000

Citrobacter sp. MGH106 KQ089822

Citrobacter werkmanii NBRC 105721 BBMW00000000

Citrobacter youngae ATCC 29220 GG730308

Cronobacter condimenti 1330 LMG 26250 CP012264

Cronobacter dublinensis subsp dublinensis LMG 23823 CP012266

Cronobacter malonaticus  CMCC45402 CP006731

Cronobacter sakazakii ES15 CP003312

Cronobacter turicensis 564 CALB00000000

Dickeya chrysanthemi Ech1591 CP001655

Dickeya dadantii 3937 CP002038

Dickeya dianthicola GBBC 2039 CM001838

Dickeya dianthicola RNS04 9 KQ046817

Dickeya paradisiaca Ech703 CP001654

Dickeya solani  D s0432 1 AMWE00000000

Dickeya solani IPO 2222 2 CP015137

Dickeya zeae CSL RW192 CM001972

Dickeya zeae DZ2Q APMV00000000

Edwardsiella anguillarum ET070829 JABY00000000

Edwardsiella anguillarum ET080813 CP006664

Edwardsiella hoshinae ATCC 35051 CP016043

Edwardsiella hoshinae NBRC 105699 ATCC 33379 BAUC00000000

Edwardsiella ictaluri  93 146 CP001600

Species and strain name Accession

Edwardsiella piscicida ACC35 1 MPNU00000000

Edwardsiella piscicida  C07 087 CP004141

Edwardsiella tarda ASE201307 MBLV00000000

Edwardsiella tarda EIB202 CP001135

Enterobacter asburiae  ATCC 35953 CP011863

Enterobacter cloacae 2 CP016906

Enterobacter cloacae  LB2 LFLH00000000

Enterobacter hormaechei CAV1176 CP011662

Enterobacter kobei DSM 13645 CP017181

Enterobacter ludwigii EN 119 CP017279

Enterobacter ludwigii NCR3 MCGF00000000

Enterobacter xiangfangensis LMG27195 CP017183

Enterobacter xiangfangensis NS19 LDQK00000000

Erwinia amylovora 01SFR BO HF560647

Erwinia amylovora ATCC 49946 FN666575

Erwinia billingiae Eb661 FP236843

Erwinia billingiae  OSU19 1 LHXI00000000

Erwinia gerundensis EM595 LN907827

Erwinia iniecta B120 JRXE00000000

Erwinia mallotivora BT MARDI JFHN00000000

Erwinia persicina NBRC 102418 BCTN00000000

Erwinia piriflorinigrans CFBP 5888 CAHS00000000

Erwinia pyrifoliae DSM 12163 FN392235

Erwinia tasmaniensis Et1 99 CU468135

Erwinia teleogrylli SCU B244 KQ947376

Erwinia toletana DAPP PG 735 AOCZ00000000

Erwinia tracheiphila  BuffGH JXNU00000000

Erwinia typographi M043b JRUQ00000000

Escherichia albertii CB9791 BBVS00000000

Escherichia albertii EC06 170 AP014857

Escherichia albertii HIPH08472 BBVZ00000000

Escherichia albertii KF1 CP007025

Escherichia albertii NIAH Bird 5 BBVP00000000

Escherichia albertii TW07627 CH991901

Escherichia fergusonii ATCC 35469 CU928158

Escherichia fergusonii ECD227 CM001142

Escherichia fergusonii FDAARGOS 170 LORS00000000

Escherichia fergusonii GTA EF03 JZWN00000000

Escherichia hermannii NBRC 105704 BAFF00000000

Escherichia vulneris NBRC 102420 BBMZ00000000

Ewingella americana ATCC 33852 JMPJ00000000

Franconibacter helveticus LMG 23732 AWFX00000000

Hafnia alvei ATCC 13337 JMPK00000000

Hafnia alvei FB1 CP009706

Hafnia alvei FDAARGOS 158 CP014031

Klebsiella michiganensis HKOPL1 CP004887

Klebsiella oxytoca CAV1015 CP017928

Klebsiella pneumoniae 119 LT216436

Klebsiella variicola At 22 CP001891

Kluyvera cryocrescens  L2 LGHZ00000000
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Table 6.2 continued.  

 

 

 

 

 

 

 

Species and strain name Accession

Kluyvera intermedia CAV1151 CP011602

Kluyvera intermedia NBRC 102594 ATCC 33110 BCYS00000000

Kosakonia cowanii 888 76 CP019445

Kosakonia oryzae D4 LT799040

Kosakonia radicincitans GXGL 4A CP015113

Kosakonia sacchari BO 1 CP016337

Leclercia adecarboxylata  I1 MUFS00000000

Leclercia adecarboxylata LK24 LDWM00000000

Leminorella grimontii ATCC 33999 DSM 5078 2 JMPN00000000

Leminorella grimontii ATCC 33999 DSM 5078 AUUA00000000

Lonsdalea quercina subsp quercina ATCC 29281 JIBO00000000

Mangrovibacter phragmitis MP23 LYRP00000000

Moellerella wisconsensis  ATCC 35017 LGAA00000000

Morganella morganii 340 JQGP00000000

Morganella psychrotolerans GCSL Mp20 LZEY00000000

Pantoea agglomerans 190 JNGC00000000

Pantoea agglomerans  C410P1 CP016889

Pantoea ananatis AJ13355 AP012032

Pantoea ananatis AMG521 LMYG00000000

Pantoea anthophila 11 2 JXXL00000000

Pantoea conspicua  IF5SW P1 MIZY00000000

Pantoea dispersa SA2 LDSD00000000

Pantoea eucrina Russ MAYN00000000

Pantoea rwandensis ND04 CP009454

Pantoea septica FF5 CCAQ00000000

Pantoea sesami Si M154 FQWJ00000000

Pantoea stewartii subsp indologenes LMG 2632 JPKO00000000

Pantoea stewartii subsp stewartii DC283 AHIE00000000

Pantoea vagans C9 1 CP002206

Pectobacterium atrosepticum  21A CP009125

Pectobacterium atrosepticum CFBP 6276 CM001850

Pectobacterium betavasculorum NCPPB 2793 JQHL00000000

Pectobacterium carotovorum subsp actinidiae  ICMP 19971 MPUI00000000

Pectobacterium carotovorum subsp brasiliense  BC1 CP009769

Pectobacterium carotovorum subsp brasiliense CFIA1001 JPSM00000000

Pectobacterium carotovorum subsp carotovorum BC D6 JUJT00000000

Pectobacterium carotovorum subsp carotovorum PCC21 CP003776

Pectobacterium carotovorum subsp odoriferum NCPPB 3839 JQOG00000000

Pectobacterium parmentieri CFIA1002 JENG00000000

Pectobacterium parmentieri RNS08 42 1A CP015749

Pectobacterium wasabiae  CFBP 3304 2 CP015750

Pectobacterium wasabiae CFBP 3304 AKVS00000000

Photorhabdus asymbiotica ATCC 43949 FM162591

Photorhabdus luminescens ATCC 29999 FMWJ00000000

Photorhabdus luminescens subsp laumondii TTO1 BX470251

Photorhabdus temperata subsp thracensis DSM 15199 CP011104

Pluralibacter gergoviae  FB2 CP009450

Pragia fontium DSM 5563 ATCC 49100 FOLW00000000

Proteus hauseri ATCC 700826 LXEV00000000

Proteus mirabilis AOUC 001 CP015347

Species and strain name Accession

Proteus penneri ATCC 35198 GG662004

Proteus vulgaris ATCC 49132 KN150745

Proteus vulgaris CYPV1 CP012675

Providencia alcalifaciens 205 92 JALD00000000

Providencia burhodogranariea  DSM 19968 KB233222

Providencia heimbachae ATCC 35613 LXEW00000000

Providencia rettgeri 729 12 LYBX00000000

Providencia rustigianii DSM 4541 GG703851

Providencia stuartii 50655837 LNHS00000000

Rahnella aquatilis  HX2 CP003403

Rahnella aquatilis OV588 JUHL00000000

Raoultella ornithinolytica 10 5246 JH603146

Raoultella ornithinolytica 18 CP012555

Raoultella terrigena NZ133 MUBF00000000

Rouxiella chamberiensis 130333 JRWU00000000

Salmonella bongori N268 08 CP006608

Salmonella bongori NCTC 12419 FR877557

Salmonella enterica subsp arizonae serovar 62 z36 str RKS2983 CP006693

Salmonella enterica subsp enterica serovar Choleraesuis C500 CP007639

Salmonella enterica subsp enterica serovar Typhimurium SO4698-09 LN999997

Salmonella enterica subsp houtenae  01 0133 JWSP00000000

Salmonella enterica subsp indica serovar 11 b 1 7 BCW 1559 MXOA00000000

Salmonella enterica subsp salamae RKS2993 JXTT00000000

Salmonella enterica subsp VII serovar 1 40 g z51 2439 64 MXLH00000000

Serratia fonticola 5l MQRH00000000

Serratia grimesii A2 JGVP00000000

Serratia liquefaciens 20 SPLY JVQG00000000

Serratia marcescens CAV1492 CP011642

Serratia plymuthica 4Rx13 CP006250

Serratia proteamaculans 568 CP000826

Serratia symbiotica  SCt VLC FR904230

Shimwellia blattae  DSM 4481 NBRC 105725 CP001560

Siccibacter colletis 1383 JMSQ00000000

Siccibacter turicensis LMG 23730 AWFZ00000000

Tatumella morbirosei LMG 23360 CM003276

Tatumella ptyseos ATCC 33301 2 JMPR00000000

Tatumella saanichensis NML 06 3099 ATMI00000000

Xenorhabdus bovienii  CS03 FO818637

Xenorhabdus doucetiae FRM16 FO704550

Xenorhabdus eapokensis  DL20 MKGQ00000000

Xenorhabdus hominickii ANU1 CP016176

Xenorhabdus mauleonii DSM 17908 FORG00000000

Xenorhabdus nematophila AN6 1 LN681227

Xenorhabdus poinarii G6 FO704551

Xenorhabdus thuongxuanensis 30TX1 MKGR00000000

Yersinia enterocolitica FORC 002 2 CP009456

Yersinia pestis 2944 CP006792

Yersinia pseudotuberculosis EP2 CP009759

Yokenella regensburgei  ATCC 43003 JH417859

Yokenella regensburgei ATCC 49455 JMPS00000000



202 

 

6.3.2. ETT2 homologue presence and absence 
 

To identify gene homologous to ETT2 genes in the 100 E. coli set, the cryptic clade set, and 

the 200 Enterobacteriaceae strain set, BLAST analysis was carried out. To do this a 95% amino 

acid identity cut-off value was used, as this was determined as the appropriate value to identify 

orthologues in E. coli identified in Chapter 3 and 33 ETT2 locus genes obtained from E. coli 

strain 042 (Genbank accession:  FN554766) were used as reference gene sequences (loci yqeH 

– 3075 for ETT2 genes). No length cut-off was used so homologous sequences which were 

truncated and had partial gene sequence matches could be identified in sequences. Genotypes 

were then visually inspected using Artemis (Rutherford et al. 2000). 116 ETT2 varied 

genotypes found in previously unreported strains were determined. 18 A, 30 B1, 8 E, 10 D1, 

and 7 D2 genotypes from phylogenetic groups A-D2 were described. Among phylogenetic 

groups A–G, presence of ‘complete’ E. coli 042-like homologues were most prevalent in D1 

strains followed by groups E and D2 strains when no multiple deletions had occurred, with a 

complete deletion of ETT2 genes in groups G and B2 (Table 6.3, Table 6.4, Table 6.5).  

Table 6.3. Mean amino acid percentage identity values of complete and partial ETT2 

homologues relative to the whole of each E. coli strain 042 reference gene for all strains of 

each of the phylogenetic groups A-G in the 100-strain set.  

 
 

Table 6.4. Percentage of strains from each of the A-G phylogenetic groups from the 100-strain 

set with inferred deleted ETT2 homologues within their genomes, for each ETT2 gene. 
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Table 6.5. E. coli strain 042 ETT2 PI presence indicated by percentage amino acid identity of 

33 complete and partial ETT2 gene sequences within the genome set of 100 phylogenetically 

diverse E. coli from groups A-G and Cryptic clade strains.* 

 

* ETT2 gene names and strain groups for each genome are labelled. Darkness of blue 

(scale: ≤ 30% identity (white) to 100% identity (dark blue)) indicates increasing 

percentage identity of each ETT2 reference gene to a homologous gene present in each 

genome. Only genes with > 30% identity and length relative to ETT2 reference genes 

are shown. 

Group Strain name
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B1 3 5 R3
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B1 ECOR 67

B1 ECOR 68

B1 H14

B1 H15

B1 H3

B1 M10

B1 M18 2

B1 O104:H4 str. 2009EL-2050

B1 O111:H- str. 11128

B1 O139:H28 str. E24377A

B1 O1O3:H2 str. 12009

B1 O96:H19 CFSAN029787

B1 S10

B1 S3

B1 S42

B1 S50

B1 S56

B1 St Olav17
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Table 6.5 continued. 

  

 

Premature stop codons (truncations) were determined for homologues based on the presence 

of a reduced identity value for them relative to the full-length E. coli strain 042 reference ETT2 

gene sequences in BLAST, compared to that of full-length homologue sequences, followed by 

manual inspection sequences. Premature stop codons were determined to be most prevalent in 

A and B1 strains of A-G groups relative to other groups, indicated by their lowest mean 

percentage homologue identity values relative to full length E. coli strain 042 reference gene 

sequences (Table 6.3). Genes ygeF, ygeJ, 3054, epaS, eivJ1, eivC, and 3075 were the most 

frequently truncated genes in group A strains, and ygeF, ygeJ, etrB, 3054, eprJ, eprI, eprH, 

epaS, epaI, eivC, and 3075 the most frequently truncated in group B1 (evidenced by ≤ 80% 

identity (Table 6.3, Table 6.5)). The genes ygeJ and epaS were truncated in all group A strains, 

ygeJ, etrB, 3054, eprI, and epaS are truncated in all B1 strains (Table 6.3, Table 6.5), and eivJ1 

was truncated in all group E strains (Table 6.3, Table 6.5). Groups A and B1 strains also 

Group Strain name

E 400654

E AF85

E B185 

E C161 11

E D6-113

E O157:H16 str. Santai

E O157:H7 str. Sakai 

E O169:H41 str. F9792

D1 042

D1 B354

D1 C1

D1 C4

D1 EC2

D1 ECOR 48

D1 TA255

D1 TA280

D1 UMN026

D1 upec 213

D2 24 1 R1

D2 BIDMC 19C

D2 HVH 87 4

D2 IAI39

D2 SMS35

D2 Swine 65

D2 UCI 57

C-I 2 011 08 S1 C1

C-I TW10509

C-I TW15838

C-III KTE31

C-III TW09231

C-III TW09276

C-IV 1 176 05 S3 C2

C-IV TW11588

C-IV TW14182

C-V KTE52

C-V KTE96

C-V TW09308
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exhibited a full homologue absence of all genes in at least one strain, apart from yqeH in group 

B1 (Table 6.5). An 8.7 kb 9-gene eivJ2 to 3074 region was also absent in all but one strain in 

each of groups A and B1 (strains 25 and APECO78 respectively), which lacked the four 

homologue region eivA to eivF within the 8.7 kb region (Table 6.5). Other absences of 2 or 

more genes were present in 6 A and 12 B1 strains, and of 4 or more genes were present in 4 A 

and 3 B1 strains (Table 6.5). One group A strain exhibited a full ETT2 island deletion (H1), 

and 1 A and 2 B1 strains exhibited complete absences other than yqeH (Table 6.5). Of the 

group A and B1 deletion genotypes (Figure 6.10), 4 group A and 3 group B1 strains exhibited 

different genotypes with an insertion sequence annotated as transposon (6 and 1 across A and 

B1 genotypes respectively) and integrase (3 and 2 across A and B1 genotypes respectively) 

encoding genes in different locations (Figure 6.10). Group B1 additionally exhibited 2 

genotypes with 5 phage-related genes and 2 with 2 insertion sequences within 10 kb of the 

homologues (Figure 6.10). 1 group D1 genotype exhibited a complete absence of ETT2 

homologues (Table 6.5, Figure 6.10). 4 group E and D2 strains each exhibited deletion of 2 or 

more genes, and 2 E and 4 D2 strains exhibited homologue deletions of 4 or more (Table 6.5, 

Figure 6.10). Of the group E and D2 genotypes deletions of 4 or more, 1 D2 strain exhibited a 

full homologue deletion (Table 6.5, Figure 6.10), and 2 and 3 genes encoding transposons were 

found across E and D2 genotypes respectively with an integrase-encoding gene within 10 kb 

of ETT2 homologues in 1 group E strain (Figure 6.10). Where homologues were present in E, 

D1, and D2 strains, they were not truncated to the point of exhibiting < 95% identity in a 

BLAST against the full length strain 042 reference genes in D2 and D1 strains, and only 

exhibited < 95% identity in a BLAST against the full length strain 042 reference genes with 3 

homologues amongst group E strains (ygeJ, eivH, and eivJ1) (Table 6.3, Table 6.5, Figure 

6.10). All strains of phylogenetic groups G and B2 exhibited a full ETT2 homologue deletion. 
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All homologues of genotypes across groups A-D2 were located within 10 kb of one another 

apart from in two strains (CFSAN026836 (group A) and E110019 (group B1) (Figure 6.10).  

E. coli phylogenetic group A 
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E. coli phylogenetic group D2 
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E. coli phylogenetic group B2 

 

Figure 6.10 Genotypes of ETT2 homologues as present in E. coli from phylogenetic groups 

A-G. ETT2 E. coli 042 reference genes are present and labelled in the top row of each figure, 

with the genes present in the given strain on the bottom row in the order they are present in the 

genome. Red bars between the top and bottom rows indicate regions of homology between 

ETT2 genes of E. coli 042 and the given strain identified with BLAST. Genes with identity 

and length ≥ 30% are coloured dark blue, and homologues disrupted by premature stop codons 

are coloured light blue. Genes in the strain between homologues with no ETT2 homologue are 

coloured white, and genes encoding mobile genetic elements including transposons, 

bacteriophages, or insertion sequences are coloured yellow with a T, P, Is, It, annotated 

underneath denoting its annotation as a transposon, phage-related gene, insertion sequence, or 

integrase. An account of whether the 160 genes upstream and downstream of the first and last 

ETT2 homologue shown in the figure is homologous to the 160 upstream and downstream 

genes of ETT2 in E. coli 042 is described under each figure also. 
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The presence of four homologues (yqeH, yqeI, yqeJ, and ygeH) located at the yqeG glyU tRNA 

locus were found in cryptic clade groups C-III, C-IV, and C-V, and an almost complete E. coli 

strain 042-like ETT2 was found in two group C-I strains (Table 6.6, Figure 6.11). Each of these 

genotypes were present as separated 4 and 5 block regions of homologues in strains TW10509 

and TW15838 respectively, separated by at least 50 kb (Figure 6.11). Each genotype included 

5 and 3 mobile genetic elements within 10 kb of blocks respectively (Figure 6.11).  

Table 6.6 E. coli strain 042 ETT2 PI presence indicated by percentage identity of 33 ETT2 

genes within the genome set of 20 strains from cryptic clade phylogenetic groups C-I to C-V.*  

 

* ETT2 gene names and strain groups for each genome are labelled. Darkness of blue 

indicates increasing percentage identity of each ETT2 reference gene to a homologous 

gene present in each genome. Only genes with ≥ 30% identity and length relative to 

ETT2 reference genes are shown. 

 

 

 

 

 

 

Group Strain name

E 400654

E AF85

E B185 

E C161 11

E D6-113

E O157:H16 str. Santai

E O157:H7 str. Sakai 

E O169:H41 str. F9792

D1 042

D1 B354

D1 C1

D1 C4

D1 EC2

D1 ECOR 48

D1 TA255

D1 TA280

D1 UMN026

D1 upec 213

D2 24 1 R1

D2 BIDMC 19C

D2 HVH 87 4

D2 IAI39

D2 SMS35

D2 Swine 65

D2 UCI 57

C-I 2 011 08 S1 C1

C-I TW10509

C-I TW15838

C-III KTE31

C-III TW09231

C-III TW09276

C-IV 1 176 05 S3 C2

C-IV TW11588

C-IV TW14182

C-V KTE52

C-V KTE96

C-V TW09308

Group Strain name
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D2 HVH 87 4

D2 IAI39

D2 SMS35

D2 Swine 65

D2 UCI 57

C-I 2 011 08 S1 C1

C-I TW10509

C-I TW15838

C-III KTE31

C-III TW09231

C-III TW09276

C-IV 1 176 05 S3 C2

C-IV TW11588

C-IV TW14182

C-V KTE52

C-V KTE96

C-V TW09308

y
q

e
I

y
q

e
J

y
q

e
K

y
g

e
F

y
g

e
G

y
g

e
H

y
g

e
I

y
g

e
J

e
tr

B

3
0

5
4

3
0

5
5

e
p

rK
e
p

rJ
e
p

rI
e
p

rH
e
tr

A
e
iv

H
e
p

a
S

e
p

a
R

e
p

a
Q

e
p

a
P

e
p

a
O

e
iv

J
2

e
iv

J
1

e
iv

I
e
iv

C
e
iv

A
e
iv

E
e
iv

G
e
iv

F
3

0
7

4
3

0
7

5

y
q

e
H



212 

 

Cryptic clade group C-I 

 

 

 

 

Cryptic clade group C-III 
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Cryptic clade group C-IV 

 

Cryptic clade group C-V 

 

 

Figure 6.11 Genotypes of ETT2 homologues as present in E. coli from cryptic clade 

phylogenetic groups C-I-C-V. ETT2 E. coli 042 reference genes are present and labelled in the 

top row of each figure, with the genes present in the given strain on the bottom row in the order 

they are present in the genome. Red bars between the top and bottom rows indicate regions of 

homology between ETT2 genes of E. coli 042 and the given strain identified with BLAST. 

Genes with identity and length ≥ 30% are coloured dark blue, and homologues disrupted by 

premature stop codons are coloured light blue. Genes in the strain between homologues with 

no ETT2 homologue are coloured white, and genes encoding mobile genetic elements 

including transposons, bacteriophages, or insertion sequences are coloured yellow with a T, P, 

Is, It, annotated underneath denoting its annotation as a transposon, phage-related gene, 

insertion sequence, or integrase. An account of whether the 160 genes upstream and 

downstream of the first and last ETT2 homologue shown in the figure is homologous to the 

160 upstream and downstream genes of ETT2 in E. coli 042 is described under each figure 

also. 

 

The presence of yqeH, yqeI, yqeJ homologues were found at the glyU tRNA locus within three 

of 4 E. fergusonii genomes (Table 6.7, Figure 6.11), each with genes encoding 2 phage-related 

proteins, 1 transposase, and integrase within 10 kb of the homologous region (Figure 6.11). A 

complete E. coli strain 042-like ETT2 with absent ygeF and eivJ1 genes were found in 3 of 6 

E. albertii strains (Table 6.7, Figure 6.11). The same homologues yqeH, yqeI, yqeJ were also 

found within the genomes of C. amalonaticus, C. farmeri, C. rodentium, and C. sedlakii (Table 
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6.7, Figure 6.12), which included tyrosine recombinases within 10 kb of the homologous region 

(Figure 6.12). yqeH was present in C. braakii, C. freundii, C. koseri, C. pasteuri, and C. 

werkmanii (Table 6.7, Figure 6.12) with all but the latter 2 being located in close proximity to 

the yqeG homologue and glyU tRNA locus (Figure 6.12). Of these genotypes, 3 of 4 contained 

mobile genetic elements within 10 kb of the homologous regions (Figure 6.12). 
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Table 6.7 E. coli strain 042 ETT2 PI presence indicated by percentage identity of 33 ETT2 

genes within the genome set of 10 non-coli Escherichia strains, 25 Citrobacter species strains. 

ETT2 gene names and strain groups for each genome are labelled. *  

 

* Darkness of blue indicates increasing percentage identity of each ETT2 reference 

gene to a gene present in each genome, and for comparison, SPI-1 and SPI-3 

homologues in Salmonella are coloured in green. Only genes with ≥ 30% identity in 

protein BLAST analysis relative to full length ETT2 reference genes are shown. No 

strains other strains from the 200-strain Enterobacteriaceae set contained ETT2 gene 

homologues. 

Group Strain name

Escherichia albertii CB9791

E.  albertii EC06 170

E.  albertii HIPH08472

E.  albertii KF1

E.  albertii NIAH Bird 5

E.  albertii TW07627

E.  fergusonii ATCC 35469

E.  fergusonii ECD227

E.  fergusonii FDAARGOS 170

E.  fergusonii GTA EF03

Citrobacter amalonaticus FDAARGOS 122

C.  amalonaticus FDAARGOS 166

C.  amalonaticus L8A

C.  amalonaticus Y19

C.  braakii 641 SENT

C.  braakii GTA CB04

C.  braakii SCC4

C.  farmeri GTC 1319

C.  freundii 4 7 47CFAA

C.  freundii B38

C.  freundii BD

C.  freundii CAV1321

C.  freundii CF04

C.  freundii P10159

C.  freundii RU2 BHI16

C.  freundii UCI 31

C.  koseri 2

C.  koseri ATCC BAA 895

C.  koseri DNF00568

C.  pasteurii CIP 55 13

C.  rodentium ICC168

C.  sedlakii NBRC 105722

C.  sp MGH106

C.  werkmanii NBRC 105721

C.  youngae ATCC 29220

Salmonella bongori N268 08

S.  bongori NCTC 12419

S.  enterica subsp arizonae RKS2983

S.  enterica subsp enterica C500

S.  enterica subsp enterica SO4698-09

S.  enterica subsp houtenae 01 0133

S.  enterica subsp indica serovar 11 b 1 7 BCW 1559

S.  enterica subsp salamae RKS2993

S.  enterica subsp VII 1 40 g z51 2439 64
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Figure 6.12. Genotypes of ETT2 homologues as present in E. coli strains from cryptic clade 

phylogenetic group C-I to C-V, Citrobacter, and non-coli Escherichia. ETT2 E. coli 042 

reference genes are present and labelled in the top row of each figure, with the genes present 

in the given strain on the bottom row in the order they are present in the genome. Red bars 

between the top and bottom rows indicate regions of homology between ETT2 genes of E. coli 

strain 042 and the given strain identified with BLAST. Genes with identity and length ≥ 30% 

are coloured dark blue. Separate regions of adjacent genes are numbered and their order and 

number of genes between each region in the strain’s genome is described under each figure. 

An account of whether the 160 genes upstream and downstream of the first and last ETT2 

homologue shown in the figure is homologous to the 160 upstream and downstream genes of 

ETT2 in E. coli 042 is described under each figure also. 
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6.3.3. Phylogenetic trees created using ETT2 gene sequence 
 

To determine the relatedness of ETT2 genes, phylogenies of ETT2 cluster genes which were 

shared across strains, homologous ETT2 gene sequences, were created. This was done by 

aligning homologous ETT2 gene sequences using Muscle before constructing phylogenies with 

RAxML. To determine the phylogenetic position of each group in each a manual approach was 

taken by colouring strains of each group a different colour for identification of the group, before 

noting the internal node denoting the clade in which ≥ 50% of strains of a given phylogenetic 

group were present. This node was noted as the topological position of the phylogenetic group 

in the phylogeny. For each phylogenetic group a strain which represented the central clustered 

topological position relative to all strains of the group under this node was chosen and ETE 

Toolkit (Huerta-Cepas et al. 2016) was used to prune each group’s representative from the 

phylogeny. A new phylogeny was then inferred using just the group reference strain sequences. 

Phylogenetic trees of genes yqeH and yqeI created using an amino acid alignment (Figure 6.13 

and Figure 6.14 respectively) showed Citrobacter, Cryptic clade, and non-coli Escherichia to 

be clustered as an outgroup to E. coli with the exception of C-I strains. C-I strains were shown 

to cluster with D1 and D2 strains in the yqeH to 3055, yqeH to epaP, and the yqeH to 3075 

phylogenies, and in the core ETT2 sequence phylogeny from strains of groups E, D1, D2, C-I, 

and E. albertii strains (15,436 bp) (Figure 6.15). 
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Figure 6.13. Left: A midpoint rooted Maximum likelihood RAxML phylogeny constructed 

using a core gene alignment of 210 amino acids identified as homologues of ETT2 gene yqeH 

in E. coli strain 042, which are present in 86 non-coli Escherichia and Citrobacter strains, and 

E. coli strains from groups A, B1, E, D1, D2, C-I, C-III, C-IV, and C-V. Each phylogenetic E. 

coli group or species is represented by a strain which represents phylogenetic position for > 

50% of strains of that group with homologous amino acids to the mentioned ETT2 genes. 

Right: a midpoint rooted RAxML core genome phylogeny constructed using a 2.2 Mb 

alignment. Topological differences between the two phylogenies are highlighted with a red, 

green, or blue to indicate the different branching topology for groups C-I, E. albertii, and E. 

fergusonii respectively. Percentage bootstrap support values are shown on internal branches. 

The scale bar indicates the number of substitutions per site represented by the branch length 

shown. 
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Figure 6.14. Left: A midpoint rooted Maximum likelihood RAxML phylogeny constructed 

using a core gene alignment of 497 amino acids identified as homologues of ETT2 genes yqeH 

and yqeI in E. coli strain 042, which are present in 80 non-coli Escherichia and Citrobacter 

strains, and E. coli strains from groups A, B1, E, D1, D2, C-I, C-III, C-IV, and C-V. Each 

phylogenetic E. coli group or species is represented by a strain which represents phylogenetic 

position for >50% of strains of that group with homologous amino acids to the mentioned ETT2 

genes. Right: A midpoint rooted RAxML core genome phylogeny constructed using a 2.2 Mb 

alignment. Topological differences between the two phylogenies are highlighted with a red, 

green, or blue to indicate the different branching topology for groups C-I, E. albertii, and E. 

fergusonii respectively. Percentage bootstrap support values are shown on internal branches. 

The scale bar indicates the number of substitutions per site represented by the branch length 

shown. 
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Figure 6.15. Four midpoint rooted phylogenies constructed using shared sequence across 

respective phylogenetic groups (a) and the core genome phylogeny of the same strains for 

topological comparison (b). The phylogenies are constructed using a core gene alignment of 1: 

7,310 bp from 12 adjacent ETT2 gene homologues of yqeH through until 3055 in 66 E. coli 

strains from groups A, B1, E, D1, D2, and C-I, 2: 13,402 bp from 22 adjacent homologues of 

yqeH to epaP from 62 E. coli strains from groups A, B1, E, D1, D2, and C-I, 3: 24, 285 bp 

from 33 adjacent homologues of 22 E. coli strains from groups E, D1, D2, and C-I, and 4: 

15,436 bp from ETT2 homologue sequence shared by strains of groups E, D1, D2, C-I, and E. 

albertii. Each phylogenetic E. coli group or species is represented by a strain which represents 

the phylogenetic position for > 50% strains of that group with homologous nucleotides to the 

mentioned ETT2 genes. The core genome phylogeny shown (in b) shares a red highlighted 

branch which indicates a topological difference for the group attached to the branch between 

the phylogenies. Percentage bootstrap support values are shown on internal branches. The scale 

bar indicates the number of substitutions per site represented by the branch length shown. 
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Phylogenetic trees of DNA sequence from each block of ETT2 homologues in the C-I strain 

genomes TW10509 and TW5838 revealed blocks are clustered closest to phylogenetic groups 

as follows for TW10509: 1: D2, 2: outgroup to D1 and D2 groups, 3: D2, 4: D1, and for 

TW15838: 1: outgroup to D1 and D2 groups, 2: D1, 3: D2, 4: D2, 5: E (Figure 6.16). To infer 

evidence of recombination of ETT2 sequence between strains from E. coli phylogenetic groups 

D1, E, C-I, and E. albertii, pan genome analysis was first carried out using Roary before core 

gene quartet recombination analysis was carried out using the resulting core gene alignment as 

input. The analysis between D1, E, C-I and E. albertii strains revealed that both TW10509 and 

TW15838 C-I strains clustered in a non-clonal manner, closest to D1 strains relative to group 

E and E. albertii strains in 200 kb (7.4%) of core genome sequence, and closest to E strains 

relative to the D1 and E. albertii in 10 kb (0.37%) of core genome sequence (Figure 6.17). 
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Figure 6.16. Maximum likelihood RAxML phylogenies constructed using the DNA sequence 

of each block region of adjacent ETT2 homologous genes which are present in strains 

TW10509 and TW15838 from group C-I, with the same DNA sequence in each case present 

in E. coli strains in groups E, D1, and D2. For TW10509, region 1 includes yqeH to yqeI, region 

2 is yqeJ to ygeK, region 3 is 3054 to eivF, and region 4 is gene 3074. For TW15838, region 1 

includes yqeH to ygeH, region 2 is ygeI to ygeJ, region 3 is ygeK to epaQ, region 4 is epaP to 

eivF, and region 5 is 3074 to 3075. Groups are coloured consistently between trees and the core 

genome phylogeny for groups E, D1, D2, and C-I is shown at the bottom so topologies can be 

compared to it. Percentage bootstrap support values are shown on internal branches. The scale 

bar indicates the number of substitutions per site represented by the branch length shown. 
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Figure 6.17. Sliding window 10 kb quartet recombination plot of potential recombination 

events between E. coli phylogenetic groups C-I (2), E (5), and D1 (9), and E. albertii (4) strains 

with a complete ETT2 island of homologues present. a. The x axis is the length of the core 

genome (2,690,705 bp) ordered as in strain TW10509, and the y axis indicates rows of quartet 

unrooted phylogenies constructed from the DNA sequence of each sliding window, each with 

different combinations of strains, one from each group C-I, E, D1, and E. albertii in each 

quartet. Non-overlapping windows move across the core gene in 10 kb intervals and the 

sequence from each sliding window was used to construct a quartet. The relationship of the 

four groups in the quartet were then coloured in the figure in accordance with their relationships 

shown in b. The lines dividing the plot mark when the group labelled on the left of the plot is 

changing in each quartet and the other three strains in the quartet are always the same. The 

thick line labelled ‘1’ and ‘2’ indicate when the reference strains, the strains which do not 

change in each quartet when they are the non-changing group for a section, change and a new 

reference set of four strains is used. The plot shows 200 kb (7.4 %) of C-I core genome clusters 

closer to D1 than other groups, and 10 kb (0.37%) clusters with group E closest. ETT2 gene 

sequence highlighted in the core genome is highlighted. 

 

6.3.4. Eip locus homologue presence 

 

To identify homologous genes to eip locus genes present in the reference genome E. coli 042 

(locus eicA – air) the same approach that was used to identify ETT2 gene homologues was 

used. Eip cluster homologues were found to be absent from strains of groups A, B1, G, B2, C-

II, C-IV, CV, and all strains in the 200 Enterobacteriaceae set other than E. albertii, where 

eicA and eilA homologues were present (Table 6.8). All E. coli strain 042 homologues were 

present in two E, two D1, and four D2 strains, and all genes other than air were present in three 

E, five D1, seven D2, and one C-I group strains (Table 6.8, Table 6.9, Table 6.10). Full locus 

absence was seen in two group E strains, and one C-I and E. albertii strain (Table 6.8, Table 

6.10). Within groups E, D1, and D2, genes eicA, eipD, and eilA were present in all but two 

strains with no truncations evident by <80% identity (Table 6.8, Table 6.9, Table 6.10), while 

air was truncated in the majority of E, D1, and D2 strains, with a complete deletion in 50% of 

D1 and 75% of E strains and full absence in C-I and E. albertii strains (Table 6.8, Table 6.9, 

Table 6.10). All eip locus gene homologues were found to be located within 10 kb of one 

another in each given genome.  
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Table 6.8. E. coli strain 042 eip full length gene cluster presence indicated by percentage 

identity of 6 complete and partial eip genes within the genomes of 8, 10, and 7 E. coli strains 

from phylogenetic groups E, D1, and D2 respectively, 3 E. coli cryptic clade group C-I strains, 

and 6 E. albertii strains. *  

 

* Eip gene names and strain groups for each genome are labelled. Darkness of blue 

(scale: < 30% identity (white) to 100% identity (dark blue)) indicates increasing 

percentage identity of each eip reference gene to a gene present in each genome. Only 

genes with ≥ 30% identity in protein BLAST analysis relative to full length eip 

reference genes are shown. No other strains from the E. coli phylogenetic groups A-G, 

cryptic clade groups C-I - C-V, or the 200-strain Enterobacteriaceae set contained eip 

gene homologues. 

Group Strain name

E 400654

E AF85

E B185

E C161 11

E D6-113

E H16 Santai

E O157:H7 str. Sakai 

E O169:H41 str. F9792

D1 042

D1 B354

D1 C1

D1 C4

D1 EC2

D1 ECOR 48

D1 TA255

D1 TA280

D1 UMN026

D1 upec 213

D2 24 1 R1

D2 BIDMC 19C

D2 HVH 87 4

D2 IAI39

D2 SMS35

D2 swine65

D2 UCI 57

C-I 2 011 08 S1 C1

C-I TW10509

C-I TW15838

Escherichia albertii CB9791

E. albertii EC06 170

E. albertii HIPH08472

E. albertii KF1

E. albertii NIAH Bird 5

E. albertii TW07627

ei
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ei
p

B
ei

p
C

ei
p

D

ei
lA

a
ir
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Table 6.9. Mean percentage identity values of eip homologues relative to E. coli strain 042 

reference genes for all strains of each of the phylogenetic groups A-G in the 100-strain set.  

 

 

Table 6.10. Percentage of strains from each of the A-G phylogenetic groups from the 100-

strain set with inferred deleted eip homologues within their genomes, for each eip gene. 

 

 

 

 

 

 

 

 

 

 

 

Group

E (N = 8) 99 77 60 83 85 54

D1 (N = 10) 99 84 69 98 100 72

D2 (N = 7) 99 90 84 97 93 53
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Group

E (N = 8) 25 25 25 25 25 75

D1 (N = 10) 0 0 0 0 0 50

D2 (N = 7) 0 0 0 0 0 0
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6.3.5. Phylogenetic trees created using eip locus gene sequence 

 

To identify create phylogenies using eip locus gene sequence for the purpose of inferring 

evolutionary history, the same approach that was used to for creating phylogenies of ETT2 

gene homologue sequences was used. Phylogenies constructed using eip locus DNA sequence 

showed that group C-I strains clustered closest to group D2 strains in all cases other than for 

the gene eilA (Figure 6.17). E. albertii gene sequences were shown to cluster as an outgroup in 

the eicA and eilA phylogenies (Figure 6.18). 

 

 

 



230 

 

 

 E
 D1

 D2

 E
 D1
 D2
 C-I

 D1
 E
 D2
 C-I

 E. albertii

 E
 D1
 D2

 D1
 E

 D2
 C-I

 E. albertii

eicA to air eicA to eilA

eicA

eilA air

 E
 D1

 D2
 C-I

eipB

 E
 D1

 D2
 C-I

eipC

 E
 D1

 D2
 C-I

eipD

 D1
 E

 D2
 C-I

 Escherichia albertii

Core genome



231 

 

Figure 6.18. Midpoint rooted maximum likelihood RAxML phylogenetic trees constructed 

using DNA sequence obtained from E. coli strain 042 eip locus gene homologues shared by 

strains of E, D1, D2, C-I, and E. albertii strains. A strain from each group which represents 

the phylogenetic position of > 50% of group members with homologous nucleotides to the 

given Eip locus gene(s), is labelled with its group label. Phylogenies are labelled as follows: 

EicA to air genes (constructed using 17,901 bp from homologues of eicA, eipB, eipC, eipD, 

eilA, and air present in 11 strains), eicA to eilA (constructed using 6,480 bp from homologues 

of eicA, eipB, eipC, eipD, and eilA present in 18 strains). Phylogenies labelled eicA, eipB, 

eipC, eipD, eilA, and air are constructed using 498 bp from 26 strains, 1,782 bp from 18 

strains, 1,152 bp from 18 strains, 1,350 bp from 18 strains, 1,698 bp from 23 strains, and 

11,421 bp from 13 strains respectively from the gene of their name. Groups are coloured 

identically between phylogenies for ease of comparison and the core genome phylogeny of 

groups D1, E, D2, C-I, and E. albertii is provided at the bottom for topological comparison to 

each phylogeny. The core genome phylogeny is shown (right) for comparison. Percentage 

bootstrap support values are shown on internal branches. The scale bar indicates the number 

of substitutions per site represented by the branch length shown. 

 

6.4. Discussion 
 

The purpose of the work in this chapter was to provide an up-to-date account of ETT2 and eip 

cluster revealing the extent of its complex evolution and genotypic diversity, confirm the 

results of previous research, and provide possible phenotypic insights for the clusters, using 

the set of 120 phylogenetically diverse E. coli strains described in Chapter 3 and 200 other 

species representatives of the Enterobacteriaceae family. This was effectively addressed 

through the testing of the hypothesis and 3 objectives. 

The first objective was addressed effectively by characterising and recording the number of 

unique ETT2 cluster genotypes using computational genome sequence comparison and 

analysis of differences using in-house programs. The 116 ETT2 varied genotypes found in 

previously unreported strains illustrate that ETT2 is more diverse between and within groups 

than reported previously. The previous studies characterising ETT2 genotypes described in 

Table 6.1 have not had the availability of genome sequence data to create samples of 

sufficiently large phylogenetic diversity to reveal inter and intragroup ETT2 genotypic 

differences at high resolution. The more representative level of sampling used in this study has 
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enabled identification of 18 A, 30 B1, 8 E, 10 D1, and 7 D2 genotypes from phylogenetic 

groups A-D2. This is an increase from 3 A, D1, D2, 2 B1, and 1 E genotype described by Ren 

et al. (2004) (Figure 6.4), and the 4 identified in groups A and B1, and 5 identified in groups 

B2 and D1 by Wang et al (2016). It has also aided previously unreported ETT2 homologues to 

be found in the genus Citrobacter, E. fergusonii, and in E. coli cryptic clade strains which are 

likely to be remnants of previously existing complete clusters. 

The second objective was effectively addressed through reviewing the presence of the ETT2 

cluster in non-E. coli bacterial species. Methods of phylogenetic construction were used with 

manual inspection of genotypes to infer the evolutionary point of origin of both the ETT2 and 

eip cluster. The presence of ETT2 homologues were found to be located at the yqeG glyU tRNA 

locus in 6 Citrobacter species and the phylogenies created using ETT2 sequence indicates that 

ETT2 was acquired prior to the divergence of Citrobacter and Escherichia genera. This is 

earlier than the previous inference of acquisition in the most recent common ancestor of E. coli 

and E. albertii (Ooka et al. 2015, Ren et al. 2004). Presence of two tyrosine recombinases 

within 10 kb of ETT2 sequence of four genotypes of Citrobacter indicate that is possible that 

they were involved in the deletion (Figure 6.11). 

The phylogenies of ETT2 gene sequence exhibit have a largely consistent topological 

relationships of phylogenetic groups relative to one another with those in the core genome 

phylogeny in Figure 6.14, Figure 6.15, and Figure 6.16 for E. coli from groups A-G groups, 

cryptic clades, non-coli Escherichia, and Citrobacter groups. The exception is ETT2 sequence 

from group cryptic clade group C-I stains, which clustered closest with D1, D2, and E group 

strains in these phylogenies, indicating that no ETT2 sequence recombination occurred 

between non-C-I ancestors of each group. However, in the yqeH and yqeI homologue 

phylogeny (Figure 6.15), E. fergusonii clusters closer to Citrobacter strains which is a topology 

that differs to that in the core genome phylogeny where it clusters closest to E. coli and E. 
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albertii (Figure 6.15). If the genes were clonally inherited though by these groups and did not 

undergo ancestral recombination, it is likely that alignment of DNA sequence used in the 

phylogeny (497 amino acids) exhibited an insufficient number of amino acid polymorphisms 

to adequately distinguish genes from each of the groups in phylogenetic analysis. If this was 

the case, the insufficient number of polymorphisms would have been the cause for the ETT2 

sequences from the groups clustering together in the phylogeny and therefore having a topology 

which conflicted to the topology for the same groups in the core genome phylogeny. However, 

this cannot be confirmed unless further DNA sequencing reveals other E. fergusonii strains to 

contain more ETT2 homologues. 

After acquisition in the ancestor of Citrobacter and Escherichia strains, it can be proposed that 

ETT2 was inherited as a complete 33-gene E. coli 042-like island by Citrobacter strains, 

followed by deletions of all genes but yqeH, yqeI, and yqeJ either through the action of tyrosine 

recombinases in C. amalonaticus, C. farmeri, C. rodentium, and C. sedlakii and all but yqeH 

in others through an unknown mechanism. It can also be inferred that in the Citrobacter sister 

group, the genus Escherichia, inherited a complete ETT2 island by its ancestor. E. fergusonii, 

the outgroup to E. coli and E. albertii, then inherited the complete island after which a deletion 

of all genes but yqeH, yqeI, and yqeJ mediated most likely through the activity of 

bacteriophages, an integrase sequence, and a transposon in this specific region. Also, it can be 

inferred that E. albertii clonally inherited a complete island after which deletion of ygeF and 

eivJ1 coding sequences occurred most likely as a result of frameshifts in sequence after indel 

mutations occurred at each gene’s locus. The complete ETT2 island was then inherited clonally 

by the ancestor of C-V, C-IV, and C-III Cryptic clades which underwent two deletion events 

from yqeK to ygeB, and ygeI to 30755, leaving four genes yqeH, yqeI, yqeJ, and ygeH when 

the 3 groups diverged, after which ygeH was deleted in C-III group strains all through an 

unknown mechanism. The results indicate the ETT2 cluster underwent homologous 
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recombination in C-I strains. The phylogenies of ETT2 sequence from C-I strains (Figure 6.12) 

indicates that in strain 2 011 08 S1 C1 all genes but a yqeH homologue was lost through the 

action of a transposon and an integrase but not in the other C-I strains. At least 3 different 

recombination acquisitions of sequence likely occurred in the ancestor of C-I strain TW10509 

and at least 4 in the ancestor of C-I strain TW15838 likely through the action of transposon, 

integrase, and bacteriophages, genes encoding each found in each genotype (Figure 6.10). This 

is also inferred as each block region of ETT2 homologues clusters either with D1, D2, as an 

out group to D1 and D2, or with group E strains (Figure 6.12). This is inconsistent with these 

groups’ relationships in the core genome phylogeny (also Figure 6.12), which most likely 

reflects clonal relationships where group C-I clusters as an outgroup to all A-G phylogenetic 

groups. Regions 1 and 3 from TW10509 and 3 and 4 from TW15838 both cluster with group 

D2 strains and cover the same 21 homologues ranging 3054 to eivF so likely originate from 

the same recombination event in the ancestor of both strain TW10509 and TW15838 (Figure 

6.12). Similarly region 2 of TW10509 and region 1 of TW15838 both cluster as outgroups to 

D1 and D2 strains (Figure 6.12) and include the five homologues ranging yqeJ to ygeH (Figure 

6.11) so may have been acquired in a single event in the ancestor also. The quartet analysis of 

recombination between E, D1, C-I, and E. albertii strains indicates that recombination between 

C-I and D1 and D2 strains makes up 7.4 % of the core genome including ETT2 genes, and 

between C-I and E strains makes up 0.34% of the genome (Figure 6.13), so horizontally 

transferred DNA between the ancestor of C-I, D1, and D2 like that in ETT2 has had a small 

but significant impact in structuring C-I group core genomes.  

The results also indicate that upon clonal inheritance of the ETT2 by the ancestor of E. coli, 

the island most likely underwent a full deletion in a single event in the ancestor of G and B2 

group strains as both groups have an almost identical ETT2 deletion genotype. Absence in 

group B2 has previously been reported (Ren et al. 2004). It was likely inherited by the ancestors 
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of D1 and D2 strains as a complete island, but underwent homologue truncations of ygeJ in the 

ancestor of group E, A, and B1 strains, epaS in the ancestor of group A strains, and 3054, eprI, 

epaS, epaO in the ancestor of group B1 (Table 6.5). A previously reported 8.7 kb deletion is 

likely to have occurred in the ancestor of groups A and B1 (Ren et al. 2004), although it may 

have occurred in two stages, where the four homologues eivA to eivF were deleted first in the 

ancestor to  both groups, and then a further deletion of the five homologues ranging eivJ2 to 

3074 in the ancestor of all strains other than 25 (group A) and APECO78 (group B1), which 

possess the same deletion genotype, although a quartet analysis would need to be carried out 

to remove recombinant sequence and create a non-recombination phylogeny to determine if 

these 2 strains are an outgroup to groups A and B1. Overall, these reported characteristic 

genotypic differences between phylogenetic groups do indicate that ETT2 cluster genotypes 

could theoretically be used as a phylogenetic marker in some cases for groups A, B1, E, D1, 

and D2, with absence of ETT2 as a marker for groups G and B2. This supports the chapter 

hypothesis and the result reported by Ren et al. (2004). 

After ancestral lineage divergence within groups A and B1, further premature stop codons and 

deletions occurred can be inferred to have occurred in homologues including 3054, 3055, ygeF, 

eivJ1, eivC, and 3075 in group A, and eprH, epaI, eivC, and 3075 in group B1 most frequently 

in individual strain lineages (Table 6.5). Partial island deletions of at least four genes occurred 

in 4 A, 3 B1, 2 E, and 4 D2 strains, including a complete deletion in 1 A and 1 D2 strain also 

occurred in individual strain lineages. Deletions were likely mediated by 5 transposon and 3 

integrases in group A, a transposon, 2 integrases, 3 insertion elements, and 5 bacteriophages in 

group B1, and 2 transposons, and 1 integrase in group E strain O157 H7 Santai (Figure 6.10). 

Also, recombination in strains CFSAN026836 (group A) and E110019 (group B1) likely 

occurred after strain divergence as each's ETT2 genotype is comprised of 2 and 3 block regions 

respectively and genes encoding 1 integrase and insertion element, and 2 phages are present 
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within 10 kb of homologues in the latter strain (Figure 6.10). Phylogenetic analysis of the 

regions revealed each originate within the same group of each respective strain (not shown). 

Other than these two occurrences, all ETT2 homologues in E. coli from A-G groups retained a 

single structure as a single genomic island block, evidenced by the observation that no 

homologue was further than 10 kb from any other in each genotype. 

The third objective was effectively addressed through manually reviewing ETT2 and eip 

cluster genotypes to identify genes without an inferred loss-of-function mutation and collecting 

likely functional annotations for proteins encoded by such genes to infer phenotypes for the 

genotypes. It was also effectively addressed by manually determining if genotypes with likely 

phenotypes were associated with the phylogenetic group of the strain with the given genotype.  

The presence of a truncated ygeJ and epaS homologue in both groups A and B1 may be 

evidence indicating that either premature stop codons in these genes, or the four-homologue 

deletion in the common ancestor of the groups A and B1, strain 25, and strain APECO78 

deemed the T3SSs of these groups to be non-functional. If so, the loss of the homologues did 

not reduce the survival of the ancestor, which meant after the homologue losses occurred, they 

were passed on to the descendant groups A and B1 when both appeared. Similarly, the 

truncation of ygeJ in group E strains may be the reason why a higher proportion of premature 

stop codons and deletions have accumulated in other genes in group E strains compared to D1 

strains, which mostly contained intact ETT2 homologue islands (Table 6.5). The single 

premature stop codon may have deemed the ancestor’s T3SS non-functional and enabled the 

accumulation of multiple other mutations in T3SS-related genes in the island as an intact T3SS 

was not crucial for survival. In groups D2 and D1, no homologue truncations or deletions are 

present in all strains so cannot be inferred to have occurred in the most recent common ancestor 

of strains for each group (Table 6.5). The inheritance of an intact ETT2 island by all strains of 

the group would have occurred and the ETT2 island may have worked as a functional unit 
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encoding a T3SS that was crucial for improved fitness, survival, and proliferation during 

adaptation when the group was diverging. Any homologue losses would have been associated 

with high fitness costs, meaning such genotypes are not inherited and a complete ETT2 

genotype was maintained. 

Studies disrupting the open reading frame of ETT2 genes have shown that an E. coli 042-like 

intact ETT2 in a genome indicate that the island is functional (Zhang et al. 2004, Wang et al. 

2017, Luzander et al. 2016, Ideses et al. 2015, Sheikh et al. 2016). However, with the 

assumption that all ETT2 genes must be intact to encode a functional T3SS, an ETT2 genotype 

with truncations and deletions may retain some function despite the island as a whole not 

encoding a functional T3SS. Such incomplete but functioning genotypes may exist in 

phylogenetic groups A, B1, E, D1, and D2, Cryptic clade, non-coli Escherichia, and 

Citrobacter genomes as the patterns of remaining genes indicate that ETT2 may represent an 

island which coordinates non-ETT2 gene regulation. ETT2 regulator genes etrA, etrB, and eivF 

have previously been found to have important roles in virulence (Zhang et al. 2004, Wang et 

al. 2017, Luzander et al. 2016), and the ETT2 regulator genes yqeH, yqeI, ygeH, etrA, etrB, 

and eivF are among the least deleted, least truncated, and most conserved ETT2 genes among 

phylogenetic groups A-E. Within groups A, B1, E, D1, and D2, yqeH is almost identical to that 

in E. coli strain 042 when present, and all other regulators exhibit little to no truncation and at 

least 86.6% average identity to reference genes (Table 6.9). The exception is the truncation of 

etrB in some strains (81.7 % and 70.4% mean identity) in groups A and B1 respectively, and 

complete absence of eivF (Table 6.5). Consistent with this, yqeH, yqeI, or just yqeH, have been 

retained after the deletion of most or all other ETT2 genes in ten strains from groups A–G, and 

C-III, C-IV, C-V, non-coli Escherichia, and Citrobacter strains. This may indicate that the two 

regulators yqeH, and yqeJ have a functional fitness value as a regulatory island after the loss 

of a functional ETT2 T3SS. 
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Non-regulator encoding genes which exhibit fewer truncations and deletions than other genes 

include (by group) A: ygeG (chaperone), eivH, and epaRQPO (putative surface presentation of 

antigen proteins), and B1: also ygeG, eivH, and epaR (Table 6.5). This may indicate that 

additionally to roles in regulation, genotypes in groups A and B1 may have roles in chaperoning 

non-ETT2 related proteins and the presentation of antigens on the cell surface. Also, the non-

regulatory genes eprHIJK with a previously found role in host serum survival (Ideses et al. 

2015) are on average not truncated among strains evidenced by >82% identity relative to 

reference genes in groups A, E, D1, and D2 (Table 7.6), indicating that these genes may be 

important for intracellular survival among strains in these groups. 

The results indicate that the eip locus island was acquired prior to the divergence of E. coli and 

E. albertii groups as homologues are absent in Citrobacter strains. It can be proposed that the 

eip locus underwent deletions of eipB, eipC, eipD, and air in the ancestor of E. albertii and a 

complete deletion in strain TW07627. It underwent a complete deletion in the ancestor of C-

III, C-IV, and C-V clade strains, and in the ancestor of C-I strains underwent a deletion of air, 

and an acquisition via homologous recombination from D2 strains in C-I group strains, 

replacing the 4 homologues eicA to eipD and leaving eilA, which shows C-I strains clustering 

as an outgroup to E, D1, and D2. C-I group strain 2 011 08 S1 C1 also underwent a complete 

deletion. The ancestor of phylogenetic groups A-G can be inferred to have clonally inherited a 

complete eip locus but it underwent a full deletion independently in the ancestor of groups A 

and B1, and G and B2. The lineages leading to strains C161 11 and O157:H7 str. Sakai (group 

E) underwent full deletions of the eip locus, eipC was independently deleted in groups E and 

D1 at least 3 times, and air was independently deleted at least 4 times in groups E, D1, D2, and 

C-I, indicating that these genes are unlikely to be important for survival in these groups. 

The eip locus may have been independently lost in strains of E. coli which lack the ETT2 island 

due to a functional dependence on ETT2. Sheikh et al. (2016) found that expression of the eip 
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locus gene eilA increased expression of ETT2 genes eivF and eivA, showing that the two 

genomic islands interact. If so, a deletion of ETT2 genes could result in eip locus becoming 

obsolete and increase the likelihood they accumulate truncations through frameshift mutations 

through lack of use. In groups D1 and D2, eicA, eipD, and eilA are ‘complete’ homologues 

with no truncation in all strains, and eipB is also present in all but one strain, which may indicate 

that the homologues have remained intact as a result of an intact ETT2 island being present in 

groups D1 and D2 (Table 6.5). It could be that the two genomic islands have a continued 

interaction which promotes survival and proliferation in many of the strains within groups D1 

and D2. As mentioned previously, group E may have a potentially non-functional T3SS in all 

strains due to a putative ygeJ truncation in the group ancestor, potentially meaning maintaining 

the eip locus can no longer be a functional genomic island in group E strains. Other than the 

air homologue, group E exhibits the largest strain percentage of truncation events in eipB, eipC, 

eipD, and eilA homologues (Table 6.10), and the lowest mean identity values for present genes 

compared to groups D1 and D2 (Table 6.9). The group also has the highest rate of air gene 

deletion compared to strains in groups D1 and D2 and contains strains with two full deletions 

(Table 6.8), which suggests that these genes may be not functional in group E. The eicA 

homologue is highly conserved (99% identity, Table 6.9) with no manually observed premature 

stop codon however, indicating it may be functional despite a mostly degraded eip locus in 

group E (Table 6.8). Furthermore, the absence of the eip locus in groups A and B1, and G and 

B2 could be due to the partial or complete absence of ETT2 in the ancestor of those lineages.  

In summary, the hypothesis, overall aim, and objectives were addressed which resulted in the 

creation of an up-to-date account of ETT2 and eip cluster genetic diversity and evolutionary 

history. The account was also then compared to that generated in reports published in previous 

research. Overall, the ETT2 island appears to have undergone widespread deletion events 

mediated largely by mobile genetic elements and undergone multiple recombination events in 



240 

 

the C-I strain group. The island has several group-specific characteristics including a complete 

absence in G and B2 strains, an 8.7 kb deletion in A and B1 strains, truncations of ygeJ in group 

E, A, and B1 strains, epaS in group A strains, and 3054, eprI, epaS, epaO in group B1 strains. 

These deletions and truncations thus potentially have some utility in being used as markers for 

phylogenetically assigning groups to E. coli strains from groups A-G. This supports the chapter 

hypothesis and the result reported by Ren et al. (2004), that ETT2 cluster genotypes can be 

used as a phylogenetic marker in some cases. ETT2 is mostly likely not a functioning T3SS in 

groups A, B1, and E but quite possibly functions as a regulatory island that coordinates gene 

expression in other areas of the genome. Furthermore, it likely has this role in the groups C-III, 

C-IV, C-V, non-coli Escherichia, and Citrobacter where intact regulator homologues exist 

despite degradation of the island as a whole. Results indicate the point of acquisition of ETT2 

to be in the ancestor of Citrobacter and Escherichia strains, a point earlier than previously 

reported, but there is no evidence that the eip locus originated at this point as the earliest point 

of occurrence is in E. albertii strains. There is some evidence that the eip-locus may have a 

functional dependence on the existence of a complete 042-like ETT2 island, as its presence is 

positively associated with more complete ETT2 genotypes. The results of this study will likely 

enhance understanding of the origins, evolution, diversity, and functionality of ETT2 and the 

eip locus which can be considered as genomic clusters with a probable importance to survival 

and proliferation in many commensal and pathogenic E. coli. 
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Chapter 7: Discussion 

7.1. Summary 
 

The findings presented in Chapters 3, 4, 5, and 6 include previously unreported insights into E. 

coli genetic diversity, evolutionary history, pathogenicity, and phylogenetic group assignment. 

These findings relate to strains representing the E. coli species as a whole (Chapter 3, Chapter 

4, and Chapter 6), and to E. coli strains which have been previously linked to virulence (Chapter 

5 and Chapter 6). In Chapter 3 an analysis of the E. coli pan genome, the core genome 

phylogeny, and the clonal frame phylogeny was carried out using a set of E. coli strains which 

exhibited a level of phylogenetic and phenotypic diversity that reflects the species. The analysis 

provided new estimates for the size of the core genome and revealed the proportion and 

numbers of accessory genes shared between groups. It also revealed the core genome topology 

to be as in Figure 3.5 and the clonal frame phylogeny to be as in Figure 3.8. The work in 

Chapter 3 provided an up-to-date estimate for the number of genes which have undergone 

recent and ancestral recombination between the phylogenetic group lineages also. This 

revealed that recent inter-group recombination between phylogenetic groups A-G has occurred 

in a greater number of genes than inferred ancestral inter-group recombination events. The 

types of genes which were inferred to exhibit the least ancestral recombination in their history 

were also reported, together with those which were inferred to have undergone ancestral 

recombination between phylogenetically distant groups. Furthermore, the analyses carried out 

supported the existence of a new E. coli phylogenetic group which clusters most closely to 

group B2 and was tentatively named ‘G’.  

Chapter 4 was an analysis to provide evidence to support the use of a proposed cgMLST as a 

reliable schema for assigning clonal and phylogenetic groups to group A-G and cryptic clade 

E. coli strains respectively, and as an alternative to using a core gene phylogeny, a cgMLST, 
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or a 7-15 locus MLST or multiplex schema. Through analysis of novel MLST schemas it was 

determined that 100% correct group assignment was only reliably achievable if 800 genes at 

least were utilised for the MLST. As using this number of genes was deduced to take a 

prohibitively long time, which compared to the 256 of the proposed cgMLST, it was proposed 

that the cgMLST be developed for use as an in-silico cgMLST either to function as a standalone 

program or one which forms a component of a larger bioinformatic sequence typing program 

like BIGSdb (Jolley et al. 2010). Furthermore a 7-gene MLST schema and a 10-locus multiplex 

schema were also developed which were inferred at their current stage of development to 

provide 100% correct group assignment (except for the inability of the multiplex to 

differentiate groups A and B1). Like the 256-gene proposed cgMLST, these were also 

suggested to be used as in-silico tools. 

Chapter 5 was an investigation into the genetic basis for UPEC urinary tract infection virulence 

phenotypes, specifically those which mediate mild to significant decreases in ureter 

contractility in 20 UPEC strains. Genes were determined which were significantly associated 

with different phenotypes through grouping strains by their exhibited phenotypes at 5 and 9 

hours and comparing the genomic contents of strains across the groups. It was concluded that 

multiple phenotypes were the result of the expression of a range of genes shared across different 

subsets of strains which have been acquired through HT in many cases. Out of the genes 

identified, of note was a 9-gene island, termed ‘1A1’, which was potentially responsible for 

the phenotype in 8 strains, possibly through the use of the haemolysin operon, a kdpD operon 

regulator present in 8 strains which allows the uptake of potassium and may directly inhibit 

ureter contractility, and an oxidoreductase enzyme which may have been involved in reducing 

the impact of oxidative stress defences initiated by host cells. Also of note was the identification 

of the two previously reported haemolysin operons hlyI and hlyII (Velasco et al. 2018) as part 

of an 8 gene cluster in strains 536 and J96, which exhibited the earliest decreases in ureter 
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contractility. The haemolysin operons were inferred to play a significant role in both strains 

exhibiting an early ureter contractility inhibition phenotype. 

Chapter 6 was a re-examination of the evolutionary history and genotypic diversity of the ETT2 

and eip genetic clusters across E. coli and other groups using up-to-date sets of genomes. These 

sets consisted of strains which represented the phylogenetic diversity present across E. coli and 

other closely related Citrobacter and Escherichia species. 116 varied ETT2 genotypes were 

identified and it was determined that the ETT2 cluster has undergone widespread deletion and 

gene truncation events mediated mostly by mobile genetic elements. Multiple recombination 

events of the cluster between C-I strains and groups E, D1, and D2 seem to have occurred, and 

genotypic characteristics specific to phylogenetic groups were found to exist. These included 

truncations of the genes ygeJ in groups A, B1, and E strains, epaS in group A strains, and 

ECs3054, eprI, epaS, epaO in group B1 strains. Such truncations could potentially be used as 

a marker for phylogenetic group assignment. It was inferred based on the arrangement of intact 

genes across phylogenetic groups that the ETT2 cluster most likely does not encode a 

functioning T3SS in groups A, B1, E but is potentially functional in group D1. ETT2 possibly 

has an alternative function as a regulatory island which coordinates gene expression in other 

areas of the genome in strains with incomplete ETT2 genotypes. The fragmented presence in 

groups C-III, C-IV, C-V, non-coli Escherichia, and Citrobacter indicate the point of 

acquisition of ETT2 to be in an ancestor of Citrobacter and Escherichia, earlier than previously 

reported. However, there was no evidence that the associated eip locus originated at this point, 

as it was only found in E. coli and E. albertii strains. Based on eip-locus genotypes the eip-

locus was speculated to have a functional dependence on an 042-like complete ETT2 cluster 

due to more complete eip genotypes being found when a complete ETT2 cluster was present. 
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7.2. The implications and contribution of this work  
 

The findings presented in Chapter 3 contribute to understanding of the genetic diversity and 

evolutionary history. The strain set of 100 E. coli exhibited a level of phylogenetic diversity 

which has not previously been reported and which could potentially be used as a reference set 

for studies of E. coli evolution and pathogenicity. The genetic diversity of the strains also meant 

the results most likely provide a level of detail not previously investigated, regarding E. coli 

phylogenetic group unique and shared core and accessory gene contents, ancestral and recent 

recombination, and the clonal frame phylogeny. Also, the finding of a previously unreported 

phylogenetic group (tentatively named ‘G’) in the clonal frame phylogeny means the inclusion 

of the group could be considered in future genetic studies of E. coli.  

In Chapter 4 a novel 256 gene cgMLST, 7 gene MLST, and 10 loci multiplex schema and set 

were determined which could be used to correctly assign clonal groups to A-G group strains 

and phylogenetic groups to cryptic clade strains in future studies. As tools they have potential 

to facilitate accurate clonal and phylogenetic group assignment to groups A-G and cryptic clade 

groups respectively, within a reduced computational time period if used as in-silico tools with 

hundred or thousands number of genome sequences. 

The genes identified in Chapter 5 which are significantly associated with ureter contractility 

decrease phenotypes could be further investigated to corroborate the inferred links to 

pathogenesis in this study. If gene knockout experiments are carried out and one of the 

designated phenotypes were found to be less virulent in the knockout strain through being 

associated with less ureter contractility in the experiment compared to a wild type strain, that 

could be the stimulus to initiate investigation to corroborate the existence of a gene to 

phenotype link. Further to this, it can be speculated that such further investigation could 
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potentially result in the development of a therapeutic drug to target the strains with the genes 

through interacting with the protein expressed by the gene.  

The findings in Chapter 6 about the ETT2 and eip locus contribute to understanding of the 

genotypic variation and evolutionary history of the two clusters, specifically the point at which 

their acquisitions occurred. The findings provide an insight into the ways in which type 3 

secretion system (T3SS) gene clusters can undergo significant changes in terms of deletions 

and truncation in different lineages to potentially take on new roles which are not necessarily 

secretion related. This is as previously unreported genotypes were determined across E. coli, 

Citrobacter, and non-coli Escherichia lineages, some of which have many gene truncations 

and deletions and some of which have genes with a previously reported link to virulence which 

were inferred to potentially express virulence-associated proteins as the genes are intact and 

truncation-free. 

7.3. Recommendations and future directions 
 

The next step to continue the work carried out in Chapter 3 would be to investigate the rates of 

ancestral and recent recombination of genes by functional category. It would be interesting to 

investigate whether genes associated with virulence undergo more regular recombination 

compared to genes not directly involved such as metabolism-related genes. This could be 

carried out through programmatically comparing the frequency of topological differences of 

gene phylogeny inconsistencies to the core genome phylogeny. It would be a way of measuring 

the frequency of genes of a certain clonal or phylogenetic group exhibiting inferred 

recombination. In this future study, this could be done with genes associated with virulence 

compared to those not associated with virulence. The frequency of inferred recombination 

could also be compared between genes associated with fitness in different environments such 
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as those associated with the different ExPEC pathovars or those associated with survival in 

different non-animal environments like on different soils, waters, or plants.  

The determination of the new group labelled as ‘G’ also provides potential for future research. 

Strains of the group originate from varied commensal and pathogenic pathovars so it appears 

in the first instance that they are not a group which is specifically adapted for exploitation of a 

specific environmental or host niche. The behaviours and metabolic differences of strains of 

this group could therefore be characterised to determine the specific features which 

differentiate them from other E. coli when interacting with different substrates and in varied 

environments. 

When sampling genomes to include in the set of 100 E. coli strains representing groups A-G in 

Chapter 3 it was clear that there is an over representation of publicly available whole genome 

sequences genomes from infection-related sources, and of strains from phylogenetic groups 

B2, A, and B1 compared to other groups. Increasing the representation from phylogenetic 

groups E, D1, B2, D2, G, and also cryptic clade groups could be recommended to obtain a 

more representative picture of E. coli genetic diversity. It can be proposed that this could be 

achieved with increased whole genome sequencing of strains from a range of soil, water, 

mineral substrate, plant, and wild animal sources in forests, wetlands, grasslands, and desert 

environments in tropical, sub-tropical, and temperate geographical locations around the world. 

E. coli have previously been sampled representatively for studies in areas such as these but 

whole genome sequencing was not carried out meaning phylogenetically unique and potentially 

highly interesting genetic insights in these genomes are not available for study. Examples 

include E. coli sampled at freshwater beaches (Walk et al. 2007), in cultivated soils (Hartmann 

et al. 2012), and from Australian domestic and wild animals including kangaroo, possum, 

waterfowl, emu, and deer (Ahmed et al. 2015). The reduced costs of whole genome sequencing 
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(Quainoo et al. 2018) mean that obtaining genome sequences from such isolates is now 

feasible. 

In terms of the Chapter 4, it can be recommended that the developed MLST schemas and 

multiplex be developed into research tools. Future work would focus both developing these 

into stand-alone or components of existing functional programmatic tools and also carrying out 

tests to determine their accuracy in assigning clonal groups A-G, and cryptic clade 

phylogenetic groups to hundreds or thousands of E. coli genome sequences. 

The potential for future work following the findings of Chapters 5 and 6 are similar. For ETT2 

and the eip-locus, cluster phenotype experiments could be carried out where complete genes 

are knocked-out to cause a loss of function mutation while the strain is exposed to a range of 

variable environments and in vitro and in vivo animal models. These studies could provide 

more evidence to link a given highlighted gene and a certain pathogenic or ecological 

phenotype. For the ureter phenotype data, similar work could involve application of pathogenic 

and mutant strains to a wider range of in vitro and in vivo animal models. Such studies could 

provide more evidence to link each of the highlighted genes to specific urinary tract infection 

phenotypes and potentially pave the way for the development of treatments which target the 

products of these genes. 
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