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Abstract

The human brain hosts a colossal number of water molecules which are con-
stantly moving due to Brownian motion. Their movement, random by nature,
is restricted by the brain tissue walls. Magnetic Resonance Imaging (MRI)
provides macroscopic measurements of the diffusion process in a non-invasive
manner, i.e. diffusion MRI. Hidden in these measurements lies information
about the underlying architecture. The ability to unravel tissue microstruc-
ture from the coarse-grained diffusion measurements is extremely valuable since
this information is 2-3 orders of magnitude below typical MRI resolution. This
makes diffusion MRI sensitive to pathological and developmental processes oc-
curring at the mesoscopic scale, in the order of microns. Accessing this level
of detail can lead to clinical biomarkers specific to early stages of neurodegen-
erative diseases or brain development.

Computational models of biophysical tissue properties have been widely
used in diffusion MRI research to elucidate the link between microstructural
properties and MR signal formation. The potential increase in sensitivity and
specificity in detecting brain microstructural changes is their major driving
force. However, these models establish complex relationships between biophys-
ical properties and the MR signal, making the inverse problem of recovering
model parameters from noisy measurements ill-conditioned with conventional
diffusion MRI acquisitions.

This thesis explores ways to make diffusion MRI biophysical modelling
more robust while maintaining time and hardware requirements that are feas-
ible in clinical conditions. Firstly, we explore theoretically the benefits of
incorporating functionally independent measurements, such as double diffu-
sion encoding. Secondly, we propose an optimal experiment design framework
that gives us, after exploring the whole multidimensional diffusion MRI meas-
urement space, the acquisition that maximises accuracy and precision in the
parameter estimation. Finally, we extract relevant information from histology
images that can be used to feed or benchmark diffusion MRI models.
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Chapter 1

Introduction

1.1 Motivation

Neurons are the units through which the nervous system is built. About 100 billion of them
conform the human brain [1]. Normally neurons do not reproduce or replace themselves,
making difficult to undo the damage that our nervous system has suffered. Neurode-
generative diseases (e.g. amyotrophic lateral sclerosis, Parkinson’s disease, Alzheimer’s
disease) affect neurons, thus, the life quality of millions of people [2]. These conditions
produce progressive degeneration or death of nerve cells, leading to alterations in the brain
microstructure. Moreover, when they evolve, the fidelity of the information transfer un-
derlying normal and cognitive brain function is affected [3]. Although many treatments
have been and are currently being developed to counter these effects at different stages,
early diagnose has shown to be a key factor to pursue in everyday clinic [2]. To achieve it,
we must develop devices that enable early detection of structural tissue changes. Recent
years have seen a shift in the MRI research community towards developing tools aimed
at quantifying tissue microstructure. An MRI modality dubbed diffusion MRI has gained
attention due to its high sensitivity to microstructural changes. A promising approach to
analyse these images involves modelling the biophysics relating the main tissue compon-
ents and the diffusion signal formation. However, these models are complex, hindering the
inverse problem of recovering model parameters from the images. This thesis focuses on
advancing biophysical models of diffusion MRI proposing new ways to acquire.
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1. INTRODUCTION

1.1.1 Why diffusion MRI?

Since its invention in the 1970s [4, 5], Magnetic Resonance Imaging (MRI) has been estab-
lished as an invaluable tool for diagnosing brain diseases in vivo and non-invasively. This
technique produces images by measuring a signal that arises from the water molecules
inside the tissue. This signal, related to the evolution of the magnetisation density of the
hydrogen nucleus spins, generates the contrast between tissues with different characterist-
ics in an MR image. For example, it allows us to discriminate different regions of the brain
like white and grey matter (WM, GM), and to detect abnormal areas such as tumours
or lesions. There is a general interest in the MRI community in increasing the level of
detail accessible by an MRI scan, since detecting small tissue structural changes is linked
to early diagnosis. This can be seen in the number of papers mentioning both ‘MRI’ and
‘microstructure’ which has doubled almost every three years in the last 25 years [6].

Current clinical scanners can generate images with voxel sizes in the order of the milli-
metre. Thus, any qualitative diagnosis is practically not sensitive to alterations below this
scale. Increasing the resolution, i.e. reducing the voxel size, in an MRI scanner has some
inherent hardware limitations due to the high magnetic field needed to achieve sufficient
signal-to-noise ratio (SNR) in a reduced volume. This, together with the confirmation
that the diffusion of water molecules in brain WM is anisotropic [7], encouraged the devel-
opment of a modality within MRI termed ‘Diffusion MRI’ (dMRI). The peculiarity of this
technique is that it sensitises the signal measured from a voxel to the random displace-
ment of water molecules within it. These displacements are in the order of the tens of µm
for clinical experimental settings. Hence, these signals hold encoded information about
the tissue architecture restricting the diffusion of water molecules at the mesoscopic scale
where many disease processes occur. Thus, dMRI is able to probe tissue on a scale that
is much smaller than the image resolution. Moreover, it has the potential to extract more
specific information than other MRI modalities. In the brain, the main clinical applications
that current dMRI methods have encountered are acute ischemic stroke, characterised by
a decrease in the Apparent Diffusion Coefficient (ADC) [8] values [9], something poorly
assessed with structural MRI. Another technique with significant clinical translation is
tractography [10], which has been shown valuable for pre-surgical planning [11].

1.1.2 Future clinical applications for diffusion MRI

The diffusion times that we can probe with MRI range from a few to tens of ms. This,
added to the diffusivity of free water (3µm2/ms at body temperature), make experimental
diffusion lengths lie between 1 − 50µm [6], i.e. at the mesoscopic scale. It is at this

2



1.1 Motivation

particular scale, orders of magnitude above molecular level and orders of magnitude below
MR resolution, not only where cells arrange themselves forming different tissues but also
where pathology produces structural alterations. This makes dMRI sensitive to tissue
changes at scales that are undetectable by other in vivo imaging modalities.

These factors are the main reason behind the intense growth of this research area.
Although signal representations, e.g. Diffusion Tensor Imaging, have proven to be sensitive
to micro-anatomical changes in tissue, they lack specificity [12]. In the quest for specificity
to developmental and pathological changes, many biophysical models have been proposed,
with the Standard Model (SM) being the most prominent for brain white matter [13, 14].
This model captures the most relevant microstructural tissue properties present in the
dMRI signal, to develop disease-specific biomarkers. Some disease processes that may be
accessible with biophysical modelling are demyelination [15], beading [16], and oedema
[17]. However, robust estimation of SM parameters is a challenging task that may require
advanced imaging hardware as well as long acquisitions, something difficult to have even
in pre-clinical settings.

1.1.3 MRI role in health systems

After its early developments in the 1970s [4, 5], MRI has rapidly become a fundamental
part of any health system. For example, around 3.46 million MRI scans were performed
by the National Health Service (NHS) in England during 2017/2018 [18]. This number
has shown a steady rise of roughly 8% annually over the last six years. This is due to
an increase in the availability of facilities that perform these tests, and their potential for
early diagnosis of conditions such as brain diseases or cancer. Furthermore, Alzheimer’s
disease and other dementias are projected to show a 66% increase from 2015 to 2030
[19]. This growth means that research focusing on developing new MRI techniques or
enhancing current ones has the potential to cause a high impact on society. Optimising
the extraction of information from an MRI scan can lead to a reduction in the time
needed for the acquisition or reduce hardware requirements and thus, decrease its cost.
Furthermore, increasing the specificity and accuracy of these techniques can lead to earlier
diagnosis of many diseases. These two factors can mean huge savings for the health system
by avoiding costly treatments, and also help to improve the life quality of people with a
neurological condition.

3



1. INTRODUCTION

1.2 Thesis aims

The aim of this thesis is to improve biophysical modelling by extending it outside conven-
tional dMRI acquisition sequences to foster their clinical translation. First, I will explore
non-standard diffusion encodings such as double diffusion encoding. The objective is to
analyse the complementary information that these encodings provide and see if it is suf-
ficient to solve the degeneracy in parameter estimation of the Standard Model. Secondly,
I will develop the criteria to optimise the data acquisition process in this new extended
acquisition space. Although there are many papers discussing optimal experiment designs
for single diffusion encoding, currently there is no criteria for efficient data acquisition
when we consider generalised encodings. Finally, I will extract relevant tissue proper-
ties from histological images that have the potential to be incorporated into the diffusion
modelling as prior information. These goals and ongoing model validations add to the
current efforts in the dMRI community to bridge the gap between research and clinic in
biophysical modelling. Robust methods to acquire data and solve the inverse problem of
fitting models to noisy measurements will enable accurate in vivo mapping of brain tissue
microstructure. Thus, our main objective, has the potential to provide early diagnosis
in multiple brain conditions [20] as well as increase our understanding of white matter
microstructure.
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Chapter 2

Diffusion MRI

2.1 Magnetic Resonance Imaging (MRI)

Magnetic Resonance Imaging is based on the interaction between the intrinsic magnetic
moments (i.e. spins) of the hydrogen nuclei and spatially varying magnetic fields. Spins
belonging to a specific tissue region produce a net magnetisation M(t), that can be ma-
nipulated to produce an MR signal. Every MR scanner applies a strong and constant
magnetic field dubbed B0 or main field. If no perturbations are performed, the net mag-
netisation will have an equilibrium value of M0 which will be aligned with B0. Generally,
this direction is termed longitudinal or z direction, and the plane perpendicular to it is
called transverse plane (xy), usually the imaging plane. When a patient is located inside
the bore of the scanner, its hydrogen spins start to align with the main field favouring
the configuration with the lowest energy (where the majority of spins are aligned with the
main field). This occurs with a precession motion around the z direction at the Larmor fre-
quency, ω0 = γB0, where γ is the gyromagnetic ratio of the water molecules’ spins. When
the system is in equilibrium (long after the relaxation time has passed), spins are still
precessing but most are practically parallel to B0. The macroscopic temporal evolution of
M(t) at each spatial location is described by Bloch equations [21]

dM
dt

= γM×B− Mx
~i+My

~j

T2
− (Mz −M0)~k

T1
, (2.1)

5



2. DIFFUSION MRI

where~i,~j,~k are unit vectors defining the coordinate system, T1 is the spin-lattice relaxation
time governing the evolution of longitudinal component of the magnetisation Mz and T2

is the spin-spin relaxation time governing the evolution of the transverse component of
the magnetisation Mxy.

To acquire an MR image with contrast from different tissues, this equilibrium needs to
be broken. This is done by flipping the net magnetisation into the transverse plane. The
toss of the magnetization is done by the application of a radio frequency (RF) pulse in
resonance with the precession velocity of the spins (i.e. the Larmor frequency). After this
perturbation, the spins will try to realign with B0 with a precession movement. During
this realignment, their precession generates a variable magnetic field that induces a voltage
in the receiver coils of the scanner. This voltage is the signal we measure that will later
be converted into an image.

To image a 3D volume, e.g. a full brain, the image acquisition is divided into slices. To
image a specific slice, only the spins within that slice must be excited. This is achieved by
applying a magnetic field gradient perpendicular to the plane of the slices. This generates
a range of precession frequencies for each of the slices, and thus, it is dubbed slice selection
gradient. In this way, when a certain slice needs to be imaged, the applied RF pulse has a
frequency that matches the angular velocity of the spins in the desired slice, Bslice

0 (z) =
B0 + Gss · z, where Bslice

0 is the actual main field at the slice in the position z, and Gss

is the slice selection magnetic gradient. Then, to recover the spatial positions of each
voxel across the excited slice, the frequency and phase of the magnetisation across the
whole slice is manipulated. For this, frequency and phase encoding magnetic gradients
are applied along the x and y directions. These modifications of the frequency and phase
of the spins enable measuring the spatial frequency components of the slice image in
these two dimensions. The acquired complex signals contain the spatial frequencies of the
image. Thus, these can be accommodated in a 2D array (k-space), and by applying a
2D inverse Fourier transform to this array the slice image is obtained with the original
spatial locations preserved (see Fig. 2.1). Depending on the MRI modality, the sequence
of magnetic fields and gradients may change, generating contrasts that emphasize different
tissue properties.

Bloch equations describe the evolution of the net magnetisation, M, of a continuum
of spins in a field B. However, it assumes that spins are stationary. Torrey [22] included
an additional diffusion term, generating the well-known Bloch-Torrey equations

dM
dt

= γM×B− Mx
~i+My

~j

T2
− (Mz −M0)~k

T1
−∇ · (D∇M), (2.2)

where D is a constant, the medium’s diffusivity. This equation considers the effects of
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Figure 2.1: K-space magnitude data and the corresponding MRI image (T1-weighted) for
a transverse slice of a healthy brain.

diffusive motion on spin magnetisation and sets the foundations for diffusion MRI methods.

2.2 Measuring diffusion with MRI

2.2.1 Spin Echo

One of the most relevant discoveries in Nuclear Magnetic Resonance (NMR) was the spin
echo (SE) effect, first observed by Hahn [23]. He realised that while a single radio-frequency
(RF) pulse generates a free induction decay (FID), the application of two successive RF
pulses may produce an echo, i.e. spin echo (SE) (see Fig. 2.2).

In SE, a 90 degrees RF pulse is first applied to flip the net magnetisation to the
plane transverse to the main field. Due to T ∗2 processes, individual spins lose their phase
coherence and the overall signal gets attenuated generating a FID. This disorganisation
of spin phases is mostly symmetrically reversible. Thus, by applying a 180 degrees RF
pulse after a time τ = TE/2 the phases of the spins take the same time to realign and get
mostly refocused, forming an echo after a time 2τ = TE.

7



2. DIFFUSION MRI

Figure 2.2: The Spin Echo sequence developed by Hahn [23]. Black rectangles denote RF
pulses (90 and 180 degrees from left to right) and time is represented in the horizontal
axis. TE is the echo time, the time between the 90 degrees RF pulse and the formation
of the echo signal.

2.2.2 The diffusion phenomenon

Diffusion refers to the physical process that involves the random movement of molecules
due to thermal collisions, sometimes called Brownian motion. This process is described
by the diffusion propagator G(t, r, r0), which is the probability density of a molecule that
started at a location r0 to finish at position r after a time t. In a fluid, if we consider
times much longer than 1ps we can think of net displacements as a sum of multiple smaller
independent displacements [24]. This implies that the net displacement of every molecule
follows a Gaussian distribution. Here, the variance becomes proportional to the time
〈(r− r0)2〉 = 2NDt, where N is the number of dimensions and D is the fluid’s diffusivity.
Note that in the absence of flow, the expected displacement due to diffusion is zero.

In the case of free water, the resulting probability of any molecule moving in any dir-
ection is the same, i.e. isotropic diffusion. Biological tissues contain barriers that restrict
and hinder the mobility of water molecules. In this more general case, the propagator will
deviate from the Gaussian isotropic behaviour of free fluids and will contain information
about tissue barriers. Thus, any diffusion measurement we perform on a certain tissue
will have the signature of the underlying architecture restricting the mobility of water
molecules. The aim of diffusion MRI research is to develop techniques that enable the
extraction of information about tissue from the diffusion-weighted images (DWIs).

2.2.3 Single Diffusion Encoding (SDE)

Diffusion weighted images are sensitive to the random displacement of water molecules
within a voxel [25], probing tissue at scales considerably lower than the image resolution
[24]. The signal obtained from a dMRI experiment depends not only on the diffusion
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2.2 Measuring diffusion with MRI

process but also on the applied pulse sequence. The simplest dMRI experiments use the
Pulsed Gradient Spin Echo (PGSE) sequence [26] (Fig.2.3), which is based on the spin
echo (SE) phenomenon. The PGSE sequence has two main modules, the excitation and
refocusing of the spins, and the acquisition of the echo signal.

Figure 2.3: The PGSE sequence developed by Stejskal and Tanner [26]. Gradient pulses,
shown in blue, are added to a SE sequence. G is the gradient amplitude, δ the gradients’
duration, ∆ the gradients’ separation, and TE the total experimental time after which the
echo signal is measured.

In the PGSE sequence a pair of magnetic gradients is added in the refocusing part of
a SE. The magnetic gradient field points into the direction of the main static field, but
varies linearly in three orthogonal directions. This generates a dephasing for all the spins
that move along this direction between the application of the two gradients (i.e. during
the diffusion time ∆). As the magnetic field varies linearly through space, each spin will
end up with a phase gain that depends on their Larmor frequency and the projection of
their random displacement into the diffusion gradient’s direction. The phase gain for a
spin when a certain gradient waveform g(t) is applied during an Echo Time (TE) is

φ(TE) = γ

∫ TE

0
g(t′) · r(t′)dt′, (2.3)

where r(t) is the random trajectory of the spin. The measured signal is proportional to
the net transverse magnetisation in each voxel. The total magnetisation can be computed
by summing the contribution of all spins, which is analogue to the phase average over the
whole voxel. Since each of them contain huge amounts of spins, we can express it as the
expectation (E{·}) over the ensemble of spins that exist in the sample [27]:

S(TE) = S0 E{eiφ(TE)}, (2.4)
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2. DIFFUSION MRI

where S0 is the measurement without diffusion weighting. The signal is attenuated due to
the loss of coherence in the phase of the ensemble of spins. This happens in the regions in
which spins were able to diffuse along the direction of the gradients. Since this sequence
contains only one diffusion encoding period it is dubbed a single diffusion encoding (SDE)
scheme [28].

If the gradient pulses in the PGSE sequence are sufficiently narrow, i.e. δ � ∆, for us
to neglect spin motion during their duration, i.e. narrow pulse approximation, the area
under a single pulse is dubbed q and is referred as a wave vector [24]. This vector points
in the same direction of the diffusion gradient and is given by:

q(t) ≡
∫ t

0
g
(
t′
)
dt′. (2.5)

In this regime, we can write q = γδg and the diffusion signal S as

S(∆,q) =
∫
ρ(r)

∫
G(∆, r′, r)e−iq·(r′−r)dr′dr =

∫
G(t,R)e−iq·RdR, (2.6)

from which it can be seen that the signal is the equivalent to the Fourier transform of the
voxel-averaged diffusion propagator G(t,R) [29]. The latter contains information about
the medium’s architecture but unlike the propagator, it does not depend on starting or
ending positions but on the net displacement R = r′ − r. We may think of conventional
SDE measurements as a point-sampling of this q-space profile.

A typical way of reporting experimental diffusion weightings is done with the well-
known b-value: b ≡ q2∆. In the case of Gaussian diffusion within the voxel’s compart-
ments, the signal is fully determined by b which has SI units of ms/µm2. However, in
more complex environments like those with restricted diffusion, there will be a dependence
on both ∆ and q.

Performing measurements with different diffusion weightings while pointing the diffu-
sion gradients along different orientations let us hold in the set of acquired dMRI signals
information about the tissue architecture restricting the diffusion process.

2.3 Analysing Diffusion Weighted Images

We can classify existing techniques that deal with the extraction of information from the
DWIs in two main groups, signal representations and tissue models [6]. Signal representa-
tions, i.e. phenomenological approaches, describe the dMRI signal in a mathematical basis
of interest that allows us to compress the information in the measurements to a reduced
number of parameters. This is done without specific assumptions about tissue structure.
On the other hand, tissue models describe the dMRI signal based on various assumptions
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on tissue structure, e.g. geometry and diffusivities, with the aim of capturing the most
relevant physical properties affecting the signal. Signal representations and tissue models
coexist in the dMRI literature and although this thesis focuses on the latter, this section
provides a brief introduction to both groups.

2.3.1 Signal representations

Apparent Diffusion Coefficient

Le Bihan et al. [8] proposed one of the first clinical applications of dMRI as we know
it. They applied a PGSE sequence and fitted the free isotropic diffusion expression to
the measurements. They dubbed the fitted diffusivity as Apparent Diffusion Coefficient
(ADC) to account for restricted diffusion (Eq. 2.7). They also suggested to group all the
terms related to the sequence in the signal expression under a factor termed ‘b-value’,
which for wide pulses is given by b = γ2G2δ2(∆− δ/3). Then, the signal expression is

S(b) = S0 e
−γ2G2δ2(∆−δ/3)ADC = S0 e

−bADC , (2.7)

where S0 = S(b = 0) is the unweighted diffusion signal. In that work, the estimation of
the ADC was done on every voxel of the tissue by performing two measurements at two
different b-values. Then, the ADCs from each voxel were used to create an image in which
the contrast purely depended on diffusion.

This method provided a new source of contrast for in vivo imaging, which proved to
have many clinical applications such as detecting ischemic stroke [9]. Although the ADC is
currently used for diagnosis of multiple conditions, the information it provides is limited by
the main assumptions: considering the diffusion process to be free and isotropic, implying
that the diffusion should be independent of the direction of the applied gradients.

Diffusion Tensor Imaging

Diffusion tensor imaging (DTI) is a natural extension of the ADC approach, it accounts
for anisotropic diffusion. Knowing that the scalar diffusion obtained from the measure-
ments would depend on the direction of the applied magnetic gradient, Basser et al.[30]
proposed to replace the ADC with an apparent diffusion tensor (Eq. 2.8) that contains
the directional dependence of the medium:

log
(
S(b, n̂)

)
= ln(S0)− b ninjDij = −bijDij , (2.8)

where Dij is the rank-2 apparent diffusion tensor, n̂ the diffusion gradient direction, and
bij the rank-2 b-matrix. From now on, we will use the Einstein summation convention,
i.e. summation over repeated indices is implied.

11



2. DIFFUSION MRI

This extension considered the contribution from the cross terms of the diffusion gradi-
ents and Dij off-diagonal elements. As the diffusion tensor is symmetric, it only has 6
independent components that need to be fitted to the measurements. In addition, S0 needs
to be computed as well, leaving 7 unknown parameters to be fitted from the acquired data.
Therefore, to perform DTI the dataset should consist of at least one non-DWI and at least
six noncollinear DWIs. However, due to the low SNR of the DWIs, most DTI protocols
use around 30 different directions [31].

Figure 2.4: Whole brain FA map and deterministic tractography derived from a diffusion
tensor analysis.

From the diffusion tensor, eigenvalues and eigenvectors are computed because they
hold meaningful information about tissue. Scalar metrics such as the fractional anisotropy
(FA) or the mean diffusivity (MD) can be computed from the eigenvalues (Eq. 2.9). These
provide a quantitative way to represent tissue and create scalar maps of tissue anisotropy
(Fig. 2.4) and diffusivity. These are defined as

MD = λ = λ1 + λ2 + λ3
3 ; FA =

√
3
2

√
(λ1 − λ)2 + (λ2 − λ)2 + (λ3 − λ)2

λ2
1 + λ2

2 + λ2
3

, (2.9)

where λi, i = 1, 2, 3, are the diffusion tensor eigenvalues. The principal eigenvector can be
associated with the main orientation of the fibre bundles inside each voxel. Combined with
FA, such information can then be used to track fibres within brain WM and perform the so
called fibre tractography [10, 32], (see Fig. 2.4). There exist many papers addressing this
tracking problem, however, its main objective is not to characterise tissue microstructural
properties but to reproduce the connections between brain regions.
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2.3 Analysing Diffusion Weighted Images

For optimal precision, DTI acquisitions sample uniformly distributed gradient direc-
tions with only one diffusion weighting [33], i.e. a shell of measurements, of around 1
ms/µm2 since typical values for MD in the brain WM are around 1µm2/ms.

Diffusion Kurtosis Imaging and the Cumulant Expansion

A popular series representation for the dMRI signal is the cumulant expansion [34]. This
is a Taylor expansion of the logarithm of the signal attenuation in powers of the diffusion-
weighting factor, i.e. b-value. If we consider the apparent diffusion and apparent kurtosis
as scalars, this expansion up to second order can be written in the following way [35]:

log
(
S(b)

)
= log(S0)− bD + 1

6b
2D2K +O(b3). (2.10)

With this equation, the measured diffusional kurtosis will depend on the direction of
the applied diffusion gradients. Similar to the case of the diffusion tensor, this dependence
can be described by:

log
(
S(b, n̂)

)
= ln(S0)− b ninjDij + 1

6b
2D̄2ninjnkn`Wijk` +O(b3), (2.11)

where Wijk` is the aparent kurtosis as defined in [36], a rank-4 fully-symmetric tensor that
has 15 independent components, and D̄ is the mean diffusivity.

From Eq. (2.11), it is clear that DKI consists in adding to DTI another term in the
cumulant expansion. This increases the complexity of the signal expression, and also raises
the number of free parameters from 7 to 22 (including S0 in the parameter count since it is
fitted from the data). Thus, increasing the demands in the data acquisition which in this
case usually has two non-zero shells. The kurtosis tensor provides new information about
tissue that is not available through DTI. It captures information from restricted diffusion
across tissue (i.e. non-Gaussian diffusion). Some scalar metrics can be computed from
the kurtosis tensor to generate maps of the brain highlighting different sources of contrast.
These include the Mean Kurtosis (MK), Radial Kurtosis (RK), Axial Kurtosis (AK), and
Kurtosis Anisotropy (KA).

Diffusion coefficient/tensor distributions

Yablonskiy et al. [37] proposed to use a distribution of diffusion coefficients to represent
the dMRI signal. Considering the dMRI signal as coming from a large number of non-
exchanging Gaussian isotropic compartments we can write

S = S0

∫ ∞
0

ρ(D)e−bDdD, (2.12)
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where ρ(D) is the distribution of diffusion coefficients in the voxel. Following this same
concept, it was later proposed that the signal from a voxel can be represented through a
distribution of diffusion tensors [38]. Note that we consider these approaches to be rep-
resentations rather than models.

A comprehensive discussion about signal representations and models is not the scope
of this thesis, for that the reader can refer to [39]. Signal representations are very sensitive
to microstructure, and have proven their potential in some clinical applications. However,
their main limitation is the lack of specificity [12], because different alterations in tissue
architecture can produce the same variations in, for example, DTI derived metrics.

2.3.2 Biophysical tissue models: The Standard Model

As signal representations have limited specificity, modelling the dMRI signal has become
more and more popular since the seminal papers by Van Gelderen et al. and Stanisz et
al. in the 1990s [40, 41]. The microstructural information models aim to extract may lead
to biomarkers that are able to detect small tissue alterations corresponding to the early
presence of neurodegenerative diseases. This group of approaches is complementary to
signal representations since it uses information about what is expected to be measured to
unravel dMRI data. These assume brain tissue can be described by a biophysical model
containing the most relevant microstructural features. There are plenty of models in the
literature, for a detailed discussion see [39]. Most models share common aspects, e.g.
voxels contain several compartments with negligible water exchange for typical experi-
mental times. Therefore, the total signal is then computed as the sum of the contributions
from each pool. Generally, the intracellular compartment is considered to be composed of
axons and neurites, while the extracellular space encloses the rest of the structures. Most
tissue models focus on WM but there are some that try to describe GM.

In the early 2000s, Behrens et al. [42] proposed to model the dMRI signal with two
compartments, one isotropic (ball) and one anisotropic (stick). Extending this concept, the
composite hindered and restricted water diffusion model (CHARMED) [43, 44] aimed to
represent the intracellular compartment as impermeable parallel cylinders and the extra-
cellular compartment with a diffusion tensor. Later on, an extension of the CHARMED
model dubbed AxCaliber [45] was proposed to estimate axonal diameter distributions.
Jespersen et al. [13] proposed to add orientational dispersion to these models, by incor-
porating a spherical harmonics decomposition of the fibre ODF. Zhang et al. proposed
the neurite orientation dispersion and density imaging (NODDI) model to consider axonal
orientation dispersion but proposed a Watson distribution to reduce the complexity of the
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ODF and enable clinical application [46, 47]. Panagiotaki et al. [48] studied the minimum
requirements, in terms of modelling compartments, for a precise model of diffusion in
white matter.

For brain white matter (WM), the overarching multiple Gaussian compartment frame-
work, unifying a multitude of previous models, is the so-called Standard Model (SM) of
diffusion in neural tissue. In this thesis, we focus on this model since it is the most general
version of WM models (many others are constrained versions of the SM, see recent review
by [39]).

Figure 2.5: Representation of the two compartments present in the Standard Model with
their corresponding diffusivities. Here the ODF is given by a Watson distribution.

The stick compartment (sometimes referred as intra-neurite) represents axons, which
are expected to be the main contributors to the restricted diffusion signal, and, possibly,
dendrites and glial processes [49]. The inclusion of dendrites and glial processes is open
to discussion [39] and implies the assumption that in certain regimes (depending on e.g.
diffusion time) they have similar diffusivity and T2 relaxation properties and directional
distribution, a question which still has not been fully addressed (see discussion in [50]).
Sticks are zero-radius cylinders that model fibres, where diffusion occurs only along the
fibre’s main direction, as it was first proposed for for NAA by [51] and for water in neurites
by [13, 42]. Later, Nilsson et al. [52] showed theoretically that typical axonal diameters
cannot be resolved with SDE and gradient amplitudes available on clinical scanners and
thus, are indistinguishable from sticks. This was also confirmed experimentally in [53].
The second compartment represents the extra-neurite space where diffusion is hindered
and is modelled as Gaussian anisotropic [49] (zeppelin compartment). A fibre segment
is defined as the local bundle of aligned sticks with the extra-neurite space surrounding
them. Voxels are composed of a large number of fibre segments. The SM consists of the
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fibre segment signal model (i.e. kernel) with the diffusivities and water fraction as free
parameters, together with a general fibre orientation distribution function (ODF), which
can be represented by its spherical harmonics decomposition

P(n̂) ≈ 1
4π +

lmax∑
l=2,4,...

l∑
m=−l

plmYlm(n̂). (2.13)

Some other works consider a third compartment that represents the contribution from
stationary water in fixed tissue [41, 54]. However, recent works [55] have concluded that the
signal arising from this compartment can be neglected in most structures for the diffusion
times used in the clinic and should only be considered in the cerebellum [56]. Additionally,
some versions of the SM include an isotropic diffusion compartment to account for the
presence of cerebrospinal fluid (CSF) [39].

Considering a general fibre ODF involves a large set of parameters, which can hinder
their unambiguous estimation from the dMRI signal. The NODDI model proposed to use
the Watson distribution to model orientation dispersion [47]. However, it added constraints
between model parameters to simplify parameter estimation. These were removed in
the neurite orientation dispersion and density imaging with diffusivity assessment (NOD-
DIDA) model [57], which is essentially the SM with the only constraint that the fibre
ODF must be a Watson spherical distribution P(û) = f(û | µ̂µµ, κ), with concentration
parameter κ and main direction µ̂µµ (see Fig. 2.5). This cylindrically symmetric ODF is
usually considered a sufficiently good and parsimonious model for white matter regions
without crossing fibres [46].

For the general SM, the signal from a SDE experiment, where the diffusion weighting
b is applied in the direction n̂, is given by the convolution over the unit sphere [14]

SSDE(b, n̂) = S0

∫
S2
P(û)K(b, n̂ · û) dSû, (2.14)

where

K(b, n̂ · û) = f exp
[
−bDa(n̂ · û)2]+ (1− f) exp

[
−bD⊥e − b∆e(n̂ · û)2] (2.15)

is the response signal (kernel) from a fibre segment oriented along direction û. Here,
f is the T2-weighted stick volume fraction, Da the intra-neurite axial diffusivity, and
∆e = D

‖
e − D⊥e , with D

‖
e , D⊥e the extra-neurite diffusivities parallel and perpendicular

to the fibre-segment axis [39]. These kernel parameters (f , Da, D‖e , and D⊥e ) provide
important tissue microstructural information, and have shown potential clinical relevance
as they are sensitive to specific disease processes such as demyelination, axonal loss or
inflammation [15, 16, 58]. Recent works have tried to extend this modelling approach to
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grey matter, considering the contribution from cell bodies [59, 60]. One limitation of this
model is that within a voxel each fascicle is assumed to have identical diffusion properties,
leading to identical microstructural parameters.

2.4 Beyond Single Diffusion Encoding

2.4.1 Double Diffusion Encoding (DDE)

Most of the dMRI post-processing techniques have been developed for an acquisition per-
formed within an SDE framework. This means that whichever the sequence is, there is
only one diffusion encoding period. Since Stejskal and Tanner created the PGSE sequence,
there have been many works aimed to maximise the information that can be obtained from
a dMRI experiment. Not only from the post-processing perspective, but also, from the
data acquisition viewpoint. One of the many modifications that have been proposed to the
gradient waveforms involves the addition of multiple pairs of gradients. Cory [61] was the
first to propose this, while Mitra [62] generalised this concept for multiple wavevectors.
Particularly, a scheme that has recently gained popularity is one termed Double Diffusion
Encoding (DDE). Similarly to SDE, this terminology is used for all the experiments that
aim to produce two consecutive diffusion encodings [28], irrespective if they are based on
a SE, stimulated echo (STE) or PGSE.

This methodology employs two diffusion sensitizing gradient pairs, G1 and G2, with
durations δ1 and δ2, and separations ∆1 and ∆2 respectively (Fig. 2.6). These diffusion
encodings are separated by a mixing time τm, and can even have different directions. Since

Figure 2.6: A general DDE sequence within a framework of a PGSE sequence [28]. Finite
mixing time (top) and zero mizing time (bottom)
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two diffusion encodings are being used, this sequence offers more degrees of freedom. Even
in its simplest (and most common) version, where we choose both wave-vectors with equal
amplitude and diffusion times, we can still vary their orientations and mixing time. In
DDE the resulting signal loss is also related to the correlation between the displacements
during the two diffusion times rather than only the net displacements themselves [28]. The
resulting Spin-Echo measured appears at an Echo Time that is usually higher than one
of a SDE experiment, what leaves us with a more attenuated signal by the T2 relaxation.
Thus, the SNR in DDE is slightly lower than the one we can achieve in SDE experiments.

Mitra [62] predicted that at long mixing times the signal arising from spherical pores
would not present any dependence on the angle between the applied gradients. However,
he stated that ellipsoidal pores would present an angular dependence in the fourth term
of the signal Taylor expansion irrespective of their packing. This suggested that DDE is
able to distinguish spherical pores from randomly oriented cylinders, something that SDE
DTI is not able to do. Thus, in the long τm regime, microscopic anisotropy (µFA) can
be revealed. The µFA is a scalar parameter that provides information on the anisotropy
of the individual structures that are present in the voxel. Unlike the FA, the µFA is not
affected by the relative orientation of the individual pores. Fig. 2.7 shows schematic
examples of the complementary information provided by the FA and µFA. The latter is
not sensitive to the macroscopic arrangement of the pores while the former is. Lawrenz
and Finterbusch [63] were the first to measure microscopic diffusion anisotropy in the
living human brain. Furthermore, Jespersen et al. [64] developed a model-independent
framework to extract the µFA in an orientationally invariant way using only parallel and
perpendicular gradients.

Another fact Mitra found was that, for τm → 0, the angular dependence of the signal
decay would hold for any pore shape (including spheres), thus giving us a measure of the
size of the restricted compartment in the second order of q. In addition, Özarslan [65]
extended the Multiple Correlation Function (MCF) formalism [66] to be applied in DDE
sequences where the two gradient directions are different. This approach let us compute
analytically the dMRI signal arising from certain geometries. With these results he derived
the full angular form of the signal profile for τm → 0, in randomly oriented spheroids and
capped cylinders [67].

Although there are no popular tissue models considering a DDE acquisition, many
groups have used the extended MCF approach combined with some assumptions about
tissue to to extract the axon diameter in coherent WM tracts. Komlosh et al. [68] were
able to estimate the average axon diameter and volume fraction on a pig spinal cord. In
a recent work [69], Benjamini et al. tried to estimate a non-parametric axon diameter
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Figure 2.7: Tissue configurations with different FA and µFA values. The top row shows
the individual domain structures and the bottom row shows their corresponding voxel-
level tensors. In voxels A and B, the domain pores are the same but they differ in their
arrangement and thus, have different FA and equal µFA values. The FA cannot distinguish
between randomly oriented anisotropic pores (B) and isotropic pores (C).
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distribution in a ferret’s spinal cord.
These results are quite impressive, due to the impact this information could have on

clinical diagnosis. However, these methods’ main limitation is the need of an extremely
coherent bundle of axons. These approaches assume that the substrate is made of parallel
cylinders, and that the diffusion gradients are applied in the plane perpendicular to the
main orientation. This makes the signal very sensitive to the axon diameter but, restricts
its application to highly coherent structures such as the spinal cord or the corpus callosum.

Jespersen [70] demonstrated that for the low q regime one could extract the same
information using single-PGSE with a varying diffusion time than with multiple-PGSE.
Nonetheless, he made emphasis that for intermediate b-values, DDE contains information
which is not immediately accessible using SDE experiments. DDE sequences have the
potential to extract novel microstructural information such as the µFA, not reachable
through SDE. Nonetheless, it has not been fully addressed if modelling tissue considering
single or multiple encodings can provide us with more precise parameter estimations. In
Chapter 3, we investigate the advantages of combining biophysical modelling with DDE.

2.4.2 Multidimensional dMRI

Unlike conventional dMRI acquisitions, i.e. SDE, a single multidimensional dMRI meas-
urement does not probe a point but a trajectory in q-space [38, 71, 72]. This generalises
the concept of diffusion weighting along a direction (b-vector), to more complex scen-
arios, viz. simultaneously sensitising the MR signal to diffusion along multiple directions
(multidimensional dMRI). If we consider each voxel as composed of multiple Gaussian
compartments (MGCs), then the signal from any given q-space trajectory is fully specified
by a rank-2 symmetric b-tensor defined by

B =
∫ TE

0
q(t′)⊗q(t′) dt′, with b = Tr(B) = Bii, q(t) = γ

∫ t

0
g(t′) dt′, (2.16)

where b is the conventional b-value or diffusion weighting, g(t) is the diffusion gradient
waveform and q(t) the q-space trajectory.

The number of non-zero eigenvalues in B reflects how many dimensions are being
probed simultaneously. In SDE, B = b n̂⊗ n̂, there is one non-zero eigenvalue, viz. linear
tensor encoding (LTE). The b-tensor of a DDE acquisition is B = b1 n̂1 ⊗ n̂1 + b2 n̂2 ⊗
n̂2, defined from the pair of gradient directions, n̂1, n̂2, and their individual diffusion
weightings, b1, b2. It has two non-zero eigenvalues if n̂1 and n̂2 are not parallel, viz.
planar tensor encoding (PTE). For multiple Gaussian compartments a SDE acquisition is
a subset of the DDE acquisitions (SDE = DDE‖ ⊂ DDE), for which n̂1 = n̂2 (parallel
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direction pair). When B has 3 equal non-zero eigenvalues it is dubbed spherical tensor
encoding (STE) or isotropic encoding, since the signal is attenuated by displacements in
any direction. Figure 2.8 shows different b-tensors arranged in a triangular diagram with
the standard ones (linear, planar, and spherical) at the vertices [73]. The tensor eigenvalues
define the shape and diffusion weighting (i.e. size) and eigenvectors the orientation.

Figure 2.8: Superquadric tensor glyphs representing b-tensor shapes available with mul-
tidimensional dMRI. These are arranged in a barycentric ternary diagram [73] according
to their linear, planar, and spherical components (LTE, PTE, and STE). Two degrees
of freedom define the tensor shape, and an extra one is needed for its size. Three extra
degrees of freedom define the tensor orientation.

So far, the scope of multidimensional dMRI has been to disentangle orientation dis-
persion and microstructural anisotropy by assuming voxels are made of multiple Gaus-
sian compartments represented by an underlying diffusion tensor distribution. Thus, by
measuring the diffusion tensor distribution isotropic and anisotropic variance like in [74],
information about the microscopic anisotropy can be accessed, i.e. µFA, which may be
a biomarker of microstructural degeneration. In Chapter 4, we focus on exploiting the
combination of a multidimensional dMRI acquisition with biophysical modelling.
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Chapter 3

Resolving the Watson Standard Model
degeneracy

Biophysical tissue models are increasingly used in the interpretation of diffusion MRI
data, with the potential to provide specific biomarkers of brain microstructural changes.
However, it has been shown recently that, in the general Standard Model, parameter es-
timation from dMRI data is ill-conditioned even when high b-values are applied.
In this chapter, we analyse this issue for the Neurite Orientation Dispersion and Density
Imaging with Diffusivity Assessment (NODDIDA) model and demonstrate that its exten-
sion from SDE to DDE resolves the ill-posedness for intermediate diffusion weightings (e.g.
b < 2.5ms/µm2), producing an increase in accuracy and precision of the parameter estim-
ation. We analyse theoretically the cumulant expansion up to fourth order in b of SDE
and DDE signals. Additionally, we perform in silico experiments to compare SDE and
DDE capabilities under similar noise conditions. We prove analytically that DDE provides
invariant information non-accessible from SDE, which makes the NODDIDA parameter
estimation injective. In silico experiments show that DDE reduces the bias and mean
square error of the estimation along the whole feasible region of 5D model parameter
space. DDE adds additional information for estimating the model parameters, unexplored
by SDE. We show, as an example, that this is sufficient to solve the previously-reported
degeneracies in the NODDIDA model parameter estimation.
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3. RESOLVING THE WATSON STANDARD MODEL DEGENERACY

3.1 Degeneracy in SM parameter estimation

This thesis focuses on the Standard Model of diffusion in neural tissue. The widely used
Neurite Orientation Dispersion and Density Imaging (NODDI) [47] model is a constrained
version of the SM that fixes the diffusivity values of the compartments present in the
voxel to specific values. This was done to relax the data acquisition requirements and
make parameter estimation more stable. However, some of NODDI’s assumptions have
been shown to be incompatible with data from spherical tensor encoding (STE) in [75].
It has also been argued that fixing diffusivities introduces bias in the estimation of the
remaining model parameters [76]. Jelescu et al. [57] extended NODDI by adding the
diffusivities to the estimation routine and dubbed it NODDIDA (NODDI with Diffusivity
Assessment). This approach eliminated some flawed assumptions made in the original
version but led to multiple possible solutions that describe the signal equally well. This
made the parameter estimation problem ill-posed or, at least, ill-conditioned, and is usually
stated as the existence of degenerated model parameter sets. Recent work by Novikov et al.
showed that this degeneracy is intrinsic to the SM [14], of which NODDIDA is a special
case, independently of the fibre ODF. They show that choosing the correct solution is
challenging even with the use of high b-value data, although Jespersen et al. [49] obtained
stable estimations in ex-vivo brain tissue using extremely high b-values (15ms/µm2).
Kaden et al. [77] proposed to use averages in each shell to remove one of the constraints in
NODDI. Reisert et al. [78] proposed a supervised machine learning approach trained with
the expected value of the Bayesian posterior, which, by definition, disregards the possible
multimodality of the distribution. Furthermore, it was trained on simulated data with the
prior assumption of similar traces for the intra- and extra-axonal diffusivities.

Recently, Lampinen et al. [75] have analysed the advantages of a multidimensional
encoding over SDE NODDI. They proved that extending the acquisition to incorporate
STE data increases the accuracy in quantifying microscopic anisotropy. However, it has
not been fully explored, from the point of view of fitting a biophysical model to noisy
measurements, if multiple encodings can provide us with more precise model parameter
estimates than a single encoding (cf. [79, 80]). The advantages of combining linear with
planar or spherical tensor encoding to address the degeneracy and increase the precision
of parameter estimation have been investigated [81–83] in both in silico and/or in vivo
experiments. Their results show that the estimation precision is increased by the addition
of these orthogonal measurements. However, a theoretical background of why this happens
is still missing. This chapter extends NODDIDA to a DDE scheme and assesses the
accuracy of estimators based on SDE and DDE measurements. We investigate analytically
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3.2 SDE cumulant expansion and solutions to NODDIDA

the information provided by SDE and DDE through their 4th order cumulant expansions.

3.2 SDE cumulant expansion and solutions to NODDIDA

It has been recently shown that NODDIDA parameter estimation is challenging in normal
experimental conditions [57]. There are two issues here. The first one is that fitting these
models to noisy measurements is generally a non-convex optimisation problem, potentially
having several local minima of the objective function, requiring appropriate optimisation
algorithms. However, the existence of multiple local minima opens the door to a second,
more serious, issue: the objective function can present multiple minima with equal or very
similar values. In the presence of noise, these minima are perturbed, changing which of the
minima is the global minimum [84]. Jelescu et al. [57] evidenced this ill-posedness issue
for clinically feasible dMRI acquisitions in two particular cases. They showed that the
estimated parameters from a collection of independently simulated dMRI measurements
follow a bi-modal distribution, despite being simulated from a single ground truth, and
the presence of practically indistinguishable spurious minima in the objective function.
A recent work by Novikov et al. [14] analysed in detail this inverse problem for the
unconstrained SM by reparametrising it into its rotational invariants. They concluded
that without any constraints on the ODF shape, it was not possible to estimate the kernel
parameters with an acquisition sensitive up to order O(b2).

For intermediate diffusion weightings (i.e. b < 2.5ms/µm2) the dMRI signal is ac-
curately represented by its fourth-order cumulant expansion [85] (sensitive up to O(b2)
contributions). For SDE, this expansion is shown in Eq. 2.11:

log
(
S(b, n̂)

)
= ln(S0)− b ninjDij + 1

6b
2D̄2ninjnkn`Wijk` +O(b3). (3.1)

Let us consider a voxel with fibres oriented according to P(n̂) = c(κ) exp
(
κ(µ̂ · n̂)2), a

Watson ODF with concentration parameter κ. Following an analogous procedure as in
[14], we can expand the signal S(b, n̂) in Eq. 2.14 up to order O(b2). This gives a mapping
between the biophysical (BP) parameter space and the diffusion kurtosis (DK) space,
removing the dependence with the acquisition settings and simplifying the analysis of
whether different sets of model parameters produce the same signal profile.

Due to the axial symmetry of the Watson distribution, the corresponding diffusion and
kurtosis tensors can be expressed in terms of the projection, ξ = n̂ · µ̂µµ, of the gradient
direction to the main direction µ̂µµ [86]:

D(ξ)=
(
fDa+(1−f)∆e

)
h2(ξ, κ)+(1−f)D⊥e ,

1
3W (ξ)D̄2 =

(
fD2

a +(1−f)∆2
e
)
h4(ξ, κ)+2(1−f)∆eD

⊥
e h2(ξ, κ)+(1−f)D⊥2

e −D(ξ)2,
(3.2)
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3. RESOLVING THE WATSON STANDARD MODEL DEGENERACY

where h2(ξ, κ) = 1
3 + 2

3 p2P2(ξ) and h4(ξ, κ) = 1
5 + 4

7p2P2(ξ) + 8
35p4P4(ξ) are defined as in

[86]. P2(ξ) and P4(ξ) are the second and fourth order Legendre polynomials, and p2, p4

the non-zero second and fourth order coefficients of the spherical harmonics expansion of
the Watson distribution:

p2 = 1
4

[ 3√
κF (
√
κ) − 2− 3

κ

]
,

p4 = 1
32κ2

[
105 + 12κ(5 + κ) + 5

√
κ(2κ− 21)
F (
√
κ)

]
,

(3.3)

where F denotes the Dawson function [87]. Using these equations, we can derive the
relations between BP and DK parameters that fully describe this axially symmetric en-
vironment, like in [88] for fully aligned fibres, but here for an arbitrary value of κ:

D‖=
(
fDa + (1−f)∆e

)
h2(1, κ) + (1−f)D⊥e ,

D⊥=
(
fDa + (1−f)∆e

)
h2(0, κ) + (1−f)D⊥e ,

1
3W‖D̄

2 +D2
‖=

(
fD2

a + (1−f)∆2
e
)
h4(1, κ)

+ 2(1−f)∆eD
⊥
e h2(1, κ) + (1−f)D⊥2

e ,

1
3W⊥D̄

2 +D2
⊥=

(
fD2

a + (1−f)∆2
e
)
h4(0, κ)

+ 2(1−f)∆eD
⊥
e h2(0, κ) + (1−f)D⊥2

e ,

1
4D̄

2(5
2W̄ −W⊥ −

1
6W‖

)
+ 1

4(D⊥ +D‖)2 =
(
fD2

a + (1−f)∆2
e
)
h4
( 1√

2 , κ
)

+ 2(1−f)∆eD
⊥
e h2

( 1√
2 , κ

)
+ (1−f)D⊥2

e ,

(3.4)

where D̄ = (2D⊥+D‖)/3. Taking the limit for κ→∞ we recover the system of equations
for parallel fibres presented in [88] (Eq. 12).

In Jespersen et al. [86], the equivalent to the system in Eq. 3.4 is solved reaching two
alternative equations for κ, F±(κ) = 0, each giving possible solutions. This suggested
that, in general, there should be two solutions, one for each branch. However, this is not
always the case, as illustrated in Table 3.1. We derive here an alternative expression of
the solution in one equation only. First, we can reparametrize the kernel parameters as:

α = fDa + (1− f)∆e, β = (1− f)D⊥e ,
γ = fD2

a+(1− f)∆2
e , δ = (1− f)∆eD

⊥
e , ε = (1− f)D⊥2

e .
(3.5)

After this substitution, Eq. 3.4 can be expressed as a linear system of five equations for
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3.2 SDE cumulant expansion and solutions to NODDIDA

the 5 unknowns α, β, γ, δ and ε, decoupled into two independent smaller systems:[
D‖

D⊥

]
=
[
h2(1, κ) 1
h2(0, κ) 1

] [
α

β

]
= L

[
α

β

]
,


1
3W‖D̄

2 +D2
‖

1
3W⊥D̄

2 +D2
⊥

5W̄ D̄2

8 − W⊥D̄
2

4 − W‖D̄
2

24 + (D⊥+D‖)2

4

 =


h4(1, κ) 2h2(1, κ) 1
h4(0, κ) 2h2(0, κ) 1
h4( 1√

2 , κ) 2h2( 1√
2 , κ) 1



γ

δ

ε

 = M


γ

δ

ε

 .
(3.6)

Observe that the coefficients of matrices L and M depend on κ. We will ignore for the
moment that the 5 unknowns are not independent. The solution is unique as long as
matrices L and M are invertible. This is the case when κ 6= 0, since det L = p2 and
det M = −1

2p2p4. In the limit of a fully isotropic medium (κ = 0) the system has only
two independent equations, not allowing the recovering of the kernel parameters without
additional information. By solving the two systems in Eq. 3.6 we find expressions for
α,β,γ,δ and ε that only depend on κ and the DK parameters. Those variables are actually
defined from only 4 kernel parameters (Eq. 3.5), resulting in the coupling equation

γ(ε− β2) = α2ε+ δ2 − 2αβδ. (3.7)

By plugging the expressions for α,β,γ,δ and ε as functions of κ into Eq. 3.7, we obtain a
nonlinear equation for κ with potentially multiple solutions. Each solution for κ gives a
single solution for α, β, γ, δ and ε, which in turn, gives a single solution for the kernel
parameters:

f = 1− β2

ε
, Da = αε− βδ

ε− β2 , ∆e = δ

β
, D⊥e = ε

β
. (3.8)

Thus, the number of solutions to Eq. 3.7 corresponds to the number of BP sets that have
the same DK parameters. Table 3.1 presents cases with up to 4 solutions. We computed
the number of solutions for 10k random points in the BP space. Most present 2 solutions
(70.2%), some only 1 (29.3%), and only a small proportion have 4 solutions (0.5%). This
gives rise to the previously discussed degeneracy in model parameter estimation from noisy
measurements [57]. In contrast to the claim in Hansen et al. [88], even in the extreme case
of parallel fibres leaving only four unknowns, the five equations in Eq. 3.4 are independent.
This is possible due to the nonlinear nature of the system. If κ is known and not zero
(including the limiting case κ→∞ of parallel fibres), the full-system is invertible as long
as f is not 0 or 1, and D⊥e is not null. In that case, each point in the DK parameter
space (signal profile) corresponds to a single BP set. However, this is not the case for an
arbitrary unknown κ. Here, the full-system has 5 independent equations with 5 unknowns,
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3. RESOLVING THE WATSON STANDARD MODEL DEGENERACY

but, depending on the parameter values, it can have only one or multiple solutions. This
latter case makes the inverse mapping an ill-posed problem.

Using very high b-values might be considered an option to solve this problem, as it will
add higher order terms in Eq. 3.1. However, it is still challenging due to very low associated
signal-to-noise ratio and is also not feasible in most clinical scanners, although bespoke
systems with ultra-strong gradients may provide leverage in this regard [89]. Another
solution that does not require powerful gradients is to seek for functionally independent
measurements providing new information.

Table 3.1: Illustration of sets of biophysical (BP) parameter values resulting in the same
diffusion–kurtosis (DK) parameters. Each plus or minus branch can correspond to a
single, multiple, or none BP parameters. Some sets of BP parameters fall outside the
region of plausible parameters. The invariants of the not fully symmetric part of C,
incorporated by DDE, discriminate between the BP parameter sets having the same exact
DK representation. All diffusivities are in µm2/ms and C invariants in µm4/ms2.

DK parameters Branch BP parameters C new invariants
[D‖ , D⊥ , W‖ , W⊥ , W̄ ] [f , Da , D‖e , D⊥e , κ] ζ1 ζ2

[1.50, 0.20, 1.46, 0.29, 0.93] + [0.73, 2.00, 1.00, 0.30, 8.00] -0.01 0.21
− [0.61, 1.29, 2.19, 0.32, 11.5] 0.023 0.053

[1.56, 1.05, 0.40, 0.71, 0.33] + [0.25, 2.37, 1.30, 1.39, 50.0] 0.35 0.62
− - - -

[0.46, 0.41, 2.90, 2.70, 2.77] + [0.88, 1.32, 1.40, -0.23, 0.27] -0.19 0.02
− [0.87, 0.95, 2.00, 0.72, 0.36] -0.02 0.01
− [0.55, 0.18, 1.07, 0.77, 1.41] 0.15 0.00
− [0.51, 0.08, 0.93, 0.79, 3.19] 0.16 -0.01

[1.56, 1.26, 0.42, 0.54, 0.51] + - - -
− [0.24, 1.45, 2.10, 1.40, 2.33] 0.24 0.13
− [0.19, 0.67, 1.89, 1.49, 5.44] 0.33 0.06

3.3 Solving the degeneracy with orthogonal information

3.3.1 Model extension to DDE

DDE adds an extra dimension to the dMRI acquisition, unexplored by SDE experiments.
For a general multidimensional acquisition [38, 90], due to the assumption of impermeable
compartments, within each of which the diffusion displacement profile is assumed to be
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3.3 Solving the degeneracy with orthogonal information

Gaussian, the signal can be written as:

SNODDIDA(B) = S0

∫
S2
P(û)K(B, û) dSû, (3.9)

with the kernel

K(B, û) = f exp
[
−DaBijuiuj

]
+ (1− f) exp

[
−bD⊥e −∆eBijuiuj

]
. (3.10)

As discussed in Section 2.4.2, LTE, PTE and STE b-tensors differ in the amount of non-
zero eigenvalues, thus, the information we can get from each type of measurement differs.

3.3.2 DDE information gain and unique solution

We show that complementary information from DDE is sufficient to uniquely recover SM
parameters from O(b2) measurements. Incorporating DDE measurements transforms the
inverse mapping of recovering BP parameters from diffusion-weighted measurements into
a well-posed problem. The fourth order cumulant expansion for the dMRI signal arising
from a DDE experiment is

log(S/S0) = −BijDij + 1
2BijBk`Cijk`

= −(b1n1in1j + b2n2in2j)Dij + D̄2

6 (b21n1in1jn1kn1` + b22n2in2jn2kn2`)Wijk`

+ b1b2 n1in1jn2kn2`Cijk`.

(3.11)
Here, C is the second cumulant tensor of the dMRI signal expansion in terms of the
b-tensor and satisfies minor and major symmetries:

Cij k` = Cji k` = Cij `k = Ck` ij , (3.12)

but it is not totally symmetric. Its totally symmetric part is proportional to the kurtosis
tensor:

D̄2Wijk` = 3C(ijk`) = Cijk` + Ci`jk + Cik`j . (3.13)

For multiple Gaussian compartments or DDE with long mixing times[70], D and C can
be written as

Dij =
〈
Dij

〉
=
∑
α

fαD
(α)
ij ,

Cijk` =
〈(
Dij − 〈Dij〉

)(
Dk` − 〈Dk`〉

)〉
=
∑
α

fαD
(α)
ij D

(α)
k` −DijDk`,

(3.14)

where fα and D
(α)
ij denote the fraction and diffusion tensor of compartment α, including

in this summation the integral over the unit sphere with the ODF (cf. Eq. 2.14). This
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3. RESOLVING THE WATSON STANDARD MODEL DEGENERACY

motivated naming C as the diffusion tensor covariance [38, 70]. Our definition of C
coincides with the one in [38], and for long mixing times it is also proportional to the Z
tensor (C = Z/(4∆2)), earlier introduced in [70]. The Z tensor is defined more generally,
i.e. not restricted to multiple Gaussian compartments, as a cumulant of the DDE signal.

In the case of a Watson ODF, W and C are transversely isotropic 4th order tensors,
i.e. they have cylindrical symmetry. Hence, instead of having 15 and 21 independent
components they only have 3 and 5, respectively. We can write both tensors as a function
of coordinate independent tensor forms (for full derivation see Appendix A.1), like it is
done for W in [88] (Eq. 6):

W = ω1P + ω2Q + ω3I and C = 1
3D̄

2W + ζ1R + ζ2J, (3.15)

where C was written separating its fully symmetric part from the remaining part [91], and

Pijk` = µiµjµkµ`,

Qijk` = 1
6

(
µiµjδk` + µkµ`δij + µiµkδj` + µjµkδi` + µiµ`δjk + µjµ`δik

)
,

Iijk` = 1
3

(
δijδk` + δikδj` + δi`δjk

)
,

Rijk` = 1
2

(
µiµjδk` + µkµ`δij

)
− 1

4

(
µiµkδj` + µjµkδi` + µiµ`δjk + µjµ`δik

)
,

Jijk` = δijδk` −
1
2

(
δikδj` + δi`δjk

)
,

(3.16)

where δij is the Kronecker delta and µ̂µµ the Watson distribution main direction. Eq. 3.15
shows explicitly that C contains two extra degrees of freedom independent of W. Observe
that the fully symmetric part of R and J vanishes, so that the information encoded in ζ1

and ζ2 is not accessible from a SDE experiment [64]. We can isolate the new non-symmetric
components by the antisymmetrization

Cijk` − Cikj` = ζ1(Rijk` −Rikj`) + ζ2(Jijk` − Jikj`). (3.17)

Considering a coordinate frame with the z-axis parallel to the fibers main direction µ̂µµ, we
can identify

Cxxyy − Cxyxy = 3
2ζ2 and Cxxzz − Cxzxz − Cxxyy + Cxyxy = 3

4ζ1. (3.18)

Similarly to Eq. 3.4 we can relate the elements of C to the biophysical parameters like it
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was done for W. For the SM, including NODDIDA, D and C are given by

Dij =
[
fDa + (1− f)∆e

]
H(2)ij + (1− f)D⊥e δij ,

Cijk` =
[
fD2

a + (1− f)∆2
e
]
H(4)ijk` + (1− f)D⊥e ∆e

(
δijH(2)k` + δk`H(2)ij

)
+ (1− f)D⊥2

e δijδk` −DijDk`,

(3.19)

where

H(2)ij =
∫
S2
P(û)uiuj dSû and H(4)ijk` =

∫
S2
P(û)uiujuku` dSû. (3.20)

These later tensors have the same information as the spherical harmonics of the reciprocal
order and contain the corresponding ODF averages. Previous works have worked with the
same tensors but named them differently, H(2)ij = 〈ninj〉 and H(4)ijk` = 〈ninjnkn`〉 [14].
Note that H(4)ijkk = H(2)ij and H(2)ii = 1. For NODDIDA we get h2(ξ, κ) = H(2)ijninj

and h4(ξ, κ) = H(4)ijk`ninjnkn`, with ξ = µ̂µµ · n̂. The cross-terms of C present new
information not accessible from SDE. This makes the DDE signal able to resolve the
degeneracy. To make this explicit, we can write the components isolated in Eq. 3.18 in
the adapted coordinate frame in terms of BP parameters:

3
2ζ2 =Cxxyy−Cxyxy=(1−f)

[
D⊥e ∆e

(
H(2)xx +H(2)yy

)
+D⊥e

2
]
−DxxDyy

=(1−f)
[
2D⊥e ∆eh2(0, κ) +D⊥e

2
]
−D⊥2

3
4ζ1 = Cxxzz−Cxzxz−Cxxyy+Cxyxy=(1−f)D⊥e ∆e

(
H(2)zz−H(2)yy

)
−Dxx(Dzz−Dyy)

= (1−f)D⊥e ∆e
(
h2(1, κ)− h2(0, κ)

)
−D⊥(D‖−D⊥)

(3.21)
Those 2 equations are independent to the ones in Eq. 3.4, adding complementary inform-
ation to the mapping between DK and BP spaces (see last column in Table 3.1). Using
the same variables defined in Eq. 3.5 we get

2h2(0, κ)δ+ε = 3
2ζ2+D⊥2 and

(
h2(1, κ)−h2(0, κ)

)
δ = 3

4ζ1+D⊥(D‖−D⊥) (3.22)

These two equations enlarge the system in Eq. 3.6. Following the derivation in Appendix
A.2, we demonstrate that they determine a single solution for κ:

h4(1, κ)
h4(0, κ) =

1
3W‖D̄

2 − 3
2(ζ1 + ζ2) + (D‖ −D⊥)2

1
3W⊥D̄

2 − 3
2ζ2

(3.23)

since the left-hand side is a strictly monotone increasing function on κ. This agrees with
recent work by Cotaar et al. [92], who showed that combining different b-tensor shapes
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can determine robustly fibre dispersion. Observe that the cases f = 0 or f = 1 reflect only
an apparent degeneracy, as different parameter sets represent the same physical model.
In contrast, the case of κ = 0 presents a proper degeneracy of the model due to lack of
information, where different model instances have identical D and C tensors.

3.3.3 In silico experiments

We have shown theoretically that complementary information from DDE available in O(b2)
acquisitions is sufficient for unique estimation of Watson SM parameters. Furthermore,
we performed in silico experiments in a wide variety of model parameter combinations to
show that in the presence of noise DDE estimates are more robust.

Signal generation

All synthetic measurements were generated from substrates composed of 1µm diameter
cylinders to simultaneously assess our stick approximation. We found this difference was
below the noise level. We computed the signal attenuation in the cylinder’s perpendicular
plane with the Gaussian Phase Approximation (GPA) for both SDE [93] and DDE [80].

Since there is no closed analytical solution for the integral on the sphere in Eq. 3.9, we
computed the spherical convolution using Lebedev’s quadrature [94]:∫

S2
f(û)dSû ≈

∑
i

wif(ûi), (3.24)

where wi are the quadrature weights of each grid point ûi across the unit sphere. For
all configurations of SDE and DDE we used 1,202 quadrature points, which guarantee
an exact result up to a 59th order spherical harmonics decomposition of the ODF. No
practical differences were found between the results from our SDE implementation and
the analytic summation for SDE in [46].

Finally, Rician noise was added to the synthetic signals, normalising it to obtain a
SNR = 50 for the b0 measurements, like in [57].

Parameter estimation algorithm

Parameter estimation was based on a nonlinear least squares estimator. This was justified
due to the relatively high SNR considered for the experiments, where Rician noise can
be approximated as Gaussian [95]. We used the Trust Region Reflective algorithm imple-
mented in the MATLAB (R2016a, MathWorks, Natick, MA, USA) optimisation toolbox.
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3.3 Solving the degeneracy with orthogonal information

The objective cost function was

F (θ) =
N∑
i

(
S(Bi,θ)− SNODDIDA(Bi,θ)

)2
, (3.25)

where N is the total number of measurements, Bi indicates the b-tensor used in the i-th
measurement and θ = {f,Da, D

‖
e , D⊥e , κ} are the model parameters. The main direction

of the fibres, µ̂, and S0 were fitted independently in a first stage through a DTI fitting
like in [57]. For all configurations, this optimisation procedure was repeated using 30
independent random initialisations for the model parameters to avoid local minima of the
five-dimensional cost function. The local solution with the lowest residue was the global
optimum.

SDE and DDE tested configurations

Five encoding configurations were considered: DDE60+0, DDE40+20, DDE30+30, DDE20+40,
and DDE0+60, with progressively increasing proportions of perpendicular direction pairs,
b, with respect to parallel direction pairs, a, denoted as DDEa+b. Observe that DDE60+0

is equivalent to SDE if multiple Gaussian compartments are assumed.

Figure 3.1: Diagram of different measurement protocols (SDE, DDE30+30, and DDE0+60).
Only SDE and DDE30+30 were used in experiment 1, while they all were used in exper-
iment 2. Blue colours denote the SDE directions or DDE parallel direction pairs. DDE
perpendicular direction pairs are in red.

We compared the SDE protocol used in [57] against different DDE acquisitions with
the same number of measurements that can be measured in a similar experimental time.
The SDE measurement protocol had two shells with b-values of 1 and 2 ms/µm2 with
30 directions each [57]. These directions were generated using the Sparse and Optimal
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Acquisition (SOA) scheme [96]. DDE configurations were also divided in 2 shells with the
same b-values as above and both directions in each pair had equal individual diffusion
weightings, b1 = b2 = 1

2b. Thus, perpendicular direction pairs define axially symmetric
planar b-tensors, uniquely defined by their normal vector. We generated homogeneously
distributed normal vectors using the same algorithm used for the SDE directions. The
DDE30+30 acquisition had 30 parallel direction pairs and 30 perpendicular direction pairs
with normal vectors coinciding with the parallel pairs [81] (see middle diagram in Fig. 3.1).
The DDE0+60 protocol had only perpendicular directions pairs (right diagram in Fig.
3.1). Configuration DDE40+20 had two parallel per each perpendicular directions pair,
and DDE20+40 two perpendicular per each parallel directions pair. All acquisitions had 5
non diffusion-weighted measurements (i.e. b0 measurements).

Experimental settings

We performed two in silico experiments to assess whether the addition of DDE meas-
urements can enhance the parameter estimation in the presence of typical noise in the
measurements.

In the first experiment, we considered two possible instances of NODDIDA parameter
values for a voxel in the posterior limb of the internal capsule (PLIC) taken from [57]
(see Table 3.2), for which SDE estimates showed a bimodal distribution. We explored in
detail whether DDE solves the degeneracy between these particular cases. Only SDE and
DDE30+30 acquisition configurations were considered for this experiment. 2500 independ-
ent realisations of Rician noise were added to the synthetic SDE and DDE signals. The
SNR was set to 50 in the b0 measurementents to compare our results with [57].

Table 3.2: Ground truth NODDIDA parameters used in experiment 1.

Model parameter SET A SET B
f 0.38 0.77
Da [µm2/ms] 0.50 2.23
D‖e [µm2/ms] 2.10 0.16
D⊥e [µm2/ms] 0.74 1.48
c2 (κ) 0.98 (64) 0.70 (4)

The second experiment aims to compare the accuracy and precision provided by SDE
and the different DDE configurations extensively along the feasible region of the full five-
dimensional (5D) space of parameters (diffusivities between 0 and 3µm2/ms, fraction
between 0 and 1, and κ positive). This allows exploring whether there are subregions
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presenting different behaviours. A 5D grid was generated by all the combinations of
f = [0.1, 0.3, 0.5, 0.7, 0.9], Da = [0.3, 0.8, 1.3, 1.8, 2.3]µm2/ms, D‖e = [0.8, 1.3, 1.8]µm2/ms,
D⊥e = [0.5, 1, 1.5]µm2/ms, and κ = [0.84, 2.58, 4.75, 9.27, 15.53, 33.70]. The fraction and
the diffusivities were selected from a uniform discretisation of the expected range, and
κ values were chosen such that the mean-squared-cosine corresponding angle, 〈cos2 ϕ〉 =
c2 = 〈(û · µ̂µµ)2〉 =

(
2
√
κF (
√
κ)
)−1 − (2κ)−1, was ϕ = [50◦, 40◦, 30◦, 20◦, 15◦, 10◦] (c2 =

[0.41, 0.59, 0.75, 0.88, 0.93, 0.97]). We generated 50 independent Rician noise realisations
(SNR=50 to enable a direct comparison with experiment 1) for the measurements of each
combination of the parameters for the five configurations.

3.4 Results

Histograms of the estimated model parameters from the first experiment (Fig. 3.2) show
an increase in the accuracy and precision of the estimates with the DDE scheme. The
bimodal distribution of the estimated parameters is evident with the SDE acquisition,
confirming that it is not possible to differentiate true and spurious minima. This effect is
removed when using the DDE sequence.

We analysed the shapes of the SDE and DDE objective functions from the synthetic
measurements of SET A (sum of squared differences: FA(θ)). To facilitate the visu-
alisation of these 5D functions, we performed a 1D cut through a straight line join-
ing the true and spurious minima of SDE. This was parametrised with the scalar vari-
able t: θ = tθspur + (1 − t)θtrue ; t ∈ [0, 1], where θtrue = [0.38, 0.5, 2.1, 0.74, 64] and
θspur = [0.78, 2.67, 0.32, 0.85, 3.65], with diffusivities expressed in µm2/ms. Figure 3.3
shows the behaviour of FA(θ) along this cut as a function of t. It can be observed
that although the DDE objective function is still bimodal, the spurious and true minima
have significantly different absolute values (due to the contribution of the tensor C to the
DDE signal). This enables to distinguish both peaks in conditions where SDE cannot
(i.e. bmax = 2ms/µm2). Adding more directions to the SDE acquisition would not help
to differentiate the peaks. Only by increasing the SDE diffusion weighting the spurious
minimum could be differentiated from the true one.

For each point in the 5D grid of parameters, the Root Mean Square Error (RMSE, for
definition see for instance [97]) of each parameter has been computed from 50 independent
noise realisations. The distributions of RMSE of the parameter estimates from this second
experiment are displayed in Fig. 3.4 with violin plots (similar to box plots but showing also
estimated probability density [98]). The summary statistics of the RMSE distributions
are shown in Table 3.3. On average, DDE40+20 and DDE30+30 are the most accurate
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Figure 3.2: Histograms of the estimated model parameters for SDE (top row) and
DDE30+30 (bottom row) schemes in the first experiment for 2,500 independent noise real-
isations (SNR=50). The ground truth represents two possible solutions of the NODDIDA
model applied to a voxel in the PLIC (Table 3.2). These values are shown in blue lines
and correspond to set A (upper two rows), and set B (lower two rows).
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Figure 3.3: Plots of FA(θ(t)) for different values of t ∈ [−0.05, 1.05], with θ(t) = tθspur +
(1− t)θtrue. Black curves show FA values for noise-free SDE and DDE30+30 acquisitions.
The coloured curves show 30 independent realisations of FA for SNR=50.

configurations for estimating all parameters. This suggests that the incorporation of even a
small proportion of DDE measurements can remove the degeneracy, leading to an increase
in accuracy and precision. To compare the performance of SDE and DDE in different

Figure 3.4: Violin plots of the RMSE for all model parameters for all voxels in the 5D
grid (a total of 5×5×3×3×6). Black dots denote the mean and red lines the median.

regions of the parameter space, we projected the 5D RMSE map onto different 3D sub-
spaces. Projections were made by computing the square root of the quadratic mean of
the errors in the remaining 2 dimensions, Eproj,ijk =

√∑
`

∑
mE

2
ijk`m/(N`Nm). Figure

3.5 shows two different 3D projections, over (D‖e ,D⊥e , c2(κ)) and over (f,Da, c2(κ)), of the
RMSE of f and Da, respectively. The highest improvement of DDE with respect to SDE
is associated with low c2 values, while for highly aligned voxels the performances of both
schemes is similar.

3.5 Discussion

In this chapter, we show that modifying the diffusion MRI pulse sequence can mitigate
the degeneracy on the Watson-SM (NODDIDA) parameter estimation. Our proposal cir-
cumvents the need of presetting diffusivities to a priori values as in NODDI. We showed
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Figure 3.5: The RMSE of f and Da, for SDE and DDE40+20 acquisition protocols, is
shown in top and bottom rows, respectively. These 3D plots show the projection over D‖e ,
D⊥e , and c2 for f and over f , Da, and c2 for Da of all the points in the 5D grid. Black dots
denote actual grid points, linear interpolation was used to generate the colour figures.

38



3.5 Discussion

Table 3.3: Mean and standard deviation of the RMSE over the whole grid for each acquis-
ition protocol and each of the estimated parameters.

RMSE (µ;σ) f Da[µm2/ms] D
‖
e [µm2/ms] D⊥e [µm2/ms] c2 = f(κ)

SDE 0.14 ; 0.12 0.74 ; 0.43 0.51 ; 0.33 0.33 ; 0.27 0.13 ; 0.08
DDE40+20 0.10 ; 0.10 0.39 ; 0.30 0.41 ; 0.31 0.29 ; 0.25 0.08 ; 0.07
DDE30+30 0.11 ; 0.10 0.39 ; 0.29 0.42 ; 0.30 0.30 ; 0.25 0.08 ; 0.07
DDE20+40 0.11 ; 0.10 0.40 ; 0.30 0.43 ; 0.31 0.31 ; 0.25 0.08 ; 0.07
DDE0+60 0.20 ; 0.13 0.72 ; 0.38 0.65 ; 0.28 0.46 ; 0.27 0.18 ; 0.11

that estimating the NODDIDA model through SDE is generally an ill-posed problem.
Depending on the specific combination of model parameters, multiple parameter sets may
produce the same signal profile. We show analytically that DDE makes parameter estim-
ation well-posed, and illustrate for a particular model instance the better behaved cost
function obtained with DDE. In silico experiments over a wide range of model parameter
combinations confirmed that extending the acquisition to DDE makes the inverse prob-
lem well-posed and solves the degeneracy in the parameter estimation. Combining DDE
parallel (i.e. LTE) and perpendicular (i.e. PTE) direction pairs not only provides more
stable parameter estimates but also increases their accuracy and precision.

In Section 3.3.2, we showed that considering a noise-free scenario, in the case of fibres
following a Watson ODF with known (nonzero) concentration parameter κ (including the
case of parallel fibres), the inverse problem of recovering biophysical parameters from SDE
measurements is well-posed. This is not the case for arbitrary unknown concentration κ,
where Jelescu [57] first showed experimentally that the parameter estimation from SDE
with intermediate b-values was degenerated. This was analysed in [86] showing that there
were two nonlinear equations providing possible solutions. We demonstrated that in the
absence of noise the number of BP parameter sets that describe the signal equally well up to
O(b2) can be either 1, 2, or 4. In contrast, we showed analytically that the C tensor includes
non-symmetric independent components that are accessible by DDE, but not by SDE,
allowing the complete inverse mapping between the cumulant signal representation and
BP parameter space. Consistently, the first experiment showed that in both of the PLIC
synthetic voxels, DDE leads to more accurate and precise parameter estimations. This is
clearly seen when analysing the optimisation cost-function which shows that although DDE
also presents multiple local minima, the global minimum is substantially deeper, unlike
SDE, thus it can be picked in typical noise levels. However, two points in the 5D model
parameter space are insufficient to draw more general conclusions. Therefore, the second
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experiment swept the parameter space extensively using a regular grid. Mean results (see
Table 3.3) showed the minimum RMSE for an acquisition consisting of both linear and
planar b-tensors, suggesting that the optimal combination for the scenario considered is
between DDE40+20 and DDE30+30 configurations.

Increasing the total number of measurements and SNR will have a larger impact in
enhancing DDE parameter estimation than with SDE, since the bimodality present in
SDE implies a non-zero lower bound for the achievable MSE even without noise. Results
from [82] show that the addition of STE data also leads to an increase in the precision
of Da and f in in vivo experiments. In our synthetic experiments the addition of PTE
data reduces the RMSE in all the parameter estimates (to a lesser extent in f and D⊥e ).
Recently, Dhital et al. [83] showed through in silico experiments that incorporating PTE
data to LTE data enabled us to discriminate spurious solutions in the cost-function. This
latter result is explained by our theoretical analysis in Section 3.3.2 where we derive the
independent equations provided by DDE that make the inverse problem well-posed. A
recent paper by Reisert et al. [99] reached similar conclusions for the general SM.

Biophysical models are promising for extracting microstructure-specific information
but care must be taken when applying them in dMRI. Some assumptions are more mean-
ingful than others and hence their impact on parameter estimation must be assessed [6].
Invalid assumptions in the model will likely produce bias in the resulting microstructural
information, which is epistemic and thus such biases cannot be removed simply by re-
moving the degeneracy. Releasing the diffusivities in the typical two-compartment model
eliminates an invalid assumption, reduces possible biases in the estimated parameters,
and provides extra information amenable to be used as a biomarker of microstructural
integrity and sensitive to specific disease processes [15, 58, 100]. In this chapter, we have
focused on analysing the estimability of the model under different acquisition settings.
The validation against complementary real data is an independent problem. Limitations
in both fronts should be understood further to bring biophysical models to the clinic.

Jespersen et al. [49] showed the estimation of the SM was stable and without degen-
eracy when using extremely high b-values (15ms/µm2) on ex vivo data. Recent work by
Novikov et al. [14] studied the unconstrained SM and concluded that if high b-values
are unfeasible then orthogonal measurements might be an alternative to uniquely relate
the kernel parameters to the signal. Veraart et al. extended the SM to acquisitions with
varying echo time (TE) [101]. This latter work goes in a similar direction to our work here,
i.e. adding extra dimensions to the experiment and changing the objective function to
avoid ill-posedness. However, measuring multiple directions while varying the TE implies
increasing the acquisition time and TE, affecting the SNR. This approach can be combined
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with DDE leading to a DDE acquisition with multiple TEs. Recently, Lampinen et al.
[75] showed that by acquiring data with linear and spherical tensor encodings the accur-
acy in estimating the microstructural anisotropy was increased compared to that derived
from NODDI’s parameters. Additionally, Dhital et al. [102] measured the intracellular
diffusivity using isotropic encoding. These two works point in a similar direction than
ours, i.e. extending the acquisition to combine different shapes of b-tensors to maxim-
ise accuracy and precision. The next chapter studies the generalisation of the model to
a multidimensional diffusion acquisition, since the C tensor can be fully sampled using
different combinations of b-tensor shapes, not only by LTE + PTE.

This chapter’s aim was to demonstrate that it is possible to solve the intrinsic degen-
eracy of the SM with a Watson ODF by using DDE. Although a cylindrically symmetric
ODF might be insufficient to model crossing fibres, it may provide a reasonable approx-
imation in the spinal cord and certain other white matter fibre bundles [103], or in highly
dispersed tissues like gray matter. Work by Tariq et al. has extended the initial NODDI
model to a Bingham ODF [104]. Additionally, Novikov et al. [14] proposed the uncon-
strained SM with ODF to be described by a series of spherical harmonics. The next
chapter will extend this analysis to general ODFs and will explore biophysical models in
general multidimensional dMRI acquisitions [38]. The comparisons made in this chapter
between SDE and DDE protocols do not consider the optimisation of the diffusion dir-
ections in DDE, just taking four arbitrary chosen DDE protocols extrapolated from an
optimised SDE. We expect that further optimisation of the DDE acquisition protocol may
also lead to larger improvements. Finally, the largest errors in the parameter estimates
occur for κ→ 0. This might mean that for highly dispersed tissue (i.e. grey matter) many
measurements might be needed to accurately estimate model parameters.
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Chapter 4

Optimal experiment design in
Multidimensional dMRI

Biophysical tissue models have been proposed in dMRI research to elucidate the link
between microstructural properties and the MR signal. For brain white matter, the re-
search community has developed the SM which has been widely used. However, in clin-
ically applicable acquisition protocols, the inverse problem of recovering SM parameters
from a set of diffusion MRI measurements using pairs of short pulsed field gradients was
shown to be ill-posed. As it was discussed in Chapter 3, combining linear and planar
tensor encoding data allows us to resolve the degeneracy in SM parameter estimation.
Given sufficient measurements, multiple combinations of b-tensor shapes may provide
enough information to estimate all SM parameters. However, in the presence of noise,
some b-tensor sets will provide better results. In this chapter, we focus on combining
multidimensional dMRI and biophysical modelling. We develop a framework for optimal
experimental design of multidimensional dMRI sequences and apply to the SM although
it can be applied to any model. We analyse different metrics that assess the goodness of
the protocols and compute their optimal protocols. Finally, we compare their perform-
ance against non-optimised acquisitions with noise propagation in silico experiments and
analysing in vivo human data.
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4.1 Optimal experiment design literature in dMRI

Optimal experimental designs are of key importance in dMRI. Due to the lengthy acquisi-
tions and hardware requirements for most dMRI techniques, especially those going beyond
DTI, it is crucial that we squeeze our resources. Limited availability of both acquisition
time and advanced hardware, e.g. powerful diffusion gradients, hinder clinical translation
of dMRI methods. Optimal acquisition strategies provide leverage in these regards by
reducing scan times and/or improve the quality of computed diffusion parametric images.

Jones et al. [33] were among the first to study the impact of the diffusion directions
and b-value for precise diffusion tensor imaging (DTI). With numerical simulations they
concluded that the optimal diffusion weighting should be approximately 1.1 × 3/Tr(D),
and that diffusion directions should be isotropically distributed for maximum precision.
Alexander et al. used Monte Carlo simulations to obtain optimal imaging parameters for
fibre orientation estimation [105]. They considered one and two fibres per voxel, which
they modelled with diffusion tensors. Brihuega-Moreno et al. [106] used the well-known
Cramér-Rao bounds (CRB) [107, 108] to derive an optimal protocol for apparent diffusion
coefficient estimation considering Gaussian noise. The use of such bounds for analysing
experimental designs is widespread in estimation theory [97]. CRB were also used by
Beltrachini et al. to analyse errors in DTI derived metrics when multiple coil acquisition
systems are used [109]. Poot et al. [110] also used CRB but to propose an optimal
acquisition for Diffusion Kurtosis Imaging (DKI) considering Rician distributed noise.
Moving away from signal representations, Alexander [111] was one of the first to optimise
the diffusion sequence parameters for a biophysical model. He considered the composite
hindered and restricted model of diffusion (CHARMED) model [44], and selected the
sequence parameters (δ, ∆, |g| and n̂) that minimised the CRB of the model parameters
(axon radius, water fraction, parallel and perpendicular diffusivities) considering a Rician
noise distribution. Furthermore, CRB have also been used in a DDE scheme to optimise
the acquisition parameters in filter exchange imaging [112]. The use real valued data as
proposed in [113] has the advantage of making the noise distribution become Gaussian.
This simplifies CRB computation, although for high SNR one might approximate the
Rician distribution with a Gaussian [95].

Most approaches targeted at optimising the data acquisition have been developed for
SDE. Recently, multidimensional dMRI has gained attention in this regard as well. From
the acquisition perspective, there are works focusing on the generation of efficient q-space
trajectories, i.e. gradient waveforms. Dronbjak et al. [114, 115] developed a matrix
formalism to design optimal gradient waveforms for maximising microstructural. Other
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works have focused on minimising the echo time of q-space trajectories while hardware
constraints are satisfied [116], and also on generating waveforms that reduce image artifacts
[117]. Our goal comes from the modelling viewpoint, which is to optimally select the
combination of b-tensor encodings that best inform the SM. Afzali et al. [118] used
numerical simulations to compare the estimation errors of the SM for various combinations
of LTE, PTE and STE encodings. This points in a similar direction to our work here but it
was limited to a few discrete combinations of b-tensors and only to WM regions where the
ODF can be modelled with a Watson distribution. Additionally, Bates et al. [119] proposed
to use a quadrature design to recover the underlying diffusion tensor distribution. They
explored the full space of axially symmetric b-tensors but only considered the DIAMOND
signal representation [120]. Our work in [121] is the most aligned with this chapter.
There, we explored the full space of isotropically distributed b-tensors and selected the
combination that maximised the precision in the elements of the cumulant expansion,
assuming this may be a good enough suboptimal for the full SM.

4.2 Rationale of our approach

4.2.1 Problem statement

B-tensors are rank-2 and symmetric. Thus, a set of b-tensors (B-set) with K measurements
{Bk}Kk=1, has 6K independent parameters. We consider that the total number of measure-
ments is fixed. This means that our goal is to find in this 6K-dimensional space the B-set
that minimises the estimation error. Thus, our problem factorises into two sub-problems.
Firstly, we must define a metric that assesses the estimation error that a certain B-set
will have. We propose a loss-function based on the Cramér-Rao Bounds of the SM kernel
parameters (f,Da, D

‖
e , and D⊥e ). These bounds were computed using an approximation

based on the cumulant expansion, which let us discard acquisitions leading to degenerate
parameter estimates. Secondly, we have to find the B-set that minimises such metric in
the high-dimensional acquisition space, for which we use stochastic optimisation.

Our goal is to maximise accuracy and precision of the SM kernel parameters. A stand-
ard loss function that considers both is the mean squared error (MSE(θ̂) = bias(θ̂)2 +
var(θ̂)), where θ̂ is our parameter estimator. We could use the MSE to choose the optimal
B-set but, due to the nonlinearity of the problem, we would have to compute it with nu-
merical simulations of noise propagation like it was done in Section 3.4. Our optimisation
demands a large number of loss-function evaluations making MSE minimisation unfeasible.
Since a faster metric is needed, we propose to construct our loss-function using CRB.
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4.2.2 Cramér-Rao Bounds

A widespread approach for optimal experiment design is the minimisation of a loss func-
tion based on the CRB of the parameters of interest. If some mild regularity conditions
are satisfied (see [97]), these bounds provide a theoretical limit to the variance that any
unbiased estimator of the model parameters θ = [θ1...θN ] can have and are defined as:

covθ≥CRBθ=[I(θ)]−1, I(θ)ij =−E
[

∂2

∂θi∂θj
log f(x|θ)

]
, i, j = 1...N, (4.1)

where f(x|θ) is the likelihood, I(θ) is the Fisher information (a matrix in the multivariate
case), and covθ is the covariance matrix. If we are not interested in θ but in a vector
function ψ(θ), we may linearly propagate these bounds such that

covψ≥CRBψ= ∂ψ(θ)
∂θ

CRBθ
∂ψ(θ)
∂θ

t

, (4.2)

where ∂ψ(θ)
∂θ is the Jacobian matrix and covψ≥CRBψ means that covψ−CRBψ is positive

semidefinite [97]. CRB are fast to compute when analytical formulations are available.
Thus, they are frequently employed to explore the ‘goodness’ of different experimental
designs across the acquisition parameter space.

4.2.3 Metric definition

We have seen that CRB has several desirable properties that makes it a very good can-
didate to define our metric. However, Figure 3.3 shows that even acquisitions where the
solution to the inverse problem is unique present a multi-modal likelihood. The problem
with multi-modal likelihoods is that the existence of local minima far away from the true
solution is not penalised by CRB. This is because Fisher information is defined as the
expected local curvature, cf. Eq. 4.1. For our purpose, this insensitivity is undesired
because if these minima have similar values to the global solution, maximum likelihood
estimators become degenerate, e.g. when using only LTE. Multimodality does not affect
the validity of CRB since CRB are still smaller than any achievable variance by unbiased
estimators. The problem is that in such cases the actual variance of maximum likelihood
estimators is far bigger than the CRB. Thus, is it possible that a B-set with a smaller
CRB gives degenerate parameter estimates, which we want to avoid. As shown in Fig.
4.1, a higher local curvature, i.e. a smaller CRB value, may not be preferred in scenarios
involving multi-modal likelihoods. Thus, computing the CRB directly will not provide
sensitivity to the existence of degenerate SM parameter estimates in multidimensional
dMRI acquisitions.
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Figure 4.1: Different noise instances (along X) of two 1D likelihoods are plotted. Although
P1 has a lower curvature at θ∗ and thus, higher CRB, it is preferred to P2.

To simultaneously avoid degeneracy and maximise precision, we propose a CRB-based
metric that is not computed directly but in two steps. In the first step, we compute the
CRB for the independent elements of D and C in the second order cumulant expansion
(cf. Eq. 3.11). This presents interesting properties. First, it is a convex problem, thus
unimodal, meaning that minimising CRB is a good criteria for optimal design. Second,
the SM parameters can be fully determined from the cumulant tensors (see [122] and
Appendix A.3). Thus, by maximising precision on all cumulants we guarantee that the
SM estimation is not degenerate. This first step is similar to our previous work in [121],
where we minimised the product of the CRB of all cumulants, i.e. the determinant of the
Fisher Information matrix, instead of their sum (cf. C-optimality vs D-optimality [123]).
Nonetheless, the accuracy of the SM parameters is not necessarily monotonic regarding
the accuracy of the cumulant tensors, meaning that the cumulant-optimal acquisition may
be distinct from the SM-optimal acquisition. Thus, in the second step, proposed in this
chapter, kernel parameters are conceived as functions of the cumulants. Here, we propagate
the cumulants’ CRB to the kernel parameters (see Eq. 4.2), using the mapping between
the cumulants and the kernel given by Eq. A.9. The benefit of this second step is that we
weigh accordingly each cumulant since they are not equally important for the estimation
of the kernel parameters. Therefore we can expect that, in general, our loss function
would be a good approximation of the kernel’s CRB for acquisitions determining the SM
parameters without degeneration, while diverging for degenerate acquisitions. Note that
accessing all cumulants is not necessary but a sufficient condition to avoid degeneracy in
SM parameter estimation. It may be possible that there are acquisitions that achieve the
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latter without the former although we have not been able to find them.
Like it was done in [111], to construct a scalar metric for the optimisation, we use the

sum of the coefficients of variation of the kernel parameters with the CRB replacing the
unknown kernel variances:

F =
4∑

a=1
CRBψ aa/x2

a. (4.3)

Eq. 4.3 depends on the kernel and ODF specific values since these determine CRBψ.
Thus, we define our scalar metric by integrating F over the kernel and ODF parameter
space H and dividing it by the integration volume:

F̂ = 1
vol(H)

∫
H
F (x) dx, (4.4)

where x = {f,Da, D
‖
e , D⊥e , p`m} and p`m are the spherical harmonics of the ODF (cf.

Eq. 2.13). This metric assesses how well on average a B-set recovers SM kernel para-
meters. Simulations showed that the ranking of B-sets by Eq. 4.3 does not vary much
with the kernel parameters. Thus, to speed up the computation, we computed Eq. 4.4
averaging F over 30 different ODF that corresponded to isotropically oriented Wat-
son distributions and a single set of kernel parameters. These values were fixed to
f = 0.55, Da = 2.1µm2/ms, D

‖
e = 1.8µm2/ms, D⊥e = 0.7µm2/ms. Increasing the num-

ber of ODFs in the averaging did not vary the metric significantly.
Our interest lies in clinically feasible acquisitions, thus, we limited the maximum b-

value to bmax = 2ms/µm2. We considered that the SNR was > 2 and approximated MR
Rician noise as Gaussian [95]. In this case, the Fisher information of the cumulants for a
B-set can be written as:

I({Bk}Kk=1;θ)ij = 1
σ2

K∑
k=1

∂S(Bk;θ)
∂θi

∂S(Bk;θ)
∂θj

, i, j = 1...27, (4.5)

where S(Bk;θ) is the second order cumulant expansion (cf. Eq. 3.11), θ is a vector
containing all independent elements in D and C (27 in total), σ2 is the noise variance,
and K is the number of total measurements. For more general scenarios, other noise
models can be incorporated by modifying Eq. 4.5 but this comes at the cost of higher
computational time.

4.2.4 Optimisation strategy and constraints

Due to the high dimensionality of the problem and multiple local minima in the space
of b-tensors, a hybrid two-step optimisation strategy was adopted: First a stochastic
optimization is applied, whose output initializes a subsequent gradient-descent local search.
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This combines the robustness against local minima of stochastic optimisation and the
rapid convergence of greedy approaches. We tested the robustness of our hybrid strategy
in high-dimensional toy examples such as Ackley’s function [124] for 50, 100, and 200
dimensions. The Self-Organising Migrating Algorithm (SOMA) [125] was chosen as the
best stochastic optimisation from several tested state-of-the-art algorithms [126–128]. Our
hybrid approach consistently found the global optimum (results not shown).

We performed the optimisation on three separate scenarios, defined by different sets of
constraints to the B-sets, progressively increasing the measurement space. The b-tensors
were parametrised with their eigenvalues λ1, λ2, λ3, which define the tensor shape and
size, and their eigenvectors v̂1, v̂2, v̂3, which define their orientation. Without symmetry
constraints, tensor shape is characterised by two parameters, while its size, i.e. b-value,
is defined by one. For axisymmetric shapes, only one parameter (η ∈ [−1

2 , 1]) describes
the shape Bij = b

(
η ninj + 1−η

3 δij
)
. LTE, STE and PTE correspond to η = 1, η = 0

and η = −1
2 , respectively. Figure 2.8 shows all possible tensor shapes lie in a plane

while axisymmetric shapes lie on a line (the two upper edges of the triangle). The first
constraint, (C1), fixed the trace and eigenvectors of each b-tensor, leaving free their shapes
but restricting these to have axial symmetry:

λ1,i + λ2,i + λ3,i = bi, with λ2,i = λ3,i. (4.6)

Here, b-values were grouped into two shells of 1−2 ms/µm2 with half of the measurements
each and eigenvectors were distributed uniformly in the hemisphere using a scheme based
on [129]. The second constraint, (C2), fixed the eigenvectors like C1, leaving individual
shapes (with axial symmetry) and b-values free to vary:

0 ≤ λ1,i + λ2,i + λ3,i ≤ bmax, with λ2,i = λ3,i. (4.7)

The third constraint, (C3), only fixed the eigenvectors, leaving individual shapes (without
imposing symmetries) and b-values free:

0 ≤ λ1,i + λ2,i + λ3,i ≤ bmax. (4.8)

Since b-tensors are positive semidefinite and the maximum b-value is limited, the search
space was restricted to 0 ≤ λ1 + λ2 + λ3 = b ≤ bmax = 2 ms/µm2. Figure 4.2 shows a
representation of how the three constraints progressively increase the acquisition space.

B-sets ofK=60 b-tensors were considered for the optimisation. We assumed a constant
noise level, independent of the tensor shape and diffusion weighting. For each of the 3
constraints, SOMA was run with a population of 60 times the number of free parameters
and 500 migrations.
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Figure 4.2: Representation of the three optimisation constraints. Since all eigenvectors are
fixed, each b-tensor is represented by a point in this 3D space. Here, green indicates the
subspace where the b-tensors in each constraint are allowed to be. From left to right: C1
(one free parameter per b-tensor), C2 (two free parameters per b-tensor), and C3 (three
free parameters per b-tensor).

4.3 Experiments

Using CRB, we have defined a metric that assesses the SM estimation performance of a
given combination of b-tensors. With stochastic optimisation, we search in the continuous
acquisition space for the B-set that minimises such metric. Finally, we perform a set of
synthetic and in vivo experiments comparing the estimation errors from the optimised
protocol and combinations of LTE, PTE, and STE.

B-sets of K=60 b-tensors were considered for the optimisation. A constant noise level,
independent of the tensor shape and diffusion weighting was assumed. SOMA was run
with a population of 60 times the number of free parameters and 500 migrations for each
of the constraints.

To assess the performance of the optimal B-set for recovering model parameters, we
performed an in silico noise propagation analysis. We compared the optimal protocol from
C3 against balanced combinations of LTE+PTE, LTE+STE and LTEonly data (see Section
4.3.1 for acquisition details). Although LTEonly scanned data had bmax = 2ms/µm2, for
in silico experiments we considered bmax =5ms/µm2 to highlight the benefit of combining
different diffusion encodings. We generated synthetic signals from 7000 random voxels
corresponding to each acquisition, added noise (SNR=100, to ensure the existence of
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non-degenerate parameter estimation on the optimal acquisition), estimated the kernel
parameters and computed the root mean squared error (RMSE). Signals were generated
with Eq. 3.9 considering random kernel sets and a crossing fibres ODF with `max = 4.
Additionally, we acquired multidimensional dMRI data on two healthy volunteers to assess
the variability in the kernel estimates of our optimised acquisition and compare it with
suboptimal acquisitions.

4.3.1 MRI data acquisition

Three healthy volunteers were imaged on a Siemens Prisma 3T whole-body MRI scanner.
The local Institutional Review Board approved the study and informed consent was ob-
tained and documented from all participants. The MRI scanner had a 80mT/m gradient
system and a 64-channel receiver head coil. The body coil was used for transmission.
Maxwell-compensated asymmetric waveforms were used for LTE, PTE, and STE acquis-
itions [117]. Four B-sets were acquired, each with 80 isotropically distributed b-tensors
and 6 b0 images. The first B-set LTE+PTEoptimal, was based on the results from C3
optimisation. It had 30 LTE measurements at b = 1ms/µm2 and 16 LTE + 34 PTE
at b = 2ms/µm2. The second B-set LTE+PTEsuboptimal, had the same number of LTE
and PTE measurements, 10 LTE + 10 PTE at b = 1ms/µm2 and 30 LTE + 30 PTE at
b = 2ms/µm2. The third B-set LTE+STE, had 15 LTE at b = 1ms/µm2, 41 LTE at
b = 2ms/µm2 and 6 STE at b = 0.5, 1, 1.5, 2ms/µm2. The fourth B-set LTEonly, had 20
LTE at b = 1ms/µm2 and 60 LTE at b = 2ms/µm2. The following imaging parameters
were kept constant throughout the data acquisition sequences: repetition time: 7.2s, echo
time: 94 ms, NEX: 1, resolution: 2.5mm isotropic, in plane FOV: 220mm, slices: 58,
parallel imaging: GRAPPA with acceleration factor 2, reconstructed using the adaptive
combine algorithm and no partial Fourier. The scan time for all four B-sets was around 45
minutes per participant and LTE measurements in the LTE+STE B-set were subsampled
from the LTEonly dataset.

4.3.2 Data processing

MRI data was first denoised using a Marchenko-Pastur principal component analysis
method [130]. By preserving only the significant principal components in the signal,
this method achieves a reduction of the noise without smoothing. Denoised images were
corrected for Gibbs ringing artifacts based on re-sampling the image using local sub-voxel
shifts [131]. For both methods we used implementations available in MRtrix3 [132]. These
images were rigidly aligned and then corrected for eddy current distortions and subject
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motion simultaneously [133]. A b0 image with reverse phase encoding was used for robust
estimation of susceptibility maps [134].

Parameter estimation was based on a nonlinear least squares estimator

x̂ = arg min
x
‖S (B)− S (B,x)‖2 , (4.9)

where x̂ = {S0, f, fISO, Da, D
‖
e , D⊥e , p`m}. Note that an isotropic compartment with wa-

ter fraction fISO and fixed diffusivity DISO = 3µm2/ms was added to the estimation
procedure of the in vivo data. We considered `max = 4 for the spherical harmonic de-
composition of the ODF because bmax = 2ms/µm2. We used the Trust Region Reflective
algorithm implemented in the MATLAB (R2018a, MathWorks, Natick, MA, USA) optim-
isation toolbox. For all configurations, this optimisation procedure was repeated using
40 independent random initialisations of the model parameters to avoid local minima of
the cost function. The local solution with the lowest residue was considered the global
optimum. To analyse SM parametric maps in WM, a region of interest was drawn using
an FA map and a T1-weighted image.

4.4 Results

4.4.1 In silico experiments

Optimal configurations are very similar for all sets of constraints. Figure 4.3 shows a rep-
resentation of the shapes of resulting B-sets. The shapes of the b-tensors are in all cases
distributed between linear and planar encoding only. There are no spherical tensors. This
is unsurprising since STE measurements are only sensitive to the traces of D and C, while
LTE and PTE each excite a different subset of 21 of the 27 independent cumulants. How-
ever, there are no mixed or asymmetric shapes either. On the less restricted optimisation
(C3), the optimal proportion of LTE data is around 55%. An interesting result is that
in the C2 and C3 optimisations, where tensor traces are free parameters, measurements
group into two shells with unequal number of measurements and only LTE measurements
on the lower shell.

Numerical noise propagation experiments confirmed that B-sets from our optimal ex-
periment design framework are more robust than non-informed combinations of LTE+PTE
or LTE+STE data, or even high-b LTEonly data. Table 4.1 shows the resulting RMSE
from each of the protocols tested. By using the B-set obtained from C3 optimisation, the
RMSE was lowered by 10%, 18% and 29% on average, regarding suboptimal combinations
of LTE and PTE, LTE and STE or using LTEonly respectively. The largest reduction in
the RMSE was seen in D

‖
e and D⊥e .
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Figure 4.3: Results from the optimisation search for the three constraints, C1, C2 and C3
from left to right. Each green dot represents a b-tensor with its corresponding shape (in
plane position) and b-value (vertical position). Although these solutions initially had 1, 2
and 3 free parameters (fp) per tensor, measurements clustered themselves into two shells
(b ≈ 1− 2ms/µm2) and two different shapes (LTE and PTE).

Table 4.1: RMSE for each acquisition protocol and each estimated parameter (SNR=100).

RMSE f Da[µm2/ms] D
‖
e [µm2/ms] D⊥e [µm2/ms]

LTE + PTEoptimal 0.170 0.456 0.509 0.313
LTE + PTEsuboptimal 0.190 0.496 0.548 0.351
LTE + STE 0.181 0.520 0.689 0.367
LTEonly (bmax =5ms/µm2) 0.229 0.756 0.577 0.327
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4.4.2 Human brain experiments

Fig. 4.4 shows SM parametric maps across the white matter for one subject. These
were computed independently from the 4 B-sets that were acquired. It can be seen that
LTE+PTE parametric maps are less noisy and that values fall in the expected range.
Across practically all the WM we find that Da > D

‖
e . To compare the reproducibility of

all acquisition protocols, we combined the independent measurements in these four B-sets
and estimated the SM parameters from this extended set of 264 DWIs (80 × 3 + 24).
Such estimates were used as gold standard and the estimation error was computed for
each of the individual B-sets, shown in Fig. 4.5. Averaged across the WM of all subjects,
the RMSE was reduced by using the optimised LTE+PTE combination, see Table 4.2.
On average, the improvement in the RMSE was of 7%, 27% and 32% with respect to the
LTE+PTEsuboptimal, LTE+STE and LTEonly acquisitions. Like with in silico experiments,
the largest improvements are seen in D

‖
e , D⊥e .

Table 4.2: RMSE for each individual B-set and each of the estimated parameters averaged
for a coronal WM slice for both subjects. Ground truth values were estimated from
merging the four B-sets as done in Fig. 4.5.

RMSE in WM region f Da[µm2/ms] D
‖
e [µm2/ms] D⊥e [µm2/ms]

LTE + PTEoptimal 0.253 1.251 0.993 0.298
LTE + PTEsuboptimal 0.266 1.290 1.040 0.346
LTE + STE 0.265 1.281 1.353 0.495
LTEonly 0.312 1.656 1.321 0.412

4.5 Discussion

This chapter proposed a novel framework to optimally select the combination of b-tensors
that maximise the accuracy and precision in the estimation of the Standard Model mi-
crostructural parameters. For this, we defined a metric based on the CRB. Our results
were consistent between settings with different constraints: for all of them the optimal
measurement scheme was reached by combinations of linear and planar encodings with
two diffusion weightings. The proposed proportions of LTE and PTE measurements re-
duced the RMSE of each parameter relative to non-informed combinations of LTE+PTE
or LTE+STE for both in silico and in vivo experiments. This improvement is cost free.

This is the first work where multidimensional dMRI acquisitions are optimised for
biophysical models by exploring the full b-tensor space. Previous work on signal repres-
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Figure 4.4: White matter maps of f , Da, D‖e and D⊥e (columns) estimated from four
different B-sets (rows) for a healthy volunteer. It can be seen qualitatively that LTE+PTE
B-sets provide better looking maps. Note that the noisy LTE maps evidence the need of
additional information. Each B-set took less than 10 minutes to acquire.
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Figure 4.5: White matter error maps of f , Da, D‖e and D⊥e (columns) for a healthy
volunteer scanned with four different B-sets (rows). The ground truth for reference was
estimated from merging all four B-sets. It can be seen qualitatively that LTE+PTE B-sets
have smaller errors.
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entations analysed the impact of different combinations of LTE, PTE, and STE, in the
variation of microscopic anisotropy and isotropic kurtosis estimates [135] and in the estim-
ation of constrained spherical deconvolution [136]. Afzali et al. [118] assessed the impact
of different combinations of these b-tensors in parameter estimation of the SM with a
Watson ODF. Furthermore, [119] considered the continuous space of axially symmetric
b-tensors but aimed at the DIAMOND signal representation. This chapter is aligned with
our previous paper [121], however, there the focus was not on the SM directly but on
maximising the precision in the cumulant expansion.

Since almost no works have discussed optimal experimental designs for multidimen-
sional dMRI [118, 119], we aimed to provide insights on how to best sample the full
b-tensor space. The confirmation that no STE or non-axially symmetric b-tensors are
involved in optimal acquisition schemes is interesting and somewhat unexpected. This
might be explained by looking at Eq. 3.11, which shows that STE only couples to two
degrees of freedom of the 2nd-order cumulant expansion (the traces of D and C). This
possibly indicates that LTE and PTE measurements are potentially more informative.
Modifying slightly the proportions of LTE and PTE data does not significantly affect the
loss function. However, the optimal B-set outperformed a non-informed combination of
LTE and PTE data in both in silico and in vivo experiments (See Table 4.1 and Table
4.2). Although low-b signal features, i.e. O(b), are accessible by both LTE and PTE, it
seems LTE is more efficient for extracting these since no PTE measurements are selected
with low b-values. Replacing PTE with STE measurements has a high impact on the
kernel estimation error as shown in Tables 4.1 and 4.2.

Even for the optimal acquisition, Da and D
‖
e estimates were noisy due to the small

bmax. Da estimated values were centred at 2 µm2/ms in the WM (see second column in Fig.
4.4), which follows measurements using high diffusion weighted PTE done by [102] and
with LTE measurements analysing the 1/

√
b scaling with very high b [53]. Our estimates in

most of the WM show that Da > D
‖
e , agreeing with gadolinium-based contrast experiments

in the rat corpus callosum [137]. We would like to stress that each acquired B-set had
only 80 diffusion-weighted measurements since we wanted to compare different acquisition
settings. A clear improvement can be seen when comparing parametric maps from Fig.
4.4 against those in [14] with over 1300 LTE measurements including high-b, showing the
gain achieved by combining LTE and PTE measurements.

Cumulants are defined as derivatives of log(S) at b = 0, i.e. true cumulants. When
fitting Eq. 3.11 to the measurements, if we consider appropriate b-ranges, we get a good
approximation, i.e. fitted cumulants. We do not propose to compute the SM paramet-
ers from the fitted cumulants, similar to what is done by [103]. The nonlinearity of the
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cumulants-SM mapping (Eq. A.9), amplifies the bias in the fitted cumulants to the kernel
[14]. Instead, we propose to use the cumulants to help us discard B-sets leading to de-
generacy in the parameter estimation. We assume true and fitted cumulants have similar
variances, and thus, we can compute CRBθ by pluging in Eq. 3.11 into Eq. 4.5. Fur-
thermore, the linear propagation given by Eq. 4.2 assumes small deviations so that higher
order terms are negligible. Thus, our metric has two strengths. First, it assigns a large
value of CRBθ and thus, of CRBψ, to acquisitions that do not access all cumulants, which
makes the optimisation avoid degeneracy. Second, it weighs CRBθ so that CRBψ relates
to precision in the kernel parameters, penalising large variances over smaller ones.

In this chapter we are limited to intermediate diffusion-weightings, i.e. bmax = 2 ms/µm2.
This enabled us to define our metric based on the cumulant expansion appropriate ap-
proximation only in this b-range [85]. To look for the optimal B-set in a larger b-range
we would need to change the metric since the assumption of similarity in the variances of
true and fitted cumulants may not hold.

Our framework searches for the optimal B-set in the acquisition subspace where there
is no degeneracy, this might be too restrictive. Degeneracy is harmless when spurious
solutions are close to the true solution, or if they can be discarded for falling outside the
range of feasible values (see discussion in A.4). Since our loss function takes high values
in degenerate cases, the optimisation does not rule out the possibility that there exists a
b-tensor combination that leads to a degenerate parameter estimation while achieving a
smaller MSE (see discussion in A.4). To test this we included an LTE+STE B-set in both
in silico and in vivo experiments, which still had larger RMSE than the optimal protocol.

The high-dimensional optimisation has multiple local minima, thus, further improve-
ments on the optimisation strategy may improve the results. However, our hybrid approach
showed robust estimations of global optima in a toy function of similar dimensionality and
complexity. We do not explore the 6K-dimensional acquisition space but restrict ourselves
to isotropically distributed b-tensor orientations (3K-dimensional). Releasing this con-
straint could improve the estimation if the optimal orientations of each group of LTE
and PTE measurements involved some relationship between them. However, this would
likely depend on the details of the ODF, potentially excluding whole brain optimization.
Therefore, constraining them to be independent and isotropically oriented is reasonable
and simplifies the problem considerably.

For in vivo experiments, the ground truth is unknown and this hinders the analysis
of the RMSE. However, by merging all datasets (all encodings), the estimation error is
significantly reduced and this provides a fair estimate for comparison.

Finally, we did not consider different SNR for each b-tensor shape, although the dif-
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ferences in echo times for optimised waveforms are generally not negligible [116]. Further-
more, the assumption that a given q-space trajectory leads to planar or spherical encoding
only holds if we can assume that voxels are comprised of multiple Gaussian compartments.
Violations to this assumption, i.e. the presence of non-Gaussian diffusion, will likely cause
orientational dependence in STE measurements and imperfect PTE [138]. This is more
evident when shorter waveforms are used, however, a way to reduce such effect is by
averaging rotated STE measurements [139].

Future work will explore modifications to the metric to analyse high-b regimes and
noise level dependence on the tensor shape. This may be aligned with an acquisition
with different echo times to simultaneously measure compartmental T2 values as it was
proposed by [101]. Accounting for higher diffusion weightings and different TE for each
shape will likely increase the proportion of LTE measurements. At high b LTE provides
additional information and it can always be performed with a smaller TE than PTE or
STE with the same b-value.
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Chapter 5

Tissue statistics from histological images

In this chapter, we statistically describe histologically stained white matter brain sections
to subsequently inform and validate diffusion MRI techniques. For the first time, we
characterise volume fraction distributions of three of the main structures in deep subcor-
tical white matter (axons, astrocytes, and myelinated axons) in a representative cohort of
an ageing population for which well-characterized neuropathology data is available. We
analysed a set of samples from 90 subjects of the Cognitive Function and Ageing Study
(CFAS), stratified into three groups of 30 subjects each, in relation to the presence of
age-associated deep subcortical lesions. This provides volume fraction distributions in dif-
ferent scenarios relevant to brain diffusion MRI in dementia. We also assess statistically
significant differences found between these groups. In addition, we introduced a frame-
work to quantify volume fraction distributions from 2D immunohistochemistry images,
which is validated against in silico simulations. Since a trade-off between precision and
resolution emerged, we also performed an assessment of the optimal scale for computing
such distributions.

5.1 Histology to inform diffusion MRI

Brain tissue microstructural damage can result from neurodegenerative diseases such as
amyotrophic lateral sclerosis, Parkinson’s disease, and Alzheimer’s disease [2, 140, 141].
These conditions produce gradual deterioration or even death of neurons with concom-
itant alterations in brain structure and function. Devising imaging techniques capable
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of characterising brain tissue microstructure in vivo is topical within neuroimaging. Key
information about brain microstructure is provided by the volumetric densities of the
different WM structures [142]. This knowledge might be valuable not only for research
but also for its potential to help in developing early stage diagnosis of neurodegenerative
diseases through dMRI techniques. The aim of this chapter is to characterise the local
volume fraction distribution of axons, astrocytes, and myelinated axons in deep white
matter for different populations. These are important stereological parameters, but their
distribution has not been previously identified.

Age-associated cerebral white matter lesions can be sub-classified into those within
deep white matter (DWM) of the centrum semiovale (deep subcortical lesion, DSCL)
and those close to the angles of the lateral ventricles (periventricular lesion, PVL). Each
has its own clinical relevance [143], but both are thought to be the consequence of small
vessel-related vascular pathology such as vascular dementia. We analyse DSCLs, which are
associated with loss of myelin components [144] and astrogliosis [145, 146]. To this purpose,
various subjects belonging to groups that represent healthy and diseased conditions were
imaged. We analyse immunohistochemically stained sections of three populations of DWM
samples: Control (no DSCLs were present in the subject), Lesion (the sample presented
DSCLs), and Normal Appearing White Matter (NAWM, the subject presented DSCLs
but not in the sampled tissue).

Tens of thousands of structures such as axons, coexist in 1mm3 of brain tissue [147].
Their arrangement varies between different subjects and also with the presence of disease.
The information obtained from histological analysis has the potential to help in the de-
scription and understanding of healthy tissue, and also in a diverse range of conditions
including multiple sclerosis [148, 149], schizophrenia [150], and Alzheimer’s disease [151].
Volume fraction maps of the main white matter structures can further inform and val-
idate various MRI techniques. Prior distributions on the microstructural parameters of
biophysical models can be generated from this kind of information.

MRI has become a clinical standard to diagnose brain diseases among other conditions
in several body organs [152]. It has a spatial resolution considerably lower than histology.
While MRI voxels are in the order of the millimetres, light microscopy can resolve struc-
tures smaller than a micron. While microscopy can discern individual structures, MRI
can only detect the aggregate signal of the distribution of components within a voxel.
However, MRI has the advantage of being a non-invasive imaging technique that can be
used in vivo. As discussed in Chapter 3 an imaging modality that has gained popularity
is dMRI. Within it, a number of biophysical tissue models [13, 43, 47, 54, 103] have been
proposed, aiming to describe degeneration processes with high sensitivity and specificity.
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As in any other physical problem involving a model, the accuracy of the results relies
on how representative the model is for the phenomenon under study (see recent review
[39]). The validation of dMRI biophysical models is generally hindered by the complexity
and unavailability of the ground truth. Some of the prominent dMRI biophysical models
make unrealistic assumptions and hence renders the results of these models dubious [75].
In addition, in absence of additional information, the precise estimation of the model
parameters requires a huge amount of measurements. This is where the characterisation
of volume fraction (VV ) distributions, or more generally information derived from histology,
can play a key role. This information has the potential to improve the performance of
existing tissue models and help in the validation of new ones. For example, Clayden et al.
[153] showed that by introducing structured prior information on model parameters, the
accuracy in the estimation is improved. Similar work was done by Mozumder et al. [154]
using MRI-derived prior distributions on NODDIDA parameters to solve the degeneracy
in the estimation. Furthermore, Howard et al. [155] proposed to jointly analyse dMRI and
histology data. The interpretation of parameters from several existing dMRI techniques
such as DTI or biophysical models has been previously validated using histological sections
(cf. [45, 49, 74, 156–158]). Additionally, combined analyses of histology and dMRI have
been performed to further understand the development of certain diseases and the healthy
brain [159–162]. Information from histology can also help developing realistic in silico
biomimetic phantoms of brain tissue [163, 164]. Phantoms provide controlled ground
truth that can test different dMRI acquisition schemes and post-processing methods.

Local volume fractions depend on the scale of the windows of observation. Previous
works have only considered the global average VV of white matter structures for the whole
brain or over complete regions [157, 158, 165]. There is little information on which scale
should be considered for computing local volumetric density maps. As in other imaging
fields, there is a trade-off here between precision and resolution [166, 167]. The choice of
a small scale can lead to imprecise estimates due to the comparable size of the structures
and the averaging window. Larger scales yield stable density estimates, but at the price
of losing microstructural detail and hence be uninformative. To define a convenient scale
of analysis, we computed the standard error in volume fraction estimates for windows
of observation of various scales, together with the significant differences found between
adjacent windows. In order to characterise different populations, we required histology
data from a large cohort of subjects. The best option for this was immunohistochemistry.
However, this modality produces slices with non-negligible thickness in comparison with
the structures of interest. Thus, to recover the volume fraction from area fraction measures,
we had to adapt and develop new stereological methods. These methods are an interesting
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additional contribution in themselves.

5.1.1 Methodological overview

This chapter addresses first the challenge of automatic segmentation of histological colour
images, which is achieved with a colour deconvolution step followed by local thresholding.
Then, the high-resolution binary masks are converted into local area fraction (AA) maps,
after analysing the optimal scale for computing such values. Then, a method is developed
for automatic computation of the VV intra-subject distributions from AA considering our
thin histology sections. These steps are performed to analyse samples from different
populations of deep white matter with varying degrees of age-related lesions.

5.2 Image acquisition

5.2.1 Tissue sample selection

The tissue samples for this work came from the Cognitive Function and Ageing Study
(CFAS) neuropathology cohort [168, 169]. Brains were removed with the consent of the
next of kin and with multicentre research ethics committee approval, according to stand-
ard CFAS protocols [170]. Brains were removed within 60 hours of death, one cerebral
hemisphere was fixed in buffered formaldehyde and sliced into 10 mm thick coronal slices.
These slices were: 1) immediately anterior to the temporal stem (anterior), 2) at the level
of the pulvinar (middle), and 3) at the posterior most limit of the occipital horn of the
lateral ventricle (posterior). For grouping the samples according to the presence of age-
asocciated white matter lesions, these slices were scanned using T1 and T2 weighted MRI.
The MR images were rated by three experienced observers (blind to clinical status) and
given a score for DSCLs using a modified Scheltens’ scale [171]. Following this scoring, the
coronal slices were stored in formalin until required for this study (at least four weeks).
From every subject one block of approximately 20mm×20mm×10mm was sampled from
one of the slices. Blocks were allocated in three groups: Control, NAWM, and Lesion.
Control blocks were taken from cases where all three levels were scored as 0 on this scale
or where only one slice had a score of a maximum of 1. Lesion blocks were taken from
regions with a Scheltens’ score of 4 or greater. NAWM blocks were taken from lesion free
regions of deep white matter in which a DSCL of score 3 or greater was present elsewhere.
For additional information about the sample classification and MR imaging details see
[170]

To decide the total number of samples for the study, we performed a pilot study using
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five samples for each group. We required that the standard error of the mean VV for every
group needed to be below 0.5% for all structures. This resulted in the need of at least 25
samples from each group. To guarantee our requirement, we decided to run the complete
experiment with 30 samples per group. Table 5.1 presents the main information of the
selected patient cohort. Additionally, a baseline demographic analysis was performed
to assess significant differences in the position of the samples or the sex of the subjects
between the groups. No statistically significant differences were found using a Pearson’s
χ2-test.

Table 5.1: Patient cohort details: Number of samples per group (N), age of death (mean
and standard deviation), sex (M=Male, F=Female), and level (A=Anterior, M=Middle,
P=Posterior).

Tissue N Age [y-o] Sex Level
Control 30 85 ± 8 13M-17F 9A-17M-4P
NAWM 30 86 ± 6 14M-16F 10A-16M-4P
Lesion 30 87 ± 7 12M-18F 12A-14M-4P

5.2.2 Histology acquisition

The formalin-fixed blocks of tissue were processed to paraffin and embedded in paraffin wax
using conventional protocols [170]. For each block, three sections of 5 µm thickness were cut
for immunohistochemistry (in plane dimensions of the samples were around 20mm×20mm,
see Fig. 5.1). The sections were collected onto charged slides and underwent Ag retrieval
with Access Revelation RTU (A. Menarini Diagnostics Ltd, Winnersh, UK) in a pressure
cooker. Sections were immunostained for phosphorylated neurofilament (SMI31, an axonal
marker), glial fibrillary acidic protein (GFAP, an astrocyte marker), and proteolipid pro-
tein (PLP, a myelin marker) using an intelliPATH FLX system (A. Menarini Diagnostics
Ltd, Winnersh, UK). These immunostaining markers were chosen due to being the best
option for analysing ex vivo samples of these structures [172–174]. Immunohistochemistry
was performed using a standard ABC method, visualised with diaminobenzidine tetra-
chloride (DAB), and the sections counterstained with haematoxylin. Prepared sections
were scanned and digitised at 40X magnification using a Nanozoomer XR (Hamamatsu,
Photonics Ltd., Hertfordshire, UK). The final resolution of the images was of 0.23 µm/pix.
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Figure 5.1: Diagram representing the cuts of the blocks and slices from the coronal sections.
Each block belonged to a different subject.

5.3 Image analysis framework

5.3.1 Histology segmentation

The area fraction (AA) of a certain structure in a region of an image is defined as the
ratio of the area occupied by the structure of interest against the total area of the region.
We computed the AA maps using the area method [175]. To this effect, two segmentation
methods were compared regarding their influence on the final results. The first step of the
segmentations was to apply colour deconvolution [176] to change the representation of the
RGB images to DAB, hematoxylin, and background channels. Only the DAB intensities
were kept, leaving a single-channel image. The second step was local thresholding. The
first segmentation was based on Otsu’s method [177], while the second one used k-means
clustering [178] with two means. The DAB-channel images were divided into patches of
3001 by 3001 pixels to capture a sufficient amount of structures of interest but at the same
time being small enough to have a constant illumination across the patch. The optimal
thresholds were computed for each patch with the corresponding methods. These patch-
wise thresholds were assigned to a cubic spline grid of control points centred at the middle
of the corresponding patches. A smooth image with the original resolution was generated
by this cubic spline interpolation, representing pixel-wise thresholds. Finally, they were
applied to the corresponding pixels of the DAB-channel image resulting in the segmented
binary image.
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To assess the accuracy of the segmentation algorithms, we compared their performance
against two experienced observers. For each preparation (axons, astrocytes and myelin),
200 random pixels belonging to two ROIs of two samples were assessed. These were
segmented first by the automatic algorithms, and twice by the two experts on separate
sessions at least 4 weeks apart. Intra-rater and inter-rater reliability were evaluated for
both experts. These are defined as agreement between repeated segmentations performed
by the same person and between segmentations performed by different individuals, re-
spectively. The agreement between the manual and the automatic segmentations was also
quantified. All agreement scores were computed using Cohen’s κ-statistic [179], the vari-
ation of information [180], and Rand’s index [181], between each pair of segmentations.
Fig. 5.2 shows examples of the raw colour images for the three structures, together with
the extracted DAB channel after the colour deconvolution step, and the final segmentation
on top of the original image.

5.3.2 Scale dependency of the area fraction

Brain tissue has a heterogeneous VV spatial distribution. Our goal is to characterise VV
local variations (i.e. intra-subject) for a population. Hence, we need not only accurate
estimates but also to capture the changes across a sample. To define an appropriate
scale for analysis, we investigated the trade-off between resolution and precision. First,
we computed the standard error of the AA values. Second, we quantified our ability to
find statistically significant differences between neighbouring regions. Both analyses were
performed for five scales ranging from 118 µm to 1884 µm (512 pixels-8192 pixels). To this
purpose, images were divided in squared windows of corresponding width s (Fig. 5.3).
White matter regions of interest (ROIs) were drawn in each sample to avoid any bias in
the results due to contributions from grey matter or artefacts in the images. Only windows
that fitted entirely inside the ROI were considered for the analysis.

To compute the AA local variance at scale s, we subdivided each corresponding win-
dow into four equal sub-windows of width s/2 (see Fig. 5.3a). If the expected AA is
homogeneous inside the window, the standard error of the local AA can be estimated by:

σi(s) =

√√√√ 1
12

4∑
k=1

(ai,k − ai(s))2 for i = 1...N, (5.1)

where i indexes the window (width s) in the image, N is the total number of windows,
k indicates the position of the sub-window, ai,k indicates the area fraction measurement
of a sub-window, and ai(s) is the mean of the four measurements inside a window, i.e.
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Figure 5.2: Histology raw RGB images of axons (top), astrocytes (middle), and myelinated
axons (bottom) with their corresponding greyscale and segmented images for comparison.
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Figure 5.3: Schematic of the window arrangement for the scale dependence analysis for
a scale s. In the computation of the standard error (a), the ROI is divided into square
windows of width s. These are further subdivided into four sub-windows from which a
σi(s) is computed. Then, a pooled analysis with all σi(s) is made and σ(s) is obtained. In
the statistical comparisons (b), the ROI is again divided into square windows of width s.
Here the sub-window size is kept fix (not the number of them) to the minimum scale that
guarantees independence between AA values. Then, statistical tests are made between all
possible pairs of adjacent windows to detect significant differences between their mean AA
values.
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the area fraction measurement of the window. The global standard error for each scale is
estimated by the pooled analysis of the local standard error of all windows by:

σ(s) =

√√√√ 1
N

N∑
i=1

σ2
i (s). (5.2)

Statistical hypothesis testing was used to assess the degree of differentiability between
neighbouring regions. The null hypothesis (H0) was formulated as a pair of neighbour
windows having the same AA. We observed the percentage of rejections of H0 for each
scale over the total number of comparisons. This was tested for every pair of possible
neighbours. For all scales, each window was divided into sub-windows that were large
enough to guarantee the independence of their AA values (i.e. much larger than the
typical size of the structures within it). Sub-windows had fixed sizes of 29.44 µm×29.44 µm
(128 × 128 pixels) in axons and myelinated axons, and 58.88 µm × 58.88 µm (256 × 256
pixels) in astrocytes. A two-sample Student’s t-test was performed between all AA values
belonging to each pair of neighbouring windows to assess the validity of H0 (see Fig. 5.3b).
As the size of the sub-windows was constant, their number inside a window increased with
the scale. Thus, incrementing the size of the windows provided more independent samples,
which helped to distinguish smaller differences between the mean AA of neighbouring
windows. An overall rule for the rejection of H0 was defined by applying a False Discovery
Rate (FDR) correction [182] over all comparisons made for each given scale.

5.3.3 Volume fraction from histology images

When assuming sections of negligible thickness in comparison to the microstructural ele-
ments within (infinitesimally thin planar cuts), it is straightforward to estimate VV from
AA. In this case, it can be shown that the average VV is equal to the average AA following
properties of the expectation of random variables [175]. Given we aimed to analyse relat-
ively large samples from an extensive population, we used digitised whole slide images of
paraffin-based histology. While this allows larger tissue expanses to be assessed efficiently
in larger cohort sizes, it does not yield 2D infinitesimal planar cuts. The samples used in
this study have non-negligible thickness (5 µm) compared to the size of axons or astrocytes
(∼ 1 − 10 µm). They are not infinitesimal planar cuts but thin sections and, AA and VV

are unequal. The digitised images generated from these thin sections show projections of
the structures within the slice (cf. Fig. 5.4). Complete 3D information from the projected
image cannot be recovered. However, for basic characteristics, such as VV , we can find
theoretical formulas relating the projected image to the thin section. These depend on the
section thickness t and the structures’ size, and are valid under specific assumptions.
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Figure 5.4: Substrate composed of randomly distributed cylinders. A 3D volume is shown
on the left (a), and its corresponding 2D projection is on the right (b). In this example
t/diameter = 10, VV = 0.043 and AA = 0.357.

The AA was computed as the number of positively segmented pixels over the total
pixels in the window. Myelin sheaths surround some axons in white matter. In the images
stained for myelin, the measured AA and hence the computed VV , correspond to the
volume of myelinated axons (i.e. the outer myelin volume plus the inner axon volume).

Based on the work of Miles [183], Weibel et al. [184] derived factors for correcting the
section thickness effect on volume density estimates. These factors apply to substrates
composed of spheres and randomly oriented cylinders (see Eqs. 5.3, 5.4). We modelled
axons and myelinated axons as randomly distributed cylinders. For astrocytes, we con-
sidered spheres with cylinders protruding from the surface (see Fig. 5.5b), representing
the body and processes of the astrocyte, respectively.

Figure 5.5: Confocal microscopy image of an astrocyte [185] (a) with the sphere+cylinders
model (b). Randomly placed truncated spheres with constant radius r, and 2r = t (c),
and its corresponding projected image (d).
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The correction factors for cylinders and spheres are [184]:

KV ,cyl,const = VV
AA

= 1− exp(−ξλ)
1− exp

(
− ξ

(
λ+ g(λ+ 1

2)
)) , (5.3)

KV ,sph = VV
AA

= 4E(R3)
4E(R3) + 3tE(R2) , (5.4)

where, λ = L/d is the ratio between the length L of the cylinders with the diameter d,
g = t/d is the relative section thickness, and ξ = VV /λ. E(R2) and E(R3) are the second
and third moments of the spheres radius distribution. We considered the cylinders to be
long for our scales of analysis [186]. In that case, KV ,cyl,const was practically independent
of λ, which we fixed to 100. ξ depends on the true VV , which is what we were trying to
estimate. Hence, we implemented an iterative estimation of KV . We computed K0

V as a
function of ξ(AA), and repeated the process using Kn

V = f(Kn−1
V ×AA) until Kn

V −K
n−1
V <

ε. Simulations showed that Kn
V converges fast to its true value considering ε = 10−3.

The main limitation in Eq. 5.3 is that the cylinders are assumed to have an equal
radius. This is not realistic if we plan to use them to model axons in brain tissue. To
remove this assumption, we derived a more general correction factor (see Appendix A.5)
that accounts for a size distribution in the cylinders’ diameter. It is proportional to the
factor with constant radius: KV ,cyl = Kdisp,cyl ×KV ,cyl,const. The additional factor is

Kdisp,cyl = µ2 + σ2

µ2 , (5.5)

where µ and σ are the mean and standard deviation of the diameter distribution. This
factor is unitary when there is no dispersion in the cylinders’ size.

We computed the volume fraction of astrocytes as the volume fraction of processes and
bodies. Each was estimated independently from their corresponding area fractions:

VV ,astro = VV ,proc + VV ,bodies = KV ,cylAA,proc +KV ,sphAA,bodies, (5.6)

where AA,proc and AA,bodies are the area fractions from the processes and bodies, respect-
ively. These were computed by performing a segmentation of the astrocytes binary image
that allowed us to separate the thin elongated structures (processes) from the larger and
rounded ones (bodies).

These correction factors depend on the size of the modelling structures. However, when
analysing histological samples, the statistics of axons, myelinated axons, and astrocytes
sizes are unknown. To overcome this issue, 100 axons or processes were manually selected
from each binary image, and the mean and standard deviation of the structures’ radii were
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estimated automatically based on structural tensor analysis [187]. For the astrocytes’
bodies, their comparable size to the slice thickness introduced an extra challenge. We
found a correspondence between the distributions of the projected radii and the actual
radii, by assuming the latter one to be a Gaussian distribution (see Appendix A.6).

5.4 Results

Our hypothesis was that the previously presented methodology should enable the com-
putation of volumetric statistics from thin histology sections. Below we present a set of
experiments validating the main assumptions and we show the results from applying the
pipeline to the histology images.

5.4.1 Validation of automated segmentation

The agreement scores computed with Cohen’s κ-statistic, the variation of information,
and Rand’s index led to the same conclusions. Hence, we only present in Figure 5.6 a
summary of Cohen’s κ-statistic for each structure. For axons and astrocytes both methods

Figure 5.6: Agreement scores between different raters measured by Cohen’s κ [179] with
their confidence intervals. The first two symbols represent the mean score corresponding
to intra-rater and inter-rater reliability. The third and fourth symbols show the mean
agreement between the four manual segmentations and the Otsu and k-means automatic
segmentations.

had similar agreement scores with the experts. We chose the Otsu-based segmentation as
it was the fastest for the computation. For myelinated axons, we chose the Otsu-based
segmentation as the score was significantly higher than using k-means. For the three
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preparations the mean agreement score between the chosen algorithm and the experts was
similar to the mean agreement between the two experts.

The segmentation accuracy was also qualitatively assessed in two randomly selected
samples. For two ROIs from each sample, RGB images where overlaid with segmentation
masks and visually examined by one expert. The expert confirmed that the segmentation
produced acceptable results. See supplementary figures in [188] for segmentation examples.

5.4.2 Optimal scale selection

We computed the standard error of our AA estimates and assessed the significance of
the differences between neighbouring regions for different scales. These analyses provided
information on the changes in the area fraction we can detect at each scale, and their
relation with the resolution-precision trade-off. The statistical tests provided an answer

Figure 5.7: Analysis of the resolution-precision trade-off. (a) Standard error of the
area fraction for varying scales. This is the pooled result from all the subjects nor-
malised against the mean value across all subjects. (b) Percentage of adjacent win-
dows with statistically significant differences in area fraction. The scales used were
[118, 236, 471, 942, 1884]µm.

to the question: “What proportion of adjacent windows present statistically significant
differences at each scale?”. Figure 5.7b shows that for windows whose width is smaller
than 236 µm, we cannot distinguish neighbours. This is either because we have insufficient
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precision due to the small window size, or because the differences between windows was
too small, or both. Figure 5.7a shows that as resolution increases (i.e. decreasing the
width of the windows), the standard error of the AA estimates is further increased. Our
criteria was to select as an optimal scale the one which presented statistically significant
differences between more than 5% of the possible neighbours. We found that neighbouring
patches (∼ 10% of them for all structures) presented statistically significant differences
between them at a scale of 236 µm and the accuracy of the AA estimation was reasonable.
Thus, 236 µm × 236 µm was the scale selected for the computation of AA maps for the
three structures.

5.4.3 Volume fraction distributions

Simulations of in silico substrates showed an excellent agreement between the true VV and
that estimated from the AA of the projected image (see Appendix A.7). These comprised
cylinders and spheres+cylinders with size distributions similar to those in the structures of
interest. The simulated slice thickness was the same as that of the histology images. The
robustness of the full orientation dispersion assumption was also tested. We simulated
cylinders which were not fully dispersed but with dispersion values typical of DWM [189].
Results show that errors were low even in that scenario.

Figure 5.8: Estimated probability distribution functions of the local VV of axons, astro-
cytes, and myelinated axons for the three groups.

The local volume fractions, VV , were computed from the corresponding AA following
the method described in Section 5.3.3. Then, these values were gathered for each group
of subjects (control, lesion, and NAWM) to estimate the group-wise distribution of VV .
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Table 5.2: Mean and standard deviation of the group-wise VV distributions. For the
complete distribution see Fig. 5.8.

Global results (N=30)
Groups Axons Astrocytes Astrocytes Astrocytes Myelinated

bodies processes axons
µ σ µ σ µ σ µ σ µ σ

Control 0.102 0.026 0.066 0.017 0.007 0.008 0.059 0.014 0.162 0.021
NAWM 0.108 0.021 0.070 0.019 0.007 0.009 0.063 0.017 0.153 0.023
Lesion 0.104 0.023 0.073 0.019 0.008 0.009 0.066 0.016 0.139 0.029

Figure 5.8 shows the estimated probability densities for the three structures. The group
mean and the intra-group standard deviation are given in Table 5.2. The group means and
variances for axons across different tissue groups are remarkably similar. For astrocytes,
however, the mean of the controls is 10% smaller than that of lesions. Finally, myelinated
axons display the largest difference in means, especially for the lesion group.

Figure 5.9 shows the group means and the corresponding 95% confidence intervals.
The differences in the group means were statistically tested with the Student’s t-test. The
obtained p-values were corrected for the multiple comparisons made using the Bonferroni
correction [190]. In axons, no significant differences were observed. In astrocytes, we found
a significant increase in the lesion mean regarding control mean (p< 0.05). In myelinated
axons, we found significant differences between lesion and control (p< 0.01).

5.5 Discussion

Nervous tissue comprises countless different structures such as neurons and glial cells.
An accurate characterisation of their complex arrangement in healthy and lesional tissue
can help in the understanding of neurological diseases. The focus of this chapter was to
characterise the volume fraction distribution of axons, astrocytes, and myelinated axons
in DWM, which has not been previously addressed in the literature. Populations with
and without DSCLs were analysed, since this conditions can alter the distribution of the
studied WM structures. The volume densities represented in Figure 5.8 and their summary
provided in Table 5.2 can be relevant prior information for a more efficient analysis of in
vivo measurements of new patients.

When comparing the mean of the VV distributions we see an agreement with previous
works on the differences observed between groups. We observe that DSCLs lead to a sig-
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Figure 5.9: Mean VV for each group and structure with its corresponding 95% confidence
intervals. * Indicates p < 0.05, ** indicates p < 0.01.

nificant decrease in the myelinated axons fraction [144]. We also found an increase in the
astrocytic fraction as reported in [146]. Unlike them, we detected statistical significant
differences between lesion and control groups due to analysing a larger cohort. We did
not find significant differences between groups in the mean fraction of axons, which agrees
with the work in [191]. These results demonstrate that DSCLs are associated with signi-
ficant demyelination and astrogliosis, which may lead to axonal dysfunction and impact
on central conducting pathways passing through the white matter. While control and
normal appearing samples look similar on standard T2-weighted MRI scans, this analysis
suggests potential (non-significant) astrogliosis and demyelination in the NAWM which
may be interpreted as reflecting lesion progression.

Previous works have also focused on estimating the volume fraction of certain struc-
tures in the central nervous system. Histologically derived axonal mean volume fractions
have been reported in the grey matter [192], corpus callosum [193], and spinal cord [157].
Our results are considerably lower than the ones in these studies. The axonal mean volume
fraction we obtained in DWM was around 9 − 12%, while the reported volume fractions
in grey matter and corpus callosum were 30% approximately. This discrepancy is not
so surprising since the axonal density is expected to be quite different in each of these
regions. The corpus callosum for example, is characterized by a very compact tract of
axons while the DWM contains shorter and thinner fibres. Additionally, this study was
performed on subjects belonging to an ageing population, where decreased values of ax-
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onal [194] and myelin [195] content have been reported. This age-related decrease agrees
with further tests we performed on a corpus callosum sample belonging to the same age
cohort (see A.8), observed in both transversal and tangential cuts. The potential relative
errors introduced by the mapping from AA to VV are quite smaller (relative error < 10%,
see A.7). Segmentation errors were around 7%, 6%, and 10% for axons, astrocytes, and
myelin, respectively. We were not able to quantify errors due to incomplete staining, how-
ever, images were subject to qualitative quality control check for artifacts, repeating any
unsatisfactory image with an adjacent slice from the same sample block. Finally, complex
axonal structures (i.e. curved axons with varying radius) may have different relations
between AA and VV than the ones modelled, but they are expected to be negligible com-
pared to the errors previously mentioned. In contrast, no significant changes with ageing
in the astrocytic fraction were reported in [196], which agrees with our results and previous
measurements of astrocyte volume fractions in the corpus callosum, the centrum semiovale
and the corticospinal tract [162]. Thus, with ageing, we seem to get closer proportions of
axons and astrocyes.

We were interested in quantifying the local volume fraction across the tissue, as op-
posed to the global average volume fraction. Considering windows of observation of too
large scales would not correctly capture the spatial variations. However, a too small scale
would be dominated by statistical fluctuations reducing the precision of the VV estima-
tions. The volume fraction cannot be defined for scales comparables to the size of the
structures of interest. The appearing precision-resolution trade-off was analysed in a se-
quence of scales by computing the standard error of the AA estimations (precision) and the
statistically significant differences observed between adjacent windows (resolution worth).
The obtained insight led us to define an optimal scale (236 µm × 236 µm) for computing
AA distributions and, VV distributions.

The chosen histology technique enabled the acquisition of an extensive population of
large samples for the current study. This had a considerable impact on the accuracy of
the characterisation of the VV distribution of the population and in the detection of dif-
ferences between groups. However, this adds the challenge of computing VV from AA.
Many works that quantify volume fractions from histology images base their calculations
on the stereological relationship VV = AA. However, this is only valid if the thickness of
the imaged sample is negligible when compared to the size of the structures of interest
[175]. Fortunately, there exists some theory [184] tackling this problem when certain con-
ditions are satisfied regarding the structures’ geometry. This methodology was extended
to allow the computation of the volume fraction of structures that present an unknown
size distribution.
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A first application of the results obtained in this chapter could be as benchmark for
diffusion MRI techniques aiming to estimate the axonal volume fraction, such as those
recently reviewed in [39], and newer approaches such as [78, 101]. Our results could
also contribute to the definition of new biomarkers [58, 161]. Knowledge of the typical
volume fractions of the compartments present in white matter is a must for generating
realistic in silico phantoms. Most dMRI biophysical models compute compartments’ water
volume fractions weighted by the T2 relaxation. Thus, their relationship needs to be
appropriately modelled and care must be taken when comparing dMRI measures with the
VV distributions. Finally, the characterisation of the VV distributions in the population
could inform dMRI biophysical models as prior distributions to improve the accuracy of
the estimated parameters [153].

The framework introduced in this chapter has the potential to aid diagnostic histo-
pathologists and neuropathologists by providing a tool for automatic quantification of
the volume fraction of specific WM structures. Digital pathology techniques can enhance
pathologists’ precision in biomarker assessment and accelerate diagnosis. Hence, there is
an increasing interest from this community in automated image analysis technologies that
support histopathological assessment of tissue structure (see for example [197–199]).

One of the limitations of the work presented in this chapter is that the immersion of the
samples in fixative may produce shrinking in the tissue. However, this effect would affect
the estimation of the relative fractions only if differential shrinkage occurs of the different
structures and extracellular space. We found no available literature quantifying this latter
effect. The chosen histology technique enabled the acquisition of samples from 90 subjects
for each preparation. But, one disadvantage of this methodology is this came at the cost of
measuring the volume fractions indirectly. Projected statistics were computed and related
to their 3D counterpart. Although we tested the accuracy of the volume fraction estimation
in synthetic phantoms that slightly violated the models assumptions, the method could
still introduce bias in the results if the considered models are not applicable to the real
structures. Having thinner sections or high resolution 3D data would be useful to further
benchmark this approach. Our results depend highly on the accuracy of the segmentation.
However, the agreement between the automatic algorithm and the pathologists equaled the
agreement between the two expert pathologists, which is considered satisfactory. Finally,
another limitation was that it was not possible to separate the myelin fraction from the
axon fraction in myelinated axons. When we look at myelin images, we see practically
the same projection as if the cylindrical sheaths were filled. Hence, as it is not possible
to compute and subtract the axonal fraction we report the total fraction (i.e. myelin plus
axon volume).
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Chapter 6

Conclusions

The increase in sensitivity and specificity in detecting brain microstructural changes is a
major motivation for developing biophysical models. The objective of this thesis was to
explore ways to make dMRI biophysical modelling more robust while maintaining time
and hardware requirements that are feasible in clinical conditions.

Although diffusion MRI is being applied in clinical routine, currently, this is not the
case for biophysical tissue models. The impact of the application of some of the improve-
ments proposed in this thesis might help their translation from research into the clinic.
This has the potential to increase our specificity to microstructural alterations without
compromising sensitivity.

6.1 Achievements

In Chapter 3 we have studied measurements orthogonal to SDE, i.e. functionally independ-
ent, and the extra information these provide about tissue. Nonlinear parameter estimation
of the SM is not well-posed and can lead to unreliable parameter values. Through the
cumulant expansion of the dMRI signal, we showed theoretically that information from
DDE is sufficient to avoid degeneracies in the estimation of SM parameters. This is pos-
sible without the need of high diffusion weightings, something crucial if our ultimate goal
is clinical translation. Furthermore, extending the SM to DDE leads to an increase in the
accuracy and precision in the model parameter estimates in the presence of noise.
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In Chapter 4, we have proposed a framework to compute the set of b-tensors that max-
imises the accuracy and precision in the SM estimation considering a multidimensional
dMRI acquisition. This can help to reduce the acquisition time aimed at estimating the
SM or any given biophysical model, or reduce the error in the estimated parameters. The
framework was based on minimising a metric based on the Cramér-Rao Bounds of the
SM kernel parameters. These bounds were computed by an approximation based on the
cumulant expansion, which let us discard acquisitions leading to degenerate parameter
estimates.
Interestingly, the optimal B-set resulting from the optimisation was reached by combina-
tions of LTE and PTE data with only two diffusion weightings, i.e. shells. Furthermore,
no PTE data was selected in the lower shell and the confirmation that STE data was not
preferred for an optimal acquisition was not a trivial result. In silico noise propagation
experiments confirmed that the optimal acquisition outperformed other protocols such as
LTE+STE or LTE+PTE with equal number of measurements, by an average of 10% in
each kernel parameter. Experiments with human data showed agreed, displaying a re-
duced variability in the kernel estimates with respect to parametric maps obtained from
an extended acquisition.

In Chapter 5, we have successfully computed the distribution of the local volume
fraction of axons, astrocytes, and myelinated axons in DWM for the first time. These
distributions were estimated specifically for an ageing population (CFAS), and are not
generalisable to younger populations. Since these distributions depend potentially on
DWM pathologies, control, normal appearing, and lesion groups were analysed. The op-
timal scale for performing this analysis was also assessed.
The obtained distributions of local volume fractions have multiple implications in develop-
ing accurate dMRI biophysical tissue models. They can inform models, benchmark their
performance, or help to construct realistic in silico phantoms. Volume fraction distribu-
tions can also be useful for the neuropathological assessment of quantitative changes in
healthy and diseased DWM.
We also devised a framework that allows the computation of volume fraction maps from
digitised whole slide images of paraffin-based histology. The optimal scale for applying
such framework was also analysed as a balance between resolution and precision. Auto-
matic image analyses that can support a histopathological assessment of tissue structure
are a valuable tool for diagnostic histopathologists and neuropathologists.
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6.2 Future work

Future work will focus on the clinical translation of the SM. To achieve it, further val-
idation of model assumptions is crucial. A central assumption in the SM is that there
is one set of microstructural parameters inside a voxel (kernel). This sounds reasonable
but adding kernels may obscure the inverse problem. For large voxel sizes modelling one
kernel may not be correct, meaning that optimal scales where this can be done may be
derived [122].

Additionally, I will focus on two alternatives to improve tissue characterisation. The
first one, by exploring the benefits of combining dMRI measurements with various Echo
Times, in the line of [101]. This has not been explored for multidimensional dMRI, and it
has the potential to outperform results shown in Chapter 4 by enabling the separation of
intra and extra-axonal T2. Simultaneously probing diffusion and relaxometry properties
not only improves the estimation of both features but also has a big diagnostic potential
since T2 has been shown to be sensitive to multiple disease processes. However, its clinical
translation relies on an optimised acquisition that makes it feasible for clinical acquisition
times. The framework we have derived in Chapter 4 will be extended in this direction by
accounting a measurement space with b-tensors and multiple TE. Such framework must
consider that different b-tensor shapes and sizes have different TE values, and thus, SNR,
which will be embedded in the optimisation metric.

The second interesting way of obtaining robust information from the DWIs is not to
keep adding orthogonal information, but finding adequate constraints that further sim-
plify the physical system we want to measure. This may imply limiting our measurements
to a more specific regime, where, for example only one compartment dominates the signal,
like it is proposed to probe the intra-axonal diffusivity in [102] or to validate the sticks
assumption in [53].
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Appendix

A.1 Invariant decomposition of an axially symmetric 4th
order tensor

In [88], the invariant decomposition of a fully symmetric 4th-order tensor with axial sym-
metry is presented. Here we follow an analogous procedure for the decomposition of a 4th
order tensor, C, with only major and minor symmetries.

Any axially symmetric tensor can be expressed in terms of two ingredients: the sym-
metry axis vector, µ, and the isotropic tensor (Kronecker delta), δij , which can be grouped
by the number of copies of µ included. For a 4th order tensor, this gives C = E + F + G,
where:

Eijk` = aµiµjµkµ`,

Fijk` = b µiµjδk` + c µkµ`δij + dµiµkδj` + e µjµkδi` + f µiµ`δjk + g µjµ`δik,

Gijk` = h δijδk` +mδikδj` + n δi`δjk,

(A.1)

are linear combinations of 1 term with 4 times µ, 6 terms including it twice, and 3 terms
not including it, respectively. Imposing the major and minor symmetries of the tensor
C, we find the constraints a, b = c, d = e = f = g, h, and m = n, resulting in only 5
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independent components:

Eijk` = aµiµjµkµ`,

Fijk` = b
(
µiµjδk` + µkµ`δij

)
+ d

(
µiµkδj` + µjµkδi` + µiµ`δjk + µjµ`δik

)
,

Gijk` = h δijδk` +m
(
δikδj` + δi`δjk

)
,

(A.2)

Finally, splitting each of the 3 tensors above into its symmetric and complementary parts
we get:

C = aP + (2b+ 4d)Q + (h+ 2m)I + 4
3(b− d)R + 3

2(h−m)J, (A.3)

where

Pijk` = 1
a
E(ijk`), Qijk` = 1

2b+ 4dF(ijk`), Iijk` = 1
h+ 2mG(ijk`),

Rijk` = 3
4(b− d)

(
Fijk` − F(ijk`)

)
, Jijk` = 3

2(h−m)
(
Gijk` −G(ijk`)

)
,

(A.4)
result in the tensors defined in Eq. 3.16.
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A.2 Single solution for NODDIDA with DDE

From Eq. 3.6 and Eq. 3.22, we can select 4 equations generating the joint system:
h4(1, κ) 2h2(1, κ) 1
h4(0, κ) 2h2(0, κ) 1

0 h2(1, κ)− h2(0, κ) 0
0 2h2(0, κ) 1



γ

δ

ε

 =


1
3W‖D̄

2 +D2
‖

1
3W⊥D̄

2 +D2
⊥

3
4ζ1 +D⊥D‖ −D2

⊥
3
2ζ2 +D2

⊥

 . (A.5)

By simple linear combinations we reach
h4(1, κ) 2h2(1, κ) 1 1

3W‖D̄
2 +D2

‖
h4(0, κ) 2h2(0, κ) 1 1

3W⊥D̄
2 +D2

⊥
0 2h2(1, κ) 1 3

2(ζ1 + ζ2)−D2
⊥ + 2D⊥D‖

0 2h2(0, κ) 1 3
2ζ2 +D2

⊥

 (A.6)


h4(1, κ) 0 0 1

3W‖D̄
2 − 3

2(ζ1 + ζ2) + (D‖ −D⊥)2

h4(0, κ) 0 0 1
3W⊥D̄

2 − 3
2ζ2

0 2h2(1, κ) 1 3
2(ζ1 + ζ2)−D2

⊥ + 2D⊥D‖
0 2h2(0, κ) 1 3

2ζ2 +D2
⊥

 . (A.7)

Finally, dividing the first and second equations in A.7, the dependency on γ cancels out,
resulting in Eq. 3.23, providing a single solution for κ. This is possible since γ is strictly
positive, unless there are no sticks (f = 0) and the extracellular diffusion is isotropic
(∆e = 0), or if there is no extra-neurite fraction (f = 1) and no axial diffusion inside
sticks (Da = 0), and h4(0, κ) > 0 for all finite κ.
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A.3 Tensorial formulation of the SM for a general ODF

Based on [84], Pozo et al. [122] recently derived a tensorial formulation of the SM for a
general ODF. This provides a direct mapping between the cumulants D and C and the
kernel parameters. We write this mapping below since it is a key component of the work
presented in Chapter 4.

Following the discussion in Chapter 3, we know that the set of kernel parameters has
a unique mapping to the parametrisation in Eq. 3.5. Thus, to obtain the kernel, we
only need to express α, β, γ, δ, ε as a function of the cumulants. According to [122] we
can decompose Dij and Ĉijk` = Cijk` +DijDk` into their irreducible independent tensors
D(0),D(2),S(0),S(2),S(4), A(0) and A(2)

D
(2)
ij = αH

(2)
ij D(0) = α+ 3β

S
(4)
ijk` = γH

(4)
ijk` S

(2)
ij =

(
γ + 7

3δ
)
H

(2)
ij S(0) = γ + 5

(
2
3δ + ε

)
A

(2)
ij = 2

3δH
(2)
ij A(0) = 4

(
2
3δ + ε

)
.

(A.8)

where H(2)
ij and H(4)

ijk` are the traceless tensors associated to the ODF averages H(2)ij and
H(4)ijk`, defined in Eq. 3.20. From the above system of equations, we can see that as long
as H(2)

ij is not null (an isotropic ODF is one possibility), it is possible to uniquely recover
the kernel and the ODF spherical harmonics up to fourth order from the cumulants:

α = D
(2)
ij

H
(2)
ij

, β = 1
3

(
D(0) − α

)
, γ = S(0) − 5

4A
(0), δ = 3

2
A

(2)
ij

H
(2)
ij

, ε = 1
4A

(0) − 2
3δ,

H
(2)
ij = 1

γ

(
S

(2)
ij − 7

2A
(2)
ij

)
, and H

(4)
ijk` = 1

γS
(4)
ijk`.

(A.9)
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A.4 Degeneracy in the SM with LTE and LTE+STE

Equation A.8 relates all independent cumulants and the kernel parameters (cf. Eq. 3.5).
Accessing more cumulants means increasing the number of equations which may enable
the inversion of the system. If all cumulants are probed (e.g. combining LTE and PTE
measurements with two different diffusion weightings), the system is invertible and the
solution is unique as long as H(2)

ij 6= 0 (see Eq. A.9). However, it is also interesting to
analyse what happens when we have an incomplete access to the cumulants, which is the
case of LTE or LTE+STE acquisitions.

As it was discussed in Chapter 3, LTE alone is not enough to uniquely recover SM
parameters without extremely high diffusion weightings [14]. In an acquisition sensitive
up to O(b2), estimating the kernel parameters is equivalent to solving the resulting system:

D
(2)
ij = αH

(2)
ij D(0) = α+ 3β

S
(4)
ijk` = γH

(4)
ijk` S

(2)
ij =

(
γ + 7

3δ
)
H

(2)
ij S(0) = γ + 5

(
2
3δ + ε

)
.

(A.10)

We may simplify the above system for the kernel parameters and get two independent
nonlinear equations relating f , ∆e and D⊥e . This means there is a 1-dimensional continuum
of solutions, which coincides with results reported in [14]. Although some of these solutions
fall outside the range of feasible parameters, there is an infinite amount of physically
plausible kernel sets that explain the measurements equally well up to O(b2).

In the same b-range, combining two shells of LTE and STE data adds an extra equation.
STE probes the trace of C, which let us compute A(0). Thus, the resulting system to solve
is:

D
(2)
ij = αH

(2)
ij D(0) = α+ 3β

S
(4)
ijk` = γH

(4)
ijk` S

(2)
ij =

(
γ + 7

3δ
)
H

(2)
ij S(0) = γ + 5

(
2
3δ + ε

)
A(0) = 4

(
2
3δ + ε

)
.

(A.11)

It is possible to rearrange these equations to get a system with 4 nonlinear equations and
4 unknowns. However, the solution is not unique, we may write it solution in terms of δ =
(1− f)∆eD

⊥
e and get a quadratic equation. This means that there are always two kernel

sets that solve the system. Although this may sound tragic at first, interestingly, when
we evaluate the quadratic equation in a large number of random feasible combinations of
the kernel parameters, we observe that in the majority of the cases, only one solution to
the quadratic equation is physically plausible, i.e. δ ≥ 0. This means that although the
inverse problem of inverting LTE+STE data, is mathematically degenerate, knowing that
δ cannot be negative is enough to guarantee a unique solution in most of cases.
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Due to the theoretical degeneracy that an LTE+STE acquisition presents, our CRB-
based metric will penalise such protocols. However, since the spurious solution generally
falls outside the range of feasible parameters, any solver with box-constraints can pick the
correct solution. Due to this, we added an acquisition with LTE and STE data to test
how good these ‘almost not degenerate’ acquisitions behaved, both for in silico and in vivo
experiments.
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A.5 Correction factor for cylinders’ size dispersion

The relation between the projected area fraction and the volume fraction for randomly
placed cylinders derived in [184] is given by:

VV = KV (r, t)AA, (A.12)

where the correction factor KV depends on the cylinders’ radius r and the section thickness
t. We will omit the dependence on t, as it will be constant for the remaining of our
calculations. The main limitation of the equations provided in [184] is that cylinders are
considered to have an equal radius. We are interested in substrates where the radius is
given by a probability distribution. Let r′ be the random variable that determines the
cylinders’ radii, A′A and V ′V the corresponding area and volume fractions of such substrates.
We would be interested in:

K ′V = E(V ′V )
E(A′A) , (A.13)

where K ′V is the quotient between the expected fractions, which are computed regarding
the radius. Our goal was to derive a correction factor that considers not only the section
thickness effect but also the contribution from the dispersion in the radii. The latter one
is given by:

Kdisp,cyl = K ′V
KV

= E(V ′V )E(AA)
E(VV )E(A′A) . (A.14)

We assumed that the projected area of a cylinder and its volume are approximately pro-
portional to r and to r2, respectively. Hence, the expectation of the area and volume
fraction regarding the radius will be approximately proportional to E(r) and E(r2):

Kdisp,cyl ≈
E(r′2)E(r)
E(r2)E(r′) . (A.15)

We consider that r′ has mean µ and variance σ2, while r is constant and equal to µ. Hence,
E(r) = µ and E(r2) = µ2. Following this, the desired correction factor is given by:

Kdisp,cyl ≈
µ2 + σ2

µ2 = 1 + σ2

µ2 . (A.16)

In the absence of dispersion in the cylinders’ radius the size dispersion factor is equal to
the unit. As σ2

µ2 increases the errors in VV estimations due to considering cylinders of equal
radius become larger too. We tested the validity of this correction factor with simulations
considering feasible ground truth values and results were satisfactory (see Appendix A.6
for in silico validation).
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A.6 Match between projected and true size statistics for
spheres

We modelled astrocytes’ bodies as spheres, where their radius R was a random variable.
Each was considered randomly placed in an infinitely large thin section with thickness t
(see Fig. 5.5 c). However, in the projected 2D images of this section (see Fig. 5.5 d), we
observe circumferences with radii not drawn from R but from Rproj :

Rproj =fproj(R,Z)=


√
R2 − Z2 if − r < z ≤ 0,

R if 0 < z < t,√
R2 − (Z − t)2 if t+ r ≤ z < t,

(A.17)

where Z is the coordinate of the centres of the spheres in the dimension of the slice
thickness. We assumed that the radius distribution of the astrocytes bodies could be
approximated by R ∼ N(µ, σ2), and that Z ∼ U[−r, t + r]. Then, we can compute the
mean and variance of Rproj :

E(Rproj)=µproj =
∫ ∞
−∞

∫ ∞
−∞

fproj(r, z) ρR(r) ρZ(z) drdz, (A.18)

V ar(Rproj) = σ2
proj =

∫ ∞
−∞

∫ ∞
−∞

(fproj(r, z)− µproj)2 ρR(r) ρZ(z) drdz, (A.19)

where ρR(r) and ρZ(z) are the probability density functions of R and Z, respectively.
These two integrals provide the means to go from µtrue, σtrue → µproj , σproj . In the
real scenario, we can only measure the projected values from segmented astrocyte im-
ages. Based on these assumptions, we computed numerically the inverse relation (i.e.
µproj , σproj → µtrue, σtrue) for obtaining the true distribution parameters from the projec-
ted ones. The Gaussian approximation was feasible because µtrue/σtrue ≥ 5.
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A.7 In silico validation of volume fraction computation

We performed in silico experiments to test the validity of the methodology in [184] and
the extensions in the methods section. Substrates composed of randomly placed spheres
and cylinders (see Fig. A.1) were generated for various feasible AA values. From these,
we computed their projected 2D binary images and then estimated the volume fractions.
The dimensions of the synthetic 3D slices were 200 µm× 200 µm× 5 µm.

Figure A.1: Simulated 3D substrates of cylinders (a) and spheres (c), and their corres-
ponding 2D projections (b, d).

Figures A.2 and A.3 show the relative error in the estimation of spheres and cylinders
volume fractions. The variance of the VV,sph estimates is larger than VV,cyl ones because
the number of spheres simulated per section was much smaller than the number of cylin-
ders. The feasible number of axons or astrocyte processes (cylinders) inside a window of
observation are much larger than the typical number of astrocyte bodies (spheres). Hence,
as the number of elements increases, the relative dispersion between the mean projected
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area and the mean volume gets smaller (see scatter plots in Fig. A.4 and A.5). The total
volume fraction of astrocytes is mostly due to contribution from processes, hence, the
variance in the error of the total volume is similar to the one for cylinders.

To test the robustness of the methodology synthetic experiments were performed.
Astrocytes with tortuous processes and branching lengths equal to the bodies’ radius were
considered. Branching angles were drawn randomly from a uniform distribution in a cone
with 20 degrees of aperture. Relative errors were also very small in this case.

Figure A.2: Relative error in the VV estimates for randomly placed spheres. The simulated
radius distribution was Gaussian with µsph = 5 µm and σsph = 1 µm.

Figure A.3: Relative error in the VV estimates for randomly placed cylinders, assuming
constant radius (blue boxes) and a radius distribution (red boxes). The simulated radius
distribution was Gamma with µcyl = 0.5 µm and σcyl = 0.1 µm.
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Figure A.4: Scatter plot of AA,sph vs VV,sph. Ground truth values are shown in blue circles
while estimated values are shown in green dots. The simulated radius distribution was
Gaussian with µsph = 5 µm and σsph = 1 µm.

Figure A.5: Scatter plot of AA,cyl vs VV,cyl. Ground truth values are shown in blue circles
while the estimated ones assuming a radius distribution or constant radius are shown in
green and red dots, respectively. The simulated radius distribution was Gamma with
µcyl = 0.5 µm and σcyl = 0.1 µm.
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A.8 Experiments on corpus callosum data

There are no previous works that measure volume fractions in human DWM. While this
was one of the motivations for our work, it made validating our results very challenging.
The lack of literature might be due to the almost isotropic nature of brain tissue orientation
in DWM, which makes approaches like those in [157, 193] infeasible as they heavily rely
on fibre orientation being perpendicular to the imaging plane. As an assessment of the
consistency of our experiments, we performed some tests on a corpus callosum sample
from the same ageing cohort. We cut two slices from the corpus callosum of one control
subject. In the first one, axons were perpendicular to the slice plane, while on the second
one they were parallel to it (see Fig. A.6). We computed the mean volume fraction (VV )
from the segmented image as explained in Section 5.3.3. However, as fibres in the corpus
callosum cannot be assumed to be isotropically distributed, some adjustments were done
to the VV estimation.

Figure A.6: Axon histology images of corpus callosum samples. The samples were cut
such that axons were perpendicular (left) and parallel (right) to the imaging plane.

Both slices were imaged following the procedure explained in the section ‘Histology
acquisition’. A semi-automatic segmentation was performed on both of them. Regions
of interest (ROIs) were drawn in the middle of the corpus callosum, and the mean area
fraction (AA) was computed on both. For the slice where axons were perpendicular to
the imaging plane, we used the stereological relation E(VV ) = E(AA). To obtain the
relation between VV and AA in the slice where axons were parallel to the imaging plane we
performed an in silico experiment (like those shown in Appendix A.7). Parallel cylinders
were randomly placed in a synthetic histological sample of 5µm thickness, and the paired
values of (VV ,AA) where computed for multiple realisations of varying densities (see Fig.
A.7).

The computed VV value in the perpendicular slice was 0.226. For the parallel one, we
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obtained AA = 0.699, which was mapped to VV = 0.220 using a fourth order polynomial fit
to the synthetic cases (see Fig. A.7). These results are in agreement between themselves
and also show, as expected, a significant decrease with respect to the values reported in
[193]. We attribute it to ageing as it has been previously reported in [194].

Figure A.7: Scatter plot of AA,cyl vs VV,cyl for parallel cylinders that are randomly placed
in the slice volume. The best polynomial fit of fourth order is shown in red.
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University, Sweden, 1986.

118



BIBLIOGRAPHY

[188] S. Coelho, J. M. Pozo, M. Costantini, J. R. Highley, M. Mozumder, J. E. Simpson,
P. G. Ince, and A. F. Frangi. Local volume fraction distributions of axons, astrocytes,
and myelin in deep subcortical white matter. NeuroImage, 179:275–287, 2018.

[189] Y. S. Chang, J. P. Owen, N. J. Pojman, T. Thieu, P. Bukshpun, M. L. J. Wakahiro,
J. I. Berman, T. P. L. Roberts, S. S. Nagarajan, E. H. Sherr, and P. Mukherjee.
White matter changes of neurite density and fiber orientation dispersion during
human brain maturation. PLOS ONE, 10(6):1–23, 2015.

[190] J. P. Shaffer. Multiple hypothesis testing. Annual review of psychology, 46(1):561–
584, 1995.

[191] J. Highley, O. Gebril, J. Simpson, S. Wharton, J. Kirby, J. O’Brien, R. Barber,
R. Kalaria, C. Brayne, C. Lewis, P. Shaw, and P. Ince. Axonal preservation in deep
subcortical white matter lesions in the ageing brain. Journal of Aging Science, 2(1),
2014.

[192] D. B. Chklovskii, T. Schikorski, and C. F. Stevens. Wiring optimization in cortical
circuits. Neuron, 34(3):341 – 347, 2002.

[193] N. Stikov, J. S. W. Campbell, T. Stroh, M. Lavelée, S. Frey, J. Novek, S. Nuara,
M. Ho, B. J. Bedell, R. F. Dougherty, I. R. Leppert, M. Boudreau, S. Narayanan,
T. Duval, J. Cohen-Adad, P. Picard, A. Gasecka, D. Côté, and G. B. Pike. In
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