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Abstract

In this thesis we initiate the study of the proof complexity of modal resolution systems. To our

knowledge there is no previous work on the proof complexity of such systems. This is in sharp

contrast to the situation for propositional logic where resolution is the most studied proof system, in

part due to its close links with satisfiability solving.

We focus primarily on the proof complexity of two recently proposed modal resolution systems

of Nalon, Hustadt and Dixon, one of which forms the basis of an existing modal theorem prover.

We begin by showing that not only are these two proof systems equivalent in terms of their proof

complexity, they are also equivalent to a number of natural refinements. We further compare the

proof complexity of these systems with an older, more complicated modal resolution system of

Enjalbert and Fariñas del Cerro, showing that this older system p-simulates the more streamlined

calculi.

We then investigate lower bound techniques for modal resolution. Here we see that whilst some

propositional lower bound techniques (i.e. feasible interpolation) can be lifted to the modal setting

with only minor modifications, other propositional techniques (i.e. size-width) fail completely. We

further develop a new lower bound technique for modal resolution using Prover-Delayer games.

This technique can be used to establish “genuine” modal lower bounds (i.e lower bounds on the

number of modal inferences) for the size of tree-like modal resolution proofs. We apply this

technique to a new family of modal formulas, called the modal pigeonhole principle to demonstrate

that these formulas require exponential size modal resolution proofs.

Finally we compare the proof complexity of tree-like modal resolution systems with that

of modal Frege systems, using our modal pigeonhole principle to obtain a “genuinely” modal

separation between them.
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ĒC , 100

MPHPm
n , 113

CL, 10

Ce, 101

C(x,x′), 36, 39

EC , 35

L, 10

LC−, 100

MPHPmn , 114

Meb, 103

XC+, 20

XC−, 20

XC±, 20

XC , 20

wff , 10

µ-accessible, 25

πe, 108

σ, 37, 101

K-Res systems, 50

Kn, 12

Kn Frege, 120

Kn-Res, 21

Kmc-Res, 38

K+
mc-Res, 48

Kml-Res, 24

K+
ml-Res, 48

Kmp-Res, 28

K+
mp-Res, 48

K+
n -Res, 48

RKn, 53

RKn resolution, 57

RKn weakening, 56

`P , 14

a-negatively modally reachable, 40

a-positively modally reachable, 40

e-reachable, 35

w(C), 75, 76

w(φ), 76

1-start form, 41

circuit, 63

circuit size, 63

clique, 71

clique-colour formulas, 71

colouring, 71

conjunctive normal form (CNF), 10

context markers, 35, 100

Craig interpolation, 63

dag, 15

vii



dag-like, 15

distance, 23

extension variable, 20

feasible interpolation, 63, 64

formula for computing resolvents (FFCR), 54

Frege system, 15

global satisfiability, 13

Kripke model, 13

literal, 10

literal clause, 19, 22, 25, 34, 46

local satisfiability, 13

master modality, 19

modal clique-colour formulas, 72

modal context, 35

modal contexts of extension variables, 40

modal contexts of SNF clauses, 40

modal decision tree, 107

modal depth, 12

modal feasible interpolation, 66

modal level, 23

modal monotone feasible interpolation, 66

modal pigeonhole principle, 113

modal position, 25

modally inferable, 103

model, 11

monotone feasible interpolation, 64

multimodal logic, 11

negation normal form (NNF), 19

negative modal clause, 19, 22, 25, 34, 46

non-unifiable, 37

path, 41

pigeonhole principle, 113

pointed model, 13

polynomial equivalent (p-equivalent, ≡p), 17

polynomial simulates (p-simulates, ≤p), 17

positive modal clause, 19, 22, 25, 34, 46

positive separated normal form (SNF+), 47

positive separated normal form with modal con-

texts (SNF+
mc), 47

positive separated normal form with modal levels

(SNF+
ml), 47

positive separated normal form with modal posi-

tions (SNF+
mp), 46

proof length, 16

proof size, 16

proof system, 14

propositionally reachable, 36, 39

provable, 14

query set, 103

reachable, 19

resolution, 15

rules for computing resolvents (RFCR), 52

satisfiability, 11, 13

separated normal form (SNF), 19

separated normal form with modal contexts (SNFmc),

34

separated normal form with modal levels (SNFml),

22

separated normal form with modal positions (SNFmp),

25

set of modally inferable clauses, 103

start clause, 19

subformula, 12

tree-like, 15

unifiable, 37, 43

unification function, 37, 101

unrefined K-Res systems, 46

well formed formulas, 10

width, 75, 76

viii



Chapter 1

Introduction

Proof complexity In proof complexity we analyse how efficiently theorems can be proved in a

given proof system, where generally speaking, a proof system is a finite collection of inference

rules and axioms. The main goal in proof complexity is to obtain lower bounds on the minimum

proof size required to prove a given theorem in a specified proof system. In particular we generally

wish to prove superpolynomial lower bounds on the minimum proof size required for a given family

of formulas in a given proof system.

This is analogous to the field of computational complexity where the minimal running times of

algorithms are analysed. Indeed one motivation for the study of proof complexity is its strong links

to computational complexity. The systematic study of proof complexity was begun by Cook and

Reckhow in [27] who formally defined a proof system to be a function which can efficiently verify

whether or not a string of symbols is a proof of a given logical formula. Using this definition the

class of languages which can be decided by a non-deterministic algorithm in polynomial-time (NP)

can be naturally defined in terms of proof complexity. As a result the study of proof complexity can

be regarded as a potential route to solving the famous P vs NP question [23].

Another major motivation for the study of proof complexity is its strong links with satisfiability

(SAT) solving [69]. The SAT problem is the problem of determining whether or not a given

propositional formula has a satisfying assignment. This problem is known to be NP-complete

[25, 57], hence every decision problem in NP can be reduced to a SAT problem. As a result SAT

solvers have important applications throughout numerous areas of computer science [60].

A SAT solver is essentially an implementation of some propositional proof system. As such

whenever a solver is applied to some unsatisfiable formula the trace of its run corresponds to a

proof of unsatisfiabilty in its underlying proof system. Hence a theoretical understanding of SAT

solving can be gained through studying the proof complexity of such proof systems. Most modern

1
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SAT solvers use conflict-driven clause learning (CDCL) as their underlying algorithm, it is well

known that the trace of any such algorithm is essentially a resolution refutation [7, 74]. Hence

through studying the proof complexity of propositional resolution we can gain a deeper theoretical

understanding of state of the art SAT solvers.

Propositional resolution [20, 31, 80] is a very simple proof system, consisting of only a single

rule. This rule works by eliminating contradictory literals (i.e. propositional variables and their

negations) from a formula. Crucially, repeatedly applying this rule to an unsatisfiable formula will

always result in the derivation of a contradiction.

Given its simplicity it is perhaps unsurprising that from a proof complexity perspective, propo-

sitional resolution is considered to be a rather weak proof system. As such many superpolynomial

proof size lower bounds have been shown for propositional resolution (cf. [85]). This is in direct

contrast to many stronger propositional proof systems, in particular Frege systems, for which the

existence of superpolynomial lower bounds is a major open problem [21].

Proof complexity of modal logics Whilst the vast majority of work within proof complexity has

been focused on propositional logic, more recently an increasing amount of work has been carried

out on the proof complexity of more stronger logics, including many non-classical logics [15]. In

particular there has been a large amount of work concerning the proof complexity of quantified

boolean formulas (QBF) [10,11], which has accompanied significant improvements in QBF solving

[48, 58]. Whereas the non-classical logics whose proof complexity has recently begun to be studied

include intuitionist logic [44, 46, 50], superintuitionistic logic [49], default logic [16] and modal

logic [45, 46, 49]).

Modal logics have wide ranging applications throughout computer science. For example

description logics, which are known to be syntactic variants of modal logics [81], are used in

knowledge representation [30, 43]. Other areas where modal logics have been successfully applied

include game theory [59], knowledge compilation [17, 35] and formal verification [24, 72].

As a result of these varied applications many propositional proof systems, including Frege

[46, 49], sequent calculus [87], tableaux systems [38] and resolution systems [63, 64], have been

extended to modal logics. Furthermore a number of these proof systems are the basis of modal

theorem provers (e.g. for tableau [39, 40] and for resolution [47, 66]). Hence, as in the propositional

case with SAT solvers, through understanding the proof complexity of these underlying proof

systems we can gain a deeper theoretical understanding of their associated provers.

Another motivation for the study of the proof complexity of modal logics comes from com-

putational complexity. Most commonly used modal logics are in PSPACE [55] (i.e. the class of

languages which are decidable by an algorithm which uses polynomial memory/space). Hence

studying the proof complexity of modal logics can be seen as an attempt to separate PSPACE from

NP.

Finally, through the study of proof complexity of modal logics we can hopefully gain a deeper

understanding of proof complexity in the wider sense. It is clear from the existing work on the
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proof complexity of modal logics that the picture is very different than it is for propositional logic.

For example there exist modal formulas which require exponentially sized modal Frege proofs [46],

whereas no such formulas are known to exist for propositional logic.

In propositional proof complexity resolution is by far the most studied proof system. This is in

direct contrast to the proof complexity analysis of modal proof systems which is, to our knowledge,

limited to the study of modal Frege, extended Frege and substitution Frege systems [46, 49].

Modal resolution systems As we saw above, for propositional logic, resolution is a very simple

proof system which consists of only a single inference rule. However constructing a resolution

based proof system for even the weakest normal multimodal logic Kn is not straightforward. This

is because two complementary literals can occur at different “modal contexts” (i.e. be nested within

different numbers or types of modalities) within a single modal formula, and so fail to contradict

one another. As a result many different resolution methods have been proposed for modal logics.

Generally speaking modal resolution methods have followed two different approaches. The

first method involves translating modal formulas into some other language for which there are

well-developed existing resolution systems. Most often this language is first order logic [32, 82],

although translations into other languages such as propositional logic [51, 84] and QBF [73] have

also been proposed.

The second approach is to devise a resolution system that works directly on the modal logic

that is being considered, usually after it has been translated into some clausal form. We informally

refer to such systems as direct resolution systems. Examples of direct resolution systems which do

not require translation into any clausal form are [1] and [36]. Examples of direct clausal resolution

systems include [3, 5, 34, 61–64].

As we are interested in the proof complexity of modal logics as opposed to that of first order

logic, in this thesis we consider only direct modal resolution systems. In particular, our main focus

throughout is on the proof systems of Nalon and Dixon, and Nalon, Hustadt and Dixon given in [63]

and [64] respectively. These two proof systems are closely related to one another, operating on

similar normal forms and having almost identical inference rules.

There are several motivations for choosing to focus primarily on the resolution systems of

Nalon and Dixon, and Nalon, Hustadt and Dixon. Firstly these proof systems are the most recently

proposed of the direct modal resolution systems. Secondly the clausal forms that each of these

systems act on are both much simpler than those of any other direct clausal resolution system.

Finally, whilst many direct resolution methods for modal logics have been proposed, very few of

these proof systems have been implemented as automated theorem provers. The direct clausal

resolution system of Nalon, Hustadt and Dixon is an exception to this trend as it has an associated

prover [65, 66].

We also consider the proof complexity of the direct clausal resolution system RKn of Enjalbert

and Fariñas del Cerro given in [34]. This proof system was among the earliest proposed modal

resolution systems and both its inference rules and clausal form are much more involved than either
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of the two more recent resolution systems we consider.

1.1 Contributions

We will now highlight our key contributions and theorems.

Comparing the strength of modal resolution systems In proof complexity we can compare

the strength of two proof systems using simulations. Informally we say that one proof system

simulates another if we can transfer proofs from the latter system to the former without causing a

super-polynomial blow up in proof size.

In Chapters 4 and 5 we compare the strength of various resolution systems for the multimodal

logic Kn. We begin by reviewing the two modal resolution systems of Nalon and Dixon [63], and

Nalon, Hustadt and Dixon [64], which we refer to as Kn-Res and Kml-Res respectively. These

systems are both extensions of propositional resolution, with a number of additional rules which are

used to resolve on modal pivots. Each of these proof systems are clausal and so can only be applied

to a modal formula once it has been translated into an appropriate normal form.

The earlier of these two proof systems is Kn-Res whose normal form is such that the “modal

context” of each clause is encoded by the extension variables added in the translation. This allows

clauses to have modal depth at most one and hence greatly limits the number of ways complementary

literals can be resolved together. However, although the “modal context” of each clause is encoded in

its extension variables it cannot be easily read off and so this does not prevent us from unnecessarily

resolving together two clauses with different modal contexts.

The normal form for Kml-Res similarly works by encoding the “modal context” of clauses

within extension variables, however each clause is also labelled by a natural number denoting

its modal level “modal level” (i.e. its modal depth within the original formula). This allows the

inference rules of Kml-Res to be defined so that clauses can only be resolved together if they are

labelled by the same natural number, and hence occurred at the same modal depth within the original

formula. Hence Kml-Res has a smaller search space than Kn-Res.

We further define two new resolution systems for Kn called Kmp-Res (Definition 4.3.5) and

Kmc-Res (Definition 4.4.7). Both of these systems are natural refinements of Kml-Res, differing

only in their respective normal forms.

The normal form for Kmp-Res prefixes each clause by a finite sequence of positive modal

operators (i.e. box operators). As this sequence of modal operators contains no diamond operators

it does not tell us the precise “modal context” of the clause, however the sequence of agents

corresponding to these modalities does specify the clause’s “modal position” within the original

formula1. The inference rules of Kmp-Res are then defined so that clauses with different “modal

positions” cannot be resolved together. Similarly, the resolution system Kmc-Res works on a normal

form where each clause is annotated by its “modal context”, which is expressed as a word over
1If we apply the resolution system to the monomodal logic K1 then this resolution system is identical to Kml-Res.
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the agents and extension variables. The inference rules of Kmc-Res rules are then defined so that

clauses with different “modal contexts” cannot be resolved together. Both of these proof systems

admit less “unnecessary” resolution inferences than Kml-Res, with Kmc-Res admitting the least.

However whilst Kmc-Res has the smallest search space of all the K-Res systems (i.e. Kn-Res,

Kml-Res, Kmp-Res and Kmc-Res), Kmp-Res has the advantage of not requiring translation to a

language with any annotations and so can be compared to other Kn proof systems more easily.

We show in Theorem 4.5.1 that each of the K-Res systems simulates every other K-Res system,

and hence that they are all equivalent to one another in terms of their proof complexity. The proof

of this amounts to showing that any inference that can be preformed in Kn-Res, but not Kmc-Res

(i.e. any inference on two clauses with different “modal contexts”) does not contribute to the proof

and so can be removed. This result allows us to focus only on the most convenient K-Res system

both when proving lower bounds for them, and when comparing the strength of these systems with

other modal proof systems.

In Definition 4.6.2 we propose a further refinement of the K-Res systems. This refinement

allows us to drop two of the five (seven in the case of Kn-Res) inference rules from each of the

proof systems by making a minor change to the each of the normal forms that these systems operate

on. In Theorem 4.6.3 we show that this refinement results in an equivalent proof system. This

refinement is of particular use when proving that certain propositional lower bound techniques can

be lifted to the K-Res systems.

Finally we compare the efficiency of the K-Res systems with that of the resolution system RKn

of Enjalbert and Fariñas del Cerro [34]. In particular we show in Theorem 5.2.1 that the older

clausal resolution system RKn simulates each of the K-Res systems. Due to the equivalence of the

K-Res systems we only have to prove that RKn simulates some K-Res system. Hence we choose

to prove that RKn simulates Kmp-Res, as this is the only K-Res systems whose normal form RKn

can be directly applied to.

Proof size lower bound techniques In proof complexity we aim to prove superpolynomial lower

bounds on the size of proofs. As previously discussed, as well as offering insight into how proof

systems work, proving such lower bounds can be seen as a route to separating complexity classes.

Further, due to the correspondence between proof systems and automated theorem provers, proof

size lower bounds can also be regarded as worst case running times for provers.

What is arguably even more important than proving superpolynomial lower bounds for the

size of proofs is to devise general techniques from which such lower bounds can be obtained.

Indeed many such techniques have been devised for propositional proof systems, in particular for

propositional resolution [8,85]. A natural question to ask when considering the proof complexity of

modal proof systems is whether any of these propositional techniques can be lifted to the modal

setting. As we shall see the answer to this question is dependant on the technique being considered.

In this thesis we consider three lower bound techniques for modal resolution. The first two

techniques are extensions of successful lower bound techniques for propositional resolution. The
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first of these techniques can be lifted to modal resolution, whereas the latter cannot be. We further

develop a new lower bound technique which can only be applied to modal proof systems. We will

now give details of each of these techniques.

1. The first lower bound technique that we consider is feasible interpolation [53, 75], which is

a well established propositional lower bound technique. An interpolant of an implication

formula A → B is a circuit (or formula) which is satisfied whenever A is satisfied and

falsified whenever B is falsified. A proof system has feasible interpolation if given any true

implication formula and any proof of this formula we can efficiently extract an interpolating

circuit whose size is polynomial in the size of the proof. Hence if some formula has only

large interpolating circuits then every proof of this formula must also be large. As a result we

can use feasible interpolation to obtain proof size lower bounds from circuit lower bounds.

Feasible interpolation can be used to show exponential lower bounds for both propositional

resolution [53] and another stronger propositional proof system called cutting planes [75].

In Theorem 6.2.1 we show that, with some minor adjustments, feasible interpolation can be

lifted fairly straightforwardly to the K-Res modal resolution systems.

2. The second propositional technique we consider is size-width [9], which is arguably the

most successful lower bound technique for propositional resolution. This technique allows

exponential proof size lower bounds for propositional resolution to be proved indirectly via

linear lower bounds on another standard measurement of proof complexity, proof width. The

width of a proof is the largest number of literals contained within any line of the proof.

In this thesis we show that the size-width technique cannot be lifted to either the K-Res

systems (Theorem 7.3.1) or RKn (Theorem 7.4.1). The proof of both theorems essentially

consists of showing that there exist families of formulas which require proofs with linear

width, but also have proofs of polynomial size.

3. Finally we propose a modal game theoretic lower bound technique for tree-like K-Res

modal resolution systems (that is, K-Res systems where inferred clauses cannot be reused).

This technique is inspired by game theoretic lower bound techniques for propositional

resolution [13, 14, 76] and QBF resolution [12].

Our modal game is played by a Prover and a Delayer. The Delayer claims to know some

model for an unsatisfiable modal formula and the Prover refutes this claim by repeatedly

asking questions about the structure of this model until a contradiction is exposed. Delayer

scores points every time Prover poses a question, however the amount of points he scores is

proportionate to the amount of useful information Prover gains from the answer. As Delayer

can never win the game, his goal is to score as many points as possible before it ends.

We show in Theorem 8.3.1 that if Delayer can devise a strategy which ensures he always

scores at least s points when playing on a given modal formula φ then every tree-like Kmc-Res

refutation of φ contains at least 2s modal resolution steps (i.e. resolution inferences where a
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modal pivot is resolved on). Hence proving a linear lower bound on s yields an exponential

lower bound on the number of modal resolution inferences needed to refute φ (and so the

size of such a refutation).

Our technique differs significantly from the game theoretic lower bound techniques for

propositional and QBF resolution mentioned above. At each round of the non-modal games

Prover asks for an assignment to a variable, whereas in our modal game Prover asks about the

model’s accessibility relation. As a result using our modal game we are able to prove “truly”

modal lower bounds, i.e. lower bounds on the number of modal resolution steps required to

refute a given family of formulas.

Exponential lower bounds for modal resolution We use our modal lower bound techniques to

prove two new exponential proof size lower bounds. These lower bounds are for the full dag-like

version of the K-Res modal resolution systems (where inferred clauses can be reused) and the

tree-like variant of the K-Res modal resolution systems respectively. The first of these lower bounds

is for an existing family of hard modal formulas, whereas the other is for a new family of modal

formulas.

The existing family of formulas that we use to show an exponential lower bound for the K-Res

systems are the modal clique-colour formulas of Hrubeš [46]. The propositional clique-colour

formulas encode that no graph with a clique of size k + 1 can also be k-colourable. Hrubeš’

modal version of these formulas encodes the same statement and is obtained by augmenting the

propositional version with some additional modal operators. However whilst the propositional

clique-colour formulas can be used to obtain lower bounds for propositional resolution [53] and

cutting planes [75], the modal clique-colour formulas give lower bounds for modal Frege and modal

extended Frege systems [46, 49].

In Theorem 6.4.2 we use our modal feasible interpolation technique to show that the modal

clique-colour formulas require exponential size K-Res proofs.

To our knowledge the modal clique-colour formulas are the only family of modal formulas in

the literature that have successfully been used to obtain lower bounds for modal proof systems.

However these formulas cannot be used to prove exponential lower bounds via our game theoretic

technique (see Section 10.3). Further, whilst there exist many benchmark formulas on which the

performance of modal theorem provers can be analysed (e.g. [6]) the hardness of these formulas is

typically due to proofs being hard to find as opposed to large in size. As in proof complexity we

are interested only in the minimal size proofs and not how hard they are to obtain these benchmark

formulas are not generally suitable for proof complexity analysis.

Hence in order to obtain lower bounds using our game-theoretic technique in Definition 9.1.1 we

define a new family of hard modal formulas. These formulas are essentially a modal encoding of the

pigeonhole principle (i.e. if m > n then given any assignment of m pigeons to n pigeonholes some

pigeonhole contains at least two pigeons). The pigeonhole principle has a well known propositional

encoding (see for example [22]) which has been shown to be hard for (tree-like and dag-like)
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propositional resolution using a number of different propositional lower bound techniques (e.g.

size-width [9] and game theoretic techniques [76]). Despite both encoding the same principle the

propositional pigeonhole formulas and our modal pigeonhole formulas are not obviously equivalent.

In particular in our modal pigeonhole formulas pigeons are encoded through the accessibility relation

and pigeonholes are encoded as propositional variables, unlike in the propositional encoding where

both pigeons and pigeonholes are represented by propositional variables.

We show in the proof of Theorem 9.2.1 that there exists a Delayer strategy which ensures

Delayer scores at least log n!− 1 points whenever our modal Prover Delayer game is played on our

modal pigeonhole formulas. Consequently every tree-like K-Res refutation of our modal pigeonhole

formulas must contain at least n!− 1 modal resolution steps. Notably as this lower bound ignores

all propositional inferences (i.e. inferences where only propositional variables are resolved on), it is

a truly modal lower bound as opposed to a lifted propositional one.

Modal proof systems beyond resolution There are a wealth of proof systems beyond resolution

for both propositional logic and modal logics. The most studied of these systems in terms of its

propositional proof complexity are Frege systems.

Propositional Frege systems are known to be strictly stronger systems than propositional

resolution. By this we mean that propositional Frege not only simulates propositional resolution,

but there also exists a separation between the two systems [22]. That is, there exist formulas which

have polynomial sized Frege proofs yet do not have short resolution proofs.

Frege systems have been extended to many modal logics (including the modal logic Kn), and

indeed their proof complexity has also begun to be considered [46]. However, to our knowledge,

there is no existing work comparing the strength of modal Frege systems with presumably weaker

modal proof systems, such as the modal resolution systems considered throughout this thesis.

We show in Proposition 10.1.1 that modal Frege systems simulate the modal resolution system

Kmp-Res, from which it follows immediately that modal Frege systems simulate the family of

K-Res systems and their tree-like variants (as any tree-like proof system is simulated by its dag-

like variant). We further show that our modal pigeonhole principle has short modal Frege proofs

(Theorem 10.2.2), hence separating Kn-Frege from the family of tree-like K-Res systems. Whilst

a separation between modal Frege systems and the tree-like K-Res resolution systems follows

trivially from the separation between the analogous propositional systems, ours is the first modal

separation between these systems. The proof of our modal separation is similar to the proof that the

pigeonhole principle is easy for propositional Frege given by Buss in [22].

1.2 Organisation

The remainder of the thesis is organised as follows. In Chapters 2 and 3 we give necessary

preliminaries on modal logic and proof complexity respectively. For a full introduction to modal

logic see [19, 54], and for a full introduction to proof complexity see [26].



Chapter 1 9 Introduction

The main content of the thesis begins in Chapter 4 where we investigate the proof complexity

of the family of K-Res resolution systems. We begin this chapter by reviewing the modal resolution

systems Kn-Res and Kml-Res of Nalon, Hustadt and Dixon [63, 64]. We then define a number of

refinements of Kml-Res and compare the strength of these new systems with Kn-Res, Kml-Res and

each other using simulations.

In Chapter 5 we review the modal resolution system RKn of Enjalbert and Fariñas del Cerro [34].

We further compare the proof complexity of this system with that of the family of K-Res systems.

The next three chapters are concerned with lower bound proving techniques. In Chapter 6

we show that the propositional technique of feasible interpolation can be extended to the family

of K-Res proof systems. We further show that this technique can be applied to Hrubeš’ modal

clique-colour formulas [46] to obtain a lower bound for the K-Res systems. In Chapter 7 we show

that the size-width lower bound proving technique cannot be extended to either K-Res systems or

RKn. In Chapter 8 we give a game theoretic lower bound proving technique for tree-like K-Res

proof systems.

In Chapter 9 we introduce a new family of formulas called the modal pigeonhole formulas. We

further prove that these formulas are hard for each of the tree-like K-Res proof systems using the

game theoretic lower bound proving technique which we introduced in Chapter 8.

In Chapter 10 we compare the proof complexity of the family of K-Res systems with that of

modal Frege systems. In particular in Section 10.1 we show that modal Frege systems simulate

the family of K-Res systems and in Section 10.2 we show a separation between the Kn-Frege and

tree-like K-Res.

Finally we conclude with a discussion of our work in Chapter 11.

1.3 Publications containing work in this thesis

Some of the work contained in Chapters 4 and 5 appeared in the paper:

• Sarah Sigley. Resolution Calculi for Modal Logic and their Relative Proof Complexity. In

Proceedings of the ESSLLI 2017 Student Session, pages 60–72. 2017.

for which I was the sole author.

Some of the work contained in Chapters 4, 8, 9 and 10 is included in the paper:

• Sarah Sigley, Olaf Beyersdorff. Proof Complexity of Modal Resolution. Submitted to Journal

of Automated Reasoning.

I was the main author for this paper.



Chapter 2

Preliminaries I: Modal Logic

Modal logics are extensions of propositional logic, hence we begin this chapter by giving an

introduction to propositional logic. We then give an overview of modal logics.

2.1 Propositional logic

Propositional logic is constructed from a set of propositional variables, P = {p1, p2, . . . }, a

complete set of propositional connectives {¬,∧,∨} and the constants 0 and 1.

The connective ¬ is a unary connective denoting negation. The formula ¬p1 states that the

negation of p1 is true, which is equivalent to stating that p1 is not true. The connectives ∨ and ∧
are both binary connectives denoting disjunction and conjunction respectively. Hence the formula

p1 ∨ p2 is read “as p1 is true or p2 is true” and the formula p1 ∧ p2 is read as “p1 is true and p2 is

true”. The constants 1 and 0 correspond to true and false respectively.

Definition 2.1.1. The set of well formed formulas (denoted wff ) over the set of propositional

variables P and propositional connectives {¬,∧,∨} is defined inductively as follows:

• the constants 0, 1 ∈ wff ,

• if φ = p for some p ∈ P then φ ∈ wff ,

• if φ ∈ wff then ¬φ ∈ wff ,

• if φ1, φ2 ∈ wff then φ1 ∨ φ2 ∈ wff and φ1 ∧ φ2 ∈ wff .

A literal is either a propositional variable, p ∈ P , or its negation, ¬p. We let L denote the set of

all literals. A clause is a disjunction of literals. We let CL denote the set of all propositional clauses.

We say a propositional formula is in conjunctive normal form (CNF) if it is a conjunction of clauses.

10



Chapter 2 11 Modal Logic

We adopt the convention of identifying the empty disjunction/clause with 0 and the empty

conjunction/CNF with 1. As conjunctions and disjunctions are both commutative and idempotent

we can treat clauses and CNFs as sets of literals and clauses respectively.

Definition 2.1.2. A model for a formula φ ∈ wff is an assignment α : var(φ) → {0, 1}, where

var(φ) denotes the set of all propositional variables in φ. We say that α satisfies φ if when every

propositional variable p in φ is replaced by α(p) then φ evaluates to 1.

If there exists a model that satisfies a formula φ ∈ wff then we say that φ is satisfiable. If every

model for a given formula φ satisfies said formula then we say that φ is a tautology. If no model

satisfies φ then we say that it is unsatisfiable.

2.2 Modal logic

A multimodal logic over some finite set of agentsA = {a1, . . . , an} is an extension of propositional

logic constructed from a set of propositional variables, P = {p1, p2, . . . }, a complete set of

propositional connectives {¬,∧,∨}, the constants 0 and 1, and a set of unary modal operators

{�ai | ai ∈ A}. The formula �aiφ is read as “agent ai considers φ to be necessary”.

We further define the binary connective → so that φ → ψ ≡ ¬φ ∨ ψ, and for each i ∈ [n]

(where [n] denotes the set {1, . . . , n}) we define the modal operator ♦ai ≡ ¬�ai¬. The formulas

φ1 → φ2 and ♦aiφ1 are read as “if φ1 is true then φ2 is true” and “agent ai considers φ1 to be

possible”, respectively.

Notation 2.2.1. Throughout this thesis we take ◦a to be either �a or ♦a. For any set Σ we

define Σ∗ to be the set of all finite words over Σ and ε to be the empty word. Further we define

�µ = �a1 . . .�am for µ = a1 . . . am ∈ A∗.

Definition 2.2.1. Let A be a finite set of agents. The set of well formed multimodal formulas

(denoted wfmf ) over the set of propositional variables P , the set of modal connectives {�a | a ∈ A}
and the set of propositional connectives {¬,∧,∨} is defined inductively as follows:

• the constants 0, 1 ∈ wfmf ,

• if φ = p such that p ∈ P then φ ∈ wfmf ,

• if φ ∈ wfmf then ¬φ ∈ wfmf ,

• if φ1, φ2 ∈ wfmf then φ1 ∧ φ2 ∈ wfmf and φ1 ∨ φ2 ∈ wfmf ,

• if φ ∈ wfmf then �aφ ∈ wfmf .

A positive modal literal is a formula of the form �al, where a ∈ A and l ∈ L. Similarly, a

negative modal literal is a formula of the form ♦al. A modal literal is either a positive or negative

modal literal.
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Definition 2.2.2. Let φ ∈ wfmf . We define a subformula of φ inductively as follows:

• φ is a subformula of itself,

• If ¬φ1 is a subformula of φ then so is φ1,

• If φ1 ∧ φ2 is a subformula of φ then so are φ1 and φ2,

• If φ1 ∨ φ2 is a subformula of φ then so are φ1 and φ2,

• If �aφ1 is a subformula of φ then so is φ1.

Definition 2.2.3. Let φ ∈ wfmf . We define the modal depth of φ inductively as follows:

• If φ ∈ wff then the modal depth of φ is 0.

• If φ = ¬φ1 for some φ1 ∈ wfmf with modal depth m then φ has modal depth m.

• If φ = φ1 ∧ φ2 for some φ1, φ2 ∈ wfmf with modal depth m1 and m2 respectively, then φ

has modal depth max(m1,m2).

• If φ = φ1 ∨ φ2 for some φ1, φ2 ∈ wfmf with modal depth m1 and m2 respectively, then φ

has modal depth max(m1,m2).

• If φ = �aφ1 for some φ1 with modal depth m then φ has modal depth m+ 1.

We further define the modal depth of some subformula ψ of φ as follows:

• If φ = ψ then the modal depth of ψ in φ is 0.

• If the modal depth of ¬ψ in φ is m then the modal depth of ψ in φ is m.

• If the modal depth of ψ ∧ φ1 in φ is m, where φ1 ∈ wfmf then the modal depth of ψ in φ is

m.

• If the modal depth of ψ ∨ φ1 in φ is m, where φ1 ∈ wfmf then the modal depth of ψ in φ is

m.

• If the modal depth of �aψ in φ is m, where φ1 ∈ wfmf then the modal depth of ψ in φ is

m+ 1.

Definition 2.2.4. Let A be some set of agents of size n. The normal multimodal logic multimodal

logic Kn is the smallest set that contains all propositional tautologies, all formulas of the form:

Kai : �ai(φ→ ψ)→ (�aiφ→ �aiψ),

and is closed under the inference rules:

φ→ ψ φ
modus ponens (MP):

ψ
and φ

ai-necessitation:
�aiφ
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for all formulas φ, ψ ∈ wfmf and all agents ai ∈ A.

The semantics of multimodal logics are given using Kripke models.

Definition 2.2.5. A Kripke model (henceforth a model) over a set of propositional variables P and

a set of agents A = {a1, . . . , an} is a tuple:

M = (W,Ra1 , . . . , Ran , V ),

where W is a non-empty set of “worlds”, each Rai is a binary relation over W , which we call

the ai-accessibility relation, and V is a set of valuation functions {V (w) | w ∈ W} such that

V (w) : P → {0, 1}.

Definition 2.2.6. We say that a model:

M ′ = (W ′, R′a1 , . . . , R
′
an , V

′),

extends a model:

M = (W,Ra1 , . . . , Ran , V ),

if W ′ ⊇W , V ′ ⊇ V and R′ai ⊇ Rai for all i ∈ [n].

Definition 2.2.7. Let φ, ψ be formulas and p ∈ P . Given a model M = (W,R1, . . . Rn, V ) and a

world w ∈W the satisfiability of a formula at w in M is defined inductively as follows:

• (M,w) |= p ⇐⇒ w ∈ V (p),

• (M,w) |= ¬φ ⇐⇒ (M,w) |= φ does not hold (written as (M,w) 6|= φ)

• (M,w) |= φ ∧ ψ ⇐⇒ (M,w) |= φ and (M,w) |= ψ,

• (M,w) |= φ ∨ ψ ⇐⇒ (M,w) |= φ or (M,w) |= ψ,

• (M,w) |= �aφ ⇐⇒ (M,w′) |= φ for all w′ such that (w,w′) ∈ Ra.

We say φ is locally satisfiable (or just satisfiable) if there exists some world w0 ∈ W such that

(M,w0) |= φ. We say that φ is globally satisfiable if (M,w) |= φ for all w ∈W . This is denoted

M |= φ. We say that φ is valid, denoted |= φ, if for every model M we have M |= φ.

Definition 2.2.8. We define a pointed model to be a pair 〈M,w〉 consisting of a model M =

(W,Ra1 , . . . , Ran , V ) together with some distinguished world w ∈W .

We further say a formula φ ∈ wfmf is satisfied by a pointed model 〈M,w〉 if (M,w) |= φ.

Hence a modal formula is locally satisfiable if and only if there exists some pointed model which

satisfies it.

In this thesis we are concerned only with proof systems which determine whether or not a

given formula φ ∈ wfmf is locally satisfiable in Kn, as opposed to globally satisfiable. This is in

some sense the easier of the two problems as the local satisfiability problem for Kn is PSPACE-

complete [42, 55] whereas the global satisfiabilty problem for Kn is EXPTIME-complete [86].
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Preliminaries II: Proof systems and
proof complexity

In this chapter we give the formal definition of a proof system and give some examples of proof

systems for propositional logics. We then give an introduction to proof complexity.

3.1 Proof systems

Definition 3.1.1 ( [27]). A proof system for some language L ⊆ Σ∗ is a polynomial time partial

function P : Σ∗ → L where Σ∗ denotes the set of all finite words over Σ, and a P -proof of some

τ ∈ L is a finite word π ∈ Σ∗ such that P (π) = τ .

Intuitively, given a proof π of a formula τ ∈ L, an L proof system efficiently verifies that π is a

correct proof of τ .

Definition 3.1.2. Let P be a proof system. We say that ψ is P provable from φ if there exists a

P -proof of ψ from φ. We denote this by φ `P ψ.

The above definition of a proof system is rather general. In this document we will only consider

line based proof systems.

Definition 3.1.3. A line based proof system is a proof system defined by some finite set of inference

rules and axioms. A proof in a line based proof system is a sequence of proof lines, say λ1, . . . , λn

such that each λi is either an axiom of P or can be inferred by applying some rule of P to some

subset of {λ1, . . . , λi−1}.

14
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A proof in a line based system P must be either tree-like or dag-like. We say a P -proof is

tree-like if every line is used as a premise of exactly one inference of P , that is if the proof has a

tree structure. Otherwise, if lines can be reused, the structure of the proof is a directed acyclic graph

(dag), and so we say the proof is dag-like.

Throughout this thesis if we do not specify whether we are considering the tree-like or dag-like

version of a proof system then we assume that the full dag-like version is being referred to.

Definition 3.1.4. Let P be a line-based proof system and let π be a P -proof. Further let R be some

inference rule of P and let λ1 and λ2 be lines of π. Then λ2 is a child (an R child) of λ1 if it is

inferred by applying an inference rule (R) to a set of lines containing λ1.

We say that λ2 is a descendant (an R descendant) of λ1 if it is either:

(i) a child (an R child) of λ1 or,

(ii) a child (an R child) of a descendant (an R descendant) of λ1.

If λ2 is a descendant (an R descendant) of λ1 then λ1 is an ancestor (an R ancestor) of λ2.

Definition 3.1.5. We say a proof system P is strongly complete if for every φ, ψ ∈ wfmf such that

φ |= ψ we have φ `P ψ. Further we say a proof system is complete if for every φ such that φ |= 0

we have φ `P 0.

We say P is strongly sound if for every φ and ψ such that φ `P ψ we have φ |= ψ. We say P is

sound if for every formula φ such that ` φ we have |= φ.

3.1.1 Examples of proof systems

Propositional resolution Resolution [20, 31, 80] is a simple proof system for propositional logic.

It acts on formulas in CNF and consists of the single rule:

RES: C1 ∨ l C2 ∨ ¬l
C1 ∨ C2

where C1, C2 are clauses and l is a literal. The intuition behind this rule is straightforward. No

propositional model can simultaneously satisfy a literal and its negation, hence if we take the

disjunct of any two clauses containing complementary literals we may “cut away” (resolve on) said

complementary literals. Throughout we will refer to the variable resolved on as a pivot variable.

Resolution is a refutational proof system. This means that to prove that a formula is valid using

resolution we prove that its negation is unsatisfiable. So to prove that some formula φ is valid we

would first convert its negation into CNF and then repeatedly apply the resolution rule until we

derive the empty clause which is logically equivalent to 0.

Frege A Frege system for propositional logic is a line based proof system P consisting of a

finite set of inference rules and axioms of the form φ1, . . . , φk `P φ and `P φ respectively, where
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φ1, . . . , φk, φ are propositional formulas. Further P must be sound and strongly complete. An

example of a propositional Frege system is given in Figure 3.1.

One way to prove that a propositional formula φ is a tautology using a Frege system is to refute

its negation. That is, to derive a formula of the form ¬φ→ 0. Alternatively, we can prove that a

propositional formula is tautological by deriving it using the axioms and rules of a Frege system.

¬φ1 φ1 ∨ φ2Modus ponens:
φ2

A1 φ1 → (φ2 → φ1) A6 (φ1 ∧ φ2)→ φ2

A2 (¬φ1 → ¬φ2)→ (φ2 → φ1) A7 φ1 → (φ2 → (φ1 ∧ φ2))

A3 φ2 → (φ1 ∨ φ2) A8 (φ1 → φ2)→ ((φ2 → φ3)→ (φ1 → φ3))

A4 φ1 → (φ1 ∨ φ2) A9 (φ1 → (φ2 → φ3))→ ((φ1 → φ2)→ (φ1 → φ3))

A5 (φ1 ∧ φ2)→ φ1 A10 (φ1 → φ3)→ (φ2 → φ3)→ (φ1 ∨ φ2 → φ3)

Figure 3.1: A propositional Frege system

3.2 Proof complexity

Broadly speaking there are two main goals in proof complexity. The first is two measure the

minimum complexity of proofs required to prove some tautology in some proof system. The second

is to compare the efficiency of proof systems. The most common measurement of proof complexity

is proof size (Definition 3.2.1), however there also exist a number of other measurements such as

proof length (Definition 3.2.2) and proof width (Definition 7.1.1).

Definition 3.2.1. The size of a proof π is the number of symbols it contains, denoted |π|.

Definition 3.2.2. Let P be a line based proof system for some language L. The length of a P -proof

π is the number lines it contains.

Note that no propositional clause in a resolution refutation can contain more than 2n literals,

where n is the number of variables in the formula being refuted. Hence the size of such a refutation

can be super-polynomial in n if and only if its length is also super-polynomial in n. Thus from a

proof complexity perspective size and length are interchangeable for resolution.

Generally in proof complexity we are not interested in the size of proofs required for individual

tautologies but rather how proofs of families of tautologies behave asymptotically.

Definition 3.2.3. We say that an infinite family of formulas Φ ⊆ L is a super-polynomial lower

bound for an L-proof system P if there exists no constant k such that every φn ∈ Φ has a P -proof

πn where |πn| ≤ k|φn|k.
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Similarly, we say that Φ is an exponential lower bound for P if there exists some k > 0 such

that |πn| > 2kn.

Definition 3.2.4. An L-proof system is polynomially bounded if there exists a constant k such that

for every τ ∈ L there exists a P proof π such that P (π) = τ and |π| ≤ k|τ |k.

The original motivation for the study of proof complexity was the following seminal result of

Cook and Reckhow [27].

Theorem 3.2.1 ( [27]). There exists a polynomially bounded propositional proof system if and only

if NP = coNP, where coNP denotes the class of decision problems whose complements are in NP.

As NP 6= coNP only if P 6= NP (where P denotes the class of polynomial-time decision

problems), it follows immediately from the above theorem that if there does not exist a polynomially

bounded propositional proof system then P 6= NP.

We can compare the strength of two proof systems for a given language L using polynomial

simulations.

Definition 3.2.5 ( [27]). Let P and Q be L-proof systems. We say that P polynomially simulates

(p-simulates) Q if there exists a polynomial time computable function f such that for any Q proof

π such that Q(π) = τ where τ ∈ L we have P (f(π)) = τ . We denote that P p-simulates Q by

Q ≤p P .

We say that P and Q are polynomially equivalent (p-equivalent) if P ≤p Q and Q ≤p P ,

denoted P ≡p Q.

We say there exists a separation between two proof systems if they are not p-equivalent.

Typically this is proved by showing that there exists a formula which is a super-polynomial lower

bound for one proof system but has polynomial-sized proofs for the other.



Chapter 4

Resolution with modal positions and
modal contexts

Constructing a resolution-based proof system for even the basic multimodal logic Kn is not as

straightforward as it is for propositional logic. This is because whether or not we can only resolve

complementary literals with one another now depends on the “modal context” in which they occur.

To see this consider the formulas:

φ = �a1(l1 ∨ l2 ∨ l3), ψ = ¬l1 ∨ l2, θ = �a1¬l2 and ζ = ♦a1¬l3.

In any sound and complete Kn resolution system the following three statements should be true:

1. The instance of l1 in φ cannot be resolved with the instance of ¬l1 in ψ.

2. The instance of l2 in φ can be resolved with the instance of ¬l2 in θ to obtain a resolvent of the

form �a1(l1 ∨ l3).

3. The instance of l3 in φ can be resolved with the instance of ¬l3 in ζ to obtain a resolvent of the

form ♦a1(¬l3 ∧ (l1 ∨ l2)).

Statement 1 is true as the instance of l1 in φ is nested within the scope of a�a1 operator whereas

the instance of ¬l1 in ψ is not within the scope of any modal operator.

Statement 2 holds as the instance of ¬l2 in φ and the instance of ¬l2 in θ are both nested within

a single �a1 . Hence it follows that if φ and θ are both satisfied at some world w in some model

M = (W,R1, . . . , Rn, V ) then l1 ∨ l2 ∨ l3 and ¬l2 must both be satisfied at every world w1 such

that (w,w1) ∈ R1 and so l1 ∨ l3 must also be satisfied at every w1.

18
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Finally, the instance of l3 in φ appears within the scope of a�a1 operator and the instance of ¬l3
in ζ appears within the scope of a ♦a1 operator. Hence if φ and ζ are both satisfied at some world w

in some model M = (W,R1, . . . , Rn, V ) then l1 ∨ l2 ∨ l3 must be satisfied at every world w1 ∈W
such that (w,w1) ∈ R1 and ¬l3 must be satisfied at some world w2 ∈W such that (w,w2) ∈ R1.

And so it follows by classical resolution that l1 ∨ l2 must also be satisfied at w2, hence statement 3

holds.

As a result of this added complexity several different Kn resolution systems have been proposed.

In this chapter we shall revisit two such clausal resolution systems. These systems, which we shall

refer to as Kn-Res and Kml-Res, are closely related to each other and were proposed by Nalon and

Dixon [63], and Nalon, Hustadt and Dixon [64], respectively.

4.1 The proof system Kn-Res

The resolution system Kn-Res [63] determines whether a formula φ is satisfiable at some distin-

guished “start” world, s0 ∈W . However as the choice of s0 is arbitrary determining the satisfiability

of φ at s0 is essentially equivalent to determining the satisfiability of φ.

Let M = (W,R1, . . . , Rn, V ) be a model and w1, w2 ∈W . We say w2 is reachable from w1

if (w1, w2) is in the reflexive and transitive closure of
⋃n
i=1Ri. Note that every world is reachable

from itself. We define the master modality, denoted �∗, such that (M,w) |= �∗φ if and only if

(M,w′) |= φ for all w′ reachable from w.

The proof system Kn-Res operates on formulas that have been translated into the following

normal form.

Definition 4.1.1 ( [63]). Let l, l′, lj ∈ L and let S be a nullary connective defined such that

(M,w) |= S if and only if w = s0. We refer to S as the start connective. A formula φ is in

Separated Normal Form (SNF) if:

φ =

r∧
i=1

�∗Ci,

where each Ci is of one of the following types of clauses:

• Start clause: S→
∨t
j=1 lj ,

• Positive modal clause: l′ → �al,

• Literal clause:
∨t
j=1 lj ,

• Negative modal clause: l′ → ♦al.

Definition 4.1.2. A modal formula over the set of operators {�a,♦a,¬,∧,∨} is in negation

normal form (NNF) if only propositional variables are allowed to be within the scope of ¬.

Definition 4.1.3 ( [63]). Any φ ∈ wfmf in NNF can be translated into a set of SNF clauses by

applying the function:

T (φ) = �∗(S→ x) ∧ ρ(�∗(x→ φ)),
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where x is a new variable and the function ρ is defined inductively as follows:

ρ(�∗(x→ θ ∧ ψ)) = ρ(�∗(x→ θ)) ∧ ρ(�∗(x→ ψ)),

ρ(�∗(x→ ◦aθ)) =

�∗(x→ ◦aθ), if θ ∈ L,

�∗(x→ ◦ax1) ∧ ρ(�∗(x1 → θ)), otherwise.

ρ(�∗(x→ θ ∨ ψ)) =

�∗(¬x ∨ θ ∨ ψ), if θ, ψ ∈ CL,

ρ(�∗(x→ θ ∨ x1)) ∧ ρ(�∗(x1 → ψ)) otherwise,

where θ and ψ are formulas and x1 is a new propositional variable.

Note that ρ(�∗(x→ θ∨x1)) = ρ(�∗(x→ (x1∨x2)))∧ρ(�∗(x2 → θ)) and so the translation

always terminates.

We refer to the variables introduced when translating a formula φ ∈ wfmf into a set of SNF

clauses C as extension variables and define XC to be the set of all such variables. Further we define:

XC+ = {x′ ∈ X | �∗(x→ �ax′) ∈ C}, XC− = {x′ ∈ X | �∗(x→ ♦ax′) ∈ C}

and XC± = XC+ ∪ XC−.

Note that XC ⊆ L.

Let C be a set of SNF clauses and let C ∈ C. We say x ∈ XC appears positively in C if either

C is a literal clause of the form �∗(x ∨ D) where D ∈ CL or C is a modal clause of the form

(x′ → ◦ax) where x′ ∈ XC . We say x appears negatively in C if either C is a literal clause of the

form �∗(¬x ∨D) or C is a modal clause of the form (x′ → ◦a¬x) or (x→ ◦ay), where y ∈ L.

Example 4.1.1. Consider the modal formula φ = (x ∨ ♦a¬y) ∧�ay ∧ ¬x. Then:

T (φ) = �∗(S→ x0) ∧ ρ(x0 → φ)

= �∗(S→ x0) ∧ ρ(�∗(x0 → (x ∨ ♦a¬y))) ∧ ρ(�∗(x0 → �ay)) ∧ ρ(�∗(x0 → ¬x))

= �∗(S→ x0) ∧ ρ(�∗(x0 → x1 ∨ x2)) ∧ ρ(�∗(x1 → x)) ∧

ρ(�∗(x2 → ♦a¬y)) ∧�∗(x0 → �ay) ∧�∗(¬x0 ∨ ¬x)

= �∗(S→ x0) ∧�∗(¬x0 ∨ x1 ∨ x2) ∧

�∗(¬x1 ∨ x) ∧�∗(x2 → ♦a¬y) ∧�∗(x0 → �ay) ∧�∗(¬x0 ∨ ¬x).

Further XT (φ) = {x0, x1, x2} and XT (φ)+ = XT (φ)− = ∅.

Not only is the function T able to translate every modal formula into SNF it is also satisfiability

preserving.

Theorem 4.1.1 ( [63]). A formula φ is satisfiable if and only if the formula T (φ) is satisfiable.

As every SNF clause is prefixed by �∗ it follows that every SNF clause occurs within the same

modal context. Hence the inference rules of Kn-Res are relatively straightforward.
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Definition 4.1.4 ( [63]). The inference rules of Kn-Res are given in Figure 4.1.

�∗(S→ D ∨ l)
IRES1:

�∗(E ∨ ¬l)
�∗(S→ D ∨ E)

�∗(S→ D ∨ l)
IRES2:

�∗(S→ E ∨ ¬l)
�∗(S→ D ∨ E)

�∗(D ∨ l)
LRES:

�∗(E ∨ ¬l)
�∗(D ∨ E)

�∗(l1 → �al)MRES:
�∗(l2 → ♦a¬l)
�∗(¬l1 ∨ ¬l2)

�∗(l1 → �al)GEN2:
�∗(l2 → �a¬l)
�∗(l3 → ♦al′)

�∗(¬l1 ∨ ¬l2 ∨ ¬l3)

�∗(l′1 → �al1)
GEN1: ...

�∗(l′z → �alz)
�∗(l′ → ♦al)

�∗(¬l1 ∨ · · · ∨ ¬lz ∨ ¬l)
�∗(¬l′1 ∨ . . .¬l′z ∨ ¬l′)

�∗(l′1 → �al1)
GEN3: ...

�∗(l′z → �alz)
�∗(l′ → ♦al)

�∗(¬l1 ∨ · · · ∨ ¬lz)
�∗(¬l′1 ∨ · · · ∨ ¬l′z ∨ ¬l′)

where l, l′, lj ∈ L and D,E ∈ CL.

Figure 4.1: Rules for Kn-Res

The rules of Kn-Res can be split into two categories, modal rules (MRES, GEN1, GEN2 and

GEN3) and propositional rules (LRES, IRES1 and IRES2). MRES is the only modal rule where the

resolution takes place outside of the modal operator, the rest of the modal rules resolve on literals

inside some modal operator.

The rules IRES1, IRES2 and LRES are essentially propositional resolution. The rule MRES

is the modal analogue of propositional resolution. The rule GEN2 says that if we have some

negative modal clause, say �∗(l′3 → ♦al2), then we can resolve two positive modal literals of the

form �al1 and �a¬l1 with one another. The negative modal clause is required for soundness as

�∗(l′1 → �al1) and �∗(l′2 → �a¬l1) can both be satisfied by a model M at a world w ∈W such

that (w,w′) /∈ Ra for all w′ ∈W .

The rules GEN1 and GEN3 resolve literals with modal literals. More specifically, GEN1 says

that given some clause �∗(¬l1 ∨ · · · ∨ ¬lz ∨ ¬l) we can simultaneously resolve the z + 1 literals

¬l1, . . . ,¬lz and ¬l with the modal literals �al1, . . . ,�alz and ♦al. When resolving literals with

modal literals in this way we are taking advantage of the fact that, by the definition of�∗, any world

in any model which satisfies �∗(¬l1 ∨ · · · ∨ ¬lz ∨ ¬l) must also satisfy �a(¬l1 ∨ · · · ∨ ¬lz ∨ ¬l).

Every literal in �∗(¬l1 ∨ · · · ∨ ¬lz ∨ ¬l) must be resolved on simultaneously as otherwise the

resolvent obtained may not be in SNF. For example the resolvent obtained by resolving ¬l1 in

�a(¬l1 ∨ · · · ∨¬lz ∨¬l) with�al1 in�∗(l′1 → �al1) would be�∗(¬l′1 ∨�a(¬l2∨ . . .¬lz ∨¬l)).

The rule GEN3 is similar to GEN1, however the negative modal literal, ♦a¬l, is not resolved on.

Instead, as in the case for GEN2, it is necessary only for soundness.
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Like propositional resolution, the proof system Kn-Res is a refutational system. However in

this proof system a refutation ends when the clause �∗(S→ 0) is derived.

Definition 4.1.5. Let π be a Kn-Res refutation of some set of SNF clauses C and let C be some

clause in π. If C ∈ C then we say that C is an initial clause. If C 6∈ C then we say C is a non-initial

clause.

Note that none of the rules of Kn-Res can be used to infer any modal clause. Hence every such

clause in an Kn-Res refutation must be initial.

Example 4.1.2. Let φ be defined as in Example 4.1.1. Further let C be the set of SNF clauses

obtained by applying T to φ. We can refute C using Kn-Res as follows:

�∗(x0 → �ay)
MRES

�∗(x2 → ♦a¬y)

�∗(¬x0 ∨ ¬x2)
LRES

�∗(¬x0 ∨ x1 ∨ x2)

�∗(¬x0 ∨ x1)
LRES

�∗(¬x1 ∨ x)

�∗(¬x0 ∨ x)
LRES

�∗(¬x0 ∨ ¬x)

�∗(¬x0)
IRES1

�∗(S→ x0)

�∗(S→ 0)

4.2 The proof system Kml-Res

In [64] Nalon, Hustadt and Dixon introduced a layered resolution system for Kn which we shall

call Kml-Res. This resolution system is similar to Kn-Res, however it operates on a normal form

where each clause is labelled by its modal level (Definition 4.2.2). Informally the modal level of a

clause is the number of modal operators it was nested within in the original formula.

Definition 4.2.1 ( [64]). A formula φ is in separated normal form with modal levels (SNFml) if:

φ =
r∧
i=1

Ci,

where each clause Ci is either a:

• Positive modal clause: (m : l′ → �al),

• Negative modal clause: (m : l′ → ♦al),

• Literal clause: (m :
∨s
j=1 lj),

where l, l′, lj ∈ L and m ∈ N representing the modal level of the clause.
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Let M = (W,R1, . . . , Rn, V ) be a model and w,w′ ∈W . We say w′ is of distance m from w

if there exists a path of length m from w to w′ through the union of all accessibility relations in M .

The satisfiability of some φ ∈ wfmf labelled by its modal level, m ∈ N, is given as follows:

(M,w0) |= (m : φ) ⇐⇒ (M,w) |= φ for all w ∈W such that w is of distance m from w0.

We can formally define the modal level of a subformula ψ within some formula φ as follows.

Definition 4.2.2 ( [64]). Let Σ = {0, 1, 2, 3}. Further let φ, ψ ∈ wfmf , let p ∈ P , let λ ∈ Σ∗ and

let m ∈ N. We define the function τ : wfmf × Σ∗ × N → P(wfmf × Σ∗ × N) inductively as

follows:

• τ(p, λ,m) = {(p, λ,m)},

• τ(¬φ, λ,m) = {(¬φ, λ,m)} ∪ τ(φ, λ0,m),

• τ(φ ∧ ψ, λ,m) = {(φ ∧ ψ, λ,m)} ∪ τ(φ, λ1,m) ∪ τ(ψ, λ2,m),

• τ(�aφ, λ,m) = {(�aφ, λ,m)} ∪ τ(φ, λ3,m+ 1).

Applying τ to (φ, ε, 0), where ε denotes the empty word, gives an annotated syntactic tree for φ.

Each vertex in the tree corresponds to a subformula of φ, its unique position in the tree and its

modal level in φ.

If (ψ, λ,m) ∈ τ(φ, ε, 0) then we say that the modal level of ψ at position λ in φ is ml(ψ, λ) =

m.

The following procedure for efficiently translating any NNF formula into SNFml, whilst pre-

serving satisfiability, is given in [64].

Definition 4.2.3. To convert an NNF formula φ into SNFml we apply the translation function:

Tml(φ) = x ∧ ρml(0 : x→ φ),

where x is a new propositional variable and ρml is defined as follows:

ρml(m : x→ θ ∧ ψ) = ρml(m : x→ θ) ∧ ρml(m : x→ ψ),

ρml(m : x→ ◦aθ) =

(m : x→ ◦aθ), if θ ∈ L,

(m : x→ ◦ax1) ∧ ρml(m+ 1 : x1 → θ), otherwise.

ρml(m : x→ θ ∨ ψ)) =

(m : ¬x ∨ θ ∨ ψ), if θ, ψ ∈ CL,

ρml(m : x→ θ ∨ x1) ∧ ρml(m : x1 → ψ), otherwise,

where θ, ψ are formulas, x1 is a new propositional variable and m ∈ N.

The termination of this function follows as in Definition 4.1.3.
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Example 4.2.1. Let φ = (x ∨ ♦a(¬y ∧ x)) ∧�ay ∧ ¬x. Then:

Tmp(φ) = (0 : x0) ∧ (0 : ¬x0 ∨ x1 ∨ x2) ∧ (0 : ¬x1 ∨ x) ∧ (0 : x2 → ♦ax3)∧

(1 : ¬x3 ∨ ¬y) ∧ (1 : ¬x3 ∨ x) ∧ (0 : x0 → �ay) ∧ (0 : ¬x0 ∨ ¬x).

Theorem 4.2.1 ( [64]). An NNF formula φ is satisfiable if and only if Tml(φ) is satisfiable.

Definition 4.2.4 ( [64]). The inference rules of Kml-Res are given in Figure 4.2.

(m : D ∨ l)
LRES:

(m : E ∨ ¬l)
(m : D ∨ E)

(m : l1 → �al)MRES:
(m : l2 → ♦a¬l)
(m : ¬l1 ∨ ¬l2)

(m : l′1 → �al1)
GEN1: ...

(m : l′z → �alz)
(m : l′ → ♦al)

(m+ 1 : ¬l1 ∨ · · · ∨ ¬lz ∨ ¬l)
(m : ¬l′1 ∨ . . .¬l′z ∨ ¬l′)

(m : l1 → �al)GEN2:
(m : l2 → �a¬l)
(m : l3 → ♦al′)

(m : ¬l1 ∨ ¬l2 ∨ ¬l3)

(m : l′1 → �al1)
GEN3: ...

(m : l′z → �alz)
(m : l′ → ♦al)

(m+ 1 : ¬l1 ∨ · · · ∨ ¬lz)
(m : ¬l′1 ∨ · · · ∨ ¬l′z ∨ ¬l′)

where l, l′, lj ∈ L, m ∈ N and D,E ∈ CL.

Figure 4.2: Rules for Kml-Res

The rules of Kml-Res are almost identical to those of Kn-Res, however now LRES, MRES and

GEN2 may only be applied to clauses that are at the same modal level. Further GEN1 and GEN3

may only be applied to sets of clauses where each modal clause is the same modal level and the

literal clause is at the modal level above. The rules IRES1 and IRES2 are no longer necessary as we

are no longer determining satisfiability at a fixed start world.

4.3 Resolution with modal positions

We shall now present a new resolution system for Kn called Kmp-Res. This proof system is a

refinement of Kml-Res where complementary literals can be resolved together if and only if they

have the same modal position. The modal position of a clause tells us not only how many modal
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operators it was nested within in the original formula, but also which agents these modal operators

correspond to.

We formally define the modal position of a subformula ψ of a formula φ by extending Definition

4.2.2 as follows.

Definition 4.3.1. Let Σ = {0, 1, 2, 3}. Further let φ, ψ ∈ wfmf , let p be a propositional variable, let

λ ∈ Σ∗, letm ∈ N and let µ ∈ A∗. We define τ : wfmf ×Σ∗×N×A∗ → P(wfmf ×Σ∗×N×A∗)
inductively as follows:

• τ(p, λ,m, µ) = (p, λ,m, µ),

• τ(¬φ, λ,m, µ) = (¬φ, λ,m, µ) ∪ τ(φ, λ0,m, µ),

• τ(φ ∨ ψ, λ,m, µ) = (φ ∨ ψ, λ,m, µ) ∪ τ(φ, λ1,m, µ) ∪ τ(ψ, λ2,m, µ),

• τ(�aφ, λ,m, µ) = (�aφ, λ,m, µ) ∪ τ(φ, λ3,m+ 1, µa).

Applying τ to (φ, ε, 0, ε) gives an annotated syntactic tree for φ. Each vertex corresponds to a

subformula of φ, its unique position in the tree, its modal level in φ and its modal position in φ.

Suppose φ and ψ are such that (ψ, λ,m, µ) ∈ τ(φ, ε, 0, ε). Then the modal position of ψ at

position λ in φ is defined to be mp(ψ, λ,m) = µ.

To refute a formula using Kmp-Res we must first translate it into a clausal form where each

clauses modal position with respect to the original formula is explicitly given.

Definition 4.3.2. Let l, l′, lj ∈ L. A formula φ is in separated normal form with modal positions

(SNFmp) if:

φ =
r∧
i=1

Ci,

where each Ci is either a:

• Positive modal clause: �µ(l′ → �al),

• Negative modal clause: �µ(l′ → ♦al),

• Literal clause: �µ(
∨t
j=1 lj).

Note that if µ = ε then �µA ≡ A. Hence for example �ε(l→ ♦al′) ≡ l→ ♦al′ is a negative

modal clause and we use the two forms interchangeably.

Definition 4.3.3. Let M = (w,Ra1 , . . . , Ran , V ) be a Kripke model. We say a world wm ∈ W
is µ = a1, a2, . . . , am-accessible from w0 ∈ W if there exists a path (w0, w1), . . . , (wm−1, wm)

from w0 to wm such that (wi−1, wi) ∈ Rai for all i ∈ {0, . . . ,m}.
Further wm is ε-accessible from w0 if and only if wm = w0.

Note that an SNFmp clause�µC is satisfied at some worldw0 in some modelM = (W,R1, . . . , Rn, V )

only if C is satisfied at every world w ∈W which is µ-reachable from w0.
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Definition 4.3.4. To convert an NNF formula φ into SNFmp we apply the translation function:

Tmp(φ) = x ∧ ρmp(x→ φ),

where x is a new propositional variable and ρmp is defined as follows:

ρmp(�µ(x→ θ ∧ ψ)) = ρmp(�µ(x→ θ)) ∧ ρmp(�µ(x→ ψ)),

ρmp(�µ(x→ ◦aθ)) =

�µ(x→ ◦aθ), if θ ∈ L,

�µ(x→ ◦ax1) ∧ ρmp(�µa(x1 → θ)), otherwise.

ρmp(�µ(x→ θ ∨ ψ)) =

�µ(¬x ∨ θ ∨ ψ), if θ, ψ ∈ CL,

ρmp(�µ(x→ θ ∨ x1)) ∧ ρmp(�µ(x1 → ψ)), otherwise,

where θ, ψ are formulas, x1 is a new propositional variable and µ ∈ A∗.

The termination of this translation function follows as for the analogous functions given in

Definitions 4.1.3 and 4.2.3.

Example 4.3.1. Let φ = (x ∨ ♦a(¬y ∧ x)) ∧�ay ∧ ¬x. Then:

Tmp(φ) = �ε(x0) ∧�ε(¬x0 ∨ x1 ∨ x2) ∧�ε(¬x1 ∨ x) ∧�ε(x2 → ♦ax3)∧

�a(¬x3 ∨ ¬y) ∧�a(¬x3 ∨ x) ∧�ε(x0 → �ay) ∧�ε(¬x0 ∨ ¬x).

Theorem 4.3.1. An NNF formula φ is satisfiable if and only if Tmp(φ) = x ∧ ρmp(x → φ) is

satisfiable.

Proof. (⇒): Let M = (W,R1, . . . , Rn, V ) be a model and w0 ∈ W such that (M,w0) |= φ.

Further let M1 = (W,R1, . . . , Rn, V1) where:

V1(w)(p) = V (w)(p) for all w ∈W and all variables p in the domain of V,

and V1(w)(x) =

1 if w = w0,

0 otherwise.

Then (M1, w0) |= x and (M1, w0) |= φ, and so (M1, w0) |= x→ φ.

We will prove by induction on the structure of φ that, given the existence of M1, there exists a

model M3 = (W,R1, . . . , Rn, V3) such that (M3, w0) |= ρmp(x→ φ) and V3(w)(p) = V1(w)(p)

for all w ∈ W and all propositional variables p in the domain of V1(w). It then follows that

(M3, w0) |= x and so (M3, w0) |= x ∧ ρmp(x→ φ).

There are two base cases, the first is when φ is a modal literal and the second is when φ

is a propositional clause. In both cases it follows immediately from the definition of ρmp that

(M1, w0) |= ρmp(�µ(x→ φ)) as either ρmp(�µ(x→ φ)) = �µ(x→ φ) if φ is a modal literal or
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ρmp(�µ(x→ φ)) = �µ(¬x ∨ φ) if φ is a propositional clause1. Hence we take M3 = M1.

The inductive cases are when φ = ψ ∨ θ, φ = ◦aψ and φ = ψ ∧ θ.

Suppose φ = ψ ∨ θ where at least one of ψ and θ is not a propositional clause. Then:

ρmp(�µ(x→ φ)) = ρmp(�µ(x→ ψ ∨ x1)) ∧ ρmp(�µ(x1 → θ)).

Let M2 = (W,R1, . . . , Rn, V2) where:

V2(w)(p) = V1(w)(p) for all variables p in the domain of V1,

and V2(w)(x1) =

1 if w ∈W such that (M1, w) 6|= ψ and w is µ-accessible from w0,

0 otherwise.

Then (M2, w0) |= �µ(x1 → θ) and (M2, w0) |= �µ(x → ψ ∨ x1). By the inductive hypothesis

there exists a modelM ′1 = (W,R1, . . . , Rn, V
′

1) such that (M ′1, w0) |= ρmp(�µ(x→ ψ∨x1))2 and

a model M ′2 = (W,R1, . . . , Rn, V
′

2) such that (M ′2, w0) |= ρ(�µ(x1 → θ)). Further V ′1(w)(p) =

V ′2(w)(p) = V1(w)(p) for all w ∈ W and all p in the domain of V1. For i ∈ {1, 2} let Xi be the

domain of V ′i (w0), then for all w ∈W let:

V3(w)(p) =

V ′1(w)(p) if p ∈ X1

V ′2(w)(p) if p ∈ X2 \X1.

Then (M3, w0) |= ρmp(�µ(x→ ψ ∨ x1)) ∧ ρmp(�µ(x1 → θ)).

Suppose φ = ◦aψ where ψ 6∈ L. Then:

ρmp(�µ(x→ ◦aψ)) = �µ(x→ ◦ax1) ∧ ρmp(�µa(x1 → ψ)).

Let M2 = (W,R1, . . . , Rn, V2) where:

V2(w)(p) = V1(w)(p) for all variables p in the domain of V1,

and V2(w)(x1) =

1 if w ∈W such that (M1, w) |= ψ and w is µa-accessible from w0,

0 otherwise.

Then (M2, w0) |= �µ(x → ◦ax1) and (M2, w0) |= �µa(x1 → ψ). Hence by the inductive

hypothesis there exists a model M3 = (W,R1, . . . , Rn, V3) such that (M3, w0) |= ρmp(�µa(x1 →
ψ)) and V3(w)(p) = V2(w)(p) for every w ∈W and every propositional variable p in the domain

of V2. Thus (M3, w0) |= �µ(x→ ◦ax1) ∧ ρmp(�µa(x1 → ψ)).

1Note that here we have replaced �ε with �µ where µ is some arbitrary finite word in A∗ (possibly ε). This
is necessary to apply the inductive hypothesis as for instance, if φ = �aD where D is a propositional clause then
ρmp(�ε(x→ φ)) = �ε(x→ �ax1) ∧ ρmp(�a(x1 → D)).

2Since ρmp(�µ(x→ ψ ∨ x1)) = ρmp(�µ(x→ (x1 ∨ x2))) ∧ ρmp(�µ(x2 → ψ)).
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Finally suppose φ = ψ ∧ θ. Then:

ρmp(�µ(x→ ψ ∧ θ)) = ρmp(�µ(x→ ψ)) ∧ ρmp(�µ(x→ θ)).

Let M2 = (W,R1, . . . , Rn, V2) where:

V2(w)(p) = V1(w)(p) for all variables p in the domain of V1,

and V2(w)(x1) =

1 if w ∈W such that (M1, w) |= ψ ∧ θ and w is µ-accessible from w0,

0 otherwise.

Then (M2, w0) |= �µ(x → ψ) and (M2, w0) |= �µ(x → θ). Hence by the inductive hy-

pothesis there exist models M ′1 = (W,R1, . . . , Rn, V
′

1) and M ′2 = (W,R1, . . . , Rn, V
′

2) such

that (M ′2, w0) |= ρmp(�µ(x → ψ)) and (M ′2, w0) |= ρmp(�µ(x → θ)). Further V ′1(w)(p) =

V ′2(w)(p) = V2(w)(p) for all w ∈ W and all propositional variables p in the domain of V2. For

each i ∈ {1, 2} let Xi denote the domain of V ′i . Further let M3 = (W,R1, . . . , Rn, V3), where

V3(w)(p) =

V ′1(w)(p) if p ∈ X1

V ′2(w)(p) if p ∈ X2 \X1.

Then (M3, w0) |= ρmp(�µ(x→ ψ)) ∧ ρmp(�µ(x→ θ)).

(⇐): Clearly, if (M,w0) |= x ∧ ρ(x → φ) then (M,w0) |= ρ(x → φ) and (M,w0) |= x.

Hence to prove that (M,w0) |= φ it suffices to prove that if (M,w0) |= ρ(x→ φ) then (M,w0) |=
x→ φ. We do this by induction on the structure of φ.

There are two base cases, the first is when φ is a modal literal and the second is when φ is a

propositional clause. In both cases (M,w0) |= �µ(x→ φ) by the definition of ρmp.

Suppose φ = ψ ∧ θ. Then ρmp(�µ(x → φ)) = ρmp(�µ(x → ψ)) ∧ ρmp(�µ(x → θ)) and

so (M,w0) |= ρmp(�µ(x → ψ)) ∧ ρmp(�µ(x → θ)). As ψ and θ are both subformulas of φ it

follows by the inductive hypothesis that (M,w0) |= �µ(x → ψ) and (M,w0) |= �µ(x → θ),

hence (M,w0) |= �µ(x→ ψ ∧ θ).

Suppose φ = ◦aψ. Then ρmp(�µ(x → ◦aψ)) = �µ(x → ◦ax1) ∧ ρmp(�µa(x1 → ψ)) and

so (M,w0) |= �µ(x → ◦ax1) and (M,w0) |= ρmp(�µa(x1 → ψ)). It follows by the inductive

hypothesis that (M,w0) |= �µa(x1 → ψ) and so (M,w0) |= �µ(x→ ◦aψ).

Finally suppose φ = ψ ∨ θ. Then ρmp(�µ(x→ ψ)) = ρmp(�µx→ ψ ∨ x1)∧ ρmp(�µ(x1 →
θ)) and so (M,w0) |= ρmp(�µx → ψ ∨ x1) and (M,w0) |= ρmp(�µ(x1 → θ)). It follows by

the inductive hypothesis that (M,w0) |= �µ(x → ψ ∨ x1) and (M,w0) |= �µ(x1 → θ) and so

(M,w0) |= �µ(x→ ψ ∨ θ).

Definition 4.3.5. The inference rules of Kmp-Res are given in Figure 4.3.

Note that the inference rules for Kmp-Res are the same as those for Kml-Res but are applied to

a set of clauses in SNFmp as opposed to a set of clauses in SNFml.
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�µ(D ∨ l)
LRES:

�µ(E ∨ ¬l)
�µ(D ∨ E)

�µ(l1 → �al)
MRES:

�µ(l2 → ♦a¬l)
�µ(¬l1 ∨ ¬l2)

�µ(l′1 → �al1)
GEN1: ...

�µ(l′z → �alz)
�µ(l′ → ♦al)

�µa(¬l1 ∨ · · · ∨ ¬lz ∨ ¬l)
�µ(¬l′1 ∨ . . .¬l′z ∨ ¬l′)

�µ(l1 → �al)
GEN2:

�µ(l2 → �a¬l)
�µ(l3 → ♦al′)

�µ(¬l1 ∨ ¬l2 ∨ ¬l3)

�µ(l′1 → �al1)
GEN3: ...

�µ(l′z → �alz)
�µ(l′ → ♦al)

�µa(¬l1 ∨ · · · ∨ ¬lz)
�µ(¬l′1 ∨ · · · ∨ ¬l′z ∨ ¬l′)

where l, l′, lj ∈ L, µ ∈ A∗ and D,E ∈ CL.

Figure 4.3: Rules for Kmp-Res

Theorem 4.3.2. The proof system Kmp-Res is strongly sound.

Proof. We prove the theorem by showing that each of the rules of Kmp-Res are sound.

To see that LRES is sound we let C1 = �µ(l ∨ D1) and C2 = �µ(¬l ∨ D2). We further

suppose we have some model M = (W,R1, . . . , Rn, V ) and some world w ∈ W such that

(M,w) |= C1 and (M,w) |= C2. Then as M satisfies C1 at w, for every world w′ which is

µ-accesesible from w we have either (M,w′) |= l or (M,w′) |= D1. In the latter case it follows

that (M,w′) |= D1 ∨D2, whereas in the former case we have that (M,w′) 6|= ¬l and so as C2 is

also satisfied at w in M it follows that (M,w′) |= D2 and so (M,w′) |= D1 ∨D2. Hence in both

cases (M,w) |= �µ(C1 ∨ C2) and so LRES is sound.

To see that MRES is sound we let C1 = �µ(l1 → �al) and C2 = �µ(l2 → ¬�al). We

further let M be a model and w be a world in M such that (M,w) |= C1 and (M,w) |= C2. It

follows that for every world w′ that is µ-accessible from w either (M,w′) 6|= l1 or (M,w′) |= �al.
In the former case (M,w′) |= ¬l1 ∨ ¬l2. In the latter case either there exists no world which is

a-accessible from w′ and so (M,w′) 6|= ¬�al or at every such world w′′ we have (M,w′′) |= l and

so once again (M,w′) 6|= ¬�al. Hence as C2 is satisfied at w in M it follows that (M,w′) |= ¬l2
and so (M,w′) |= ¬l1 ∨ ¬l2. Hence in every case (M,w) |= �µ(¬l1 ∨ ¬l2) and so MRES is

sound.

To see that GEN1 is sound we let Ci = �µ(l′i → �ali) for each i ∈ [z], Cz+1 = �µ(l′ → ♦al)
and Cz+2 = �µa(¬l1 ∨ · · · ∨ ¬lz ∨ ¬l). We further let M be a model and w be a world in M such
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that (M,w) |= Cj for every j ∈ [z + 2]. As every Ci is satisfied at w in M it follows that for each

i and each world w′ in M which is µ-accessible from w either (M,w′) 6|= l′i or (M,w′) |= �ali. If

(M,w′) 6|= l′i for some i then (M,w′) |= ¬l′1 ∨ · · · ∨ ¬l′z ∨ ¬l′. Otherwise if (M,w′) |= �ali for

every i then we note that as (M,w) |= Cz+1 either (M,w′) 6|= l′ or (M,w′) |= ♦al. In the former

case (M,w′) |= ¬l′1 ∨ · · · ∨ ¬l′z ∨ ¬l′. In the latter case there must exist some world w′′ which is

a-accessible from w′. Further (M,w′′) |= l and (M,w′′) |= li for all i. However this would mean

that (M,w′′) 6|= ¬l1 ∨ · · · ∨ ¬lz ∨ ¬l contradicting our original assumption that (M,w) |= Cz+2.

Hence in every case (M,w) |= �µ(¬l′1 ∨ · · · ∨ ¬l′z ∨ ¬l′) and so GEN1 is sound.

To see that GEN2 is sound we let C1 = �µ(l1 → �al), C2 = �µ(l2 → �a¬l) and C3 =

�µ(l3 → ♦al′). We further let M be a model and w be a world in M such that (M,w) |= Cj

for every j ∈ [3]. As C1 is satisfied at w in M it follows that for each world w′ in M which

is µ-accessible from w either (M,w′) 6|= l1 or (M,w′) |= �al. In the former case (M,w′) |=
¬l1 ∨¬l2 ∨¬l3. In the latter case we note that as C2 is also satisfied at w in M either (M,w′) 6|= l2

and so (M,w′) |= ¬l1 ∨ ¬l2 ∨ ¬l3, or (M,w′) |= �a¬l. Note that the latter is only possible if M

contains no worlds that are a-accessible from w′, however as (M,w) |= C3 this can only be the

case if (M,w′) |= ¬l3, in which case we once again have that (M,w′) |= ¬l1 ∨ ¬l2 ∨ ¬l3. Hence

in every case (M,w) |= �µ(¬l1 ∨ ¬l2 ∨ ¬l3) and so GEN2 is sound.

Finally to see that GEN3 is sound we let Ci = �µ(l′i → �ali) for each i ∈ [z], Cz+1 =

�µ(l′ → ♦al) and Cz+2 = �µa(¬l1 ∨ · · · ∨ ¬lz). We further let M be a model and w be a world

in M such that (M,w) |= Cj for every j ∈ [z + 2]. As every Ci is satisfied at w in M it follows

that for each i and each world w′ in M which is µ-accessible from w either (M,w′) 6|= l′i or

(M,w′) |= �ali. If (M,w′) 6|= l′i for some i then (M,w′) |= ¬l′1 ∨ · · · ∨ ¬l′z ∨ ¬l′. Otherwise

if (M,w′) |= �ali for every i then we note that as (M,w) |= Cz+1 either (M,w′) 6|= l′ or

(M,w′) |= ♦al. In the former case (M,w′) |= ¬l′1 ∨ · · · ∨ ¬l′z ∨ ¬l′. In the latter case there must

exist some world w′′ which is a-accessible from w′. Further (M,w′′) |= l and (M,w′′) |= li for all

i. However this would mean that (M,w′′) 6|= ¬l1 ∨ · · · ∨ ¬lz contradicting our original assumption

that (M,w) |= Cz+2. Hence in every case (M,w) |= �µ(¬l′1 ∨ · · · ∨ ¬l′z ∨ ¬l′) and so GEN3 is

sound.

To prove that the proof system Kmp-Res is complete we follow a similar method to that of

the proof of Kml-Res’s completeness in [64]. We show that given a set of SNFmp clauses we can

construct a unique graph whose vertices and edges correspond to worlds and accessibility relations

respectively. We then show that this graph is empty if and only if C is unsatisfiable and that if C is

unsatisfiable then the construction of the graph corresponds to some Kmp-Res refutation of C.

Let C be a set of SNFmp clauses and letMP be the set of modal positions of these clauses (i.e.

MP = {µ ∈ A∗ | �µC ∈ C}). We construct a behaviour graph:

G =

〈 ⋃
µ∈MP

Nµ,
⋃
a∈A
Ea

〉
,

for C as follows. LetN be the set of all maximal consistent sets of the literals in C. Further for each
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µ ∈MP let Nµ = {(µ, η) | η ∈ N} and for each a ∈ A let Ea =
⋃
µa∈MP{(ηµ, η′µa)}.

Let φ be a disjunction of literals. We say that φ is satisfied by vertex ηµ = (µ, η), denoted

ηµ |= φ, if and only if:

• φ is a literal and φ ∈ η,

• φ = ψ ∨ θ and ηµ |= ψ or ηµ |= θ,

• φ = ψ → θ where either ψ is a literal such that ¬ψ ∈ η, or ηµ |= θ,

• φ = ♦ax and there exists some η′µa such that (ηµ, η
′
µa) ∈ Ea and η′µa |= x,

• φ = �ax and η′µa |= x for every η′µa such that (ηµ, η
′
µa) ∈ Ea.

From G we can construct a unique reduced behaviour graph, G′, for C by deleting every vertex

that fails to satisfy some clause in C. First, for each literal clause �µD ∈ C delete every ηµ ∈ Nµ
such that ηµ 6|= D. Then for each positive modal clause �µ(l′ → �al) ∈ C and each vertex

ηµ ∈ Nµ, if there exists an edge (ηµ, η
′
µa) ∈ Ea, where η′µa ∈ Nµa, ηµ |= l′ and η′µa 6|= l then we

delete (ηµ, η
′
µa) from Ea. Finally for each negative modal clause �µ(l′ → ♦al) and each vertex

ηµ ∈ Nµ if there does not exist an edge (ηµ, η
′
µa) ∈ Ea, where η′µa ∈ Nµa, ηµ |= l′ and η′µa |= l

then we delete ηµ from Nµ.

To show that the reduced behaviour graph of a satisfiable set of clauses is non-empty we require

the following well known property of the modal logic Kn (see for example [19]).

Theorem 4.3.3 (The finite tree model property). Any satisfiable modal formula has a finite tree-like

model.

Lemma 4.3.1. Let C be a set of SNFmp clauses and let:

G =

〈 ⋃
µ∈MP

Nµ,
⋃
a∈A
Ea

〉
,

be its reduced behaviour graph. Then C is satisfiable if and only if Nε is non-empty.

Proof. (⇒): Suppose C is a satisfiable. Let M = (W,Ra1 , . . . , Ran , V ) be a finite tree-like model

and let wε ∈W such that (M,wε) |= C. That such a model exists follows from the finite tree model

property for Kn. Further let:

N(M) = {ηw | w ∈W} and E(M)a = {(ηw, ηw′) | (w,w′) ∈ Ra} for each a ∈ A,

where ηw = (µ, {x | V (w)(x) = 1} ∪ {¬x | V (w)(x) = 0}) and µ ∈ A∗ such that w is

µ-accessible from wε. In particular ηwε ∈ Nε. Note that as M is a tree-like model µ is unique,

however if there exist two distinct worlds, w and w′ that are both µ accessible from wε and have
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exactly the same valuation functions then ηw = ηw′ . If we further let:

G(M) =

〈
N(M),

⋃
a∈A

E(M)a

〉
,

then G(M) is a subgraph of the non-reduced behaviour graph for C. Note that G(M) is non-empty,

in particular ηwε ∈ N(M).

We will now show that G(M) is also a subgraph of the reduced behaviour graph, G for C.

Consider some literal clause �µD ∈ C with modal position µ. As (M,wε) |= �µD it follows

that (M,w) |= D for every w ∈ W that is µ-accessible from wε and so ηw |= D. Suppose

C = �µ(l → �al′) ∈ C (respectively C = �µ(l → ♦al′) ∈ C). As (M,wε) |= C it follows

that for all w ∈ W that are µ-accessible from wε either V (w)(l) = 0 or, V (w)(l) = 1 and

V (w′)(l′) = 1 for every (respectively some) w′ ∈ W such that (w,w′) ∈ Ra. In the former case

it follows that ηw |= ¬l and so ηw |= l → �al′ (respectively ηw |= l → ♦al′). In the latter case

note that G(M) contains an a-edge from ηw to ηw′ if and only if w′ is a-accessible from some

w′′ ∈W such that ηw′ = ηw. Hence as V (w′′)(l) = V (w)(l) = 1 for every such w′′ it follows that

V (w′)(l′) = 0 and so ηw′ |= l′ and ηw |= l→ �al′ (respectively ηw |= l→ ♦al′).
As in the construction of G vertices and edges are only deleted if they fail to satisfy some clause

it follows that G(M) is a subgraph of G and so Nε ⊇ {ηwε} is non-empty.

(⇐): SupposeNε is non-empty. We construct a modelM = (W,R1, . . . , Rn, V ) that satisfies C
at some wε ∈W as follows. Let f : Nµ → N be an injective function. Then for each µ ∈MP and

each ηµ ∈ Nµ let w〈µ,f(η)〉 be a world named by 〈µ, f(η)〉. Further let Wµ =
⋃
η∈Nµ w〈µ,f(η)〉 and

letW =
⋃
µ∈MPWµ. Letwε be an arbitrarily chosen world from the setWε. Then for each aj ∈ A

define the relation Rj so that (w〈µ,f(η)〉, w〈µ′,f(η′)〉) ∈ Rj if and only if (ηµ, η
′
µ′) ∈ Eaj . Finally we

define V such that V (w〈µ,f(η)〉)(p) = 1 if and only if η |= p. It follows that (M,wε) |= C.

Theorem 4.3.4. The proof system Kmp-Res is complete.

Proof. Let C be an unsatisfiable set of SNFmp clauses and let:

G =

〈 ⋃
µ∈MP

Nµ,
⋃
a∈A

Ea

〉
,

be its reduced behaviour graph. We will show that there exists a refutation of C corresponding to

the deletion procedure used to construct G from the corresponding non-reduced behaviour graph G′.
The first step used in the construction of G from G′ is to delete all vertices in Nµ that fail to

satisfy some literal clause in C with modal position µ for each µ ∈ A∗. IfNε becomes empty at this

stage then the subset of C consisting of all literal clauses at modal position ε must be unsatisfiable.

Hence by the completeness of propositional resolution there exists an LRES refutation of C.

Suppose Nε is not yet empty and there exist two clauses �µ(l′ → �al) ∈ C and �µ(l′′ →
♦a¬l) ∈ C. Then by the construction of the graph any vertex η ∈ Nµ that satisfies both l′ and
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♦a¬l is deleted, as is every vertex that satisfies both l′′ and �al. This is equivalent to deleting every

vertex that satisfies both l′ and l′′. Applying MRES to �µ(l′ → �al) and �µ(l′′ → ♦a¬l) we

obtain �µ(¬l′ ∨ ¬l′′), effectively mimicking the deletion of such vertices.

If Nε is still non-empty then we proceed by considering the vertices that fail to satisfy some

negative modal clause in C. Let Cηµa ⊂ C be the set of all positive modal clauses, which contain a

modal literal of the form �al and are satisfied by ηµ and let Xηµ
a = {l2 | �µ(l1 → �al2) ∈ Cηµa }.

Further let <1 be a total ordering ofMP where µ1 <1 µ2 only if |µ1| ≤ |µ2|. For each µ ∈MP
in descending order we proceed as follows. Let Dµa be the set of all literal clauses with modal

position µa that are either in C or whose derivation corresponds to some previous deletion. Suppose

there exists a clause �µ(l→ ♦al′) ∈ C and a vertex ηµ ∈ Nµ such that ηµ |= l, but there does not

exist a vertex which is a a-accessible from ηµ and satisfies l′. As l′ alone cannot be contradictory

and we have already dealt with the case when Xηµ
a ∪ {l′} is contradictory above, there are four

cases:

1. The set Xηµ
a is contradictory. Then there must exist two positive modal clauses of the form

�µ(l1 → �al2) and �µ(l3 → �a¬l2), where ηµ |= l1 and ηµ |= l3. By applying GEN2 to these

two clauses and �µ(l → ♦al′) we obtain the clause �µ(¬l ∨ ¬l1 ∨ ¬l3), which corresponds to

deleting ηµ.

2. Suppose Dµa ∪ {l′} is contradictory. By the consequence completeness of propositional resolu-

tion3 [56] there exists an LRES derivation of �µa¬l′ from Dµa. By applying GEN1 to this formula

and �µ(l→ ♦al′) we obtain �µ¬l, which corresponds to deleting ηµ.

3. Suppose Xηµ
a ∪ Dµa is contradictory. Then there exists some literal clause such that Dµa |=

�µa(¬l1∨· · ·∨¬ln) where each li ∈ X
ηµ
a . Hence by the consequence completeness of propositional

resolution there must exist an LRES derivation of some literal clause C = �µa(¬l′1 ∨ · · · ∨ ¬l′n′),

where each l′j ∈ {l1, . . . , ln}. Applying GEN3 to the clause C, the set of modal clauses {�µ(l′′i →
�al′i) ∈ Dµa | l′i appears in C} and �µ(l→ ♦al′) corresponds to deleting ηµ.

4. Suppose Xηµ
a ∪ Dµa ∪ {l′} is contradictory. Then as above it follows from the consequence

completeness of propositional resolution that there exists an LRES derivation from Dµa of some

literal clause C = �µ(¬l1∨ · · · ∨¬ln), where each li ∈ {l′}∪X
ηµ
a . Applying GEN1 to this clause,

the set of modal clauses {�µ(l′i → �ali) ∈ Dµa | li appears in C} and �µ(l→ ♦al′) corresponds

to deleting ηµ.

The above cases cover all possible deletions carried out when constructing a reduced behaviour

graph for C. As C is unsatisfiable it follows by Lemma 4.3.1 that every vertex inNε must have been

deleted at some stage. As the deletion of each vertex ηε ∈ Nε corresponds to the derivation of a

clause which it fails to satisfy it follows that the set Dε is contradictory. Hence by the completeness

of propositional resolution this set of clauses can be refuted using LRES.
3That is, given any set of propositional clauses T , if T semantically implies some clause D then T `Kmc−Res C,

where C is a subclause of D.
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4.4 Resolution with modal contexts

In this section we will define another new resolution system for Kn, called Kmc-Res which is

a refinement Kmp-Res. The rules of Kmc-Res are essentially identical to those of Kml-Res and

Kmp-Res, however it acts on a normal form where each clause is labelled by its modal context as

opposed to its modal level or position.

Informally, if we give each ♦ operator in some modal formula φ a unique label then the modal

context of a subformula ψ of φ is the sequence of modal operators that it is nested within in φ. So

for example if φ1 = �a♦1
ax ∧ �a♦2

ay then x has modal context �a♦1
a and y has modal context

�a♦2
a. Whereas if φ2 = ♦1

a(x ∧ y) then both x and y have modal context ♦1
a. Intuitively two

subformulas of φ have the same modal context if and only if in any model of φ these subformulas

must be evaluated at exactly the same world or worlds. There exist models that satisfy φ1 but do not

contain any world w such that V (w)(x) = 1 and V (w)(y) = 1, however every model that satisfies

φ2 contains a world where V (w)(x) = V (w)(y) = 1. Hence in our new calculus Kmc-Res we

label each clause by its modal context to avoid unnecessary inferences.

Note that other formalisms in which the modal contexts of formulas are explicitly given have

been previously defined such as Ohlbach’s world paths [70, 71] and Schmidt’s path logic [83].

To refute a formula using Kmc-Res we must first translate it into a clausal form, where each

clauses modal context with respect to the original formula is explicitly given. As the translation

used introduces a new extension variable for every subformula of the form ♦aφ where φ 6∈ L we

do not need to label the ♦a operators. The modal context of a clause can instead be specified by a

finite word over the set of agents A and the set of pairs of the form (a, x) where a is an agent and x

is an extension variable.

Definition 4.4.1. Let l, l′, lj ∈ L. A formula φ is in separated normal form with modal contexts

(SNFmc) if:

φ =

r∧
i=1

Ci,

where each Ci is either a:

• Positive modal clause: (e : l′ → �al),

• Negative modal clause: (e : l′ → ♦al),

• Literal clause: (e :
∨t
j=1 lj).

Here e is a finite word over EC (Definition 4.4.3) denoting the modal context of the clause.

Definition 4.4.2. To convert an NNF formula φ into SNFmc we apply the translation:

Tmc(φ) = xε ∧ ρmc(ε : xε → φ),
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where xε is a new propositional variable and ρmc is defined as follows:

ρmc(e : x→ θ ∧ ψ) = ρmc(e : x→ θ) ∧ ρmc(e : x→ ψ),

ρmc(e : x→ �aθ) =

(e : x→ �aθ), if θ ∈ L,

(e : x→ �ax1) ∧ ρmc(ea : x1 → θ), otherwise.

ρmc(e : x→ ♦aθ) =

(e : x→ ♦aθ), if θ ∈ L,

(e : x→ ♦ax1) ∧ ρmc(e(a, x1) : x1 → θ), otherwise.

ρmc(e : x→ θ ∨ ψ)) =

(e : ¬x ∨ θ ∨ ψ), if θ, ψ ∈ CL,

ρmc(e : x→ θ ∨ x1) ∧ ρmc(e : x1 → ψ), otherwise,

where θ, ψ are formulas, x1 is a new propositional symbol and e ∈ (A ∪ (A×XC−))∗.

The termination of this ρmc follows as for the analogous functions given in Definitions 4.1.3,

4.2.3 and 4.3.4.

Let C be a set of SNFmc clauses inferred by applying ρmc to some formula φ ∈ wfmf . As in

Section 4.1 we refer to the variables added during the translation as extension variables and define

the sets XC , XC−, XC+ and XC± in the obvious way.

Example 4.4.1. Let φ = (x ∨ ♦a(¬y ∧ x)) ∧�ay ∧ ¬x. Then:

Tmc(φ) = (ε : x0) ∧ (ε : ¬x0 ∨ x1 ∨ x2) ∧ (ε : ¬x1 ∨ x) ∧ (ε : x2 → ♦ax3)∧

((a, x3) : ¬x3 ∨ ¬y) ∧ ((a, x3) : ¬x3 ∨ x) ∧ (ε : x0 → �ay) ∧ (ε : ¬x0 ∨ ¬x).

Definition 4.4.3. For any set of SNFmc clauses C we define the set of context markers to be:

EC = A ∪ (A×XC−).

The set of all finite words over EC (denoted E∗C ) then consists of all modal contexts for C.

Intuitively each label (a, x) ∈ A × XC− refers to the unique ♦a operator such that (e : x′ →
♦ax) ∈ C. That this ♦a is unique follows from the definition of the translation Tmc as each extension

variable in XC− appears exactly once as a modal literal. Each label a ∈ A refers to a �a operator.

Definition 4.4.4. Let M = (W,Ra1 , . . . , Ran , V ) be a Kripke model, let φ ∈ wfmf and let

C = Tmc(φ). We say w ∈W is ε-reachable from wε ∈W if w = wε.

We say w is ea-reachable from wε if (w′, w) ∈ Ra for some w′ ∈ W such that w′ is e-reachable

from w. We say w is e(a, x)-reachable from wε where x ∈ XC− and a ∈ A if (w′, w) ∈ Ra for

some w′ ∈W such that w′ is e-reachable from w and V (w)(x) = 1.

We define the satisfiability of a clause with modal context e ∈ E∗C as follows:

(M,wε) |= (e : C) ⇐⇒ (M,w) |= C for all w ∈W such that w is e-reachable from wε.
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Definition 4.4.5. Let C be a set of SNFmc clauses and x′ ∈ XC . We say that x′ is propositionally

reachable from x ∈ XC± if there exists some subset of C:

C(x,x′) = {(e : x0 → ◦ax1), (e : D1 ∨ ¬x1 ∨ x2), . . . , (e : Dn−1 ∨ ¬xn−1 ∨ xn)}

where x1 = x, xn = x′, xi ∈ XC for each i ∈ {0, . . . , n− 1} and each Di ∈ CL. We say that such

a set C(x,x′) witnesses that x′ is propositionally reachable from x.

It follows immediately from the above definition and the definition of Tmc that every variable

x′ ∈ XC is propositionally reachable from some unique x ∈ XC±. Further the set C(x,x′) witnessing

this is unique.

Theorem 4.4.1. An NNF formula φ ∈ wfmf is satisfiable if and only if Tmc(φ) is satisfiable.

Proof. By Theorem 4.3.1 an NNF formula φ is satisfiable if and only if the set of SNFmp clauses

Tmp(φ) is satisfiable. Hence we prove the theorem by showing that Tmp(φ) is satisfiable if and only

if Tmc(φ) is satisfiable.

It follows immediately from the definitions of Tmp and Tmc that there is a one-to-one cor-

respondence between the set of SNFmp clauses Cmp = Tmp(φ) and the set of SNFmc clauses

Cmc = Tmc(φ). That is, �µC ∈ Cmp if and only if (e : C) ∈ Cmc for some e ∈ E∗C such that

|e| = |µ|. In particular µ is the finite word overA obtained by replacing each pair (a, x) ∈ A×XC−
in e with a.

(⇒): Suppose Cmp is satisfiable. Then there exists some model M = (W,R1, . . . , Rn, V ) and

some wε ∈ W such that (M,wε) |= �µC for every �µC ∈ Cmp. If (M,wε) |= �µC, where

µ = a1 . . . az , then (M,wε) |= (e : C) for all e ∈ E∗C such that e = c1 . . . cz where for each i ∈ [z]

either ci = ai or ci = (ai, x) for some x ∈ XC−. Hence (M,wε) |= Cmc.
(⇐): Now suppose the set Cmc is satisfiable. Let M = (W,R1, . . . , Rn, V ) be a model such

that (M,wε) |= Cmc for some wε ∈ W . Suppose (e : C) ∈ Cmc where e ∈ E∗C and let µ be the

corresponding modal position. We will show that (M,wε) |= �µC via induction on |e|.
Suppose |e| = 0, then e = ε. By definition wε is the only world in W that is ε-reachable from

itself. By assumption (M,wε) |= (ε : C) hence it follows that (M,wε) |= C.

Now suppose |e| > 0. By definition (M,w) |= C for every w ∈W which is e-reachable from

wε. Hence all that remains is to show that (M,w) |= C for every world that is µ-reachable from

wε, but not e-reachable. By the definition of Tmc the clause C must contain exactly one negative

extension literal ¬x. Further x must be propositionally reachable from some unique x′ ∈ XC±. We

prove by induction on the size of the set C(x′,x) witnessing this that we can assume without loss of

generality that V (w)(x) = 0 for all w ∈ W such that w is not e-reachable from wε. From this it

follows trivially that (M,w) |= C at every w ∈W which is µ-accessible from wε.

If |C(x′,x)| = 1 then x ∈ XC±. Suppose x ∈ XC− (respectively x ∈ XC+). It follows from the

definition of Tmc that e = e′(x, a) (respectively e = e′a) and (e′ : x′ → ♦ax) ∈ Cmc (respectively

(e′ : x′ → �ax) ∈ Cmc). Further by the definition of Tmc this is the only clause containing x
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positively and every clause containing x negatively has modal context e. Hence we can assume

without loss of generality that V (w)(x) = 0 for all w ∈W such that w is not e-reachable from wε.

As C contains ¬x it is satisfied at every such w.

Now suppose |C(x′,x)| > 1. Then by definition C(x′,x) must contain some clause (e : C ′) =

(e : ¬x1 ∨D ∨ x) where x1 ∈ XC . Further C(x′,x) \ {(e : C ′)} witnesses that x1 is propositionally

reachable from x′. Hence by the inductive hypothesis we can assume without loss of generality

that V (w)(x1) = 0 at all worlds w that are not e-reachable from wε. Hence we can further assume

without loss of generality that V (w)(x) = 0 at every such world as doing so will not change the

truth valuation of C ′, which is the only clause in Cmc containing the positive literal x.

In our new calculus we allow inferences to be made from sets of clauses with different modal

contexts under certain conditions. To see why this is necessary consider the formula:

φ = �a(x ∧ y) ∧ ♦a(¬x ∧ z),

and the corresponding set of SNFmc clauses:

C = {(ε : xε), (ε : xε → �ax1), (a : ¬x1 ∨ x), (a : ¬x1 ∨ y),

(ε : xε → ♦ax2), ((a, x2) : ¬x2 ∨ ¬x), ((a, x2) : ¬x2 ∨ z)}.

Clearly φ is unsatisfiable, however we cannot refute C using similar rules to those of Kn-Res and

Kml-Res if we do not allow inferences on clauses with different modal contexts. Hence we have the

following definition.

Definition 4.4.6. Let C be a set of SNFmc clauses. We define the unification function σ : E∗C ×
· · · × E∗C → E∗C so that σ(ε, . . . , ε) = ε, further for every c1, . . . , cn ∈ EC :

σ(c1, . . . , cn) =


cj if some cj = (a, x) ∈ A× XC and ck ∈ {a, (a, x)} for all k 6= j,

a if c1 = · · · = cn = a ∈ A,

undefined otherwise,

and for every e1, . . . en ∈ E∗C :

σ(e1, . . . , en) =

σ(c1,1, . . . , c1,n) . . . σ(cm,1, . . . , cm,n) if |e1| = · · · = |en| = m > 0,

undefined otherwise,

where ci,j denotes the ith letter in the word ej . Note that if σ(ci,1, . . . , ci,n) is undefined for any

i ∈ [m] then so is σ(e1, . . . , en).

We say that the modal contexts e1, . . . , en ∈ E∗C are unifiable if σ(e1, . . . , en) is defined.

Otherwise we say that e1, . . . , en are non-unifiable.

Example 4.4.2. Consider the modal contexts e1 = a1a2, e2 = (a1, x1)a2 and e3 = (a1, x2)(a2, x3).
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The modal context e1 is unifiable with e2 as:

σ(e1, e2) = σ(a1, (a1, x1))σ(a2, a2) = (a1, x1)a2.

Similarly, e1 is unifiable with e3 as:

σ(e1, e3) = σ(a1, (a1, x2))σ(a2, (a2, x3)) = (a1, x2)(a2, x3),

and so is defined. However the modal contexts e2 and e3 are not unifiable as σ((a1, x1), (a1, x2))

is undefined.

Intuitively allowing resolution on sets of clauses with unifiable modal contexts can be thought

of as allowing �a to be resolved with ♦a to infer ♦a, which is of course sound.

Definition 4.4.7. The inference rules of Kmc-Res are given in Figure 4.4.

(e1 : D ∨ l)
LRES:

(e2 : E ∨ ¬l)
(σ(e1, e2) : D ∨ E)

(e1 : l1 → �al)MRES:
(e2 : l2 → ♦a¬l)

(σ(e1, e2) : ¬l1 ∨ ¬l2)

(e1 : l1 → �al)GEN2:
(e2 : l2 → �a¬l)
(e3 : l3 → ♦al′)

(σ(e1, e2, e3) : ¬l1 ∨ ¬l2)

(e1 : l′1 → �al1)
GEN1: ...

(ez : l′z → �alz)
(ez+1 : l′ → ♦al)

(ez+2y : ¬l1 ∨ · · · ∨ ¬lz ∨ ¬l)
(σ(e1, . . . , ez+2) : ¬l′1 ∨ . . .¬l′z ∨ ¬l′)

(e1 : l′1 → �al1)
GEN3: ...

(ez : l′z → �alz)
(ez+1 : l′ → ♦al)

(ez+2y : ¬l1 ∨ · · · ∨ ¬lz)
(σ(e1, . . . , ez+2) : ¬l′1 ∨ · · · ∨ ¬l′z ∨ ¬l′)

where l, l′, lj ∈ L, ej ∈ E∗C , y ∈ EC and D,E ∈ CL. We may only use the above rules to infer
a clause (σ(e1, . . . , en) : C) if σ(e1, . . . , en) is defined.

Figure 4.4: Rules for Kmc-Res

Remark 4.4.1. Let C be a set of SNFmc clauses and let C be some clause which is Kmc-Res

derivable from C. If C has modal context e ∈ E∗C then it must be inferred by applying some rule of

Kmc-Res to a set of clauses whose modal contexts are either unifiable with e or unifiable with ec for

some c ∈ EC . It follows by induction that C is Kmc-Res derivable from the subset of C consisting of

every clause whose modal context is of the form e1e2, where e1, e2 ∈ E∗C and e1 is unifiable with e.

Theorem 4.4.2. Kmc-Res is complete and strongly sound.
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Proof. Any proof system that p-simulates a complete proof system is complete and any proof

system that is p-simulated by a strongly sound proof system is strongly sound. By Theorems 4.3.2

and 4.3.4 the proof system Kmp-Res is strongly sound and complete, hence the theorem follows

immediately from the fact that Kmc-Res both p-simulates and is p-simulated by Kmp-Res (Theorem

4.5.1).

Note that we could have proven this theorem directly by following a very similar method to the

one used in the proofs of Theorems 4.3.2 and 4.3.4.

4.5 Comparing Kn-Res, Kml-Res, Kmp-Res and Kmc-Res

In this section we prove that the modal resolution systems Kn-Res, Kml-Res, Kmp-Res and Kmc-

Res all p- equivalent. As we will see, that Kmc-Res ≤p Kmp-Res ≤p Kml-Res ≤p Kn-Res follows

fairly straightforwardly from the respective definitions of the proof systems. Whereas our proof

that Kn-Res ≤p Kml-Res ≤p Kmp-Res ≤p Kmc-Res is more involved and essentially consists of

showing that given any unsatisfiable set of SNF clauses, C and any Kn-Res refutation π of C, the

following statement is true:

“The sequence of clauses obtained from π by deleting every clause inferred from a set of clauses

whose modal contexts would prevent the analogous rule of Kmc-Res from being applied to the

analogous set of SNFmc clauses, along with every descendant of such a clause, is also a Kn-Res

refutation of C.”

So for example if π contains a clause C which is inferred by applying LRES to two literal clauses

with modal contexts e1 and e2 respectively and σ(e1, e2) is undefined then π′ would not contain C

or any descendant of C.

4.5.1 Modal contexts for clauses in SNF

To prove that Kmc-Res ≤p Kmp-Res ≤p Kml-Res ≤p Kn-Res we must be able to “read off”

the modal context of a given clause in SNF. In Section 4.4 we saw that the extension variables

introduced when translating a modal formula into SNFmc encode the modal context of each clause.

This is also true of the extension variables introduced when translating a modal formula into SNF.

Hence in this subsection we give a series of definitions which enable us determine the modal context

of an SNF clause simply by looking at the extension variables it contains.

In Section 4.4 we defined what it meant for an extension variable x′ ∈ XC to be propositionally

reachable from some x ∈ XC± for a given set of SNFmc clauses C. Similarly, for any set of SNF

clauses C we say that x′ ∈ XC is propositionally reachable from some x ∈ XC± if there exists some

subset of C of the form:

C(x,x′) = {�∗(x0 → ◦ax1),�∗(D1 ∨ ¬x1 ∨ x2), . . . ,�∗(Dn ∨ ¬xn−1 ∨ xn)},

where x1 = x and xn = x′.
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We further define the set EC so that for every x1, x2 ∈ X we have (x1, x2) ∈ EC if and only if

x2 is propositionally reachable from x1.

Definition 4.5.1. Let y ∈ XC . We say that y is a-positively modally reachable (respectively a-

negatively modally reachable) from x if C contains a clause of the form�∗(x′ → �ay′) (respectively

�∗(x′ → ♦ay′)) where x′, y′ ∈ XC , (x, x′) ∈ EC and (y′, y) ∈ EC .
We define Ea+

C (respectively Ea−C ) so that (x, y) ∈ Ea+
C (respectively (x, y) ∈ Ea−C ) if and

only if y is a-positively modally reachable (respectively a-negatively modally reachable) from x.

Let C be a set of SNF clauses. We can specify the modal context of a given extension variable

in XC or clause in C using finite words over the set of clausal modal context markers for C, EC
(Definition 4.4.3).

Definition 4.5.2. Let C be a set of SNF clauses and let xε ∈ XC be such that �∗(S → xε) ∈ C.

Note that for every C the variable xε is uniquely defined. We define:

Xε = {x ∈ XC | (xε, x) ∈ EC}.

For every e ∈ E∗C and every c ∈ EC we define:

Xec =


{x ∈ XC | (z, x) ∈ Ea+

C for some z ∈ Xe} if c ∈ A,

{x ∈ XC | (z, x) ∈ EC} if c = (a, z) ∈ A× XC−,

∅ otherwise.

We say x has modal context e if x ∈ Xe.

Definition 4.5.3. Let π be a Kn-Res refutation of some set of SNF clauses C and let C be some

clause in π. If C contains the start connective S then we say that C has modal context ε. Further,

if some x ∈ Xe appears as a negative literal (i.e. either as ¬x in a literal clause or as x on the left

hand side of a→ operator in a modal clause) in C the we say that C has modal context e.

Let C be a set of SNF clauses. It follows from the definition of the translation function T that

each C ∈ C contains only one negative extension literal, and so every such C has only one modal

context. However, using the rules of Kn-Res it is possible to derive SNF clauses that contain two or

more negative extension literals with distinct modal contexts, and so have multiple modal contexts.

4.5.2 The polynomial simulations

This subsection contains a proof that Kn-Res, Kml-Res, Kmp-Res and Kmc-Res are all p-equivalent.

Proving that Kmc-Res≤p Kmp-Res≤p Kml-Res≤p Kn-Res is straightforward. Hence the majority

of the subsection is made up of a series of lemmas that are used to prove that Kn-Res ≤p Kml-

Res ≤p Kmp-Res ≤p Kmc-Res. We begin by giving some definitions and results concerning the

structure of Kn-Res proofs.
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Definition 4.5.4. Let π be a Kn-Res refutation of some set of SNF clauses C, let Cπ denote the set

of all clauses in π and let C1, Cn ∈ Cπ. We say that there is a path from C1 to Cn if there exists a

word C1C2 . . . Cn−1Cn ∈ Cπ∗ such that for each i ∈ [n− 1] the clause Ci+1 is a child of Ci.

Lemma 4.5.1. Let C be a set of clauses in SNF and π be a Kn-Res refutation of C. If C2 =

�∗(x ∨D2) is a descendant of C1 = �∗(x ∨D1) ∈ C, where x ∈ XC then π contains a path P

from C1 to C2 such that every clause in P contains x.

Proof. As C2 is a descendant of C1 the refutation π contains a path of clauses P1 = A1 . . . An

where C1 = A1, C2 = An. Let S be the longest suffix of P1 such that every Aj ∈ S contains x.

We proceed by induction on the size of S. If |S| = |π| then as |S| ≤ |P1| ≤ |π| it follows that

S = P1.

Suppose |S| < |π| then either S = P1 or S = Aj , . . . , An where j > 1. In the latter case

x 6∈ Aj−1 and so Aj must also be a child of some clause C ′ 6= Aj−1. Further, it follows from the

definition of the translation function T that C is the only initial clause which contains a positive

instance of x and so either C ′ = C1 or C ′ is a descendant of C1 containing x. Hence there exists a

path of clauses P2 from C1 to Aj . Concatenating P2 with Aj+1, . . . , An gives a path from C1 to

C2 with a suffix of length ≥ |S|+ 1. Hence by the inductive hypothesis there exists a path P from

C1 to C2 such that every clause in P contains x.

Definition 4.5.5. We say a Kn-Res refutation:

π = C1, . . . , Cn−1, Cn,

is in 1-start form if it contains precisely two start clauses, namely Cn = �∗(S → 0) and some

Cj = �∗(S→ xε) ∈ C where j ∈ [n− 1]. Equivalently, we say π is in 1-start form if it does not

contain any clauses inferred using IRES2 and Cn is the only clause in π inferred using IRES1.

Proposition 4.5.1. Let C be an unsatisfiable set of SNF clauses and π = C1, . . . , Cn be a Kn-Res

refutation of C. From π we can efficiently construct a 1-start refutation of C with size less than or

equal to |π|.

Proof. If π is in 1-start form then the proposition holds trivially. Hence we suppose π is not in

1-start form and proceed to construct a new refutation as follows. First we delete from π every

clause that is inferred by applying IRES1 to �∗(S → xε) and some literal clause 6= �∗(¬xε).

Let S = {S1, . . . , Sm}, where each Si is of the form �∗(S → Di), be the set of all remaining

non-initial start clauses in π. Replacing each Si in π with �∗(¬xε ∨ Di) yields a derivation of

�∗(¬xε), hence by adding the clauses �∗(S → xε) and �∗(S → 0) to the end of π we obtain a

valid refutation of C in 1-start form.

Hence from this point onwards we will consider only Kn-Res refutations in 1-start form.

We will now prove three technical lemmas. Let π be a Kn-Res refutation of some unsatisfiable

set of SNF clauses C. The first of the lemmas simply states that every literal clause in π contains

at least one extension variable. The second lemma says that if a clause C in π contains a negative
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extension literal with modal context e then any clause inferred from C using LRES must also

contain a negative extension literal with modal context e. The third lemma says that if a clause C in

π contains a negative extension literal with modal context e and is propositionally reachable from

some x ∈ XC±, then π must also contain a clause that is an LRES descedant of C and contains the

literal ¬x.

Lemma 4.5.2. Let φ ∈ wfmf , let C = T (φ) and let π be a Kn-Res refutation of C. Every literal

clause C in π contains at least one negative extension literal.

Proof. We prove the lemma by induction on the length of the derivation of C from C. If C ∈ C then

the lemma follows from the definition of the translation function T . Suppose C is inferred using

some modal inference rule. By the definition of T each modal clause used to infer C contains a

negative extension literal. The clause C must further contain each of these literals by the definition

of the modal rules of Kn-Res. Suppose C is inferred using LRES. Let C1 and C2 be the clauses

used to infer C. By the inductive hypothesis C1 contains some negative extension literal ¬x1 and

C2 contains some negative extension literal ¬x2. As ¬x1 and ¬x2 are both negative literals they

cannot be resolved with each other and so C must contain at least one of ¬x1 and ¬x2.

Lemma 4.5.3. Let φ ∈ wfmf , let C = T (φ) and let π be a Kn-Res refutation of C in 1-start form.

Further let C be some literal clause in π that is inferred by applying LRES to two literal clauses

C1 = �∗(¬y1 ∨D1) and C2, where y1 ∈ XC . If x ∈ XC± is such that (x, y1) ∈ EC then C is of

the form �∗(¬y ∨D), where D ∈ CL and y ∈ XC is such that (x, y) ∈ EC and C(x,y) ⊆ C(x,y1).

Proof. If y1 is not the pivot variable then C = �∗(¬y1 ∨ D2) and so the lemma holds trivially.

Hence we suppose that y1 is the pivot variable (and hence that C2 contains the literal y1) and

proceed by induction on |C(x,y1)|.
Suppose |C(x,y1)| = 1. Then C(x,y1) = {C ′ = �∗(x0 → ◦ax1)}, where x1 = y1 = x. Recall

that every variable in XC appears positively in exactly one clause of C. Further no clause containing

the literal y1 can be inferred from C ′ using the rules of Kn-Res. Hence π cannot contain a literal

clause containing y1, contradicting our assumption that C2 is such a clause and so y1 cannot be the

pivot.

Suppose |C(x,y1)| ≥ 1. The set C contains exactly one clause, say C ′ = �∗(¬y2 ∨D ∨ y1) in

which y1 appears positively. Hence there exists a set:

C(x,y1) = {�∗(x0 → ◦ax1),�∗(¬x1 ∨D′1 ∨ x2), . . . ,

�∗(¬xn−2 ∨D′n−2 ∨ xn−1) ∨�∗(¬xn−1 ∨D′n−1 ∨ xn)},

where x1 = x, xn−1 = y2, xn = y1 and D′n−1 = D. As C2 contains y1 and C ′ is the only clause

in C containing y1 it follows that C2 is a descendant of C ′. Hence by Lemma 4.5.1 the refutation π

must contain some path P from C ′ to C2 such that every clause in P contains y1. Thus no clause in

P is inferred by resolving on y1. As P contains no start clauses and no clauses inferred by resolving
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on y1 each clause in P must be inferred using LRES4. The set of clauses C(x,y2) = C(x,y1) \ {C ′}
witnesses that y2 is propositionally reachable from x.

We proceed to show by induction on (i) |C(x,y2)| and (ii) |P | that C2 contains some negative

extension literal ¬y such that (x, y) ∈ EC and C(x,y) ⊆ C(x,y2). If |C(x,y2)| = 1 then y2 = x = x1.

As in the case when x1 = y1 it follows that every LRES descendant of C ′ contains ¬y2 and so we

take y = y2. Suppose |C(x,y2)| > 1. If |P | = 0 then C2 = C ′ and so ¬y2 ∈ C2. Suppose |P | > 1

and let P1 be the path from C ′ to C3 such that C2 is a child of C3. By inductive hypothesis (ii) C3

contains some negative extension literal ¬y3 such that (x, y3) ∈ EC and C(x,y3) ⊆ C(x,y2). Thus by

inductive hypothesis (i) every LRES child of C3 must contain some y4 such that (x, y4) ∈ EC and

C(x,y4) ⊆ C(x,y3). In particular C2 must contain some such literal.

As C(x,y2) ⊂ C(x,y1) it follows that y 6= y1 and so C must contain ¬y.

Lemma 4.5.4. Let C be a set of SNF clauses and let π be a Kn-Res refutation of C in 1-start form.

Suppose π contains a literal clause C = �∗(¬x ∨D1), where x ∈ XC and let x1 ∈ XC± such that

(x1, x) ∈ EC . If�∗(S→ 0) is a descendant ofC then π contains a literal clauseC ′ = �∗(¬x1∨E)

such that C ′ is an LRES descendant of C and �∗(S→ 0) is a descendant of C ′.

Proof. We will prove the lemma by induction on |C(x1,x)|. If |C(x1,x)| = 1 then x1 = x and so the

lemma holds trivially.

Suppose |C(x1,x)| > 1. As �∗(S → 0) is a descendant of C there exists some descendant of

C that is inferred by resolving on x (and possibly some other variables). Let C ′ be the first such

descendant. One of the clauses that C ′ is inferred from must be a descendant of C containing ¬x.

Let C1 denote this clause. Note that every descendant of C is non-initial and so C1 is a literal clause.

As C ′ is inferred by resolving on x it must also be inferred from some clause C2 6= C1 containing

the literal x. As |C(x1,x)| > 1 no modal clause in C contains the literal x and so C2 is a literal

clause. Hence C ′ must be inferred by applying LRES to C1 and C2. Furthermore, as C1 contains

¬x and C ′ is the first descendant of C inferred by resolving on x it follows that C1 is an LRES

descendant of C. Hence by Lemma 4.5.3, C ′ is of the form �∗(¬x2 ∨D) where x2 ∈ XC such that

(x1, x2) ∈ EC and C(x1,x2) ⊆ C(x1,x). Further as x 6= x2 we have C(x1,x2) 6= C(x1,x). Hence by the

inductive hypothesis there exists an LRES descendant of C ′, and so C, of the form �∗(¬x1 ∨ E)

that is also an ancestor of �∗(S→ 0).

Definition 4.5.6. We say an SNF clause C has unifiable modal contexts if it has modal contexts

e1, . . . , en such that σ(e1, . . . , en) is defined. Similarly we say C has non-unifiable modal contexts

if σ(e1, . . . , en) is undefined.

The following lemma is the main result of this subsection.

Lemma 4.5.5. Let C be an unsatisfiable set of SNF clauses and let π be a Kn-Res refutation of C
in 1-start form. Let π′ be the sequence of clauses obtained by deleting some clauses C1, . . . , Cm,

4If IRES1 or IRES2 was used to infer some Aj ∈ P then Aj would be a start clause. MRES and GEN2 can only be
applied to modal clauses. GEN1 and GEN3 both require every variable in a literal clause to be resolved on simultaneously
and so if either was used to infer some Aj then y1 6∈ Aj .
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along with every descendant of each Ci from π. If each Ci has non-unifiable modal contexts then

π′ is a Kn-Res refutation of C.

Proof. Clearly any sequence of clauses π′ that is obtained from π by removing clauses that are not

ancestors of �∗(S → 0), as well as all of their descendants, is a refutation of C. So to prove the

lemma we show that�∗(S→ 0) cannot be a descendant of any clause C in π that has non-unifiable

modal contexts. As all initial clauses have unifiable modal contexts any such C is a literal clause

of the form �∗(¬x1 ∨ ¬x2 ∨D) where D ∈ CL and x1, x2 ∈ XC which has non-unifiable modal

contexts. Let e1 and e2 be the modal contexts of x1 and x2 respectively. We assume without loss of

generality that |e1| ≤ |e2|.
Suppose C is an ancestor of�∗(S→ 0). By Lemma 4.5.4 the refutation π contains some clause

C ′ = �∗(¬y1 ∨D1) where y1 ∈ Xe1 ∩ ({xε}∪XC±) and D1 ∈ CL. Further C ′ is both an ancestor

of �∗(S → 0) and an LRES descendant of C. As C ′ is an LRES descendant of C, by Lemma

4.5.3 the disjunction D1 contains some negative extension literal ¬x′2 such that x′2 ∈ Xe2 . Thus,

by Lemma 4.5.4 π also contains a clause C ′′ = �∗(¬y2 ∨D2) where y2 ∈ Xe2 ∩ ({xε} ∪ XC±)

and D2 ∈ CL, further C ′′ is both an ancestor of �∗(S → 0) and an LRES descendant of C ′.

As y1 ∈ XC± ∪ {xε} it cannot appear positively in any literal clause. Hence as C ′′ is an LRES

descendant of C ′ the disjunction D2 must contain ¬y1. As �∗(S→ 0) is a descendant of C ′′ both

¬y1 and ¬y2 must be resolved on at some stage in π. We proceed to show by induction on |e1| that

this leads to a contradiction.

Suppose |e1| = 0, then e1 = ε and |e2| > 0. The only initial clause containing a positive

instance of y1 = xε (respectively y2) is C ′1 = �∗(S → xε) (respectively C ′2 = �∗(y′2 → ◦ay2)).

Further no descendant of C ′1 (respectively C ′2) contains the positive literal xε (respectively y2).

Hence ¬xε must be resolved on using IRES1 and ¬y2 must be resolved on using either GEN1 or

GEN3. As π is in 1-start form ¬y2 must be resolved on first. Thus either GEN1 or GEN3 must

be applied to some set of clauses C′ ⊇ {C ′2, C ′′′} where C ′′′ is a literal clause and is either C ′′ or

some descendant of C ′′ containing ¬xε and ¬y2. However the inference rules GEN1 and GEN3

both require every literal in C ′′′ to be resolved on simultaneously and so ¬xε must also be resolved

on at this step in the refutation which is impossible.

Now suppose |e1| > 0. For each i ∈ [2] the only clause in C in which yi appears positively

is C ′i = �∗(y′i → ◦aiyi). Further no descendant of C ′i may contain a positive instance of yi. As

both y1 and y2 only appear positively in modal clauses they must be resolved on simultaneously by

applying either GEN1 or GEN3 to some set C′ ⊇ {C ′1, C ′2, C ′′′}, where C ′′′ is a literal clause and is

either C ′′ or some descendant of C ′′ containing both ¬y1 and ¬y2. It follows that a1 = a2 and at

most one of C ′1 and C ′2 is a negative modal clause as otherwise neither GEN1 nor GEN3 can be

applied to C′. In particular we can assume without loss of generality that C ′1 = �∗(y′1 → �a1y1).

Let e′1 and e′2 be the modal contexts of y′1 and y′2 respectively. As C ′1 and C ′2 are both initial clauses

it follows from the definition of the translation function T that e1 = e′1a1 and e2 is either equal to

e′2a2 or e′1(a2, y2). Hence as a1 = a2 we have σ(a1, a2) = σ(a1, (y2, a2)) = a1 and so as σ(e1, e2)

is undefined e′1 and e′2 must be non-unifiable. Any clause inferred by applying either GEN1 or
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GEN3 to C′ is a literal clause of the form �∗(¬y′1 ∨ ¬y′2 ∨D′), where D′ ∈ CL. As |e′1| < |e1|
and σ(e′1, e

′
2) is undefined it follows by induction that �∗(S→ 0) is not a descendant of C ′′ and

therefore cannot be a descendant of C.

Theorem 4.5.1. Kn-Res ≡p Kml-Res ≡p Kmp-Res ≡p Kmc-Res.

Proof. Let φ be a Kn formula in NNF. Translating φ into SNF, SNFml, SNFmp and SNFmc we

obtain four sets of clauses, denoted by C, Cml, Cmp and Cmc respectively. There is a one to one

correspondence between the clauses in each set. That is, for any for any e ∈ E∗C such that |e| = m

and C has modal position µ ∈ A∗:

�∗(D) ∈ C ⇐⇒ (m : D) ∈ Cml ⇐⇒ �µ(D) ∈ Cmp
�∗(x→ ◦al) ∈ C ⇐⇒ (m : x→ ◦al) ∈ Cml ⇐⇒ �µ(x→ ◦al) ∈ Cmp
�∗(S→ xε) ∈ C ⇐⇒ (0 : xε) ∈ Cml ⇐⇒ xε ∈ Cmp

⇐⇒ (e : D) ∈ Cmc,
⇐⇒ (e : x→ ◦al) ∈ Cmc,
⇐⇒ (xε : xε) ∈ Cmc,

where xε, x ∈ XC , D ∈ CL and l ∈ L.

(≥p): Let πmc be a Kmc-Res refutation of Cmc. If we take πmp, πml and π to be the corre-

sponding sequences of SNFmp, SNFml and SNF clauses respectively then we obtain a Kmp-Res

refutation of Cmp, a Kml-Res refutation of Cml and a Kn-Res refutation of C respectively.

(≤p): Now suppose π is a Kn-Res refutation of C in 1-start form. Let π′ = C1, . . . , Cm be the

sequence of clauses obtained by deleting every clause with non-unifiable modal contexts from π.

By Lemma 4.5.5 π′ is a Kn-Res refutation of C. To prove that the analogous sequence of SNFmc
clauses5 is a Kmc-Res refutation of Cmc we must verify that each clause in π′ is inferred from a set

of clauses whose modal contexts agree with those required to apply the corresponding inference

rule of Kmc-Res.

Note that as π′ is in 1-start form it cannot contain any clauses inferred using IRES2. Suppose

some C in π′ is inferred from two clauses C1 and C2 using IRES1. Then as π′ is in 1-start form we

can assume without loss of generality that C1 = �∗(¬xε) and C2 = �∗(S→ xε). The clauses C1

and C2 both have modal context ε and so LRES can be applied to the analogous SNFmc clauses to

infer (ε : 0).

Suppose C = �∗C ′ is inferred by applying LRES to some C1 and C2 in π′. Let {e1, . . . , en1}
and {e′1, . . . , e′n2

} be the sets of all modal contexts of C1 and all modal contexts of C2 respec-

tively. Then by Lemma 4.5.3 the clause C must contain negative extension variables with

modal contexts e1, . . . , en1 , e
′
1, . . . , e

′
n2

. As C is unifiable there exists some e ∈ E∗C such that

e = σ(e1, . . . , en1 , e
′
1, . . . , e

′
n2

). Hence we can apply LRES to the analogous SNFmc clauses to

infer (e : C).

5That is, the sequence of clauses where each clause is labelled by the unified modal context of the corresponding SNF
clause.
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Suppose C = �∗C ′ is inferred by applying MRES (respectively GEN2) to some C1 and C2

(respectively C1, C2 and C3). As C1 and C2 (respectively C1, C2 and C3) are modal clauses they

must each have a single modal context. Let e1 and e2 (respectively e1, e2 and e3) be the modal

contexts of C1 and C2 (respectively C1, C2 and C3) respectively. It follows from the definition of

MRES (respectively GEN2) thatC has modal contexts e1 and e2 (respectively e1, e2 and e3). Further

as C has unifiable contexts σ(e1, e2) (respectively σ(e1, e2, e3)) is defined. Hence we can apply

MRES (respectively GEN2) to C1 and C2 (respectively C1, C2 and C3) to infer (σ(e1, e2) : C)

(respectively (σ(e1, e2, e3) : C)).

Finally suppose C = �∗(¬l′1∨ · · ·∨¬l′z+1) is inferred using GEN1 (respectively GEN3). Then

C is inferred from z positive modal clauses C1 = �∗(l′1 → �al1), . . . , Cz = �∗(l′z → �alz),

one negative modal clause Cz+1 = �∗(l′z+1 → ♦alz+1) and one literal clause Cz+2 = �∗(¬l1 ∨
· · · ∨ ¬lz+1) (respectively Cz+2 = �∗(¬l1 ∨ · · · ∨ ¬lz)). Each of the modal clauses must have a

single modal context hence we let e1, . . . , ez+1 be the modal contexts of C1, . . . , Cz+1 respectively.

By the definition of GEN1 (respectively GEN3) C has modal contexts e1, . . . , ez+1 and so as C

has unifiable modal contexts there exists some e ∈ E∗C such that σ(e1, . . . , ez+1) = e. Further, it

follows from the definition of the translation function T that the set of modal contexts of Cz+2

is a subset of {e1a, . . . , eza, ez+1(lz+1, a)} (respectively {e1a, . . . , eza}). Hence we can apply

GEN1 (respectively GEN3) to the set of SNFmc clauses corresponding to {C1, . . . , Cz+2} to infer

(e : C).

Remark 4.5.1. Due to the p-equivalence of the proof systems Kn-Res, Kml-Res, Kmp-Res and

Kmc-Res we henceforth refer to them collectively as the family of K-Res systems.

Corollary 4.5.1. The tree-like versions of the K-Res are all p-equivalent to one another.

Proof. This follows from the proofs of Lemma 4.5.5 and Theorem 4.5.1.

4.6 A further variation of the K-Res systems

In this section we show that given any of the K-Res system, if we restrict the definition of its

associated normal form so that only positive literals can appear within the scope of a modal operator

then not only can we still efficiently transform any modal formula in NNF into this restricted version

of SNFmp, but we can also define a modal resolution system which operates on this normal form

and whose rules are a proper subset of the rules of Kmp-Res. Furthermore this proof system is

p-equivalent to Kmp-Res. We only give full details of this variation for the proof system Kmp-Res.

However due to the close relationship between the each of the K-Res systems, analogous variants

of the other systems can be obtained in exactly the same way.

We begin by formally defining our restricted normal form.

Definition 4.6.1. Let l, lj ∈ L and let p be a propositional variable. A formula φ is in positive

separated normal form with modal positions (SNF+
mp) if φ =

∧r
i=1Ci where each Ci is either a:
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• Positive modal clause: �µ(l→ �ap),

• Negative modal clause: �µ(l→ ♦ap),

• Literal clause: �µ(
∨t
j=1 lj).

To convert an NNF formula φ into SNF+
mp we apply the translation function:

T+
mp(φ) = x ∧ ρ+

mp(x→ φ),

where x is a new propositional variable and ρ+
mp is defined as follows:

ρ+
mp(�µ(x→ θ ∧ ψ)) = ρ+

mp(�µ(x→ θ)) ∧ ρ+
mp(�µ(x→ ψ)),

ρ+
mp(�µ(x→ ◦aθ)) =

�µ(x→ ◦aθ), if θ ∈ P,

�µ(x→ ◦ax1) ∧ ρ+
mp(�µa(x1 → θ)), otherwise.

ρ+
mp(�µ(x→ θ ∨ ψ)) =

�µ(¬x ∨ θ ∨ ψ), if θ, ψ ∈ CL,

ρ+
mp(�µ(x→ θ ∨ x1)) ∧ ρ+

mp(�µ(x1 → ψ)), otherwise,

where θ, ψ are modal formulas, x1 is a new propositional symbol and µ ∈ A∗.
We can similarly define positive separated normal form (SNF+), positive separated normal

form with modal levels (SNF+
ml) and positive separated normal form with modal contexts (SNF+

mc).

Theorem 4.6.1. An NNF formula φ is satisfiable if and only if the corresponding set of SNF+
mp

clauses T+
mp(φ) is satisfiable.

Proof. By Theorem 4.3.1 φ is satisfiable if and only if the set of SNFmp clauses Tmp(φ) is. Hence

to prove our theorem we show that Tmp(φ) is satisfiable if and only if T+
mp(φ) is satisfiable.

We begin by noting that every literal clause C is in Tmp(φ) if and only if it is also in T+
mp(φ).

Similarly a modal clause of the form �µ(l→ ◦ap), where l ∈ L and p ∈ P , is in the set Tmp(φ) if

and only if it is also in the set T+
mp(φ). Finally any modal clause of the form �µ(l→ ◦a¬p) is in

Tmp(φ) if and only if T+
mp(φ) contains the clauses C+

1 = �µ(l→ ◦ax) and C+
2 = �µa(¬x ∨ ¬p),

where x is an extension variable which does not appear in any clause in Tmp(φ) and only appears

in the clauses C1 and C2 in T+
mp(φ).

(⇒): Suppose there exist some model M = (W,R1, . . . , Rn, V ) and some world w ∈W such

that (M,w) |= Tmp(φ). Then (M,w) |= T+
mp(φ) ∩ Tmp(φ). Let C+ ∈ T+

mp(φ) \ Tmp(φ). Then

C+ is either a modal clause of the form �µ(l→ ◦ax) or a literal clause of the form �µa(¬x∨¬p),

where l ∈ L, p ∈ P and x is an extension variable. Further l and p must be such that the SNFmp
clause C = �µ(l→ ◦a¬p) is contained within Tmp(φ) \ T+

mp(φ).

Suppose C = �µ(l → ♦a¬p). As (M,w) |= C it follows that at every world wµ ∈ W such

that wµ is µ-accessible from w either V (wµ)(l) = 0, or V (wµ)(l) = 1 and there exists some world

wµa ∈W which is a-accessible from wµ and for which V (wµa)(p) = 0. Hence we let M ′ be the

model obtained by extending M so that if V (wµ)(l) = 0 then at every world w′µa ∈ W which is

a-accessible from wµ we have V (w′µa)(x) = 0, and if V (wµ)(l) = 1 then we have V (wµa)(x) = 1
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and V (w′µa)(x) = 0 for every world w′µa 6= wµa which is a-accessible from wµ. For every wµ we

have (M ′, wµ) |= l→ ♦ax and for every world w′′µa ∈W which is µa-accessible from w we have

(M ′, w′′µa) |= ¬x ∨ ¬p. Hence (M ′, w) |= (C+
1 ∧ C

+
2 ).

Suppose C = �µ(l → �a¬p). As (M,w) |= C it follows that at every world wµ ∈ W such

that wµ is µ-accessible from w either V (wµ)(l) = 0, or V (wµ)(l) = 1 and V (w′µa)(p) = 0 for

every world w′µa ∈ W which is a-accessible from wµ. Let M ′ denote the model obtained by

extending M so that for every wµ if V (wµ)(l) = 0 then for every a-accessible world w′µa we let

V (w′µa)(x) = 0, and if V (wµ)(l) = 1 then for every w′µa we let V (w′µa)(x) = 1. Hence for every

wµ we have (M ′, wµ) |= l→ �ax and for every w′′µa ∈W which is µa-accessible from w we have

(M ′, w′′µa) |= ¬x ∨ ¬p. It follows that (M ′, w) |= (C+
1 ∧ C

+
2 ).

(⇐): Suppose (M,w) |= T+
mp(φ). Then (M,w) |= T+

mp(φ) ∩ Tmp(φ). Let C ∈ Tmp(φ) \
T+
mp(φ). Then C must be of the form �µ(l → ◦a¬p), where l ∈ L and p ∈ P . Further

T+
mp(φ) \ Tmp(φ) must contain the clauses �µ(l→ ◦ax) and �µa(¬x ∨ ¬p).

Suppose C = �µ(l → ♦a¬p) (respectively C = �µ(l → �a¬p)). Then by assumption

(M,w) |= (l → ♦ax) (respectively �µ(l → �ax)) hence for every world wµ ∈ W which

is µ-accessible from w either V (wµ)(l) = 0 or there exists some world wµa ∈ W such that

V (wµa)(x) = 1 (respectively for every world w′µa ∈ W which is a-accessible from wµ we

have V (w′µa)(x) = 1). In the former case (M,w) |= C. In the latter case we note that as

(M,w) |= �µa(¬x ∨ ¬p) and wµa (respectively every w′µa) is µa-accessible from w it follows that

V (wµa)(p) = 0 (respectively V (w′µa)(p) = 0) and so (M,w) |= C.

An identical proof can be used to show that each of the other positive separated normal forms

preserves satisfiability.

We can now define our new proof system.

Definition 4.6.2. The proof system K+
mp-Res consists of the rules LRES, GEN1 and GEN3 defined

as in Figure 4.3.

Similarly the proof system K+
n -Res consists of the rules IRES1, IRES2, LRES, GEN1 and

GEN3 as defined in Figure 4.1, and the proof systems K+
ml-Res and K+

mc-Res consist of the rules

LRES, GEN1 and GEN3 as defined in Figures 4.2 and 4.4 respectively.

Theorem 4.6.2. The proof system K+
mp-Res is complete and strongly sound.

Proof. Any proof system that p-simulates a complete proof system is complete and any proof

system that is p-simulated by a strongly sound proof system is strongly sound. By Theorems 4.3.2

and 4.3.4 the proof system Kmp-Res is strongly sound and complete, hence the theorem follows

immediately from the fact that K+
mp-Res both p-simulates and is p-simulated by Kmp-Res (Theorem

4.6.3).

The strong soundness and the completeness of K+
n -Res, Kml-Res and Kmc-Res follows in the

same way.

Finally we prove in the following theorem that our new proof system K+
mp-Res is p-equivalent

to Kmp-Res.
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Theorem 4.6.3. The proof systems K+
mp-Res and Kmp-Res are p-equivalent.

Proof. As the rules of Kmp-Res are a superset of those of K+
mp-Res and every set of SNF+

mp clauses

is in SNFmp it follows trivially that Kmp-Res p-simulates K+
mp-Res. Hence to prove that the two

proof systems are p-equivalent it remains to show that K+
mp-Res p-simulates Kmp-Res.

Let C be an unsatisfiable set of SNFmp clauses, obtained by applying the translation function

Tmp to some modal formula φ in NNF, and let C+ be the corresponding set of SNF+
mp clauses

obtained by applying T+
mp to φ. Further let π be a Kmp-Res refutation of C. We will show that from

π we can efficiently construct a K+
mp-Res refutation π+ of C+ whose size is polynomial in that of π.

To show that we can construct such a refutation it suffices to show that any clause C in π which

is inferred using some clause in C \ C+ can be derived from C+ using only the rules of K+
mp-Res,

and that this derivation has size linear in that of C. Every literal clause in C is in C+. In fact the only

clauses that are in C \ C+ are modal clauses of the form �µ(l→ ◦a¬p), where p ∈ P . Further if

�µ(l→ ◦a¬p) ∈ C then the SNF+
mp clauses �µ(l→ ◦ax) and �µa (¬x ∨ ¬p) must be contained

within C+, where x is an extension variable.

Suppose π contains some SNFmp clauseC which is inferred from some set of clauses containing

at least one modal clause in C \ C+. By definition no such clause can be inferred using LRES and

so C must be inferred using either MRES, GEN1, GEN2 or GEN3.

Suppose C is inferred using MRES. Then we replace this instance of MRES in π with an

instance of GEN1 as shown in Figure 4.5.

�µ(l1 → ◦ap)
MRES

�µ(l2 → ◦′a¬p)
�µ(¬l1 ∨ ¬l2)

7−→

�µ(l1 → ◦ap)
GEN1

�µ(l2 → ◦′ax)

�µa(¬x ∨ ¬p)
�µ(¬l1 ∨ ¬l2)

where l1, l2 ∈ L, p ∈ P and x is an extension variable. Further ◦′a is the dual of ◦a, i.e. if
◦a = �a then ◦′a = ♦a and if ◦a = ♦a then ◦′a = �a.

Figure 4.5: Transformation of MRES

If C in inferred using GEN2 then we replace this instance of GEN2 with an instance of GEN3

as shown in Figure 4.6. Note that the transformation depends on the number of modal clauses in

C \ C+ which the instance of GEN2 being transformed is applied to.

If C in inferred using GEN1 then we replace this instance of GEN1 with several instances of

LRES, followed by another instance of GEN1 as shown in Figure 4.7. The exact number of LRES

steps required is the same as the number of clauses in C \ C+ contained within the premises of the

original instance of GEN1.

Similarly if C is inferred using GEN3 then we replace this instance of GEN3 with several

instances of LRES, followed by another instance of GEN3. The set of clauses that GEN3 is applied

to can be assumed to be identical to the set of clauses that GEN1 is applied to in Figure 4.7 with
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�µ(l1 → �ap)
Case 1: GEN2

�µ(l2 → �a¬p)
�µ(l3 → ♦ap′)

�µ(¬l1 ∨ ¬l2 ∨ ¬l3)

7−→

�µ(l1 → �ap)
GEN3

�µ(l2 → �ax)

�µ(l3 → ♦ap′)
�µa(¬x ∨ ¬p)

�µ(¬l1 ∨ ¬l2 ∨ ¬l3)

�µ(l1 → �ap)
Case 2: GEN2

�µ(l2 → �a¬p)
�µ(l3 → ♦a¬p′)
�µ(¬l1 ∨ ¬l2 ∨ ¬l3)

7−→

�µ(l1 → �ap)
GEN3

�µ(l2 → �ax)

�µ(l3 → ♦ax′)
�µa(¬x ∨ ¬p)

�µ(¬l1 ∨ ¬l2 ∨ ¬l3)

where l1, l2 and l3 are literals, p and p′ are propositional variables and x and x′ are extension
variables.

Figure 4.6: Transformation of GEN2

the exception of the literal clause whose form depends on which of the modal clauses is a negative

modal clause. This transformation is almost identical to that of GEN1 shown in Figure 4.7, however:

1. If the negative modal clause which GEN3 is applied to is of the form �µ(l′i → ♦pi) where

i > y then we assume without loss of generality that i = z and replace the literal clause

�µa
(∨y

i=1 pi ∨
∨z
j=y+1 ¬pj

)
with �µa

(∨y
i=1 pi ∨

∨z−1
j=y+1 ¬pj

)
. We further replace each

clause inferred using LRES with the corresponding new resolvent. Finally we change the

application of GEN1 in the transformed derivation to an application of GEN3.

2. Whereas, if the negative modal clause which GEN3 is applied to is of the form�µ(l′i → ♦¬pi)
where i ≤ y then we assume without loss of generality that i = y and replace the literal clause

�µa
(∨y

i=1 pi ∨
∨z
j=y+1 ¬pj

)
with�µa

(∨y−1
i=1 pi ∨

∨z
j=y+1 ¬pj

)
. We further replace each

of the first y − 1 clauses inferred using LRES with the corresponding new resolvent and

remove the yth application of LRES from the transformed derivation. Finally we change the

of GEN1 in the transformed derivation to an application of GEN3.

Hence we take π+ to be the K+
mp-Res refutation of C+ obtained by replacing each clause C

which is inferred from some C ′ ∈ C \ C+ with the corresponding K+
mp-Res derivation of C from

C+.

Identical proofs can be used to show that the proof systems K+
n -Res, K+

ml-Res and K+
mc-Res

are p-equivalent to Kn-Res, Kml-Res and Kmc-Res respectively.

Remark 4.6.1. We henceforth refer to the family of all the original K-Res systems together with

the systems K+
n -Res, K+

ml-Res, K+
mp-Res and K+

mc-Res, as the family of K-Res systems.

Corollary 4.6.1. The K-Res proof systems are all p-equivalent.
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�µ(l1 → ◦a¬p1)
GEN1 ...

�µ(ly → ◦a¬py)
�µ(ly+1 → ◦apy+1)

...
�µ(lz → ◦apz)

�µa
(∨y

i=1 pi ∨
∨z
j=y+1 ¬pj

)
�µ
(∨z

j=1 ¬lj
)

7−→

�µa
(∨y

i=1 pi ∨
∨z
j=y+1 ¬pj

)
LRES

�µa(¬x1 ∨ ¬p1)

�µa
(
¬x1 ∨

∨y
i=2 pi ∨

∨z
j=y+1 ¬pj

)
LRES

�µa(¬x2 ∨ ¬p2)

�µa(¬x1 ∨ ¬x2 ∨
∨y
i=3 pi ∨

∨z
j=y+1 ¬pj)

...
�µa(

∨y−1
i=1 ¬xi ∨ py ∨

∨z
j=y+1 ¬pj)

LRES
�µa(¬xy ∨ ¬py)

�µa(
∨y
i=1 ¬xi ∨

∨z
j=y+1 ¬pj)

GEN1
�µ(l1 → ◦ax1)

...
�µ(ly → ◦axy)
�µ(ly+1 → ◦apy+1)

...
�µ(lz → ◦apz)

�µ
(∨z

j=1 ¬lj
)

where l1, . . . , lz ∈ L, p1, . . . , pz ∈ P and x1, . . . , xy are extension variables. Further note that
exactly one clause on the left is of the form�µ(li → ♦al′i), where l′i = pi if i ≤ y and l′i = ¬pi

if i > y. Hence the corresponding clause on the right is of the form �µ(li → ♦al′′i ), where
l′′i = xi if i ≤ y and l′′i = pi if i > y, and every other modal clause is a positive modal clause.

Figure 4.7: Transformation of GEN1

Corollary 4.6.2. The tree-like versions of all of the K-Res systems are p-equivalent.

Proof. This follows from Corollary 4.5.1 the proof of Theorem 4.6.3.



Chapter 5

Comparing the family of K-Res proof
systems with the proof system RKn

In this chapter we define one of the earliest proposed clausal resolution system for the multimodal

logic Kn, which was introduced by Enjalbert and Fariñas del Cerro in [34]. We then use p-

simulations to compare the strength of this system to that of the K-Res systems discussed in Chapter

4.

5.1 The proof system RKn

In [33, 34] Enjalbert and Fariñas del Cerro proposed a clausal resolution systems for Kn, called

RKn. Like the K-Res systems, RKn operates only on formulas that have been transformed into a

specific normal form, however both the rules of RKn and the normal form that it operates on (RKn

conjunctive normal form) are more complicated than those of the K-Res systems.

Definition 5.1.1 ( [33]). A modal formula φ is in RKn conjunctive normal form (RKn CNF) if

φ =
∧N
i=1Ci, where each Ci is an RKn clause. A formula C is an RKn clause if:

C = l1 ∨ · · · ∨ lm ∨
p∨

x=1

�axDx ∨
q∨

y=1

♦ayAy,

where each li ∈ L, each Dx is an RKn clause and each Ay is in RKn CNF.

The proof system RKn consists of three different types of rules, namely rules for computing

resolvents (RFCR), simplification rules and inference rules. The RFCR consist of axioms, Σ rules,

which are used to compute resolvents of a pair of clauses, and Γ rules which are used to compute

52
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resolvents of a single clause. Note that we are able to compute resolvents of a single clause as

an RKn clause may contain an RKn CNF within the scope of some ♦a and so can contain two

complementary literals with the same “modal context”. For example the complementary literals x

and ¬x both appear within the same modal context in the RKn clause ♦a((x ∨ y) ∧ (¬x ∨ z)).

After computing a resolvent using the RFCR the simplification rules are used to simplify said

resolvent. Only when a resolvent has been simplified as much as possible can it be inferred using

an inference rule of RKn.

Definition 5.1.2 ( [34]). The rules of RKn are given in Figure 5.1.

Rules for Computing Resolvents (RFCR)

Axioms A1: Σ(p, ¬p)→ 0 A2: Σ(0, A)→ 0

Σ rules
∨∨∨: Σ(A, B)→ C ������a: Σ(A, B)→ C

Σ(A ∨D, B ∨D′)→ C ∨D ∨D′ Σ(�aA, �aB)→ �aC

�♦�♦�♦a: Σ(A, B)→ C
Σ(�aA, ♦a(B ∧ E))→ ♦a(B ∧ C ∧ E)

♦�♦�♦�a: Σ(A, B)→ C
Σ(♦a(A ∧ E), �aB)→ ♦a(A ∧ C ∧ E)

Γ rules ���a: Γ(A)→ B ∨∨∨: Γ(A)→ B
Γ(�aA)→ �aB Γ(A ∨D)→ B ∨D

♦♦♦a1: Σ(A, B)→ C
Γ(♦a(A ∧B ∧ F ))→ ♦a(A ∧B ∧ C ∧ F )

♦♦♦a2: Γ(A)→ B
Γ(♦a(A ∧ F ))→ ♦a(A ∧B ∧ F )

Simplification Rules

S1: ♦a0 ≈ 0, S2: 0 ∨ C ≈ C, S3: 0 ∧ E ≈ 0, S4: A ∨A ∨ C ≈ A ∨ C.

Inference rules

R1: C if Γ(C)⇒ D, R2: B, C if Σ(B, C)⇒ D.
D D

where A,B,C,D,D′ are RKn clauses, E,F are RKn CNFs and p is a propositional variable.

Figure 5.1: Rules for RKn

The simplification relation ≈ is defined to be the least equivalence relation generated by the
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simplification rules. For every RKn clause C there exists a unique RKn clause C ′ which is such

that C ′ ≈ C and no further simplification rules may be applied to C ′. We call C ′ the normal form

of C.

We say an RKn clause D is a resolvent of two RKn clauses B and C if by repeatedly applying

the RFCR of RKn to either A1 or A2 we can obtain Σ(B, C)→ D′ whereD′ is an RKn clause and

the normal form of D′ is D. We further denote that D is a resolvent of B and C by Σ(B, C)⇒ D.

Similarly we say that D is a resolvent of a single RKn clause C if by repeatedly applying the RFCR

to either A1 or A2 we can obtain Γ(C)→ D′ where D′ is an RKn clause and the normal form of

D′ is D. This is denoted by Γ(C)⇒ D.

We refer to any formula which is derived from some axiom using the RFCR and the simplifi-

cation rules as a formula for computing resolvents (FFCR). Such a formula is either a Σ FFCR,

that is a FFCR of the form Σ(A, B)→ C or Σ(A, B)⇒ C, or a Γ FFCR, that is a FFCR of the

form Γ(A)→ C or Γ(A)⇒ C, where A, B and C are RKn clauses. Further for any Σ FFCR we

refer to A, B and C as the 1st assumed clause, the 2nd assumed clause and the computed clause

respectively. Similarly, for any Γ FFCR we refer to A as the assumed clause and C as the computed

clause.

Essentially, a Σ FFCR of the form Σ(C1, C2) → C3 says that given any model M =

(W,R1, . . . , Rn, V ) and w ∈ W such that (M,w) |= C1 ∧ C2 we have (M,w) |= C3. Simi-

larly a Γ FFRC of the form Γ(C1)→ C2 says that given any model M = (W,R1, . . . , Rn, V ) and

w ∈W such that (M,w) |= C1 we have (M,w) |= C2.

The axioms A1 and A2 are both propositional inconsistencies. The first says that given a literal

and its negation then we can compute 0, the second says that given 0 and any other RKn clause we

can compute 0.

The Σ ∨∨∨-rule says that if from the RKn clauses A and B we can compute C, then from the

RKn clauses A ∨D and B ∨D′ we can compute C ∨D ∨D′.
The Σ������a-rule states that if from two RKn clauses A and B we can compute C then from

�aA and �aB we can compute �aC.

The Σ�♦�♦�♦a-rule says if from two RKn clauses A and B we can compute C then from �aA

and ♦a(B ∧ E), where E is some RKn CNF, we can compute ♦a(B ∧ C ∧ E). Intuitively we

can think of applying this rule as moving our computation to some accessible modal world. Note

that we can choose not to add any E when applying this rule, obtaining a FFCR of the form

Σ(�aA,♦aB)→ ♦a(B ∧ C).

Similarly, the Σ ♦�♦�♦�a-rule states that if from A and B we can compute C then from ♦a(A ∧E)

and �aB we can compute ♦a(A ∧ C ∧ E).

There is no Σ rule that prefixes both the 1st and the 2nd assumed clause by ♦a. Such a rule

would not be sound as two RKn clauses of the form ♦aA and ♦aB do not have the same modal

context, even if A and B do. However, the Γ ♦♦♦a1-rule transforms a Σ FFCR into a Γ FFCR by

prefixing the conjunction of the 1st and 2nd assumed clauses with ♦a. The rule states that if from A

and B we can compute C then from ♦a(A∧B∧E) we can compute ♦a(A∧B∧C ∧E), where E
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is some RKn CNF. This is sound as if both of the assumed clauses are true in the same a-accessible

world then the computed clause must also be true in this world.

The remaining Γ rules are similar to the corresponding Σ rules. The Γ ♦♦♦a2-rule prefixes the

assumed clause and the computed clause with ♦a, effectively moving both into some a-accessible

world. The Γ ∨∨∨-rule adds ∨D to both the assumed clause and the computed clause, and the Γ

���a-rule allows us to prefix the assumed clause and computed clause with �a.

The simplification rules may be applied to any subformula of a FFCR of the appropriate form.

Any FFCR obtained by the application of a simplification rule is equivalent to the FFCR said

rule was applied to. The purpose of the simplification rules is to convert the assumed clause(s)

and the computed clause into their normal form. We can assume without loss of generality that

simplification rules are only applied to a FFCR after all the necessary RCFC have been applied.

The inference rule R1 allows us to infer a resolvent of a single RKn clause, which has been

computed using the RFCR and then fully simplified using the simplification rules. The rule R2
allows us to do the same for a resolvent of a pair of RKn clauses.

Example 5.1.1. We can use the rules of RKn to infer the resolvent of the RKn clauses C1 = l1∨ l2
and C2 = ¬l1 ∨ l2 as follows:

Σ(l1, ¬l1)→ 0, A1,

Σ(l1 ∨ l2, ¬l1 ∨ l2)→ 0 ∨ l2 ∨ l2, Σ ∨∨∨ -rule,

Σ(l1 ∨ l2, ¬l1 ∨ l2)⇒ l2, S2, S4,

l2, R2 on C1, C2.

Example 5.1.2. Let������µ abbreviate the Σ rules������a1 , . . . ,������am . We can infer �µ(¬l1 ∨ ¬l2)

from C1 = �µ(¬l1 ∨�al) and C2 = �µ(¬l2 ∨ ¬�al) as follows:

Σ(l, ¬l)→ 0, A1,

Σ(�al, ♦a¬l)→ ♦a(0 ∧ ¬l), Σ�♦�♦�♦a-rule,

Σ(¬l1 ∨�al, ¬l2 ∨ ♦a¬l)→ ¬l1 ∨ ¬l2 ∨ ♦a(0 ∧ ¬l), Σ ∨∨∨ -rule,

Σ(�µ(¬l1 ∨�al), �µ(¬l2 ∨ ♦a¬l))→ �µ(¬l1 ∨ ¬l2 ∨ ♦a(0 ∧ ¬l)), Σ������µ-rules,

Σ(�µ(¬l1 ∨�al), �µ(¬l2 ∨ ♦a¬l))⇒ �µ(¬l1 ∨ ¬l2), S3, S1, S2,

�µ(¬l1 ∨ ¬l2), R2 on C1, C2.

Example 5.1.3. We can use the rules of RKn to infer the RKn clause ♦a(l1 ∧ (¬l1 ∨ l2)∧ l2) from
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C1 = ♦a(l1 ∧ (¬l1 ∨ l2)) as follows:

Σ(l1, ¬l1)→ 0, A1,

Σ(l1, ¬l1 ∨ l2)→ 0 ∨ l2, Σ ∨∨∨ -rule,

Γ(♦a(l1 ∧ (¬l1 ∨ l2)))→ ♦a(l1 ∧ (¬l1 ∨ l2) ∧ (0 ∨ l2)), Γ ♦♦♦a1-rule,

Γ(♦a(l1 ∧ (¬l1 ∨ l2)))⇒ ♦a(l1 ∧ (¬l1 ∨ l2) ∧ l2), S2,

♦a(l1 ∧ (¬l1 ∨ l2) ∧ l2), R1 on C1.

Example 5.1.4. We can use the rules of RKn to infer the RKn clause ♦a(l2 ∧ l1) from C1 = �al1
and C2 = ♦al2 as follows:

Σ(0, l2)→ 0, A2,

Σ(l1, l2)→ 0 ∨ l1, Σ ∨∨∨ -rule,

Σ(�al1, ♦al2)→ ♦a(l2 ∧ (0 ∨ l1)), Σ �♦�♦�♦a-rule,

Σ(�al1, ♦al2)⇒ ♦a(l2 ∧ l1), S2,

♦a(l2 ∧ l1), R2 on C1, C2.

Theorem 5.1.1 ( [34]). The proof system RKn is complete and strongly sound.

Definition 5.1.3. An RKn derivation of some RKn clause Cm from some set of RKn clauses C is

a sequence of formulas:

π = R(1,1), . . . R(1,k1), C1, . . . , Cm−1, R(m,1), . . . , R(m,km), Cm,

were each Ci is an RKn clause in normal form and each R(i,j) is a FFCR. In particular Cm = 0.

Further each Ci is either in C, or is inferred by applying an inference rule to either some pair of

clauses Ci1 and Ci2 , or a single clause Ci1 , where i1, i2 < i.

If Ci ∈ C then the sequence of FFCRs immediately proceeding Ci is empty. Otherwise, either

R(i,1) = A1 or R(i,1) = A2, and for each j ∈ [ki − 1] the FFCR R(i,j+1) must be the result of

applying either a RFCR or a simplification rule to R(i,j). Finally if Ci is inferred from two RKn

clauses Ci1 and Ci2 then R(i,ki) = Σ(Ci1 , Ci2)⇒ Ci, whereas if Ci is inferred from just Ci1 then

R(i,ki) = Γ(Ci1)⇒ Ci.

An RKn refutation of some unsatisfiable set of RKn clauses C is an RKn derivation of 0 from

the set C.

Definition 5.1.4. Let C be an RKn CNF and let π be an RKn refutation of C. Further let C be an

RKn clause in π and let R1, . . . Rk be the sequence of FFCR used to infer C. We say that C is

inferred by RKn weakening (or just weakening) if either:

• Rk = Γ(C1)⇒ C, the first FFCR is R1 = Σ(0, A)→ 0, where A is an RKn clause (i.e. R1

is an instance of A2) and R2 6= Σ(�a0,♦a(A ∧ E))→ ♦a(A ∧ E ∧ 0) (i.e. R2 is obtained
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using any other RFCR than the Σ�♦�♦�♦a-rule),

• Or, Rk = Σ(C1, C2) ⇒ C, R1 is an instance of A2 and no Ri is obtained using the Σ

�♦�♦�♦a-rule.

Otherwise, we say that C is inferred by RKn resolution (or just resolution).

Suppose some RKn clause C is inferred by weakening and the first FFCR used to compute C

is of the form Σ(0, A)→ 0, where A is some RKn clause. Then if the final FFCR used to infer C

is of the form Σ(C1, C2)⇒ C we say that C is inferred by weakening C1 by C2 less A. Whereas

if the final FFCR used to compute C is of the form Γ(C1)⇒ C then we say that C is inferred by

weakening C1 by itself less A.

Examples 5.1.1, 5.1.2, 5.1.3 and 5.1.4 are all resolution inferences. Hence we will now give

two further examples of RKn inferences that use weakening.

Example 5.1.5. Let C1 = ♦a¬l1 and C2 = �a(l1 ∨ l2). We can infer C = ♦a(¬l1 ∧ (¬l1 ∨ l2))

by weakening C1 by C2 less l1 as follows:

Σ(0, l1)→ 0, A2,

Σ(¬l1, l1 ∨ l2)→ 0 ∨ ¬l1 ∨ l2, Σ ∨∨∨ -rule,

Σ(♦a¬l1, �a(l1 ∨ l2))→ ♦a(¬l1 ∧ (0 ∨ ¬l1 ∨ l2)), Σ ♦�♦�♦�a-rule,

Σ(♦a¬l1, �a(l1 ∨ l2))⇒ ♦a(¬l1 ∧ (¬l1 ∨ l2)), S2,

♦a(¬l1 ∧ (¬l1 ∨ l2)), R2 on C1, C2.

Example 5.1.6. Let C1 = ♦a((l1 ∨ l2)∧ l3). We can infer C = ♦a((l1 ∨ l2)∧ l3 ∧ (l2 ∨ l3)) from

C1 by weakening it by itself less l1 as follows:

Σ(0, l1)→ 0, A2,

Σ(l3, l1 ∨ l2)→ 0 ∨ l2 ∨ l3, Σ ∨∨∨ -rule,

Γ(♦a((l1 ∨ l2) ∧ l3)→ ♦a((l1 ∨ l2) ∧ l3 ∧ (0 ∨ l2 ∨ l3)), Γ ♦♦♦a1-rule,

Γ(♦a((l1 ∨ l2) ∧ l3)⇒ ♦a((l1 ∨ l2) ∧ l3 ∧ (l2 ∨ l3)), S2,

♦a((l1 ∨ l2) ∧ l3 ∧ (l2 ∨ l3)), R1 on C1.

Whilst it follows immediately from the strong soundness of RKn that any RKn clause C which

is inferred from two RKn clauses C1 and C2 is satisfied by a model (M,w) only if (M,w) |=
C1 ∧ C2, for any RKn clause which is inferred by weakening the following stronger statement

holds.

Proposition 5.1.1. Let C1 and C2 be RKn clauses, let M = (W,R1, . . . , Rn, V ) be a model and

let w ∈W be such that (M,w) |= C1. If some RKn clause C is inferred by weakening C1 by C2

less some subclause A then (M,w) |= C.
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Proof. Suppose C1 = C2. Then the proposition follows trivially from the strong soundness of

RKn.

Hence we assume that C1 6= C2. The proof is by induction on the difference between the modal

depth of C2 and the modal depth of A. If the modal depth of C2 is equal to that of A then C must

be of the form C1 ∨A′ where A′ is an RKn clause such that A ∨A′ = C2. Hence (M,w) |= C.

Suppose A has modal depth strictly less than that of C2. Then the sequence of FFCRs used to

compute C must contain at least one FFCR to which some RFCR that adds a modal operator to the

assumed clauses is applied.

As C is inferred from two RKn clauses the last such FFCR must be a Σ FFCR and so is of the

form Σ(C ′1, C
′
2)→ C ′, where C ′1, C ′2 and C ′ are subclauses of C1, C2 and C respectively. Further

C ′2 must have modal depth strictly less than that of C2. Clearly we can weaken the normal form of

C ′1 by the normal form of C ′2 lessA to infer the normal form of C ′. As every RKn clause is logically

equivalent to its normal form it follows by the inductive hypothesis that if there exists some model

M ′ = (W ′, R′1, . . . , R
′
n, V

′) and some w′ ∈W ′ such that (M ′, w′) |= C ′1 then (M ′, w′) |= C ′.

Let Σ(C ′′1 , C
′′
2 ) → C ′′ be the FFCR obtained from Σ(C ′1, C

′
2) → C ′. Further suppose there

exists some model M = (W,R1, . . . , Rn, V ) and some world w ∈ W such that (M,w) |= C ′′1 .

Then by assumption either:

1. The FFCR Σ(C ′′1 , C
′′
2 )→ C ′′ was obtained by applying the Σ������a-rule to Σ(C ′1, C

′
2)→ C ′.

In which case C ′′1 = �aC ′1 and C ′′ = �aC ′. As (M,w) |= C ′′1 it follows that either W

contains no worlds which are a-accessible from w, or W contains at least one world that is a-

accessible from w and every w1 ∈W that is a-accessible from w is such that (M,w1) |= C ′1.

In the former case we trivially have (M,w) |= C ′′. In the latter case we recall that every

(M,w1) which satisfies C ′1 also satisfies C ′ and so (M,w) |= C ′′.

2. The FFCR Σ(C ′′1 , C
′′
2 )→ C ′′ is obtained by applying the Σ ♦�♦�♦�a-rule to Σ(C ′1, C

′
2)→ C ′.

Then C ′′1 = ♦a(C ′1 ∧ E) and C ′′ = ♦a(C ′1 ∧ C ′ ∧ E), where E is an RKn CNF. As

(M,w) |= C ′′1 it follows that there exists some w1 ∈ W such that w1 is a-reachable from

w and (M,w1) |= (C ′1 ∧ E). Recall that, by the inductive hypothesis we have that if some

world in some model satisfies C ′1 then it must also satisfy C ′. Hence (M,w1) |= C ′ and so

(M,w) |= C ′′.

By assumption Σ(C ′′1 , C
′′
2 )→ C ′′ is the last FFCR obtained using some modal RFCR, hence

Σ(C ′′1 , C
′′
2 ) → C ′′ must either be the final FFCR used to compute C which is obtained using

a non-simplification RFCR, or the second to last FFCR used to compute C which is obtained

using a non-simplification RFCR. Further if Σ(C ′′1 , C
′′
2 )→ C ′′ is not the final such FFCR it must

be followed by FFCR obtained using the Σ ∨∨∨-rule. In the former case, as every RKn clauses

is logically equivalent to its normal form it follows that if (M,w) |= C1 then (M,w) |= C.

In the latter case we observe that the FFCR obtained using the Σ ∨∨∨-rule must be of the form

Σ(C ′′1 ∨B1, C
′′
2 ∨B2)→ C ′′ ∨B, where B1, B2 and B are RKn clauses. Clearly any world in any

model which satisfies C ′′1 (respectively C ′′) also satisfies C ′′1 ∨B1 (respectively C ′′ ∨B). Hence, as
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C1 and C are the normal forms of C ′′1 ∨B1 and C ′′ ∨B respectively, it follows that if (M,w) |= C1

then (M,w) |= C.

5.2 Showing that RKn p-simulates the family of K-Res proof systems

In this section we show that the proof system RKn p-simulates each of the K-Res resolution systems.

As each of the K-Res systems are p-equivalent to one another (Theorem 4.5.1) it is sufficient to

show that any one of the K-Res systems is p-simulated by RKn.

Given any set of SNF+
mp clauses we can easily construct an equivalent set of RKn clauses by

replacing every modal clause of the form �µ(l→ ◦al′) with the RKn clause �µ(¬l ∨ ◦al′). Hence

we choose to directly compare RKn with K+
mp-Res.

Theorem 5.2.1. K+
mp-Res ≤p RKn.

Proof. Let C be an unsatisfiable set of SNF+
mp clauses and let C′ be the corresponding set of RKn

clauses. Further let π = C1, . . . , Ck be a K+
mp-Res refutation of C. We show that given π we

can construct an RKn refutation π′ = π′1, . . . , π
′
k of C′, where each π′i is an RKn derivation of

either C ′i = Ci if Ci is a literal clause, or C ′i = �µ(¬x1 ∨ ◦ax2) if Ci is a modal clause of the

form �µ(x1 → ◦ax2). Further each π′i has size polynomial in that of Ci and so the size of π′ is

polynomial in that of π.

The construction of π′i depends on how the clause Ci was inferred in π. For each i such that

Ci ∈ C we simply let π′i = C ′i.

(LRES) Suppose Ci = �µ(D1 ∨D2), was inferred by applying LRES to two clauses:

Ci1 = �µ(D1 ∨ l) and Ci2 = �µ(D2 ∨ ¬l).

Then we can infer C ′i = Ci from C ′i1 = Ci1 and C ′i2 = Ci2 using RKn as follows:

Σ (l, ¬l)→ 0, A1,

Σ (D1 ∨ l, D2 ∨ ¬l)→ D1 ∨D2 ∨ 0, Σ ∨∨∨ -rule,

Σ (�µ (D1 ∨ l) , �µ (D2 ∨ ¬l))→ �µ (D1 ∨D2 ∨ 0) , Σ������µ-rules,

Σ (�µ (D1 ∨ l) , �µ (D2 ∨ ¬l))⇒ �µ (D1 ∨D2) , S2,

�µ (D1 ∨D2) , R2 on C ′i1 , C
′
i2 ,

where for any µ = a1 . . . am ∈ A∗ the Σ������µ-rules abbreviates applying the Σ rules������a1 , . . . ,������am
successively. Hence we let π′i denote the above derivation. Clearly |π′i| is linear in |C ′i| = |Ci|.

(GEN1): Suppose Ci is inferred by applying GEN1 to some set of z + 2 clauses. Then Ci must

be of the form:

�µ

(
z∨

x=1

¬l′x ∨ ¬l′
)
,
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and be inferred by applying GEN1 to z positive modal clauses Ci1 , . . . , Ciz of the form:

Cij = �µ
(
l′j → �alj

)
,

for each j ∈ [z], a negative modal clause:

Ciz+1 = �µ
(
l′ → ♦al

)
and a literal clause:

Ciz+2 = �µa

(
z∨

x=1

¬lx ∨ ¬l

)
,

where i1, . . . , iz+2 < i. By assumption C ′ij = �µ
(
¬l′j ∨�alj

)
for each j ∈ [z], Ciz+1 =

�µ (¬l′ ∨ ♦al) and C ′iz+2
= Ciz+2 .

To derive C ′i = Ci from C ′i1 , . . . , C
′
iz+2

using RKn we proceed as follows. First for each

k ∈ [z] we successively apply the steps below:

Σ(lk, ¬lk)→ 0, A1,

Σ (lk,
∨z
x=k ¬lx ∨ ¬l)→

∨z
x=k+1 ¬lx ∨ ¬l ∨ 0, Σ ∨∨∨ -rule,

Σ (�alk, �a (
∨z
x=k ¬lx ∨ ¬l))→ �a

(∨z
x=k+1 ¬lx ∨ ¬l ∨ 0

)
, Σ������a-rule,

Σ
(
¬l′k ∨�alk, �a (

∨z
x=k ¬lx ∨ ¬l) ∨

∨k−1
x=1 ¬l′x

)
→ Σ ∨∨∨ -rule,

�a
(∨z

x=k+1 ¬lx ∨ ¬l ∨ 0
)
∨
∨k
x=1 ¬l′x,

Σ
(
�µ (¬l′k ∨�alk) , �µ

(
�a (

∨z
x=k ¬lx ∨ ¬l) ∨

∨k−1
x=1 ¬l′x

))
→ Σ������µ-rules,

�µ
(
�a
(∨z

x=k+1 ¬lx ∨ ¬l ∨ 0
)
∨
∨k
x=1 ¬l′x

)
,

Σ
(
�µ (¬l′k ∨�alk) , �µ

(
�a (

∨z
x=k ¬lx ∨ ¬l) ∨

∨k−1
x=1 ¬l′x

))
⇒ S2,

�µ
(
�a
(∨z

x=k+1 ¬lx ∨ ¬l
)
∨
∨k
x=1 ¬l′x

)
,

Ak = �µ
(
�a
(∨z

x=k+1 ¬lx ∨ ¬l
)
∨
∨k
x=1 ¬l′x

)
, R2 on ? .

where if k = 1 then ? is Cik and Ciz+2 and if k > 1 then ? is Cik and Ak−1. Clearly each of these

z inferences has size linear in |C ′i| = |Ci|. Further note that the clause:

Az = �µ

(
�a¬l ∨

z∨
x=1

¬l′x

)
.
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Hence we complete our RKn derivation of C ′i by resolving Az with C ′iz+1
as follows:

Σ (l, ¬l)→ 0, A1,

Σ (♦al, �a¬l)→ ♦a (l ∧ 0) , Σ ♦�♦�♦�a-rule,

Σ
(
¬l′ ∨ ♦al, �a¬l ∨

∨z
x=1 ¬l′x

)
→ ♦a (l ∧ 0) ∨

∨z
x=1 ¬l′x ∨ ¬l′, Σ ∨∨∨ -rule,

Σ
(
�µ
(
¬l′ ∨ ♦al

)
, �µ (�a¬l ∨

∨z
x=1 ¬l′x)

)
→ Σ������µ-rules,

�µ (♦a (l ∧ 0) ∨
∨z
x=1 ¬l′x ∨ ¬l′) ,

Σ
(
�µ
(
¬l′ ∨ ♦al

)
, �µ (�a¬l ∨

∨z
x=1 ¬l′x)

)
⇒ �µ (

∨z
x=1 ¬l′x ∨ ¬l′) , S3, S1 and S2,

�µ (
∨z
x=1 ¬l′x ∨ ¬l′) , R2 on Ciz+1 , Az.

Clearly the size of this final inference is also linear in |C ′i|. Hence if we take π′i to be the above

derivation then as π′i consists of z + 1 inferences of size linear in |Ci| it follow that π′i has size

polynomial in |Ci|.
(GEN3): Suppose Ci is inferred by applying GEN3 to some set of z + 2 clauses. Then Ci must

be of the form:

�µ

(
z∨

x=1

¬l′x ∨ ¬l′
)

and be inferred by applying GEN3 to z positive modal clauses Ci1 , . . . , Ciz of the form:

Cij = �µ
(
l′j → �a¬lj

)
for each j ∈ [z], a negative modal clause:

Ciz+1 = �µ
(
l′ → ♦al

)
and a literal clause:

Ciz+2 = �µa

(
z∨

x=1

lx

)
,

where i1, . . . , iz+2 < i. Further by assumption, C ′ij = �µ
(
¬l′j ∨�alj

)
for each j ∈ [z], Ciz+1 =

�µ (¬l′ ∨ ♦al) and C ′iz+2
= Ciz+2 .

For each k ∈ [z] we construct an inference of some Ak by following exactly the same method

as for GEN1. The final RKn clause Az which we obtain is of the form:

�µ

(
�a0 ∨

z∨
x=1

¬l′x

)
.

As in the case for GEN1 each of these z inferences has size linear in |C ′i| and so |Ci| as C ′i = Ci.
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We then proceed to infer C ′i from Ciz+1 and Az as follows:

Σ (0, l)→ 0, A2,

Σ (�a0, ♦al)→ ♦a (l ∧ 0) , Σ�♦�♦�♦a-rule,

Σ (�a0 ∨
∨z
x=1 ¬l′x, ¬l′ ∨ ♦al)→ ♦a (l ∧ 0) ∨

∨z
x=1 ¬l′x ∨ ¬l′, Σ ∨∨∨ -rule,

Σ
(
�µ (�a0 ∨

∨z
x=1 ¬l′x) , �µ

(
¬l′ ∨ ♦al

))
→ Σ������µ-rules,

�µ (♦a (l ∧ 0) ∨
∨z
x=1 ¬l′x ∨ ¬l′) ,

Σ
(
�µ (�a0 ∨

∨z
x=1 ¬l′x) , �µ

(
¬l′ ∨ ♦al

))
⇒ �µ (

∨z
x=1 ¬l′x ∨ ¬l′) , S3, S1 and S2,

�µ (
∨z
x=1 ¬l′x ∨ ¬l′) , R2 on Az, Ciz+1 .

Clearly the size of this final inference is linear in |C ′i|. Hence if we take π′i to be the whole derivation

then |π′i| is polynomial in |Ci|.

Corollary 5.2.1. The proof system RKn p-simulates each of the K-Res systems defined in Chapter

4.

Proof. This follows immediately from Theorem 5.2.1 and the p-equivalence of the family of K-Res

systems (Theorems 4.5.1 and 4.6.3).



Chapter 6

Feasible interpolation for modal
resolution systems

In this chapter we present a lower bound technique for the family of K-Res modal resolution

systems defined in Chapter 4. This technique is a modified version of the successful propositional

lower bound technique, feasible interpolation [53, 75].

Feasible interpolation (Definition 6.1.1) has been used to show lower bounds for propositional

resolution and the propositional proof system cutting planes [75]. The technique is based on Craig’s

interpolation theorem [29]. We say a logic L has Craig interpolation (or just interpolation) if given

any true implication A→ B (or equivalently a false conjunction A ∧ ¬B) there exists a formula C

over the shared variables of A and B such that A→ C and C → B are both true. In particular we

call C an interpolant of A and B.

Informally, we say a proof system P has feasible interpolation if given any proof of any formula

of the form A→ B we can construct a circuit C which interpolates (i.e. is an interpolant of) A and

B and has size polynomial in the size of the proof of A→ B. Clearly if a proof system has feasible

interpolation and there exists a family of formulas for which there cannot exist small interpolating

circuits, then every proof of these formulas must be large. Hence feasible interpolation allows us to

obtain proof size lower bounds indirectly via circuit lower bounds.

A circuit is a finite directed acyclic graph (dag) where each leaf vertex is labelled by either a

propositional variable or a constant (0 or 1). Further each internal vertex is labelled by some gate.

Each of the gates must be an element of some basis set B of Boolean functions (i.e. functions from

{0, 1}m to {0, 1} for some m ∈ N). If not specified we take B = {¬,∨,∧,0,1}. Finally, each

vertex with no out edges is called an output vertex. A circuit with n input vertices and m output

vertices calculates a function f : {0, 1}n → {0, 1}m. The size of a circuit is the number of vertices

63
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it contains.

We further note that any circuit where each vertex has at most 1 out edge is in fact a propositional

formula.

A number of modal logics, including the basic monomodal logic K, have been shown to posses

the interpolation property [37, 77]. Further in [52] it was shown that the interpolation property

transfers from the monomodal logic K to the multimodal logic Kn.

In this chapter we address the natural question of whether or not some variant of feasible inter-

polation can be used to obtain lower bounds for modal resolution systems. In [45, 46] Hrubeš gave

a positive answer to the analogous question regarding Frege systems for certain modal logics

(including K). Further, in [49] Jeřábek extended Hrubeš’ lower bound (and lower bound proving

technique) to extended Frege systems for certain modal logics with infinite branching. In [18] it was

shown that the sequent calculus for several normal modal logics, including K, also has a (weaker)

type of feasible interpolation. An exponential lower bound for these proof systems was further

shown under certain cryptographic assumptions.

6.1 Feasible interpolation for propositional logic

Definition 6.1.1 ( [75]). Let p̄, q̄ and r̄ be disjoint sets of propositional variables, and let A(p̄, q̄)

and B(p̄, r̄) be propositional CNFs over the variables in p̄, q̄ and p̄, r̄ respectively. We say a circuit

C(p̄) interpolates the formula A(p̄, q̄) ∧B(p̄, r̄) if given any {0, 1} assignment ᾱ to the variables

in p̄ we have:

C(ᾱ) =

0 only if A(ᾱ, q̄) is unsatisfiable,

1 only if B(ᾱ, r̄) is unsatisfiable.

Let Q be a propositional proof system. We say Q has feasible interpolation if given any

unsatisfiable formula A(p̄, q̄) ∧B(p̄, r̄) of the above form, and any Q refutation π of this formula

we can construct a circuit C(p̄) which interpolates A(p̄, q̄)∧B(p̄, r̄) and has size polynomial in the

length of π.

Further, if given that the p̄ variables occur only positively in A(p̄, q̄), we can construct a circuit

as above but with the additional requirement of having a monotone basis, {∨,∧, 0, 1}, we say Q

has monotone feasible interpolation.

It follows from the above definition that if a proof system Q has feasible interpolation then

any family of formulas of the form A(p̄, q̄) ∧B(p̄, r̄) that has only exponential sized interpolating

circuits requires exponential sized Q refutations. Similarly if Q has monotone feasible interpolation

and every monotone circuit that interpolates a family of formulas has exponential size then this

family of formulas must require exponential size Q refutations.

There are currently no known superpolynomial circuit lower bounds, however there is a known

superpolynomial monotone circuit lower bound [2, 78]. Hence in order to prove exponential proof

size lower bounds we must prove that a proof system has not only feasible interpolation but also
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monotone feasible interpolation. In [75] it was shown that propositional resolution has monotone

feasible interpolation, leading to a new exponential lower bound for propositional resolution.

6.2 Feasible interpolation for modal resolution systems

In this section we prove that whilst the proof system K+
mp-Res does not admit the full version

of feasible interpolation given in Definition 6.1.1, it does admit a weaker version of feasible

interpolation. We begin by considering a simple example which rules out the possibility of K+
mp-Res

admitting feasible interpolation.

Example 6.2.1. Consider the modal formula:

φ = (�a�al1 ∧ ♦a♦a¬l1) ∨ (�a�al2 ∧ ♦a♦a¬l2),

and the corresponding set of SNF+
mp clauses:

x0, ¬x0 ∨ x1 ∨ x2, x1 → �ax3, �a(x3 → �al1),

x1 → ♦ax4, �a(x4 → ♦ax5), �aa(¬x5 ∨ ¬l1), x2 → �ax6,

�a(x6 → �al2), x2 → ♦ax7, �a(x7 → ♦ax8), �aa(¬x8 ∨ ¬l2)


It is clear that φ is an unsatisfiable formula. Hence the above set of clauses must also be unsatisfiable

and there must exist a K+
mp-Res refutation said set of clauses. Further:

p̄ = {x1, x2, l1, l2}, q̄ = {x0, x3, x6} and r̄ = {x4, x5, x7, x8}

are disjoint sets of propositional variables. Now consider the assignment ᾱ which maps l1 7→
0, l2 7→ 0, x1 7→ 1, x2 7→ 1. Neither of the disjoint sets:

A(ᾱ, q̄) = {x0, ¬x0 ∨ 1 ∨ 1, 1→ �ax3, �a(x3 → �a0), 1→ �ax6, �a(x6 → �a0)},

and:

B(ᾱ, r̄) =

{
1→ ♦ax4, �a(x4 → ♦ax5), �aa(¬x5 ∨ 1),

1→ ♦ax7, �a(x7 → ♦ax8), �aa(¬x8 ∨ 1)

}
,

is unsatisfiable. To see this note that the model M1 = (W1, R1, V1) where W1 = w1, R1 =

∅ and V1(w1)(x0) = 1 is such that (M1, w1) |= A(ᾱ, q̄) and the model M2 = (W2, R2, V2)

where W2 = {w2, w
′
2, w

′′
2}, R2 = {(w2, w

′
2), (w′2, w

′′
2)} and V2(w′2)(x4) = V2(w′2)(x7) = 1 and

V2(w′′2)(x5) = V2(w′′2)(x8) = 1 is such that (M2, w2) |= B(ᾱ, r̄).

The above example demonstrates the existence of unsatisfiable sets of SNF+
mp clauses which

can be split into two disjoint subsets of clauses which are both satisfiable. Hence neither K+
mp-Res,
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nor indeed any proof system that operates on formulas in SNF+
mp (or similarly SNF, SNFml or

SNF+
mc) admits feasible interpolation. This is essentially due to the fact that �a0 is satisfiable.

In the following definition we introduced a weaker notion of feasible interpolation called modal

feasible interpolation, which as we will see in Theorem 6.2.1, is admitted by K+
mp-Res. The idea

behind this weaker form of interpolation is to add some clauses to the sets A(p̄, q̄) and B(p̄, r̄)

so as to ensure that at least one of these sets is always unsatisfiable. We then say that a proof

system admits modal feasible interpolation if given any refutation π of A(p̄, q̄) ∪ B(p̄, r̄) there

exists a circuit that interpolates the newly constructed supersets of A(p̄, q̄) and B(p̄, r̄), and has size

polynomial in the length of π.

Definition 6.2.1. Let Q be a modal proof system. We say Q has modal feasible interpolation if

given anyQ refutation of some set of SNF+
mp clausesA(p̄, q̄)∪B(p̄, r̄), where p̄, q̄ and r̄ are disjoint

sets of propositional variables, and A(p̄, q̄) and B(p̄, r̄) are disjoint sets of SNF+
mp clauses, we can

construct a circuit C(p̄) such that the following holds:

1. C(p̄) interpolates A′(p̄, q̄) ⊇ A(p̄, q̄) and B(p̄, r̄) ⊇ B(p̄, r̄) where:

A′(p̄, q̄) = A(p̄, q̄) ∪ {�µ(l→ ♦al′) | �µ(l→ �al′) ∈ A(p̄, q̄)}

∪ {�µ♦aq′ | �µ(l2 → ♦al) ∈ A(p̄, q̄) ∪B(p̄, r̄)},

B′(p̄, r̄) = B(p̄, r̄) ∪ {�µ(l→ ♦al′) | �µ(l→ �al′) ∈ B(p̄, r̄)}

∪ {�µ♦ar′ | �µ(l2 → ♦al) ∈ A(p̄, q̄) ∪B(p̄, r̄)},

further, q is a new q̄ variable and r is a new r̄ variable.

2. C(p̄) has size polynomial in the length of the original Q refutation of A(p̄, q̄) ∪B(p̄, r̄).

Further, if given that the p̄ variables occur only positively in A(p̄, q̄) we can construct a circuit

as above but with the additional requirement of having a monotone basis, {∨,∧, 0, 1}, we say Q

has modal monotone feasible interpolation.

We will now prove that K+
mp-Res has modal feasible interpolation. The proof of this is similar

to the proof that propositional resolution has feasible interpolation given by Pudlák in [75].

The first half of the proof consists of showing that any K+
mp-Res refutation π of two disjoint

sets of SNF+
mp clauses A(p̄, q̄) and B(p̄, r̄) can be transformed into either a refutation of A′(ᾱ, q̄)

or a K+
mp-Res refutation of B′(ᾱ, r̄). As every clause with mixed variables (i.e. q̄ and r̄ variables)

must have been inferred by some resolution step, this essentially just consists of replacing steps

where a p̄ variable is resolved on with some clause which does not contain that variable. This can

always be done by as we have replaced all p̄ variables with either 0 or 1.

The second half of the proof consists of showing that from this refutation we can construct a

circuit C(p̄) which interpolates A′(p̄, q̄) and B′(p̄, r̄). Crucially the size of this circuit is equal to

the length of the original refutation π.

Theorem 6.2.1. K+
mp-Res has modal feasible interpolation.
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Proof. Let A(p̄, q̄)∪B(p̄, r̄) be an unsatisfiable set of SNF+
mp clauses, where p̄, q̄ and r̄ are disjoint

sets of propositional variables. Further let π be a K+
mp-Res refutation of this set of clauses. Given

an assignment ᾱ to the variables in p̄ we will show that we can construct a K+
mp-Res refutation of

either the set of clauses A′(ᾱ, q̄) or the set of clauses B′(ᾱ, r̄), both defined as in Definition 6.2.1.

Note that given any K+
mp-Res refutation in which the same initial clause is taken as a premise

for several different inference steps, if we require that a new copy of every such initial clause is

used for each inference then this causes at most a linear increase in the size of the refutation. Hence

we assume without loss of generality that each appearance of an initial clause in π is used in at most

one inference.

We call a clause in π a q-clause (respectively an r-clause) if it contains only p̄ and q̄ variables

(respectively p̄ and r̄ variables). If a clause contains only p̄ variables or is empty we call it a q-clause

(respectively an r-clause) if it was derived from q-clauses (respectively r-clauses).

To construct our new refutation we transform each clause in π by replacing it with some

subclause of itself. Recall that every modal clause in π must be initial, whereas literal clauses may

be either initial or non-initial. If a literal clause is initial then the transformation leaves it as it is. If

a literal clause is non-initial then the transformation depends on which rule of K+
mp-Res was used to

infer it. The transformation of modal clauses depends on which clauses they were used to infer.

Suppose π contains a literal clause which is inferred by an instance of LRES.

�µ(D ∨ l) (L1)

�µ(D′ ∨ ¬l) (L2)

�µ(D ∨D′) (L3)

If L1 is a non-initial clause and has already been transformed then we let �µE be the clause that L1

was replaced with, otherwise we let �µE = �µ(D ∨ l). We similarly define �µE′ in terms of L2.

Suppose l ∈ p̄. If l 7→ 0 then we replace L3 with �µE. If l 7→ 1 then we replace L3 with �µE′.

Suppose l ∈ q̄ (respectively l ∈ r̄), if one of E and E′ is an r-clause (respectively a q-clause) then

by definition it cannot contain l and so we replace L3 with with either �µE or �µE′ accordingly.

Otherwise we either use LRES to resolve l in �µE with ¬l in �µE′ and replace L3 with the result,

or if one of the literal clauses�µE and�µE′ does not contain l then we replace L3 with this clause.

Suppose π contains a literal clause which is inferred by an instance of GEN1.

�µ(l′1 → �al1) (L1)
...

...

�µ(l′z → �alz) (Lz)

�µ(l′z+1 → ♦alz+1) (Lz+1)

�µa
(∨z+1

i=1 ¬li
)

(Lz+2)

�µ
(∨z+1

i=1 ¬l′i
)

(Lz+3)

If the clause Lz+2 has previously been transformed then we let �µaE be the clause it was replaced

with. If Lz+2 has not been transformed then we let �µaE = Lz+2. Note that in either case the set
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of literals in �µaE must be a subset of the literals in Lz+2.

Suppose �µaE is a q-clause, then each variable in �µaE (i.e. each li where i ∈ [z + 1])

must be either a p̄ variable or a q̄ variable. If for some i ∈ [z + 1] the variable li is mapped

to 0 by ᾱ and the corresponding modal clause Li is an r-clause then we replace Lz+3 with the

clause �µ(l′i → ♦ali) ∈ B′(p̄, r̄). Otherwise either some variable li is mapped to 0 by ᾱ and the

corresponding modal clause Li is a q-clause, or no variable li is mapped to 0. In the former case we

replace Lz+3 with the clause �µ(l′i → ♦ali) ∈ A′(p̄, q̄). In the latter case either:

1. Every variable in �µaE is in p̄. By assunption this is the case only if either E is empty or

every literal in �µaE is mapped to 1 under the assignment ᾱ. Hence in this case we replace

Lz+1 with �µ♦aq′ ∈ A′(p̄, q̄) and Lz+3 with the clause �µ0. Note that this clause can be

inferred by applying GEN3 to �µaE ≡ �µa0 and �µ♦aq′.

2. Or, there exists some i ∈ [z + 1] such that li is in q̄ and ¬li appears in �µaE. If lz+1

is such a variable then we replace Lz+3 with the clause obtained by applying GEN1 to

�µ(l′z+1 → ♦alz+1), the set of modal clauses {Lj | j ∈ [z], ¬lj ∈ E and lj ∈ q̄}
and �µaE. Otherwise we replace Li with the clause �µ(l′i → ♦ali) and replace Lz+3

with the clause obtained by applying GEN1 to �µ(l′i → ♦ali), the set of modal clauses

{Lj | j ∈ [z + 1] \ {i}, ¬lj ∈ E and lj ∈ q̄} and �µaE.

If �µaE is an r-clause then the transformation is dual.

Suppose π contains a literal clause which is inferred by an application of GEN3.

�µ(l′1 → �al1) (L1)
...

...

�µ(l′z → �alz) (Lz)

�µ(l′z+1 → ♦alz+1) (Lz+1)

�µa
(∨z+1

i=1 ¬li
)

(Lz+2)

�µ (
∨z
i=1 ¬l′i) (Lz+3)

The transformation is identical to that of GEN1.

As every clause in π is replaced by a subclause of itself it follows that our transformed sequence

of clauses ends with the empty clause. Further, if we replace every p̄ variable with its value under

the assignment ᾱ then our transformed sequence of clauses becomes a K+
mp-Res refutation of

A′(ᾱ, q̄) ∪ B′(ᾱ, r̄). Our transformation is such that q-clauses can only be inferred from sets of

q-clauses and r-clauses can only be inferred from sets of r-clauses. Hence if the final clause in

our transformed proof is a q-clause then our new refutation must contain be a subrefutation of

A′(ᾱ, q̄), similarly if the final clause is an r-clause then the refutation must contain a subrefutation

of B′(ᾱ, r̄).

Now we construct a circuit C(p̄) such that C(ᾱ) = 0 only if the set of clauses A′(ᾱ, q̄) is

unsatisfiable and C(ᾱ) = 1 only if the set of clauses B′(ᾱ, q̄) is unsatisfiable. More specifically,

we construct the circuit so that the value computed by the gate labelling each vertex is 0 if and
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only if the corresponding clause becomes a q-clause in the transformed proof. Similarly the value

computed by the gate labelling each vertex is 1 if and only if the corresponding clause becomes a

r-clause in the transformed proof.

We take C(p̄) to have the same underlying structure as π. Hence the initial clauses correspond

to the leaf vertices of the circuit and the internal vertices correspond to clauses inferred by the

applying some rule of K+
mp-Res to clauses represented by its parent vertices. We label leaf vertices

corresponding to q-clauses with the constant gate 0 and leaf vertices corresponding to r-clauses

with the constant gate 1. The gate we put on each internal vertex depends on the rule used to infer

the corresponding clause.

Suppose a vertex u of C(p̄) corresponds to a clause L3 in π which is inferred by applying LRES

to two clauses L1 and L2 which correspond to the vertices u1 and u2 respectively. Let l be the

variable that was resolved on. If l ∈ q̄ then we put a ∨ gate on u. If l ∈ r̄ then we put a ∧ gate on u.

If l ∈ p̄ we put a selector gate on u, defined:

sel(l, x1, x2) = (¬l ∧ x1) ∨ (l ∧ x2) ,

where x1 is the value of the gate on u1 and x2 is the value of the gate on u2. This gate returns the

value of x1 whenever l 7→ 0 and x2 whenever l 7→ 1, this corresponds to our transformation where

L3 is replaced by L1 if l 7→ 0 and L2 if l 7→ 1.

Suppose u corresponds to a clause inferred by an application of GEN1 or GEN3. For each

i ∈ [z + 2] let xi be the gate corresponding to the clause Li. If each resolvent li in these clauses is

either a q̄ variable or an r̄ variable then we first remove from C(p̄) the vertices labelled by the gates

x1, . . . , xz+1. As each of these vertices corresponds to some modal (and therefore initial) clause,

every such vertex is a leaf and so C(p̄) remains a circuit even after removing these vertices. We

then put a no operation gate on u. Hence the gate on u returns the same value as the gate xz+2,

which corresponds to the literal clause Lz+2, as desired.

If at least one li ∈ p̄ then we let {p1, . . . , pm} ⊆ {l1, . . . , lz+1} be the subset of p̄ variables

resolved on and let x′1, . . . , x
′
m be the vertices corresponding to the associated modal clauses. We

further put a m-ary selector gate, defined:

selm
(
p1, . . . , pm, x

′
1, . . . , x

′
m, xz+2

)
=

m∨
i=1

(
¬pi ∧ x′i

)
∨

 m∧
j=1

pj ∧ xz+2

 ,

on u. Finally we remove from C(p̄) all parent vertices of u that are labelled by gates which are not

taken as inputs to our m-ary selector gate. That is we remove the vertices corresponding to modal

q-clauses and r-clauses, noting once again that every such clause is initial. Our m-ary selector gate

returns the value of xz+2 if every pi 7→ 1, it returns 1 if there exists some i such that the value

returned by x′i is 1 and pi 7→ 0, and it returns 0 if there exists some i such that pi 7→ 0 but for every

such i the value of xi is 0. In each case the output of the selector gate corresponds to the clause

Lz+2 is replaced by in our transformation.
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Clearly the size of C(p̄) is less than or equal to that of π. Further we can easily convert C(p̄)

into a circuit with basis {∧,∨,¬,0,1} whose size is linear in that of C(p̄).

Corollary 6.2.1. Each proof system in the family of K-Res systems has modal feasible interpolation.

Proof. By Corollary 4.6.1 each of the K-Res systems is p-simulated by K+
mp-Res. Hence we can

transform any K+
mc-Res refutation into a K+

mp-Res refutation of the corresponding set of SNF+
mp

clauses and so that the corollary holds follows trivially from Theorem 6.2.1.

6.3 Monotone feasible interpolation for modal resolution systems

In this section we prove that K+
mp-Res has modal monotone feasible interpolation. As in the case

for propositional resolution, it is this property which allows us to prove unconditional lower bounds

for K+
mp-Res.

Theorem 6.3.1. K+
mp-Res has modal monotone feasible interpolation.

Proof. Let A(p̄, q̄) ∪ B(p̄, r̄) be an unsatisfiable set of SNF+
mp clauses, where p̄, q̄ and r̄ are

disjoint sets of propositional variables. Further let π be a K+
mp-Res refutation of this set of clauses.

Suppose each of the p̄ variables appears only positively in A(p̄, q̄). Then we can modify the circuit

C(p̄) constructed in the proof of Theorem 6.2.1 to obtain a monotone circuit Cmon(p̄) such that

Cmon(ᾱ) = 0 only if the set of clauses A′(ᾱ, q̄) is unsatisfiable and Cmon(ᾱ) = 1 only if B′(ᾱ, q̄)

is unsatisfiable. To do this we must replace all selector gates sel and selm with monotone gates.

We replace every sel(l, x1, x2) gate in C(p̄) with the monotone ternary gate (l ∨ x1) ∧ x2. This

gate differs from sel(l, x1, x2) on only one input, namely l = 0, x1 = 1 and x2 = 0. In this case L1

is an r-clause, L2 is a q-clause and the variable being resolved on is in p̄. By assumption q-clauses

contain only positive p̄ variables hence L2 cannot contain ¬l and so in the transformation of our

clauses we can replace L3 with the q-clause L2 without any issues.

We further replace every selm(p1, . . . , pm, x
′
1, . . . , x

′
m, xz+2) gate in C(p̄) with the monotone

gate:

(p1 ∨ x′1) ∧ · · · ∧ (pm ∨ x′m) ∧ xz+2.

The output of this gate differs from that of selm(p1, . . . , pm, x
′
1, . . . , x

′
m, xz+2) in two cases. If

for some i 6= j we have pi = 0, pj = 0, x′i = 1 and x′j = 0, then our monotone gate returns

0 whereas selm returns 1. Hence we change the transformation so that Lz+3 is replaced by the

modal clause containing pi, which must be an r-clause as x′i = 1. The other case is when pi = 0,

x′i = 1 and for all j 6= i either pj 6= 1 or x′j 6= 1, and xz+2 = 0. In this case selm returns

1, whereas our monotone gate returns 0. However, as the literal clause corresponding to xz+2

is a q-clause and so cannot contain any ¬pi, instead of replacing Lz+3 with the literal clause

corresponding to x′i we proceed in one of two ways. If lz+1 ∈ q̄ and ¬lz+1 appears in Lz+2 then

we replace Lz+3 with the q-clause obtained by applying GEN1 to Lz+2 and the set of modal clauses

{Lj | j ∈ [z + 1] and ¬lj appears in Lz+2}. Otherwise we replace it with the q-clause obtained by
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applying GEN3 to Lz+2, the set of modal clauses {Lj | j ∈ [z + 1] and ¬lj appears in Lz+2} and

�µ♦aq′.

Hence we have constructed a monotone circuit Cmon(p̄) which interpolates A′(ᾱ, q̄) and

B′(ᾱ, r̄), and whose size is polynomial in that of π. We can further transform this circuit into a

monotone circuit over the basis {∧,∨,0,1} with at most a linear increase in size.

Corollary 6.3.1. Each of the K-Res systems has modal monotone feasible interpolation.

Proof. This follows immediately from Theorem 6.3.1 and the fact that each of these proof systems

is p-simulated by K+
mp-Res (Corollary 4.6.1).

6.4 Lower bound

In this section we use the fact that K+
mp-Res has weak monotone feasible interpolation to prove

an exponential lower bound for K+
mp-Res. The family of formulas for which we obtain this lower

bound encode a well known graph theoretic result.

We say that a graph G has a clique of size k if there exists some k-subset (i.e. some subset of

size k) of the vertices of G such that each vertex in this set is adjacent to every other vertex in this

set. We say that G is k-colourable if the vertices of G can be partitioned into k disjoint subsets such

that each pair of vertices in each subset are non-adjacent. It is a well known fact that any graph

containing a clique of size k + 1 is not k-colourable.

The statement “if a graph has a clique of size k+1 then it is not k-colourable” can be formulated

as the propositional formula:

Cliquek+1
n (p̄, q̄)→ (¬Colourkn(p̄, r̄)),

where:

Cliquek+1
n (p̄, q̄) =

∧
j

∨
i

qij ∧
∧

i,j1 6=j2

(¬qij1 ∨ ¬qij2) ∧
∧

i1 6=i2,j1,j2

((qi1j1 ∧ qi2j2)→ pi1i2),

and Colourkn(p̄, r̄) =
∧
i

∨
j

rij ∧
∧

i1 6=i2,j
(pi1i2 → (¬ri1j ∨ ¬ri2j)),

for i, i1, i2 ∈ [n] and j, j1, j2 ∈ [k + 1]. In the above we interpret each variable qij as denoting

that the ith vertex of some graph of size n is the jth element of some clique of size at most k + 1.

We further interpret each pi1i2 variable as denoting that there is an edge between the i1th and i2th

vertex and each variable rij as denoting that the ith vertex of the graph is coloured by the jth colour

in some k-colouring.

It is the above propositional formulas (henceforth referred to as the clique-colour formulas)

that Pudlák used to show an exponential lower bound for propositional resolution via feasible

interpolation in [75]. Clearly if we restrict K+
mp-Res to propositional formulas then it becomes the
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propositional resolution system and so these formulas trivially give an exponential lower bound for

K+
mp-Res. However this lower bound is of little interest as it offers no insight into the modal aspect

of K+
mp-Res. The lower bound that we prove uses a modal version of these formulas first proposed

by Hrubeš in [45, 46]. More specifically we will prove our lower bound using the formulas:

Cliquek+1
n (�p̄, q̄)→ �(¬Colourkn(p̄, r̄)),

where Cliquek+1
n (�p̄, q̄) denotes the formula obtained by replacing each pi1i2 in Cliquek+1

n (p̄, q̄)

with �pi1i2 . We call these formulas the modal clique-colour formulas.

In [45, 46] Hrubeš obtained an exponential lower bound on the size of Kn-Frege (see Definition

10.1.3) proofs required for the modal clique-colour formulas. To do this he proved that Kn-

Frege admits a certain type of feasible interpolation. In particular he showed that for any given

propositional formulas A(p̄, q̄) and B(p̄, r̄) the modal formula A(�p̄, q̄) → �B(p̄, r̄) is a Kn

tautology. Further any monotone circuit which interpolates A(p̄, q̄) and B(p̄, r̄) has size polynomial

in that of the number of K axioms required to prove A(�p̄, q̄) → �B(p̄, r̄). As this type of

monotone interpolation can only be applied to modal formulas of the form A(�p̄, q̄)→ �B(p̄, r̄),

it is in some sense less general than our notion of modal monotone feasible interpolation.

We will see in Chapter 10 that Kn-Frege p-simulates K+
mp-Res (Proposition 10.1.1). Hence

it follows trivially that the modal clique-colour formulas also require exponential sized K+
mp-Res

refutations. We use the fact that K+
mp-Res has weak monotone feasible interpolation to give an

alternative direct proof (i.e. a proof not reliant on the fact that Kn-Frege p-simulates K+
mp-Res) of

this lower bound.

To prove our lower bound we require the following well known result from circuit complexity.

Theorem 6.4.1 ( [2]). Any monotone circuit over the basis {∨,∧,0,1} which decides whether or

not a graph of size n has a clique of size
√
n has size 2Ω(n1/4).

Theorem 6.4.2. Let:

φkn = Cliquek+1
n (�p̄, q̄)→ �(¬Colourkn(p̄, r̄))

If we take k =
√
n then every K+

mp-Res proof of φkn has size 2Ω(n1/4).

Proof. As K+
mp-Res is a refutational proof system to prove φkn we must refute its negation:

¬
(
Cliquek+1

n (�p̄, q̄)→ �(¬Colourkn(p̄, r̄))
)
≡ Cliquek+1

n (�p̄, q̄) ∧ ♦Colourkn(p̄, r̄).

Hence we begin by letting A(p̄, q̄) and B(p̄, r̄) denote the sets of SNF+
mp clauses corresponding to

Cliquek+1
n (�p̄, q̄) and ♦Colourkn(p̄, r̄) respectively. That is, we let:
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A(p̄, q̄) = {x} ∪ {(x→ ♦x′)} ∪ {(¬x ∨ q1j ∨ · · · ∨ qnj) | j ∈ [k + 1]} ∪

{(¬x ∨ ¬qij1 ∨ ¬qij2) | i ∈ [n], j1 6= j2 ∈ [k + 1]}∪

{(¬x ∨ ¬qi1j1 ∨ ¬qi2j2 ∨ xi1i2) , (xi1i2 → �pi1i2) | i1 6= i2 ∈ [n], j1, j2 ∈ [k + 1]},

and

B(p̄, r̄) =
{
�(¬x′ ∨ ri1 ∨ · · · ∨ rik) | i ∈ [n]

}
∪

{�(¬x′ ∨ ¬pi1i2 ∨ ¬ri1j ∨ ¬ri2j) | i1 6= i2 ∈ [n], j ∈ [k]},

where xi1i2 , x are new q̄ variables and x′ is a new p̄ variable. We further let π be a K+
mp-Res

refutation of A(p̄, q̄) ∪B(p̄, r̄).

Clearly the p̄ variables appear only positively in A(p̄, q̄). Hence it follows by Theorem 6.3.1

that there exists a monotone circuit Cmon(p̄) whose size is polynomial in that of the refutation π,

and which interpolates:

A′(p̄, q̄) =A(p̄, q̄) ∪ {(xi1i2 → ♦pi1i2) | i1 6= i2 ∈ [n], j1, j2 ∈ [k + 1]} ∪ {♦q′},

and B′(p̄, r̄) =B(p̄, r̄) ∪ {♦r′},

where q′ is a new q̄ variable and r′ is a new r̄ variable.

Let ᾱ be an assignment to the p̄ variables and let Gα be the graph consisting of n vertices and

having an edge between the i1th and i2th vertices if and only if pi1i2 7→ 1. It is not hard to see

that this graph has a clique of size k + 1 if and only if A′(ᾱ, q̄) is satisfiable and a k-colouring if

and only if B′(ᾱ, r̄) is satisfiable1. Finally we note that a graph cannot contain a k + 1 clique if its

k-colourable and cannot be k-colourable if it contains a k + 1 clique, and so A′(ᾱ, q̄) is satisfiable

if and only if B′(ᾱ, r̄) is unsatisfiable.

Hence Cmon(p̄) is a monotone circuit which decides whether or not a graph has a clique of size

k + 1. By Theorem 6.4.1 every such circuit has exponential size and so as the size of Cmon(p̄) is

polynomial in |π| it follows that π must also have exponential size.

Corollary 6.4.1. The modal clique-colour formulas require proofs of size 2Ω(n1/4) in each of the

K-Res systems.

Proof. As each of the K-Res systems is p-equivalent to K+
mp-Res (Corollary 4.6.1) the corollary

follows immediately from Theorem 6.4.2.

We finish by noting that whilst our lower bound is on a truly modal family of formulas (as

demonstrated by Hrubeš proof that any Kn-Frege proof of these formulas contains an exponential

number of modal axioms), it is not a lower bound on the number of modal resolution steps (i.e.

applications of GEN1 and GEN3) required in any K+
mp-Res proof of these formulas. In fact even the

1Note that the analogous statement also holds for A(ᾱ, q̄) but not for B(ᾱ, r̄) as this set of clauses can be satisfied
for any assignment by taking a model with only one world and an empty accessibility relation.
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non-direct proof of our lower bound does not give a lower bound for the number of modal resolution

steps in such a refutation as even LRES, a seemingly propositional K+
mp-Res rule requires modal

axioms if we wish to simulate it using Kn-Frege.
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The size-width lower bound technique

Among the most successful lower bound techniques for propositional resolution is the size-width

technique introduced by Ben-Sasson and Wigderson in [9]. In this chapter we address the natural

question of whether or not a similar technique can be used to obtain lower bounds for modal

resolution systems.

The size width-lower bound proving technique works as follows. For both tree-like and dag-like

resolution there exists a fundamental relationship between the size of refutations and their width (i.e.

the maximum number of literals in any clause in the refutation). This relationship can be exploited

to obtain proof size lower bounds indirectly by proving lower bounds for their width. Indeed a

number of exponential size lower bounds have been shown for tree-like and dag-like propositional

resolution using this technique [9].

In this chapter we will show that analogous relationships do not hold between the size and width

of either RKn resolution proofs or proofs in any of the K-Res resolution systems defined in Chapter

4.

7.1 Width

Throughout this chapter we make use of big omega notation . That is, given two functions f and g

we write f(n) = Ω(g(n)) if and only if f is asymptotically bounded below by g. More formally,

we write f(n) = Ω(g(n)) if and only if there exists some constant k > 0 and some n0 such that for

every n > n0 we have f(n) ≥ kg(n).

Definition 7.1.1 ( [9]). The width of a propositional clause C is the number of literals it contains

(denoted w(C)).

The width of a propositional CNF φ is the maximum width of any clause in the conjunction (denoted

75
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w(φ)).

The width of a propositional resolution proof π is the maximum width of any clause in the proof

(denoted w(π)).

Let S(φ) denote the minimum size of any resolution refutation of the CNF φ, let ST (φ) denote

the minimum size of any tree-like refutation of φ and let w(φ ` 0) denote the minimum width of

any resolution refutation of φ.

There exists a fundamental relationship between the size and width of propositional (tree-like)

resolution refutations, namely that if a formula has polynomial size (tree-like) resolution refutations

then it has constant width (tree-like) resolution refutations (Theorems 7.1.1 and 7.1.2). This

relationship was first formalised by Ben-Sasson and Wigderson in [9].

Theorem 7.1.1 ( [9]). ST (φ) ≥ 2w(φ`0)−w(φ).

Theorem 7.1.2 ( [9]). S(φ) ≥ exp
(

Ω
(

(w(φ`0)−w(φ))2

n

))
, where n denotes the number of variables

in φ.

Theorem 7.1.1 states that, in tree-like resolution, every refutation of a CNF φ has size exponential

in the difference between the minimum proof width required to refute φ and the width of φ. Whereas,

Theorem 7.1.2 states that, in the full dag-like version of resolution, every refutation of a CNF φ has

size exponential in the square of the difference between the minimum proof width required to refute

φ and the width of φ over the total number of variables in φ.

Hence using Theorem 7.1.1 exponential proof size lower bounds for tree-like resolution can

be obtained indirectly via linear width lower bounds and using Theorem 7.1.2 exponential proof

size lower bounds for dag-like resolution can be obtained indirectly via linear width lower bounds.

However neither theorem can be used to obtain proof size lower bounds for any CNF with w(φ `
0)− w(φ) = O(1). Further the formula for dag-like resolution refutations cannot be used to obtain

proof size lower bounds for any CNF with (w(φ ` 0)− w(φ))2 = O(n).

Hence to show that these theorems do not hold for any of the modal resolution systems

considered in this thesis we need to show that for each system there exist modal formulas with small

initial width, a small number of variables, polynomial size refutations and which cannot be refuted

with less than linear width.

7.2 Width for modal resolution systems

In this chapter we rule out the possibility of proving exponential proof size lower bounds via linear

width lower bounds for each of the modal resolution systems defined in Chapters 4 and 5. We do

this by giving a counterexample (i.e. a formula which has small initial width, a small number of

variables and only linear width refutations, but can be refuted with polynomial size) for each of

these systems.
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In the following definition we extend the notion of width for propositional CNFs, propositional

clauses and propositional resolution refutations to RKn CNFs, RKn clauses, RKn refutations and

K-Res refutations.

Definition 7.2.1. The width of an RKn clause C is the number of literals it contains and is denoted

w(C).

The width of an RKn CNF φ (or equivalently a set of RKn clauses C) is the maximum width of any

RKn clause in φ (equivalently any C ∈ C) and is denoted w(φ) (equivalently w(C)).

The width of an RKn (respectively a K-Res) resolution proof π is the maximum width of any clause

in π and is denoted w(π).

It is easy to see that the above definition also extends to SNF+
mp clauses, sets of SNF+

mp clauses

and SNF+
mp refutations.

Finally we remark that whilst our definition of the width of an RKn clause is independent of

the number of modal operators contained within it, a natural alternative way to extend the definition

of propositional width would be to count the number of modal operators and the number of literals

contained within an RKn clause. However the formulas we use to show that superpolynomial proof

size lower bounds cannot be obtained from linear width lower bounds for both the K-Res systems

of Chapter 4 and the proof system RKn defined in Chapter 5 contain only a constant number of

modal operators. Hence even if we took this alternative definition of width these formulas would

still be counterexamples for each of the modal resolution systems we consider.

7.3 A counterexample for the K-Res proof systems

In this section we show that Theorems 7.1.1 and 7.1.2 cannot hold for any of the K-Res proof

systems defined in Chapter 4. To do this we construct a family of modal formulas which have only

linear width K-Res refutations. We further show that this family of formulas have polynomial size

K-Res refutations.

Consider the following unsatisfiable modal formula:

ψm =
m∧
i=1

�li ∧ ♦

(
m∨
i=1

¬li

)
.

Each of the K-Res systems can of course be used to refute ψm (or more specifically a set of clauses

which is satisfiability equivalent to ψm). However, the set of clauses obtained by transforming

ψm (in particular the subformula ♦ (
∨m
i=1 ¬li)) into any of the normal forms defined in Chapter 4

contains a clause of width m+ 1. For example if we transform ψm into SNF+
mp then some SNF+

mp

clause � (¬x ∨
∨m
i=1 ¬li), where x is an extension variable, must be contained within the resulting

set of clauses. Hence ψm cannot be used to show that Theorems 7.1.1 and 7.1.2 do not hold for the

K-Res systems.
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However the formula:

φm =
m∧
i=1

�li ∧�(¬l1 ∨ l′1) ∧
m−1∧
i=2

�(¬li ∨ l′i ∨ ¬l′i−1) ∧ ♦(¬lm ∨ ¬l′m−1),

which can be obtained from ψm by adding extension variables l′1, . . . , l
′
m−1, is unsatisfiable and has

width 3. Hence we can be use φm as a counterexample for Theorems 7.1.1 and 7.1.2.

Our proof that every K-Res refutation of φm has linear width relies on the fact that the rules of the

K-Res systems allow literals to be resolved with modal literals only in very specific circumstances.

Namely, only when every literal in a literal clause can be resolved with a modal literal. Hence in

each of the K-Res systems all l′i variables must be resolved out of a clause before any li variable

in the clause can be resolved on. The formulas φm are designed so that whenever an l′i variable

is resolved out of a clause the resolvent obtained contains the variables li and li+1. It is a direct

result of this that every K-Res refutation of φm contains a bottleneck clause which contains every li
variable and so has width m.

In the following theorem we formally show that the set of SNF+
mp clauses obtained by applying

the translation function T+
mp to φm has only linear width K+

mp-Res refutations. This rules out the

possibility of proving that either of the Theorems 7.1.1 and 7.1.2 hold for K+
mp-Res.

Theorem 7.3.1. Every K+
mp-Res refutation of the set of SNF+

mp clauses obtained by applying T+
mp

to φm has width Ω(m). There also exist K+
mp-Res refutations of T+

mp(φm) with size O(m).

Proof. The set of SNF+
mp clauses obtained by applying T+

mp to φm is:

Cm = {x} ∪
m−1⋃
i=1

{x→ �li} ∪ {x→ ♦xm} ∪ {�(¬x1 ∨ ¬l1 ∨ l′1)} ∪

m−1⋃
j=2

{�(¬xj ∨ ¬lj ∨ l′j ∨ ¬l′j−1)} ∪ {�(¬xm ∨ ¬lm ∨ ¬l′m−1)}.

We will first show that every K+
mp-Res refutation of Cm has width 2m.

By definition the inference rule GEN1 (respectively GEN3) can only be applied to a set

of SNF+
mp clauses C′ if said set contains exactly one literal clause C with width z ∈ N and z

(respectively z+ 1) modal clauses. In particular if C = �µa(¬y1 ∨ · · · ∨ ¬yz) then for each i ∈ [z]

some modal clause of the form �µ(y′i → ◦yi) (respectively �µ(y′i → �yi)) must be contained

within C′. Hence as each literal clause in Cm contains some variable l′i and no l′i appears in any

modal clause in Cm it follows that neither GEN1 nor GEN3 can be applied to any subset of Cm.

We will now show that every literal clause C which can be derived from Cm using only LRES

inferences is either of the form:

�
∨
i∈[m]

(¬xi ∨ ¬li) or �

 ∨
i∈{a,...,b}

(¬xi ∨ ¬li) ∨A

 ,
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where 1 ≤ a, b ≤ m such that {a, . . . , b} ⊂ [m]. Further:

A =


l′b ∨ ¬l′a−1 if a > 1 and b < m,

¬l′a−1 if a > 1 and b = m,

l′b if a = 1 and b < m.

Note that as {a, . . . , b} ⊂ [m] it is not possible for a = 1 and b = m.

Recall from Definition 3.2.2 that the length of a proof is the number of lines it contains. We

prove the above claim by induction on the length of the LRES derivation used to obtain C. If the

derivation has length 1 then C ∈ Cm and so the claim follows trivially.

Suppose C is obtained using an LRES derivation of length z > 1. Then C must be inferred

from two clauses C1 and C2 which have LRES derivations of length z1 and z2 respectively, where

z1 < z and z2 < z. It follows by the inductive hypothesis that C1 and C2 are both of the form

stated in our claim. Further as LRES is applied to C1 and C2 they must contain complementary

literals. Hence:

C1 = �

 ∨
i1∈{a1,...,b1}

(¬xi1 ∨ ¬li1) ∨A1

 and C2 = �

 ∨
i2∈{a2,...,b2}

(¬xi2 ∨ ¬li2) ∨A2

 ,

where A1 and A2 are non-empty subclauses of ¬l′a1−1 ∨ l′b1 and ¬l′a2−1 ∨ l′b2 respectively, and

1 ≤ a1, a2, b1, b2 ≤ m such that {a1, . . . , b1} ⊂ [m] and {a2, . . . , b2} ⊂ [m]. Further the variable

resolved on to infer C must be either l′b1 or l′b2 . We assume without loss of generality that the pivot

variable is l′b1 . Hence a2 − 1 = b1 and:

C =



�
(∨

i∈{a1,...,b2} (¬xi ∨ ¬li)
)

if a1 = 1 and b2 = m,

�
(∨

i∈{a1,...,b2} (¬xi ∨ ¬li) ∨ l′b2
)

if a1 = 1 and b2 < m,

�
(∨

i∈{a1,...,b2} (¬xi ∨ ¬li) ∨ ¬l′a1−1

)
if a1 > 1 and b2 = m,

�
(∨

i∈{a1,...,b2} (¬xi ∨ ¬li) ∨ ¬l′a1−1 ∨ l′b2
)

if a1 > 1 and b2 < m.

This concludes the proof of our claim.

Clearly the empty clause cannot be derived using LRES alone. Further the only clause

that can be derived from Cm using LRES to which either GEN1 or GEN3 can be applied is

�
(∨

i∈[m] (¬xi ∨ ¬li)
)

. Hence every K+
mp-Res refutation of Cm must contain this clause. As this

clause has width 2m it follows that every K+
mp-Res refutation of Cm also has width 2m.

We will now prove that Cm has polynomial size K+
mp-Res refutations. We have already shown

that every K+
mp-Res refutation of Cm contains the clause �

(∨
i∈[m] (¬xi ∨ ¬li)

)
. Further said

clause can be derived using m applications of LRES as follows:
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�(¬x1 ∨ ¬l1 ∨ l′1) B2
LRES

�
(∨

i∈[2] (¬xi ∨ ¬li) ∨ l′2
)

B3

LRES ...

�
(∨

i∈[m−2] (¬xi ∨ ¬li) ∨ l′m−2

)
Bm−1

LRES
�
(∨

i∈[m−1] (¬xi ∨ ¬li) ∨ l′m−1

)
�(¬xm ∨ ¬lm ∨ ¬l′m−1)

LRES
�
(∨

i∈[m] (¬xi ∨ ¬li)
)

where Bj = �(¬xj ∨ ¬lj ∨ l′j ∨ ¬l′j−1). This derivation contains 2m clauses of size at most linear

in m and so has size at most polynomial in m. We can complete our refutation of Cm by applying

GEN1 to: �
 ∨
i∈[m]

(¬xi ∨ ¬li)

 ∪ {C ′ ∈ Cm | C ′ is a modal clause
}
,

to infer ¬x and then resolving ¬x with x ∈ Cm to infer 0. The whole refutation has size at most

polynomial in m.

An identical proof could be used to show that the corresponding translation of φm for any other

K-Res system is a counterexample for that proof system. However, in the next corollary we instead

use the p-equivalence of each of the K-Res systems to show that φm is a counterexample for every

such system.

Corollary 7.3.1. For each of the K-Res proof systems φm has refutations of size O(m), however

every refutation of φm has width Ω(m).

Proof. The proofs of Theorems 4.5.1 and Theorem 4.6.3 are such that each of the K-Res systems

p-simulate each other whilst preserving width. Hence the corollary follows immediately from

Theorem 7.3.1.

We conclude this subsection by remarking that neither φm nor T+
mp(φm) is a counterexample

for the proof system RKn. To see this consider the following examples.

Example 7.3.1. The following derivation is an RKn refutation of T+
mp(φm) which has width 4.

π1 π2

¬x ∨�l′2 π3

¬x ∨�l′3 π4

...
¬x ∨�l′m−2 πm−1

¬x ∨�l′m−1 πm

¬x ∨�¬xm ¬x ∨ ♦xm
¬x x

0

where π1 denotes the RKn derivation:
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¬x ∨�l1 �(¬x1 ∨ ¬l1 ∨ l′1)

¬x ∨�(¬x1 ∨ l′1) ¬x ∨�x1

¬x ∨�l′1
For each i ∈ {2, . . . ,m− 1} πi denotes the RKn derivation:

¬x ∨�li �(¬xi ∨ ¬li ∨ l′i ∨ ¬l′i−1)

¬x ∨�(¬xi ∨ l′i ∨ ¬l′i−1) ¬x ∨�xi
¬x ∨�(l′i ∨ ¬l′i−1)

and πm denotes the RKn derivation:

¬x ∨�lm �(¬xm ∨ ¬lm ∨ ¬l′m−1)

¬x ∨�(¬xm ∨ ¬l′m−1)

Note that we have omitted the FFCRs for each inference from the above refutation.

Example 7.3.2. An RKn refutation of φm with width 3 can be constructed from the RKn refutation

of T+
mp(φm) given in Example 7.3.1 as follows. First we remove the final two resolution steps from

the refutation then we replace π1 with:

�l1 �(¬l1 ∨ l′1)

�l′1
replace each πi with:

�li �(¬li ∨ l′i ∨ ¬l′i−1)

�(l′i ∨ ¬l′i−1)

and replace πm with:

�lm ♦(¬lm ∨ ¬l′m−1)

♦((¬lm ∨ ¬l′m−1) ∧ l′m−1)

Remark 7.3.1. It is an immediate consequence of the existence of the RKn refutation of T+
mp(φm)

given in Example 7.3.1 that any p-simulation of either tree-like or dag-like RKn by any tree-like or

dag-like K-Res system cannot be width preserving.

7.4 A counterexample for RKn

In this subsection we rule out the possibility of proving that there exists a relationship, analogous to

that of propositional resolution (Theorems 7.1.1 and 7.1.2), between the size and width of RKn

resolution refutations. To do this we define an RKn CNF which has polynomial size refutations,

but for which there do not exist sub-linear width RKn refutations.

To find such a formula we exploit the fact that whenever we use RKn to resolve on a pivot

within the scope of some diamond operator either the subformula contained within this diamond

operator disappears entirely, or the width of the formula increases. That is, if we resolve on some

pivot in ♦E, where E is an RKn CNF then the resolvent obtained either no longer contains ♦E

or, it contains some subformula of the form ♦(E ∨ A), where A is an RKn clause. Hence for
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our counterexample we construct an unsatisfiable RKn CNF which requires a large number of

resolution steps on pivots within diamond operators.

Consider the RKn CNF:

γm = ♦�¬x≥1 ∧
m∧
i=1

�♦ (x≥1 ∨ ¬xi) ∧�

(
m∨
i=1

�xi

)
.

To see that γm is unsatisfiable suppose there exists some world w0 in some model M such that

(M,w0) |= γm. The first RKn clause in γm states that there exists a world w1 which is accessible

from w0 and that at every world accessible from w1 the variable x≥1 is false. The next m RKn

clauses say that from every world accessible from w0 there exists an accessible world in which x≥1

is true whenever xi is true. Hence as (M,w0) satisfies γm the model M must contain a submodel

that is either as shown in Figure 7.1 or can be obtained from the model in Figure 7.1 by identifying

worlds.

w0 w1

w2,m V (w2,m)(xm) = 0

...
...

w2,2 V (w2,2)(x2) = 0

w2,1 V (w2,1)(x1) = 0

Figure 7.1: A model for ♦�¬x≥1 ∧
∧m
i=1�♦(x≥1 ∨ ¬xi)

The remaining m RKn clauses in γm say that for some i ∈ [m] the variable xi is true at every

world of distance two from w0. In particular, xi is true at every w2,j , where j ∈ [m]. This is not

possible in the model shown in Figure 7.1, nor any model obtained from this model by identifying

worlds, and so γm must be unsatisfiable.

Every resolution inference that can be applied to γm involves resolving on some pivot within

the scope of a diamond operator. However γm has initial width m and so proving that every

RKn refutation of γm has linear width is both trivial and does not rule out the possibility of some

relationship as in Theorem 7.1.1 or Theorem 7.1.2.

Hence we instead consider the following RKn CNF, which is satisfiability equivalent to γm but

has constant width:

θm = ♦�¬x≥1 ∧
m∧
i=1

�♦ (x≥1 ∨ ¬xi)∧

�
(
�x1 ∨ x′1

)
∧
m−1∧
i=2

�
(
¬x′i−1 ∨�xi ∨ x′i

)
∧�

(
¬x′m−1 ∨�xm

)
.

To see that θm is satisfiability equivalent to γm note that each x′i essentially abbreviates the clause∨m
j=i+1�xj .
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The family of formulas θm has been designed so that every RKn refutation of θm requires a

large number of variables within ♦ operators to be resolved on. Every time such a variable resolved

on either the subformula of the form ♦A which it is contained within collapses to 0 or it is replaced

by a wider clause. Hence by proving that in every RKn refutation of θm either ♦�¬x≥1 or some

clause of the form �♦(x≥1 ∨ ¬xi) has a linear number of descendants, each of which is wider than

the descendant it was inferred from, we prove that θm has only linear width RKn refutations.

A key property of the formula θm is that removing any single RKn clause from it results in a

satisfiable RKn CNF.

Definition 7.4.1. We say that an RKn CNF φ is minimally unsatisfiable if removing any single

RKn clause from φ results in a satisfiable RKn CNF.

To see that θm is minimally unsatisfiable we first note that if we remove ♦�¬x≥1 from θm then

the model M = (W,R, V ), where:

W = {w0, w1, w2}, R = {(w0, w1), (w1, w2)},

and V is such that:

V (w2)(x≥1) = 1 and V (w2)(xi) = 1,

for all i ∈ [m], then M satisfies the resulting RKn CNF at the world w0. Similarly if we remove

some �♦(x≥1 ∨ ¬xk) from θm then the resulting RKn CNF is satisfied by (M ′, w0), where

M ′ = (W,R, V ′) and V ′ is such that:

V ′(w2)(x≥1) = 0, V ′(w2)(xk) =

1 if i = k,

0 otherwise,
and V ′(w1)(x′i) =

1 if i < k,

0 otherwise.

Finally the RKn CNF obtained by removing some RKn clause containing �xk is satisfied by

(M ′′, w0), where M ′′ = (W,R, V ′′) and V ′′ is such that:

V ′′(w2)(x≥1) = 0, V ′′(w2)(xi) = 0 for all i ∈ [m], and V ′′(w1)(x′i) =

1 if i < k,

0 otherwise.

In the following theorem we give the main result of this section.

Theorem 7.4.1. The family of formulas θm are such that the minimum width required to refute θm
using RKn is Ω(m), whereas the minimum size required to refute θm using RKn is O(m).

The proof of this theorem (given at the end of Subsection 7.4.3) consists of two parts. We

first show in Subsection 7.4.2 that every RKn refutation of θm has linear width. We then show in

Subsection 7.4.3 that despite this, there exist polynomial size RKn refutations of θm. In fact, in

Subsection 7.4.2 we only prove that every RKn refutation of θm which contains no inferences of a

certain form has width at least linear in m. Hence for this result to be sufficient to conclude that
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every RKn refutation of θm has width m we first prove in Subsection 7.4.1 that we can assume

without loss of generality that no RKn refutation contains this type of inference.

7.4.1 Removing propositional weakening from RKn refutations

Recall from Section 4.1 that the proof system RKn admits two types of inferences, weakening

inferences and resolution inferences.

Definition 7.4.2. We say that an RKn clause C is inferred by propositional weakening if it is

inferred by weakening some RKn clause C1 by some RKn clause C2 less A, where A has the same

modal depth as C2.

In Subsection 7.4.2 we prove that every RKn refutation of θm which contains no propositional

weakening inferences has width Ω(m). Hence for this result to be sufficient to conclude that every

RKn refutation of θm has width Ω(m) we require the following proposition.

Proposition 7.4.1. Let C be an unsatisfiable set of RKn clauses. Given any RKn refutation π of C
we can construct a new refutation π′ of C which contains no propositional weakening steps. Further

|π′| ≤ |π| and w(π′) ≤ w(π).

Proof. The proof is by induction on the number of RKn clauses in π which are inferred using

propositional weakening. If π contains no RKn clauses which are inferred using propositional

weakening then we let π′ = π.

Suppose π contains r > 0 propositional weakening inferences. Let C be the last RKn clause in

π which is inferred using propositional weakening. Further suppose C1 is weakened by some C2

less A to obtain C. By definition the modal depth of A is equal to that of C2 and so C must be of

the form B1 ∨B2 ∨B3, where B1, B2 and B3 are RKn clauses such that C1 = B1 ∨B3 and C2 is

the normal form of A ∨B2 ∨B3.

Further the refutation π must be of the form π1, R1, . . . , Rz, C, π2, where R1, . . . , Rz is the

sequence of FFCRs used to weaken C1 by C2 less A and each πi is an RKn derivation. Suppose:

π2 = R1,1, . . . , R1,z1 , D1, R2,1, . . . , R2,z2 , D2 . . . , Rs,zs , . . . , Rs,zs , Ds,

where each Di is an RKn clause and each Ri,1, . . . , Ri,zi is the sequence of FFCRs used to infer

Di. We assume without loss of generality that each Di is a descendant of C.

To complete our induction we make use of the following claim.

Claim. Given π2 we can construct an RKn derivation:

π3 = R′1,1, . . . , R
′
1,z1 , D

′
1, R

′
2,1, . . . , R

′
2,z2 , D

′
2 . . . , R

′
s,zs , . . . , R

′
s,zs , D

′
s

which contains no propositional weakening inferences and is such that |π3| ≤ |π2| and w(π3) ≤
w(π2). Further π′ = π1, π3 is a refutation of C and if Di is inferred from some pair of RKn clauses
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G1 and G2 then either D′i = G′1, D′i = G′2 or D′i is inferred from G′1 and G′2, where:

G′1 =


G1 if G1 is in π1,

C1 if G1 = C,

D′j if G1 = Dj for some j ∈ [s].

and G′2 =


G2 if G2 is in π1,

C1 if G2 = C,

D′j if G2 = Dj for some j ∈ [s].

Similarly if Di is inferred from a single RKn clause G1 then either D′i = G′1 or D′i is inferred from

G′1, where G′1 is defined as above.

It follows from the above claim that π′ contains r − 1 propositional resolution inferences and

that |π′| = |π1|+ |π3| ≤ |π| and w(π′) = max{w(π1), w(π2)} ≤ w(π). Hence the lemma follows

by the inductive hypothesis. All that remains is to give a proof of the claim.

Proof of Claim. The proof is by induction on (a) the number of descendants of C in π and (b)

the number of children of C in π. For base case (a) we suppose that C has only one descendant.

By assumption this descendant must be 0. As only one pivot can be resolved on in a single

RKn inference it follows that either B2 = B3 = 0 or B1 = B2 = 0 (it cannot be the case that

B1 = B3 = 0 as then C1 = 0). In either case C = C1 and so we let π3 = π2.

Suppose C has s > 1 descendants. Then C must be used to infer D1 6= 0. Further, by

assumption D1 cannot be inferred using propositional weakening. Suppose D1 is the only child of

C in π. The construction of π3 depends on whetherD1 is inferred by resolution or non-propositional

weakening.

Suppose D1 is inferred by resolution on pair of RKn clauses (respectively a single RKn clause).

Then some pivot x1 in C must be resolved with some pivot x2 in some RKn clause G (respectively

some other pivot x2 in C). Recall C = B1 ∨B2 ∨B3. Hence x1 (respectively x1 and x2) must be

contained within some Bi. If i ∈ {1, 3} then we let D′1 be the RKn clause obtained by resolving x1

in C1 = B1 ∨B3 with x2 in G (respectively x1 in C1 with x2 in C1) and let R′1,1, . . . , R
′
1,z1

be the

associated sequence of FFCRs. Otherwise we let D′1 = C1 and let R′1,1, . . . , R
′
1,z1

be empty.

We define an RKn derivation πD1 of D1 from {D′1, C2, G} (respectively {D′1, C2}) as follows:

1. If x1 is in B1 (respectively if x1 and x2 are both in B1) then we can derive D1 from

{D′1, C2, G} (respectively {D′1, C2}) by weakening D′1 by C2 less A. Hence we let πD1

denote this derivation.

2. If the x1 is in B2 or B3 (respectively if x1 and x2 are both in B1 or are both in B3) then we

can derive D1 from {D′1, C2, G} (respectively {D′1, C2}) by resolving x1 in C2 with x2 in G

(respectively by resolving together x1 and x2 in C2) and then weakening D′1 by the resultant

RKn clause less A. Hence we let πD1 denote this derivation.

In either case πD1 contains precisely one propositional weakening inference and this inference

is used to infer D1. Hence if we let π′2 be the RKn derivation obtained from π2 by removing

R1,1, . . . , R1,z1 , D1 then:

π1, R
′
1,1, . . . , R

′
1,z1 , D

′
1, πD1 , π

′
2
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is an RKn refutation of C. Further the last RKn clause in this refutation which is inferred using

propositional weakening is D1, and D1 has strictly less than s descendants. Hence it follows by

inductive hypothesis (a) that π′2 can be transformed into some π′′2 such that:

π1, R
′
1,1, . . . , R

′
1,z1 , D

′
1, πD1 , π

′′
2

is an RKn refutation of C and all other conditions of our claim are satisfied. However as the only

RKn clause in πD1 which is used to infer any RKn clause is π′2 is D, it follows that no RKn clause

in π′′2 is a descendant of any RKn clause in πD1 . Hence:

π1, R
′
1,1, . . . , R

′
1,z1 , D

′
1, π
′′
2

is an RKn refutation of C and so we let π3 = R′1,1, . . . , R
′
1,z1

, D′1, π
′′
2 . It follows that |π3| ≤ |π2|

and w(π3) ≤ w(π2).

Now suppose D1 is inferred from C and some RKn clause G (respectively from only C) by

non-propositional weakening. Then either C is weakened by some G less some A1, or some G

is weakened by C less some A1 (respectively C is weakened by itself less some A1). As D1 is

not inferred by propositional weakening, the modal depth of A1 must be strictly less than that of

C. The last non-simplification rule used to obtain the sequence of FFCRs R1,1, . . . , R1,z1 must

be the Σ ∨∨∨-rule (respectively the Γ ∨∨∨-rule). Further this RFCR must be used to add Bi1 ∨Bi2 to

an the assumed clause in some R1,i, where i1, i2 ∈ [3] and i1 6= i2. If {i1, i2} = {1, 3} then we

let D′1 = C1 and let R′1,1, . . . , R
′
1,z1

be empty. Otherwise, if D1 was inferred by weakening C by

G less A1 then we let D′1 be the RKn clause obtained by weakening C1 by G less A1, and if D1

was inferred by weakening C by G less A1 then we let D′1 be the clause obtained by weakening

G by C1 less A1 (respectively by weakening C1 by itself less A1). In either case we further let

R′1,1, . . . , R
′
1,z1

be the corresponding sequence of FFCRs.

As in the case where D1 is inferred by resolution we proceed to define an RKn derivation of

D1 from {D′1, C2, G} (respectively {D′1, C2, C1}). This is done as follows:

1. If i1, i2 = {2, 3} and D1 was inferred by weakening C by G (respectively itself) less A1 in

π then we can derive D1 from {D′1, C2, G} (respectively {D′1, C2, C1}) by weakening C2

by G less A1 (respectively by weakening C1 by G less A1) and then weakening D′1 by the

inferred clause less A1. Hence we let πD1 denote this derivation.

2. If i1, i2 = {2, 3} and D1 was inferred by weakening G by C less A1 then we can derive D1

from {D′1, C2, G} (respectively {D′1, C2, C1}) by weakening D′1 by C2 less A. Hence we

let πD1 denote this derivation.

3. Otherwise if i1, i2 = {1, 3} and D1 was inferred by weakening H1 ∈ {C,G} by H2 ∈
({C,G}\{H1}) lessA1 then we can deriveD1 from {D′1, C2, G} (respectively {D′1, C2, C1})
by weakening C2 by G less A1 (respectively by weakening C1 by G less A1) and then weak-

ening D′1 by the inferred clause less A1. We let πD1 denote this derivation.
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We can then proceed to construct π3 as in the case where D1 was inferred by weakening.

Finally suppose C has k > 1 children. Let the sequence of FFCRs R′1,1, . . . , R
′
1,z1

, the RKn

clause D′1 and the derivations πD1 and π′2 be defined as above. Then the RKn derivation:

π1, R1, . . . , Rz, C,R
′
1,1, . . . , R

′
1,z1 , D

′
1, πD1 , π

′
2,

is an RKn refutation of C. As in the case where C has only one descendant it follows by inductive

hypothesis (a) that there exists some RKn derivation π′′2 which contains no propositional weakening

inferences and is such that |π′′2 | ≤ |π′2|, w(π′′2) ≤ w(π′2) and:

π1, R1, . . . , Rz, C,R
′
1,1, . . . , R

′
1,z1 , D

′
1, π
′′
2 ,

is an RKn refutation of C. Further C has at most k − 1 children in this RKn refutation. Hence

by inductive hypothesis (b) π′′2 can be transformed into some π3 such that π′ = π1, π3 is an

RKn refutation of C and the other conditions of the claim are met. In particular |π3| ≤ |π′′2 | and

w(π3) ≤ w(π′′2). Hence as |π′′2 | ≤ |π′2| and w(π′′2) ≤ w(π′2) we have |π3| ≤ |π′′′2 | ≤ |π2| and

w(π3) ≤ w(π′′′2 ) ≤ w(π2) respectively, where π′′′2 = R′1,1, . . . , R
′
1,z1

, D′1, π
′′
2 .

7.4.2 Proving that θm requires large width RKn refutations

In this subsection we prove that every RKn refutation of θm which contains no propositional

weakening steps has width Ω(m) (Theorem 7.4.2).

This proof consists of two parts. We first show that every RKn refutation of θm in which the

RKn clause ♦�¬x≥1 has at least m descendants must have width at least m. The second part of

the proof is to show that every RKn refutation of θm in which the clause ♦�¬x≥1 has less than m

descendants also has width at least m. The first half of the proof uses only facts about the structure

of descendants of ♦�¬x≥1. Whereas the second half requires that we show a lower bound on

the number of essential clauses in such a refutation. Intuitively, a clause is essential to an RKn

refutation only if it contributes to the contradiction exposed in the refutation.

Definition 7.4.3. Let C be an unsatisfiable set of RKn clauses and let π be some RKn refutation of

C. We say that a clauseC1 in π is essential to π if there exists some path of RKn clausesC1, . . . , Cz ,

through π, where each Ci is inferred from Ci−1 (and possibly some other RKn clause). Further Ci
is either inferred by resolution or by weakening Ci−1 (either propositionally or non-propositionally)

by some other RKn clause.

In the following lemma we show that every RKn clause contained within a minimally unsatisfi-

able RKn CNF C is essential to every RKn refutation of C.

Lemma 7.4.1. Let C be an unsatisfiable RKn CNF and let π be an RKn refutation of C. If there

exists some subset D of C such that C \ D is satisfiable then some Ci ∈ D must be essential to π.

Further if we let D′ denote the subset of D consisting only of clauses that are essential to π then

(C \ D) ∪ D′ is unsatisfiable.
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Proof. Clearly some Ci ∈ D must be used in the refutation π as otherwise π would be a refutation

of the set of RKn clauses C \ D, contradicting our assumption that this set is satisfiable.

For each i ∈ [z] let Ei = {Ei,1, . . . , Ei,y} be the set of all RKn clauses in π which are inferred

using Ci ∈ D. Further let:

E =

E ∈ ⋃
i∈[z]

Ei | E is essential to π

 .

By definition, every RKn clause C which is essential to π must either be the empty clause or be

used to infer some RKn clause C ′ which is also essential to π. Hence if we let:

D′′ = {Ci ∈ D | some Ei,j ∈ E is inferred by resolving on Ci} ∪

{Ci ∈ D | some Ei,j ∈ E is inferred by weakening Ci by some C},

and:

D′ =

D′′ ∪ {0} if 0 ∈ D and 0 is used in π,

D′′ otherwise,

then D′ is the set of all RKn clauses in D which are essential to π.

We proceed by induction on the number of RKn descendants of D in π. Suppose D has no

descendants. Then as π contains some Ci ∈ D we must have 0 ∈ D and π = 0. Hence D′ = {0}
and so ((C \ D) ∪ D′) ⊇ {0} is unsatisfiable.

Suppose D has k > 0 descendants. If D′ contains 0 then ((C \ D) ∪ D′) ⊇ {0} and so

((C \ D) ∪ D′) is clearly unsatisfiable. Hence we further suppose that 0 6∈ D′. It follows that π

contains a subrefutation π′ of:

(C \ D) ∪
⋃
i∈[z]

Ei,

and so this set of RKn clauses must be unsatisfiable. It follows from the definition of each Ei that if

some RKn clause is a descendant of some Ei,j ∈ Ei then it must also be a descendant of Ci. Hence

the number of descendants of
⋃
i∈[z] Ei in π′, which we denote as k′, is at most equal to k. Further

k′ = k only if every clause in
⋃
i∈[z] Ei is a descendant of some other clause in

⋃
i∈[z] Ei, however

this cannot be true as if it were then the refutation would contain a cycle. Hence k′ < k and so it

follows by the inductive hypothesis that some Ei,j ∈
⋃
i∈[z] Ei is essential to π′ and that the set:

(C \ D) ∪ E ,

is unsatisfiable.

We will now prove that if some model M = (W,R, V ) and some world w ∈W are such that

(M,w) |= (C \ D) ∪ D′ then it must also be the case that (M,w) |= Cj , for every RKn clause Cj
which is essential to π. We prove this by induction on the length of the sub-derivation πj of Cj
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contained within π. If πj has length 1 then Cj ∈ C. Further as Cj is essential to π it follows by

definition that Cj ∈ D only if Cj ∈ D′, and so if (M,w) |= (C \ D) ∪ D′ then (M,w) |= Cj .

Suppose πj has length at least 2 and that (M,w) |= (C \ D) ∪ D′. There are two cases:

(a) If Cj is inferred by resolution then, as Cj is essential to π, each of the RKn clauses it is

inferred from must also be essential to π. Hence it follows by the inductive hypothesis that

both of these RKn clauses are satisfied by (M,w) and so, by the strong soundness of RKn,

we have (M,w) |= Cj .

(b) If Cj is inferred by weakening some C ′j by some C ′′j (where, possibly C ′j = C ′′j ) then C ′j
must be essential to π. Hence it follows by the inductive hypothesis that (M,w) |= C ′j and

then by Proposition 5.1.1 that (M,w) |= Cj .

As every Ei,j ∈ E is essential to π it follows from the above that every model which satisfies

(C \ D) ∪ D′ must also satisfy E . As:

(C \ D) ∪ D′ ∪ E ⊇ (C \ D) ∪ E ,

and (C \ D) ∪ E is unsatisfiable the set (C \ D) ∪ D′ must also be unsatisfiable. Note that as C \ D
is assumed to be satisfiable this means that D′ must be non-empty (i.e. there exists some C ∈ D
which is essential to π).

Remark 7.4.1. As θm is minimally unsatisfiable it follows immediately from the above lemma that

every RKn clause in θm is essential to every RKn refutation of θm.

We will shortly give the main theorem of the section. However first we give two lemmas. The

statements of these two lemmas both assert useful facts about the form which RKn refutations of

θm must take.

Lemma 7.4.2. Let π be an RKn refutation of θm. If π contains no propositional weakening

inferences then every descendant of the RKn clause ♦�¬x≥1 contained within π is either the

empty clause 0 or is of the form ♦E, where E is an RKn CNF. In particular if C is inferred from

some ♦E then C = ♦(E ∧D).

Proof. It follows from the definition of the rules of RKn that the last non-simplification RFCR used

when resolving together two RKn clauses of the form �B1 and �B2 (respectively when resolving

on two pivots within a single RKn clause of the form �B1) must be the Σ������-rule (respectively

the Γ���-rule). Hence any such resolvent must be of the form �B3. Further when weakening some

RKn clause of the form �B1 by some RKn clause �B2 less A, where A has modal depth strictly

less than that of �B2 the last non-simplification RFCR used must be either the Σ������-rule or the Γ

���-rule. Hence the inferred RKn clause must be of the form �B3.

Similarly the last non-simplification RFCR used when either resolving together any two RKn

clauses of the form ♦E (where by definition E is an RKn CNF) and �B respectively, or resolving

on two pivots within a single RKn clause of the form ♦E, must be either the Σ �♦�♦�♦-rule, the Σ
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♦�♦�♦�-rule, the Γ ♦♦♦1-rule or the Γ ♦♦♦2-rule. Hence such an inference results in either the empty clause

(if the simplification rule S1 can be applied) or an RKn clause of the form ♦(E1 ∧D), where D is

an RKn clause. The same is true when non-propositionally weakening some RKn clause of the

form ♦E1 by some RKn clause �B less A.

Finally we note that two RKn clauses of the form ♦E1 and ♦E2 cannot be resolved together,

and that no RKn clause can be weakened non-propositionally by some RKn clause of the form

♦E1.

The RKn CNF θm contains only RKn clauses of the form �B1 and ♦E1. Hence in every RKn

refutation of θm which does not contain any propositional weakening inferences it must be the case

that every descendant D of ♦�¬x≥1 is either the empty clause or is of the form ♦E. Further if

D = ♦E and is inferred from some other descendant D′ = ♦E′ of ♦�¬x≥1 then E = E′ ∧ C for

some RKn clause C.

Lemma 7.4.3. Let π be an RKn refutation of θm. If π contains no propositional weakening steps

then we can construct a new RKn refutation π′ of θm in which the RKn clause ♦�¬x≥1, and each

of its descendants (excluding the empty clause), are used as a premise of exactly one inference.

Further w(π′) ≤ w(π) and |π′| ≤ |π|.

Proof. By Lemma 7.4.2 every descendant of ♦�¬x≥1 which is not the empty clause must be of the

form ♦E, where E is an RKn CNF. As none of the RFCR for RKn can be used to simultaneously

add a ♦ operator to both the 1st and 2nd assumed clause it follows that no two RKn clauses of

this form can be resolved together. Hence no two descendants of �♦¬x≥1 can be resolved with

one another. Similarly as no RKn clause of the form ♦E1 can be weakened by any clause of

the form ♦E2 less D, where D is a subclause of E1 it follows that ♦aE1 cannot be weakened

non-propositionally by ♦E2 . Hence as, by assumption π also contains no propositional weakening

inferences this means that no clause of the form ♦E1 can be weakened by any clause of the form

♦E2. That is, no descendant of �♦¬x≥1 can be weakened by any other resolvent of �♦¬x≥1.

It follows that if some RKn refutation π of θm contains two RKn clauses inferred using

♦�¬x≥1 then at most one of these RKn clauses is an ancestor of 0. Any RKn clause that is not an

ancestor of 0, along with all of its descendants, can be removed from π to obtain a new refutation

of θm whose size and width are upped bounded by |π| and w(π) respectively. Hence we let π′ be

the RKn refutation of θm obtained by doing and so ♦�¬x≥1 is taken as a premise in exactly1 one

inference in π′.

Similarly, if some descendant of ♦�¬x≥1 is used to infer two RKn clauses then at most one of

these can be an ancestor of 0 and so we can remove one of these clauses from π to obtain a new

RKn refutation of θm where every descendant of ♦�¬x≥1 is taken as a premise for exactly one

inference. Further the size and width of this new refutation are upper bounded by |π| and w(π)

respectively.

We will now prove the main theorem of this subsection.
1That ♦�¬x≥1 is taken as a premise in exactly one resolution step as opposed to at most one follows from the fact

that θm is minimally unsatisfiable.
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Theorem 7.4.2. Every RKn refutation of θm has width linear in m.

Proof. Let π be an RKn refutation of θm. By Proposition 7.4.1 we can assume without loss of

generality that π contains no propositional weakening steps. Further by Lemma 7.4.3 we can

assume without loss of generality that the RKn clause ♦�¬x≥1 and each of its descendants are

used as the premise of exactly one inference in π.

Suppose♦�¬x≥1 has f(m) = Ω(m) descendants in π. LetD0 = ♦�x≥1 and letD1, . . . , Df(m)

be the f(m) descendants of ♦�¬x≥1 contained within π, indexed by the order in which they are

derived. As θm is minimally unsatisfiable the RKn clause ♦�¬x≥1 must be an ancestor of 0.

Further as ♦�¬x≥1 and each of its descendants are used as the premise of exactly one inference in

π it follows that each Di is inferred from Di−1 (and possibly also some other RKn clause), and

that Df(m) = 0.

By Lemma 7.4.2 each of the first f(m)− 1 descendants of ♦�¬x≥1 are of the form ♦E. For

each i ∈ {0, . . . , f(m)} let Di = ♦Ei. By definition the final non-simplification RFCR used to

derive the resolvent of any clause of the form ♦Ei is either the Σ�♦�♦�♦-rule, the Σ ♦�♦�♦�-rule, the Γ

♦♦♦1-rule or the Γ ♦♦♦2-rule. Each of these rules ensures that the resolvent computed is of the form

♦(Ei−1 ∧Ci). Hence whenever w(Ci) ≥ 1 we have w(Di) ≥ w(Di−1) + 1. Further w(Ci) < 1 if

and only if Ci = 0, however if Ci = 0 then Di = 0 and so for all i < f(m) we have w(Ci) > 0.

Hence as w(D0) = 1 we have w(Df(m)−1) ≥ f(m) and so w(π) ≥ f(m) = Ω(m).

Now suppose ♦�¬x≥1 has g(m) 6= Ω(m) descendants in π. If g(m) ≥ cm for any m then it

follows from the above argument that w(π) ≥ cm. Hence we assume without loss of generality

that g(m) < m. Further let D0 = ♦�¬x≥1 and let D1, . . . , Dg(m) be the g(m) descendants of

♦�¬x≥1. Then as in the previous case Dg(m) = 0 and for each i ∈ [g(m)] the RKn clause Di

must be inferred from Di−1. For each i if Di is inferred using Di−1 and some other RKn clause

then let this RKn clause be denoted by Ai. Further let g′(m) ≤ g(m) be the number of such RKn

clauses.

Recall from Remark 7.4.1 that every initial RKn clause in θm is essential to π. Let θ′m denote

the RKn CNF:

m∧
i=1

�♦ (x≥1 ∨ ¬xi) ∧ �
(
�x1 ∨ x′1

)
∧
m−1∧
i=2

�
(
¬x′i−1 ∨�xi ∨ x′i

)
∧ �

(
¬x′m−1 ∨�xm

)
,

which is obtained from θm by removing ♦�¬x≥1. For each Ai there exists some sub-derivation

πAi of Ai from θ′m. The only RKn clause in θm which can be essential to π without being essential

to some Ai is ♦�¬x≥1. It follows that each of the RKn clauses in θ′m is essential to some πAi . For

each i let ri denote the number of initial clauses which are essential πAi . Then
∑g′(m)

j=1 rj ≥ 2m.

Claim. w (Ai) ≥ ri.

As each RKn clause in θ′m contains a unique literal of the form xi or ¬xi this claim follows

immediately from Lemma 7.4.4, which is given at the end of this section. Further w(Di) ≥
w(Di−1) +w(πAi)− 1 for every i such that Ai is defined and w(Di) ≥ 2×w(Di−1)− 1 for every
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other i ∈ [g(m)]. Hence w(π) ≥ 2m − g′(m). Further as g′(m) ≤ g(m) and we have assumed

that g(m) < m it follows that w(π) > m.

We conclude the subsection by proving that every RKn clause that can be derived from θ′m is of

a certain form, and crucially for the claim in the above proof, that if at least k clauses in θ′m are

essential to the derivation of any such clause then this clause has width at least k.

Lemma 7.4.4. Let θ′m denote the RKn CNF which is obtained from θm by removing ♦�¬x≥1.

Then every RKn clause C which is derivable from θ′m must be of the form:

�

 z∨
i=1

♦Ai ∨A′ ∨
∨
i1∈I1

x′i1 ∨
∨
i2∈I2

¬x′i2

 ,

where z ∈ N, each Ij ⊆ [m], each Ai1 is an RKn clause and A′ is an RKn clause. In particular

each Ai1 =
∧
j1∈[zi1 ]A

k
i1,j1

, where zi1 ∈ N, k ∈ [m] and for each j1 ∈ [zi1 ] either:

• Aki1,j1 = x≥1,

• Aki1,j1 = x≥1 ∨
∨
j∈J xj ,

• Aki1,j1 = x≥1 ∨ ¬xk ∨
∨
j∈J xj ,

• Aki1,j1 = ¬xk ∨
∨
j∈J xj ,

• Aki1,j1 = x≥1 ∨ ¬xk,

• or, Aki1,j1 =
∨
j∈J xj ,

where J is a non-empty subset of [m]. Further A′ is a subformula of:

∨
I⊆[m]

�∨
j∈I

xj

 .

We refer to RKn clauses of the same form as C as well-structured clauses.

Furthermore if π is an RKn derivation of some RKn clause C from θ′m and some initial RKn

clause which contains a variable xi, where i ∈ m, is essential to π then the variable xi must also

appear in C.

Proof. For each k ∈ [m] we refer to the Aki1,j1’s as k-diamond clauses. We further refer to A′ as a

box clause.

In the proof we will make use of the following facts, each of which follows immediately from

the definition of a well-structured clause.

Fact 1. If �C1 and �C2 are well-structured clauses then so is the normal form of �(C1 ∨ C2).

Fact 2. If A′ and B′ are box clauses then so is the normal form of A′ ∨B′.

Fact 3. If Aki,j is a k-diamond clause then so is every subclause of Aki,j apart from ¬xk.

Fact 4. If Aki,j1 is a k-diamond clause then so are the normal forms of Aki,j1 ∨¬xk and Aki,j1 ∨A
k
i,j2

,

where Aki,j2 is a k-diamond clause.
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Let r denote the length of π. The proof is by induction on r. Suppose r = 1. Then C ∈ θ′m. It

is clear from inspection that every RKn clause in θ′m is of the desired form. Further the the only

clause which is essential to π is C.

Now suppose r > 1. Then either C is inferred from a single RKn clause C1, or C is inferred

from a pair of RKn clauses C1 and C2. Further π must contain a sub-derivation πi, of Ci for each

i. Each of these sub-derivations has length strictly less than r and so it follows by the inductive

hypothesis that C1 and C2 are well-structured clauses. That is:

C1 = �

 ∨
i1∈I1

♦Ai1 ∨A′ ∨
∨
i2∈I2

x′i2 ∨
∨
i3∈I3

¬x′i3

 ,

and C2 = �

 ∨
i′1∈I′1

♦Bi′1 ∨B
′ ∨

∨
i′2∈I′2

x′i′2
∨
∨
i′3∈I′3

¬x′i′3

 ,

where I1 = [z1] for some z1 ∈ N (respectively I ′1 = [z′1] for some z′1 ∈ N), I2 and I3 (respectively

I ′2 and I ′3) are subsets of [m], each Ai1 (respectively Bi3) is a conjunction of k-diamond clauses for

some k ∈ [m] and A′ (respectively B′) is a box clause. Further every xi variable which appears in

an RKn clause in θ′m which is essential to π1 (respectively π2) must also appear in C1 (respectively

C2).

Suppose C is inferred from just C1. Then by definition, every RKn clause in θ′m which is

essential to π must also be essential to π1. Hence it suffices to show that C is a well-structured

clause and that every literal xi or ¬xi which appears in C1 also appears in C. We have two cases:

1. C is inferred by resolution. It follows from the rules of RKn that C is inferred by resolving

on two pivots that occur within the same diamond operator. Hence we must resolve on

some variable xk which appears positively within some k-diamond clause Aki1,j1 = xk ∨D1

and negatively within some k-diamond clause Aki1,j2 = ¬xk ∨ D2, where D1 is either a

k-diamond clause or ¬xk, and D2 is a k-diamond clause. The corresponding sequence of

FFCR must begin as follows:

Σ(xk, ¬xk)→ 0, A1,

Σ(Aki1,j1 , A
k
i1,j2)→ D1 ∨D2, Σ ∨∨∨ -rule, S2,

Γ(♦Ai1)→ ♦ ((D1 ∨D2) ∧Ai1) , Γ ♦♦♦1-rule,

Γ(C1)→ �
(
♦ ((D1 ∨D2) ∧Ai1) ∨ Γ ∨∨∨ -rule and∨

i4∈I4 ♦Ai4 ∨A
′ ∨
∨
i2∈I2 x

′
i2
∨
∨
i3∈I3 ¬x

′
i3

)
, Γ ���-rule,

where I4 = I1 \ {i1}. The inference is completed by applying some simplification rules2

followed by the inference rule R1.
2Note that in the above sequence of FFCR for notational convenience we have applied a simplification rule before the

last non-simplification RFCR, contrary to our usual convention.
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As D2 is a k-diamond clause and D1 is either a k-diamond clause or ¬xk it follows by

Fact 4 that the normal form of D1 ∨ D2 is also a k-diamond clause. Hence C must be a

well-structured clause. Further, every literal in C1 also appears in the last computed clause

in our above partial sequence of FFCR. Note that the simplification rule S3 is the only rule

of RKn which can be used to remove literals from an RKn clause3. The normal form of

(D1 ∨D2) ∧Ai1 is cannot be 0 and so S3 cannot be used in any sequence of FFCR which is

used to compute C. Hence every literal in C1 must also appear in C.

2. Suppose C is inferred by weakening. This must be done within some diamond operator.

Hence C1 must be weakened by itself less some RKn clause D. Further as C is inferred

by single clause weakening D must be such that for some diamond clause Aki1,j1 we have

D ∨D′ = Aki1,j1 , for some RKn clause D′. The associated sequence of FFCRs must begin

as follows:

Σ(0, D)→ 0, A2,

Σ(Aki1,j2 , D ∨D
′)→ Aki1,j2 ∨D

′, Σ ∨∨∨ -rule, S2,

Γ(♦Ai1)→ ♦
(

(Aki1,j2 ∨D
′) ∧Ai1

)
, Γ ♦♦♦1-rule,

Γ(C1)→ �
(
♦
(

(Aki1,j2 ∨D
′) ∧Ai1

)
∨ Γ ∨∨∨ -rule and∨

i4∈I4 ♦Ai4 ∨A
′ ∨
∨
i2∈I2 x

′
i2
∨
∨
i3∈I3 ¬x

′
i3

)
, Γ ���-rule,

where j2 6= j1 and I4 = I1 \ {i1}. The sequence can be completed by applying some

simplification rules followed by the inference rule R1.

As D′ is a subclause of the k-diamond clause Aki1,j1 and Aki1,j2 is a k-diamond clause it

follows by Facts 3 and 4 that the normal form of Ak,j2 ∨ D′ is also a k-diamond clause.

Hence C is a well-structured clause. Further by the same reasoning as in case 1 above, every

literal which appears in C1 must also appear in C.

Suppose C is inferred from a pair of RKn clauses C1 and C2. Then we have two cases:

1. C is inferred by resolution. Then every RKn clause in θ′m which is essential to C must also

be essential to either C1 or C2. Hence it suffices to show that C is well-structured and that

every xi variable which appears in either C1 or C2 appears in C.

We consider three subcases:

(a) C is inferred by resolving some box operator with some diamond operator. We assume

without loss of generality that the box operator resolved on is in C1 and the diamond

operator is in C2. It follows that the box operator is contained within A′ and that the

diamond operator is within some Bi′1 . Hence the associated sequence of FFCRs must

3The rule S4 removes only repetitions of literals.
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begin as follows:

Σ(0, D)→ 0, A2,

Σ(
∨
i∈I xi, D ∨D′)→

∨
i∈I xi ∨D′, Σ ∨∨∨ -rule,

Σ
(
�
∨
i∈I xi, ♦Bi′1

)
→ ♦

(
Bi′1 ∧

(∨
i∈I xi ∨D′

))
, Σ�♦�♦�♦-rule,

Σ (C1, C2)→ �
(
♦
(
Bi′1 ∧

(∨
i∈I xi ∨D′

))
∨
∨
i1∈I1 ♦Ai1 ∨ Σ ∨∨∨ -rule, S4∨

i′4∈I′4
♦Bi′4 ∨A

′′ ∨B′ ∨
∨
i4∈I4 x

′
i4
∨
∨
i5∈I5 ¬x

′
i5

)
, and Σ������-rule,

where I ′4 = I ′1 \ {i′1}, I4 = (I2 ∪ I ′2) and I5 = (I3 ∪ I ′3). Further A′′ is such that

A′ = A′′ ∨�
(∨

i∈I xi
)

and D and D′ are such that D ∨D′ = Bk
i1,j1

for some j1. The

inference can be completed by applying all possible simplification rules followed by

the inference rule R2.

The subformula A′′ is a box clause and so it follows by Fact 2 that the normal form of

A′′ ∨B′ is also a box clause. Further by Fact 3 either D′ = ¬xk or D′ is a k-diamond

clause. In either case the normal form of
∨
i∈I xi ∨ D′ must be a k-diamond clause.

Hence C is a well-structured clause. Finally we note that every literal in C1 and every

literal in C2 is contained within the final computed to clause of the above sequence of

FFCRs. As the computed clause contains no subclause of the form 0 ∧E, no sequence

of FFCRs which can be used to infer C contains a FFCR obtained using S3. It follows

that C contains every literal in C1 and every literal in C2.

(b) C is inferred by resolving on some xk. We assume without loss of generality that xk
appears positively in C1 and negatively in C2. Then C must be inferred by resolving

some k-diamond clause Bk
i′1,j1

= ¬xk ∨D1 with some subformula of A′ of the form

xk ∨
∨
i∈I xi. The sequence of FFCRs used to infer C must begin as follows:

Σ(xk, ¬xk)→ 0, A1,

Σ
(
xk ∨

∨
i∈I xi, B

k
i′1,j1

)
→
∨
i∈I xi ∨D1, Σ ∨∨∨ -rule,

Σ
(
�
(
xk ∨

∨
j∈I xj

)
, ♦Bi′1

)
→ ♦

((∨
i∈I xi ∨D1

)
∧Bi′

)
, Σ�♦�♦�♦-rule,

Σ(C1, C2)→ �
(
♦
((∨

i∈I xi ∨D1

)
∧Bi′1

)
∨
∨
i1∈I1 Ai1 Γ ∨∨∨ -rule, S4

∨
∨
i′4∈I′4

Bi′4 ∨A
′′ ∨B′ ∨

∨
i4∈I4 x

′
i4
∨
∨
i5∈I5 ¬x

′
i5

)
, and Σ������-rule

where I ′4 = I ′1 \ {i′1}, I4 = (I2 ∪ I ′2) and I5 = (I3 ∪ I ′3). Further A′′ is such that

A′ = A′′ ∨ �
(∨

i∈I xi
)
. The sequence of FFCR can then be completed by applying

further simplification rules to the computed clause followed by the inference rule R2.

As D1 is a subclause of a k-diamond clause and D1 6= ¬xk it follows by Fact 3 that D1

is a k-diamond clause. Hence
∨
i∈I xi ∨D1 must also be a k-diamond clause. Further

as A′′ and B′ are box clauses it follows by Fact 2 that the normal form of A′′ ∨ B′
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must also be a box clause. Hence C is a well-structured clause. The above computed

clause contains every literal in C2 and every literal in C1 except xk, however as C2

contains ¬xk it follows that the computed clause contains every variable in C1 and

every variable in C2. Further, as C is the normal form of the final computed clause and

the simplification rules used to obtain C cannot include S3, it follows that C contains

every variable in C1 and every variable in C2.

(c) C is inferred by resolving on some variable x′i. We assume without loss of generality

that x′i appears positively in C1 and negatively in C2. Then the sequence of FFCRs used

to infer C must begin as follows:

Σ(x′i, ¬x′i)→ 0, A1,

Σ(C ′1, C
′
2)→

∨
i1∈I1 Ai1 ∨

∨
i′1∈I′1

Bi′1 ∨ Σ ∨∨∨ -rule, S4

A′ ∨B′ ∨
∨
i4∈I4 x

′
i4
∨
∨
i5∈I5 ¬x

′
i5
,

Σ(C1, C2)→ �
(∨

i1∈I1 ♦Ai1 ∨
∨
i′1∈I′1

♦Bi′1 ∨ Σ������-rule

A′ ∨B′ ∨
∨
i4∈I4 x

′
i4
∨
∨
i5∈I5 ¬x

′
i5

)
,

where I4 = (I2 ∪ I ′2)\{i}, I5 = (I3 ∪ I ′3)\{i} andC1 andC ′2 are such thatC1 = �C ′1
and C2 = �C ′2 respectively. The sequence of FFCR can then be completed by applying

further simplification rules followed by the inference rule R2.

By Fact 2 the normal form of A′ ∨ B′ is a box clause and so the normal form of the

final computed clause must be a well-structured clause. Further the simplification rule

S3 cannot be used to derived any of the FFCRs used to obtain C. Hence as the final

computed clause contains every xi variable which is contained by in either C1 or C2 it

follows that C also contains every such variable.

2. C is inferred by weakening. We assume without loss of generality that C1 is weakened by C2

less some D. Note that it follows from the definition of weakening that D cannot be nested

within any diamond operator in C2. Further by Definition 7.4.3 every RKn clause in θ′m
which is essential to π must also be essential to π1 and so we only need to show that C is a

well-structured clause and that every xi variable in C1 is also in C. There are three subcases:

(a) D has modal depth 1. The sequence of FFCRs used to infer C must begin as follows:

Σ(0, D)→ 0, A1,

Σ (C1, C2)→ � (C ′1 ∨ C ′′2 ) Σ ∨∨∨ -rule,Σ������-rule,

where C ′1 is such that �C ′1 = C1 and C ′′2 is such that C2 = �(D ∨ C ′′2 ). The sequence

of FFCR can then be completed by applying further simplification rules followed by the

inference rule R2.
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As C1 and C2 are well-structured clauses it follows by Fact 1 that the normal form

of �(C ′1 ∨ C ′′2 ) is also a well-structured clause. Further as �(C ′1 ∨ C ′′2 ) contains no

subclause of the form ♦(0 ∧ E), where E is an RKn clause, the simplification rule S3

cannot be used to obtain any FFCR used to obtain C. Hence as �(C ′1 ∨ C ′′2 ) contains

every literal which appears in C1 it follows that C must also contain every such literal.

(b) D has modal depth 0 and is added to some k-diamond clause Aki1,j1 . As D cannot be

nested within any ♦ operator in C2 the RKn clause D must be a subformula of the box

clause B′. That is, D must be such that �(D ∨D′) = �
∨
j∈I xj for some D′. Hence

the sequence of FFCRs used to infer C must begin as follows:

Σ(0, D)→ 0, A1,

Σ(Aki1,j1 , D ∨D
′)→ Aki1,j1 ∨D

′ Σ ∨∨∨ -rule,S2,

Σ(♦Ai1 , �(D ∨D′))→ ♦(Ai1 ∧ (Aki1,j1 ∨D
′)) Σ ♦�♦�♦�-rule,

Σ(C1, C2)→ �
(
♦(Ai1 ∧ (Aki1,j1 ∨D

′)) ∨
∨
i4∈I4 ♦Ai4∨ Σ ∨∨∨ -rule, S4∨

i1∈I′1
♦B′i1 ∨A

′ ∨B′′ ∨
∨
i5∈I5 x

′
i5
∨
∨
i6∈I6 ¬x

′
i6

)
, and Σ������-rule,

where I4 = I1 \ {i1}, I5 = I2 ∪ I ′2 and I6 = I3 ∪ I ′3. Further B′′ is such that

�(D ∨D′) ∨ B′′ = B′. The sequence of FFCR can then be completed by applying

further simplification rules followed by the inference rule R2.

The subformula B′′ is a box clause and so it follows by Fact 2 that the normal form of

A′ ∨B′′ is also a box clause. Further as D′ is a disjunction of literals of the form xi and

Aki1,j1 is a k-diamond clause the normal form of Aki1,j1 ∧D
′ must also be a k-diamond

clause. HenceC must be a well-structured clause. Every literal inC1 appears in the final

computed clause in the above sequence of FFCRs, and so as this clause also contains no

subfomula of the form ♦(0 ∧ E), it follows that every literal in C1 must also appear in

C.

(c) D has depth 0 and is added to the box clause A′. As in case (b) D must be such that

�(D ∨D′) = �
∨
j′∈I′ xj′ for some D′. Hence the sequence of FFCRs used to infer

C must begin as follows:

Σ(0, D)→ 0, A1,

Σ(
∨
j∈I xj , D ∨D′)→

∨
j∈I xj ∨D′ Σ ∨∨∨ -rule, S2,

Σ(�
∨
j∈I xj , �(D ∨D′))→ �(

∨
j∈I xj ∨D′) Σ������-rule,

Σ(C1, C2)→ �
(

(
∨
j∈I xj ∨D′) ∨

∨
i1∈I1 ♦Ai1∨ Σ ∨∨∨ -rule, S4∨

i1∈I′1
♦B′i1 ∨A

′′ ∨B′′ ∨
∨
i4∈I4 x

′
i4
∨
∨
i5∈I5 ¬x

′
i5

)
, and Σ������-rule,

where I4 = I2 ∪ I ′2 and I5 = I3 ∪ I ′3. Further A′′ is such that
∨
j∈I xj ∨A′′ = A′ and

B′′ is such that �(D ∨D′) ∨B′′ = B′. We can complete the sequence of FFCRs by
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applying as many simplification rules as possible and the applying the inference rule

R2.

The subformulas �
(∨

j∈I xj ∨D′
)

, A′′ and B′′ are all box clauses. Hence it follows

by Fact 2 that the normal form of �
(∨

j∈I xj ∨D′
)
∨A′′ ∨B′′ is a box clause. Hence

C must be a well-structured clause. Further every literal in C1 is in the final computed

clause in the above sequence of FFCRs. Hence, as this clause contains no subformulas

of the form ♦(0 ∧ E) it follows that C must also contain very literal in C1.

7.4.3 Proving that θm does not require large size refutations

In this subsection we show that θm has polynomial size RKn refutations and then give the proof of

the main theorem of the chapter (Theorem 7.4.1).

Theorem 7.4.3. There exist polynomial size RKn refutations of θm.

Proof. We prove our theorem by constructing a polynomial size RKn refutation of θm.

Let π1 denote the following RKn derivation of the RKn clause � (
∨m
i=1�xi) from θm.

� (�x1 ∨ x′2) � (¬x′2 ∨�x2 ∨ x′3)
R2

� (�x1 ∨�x2 ∨ x′3) � (¬x′3 ∨�x4 ∨ x′4)
R2 ...

�
(∨m−1

i=1 �xi ∨ x′m
)

�(¬x′m ∨�xm)
R2

� (
∨m
i=1�xi)

Further let π2 denote the below RKn derivation of � (
∨m
i=1 ♦ ((x≥1 ∨ ¬xi) ∧ x≥1)) from the

RKn CNF θm ∧� (
∨m
i=1�xi) .

� (
∨m
i=1�xi) �♦ (x≥1 ∨ ¬x1)

R2
� (♦ ((x≥1 ∨ ¬x1) ∧ x≥1) ∨

∨m
i=2�xi) �♦ (x≥1 ∨ ¬x2)

R2 ...

�
(∨m−1

i=1 ♦ ((x≥1 ∨ ¬xi) ∧ x≥1) ∨�xm
)

�♦ (x≥1 ∨ ¬xm)
R2

� (
∨m
i=1 ♦ ((x≥1 ∨ ¬xi) ∧ x≥1))

Finally let π3 denote the following RKn refutation of θm ∧� (
∨m
i=1 ♦ ((x≥1 ∨ ¬xi) ∧ x≥1)).

� (
∨m
i=1 ♦ ((x≥1 ∨ ¬xi) ∧ x≥1)) ♦�¬x≥1

R2
♦
(
�¬x≥1 ∧ (

∨m
i=2 ♦ ((x≥1 ∨ ¬xi) ∧ x≥1))

)
R1

♦
(
�¬x≥1 ∧

∧3
j=2

(∨m
i=j ♦ ((x≥1 ∨ ¬xi) ∧ x≥1)

))
R1 ...

♦
(
�¬x≥1 ∧

∧m
j=2

(∨m
i=j ♦ ((x≥1 ∨ ¬xi) ∧ x≥1)

))
R1

0
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Each of the derivations π1, π2 and π3 are of polynomial size in m. Hence putting the three

derivations together we obtain an RKn refutation of θm with size polynomial in m.

We conclude with the proof of the main theorem of the section.

Proof of Theorem 7.4.1. Respectively Theorems 7.4.2 and 7.4.3 state that every RKn refutation of

θm has width at least m and that there exist polynomial size RKn refutations of θm respectively.

Hence our theorem follows immediately.



Chapter 8

Game theoretic lower bound technique

In this chapter we introduce an asymmetric two player game based on those of [13, 14, 76]. This

game is played by a Prover and a Delayer, on an unsatisfiable set of SNFmc clauses C. Prover’s goal

is to construct a countermodel for a certain set of clauses D ⊆ {C | C `Kmc-Res C}. The set D is

defined in such a way as to ensure that it is unsatisfiable if and only if C is, and so it will always

be possible for Prover to construct a countermodel. Hence Delayer’s goal is not to prevent Prover

from doing so, but to score as many points as possible before the game ends. We show that lower

bounds on the proof size required to refute some unsatisfiable set of SNFmc clauses using tree-like

Kmc-Res can be obtained indirectly by showing a lower bound on Delayer’s score. In particular

such lower bounds are lower bounds on the number of modal proof steps required to refute C.

Before formally defining our two player game we must extend the set of words we use to specify

the modal contexts of a given set of SNFmc clauses C. This is because we need to be able to specify

the modal context of every literal l that appears in a clause of the form (e : x→ ♦al). If l ∈ XC then

we can do this using the set of words E∗C (as l has modal context e(a, l)), however if l 6∈ XC then its

modal context cannot be described by any word in E∗C . Hence we have the following definition.

Definition 8.0.1. Let C be a set of SNFmc clauses. We define:

LC− = {(x′, x) ∈ L × L | (e : x′ → ♦ax) ∈ C},

and ĒC = EC ∪ (A× LC−).

We say each element of ĒC is a context marker for C.

Now if (e : x→ ♦al) ∈ C then (x, l) ∈ LC− and so the modal context of l is given by the word

e(a, (x, l)). Therefore in this section we use the set of finite words over ĒC to specify the modal

contexts of clauses and variables.

100
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We further extend the definition of the unification function σ so that σ : Ē∗C × · · · × Ē∗C → Ē∗C
and for y1, . . . , yn ∈ ĒC we have σ(y1, . . . , yn) = (a, (x′, x)) if for some j ∈ [n] we have

yj = (a, (x′, x)) and for all k 6= j we have yk = a or yk = (a, (x′, x))}. We also extend the

definition of the reachability of a world (Definition 4.4.4) to Ē∗C in the obvious way1.

The following three definitions give us some convenient notation.

Definition 8.0.2. Let Σ be a set of symbols and let w ∈ Σ∗. We say w is a prefix of some word

u ∈ Σ∗ (denoted w v u) if and only if u = wv where v ∈ Σ∗. We say w is a proper prefix of some

word u ∈ Σ∗ (denoted w @ u) if and only if w is a prefix of u and w 6= u.

We say w is a suffix of some word u ∈ Σ∗ (denoted w w u) if u = vw where v ∈ Σ∗. We say w is

a proper suffix of some word u ∈ Σ∗ (denoted w A u) if w is a suffix of u and w 6= u.

We say u is a subword of w (denoted u C w) if w = w1uw2 for some w1, w2 ∈ Σ∗.

Definition 8.0.3. Let C be a set of SNFmc clauses and let e ∈ Ē∗C . We define:

Ēe@ = {e′ ∈ Ē∗C | σ(e, e′′) ∈ Ē∗C and e′′ @ e′}.

The sets ĒeA, Ēev, Ēew, Ēe6v, Ēe6w and Ēe= are defined similarly.

Definition 8.0.4. Let C be a set of SNFmc clauses. For each e ∈ Ē∗C we define:

Le = {(e′ : C) ∈ C | C ∈ CL and σ(e, e′) ∈ Ē∗C},

Ne = {(e′ : x′ → ♦ax) ∈ C | σ(e, e′) ∈ Ē∗C},

Ce = Le ∪ {(e′ : x′ → ◦ax) ∈ C | σ(e, e′′) ∈ Ē∗C where e′′ is the modal context of x}.

Then the set Le consists of all literal clauses in C whose modal context is unifiable with e and the

set Ne is the set of all negative modal clauses in C whose modal context is unifiable with e. The set

Ce is the set of all clauses to which a rule of Kmc-Res can be applied to resolve on some variable

whose modal context is unifiable with e (not to be confused with the set of all clauses whose modal

context is unifiable with e).

8.1 Query sets

Several different Prover-Delayer games have been used to prove lower bounds for tree-like proposi-

tional resolution (cf. [13,14,76]). Such games are played over an unsatisfiable propositional formula

φ in CNF. Over the course of a game on φ Prover and Delayer build a propositional countermodel

for φ (that is, a partial assignment α to the variables in φ such that for some propositional clause

C ∈ φ we have α(C) = 0). At each round Prover queries some as yet unassigned variable in φ and

α is extended to include an assignment for this variable. The game ends when α(C) = 0 for some

propositional clause C in φ.
1So for example given a model M we say a world w is (a, (x′, x)) ∈ A × LC−-reachable from a world u if

(x′ → ♦ax) ∈ C, the valuation V (u)(x′) = V (w)(x) = 1 and (u,w) ∈ Ra.
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Similarly over the course of a modal game (as defined in Section 8.2) played on an unsatisfiable

set of SNFmc clauses C, Prover and Delayer build a pointed countermodel2 〈M,wε〉 for some set of

clauses D ⊆ C ∪ {D | C `Kmc-Res D}. The exact definition of D is given in Section 8.2, however

for now it suffices to note that D is unsatisfiable if and only if C is unsatisfiable. At the start of any

such game Prover and Delayer have a model consisting of a single world wε. New worlds are added

to this model at each round of the game. Hence the key difference between the previously proposed

propositional games and our modal game is that at each round Prover queries a world in the current

model, instead of a variable in C. Querying a world w essentially means asking whether or not to

add a new world w′ which is reachable from w to the model and if so for which context marker

b ∈ ĒC is w′ b-reachable from w. If at a given round no world is added to the model then the game

ends.

Now, suppose some pointed model 〈M,wε〉 is a countermodel for a set of SNFmc clauses C.

Then there must exist some C ∈ C for which (M,wε) 6|= C. If C is a negative model clause then

C = (e : l → ♦al′) for some e ∈ Ē∗C , l, l′ ∈ L (respectively l ∈ L, l′ ∈ XC) and a ∈ A. Hence as

(M,wε) 6|= C, the model M must contain a world w which is e-reachable from wε and for which

V (w)(l) = 1, but no world w′ that is (a, (l, l′))-reachable (respectively (a, l′)-reachable) from w

and so we say that 〈M,wε〉 modally falsifies C.

Otherwise C is either a positive modal clause or a literal clause. In either case M must fail to

satisfy C because of its valuation functions3 and so we say that 〈M,wε〉 propositionally falsifies C.

If a model 〈M,wε〉 modally falsifies some clause C = (e : l → ♦al′), where e ∈ Ē∗C , l ∈ XC
and l′ ∈ L \ XC (respectively l′ ∈ XC) then we can obtain a new model which satisfies C by adding

a new world w′ which is e(a, (l, l′))-reachable (respectively e(a, l′)-reachable) from wε. Whereas

if 〈M,wε〉 propositionally falsifies some clause C then no extension of M can possibly satisfy C.

Given this it is natural to require that the countermodel for D ⊆ C ∪ {D | C `Kmc-Res D} built over

the course of a modal game on C propositionally falsifies some clause C ∈ D.

Recall that our modal game ends at a round where some world w is queried only if Prover

chooses not to add a new world to the model. Hence we add the condition that after querying a

world w Prover may only choose not to add a world to the model 〈M,wε〉 if this model already

propositionally falsifies some C ∈ D. We shall see in Section 8.2 that the exact definition of D
depends on the worlds queried in the previous rounds of the game. Furthermore D is defined so that

every negative modal clause in D is satisfied by 〈M,wε〉 and so D is propositionally falsified by

〈M,wε〉 whenever (M,wε) 6|= D.

Finally, to ensure that the game always terminates we require that every new world added to the

model is b-reachable, for some b ∈ ĒC \ A. Note that this ensures that each new world corresponds

to some negative modal clause in C, preventing Prover and Delayer from adding new worlds to the
2Recall from Definition 2.2.8 that a pointed model is a model with some distinguished world at which formulas are

evaluated.
3If C is a positive modal clause then C = (e : l→ �al′) and so M must contain some world w which is e-reachable

from wε and for which V (w)(l) = 1, and some world w′ that is a-reachable from w and for which V (w′)(l′) = 0.
Similarly if C is a literal clause then C = (e : l1 ∨ · · · ∨ lz) and so M must contain a world w which is e-reachable
from wε and for which V (w)(l1) = · · · = V (w)(lz) = 1.
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model which tell us nothing about the satisfiability of C.

We formalise these restrictions by requiring that whenever Prover queries a world w that is

e-reachable from the root world wε, she must also query some query set for e with respect to D
(Definition 8.1.1). A query set is a set of context markers. We say a clause is modally inferable if

it can be inferred using some modal rule (i.e. any rule other than LRES) of Kmc-Res. The exact

definition of a query set for e with respect to D depends on the set of modally inferable clauses with

modal context e which can be derived from D. We define the set of modally inferable clauses for

some modal context eb with respect to the set D, where e ∈ Ē∗D and b ∈ ĒD to be the setMeb of all

clauses that can be inferred by applying some modal rule to some set of clauses D′ such that for

every D ∈ D′ either D ∈ Deb or
⋃
e1∈Ēebv De1 `Kmc-Res D (recall from Definition 8.0.4 that for

any set of SNFmc clauses and any modal context e′ the set D′e′ is the subset of D′ consisting of all

clauses which contain a variable with modal context e′ that can be resolved on.). Note that the set

of all modally inferable clauses with modal context e must be a subset of
⋃
b∈ĒDMeb.

In our game we allow Prover to choose not to add any world to the model at a given round only

if she has queried the empty set. Otherwise, Prover must add a world w′ that is b-reachable from w

to the model, where b is some element of the query set.

Definition 8.1.1. Let C be an unsatisfiable set of SNFmc clauses and let e ∈ (ĒC \A)∗. We say that

a set Qe is a query set for e with respect to C if and only if it satisfies the following constraints:

(a) Qe ⊆ {(a, (x1, x2)) ∈ A× LC− | (e′ : x1 → ♦ax2) ∈ Ne} ∪
{(a, x3) ∈ A× XC− | (e′ : x4 → ♦ax3) ∈ Ne}.

(b) For every model M = (W,Ra1 , . . . , Ran , V ) and every world w ∈W either M contains no

world that is e-reachable from w or:

(M,w) 6|=
⋃

e1∈Ēew

Ce1 ∪
⋃
b∈Qe

Meb.

Consider the unsatisfiable formula ♦a(x∧¬x)∧ (♦ay∨♦az). The corresponding set of SNFmc
clauses is:

C = {(ε : xε), (ε : xε → ♦ax1), ((a, x1) : ¬x1 ∨ x), ((a, x1) : ¬x1 ∨ ¬x),

(ε : ¬xε ∨ x2 ∨ x3), (ε : x2 → ♦ay), (ε : x3 → ♦az)}.

It is not hard to see that every unsatisfiable subset of C must be a superset of C(a,x1). Hence {(a, x1)},
{(a, x1), (a, (x2, y))}, {(a, x1), (a, (x2, y)), (a, (x3, z))}, and {(a, x1), (a, (x3, z))} are all query

sets for ε with respect to C.

Further, any model that satisfies:

Cε ∪Nε = {(ε : xε), (ε : xε → ♦ax1), (ε : ¬xε ∨ x2 ∨ x3), (ε : x2 → ♦ay), (ε : x3 → ♦az)},
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at some world wε must also contain a world w which is (a, x1)-reachable from wε. Hence as every

query set, Qε for ε with respect to C contains (a, x1) the following statement holds:

“every model that satisfies Cε ∪Nε must contain a world that is b-reachable from for some b ∈ Qε”.

We will see in the following proposition that an analogous statement holds for any modal context e

and any set of clauses C. Hence we can think of a query set for e with respect to C as representing a

set of worlds W ′ such that any model M that could possibly satisfy C contains some w ∈W ′.

Proposition 8.1.1. Let C be an unsatisfiable set of SNFmc clauses and let Qe be a query set for

some modal context e ∈
(
ĒC \ A

)∗ with respect to C. Further let M = (W,Ra1 , . . . , Ran , V ) and

wε ∈W . If W contains some world w1 that is e-reachable from wε and:

(M,wε) |= Ne ∪
⋃

e1∈Ēe 6@

Ce1 ,

then there exists some w2 ∈W that is eb-reachable from wε, for some b ∈ Qe.

Proof. As Qe is a query set for e and w1 ∈ W is e-reachable from wε by part (b) of Definition

8.1.1 we have (M,wε) 6|=
⋃
e1∈Ēew Ce1 ∪

⋃
b∈QeMeb. But by assumption (M,wε) |=

⋃
e1∈Ēe 6@ Ce1 ,

also
⋃
e1∈Ēew Ce1 ⊆

⋃
e1∈Ēe 6@ Ce1 hence there must exist some C ∈ Meb such that (M,wε) 6|= C,

where b ∈ Qe. As any such clause is inferred by applying some modal rule of Kmc-Res to a

set of clauses whose modal contexts are unifiable with eb, the clause C must be of the form

(e′ : x1∨· · ·∨¬xz ∨¬y′) where e′ ∈ Ēe= and y′ ∈ XC such that (e′′ : y′ → ♦ay′′) ∈ Ne and either

b = (a, (y′, y′′)) or b = (a, y′′). And so there must exist some w ∈W such that V (w)(y′) = 1 and

w is e′-reachable from wε. Further as (M,w) |= Ne we have (M,wε) |= (e′′ : y′ → ♦ay′′) and so

V (w)(♦ay′′) = 1. That is, there exists some w2 ∈W such that V (w2)(y′′) = 1 and (w,w2) ∈ Ra
and so w2 is b-reachable from w.

To prove that w2 is eb-reachable from wε we show by contradiction that w is e-reachable

from wε. Suppose that w is not e-reachable from wε, then e′ 6= e. By Remark 4.4.1 we have⋃
e1∈Ēe′yv

Ce1 `Kmc-Res C and so by the strong soundness of Kmc-Res we have (M,wε) 6|=⋃
e1∈Ēe′bv

Ce1 . Clearly
⋃
e1∈Ēe′bv

Ce1 ⊆
⋃
e1∈Ēe 6@ Ce1 and so (M,wε) 6|=

⋃
e1∈Ēe 6@ Ce1 , contradicting

our original assumption.

8.2 Prover-delayer game

In this section we define our two player game which is played by a Prover (who, for clarity is

female) and a Delayer (who is male) on some unsatisfiable set of SNFmc clauses C. Recall that

Prover’s goal is to construct a countermodel for a given set of clauses D ⊆ {C | C `Kmc-Res C}.
Further this model must propositionally falsify some C ∈ D. The set of clauses D that Prover

is trying to build a countermodel for depends on the modal context of the game and so changes

throughout the game.
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At the beginning of the game we have a pointed model consisting of a single world with modal

context ε and the set of clauses C. Further, Delayer’s score is 0 and the modal context of the game

is ε. At each round, if the game has modal context e and we have the set of clauses D then Prover

chooses some query set Qe for e with respect to D. If Qe = ∅ then the game ends and Prover wins.

Otherwise the round continues with Prover adding a new world with modal context ec to the model,

where c ∈ Qe. Before Prover adds a new world to the model Delayer gives a weight to each c ∈ Qe.
The lower the weight Delayer gives to a particular c ∈ Qe the more points he will score if Prover

chooses to add a world with modal context ec. At the end of the round Delayer’s score and the set

of clauses are updated, and the modal context of the game is changed to ec.

Formally a game on some unsatisfiable set of SNFmc clauses C is played as follows. At the

start of the game there exists a pointed model, 〈M1, wε〉 where M1 = (W 1, R1
a1 , . . . , R

1
an , V

1),

W 1 = {wε}, R1
ai = ∅ for all i ∈ [n] and V 1(wε)(xε) = 1. Further, the games modal context is

e1 = ε, the set D1 = C and Delayer’s score is s1 = 0. The ith round of the game is played as

follows:

• Prover fixes some query set Qei for ei with respect to Di.

• If Qei = ∅ then the game ends.

• Otherwise Delayer assigns a weight pc to each c ∈ Qei so that
∑

c∈Qei
pc = 1.

• Prover picks some c = (a′, z) ∈ Qei and the status of the game is updated as follows:

ei+1 = eic, si+1 = si + log

(
1

pc

)
,

Di+1 =
⋃

e∈Ēeiw

Die ∪
⋃

e∈Ēei+1v

Ce ∪
⋃

b∈Qei\{c}

Meib,

W i+1 = W i ∪ {weic}, Ri+1
a =

Ria ∪ {(wei , weic)} if a = a′,

Ria otherwise,

V i+1(weic)(x) = 1 if either z = x or z = (x′, x).

Where Die denotes the subset of Di defined as in Definition 8.0.4.

The set Di+1 in the above definition is defined so that it contains only clauses with modal context e′

where e′ is either unifiable with some prefix of ei or such that ei is unifiable with some prefix of e′,

and is satisfiability equivalent to Di.
Note that our game can only be played if at each round the modal context ei and the set of

clauses Di are such that there exists a query set for ei with respect to Di. We will see in Proposition

8.2.1 that this is always the case.

At each round of the game Delayer claims that the subset ofDi consisting of every clause whose

modal context is a prefix of ei is satisfied by 〈M i, wε〉, and that some extension of M i satisfies Di.



Game theoretic lower bound technique 106 Chapter 8

Prover then picks some query set Qei for ei with respect to Di and proceeds in one of two ways. If

Qei = ∅ then by definition no model containing a world w which is ei-reachable from wε satisfies

the set: ⋃
e∈Ēei 6@

Die =
⋃

e∈Ēeiw

Ce.

As M i contains such a world no extension of M i can possibly satisfy Di and so Prover sees that

Delayer must be lying and ends the game. Note that every negative modal clause in
⋃
e∈Ēeiw

Ce is

satisfied by 〈M i, wε〉 so M i must propositionally falsify
⋃
e∈Ēei 6@

Die ⊆ Di.
If Qei 6= ∅ then Prover first notes that M i contains a world wei which is ei-reachable from wε.

Hence by Proposition 8.1.1 any extension of M i can only satisfy the set of negative clauses with

modal context ei (that is, the set Nei ⊆ Di) at wε if it contains a world that is eib-reachable from

wε for some b ∈ Qei . Hence 〈M i, wε〉 is not a model for Di and so Prover adds some such world

to M i to create a new model M i+1, which could potentially satisfy Nei , and so Di.
In Proposition 8.2.1 we prove that any countermodel for a set Di is also a countermodel for C.

Hence the model Mk built over the course of some game with exactly k rounds, and every model

that extends Mk are countermodels for C. Note that it is not necessarily the case that no previously

considered model M i where i ∈ [k − 1] was a countermodel for C, as the rules of the game do not

force Prover to set Qei = ∅ whenever it is a valid query set for ei. However if Prover wishes to

minimise Delayers score she would always choose to set Qei = ∅ at the first opportunity as this

ends the game without allowing Delayer to score any more points.

The following proposition ensures that the game can always be played.

Proposition 8.2.1. Let C be a set of SNFmc clauses. If a game is played on C then:

(a) For each i, if (M,w) 6|= Di then (M,w) 6|= C.

(b) If C is unsatisfiable then there exists a query set for each Di.

(c) For each i, the set Di is satisfiable if and only if C is satisfiable.

Proof. (a) As D1 = C it follows by definition that for each i every clause in Di is either in C or

is Kmc-Res provable from C. It follows immediately from the strong soundness of Kmc-Res

that for each i, if (M,w) 6|= Di then (M,w) 6|= C.

(b) This can be seen by induction on i. If i = 1 then Di = C. As C is unsatisfiable and Kmc-Res

is complete it follow that if we let:

Qε = {(a, (x′, x)) ∈ A× LC− | (ε : x′ → ♦ax) ∈ Nε}∪

{(a, x) ∈ A× XC− | (ε : x′′ → ♦ax) ∈ Nε}.

then Cε ∪
⋃
b∈QεMb is unsatisfiable as it is the set of all clauses with modal context ε that

are Kmc-Res derivable. Hence Qε is a query set for ε with respect to D1.
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If i > 1 then:

Di =
⋃

e∈Ēei−1w

Di−1
e ∪

⋃
e∈Ēeiv

Ce ∪
⋃

b∈Qei−1\{c}

Mei−1b,

where Qei−1 is a query set for ei−1 with respect to Di−1 and c ∈ Qei−1 such that ei = ei−1c.

That Di is well defined follows by induction. As Qei−1 is a query set for ei−1 the set⋃
e∈Ēei−1w

Di−1
e ∪

⋃
b∈Qei−1

Mei−1b must be unsatisfiable. Note that every clause inMei−1c

must be inferred from some set C′ ⊆ Cei ∪
⋃
b∈Qei

Meib, where:

Qei = {(a, (x′, x)) ∈ A× LC− | (e′ : x′ → ♦ax) ∈ Nei}∪

{(a, x) ∈ A× XC− | (e′ : x′′ → ♦ax) ∈ Nei}.

It follows by the completeness of Kmc-Res that the set:⋃
e∈Ēei−1w

Di−1
e ∪

⋃
b∈Qei−1\{c}

Mei−1b ∪ Cei ∪
⋃
b∈Qei

Meib,

is unsatisfiable. Hence Qei is a query set for ei with respect to Di.

(c) This follows from parts (a) and (b).

8.3 Modal decision trees

To use our two player game to obtain modal proof size lower bounds we need to establish a

connection between it and the number of modal resolution steps required to refute a formula using

tree-like Kmc-Res. Hence in this section we introduce modal decision trees. The number of vertices

in a modal decision tree for some unsatisfiable set of SNFmc clauses C is connected to both the

number of modal resolution steps required to refute C using tree-like Kmc-Res (Proposition 8.3.1)

and the Delayer’s score in any game over C (Theorem 8.3.1).

A modal decision tree T for an unsatisfiable set of SNFmc clauses C is a tree where each vertex

is labelled by a modal context e ∈ (ĒC \ A)∗ and a set of clauses D, and each edge is labelled by an

agent a ∈ A. Intuitively, we can think of T as a partial Kripke model (W,Ra1 , . . . , Ran , V ) where

the set W is the set of vertices of T , the relation Rai is the set of ai-edges of T for each ai ∈ A, and

the partial valuation function V is such that if a vertex in T is labelled by modal context e then that

world is e-reachable from the world corresponding to the root of T . If a vertex η of some modal

decision tree T is labelled by the modal context e then the children of η must correspond to some

query set for e with respect to D.

Definition 8.3.1. A modal decision tree for some unsatisfiable set of SNFmc clauses, C is a tree T

where:

1. Each vertex of T is labelled by a unique modal context e ∈ (ĒC \ A)∗ and an unsatisfiable set of
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SNFmc clauses D. In particular the root is labelled by the modal context ε and the set of clauses

C.

2. If two vertices in T are labelled by the modal contexts e1 and e2 respectively then there is an

a-edge from η1 to η2 if and only if e2 = e1(a, z) for some z ∈ XC− ∪ LC−.

3. The modal context e and the set of clauses D labelling each vertex η must be such that the set

Qe = {c ∈ ĒC | ec labels some child of η} is a query set for e with respect to D. Further for

each c ∈ Qe, the set of clauses labelling the corresponding child of η is:

D′ =
⋃

e1∈Ēew

De1 ∪
⋃

e1∈Ēecv

Ce1 ∪
⋃

b∈Qe\{c}

Meb.

Each path P from the root of the tree to a given vertex specifies a partial Kripke model

MP = (WP , RPa1 , . . . , R
P
an , V

P ), where:

WP = {we | e ∈ Ē∗C labels some η ∈ P},

for each i ∈ [n] the set:

RPai = {(ηe1 , ηe2) ∈ P | (ηe1 , ηe2) is an a-edge of T},

and:

V P = {V P (wec) | wec ∈WP },

where:

V P (wec)(x) = 1 if c = (a, x) or c = (a, (x′, x)).

It is not hard to see that for each root to leaf path P through T , the partial modelMP corresponds

to the model constructed over the course of some two-player game over C. We will further see

in Proposition 8.3.1 that every tree-like Kmc-Res refutation of some unsatisfiable set of SNFmc
clauses C corresponds to some unique modal decision tree for C. It is not the case however that

every modal decision tree for C corresponds to a unique tree-like Kmc-Res refutation of C.

Let C be an unsatisfiable set of SNFmc clauses and π be a tree-like Kmc-Res refutation of C.

For every e ∈ (ĒC \ A)∗ let πe denote the set of all clauses C in π such that:

• C has modal context e′ ∈ Ēe=.

• C is inferred using some modal rule of Kmc-Res (that is, either MRES, GEN1, GEN2 or

GEN3).

• For each (a, x2) ∈ A × XC− such that (a, x2) C e, the refutation π contains an inference

where some descendant of C is resolved with (e1 : x1 → ♦ax2) where e1 ∈ (ĒC \ A)∗ is

such that e1(a, x2) v e.
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• For each (a, (x1, x2)) ∈ A × LC− such that (a, (x1, x2)) C e, the refutation π contains

an inference where some descendant of C is resolved with (e1 : x1 → ♦ax2) where

e1 ∈ (ĒC \ A)∗ is such that e1(a, (x1, x2)) v e.

Proposition 8.3.1. Let π be a tree-like Kmc-Res refutation of some unsatisfiable set of SNFmc
clauses C. Then we can construct a unique modal decision tree T that corresponds to π.

Further if we letN be the number of modal resolution steps in π and n be the number of vertices

of T then N ≥ n− 1.

Proof. For every e ∈ (ĒC \ A)∗ such that πe is non-empty let:

Qe = {(a, x1) ∈ A× XC− | (e′ : x2 → ♦ax1) is used to infer some C ∈ πe}∪

{(a, (x3, x4)) ∈ A× LC− | (e′ : x3 → ♦ax4) is used to infer some C ∈ πe}.

Let the vertex set for T be:

V (T ) = {ηε} ∪ {ηec | c ∈ Qe for some e ∈ (ĒC \ A)∗}.

Further let each ηe ∈ V (T ) be labelled by the modal context e and the set of SNFmc clauses Dηe ,
where:

Dηe =

C if e = ε,⋃
e′∈Ēe1w

Dηe1e′ ∪
⋃
e′∈Ēev Ce′ ∪

⋃
c∈Qe\{b}Mec if e = e1b for some e1 ∈ Ē∗C and b ∈ ĒC .

Finally for each a ∈ A let:

Ea(T ) = {(ηe1 , ηe1(a,z)) | (a, z) ∈ Qe1},

be the set of a-edges in T .

Clearly T is a tree. Further, |V (T )| − 1 = n− 1 =
∑

e∈(ĒC\A)∗ |Qe|. We will now show that

every element of every Qe corresponds to some unique modal resolution inference. This is true

whenever Qe1 ∩ Qe2 = ∅ for all e1 6= e2 ∈ (ĒC \ A)∗. Hence suppose Qe1 ∩ Qe2 6= ∅ for some

e1 6= e2 ∈ (ĒC \ A)∗. Then there must exist a negative modal clause which is used to infer some

clause C1 ∈ πe1 and some clause in C2 ∈ πe2 . If C1 6= C2 then these inferences must be distinct.

Hence suppose C1 = C2. As e1 6= e2 we must have bj1 6= bj2 for some j where bj1 and bj2 denote the

jth symbols in e1 and e2 respectively. By definition this can be the case only if some descendant

C ′1 of C1 is resolved with some negative modal clause (e′1 : x1 → ♦a1x′1), where e′1 ∈ Ē∗C which is

unifiable with the prefix of e1 with length j − 1 and x1, x
′
1 and a1 are such that either (a1, x

′
1) = bj1

or (a1, (x1, x
′
1)) = bj1, and some descendant C ′2 of C2 is resolved with some negative modal clause

(e′2 : x2 → ♦a2x′2), where e′2 ∈ Ē∗C which is unifiable with the prefix of e2 with length j − 1 and

x2, x
′
2 and a2 are such that either (a2, x

′
2) = bj2 or (a2, (x2, x

′
2)) = bj2. As π is tree-like C ′1 and C ′2

can both be descendants of the same instance of C1 = C2 only if either C ′1 is a descendant of C ′2 or
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vice versa. As both clauses are inferred using different negative modal clauses with the same modal

level this cannot be the case. Hence π must contain separate inferences of C1 and C2. It follows

that every element of every distinct Qe must correspond to a unique modal inference, therefore

giving us |V (T )| − 1 ≤ N , and so n− 1 ≤ N .

To prove that T is a modal decision tree for C it remains to show that each Qe is a valid query

set for e with respect to Dηe . That is, we must show that each Qe satisfies conditions (a) and (b) of

Definition 8.1.1.

Every element of Qe corresponds to some negative modal clause in C whose modal context

is unifiable with e. Further every negative modal clause in C with modal context e1 ∈ Ēe= is in⋃
e′∈Ēev Ce′ ⊆ D

ηe . Hence that (a) is satisfied follows immediately from the definition of Qe.

To prove that each Qe also satisfies condition (b) of the definition of a query set we will first

prove that the refutation π contains some sub-refutation of the set:⋃
e1∈Ēew

Dηee1 ∪ πe.

This is done by induction on |e|. If |e| = 0 then e = ε and
⋃
e1∈Ēεw D

ηε
e1 = Cε. Further πε is the set

of all clauses in π that are inferred using some modal rule and have modal context ε. Hence π must

contain a sub-refutation of:

πε ∪ Cε = πε ∪
⋃

e1∈Ēεw

Dηεe1 .

Suppose |e| > 0. Then there exists some e1 ∈ (ĒC \ A)∗ and some b ∈ (ĒC \ A) such that

e = e1b. Further by definition:

Dηe =
⋃

e′∈Ēe1w

Dηe1e′ ∪
⋃

e′∈Ēev

Ce′ ∪
⋃

c∈Qe1\{b}

Me1c,

where for each c ∈ Qe1 the setMe1c is the set of modally inferable clauses for e1c with respect

to Dηe1 . By the inductive hypothesis π contains a sub-refutation of
⋃
e′∈Ēe1w

Dηe1e′ ∪ πe1 . Let

πbe1 denote the subset of πe1 consisting of every clause inferred using the negative modal clause

(e′ : x1 → ♦ax2), where x1, x2 and a are such that either b = (a, x2) if b ∈ A × XC−, or

b = (a, (x1, x2)) if b ∈ A× LC−. The rules of Kmc-Res are such that every clause C ∈ πbe1 must

be inferred from some set of modal clauses whose modal contexts are unifiable with e1 and possibly

also some literal clause whose modal context is unifiable with e. As all modal clauses are initial

clauses they must all be in Ce. Suppose some literal clause is also used to infer C. If this clause

is initial then it must be in Ce. If this clause is non-initial then π must contain a derivation of this

clause from the set of all literal clauses in C whose modal contexts are unifiable with e and the set

of all modally inferred literal clauses in π whose modal contexts are unifiable with e. Every such

modally inferred literal clause must be in πe as it has a descendant in πbe1 . Hence π must contain a
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refutation of: ⋃
e′∈Ēe1w

Dηe1e′ ∪ (πe1 \ πbe1) ∪ Ce ∪ πe.

By definition (πe1 \ πbe1) ⊆
⋃
c∈Qe1\{b}

Me1c and so this refutation is also a refutation of⋃
e′∈Ēew D

ηe
e′ ∪ πe.

To see that the existence of a Kmc-Res refutation of
⋃
e′∈Ēew D

ηe
e′ ∪πe implies that condition (b)

is satisfied for each Qe we first note that as Kmc-Res is strongly sound and the set
⋃
e′∈Ēew D

ηe
e′ ∪πe

must be unsatisfiable. It then follows from the definition of Qe that πe ⊆
⋃
c∈QeMec, and so the

set: ⋃
e′∈Ēew

Dηee′ ∪
⋃
c∈Qe

Mec,

must also be unsatisfiable.

In the next theorem we state the connection between the number of modal resolution steps

required to refute a formula using tree-like Kmc-Res and our two-player game. This connection

will allow us to prove modal proof size lower bounds for tree-like Kmc-Res indirectly.

Theorem 8.3.1. Let C be an unsatisfiable set of clauses in SNFmc and let π be a tree-like Kmc-Res

refutation of C with N modal resolution steps. Then there is a Prover strategy such that Delayer

scores sm ≤ log(N + 1) modal points. Hence 2sm ≤ N + 1.

Proof. Let T be the unique modal decision tree which corresponds to π. By Proposition 8.3.1 we

have n− 1 ≤ N , where n is the number of vertices in T and N is the number of modal resolution

steps in π. Hence if we let L(T ) be the set of all leaf vertices of T then |L(T )| ≤ n ≤ N + 1.

The modal decision tree T completely specifies Prover’s strategy. Recall that each vertex in T

is labelled by some modal context and that if a vertex η is labelled by e ∈ Ē∗C and the set D then the

set Qe = {c ∈ ĒC | ec labels some child of η} is a query set for e with respect to D. In particular

the root vertex ηε is labelled by the modal context ε and the set C, and its children correspond to

some query set Qε for ε with respect to C. At the first round of the game Prover queries the set

Qε. If Qε = ∅ then the game ends. Otherwise, Delayer gives each c ∈ Qε a weight pc and Prover

chooses some c = (ac, z) ∈ Qε with probability pc, sets:

e2 = c, s2 = s1 + log
1

pc
, R2

a =

R1
a ∪ {(wε, wc)} if a = ac,

R1
a otherwise,

W 2 = W 1 ∪ {wc} and V 2(wc)(x) = 1 if x = z or (x′, x) = z for some x′ ∈ XC .

and moves along the corresponding edge of T to the vertex labelled by c.

At the next round Prover queries the set Qc corresponding to the children of this new vertex and

proceeds as above. Continuing in this manner will result in a root to leaf path on T . Note that the

set of all possible such paths is in bijection with the set of leaves of T .
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Let qD,λ denote the probability of the game ending at leaf λ ∈ L(T ) when played with a fixed

Delayer D. Let θD be the probability distribution over the leaves of T . If the game ends at leaf λ

then D scores exactly log 1
qD,λ

points.

To see this consider a fixed leaf λ and the unique path P from the root of T to λ. The modal

context of the ith vertex in P is ei. Hence the probability of reaching λ is:

qD,λ = q1q2 . . . qm,

where qj is the probability of choosing cj from Qej . The score at the end of the game is:

m∑
j=1

log
1

qj
= log

1∏m
i=j qj

= log
1

qD,λ
,

and the expected score of the Delayer is:

∑
λ∈L(T )

qD,λ log
1

qD,λ
= H(θD),

which is exactly the Shannon entropy of θD. The entropy is maximal when the probability

distribution considered is the uniform distribution [28], that is when qD,λ = 1
|L(T )| and so∑

λ∈L(T )
1

|L(T )| log |L(T )| = log |L(T )|. Hence as the support of θD has size at most |L(T )|
it follows that H(θD) ≤ log |L(T )| ≤ log(N + 1).

The above theorem allows us to prove lower bounds on the number of modal resolution steps

needed to refute some unsatisfiable set of SNFmc clauses C using tree-like Kmc-Res. Such lower

bounds are proved indirectly by first proving a lower bound f(n), where n is the size of C, on the

Delayers score for any game played on a given unsatisfiable set of SNFmc clauses C. It follows

from the above theorem that 2f(n) − 1 is a lower bound for the number of modal resolution steps N

required to refute C, hence if 2f(n) − 1 is superpolynomial then we have proved a superpolynomial

lower bound for N . In the next chapter we define a new family of hard modal formulas to which

our game theoretic lower bound technique can be applied.
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Lower bounds

In this chapter we apply our game theoretic lower bound technique to a new family of hard modal

formulas, which we call the modal pigeonhole principle (Definition 9.1.1). By doing this we obtain

a new exponential proof size lower bound for tree-like Kmc-Res.

9.1 The modal pigeonhole principle

The pigeonhole principle with m pigeons and n pigeonholes states that whenever m > n there is no

1− 1 map from the pigeons to the pigeonholes. This can be formulated as a propositional formula

as follows:

PHPmn =
∧
i∈[m]

∨
j∈[n]

pi,j ∧
∧

1≤i<i′≤m

∧
j∈[n]

(¬pi,j ∨ ¬pi′,j).

Intuitively, the propositional variable pi,j denotes that the ith pigeon is in the jth pigeonhole,

hence the above formula says that each pigeon is in a pigeonhole and that no pigeonhole contains

more than one pigeon. Clearly whenever m > n the formula PHPmn must be unsatisfiable. The

propositional pigeonhole principle is known to be hard for propositional resolution [41].

We can formulate the pigeonhole principle as a modal formula with modal depth m over the set

of agents A = {a} and the set of variables {l1, . . . , ln}.

Definition 9.1.1 (MPHPm
n ). Let Pi = �i−1(

∨n
j=1 ♦lj) for every 1 ≤ i ≤ m and Hj

i,i′ =

�i¬lj ∨�i
′¬lj for every 1 ≤ j ≤ n and 1 ≤ i < i′ ≤ m. We define:

MPHPm
n =

∧
i

Pi ∧
∧

1≤i<i′≤m

∧
j

Hj
i,i′ .

Note that as MPHPm
n is a modal formula over just a single agent we have omitted the subscripts

113
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from our modal operators. Further �i denotes i successive �a operators.

Intuitively pigeon i is in pigeonhole j only if ♦ilj = 1, where ♦i denotes i successive ♦a
operators. Hence Pi says that the pigeon i occupies at least one pigeonhole and Hj

i,i′ says that

pigeons i and i′ cannot both occupy the same hole. Whenever m > n (that is, there are more

pigeons than pigeonholes) MPHPm
n is unsatisfiable.

We can easily convert MPHPm
n into the following set of SNFmc formulas:

MPHPmn = xε ∧
∧
i

P̂i ∧
∧

1≤i<i′≤m

∧
j

Ĥj
i,i′

where i, i′ ∈ [m], j ∈ [n] and for all i1 ∈ {2, . . . ,m}, i, i′ and j:

P̂1 = (ε : ¬xε ∨ x1
1 ∨ y1

1) ∧
n−2∧
k1=2

(ε : ¬x1
k1−1 ∨ x1

k1 ∨ y
1
k1) ∧ (ε : ¬x1

n−2 ∨ y1
n−1 ∨ y1

n) ∧
n∧

k2=1

(ε : y1
k2 → ♦lk2),

P̂i1 = (ε : xε → �zi11 ) ∧
i1−2∧
k1=1

(
ak1 : zi1k1 → �z

i1
k1+1

)
∧

(ai1−1 : ¬zi1i1 ∨ x
i1
1 ∨ y

i1
1 ) ∧

n−2∧
k2=2

(
ai1−1 : ¬xi1k2−1 ∨ x

i1
k2
∨ yi1k2

)
∧

(ai1−1 : ¬xi1n−2 ∨ y
i1
n−1 ∨ y

i1
n ) ∧

n∧
k3=1

(ai1−1 : yi1k3 → ♦lk3),

Ĥj
i,i′ = (ε : ¬xε ∨ xji,i′,1 ∨ y

j
i,i′,1) ∧

i−1∧
k1=1

(
ak1−1 : xji,i′,k1 → �x

j
i,i′,k1+1

)
∧

(ai−1 : xji,i′,i → �¬lj) ∧
i′−1∧
k2=1

(
ak2−1 : yji,i′,k2 → �y

j
i,i′,k2+1

)
∧ (ai

′−1 : yji,i′,i′ → �¬lj).

Note that we have designed MPHPm
n so that when translated into SNFmc each negative modal

clause corresponds to an assignment of a pigeon to a pigeonhole.

Whilst we have writtenMPHPmn as a conjunction of clauses, however we can equivalently

think of it as a set of clauses. Hence in the remainder of this section we will use set notation.

9.2 An exponential lower bound for the modal pigeonhole principle

In the following theorem we prove that the number of modal resolution steps used in any tree-like

Kmc-Res refutation ofMPHPmn is superpolynomial in n. To obtain this lower bound we show

that if the two-player game defined in Section 8.2 is played onMPHPmn then Delayer can play

according to a certain strategy which ensures that he always scores at least log(n!) points, no matter

what strategy Prover adopts. Recall that Theorem 8.3.1 states that, if there exists a refutation of
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MPHPmn withN modal resolution steps then Prover can ensure that Delayer’s score never exceeds

log(N + 1) points. Hence our lower bound follows.

Theorem 9.2.1. Every tree-like Kmc-Res refutation ofMPHPmn has at least n!− 1 modal resolu-

tion steps.

Proof. Let C = MPHPmn . Suppose a Prover and a Delayer play the game defined in Section

8.2 on C. By definition, at the beginning of the game we have the modal context e1 = ε, the set

of clauses D1 = C and the pointed model 〈M1, wε〉 where M1 = (W 1, R1, V 1), W 1 = {wε},
R1 = ∅ and V 1(wε)(xε) = 1. At the kth round of the game Prover fixes some query set Qek for

ek with respect to Dk and then adds a world that is ekb-accessible from wε to the model, where

b ∈ Qek .

Let Qmax
ek

= {(a, (ykj , lj)) | j ∈ [n]}. As the set Nek = {(ek : ykj → ♦lj) | j ∈ [n]} it follows

by condition (a) of Definition 8.1.1 that every query set for ek is a subset ofQmax
ek

. If Prover chooses

to add a world that is ek(a, (ykj , lj))-accessible from wε to the model then (M,wε) |= ♦klj . Hence

intuitively at the kth round of the game Prover chooses some pigeonhole for the kth pigeon to

occupy. If we let:

Ak = {(a, (ykj , lj) | (a, (y
k1
j , lj)) C e

k, k1 ∈ [k − 1], j ∈ [n]},

then Ak is the set of pigeonholes occupied by the first k − 1 pigeons.

We will now give Delayer’s strategy for the first n rounds of the game. If Prover queries some

set Qek at the kth round of the game then for each b = (a, (ykj , lj)) ∈ Qek Delayer sets the weights

as follows:

pb =
1

|Qek | − |Ak|
, if b 6∈ Ak,

pb = 0, otherwise.

At each round Delayer forces Prover to put the kth pigeon into some unoccupied pigeonhole. This

strategy can only be followed if |Qek | − |Ak| > 0. Hence in order to prove our lower bound we

need the following claim.

Claim. Delayer’s strategy is such that for every k ∈ [n] the set Qek = Qmax
ek

.

We have already seen that Qek ⊆ Qmaxek
. To see why Qek ⊇ Qmaxek

we can think of each query

set Qek as a set of candidate pigeonholes for the kth pigeon. By Proposition 8.1.1 the set Qek must

contain every pigeonhole that can possibly be occupied by pigeon k, whilst satisfying
⋃
e∈Ē

ekw
Dke .

This set is satisfied by any model corresponding to an assignment of pigeons to pigeonholes where

for each i ∈ [k − 1] the ith pigeon is put into the pigeonhole specified to by the ith symbol of ek,

and the kth pigeon is just in some pigeonhole. Hence as there is no restriction on which pigeonhole

is occupied by pigeon k we have Qek ⊇ Qmaxek
.
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Before giving a formal proof of our claim we will explain how it allows us to prove our lower

bound. By the above claim |Qek | = n and so for each k we have |Qek | − |Ak| = n − (k − 1).

Hence Delayer can follow the above strategy for the first n rounds. It follows that Delayers score at

the end of the nth round will be:

sn =
n∑
k=1

(log(n+ 1− k)) = log

(
n∏
k=1

(n+ 1− k)

)
= log(n!).

As Delayer scores at least 0 at each round his final score must be ≥ sn and so by Theorem 8.3.1

any tree-like Kmc-Res refutation ofMPHPmn contains at least 2s
n − 1 = n!− 1 modal steps.

Proof of claim: We will now give a formal proof of our claim. To prove that Qek ⊇ Qmaxek
it

suffices to show that for every b ∈ Qmax
ek

there exists some model M = (W,R, V ) and some world

wε ∈W such that (M,wε) |=
⋃
e1∈Ēekw

Dke1 ∪
⋃
c∈Qmax

ek
\{b}Mekc, where eachMekc is the set of

modally inferable clauses for ekc with respect to Dek .

In fact we prove will a slightly stronger result. Namely that for every ek and every b ∈ Qmax
ek

there exists a model M = (W,Ra, V ) where:

W = {we | e v ek}, Ra = {(we, wec) | we, wec ∈W and c ∈ ĒC}, (9.1)

V (we)(lj) =

1 if j = k2 and e = e′(a, (yk1k2 , lk2)) for some e′ ∈ Ē∗C ,

0 if j 6= k2 and e = e′(a, (yk1k2 , lk2)) for some e′ ∈ Ē∗C ,
(9.2)

for all we ∈W and all j, k1, k2 ∈ [n]. Further (M,wε) |=
⋃
e1∈Ēekw

Dke1 ∪
⋃
c∈Qmax

ek
\{b}Mec. To

prove this we use induction on k.

If k = 1 then e1 = ε. Let b = (a, (y1
p, lp)) ∈ Qmaxε where p ∈ [n] and let M = (W,Ra, V )

where:

W = {wε}, Ra = ∅, V (wε)(xε) = 1, V (wε)(x
j
i,i′,1) = 1, V (wε)(y

j
i,i′,1) = 1,

V (wε)(y
1
j ) =

1 if j = p,

0 if j 6= p,
and V (wε)(x

1
j ) =

1 if j < p,

0 if j ≥ p,

for all i, i′ ∈ [m] and j ∈ [n]. Then (M,wε) |=
⋃
e∈Ēεw D

1
e = Cε. Further, for each c =

(a, (y1
j , lj)) ∈ Qmaxe1 the setMc contains only clauses that can be inferred by applying some modal

rule of Kmc-Res to some set of clauses containing (ε : y1
j → ♦lj). Hence every clause inMc is of

the form (ε : A ∨ ¬yj), where A is a propositional clause and so (M,wε) |=
⋃
c∈Qmaxε \{b}Mc.

Suppose k > 1. Delayer’s strategy ensures that ek = ek−1b1 for some b1 ∈ Qmaxek−1 \ Ak−1.
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Hence by the inductive hypothesis there exists a partial model M ′ = (W ′, R′, V ′) where:

W ′ = {we | e v ek−1}, R′ = {(we, wec) | we, wec ∈W and c ∈ ĒC}

V ′(we)(lj) =

1 if j = j1 and e = e′(a, (yk1j1 , lj1)) for some e′ ∈ Ē∗C ,

0 if j 6= j1 and e = e′(a, (yk1j1 , lj1)) for some e′ ∈ Ē∗C ,

for all we ∈W and all j ∈ [n]. Further (M ′, wε) |=
⋃
e1∈Ēek−1w

Dk−1
e1

⋃
c∈Qmax

ek−1\{b1}
Mek−1c.

For each b2 = (a, (ykp , lp)) ∈ Qmax
ek

we can construct a model M , whose worlds, rela-

tions and valuations are as in Equations (9.1) and (9.2), and which satisfies
⋃
e1∈Ēekw

Dke1 ∪⋃
c∈Qmax

ek
\{b2}Mek−1c at wε as follows. Let M = (W,R, V ) where:

W = W ′ ∪ {wek}, R = R′ ∪ {(wek−1 , wek)},

V (w)(x) = V ′(w)(x) for every w ∈W ′ and V (wek)(lj) =

1 if b2 = (a, (ykj , lj)),

0 otherwise.

Then M is a model of the required form. Further as M is an extension of M ′ we have (M,wε) |=⋃
e1∈Ēek−1w

Dk−1
e1 ∪

⋃
c∈Qmax

ek−1\{b1}
Mek−1c. Hence to show that Qmax

ek
\ {b2} is not a query set for

ek with respect to Dk all we have to do is show that (M,wε) |= Cek ∪
⋃
c∈Qmax

ek
\{b2}Mekc.

Recall that for each c = (a, (ykj , lj)) ∈ Qmaxek
the setMec contains only clauses of the form

(A ∨ ¬ykj ), where A ∈ CL. Hence to ensure that (M,wε) |=
⋃
c∈Qmax

ek
\{b2}Mekc we let:

V (wek)(ykj ) =

1 if j = p,

0 if j 6= p.

Note that the set Cek consists of every literal clause in C with modal context ak−1, every positive

modal clause in C with modal context ak−2 and the negative modal clause (ak−2 : yk−1
q → ♦lq),

where is q such that b1 = (a, (yk−1
q , lq)). As V (wek)(lj) = 1 if and only if j = q it follows that

(M,wε) |= (ak−2 : yk−1
q → ♦lq). If we further let:

V (wek)(zi1k−1) = 1 and V (wek)(xkj ) =

1 if j < p,

0 if j ≥ p,

for all k < i1 ≤ n and all j then it is not hard to see that every positive modal clause of the form

(ak−2 : zi
′
k−2 → �zi

′
k−1) and every literal clause in P̂k−1 is satisfied at wε in M .

We have now shown that (M,wε) |= Cek ∩
⋃
i P̂i. It remains is to show that (M,wε) |=

Cek ∩
⋃
i 6=i′,j Ĥ

j
i,i′ . The set Cek ∩

⋃
i 6=i,j Ĥ

j
i,i′ consists of all clauses of the following forms:
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1. (ak−2 : xji,i′,k−1 → �x
j
i,i′,k),

2. (ak−2 : yji,i′,k−1 → �y
j
i,i′,k),

3. (ak−2 : xjk−1,i′,k−1 → �¬lj),

4. (ak−2 : yji,k−1,k−1 → �¬lj),

where i < i′ ∈ [m] and j ∈ [n]. Every clause of the form 1 and 2 can be satisfied at wε in M by

letting:

V (wek)(xji,i′,k) = 1 and V (wek)(yji,i′,k) = 1.

However clauses of the form 3 and 4 do not contain any unassigned variables, so we cannot simply

extend V to ensure that they are satisfied at wε in M . A clause (ak−2 : xjk−1,i′,k−1 → �¬lj)
is not satisfied at wε in M if and only if V (wek−1)(xjk−1,i′,k−1) = 1 and V (wek)(lj) = 1. As

V (wek)(lj) = 0 for all j 6= q this can only be the case if j = q. Hence to ensure that every such

clause is satisfied we set:

V (wei1 )(xqk−1,i′,i1
) = 0 for all i1 < k,

However doing this may cause the clause to become false and so we also set:

V (wei1 )(yqk−1,i′,i1
) = 1 for all i1 < k,

Note that every clause containing these variables is in Hq
i,i′ . By inspection we can easily see that

changing the assignments of these variables as above does not change the truth valuation of any

clause in Cek ∩H
q
i,i′ . Similarly to ensure that every clause of the form (ak−2 : yji,k−1,k−1 → �¬lj)

is satisfied at wε in M we set:

V (wei1 )(xqi,k−1,i1
) = 1 and V (wei1 )(yqi,k−1,i1

) = 0 for all i1 < k

Note that this will not cause the clause (ai−2 : xqi,k−1,i → �¬lq) to be falsified as Delayer’s strategy

ensures that ek contains no repeated pigeonholes and so V (wei)(lq) = 0. Hence as above changing

the assignments of these variables will not change the truth valuation of any clause in Cek ∩H
q
i,i′ .

This concludes the proof of our claim, and so the proof of the theorem.

Recall from Corollary 4.6.2 that the tree-like K-Res systems are all p-equivalent to one another.

Hence the above lower bound is a lower bound for every tree-like K-Res systems.
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Modal proof systems beyond resolution

In this chapter we compare the proof complexity of the family of both tree-like and dag-like K-Res

systems with that of Frege systems for Kn.

10.1 Comparing modal Frege systems with modal resolution systems

In propositional proof complexity Frege systems (defined in Subsection 3.1.1) are among the most

studied proof systems. Indeed it was shown in [27] that every Frege system over a fixed set of

logical connectives is p-equivalent to every other Frege system over that set of connectives. It was

further shown in [79] that this p-equivalence holds even for Frege systems over different sets of

connectives. Hence we can take the Frege system shown in Figure 3.1 (or any other Frege system)

to be the canonical Frege system.

Definition 10.1.1. Let P be a Frege system. We say that a rule φ1, . . . , φz ` φ of P is sound if

every model which satisfies φ1, . . . , φz also satisfies φ.

The resolution rule is sound and so can be taken as a rule of any Frege system. Hence Frege

p-simulates propositional resolution. Furthermore, there exists an exponential separation between

Frege and propositional resolution [22]. That is, there exist propositional formulas that are known

to be require exponential size proofs for propositional resolution and polynomial size proofs for

Frege.

Definition 10.1.2. An extended Frege system is a Frege system with the additional axiom:

p↔ φ,

119
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where p is a new propositional variable (called an extension variable), that does not appear in φ,

any previously derived formulas or the final formula of the proof. We call this axiom the extension

axiom.

Whilst extended Frege p-simulates Frege, there is as of yet no known exponential separation

between these systems. In fact there are currently no propositional formulas that have been shown

to require exponential size proofs in Frege.

Definition 10.1.3. A Frege system for the modal logic Kn (Kn-Frege) is a line based proof system

P consisting of a finite set of inference rules and axioms of the form φ1, . . . , φk `P φ and `P φ

respectively, where φ1, . . . , φk, φ are modal formulas. Further P must be sound and strongly

complete.

Given any propositional Frege system we can obtain a Kn-Frege system by adding the following

rules, for every a ∈ A:

Ka: �a(A→ B)→ (�aA→ �aB) and ANECa:
�aA

.

Definition 10.1.4. An extended Frege system for Kn is a Kn-Frege system together with the

extension axiom.

Definition 10.1.5. [49] We say that a Kn-Frege system P is standard if every formula φ for which

φ1, . . . , φk `P φ is in the closure of Kn ∪ {φ1, . . . , φk} under MP and NECa for every a ∈ A.

We can extend Definition 10.1.1 to Kn-Frege systems by saying that a rule, φ1, . . . , φz is sound

if and only if whenever φ1, . . . , φz are satisfied at some world w in some Kripke model M , so is φ.

A Kn-Frege system can be non-standard only if it contains some rule, other than NECa, which is

not sound.

Every standard Kn-Frege system p-simulates every other standard Kn-Frege system [49]. Hence

we can take for example the Frege system in Figure 3.1 together with Ka and NECa for every

a ∈ A to be the canonical standard Kn-Frege systems. The analogous statement is not known to

hold for non-standard Kn-Frege systems, hence here we only consider standard Kn-Frege systems.

Proposition 10.1.1. Kn-Frege p-simulates Kmp-Res.

Proof. Each of the rules of Kmp-Res is sound. Hence the proposition follows immediately.

Corollary 10.1.1. Kn-Frege p-simulates each of the K-Res proof systems.

Proof. This follows from above proposition and the p-equivalence of the family of K-Res systems

(Corollary 4.6.1).

Corollary 10.1.2. Kn-Frege p-simulates each of the tree-like K-Res proof systems.

Proof. Every tree-like K-Res proof is also a dag-like K-Res proof and so this follows trivially from

Corollary 10.1.1.
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10.2 Separation of Kn-Frege and tree-like Kmc-Res

It was proved by Buss in [22] that there exist polynomial size Frege refutations of the propositional

pigeonhole principle with m > n pigeons. Buss’ proof relies on the fact that Frege systems can

count efficiently. The idea behind the proof is as follows. If we assume that the pigeonhole principle

holds for some m > n and count the number of holes that are occupied by the first n+ 1 pigeons

then we can construct a polynomial size Frege derivation of some formula encoding that this number

is greater than n. However as there are only n pigeonholes, we can also construct polynomial size

Frege derivation of a formula encoding that that the number of occupied holes is less than or equal

to n, leading to a contradiction.

We show that a very similar proof can be used to prove that there exists a polynomial size

Kn-Frege proof of the modal pigeonhole principle. We will give a sketch of Buss’ proof of the

pigeonhole principle, highlighting the steps that make explicit use of PHPmn .

Recall that:

PHPmn =
∧
i∈[m]

∨
j∈[n]

pi,j ∧
∧

1≤i<i′≤m

∧
j∈[n]

(¬pi,j ∨ ¬pi′,j).

Theorem 10.2.1 ( [22]). There exist polynomial size Frege refutations of PHPmn , where m > n.

Sketch. The proof has two parts. First we show that there exists a polynomial size extended Frege

derivation of 0 from PHPmn . We will then show that this extended Frege derivation can be used to

obtain a polynomial size Frege derivation of 0 from PHPmn .

The extended Frege refutation of PHPmn is obtained as follows. First, for each i ∈ [m] and

j ∈ [n] we introduce an extension variable rij which abbreviates the formula
∨
k∈[i] pk,j . Each rij

is true if and only if one of the first i pigeons occupies pigeonhole j. Hence the number of rij’s

that are true in a given assignment is equal to the number of pigeonholes occupied by the first i

pigeons. If we assume without loss of generality that n is a power of 2 then for each i we can define

log n formulas ai,1, . . . , ai,logn (henceforth denoted by the vector #»a i) which encode the number of

rij’s which are true in a given model. We denote the number encoded by #»a i (that is the number of

pigeonholes occupied by the first i pigeons) by Ai.

Let:

φi =

 ∧
j∈[n]

(
rij → ri+1

j

)
∧
∨
j∈[n]

(
ri+1
j ∧ ¬rij

) .

This formula states that for each j ∈ [n] if one of the first i pigeons is in pigeonhole j then so

is one of the first i + 1 pigeons, and that some pigeonhole j ∈ [n] is occupied by the i + 1th

pigeon. It is not hard to see from the definition of r1
j that there exists a polynomial size Frege proof

of PHPmn →
∨
j∈[n] r

1
j . Further, given

∨
j∈[n] r

1
j there exists a polynomial size Frege derivation

of a formula encoding that 0 < A1. Similarly, for each i ∈ [m] there exists a straightforward

polynomial size Frege proof of PHPmn → φi and, for each i given φi there exists a polynomial
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size Frege derivation of a propositional formula encoding that Ai < Ai+1. Finally these proofs

can be combined to obtain polynomial size proofs of a formula encoding that n < An+1 from∧
i∈[m] φi ∧

∨
j∈[n] r

1
j (and so from PHPmn ).

There further exists a polynomial size Frege proof of a formula which encodes that n ≥ An.

Hence there exists a polynomial size Frege derivation of a formula encoding that n < n from

PHPmn . As n = n this formula must be false and so we have a polynomial size Frege refutation of

PHPmn .

For every i, each formula in #»a i can be defined so that it has size polynomial in that of the

largest propositional formula abbreviated by any rij . Hence replacing all the extension variables in

the extended Frege proof of PHPmn → 0 with the formulas they abbreviate yields a polynomial

size Frege refutation of PHPmn .

Recall that:

MPHPm
n =

∧
i

Pi ∧
∧

1≤i<i′≤m

∧
j

Hj
i,i′ ,

where Pi = �i−1(
∨n
j=1 ♦lj) for every 1 ≤ i ≤ m andHj

i,i′ = �i¬lj ∨�i
′¬lj for every 1 ≤ j ≤ n

and 1 ≤ i < i′ ≤ m.

Theorem 10.2.2. There exists a polynomial size Kn-Frege refutation of MPHPm
n , where m > n.

Proof. Note that the only parts of the extended Frege refutation of PHPmn that depend on the

formula itself are the proofs of:

PHPmn →
∨
j∈[n]

r1
j and PHPmn →

∧
i∈[m]

φi.

Hence to show that there exists a polynomial size extended Kn-Frege refutation of MPHPm
n it

suffices to show that we there exist polynomial size Kn-Frege proofs of MPHPm
n →

∨
j∈[n] r

1
j

and MPHPm
n →

∧
i∈[m] φi for some suitable choice of extension variables rij .

Let rij ↔
∨
k∈[i] ♦

klj . Then as in the propositional case rij is true if and only if one of the first i

pigeons occupies pigeonhole j. There exist short Kn-Frege derivations of MPHPm
n →

∨
j∈[n] ♦lj

and so of MPHPm
n →

∨
j∈[n] r

1
j . Further for each j ∈ [n] and i ∈ [m− 1] there exists a simple

Kn Frege proof of rij → ri+1
j . It remains to show that for each i ∈ [m−1] there exists a polynomial

size Frege proof of MPHPm
n →

∨
j∈[n](r

i+1
j ∧ ¬rij). To see this first note that there exists a

simple Frege proof of: ♦i+1lj ∧
∧
k∈[i]

¬♦klj

→ (
ri+1
j ∧ ¬rij

)
.

As the formulas (♦ψ1 ∧�ψ2) → ♦ψ2 and (♦ψ1 ∨ ♦ψ2) → ♦(ψ1 ∨ ψ2) are theorems of Kn we

can assume without loss of generality that they are axioms of our Kn-Frege system. Hence we can
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easily obtain a polynomial size Kn-Frege proof of:∧
k∈[i+1]

Pk →
∨
j∈[n]

♦i+1lj .

Further there exist small Kn-Frege proofs of:♦i+1lj ∧
∧
k∈[i]

∧
j∈[n]

Hj
k,i+1

→
♦i+1lj ∧

∧
k∈[i]

¬♦klj

 .

Putting these proofs together we obtain a polynomial size proof of:

MPHPm
n →

∨
j∈[n]

(ri+1
j ∧ ¬rij).

Hence we have shown that MPHPm
n →

∧
i∈[m] φi and so by the reasoning in the proof of Theorem

10.2.1 there exists a polynomial size extended Kn-Frege refutation of MPHPm
n .

As in the propositional case for every i, each formula in #»a i can be defined so that it has size

polynomial in that of the largest formula abbreviated by any rij . Hence replacing all the extension

variables in the extended Frege proof of MPHPm
n → 0 with the formulas they abbreviate yields a

polynomial size Kn-Frege refutation of MPHPm
n .

Corollary 10.2.1. There exists an exponential separation between the proof size required to refute

MPHPm
n in Kn-Frege and tree-like Kmc-Res.

Proof. This follows immediately from Theorem 9.2.1 and Theorem 10.2.2.

Propositional separations between Kn-Frege and both tree-like and dag-like Kmp-Res follow

trivially from the fact that a number of propositional formulas (including the propositional pigeon-

hole principle) have previously been shown to be hard for (both tree-like and dag-like) propositional

resolution but easy for propositional Frege. Hence the significance of the above result is that

tree-like Kmp-Res requires an exponential number of modal resolution steps to refute MPHPm
n ,

whereas there exists a polynomially size Kn-Frege refutation of MPHPm
n . Clearly any polynomial

size Kn-Frege refutation may contain at most a polynomial number of modal proof steps (i.e.

applications of Ka or NECa) and so the separation in Corollary 10.2.1 is a truly modal one.

10.3 Game theoretic lower bound technique vs existing lower bound
techniques

Recall from Section 6.4 that the modal clique colour formulas:

Cliquek+1
n (�p̄, q̄)→ �(¬Colourkn(p̄, r̄)),
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are an exponential lower bound for Kn-Frege. Notably, this lower bound is in fact an exponential

lower bound on the number of K axioms needed to prove Cliquekn(�p̄, r̄)→ �(¬Colourkn(p̄, r̄))

in Kn-Frege, and so is a modal lower bound for Kn-Frege.

Further recall from Theorem 6.4.2 that the modal clique-colour formulas give an exponential

lower bound for the K-Res systems. As the negation of the modal clique-colour formula is of the

form:

Cliquek+1
n (�p̄, q̄) ∧ ♦Colourkn(p̄, r̄),

where Colourkn(p̄, r̄) is a propositional formula, the set of SNFmc clauses obtained by applying the

translation function Tmc to this formula must contain only one negative modal clause. Hence any

modal decision tree for any refutation of the modal clique-colour formulas contains at most two

vertices. No instance of our two-player game played on such a tree can result in a high Delayer

score and so our game theoretic lower bound technique cannot be used to show that the modal

clique-colour formulas are an exponential modal lower bound for tree-like Kmc-Res.

In [13] it was shown that a propositional Prover-Delayer game characterises the proof size of

tree-like propositional resolution. That our game cannot be used to prove the hardness of the modal

clique-colour formula illustrates that it does not provide a characterisation of the modal proof size of

tree-like Kmc-Res. It is unsurprising that our modal game fails to provided such a characterisation

as it counts only the number of distinct modal contexts which need to be considered when refuting

a formula, not the total number of modal resolution steps required.
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Conclusion

11.1 Summary of our contributions

In this thesis we have initiated the study of the proof complexity of modal resolution systems. Our

main contributions are:

• Defining several refinements of the resolution systems Kn-Res and Kml-Res, and further

establishing that all of these K-Res resolution systems are p-equivalent to one another.

• Comparing the strength of the K-Res systems with RKn and Kn-Frege. In particular showing

that RKn and Kn-Frege both p-simulate the K-Res systems, and that there is a separation

between the tree-like K-Res systems and Kn-Frege.

• Introducing two new lower bound proving techniques for the K-Res systems. The first of

these (feasible interpolation) is a reasonably straightforward adaptation of the analogous

propositional lower bound proving technique. Whereas our game theoretic lower bound

technique differs rather significantly from known game theoretic lower bound proving tech-

niques for propositional resolution. We have further shown that our modal game proves lower

bounds on the number of modal resolution steps needed to refute families of formulas, hence

these lower bounds are truly modal lower bounds.

• Showing that size width, which is arguably the main lower bound proving technique for

propositional resolution, cannot be used to obtain lower bounds for either the K-Res systems

or RKn.

• Proving a new exponential lower bound for the K-Res systems. This is obtained by applying

our modal feasible interpolation technique to Hrubeš’ modal clique-colour formulas.
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• Proving a new exponential lower bound for the tree-like versions of the K-Res systems. To

obtain this lower bound we defined a new family of modal formulas which we called the

modal pigeonhole principle. We then applied our game theoretic lower bound technique to

these formulas to obtain an exponential lower bound for tree-like K-Res.

11.2 Open questions and further directions

Our comparison of K-Res with RKn is incomplete as whilst we have shown that RKn p-simulates

the K-Res systems, we have neither proved that RKn is p-simulated by the K-Res systems nor

shown a separation between these systems. We conjecture that RKn is p-simulated by the K-Res

systems and believe this can be shown by reordering the inference steps of RKn refutations. More

precisely we believe that given any RKn refutation we can reorder the inferences so that all pivots

with some fixed maximal modal context (i.e. some modal context of maximal modal depth) are

resolved on first, followed by all pivots with some modal context which is maximal with respect to

the remaining modal contexts and so on. Given a refutation in this form the inferences could be

further reordered to correspond to K-Res inferences.

Further whilst we have shown a modal separation between tree-like K-Res and Kn-Frege, it

remains open as to whether there exists a modal separation between the full dag-like versions of the

K-Res systems and their tree-like restrictions. Hence the question of whether there exists a modal

separation between the dag-like K-Res systems and Kn-Frege also remains open.

The only known hard formulas for modal proof systems are our modal pigeonhole principle,

and Hrubeš’ modal clique-colour formula. Both of these formulas are obtained by taking a hard

propositional formula and then augmenting it with some modal operators. It would be interesting to

establish whether there exists some general technique which can be used to non-trivially convert

hard propositional formulas into hard modal formulas. Indeed, we believe that it is possible to

convert the propositional clique formulas of [4, 13, 14] into hard modal formulas using the same

ideas as for obtaining our modal pigeonhole principle from the propositional version.

We hope that our contributions are only the beginning of a much more in depth study of the

proof complexity of modal resolution systems, which not only offers a wider perspective on proof

complexity in general but also contributes towards the development of better modal theorem provers.

Whilst in this thesis we have chosen to focus primarily on the proof complexity of the family of

K-Res proof systems, both because of the comparative simplicity of their clausal forms and the fact

that one of these systems has an associated prover, there exist many other modal resolution systems

for Kn (e.g. [3, 5, 34, 61, 62]) whose proof complexity should be investigated. Further the K-Res

systems, whose proof complexity has been the main focus of this thesis, have been extended both

to the global satisfiability problem for Kn [64] and to a number of modal logics beyond Kn (e.g.

preferential logics [68], coalition logics [47] and modal logics of confluence [67]). Studying the

proof complexity of such systems would be of particular interest as they are able to deal with more

expressive problems and some even have associated theorem provers [47].
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[33] Luis Fariñas del Cerro. A simple deduction method for modal logic. Information Processing

Letters, 14(2):49–51, 1982.
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