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Thesis Abstract  

The overall goal of this research was to better understand the mechanisms underlying the 

physiology of CHO cells, the most important mammalian host for recombinant protein 

production. The publication of complete genome of CHO cells allowed the use of mass-

spectrometry based proteomic tools to study protein expression. Among several different 

sample preparation methods for mass spectrometry, in-gel trypsin digest and FASP were 

found to be the most robust and optimal for high-coverage CHO proteome analysis. Global 

changes in protein expression between exponential and stationary phases were determined 

using SILAC for parental GS K-O and producing E�� cell lines. >���� proteins have been 

quantified and more than ��� proteins have been statistically differentiated.  Proteins up-

regulated in exponential phase control cell cycle and DNA replication, while proteins up-

regulated in the stationary phase are involved in stress response and signalling, making them 

interesting targets for cellular engineering. In addition to quantifying relative changes in 

protein expression between two phases of cell culture, more than 4000 protein copy numbers 

were calculated for parental and producing cell lines using TPA method. Protein turnover, 

described as the balance between protein synthesis and degradation, was calculated for 

>3000 cellular proteins. Combining these two parameters together allowed determination of 

top 10 proteins corresponding to 20% of global turnover rate. Production of monoclonal 

antibody was top priority, causing metabolic burden on cells. KEGG and GO annotation 

suggests that 600 up-regulated proteins in E22 producing cell line explained their clonal 

selection based on highest growth and productivity. Interestingly, there was no major 

differences found between amino acid and codon usage between parental and producing cell 

lines. In summary, a large-scale proteomic data set containing qualitative, quantitative and 

dynamic information on protein expression for industrially relevant CHO cell lines. 



 

 

Chapter 1: Introduction 

1.1 Chinese hamster ovary (CHO) cells and recombinant protein production 

1.1.1 Biopharmaceuticals and biosimilars 

Biopharmaceuticals can be defined as a group of recombinant therapeutic proteins produced 

using both prokaryotic and eukaryotic biological systems. Examples of such proteins include 

monoclonal antibodies, enzymes or hormones that can be used to treat medical conditions 

including cancer, autoimmune diseases and endocrine disorders. Since approval of tissue 

factor plasminogen (tPa) in 1986, more than 90 recombinant proteins have been produced 

using mammalian cells, bringing US $110 billion in annual income. These numbers are 

expected to grow as an average of 15 new approvals have been reported annually by the Food 

and Drug Administration (FDA) in 2006-2011(Lai, Yang, and Ng 2013). Biosimilars, which are 

essentially copies of biological drugs after the expiration of the patent, offer lower production 

costs and greater affordability, which improves access to treatment for millions of patients 

(McCamish and Woollett 2012). 

1.1.2 Mammalian cell factories 

Recombinant therapeutic proteins can be manufactured in bacterial, plant, yeast or animal 

cells. The choice of the expression system depends on both quality and functionality of 

recombinant protein. E. coli (Escherichia coli) is the most commonly used prokaryotic host 

due to its rapid growth, high product expression and ease of culture. It is ideal for industrial 

production of non-glycosylated proteins. However, E.coli cells are not capable of producing 

proteins containing multiple disulphide bonds and other post-translational modifications, 

mainly glycosylation (Demain and Vaishnav 2009). Glycosylation, involving attachment of 

glycan composed of various sugar residues, is important for about 70% of therapeutic 

proteins, mainly monoclonal antibodies. Despite recent improvements in the production of 

glycoproteins in E.coli (Jaffé et al. 2014), mammalian cells are the main hosts for industrial 

production of therapeutic proteins. There are several established mammalian cell lines such 

as baby hamster kidney, mouse myeloma-derived NSO, human embryonic kidney. 

Nevertheless, Chinese hamster ovary (CHO) cells are the most commonly used (Kim, Kim, and 

Lee 2012).  There are several reasons why using CHO cells is so popular. First, CHO cells have 
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been demonstrated to be safe hosts for the last 20 years, making it is easier to obtain approval 

to market therapeutic proteins from regulatory agencies such as previously mentioned FDA. 

Secondly, CHO cells can produce recombinant proteins with post-translational modifications 

that are similar to human. It is also easy to adapt CHO cells to grow in serum-free media which 

not only reduces cost but also allows better reproducibility (Kim, Kim, and Lee 2012).  

Furthermore, cloning techniques, design of expression vectors and clonal selection methods 

were significantly improved (Datta, Linhardt, and Sharfstein 2013),which has led to increase 

in the specific productivity from 0.05g/L to even 10g/L of recombinant product  (Wurm 2004; 

Huang et al. 2010).  

1.1.3 Strategies for cell line development  

The development of production cell lines is the first and probably the most important stage 

in the production of biopharmaceuticals using mammalian cell systems. The procedure starts 

with the selection of stable, high-productivity cell clones for large-scale production, followed 

by bioprocess optimization. Such stable clones are able to achieve high volumetric yields 

which can be defined by two parameters: cell specific production rate (Qp; pg/cell/day) and 

the integral viable cell concentration (IVCC; cell time per unit volume; (Dinnis and James 

2005).  

The cell line development technologies used by most biopharmaceutical companies around 

the world are based on two expression systems: MTX/DHFR amplification technology, 

developed in early 1980’s  (Kaufman and Sharp 1982) and Lonza’s glutamine synthetase (GS) 

system (Bebbington et al. 1992). 

1.1.4 Strategies for clonal selection  

DHFR system is based on the use of folate analogue methotrexate (MTX) to inhibit the 

function of dihydrofolate reductase (DHFR). DHFR converts dihydrofolate into 

tetrahydrofolate, which is a methyl group shuffle required for de novo synthesis of purines, 

thymidylic acid and certain amino acids. Transfection with an expression vector containing 

the DHFR gene does not allow MTX to poison transfected cells, while the antibiotic resistance 

gene can act as a selection marker. As a result, the only function of the DHFR gene is to amplify 

the vector (Birch and Racher 2006). 
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Figure 1.1 Overview of clonal selection strategies. A) The chemical reaction catalysed by dihydrofolate reductase (DHFR); B) 

Two-step process of glutamine synthesis from glutamate which is catalysed by glutamine synthetase (GS).  

The GS system is based on glutamine synthetase (GS), which is an enzyme whose function is 

to synthesize glutamine from glutamate and ammonia. Because glutamine is an essential 

amino acid, transfection of cells lacking endogenous GS with the GS vector allows the growth 

of cells in the glutamine-free medium.  

The use of any of the two systems will lead to strong gene amplification, which can be defined 

as an increase in the number of copies of the recombinant gene after transfection (Schimke 

1984).  To ensure the selection of cells that produce recombinant proteins, either single cell 

dilution or limiting dilution techniques are used. Typically, protein titre analysis is performed 

to select clones for progressive expansion. Finally, the growth profile of selected clones is 

evaluated in bioreactors and used to create Master Working Cell (MWC) banks. 

1.1.5 Origins of Chinese hamster ovary (CHO) cell lines 

The Chinese hamster ovary cell line was first derived from a population of immortalized 

fibroblasts from Chinese hamster ovary (Cricetulus griseus) by means of single cell cloning in 

1957. The Chinese hamster was found to be interesting in genetic research because of its low 

chromosome number (2n = 22) (Tjio 1958). Numerous cell lines containing various mutations 

have diverged since (Fig 1.2) due to various factors including mutations, selection pressures 

and clonal isolation methods (Lewis et al. 2013). 

The most commonly used CHO strain based on the DHFR system is the DG44 cell line. On the 

other hand, strains based on the GS system include the strain CHO-K1 and its suspension-

adapted derivative CHOK1SV.  Because both CHO-K1 and CHOK1SV still express the functional 

GS enzyme, addition of GS inhibitor, methionine sulphoximine (MSX) in the medium allows 

efficient use of GS expression vectors (Birch and Racher 2006).  The recent development of 
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CHOK1SV  GS knock-out (GS-KO) cell line using zinc finger nuclease (ZFN) technology has 

further improved selection of high-performance cell lines for a given recombinant product 

(Fan et al. 2012).  

 

Figure 1.2 The family tree of most commonly used Chinese Hamster ovary (CHO) cell lines. Adapted from Lewis 

et al. 2013.  

1.1.6 Structure and function of monoclonal antibodies 

Monoclonal antibodies (mAbs) are monospecific antibodies that are clones derived from a 

unique parental cell. In other words, monoclonal antibodies have monovalent affinity and can 

only bind to one single epitope. Their ability to bind to the target makes them an important 

tool in biochemistry and molecular biology to detect different substances (Chandel and 

Harikumar 2013). However, the greatest potential for the use of monoclonal antibodies 

occurs in many therapeutic applications. In fact, cancer treatment based on monoclonal 

antibodies was considered one of the most successful strategies in both haematological and 

solid tumours. The choice of the molecular target (antigen) for the development of the 

antibody depends on the understanding of the pathology of the disease, e.g. a different 

pattern of expression of specific genes in normal versus cancerous cells (Scott et al. 2012; 

Nelson, Dhimolea, and Reichert 2010). Most monoclonal antibodies currently used in 

therapeutic applications are of IgM or IgG type (Fig. 1.3).  
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Figure 1.3 Schematic structure of immunoglobulin (IgG) monoclonal antibody (A) The CDRs within Fab region of 

mAb bind to specific targets and cause antagonism, signalling or even ADCC (antibody-dependent cell-mediated 

toxicity). On the other hand, the Fc region, consisting of a hinge region and heavy chain constant domains, has 

other functions, including complement recruitment or binding to Fc receptors. B) Advances in genetic engineering 

have contributed to great progress in the development of monoclonal antibodies from murine mAbs through 

chimeric mAbs and humanized mAbs to fully human mAbs. Adapted from Hansel et al., 2010.        

As an example, trastuzumab (known under the trade name Herceptin(R)) was developed to 

target the HER2 receptor which is a member of transmembrane tyrosine kinase receptors 

responsible for intracellular signalling pathways controlling cells proliferation. HER2 receptor 

is often upregulated in breast cancers. Using this antibody revolutionised the treatment of 

HER2-positive cancers (Baselga and Swain 2009).            

1.2 Basics of Animal Cell Culture and Metabolism 

1.2.1 Cell growth  

Cell growth is defined as the increase in all its components as a direct result of the substrate 

uptake. It is known that changes in the behaviour of cells and biochemical components occur 

at every stage of cell growth. Mammalian cells grown in cell culture increase in number when 

a single cell divides mitotically after a period of adaptation and stops when the system 

becomes saturated. The growth of mammalian cells display similar growth pattern as simple 

bacteria and it can also be divided into separate phases (Sinha and Kumar 2008). 

1.2.2 Phases of cell growth 

Lag phase is the first stage of the growth curve (Figure 1.4) and it is the time it takes for cells 

to adapt to growth in fresh culture medium until the logarithmic phase begins. Cells may 
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require adaptation to new conditions, including medium components, supplementation or 

even different osmolality. The duration of this phase can vary and depends mainly on several 

conditions, including size of the inoculum, medium constituents and temperature (Sinha and 

Kumar 2008).  

In the exponential phase (logarithmic phase) the number of cells grows rapidly 

(exponentially), which can last from 2 to 8 days. At this stage, the cells have adapted to the 

new conditions, the media is rich in nutrients and there is enough room for growth, so there 

is no competition for space or nutrients. The rate of exponential growth is called generation 

(or doubling) time and it might range from 12 to 36 hours. The cells cease to divide when the 

primary nutrient is depleted or inhibiting substances are formed (Sinha and Kumar 2008).  The 

stationary phase occurs when the cell division stops, meaning that the growth rate is equal to 

the death rate. Some researchers describe the transition between the exponential phase and 

the stationary phase as the deceleration phase. The cells in response to the rapidly changing 

culture environment cause unsustainable growth. 

 

Figure 1.4 Typical Growth Curve for a Mammalian Cell. It is a function of viable cell concentration (VCC, solid line) 

and time (days). The viability (%, dashed line), defined as the ratio of viable cell concentration to total cell 

concentration, is also displayed. A) Lag phase, B) Exponential phase C) Stationary phase and (D) Death phase. 

In contrast to the exponential phase in which the cellular metabolic system is directed to 

achieve maximum reproduction rates, the onset of the stationary phase indicates 

reorientation of cell metabolism to increase chances of cell survival in response to rapidly 

changing conditions. Although the net growth is close to zero, cells are still metabolically 

active and produce secondary metabolites (non-growth-related products). It has been studies 

that the production of certain metabolites (such as hormones or antibodies) increases in the 
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stationary phase due to the deregulation of metabolism. Total cell concentration (TCC) 

remains constant but viable cell concentration (VCC) is constantly decreasing. The second 

phase of growth (cryptic growth) can occur when the cells use the lysed cell products (Shuler 

and Kargi 2002). The death phase follows the stationary phase and is the last phase of cell 

growth in culture. 

1.2.3 Types of cell culture processes 

The industrial production of recombinant proteins requires a large-scale fermentation 

strategy. There are three of the most popular cell culture strategies: batch culture, fed-batch 

culture and continuous culture. 

In batch culture, the cells are inoculated into a fixed volume of  proprietary medium and 

follow a sigmoid growth pattern. As the cells grow, nutrients are consumed, and metabolites 

accumulate. The environment in which the cells reside is constantly changing, and this in turn 

forces changes in the metabolism of cells, referred to as physiological differentiation. 

Multiplication of cells ceases when nutrients are depleted and accumulation of toxic 

metabolites or density-dependent growth restriction in monolayer culture, known as contact 

inhibition occurs (Masters 2000).  There are several strategies to prolong the life of a batch 

culture and to increase productivity by means of various scale-up methods, including 

intermittent replacement of a solid culture fraction with a volume of fresh medium (fed-

batch). The systems retain accumulated waste products to a certain extent and have a 

changing environment as opposed to a standard batch culture. 

When fresh medium is added continuously in connection with the continuous removal of the 

medium, this type of process is called a continuous batch. Working with continuous culture 

allows to achieve high cell density and high productivity without any compromise due to the 

reduction of nutrients or the accumulation of toxins (Masters 2000). Fed-batch provides a 

compromise between the standard series and continuous batch culture. In addition, it also 

helps to minimize the disadvantages of both. Fed-batch process consists of the gradual 

addition of fresh medium without removing the spent medium. As a result, the volume of the 

cell culture is gradually increasing. The main advantage of this process is that nutrients are 

continuously added to the culture to ensure prolonged cell growth and maintenance to 

achieve high cell densities. Furthermore, toxic metabolites do not accumulate to inhibitory 

levels. Fed-batch is relatively easy to carry out and do not require high technical skills or 
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instrumentation to operate as opposed to continuous culture (Agrawal, Koshy, and Ramseier 

1989). 

1.2.4 Subculture of mammalian cells 

Subculture (also referred as passage) is important for mammalian cells for several reasons. 

First, mammalian cells tend to be quite heterogeneous at the beginning of the culture and 

have a low growth fraction. What is more, CHO cell populations have been shown to be 

functionally heterogeneous even in transformed cell lines (Davies et al. 2013) and is due to 

their inherent genetic instability that can modify chromosome arrangement, gene copy 

number and transcriptional activity (Xu et al. 2011). The subculture allows expansion of cell 

culture and generation of cell lines, ensures greater uniformity and enables cloning and 

conservation. The biggest advantage of the subculture is the supply of large amounts of 

consistent material suitable for long-term use. 

1.2.5 Outline of cell culture metabolism  

Despite advances in research on CHO cells and other mammalian cells, intracellular 

metabolism in cell culture is still not fully understood. This limited knowledge of intracellular 

fluxes and in vivo metabolism during industrially relevant culture conditions limits the use of 

metabolic engineering techniques to further improve product yield and quality as well as 

overall bioprocess performance (Ahn and Antoniewicz 2011; Ahn, W. S., & Antoniewicz 2012).  

Studies have shown that the metabolism of CHO cells in culture is characterized by a high 

level of glucose uptake (the main carbon source) and glutamine uptake. This results in high  

rates of ammonium and lactate secretion (metabolic by-products) which are well known 

inhibitors of cell growth and protein production and may also have a negative effect on the 

glycosylation pattern of recombinant proteins. (Neermann and Wagner 1996; Yang and Butler 

2000). Proliferation requires that mammalian cells switch their metabolism from optimal 

energy production to maximum synthesis (Heiden et al. 2009). The cells  are required to 

increase the rate of glucose and amino acids uptake from the medium (DeBerardinis et al. 

2007). Most mammalian cells, including CHO cells, can metabolize glucose to lactate 

regardless of the oxygen levels. This is called aerobic glycolysis or “the Warburg effect”, which 

is also common in cancer cells (Warburg 1956). 
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There is still much to discover how CHO cells regulate their metabolic pathways to achieve a 

balance between energy and biomass production (Fig 1.5).  Since the main component of 

cellular biomass is a protein, proliferating cells have to maintain stable protein synthesis, 

which is also important in the production of recombinant protein.  

 

Figure 1.5 The schematic representation of typical metabolism of mammalian cells. The cells need energy to 

maintain homeostasis and carry out cellular maintenance, which may involve generating a concentration 

gradient, basal transcription and translation, protein turnover or DNA repair. While maintaining homeostasis, 

cells also need additional energy for growth and division. Mammalian cells require various nutrients because 

their synthetic capacity is much more limited compared to microorganisms. Nutrients are provided in the 

environment (chemically-defined medium) and are necessary for conversion into biosynthetic building blocks. 

1.2.6 Metabolism and transport of amino acids 

Mammalian cells depend on the uptake of essential amino acids for both protein synthesis 

and cell growth. Amino acids are molecules that have both a carboxylic (-COOH) and an amino 

group (-NH2) together with a specific side chain (R-group). Amino acids that are key 

components for the synthesis of cellular proteins are known as proteinogenic amino acids. 

There 22 proteinogenic amino acids: 20 are encoded in the genetic code, while the other two 

non-standard amino acids are selenocysteine and pyrrolysine (Table 1.1).  

Amino acid metabolism in mammalian cells can be studied using stable carbon isotopes (13C) 

that can directly measure amino acid uptake and production rates. If the biomass composition 



30 

 

for mammalian cells is known, it is possible to calculate fractions of amino acids utilized for 

catabolism (energy production) and anabolism (biomass synthesis). Further research into the 

differential contribution of amino acids to anabolism and catabolism could direct medium 

optimization in CHO cells (Ahn & Antoniewicz 2012).  

Furthermore, recombinant cell lines, such as CHO cells, have an increased demand for amino 

acids to support high titre of recombinant protein. The availability of amino acids in cells 

grown in chemically-defined medium depends not only on cellular metabolism requirements. 

It is also influenced by individual physical and chemical properties of amino acids, including 

solubility and stability (Salazar, Keusgen, and Von Hagen 2016). The movement of amino acids 

across mammalian cell is facilitated by transporter membrane proteins. This group of large 

proteins contains multiple transmembrane domains that span the phospholipid bilayer and 

can transport substances in the same (symport) or opposite (antiporter) direction. Amino acid 

transporters have been traditionally grouped into systems characterized by substrate 

specificity, transport mechanism and ion dependency (Christensen 1990).  Balanced delivery 

of amino acids into cells is essential for optimal cell growth and metabolism. 

1.2.7 Development of culture media 

Defining the cell culture environment was recognized early to be important in maintaining 

continuous (immortalized) mammalian cell lines. The role of essential amino acids, vitamins, 

minerals, salts, trace metals and other nutrients was demonstrated in 1950’s (Eagle 1955). To 

mimic the composition of body fluids, the media development was further amplified by the 

addition of serum (most commonly foetal bovine serum, FBS). The serum provides a huge 

variety of substances necessary for growth, such as hormones (e.g. insulin), growth factors 

(e.g. PDGF), and trace elements (Fe2+) as well as attachment factors (e.g. fibronectin). The 

serum also helps to maintain the desired pH and osmolality in cell culture. There are several 

drawbacks to the use of serum, which include high costs, batch-to-batch variation and the 

risk of contamination (Sinha and Kumar 2008). On the other hand, the advantages of using 

serum-free media are cheaper production costs, facilitating purification of recombinant 

proteins and nutrient composition tailored to specific needs of different cell lines. Basic 

components of any serum-free media include inorganic salts such as sodium chloride, 

vitamins and glucose.  Serum-free media also needs to provide essential amino acids to 

auxotrophic mammalian cells. There are 12 essential amino acids essential for proliferating 
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cells: arginine, cysteine, isoleucine, leucine, lysine, methionine, histidine, phenylalanine, 

tryptophan, threonine, tyrosine and valine. Additionally, some cells may have a higher 

requirement for cysteine, tyrosine  and glutamine (Sinha and Kumar 2008). Amino acids are 

not only precursors for protein and peptide biosynthesis but can also become metabolic 

intermediates for synthesising other biomolecules or used directly to generate energy. 

Table 1.1 Proteinogenic amino acids with abbreviations and codons.  

Name  Abbreviations Codons 

Essential amino acids 

L-Arginine Arg or A CGU, CGC, CGA, CGG, AGA & AGG 

L-Cysteine Cys or C UGU & UGC 

L-Glutamine Gln or Q CAA & CAG 

L-Histidine His or H CAU & CAC 

L-Leucine Leu or L UUA, UUG, CUU, CUC, CUA & CUG 

L-Methionine Met or M AUG 

L-Phenylalanine Phe or F UUU & UUC 

L-Threonine Thr or T ACU, ACC, ACA & ACG 

L-Tryptophan Trp or W UGG 

L-Tyrosine Tyr or Y UAC & UAU 

L-Valine Val or V GUU, GUC, GUA & GUG  

Nonessential amino acids 

Glycine Gly or G GGU, GGC, GGA &GGG 

L-Alanine Ala or A GCU, GCC, GCA & GCG 

L-Asparagine Asn or N  AAU & AAC 

L-Aspartic Acid Asp or D GAU & GAC 

L-Glutamic Acid Glu or E GAA & GAG 

L-Proline Pro or P CCU, CCC, CCA & CCG 

L-Serine Ser or S UCU, UCC, UCA, UCG, AGU & AGC 

Non-standard amino acids 

Selenocysteine Sec or U - 

Pyrrollysine Pyl or O - 

 

 

 

 



32 

 

1.3 Review of engineering strategies for CHO cells 

1.3.1 Traditional engineering approaches  

Since CHO cells have been used for in the production of recombinant proteins for decades, 

numerous engineering strategies have already been developed to increase both growth and 

productivity. They can be broadly divided into genetic and cellular engineering approaches 

Genetic engineering is based on the introduction of genes to produce heterologous proteins. 

This has been the most popular approach in the last 20 years, in which CHO cells were 

genetically modified for the production of recombinant protein (Jayapal et al. 2007; Walsh 

2010). The basic methods of increasing the production of recombinant proteins were 

improvements in gene-of-interest design, optimization of expression vectors and clone 

selection strategies (Fig 1.6).  

Cellular engineering aims to alter cell phenotypes and it mainly involves optimization of 

metabolic processes. These approaches engineer cells to reduce lactate production (Zhou et 

al. 2011), enhance cell growth profiles e.g. by resisting apoptosis (Dorai et al. 2009) or 

oxidative stress (Malhotra et al. 2008) or increase productivity through the improvement of 

glycosylation patterns (Jefferis 2009). Out of all these strategies, the reduction in lactate 

production proved to be the most effective: it was shown that by knocking out lactate 

dehydrogenase, the production of lactate was decreased by 80% and the product titre was 

increased up to 3-fold  (Richelle and Lewis 2017). Recent studies have also shown that over-

expression of pyruvate carboxylase, which catalyses carboxylation of pyruvate to 

oxaloacetate, has multiple positive effects, including prolonged lifespan of the cell culture, 

increased product titre and enhanced glycosylation profile (Gupta et al. 2017).   

Recently, engineering strategies have also been developed to increase the secretory capacity 

of CHO cells. Many studies have shown that post-transcriptional bottlenecks in the protein 

biosynthetic pathway lead to suboptimal levels of recombinant protein. The efficiency of CHO 

cells can be significantly increased by both expressing genes involved in protein translocation 

and ER folding and addition of small molecule chemical chaperones into medium (Hansen et 

al. 2017).  
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Figure 1.6  Overview of genetic engineering strategies in CHO cells. Adapted from Datta et al. 2013. 

1.3.2 RNA-based engineering approaches 

Over the past decade, RNA interference (RNAi) technology has become an important tool in 

biotechnology to silence gene expression in cells. There are many approaches by which RNAi 

can be used to increase CHO cell productivity, e.g. by silencing genes associated with 

apoptosis. Future use of this technology can also be extended to silence multiple targets in 

cellular pathways involved in metabolism or protein secretion (S.-C. Wu 2009).  

In addition to RNA interference technology, the use of small non-coding RNAs to engineer 

CHO cells also gained popularity. miRNAs are 18-25 nucleotides long, which can post-

transcriptionally affect gene expression via mechanisms well conserved in eukaryotic cells 

(Berezikov 2011). What makes using miRNA so attractive is the fact that they can alter key 

cellular phenotypes without having additional burden on translation. Due to imperfect 

binding to mRNAs targets, they can reduce the expression of many genes at the same time, 

instead of affecting a single target as in traditional engineering approaches. The change in the 

expression of specific miRNAs has already been used to successfully engineer CHO cells with 

a delayed onset of apoptosis or with higher specific productivity. By investigating low and 

non-producing CHO cells, the most interesting engineering targets were identified to use 

during industrial fed-batch monoclonal antibody production (Stiefel et al. 2016) or even 

optimise difficult-to-express (DTE) protein production (S. Fischer et al. 2017).  
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1.3.3 Heading towards ‘omic’ based engineering approaches  

Currently CHO cells engineering is moving into the direction of ‘omic’ based approaches 

(Figure 1.7). Generation of large-scale datasets will improve the basic knowledge of CHO cell 

physiology and lead to the development of tools for targeted engineering of new cell lines. 

The following sections highlight the most-important "omics" research in CHO cells over the 

last 10 years. 

 

Figure 1.7 The “central dogma of biology” is displayed together with the associated ‘omic’ studies and various 

research strategies. The individual gene activity can be regulated at the DNA level by means of epigenetic 

modifications. Genetic information encoded by DNA is directly transcribed into messenger RNA and translated 

into individual proteins. Following translation, proteins can be further modified to fully functional biomolecule 

that can take part in multiple cellular and metabolic processes. 

1.3.3.1 Genomic analysis of CHO cells 

Genomics can be defined as a comprehensive analysis of the genetic content of an organism 

(Gupta and Lee 2007). Publication of the CHO-K1 cell line genome sequence was a milestone 

in CHO cell research. The CHO-K1 genome sequence was established using de novo 

sequencing technique and assembled by short oligonucleotide analysis package (SOAP). It was 

found that the cell line has the 2.45 Gb genome and over 24,000 genes have been predicted 

based on transcriptomic analysis (Xu et al. 2011). This data can be now used as a tool for 

genetic and cellular engineering of CHO cells. 
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It is worth noting that genomes of cell lines derived from CHO-K1 may contain large-scale 

rearrangements and that even clonal populations have a high degree of heterogeneity 

(Pilbrough, Munro, and Gray 2009; Davies et al. 2013). Following the publication of first 

complete CHO genome, another study involved resequencing and analysis of the genomes of 

six CHO cell lines from 3 main lineages: CHO-K1 (anchorage-dependent), DG44 and CHO-S 

(both suspension-adapted). The results have been compared to the genomic sequence of a 

female Chinese hamster (see Fig 1.2). More than 3.7 million single nucleotide polymorphisms 

(SNPs), numerous indels (deletion or insertion of bases) and copy variants have been found. 

What is more, certain genes have been missing or mutated. Interestingly, many of these 

mutations are located in genes with functions related to bioprocessing such as apoptosis 

(Lewis et al. 2013). Based on these studies, new bioinformatics resource for CHO cells, 

CHOgenome.org, was made available (Hammond et al. 2012; Kremkow et al. 2015).  

1.3.3.2 Transcriptomic analysis of CHO cells 

Sequencing the CHO cell genome was the first step to a better understanding of cell 

physiology. Further research into global gene expression (transcriptomics) may reveal new 

engineering goals. Recent studies using next generation sequencing (NGS) technology have 

revealed that there are over 29,000 genes expressed by CHO cells under different growth 

conditions. Interestingly, more than 50% of genes were similar to mice (Mus musculus) and 

closely related to rats (Rattus norvegicus) (Baycin-Hizal et al. 2012) Using transcriptomic data, 

it is possible to reconstruct cellular pathways involved in central sugar metabolism and 

protein glycosylation (Becker et al. 2011). Moreover, transcriptomics can give a better insight 

into clonal variability and find specific features associated with  higher cellular growth (Doolan 

et al. 2013; Vishwanathan et al. 2015).   

1.3.3.3 Outline of proteomic research for CHO cells 

In addition to genomics and transcriptomics, measuring protein expression at a specific time, 

known as proteomics, can also aid in optimization of bioprocesses. It is believed that studying 

proteomics provide more valuable information about physiological state of the cell rather 

than global gene or transcript analyses. There were several studies concerned with CHO 

proteomic analysis before the publication of complete CHO-K1 genome. This included the 

investigation of the effects of low temperature shift and sodium butyrate, the two common 

ways of increasing productivity of CHO cells, on changes in protein expression (Joon et al. 
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2008; Kantardjieff et al. 2010). The studies have shown a correlation between higher 

productivity and the increased expression of proteins involved in protein processing and 

secretion, including Golgi apparatus, and cytoskeleton binding proteins. A later study 

monitored intracellular responses of CHO cells grown in serum-free media supplemented 

with hydrolysates to optimize growth or specific productivity (Baik et al. 2011).  Up-regulation 

of proteins involved in metabolism and protein folding was associated with higher growth 

while the expression of apoptotic proteins was down-regulated. On the other hand, higher 

specific productivity phenotype was correlated with increase of proteins involved in folding 

(chaperones) and those responsible for cell proliferation.  

One of the first studies following publication of CHO genome in 2011 analysed both 

intracellular proteins and extracellular proteins secreted into media, including glycoproteins. 

By comparing proteomic data to transcriptomic information, a good correlation was found 

between transcript levels and protein expression. However, the number of genes were 

significantly underrepresented in the dataset. For instance, both mRNA and protein were 

present at detectable levels while in some only mRNA was observed. The study emphasized 

the importance of integrating genomic, transcriptomic and proteomic data together to study 

biological pathways (Baycin-Hizal et al. 2012).   

In addition to measuring of protein expression, codon usage bias of CHO cells was 

determined. Codon bias, which can be described as unequal use of synonymous codons for a 

particular amino acid, is a common phenomenon, considered to be crucial in shaping gene 

expression and cellular function (Plotkin and Kudla 2011). The study showed that there was a 

significant difference between CHO and human codon biases for five amino acids: proline, 

alanine, aspartate, cysteine and threonine. The study suggests strategies for codon 

optimization for production of human proteins in CHO cells (Baycin-Hizal et al. 2012).  

1.3.3.4 Integration of ‘multi-omic’ approaches to engineer better host cells  

Many studies suggest that only by integrating various ‘omic’ data sets could we truly 

understand the physiology of CHO cells. By analysing such multidimensional data, it is possible 

to gain a deeper understanding of basic mechanistic changes taking place inside the cell which 

may guide optimization of the bioprocesses (Chen et al, 2015). Previously, only the most the 

most relevant studies were highlighted, namely publication of the CHO genome and initial 

transcriptomic and proteomic analyses. Other possible directions of ‘omic’ studies include the 
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analysis of glycosylation profile (glycomics), hereditary DNA modifications that can alter gene 

expression (epigenomics), measurement of mRNA translation within a cell and unit time 

(translatomics)  or analysis of metabolic activity (metabolomics).  

 

Figure 1.8 The possible roles of ‘omic’ tools in bioprocess development. The continued use of various “omic” tools 

in monitoring industrial bioprocesses could facilitate the selection of top producing cell lines. What is more, 

improving both product yield and quality as well as impurity characterization between different cell lines can 

result in better strategies for both upstream and downstream processing. Multiple “omic” approaches (“multi-

omics”) have the potential to be combined into quality monitoring systems and used at all stages of bioprocess 

development. Adapted from Gupta & Lee 2007.  

The availability of reliable databases and analytical tools are vital for successful integration of 

large ‘omic’ datasets. It has been predicted that there are many ways in which ‘omic’ tools 

could benefit large scale industrial bioprocesses (Figure 1.8). Design and development of 

novel bioinformatic resources is of great importance for both academic and industrial 

Research & Development (R&D). 

1.4 Mass spectrometry-based proteomics 

1.4.1 Definition of proteomics 

Proteomics is a study of the total complement of protein expressed by a genome of an 

organism (Wilkins et al. 1996), which makes it a powerful tool in molecular biology. It allows 

the analysis of the components of small protein complexes and large organelles, 

determination of post-translational modifications and monitoring of global changes in protein 
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profiles (Steen and Mann 2004). Isolation, separation and analysis of proteins pose much 

more technical challenges than DNA or RNA testing due to heterogeneous protein chemistry. 

Two primary technologies are most often used to study proteomics: two-dimensional gel 

electrophoresis (2D-GE) and mass spectrometry (MS). 

1.4.2 Gel-based proteomics 

Gel-based approaches include using two-dimensional separation of proteins by SDS 

electrophoresis based on their molecular weight, followed by isoelectric focusing (IEF) to 

separate proteins according to their isoelectric point (iP), at which the total net charge is equal 

to 0. This technique is called 2D-GE and can be used directly to assess the amount of protein 

present in a sample using densitometry, or it can be used as protein fractionation technique 

prior to MS-based analysis. The extension of this technique is known as 2D difference gel 

electrophoresis (2D-DiGE) in which proteins derived from different experimental conditions 

are fluorescently labelled with Cy2, Cy3 or Cy5 (Lilley and Friedman 2004). 2D-GE can 

theoretically resolve up to 10 000 proteins, but there are some limitations to this technique. 

First, a single protein spot may contain more than one protein, making data analysis difficult. 

Furthermore, 2D-GE cannot resolve certain groups of proteins, including highly hydrophobic 

and membrane proteins that are poorly soluble in aqueous solutions (McDonald and Yates III 

2000). For these reasons, gel-based approaches to proteomics testing have been largely 

replaced by mass spectrometry (Shao-En Ong and Mann 2005).  

1.4.2 Sample preparation for mass spectrometry analysis 

One of the main challenges in mass spectrometry analysis is sample complexity. Regardless 

of the organism being studies, each cell contains thousands of different proteins at varying 

abundance. Due to limitations in analytical resolution, reduction of sample complexity is 

essential (Stasyk and Huber 2004). There are two main strategies to prepare samples for mass 

spectrometry: in-gel and in-solution digest. The first method is based on the fractionation of 

complex protein sample by SDS-PAGE (sodium dodecyl sulphate-polyacrylamide based 

electrophoresis), hence it is called GeLC-MS/MS. Following band staining, individual bands (or 

even an entire lane) can be excised and divided into several fractions. The proteins in the gel 

slices are then digested with a protease, peptides are extracted and can be analysed by mass 

spectrometry (Fig 1.9).  
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Protein mixtures can be also digested directly in solution, as opposed to gel fractionation, and 

is known as shotgun proteomics. The protein mixture is often denatured in the presence of 

chaotropes or detergents, and then digested to produce peptides suitable for mass-

spectrometry analysis. In general, trypsin digestion is a preferred way of generating peptides 

(“tryptic peptides”) because it cleaves specifically at the C-terminus of arginine and lysine, 

generating positively charged peptides (Cravatt, Simon, and Yates 2007). Extension of in-

solution method is known filter-aided sample preparation (FASP), where protein extraction is 

facilitated by high concentration of detergents while protease digestion occurs on 

nitrocellulose filters (Jacek R Wiśniewski and Mann 2012). The advantage of using FASP is the 

possibility of solubilising highly hydrophobic or membrane proteins. 

 

Figure 1.9 The overview of sample preparation methods for mass spectrometry. HPLC, high-pressure liquid 

chromatography; MS; mass spectrometry; IMAC, immobilised matrix affinity chromatography; HILIC, hydrophilic 

interaction chromatography; carbon 18; Q-TOF, quadrupole-time-of-flight; SDS-PAGE, sodium dodecyl sulphate.   

1.4.3 Peptide fractionation by liquid chromatography 

Since peptide mixture, following either in-gel or in-solution digest, is still very complex, it 

requires further fractionation. The optimal fractionation method offers good compromise 

between reducing sample complexity and the speed of analysis to achieve best quality data. 

Currently used fractionation methods use liquid chromatography (LC) that can separate 

peptides according to their physicochemical properties (Stasyk and Huber 2004). 

The most commonly used LC method is known as reversed-phase liquid chromatography 

(RPLC), which separates peptides according to their hydrophobicity. If peptide mixture is very 

complex, especially following in-solution digest, the introduction of second dimension 

separation is recommended. When using GeLC-MS/MS method, the sample is first 
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fractionated at protein level according to their molecular weight (mW) so the sample is much 

less complex in comparison to in-solution digest.  

To further reduce sample complexity or if the proteins of interest are of relatively low 

abundance, it is possible to use enrichment steps. For example, it is possible to specifically 

enrich phosphoproteins by the use of phosphorylation-specific antibodies or affinity-based 

techniques, such as immobilized metal ion affinity chromatography (IMAC) (reviewed by Fílla 

& Honys 2012). Another common approach to peptide fractionation is the use of strong 

cation-exchange chromatography (SCX) which separates peptides based on their positive 

charges. SCX can be used offline  (unconnected to any mass spectrometer), followed by online 

RPLC fractionation and MS analysis (Cravatt et al.,  2007). The complete proteomic workflow 

is presented in Figure 1.10. 

 

 

Figure 1.10 The workflow of a typical mass spectrometry-based proteomic experiment. The protein population is 

prepared from a biological source e.g. a cell culture. The gel lane is cut into several slices and subjected to in-gel 

digestion. A variety of enzymes and/or chemicals can be used to modify proteins if necessary. The resulting 

peptide mixture is separated using single or multiple liquid chromatography (LC) dimensions. Peptides are ionized 

by ESI (depicted) or MALDI and can be analysed by various mass spectrometers. Finally, the peptide-sequencing 

data that is obtained from the mass spectra is searched against protein databases using a database-searching 

programme. Adapted from Steen & Mann, 2004.  

1.4.4 Principles of mass spectrometry  

The basic principle of mass spectrometry (MS) is the generation of ions from either organic or 

inorganic compounds in the gas phase and the separation of these ions by their mass-to-

charge ratio (m/z) to detect them qualitatively of quantitatively by their respective m/z 

abundance. The separation of ions is influenced by static or dynamic fields that can be either 
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or magnetic (Gross 2011). A typical mass spectrometry instrument consists of an ion source, 

a mass analyser, which measures the mass-to-charge ratio (m/z) of analytes and a detector 

that allows identification of the number of ions at a given m/z value (Fig 1.11). 

 

Figure 1.11 The components of mass spectrometer. After introducing the sample through the sample inlet, the 

sample is ionised (typically by ESI or MALDI). Mass analysers separate ions in space or by time according to m/z 

ratio, while ion detectors generate a current signal from the incident ions. Vacuum pump allows ions to reach 

the detector without collision with other molecules or atoms. Mass spectra are generated using a computer 

software. 

Matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) are the 

two techniques used to volatize and ionize large biomolecules such as proteins for MS 

analysis. MALDI sublimates and ionizes samples from a dry crystalline matrix by laser pulses. 

In contrast, ESI can easily ionise analytes from a solution and therefore can easily be combined 

with liquid-based separation tools (chromatographic or electrophoretic). Integrated ESI-MS 

systems (or LC-MS to be more specific) are preferred for the analysis of complex samples.  

1.4.4 Types of mass analysers 

The type of mass analyser is important in proteomics and its main parameters are resolution, 

mass accuracy and the ability to generate complex ion mass spectra from peptide fragments, 

which are called tandem mass (MS/MS) spectra (Aebersold and Mann 2003). There are 

several types of mass analysers and each of them differs in terms of performance, design and 

resolution. It is also possible to combine them in tandem to create hybrid mass spectrometer 

that will combine features of both mass analysers. 

Quadrupole (Q) mass spectrometers have a mass-selective “quadrupole section” that allows 

only the passage of ions with a certain m/z value. The transition through the m/z range by 
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using different sinusoidal potentials allows to detect ions that pass through each m/z ratio 

value to generate the mass spectra. (Figure 1.12).  

 

Figure 1.12 The diagram of quadrupole mass analyser. The quadrupole consists of two pairs of parallel electrodes. 

By regulating the current passing through electrodes, the ions with the desired m/z value stably travel along the 

axis (known as resonant ions, marked in blue). The ions that are not selected do not have such a stable trajectory 

(marked as red) and do not reach the ion detector 

On the other hand, time-of-flight (TOF) analysers measure the time it takes for the ion to 

travel through the flight tube without the use of electric fields since all ions are accelerated 

to the same kinetic energy. As a result, lighter ions fly faster than heavier ones and reach the 

detector sooner (Steen and Mann 2004). There are two types of TOF instruments that are 

commonly used due to their high sensitivity, resolution and mass accuracy: TOF-TOF type, in 

which two TOF sections are separated by a collision cell, and the hybrid quadrupole-TOF (Q-

TOF) instrument, where collision cell is placed between the quadrupole mass filter and the 

TOF mass analyser. The ions of the specified m/z are selected in the first mass analyser, 

fragmented in the collision cell and finally the TOF analyser detects the fragment ion masses. 

These instruments can be operated with either MALDI or ESI as an ionization source 

(Aebersold and Mann 2003). 

Another group of mass analysers is designed to trap ions in a high electric field. In the basic 

ion trap analyser, the ions are first captured for a certain period and then subjected to MS or 

MS/MS analyses. Ion traps are robust and relatively inexpensive, but have relatively low mass 

accuracy. In contrast, Fourier-transform ion cyclotron resonance (FT-ICR) analysers capture 

the ions under high pressure vacuum within a fixed magnetic field and determine mass-to-

charge based on the cyclotron frequency. FT-ICR have high sensitivity, mass accuracy and 

dynamic range, but they are difficult to operate and have low efficiency of peptide 

fragmentation (Aebersold and Mann 2003). Finally, the newest addition to the trap type of 
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mass analysers are Orbitraps (Scigelova and Makarov 2006), which revolutionised the 

proteomics research in the last decade.  

Orbitrap shares some features with older types of mass analysers, namely with the use of ion 

traps in a precisely defined electrode line in FT-ICR and the use of electrostatic fields similar 

to TOF. The Orbitrap mass analyser consists of an external barrel-shaped electrode and a 

central spindle-shaped electrode along the axis, connected to independent voltage sources. 

The space between the internal and external electrodes forms a measuring chamber 

connected to the vacuum system to provide high vacuum conditions. The injected ions cycle 

around the central electrode and simultaneously oscillate along the horizontal axis (Fig 1.13). 

Using Orbitrap mass analysers is beneficial in comparison to other mass analysers due to 

resolution, mass accuracy and linear dynamic range at relatively low cost and bench-top size 

(Zubarev and Makarov 2013). Furthermore, hybrid instruments were further developed by 

combining the power of a quadrupole and an Orbitrap analyser (to form what is called Q-

Exactive) to increase the number of peptides that could be analysed. In addition, other 

improvements have been made over the past few years, including compacting the Orbitrap 

analyser to increase field strength (Q-Exactive HF) or adding a low resolution pre-filter to 

exclude unwanted ions from entering the analyser (Q-Exactive Plus) (Scheltema et al. 2014).  

 

 

Figure 1.13 The schematic of hybrid Q-Exactive HF mass spectrometer, featuring Ultra High Field Orbitrap mass 

analyser, C-trap and HyperQuad Mass Filter. From Thermo Fisher Scientific. 

1.4.5 Tandem MS and peptide identification 

After determining the m/z values and the peak intensities in the spectrum, the mass 

spectrometer can obtain information about the primary structure (sequence) of peptides. 
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This is called tandem MS (MS/MS) because it combines two steps of MS. In the former, a 

specific peptide ion is isolated, the energy is imparted by a collision with an inert gas (such as 

nitrogen or argon) and this energy causes the peptides to break apart (known as collision-

induced dissociation, CID). The spectrum of the resulting fragments is then generated. The 

species that is fragmented are called “the precursor ion” while the ions in the tandem MS are 

known as “product ions”.  

The product ions are indicated by a, b and c if the charge is retained on the N-terminus and x, 

y and z - if charge is maintained on the C-terminus. The peptides are mainly fragmented by 

cleavage of amide bonds (because it has the lowest energy), which leads to the so-called  b-

ions, when the charge is retained by the N-terminus fragment and y-ions - if by the C-terminus 

fragment (Fig 1.14). Protein identification is carried out using one of the available search 

engines, e.g. Mascot uses an algorithm that calculates theoretically predicted fragments for 

all peptides in the database and matches them to the experimental fragments in a top-down 

fashion (probability-based matching, Steen & Mann 2004).  

 

Figure 1.14 The schematic representation of peptide fragmentation during MS/MS (A) Peptide identification 

based on probability-based matching (B)  

1.5 Quantitative proteomics approaches 

1.5.1 Classification of quantitative proteomics approaches 

Mass spectrometry has been used to characterize and identify proteins in complex mixtures, 

but the results are mainly qualitative. Quantitative proteomics can give insight into how much 

protein is present in the sample (absolute quantitation) and compare differences in protein 

expression between different conditions (relative quantitation). Quantitative proteomic 

approaches can be divided into two major groups: gel-based and mass spectrometry-based 

(Figure 1.15). 
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1.5.2 Label-free quantification  

At present, absolute label-free quantification methods have been based on either spectral 

counting or spectral intensity. In spectral counting, the number of fragment spectra (MS2 or 

MS/MS) of peptides corresponding to a given protein is counted and compared with other 

proteins in the sample to assess the abundance of the protein (Neilson et al. 2011). 

 

Figure 1.15 Outline of quantitative proteomics approaches. IEF, isoelectric focusing; pI, isoelectric point; mW, 

molecular weight; XIC, extracted ion chromatogram; 2D-GE, two-dimensional gel electrophoresis; 2D-DiGE, two-

dimensional differential gel electrophoresis; SDS, sodium-dodecyl sulphate; m/z, mass-to-charge ratio.   

In contrast, spectral intensity approach relies on alignment of chromatographic peaks of 

peptides from MS1 scans. Each peptide with a mass-to-charge ratio generates a monoisotopic 

mass peak.  The intensity of this peak is a function of the retention time, which can be 

visualised in the extracted ion chromatogram (XIC) and the area under the curve (AUC) can 

be calculated (Megger et al. 2013). Both methods have high reproducibility in peptide and 

protein level quantification and are cost-effective.  

1.5.3. Absolute and label-free quantification approaches based on spectral counting  

One of the first developed methods was the protein abundance index (PAI), which is defined 

as the ratio between sequenced protein peptides and the total number of theoretical tryptic 

peptides. This method is not accurate but serve as a guide to distinguish between high and 

low abundant proteins (Rappsilber et al.,  2002).  Improvement of this method, exponentially 

modified protein abundance index (emPAI), which converts PAI to 10PAI minus one, is 

proportional to the protein content in the mixture (Ishihama 2005). Reporting emPAI values 
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was recommended in any large-scale proteomic experiments because it was readily available 

as part of many software packages for the analysis of mass spectrometry data. 

Since spectral counting can be often biased by physicochemical properties of peptides that 

affect MS detection, this method can underestimate the protein abundance. Another spectral 

counting technique, termed absolute protein expression (APEX), includes a correction factor 

to each protein (called Oi value) to negate variable peptide detection in MS/MS. Machine 

learning is necessary to estimate the probability of detecting peptides that can be compared 

to the observed spectral counts of MS (Braisted et al. 2008). A similar approach, called 

normalised spectral abundance factor (NSAF), takes into account the length of the protein for 

data normalisation (Zybailov et al. 2006; Florens et al. 2006). Both APEX and NSAF methods 

are believed to be more accurate in estimating protein abundance than previously mentioned 

PAI and emPAI but are more difficult to implement. 

1.5.4. Absolute and label-free quantification approaches based on spectral intensity  

The discovery of the relationship between MS signal response and protein concentration led 

to the development of ways of quantifying protein abundance. It has been shown that that 

the three most intense tryptic peptides for a given protein are enough to allow an accurate 

estimation of a given amount of protein. This method, termed “Top3”, requires an internal 

standard to calculate a universal signal response factor, defined as counts/mol (Silva et al., 

2006).  

Similarly, intensity-based absolute quantification (iBAQ) of proteins uses the MS signal an 

approximation to protein abundance. First, the spectral intensities for individual proteins are 

divided by the number of theoretical tryptic peptides to derive iBAQ values, which are then 

logged and plotted against known concentrations of spiked-in standard proteins. The slope 

and the intercept from the obtained linear regression are used to calculate molar amounts 

for all identified proteins (Schwanhäusser et al. 2011).  

In contrast to the Top3 and iBAQ methods, total protein approach (TPA) calculates the 

absolute amount of protein based on the proportion of their MS signal to total MS signal 

(Figure 1.16). In addition, the TPA method does not require any additional protein standards 

(Jacek R Wiśniewski and Mann 2012; Jacek R Wiśniewski and Rakus 2014). It is assumed that 
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total MS signal from sample of interest reflects the total protein content within the cell while 

the total signal for a given protein is proportional to its abundance within a cell: 
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Protein concentration can be calculated by multiplying total protein by molecular weight 

(mW) of a given protein: 
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In addition to ease of use and no requirement for expensive reagents or standards, the TPA 

method can be also applied to the meta-analysis of already published data sets. The feasibility 

of using TPA method for protein quantification was verified using a mixture of proteins with 

defined concentrations (Jacek R Wiśniewski et al. 2012).  The method was demonstrated to 

have high accuracy for quantifying E.coli proteome (Jacek R. Wiśniewski and Rakus 2014).  

Individual protein copy numbers can be calculated by using total protein concentration that 

is specific to cells and should be determined separately. This value for most cell types is  

around 200-300 g/l. The TPA method was further developed into ‘proteomic ruler’ approach 

that uses intensity of histones to calculate protein copy number (Figure 1.16). 

 

Figure 1.16 Explanation of total protein amount (TPA) and ‘proteomic ruler’ methodology. Adapted from 

Wisniewski et al., 2014. 

Histones are tightly wrapped around DNA with a defined mass ratio of 1:1. The amount of 

DNA per cell depends both on ploidy and on the size of the genome, which are usually well-
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known for a given organism (Jacek R Wiśniewski et al. 2014). Protein copy number is 

calculated from Avogadro’s number (NA; 6.022140857 × 1023) according to the following 

equation:  
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1.5.5 Absolute quantification using stable isotopically labelled standards 

Absolute quantitation can achieve the high level of accuracy when using spiked-in labelled 

standards.  In principle, the labelled standard is added in known concentrations to the test 

sample prior to MS analysis. The MS signal of spiked-in standard allows the direct comparison 

and quantification of all proteins present in the sample (Shao-En Ong and Mann 2005).  There 

are several methods that use spiked-in labelled standards in MS analysis. Both AQUA and 

QconCAT use peptides with incorporated stable isotopes and have become well established 

in the last decade. 

Absolute quantification (AQUA) method is based on the use of synthetic peptides that have 

been labelled with stable isotopes to compare against native peptides in the test sample. 

AQUA synthetic peptides are added in known concentrations into the, which allows 

quantitative determination of absolute protein concentrations (Gerber et al. 2003). The main 

disadvantage of using AQUA method is high cost of producing many synthetic peptides to 

quantify several proteins at the same time. 

In contrast to AQUA peptides, QConCAT is an artificially designed protein that is made of  

concatemers of tryptic Q peptides for several target proteins. Each QConCAT consists of at 

least two proteotypic (specific to a given target protein) peptides for each of the proteins of 

interest. Peptides are combined together into a single gene, which is expressed in E.coli grown 

with stable isotopes and subsequently purified (Beynon et al. 2005). Digesting a known 

amount of QconCAT by trypsin generates a set of labelled peptides that can be used to 

quantify unlabelled peptides derived from proteins of interests. By using QConCAT, it is 

possible to accurately quantitate up to 30 target proteins at the same time (Simpson and 

Beynon 2012).  
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1.5.6 In vitro chemical labelling with stable isotopes 

Stable isotope labelling techniques can be divided into two groups: in vitro chemical labelling 

or in vivo metabolic labelling (Fig 1.17). The former depends on post-harvest labelling of the 

protein samples before or after proteolysis. The labelling can be made by targeting thiol 

groups of cysteine residues using isotope coded affinity tags (ICAT) (Gygi et al. 1999) or by 

directly targeting amino acid termini of peptides using isobaric tags for relative and absolute 

quantification (iTRAQ) (Ross et al., 2004) or tandem mass tags (TMT) (Thompson et al. 2003).  

ICAT reagent consists of three functional elements: a specific thiol-reactive group, an 

isotopically-coded linker and biotin tag (Gygi et al. 1999). Two different isotope linkers are 

utilised to compare peptides from two different experimental conditions, while the biotin 

group allows selective capture and analysis of peptides containing (relatively uncommon) 

modified cysteine residues.  This leads, on the one hand, to reduced sample complexity, which 

simplifies data analysis, but also significantly decreases proteome coverage since proteins 

lacking cysteine cannot be quantified (Steen and Mann 2004).  

Unlike ICAT, iTRAQ can be used to investigate multiple (usually four, 4-plex, or eight, 8-plex) 

experimental conditions within a single experiment. The principle behind iTRAQ involves the 

use of isobaric mass labels at amino termini and lysine side chains of tryptic peptides in a 

digest mixture. The iTRAQ reagents are designed in such a way that all labelled peptides are 

isobaric (hence name) and have the same chemical properties, making them indistinguishable 

during liquid chromatography separations (Ross et al., 2004). Labelled peptides produce so-

called “reporter ions” in MS/MS following collision-induced dissociation (CID) that are used 

to quantify individual proteins within different experimental conditions.  



50 

 

 

Figure 1.17 Comparison of in vivo and in vitro stable isotope labelling approaches. SILAC, stable isotope labelling 

with amino acids in cell culture; ICAT, Isotope-coded affinity tags; iTRAQ, isobaric tags for relative and absolute 

quantitation; TMT, tandem mass tags. Each method can be applied to study limited number of experimental 

conditions. 

The principle behind tandem mass tags (TMT) method is similar to iTRAQ. TMT reagent is 

comprised of an amino acid tag linked to a sensitization group, which has a guanidine 

functionality, an amino acid that normalizes the mass, and cleavage enhancement group 

(proline). The tags are designed in such a way that following CID, TMT fragment is released to 

generate an ion with specific mass-to-charge ratio (Thompson et al. 2003). The advantage of 

using iTRAQ or TMT method over ICAT is that every observable peptide can be labelled and 

not only cysteine-containing peptides. 

1.5.7 In vivo metabolic labelling with stable isotopes 

Metabolic labelling is based on the incorporation of stable isotope labels into proteins during 

cell growth. Proteins are quantitated by measuring the relative isotope ratios of light and 

heavy peptide pairs.  The prototrophic cells such as bacteria can be easily labelled by addition 

of stable nitrogen isotopes (14N/ 15N pair). Incorporation of 15N into a peptide will lead to 1Da 

mass shift per each nitrogen atom.  However, data analysis is challenging since the mass shift 

depends on the length of the peptide and its amino acid composition (Gruhler et al, 2005). 

The need for a better experimental design led to the development of stable isotope labelling 

in the cell culture (SILAC) (Ong et al., 2002).  Details of this technique can be found in section 

1.6. 
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1.5.8 Challenges in analysis of quantitative proteomics data 

The challenges of many proteomic studies result from both the complexity of the proteome 

and the wide dynamic range of concentrations for individual proteins. For example, human 

genome consists of 20,000 genes that, due to splicing or proteolysis, can translate to even 

100,000 of different proteins. The abundance of protein species can span more than 10 orders 

of magnitude. Many quantitative proteomics studies focus on the investigation of biological 

variation rather than technical variation arising from sample preparation and MS data 

acquisition. Proper experimental design and selection of statistical tests can significantly 

reduce errors (Käll and Vitek 2011). What is more, the comparison of quantitative proteomics 

data with published studies can be problematic due to variability in data acquisition, analysis 

and even instrument performance (Nesvizhskii et al., 2007).  

 

Figure 1.18 Common sources of errors in quantitative proteomics workflows.. Boxes in blue and orange represent 

different experimental conditions. Horizontal lines mark when two samples are combined, while dashed lines 

indicate points at which experimental variation is most likely to occur.. Adapted from Bantscheff et al. 2012. 

Regardless of what method is used to study changes in protein expression in several 

experimental conditions or over time, all methods have inherent errors and limitations (Figure 

1.18). For instance, metabolic labelling using stable isotopes have been shown to be the most 

accurate method, but the labels can be expensive and the technique cannot be applied to 

study clinical samples and primary cell lines. Another disadvantage of metabolic labelling is 
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that up to 2-3 conditions can be tested at the same time. This problem can be avoided by 

using chemical labelling methods such as iTRAQ or TMT (Bantscheff et al. 2012). On the other 

hand, chemical labelling might be inaccurate since sample mixing occurs at peptide level, so 

the sample loss might be unequal. In addition, co-elution of reporter ions can lead to 

substantial loss of quantitative data (Altelaar et al. 2013). 

Absolute quantification requires very good calibration of spike-in standard to achieve high 

quality quantitative dataset. In addition, the standards might be expensive. Recently, label-

free quantification (LFQ) has gained more popularity as no labels are required so, in theory, it 

can be applied to any type of organism to explore unlimited number of conditions at the same 

time. However, data analysis is more complicated and the sufficient number of biological 

replicates is required to obtain enough statistical power to find significant differences 

between experimental conditions (Neilson et al. 2011).. 

1.5.9 Difference between protein “abundance” and protein “regulation”  

Protein abundance describes a dynamic balance between all the cellular processes affecting 

the amount of protein within a cell. This includes protein transcription, mRNA processing and 

degradation, as well as translation, protein localization using signal peptides and 

modifications.  Protein abundance is often described in units of absolute concentrations, for 

example defined as number of molecules per cell or molar concentrations.  

Majority of proteomic studies have been designed to compare differences in protein 

abundance between two to ten different conditions. Such increase or decrease in protein 

abundance can be described as “up-regulation” or “down-regulation”, respectively. Such 

changes in protein abundance can only be described in relative terms (hence it is relative 

quantification in contrast to absolute quantification).  
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1.6 Principles of SILAC, Stable Isotope labelling of amino acids in cell culture 

1.6.1 Definition of SILAC  

In SILAC (stable isotope labelling of amino acids in cell culture), proteins can be labelled in cell 

culture with heavy isotopes of essential amino acids. The SILAC method was first introduced 

in ���� for in vivo incorporation of certain amino acids into mammalian proteins. Mammalian 

cell lines are cultured in media lacking an essential amino acid but are supplemented with 

isotopic (but non-radioactive) form of this amino acid. It is estimated that �-�� cell doublings 

are needed for ≥��% incorporation (Ong ����; Ong and Mann ����). This part of SILAC study 

is called adaptation phase.  

Typically, cells are labelled with lysine and arginine because trypsin, a commonly used 

protease, cleaves at C-termini of these amino acids, forming a complex peptide mixture in 

which all peptides are labelled and can be used for quantification. Each peptide has either 

“heavy” or “light” form that can be resolved in a mass spectrometer due to their mass 

difference. The differential treatment between light and heavy cell populations can be easily 

interchanged by the researcher. Such label swap experiments can both validate biological 

findings and exclude the possibility of any experimental error arising from SILAC labelling (Ong 

and Mann 2006).  

In the following sections  label swap experiments are referred as “forward SILAC” (FS) and 

“reverse SILAC” (RS) experiments. Reverse SILAC experimental ratios must be transformed 

from H/L ratio to L/H ratio before combining with those obtained in forward SILAC 

experiment. 
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Figure 1.19 Examples of light, medium and heavy amino acids for SILAC. Red asterisk indicates the position of 

stable isotopes (containing 13C and 15N). Incorporation of respective light and heavy amino acids into proteins by 

cells in various experimental conditions can be measured by mass spectrometry. 

As discussed already, one of the limitations of metabolic labelling experiments is the number 

of conditions that can be tested within a single experiment. Using the combination of lysine 

and arginine (“light”, “medium” and “heavy”, Fig 1.19), maximum of three experimental 

conditions (SILAC 2-plex or 3-plex) can be studied. It is also possible to run a SILAC 5-plex 

experiment with arginine alone, but the peptide quantitation becomes limited. Another 

option to study five experimental conditions is to perform two SILAC 3-plex experiments with 

staggered experimental design (Olsen et al. 2006; Dengjel et al. 2007). 

1.6.2 Stable isotope incorporation and issues with arginine to proline conversion  

One of the problems associated with the use of arginine in SILAC is the possibility of metabolic 

conversion into proline (Fig 1.20).  
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Figure 1.20 Metabolic conversion of arginine to proline in SILAC experiments. The conversion of isotopic arginine 

to proline causes inaccuracy in quantitative proteomic experiments based on A) Mass spectra of peptide 

containing arginine solely from 1:1 mixture of light and heavy labelled samples. Expected light and heavy 

counterparts of peptide ions have the same signals when the incorporation of the heavy isotopes is ≥97% B) Mass 

spectra from peptides containing proline(s) in which arginine to proline conversion occurred in the same 1:1 

mixture. Obtained heavy proline signal was subtracted from the expected heavy peptide signal C) Structures of 

heavy arginine (Arg10 & Arg6) and heavy proline (Pro6 & Pro5) D) The fragment of the metabolic pathway 

converting arginine and proline. Adapted from Bendall et al., 2008.  

The conversion of arginine to proline is an important factor that can affect the accuracy of 

SILAC quantitation. In the absence or minimal conversion of arginine to proline, a 1:1 mixture 

of light and heavy labelled samples is achieved (following the confirmation of full 

incorporation). On the other hand, in the case of conversion of arginine to proline, the 

expected heavy arginine signal is reduced and transferred to heavy proline containing 

peptide. If a peptide contains more than one proline, the signal can be further reduced. 
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As shown in the figure above, the peptide containing heavy proline reduced the signal of 

heavy arginine containing peptide by 20%, while the peptide containing two heavy prolines -  

by another 10%. This can lead to the light: heavy arginine ratio of 1: 0.7 instead of expected 

1:1. Quantification accuracy can be severely affected when conversion of arginine to proline 

exceeds more than 5% of all peptide-to-spectrum matches (PSMs). Additional 

supplementation with free proline (Bendall et al. 2008), deletion of genes involved in 

metabolic pathway (Bicho et al. 2010) or simply titration of arginine supplementation are one 

of the few methods of limiting proline conversion. 

1.6.3 Normalisation and transformation of SILAC data 

Any SILAC investigation should start from experimental design to include number of  biological 

and technical replication, selection of optimal sample preparation for mass spectrometry, 

choice of processing software and statistical tests. Visualization of SILAC ratios in the 

histogram can help to if the mixing ratio of the 1: 1 protein is correct. Ideally, the data should 

follow the normal distribution with median and median close to 1, because most of the 

protein expression does not change significantly between experimental conditions. Many 

researchers have found that due to inherent errors, the ratio can be shifted to the right 

(‘heavy-tailed’) and may not be exactly located at 1. To correct for such errors, median 

normalisation is performed which shifts the experimentally obtained median for the dataset 

towards 1. Median normalisation is done automatically in MaxQuant (Cox and Mann 2008) or 

can be performed using other available software such as R  (Gatto and Christoforou 2014) or 

Perseus (Tyanova et al. 2016).  

Logarithmic transformation of SILAC ratios has several functions, including data linearization 

and making the SILAC ratios more ‘normal-like’ distributed (Keene 1995). In addition, there is 

a better relationship between the results from fold-change and statistical tests, which is 

important if the two methods are to be combined. 

1.6.4 Analysis of SILAC data using biological significance 

Many methods for the analysis of  proteomic data sets, including SILAC, were derived from 

genomic and transcriptomic approaches (Allison et al. 2006). There are several reasons, above 

all a large number of variables with a small sample size and data distribution not always 

Gaussian (Li 2011). Identification of differentially expressed proteins between experimental 

conditions can provide valuable insights into the biological processes of an organism.  
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The use of fold-change (FC) cut-off for the differential determination of protein expression is 

the obvious choice for the analysis of SILAC data sets. It is believed that proteins that are not 

differentially expressed have H/L ratio close to 1 or (0 if the ratio is log-transformed). It was 

observed that SILAC quantitative results (H/L ratios) can be within 20% of standard deviation, 

hence at least 1.5 fold-change cut-off is appropriate (S. E. Ong, Foster, and Mann 2003). The 

validity of using cut-off is higher when label-swap (reverse SILAC) experiment is performed. 

Label-swap experiments not only validate quantitative results but also eliminate false 

positives and experimental artefacts.  

Differentially expressed proteins can be examined further by plotting forward SILAC and 

reverse SILAC ratios against each other (Fig 1.21 A). Vertical and horizontal zero lines not only 

help to compare the spread of data but also divide the plot into four squares (see Table 1.2 

for details). SILAC-based quantitation accuracy is high (Ong et al., 2003), meaning that  fewer 

biological and technical replicates are required which can substantially reduce both the time 

and cost of the experiment.  

Table 1.2 Guidance to analyse combined forward and reverse SILAC data using fold-change cut-off.   

Square Meaning Explanation 

Upper left & 

lower right 

False positives and 

experimental artefacts 

Disagreement between labelling experiments 

 

Upper right Up-regulation of light-labelled 

proteins 

Agreement between labelling experiments 

 

Lower left Up-regulation of heavy-labelled 

proteins 

Agreement between labelling experiments 

 

1.6.4 Analysis of SILAC data using statistical significance 

There are two statistical tests that can be used for SILAC data analysis available: one sample 

t-test and significance A or significance B test (Cox and Mann 2008).  

Significance A is a measure of the significance score for logarithmic protein ratios, which can 

be defined as the probability of obtaining a logarithmic ratio at least one order of magnitude 

under the null hypothesis that the distribution has normal upper and lower tails. But the 

problem is that in case for very abundant proteins, the statistical spread of up-regulated 

proteins is much more concentrated in the case of those with low abundance. To overcome 
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this problem, significance B was developed, which is calculated only on the protein subsets 

obtained by binning of their intensities (Cox and Mann 2008).   

One sample t-test can be used to check which SILAC ratios are significantly different from 0. 

When comparing multiple SILAC data sets, two-sample t-test or ANOVA might be appropriate 

to check for significantly differentially expressed proteins (Tyanova et al. 2016). When 

applying the t-test for SILAC data analysis, several requirements should be met, including data 

of continuous and independent type, with a distribution close to normal and without 

significant outliers. If the above criteria are not met, it is possible to use non-parametric 

version of the t-test called Wilcoxon rank test.  

Regardless of whether t-test or significance A or B is used for determine differential proteins 

expression, multiple tests are done on individual proteins. There are several methods that 

can be used for adjusting p-values to correct multiple-comparison errors. One of the oldest is 

Bonferroni correction, which determines the alpha value (probability of type I error) for each 

test performed and strongly controls the family-wise error rate (FWER), which incorrectly 

rejects the null hypothesis (‘false positives’) (Armstrong 2014). The related ‘single-step’ 

procedure, known as Holm-Bonferroni, adjusts p-values in sequential manner and is almost 

as strict as Bonferroni (Abdi 2010).  

One of the reasons that none of these methods is suitable for analysing "omic" data is because 

the actual levels of protein (or gene) expression are strongly correlated because proteins are 

co-regulated. Benjamini-Hochberg method (Benjamini and Hochberg 1995) offers a good 

alternative and it is recommended to use in proteomics with a typical threshold value of 5% 

FDR.  
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Figure 1.21  A) Visualization of SILAC data. Scatter-plot of log2 H/L ratio normalized (forward SILAC) against log2 

L/H ratio normalized (reverse SILAC) shows up-regulated proteins (red dots), down-regulated proteins (blue dots) 

and false positives (black dots). B) The volcano plot of fold change (FC)  against –log10 of p-values derived from 

a statistical test shows non-significant proteins (grey dots), biologically significant (FC-only, orange dots), 

statistically significant (p-value, green dots) and both biologically and statistically significant (‘double-filtering’, 

red dots).  

Significance values can be visualized and compared to the size of the fold change (FC) for a 

given list of proteins. A ‘volcano plot’ is a type of scatter-plot that arranges genes or proteins 

along the dimensions of biological (FC) and statistical significance (Fig 1.21 B). The horizontal 

dimension is logarithmic fold change between the two groups, while the vertical axis 

represents the negative log (usually base 10) of the statistical values (e.g., p-values or q-

values, if the data is FDR-adjusted ). Negative logarithm of the p-values is a convenient way 

to visualize the data as the smallest (and most significant) p-values (or q-values) are plotted 

at the top, while the non-significant proteins are at the bottom of the plot. The first axis 

indicates the biological impact of the change, while the second indicates the statistical 

evidence or, in other words, the reliability of the observed fold change. The combination of 

both approached is called ‘double-filtering’ (Zhang and Cao 2009) and allows the selection of 

candidates (which have both biological and statistical significance) for further research.  
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1.7 Temporal quantitative proteomics – studying protein turnover  

1.7.1 Definition of protein turnover 

Cellular proteins are in the process of continuous renewal in both prokaryotic and eukaryotic 

organisms. Interestingly, only 50% of protein abundance can be explained by changes in 

mRNA concentration (de Sousa Abreu et al. 2009). The protein abundance is controlled by the 

combined transcription and translation processes followed by post-translational 

modifications and localization (Vogel et al. 2010).  

“Protein turnover” is defined as the continuous degradation of intracellular proteins to their 

amino acids and replacing them with the same amount of newly synthesised proteins (Fig 

1.22). Protein turnover consists of two separate processes of protein degradation and protein 

synthesis. Ideally, each of them should be quantitated separately to allow for correct 

estimation of protein turnover (Hawkins 1991).  

 

Figure 1.22 Theoretical model of protein turnover. The abundance (concentration) of proteins in the cell is 

controlled by the opposing processes of synthesis and degradation. The rate of degradation is more related to 

the metabolome and depends mainly on the activity of degradation pathways and the state of the protein pool. 

On the other hand, the rate of synthesis is more dependent on the transcriptome, in particular mRNA 

concentration and the rate of initiation. Adapted from Beynon 2005.  

An increase in protein expression may be due to increased rates of synthesis or reduced rates 

of degradation. In contrast, there are several pathways involved protein degradation that 

differ by their dependence on the lysosome. 
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1.7.2 Protein synthesis 

Proteins are synthesised by ribosomes from mRNA in the process of translation, one of the 

core parts of central dogma of biology. Protein translation can be divided into four main 

stages: initiation, elongation, termination and recycling. 

The protein translation is mainly controlled at the initiation stage, where the initiation codon 

is base-paired with the corresponding tRNA in the ribosomal peptidyl (P) site (Jackson et al.,  

2010). During elongation, the aminoacyl tRNA (charged with a cognate amino acid) enters the 

acceptor (A) site. If the match between codon and tRNA is correct, the peptide bond is formed 

between the two amino acids. This process is repeated until a stop codon is encountered, 

which marks the termination stage. In the recycling phase, the ribosomes are released from 

mRNA and the deacetylated tRNAs are ready for the next initiation (Kapp and Lorsch 2004). 

Following translation, the synthesized protein can be translocated via signal peptide to the 

site in the cell (e.g. nucleus, mitochondrial membrane, etc.) and further modified to obtain a 

fully functional protein. 

The translation is usually cap-dependent and the translation codon is placed within highly 

conserved Kozak sequence (Kozak 1987). Translation initiation can be also controlled by 

specific sequences present in the 5’ untranslated regions upstream of genes (Calvo et al., 

2009).  

The elongation efficiency is also an important factor controlling steady-state protein 

abundance. Frequent codons are thought to have more tRNAs available than infrequent 

codons, which results in the specific codon usage and tRNA adaptation that can impact the 

rates of elongation. This correlation have been used to predict translation efficiency in 

bacteria and simple eukaryotes such as yeast (Ermolaeva 2001). 

1.7.3 Protein degradation  

Lysosome-dependent degradation is thought to be relatively non-selective and is usually 

induced by stress in response to changes in environmental conditions such as depletion of 

nutrients  or accumulation of protein aggregates in the cell. Lysosomes, containing various 

digestive enzymes, take up cellular proteins by fusion with autophagosomes, which are 

formed by the enclosure of the cytoplasmic or organelle areas (e.g., mitochondrium) in 

fragments of endoplasmic reticulum (ER). This fusion creates phagolysosomes that digest the 
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content of autophagosome (Cooper and Hausman 2009) in a process known as autophagy (or 

autophagocytosis). The resulting breakdown products are recycled to produce new cellular 

components or to generate energy (Settembre et al. 2013). 

In contrast to the lysosome-dependent proteolysis, the ubiquitin-dependent pathway is much 

more targeted. It involves labelling proteins for degradation by covalently linking ubiquitin 

molecules to lysine residues.  Polyubiquitinated  proteins are then recognized by a protease 

complex called a proteasome and degraded to peptides and component amino acids. The 

addition of ubiquitin molecules is regulated by three different enzymes: E1 (ubiquitin-

activating enzyme, E2 (ubiquitin-carrier enzyme) and E3 (ubiquitin ligase).  Polyubiquitinated 

chains are then released by de-ubiquitinating  enzymes (DUBs) and free ubiquitin molecules 

are recycled (Hegde 2004). 

Calcium-dependent pathway has a smaller role  in the degradation of cellular proteins 

(Hawkins 1991). Calcium-dependent proteases, known as calpains, are cysteine proteinases 

that are active at neutral pH and are dependent on Ca2+ for catalytic activity. There two known 

isomers (calpain-1 and calpain-2), which differ in their sensitivity to the amount of calcium in 

the cell. On the other hand, the function of calpastatin polypeptide is to inhibit the function 

of two calpains (Mellgren 1987). It has been suggested that the calpain system also  has other 

functions, including cell motility, signal transduction, apoptosis and even cell cycle regulation 

(Goll et al., 2003). 

1.6.4 Defining steady state systems 

It is important to consider certain factors when studying protein turnover. It is thought that 

rates of protein turnover are equivalent to the associated rates of protein degradation under 

conditions of growth. In contrast, during the periods of wasting, the rates of protein turnover 

are closer to the rates of protein synthesis (Pratt 2002). Assuming steady-state conditions, 

where there is zero net change of parameters in a given system, facilitate the study of protein 

turnover. In terms of protein abundance, the amount of protein may not change during the 

experiment because the rate of translation and degradation is completely balanced. In other 

words, the cell is in steady-state in terms of the concentration of this protein.  Cells may also 

encounter perturbed or non-steady state systems at high levels of stress, in response to 

change in environmental conditions or gene mutations (Vogel and Marcotte 2012).  
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It is believed that the population of cells growing in exponential (log) phase goes into steady-

state. Therefore, most research on protein turnover focuses solely on this part of cell growth. 

Despite of cells undergoing cell division, the average concentration of a given protein in the 

entire cell population remains approximately constant and thus agrees with the assumptions 

of steady-state (Vogel and Marcotte 2012).  

1.6.5 Methods to study protein turnover 

Measurement of protein turnover on a global scale is a challenge in many ways. Ideally, both 

protein synthesis and degradation should be measured simultaneously to obtain a true 

estimate of protein turnover. The first developed methods focused purely on the study of  

protein degradation and concerned only a few proteins at that time. With the discovery of 

new strategies, it is now possible to study hundreds of proteins in a single experiment 

(Yewdell et al. 2011). 

Approaches to the study of protein turnover can generally be divided into two groups: 

reporter-dependent and reporter-independent. In the first case, genes are expressed as 

fusion proteins with either a fluorescent protein or an epitope tag. Their stabilities, evaluated 

based on the presence of the marker, indicate the protein degradation. An extension of this 

method, called global protein stability profiling (GPSP) has been developed, and it is uses two 

different fluorescent proteins: red fluorescent protein (RFP) and green fluorescent protein 

(GFP). The ratio of the RFP/GFP is then converted  to a protein half-life value (Yen et al. 2008). 

However, this method is imperfect because the use of fluorescent proteins may impair 

protein biogenesis (e.g., binding of chaperones necessary for correct folding), disrupt 

ubiquitylation and even block the targeting of signal peptides (Snapp 2009). 

Another method to study protein turnover uses cycloheximide. Cycloheximide is an antibiotic 

produced by Streptomyces griseus and inhibits protein synthesis with little negative effect on 

growth (Ennis, H. L., & Lubin 1964). In this experimental setup, one cell culture is treated with 

cycloheximide for a specified time, while other is not treated (control). The comparison of 

protein abundance between untreated and treated cells allows to estimate the depletion rate 

of protein amount in the cell that can be attributed to the protein degradation (Larance and 

Lamond 2015). The advantage of this method is the high recovery of the proteins from cells, 

but at the expense of interference with some cellular functions, if the protein synthesis is 
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blocked for a long time. For this reason, ‘cycloheximide-chase’ method is not suitable for 

studying proteins with long half-lives (Yewdell et al. 2011). 

1.6.6 Pulse SILAC strategies to study protein turnover 

The SILAC method has been used to quantitate the proteome in two (duplex) or three (triplex) 

different conditions, but it can also be adapted to the study of protein turnover (Milner 2006). 

The cells are pulse-labelled with heavy isotopes of amino acids supplemented in the culture 

medium for a given period (hence this method is called “pulse SILAC”). The ratio of heavy (H) 

to light (L) peptides indicates the turnover rate of a protein. Protein turnover is affected by 

both synthesis and degradation, therefore H/L ratio cannot be used to directly provide 

information about the translation rate. For example, a high H/l ratio may suggest a high 

translation rate of a relatively stable protein or a low translation rate of a protein that is 

quickly degraded.  

There are several possible experimental designs of pulse SILAC study (Fig 1.23). In the first 

approach, the cells are grown in medium containing heavy isotopes of amino acids (lysine and 

arginine) till full incorporation. Upon the start of the experiment, the medium is switched into 

a medium containing light isotopes of amino acids. In this way, the H/L ratio describes the 

decay of heavy label over time and can be used to calculate protein degradation (Yee et al. 

2010). The situation is completely opposite in the second experimental design, in which the 

cells are grown in light isotope containing medium until full incorporation and switched into 

medium containing heavy isotope versions of amino acids. The measured H/L ratio refers to 

the label incorporation into de novo synthesized proteins (Schwanhäusser et al. 2011). It can 

be argued that starting with light isotope is more recommended since incorporation of 

naturally occurring light isotopes is 100%. When using incorporation with heavy labels, the 

incorporation will be upmost 99% due to label impurities, leading to errors in quantitation 

(Beynon 2005). 

A more accurate way of comparing the rate of protein translation  between two samples is to 

pulse-label with two different stable isotopes. In this method, the cells are cultured in media 

containing either light or medium isotopes of arginine and lysine until full incorporation. The 

medium of the cells growing with the medium isotopes is then changed for heavy isotopes. 

The cells are harvested at different time points, along with the equivalent number of cells 

growing in the light medium. As a result, M/L ratio measures the protein degradation, while 
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H/L ratio quantify the protein synthesis. In addition, H/M ratio estimates the overall protein 

turnover  (Boisvert et al. 2012). 

 

Figure 1.23 Schematic of experimental designs using pulse SILAC to measure protein turnover. A) The decay of 

the heavy label; B) The incorporation of the heavy label; C) Enhanced pulse SILAC design uses light, medium and 

heavy labels; light labelled sample serves as the control; the heavy label incorporation marks new protein 

synthesis, while the decay of medium label – protein degradation. 

1.6.7 Analysis of protein turnover data 

Regardless of the experimental design used, the type of data generated is similar: series of 

ratios collected at a specific time.  To recover a degradation rate (or time) from a change in 

the labelling of the protein, data must be fitted to the line using a linear model or exponential 

decay model (facilitated by non-linear square fitting), according to the experimental design 

(Figure 5.4). When the linear model is used to fit the data, SILAC ratios must be transformed 

logarithmically despite the fact this process can introduce distortions (Claydon and Beynon 

2012). On the other hand, experimental ratios can be used directly when using the 

exponential decay model.  

Exponential decay models are suitable for modelling many chemical and biological processes 

in which the speed of a process is proportional to the remaining amount. In the case of pulse 

SILAC experiment, this method is used to model degradation rate as M/L ratio decreases over 

time because to medium isotope label is displaced from a protein. 



66 

 

 

Figure 1.24 Mathematical methods used to fit pulse SILAC data to the line. A) The linear model is used to fit the 

decay of the heavy isotope over time; B) Linear model is used to fit the incorporation of the heavy isotope over 

time C); Simple exponential model is used with non-linear square curve fitting to calculate both decay (due protein 

degradation) and incorporation (due to protein synthesis) of the isotope over time. 

1.7 Aims and objectives 

The aim of the project is to characterize the dynamic changes in protein biomass 

accumulation in industrially relevant CHOK1SV GS knock-out (GS-KO) cell lines using mass 

spectrometry-based quantitative proteomics tools.  

The first step of the project would be the development of robust sample preparation 

workflow for mass spectrometry analysis. This would include the optimization of protein 

extraction and quantification, followed by testing optimal protease conditions and finding 

suitable peptide fractionation strategies to achieve high-coverage proteomic analysis of CHO 

cells. Such optimised protocols would be used to obtain more quantitative information about 

protein expression in the cell culture. 

After the selection of the best sample preparation methods, differences in protein expression 

between exponential and stationary phases will be studies using SILAC. The importance of 

how these factors were considered to establish quantitative proteomics workflow for CHO 

cells. Determination of the number of differentially expressed proteins is the most important 

outcome of any SILAC experiment since they have the potential to become new targets for 

cellular and metabolic engineering. 
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After establishment of SILAC method in CHO cells, a novel way to quantifying dynamic 

changes in CHO cell proteome in absolute terms will be presented. The method has been 

designed on two separate mass spectrometry-based proteomic approaches: pulse SILAC and 

total protein amount (TPA) method. The measurement of discrete protein turnover and 

associated protein copy number values takes place during exponential phase. By combining 

two parameters together, it is possible to derive another value known as rate of protein 

turnover. This parameter measures the amount of cellular synthesis and degradation 

machinery that is invested in maintaining the abundance of individual proteins at steady 

state.  The values of rates of protein turnover will be calculated and compared for both stably 

producing and parental CHO cell lines.  

By referring obtained rates of protein turnover to the amino acid sequence, it may be possible 

to calculate dynamic amino acid usage that has the potential to form basis of novel fed-batch 

strategies for CHO cells. In addition, the protein sequence data can be linked to the 

corresponding transcript sequences to calculate the dynamic codon usage bias for CHO cells. 

This information may be used to develop novel in silico gene design methods for improved 

heterologous protein expression in CHO cells.   

1.8 Outline 

Below is a summary of each thesis chapter presented. 

Chapter 2: Materials and methods 

This chapter contains a full description of materials and methods used in experimental 

chapters 3, 4 and 5. Details will be given on types of cell lines used in the research project and 

calculation of cell culture parameters. For mass spectrometry experiments, information on 

sample preparation methods, MS data processing and bioinformatics analysis will be 

provided.  

Chapter 3: Optimization of sample preparation for mass spectrometry to achieve high-

coverage CHO proteome 

This chapter deals with the development of robust protocols for sample preparation for the 

shotgun analysis of CHO cell proteome. Several methods for protein extraction and two main 

sample preparation techniques, in-gel trypsin digest and filter-aided sample preparation 



68 

 

(FASP), will be explored. In addition, the feasibility of using porous graphitic carbon for 

peptide separation will be tested. Finally, the effectiveness of sample extraction protocols will 

be confirmed on several types of mass spectrometers. 

Chapter 4: Relative quantitation of proteome changes between exponential and stationary 

phases in cell culture of CHO cells using SILAC  

This chapter concerns with the application of standard SILAC (stable isotope labelling of amino 

acids in the cell culture) method to evaluate the fundamental changes in the cellular protein 

during the growth of CHO cells. Full incorporation of stable isotopes into newly synthesised 

proteins and no conversion of arginine to proline will be confirmed. The protocol for analysing 

raw MS data and further bioinformatic processing using publicly available software is also 

outlined and can be adapted to several other experimental projects. Several groups of 

differentially expressed proteins have been found that are involved in key cellular and 

metabolic processes. It is suggested that they will be suitable targets for cellular engineering. 

Chapter 5: Defining the protein biomass objective in CHO cells using enhanced pulse SILAC 

and total protein approach (TPA) 

The focus of this chapter will be the establishment of a novel protocol to quantify protein 

biomass accumulation in CHO cells. Two separate mass spectrometry methods will be used: 

total protein amount (TPA) approach, to estimate protein abundance, and enhanced pulse 

SILAC, to study protein turnover by de novo incorporation of stable isotopes of amino acids 

over time. By combining these two parameters, it will be possible to obtain a new parameter, 

termed “protein turnover rate”, which is a reflection of how much cellular synthesis and 

degradation is invested in maintaining steady-state abundance of individual proteins. Specific 

groups of proteins seem to be significantly up-regulated between producing and parental cell 

lines. Furthermore, dynamic rates of amino acid and codon usage will be determined using 

protein and mRNA sequence information, respectively. 

Chapter 6: Conclusions and future work 

The final chapter summarizes the major results of this project, describes limitation of the 

obtained findings and suggests the future directions of the research.  
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Chapter 2: Materials & Methods 

Presented research project contains a variety of methods for mammalian cell culture, sample 

preparation for mass spectrometry, experimental design of standard SILAC and pulse SILAC 

experiments and data analysis using publicly available software and bioinformatic databases. 

Results chapters will provide only a concise version of the methods detailed in this chapter 

with appropriate cross-referencing to this chapter.  

 2.1 Abstract  

The E22 stably producing cell line, expressing cB72.3 model antibody, was derived from Lonza 

Biologics’ proprietary CHOK�SV GS-KO cell line. Its specific features are adaptation to growth 

in serum-free chemically defined media and the lack of functional glutamine synthetase 

enzyme. Routine culture of cells was performed using CD-CHO medium with (for GS-KO) or 

without (for E��) glutamine supplementation and Viable Cell Count (VCC) was measured using 

Vi-CellTM, based on trypan exclusion assay. Routine subculture, cryopreservation and cell 

revival was performed according to biopharmaceutical industry standards. Specific mAb 

productivity was measured using Protein A chromatography. 

Following cell harvest with PBS, several protein extraction protocols were tested, including 

4xLB buffer, compatible with in-gel trypsin digest, TEAB buffer, suitable for in-solution trypsin 

digest or SDS-based buffer for filter-aided sample preparation (FASP). Details were also 

provided on protein quantification using RC DC protein assay and peptide fractionation using 

Hypercarb and reverse phase (RP) chromatography. Liquid chromatography (LC) and mass 

spectrometry (MS) parameters and associated conditions were described in detail for three 

different types of mass spectrometers (Amazon ETD, MaXis 4G UHR-TOF and Q Exactive HF). 

Additionally, steps of raw data processing and protein identification were specified for two 

database search engines: Mascot Daemon and MaxQuant. Details of experimental design 

were specified for both Standard Isotope Labelling in the Cell culture (SILAC) quantitative 

proteomics approaches: standard SILAC and enhanced pulse SILAC. Downstream processing 

of data with Perseus, including statistical analysis with significance A and B and calculation of 

settings for Total Protein Amount (TPA) method were provided. In-house developed script in 
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Matlab, facilitated by Levenberg-Marquardt algorithm, allowed fitting of pulse SILAC data to 

the exponential decay model and calculation of protein turnover. KEGG pathway, Gene 

Ontology and PANTHER database were used for functional annotation of proteins of interest. 

Finally, novel parameters of rates of protein turnover, amino acid usage and codon bias usage 

were derived.  

2.2 Mammalian cell culture 

This section describes the routine methods used in this project to monitor the growth of 

mammalian cells. 

2.2.1 Characteristics of CHO cell lines 

The cell lines producing monoclonal antibody (mAb) used in this project were derived from 

Lonza Biologics’ (Cambridge, UK) main proprietary Chinese hamster ovary (CHO) host called 

CHOK�SV GS-KO (Xceed™).  This host cell line was derived from CHOK�SV host, which was 

adapted to both growth in suspension and chemically-defined animal component-free 

medium. A specific feature of CHOK�SV GS-KO  cell line is that both alleles of endogenous 

glutamine synthetase gene have been knocked out (hence the designation CHOK�SV GS-KO), 

leading to the requirement of exogenous glutamine (http://www.lonza.com/custom-

manufacturing/development-technologies/gs-xceed-gene-expression-system.aspx).  

Stable producing cell line (referred to E22) was created by transfection of host cells with a GS 

Gene Expression vector encoding both glutamine synthetase (GS) and easy-to-express (ETE) 

chimeric B72.3 mouse/human (cB72.3) model antibody. Master working cell banks (MBCs) 

were provided by Lonza Biologics, from which working cell banks (WBCs) were generated in 

the laboratory in the University of Sheffield.  

2.2.2 Routine subculture 

A routine subculture of E22 cells was performed using 125 ml Erlenmeyer shake flasks with 

vented caps (Corning, Surrey, UK) in a volume of 30 ml of CD-CHO media (Life Technologies, 

Paisley, UK). Supplementation with 6mM glutamine was required only for subculture of 

parental (host) cell line (referred to GS-KO).  Shake flasks were incubated in at 37ᵒC with 5% 

CO2 (v/v) in air in shaking, non-humidified incubators (Infors UK, Reigate, UK) set at 140 rpm. 

The cells were subcultured every 3-4 days, while in mid-exponential phase of the growth, and 
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new cultures were seeded at an initial cell concentration of 2x105 cells/ml. Routine estimation 

of total cell concentration (TCC), viable cell concentration (VCC), viability (which is calculated 

by dividing viable cell concentration by total cell concentration and expressed as %) and cell 

diameter was performed by Trypan blue exclusion assay using a Vi-CellTM Cell Viability 

Analyzer (Beckman Coulter, High Wycombe, UK). 

2.2.3 Cell cryopreservation protocol 

CHOK1SV GS-KO cells were passaged 4 times before cryopreservation, which was performed 

on the 3rd day of subculture (i.e., mid-exponential phase), when the viability was >95 %. The 

volume of prepared cryopreservation medium (Vc) depended on the number of vials 

generated (Table 2.3). The volume of cell culture required to produce the appropriate number 

of vials was calculated using the equation 1.  

����= (����	������	× ��)
��

     (1) 

Where: Vsps: the required volume of cell culture  

               Vc = volume of cryopreservation medium 

               Xi=Viable cell concentration [106 cells/ml] 

 107 cell/ml = cell density to be added to each cryovial 

Freshly prepared cryopreservation medium was stored at 4ᵒC until use. The cell pellet was 

resuspended in cryopreservation medium containing DMSO as a cryoprotectant. The viable 

cell concentration and % viability was determined using Vi-CellTM before aliquots were 

dispensed into cryovials.  Vials were appropriately labelled and frozen at -70ᵒC freezer 

overnight in a Mr. Frosty™ Freezing Container (Sigma-Aldrich). The next day, the vials were 

transferred to the liquid nitrogen storage (at >130ᵒC).   

Table 2.3 Cryopreservation medium components. 

Component For 6 vials For 11 vials For 21 vials Final concentration 

CD-CHO 8.6 ml 14.6 ml 27.5 ml 1x 

Glutamine(200mM) 0.3 ml 0.51 ml 0.96 ml 6 mM 

DMSO 0.75 ml 1.275 ml 2.4 ml 7.5% (v/v) 

Total volume 10 ml 17 ml 32 ml  
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2.2.4 Cell revival protocol 

Vials containing 1.5x107 cells were thawed quickly (>1 minute) in a 37°C water bath set before 

being resuspended in 6 ml of CD-CHO medium (previously stored at 4°C to reduce 

temperature shock). Resuspended cells were centrifuged at 200 g for 5 min and the 

supernatant was removed. The cell pellet was then resuspended in 30 ml of CD-CHO medium 

(20% of working volume), pre-warmed to 37°C and the contents transferred to 125 ml 

Erlenmeyer flask with vented caps. The viable cell concentration and % viability was 

determined with ViCellTM. The cells were incubated at 37°C, 140 rpm 5% CO2 in shaking, non-

humidified incubator and were subcultured every 3 days (as described in section 2.2.2).  

2.2.5 Calculation of cell culture parameters  

Depending on the experiment, samples were taken every 24-72h and % viability was assessed 

with Vi-CellTM using the following equation 2: 

����������%�= ���
���

           (2) 

Where: 

TCC – total cellular concentration (x106 cells) 

VCC – viable cell concentration (x106 cells) 

The specific cell growth rate (µ; h-1), which is also related to the specific rate of biomass 

accumulation, is calculated using equation 3: 

� = �����������	(����)
�����

   (3) 

Where: 

VCC – viable cell concentration (x106 cells) 

1 = end of exponential phase (h) 

0 = start of exponential phase (h) 

The time integral of viable cell concentration (IVCC; 106 cell day ml-1) is the area under the 

growth curve. If each cell has the same capacity to produce product in a given amount of time, 

IVCC quantifies the number of working cells in days (or hours) per unit of culture volume.  

IVCC at each time point (t; day) is calculated using the equation 4: 
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���� = ������	����
�

	 × ∆��+ IVCCt-1    (4) 

Where: 

VCC0 – viable cell concentration (x106 cells) 

0 = first point of analysis (day) 

1 = second point of analysis (day) 

The cumulative IVCC (IVCCtotal) can be calculated using equation 5: 

IVCCtotal = IVCCt + IVCCt-1   (5) 

Doubling time (Td) is defined as the interval between doubling the cells when the growth 

becomes constant. It is calculated with equation 6: 

�� = ���
�

       (6) 

The daily specific production rate of culture (qMAb; pg cell-1day-1) was calculated using the 

equation 7: 

�� �� = � �����
(����	�����	/�

�÷ ∆�    (7) 

Where: 

T = titre (mg L-1) at first time point; 

0 = first point of sampling (day) 

1 = second point of sampling (day) 

The average specific production rate in culture (Qp; pg (cell day-1) is equal to the slope of 

linear regression analysis of antibody concentration (mg L-1) against IVCC (106 day ml-1). 

2.2.6 Measurement of specific monoclonal antibody productivity 

The amount of CB72.3 mAb produced by E22 cell line was assessed using Protein A 

chromatography. E22 cell line was grown in CD-CHO over 8 days. Cell culture samples were 

taken every day from time 0h to 192h. The supernatant was purified using Corning 0.2 µm  

filter tube (Corning, UK) to remove any remaining cells and debris. The samples have been 

analysed as two biological replicates. 25 µl of the purified  sample was transferred to the 

autosampler vials and 10 µl injected into 50 µl pick-up LC system.  
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The standard curve was prepared using the generic IgG1 kappa standard derived from human 

myeloma plasma (Sigma-Aldrich, UK). The standard comes as 1.25 mg/ml solution (in 20mM 

Tris buffered saline solution, pH 8.0), with an extinction coefficient of 1.4 at 280nm.The 

principle behind IgG antibody quantitation is based on selective binding to Protein A 

immunodetection column. Non-bound material is washed from the column and the remaining 

antibody released by decreasing the pH of the solvent. 

The standard curve using IgG1 kappa standard was produced based on 2 technical replicates. 

The sample was eluted over 5 min gradient and method was set up in Chromeleon (v 6.8) on 

u3000 LC system (Dionex, UK) using buffer A (50mM sodium phosphate, 5% acetonitrile, 150 

mM sodium chloride; pH 7.5) and buffer B (50mM sodium phosphate, 5% CAN, 150 mM 

sodium chloride; pH 2.5). The extinction coefficient for cB72.3 was calculated using Expasy 

ProtParam online tool (http://web.expasy.org/protparam/), which uses amino acid sequence 

of a protein to predict key physical and chemical parameters. The specific extinction 

coefficient was then applied to correct measured absorbance at 280 nm. 

2.3 Optimization of sample preparation for mass spectrometry  

This section describes the optimization and comparison of different methods used for sample 

preparation in mass spectrometry analysis. The data is presented in Chapter 3. 

2.3.1 Lysis buffer for in-gel trypsin digestion 

As protein extraction is one of the most crucial steps in sample preparation for mass 

spectrometry, several lysis buffers were tested for efficiency and robustness (Table 2.4). 107 

cells were harvested and washed twice with PBS pH 7.4, treated with 1 ml of RIPA buffer 

(typically used for radio immunoprecipitation assay, RIPA), incubated at 4ᵒC for 10 min and 

then centrifuged at 18,000g for 10 min (Sun et al. 1994). The supernatant was removed, and 

the remaining pellets were resuspended in 100 µl 4xLB (Laemmli buffer; commonly used to 

prepare samples for SDS-PAGE gels (Karlsson et al., 1994). After resuspension in 4xLB, the 

sample was incubated at 95ᵒC for 10 min. Similarly, 4xLB buffer was used on its own to directly 

lyse 107 cells. Each sample was further diluted (3:1, 1:2, 1:4, 1:5 and 1:10) with 4xLB buffer 

and loaded on the SDS-PAGE gel. 
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In addition to commonly used RIPA and 4xLB buffers, following buffers were also tested: GLB 

(general lysis buffer, mildly denaturing), urea DIGE buffer (Magdeldin et al. 2014), modified 

PTY buffer (Chen et al., 2010)  and 107 cells were lysed with 1 ml of urea DIGE buffer, incubated 

at room temperature for 10 min and centrifuged at 18,000 g for 20 min. Similarly, 107 cells 

were lysed with 1ml of PTY buffer or 1 ml of GLB buffer and incubated at 4ᵒC for 10 min and 

centrifuged for 10 min at 18,000g. Lysis efficiency was tested by treating any remaining pellet 

with 100 µl of 4xLB buffer (using method described above). Each sample was thoroughly 

vortexed and sonicated for 10 s with an interval of 20 s (repeated three times) to ensure DNA 

shearing. 

Table 2.4 Lysis buffer composition for in-gel trypsin digest 

 

Name Composition (Sigma-Aldrich or Fisher Scientific) 

RIPA 50 mM Tris-HCl pH 7.6 

150 mM NaCl 

0.1% SDS 

0.5% SDC 

1% Triton X-100 

10 µl of Halt Protease Inhibitor Cocktail  

4xLB 62.5 mM Tris-HCl pH 7.6 

2% SDS 

25% glycerol 

0.01% Bromophenol Blue 

5% 2-mercaptoethanol 

Urea DIGE 50 mM Tris-HCl pH 7.6 

7 M urea 

2 M thiourea 

0.5% Tween-20 

PTY 50 mM HEPES  

50 mM NaCl 

5 mM EDTA 

1% Triton X-100 

GLB 50 mM Tris-HCL pH 7.6 

150 mM NaCl 

1 mM DTT 

5% glycerol (v/v) 
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2.3.2 Estimation of protein concentration  

The total extracted protein was quantitated with RCDC protein assay (Bio-Rad, UK), which is  

based on the Lowry assay (Lowry et al., 1951) but modified to be compatible with reducing 

agents and detergent according to the manufacturer’s instructions. The assay sensitivity 

ranged from 0.1mg to 1.5mg/ml so sample dilution was also necessary. Bovine serum albumin 

(BSA; Sigma-Aldrich) was used as a protein standard from which a standard curve was 

produced. Due to the reagent interference with the assay, the samples lysed with 4xLB or 

urea DIGE buffer were diluted 10 times.  

2.3.3 SDS-PAGE analysis 

After estimating the protein concentration, each protein sample was resuspended in a ratio 

of 1:4 with the 4xLB and incubated at 95ᵒC for 10 min. Following incubation, the samples were 

centrifuged for 10 s at 13,000 g before loading onto the 10-well gel consisting of 10% resolving 

and 4% stacking gel (see Table 2.5 for details). 5 µl of the protein standard (pre-stained Protein 

Ladder, Broad Range (10-230 kDa), NEB) was also loaded to allow estimation of molecular 

weight (mW).  The proteins were separated according to their mW using 80V for the first 10 

min followed by 200V (Laemmli 1970). 

Table 2.5 SDS-PAGE composition used for the protein separation 

Size (7 cm x 7cm x 0.75ml) 4% stacking gel 10% resolving gel 

Deionized H2O (ml) 

40% Acrylamide/Bis (v/v) (ml) 

1.5 ml Tris HCl pH 8.8 (ml) 

1.5 ml Tris HCl pH 6.8 (ml) 

10% w/v SDS (ml) 

10% w/v ammonium persulphate (ml) 

TEMED (ml) 

3.2 

0.5 

- 

1.25 

0.05 

0.05 

0.01 

4.9  

2.5 

2.5 

- 

0.1 

0.1 

0.02 

 

After SDS-PAGE separation, the gels were stained with Colloidal Coomassie Blue stain 

prepared according to Neuhoff (Neuhoff et al., 1985). Briefly, the staining stock solution was 

prepared by mixing 20g of orthophosphoric acid, 100g of ammonium sulphate in 800 ml of 

deionized water, followed by addition of 1g of Coomassie Brilliant Blue and topped up to 1000 

ml with deionised H2O . A working solution was prepared by mixing 80% (v/v) the staining 
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stock with 20% (v/v) ethanol.  The gels were stained overnight, and destained the next day in 

10 % (v/v) methanol in deionized H2O prior to in-gel trypsin digest.  

2.3.4 Selection of conditions for in-gel trypsin digest 

In-gel trypsin digest was performed as described before  (Shevchenko et al., 2007). Each gel 

lane was cut into 10 pieces and placed into LoBind microcentrifuge tubes (Eppendorf®, UK) to 

minimize protein loss. All gel pieces were destained with 50% (v/v) acetonitrile (ACN, Fisher 

Scientific) in 50 mM ammonium bicarbonate (ABC, Sigma-Aldrich) in deionised H2O and then 

dehydrated in the vacuum concentrator (SpeedVac, Eppendorf®, UK). The gel pieces were 

reduced with 200 mM dithiothreitol (DTT) prepared in 50 mM ABC for 1 h at 56ᵒC, followed 

by alkylation with 55 mM IAA (iodoacetamide, also prepared in 50 mM ABC) for 20 min at 

room temperature in the dark. The gel pieces were washed three times with 50 mM ABC 

solution to ensure removal of IAA (to prevent trypsin alkylation). The gel pieces were dried in 

the vacuum concentrator and rehydrated in either trypsin (Sigma-Aldrich, UK) solution or Lys-

C/trypsin solution (both prepared according to the manufacturer’s instructions). The 

protease: sample ratio was about 1:50. The tubes were incubated at 37ᵒC overnight 

(approximately 18 h) in the humid chamber. The next day, the peptides were recovered from 

the gel pieces by incubation in acetonitrile and 5% formic acid (Fisher Scientific) at 37ᵒC for 

15 min. Recovered peptides were placed in into fresh LoBind tubes and the contents were 

dried in a vacuum centrifuge. 

2.3.5 Optimisation of in-solution trypsin digest conditions 

For the optimization of in-solution trypsin digest, 0.5 M Triethylammonium bicarbonate 

(TEAB) buffer (with 0.1% Triton X-100, 0.01% sodium dodecyl sulphate and 10 µl of Halt 

Protease Inhibitor Cocktail, EDTA-free, Thermo Fisher) commonly used for iTRAQ (León et al. 

2013) was chosen. 107 E22 cells were harvested by washing twice in PBS pH 7.4, then 

resuspended with 1 ml of 0.5 M TEAB buffer, incubated for 10 min on ice, vortexed and 

sonicated three times for 20 s at 30 s intervals and centrifuged at 21,000g for 20 min. The 

supernatant was transferred into the fresh tube and kept on ice. 

The total protein concentration was measured using the RCDC assay, as described above (see 

Section 2.3.4) and 50 µg was used for in-solution trypsin digest. Each sample was further 

diluted to 100 µl with 0.5 M TEAB before being reduced with 200 mM DTT solution for 1 h at 

56ᵒC. Next, the sample was alkylated with 55mM IAA solution for 30 min at room temperature 
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in the dark and then incubated for 20 min with 20 µl of DTT solution to quench excess IAA. 

The trypsin (Sigma-Aldrich, UK) solution was resuspended according to the manufacturer’s 

instructions and added to the tube in 1:50 protease: protein ratio and incubated overnight 

(about 18 h) at 37ᵒC in the humid chamber. The complete digestion was verified by loading 

the peptide sample on SDS-PAGE gel (using method described in section 2.3.3).  

2.3.6 Optimisation of FASP buffer conditions 

In addition to the standard in-solution trypsin digest, an extension of the method called filter-

aided sample preparation (FASP, Wisniewski et al., 2009) was also tested. Three different cell 

lysis buffers were tested that differ in their main detergent (chaotrope) component (see Table 

2.6 for details): sodium dodecyl sulphate (SDS-based), urea-based or sodium deoxycholate 

(SDC-based), as suggested by previous research (León et al. 2013). 

107 cells were lysed with tested buffers and incubated at 95ᵒC for 10 min. When using urea-

based buffer, the incubation conditions changed to 20 min at room temperature due to the 

tendency of the urea to carbamylate proteins in the temperatures above 30ᵒC (Geiger et al. 

2011). The lysates were clarified by centrifugation at 14,000 g for 5 min and were analysed 

on SDS-PAGE gel to compare lysis efficiency. 

Table 2.6 Lysis buffer composition for filter-aided sample preparation (FASP) 

Buffer name Composition 

SDS-based 4% SDS (w/v) 

100 mM DTT 

50 mM Tris-HCL buffer pH 8.5 

SDC-based 5% SDC 

100 mM DTT, 

50 mM Tris-HCL buffer pH 8.5 

Urea-based 8 M urea 

100 mM DTT 

50 mM Tris-HCL buffer pH 8.5 

  

2.3.7 Improvement of the original FASP protocol 

After visual inspection of SDS-PAGE gel, SDS-based buffer was chosen for further 

optimisation. The FASP protocol (Wiśniewski et al. 2009) has been slightly modified from the 

original. Briefly, 100 µg of protein was placed into a Microcon®-10 filter unit (Merck Millipore 
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Ltd.) and was washed with  200 µl of 8M urea in 100 mM ABC solution at 14,000g twice to 

displace SDS bound to the proteins. 100 µl of IAA was the added, the filter units were vortexed 

for 1 min and incubated at the room temperature in the dark for 20 min. Following alkylation, 

the samples were washed three times with 8 M urea in 100 mM ABC solution. To remove the 

urea, three washes with 100 mM ABC were performed to reduce the urea concentration to 

<2 M. Next, trypsin (Sigma-Aldrich, UK) solution was prepared according to the 

manufacturer’s instructions and added in 1:50 (protease: protein) ratio to each filter unit and 

vortexed for 1 min. The filter units were sealed with Parafilm to minimise evaporation and 

incubated at 37ᵒC overnight. The next day, the solution containing the digested peptides was 

exchanged into 100 mM ABC solution with three washes. Lastly, a 0.5 M NaCl solution was 

added to the filter units to release any peptides bound to the cellulose membrane. The 

resulting solution was dried in the vacuum centrifuge and stored at -20ᵒC till the next step. 

2.3.8 Verification of trypsin digestion 

To verify the digestion efficiency of both in-solution trypsin and FASP digestion samples, the 

respective samples (both the lysate and post-tryptic digestion samples) were analysed on 

SDS-PAGE gel. In addition, a small amount of digested peptides (<1 µg) were tip-cleaned using 

a HyperSepTM  extraction tip (Thermo Fisher Scientific, UK) to remove residual detergents 

(SDS) or salts (ABC or NaCl) and to allow rapid analysis on an Amazon ETD (ion trap mass 

spectrometer) to further confirm efficiency of trypsin digestion.   

As the FASP-digested peptides represent a very complex mixture, two-dimensional liquid 

chromatography (2D-LC) separation is required prior to in-depth mass spectrometry analysis.  

2.3.9 Peptide fractionation by liquid chromatography using Hypercarb 

A Hypercarb column has been previously shown to be effective as a first dimension in peptide 

separation following shotgun approaches as they show mixed mode of separation (Griffiths 

et al. 2012). Thermo Scientific™ Hypercarb™ HPLC Column (Catalogue No.: 35003-102130) 

was used for the peptide separation using mobile phases: Solvent A (0.1% (v/v) TFA in 3% 

(v/v) can) and solvent B (0.1% (v/v) TFA in 97% (v/v) ACN). The column temperature was set 

to 30ᵒC and the flow-rate on the loading pump was equal to 0.2ml/min. 50 µg of digested 

peptides were fractionated using a 2-70% gradient of solvent B over 60 min, collecting 

fractions every 1 min from 5 to 59 min run time (total number of fractions collected was 54). 

Following separation, the samples were pooled into 18 fractions to be analysed on Amazon 
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ETD using method described 2.3.11. It was assumed that the same concentration of peptides 

was present in a single FASP fraction to allow for direct comparison with in-gel trypsin digest 

method. 

2.3.10 Protein extraction from spent media 

To investigate the extracellular proteins (known as host cell proteins, HCPs) present in cell 

culture medium conditioned by either stably producing E22 or GS-KO cell line, three different 

methods of protein precipitation were tested: acetone-, trichloroacetic acid (TCA)- and 

ethanol-based precipitation.  

The conditioned (spent) medium was collected from cell cultures in the exponential phase 

(day 4) by pelleting the cells by centrifugation at 200 g for 5 min. The resulting supernatant 

was filtered through by 20 µm filter to remove any remaining cells or debris. Acetone (Fisher 

Scientific) precipitation was performed by mixing 1 volume of protein solution to 4 volumes 

of ice-cold acetone. The mixture was kept at -20ᵒC for 60 min and centrifuged at 15,000 g for 

15 min at 4ᵒC. The supernatant was discharged by inversion on tissue paper and the samples 

dried at room temperature to remove remaining acetone.  

TCA (Fisher Scientific) precipitation was performed by mixing one-ninth of the total volume 

of the sample with 100 % (v/v) TCA (for a final TCA concentration of 10 %). The sample was 

incubated on ice for 30 min and then centrifuged at 16,000 g for 15 min. The supernatant was 

then discharged and the pellet was washed twice with 100 µl of ice-cold acetone to remove 

the remaining acid (by centrifugation at 15,000g for 15 min at 4ᵒC). The samples were dried 

at room temperature to remove remaining acetone.  

Ethanol (Fisher Scientific) precipitation was performed by mixing 1 volume of protein solution 

to 9 volumes of cold ethanol 100%. The mixture was incubated at -20ᵒC for 60 min and 

centrifuged at 15,000 g for 15 min at 4ᵒC. The supernatant was discharged by inversion on 

tissue paper and the pellet washed with 90% cold ethanol, vortexed and centrifuged at 

15,000g for 5 min at 4ᵒC. The supernatant was discharged by inversion on tissue paper and 

the samples dried at room temperature to remove remaining ethanol. Bradford Reagent 

(Sigma-Aldrich, UK) was used to estimate the protein concentration, as it is commonly used 

in proteomic studies (Hunt et al. 2005) of the extracted proteins according to the 
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manufacturer’s instructions. 20 µg of the proteins were analysed by SDS-PAGE, which was 

followed by in-gel trypsin digest, as described in section 2.3.4.  

2.3.11 Data acquisition using Amazon ETD, ion trap mass spectrometer  

Dried peptides obtained by either in-gel trypsin digest, in-solution trypsin digest or FASP 

methods were resuspended in loading buffer (0.1% TFA, 3% ACN), briefly vortexed and 

sonicated for 3 min. The peptide samples were centrifuged at 13,000 g for 5 min to remove 

insoluble particles and transferred to the autosampler vials. Peptides were separated using 

an Ultimate U3000 (Dionex Corporation, UK) nanoflow LC-system consisting of a solvent 

degasser, micro and nanoflow pumps, flow control module and a thermostat-controlled 

autosampler. An estimated amount of 500 ng of digested peptides was loaded with a constant 

flow of 20 µl /min onto a PepMap C18 AcclaimTM trap column (0.3 mm I.D. x 5 mm, Dionex 

Corporation). After trap enrichment, peptides were eluted into a PepMap C18 nano column 

(75 µm x 15 cm, Dionex Corporation) with a linear gradient using mobile phase A (0.1% formic 

acid, 3% acetonitrile) and mobile phase B (0.1% formic acid, 97% acetonitrile), starting from 

buffer B 3% to 36% over 60 min at a flow rate of 300nl/min. MS/MS analysis was performed 

using Amazon ETD instrument (Bruker Daltonic, Germany). MS1 profile scans (m/z = 300-

1500) were acquired in enhanced resolution positive mode at the speed of 8,100 m/z s-1. 8 

precursor ions were chosen for collision-induced fragmentation (CID) with active exclusion 

after 2 spectra and release after 2 min. MS2 scan range was between 50 and 3000 m/z. For 

MS/MS fragmentation, the trap was loaded to the target value of 250,000 with a maximum 

accumulation time of 50 ms. 

2.3.11 Raw data analysis using Data Analysis and Mascot Daemon 

The raw mass spectra from Amazon ETD were processed by the complimentary software Data 

Analysis (v 4.1, Bruker Daltonics, Germany) using the following settings. The apex peak search 

algorithm was used for peak detection using a peak width at half maximum (PWHM) of m/z 

0.1, a S/N (signal-to-noise) ratio of 1, relative to base peak intensity of 0.1% and an absolute 

intensity threshold of 100. Spectra were deconvoluted with charge state deconvolution from 

fragment spectra. Data Analysis program generated an mgf (mascot generic file) that is 

compatible with automated database searching using Mascot Daemon (v 2.5.1, Matrix 

Science) search engine (http://www.matrixscience.com/daemon.html).  Mass accuracies were 

set to 1.2 Da for the peptide tolerance and 0.6 Da for MS/MS fragment tolerance. Methionine 
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oxidation, carbamidomethylation and N-terminal protein acetylation were used as variable 

modifications in searches against the Cricetulus griseus reference proteome database 

downloaded from the UniProt (UniProt ID 10029; 23,884 sequences) and against common 

contaminants. Maximum 1 missed cleavage for trypsin and or Lys-C was allowed. Positive 

protein identification using a significance threshold of 0.05 was used. Proteins with at least 

two unique peptides identified were considered as being true hits. The search was repeated 

against a decoy database to estimate the false discovery rate (FDR). The number of 

overlapping protein identifications between different methods was shown in Venn diagram. 

 

2.4 Standard SILAC experimental design and data analysis 

The following sections describe the methods used for the relative quantitation of the 

proteome changes between the exponential and stationary changes in CHO cells grown in the 

cell culture using SILAC. The details on cell culture, standard SILAC experimental design and 

the necessary quality controls are provided. The details of the data acquisition using LC-

MS/MS and downstream processing using MaxQuant and Perseus are also described. Finally, 

functional annotation of differentially expressed proteins using publicly available databases 

is also presented. The data is presented in Chapter 4. 

2.4.1 SILAC adaptation phase  

The E22 cell line was cultured in custom CD-CHO medium depleted of arginine and lysine (Life 

Technologies, Paisley, UK) that was supplemented with arginine and lysine where either were 

the “light” form (Arg0 and Lys0, both from Sigma-Aldrich) or the “heavy” form (Arg10 and 

Lys8, both from Cambridge Isotope Laboratories Ltd., UK). The isotopic forms were added to 

the medium to a final concentration of 2 nM for arginine and 3 nM for lysine in a working 

volume of 30 ml. For the GS-KO cell line, an additional supplementation of 6mM L-glutamine 

was necessary. Amino acid solutions were prepared as 10x stock solutions in PBS pH 7.4, 

filtered through 0.2 µm syringe-filter membrane (Corning® 28 mm diameter syringe filter, 

Sigma-Aldrich, UK) and stored at -20ᵒC (thawed in the water bath just before use). The cells 

were cultured in the appropriate medium for 3 passages (subcultures) to allow for ≥97% 

incorporation of amino acids into newly synthesised proteins (adaptation phase) before the 
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experiment began. To examine whether the external supplementation of arginine and lysine 

is not detrimental to the cell growth, a control flask of the cells growing in the original CD-

CHO medium was also included in the experiment.  

2.4.2 Calculation of % incorporation of lysine and arginine 

107 cells were harvested during passages 1-4 at 72h to estimate % of incorporation of amino 

acids. The cells were washed twice in PBS and lysed in 4xLB medium. 2 µl of sample, 

equivalent to 20 µg of protein was diluted with 4xLB and run on SDS-PAGE gel.  The most 

prominent band was cut from each lane (containing proteins containing heavy isotopes at 

each passage) and subjected to in-gel digest. The raw data has been analysed using MaxQuant 

with the same settings as for global proteomic analysis (see section 2.4.9), except for not using 

“Re-quantify” option. Using evidence.txt result file (containing all peptide-to-spectrum 

matches, PSMs), the % incorporation rate of heavy arginine and lysine was determined using 

equation 8: 

%	�������������	���� = [1 − � �
�������	�����

�] X 100% (8) 

 

According to the guidelines outlined in commonly cited SILAC Methods and Protocols 

handbook (Warscheid 2014), the complete labelling is considered when the incorporation 

rate is >95 % (97-98% is ideal) because it is limited by the purity of the heavy amino acids used 

(typically 96-98%). In addition, heavy proline should not exceed 1% (how to calculate is 

described below). Prior to calculation of average ratio for each of the passage data, reverse 

and contaminant hits were removed. 

%	�������������	���� = [� − � �
�������	�����

� 

2.4.3 Calculation of arginine-to-proline conversion 

Several researchers have reported an issue with using arginine to label proteins in SILAC 

(Bendall et al. 2008). To calculate the arginine-to-proline conversion, the search was repeated 

for heavy labelled sample using Pro6 (6 Da heavier than light proline) as a variable 

modification and “Re-quantify” option was turned off. The degree of arginine to proline 

conversion is calculated as the percentage ratio of peptides containing heavy proline to all 

identified peptides as per equation (9):  
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�%�	����������	���� = ����		��������
���	��������

	�	100% (9) 

 

2.4.4 SILAC experiment phase 

SILAC experiment commended at passage  5 following adaptation phase: cell cultures from 

each medium condition were split into the three separate flasks (light SILAC medium, heavy 

SILAC medium and CD-CHO – growth control). Cell culture samples were taken each day to 

monitor VCC and % viability using the Vi-CellTM. The cell samples were harvested at day 4 (to 

represent exponential phase) from light isotope-labelled flasks and at day 7 (to represent 

stationary phase) from heavy isotope-labelled flasks in forward SILAC (FS) experiment. For 

reverse SILAC (RS) experiments, a new adaptation phase was performed, while the sampling 

plan was reversed (day 4 sample was taken from heavy isotope-labelled flasks and day 7 

sampling - from light isotope-labelled flasks).  

2.4.5 Cell lysis and in-gel trypsin digestion 

107 cells were harvested from the appropriate culture at mid-exponential phase and 

stationary phase by centrifugation at 200 g, followed by washing twice in PBS pH 7.4.  The 

washed cells were lysed with 100 µl 4xLB buffer (as described in section 2.3.1). The protein 

concentration was determined using RCDC assay (Bio-Rad, UK), using BSA as a standard (as 

described in section 2.3.2).  Due to a high concentration of detergents in the lysis buffer, each 

lysate was diluted 10 times to limit the interference. 20 µg of each protein sample was 

analysed by SDS-PAGE, stained overnight with Colloidal Coomassie Blue stain and destained 

for 3 hr with 10% (v/v) ethanol. Each gel lane was cut into 8 fractions and subjected to in-gel 

trypsin digest (see section 2.3.4) 

2.4.6 Data acquisition using MaXis 4G UHR-TOF mass spectrometer 

Nano-scale liquid chromatography tandem mass spectrometry (nLC-MS/MS) was performed 

using maXis 4G UHR-TOF mass spectrometer (Bruker Daltonics, Germany). Briefly, dried 

peptide samples were resuspended in loading buffer (0.1%TFA, 3% ACN) and separated using 

an Ultimate 3000 capillary LC system (Dionex). 500 ng of peptides was loaded with a constant 

flow of 20 µl /min onto a PepMap C18 trap column (0.3 mm I.D. x 5 mm, Dionex Corporation). 

Linear gradient elution was performed using mobile phase A (0.1% FA) and mobile phase B 

(0.1% FA, 80% ACN), starting from 4% buffer B to 40% buffer B over 90 min at a flow rate of 
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300 nL/min. MS/MS analysis was performed using maXis 4G UHR-TOF mass spectrometer 

(Bruker Daltonics, Germany).  MS1 profile scans (m/z = 100-1800) were acquired in positive 

ionization mode using ESI Nano sprayer source (Bruker Daltonics, Germany). Precursor ions 

were selected for auto MS/MS (CID fragmentation experiments at m/z 100-1800) at an 

absolute threshold of 3000, with a maximum of three precursors per cycle and active 

exclusion set at two spectra released after 0.25 min. The capillary was set to 4500 V, end plate 

offset 500V, the nebuliser gas at 1 bar and the dry gas at 4L/min.  

2.4.7 Data analysis using Mascot Distiller search engine 

Raw MS/MS data acquired with MaXis 4G UHR-TOF were submitted into Mascot Distiller (v 

2.5.1.0) search engine for peak picking and quantification. Peak picking was performed using 

the default parameters for the MaXis 4G UHR-TOF (defined in maXis.opt file). For database 

searching and quantification, mass accuracies were set up to 0.2 Da for peptide tolerance and 

0.2 Da for MS/MS fragment tolerance. Methionine oxidation, carbamidomethylation and N-

terminal acetylation were set up as variable modifications. Quantitation based on SILAC 

method [K+8, R+10] was used to search against CHO UniProt 10029 database (23,884 

sequences, downloaded on 27/07/2015), with the sequence of mAb (CB72.3) manually 

added, and against common contaminants (262 sequences). If a threshold 0.05 was passed, 

positive protein identification was assigned. Proteins with at least two identified peptides  

identified were considered true matches, while proteins were quantitated based on at least 

two H/L ratios. The search was repeated against a decoy database to give estimate of false 

discovery rate (FDR).  

2.4.8 Data acquisition using Q-Exactive HF orbitrap mass spectrometer 

Trypsin digested peptides were separated using an Ultimate U3000 (Dionex Corporation) 

nanoflow LC-system consisting of a solvent degasser, micro and nanoflow pumps, flow control 

module and a thermostat-controlled autosampler. 5 µl of the sample (equivalent to 500 ng of 

peptides) was loaded with a constant flow of 20 µl/min onto a PepMap C18 trap column (0.3 

mm I.D. x 5 mm, Dionex Corporation). After trap enrichment, peptides were eluted onto an 

EASY-Spray PepMap C18 capillary (0.075 x 500 mm, 2µm, 100 Å, Thermo Scientific) with a 

linear gradient of 5-35% solvent B (80% ACN with 0.1% formic acid) over 75 min with a 

constant flow of 300 nl/min. The liquid chromatography system was coupled to Q-Exactive HF 

NSI ion source (Thermo Scientific, UK). Full scan MS survey spectra (m/z 375-1500) in positive 
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profile mode were acquired in an Orbitrap (Thermo Scientific, UK) with a resolution of 

120,000 with AGC (Automatic Gain Control) target set to 3x106. The ten most intense peptide 

ions from the preview scan were fragmented by CID after accumulation of 5x104 ions and with 

a resolution of 15,000 in m/z range of 200-2000. Maximum filling times were 100 ms for both 

MS and MS/MS scans. Isolation of precursors was performed with a window of 1.2 Th 

(thomsons).  The normalized collision energy was equal to 28. The “underfill ratio” (specifying 

the minimum percentage of the target ion value likely to be reached at the maximum fill time) 

was defined as 10%. Furthermore, the S-lens RF level was set at 60 to give optimal 

transmission of the m/z region occupied by the peptides. Data acquisition was performed 

with XCalibur software (v. 3.0.63, Thermo Scientific). If required, peak list in mascot generic 

format (.mgf) were generated using MSConvertGUI software 

(http://proteowizard.sourceforge.net/tools.shtml).  

2.4.9 Raw data analysis using MaxQuant  

Raw MS data generated by Q Exactive HF was analysed with MaxQuant software (v. 1.5.2.8; 

see Cox and Mann, 2008) with the Andromeda search engine (Cox et al, 2011).  The false 

discovery rate (FDR) was set to 1% for protein, peptide-to-spectrum match (PSM) and site 

decoy fraction levels. Peptides were required to have a minimum length of seven amino acids 

and a maximum mass of 4600 Da. MaxQuant was used to score fragmentation scans for 

identification based on a search with an allowed mass deviation of the precursor ion of up to 

4.5 ppm. Spectra were searched by Andromeda against CHO UniProt 10029 database (23,884 

sequences, downloaded on 27/07/15), with the sequence of mAb (CB72.3) manually added, 

and against common contaminants (262 sequences). Multiplicity (“labeling states”) was set 

to two and the label pairs were set as Arg0 and Arg10 & Lys0 and Lys8. Enzyme specificity was 

set to “trypsin/p”, allowing cleavage at lysine and arginine also when followed by proline 

bonds, and a maximum of two missed cleavages (meaning that a peptide could theoretically 

have maximum three labels). Carbamidomethylation of cysteines was a fixed modification 

while N-terminal protein acetylation and methionine oxidation set as variable modifications. 

“Re-quantify” option was checked. A minimum of two peptides were quantified for each 

protein. 
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2.4.10 Downstream processing using Perseus & public databases 

Following raw MS data processing in MaxQuant, data was exported to multiple tab-separated 

(.txt) files. The Protein Groups file contains the information on the identified proteins in the 

processed raw files. Each single row is presented as the groups of proteins that could be 

reconstructed from a set of identified peptides. After uploading the Protein Groups file using 

“generic matrix upload” function in Perseus, the following columns were uploaded in their 

respective subgroups: Expression, Numerical, Categorical and Text (Table 2.7). 

Table 2.7 Protein groups upload in Perseus for standard SILAC data analysis 

Subgroup name Data columns 

Expression Ratio H/L normalised 

Numerical Ratio H/L 

Intensity 

Intensity L 

Intensity H 

Score 

Razor + unique peptides 

Unique + razor sequence coverage 

Mol. weight (kDa) 

Categorical Only identified by site 

Reverse 

Potential contaminant 

Text Protein IDs 

Majority protein IDs 

 

The first step in SILAC data analysis was the removal of irrelevant protein matches. Those 

groups were present in the categorical subgroup as “Reverse”: the proteins that have been 

matched to the reverse sequences and are therefore false identifications. The “Potential 

contaminants”, which were identified in the contaminants database, were also removed,  as 

these proteins are artefacts of sample preparation. In addition, “Only identified by site” 

matches were also eliminated from further analysis because they did not pass the required 

1% FDR value for the protein identification. In addition, the proteins that had only 1 razor + 

unique peptides (known as ‘one –hit wonders’’ in proteomics experiments) were removed as 

having insufficient coverage. 
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After filtering the data, SILAC ratios and intensities to log2 values were logarithmically 

transformed. This way up- and down-regulation of proteins with the same magnitude have 

equal distances in the visual representation. Only median normalised ratio H/L were used for 

is further analysis. The forward and reverse SILAC data sets for each cell line (E22 or GS-KO) 

were merged together and only proteins common to both experiments considered for further 

data analysis.  

To determine which protein groups were significantly changed between exponential and 

stationary phases, three different methods: a one-sample t-test, outlier testing (using 

significance A and B) and fold-change cut-off.  Benjamini-Hochberg FDR (false discovery rate) 

at 5% was chosen to correct p-values obtained from t-test and significance A and B multiple 

testing.  Within these significantly changed proteins, only the proteins that have at least 1.5 

ratio fold change (FC) were selected.  

2.4.11 Bioinformatics analysis of differentially expressed proteins 

To further examine if they are any trends in the differential expression, proteins of interest 

were functionally annotated using Gene Ontology (GO; http://www.geneontology.org/) 

molecular function (MF), biological process (BP) and cellular compartment (CC) definitions. 

The relevant terms have been downloaded from the UniProt (http://www.uniprot.org/) and 

further analysed in Excel. In addition, KEGG (Kyoto Encyclopaedia of Genes and Genomes; 

http://www.kegg.jp/kegg/tool/map_pathway2.html) database was used to examine if there 

any specific pathways involved. Since many of the differentially expressed proteins were 

enzymes, we have also analysed them separately using the information found in ExplorEnz 

database (http://www.enzyme-database.org/).  

2.5 Enhanced pulse SILAC and TPA - experimental design and data analysis 

The following sections describe the methods used for deriving absolute values of protein copy 

number and protein turnover by TPA method and enhanced pulse SILAC, respectively. The 

details on cell culture and enhanced SILAC experimental design are provided. The details of 

the data acquisition using LC-MS/MS and downstream processing using MaxQuant and 

Perseus are also described. The development of in-house program in Matlab to calculate 
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parameters of rate of protein turnover, amino acid usage and codon usage is outlined. The 

data is presented in Chapter 5. 

2.5.1 Pilot study with the media exchange 

Any pulse SILAC experiment requires a cell culture medium exchange step in which medium 

containing ‘light’ isotopes of arginine and lysine is replaced with medium containing ‘heavy’ 

isotopes of these amino acids. As with the standard SILAC experiment (see section 2.4.2), 

>97% of the light isotope must be incorporated into the proteins before the experiment 

starts. The pulse SILAC experimental design requires that the medium exchange occurs on 

day 4 of passage 5 when cells are in the mid-exponential phase. A pilot study was conducted 

to assess whether media exchange should be performed using conditioned (spent) or fresh 

media. Its purpose is to compare it with the control media to examine any adverse effects on 

the VCC and % viability. 

For the E22 cell line, the medium exchange was performed in 30 ml working volume in a 125 

ml Erlenmeyer flask grown in CD-CHO medium. The procedure was performed on day 5 (mid-

exponential) with either fresh or conditioned CD-CHO media without glutamine 

supplementation. Growth was monitored daily before and after media exchange using Vi-

CellTM. Concurrent growth control (no media exchange) was also measured. In each group, 

they were three biological replicates. 

2.5.2 Enhanced pulse SILAC adaptation phase 

Based on the data from the pilot study on the media exchange, it was found that the use of  

conditioned media was essential to replicate healthy cell growth. The experiment started with 

the SILAC adaptation phase, similarly to the standard SILAC experimental design (see section 

2.4.1). Briefly, (stably producing) E22 cell line was cultured in suspension using custom CD-

CHO medium (Life Technologies, Paisley, UK) that was deprived of arginine and lysine. Custom 

CD-CHO was supplemented with arginine and lysine, which were in either ‘light’ (Arg0 

andLys0, both from Sigma-Aldrich), ‘medium’ (Arg6 and Lys4, all from Cambridge Isotope 

Laboratories Ltd., UK) or ‘heavy’ (Arg10 and Lys8, all from Cambridge Isotope Laboratories 

Ltd., UK) isotopic form to a final concentration of 2 nM for arginine and 3 nM of lysine in 

working volume of 30 ml.  For (parental) GS-KO cell line, additional supplementation of 6mM 

L-glutamine was necessary.  
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Stock solutions of lysine and arginine were prepared as 10x stock solutions in PBS pH 7.4, 

filtered through 0.22µm syringe-filter membrane (Corning, UK) and stored at -20ᵒC (thawed 

in a water bath set to 37ᵒC just before use).  

2.5.3 Enhanced pulse SILAC experiment phase 

The pulse SILAC experiment phase started on day 4 (96h).  After measuring VCC and % viability 

with Vi-CellTM, media from heavy and medium isotope-labelled cultures (n=6) were 

transferred separately to Falcon tubes (Fisher Scientific, UK) and pelleted at 125g for 5 min ( 

low speed centrifugation was necessary to avoid cell damage). The supernatant was then 

transferred into fresh tubes and centrifuged at 200 g for 5 min to remove residual cell debris. 

All conditioned media was prepared this way and kept in the water bath at 37ᵒC until the 

resuspension with the respective cell pellet (heavy- medium with medium-labelled cells and 

vice versa). Following media switch, another measurement of VCC and % viability was taken. 

This procedure has marked the time 0h of pulse SILAC. The light-labelled medium was not 

exchanged but kept as internal control. Sampling of the cell cultures was performed at 6 time 

points post medium exchange: 0.5h, 4h, 7h, 11h, 27h and 48h. At each time point, 5x106 cells 

were harvested for further mass spectrometry analysis.  

2.5.4 Filter-aided sample preparation (FASP), data acquisition and analysis 

For mass spectrometry analysis of samples from enhanced pulse SILAC experiment, each cell 

pellet containing light isotope-labelled proteins was mixed in 1:1 ratio with equivalent cell 

pellet containing heavy isotope-labelled proteins (referred as “MTOH” sample). Cell pellets 

were lysed in 100 µl of SDS-based lysis buffer (see section 2.3.6) and processed using FASP 

protocol (2.3.7). Trypsin digested peptides were separated into 54 fractions on HypercarbTM 

column, which were then combined into 6 fractions for mass spectrometry analysis.  Data 

acquisition was performed using Q-Exactive HF mass spectrometer using the same 

parameters as for standard SILAC  (see section 2.4.8) except for the fragmentation of the 15 

most intense ions instead of 10 (due to sample complexity). The raw mass spectra were 

analysed in MaxQuant using same search settings as before (see section 2.4.9). The 

multiplicity was set to three and the label set as Arg0, Arg6 and Arg10, and Lys0, Lys4 and 

Lys8 were used. Two replicates (two injections of the same sample) were analysed for each 

of the cell lines.  
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2.5.5 Estimation of protein copy number using total protein amount (TPA) method 

The protein groups exported from MaxQuant (in tab-delimited files) were used to derive 

absolute protein concentration (nM) and protein copy number per cell using “proteomic 

ruler” function in Perseus (v 1.5.1.6). The method has been extensively described in 

Wisniewski et al., 2014 (see section 1.5.4) and is based on the assumption that the individual 

abundance of a protein in a cell is reflected by the ratio of its MS signal to the total MS signal 

(equation 10): 

������� � ���
����� ������� � ���

≈ ������� � � ������
����� � � ������

    (10) 

Sum of peptide intensities for individual proteins are used to estimate both protein copy 

number and protein concentration. Two parameters are necessary for the scaling: protein 

amount per cell (in pg) and total cellular protein concentration (g/l).  

Since the amount of protein per cell could vary substantially between the mammalian cell 

lines and even between phases of cell culture (Milo et al., 2013), the average protein biomass 

per cell was calculated from the total protein amount and the number of cells lysed (equation 

11): 

�������	�������������	(� �
� �)

��� ���	��	�����(���)
= �������	�� ����	���	����	(��)   (11) 

Total cellular protein concentration was the calculated by taking into the account the cell 

volume. The average cell volume can be derived by assuming that the cells have a spherical 

shape (equation 12): 

� = �
�
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�
�

�
  (12) 

Where: 

d = average cell diameter (µm), derived directly Vi-CellTM reading 

The estimated values were exported from Perseus in a tab-delimited file for further analysis. 

2.5.6 Data extraction for the calculation of the protein turnover and half-lives 

After analysing raw data with MaxQuant, the first step in the analysis was correlating peptide-

to-spectrum matches (PSMs) and the corresponding time points. This allowed to find any 

peptides present at the time point associated with a given protein so that the data can be fit 
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with non-linear square model. The “Leading Razor Protein” column was selected for protein 

identifications because it contains a single UniProt ID of the best scoring protein (according 

to a MaxQuant/Andromeda search) along with the raw file name (to match the time points) 

and associated ratios: H/L, M/L and H/M. All five columns were exported for further analysis. 

The estimation of cell cycle duration was important for the calculation of the half-lives. The 

VCC values were derived from the Vi-CellTM reading at each of the 6 time points. VCC were 

logged and plotted against the time points (0-48h) and linear model was used to obtain the 

coefficients. The inversion of the linear model coefficient provided the estimation of the cell 

cycle duration.  

2.5.7 Determination of protein half-life and turnover 

Determination of the protein half-life and turnover has been performed as described in 

Boisvert et al., 2012 with slight modifications. After the media exchange, the heavy isotopes 

of lysine and arginine were gradually incorporated into newly synthesised proteins, while the 

pre‐existing medium isotope-labelled proteins were degraded. Meanwhile, all the proteins in 

the control sample contain only light isotopes of amino acids. Thus, the M/L and H/L ratios 

for each protein represent the respective degradation and synthesis over time. The protein 

turnover (H/M ratio) is defined as the balance between those two processes. The first step in 

the analysis was the normalisation of H/L and M/L profiles for individual proteins according 

to the following equation (equation 13): 

�
� +

�
� = 1	(13) 

Next, the exponential function (equation 10) was used to fit the normalised M/L profiles: 

����= 	��
��
� + �	(14)   

 Where: A - normalised amplitude 

               B - offset in the data, related to the medium isotope amino acid recycling       

             		�′ - time constant related to intrinsic e-folding factor 

Using the model coefficients, the half-life can be calculated with the equation (15): 

��
����������

�� 		(��)		
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The protein turnover can be defined as the crossing point between normalised M/L and H/L 

protein profiles: 

T= − ��× ����.���
�

�	(16) 

2.5.8 Curation of enhanced pulse SILAC data  

Since the enhanced pulse SILAC produces three different ratios: H/M, H/L and M/L, it is 

possible to calculate any ratio from the other two ratios. The quality of the data was examined 

using the Spearman correlation by multiplying H/L ratio and M/L ratio and dividing its product 

by H/M ratio.  

Prior to fitting the data to non-linear square model, the data was curated using several 

criteria. The minimum number of three time points was set up as a required threshold for 

fitting the data into the line. This was because the exponential function used to fit the data 

represented an underdetermined problem: this means that using a single equation, 3 

different parameters were calculated: A – amplitude of the curve, B – offset of the data and 

�′ - the time constant (related to intrinsic e-folding factor). The protein turnover and the half-

lives were calculated from these parameters. 

2.5.9 Implementation of Levenberg-Marquardt algorithm  

To optimize fitting of the data, the Levenberg-Marquardt algorithm was implemented (as in 

Boisvert et al., 2012) using in-house program written in Matlab (R2016a, Mathworks) with the 

Optimisation toolbox. The non-linear square fitting required the setting of the initial 

conditions for the estimation of A, B and τ' coefficients. Two different sets of initial conditions 

were tested, defined by lower and upper boundaries: V1 (0.05<A<1, 0<B<1 and 0<	�′ <50) and 

V2 (0.01<A<1, 0<B<1 and 0<	�′ <100). In addition, a third set of starting parameters, where A 

and B values were fixed, was also tested and defined as V3 (A=1, B=0, 0<	�′ <50). Using V1, V2 

or V3 parameters, 100 initial random conditions were generated using the random number 

generation function from uniform continuous distribution. In addition to the estimation of 

model coefficients, residual norm was also recorded to evaluate the goodness of the fit.  

After fitting data to the model, another curation was necessary to remove values that were 

outside logical boundaries using similar criteria as described in Boisvert et al. 2012:  0<	�′ <70, 

0<A<2, 0<B<1. Any negative values for coefficients were removed as they cannot be used for 

the calculation of the protein turnover and half-lives. The data from the technical replicates 
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were fitted separately and the protein turnover and half-lives were calculated as average of 

the two. Any negative values for protein turnover were also removed.  

2.5.10 Total biomass and rate of protein turnover calculation 

After combining the protein turnover data and the protein copy data, the rate of turnover for 

a given protein was calculated using the following equation (17): 

����	��	�������	��������	(������
�
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 (17) 

By considering the molecular weight (mW) of the protein, estimation of the total protein mass 

could be also calculated (equation 18): 

�����	�������	� ���		(���) = 	�������	����	��� ���	�	� ��������	����ℎ�	(���)	 (18) 

The problem was identified while deriving such calculations: extremely low turnover values 

(<10 min) gave rise to unnaturally high turnover rates. The proposed solution was to set the 

threshold - any turnover value below 0.5 h was assigned to 0.5 h, as it was not possible to 

accurately estimate protein turnover for those proteins using the enhanced pulse SILAC.  

2.5.11 Bioinformatic analysis of protein turnover data 

The calculated protein composition for each of the cell lines was first visualised using publicly 

available Proteomap tool (https://www.proteomaps.net/). CHO identifiers were mapped to 

mouse homologs according to NCBI gene ID and matched with corresponding protein copy 

number data derived from TPA approach.  

To analyse any trends in clonal selection of CHO cells, 2-fold up-regulated proteins (according 

to the protein abundance) in E22 producing cell line were examined closer. PANTHER 

classification system (http://pantherdb.org/) was used to download available annotation 

from Gene Ontology (GO; http://www.geneontology.org/) website based on molecular 

function (MF), biological process (BP) and cellular compartment (CC). If available, the GO-slim 

annotation was used in the preference. In addition, KEGG (Kyoto Encyclopaedia of Genes and 

Genomes) database Search & Color function 

(http://www.kegg.jp/kegg/tool/map_pathway2.html) was used to further examine the 

protein function in cellular pathways. 
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2.5.12 Calculation of amino acid usage in CHO cells 

In addition to the calculation of the rate of the protein turnover in CHO cells, it was also 

important to examine CHO cell specific amino acid utilisation rate. Matlab (R2016a) 

Bioinformatics toolbox was used to calculate amino acid usage based on the amino acid 

sequences of the individual proteins. The amino acid sequences were extracted from Uniprot 

ID database and the number of individual amino acids calculated for each protein in the list. 

Derived values were multiplied by the associated protein turnover rates to estimate individual 

rates of amino acid usage (h-1).  

2.5.13 Calculation of codon usage in CHO cells 

It has been also hypothesized that the dynamic rates of the utilisation of individual codons 

might be significantly different from CHO genomic codon usage bias. In order to examine it 

closer, the protein sequences were matched to the corresponding transcripts using the EMBL-

EBI database (https://www.ebi.ac.uk/) and CHOgenome resources 

(http://www.chogenome.org/). The quality of the association was verified manually using the 

online resources available in UniProt and EMBL-EBI. ExpPASy Translate tool 

(http://web.expasy.org/translate/)  was used to check if the transcript sequences were 

complete. Clustal Omega tool (https://www.ebi.ac.uk/Tools/msa/clustalo/) for multiple 

sequence alignment was used to verify if the seemingly redundant transcript sequences were 

the same. Truncated or missing sequences were manually added to the list of transcripts. 

The codon calculation was performed in the similar manner to the amino acid calculation. 

After mapping the transcript sequences, the individual codons were calculated for each 

transcript in the list. The nonsense codons (UAA, UAG, and UGA) were also included in the 

calculations. If the sequence of the transcript was incomplete or ambiguous, the codon 

calculation was skipped. Derived values were multiplied by the calculated rate of turnover to 

estimate how many codons were utilised by unit time (h-1). Such estimated dynamic codon 

use bias was compared to the reference CHO-K1 genome derived from published datasets.  
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Chapter 3: Optimisation of sample preparation for mass 

spectrometry to achieve high-coverage CHO proteome 

3.1 Abstract  

The publication of complete genome of CHO cells has opened a possibility of utilisation of 

variety of ‘omic’ tools to increase fundamental understanding of this important mammalian 

host. Studying full proteome of complex organisms is challenging due to significant 

differences between number of proteins extracted from the sample and those truly identified 

and quantified. The development of sample extraction and preparation protocols is of crucial 

importance for any proteomic experiment. 

Among several cell lysis buffers tested, 4xLB buffer, compatible with in-gel trypsin digest and 

SDS-based buffer for filter-aided sample preparation (FASP) were the most robust. This was 

probably due to high concentration of detergents and reducing agents. There was an increase 

in the number of protein identifications when using FASP method and Amazon ETD mass 

spectrometer in comparison to in-gel trypsin digest. The difference was less pronounced 

when using high performance and resolution Q Exactive HF mass spectrometer. Interestingly, 

there was no significant improvement on the number of protein identifications when using 

combined trypsin and Lys-C digest. The feasibility of using Hypercarb (Porous Graphic Carbon, 

PGC) column as first dimension for peptide separation that is orthogonal with reverse phase 

separation was also confirmed. 

In conclusion, there was an increase in number of validated protein identification while using 

FASP extraction protocol over optimised in-gel trypsin digest. However, the difference was 

lost while using high-throughput mass spectrometer. Both methods of sample preparation 

were found to be optimal for high-coverage CHO proteome analysis, which will turn 

quantitative in the next two chapters. 

3.2 Introduction 

The recent studies into complete genome for Chinese Hamster ovary (CHO) cells (Xu et al. 

2011; Lewis et al. 2013) have created an important shift from traditional engineering to global 
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‘omic’ strategies (Datta, Linhardt, and Sharfstein 2013).  Generating large-scale ‘omic’ data 

sets have increased the fundamental understanding of CHO cells physiology and enabled 

development of novel engineering tools to increase both growth and productivity. 

Genomic studies have revealed that there are more than 24,000 predicted genes in CHO cells 

that can be transcribed into up to 29,000 transcripts (Becker et al. 2011) and similar number 

of individual proteins.  Such complexity of the proteome is typical for mammalian cell lines, 

therefore the optimisation of sample preparation for mass spectrometry (MS) analysis  is 

essential for any proteomic study, especially the quantitative approaches. Despite recent 

developments in the field of instrumentation in both liquid chromatography and mass 

spectrometry, it is still challenging to study full proteome for a complex organism. In addition, 

there is a significant difference in the number of proteins that can be extracted from sample 

and number of proteins truly identified and quantitated. Typically, the proteome coverage, 

described as the proportion of proteins identified in a proteomic study to complete number 

of proteins, is about 10% for mammalian cells (Bantscheff et al. 2007).  

There are several reasons for such poor proteome coverage for higher organisms. First, 

proteins are difficult to handle, meaning that are prone to degradation and may not be soluble 

under certain conditions (Steen and Mann 2004). For example, protein solubility differs 

substantially in aqueous solutions, e.g. membrane proteins are clearly insoluble, while many 

structural proteins, such as collagen, are also insoluble in physiological conditions. The choice 

of the lysis buffer for protein extraction should be tailored in accordance to the chosen 

method of sample preparation method for mass spectrometry analysis (Wu and Maccoss 

2002). 

All sample preparation workflows begin with cell (or tissue of interest) lysis and protein 

extraction in an optimized lysis buffer. Extracted proteins can be separated according to their 

molecular weight (mW) using SDS-PAGE (or 2-DE) and visualised using Coomassie- or silver-

based stains that are sensitive enough to detect even small amount of protein (Candiano et 

al. 2004). After staining, bands of interest (or even the entire sample lane for global proteomic 

analysis) are excised for further analysis (Shevchenko et al. 2007). Alternatively, the prepared 

lysate might be directly processed in solution without gel separation. This method is called in-

solution trypsin digest (León et al. 2013). The extension of in-solution method is called filter-

aided sample preparation (FASP) that is performed using spin-filter devices. Using spin-filter 
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devices is advantageous since it is possible to use high concentrations of sodium dodecyl 

sulphate that is very effective at protein solubilisation (Wiśniewski et al. 2009; Wiśniewski 

and Rakus 2014). 

Reduction and alkylation steps help in the linearization of proteins to expose amino acids 

targeted by a given protease. The most frequently used trypsin cuts at C-terminus of every 

lysine (K) and arginine (R). The estimation of the protein concentration within cell lysate is 

important to use the correct ratio of protein: protease for optimal digestion conditions and 

enough loading of the peptide sample into LC-MS/MS instruments (Steen and Mann 2004). 

Protein concentration can be measured using either absorbance-based or reagent-based 

commercially available assays using protein standards, such as bovine serum albumin (BSA). 

Fractionation of peptides prior to MS analysis ensures that correct amount of peptides is 

analysed at a given time. The most popular methods for peptide fractionation are separation 

based on reverse-phase liquid chromatography (RPLC) or hydrophilic interaction 

chromatography (HILIC) that separates proteins according to their hydrophobicity or 

hydrophilicity, respectively (Fílla and Honys 2012). Alternatively strong cation exchange (SCX) 

liquid chromatography can be used to separate peptides according to their positive charge 

(Cravatt, Simon, and Yates 2007).  Porous graphitic carbon (PGC) surface has mixed separation 

mode, combining properties of reverse phase columns separating on the basis on 

hydrophobicity and ion-exchange-like behaviour. Another advantage of using PGC for peptide 

separation is its mechanical and chemical stability, especially regarding pH. The performance 

of PGC as first dimension separation for proteomics and glycoproteomics research has been 

already proven (Griffiths et al. 2012; Zhao et al. 2014b).  

In addition to choosing the most optimal method for sample preparation and 

instrumentation, the next important factor for successful proteomic analysis are the software 

capabilities. In fact, all three components must be properly integrated into robust workflows 

to ensure reproducible and high-quality proteomic results. There is a large number of both 

open-source and commercial search engines that match experimental mass spectra to 

theoretically predicted and combine identified peptides into proteins.  The choice of software 

depends mainly on the method of quantitative proteomics and the type of data file produced 

by the instrument vendor. A full list of both open source and commercial software has been 

provided and extensively reviewed elsewhere (Gonzalez-Galarza et al. 2012). In this research 
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project, three programs were used: Mascot Daemon and Mascot Distiller from Matrix Science 

(http://www.matrixscience.com/) and MaxQuant (Cox and Mann 2008). The latter is open-

source software that has been well-established for the analysis of quantitative data using 

SILAC as well as iTRAQ and label-free quantification (LFQ).   

First, the identification of the peptide is obtained by searching experimental spectra against 

the protein sequence database using algorithms (reviewed by Steen & Mann 2004). The most 

popular approach is based on probability-based matching and it involves the calculating the 

probability that match between theoretical and experimental spectra (known as ‘peptide-to-

spectrum match’, PSM) is random. This algorithm was first implemented into Mascot search 

engine and its modified version is also used in MaxQuant and is called Andromeda score (Cox 

et al. 2011). The peptides are the distibuted to the corresponding proteins using the minimum 

number of proteins. In global proteomic experiments, it is important to report only proteins 

containing at least 2 unique (proteotypic) peptides. Other proteins, known as ’one-hit 

wonders’, must be excluded from further analysis. Some search engines, such as MaxQuant, 

refine the criteria by using at least 2 razor peptides and unique peptides. In this context, razor 

peptides are defined as peptides shared between several proteins but assigned to the protein 

with more associated peptides (Cox and Mann 2008).  

Since peptide assembly is performed using probability-based matching, there is a potential of 

getting a singificant number of false positives. One way to solve this problem is to use a decoy 

database search in which experimental spectra are searched against a database composed of 

reversed or random amino acid sequences (Wang et al. 2009).  The number of positive 

matches to the decoy database is used to estimate false discovery rate (FDR) that is defined 

as the expected number of false positives in the list of proteins selected using any statistical 

test (Campos 2010).  

In conclusion, a well-defined mass spectrometry workflow is needed to generate high-quality 

proteomic data. For any further quantitative analysis, only validated protein identifications 

should be used. 
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3.2 Aims and objectives  

The aim of this chapter was to develop sample preparation workflow for acquisition of mass 

spectrometry data. First, different cell lysis methods were tested and compared on low-end 

mass spectrometer. Commercially available assay for measuring protein concentration was 

also verified to be compatible with cell extraction procedures. Next, popular methods of 

peptide extraction were optimized, namely in-gel trypsin digest and in-solution trypsin digest, 

and its further refinement, filter-aided sample preparation (FASP). Improvement of peptide 

extraction was attempted by using two proteases of varying specificity. PGC and RP columns 

were examined for their efficiency in peptide separation. Different types of mass 

spectrometers were used for data acquisition and the obtained numbers of protein 

identifications were compared. Pros and cons of using different software packages for 

downstream data analysis was also discussed.   

3.3 Results and discussion 

3.3.1. Cell line characterisation 

3.3.1.1 Growth profile of GS-KO parental and E22 producing cell lines in chemically defined 

medium (CD-CHO)  

The monoclonal antibody mAb-producing cell lines used within this study were derived from 

Lonza Biologics’ main proprietary Chinese hamster ovary (CHO) host, namely CHOK�SV GS-KO 

(Xceed™).  The cells were revived from a cryovial containing 1x107 cells and passaged 4 times 

before studying their growth profiles (at passage 5, p5). Both parental GS K-O and producing 

E22 cell lines displayed growth profile that is typical of a batch culture, starting from lag phase 

that lasts about 2 days (48h), followed by exponential (log) phase till day 7 (GS K-O) or 8 (E22). 

Finally, stationary phase was very short-lived (1-2 days) before cells enter the death phase. 

The viability was high (98% on average) during throughout lag, exponential and stationary 

phase. IVCC was increasing steadily and reached 45 (106 cells days ml-1) on day 8 for both cell 

lines (Fig 3.25). However, the specific growth rate was similar for both cell lines (0.025 h-1 for 

E22 cell line and 0.024 h-1 for GS K-O cell line), which translated into a doubling time of 27h 

and 28h, respectively. The values for both specific growth and doubling time are within 

expected range for mammalian cell lines.  
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Figure 3.25 The growth profiles of CHOK�SV GS K-O parental (marked in red) and E22 stably producing (marked 

in blue) cell lines in chemically-defined medium (CD-CHO), with or without L-glutamine (6mM) supplementation, 

respectively. Viable cell count (VCC; A), % viability (B) and average cell diameter (D) were measured every day 

with Vi-CellTM Beckman Coulter, based on Trypan blue exclusion essay. Integral viable cell concentration (IVCC) 

was also calculated (C). The values are displayed as mean±SEM values; n=3. 

For all consecutive studies of different sample preparation methods, cell samples were taken 

at mid-exponential phase of cell growth (day 3 or 4). The cells are believed to be the most 

viable at this point: they actively grow and divide and the accumulation of toxic metabolites 

is low. 

3.3.1.2 Calculation of secretion rate of monoclonal antibody in E22 producing cell line 

In addition to studying the growth profiles of E22 cell line, it was also important to measure 

the amount of monoclonal antibody produced. Cell culture samples were collected at p5 

every from day 0 to day 8 from two different batch cultures (two biological replicates). The 

reference standard curve was generated using IgG1 kappa standard with extinction 

coefficient of 1.4 (E=0.1%) measured at 280 nm. Five dilutions were prepared in duplicates 

(ranging from 0.078125 mg/ml to 1.25 mg/ml) and analysed on HPLC using decreasing pH 

gradient (Figure 3.26). Using the available sequences for the light chain and the heavy chain 
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of CB72.3 antibody, we have estimated molecular weights (mW) and extinction coefficients 

(assuming cystines) using ExPASy  ProtParam tool (Table 2.8). 

Table 2.8 Theoretical estimation of properties of LC, HC and full mAb using PostParam tool. 

 Length  Molecular weight (Da) Extinction coefficient 

Full Mab (2LC + 2HC) 1310 143845.01 1.477 

LC 214 23420.96 1.415 

HC 441 48528.57 1.503 

 

Based on results from ProtParam tool, the extinction coefficient for the complete antibody 

was estimated at 1.477, which is only slightly different from the extinction coefficient for the 

protein standard (1.40).  

 

Figure 3.26 The HPLC gradient used to elute IgG1 kappa standard and CB72.3 mAb (A), standard curve produced 

using IgG1 kappa standard (B) and the titre of mAb accumulated over time, calculated from the standard curve. 

Data is  presented as average of two replicates. 

Since E22 is a stably producing cell line, Mab titre is relatively high (1.184 mg/ml on day 8) 

even under batch culture conditions and no additional supplementation. Using the 

mathematical equation, the specific antibody productivity (qMab) was equal to 0.77 pg/cell/h 

(18.48 pg/cell/day). To estimate how many moles of mAb were secreted per hour, qMab value 

was divided by the estimated molecular weight to obtain 5.35x10^-18 moles/cell/h. Using the 

Avogadro number (6.022x1023), it was estimated that the number of complete monoclonal 

antibody produced by E22 producing cell line was 3.22e6 molecules/cell/h.  

3.3.2 Comparison of lysis buffers for in-gel trypsin digest  

Cell culture, equivalent to 107 cells, was collected at mid-exponential phase, centrifuged and 

washed twice in PBS to remove residual medium components. Cell pellets were treated with  
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various lysis buffers to determine the best method of protein extraction. Cell lysates were 

visually compared on SDS-PAGE (see section 2.3.3 for details). 

The first experiment was designed to check the effectiveness of radioimmunoprecipitation 

assay (RIPA) buffer, which was routinely used in our laboratories for protein extraction from 

many different cells (including bacterial and human). Cells were lysed with 1 ml of RIPA buffer. 

The supernatant was clarified by centrifugation and the remaining insoluble pellet was further 

treated with strongly denaturing 4xLB buffer. RIPA buffer was not found to be as effective in  

protein extraction. In contrast, pellet lysis with 4xLB buffer yielded prominent histone 

proteins (bands 15-20 kDa, Fig 3.27), as confirmed later by MS analysis. Histone proteins are 

one of the most abundant species in mammalian cells so their efficient extraction is very 

important.  

 

Figure 3.27 Testing of RIPA buffer lysis efficiency. The pellet remaining after supernatant removal was further 

lysed with 4xLB and resulting lysate was diluted and loaded on SDS-PAGE gel (5% stacking and 12 % resolving).  

Based on the literature, additional lysis buffers were selected for their compatibility with in-

gel trypsin digest: DIGE (urea) buffer, general buffer and PLY buffer. 

By visual examination of SDS-PAGE gels (Fig. 3.28), it can be concluded that neither PTY (lane 

6; used normally in phospho-enrichment studies) nor GLB (lane 8;) performed better than any 

of two tested RIPA buffers (lanes 2 and 3) or urea buffer (lane 4). The cell pellets following 

urea, PTY and GLB lysis were further treated with 4xLB to extract proteins from insoluble 
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fraction that was expected to include membrane proteins. It can be noticed that histone 

proteins were especially prominent (lanes 5, 7 and 9).  

 

Figure 3.28 Optimisation of lysis buffers for in-gel trypsin digestion. 107 cells were lysed in 1 ml of each of the 

buffers tested, and an equal volume of the resulting lysate was analysed on SDS-PAGE gel (5% stacking and 12 

% resolving). 

Based on the above results, it was decided to check whether 4xLB buffer can be used as the 

only lysis buffer for the extraction of all cellular proteins. It was found that 4xLB buffer was 

the most robust lysis buffer (Fig 3.29). There were several reasons of why the 4xLB buffer was 

so effective, including lysis at high temperature, high concentration of detergent (SDS) and 

reducing agents. The cell lysate following 4xLB treatment was very concentrated, therefore 

serial dilutions were performed to find the optimal amount of lysis buffer to be used in the 

future experiments. 
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Figure 3.29 Testing the performance of 4xLB lysis buffer and comparison with protein extraction using the 

standard RIPA buffer. 107 cells were lysed in each case and the resulting lysates diluted and analysed on SDS-

PAGE gel (5% stacking and 12% resolving).  

3.3.3 Comparison of lysis buffers for in-solution trypsin digest  

Another popular method of sample preparation for mass spectrometry is in-solution trypsin 

digest. Based on the literature, tetraethylammonium bromide (TEAB) buffer (containing 

0.01% SDS and 0.1% Triton X-100) was selected as a mild denaturing buffer as it is commonly 

used in TMT and iTRAQ labelling experiments (Ernoult et al. 2010; Rauniyar and Yates 2014). 

50 µg of protein was reduced with DTT, alkylated with IAA and then digested with trypsin 

solution (prepared according to the manufacturer’s protocol) in 1:50 ratio (enzyme: protein 

ratio). The effectiveness of digestion was confirmed on SDS-PAGE gel (Fig 3.30).  

The procedure was repeated twice to ensure reproducibility. It can be assumed that the 

trypsin digestion worked well as only smears are seen in lane 3 (left gel) and lanes 4 and 5 

(right gel). They were some single bands still present in lane 4 (right gel) and this suggested 

issue with either buffer conditions or suboptimal trypsin: protein ratio. In general, TEAB buffer 

was found to be satisfactory both in protein extraction and in compliance with in-solution 

trypsin digest. 

 



106 

 

  

Figure 3.30 In-solution trypsin digest in 0.5M TEAB buffer. (A) First attempt of protein extraction in TEAB buffer, 

followed by in-solution trypsin digest. (B) The results were confirmed with the second attempt. Both analysed 

on SDS-PAGE gel (5% stacking and 12 % resolving).  

In addition to the original in-solution trypsin digest technique, filter-aided sample preparation 

(FASP) method was also tested, which uses spin filter tubes to improve both protein 

extraction and peptide yield. Based on the literature, 3 lysis buffers were tested for future 

FASP testing: SDS-based buffer, SDC-based buffer and urea-based buffer (see section 2.3.6). 

It can be concluded that all buffers had similar lysis efficiency (Fig. 3.31).  

 

Figure 3.31 Lysis buffer for filter-aided sample preparation (FASP) method. 107 cells were lysed with either urea-

based, SDS-based or SDC-based buffer and extracted proteins were separated on SDS-PAGE gel (5% stacking and 

12 % resolving). 
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The SDC-based buffer was particularly interesting since SDC is one of the few detergents 

compatible with mass spectrometry instruments and can be even more effective in 

solubilizing the protein. What is more, a low concentration of SDC (about 0.1%) may even 

increase the efficiency of trypsin digestion, which may lead to better proteome coverage 

(León et al. 2013). In contrast, the SDS-based buffer contains a high concentration of SDS, 

which not only reduces the trypsin activity, but can also interfere with MS ionization (Steen 

and Mann 2004). Using this buffer requires multiple wash steps with 8M urea buffer to lower 

critical micelle concentration (CMC) to ensure that the SDS concentration is below 0.01% 

(which is acceptable for MS).  

Based on the above results, it was difficult to determine which of the buffers is the most 

suitable for FASP method. A potential problem with using urea-based buffer can be  

carbamylation of samples, which can cause issue with peptide (and protein) identifications. 

On the other hand, a potential disadvantage of using the SDC-based buffer is that it can be 

biased toward more hydrophobic proteins (e.g. membrane proteins), leading to 

underrepresentation of the hydrophilic proteins. In contrast, SDS binds all proteins in similar 

fashion so it can be the most versatile detergent for solubilizing all types of cellular proteins.  

The SDS has a hydrophobic tail that interacts strongly with protein (polypeptide) chains. The 

number of SDS molecules that bind to a protein is proportional to the number of amino acids 

that make up the protein. Each SDS molecule contributes two negative charges, 

overwhelming any charge the protein may have (Lin et al. 2013). 

For the above reasons, it was decided to choose SDS-based buffer for further analysis and 

perform FASP method according to the original protocol (Jacek R Wiśniewski et al. 2009). 

Results of protein extraction and trypsin digestion were analysed on SDS-PAGE gel (Figure 

3.32). The original paper presented clearly that there was no sample loss following SDS 

displacement from proteins by urea and proteins bands disappeared following trypsin digest 

(3.11 B). By visual examination of the experimental gel, it was difficult to confirm that there 

was no loss of the sample due to uneven loading of the lysate before and after depletion of 

SDS. What is more, the lanes for peptides eluted from the spin filter tube still showed some 

protein bands, suggesting that the trypsin digestion was incomplete. Further MS analyses can 

provide better confirmation if the FASP method worked well.  
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Figure 3.32 The steps of filter aided sample preparation (FASP) method were visualised on SDS-PAGE gel (5% 

stacking and 12% resolving). The results from the first attempt of FASP method show the lysate, SDS-depleted 

and samples following trypsin digestion. In addition, two samples of eluted peptides (marked as 1 and 2; A) are 

presented. (B) The results are compared with the representative SDS-PAGE gel from original publication from 

Wiśniewski et al. 2009. 

3.3.4 Compatibility of protein concentration assay  

Determining the protein concentration after cell lysis in a buffer is critical to the success of 

any sample preparation method. Since the tested buffers differed in the concentration of 

chaotropes, detergents and reducing agents, it was important to find suitable protein 

concentration assay. The commercially available RC DCTM protein kit (Bio-Rad) was chosen as 

it was specifically designed to be compatible with a wide range of reagents.   

The RIPA buffer was found to be fully compatible with RC DCTM assay, therefore no dilution 

was required (Figure 3.33 A). 4xLB buffer was also compatible according to the 

manufacturer’s instructions, but it was found that 1:10 dilution produced a better standard 

curve (Figure 3.33 B).  The protein lysates containing high concentrations of SDS were highly 

concentrated so it was not possible to accurately determine the protein concentration 

without the appropriate dilution. 



109 

 

 

Figure 3.33 Standard curves of the protein standard, bovine serum albumin (BSA), dissolved in RIPA buffer 

(undiluted; A), 4xLB buffer (1:10 dilution; B) or DIGE buffer (1:10 dilution; C) following RC DCTM protein assay. The 

equation of the fitted linear regression model is displayed together with goodness-of-the-fit value, R2.  

Similarly, DIGE buffer contained high concentration of urea and thiourea (8M and 2M, 

respectively), therefore standard curve was produced as 1:10 dilution. In general, BSA 

standard curves were found to be reproducible since R2 values are above 0.98, meaning that 

each data point fit linear regression almost ideally. 

Next, TEAB buffer and SDS-based buffer, used for in-solution trypsin digest and FAST method, 

respectively, were also tested for compatibility with RC DCTM assay. Both buffer components 

were found to cause interference with assay reagents, therefore 1:10 dilution was necessary. 

It was found that both standard curves were satisfactory when predicting the protein 

concentration in the lysates(R2 values above 0.99; Figure 3.34 A&B).  

 

Figure 3.34 Standard curves of protein standard, bovine serum albumin, dissolved in TEAB buffer (1:10 dilution; 

A) or SDS-based buffer (1:10 dilution; B) following RC DC protein assay. The equation of fitted linear regression 

model is displayed together with goodness-of-the-fit value, R2. 

3.3.5 Comparison of the number of protein identifications between in-gel trypsin digest 

protocols 

The first part of method optimisation was finding a buffer that provides a greater proteome 

coverage than the RIPA buffer. The comparison of the tested buffers was based on the 
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number of confirmed protein identifications that meet both 1% FDR (at peptide level) and ≥2 

unique peptides criteria. It was found that 4xLB buffer performed best (467), than urea (330) 

or RIPA (199). The overlap of validated protein identifications, also between two different 

digestion conditions (trypsin only versus trypsin and Lys-C), are shown below (Figure 3.35). 

Interestingly,  larger number of proteins was extracted using more denaturing lysis conditions, 

which lead to an overall increase in the number of identified proteins. As mentioned before, 

histone proteins were underrepresented in RIPA lysate (only histone H2A found). On the 

other hand. 4xLB lysate contained all major histone classes: histone H4, H3, H2A and H2B 

(please refer to Appendix F for full list).  In addition, protein extraction with 4xLB buffer was 

the quickest procedure as the lysis was performed at close to boiling (95ᵒC) temperature. The 

only issue with the obtained lysate was the high protein concentration and viscosity due to 

the high DNA content in the remaining insoluble fraction (that was impossible to separate by 

centrifugation). 

 

Figure 3.35 Venn diagram showing the overlap of validated protein identifications between the three buffer conditions: mild 

denaturing (RIPA) and strong denaturing (4xLB or urea), tested for compatibility with in-gel trypsin digest. The on-gel trypsin 

digest was then performed with either trypsin only (A) or combined Lys-C/trypsin (B). The search was carried out using 

Mascot Daemon (v 2.5.1) against CHO and contaminants databases (section 2.3.11) and only proteins that have ≥2 unique 

sequences were used for comparison. The figure was prepared using Venny 2.1 online tool (Oliveros 2007). 

 

The second part of in-gel trypsin digest optimization was to use two proteases of different 

specificity: Lys-C and trypsin , in contrast to using trypsin alone. All buffer conditions (RIPA, 

4XLB and urea) were taken into consideration. It was found that the use of Lys-C/trypsin 
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combination gave more protein identifications only when using RIPA buffer. It can be argued 

that RIPA buffer, having mild denaturing conditions, may not solubilise proteins as effectively 

as other denaturing buffers. It was possibly due to not all lysine residues were exposed for 

trypsin to cut. Lys-C/trypsin combination did not perform better when using  4xLB or  urea 

buffer. It is possible, however, that our results have been biased for several reasons, including 

the suboptimal Lys-C digestion conditions, underloading the sample due to errors in the 

amount of protein or lower LC-MS/MS performance. Additional replicates would be necessary 

to prove why the results of the combined Lys-C / trypsin did not increase the number of 

identifications. 

Table 2.9 Comparison of buffer and digest conditions based on the number of validated proteins identifications 

(excluding duplicates).  

Protein identifications 

Buffer Trypsin only Lys-C/Trypsin mix 

RIPA 199 241 

4xLB 467 315 

Urea 330 208 

 

In summary, the 4xLB buffer worked best to increase the number of identified protein, 

therefore it would be selected for further validation on higher sensitivity mass spectrometers 

(MaXis 4G UHR-TOF and Q-Exactive HF, see Appendix A). Since there was not enough evidence 

that the use of two proteases of different specificity had any positive effect on number of 

identifications, trypsin alone will be used. 

3.3.6 Protein extraction from spent media 

The second aim of this chapter was to find and compare methods of extracting proteins from 

spent media (supernatant). The interest in the analysis of host cell proteins (HCPs) has been 

growing in the last few years (Valente et al. 2014). Based on the results of this study, three 

methods were selected: acetone precipitation, ethanol precipitation and trichloroacetic acid 

(TCA) precipitation. The molecular basis of the precipitation is similar between the chemicals 

tested, but the protocols and incubation conditions are slightly different. There was no 

significant difference found between the three extraction methods, which was visually 

examined by SDS-PAGE gel (Figure 3.36). The results also agree with those already published 

(Valente et al. 2014), in which 10 different extraction protocols were tested. Of the three 
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methods, acetone precipitation was found to be the quickest as it used a single centrifugation 

step, meaning that sample loss can be minimal. This method was selected for further analysis.  

 

Figure 3.36 SDS-PAGE gel shows the results of protein analysis in unconcentrated spent media before and after 

precipitation with one of the three chemicals: ethanol, acetone and trichloroacetic acid (TCA) (A). Standard curve 

was prepared by serial dilutions of bovine serum albumin (BSA) in CD-CHO medium. Protein concentration was 

estimated using the Bradford assay at 595 nm absorbance.. 

Acetone precipitation method was used to extract proteins from (stably producing) E22 cell 

line. Distinct bands, corresponding to HC (mW = 48.5 kDa) and LC (mW = 23.4 kDa) for the 

mAb, were visible (see section 3.3.1.2). Following in-gel trypsin digest and MS analysis using 

Amazon ETD, 343 proteins with at least 2 unique peptides were identified. 

In addition, it was interesting to examine the overlap between extracellular and intracellular 

proteins. There were a lot of similarities between the two protein pools, with some proteins 

being exclusively present in spent media and some present only inside the cells (Figure 3.37). 

However, some of the proteins common to both pools could be products of degradation of 

native proteins, since only peptides were used to identify proteins (“bottom-up proteomics“).  

In addition, any differences in the identifications of proteins might also be due to technical 

errors  during sample preparation or the difference in instrument’s performance. What is 

more, qualitative proteomic data provide only limited information about the real state of the 

cellular protein pool. The method presented above can be easily adapted to quantitative 

proteomics approaches, including label-free and stable isotope labelling approaches.  
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Interestingly, among the proteins identified solely in the spent media (“extracellular”) there 

are many that are associated with intracellular processes, such as ribosomal proteins 

(different isoforms of 60S ribosomal proteins), involved in cytoskeleton regulation (for 

example F-actin-capping protein subunit beta-like protein or Cytoskeleton-associated protein 

4) or even translation elongation (Elongation factor 1-alpha and delta). These proteins may 

be present as degradation products from dead cells.  

What is more, there are also proteins having dual functions: they are not only related to 

intracellular processes, but also form a part of the extracellular exosome (cell-derived vesicle), 

such as proteasome-related proteins (Proteasome subunit alpha and beta). Another 

interesting protein, 15kDa selenoprotein, is usually present in the endoplasmic reticulum and 

is associated with the posttranslational protein folding but can also be found in extracellular 

exosome. 

 

Figure 3.37 Venn diagram showing the overlap between the number of identified intracellular proteins after 

extraction from the cell pellet with 4xLB buffer (n=476) and extracellular proteins following acetone extraction 

from spent media (n=343). Both data sets were obtained by in-gel trypsin digest and LC-MS/MS data acquisition 

on Amazon ETD. Numbers are presented as validated protein identifications, having FDR 1% at peptide level and 

at least 2 unique peptides.  

There also several proteins that can be found in the extracellular space, including those 

involved in cell-matrix adhesion (mammalian ependymin-related protein 1, nidogen-1) or that 

form the basal membrane (laminin subunit gamma and beta). Surprisingly, two proteins 

involved in complement system (Complement C1r-A subcomponent and Complement C3) 

were also identified.  
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3.3.7 Comparison of the number of protein identification between in-solution trypsin 

digest and filter-aided sample preparation (FASP) 

Following visual examination of digests from in-solution trypsin digest and filter-aided sample 

preparation (FASP), the next step was method validation using LC-MS/MS. Equal amounts of 

extracted peptides from each method were cleaned-up using Hypersep (see Chapter 2 for 

details) and MS/MS data were acquired using ion trap mass spectrometer, Amazon ETD. In 

contrast to the results of the SDS-PAGE gel, it was found that in-solution trypsin digest with 

TEAB buffer did not produce satisfactory results (Fig 3.38A). On the other hand, a good 

number of validated protein identifications was achieved using FASP method (Fig 3.38B). Total 

ion chromatograms (TIC) for both methods (Fig 3.38) and Mascot Daemon search results (Fig 

3.39) confirmed that FASP method was more efficient at extracting and digesting proteins 

that in-solution digest. 

 

Figure 3.38 Total ion chromatograms (TIC) for in-solution derived TEAB samples (A) and FASP method derived 

peptides (B).  

By further analysing these fractions using Mascot Daemon database search, FASP method 

successfully identified 215 proteins, from which 95 were validated with at least 2 unique 

peptides. In contrast, in-solution trypsin digest performed poorly: only 96 proteins were 

identified and only 17 of them were validated. (Figure 3.39). It is quite possible that the digest 

conditions were suboptimal despite satisfactory protein extraction from cell pellets. On the 
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other hand, the FASP method performed as expected, so it was selected for further 

fractionation and full proteome analysis. 

 

Figure 3.39 The number of protein matches against CHO database of a single injection of peptides coming from 

in-solution trypsin digest using TEAB buffer or FASP method. The number of unique proteins (identified with ≥2 

unique peptides) is also presented. The FDR 1% threshold was not applied here due to low number of decoy 

matches. 

 

3.3.8 Development of peptide fractionation method using Hypercarb column 

After validation of the FASP protocol using LC MS/MS analysis of a small unfractionated 

sample, it was important to develop a method for separating the peptides prior to full 

proteome analysis. After FASP digestion, peptides eluted from nitrocellulose filter contained 

salts and residual buffers that might interfere with MS analysis. Following promising results 

from Hypersep clean-up, the decision was made to use Hypercarb column which is also made 

from porous graphitic carbon (PGC). Peptide fractionated protocol previously developed in 

our lab used 2-70% peptide separation over 120 min gradient, collecting fractions from 5 min 

onwards, leading to total of 108 fractions. To reduce time and the number of fractions, the 

protocol was adjusted to 60 min.  

To determine how well Hypercarb performs as a first dimension of peptide fractionation, 11 

fractions (out of 54) were analysed by LC-MS/MS. Each peptide fraction was estimated to 

have between 200-450ng of peptides present (based on 50 µg of starting protein amount). 

The table below presents the analysed fractions together with corresponding %B (0.1% FA in 

ACN) at the given time (Table 3.10).  
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Table 3.10 Fraction number and their corresponding %B buffer 

Fraction number Corresponding %B 

2 8 

7 15 

12 21 

17 28 

22 34 

27 41 

32 48 

37 54 

42 61 

47 67 

52 75 

 

As expected, normal distribution for peptide elution profile was observed, with majority of 

peptides eluting in the middle of the gradient (30-60% of B) as shown below (Figure 3.40).  

 

Figure 3.40 Distribution of the number of protein matches against CHO database (Mascot Daemon) per peptide 

fraction eluted from the Hypercarb column. No FDR cut-off was applied because of low peptide abundance in 

analysed fractions, resulting in insufficient number of decoy database matches. 
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Figure 3.41 Total ion chromatograms (TIC) for selected peptide fractions eluted from Hypercarb column. The 

least abundant fractions 2, 7 & 12 (A), were followed by the most abundant fractions 17, 22, 27, 32) and 

fractions eluted at the end of the gradient were 37,42, 47 & 52 (C).   

Based on the elution profile of separated peptides, the fractions eluting at the beginning and 

end of the gradient were combined together (Figure 3.41). In total 3 fractions were combined 

into a single tube, dried in the vacuum concentrator and analysed fully on Amazon ETD using 

trypsin only and trypsin/Lys-C digest conditions. In both digest conditions, more than 1000 

protein hits against CHO database were found after the removal of the contaminants. By 

applying FDR criteria, 652 validated protein identifications were obtained using trypsin only 

digest and 569 when using two proteases sequentially (Figure 3.42).  
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Figure 3.42 Comparison of number of protein hits and unique proteins obtained by the complete analysis of 

FASP/Hypercarb method using trypsin and trypsin/Lys-C digest conditions. 1% FDR threshold at peptide level 

was applied. 

3.3.9 Final comparison of in-gel trypsin digest and in-solution trypsin digest 

Following optimisation of buffer and digest conditions for in-gel trypsin digest and FASP 

method, it was important to verify the number of validated protein identifications using more 

sensitive MS instruments: MaXis 4G UHR-TOF and Q-Exactive HF (for instrument 

specifications, please refer to Appendix A). For each sample, 2 replicates were prepared using 

optimised sample preparation method and approximately similar amount of peptides 

analysed using MaXis 4G or Q-Exactive HF (Figure 3.43). The only difference was the number 

of loaded fractions (20 for MaXis, 10-18 for Amazon ETD and 6-8 for Q-Exactive HF) due to the 

difference in the speed of spectra acquisition.  

As expected, the number of unique protein identifications increased accordingly to the 

instrument sensitivity, starting from ion trap (Amazon ETD) to higher sensitivity Orbitrap (Q-

Exactive HF). In addition to increased number of protein identifications, the MS data 

acquisition is shorter when using Q-Exactive HF as the number of fractions can be reduced to 

6 or less. 
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Figure 3.43 Comparison of the number of unique protein identifications after optimised in-gel trypsin digest and 

FASP protocols. Data were obtained on three different mass spectrometers: ion trap (Amazon ETD), Q-TOF 

(MaXis 4G UHR-TOF) and Orbitrap (Q-Exactive HF). The protein identifications were validated based on 1% FDR 

at peptide level and ≥2 unique peptides. Each set of data was based on 2 technical replicates of the sample 

preparation method. 

3.4 Conclusions 

A qualitative proteomic workflow was developed for robust intracellular and extracellular 

protein extraction from Chinese Hamster ovary (CHO) cells. Three different methods were 

selected for the extraction of intracellular proteins from CHO cells: in-gel trypsin digest 

(Shevchenko et al., 2007), in-solution trypsin digest and its derivative, FASP method ( 

Wiśniewski et al. 2009).  

The first step of optimisation was finding the most optimal and robust cell lysis buffer to be 

compatible with sample preparation method for mass spectrometry. 

Radioimmunoprecipitation (RIPA) buffer was a starting point as it was routinely used in our 

lab (O’Callaghan et al. 2010; Davies et al. 2013) for protein extraction from both prokaryotic 

and eukaryotic cells. It was found that RIPA buffer, since it has very mild denaturing 

conditions, was not as efficient at protein solubilisation as expected. This was confirmed by 

treating the insoluble fraction with SDS-based 4xLB buffer (Karlsson et al., 1994) to reveal that 

even histone proteins, one of the most abundant proteins in the cell, were underrepresented 

in RIPA lysate (see section 3.3.6 and Appendix F). 
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Based on the literature, several buffers were selected for further testing, including general 

lysis buffer (GLB), PTY buffer (Chen, et al. 2010) and DIGE buffer (Magdeldin et al. 2014). The 

latter was found to be the most efficient, most likely due to optimal concentration of urea 

and thiourea. Finally, 4xLB buffer, commonly used for Laemmli buffer sample preparation was 

also tested as a sole lysing buffer and it was found to be even more robust and time-efficient.   

In parallel to lysis buffer optimisation, digest condition using trypsin or combined Lys-C and 

trypsin were also tested. There was not enough evidence that using Lys-C has any positive 

effect on the number of protein identifications. This was probably due to insufficient number 

of replicates or suboptimal digest conditions (Hustoft et al. 2010). In conclusion, 4xlb buffer 

and trypsin only digest conditions were selected for further MS data acquisition. 

In addition to in-gel trypsin digest, we have also tested commonly used in-solution trypsin 

digest and its derivative, filter-aided sample preparation (FASP) protocols. For traditional in-

solution trypsin digest, TEAB buffer, having mild denaturing conditions, was found to be 

relatively efficient at protein solubilisation and compatible with trypsin digestion, as 

confirmed by SDS-PAGE gel. For FASP method, three of the tested lysis buffers (SDS-based, 

SDC-based and urea-based) showed no significant difference in their extraction efficiency. 

The results did not agree with León et al. 2013, where SDC-assisted in-solution digestion and 

FASP generated better peptide recovery.  

Following Mascot Daemon (http://www.matrixscience.com/daemon.html) database search, we 

have found that FASP method was superior to in-solution digest in terms of validated protein 

identifications. One of the reasons why in-solution trypsin digest method has failed because 

it was difficult to control protein solubilisation. During the procedure, it is important to dilute 

the urea concentration in the sample to below ~1M for trypsin to work. On the other hand, 

insufficient protein solubilisation may cause proteins to re-fold in solution, making the target 

amino acid residues (K and R) inaccessible to trypsin. While using the FASP method, this 

problem was solved by full protein extraction with strongly denaturing SDS-based buffer, 

followed by capturing the proteins on the nitrocellulose filter (Wiśniewski et al. 2009). After 

digestion with trypsin, the extracted peptides were eluted from the filter while any 

undigested proteins remain inside the filter. SDS-based buffer was selected for FASP method 

as SDS has been long recognised for its benefits for protein solubilisation in many sample 

preparation workflows (Botelho et al. 2010) 
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In-gel trypsin digest and FASP method are very similar in terms of using high concentration of 

denaturing agent (SDS; 2% and 4%), temperature (both 95ᵒC) and trapping proteins into a gel 

matrix or nitrocellulose filter. It was expected that FASP performance might be better due to 

addition of second dimension of peptide separation with Hypercarb columns. On the other 

hand, trapping proteins into SDS-PAGE gel is beneficial for protein linearization, but leads to 

lower performance of trypsin due to presence of SDS. If the FASP method is perfomed 

correctly, residual SDS concentration is too low to cause any interference with trypsin. Finally, 

it was confirmed that Hypercarb was suitable for fractionation of tryptic peptides in 

agreement with (Griffiths et al. 2012) and can be also used for separation of glycoproteins 

(Zhao et al. 2014a).  

For comparison purposes, mascot generic files (.mgf) were derived from Q-Exactive HF 

spectra acquisition using freely available MsConvert program (freely available with other 

ProteoWizard tools: http://proteowizard.sourceforge.net/tools.shtml).  Unfortunately, search of 

spectra using Mascot Daemon provides very limited quantitative information and it does not 

support large-scale isotopic labelling experiments such as SILAC or pulse SILAC. Generated 

.raw files could also be analysed by MaxQuant (Cox and Mann 2008), which is not only open 

source software, but also performs complete analysis from protein identification to 

quantitation. Each software release brings the improvements in terms of peptide 

identifications that is closely linked with the development of new Orbitrap-based mass 

spectrometers (Scheltema et al. 2014), including peak picking, automatic 1% FDR threshold 

and data normalisation (Tyanova  et al., 2016). 

In conclusion, the most popular sample preparation methods for mass spectrometry analysis 

were tested and optimised. It was found that both in-gel trypsin digest and FASP method 

perform equally well for protein extraction from CHO cells and lead to similar number of 

unique protein identifications. It can be argued that in-gel trypsin digest method has the 

advantage over FASP in terms of simplicity and time as it does not require lengthy 

centrifugation steps and additional offline HPLC-based peptide separation (Hypercarb). It is 

also possible to combine FASP and in-gel trypsin digest method to gel-aided sample 

preparation (GASP) method, which is not only faster but easier to use and more sensitive 

(Fischer and Kessler 2015). 
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Chapter 4: Relative quantitation of proteome changes 

between exponential and stationary phase in CHO cells 

using SILAC 

4.1 Abstract  

Quantitative proteomics is an increasingly powerful tool in molecular biology to study and 

compare relative changes in global protein abundance between different growth conditions. 

SILAC (stable isotope labelling of amino acids in the cell culture) is one of the most popular 

metabolic labelling methods to quantify protein expression in mammalian cells. Standard 

SILAC has been applied to study fundamental changes in protein expression between 

exponential and stationary phases of CHO cells grown in the chemically-defined medium. It 

was found that CHO cells have incorporated labelled lysine and arginine within two cell 

culture passages to >97%. What is more, arginine-to-proline conversion was minimal, most 

likely due to presence of excess free (>200 mg/ml) proline in the medium.  

Standard SILAC experiment was setup with reverse conditions, which provided an excellent 

biological replicate and confirmed no negative effect of labelled amino acids on cell growth. 

Using previously developed protocol for GeLC-MS/MS, >3000 proteins have been identified 

in both GS-KO parental and its derivative E22 producing cell line. They were 63 differentially 

expressed proteins found for E22 producing cell line and GS-KO were 109 proteins, from 

which 32 proteins were common between the two cell lines. Data strongly suggest that 

changes driving progression from exponential to stationary phase are highly conversed. Based 

on KEGG and GO annotation, these proteins are involved in processes such as protein 

translation, cell cycle regulation and oxygen homeostasis, making them interesting targets for 

cellular engineering. 
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4.2 Introduction  

Chinese hamster ovary (CHO) cells are the most popular mammalian host for producing 

recombinant proteins, especially monoclonal antibodies used to treat various medical 

conditions, including cancer and autoimmune diseases. Since the approval of tissue 

plasminogen (tPa) factor in 1986, 96 recombinant protein therapeutics have been produced 

using mammalian cells, bringing to US markets over 110-billion-dollar annual revenue (Lai, 

2013).  

There are several reasons why CHO cells are preferred in industrial biomanufacturing. The 

ability of CHO cells to produce proteins with the same glycosylation profile as human does 

not increase the quality of biotherapeutics, but also their bioavailability in the circulatory 

system. CHO cells can also be easily adapted to grow in suspension cultures using serum-free 

media, which significantly reduces the cost and increases the reproducibility (Kim et al., 2012). 

In addition, cloning techniques, expression vector design and clonal selection methods have 

been greatly improved, which has led to an increase in specific productivity from 0.05g/L to 

even 10g/L of a recombinant product (Huang et al, 2010; Wurm et al., 2004, Datta et al., 

2013). 

Despite enormous progress in research on CHO cells in the last decade, intracellular 

metabolism in cell culture is still not fully understood. Such limited knowledge about in vivo 

metabolism in industrially relevant culture conditions limits the potential of applying modern 

engineering techniques to further improve product yield and quality (Ahn and Antoniewicz, 

2012). The ability to characterize the cellular machinery of CHO cells and its changes in the 

cell culture is important for improving both growth and productivity (Dinnis and James, 2005).  

Cell growth is directly related to biomass increase due to substrate uptake from the 

environment. During exponential phase, cells direct energy to the proliferation and 

accumulation of biomass, the main components of which are proteins (Sinha and Kumar, 

2008).  In contrast, the stationary phase is characterized by a rate of growth equal to 

mortality. The cells are still metabolically active and produce secondary metabolites (non-

growth-related products).  Due to such a deregulation in metabolite production, the highest 

increase in the production of recombinant protein in mammalian cell factories occurs in the 

stationary phase (Shuler and Kargi, 1992). 
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A number of “omics”-profiling techniques, including proteomics, have been used to gain a  

better insight into the complex mechanisms of major cellular processes. The publication of 

the genome sequence of the ancestral CHO-K1 cell line (Xu et al., 2011) was a major milestone 

in better understanding of cell physiology. Further studies on global gene expression 

(transcriptomics) revealed that there over 29,000 genes are expressed by CHO cells under 

different growth conditions (Becker et al, 2011). 

For many prokaryotic and eukaryotic organisms, only 50% of the protein abundance can be 

explained by variations in mRNA concentration (de Sousa Abreu et al, 2009). That is why direct 

measurements of the global protein abundances inside the cell (proteomics) are much more 

informative. Changes in protein expression in response to changing environmental conditions 

directly determine physiological state of the cell. By comparing proteomic data (based on MS 

spectra) to genomic and transcriptomic information, it was found that there is generally good 

correlation between transcript levels and protein expression (Baycin-Hizal et al, 2012). By 

analysing such multidimensional data, it is possible to gain a deeper understanding of the 

basic mechanistic changes taking place inside the cell that can help in optimization of 

industrial bioprocesses (Chen et al, 2015). 

Proteomic analysis can be further extended by quantifying the amount of protein present in 

the sample (protein abundance) and comparing the relative changes in protein expression 

under different conditions. Quantitative proteomics can be achieved using two major 

approaches: label-free techniques and use of stable isotope labelling (reviewed in sections 

1.5.2-1.5.7). Label–free quantification is based on measurement of signal intensity of 

precursor ion spectra or spectral counting based on counting the number of peptides 

corresponding to a given protein in tandem MS experiment (Neilson et al, 2011).  

Labelling techniques can be divided into two groups: chemical labelling such as iTRAQ or ICAT 

(Ross, 2004; Gygi, 1999) or in vivo metabolic labelling (SILAC). In SILAC (stable isotope labelling 

of amino acids in the cell culture), proteins can be labelled in cell culture with heavy isotopes 

of essential amino acids. The auxotrophic cells are grown in media lacking an amino acid and 

are instead supplemented with its stable isotope form (Ong et al, ����). Typically, cells are 

labelled with lysine and arginine because trypsin, a commonly used protease, cleaves at C-

termini of these amino acids, to form a complex peptide mixture in which all peptides are 

labelled and can be used for quantitation (Ong and Mann, ����). Each peptide will be in a 
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“heavy” or “light” form that can be resolved in a mass spectrometer due to the mass 

difference and provides quantitative information on their relative abundances (Steen and 

Mann, 2004). 

We hope to unravel at least some of the complexity of the “CHO cell factories” to optimize 

cell culture process engineering. The aim of this chapter was to assess the basic changes in 

cellular machinery during the growth of CHO cells. To our knowledge, this was the first time 

SILAC has been utilised in conjunction with quantitative proteomic analyses in CHO cells. 

Analysis of differential protein expression was performed between exponential and 

stationary phases in both parental and stably producing CHO cells. 

4.2 Aims and objectives 

The aim of this chapter is to develop an accurate quantitative proteomic method using SILAC, 

which can be used to study changes in protein expression between the exponential and 

stationary phases of CHO cell growth. First, the necessary quality controls will be examined, 

including % incorporation of isotopes of amino acids and the degree of arginine-to-proline 

conversion. This will be followed by in-depth examination of SILAC data sets and methods for 

determining differential protein expression. The workflow for combining forward and reverse 

SILAC data sets will be evaluated for both parental and stably producing cell lines. Side-by-

side comparison of these data sets will also be presented using functional annotation and 

pathway analysis using publicly available databases. 

4.3 Results and discussion 

The following sections describe the results from forward and reverse SILAC experiments 

performed in parental and stably producing CHO cell lines. The quality of the data, 

reproducibility of label swap experiments, data quality controls check including % isotope 

incorporation and degree of arginine-to-proline conversion will be examined in detail. This 

will be followed by checking the correlation between biological and technical replicates , 1:1 

ratio mixing and data distribution. Quantitative data will be first presented separately for 

producing and parental cell line. This will be followed by combination of these data sets based 

on the number of proteins differentially expressed and functional annotation.  
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Figure 4.44 The workflow of forward SILAC experiment. The cells are revived in custom SILAC medium containing 

light isotopes and are subcultured in either light or heavy labelled SILAC for three passages. Cells grown in 

commercial CD-CHO medium provide growth control to check if supplementation with lysine and arginine has 

any negative effect on growth or viability. The cells are grown under appropriate medium conditions until >97% 

incorporation. At passage 5 (p5), cells are harvested in exponential phase (light) and stationary phase (heavy), 

lysed separately and mixed in 1:1 ratio according to the protein concentration. Tryptic peptides are generated 

and analysed by LC-MS/MS. Raw data is processed by MaxQuant and further analysed by Perseus. 

4.3.1 Forward and reverse SILAC experiment in GS-KO cell lines 

4.3.1.1 Growth profile of GS-KO and E22 producing cell lines in custom SILAC medium 

The E22 producing and GS parental cells were revived and placed into a light SILAC medium 

(p1) before being split into 3 different flasks containing different media: light SILAC medium, 

heavy SILAC medium and CD-CHO (for cell growth control). The cells were passaged 3 times 

to ensure full (>97%) isotope incorporation (adaptation phase). At passage 5, the cells were 
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split into 3 flasks under each medium condition (technical replicates) and continued to grow 

in batch culture. Growth was measured daily with Vi-Cell (Fig. 4.45). 

 

Figure 4.45 Growth profile of cells cultured in light SILAC medium, heavy SILAC medium and CD-CHO (control). 

Cell growth and % viability was measured every 24h with Vi-CellTM Beckman Coulter. Top left graph (A) displays 

the results from forward SILAC (FS) labelling experiment in E22 producing cell line, while top right graph (B) come 

from reverse SILAC experiment. Corresponding data for GS parental cell line is presented below (C & D). The 

arrows (yellow - light isotope; red – heavy isotope) indicate the days of cell sampling for quantitative proteomics 

analysis. The values are displayed as mean ± SEM values; n=3. 

 

By analysing viable cell concentration (VCC) curves for forward SILAC (Fig 4.45 A), it can be 

assumed that cells growing in light SILAC medium had a faster growth profile than in heavy 

SILAC and CD-CHO medium. The cells grown in heavy SILAC and CD-CHO medium have very 

similar growth profile. In contrast, (Fig 4.5 B), VCC curves for reverse SILAC experiment were 

almost identical for light SILAC and heavy SILAC, but slightly different from CD-CHO (control). 

The difference might be due to two different batches of CD-CHO used for label-swap 

experiments despite identical batch and supplementation used for light SILAC and heavy 

SILAC culture. The differences between VCC curves might also result from the inherent 
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instability of this cell line rather than media. On the other hand, the % viability was high (98% 

on average) throughout exponential and stationary phase for both labelling experiments.  

4.3.1.2 % incorporation of arginine and lysine into proteins 

It is estimated that 5-10 cell doublings are needed for mammalian cells to fully incorporate 

the amino acids (Ong 2002). The doubling time in mammalian cells, including CHO cells, can 

range from 12 h to 36 h. Based on above data, the doubling time was estimated to be 27-28h, 

so full incorporation should be reached within 3 passages. To establish % of incorporation of 

labelled lysine and arginine, the cell pellet sample was taken at passage 1 (before labelling; 

negative control) and passages 2, 3 and 4 at 72 h (day 3; mid-exponential phase). The cell 

pellets were processed using in-gel digest protocol and data acquired using Q-Exactive HF, 

followed by analysis in MaxQuant, (see section 2.3.4, 2.4.8 & 2.4.9, respectively). 

% incorporation rate was found to be 97.82 % for GS-KO parental cell line and 97.93 % for E22 

producing cell line at p4. CHO cells can incorporate the label very quickly – only within 3 days 

of culture with heavy isotopes, the degree of incorporation rate was already >85% (Fig 4.46). 

One of the reasons is that amino acids from degraded proteins can be recycled and used for 

synthesis of new proteins, resulting in a faster incorporation rate than anticipated.  As 

mentioned before, the % incorporation efficiency is limited by the purity of the isotopes used 

(≥98% purity of each label), which is why the efficiency of incorporation is close to the 

maximum possible.  

 

Figure 4.46 Graph showing the % incorporation rate of heavy isotopes of lysine (Lys8) and arginine (Arg10) 

against the passage number for E22 producing cell line (A) and GS parental cell line (B). The red dotted line marks 

97% incorporation. 
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As an example of the progress of the incorporation of heavy isotopes, survey spectra of the 

heavy labelled peptides were examined (Fig 4.47 & 4.48). 

The first survey spectra are derived from heavy lysine labelled peptide, AAAEVNQDYGLDPK, 

doubly charged (z=2), assigned to Fumarate hydratase (G3H6M5) leading razor protein (as 

reported in evidence.txt result file). The spectra from passage 2, 3 and 4 were aligned to 

demonstrate the rate at which heavy isotopes were incorporated in proteins. After only 3 

days of cell culture, the light-labelled peptide is still present, but at relatively low abundance 

and it is hardly visible following passage 3 and 4, confirming the full incorporation. Similarly, 

the spectra for heavy arginine labelled peptide, AAVPSGASTGIYEALELR (from Alpha-enolase 

leading razor protein) have been aligned together and show the same trend. The spectra for 

passage 2 look much noisier than for passage 3 and 4 (B and C, respectively) since our peak 

of interest is not the base peak and has a lower intensity than for other presented spectra. 

4.3.1.3 Arginine to proline conversion  

Several studies have reported a problem when using arginine to label proteins in SILAC (see 

section 1.6.2). There is a metabolic pathway that can convert arginine to proline when excess 

arginine is used for the labelling. To assess whether the conversion occurred in CHOK1SV GS-

KO cell lines, the search was performed in MaxQuant using default parameters (see section 

2.4.9) with Pro6 as a variable modification. In addition, “Re-quantify” option has been 

disables.  

Of the 17587 peptide-to-spectrum matches (from the evidence.txt result file) only 6 

contained at least 1 heavy proline (Pro6). The degree of arginine to proline conversion was 

found to be <0.03%. It can be therefore assumed that the arginine to proline conversion is 

negligible. This additionally confirms % incorporation that was calculated earlier. 

Further studies have shown that if there is enough free proline (>200 mg/l) in the media to 

maintain cellular homeostasis, endogenous production of proline will not be favoured. It is 

also worth mentioning that CHO cells are auxotrophic for 15 different amino acids, including 

proline (see section 1.2.7). Another reason for negligible conversion to proline is the lack or 

low expression of the enzymes present in the pathway in CHO cells (Hefzi et al. 2016). This 

effect might be cell line specific, therefore it is important to individually test each auxotrophic 

cell line prior to SILAC experiment.  
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Figure 4.47 The survey spectra of a representative heavy lysine labelled peptide, AAAEVNQDYGLDPK; m/z= 

749.8, which is doubly-charged and has a retention time of 41-42 minutes. This peptide is assigned to G3H6M5 

(Fumarate hydratase) leading razor protein and it contains a single heavy lysine (expected mass shift of 4Da). 

The corresponding light-labelled peptide is present at m/z 745.86. The % incorporation has been tracked from 

passage 2 (p2; A), passage 3 (p3; B) and passage 4 (p4; C).   
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Figure 4.48 The survey spectra of a representative heavy arginine labelled peptide, AAVPSGASTGIYEALELR; 

m/z=907.97, which is doubly-charged and has a retention time of 64-66 minutes. This peptide is assigned  to 

G3IAQ0 (Alpha-enolase) leading razor protein and it contains a single heavy arginine (mass shift of 5Da). The 

corresponding light-labelled peptide is present at m/z=902.98. The % incorporation has been tracked from 

passage 2 (p2; A), passage 3 (p3; B) and passage 4 (p4; C).   
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4.3.1.4 SILAC experiment phase and sample preparation for mass spectrometry 

After confirming the full incorporation of heavy isotopes and the very low conversion of 

arginine to proline, the experiment phase begun. The cells were grown in parallel in batch 

culture in chemically-defined media with supplemented lysine and arginine in their light or 

heavy isotopic form. In forward SILAC labelling experiment, the exponential phase was 

marked by light (L) labelled sample and the stationary phase by heavy (H) labelled sample. In 

reverse SILAC experiment, the labels were swapped, providing both additional quantitation 

information and excellent biological replication (Fig 4.49 B). The cell pellet was washed twice 

with PBS and lysed in strong denaturing buffer, followed by SDS-PAGE separation and in-gel 

tryptic digestion (Figure 4.49A).  

 

Figure 4.49 (A) Representative SDS-PAGE gel from SILAC experiment in E22 producing cell line. M, protein ladder; 

L1H1 (mix of light labelled sample 1: heavy labelled sample 1); L2H2 (mix of light labelled sample 2: heavy labelled 

sample 2); L3H3 (mix of light labelled sample 3: heavy labelled sample 3). (B) The schematic explaining design of 

label-swap SILAC experiment to investigate changes in protein expression between exponential and stationary 

phase of batch culture of CHO cells growing in chemically-defined medium. 

4.3.1.5 Data distribution and quality between replicates 

SILAC experimental setup explained above, technical replicates are the replicates coming 

from the same labelling experiment, named here as forward SILAC (FS) and reverse SILAC (RS). 

On the other hand, biological replicates come from a separate labelling experiment (one from 

forward SILAC and another one from reverse SILAC).  
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Before determining the differential protein expression, it is important to check the quality of 

the data. Histograms are a good way of examining the distribution of the data. First, the 

histograms of H/L ratio are plotted to see if the data is centred around 1. It is expected that 

in a typical duplex or triplex SILAC experiment, about 90% of the proteins will remain 

(statistically speaking) “unchanged” between experimental conditions, and thus the overall 

median of the data will be very close to 1. In practice, it is difficult to achieve an ideal 1:1 ratio 

due to technical artefacts (e.g. pipetting small volumes of lysate or errors during cell counting) 

or unreliable results from protein concentration assays.  

MaxQuant performs automatic median normalisation to account for protein loading errors 

assuming that majority of proteins show no differential regulation (Cox and Mann 2008). 

When testing H/L ratios from forward SILAC experiment, there was an issue with the sample 

mixing (Fig 4.50 A), with median of this sample being closer to 2, meaning that there were 

more heavy labelled peptides than light labelled peptides in this sample. The median 

normalisation shifted the data toward 1 accordingly (Fig 4.50. B). In contrast, reverse SILAC 

H/L ratios are much closer to the ideal 1 (Fig 4.50.C) but median normalisation was still 

required (Fig 4.50.D). Side effect of median normalisation is condensation of the dynamic 

range (in this context, it is the ratio of the largest to smallest change that can be quantified).  

 

Figure 4.50 Representative histograms of H/L ratios before and after median normalisation. Forward SILAC H/L 

ratios (A) and H/L ratios normalised (B) and reverse SILAC H/L ratios (C) and H/L ratios normalised (D) for E22 

producing cell line. 
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When analysing SILAC datasets, it is useful to perform logarithmic transform of the ratios 

because it helps to linearize the data and make them normally distributed (Figure 4.51). The 

median of log2 H/L ratio will be equal to 0 (since log2 of 1 is equal to 0). Log2 transformed 

H/L ratio normalised shows the median centred on 0 and the data follows near normal 

distribution. Such transformed data can be readily analysed by statistical tests to find 

significantly differentially expressed proteins. 

 

Figure 4.51 Histograms of log2 transformed H/L (A) and L/H (B) median normalized ratios coming from forward 

SILAC experiment in E22 producing cell line. Histograms of log2 transformed H/L (C) and L/H (D) median 

normalised ratios derived from forward SILAC experiment in E22 stably producing cell line.  

Another way to visualise the data distribution is to plot log2 ratios against log2 intensities (Fig 

4.52), where we could examine the position of individual proteins in the whole data set. In 

addition to the examining the data distribution, it is also important to assess the dynamic 

range. The higher the dynamic range, the better chance for finding proteins with significantly 

different expression, regardless of what statistical test is used (Ong et al. 2003). There is no 

difference between the ranges of summed peptide intensities between forward and reverse 

SILAC experiments (Table 4.11 & 4.12) and the correlation is also high (R=0.873, Fig 4.53A).  

The correlation between summed heavy-labelled peptide intensities (R=0.867) and light-

labelled peptide intensities (R=0.856) is close to the average summed peptide intensities 

(data not shown), confirming that 1:1 mixing ratio was not significantly skewed. 
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Figure 4.52 Representative scatterplots of log2 H/L (A) and log2 L/H (B) ratios against log2 intensities in forward 

and reverse SILAC experiments, respectively. In both data sets, most of the proteins have a ratio centred around 

0 (red solid line), meaning that globally there is no change in the protein expression between exponential and 

the stationary phase. Number of proteins with ≥2 razor + unique peptides and at least 1 valid ratio value was 

>3000 for both forward SILAC (n=3486) and reverse SILAC (n=3171) experiments prior to merging data for E22 

producing cell line.  

 

The dynamic range was found to be wider for reverse SILAC experiment than forward SILAC 

experiment in E22 producing cell line (Table 4.11).  

Table 4.11 The comparison of dynamic ranges between forward and reverse SILAC experiments in E22 

producing cell line. 

Dynamic range Forward SILAC Reverse SILAC 

Log2 H/L ratio   6.78 11.83 

Log2 H/L ratio normalised  6.67 8.36 

Log2 Summed peptide intensities 16.29 16.68 

 

Similarly, we have estimated dynamic range for GS parental cell line dataset (Table 4.12) and 

found some minor differences in dynamic range. 

Table 4.12 The comparison of dynamic ranges between forward and reverse SILAC experiments in GS K-O 

parental cell line. 

Dynamic range Forward SILAC Reverse SILAC 

Log2 H/L ratio   8.08 7.03 

Log2 H/L ratio normalised  8.14 6.82 

Log2 Summed peptide intensities 17.18 17.1 
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The wider dynamic range is directly correlated with the higher number of differentially 

expressed proteins between the experimental conditions. Proteins that are close to the 

vertical 0 line are not differentially expressed (H/L ratio being close to 1). To determine 

significantly expressed proteins, appropriate statistical test or fold-change cut-off must be 

applied. 

4.3.1.6 Reproducibility of forward and reverse SILAC experiments 

The main motivation for label exchange in the metabolic labelling approaches, such as SILAC, 

is to explain any variation that may be caused by the use of heavy isotopes of amino acids 

rather than because of the actual biological difference. There was a high reproducibility 

between forward and reverse SILAC experiments in terms of quantitative results (Fig 4.53).  

 

Figure 4.53 The scatterplots of log2 intensities and log2 ratios show high Pearson correlation (R) between 

forward and reverse SILAC labelling experiments in E22 producing cell line. The correlation of log2 H/L ratio 

normalised in FS experiment vs log2 L/H ratio normalised after merging the datasets together; n=2829 (number 

of proteins present in both experiments with ≥2 razor + unique peptides with 2 valid values). 

First, summed peptide intensities from forward and reverse SILAC (Fig 4.53 A) experiment 

were plotted against each other and showed a high linear correlation (R=0.873). Likewise, the 

correlation between log2 H/L ratio normalised (forward SILAC) and log2 L/H ratio normalised 

(reverse SILAC) was also positively correlated (Fig 4.53 B).  

Overall, 3486 proteins were identified in forward SILAC experiment and 3171 in reverse SILAC 

experiment (validated using 2 razor + unique peptides criteria) for E22 producing cell line 
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(Table 4.13). These two data sets were combined to include unique protein identifications 

and removal of duplicates. As a result, 4049 unique proteins were identified for E22 producing 

cell line. 

Table 4.13 Statistics for forward and reverse SILAC experiments in E22 producing cell line.  

State of data analysis Forward SILAC Reverse SILAC 

Proteins >1% FDR 4096 3813 

Proteins <1% FDR 4079 3784 

Min 2 peptides 3486 3171 

Common proteins 2829 

Min 1 valid value 2829 

2 valid values 2793 

 

The results for the parental GS cell line are also similar: 3463 proteins were identified in 

forward SILAC experiment and 3369 proteins identified in reverse SILAC experiment (Table 

4.14), giving total of 4075 unique proteins. 

Table 4.14 Statistics of forward and reverse SILAC experiments for GS parental cell line 
State of data analysis Forward SILAC Reverse SILAC 

Proteins >1% FDR 3931 4036 

Proteins <1% FDR 3924 4027 

Min 2 peptides 3463 3369 

Common proteins 2986 

Min 1 valid value 2986 

2 valid values 2967 

 

It might seem counter-intuitive to see why there is a difference between correlation of 

summed peptide intensities and H/L ratios. The H/L ratios are directly related to the 

intensities of labelled peptides. MaxQuant calculates H/L ratio as the median of all the 

individual peptide ratios, not the product of dividing the sum of the intensity of the heavy 

labelled peptides by the sum of the intensity of the light labelled peptides (Cox and Mann 

2008). Therefore, it is likely that some proteins will have both heavy and light intensities 

reported but no H/L ratio is calculated due to insufficient number of ratio counts or singlet 

peaks during MS data acquisition (Tyanova et al., 2016).  
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4.3.1.7 Determination of differential protein expression  

Several methods for the differential determination of protein expression are available. Fold-

change cut-off is the most common method and simply relies on finding proteins that have 

H/L ratio increased by least 1.5 or 2 (Figure 4.54). Using the cut-off criteria is one of the most 

widely used method for SILAC data analysis since it is the easiest to implement. 

 

Figure 4.54 Scatterplots of log2 H/L ratios normalised and log2 L/H ratios normalised from forward SILAC (FS) 

and reverse SILAC (RS) experiments, respectively. The proteins highlighted in red were found to be significantly 

differentially expressed using log2 fold-change of 1.5 (equal to 0.585; n=162) cut-off (A) or fold-change of 2 

(equal to 1; n=43) cut-off (B).  

Since SILAC ratios follow near normal distribution, Student’s t-test can be also used to 

determine differentially expressed proteins. One-sample both-sided t-test with Benjamin-

Hochberg FDR 5% correction did not find any significant proteins. It is possible that the spread 

of the data was not enough to find any proteins satisfying the FDR correction. However, 

performing t-test at p-values 0.05, 0.01 and 0.0001 allowed the determination of differentially 

expressed proteins (Fig 4.55).  

It is worth noting that regardless of the level of significance, one sample t-test found proteins 

that are statistically significant from 0, but by examining the graphs, some of the hits were 

actually very close to 0. By examining the ratios for significant proteins at p-value of 0.05, 

there was an excellent linear relationship (R=0.997) between the two experiments (Fig 4.56 

A), much stronger than on the global scale (R=0.619, compare with figure 4.53 B). It can be 

concluded that one sample t-test found statistically significant proteins with the most 
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reproducible SILAC ratios but not necessarily significantly different from the mean of 0 (which 

is the null hypothesis).  

 

Figure 4.55 Volcano plots are a function of t-test difference (equivalent to SILAC ratios) plotted against –log 

(negative log) t-test p-value, show differentially expressed proteins as being significant according to one sample 

both-sided t-test (mean different from 0; marked as solid black line). The proteins highlighted in red were found 

to be significant according to following p-values: 0.05(A; n=204), 0.01 (B; n=37) and 0.001 (C; n=6).   

 

The best way to determine which proteins are both statistically significant and biologically 

meaningful is to combine the t-test results with fold-change cut-off. In this way, the 

quantitative results are validated using two orthogonal methods, which leads to higher 

certainty of finding true biological difference.  

Since the results of the Student's t test were not satisfactory, another statistical test was used. 

This test is called significance A (and B, its more refined version), which is based on finding 

outliers in a given data set (Cox and Mann 2008). After applying Benjamin-Hochberg FDR 5% 

correction, similar number of significantly differentially expressed proteins were found using 

significance A (82 proteins) or significance B (83 proteins) outlier testing (Fig 4.57 A & B, 

respectively).  

Furthermore, significant proteins were positioned far from median 0 line as opposed to 

significant proteins found using t-test. It is worth noting that there were no significant 

proteins found using t-test at the same FDR truncation level. What is more, taking the 

negative logarithms of corrected p-values against log2 H/L ratio normalised (or L/H ratio 

normalised) allows visualisation of the data on volcano plots (Fig 4.58).  

 



140 

 

 

Figure 4.56 (A)The scatterplot of t-test significant proteins at p-value of 0.05 shows perfect linear relationship 

as determined by Pearson correlation (R=0.997). Volcano plots display t-test difference (equivalent to SILAC 

ratios) against –log10 (negative logs) p-values obtained from one-sample both sided t-test. The proteins 

highlighted in red are both t-test significant and have log2 fold-change of at least 1.5 (B; n=45) or 2 (C;n=8).  

 

Figure 4.57 The scatterplots of log2 H/L ratios normalised (forward SILAC) and log2 L/H ratios normalised (reverse 

SILAC). The proteins highlighted in red were found to be differentially expressed using significance A (A; n= 82) 

and significance B (B; n=83) at Benjamini-Hochberg FDR 5% value.    

Since few methods were used to determine differentially expressed proteins, it was 

interesting to see how the results of each of the test correlate with each other. Venn diagrams 

were used to show the number of differentially expressed proteins found using tested 

methods (Fig 4.59). There was a very poor overlap between t-test significant proteins and fold 

change (FC) as well as significance A and B. They were only 7 proteins found to be differentially 

expressed using all methods. What is more, there was very poor agreement between t-test 

and fold change (FC) results.  
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Figure 4.58 Volcano plots describe the function of fold-change (FC) cut-off plotted against –log 10 (negative log) 

significance B for forward SILAC (FS) and for reverse SILAC (RS; B). Benjamini-Hochberg FDR adjusted –log 10 p-

values, showing differentially expressed proteins as being significant (mean different from 0; marked as solid 

black line). 

Overall, Student’s t-test did not seem to find many proteins of biological significance (based 

on fold change value), although most of the test requirements were met in the acquired data 

set. One sample t-test did not work as expected, although it is extensively used to analyse 

proteomic data sets.  

 

Figure 4.59 The Venn diagram depicting the overlap between differentially expressed proteins found using fold 

change (FC) cut-off of 2; significance A and B at the Benjamini-Hochberg FDR 5% truncation level and one sample 

both-sided t-test at p-value of 0.05.  The data presented here was derived from E22 producing cell line. The Venn 

diagrams were prepared using Venny 2.1 online tool (Oliveros 2007).  
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In contrast, there is a relatively good overlap of proteins that were found significant by both 

fold-change cut-off method and significance A and B.  

4.3.1.8 Significance B and fold-change methods of choice for SILAC data analysis 

Significance A and B was found to work best for determination of statistically significant 

proteins for analysing label swap SILAC experiments. FC cut-off method can be used to find 

biological differences between the samples for label swap experiments. Two methods can be 

combined to find proteins that are both biologically (experimentally) and statistically 

significant. After selecting the proteins that were considered statistically significant using 

significance A and FC of 1.5, 63 differentially expressed proteins were found, the same 

number as using significance B and FC of 1.5 (Fig 4.60).  

 

Figure 4.60 The scatterplots of log2 H/L ratios normalised (forward SILAC) and log2 L/H ratios normalised (reverse 

SILAC for E22 cell line. The proteins highlighted in red were found to be both significantly differentially expressed 

using significance A (A; n= 63) and significance B (B; n=63) with Benjamini-Hochberg FDR 5% correction and fold-

change of ≥1.5. 

For GS K-O parental cell lines, 133 differentially expressed proteins were found using significance A 

and FC of 1.5 and 109 differentially expressed proteins when using significance B and FC of 1.5 (Figure 

4.61).  
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Figure 4.61 The scatterplots of log2 H/L ratios normalised (forward SILAC) and log2 L/H ratios normalised (reverse 

SILAC) for GS K-O cell line. The proteins highlighted in red were found to be both significantly differentially 

expressed using significance A (A; n=133) and significance B (B; n=109) at Benjamini-Hochberg FDR 5% value and 

have fold-change of at least 1.5. 

In conclusion, both significance A and B combined with FC cut-off was found to be equally 

suitable for analysing SILAC data sets. Since significance B takes into the account both ratio 

and intensity, it was became a method of choice for determining proteins that have 

significantly different expression.   

4.3.2 Comparison of SILAC experiments in GS-KO parental and E22 producing cell lines 

4.3.2.1 Overlap between the two separate SILAC labelling experiments 

After analysing two separate SILAC experiments for GS-KO parental and E22 producing cell 

lines, it was interesting to investigate if there are any common trends in protein expression. 

Firstly, it was important to examine the overlap between significantly expressed proteins for 

E22 producing and GS parental cell lines (Figure 4.62).  

They were 63 differentially expressed proteins for E22 cell line and 109 for GS-KO cell line, 32 

of which were common between two data sets. This corresponded to more than 50% of the 

differentially expressed proteins found in E22 cell line (Table 4.15). All common proteins 

displayed the same level of regulation, suggesting consistent changes in protein expression 

between exponential and stationary phases, regardless of cell line used. GS-KO parental cell 

line was found to have additional 77 differentially expressed proteins. Most likely the data 
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quality of forward and reverse SILAC experiments was higher in terms of dynamic range, 

which led to higher number of differentially expressed proteins.  

 

Figure 4.62 Venn diagram of the overlap of differentially expressed proteins for E22 producing and GS K-O 

parental cell line. The differentially expressed proteins have been found using significance B at Benjamini–

Hochberg 5% FDR level and FC cut-off of 1.5.  

To examine correlation of data quality for SILAC experiments performed for GS-KO parental 

and E22 producing cell lines, each individual ratio H/L (or ratio L/H) normalised was plotted 

for against each other and presented as multi-scatter plots (Figures 4.63). It was found that 

there is medium correlation between the different cell lines and labelling experiments (values 

of R between 0.545-0.644) and slightly higher for the same cell line and between labelling 

experiments. The correlation for E22 producing cell line was 0.621 and for GS-KO parental cell 

line was 0.833.  

Such differences may have resulted from difference in the instrument performance during 

MS data acquisition. On the other hand, the correlation of log2 intensities between the cell 

lines and labelling experiments is much higher (ranging from 0.847-0.88) and for GS parental 

cell lines was 0.907, pointing out to strongly positive correlation between the two labelling 

experiments (Figure 4.64).  

 

 

 

 



145 

 

 

Table 4.15 The list of differentially expressed proteins that were common between E22 producing and GS K-O 

parental datasets (see Appendix C & D for details). 

Uniprot ID Gene Symbol(s) Description 
G3HCT1 Kpna2, Rch1 Importin subunit alpha 
G3GUB4 Hat1 Histone acetyltransferase type B catalytic subunit 
G3H6D9 Dnmt1, Dnmt DNA (cytosine-5)-methyltransferase  
G3H9F5 Ikbkap, Elp1 Elongator complex protein 1 
G3HDZ2 Ifrd1, Tis7 Interferon-related developmental regulator 1 
G3I5N5 Top2a, Top- DNA topoisomerase 2  
G3H8G0 Gpx1 Glutathione peroxidase 
G3I2P6 Dnajc9 DnaJ-like subfamily C member 9 
G3HG79 Iqgap3 Ras GTPase-activating-like protein IQGAP3 
G3HP44 Kif15, Klp2 Kinesin-like protein KIF15  
G3I1F9 Kif4, Kif4a Chromosome-associated kinesin KIF4 
G3HWI7 Oplah 5-oxoprolinase 
G3H412 Pcna Proliferating cell nuclear antigen 
G3I1H0 Mcm3, Mcmd DNA helicase  
G3I2K8 Rrm1 Ribonucleoside-diphosphate reductase subunit M2 
G3I3B7 Rrm2 Ribonucleoside-diphosphate reductase  
G3I732 Pold1 DNA polymerase  
G3IFY1 Tyms Thymidylate synthase (Thymidylate synthase-like) 
G3IAI6 Hmox1 Heme oxygenase 1 
G3HLU1 Ube2c, Ubch10 Ubiquitin-conjugating enzyme E2 C 
G3HRN7 Timeless Protein timeless-like 
G3HVL1 Cdk1, Cdc2 Cyclin-dependent kinase 1 (CDK1)  

 G3I0R8 Anln Actin-binding protein anillin 
G3IAY2 Mcmbp Mini-chromosome maintenance complex-binding 
G3IFZ0 Mki67 Proliferation marker protein Ki-67 (Antigen KI-67) 

 G3GXG4 Cyp51a1, Cyp51 Lanosterol 14-alpha demethylase (LDM)  
 G3H0L7 Fdft1, Erg9 Squalene synthetase (SQS)  
 G3H6P9 Sc4mol Methylsterol monooxygenase 1 (C-4 methylsterol) 

G3HMY0 Hmgcs1, Hmgcs Hydroxymethylglutaryl-CoA synthase (HMG-CoA) 
G3HXP6 Hmgcr 3-hydroxy-3-methylglutaryl-coenzyme A reductase 
G3IFL1 Ppat, Gpat Amidophosphoribosyltransferase 
G3IEB3 Ociad2 OCIA domain-containing protein 2 
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Figure 4.63 The scatterplots of log2 ratio H/L (FS) and log2 L/H ratio (RS) for E22 and GS cell line plotted against 

each other. The Pearson correlation value (R) is also displayed in for each combination.  

 

Figure 4.64 The scatterplots of log2 intensities (summed peptide intensities) obtained in label-swap SILAC 

experiments for E22 and GS cell line plotted against each other. The Pearson correlation value (R) is also displayed 

in for each combination.  
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4.3.3 Bioinformatic analysis of differentially expressed proteins  

4.3.3.1 Gene Ontology functional classification  

After differential protein expression analysis, 63 proteins were differentially expressed 

between exponential and stationary phase for stably producing E22 cell line. In the case of 

the parent cell line of GS ko cells, 109 proteins were found to be expressed in a variety of 

ways.  To investigate whether there are any specific trends related to the upregulation of 

proteins after transition from the exponential phase to the stationary phase, proteins have 

been functionally annotated using Gene Ontology (GO) Biological Process (GOBP) and Cellular 

Compartment (GOCC) definitions. The GO annotation turned out to be relatively poor for 

Chinese hamster, with many annotations missing and incomplete. Instead, Uniprot IDs were 

mapped to the appropriate gene names since they can be used for cross-comparison between 

species. Corresponding GO terms for mouse (Mus musculus) were used, as about 50% of 

genes are very close homologues and are often used instead (Baycin-Hizal et al. 2012). In the 

absence of mouse annotation, corresponding human (Homo sapiens) or rat (Rattus 

norvegicus) genes were examined instead.    

GO functional annotations are presented side by side for GS parental and E22 producing cell 

line to highlight the similarities between the two data sets (Figure 4.65). However, it is 

important to note that there was a higher number of differentially expressed proteins for GS 

parental cell line than for E22 producing cell line, so it is important to take this factor into 

account when comparing the data sets.  

In general, the largest number of proteins was involved in crucial cellular processes of cell 

division, important for CHO cells that are actively growing and dividing in the exponential 

phase. What is more, they numerous proteins important in regulating cellular transcription 

that had either positive or negative effect. Another major protein group was crucial for 

biosynthesis, control of DNA replication and cell cycle regulation.  

Interestingly, they were 4 differentially expressed proteins involved in tRNA aminoacylation 

which were exclusive for to the GS parental cell line. These were further examined using 

pathway analysis tools (see below). In addition, they were more differentially expressed 

proteins involved in the cell adhesion for GS parental cell line.  On the other hand, there were 

more proteins involved in DNA repair in E22 producing cell line than in GS parental cell line.  
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Figure 4.65 The combined bar chart shows differentially expressed proteins for E22 producing (green) and GS K-

O parental (red) cell lines that have been functionally annotated using Gene Ontology Biological Process (GOBP; 

A) and Cellular Compartment (GOCC) terms. 

While analysing GOCC annotation, it is worth seeing that the greatest number of differentially 

expressed proteins are located in the nucleus than in the cytoplasm. They were also several 

proteins present in the extracellular space and exosome. Perhaps these proteins are still 

present in CHO cells since they are derived from cells that were part of the tissue and required 

many proteins responsible for cell adhesion and short distance signal transduction.   

Complete list of significantly differentially expressed proteins together with functional Gene 

Ontology annotations can be found in Appendices.  
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A full list of proteins undergoing significant differential expression along with GO annotations 

can be found in the Appendices B & C. 

4.3.3.2 Pathway analysis of differentially expressed proteins using KEGG  

KEGG Mapper tool for pathway analysis was used to visualize up-regulated proteins in the 

exponential phase (blue) and up-regulated proteins in the stationary phase (red). This section 

presents only selected reference pathway maps for mouse (Mus musculus) of the greatest 

interest. Overall, there were similar trends in the protein expression between the two cell 

lines (Table 4.16). The highest number of proteins (18 and 25 respectively for E22 producing 

and GS parental cell line) was matched to metabolic pathways, followed by proteins involved 

in purine and pyrimidine metabolism, along with proteins involved in DNA replication. Data is 

consistent with the results obtained from GO annotations. It is suggested that overall 

differences in protein expression between exponential and stationary phases are similar for 

GS parental cell line and its E22 derivative. 

However, they were several differences between the two cell lines. Slightly higher number of 

proteins up-regulated in lysosome pathway was found for GS parental cell line in the 

stationary phase (Fig 4.66). There was similar trend observed for up-regulated proteins in 

exponential phase involved in cell cycle regulation (Fig 4.68).  

Table 4.16 The top 10 enriched  KEGG pathways for differentially expressed proteins for E22 producing and GS 

K-O parental cell lines. 

Pathway number Pathway name E22 GS 

Mmu01100 Metabolic pathways 18 25 

Mmu03030 DNA replication 7 5 

Mmu00480 Glutathione metabolism 7 4 

Mmu00240 Pyrimidine metabolism 7 6 

Mmu00230 Purine metabolism 7 4 

Mmu04110 Cell cycle 4 7 

Mmu04142 Lysosome 3 7 

Mmu03410 Base excision repair 5 2 

Mmu04066 HIF-1 signalling pathway 4 2 

Mmu00970 Aminoacyl-tRNA biosynthesis 0 4 
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As discussed before, four different amino-acyl tRNAs specific to GS K-O parental cell lines were 

found (Figure 4.67). What is more, additional 3 proteins were found solely in GS K-O cell line 

data set that were involved in HIF-1 signalling pathway, responsible for maintaining oxygen 

homeostasis (Fig 4.69). In contrast, they were more protein identified for E22 cell line that 

were involved in DNA repair. Again, this trend is consistent with GO annotations. 

 

Figure 4.66 Enlarged fragments of the KEGG pathway map of the lysosome pathway (Mouse Reference number 

mmu04142) highlighting the proteins that were up-regulated in the stationary phase (marked as red) in E22 

producing cell line (A) or GS  cell line (B).  

 

In conclusion, the use of KEGG Mapper tool with Colour & Search pathway option allowed to 

confirm most of the findings of the functional GO annotation. Up-regulation of 4 distinct 

aminoacyl-tRNA in stationary phase is probably a result of changes in protein translation. In 

addition, several interesting proteins were up-regulated in exponential phase that are 

involved in cell cycle regulation (4.69) This includes PCNA (proliferating cell nuclear antigen) 

and MCM (minichromosome maintenance proteins complex), both required for DNA 

replication, and CDK1 (cyclin-dependent kinase 1), which is a highly conserved protein 

regulating cell cycle.  On the other hand, up-regulation of lysosomal proteins in stationary 

phase can be a response to the depletion of nutrients in the cell culture. Similarly, up-
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regulation of proteins in HIF-1 signalling pathway during stationary phase may be a result of 

oxygen depletion.  

 

 

 

 

Figure 4.67 Enlarged fragments of KEGG pathway map of Aminoacyl-tRNA biosynthesis pathway (Mouse 

reference number mmu00970) highlighting the proteins up-regulated in the stationary phase (marked in red) 

found exclusively for GS ko parental cell line: Alanine--tRNA ligase (A), Tyrosine--tRNA ligase (B), Cysteine--tRNA 

ligase (C) and Cysteine--tRNA ligase (D).  

 

 

Figure 4.68 Enlarged fragments of KEGG pathway map of cell cycle (Mouse reference number mmu04110) 

highlighting the proteins up-regulated in the exponential phase (marked in blue) for E22 producing cell line (A) 

and GS ko parental cell line (B). 
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Figure 4.69 Enlarged fragments of KEGG pathway map of HIF-1 signalling pathway (Mouse reference number 

mmu 04066) highlighting protein up-regulated in stationary phase (marked as blue) found exclusively in GS K-O 

parental cell line (A). Proteins up-regulated in exponential phase (marked as red) found in GS K-O parental cell 

line (B) and E22 producing cell line (C).  

4.3.3.4 Analysis of differentially expressed enzymes using ExplorEnz database 

Since numerous proteins with enzymatic functions were discovered in the data set, these 

proteins were also annotated with their enzyme class using publicly available The Enzyme 

Database, ExplorEnz,  (McDonald et al., 2009). In the SILAC data set for GS ko parental cell 

line, approximately 50% (50 out of 109) differentially expressed proteins were found to be 

enzymes. In E22 data set, the number of differentially expressed enzyme was slightly over 

50% (36 out of 63).  All identified enzymes were assigned to their appropriate classes: 

hydrolase, transferase, oxidoreductase, ligase and isomerases (Figure 4.70). No enzymes 

belonging to the lyase class were found in the SILAC data set.  
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Figure 4.70 Comparison of the number of enzyme classes identified in E22 producing (n=36) and GS K-O (n=50) 

cell lines using The Enzyme Database, ExplorEnz.  

In E22 producing cell line, the greatest number of differentially expressed transferases was 

found. On the other hand, there was much more hydrolases identified in GS ko parental cell 

line. There was a relatively similar number of oxidoreductases, ligases and isomerases 

differentially expressed for both cell lines. This suggests that these enzymes are essential for 

CHO cells to control in response to changing cell culture conditions.  

4.4 Conclusions  

Using SILAC labelling to study dynamic changes in the biomass accumulation in stably 

producing and parental CHOK1SV cells, over 4000 unique proteins were identified, from 

which about 3000 were successfully quantified in both label swap experiments. To our 

knowledge, this is the first time SILAC was utilised in conjunction with global quantitative 

proteomic analysis for CHO cells. In addition, SILAC experiment was applied for the first time 

in mammalian cell line grown in chemically-defined medium without the addition of foetal 

bovine serum (Ong 2002; Graumann et al. 2008).  

SILAC has worked as expected for CHO cells since they are auxotrophic for both arginine and 

lysine. The doubling time was calculated to be just over 24h for both parental and stably 

producing cell line (see Section 3.3.1.1)  Since full incorporation of amino acids takes around 

5-10 cell doubling, in practical terms full incorporation (>97%) is achieved for CHO cells within 

2-3 passages (6-9 days). In addition, there is a negligible amount of proline conversion from 

heavy arginine (Bendall et al. 2008), therefore the decrease in signal does not affect heavy 
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arginine labelled peptides and the accuracy of the quantitation is high. Most likely explanation 

for lack of proline conversion is high amount of free proline (>200 mg/ml) in CD-CHO  (see 

Appendix G), which does not favour the chemical reaction. Recent study also suggests that 

CHO cells are not able to synthesize proline from arginine or glutamate because of no 

expression of necessary enzymes (Hefzi et al. 2016). Above reasons make SILAC particularly 

applicable to study proteomics in CHO cells. What is more, performing reverse labelling 

experiment provides perfect experimental and biological replicate, as well as eliminates 

experimental artefacts (Ong and Mann 2006). This means that number of replicates can be 

kept low, reducing the cost and length of the experiment and the instrumentation time.  

For differential expression protein determination, ‘double-filtering’ criterion, using 

significance B (Cox and Mann 2008) and fold-change (Ong 2002). The ‘’volcano plot’  was 

found to be the most useful tool to visualise differentially expressed proteins (Li 2011) as it 

displays both biological (fold-change) and statistical significance (FDR corrected p-values 

found using significance B).  

Following MS data acquisition, 4049 unique proteins were identified for E22 producing cell 

line, from which 2793 were quantitated in both forward and reverse SILAC experiments. 

Similarly, 4075 unique proteins were found for GS-KO parental cell line, from which 2967 

proteins were quantitated in both forward and reverse SILAC experiments. In both datasets, 

we have found that SILAC ratios have dynamic range to be of up to 8.5 orders of magnitude 

following median normalisation and log transformation. The numbers of identified proteins 

are very similar to the published datasets, such as iTRAQ-based study of responses to glucose 

starvation on growth and productivity of CHO cells identified slightly over 5000 proteins (Fan 

et al. 2015). Similar study using TMT for in vitro chemical labelling found <5000 proteins (Liu 

et al. 2015). 

63 differentially expressed proteins were identified for E22 producing cell line and 109 

differentially expressed proteins for GS-KO parental cell line. To examine any trends behind 

differential protein expression, proteins were functionally annotated using Gene Ontology 

(Berardini 2009). High number of proteins was involved in crucial cellular processes such as 

cell division, cell cycle control and transcription regulation. Using KEGG database, protein up-

regulated in exponential phase were mapped to cell cycle regulation, translation elongation 

and DNA replication, which is expected of healthy growing cells. The data agrees well with 
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similar study in antibody-expressing CHO-GS cell line grown in bioreactors (Dorai 2013). Both 

data sets confirmed that many differentially expressed proteins are involved in cellular 

metabolism. This was also highlighted in obtained SILAC data sets for both cell lines as they 

are almost 50% of differentially expressed proteins were enzymes, including hydrolases and 

transferases.  

It is important to use orthogonal methods to validate quantitative proteomics. There are 

several options possible, including selecting a candidate protein and use specific antibodies 

to confirm the results on Western blot. The pros of Western blots is easy to set up and the 

results can be semi-quantitative using densitometry (Gorr et al., 2015). In addition, recent 

study has suggested the use of another reference protein, PARK-7 to improve the protein 

normalization problem (Wisniewski & Mann 2016). In fact, this protein is present in our 

dataset under Uniprot identifier G3IEU2 (Gene symbol: PARK7) and its H/L ratio is ≈1 in all 

label-swap experiments performed. The cons of using Western blot is that the results do not 

translate very well between Western blot and MS proteomics data. It might also be difficult 

to find a specific antibody for proteins for interest which might give misleading results.   

The better option for validation of proteomic data is to use genomics or transcriptomics. 

However, it is known that the correlation between transcriptomic and proteomic results is 

only 2/3 at best (Vogel et al. 2010). Another approach would be to closely monitor levels of 

specific metabolites, since several differentially expressed proteins were involved in 

metabolic pathways. It has been suggested that metabolomics should be combined with 

proteomic studies to fully understand biological processes (Fischer et etl., 2013). Recent 

metabolic studies in CHO cells have identified apoptosis-inducing metabolites (Chong et al. 

2011) and even found correlation between oxidative phosphorylation and citric acid cycle and  

specific mAb productivity (Chong et al. 2012). 

It is believed that many of the identified differentially expressed proteins are strong 

candidates for future targeted engineering approaches. There are several options possible, 

namely knocking-out expression of genes to enhance growth and/or productivity or use a 

specific drug to target a protein of interest. It has been confirmed by several recent studies 

that targeted approaches are the future of CHO cell engineering (Richelle and Lewis 2017). 

Presented SILAC study provided additional information about dynamic proteome changes 

between phases of the cell culture of industrially relevant cell lines.  
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In conclusion, presented proteomic workflow using SILAC workflow can be easily adapted in 

many laboratories for proof-of-concept studies, including effect of drug treatment and 

targeted gene knock-downs on global changes in protein expression. However, the cost of 

buying stable isotopes of amino acids is still high, so repeating the experiment in industrial 

size bioreactors would be expensive. Alternative quantitative methods can be used, for 

example TMT labelling has been shown to be of the similar accuracy to SILAC (Altelaar et al. 

2013). Alternatively, there has been a great progress in label-free quantitative proteomics in 

the recent years (Wiśniewski 2017).  
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Chapter 5: Defining the protein biomass objective in CHO 

cells using enhanced pulse SILAC and total protein 

approach (TPA) 

5.1 Abstract  

Quantifying the cellular matter called biomass is important to describe the behaviour of the 

biological system. Since the protein constitutes up to half of the total biomass of a cell, the 

absolute quantification of the entire proteome can help to estimate it. To derive absolute 

protein abundance values, total protein amount (TPA) method was used to calculate protein 

copy number per cell.  More than 4000 protein copy numbers were estimated for GS-KO 

parental and its derivative E22 producing cell line and data compared relatively well to 

published values in mouse and human cell lines. Next, protein turnover, described as the 

balance between protein synthesis and degradation, was estimated based on enhanced pulse 

SILAC data that relies on monitoring of stable isotope incorporation of de novo synthesised 

proteins. Using the improved exponential decay model, considering degree of amino acid 

recycling, protein turnover was calculated for >3000 cellular proteins.  

By combining protein turnover with absolute protein copy number, rate of protein turnover 

was derived describing how CHO cells control their synthesis and degradation machinery to 

maintain steady state protein abundance. Based on rate of protein turnover, it was found that  

top 10 proteins correspond to 20% of global turnover rate, whereas top 100 already 

contribute to more than half of it. The data agrees with non-linearity of protein abundance 

within a cell, where certain structural and housekeeping protein species are significantly more 

prominent. In case of E22 producing cell line, the production of monoclonal antibody was top 

priority, causing metabolic burden on cells. KEGG and GO annotation suggests that 600 up-

regulated proteins in E22 producing cell line explained their clonal selection based on highest 

growth and productivity. Interestingly, there was no major differences found between 

dynamic codon bias between two studies cell lines, so it is unlikely that heterologous protein 

expression has any effect on codon preference. 
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5.2 Introduction  

To describe the behaviour of a biological system under study, it is important to have some 

ways of quantifying cellular matter called biomass. Several methods are available, including 

direct measurement of dry cell weight or cell volume. In case of mammalian cells, it is often 

presented as the number of viable cells per unit volume (viable cell concentration, VCC).  

Direct measurement of animal cell biomass is difficult because it is difficult to obtain enough 

cells to accurately measure dry mass. In addition, the size of mammalian cells varies greatly 

between different cell types and even between stages of cell growth. The cell volume is the 

highest during the exponential phase, while cells are actively growing and dividing (Frame and 

Hu 1990).  

Proteins are the dominant part of cellular biomass since they often account for up to half of 

the total biomass. With the progress of mass spectrometry, it is now possible to quantify 

thousands of proteins in one experiment. Although measurements of cell volume can be a 

good indicator of cell biomass, it is difficult to calculate absolute protein concentrations in a 

cell. Quantitative methods such as iBAQ or Top3 (see section 1.5.4) can show up to 10-fold 

errors when measuring protein abundance and it is now recognised that published values 

must be reconsidered. To address this issue, a database called BioNumbers 

(http://bionumbers.hms.harvard.edu/) was created for researchers to compare experimental 

results with the values already published (Milo et al. 2009; Milo 2013).  

It is possible to estimate the number or amount of protein per cell volume for any type of 

organism since the protein content has a linear relationship with both cell mass and volume: 

�
�

= 	 ��

���	�	� ��	
 (19) 

Where (N – number of proteins, V – cell volume, Cp – protein mass per volume, Laa – average 

number of amino acids per protein, ma – average mass of an amino acid).  

Assuming an average mass of amino acid of 110 Da and protein mass per volume of 0.2 g/ml 

(Milo 2013), it is possible to estimate both the number of proteins per cell volume and the 

absolute copy numbers. 
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Table 5.17 Typical quantitative values for E. coli, yeast and Hela cell lines. Reproduced from Milo 2013. 

Organism Number of amino 

acids per protein 

Typical volume Number of 

proteins per cell 

volume 

Absolute number of 

proteins 

E. coli 300 ≈1µm3 ≈4.4 x 106/ µm3 ≈3 x 106 

Yeast 400 ≈30µm3 ≈3.8 x 106/ µm3 ≈100 x 106 

Hela cell line 400 ≈3000µm3 ≈2.7 x 106/ µm3 ≈10 x 109 

 

The above values can be used as a standard for comparison. It is recommended that all mass 

spectrometry studies should specify the cell volume and the stage of cell growth when 

reporting their values. Such estimates of the total number of proteins per cell volume, 

considering both total cell density and mean protein length, represent overall average cellular 

protein biomass (Milo 2013; Phillips and Milo 2009). The estimation does not consider any 

secreted proteins, although these are small fractions of the total proteome in most cells.  

As mentioned earlier, only a fraction of cellular proteome is not reported due to limits in the 

available instrumentation (see section 1.4.2 & 1.5.8). However, it has been shown that the 

1000 most abundant proteins in a cell already account for over 80% of the proteome mass. 

What is more, these highest expressed proteins already constitute over 90% of the protein 

copies and the corresponding amino acids (Nagaraj et al. 2011). However, care must be taken 

during the sample preparation for mass spectrometry to ensure that there is no global loss of 

crucial protein groups, such as difficult to solubilise membrane proteins, as this may lead to 

an underestimation of protein biomass.   

There are several methods based on mass spectrometry that can be used to quantify absolute 

protein abundance as the number of protein copies per cell. Most of these methods are based 

on stable isotope labelled standards (such as discussed QconCAT).  that are added in known 

concentrations to the sample of interest. Peaks derived from the standard can be used to 

calculate the abundances of other proteins in the sample. Such methods are limited to only 

30 to 50 proteins at the time, which makes them unsuitable for global proteomic analysis 

(Simpson and Beynon 2012). 

One of the newer developed method is total protein approach (TPA). TPA method was shown 

to have very high accuracy for quantifying E.coli proteome (Wiśniewski and Rakus 2014). The 
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number of protein copies can be estimated using total protein concentration which needs to 

be determined separately. TPA approach has been further developed into ‘proteomic ruler’ 

approach that uses the intensity of histone proteins to calculate protein copy number 

(Wiśniewski et al. 2014).  By deriving the absolute number of protein copies for any cell line, 

it is possible to gain greater insight into both physiological and architectural changes within 

cells. Mammalian cells undergo changes in cell volume during cell culture or increase the size 

of individual organelles in response to stressful conditions. It is not possible to quantify those 

changes by simply using relative quantitative methods.  

Changes in absolute abundance of cellular proteins is direct effect of opposing processed of 

protein synthesis and protein degradation. The balance between those two processes is 

known as protein turnover (see section 1.7.1). The protein turnover is one of the most energy-

demanding processes in the cell and is also one of the causes for the low correlation between 

mRNA abundance and protein abundance (Pratt 2002). The balance between protein 

synthesis and degradation is a feature of healthy, growing cells and allows them to control 

their intracellular protein levels. For instance, proteins with faster turnover rates are likely to 

have faster dynamics or are simply more tightly regulated at transcriptional or translational 

level. In contrast, low-turnover proteins either do not possess regulatory functions or are 

regulated via post-translational modifications (Yee et al. 2010). 

When modelling the protein turnover, it is assumed that the rate of protein synthesis is a 

function of three different parameters: mRNA concentration, the rate of translation initiation 

and the rate of translation elongation. On the other hand, protein degradation is mainly 

controlled by activity of protein degradation pathways and status of protein pool that can 

change dynamically due to stress or environmental changes (Beynon 2005). Measurement of 

global protein turnover is a complex process and, for simplicity, steady-state system is 

assumed where abundance of individual proteins does not change generally due to balance 

between protein synthesis and degradation. That is why most research on protein turnover 

is focused on actively growing cells. In addition, the most well-known method for studying 

protein turnover, pulsed SILAC, requires cells to quickly incorporate stable isotope labels after 

switching the media. 

There are several experimental designs using pulse SILAC to study protein turnover. Pulse 

SILAC was applied to study protein turnover in non-synchronised mouse fibroblasts 
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(Schwanhäusser et al. 2011) or to examine protein turnover in myeloma producing cells (Yen 

et al. 2010). Data obtained after implementing any of pulse SILAC methods is comprised of 

degradation rates (or times) for proteins identified in the experiment.  Proteins can have 

short, intermediate and long degradation rates, but it is not possible to determine what part 

of biosynthetic and degradation machinery is used. Conversely, the calculation of protein 

abundance using TPA method can estimate the average number of copies for a given protein. 

By combining the protein copy number with separately determined protein turnover, it is 

possible to estimate the rate of accumulation of cellular proteins per unit time to assess 

protein biomass objective of CHO cells. 

5.2 Aims and objectives 

The aim of this chapter is to develop an accurate method for calculating the absolute protein copy 

numbers for individual proteins using mass spectrometry. Pulse SILAC, a common stable isotope-

based method, will be used to estimate discrete protein turnover. By combining the two 

parameters, it will be possible to calculate how many protein copies are turned over by unit 

time.  This value will be referred to as “rate of turnover”, i.e. the number of proteins turned 

over per unit of time. Estimated protein copy numbers will be also corrected for their 

associated molecular weights to derive ‘total protein mass’, reflecting the proportion of 

protein in the global protein mass. Finally, available bioinformatics tools will be used to 

investigate trends in protein expression for stably producing and parental CHO cell lines. 

5.3 Results and discussion 

The following sections describe the growth of parental GS K-O and stably producing E22 cell 

line in the custom (chemically-defined) SILAC medium containing either light, medium and 

heavy isotopes  of lysine and arginine. The details on the experimental design, sample 

preparation and mass spectrometry data acquisition will be presented, followed by raw data 

processing and analysis in MaxQuant and Perseus. The distribution of the data and the quality 

of the proteomic ruler estimation will be also examined. Calculation of protein turnover and 

half-lives will be demonstrated using  in-house developed script in Matlab. Finally, the results 

of the bioinformatics analysis, including GO annotation and KEGG pathway mapping, will be 



162 

 

described.  The method for calculating  dynamic amino acid and codon usage based on protein 

and mRNA sequence data, respectively, will be also presented. 

 

Figure 5.71 The workflow of enhanced pulse SILAC experiment to study protein turnover in CHO cells. The cells 

are grown until full incorporation of stable isotopes in custom (chemically-defined) SILAC media containing either 

light (L) or medium (M) isotopes (adaptation phase). The samples for calculation of % incorporation are taken 

from passage 2 to 4. At passage 5, the media is switched during mid-exponential phase to conditioned SILAC 

media containing heavy isotopes and samples are taken at 6 time points. Samples are prepares using FASP 

method, followed by fractionation of tryptic peptides using Hypercarb and data acquisition using MaxQuant. 

Corresponding protein turnovers and half-lives are calculated using in-house developed script.  
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5.3.1 Enhanced pulse SILAC and TPA method development 

5.3.1.1 Spent media experiment – pilot study 

A pilot study with media exchange was conducted to examine the effects of media exchange 

on VCC and % viability of CHO cells. Efficient media exchange with heavy isotopes of amino 

acids is an important part of every successful pulse SILAC. Usually, fresh media is used 

(Boisvert et al. 2012), but it is possible that the addition of unconditioned media can disrupt 

the natural course of cells to the stationary phase. It is believed that the addition of 

conditioned (spent) media containing heavy isotopes of amino acids facilitates undisturbed 

cell growth. 

The experiment was set up using 125 ml Erlenmeyer flasks in 30 ml working volume using 

chemically-defined CD-CHO medium supplemented with or without 6mM L-glutamine, 

respectively for GS-KO parental and E22 producing cell line (see section 2.5.1). The media 

switch was carried out during passage 5 in the mid-exponential phase (=120 h; Figure 5.72).  

 

Figure 5.72 Growth and % viability of stably producing E22 producing cell line growing in CD-CHO medium in 125 

ml working volume. In the mid-exponential phase, the medium was switched to fresh CD-CHO medium, as 

required or to conditioned medium. The experiment also included control of cell growing in CD-CHO medium 

without media switch. 

Performing media exchange with fresh CD-CHO media completely changed the growth profile 

of CHO cells, causing an unnatural extension of the exponential phase. The cells, 

supplemented with fresh nutrients, continued to divide exponentially by day 8, followed by a 

rapid death phase without entering the stationary phase. On the other hand, media exchange 

with conditioned media had the same effect on cell growth and % viability as growing cells 

without media exchange. It can be assumed that using conditioned media is crucial to 

replicate typical mammalian growth curve (see sections 1.2.1 & 1.2.2).   
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5.3.1.2 Growth of GS-KO parental and E22 producing cell line in SILAC medium supplemented 

with light, medium or heavy isotopes  

The enhanced pulse SILAC experiment was performed in both GS-KO parental and E22 

producing cell lines (Figure 5.71) according to original protocol (Boisvert et al., 2012) with 

slight modifications. Firstly, lysine and arginine were supplemented in their correct isotopic 

form according to the concentration normally present in CD-CHO. Secondly, spent 

(conditioned) media was used (instead of fresh media) during the media exchange step to 

cause the least disturbance in the culture of CHO cells.  

Cells were first revived into light SILAC medium (p1) before being divided into three different 

media conditions: light SILAC (internal control), medium SILAC and heavy SILAC and grown to 

full incorporation, similarly to the standard SILAC adaptation phase. In p5, day 4 (=96 h), cells 

grown in light SILAC medium continued to grow in the same conditions to provide internal 

control. Cells grown in medium SILAC and heavy SILAC were gently centrifuged, supernatant 

(“conditioned media”) removed and exchanged respectively: medium to heavy (MTOH) and 

heavy to medium (HTOM). HTOM culture provided growth control after media exchange.  

In line with the results of pilot study, there was no loss of viability after the exchange and the  

cells continued to grow normally. After replacing the medium, the samples were collected for 

analysis by mass spectrometry at 6 time points: 0.5h, 4h, 7h, 11h, 27h and 48h. The sampling 

window was in the exponential phase, while cells are actively growing and dividing, and 

marked within blue squares (Figure 5.73).  
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Figure 5.73 Growth profile of E22 producing and GS K-O parental cell lines during enhanced pulse SILAC 

experiment. Viable cell number (A) and % viability (B) of GS parental cells  growing in light SILAC medium (internal 

control), MTOH SILAC or HTOM SILAC was collected at regular time intervals. Similarly,   viable cell number of (C) 

and % viability (D) of E22 producing cells is displayed. Cell growth and % viability was determined using Vi-CellTM 

Beckman Coulter, based on Trypan blue exclusion essay. The blue squares highlight the sampling window. Values 

are displayed as mean ± SEM values; n=6.MTOH; a medium isotope to heavy isotope media exchange; HTOM – 

heavy isotope to medium isotope media exchange (growth control).  

5.3.1.3 Data distribution after raw data analysis 

For each cell line, cell pellets were collected at 6 time points following media switch. Each cell 

pellet was extracted using SDS-based lysis buffer and tryptic peptides were obtained using 

FASP method. Following MS data acquisition on Q-Exactive HF, raw files were combined into 

single MaxQuant search against CHO database (see section 2.5.6).  

Over 150,000 peptide-to-spectrum matches (PSMs) were obtained for each technical 

replicate, allowing identification of more than 4,000 proteins for GS K-O parental cell line and 

more than 5,000 for E22 producing cell lines (Figure 5.74). 
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Figure 5.74 Overview of data sets obtained for GS K-O and E22 cell lines, presented as the number of peptide-to-

spectrum matches (PSMs; A) and the corresponding number of identified CHO proteins (B).   

According to the experimental design, three separate ratios were obtained: H/M ratio, for 

determining protein turnover, H/L ratio, for determining protein synthesis and M/L ratio, for 

determining protein degradation. The ratios were calculated independently from raw MS data 

using MaxQuant, but there is a very strong correlation (R>0.99) between ratio H/M values 

and ratio H/L/ratio M/L values (Figure 5.75).  

 

Figure 5.75 Correlation between the ratio H/L / ratio M/L values and derived H/M ratios for all peptide-to-

spectrum matches (PSMs)  obtained for GS K-O parental cell line (n=154,806) and E22 producing cell line 

(n=154,743) based on Pearson correlation (R).  

5.3.1.4 Recycling of medium isotope of lysine and arginine  

One of the associated with pulse SILAC labelling is the recycling of amino acid isotopes during 

de novo protein synthesis that might interfere quality of data. To examine the degree of 

recycling, several missed cleaved peptides, containing either two lysines (2K) or two arginines 
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(2R), were selected. Data was examined at the latest time point (48h), as was the case with 

Boisvert et al., 2012, as this is where the maximum labelling was achieved. The following table 

shows how to calculate mass shifts for all possible isotope combinations (Table 5.18).  

Table 5.18 Table showing possible doubly charged peptides containing two stable isotope labels.  

 

For simplicity, only  doubly charged peptides with one missed cleavage were considered. 

There are also other possibilities, including peptides with both lysine and arginine or peptides 

with two missed cleavages (MaxQuant search settings allows up to three labels per peptide). 

Below, mass spectra are presented for several different peptides (and corresponding 

proteins) that contain a  variable degree of recycling of medium-labelled amino acids. 

A total of three different doubly charged peptides containing two lysines (Figure 5.76) were 

used to estimate recycling of medium-labelled lysine into proteins. Recycling of lysine was 

estimated to at 5-10% (8%, 6% and 4% for A, B & C, respectively). Next, mass spectra for  

doubly charged peptides containing two arginines were examined (Figure 5.77). A slightly 

higher degree of recycling found, up to 15% for the examples presented. Data suggest that 

the global degree of amino acid recycling for both isotopes is around 10%, which is lower than 

15-20% reported by Boisvert et al., 2012. The difference between the values may be specific 

to a cell line.  

 

2K containing peptide 

z=2+ 

Mass shift (m/z value) 2R containing peptide 

z=2+ 

Mass shift (m/z value) 

L 0  L 0  

M 4  M 6  

M+H 6 M+H 8  

H 8  H 10  
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Figure 5.76 Representative mass spectra of three doubly charged (z=2+) lysine labelled peptides at 48 h time 

point from the following proteins: Galectin (G3I4Z7, A),  Heavy chain Mab fragment (PRY54HC, B) and Heat shock 

cognate 71 kDa protein (G3IDL8, C), each containing two lysines (2K). Spectra from light (L), medium (M), 

medium& heavy (M+H) and heavy (H) peptide species are labelled accordingly.  
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Figure 5.77 Representative mass spectra of three doubly charged (z=2+) arginine labelled peptides at 48 h time 

point from the following proteins: Histone H3 (G3H2T7, A),  Nucleoside diphosphate kinase (G3HBS8, B) and 

Vimentin (G3HHR3, C), each containing two arginines (2K). Spectra from light (L), medium (M), medium& heavy 

(M+H) and heavy (H) peptide species are labelled accordingly.  
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5.3.1.5 Estimation of total cellular protein concertation 

Since it is believed that protein abundance does not change, the protein copy number will be 

calculated as the average over the 48h of pulse SILAC labelling. According to the “proteomic 

ruler”, the MS signal for individual proteins is summed up together after the peptide assembly 

into leading razor protein.  Since Chinese hamster is not a model organism, Perseus is unable 

to adjust protein copy numbers according to histone intensities. In addition, due to clonal 

heterogeneity and instability of CHO cells, there is no guarantee that the cells are still diploid. 

Therefore, total protein approach (TPA) will be used to estimate protein copy number. Two 

input parameters are required: total cellular protein concentration (g/l) and protein content 

per cell (pg).  

Although Wisniewski et al., 2012 states that the mean total cellular protein concentration 

should be in the range of 200-300 g/l, it is more accurate to estimate the values on the basis 

of experimental data. Protein content per cell can be obtained by calculating protein 

concentration (mg/ml), as estimated in the protein assay after extraction using SDS-based 

FASP buffer (proven to be efficient in fully solubilising proteome) and the number of cells used 

for extraction. To illustrate that the protein content is specific feature of a given cell line, data 

for five different cell lines used in The University of Sheffield laboratories are presented. The 

data comes from cells harvested during exponential phase of cell growth (Table 5.19).  

Table 5.19 Estimated protein content per cell (pg) for several CHO cell lines. 

Cell line Protein content per cell (pg) 

CHOK1SV GS knock-out stably producing (E22) 200-220 

CHOK1SV GS knock-out parental  170-190 

CHOK1SV parental 150-200 

CHOK1SV cold-adapted  300-350 

CHO-S parental 80-140 

 

It is noticeable that there are large differences between the protein content per cell between 

the cell lines. In addition, E22 producing cell line has a generally higher protein content (up to 

220 pg), most likely due to production of monoclonal antibody, than parental GS K-O cell line 

(up to 190). What is more, cold-adapted CHOK1SV parental cell line has about twice as much 

protein content as the parental CHOK1SV cell line (unpublished values). All the measurements 

of the protein content per cell were made during the exponential phase, where the cells are 
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the largest. It is likely that the protein content can be reduced as cells enter the stationary 

phase.  

To calculate total cellular protein concentration, cell size is used, as estimated by trypan blue 

exclusion assay (using Vi-CellTM). If the cell shape is spherical, cell volume can be calculated 

from cell diameter using mathematical equation (equation 12). Estimated values of protein 

content per cell, total cellular concentration and cell volume for both cell lines are presented 

in Table 5.20. The values of protein concentration and average cell diameter has been 

calculated based on data from 6 replicate cultures at passage 5 of mid-exponential phase. 

Estimated values compare relatively well with predicted values of total number of protein 

copies estimated for Hela cell line (≈10 x 109; see Table 5.17). Slightly lower values may arise 

from inadequate representation of certain groups of proteins, e.g. membrane proteins, or 

unavoidable sample losses during sample preparation. In general, it TPA method for absolute 

protein quantitation correctly estimated the number of protein copies in both cell lines.  

Table 5.20 Relationship between protein content per cell, total cellular concentration and cell volume. 

Estimated cell parameter E22 producing cell line GS parental cell line 

Number of cells used  107 107 

Protein concentration (mg/ml)a 2.20±0.2 1.90±0.2 

Protein content (pg) per cellb 220 190 

Average cell diameter (µm)c 15.1±0.3 16.2±0.2 

Average cell volume (µm3)d 1802±80 2226±50 

Total cellular concentration (g/l)e 122 85 

Total number of protein copies in celle 3.8x109 3.6x109 

Number of proteins per µm3 2.1x106 1.62x106 

a – as estimated by RC DC protein assay; b – calculated from equation 11; c – based on ViCellTM readings; d – calculated from equation 12; e 

– results from TPA method. Values derived as the average of two technical replicates for each cell line. 

In addition, TPA method has also estimated cell volume: 2235 µm3 for parental cell line and 

1803 µm3 for producing cell line, which is very close to independently calculated values 

(assuming spherical cell shape). Using default values of total cellular concentration of 200 g/l 

and protein content per cell of 200 pg, TPA method predicts the cell volume to be about 1000 

µm3, corresponding to cell diameter of 12 µm which is lower than both experimental and 

published values (14-17 µm; according to BioNumbers database).  
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5.3.1.6 Estimation of global protein abundance by TPA method 

As shown in the previous section, TPA approach estimated both the total number of protein 

copies per cell and the cell volume close to expected values for Hela cells. It should be 

remembered that the estimates provided are theoretical and come from human derived cell 

line with overall higher cell volume (see Table 5.17). Using the values calculated above, 

protein copy number was estimated for over 4000 different proteins for both producing and 

parental cell lines. For each of the cell line, two replicate values were obtained 

 

Figure 5.78 Correlation of the estimated protein copy number per cell between two replicates for GS K-O parental 

cell line (A) and E22 producing cell line (B) using Person correlation (R).  

Pearson correlation value (R>0.98) suggests strong correlation between two replicates (Figure 

5.78) for each of the cell lines. It can be assumed that the TPA method works extremely well 

and in a predictable manner. In addition, the ranges of protein abundance are very similar, 

only slightly wider for E22 producing cell line. The final calculation of the protein copy number 

for each individual protein is expressed as the average of 2 replicates (Figure 5.79). 

Since the protein abundance is non-linear (Nagaraj et al. 2011), there several protein species 

with very high protein copy number per cell. Data for both the producing and the parental 

cell line displays also shows that trend, with the average protein copy number per cell that is 

low in relation to most abundant protein species.  
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Figure 5.79 Global assessment of the number of protein copies per cell for GS K-O parental cell line in ranking 

order (A); magnified to top 1000 proteins in terms of protein abundance (B). Global assessment of the number of 

protein copies per cell for E22 producing cell line (C) with highlighted top 1000 proteins. The red dotted line 

indicates the average protein copy number per cell. 

The table below presents the top 10 most abundant proteins in terms of the protein copy 

number for both cell lines (Table 5.21). 

Table 5.21 Top 10 most abundant (in protein copy numbers) proteins for GS-KO and E22 cell lines. 
Rank GS K-O parental cell line E22 producing cell line 

1 Histone H4 (2.05e8) Light chain (LC) Mab fragment (1.1e8) 

2 Actin, cytoplasmic 1 (1.51e8) Histone H4 (9.93e7) 

3 Glyceraldehyde-3-phosphate dehydrogenase (5.62e7) Actin, cytoplasmic 1 (9.90e7) 

4 Peroxiredoxin-1 (5.49e7) Glyceraldehyde-3-phosphate dehydrogenase (7.45e7) 

5 Cofilin-1 (5.16e7) Peroxiredoxin-1 (7.14e7) 

6 Galectin (4.28e7) 78 kDa glucose-regulated protein (6.45e7) 

7 14-3-3 protein epsilon (3.95e7) Heavy chain (HC) Mab fragment (5.61e7) 

8 Fatty acid-binding protein (3.13e7) Cofilin-1 (4.01e7) 

9 Histone H2A type 1 (3.05e7) Elongation factor 1-alpha 1 (3.98e7) 

10 Annexin (2.62e7) 14-3-3 protein epsilon (3.90e7) 
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Comparing the data for GS K-O parental and E22 producing cell line, it is noticeable that trends 

are very similar. At the top of the list there are structural proteins: chromatin-regulating 

histones, cytoskeleton-building actin and galectin, important for cytoskeleton remodelling. In 

addition, a glycolytic enzyme, glyceraldehyde 3-phosphate dehydrogenase and a protein with 

antioxidant function (periodoxin-1) have been identified. Data agrees well with that for Hela 

cells, where these proteins are reported to be among top 1 % of the dataset (Boisvert et al. 

2012). Regarding the differences between the two cell lines, the most abundant species is the 

light chain (LC) of monoclonal antibody while its heavy chain (HC) occupies 8th position from 

the top. What is more, chaperone protein, 78 kDa glucose regulating protein (also known as 

Binding immunoglobulin protein, BiP) ranked high for E22 producing cell line as it is associated 

with higher monoclonal antibody expression. The full list of quantified proteins can be found 

in Appendix F.  

5.3.1.7 Calculation of protein turnover using flexible model coefficients 

Protein turnover was calculated as cross between fitted curves for degradation (M/L) and 

synthesis (H/L). For each cell line, two replicates were obtained by separately fitting obtained 

MS data to the exponential decay model facilitated by the Levenberg-Marquardt algorithm. 

An example of a protein fit is shown in Figure 5.80.  

For the details on data normalisation, fitting to the line and calculation of protein turnover 

(see section 2.5.7). If the raw H/L and M/L ratios were plotted on a single graph, it would be 

impossible to fit a curve (Figure 5.80 A). Since the protein turnover describes the balance 

between protein synthesis and protein degradation, M/L and H/L ratios were normalised to 

1 (Figure 5.80 C). Normalised M/L ratios collected over time were fitted using the exponential 

decay model, f(t), facilitated by the Levenberg-Marquardt algorithm (Figure 5.80 C). A 

corresponding synthesis curve, based on normalised H/L ratios, was calculated as 1- f(t). The 

intersection between synthesis and degradation curves was calculated according to the 

equation 16. 
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Figure 5.80 The overview of non-linear square fitting. Plotted M/L (degradation) and H/L (synthesis) ratio before 

normalisation A) and C) after H/L + M/L = 1 normalization, D) The exponential decay curve f(t) is fitted to 

degradation M/L ratios B). The corresponding curve is fitted as 1-f(t) to calculate the corresponding synthesis 

profiles D).  

By using methodology described by Boisvert et al., 2012, many proteins did not fit into 

exponential model with positive (acceptable) values. They were > 3,500 proteins suitable for 

GS K-O data set and >4000 proteins for E22 data set meeting the minimum 3 time points 

criteria. However, many proteins did not fit the experimental boundaries (0<A<2; 0<B<1; 

0<τ’70). Rejected protein were defined as having at least one of the coefficients was outside 

the established limits (Table 5.22). 
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Table 5.22 Overview of the number of identified and fitted proteins using Boisvert et al., 2012 methodology for 

all analysed replicates. 

Replicate Protein identified Fitted (min 3 time 

points) 

Proteins accepted Proteins rejected 

GS rep 1 4441 3943 2520 1420 

GS rep 2 4200 3654 2561 1091 

E22 rep 1 5002 4050 2077 1973 

E22 rep 2 5281 4365 2344 2020 

 

After excluding the proteins fitted to unsuitable coefficients, approximately 2500 protein 

turnover values for GS parental cell line and 2000 protein turnover values for E22 producing 

cell lines have been calculated. The mean of the two replicates was used for each cell line and 

the resulting data ranked in descending order (Fig 5.81).  

 
Figure 5.81 Ranked protein turnover (h) for GS K-O parental cell line (A) and E22 producing cell line (B). Red 

dotted line indicates the mean value of protein turnover (h).  

5.3.1.8 Estimation of protein turnover using fixed model coefficients 

By careful inspection of the rejected proteins, it was found that in most cases the B coefficient 

(described as “offset” by Boisvert et al., 2012 or “plateau” of exponential decay model) had a 

negative value. As a result, two most abundant proteins, actin and peroxiredoxin-1, were 

rejected in data set for E22 producing cell line, which was unacceptable for the accurate 

determination of the protein biomass (Fig 5.82). 
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In the visual examination, the original model did not correctly fit the data despite multiple 

time points available. In addition, the B coefficient is only slightly negative for both proteins, 

but they had to be rejected from further analysis using the original criteria. The B coefficient 

value indicates offset when the curve begins to plateau. Looking at the fitted curves, the value 

of plateau should be positive and possibly between 0.2-0.3 for these proteins.  

 

Figure 5.82 The normalised M/L ratios fitted to the exponential decay model according to the original method by 

Boisvert et al., 2012. Actin cytoplasmic 1 (G3GVD0, A) had the following fitted coefficient: A=0.99; B= -0.08; τ’= 

46.17; whereas peroxiredoxin-1 (G3GYP9, B) had: A=1.00; B= -0.07; τ’= 50.22.  

The value of A in this model indicates the span of the curve and can be calculated by 

subtracting the value of offset B from beginning of the fitted curve (“A0”) at time 0. Both 

values must be positive since value of A should be as close to 1 as possible (time 0 of pulse 

SILAC corresponds to the value of M/L = 1), whereas offset B is related to the degree of amino 

acid recycling in our system. After examining several miscleaved peptides, containing both 

medium and heavy isotopes of amino acids at time 48h (because this is the latest sampling 

point), the degree of recycling  was estimated to about 5-10%. It was decided to fix parameter 

A and B in three different ways and compare it with the original method (Figure 5.83).  

Fixing the parameters A and B in the exponential model would cause the value of τ’ (time 

coefficient) to be always calculated as a positive value, but it can still be above the upper limit 

(>70). By visual checking of data fitted to the exponential model with fixed parameters, they 

were a few cases of incorrect data fitting to the model (data not shown). 

Next, it was decided to check whether fixing the parameter B would lead to better fit of the 

data. Value of B (offset) in pulse SILAC experiment is assumed to be an internal noise and is 
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directly related to the degree of amino acid recycling. Boisvert et al., 2012 proved that by 

continuously adding heavy isotopes, the value of B is reduced to 0. Based on manual 

examination of spectra, amino acid recycling occurred at relatively low level (5-10%). These 

values have been used to fix B coefficient in the exponential model (Figure 5.84). 

Both the 5% and 10% values for the B coefficient performed well, but 5% has led to a slightly 

higher number of fitted proteins. In addition, for all analysed replicates >90% of the fitted 

proteins were within desired boundaries and can be used for further analysis as opposed to 

the original method.  

 

Figure 5.83 Examples of 4 different proteins proteins (shown as Uniprot ID)  fitted with the original method 

(control, marked as blue) and three fixed parameter conditions: fixed A=1 & B=0 (marked as pink); fixed A=0.9 & 

B=0.1 (marked as red) and fixed A=0.8; B=0.2 (marked as black).  
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Figure 5.84 Examples of 4 different protein fitted with the original method (control, marked as blue) and two 

fixed B parameter conditions: B=0.1(marked as red) and B=0.05 (marked as pink).   

Table 5.23 The overview of the number of proteins fitted and rejected using fixed B coefficient exponential 

model. 

Replicate Proteins identified Fitted (min 3 time 

points) 

Proteins accepted Proteins rejected 

B=0.01 

GS rep 1 4441 3943 3607 336 

GS rep 2 4200 3654 3402 252 

E22 rep 1 5002 4050 3793 257 

E22 rep 2 5281 4365 4118 247 

B=0.05 

GS rep 1 4441 3943 3623 320 

GS rep 2 4200 3654 3388 266 

E22 rep 1 5002 4050 3805 245 

E22 rep 2 5281 4365 4147 218 

 

Using the fixed B exponential model, proteins were rejected only based on coefficient A and 

τ’ outside the established limits. Proteins with very large values of τ’ indicate very slow protein 
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degradation and turnover cannot be estimated during the experiment. These proteins can be 

regarded as having an infinite half-time. To sum up, by adjusting the B coefficient of the 

exponential model to a fixed value, protein turnover was calculated for more than 3500 

proteins (Fig 5.85). 

 

Figure 5.85 Ranked protein turnover (h) for GS parental cell line (n=3637; A) and E22 producing cell line (n=4001; 

B). Red dotted line marks the mean value for protein turnover (h).  

5.3.1.9 Estimation of rate of protein turnover  

Protein turnover rate (protein copies/h) is derived from dividing the protein copy number by 

the protein turnover (h) and is an estimate of the number of protein copies made per unit of 

time. The 10 most turned over proteins were examined in detail for both E22 producing and 

GS K-O parental cell lines (Table 5.24).  

Table 5.24 Top 10 proteins in terms of turnover rate (h-1) for GS K-O and E22 cell lines. 

Rank GS K-O cells (turnover rate h-1)  E22 producing cell line (turnover rate h-1) 

1 Actin, cytoplasmic 1 (5.36e6) Light chain (LC) Mab fragment (2.31e7) 

2 Histone H4 (4.79e6) Heavy chain (HC) Mab fragment (6.97e6) 

3 Ubiquitin (2.20e6) Actin, cytoplasmic 1 (4.04e6) 

4 Peroxiredoxin-1 (2.19e6) Histone H4 (3.60e6) 

5 Cofilin-1 (1.55e6) Glyceraldehyde-3-phosphate dehydrogenase (2.72e6) 

6 Glyceraldehyde-3-phosphate dehydrogenase (1.46e6) Ubiquitin (2.65e6) 

7 14-3-3 protein epsilon (1.35e6) Peroxiredoxin-1 (2.50e6) 

8 Peptidyl-prolyl cis-trans isomerase (1.36e6) 78 kDa glucose-regulated protein (1.94e6) 

9 Fatty acid binding protein (FABP) (1.23e6) 14-3-3 protein epsilon (1.53e6) 

10 Galectin (1.22e6) Cofilin-1 (1.50e6) 
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Interestingly, LC and HC of mAb are expressed at the highest rate for E22 producing cell line, 

even higher that the most important structural protein, actin. The results for GS K-O parental 

cell line suggest that actin is the most turned over protein, followed closely by histone H4. For 

both cell lines, ubiquitin, a protein involved in marking proteins for degradation, is also rapidly 

turned over, which is consistent with their function. Fatty acid binding protein (FABP) is also 

important for parental cell line and plays a role in both transport and metabolism of fatty 

acids.  14-3-3 protein epsilon is also important for both cell lines, exerting regulatory functions 

in many pathways, including cell cycle, MAPK cascade and signal transduction. 

5.3.1.10 Calculation of total protein mass 

In addition to calculating protein turnover rate, the total cellular mass for individual proteins 

was also estimated. By combining the values of protein copy number values, derived from 

TPA data, and molecular weight (mW) for each protein, ‘’total protein mass” was derived. The 

top 10 proteins in terms of total protein mass are shown in Table 5.25. 

Table 5.25 Top 10 protein with highest total cellular mass (kDa) for GS-KO and E22 cell lines. 

Rank GS K-O cells (total cellular mass, kDa) E22 cells (total cellular mass, kDa) 

1 Actin, cytoplasmic 1 (5.21e9) 78 kDa glucose-regulated protein (4.67e9) 

2 Histone H4 (2.33e9) Actin, cytoplasmic 1 (3.41e9) 

3 Glyceraldehyde-3-phosphate dehydrogenase (1.75e9) HC Mab fragment (2.72e9) 

4 Elongation factor 1-alpha 1 (1.71e9) LC Mab fragment (2.58e9) 

5 Pyruvate kinase (1.52e9) Endoplasmin (2.34e9) 

6 78 kDa glucose-regulated protein (1.34e9) Glyceraldehyde-3-phosphate dehydrogenase (2.33e9) 

7 Heat shock protein HSP 90-beta (1.30e9) Elongation factor 1-alpha 1 (2.19e9) 

8 Peroxiredoxin-1 (1.22e9) Vimentin (1.65e9) 

9 Elongation factor 2 (1.19e6) Peroxiredoxin-1 (1.59e9) 

10 Alpha-enolase (1.16e6) Alpha-enolase (1.49e9) 

 

Interestingly, the top protein for E22 producing cell line is 78 kDA glucose-regulated proteins 

(BiP), a molecular chaperone that is important for correct protein folding. In contrast, the top 

protein for GS K-O parental cell line is actin, whereas BiP protein is ranked 6th from the top. 

The results suggest that E22 producing cell line has up-regulated BiP protein due to 

production of recombinant antibody. 
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5.3.1.11 Protein turnover and abundance of recombinant antibody  

In the case of  E22 producing cell line, it was also possible to obtain accurate information on 

the dynamics of mAb production. According to the protein abundance data, the expression 

of LC (1.1e8) and HC (5.6e7) is in almost perfect 2:1 ratio (precisely, 1.96:1), which is a 

desirable standard for recombinant protein expression (Schlatter et al. 2005). Excess LC is 

apparently required to make mAb folding and assembly more efficient. 

The results of pulse SILAC experiment suggest that turnover of LC takes shorter than HC and 

is equal to 4.77 h and 8.05 h, respectively (Figure 5.86). Similarly, protein degradation was 

estimated to be shorter for light chain (5.86 h) than for heavy chain (12.02 h). Protein turnover 

rate data predicts that there are more than three times more LC fragments (23,128,589 

molecules/cell/h) turned over than HC fragments (6,971,762 molecules/cell/h) for each E22 

producing cell.  

It is important to mention the limitation of both protein copy number and protein turnover 

estimation for the recombinant protein. Firstly, the analysis was exclusively focused on 

intracellular proteins without analysing spent media containing the secreted protein. 

Secondly,  values of LC and HC production were obtained separately, so it is not possible to 

calculate how many complete mAb molecules (which are dimers of LC and HC) are actually 

produced per unit time. Based on the qMab calculations (see section 3.3.2), approximately 

3.2e6 molecules of the complete Mab were produced by the E22 producing cell per hour. This 

translated to only about half of HC molecules and only 14% of LC molecules. There might be 

several reasons for the discrepancy between these numbers. Studies have shown that LC can 

be secreted from the cell on its own as opposed to HC molecules. What is more, none of the 

estimates takes into account the passage of translated molecules through endoplasmic 

reticulum (60 min) and Golgi (30 min), which have been proved experimentally using heavy 

labelled leucine (Choi et al., 1971). Finally, bottom-up proteomic data cannot distinguish 

between complete Mab molecules and free chains, since  proteins are identified on the basis 

of tryptic peptides. 
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Figure 5.86 Calculation of recombinant protein turnover. Degradation profiles for light chain (LC) were calculated 

based on normalised M/L ratios (A) and corresponding synthesis profiles using normalised H/L ratios (B); the 

intercept point was used to calculate protein turnover. Same process has been repeated for heavy chain (C & D).  

5.3.2 Bioinformatic analysis of protein turnover and abundance data 

5.3.2.1 Visual representation of abundance of CHO cell proteins with Proteomaps 

Proteomap is an online tool (https://www.proteomaps.net/) that can visually show the 

quantitative composition of proteomes for a given organism. Each protein is represented by 

a polygon that reflect protein abundance, as estimated by TPA method, weighted by protein 

size. Functionally related proteins are grouped together hierarchically based on the KEGG 

pathways classification into coloured regions (Liebermeister et al. 2014). Currently, Chinese 

hamster is not a supported organism, so identified proteins were mapped to its mouse (Mus 

musculus) homologs using the information available on CHOGenome database 

(http://www.chogenome.org/). More than 3000 proteins were mapped for each cell line (3266 

proteins for GS parental and 3587 proteins for E22 producing cell line).  

In general, the proteome composition between the two cell lines was very similar (Figure 

5.87). Most proteins were involved in genetic information processing (marked as blue), which 
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includes not only transcription and translation, but also protein folding, modification and 

degradation in proteasomes. In agreement with KEGG and GO annotation (described below), 

there were relatively more proteins involved in the latter processes in E22 producing cell line. 

The second largest group of proteins were involved in cellular processes (marked as red), 

including regulation of cell cycle and cytoskeletal proteins.  

 

 

Figure 5.87 Quantitative representation of the global proteome composition between GS K-O parental (A) and 

E22 producing (B) cell lines based on their protein copy number. More detailed look is available below (C&D) to 

highlight the most important groups of cellular proteins. Figures were produced using Proteomap tool 

(https://www.proteomaps.net/).  

The third largest groups of proteins were responsible for metabolism, mainly glycolysis and purine and 

amino acid metabolism. The proteins involved in TCA cycle and oxidative phosphorylation were less 
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abundant, probably because CHO cells rely mainly on glycolysis as a source of energy (“Warburg 

metabolism”), as discussed in detail (see section 1.2.5). 

5.3.2.2 Defining protein biomass objective  

Previous studies have shown that the 1000 most abundant proteins reflect over 90% of 

proteome coverage (Nagaraj et al. 2011). To estimate the protein biomass objective, only 

identified and quantitated proteins were used, and those below the limit of detection were 

not taken into account.  

Firstly, quantitated proteins were ranked in descending order in terms of their “total protein 

mass”. It was found that top 10 ‘heaviest’ proteins constitute almost 20% of the total cellular 

protein mass. Similarly, top 100 proteins correspond to more than 50% and top 1000 

correspond to more than 90% of the total cellular protein mass (Figure 5.88 A). 

Likewise, rate of protein turnover data shows similar trends: top 10 proteins with the highest 

turnover rates correspond to quarter of the total, whereas top 100 constitute almost 60% of 

the total and top 1000 proteins  - 90% of the whole data set (Figure 5.88 B). These results 

agree confirm that most of the cellular degradation and synthesis machinery (as well as total 

cellular protein mass) is occupied only by several protein species with the most important 

functions. In the case of E22 producing cell line, the synthesis of LC and HC of mAb was also 

present in the top 10 proteins. It can be assumed that the production of heterologous protein  

exerts a significant burden on cellular metabolism. The trend is likely to also exist in other 

commercial CHO cell lines.  
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Figure 5.88 Pie charts highlighting the proportion of the total protein mass (A) and the rate of protein turnover 

(B) encompassed by the top 10, top 100 and top 1000 proteins in E22 producing cell line data set (n=4001).  

5.3.2.3 Combining data sets of GS-KO parental and E22 producing cell lines  

Since two separate data sets were obtained using pulse SILAC and TPA approach, it was 

interesting to investigate their overlap and correlation (Fig 5.89). They were 3261 common 

proteins between the data sets of E22 producing and GS K-O parental cell lines with complete 

values of protein turnover, copy number per cell and the corresponding protein turnover 

rates and total protein masses.  

In general,  strong correlation was found between protein turnover values (R=0.7747) and the 

number of copies per cell (R=0.7469). There may be several reasons why the correlation is not 

higher, even though the cell lines are so closely related. Regarding the estimation of protein 

turnover, lack of several data points (less peptides identified or not at many time points) can 

lead to poor model fit. Discrepancies in the copy number estimation were most likely due to 

differences in cell volume. According to the protein copy numbers, E22 producing cells are 

smaller but have a higher protein content. Interestingly, the correlation between the rate of 

protein turnover, which is obtained by combining the two values together, had higher 

correlation rate (R=0.8165) than any of the them separately. 
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Figure 5.89 Venn diagram of common proteins between two data sets for E22 producing and GS K-O parental 

cell lines (A); Scatterplot showing the correlation (Pearson correlation value, R)  between protein turnover (h) 

values obtained for E22 producing and GS K-O parental cell lines (B), protein copy number per cell (C) and 

obtained protein turnover rate (h-1; D).   

5.3.2.4 Functional analysis of up-regulated proteins using Gene Ontology classification 

Since they were some differences in the protein abundance between the two cell lines, it was 

important to examine if there are any groups of proteins that have been significantly up- or 

down-regulated.  The reliability of the protein abundance values was confirmed by DJ-1 

protein, which is known to have “the lowest variability in abundance among different cell 

types in human, mouse, and amphibian cells” (Wisniewski & Mann 2016). The abundance of 

DJ-1 protein was almost identical for E22 producing cell line (6.39e6) and GS K-O parental cell 

line (6.42e6), which resulted in almost 1:1 expression. 

After final verification of the estimated protein abundance, 679 out of 3261 proteins common 

between two data sets had at least 2-fold higher expression in E22 producing than in GS K-O 

parental cell line. On the other hand, 196 protein were up-regulated in GS K-O parental cell 
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line. PANTHER database (http://www.pantherdb.org/ ) was used to classify proteins according to 

their functions (Fig 5.90).  

 

 

Figure 5.90 A) Pie chart shows 2-fold up-regulated PANTHER protein classes. B) Pie charts shows associated Gene 

Ontology (GO) terms for biological process (BP) for 2-fold up-regulated proteins, C) Molecular function (MF) and 

D) Cellular Compartment (CC). The functional annotation was performed using PANTHER database (Mi et al. 

2013).  

Regarding the PANTHER protein classes, the most significant groups of proteins were involved 

in the binding of nucleic acids. These proteins play an important role in genetic information 

processing, including transcription and translation. Proteins up-regulated for E22 producing 

cell line included enzymes (hydrolases and transferases) and proteins modulating enzyme 

functions. Similarly, the GO annotation of BP shows that about 1/3 (~200) up-regulated 

proteins was involved in variety of metabolic processes and another 1/3 in cellular processes, 

followed by cellular organisation and biogenesis. This is also confirmed by the analysis of 

GOMF annotation, in which more than 50% of up-regulated proteins have catalytic activity 

and about 1/3 binding activity. These findings may suggest that E22 producing cell line is 

metabolically more active than GS K-O parental cell line. The level of GOCC annotation is 

relatively broad, but based on other functional analysis, the majority of up-regulated proteins 

were intracellular. 
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5.3.2.5 Pathway analysis of up-regulated proteins using KEGG database 

Following the analysis of PANTHER classification,  the patterns of up-regulated proteins were 

further examined using KEGG Mapper tool.  Up-regulated proteins were matched to 715 

different KEGG identifiers and down-regulated proteins to 205 KEGG identifiers. 

Unsurprisingly, the largest number of proteins was linked to metabolic pathways (102), which 

agrees with GOBP annotation presented above (Table 5.26). 

Table 5.26 Top 15 KEGG pathways matched to up-regulated proteins. 

Pathway 

number 

Pathway name Number of matches 

Mmu01100 Metabolic pathways 102 

Mmu05200 Pathways in cancer 25 

Mmu04144 Endocytosis 23 

Mmu03013 RNA transport 21 

Mmu04141 Protein processing in endoplasmic reticulum 20 

Mmu03008 Ribosome biogenesis in eukaryotes 20 

Mmu03040 Spliceosome 20 

Mmu05165 Human papillomavirus infection 19 

Mmu00230 Purine metabolism 18 

Mmu04151 PI3K-Akt signalling pathway 18 

Mmu00240 Pyrimidine metabolism 17 

Mmu04142 Lysosome 16 

Mmu05169 Epstein-Barr virus infection 16 

Mmu05203 Viral carcinogenesis 15 

Mmu04217 Necroptosis 15 

 

Other highly matched KEGG pathways include Pathways in Cancer (25) and Endocytosis (23), 

RNA transport (21) and Protein Processing in Endoplasmic Reticulum (20). Several of matched 

pathways are of particular importance from the perspective of cellular engineering. For 

example, several translation initiation factors were found to be up-regulated in E22 producing 

cell line (e.g., eIF5, eIF1 or eIF4G), while CYFIP was down-regulated for E22 producing cell line 

(Figure 5.91 A). CYFIP is a protein with dual functionality: it inhibits local protein synthesis but 

can also favour actin remodelling (DeRubeis et al. 2013). Such specific up-regulation of 

translation factors may be a direct effect of producing the recombinant protein production 

and a feature of E22 producing cell line.  
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What is more, several proteins were found to be involved in exon-junction complex (MLN51 

and Tap) that are important during splicing. Another interesting group of up-regulated 

proteins forms a nuclear pore complex (Tpr, Nup50, Sec13), which is important for 

transferring molecules from and to nucleus (figure 5.91B). 

 

Figure 5.91 Fragment of KEGG map of RNA transport (mmu03013) showing translation initiation factors (eIFs) 

and exon-junction complex (EJC) (A), Nuclear pore complex (NPC) (B) and surviva motor neuron (SMN) complex. 

Proteins up-regulated are marked as red; proteins down-regulated are marked as blue.  

In addition, multiple proteins involved in ribosome biogenesis pathway were found to be up-

regulated (marked as red; Figure 5.92). Up-regulation of these proteins could have led to 

more efficient translation, resulting in overall higher number of protein copies per cell in E22 

producing cell line. 
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Figure 5.92 KEGG map of ribosome biogenesis in eukaryotes (mmu03008), highlighting multiple proteins up-

regulated (marked as red) in E22 producing cell line.   

In addition, several proteins involved in protein processing in endoplasmic reticulum (Figure 

5.93) were up-regulated. It was confirmed that BiP protein was up-regulated in E22 producing 

cell line along with HSP40 and GRP94 proteins, all of which play a role in the recognition of 

proteins by luminal chaperones. Two proteins that form in coat protein complex II (COPII) 
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were also up-regulated. Their function is facilitating export from endoplasmic reticulum. 

There are also several up-regulated proteins involved in degradation that is ER-associated or 

directly form ubiquitin ligase complex. These findings were consistent with PANTHER 

database analysis.  

 

Figure 5.93 Fragment of KEGG map showing protein processing in endoplasmic reticulum (A). Enlarged fragment 

of ER-associated degradation (ERAD; B) and ubiquitin ligase complex. Proteins up-regulated are marked as red; 

proteins down-regulated are marked as blue. 

In summary, E22 producing cell line, although smaller in volume, can be considered an 

efficient “cell factory”. Key proteins involved in ribosome biogenesis and translation initiation 

were up-regulated, both promoting higher yield of mAb. In addition, there was up-regulation 

of proteins involved in protein folding in ER, possibly due to heterologous protein expression. 

Studies have shown that up-regulation of chaperone proteins such as BiP has been associated 

with better productivity of CHO cells (Smales et al. 2004; Alete et al. 2005; Pybus et al. 2014). 

The data suggest that clonal selection of E22 producing  cell line might have been a direct 

cause of proteins up-regulated in translation and protein folding, ultimately leading to better 

growth and productivity profile. 
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5.3.2.6 Dynamic usage of amino acids  

By combining protein turnover and protein copy number data, rate of protein turnover was 

obtained, which calculates the number of protein copies made per hour. These values should 

also correspond to the number of amino acids used to support the protein turnover in CHO 

cells. For each value of the protein turnover rate, corresponding amino acid sequence 

(available in FASTA file format) was matched (see section 2.5.12) and amino acid rates for 

individual proteins were calculated and summed together (Figure 5.94). Data for both E22 

producing and GS K-O parental cell line suggest that the most frequently used amino acid was 

leucine (L), followed by lysine (K) and alanine (A). The least used amino acids are histidine (H), 

cysteine (C) and tryptophan (W). The use of serine (S) has been greater for E22 producing cell 

line than for GS parental cell line due to recombinant protein production, as mAbs are rich in 

this amino acid (based on amino acid sequence analyses).  

 

Figure 5.94 Combined bar charts showing rates of usage of individual amino acids in descending order for E22 

producing and GS K-O parental cell lines.  

The dynamic usage data agrees relatively well with predicted amino acid frequencies for 

vertebrates. Since there are 61 codons coding for 20 naturally occurring amino acids, there is 

a strong correlation between genetic code and amino acid composition of proteins. Except 

for arginine, the most important factor determining amino acid frequency is the number of 
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possible codons (Dyer 1971). Serine (S), leucine (L) and alanine (A) are the most frequent 

amino acids whereas histidine (H), methionine (M) and tryptophan (W) are the least frequent 

amino acids. When comparing obtained data to amino acid content of CD-CHO media (see 

Appendix G), this medium is not tailored to the needs of any of the two cell lines. Arginine is 

the most abundant amino acid in CD-CHO, yet it is not as much used by CHO cells. On the 

other hand, the alanine content of CD-CHO is very low. The amount of lysine and serine is 

high and fits well with the requirements of both cell lines. 

5.3.2.7 Dynamic usage of codons and estimation of codon usage bias 

In addition to calculating the rates of amino acid usage, protein sequence data was linked to 

coding sequence data using EMBL database information (see section 2.5.13). The number of 

individual codon usage was calculated for each identified protein and the values were 

adjusted using protein turnover data (Figure 5.96). Both sense codons (coding for amino 

acids) and nonsense codons (TAA, TAG and TGA) were included in the calculations. 

The most frequently used codons were TCT (Serine), ACG (Threonine) and TCC (Serine). On 

the other hand, the least frequent codons were TTA (Leucine), TCA (Serine) and CTA (Leucine). 

The data somehow agrees with amino acids usage, but to get true view on codon usage, it 

was decided to determine dynamic codon usage bias as opposed one established solely based 

on the CHO-K1 reference genome (Table 5.27). Control codon bias from reference CHO-K1 

genome since Uniprot protein database was based directly on it. A recently published study 

compared codon biases for CHO cells based solely on 10% most expressed and 10% lowest 

expressed proteins (Ang et al. 2016). In contrast, presented calculations consider individual 

codon usage per unit time for all proteins quantified in the proteomic data set.  

There are many similarities between the genomic codon bias and codon usage corrected by 

rate of protein turnover. For instance, the most frequently used stop codon is TGA, which 

occurs around 50% of the time. There was not much difference in codon use bias for several 

amino acids, including cysteine (C), aspartic acid (D), glutamic acid (E), phenylalanine (F), 

histidine (H), asparagine (N) and tyrosine (Y). Minor differences were observed lysine (K) and 

glutamine (Q). On the other hand, codon usage was significantly altered for GCG (alanine), 

CCG (proline), TCG (serine) and ACG (threonine) codons, as they were used at a much higher 

frequency than predicted by genomic sequence analysis (Ang et al. 2016).  
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Figure 5.95 Combined bar chart of rates of codon usage in descending order for E22 producing and GS K-O 

parental cell lines.  

This finding suggests that there is a specific dynamic codon usage bias during exponential 

phase of growth for both cell lines.  Based on this data, it would be possible to optimise codon 

sequence for heterologous recombinant proteins to facilitate the process of translation to 

achieve higher productivity.  
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Table 5.27 Comparison of the genomic codon bias (control) and the corrected dynamic codon use bias for E22 

producing and GS K-O parental cell lines.  

Amino 

acid Codon Control E22 GS 
 

Amino 

acid Codon Control E22 GS 

* 

 TAG  0.23 0.20 0.24 
 

M  ATG  1.00 1.00 1.00 

 TGA  0.49 0.52 0.44 
 

N 

 AAT  0.48 0.61 0.62 

 TAA  0.28 0.28 0.32 
 

 AAC  0.52 0.39 0.38 

A 

 GCT  0.31 0.26 0.26 
 

P 

 CCT  0.33 0.21 0.23 

 GCG  0.06 0.21 0.20 
 

 CCG  0.07 0.25 0.22 

 GCC  0.36 0.36 0.37 
 

 CCC  0.28 0.29 0.34 

 GCA  0.26 0.17 0.18 
 

 CCA  0.31 0.25 0.22 

C 

 TGT  0.52 0.45 0.43 
 

Q 

 CAG  0.72 0.47 0.50 

 TGC  0.48 0.55 0.57 
 

 CAA  0.28 0.53 0.50 

D 

 GAT  0.48 0.35 0.35 
 

R 

 CGT  0.09 0.17 0.14 

 GAC  0.52 0.65 0.65 
 

 CGG  0.17 0.10 0.13 

E 

 GAG  0.55 0.54 0.52 
 

 AGG  0.23 0.13 0.16 

 GAA  0.45 0.46 0.48 
 

 CGC  0.14 0.30 0.28 

F 

 TTT  0.48 0.46 0.47 
 

 CGA  0.13 0.09 0.09 

 TTC  0.52 0.54 0.53 
 

 AGA  0.24 0.20 0.21 

G 

 GGT  0.19 0.29 0.27 
 

S 

 TCT  0.21 0.30 0.29 

 GGG  0.23 0.16 0.18 
 

 AGT  0.17 0.16 0.16 

 GGC  0.3 0.32 0.36 
 

 TCG  0.04 0.20 0.18 

 GGA  0.28 0.23 0.19 
 

 TCC  0.2 0.25 0.26 

H 

 CAT  0.46 0.36 0.36 
 

 AGC  0.22 0.08 0.09 

 CAC  0.54 0.64 0.64 
 

 TCA  0.16 0.01 0.01 

I 

 ATT  0.37 0.30 0.30 
 

T 

 ACT  0.27 0.20 0.24 

 ATC  0.46 0.43 0.43 
 

 ACG  0.08 0.39 0.36 

 ATA  0.18 0.27 0.27 
 

 ACC  0.32 0.33 0.30 

K 

 AAG  0.57 0.40 0.41 
 

 ACA  0.32 0.08 0.10 

 AAA  0.43 0.60 0.59 
 

V 

 GTT  0.19 0.28 0.27 

L 

 CTT  0.15 0.22 0.21 
 

 GTG  0.44 0.26 0.25 

 TTG  0.14 0.19 0.20 
 

 GTC  0.23 0.30 0.32 

 CTG  0.37 0.15 0.15 
 

 GTA  0.13 0.15 0.16 

 CTC  0.18 0.38 0.38 
 

W  TGG  1.00 1.00 1.00 

 TTA  0.08 0.03 0.03 
 

Y 

 TAT  0.47 0.37 0.37 

 CTA  0.09 0.04 0.03 
 

 TAC  0.53 0.63 0.63 
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5.4 Conclusions  

Using total protein approach (TPA) method to quantify the number of protein copies, it was 

calculated that a single CHO cell contains 3-4 billion protein molecules, over 90% of which are 

covers the top 1000 proteins in terms of protein abundance. The data agrees relatively well 

with the values reported in the literature (Nagaraj et al. 2011). The advantage of TPA method 

over other MS-based approaches for absolute protein quantification is that there are no 

requirements of any stable isotope labels or significant biochemical input (Wiśniewski 2017). 

The method is based solely on the information that could be routinely obtained in any 

molecular biology lab, namely cell diameter and estimation of cellular protein concentration. 

In addition, TPA method requires the depth of coverage of at least 12,000 peptide-to-

spectrum matches (PSMs) (Wiśniewski et al. 2012) and this can be easily acquired even during 

single run of in-solution trypsin peptide digest. Such data can be produced by using even older 

version of Orbitrap instruments, such as LTQ Orbitrap (Scigelova and Makarov 2006) or Q-

Exactive (Michalski et al. 2011). After MS data acquisition of suitable proteomic coverage, raw 

data can be easily processed using freely available MaxQuant (Cox & Mann 2008) and Perseus 

(Tyanova et al. 2016) using well-established protocols. In addition, it was found that the 

estimated protein copy numbers match well those reported for mouse fibroblasts, as 

estimated using alternative quantification method (Zeiler et al. 2014; Schwanhäusser et al. 

2011). The quality of TPA method was also confirmed on the basis of PARK7 protein 

expression (Wisniewski and Mann 2016).  

In addition to calculating protein copy number, protein turnover was estimated using 

enhanced pulse SILAC method (Boisvert et al. 2012), which was slightly changed to match the 

requirements of CHO cells. Using spent media for media exchange, there was no change in 

the growth profile of CHO cells as compared to the control conditions. The depth of the 

proteome coverage for both datasets was at least 150,000 PSMs, corresponding to >5000 

unique proteins. Despite great progress in mass spectrometry research using stable isotopes 

(Chahrour et al. 2015; Altelaar et al. 2013), there was no available software for analysing 

protein turnover data. In-house program was developed using Matlab computing 

environment (Matlab 2016b) to fit data into simple exponential decay model and Levenberg-

Marquardt algorithm was used to enhance nonlinear square fitting (Appendix D). According 
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to the original methodology (Boisvert et al. 2012), only 50-70% of the proteins fitted into the 

model, while fixed B coefficient model, taking into account degree of amino acid recycling,  

fitted >90% of identified proteins. In conclusion, protein turnover was calculated for more 

than >3000 proteins in both GS-KO parental and E22 producing cell lines. The data is of similar 

scope to that previously published for NIH3T3 mouse fibroblasts (Schwanhäusser et al. 2011), 

where >5000 were identified and quantified. Regarding human-derived Hela cell line, >8000 

proteins were identified and quantified (Boisvert et al. 2012). Considering the differences in 

the size of the databases used (Chinese hamster Uniprot database contains >23,000 

sequences, while Mus Musculus Uniprot database contains >54,000 sequences and Homo 

sapiens: >73,000 sequences), the presented enhanced pulse SILAC data is of similar quality. 

By combining protein abundance with protein turnover data, protein turnover rate was 

derived, based on which it is possible to identify proteins recruiting majority of synthesis and 

degradation machinery for cellular homeostasis. Derived protein turnover rate was strongly 

influenced by the value of protein abundance. Unsurprisingly, the highest expressed proteins 

for E22 producing cell line were LC and HC of mAb, followed by structural proteins: actin, 

histone and glycolytic enzyme, glyceraldehyde-3-phosphate dehydrogenase. Top 10 proteins 

in terms of protein turnover rate corresponded to 20% of total dataset, while top 100 – 

already accounted for 50% of the data set. 

Protein copy number and protein turnover was also calculated for LC and HC of mAb for E22 

producing cell line. It was found that LC and HC were expressed in almost perfect 2:1 ratio, 

which has been shown before to be optimal (Schlatter et al. 2005).  According to the protein 

turnover data, it takes less than 5h to turn over LC and 8h to turn over HC of mAb. The 

observed difference might be due to several reasons, the most obvious of which is the 

sequence length. On the other hand, it is impossible to quantify how many complete 

monoclonal antibodies have been assembled within a cell so alternative method is required 

(O’Callaghan et al. 2010). BiP chaperone protein was also prominent in E22 producing cell line 

for its important role in protein folding (Pybus et al. 2014). In fact, this protein was found to 

be the heaviest following correction of protein abundance data with molecular weight (in 

kDa). Based on those findings, production and folding of mAb seems to have a priority even 

over housekeeping proteins for E22 producing cell line. 
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The calculated proteome composition was visualised using Proteomap (Liebermeister et al. 

2014). It was found that CHO cells focus mainly on the processing of genetic information, 

followed by cellular processes and metabolism. Interestingly, some differences have been 

found between the two cell lines: more than 600 proteins were up-regulated in E22 producing 

cell line, having the most crucial functions within a cell, including metabolic process and 

ribosome biogenesis. These findings agreed well with KEGG pathway and PANTHER analysis. 

Several possible engineering targets were identified, including translation initiation factors 

and proteins that are part of nuclear pore complex (NPC). Higher productivity of E22 

producing cell line was associated with proteins involved in protein processing in endoplasmic 

reticulum, as confirmed by successful targeted engineering approaches (Pybus et al. 2014). 

Finally, the concept of dynamic usage of amino acids and codons by CHO cells was explored. 

Based on protein sequence data, the number of amino acids used by both cell lines during 

exponential phase was estimated. Both GS-KO parental and E22 producing cell lines require 

several billions of individual amino acid molecules to support protein production, with the 

highest use of leucine, lysine and alanine. Further integration of dynamic usage data with 

amino acid flux analysis (Ahn and Antoniewicz 2011) might lead to the development of novel 

chemically defined media tailored to individual cell lines. There are already several examples 

of successful media engineering in the literature (Xing et al. 2011; Torkashvand et al. 2015). 

It has been already recognized that heterologous protein expression can be increased by 

codon optimisation. The first proteomic paper for CHO cells showed differences between 

human and CHO codon biases (Baycin-Hizal et al. 2012). The proof-of-principle paper was 

published the following year, showing increased expression of codon optimized interferon 

gamma in CHO cells based on reference CHO-K1 genome sequence (Chung et al. 2013).  

Codon usage bias calculated for both E22 and GS K-O cell lines agrees relatively well with 

published values (Baycin-Hizal et al. 2012), based purely on proteomic data. There was no 

difference in codon usage for Phenylalanine (Phe) and Cysteine (Cys), whereas TCA and ACA 

were the least used codons for Serine (Ser) and Threonine (Thr), respectively. The codon bias 

data was also directly compared to the integrated ‘omic’ dataset (Ang et al. 2016). Overall, 

there were many similarities between static and dynamic codon use bias except for four 

codons (GCG, CCG, TCG and ACG). This bias was true for both GS-KO parental and E22 

producing cell line, so it was unlikely to be driven by heterologous protein expression. It is 



200 

 

suggested that codon pair bias has a great influence on translational efficiency and might be 

more important in synthetic gene design (Papamichail et al. 2018; Kunec and Osterrieder 

2016). In fact, recently published studies have shown that “synonymous codons provide a 

secondary code for protein folding in the cell” (Buhr et al. 2016), which means that 

synonymous codon changes can significantly affect the folding of a protein. This can lead to 

increased number of misfolded proteins, leading to loss of protein, which is not desirable for 

production of mAbs. 

In conclusion, high-coverage proteomic data set was produced for industrially relevant CHO 

cell lines using modern mass spectrometry-based techniques: TPA and enhanced pulse SILAC. 

Protein abundance and discrete protein turnover rates have been calculated for >3000 

proteins. It is believed that the novelty of combining these two techniques will be explored 

to study multiple cell lines and direct future cellular engineering approaches.  
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Chapter 6: Conclusions and future work 

6.1 Conclusions 

The overall aim of this thesis was to increase the understanding about mechanisms underlying 

CHO cells physiology. Global protein expression was being chosen to study as a reflection of 

biological state of CHO cells growing in cell culture.  

In chapter 3, different protein extraction protocols and sample preparation protocols were 

developed for use in quantitative proteomics methods presented in chapter 4 and 5. Firstly, 

protein extraction protocols were optimised using different combinations of salts, detergent 

and chaotropes to achieve the most robust protein solubilisation. It was found that 4xLaemli 

based (4xLB) buffer and SDS-based buffer were the most robust and efficient due to their high 

content of SDS. In addition, three different protocols for extraction of proteins from spent 

media were teste, which can be used for analysis of host cell proteins (HCPs) during industrial 

bioprocesses.   

As for sample preparation methods for bottom-up proteomics, in-gel trypsin digest and filter 

aided sample preparation (FASP) methods have been used and compared against each other. 

At first, optimised FASP protocol seemed to offer an improvement in number of protein 

identifications over optimised in-gel trypsin digest protocol when analysing data on lower 

sensitivity mass spectrometer. However, by using higher resolution Orbitrap mass 

spectrometer (Q-Exactive HF), there was no significant difference found between number of 

validated protein identifications. It was concluded that both in-gel trypsin digest and FASP 

method were equally efficient to produce tryptic peptides and could be used for quantitative 

proteomics approaches.   

In chapter 4, the feasibility of using standard SILAC for global quantitation of dynamic changes 

in protein expression between exponential and stationary phases of CHO cells was 

demonstrated. The adaptation phase has confirmed that full incorporation efficiency (>97%) 

was achieved within 2 passages for both GS-Ko parental and E22 producing cell lines. In 

addition, there was no arginine to proline conversion. More than 4000 unique proteins were 

identified and quantitated, which agreed with published values. Data analysis protocol for 

forward and reverse SILAC experiments was demonstrated using MacQuant and Perseus, 
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including removal of reverse and contaminant sequences, validated protein identifications (at 

1% FDR), log transformation of data and, finally, merging forward and reverse SILAC 

experiments together. The protocol is robust enough to be easily adapted to study other 

experimental condition, including effects of temperature shift or culture media additives on 

growth and productivity of CHO cells.  

Finally, fold-change cut off and significance B was demonstrated to be the best method for 

determination of differential expression, as both biological and statistical significance were 

considered. Interestingly, one-sample t test was not suitable for analysis of standard SILAC 

data, as it selected proteins with the least variable ratios between forward and reverse 

experiments. 63 differentially expressed proteins were identified between exponential and 

stationary phases for E22 producing cell line and 109 for GS parental cell lines. Functional 

annotation based on GO and KEGG pathway analysis suggested that many of these proteins 

are involved in the most crucial biological processes within a cell, including cell cycle, 

metabolism and transcription regulation or even translation elongation (tRNA 

aminoacylation). It Is believed that some of these proteins are interesting targets for cellular 

and metabolic engineering. 

In chapter 5, dynamic and absolute changes in protein expression of CHO cells were studied 

using enhanced pulse SILAC and TPA method. Firstly, the relationship between the cell volume 

and total cellular protein concertation for mammalian cells was demonstrated. Based on 

these parameters, protein copy numbers of CHO cells were estimated using TPA method. It 

was found that CHO cell lines vary in terms of protein content per cell and change during 

phases of cell growth, so it is important to determine it prior to any proteomic experiment. 

TPA method was found to be reliable at determining protein copy number in CHO cells, based 

on both PARK7 protein abundance and values published for closely related mouse fibroblasts 

using an alternative quantitation method. >5000 unique proteins have been identified and 

quantified. 

Protein turnover, described as a balance between protein degradation and synthesis, can be 

used to investigate steady-state system of mechanisms controlling protein abundance in CHO 

cells during exponential phase of batch culture. Based on enhanced pulse SILAC data, protein 

turnover was determined for >3000 proteins for both GS-KO parental and E22 producing cell 

lines. Thanks to correction of B coefficient based on degree of amino acid recycling, more 
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than 90% of identified proteins were fitted. These numbers are comparable to those 

published for mouse (Schwanhäusser et al. 2011) and human (Boisvert et al. 2012).. 

In addition to host cell proteins, protein turnover and copy number was also determined for 

LC and HC of model mAb. LC and HS were expressed in 2:1 ratio in terms of protein copy 

number, with their protein turnover being equal to 5h and 8h, respectively. However, bottom-

up proteomics approach used here does not indicate on how many complete molecules of 

mAb were assembled and secreted outside the cell. Alternative methods were needed to 

study kinetics of antibody production and secretion, such as by calculating specific 

productivity (qMab): more than 3 million complete monoclonal antibodies were released per 

hour.  

Protein turnover rate, a combination of protein abundance and turnover data, is believed to 

be more accurate way of representation how much degradation and synthetic machinery is 

recruited for a given protein per unit time. Another parameter, total protein mass, was also 

calculated by correcting protein copy number by molecular weight (in Da). Interestingly, “the 

heaviest” protein for E22 producing cell line was chaperone BiP, important for protein folding 

and associated with higher productivity. What is more, there were 600 proteins up-regulated 

in E22 producing cell lines, with the functions in metabolism, cellular processes and ribosome 

biogenesis, as confirmed by KEGG pathway and GO annotation. Some of those up-regulated 

proteins have the potential to be novel engineering targets for CHO cell engineering. 

Based on dynamic use of amino acids, both cell lines were found to require billions of 

individual amino acids molecules per hour, with the highest requirement for leucine, lysine 

and alanine. This data can be used in the development of novel metabolic feeds for CHO cells. 

This can be achieved by performing amino acid flux analysis to evaluate how amino acids are 

transported from chemically-defined medium into CHO cells to support dynamically changing 

protein synthesis. It can be hypothesised that supplementing high demand amino acids can 

increase protein synthesis rate and promote both cell growth and recombinant protein 

expression.  

In addition, codon usage bias can be used to develop novel in silico gene design tools. We 

have estimated our dynamic codon usage bias to be relatively similar to static determined 
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from genomic sequences except for few codons. This bias was true for both GS K-O parental 

and E22 producing cell line, so it was unlikely to be driven by heterologous protein expression. 

In summary, we have generated a large-scale proteomic dataset containing qualitative, 

quantitative and dynamic information about protein expression at molecular level in 

industrially relevant GS-KO cell lines. 

6.2 Future work 

Although data presented in this work proved to be reproducible, the findings could be further 

improved and validated. One possibility is to include secreted host cell proteins into SILAC-

based quantitative studies. Host cell proteins (HCPs) are one of bioprocess impurities that 

must be separated from the product. Their identification can lead to more efficient 

development and improved recombinant product yield (Valente et al. 2014). The integration 

of intracellular and extracellular proteomic data might be challenging to due significant 

overlap of the protein species. Obtained protein turnover values might be also more difficult 

to interpret. What is more, some proteins identified in the spent media might be products of 

degradation rather than fully functional proteins.   

The obvious next step is to map proteomic data to transcriptomic data to estimate mRNA 

stability as well as translational efficiency for individual proteins as demonstrated by 

(Schwanhäusser et al. 2011). By simultaneous measurement of mRNA abundance, gene 

expression and protein synthesis rates can be quantified simultaneously. 

It is also important to validate quantitative proteomic data using alternative methods. Results 

show that measured protein expression can vary 4-10 fold between the replicates even for 

the same tissue (Higdon and Kolker 2015). For example, metabolic flux analysis could be used 

to study changes in certain metabolites level in the culture, for example lactate accumulation 

or glucose consumption (Ahn & Antoniewicz 2012). Global study of metabolites using 

metabolomic approaches is challenging but might be vital for a better understanding of global 

metabolism of CHO cells. 

Another choice for validating the protein expression data is to use transcriptomic methods, 

such as RNA-seq. Recent study has shown the unique fingerprint of genes contributing to 

recombinant antibody glycosylation that is cell-type specific (Könitzer et al. 2015). Although 
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it is known that correlation between protein expression and transcript expression levels is 

about 60% at best (Vogel et al. 2010), it will undoubtedly provide another layer of 

information. In addition, combining proteomic and transcriptomic data will allow the 

estimation of translational efficiency for a given gene or even mRNA stability. This can in turn 

lead to establishment of better in silico gene design and identification of possible bottlenecks 

in heterologous protein production.  

At the interface between proteomics and genomics lies proteogenomics. In proteogenomics, 

peptide search is performed using six-frame translation of genome sequence to identify 

proteins missing from protein databases or with incorrect amino acid sequence. As a result, 

so-called “proteogenomic maps” are generated that can provide new evidence for protein 

translation, validate existing gene annotations and even identify novel genes (Nagaraj et al. 

2015). Since there are still many issued with missing or incomplete annotation of protein 

sequences for CHO cells, this might improve the number of proteins identifications. However, 

the danger of using six-frame translation is the possibility of significantly increasing false 

discovery rate, leading to higher number of false positive identifications. On the other hand, 

the intersection of genomic and proteomic data sets can improve gene annotation, which is 

still a significant problem for CHO cell research. 

Downstream bioinformatics analysis is especially affected by lack of functional and pathway 

annotation. Currently, we must rely on mouse (Mus musculus) annotations to derive any 

meaningful conclusions of ‘omic’ studies. Future developments in bioinformatics resources 

and annotation will undoubtedly facilitate the integration of ‘omic’ data sets to improve 

industrial bioprocesses. In addition, it might be desirable to create custom databases for 

various CHO cell lines to reflect both their mutation patterns, genetic instabilities and 

auxotrophies.  Further bioinformatics analysis might also provide us with information about 

protein redundancies. In this way, biosynthetic resources might be re-directed towards the 

expression of monoclonal antibody, leading to better yields. If better mapping of 

chromosomal locations is to become available, it would be possible to delete whole 

chromosome to reduce genome size.  

In addition to targeted cellular and metabolic engineering, genetic engineering still plays an 

important role. Derived estimations of dynamic codon usage bias for both parental and 

producing cell lines can be used to optimize coding sequences. Commercial tools are already 
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available, such as GenScript (https://www.genscript.com/tools/rare-codon-analysis), which are 

used routinely in many laboratories. Other directions of research might be signal peptide 

examination of the most and least abundant proteins. It is known that signal peptides are 

responsible for targeting proteins for their functions, for example into nucleus, endoplasmic 

reticulum or destined for secretion. By analysing the latter, we could find the correlation 

between the signal peptide sequence and higher protein copy numbers. The correlation 

between using optimized signal peptides and the secretion efficiency has been already 

demonstrated (Kober et al. 2013). 

Presented SILAC-based data highlighted the differences between two closely related cell lines. 

Recent study has also confirmed that diversity between host cell performance is also directly 

affected by the type of recombinant protein expressed, model IgG4 or FC-fusion protein 

(O’Callaghan et al. 2015). This again demonstrates that large diversity exists for CHO cells and 

the need for integration of “omic” data sets of multiple CHO cell lines is crucial. Such 

integrated data sets will help to develop host cell lines with different performance 

characteristics, tailored to bioprocess and recombinant protein requirements. 
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Appendix A: Suppliers of reagents and equipment  

Table A1. The complete list of used chemicals, enzymes and analytical solutions  

Reagent  Supplier/Manufacturer 

2-Mercaptoethanol 

40% Acrylamide/Bis-acrylamide 

Acetone, LC-MS grade 

Acetonitrile, LC-MS grade 

Ammonium bicarbonate 

Ammonium persulphate 

Ammonium sulphate 

Arginine  

Argninine 

Bovine serum albumin 

Bradford protein concentration assay 

CD-CHO media 

Coomassie Brilliant Blue G-250 

Dimethyl sulphoxide (DMSO) 

Dithiotreitol 

EDTA 

Ethanol, LC-MS grade  

Formic acid, LC-MS grade 

Glycerol 

Glycine 

Halt Protease Inhibitor Cocktail, EDTA-free, 100x 

HEPES 

Hydrochloric acid solution 

Iodoacetamide 

L-glutamine (200mM) 

Lysine 

Lysine 

Orthophosphoric acid 

Phosphate buffered saline tablet 

Prestained Protein Ladder Broad Range (10-230 kDa) 

RCDC protein concentration assay kit 

Sodium chloride 

Fisher Scientific 

Fisher Scientific 

Fisher Scientific 

Fisher Scientific 

Sigma-Aldrich 

Sigma-Aldrich 

Sigma-Aldrich 

Sigma-Aldrich 

Cambridge Isotope Laboratories Ltd 

Sigma-Aldrich 

Thermo Fisher 

Life Technologies 

Sigma-Aldrich 

Sigma-Aldrich 

Sigma-Aldrich 

Sigma-Aldrich 

Fisher Scientific 

Fisher Scientific 

Fisher Scientific 

Fisher Scientific 

Thermo Fisher 

Sigma-Aldrich 

Fisher Scientific 

Life Technologies 

Sigma-Aldrich 

Cambridge Isotope Laboratories Ltd  

Millipore 

Sigma-Aldrich 

BioRad 

NEB 

BioRad 

Sigma-Aldrich 
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Sodium deoxycholate 

Sodium dodecyl sulphate 

TEMED 

Tetraethylammonium bromide 

Thiourea 

Trichloroacetic acid 

Trifluoroacetic acid, LC-MS grade 

Tris 

Triton X-100 

Tween-20 

Trypsin porcine proteomics grade 

Urea 

Water, LC-MS grade 

Sigma-Aldrich 

Sigma-Aldrich 

Thermo Fisher 

Sigma-Aldrich 

Sigma-Aldrich 

Sigma-Aldrich 

Fisher Scientific 

Fisher Scientific 

Sigma-Aldrich 

Sigma-Aldrich 

Sigma-Aldrich 

Sigma-Aldrich 

Fisher Scientific 

 

Table A2. The key features of mass spectrometers available for presented research project. 

Feature Amazon ETD MaXis 4G UHR-TOF Q-Exactive HF 

Manufacturer Bruker Daltonics Bruker Daltonics Thermo Scientific 

Mass analyser Linear Ion trap Quadrupole TOF Hybrid Quadrupole- 

Orbitrap High Field  

Resolution 20,000 60,000 240,000 

Accuracy (p.p.m) <50 <2 <1 

Ionisation Method(s) ESI ESI, ESI-nano, APCI, 

APPI 

API 

Fragmentation CID, ETD/PTR CID CID, HCD 

Mass Range (m/z) 50 to 3000 50 to 20,000  50-6000  

MS Acquisition Rate 20Hz 30Hz up to 18Hz 

*ESI; Electrospray ionisation; APCI; atmospheric pressure chemical ionisation, APPI, 

atmospheric pressure photoionisation;  API; atmospheric pressure ionisation; p.p.m; parts 

per million                                    
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Table A3. The list of analytical equipment and consumables  

Equipment/consumable Supplier/Manufacturer 

Amazon ETD 

Costar® Spin-X® centrifuge tube filters 

Erlenmeyer 125ml flask, sterile, disposable  

Hypercarb™ HPLC Column 

Hypersep TM  extraction tip 

LoBind 1.5 ml tubes 

MaXis 4G UHR-TOF  

Microcentrifuge 

Mini-Protean PAGE apparatus 

Microcon®-10 centrifugal filters 

Orbital shaker 

PepMap C18 AcclaimTM trap column (0.3 mm I.D. x 5 mm) 

PepMap C18 nano column (75 µm x 15 cm) 

pH strips 

Q-Exactive HF 

Shaking Incubator 

Sonication water bath 

SpeedVac 

Syringe-filter membrane 0.2µm 

Ultimate 3000 (U3000) nano liquid chromatography system 

Ultracentrifuge 

UV Spectrophotometer 

Vi-CellTM Cell Viability Analyzer 

Bruker Daltonics 

Corning® 

Corning® 

ThermoScientificTM 

ThermoFisher Scientific 

Eppendorf® 

Bruker Daltonics 

Eppendorf® 

BioRad 

Merck Millipore Ltd. 

ThermoFisher 

Dionex Corporation 

Dionex Corporation 

Camlab 

Thermo Scientific 

Infors 

Fisherbrand®  

Eppendorf® 

Corning® 

Dionex Corporation 

Eppendorf® 

Amersham Biosciences 

Beckman Coulter 
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Appendix B: Differentially expressed proteins for E22 producing cell line classified in the 

main GO classes.  

Entry GeneSymbol Protein names Forward log2 

ratio 

Significance B 

p-value 

Reverse log2 

ratio 

Significance 

B p-value 

Transport 

G3GSZ6 Slc9a9, Nhe9 Sodium/hydrogen exchanger 9  0.8734195 0.038475375 1.612638 0.000237065 

G3HCT1 Kpna2, Rch1 Importin subunit alpha (Importin alpha P1) (Karyopherin subunit 

alpha-2)  

-1.88534 1.05E-08 -2.032876 2.63E-10 

G3HRT6 Slc12a1, Nkcc2 Solute carrier family 12 member 1 -3.11591 3.99E-14 -2.532192 2.95E-10 

G3IKA3 Plin2, Adfp Perilipin-2 (Adipophilin) (Adipose differentiation-related protein) 

(ADRP) 

1.086444 0.004934098 2.183769 2.32E-10 

Transcription regulation 

G3GUB4 Hat1 Histone acetyltransferase type B catalytic subunit (EC 2.3.1.48) -0.9484469 0.002760414 -1.338339 0.000467625 

G3H6D9 Dnmt1, Dnmt, Met1 DNA (cytosine-5)-methyltransferase (EC 2.1.1.37) (Dnmt1) (Met-1) -1.076919 0.000393862 -1.921436 4.54E-07 

G3H9F5 Ikbkap, Elp1, Ikap Elongator complex protein 1 (ELP1) (IkappaB kinase complex-

associated protein) (IKK complex-associated protein) 

-0.687149 0.008522372 -1.057624 0.001056715 

G3H9N7 Elp2, Statip1 Elongator complex protein 2 (ELP2) (STAT3-interacting protein 1) 

(StIP1) 

-3.405558 4.55E-12 -3.103028 2.42E-09 

G3HE67 Creg1, Creg, Unq727 Protein CREG1 1.408766 0.000738941 0.9997404 0.017406274 

G3HRN7 Timeless Protein timeless-like -0.8676996 0.024503874 -1.564037 0.000616579 

G3I5N5 Top2a, Top-2, Top2 DNA topoisomerase 2 (EC 5.99.1.3) -1.332607 4.54E-07 -2.201163 7.67E-12 

G3I6L2 Elp3 
 

Elongator complex protein 3 (EC 2.3.1.48) -1.375834 0.000644219 -1.75971 0.000104766 

Stress response 
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G3H8G0 Gpx1 Glutathione peroxidase (GPx-1) (GSHPx-1) (EC 1.11.1.9) -1.345381 1.23E-05 -1.79693 2.37E-08 

G3HF60 Gpx4 Phospholipid hydroperoxide glutathione peroxidase, mitochondrial 

(PHGPx) (EC 1.11.1.12) (Glutathione peroxidase 4) (GPx-4) (GSHPx-4) 

-1.326986 0.000644894 -2.092005 2.05E-07 

G3I2P6 Dnajc9 DnaJ-like subfamily C member 9 -0.9721949 0.014293315 -1.352984 2.71E-05 

Signal transduction 

G3HG79 Iqgap3 Ras GTPase-activating-like protein IQGAP3 (IQ motif-containing 

GTPase-activating protein 3) 

-1.30397 0.007373836 -2.565451 1.01E-06 

Post-translational modifications 

G3HSJ6 Dohh Deoxyhypusine hydroxylase (DOHH) (EC 1.14.99.29)  -1.537089 0.001634231 -1.570074 0.00010295 

Microtubule-based movement 

G3HP44 Kif15, Klp2, Knsl7 Kinesin-like protein KIF15 (Kinesin-like protein 2) (Kinesin-like protein 

7) 

-0.781504 0.012175409 -1.360083 0.000376114 

Metabolic process 

G3H6H1 Nceh1, Aadacl1, Kiaa1363 Neutral cholesterol ester hydrolase 1 (NCEH) (EC 3.1.1.-) 

(Arylacetamide deacetylase-like 1) 

1.049143 0.000587278 0.880604 0.006378838 

G3HWI7 Oplah 5-oxoprolinase (EC 3.5.2.9) (5-oxo-L-prolinase) (5-OPase) 

(Pyroglutamase) 

1.510658 0.000421508 0.9771849 0.019792959 

G3HXN7 Hexb Beta-hexosaminidase (EC 3.2.1.52) 1.313304 0.000101762 0.7778137 0.047132633 

G3ILF1 Gstm5, Fsc2, Gstm3 Glutathione S-transferase (EC 2.5.1.18) -0.7120786 0.00645197 -1.827372 4.99E-11 

G3IMZ0 Vldlr Very low-density lipoprotein receptor (VLDL receptor) 1.092952 0.009190575 1.417309 0.001105401 

DNA replication 

G3H412 Pcna Proliferating cell nuclear antigen (PCNA) (Cyclin) -0.6367952 0.01459347 -0.9895023 0.000315931 

G3I1H0 Mcm3, Mcmd, Mcmd3 DNA helicase (EC 3.6.4.12) -0.7124568 0.015552952 -0.9024209 0.000990307 

G3I2K8 Rrm2 Ribonucleoside-diphosphate reductase subunit M2 (EC 1.17.4.1)  -2.247491 9.32E-09 -3.636335 1.12E-19 

G3I3B7 Rrm1 Ribonucleoside-diphosphate reductase (EC 1.17.4.1) -2.184884 4.27E-11 -3.41657 2.08E-19 

G3I732 Pold1 DNA polymerase delta catalytic subunit (EC 2.7.7.7) (EC 3.1.11.-) -1.264582 9.08E-05 -2.149487 9.31E-08 
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G3I9M7 Pold3 DNA polymerase delta subunit 3 (Polymerase (DNA-directed), delta 3, 

accessory subunit) 

-1.907522 9.74E-05 -2.163466 4.40E-05 

DNA repair 

G3H7M2 Lig1 DNA ligase 1 (EC 6.5.1.1) (DNA ligase I)  -1.36736 0.000441056 -2.689948 2.75E-07 

G3HMA2 Pold2 DNA polymerase delta subunit 2 (DNA polymerase delta subunit p50) -1.089482 0.004943961 -1.806901 6.63E-05 

Development 

G3HDZ2 Ifrd1, Tis7 Interferon-related developmental regulator 1 (TPA-induced sequence 

7) (TIS7 protein) 

2.24732 1.37E-07 2.789462 3.38E-12 

G3IFY1 Tyms Thymidylate synthase (TS) (TSase) (EC 2.1.1.45) -1.247388 0.001325216 -1.910272 5.30E-07 

G3IIK9 Sprr1a Cornifin-A (Small proline-rich protein 1A) (SPR1 A) 1.033793 0.007635611 1.832694 1.02E-07 

Cellular homeostasis 

G3HUI4 Prcp Lysosomal Pro-X carboxypeptidase (EC 3.4.16.2) (Proline 

carboxypeptidase) (Prolylcarboxypeptidase) (PRCP) 

2.415596 5.58E-09 1.202306 0.005001264 

G3IAI6 Hmox1 Heme oxygenase 1 (HO-1) (EC 1.14.14.18) (P32 protein) 1.231187 0.000120339 1.210763 8.16E-05 

G3IEF1 Fth1, Fth Ferritin (EC 1.16.3.1) -4.250577 9.92E-25 -2.440049 1.28E-09 

Cell division 

G3HLU1 Ube2c, Ubch10 Ubiquitin-conjugating enzyme E2 C (EC 2.3.2.23) (E3-independent) E2 

ubiquitin-conjugating enzyme C) (EC 2.3.2.24)  

-3.716585 4.48E-14 -3.609519 2.81E-16 

G3HVL1 Cdk1, Cdc2, Cdc2a Cyclin-dependent kinase 1 (CDK1) (EC 2.7.11.22) (Cell division control 

protein 2) 

-1.078899 0.000384833 -2.098588 6.83E-11 

G3HXF9 Ndc80, Hec1, Kntc2 Kinetochore protein NDC80 (Kinetochore protein Hec1) (Kinetochore-

associated protein 2) 

-1.451346 0.002913086 -2.18954 3.51E-05 

G3I0R8 Anln Actin-binding protein anillin -1.399502 0.00407649 -2.564085 8.93E-09 

G3I1F9 Kif4, Kif4a, Kns4 Chromosome-associated kinesin KIF4 (Chromokinesin) -0.7020222 0.070983788 -1.460847 0.000307336 

G3IAY2 Mcmbp Mini-chromosome maintenance complex-binding protein (MCM-BP) 

(MCM-binding protein) 

-1.2122 0.012618835 -1.454544 0.000326645 

Cell cycle 
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G3H8N5 Zwilch Protein zwilch-like (kinetochore-associated) -0.7337951 0.126191375 -1.641315 0.000313434 

G3IFZ0 Mki67 Proliferation marker protein Ki-67 (Antigen KI-67) -1.834082 0.000177661 -2.801366 3.00E-12 

G3H056 Mak16 Protein MAK16 homolog -2.520521 2.84E-07 -2.626976 3.72E-09 

G3HCF9 Chaf1a, Caip150 Chromatin assembly factor 1 subunit A (CAF-I 150 kDa subunit) (CAF-I 

p150) 

-1.2768 0.008673496 -2.505103 1.99E-08 

G3HZP7 Prim2 DNA primase large subunit (EC 2.7.7.-) -0.9516242 0.013831009 -1.420833 0.00045068 

G3IN30 Plk1, Plk Serine/threonine-protein kinase PLK (EC 2.7.11.21) (Polo-like kinase) -1.918279 8.90E-05 -2.799564 8.36E-08 

Cell adhesion 

G3H2I6 Ncam1, Ncam Neural cell adhesion molecule 1 (N-CAM-1) (NCAM-1) (CD antigen 

CD56) 

1.094439 0.001388337 2.130808 7.07E-11 

Catabolic process 

G3I1H5 Lgmn, Prsc1 Legumain (EC 3.4.22.34) (Asparaginyl endopeptidase) (Protease, 

cysteine 1) 

0.5981746 0.064019096 1.578715 1.27E-06 

G3IDE4 Tpp1, Cln2 Tripeptidyl-peptidase 1 (TPP-1) (EC 3.4.14.9) (Lysosomal pepstatin-

insensitive protease) (LPIC) 

0.7446778 0.017929148 1.161556 0.000343966 

Biosynthetic process 

G3GXD7 Fasn Fatty acid synthase (EC 2.3.1.85) -0.9291435 0.000406654 -0.9593992 0.000473721 

G3GXG4 Cyp51a1, Cyp51 Lanosterol 14-alpha demethylase (LDM) (EC 1.14.13.70) (CYPLI) 

(Cytochrome P450 51A1) 

-3.41818 3.13E-18 -2.918176 3.56E-13 

G3H0L7 Fdft1, Erg9 Squalene synthetase (SQS) (EC 2.5.1.21) -1.715486 0.00044879 -2.125684 6.08E-05 

G3H6P9 Sc4mol Methylsterol monooxygenase 1 (EC 1.14.13.72) (C-4 methylsterol 

oxidase) 

-0.9683789 0.012278293 -1.398296 0.000556779 

G3HG36 Glul Glutamine synthetase (GS) (EC 6.3.1.2) -0.9245633 0.000433835 -1.961364 1.09E-09 

G3HLB3 Glul Glutamine synthetase (EC 6.3.1.2) -0.9822491 0.013369191 -1.810443 1.86E-08 

G3HMY0 Hmgcs1, Hmgcs Hydroxymethylglutaryl-CoA synthase (EC 2.3.3.10)  -2.816749 3.12E-26 -3.659468 5.29E-39 

G3HXP6 Hmgcr 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA 

reductase) (EC 1.1.1.34) 

-3.466688 1.89E-12 -2.00389 0.000165944 
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G3IFL1 Ppat,Gpat Amidophosphoribosyltransferase (ATase) (EC 2.4.2.14)  -1.426044 0.00041242 -1.974125 9.64E-07 

Apoptosis 

G3GXZ0 Tgm2 Protein-glutamine gamma-glutamyltransferase 2 (EC 2.3.2.13) 

(Transglutaminase-2) (TGase-2) 

1.213129 0.000151692 0.6957693 0.04172682 

Unknown 

G3IEB3 Ociad2 OCIA domain-containing protein 2 -1.161072 0.016792799 -2.018634 7.41E-06 
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Appendix C: Differentially expressed proteins for GS parental cell line classified in the 

main GO classes.  

Uniprot ID Gene Symbol Protein names Forward 

log2 ratio 

Significance 

B p-values 

Reverse 

log2 ratio 

Significance 

B p-values2 

tRNA aminoacylation 

G3H935 Yars Tyrosine--tRNA ligase, cytoplasmic (EC 6.1.1.1) (Tyrosyl-tRNA 

synthetase) (TyrRS) [Cleaved into: Tyrosine--tRNA ligase, 

cytoplasmic, N-terminally processed] 

1.457121 0.000180792 1.873397 1.41E-07 

G3HJM2 Gars Glycine--tRNA ligase (EC 3.6.1.17) (EC 6.1.1.14) (Diadenosine 

tetraphosphate synthetase) (AP-4-A synthetase) (Glycyl-tRNA 

synthetase) (GlyRS) 

1.020627 0.016214941 0.9194515 0.001732351 

G3IG23 Aars Alanine--tRNA ligase, cytoplasmic (EC 6.1.1.7) (Alanyl-tRNA 

synthetase) 

1.229957 0.00152039 1.230431 2.90E-05 

G3IIT6 Cars Cysteine--tRNA ligase, cytoplasmic (EC 6.1.1.16) (Cysteinyl-

tRNA synthetase) (CysRS) 

1.454808 0.000643041 1.305895 0.000235314 

Transport 

G3H241 P2rx7, P2x7 P2X purinoceptor 7 (P2X7) (ATP receptor) (P2Z receptor) 

(Purinergic receptor) 

1.688315 0.000546088 2.128535 2.82E-06 

G3HBE1 Abcc3, Cmoat2, Mrp3 Canalicular multispecific organic anion transporter 2 1.817664 0.000219751 1.810663 5.59E-05 
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G3HCT1 Kpna2, Rch1 Importin subunit alpha-1 (Importin alpha P1) (Karyopherin 

subunit alpha-2) (Pendulin) (Pore targeting complex 58 kDa 

subunit) (PTAC58) (RAG cohort protein 1) (SRP1-alpha) 

-2.474813 3.45E-10 -2.823872 1.44E-09 

G3HEY8 Sil1 Nucleotide exchange factor SIL1 1.121877 0.002605244 1.372692 0.000440531 

Transcription regulation 

G3GUB4 Hat1 Histone acetyltransferase type B catalytic subunit (EC 

2.3.1.48) (Histone acetyltransferase 1) 

-1.740529 3.25E-05 -1.763369 0.000177141 

G3H6D9 Dnmt1, Dnmt, Met1 DNA (cytosine-5)-methyltransferase (EC 2.1.1.37) -1.765965 2.46E-05 -1.820363 1.52E-06 

G3H9F5 Ikbkap, Elp1, Ikap Elongator complex protein 1 (ELP1) (IkappaB kinase complex-

associated protein) (IKK complex-associated protein) 

-1.076372 0.000626439 -

0.9477784 

0.00154428 

G3H9S4 Ivns1abp, Kiaa0850, 

Nd1, Nd1l 
 

Influenza virus NS1A-binding protein homolog (NS1-BP) (NS1-

binding protein homolog) (Kelch family protein Nd1-L) (ND1-

L2) (Nd1-S) 

-1.904656 0.033722845 -1.852598 0.000967954 

G3HCI2 Uhrf1, Np95 E3 ubiquitin-protein ligase UHRF1 (EC 2.3.2.27) (Nuclear 

protein 95) (Nuclear zinc finger protein Np95) (RING-type E3 

ubiquitin transferase UHRF1) (Ubiquitin-like PHD and RING 

finger domain-containing protein 1) (mUhrf1) (Ubiquitin-like-

containing PHD and RING finger domains protein 1) 

-2.25484 0.010558327 -2.416624 0.000859059 

G3HD13 Asf1b Histone chaperone ASF1B (Anti-silencing function protein 1 

homolog B) (mCIA-II) 

-2.592049 0.002934313 -3.192573 7.73E-06 
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G3HDZ2 Ifrd1, Tis7 Interferon-related developmental regulator 1 (Nerve growth 

factor-inducible protein PC4) (TPA-induced sequence 7)  

ntal regulator 1 

2.574949 3.60E-07 2.638007 6.10E-10 

G3HG87 Glmp Glycosylated lysosomal membrane protein (Lysosomal 

protein NCU-G1) 

1.597078 2.35E-05 1.814514 4.32E-06 

G3HID6 Cnbp, Znf9 Cellular nucleic acid-binding protein (CNBP) (Zinc finger 

protein 9) 

-2.067818 1.61E-07 -1.490108 8.47E-05 

G3I1Z7 Drg1, Drg, Nedd-3, 

Nedd3 

Developmentally-regulated GTP-binding protein 1 -0.857312 0.031476203 -1.476071 0.001485548 

G3I2L7 Chchd2 Coiled-coil-helix-coiled-coil-helix domain-containing protein 

2, mitochondrial 

-1.671899 0.000687188 -2.34639 2.80E-07 

G3I5N5 Top2a, Top-2, Top2 DNA topoisomerase 2-alpha (EC 5.99.1.3) (DNA 

topoisomerase II, alpha isozyme) 

-2.166568 3.21E-12 -2.437387 2.52E-16 

G3IJF2 Nufip2, Kiaa1321 Nuclear fragile X mental retardation-interacting protein 2 (82 

kDa FMRP-interacting protein) (82-FIP) (FMRP-interacting 

protein 2) 

-2.302368 2.40E-06 -

0.7316177 

0.133079451 

Q6E6J6 Cbx5, Hp1a Chromobox protein-like 5 (Heterochromatin protein 1 alpha) -1.4478 0.000605467 -1.164336 0.002174122 

Stress response 

G3H8G0 Gpx1 Glutathione peroxidase 1 (GPx-1) (GSHPx-1) (EC 1.11.1.9) 

(Cellular glutathione peroxidase) (Selenium-dependent 

glutathione peroxidase 1) 

-1.181051 0.00291211 -1.750864 3.78E-06 
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G3HCJ1 Lonp1, Lon, Prss15 Lon protease homolog, mitochondrial (EC 3.4.21.-) (Lon 

protease-like protein) (LONP) (Mitochondrial ATP-dependent 

protease Lon) (Serine protease 15) 

1.002378 0.009430654 1.157367 8.33E-05 

G3HDJ3 Sdc1 Syndecan-1 (SYND1) (CD antigen CD138) -1.399121 0.134291734 -2.499425 0.000551051 

G3HVP7 Nhlrc3 NHL repeat-containing protein 3 1.410287 0.00044257 0.9983851 0.018397299 

G3I2P6 Dnajc9 DnaJ-like subfamily C member 9 -1.412769 0.000830958 -1.506754 0.001410137 

Splicing 

G3H5P9 Aqr, Kiaa0560 Intron-binding protein aquarius -1.158526 0.006693848 -1.681089 0.000355658 

Signal transduction 

G3GX55 Baiap2 Brain-specific angiogenesis inhibitor 1-associated protein 2 -1.363271 0.000578044 -

0.9167059 

0.055897785 

G3HA54 Serpine1, Pai1, Planh1 Plasminogen activator inhibitor 1 (Serine (Or cysteine) 

peptidase inhibitor, clade E, member 1, isoform CRA_b) 

2.24735 7.26E-06 3.566203 2.13E-14 

G3HD57 Sdcbp Syntenin-1 (Scaffold protein Pbp1) (Syndecan-binding protein 

1) 

0.8162311 0.039077121 1.227557 0.000659972 

G3HG79 Iqgap3 Ras GTPase-activating-like protein IQGAP3(IQ motif-

containing GTPase-activating protein 3) 

-2.174426 0.013994142 -3.099396 1.45E-05 

G3HJS0 Sptbn1, Elf, Spnb-2, 

Spnb2, Sptb2 

Spectrin beta chain, non-erythrocytic 1 (Beta-II spectrin) 

(Embryonic liver fodrin) (Fodrin beta chain) 

-

0.8238559 

0.009375249 -1.680954 1.69E-08 

G3HJS1 Sptbn1, Elf, Spnb-2, 

Spnb2, Sptb2 

Spectrin beta chain, non-erythrocytic 1 (Beta-II spectrin) 

(Embryonic liver fodrin) (Fodrin beta chain) 

-

0.8570508 

0.006807948 -1.735176 4.61E-06 
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G3HLW9 Stat3, Aprf Signal transducer and activator of transcription 3 (Acute-

phase response factor) 

-1.716623 4.21E-05 -2.041698 1.34E-05 

G3I9X6 Sptan1, Spna2, 

Spta2 

Spectrin alpha chain, non-erythrocytic 1 -0.780785 0.075924328 -1.634872 0.00051919 

G3I9X8 Sptan1, Spna2, 

Spta2 

Spectrin alpha chain, non-erythrocytic 1 (Alpha-II spectrin) 

(Fodrin alpha chain) 

-

0.7790757 

0.014193992 -1.630965 4.44E-08 

Microtubule-based movement 

G3HP44 Kif15, Klp2, Knsl7 Kinesin-like protein KIF15 (Kinesin-like protein 2) (Kinesin-like 

protein 7) 

-1.47317 0.000479283 -1.424653 0.002575196 

G3I1F9 Kif4, Kif4a, Kns4 Chromosome-associated kinesin KIF4 (Chromokinesin) -1.476619 0.019767303 -1.457016 0.001720829 

Metabolic 

process 

      

G3H3P8 Hexa Beta-hexosaminidase (EC 3.2.1.52) 1.653381 1.22E-05 1.449769 0.000421797 

G3HNG2 Acot2, Mte1 Acyl-coenzyme A thioesterase 2, mitochondrial 1.056722 0.012849899 1.19856 0.000730608 

G3HWI7 Oplah 5-oxoprolinase 1.095182 0.018015126 1.581001 0.000375599 

G3I8P7 Gns N-acetylglucosamine-6-sulfatase (EC 3.1.6.14) (Glucosamine-

6-sulfatase) 

1.423094 0.000154966 0.9308203 0.026523368 

DNA replication 

G3GZQ9 Lct,Lph DNA helicase (EC 3.6.4.12) -1.285354 0.001183008 -1.264717 2.27E-05 

G3H412 Pcna Proliferating cell nuclear antigen (PCNA) (Cyclin) -

0.8539183 

0.007019869 -1.051024 0.000440189 

G3H7V9 Mcm2, Bm28, Ccnl1, DNA helicase (EC 3.6.4.12) -1.234397 8.35E-05 -1.242389 3.17E-05 
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Cdcl1, Kiaa0030 

G3HKD6; 

G3I1V7 

Rbbp7 Rbap46 Histone-binding protein RBBP7 -

0.8571553 

0.00680098 -1.008057 0.000752499 

G3I1H0 Mcm3, Mcmd, 

Mcmd3 

DNA helicase (EC 3.6.4.12) -1.211765 0.002248967 -1.281787 1.76E-05 

G3I2K8 Rrm2 Ribonucleoside-diphosphate reductase subunit M2 (EC 

1.17.4.1) (Ribonucleotide reductase small chain) 

(Ribonucleotide reductase small subunit) 

-3.628305 2.97E-20 -4.33928 9.57E-21 

G3I3B7 Rrm1 Ribonucleoside-diphosphate reductase large subunit (EC 

1.17.4.1) (Ribonucleoside-diphosphate reductase subunit M1) 

(Ribonucleotide reductase large subunit) 

-4.434964 4.03E-20 -3.948975 2.00E-17 

G3I732 Pold1 DNA polymerase delta catalytic subunit (EC 2.7.7.7) (EC 

3.1.11.-) 

-1.424959 0.000744882 -1.260869 0.007840598 

DNA repair 

G3H3B1 Mta1 Metastasis-associated protein MTA1 (Metastasis-associated 

protein MTA1 isoform 4) 

-1.728287 0.000443315 -

0.9777561 

0.103228947 

Development 

G3H4J1 Hectd1, Kiaa1131 E3 ubiquitin-protein ligase HECTD1 (EC 2.3.2.26) (HECT 

domain-containing protein 1) (HECT-type E3 ubiquitin 

transferase HECTD1) (Protein open mind) 

-1.150049 0.007130692 -1.61122 0.000627787 

G3IDN7 Fam3c, 

D6wsu176e, Ilei 

Protein FAM3C (Interleukin-like EMT inducer) -

0.8016567 

0.448703735 -3.080914 1.64E-05 
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G3IFY1 Tyms Thymidylate synthase (TS) (TSase) (EC 2.1.1.45) -2.378344 1.63E-09 -2.585203 3.14E-08 

Cellular homeostasis 

G3GSM5 Tfrc Transferrin receptor protein 1 (TR) (TfR) (TfR1) (Trfr) (CD 

antigen CD71) 

1.461633 0.000606619 0.8440177 0.016977339 

G3IAI6 Hmox1 Heme oxygenase 1 (HO-1) (EC 1.14.14.18) (P32 protein) 2.379205 1.25E-09 0.7869202 0.007234406 

Cell proliferation 

G3H7C7 Kiaa1524, Cip2a Protein CIP2A (Cancerous inhibitor of PP2A) (p90 autoantigen 

homolog) 

-1.774725 0.004598699 -1.535506 0.000928791 

G3HF56 Cnn2 Calponin -1.557327 8.26E-05 -0.79452 0.099636287 

Cell division 

G3GU82 Spc25, Spbc25 Kinetochore protein Spc25 -2.496794 5.07E-05 -2.420429 1.14E-07 

G3GUM5 Ncapd2, Capd2, 

Cnap1, Kiaa0159 

Condensin complex subunit 1 (Chromosome condensation-

related SMC-associated protein 1) (Chromosome-associated 

protein D2) (mCAP-D2) (Non-SMC condensin I complex 

subunit D2) (XCAP-D2 homolog) 

-

0.9030906 

0.004290998 -1.118094 0.000183193 

G3GYS0 Kif2c, Knsl6 Kinesin-like protein KIF2C (Mitotic centromere-associated 

kinesin) (MCAK) 

-3.009611 5.68E-10 -2.384962 1.59E-05 

G3H2N7 Clasp2, Kiaa0627 CLIP-associating protein 2 -1.72738 0.000446501 -

0.9149471 

0.05553598 

G3HE13 Cdca8 Borealin -2.588834 0.002972616 -2.361852 0.001143567 

G3HEA6 Tpx2, C20orf1, C20orf2, 

Dil2, Hca519 

Targeting protein for Xklp2 -2.372655 0.00012151 -3.186707 8.05E-06 
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G3HLU1 Ube2c, Ubch10 Ubiquitin-conjugating enzyme E2 C (EC 2.3.2.23) ((E3-

independent) E2 ubiquitin-conjugating enzyme C) (EC 

2.3.2.24) (E2 ubiquitin-conjugating enzyme C) (UbcH10) 

(Ubiquitin carrier protein C) (Ubiquitin-protein ligase C) 

-4.260166 4.65E-07 -5.1587 1.97E-30 

G3HR76 Cul7, Kiaa0076 Cullin-7 -1.089759 0.265141533 -2.27852 3.91E-05 

G3HRN7 Timeless Protein timeless homolog (mTim) -2.558686 3.22E-05 -2.417839 1.19E-05 

G3HVL1 Cdk1, Cdc2, Cdc2a Cyclin-dependent kinase 1 (CDK1) (EC 2.7.11.22) (EC 

2.7.11.23) (Cell division control protein 2 homolog) (Cell 

division protein kinase 1) (p34 protein kinase) 

-1.312402 2.81E-05 -1.567059 1.47E-07 

G3I0R8 Anln Actin-binding protein anillin -4.109869 1.11E-23 -3.332708 1.90E-13 

G3I2J5 Sun2, Unc84b Protein unc-84-like B -

0.8726045 

0.028523413 -1.577731 3.13E-05 

G3IAY2 Mcmbp Mini-chromosome maintenance complex-binding protein 

(MCM-BP) (MCM-binding protein) 

-2.049845 0.000972988 -2.652509 0.000233743 

G3IEL3 Mad2l1, Mad2a Mitotic spindle assembly checkpoint protein MAD2A (Mitotic 

spindle assembly checkpoint protein MAD2A-like protein) 

-1.493662 0.002519652 -1.731574 0.000232728 

Cell cycle 

G3IFZ0 Mki67 Proliferation marker protein Ki-67 (Antigen identified by 

monoclonal antibody Ki-67 homolog) (Antigen KI-67 

homolog) (Antigen Ki67 homolog) 

-2.647739 1.84E-11 -2.657366 1.27E-08 

G3H7B2 Dlgap5, Dlg7, Kiaa0008 Disks large-associated protein 5 -2.254083 0.000269548 -3.401767 5.85E-14 
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G3H9C5 Hells,Lsh,Pasg Lymphocyte-specific helicase (EC 3.6.4.-) (Proliferation-

associated SNF2-like protein) 

-3.370176 8.21E-05 -2.459143 0.000685104 

G3HNI7 Pbk,Topk Lymphokine-activated killer T-cell-originated protein kinase 

(EC 2.7.12.2) (PDZ-binding kinase) (T-LAK cell-originated 

protein kinase) 

-1.835214 1.13E-05 -2.000072 1.32E-05 

G3HV51 Espl1, Esp1, Kiaa0165 Separin (EC 3.4.22.49) (Caspase-like protein ESPL1) (Extra 

spindle poles-like 1 protein) (Separase) 

-1.852719 0.039488552 -2.496156 0.000560945 

G3I0H1 Ercc6l DNA excision repair protein ERCC-6-like -1.611711 0.001081351 -1.014427 0.089241905 

G3I2I1 Mcm4, Cdc21, 

Mcmd4 

DNA replication licensing factor MCM4 (EC 3.6.4.12) (CDC21 

homolog) (P1-CDC21) DNA helicase (EC 3.6.4.12) 

-1.215345 0.000107854 -1.2027 0.001538818 

G3IDR5 Rif1 Telomere-associated protein RIF1 (Rap1-interacting factor 1 

homolog) (mRif1) 

-1.962295 6.24E-05 -1.483364 0.001403613 

Cell adhesion 

G3H8Y5 Col6a1 Collagen alpha-1(VI) chain -1.241884 0.053045188 -1.857702 0.000934881 

G3HLY4 Cntnap1, Caspr, 

Nrxn4 

Contactin-associated protein 1 (Caspr) (Caspr1) (MHDNIV) 

(NCP1) (Neurexin IV) (Neurexin-4) (Paranodin) 

1.678658 9.08E-06 1.289686 0.001537755 

G3HRL6 Cd63 Tetraspanin CD63 antigen (CD antigen CD63) 1.177599 0.005627405 1.452333 4.37E-05 

G3IA26 Hpse,Hpa Heparanase (EC 3.2.1.166) (Endo-glucoronidase) [Cleaved 

into: Heparanase 8 kDa subunit; Heparanase 50 kDa subunit] 

1.59684 2.35E-05 1.283106 0.000982787 

G3ICD3 Mfge8 Lactadherin (MFGM) (Milk fat globule-EGF factor 8) (MFG-E8) 

(SED1) (Sperm surface protein SP47) (MP47) 

2.111632 6.76E-08 3.039903 8.57E-25 

G3IK05 Mfge8, Ags 
 

Lactadherin (Fragment) 2.307108 6.93E-08 3.277184 4.09E-20 
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Catabolic process 

G3H604 Gla,Ags Alpha-galactosidase A (EC 3.2.1.22) (Alpha-D-galactosidase A) 

(Alpha-D-galactoside galactohydrolase) (Melibiase) 

1.357045 0.0003019 0.6070452 0.083080178 

G3HC47 Gba Glucosylceramidase (EC 3.2.1.45) 1.753262 2.07E-05 1.531573 2.39E-05 

G3HFM0 Abhd6 Monoacylglycerol lipase ABHD6 (EC 3.1.1.23) (2-

arachidonoylglycerol hydrolase) (Abhydrolase domain-

containing protein 6) 

1.196985 0.003129531 1.733843 1.09E-05 

G3HNQ5 Pld3 Phospholipase D3 (PLD 3) (EC 3.1.4.4) (Choline phosphatase 

3) (Phosphatidylcholine-hydrolyzing phospholipase D3) 

(Schwannoma-associated protein 9) (SAM-9) 

1.354509 0.001474005 1.367955 0.000117571 

G3HRK9 Mmp19, Rasi Matrix metalloproteinase-19 (MMP-19) (EC 3.4.24.-) (Matrix 

metalloproteinase RASI) 

1.163112 0.012761942 2.678257 6.06E-09 

G3HX53 Scarb1 Scavenger receptor class B member 1 (SRB1) (SR-BI) 1.411589 0.000925096 1.687939 2.08E-06 

G3I0X5 Ephx1 Epoxide hydrolase 1 (EC 3.3.2.9) (Epoxide hydratase) 

(Microsomal epoxide hydrolase) 

1.059701 0.006129007 0.9211443 0.001698971 

G3I4W7 Ctsd Cathepsin D (EC 3.4.23.5) 1.117097 0.003904889 1.083416 0.000228329 

Biosynthetic process 

G3GR90 Idi1 Isopentenyl-diphosphate Delta-isomerase 1 (EC 5.3.3.2) 

(Isopentenyl pyrophosphate isomerase 1) (IPP isomerase 1) 

(IPPI1) 

-1.090526 0.006033875 -1.682079 1.65E-08 

G3GVU5 Acadm Medium-chain specific acyl-CoA dehydrogenase, 

mitochondrial (MCAD) (EC 1.3.8.7) 

1.231862 0.00099204 0.7898107 0.036722121 
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G3GXG4 Cyp51a1, Cyp51 Lanosterol 14-alpha demethylase (LDM) (EC 1.14.13.70) 

(CYPLI) (Cytochrome P450 51A1) (Cytochrome P450-14DM) 

(Cytochrome P45014DM) (Cytochrome P450LI) (Sterol 14-

alpha demethylase) 

-1.919479 0.00208261 -2.568956 0.000375485 

G3H0L7 Fdft1, Erg9 Squalene synthase (SQS) (SS) (EC 2.5.1.21) (FPP: FPP 

farnesyltransferase) (Farnesyl-diphosphate 

farnesyltransferase) 

-1.206662 0.015551168 -1.847315 6.00E-05 

G3H3F8 Tk1 Thymidine kinase, cytosolic (EC 2.7.1.21) -3.279144 7.74E-08 -3.189698 2.01E-12 

G3H4W0 Dtymk,Tmk Thymidylate kinase (EC 2.7.4.9) (dTMP kinase) -1.512267 0.000331896 -1.650719 0.000456519 

G3H6P9 Sc4mol Methylsterol monooxygenase 1 (EC 1.14.13.72) (C-4 

methylsterol oxidase) 

-

0.6881714 

0.317310509 -1.4829 0.001408704 

G3HMY0 Hmgcs1, Hmgcs Hydroxymethylglutaryl-CoA synthase, cytoplasmic (HMG-CoA 

synthase) (EC 2.3.3.10) (3-hydroxy-3-methylglutaryl 

coenzyme A synthase) 

-2.170069 2.96E-12 -2.808612 3.47E-21 

G3HXP6 Hmgcr 3-hydroxy-3-methylglutaryl-coenzyme A reductase -

0.7314937 

0.502412739 -2.613154 0.000292732 

G3I0U4 Gyg1, Gyg Glycogenin-1 (GN-1) (GN1) (EC 2.4.1.186) 1.608667 2.06E-05 1.507255 0.000257355 

G3I3J1 Asns,As Asparagine synthetase [glutamine-hydrolyzing] (Asparagine 

synthetase [glutamine-hydrolyzing]-like isoform 2) (EC 

6.3.5.4) 

2.204391 1.79E-08 2.045431 9.24E-09 

G3IFL1 Ppat,Gpat Amidophosphoribosyltransferase (ATase) (EC 2.4.2.14)  -1.706747 0.000524935 -

0.7985898 

0.098373238 
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Apoptosis 

G3HK56; 

G3I7Y3 

Lamp1 Lysosome-associated membrane glycoprotein 1 (LAMP-1) 

(Lysosome-associated membrane protein 1) (120 kDa 

lysosomal membrane glycoprotein) (CD107 antigen-like 

family member A) (LGP-120) (Lysosomal membrane 

glycoprotein A) (LGP-A) (P2B) (CD antigen CD107a) 

1.784001 4.88E-06 1.383417 2.64E-06 

Unknown 

G3IEB3 Ociad2 OCIA domain-containing protein 2 -2.540862 0.003600959 -3.185248 5.10E-09 
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Appendix D: Matlab scripts for analysis of enhanced 

pulse SILAC data 

__________________________________________________________________________________ 

%%This is the master script controlling the flow of the scripts used for the 

%%data analysis of enhanced pulse SILAC data using LM algorithm fitting 

%%according to the Boisvert et al. 2012 methodology but with slight 

%%modifications 

%% The raw data is first imported here. There are three inputs: 

%PSM - containing protein names and ratios information 

%timepoints - provides matching protein names and timepoints information 

%tcc - the values of the cell cycle 

 

%%Following data import, there are 5 scripts altogether that need to  

%%be executed consecutively 

%1. Data exploration and normalisation 

%2a. Data curation based on the number of peptides 

%2b. Data curation based on the number of timepoints  

%3. Levenberg-Marquardt algorithm fitting 

%3a. post fitting QC 

%4. Calculation of half-lives and turnover 

%5. Drawing the graphs for the fitted proteins 

 

%% Data import   

%Three inputs needed: PSM, timepoints and tcc 

% read PSM data from Excel file (.xlsx) file 

[data,txt,raw] = xlsread('PSM.xlsx') ; 

%extract all ratios - [H/L], [M/L] and [H/M] 

ratiosHML = data(:,[4:6]); 

%extract protein names and raw file names 

raw(1,:) = []; %remove the first row - header 

proteins = raw(:,[2,3]);  

clear data txt raw 
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% read timepoints Excel file 

[data,txt,raw] = xlsread('timepoints_GS.xlsx'); 

% save timepoints as a variable 

times = data(:,3); 

% save the timepoints named 

nameT = raw([2:end],2); 

% tcc, the experimental time of cell cycle, determined from viable cell count 

tcc=35.4400751159673; 

clear data txt raw 

__________________________________________________________________________________ 

%1. Data exploration and normalisation 

%%This script will be used for data clean-up and preparation 

%1. Data exploration - correspondence of H/L, M/L and H/M ratios 

%2. Mapping of each SILAC record (PSM) with time point 

%3. Ratio normalisation of H/L and M/L ratios 

 

%do a check correlation of [H/L]/[M/L] and [H/M] 

%H/L ratios are in the first column; M/L ratios are in the second column 

%H/M ratios are in the third column 

 

%create a variable v which is a ratio of [H/L]/[M/L]  

v = ratiosHML(:,1)./ratiosHML(:,2); 

 

%% plot it as individual points - blue circles (bo) 

plot(v,ratiosHML(:,3), 'ro'); 

xlabel('Ratio [H/L]/Ratio [M/L] '); 

ylabel('Ratio [H/M]'); 

title('Ratio correlation'); 

%use different (smaller) axis to see better 

axis([ 0 100 0 100]) % vector of 4 values to define x and y axis 

 

%% remove the NA values from the dataset - to calculate correlation 

% find the positions of NA values first 

%position of NA values in v 
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pos = find(isnan(v)==1); 

%position of NA values in H/M 

pos1 = find(isnan(ratiosHML(:,3))==1); 

%find positions of NA values in both H/M and v 

posF = unique([pos;pos1]);  

%find the number of elements of v, then transpose 

nn = (1:1:numel(v))'; 

%find the positions that have values for both v and H/M 

posOK = setdiff(nn,posF); 

%calculate Pearson correlation now 

rho = corr(v(posOK), ratiosHML(posOK,3)); 

 

%% find correspondence for each SILAC record with time point 

%first create a matrix of the size of ratioHML with  

%one column filled with zeros 

timeArr = zeros(size(ratiosHML,1),1); 

 

%create a loop that will translate nameT into times(0.5h, 4h, etc.) 

for i = 1:numel(nameT) %from 1 to 30 

    pos=find(strcmp(proteins(:,2),nameT{i})==1); 

    timeArr(pos)=repmat(times(i), numel(pos),1); 

end  

 

%% make normalisation of ratios 

%normalized M/L ratios 

normML = ratiosHML(:,2)./(ratiosHML(:,1) + ratiosHML(:,2)); 

%normalized H/L ratios 

normHL = ratiosHML(:,1)./(ratiosHML(:,1) + ratiosHML(:,2)); 

__________________________________________________________________________________ 

%2a. Data curation based on the number of peptides 

%% This script will be used for the data curation before the fits  

%1. Make a unique list of proteins 

%2. Calculate how many datapoints for each protein 

%3. Optional: Check if things have worked correctly for an example protein 



251 

 

%4. Merge uniqueProtein list with the number of datapoints 

%5. Optional: Produce histogram to visualise number of datapoints per 

%protein 

%6. Data curation - set the threshold (n=?)to the number of datapoints per 

%protein - save it 

  

%% make a unique list of proteins and look at numbers of datapoints 

%for each protein 

 

%make a list of unique proteins 

uniqProteins = unique(proteins(:,1)); 

%calculate how many unique proteins 

numel(uniqProteins);  

 

%% calculate how many datapoints for each protein  

%this will calculate how many peptides were overall associated with a given 

%protein at all 6 timepoints 

peptideNum=zeros(size(uniqProteins,1),1); %empty vector to store values 

%now for the looping 

for i=1:numel(uniqProteins); %has 3815 elements - for the loop 

    %calculate the number of data points for each unique Proteins, ndata 

 ndata=numel(find(strcmp(proteins(:,1),uniqProteins{i})==1)); 

    %export the values into the uniqProtArr vector 

 peptideNum(i)=ndata; 

end 

%takes about 120 s 

 

%% OPTIONAL: visualize on histogram how many peptides per protein 

h.BinEdges = [0:100]; %sets the number of bins 

histogram(peptideNum, h.BinEdges); 

%let's get some basic summary stats 

mean(peptideNum); %66.2954 

range(peptideNum); %1638 

%min=1; max=1639 
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%% create uniqProteinsn, protein list with minimum 3 peptides 

%set up our threshold of datapoints as n - adjust as needed 

n=3; 

%then find the indices of entries when values are above n 

fn=find(peptideNum >= n); 

 

%% now find the proteins with minimum 3 peptides 

uniqProteinsn=uniqProteins(fn); 

%extract peptide Num for those proteins 

peptideNumn=peptideNum(fn); 

 

%% remove contaminants and reverse sequences from uniqProteinsn 

posCon=[]; 

for i=1:numel(uniqProteinsn) 

    excluCon=regexp(uniqProteinsn{i},'CON_'); 

    if ~isempty(excluCon) 

      posCon=[posCon,i]; 

    end 

    excluCon=regexp(uniqProteinsn{i},'REV_'); 

    if ~isempty(excluCon) 

      posCon=[posCon,i]; 

    end 

     

end 

uniqProteinsn(posCon)=[];  

__________________________________________________________________________________ 

%% This script will be used for the data curation before the fits  

%1. Data curation - keep the proteins that have at least 3 timepoints  

            %(0.5h, 4h, 7h, 11h, 27h and 48h) 

            % 0.5 or 4 timepoint needed for correct amplitude, A 

            % 27 and 48 timepoint needed for correct coefficient, tau_dash 

%2a. Create a quality matrix for the unique proteins which will 

%give us a score of 1 if data present at the timeoint or score 0 if data is 
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%missing at this timepoint 

%2b. Based on the quality matrix, we can sum up the scores to give us the 

%number of timepoints with data present (sumQualityMat) and apply the 

%threshold here 

%3. Use the sumQualityMat to find the position of the proteins with the minimum  

%three timepoints 

%4. Find the position of score=1 to figure out if the data is 

%present for the given timepoint 

 

%% 1. Data curation - keep the proteins that have at least 3 timepoints  

%(0.5h, 4h, 7h, 11h, 27h and 48h) 

%we need to have either 0.5 or 4 

%we need to have both of 27 and 48 

%optional: 7 and 11 

 

%% 2a. Create a quality matrix for the unique proteins which will 

%give us a score of 1 if data present at the timeoint or score 0 if data is 

%missing at this timepoint 

 

qualityMat=zeros(size(uniqProteins,1),6);     %create empty quality matrix 

sumqualityMat=zeros(size(uniqProteins,1),1);  %calculate how many timepoints have data 

for j=1:numel(uniqProteins);                  %for all 3815 records 

    nameP=uniqProteins{j};                    %extract the protein name 

    pos=find(strcmp(proteins(:,1),nameP)==1); %find the indices to extract timepoints and ratios 

    t=timeArr(pos);                           %find the position of timepoints 

     

    if ~isempty(find(t==0.5)')                %this will give 1 if empty or 0 if not empty 

     a=1; %it has data at timepoint 0.5 

 else 

     a=0; %it does not have any data 

    end  

  

 if ~isempty(find(t==4)')                     %this will give 1 if empty or 0 if not empty 

     b=1; %it has data at timepoint 4 
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 else 

     b=0; %it does not have any data 

 end 

  

 if ~isempty(find(t==7)')                     %this will give 1 if empty or 0 if not empty 

    c=1;  %it has data at timepoint 7 

 else 

     c=0; %it does not have any data 

 end  

  

 if ~isempty(find(t==11)')                    %this will give 1 if empty or 0 if not empty 

    d=1;  %it has data at timepoint 11 

 else 

     d=0; %it does not have any data 

 end 

  

 if ~isempty(find(t==27)')                    %this will give 1 if empty or 0 if not empty      

    e=1;  %it has data at timepoint 27 

 else 

     e=0; %it does not have any data 

 end  

  

  if ~isempty(find(t==48)')                   %this will give 1 if empty or 0 if not empty  

    f=1; %it has data at timepoint 48 

 else 

    f=0; %it does not have any data 

  end  

  

%save the scores into the output   

output=[a,b,c,d,e,f]; 

 

%save the output for each protein into the quality matrix 

qualityMat(j,:)=output; 

 



255 

 

%sum the scores for each row in the output to know how many timepoints have 

%data 

sumqualityMat(j)=sum(output); 

end 

 

%concatenate the results into quality check, qcheck 

qcheck=[qualityMat,sumqualityMat]; 

%export as the Excel spreadsheet 

xlswrite('qcheck.xlsx',qcheck); 

 

%% 3. Use the sumQualityMat to find the position of the proteins with at least 3 timepoints 

%three timepoints (threshold >=3) 

 

%find the indices of the proteins with at least 3 timepoints 

pos3=find(sumqualityMat>=3); 

%use pos3 to filter the proteins with the minimum of the 3 timepoints 

uniqProteins3=uniqProteins(pos3);  

 

%% 6. Find the position of score=1 to figure out if the data is 

%present for the given timepoint 

 

%from the qualityMat, we can find the position of the data present at given 

%timepoint  

%qualityMat has 6 columns corresponding to the timepoint (0.5,4,7,11,27,48) 

 

 

pos05h=find(qualityMat(:,1));           %find indices of data present at timepoint 0.5 

pos4h=find(qualityMat(:,2));            %find indices of data present at timepoint 4 

 

pos05or4=union(pos4h,pos05h);           %find the indices of data present at either 0.5 or 4 timepoint 

 

pos27h=find(qualityMat(:,5));           %find indices of data present at timepoint 27 

pos48h=find(qualityMat(:,6));           %find indices of data present at timepoint 48 
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pos27and48=intersect(pos27h,pos48h);    %find the indices of data present at both 27 and 48 

timepoint 

%pos27or48=union(pos27h,pos48h);      %v2: find the indices of data present at either 27 or 48 

timepoint  

 

posCor=intersect(pos05or4,pos27and48);%find the indices of data present at either 0.5 or 4 & 27 

and 48 timepoint 

 

%now use poCor to filter out the proteins having the correct combination of 

%datapoints and save to uniqProteinsCor 

 

%uniqProteinsCor has the best 3 combinations of timepoints 

uniqProteinsCor=uniqProteins(posCor); 

 

%these are the corresponding peptide numbers 

peptideNum3=peptideNum(posCor); 

 

%here are peptide numbers for best 3 timepoints data 

peptideNumCor=peptideNum(posCor); 

%check the minimum and maximum number of peptides 

%min(peptideNumCor) 

 

 

%% remove contaminants and reverse sequences from uniqProteinsCor 

posCon=[]; 

for i=1:numel(uniqProteinsCor) 

    excluCon=regexp(uniqProteinsCor{i},'CON_'); 

    if ~isempty(excluCon) 

      posCon=[posCon,i]; 

    end 

    excluCon=regexp(uniqProteinsCor{i},'REV_'); 

    if ~isempty(excluCon) 

      posCon=[posCon,i]; 

    end 
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end 

uniqProteinsCor(posCon)=[];    

 

%% remove contaminants and reverse sequences from uniqProteins3 

posCon=[]; 

for i=1:numel(uniqProteins3) 

    excluCon=regexp(uniqProteins3{i},'CON_'); 

    if ~isempty(excluCon) 

      posCon=[posCon,i]; 

    end 

    excluCon=regexp(uniqProteins3{i},'REV_'); 

    if ~isempty(excluCon) 

      posCon=[posCon,i]; 

    end 

     

end 

uniqProteins3(posCon)=[];    

__________________________________________________________________________________ 

%% This script will be used for fitting the proteins to LM algorithm 

%1. First define the matrices for storing the parameters of LM algorithm 

%2. Choose the curProteinLists, the proteins with defined thresholds  

%in script 2 

%3. Loop over the list of curated datapoints, remove Nan values 

%4. Call the curve-fitting function from fitCurve.m script (has to be in 

%the same folder!) 

%5. Store the parameters found from the LM algorithm in the arrays 

%separately, then concatenate everything together 

%6. Concatenate the fits together wtih curProteinList names 

%7. Export the dataset as table (then open as xlsx file)? 

 

%% loop over all proteins to find exponential fit and extract values 

tic 

%first let's define empty matrices for storing diag and success 
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%diagArr=zeros(size(curProteinList,1),5); 

 

%choose which proteins used for fitting: curProteinListCor(3 specific 

%timepoints), curProteinList(min 3 timepoints) or just curProteinList(3 

%peptides) 

 

successArr=zeros(size(curProteinList,1),1); 

resArr=zeros(size(curProteinList,1),1); 

flagArr=zeros(size(curProteinList,1),1); 

alphArr=zeros(size(curProteinList,1),3); 

iternumArr=zeros(size(curProteinList,1),1); 

 

for j=1:numel(curProteinList); %for all records 

    nameP=curProteinList{j};   %extract the protein name 

    pos=find(strcmp(proteins(:,1),nameP)==1); %find the indices to extract timepoints and ratios 

    t=timeArr(pos); %find the position of timepoints 

    y=normML(pos);  %find the position of ratios 

    posNan=find(isnan(y)==1); %find indices of NaN values 

    if ~isempty(posNan) %if posNan is not empty 

        %exclude nan values 

        t(posNan)=[]; %remove any Nan from timepoints 

        y(posNan)=[]; %remove any Nan from ratios 

    end 

    %now call curve-fitting function (from function fitCurve) 

    %choose a version here: v0, v1, v3 and v3 - use replace function 

    %or chose fixedAB function  - v1, v2, v3 

   [alpha,resNorm,diagn,success, iternum] = fitCurvefixedAB(t,y); 

    %[alphav1,resNormv1,diagv1,successv1, iternumv1] = fitCurvefixedABnew(t,y); 

    %[alphav3,resNormv3,diagv3,successv3, iternumv3] = fitCurvefixedABv3(t,y); 

    %store the diagonal (5 columns) and success (1 column) for each fitted 

    %protein 

    %diagArr(j,:)=diag(1,:); %store resNorm, A,B,tau_dash and exitflag 

    %choose a version here: v0, v1, v2 and v3 

    successArr(j)=success;  %store success rate 
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    resArr(j)=resNorm;      %store residual Norm 

    %flagArr(j)=diag(1,5);   %store exitflag 

    flagArr(j)=diagn(1,3);      

    %alphArr(j,:)=alpha;     %store alpha (A,B and tau_dash) 

    alphArr(j,3)=alpha;     %store alpha (A,B and tau_dash) 

    iternumArr(j)=iternum; 

        

end 

toc 

%% concatenate all together 

 

%set your A and B here 

 

%opt1 

%A=1; 

%B=0; 

 

%opt2 

%A=0.9; 

%B=0.1; 

 

%opt3 

A=0.8; 

B=0.2; 

 

%% add A and B values to alphArr; concatenate all together 

alphArr(:,1)=A*ones(size(curProteinList,1),1); 

alphArr(:,2)=B*ones(size(curProteinList,1),1); 

parameterArr=[resArr,alphArr,flagArr,successArr,iternumArr]; 

 

__________________________________________________________________________________ 

%% This script will be used for the quality check of the LM fitted proteins 

%all proteins have converged to the minimum, however we are looking at the 

%proteins that have met the following criteria: 
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%0<tau_dash<70 

%0<A<2 

%0<B<1 

 

%1. Import the LM fitted parameters  

%2. Using the following criteria, exclude the rows with unsuitable values 

 

%% use parameterArr data to filter out suitable parameters 

% let's extract the positions of all entries (posAll here) 

posAll=find(parameterArr(:,1) > 0); %resNorm always positive! 

 

%% set the criteria here for extracting only suitable set of values 

%for the fixed AB, we only need to filter tau_dash 

 

%find all tau_dash 

tau_dash=alphArr(:,3);            % extract tau_dash values    

postau_dash=find(tau_dash < 70);  % find the position of tau_dash below 70 

postau_dash0=find( tau_dash > 0); % find the position of tau_dash above 0 

postau_dashGood = intersect(postau_dash,postau_dash0); % find the position of 0 < tau_dash < 70 

 

%% to test: can I just use posGoodABtau_dash on parameterArr?  

parameterArrGood=parameterArr(postau_dashGood,:); 

 

%% let's find all the rejected proteins now... 

posBad=setdiff(posAll,postau_dashGood); 

parameterArrBad=parameterArr(posBad,:); 

 

%% now filter out the corresponding protein names  

uniqProteinsCorGood=uniqProteinsCor(postau_dashGood); 

uniqProteinsCorBad=uniqProteinsCor(posBad); 

%% concatenate with uniqProteinsn 

curDataGood=[uniqProteinsCorGood,num2cell(parameterArrGood)]; 

curDataBad=[uniqProteinsCorBad,num2cell(parameterArrBad)]; 
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%% write curDataGood and curDataBad to a separate excel file for futher analysis 

 

%set up your header 

header={'UniprotID','resNorm','A','B','tau_dash',... 

    'exitflag', 'success','iternum'}; 

 

%set up filename 

filename='curDataGoodbest3timepointsABopt3.xlsx'; 

%write to Excel spreadsheet 

xlswrite(filename,[header;curDataGood]); 

 

%%  

filename='curDataBadbest3timepointsABopt3.xlsx'; 

%write to Excel spreadsheet 

xlswrite(filename,[header;curDataBad]); 

__________________________________________________________________________________ 

%% This script will be used for the calculation of half-lives and turnovers 

%1. Import the dataset with coefficients - from script 3 

%2. Extract alphaGood containing A, B and tau_dash 

%3. Enter tcc, the experimental time of the cell cycle 

%4. Define empty matrices for storing thalf and turnovers 

%5. Calculate tau and store it in the array  

%6. Concatenate the values of tau, thalf and turnover  

%7. Write the data to the table, export 

%8. Concatenate with the fulldata to get a complete dataset for all 

%downstream analysis 

 

%% calculate half-life and turnover the coefficients A, B, tau_dash  

%LM algorithm fitting script 

 

%alpha has 3 columns: 

%we will need the value of tau_dash (3rd value), 

%A(1st value) and B(2nd value) 

alphaGood=parameterArrGood(:,[2:4]); 
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%alphaBad=parameterArrBad(:,[2:4]); 

 

%assign zero matrices to store the values  

thalfArr=zeros(size(alphaGood(:,1)));    %calculate half-lives from tau_dash 

thalfTauArr=zeros(size(alphaGood(:,1))); %calculate half-lives from tau (like in the paper) 

turnoverArr=zeros(size(alphaGood(:,1))); 

tauArr=zeros(size(alphaGood(:,1))); 

for k=1:numel(alphaGood(:,1)); 

    tau_dash=alphaGood(k,3); %extract tau_dash first 

     

    %check if tau_dash is not larger than tcc/log2 - refer to the paper 

    if tau_dash<tcc/log(2) 

        tau=1/(1/tau_dash-log(2)/tcc); 

    else 

        tau=Inf;           % tau is intrinsic e-folding (decay) factor 

    end 

    % (A - B)/2*A > 0 

    if (alphaGood(k,1)-alphaGood(k,2))/(2*alphaGood(k,1)) > 0 

        % 

         

         thalf=-tau_dash*log((alphaGood(k,1) - alphaGood(k,2))/(2*alphaGood(k,1))); 

      thalfTau=-tau     *log((alphaGood(k,1) - alphaGood(k,2))/(2*alphaGood(k,1))); 

    else 

         thalf=NaN; 

         thalfTau=NaN; 

    end 

     

    if (0.5-alphaGood(k,2))/alphaGood(k,1) > 0  

        turnover=-tau_dash*log((0.5-alphaGood(k,2))/alphaGood(k,1)); 

        turnover=turnover; 

    else 

        turnover=NaN; 

    end 
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    % store estimated values in array 

     %thalfArr(k)=real(thalf); %extract real part of the complex number  

     thalfArr(k)=thalf; 

     thalfTauArr(k)=thalfTau; 

     turnoverArr(k)=turnover; 

     tauArr(k)=tau; 

      

end 

  

%% concatenate the data together 

tauThalfTurnover=[tauArr,thalfTauArr,thalfArr,turnoverArr]; 

turnoverproteins=[uniqProteinsGood,num2cell(tauThalfTurnover)]; 

 

%% concatenate the data together with fulldata (from LM algorithm script) 

 

completeDataGood=[uniqProteinsGood,num2cell(parameterArrGood),num2cell(tauThalfTurnover)]; 

%completeDataBad=[uniqProteins3Bad,num2cell(parameterArrBad),num2cell(tauThalfTurnover)] 

%% export the data for further analysis 

%set up your header 

header={'UniprotID','resNorm','A','B','tau_dash',... 

    'exitflag', 'success','iternum', 'tau','thalfTau','thalf','turnover'}; 

 

%set up the filename 

filename='thlaf and turnover Good v1 rep1.xlsx';  

%write to Excel spreadsheet 

xlswrite(filename,[header;completeDataGood]); 

function [alpha,resNorm,diag,success, iternum] = fitCurvefixedBonly(t,y) 

%fitCurve will fit curve f(t)=A exp(-t/tau_dash)+B to M/L ratio versus time data 

%    

%  parameters which we are seaching for is defined as alpha=[A, B, tau_dash] 

 

% INPUT: t - experimental timepoints (vector) 

%        y  - expermental values of normalised M/L ratios (vector) 

% OUTPUT: alpha - fitted parameters (row-vector), alpha=[A, B, tau_dash] 
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%         resNorm - resulting residual norm 

%         diag - array containing residual norms, parameters found and exitflags 

%                (5 columns) for all good outcomes (converged) or for all if convergence 

%                did not happen. 

%         success - = 2 if converged, =1 if found something but did not 

%                   converge well, 0 - no minimum was found, not 

%                   convergence at all 

 

%% define function for curve, which we are trying to fit 

%funH=@(alpha,t) alpha(1)*exp(-t/alpha(3))+alpha(2);    

B=0; 

funH=@(alpha,t) alpha(1)*exp(-t/alpha(3))+B;  

 

%% set up intial conditions 

%test conditions (after Boisvert et al. 2012) v0 - blue 

%fixed B here to 0.2 

lb=[0.05,B,0.05];    % lower bound 

ub=[20,B,50];        % upper bound 

 

%% generate random initial conditions  

 

rng(1,'twister');% fix the seed to get repeatability if required 

%rng('shuffle','twister'); %do not fix the seed 

Nsamp=100;           % number of initial conditions 

parRand=zeros(Nsamp,3); 

% using random numbers from Uniform continuous distribution with boundaries 

parRand(:,1)=random('Uniform',lb(1),ub(1),Nsamp,1);  

parRand(:,2)=random('Uniform',lb(2),ub(2),Nsamp,1); 

parRand(:,3)=random('Uniform',lb(3),ub(3),Nsamp,1); 

 

%% set parameters for curve fitting algorithms 

% NOTE: levenberg-marquardt method does not allow boundary conditions 

%       trust-region-reflective method is OK for boundary conditions, but 

%       does not work with underdetermined problems, that is fewer 
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%       equations than parameters we are trying to determine (the case 

%       here) 

 

options = optimoptions('lsqcurvefit','Display','off','Algorithm','levenberg-marquardt'); 

          %  this is for levenberg-marquardt method 

options1 = optimoptions('lsqcurvefit','Display','off',... 

    'Algorithm','trust-region-reflective'); 

          %  this is for trust-region-reflective method 

 

%% call the curve fitting algorithm many times with different starting points 

% algorithm is called Nsamp times 

% record the outputs 

 

alphaArray=zeros(Nsamp,3); 

resnormArr=zeros(Nsamp,1); 

flagArr=zeros(Nsamp,1); 

for j=1:Nsamp 

    alpha0 = parRand(j,:);   % initial value to start optimisation 

  

 % select below which method to use and perform curve fit  

 %   [alpha,resnorm,~,exitflag,output]= lsqcurvefit(funH,alpha0,t,y,lb,ub,options1); 

                    % this is trust-region-reflective 

   [alpha,resnorm,residual,exitflag,output]= lsqcurvefit(funH,alpha0,t,y,[],[],options);  

                    % this is levenberg-marquardt                     

                  

     

    %store found parameters 

    alphaArray(j,:)=alpha;    % record found parameters  

    resnormArr(j)=resnorm;    % record residual norm - shows how good is the fit  

    flagArr(j)=exitflag;      % exit flag, the best is 1; 2,3,4 are acceptable; <=0 not good 

     

end 

 

%% analyse results and extract the best values  
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posGood=find(flagArr==1);    % this is the best result, when the congergence to minimum was 

achieved 

success=2; 

if isempty(posGood)          % if there is not good result, take second best, exitflag>0 

   posGood=find(flagArr>0); 

   success=1; 

end 

 

if isempty(posGood)          % if there is no good results at all 

   alpha=alphaArray(1,:);    % take the first found parameter values 

   resNorm=resnormArr(1);    % and corresponding norm 

   diag=[resnormArr,alphaArray,flagArr];  % store all values of norm and parameters and flag 

   %calculate the iteration number 

   iter=numel(diag(:,1)); 

   iternum=iter; 

   success=0; 

else 

   [resNorm,nn]=min(resnormArr(posGood));   % find there the minimum of residual norm is 

   alpha=alphaArray(posGood(nn),:);    % take corresponding parameter to that minimum value 

   diag=[resnormArr(posGood),alphaArray(posGood,:),flagArr(posGood)];   

                    % store values of norm and parameters and flag for good outcomes 

   %calculate the iteration number 

   iter=numel(diag(:,1)); 

   iternum=iter;                       

end 

end 

__________________________________________________________________________________ 

%% this script will be used to plot the data  

%1. Read data from csv or Excel file 

%2. Read timepoints from timepoints file 

%3. Find the corresponding times, t and ratios, y 

%4. Call the funH function (which is a part of fitCurve.m function) 

%5. Draw figure(1) M/L ratios over time before normalization 
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%6. Draw figure(2) M/L ratios normalised 

%6. Draw figure(3) with normalized M/L ratios and fitted curve 

%7. Draw figure(4) with both M/L and H/L fitted curves 

 

%% now write a loop that will produce several consecutive figures... 

 

for n=1 

    nameP=uniqProteinsGood(n); 

    pos=find(strcmp(proteins(:,1),nameP)==1); 

    t=timeArr(pos); 

    y=normML(pos); 

    posNan=find(isnan(y)==1); 

    if ~isempty(posNan) 

     % exclude nan values 

      t(posNan)=[]; 

      y(posNan)=[]; 

    end 

     

    % now find corresponsing alpha values from alphArr 

    alpha1=alphaGood (n,:);  %control 

    

      % now name the funH function 

       funH=@(alpha,t) alpha(1)*exp(-t/alpha(3))+alpha(2); 

     % draw the values and the fit 

     figure(n) 

     times = linspace(0,50); 

     plot(t,y,'go',times,funH(alpha1,times),'b') % blue line 

     legend('Data','Fitted exponential') 

     title(nameP) 

     xlabel('Time (h)'); 

     ylabel('Ratio'); 

     axis([0 50 0 1]); 

     legend('Data','Fitted line') 

     hold off 
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end  

 

%%  write the loop to draw fitted M/L and H/L ratios 

 

%plot the fitted and H/L, get turnover 

for n=1:10 

    nameP=uniqProteins3(n); 

    pos=find(strcmp(proteins(:,1),nameP)==1); 

    t=timeArr(pos); 

    y=normML(pos); 

    alphav1=alphArrv1(n,:); 

    alphav2=alphArrv2(n,:); 

    % now name the funH function 

       funH=@(alpha,t) alpha(1)*exp(-t/alpha(3))+alpha(2); 

    % draw the values and the fit 

     figure(n) 

     times = linspace(0,50); 

     plot(times,funH(alphav1,times),'b', times,1-funH(alphav1,times),'r') 

     legend('M/L ratio', 'H/L ratio') 

     title(nameP) 

     xlabel('Time (h)'); 

     ylabel('M/L and H/L ratios normalised'); 

     axis([ 0 50 0 1]) 

     hold off 

end  
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Appendix E: Matlab scripts for calculating amino acid and 

codon usage 

__________________________________________________________________________________ 

%% This script will be used to calculate amino acid frequency for a given set of  

%proteins 

 

%The inputs here will be:  

%fasta file containing the sequences of proteins 

%protein list to scan which protein sequences to extract 

%header containing amino acid list 

 

%the output will be a list of proteins with amino acid frequencies 

 

%% import the fasta file here: 

% this is simplified fasta (header = Uniprot ID); regex 

[UniprotID, ProtSequence] = fastaread('CHOuniprot10029_pRY54 processed.fasta'); 

S=fastaread('CHOuniprot10029_pRY54 processed.fasta'); 

%transpose the sequences so they are in cell format (rows, not columns) 

ProtSequence=transpose(ProtSequence); 

UniprotID=transpose(UniprotID); 

S=transpose(struct2cell(S)); 

 

%% extract data  

header=raw(1,:); 

raw(1,:)=[]; 

headerdata=header(3:14); 

%%  

proteinlist=raw(:,1); 

turnover=data(:,5); 

copynum=data(:,7); 

seqlen=data(:,1); 

molweight=data(:,2); 
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biomass=data(:,12); 

rate=data(:,11); 

 

clear data raw 

 

% import the header with amino acids 

[data,~,raw]=xlsread('aminoacids.xlsx'); 

aminoacids=raw(1,:); %extract amino acids - these will be used as a header 

clear data raw 

 

%% now call AminoAcidCount function 

%[proteinlistFasta,AminoAcidArr,AminoAcidSum,AminoAcidTotal, TotalNumberAA] = 

AminoAcidCount(aminoacids, proteinlist,ProtSequence,UniprotID); 

[AminoAcidArr,AminoAcidSum,AminoAcidTotal, TotalNumberAA] = AminoAcidCount(aminoacids, 

proteinlist,ProtSequence,UniprotID); 

%% calculate the rate of amino acid usage 

%our aminoacidArr needs to be multiplied by the protein turnover column 

RateaaArr=zeros(size(AminoAcidArr)); 

for i=1:size(AminoAcidArr,1) 

rateaa=AminoAcidArr(i,:)*rate(i); 

RateaaArr(i,:)=rateaa; 

end 

 

%% calculate the sum of each column 

aaRateTotal=zeros(size(aminoacids,2),1); 

%from aminoacidArr, now we need to get the sum for each column 

%let's do it for A first 

%Asum=sum(aminoacidArr(:,1)); 

 

%%  

for i=1:20 %because it is 20 aminoacids..... 

    aaRateSum=sum(RateaaArr(:,i)); 

    aaRateTotal(i)=aaRateSum; 

end  
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%let's just sum up the whole thing now... 

TotalRateaa=sum(aaRateTotal); %  3.1010e+10 close to the expected 

__________________________________________________________________________________ 

function [AminoAcidArr,AminoAcidSum,AminoAcidTotal, TotalNumberAA] = 

AminoAcidCount(aminoacids, proteinlist,ProtSequence,UniprotID); 

%% amimoAcidCount will count the number of individual amino acids for a given list 

% and derives the ProtSequence from the fasta file 

 

%INPUT:  

%aminoacids - the list of 20 amino acids in this order 

%A,    R,    N,    D,    C,    Q,    E,    G,    H,    I,    L,    K,    M,    F,    P,    S,    T,    W,    Y,    V} 

 

%proteinlist - the list of proteins we want to get the ProtSequence for 

 

%ProtSequence - the protein ProtSequence as loaded from fasta file using fastaread 

%function 

 

%OUTPUT:  

%AminoAcidArr - this array contains the number of individual amino acids 

%calculated for the proteinlist 

 

%AminoAcidSum - contains the sum of amino acids for this ProtSequence = 

%ProtSequence length(quality control) 

 

%AminoAcidTotal - total sum of the amino acids for this proteinlist 

 

 

 

%% first calculate the number of individual amino acids for given ProtSequences 

%% let's find now the way to match the proteinlist with UniprotID; 

%  we need to find the indices in the UniprotID so we can extract the ProtSequences 

%  for the calculation of amino acids 

 



272 

 

% let's set up an empty array for collecting the indices 

posProt=zeros(size(proteinlist,1),1); 

 

for i = 1:numel(proteinlist) 

    pos=find(strcmp(UniprotID,proteinlist(i))==1); 

    posProt(i)=pos; 

end 

     

% now use posProt to extract the ProtSequences for our list of proteins: 

seqArr=ProtSequence(posProt); 

 

%write to the fasta file for downstream processing with Blast2GO 

%proteinlistFasta=fastawrite('proteinlistGSko.fasta', proteinlist,seqArr); 

 

%% first set up an empty array to collect the values 

%row number: lenght of the proteinlist; the columns=aminoacids (always 20) 

AminoAcidArr=zeros(size(proteinlist,1),size(aminoacids,2));  

 

for j=1:numel(seqArr); 

    seq=seqArr{j}; 

    AA=aacount(seq); 

    testAA=struct2cell(AA);        % turn into the cell 

    transposeAA=transpose(testAA); % transpose data from column formato into rows 

    matAA=cell2mat(transposeAA);   % data is now in numeric format 

    AminoAcidArr(j,:)=matAA; 

      

end 

%it's working!!!!!!!!! 

%% let's calulate how many amino acids in a protein = ProtSequence length!!! 

AminoAcidSum=zeros(size(AminoAcidArr,1),1); 

for i=1:size(AminoAcidArr,1); 

    aasum=sum(AminoAcidArr(i,:)); 

    AminoAcidSum(i)=aasum;     

end 
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%% calculate the total number of individual amino acids for a proteinlist 

AminoAcidTotal=zeros(size(aminoacids,2),1); 

for i=1:20 %because it is 20 aminoacids..... 

    aasum=sum(AminoAcidArr(:,i)); 

    AminoAcidTotal(i)=aasum; 

    %AminoAcidTotal=AminoAcidTotal'; 

end  

 

%let's just sum up the whole thing now... 

TotalNumberAA=sum(AminoAcidTotal); 

 

end 

__________________________________________________________________________________ 

%% This script will be used to calculate codon bias from a given protein/transcript list 

 

%The inputs here will be:  

%fasta file containing the nucleotide sequence from RNA seq data 

%protein list to scan which mRNA sequences to extract 

%header containing codon list 

 

%the output will be a list of proteins with codon frequencies  

%% import the fasta file here: 

% this is simplified fasta (header = Uniprot ID); regex 

[emblID, CodonSequence] = fastaread('CHO_EMBL_custom + Mab.fasta'); 

%transpose the sequences so they are in row format 

S=fastaread('CHO_EMBL_custom + Mab.fasta'); 

CodonSequence=transpose(CodonSequence); 

emblID=transpose(emblID); 

S=transpose(struct2cell(S)); 

 

%%  import the protein list 

[data,~,raw]=xlsread('E22 gene names rates of turnover & biomass correction 4001 complete 

records.xlsx'); 
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%%  

header=raw(1,:); 

raw(1,:)=[]; 

data=data(:,[2:13]); 

headerdata=header(5:14); 

 

%%  

proteinlist=raw(:,1); 

accessionlist=raw(:,3); 

%%  

turnover=data(:,5); 

copynum=data(:,7); 

seqlen=data(:,1); 

molweight=data(:,2); 

biomass=data(:,12); 

rate=data(:,11); 

 

clear data raw 

%%  

% import the header with codons 

[data,~,raw]=xlsread('codonlist.xlsx'); 

codons=raw(1,:)'; %extract codons - these will be used as a header 

clear data raw 

 

% import the header with anticodons 

[data,~,raw]=xlsread('anticodonlist.xlsx'); 

anticodons=raw(1,:)'; %extract anticodons - these will be used as a header 

clear data raw 

 

%% %% now call CodonCount function 

[CodonArr,CodonSum,CodonTotal, TotalCodonSum, TotalSenseCodon] = CodonCount(codons, 

accessionlist,proteinlist,CodonSequence,emblID); 

%% quality check: is the number of sense codons matching to the number of amino acids? 



275 

 

CodonSum1=CodonSum - 1; % subtract the stop codon from each codon sum - only sense codons 

left 

mismatchArr=zeros(size(AminoAcidArr,1),1); 

for i=1:size(AminoAcidSum,1); 

    isq=isequal(AminoAcidSum(i), CodonSum1(i)); 

    mismatchArr(i)=isq; 

    end 

 

mis=find(mismatchArr == 0); 

 

misp=proteinlist(mis); 

misc=CodonSum1(mis); 

misa=AminoAcidSum(mis); 

 

%% calculate the rate of codon usage usage 

%our aminoacidArr needs to be multiplied by the protein turnover column 

RateCodonArr=zeros(size(CodonArr)); 

for i=1:size(CodonArr,1) 

ratecodon=CodonArr(i,:)*rate(i); 

RateCodonArr(i,:)=ratecodon; 

end 

 

%% calculate the sum of each column 

CodonRateTotal=zeros(size(codons,1),1); 

%from aminoacidArr, now we need to get the sum for each column 

%let's do it for A first 

%Asum=sum(aminoacidArr(:,1)); 

 

%  

for i=1:64 %because it is 64 codons..... 

    CodonRateSum=sum(RateCodonArr(:,i)); 

    CodonRateTotal(i)=CodonRateSum; 

end  
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%let's just sum up the whole thing now... 

TotalRateCodon=sum(CodonRateTotal);  

__________________________________________________________________________________ 

function [CodonArr,CodonSum,CodonTotal, TotalCodonSum, TotalSenseCodon] = 

CodonCount(codons, accessionlist,proteinlist,CodonSequence,emblID); 

%% CodonCount will count the number of individual codons for a given list 

% and derives the CodonSequence from the fasta file 

 

%INPUT:  

%codons- the list of 64 codons in this order 

%{'TTT','TGT','TCT','TAT','GTT','GGT','GCT','GAT','CTT','CGT','CCT','CAT','ATT','AGT','ACT','AAT', 

%'TTG','TGG','TCG','TAG','GTG','GGG','GCG','GAG','CTG','CGG','CCG','CAG','ATG','AGG','ACG','AAG', 

%'TTC','TGC','TCC','TAC','GTC','GGC','GCC','GAC','CTC','CGC','CCC','CAC','ATC','AGC','ACC','AAC', 

%'TTA','TGA','TCA','TAA','GTA','GGA','GCA','GAA','CTA','CGA','CCA','CAA','ATA','AGA','ACA','AAA'} 

 

%codonlist - the list of proteins/mRNA we want to get the CodonSequence for 

 

%CodonSequence - the protein CodonSequence as loaded from fasta file using fastaread 

%function 

%emblID - the accession name from fasta 

 

%OUTPUT:  

%CodonArr - this array contains the number of individual codons 

%calculated for the accessionlist 

 

%CodonSum - contains the sum of amino acids for this CodonSequence = 

%CodonSequence length(quality control) 

 

%AminoAcidTotal - total sum of the amino acids for this proteinlist 

 

%TotalCodon - total sum of all codons for all CodonSequences 

 

%disclaimer: the script does not count properly the cases when the exact 

%nucleotide is unknown (just states 'n') - the number is 1 off for those 
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%cases (below 1% anyway)- for the last codon before the series of 'n's 

%there are only two nucleotides - due to wobbling, you can still tell what 

%it is 

 

%% find indices of the accessionlist to CodonSequence 

posAcc=zeros(size(accessionlist,1),1); %length of the accession list 

 

for i = 1:numel(accessionlist) 

    pos=find(strcmp(emblID,accessionlist(i))==1); 

    if isempty(pos) ==1 %if missing in fasta file, then index is 0 

     pos=0; 

    end 

   if numel(pos) >= 2 % is more than 2 records, take the first value 

        posAcc(i)=pos(1); 

   else 

       posAcc(i)=pos; 

   end 

     

end 

 

% now use posacc to extract the CodonSequences for our list of proteins: 

seqArr=CodonSequence(posAcc); 

 

 

%%  

accesslist=seqArr; %accessionlist 

 

%set up an empty array first 

CodonArr=zeros(size(accesslist,1),size(codons,1)); 

%aminoacidArr=zeros(size(proteinlist,1),size(aminoacids,2)); 

 

for j=1:numel(accesslist); 

    seq=accesslist{j}; 

    cds=codoncount(seq); 
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    testcds=struct2cell(cds);        % turn into the cell 

    transcds=transpose(testcds); % transpose data from column formato into rows 

    matcds=cell2mat(transcds);   % data is now in numeric format 

    CodonArr(j,:)=matcds; 

      

end 

 

%% let's calulate how many codons in a protein = CodonSequence length!!! 

CodonSum=zeros(size(CodonArr,1),1); 

for i=1:size(CodonArr,1); 

    cdsum=sum(CodonArr(i,:)); 

    CodonSum(i)=cdsum;     

end 

 

%% total number of individual codons for a given list 

CodonTotal=zeros(size(codons,2),1); 

for i=1:64 %because it is 64 aminoacids..... 

    codonsum=sum(CodonArr(:,i)); 

    CodonTotal(i)=codonsum; 

end  

 

%let's just sum up the whole thing now... 

TotalCodonSum=sum(CodonTotal); 

 

%% exclude stop codons 

%assumption: each sequence has 1 stop codon 

% so we can just deduct the number of proteins from the total codon sum 

TotalSenseCodon = TotalCodonSum - size(proteinlist,1); 

%TGA = CodonTotal(50); 

%TAA = CodonTotal(52); 

%TAG = CodonTotal(20); 

 

%TotalStopCodon = TGA + TAA + TAG; % high number - suggests a high number 

%of stop codons within sequences 
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%possible explanation: TGA (stop codon) codes for tryptophan in the 

%mitochondria 

 

%TotalSenseCodon= TotalCodonSum - TotalStopCodon; 

 

end 
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Appendix F: attached CD with presented proteomic data 

Appendix G: Amino acid analysis of CD-CHO media  

Amino acid Concentration (mg/ml)* 

Aspartic acid 

Hydroxyproline 

Threonine 

Serine 

Glutamic acid 

Asparagine 

Proline 

Glycine 

Alanine 

Valine 

Cystine 

Methionine 

Isoleucine 

Leucine 

Tyrosine 

Phenylalanine 

Tryptophan 

Lysine 

Histidine 

Arginine 

0.347±0.056 

0.321±0.058 

0.690±0.117 

0.984±0.162 

0.531±0.092 

1.382±0.190 

1.004±0.163 

0.010±0.002 

0.018±0.003 

0.677±0.113 

0.093±0.015 

0.210±0.037 

0.660±0.116 

1.005±0.173 

0.259±0.025 

0.404±0.067 

0.403±0.072 

0.804±0.137 

0.326±0.055 

0.665±0.112 
*The analysis of CD-CHO media (Life Technologies, Paisley, UK) was performed by Abingdon Health 

(https://www.abingdonhealth.com/). The data was done in triplicates and presented as mean±SEM. 
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