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Abstract

Statistical methods are often used habitually, perhaps without sufficient reflection on their

robustness in a range of novel circumstances. Increasingly, there is a desire to unravel the

complexities of humans interacting with their environments, to improve our understanding

and explanation of what influences population health in the wider context of our living

environment. A framework is provided for using simulation and causal inference methods

to evaluate analytical approaches in health geography, to introduce the reader to some of

the considerations around complexity of context and data generation that may need to be

reflected upon carefully when applying such methods in their own work. These methods

have the potential to aid researchers in their explanation of what factors are important for

population health and well–being in the context of our geographical environment while

avoiding potential pitfalls in their work and allowing for greater critical evaluation of the

methods employed by themselves and others.

This thesis considers the utility of simulation to investigate applied problems related to

mathematical coupling and specific considerations that need to be made in relation to

research on the relationship between limiting long–term illness and deprivation and the

challenges encountered while investigating the relationship between population mixing

and childhood leukaemia —with all such considerations examined through the lens

of cause and effect. The datasets chosen are representative of many others in health

geography and span the full range of outcome prevalence rates likely encountered.

Methods in causal inference and simulation are demonstrated to be powerful tools in
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understanding potential bias in research analyses. With careful planning, forethought and

reflection on the data generating processes of the context of interest, causal inference and

simulation methodologies are accessible to all researchers to improve their understanding

of the methods they employ to address the research questions they pose.
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Chapter 1

Introduction

Statistical methods are used habitually; researchers tend to analyse data in the same ways

and go on to teach the same methods.1, 2 This thesis calls for the mindful application of

methods to statistical problems aided by causal inference theory and advocates for the

practice of developing simulations alongside all applied research to fully understand and

appreciate any methods used so that they are adopted conscientiously.

The work that appears in this thesis was heavily influenced by the topics covered in

the MSc Epidemiology and Biostatistics which immediately preceded the undertaking

of this PhD research. As part of this course, the author was introduced to methods in

causal inference which the author wished to use in the course of this work which, as

per the original funding proposal was to include health geography problems. The health

geography problems approached in this thesis were chosen due to previous awareness of

the research by the student (e.g. population mixing) and their supervisors (e.g. limiting

long–term illness). However, the datasets used in this thesis are representative of a whole

swathe of research in the field of health geography. The methods used throughout this

thesis and their implementation on these specific datasets aim to be translatable to further

research in the field of health geography.
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1.1 Working definition of health geography

Throughout this thesis, the fields of epidemiology and health geography are referred to.

These two fields have developed separately3 and therefore require definition and a brief

discussion at the beginning of this work.

Both epidemiology and health geography aim to understand disease processes and

subsequently develop interventions.4 Indeed, epidemiology has been defined as the

“study of how often diseases occur in different groups of people and why”,5 whilst the

subtopic of social epidemiology is concerned with “social phenomena that influence

health inequalities in populations”3 (p.3) which can include geographical concepts. Health

geography has been defined as “the study of the relationship between health and place”

and in relation to the work in this thesis, “in particular, health geography is concerned

with... the socio–spatial relations of health,...”.6 Some researchers may not consider there

to be any substantial difference between health geography and (social) epidemiology

as defined above, however, as the two fields have developed separately,3 so have the

methods used in each. For example, the causal inference methods used in this thesis

have been developed within epidemiology, however, they have not been used in health

geography (though some causal inference methods are becoming more popular within

health geography, such as approaches using instrumental variables7).

With the above definitions in mind, the working definition of health geography used in

this thesis assumes that the topic of epidemiology is subsumed within health geography.

That is, the geographical information inherent to health geography extends (and can

enhance) epidemiological data. The causal inference and simulation methods which are

becoming more common in observational health research within epidemiology are applied

throughout to understand health geographical research questions.
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1.2 Thesis roadmap

There is an overarching introduction to causal inference and simulation in Chapter 2, this

is supplemented with short literature reviews for the topics covered in each chapter. This is

because there is not a linear story to this work and each chapter does not necessarily build

on the last, however, there is a common theme to all of them: the aim of understanding

bias in health geography research using causal inference and simulation.

As broad objectives, each chapter will: represent the problem in terms of a causal diagram

or diagrams; tease out the problem using simulation and; present the appropriate method

of analysis as determined by causal inference theory and confirmed by simulation.

The Vancouver referencing style is used since research included in this thesis is published

in a journal which uses this style and future submissions are anticipated to be in journals

which use this style.

1.2.1 Chapter 2

Chapter 2 introduces background literature related to causal inference and simulation

studies and links these through the data generating process.

There is a growing literature on the implementation of causal inference methods for

observational data and the aim here is to include enough background information for

the reader to follow the subsequent examples. Causal inference methods have been used

to uncover several pitfalls in observational data analysis and some examples of these are

included as an indication of the power of these methods and as an illustration of how they

are to be used when looking at the novel situations addressed in this thesis.

Causal inference methods naturally combine with simulation through the data generation

process and this is put explicitly to highlight the potential of the methods when used

together.
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1.2.2 Chapter 3

Chapter 3 expands on Chapter 2 by describing how one would conduct a simulation study

informed by causal inference methods along with some of the challenges and issues

that one may want to consider when developing one’s own simulation; in particular,

accounting for elements of health geography applicable to later chapters.

This chapter begins with a brief overview of the history of health geography data before

discussing the purpose of simulation studies for assessing statistical methods, foreseeing

criticism, how simulations are approached in this thesis and considering complexity.

The more specific elements of simulation that are covered are: compositional data and

composite variables, the modifiable areal and temporal unit problems, and the ‘most

dangerous equation’.

1.2.3 Chapter 4

Chapter 4 introduces the problem of mathematical coupling of proportions with common

denominators, illustrates the problem using causal diagrams and further probes the extent

of the problem via changing parameters in simulations.

This chapter first shows how causal inference methods, through the use of causal

diagrams, can expand understanding of this long–standing problem and how simulation

can be used to extend this knowledge to the field of health geography specifically. It is

shown under which circumstances the historical solution to mathematical coupling breaks

down; a situation that is more easily understood through the use of causal diagrams.

1.2.4 Chapter 5

Chapter 5 uses census data regarding limiting long–term illness and area–level deprivation

to investigate the problems from Chapter 4 in an applied health geography setting and
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using observed data to inform simulations.

The simulations undertaken in this chapter follow the framework outlined in Chapter 3,

under the null hypothesis and consider compositional data and composite variables in

their undertaking.

1.2.5 Chapter 6

Chapter 6 uses simulation and observed data analysis to investigate what has been termed

the ‘population mixing hypothesis’ and childhood leukaemia.

These simulations again follow the framework outlined in Chapter 3 and consider

selection on the outcome, the ‘most dangerous equation’ and the modifiable areal and

temporal unit problems.

1.2.6 Chapter 7

Chapter 7 summarises the findings of all chapters, discusses the strengths and limitations

of the research and makes suggestions for future research.

Causal inference methods and simulation approaches can provide a powerful tool for

researchers to evaluate their analytical and inferential methods. They have the potential

to aid researchers in avoiding potential pitfalls in their work. These approaches are not

limited to use by only a subset of researchers and this thesis aims to illustrate how these

methods can be used by any researcher in the field of health geography. As these methods

have not previously been applied to health geography problems, this thesis aims to provide

a framework for using simulation and causal inference methods to evaluate analytical

methods in epidemiology and health geography and to introduce the reader to some of

the considerations that may need to be taken into account when applying such methods in

their own work.
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Chapter 2

Background

This chapter provides definitions and background information relating to causal inference,

simulation studies and health geography, which will be required for later chapters. First,

causal inference methods and simulation study designs are introduced, then some helpful

causal inference language and definitions are provided.

To enable readers from a range of relevant disciplines to access this work, definitions of

some key terms relevant to the forthcoming chapters are given at the end of this Chapter

in Section 2.10. The words that are defined at the end of the Chapter appear in bold

throughout this Chapter.

2.1 Causal Inference

In epidemiology and related fields, the overall aim, which may or may not be made

explicit, is to determine the cause(s) of a particular outcome, or to predict the effect of

an intervention.8, 9 Causal inference aims to emulate randomised controlled experiments

on observed data. In observational studies, such as those conducted in epidemiology and

health geography research, it is not possible to randomise individuals or areas to the
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exposure of interest as is done in Randomised Controlled Trials (RCTs). This could

be for many reasons, such as it being time consuming, expensive, or unethical. A rigorous

approach to answering causal questions using observational data has been in development

since the topic was introduced to the field of epidemiology in 1999,10 however, uptake of

these methods across the field has been slow.11

The reason that an RCT is considered to be the ‘gold standard’ in statistics is that all

variables that could control the outcome are either held static or vary completely at

random, except the variable of interest. This means that any change seen in the outcome

must be a result of changes in a specific input variable. This is what researchers wish

to emulate using causal inference methods on observational data.12 Huge insight can be

gained in the analysis of observational data when causal inference methods are embraced

and causal aims are made explicit. This means that the estimates generated are more

likely to be robust and meaningful. Unfortunately, it is uncommon in quantitative social

science research for these aims to be made explicit and for causal inference methods

to be adopted, even though this is often the unspoken aim. Hernán13 argues that “being

explicit about the causal objective of a study reduces ambiguity in the scientific question,

errors in the data analysis, and excesses in the interpretation of the results” (p.616). Many

health researchers have been encouraged not to discuss causation when interpreting the

results of observational studies as this was thought to “overreach the evidence” (p.81).14

Causal inference methods are embraced in this thesis as they allow clear and logical

thinking about research questions and make the assumptions around variable relationships

explicit. And, as Holland wrote:15 “Correlation does not imply causation, and yet causal

conclusions drawn from a carefully designed experiment are often valid” (p.945).

2.1.1 What are causal inference methods?

Causal inference methods unite the counterfactual and probabilistic theories of causation

into an algebraic and graphical framework.12
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Under the counterfactual or potential outcome frameworks, the explanation of a cause is

described in the following way: if the cause did not happen then the chance of the outcome

would be different to if the cause had occurred, i.e. an event A may be considered a cause

of an event Y if, contrary to fact, had A not occurred, then the probability distribution of

Y would be different.

As an example (adapted from12), consider a driver, Jess, who is driving home and comes

to a fork in the road. They choose to go right and arrive late for a dinner engagement.

Upset, Jess says, “I should have gone left instead!". This statement implies that Jess’

decision to go right at the fork in the road caused them to be late home because, had they

chosen to turn left, they would not have arrived late. There is no way to prove whether

this statement is correct; Jess cannot travel back in time to the same moment and observe

what would have happened if they had turned left (attempting this journey at any other

time would not be directly comparable, as this requires being in the same space and time

to hold all other factors constant). This is the ‘fundamental problem of causal inference’,

once one outcome has been observed (the fact) it is not possible to know what would have

happened otherwise (the counterfactual).

This example demonstrates the philosophical aim of causal thinking; to compare how

things would have been different in a counterfactual universe. It is akin to a randomised

controlled study where everything is kept the same except for the cause being studied.

This is called the counterfactual contrast between exchangeable units of analysis, that is,

units that are the same in every way except for the presumed causal factor of interest.

2.1.2 Causal Conditions

It is not possible to identify individual–level causal effects within a causal framework

from observational data. However, there are three assumptions that, if met, can be used to

identify average causal effects from observational data. These are:
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• exchangeability;

• positivity; and

• consistency.

2.1.3 Exchangeability

Essentially, exchangeability is the condition of no confounding. In the counterfactual

framework, “causal inference can be drawn when the distribution of observed outcomes

among those who did not receive the intervention equals in expectation the distribution

that would have been observed had those who received the intervention not received it”

(p.82).14 This means that had the exposed actually been unexposed, they would have

experienced the same distribution of outcomes as those who were unexposed.16

Unconditional Exchangeability

As an example (adapted from17), in the case of a randomised controlled trial (RCT),

suppose that a researcher wants to assess the effectiveness of aspirin (A) for treating

headache (Y ). In order to test this, the researcher gathers a large, representative sample

of individuals with headaches and assigns each of them to receive aspirin (a = 1) or a

placebo (a = 0). Two hours later, the individuals are observed to see whether they have a

headache (y = 1) or not (y = 0).

There may be some measured and unmeasured attributes of the individuals that may

affect how likely they are to have a headache when they are checked after two hours

(e.g. some of them may have been suffering a more intense headache than others),

however, the randomisation of the individuals into treatment groups so that these attributes

are equivalent between groups, ensures that, on average, the individuals who are given

the aspirin are exchangeable with those who are given the placebo. In an RCT,
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randomisation of individuals into treatment groups ensures that the units of analysis are

unconditionally exchangeable. This means that the researcher can say what did happen

(the ‘outcome’) to those who received the treatment provides a good estimate of what

would have happened to the placebo group (the ‘potential outcome’) if they had received

the treatment. In the aspirin example, the causal effect of receiving the aspirin as treatment

is found by comparing the difference between the observed outcome in the placebo group

with their potential outcome, estimated from the treatment group.

Conditional exchangeability

As mentioned earlier, there are many reasons why an RCT may not be feasible especially

in social science and in order to estimate average causal effects, two units of analysis

must be created that are exchangeable so that their outcomes can be compared. This is a

challenge in observational data.

As an example, if a researcher wanted to estimate the causal effect of the influenza vaccine

on the diagnosis of influenza, it is likely that those individuals who received the vaccine

are systematically different to those who did not receive the vaccine (e.g. they are older,

richer, etc.).17 It is not appropriate in that case to simply compare the outcomes in those

who received the vaccine with those who did not to estimate the average causal effect of

the vaccine because the differences in the outcomes between the two groups may be due

to other differences between the groups. However, by comparing the outcomes between

subgroups in which the distributions of the relevant attributes are equivalent, the causal

effect could be estimated. These subgroups are exchangeable conditional on these factors,

i.e. they are conditionally exchangeable.

Causal diagrams (introduced in Section 2.1.7) aid researchers in determining which

attributes (variables) are required to be measured and conditioned on to achieve

conditional exchangeability. If it was possible to condition on all of the appropriate
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variables in a model (as determined by a causal diagram), the subgroups would be directly

comparable and causal inferences could be made. In reality, when using observational

data, there will be unmeasured variables which cannot be accounted for which means

assumptions and approximations must be made.

2.1.4 Positivity

The positivity assumption states that any individual has a positive probability of receiving

all values of the treatment (or exposure) variable. This means that in an analysis it is

required that some individuals (or units of analysis) receive the treatment (or exposure)

and some do not. When the positivity assumption is violated the researcher will not have

any information about the distribution of the outcome for a certain subset of the population

and consequently will not be able to make any inferences about it. An example of a

positivity violation would be where every patient in a critical condition received a heart

transplant,18 as there is no information on patients in a critical condition who did not

receive a heart transplant.

2.1.5 Consistency

The consistency assumption states that, for an individual who received treatment, their

potential outcome is equal to their observed outcome if they received treatment, and is

therefore known. Similarly, for an untreated individual, their potential outcome would

equal their observed outcome but their outcome had they been treated remains unknown.18

This may seem like an obvious statement, however, it is only an assumption and does

not always hold. For example, it may not hold when an intervention or exposure is

not well–defined. If a researcher wanted to understand the causal effect of smoking

and did not differentiate between smoking regular cigarettes and e–cigarettes they

would have multiple counterfactuals that they have not accounted for, i.e. one for
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individuals who smoke regular cigarettes and one for those who smoke e–cigarettes.

These counterfactuals cannot be combined into a composite counterfactual, therefore

the results of any analyses cannot be drawn on to estimate the causal effect of smoking.

Another example is that of body mass index (BMI). If a researcher was interested in the

effect of BMI on the risk of diabetes, there are ways in which two people could have the

same BMI but have completely different body compositions (e.g. one could be ‘obese’

due to high quantities of fat whereas the other could be ‘obese’ due to high quantities of

muscle). Although these ‘exposures’ are the same, they would not lead to the same risk

of diabetes. This is because the measure, BMI, is not consistent.19

2.1.6 Interference

Another assumption that is often made when estimating causal effects is that of no

interference, as the presence of interference makes causal inference more complex.20

Under no interference it is assumed that the outcome of one individual or unit is

not affected by the treatment of any other individual or unit.21 In many settings this

assumption does not hold. A common example of interference is that of infectious

diseases where the vaccinated population affects whether the rest of the population

becomes infected. However, interference can also be present when: 1) the intervention is

defined and measured on one type of observational unit, but 2) outcomes of interest are

defined and measured on a second, distinct type of unit” (p.1)22 This could be the case in

health geography research where policies are implemented at area–level but outcomes are

measured at the individual–level. It could be argued that invoking the clustering effect of

health geography addresses this in part where appropriate methods are used to respect the

data hierarchies (e.g. multilevel modelling).
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2.1.7 Directed Acyclic Graphs

Directed Acyclic Graphs (DAGs) allow researchers to represent the causal relationships

that they believe to exist between an exposure, outcome and confounding variables

visually. DAGs provide researchers with a method to represent expert knowledge on

the topic along with their assumptions.23 Mathematical rules can then be applied to

decide which variables must be adjusted for to remove confounding and reduce bias

in future analyses.18 This allows researchers to identify, measure, and compensate

for every potential source of non–causal association between the two variables of

interest, thereby allowing for conditional exchangeability.24, 25 When DAGs and data

are combined, the results of interventions can be predicted without actually performing

those interventions.12

The mathematical origins of DAGs lie in causal graph theory. They were developed

extensively in the field of computer science to provide robustness in their application26

and were subsequently introduced into epidemiology at the end of the last millennium.10

Variables are represented as nodes, and nodes are connected by arcs (or arrows) to

indicate the existence and direction of hypothesised causal relationships; DAGs encode a

researcher’s a priori assumptions among exposure, outcome and covariates.25 A group of

arrows that flow in the same direction from one node to a subsequent node form a causal

path. DAGs are ‘acyclic’ because no variable can cause itself at an instantaneous point

in time. A path indicates that there is a statistical dependency between the nodes that is

causal. Endogenous nodes are those that have at least one direct cause in the DAG and

exogenous nodes are those that have no direct causes in the DAG.

Temporal information is included in a DAG implicitly, because a node that has an arrow

leading into it from another node must proceed the first node in time, this means that a

node can never be returned to.

It is a greater assumption to omit an arc in a graph than to include it and in some places
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it has been advocated that DAGs should be drawn in a forward–saturated way (i.e. nodes

are drawn in time order from left to right and all preceding nodes lead into all successive

nodes), arcs can then be removed. It is argued that this approach is more likely to avoid

omitting arcs accidentally.17

Confounding of an exposure–outcome relationship occurs when one or more variables

cause both the exposure and the outcome. Confounding is a “concern in almost all

observational studies in epidemiology that focus on causality”27 (p.211), and it is often

used as a criticism of published research; that some other factor is involved in the

relationship between the exposure and the outcome. That is, groups are not exchangeable.

When confounders are identified their effects can be eliminated by adjusting for them,

stratifying on them or conditioning on them.28

Diagrams have often been used to express hypothesised relationships between variables,

but by applying formal rules their utility can be greatly expanded.25 DAGs assist with

identifying a minimally sufficient adjustment set (MSAS) of confounders, which,

when conditioned on (e.g. by including as covariates in a regression model), minimise

the assumed confounding. This helps with robustly estimating the total causal effect of

an exposure of interest on an outcome of interest. DAGs provide a relatively simple

approach to identifying a MSAS of variables that should be controlled for to identify the

causal effect of interest; this is achieved by using systematic graphical criteria that have

mathematical underpinnings.29

DAGs have greater utility than aiding in the identification of confounders however and

some examples of this will be shown in Section 2.2 and throughout later chapters.

2.1.8 d–Separation

From a DAG it is possible to learn the conditional independencies between variables, even

though DAGs are non–parametric (i.e. it is known which variables are functions of others,
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but not what the nature of those functions are). These independencies are true for all data

sets that can be generated from that particular graphical causal model.

The rules of d–separation are used to determine whether any pair of nodes in a DAG are

d–connected, i.e. there is a connecting path between them or d–separated i.e. there is

no open path between them.

When nodes are d–separated they are definitely independent, however, when they are

d–connected they are possibly, or likely, dependent; for this reason, it is a stronger

assumption to omit an arrow between nodes in a DAG than it is to retain one.

Two nodes in a DAG are d–separated if every path between them is blocked; even if one

path between them is unblocked they remain d–connected.

In order to formally introduce the definition of d–separation, the four ways in which 3

variables can be connected are considered:

1. B is a mediator in a chain: A→ B → C

2. B is a mediator in a chain: A← B ← C

3. B is a confounder of A and C in a fork: A← B → C

4. B is a collider on the causal path between A and C: A→ B ← C

In Cases 1–3, B is a non–collider, in Case 4, B is a collider. Each of these relationships

are illustrated in the DAG in Figure 2.1.1.
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Mediator

Collider

OutcomeExposure

Confounder

Figure 2.1.1: DAG illustrating each possible type of node.

Non–colliders are normally open and colliders are normally closed. Colliders and

non–colliders are defined in relation to a specific path, i.e. B could be a collider on

one path and a non–collider on another. These terms are clarified below.

A path which is blocked by a collider can be ‘opened’ by conditioning on the collider

itself, or any descendant of that collider (Case 1 above). Conditioning on a variable

between the exposure and outcome of interest that is not a collider will cause a path,

which was otherwise open, to become blocked (Cases 1–3 above).

If a set, {Z}, blocks every path between two nodes X and Y , then X and Y are

d–separated, conditional on {Z}, and are thus independent conditional on {Z}.

When there is no conditioning, only colliders can block a path; when there is a collider

on a path between two nodes they are conditionally dependent or marginally independent.

When a set of nodes, {Z}, are conditioned on then these are the nodes that can block a

path:

• a collider that is not conditioned on (it is not in {Z}) nor does it have any

descendants in {Z};
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• a chain or fork whose middle node is in {Z}.

More formally, a path, p, is blocked by a set of nodes {Z}, if and only if:12

• p contains a chain of nodes A → B → C or a fork A ← B → C such that the

middle node, B, is in {Z} (i.e. B is conditioned on), or

• p contains a collider A → B ← C such that the collision node, B is not in {Z},

and no descendant of B is in {Z}.

Pearl12 helpfully uses the analogy of water pipes to describe ‘open’ and ‘closed’ paths

within a DAG. If a path between variables is thought of as a pipe, when variables are

dependent, water will flow through these pipes. Only one unblocked path is required

for water to flow through the pipes and the variables at either end of this path will be

dependent. On the other hand, a path only needs to be blocked in one place for the water

to be unable to pass through the pipe.

2.1.9 Minimally Sufficient Adjustment Sets

The systematic graphical criteria of DAGs along with d–separation provide an algorithm

for identifying the MSAS:29

1. Delete all arrows that start at the exposure.

2. Check whether there are any unblocked back–door paths between the exposure

and the outcome, where a back–door path is a non–causal set of arcs between the

exposure and the outcome of interest.

3. Any covariates on the unblocked back–door paths between the exposure and the

outcome will have to be controlled for to remove confounding bias.
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It is possible to extend this to test whether this set of covariates is minimally sufficient to

find the total causal effect of the exposure on the outcome.29

There are also programs available (such as ‘Dagitty’30) which automate the identification

of these adjustment sets which are particularly useful in studies with a large number of

variables, as is often the case in epidemiological and health geography studies. When

datasets are large and complex it is possible that conditioning on a set of variables

could block some paths whilst opening others and this can become difficult to keep track

of manually.30 Essentially, testing whether the exposure and outcome are d–separated

involves examining all paths in the DAG which have more than three variables which is

made much easier using automated procedures.

Confounders, as identified by the MSAS and DAGs, are not the only factors that DAGs

are useful for. Indeed, they can aid researchers in identifying mediators (Section 2.1.10)

and competing exposures along with biases, including collider bias and the related

selection bias .

2.1.10 Mediators

Mediators are variables on the causal path between the exposure and the outcome.

Conditioning on mediators does not provide appropriate statistical adjustment for

confounding. This is because controlling for the mediator ‘blocks’ the causal path

between the exposure and the outcome, thereby controlling away some of the processes

being investigated.31 Instead, such adjustment can introduce an inferential bias into

the estimated exposure–outcome relationship, known as ‘reversal paradox’;32 so–called

because it can reverse the apparent effect, although it is more likely to simply alter the

estimate either towards or away from the null (i.e. where there is no relationship between

the exposure and the outcome), depending upon the correlation structure amongst the

variables being modelled.
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2.1.11 Colliders

As noted above, B is a collider on the path A→ C in the following DAG: A→ B ← C.

The path between A and C is closed unless B is conditioned on, in which case it is

open. Collider bias occurs when there is a change in association between two variables as

a result of conditioning on their common effect.33 To illustrate collider bias, consider

the following classic example (adapted from25). Suppose there are two factors that

determine success as a basketball player: height and speed (successful players must be

either extremely tall or extremely fast). In the general population, these two attributes

are statistically independent of each other, but if the population of professional basketball

players was examined there is a high probability that the short ones are very fast. This

is because the short players must compensate for their lack of height with speed to

become great players. In the language of causal inference, restricting the population to

only professional basketball players is conditioning on a common effect of height and

speed, and within that specific population height and speed are inversely related; this is

different to the relationship found in the general population.

2.2 An example of where DAGs have been used to

understand bias

Causal inference methods, and more specifically DAGs, have been used to illustrate

common problems in observational health research. One such example is Simpson’s

Paradox.34, 35 Simpson’s Paradox is a form of “reversal paradox”32 where an effect appears

to be present when data are analysed in different groups but this effect disappears or is

reversed when the group data are combined for analysis. By depicting the data generating

structure in a DAG one is able to understand how this problem arises; it is not possible

to solve this problem with statistical analysis alone36 and the data must be supplemented
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with causal knowledge.35

2.2.1 Simpson’s Paradox

Simpson’s Paradox has been known about by statisticians for a long time,34 however, it

is only through causal inference that it has truly been understood. It cannot be explicated

using a statistical approach alone. Pearl35 uses simulated data to illustrate this problem

and shows how the apparent efficacy of a drug is reversed when the data are divided

into male and female groups. The drug appears to be harmful to both males and females

but beneficial to the population as a whole; intuitively, this is impossible. However, it

is possible to understand which of these results is appropriate by thinking about the

‘story’ behind the data, i.e. the data generating process. This can be represented in a

causal diagram where the rules of d–separation can be applied to determine whether the

conditioned or non–conditioned model is correct.

Simpson’s Paradox is commonly taught on courses in epidemiology and it is included

here as it is an early example of how causal inference is required to fully understand

some biases as a result of data analyses or inferences. The rest of the thesis uses causal

inference in a similar way, to delve further into the data analyses and inferences of some

select epidemiological and health geographical analyses.

2.3 DAGs and area–level problems

DAGs are not widely used to depict area–level variables, however, if one is interested in

area–to–area variation in area–level outcomes it is plausible to construct a DAG to answer

area–level questions.29 Rubin37 writes that “‘summary’ causal effects can also be defined

at the level of collections of units, such as the mean unit–level causal effect for all units"

(p.323). Morgan and Winship38 suggest that “a variety of possible population–based (and
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‘collection’–based) definitions of potential outcomes, treatment assignment patterns, and

observed outcomes can be used” (p.51).

As DAGs essentially depict the data generating process of a set of variables and have been

developed to incorporate both individual–and area–level variables,22 this suggests that it is

possible to construct DAGs based purely at the area–level. For example DAGs that have

incorporated area–level data have been used to investigate the following: “cooking and

season as risk factors for acute lower respiratory infection”;39 "the association of cigarette

price differentials with infant mortality”;40 “the association of community sanitation

usage with soil–transmitted helminth infections among school–aged children”;41 and

“does employee resistance during a robbery increase the risk of customer injury?”42

An important consideration when thinking about the level at which to conduct analyses is

the ecological fallacy and its inverse, the individualistic fallacy.43 The ecological fallacy

is a bias that “may occur when an observed relationship between aggregated variables

differs from the true, i.e. causal, association at an individual level” (p. 1).43 That is, it is

assumed that conclusions drawn from analyses at the aggregate level hold at the individual

level. Simpson’s Paradox is an example of the ecological fallacy where analyses on two or

more populations does not generate the same conclusion as when analyses are conducted

on the population as a whole.

There is an argument for conducting analyses at the level at which the research question

is posed, i.e. the level at which any intervention would take place.44 For example, if an

intervention would involve the change of policy at the local area level, then one should

conduct one’s analyses on aggregated data at the local area level, but, if the intervention

was to change a person’s calorific intake then analyses should be implemented at the

individual–level.

In a multilevel framework, however, analyses can respect the hierarchical structure of data

and area–level attributes can be separated from individual–level attributes, irrespective

of the level at which the research question is focused. This can help in overcoming the
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ecological fallacy as cause and effect can be partitioned across levels, notwithstanding the

potential for cross–level interactions (which are not within the scope of this thesis).

In analyses that are not conducted at the lowest level or when multilevel modelling is

not employed, there is a risk of inferential bias if the research question cannot be clearly

proposed as operating at an aggregate level. This remains an under–developed area of

research and it is a challenge for causal inference; it will be returned to in Chapter 7.

2.4 Causal inference and statistical associations

Statistical analyses are data–driven and do not necessarily require any prior knowledge

of the directions of the associations between variables. They often focus on maximising

the proportion of explained variation in an outcome; the greater the coefficient of

determination (R2), the better. A reason for using a solely statistical approach to analysis

is because in observational data there are often many measured covariates but the sample

size may be small, resulting in poor convergence properties of the statistical models.27

Another common consideration in solely statistical analyses (i.e. those not informed by

a priori causal knowledge) is that of collinearity between covariates; the concern is that

this will lead to numerical instability. However, the importance of considering the causal

framework under study when specifying regression models in the presence of highly

correlated data has been shown; when the correct causal structure is specified for a model

the parameter estimates of the effect of interest are unbiased.45

Statistical dependence between an exposure and an outcome could be a result of one of

the following (as outlined in25): random fluctuation, X caused Y , Y caused X , X and

Y share a common cause, the statistical association was induced by conditioning on a

common effect of X and Y , i.e. selection bias. As introduced above, causal diagrams

can help researchers dismiss some of these statistical associations as being causal by

assessing whether they are consistent with the data and the data generating process.
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DAGs automatically include the temporal order of the variables, so if interest lies in the

relationship X → Y the explanation that Y causes X can be dismissed. X and Y share a

common cause can be dismissed as a causal explanation of the data because these common

causes are confounders and their effects can be eliminated by conditioning on them in

analyses. The last explanation, that a statistical association was induced by conditioning

on a common effect of X and Y , is the result of conditioning on a common cause (i.e. a

collider), which would be avoided if a causal diagram was considered providing the data

provenance is well understood and any conditional selection of the data is completely

known and accounted for within the DAG.

2.5 The difference between causal inference and

prediction modelling

Both causal inference and prediction modelling are important for generating and testing

hypotheses. However, the distinction between the two is not always made clear and

prediction models are different to the models used for causal inference.46 The aim of

prediction modelling is to accurately predict the outcome of interest. When variables

are included in a prediction model they are the ones that are likely to be associated

with the outcome but not necessarily causally related to it. Methods for narrowing down

a list of possible covariates to include in a prediction model can be automated (e.g.

forwards/backwards step–wise regression) and the best group of covariates are selected

for the final model. The group is chosen that is both parsimonious and maximises the

amount of variation in the outcome explained. It is likely that adding covariates to the

model will increase its predictive capability but will reduce the model’s external validity,

i.e. whether the same model would apply to another dataset or the general population.

In contrast, the aim of causal modelling is to estimate the causal association between an

exposure and an outcome by removing all other hypothesised relationships which affect
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that focal relationship. Methods for implementing this approach have been the focus of

this Chapter so far. These methods rely on a priori assumptions and theory and cannot

yet be automated. As these assumptions are not accounted for in prediction models they

are not interchangeable with causal models; their goals differ.47 Expert knowledge is an

important aspect of causal inference methods which set it apart from prediction modelling.

Experts are required for designing the research question, identifying/generating suitable

datasets for analysis and in describing the causal structure of the data being studied.48

Related to the concepts of prediction modelling and causal modelling is the ‘mutual

adjustment fallacy’. In a prediction model it is often assumed that each covariate can

be interpreted from a given model, whereas in a causal model this is not the case. The

reasoning behind this is described in the next Section.

2.6 The mutual adjustment fallacy

Often, in epidemiological and health geographical studies, effect estimates are obtained

from a single model and they are therefore presented in a single table (often the second

table in a research article). Each individual effect estimate is then interpreted individually

as if each estimate has the equivalent interpretation. This interpretation is flawed and is

referred to as the ‘Table 2 fallacy’49 or the ‘mutual adjustment fallacy’.50

By way of illustration, if the effect of X on Y is to be estimated and it is known from a

DAG (Figure 2.6.1) that there exists only one confounder of this relationship, Z, then a

regression model, Y ∼ X+Z, can be run. If all the usual assumptions of linear regression

hold, then the coefficient of X obtained from this model estimates the total causal effect

ofX on Y . The ‘mutual adjustment fallacy’ occurs when the coefficient ofZ is interpreted

as if it estimates the effect of Z on Y . In models with more variables, this fallacy occurs

when it is assumed that all of the estimated coefficients have a similar interpretation with

respect to the outcome, Y .
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Looking closer at the DAG in Figure 2.6.1, it can be seen why this is problematic. When

investigating the effect X → Y , Z is a confounder and adjustment for Z removes all

confounding, however, if the effect of interest was Z → Y , X is a mediator. It was seen

above (in Section 2.1.10) why adjustment for a mediator is not appropriate for estimating

the total causal effect. Instead, the direct causal effect could be estimated in this way,

i.e. the effect of Z on Y whilst X is held constant, but this can be quite different to the

total causal effect of Z on Y .

X

Y

Z

Figure 2.6.1: DAG illustrating the ‘mutual adjustment fallacy’ with three variables

This example can be complicated further if another variable, U , is considered which

affects both Z and Y (Figure 2.6.2). In this case, if the total effect of X on Y was

sought, it would still be appropriate to adjust for Z as it acts as a confounder of

the exposure–outcome relationship. However, as U is a confounder of the Z → Y

relationship, interpreting the coefficient of Z from the regression model Y ∼ X + Z

would give the direct effect of Z on Y confounded by U which is not a very useful

estimate.

Instead, a totally different model would be required to estimate the total effect of Z on Y

to that of X on Y because X is the exposure in the latter and a mediator in the former.
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This is true in general; different regression models are required if multiple causal effects

are to be estimated.

X

YZ

U

Figure 2.6.2: DAG illustrating the ‘mutual adjustment fallacy’ with four variables.

2.7 Simulation Studies

Simulation studies use computer experiments to assess uncertainty in observational data

analyses. Simulated data allow one to know the ‘truth’ about the data that one is working

with and the level of bias attributable to the statistical method used can then be assessed.

This is often found by counting the number of deviations from what is expected, usually

averaged over many iterations.51 In social science research, the aim of simulation is to

create a simpler model representing an observed mechanism from which conclusions can

be drawn which are generalisable to the more complex real–world.52

There are several types of simulation that can be utilised and each has a different role and

purpose; however, there is no specific simulation approach for the field of epidemiology or

health geography. Some common approaches to simulation are: simulating from observed

data distributions, microsimulation, and agent–based modelling.53

As mentioned in Chapter 1, many statistical methods are used habitually1, 2 and there are

many flowcharts available that suggest which methods should be adopted depending on
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the type of data available. However, this is not the only thing that should be considered

when deciding which method is most appropriate; one important aim is to minimise bias

in the methods one uses and “simulations can evaluate the robustness of a statistical

procedure under ideal and non–ideal conditions” (p.34).54 Simulation is considered in

much more detail in Chapter 3.

2.8 Data Generation

Common to both simulation and causal inference, is the thinking behind the data

generation process; in simulation studies one considers the relationships found in nature

that one wishes to recreate in order to devise a model (an empirical abstraction of reality)

that is simpler to study than the target data52 and causal models “represent the mechanism

by which data were generated” (p.35).12 In this way, they are a sort of “blueprint” for the

‘part of the universe’ that researchers wish to simulate (p.35).12

The data–generating process is obtained from a DAG by supplementing the information

contained within the DAG with parametric assumptions. The data–generating process is

the way in which the endogenous variables within the system obtain their values. If all

of the values of the exogenous variables in the system are known then the value of any

endogenous variable can be found.53

Section 2.10 defines language that is important to the reading of this thesis. These words

appeared in bold text throughout this chapter.

2.9 Conclusion

In this thesis, DAGs and causal graph theory will be used to illustrate causal relationships

between variables and to shed light on biases that arise from the methods explored in the
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upcoming chapters. These will be linked with theoretical simulations, based directly on

simplified DAGs under the null hypothesis and, where appropriate, also on observed data.

Causal graph theory can provide important insights into research questions, not least by

making researchers be explicit about their research question of interest. This chapter

has introduced important background to the causal inference framework and how this

is linked to simulation through the data generation process. The power of these methods

was demonstrated by illustrating how they have been used to understand some paradoxes

and biases in epidemiology.

These methods have not previously been used to look at the research questions addressed

in this thesis (and are not a feature of health geography research more generally), namely:

mathematical coupling (Chapter 4), Limiting Long–term Illness and deprivation (Chapter

5), and population mixing and childhood leukaemia (Chapter 6).

2.10 Definitions

Ancestor: A variable on a path which precedes another in time.

Arc: In a directed acyclic graph (DAG), an arc is a directed line (arrow) symbolising a

hypothesised causal relationship between two variables.

Back–door path: A back–door path is an alternative path to the causal path of interest

which connects the exposure and the outcome.

Bias: Bias occurs when the results or inferences of an analysis deviate from the truth.

Causal path: A causal path is a path between the hypothesised exposure and outcome.

Child: A direct descendant of another variable.

Collider: A collider between a pair of variables is any variable that is causally influenced

by both variables in the pair. Conditioning on a collider can create a spurious (or
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non–causal) association between its causes. In a DAG, a collider is in the middle of a

fork, i.e. X → C ← Y .

Composite Variable: Variables that have been algebraically constructed (e.g. by addition,

subtraction, multiplication, or division) from two (or more) source variables.

Compositional Data: Data that are parts of a whole. Theoretically, all variables can be

divided into ‘parts’.

Conditioning (on a variable): Introducing a variable into an analysis, this could be

through, for example, stratification or including a variable as a covariate in a regression

model.

Confounder: Within a causal inference framework a confounder is defined to be:

• a cause of the outcome in unexposed people;

• a cause of the exposure; and

• unaffected by the exposure (not on the causal path between exposure and outcome.

In a DAG a confounder (C) is an ancestor of both the exposure (X) and outcome (Y ), e.g.

X ← C → Y . If a confounder is conditioned on it will ‘open’ a back–door path.

Confounding: A mechanism that creates a non–causal path between exposure and

outcome, i.e. the presence of at least one ‘open’ back–door path between the exposure

and the outcome.

Consistency: One of the three assumptions required to identify a causal effect.

Consistency requires that the exposure and outcome are sufficiently well–defined in order

for the causal effect to be well–defined.

Counterfactual: An event, state, or situation, that did not happen but could potentially

have happened.
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Descendant: A variable on a path which follows another variable in time.

Directed Acyclic Graph (DAG): A graph that represents the causal assumptions of the

data–generating process, i.e. the hypothesised causal relationships between variables. All

defined relationships between variables have a direction (hence ‘directed’) and no variable

can cause itself (hence ‘acyclic’).

Direct effect: The part of the effect between exposure and outcome that does not go

through any intermediate variables.55

d–Separation: Two variables are d–separated if there is no open path between them in

the DAG.

Endogenous Node: A node that has at least one direct cause in a DAG.

Endogenous Selection Bias: Bias that is a result of conditioning on a collider, or the

descendant of a collider, on a non–causal path between the exposure and the outcome.56

Exchangeability: One of the three assumptions required to identify a causal effect.

Exchangeability assumes that once all confounders are conditioned on, values of the

exposure are randomly assigned.

Exogenous Node: A node that has no direct causes in a DAG.

Exposure: The variable whose causal effect is to be estimated. This can also be any

conceivable concept that the population of interest ‘experiences’.

Indirect effect: The parts of the total effect of an exposure on an outcome that is

transmitted via intermediate variables.55

Interference: Under the assumption of no interference it is assumed that the outcome of

one individual or unit is not affected by the treatment of any other individual or unit.

Mediator: A variable in the middle of a chain of causal arrows between the exposure and

the outcome. A mediator ‘mediates’ part of the total causal effect between the exposure
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and the outcome.

Minimally Sufficient Adjustment Set (MSAS): Sets of covariates, that when adjusted

for, block all back–door paths between the exposure and outcome.

Node: A variable in a DAG.

Null hypothesis: The hypothesis that there is no relationship between the exposure and

outcome of interest.

Outcome: A variable whose causal determinants are to be estimated.

Path: A path is a set of arrows connecting any two variables in a DAG, regardless of the

direction of the arrows.

Parent: An immediate ancestor of another node.

Positivity: One of the three assumptions required to identify a causal effect. Positivity

assumes that an individual or unit has a positive probability of receiving all values of the

treatment (or exposure) variable.

Randomised Controlled Trial (RCT): A study design in which participants are assigned

to groups to test a treatment. One group receives a new treatment whilst the other receives

an alternative or no treatment. The groups are compared after a period of treatment to

determine whether there are any systematic differences in outcome between them.

Selection Bias: Selection bias occurs when selection of observations into a study are not

independent of the outcome.

Total Causal Effect: Combined direct and indirect effects between exposure and

outcome.55
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Chapter 3

Simulation in Health Geography

3.1 Introduction

This chapter introduces the history of health geography data and considerations regarding

data provenance before proceeding to discuss simulation methods and related issues.

Everyone can perform simulations; they do not need to be “restricted to researchers with

advanced skills in statistics and computer programming” (p.43),54 however, they do need

careful planning and execution51 as well as a healthy dose of careful forethought and

reflection on the real world as it pertains to the data generating processes in any one

context. This chapter shows how researchers can build up their simulations, informed

by causal inference methods, by illustrating some of the issues mentioned in Chapter 2,

discussing some important considerations resulting from the research reported later in the

thesis and outlining how simulations are approached throughout the rest of the thesis.
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3.2 A brief history of epidemiology/health geography

data

The collection of epidemiological and health geography data has a long history. The

original, pioneering collection of population health related data is often credited to the

demographer John Graunt. Together with Sir William Petty, Graunt collated the initial

life–tables: calculating survival probabilities for each age, he later went on to write

the ‘Bills of Mortality’.57 Since ancient times, societies have tried to collect data on

population attributes, and even ‘Before the Common Era’ censuses were being conducted

by those in charge. Although these may have been initially instigated to maximise tax

collection, census questions have developed and the utility of collecting data on the same

questions periodically, aiming for 100% population coverage, should be recognised. Since

1991, the UK Census has collected data on health outcomes, for example, morbidity (in

the form of a self–assessed question on whether a person considers themselves to have a

limiting long–term illness) which complements the Vital Registration data on mortality

events.58

Often, in health geography research, researchers rely on secondary data sources,

sometimes called ‘routine’ data. These are data which are collected for administrative

purposes and consequently they are collected without a research question or hypothesis

in mind, but they are later made available for research purposes.59, 60 Some data sources

which are readily available to researchers are outlined in Sections 3.2.1–3.2.3, below.

3.2.1 Census data

As mentioned above, the idea of collecting data about a population is to get information

about 100% of the population at a single point in time. Census forms are sent out to

each household to be filled in on the same day. This process is usually repeated every
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5 or 10 years with the questions and general topic areas being repeated at each census

to get an idea of changes in the population over time. The collation of census data is a

long process, and a criticism of collecting this form of data is that it may be out of date

before it is available to researchers for analysis. However, this form of data collection

does allow analysis of the size and key characteristics of the population at several different

area–levels; from national level to output areas.61

3.2.2 Survey data

Large scale surveys are often conducted by government departments motivated by a need

to know more about a particular topic such as health, crime, labour force participation,

etc. Unlike a census, these studies can be conducted over several months by professional

interviewers and even though the survey may be repeated another year, different people

will be interviewed. Efforts are often made to ensure a similar cross–section of the

population are surveyed. The benefit of the data collected by this kind of survey rather

than a census is that a larger variety of questions can be asked and the data can be

released to researchers much more quickly. These data can often be linked up with census

data because the cross–section of the population that is chosen for questioning is often

informed by the census to ensure sufficient coverage of population types. As introduced

in Section 2.4, there are serious implications when this kind of survey does not accurately

include a representative sample of the population that the researchers are interested in;

this can be exacerbated by non–response bias.61

3.2.3 Administrative data

Administrative data are data that are collected for “an organisation’s activities”(p.22).61

These organisations are often government departments collecting large amounts of

administrative data regarding areas such as welfare, tax, health and education. They are
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often used to inform official statistics which are then used to inform government policies.

When they are released for use by others they are often aggregated into census or electoral

geographies which means that they can be linked to census data straightforwardly. These

datasets can be much bigger than datasets collected by surveys because the data are

collected routinely which would be expensive and logistically difficult to conduct by

survey or census. This type of data often includes parts of the population that are difficult

to reach by survey (e.g. because they are in temporary accommodation), this means it

can be particularly useful in identifying areas of society which need more investment or

healthcare interventions, for example.

A difficulty with using administrative data for research purposes is that the researcher

has little control over how and what data are collected. They can also miss out certain

sub–populations (e.g. homeless people) because they do not use certain services or when

changes are made to service provision.61

3.2.4 Future data sources

There has been a lot of discussion around so–called ‘Big Data’ and its possible utility for

aiding researchers by overcoming some of the shortfalls in the data types mentioned in

the previous sections. Big Data has been defined as data that is high in volume, velocity

and variety and therefore requires new technology and analytical methods to make use

of it.62 Big Data can offer very detailed information in near real–time from a variety of

different sources, but this can present challenges for researchers as existing methods of

analysis may not be adequate because of the volume of data available.

With these evolving methods of data collection and collation, and as the research focus

moves more towards ‘Big Data’, researchers should be mindful of what this means for

their research; ‘Big Data’ can offer researchers exciting opportunities, but there is a danger

that it could confuse rather than clarify research,61 especially as data provenance has
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implications on the robustness of causal inference sought, as will be shown in Chapter

6.

This chapter discusses simulation and its usefulness in assessing the statistical methods

used for bias and the role that causal inference can play in this. This thesis focuses on

more traditional data sources rather than entering the world of ‘Big Data’ as there are a

lot of issues that still need to be addressed within the fields of health geography, causal

inference and simulation before these issues can be researched in relation to ‘Big Data’,

particularly regarding the merging of multiple datasets.63

This thesis primarily uses census data to inform simulations and upon which to conduct

direct analyses. This reduces some of the difficulties due to selection bias resulting

from other data sources and allows focus to be directed at some other potentially more

analytical biases.

Although there are many advanced methods available for analysing health data within

a geographical context (e.g. geographically weighted regression64), simpler methods are

often called upon to get a ‘quick’ idea of the data. It will be seen in Chapter 5, how

this approach can produce erroneous results when investigating the relationship between

deprivation and limiting long–term illness. It appears as though more advanced methods

are sometimes considered to have diminishing returns on effort and that regression models

are ‘good enough’.50 Throughout this thesis, it will be shown why this approach should

either be avoided, as it can lead to incorrect conclusions and prompt further research to

follow the wrong direction, or how simple simulations and a graphical causal framework

can be combined to avoid these analytical pitfalls. This will be achieved by re–visiting

some go–to methodologies using simulation and approached from a causal inference

perspective to illustrate how they can be accurately implemented, and to highlight more

contemporary methods that can be used to overcome biases. If researchers often revert

back to regression modelling1 rather than more ‘advanced’ methods then it is important

that regression modelling is integrated well with causal inference methods and simulation
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to avoid biases.

3.3 Where to begin: the data generating process

It is often reported that there are four elements required for data analysis, these are:

data collection, data collation, data cleaning followed by data analysis (and subsequently

dissemination of results). However, in order to think about addressing research questions

from a causal inference perspective it is important to also think about data provenance,

i.e. the (actual or assumed) data generating process and therefore the causal relationships

between the variables of interest. This can be greatly aided by the use of Directed Acyclic

Graphs (DAGs - introduced in Section 2.1.7). It is not always possible to tell directly

from the data what the correct data generating process is and in that case either external

knowledge or underlying theory is then needed. Model development must be driven by a

priori understanding of the data generation process and the same is true when simulating

datasets - they should be informed by the assumed data generation process and where

this is not known, several different data generation processes can be used and compared.

The distinction between DAGs drawn to represent observed data may not be known a

priori and examination of DAG–data consistency may then be insightful for confirming

plausible and therefore likely correct underlying data generating processes in line with

external theory or hypothesis.30

Increasingly, population health data scientists rely on data collected from one or more

external sources which may have to be combined together in order for analyses to be

performed. These data are often multifaceted and can be at the individual–or area–level.

The most contemporary methods of analysis may suggest that multilevel models are most

appropriate to address a particular research question, especially in health geography,

however, it may be the case that the data are not in a format that facilitates this. It is

important, then, to think about the methods that are at the researchers’ disposal and to find
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the best way for these methods to be implemented in order to minimise bias. This is not

as straightforward as acknowledging the format of the data available and implementing

“mechanical calculations with little attention to scientific context, experimental design,

assumptions and limitations of methods, or the interpretation of results” (p.42).1 It is

paramount to accurately attributing cause and to inform subsequent administering of

interventions. For better or worse, researchers will always be required to answer research

questions based on the data that are available to them.

3.4 What are simulation studies?

The simulation studies used in this thesis generate data by “pseudo-random sampling

from known probability distributions” by computer experiment (p.2074).51 One purpose

in relation to the analysis of health data is to enable the researcher to evaluate their

methods in order to assess the suitability of that method to answer the research question

at hand. Simulations are used in the case where mathematical proofs are not suitable, i.e.

where no closed form solution exists or the problem is intractable54 but they can also be

used to supplement closed form solutions by providing empirical evidence.

In terms of causal inference studies, mathematical solutions do not necessarily lend

themselves well to respecting the causal data generation process; this is much more easily

achieved by using simulation methods where parameters can be changed for code to be

re–run in a matter of seconds.

3.5 Simulation studies informed by observed data

In a causal inference context, observed data informed simulation studies allow researchers

to take the observed data on exposures and confounders and then simulate outcomes
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under different causal scenarios. For the simulated outcomes, the true answer is known

and investigations can then be made into how alternative methods compare to otherwise

used methods and the extent to which the use of one approach over another alters the

concluding inferences of any analyses. Simulation studies are a powerful technique that

allow researchers to answer a broad set of methodological and theoretical questions and

“provide a flexible framework to answer specific questions relevant to one’s own research”

(p.43).54 When creating a simulated dataset, based on observed data, relevant information

is extracted so that the simulated data is statistically equivalent to the observed data. This

means that distributions of the simulated data are quasi–identical to the distributions of

the variables in the observed population and the marginal distributions are accurately

represented via the correlation structure.65

The purposes of simulation studies in this setting are not to replace formally collected

datasets and they do not reduce the need to collect more and better data. The suggestion

in this thesis is that simulation studies should be used to supplement applied analyses in

order to identify and avoid inferential biases from the limitations of methods employed

for complex real–world analytical challenges.

3.6 What is the purpose of simulation for assessing

statistical methods?

The purpose of simulation is to remove as much superfluous uncertainty from data as

possible. Messiness is removed from the data and the researcher can have a certain level

of confidence that any bias that is found is due to the methods that have been implemented

for analysis. The data generation process is known, therefore methods can be assessed

by comparing analytical results from a simulation with those results that are known to be

‘true’ because they were simulated to be a particular way. This allows bias to be estimated

by comparing the estimates from an analysis with the known, true values. It is important
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to have dedicated research questions to investigate how appropriate the methods used are

for the purpose they are being used for.66

It is also important to take time to step back and look at the methodology to understand

whether the methods used are fit for purpose, i.e. how robust are the methods being used?

Have they somehow been taken out of context: has the “ritualistic miming of statistics

rather than conscientious practice” (p.40)1 taken over? Indeed, Maxwell and Cole67

describe this well when they say, “simulations can be extraordinarily valuable because

they allow the author to describe properties of statistics under suboptimal conditions

where underlying assumptions have not been met” (p.196). However, simulation is not

always straightforward. Some important considerations relevant to the health geography

situations in the rest of the thesis are now discussed, starting by discussing the criticisms

often levelled at simulation studies.

3.7 Foreseeing criticisms of simulation

It gets more and more complicated to find closed form solutions when dealing with

complex real–world scenarios45 and one criticism of simulation is that it is abstract

and does not relate to data found in the ‘real–world’.68 For the simulations here and

throughout this thesis, observed datasets are used to inform the simulations. However, it

can sometimes be useful to build simulations ‘from the ground up’ by using hypothetical

data as examples.

Simplifying scenarios as much as possible can help one understand what is truly going on.

Simplification, is in fact a necessary element of simulation, as one must understand one’s

data to know the truth for comparison with analytical results.51 Building a simulation up

from scratch, as much as it is feasible, can help to avoid unintentional marginal constraints

which might accidentally be introduced when using a top down approach to simulation.

The simulations used in Chapter 4 are an example of simulations being built up, whereas
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those in Chapters 5 and 6 are based on existing data. Since a statistical model is an

abstraction of reality and should be parsimonious, this leads on to questions around how

complex the simulation should be.

3.8 How complex should the simulation be?

There are several things to consider when deciding how complex a simulation needs to be

to get a true picture of how biased a particular statistical method is. It can be helpful to

build–up simulations to fully understand the processes and where/how bias is introduced.

The datasets that are generated via simulation are often ‘cleaner’ than those that are

encountered in the real–world as they are often generated under unrealistic conditions.54

Whether these more complicated aspects should be incorporated in simulations is

sometimes difficult to gauge and largely comes down to the knowledge of the researcher,

however, it gets more and more complicated when research is dealing with complex

real–world scenarios.53

When deciding how complex the researcher should make a simulation they may want

to consider what particular aspect of a simulation they are interested in and avoid being

distracted by other issues or nuances that are not directly pertinent to the research question

at hand.

As a simplification in this thesis, latent variables are either one of the last issues to be

considered in the simulations (Chapter 4) or are considered only abstractly or in the

discussion (Chapters 5 and 6). Latent variables are unobserved variables –they could

be unobserved for several reasons, such as: it is not possible to measure them, they

are missing in the dataset that is available for analysis, or even that they are not known

(but can be assumed) to exist. In observational data analysis, latent variables complicate

analyses and it is important to be aware of them and account for them where possible,
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or to be explicit about the assumptions that are made in relation to omitting or including

them. Models can only ever be approximations of the ‘truth’ and it can be assumed that

simulations including latent variables (when they are not directly relevant to the research

method being investigated) would only serve to complicate results and distort the bias

attributable to the use of an inappropriate method.

Later, it is realised that a latent variable is essential to capture cluster heterogeneity though

it may not always be viewed as a ‘variable’, rather an intrinsic part of the data generating

process. Of course, simulations are most valuable when they can capture the complexities

of real–world data generating processes,68 and the rest of this chapter introduces some

approaches to simulation and discusses some of the complexities in simulating health

geography data which are important for the rest of the thesis and for such research,

generally.

3.9 How to simulate?

Using the data generation process that is common to both thinking behind simulation and

causal inference, a graphical causal model (of which a DAG is an example) can be adapted

to a path diagram using Sewell Wright’s path tracing rules.69–71 Data can then be simulated

from this simple model where the truth about the underlying relationships in the data are

known, i.e. it is known what regression coefficients and covariance structures should be

generated from any models that are run. This is a straightforward way of simulating under

the null and non–null scenarios. This method is used in Chapter 4 to illustrate the problem

of mathematical coupling.

Path diagrams are now defined before some other complexities are introduced to

achieve simulations which are more truly representative of reality and avoid criticism

as mentioned in Section 3.7.
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3.9.1 Path diagrams

DAGs are non–parametric, this means that in order to generate simulated data informed

by a DAG some assumptions must be made which allow the DAG to be developed into

a path model.72 A simple way to do this is to assume that all of the variables in a DAG

follow a multivariate normal distribution and that all relationships between the pairs of

variables in the DAG are linear. The arcs on a DAG can then be assigned standardised path

coefficients. These path coefficients are not to be confused with correlation coefficients as

they do not represent bivariate correlations.

A way of deconstructing the correlations among a set of variables to estimate standardised

path coefficients was developed by Sewell Wright.69–71 To find the correlation between

any two variables in a path diagram, all routes connecting the variables must be traced

using the following ‘path tracing’ rules:

• trace backward along an arrow and then forward, or only forwards from one variable

to the other, but never forward and then back,

• pass through each variable only once in each chain of paths, and

• trace through at most one two–way arrow (correlation) in each chain of paths.

The contribution of the correlation of each chain traced between two variables is the

product of the standardised coefficients in the chain. Wright73 reports that the primary

purpose for the method of path coefficients was to combine the quantitative information

from a system of correlation coefficients with knowledge of their causal relations. This

method provides a fairly simple approach to simulating data according to a DAG and

making certain assumptions about the nature of the quantitative relationships between

variables when only a few variables are being considered. However, it can become

extremely tricky to implement this method when there are many variables and many
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relationships between those variables; once there are 5 covariates in a DAG there are

up to 25 = 32 bivariate relationships, but by doubling this to 10 covariates there are up to

210 = 1024. This is why programs and R packages, such as ‘dagitty’,30, 74 that are able to

perform these tasks for the researcher, are so useful.

As an example, consider the DAG in Figure 3.9.1 where each arrow is labelled with a

standardised path coefficient. The bivariate correlations between each pair of variables

are calculated using the above path tracing rules in the following way.

Z

W

YX

U

a

b c

d e

f g

Figure 3.9.1: Example DAG with path coefficients displayed on edges.

Correlation between X and Y : rXY = a+ bc+ de

Correlation between X and U : rXU = d

Correlation between X and W : rXW = f + bcg + ag + deg

Correlation between X and Z: rXZ = b

Correlation between Y and U : rY U = e

Correlation between Y and W : rYW = g + af + edf

Correlation between Y and Z: rY Z = c+ ab+ edb
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Correlation between U and W : rUW = df + dag + dbcg

Correlation between U and Z: rUZ = db

Correlation between W and Z: rWZ = fb

3.9.2 Simulating using ‘dagitty’

The R package ‘dagitty’30, 74 can simulate simple datasets once it is given certain

information. These are: the variables that the researcher wishes to simulate, the causal

structure between those variables (i.e. the DAG), and the covariance matrix of the

variables. This assumes that the variables are linearly related and follow standard normal

distributions but they can be transformed subsequently, for example, a nominal value can

be added to avoid negative values.

The covariance structure of the variables is related to the path coefficients introduced in

Section 3.9.1. It is important to consider the choices made when defining this covariance

structure for simulation to make sure it represents what it is supposed to and does not

produce fluke or confusing results, as will be discussed in Chapter 4.

3.9.3 Simulating directly

It is more complicated to simulate non–normal data with a specific covariance matrix

because simply applying a non–linear transformation to variables generated in the

way described above will usually change the target correlation matrix. Ruscio and

Kaczetow75 provide (freely available) full R code to implement an algorithm that allows

simulation of non–normal correlated data. Their algorithm generates data from specified

distributions and iterates through intermediate correlation matrices until the target matrix

is reproduced. This particular algorithm takes the specified number of variables to

generate, the population distribution for each variable, the sample size, and the target
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correlation matrix as arguments from which it generates datasets. It can also take an

observed dataset directly and calculate the sample size and number of variables to

generate and resample with replacement from the supplied variables to generate a new

dataset, however, upon experiment with this method it was found that the variation in

datasets generated was not sufficient. The idea behind simulating in this way is that many

different worlds are generated (i.e. one for each iteration of the simulation) which could

have occurred under the specified variable distributions and covariance structure; this is

not achieved by resampling from the observed dataset. This algorithm is used to simulate

data in Chapters 5 and 6 using assigned distributional assumptions that are hypothesised

to fit the underlying data generating process.

The following sections will go on to consider some specific simulation considerations

which are pertinent to the work that follows in the rest of the thesis.

3.10 Specific health geography simulation considerations

3.10.1 Simulating compositional/composite data

Later in the thesis the use of ratios, composite variables and compositional data will be

investigated. These three concepts are intrinsically linked to the data generation process,

and some of the more philosophical insights will be introduced here before discussing

them in a more health geographical context later.

These relationships are not usually considered in DAGs and this is likely because

the relationships between these tautological variables are deterministic rather than

probabilistic.76 How these variables can be dealt with in a causal framework is different

to how probabilistic variables are normally handled and this is briefly considered here.

Considering the DAG in Figure 3.10.1, in which the exposure, X , is a probabilistic
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function of the variable, C, and the outcome, Y , is a probabilistic function of both X

and C. C is a classical confounder of the X → Y relationship in this case. From the

back–door criterion (Section 2.1.8) it is known that the total causal effect of X on Y can

be estimated by conditioning on C.12

YXC

Figure 3.10.1: Causal Diagram in which C is a confounder of the exposure–outcome
relationship between X and Y . X is a probabilistic function of C.

Now, considering the scenario where X is a deterministic function of C rather than a

probabilistic one (indicated by the double circles around X;77–80 Figure 3.10.2). Without

further information, it may appear as though C is still a classical confounder in this case,

however, the relationship between C andX is tautological which means that conditioning

on C, as if it were a confounder, reduces the association between X and Y to zero. For

any DAG containing a variable that is fully determined by its parents, conditioning on the

parents makes X independent of all other variables in the DAG.

YXC

Figure 3.10.2: Causal Diagram in which C is a confounder of the exposure–outcome
relationship betweenX and Y .X is a deterministic function ofC; indicated by the double
circle around X .

To accommodate deterministic variables in DAGs, Geiger80 developed D–separation

(capital ‘D’–separation) and ‘Deterministic Node Reduction’ which ultimately results in

eliminating the fully determined node from the DAG by passing the arcs starting from this

deterministic node back to its parents. This algorithm provides a way of making a DAG
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compatible with the usual rules of d–separation, however, there are many circumstances in

which deterministic nodes are important/favoured in analyses, not least in the context of

health geography; researchers have become very familiar with using these deterministic

concepts in their analyses (e.g. socio–economic position or deprivation indices). In the

course of the research for this thesis, it was discovered that these issues require closer

consideration for both causal inference and simulation and this can be split into the case

of composite variables or compositional data.

3.10.2 Composite Variables

When considering building up a simulation, composite variables may have to be

considered. Composite variables (whether at individual–or area–level) are constructed

from two or more parent variables and cannot be measured directly (and arguably do not

exist before they are constructed by the researcher). The components used to construct

composite variables may be on different scales, which means that the composite has

its own unique scale. For example, body mass index (BMI) which is formed of weight

(measured in kilograms) and height (measured in metres) squared, creating a composite

variable which is on a scale measured in kilograms divided by height squared.

Composite variables are generally constructed for one of the following purposes: (1) to

create a variable that aims to summarise multiple related concepts in a convenient or

parsimonious way (e.g. a deprivation index), or (2) to standardise one variable by another

(e.g. GDP per capita). The distinction between these two purposes is not trivial and

indeed has important implications for determining the appropriate analytical strategy. On

one hand, summarisation implies an interest in modelling and understanding the average

effect of a series of related concepts on an outcome of interest, whilst, on the other hand,

standardisation implies an interest in modelling the effect on the outcome of an individual

variable, conditional on another variable thought to confound the focal relationship, i.e.

to standardise a measure with respect to a perceived ‘norm’, such as average body height
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or a typical cross–section of society.

To illustrate the implications of this, the ‘effect’ of body mass index (BMI) on risk of

cardiovascular disease (CVD) is considered. Although use of BMI is ubiquitous in health

and medical research, the fact that it is an algebraic construct determined by weight and

height is often overlooked. Using deterministic notation, this scenario can be depicted by

the DAG in Figure 3.10.3.

Height Weight

BMI

CVD risk

Figure 3.10.3: Causal Diagram indicating the relationships between height, weight, body
mass index (BMI) and cardiovascular disease (CVD) risk. BMI is a deterministic function
of height and weight indicated by the double circles around this variable.

The application of Deterministic Node Reduction produces Figure 3.10.4, which is

mathematically equivalent to Figure 3.10.3. If there is less interest in the individual

effects of height and weight, or the source information on height and weight is no longer

separately available, the scenario might be depicted with the DAG in Figure 3.10.5. Which

of the two DAGs, Figure 3.10.4 or Figure 3.10.5, is most appropriate to answer this causal

question depends upon the value and meaning given to the average causal effect of the

composite exposure, bearing in mind that a composite variable is not itself a measurable

feature of nature.
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Height Weight

CVD risk

Figure 3.10.4: Causal Diagram produced by applying the Deterministic Node Reduction
algorithm to Figure 3.10.3.

BMI

CVD risk

Figure 3.10.5: Causal Diagram produced by removing deterministic parents of BMI from
Figure 3.10.3.

Fundamental to this inquiry is whether BMI represents a meaningful summary of height

and weight which serves as a useful proxy for another more clearly–defined concept (e.g.

adiposity), or whether it is simply a measure of weight standardised by height (to account

for the fact that taller people are generally heavier). If BMI is considered to be a valid and

useful proxy for adiposity, then analysing the composite as a distinct variable is arguably

acceptable. If, however, BMI is considered to be a measure of weight standardised by

height, then it must be carefully considered whether weight
height2 represents the most effective
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parameterisation of this relationship, and whether the causal effect of weight is really

captured by the variable BMI. The total causal effect of BMI on CVD risk will likely

differ from the total causal effect of weight on CVD risk, conditional on height; although

both can be theoretically estimated without statistical bias, inferential bias may result if

the effect estimate obtained does not accurately reflect the causal mechanism that the

researcher seeks to understand and may eventually wish to target for intervention. This

issue is returned to in the health geographical context of composite variables constructed

to capture the latent concept of deprivation in Chapter 5.

3.10.3 Compositional Data

Compositional data differ from composite variables in that the individual components of

compositional data can be measured directly and on the same scale as a larger whole,

or subdivided into smaller parts. An example of this would be total number of calories

consumed, divided into calories from fat, protein and carbohydrates. This does not pose

a particular issue unless interest lies in the role of one or more components in relation to

the whole.

As in the case of composite variables, there is a tautological relationship, this time

between the component variables and the total variable. For example, if a researcher was

interested in the causal effect of the economically active population on gross domestic

product (GDP), they might consider analysing this by conditioning on the total population,

or not (Figure 3.10.6). The utility of these two approaches depends on context.
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Economically

Active Population

Economically

Inactive Population

Total

Population

GDP

Figure 3.10.6: Causal Diagram indicating the relationships between the economically
active and inactive populations, the total population and gross domestic product (GDP).
Total population is a deterministic variable calculated by adding the economically active
and inactive population together; this is indicated by the double circle around total
population.

The effect of the economically active population without conditioning on the total

population represents the average change in GDP that results from adding economically

active individuals to the area, thereby increasing both the number of economically active

individuals and the total number of individuals, whilst doing nothing to the population

of economically inactive individuals. An estimate of this effect may be desirable if, for

example, the government were considering a policy aimed at increasing immigration.

In contrast, the effect of the economically active population whilst simultaneously

conditioning on the total population represents the average change in GDP achieved

by swapping economically inactive individuals for economically active individuals

–either by adding economically active individuals and removing an equal number of
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economically inactive (different) individuals, or by effectively converting economically

inactive individuals to economically active (same) individuals, or some combination of

both.

This effect is therefore a combination of the effects of both subgroups on GDP –the

positive effects of simultaneously increasing the economically active population and

decreasing the economically inactive population by equal numbers, thereby retaining the

same overall total population. An estimate of this effect may be desirable if, for example,

the government were considering implementing a job–training programme for currently

unemployed individuals.

In this scenario, both the effects reflect the population–level average effects of changing

the relative numbers (i.e. the proportions) of economically active individuals to alter GDP,

but by different mechanisms; they therefore reflect distinct causal quantities, the utility of

which must be determined by context.

Ordinarily, conditioning on a collider may be considered as introducing ‘collider bias’

(Section 2.1.11) into an analysis, however, in this context, conditioning on a collider

provides an interpretable causal quantity which has real utility in certain situations.81

When simulating composite variables and compositional data it is necessary to simulate

the smallest components of interest and use these for construction of the variables of

interest. In the case of composite variables, this is because the composite is not measurable

directly in nature and its unit of measurement is combined from its components. In the

case of compositional data, this is because the whole is a constraint on its components.

When causal inference is undertaken it has been recommended that the (often

hypothetical) intervention is well–defined.19 This is linked to the key condition of

consistency introduced in Section 2.1.2. Returning to the example of BMI and CVD risk,

there is a question over whether BMI is a useful proxy of a more clearly–defined concept

(e.g. adiposity), or whether it is simply a measure of weight standardised by height (i.e.
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to account for the fact that taller people are generally heavier). If BMI is considered to

be a useful proxy for adiposity, then it is possible that analysing it as its own variables

is acceptable. However, if BMI is considered to be a measure of weight standardised

by height, then it must be considered whether weight
height2 truly represents the most effective

parameterisation of this concept. The total causal effect of BMI on CVD risk will likely

differ from the total causal effect of weight on CVD risk, conditional on height; although

both can be theoretically estimated without statistical bias, there is a risk of inferential

bias if the effect estimate obtained does not accurately reflect the causal mechanism that

is sought and may eventually be a target for intervention.

Whether ‘obesity’ can be interpreted as a definable exposure with an identifiable causal

effect has previously been challenged; in particular, there are concerns that obesity fails to

satisfy the consistency assumption required for causal inference (Section 2.1.5) because

it can represent multiple states, including high adiposity and high muscle mass.19, 82 The

same concern is relevant for BMI (and all composite variables) since any value of the

composite may represent various combinations of the determining component parents.

Hypothesising that BMI ‘causes’ an increased risk of CVD implies that intervening

to lower BMI would result in a decreased risk of CVD. Theoretically, this could be

achieved by lowering BMI by either decreasing weight or increasing height. Realistically,

however, weight is the more likely target for intervention. Regardless of the philosophical

perspective on the utility and validity of BMI this suggests that it might actually be more

useful to estimate the causal effect of weight adjusted for height.

These issues are considered for each simulation based on observed data later in the thesis,

with a focus on health geography data and further complexities that may arise from

composite variables are explored in the final chapter.

In the next section, an illustration of the ‘modifiable areal unit problem’ (MAUP) is given

as this is important for the upcoming chapters, particularly Chapter 6.
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3.10.4 Random events and the Poisson distribution

As a simple illustration (adapted from83), imagine a country that is 10000km2, with 300

cases of a disease randomly distributed across it. If the area is divided into equal sized

areas that are 100km2 (Figure 3.10.7) the cases in each square of the grid can be counted

(Table 3.1). In this example, there is one area with nine cases, six with seven cases and

four with no cases. There is an implicit assumption in this example that the population

of each square of the grid is the same and that every square has the same probability of

having a case.

Figure 3.10.7: Plot showing randomly generated cases of a disease over a hypothetical
10000km2 country divided into equal areas of 100km2 each.

Table 3.1: Count of the number of areas with each number of cases.

Cases 0 1 2 3 4 5 6 7 8 9
Number of Areas 4 17 23 25 11 11 2 6 0 1
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Highlighting the areas with large numbers of cases and those with none (Figure 3.10.8),

it can be seen that there is no pattern to the numbers in each of the areas. The cases across

the areas follow a Poisson distribution; most areas will have a number of cases that are at

the lower end of the distribution, but as this is a skewed distribution (and it therefore has

a tail) there will be a few areas that have a very high number of cases that thus stand out.

Figure 3.10.8: Plot showing randomly generated cases of a disease over a hypothetical
10000km2 country divided into equal areas of 100km2 each. Cases in areas with the largest
and second largest number of cases are highlighted along with areas that have no cases at
all.

Thinking about this problem, it can be seen that if the area boundaries were drawn

differently, it would be possible for the boundaries to be selected in order to create areas

with higher and lower numbers of cases. This problem has been reported widely, and is

known as the Modifiable Areal Unit Problem.84, 85 Code for this example is available in

Appendix A.

A similar effect can be generated when choosing the unit of time for analyses. It will be

seen in Chapter 6 that, in the case of a rare outcome, a 5–year period is most often chosen
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for analysis to avoid certain analytical problems, however, if this was changed, radically

different results could ensue. This is known as the Modifiable Temporal Unit Problem.86

3.10.5 The ‘most dangerous equation’

The problem introduced in Section 3.10.4 is linked to what has been called the ‘most

dangerous equation’.87, 88 The ‘most dangerous equation’ is based around De Moivre’s

equation which calculates the standard deviation of the sampling distribution of the mean

(Equation 3.10.1).

σx̄ =
σ√
N

(3.10.1)

where σx̄ is the standard deviation of the sampling distribution of the mean, σ is the

standard error of the mean and N is the sample size. The equation states that the standard

error of the mean is inversely related to the sample size. This means that the larger

the sample size, the less the sample mean will vary. If the example of Section 3.10.4

above is expanded to be closer to the real–world where area boundaries are drawn for

various different reasons, e.g. for political reasons in the case of electoral wards, there

will be a variety of population sizes across the areas. This means that areas with smaller

populations are more likely to have high and low occurrence of disease by chance,

whereas those areas with larger population sizes are more likely to have a stable disease

occurrence through time.

This issue is something to be aware of when singling out areas for their high or low

occurrence of disease without accounting for their relative size. Often areas are singled out

due to extreme values of an outcome, however, little or no thought is given to the nature

of the areas at the other extreme. Both of these areas may have similar characteristics.
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3.10.6 Simulating under the null hypothesis

The simulations in this thesis predominantly assume the null hypothesis, i.e. that there

is no relationship between the measured covariates and the outcome being investigated.

This also assumes that any geographical/spatial factors do not influence the outcome

which is highly unrealistic but the effects of geographical/spatial factors will be assumed

to be superfluous to the individual factors being investigated, except where discussed

explicitly. It is thus assumed that geographical/spatial factors have only a modest influence

as ‘noise’, adding ‘messiness’ to the real–world data, but in some instances, as will be

discussed explicitly, this assumption may need to be challenged and more complicated

simulations may be warranted. This is explored briefly in Chapter 4. The purpose of the

simulations is to determine whether truly biased results occur before further complexity

is accounted for. Under the non–null scenario, these factors would need to be carefully

considered and this is discussed further in the final chapter.

3.10.7 DAG–data consistency

It is not possible to ascertain causality from observational data unequivocally, however,

it is useful to assume potential causality and use graphical model theory to evaluate data

where possible. Causal models can then be updated according to what is found and this

process of trying to falsify the causal claims can then continue to be repeated following the

scientific method. This can be done by testing DAG–data consistency, that is, whether the

assumed causal diagram could have produced the DAG hypothesised to have generated a

specific dataset.30
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3.11 Assessing simulation results

Recently, work has been published which proposes methods for assessing the results of

simulations.51 This work builds on that of others (e.g.66) and provides a comprehensive

guide to follow when conducting simulation studies to assess statistical methods, it is

therefore used to measure the performance of the simulations used in this thesis. The

performance measures used are: coverage, the probability that the confidence intervals

of the coefficient for each iteration of the simulation contain zero; measurement of the

inferential bias present, whether the estimated coefficient averages the true value, zero in

this case; and Monte Carlo standard error, the simulation uncertainty, i.e. an estimate of

the standard error of the performance as a result of using a finite number of simulation

iterations.

Given all of the considerations above, the final section of this chapter will outline a

step–by–step protocol for setting up a simulation study with these topics incorporated.

3.12 A step–by–step walk–through of the simulation

set–up

This thesis explicitly details each simulation undertaken using the following steps. These

steps are drawn specifically from other step–by–step procedures reported for: conducting

simulation studies in R,54 integrating causal modelling and statistical estimations9 and

using simulation studies to evaluate statistical methods.51

1. Specify the effect estimates to be estimated and compared (informed by literature

search of common methods used) and what parameter estimates will be retained.

2. Specify the assumptions made about the nature and parameters of the dataset.

When combining this with causal inference methods this would include drawing
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a causal diagram (such as a DAG, as is the case in this thesis) of the assumed causal

relationships between variables.

3. Specify assumptions made about the variable distributions and covariance structure

of these variables including how simple or complex the model will be and whether

it should be based on real–world data.

4. Specify the factors that will be varied in the simulation.

5. List the performance measures to be estimated and choose the number of

simulations necessary to achieve acceptable Monte Carlo standard errors for the

key performance measures.

6. Set the seed for the random number generator so that equivalent results can be

replicated by others.

7. Generate a dataset according to these assumptions.

8. Perform statistical analyses on this dataset and retain the parameter estimates

obtained.

9. Steps 7 and 8 are repeated many times with newly generated datasets in order to

obtain an empirical distribution of parameter estimates.

10. In some instances, Steps 1–4 are repeated according to a new causal diagram, new

parameters and/or new assumptions.

11. The empirical distributions of the parameter estimates from the simulated datasets

are analysed to evaluate the question of interest.

12. Compute the performance estimates.

The benefit of following a step–by–step guide for a simulation is that researchers cannot

simply report the most or least favourable results (depending on what they wish to
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show) from using different configurations of the simulation parameters or from judicious

selection of random number seeds.51 A step–by–step guide to the simulations acts as a

protocol and holds the researcher accountable to their simulation choices and gives them

opportunity to justify those choices.

This chapter has introduced methods that researchers can use to conduct simulation

studies informed by causal knowledge. Causal inference and simulation are naturally

linked via the data generation process and this chapter has added to existing step–by–step

simulation guides51 by suggesting steps to incorporate causal considerations. It has also

introduced some specific long–acknowledged issues encountered within the field of health

geography such as the modifiable areal84, 85 and temporal86 unit problems (MAUP and

MTUP, respectively) and what has been termed ‘the most dangerous equation’.87 A

particularly novel topic considered in this chapter is the introduction of how one may think

about composite and compositional data, which are particularly common in quantitative

health geography, within a causal inference framework.

This thesis now goes on to use these methods of simulation and causal inference to

investigate some long–standing issues in health geography. These problems have not

been investigated using these methods previously. Chapter 4 illustrates the issue of

mathematical coupling using causal inference methods building simulations based on

these causal assumptions to investigate this problem further. Chapter 5 investigates

studies into deprivation and limiting long–term illness and encounters simulation of

composite variables and compositional data. Chapter 6 uses simulated data to investigate

the historical methods used to study the ‘population mixing hypothesis’ and encounters

selection on the outcome amongst issues relating to the ‘most dangerous equation’ and

MAUP. Along with drawing conclusions about these problems specifically and how they

have previously been investigated, the following work serves as a demonstration of how

simulation and causal inference can be used to evaluate methods used in epidemiology

and health geography.
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Chapter 4

Mathematical Coupling and Causal

Inference

4.1 Introduction

This chapter introduces mathematical coupling and uses the methods introduced in

Chapter 3 combining causal inference via graphical causal models and simulation to

investigate this problem. The historical solution to avoiding the form of bias introduced

by mathematical coupling is critiqued from a causal inference perspective and expanded

into the area of population health/health geography.

4.1.1 What is Mathematical Coupling?

Mathematical coupling is a form of composite variable bias that occurs when two or

more variables are analysed by correlation or regression while sharing an algebraic

dependency.89 One instance of mathematical coupling occurs when analysing proportions

(i.e. composite variables formed by dividing one variable by another) where two

proportions share a common denominator (e.g. X
Z

and Y
Z

).
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4.1.2 The history of Mathematical Coupling

Although mathematical coupling was first recognised by Pearson in 189690 and has

been repeatedly discussed in the literature,91 it has remained largely overlooked in

observational research. For instance, Pearson demonstrated that if three variables (e.g. X ,

Y , Z) are random, have similar coefficients of variation, and are otherwise unrelated (i.e.

they are mutually uncorrelated), then the ‘spurious’ correlation between any two of these

variables, when commonly divided by the third (e.g. X
Z

and Y
Z

), would average r = 0.5.90

Equation 4.1.1 shows that if the correlation between the raw variables were all equal to

zero, the correlation of the ratios with a common denominator would not be equal to zero,

i.e. the ‘spurious’ correlation generated when dividing by the common denominator when

all the variables are uncorrelated is 0.5.92

r(Y/Z)(X/Z) = (1− rY Z − rXZ + rXY )/[2(1− rY Z)1/2(1− rXZ)1/2] (4.1.1)

Put simply, this is because any change in the common denominator (Z) affects both

proportions simultaneously: increases in Z reduce both X
Z

and Y
Z

simultaneously, while

decreases in Z increase both X
Z

and Y
Z

simultaneously. The null–hypothesis (of no

relationship between X and Y ) therefore suggests that X
Z

and Y
Z

should be positively

correlated, the extent of which depends on the variance and covariance structure of the

three variables.93

As a solution, Pearson90 proposed calculating the partial correlation between numerators

whilst conditioning on the common denominator by including it as a separate covariate

in a linear regression model. Later, Neyman94 repeated Pearson’s warnings and agreed

that the ratios should be separated before analysis. Neyman advocated the use of analysis

of covariance (ANCOVA) to achieve this. The approach of separating the variables is

often used when modelling rare outcomes using log–linear (Poisson) regression, with
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the denominator included as a logged–covariate ‘offset’.95 This circumnavigates the

tautological bias that would otherwise have been introduced, though it appears that this

was not by intentional design. It is fortunate that Poisson modelling, as applied in health

research, happens to follow this separation approach.

In geographical and population health research, proportions are often preferred to raw

count variables because they offer a ‘relative’ measure of each characteristic within

local populations of different sizes between areas. Dividing the raw count by the

population size is intended to ‘control’ for the ‘dominating influence’ of the varying

population denominator96 and allows researchers to compare proportions (e.g. prevalence

of an exposure or incidence of a disease) across geographically–defined populations.

‘Standardising’ for population size (N ) in this way transforms the relationship into an

algebraic dependency, but little attention has been paid to investigating this in the literature

and whether it risks introducing biased or ‘spurious’ relationships when analysed by

correlation or regression. A key question is therefore: does the common denominator

distort the null hypothesis and any estimated correlation or regression coefficients

obtained, making it difficult to draw robust inferences (i.e. inferences unbiased by

mathematical coupling; defined as ‘robust’ throughout) in the same way as that discussed

by Pearson, Neyman and Fisher?90, 94, 97

Contemporary causal inference methods are used to explore the original problem as

described by Pearson90 and demonstrate how these methods can be utilised to explicate

when the historical solution is appropriate. It is shown that no obvious solution exists

where the common denominator does not cause both numerators but is instead a

consequence of one or more of them. This context was overlooked by Pearson, Neyman

and Fisher, whose work preceded contemporary causal inference methods. The data

structure of the three variables is investigated to determine its influence on the level of

‘spurious’ correlation present.

The difference between these examples and the common health geography scenario of
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analysing area–level data where the common denominator (e.g. population size) causes

the number of units exposed and/or the number of events that arise is discussed and the

problem is simulated under the null hypothesis.

4.2 Methods

4.2.1 Exploring proportions using causal graphs

The issue of mathematical coupling is explored using a directed acyclic graph (DAG;

introduced in Section 2.1.7), which allows researchers to depict causal relationships they

believe to operate between two or more variables.

Firstly, the example introduced by Pearson90 is illustrated in a DAG and this example is

expanded upon using simulations. This example is then adapted to the case where there are

associations between the three variables (two numerators and the common denominator),

again, this is further investigated using simulations. This principle is then generalised in

terms of an arbitrary population–level exposure measure and a population–level health

outcome.

Simulated data allows the confusing influence of unobserved confounding to be excluded,

which would be present in observed data. The primary assumption in these population

health examples is that Z represents the population count in each area–level unit of

analysis (e.g. ward, Clinical Commissioning Group, region, country). Initially, Z is

considered as the ‘driver’ of both numerator variables, i.e. Z causes both X and Y , since

this is the most ubiquitous generic illustration of the common denominator problem within

bio–medicine and health geography. This three–variable configuration may be quite

common in other circumstances: wherever two or more features of clustered observational

measures are examined for putative causal relationships and these (numerator) features

are ‘standardised’ relative to their area–level sizes (common denominator), which vary
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(e.g. across companies in commerce, across markets in finance, across urban landscapes

in planning, across networks in communications or transport, etc.).

The circumstances under which mathematical coupling is introduced to the analysis of

the proportions are explored. In all instances, the objective is to estimate the total causal

effect of the exposure on the outcome while accommodating the variation in area–level

sizes.

These steps are outlined in Section 4.2.4 using the step–by–step guide to simulation

developed in Chapter 3 (Section 3.12). All simulations are written in R98 and the code

used in this chapter is available in Appendix B.

4.2.2 Historical examples

The original example given by Pearson90 of ‘spurious’ correlation between variables

with a common denominator was a biological one. In this example, Pearson described

a situation in which 1,000 skeletons were randomly rearranged to make up new skeletons.

If a researcher was to try to ascertain whether they were in their originating skeletons

by correlating the lengths of the bones, e.g. femur
humerus and tibia

humerus , they would report a

correlation of around 0.45 when it should have been zero (on average) due to the bones

being randomly reassigned. Pearson attributes this correlation to the arithmetic used and

suggests that any correlation above this value (0.45) is ‘organic’ (i.e. true) correlation

between the variables and that the 0.45 correlation is ‘spurious’. As this is a biological

example, the use of the normal distribution for the variables would seem acceptable. The

next historical example is a geographical one.

To illustrate the problem of mathematical coupling, Neyman94 asked ‘do storks bring

babies?’ and to answer this question he used hypothetical independent data and correlated
number of storks

number of women and number of babies
number of women over 54 counties. Neyman showed that, although the

original data on the population of storks and number of babies were independent, the
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correlation between the ratios (these variables divided by the number of women) were

statistically significant.

This example is simulated in this chapter as an intermediary example between the

biological example of Pearson (where the normal distribution can be assumed) and other

examples where the data are compositional, that is, the variables are constrained by a

total, e.g. if only singleton births are considered, the number of babies is constrained

by the number of women but the number of storks is not constrained in the same way.

However, simulating the number of babies and the number of women as following a

normal distribution with no such constraints may not be an issue when the number of

births is low because the situation where births exceeds the number of women may not

occur. This constraint would have to be taken into consideration when other research

questions are investigated.

4.2.3 Pearson’s historical example

Using a DAG, the generic example discussed by Pearson, in which there are three

variables (X , Y and Z) which are completely independent of each other (Figure 4.2.1), is

depicted.90

To simulate this situation, a DAG with no causal relationships (i.e. no causal arrows) is

drawn. This means that the correlation matrix between the variables approximates the

identity matrix: 
X Y Z

X 1.00 0.00 0.00

Y 0.00 1.00 0.00

Z 0.00 0.00 1.00


10,000 data points forX , Y andZ were simulated from a standard normal distribution and

5 was added to each value to ensure that there were no negative values but the covariance
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matrix was unchanged.

X Y Z

X
Z

Y
Z

Figure 4.2.1: Directed Acyclic Graph depicting the example of Pearson;90 three
completely independent variables. Black arrows indicate causal non–parametric
relationships, while orange arrows indicate algebraic relationships (constructed by the
researcher) which are both causal and parametric (since each proportion is algebraically
determined by its components). Raw variables are in black and constructed variables
are in double orange circles (by convention). Dashed orange arrows indicate the
associations (and null hypothesis) that are commonly tested, despite introducing bias from
mathematical coupling.

The simple correlation between X and Y was 0.00, the correlation between X
Z

and Y
Z

was

0.56 and the association between X and Y conditional on Z was 0.00. All of these results

are consistent with the results of Pearson,90 Neyman94 and Fisher.97

Next, five possible causal scenarios are considered for this hypothetical context in

separate DAGs. When depicting these hypothetical causal relationships in a DAG, for

illustration only, constructed (wholly deterministic) proportions and their component raw

variables (X , Y , Z) are included, simultaneously. Separately, the causal relationships

between the raw variables alone are illustrated, and from this an appropriate minimally

sufficient adjustment set (MSAS) is identified (which can be achieved using the rules

of d–separation via DAGitty30, 74 at www.dagitty.net, or the package dagitty in the R

statistical software;98 see Section 2.1.9).

For each scenario, the following effects are calculated and their implications are

considered: 1) analysing the simple effect of X on Y , 2) analysing the effect of X
Z

on Y
Z

, and 3) analysing the effect of X on Y conditional on Z, as recommended by
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Pearson, Neyman, and Fisher.90, 94, 97 The results are presented as standardised regression

coefficients, as these are easily comparable.

These examples differ from those outlined by Pearson, Neyman and Fisher because of the

associations that are simulated between the three variables (via path coefficients), where

their originals example had none. Like the historical examples, the examples introduced

here begin with the same coefficients of variation (σ
µ

), however, this simplicity is expanded

considerably by differing these along with the path coefficients defining each bivariate

relationship in the DAG. The data simulation process is reported below along with the

results. The details of the simulations are outlined in the following step–by–guide.

4.2.4 Step–by–step guide to the simulations

1. Correlation, partial correlation and linear regression modelling are used to analyse

the simulated data, this means that the correlation coefficients, partial correlation

coefficients and the regression coefficient are retained, respectively.

2. The simulations used in this chapter are built–up from the example of Pearson

where three completely independent variables were analysed. DAGs are drawn for

each of the possible scenarios (Section 2.1.7). The path coefficients between the

simulated variables are then varied and the coefficient of variation of the three

variables is changed. The path coefficients and coefficients of variation are then

changed simultaneously.

3. The variables are first assumed to be from Normal distributions with estimated

mean and standard deviations informed by researcher knowledge and internet

searches. The covariance matrix for each example, calculated from the path

coefficients using path tracing rules (introduced in Section 3.9.1), are recorded

and represent the bivariate relationships that are approximated in each simulated

dataset. All possible variations are then investigated, followed by the analysis
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of geographical data where a population are simulated from a negative binomial

distribution and from these two other variables are generated from this population

using a binomial distribution; equivalent to flipping a coin for every member of the

population and recording how many tails occurred.

4. The simulations in this chapter are used to illustrate the concept of mathematical

coupling and whether the historical solutions to the problem are appropriate, for

this reason, performance measures are not taken for the simulations.

5. Set the seed for the random number generator so that exact results can be replicated

by other researchers.

6. Generate a dataset according to these assumptions.

7. Perform statistical analyses on this dataset and retain the parameter estimates

obtained.

8. Compare these parameter estimates with the simulated to be true values.

4.2.5 Five causal scenarios

Scenario 1)Z causesX and Y , butX does not cause Y , nor does Y causeX (Figure

4.2.2); this is the null scenario for any X − Y association;

For example, the population size (Z) of a geographical area causes

both the number of cats resident in that area (X) and the number of

apples consumed per month (Y ) in that area, but the number of cats

(X) does not cause the number of apples consumed (Y ) within any

area, or vice versa. Note: It is difficult to find two variables that are

not causally related in at least some way as, however unlikely, there

is usually some physically plausible causal relationship.24 In this case,
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however, an example was chosen where any causal relationship between

X and Y is deemed to be extremely unlikely.

X YZ

0.8

0.8

X YZ

X
Z

Y
Z

Figure 4.2.2: Scenario 1: Null association: no causal relationship between X and Y .
Directed Acyclic Graph (DAG) above with path coefficients on edges and corresponding
graph including functionally deterministic ratio variables below. Black arrows indicate
causal non–parametric relationships, while orange arrows indicate algebraic relationships
(constructed by the researcher) which are both causal and parametric (since each
proportion is algebraically determined by its components). Raw variables are in black
and constructed variables are in double orange circles (by convention). Dashed orange
arrows indicate the associations (and null hypothesis) that are commonly tested, despite
introducing bias from mathematical coupling.

In Scenario 1, X (e.g. number of cats) has no causal effect on Y (e.g. number of

apples consumed in a month), but both X and Y are caused by Z (e.g. population

size). The correlation matrix is approximately:
X Y Z

X 1.00 0.64 0.80

Y 0.64 1.00 0.80

Z 0.80 0.80 1.00
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The causal effect of X on Y is 0.00; there is no direct path between X and Y . The

back–door path between X and Y is 0.64.

The variables are drawn from the following distributions:

Population: Z ∼ Normal(mean = 1000, sd = 1000/5)

Population of cats: X ∼ Normal(mean = 200, sd = 200/5)

Number of apples consumed in a month: Y ∼ Normal(mean = 12000, sd =

12000/5)

According to causal graph theory, a simple estimate of the association between X

on Y would therefore be biased by confounding from Z (beta = 0.64). Similarly,

the association between X
Z

and Y
Z

would be biased by mathematical coupling from

the shared denominator Z (beta = −0.71). The association between X and Y

conditional on Z however would close the ‘spurious’ path X ← Z → Y to produce

a robust estimate of the null effect of X on Y (beta = −0.004). Results from each

Scenario are summarised in Table 4.1.

Scenario 2) where Z causes X and Y , and X is a cause of Y (Figure 4.2.3,

consistent with what is hypothesised as the ‘exposure’ causing the ‘outcome’,

‘confounded’ by Z);

For example, the population size (Z) of a geographical area causes both

the minutes exercised weekly (X) and the number of anti–depressant

prescriptions (Y ), within an area. Both the population size (Z) and

number of weekly minutes exercised (X) are causes of the number of

anti–depressant prescriptions (Y ).
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X YZ

0.4

0.4 0.4

X YZ

X
Z

Y
Z

Figure 4.2.3: Scenario 2:X causes Y ,Z is a confounder. Directed Acyclic Graph (DAG)
with path coefficients on the edges above and corresponding graph including functionally
deterministic ratio variables below. Black arrows indicate causal non–parametric
relationships, while orange arrows indicate algebraic relationships (constructed by the
researcher) which are both causal and parametric (since each proportion is algebraically
determined by its components). Raw variables are in black and constructed variables
are in double orange circles (by convention). Dashed orange arrows indicate the
associations (and null hypothesis) that are commonly tested, despite introducing bias from
mathematical coupling.

In Scenario 2, X (e.g. weekly minutes of exercise) causes Y (e.g. number of anti-

depressant prescriptions), and both X and Y are caused by Z (e.g. population size).

The correlation matrix is approximately:
X Y Z

X 1.00 0.56 0.40

Y 0.56 1.00 0.56

Z 0.40 0.56 1.00


The direct causal effect of X on Y is 0.40; there is a direct path between X and Y
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and the bivariate correlation between these is 0.40. The total causal effect of X on

Y (according to the correlation matrix) is 0.4 + 0.4 ∗ 0.4 = 0.56.

The variables are drawn from the following distributions:

Population: Z ∼ Normal(mean = 1000, sd = 1000/5)

Minutes of exercise: X ∼ Normal(mean = 150000, sd = 150000/5)

Number of anti-depressant prescriptions: Y ∼ Normal(mean = 80, sd = 80/5)

According to causal graph theory, a simple estimate of the association between X

on Y would therefore be biased by confounding from Z (beta = 0.57). Similarly,

the association between X
Z

and Y
Z

would be biased by mathematical coupling from

the shared denominator Z (beta = 0.997). The association between X and Y

conditional on Z however would close the ‘spurious’ path (X ← Z → Y ) to

produce a robust estimate of the total causal effect of X on Y (beta = 0.41,

sufficiently close to the true value 0.40).

Scenario 3) it is no longer assumed that the common denominator Z causes both X

and Y , but instead it allows for the possibility that the exposure X causes Z, and

both X and Z continue to cause Y (Figure 4.2.4);

For example, within a geographical area, the number of job

opportunities (X) causes the population size (Z). Both the number

of job opportunities (X) and the population size (Z) cause healthcare

expenditure (Y ).
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Figure 4.2.4: Scenario 3: Z is a mediator on the causal path between X and
Y . Directed Acyclic Graph (DAG) with path coefficients above and corresponding
graph including functionally deterministic ratio variables below. Black arrows indicate
causal non–parametric relationships, while orange arrows indicate algebraic relationships
(constructed by the researcher) which are both causal and parametric (since each
proportion is algebraically determined by its components). Raw variables are in black
and constructed variables are in double orange circles (by convention). Dashed orange
arrows indicate the associations (and null hypothesis) that are commonly tested, despite
introducing bias from mathematical coupling.

In Scenario 3, X (e.g. job opportunities) causes Y (e.g. healthcare expenditure)

partly through mediator Z (e.g. population size). The correlation matrix is

approximately: 
X Y Z

X 1.00 0.32 0.20

Y 0.32 1.00 0.64

Z 0.20 0.64 1.00


The causal effect of X on Y is 0.32; via the direct path between X and Y (0.20)

and the path via Z (0.2 ∗ 0.6 = 0.12). The direct causal effect of X on Y is 0.20.

The variables are drawn from the following distributions:
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Population: Z ∼ Normal(mean = 1000, sd = 1000/5)

Job Opportunities: X ∼ Normal(mean = 25, sd = 25/5)

Healthcare Expenditure: Y ∼ Normal(mean = 3000000, 3000000/5)

According to causal graph theory, a simple estimate of the association between

X on Y would therefore produce a robust estimate since there is no confounding

between X and Y (beta = 0.32). The association between X
Z

and Y
Z

would again be

biased by mathematical coupling from the shared denominator Z (beta = 0.999).

The association between X and Y conditional on Z would also produce a biased

estimate of the total causal effect of X on Y , as it would inappropriately close the

causal path (X → Z → Y ) (beta = 0.20) and risk introducing further problems

from the reversal paradox.

Scenario 4) X and Y cause Z, Z is now a collider. Temporally, the exposure, X ,

occurs before the outcome of interest, Y , represented in the causal diagram with Y

illustrated to the right of X , i.e. time runs from left to right (Figure 4.2.5);

For example, within a geographical area, the number of inward-

migrants (X) and the number of births (Y ) cause the population size

(Z). It should be noted here that the assumption is made that the

dominant direction of effect is from migration and births towards

population size, however, the reverse may also be true.
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Figure 4.2.5: Scenario 4: X and Y cause Z, a collider. Directed Acyclic Graph (DAG)
with path coefficients on edges above and corresponding graph including functionally
deterministic ratio variables below. Black arrows indicate causal non–parametric
relationships, while orange arrows indicate algebraic relationships (constructed by the
researcher) which are both causal and parametric (since each proportion is algebraically
determined by its components). Raw variables are in black and constructed variables
are in double orange circles (by convention). Dashed orange arrows indicate the
associations (and null hypothesis) that are commonly tested, despite introducing bias from
mathematical coupling.

In Scenario 4, X (e.g. migration) and Y (e.g. births) cause Z (e.g. population size);

Z is a collider. The correlation matrix is approximately:
X Y Z

X 1.00 0.00 0.20

Y 0.00 1.00 0.20

Z 0.20 0.20 1.00


The causal effect of X on Y is 0.00; there is no direct path between X and Y .

The variables are drawn from the following distributions:
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Population: Z ∼ Normal(mean = 1000, sd = 1000/5)

Migration: X ∼ Normal(mean = 5, sd = 5/5)

Births: Y ∼ Normal(mean = 12, sd = 12/5)

According to causal graph theory, a simple estimate of the association betweenX on

Y would therefore produce a robust estimate since there is no confounding between

X and Y (beta = −0.009). The association between X
Z

and Y
Z

would again be

biased by mathematical coupling from the shared denominator Z (beta = −0.49).

The association between X and Y conditional on Z would also produce a biased

estimate of the total causal effect of X on Y , as it would introduce an association

between X and Y due to conditioning on a collider (beta = −0.05).

Scenario 5) an extension of Scenario 4 where X also causes Y (Figure 4.2.6);

For example, within a geographical area, the number of new housing units (X)

causes the number of immigrants (Y ) and both of these cause the population

size (Z).
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Figure 4.2.6: Scenario 5: X causes Y and X and Y cause Z, a collider. Directed
Acyclic Graph (DAG) with path coefficients on edges above and corresponding graph
including functionally deterministic ratio variables below. Black arrows indicate causal
non–parametric relationships, while orange arrows indicate algebraic relationships
(constructed by the researcher) which are both causal and parametric (since each
proportion is algebraically determined by its components). Raw variables are in black
and constructed variables are in double orange circles (by convention). Dashed orange
arrows indicate the associations (and null hypothesis) that are commonly tested, despite
introducing bias from mathematical coupling.

In Scenario 5, X (e.g. count of new housing units) causes Y (e.g. number of immigrants)

and both X and Y cause Z (e.g. population size); Z is a collider. The correlation matrix

is approximately: 
X Y Z

X 1.00 0.20 0.36

Y 0.20 1.00 0.36

Z 0.26 0.36 1.00


The causal effect of X on Y is 0.20; there is a direct path between X and Y and the

bivariate correlation between these (according to the correlation matrix) is 0.20. Following

the path tracing rules there are no other paths that contribute to the correlation between
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these variables as one cannot travel forward along an arrow and then backward along

another.

The variables are drawn from the following distributions:

Population: Z ∼ Normal(mean = 1000, sd = 1000/5)

New housing: X ∼ Normal(mean = 5, sd = 5/5)

Immigration: Y ∼ Normal(mean = 5, sd = 5/5)

According to causal graph theory, a simple estimate of the association between X on Y

would therefore produce a robust estimate since there is no confounding between X and

Y (beta = 0.20). The association between X
Z

and Y
Z

is also unbiased by mathematical

coupling from the shared denominator Z) (beta = 0.20) because the coefficients of the

simulated variables have the same coefficients of variation, this is investigated later in this

chapter. The association between X and Y conditional on Z would also produce a biased

estimate of the total causal effect ofX on Y , as it would introduce an association between

X and Y due to conditioning on a collider (beta = 0.08).

Each of these simulations are generated in a way that means that the coefficient of

variation for the three variables in each Scenario are the same. Simulations are now

conducted to investigate the effect of changing these values on the amount of ‘spurious’

correlation present.

4.2.6 The importance of the simulated causal relationships between

the three variables

Next, the Z → X and Z → Y causal relationships are now varied to understand the

importance of these relationships. These investigations are informed by a causal diagram
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Table 4.1: Summary results from analysing the simple effect of X on Y , analysing the
effect of X

Z
on Y

Z
, and analysing the effect of X on Y conditional on Z, as recommended

by Pearson, Neyman, and Fisher.90, 94, 97 The simulated to be true causal effect of X on Y
is also shown.

Estimated Coefficients
Scenario

1
Scenario

2
Scenario

3
Scenario

4
Scenario

5
True causal effect 0.00 0.40 0.20 0.00 0.20
Correlation of X and Y 0.64 0.57 0.32 −0.01 0.20
Correlation of X

Z
and Y

Z
−0.71 1.00 1.00 −0.49 0.20

Partial Correlation of Y and X
(controlling for Z) 0.00 0.41 0.20 −0.05 0.08

which has path coefficients (b1 and b2) assigned to the causal arcs (Figure 4.2.7). Firstly,

the case where b1 = b2 for the relationships Z → X and Z → Y is considered. In this

case, no causal relationship between X and Y is simulated and the ‘spurious’ correlation

between X
Z

and Y
Z

against b is plotted.

X

Y

Z

b2

b1

Figure 4.2.7: Causal Diagram in which Z is a confounder of the exposure–outcome
relationship between X and Y ; b1 and b2 represent the path coefficient assigned to the
arcs for simulation.

Figure 4.2.8 shows the effect of increasing the true path coefficients (b1 = b2) between

Z and X and Y . As b1 and b2 simultaneously increase to 1, the ‘spurious’ correlation
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between X
Z

and Y
Z

reduces to 0. The ‘spurious’ correlation is highest (0.5) when the three

variables are completely independent of each other. This means that if there is no Z → X

and Z → Y causal relationship at all it would appear as if there was one. In contrast, if

there is a strong Z → X and equally strong Z → Y causal relationship then the spurious

effects of mathematical coupling are substantially diminished. In practice, there is no way

of knowing to what extent mathematical coupling is affecting the correlation reported.

Figure 4.2.8: Plot showing the ‘spurious’ correlation from the analysis of X
Z

and Y
Z

against
the true path coefficients simulated between Z → X and Z → Y . The shaded area
represents the 95% confidence interval of the ‘spurious’ correlation over the simulations.



84 4. MATHEMATICAL COUPLING AND CAUSAL INFERENCE

4.2.7 The importance of the coefficient of variation

Now, the importance of the coefficients of variation of the three variables on the level of

‘spurious’ correlation generated from the common denominator is explored. Particular

interest lies in the case where Z is a confounder (Scenarios 1 and 2, above) as it

is proposed that this is the most likely situation in which a researcher would divide

through by a common denominator (when researchers divide through by a common

denominator they are aiming to remove confounding). The Z → X and Z → Y causal

relationships are varied, then the coefficients of variation are varied and then both are

varied simultaneously.

Figure 4.2.9 shows the effect of changing the ratio of the coefficients of variation of X ,

Y and Z when the true causal effect between the three variables is zero. When X , Y and

Z vary by a similar amount, the amount of ‘spurious’ correlation is about 0.5. On the

right hand side of the graph Z varies much less than X and Y , and dividing through by

Z does not cause much mathematical coupling. On the left hand side of the graph, when

Z varies much more than X and Y the amount of ‘spurious’ correlation introduced by

dividing through by Z is very high (left hand side of the graph). This may occur when

Z is not measured accurately or measures are taken to protect the identity of individuals

once geographical location is included in a dataset. It could also occur when datasets

are amalgamated, for example, if a dataset is combined with population data taken from

the census there may be a time gap between the points at which the data were collected

elevating the variation in Z.
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Figure 4.2.9: Plot showing the ‘spurious’ correlation from the analysis of X
Z

and Y
Z

against
the log (base 2) ratio of the coefficients of variation (cv) of X and Z (cv(X) = cv(Y )),
true associations simulated between Z → X and Z → Y are zero.

4.2.8 The effect of varying the simulated causal effect and the

coefficients of variation simultaneously

Figure 4.2.10 shows the effect of changing both the true path coefficients (b1 = b2)

along with the coefficient of variation. The darkest line is equivalent to that shown in

Figure 4.2.9 when the true causal relationships between X , Y and Z are zero. As b1 and

b2 simultaneously increase and the coefficient of variation of Z becomes less than the

coefficient of variation of X and Y , the ‘spurious’ correlation decreases to zero before
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increasing to b2, i.e. the value of the backdoor path X → Z → Y .

Figure 4.2.10: Plot showing the ‘spurious’ correlation from the analysis of X
Z

and Y
Z

against the log (base 2) ratio of the coefficients of variation (cv) of X and Z (cv(X) =
cv(Y ) for different values of path coefficients (b; true associations simulated between
Z → X and Z → Y ).

4.2.9 The effect of varying the simulated causal effect, the coefficients

of variation and differing the path coefficients between the

three variables

Figure 4.2.11 expands Figure 4.2.10 by varying the path coefficients (b1 and b2) between

Z → X and Z → Y which, until now, have been equal. This shows that the difference

between how much X and Y vary in comparison to Z are both important determinants of

how much ‘spurious’ correlation is present when dividing through by Z.
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When the coefficients of variation betweenX and Z and Y and Z are similar, the effect of

mathematical coupling on correlating X
Z

with Y
Z

is small. This is apparent in Figure 4.2.11

where the ‘spurious’ correlation is zero when log2
cv(Y )
cv(N)

= log2
cv(X)
cv(N)

= 0, i.e. a cross

appears in the plots as the path coefficient (b) between N and Y and N and X approaches

1. However, if the coefficient of variation of one, or both, of X and Z and Y and Z differ

then the greater the difference in these coefficients of variation, the greater the effect of

mathematical coupling from the common denominator. This is apparent in the plots where

there is a stronger ‘quadrant’ effect as the path coefficient (b) between N and Y and N

and X approaches 1.

Figure 4.2.11: Plot showing the ‘spurious’ correlation from the analysis of X
Z

and Y
Z

when
varying the differences between the coefficient of variation of both X and Y with the
coefficient of variation of Z for different values of simulated true path coefficients, b.
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4.2.10 Neyman’s Historical Example

Neyman’s historical example94 asks whether storks bring babies. Neyman used

hypothetical data from 54 counties to investigate this problem, these data are available

in the literature99 and in the R package ‘TeachingDemos’.100 The variables in this

dataset are completely independent and this is first repeated here by simulating three

independent variables (X , Y , Z) from normal distributions as in the Pearson example90

but with means and standard deviations similar to those used in the hypothetical data

generated by Neyman.

In geographical examples such as this the number of women is a constraint on the number

of babies that can be born and it perhaps makes more sense that the number of women is

a cause of the number of babies (as in Figure 4.2.12). In order to simulate this scenario

(under the null hypothesis that storks do not bring babies) the number of women (Z) is

simulated from a negative binomial distribution for 1,000 areas and from this the number

of births (X) is simulated using the binomial distribution with ‘success’ probability 0.1.

The number of storks (Y ) is simulated from a negative binomial distribution independent

of the distributions used to simulate X and Z. The correlation between X
Z

and Y
Z

is then

calculated and the linear regression model Y ∼ X + Z is run to check for ‘spurious’

relationships in the results.
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Storks BirthsWomen

Storks
Women

Births
Women

Figure 4.2.12: Directed Acyclic Graph depicting the assumed relationships in
the example of Neyman;94 ‘do storks bring babies?’ Black arrows indicate causal
non–parametric relationships, while orange arrows indicate algebraic relationships
(constructed by the researcher) which are both causal and parametric (since each
proportion is algebraically determined by its components). Raw variables are in black
and constructed variables are in double orange circles (by convention). Dashed orange
arrows indicate the associations (and null hypothesis) that are commonly tested, despite
introducing bias from mathematical coupling.

In the example considered by Neyman and simulated here to replicate his hypothesised

dataset 10,000 areas are simulated.

The true causal effect between the number of storks and the number of babies is 0.00.

The areas are simulated from the following distributions:

Women ∼ Normal(mean = 40000, sd = 10000)

Births ∼ Normal(mean = 30, sd = 5)

Storks ∼ Normal(mean = 5, sd = 1)

The simple correlation between the number of births and the number of storks is 0.00,

the correlation between the number of births and the number of storks both divided by

the number of women is 0.82 and the association between the number of births and the

number of storks, conditional on the number of women, is 0.00.

These three variables are then simulated with the constraint that the number of births must
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be fewer than the number of women, when there are no women there are no births, and

that the number of women is a cause of the number of births instead.

The true causal effect between the number of storks and the number of babies is 0.00.

The variables are drawn from the following distributions:

Women ∼ Normal(mean = 40000, sd = 10000)

Births ∼ Binomial(size = Women, successprobability = 0.1)

Storks ∼ Normal(mean = 5, sd = 1)

In this case, the simple correlation, the ratio correlation and the conditional relationship

between the number of storks and the number of births are all 0.00. The reason that this is

the case, is that the number of births is now a proportion of the number of women.101 This

means that dividing one by the other ‘standardises’ the numerator by the denominator

because the relationship between the two is a straight line which goes through the origin.

This is more realistic than the figures Neyman used because the number of births is zero

when the number of women is zero, i.e. there cannot be any births without there being

women.

4.2.11 Geographical Examples

The above examples are further expanded, developing the notion of ‘constraint’

introduced by Neyman’s storks example, to look at what happens in a health geography

context, where researchers are often interested in the exposures and outcomes that occur

at the population–level with the potential that both X and Y are constrained by N . From

this point on, N is referred to instead of Z and all variables are population counts. N is

the total population and X is the number of people experiencing an exposure and Y is the

number of people experiencing an outcome.
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In this case, there are three variables, representing the number of individuals who

experience an exposure (X), the number who experience an outcome (Y ), and the total

number of people in a geographically–defined population (N ) which acts as a potential

limit for bothX and Y . These examples are an expansion of the Neyman example because

X and Y are subsets of N . Note, however, that X and Y are not compositional —they

cannot be combined to make another subset of N (Section 3.10.3).

In the previous examples the simulations were simplified so that the variables were

generated from a multivariate normal distribution, however, that would not be appropriate

under this situation as it does not allow for the constraint that X ≤ N and Y ≤ N . In this

case, X and Y are simulated from N by randomly generating the population size (N ) and

using the binomial distribution to generate X and Y from N ; akin to flipping a coin for

each member of the population and recording when it comes up tails, this can be done for

various ‘success’ probabilities.

In this case, it is assumed thatN causes bothX and Y (Scenario 1 from earlier). Following

the results from above, to analyse the relationship between X and Y , avoiding ‘spurious’

correlation, it was shown that N would have to be conditioned on as it is a confounder of

the exposure–outcome relationship.

In these geographical examples, N represents the population size of each area and the

DAG represents relationships at the area–level. Although this is not a common use of

DAGs in the literature, DAGs can be used to describe any data–generation process.37 In

these examples, as each variable represents a property of a geographical area, to simplify

it is assumed that the areas are independent of each other, i.e. changing the level of

exposure in one area has no effect on the outcome in another area (consistent with the

null hypothesis).

The examples are also simplified by assuming that there is no causal relationship between

the exposure X and outcome Y and that the only true causal relationships are N → X

and N → Y . This means that if any correlations are found between X and Y or X
N

and



92 4. MATHEMATICAL COUPLING AND CAUSAL INFERENCE

Y
N

they are ‘spurious’. To simulate these situations, population sizes (N ) are randomly

generated from a negative binomial distribution for a large number of areas (1,000) and

from these the binomial distribution (with various probabilities of success, ranging from 0

to 1) are used to simulate a number of people in the population experiencing the exposure

(X) and the outcome (Y ). This data generating process implies that X does not cause Y

and that Y does not cause X , and both are simulated independently.

From the simulated data it is shown how varying the ‘success probability’ of the X and

Y variables affects the ‘spurious’ element generated from correlating X
N

with Y
N

.

Figure 4.2.13 shows the amount of ‘spurious’ correlation present when X and Y are

generated for 1,000 areas with population sizes (N ) simulated from a negative binomial

distribution. X and Y are generated from a binomial distribution, the equivalent of

flipping a coin for each member of the population and recording how many tails there

were. The probability of getting a tail is varied between 0 and 1. This shows that the

‘spurious’ correlation varies between −0.01 and 0.01 for all success probabilities.

The simulations used in this case assume that the only driver of the exposure and the

outcome is the population size and that the exposure and outcome are proportional to the

population size.

In this situation, there is an assumption that there are no other variables involved in

determining the outcome, and in particular, that area–level attributes do not affect the

exposure–outcome relationship. In reality, the variables are likely to be more complex

than that illustrated here and that is explored further in the discussion.
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Figure 4.2.13: Plot showing the ‘spurious’ correlation from the analysis of X
N

and Y
N

when
varying the success probability (between 0 and 1) of the exposure and outcome generated
from a binomial distribution. A health geography example.

4.3 Discussion

This chapter revisits the long–acknowledged but enduring problem of mathematical

coupling of proportions through the modern lens of graphical model theory. By embracing

the utility of causal diagrams for exposing analytic errors, it is shown how large inferential

bias can be introduced in a variety of contexts. Explorations have been made as to how

and when Pearson, Neyman, and Fisher’s suggested fix offers a robust solution, i.e. when

the common denominator is a confounder of the exposure–outcome relationship.

The original example was extended, using simulation, to a health geography context

to show that dividing through by a common denominator may be sufficient for
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confounder adjustment in the setting when the numerator and denominator of the ratio

are proportional. However, these are only preliminary findings under the null hypothesis

of no causal effect of exposure on the outcome and with simplified conditions of cluster

heterogeneity. The non–null scenario should be simulated to explore this case further.

It is unlikely that, in complex data from which causal effects are estimated, that this

proportionality is the only effect acting between these variables and these effects cannot

be accounted for using ratios alone. In this case using the raw variables would always be

preferred.

The examples here have been deliberately simplified by omitting many potential

confounding and mediating variables and by retaining cluster heterogeneity as simple, i.e.

by not envisaging putative causal agents differentiating cluster means, for example. The

problems of mathematical coupling are not however lessened by extra complexity. On the

contrary, contextual variables can have different causal relationships with the different

elements of a composite, creating greater analytical problems. For these more complex

scenarios, it will be important to take an in–depth look at these relationships and DAGs

will be useful in elucidating the most appropriate analytical strategy, as demonstrated

here. In most practical scenarios, evaluation of the methods deployed via simulation

would be extremely beneficial.

The apparent suitability of dividing through by population size in the health geography

example was discovered late in the development of the research undertaken for this

thesis. It is further explored in the context of limiting long–term illness in Chapter 5

where simplification was maintained in the first instance to elucidate potential inferential

biases that arise through constructed indices and the adverse influences of mathematical

coupling. The implications of more complex data generation processes will be discussed

and is a focus of the further work suggested in the Chapter 7.

Although DAGs are typically used to represent causal relationships between variables at

the individual–level, in the health geography examples seen here they are also used to
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represent relationships at an area–level, which is common in population health studies.

Therefore, all simulations and subsequent analyses are conducted at the area–level (e.g.

using aggregate data). In this situation, area–level heterogeneity is effectively equal to

unknown confounding. Although this area–level mathematical coupling can be avoided

by conducting analyses at the individual–level (e.g. using logistic regression models), this

is often not possible in geographical or ecological studies. It could also be avoided within

a multi–level analysis, as this can ‘accommodate’ any cluster heterogeneity present and

if not explicitly accommodated, the results may be affected by area–level unmeasured

confounding.

Mathematical guidance is available on the use of functionally deterministic variables in

causal diagrams, which outlines how to define and determine conditional independence

between the raw and composite variables.24 Researchers wishing to conduct analyses

using composite variables, must follow these rules to ensure appropriate analyses and

interpretation. However, when one or more composite variables are wholly determined

by one or more parent variables, as with proportion variables, it is important to decide

whether any additional information is captured in these composites or not. If no additional

information is provided by including both the raw and composite variables, and there is

a clear risk of confusion, it may be more appropriate for DAGs to favour including raw

component variables over derived composite variables.

Although robust causal analysis requires the use of raw variables within correlation

or regression, it is recognised that proportions are still helpful and offer meaningful

descriptive summaries. Analysts should not be afraid of transforming their final results

into whatever format is easiest to interpret, but should be extra clear that the underlying

analyses were performed robustly using raw variables or the risk of inferential bias

through analyses of coupled variables must be quantifiable, perhaps through the

implementation of simulations to evaluate the methods adopted.

The headline message is clear: analyses of proportions with shared common denominators
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are at risk of substantial inferential bias from mathematical coupling. Pearson, Neyman,

and Fisher’s solution —of conditioning on the denominator —is robust for many

situations, but only a judicious use of causal diagrams can provide the appropriate

analytical strategy for all scenarios.

4.4 In the context of the thesis

‘Spurious correlation’ as a result of what has more recently been termed ‘mathematical

coupling’ was first reported in 189690 and has repeatedly been reported in the literature,

however, this is the first time that it has been approached from a causal inference

perspective. This has uncovered when the historical solution is appropriate, i.e. where

the denominator is a confounder of the two numerator variables. The extent of ‘spurious

correlation’ due to mathematical coupling was also quantified in the geographical

situation where an exposure (X) and outcome (Y ) are both components of the common

denominator (N ), i.e. X ≤ N and Y ≤ N but X + Y 6= N . It is hoped that this more

contemporary perspective on mathematical coupling bias (and the addition of a health

geographical point of view) can bring it to the attention of a wider audience who will

avoid it in their own work and recognise it in the work of others.

Simulations are an excellent place to start when thinking about data analysis as this

allows one to address any avoidable analytical biases. However, there may be some

biases present that cannot be addressed at this stage, for example, conditional data

acquisition (Chapter 6) and cross–level interactions amongst the unmeasured/unmodelled

confounders (discussed in Chapter 7).

The next chapter investigates how the issues of deprivation and morbidity are analysed

in the literature in light of mathematical coupling bias using causal inference methods,

including compositional and composite data as introduced in Section 3.10.3, and

simulation.
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Chapter 5

Limiting Long-Term Illness and

Deprivation

5.1 Introduction

In Chapter 4, the ‘spurious’ correlation as a result of mathematical coupling was

introduced. In health studies, proportions and percentages can seem more informative

than raw counts and appear to be of greater interest to analysts.102 However, it is unclear

to what extent, if any, mathematical coupling biases results in this area.

5.2 Background

Proportions are ubiquitous in observational research, but their mathematical coupling has

not been investigated extensively in relation to studies in health geography. ‘Spurious’

correlation has been investigated in the case of X−Y and Y , for any random variables X

and Y , related to geographical problems,103 and although the case of X
Z

and Y
Z

has been

reported in the field of demography,104 studies using potentially mathematically coupled
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data in related areas persist (for example105). The problems generated by mathematical

coupling arise for proportions, rates, ratios, prevalence and incidence —these terms are

used in this Chapter, along with ‘ratio index variables’, interchangeably.

Proportions and ratio index variables are new variables derived from the division of

one variable by another. Some health geography–related research is concerned with

prevalence and incidence (counts of total cases per population and counts of new cases per

population per unit time, respectively), which are ratios that capture the relative frequency

of a condition (e.g. prevalence of obesity, incidence of mortality) by accounting for

differences in population sizes. Many variables are generated as ratios to capture human

features (e.g. obesity), acknowledging that humans vary due to genetic predisposition

(e.g. height). Such ratios seek to capture a relative construct (e.g. Body Mass Index

as a measure of weight relative to height–squared), or to create a variable which

aims to summarise related concepts into a composite variable that is considered more

useful or parsimonious (including proxies for unmeasurable latent variables, e.g. social

deprivation). Thus, researchers calculate ratio index variables from the available absolute

values; they cannot be measured directly and must be constructed, and they can have their

own unique scale if they are constructed from one or more variables that are measured on

different scales.

If ratio index variables are analysed as if they were raw variables (i.e. as if they capture

a single concept) this may introduce inferential bias. By forming ratios, information that

is contained in separate components is compressed, but where denominators are the same

in different ratio index variables that are being analysed using correlation or regression,

coefficients will comprise an expected positive effect (due to the algebraic dependency

introduced by the common denominator) along with the true effect,96 which could be

zero. The implications of bias due to mathematical coupling amongst ratio variables are

numerous, yet almost no attention is given to the artefacts generated within epidemiology,

health geography or observational research more generally.



5.2. BACKGROUND 99

It is common for area–level measures of health outcomes and mortality to be analysed in

relation to indicators of social deprivation. This Chapter therefore seeks to illustrate the

issue of mathematical coupling and resultant inferential bias within a health geography

context using analyses similar to those present in the literature. It is reported how

causal inference theory could be used to inform appropriate analyses. The example of

limiting long–term illness (LLTI) and social deprivation as captured by area of residence

and represented by the Townsend Deprivation Index106 (and the individual components

thereof) is used.

The Townsend Index aims to capture the concept of material deprivation, which cannot

be measured directly. The Townsend Index is a composite variable that is itself made

up of individual compositional variables. These individual compositional variables are

ratios formed from numerators divided by denominators of the total population or the

number of households. Each of the components of the Townsend Index may be affected

by mathematical coupling when analysed along with another composite variable that has

a component in common. This bias may be further complicated when the components are

combined to form the Townsend Index.

To indicate how robust the analysis of a specific research question might be, the role of

all data components are clarified using directed acyclic graphs (DAGs) and graphical

model theory. Datasets are simulated at the same spatial scale and in which LLTI

prevalence is determined solely by population size; i.e. the null hypothesis whereby the

number of persons reporting an LLTI is simply a function of population size. Generating

data under the null hypothesis ensures there is no ‘true’ causal relationship, thereby

allowing evaluations of the magnitude of any artefact due to mathematical coupling.

These simulated datasets are analysed using methods present in the literature and outputs

are compared to results from analyses informed by a DAG. Finally, the observed data

are analysed and comparisons are made between models which are specified to avoid

mathematical coupling and those previously used in the literature.
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5.3 Methods

5.3.1 Overview of Methods

Data were simulated based on those from the 1991 UK Census; these data were linked

with a simulated number of the population reporting an LLTI for each electoral ward (see

Section 5.3.5 for why electoral wards were chosen) in England and Wales. The number of

people with an LLTI was simulated under the null hypothesis where only the population

size determined the prevalence of LLTI and no other variables (i.e. those involved in the

calculation of the deprivation index) caused LLTI.

5.3.2 Variables of Interest

Limiting Long–Term Illness

A question regarding LLTI was introduced to the 1991 British Census; before this,

mortality was likely to be used as a proxy for morbidity,107 however, LLTI is a broader

health status measure108 which records non–life–threatening illnesses that burden health

services.109 LLTI is a self–reported measure counting those who answered affirmatively

to the question: “does the person have any long–term illness, health problem or handicap

which limits his/her daily activities or the work he/she can do? Include problems due to

old age”. Data from the 1991 Census were used due to this being the first year that a

question regarding LLTI was asked which prompted studies in this area.

Townsend Deprivation Index

Deprivation is a latent variable (i.e. it is not possible to measure it directly) and

is generally recognised as a composite concept, with measurable ‘proxy’ variables
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being combined to represent it.110 The Townsend Index comprises four area–level ratio

index variables which are standardised and summed: percentage of economically active

individuals who are unemployed, percentage of households that are not owner–occupied,

percentage of households without access to a car, and percentage of households that are

overcrowded (have more than one person per room). These percentages are standardised

using z–scores and the Index scores are the sum of these equally weighted components.

Before summation, the unemployment and overcrowding percentages are logarithmically

transformed as they tend to be highly skewed. A greater Townsend Index indicates a

greater level of deprivation.106 A variety of deprivation indexes have been constructed

but the use of input variables expressed as proportions is ubiquitous (e.g. the Carstairs

Index111 and Jarman Index112). The Townsend Index was used here as it was readily

available in free to access datasets.

All variables forming a composite variable that is subsequently used as an independent

variable (exposure) in a model are implicitly assumed to precede the dependent variable

(outcome) in time; the exposure must occur before the outcome to be a cause. There

may however be some question surrounding whether components of the deprivation index

always precede the dependent variable of interest, as components may be causally affected

by the dependent variable. It has been suggested, for instance, that unemployment is a

more straightforward measure of deprivation than a composite measure, as it generates a

‘stronger’ association with LLTI than the composite measure,113 yet it is unclear whether

unemployment is a cause or consequence of LLTI. Although a strong relationship is often

found between unemployment and LLTI, this cannot provide any information regarding

the direction of causation.114 During periods of recession, the strength of association

between unemployment and poor health has been known to decrease as more people

become unemployed due to economic conditions.115 Notwithstanding these important

issues, to illustrate the methodological concepts this thesis addresses, it is assumed that

unemployment precedes LLTI in time, as this is what is taken for granted in most studies
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using composite variables.

5.3.3 Literature Search

A keyword search of ‘Limiting Long*Term Illness’ and ‘Deprivation’ using Web of

Science returned 37 research articles since 1991 when a question regarding LLTI was

added to the census. This list was reduced to 16 articles107, 108, 113, 114, 116–127 by manual

review of the methods; papers using linear or Poisson regression, as well as those

calculating the correlation only, were included. Any papers using logistic or any form

of multilevel regression were omitted because they focus on individuals rather than

aggregated data (i.e. data based on geographical areas) and therefore avoid the form of

mathematical coupling investigated here. However, methods considering how individual

data linked to areas could be analysed in a causal framework will be discussed in

Chapter 7. Papers conducting both individual and area–level analyses were retained, but

only the area–level analyses were considered. The methods used in each of the retained

articles were studied to form the basis of the comparisons between the unbiased analyses

this thesis seeks and the analyses presented in the literature, the article summaries are

presented in Table 5.1. Of the 16 articles retained, 7 considered correlations, 6 used linear

regression, 2 used Poisson regression and 1 used both linear and Poisson regression. All

‘statistically significant’ results reported indicated a positive relationship between LLTI

and the exposure of interest.
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Table 5.1: Summaries of the articles retained from the literature search

Ref. Method Outcome Exposure Covariates Results
107 Linear regression LLTI or all cause

mortality (SMRs
and SIRs
separate for
males and
females and
under 65s, 65-74,
and 75+)

Social
deprivation

Indicators of social
deprivation: %
unemployment (males and
total), Townsend index,
Jarman index, Carstairs
index, and DoE index

Carstairs (then Townsend,
Jarman and DoE indices)
best predictor of SMRs
and SIRs. Unemployment
rates simpler alternative
measure for deprivation

108 Correlations
(main method:
multilevel
logistic
regression)

LLTI Material
deprivation

Age, age squared, social
class 4/5 (binary),
non-white ethnicity
(binary), married (binary),
and deprivation indicator
(more than 1 person per
room, non-owner
occupied household,
household without car, no
access to separate
bathroom, unemployed;
scored 0-5)

Area factors have
significant association
with individual health
outcome though effect
smaller than properties of
individuals
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Table 5.1: Summaries of the articles retained from the literature search

Ref. Method Outcome Exposure Covariates Results
114 Linear and

Poisson
regression (log of
expected counts
is an offset)

Age–sex
standardised
LLTI

See covariates % males working in coal
industry 1981, % males
working in coal industry
1971, % residents
working in energy and
water industries 1991, %
unemployed residents
with most recent job (last
10 years) in energy and
water 1991, % EA with
unskilled/semi-skilled
manual occupations 1991,
% residents 16+
unemployed 1991, %
households without car
1991, % households not
owner-occupiers 1991, %
households in terraced
dwellings 1991, %
households more than 1.5
persons per room 1991, %
households no central
heating 1991, %
households lacking
bath/shower or inside
toilet 1991, % non-white
residents 1991

Positive associations
between LLTI and all 8
variables
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Table 5.1: Summaries of the articles retained from the literature search

Ref. Method Outcome Exposure Covariates Results
116 Linear regression Age–sex

standardised
LLTI

20
socio-economic
variables

Unemployment,
long–term unemployment,
children in non–earner
households, educational
attainment and income
support, social class,
religious affiliation, rented
households, households
without a car, households
without central heating

Variation in morbidity
ratios explained by
socio–economic variables
(77.9%). “Income support
a particularly strong
predictor”

113 Correlations LLTI Socio–economic
variables:
employment and
economic
activity, ethnicity,
household
amenities,
household
characteristics,
household tenure,
Jarman index,
Townsend index

None –correlations “Some specific areas of
morbidity did indeed
show strong associations
with socio–economic
disadvantage.”
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Table 5.1: Summaries of the articles retained from the literature search

Ref. Method Outcome Exposure Covariates Results
117 Correlations Standardised

mortality (all
cause, and
specific cause;
1993–95) and
illness ratios
(1991 Census)

Townsend index
and urban–rural
dichotomous
variable

None –correlations Large correlation between
Townsend and LLTI
(0.82); similar for
urban–rural split. Large
correlation between
Townsend index and
all–cause mortality

118 Linear regression Standardised
illness ratios
based on LLTI

Townsend,
Carstairs and
Jarman indices

Region and labour market
conditions

The four health measures
were related to social
deprivation indicators and
region

119 Linear regression Age–standardised
LLTI

Townsend
score,measure of
variation in
Townsend scores,
locality measure
of variation in
Townsend scores,
log migration

Combinations of variables
used in single variable
models

“Significant, positive
relationship between
age–standardised limiting,
long–term illness and
deprivation”. Townsend
index “most significant”
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Table 5.1: Summaries of the articles retained from the literature search

Ref. Method Outcome Exposure Covariates Results
120 Correlations

(main method:
multilevel
Poisson
regression)

Indirectly
standardised (by
age and sex)
premature (0–64
years) LLTI

Carstairs,
Jarman,
Townsend, and
Department of
Environment
indices and
customised
deprivation
profiles

None –correlations “Premature LLTI is
positively correlated with
all of the deprivation
indices”

121 Poisson
regression (one at
individual and
one at
ward–level)

Indirectly
standardised (by
age and sex)
LLTI

Carstairs index
(individual level),
McLoone and
Boddy index
(ward level), and
models with
individual
components of
these indices

Age, sex, district Ward level analysis was
not sufficiently good at
explaining variation in
illness across region
which the authors
contribute to the
ecological fallacy

122 Poisson
regression (main
method:
multilevel
Poisson
regression)

Age and sex
standardised
illness ratios
using LLTI

Rurality indicator “Poisson regressions were
carried out to find the
socio–economic and
demographic variables
associated with illness for
each area type”

Not reported for single
level models
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Table 5.1: Summaries of the articles retained from the literature search

Ref. Method Outcome Exposure Covariates Results
123 Correlations Premature LLTI

(0–64) and
premature
mortality (0–64),
indirectly
standardised for
sex and age (5
year groups)

Index of Multiple
Deprivation
(made up of 33
indicators from:
income;
employment;
health
deprivation and
disability;
education, skills
and training;
housing; and
geographical
access to
services)
compared to
Townsend score

Rurality (14 categories,
interest in “rural”, “rural
fringe” and remaining 12
categories were
combined)

Correlation between LLTI
and Townsend Score was
0.76, and with IMD was
0.79

124 Correlations Age–sex
standardised
LLTI

Townsend score
and its individual
components

None –correlations “the individual
unemployment
component is more
strongly associated with
LLTI... than the composite
Townsend score”
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Table 5.1: Summaries of the articles retained from the literature search

Ref. Method Outcome Exposure Covariates Results
125 Linear regression Logged

standardised
LLTI rate

Townsend score
quintile

All significant regression
coefficients

126 Correlations
(main method:
multiple
correspondence
analysis)

Standardised
morbidity ratios

Area level ‘health
resilience’ and
ethnic
composition,
residential
mobility,
employment
type, housing
tenure, and an
indicator of
social cohesion

None –correlations All morbidity indicators
significantly correlated
with each other

127 Linear regression Logged
standardised
proportion of
‘not good health’
and LLTI rate

Area deprivation
and a deprivation
differential

Univariable regression Positive relationship
between deprivation and
morbidity ‘indicators’
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5.3.4 Simulation of Datasets

All analyses were performed on simulated data. 1,900 datasets were generated to have the

approximate correlation structure and variable distributions75 as the electoral wards for

England and Wales in the 1991 Census (see Section 5.3.5 for why electoral wards were

chosen as the unit of analysis). Wards with resident populations fewer than 200 persons

were removed from the dataset as these wards may not be representative of the population

in general as they tend to be in very remote areas or financial districts. Cases of LLTI were

generated under the null hypothesis; population size was the only variable determining

the number of individuals reporting LLTI and the prevalence of cases was taken to be

the mean national average in 1991 over all age groups (13.5%). The raw components

of the Townsend Index and their opposite counterparts (number of economically active

residents, number of economically active unemployed, number of economically active

employed, number of private households, number of private households with more

than one person per room, number of private households with one or fewer persons

per room, number of private households without a car, number of private households

with a car, number of private households that are not owner occupied, and number of

private households that are owner occupied) were simulated and the Townsend Index was

calculated from these. The opposites are needed because these are compositional data

made up of two components each and by generating both, each pair can be scaled so that

the totals (e.g. number of households) are the same.

Distributions from which variables were simulated were chosen by plotting the observed

variable distributions and fitting general distributions to them, Figures 5.3.1–5.3.5.

Summary statistics were calculated for all of the variables that were to be simulated (Table

5.3). These figures show that the log normal distribution is a good fit to the observed

data, indicated by the simulated data from the log normal distribution having a line close

to that of the observed data. This is also confirmed by the summary statistics of the

observed data and log normal simulated data having similar values (Table 5.3). From
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Section 3.10.3, simulations were built up from the raw variables, therefore employment

and unemployment figures were generated, etc. Although a Poisson distribution is often

the go–to distribution when looking at count data, it can be seen from the summary

statistics (Table 5.3) that each of the variables is over–dispersed (the variance is larger than

the mean) and that the Poisson distribution would not be suitable in this case. Table 5.2

shows correlation structure used to generate the datasets. The random number generator

seed was set 9,499 values apart for each iteration (i.e. equal to the number of electoral

wards) to avoid dependence between datasets.51, 66

Table 5.2: Correlation matrix of the observed data to be emulated in the simulated
datasets. Non Own = Households not owner–occupied; Own = Households that are
owner–occupied; No Car = Households without a car; Car = Households with a car;
Overcrowded = Households that are overcrowded; Not Overcrowded = Households
that are not overcrowded; Unemployed = Population that is unemployed; Employed =
Population that is employed; Population = Population in each ward.
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Employed 1.00 0.72 0.66 0.95 0.74 0.97 0.56 0.97 0.97

Unemployed 0.72 1.00 0.92 0.58 0.95 0.61 0.85 0.82 0.83

Non Own 0.66 0.92 1.00 0.46 0.95 0.54 0.88 0.78 0.75

Own 0.95 0.58 0.46 1.00 0.62 0.98 0.42 0.91 0.92

No Car 0.74 0.95 0.95 0.62 1.00 0.63 0.78 0.87 0.84

Car 0.97 0.61 0.54 0.98 0.63 1.00 0.44 0.93 0.94

Overcrowded 0.56 0.85 0.77 0.42 0.78 0.44 1.00 0.63 0.65

Not Overcrowded 0.97 0.82 0.78 0.91 0.87 0.93 0.63 1.00 0.99

Population 0.97 0.83 0.75 0.92 0.84 0.94 0.65 0.99 1.00



112 5. LIMITING LONG-TERM ILLNESS AND DEPRIVATION

Figure 5.3.1: Distribution of observed employed and unemployed population variables
with fitted negative binomial and log normal distributions.
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Figure 5.3.2: Distribution of observed variables for households with and without a car
with fitted negative binomial and log normal distributions.
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Figure 5.3.3: Distribution of observed variables for households that are non-owner
occupied and owner occupied with fitted negative binomial and log normal distributions.
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Figure 5.3.4: Distribution of observed variables for households that are overcrowded and
not overcrowded with fitted negative binomial and log normal distributions.
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Figure 5.3.5: Distribution of observed variables for the population with a limiting long-
term illness with fitted negative binomial and log normal distributions.
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Table 5.3: Summary information for each variable to be simulated. Components of the Townsend Index and Limiting
Long–term Illness. Non Own = Households not owner–occupied; Own = Households that are owner–occupied; No Car =
Households without a car; Car = Households with a car; Overcrowded = Households that are overcrowded; Not Overcrowded =
Households that are not overcrowded; Unemployed = Population that is unemployed; Employed = Population that is employed;
LLTI = Population with a limiting long–term illness.

Non Own Own No Car Car Overcrowded Not Overcrowded Unemployed Employed LLTI
Minimum 14 28 7 92 1 108 3 145 1
1st Quartile 186 604 143 681 8 844 60 1004 254
Median 379 1138 399 1175 19 1665 137 1888 511
Mean 671.2 1424 678.1 1426 43.65 2060 235.3 2352 683
3rd Quartile 841.5 1890 900 1884 49 2730 302 3210 900
Maximum 7272 10276 7132 9860 1215 12297 3206 15396 4576
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5.3.5 Why electoral wards?

Before electoral wards were selected as the unit of analysis the effects of the choice

of area size on analyses of the area–level variable Townsend Index were considered.

The Modifiable Areal Unit Problem (MAUP; introduced in Section 3.10.4) is a well

documented problem which is looked at here in relation to its potential relationship with

mathematical coupling. In this context, it may be expected that a smaller granularity

with less variation in the population size would be preferred given the effect seen on

the extent of mathematical coupling for different sizes of the coefficient of variation

when all variables are normally distributed (Chapter 4). In the previous Chapter, area

population sizes were simulated from which exposures and outcomes were drawn using

the binomial distribution (Section 4.2.11). Here, population sizes were obtained from

the 2011 Census for electoral wards (EWs), Lower Layer Super Output Areas (LSOAs),

Middle Layer Super Output Areas (MSOAs) and Output Areas (OAs) and exposure and

outcome variables were generated from these using the binomial distribution with success

probabilities varying between 0 and 1. This was conducted in order to determine whether

any area granularity will inherently bias the analysis more than any other with regards

mathematical coupling.

Figure 5.3.6 shows that, under the null hypothesis, there is no discernible difference or

clear pattern in bias associated with the different area sizes under the null hypothesis (the

‘spurious’ correlation averages zero). As a result, electoral wards were used for analysis

of this problem as they are most often used to answer such questions in the literature.
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Figure 5.3.6: Plot showing the ‘spurious’ correlation from the analysis of X
N

and Y
N

when
varying the success probability (between 0 and 1) of the exposure and outcome generated
from a binomial distribution for each areal unit: Electoral Ward, Lower Layer Super
Output Areas (LSOAs), Middle Layer Super Output Areas (MSOAs) and Output Areas
(OAs).

5.3.6 Contrast between how Townsend Index components are

simulated and analysed

To simulate this problem, the component variables of the Townsend Index were generated

along with their opposite components. These are examples of compositional data, i.e. data

that comprise parts of some whole, for which all parts sum to that whole.128 They differ

from composite variables as both the components and whole can be measured directly

and are on the same scale (Section 3.10.3).

Figure 5.3.7 shows the compositional make up of the components of the Townsend Index.

This diagram highlights the variables required to simulate the problem, and how each
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variable is part of a pair which adds up to a preceding total. Although pairs are shown

in this diagram, this is not how the data would be analysed and researchers should be

particularly mindful of the question that they are trying to answer and how they can

accurately achieve this when dealing with compositional data. For example, if one was

interested in the effect of moving one person from the unemployed population to the

employed population on limiting long–term illness they could regress the unemployed

population on LLTI whilst adjusting for the total population. This is equivalent to keeping

the total population fixed, whilst changing the size of the unemployed population with an

equal and opposite change in the size of the employed population. This is the analysis that

is performed most often in the literature, although it is not often made explicit.

It is more difficult when considering the Townsend Index because there are several

compositional variables that make up this composite variable. It is not possible to

consider the effect of moving one person from the unemployed group to the employed

group in this case (or moving a household from being overcrowded to not overcrowded,

for example). However, when the individual components of the Townsend Index are

considered, previous work has mostly looked at the effect of moving from one category

to another, rather than increasing the number in one category and the total.

5.3.7 Causality and Directed Acyclic Graphs

Directed acyclic graphs (DAGs) were used to illustrate all assumed associations

between variables when analysing LLTI in relation to deprivation as measured by the

Townsend Index. DAGs are used to inform robust model choices (i.e. unaffected by

confounding) using minimally sufficient adjustment sets (MSAS).74 The results from

these DAG–informed models were analysed and compared to results from models

replicating analyses conducted in the literature.

The focus here is only on the Townsend Index and its components and other variables
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Figure 5.3.7: Diagram showing the compositional components of the Townsend Index
components for simulation.

that were found in the literature search were not included in the models. When including

many covariates in a model, and not consulting causal graph theory, researchers should be

aware of the ‘Table 2 Fallacy’49 and the ‘reversal paradox’32 (introduced in Sections 2.6

and 2.1.10, respectively).

5.3.8 Analytical Methods

The literature search informed the choice of models used in the analysis. Each of the

chosen analytical methods was applied to the 1,900 simulated datasets and the relevant

regression or correlation coefficient (i.e. for deprivation as characterised by the Townsend

Index or components thereof) was recorded along with its confidence interval. The R

statistical software98) was used throughout and the code is available in Appendix C.

Three analytical techniques were applied to the data: Poisson regression, because this
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often appears in the literature due to the outcome being a count; linear regression because

it is often used to analyse the individual components of the deprivation composite with

the outcome (sometimes as a crude rate, often standardised directly or indirectly); and

correlation which is used for descriptive purposes. The standardised rate of illness (of

LLTI in this case) is known as the Standardised Incidence Rate (SIR), which is similar

to the Standardised Mortality Rate (SMR), and in this case represents the ratio of the

population in an electoral ward with an LLTI and the number of people in the general

population with an LLTI.

Different specifications of variables were modelled; they were included as either

proportions or counts to determine which modelling techniques and variable definitions

lead to more or less bias, if any.

Linear regression models and simple correlations are the analytical methods most

often used in the analysis of such data. Correlation may be appropriate for hypothesis

generation, but it can only tell the researcher about statistical associations and not causal

associations as it cannot account for the relationships between other variables related to

those being correlated, e.g. confounding. Linear regression can be used to account for

some of these complexities and this will be returned to in the discussion of this chapter

(Section 5.5).

The Poisson distribution is used when data are counts. This distribution is often used as a

starting point for count data as it assumes that the model variation is the same as the model

expectation (mean), i.e. in the context of this thesis, that would be the assumption that the

probability of observing the next individual or event is constant in time or space for each

geographical unit.129 This may not be a realistic assumption to make in population–level

data and the negative binomial or log–normal distributions would be preferred. The log

normal distribution was used here because it provided the best fit to the observed LLTI

data.

The negative binomial distribution could also be used for modelling count data as it is less
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restrictive in that it allows for the data to be ‘over–dispersed’ this means that the variance

is larger than the mean. This is often more appropriate in population–level data because

populations are heterogeneous across geographical units. However, negative binomial

regression was not present in the literature so only Poisson regression models were

evaluated here. When Poisson regression is used to model data that follows a log–normal

distribution the standard errors are biased which has repercussions for the confidence

intervals which will be inaccurate.

5.3.9 Performance Measures

Performance measures were used here as suggested by Morris et al.51 to assess the amount

of inferential bias present (which calculates whether the estimated coefficient averages the

true value, zero in this case), the empirical standard error (which measures the precision or

efficiency of the coefficient), and the coverage (the probability that the confidence interval

of the coefficient contains zero) of each model, illustrated using ‘zip plots’.

5.3.10 Analysis of Observed Data

The same regression models were applied to the observed, original 1991 Census data and

the results were compared to those simulated under the null hypothesis to add context

and highlight any biases present.

5.3.11 Step–by–step guide to simulation of LLTI data

1. Three analytical techniques will be investigated: correlation, linear regression

and Poisson regression as these are all found in the literature. The correlation
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or regression coefficients and the 95% confidence intervals will be retained for

analysis.

2. Observed data are taken from the 1991 Census and all relevant variable distributions

are plotted against general distributions and summary statistics are used to aid the

choice of distribution parameters. Raw components of the Townsend Index are used

along with their opposite counterparts, e.g. unemployed and employed population.

The assumed data generation process is illustrated in a DAG.

3. Assumptions are made that the components of the Townsend Index and their

opposite counterparts add up to the total population count and total household count

and the simulated variables are re–scaled to account for this.

4. Simulations assume that the null hypothesis is true and that neither the Townsend

Index nor its components cause LLTI.

5. The performance measures to be estimated are: bias, coverage and standard errors of

the estimates. 1,900 iterations of the simulation are performed, calculated based on

equations presented by Morris et al.51 to achieve acceptable Monte Carlo standard

errors for the key performance measures.

6. The seed for the random number generator was set so that exact results can be

replicated by others. The random number generator seed is set 9,499 values apart

(equal to the number of electoral wards) to avoid dependence between datasets.51, 66

7. A dataset is generated according to the assumptions covered above.

8. Statistical analyses are performed on this dataset and the parameter estimates

obtained are retained (i.e. correlation and regression coefficients and related 95%

confidence intervals).

9. The steps above are repeated 1,899 times with newly generated datasets in order to

obtain an empirical distribution of parameter estimates.
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10. The empirical distributions of the parameter estimates from the simulated datasets

are analysed to estimate the bias from each analytical method.

11. The performance estimates are calculated and reported.

5.4 Results

5.4.1 Causal Diagram

The causal diagram (Figure 5.4.1) suggests that ‘Population’ should be adjusted for in

the regression models as it is a confounding variable that acts upon both the exposure

and the outcome. This is true for each of the components of the Townsend Index if used

individually in regression models within the literature.

Composite Variables

The introduction of deterministic variables (e.g. composites such as the Townsend Index)

in causal diagrams introduces additional conditional independencies that need to be

accounted for in subsequent analyses.24 Including composite variables which are wholly

determined by raw parent variables needs to be carefully considered; it is straightforward

to only include the composite variable (and exclude its components) as the usual rules of

causal diagrams then apply. However, there may be philosophical issues and parametric

constraints that arise by considering deterministic nodes in causal diagrams where it is

truly believed they capture more information than the individual components themselves

(this was considered in Section 3.10.3).
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Figure 5.4.1: Causal associations between deprivation (as components of the Townsend Index) and Limiting Long–Term Illness
(LLTI). The shaded grey box represents variables that generate the Townsend Index which is explored for its realtion to LLTI.
Ordinarily, a composite variable (the Townsend Index, in this case) would not be included in a DAG as well as its components;
for this reason, the Townsend Index is included in a triangle. The blue dotted arrow between the Townsend Index and LLTI
indicates the relationship that is commonly investigated in the literature. The orange dotted double–headed arrow between
unemployment and LLTI highlights that there is a complex, time–varying relationship between these two variables and is
another relationship commonly investigated in the literature. The ’Area–level confounding’ box surrounding the diagram
indicates that there is an exogenous latent ‘confounder’ that causes area–level heterogeneity, however, this is not directly
simulated but is added here for completeness in relation to future work.
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Time of variable crystallisation

Further complexity is realised if it is acknowledged that the four components of the

Townsend Index may not crystallise at the same time (although they are measured at the

same time); for instance, unemployment may arise before, and thus help determine, living

in non–owner–occupied accommodation, living in overcrowded accommodation, or living

in a household without a car. When looking at unemployment as the exposure of interest,

the minimally sufficient adjustment set (MSAS) thus comprises the economically active

population and total population only. For this reason an investigation of unemployment is

conducted separately for comparison to analyses encountered in the literature.

Time of variable crystallisation is also an additional complexity when there are other

variables that would need to be adjusted to get more accurate model estimates. This needs

to be considered more carefully when data are compressed into a latent variable such as

the Townsend Index as this could mean that these variables go unnoticed, affecting model

estimates or they cannot be adjusted for appropriately.

5.4.2 Mutual adjustment fallacies

Green and Popham50 expand on previous literature49 regarding the mutual adjustment

fallacy (introduced in Section 2.6) using the example of research into the effects of

Socioeconomic Position (SEP) on health. This can be applied here to the related concept

of the Townsend Index. As a brief reminder, ‘Mutual adjustment fallacies’ refer to when

all coefficients in a model are assumed to have an equivalent interpretation.

Using the DAG drawn in Figure 5.4.1, when unemployment is the exposure of interest

the economically active population was adjusted for as it is a common cause of both

the unemployed population and LLTI. When households without a car is the exposure

of interest, the number of households, the unemployed population and the economically

active population were adjusted for. Adjustments were also made for the number of
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households, the unemployed population and the economically active population when the

number of overcrowded households and the number of households that were non–owner

occupied were the exposures of interest.

The information in the DAG informed a series of regression models: Poisson and linear to

analyse the outcome, LLTI (as a count and as a standardised illness ratio) with respect to

the Townsend Index and its components, as both proportions and as counts adjusting for

population size along with models adjusting for the MSAS. As the outcome was simulated

under the null hypothesis, a record of the number of times the coefficient of interest from

each model deviates from zero (i.e. the type 1 error rate) was recorded, if the method of

analysis is unbiased it is expected that this will occur on only 5% of occasions.

Along with the regression models, the outcome, LLTI (again, as a count and as a

standardised illness ratio), was correlated with the Townsend Index and its components,

as both proportions and counts but no adjustments (e.g. for the confounder, population, or

other variables) could be made.

5.4.3 Correlation

Analyses of the 1,900 synthetic populations generated under the null hypothesis

correlating the Townsend Index with LLTI produced a median correlation that was biased

towards a positive relationship between LLTI and the Townsend Index (95% CI: 0.10,

0.18; Figure 5.4.3). When LLTI was standardised by the number of the population

expected to experience an LLTI (SIR) the median correlation coefficient was zero (95%

CI: −0.2, 0.02).

When the components of the Townsend Index were correlated with the count of the

population experiencing a LLTI, under the null, a positive relationship was suggested.

However, when the SIR was correlated with the components of the Townsend Index there

was no bias present (Figure 5.4.3).
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The ‘zip plots’ (Figures 5.4.4 and 5.4.5) show these biases clearly. In particular, Figure

5.4.5 shows an expected Type 1 error rate for the correlations undertaken using the

SIR (approximately 5%). Figure 5.4.4 shows a very high Type 1 error rate when the

correlations were undertaken using a count of the population experiencing a LLTI (in

some cases the Type 1 error rate was 100%) with all confidence intervals biased towards

a positive relationship between the Townsend Index, and its components, with LLTI.

For readers unfamiliar with ‘zip plots’ a larger plot is included here (Figure 5.4.2) in

order to explain the concept. Each horizontal bar on the plot shows the 95% confidence

interval of the estimate from correlating the number of the population with an LLTI with

the number of unemployed people in the population. Bars shown in blue are confidence

intervals that cover the true value (i.e. the null or zero in this case), whereas the red bars

do not cover the true value. The black horizontal line shows at which point there would be

a split in coverers (blue bars) and non–converers (red bars) if the results were not biased

(i.e. at the 1,805 iteration of the simulation; the 95th centile of the 1,900 iterations).
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Figure 5.4.2: Enlarged ‘Zip plot’ for explaining the concept of these plots. Taken
from the result of correlating the number of the population with an LLTI with the
unemployed population. The plot shows the direction of bias of each correlation for the
1,900 simulations. Blue confidence intervals contain zero (the true value) whereas red
confidence intervals do not.
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5.4.4 Linear regression

Analyses of the 1,900 synthetic populations generated under the null hypothesis using

linear regression, with the Townsend Index as the exposure variable, produced a median

coefficient which was biased towards a positive relationship between the Townsend Index

and LLTI (95% CI: 275, 452). When this regression model was adjusted for population

size the relationship was no longer biased towards a positive relationship (95% CI:

−90.8, 73.4). When the standardised illness ratio (SIR) was used as the outcome the 95%

confidence intervals were small and contain zero.

When the components of the Townsend Index were used as the exposure variable in the

models, the coefficients were biased when they were included as proportions (e.g. the

proportion of the population that is unemployed), and there was no such bias when the

numerator and denominator were included separately in the model with the number of

people in the population treated as a confounding variable (e.g. the absolute number in

the population that is unemployed and the number of people in the population), Figure

5.4.6.

The Type 1 error rates of the coefficients were substantially greater than the expected 5%

using linear regression when the outcome was not standardised (Figure 5.4.7). When the

outcome was standardised the Type 1 error rate was approximately the expected 5% for

both count and proportion exposures (Figure 5.4.8).
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Figure 5.4.3: 95% confidence intervals calculated over 1,900 simulations for the median coefficient approximated using
correlation
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Figure 5.4.4: ‘Zip plot’ showing the direction of bias of each correlation for the 1,900
simulations when the outcome is not standardised. Blue confidence intervals contain zero
(the true value) whereas red confidence intervals do not.
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Figure 5.4.5: ‘Zip plot’ showing the direction of bias of each correlation for the 1,900
simulations when the outcome is standardised. Blue confidence intervals contain zero
(the true value) whereas red confidence intervals do not.
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Figure 5.4.6: 95% confidence intervals calculated over 1,900 simulations for the median coefficient approximated using linear
regression
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Figure 5.4.7: ‘Zip plot’ showing the direction of bias of each linear regression model for
the 1,900 simulations when the outcome is not standardised. Blue confidence intervals
contain zero (the true value) whereas red confidence intervals do not.
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Figure 5.4.8: ‘Zip plot’ showing the direction of bias of each linear regression model for
the 1,900 simulations when the outcome is standardised. Blue confidence intervals contain
zero (the true value) whereas red confidence intervals do not.
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5.4.5 Poisson Regression

Analyses of the 1,900 synthetic populations generated under the null hypothesis using

Poisson regression with the Townsend Index as the exposure variable produced a median

coefficient which was biased towards a positive relationship between the Townsend Index

and LLTI (95% CI: 1.07 to 1.10). When this regression model was adjusted for population

size the relationship was no longer biased towards a positive relationship (95% CI: 0.99

to 1.01).

When the components of the Townsend Index were used as the exposure variables in the

models, the coefficients were biased when they were included as proportions (e.g. the

proportion of the population that is unemployed), and there was no such bias when the

numerator and denominator were included separately in the model with the number of

people in the population treated as a confounding variable (e.g. the absolute number of

unemployed people in the population and population size), Figure 5.4.9.

The Type 1 error rate of the coefficients were almost 100% for all the models using

Poisson regression (Figure 5.4.10). These correspond with 95% confidence intervals that

contained zero and the high Type 1 error rates were a result of using Poisson regression on

a log normal distributed outcome; as mentioned above, the standard errors are larger when

a Poisson regression model is used on an outcome that follows the log normal distribution.

Simulations with a Poisson distributed outcome were conducted for empirical verification.
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Figure 5.4.9: 95% confidence intervals calculated over 1,900 simulations for the median coefficient approximated using
Poisson regression
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Figure 5.4.10: ‘Zip plot’ showing the direction of bias of each Poisson regression model
for the 1,900 simulations. Blue confidence intervals contain zero (the true value) whereas
red confidence intervals do not.
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Performance measures

The ‘zip plots’ for each method (Figures 5.4.4–5.4.5 & 5.4.7–5.4.8 & 5.4.10) show

bias and large standard errors when using proportions rather than count variables in the

regression models. These Figures also show that the highest level of coverage (i.e. when

the confidence intervals ‘cover’ the true value, zero) is achieved when count variables

were used in the case of the regression models and that when proportions were used in

the regression models a positive relationship between the exposure and outcome always

results. When the outcome was standardised (i.e. when the SIR is used) no bias was

present for either the exposure expressed as a count or as a percentage.

The reason that it is acceptable to divide through by a common denominator to ‘control’

for population size was explained in Section 4.2.10. This is because the exposures and

outcome are proportional to each other and if they were to be plotted against each other

they would form a straight line through the origin. There are two main issues regarding

dividing through by a common denominator for unbiased analyses which are both related

to this only being the case when the null hypothesis is true. Firstly, as soon as any other

variable is involved in determining the outcome, the outcome would not be proportional

to the confounder and therefore it would not be sufficient to divide through by the

confounder to adjust for it. This would especially be an issue in the case of unobserved

confounding due to other variables as it would not be possible to ascertain the level of

‘spurious’ correlation present. Secondly, there is likely to be unobserved confounding

at the area–level present which represents area–level heterogeneity. These issues will be

discussed further in Section 5.5 and in Chapter 7.

Results of observed data analysis

Analysis of the observed data using correlation suggested positive relationships between

the Townsend Index and each of its components (as counts and as proportions) with
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limiting long–term illness (as a count or SIR; Tables 5.4 & 5.5, respectively). However, it

is recognised from the simulations that when the count of the population with an LLTI is

used (rather than the SIR) the correlations will be biased in a positive direction because

the confounding variable (population size) was not adjusted for. This likely accounts for

some of the difference in correlation between using the counts of LLTI and the SIR.

Incidentally, the 95% confidence intervals of the correlations of the count of LLTI and the

SIR with the percentage of non–owner occupied households are the same.

Table 5.4: 95% Confidence intervals from correlating the count of LLTI in the population
with the Townsend Index and its components.

Count of LLTI correlated with: 95% Confidence Interval

Townsend (0.51, 0.54)

Unemployed population (0.86, 0.87)

Percentage unemployed population (0.52, 0.55)

Households without a car (0.91, 0.92)

Percentage households without a car (0.61, 0.64)

Overcrowded households (0.64, 0.66)

Percentage overcrowded households (0.35, 0.39)

Non–owner occupied households (0.81, 0.83)

Percentage non–owner occupied households (0.28, 0.31)
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Table 5.5: 95% Confidence intervals from correlating the standardised rate of LLTI in the
population with the Townsend Index and its components.

SIR correlated with: 95% Confidence Interval

Townsend (0.42, 0.45)

Unemployed population (0.24, 0.27)

Percentage unemployed population (0.47, 0.50)

Households without a car (0.31, 0.35)

Percentage households without a car (0.56, 0.58)

Overcrowded households (0.13, 0.17)

Percentage overcrowded households (0.15, 0.19)

Non–owner occupied households (0.26, 0.29)

Percentage non–owner occupied households (0.28, 0.31)

Using linear regression, large regression coefficients were found when using the count of

the population with LLTI as the outcome and the Townsend Index (both adjusted and

unadjusted for the population confounder) as was suggested would be the case from

the simulations. These were attenuated (though still positive) when the counts of the

Townsend components were used as the exposure and the population size was adjusted for

in the model. The simulations suggest that the least biased method of analysis for these

data is using the SIR as the outcome and counts of the Townsend Index components as

exposures adjusting for population size (Tables 5.6 & 5.7, respectively). Results using this

approach on the observed data suggest very small effect sizes in the positive direction,

but for households without a car, overcrowded households and non–owner occupied

households these became negative when the MSAS was considered.
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Table 5.6: 95% Confidence intervals of linear regression coefficients on observed LLTI
data using the count of LLTI in the population as the outcome and the Townsend Index
and its components in count and percentage format as covariates

Model Exposure: 95% Confidence Interval

Townsend (87.5, 90.4)
Townsend
(adjusted for population size) (33.4, 34.6)
Unemployed population
(adjusted for population size) (0.71, 0.74)

Percentage unemployed population (8830, 8580)
Households without a car
(adjusted for population size) (0.36, 0.36)

Percentage households without a car (4280, 4390)
Overcrowded households
(adjusted for population size) (0.72, 0.81)

Percentage overcrowded households (1.5× 104, 1.6× 104)
Non–owner occupied households
(adjusted for population size) (0.22, 0.23)

Percentage non–owner occupied households (2.0× 103, 2.1× 103)
Unemployed population
(adjusted for MSAS) (0.81, 0.83)
Households without a car
(adjusted for MSAS) (0.10, 0.14)
Overcrowded households
(adjusted for MSAS) (-0.83, -0.77)
Non–owner occupied households
(adjusted for MSAS) (-0.07, -0.06)
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Table 5.7: 95% Confidence intervals of linear regression coefficients on observed LLTI
data using the standardised rate of LLTI as the outcome and the Townsend Index and its
components in count and percentage format as covariates

Model Exposure: 95% Confidence Interval

Townsend (0.04, 0.04)
Townsend
(adjusted for population size) (0.04, 0.04)
Unemployed population
(adjusted for population size) (6.1× 10−4, 6.5× 10−4)

Percentage unemployed population (4.25, 4.40)
Households without a car
(adjusted for population size) (3.3× 10−4, 3.5× 10−4)

Percentage households without a car (2.20, 2.26)
Overcrowded households
(adjusted for population size) (5.9× 10−4, 7.2× 10−4)

Percentage overcrowded households (3.83, 4.29)
Non–owner occupied households
(adjusted for population size) (1.8× 10−4, 2.0× 10−4)

Percentage non–owner occupied households (1.12, 1.18)
Unemployed population
(adjusted for MSAS) (7.1× 10−4, 7.5× 10−4)
Households without a car
(adjusted for MSAS) (−1.1× 10−4, −4.2× 10−5)
Overcrowded households
(adjusted for MSAS) (−5.5× 10−4, −4.0× 10−4)
Non–owner occupied households
(adjusted for MSAS) (−1.5× 10−4, −1.3× 10−4)

Using Poisson regression, a small positive relationship between the Townsend Index

and LLTI was suggested for models both adjusted and not adjusted for population size

(Table 5.8). In all models using the Townsend Index components as counts adjusted for

population size no relationship was evident. In models using proportions as the exposure

the risk ratios were very high as was the case for the simulations which suggests that this

is a result of inappropriate model and variable specifications.
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Table 5.8: 95% Confidence intervals of Poisson regression coefficients on observed LLTI
data using the count of LLTI in the population as the outcome and the Townsend Index
and its components in count and percentage format as covariates

Model Exposure: 95% Confidence Interval

Townsend (1.10, 1.10)
Townsend
(adjusted for population size) (1.03, 1.03)
Unemployed population
(adjusted for population size) (1.00, 1.00)

Percentage unemployed population (9060, 9200)
Households without a car
(adjusted for population size) (1.00, 1.00)

Percentage households without a car (337, 340)
Overcrowded households
(adjusted for population size) (1.00, 1.00)

Percentage overcrowded households (1.4× 106, 1.5× 106)
Non–owner occupied households
(adjusted for population size) (1.00, 1.00)

Percentage non–owner occupied households (15.7, 15.8)
Unemployed population
(adjusted for MSAS) (1.00, 1.00)
Households without a car
(adjusted for MSAS) (1.00, 1.00)
Overcrowded households
(adjusted for MSAS) (1.00, 1.00)
Non–owner occupied households
(adjusted for MSAS) (1.00, 1.00)

Further investigation of the relationship between the denominator (population size)

and the Townsend Index and each of its components suggest that these variables are

not exactly proportional to each other in the observed data (which is to be expected;

Figure 5.4.11). This means that dividing through by population size is inappropriate

for controlling for the population confounder and that linear regression with SIR as the

outcome and controlling for population size as a covariate is the most appropriate method

to avoid bias due to mathematical coupling in this case.
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It is unclear why models using the components of the Townsend Index as exposures were

more biased than those with the Townsend Index as exposure and this warrants further

investigation.

Figure 5.4.11: Scatter plots showing the Townsend Index and its components plotted
against the population size.

5.5 Discussion

This research has used analyses of simulated and observed data to investigate the potential

ramifications of mathematical coupling on observational health geography data. The

specific example used explores the proposed relationship between area–level deprivation

and limiting long–term illness.

The methods investigated here were used to build on the foundations of the theory that
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deprivation is a cause of limiting long–term illness (LLTI). The study presented here does

not disprove a link between the two, but suggests that revisiting investigations into these

two concepts ought to consider the risks of mathematical coupling. Indeed, the literature

review discovered journal articles that covered multi–level models and this may prove

to be a more appropriate avenue for future research which could account for area–level

heterogeneity presuming that the individual–level data are available.

It has previously been shown mathematically that the bias due to mathematical coupling

is a result of incorrect model specification; equations commonly used in the literature are

not equivalent to the models using components.101 The accurate regression equation for

using ratios is achieved by dividing through the equation for the component model by the

variable that should be controlled for (population size in this case). This means that both
X
N

and 1
N

must be regressed on Y
N

to get the correct result. Although this means that there

is a way of dealing with ratio variables that avoids mathematical coupling, this method

has been shown to perform poorly when the measure of population size is unreliable.104

The interpretation of the ratio model becomes much more complex when there are other

variables involved which will always be the case when the research question involves

observational health geography data. This issue, combined with the fact that the correct

specification of the ratio model has not been adopted since the publication of this work

in 1986,104 provides a good argument for the acceptance of component variables for

observational health geography research, unless it is thought that composite variables

truly represent more information than their components. In terms of causal inference,

Firebaugh and Gibbs101 also pose the question: “how does one know that a ratio truly

has causal effects and should be used, or whether the ratio is no more than a statistical

invention whose use reifies a nonentity?” (p.715); further reason for the use of only the

component model.

DAGs are not widely used to depict area–level variables, but if researchers are interested

in area–to–area variation in area–level outcomes it should be plausible to construct a
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DAG to answer area–level questions.29 DAGs have been developed which incorporate

both individual–and area–level variables, showing it is possible to construct DAGs

based purely at the area level.22 It may be necessary, however, to carefully consider

the impacts of exogenous confounding that leads to heterogeneity that is a hallmark of

health geography, with greatest effects where the denominator, N, varies considerably

(e.g. electoral wards as opposed to SOAs) which links to the MAUP.

When thinking of the research question addressed here (what is the causal effect of

deprivation on limiting long term illness?), the consideration is what would happen if

an intervention was made to change the deprivation level of an area, which is not a

well–defined problem. The causal inference principle of consistency requires that however

the level of deprivation is changed, whether by reducing unemployment, reducing

overcrowding, increasing owner–occupation or increasing household car ownership, this

would always have the same effect on the outcome. With this in mind, it may not be

possible to estimate the causal effect of deprivation explicitly in a single concept; the

question would have to be reframed around potentially multiple aspects of deprivation

that could be intervened upon, such as unemployment.82 Further research is needed to

elicit how composite concepts can be used in a causal framework and how they can be

represented in DAGs along with the natural hierarchy or whether they must be broken

down into their component parts for meaningful analysis, as has been done here.

Where the models suggest bias arises in the coefficients of proxies for deprivation, the

bias always tends towards a positive relationship with LLTI due to the mathematical

dependency that using common denominators creates.90 If studies consistently report

a stronger association between exposure and outcome (there may be a true non–null

association in an observed dataset), there will always be a ‘spurious’ element to this when

ratios are used. Interventions to reduce the outcome (LLTI in this case) may be focussed

on a domain that will not achieve the reduction in incidence that would be expected

given the results of the algebraically coupled analyses. The burden on health services
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could be effectively reduced and priority given to more appropriate areas in health policy,

according to unbiased analyses of the observed data that suggest no relationship between

the individual components of the Townsend Index and LLTI.

Often analyses will break down the data into age–sex categories, however, this is not

done here as the results would be similarly distorted in the simulated examples and this

only serves to complicate the exposure–outcome relationship making it more difficult to

illustrate the problem of mathematical coupling. However, the results of the observed data

analysis may be more robust if the data were age–standardised or additionally adjusted

for age, sex and their interaction.

Composite measures are often used in analyses of geographical health data, particularly

when a variable of interest (e.g. deprivation) can only be represented by proxies. However,

the algebraic dependencies that are introduced in the construction of ratio index variables

for analysis are not usually considered, resulting in inadvisable recommendations for

latent variable proxies, e.g. the proportion of unemployment as a proxy for deprivation.

This may explain why some studies have noted higher correlations between the individual

components of the composite variables with the outcome than the composite variables

themselves.113 Additionally, the complex relationship between unemployment and LLTI

suggests that a time–varying unemployment variable may be more appropriate in a causal

diagram representing this problem; however, this is not attempted here as the goal is to

explore the methods present in the existing literature.

5.6 Conclusion

A move away from the use of proportions or percentages in area–level health geography

research may be difficult to implement as they are often the core element of quantitative

analyses in this discipline; it can be difficult to comprehend the meaning of a variable

except in ratio index form.96 Analysts must however endeavour to do this for their analyses
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that incorporate correlation or regression to avoid the inferential biases that result from

mathematical coupling. This problem is wide ranging; it not only affects the area of health

geography, but many others too. It has been demonstrated how the adoption of a DAG

framework to consider such composite relationships can aid understanding of these issues

along with understanding of the historical solutions.

5.7 In the context of the thesis

This chapter has illustrated how simulation and causal inference influenced thinking can

help researchers understand biases that may be present in the historical approaches to

data analyses. This is only one such example, but it highlights how causal thinking and

subsequent analysis could be brought into the field of health geography to avoid inferential

biases so that research can more accurately be used to inform health policy. Integrating

causal inference methods with health geography will be discussed more thoroughly in

Chaper 7.

The next chapter uses the framework outlined in Chapter 3 to consider selection on

the outcome, the ‘most dangerous equation’ and the modifiable areal and temporal unit

problems.
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Chapter 6

Population Mixing and Childhood

Leukaemia

6.1 Introduction

Following on from the previous two chapters which have focused on mathematical

coupling and composite variables, this chapter looks at a long–standing research

hypothesis in health geography –the so–called ‘population mixing hypothesis’ (see

Section 6.2.1). Initially, it may appear that the bias introduced when trying to answer

this research question in a certain way is a result of mathematical coupling, however,

this is not the case and using simulation and causal inference knowledge built on from

Chapters 2 and 3 the true cause of this bias is shown. This work has been published in

Epidemiology130 and a follow–up letter131 has been responded to.132 A recent citation of

this work133 recognises the conclusion that the methods used to analyse such data can

influence the results and that in the case of clustering, region–wide analytical strategies

should be used.

The code for the simulations is available in Appendix D and on GitHub, however, code
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related to the observed data analyses are not publicly available due to the data being

confidential. A video abstract is also available at https://journals.lww.com/

epidem/pages/videogallery.aspx?videoId=87.

The following chapter combines the two concepts the ‘most dangerous equation’ and the

modifiable areal and temporal unit problems (introduced in Sections 3.10.5 and 3.10.4,

respectively) along with selection on the outcome (Section 2.1.11) to show the pitfalls

of common analyses looking at the hypothesised relationship between population mixing

and childhood leukaemia.

6.2 Background to the ‘population mixing hypothesis’

If the example introduced in Section 3.10.4 is extended to the scenario where disease

incidence between areas is being compared, those areas with small populations are

more likely to appear as spatial clusters of high incidence by chance alone. Focusing

on these supposed clusters is therefore a poor basis on which to generate or test

causal hypotheses.87 Nonetheless, such clusters are hard to ignore,134 and can generate

substantial pressure for plausible explanations. This may explain the considerable public

and political interest given to the high incidence of childhood leukaemia in Seascale

(Cumbria, UK) during 1963–1983, and the relative lack of attention to the absence of

such cases during 1991–2006.135, 136

The challenges of examining clusters between areas with different population sizes

are likely to have influenced the development and testing of the ‘population mixing

hypothesis’. The idea emerged from analyses purporting to show an association between

‘population mixing’ and childhood leukaemia, interpreted as evidence for the involvement

of infectious agents.

https://journals.lww.com/epidem/pages/videogallery.aspx?videoId=87
https://journals.lww.com/epidem/pages/videogallery.aspx?videoId=87
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6.2.1 What is the ‘population mixing hypothesis’?

The hypothesis proposes that: the immune systems of children resident in more isolated

and/or less densely populated communities are more likely to have been exposed to a

less diverse range of infectious agents than residents in less isolated and/or more densely

populated communities. These children are therefore believed to be more likely to develop

leukaemia if they are exposed to novel infections from inward–migrants.137

6.2.2 The assumptions of the ‘population mixing hypothesis’

This hypothesis is both persuasive and enduring.138, 139 Indeed, one recommendation

of the Seventeenth Report of the Committee of the Medical Aspects of Radiation

in the Environment (COMARE), published in 2016, was that “prospective studies be

made of the incidence of childhood leukaemia in rural areas in which any large–scale

construction projects (both non–nuclear and nuclear) are to be carried out”140 (p.151).

This recommendation was made on the basis of evidence of the “influence of rural

population mixing upon the risk of childhood leukaemia”140 (p.151). However, the

hypothesis relies on several untested assumptions, and involves a lack of clarity around

how many of its key concepts should be defined, measured and analysed.141 One

assumption is that isolated communities, and those with lower population densities, are

less likely to experience the frequency and or intensity of contact required to sustain

infections. Another is that communities with lower rates of ‘inward-migration’ are less

frequently exposed to exogenous infections. While these assumptions reflect established

tenets of infectious disease epidemiology they require levels of isolation, population

dispersion, and (im)mobility that remain unspecified, and may be neither plausible

nor applicable where the hypothesis has been examined. There also remains extensive

disagreement regarding the roles that the immune system and early exposures to infection

play in the aetiology of childhood leukaemia.142–144
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6.2.3 Measures used to capture population mixing

These mechanistic uncertainties are compounded by a lack of consensus concerning:

what constitutes an isolated or less dense population; criteria used to distinguish between

migrants and residents; and how these concepts are operationalised as measures of

population mixing. Researchers exploring the association between population mixing and

childhood leukaemia have therefore used a range of different measures as proxies for

population mixing including: differences and/or changes in population size/density; the

proportion and/or diversity of inward–migrants; and versions of the Shannon Diversity

index.141

The variety of measures confirms a lack of conceptual precision/consensus, and

reflects the practical constraints imposed by: the distribution and migration patterns of

populations within regions where suitable data exist; the collation/organisation of data

on these parameters; and challenges differentiating leukaemia cases amongst residents

and inward–migrants. Good quality, area–level data on population size/density, migration,

and childhood leukaemia incidence are only available for high–/middle–income countries

where large regions are usually subdivided into small areas along political/administrative

rather than demographic lines. These small areas display substantial variation in

geo–spatial features (size, shape, and distance apart), and in the size/distribution of their

constituent populations. Consequently, along with the socio–demographic detail of data

available from sources such as a decennial census, the geographical specification of

these areas constrains what measures of isolation, density, migration, and mixing can

be generated. Such sub–division also creates larger–than–expected chance variations in

incidence amongst smaller populations simply due to chance84, 87 as explained in Sections

3.10.4 and 3.10.5.
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6.2.4 Analytical strategies for investigating the ‘population mixing

hypothesis’

Different researchers have used different analytical strategies, generating contradictory

results.137, 145 Some of the earliest studies followed the identification of an apparent cluster

of leukaemia cases in a single area, and sought to verify whether this constituted a

bona fide cluster (i.e. a higher number of cases than expected given the national/regional

incidence proportion –the number of new cases per population at risk during a particular

period of time).146 Unfortunately, such studies provide little evidence of whether the

elevated incidence is associated with any characteristics of the area concerned. In

these studies, it is often unclear how/when the specific measures for population mixing

were selected (i.e. before or after the areas of study were selected for their apparent

excess of cases). Substantial methodological variations make it challenging to identify

commonalities in analytical approach for closer examination. However, many such studies

focused specifically on areas displaying childhood leukaemia clusters/higher incidence of

childhood leukaemia. Indeed, where other studies adopted a non–selective region–wide

analytical strategy –examining associations between area–based measures of population

mixing and leukaemia incidence across the whole region, or in a random sample of areas

–these tend to generate contradictory findings to those adopting non–random, selective,

or focused analytical strategies.137, 146–152

Much work is needed to strengthen the concepts, measures, and datasets used to test

the population mixing hypothesis. There is a pressing need to establish why different

analytical strategies generate such contradictory findings. This chapter uses simulation

and analysis of observed data to examine the two principal analytical strategies used

by previous ecological studies and explores the relationship between commonly used

measures of population mixing and childhood leukaemia. Such measures typically draw

on the concept of population mixing as proposed by the first study to use this term

(Section 6.2.1),137 which was subsequently defined as an “increase in population density
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produced by a marked influx into a rural area” (p.1163; where ‘rural’ was considered a less

densely populated area).153 On this basis, the two most common measures of population

mixing used by previous studies were chosen: population density and inward–migration.

Population density provides a measure of the number of individuals capable of spreading

a putative leukaemia–promoting infectious agent,141, 154 expressed as the population per

unit area. Inward–migration provides a measure of the relative number of new arrivals

capable of bringing such agents with them, expressed as the proportion of migrants within

the population. Both measures were calculated using existing data dis–aggregated by

administrative areas, and were used to undertake each of the analytic strategies as follows:

(i) Selective sub–region analysis. Areas with contrasting values of population density,

inward–migration, and/or childhood leukaemia incidence (i.e. representing areas of

specific interest as potentially ‘highly exposed’ vs. reference areas) were non–randomly

selected for direct comparison; and (ii) Region–wide analysis. The relationship between

population density, inward–migration, and childhood leukaemia incidence is examined

using standard regression techniques across all small areas within a larger region, or a

random sample of areas.

6.3 Methods

The selective sub–region analysis and region–wide analysis were applied to observed

data from the Yorkshire and Humber region of the UK using data from a previous study

of the population mixing hypothesis.145 Data were also simulated in which the number

of childhood leukaemia cases was determined solely by population size and not by

population density or inward–migration (i.e. the null hypothesis).
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6.3.1 Observed Data

Population density and inward–migration were calculated for each of the 532 census

wards in the Yorkshire and Humber region using 1991 Census data on: total

population; ward area (km2); number of inward–migrants (those with a different

address one year prior to the Census); and number of 0–14 year olds (the population

deemed to be ‘at–risk’). Population density prior to inward–migration was calculated.

Inward–migration in relation to each ward’s pre–migration population was calculated,

such that the proportion of inward–migration could exceed one (i.e. for wards where

inward–migration resulted in a doubling, or more, of the population).

Leukaemia cases (for 0–14 year olds) were identified from the Yorkshire Specialist

Register of Cancer in Children and Young People, diagnosed within the Yorkshire

Regional Health Authority between 1988 and 1993 (the closest date to the 1991 Census

for which data were available).145 These were mapped to census wards, to permit

estimation of childhood leukaemia incidence rates (Figure 6.3.1). Situating these analyses

around the 1991 Census facilitated comparison with previously published studies, most

using data before subsequent declines in incidence reported elsewhere.135, 136

6.3.2 Childhood leukaemia data

Childhood leukaemia data were available for five–year periods over the 25 years, 1978-

2003. Data from the period 1988–1993 was deemed most appropriate because the

inward–migration figures related to those who had moved into each area during the year

prior to the census date in 1991. All available childhood leukaemia data are used in this

section for illustrative purposes.

Section 3.10.4 illustrates how the random nature of the Poisson distribution creates areas

that appear to have a significantly high number of cases along with areas that have no cases
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at all. Here, this illustration is developed using the childhood leukaemia data (in contrast

to the previous more synthetic example where areas were of equal, regular size and shape;

Section 3.10.4) by showing the ratio of observed to expected cases of childhood leukaemia

on maps of the electoral wards of Yorkshire and the Humber, UK (Figures 6.3.1–6.3.6).

From these maps, it can be seen that for each 5–year period, different electoral wards stand

out as having more cases than would be expected given the size of the population of 0–14

year olds. These tend to be larger, rural areas with smaller populations. It can be seen,

therefore, that choosing areas for analysis on such a basis would result in an incorrect

idea of the true relationship between these attributes and the occurrence of childhood

leukaemia.

Focussing on ratios in geographical health research can be misleading when visualising

information using a choropleth map where the denominator in the ratio of interest is not

geographic area (nor a variable that is not correlated with geographic area) because the

map gives undue attention to larger areas in this case155 and it is human nature to be

drawn to these areas.134 Unfortunately, a demand can be placed on researchers to look

into apparent clusters by the general public or government organisations as this problem

is not well understood. A better way in which to represent these data visually would be to

use a map that shows the electoral wards as uniform shapes whose sizes are standardised

by the population of the electoral ward that they represent thereby removing visual bias.

An analogous concept to the Modifiable Areal Unit Problem is that of the Modifiable

Temporal Unit Problem which refers to the aggregation of temporal scales and the effects

of this on subsequent statistical analyses.86 In this context, the occurrence of childhood

leukaemia happens over continuous time, but time can be discretised into temporal units in

many different ways. Figures 6.3.1–6.3.6 highlight this as they show cases of childhood

leukaemia over 5 separate 5–year periods and the aggregation of these into a 25 year

period. From these, it can be seen that if selection on the time period for analysis was made

post–hoc this could lead to analysis being conducted on data that is most likely to produce
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‘positive’ results. As the data is aggregated over the total period, no areas show ‘extreme’

incidence of childhood leukaemia and most areas have a ratio of observed versus expected

cases in–around 1 and that these occur mostly in the most populated electoral wards in

the larger area.

Figure 6.3.1: Ratio of observed to expected (based on average national incidence) cases
of childhood leukaemia in Yorkshire and Humber (UK), 1978–1982, by ward
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Figure 6.3.2: Ratio of observed to expected (based on average national incidence) cases
of childhood leukaemia in Yorkshire and Humber (UK), 1983–1987, by ward

Figure 6.3.3: Ratio of observed to expected (based on average national incidence) cases
of childhood leukaemia in Yorkshire and Humber (UK), 1988–1993, by ward
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Figure 6.3.4: Ratio of observed to expected (based on average national incidence) cases
of childhood leukaemia in Yorkshire and Humber (UK), 1994–1998, by ward

Figure 6.3.5: Ratio of observed to expected (based on average national incidence) cases
of childhood leukaemia in Yorkshire and Humber (UK), 1999–2003, by ward
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Figure 6.3.6: Ratio of observed to expected (based on average national incidence) cases
of childhood leukaemia in Yorkshire and Humber (UK), 1978–2003, by ward

6.3.3 Selection on the outcome

Selecting on the outcome in this way can be explained from a causal inference perspective

as introduced in Section 2.1.11. Selection on the outcome is essentially selecting on a

collider which then introduces relationships between the exposure and the outcome which

are artefacts of the data analysis approach.

6.3.4 Simulated data

Multivariate ward–level data on population density and inward–migration were simulated

such that their distributions (Table 6.1) and correlation structure (Table 6.2) approximated

those in the observed data using an algorithm to simulate multivariate non–normal data

using an iterative algorithm,75 as was the procedure for simulating data in Chapter 5. First,

summary statistics were calculated for all of the variables that were to be simulated (Table
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6.3). The distributions from which variables were simulated were chosen by plotting

the observed variable distributions and fitting general distributions to them (Figures

6.3.7–6.3.10) before determining the particular distribution parameters (Figures 6.3.11).

Table 6.1: Distributions from which simulated variables were drawn.

Variable Distribution

Total population Negative Binomial (mean = 6500, theta = 2.0)

0–14 population Negative Binomial (mean = 1300, theta = 1.6)

Area Negative Binomial (mean = 26, theta = 0.7)

Inward–migration Negative Binomial (mean = 500, theta = 1.8)

Table 6.2: Correlation matrix of the observed data to be emulated in the simulated datasets.

Total Pop 0–14 Pop Area Inward–mig

Total Pop 1.00 0.97 −0.29 0.92

0–14 Pop 0.97 1.00 −0.30 0.89

Area −0.29 −0.30 1.00 −0.32

Inward–mig 0.92 0.89 −0.32 1.00

Table 6.3: Summary information for each variable to be simulated. Total Pop = Total
population of each electoral ward; 0–14 Pop = 0–14 year old population of each electoral
ward; Area = Area (km2) for each electoral ward; Inward–migrants = Total number of
inward–migrants to each electoral ward.

Total Pop 0–14 Pop Area Inward–migrants

Minimum 476 70 0.17 24

1st Quartile 2142 404 3.7 175

Median 4051 746 11.3 332

Mean 6455 1301 25.9 564

3rd Quartile 10 368 2025 34.6 936

Maximum 24 578 5883 216.8 3445
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Figure 6.3.7: Distribution of observed variable for total population with fitted estimated
distributions.

Figure 6.3.8: Distribution of observed variable for 0–14 year old population with fitted
estimated distributions.
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Figure 6.3.9: Distribution of observed variable for electoral ward area (km2) with fitted
negative binomial distributions varying the size and mean parameters of the distribution.

Figure 6.3.10: Distribution of observed variable for total count of inward–migrants with
fitted estimated distributions.
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Figure 6.3.11: Distribution of observed variable for total count of inward–migrants
with fitted negative binomial distributions varying the size and mean parameters of the
distribution.

Simulated cases were based on the national childhood leukaemia incidence proportion

over a comparable 5–year period;156 a time interval chosen to emulate previous studies,

and overcome key challenges with modelling rare events. Simulations of the outcome used

the Poisson distribution (i.e. as evident in cases of childhood leukaemia in the observed

data) under the null hypothesis that the number of cases of childhood leukaemia in each

area is determined only by the number of 0–14 year olds. By approximating the observed

population structure under the null assumption that the only driver of the number of cases

of childhood leukaemia is population size, deviations from a null result in the analyses

of simulated data must be due to selection or analytic errors. To ensure sufficient data

were available to reduce the standard error of the simulation process,51, 66 and to more

precisely learn the operating characteristics of the different estimation procedures, 10,000

simulated datasets were generated.

This chapter was the first in the thesis to be completed and it was submitted and
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underwent peer review before the publication of the paper by Morris et al.51 which

provides accessible guidance on how to measure the performance of simulations and how

to decide how many simulations are appropriate. 10,000 simulations were undertaken at

the time as that was thought an appropriately large number and did not take too much

computational time. However, subsequently, the performance of the simulations in this

chapter have been assessed using the criteria of Morris et al.51 and a step–by–step guide

to the simulation has been written in the style of that developed in Section 3.12.

6.3.5 Step–by–step guide to the simulation

1. The two main methods for investigating a hypothesised relationship between

population mixing and childhood leukaemia are undertaken and compared. These

are:

• selective sub–region analysis, and

• region–wide analysis

The parameter estimates obtained from the selective sub–region analysis, i.e.

estimates obtained from the binomial exact test and their corresponding p–values

are retained.

The region–wide analysis uses Poisson regression models and the risk ratios and

corresponding p–values are retained.

2. Observed data are taken from the 1991 Census and the Yorkshire Specialist Register

of Cancer in Children and Young People. All relevant variable distributions are

plotted against general distributions and summary statistics are used to aid the

choice of distribution parameters for simulation. Each part of population density

(i.e. population size and area size) and the proportion of inward–migration (i.e.

the number of inward–migrants and population size at the beginning of the study
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period) were generated separately as they are composite variables. The population

at the beginning of the study period is calculated by subtracting the number of

migrants over the study period from the population size at the time of the census.

The assumed data generation process is illustrated in a DAG.

3. There are complex relationships between the variables of interest which are better

suited to real–world informed simulation.

4. Simulations assume that the null hypothesis is true and that neither of the population

mixing proxies (population density and the proportion of inward–migrants) cause

childhood leukaemia and that the only determinant of childhood leukaemia

incidence is the size of the 0–14 year old population.

5. List the performance measures to be estimated: bias, coverage and standard errors

of the estimated. 10,000 iterations of the simulation are performed (chosen as this is

a large number of iterations but does not require an excessive amount of computing

power). This was later deemed an acceptable number of simulations using the

equations presented by Morris et al.51

6. Set the seed for the random number generator so that the exact results can be

replicated by others. The random number generator seed is set 532 values apart

(equal to the number of electoral wards) to avoid dependence between datasets.51, 66

7. Generate a dataset according to the assumptions covered above.

8. Perform statistical analyses on this dataset and retain the parameter estimates

obtained (i.e. risk ratios from the Poisson regression and the statistic obtained from

the binomial exact test, along with associated p–values).

9. Repeat the previous two steps 9,999 times with newly generated datasets in order

to obtain an empirical distribution of the parameter estimates.
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10. The empirical distributions of the parameter estimates from analysing the simulated

datasets are analysed to estimates the bias from each analytical method.

11. The performance measures are calculated and reported.

6.3.6 ‘Selective sub–region’ analytical strategy

To emulate the selective sub–region strategy, 16 wards were selected, the mean number

of areas in those studies that used this approach in the literature,137, 146–152, 157 based

on extreme values of: low population density; high inward–migration; high childhood

leukaemia incidence; or combinations of all three. 15 selection scenarios were examined

(based on all combinations of these three selection variables) in order to account for the

disparate methods found in the literature.

Scenarios 1–3 involved ranking wards according to low population density, high

inward–migration or high incidence alone, then randomly selecting 16 of the highest

ranked 50% of wards for analysis. Scenarios 4–9 involved ranking wards according to

each possible pair of variables: ranking first on the initial variable and selecting the

highest 50%, next ranking these on the second variable and selecting the highest 50%,

then randomly selecting 16 wards for analysis. Finally, Scenarios 10–15 involved (1)

ranking the wards according to every possible ordering of all three variables –ranking

on the initial variable and selecting the highest 50%; (2) on the second variable, selecting

the highest 50%; (3) on the third variable, again selecting the highest 50%, before (4)

randomly selecting 16 wards for analysis. To match the number of random selections

available from the 10,000 simulated datasets, random selection of the 16 wards were

taken 10,000 times on the observed data.

For each of these 15 scenarios, median values of the estimated childhood leukaemia

incidence were reported with their empirically derived 95% ranges (95% range: 2.5% and

97.5% estimates from the 10,000 datasets). Figures were aggregated from the 16 selected
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wards and compared the total number of cases observed with the number expected from

the national incidence in people aged 0–14 years using the binomial exact test.158 The

proportion of significant p–values (5% level) for each test, together with the direction

of the corresponding estimates (above/below the national incidence rate) was recorded.

For simulated data, the proportion of significant p–values (5% level) is equivalent to the

estimated type I error rate. P–values have been included along with confidence intervals

as the original studies reported these.

6.3.7 ‘Region–wide’ analytical strategy

To replicate the ‘region–wide’ strategy of previous studies,145, 159–166 Poisson regression

models were used to match the distribution evident in the observed data and that

used in the generation of the simulated datasets. Three separate regression models

were conducted on a random selection of 50% of wards using ‘population density’ or

‘inward–migration’, or both, as covariates (corresponding to Scenarios 1, 2, 4 and 5 of

the ‘selective sub–region’ analytical strategy, above). The arbitrary choice of selecting a

random sample of 50% of the data for analysis was to ensure that the impact of random

sampling variation across the simulations was present in both region–wide and selective

sub–region approaches. Each model was generated 10,000 times for the observed data to

facilitate comparisons with analysis of the 10,000 simulated datasets. Median risk ratios

and their empirically derived 95% Ranges (95% Range: 2.5 and 97.5 centile estimates

from the 10,000 datasets) are described for a 25% increase in population due to inward-

migration and for a population density increase of 500 persons per km2. Since population

density is a continuous variable, a contrast between two states cannot be easily described;

instead the effect of an absolute increase in population density is reported. The p–values

corresponding to each risk ratio were recorded, combined with whether the risk ratio was

above (harmful effect) or below (protective effect) one.
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6.3.8 A note on p–values

Null hypothesis significance tests are inappropriate for observational data analyses and

should not typically be used.2 Unfortunately, they remain extremely common in the

wider literature and all the historical studies that are emulated here used null hypothesis

significance tests based on p–value thresholds. For comparison to these previous studies,

the results here are explored in terms of the likelihood of obtaining p <0.05 and (the

currently preferred) absolute effect size.

6.4 Results

6.4.1 Results for the ‘selective sub–region’ analytical strategy

Analyses of 10,000 random samples drawn from the observed dataset using each

‘selective sub–region’ scenario (Table 6.4) indicate that, where selection was based on

low population density or high inward–migration alone, or both (Scenarios 1, 2, 4 and

5), the proportions of significant p–values were low (ranging from 1.3%− 3.6%). Where

selection was based on either a high incidence of leukaemia, either alone or together with

one or both exposures (Scenarios 3 and 6 –15), the proportions of significant p–values

were substantially greater than the expected 5% (ranging from 18.4%− 97.2%).

For analyses of data simulated under the null hypothesis, type I error rates of 2.8% −

3.7% were observed under Scenarios 1, 2, 4 and 5 (Table 6.4), consistent with random

sub–region selection (i.e. 3.5% type I error rate). Where selections were based on a high

incidence of leukaemia either alone or together with one or both exposures (Scenarios 3

and 6 –15), type I error rates were far higher (ranging from 18.3%−99.3%; Figure 6.4.1).
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Table 6.4: Type 1 error rates of the ‘selective sub–region’ analytical strategy under each of the Scenarios examined.

Observed
Data

Simulated
Data

Scenario

Percentage
statistically

significant (5%)

Type 1
error rate

(5%)
1. Low population density 2.93 2.90
2. High inward–migration 1.96 3.66
3. High incidence 34.30 67.02
4. Low population density–high inward–migration 1.32 3.17
5. High inward–migration–low population density 3.60 2.79
6. Low population density–high incidence 45.56 43.96
7. High incidence–low population density 44.88 18.34
8. High inward–migration–high incidence 27.01 41.63
9. High incidence–high inward–migration 97.22 67.28
10. Low population density–high inward–migration–high incidence 18.39 33.02
11. Low population density–high incidence–high inward–migration 22.77 45.16
12. High inward–migration–low population density–high incidence 60.06 44.18
13. High inward–migration–high incidence–low population density 30.88 99.28
14. High incidence–low population density–high inward–migration 41.21 19.22
15. High incidence–high inward–migration–low population density 47.67 20.90
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Figure 6.4.1: Percentage of statistically significant results at the 5% level by analytical
strategy for both simulated and observed data. Selective subregion analytical strategy
results were analyzed using the binomial exact test; direction of the bars indicates whether
the estimated probabilities of the significant test results were greater (above zero) or
less than (below zero) the national average. Region–wide analytical strategy results were
analysed using Poisson regression; direction of the bars indicates whether statistically
significant coefficients were greater (above zero) or less than (below zero) zero. D,
population density; M, inward migration; and I, childhood leukaemia incidence; order
of letters indicates the order used to select data for analysis.

The estimated 5–year incidence of childhood leukaemia ranged between 0 per 10,000 and

6 per 10,000 children across the 10,000 simulated datasets, indicating that up to 6 cases

per 10,000 children might occur by chance in any five–year period. This is in contrast

to what was simulated, i.e. 2 cases per 10,000 population. The range of estimates were

similar in the observed datasets (Figure 6.4.2).
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Figure 6.4.2: 95% empirically derived ranges (95% range: 2.5 and 97.5% centile estimates
from the 10,000 datasets, points indicate the median) of the distribution of childhood
leukaemia incidence from binomial exact test of the selective subregion analytical
strategy. The dashed line indicates the incidence rate used in the simulated datasets, that
is, two cases per 10,000 0–14 year olds in a 5–year period. This is the incidence expected
under the null hypothesis; any deviation from this indicates bias. D, population density;
M, inward–migration; and I, childhood leukaemia incidence; order of letters indicates the
order used to select data for analysis.

6.4.2 Results for the ‘region–wide’ analytical strategy

The proportions of significant p–values in ‘region–wide’ analyses of observed data all

exceeded 5% (7.9% − 13.0%; Table 6.5); suggesting that high inward–migration and

low population density were associated with a lower and higher childhood leukaemia

incidence, respectively. ‘Region–wide’ analyses of simulated data returned type I error

rates between 4.2% − 5.1% for all model coefficients (Table 6.5). The distribution of

the coefficient values is not centred on zero (i.e. −2.5% − 2.5%) due to small, but

non–zero, correlations between cases of childhood leukaemia, population density and
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inward–migration, which arise from a mathematical dependency between these variables.

Table 6.5: Type 1 error rates of the ‘region–wide’ analytical strategy according to the
covariate examined in the model.

Observed
Data

Simulated
Data

Covariate

Percentage
statistically

significant (5%)

Type 1
error rate

(5%)

Population density 8.71 4.15

Inward–migration 12.99 5.07

Population density (adjusted for inward–migration) 7.91 4.16

Inward–migration (adjusted for population density) 12.43 5.14

In the simulated data, the median risk ratios for the effects of inward–migration were

consistently 1.0, indicating agreement with the null hypotheses (e.g. RR vs 0% migration:

25% = 1.0 [95% CI = 0.08− 8.81]). In the observed data, however, increasing levels of

inward–migration were associated with lower incidence of leukaemia (e.g. RR vs 0%:

25% = 0.33 [95% CI = 0.02− 2.05]); the 95% confidence interval is not symmetric.

All risk ratios for the effect of population density in both the simulated data and observed

data were close to 1.0, indicating consistent agreement with the null hypotheses (RRs per

unit increase in person/km2 in simulated data: 500–people/km2 = 1.0 [95% CI = 0.95 −

1.03]; in observed data: 500–people/km2 = 0.98 [95% CI = 0.90− 1.05]. Coefficients of

adjusted regression models (including both inward–migration and population density as

covariates) did not materially differ from those in unadjusted models (Figure 6.4.3).
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Figure 6.4.3: 95% empirically derived ranges (95% range: 2.5 and 97.5% centile estimates
from the 10,000 datasets, points indicate the median) of the distribution of childhood
leukaemia incidence of the percentage increase or decrease in childhood leukaemia
incidence from the regression models of the region–wide analytical strategy with an
increase of inward–migration of 25% and an increase in population density of 500
persons/km2. The dashed line indicates no change in childhood leukaemia incidence as
expected under the null hypothesis. Results shown with log scaling.

The ‘zip plot’ (Figure 6.4.4 clearly shows that the 95% confidence intervals of the

region–wide analyses of the 10,000 datasets are unbiased (approximately 5%).
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Figure 6.4.4: ‘Zip plot’ showing the 95% confidence intervals for analysis of each of the
10,000 datasets using the region–wide approach. Blue confidence intervals contain zero
(the true value) whereas red confidence intervals do not.

The demographic data were simulated such that the correlation structure equals that

of the observed data for the Yorkshire and Humber region as per the causal structure

depicted in Figure 6.4.5: i.e. under the null hypothesis, only the population size causally

influences the number of childhood leukaemia cases and there is no causal arrow

between inward–migration and the size of the area. There will be a non–zero correlation

between the number of ‘Cases’ and all four area measures (‘Area size’, ‘Population

density’, number of ’Inward–migrants’, and the ’Proportion of Inward–migrants’)

because ‘Population’ is causally related to them all. Since ‘Population’ is an offset

term in the Poisson regression model, conditional independence between ‘Cases’ and

both ‘Area size’ and the number of ‘Inward–migrants’ is assured due to ‘controlling’

for ‘Population’. Conditional independence is not achieved between ‘Cases’ and either

derived ratio variable (‘Population density’ and ‘Proportion of inward–migrants’) by
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‘controlling’ for the ‘Population’ offset because both derived ratio variables contain an

element of ‘Population’ explicitly; this explains a lack of symmetry in some of the

p–values in Table 6.5.

Figure 6.4.5: Graph representing the simulated relationships of variables within the
dataset: assumed causal relationships are represented by solid arrows and implicit
correlations are represented by dashed arrows.

6.5 Discussion

In this chapter it has been demonstrated how the different analytical strategies used to

examine the relationship between ‘population mixing’ and childhood leukaemia incidence

can generate radically divergent results. Considerable bias occurs if geographical areas

are selected prior to analysis and selection is influenced by elevated childhood leukaemia

incidence (i.e. by ‘clusters’). Bias is also evident where selection involves measures of

‘population mixing’, as population mixing appears adversely associated with elevated
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childhood leukaemia incidence.

All of the measures of ‘population mixing’ used by previous studies were not examined,

and no attempt was made to generate alternative proxies for ‘population mixing’. The

aim, however, was to examine the impact of the two most common analytical strategies,

using two typical measures of ‘population mixing’. Furthermore, since the observed

and simulated data did not differentiate between cases of childhood leukaemia amongst

‘residents’ and ‘inward–migrants’, it was not possible to assess whether ‘population

mixing’ might be associated with a differential risk of childhood leukaemia in each.

However, the small numbers of ‘inward–migrants’, and of 0–14 year–olds therein, would

make such analyses challenging, and may explain why few previous studies have sought to

do this. A further limitation of the present study is that possible temporal effects related to

the timing of population mixing events and/or age at exposure were not examined. Despite

substantial variation in these criteria amongst previously published studies, few sought to

examine their impact on the direction or strength of the associations found. This, however,

is less relevant to this chapter’s focus on the comparison of analytical strategies.

Analyses of rare diseases such as childhood leukaemia are challenging because disease

registries often only collect summary information on the denominator (or population

‘at–risk’) within areas for aggregated blocks of time. By far the most common type

of analysis is therefore to conduct aggregated analyses of incidence proportions, i.e.

comparing cases per population within fixed units of time. Because of the size of the

areas typically examined, and the rarity of childhood leukaemia, such analyses are prone

to an abundance of zero cell counts. The most common solution to this is to preserve the

area level granularity and collapse the time frame into longer periods, with 5–year periods

being the most common approach in the literature; the same approach has been adopted

here for indicative analyses.

Alongside the limitations imposed from using data from disease registries mentioned

above, there is also the limitation that averaged area–level migration patterns from census
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data had to be used, these measure migration based on change of address from a year prior

to the census date. Therefore, the likely time lag between exposure and event cannot be

accounted for, however, this is also a limitation of many of the studies which are being

emulated here.

Notwithstanding these limitations, the work in this chapter confirms that analyses based

on non–random area/sub–region selections that are influenced by or associated with

elevated childhood leukaemia incidence can generate entirely erroneous findings. In all

Scenarios with such selection, associations were profoundly biased; falsely suggesting

that low population density and/or high inward–migration were associated with elevated

childhood leukaemia incidence.

Unfortunately, the lack of methodological clarity in research adopting a ‘selective

sub–region’ analytical strategy means it is not possible to establish which studies might

be prone to biases associated with this strategy. Even if studies sought to select areas using

only variables chosen as measures for ‘population mixing’, it is feasible that selection was

affected instrumentally (by co–dependence on demographic characteristics), or implicitly

(by knowledge of, interest in, or attention to the outcome). The latter is likely to be central

to the importance afforded to clusters of similarly rare events. It seems likely that focusing

on clusters of childhood leukaemia, together with the confirmatory ‘results’ produced by

‘selective sub–region’ analyses, researchers are encouraged to use this analytical strategy,

unaware of the bias it generates. This would explain the publication bias among studies

examining the population mixing hypothesis.153 Studies using the unbiased region–wide

approach are more challenging to publish because they fail to identify the large artefact

found in ‘selective sub–region’ analyses. Nevertheless, region–wide analytical strategies:

avoid the risk of explicit or implicit attention to clusters; ensure that selection biases

cannot occur; and can be extended to cover any available geographical characteristics.

For this reason, ecological studies of the ‘population mixing’ hypothesis that have used a

non–random ‘selective sub–region’ approach should be viewed with extreme caution.
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6.6 Conclusion

Future studies investigating the association between population mixing and childhood

leukaemia (or other ‘clustered’ events) should adopt a ‘region–wide’ analytical strategy

to avoid the potential biases inherent in a non–random ’selective sub–region’ approach.

Where an entire dataset is not available for analysis, sampling should be random to

avoid potential sub–region selection biases. Syntheses of previous studies examining

this association should place greater emphasis on findings from studies adopting

‘region–wide’ analyses, and only consider findings from those studies using ‘selective

sub–region’ analyses where the authors have explicitly used random selection methods

to avoid the potential risk of focussing on areas exhibiting apparent clusters (i.e. a high

incidence) of leukaemia.

6.7 In the context of the thesis

This chapter has illustrated the bias inherent to analyses focussing on clusters. It has

used causal inference methods to consider how selection on the outcome influences

analyses and links this with the ‘most dangerous equation’87, 88 and the modifiable areal

and temporal unit problems.84–86

Simulation and causal inference influenced thinking can help researchers understand

biases that may be present in the historical approaches to data analysis. This chapter

is an example of how these two domains can be brought together to uncover unbiased

analytical analyses in health geography.

The next chapter summarises the findings of all chapters, discusses the strengths and

limitations of the research and makes suggestions for future research.
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Chapter 7

Conclusion

7.1 Overview

This chapter summarises the findings of the entire thesis and critically evaluates these

findings. The three major elements of the thesis are discussed: causal inference methods,

simulation, and health geography, and particularly these topics combined. Future research

directions are suggested, particularly in relation to similar work in the literature and lastly,

a final overview of the thesis is provided.

Statistical methods are often used habitually.1, 2 This thesis aimed to provide a framework

for using simulation and causal inference methods in health geography so that other

researchers can critically evaluate the methods used in their own work and that of others.

In the course of doing this, this thesis has considered these methods to investigate applied

problems related to mathematical coupling (Chapter 4) and specific considerations that

need to be made in relation to research on the relationship between limiting long–term

illness and deprivation (Chapter 5) and the challenges encountered while investigating

the relationship between population mixing and childhood leukaemia (Chapter 6). The

datasets chosen for this thesis are representative of many others in health geography; LLTI
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is a relatively common outcome and childhood leukaemia is a relatively rare outcome. The

methods used here aim to be translatable to further health geography research questions.

Methods in causal inference and simulation are powerful tools in understanding bias and

with careful planning, forethought and reflection on the data generating processes of the

context of interest they can be made accessible to all researchers.

7.1.1 Causal Inference

Chapter 2 showed the intersection between causal inference and simulation as background

to the thesis as a whole. Although this knowledge is taken for granted in some domains

due to the link between the two topics via the data generation process, the applicability

of this was made explicit. This was achieved, in part, by showing examples of how causal

inference methods have been used in the past to elicit deeper understanding of paradoxes

and biases, such as Simpson’s Paradox34 and the mutual adjustment fallacy.49, 50

By introducing a causal perspective to the research challenges covered in this thesis

some important aspects have been considered that would need to be fully explored

if causal inference methods are to be usefully integrated within the field of health

geography. Section 7.5 revisits the three causal assumptions, exchangeability, positivity

and consistency, and additionally discusses the issue of interference, introduced in

Chapter 2, and discusses how these have started to be addressed in the literature in relation

to population health. Ideas are discussed around possible ways that interference might

be explored in future health geography research, with wider implications for addressing

interference more generally within a DAG framework.
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7.1.2 Simulation

Chapter 3 detailed how simulation and causal inference are naturally linked via the data

generating mechanism and how these can be applied in the case of health geography. This

chapter showed methods on how to undertake simulation informed by causal inference

techniques. This is an expansion from using mathematical closed–form solutions because

these cannot account for all aspects of causality, for example causal direction.

An important contribution of Chapter 3 is the consideration of composite variables

and compositional data in causal diagrams and therefore their importance in simulation

because of their relation to the data generation process. Composite variables and

compositional data are often a feature of health geography research and, in order to

fully integrate causal thinking into the field of health geography, these concepts must be

taken into account. Future work could look deeper into incorporating composite variables

and compositional data into causal thinking although this may have implications for the

consistency assumption.

Chapter 3 also introduced a step–by–step guide to simulation which combined literature

on conducting simulation studies in R,54 integrating causal modelling and statistical

estimations9 and yielding a systematic approach to simulation studies to evaluate

statistical methods.51 This guide can be used in any future studies evaluating and

comparing methods that explicitly consider causality. It is often taken for granted that it

is known that DAGs represent the data generation process and that it is obvious how they

can be combined with simulation. It is hoped that, by making this explicit and providing

a framework which researchers can use in their own work, others will more readily be

able to critically evaluate the methods that they use by developing simulations alongside

applied research where possible.
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7.1.3 Health Geography

Geography is important in relation to how particular locations and types of places relate

to variation in health but also in how geography influences the planning of data collection

and as the choice of variables and their utility in the dissemination of (causal) information

for research purposes. When geographical structure and causal inference come together

in the dissemination and analysis of health data, it can affect the results in important ways

that are not always intuitively understood. Causal inference methods and simulation, when

combined, can be used to ensure that the influence of geography on the ensuing analyses

does not introduce bias.

Observational data are not always collected to answer specific research questions59 and

this can have consequences for the analyses that are conducted. Chapter 3 introduced

some considerations due to data provenance. These are important considerations in

observational research and, in particular, health geography research. When using

secondary data, the purposes for which the data were collected should be considered

as seen in the population mixing and childhood leukaemia example (6) where selection

directly or indirectly related to the outcome introduced bias to the results of some

analyses.

In some cases, researchers must work with the data that are available to them and they

have no control over how the data were collected. In these circumstances it is important

to consider the best methods to minimise bias and what would have been different if the

optimal dataset could have been acquired and what, if any, are the biases that result from

the predetermined data provenance; quantifying the extent of any bias is then important.
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7.2 Findings

7.2.1 Mathematical Coupling

Chapter 4 introduced important insights into the mathematical coupling of ratios with

common denominators that could only be understood using causal inference methods.

This showed under what circumstances the historical solution of including the common

denominator as a covariate in a regression model is appropriate, i.e. when it acts as a

‘confounder’ of the exposure–outcome relationship. Chapter 4 also proceeded to quantify

the extent of this problem and developed this into the geographical situation where an

exposure (X) and outcome (Y ) are both components of the common denominator (N ),

i.e. X ≤ N and Y ≤ N but X + Y 6= N . This showed that if X and Y are proportional

to N it is acceptable to divide through by N in order to condition on it. However, this

is unlikely to be the case in complex observational data, especially when secondary data

sources have to be combined.

Only when the numerator and denominator are proportional to each other is it appropriate

to correlate two ratios with a common denominator. However, the real–world is complex

and understanding the data generating process is difficult (as has been illustrated here

in simulating several scenarios). It is unlikely that two variables would be exactly

proportional and that no variables other than the exposure of interest caused the outcome.

It has been said that any variable that precedes an outcome in time could be considered a

cause,24 although this would be impossible to analyse so simplifications are made because

the effect of some variables would be incredibly small.

Often, if there are restricted circumstances under which a method generates appropriate

results, over time, these restricted circumstances are forgotten. It is prudent to adhere to

methods that will produce appropriate inferences that do not assume these restrictions.

Avoiding ratio variables in correlation and regression analyses is therefore the preferred
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approach to avoid mathematical coupling bias.

Mathematical coupling was first mentioned in the literature by Pearson in 1896.90

However, bias associated with it still appears in the literature today. The chapter on

this topic contributes to the literature by providing a more contemporary perspective

which will hopefully reach a wider audience of researchers who will avoid mathematical

coupling bias in the future and recognise it in the literature that they consume.

7.2.2 Limiting Long–Term Illness and Deprivation

Chapter 5 introduced the relatively common condition, limiting long–term illness (LLTI)

and showed the application of compositional data, composite variables and mathematical

coupling in an applied setting. The chapter used simulation to demonstrate the complex

relationships between the variables included in the analyses investigating the ‘causal

effects’ of deprivation on LLTI.

This chapter gives an example of how a researcher would go about answering a causal

question on such a dataset and some aspects that would need to be thought through. The

aspects covered are by no means all those that could be raised in the analysis of such a

research question, however, they illustrate the kinds of things a researcher should look out

for should they wish to consider causal relationships. Research has often focused on the

theoretical side whereas, particularly Chapter 5, has used an existing dataset to explore

aspects of health geography that need to be considered when introducing and applying

causal inference methods to this field.

7.2.3 Population Mixing and Childhood Leukaemia

Chapter 6 introduced the example of ‘population mixing’ and, in contrast to Chapter 5,

the relatively rare condition of childhood leukaemia. This built upon the author’s MSc
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research which had already ascertained that analyses in the literature were not subject to

mathematical coupling bias but required further exploration to understand the disparity in

results obtained from the two analytical methods that predominate in the literature.

The simulations undertaken in this chapter followed the simulation framework introduced

in Chapter 3 but this was formalised later in the undertaking of this research. By

formulating the problem in a causal inference framework, upon which subsequent

simulations were based, it was made clear that the disparity in results in the literature

was a result of possible conditioning on the outcome by focusing on clusters of childhood

leukaemia. This problem was then exacerbated by the outcome being rare and bias as a

result of what has been termed ‘the most dangerous equation’87, 88 and the modifiable

and temporal unit problems.84–86 It was shown how using a region–wide approach to

this research question avoids these problems and can be extended to cover any available

geographical characteristics.

7.3 Contributions to the Literature

The work featured in Chapter 6 has already been published in Epidemiology130 and has

been the subject of a letter to the editor from the originator of the ‘population mixing

hypothesis’131 which has been responded to.132 It has also already made an impact in the

cancer epidemiology literature133 where it was noted that focusing on clusters in related

research can produce biased results.

Large amounts of coding was required for the undertaking of the research in this thesis

and, as “no simulation study is definitive and new methods or refinements of methods

are inevitable”(p.25),51 the code for the simulations is freely available in the Appendices.

This means that others can replicate and extend the work presented in this thesis along

with using it as a basis for, and to inform, their own similar studies.
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A lot of the causal inference literature focusses on methods research, however, it is

important to show its utility (along with simulation) in an applied setting. Hopefully, this

approach can introduce more researchers to the advantages of using these important tools.

Chapter 4 on mathematical coupling is in preparation for journal submission along with

Chapter 5 on limiting long–term illness and deprivation.

Chapter 3 is contributing to another paper around compositional data analysis in

collaboration with others, though not led by the author of this thesis. Two ‘How to...’

guides are also planned for inclusion in SAGE Methods around simulation and regression

modelling similar to another paper the author was involved in.167

7.4 Limitations

The simulations throughout the thesis have been conducted under the null hypothesis.

This has been sufficient, generally, to show the presence of bias under certain analytical

strategies. However, these simulations could be expanded to generate more in–depth

understanding of the methods used. On the other hand, where bias has been shown

under the null condition it could be assumed that this bias will be present when the null

hypothesis is not satisfied and research efforts could be directed towards more promising

(i.e. less biased) methods instead.

In much observational research aiming to incorporate causal inference, there is a focus

on the exchangeability assumption. This means that units of analysis are “identical on

average for characteristics that may affect the outcome except the outcome itself” (p.3).168

This has also been the case in this thesis, where reducing confounder bias via conditioning

has been a feature of each chapter. However, in order to fully integrate causal inference

methodology into health geography, the other assumptions required to identify a causal

effect (positivity and consistency) must be satisfied or at least considered. Along with

these assumptions, traditional regression techniques “assume that there is no interference
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between units, but that is often not a realistic assumption”(p.101).169 These assumptions

are considered further in Section 7.5.

Developments late in the research for this thesis regarding mathematical coupling in a

health geography setting suggest that the simulations are slightly limited in scope in ways

that may have repercussions for the investigations into LLTI and deprivation. This stems

from the complication generated by geographical contexts of inherent data hierarchy,

where individual influences become conflated with geographical area influences, and

thought must be given to what is meant by ‘geographical structure’. The role of ‘area’

may therefore be considered distinct from the role of individuals residing within an

area, which introduces potentially more complex heterogeneity through either simple

random variation or variation brought about through unmeasured confounding, that

operates at the area–level and not the individual–level. Unpicking these concepts is not

trivial. For instance, the exposure and outcome from the examples in Chapter 4 and

the simulations in Chapter 5 used the binomial distribution to generate variables from

the total population. When these exposures and outcomes are divided through by the

population size (in an attempt to acknowledge the geographical area structure and thus

to control for area population size) the numerator and denominator are proportional to

each other and no ‘spurious’ correlation is generated. However, this ignores the possibility

(indeed likelihood) that heterogeneity amongst geographical areas is independent to the

heterogeneity within each area. This has implications on the data–generating simulation

considerations to be adopted under various circumstances.

Although many issues have been accounted for in the simulation of this problem

(e.g. compositional data and composite variables), this has not considered all possible

scenarios involving different underlying causes to heterogeneity both within and between

geographical structures. Consequently, it is unlikely that this has created a true picture

of the health geography context in which these methods would be used. It is likely that

there are many other variables involved in the relationship between the exposure and the
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outcome that cannot be accounted for by dividing through by the population size alone. A

suggested issue to consider in work following on from this thesis would be to investigate

potential influences upon geographical area heterogeneity independently to investigating

the potential influences of within–area heterogeneity. In effect, consideration might be

given to a hierarchical or multilevel causal structure, where a DAG may be used to

describe individual causal relationships distinct from area–level causal relationships. This

is an extensive area of future research but its implications are worth briefly considering,

as it also has relevance to ‘interference’, as is discussed in the Section on future work

(Section 7.5).

7.5 Future Work

There are several directions that work following on from this thesis could take. Some of

these directions are now discussed.

7.5.1 Acknowledging causal hierarchy within health geography

It is difficult to reach causal conclusions in the social sciences. By investigating causation

from many angles, however, it may be possible to have a greater understanding of

causal processes. It is important to understand aggregate i.e. population–level phenomena,

particularly if a researcher believes that there is a causal mechanism which acts at that

aggregate level.170 Smith suggests that “causation should be thought of as operating

at the lowest level at which a policy could conceivably by implemented” (p.464).44

There has been a focus in the causal inference literature on individual–level causal

analysis and on the interventionist approach (which suggests that there is “no causation

without manipulation”15) but this is not often appropriate in health geography research.31

Going forward, it will be important to understand how to engage causal inference
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thinking outside of the individual–level approach and embrace the aggregate–level that

health geography research necessitates and integrate causal thinking within an explicit

hierarchical structure.

As mentioned in Section 7.4, the causal assumptions of positivity and consistency are

often overlooked in observational research, however, positivity has been considered in a

commentary by Westreich and Cole171 who discuss how positivity violations in one’s

dataset can be uncovered and how they can be dealt with in practice and commend

other authors for considering this often overlooked issue.172 VanderWeele173 specifically

discusses the positivity assumption in relation to ‘neighbourhood effects’ and it would be

useful to expand this to looking at health geography scenarios where there are individual

and area–level effects.

The consistency assumption has been mentioned in regard the composite variables

and compositional data (Section 3.10.3) discussed in this thesis. This is an important

assumption because if an exposure is not well–defined then the related effects on the

outcome are not well–defined and suggested interventions may not be effective.168 It

may, thus, be inappropriate to use composite variables in the causal analysis of health

geography datasets and their constituent parts should be used instead. However, further

research could examine the effect of different violations of this assumption. Rehkopf et

al.,168 suggest that “particularly, early in the arc of a research question, it may be important

to cast a wide net, examine unclearly defined constructs, and try to integrate evidence

across studies with measures that do not clearly correspond to a specific intervention”

(p.72).

Most work in causal inference has assumed that there is no interference between units,

however, there are many contexts in which this assumption is not appropriate.20 Health

geography is one of those contexts. Tchetgen Tchetgen and VanderWeele20 considered

a method for dealing with interference in observational studies and these have been

extended by Papadogeorgou et al.174 to consider population–level interventions over a
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collection of clusters and Zigler and Papadogeorgou22 have developed bipartite causal

inference with interference. These methods could be valuable in health geography and

should be investigated further.

As one of the limitations of the simulations used in this thesis was that they did

not consider area–level heterogeneity, future work should endeavour to include this.

These methods could utilise multi–level models and the principle of maximising the

proportion of explained variation in an outcome taken from statistical (as opposed to

causal) inference discussed in Section 2.4. Preliminary investigations could be made, for

example, into controlling variables at the area–level to achieve the maximum proportion

of explained variation, thereby controlling away all area–level confounding. This could

allow the researcher to elucidate the causal relationships at the lower or individual levels

if such data were available. This may also provide a way of dealing with interference

between units of analysis by partitioning effects at different geographical levels.

A limitation of the mathematical coupling and LLTI simulations (Chapters 4 and 5,

respectively) was that they were conducted under the null hypothesis. Future work could

consider the non–null scenario and the circumstance of area–level heterogeneity in a way

similar to that suggested above. It could also investigate the circumstances in which

the common denominator is a collider or mediator variable. However, it is apparent

that dividing through by the common denominator is only a valid approach when the

numerator and denominator are proportional which is unlikely in observational datasets.

However, another avenue that further research could take would be to investigate the

accuracy of the measurement of population denominators in health geography research.

This would lead on to questions around confidentiality of individuals’ data and the utility

of data that has deliberately been blurred to preserve confidentiality.
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7.5.2 Causal inference in applied health geography research

Causal inference would benefit from applied research demonstrating how relevant

methods can be implemented. Studies similar to those in Chapters 5 and 6 could

be undertaken to gain further clarity on the methods used but also to bring causal

understanding to research questions in health geography. By introducing a framework

from which researchers can build simulations that incorporate causal inference methods

this could prove to be a fruitful avenue for further research. In particular, it would allow

others to evaluate their methods so that they can make conscientious choices around how

they conduct their research. All of the findings of the applied research should be taken

into account when evaluating the literature and can be used to critically evaluate one’s

own and others’ research.

“The determination that an association is causal indicates the possibility for intervention”

(p.61).175 However, even if it is not possible to fully meet the three assumptions required

to identify a causal effect within health geography, there are many useful tools from causal

inference thinking that can be applied to health geography problems which will strengthen

research in this domain.

7.6 Summary

This thesis has illustrated how simulation and causal inference influenced thinking can

help researchers understand biases that may be present in the historical approaches to

health geography data analyses. The thesis provides a framework for undertaking causal

inference informed simulations and analyses. It demonstrates how this can be used

theoretically in the case of understanding mathematical coupling (which is ubiquitous

in health geography) and the appropriateness of the historical solutions to this problem

and in the case of two applied scenarios. These two applied scenarios were chosen to
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represent a large range of research questions in health geography as one considers a

relatively common outcome and the other a relatively rare outcome.

Great insights can be made when considering research within a causal framework which

can be further expanded using simulation to quickly consider many alternative scenarios.

This thesis provides a framework for considering both of these aspects, by aiding

researchers to critically evaluate the methods they use with the hope of moving away

from the habitual use of statistical methods.

It is hoped that causal inference informed research will lead to more robust results and

reliable interventions.
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Appendix A

Simulations illustrating the Modifiable Areal Unit

Problem

1 #################################

2 ## Introductory Example - MAUP ##

3 #################################

4

5 # load packages

6 require(ggplot2)

7 cbPal <- c("#999999","#E69F00","#56B4E9","#009E73","#F0E442","#0072B2","#D55E00","#CC79A7")

8

9 # A hypothetical nation

10 # 100km^2; 500 cases of childhood leukaemia spread randomly

11 # across the nation
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12

13 set.seed(1123)

14 cl <- 300

15 x <- runif(cl)*100

16 y <- runif(cl)*100

17

18 dat <- data.frame(x, y)

19

20 # Map of points

21 ggplot( dat, aes( x, y ) ) +

22 geom_point( size = 2, colour = cbPal[1] ) +

23 theme( axis.text = element_text( colour = "black", size = 16, family = "Times New Roman" ),

24 axis.title = element_text( size = 16, family = "Times New Roman", face = "bold" ),

25 legend.title = element_text( size = 12, family = "Times New Roman", face = "bold" ),

26 legend.text = element_text( size = 12, family = "Times New Roman" ),

27 plot.title = element_text( size = 12, family = "Times New Roman", face = "bold" ) )

28

29

30 ggplot( dat, aes( x, y ) ) +

31 geom_point( size = 2, colour = cbPal[1] ) +

32 theme( panel.grid.major = element_line( colour = cbPal[6], size = 1, linetype = "solid" ),

33 axis.text = element_text( colour = "black", size = 16, family = "Times New Roman" ),

34 axis.title = element_text( size = 16, family = "Times New Roman", face = "bold" ),

35 legend.title = element_text( size = 12, family = "Times New Roman", face = "bold" ),

36 legend.text = element_text( size = 12, family = "Times New Roman" ),

37 plot.title = element_text( size = 12, family = "Times New Roman", face = "bold" ) ) +

38 scale_y_continuous( breaks = seq( 0, 100, 10 ) ) +

39 scale_x_continuous( breaks = seq( 0, 100, 10 ) )

40

41 # Assign points to the square they are in
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42 dat$row <- 0

43 dat$col <- 0

44 dat$pos <- 0

45 for ( j in 1:nrow( dat ) ) {

46 dat$row <- ceiling( dat$y/10 )

47 dat$col <- ceiling( dat$x/10 )

48 dat$pos <- 10*( dat$row - 1 ) + dat$col

49 }

50

51 # How many points are in each square?

52 dat$count <- 1

53 gridpoint <- aggregate( count ~ pos, dat, sum )

54 dat <- dat[, -6]

55 dat$clus <- "0"

56

57 # What about squares with no cases?

58 gridpointZero <- nrow(gridpoint)

59 if( gridpointZero < 100 ) {

60 zero <- which( !( 1:100 %in% gridpoint$pos ) )

61 addrows <- ( gridpointZero + 1 ):( gridpointZero + length( zero ) )

62 gridpoint[addrows, 1] <- zero

63 gridpoint[addrows, 2] <- 0

64 gridpoint <- gridpoint[order( gridpoint$pos), ]

65 }

66

67 # What is the distribution of cases across the squares?

68 table <- table(gridpoint$count)

69 print(table)

70

71 # What is the biggest cluster?
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72 big <- max( gridpoint$count )

73 loc <- which( gridpoint$count == max( gridpoint$count ) )

74 dat[dat$pos %in% loc, 6] <- "1"

75

76 # What is the second biggest cluster?

77 loc <- which( gridpoint$count == 7 )

78 dat[dat$pos %in% loc, 6] <- "2"

79

80 # Where are the grid squares with no cases?

81 loc <- which( gridpoint$count == 0 )

82 dat[dat$pos %in% loc, 6] <- NA

83

84 d <- data.frame(x = c( 50, 90, 50, 90 ), y = c(30, 30, 40, 50) )

85

86 ggplot( dat, aes( x, y, colour = clus ) ) +

87 geom_point( size = 2 ) +

88 theme( panel.grid.major = element_line( colour = cbPal[1], size = 1, linetype = "solid" ),

89 axis.text = element_text(colour = "black", size = 16, family = "Times New Roman"),

90 axis.title = element_text(size = 16, family = "Times New Roman", face = "bold"),

91 legend.title = element_text(size = 12, family = "Times New Roman", face = "bold"),

92 legend.text = element_text(size = 12, family = "Times New Roman"),

93 legend.position = "bottom") +

94 scale_y_continuous( breaks = seq( 0, 100, 10 ) ) +

95 scale_x_continuous( breaks = seq( 0, 100, 10 ) ) +

96 scale_colour_manual( values = cbPal, breaks = c("0", "1", "2" ),

97 name = "Cluster", labels = c("Middle", "Largest", "Second Largest") ) +

98 geom_segment( data = d, mapping = aes(x = x, y = y, xend = x + 10, yend = y), size = 1.5, color = cbPal[6]) +

99 geom_segment( data = d, mapping = aes(x = x, y = y, xend = x, yend = y + 10), size = 1.5, color = cbPal[6]) +

100 geom_segment( data = d, mapping = aes(x = x, y = y + 10, xend = x + 10, yend = y + 10), size = 1.5, color = cbPal[6]) +

101 geom_segment( data = d, mapping = aes(x = x + 10, y = y, xend = x + 10, yend = y + 10), size = 1.5, color = cbPal[6])
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102

103

104 library(plotly)

105 library(reshape2)

106

107 p <- dat %>%

108 melt() %>%

109 ggplot(aes(x, y, fill = clus)) + geom_tile()

110

111 p <- ggplotly(p)

112

113 loc <- which( gridpoint$count == 0 )

114 zeroes <- data.frame( loc )

115 zeroes$row <- ceiling( zeroes$loc/10 )

116 zeroes$col <- zeroes$loc %% 10

117 w <- which( zeroes$col == 0 )

118 if( length( w ) > 0 ) {

119 zeroes$col[w] = 10

120 }

121 print( zeroes )

MAUP.R



206
A

.S
IM

U
L

A
T

IO
N

S
IL

L
U

S
T

R
A

T
IN

G
T

H
E

M
O

D
IFIA

B
L

E
A

R
E

A
L

U
N

IT
P

R
O

B
L

E
M



207

Appendix B

Simulations illustrating mathematical coupling due to a

common denominator

1 ##########################################################################

2 ## Simulations of the examples in: Mathematical coupling of propotions: ##

3 ## revisiting Pearson, Neyman and Fisher with causal graphs ##

4 ##########################################################################

5

6 ###################

7 ## Load packages ##

8 ###################

9

10 require(Matrix); require(matrixcalc)

11 require(base64enc); require(devtools); require(RVAideMemoire); require(MASS); require(ppcor)
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12 #devtools::install_github("jtextor/dagitty/r")

13 require(dagitty)

14 set.seed(1123)

15

16 #####################

17 ## DATA SIMULATION ##

18 #####################

19

20 ########################################################

21 ## Pearson Example with totally independent variables ##

22 ########################################################

23

24 d1 <- "dag{X Y N}"

25

26 d <- simulateSEM(d1,N=10000)

27

28 d$N <- d$N + 5

29 d$X <- d$X + 5

30 d$Y <- d$Y + 5

31

32 d$XN <- d$X/d$N

33 d$YN <- d$Y/d$N

34

35 par(mfrow=c(2,2))

36 scatter.smooth(d$X,d$N, main=signif(cor(d$X,d$N)))

37 scatter.smooth(d$Y,d$N, main=signif(cor(d$Y,d$N)))

38 scatter.smooth(d$X,d$Y, main=signif(cor(d$X,d$Y)))

39 scatter.smooth(d$XN, d$YN, main=signif(cor(d$XN,d$YN)))

40

41 cor(d$X, d$Y)
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42 cor(d$XN, d$YN)

43

44 summary(lm(Y ~ X + N, data = d))

45

46 ###############

47 ## Example 1 ##

48 ###############

49

50 # Specify DAG1 from which data are simulated

51 DAG1 <- dagitty(’dag{

52 Pop [pos="0,0.5"]

53 Cats [pos="1,0"]

54 Apples [pos="1,1"]

55 Pop -> Cats [beta= 0.4]

56 Pop -> Apples [beta= 0.4]

57 }’)

58 plot(DAG1)

59

60

61

62 d2 <- simulateSEM(DAG1,N=10000)

63

64 d2$Pop <- d2$Pop + 5

65 d2$Cats <- d2$Cats + 5

66 d2$Apples <- d2$Apples + 5

67

68 d2$XN <- d2$Cats/d2$Pop

69 d2$YN <- d2$Apples/d2$Pop

70

71 par(mfrow=c(2,2))
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72

73 scatter.smooth(d2$Cats,d2$Pop, main=signif(cor(d2$Cats,d2$Pop)))

74 scatter.smooth(d2$Apples,d2$Pop, main=signif(cor(d2$Apples,d2$Pop)))

75 scatter.smooth(d2$Cats,d2$Apples, main=signif(cor(d2$Cats,d2$Apples)))

76 scatter.smooth(d2$XN, d2$YN, main=signif(cor(d2$XN,d2$YN)))

77

78 summary(lm(Apples ~ Cats, data = d2))

79 summary(lm(YN ~ XN, data = d2))

80 summary(lm(Apples ~ Cats + Pop, data = d2))

81

82 cor(d2$Cats, d2$Apples)

83 cor(d2$XN, d2$YN)

84

85 summary(lm(Apples ~ Cats + Pop, data = d2))

86

87

88 ###############

89 ## Example 2 ##

90 ###############

91

92 # Specify DAG2 from which data are simulated

93 DAG2 <- dagitty(’dag{

94 Pop [pos="0,0.5"]

95 Exercise [pos= "1,0"]

96 Antidepressants [pos= "1,1"]

97 Pop -> Exercise [beta = 0.4]

98 Pop -> Antidepressants [beta = 0.4]

99 Exercise -> Antidepressants [beta = 0.4]

100 }’)

101
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102 plot(DAG2)

103

104

105 d3 <- simulateSEM(DAG2,N=10000)

106

107 ## Simulate data based on DAG2

108 MyCov2 <- impliedCovarianceMatrix(DAG2)

109 N2 <- 10000

110 Mu2 <- c(150000, 1000, 75) # Minutes exercised per week, Pop, Antidepressant prescriptions

111 SD2 <- Mu2/5

112 MyData2 <- data.frame(mvrnorm(N2, Mu2, MyCov2, empirical = FALSE))

113 MyData2$pcExercise <- MyData2$Exercise/MyData2$Pop

114 MyData2$pcAntidepressants <- MyData2$Antidepressants/MyData2$Pop

115

116 ## Standardise MyData2

117 MyData2 <- data.frame(scale(MyData2))

118

119 ## Get confidence intervals of correlation and partial correlation coefficients

120 summary(lm(Antidepressants ~ Exercise, data = MyData2))

121 confint(lm(Antidepressants ~ Exercise, data = MyData2))

122 summary(lm(pcAntidepressants ~ pcExercise, data = MyData2))

123 confint(lm(pcAntidepressants ~ pcExercise, data = MyData2))

124 summary(lm(Antidepressants ~ Exercise + Pop, data = MyData2))

125 confint(lm(Antidepressants ~ Exercise + Pop, data = MyData2))

126

127 ###############

128 ## Example 3 ##

129 ###############

130

131 # Specify DAG3 from which data are simulated
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132 DAG3 <- dagitty(’dag{

133 JobOpps [pos="0,0.5"]

134 Pop [pos= "0.5,0.3"]

135 HealthCare [pos= "1,0.5"]

136 JobOpps -> Pop [beta = 0.4]

137 JobOpps -> HealthCare [beta = 0.4]

138 Pop -> HealthCare [beta = 0.4]

139 }’)

140

141 plot(DAG3)

142 d4 <- simulateSEM(DAG3,N=10000)

143

144 ## Simulate data based on DAG3

145 MyCov3 <- impliedCovarianceMatrix(DAG3)

146 N3 <- 10000

147 Mu3 <- c(25, 1000, 3) # JobOpps, Pop, HealthCare (millions ?GBP)

148 SD3 <- Mu3/5

149 MyData3 <- data.frame(mvrnorm(N3, Mu3, MyCov3, empirical = FALSE))

150 MyData3$JobOppsPC <- MyData3$JobOpps/MyData3$Pop

151 MyData3$HealthPC <- MyData3$HealthCare/MyData3$Pop

152

153 ## Standardise MyData3

154 MyData3 <- data.frame(scale(MyData3))

155

156 ## Get confidence intervals of correlation and partial correlation coefficients

157 summary(lm(HealthCare ~ JobOpps, data = MyData3))

158 confint(lm(HealthCare ~ JobOpps, data = MyData3))

159 summary(lm(HealthPC ~ JobOppsPC, data = MyData3))

160 confint(lm(HealthPC ~ JobOppsPC, data = MyData3))

161 summary(lm(HealthCare ~ JobOpps + Pop, data = MyData3))
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162 confint(lm(HealthCare ~ JobOpps + Pop, data = MyData3))

163

164 ###############

165 ## Example 4 ##

166 ###############

167

168 # Specify DAG4 from which data are simulated

169 DAG4 <- dagitty(’dag{

170 Migration [pos="0,0"]

171 Pop [pos= "0.25,0.25"]

172 Births [pos= "0,0.5"]

173 Migration -> Pop [beta = 0.4]

174 Births -> Pop [beta = 0.4]

175 }’)

176

177 plot(DAG4)

178 d5 <- simulateSEM(DAG4,N=10000)

179

180

181 ## Simulate data based on DAG4

182 MyCov4 <- impliedCovarianceMatrix(DAG4)

183 N4 <- 10000

184 Mu4 <- c(5, 12, 1000) # Migration, Births, Pop

185 SD4 <- Mu4/5

186 MyData4 <- data.frame(mvrnorm(N4, Mu4, MyCov4, empirical = FALSE))

187 MyData4$MigrationPC <- MyData4$Migration/MyData4$Pop

188 MyData4$BirthsPC <- MyData4$Births/MyData4$Pop

189

190 ## Standardise MyData4

191 MyData4 <- data.frame(scale(MyData4))
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192

193 ## Get confidence intervals of correlation and partial correlation coefficients

194 summary(lm(Births ~ Migration, data = MyData4))

195 confint(lm(Births ~ Migration, data = MyData4))

196 summary(lm(BirthsPC ~ MigrationPC, data = MyData4))

197 confint(lm(BirthsPC ~ MigrationPC, data = MyData4))

198 summary(lm(Births ~ Migration + Pop, data = MyData4))

199 confint(lm(Births ~ Migration + Pop, data = MyData4))

200

201 ###############

202 ## Example 5 ##

203 ###############

204

205 # Specify DAG5 from which data are simulated

206 DAG5 <- dagitty(’dag{

207 NewHousing [pos="0,0"]

208 Pop [pos= "0.25,0.25"]

209 Immigration [pos= "0.125,0.5"]

210 NewHousing -> Immigration [beta = 0.4]

211 NewHousing -> Pop [beta = 0.4]

212 Immigration -> Pop [beta = 0.4]

213 }’)

214

215 plot(DAG5)

216 d6 <- simulateSEM(DAG5,N=10000)

217

218

219 ## Simulate data based on DAG5

220 MyCov5 <- impliedCovarianceMatrix(DAG5)

221 N5 <- 10000
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222 Mu5 <- c(5, 5, 1000) # NewHousing, Immigration, Pop

223 SD5 <- Mu5/5

224 MyData5 <- data.frame(mvrnorm(N5, Mu5, MyCov5, empirical = FALSE))

225 MyData5$NewHousingPC <- MyData5$NewHousing/MyData5$Pop

226 MyData5$ImmigrationPC <- MyData5$Immigration/MyData5$Pop

227

228 ## Standardise MyData5

229 MyData5 <- data.frame(scale(MyData5))

230

231 ## Get confidence intervals of correlation and partial correlation coefficients

232 summary(lm(Immigration ~ NewHousing, data = MyData5))

233 confint(lm(Immigration ~ NewHousing, data = MyData5))

234 summary(lm(ImmigrationPC ~ NewHousingPC, data = MyData5))

235 confint(lm(ImmigrationPC ~ NewHousingPC, data = MyData5))

236 summary(lm(Immigration ~ NewHousing + Pop, data = MyData5))

237 confint(lm(Immigration ~ NewHousing + Pop, data = MyData5))

238

239

240 ###################################

241 ## Neyman Stork and Baby example ##

242 ###################################

243

244 W <- round(rnorm(10000, 40000, 10000), 0)

245 B <- round(rnorm(10000, 30, 5), 0)

246 #B <- rbinom(length(W), W, 0.1)

247 S <- round(rnorm(10000, 5, 1))

248

249 SW <- S/W

250 BW <- B/W

251



216 B
.S

IM
U

L
A

T
IO

N
S

IL
L

U
S

T
R

A
T

IN
G

M
A

T
H

E
M

A
T

IC
A

L
C

O
U

P
L

IN
G

D
U

E
T

O
A

C
O

M
M

O
N

D
E

N
O

M
IN

A
T

O
R

252 cor.test(SW, BW)

253 cor.test(S, B)

254 summary(lm(B ~ S + W))

255

256 ##############################################

257 ## Simulated Neyman example with constraint ##

258 ##############################################

259

260 W <- abs(round(rnorm(10000, 40000, 10000), 0))

261 B <- rbinom(length(W), W, 0.1)

262 S <- round(rnorm(10000, 5, 1))

263

264 SW <- S/W

265 BW <- B/W

266

267 cor.test(SW, BW)

268 cor.test(S, B)

269

270 summary(lm(B ~ S + W))

271

272 ####################################################################################

273 ## Investigating coefficient of variation and affect of changing path coefficents ##

274 ####################################################################################

275

276 library( dagitty )

277 library( ggplot2 )

278 library( dplyr )

279 library( ppcor )

280 library( tikzDevice )

281 library( boot )
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282

283

284 sim.cv <- function( N, cv, distr="norm" ){

285

286 x <- rnorm( N, mean = 1/cv )

287 return(x)

288

289 }

290

291

292 sim.data <- function( cvn, cvx, cvy, N, distr = "norm" ){

293

294 n <- sim.cv( N, cvn, distr=distr )

295 x <- sim.cv( N, cvx, distr=distr )

296 y <- sim.cv( N, cvy, distr=distr )

297

298 cor(x/n,y/n)

299

300 }

301

302 sim.cor.data <- function( cvn, cvx, cvy, N, cor = .1 ){

303

304 d <- simulateSEM( ’dag{ N -> {X Y} }’, b.default = cor )

305 d$N <- d$N + 1/cvn

306 d$X <- d$X + 1/cvx

307 d$Y <- d$Y + 1/cvy

308

309 cor( d$X/d$N, d$Y/d$N )

310

311 }
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312

313 # add mean afterwards.

314

315

316 cvn <- c( 0.1 )

317 b <- seq(0,0.8,by=0.2)

318 #cv.FC <- c( 1, 2, 5 )

319 cv.FC2 <- 2^seq(-2.5, 5, 0.25 )

320

321 cvdata <- expand.grid( b, cv.FC2 )

322 colnames(cvdata) <- c( "b", "cvFC" )

323 cvdata$cvn <- cvn

324 cvdata$cvx <- cvdata$cvn*cvdata$cvFC

325 nsim <- 10

326 N <- 1000

327

328 meancor <- numeric()

329 sdcor <- numeric()

330

331 for( i in 1:nrow(cvdata) ){

332

333 c <- replicate( nsim, sim.cor.data( cvdata$cvn[i], cvdata$cvx[i], cvdata$cvx[i], N, cvdata$b[i] ) )

334 # c <- abs(c)

335 meancor <- c( meancor, mean(c) )

336 sdcor <- c( sdcor, sd(c) )

337

338 }

339

340 cvdata$meancor <- meancor

341 cvdata$sdcor <- sdcor



219

342 cvdata$true <- cvdata$b^2

343

344

345 # CV equal

346 d2 <- cvdata %>% filter( log2(cvFC) == 0, b != 1 )

347

348 par(family = "LM Roman 10")

349 ggplot( d2, aes( x = b, y = meancor ) ) +

350 geom_line() +

351 geom_ribbon( aes( ymin = meancor-sdcor, ymax=meancor+sdcor), alpha = 0.3 ) +

352 theme_light() +

353 theme(axis.text = element_text(colour = "black", size = 12, family = "Times New Roman"), axis.title = element_text(size =

16, family = "Times New Roman", face = "bold")) +

354 labs( y = expression(paste("’Spurious’ Correlation - cor"~bgroup("(",over("X","N")~","~over("Y","N"),")"))),

355 x = expression("Path Coefficient (b) - N " %->% " X and N " %->% " Y"))

356

357 # b = 0

358 d3 <- cvdata %>% filter( b == 0 )

359 d4 <- d3[ d3$cvn <= d3$cvx , ]

360 d3 <- d3[ d3$cvn >= d3$cvx, ]

361

362 ggplot( d3, aes( x = log2(cvx/cvn), y = meancor ) ) +

363 geom_line( color="red4") +

364 geom_ribbon( fill="red4", aes( ymin = meancor-sdcor, ymax = meancor+sdcor ),alpha = 0.3, color=NA, show.legend=FALSE) +

365 geom_line( data=d4, color = "steelblue4" ) +

366 geom_ribbon(data=d4, aes( ymin = meancor-sdcor, ymax = meancor+sdcor ),alpha = 0.3, color=NA, fill = "steelblue4", show.

legend=FALSE) +

367 geom_hline( yintercept= 0 ) +

368 geom_vline( xintercept = 0 ) +

369 labs( y = expression(paste("’Spurious’ Correlation - cor"~bgroup("(",over("X","N")~","~over("Y","N"),")"))),
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370 x = expression(paste("log"[2]~bgroup("(",over("cv(X)","cv(N)"),")")))) +

371 theme_light() +

372 theme( axis.line = element_blank(), axis.text = element_text(colour = "black", size = 12, family = "Times New Roman"),

373 axis.title = element_text(size = 16, family = "Times New Roman", face = "bold") ) +

374 annotate( "text", label = "cv(N) > cv(X,Y)", color = "red4", x = -1, y = 1, family = "Times New Roman", size = 8) +

375 annotate( "text", label = "cv(N) < cv(X,Y)", color = "steelblue4", x = 1, y = 1, family = "Times New Roman", size = 8)

376

377 # 2D

378 ggplot( cvdata, aes( x = log2(cvx/cvn), y = meancor, group = b, color = b, fill = b ) ) +

379 geom_line() +

380 geom_ribbon( aes( ymin = meancor-sdcor, ymax = meancor+sdcor ),alpha = 0.3, color=NA) +

381 geom_hline( aes(yintercept=true, color = b ), lty = 2 ) +

382 geom_hline( yintercept= 0 ) +

383 geom_vline( xintercept = 0 ) +

384 labs( y = expression(paste("’Spurious’ Correlation - cor"~bgroup("(",over("X","N")~","~over("Y","N"),")"))),

385 x = expression(paste("log"[2]~bgroup("(",over("cv(X)","cv(N)"),")")))) +

386 theme_classic() + theme( axis.line = element_blank(), axis.text = element_text(colour = "black", size = 12, family = "Times

New Roman"),

387 axis.title = element_text(size = 16, family = "Times New Roman", face = "bold"),

388 legend.text = element_text(colour = "black", size = 12, family = "Times New Roman"),

389 legend.title = element_text(colour = "black", size = 12, family = "Times New Roman", face = "bold"

)) +

390 annotate( "text", label = "cv(N) > cv(X,Y)", color = "dodgerblue4", x = -1, y = 1, family = "Times New Roman", size = 8) +

391 annotate( "text", label = "cv(N) < cv(X,Y)", color = "steelblue4", x = 1, y = 1, family = "Times New Roman", size = 8)

392

393 ggplot( test2, aes( x = log2(cvx/cvn), y = atanh(meancor), group = interaction(b,cvy), color = b, fill = b ) ) +

394 geom_line() +

395 #geom_ribbon( aes( ymin = meancor-sdcor, ymax = meancor+sdcor ),alpha = 0.3, color=NA) +

396 #geom_hline( aes(yintercept=true, color = b ), lty = 2 ) +

397 geom_hline( yintercept= 0 ) +
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398 geom_vline( xintercept = 0 ) +

399 labs( y = "atanh cor( x/N, y/N)" ) +

400 theme_classic() + theme( axis.line = element_blank())

401

402

403 # Now vary both cvx and cvy

404 cvn <- c( 0.1 )

405 b <- seq(0,1.0,by=0.2)

406 #cv.FC <- c( 1, 2, 5 )

407 cv.FC2 <- 2^seq(-2.5, 2.5, 0.5 )

408 cvx <- cvn*cv.FC2

409 cvy <- cvn*cv.FC2

410

411

412 cvdata <- expand.grid( b, cvx, cvy )

413 colnames(cvdata) <- c( "b", "cvx","cvy" )

414 cvdata$cvn <- cvn

415 nsim <- 10

416 N <- 500

417

418 meancor <- numeric()

419 sdcor <- numeric()

420

421 for( i in 1:nrow(cvdata) ){

422

423 c <- replicate( nsim, sim.cor.data( cvdata$cvn[i],

424 cvdata$cvx[i],

425 cvdata$cvy[i],

426 N, cvdata$b[i] ) )

427 meancor <- c( meancor, mean(c) )
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428 sdcor <- c( sdcor, sd(c) )

429

430 }

431

432 cvdata$meancor <- meancor

433 cvdata$sdcor <- sdcor

434 cvdata$true <- cvdata$b^2

435

436 cvdata$b2 <- paste0("b = ", cvdata$b)

437 ggplot( cvdata, aes( x = log2(cvx/cvn), y = log2(cvy/cvn), z = meancor ) ) +

438 stat_summary_2d(bins = 10, fun = "mean" ) +

439 facet_wrap( ~b2 ) +

440 scale_x_continuous( expand=c(0,0) )+

441 scale_y_continuous(expand=c(0,0) ) +

442 theme_classic() +

443 theme( axis.line = element_blank(), axis.text = element_text(colour = "black", size = 12, family = "Times New Roman"),

444 axis.title = element_text(size = 16, family = "Times New Roman", face = "bold"),

445 legend.text = element_text(colour = "black", size = 12, family = "Times New Roman"),

446 legend.title = element_text(colour = "black", size = 12, family = "Times New Roman", face = "bold"),

447 strip.text.x = element_text(colour = "black", size = 12, family = "Times New Roman")) +

448 labs( y = expression(paste("log"[2]~bgroup("(",over("cv(Y)","cv(N)"),")"))),

449 x = expression(paste("log"[2]~bgroup("(",over("cv(X)","cv(N)"),")"))),

450 fill = expression(paste("’Spurious’ Correlation - cor"~bgroup("(",over("X","N")~","~over("Y","N"),")"))))

451

452 ########################################################################################

453 ########################################################################################

454 ## What happens when we use a binomial distribution instead of a normal distribution? ##

455 ## i.e. Simulate areas with certain population sizes and for each person in the ##

456 ## population flip a coin and count all the tails - i.e. those who experience the ##

457 ## conditions X and Y. ##
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458 ########################################################################################

459 ########################################################################################

460

461

462

463 meancor <- numeric()

464 sdcor <- numeric()

465

466 cv <- function(x) {

467 sd(x)/mean(x)

468 }

469

470 nsim <- 100

471 dat <- NULL

472

473 prseq <- rep(seq(0.01, 0.99, by = 0.01), nsim)

474 Prob <- seq(0.1, 0.9, by = 0.1)

475

476 dat <- expand.grid( Prob, prseq)

477 colnames(dat) <- c("Prob", "prseq")

478

479 for (i in 1:length(dat[,1])){

480 N <- rnbinom( 1000, 1000, prob = dat$Prob[i] )

481 X <- sapply( N, function(x) rbinom( 1, x, prob = dat$prseq[i] ) )

482 Y <- sapply( N, function(x) rbinom( 1, x, prob = dat$prseq[i] ) )

483

484 df <- data.frame(X, Y, N)

485

486 #dat$NProb[i] <- Prob[j]

487 #dat$pr[i] <- prseq[i]
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488 dat$cvx[i] <- cv(X)

489 dat$cvy[i] <- cv(Y)

490 dat$cvn[i] <- cv(N)

491 dat$corxy[i] <- cor(X, Y)

492 dat$corxn[i] <- cor(X, N)

493 dat$corxyn[i] <- cor(X/N, Y/N)

494 dat$pcorxy[i] <- pcor(df)$estimate[1, 2]

495 }

496

497 dat$cvxn <- dat$cvx/dat$cvn

498

499 meandat <- aggregate(corxyn ~ Prob + prseq, data = dat, function(x) c(mean = mean(x)))

500 meancvxn <- aggregate(cvxn ~ Prob + prseq, data = dat, function(x) c(mean = mean(x)))

501 meandat2 <- aggregate(corxyn ~ cvxn + Prob, data = dat, function(x) c(mean = mean(x)))

502

503 summary(dat$pcorxy)

504

505 ggplot( meandat, aes( x = prseq, y = corxyn, group = Prob, color = Prob, fill = Prob ) ) +

506 geom_line() +

507 theme_light() +

508 theme( axis.line = element_blank(), axis.text = element_text(colour = "black", size = 16, family = "Times New Roman"),

509 axis.title = element_text(size = 16, family = "Times New Roman", face = "bold"),

510 legend.title = element_text(size = 12, family = "Times New Roman", face = "bold"),

511 legend.text = element_text(size = 12, family = "Times New Roman")) +

512 labs( y = expression(paste("’Spurious’ Correlation - cor"~bgroup("(",over("X","N")~","~over("Y","N"),")"))),

513 x = expression(paste("Success Probability")),

514 color = "NegBin Prob")

515

516 ggplot( meancvxn, aes( x = prseq, y = log2(cvxn), group = Prob, color = Prob, fill = Prob ) ) +

517 geom_line() +
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518 theme_light() +

519 theme( axis.line = element_blank(), axis.text = element_text(colour = "black", size = 16, family = "Times New Roman"),

520 axis.title = element_text(size = 16, family = "Times New Roman", face = "bold"),

521 legend.title = element_text(size = 12, family = "Times New Roman", face = "bold"),

522 legend.text = element_text(size = 12, family = "Times New Roman")) +

523 labs( y = expression(paste(bgroup("(",over("cv(X)","cv(N)"),")"))),

524 x = expression(paste("Success Probability")),

525 color = "NegBin Prob")

526

527 ggplot( meandat2, aes( x = cvxn, y = corxyn , group = Prob, color = Prob, fill = Prob ) ) +

528 geom_line() +

529 theme_light() +

530 theme( axis.line = element_blank(), axis.text = element_text(colour = "black", size = 16, family = "Times New Roman"),

531 axis.title = element_text(size = 16, family = "Times New Roman", face = "bold"),

532 legend.title = element_text(size = 12, family = "Times New Roman", face = "bold"),

533 legend.text = element_text(size = 12, family = "Times New Roman")) +

534 labs( y = expression(paste("’Spurious’ Correlation - cor"~bgroup("(",over("X","N")~","~over("Y","N"),")"))),

535 x = expression(paste(bgroup("(",over("cv(X)","cv(N)"),")"))),

536 color = "NegBin Prob")

MC.R
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Appendix C

Simulations of area–level data to investigate analyses of

limiting long–term illness and deprivation

1 ############################################################

2 ## Simulations investigating LLTI and deprivation using ##

3 ## correlations, linear regression and Poisson regression ##

4 ############################################################

5

6 ipak <- function(pkg){

7 new.pkg <- pkg[!(pkg %in% installed.packages()[, "Package"])]

8 if (length(new.pkg))

9 install.packages(new.pkg, dependencies = TRUE)

10 sapply(pkg, require, character.only = TRUE)

11 }
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12

13

14 packages <- c("MASS", "Matrix", "matrixcalc", "ggplot2", "tidyr", "reshape", "extrafont", "gridExtra",

15 "grid", "VGAM", "boot", "pscl", "SuppDists", "distr", "distrEx", "stringr", "epitools",

16 "scales","extrafontdb")

17 ipak(packages)

18

19 cbPal <- c("#999999","#E69F00","#56B4E9","#009E73","#F0E442","#0072B2","#D55E00","#CC79A7")

20 Dark <- c("#3333FF","#CC0000"); Lite <- c("#99CCFF","#FF9999")

21

22

23 Models <- function(dataset, outcome, covariate, off, model, ...) {

24 # outcome <- substitute(dataset$outcome)

25 # covariate <- substitute(dataset$covariate)

26 # off <- substitute(dataset$off)

27 if (model == "negativebinomial") {

28 if (is.null(off) == FALSE) {

29 if (length(covariate) == 1) {

30 Tmp <- glm.nb(dataset[[outcome]] ~ dataset[[covariate]] + offset(log(dataset[[off]])), data = dataset, maxit =

10000)

31 Err <- try(confint(Tmp)[c(2, 4)])

32 if(isTRUE(class(Err)=="try-error")) {

33 c(summary(Tmp)$coefficients[2], confint.default(Tmp)[c(2, 4)], summary(Tmp)$coefficients[8])

34 }

35 else {c(summary(Tmp)$coefficients[2], confint(Tmp)[c(2, 4)], summary(Tmp)$coefficients[8])}

36 }

37 else if (length(covariate) == 2) {

38 Tmp <- glm.nb(dataset[[outcome]] ~ dataset[[covariate[1]]] + dataset[[covariate[2]]]

39 + offset(log(dataset[[off]])), data = dataset, maxit = 10000)

40 Err <- try(confint(Tmp)[c(2, 5)])
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41 if(isTRUE(class(Err)=="try-error")) {

42 c(summary(Tmp)$coefficients[2], confint.default(Tmp)[c(2, 5)], summary(Tmp)$coefficients[11])

43 }

44 else { c(summary(Tmp)$coefficients[2], confint(Tmp)[c(2, 5)], summary(Tmp)$coefficients[11])}

45 }

46 else if (length(covariate) == 4) {

47 Tmp <- (glm.nb(dataset[[outcome]] ~ dataset[[covariate[1]]] + dataset[[covariate[2]]] + dataset[[covariate[3]]]

48 + dataset[[covariate[4]]] + offset(log(dataset[[off]])), data = dataset, maxit = 10000))

49 Err <- try(confint(Tmp)[c(2, 7)])

50 if(isTRUE(class(Err)=="try-error")) {

51 c(summary(Tmp)$coefficients[2], confint.default(Tmp)[c(2, 7)],

52 summary(Tmp)$coefficients[17])

53 }

54 else { c(summary(Tmp)$coefficients[2], confint(Tmp)[c(2, 7)], summary(Tmp)$coefficients[17]) }

55 }

56 }

57 else if (is.null(off) == TRUE) {

58 Tmp <- glm.nb(dataset[[outcome]] ~ dataset[[covariate]], data = dataset, maxit = 10000)

59 Err <- try(confint(Tmp)[c(2, 4)])

60 if(isTRUE(class(Err)=="try-error")) {

61 c(summary(Tmp)$coefficients[2], confint.default(Tmp)[c(2, 4)], summary(Tmp)$coefficients[8])

62 }

63 else { c(summary(Tmp)$coefficients[2], confint(Tmp)[c(2, 4)], summary(Tmp)$coefficients[8]) }

64 }

65 }

66 else if (model == "poisson") {

67 if (is.null(off) == FALSE) {

68 if (length(covariate) == 1) {

69 Tmp <- glm(dataset[[outcome]] ~ dataset[[covariate]], offset = log(dataset[[off]]), family = "poisson", data =

dataset, maxit = 10000)
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70 Err <- try(confint(Tmp)[c(2, 4)])

71 if(isTRUE(class(Err)=="try-error")) {

72 c(summary(Tmp)$coefficients[2], confint.default(Tmp)[c(2, 4)], summary(Tmp)$coefficients[8])

73 }

74 else { c(summary(Tmp)$coefficients[2], confint(Tmp)[c(2, 4)], summary(Tmp)$coefficients[8]) }

75 }

76 else if (length(covariate) == 2) {

77 Tmp <- glm(dataset[[outcome]] ~ dataset[[covariate[1]]] + dataset[[covariate[2]]] + offset(log(dataset[[off]])),

78 family = "poisson", data = dataset, maxit = 10000)

79 Err <- try(confint(Tmp)[c(2, 5)])

80 if(isTRUE(class(Err)=="try-error")) {

81 c(summary(Tmp)$coefficients[2], confint.default(Tmp)[c(2, 5)], summary(Tmp)$coefficients[11])

82 }

83 else { c(summary(Tmp)$coefficients[2], confint(Tmp)[c(2, 5)], summary(Tmp)$coefficients[11]) }

84

85 }

86 else if (length(covariate) == 4) {

87 Tmp <- glm(dataset[[outcome]] ~ dataset[[covariate[1]]] + dataset[[covariate[2]]] + dataset[[covariate[3]]]

88 + dataset[[covariate[4]]] + offset(log(dataset[[off]])), family = "poisson", data = dataset, maxit =

10000)

89 Err <- try(confint(Tmp)[c(2, 7)])

90 if(isTRUE(class(Err)=="try-error")) {

91 c(summary(Tmp)$coefficients[2], confint.default(Tmp)[c(2, 7)], summary(Tmp)$coefficients[11])

92 }

93 else { c(summary(Tmp)$coefficients[2], confint(Tmp)[c(2, 7)], summary(Tmp)$coefficients[11]) }

94 }

95

96 }

97 else if (is.null(off) == TRUE) {

98 Tmp <- glm(dataset[[outcome]] ~ dataset[[covariate]], family = "poisson", data = dataset, maxit = 10000)
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99 Err <- try(confint(Tmp)[c(2, 4)])

100 if(isTRUE(class(Err)=="try-error")) {

101 c(summary(Tmp)$coefficients[2], confint.default(Tmp)[c(2, 4)], summary(Tmp)$coefficients[8])

102 }

103 else { c(summary(Tmp)$coefficients[2], confint(Tmp)[c(2, 4)], summary(Tmp)$coefficients[8]) }

104 }

105 }

106 else if (model == "linear") {

107 if (is.null(off) == FALSE) {

108 if (length(covariate) == 1) {

109 Tmp <- lm(dataset[[outcome]] ~ dataset[[covariate]] + dataset[[off]], data = dataset)

110 Err <- try(confint(Tmp)[c(2, 5)])

111 if(isTRUE(class(Err)=="try-error")) {

112 c(summary(Tmp)$coefficients[2], confint.default(Tmp)[c(2, 5)], summary(Tmp)$coefficients[11])

113 }

114 else { c(summary(Tmp)$coefficients[2], confint(Tmp)[c(2, 5)], summary(Tmp)$coefficients[11]) }

115 # confint(Tmp[c(2,5)]) because confidence intervals for Pop are also generated, in other models it is an offset

116 }

117 else if (length(covariate) == 2) {

118 Tmp <- lm(dataset[[outcome]] ~ dataset[[covariate[1]]] + dataset[[covariate[2]]] + dataset[[off]], data = dataset)

119 Err <- try(confint(Tmp)[c(2, 6)])

120 if(isTRUE(class(Err)=="try-error")) {

121 c(summary(Tmp)$coefficients[2], confint.default(Tmp)[c(2, 6)], summary(Tmp)$coefficients[14])

122 }

123 else { c(summary(Tmp)$coefficients[2], confint(Tmp)[c(2, 6)], summary(Tmp)$coefficients[14]) }

124 }

125 else if (length(covariate) == 4) {

126 Tmp <- lm(dataset[[outcome]] ~ dataset[[covariate[1]]] + dataset[[covariate[2]]] + dataset[[covariate[3]]] +

127 dataset[[covariate[4]]] + dataset[[off]], data = dataset)

128 Err <- try(confint(Tmp)[c(2, 8)])
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129 if(isTRUE(class(Err)=="try-error")) {

130 c(summary(Tmp)$coefficients[2], confint.default(Tmp)[c(2, 8)], summary(Tmp)$coefficients[20])

131 }

132 else { c(summary(Tmp)$coefficients[2], confint(Tmp)[c(2, 8)], summary(Tmp)$coefficients[20]) }

133 }

134 }

135 else if (is.null(off) == TRUE) {

136 Tmp <- lm(dataset[[outcome]] ~ dataset[[covariate]], data = dataset)

137 Err <- try(confint(Tmp)[c(2, 4)])

138 if(isTRUE(class(Err)=="try-error")) {

139 c(summary(Tmp)$coefficients[2], confint.default(Tmp)[c(2, 4)], summary(Tmp)$coefficients[8])

140 }

141 else { c(summary(Tmp)$coefficients[2], confint(Tmp)[c(2, 4)], summary(Tmp)$coefficients[8]) }

142 }

143 }

144 }

145

146 ## Read in data

147 LLTI_Covariates <- read.csv("LLTIMortTownsend.csv", sep = ",")

148 LLTI_Covariates[,4:21] <- sapply(LLTI_Covariates[,4:21], as.integer)

149

150 ## Fit lognormal distributions to the data

151

152 LLTI_Covariates_0 <- LLTI_Covariates[,4:21]

153 LLTI_Covariates_0[LLTI_Covariates_0 == 0] <- 1

154

155

156 head(LLTI_Covariates_0)

157
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158 LLTI_Covariates_0 <- data.frame(cbind(Nonown = LLTI_Covariates_0$Nonown_n, Own = LLTI_Covariates_0$Nonown_d - LLTI_

Covariates_0$Nonown_n,

159 NoCar = LLTI_Covariates_0$Nocar_n, Car = LLTI_Covariates_0$Nocar_d - LLTI_Covariates_0

$Nocar_n,

160 Overcr = LLTI_Covariates_0$Ovcr_n, NotOvercr = LLTI_Covariates_0$Ovcr_d - LLTI_

Covariates_0$Ovcr_n,

161 Unemp = LLTI_Covariates_0$Unemp_n, Emp = LLTI_Covariates_0$Unemp_d - LLTI_Covariates_0

$Unemp_n,

162 LLTI = LLTI_Covariates_0$llti.t))

163

164 DFn <- length(LLTI_Covariates_0[,1])

165

166

167 Parameters <- matrix(nrow = length(LLTI_Covariates_0[1,]), ncol = 3)

168 for (i in 1:length(LLTI_Covariates_0[1, ])) {

169

170 tmp <- fitdistr(LLTI_Covariates_0[, i], "negative binomial"); Pars <- tmp$estimate

171 Dat <- data.frame(NB = round(rnbinom(DFn, size = Pars[1], mu = Pars[2])))

172 tmp <- fitdistr(LLTI_Covariates_0[, i], "lognormal"); Pars <- tmp$estimate

173 Dat <- data.frame(cbind(Dat, LN = round(rlnorm(DFn, meanlog = Pars[1], sdlog = Pars[2]))))

174

175

176 #Parameters[i,1] <- Pars[1]

177 #Parameters[i,2] <- Pars[2]

178 #Parameters[i,3] <- colnames(LLTI_Covariates_0[i])

179

180 tmpData <- data.frame(cbind(ID = 1:DFn, Observed = LLTI_Covariates_0[,i], "Negative Binomial" = Dat$NB, "Log Normal" = Dat$

LN))

181
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182 Variable <- cbind("Nonowner-occupied Households", "Owner-occupied Households", "Households without a Car", "Households

with a Car",

183 "Overcrowded Households", "Not Overcrowded Households", "Unemployed Population", "Employed Population",

184 "Population with LLTI")

185

186 #apply(tmpData[,-1],2,summary)

187 #apply(tmpData[,-1],2,sum)

188 dd <- melt(tmpData, id = c("ID")); names(dd) <- c("ID", "Dist", "Variable")

189 Xlim <- c(0, max(dd[3])); Xlab <- Variable[i]; Ylab <- "Kernel Density"

190 Mlab <- Variable

191 print(ggplot(dd) + geom_density(aes(x = Variable, group = Dist, colour = Dist), size = 1.2) + labs(x = Xlab, y = Ylab,

colour = NULL) +

192 coord_cartesian(xlim = Xlim, ylim = NULL) +

193 theme_light() +

194 theme( axis.line = element_blank(),

195 axis.text = element_text(colour = "black", size = 16, family = "Times New Roman"),

196 axis.title = element_text(size = 16, family = "Times New Roman", face = "bold"),

197 legend.title = element_text(size = 12, family = "Times New Roman", face = "bold"),

198 legend.text = element_text(size = 12, family = "Times New Roman"),

199 legend.position = "right") + scale_colour_manual(values = c("black", cbPal[-1]), name = "Distribution",

200 labels = c("Observed", "Negative Binomial", "Log Normal")))

201 ggsave(filename = paste(Variable[i]," - 190318.png"), width = 10, height = 6, units = "in", dpi = 300)

202 ##

203

204 }

205

206

207 #############################################################

208 ## GenData Function (adapted from Ruscio & Kaczetow, 2008) ##

209 #############################################################
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210 GenData <- function(Supplied.Data = NULL, rho, N = 1000, N.Factors = 0, Max.Trials = 5, Initial.Multiplier = 1, seed = NA, k

= NULL)

211 {

212 # Initialize variables and (if applicable) set random number seed (step 1) -------------------------------------

213

214 # k <- length(Pop)

215 Data <- matrix(0, nrow = N, ncol = k) # Matrix to store the simulated data

216 Iteration <- 0 # Iteration counter

217 Best.RMSR <- 1 # Lowest RMSR correlation

218 Trials.Without.Improvement <- 0 # Trial counter

219 if (!is.na(seed)) set.seed(seed) # If user specified a nonzero seed, set it

220 Distributions <- matrix(NA, nrow = N, ncol = k)

221

222 # Target.Corr <- matrix(c(1, rho, rho, 1), nrow=2)

223

224 # Generate distribution for each variable (step 2) -------------------------------------------------------------

225

226 Distributions[, 1] <- sort(rlnorm(N, 7.51, 0.73)) # Employed Economically Active Population

227 Distributions[, 2] <- sort(rlnorm(N, 4.93, 1.05)) # Unemployed Population

228 Distributions[, 3] <- sort(rlnorm(N, 6.00, 1.01)) # Households non-owner occupied

229 Distributions[, 4] <- sort(rlnorm(N, 7.00, 0.75)) # Households owner occupied

230 Distributions[, 5] <- sort(rlnorm(N, 5.91, 1.16)) # Households without a car

231 Distributions[, 6] <- sort(rlnorm(N, 7.05, 0.67)) # Households with a car

232 Distributions[, 7] <- sort(rlnorm(N, 3.00, 1.27)) # Households overcrowded

233 Distributions[, 8] <- sort(rlnorm(N, 7.37, 0.75)) # Households not overcrowded

234 Distributions[, 9] <- sort(rlnorm(N, 9.22, 1.00)) # Total Population - changed from mean of 8.22 to make sure Pop is

bigger than EA, spread originally 1.22

235

236

237
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238 # for (i in 1:k) {

239 # Distributions[, i] <- sort(sample(Pop[[i]], N, replace = TRUE))

240 # }

241

242 # This implementation of GenData bootstraps each variable’s score distribution from a supplied data set.

243 # Users should modify this block of the program, as needed, to generate the desired distribution(s).

244 #

245 # For example, to sample from chi-square distributions with 2 df, replace the 2nd line in this block with:

246 # Distributions[,i] <- sort(rchisq(N, df = 2))

247 #

248 # Or, one can drop the loop and use a series of commands that samples variables from specified populations:

249 # Distributions[,1] <- sort(rnorm(N, 0, 1)) # Standard normal distribution

250 # Distributions[,2] <- sort(runif(N, 0, 1)) # Uniform distribution ranging from 0 - 1

251 # Distributions[,3] <- sort(rlnorm(N, 0, 1)) # Log-normal distribution, log scale M = 0, SD = 1

252 # Distributions[,4] <- sort(rexp(N, rate = 1)) # Exponential distribution with rate = 1

253 # Distributions[,5] <- sort(rpois(N, lambda = 4)) # Poisson distribution with lambda = 4

254 # Distributions[,6] <- sort(rbinom(N, 10, .25) # Binominal distribution, size = 10 and p = .25

255 # Distributions[,7] <- sort(rbinom(N, 2, .25) # Binary distribution with p = .25

256 #

257 # All of the commands shown above draw random samples from specified population distributions. As an

258 # alternative, one can reproduce distributions without sampling error. For example, working with a

259 # supplied data set, one can replace the 2nd line in this block with:

260 # Disrributions[,i] <- Supplied.Data[,i]

261 # Alternatively, idealized distributions can be reproduced. For example, uniform quantiles can be

262 # created and used to generate data from common distributions:

263 # Uniform.Quantiles <- seq(from = 0, to = 1, length = (N + 2))[2:(N + 1)] # quantiles 0, 1 dropped

264 # Distributions[,1] <- qnorm(Uniform.Quantiles, 0, 1) # Standard normal distribution

265 # Distributions[,2] <- qunif(Uniform.Quantiles, 0, 1) # Uniform distribution ranging from 0 to 1

266 # Distributions[,3] <- qchisq(Uniform.Quantiles, df = 2) # Chi-square distribution with 2 df

267 #
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268 # Note that when score distributions are generated from specified populations rather than bootstrapped from

269 # a supplied data set, the user must provide the target correlation matrix (see the next block). This is

270 # true regardless of whether the distributions incorporate sampling error.

271

272 # Calculate and store a copy of the target correlation matrix (step 3) -----------------------------------------

273

274 Target.Corr <- cor(Supplied.Data)

275 Intermediate.Corr <- Target.Corr

276

277 # This implementation of GenData calculates the target correlation matrix from a supplied data set.

278 # Alternatively, the user can modify the program to generate data with user-defined sample size, number of

279 # variables, and target correlation matrix by redefining the function as follows:

280 # GenData <- function(N, k, Target.Corr, N.Factors = 0, Max.Trials = 5, Initial.Multiplier = 1, seed = 0)

281 # In this case, one would also remove the program lines that calculate N, k, and Target.Corr.

282 # To generate data in which variables are uncorrelated, one would remove the sort function from step 2

283 # and terminate the program before step 3 begins by returning the Distributions object as the data set.

284

285 # If number of latent factors was not specified, determine it through parallel analysis (step 4) ---------------

286

287 if (N.Factors == 0)

288 {

289 Eigenvalues.Observed <- eigen(Intermediate.Corr)$values

290 Eigenvalues.Random <- matrix(0, nrow = 100, ncol = k)

291 Random.Data <- matrix(0, nrow = N, ncol = k)

292 for (i in 1:100)

293 {

294 for (j in 1:k)

295 Random.Data[,j] <- sample(Distributions[,j], size = N, replace = TRUE)

296 Eigenvalues.Random[i,] <- eigen(cor(Random.Data))$values

297 }
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298 Eigenvalues.Random <- apply(Eigenvalues.Random, 2, mean) # calculate mean eigenvalue for each factor

299 N.Factors <- max(1, sum(Eigenvalues.Observed > Eigenvalues.Random))

300 }

301

302 # Generate random normal data for shared and unique components, initialize factor loadings (steps 5, 6) --------

303

304 Shared.Comp <- matrix(rnorm(N * N.Factors, 0, 1), nrow = N, ncol = N.Factors)

305 Unique.Comp <- matrix(rnorm(N * k, 0, 1), nrow = N, ncol = k)

306 Shared.Load <- matrix(0, nrow = k, ncol = N.Factors)

307 Unique.Load <- matrix(0, nrow = k, ncol = 1)

308

309 # Begin loop that ends when specified number of iterations pass without improvement in RMSR correlation --------

310

311 while (Trials.Without.Improvement < Max.Trials)

312 {

313 Iteration <- Iteration + 1

314

315 # Calculate factor loadings and apply to reproduce desired correlations (steps 7, 8) ---------------------------

316

317 Fact.Anal <- Factor.Analysis(Intermediate.Corr, Corr.Matrix = TRUE, N.Factors = N.Factors)

318 if (N.Factors == 1) {

319 Shared.Load[,1] <- Fact.Anal$loadings

320 } else {

321 Shared.Load <- Fact.Anal$loadings

322 }

323 Shared.Load[Shared.Load > 1] <- 1

324 Shared.Load[Shared.Load < -1] <- -1

325 if (Shared.Load[1,1] < 0) Shared.Load <- Shared.Load * -1

326 Shared.Load.sq <- Shared.Load * Shared.Load

327 for (i in 1:k)
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328 if (sum(Shared.Load.sq[i,]) < 1) {

329 Unique.Load[i,1] <- (1 - sum(Shared.Load.sq[i,]))

330 } else {

331 Unique.Load[i,1] <- 0

332 }

333 Unique.Load <- sqrt(Unique.Load)

334

335 for (i in 1:k) {

336 Data[,i] <- (Shared.Comp %*% t(Shared.Load))[,i] + Unique.Comp[,i] * Unique.Load[i,1]

337 }

338 # the %*% operator = matrix multiplication, and the t() function = transpose (both used again in step 13)

339

340 # Replace normal with nonnormal distributions (step 9) ---------------------------------------------------------

341

342 for (i in 1:k)

343 {

344 Data <- Data[sort.list(Data[,i]),]

345 Data[,i] <- Distributions[,i]

346 }

347

348 # Calculate RMSR correlation, compare to lowest value, take appropriate action (steps 10, 11, 12) --------------

349

350 Reproduced.Corr <- cor(Data)

351 Residual.Corr <- Target.Corr - Reproduced.Corr

352 RMSR <- sqrt(sum(Residual.Corr[lower.tri(Residual.Corr)] * Residual.Corr[lower.tri(Residual.Corr)]) /

353 (.5 * (k * k - k)))

354 if (RMSR < Best.RMSR) {

355 Best.RMSR <- RMSR

356 Best.Corr <- Intermediate.Corr

357 Best.Res <- Residual.Corr
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358 Intermediate.Corr <- Intermediate.Corr + Initial.Multiplier * Residual.Corr

359 Trials.Without.Improvement <- 0

360 } else {

361 Trials.Without.Improvement <- Trials.Without.Improvement + 1

362 Current.Multiplier <- Initial.Multiplier * .5 ^ Trials.Without.Improvement

363 Intermediate.Corr <- Best.Corr + Current.Multiplier * Best.Res

364 }

365 } # end of the while loop

366

367 # Construct the data set with the lowest RMSR correlation (step 13) --------------------------------------------

368

369 Fact.Anal <- Factor.Analysis(Best.Corr, Corr.Matrix = TRUE, N.Factors = N.Factors)

370 if (N.Factors == 1) {

371 Shared.Load[,1] <- Fact.Anal$loadings

372 } else {

373 Shared.Load <- Fact.Anal$loadings

374 }

375 Shared.Load[Shared.Load > 1] <- 1

376 Shared.Load[Shared.Load < -1] <- -1

377 if (Shared.Load[1,1] < 0) {Shared.Load <- Shared.Load * -1}

378 Shared.Load.sq <- Shared.Load * Shared.Load

379 for (i in 1:k) {

380 if (sum(Shared.Load.sq[i,]) < 1) {

381 Unique.Load[i,1] <- (1 - sum(Shared.Load.sq[i,]))

382 } else {

383 Unique.Load[i,1] <- 0

384 }

385 }

386 Unique.Load <- sqrt(Unique.Load)

387 for (i in 1:k) {
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388 Data[,i] <- (Shared.Comp %*% t(Shared.Load))[,i] + Unique.Comp[,i] * Unique.Load[i,1]

389 }

390 Data <- apply(Data, 2, scale) # standardizes each variable in the matrix

391 for (i in 1:k)

392 {

393 Data <- Data[sort.list(Data[,i]),]

394 Data[,i] <- Distributions[,i]

395 }

396 Data <- Data[sample(1:N, N, replace = FALSE), ] # randomize order of cases

397

398 # Report the results and return the simulated data set (step 14) -----------------------------------------------

399

400 Iteration <- Iteration - Max.Trials

401 cat("\nN =",N,", k =",k,",",Iteration,"Iterations,",N.Factors,"Factors, RMSR r =",round(Best.RMSR,3),"\n")

402 return(Data)

403 }

404

405 ################################################################################################################

406 Factor.Analysis <- function(Data, Corr.Matrix = FALSE, Max.Iter = 50, N.Factors = 0)

407 {

408 Data <- as.matrix(Data)

409 k <- dim(Data)[2]

410 if (N.Factors == 0) N.Factors <- k

411 if (!Corr.Matrix) Cor.Matrix <- cor(Data)

412 else Cor.Matrix <- Data

413 Criterion <- .001

414 Old.H2 <- rep(99, k)

415 H2 <- rep(0, k)

416 Change <- 1

417 Iter <- 0
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418 Factor.Loadings <- matrix(nrow = k, ncol = N.Factors)

419 while ((Change >= Criterion) & (Iter < Max.Iter))

420 {

421 Iter <- Iter + 1

422 Eig <- eigen(Cor.Matrix)

423 L <- sqrt(Eig$values[1:N.Factors])

424 for (i in 1:N.Factors)

425 Factor.Loadings[,i] <- Eig$vectors[,i] * L[i]

426 for (i in 1:k)

427 H2[i] <- sum(Factor.Loadings[i,] * Factor.Loadings[i,])

428 Change <- max(abs(Old.H2 - H2))

429 Old.H2 <- H2

430 diag(Cor.Matrix) <- H2

431 }

432 if (N.Factors == k) N.Factors <- sum(Eig$values > 1)

433 return(list(loadings = Factor.Loadings[,1:N.Factors], factors = N.Factors))

434 }

435

436

437 ##########################################################################################################################

438 ##########################################################################################################################

439

440 ## Read in data

441 LLTI_Covariates <- read.csv("LLTIMortTownsend.csv", sep = ",")

442 LLTI_Covariates[,4:21] <- sapply(LLTI_Covariates[,4:21], as.integer)

443

444 ## Replace 0 with 1

445 LLTI_Covariates_0 <- LLTI_Covariates[,4:21]

446 LLTI_Covariates_0[LLTI_Covariates_0 == 0] <- 1

447
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448 ## Create data frame of covariates

449 LLTI_Dataset <- cbind(Emp = LLTI_Covariates_0$Unemp_d - LLTI_Covariates_0$Unemp_n, Unemp = LLTI_Covariates_0$Unemp_n,

450 Nonowner = LLTI_Covariates_0$Nonown_n, Owner = LLTI_Covariates_0$Nonown_d - LLTI_Covariates_0$

Nonown_n,

451 NoCar = LLTI_Covariates_0$Nocar_n, Car = LLTI_Covariates_0$Nocar_d - LLTI_Covariates_0$Nocar_n,

452 Overcrowd = LLTI_Covariates_0$Ovcr_n, NotOvercrowd = LLTI_Covariates_0$Ovcr_d - LLTI_Covariates_0

$Ovcr_n,

453 Pop = LLTI_Covariates_0$Persons, LLTI = LLTI_Covariates_0$llti.t)

454

455

456 ObsCor <- cor(LLTI_Dataset[,1:9])

457

458 #######################################################

459 ## Function to generate lognormal distributed cases ##

460 #######################################################

461

462 NullSim <- function(N, id, x, sizex, setPRTot){

463 #y <- rpois(N, x*setPRTot)

464 #y <- rbinom(N, x, setPRTot)

465 y <- round(rnbinom(N, mu = setPRTot*x, size = sizex), 0)

466 Dat <- data.frame(Id = id, Pop = x, Obs = y)

467 PR <- sum(Dat$Obs)/sum(Dat$Pop)

468 Dat <- cbind(Dat, Exp = round(Dat$Pop*PR, 0))

469 return(Dat)

470 }

471

472

473 Beg <- Sys.time()

474 Nsim <- 1000

475
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476 repmin <- function(simcol, obscol){

477 simcol <- replace(simcol, simcol[which(simcol < min(obscol))], sample(min(obscol):median(obscol), 1, replace = TRUE))

478 }

479

480 repmax <- function(simcol, obscol){

481 simcol <- replace(simcol, simcol[which(simcol > max(obscol))], sample(median(obscol):max(obscol), 1, replace = TRUE))

482 }

483

484 # Dataframe of 9 variables to generate

485 LLTI_Dat <- data.matrix(LLTI_Dataset[,1:9])

486

487 # Create empty vectors

488 NullObj <- function(obnames){

489 for (q in 1:length(obnames)) {

490 nam1 <- paste("c", obnames[q], sep = "")

491 nam2 <- paste("p", obnames[q], sep = "")

492 nam3 <- paste("pLin", obnames[q], sep = "")

493 nam4 <- paste("cLin", obnames[q], sep = "")

494 nam5 <- paste("pLin", obnames[q], "Pop", sep = "")

495 nam6 <- paste("cLin", obnames[q], "Pop", sep = "")

496 assign(nam1, NULL, envir = .GlobalEnv); assign(nam2, NULL, envir = .GlobalEnv)

497 assign(nam3, NULL, envir = .GlobalEnv); assign(nam4, NULL, envir = .GlobalEnv)

498 assign(nam5, NULL, envir = .GlobalEnv); assign(nam6, NULL, envir = .GlobalEnv)

499 }

500

501

502 }

503

504 NullObj(c("Townsend", "UnempPC", "UnempCount", "EmpPC", "EmpCount", "NoCarPC", "NoCarCount",

505 "CarPC", "CarCount","NonOwnPC", "NonOwnCount", "OwnPC", "OwnCount", "OvercrowdPC", "OvercrowdCount",
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506 "NotOvercrowdPC", "NotOvercrowdCount", "", "Adj", "Unemp", "Emp", "Car", "NoCar", "NonOwn", "Own",

507 "Overcrowd", "NotOvercrowd"))

508

509 cTownsendCov <- NULL; pTownsendCov <- NULL

510 cUnempCov <- NULL; pUnempCov <- NULL

511

512 PoisTownsendUnadj <- data.matrix(data.matrix(matrix(ncol = 4, nrow = Nsim)))

513 PoisTownsend <- data.matrix(data.matrix(matrix(ncol = 4, nrow = Nsim)))

514 PoisUnempCount <- data.matrix(data.matrix(matrix(ncol = 4, nrow = Nsim)))

515 PoisUnempPC <- data.matrix(data.matrix(matrix(ncol = 4, nrow = Nsim)))

516 PoisNoCarCount <- data.matrix(data.matrix(matrix(ncol = 4, nrow = Nsim)))

517 PoisNoCarPC <- data.matrix(data.matrix(matrix(ncol = 4, nrow = Nsim)))

518 PoisOvercrowdCount <- data.matrix(data.matrix(matrix(ncol = 4, nrow = Nsim)))

519 PoisOvercrowdPC <- data.matrix(data.matrix(matrix(ncol = 4, nrow = Nsim)))

520 PoisNonOwnCount <- data.matrix(data.matrix(matrix(ncol = 4, nrow = Nsim)))

521 PoisNonOwnPC <- data.matrix(data.matrix(matrix(ncol = 4, nrow = Nsim)))

522

523 PoisUnempMSAS <- data.matrix(data.matrix(matrix(ncol = 4, nrow = Nsim)))

524 PoisNoCarMSAS <- data.matrix(data.matrix(matrix(ncol = 4, nrow = Nsim)))

525 PoisOvercrowdMSAS <- data.matrix(data.matrix(matrix(ncol = 4, nrow = Nsim)))

526 PoisNonOwnMSAS <- data.matrix(data.matrix(matrix(ncol = 4, nrow = Nsim)))

527

528 NegBinTownsendUnadj <- data.matrix(data.matrix(matrix(ncol = 4, nrow = Nsim)))

529 NegBinTownsend <- data.matrix(data.matrix(matrix(ncol = 4, nrow = Nsim)))

530 NegBinUnempCount <- data.matrix(data.matrix(matrix(ncol = 4, nrow = Nsim)))

531 NegBinUnempPC <- data.matrix(data.matrix(matrix(ncol = 4, nrow = Nsim)))

532 NegBinNoCarCount <- data.matrix(data.matrix(matrix(ncol = 4, nrow = Nsim)))

533 NegBinNoCarPC <- data.matrix(data.matrix(matrix(ncol = 4, nrow = Nsim)))

534 NegBinOvercrowdCount <- data.matrix(data.matrix(matrix(ncol = 4, nrow = Nsim)))

535 NegBinOvercrowdPC <- data.matrix(data.matrix(matrix(ncol = 4, nrow = Nsim)))
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536 NegBinNonOwnCount <- data.matrix(data.matrix(matrix(ncol = 4, nrow = Nsim)))

537 NegBinNonOwnPC <- data.matrix(data.matrix(matrix(ncol = 4, nrow = Nsim)))

538

539 NegBinUnempMSAS <- data.matrix(data.matrix(matrix(ncol = 4, nrow = Nsim)))

540 NegBinNoCarMSAS <- data.matrix(data.matrix(matrix(ncol = 4, nrow = Nsim)))

541 NegBinOvercrowdMSAS <- data.matrix(data.matrix(matrix(ncol = 4, nrow = Nsim)))

542 NegBinNonOwnMSAS <- data.matrix(data.matrix(matrix(ncol = 4, nrow = Nsim)))

543

544 LinTownsendUnadj <- data.matrix(data.matrix(matrix(ncol = 4, nrow = Nsim)))

545 LinTownsend <- data.matrix(data.matrix(matrix(ncol = 4, nrow = Nsim)))

546 LinUnempCount <- data.matrix(data.matrix(matrix(ncol = 4, nrow = Nsim)))

547 LinUnempPC <- data.matrix(data.matrix(matrix(ncol = 4, nrow = Nsim)))

548 LinNoCarCount <- data.matrix(data.matrix(matrix(ncol = 4, nrow = Nsim)))

549 LinNoCarPC <- data.matrix(data.matrix(matrix(ncol = 4, nrow = Nsim)))

550 LinOvercrowdCount <- data.matrix(data.matrix(matrix(ncol = 4, nrow = Nsim)))

551 LinOvercrowdPC <- data.matrix(data.matrix(matrix(ncol = 4, nrow = Nsim)))

552 LinNonOwnCount <- data.matrix(data.matrix(matrix(ncol = 4, nrow = Nsim)))

553 LinNonOwnPC <- data.matrix(data.matrix(matrix(ncol = 4, nrow = Nsim)))

554

555 LinUnempMSAS <- data.matrix(data.matrix(matrix(ncol = 4, nrow = Nsim)))

556 LinNoCarMSAS <- data.matrix(data.matrix(matrix(ncol = 4, nrow = Nsim)))

557 LinOvercrowdMSAS <- data.matrix(data.matrix(matrix(ncol = 4, nrow = Nsim)))

558 LinNonOwnMSAS <- data.matrix(data.matrix(matrix(ncol = 4, nrow = Nsim)))

559

560 for (itn in 1:Nsim) {

561 GenSim <- data.matrix(GenData(Supplied.Data = LLTI_Dat, rho, N = length(LLTI_Dat[, 1]), k = length(LLTI_Dat[1, ]),seed = (

itn*length(LLTI_Dat[, 1]))))

562 GenSim <- cbind(Id = 1:length(LLTI_Dat[, 1]), round(GenSim,0));

563 colnames(GenSim) <- paste(c("ID", "Emp", "Unemp", "Nonowner", "Owner", "NoCar", "Car", "Overcrowd", "NotOvercrowd", "Pop"))

564
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565 # Replace zeros and maximum values

566

567 repmin(GenSim[,"Car"], LLTI_Dataset[,"Car"])

568 repmin(GenSim[,"NotOvercrowd"], LLTI_Dataset[,"NotOvercrowd"])

569 repmin(GenSim[,"Owner"], LLTI_Dataset[,"Owner"])

570 repmin(GenSim[,"NoCar"], LLTI_Dataset[,"NoCar"])

571 repmin(GenSim[,"Overcrowd"], LLTI_Dataset[,"Overcrowd"])

572 repmin(GenSim[,"Nonowner"], LLTI_Dataset[,"Nonowner"])

573 repmin(GenSim[,"Emp"], LLTI_Dataset[,"Emp"])

574 repmin(GenSim[,"Unemp"], LLTI_Dataset[,"Unemp"])

575 repmin(GenSim[,"Pop"], LLTI_Dataset[,"Pop"])

576

577 repmax(GenSim[,"Car"], LLTI_Dataset[,"Car"])

578 repmax(GenSim[,"NotOvercrowd"], LLTI_Dataset[,"NotOvercrowd"])

579 repmax(GenSim[,"Owner"], LLTI_Dataset[,"Owner"])

580 repmax(GenSim[,"NoCar"], LLTI_Dataset[,"NoCar"])

581 repmax(GenSim[,"Overcrowd"], LLTI_Dataset[,"Overcrowd"])

582 repmax(GenSim[,"Nonowner"], LLTI_Dataset[,"Nonowner"])

583 repmax(GenSim[,"Emp"], LLTI_Dataset[,"Emp"])

584 repmax(GenSim[,"Unemp"], LLTI_Dataset[,"Unemp"])

585 repmax(GenSim[,"Pop"], LLTI_Dataset[,"Pop"])

586

587 ## Force number of households to be the same across car, overcrowd and owner-occupier variables

588 MeanHH <- NULL

589 VecOwn <- data.matrix(matrix(ncol = 2, nrow = 9499))

590 VecCar <- data.matrix(matrix(ncol = 2, nrow = 9499))

591 VecOvr <- data.matrix(matrix(ncol = 2, nrow = 9499))

592 for (i in 1:9499) {

593 MeanHH[i] <- (sum(GenSim[,"Nonowner"][i], GenSim[,"Owner"][i]) +

594 sum(GenSim[,"NoCar"][i], GenSim[,"Car"][i]) +
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595 sum(GenSim[,"Overcrowd"][i], GenSim[,"NotOvercrowd"][i]))/3

596

597

598 #VecOwn[i,] <- round((MeanHH[i]/sum(GenSim[,"Nonowner"][i], GenSim[,"Owner"][i]))*data.matrix(GenSim[,"Nonowner"][i],

GenSim[,"Owner"][i]), 0)

599 VecOwn[i, 1] <- (sum(MeanHH[i])/sum(GenSim[,"Nonowner"][i], GenSim[,"Owner"][i]))*(GenSim[,"Nonowner"][i])

600 VecOwn[i, 2] <- (sum(MeanHH[i])/sum(GenSim[,"Nonowner"][i], GenSim[,"Owner"][i]))*(GenSim[,"Owner"][i])

601 #

602 #VecCar[i,] <- round((MeanHH[i]/sum(GenSim[,"NoCar"][i], GenSim[,"Car"][i]))*data.matrix(GenSim[,"NoCar"][i], GenSim[,"

Car"][i]), 0)

603 VecCar[i, 1] <- (sum(MeanHH[i])/sum(GenSim[,"NoCar"][i], GenSim[,"Car"][i]))*(GenSim[,"NoCar"][i])

604 VecCar[i, 2] <- (sum(MeanHH[i])/sum(GenSim[,"NoCar"][i], GenSim[,"Car"][i]))*(GenSim[,"Car"][i])

605

606 #VecOvr[i,] <- round((MeanHH[i]/sum(GenSim[,"Overcrowd"][i], GenSim[,"NotOvercrowd"][i]))*data.matrix(GenSim[,"Overcrowd

"][i], GenSim[,"NotOvercrowd"][i]), 0)

607 VecOvr[i, 1] <- (sum(MeanHH[i])/sum(GenSim[,"Overcrowd"][i], GenSim[,"NotOvercrowd"][i]))*(GenSim[,"Overcrowd"][i])

608 VecOvr[i, 2] <- (sum(MeanHH[i])/sum(GenSim[,"Overcrowd"][i], GenSim[,"NotOvercrowd"][i]))*(GenSim[,"NotOvercrowd"][i])

609

610 #

611 }

612

613 VecOwn <- round(VecOwn, 0)

614 VecCar <- round(VecCar, 0)

615 VecOvr <- round(VecOvr, 0)

616

617 # Make data frame of relevant variables

618 GenSim2 <- data.frame(HH = VecOwn[, 1] + VecOwn[, 2], NoCar = VecCar[, 1], Car = VecCar[, 2], Overcrowd = VecOvr[, 1],

NotOvercrowd = VecOvr[, 2],

619 Nonowner = VecOwn[, 1], Owner = VecOwn[, 2], Unemp = GenSim[,"Unemp"], Emp = GenSim[,"Emp"], EA =

GenSim[,"Emp"] + GenSim[,"Unemp"], Pop = GenSim[,"Pop"])
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620

621 GenSim3 <- cbind(GenSim2, NoCarPC = GenSim2[,"NoCar"]/GenSim2[,"HH"], CarPC = GenSim2[,"Car"]/GenSim2[,"HH"], OvercrowdPC

= GenSim2[,"Overcrowd"]/GenSim2[,"HH"],

622 NotOvercrowdPC = GenSim2[,"NotOvercrowd"]/GenSim2[,"HH"], NonOwnerPC = GenSim2[,"Nonowner"]/GenSim2[,"HH"

], OwnerPC = GenSim2[,"Owner"]/GenSim2[,"HH"],

623 UnempPC = GenSim2[,"Unemp"]/GenSim2[,"EA"], EmpPC = GenSim2[,"Emp"]/GenSim2[,"EA"])

624

625

626 # Calculate Townsend score

627

628 NoCarPC <- (GenSim3[,"NoCar"]/GenSim3[,"HH"])*100

629 OvercrowdPC <- (GenSim3[,"Overcrowd"]/GenSim3[,"HH"])*100

630 NonOwnPC <- (GenSim3[,"Nonowner"]/GenSim3[,"HH"])*100

631 UnemplPC <- (GenSim3[,"Unemp"]/GenSim3[,"EA"])*100

632

633 NoCarZ <- scale(NoCarPC, center = TRUE, scale = TRUE)

634 OvercrowdZ <- scale(OvercrowdPC, center = TRUE, scale = TRUE)

635 NonOwnZ <- scale(NonOwnPC, center = TRUE, scale = TRUE)

636 UnemplZ <- scale(UnemplPC, center = TRUE, scale = TRUE)

637

638 TownsendZ <- NoCarZ + OvercrowdZ + NonOwnZ + UnemplZ

639

640 GenSim3 <- cbind(GenSim3, Townsend = TownsendZ)

641 GenSim3 <- as.matrix(GenSim3)

642

643 ## Simulate cases under null hypothesis

644 LLTI <- NullSim(N = 9499, id = 1:9499, x = (GenSim3[,"Pop"]), sizex = 1.5, setPRTot = 0.135)

645 # Alter sd.x in NullSim

646

647 #LLTI <- NullSim(N = 9499, id = 1:9499, x = (GenSim3[,"Pop"]), setPRTot = 0.135)
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648

649 GenSim3 <- cbind(GenSim3, LLTIObs = LLTI[,"Obs"], LLTIExp = LLTI[,"Exp"])

650 GenSim3 <- as.matrix(GenSim3)

651

652 repmin(GenSim3[,"LLTIObs"], LLTI_Dataset[,"LLTI"])

653 repmax(GenSim3[,"LLTIObs"], LLTI_Dataset[,"LLTI"])

654

655 LLTIPC <- (GenSim3[,"LLTIObs"]/GenSim3[,"Pop"])*100

656 # if (min(GenSim3$LLTIObs) <= min(LLTI_Dataset$LLTI)) GenSim3$LLTIObs[which(GenSim3$LLTIObs <= min(LLTI_Dataset$LLTI))] <-

sample(min(LLTI_Dataset$LLTI):median(LLTI_Dataset$LLTI), 1, replace = TRUE)

657 # if (max(GenSim3$LLTIObs) >= max(LLTI_Dataset$LLTI)) GenSim3$LLTIObs[which(GenSim3$LLTIObs >= max(LLTI_Dataset$LLTI))] <-

sample(median(LLTI_Dataset$LLTI):max(LLTI_Dataset$LLTI), 1, replace = TRUE)

658 #

659 GenSim3 <- as.data.frame(GenSim3)

660 # Investigating Observed counts of LLTI with a population offset

661

662 PoisTownsendUnadj[itn, ] <- Models(dataset = GenSim3, outcome = "LLTIObs", covariate = "Townsend", off = NULL, model = "

poisson")

663 PoisTownsend[itn, ] <- Models(dataset = GenSim3, outcome = "LLTIObs", covariate = "Townsend", off = "Pop", model = "

poisson")

664 PoisUnempCount[itn, ] <- Models(dataset = GenSim3, outcome = "LLTIObs", covariate = "Unemp", off = "Pop", model = "

poisson")

665 PoisUnempPC[itn, ] <- Models(dataset = GenSim3, outcome = "LLTIObs", covariate = "UnempPC", off = NULL, model = "

poisson")

666 PoisNoCarCount[itn, ] <- Models(dataset = GenSim3, outcome = "LLTIObs", covariate = "NoCar", off = "Pop", model = "

poisson")

667 PoisNoCarPC[itn, ] <- Models(dataset = GenSim3, outcome = "LLTIObs", covariate = "NoCarPC", off = NULL, model = "

poisson")

668 PoisOvercrowdCount[itn, ] <- Models(dataset = GenSim3, outcome = "LLTIObs", covariate = "Overcrowd", off = "Pop", model = "

poisson")
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669 PoisOvercrowdPC[itn, ] <- Models(dataset = GenSim3, outcome = "LLTIObs", covariate = "OvercrowdPC", off = NULL, model =

"poisson")

670 PoisNonOwnCount[itn, ] <- Models(dataset = GenSim3, outcome = "LLTIObs", covariate = "Nonowner", off = "Pop", model = "

poisson")

671 PoisNonOwnPC[itn, ] <- Models(dataset = GenSim3, outcome = "LLTIObs", covariate = "NonOwnerPC", off = NULL, model = "

poisson")

672

673 PoisUnempMSAS[itn, ] <- Models(dataset = GenSim3, outcome = "LLTIObs", covariate = c("Unemp", "EA"),

674 off = "Pop", model = "poisson")

675 PoisNoCarMSAS[itn, ] <- Models(dataset = GenSim3, outcome = "LLTIObs", covariate = c("NoCar", "HH", "Unemp", "EA"),

676 off = "Pop", model = "poisson")

677 PoisOvercrowdMSAS[itn, ] <- Models(dataset = GenSim3, outcome = "LLTIObs", covariate = c("Overcrowd", "HH", "Unemp", "EA"),

678 off = "Pop", model = "poisson")

679 PoisNonOwnMSAS[itn, ] <- Models(dataset = GenSim3, outcome = "LLTIObs", covariate = c("Nonowner", "HH", "Unemp", "EA"),

680 off = "Pop", model = "poisson")

681

682 NegBinTownsendUnadj[itn, ] <- Models(GenSim3, "LLTIObs", "Townsend", NULL, "negativebinomial")

683 NegBinTownsend[itn, ] <- Models(GenSim3, "LLTIObs", "Townsend", "Pop", "negativebinomial")

684 NegBinUnempCount[itn, ] <- Models(GenSim3, "LLTIObs", "Unemp", "Pop", "negativebinomial")

685 NegBinUnempPC[itn, ] <- Models(GenSim3, "LLTIObs", "UnempPC", NULL, "negativebinomial")

686 NegBinNoCarCount[itn, ] <- Models(GenSim3, "LLTIObs", "NoCar", "Pop", "negativebinomial")

687 NegBinNoCarPC[itn, ] <- Models(GenSim3, "LLTIObs", "NoCarPC", NULL, "negativebinomial")

688 NegBinOvercrowdCount[itn, ] <- Models(GenSim3, "LLTIObs", "Overcrowd", "Pop", "negativebinomial")

689 NegBinOvercrowdPC[itn, ] <- Models(GenSim3, "LLTIObs", "OvercrowdPC", NULL, "negativebinomial")

690 NegBinNonOwnCount[itn, ] <- Models(GenSim3, "LLTIObs", "Nonowner", "Pop", "negativebinomial")

691 NegBinNonOwnPC[itn, ] <- Models(GenSim3, "LLTIObs", "NonOwnerPC", NULL, "negativebinomial")

692

693 NegBinUnempMSAS[itn, ] <- Models(dataset = GenSim3, outcome = "LLTIObs", covariate = c("Unemp", "EA"),

694 off = "Pop", model = "negativebinomial")

695 NegBinNoCarMSAS[itn, ] <- Models(dataset = GenSim3, outcome = "LLTIObs", covariate = c("NoCar", "HH", "Unemp", "EA"),
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696 off = "Pop", model = "negativebinomial")

697 NegBinOvercrowdMSAS[itn, ] <- Models(dataset = GenSim3, outcome = "LLTIObs", covariate = c("Overcrowd", "HH", "Unemp", "EA"

),

698 off = "Pop", model = "negativebinomial")

699 NegBinNonOwnMSAS[itn, ] <- Models(dataset = GenSim3, outcome = "LLTIObs", covariate = c("Nonowner","HH", "Unemp", "EA"),

700 off = "Pop", model = "negativebinomial")

701

702

703 LinTownsendUnadj[itn, ] <- Models(GenSim3, "LLTIObs", "Townsend", NULL, "linear")

704 LinTownsend[itn, ] <- Models(GenSim3, "LLTIObs", "Townsend", "Pop", "linear")

705 LinUnempCount[itn, ] <- Models(GenSim3, "LLTIObs", "Unemp", "Pop", "linear")

706 LinUnempPC[itn, ] <- Models(GenSim3, "LLTIObs", "UnempPC", NULL, "linear")

707 LinNoCarCount[itn, ] <- Models(GenSim3, "LLTIObs", "NoCar", "Pop", "linear")

708 LinNoCarPC[itn, ] <- Models(GenSim3, "LLTIObs", "NoCarPC", NULL, "linear")

709 LinOvercrowdCount[itn, ] <- Models(GenSim3, "LLTIObs", "Overcrowd", "Pop", "linear")

710 LinOvercrowdPC[itn, ] <- Models(GenSim3, "LLTIObs", "OvercrowdPC", NULL, "linear")

711 LinNonOwnCount[itn, ] <- Models(GenSim3, "LLTIObs", "Nonowner", "Pop", "linear")

712 LinNonOwnPC[itn, ] <- Models(GenSim3, "LLTIObs", "NonOwnerPC", NULL, "linear")

713

714 LinUnempMSAS[itn, ] <- Models(dataset = GenSim3, outcome = "LLTIObs", covariate = c("Unemp", "EA"),

715 off = "Pop", model = "linear")

716 LinNoCarMSAS[itn, ] <- Models(dataset = GenSim3, outcome = "LLTIObs", covariate = c("NoCar", "HH", "Unemp", "EA"),

717 off = "Pop", model = "linear")

718 LinOvercrowdMSAS[itn, ] <- Models(dataset = GenSim3, outcome = "LLTIObs", covariate = c("Overcrowd", "HH", "Unemp", "EA"),

719 off = "Pop", model = "linear")

720 LinNonOwnMSAS[itn, ] <- Models(dataset = GenSim3, outcome = "LLTIObs", covariate = c("Nonowner", "HH", "Unemp", "EA"),

721 off = "Pop", model = "linear")

722

723 }

724
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725 End <- Sys.time()

726

727 End - Beg

728

729 # Calculate lengths of ’significant’ results

730

731 SigRes <- function(model) {

732 length(model[which(model[,4] < 0.05)])

733 }

734

735 SigRes(PoisTownsendUnadj); SigRes(PoisTownsend); SigRes(PoisUnempCount); SigRes(PoisUnempPC); SigRes(PoisNoCarCount); SigRes(

PoisNoCarPC);

736 SigRes(PoisNonOwnCount); SigRes(PoisNonOwnPC); SigRes(PoisOvercrowdCount); SigRes(PoisOvercrowdPC)

737 SigRes(PoisUnempMSAS); SigRes(PoisNonOwnMSAS); SigRes(PoisNoCarMSAS); SigRes(PoisOvercrowdMSAS)

738

739 SigRes(NegBinTownsendUnadj); SigRes(NegBinTownsend); SigRes(NegBinUnempCount); SigRes(NegBinUnempPC); SigRes(NegBinNoCarCount

); SigRes(NegBinNoCarPC);

740 SigRes(NegBinNonOwnCount); SigRes(NegBinNonOwnPC); SigRes(NegBinOvercrowdCount); SigRes(NegBinOvercrowdPC)

741 SigRes(NegBinUnempMSAS); SigRes(NegBinNonOwnMSAS); SigRes(NegBinNoCarMSAS); SigRes(NegBinOvercrowdMSAS)

742

743 SigRes(LinTownsendUnadj); SigRes(LinTownsend); SigRes(LinUnempCount); SigRes(LinUnempPC); SigRes(LinNoCarCount); SigRes(

LinNoCarPC);

744 SigRes(LinNonOwnCount); SigRes(LinNonOwnPC); SigRes(LinOvercrowdCount); SigRes(LinOvercrowdPC)

745 SigRes(LinUnempMSAS); SigRes(LinNonOwnMSAS); SigRes(LinNoCarMSAS); SigRes(LinOvercrowdMSAS)

746

747 # Summarise esimated coefficients

748

749 SumCoef <- function(model) {

750 #summary(model[,3])

751 quantile(sort(model[,1]),c(0.025,0.5,0.975))
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752 }

753

754 PTUCoef <- exp(SumCoef(PoisTownsendUnadj)); PTCoef <- exp(SumCoef(PoisTownsend));

755 PUCoef <- exp(SumCoef(PoisUnempCount)); PUPCCoef <- exp(SumCoef(PoisUnempPC));

756 PCCoef <- exp(SumCoef(PoisNoCarCount)); PCPCCoef <- exp(SumCoef(PoisNoCarPC));

757 POCoef <- exp(SumCoef(PoisNonOwnCount)); POPCCoef <- exp(SumCoef(PoisNonOwnPC));

758 POCCoef <- exp(SumCoef(PoisOvercrowdCount)); POCPCCoef <- exp(SumCoef(PoisOvercrowdPC))

759 PUMSAS <- exp(SumCoef(PoisUnempMSAS)); PCMSAS <- exp(SumCoef(PoisNoCarMSAS));

760 POMSAS <- exp(SumCoef(PoisNonOwnMSAS)); POCMSAS <- exp(SumCoef(PoisOvercrowdMSAS))

761

762 NTUCoef <- exp(SumCoef(NegBinTownsendUnadj)); NTCoef <- exp(SumCoef(NegBinTownsend));

763 NUCoef <- exp(SumCoef(NegBinUnempCount)); NUPCCoef <- exp(SumCoef(NegBinUnempPC));

764 NCCoef <- exp(SumCoef(NegBinNoCarCount)); NCPCCoef <- exp(SumCoef(NegBinNoCarPC));

765 NOCoef <- exp(SumCoef(NegBinNonOwnCount)); NOPCCoef <- exp(SumCoef(NegBinNonOwnPC));

766 NOCCoef <- exp(SumCoef(NegBinOvercrowdCount)); NOCPCCoef <- exp(SumCoef(NegBinOvercrowdPC))

767 NUMSAS <- exp(SumCoef(NegBinUnempMSAS)); NCMSAS <- exp(SumCoef(NegBinNoCarMSAS));

768 NOMSAS <- exp(SumCoef(NegBinNonOwnMSAS)); NOCMSAS <- exp(SumCoef(NegBinOvercrowdMSAS));

769

770 LTUCoef <- SumCoef(LinTownsendUnadj); LTCoef <- SumCoef(LinTownsend); LUCoef <- SumCoef(LinUnempCount); LUPCCoef <- SumCoef(

LinUnempPC); LCCoef <- SumCoef(LinNoCarCount); LCPCCoef <- SumCoef(LinNoCarPC);

771 LOCoef <- SumCoef(LinNonOwnCount); LOPCCoef <- SumCoef(LinNonOwnPC); LOCCoef <- SumCoef(LinOvercrowdCount); LOCPCCoef <-

SumCoef(LinOvercrowdPC)

772 LUMSAS <- SumCoef(LinUnempMSAS); LCMSAS <- SumCoef(LinNoCarMSAS); LOMSAS <- SumCoef(LinNonOwnMSAS); LOCMSAS <- SumCoef(

LinOvercrowdMSAS);

773

774

775 PoisEsts <- data.frame(Estimates = rbind(PTUCoef, PTCoef, PUCoef, PUPCCoef, PCCoef, PCPCCoef,

776 POCoef, POPCCoef, POCCoef, POCPCCoef,

777 PUMSAS, PCMSAS, POMSAS, POCMSAS),

778 Label=c("Townsend","Townsend", "Unemployed Population", "Unemployed Population",
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779 "Household without Car", "Household without Car",

780 "Overcrowded Household", "Overcrowded Household",

781 "Household not Owner-Occupied", "Household not Owner-Occupied",

782 "Unemployed Population", "Household without Car",

783 "Household not Owner-Occupied", "Overcrowded Household"),

784 Mod=c("Composite", "Composite - Adjusted", "Count", "Proportion", "Count", "Proportion", "Count", "

Proportion", "Count", "Proportion", "MSAS",

785 "MSAS", "MSAS", "MSAS"))

786

787 PoisEsts$Label <- factor(PoisEsts$Label, levels = unique(PoisEsts$Label))

788

789 x11()

790 ggplot(PoisEsts,aes(x = Label, y = Estimates.50., group = Mod, colour = Mod)) +

791 geom_point(position = position_dodge(width = .5)) +

792 geom_errorbar(data = PoisEsts, aes(ymin = Estimates.2.5., ymax = Estimates.97.5., colour = Mod), width = .5, size = 1,

position = position_dodge(width = .5)) +

793 geom_hline(yintercept = 1.00, size = 0.2, colour = "black", linetype = "dashed") + theme_bw() +

794 scale_x_discrete(name = "") +

795 theme(legend.title = element_blank()) +

796 theme(axis.text=element_text(colour="black",size=12,family="Arial"),axis.title=element_text(size=16, family = "Arial", face

= "bold"),plot.title=element_text(size=16,face="bold", family = "Arial"),legend.position="top",

797 legend.text = element_text(size = 12, family = "Arial")) +

798 scale_y_log10(breaks = trans_breaks("log10", function(x) 10^x),

799 labels = trans_format("log10", math_format(10^.x)), name = "Coefficient of Covariate of Interest")+

800 scale_colour_viridis(discrete = TRUE, direction = -1, begin = 0, end = 0.9)

801

802

803 LinEsts <- data.frame(Estimates = rbind(LTUCoef, LTCoef, LUCoef, LUPCCoef, LCCoef, LCPCCoef,

804 LOCoef, LOPCCoef, LOCCoef, LOCPCCoef,

805 LUMSAS, LCMSAS, LOMSAS, LOCMSAS),
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806 Label=c("Townsend", "Townsend", "Unemployed Population", "Unemployed Population",

807 "Household without Car", "Household without Car",

808 "Overcrowded Household", "Overcrowded Household",

809 "Household not Owner-Occupied", "Household not Owner-Occupied",

810 "Unemployed Population", "Household without Car",

811 "Household not Owner-Occupied", "Overcrowded Household"),

812 Mod=c("Composite", "Composite - Adjusted", "Count", "Proportion", "Count", "Proportion", "Count", "

Proportion", "Count", "Proportion", "MSAS",

813 "MSAS", "MSAS", "MSAS"))

814

815 LinEsts$Label <- factor(LinEsts$Label, levels = unique(LinEsts$Label))

816

817 x11()

818 ggplot(LinEsts,aes(x = Label, y = Estimates.50., group = Mod, colour = Mod)) +

819 geom_point(position = position_dodge(width = .5)) +

820 geom_errorbar(data = LinEsts, aes(ymin = Estimates.2.5., ymax = Estimates.97.5., colour = Mod), width = .5, size = 1,

position = position_dodge(width = .5)) +

821 geom_hline(yintercept = 0.00, size = 0.2, colour = "black", linetype = "dashed") + theme_bw() +

822 scale_y_continuous(name = "Coefficient of Covariate of Interest") + scale_x_discrete(name = "") +

823 theme(legend.title = element_blank()) +

824 theme(axis.text=element_text(colour="black",size=12,family="Arial"),axis.title=element_text(size=16, family = "Arial", face

= "bold"),plot.title=element_text(size=16,face="bold", family = "Arial"),legend.position="top",

825 legend.text = element_text(size = 12, family = "Arial"))+

826 scale_colour_viridis(discrete = TRUE, direction = -1, begin = 0, end = 0.9)

827

828

829 ####################################################

830 ## Save all of the regression details into tables ##

831 ####################################################

832
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833 write.table(PoisTownsendUnadj, "PoisTownsendUnadj - 181012.csv", sep =",", col.names = TRUE)

834 write.table(PoisTownsend, "PoisTownsend - 181012.csv", sep = ",", col.names = TRUE)

835 write.table(PoisUnempCount, "PoisUnempCount - 181012.csv", sep = ",", col.names = TRUE)

836 write.table(PoisUnempPC, "PoisUnempPC - 181012.csv", sep = ",", col.names = TRUE)

837 write.table(PoisNoCarCount, "PoisNoCarCount - 181012.csv", sep = ",", col.names = TRUE)

838 write.table(PoisNoCarPC, "PoisNoCarPC - 181012.csv", sep = ",", col.names = TRUE)

839 write.table(PoisOvercrowdCount, "PoisOvercrowdCount - 181012.csv", sep = ",", col.names = TRUE)

840 write.table(PoisOvercrowdPC, "PoisOvercrowdPC - 181012.csv", sep = ",", col.names = TRUE)

841 write.table(PoisNonOwnCount, "PoisNonOwnCount - 181012.csv", sep = ",", col.names = TRUE)

842 write.table(PoisNonOwnPC, "PoisNonOwnPC - 181012.csv", sep = ",", col.names = TRUE)

843 write.table(PoisUnempMSAS, "PoisUnempMSAS - 181012.csv", sep = ",", col.names = TRUE)

844 write.table(PoisNoCarMSAS, "PoisNoCarMSAS - 181012.csv", sep = ",", col.names = TRUE)

845 write.table(PoisOvercrowdMSAS, "PoisOvercrowdMSAS - 181012.csv", sep = ",", col.names = TRUE)

846 write.table(PoisNonOwnMSAS, "PoisNonOwnMSAS - 181012.csv", sep = ",", col.names = TRUE)

847

848 write.table(NegBinTownsendUnadj, "NegBinTownsendUnadj - 181012.csv", sep =",", col.names = TRUE)

849 write.table(NegBinTownsend, "NegBinTownsend - 181012.csv", sep = ",", col.names = TRUE)

850 write.table(NegBinUnempCount, "NegBinUnempCount - 181012.csv", sep = ",", col.names = TRUE)

851 write.table(NegBinUnempPC, "NegBinUnempPC - 181012.csv", sep = ",", col.names = TRUE)

852 write.table(NegBinNoCarCount, "NegBinNoCarCount - 181012.csv", sep = ",", col.names = TRUE)

853 write.table(NegBinNoCarPC, "NegBinNoCarPC - 181012.csv", sep = ",", col.names = TRUE)

854 write.table(NegBinOvercrowdCount, "NegBinOvercrowdCount - 181012.csv", sep = ",", col.names = TRUE)

855 write.table(NegBinOvercrowdPC, "NegBinOvercrowdPC - 181012.csv", sep = ",", col.names = TRUE)

856 write.table(NegBinNonOwnCount, "NegBinNonOwnCount - 181012.csv", sep = ",", col.names = TRUE)

857 write.table(NegBinNonOwnPC, "NegBinNonOwnPC - 181012.csv", sep = ",", col.names = TRUE)

858 write.table(NegBinUnempMSAS, "NegBinUnempMSAS - 181012.csv", sep = ",", col.names = TRUE)

859 write.table(NegBinNoCarMSAS, "NegBinNoCarMSAS - 181012.csv", sep = ",", col.names = TRUE)

860 write.table(NegBinOvercrowdMSAS, "NegBinOvercrowdMSAS - 181012.csv", sep = ",", col.names = TRUE)

861 write.table(NegBinNonOwnMSAS, "NegBinNonOwnMSAS - 181012.csv", sep = ",", col.names = TRUE)

862
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863 #

864 write.table(LinTownsendUnadj, "LinTownsendUnadj - 181012.csv", sep =",", col.names = TRUE)

865 write.table(LinTownsend, "LinTownsend - 181012.csv", sep = ",", col.names = TRUE)

866 write.table(LinUnempCount, "LinUnempCount - 181012.csv", sep = ",", col.names = TRUE)

867 write.table(LinUnempPC, "LinUnempPC - 181012.csv", sep = ",", col.names = TRUE)

868 write.table(LinNoCarCount, "LinNoCarCount - 181012.csv", sep = ",", col.names = TRUE)

869 write.table(LinNoCarPC, "LinNoCarPC - 181012.csv", sep = ",", col.names = TRUE)

870 write.table(LinOvercrowdCount, "LinOvercrowdCount - 181012.csv", sep = ",", col.names = TRUE)

871 write.table(LinOvercrowdPC, "LinOvercrowdPC - 181012.csv", sep = ",", col.names = TRUE)

872 write.table(LinNonOwnCount, "LinNonOwnCount - 181012.csv", sep = ",", col.names = TRUE)

873 write.table(LinNonOwnPC, "LinNonOwnPC - 181012.csv", sep = ",", col.names = TRUE)

874 write.table(LinUnempMSAS, "LinUnempMSAS - 181012.csv", sep = ",", col.names = TRUE)

875 write.table(LinNoCarMSAS, "LinNoCarMSAS - 181012.csv", sep = ",", col.names = TRUE)

876 write.table(LinOvercrowdMSAS, "LinOvercrowdMSAS - 181012.csv", sep = ",", col.names = TRUE)

877 write.table(LinNonOwnMSAS, "LinNonOwnMSAS - 181012.csv", sep = ",", col.names = TRUE)

878

879 ####################

880 ## Read in tables ##

881 ####################

882

883 PoisTownsendUnadj <- read.table("PoisTownsendUnadj - 181012.csv", sep = ",")

884 PoisTownsend <- read.table("PoisTownsend - 181012.csv", sep = ",")

885 PoisUnempCount <- read.table("PoisUnempCount - 181012.csv", sep = ",")

886 PoisUnempPC <- read.table("PoisUnempPC - 181012.csv", sep = ",")

887 PoisNoCarCount <- read.table("PoisNoCarCount - 181012.csv", sep = ",")

888 PoisNoCarPC <- read.table("PoisNoCarPC - 181012.csv", sep = ",")

889 PoisOvercrowdCount <- read.table("PoisOvercrowdCount - 181012.csv", sep = ",")

890 PoisOvercrowdPC <- read.table("PoisOvercrowdPC - 181012.csv", sep = ",")

891 PoisNonOwnCount <- read.table("PoisNonOwnCount - 181012.csv", sep = ",")

892 PoisNonOwnPC <- read.table("PoisNonOwnPC - 181012.csv", sep = ",")
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893 PoisUnempMSAS <- read.table("PoisUnempMSAS - 181012.csv", sep = ",")

894 PoisNoCarMSAS <- read.table("PoisNoCarMSAS - 181012.csv", sep = ",")

895 PoisOvercrowdMSAS <- read.table("PoisOvercrowdMSAS - 181012.csv", sep = ",")

896 PoisNonOwnMSAS <- read.table("PoisNonOwnMSAS - 181012.csv", sep = ",")

897

898 NegBinTownsend <- read.table("NegBinTownsend - 181012.csv", sep = ",")

899 NegBinTownsendUnadj <- read.table("NegBinTownsendUnadj - 181012.csv", sep =",")

900 NegBinUnempCount <- read.table("NegBinUnempCount - 181012.csv", sep = ",")

901 NegBinUnempPC <- read.table("NegBinUnempPC - 181012.csv", sep = ",")

902 NegBinNoCarCount <- read.table("NegBinNoCarCount - 181012.csv", sep = ",")

903 NegBinNoCarPC <- read.table("NegBinNoCarPC - 181012.csv", sep = ",")

904 NegBinOvercrowdCount <- read.table("NegBinOvercrowdCount - 181012.csv", sep = ",")

905 NegBinOvercrowdPC <- read.table("NegBinOvercrowdPC - 181012.csv", sep = ",")

906 NegBinNonOwnCount <- read.table("NegBinNonOwnCount - 181012.csv", sep = ",")

907 NegBinNonOwnPC <- read.table("NegBinNonOwnPC - 181012.csv", sep = ",")

908 NegBinUnempMSAS <- read.table("NegBinUnempMSAS - 181012.csv", sep = ",")

909 NegBinNoCarMSAS <- read.table("NegBinNoCarMSAS - 181012.csv", sep = ",")

910 NegBinOvercrowdMSAS <- read.table("NegBinOvercrowdMSAS - 181012.csv", sep = ",")

911 NegBinNonOwnMSAS <- read.table("NegBinNonOwnMSAS - 181012.csv", sep = ",")

912 #

913 LinTownsend <- read.table("LinTownsend - 181012.csv", sep = ",")

914 LinTownsendUnadj <- read.table("LinTownsendUnadj - 181012.csv", sep = ",")

915 LinUnempCount <- read.table("LinUnempCount - 181012.csv", sep = ",")

916 LinUnempPC <- read.table("LinUnempPC - 181012.csv", sep = ",")

917 LinNoCarCount <- read.table("LinNoCarCount - 181012.csv", sep = ",")

918 LinNoCarPC <- read.table("LinNoCarPC - 181012.csv", sep = ",")

919 LinOvercrowdCount <- read.table("LinOvercrowdCount - 181012.csv", sep = ",")

920 LinOvercrowdPC <- read.table("LinOvercrowdPC - 181012.csv", sep = ",")

921 LinNonOwnCount <- read.table("LinNonOwnCount - 181012.csv", sep = ",")

922 LinNonOwnPC <- read.table("LinNonOwnPC - 181012.csv", sep = ",")
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923 LinUnempMSAS <- read.table("LinUnempMSAS - 181012.csv", sep = ",")

924 LinNoCarMSAS <- read.table("LinNoCarMSAS - 181012.csv", sep = ",")

925 LinOvercrowdMSAS <- read.table("LinOvercrowdMSAS - 181012.csv", sep = ",")

926 LinNonOwnMSAS <- read.table("LinNonOwnMSAS - 181012.csv", sep = ",")

927

928

929 ######################################################

930 ## Run Fitdistr on the adjusted household variables ##

931 ######################################################

932

933 ## Create data frame from the six household variables

934

935 HouseVars <- data.matrix(Nonowner = VecOwn[,1], Owner = VecOwn[,2], Nocar = VecCar[,1], Car = VecCar[,2], Overcrowd = VecOvr

[,1], NotOvercrowd = VecOvr[,2])

936

937

938 HousePars <- matrix(nrow = length(HouseVars[1,]), ncol = 3)

939 for (i in 1:length(HouseVars[1,])) {

940

941 tmp <- fitdistr(HouseVars[,i],"lognormal"); Pars <- tmp$estimate

942 Dat <- data.matrix(LN = round(rlnorm(DFn, meanlog = Pars[1], sdlog = Pars[2])))

943

944 HousePars[i,1] <- Pars[1]

945 HousePars[i,2] <- Pars[2]

946 HousePars[i,3] <- colnames(HouseVars[i])

947

948 tmpData <- data.matrix(ID = 1:DFn, Observed = HouseVars[, i], LogNormal = Dat$LN)

949

950 Variable <- colnames(HouseVars[i])

951
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952 #apply(tmpData[,-1],2,summary)

953 #apply(tmpData[,-1],2,sum)

954 dd <- melt(tmpData, id = c("ID")); names(dd) <- c("ID", "Dist", "Variable")

955 Xlim <- c(0,max(dd[3])); Xlab <- Variable; Ylab <- "Kernel Density"

956 Mlab <- Variable

957 print(ggplot(dd) + geom_density(aes(x = Variable, group = Dist, colour = Dist), size = 1.2) + labs(x = Xlab, y = Ylab,

colour = NULL) +

958 coord_cartesian(xlim = Xlim, ylim = NULL) + theme(axis.title = element_text(size = 16), axis.text.x = element_text(

size = 16),

959 axis.text.y = element_text(size = 16), plot.title = element_text(size

= 16),

960 legend.position = "right") + scale_colour_manual(values = c("black",

cbPal[-1]), name = "Distribution"))

961 ggsave(filename = paste("LogNormal Household Variables - ", Variable," - 170822.png"), width = 16, height = 8.17)

962 ##

963

964 }

965

966 ####################################

967 ## ’Zip plots’ to illustrate bias ##

968 ####################################

969

970 zipplot <- function(modelsum) {

971 modelsum <- as.data.frame(modelsum)

972 modelsumz <- modelsum[order(-modelsum[ ,4]), ]

973 modelsumz$Sig <- as.factor((modelsumz[ ,4] > 0.05)*1)

974 df <- data.frame(x = c(1:length(modelsumz[ ,1])), y = modelsumz[,1], ylo = modelsumz[,2], yhi = modelsumz[ ,3], sig =

modelsumz$Sig)

975 p <- ggplot(df, aes(x = x, y = y , ymin = ylo, ymax = yhi, color = sig)) +

976 geom_pointrange(size = 0.2) +
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977 geom_point(size = 0.1) +

978 geom_hline(yintercept = 0, linetype = 1) +

979 scale_color_manual(name = "", values = c("lightcoral", "lightblue4"), labels = c("Non-coverer", "Coverer")) +

980 coord_flip() +

981 geom_vline(xintercept = c(50, 500, 950), linetype = 1, color = "grey") +

982 theme(legend.position = "none", axis.title.x = element_blank(),

983 axis.title.y = element_blank(), axis.text.x = element_text(vjust = 1))

984 return(p)

985

986 }

987

988 #aspect.ratio = 0.75,

989

990 p1 <- zipplot(PoisTownsendUnadj)

991 p2 <- zipplot(PoisTownsend)

992

993 p3 <- zipplot(PoisUnempPC)

994 p4 <- zipplot(PoisUnempCount)

995 p5 <- zipplot(PoisUnempMSAS)

996

997 p6 <- zipplot(PoisNoCarPC)

998 p7 <- zipplot(PoisNoCarCount)

999 p8 <- zipplot(PoisNoCarMSAS)

1000

1001 p9 <- zipplot(PoisNonOwnPC)

1002 p10 <- zipplot(PoisNonOwnCount)

1003 p11 <- zipplot(PoisNonOwnMSAS)

1004

1005 p12 <- zipplot(PoisOvercrowdPC)

1006 p13 <- zipplot(PoisOvercrowdCount)
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1007 p14 <- zipplot(PoisOvercrowdMSAS)

1008

1009 label1 <- textGrob("Proportion", vjust = 0.5)

1010 label2 <- textGrob("Count", vjust = 0.5)

1011 label3 <- textGrob("MSAS", vjust = 0.5)

1012 label4 <- textGrob("Townsend", vjust = 0.5)

1013 label5 <- textGrob("Unemployment", vjust = 0.5)

1014 label6 <- textGrob("No car", vjust = 0.5)

1015 label7 <- textGrob("Nonowner-occupied", vjust = 0.5)

1016 label8 <- textGrob("Overcrowded", vjust = 0.5)

1017

1018 windows()

1019 grid.arrange(arrangeGrob(ggplotGrob(p1),

1020 top = textGrob("Proportion", gp = gpar(fontsize = 18, fontfamily = "Times New Roman")),

1021 left = textGrob("Townsend", vjust = 0.5, hjust = 0.5, rot = 90,

1022 gp = gpar(fontsize = 18, fontfamily = "Times New Roman"))),

1023 arrangeGrob(ggplotGrob(p2), top = textGrob("Count", gp = gpar(fontsize = 18, fontfamily = "Times New Roman"))),

1024 arrangeGrob(rectGrob(gp=gpar(col=NA)), top = textGrob("MSAS", gp = gpar(fontsize = 18, fontfamily = "Times New

Roman"))),

1025 arrangeGrob(ggplotGrob(p3), left = textGrob("Unemployment", vjust = 0.5, hjust = 0.5, rot = 90, gp = gpar(

fontsize = 18, fontfamily = "Times New Roman"))),

1026 arrangeGrob(ggplotGrob(p4)),

1027 ggplotGrob(p5),

1028 arrangeGrob(ggplotGrob(p6), left = textGrob("No Car", vjust = 0.5, hjust = 0.5, rot = 90, gp = gpar(fontsize =

18, fontfamily = "Times New Roman"))),

1029 ggplotGrob(p7),

1030 ggplotGrob(p8),

1031 arrangeGrob(ggplotGrob(p9), left = textGrob("Non Owner-occupied", vjust = 0.5, hjust = 0.5, rot = 90, gp = gpar(

fontsize = 18, fontfamily = "Times New Roman"))),

1032 ggplotGrob(p10),
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1033 ggplotGrob(p11),

1034 arrangeGrob(ggplotGrob(p12), left = textGrob("Overcrowded", vjust = 0.5, hjust = 0.5, rot = 90, gp = gpar(

fontsize = 18, fontfamily = "Times New Roman"))),

1035 ggplotGrob(p13),

1036 ggplotGrob(p14),ncol = 3,

1037 left = textGrob("Centile of ranked p-values under null hypothesis", gp = gpar(fontsize = 24, fontface = "bold",

fontfamily = "Times New Roman"), rot = 90),

1038 bottom = textGrob("95% confidence intervals", gp = gpar(fontsize = 24, fontface = "bold", fontfamily = "Times

New Roman")))

1039

1040

1041 p1 <- zipplot(LinTownsendUnadj)

1042 p2 <- zipplot(LinTownsend)

1043 p3 <- zipplot(LinUnempPC)

1044 p4 <- zipplot(LinUnempCount)

1045 p5 <- zipplot(LinUnempMSAS)

1046 p6 <- zipplot(LinNoCarPC)

1047 p7 <- zipplot(LinNoCarCount)

1048 p8 <- zipplot(LinNoCarMSAS)

1049 p9 <- zipplot(LinNonOwnPC)

1050 p10 <- zipplot(LinNonOwnCount)

1051 p11 <- zipplot(LinNonOwnMSAS)

1052 p12 <- zipplot(LinOvercrowdPC)

1053 p13 <- zipplot(LinOvercrowdCount)

1054 p14 <- zipplot(LinOvercrowdMSAS)

1055

1056 label1 <- textGrob("Proportion", vjust = 0.5)

1057 label2 <- textGrob("Count", vjust = 0.5)

1058 label3 <- textGrob("MSAS", vjust = 0.5)

1059 label4 <- textGrob("Townsend", vjust = 0.5)
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1060 label5 <- textGrob("Unemployment", vjust = 0.5)

1061 label6 <- textGrob("No car", vjust = 0.5)

1062 label7 <- textGrob("Nonowner-occupied", vjust = 0.5)

1063 label8 <- textGrob("Overcrowded", vjust = 0.5)

1064

1065 windows()

1066 grid.arrange(arrangeGrob(ggplotGrob(p1),

1067 top = textGrob("Proportion", gp = gpar(fontsize = 18, fontfamily = "Times New Roman")),

1068 left = textGrob("Townsend", vjust = 0.5, hjust = 0.5, rot = 90,

1069 gp = gpar(fontsize = 18, fontfamily = "Times New Roman"))),

1070 arrangeGrob(ggplotGrob(p2), top = textGrob("Count", gp = gpar(fontsize = 18, fontfamily = "Times New Roman"))),

1071 arrangeGrob(rectGrob(gp=gpar(col=NA)), top = textGrob("MSAS", gp = gpar(fontsize = 18, fontfamily = "Times New

Roman"))),

1072 arrangeGrob(ggplotGrob(p3), left = textGrob("Unemployment", vjust = 0.5, hjust = 0.5, rot = 90, gp = gpar(

fontsize = 18, fontfamily = "Times New Roman"))),

1073 arrangeGrob(ggplotGrob(p4)),

1074 ggplotGrob(p5),

1075 arrangeGrob(ggplotGrob(p6), left = textGrob("No Car", vjust = 0.5, hjust = 0.5, rot = 90, gp = gpar(fontsize =

18, fontfamily = "Times New Roman"))),

1076 ggplotGrob(p7),

1077 ggplotGrob(p8),

1078 arrangeGrob(ggplotGrob(p9), left = textGrob("Non Owner-occupied", vjust = 0.5, hjust = 0.5, rot = 90, gp = gpar(

fontsize = 18, fontfamily = "Times New Roman"))),

1079 ggplotGrob(p10),

1080 ggplotGrob(p11),

1081 arrangeGrob(ggplotGrob(p12), left = textGrob("Overcrowded", vjust = 0.5, hjust = 0.5, rot = 90, gp = gpar(

fontsize = 18, fontfamily = "Times New Roman"))),

1082 ggplotGrob(p13),

1083 ggplotGrob(p14),ncol = 3,
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1084 left = textGrob("Centile of ranked p-values under null hypothesis", gp = gpar(fontsize = 24, fontface = "bold",

fontfamily = "Times New Roman"), rot = 90),

1085 bottom = textGrob("95% confidence intervals", gp = gpar(fontsize = 24, fontface = "bold", fontfamily = "Times

New Roman")))

1086

1087

1088 p1 <- zipplot(BLinTownsend)

1089 p2 <- zipplot(BLinUnempPC)

1090 p3 <- zipplot(BLinUnempCount)

1091 p4 <- zipplot(BLinNoCarPC)

1092 p5 <- zipplot(BLinNoCarCount)

1093 p6 <- zipplot(BLinNonOwnPC)

1094 p7 <- zipplot(BLinNonOwnCount)

1095 p8 <- zipplot(BLinOvercrowdPC)

1096 p9 <- zipplot(BLinOvercrowdCount)

1097

1098 grid.arrange(arrangeGrob(ggplotGrob(p1),

1099 top = textGrob("Proportion", gp = gpar(fontsize = 18, fontfamily = "Times New Roman")),

1100 left = textGrob("Townsend", vjust = 0.5, hjust = 0.5, rot = 90,

1101 gp = gpar(fontsize = 18, fontfamily = "Times New Roman"))),

1102 arrangeGrob(rectGrob(gp=gpar(col=NA)), top = textGrob("Count", gp = gpar(fontsize = 18, fontfamily = "Times New

Roman"))),

1103 arrangeGrob(ggplotGrob(p2), left = textGrob("Unemployment", vjust = 0.5, hjust = 0.5, rot = 90, gp = gpar(

fontsize = 18, fontfamily = "Times New Roman"))),

1104 ggplotGrob(p3),

1105 arrangeGrob(ggplotGrob(p4), left = textGrob("No Car", vjust = 0.5, hjust = 0.5, rot = 90, gp = gpar(fontsize =

18, fontfamily = "Times New Roman"))),

1106 ggplotGrob(p5),

1107 arrangeGrob(ggplotGrob(p6), left = textGrob("Non Owner-occupied", vjust = 0.5, hjust = 0.5, rot = 90, gp = gpar(

fontsize = 18, fontfamily = "Times New Roman"))),
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1108 ggplotGrob(p7),

1109 arrangeGrob(ggplotGrob(p8), left = textGrob("Overcrowded", vjust = 0.5, hjust = 0.5, rot = 90, gp = gpar(

fontsize = 18, fontfamily = "Times New Roman"))),

1110 ggplotGrob(p9),ncol = 2,

1111 left = textGrob("Centile of ranked p-values under null hypothesis", gp = gpar(fontsize = 24, fontface = "bold",

fontfamily = "Times New Roman"), rot = 90),

1112 bottom = textGrob("95% confidence intervals", gp = gpar(fontsize = 24, fontface = "bold", fontfamily = "Times

New Roman")))

1113

1114 ###########################

1115 ## Correlation Zip Plots ##

1116 ###########################

1117

1118 p1 <- zipplot(CorTownsend)

1119 p2 <- zipplot(CorUnempPC)

1120 p3 <- zipplot(CorUnempCount)

1121 p4 <- zipplot(CorNoCarPC)

1122 p5 <- zipplot(CorNoCarCount)

1123 p6 <- zipplot(CorNonOwnPC)

1124 p7 <- zipplot(CorNonOwnCount)

1125 p8 <- zipplot(CorOvercrowdPC)

1126 p9 <- zipplot(CorOvercrowdCount)

1127

1128 grid.arrange(arrangeGrob(ggplotGrob(p1),

1129 top = textGrob("Proportion", gp = gpar(fontsize = 18, fontfamily = "Times New Roman")),

1130 left = textGrob("Townsend", vjust = 0.5, hjust = 0.5, rot = 90,

1131 gp = gpar(fontsize = 18, fontfamily = "Times New Roman"))),

1132 arrangeGrob(rectGrob(gp=gpar(col=NA)), top = textGrob("Count", gp = gpar(fontsize = 18, fontfamily = "Times New

Roman"))),
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1133 arrangeGrob(ggplotGrob(p2), left = textGrob("Unemployment", vjust = 0.5, hjust = 0.5, rot = 90, gp = gpar(

fontsize = 18, fontfamily = "Times New Roman"))),

1134 ggplotGrob(p3),

1135 arrangeGrob(ggplotGrob(p4), left = textGrob("No Car", vjust = 0.5, hjust = 0.5, rot = 90, gp = gpar(fontsize =

18, fontfamily = "Times New Roman"))),

1136 ggplotGrob(p5),

1137 arrangeGrob(ggplotGrob(p6), left = textGrob("Non Owner-occupied", vjust = 0.5, hjust = 0.5, rot = 90, gp = gpar(

fontsize = 18, fontfamily = "Times New Roman"))),

1138 ggplotGrob(p7),

1139 arrangeGrob(ggplotGrob(p8), left = textGrob("Overcrowded", vjust = 0.5, hjust = 0.5, rot = 90, gp = gpar(

fontsize = 18, fontfamily = "Times New Roman"))),

1140 ggplotGrob(p9),ncol = 2,

1141 left = textGrob("Centile of ranked p-values under null hypothesis", gp = gpar(fontsize = 24, fontface = "bold",

fontfamily = "Times New Roman"), rot = 90),

1142 bottom = textGrob("95% confidence intervals", gp = gpar(fontsize = 24, fontface = "bold", fontfamily = "Times

New Roman")))

1143

1144 p1 <- zipplot(BCorTownsend)

1145 p2 <- zipplot(BCorUnempPC)

1146 p3 <- zipplot(BCorUnempCount)

1147 p4 <- zipplot(BCorNoCarPC)

1148 p5 <- zipplot(BCorNoCarCount)

1149 p6 <- zipplot(BCorNonOwnPC)

1150 p7 <- zipplot(BCorNonOwnCount)

1151 p8 <- zipplot(BCorOvercrowdPC)

1152 p9 <- zipplot(BCorOvercrowdCount)

1153

1154 grid.arrange(arrangeGrob(ggplotGrob(p1),

1155 top = textGrob("Proportion", gp = gpar(fontsize = 18, fontfamily = "Times New Roman")),

1156 left = textGrob("Townsend", vjust = 0.5, hjust = 0.5, rot = 90,
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1157 gp = gpar(fontsize = 18, fontfamily = "Times New Roman"))),

1158 arrangeGrob(rectGrob(gp=gpar(col=NA)), top = textGrob("Count", gp = gpar(fontsize = 18, fontfamily = "Times New

Roman"))),

1159 arrangeGrob(ggplotGrob(p2), left = textGrob("Unemployment", vjust = 0.5, hjust = 0.5, rot = 90, gp = gpar(

fontsize = 18, fontfamily = "Times New Roman"))),

1160 ggplotGrob(p3),

1161 arrangeGrob(ggplotGrob(p4), left = textGrob("No Car", vjust = 0.5, hjust = 0.5, rot = 90, gp = gpar(fontsize =

18, fontfamily = "Times New Roman"))),

1162 ggplotGrob(p5),

1163 arrangeGrob(ggplotGrob(p6), left = textGrob("Non Owner-occupied", vjust = 0.5, hjust = 0.5, rot = 90, gp = gpar(

fontsize = 18, fontfamily = "Times New Roman"))),

1164 ggplotGrob(p7),

1165 arrangeGrob(ggplotGrob(p8), left = textGrob("Overcrowded", vjust = 0.5, hjust = 0.5, rot = 90, gp = gpar(

fontsize = 18, fontfamily = "Times New Roman"))),

1166 ggplotGrob(p9),ncol = 2,

1167 left = textGrob("Centile of ranked p-values under null hypothesis", gp = gpar(fontsize = 24, fontface = "bold",

fontfamily = "Times New Roman"), rot = 90),

1168 bottom = textGrob("95% confidence intervals", gp = gpar(fontsize = 24, fontface = "bold", fontfamily = "Times

New Roman")))

LLTI.R
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Appendix D

Simulations of area–level data to investigate analyses of

‘population mixing’ and childhood leukaemia

1 ###############################################################

2 ## Accompanying code for paper: ’Is the association between ##

3 ## childhood leukaemia and population mixing an artefact of ##

4 ## focusing on ’clusters’ of cases? (Berrie et al., 2018) ##

5 ###############################################################

6

7 ###################

8 ## Load packages ##

9 ###################

10 rm(list=ls());

11 library(MASS); library(ggplot2); library(reshape);
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12 library(extrafont); library(gridExtra); library(grid); library(VGAM);

13 library(Matrix); library(boot); library(pscl);library(SuppDists);

14 library(distr);library(distrEx);library(stringr)

15

16 ############################################

17 ## Read in the Yorkshire & Humber dataset ##

18 ############################################

19

20 ## Omitted as dataset not publicly available

21

22 #############################################################

23 ## GenData Function (adapted from Ruscio & Kaczetow, 2008) ##

24 #############################################################

25

26 GenData <- function(Supp.Data=NULL,n.Fact=0,Max.Trials=5,Init.Mult=1,

27 seed=0,Emp=TRUE,Target.Corr=NULL,N=NULL,k=NULL) {

28 ################################################################################################

29 # Initialize variables and (if applicable) set random number seed (step 1)

30 if (Emp) {

31 N <- dim(Supp.Data)[1] # Number of cases

32 k <- dim(Supp.Data)[2] } # Number of variables

33 Data <- matrix(0,nrow=N,ncol=k) # Matrix to store the simulated data

34 Distributions <- matrix(0,nrow=N,ncol=k) # Matrix to store each variable?s score distribution

35 Iteration <- 0 # Iteration counter

36 Best.RMSR <- 1 # Lowest RMSR correlation

37 Trials.Without.Improvement <- 0 # Trial counter

38 if (seed != 0) set.seed(seed) # If user specified a nonzero seed, set it

39 ################################################################################################

40 # Generate distribution for each variable (step 2) ------------------------

41 if (Emp) for (i in 1:k) Distributions[,i] <- sort(sample(Supp.Data[,i],N,replace=TRUE)) else {
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42 Distributions[,1] <- sort(rnegbin(N,1300,1.6)) # 0 - 14 population

43 Distributions[,2] <- sort(rnegbin(N,26,0.7)) # Area

44 Distributions[,3] <- sort(rnegbin(N,500,1.8)) # ’Post’ in-migration

45 Distributions[,4] <- sort(rnegbin(N,6500,2.0)) } # Total population

46 # This implementation of GenData bootstraps each variable?s score distribution from a supplied data set.

47 # Users should modify this block of the program, as needed, to generate the desired distribution(s).

48 # For example, to sample from chi-square distributions with 2 df, replace the 2nd line in this block with:

49 # Distributions[,i] <- sort(rchisq(N,df=2))

50 # Or, one can drop the loop and use a series of commands that samples variables from specified populations:

51 # Distributions[,1] <- sort(rnorm(N,0,1)) # Standard normal distribution

52 # Distributions[,2] <- sort(runif(N,0,1)) # Uniform distribution ranging from 0 - 1

53 # Distributions[,3] <- sort(rlnorm(N,0,1)) # Log-normal distribution, log scale M = 0, SD = 1

54 # Distributions[,4] <- sort(rexp(N,rate=1)) # Exponential distribution with rate = 1

55 # Distributions[,5] <- sort(rpois(N,lambda=4)) # Poisson distribution with lambda = 4

56 # Distributions[,6] <- sort(rbinom(N,10,0.25) # Binominal distribution, size = 10 and p = 0.25

57 # Distributions[,7] <- sort(rbinom(N,2,0.25) # Binary distribution with p = 0.25

58 ################################################################################################################

59 # All of the commands shown above draw random samples from specified population distributions. Alternatively,

60 # one can reproduce distributions without sampling error. For example, working with a supplied data set, one can

61 # replace the 2nd line in this block with:

62 # Distributions[,i] <- Supp.Data[,i]

63 ################################################################################################################

64 # Alternatively, idealized distributions can be reproduced. For example, uniform quantiles can be created and

65 # used to generate data from common distributions:

66 # Uniform.Quantiles <- seq(from = 0, to = 1, length = (N + 2))[2:(N + 1)] # quantiles 0, 1 dropped

67 # Distributions[,1] <- qnorm(Uniform.Quantiles,0,1) # Standard normal distribution

68 # Distributions[,2] <- qunif(Uniform.Quantiles,0,1) # Uniform distribution ranging from 0 to 1

69 # Distributions[,3] <- qchisq(Uniform.Quantiles,df=2) # Chi-square distribution with 2 df

70 ################################################################################################################

71 # Note that when score distributions are generated from specified populations rather than bootstrapped from a
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72 # supplied dataset, the user must provide the target correlation matrix (see the next block). This is true

73 # regardless of whether the distributions incorporate sampling error.

74 ################################################################################################################

75 # Calculate and store a copy of the target correlation matrix (step 3) -----------------------------------------

76 if (Emp) Target.Corr <- cor(Supp.Data)

77 Intermediate.Corr <- Target.Corr

78 # This implementation of GenData calculates the target correlation matrix from a supplied dataset.

79 # Alternatively, the user can modify the program to generate data with user-defined sample size, number of

80 # variables and target correlation matrix by redefining the function as follows:

81 # GenData <- function(N,k,Target.Corr,n.Fact=0,Max.Trials=5,Init.Mult=1,seed=0)

82 # In this case, one would also remove the program lines that calculate N, k, and Target.Corr.

83 # To generate data in which variables are uncorrelated, one would remove the SsortT function from step 2

84 # and terminate the program before step 3 begins by returning the Distributions object as the dataset.

85 ################################################################################################################

86 # If number of latent factors was not specified, determine it through parallel analysis (step 4) ---------------

87 if (n.Fact == 0) {

88 Eigenvalues.Observed <- eigen(Intermediate.Corr)$values

89 Eigenvalues.Random <- matrix(0, nrow = 100, ncol = k)

90 Random.Data <- matrix(0, nrow = N, ncol = k)

91 for (i in 1:100) {

92 for (j in 1:k) Random.Data[,j] <- sample(Distributions[,j], size = N, replace = TRUE)

93 Eigenvalues.Random[i,] <- eigen(cor(Random.Data))$values }

94 Eigenvalues.Random <- apply(Eigenvalues.Random, 2, mean) # calculate mean eigenvalue for each factor

95 n.Fact <- max(1, sum(Eigenvalues.Observed > Eigenvalues.Random)) }

96 ################################################################################################################

97 # Generate random normal data for shared and unique components, initialize factor loadings (steps 5, 6) --------

98 Shared.Comp <- matrix(rnorm(N*n.Fact,0,1),nrow=N,ncol=n.Fact)

99 Unique.Comp <- matrix(rnorm(N*k,0,1),nrow=N,ncol=k)

100 Shared.Load <- matrix(0,nrow=k,ncol=n.Fact)

101 Unique.Load <- matrix(0,nrow=k,ncol=1)
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102 ################################################################################################################

103 # Begin loop that ends when specified number of iterations pass without improvement in RMSR correlation --------

104 while (Trials.Without.Improvement < Max.Trials) {

105 Iteration <- Iteration + 1

106 ############################################################################################################

107 # Calculate factor loadings and apply to reproduce desired correlations (steps 7, 8) -----------------------

108 Fact.Anal <- Factor.Analysis(Intermediate.Corr, Corr.Matrix = TRUE, n.Fact = n.Fact)

109 if (n.Fact == 1) Shared.Load[,1] <- Fact.Anal$loadings else

110 Shared.Load <- Fact.Anal$loadings

111 Shared.Load[Shared.Load > 1] <- 1

112 Shared.Load[Shared.Load < -1] <- -1

113 if (Shared.Load[1,1] < 0) Shared.Load <- Shared.Load * -1

114 Shared.Load.sq <- Shared.Load * Shared.Load

115 for (i in 1:k)

116 if (sum(Shared.Load.sq[i,]) < 1) Unique.Load[i,1] <- (1 - sum(Shared.Load.sq[i,])) else

117 Unique.Load[i,1] <- 0

118 Unique.Load <- sqrt(Unique.Load)

119 for (i in 1:k)

120 Data[,i] <- (Shared.Comp %*% t(Shared.Load))[,i] + Unique.Comp[,i] * Unique.Load[i,1]

121 # the %*% operator = matrix multiplication, and the t() function = transpose (both used again in step 13)

122 ############################################################################################################

123 # Replace normal with nonnormal distributions (step 9) -----------------------------------------------------

124 for (i in 1:k) {

125 Data <- Data[sort.list(Data[,i]),]

126 Data[,i] <- Distributions[,i] }

127 ############################################################################################################

128 # Calculate RMSR correlation, compare to lowest value, take appropriate action (steps 10, 11, 12) ----------

129 Reproduced.Corr <- cor(Data)

130 Resid.Corr <- Target.Corr - Reproduced.Corr

131 RMSR <- sqrt(sum(Resid.Corr[lower.tri(Resid.Corr)]*Resid.Corr[lower.tri(Resid.Corr)])/(0.5*(k*k-k)))



276
D

.S
IM

U
L

A
T

IO
N

S
O

F
A

R
E

A
–

L
E

V
E

L
D

A
TA

T
O

IN
V

E
S

T
IG

A
T

E
A

N
A

LY
S

E
S

O
F

‘P
O

P
U

L
A

T
IO

N
M

IX
IN

G
’

A
N

D
C

H
IL

D
H

O
O

D
L

E
U

K
A

E
M

IA

132 if (RMSR < Best.RMSR) {

133 Best.RMSR <- RMSR

134 Best.Corr <- Intermediate.Corr

135 Best.Res <- Resid.Corr

136 Intermediate.Corr <- Intermediate.Corr + Init.Mult * Resid.Corr

137 Trials.Without.Improvement <- 0 } else {

138 Trials.Without.Improvement <- Trials.Without.Improvement + 1

139 Current.Multiplier <- Init.Mult * .5 ^ Trials.Without.Improvement

140 Intermediate.Corr <- Best.Corr + Current.Multiplier * Best.Res }

141 } # end of the while loop

142 ################################################################################################################

143 # Construct the data set with the lowest RMSR correlation (step 13) --------------------------------------------

144 Fact.Anal <- Factor.Analysis(Best.Corr, Corr.Matrix = TRUE, n.Fact = n.Fact)

145 if (n.Fact == 1) Shared.Load[,1] <- Fact.Anal$loadings else

146 Shared.Load <- Fact.Anal$loadings

147 Shared.Load[Shared.Load > 1] <- 1

148 Shared.Load[Shared.Load < -1] <- -1

149 if (Shared.Load[1,1] < 0) Shared.Load <- Shared.Load * -1

150 Shared.Load.sq <- Shared.Load * Shared.Load

151 for (i in 1:k)

152 if (sum(Shared.Load.sq[i,]) < 1) Unique.Load[i,1] <- (1 - sum(Shared.Load.sq[i,])) else

153 Unique.Load[i,1] <- 0

154 Unique.Load <- sqrt(Unique.Load)

155 for (i in 1:k)

156 Data[,i] <- (Shared.Comp %*% t(Shared.Load))[,i] + Unique.Comp[,i] * Unique.Load[i,1]

157 Data <- apply(Data, 2, scale) # standardizes each variable in the matrix

158 for (i in 1:k) {

159 Data <- Data[sort.list(Data[,i]),]

160 Data[,i] <- Distributions[,i] }

161 ################################################################################################################
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162 # Report the results and return the simulated data set (step 14) -----------------------------------------------

163 Iteration <- Iteration - Max.Trials

164 #cat("\nN =",N,", k =",k,",",Iteration,"Iterations,",n.Fact,"Factors, RMSR r =",round(Best.RMSR,3),"\n")

165 return(Data) }

166

167 Factor.Analysis <- function(Data,Corr.Matrix=FALSE,Max.Iter=50,n.Fact=0) {

168 Data <- as.matrix(Data)

169 k <- dim(Data)[2]

170 if (n.Fact == 0) n.Fact <- k

171 if (!Corr.Matrix) Cor.Matrix <- cor(Data) else

172 Cor.Matrix <- Data

173 Criterion <- .001

174 Old.H2 <- rep(99, k)

175 H2 <- rep(0, k)

176 Change <- 1

177 Iter <- 0

178 Factor.Loadings <- matrix(nrow = k, ncol = n.Fact)

179 while ((Change >= Criterion) & (Iter < Max.Iter)) {

180 Iter <- Iter + 1

181 Eig <- eigen(Cor.Matrix)

182 L <- sqrt(Eig$values[1:n.Fact])

183 for (i in 1:n.Fact)

184 Factor.Loadings[,i] <- Eig$vectors[,i] * L[i]

185 for (i in 1:k)

186 H2[i] <- sum(Factor.Loadings[i,] * Factor.Loadings[i,])

187 Change <- max(abs(Old.H2 - H2))

188 Old.H2 <- H2

189 diag(Cor.Matrix) <- H2 }

190 if (n.Fact == k) n.Fact <- sum(Eig$values > 1)

191 return(list(loadings = Factor.Loadings[,1:n.Fact], factors = n.Fact)) }
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192

193 #####################################################

194 ## Function to generate Poisson distributed cases ##

195 #####################################################

196 NullSim <- function(N, id, x){

197 y <- rpois(N, x*setPR)

198 #y <- rbinom(N, x, setPR)

199 Dat <- data.frame(Id = id, Pop = x, Obs = y)

200 PR <- sum(Dat$Obs)/sum(Dat$Pop)

201 Dat <- cbind(Dat, Exp = Dat$Pop*PR)

202 return(Dat)

203 }

204

205 ######################################

206 ## Set-up target correlation matrix ##

207 ######################################

208 ObsCor <- matrix(c(1, -0.2961142, 0.8946106, 0.9707670,

209 -0.2961142, 1, -0.3227724, -0.2930421,

210 0.8946106, -0.3227724, 1, 0.9178227,

211 0.9707670, -0.2930421, 0.9178227, 1), nrow = 4, ncol = 4)

212

213 ###########################################################################

214 ## Simulate 10000 datasets using GenData function to create correlation ##

215 ## structure and approximate distributions of observed dataset ##

216 ## Use NullSim function to generate cases of childhood leukaemia based ##

217 ## solely on the population of 0-14 year olds. Perform sub-region and ##

218 ## region-wide methods on simulated datasets and store results. ##

219 ###########################################################################

220

221 ##########################################################################################
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222 ## Set-up simulation with: ##

223 ## (1). Seed (2.) Record start time (3). Set 5-year incidence rate of leukaemia ##

224 ## (4). Set N = number of electoral wards (5). Set k = number of variables to generate: ##

225 ## 0-14 population, area, ’post’ in-migration, total population ##

226 ## (6). Set Nsim = number of simulations (10000) ##

227 ##########################################################################################

228 set.seed(1123)

229 Beg <- Sys.time()

230 setPR <- 0.0002 # Set incidence rate for 5 year period - test against this

231 N <- 532 # Number of EWs to generate

232 k <- 4 # Number of variables: 0-14 population, area, ’post’ in-migration, total population

233 Nsim <- 10000

234

235 ###########################################################################################################

236 ## Create empty vectors to store estimates and p-values from each method performed on the 10000 datasets ##

237 ###########################################################################################################

238 ## Sub-region approach empty vectors

239 p.binom1 <- p.binom2 <- p.binom3 <- p.binom4 <- p.binom5 <- p.binom6 <- p.binom7 <- NULL

240 p.binom8 <- p.binom9 <- p.binom10 <- p.binom11 <- p.binom12 <- p.binom13 <- p.binom14 <- p.binom15 <- NULL

241 p.binom16 <- p.binom17 <- NULL

242

243 c.binom1 <- c.binom2 <- c.binom3 <- c.binom4 <- c.binom5 <- c.binom6 <- c.binom7 <- c.binom8 <- NULL

244 c.binom9 <- c.binom10 <- c.binom11 <- c.binom12 <- c.binom13 <- c.binom14 <- c.binom15 <- NULL

245 c.binom16 <- c.binom17 <- NULL

246

247 ## Region-wide approach empty vectors

248 p.PmD <- NULL

249 p.PmM <- NULL

250 p.PmB <- matrix(NA, nrow = Nsim, ncol = 2)

251 c.PmD <- NULL
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252 c.PmM <- NULL

253 c.PmB <- matrix(NA, nrow = Nsim, ncol = 2)

254

255 ######################################################################################################################

256 ## Initiate simulation using for loop. Each loop: Generates a dataset using GenData and the set up defined above, ##

257 ## certain restraints are placed on the data as explained in the paper, each method is performed on the dataset and ##

258 ## results are stored, this is repeated until 10000 datasets have been generated and analysed. ##

259 ######################################################################################################################

260 for (itn in 1:Nsim){

261 # Generate 4 variables using GenData, set seed N values apart, target correlation matrix = correlation matric from observed

data

262 # N = number of electoral wards to generate data for, k = number of variables to generate

263 YHsim <- data.frame(GenData(seed = (itn*N), Emp = FALSE, Target.Corr = ObsCor, N = N, k = k))

264 # Assign column names and IDs to generated variables

265 YHsim <- cbind(Id = 1:N, YHsim); names(YHsim) <- c("Id", "Pop", "Area", "InMig", "Tot_Pop")

266

267 # Replace lower than observed generated values with samples from values between minimum and median observed values

268 if (min(YHsim$Tot_Pop) < 450) YHsim$Tot_Pop[which(YHsim$Tot_Pop < 450)] <- sample(450:6000, 1, replace = TRUE)

269 if (min(YHsim$Pop) < 70) YHsim$Pop[which(YHsim$Pop < 70)] <- sample(70:1300, 1, replace = TRUE)

270 if (min(YHsim$Area) < 0.17) YHsim$Area[which(YHsim$Area < 0.17)] <- sample(0.17:16, 1, replace = TRUE)

271

272 PrePop <- YHsim[, 5] - YHsim[, 4]

273 if (min(PrePop) < 450) PrePop[which(PrePop < 450)] <- sample(450:3600, 1, replace = TRUE)

274

275 # Calculate ’pre’ in-migration proportions

276 PreInMig <- (YHsim[, 4]/PrePop)

277 YHsim <- cbind(YHsim, PreInMig = PreInMig, PreDen = PrePop/YHsim[, 3])

278

279 # Simulate Poisson distributed cases

280 OutPois <- NullSim(length(YHsim$Id), YHsim$Id, YHsim$Pop)
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281 SimPois <- cbind(OutPois, Den = YHsim$PreDen, Mig = YHsim$PreInMig)

282

283 #########################

284 ## Sub-region strategy ##

285 #########################

286 # Selection 1 - Low population density

287 SimTwnDO <- SimPois[order(SimPois$Den), ]

288 SimTwnD2 <- SimTwnDO[0:ceiling((1/2)*length(SimTwnDO[, 1])), ]

289 SimTwnD <- SimPois[sample(SimTwnD2[, 1], 16, replace = FALSE), ]

290

291 df1 <- data.frame(Cases = SimTwnD[, 3], NonCases = SimTwnD[, 2] - SimTwnD[, 3])

292 p.binom1[itn] <- binom.test(sum(df1[, 1]), sum(df1[, 1]) + sum(df1[, 2]), p = setPR)$p.value

293 c.binom1[itn] <- binom.test(sum(df1[, 1]), sum(df1[, 1]) + sum(df1[, 2]), p = setPR)$estimate

294

295 # Selection 2 - High inward-migration

296 SimTwnMO <- SimPois[order(-SimPois$Mig), ]

297 SimTwnM2 <- SimTwnMO[0:ceiling((1/2)*length(SimTwnMO[, 1])), ]

298 SimTwnM <- SimPois[sample(SimTwnM2[, 1], 16, replace = FALSE), ]

299

300 df2 <- data.frame(Cases = SimTwnM[, 3], NonCases = SimTwnM[, 2] - SimTwnM[, 3])

301 p.binom2[itn] <- binom.test(sum(df2[, 1]), sum(df2[, 1]) + sum(df2[, 2]), p = setPR)$p.value

302 c.binom2[itn] <- binom.test(sum(df2[, 1]), sum(df2[, 1]) + sum(df2[, 2]), p= setPR)$estimate

303

304 # Selection 3 - High incidence

305 SimObs <- cbind(SimPois, Inc = SimPois$Obs/SimPois$Exp)

306 SimTwnI1 <- SimObs[order(-SimObs$Inc), ]

307 SimTwnI2 <- SimTwnI1[0:ceiling((1/2)*length(SimTwnI1[, 1])), ]

308 SimTwnI <- SimObs[sample(SimTwnI2[, 1], 16, replace = FALSE), ]

309

310 df3 <- data.frame(Cases = SimTwnI[, 3], NonCases = SimTwnI[, 2] - SimTwnI[, 3])



282
D

.S
IM

U
L

A
T

IO
N

S
O

F
A

R
E

A
–

L
E

V
E

L
D

A
TA

T
O

IN
V

E
S

T
IG

A
T

E
A

N
A

LY
S

E
S

O
F

‘P
O

P
U

L
A

T
IO

N
M

IX
IN

G
’

A
N

D
C

H
IL

D
H

O
O

D
L

E
U

K
A

E
M

IA

311 p.binom3[itn] <- binom.test(sum(df3[, 1]), sum(df3[, 1]) + sum(df3[, 2]), p = setPR)$p.value

312 c.binom3[itn] <- binom.test(sum(df3[, 1]), sum(df3[, 1]) + sum(df3[, 2]), p = setPR)$estimate

313

314 # Selection 4 - Low population density and high inward-migration

315 OrdD4 <- SimObs[order(SimObs$Den), ]

316 SmpD4 <- OrdD4[1:ceiling(0.5*length(OrdD4[, 1])), ]

317 OrdM4 <- SmpD4[order(-SmpD4$Mig), ]

318 SmpM4 <- OrdM4[1:ceiling(0.5*length(OrdM4[, 1])), ]

319 Smp4 <- SimObs[sample(SmpM4[, 1], 16, replace = FALSE), ]

320

321 df4 <- data.frame(Cases = Smp4[, 3], NonCases = Smp4[, 2] - Smp4[, 3])

322 p.binom4[itn] <- binom.test(sum(df4[, 1]), sum(df4[, 1]) + sum(df4[, 2]), p = setPR)$p.value

323 c.binom4[itn] <- binom.test(sum(df4[, 1]), sum(df4[, 1]) + sum(df4[, 2]), p = setPR)$estimate

324

325 # Selection 5 - High inward-migration and low population density

326 OrdM5 <- SimObs[order(-SimObs$Mig), ]

327 SmpM5 <- OrdM5[1:ceiling(0.5*length(OrdM5[, 1])), ]

328 OrdD5 <- SmpM5[order(SmpM5$Den), ]

329 SmpD5 <- OrdD5[1:ceiling(0.5*length(OrdD5[, 1])), ]

330 Smp5 <- SimObs[sample(SmpD5[, 1], 16, replace = FALSE), ]

331

332 df5 <- data.frame(Cases = Smp5[, 3], NonCases = Smp5[, 2] - Smp5[, 3])

333 p.binom5[itn] <- binom.test(sum(df5[, 1]), sum(df5[, 1]) + sum(df5[, 2]), p = setPR)$p.value

334 c.binom5[itn] <- binom.test(sum(df5[, 1]), sum(df5[, 1]) + sum(df5[, 2]), p = setPR)$estimate

335

336 # Selection 6 - Low population density and high incidence

337 OrdD6 <- SimObs[order(SimObs$Den), ]

338 SmpD6 <- OrdD6[1:ceiling(0.5*length(OrdD6[, 1])), ]

339 OrdI6 <- SmpD6[order(-SmpD6$Inc), ]

340 SmpI6 <- OrdI6[1:ceiling(0.5*length(OrdI6[, 1])), ]
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341 Smp6 <- SimObs[sample(SmpI6[, 1], 16, replace = FALSE), ]

342

343 df6 <- data.frame(Cases = Smp6[, 3], NonCases = Smp6[, 2] - Smp6[, 3])

344 p.binom6[itn] <- binom.test(sum(df6[, 1]), sum(df6[, 1]) + sum(df6[, 2]), p = setPR)$p.value

345 c.binom6[itn] <- binom.test(sum(df6[, 1]), sum(df6[, 1]) + sum(df6[, 2]), p = setPR)$estimate

346

347 # Selection 7 - High incidence and low population density

348 OrdI7 <- SimObs[order(-SimObs$Inc), ]

349 SmpI7 <- OrdI7[1:ceiling(0.5*length(OrdI7[, 1])), ]

350 OrdD7 <- SmpI7[order(SmpI7$Den), ]

351 SmpD7 <- OrdD7[1:ceiling(0.5*length(OrdD7[, 1])), ]

352 Smp7 <- SimObs[sample(SmpD7[, 1], 16, replace = FALSE), ]

353

354 df7 <- data.frame(Cases = Smp7[, 3], NonCases = Smp7[, 2] - Smp7[, 3])

355 p.binom7[itn] <- binom.test(sum(df7[, 1]), sum(df7[, 1]) + sum(df7[, 2]), p = setPR)$p.value

356 c.binom7[itn] <- binom.test(sum(df7[, 1]), sum(df7[, 1]) + sum(df7[, 2]), p = setPR)$estimate

357

358 # Selection 8 - High inward-migration and high incidence

359 OrdM8 <- SimObs[order(-SimObs$Mig), ]

360 SmpM8 <- OrdM8[1:ceiling(0.5*length(OrdM8[, 1])), ]

361 OrdI8 <- SmpM8[order(-SmpM8$Inc), ]

362 SmpI8 <- OrdI8[1:ceiling(0.5*length(OrdI8[, 1])), ]

363 Smp8 <- SimObs[sample(SmpI8[, 1], 16, replace = FALSE), ]

364

365 df8 <- data.frame(Cases = Smp8[, 3], NonCases = Smp8[, 2] - Smp8[, 3])

366 p.binom8[itn] <- binom.test(sum(df8[, 1]), sum(df8[, 1]) + sum(df8[, 2]), p = setPR)$p.value

367 c.binom8[itn] <- binom.test(sum(df8[, 1]), sum(df8[, 1]) + sum(df8[, 2]), p = setPR)$estimate

368

369 # Selection 9 - High incidence and high inward-migration

370 OrdI9 <- SimObs[order(-SimObs$Inc), ]
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371 SmpI9 <- OrdI9[1:ceiling(0.5*length(OrdI9[, 1])), ]

372 OrdM9 <- SmpI9[order(-SmpI9$Mig), ]

373 SmpM9 <- OrdM9[1:ceiling(0.5*length(OrdM9[, 1])), ]

374 Smp9 <- SimObs[sample(SmpM9[, 1], 16, replace = FALSE), ]

375

376 df9 <- data.frame(Cases = Smp9[, 3], NonCases = Smp9[, 2] - Smp9[, 3])

377 p.binom9[itn] <- binom.test(sum(df9[, 1]), sum(df9[, 1]) + sum(df9[, 2]), p = setPR)$p.value

378 c.binom9[itn] <- binom.test(sum(df9[, 1]), sum(df9[, 1]) + sum(df9[, 2]), p= setPR)$estimate

379

380 # Selection 10 - Low population density, high inward-migration and high incidence

381 OrdD10 <- SimObs[order(SimObs$Den), ]

382 SmpD10 <- OrdD10[1:ceiling(0.5*length(OrdD10[, 1])), ]

383 OrdM10 <- SmpD10[order(-SmpD10$Mig), ]

384 SmpM10 <- OrdM10[1:ceiling(0.5*length(OrdM10[, 1])), ]

385 OrdI10 <- SmpM10[order(-SmpM10$Inc), ]

386 Smp10 <- OrdI10[1:ceiling(0.5*length(OrdI10[, 1])), ]

387 Smp10 <- SimObs[sample(Smp10[, 1], 16, replace = FALSE), ]

388

389 df10 <- data.frame(Cases = Smp10[, 3], NonCases = Smp10[, 2] - Smp10[, 3])

390 p.binom10[itn] <- binom.test(sum(df10[, 1]), sum(df10[, 1]) + sum(df10[, 2]), p = setPR)$p.value

391 c.binom10[itn] <- binom.test(sum(df10[, 1]), sum(df10[, 1]) + sum(df10[, 2]), p = setPR)$estimate

392

393 # Selection 11 - Low population density, high incidence and high inward-migration

394 OrdD11 <- SimObs[order(SimObs$Den), ]

395 SmpD11 <- OrdD11[1:ceiling(0.5*length(OrdD11[, 1])), ]

396 OrdI11 <- SmpD11[order(-SmpD11$Inc), ]

397 SmpI11 <- OrdI11[1:ceiling(0.5*length(OrdI11[, 1])), ]

398 OrdM11 <- SmpI11[order(-SmpI11$Mig), ]

399 Smp11 <- OrdM11[1:ceiling(0.5*length(OrdM11[, 1])), ]

400 Smp11 <- SimObs[sample(Smp11[, 1], 16, replace = FALSE), ]
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401

402 df11 <- data.frame(Cases = Smp11[, 3], NonCases = Smp11[, 2] - Smp11[, 3])

403 p.binom11[itn] <- binom.test(sum(df11[, 1]), sum(df11[, 1]) + sum(df11[, 2]), p = setPR)$p.value

404 c.binom11[itn] <- binom.test(sum(df11[, 1]), sum(df11[, 1]) + sum(df11[, 2]), p = setPR)$estimate

405

406 # Selection 12 - High inward-migration, low population density and high incidence

407 OrdM12 <- SimObs[order(-SimObs$Mig), ]

408 SmpM12 <- OrdM12[1:ceiling(0.5*length(OrdM12[, 1])), ]

409 OrdD12 <- SmpM12[order(SmpM12$Den), ]

410 SmpD12 <- OrdD12[1:ceiling(0.5*length(OrdD12[, 1])), ]

411 OrdI12 <- SmpD12[order(-SmpD12$Inc), ]

412 Smp12 <- OrdI12[1:ceiling(0.5*length(OrdI12[, 1])), ]

413 Smp12 <- SimObs[sample(Smp12[, 1], 16, replace = FALSE), ]

414

415 df12 <- data.frame(Cases = Smp12[, 3], NonCases = Smp12[, 2] - Smp12[, 3])

416 p.binom12[itn] <- binom.test(sum(df12[, 1]), sum(df12[, 1]) + sum(df12[, 2]), p = setPR)$p.value

417 c.binom12[itn] <- binom.test(sum(df12[, 1]), sum(df12[, 1]) + sum(df12[, 2]), p = setPR)$estimate

418

419 # Selection 13 - High inward-migration, high incidence and low population density

420 OrdM13 <- SimObs[order(-SimObs$Mig), ]

421 SmpM13 <- OrdM13[1:ceiling(0.5*length(OrdM13[, 1])), ]

422 OrdI13 <- SmpM13[order(-SmpM13$Inc), ]

423 SmpI13 <- OrdI13[1:ceiling(0.5*length(OrdI13[, 1])), ]

424 OrdD13 <- SmpI13[order(SmpI13$Den), ]

425 Smp13 <- OrdI13[1:ceiling(0.5*length(OrdD13[, 1])), ]

426 Smp13 <- SimObs[sample(Smp13[, 1], 16, replace = FALSE), ]

427

428 df13 <- data.frame(Cases = Smp13[, 3], NonCases = Smp13[, 2] - Smp13[, 3])

429 p.binom13[itn] <- binom.test(sum(df13[, 1]), sum(df13[, 1]) + sum(df13[, 2]), p = setPR)$p.value

430 c.binom13[itn] <- binom.test(sum(df13[, 1]), sum(df13[, 1]) + sum(df13[, 2]), p = setPR)$estimate
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431

432 # Selection 14 - High incidence, low population density and high inward-migration

433 OrdI14 <- SimObs[order(-SimObs$Inc), ]

434 SmpI14 <- OrdI14[1:ceiling(0.5*length(OrdI14[, 1])), ]

435 OrdD14 <- SmpI14[order(SmpI14$Den), ]

436 SmpD14 <- OrdD14[1:ceiling(0.5*length(OrdD14[, 1])), ]

437 OrdM14 <- SmpD14[order(-SmpD14$Mig), ]

438 Smp14 <- OrdM14[1:ceiling(0.5*length(OrdM14[, 1])), ]

439 Smp14 <- SimObs[sample(Smp14[, 1], 16, replace = FALSE), ]

440

441 df14 <- data.frame(Cases = Smp14[, 3], NonCases = Smp14[, 2] - Smp14[, 3])

442 p.binom14[itn] <- binom.test(sum(df14[, 1]), sum(df14[, 1]) + sum(df14[, 2]), p = setPR)$p.value

443 c.binom14[itn] <- binom.test(sum(df14[, 1]), sum(df14[, 1]) + sum(df14[, 2]), p = setPR)$estimate

444

445 # Selection 15 - High incidence, high inward-migration and low population density

446 OrdI15 <- SimObs[order(-SimObs$Inc), ]

447 SmpI15 <- OrdI15[1:ceiling(0.5*length(OrdI15[, 1])), ]

448 OrdM15 <- SmpI15[order(-SmpI15$Mig), ]

449 SmpM15 <- OrdM15[1:ceiling(0.5*length(OrdM15[, 1])), ]

450 OrdD15 <- SmpM15[order(SmpM15$Den), ]

451 Smp15 <- OrdD15[1:ceiling(0.5*length(OrdD15[, 1])), ]

452 Smp15 <- SimObs[sample(Smp15[, 1], 16, replace = FALSE), ]

453

454 df15 <- data.frame(Cases = Smp15[, 3], NonCases = Smp15[, 2] - Smp15[, 3])

455 p.binom15[itn] <- binom.test(sum(df15[, 1]), sum(df15[, 1]) + sum(df15[, 2]), p = setPR)$p.value

456 c.binom15[itn] <- binom.test(sum(df15[, 1]), sum(df15[, 1]) + sum(df15[, 2]), p = setPR)$estimate

457

458 # Selection 16 - Random selection of 16 wards

459 Smp16 <- SimObs[sample(SimObs[, 1], 16, replace = FALSE), ]

460
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461 df16 <- data.frame(Cases = Smp16[, 3], NonCases = Smp16[, 2] - Smp16[, 3])

462 p.binom16[itn] <- binom.test(sum(df16[, 1]), sum(df16[, 1]) + sum(df16[, 2]), p = setPR)$p.value

463 c.binom16[itn] <- binom.test(sum(df16[, 1]), sum(df16[, 1]) + sum(df16[, 2]), p = setPR)$estimate

464

465 # Selection 17 - Incidence less than average

466 SimObs <- cbind(SimPois, Inc = SimPois$Obs/SimPois$Exp)

467 SimTwnI17 <- SimObs[order(-SimObs$Inc), ]

468 SimTwnI17 <- SimTwnI17[ceiling((1/2)*length(SimTwnI17[, 1])):length(SimTwnI17[, 1]), ]

469 SimTwnLI <- SimObs[sample(SimTwnI17[, 1], 16, replace = FALSE), ]

470

471 df17 <- data.frame(Cases = SimTwnLI[, 3], NonCases = SimTwnLI[, 2] - SimTwnLI[, 3])

472 p.binom17[itn] <- binom.test(sum(df17[, 1]), sum(df17[, 1]) + sum(df17[, 2]), p = setPR)$p.value

473 c.binom17[itn] <- binom.test(sum(df17[, 1]), sum(df17[, 1]) + sum(df17[, 2]), p = setPR)$estimate

474

475 ##########################

476 ## Region-wide strategy ##

477 ##########################

478

479 # Create Poisson models

480 SimHalf <- SimPois[sample(SimPois[, 1], 266, replace = FALSE), ]

481 PmDtmp <- glm(Obs ~ offset(log(Pop)) + Den, data = SimHalf, family = poisson(link = log))

482 PmMtmp <- glm(Obs ~ offset(log(Pop)) + Mig, data = SimHalf, family = poisson(link = log))

483 PmBtmp <- glm(Obs ~ offset(log(Pop)) + Den + Mig, data = SimHalf, family = poisson(link = log))

484

485 # Store point estimates

486 c.PmD[itn] <- PmDtmp$coefficients[2]

487 c.PmM[itn] <- PmMtmp$coefficients[2]

488 c.PmB[itn, 1] <- PmBtmp$coefficients[2]

489 c.PmB[itn, 2] <- PmBtmp$coefficients[3]

490
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491 # Store p-values

492 p.PmD[itn] <- summary(PmDtmp)$coefficients[8]

493 p.PmM[itn] <- summary(PmMtmp)$coefficients[8]

494 p.PmB[itn, 1] <- summary(PmBtmp)$coefficients[11]

495 p.PmB[itn, 2] <- summary(PmBtmp)$coefficients[12]

496 }

497 End <- Sys.time()

498

499 ## Find length of time code took to run

500 End-Beg

501

502 ######################################################

503 ## Calculate Type I error rate of sub-region method ##

504 ######################################################

505

506 Bpdists <- data.frame(BE1 = p.binom1, BE2 = p.binom2, BE3 = p.binom3, BE4 = p.binom4, BE5 = p.binom5, BE6 = p.binom6, BE7 =

p.binom7, BE8 = p.binom8,

507 BE9 = p.binom9, BE10 = p.binom10, BE11 = p.binom11, BE12 = p.binom12, BE13 = p.binom13, BE14 = p.

binom14, BE15 = p.binom15, BE16 = p.binom16, BE17 = p.binom17)

508

509 ## Calculate percentages of critical p-values

510 B.1pPct <- c(100*do.call(c, lapply(c(0.05, 0.01, 0.001), function(x){sum(Bpdists$BE1 <= x)}))/itn)

511 B.2pPct <- c(100*do.call(c, lapply(c(0.05, 0.01, 0.001), function(x){sum(Bpdists$BE2 <= x)}))/itn)

512 B.3pPct <- c(100*do.call(c, lapply(c(0.05, 0.01, 0.001), function(x){sum(Bpdists$BE3 <= x)}))/itn)

513 B.4pPct <- c(100*do.call(c, lapply(c(0.05, 0.01, 0.001), function(x){sum(Bpdists$BE4 <= x)}))/itn)

514 B.5pPct <- c(100*do.call(c, lapply(c(0.05, 0.01, 0.001), function(x){sum(Bpdists$BE5 <= x)}))/itn)

515 B.6pPct <- c(100*do.call(c, lapply(c(0.05, 0.01, 0.001), function(x){sum(Bpdists$BE6 <= x)}))/itn)

516 B.7pPct <- c(100*do.call(c, lapply(c(0.05, 0.01, 0.001), function(x){sum(Bpdists$BE7 <= x)}))/itn)

517 B.8pPct <- c(100*do.call(c, lapply(c(0.05, 0.01, 0.001), function(x){sum(Bpdists$BE8 <= x)}))/itn)

518 B.9pPct <- c(100*do.call(c, lapply(c(0.05, 0.01, 0.001), function(x){sum(Bpdists$BE9 <= x)}))/itn)
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519 B.10pPct <- c(100*do.call(c, lapply(c(0.05, 0.01, 0.001), function(x){sum(Bpdists$BE10 <= x)}))/itn)

520 B.11pPct <- c(100*do.call(c, lapply(c(0.05, 0.01, 0.001), function(x){sum(Bpdists$BE11 <= x)}))/itn)

521 B.12pPct <- c(100*do.call(c, lapply(c(0.05, 0.01, 0.001), function(x){sum(Bpdists$BE12 <= x)}))/itn)

522 B.13pPct <- c(100*do.call(c, lapply(c(0.05, 0.01, 0.001), function(x){sum(Bpdists$BE13 <= x)}))/itn)

523 B.14pPct <- c(100*do.call(c, lapply(c(0.05, 0.01, 0.001), function(x){sum(Bpdists$BE14 <= x)}))/itn)

524 B.15pPct <- c(100*do.call(c, lapply(c(0.05, 0.01, 0.001), function(x){sum(Bpdists$BE15 <= x)}))/itn)

525 B.16pPct <- c(100*do.call(c, lapply(c(0.05, 0.01, 0.001), function(x){sum(Bpdists$BE16 <= x)}))/itn)

526 B.17pPct <- c(100*do.call(c, lapply(c(0.05, 0.01, 0.001), function(x){sum(Bpdists$BE17 <= x)}))/itn)

527

528 B.1pPct; B.2pPct; B.3pPct; B.4pPct; B.5pPct; B.6pPct; B.7pPct; B.8pPct; B.9pPct; B.10pPct; B.11pPct; B.12pPct; B.13pPct; B.14

pPct; B.15pPct; B.16pPct; B.17pPct

529

530 ## Store p-values of sub-region method

531 write.table(Bpdists, "p-distributions binomial test - all combinations.csv", sep = ",", col.names = TRUE)

532

533 #Bpdists <- read.csv("p-distributions binomial test - all combinations .csv", sep = ",", header = TRUE)

534

535 #########################################################

536 ## Calculate Type I error rates for region-wide method ##

537 #########################################################

538

539 Pct.p.PmM <- c(100*do.call(c, lapply(c(0.05, 0.01, 0.001), function(x){sum(p.PmM <= x)}))/itn)

540 Pct.p.PmD <- c(100*do.call(c, lapply(c(0.05, 0.01, 0.001), function(x){sum(p.PmD <= x)}))/itn)

541 Pct.p.PmB.M <- c(100*do.call(c, lapply(c(0.05, 0.01, 0.001), function(x){sum(p.PmB[, 2] <= x)}))/itn)

542 Pct.p.PmB.D <- c(100*do.call(c, lapply(c(0.05, 0.01, 0.001), function(x){sum(p.PmB[, 1] <= x)}))/itn)

543

544 Pct.p.PmD; Pct.p.PmM; Pct.p.PmB.D; Pct.p.PmB.M;

545

546 # Store p-values of region-wide method

547 pdists <- data.frame(PmM = p.PmM, PmD = p.PmD, PmBM = p.PmB[, 2], PmBD = p.PmB[, 1])
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548 write.table(pdists, "p-distributions regression - all combinations.csv", sep = ",", col.names = TRUE)

549

550 ## Plot the p-values for the region-wide method

551 pdists <- data.frame("Inward-migration" = pdists[, 1], "Population density" = pdists[, 2], "Inward-migration adj. Population

density" = pdists[, 3],

552 "Population density - adj. Inward-migration" = pdists[, 4])

553 pdists <- stack(pdists)

554 Xlab <- "p-values"; Ylab <- "Kernel Density"

555 Mlab <- "Distribution of p-values for the ’whole region’ selection strategy"; windows()

556 ggplot(pdists, aes(x = values)) + geom_density(aes(group = ind, colour = ind), size = 1.2) +

557 labs(title = Mlab, x = Xlab, y = Ylab, colour = NULL) +

558 scale_colour_manual(values = cbPal, name = "Covariate", label = c("Inward-Migration", "Population Density", "Inward-

Migration (adj. Population Density)",

559 "Population Density (adj. Inward-Migration)")) +

560 theme_bw() + theme(axis.title = element_text(family = "Times New Roman", size = 16),

561 plot.title = element_text(size = 16, family = "Times New Roman", face = "bold"), legend.position = "top"

,

562 legend.text = element_text(family = "Times New Roman", size = 12),

563 legend.title = element_text(family = "Times New Roman", size = 12, face = "bold"))

564

565

566 ## Plot the p-values for the sub-region method

567 Bpdists <- data.frame("High Inward-Migration" = Bpdists[, 1], "Low Population Density" = Bpdists[, 2], "High In-ward

Migration and Low Population Density" = Bpdists[, 3],

568 "High Incidence" = Bpdists[, 4])

569 Bpdists <- stack(Bpdists)

570 Xlab <- "p-values"; Ylab <- "Kernel Density"

571 Mlab <- "Distribution of p-values for the ’sub-sample’ selection strategy"; windows()

572 ggplot(Bpdists, aes(x = values)) + geom_density(aes(group = ind, colour = ind), size = 1.2) +

573 labs(title = Mlab, x = Xlab, y = Ylab, colour = NULL) +
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574 scale_colour_manual(values = cbPal, name = "Selection", label = c("High Inward-Migration", "Low Population Density", "High

Inward-Migration and Low Population Density",

575 "High Incidence")) +

576 theme_bw() + theme(axis.title = element_text(family = "Times New Roman", size = 16), plot.title = element_text(size = 16,

family = "Times New Roman", face = "bold"), legend.position = "top",

577 legend.text = element_text(family = "Times New Roman", size = 12), legend.title = element_text(family =

"Times New Roman", size = 12,face = "bold"))

578

579 ####################

580 ## Visualisation ##

581 ####################

582

583 ##############################################################################

584 ## Region-wide and sub-sample selection analyses performed on observed data ##

585 ##############################################################################

586

587 ## Omitted as observed dataset not publically available

588

589 Estimatesdf <- data.frame(Estimates = rbind(S1CI, S2CI, S3CI, S4CI, S5CI, S6CI, S7CI, S8CI,

590 S9CI, S10CI, S11CI, S12CI, S13CI, S14CI, S15CI),

591 Label = c("S1: D", "S2: M", "S3: I", "S4: DM", "S5: MD", "S6: DI", "S7: ID", "S8: MI",

592 "S9: IM", "S10: DMI", "S11: DIM", "S12: MDI", "S13: MID", "S14: IDM", "S15: IMD"),

593 Mod = c(rep("Sub-region - Simulated", 15)))

594

595 EstimatesdfSim <- Estimatesdf[1:15, ]

596 EstimatesdfSim$Label <- factor(EstimatesdfSim$Label, as.character(EstimatesdfSim$Label))

597

598 x11()

599 ggplot(EstimatesdfSim, aes(x = Label, y = Estimates.50., group = Mod)) +

600 geom_point() +
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601 geom_errorbar(data = EstimatesdfSim, aes(ymin = Estimates.2.5., ymax = Estimates.97.5.), width = .2)

602

603 Estimatesdf$Label <- factor(Estimatesdf$Label, unique(as.character(Estimatesdf$Label)))

604

605 #####################################################

606 ## Figure 3 of paper - showing simulated data only ##

607 #####################################################

608

609 x11()

610 ggplot(Estimatesdf, aes(x = Label, y = Estimates.50., group = Mod, colour = Mod)) +

611 geom_point(position = position_dodge(width = .5)) +

612 geom_errorbar(data = Estimatesdf, aes(ymin = Estimates.2.5., ymax = Estimates.97.5., colour = Mod), width = .5, position =

position_dodge(width = .5)) +

613 geom_hline(yintercept = 0.0002, size = 0.2, colour = "black", linetype = "dashed") + theme_bw() +

614 scale_y_continuous(name = "Estimate of Childhood Leukemia Incidence") + scale_x_discrete(name = "") +

615 annotate("text", label = "Simulated Null", x = 1.0, y = 0.000225, size = 5, colour = "black") +

616 theme(axis.text = element_text(colour = "black", size = 12, family = "Times New Roman"),

617 axis.title = element_text(colour = "black", size = 20, face = "bold", family = "Times New Roman"),

618 plot.title = element_text(size = 16, face = "bold", family = "Times New Roman"), legend.position = c(0.1, 0.95),

619 legend.text = element_text(size = 16, family = "Times New Roman"), axis.text.x = element_text(vjust = 0.5),

620 legend.key = element_blank(), legend.title = element_blank())

621

622 #############################################################################

623 ## Create dataframe of coefficients according to specific covariate values ##

624 #############################################################################

625

626 # Log scale

627 Coef10pc <- exp(0.1*MCI); Coef25pc <- exp(0.25*MCI); Coef50pc <- exp(0.5*MCI)

628 Coef10pcadj <- exp(0.1*BMCI); Coef25pcadj <- exp(0.25*BMCI); Coef50pcadj <- exp(0.5*BMCI)

629 Coef100d <- exp(100*DCI); Coef500d <- exp(500*DCI); Coef1000d <- exp(1000*DCI)
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630 Coef100dadj <- exp(100*BDCI); Coef500dadj <- exp(500*BDCI); Coef1000dadj <- exp(1000*BDCI)

631

632 ##################################################################################################################

633 ## Plot confidence intervals for 500 persons/km^2 increase in population density and 25% increase in population ##

634 ##################################################################################################################

635

636 Coeffsdf <- data.frame(Coeffs = rbind(Coef25pc, Coef25pcadj, Coef500d, Coef500dadj),

637 Label= c("Inward-Migration \n25%",

638 "Inward-Migration \n(adj. Population Density) - 25%",

639 "Population Density \n500 persons per km^2",

640 "Population Density \n(adj. Inward-Migration) \n500 persons per km^2"),

641 Mod=c(rep("Region-wide - Simulated", 4)))

642

643 Coeffsdf$Label <- factor(Coeffsdf$Label, levels = unique(Coeffsdf$Label))

644

645 #############################################

646 ## Figure 4 of paper - simulated data only ##

647 #############################################

648

649 x11()

650 ggplot(Coeffsdf,aes(x = Label, y = Coeffs.50., group = Mod, colour = Mod)) +

651 scale_y_continuous(name = "Risk Ratio", breaks = c(0, 1, 2, 4, 6, 8, 10)) +

652 geom_point(position = position_dodge(width = .5)) +

653 geom_errorbar(data = Coeffsdf, aes(ymin = Coeffs.2.5., ymax = Coeffs.97.5., colour = Mod), width = .5, position = position_

dodge(width = .5)) +

654 geom_hline(yintercept = 1.00, size = 0.2, colour = "black", linetype = "dashed") + theme_bw() +

655 scale_x_discrete(name = "") +

656 theme(legend.title = element_blank()) +

657 theme(axis.text = element_text(colour = "black", size=12, family = "Times New Roman"),

658 axis.title = element_text(size = 16, family = "Times New Roman", face = "bold"),
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659 plot.title = element_text(size = 16, face = "bold", family = "Times New Roman"), legend.position = "top",

660 legend.text = element_text(size = 12, family = "Times New Roman")) + theme(axis.text.x = element_text(angle = 90,

hjust = 1)) +

661 annotate("text", label = "Simulated Null", x = 0.45, y = 1.25, size = 5, colour = "black", family = "Times New Roman") +

662 coord_trans(y = "log10")

663

664 #########################################

665 ## Summary of significant coefficients ##

666 #########################################

667

668 ## Summary of proportion of inward-migration coefficient

669 summary(Sp.PmMSubHi)

670 summary(Sp.PmMSubLo)

671 summary(Sp.PmMtmpSub)

672

673 ## Summary of population density coefficient

674 summary(Sp.PmDSubHi)

675 summary(Sp.PmDSubLo)

676 summary(Sp.PmDtmpSub)

677

678 ## Summary of proportion of inward-migration coefficient (adjusted for population density)

679 summary(Sp.PmBMSubHi)

680 summary(Sp.PmBMSubLo)

681 summary(Sp.PmBMtmpSub)

682

683 ## Summary of proportion of inward-migration coefficient (adjusted for population density)

684 summary(Sp.PmDSubHi)

685 summary(Sp.PmDSubLo)

686 summary(Sp.PmBDtmpSub)

687
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688 ###

689 S.binomS1tmp <- matrix(NA, nrow = 10000, ncol = 2); S.binomS2tmp <- matrix(NA, nrow = 10000, ncol = 2)

690 S.binomS3tmp <- matrix(NA, nrow = 10000, ncol = 2); S.binomS4tmp <- matrix(NA, nrow = 10000, ncol = 2)

691 S.binomS5tmp <- matrix(NA, nrow = 10000, ncol = 2); S.binomS6tmp <- matrix(NA, nrow = 10000, ncol = 2)

692 S.binomS7tmp <- matrix(NA, nrow = 10000, ncol = 2); S.binomS8tmp <- matrix(NA, nrow = 10000, ncol = 2)

693 S.binomS9tmp <- matrix(NA, nrow = 10000, ncol = 2); S.binomS10tmp <- matrix(NA, nrow = 10000, ncol = 2)

694 S.binomS11tmp <- matrix(NA, nrow = 10000, ncol = 2); S.binomS12tmp <- matrix(NA, nrow = 10000, ncol = 2)

695 S.binomS13tmp <- matrix(NA, nrow = 10000, ncol = 2); S.binomS14tmp <- matrix(NA, nrow = 10000, ncol = 2)

696 S.binomS15tmp <- matrix(NA, nrow = 10000, ncol = 2);

697

698 S.binomS1tmp[, 1] <- c.binom1; S.binomS1tmp[, 2] <- p.binom1

699 S.binomS2tmp[, 1] <- c.binom2; S.binomS2tmp[, 2] <- p.binom2

700 S.binomS3tmp[, 1] <- c.binom3; S.binomS3tmp[, 2] <- p.binom3

701 S.binomS4tmp[, 1] <- c.binom4; S.binomS4tmp[, 2] <- p.binom4

702 S.binomS5tmp[, 1] <- c.binom5; S.binomS5tmp[, 2] <- p.binom5

703 S.binomS6tmp[, 1] <- c.binom6; S.binomS6tmp[, 2] <- p.binom6

704 S.binomS7tmp[, 1] <- c.binom7; S.binomS7tmp[, 2] <- p.binom7

705 S.binomS8tmp[, 1] <- c.binom8; S.binomS8tmp[, 2] <- p.binom8

706 S.binomS9tmp[, 1] <- c.binom9; S.binomS9tmp[, 2] <- p.binom9

707 S.binomS10tmp[, 1] <- c.binom10; S.binomS10tmp[, 2] <- p.binom10

708 S.binomS11tmp[, 1] <- c.binom11; S.binomS11tmp[, 2] <- p.binom11

709 S.binomS12tmp[, 1] <- c.binom12; S.binomS12tmp[, 2] <- p.binom12

710 S.binomS13tmp[, 1] <- c.binom13; S.binomS13tmp[, 2] <- p.binom13

711 S.binomS14tmp[, 1] <- c.binom14; S.binomS14tmp[, 2] <- p.binom14

712 S.binomS15tmp[, 1] <- c.binom15; S.binomS15tmp[, 2] <- p.binom15

713

714 S.binomS1tmpSub <- S.binomS1tmp[which(S.binomS1tmp[, 2] < 0.05), ]

715 S.binomS1SubHi <- S.binomS1tmpSub[which(S.binomS1tmpSub[, 1] > 0.0002), ]

716 S.binomS1SubLo <- S.binomS1tmpSub[which(S.binomS1tmpSub[, 1] < 0.0002), ]

717 S.binomS1Sub <- data.frame(cbind(-length(S.binomS1SubLo[, 1])/100, length(S.binomS1SubHi[, 1])/100))
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718

719 S.binomS2tmpSub <- S.binomS2tmp[which(S.binomS2tmp[, 2] < 0.05), ]

720 S.binomS2SubHi <- S.binomS2tmpSub[which(S.binomS2tmpSub[, 1] > 0.0002), ]

721 S.binomS2SubLo <- S.binomS2tmpSub[which(S.binomS2tmpSub[, 1] < 0.0002), ]

722 S.binomS2Sub <- data.frame(cbind(-length(S.binomS2SubLo[, 1])/100, length(S.binomS2SubHi[, 1])/100))

723

724 S.binomS3tmpSub <- S.binomS3tmp[which(S.binomS3tmp[, 2] < 0.05), ]

725 S.binomS3SubHi <- S.binomS3tmpSub[which(S.binomS3tmpSub[, 1] > 0.0002), ]

726 S.binomS3SubLo <- S.binomS3tmpSub[which(S.binomS3tmpSub[, 1] < 0.0002), ]

727 S.binomS3Sub <- data.frame(cbind(-length(S.binomS3SubLo[, 1])/100, length(S.binomS3SubHi[, 1])/100))

728

729 S.binomS4tmpSub <- S.binomS4tmp[which(S.binomS4tmp[, 2] < 0.05), ]

730 S.binomS4SubHi <- S.binomS4tmpSub[which(S.binomS4tmpSub[, 1] > 0.0002), ]

731 S.binomS4SubLo <- S.binomS4tmpSub[which(S.binomS4tmpSub[, 1] < 0.0002), ]

732 S.binomS4Sub <- data.frame(cbind(-length(S.binomS4SubLo[1])/100, length(S.binomS4SubHi[, 1])/100))

733

734 S.binomS5tmpSub <- S.binomS5tmp[which(S.binomS5tmp[, 2] < 0.05), ]

735 S.binomS5SubHi <- S.binomS5tmpSub[which(S.binomS5tmpSub[, 1] > 0.0002), ]

736 S.binomS5SubLo <- S.binomS5tmpSub[which(S.binomS5tmpSub[, 1] < 0.0002), ]

737 S.binomS5Sub <- data.frame(cbind(-length(S.binomS5SubLo[1])/100, length(S.binomS5SubHi[, 1])/100))

738

739 S.binomS6tmpSub <- S.binomS6tmp[which(S.binomS6tmp[, 2] < 0.05), ]

740 S.binomS6SubHi <- S.binomS6tmpSub[which(S.binomS6tmpSub[, 1] > 0.0002), ]

741 S.binomS6SubLo <- S.binomS6tmpSub[which(S.binomS6tmpSub[, 1] < 0.0002), ]

742 S.binomS6Sub <- data.frame(cbind(-length(S.binomS6SubLo[, 1])/100, length(S.binomS6SubHi[, 1])/100))

743

744 S.binomS7tmpSub <- S.binomS7tmp[which(S.binomS7tmp[, 2] < 0.05), ]

745 S.binomS7SubHi <- S.binomS7tmpSub[which(S.binomS7tmpSub[, 1] > 0.0002), ]

746 S.binomS7SubLo <- S.binomS7tmpSub[which(S.binomS7tmpSub[, 1] < 0.0002), ]

747 S.binomS7Sub <- data.frame(cbind(-length(S.binomS7SubLo[, 1])/100, length(S.binomS7SubHi[, 1])/100))
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748

749 S.binomS8tmpSub <- S.binomS8tmp[which(S.binomS8tmp[, 2] < 0.05), ]

750 S.binomS8SubHi <- S.binomS8tmpSub[which(S.binomS8tmpSub[, 1] > 0.0002), ]

751 S.binomS8SubLo <- S.binomS8tmpSub[which(S.binomS8tmpSub[, 1] < 0.0002), ]

752 S.binomS8Sub <- data.frame(cbind(-length(S.binomS8SubLo[1])/100, length(S.binomS8SubHi[, 1])/100))

753

754 S.binomS9tmpSub <- S.binomS9tmp[which(S.binomS9tmp[, 2] < 0.05), ]

755 S.binomS9SubHi <- S.binomS9tmpSub[which(S.binomS9tmpSub[, 1] > 0.0002), ]

756 S.binomS9SubLo <- S.binomS9tmpSub[which(S.binomS9tmpSub[, 1] < 0.0002), ]

757 S.binomS9Sub <- data.frame(cbind(-length(S.binomS9SubLo[, 1])/100, length(S.binomS9SubHi[, 1])/100))

758

759 S.binomS10tmpSub <- S.binomS10tmp[which(S.binomS10tmp[, 2] < 0.05), ]

760 S.binomS10SubHi <- S.binomS10tmpSub[which(S.binomS10tmpSub[, 1] > 0.0002), ]

761 S.binomS10SubLo <- S.binomS10tmpSub[which(S.binomS10tmpSub[, 1] < 0.0002), ]

762 S.binomS10Sub <- data.frame(cbind(-length(S.binomS10SubLo[, 1])/100, length(S.binomS10SubHi[, 1])/100))

763

764 S.binomS11tmpSub <- S.binomS11tmp[which(S.binomS11tmp[, 2] < 0.05), ]

765 S.binomS11SubHi <- S.binomS11tmpSub[which(S.binomS11tmpSub[, 1] > 0.0002), ]

766 S.binomS11SubLo <- S.binomS11tmpSub[which(S.binomS11tmpSub[, 1] < 0.0002), ]

767 S.binomS11Sub <- data.frame(cbind(-length(S.binomS11SubLo[, 1])/100, length(S.binomS11SubHi[, 1])/100))

768

769 S.binomS12tmpSub <- S.binomS12tmp[which(S.binomS12tmp[, 2] < 0.05), ]

770 S.binomS12SubHi <- S.binomS12tmpSub[which(S.binomS12tmpSub[, 1] > 0.0002), ]

771 S.binomS12SubLo <- S.binomS12tmpSub[which(S.binomS12tmpSub[, 1] < 0.0002), ]

772 S.binomS12Sub <- data.frame(cbind(-length(S.binomS12SubLo[, 1])/100, length(S.binomS12SubHi[, 1])/100))

773

774 S.binomS13tmpSub <- S.binomS13tmp[which(S.binomS13tmp[, 2] < 0.05), ]

775 S.binomS13SubHi <- S.binomS13tmpSub[which(S.binomS13tmpSub[, 1] > 0.0002), ]

776 S.binomS13SubLo <- S.binomS13tmpSub[which(S.binomS13tmpSub[, 1] < 0.0002), ]

777 S.binomS13Sub <- data.frame(cbind(-length(S.binomS13SubLo[, 1])/100, length(S.binomS13SubHi[, 1])/100))
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778

779 S.binomS14tmpSub <- S.binomS14tmp[which(S.binomS14tmp[, 2] < 0.05), ]

780 S.binomS14SubHi <- S.binomS14tmpSub[which(S.binomS14tmpSub[, 1] > 0.0002), ]

781 S.binomS14SubLo <- S.binomS14tmpSub[which(S.binomS14tmpSub[, 1] < 0.0002), ]

782 S.binomS14Sub <- data.frame(cbind(-length(S.binomS14SubLo[, 1])/100, length(S.binomS14SubHi[, 1])/100))

783

784 S.binomS15tmpSub <- S.binomS15tmp[which(S.binomS15tmp[, 2] < 0.05), ]

785 S.binomS15SubHi <- S.binomS15tmpSub[which(S.binomS15tmpSub[, 1] > 0.0002), ]

786 S.binomS15SubLo <- S.binomS15tmpSub[which(S.binomS15tmpSub[, 1] < 0.0002), ]

787 S.binomS15Sub <- data.frame(cbind(-length(S.binomS15SubLo[, 1])/100, length(S.binomS15SubHi[, 1])/100))

788

789 Sdfbinom <- data.frame(Significant = rbind(S.binomS1Sub, S.binomS2Sub, S.binomS3Sub, S.binomS4Sub, S.binomS5Sub, S.

binomS6Sub, S.binomS7Sub, S.binomS8Sub,

790 S.binomS9Sub, S.binomS10Sub, S.binomS11Sub, S.binomS12Sub, S.binomS13Sub, S.

binomS14Sub, S.binomS15Sub),

791 Label = c("S1: D", "S2: M", "S3: I", "S4: DM", "S5: MD", "S6: DI", "S7: ID", "S8: MI",

792 "S9: IM","S10: DMI","S11: DIM","S12: MDI","S13: MID","S14: IDM","S15: IMD"),

793 Mod = rep("Sub-region - Simulated", 15))

794

795 Simdf <- data.frame(rbind(Sdfbinom, Sdf))

796 Simdf$Label <- factor(Simdf$Label, as.character(Simdf$Label))

797

798 Sim <- Simdf

799

800 #write.table(Simdf, "Simulated data - significant results.csv", sep = ",", col.names = TRUE)

801 #Sim <- read.table("Simulated data - significant results.csv", sep = ",", header = TRUE)

802 Sim$Label <- factor(Sim$Label, as.character(Sim$Label))

803

804 Int <- rbind(Sim)

805 DenU <- -Int[16, 1]
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806 DenL <- -Int[16, 2]

807

808 Int[16, 1] <- DenL

809 Int[16, 2] <- DenU

810

811 DenMU <- -Int[18, 1]

812 DenML <- -Int[18, 2]

813

814 Int[18, 1] <- DenML

815 Int[18, 2] <- DenMU

816

817 Int$Label <- c("S1: D", "S2: M", "S3: I", "S4: DM", "S5: MD", "S6: DI", "S7: ID", "S8: MI",

818 "S9: IM", "S10: DMI", "S11: DIM", "S12: MDI", "S13: MID", "S14: IDM", "S15: IMD",

819 "Low Population Density", "High Inward-Migration", "Low Population Density (adj. Inward-Migration)",

820 "High Inward-Migration (adj. Population Density)")

821

822 Int$Label <- factor(Int$Label, unique(as.character(Int$Label)))

823

824 ############################################

825 ## Figure 2 of Paper - observed data only ##

826 ############################################

827

828 x11()

829 ggplot(Int)+

830 geom_bar(aes(Label, Significant.X1, fill = Mod, alpha = Mod, order = Mod), position = "dodge", stat = "identity") +

831 geom_bar(aes(Label, Significant.X2, fill = Mod, alpha = Mod, order = Mod), position = "dodge", stat = "identity") +

832 geom_hline(yintercept = 0, size = 0.5) + scale_fill_manual(values = c("#08306b", "#a50f15", "#fc9272", "#6baed6")) +

833 theme_bw() + scale_alpha_manual(values = c(0.8, 0.8, 0.8, 0.8)) +

834 theme(axis.text = element_text(colour = "black", size = 12, family = "Times New Roman"),

835 axis.title = element_text(colour = "black", size = 20, face = "bold", family = "Times New Roman"),
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836 plot.title = element_text(size = 16, face = "bold", family = "Times New Roman"), legend.position = c(0.2, 0.95),

837 legend.text = element_text(size = 16, family = "Times New Roman"), axis.text.x = element_text(vjust = 0.5),

838 legend.key = element_blank()) +

839 coord_cartesian(ylim = c(-15, 100)) + scale_x_discrete(name = "", labels = function(Method)

840 str_wrap(c("S1: D", "S2: M", "S3: I", "S4: DM", "S5: MD", "S6: DI", "S7: ID", "S8: MI",

841 "S9: IM", "S10: DMI", "S11: DIM", "S12: MDI", "S13: MID", "S14: IDM", "S15: IMD",

842 "Low Population Density", "High Inward-Migration", "Low Population Density (adj. Inward-Migration)",

843 "High Inward-Migration (adj. Population Density)"), width=10))+

844 scale_y_continuous(name = "Percentage of statistically significant results",

845 breaks = c(-15, -10, -5, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95,

100)) +

846 theme(legend.title = element_blank(),legend.background = element_rect(fill = NA, colour = NA)) + guides(fill = guide_legend

(nrow = 2, byrow = TRUE)) +

847 annotate("text", label = "Positive coefficients\nabove zero", x = 1.5, y = 10, size = 5, colour = "black") +

848 annotate("text", label = "Negative coefficients\nbelow zero", x = 1.5, y = -10, size = 5, colour = "black")

PopMix.R
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30 Textor J, Zander Bvd, Gilthorpe M, Liśkiewicz M, Ellison G. Robust causal inference
using directed acyclic graphs: The R package ’dagitty’. International Journal of
Epidemiology. 2016;45(6):1887–1894.

31 Rohrer J. Thinking clearly about correlations and causation: graphical causal models
for observational data. Advances in Methods and Practices in Psychological Science.
2018;1(1):27–42.

32 Tu YK, Gunnell D, Gilthorpe M. Simpson’s Paradox, Lord’s Paradox, and Suppression
Effects are the same phenomenon–the reversal paradox. Emerging Themes in
Epidemiology. 2008;5(2).

33 Hernán M, Hernández– Díaz S, Robins J. A structural approach to selection bias.
Epidemiology. 2004;15(5):615–625.

34 Simpson E. The interpretation of interaction in contingency tables. Journal of the
Royal Statistical Society, Series B. 1951;13:238–241.

35 Pearl J. Comment: Understanding Simpson’s Paradox. The American Statistician.
2014;68(1):8–13.

36 Lindley D, Novick M. The Role of Exchangeability in Inference. The Annals of
Statistics. 1981;9:45–58.

37 Rubin D. Causal inference using potential outcomes. Journal of the American
Statistical Association. 2005;100(469):322–331.

38 Morgan S, Winship C. Counterfactuals and Causal Inference: Methods and Principles
for Social Research. 2nd Edition. Cambridge, UK: Cambridge University Press; 2015.

https://doi.org/10.1007/s10654-019-00494-6
https://doi.org/10.1007/s10654-019-00494-6


304 BIBLIOGRAPHY

39 Buchner H, Rehfuess E. Cooking and season as risk factors for acute lower respiratory
infections in African children: A cross-sectional multi-country analysis. PLoS One.
2015;10(6).

40 Filippidis F, Laverty A, Hone T, Been J, Millett C. Association of Cigarette Price
Differentials With Infant Mortality in 23 European Union Countries. JAMA Pediatrics.
2017;171(11):1100–1106.

41 Oswald W, Stewart A, Kramer M, Endeshaw T, Zerihun M, Melak B, et al.
Association of community sanitation usage with soil-transmitted helminth infections
among school-aged children in Amhara Region, Ethiopia. Parasites and Vectors.
2017;10(1):91.

42 Yau R, Casteel C, Nocera M, Bishop S, Peek– Asa C. Does employee resistance
during a robbery increase the risk of customer injury? Journal of Occupational and
Environmental Medicine. 2015;57(4):417–420.

43 Loney T, Nagelkerke N. The individualistic fallacy, ecological studies and instrumental
variables: a causal interpretation. Emerging Themes in Epidemiology. 2014;11(18):1–
6.

44 Smith H. Some thoughts on causation as it relates to demography and population
studies. Population and Development Review. 2003;29(3):459–469.

45 Schisterman E, Perkins N, Mumford S, Ahrens K, Mitchell E. Collinearity and
causal diagrams –a lesson on the importance of model specification. Epidemiology.
2017;28(1):47–53.

46 Shmueli G. To explain or to predict? Statistical Science. 2010;25:289–310.

47 Arnold K, Davies V, de Kamps M, Tennant P, Mbotwa J, Gilthorpe M. Generalised
linear models for prognosis and intervention: Theory, practice, and implications for
machine learning. arXiv e-prints. 2019;p. arXiv:1906.01461.

48 Hernán M, Hsu J, Healy B. A second chance to get causal inference right: a
classification of data science tasks. CHANCE. 2019;32(1):42–49.

49 Westreich D, Greenland S. The table 2 fallacy: Presenting and interpreting confounder
and modifier coefficients. American Journal of Epidemiology. 2013;177:292–298.

50 Green M, Popham F. Interpreting mutual adjustment for multiple indicators of
socioeconomic position without committing mutual adjustment fallacies. BMC Public
Health. 2019;19(10).

51 Morris T, White I, Crowther M. Using simulation studies to evaluate statistical
methods. Statistics in Medicine. 2019;38:2074–2102.



BIBLIOGRAPHY 305

52 Gilbert N, Troitzsch K. Simulation for the Social Scientist. Maidenhead, Berkshire:
Open University Press; 2005.

53 Arnold K, Harrison W, Heppenstall A, Gilthorpe M. DAG-informed regression
modelling, agent-based modelling and microsimulation modelling: a critical
comparison of methods for causal inference. International Journal of Epidemiology.
2019;1(48):243–253.

54 Hallgren K. Conducting Simulation Studies in the R Programming Environment.
Tutorials in quantitative methods for psychology. 2013;9(2):43–60.

55 Steyer R, Mayer A, Fiege C. Causal inference on total, direct, and indirect effects.
In: Michalos A, editor. Encyclopedia of Quality of Life Research. Dordrecht: Springer
Science and Business Media; 2013. p. 123–134.

56 Elwert F, Winship C. Endogenous selection bias: the problem of conditioning on a
collider variable. Annual Review of Sociology. 2014;40(1):31–53.

57 Susser E, Bresnahan M. Origins of Epidemiology. Annals of the New York Academy
of the Sciences. 2001;954(1):6–18.

58 Charlton J. ONS data: other health sources. In: Leadbeter D, editor. Harnessing Official
Statistics. Oxford: Radcliffe Medical Press; 2000. p. 35–50.

59 Boslaugh S. An introduction to secondary data analysis. New York: Cambridge
University Press; 2007.

60 Fraser L, Norman P. The use of routine data in health research: An example from
palliative care. SAGE Research Methods Cases. 2017;.

61 Norman P, Marshall A, Lomax N. Data analytics: on the cusp of using new sources?
Radical Statistics. 2017;115:19–30.

62 De Mauro A, Greco M, Grimaldi M. A formal definition of big data based on its
essential features. Library Review. 2016;65(3):122–135.

63 Barenboim E, Pearl J. Causal inference and the data–fusion problem. Proceedings
of the National Academy of the Sciences of the United States of America.
2016;113(27):7345–7352.

64 Brunsdon C, Fotheringham A, Charlton M. Geographically weighted regression: A
method for exploring spatial nonstationarity. Geographical Analysis. 1996;28(4):281–
298.

65 Templ M, Meindl B, Kowarik A, Dupriez O. Simulation of Synthetic Complex Data:
The R Package simPop. Journal of Statistical Software, Articles. 2017;79(10):1–38.



306 BIBLIOGRAPHY

66 Burton A, Altman D, Royston P, Holder R. The design of simulation studies in medical
statistics. Statistics in Medicine. 2006;9(4):4279–4292.

67 Maxwell S, Cole D. Tips for writing (and reading) methodological articles.
Psychological Bulletin. 1995;118(2):193–198.

68 Sofrygin O, van der Laan M. simcausal R package: Conducting transparent and
reproducible simulation studies of causal effect estimation with complex longitudinal
data. Journal of Statistical Software. 2017;81(2):1–47.

69 Wright S. On the nature of size factors. Genetics. 1918;3:367–374.

70 Wright S. The relative importance of heredity and environment in determining the
piebald pattern of guinea pigs. Proceedings of the National Academy of Sciences of
the United States of America. 1920;6(6):320–332.

71 Wright S. Correlation and causation. Journal of Agricultural Research. 1921;20:557–
585.

72 Chen B, Pearl J, Kline R. Graphical tools for linear path models. Psychometrika.
2018;.

73 Wright S. The method of path coefficients. Annals of Mathematical Statistics.
1934;5:161–215.

74 Textor J, Hardt J, Knüppel S. DAGitty: A Graphical Tool for Analyzing Causal
Diagrams. Epidemiology. 2011;22(5):745–751.

75 Ruscio J, Kaczetow W. Simulating Multivariate Nonnormal Data Using an Iterative
Algorithm. Multivariate Behavioural Research. 2008;43(3):355–381.

76 Pearl J. Causality: models, reasoning and inference Vol. 1. Cambridge, UK: Cambridge
University Press; 2000.

77 Shacter R. A graph–based inference method for conditional independence. In:
D’Ambrosio B, Smets P, Bonissone P, editors. Uncertainty Proceedings 1991. San
Francisco (CA): Morgan Kaufmann; 1991. p. 353–360.

78 Shacter R. An ordered examination of influence diagrams. Networks. 1990;20(0):535–
563.

79 Shacter R. Probabilistic inference and influence diagrams. Operations Research.
1988;36(4):589–604.

80 Geiger D, Verma T, Pearl J. Identifying independence in Bayesian Networks.
Networks. 1990;20(0):507–534.



BIBLIOGRAPHY 307

81 Berrie L, Arnold K, Textor J, Gilthorpe M, Tennant P. Depicting deterministic
relationships in directed acyclic graphs (DAGs): An aid for analysing and interpreting
compositional data. In: Book of Abstracts of the 8th International Workshop on
Compositional Data Analysis (CoDaWork2019): Terrassa, 3–8 June, 2019. Universitat
Politècnica de Catalunya–BarcelonaTECH; 2019. .

82 Hernán M. Does water kill? A call for less casual causal inferences. Annals of
Epidemiology. 2016;26:674–680.

83 Levy Y. Cancer clusters and the Poisson distributions; 2019. [Online;
accessed 23-July-2019]. https://www.r-bloggers.com/
cancer-clusters-and-the-poisson-distributions/.

84 Flowerdew R, Manley D, Sabel C. Neighbourhood effects on health: Does it matter
where you draw the boundaries? Social Science and Medicine. 2008;66(6):1241–1255.

85 Openshaw S. The modifiable areal unit problem. Norwich: Geo Books: Farrar, Strous
and Giroux; 1983.

86 Cheng T, Adepeju M. Modifiable temporal unit problem (MTUP) and its effect on
space–time cluster detection. PLOS ONE. 2014;9(6):1–10.

87 Wainer H. The most dangerous equation. American Scientist. 2007;65:249–256.

88 Tu YK, Gilthorpe M. The most dangerous hospital or the most dangerous equation?
BMC health services research. 2007;7(1):185–189.

89 Archie J. Mathematic coupling of data: a common source of error. Annals of Surgery.
1981;193(3):296–303.

90 Pearson K. Mathematical Contributions to the Theory of Evolution.–On a Form of
Spurious Correlation Which May Arise When Indices Are Used in the Measurement
of Organs. Proceedings of the Royal Society of London. 1896;60:489–498. Available
from: http://www.jstor.org/stable/115879.

91 Tu YK, Law G, Ellison G, Gilthorpe M. Ratio index variables or ANCOVA? Fisher’s
cats revisited. Pharmaceutical Statistics. 2010;9(1):77–83.

92 Dunlap W, Dietz J, Cortina J. The spurious correlation of ratios that have common
variables: a Monte Carlo examination of Pearson’s formula. The Journal of General
Psychology. 1997;124(2):182–193.

93 Andersen B. Methodological errors in medical research. London: Blackwell; 1990.

94 Neyman J. Lectures and Conferences on Mathematical Statistics and Probability. 2nd
Edition. Washington: US Department of Agriculture; 1952.

https://www.r-bloggers.com/cancer-clusters-and-the-poisson-distributions/
https://www.r-bloggers.com/cancer-clusters-and-the-poisson-distributions/
http://www.jstor.org/stable/115879


308 BIBLIOGRAPHY

95 McCullagh P, JA N. Chapter 6: Log-linear models. London and New York: Chapman
and Hall/CRC Monographs on Statistics & Applied Probability; 1989.

96 Evans I, Jones K. Ratios and closed number systems. In: Wrigley N, Bennett R, editors.
Quantitative Geography: A British View. London, Boston and Henley: Routledge and
Kegan Paul; 1981. p. 123–134.

97 Fisher R. The Analysis of Covariance Method for the Relation between a Part and the
Whole. Biometrika. 1947;3(2):65–68.

98 R Core Team. R: A Language and Environment for Statistical Computing. Vienna,
Austria; 2018. Available from: https://www.R-project.org/.

99 Kronmal R. Spurious correlation and the fallacy of the ratio standard revisited. Journal
of the Royal Statistical Society Series A. 1993;156(3):379–392.

100 Snow G. TeachingDemos: Demonstrations for Teaching and Learning; 2016.
R package version 2.10. https://CRAN.R-project.org/package=
TeachingDemos.

101 Firebaugh G, Gibbs J. User’s guide to ratio variables. American Sociological Review.
1985;50(5):713–722.

102 Lloyd C, Pawlowsky-Glahn V, Egozcue J. Compositional Data Analysis in Population
Studies. Annals of the Association of American Geographers. 2012;102(6):1251–
1266.

103 Kanaroglou P. On spurious correlation in geographical problems. Canadian
Geographer / Le Géographe canadien. 1996;40:194–202.

104 Firebaugh G, Gibbs J. Using ratio variables to control for population size. Sociological
Methods and Research. 1986;15(1–2):101–117.

105 Bambra C, Norman P. What is the association between sickness absence, mortality
and morbidity? Health and Place. 2006;12(4):728–733.

106 Townsend P, Phillimore P, Beattie A. Health and Deprivation: Inequality and the North.
London, UK: Croom Helm; 1988.

107 Bentham G, Eimermann J, Haynes R, Lovett R, Brainard J. Limiting long-term illness
and its associations with mortality and indicators of social deprivation. Journal of
Epidemiology and Community Health. 1995;49:S57–S64.

108 Shouls S, Congdon P, Curtis S. Modelling inequality in reported long term illness in
the UK: combining individual and area characteristics. Journal of Epidemiology and
Community Health. 1996;50:366–376.

https://www.R-project.org/
https://CRAN.R-project.org/package=TeachingDemos
https://CRAN.R-project.org/package=TeachingDemos


BIBLIOGRAPHY 309

109 Haynes R, Bentham G, Lovett A, Eimermann J. Effect of labour market conditions on
reporting of limiting long term illness and permanent sickness in England and Wales.
Journal of Epidemiology and Community Health. 1997;51(3):283–288.

110 Folwell K. Single measures of deprivation. Journal of Epidemiology and Community
Health. 1995;49:S51–S56.

111 Carstairs V, Morris R. Deprivation and health in Scotland. Aberdeen, UK: Aberdeen
University Press; 1991.

112 Jarman B. Identification of underprivileged areas. British Medical Journal.
1983;286:1705–1708.

113 Saul C, Payne N. How does the prevalence of specific morbidities compare with
measures of socio-economic status at small area level? Journal of Public Health
Medicine. 1999;21(3):340–347.

114 Senior M. Area Variations in Self-perceived Limiting Long Term Illness in Britain,
1991: Is the Welsh Experience Exceptional? Regional Studies. 1998;32(3):265–280.

115 Möller H, Haigh F, Harwood C, Kinsella T, Pope D. Rising unemployment and
increasing spatial inequalities in England: further extension of the North-South divide.
Journal of Public Health. 2013;35(2):313–321.

116 O’Reilly D, Stevenson M. The two communities in Northern Ireland: deprivation and
ill health. Journal of Public Health Medicine. 1998;20(2):161–168.

117 Huff N, Macleod C, Ebdon D, Phillips D, Davies L, Nicholson A. Inequalities
in mortality and illness in Trent NHS region. Journal of Public Health Medicine.
1999;21(1):81–87.

118 Haynes R, Gale S. Mortality, long–term illness and deprivation in rural and
metropolitan wards of England and Wales. Health and Place. 1999;5:301–312.

119 Boyle P, Gatrell A, Duke– Williams O. The effect on morbidity of variability
in deprivation and population stability in England and Wales: an investigation at
small–area level. Social Science and Medicine. 1999;49:791–799.

120 Barnett S, Roderick P, Martin D, Diamond I. A multilevel analysis of the effects of
rurality and social deprivation on premature limiting long term illness. Journal of
Epidemiology and Community Health. 2001;55:44–51.

121 Lancaster G, Green M. Deprivation, ill–health and ecological fallacy. Journal of the
Royal Statistical Society: Series A (Statistics in Society). 2002;164(2):263–278.



310 BIBLIOGRAPHY

122 Levin K. Urban–rural differences in self–reported limiting long–term illness in
Scotland. Journal of Public Health. 2003;25(4):295–302.

123 Jordan H, Roderick P, Martin D. The Index of Multiple Deprivation 2000 and
accessibility effects on health. Journal of Epidemiology and Community Health.
2004;58(3):250–257.

124 Cockings S, Martin D. Zone design for environment and health studies using
pre–aggregated data. Social Science and Medicine. 2005;60(12):2729–2742.

125 Adams J, Holland L, White M. Changes in socioeconomic inequalities in census
measures in England and Wales, 1991–2001. Journal of Epidemiology and Community
Health. 2006;60(3):218–220.

126 Cairns J, Curtis S, Bambra C. Defying deprivation: a cross–sectional analysis of area
level health resilience in England. Health and Place. 2012;18(4):928–933.

127 Zhang X, Cook P, Lisboa P, Jarman I, Bellis M. The effects of deprivation and relative
deprivation on self–reported morbidity in England: an area–level ecological study.
International Journal of Health Geographics. 2012;18(4):928–933.

128 Aitchison J. The statistical analysis of compositional data. Journal of the Royal
Statistical Society: Series B. 1982;44(2):139–177.

129 Lindén A, Mäntyniemi S. Using the negative binomial distribution to model
overdispersion in ecological count data. Ecology. 2011;92(7):1414–1421.

130 Berrie L, Ellison G, Norman P, Baxter P, Feltbower R, Tennant P, et al. The association
between childhood leukemia and population mixing: An artifact of focusing on
clusters? Epidemiology. 2019;30:75–82.

131 Kinlen L, Peto J. Re: The association between childhood leukemia and population
mixing: An artifact of focusing on clusters? Epidemiology. 2019;30.

132 Berrie L, Ellison G, Norman P, Baxter P, Feltbower R, Tennant P, et al. Authors’
Respond: Re: The association between childhood leukemia and population mixing:
An artifact of focusing on clusters? Epidemiology. 2019;30.

133 Omidakhsh N, Hansen J, Ritz B, Olsen J, Heck J. High parental occupational
social contact and risk of childhood hematopoietic, brain and bone cancers. Cancer
Epidemiology. 2019;62(1):1–8.

134 Kahneman D. Thinking, fast and slow. New York: Farrar, Strous and Giroux; 2011.

135 Bunch K, Vincent T, Black R, Pearce M, McNally R, McKinney P, et al. Updated
investigations of cancer excesses in individuals born or resident in the vicinity of
Sellafield and Dounreay. British Journal of Cancer. 2014;111(9):1814–1823.



BIBLIOGRAPHY 311

136 McNally R, James P, Blakey K, Basta N, Norman P, Pearce M. Can changes
in population mixing and socio–economic deprivation in Cumbria, England explain
changes in cancer incidence around Sellafield? Spatial and Spatio-temporal
Epidemiology. 2017;21:23–36.

137 Kinlen L. Evidence for an infective cause of childhood leukaemia: comparison
of a Scottish New Town with nuclear reprocessing sites in Britain. Lancet.
1988;332(8624):1323–1327.

138 Lupatsch J, Kuehni C, Niggli F, Ammann R, Egger M, Spycher B. Population mixing
and the risk of childhood leukaemia in Switzerland: a census–based cohort study.
European Journal of Epidemiology. 2015;30(12):1287–1298.

139 Imam A, Fairley L, Parslow R, Feltbower R. Population mixing and incidence of
cancers in adolescents and young adults between 1990 and 2013 in Yorkshire, UK.
Cancer Causes and Control. 2016;27(10):1287–1292.

140 COMARE. Seventeenth Report. Further consideration of the incidence of cancers
around the nuclear installations at Sellafield and Dounreay. Committee on Medical
Aspects of Radiation in the Environment (COMARE); 2016.

141 Law G, Feltbower R, Taylor J, Parslow R, Gilthorpe M, Boyle P, et al. What do
epidemiologists mean by ‘population mixing’? Pediatric Blood Cancer. 2008;51:155–
160.

142 Greaves M. Infection, immune responses and the aetiology of childhood leukaemia.
Nature Reviews, Cancer. 2006;6(3):193–203.

143 Wiemels J. Persepectives on the causes of childhood leukaemia. Chemico-Biological
Interactions. 2012;196(3):59–67.

144 Rudant J, Lightfoot T, Urayama K, Petridou E, Dockerty J, Magnani C, et al.
Childhood acute lymphoblastic leukemia and indicators of early immune stimulation:
a Childhood Leukemia International Consortium study. American Journal of
Epidemiology. 2015;181(8):549–562.

145 Parslow R, Law G, Feltbower R, Kinsey S, McKinney P. Population mixing, childhood
leukaemia, CNS tumours and other childhood cancers in Yorkshire. European Journal
of Cancer. 2002;38(15):2033–2050.

146 Clark B, Ferketich A, Fisher J, Ruymann F, Harris R, Wilkins J. Evidence of population
mixing based on the geographical distribution of childhood leukemia in Ohio. Pediatric
Blood Cancer. 2007;49:797–802.



312 BIBLIOGRAPHY

147 Kinlen L, Clarke K, Hudson C. Evidence from population mixing in British New
Towns 1946–85 of an infective basis for childhood leukaemia. Lancet. 1990;336:577–
582.

148 Kinlen L, Hudson C, Stiller C. Contacts between adults as evidence for an
infective origin of childhood leukaemia: an explanation for the excess near nuclear
establishments in West Berkshire? British Journal of Cancer. 1991;64(3):549–554.

149 Langford I. Childhood leukaemia mortality and population change in England and
Wales 1969–73. Social Science and Medicine. 1991;33(4):435–440.

150 Kinlen L, Dickson M, Stiller C. Childhood leukaemia and non-Hodgkin’s lymphoma
near larage rural construction sites, with a comparison with Sellafield nuclear site.
British Medical Journal. 1995;310:763–768.

151 Labar B, Rudan I, Ivankovic D, Biloglav Z, Mrsic M, Strnad M, et al. Haematological
malignancies in childhood in Croatia: Investigating the theories of depleted uranium,
chemical plant damage and ‘population mixing’. European Journal of Epidemiology.
2004;19(1):55–60.

152 Kinlen L. Childhood leukaemia and ordnance factories in west Cumbria during the
Second World War. British Journal of Cancer. 2006;95(1):102–106.

153 Kinlen L. An examination, with a meta–analysis, of studies of childhood leukaemia in
relation to population mixing. British Journal of Cancer. 2012;107(7):1163–1168.

154 Taylor J, Law G, Boyle P, Feng Z, Gilthorpe M, Parslow R, et al. Does population
mixing measure infectious exposure in children at the community level? European
Journal of Epidemiology. 2008;23:593–600.

155 Cromley R, Cromley E. Choropleth map legend design for visualizing community
health disparities. Internatinal Journal of Health Geographics. 2009;8(52):1–11.

156 Stiller C, Ardanaz E, Pannelli F, EA M, Can A. Geographical patterns of childhood
cancer incidence in Europe, 1988–1997. Report from the Automated Childhood
Cancer Information System project; 2006.

157 Laplanche A, de Vathaire F. Leukaemia mortality in French communes (administrative
units) with a large and rapid population increase. British Journal of Cancer.
1994;69(1):110–113.

158 Conover W. Practical Nonparametric Statistics. New York: John Wiley and Sons;
1971.



BIBLIOGRAPHY 313

159 Stiller C, Boyle P. Effect of population mixing and socioeconomic status in England
and Wales, 1979–85, on lymphoblastic leukaemia in children. British Medical Journal.
1996;313:1297–1300.

160 Dickinson H, Parker L. Quantifying the effect of population mixing on childhood
leukaemia risk: the Seascale cluster. British Journal of Cancer. 1999;81(1):144–151.

161 Koushik A, King W, McLaughlin J. An ecologic study of childhood leukemia and
population mixing in Ontario, Canada. Cancer Causes and Control. 2001;12(6):483–
490.

162 Boutou O, Guizard AV, Slama R, Pottier D, Spira A. Population mixing and leukaemia
in young people around the La Hague nuclear waste reprocessing plant. British Journal
of Cancer. 2002;87(7):740–745.

163 Dickinson H, Hammal D, Bithell J, Parker L. Population mixing and childhood
leukaemia and non–Hodgkin’s lymphoma in census wards in England and Wales,
1966–87. British Journal of Cancer. 2002;86:1411–1413.

164 Nyari T, Kajtar P, Bartyik K, Thurzo L, Parker L. Childhood Acute Lymphoblastic
Leukaemia in Relation to Population Mixing Around the Time of Birth in South
Hungary. Pediatric Blood Cancer. 2006;47:944–948.

165 Adelman A, Groves F, O’Rourke K, Sinha D, Hulsey T, Lawson A, et al. Residential
mobility and risk of childhood acute lymphoblastic leukaemia: an ecological study.
British Journal of Cancer. 2007;97(1):140–144.

166 Stiller C, Kroll M, Boyle P, Feng Z. Population mixing, socioeconomic status and
incidence of childhood acute lymphoblastic leukaemia in England and Wales: analysis
by census ward. British Journal of Cancer. 2008;98(5):1006–1011.

167 Norman P, Berrie L, Exeter D. Introductory Guide: Calculating a deprivation index
using census data. Australian Population Studies. 2019;3(1):30–39.

168 Rehkopf D, Glymour M, Osypuk T. The consistency assumption for causal inference
in social epidemiology: when is a rose not a rose? Current Epidemiology Report.
2016;3(1):63–71.

169 Fink D, Keyes K, Cerdá M. Social determinants of population health: a systems
sciences approach. Current Epidemiology Report. 2016;3(1):98–105.

170 Ní Bhrolcháin M, Dyson T. On causation in demography: issues and illustrations.
Population and Development Review. 2007;33(1):1–36.

171 Westreich D, Cole S. Invited Commentary: Positivity in practice. American Journal of
Epidemiology. 2010;171(6):674–677.



314 BIBLIOGRAPHY

172 Messer L, Oakes J, Mason S. Effects of socioeconomic and racial residential
segregation on preterm birth: a cautionary tale of structural confounding. American
Journal of Epidemiology. 2010;171(6):664–673.

173 VanderWeele T. Ignorability and stability assumptions in neighborhood effects
research. Statistics in Medicine. 2008;27(11):1934–1943.

174 Papadogeorgou G, Mealli F, Zigler C. Causal inference for interfering units with
cluster and population level treatment allocation programs. arXiv e-prints. 2017;p.
arXiv:1711.01280.

175 Glass T, Goodman S, Hernán M, Samet J. Causal inference in public health. Annual
Review of Public Health. 2013;34:61–75.


	Acknowledgements
	Abstract
	Contents
	List of figures
	List of tables
	Abbreviations
	1 Introduction
	1.1 Working definition of health geography
	1.2 Thesis roadmap

	2 Background
	2.1 Causal Inference
	2.2 An example of where DAGs have been used to understand bias
	2.3 DAGs and area–level problems
	2.4 Causal inference and statistical associations
	2.5 The difference between causal inference and prediction modelling
	2.6 The mutual adjustment fallacy
	2.7 Simulation Studies
	2.8 Data Generation
	2.9 Conclusion
	2.10 Definitions

	3 Simulation in Health Geography
	3.1 Introduction
	3.2 A brief history of epidemiology/health geography data
	3.3 Where to begin: the data generating process
	3.4 What are simulation studies?
	3.5 Simulation studies informed by observed data
	3.6 What is the purpose of simulation for assessing statistical methods?
	3.7 Foreseeing criticisms of simulation
	3.8 How complex should the simulation be?
	3.9 How to simulate?
	3.10 Specific health geography simulation considerations
	3.11 Assessing simulation results
	3.12 A step–by–step walk–through of the simulation set–up

	4 Mathematical Coupling and Causal Inference
	4.1 Introduction
	4.2 Methods
	4.3 Discussion
	4.4 In the context of the thesis

	5 Limiting Long-Term Illness and Deprivation
	5.1 Introduction
	5.2 Background
	5.3 Methods
	5.4 Results
	5.5 Discussion
	5.6 Conclusion
	5.7 In the context of the thesis

	6 Population Mixing and Childhood Leukaemia
	6.1 Introduction
	6.2 Background to the `population mixing hypothesis'
	6.3 Methods
	6.4 Results
	6.5 Discussion
	6.6 Conclusion
	6.7 In the context of the thesis

	7 Conclusion
	7.1 Overview
	7.2 Findings
	7.3 Contributions to the Literature
	7.4 Limitations
	7.5 Future Work
	7.6 Summary

	Appendices
	Appendix A Simulations illustrating the Modifiable Areal Unit Problem
	Appendix B Simulations illustrating mathematical coupling due to a common denominator
	Appendix C Simulations of area–level data to investigate analyses of limiting long–term illness and deprivation
	Appendix D Simulations of area–level data to investigate analyses of `population mixing' and childhood leukaemia
	References

