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Abstract

Inductively coupled plasmas play an important role in the manufacture of computer

chips through etching and deposition processes. This relies on established system pressures

and power values in order to generate and sustain the required reactive species density.

Oxygen and hydrogen plasmas are routinely used in this industry and will therefore be at

the centre of this study. This research focuses on the development of a diagnostic proce-

dure that resolves the plasma-surface interface by analysing stimulated plasma emission

induced by a tailored voltage waveform (Pulse induced Optical Emission Spectroscopy

(PiOES)). These measurements are generated in an area of the plasma that doesn’t bene-

fit from plasma emission produced via the inductive coil but does have great significance

for industrial processes. The aim is to find a pulse regime that has minimal impact on

electron and ion properties in the plasma-surface region, while producing enough emission

to analyse the reactive chemistry and calculate atomic species densities. PiOES-ERA,

HPEM and TALIF techniques have been compared and show good agreement in the mea-

surement and simulation of atomic oxygen density in a low pressure E-mode plasma. This

was achieved through the development of a tailored voltage waveform design and novel

implementation within the GEC. The final result is a configurable pulse application that

allows the operator to analyse different regions of the plasma, that were previously unob-

tainable. In both hydrogen and oxygen plasmas the E-H mode transition is found to be

key in influencing the atomic species densities. In oxygen this is confirmed through the

use of PROES measurements and HPEM simulations. The H-mode plasma measurements

highlight additional excitation and/or de-excitation processes that are currently not con-

sidered in the ERA model, therefore more research into these processes is required to fully

resolve them.
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Chapter 1

Introduction

1.1 Motivation

Low temperature plasmas are widely used for nanoscale etching and deposition processes.

These processes are crucial in a range of industries; an example of this is the production

of computer chips and hard drives. Rapid growth and development within these indus-

tries towards atomic scale resolution requires greater understanding of plasma properties,

especially at the plasma-surface interface. As surface processing is carried out mainly by

reactive neutrals and ions, their densities are particularly important. A major challenge

in industry is to measure and control the densities of these species in the complex and

dynamic environment produced by a plasma [5]. This research will investigate possible

diagnostics tailored to regions of the plasma with little or no observable emission.

A key challenge associated with measuring plasma properties inside industrial reac-

tors is the limited diagnostic access, as physical probes and windows have the potential

to influence processes. This results in poorly characterised processes with no definitive

monitoring system. Electrical diagnostics are used in industry as they do not disturb the

plasma. For example, plasma impedance measurements can be used in combination with

models to estimate plasma densities and etch rates [6]. Lynn et al have demonstrated that

these measurements can also be used in combination with Virtual Metrology (VM) models

to control etch rates in industrial reactors [6].

A tool or process change in industry is typically measured by optical emission spec-

troscopy (OES) using broadband spectrometers [7, 8]. Interpretation of OES data is dif-
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ficult and relies on a range of assumptions, such as time and space integrated measure-

ments, where the electron dynamics in a technological CCP/ICP plasma are modulated

on ns timescales this means ns time resolution OES is required to analyse the electron

dynamics accurately, this has resulted in a nanosecond resolution Andor camera being

used throughout this work.

The use of OES allows process engineers to detect general changes in plasma conditions

during a manufacturing cycle, for example, to determine the end-point of an etching pro-

cess [9]. This helps engineers control day-to-day process stability and outcomes. OES can

also be used in combination with control algorithms to monitor process instabilities [10].

Alternative techniques using OES and a digital imaging technique have shown that com-

paring image patterns of process conditions between the captured data and a standardized

model will show significant changes during the plasma etch process, it highlights a shift

from the baseline model and alerts the operator [11]. A disadvantage of OES is that it

only gives indirect and not quantitative information, it would be more useful to develop a

higher precision model.

The focus of this study is to develop and test a novel non-invasive plasma diagnostic

for use in a range of low temperature plasmas. It aims to calculate reactive neutral species

directly at the lower electrode in low power plasma conditions, which are important for

surface modification processes requiring precise neutral densities to minimise surface or

wafer damage. This study focusses on oxygen plasmas, however the method for measuring

and collecting this data will form a process for other gases and plasma conditions in the

future. Since the electron density in the plasma sheath is low (refer to chapter 2) there is no

strong emission in the region above the lower electrode, and therefore OES measurements

under normal conditions do not give any information. To address this a novel process has

been successfully tested on the GEC in a low power oxygen plasma.

The technique is a pulse-induced OES (PiOES), where a short ns voltage pulse is

applied to the substrate electrode of the plasma at a low frequency, causing a small amount

of detectable emission to be produced and collected via a ns resolution camera, in an

otherwise dark region of the plasma. An advanced actinometry technique is applied to

calculate the species densities, by tailoring the voltage waveform to achieve a short pulse

width and low frequency the overall plasma properties should not be affected, resulting in
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a diagnostic that can be applied to an environment where its important that the plasma

is not perturbed for long time periods (tens of ns). This will be compared with two-

photon absorption laser induced fluorescence (TALIF) which will provide a reference to

the absolute species densities measured using the PiOES technique, ordinarily TALIF is

not able to operate in a processing plasma due to the lack of access and line of sight

requirement, however this is not an issue for the gaseous electronics conference (GEC)

cell.

The diagnostic developed in this research goes beyond basic broadband spectrometer

collection and instead combines PiOES with a benchmarked analysis technique. As in the

lab based measurements, it would utilise the small viewing port holes present on processing

chambers to collect the OES. By manufacturing a pulse inside the plasma chamber it

doesn’t rely on predictive models or apparent baseline shift but instead manufactures and

collects a known quantity. The PiOES pulse will have small influences on short timescales

but not on the same order as a probe placed directly in the system. A range of pulse

conditions are compared in this work and tested on an ion energy probe, to ascertain the

ideal operating conditions.

Plasmas used in industrial processes are still not completely understood, therefore

measurements across a broad range of operating conditions will be examined with the aim

of understanding the scaling of reactive species densities with both TALIF and actinometry

techniques. Inductively coupled (ICP) plasmas are commonly operated in industry with

gas mixtures of Ar/O2, and He/H2, these particular gas mixtures are both frequently

used for etching and cleaning during the multi-stage process. The role of gas temperature

variations in these systems is also considered, as this is a property of industrial plasmas

that is typically not well characterised, but affects other plasma properties.

All this research will take place in a laboratory environment with a scaled down version

of the reactor used in industry i.e. the GEC cell. It is representative of the typical

properties of industrial scale reactors but has better access to allow a wide variety of

diagnostic configurations.

An outline of what is included in the individual chapters is given below.
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1.2 Outline

Chapter 2 gives a fundamental overview focussing on inductively coupled plasmas op-

erated within a low temperature, low pressure regime. With particular emphasis on the

plasma sheath region and ion energy distribution function of the operating conditions.

Chapter 3 introduces the theoretical background to the diagnostics used in this work,

including the operational set-up used to study the plasma.

Chapter 4 discusses the low temperature plasma modelling approach using a hybrid

model with the key theory, chemistry and model configuration.

Chapter 5 contains the characterisation of an electrical pulse applied to the GEC cell,

which is used to generate OES and operate in a minimally invasive regime.

Chapter 6 calculates the key atomic species density and gas temperature in an oxygen

plasma, while monitoring plasma behaviour using a range of diagnostics. It compares each

of the values under the same parameter regime and validates PiOES-ERA against TALIF

and HPEM.

Chapter 7 A hydrogen plasma is analysed using TALIF, with a wide parametric study

to compare its behaviour and plasma condition under similar process driven conditions to

the previous chapter.

Chapter 8 Concludes the research presented in this project and proposes future work

and ideas for the novel plasma diagnostic developed in this work.



Chapter 2

Theory of processing plasmas

This chapter introduces plasma concepts and properties that are of interest for under-

standing industrial plasmas. A general low temperature plasma overview will be described

with emphasis on the physics, including ionisation and sustainment mechanisms in Radio

Frequency (RF) plasmas. It highlights the importance of low temperature, low pressure In-

ductively Coupled Plasmas (ICPs), a key processing technology within the semiconductor

industry.

2.1 Definition of a plasma

Low pressure, low temperature inductively coupled plasmas (ICP) with high plasma den-

sity are used for an array of technical processing applications. This includes processes such

as etching and deposition [12–14], in particular, oxygen and hydrogen containing plasmas

are commonly used due to the high reactivity of atomic oxygen and hydrogen and their

ability to modify surfaces [15,16].

The electromagnetic field is created by flowing RF current through the coil, generating

magnetic and electric fields inside the plasma chamber as RF power is coupled through

the dielectric window. This process results in a gas mixture within the closed system

breaking into components of electrons and ions. The resulting system has approximately

equal electron and ion charge densities which allows it to be in a quasi-neutral state. This

is defined as an ionised gas, also referred to as the fourth state of matter.

For a system with charged particles we have to consider ’collective behaviour’ [17]. This

18
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refers to the movement of the individual charged particles, which produce local positive or

negative charges and subsequently electromagnetic forces which can act over long distances.

Resulting in a plasma that produces a much more complex environment in comparison with

a neutral gas.

Quasineutrality and the Debye length are also key parameters in defining the conditions

of a plasma. Firstly the Debye length λD is defined in equation 2.1 and then the concept

of quasineutrality will be explained relative to it.

λD ≡
(
ε0kbTe
ne2

) 1
2

(2.1)

Due to the electron mobility and temperature Te (Kelvin) within the system being

far greater then that of the ions, the ions are perceived as stationary for simplicity, but

do form a positive background charge. The plasma density is represented by n and the

fundamental electron charge e. The permittivity of free space ε0, and the Boltzmann

constant kb. For this work, the ICP plasma has electron densities of 1014 to 1017 m−3,

effective bulk electron temperatures of 1 to 5 eV, and gas pressures of 1 Pa to 250 Pa.

The corresponding range of Debye lengths is 0.01 mm to 0.52 mm. The sheath thickness

should be on the same order of thickness as the Debye length.

One characteristic property of a plasma is its ability to shield electric charges on a

length scale less than the system dimensions, L. For example a positive point charge

within a plasma will attract electrons due to their charge, however the concentration of

electrons surrounding the point charge will be affected differently depending on its relative

distance to the positive charge, where electrons on the outer edges are governed also by

their thermal energy and not held fully by the electrostatic potential. Equation 2.1 shows

that the larger the electron energy, kbTe, the bigger the plasma must be to screen the

charges. Whereas, if there is a greater number of charge carriers, the plasma is more

effective at screening them and the Debye length is smaller.

From the Debye length definition it is clear that on a microscopic scale the plasma will

have electric fields of varying sizes in different local regions, therefore it is referred to as

being in a quasineutral state, however when referring to it on a macroscopic scale then

ni ≈ ne, where ni refers to the total ion density and ne is the electron density with zero
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net system charge. So to conclude, a plasma can be defined as a partially ionised gas,

which consists of charged and neutral particles which display a collective behaviour and

exists in a quasineutral state.

2.2 Low temperature plasmas

Low temperature plasmas are made up of partially ionized gases; which are a small pro-

portion of the plasma density when compared with the large neutral gas density. The

lack of thermal equilibrium is due to the relative mass difference between the electrons

and ions. Where a rapidly varying electric field is applied to the gas that selectively heats

the electrons more effectively due to their mobility and smaller mass. This results in an

environment where Te � Ti i.e. the neutral gas temperature tends to be similar to or

lower than the ion temperature.

The benefit of working with low neutral gas temperatures, is they can be used to treat

or modify sensitive surfaces both within the semiconductor manufacturing industry and

for biomedical applications. The relatively high temperature of plasma electrons also lead

to the production of a highly reactive plasma chemistry. This is dependent on the type of

gas, pressure and the mode of power deposition into the system.

All measurements carried out in this research are done so on a plasma operated in a low

pressure, low temperature mode to investigate the gas phase chemistry by varying plasma

power, pressure and gas mixture. This testing aims to develop a greater understanding of

where existing plasma processes can be applied more effectively. In the following sections,

important properties of ICPs, namely plasma sheaths and the relevance of monitoring ion

energies will be explained in more detail.

2.3 Inductively coupled plasmas

The use of inductive coupling for the generation of plasmas with high ion densities, radicals

and electrons is popular when considering the processing of integrated circuits (IC) [18].

The RF is coupled across a dielectric window instead of a direct electrode as in a capac-

itively coupled plasma (CCP) configuration. Low voltages across the sheath in ICPs are
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also an advantage for various high precision manufacturing applications. If necessary, the

lower electrode can be separately powered to modify ion energies. ICPs are perceived to

be the most efficient way to produce a high density plasma at low pressures, which factors

in system design and cost [19].

The ICP coil used in this research is pictured in figure 2.1. The electrode and coil

configurations of the GEC allows for either an inductively or capacitively coupled plasma

regime. When operating the planar inductive circuit via the copper coil in the upper

electrode, the energy to sustain the plasma is coupled from the RF generator through the

coil and quartz window into the GEC chamber. A match box is placed before the coil to

tune the inductor [14,20].

The inductor requires accurate tuning by electrical reactance to achieve the most reli-

able resonance at the industrially relevant 13.56 MHz driving frequency. The time-varying

currents that exist within the coil generate time-varying magnetic fields which generates

electric fields in the low pressure gas in the reactor. This process is described by Faraday’s

law and can be used to explain the RF electric field induced by the time varying RF mag-

netic field. Equation 2.2 shows the usual form of the Maxwell-Faraday equation. Where

E(r, t) is the electric field vector and H(r, t) is the magnetic field vector. The electric

field created by the inductive coil is what sustains the plasma.

∇×E = −δB
δt

(2.2)

The discharge is capacitively driven at low plasma densities with a transition region

dependent on gas, pressure and power coupled in. As the plasma densities increase a

transition from E- to H-mode occurs, which signals a move from a capacitively coupled

plasma to an inductively coupled one.

At low absorbed power, the copper coil is driven in an electrical resonance mode, high

potentials with lower plasma density are characteristics of a capacitive discharge. This

mode is characterised by an observable sheath, for industrial purposes this mode is ideal

for sputtering as ions are accelerated across the sheath [21, 22]. For plasmas with larger

absorbed powers a transition into a fully inductive mode occurs, this produces a higher

plasma density and an increase in luminosity. Outside the IC industry they are also
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Figure 2.1: Electric (E) and magnetic (B) fields in the planar ICP configuration, with field
lines and direction indicated by the arrows

applied to space propulsion research (e.g. ion thrusters). A key factor is the high density,

low pressure plasma created in an electrodeless environment. Minimising the constraints

capacitively coupled plasma (CCP) experience with RF sheaths.

Inside an ICP, electron heating occurs as the electric field excites the plasmas electrons

at a skin depth layer by ohmic and collisionless heating processes. These occur when

electrons in the bulk of the plasma encounter the oscillating inductive electric field.

The collisional part of the absorbed power is defined by the electron-neutral collision

frequency which occurs within the induced RF field. For applications in manufacturing

the increased gas temperature will have a direct effect on the gas density. The work of

Godyak and colleagues showed the main mechanism for gas heating at low pressure (< 5

Pa) is the energy transfer from an ion to atom due to a charge exchange collision. At

higher pressures it is due to electron collisions [23].

2.3.1 Plasma sheath

The function of a sheath in a vacuum system as considered in this work is to confine the

more mobile species, in this case electrons by forming a potential barrier. This prevents

electrons from escaping to the walls and leaving the system with a net positive charge. So
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a barrier allows an equal number of positive and negative charge carriers to reach the wall

to maintain a net zero charge within the plasma bulk [17].

When starting to apply RF power to the matching box and coil, a small amount of

current will produce a capacitive or E-mode plasma. One of the main defining elements

for a CCP is the sheath that is formed in front of the coil, in the same way it would for a

planar CCP set up. The sheath formed in this mode has the largest variation, where the

PROES emission in figure 3.6 illustrates the excitation and collapse of the sheath under

these conditions. The electron heating during an RF cycle in the capacitive mode occurs

when the sheath is expanding, which can be seen in figure 3.7, and thus accelerates the

electrons due to this expansion [24,25].

The onset of the E-H mode transition requires different voltages depending on the

operating gas mixture; for a pure oxygen plasma it requires higher voltages when compared

with a pure argon plasma, this is due to higher collision frequencies creating larger energy

losses [26]. The transition characteristics can be very different with argon exhibiting a more

step like transition whereas a more gradual transition is observed for oxygen. Electron

temperature is also influenced by the increasing gas pressure, this is due to an increase in

the number of inelastic electron-heavy particle collisions resulting in a decreased electron

temperature [27].

A pure inductive mode (H-mode) has a very different excitation pattern, due to the

electric field influence as shown in figure 2.1. The sheath voltages are much lower and

plasma density higher, the transition between the two modes can happen gradually or

produces a more step like process, again this depends on the gas and pressure of the

system.

The industrially relevant region of interest is focussed at the plasma-surface interface

on the lower electrode, the aim is to develop a novel technique to measure species densities

within this region. The sheath that forms at the lower electrode is again influenced by

the plasma mode. The flux of ions to the lower electrode does depend on a number of the

plasma bulk conditions, such as the plasma density; specifically at the sheath edge, as well

as the energy of the ions. The power deposited into the plasma in either of the operational

modes will have an influence on the plasma density and whether the lower electrode is

grounded or floating will influence this behaviour.
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The plasma potential and charged particle density profiles as shown in figure 2.2 with

the key reference parameter being its position to the wall or boundary of the plasma [14].

The plasma potential is described by the red line figure 2.2 and shows the potential profile

that starts positive within the bulk of the plasma but reaches zero at the wall, which is

grounded, as the net charge density of the sheath region is positive. This quantifies the

behaviour of a collisionless sheath with the decreasing electron density ne, as the electric

fields within the sheath deflect the electrons back into the plasma bulk. Therefore, the

highly negative wall potential with respect to the plasma potential attracts the positive

ions ni,+ that pass into the sheath and are accelerated towards the walls.

wall

plasma presheath sheath

n = n = ne i,+ o n = ne i,+

φ(x)

n (x)i,+

n (x)e

Figure 2.2: Charged particle density and electric potential representation, starting at the
plasma bulk before transitioning into the sheath region and finishing at the reactor wall

The plasma behaviour up to the boundary can be defined in three stages, the first

being the plasma bulk region where quasi-neutrality applies and the species densities can

be defined as ne = n+ = n0 this refers to similar densities where the plasma potential

is at a constant value. When ions enter the pre-sheath region they require a threshold

energy to surpass the Bohm criterium and enter the sheath [28]. Furthermore, the wall

has a negative potential with respect to the bulk plasma so the electrons are repelled and

a decrease of ne can be observed. Ions have an opposite charge and are therefore attracted

by the large negative potential, resulting in the sheath region boundary containing mostly

positive ions n+ leading to an in-balance in the local space charge. However, when referring

to the plasma bulk quasi-neutrality is preserved.
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2.3.2 Ion Energy Distribution Function (IEDF)

The ability of a technological plasma to provide a highly advanced surface treatment has

been very advantageous for the manufacturing of semiconductors. The key process con-

trol for deposition or etching is tailoring of the energetic ions with respect to their flux

and energy, however modern plasmas are capable of high plasma density and variable ion

energies depending on the manufacturing process. Every etching or deposition applica-

tion phase will be highly dependent on process control and monitoring of the plasma’s

interaction with the surface to provide a predictable and repeatable outcome [29]. The

experimental configuration used in this research will focus on the ions produced around

the lower electrode. This region of interest is where a sample would be placed in a sim-

ilar manufacturing plasma. During the experimental phase a number of different signal

waveforms will be produced at this electrode and it is important to assess whether ions

are heavily influenced by these external waveforms as any variation in ion energies can

damage fine surfaces formations, this will be explored further in chapter 5 [30].

The system conditions provide the ion energy parameters, these include the plasma

potential and sheath voltage drop. But further loss mechanisms include scattering and

charge exchange, where scattering causes the ion to lose some energy due to a neutral

being in its path and charge exchange is involved in a transfer of its charge to a neutral

that subsequently causes a fast moving neutral and much slower ion. Both of these loss

mechanisms detract from the ions energy and also trajectory. The type of sheath produced

by either a capacitive or inductive plasma will provide a difference in the sheath voltage.

This can be further modified by applying a bias voltage to the substrate [31, 32]. The

degree of collisionality (α) in the sheath can be given by the number of collisions in a

Debye length.

α ≡ λD
λmfp

= λDngσs (2.3)

Where (α) is proportional to the background gas density (ng) and the mean free path

of ions (λmfp) as expressed in equation 2.4, σs is the cross section at the ion acoustic

speed [33]. The mean free path will vary depending on the background gas density as the

system pressure is varied between 1 and 250 Pa.
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λmfp =
1

ngσs
(2.4)

If we consider a higher system pressure where the ion-neutral collisions are more fre-

quent, the IEDF will consist of more low energy ions. As mentioned earlier this occurs

when ions transitioning through the sheath experience either scattering or charge exchange

collisions. A collisional sheath α = 1 consists of a short enough Debye Length or suitably

high gas density while a collisionless case α = 0 is the limit of the zero gas density. In

plasma material processing applications requiring energetic ion bombardment or control

of the time-averaged IEDFs to the plasma-surface interface it is key to discriminate be-

tween processes that require different threshold energies; plasma deposition requires lower

thresholds so as not to damage fine structures where higher system pressures or longer pro-

cessing times are considered. In the case of etching applications the system is also highly

dependent on pressure, power and gas mixture, the density of neutrals at higher pressures

will inform the rate of collisions resulting in ions with larger deflection angles [34]. Figure

2.3 shows two cases, one with sidewall damage caused by ions not bombarding perpen-

dicular to the substrate. Quantifying these collisions in the sheath on a GEC reference

cell for an E-mode (capacitive) and h-mode (inductive) plasma will highlight the system

changes in later chapters when investigating tailored voltage waveforms [35].

(a) (b)

Figure 2.3: Isotropic etching (a) for when sidewall slope doesn’t matter and to undercut the
mask for easy removal and (b) completely anisotropic etching; preferred pattern transfer
method for nano and atomic scale processes

The main requirement by industry is to ensure that any process is performed with

high repeatability regardless of batch scale. Careful consideration must be given to the

collisional effects in the sheath as these will influence ion energy and fluxes. In order to

illustrate the role of sheath collisionality in defining the IEDF. Measurements of high and

low plasma powers have been compared, with two system pressures of 5 and 10 Pa in a
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98% oxygen and 2% argon plasma. These measurements help to visualise the large ion

energy difference within the two plasma operation modes (E and H mode) as well as the

increased sheath collisionality at the higher 10 Pa pressure.

Figures 2.4 (a) and (b) show ion energy distribution function trends with a floating

lower electrode. The distribution function properties for these cases are summarised in

table 2.1. The plasma was operated at powers of 100 and 1000 W with a fundamental

driving frequency of 13.56 MHz, the dotted black lines represent E-mode measurements

(100 W) and red dotted lines the h-mode IEDF measurements (1000 W). A complete

description of the equipment used for these measurements is given in chapter 3.

Figure 2.4a illustrates the ion energy and flux measurements in a 5 Pa system operating

the plasma at low power (black dotted line) with an ion energy of 18.6 eV, when compared

with figure 2.4b at a higher pressure the ion energy is further reduced by the additional

collisions experienced in the sheath along with the flux of ions now reaching the probe

surface. In the higher power case (red dotted line) a significant ion energy and flux

increase is observed, noting that for the h-mode (red dotted line) measurement in 2.4b an

additional collision contribution in the form of a broadening can also be observed.
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Figure 2.4: Floating lower electrode comparison of a 100 W E-mode (black dotted lines)
to 1000 W H-mode (red dotted lines) IEDFs at 5 Pa (a) and 10 Pa (b)

In general, at lower pressure the degree of collisionality is also lower as illustrated in

equation 2.3, this exhibits higher ion energies for both E and H mode plasmas as ions

experience less collisions as they move through the plasma sheath ((ng) background gas
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density is lower). In addition, the IEDF has more low energy ions in E-mode compared

to H-mode, as the plasma sheath is larger and the ions have more collisions within the

sheath. In H-mode, the sheath is smaller and with less of the low energy ions this results

in a pronounced peak at an energy equal to the plasma potential.

E-Mode H-Mode

Ion Energy Ion Flux Ion Energy Ion Flux

5 Pa
Floating 18.6 [eV ] 1.26 [A/m2] 27.9 [eV ] 4.51 [A/m2]

10 Pa
Floating 16.4 [eV ] 0.82 [A/m2] 24.2 [eV ] 4.11 [A/m2]

Table 2.1: Ion energies and fluxes in an ICP plasma driven at 13.56 MHz, with a floating
lower electrode at 100 and 1000 W with pressures of 5 and 10 Pa, gas mixture is 98% O2,
2% Ar.

Figure 2.4 measurements illustrate a significant ion energy shift between the low power

capacitively driven plasma and high power inductive scenario. This consideration will need

to be examined further when a tailored voltage waveforms are applied to the same region.

As significant ion energy and flux influence with negate any benefits from the diagnostic.



Chapter 3

Diagnostic and experimental

configuration

This chapter describes the experimental set-up of the chamber and associated diagnostics

used throughout this research project. The plasma reactor used in this work is hybrid

inductive/capacitive Gaseous Electronics Conference (GEC) reference cell, where the ca-

pacitive (lower) electrode can be operated in a grounded, floating or powered mode. The

setup of this system and implementation of various diagnostics (laser spectroscopy, phase

resolved optical emission spectroscopy and retarding field energy analysis) on this system

will be introduced.

3.1 Experimental configuration

The experimental set-up consists of interchangeable diagnostics and the hybrid induc-

tive/capacitive plasma source is capable of various modes of plasma operation. The pri-

mary diagnostic tool used is a high temporal resolution ICCD camera (Andor, iStar)

positioned to capture emission from the plasma discharge region, the camera is aligned

to one of the two large windows, which are 225 mm in diameter, to give a clear view

of the whole inter-electrode gap. The four smaller ports provide access for a pressure

gauge (MKS, Baratron), Retarding Field Energy Analyser (Semion, RFEA) and modular

spectrometer (Ocean Optics, HR series) fibre feed through. A nanosecond resolution laser

system (Continuum Surelite laser and Horizon OPO) is also focused across the electrode

29
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region to provide absolute density measurements of atomic species using Two Photon Ab-

sorption Laser Induced Fluorescence (TALIF). Together, these diagnostics allow for the

measurement of atomic species densities, time resolved electron dynamics and ion energies

incident on the substrate electrode.

3.1.1 Chamber geometry

The chamber geometry used in this work is a hybrid Gaseous Electronics Conference (GEC)

reference cell [20, 36]. A schematic of the chamber and basic operating components is

illustrated in Figure 3.1. Inductive power is coupled through a 5 turn copper coil positioned

at the top of the cell. Power can also be capacitively coupled through a cylindrical lower

electrode. The inductive coil consists of a hollow pipe measuring 3/16” in diameter which

is water cooled at 20±0.1◦C through the centre of the copper tube. An automatic matching

box (Advanced Energy, RF Navio) is affixed to the top of the reference cell and connected

to the copper coil which passes through the top of the chamber. The coil rests against the

quartz window which is vacuum sealed to the surrounding chamber.

The lower electrode is based on the capacitively coupled plasma electrode geometry

used in the work of Olthoff and colleagues [37]. For this work the lower electrode is not

powered by an RF source and is instead either grounded, floating, or powered by the

tailored ns-pulse waveform described in section 5.1.2. The lower electrode is cylindrical,

surrounded by a grounded guard ring, as illustrated in the inset shown in figure 3.1, and

is water cooled through the bottom to a constant temperature of 20 ± 0.1◦C. The total

diameter of the lower electrode is 120 mm including the guard ring, and the distance

between the powered electrode and the top quartz window is set at 43 mm. The two-

dimensional CCD chip of the Andor iStar camera contains a square block of 1024 x 1024

pixels each with a size of 13 x 13 µm, once focussed on the discharge region this offers

spatial resolution up to the image intensifiers limit of 30 µm. The resolution of a typical

PROES measurement is 157.4 µm for two-dimensional images. This image includes the

whole of the top electrode plus stainless ring (165 mm) and the discharge region including

an additional 3 mm of each electrode, resulting in a total vertical image axis of 49 mm.

The chamber is pumped down to typical operating pressures of 10 - 250 Pa using a

rotary-slide-vane pump (Pfeiffer Vacuum, Duo 20MC). Lower pressures (1 -10 Pa) are also
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Figure 3.1: Schematic of the GEC, with RF and pulse generation mechanisms. A volt-
age probe measures the amplified pulse at the lower electrode and nanosecond resolution
camera to capture pulse induced OES

attainable through the use of an additional turbo molecular pump (Oerlikon, Turbovac

MAG W 600iP). The system pressure is regulated via a throttle valve (MKS 253A). Gas

is fed into the system through a variety of MKS mass flow controllers (MKS, GE250A,

GE50A, 1179A) these allow for the use of different gas mixtures, of either Ar/O2 or He/H2.

In this chapter a description of how electrical components and diagnostics are applied

to the GEC reference cell is described, in order to monitor plasma changes as the operating

conditions are varied.

3.1.2 Electrical components

The electrical set up is also illustrated in figure 3.1 with a fixed frequency 13.56 MHz (Ad-

vanced Energy Cesar 1310) generator used to drive the inductive coil. It also acts as the

sync reference source to which all the other electrical components are synchronised. The

13.56 MHz generated RF waveform is fed into the automatic matching unit (Advanced

Energy, RF Navio) which quickly and repeatedly matches the plasma impedance to the
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set operational range. This occurs so seamlessly as both units are designed and manu-

factured by Advanced Energy, this was an intentional system upgrade part way through

my research, due to the previous system not maintaining impedance matching for longer

measurements.

A Transistor-Transistor Logic (TTL) output trigger amplitude from the Cesar 1310 RF

generator is fed into a digital delay generator (Stanford Research Systems DG 645), which

scales the signal to a user specified repetition rate (<500 kHz) for triggering of the Andor

camera (Andor iStar DH344T-18U-73). The highest synchronisation frequency used in this

work is 452 kHz (as the camera is limited to 500 kHz). The chosen repetition frequency

is a multiple of the 13.56 MHz driving frequency, which ensures that the plasma and the

camera do not drift with respect to one another in time. This can be decreased to allow

longer time steps between each camera image acquisition. The camera is then in sync with

the output of the RF generator and phase resolved images of the plasma emission across

the discharge region can be observed. A voltage probe (Tektonix P5100A) is attached to

the underside of the lower electrode in order to provide in situ voltage measurements on

the oscilloscope (LeCroy WaveSurfer 104MXs-B 1 GHz 10 GS/s).

3.2 Diagnostic techniques

The diagnostics presented are focussed on increasing the fundamental understanding of

different aspects of the plasma, including the electron dynamics using Phase Resolved

Optical Emission Spectroscopy (PROES), this is possible due to ultra-fast optical tech-

niques which allow the nanosecond resolution of plasma emission within the RF cycle to be

captured. Selecting appropriate emission lines and correlating specific electron dynamic

data with observed emission allows the plasma dynamics to be monitored when additional

processes are applied to the GEC system. Energy Resolved Actinometry (ERA) allows

the simultaneous measurement of atomic oxygen densities and local mean electron densi-

ties to characterise regions of interest for manufacturing processes, it uses PROES data

to analyse and configure the measurements. In order to validate the ERA calculation,

Two Photon Laser Induced Fluorescence (TALIF) provides quantitative atomic species

densities in regions of the GEC cell it can be calibrated for. Measurements will be carried
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out under different gas mixtures and powers, including studying the E-H transition of the

ICP. Ion energies and fluxes will be measured at the lower electrode using a Retarding

Field Energy Analyser (RFEA) placed on top of the lower electrode and operated to char-

acterise the plasma operation via a broad parametric variation. The aim is to develop

monitoring and optimisation tools, to better understand how the ion energies/fluxes and

neutral properties vary over a wide range of operational parameters.

3.2.1 Retarding Field Energy Analyser (RFEA)

For measuring the ion energy distribution function (IEDF) and ion flux at the plasma-

surface interface, an RFEA (Impedans, Semion system) is placed on the lower electrode

with the probe and outer casing covering the whole 102 mm electrode surface, this excludes

the outer guard ring.

In
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r

Button Probe outer surface 

G1

G2

G3

C

Figure 3.2: Schematic of the RFEA probe with grids (G1 to G3) and collector plate (C)
as illustrated

The button probe used in this work is shown in figure 3.2 with a series of openings that

allow a sample of ions to enter into the grid system, the probe is connected to the surface

of the electrode electrically and therefore floats at the same potential experienced by the

surface. The figure only illustrates part of the grid system with a whole button probe

being made up of a series of 800 µm holes and a total probe grid system diameter of 33

mm. The button probe sits inside an anodised aluminium holder with the same thickness

as the button probe and an outer diameter of 102 mm to cover the rest of the electrode

surface. The holder is used to keep the surface of the probe exposed to the plasma flat to

avoid disturbing the plasma. The probe consists of a series of grids to prevent electrons

reaching the detector and help discriminate between ions with different energies. The first

is G1 which is electrically connected to the underside of the probes upward facing surface,
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to sample the area and minimise the effect of the probe on the plasma sheath. The next

stage G2 is negatively biased to -60 V DC relative to the bias voltage measured through

the probes feed through box. This grid repels electrons that have also entered through

the holes on the surface. The third grid G3 is used to discriminate ions. This is done

using a potential sweep from the bias voltage measured using a multimeter to a value

approximately 50 V above this dc bias voltage. C represents a collector plate that is a

negatively biased to repel electrons and collect only the ion current at each value of the

voltage on G3. By varying the voltage on G3 and collecting the current at C, the RFEA

produces a current voltage curve. By differentiating this curve the current of ions at each

energy is obtained. The integral under the IEDF curve also gives the total ion current,

this is demonstrated in figure 3.3.

-40 -20 0 20 40 60 80 100 120 140 160

0

1

2

3

4

5

6

Ion energy (eV)

Io
n 

Fl
ux

 (1
0-8

 c
ou

nt
s)

-1x10-6

-9x10-7

-8x10-7

-7x10-7

-6x10-7

-5x10-7

-4x10-7

-3x10-7

-2x10-7

C
ur

re
nt

 (A
)

Figure 3.3: Sketch of a typical current voltage curve produced during a defined voltage
range sweep (-20 to 140 eV) with associated current values

The RFEA used in this work is limited to certain operational parameters as stated by

the manufacturer, during this work it is operated up to its maximum pressure of 12 Pa.

3.2.2 Optical emission spectroscopy

Optical emission spectroscopy (OES) is commonly used to investigate the properties of

plasmas [11, 38, 39]. In OES, the fluorescence of an excited state, populated by electron
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impact in the plasma is detected and related to plasma properties, such as electron temper-

atures or atomic species densities, using a model. An advantage of using OES to measure

atomic species densities is that it is a passive approach that does not require physical ac-

cess to the plasma device therefore it will not directly interfere with the discharge, which

is a critical component for any potential diagnostics looking to be implemented into a

processing plasma [40]. OES is used to determine conditions in specific regions of the

plasma, however it relies on stable and consistent emission which is caused by fast dy-

namic excitation processes involving energetic electrons. In this work, OES will be used to

measure the densities of atomic oxygen and the mean electron energy in the plasma using

Energy Resolved Actinometry (ERA). This section will introduce the theory behind OES,

conventionally used actinometry approaches, and ERA, and describe how ERA is applied

to the GEC reference cell in this work.

3.2.3 Population of excited states

For low pressure, low temperature plasmas with electron densities typically around 1014

to 1015 m−3 the corona model provides a simplified approach to describing the population

of excited states through electron impact excitation, in which the excitation into a state

is only produced by electron impact excitation and de-excitation processes also only occur

due to spontaneous emission into lower states [41] thus providing a very simplified model.

dni(t)

dt
= nokene −

∑
k

Aikni(t) (3.1)

Here, ni is the density of atoms in the excited state i, n0 is the density of atoms in

the ground state 0, ke is the electron energy dependent excitation rate coefficient and ne

is the electron number density which is equal the excitation rate Ei(t) = kene, Aik is the

Einstein coefficient for spontaneous emission from state i to a lower state k. Figure 3.4

shows an illustration of this process. It also includes the extension of the corona model

into a basic collisional radiative model by accounting for quenching; which has an influence

on the state i. Other processes that are discounted in this model are cascade processes

from higher energy states and electron impact excitation from metastable states [42,43].
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Figure 3.4: Sketch illustrating the population dynamics of the excited states (i and k) in a
plasma. The basic corona model is shown in black, while the red lines and text illustrate
the extension to the basic collisional radiative model with the addition of non-radiative
de-excitation (quenching).

3.2.4 Phase resolved optical emission spectroscopy (PROES)

The measurement of plasma emission from RF plasmas can either be time and space

integrated using, broadband spectrometers, or time and space resolved using high resolu-

tion cameras. The time and space resolved approach is known as phase-resolved optical

emission spectroscopy (PROES). Figure 3.5 illustrates the basic methodology for carrying

out the PROES measurements with an Intensified Charge Coupled Device (ICCD) camera

(Andor iStar DH344T-18U-73), the camera’s CCD chip is made up of a 1024 * 1024 square

pixel array. In this work the gate width has been set to 2 ns which is above the cameras

limit of 1.9 ns. The camera is focussed on the centre point between the two electrodes

such that it views the entire discharge region. In practise the PROES measurements are

performed by synchronising the gate width with the RF generators used to produce the

plasma. The maximum synchronisation frequency of the camera is 500 kHz, as such, the

frequency of the signal used to synchronise the function generator with the camera were

all below this value (i.e 452, 226 and 113 kHz). These values were chosen as they are

harmonically related to 13.56 MHz and as such allow for a constant phase relationship to

be maintained.
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The synchronisation signal between the RF generator and camera is passed via a Digital

Delay Generator (DDG) (Stanford Research Systems DG645), this allows for a variable

delay to be added to the trigger signal. Once the camera detects the trigger signal it opens

the gate and acquires an image on the CCD. This process will then happen continuously

depending on the exposure time (typically a couple of seconds, but up to 10 s of seconds)

and with a defined repetition rate (e.g 452, 226 or 113 kHz). During each signal acquisition

an image builds up on the cameras CCD, once the exposure time has elapsed the image

created on the CCD is exported and the 2 ns delay is increased so that the next image

occurs 2 ns further along the same RF cycle (red dotted lines in figure 3.5), in this way a

picture of the emission dynamics is built up throughout a 74 ns RF cycle which equates

to 37 images, these are stitched together as per figure 3.6.

T= 1/(repetition rate)

RF Voltage Waveform

Camera Gate 
Width

Variable 
delay

Initial 
synchronisation

Subsequent 
synchronisation

Figure 3.5: Illustration of the PROES principles and how they are obtained experimentally
by varying the camera gate position.

The specific wavelength measured is either defined by a custom narrowband filter

± 0.5 nm (Andover Corporation) or broader filters with a range of ± 5.0 nm (Andover

Corporation). The entire discharge region is imaged including both electrodes and focussed

down onto the ICCD by a commercially available camera lens (SIGMA 18 - 200 mm F3.5

- 6.5II DC OS).

Figure 3.6 shows an example of the phase resolved emission measured using the proce-

dure described above. In this case, the plasma is operated at a pressure of 5 Pa and power
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Figure 3.6: PROES measurement over a single RF cycle (74 ns) using a 750 nm narrowband
filter to capture emission from an oxygen/argon plasma operated at 100 W and 5 Pa.

of 100 W applied to the inductive coil. The gas mixture is 1:2 O2/Ar, emission intensity

is observed at 750 nm using a narrowband 750 nm filter, corresponding to fluorescence

from the Ar(2p1) state relaxing to the Ar(1s2) state. Monitoring the emission illustrates

the dynamics of electrons above the threshold for excitation of the Ar(2p1) state (13.48

eV). In Figure 3.6 the phase resolved emission at 750 nm has one excitation structure per

RF cycle which begins at the point of highest emission (∼ 65 ns). This emission structure

illustrates the expanding sheath motion in an E-mode plasma where electrons are accel-

erated away from the coil by the expansion of the plasma sheath once per RF cycle. The

dynamics of electrons observed in PROES under different operating parameters will be

discussed further in Chapter 6.

The emission observed from PROES Ii (x,t) can be converted into the electron impact

excitation using the collisional radiative model. The equation for the excitation of state i,

Ei, is shown in equation 3.2 [44].

Ei(t, x) =
1

n0Aik

(
dni(t, x)

dt
+Aini(t, x)

)
(3.2)
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The measurement of photons per unit volume and time is related to the excited state

density ni(t, x) = Ii(t, x)/Aik and includes the transition probability Aik of emission from

the higher excited state i to the lower state k. The ground state density is represented

by n0. Where, kiq denotes the rate coefficient for collisional quenching of excited state i

via collisions with species of density nq. The quenching coefficients in table 3.1 assumes

molecular oxygen is the main quencher. Equation 3.3 is the effective decay rate Ai of

excited state i and depends on a spontaneous emission, radiation trapping and quenching.

Where, gik is the escape factor of the radiation, For the work presented here, the escape

factor is approximately equal to one gik ≈ 1 as the plasma is optically thin, meaning no

re-absorption of the emitted light (750 - 844 nm) of interest for this work.

Ai =
∑
k

Aikgik +
∑
q

kiqnq (3.3)

Figure 3.7 shows the emission data from figure 3.6 calculated using equation 3.2 to

illustrate the time and space resolved electron impact excitation of the Ar(2p1) state. The

main difference between the time and space resolved emission and excitation is that the

excitation maximum is focused to a shorter time period, due to the associated lifetime of

the emission. As a result, the pattern of the spatially and temporally resolved excitation

features synonymous with oxygen discharges in an ICP configuration are observed.

In this work, three emission lines are used in Ar/O2 plasmas to calculate the mean

electron energy and atomic oxygen density using ERA, described later. Table 3.1 shows

the excited atomic states, radiative lifetimes and quenching coefficients of these emission

lines.

Wavelength
(nm)

Atomic
state

Radiative life-
time (ns)

Ref.
Quenching coef-
ficient (10−16m3

s−1)
Ref.

750.46 Ar(2p1) 22.5±0.7 [1] 7.6 [1]
777.45 O(3p5P) 27.1 [45] 10.6 [3]
844.79 O(3p3P) 34.7 ±1.7 [2] 9.4 [2]

Table 3.1: This table highlights the emission wavelength, radiative lifetimes and quenching
coefficients of the atomic states used in this work.

The two-dimensional measurements for each of the emission wavelengths will be carried
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Figure 3.7: The excitation plot is calculated using equation 3.2 from the PROES measure-
ments in figure 3.6

out using precision optical narrow bandpass filters (Andover Corporation), with custom

wavelengths to get precision selectivity at the specific wavelengths in table 3.1. Argon at

750.46 ±0.50 nm and oxygen at 777.45 ±1.75 nm and 844.79 ±0.95 nm.

3.2.5 Classic actinometry

Actinometry is a technique for quantifying reactive species concentrations of various gases

such as O, N or H. The classic approach calculates the atomic density using the ratio of

the emission intensity as shown in equation 3.4. Using a noble gas as an actinometer it

enables the emission intensity to be converted into relative number densities.

nO =
IO,844

IAr,750

hvAr,750

hvO,844

kAr,750,d

kO,844,d

aik,Ar,750

aik,O,844
nAr (3.4)

Here IO is the time averaged emission intensity of the oxygen 844 nm excited state,

hv denotes the photon energy, kO is the atomic oxygen excitation rate coefficient, aik

is the optical branching ratio. Finally nAr is the argon ground state density. Under

these conditions a ratio of the atomic oxygen 844 nm and argon 750 nm measurements
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are compared, the atomic oxygen density is calculated under the assumption that both

excited states have similar energies and that they are solely populated via direct electron

impact excitation. [1, 46,47]

3.2.6 Advanced actinometry

Advanced actinometry builds on the classical approach by including terms for direct elec-

tron impact and dissociative excitation processes. However this does require more specific

knowledge of the EEDF as the O(3p3P) state has different thresholds for the direct and

dissociative contribution [47–49].

Equation 3.5 includes a second term which accounts for both the direct (d) and dis-

sociative (de) excitation from the 844 nm emission. Resulting in a more accurate density

calculation.

nO =
IO,844

IAr,750

hvAr,750

hvO,844

k∗Ar,750,d

k∗O,844,d

aik,Ar,750

aik,O,844
nAr −

k∗O,844,de

k∗O,844,d

nO2 (3.5)

Equation 3.6 describes the effective excitation rate coefficient (k*).

k∗ =
〈kene〉rf
〈ne〉rf

(3.6)

Equation 3.6 includes the direct (d) and dissociative (de) excitation rate coefficients.

In this format, accurate results can only be calculated from states populated via electron

impact excitation of ground state atomic and molecular oxygen. If the excited state is

populated via other excitation processes it would skew the atomic oxygen densities derived

using actinometry. The relevant assumptions will be developed more in the following.

3.2.7 Energy resolved actinometry

Energy resolved actinometry (ERA) is a technique based on direct and dissociative exci-

tation processes. It builds on the previous actinometry technique by including a second

oxygen line 777 nm O(3p5P) and also uses excitation ratios instead of the emission inten-

sity ratios. This allows for the measurement of atomic species densities and mean electron

energies simultaneously, the development of the actinometry technique has been discussed

in detail by Greb et al [50]. The ICCD camera and GEC chamber are configured to provide
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high spatial PROES images with ns temporal resolution of the region between the plasma

electrodes, this allows the excitation rates for the specified excited states to be derived.

These excited states are listed in table 3.1.

The excitation ratios obtained through experiment are then compared with the values

calculated using a Maxwellian distribution function. The mean electron energy and dis-

sociation degree are varied to match experimental conditions, leading to a comparison of

both ratios and the measured mean electron energy and dissociation degree. For plasma

processing applications it is then possible to calculate an absolute atomic species density

relevant to the region associated with the plasma emission. This is calculated using the

ideal gas law with a gas temperature value.

The direct and dissociative electron impact excitation of the oxygen emission lines as

shown in figure 3.8 are accounted for by summing all the electron impact excitation rates

Ei,n that excite species n and end up in state i. The value for fn is the fractional density

of the species n in the gas;

E∗ = ΣnfnEi,n (3.7)

Equations 3.8 and 3.9 are the effective excitation rates for the chosen emission lines.

With the fraction of molecular oxygen fO2 and argon as the actinometer gas fAr. The

density of the atomic oxygen divided by the molecular oxygen produces the dissociation

degree and is written as rO in the following equations;

E∗750

E∗844

=
fAr
fO2

k750,d(ε)

rOk844,d(ε) + k844,de(ε)
(3.8)

E∗777

E∗844

=
rOk777,d(ε) + k777,de(ε)

rOk844,d(ε) + k844,de(ε)
(3.9)

The local mean electron energy ε corresponds to a Maxwellian electron energy distri-

bution function. Figure 3.8 illustrates the cross sections for the direct and dissociative

electron impact excitation, this graph highlights the need to include the dissociative con-

tribution particularly for the 777 nm emission as the dissociative cross section becomes

larger than the direct cross section at higher energies.
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Figure 3.8: Electron impact cross section profiles of the excitation states used in this
work (750, 777 and 844 nm). D and De refer to the direct and dissociative excitation
respectively [1–3].

The thresholds for the two oxygen states are in the range of 10-20 eV, with the argon

state (≈ 13.48eV) sitting approximately between the direct and dissociative levels. The

different shapes of the cross sections for direct (D) and dissociative (De) excitation of 777

and 844 nm emission means that, there is a different dependency on the mean electron

energy which is beneficial as it allows the mean electron energy to be obtained. The

differing dependence of the Ar emission and the O emission on the dissociation degree

allows the dissociation degree to be obtained.

To calculate the dissociation degree and the mean electron energy using ERA, the

excitation ratios are obtained experimentally from PROES images of the different emission

lines. This is carried out in a time and space region where the plasma emission is strong and

electrons are being actively heated, such as at sheath expansion. This is key to ensure that

electron impact is the dominant process exciting the states being monitored, and that other

processes such as cascades or heavy particle excitation are not dominating. Experimental

excitation ratios are then compared to those calculated using the cross sections plotted
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Figure 3.9: Calculated excitation ratios of the 750 and 844 nm line (a) and 777 and 844
nm line (b) as a function of dissociation degree and mean electron energy.

in figure 3.8 for varying mean electron energy and dissociation degree, these are shown in

figures 3.9a and 3.9b.

The two excitation ratios are then combined as per figure 3.10 so that the contour lines

can be compared over similar parameter space. Each contour line defines a constant value

of the respective excitation ratio. The crossing points of the lines from the two different

ratios defines a value of the dissociation degree and mean electron energy. By comparing

the experimentally measured excitation ratios on this plot the experimental dissociation

degree and mean electron energy can be measured.

The quantitative error analysis considers uncertainty in the electron impact cross sec-

tions used to simulate the excitation ratio values. These include the measured electron

impact cross sections for direct excitation of Ar(2p1) at 20 % [51] as well as the dissocia-

tive electron-impact excitation of the O(3p5P) and O(3p3P) levels which are 15 % [48].

Reference [52] does not specify the uncertainty of the direct excitation of O(3p5P) and

O(3p3P) however these are expected to be in the order of 30 %. Therefore the total min-

imum estimated uncertainty in the electron impact cross sections have been given as 30

%, as this accounts for the largest estimated uncertainty.
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Figure 3.10: This plot represents an overlay of the contour lines for both the excitation
ratios shown in figures 3.9a and 3.9b, these excitation ratios are obtained with a 98% O2

and 2% Ar gas mixture.

3.3 Two-Photon Absorption Laser Induced Fluorescence

To validate the ERA technique and confirm the atomic species densities, Two Photon

Laser Induced Fluorescence (TALIF) is operated over the same plasma conditions, it uses

specific laser wavelengths to excite the chosen species and measure the wavelength specific

fluorescence it produces [53]. This technique is expensive and alignment intensive however

the results are accurate, reproducible and widely documented [47,54–57]. The laser system

used in this work is a Continuum (Surelite laser and Horizon OPO) with mirrors and a

focusing lens that confines the laser energy to a spatial region across the lower electrode,

therefore allowing for spatial measurements of the plasma discharge region.

3.3.1 Laser Induced Fluorescence

Laser induced fluorescence (LIF) is an active diagnostic allowing for space and time re-

solved measurements of atomic ground state absolute densities in plasmas. It uses laser

photons to excite species from the ground state into a higher energy one which then relaxes

to a lower energy state emitting a photon which can be detected. With a suitable system

calibration the absolute density of the ground state can be obtained.

As a number of the allowed optical transitions from the ground to higher energy states
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lie in the vacuum ultraviolet (VUV) spectral range 100-190 nm, which increases the like-

lihood of it being absorbed by other species in the plasma. Alternatively a multi-photon

approach can be used instead, this is based on using two or more photons whose energy

will add up to the required amount but whose wavelength lies in the more accessible UV

ω1 + ω2 = ωT range. The trade off being two photons are less likely to be absorbed

simultaneously and therefore larger laser intensities are required [58,59].

3.3.2 Two-Photon Laser Induced Fluorescence

TALIF is a reliable and well characterised technique for resolving ground state densities,

where experimentally determined quenching coefficients are used to correct for any colli-

sional losses [2, 58, 60]. The concept of two-photon laser induced fluorescence (TALIF) as

shown diagrammatically in figure 3.11, begins with atoms or molecules being excited from

the ground state (E1) by absorption of two photons from the probing laser beam and into

the excited state (E2), where it subsequently de-excites into a lower energy state (E3) [58].

For TALIF the fluorescence signal shifts into several emission states with a total rate of

A = ΣkA2k the sum of all the transitions to levels lower then E2 for which spontaneous

emission is permitted. In this case it is simply represented by a transition between the E2

and E3 states.

E1

E2

E3

R12

Figure 3.11: Processes in TALIF start with two photon absorption from the ground state
(E1) into (E2) followed by the various de-excitation processes (radiative decay and quench-
ing).

The process of moving an atom from the E1 to E2 state requires it to absorb two



CHAPTER 3. DIAGNOSTIC AND EXPERIMENTAL CONFIGURATION 47

photons simultaneously, this allows it to move from a virtual state with only one photon

absorbed to a higher E2 state. For both the calibrated and actual measurements the laser

system needs to have the same power dependence in order to produce an unsaturated

two photon excitation. The ground state density is described by equation 3.10 where the

negative rate and density is due to the subsequent population of the upper excited state

E2, however there is little change to the ground state density due to the low laser energy

used for the excitation, so we can assume n1(t) ≈ n0.

d

dt
n1(t) = −R(t)n1(t) (3.10)

The ground state density will influence the overall density of the higher excited state

E2 which will also be affected by depopulation through a number of processes, this can

be seen in equation 3.11, where the density from equation 3.10 is present, followed by the

depopulation processes where A = (A2 + Q2), such that A is the fluorescence rate from

the E2 state and Q the quenching rate of the upper state.

d

dt
n2(t) = R(t)n1(t)−An2(t) (3.11)

Equation 3.11 also shows that the ground state density is proportional to the excited

state population. This is governed through the rate equation 3.12 which is refereed to

as; the generalised two-photon excitation rate which governs the number of electrons per

second that get excited from the E1 to E2 state. This is expressed in terms of the excitation

cross section (σ(2)) [58] and the square of the laser energy.

R(t) = G(2)σ(2)g(ν)

(
I0(t)

hν

)2

(3.12)

It includes the photon statistic factor G(2) which takes into account the varying phase

within the laser field and the factor 2 probability of absorbing two photons [61, 62]. The

two photon cross section (σ(2)) differs from a typical LIF set up as it requires greater laser

intensities due to a smaller cross section. The normalised line profile g(ν) is made up of

the effective laser line profile as well as pressure and Doppler broadened atomic absorption

line. The last part of the equation represents the photon flux, with the laser intensity I0
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divided by the photon hν, this is all squared due to the two photon component.

To measure the level of fluorescence from the excited state E2 the total radiative decay

is considered with the effective excited state loss including quenching (A2 +Q), collisional

quenching (Q) acts to reduce the lifetime of the upper state by increasing the number of

loss channels.

The laser energy is calibrated and measurements are taken below the saturation thresh-

old, this ensures that no laser saturation is observed, hereby limiting processes like photo-

dissociation [63, 64], photo-ionisation [65] and amplified stimulated emission which would

further impact the effective excited state loss.

With minimal ionisation, the decay from the upper state E2 is written as (A2 + Q).

If E2 is no longer being filled, the recorded signal will be an exponential decay with the

lifetime τ = 1/A. Where the ICCD camera with a specific filter will record the selected

wavelength hv = E2 − E3

By rearranging equation 3.11, the number of fluorescent photons (nF ) of the excited

state E2 can be expressed as equation 3.13. The optical branching ratio for the transition

a23 = A23
A where A = A2 + Q looks at the fluorescence channel from the upper excited

state E2. It considers both the effective decay rate A and also the radiative decay A23 of

the state.

nF = A23

∫∞
o n2(t)dt

...

nF = n1a23
σ(2)

(hν)2
G(2)g(ν)

∫∞
o I2

0 (t)dt

(3.13)

Lastly, to express the fluorescence signal in terms of the ground state density and

laser system efficiency. Equation 3.14 is the detected signal S, where the total number

of fluorescence photons measured at a specific wavelength nF is dependent on the solid

angle ∆Ω with only the photons falling into this angle being detected. There will also be

detector sensitivity at this wavelength η and the probability of transmission through all

the experimental optics at the chosen wavelength T to consider.

S = ηT
∆Ω

4π
nF (3.14)
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From the equation 3.13, the integral is performed through space and time between the

limits of 0 and ∞ and included in the equation 3.14.

S = ηT
∆Ω

4π
a23G

(2)g(ν)σ(2)n1

(
E

hν

)2

(3.15)

A number of key variables are still required before a density can be calculated, such as

the time and space characteristics of the laser intensity profile, the two-photon excitation

cross section which need to be taken from literature.

3.3.3 Calibration

To combat the lack of known data needed to provide the ground state density using the

fluorescence signal, one calibration technique has been formulated which uses a second

noble gas introduced into the GEC system and held under the same operating pressure as

the primary gas. The reference gas is matched to the primary gas by determining whether

it has a two photon resonance close to the species it is absolutely calibrating [2, 66]. In

this case xenon is used to calibrate atomic oxygen as the laser excitation is spectrally

similar at 224 nm and 225 nm respectively. For calibration of atomic hydrogen, krypton

is used as it has similar laser excitation at 205 nm and 204 nm. The laser temporal

and spatial shape is maintained for the calibration to be accurate as well as retaining

the same spectral properties of the laser. This procedure is repeated for hydrogen and

krypton. Other established calibration methods use flow-tube reactors, where a particle

source generates a stationary gas flux of radicals and a reactor is able to measure these

via gas-phase titration [67], however this configuration wouldn’t be suitable for the GEC

cell.

The atomic oxygen ground state density (nO) is calculated using the reference gas

density of xenon via equation 3.16, where the laser light at 225.64 nm excites O atoms

from a ground state into the O(3P3P) and measuring the TALIF radiation with a 844 nm

filter. A similar measurement is performed using xenon and excited at 224.29 nm into

the Xe(6P ′[3/2]2) and emission is captured at 834 nm, for the purposes of this work these

excitation and fluorescence wavelengths are similar as shown in figure 3.12. Xenon density

is calculated via a pressure measurement, while the O atom density is calculated using
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equation 3.16. The values for the transmission and detection sensitivities are calculated

prior to taking the measurements.

nO =
ηXe
ηO

a23Xe

a23O

TXe
TO

σ2
Xe

σ2
O

(
EO
EXe

)2 SO
SXe

nXe = χ
SO
SXe

nXe (3.16)

The fluorescence signal of oxygen SO and reference gas xenon SXe are measured, with

the reference gas density of xenon calculated during the calibration phase. Here, the

detection sensitivity η and optical transmission T are obtained experimentally or taken

from literature. A ratio of the excitation cross sections σ2
Xe/σ

2
O is taken from literature, as

the ratio of the individual values are not known, this has been estimated with a precision

of 50% [2]. The laser configuration is identical for both measurements, so only an energy

meter is required to measure the stable laser energy, the ratio is given as EO/EXe.

A similar procedure has been used for the H TALIF, however different filters are

required to observe the hydrogen fluorescence at 656 nm and krypton fluorescence at 826

nm where the excitation wavelengths are 205.08 and 204.13 nm for hydrogen and krypton

respectively.

The excitation schemes for O2/Xe and H/Kr are displayed in figures 3.12 and 3.13,

these are taken from the work of Niemi et al [2, 60] and show the fluorescence channel

between the upper and lower excited states with the associated excitation wavelength.

Xenon and Krypton are chosen as calibrating gases due to the two-photon resonance

being as spectrally similar as possible to the gas of interest (Oxygen or Hydrogen).

3.3.4 TALIF experimental technique

With the low pressure plasma environment and stabilised optical configuration, the laser

system used in this work is a Continuum Surelite SL-EX series, high energy Nd:YAG laser.

The laser beam is positioned into a Continuum Horizon optical parametric oscillator, with

a wavelength operating range of 192 - 2750 nm. The system has a pulse width range of

3-5 nm and is pulsed at a frequency of 10 Hz. The laser beam is focussed onto a region of

interest between the two GEC electrodes via a lens. The laser path and associated optics

are shown in figure 3.14, the laser pulse for the specific wavelength is created and passes

onto a variable attenuator this manages the laser pulse energy as set at the CPU. It is
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Figure 3.12: Oxygen and xenon TALIF schemes

determined by the angle of the attenuator, which is coated in an anti-reflective material

and allows a proportion of laser light through. It is aligned to the second window which is

referred to as the compensator, these are both angled using a Zaber T-NM17A04 stepper

motor. The outputted energy is monitored by a high speed photodetector Thorlabs DET

10A/M which absorbs 10% of the reflected laser beam, this monitors and corrects for

any deviation in laser energy via a PID loop which displays the pulse voltage on an

oscilloscope (LeCroy WaveSurfer 104MXs-B 1 GHz 10 GS/s) and loops the value back into

the attenuator to make any adjustments. Calibration of the photodetector is done using a

Gentec QE25LP-S-MB by placing it in front of the variable attenuator and recording the

values into the CPU, it is also placed in front of the beam dump to measure the final laser

energy.

The following mirrors control the beam path and guide it through the focussing lens

and into the beam dump at the exit of the GEC cell. The beam is focussed across the entire

electrode surface, which allows for spatially resolved measurements to be obtained. The
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Figure 3.13: Hydrogen and krypton TALIF schemes
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Figure 3.14: Experimental schematic based on the GEC cell including laser set-up and
ICCD configuration
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(a) (b)

Figure 3.15: TALIF calibration and measurement in the GEC reference cell. Xenon cali-
bration measurement at 20 Pa with a laser energy of 100 µJ (a) and 20 Pa oxygen/argon
plasma operated at 200 W and 800 µJ laser energy (b)

output trigger of the laser system is set at 10 Hz and keeps the ICCD camera synced. ICCD

camera is pointed at the whole discharge region and is used to measure the fluorescence

signal and its decay in time.

To obtain absolute density measurements, equation 3.16 uses the spectrally integrated

fluorescence signal taken at 844 nm for atomic oxygen and 835 nm for xenon at a bandwidth

of approximately 10 nm. The measurements have a spatial element to capture the whole

discharge region and temporal integration to observe adequate fluorescence signal.

Figure 3.15 illustrates the shared region of interest (ROI) yellow box which calculates a

spatially integrated signal for the enclosed region. The laser beam was positioned 4.4 mm

from the lower electrode surface, this coincided with the lowest possible beam position as

it entered the GEC cell. The same ROI is used throughout the TALIF measurements to

preserve the spatio-temporal characteristics of the laser pulse interaction. As previously

mentioned the vertical PROES image size is 49 mm which can divided by the number of

pixels in the vertical axis (1024), to obtain a pixel to real size calibration. The fixed yellow

box size is 1024 x 40 which equates to a yellow box width of 191 µm and approximate

beam width of 96 µm.

Figure 3.16 shows the quadratic dependence of the laser energy on the square root

of the TALIF signal which eventually saturates via photo-ionisation as the laser energy

is increased. This measurement is used to determine the highest laser energy possible
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without any saturation influences. The final two points show a deviation from the line of

best fit and indicate the point at which the discussed influences occur.
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Figure 3.16: Sample oxygen TALIF signal, by increasing the laser energy it highlights the
point at which the TALIF signal saturates and no longer exhibits a linear response. Here,
a linear response is observed up to 800 µJ. The plasma was operated at 50 W at a pressure
of 10 Pa and gas mixture of O2/Ar (98%/2%).

This is repeated for the hydrogen TALIF with a slightly reduced laser energy, but the

same principle to deduce the point of saturation. This occurs around 780 µJ therefore a

lower laser energy of 700 µJ was used to ensure no saturation processes would influence

the TALIF signal.



Chapter 4

Low temperature plasma

modelling

There are number of different ways to characterise low temperature, low pressure plasmas,

one is through simulation of the operational environment. This allows for a reference to

be made with experimental data. In this work a modular, fluid-kinetic code is used to

simulate the GEC cell with a range of operational parameters. Many factors control the

gas phase chemistry during operations, this includes the pressure, gas mixture, driving

frequency and plasma operation pulsed or continuous, it is a highly complex system to

monitor and characterise [68]. These systems can be modelled using one, or a combination

of approaches, this work uses a hybrid modelling approach [69]. Key considerations of

plasma modelling tools must include the ability to address a whole plasma system such

as is used in industry while also dealing with some finely detailed plasma phenomena

such as the region of interest above the grounded electrode. The hybrid model approach

splits the various physical processes into separate models all of which are on different

timescales, the key is to combine them iteratively. This approach allows for a selection in

the relevant modules so only conditions that are of interest will be computed. The hybrid

modelling (HM) approach will be used to compare experimental data with a pressure range

of 1-250 Pa while operated between E and H modes, via the coil in the upper electrode

as shown in figure 3.1. The hybrid plasma equipment model (HPEM) is a 2D modular

plasma simulation code which has been designed to investigate reaction pathways within a

55
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low temperature, low pressure environment and is capable of simulating a range of reactor

geometries. It can analyse different gas chemistries and generate the corresponding plasma

parameters. HPEM is made up of a series of modules, the main one is the Electromagnetic

Module (EMM) in which the inductively coupled electric fields are calculated, followed by

the Fluid kinetics - Poisson module (FKPM) which calculates species densities. These are

cycled through and support each other for a predefined number of iterations. The initial

input values must also be defined in the model, these include system pressure, ICP power

and behaviour of the electrons and ions. These input variables are integral to validating

the experimental results which are also compared to TALIF measurements.

4.1 Hybrid plasma equipment model: modules and equa-

tions solved

Hybrid modelling combines a mixture of fluid and kinetic approaches that addresses equip-

ment scale plasma processing plasmas. This approach accommodates systems that can-

not be fully explained by fluid approaches, but require large computational capacity for

a pure particle approach. The plasma modelling described in this research is a two-

dimensional hybrid plasma equipment model (HPEM) which is widely used for simulating

non-equilibrium low pressure plasmas, this has been developed by Kushner and his col-

leagues, where an in depth description of the model and its scope can be found at [69].

This code was chosen to simulate the environment as it has been well characterised within

a low pressure, inductively coupled plasma environment [70–73].

Figure 4.1 depicts the core operating modules of HPEM, where on an iterative cycle

runs through a series of user defined modules. The key module as mentioned is the

fluid kinetics Poisson’s module (FKPM) which calculates the electrons, ions and neutrals

densities as well as solving the electric field potential using Poisson’s equation. The FKPM

also calculates the momentum, continuity, and energy equations for the heavy particle

species. Charged and neutral particle densities are calculated from the continuity equation:

∂ni
∂t

= −∇ · ~φi + Si (4.1)
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Ions, Neutrals and Electrons: Momentum
and energy calculations.

Poisson’s equation.

Figure 4.1: List of HPEM modules with the complete life-cycle achieved in one iteration

Equation 4.1 refers to the continuity equation that describes mass conservation, where

Ni is the species density, ~φi is the flux and Si is the source of species i.

For this work, a drift diffusion Scharfetter-Gummel solver was used to compute the

electron fluxes, which provided the most stable numerical solution for the simulations.

The influence of the flux on the electric field is non-linear [69,74].

The ion momentum equation is taken in the following form:

∂ ~φi
∂t

= − 1

mi
∇(nikBTi)−∇ · (niv̄iv̄i) +

qi
mi
ni ~E

−
∑
j

mj

mi +mj
ninj(~vi − ~vj)νij + Sm,i

(4.2)

Here mi, ni, kB, Ti, is the mass, density, Boltzmann’s constant and temperature while

v̄i is velocity and νnj is the collision frequency for the two species (i, j). The momentum



CHAPTER 4. LOW TEMPERATURE PLASMA MODELLING 58

equation for neutral species takes a slightly reworked form which doesn’t include any terms

dependent on charge.

∂ ~φn
∂t

= − 1

mn
∇(nnkBTn)−∇ · (nnv̄nv̄n)

−
∑
j

mj

mn +mj
nnnj(~vn − ~vj)νnj + Sm,n

(4.3)

Both equations consider the fluid velocity with any spatial variations included in the

momentum ∇ · (niv̄iv̄i) term. Sm term in the FKPM module which accounts for the

momentum transfer and collisions with other plasma species, in the case that it may

change their final state by creating or destroying the species.

The energy equation for charged and neutral species is written as:

∂(niciTi)

∂t
= ∇ · κi∇Ti (1)− pi∇ · v̄i (2)−∇ · (niv̄iεi) (3)

niq
2
i νi

mi(ν2
i + ω2)

E2
Θ (4) +

niq
2
i

miνi
E2
s (5)

+
∑
j

3
mij

mi +mj
ninjkijkB(Tj − Ti) (6)

±
∑
j

3ninjkijkBTj (7)

(4.4)

The heat capacity of the respective fluid is represented by ci and εi = ciTi. Here pi

is the partial pressure and the thermal conductivity is κi. The rate coefficient for the

creation of species via heavy particle collisions is kij and the νm,i. The terms right of

the equals sign in equation 4.4 represent conduction, compressive heating and convection,

these are labelled terms one, two and three respectively.

The heating contributions from both electrostatic and electromagnetic fields influence

the charged particles. Term four includes a heating contribution in the azimuthal direction

by the electric fields created in an inductive coil. The fifth term in the equation is also the

heating of ions in an electric field, whereas the sixth and seventh terms are the heating

components from elastic and inelastic collisions.

Treatment of the charged and neutral particle transport in the FKPM is finalised by
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solution of Poisson’s equation which calculates the electric fields in the plasma.

Once the FKPM module has solved for the densities, fluxes and temperatures of the

intended species and the electric fields, its passes this information on to the electron energy

transport module (EETM) to calculate electron transport coefficient and electron impact

source functions. For this work a Monte Carlo simulation of the electrons is used, which

calculates the electron energy distribution function (EEDF).

The electron Monte Carlo simulation (eMCS) module accounts for the trajectories

of the electrons which are represented in the model by pseudo-particles, released from

numerical cells interact with the electric field. The eMCS module has been chosen due

to its wide parameter variation in this work, where the lower pressure range (1-250 Pa)

can be characterised more accurately using this approach [75]. The electric fields have

been taken from the FKPM and EMM modules using a Monte Carlo algorithm [76]. The

electron energy distribution function (EEDF) is calculated at each spatial position which

is obtained from the Monte Carlo algorithm and its values for the electron transport and

electron impact rate coefficients which are implemented into the following FKPM iteration.

This cycle is then repeated and continues until a convergence is reached.

The electromagnetic module (EMM) is used to calculate Maxwell’s equations for the

electromagnetic fields of the inductively coupled plasma coil, which requires a user set coil

current that varies to meet the input power.

Once the geometry and chemistry set (discussed below) have been implemented, the

simulation is run for several thousand radio frequency cycles until all species and temper-

atures reach convergence.

4.2 Geometry

The chamber geometry has been modelled on the geometries of the GEC cell, this was

accomplished during the integration of the auto matching box and also attachment of the

lower electrode voltage probe. The GEC cell was stripped down and the electrode and wall

surfaces were measured and a custom mesh geometry was created. The chamber geometry

mesh is 120 x 120, where the inter-electrode distance is represented by 43 mesh points.

While the lower electrode is 51 mesh points to represent 51 mm from the centre of the
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electrode to the edge.

A slight deviation from the experimental configuration was a 4 turn copper coil in the

simulation, as the inner coil on the experimental system doesn’t complete a full final turn,

as shown in figure 2.1. Equally the gas inlet and outlets illustrated on the wall and floor of

the chamber are in contrast to the experimental configuration, as the outlet port is split

between a four way system based at the bottom of the chamber for uniform pumping. The

inlet is incorporated into one of the chambers four diagnostic ports and far enough back

from the main electrode region to not disturb the plasma due to low gas flow rates. These

differences from the experiment are not expected to have a large effect on the results of

the simulation.

Plasma parameters are extracted from the simulation in the region close to the electrode

for comparison with TALIF results in chapter 6.
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Figure 4.2: Schematic of the plasma geometry used in this work, modelled on the GEC
reference cell
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4.3 Chemistry

The complete oxygen and argon chemistry set used in this work is included in the table

4.1. The reaction set developed for these simulations is based on the set of reactions

and rate coefficients simulated by Rauf et al [77]. Where the key plasma generated species

considered are both positive and negative atomic oxygen ions (O+, O−, O+
2 ), as well as the

atomic oxygen (O) and molecular oxygen in the ground state (O2(X3Σ−g )) and metastable

states (O2(a1∆g), O2(b1∆g)) and electrons (e). The complete oxygen only set is taken

from the published work of Gibson et al [70].

Table 4.1: Complete chemistry set used in these HPEM simulations

No Reaction Ratea,b Ref.

Argon only reactions

R1 Ar + e → Ar∗ + e f(ε) [78]

R2 Ar + e → Ar+ + e + e f(ε) [79]

R3 Ar∗ + e → Ar+ + e + e f(ε) [80]

R4 Ar∗ + Ar∗ → Ar+ + Ar + e 5.00 × 10−10 [81]

R5 Ar∗ + e → Ar + e f(ε) [77]

R6 Ar+ + Ar → Ar + Ar+ 5.66 × 10−10 [77]

Argon and Oxygen reactions

R7 Ar∗ + O2 → O + O + Ar 2.10 × 10−10 [82]

R8 Ar∗ + O → O∗ + Ar 4.10 × 10−11 [83]

R9 O− + Ar+ → O + Ar 1.00 × 10−07 [77]

R10 Ar+ + O2 → O+
2 + Ar 5.10 × 10−11 [84]

R11 Ar+ + O → O+ + Ar 1.00 × 10−11 [85]

R12 O∗ + Ar → O + Ar 5.00 × 10−13 [77]

R13 O2
∗ + Ar → O2 + Ar 1.00 × 10−19 [77]

Oxygen only reactions

R14 e + O2(X3Σ−g ) → e + O2(X3Σ−g ) f(ε) [86]

R15 e + O2(a1∆g) → e + O2(a1∆g) f(ε) [87]

R16 e + O2(b1∆g) → e + O2(b1∆g) f(ε) [87]
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Table 4.1: Complete chemistry set used in these HPEM simulations

No Reaction Ratea,b Ref.

R17 e + O(3P) → e + O(3P) f(ε) [88]

R18 e + O(1D) → e + O(1D) f(ε) c

R19 e + O2(X3Σ−g ) → e + O2(a1∆g) f(ε) [86]

R20 e + O2(X3Σ−g ) → e + O2(b1Σ+
g ) f(ε) [86]

R21 e + O2(a1∆g) → e + O2(b1Σ+
g ) f(ε) [89]

R22 e + O2(b1Σ+
g ) → O2(a1∆g) + e f(ε) d

R23 e + O2(a1∆g) → O2(X3Σ−g ) + e f(ε) d

R24 e + O2(b1Σ+
g ) → O2(X3Σ−g ) + e f(ε) d

R25 e + O2(X3Σ−g ) → O+
2 e + e f(ε) [86]

R26 e + O2(a1∆g) → O+
2 e + e f(ε) e

R27 e + O2(b1Σ+
g ) → O+

2 e + e f(ε) e

R28 e + O2(X3Σ−g ) → O(3P) + O− f(ε) [86]

R29 e + O2(a1∆g) → O(3P) + O− f(ε) [90]

R30 e + O2(b1Σ+
g ) → O(3P) + O− f(ε) f

R31 e + O2(X3Σ−g ) → O(3P) + O(3P) + e f(ε) [86]

R32 e + O2(a1∆g) → O(3P) + O(3P) + e f(ε) e

R33 e + O2(b1Σ+
g ) → O(3P) + O(3P) + e f(ε) e

R34 e + O2(X3Σ−g ) → O(3P) + O(1D) + e f(ε) [86]

R35 e + O2(a1∆g) → O(3P) + O(1D) + e f(ε) e

R36 e + O2(b1Σ+
g ) → O(3P) + O(1D) + e f(ε) e

R37 e + O(3P) → e + O(1D) f(ε) [52]

R38 e + O(1D) → e + O(3P) f(ε) e

R39 e + O(3P) → O+ + e + e f(ε) [52]

R40 e + O(1D) → O+ + e + e f(ε) e

R41 e + O− → O(3P) + e + e f(ε) [91]

R42 e + O+
2 → O(3P) + O(3P) 3.72 × 10−9T−0.7

e [92, 93]

R43 e + O+
2 → O(3P) + O(1D) 7.44 × 10−9T−0.7

e [92, 93]

R44 e + O+
2 → O(1D) + O(1D) 7.44 × 10−9T−0.7

e [92, 93]
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Table 4.1: Complete chemistry set used in these HPEM simulations

No Reaction Ratea,b Ref.

R45 O+
2 + O− → O2(X3Σ−g ) + O(3P) 2.60 × 10−8T−0.44

e [94]

R46 O+
2 + O− → O(3P) + O(3P) + O(3P) 2.60 × 10−8T−0.44

0 [94]

R47 O+ + O− → O(3P) + O(3P) 4.00 × 10−8T−0.43
0 [94]

R48 O(3P) + O− → O2(X3Σ−g ) + e 1.50 × 10−10T−1.30
0 [95]

R49 O2(a1∆g) + O− → O2(X3Σ−g ) + O(3P) + e 1.10 × 10−10 [96]

R50 O2(b1Σ+
g ) + O− → O2(X3Σ−g ) + O(3P) + e 6.90 × 10−10 [97]

R51 O+ + O2(X3Σ−g ) → O+
2 + O(3P) 2.30 × 10−11 [98]

R52 O+ + O2(a1∆g) → O+
2 + O(3P) 1.00 × 10−11 [98]

R53 O+ + O2(b1Σ+
g ) → O+

2 + O(3P) 1.00 × 10−11 g

R54 O+
2 + O2(X3Σ−g ) → O2(X3Σ−g ) + O+

2 4.00 × 10−10 [99]

R55 O+
2 + O2(a1∆g) → O2(X3Σ−g ) + O+

2 2.00 × 10−10 h

R56 O+
2 + O2(b1Σ+

g ) → O2(X3Σ−g ) + O+
2 2.00 × 10−10 h

R57 O(3P) + O(1D) → O(3P) + O(3P) 8.00 × 10−12 [100]

R58 O2(X3Σ−g ) + O(1D) → O2(X3Σ−g ) + O(3P) 0.32 × 10−11 exp(67/Tg) [101–103]

R59 O2(X3Σ−g ) + O(1D) → O2(a1∆g) + O(3P) 0.32 × 10−11 exp(67/Tg) [101–103]

R60 O2(X3Σ−g ) + O(1D) → O2(b1Σ+
g ) + O(3P) 2.56 × 10−11 exp(67/Tg) [101–103]

R61 O2(a1∆g) + O(3P) → O2(X3Σ−g ) + O(3P) 2.00 × 10−16 [104,105]

R62 O2(a1∆g) + O2(X3Σ−g ) → O2(X3Σ−g ) + O2(X3Σ−g ) 3.60 × 10−18exp(-220/Tg) [105]

R63 O2(a1∆g) + O2(a1∆g) → O2(X3Σ−g ) + O2(b1Σ+
g ) 1.81 × 10−18T3.8

0 exp(700/Tg) [106]

R64 O2(b1Σ+
g ) + O(3P) → O2(X3Σ−g ) + O(3P) 8.00 × 10−14 [105]

R65 O2(b1Σ+
g ) + O2(X3Σ−g ) → O2(a1∆g) + O2(X3Σ−g ) 3.90 × 10−17 [105]

a Rate coefficient units are in cm3/s, Te has units of eV, T0 = Tg/300 where Tg has units

of K.

b f(ε) states that the rate coefficients were obtained from the electron energy distribution

function (EEDF) calculated via the electron Monte Carlo simulation module eMCS.

c Assumed to be the same as O(3P).
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d Superelastic cross section, which have been calculated from the corresponding excitation

process.

e The cross section has been approximated using scaling of the ground state via excitation

threshold of the metastable.

f O2(a1∆g) is scaled and shifted to estimate the cross section for this reaction.

g This reaction cross section is presumed to be the same as for the O2(a1∆g) state.

h As per the work of [98] an assumed lower rate of collisions of O+
2 with metastable

molecules.

Due to the plasma being operated across a wide parameter variation Gibson et al has

investigated the thermal accommodation and atomic species recombination coefficients of

the chemistry set 4.1. These are important as they influence the plasma in a number

of ways at different input powers and system pressures. The chemistry set presented

was tested against the mesh geometry of the GEC, where multiple iterations were run

for GEC specific input parameters such as the low and high power and system pressure

configurations on the uprated GEC cell. This required custom values for reactive and

neutral particles to ensure that the investigated species were fully converged for modelling

accuracy. With further consideration for the ion and neutral momentum equations to

complement the speed at which the model converges.



Chapter 5

Pulse-induced OES: influence on

plasma emission and substrate ion

energies

This chapter looks at the development of Pulse induced Optical Emission Spectroscopy

(PiOES), as a novel diagnostic for imaging regions of low plasma emission around the

floating lower electrode. Power and gas mixture variations produce complex technological

plasma environments, these directly impact the spatial distribution of the electron and ion

densities between the powered and floating electrodes of the GEC. By applying a tailored

voltage waveform at the plasma-surface interface of the lower electrode, the manufactured

emission can be captured and analysed to understand the behaviour of atomic species

densities under different operating conditions.

The PiOES development will be discussed with results and method for the initial and

final designs compared. The influence of the pulse on the ion energy distribution function

at the lower electrode is also investigated in line with plasma processing conditions.

5.1 Tailored voltage waveform development

The applications outlined in this research are based on requirements from industry partners

to monitor reactive neutrals and ions within regions of interest, to better understand how

varying plasma conditions can affect the production of reactive species. [107–109]

65
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Tailored voltage waveforms (TVWs) are used for a variety of applications, these include

sustaining plasma discharges through pulse type or sawtooth waveforms. This results in a

more advanced control of the particle flux and energy distributions by altering the number

of harmonics in the waveform [110]. In this work a pulse type waveform will be used to

not drive the plasma but create enough induced emission in a defined region of interest to

analyse [111,112].

The requirement is for a pulse waveform to provide sufficient and targeted emission

under normal operating conditions but also be minimally invasive to plasma. These are

the development steps for the first TVW design, with an aspiration to initially observe the

pulse and then with a better understanding of its impact be able to reduce its presence.

By looking at the range of possible ion-surface interactions and the typical ion energies;

film deposition is operated between 0.1 — 500 eV and etching from 10 — 10k eV, both

these processes occupy a large ion energy range however when considering plasma-assisted

Atomic Layer Deposition (ALD) this is characterised at ion energies of 10 — 100 eV and ion

fluxes of 1013 to 1015 cm−2 s−1 [113] [114]. Profijt et al examined ion-surface interactions

using an Oxford Instruments FlexAL reactor operated with an oxygen plasma at pressures

of 0.5 — 25 Pa and powers of 100 — 500 W. Ion energies is this configuration didn’t exceed

35 eV, but were shown to be low enough to prevent ion-induced film damage [115, 116],

this provides a benchmark for system measurements when a TVW is applied and will be

referred back to when measurements on the GEC system are evaluated.

5.1.1 Initial TVW design

The initial stages of the pulse development were focused on detecting pulse emission 0-4

mm above the lower electrode. This focussed on a plasma operating in both E and H

mode with powers ranging from 20 - 300 W. The primary measurements were all taken in

an Ar/O2 plasma with the argon percentage admixture ranging from 50 % to 2 %.

The initial TVW electrical configuration was based on a less capable electrical con-

figuration with a 40 MHz arbitrary waveform generator (TTi TGA12104) and broadband

amplifier (ifi SCCX100). A TVW was created manually in the wave select and edit function

of the waveform generator, this is represented in figure 5.1 where the 3 larger black circles

are the configurable part in the arbitrary waveform. Timescales of a waveform span one
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complete RF cycle (74 ns), with a 452 kHz repetition rate. The above hardware is synced

via the fixed frequency 13.56 MHz RF generator (Advanced Energy Cesar 1310). The

TVWs are monitored on an oscilloscope (LeCroy WaveRunner 204MXi-A 2GHz 10GS/s),

which is collected via a voltage probe (Lecroy HVP) placed in line with an n-type cable

to measure the TVWs losses after the amplifier.
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Figure 5.1: Initial pulse shape, with the shortest achievable pulse width (50 ns) at FWHM
and voltage varied between 30—70 V, the large black dots represent the points at which
the waveform can be manually modified from.

Initial observations on the oscilloscope showed distortions in the cable between the

broadband amplifier and lower electrode due to the added voltage probe connection which

was impacting the measured pulse shape. To overcome this the original probe was removed

from the inline T piece and a new more slimline model (Tektonix P5100A) was mounted

against the underside of the lower electrode, this allows measurements of the background

plasma voltage to be taken and no longer influence the TVW. This modification also

allowed the pulse polarity and phase shift to be more accurately mapped as the voltage

probe was measuring at the same surface as the effect was being applied. The phase shift

refers to the position of the TVW in the RF cycle (0-360◦) relative to the background

plasma voltage. The shift accounts for phase changes to the sheath and plasma bulk

which will impact a positive or negative pulse.
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The initial configuration stages were designed to create and detect a pulse waveform

regardless of impact, however to accurately implement a more controllable pulse shape, sys-

tem modifications were required. These include the purchase of a more advanced waveform

generator and automatic matching unit as well as changes to how the pulse is constructed.

5.1.2 Developed TVW design

The updated system hardware was integrated (waveform generator (Keysight 33622A, 120

MHz) and automatic matching box (Advanced Energy, RF Navio)), these were purchased

to facilitate the modified pulse design and implementation. The arbitrary waveform gener-

ator is capable of ≥ 3 ns pulse rise times and pulse widths of ≥ 8 ns. This allows a greater

number of harmonics to be added to the RF frequency (previously 40 MHz limit), in these

measurements the largest number of harmonics is 8 (13.56 MHz × 8 = 108.5 MHz) due

to the 120 MHz generator upper limit. The auto matching system creates a stable and

matched impedance with zero reflected power, which has been designed to interface with

the Advanced Energy fixed frequency 13.56 MHz RF generator.

The waveform generator output is sent to the broadband amplifier as shown in figure

3.1, in the latest TVW design configuration a laptop is connected via USB to the wave-

form generator to generate and configure the pulse waveforms without having to do some

manually. The TVW design script is written in labVIEW and interfaces with the wave-

form generator to allow user defined pulse amplitudes and harmonics. A voltage probe

placed at the underside of the lower electrode measures and displays the voltage waveform

applied to the plasma, it also detects the background plasma voltage of the RF waveform

produced by the driving frequency and is used as a marker to alter the pulse’s phase with

respect to the background plasma voltage and polarity during operation.

To generate a TVW at the lower electrode the equation below is used:

V(t) =

N∑
k=1

Vk cos(2πkft+ θk) (5.1)

Equation 5.1 can be tailored to N harmonics by setting the variables; θk(k = 1, .., N) as

the phase angles and Vk the amplitudes of the individual harmonics, with the fundamental

frequency f. These values are derived from equations 5.2 [110,117].
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Vk = V0
N − k + 1

N
, V0 =

2N

(N + 1)2
Vpp (5.2)

The positive pulse waveform is generated by setting θk to zero as shown in figure

5.2a while the negative pulse shapes are generated by setting the phase angles of all even

harmonics to π as illustrated in figure 5.2b. Vpp is the peak to peak voltage.

By varying the number of harmonics a more defined pulse shape can be achieved as

shown in figure 5.2, relative to its rise time and width at FWHM. This is based on the

number of harmonics specified by the user, beginning with a sine wave at a single harmonic

(N=1) and increasing the number of harmonics to N=4 and N=8. This method of creating

harmonic specific TVWs allows a much narrower pulse width and shorter rise time over

the previous method.
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Figure 5.2: Tailored voltage waveforms with a positive (a) and negative (b) polarity.
Generated using equation 5.1 with an increasing number of harmonics (1, 4 and 8). The
timescales (x-axis) are over one full RF cycle of 74 ns. The peak to peak voltage (Vpp) is
set according to the pulse shape and experimental configuration.

The phase of the electrical processes is synced to allow PROES images of one or more

RF cycles of the ICP driving frequency to be collected, where the pulse shape is included

in the first cycle and the next is also documented to capture any subsequent plasma

interference the TVW may provoke.
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5.1.3 Initial TVW design results

Accuracy and repeatability of the initial pulse design was achieved by using the highest

number of configuration points (large black dots in figure 5.1) in one RF cycle to provide

the most points that could be manually manipulated, this method achieved a pulse FWHM

of 50 ns which was the shortest pulse width and rise time on this setup. The preliminary

results focussed on producing a TVW and applying it to an oxygen plasma with sufficient

argon to image the fluorescence from the argon Ar(2p1) state using a 750 nm filter. This can

be observed in figure 5.3, here the emission around the top electrode confirms the plasma

is operating in a capacitive mode due to the sheath expansion. The PiOES emission is

clearly visible at the surface of the lower electrode, for the results presented here a positive

polarity pulse was used. The TVWs were applied to a gas ratio of 1:2 Ar/O2 and triggered

with a repetition rate of 452 kHz (every 30 RF cycles). The plasma had a system pressure

of 10 Pa and operated at 50 W, as this produced a stable E mode plasma.

Figure 5.3: This figure illustrates a 70 V positive pulse applied at the lower electrode
over multiple RF cycles, the line plot is a spatial integration and shows the additional
emission from the pulse during the plasma sustainment mechanisms. These measurements
are taken at system pressures of 10 Pa with a 1:2 Ar/O2 gas ratio operated at 50 W

The spatially integrated intensity plot in figure 5.3 illustrates the influence of the pulse

emission feature on the RF cycle it is applied to as well as a small increase on the following
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(a)
(b)

(c) (d)

(e) (f)

Figure 5.4: Initial PiOES emission measurements, a peak to peak voltage increase of 30,
50 and 70 Vpp in figures a,c and e respectively. Spatial integration (0-4 mm) as a function
of time (ns) for each of the PiOES images b, d and f. The plasma is operated with a gas
ratio of 1:2 Ar/O2 and a system pressure of 10 Pa at 50 W.

RF cycle. This needs to be minimised, as a large impact on the ion properties will influence

the energies outside the acceptable plasma-assisted ALD range.

Figure 5.4 includes PiOES results focussing on a positive pulse voltage increase from

30 Vpp in figure 5.4a, 50 Vpp in figure 5.4c and 70 Vpp in figure 5.4e.

In figure 5.4 the spatio-temporal PiOES images shows a 100 image kinetic series resulting

in a temporal timescale of 200 ns (2 ns per image). The spatial axis doesn’t include the full

inter-electrode distance only 0-4 mm above the lower electrode. PiOES images 5.4a,5.4c

and 5.4e with corresponding spatially integrated intensity plots as a function of the TVW

region of interest (0-4 mm) and 200 ns timescale. Due to the application of a positive

pulse, electrons are accelerated from the bulk plasma towards the lower electrode causing
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the excitation which produces observable PiOES emission. Figure 5.4a and intensity plot

5.4b illustrate that for a lower TVW voltage, less PiOES emission will be observed which

will impact any further analysis due to the signal-to-noise (SN) ratio. Alternatively with

a larger 70 Vpp pulse voltage as seen in figure 5.4f, more excitation and observed PiOES

emission from the Ar(2p1) state, results in a larger number of electrons being accelerated

and impacting the plasma operationally.

Additional testing to help quantify the TVWs impact on the plasma operation is done

by altering the phase at which the TVW is applied within the RF cycle. This is done at

the four positions outlined in figure 5.5, a 90 degree spacing is applied between each phase

measurement, these will be combined with IEDF measurements at the same positions to

compare the electron and ion behaviour.
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Figure 5.5: The four phase positions assigned to the plasma background voltage waveform
detected by the voltage probe and displayed on the oscilloscope, these are spaced 90◦ apart
and are selected prior to the pulse being applied at the lower electrode.

To measure the pulse voltages at the different phase positions (P1 to P4), a 70 V pulse

was applied to a 50 W O2/A2 plasma operating at 13.56 MHz with a system pressure of

10 Pa. The aim to analyse any large fluctuations in ion energies or impact on the ICP

operation. An overlay of the individual TVW configuration at the four phase positions

illustrates the impact of the initial TVWs width on the adjacent phase positions as shown
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in figure 5.6.
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Figure 5.6: Initial TVW design applied to the plasma background voltage at the four phase
positions, the plasma needs to be operational before the phase positions are apparent, at
which point the phase can be selected and a pulse applied

The voltage probe measurements at the four positions were compared against the

generated 70 V TVW, with P1, P2 and P3 producing a combined pulse feature (sine

waveform and pulse) of 60 V, while the largest deviation was seen at P4 with an amplitude

reduction to 55 V, these were measured individually on the oscilloscope; initially without

the plasma ignited to baseline the pulse and then with the plasma on and the phase varied.

The pulse is impacted by the phase of the sheath and plasma bulk. At P4 in figure 5.6

the sheath is fully expanded; the sinusoidal voltage is most negative and the electrons

are repelled from the electrode, resulting in a reduced electron presence during the pulse

application. For P2 in figure 5.6 the sheath is fully contracted and the sinusoidal voltage

is the most positive resulting in more electrons at the surface which would contribute to

the PiOES emission, when considering a positive polarity pulse.

Figure 5.7 is an investigation into the TVW impact on the ion energies at the plasma-

surface interface, these measurements were taken in the same conditions as the PiOES

data in figure 5.4. The Impedans RFEA probe was placed on the lower electrode and

TVW applied to the same electrode, only positive polarity pulses where investigated in
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(a) (b)

(c) (d)

Figure 5.7: IEDF measurements of a positive pulse at the four phase positions P1 (a),
P2 (b), P3 (c) and P4 (d) as highlighted in figure 5.5, with a baseline taken using the
Impedans RFEA probe and no pulse. An ideal pulse will have minimal deviation from the
baseline value across all pulse voltages, the plasma is operated at 50 W in a 1:2 Ar/O2

gas mixture, with a system pressure of 10 Pa
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this dataset. The collector grids were set according to the bias voltage measured using

a multimeter and values of approximately 50 V above the dc bias voltage were inputted.

As demonstrated in figure 3.3 the current voltage curve allows for the ions at each en-

ergy to be measured. The number of user defined scans over this range is set at 10 per

measurement. Due to the relatively low pressure (10 Pa) and some collisional effects in

the sheath at the floating electrode, the low energy tail at the start of the sweep volt-

age is due to the effect of collisions. Figures 5.7b and 5.7d have the largest and smallest

ion energy variations respectively. The black line, consistent throughout all four different

measurements represents the background IEDF measurement without a TVW applied to

the system. The same number of RFEA sweeps and scan times are set for each figure,

the higher ion energies in figure 5.7a are offset by the larger ion fluxes in figure 5.7c. As

previously mentioned the pulse width is the limiting factor in qualitatively determining

whether the phase and TVW amplitudes have the desired effect and minimal influence.
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Figure 5.8: DC bias for the pulse voltage variations at the different phase positions as
shown in figure 5.7, P2 has the largest ion energy variation (∼ 20 - 35 eV) is represented
by a more negative DC bias in order to counteract the increase in electrons at the surface.

Figure 5.8 is the dc bias voltage for the IEDFs in figure 5.7, a background reading

is taken at 0 V and the subsequent measurements at 30, 50 and 70 V. A positive pulse

attracts electrons and repels ions for the short period it is applied for, so a dc bias becomes
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more negative to attract positive ions back and even up the ion and electron fluxes on

a time averaged basis. These results show that figure 5.7b has a series of larger ion

energies at a point in the RF cycle when the sheath is fully contracted resulting in higher

electron densities at the electrode surface due to a positive sinusoidal voltage, this requires

more highly negative dc biases to counteract this, whereas figure 5.7d has consistently

lower energies with a lower electron density as the sinusoidal voltage is negative, therefore

requiring less negative dc biases to attract ions to the surface. These results illustrate the

impact of a TVW on the ion energies, which are important when considering the sensitivity

of plasma assisted ALD processes. As previously mentioned examples of titanium oxide

film deposition at 200 W in an oxygen ICP require ion energies of 19 - 27 eV, this would

only be possible with pulse voltages of 50 V and below in all but figure 5.7b where the

impact on the ion energies is too large [116].

5.1.4 Modified TVW design results

As outlined in section 5.1.2 the modified TVW design and updated waveform generator are

capable of generating pulses with narrower widths. For these measurements the plasma

was operated in E-mode by applying 50 W into the inductive coil. A TVW consisting of

a base frequency of 13.56 MHz with eight consecutive harmonics (N=8) and a repetition

frequency of 452 kHz (every 30 RF cycles) is used to demonstrate the PiOES concept. The

system pressure is 10 Pa and an initial gas ratio of 1:3 Ar/O2. Example pulse waveforms

measured at the bottom electrode under these conditions with different voltages (30 and

70 Vpp) and polarities (positive and negative) are shown in figure 5.9. Each pulse is

applied with a phase at P4 (reference figure 5.5) where the sheath is fully expanded and

the electrons are being repelled from the lower electrode. Figure 5.9a is a negative polarity

pulse over several pulse periods, while 5.9b shows zoomed in version of several pulses to

better identify the details of the pulse waveform. Under these conditions, the pulse rise/fall

times are around 10 ns, with a total width of just over 20 ns. These short pulses should

mainly result in electron acceleration, as the heavier ions should not be able to respond

to the fast change in the applied voltage.

Figure 5.10 shows the excitation of the O (3p 5P) state (emission at 777 nm) over

the full discharge region with two full RF cycles analysed. Figure 5.10 (a) shows a case
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Figure 5.9: Plot (a) is a negative 70 V pulse waveform over multiple RF cycles, while
(b) depicts both positive and negative pulses over a shorter timescale, highlighting the
reduced pulse width and rise times. The plasma is operated at 50 W with a pressure of
10 Pa and gas mixture of O2/Ar (98%/2%).

where a 70 Vpp positive polarity pulse is applied, while (b) shows the case where a 70 Vpp

negative polarity pulse is applied. In both cases, the main emission from the plasma is

seen just below the coil as a result of sheath expansion, typical to an E-mode ICP. In the

positive polarity case, emission resulting from the pulse can be seen close to the bottom

electrode (circled). This emission results from excitation due to electrons accelerated

towards the electrode from the plasma on application of the positive pulse. In the negative

polarity case, a different emission pattern is seen. In this case electrons are accelerated

away from the electrode and into the bulk plasma in the direction of the arrow. These

electrons influence the sheath expansion emission occurring below the coil, which is seen

to be brighter in the cycle following the pulse, compared to the sheath expansion emission

occurring around the time the pulse is applied. When comparing figure 5.10 and the

initial pulse shape in figure 5.3, it is clear that the modified pulse shape has a much lower

emission at the plasma-surface interface despite having the same 70 V pulse voltage, this

is due to the faster rise time and more refined pulse width.

Figure 5.11 shows the same data zoomed in to the region closest to the bottom elec-

trode. Here, it is clear that the positive pulse causes more emission in this region compared

to the negative polarity pulse. From this we can see that the positive pulse is better for

causing emission close to the electrode to carry out PiOES in this region. The negative

polarity pulse causes more emission across the entire gap and may be more useful for
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Figure 5.10: Plots (a) is a positive 70 V pulse waveform, while (b) is a negative 70 V pulse
with opposite polarity, these plots show the varying impact of the polarity on the bulk of
the plasma due to the electron and ion behaviour. The plasma is operated at 50 W with
a pressure of 10 Pa and gas mixture of O2/Ar (98%/2%).

carrying out PiOES across the gap when emission at the plasma centre is weak.
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Figure 5.11: PROES measurement of the lower electrode region <25 mm with a 70 Vpp

positive (a) and negative (b) pulse applied, these are a close up of the same region with the
negative pulse emission shifting towards the plasma bulk as the negative pulse repels the
electrons at the lower electrode surface. The plasma is operated at 50 W with a pressure
of 10 Pa and gas mixture of O2/Ar (98%/2%).

Figure 5.12 is the same axial region as figure 5.11, but the pulse voltage has been

reduced to 30 V. There is little conceivable difference between the two PROES plots at

30 Vpp, the pulse is not bright enough to clearly observe under these plasma conditions.

The conclusion being that for any future work the pulse voltage under similar conditions

will need to be closer to 70 V or more. Where the plasma power is increased, the pulse
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voltage will need to scale accordingly.
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Figure 5.12: PROES measurement of the lower electrode region <25 mm of a 30 Vpp

positive (a) and negative (b) pulse, they show no clear pulse induced emission. The
plasma is operated at 50 W with a pressure of 10 Pa and gas mixture of O2/Ar (98%/2%).

These results show that higher voltages are better, as it produces a more defined image

of pulse induced emission. While these results are specific to the test case considered here

(10 Pa, 50 W plasma power) the trends with pulse polarity and voltage are expected to

be similar for other plasma conditions. Another factor is the pulse needs to minimally

invasive in order to preserve the overall operation of the plasma, this is important for

industrial processes.

5.2 Pulse influence on ion energy

Having established the primary aim of observing pulse induced emission at the bottom

electrode using the modified TVW design, it is important to establish knowledge of other

plasma parameters which are influenced by the new pulse. This includes the ion energies

and fluxes at the bottom electrode. A Semion retarding field energy analyser (RFEA)

was used in this work to determine ion energies at the bottom electrode. The probe is

described in section 3.2.1. The DC bias voltages were measured using the probe during

plasma operation. The next iteration is to apply a TVW to the GEC system with RFEA

in situ to directly measure any fluctuation in either the flux or energy.

Here, the role of the pulse voltage, polarity and repetition frequency are investigated.

Figure 5.13 shows ion energy distribution functions comparing (a) positive pulses of varying
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Figure 5.13: These plots illustrate the ion energy and flux for a positive (a) and negative
(b) pulse voltage variation, these results show that a positive pulse has a greater influence
on ion properties and DC self bias. The plasma is operated at 50 W with a pressure of 10
Pa and gas mixture of O2/Ar (98%/2%). Pulse voltage is 100 Vpp
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Figure 5.14: Ion flux (a) and DC bias (b) for the IEDF pulse voltage variation. The
positive pulse has a larger ion flux variation and more negative DC self bias at the electrode
surface. The plasma is operated at 50 W with a pressure of 10 Pa and gas mixture of
O2/Ar (98%/2%), Pulse voltages measured are 30, 50, 70 and 100 Vpp.

voltage and (b) negative pulses of varying voltage, with the case where no pulse is applied.

For the positive polarity cases the change in the IEDF increases as the voltage is increased,

leading to higher ion energies. For the negative polarity cases the IEDFs do not vary much

with increasing voltage, but in general show lower ion energies compared to the no pulse

case.
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Figure 5.14 illustrates the ion flux (a) and dc bias voltage (b) for the IEDFs shown in

figure 5.13. From these figures it can be seen that the positive polarity pulse has a generally

stronger influence on the ion properties and dc self bias at the electrode. While the ion flux

is not largely impacted by the pulse polarity, it can be observed that the positive pulse has

a higher ion flux at the 100 V pulse measurement, which coincides with the larger dc bias

attracting more ions back to the probe surface. The negative pulse is largely unchanged

for both flux and dc bias, which shows a reduced impact on the ion energies and flux. Bias

is created to balance electron and ion currents to the electrode. A positive pulse repels

positive ions from the electrode for a short time and attracts electrons, therefore the dc

bias must become more negative to attract more positive ions to balance the electron and

ion fluxes on time average. A negative pulse accelerates positive ions towards the electrode

for a short time, and repels electrons, therefore the value of the dc self bias required to

balance electron and ion currents to the electrode becomes less negative.

In figure 5.15 the subtraction of the background ion energy distribution function from

the varying pulse voltages is plotted in figure 5.13. This data highlights the IEDFs with

a greater deviation from the no pulse or background measurement. As previously noted

the positive polarity pulse had a more significant ion energy increase with respect to the

background measurement, this is shown in figure 5.15a. Figure 5.15b has a largely similar

set of pulse measurements and this is mirrored in the overall higher ion fluxes but lower ion

energies, this highlights a regime that has a smaller pulse voltage dependence, meaning a

lower impact on ion energies and subsequent RF cycles while still maintaining values that

would be suitable for ALD processes and stable enough to preserve process uniformity.

Unfortunately single measurements occurring at the time of the pulse application cannot

be singled out as the RFEA collects its data via the voltage sweep and examines the overall

ion energy change not the instantaneous value.

Having considered the polarity and amplitude of the pulse a final consideration is the

repetition at which it is applied. As mentioned the pulse is typically confined to a single

RF cycle which limits its impact on the following RF cycle, however using the RFEA, ion

energy and flux data to represent a scenario that focuses on the average over a 60 second

data acquisition period, allowing the time averaged effect of using different repetition

frequencies to be shown.
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Figure 5.15: Positive (a) and negative (b) pulse voltage variation with the background ion
flux subtracted from each pulse voltage plot. Highlighting the baseline change from the
background measurement taken for both sets of measurements. The plasma is operated
at 50 W with a pressure of 10 Pa and gas mixture of O2/Ar (98%/2%). Pulse voltage is
100 Vpp.

Figure 5.16 examines the ion energy shift at different repetition frequencies between

113 and 452 kHz, for the case of 100 Vpp positive polarity pulses, which have been shown to

have the greatest effect on the ion properties. The black solid line and symbols represents

the plasma background values without any additional inputs. The equipment limitations

of the ICCD camera impose an upper limit of 500 kHz, which prompts the 452 kHz rate.

226 and 113 kHz are chosen as lower frequencies which are also multiples of the 13.56

MHz, the driving frequency of the plasma.

The data in figure 5.16 illustrates the importance of control over the pulse’s charac-

teristics. There is an increased overall change in the ion energies when presented with the

higher repetition rates; with the higher repetition rates leading to higher ion energies in

the tail of the distribution function. The ion flux and dc bias for these cases are plotted

in figure 5.17. It can be seen that the ion flux increases and the dc bias decreases with

increasing repetition frequency, illustrating the stronger effect of the pulse on the plasma.

The phase is investigated in order to compare the changes at the four phase positions

in the RF cycle using the developed TVW, in figure 5.18, the negative polarity pulse

illustrates lower ion energies with comparable ion fluxes for the four phase positions as

outlined in figure 5.5. The negative pulse attracts ions but due to the timescale it is

operating on the ions are not influenced, instead electrons are repelled and the dc bias
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Figure 5.16: Ion energy data taken for different repetition rates 452, 226 and 113 kHz,
with identical plasma powers of 50 W and system pressure maintained at 10 Pa, the gas
mixture is O2/Ar (98%/2%). At the highest repetition frequency (452 kHz) the ion flux
and energy impact is observed, with a positive pulse voltage of 100 Vpp.
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Figure 5.17: Ion flux (a) and DC bias (b) for the IEDF pulse frequency variation, both plots
exhibit an increasing trend with increased repetition rates. Highlighting the importance of
creating enough induced emission while keeping the repetition frequency low. The plasma
is operated at 50 W with a pressure of 10 Pa and gas mixture of O2/Ar (98%/2%).
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Figure 5.18: Ion energy data taken for a positive (a) and negative (b) polarity pulse at the
four phase positions as outlined in figure 5.5, the negative pulse shows an overall lower ion
energy value and greater consistency, which is preferential for the measurements taken in
chapter 6. The plasma is operated at 50 W with a pressure of 10 Pa and gas mixture of
O2/Ar (98%/2%), with a pulse voltage of 100 Vpp.

becomes less negative to ensure that fewer ions hit the surface. This explains the small

decrease in ion energy but largely similar pulse structure. For the positive pulse electrons

are repelled, as the dc bias becomes more negative resulting in more ions at the surface with

higher energies. There is much less difference between the phases when a narrower and

more controlled pulse is implemented for both the positive and negative pulse case. The

background measurement has an ion energy of 17 eV with the positive phases extending no

further than 3 eV above the background ion energy measurement ≤ 20 and in the negative

pulse case ≥ 14. As the plasma assisted ALD environment develops further, there is an

expectation that all ion energies will have limited operational ranges e.g (19 - 27 eV) which

are dependent on the process and material.

In this case the background ion energy is approx. ∼ 5 eV below the first set of

measurements taken on the GEC cell using the initial TVW this is due to the alterations

of the hardware and diagnostic configuration thus outlining the importance of a stable

system to baseline these measurements on.

Combining the above conclusions, it has been demonstrated that a major consideration

in the use of pulse induced OES will be the compromise between having easily observed

emission with a high signal-to-noise ratio and minimising the influence of the pulse on the
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plasma. These are specific to the test case, but are likely to be valid for other plasma

conditions as well. The ion bombardment of semiconductor materials has been researched

by Wang et al [118] in a GEC reference cell with a Ar/O2 plasma, while Gudmundsson

has also investigated an oxygen plasma looking at ion energy distributions of O+ and

O+
2 [119]. Both demonstrate similar ion energies with Gudmundsson observing a mean

ion energy increase from 10 eV at 2.7 Pa to 25 eV at 0.4 Pa. As previously mentioned

Profijt et al examined ion-surface interactions for oxygen plasmas in an Oxford Instrument

FlexAL reactor; used primarily for engineering nanoscale structures in remote plasma

assisted atomic layer deposition (ALD) processes. These measurements were performed at

pressures of 0.5 - 25 Pa and powers of 100 - 500 W [115]. The ion energies didn’t exceed 35

eV and the conclusion being that the ion energies were low enough to prevent ion-induced

film damage for ALD processes. In comparison with this work, only ion energies in the

initial TVW design exceeded the 35 eV value, for the modified design these values were

typically in the region of 17 ± 3 eV. Based on the conclusions in this chapter we can

say that high pulse voltages lead to more observable emission and a higher signal-to-noise

ratio, but lead to a greater influence of the pulse on the ion properties, which may be a

disadvantage for processes. The use of positive polarity pulses allows for greater emission

closer to the electrode surface than negative polarity pulses. However, negative polarity

pulses are better for imaging the centre of the plasma. In this way, the two pulse polarities

may be used to diagnose different parts of the plasma. Positive polarity pulses tend to lead

to a greater effect on the ion properties, which again may be a problem for applications.

The pulse repetition frequency was found to have a strong effect on the influence of the

pulse on the ion properties. This does not change the pulse emission on individual images,

but does change how often the ICCD camera can image the pulse. This means that lower

repetition rates require longer camera exposure times to achieve the same signal-to-noise

ratio. However, they have the advantage of influencing the ion properties less.

In conclusion, the PiOES measurements in the following chapters will focus on us-

ing a negative pulse polarity (less influence on ion properties) and an intermediate pulse

frequency (less influence on ions) along with a variable pulse voltage in order to clearly

observe pulse induced emission. The pulse voltage will need to be greater than 70 Vpp and

will therefore occur in the region of 100 - 350 Vpp to allow sufficient pulse induced emission
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across the 200 - 1000 W power range. The greatest improvement was seen when switching

from the initial pulse design to the modified TVW, this highlighted the inefficiencies of

the initial hardware and pulse design. The ion energy variation is reduced from 0 - 12

eV (initial TVW design) across a single RF phase measurement down to 0 - 5 eV for the

developed tailored waveform. The discrepancies in phase and polarity have been reduced

for the developed TVW design with only minor ion energy changes 17 (± 3) eV between

the phases and polarity measurements which suggests the modified design is less impactful

on the ion energies and therefore more applicable to a range of plasma processes.



Chapter 6

Measurements and simulations of

atomic oxygen densities and gas

temperatures

A central feature of semiconductor processing is to produce high quality final products onto

the wafer substrate via plasma assisted processes, these include the addition, modification

or removal of material under closely monitored conditions. This is captured in the etching

rate, which must be controllable and highly uniform across each individual feature and

the entire wafer.

This chapter presents atomic oxygen and gas temperature measurements on the GEC

reference cell using the TALIF technique to investigate a wide power and pressure range,

in both capacitive and inductive modes. The trends in these measurements are presented

as a function of the gas mixture, pressure and plasma power. Specific trends including

atomic density and gas temperature are compared with HPEM plasma modelling results.

These results are used to benchmark PiOES-ERA as a method of obtaining atomic oxygen

densities in a low pressure oxygen plasma. These comparisons are used to identify the

strengths and weaknesses of the PiOES-ERA technique in its current form.

Oxygen as a primary feed gas have been chosen due to its extensive use in the semi-

conductor manufacturing industry. It provides an alternative to wet stripping techniques

which are messy and leave corrosive by-products, oxygen plasmas are able to clean resid-

87
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ual polymers from surfaces, such as SiO2 wafer layers as oxygen plasmas can do so with

minimal damage and precision accuracy [120]. They are also used for removal of organic

polymers and in lithography processes for resist thinning, which is key for reducing the

gate length without complicating the lithography process [121,122]. Photoresist ashing also

uses O2 chemistries to remove photoresist mask layers [123]. Finally, O2 based chemistries

are also used to etch organic and hybrid low-k dielectrics, which can be patterned using

SiO2 [124]. In high pressure oxygen discharges (50 - 600 Pa) the primary etchant is O

atoms [125, 126]. Where the etching rate of the O atoms is depended on power and gas

mixture of the plasma, it has been shown that the thermal accommodation coefficient αE

is key in determining the neutral gas temperature which also impacts the O density and

ion bombardment energy [70]. A change in the plasma properties will result in reduced

atomic oxygen density and thermal energy for surface interactions, therefore a wide pa-

rameter study will look at these properties across the two plasma modes with an aim to

develop a pulse technique to extract atomic oxygen values and gas temperatures without

impacting the plasma processes.

6.1 TALIF measurements of O atom densities and gas tem-

perature

In order to benchmark the PiOES-ERA results TALIF measurements using identical

plasma conditions will be compared in order to quantitatively assess the effectiveness of

the minimally invasive pulse induced OES technique. TALIF excites oxygen atoms (with

a 2% argon admixture) in order to obtain absolute atomic oxygen densities as discussed in

section 3.3. A calibration of the system is also performed using a xenon gas and identical

system parameters. By generating laser pulses of 5 ns width at energies of 800 µJ and a

laser wavelength of λ= 225.58 nm, two photon excitation of ground state atomic oxygen

is achieved. Continually monitoring and stabilizing the shot-shot pulse energy through a

feedback loop attached to the attenuators, it is possible to maintain a stable laser pulse

around the baseline. The experimental procedure for obtaining the time resolved emission

from atomic oxygen after excitation is interchangeable to that of the PROES measure-

ments, with an identical camera position relative to the chamber window and only a filter
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change required. The fluorescence radiation of the atomic oxygen is measured at λ= 844

nm, with the camera now synchronised to the laser pre-trigger. The temporal fluorescence

decay is measured in 2 ns time increments as per the PROES measurements.

The laser and plasma both require a warm up and stabilisation period, both for the

gas chemistry and also temperature. For normal operation the laser was left for up to 2

hours and the plasma a similar time frame, the lab space was also air-conditioned to keep

the room temperature at 20 ◦C. The laser energy was measured before passing through

the GEC cell and again at the beam dump after, this was performed at the start and

end of the day as well as before and after each separate set of measurements. Within

this typical operational time frame the laser energy would drift 0.5—1% an hour over the

course of a day (7 hours) resulting in a total 3.5 - 7% error estimation for the 7 hour

period. When changing the plasma parameters such as power or pressure, the system is

left for an additional 10 minutes to allow the new plasma conditions to stabilise. Figure

6.1, is an example of the laser induced emission relative to the plasma emission at the

top of the figure. It is an O2/Ar plasma (98%/2%) at 150 Pa and operated at 800 W,

these measurements include a PiOES pulse voltage that varied from 100 to 350 VPP with

increasing power and pressure. Under these conditions, the plasma is just beyond the

transition between E- and H-mode. The laser beam passing through the discharge region

is subsequently focussed down in front of the lower electrode and the excitation of the

(2p4 3P0) ground state into (3p 3P1,2,0) state and subsequent decays into the 3s 3S state

emitting a photon at 844.64 nm. The TALIF fluorescence is detected perpendicular to the

incident laser beam. The beam size has been calculated according to the size of the ICCD

chip and distance between the electrodes, this results in a beam width of 0.96 mm.

To ensure the laser pulse energy does not induce any photoionisation due to high laser

fluence, the square root of the TALIF signal as a function of the laser energy is measured

and plotted as shown in figure 3.16. For atomic oxygen, the saturation occurs around 850

µJ, as a result, the following measurements were taken at 800 µJ. For the xenon saturation

calibration, a central wavelength of 222.17 nm was used, where saturation occurred at 130

µJ so a laser pulse energy of 100 µJ was chosen for calibration. The total systematic

error estimation on the TALIF measurements in an O2/Ar gas mixture considers the 650

to 850 nm emission lines, which are close to the maximum possible quantum efficiency
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Figure 6.1: 844 nm emission of an O2/Ar plasma (98%/2%) operated at 800 W with
a system pressure of 150 Pa and TALIF laser energy of 800 µJ. The dotted white lines
represent the electrode surfaces. This figure represents a 2 ns image taken from the full
wavelength sweep, illustrating the position of the plasma and TALIF laser beam.

of the photocathode in the ICCD camera (> 25%). The documentation doesn’t specify

an error, however when considering the variation in manufacturers for components such

as the focussing lens, filters and camera this is estimated to be in the region of ± 10

%. Which includes the ratio of the optical transmission of the ICCD focussing lens and

bandpass filters (Andover Corporation) 750.4 ± 0.5 nm, 777.5 ± 1.75 nm and 844.6 ± 0.95

nm. The radiative lifetimes of O(3p3Pj) are 34.7 ± 1.7 and Xe(6p’[3/2]2) 40.8 ± 2.0 are

taken from the work of Niemi et al [2]. His work also references the two-photon excitation

cross section ratio of σ2
Xe/σ

2
O = 1.9 with an estimated total overall uncertainty of 20 %,

which will be applied to the TALIF measurements.

A number of studies have looked at atomic oxygen density [2,56,127,128] and methods

for gas temperatures measurements [54, 129] over E-H modes or more specific plasma

powers in order to understand how plasma density impacts key plasma processes. This

will inform the future fabrication of three-dimensional (3D) nano devices that require

atomic scale control of ion-assisted reactions [5]. To baseline these results a power and

pressure series will be investigated, using TALIF to study and understand the current

limitations of the PiOES-ERA technique.
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6.1.1 Atomic O densities

The complete pressure and power study using TALIF is plotted in figure 6.2 with gas pres-

sures ranging from 20 — 250 Pa and input powers starting at 200 W and increasing through

to 1000 W in 200 W increments. Figure 6.2a shows an increasing trend of O atom den-

sity as a function of power and gas density, the increase in plasma power stimulates more

electron impact dissociation of O2, which is due to an increase in power being deposited

into the coil and subsequently heating the electrons directly below it. This results in more

dissociation of molecular oxygen using the reaction pathway (e− + AB → A + B + e−)

and producing two oxygen atoms with a thermal energy dependent on the dissociation

pathway [130]. By considering the increase in system pressure and the availability of gas

to dissociate, it provides an obvious and simplistic conclusion to the increasing density,

however the change in wall loss rate (kwall) is also impacted by system pressure which di-

rectly affects the atomic oxygen density due to a reduction in recombination at the reactor

walls. Both these factors will play an important role in the overall atomic oxygen density.

This will be explained in more detail later in this chapter.

Measurements taken using the GEC have been benchmarked against other GEC refer-

ence cells and similar references studies investigating oxygen plasmas, these studies all fall

within the large power and pressure range set out in this work. The atomic oxygen density

at 200 W and 20 Pa is 7.43× 1019 m−3 increasing to 3.53× 1021 m−3 at 1000 W and 250

Pa, corresponding to an increase of almost a factor of 50. Zeng et al measured atomic

oxygen densities in ICP plasmas at powers of 500 and 1000 W at 10 Pa of 1.13×1020 m−3

and 2.89 × 1020 m−3 respectively. When compared with the measurements taken in the

GEC at 500 and 1000 W it resulted in values of 3.82×1020 m−3 and 8.81×1020 m−3 which

is slightly above Zeng’s work, however the GEC system pressure was 25 Pa which could

explain the higher O atom density [127]. Gudmundsson et al modelled a planar inductive

oxygen discharge at 1000W and 8 Pa which simulated oxygen densities of approximately

1.00 × 1021 m−3 which is in reasonable agreement with the 20 Pa and 1000 W measure-

ment performed on the GEC, noting that the system configuration and gas flow rate are

important factors when comparing similar pressure and power measurements [131, 132].

Three different E-H mode transitions were visually observed for 20, 150 and 250 Pa. With
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Figure 6.2: Atomic oxygen density contour plot (a) measured in a plasma operating a
gas mixtures of O2/Ar (98%/2%) and increasing pressure (0 - 250 Pa) and plasma power
(200 - 1000 W) values, the atomic oxygen densities increase with both pressure and power,
while the effective lifetime (b) of atomic oxygen in the same pressure and power parameter
range also increases with plasma power.

an increase in the RF power from 200 - 1000 W, the discharge changes from an E-mode to

a hybrid E/H-mode and finally pure H-mode, as demonstrated by Wegner et al [22]. The

transition points are noticeable in all the chosen pressures; at 20 Pa it occurs between 200

- 300 W which resulted in an O atom density increase of a factor of 5, whereas for the

150 Pa case the transition started at 600 W and was in a pure H mode by 750 W which

resulted in an O atom density increase of factor 2 between the modes, finally for 250 Pa

measurement the transition occurred between 800 and 1000 W, resulting in an increase

of factor 2 from 1.68 × 1021 m−3 to 3.52 × 1021 m−3. While investigating surface loss

coefficients in oxygen plasmas, Gomez et al measured O atom densities using TALIF at a

pressure of 50 Pa and power of 250 W as 1.00 × 1020 m−3 which closely compares to the

50 Pa and 200 W measurement of 2.23× 1020 m−3 taken on the GEC using TALIF.

As the pressure increases the O atoms will diffuse less to the walls, which means fewer

O atoms are lost due to the increased pressure, this can be observed in figure ?? where

the kwall values for a 200 W plasma show a decrease in the wall loss rate at pressure above

100 Pa. This will described in more detail below, with the introduction of wall loss rate

kwall.

The work of Tsutsumi et al [38] considers recombination to the chamber wall as being
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one of the largest loss mechanisms for this system configuration and under these opera-

tional conditions, when comparing it to loss rates through pumping or destruction via three

body processes. In general, as the pressure is increased, surface losses would be expected

to decrease as the diffusion of atomic oxygen to the walls becomes more difficult. With

few studies looking at the atomic oxygen recombination rate α in low pressure plasmas,

Gibson et al. has taken a range of recombination rates from 0.01 [133] to 0.5 [134] and

modelled them using HPEM at a low gas pressure of 1.33 Pa and plasma power of 500 W

to highlight surface losses [70]. In his work, atomic oxygen density and gas temperature

are plotted as a function of the recombination coefficient, where the atomic oxygen den-

sity decreases with increasing recombination coefficient from 8.3×1019m−3 to 5.9×1018m−3

and the temperature remaining relatively constant at 860 - 990 K. The O atom density

decreases as a result of the increasing recombination coefficient which converts O to O2

at the surface. Figure 6.2a illustrates that with increasing pressure, higher O atom den-

sities are measured due to less recombination at the reactor walls, as well as additional

molecular oxygen O2 to dissociate, meaning both the increased dissociation and reduction

of wall losses are contributing to the overall density. Gomez et al. has shown that the

surface recombination probability of atomic oxygen decreases with increasing pressure, as

the small O atom flux to the surface at low pressures means that for each of the chamber

surfaces, every arriving atom will have a higher probability of sticking or recombining then

those at a higher system pressures. For similar pressures, in an inductive mode plasma the

flux of O atoms are higher due to having a greater density and higher velocity [4]. Guha

et al investigated photoresist etching in O2 containing plasmas, where a decrease in etch

rate was observed due to deposited materials on the chamber walls decreasing the O atom

concentration and increasing the O atom recombination rate [133].

The role of surface processes can be more clearly considered following the approach of

Tsutsumi et al [38], Booth and Sadeghi [134], Corr [27] and Chantry [135]. These studies

defined the wall loss rate of atomic species, kwall as:

1

kwall
=

Λ2
0

D

V

A

2(2− α)

ν̄α
(6.1)

The diffusion length Λ0 is defined by the reactor geometry, and D is the diffusion
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coefficient. The volume of the container V and surface area A are the values for the GEC

cell. The atomic oxygen and the mean velocity of atomic oxygen ν̄=
√

(8kBT )/(πmo)

and α is the atomic oxygen wall recombination coefficient. For a cylindrical reactor the

diffusion length Λ0 is defined as;

1

Λ2
0

=

(
π

L

)2

+

(
2.405

r

)2

(6.2)

Where the length (L) and radius (r) refer to the geometry of the reactor. The diffusion

coefficient of atomic oxygen within a molecular oxygen gas is taken as;

D =
3

8nO2σ
2
12

√
kBT

2π

(
1

mO
+

1

mO2

)
(6.3)

This expression is taken from the work of Chapman and Cowling [136] and gives the

diffusion coefficient from a species in a binary mixture of gases. nO2 is the density of

molecular oxygen, masses mO, mO2 of atomic and molecular oxygen respectively while

σ1 and σ2 represent the Lennard-Jones collision cross sections for atomic and molecular

oxygen, where σ2
12 = (σ1 + σ2)/2.

Since surface losses are important for O atom density, these equations can be used

to help explain the trends observed in figure 6.5b. As the pressure is increased at 200

W, the O atom density increases linearly between 20 Pa and 150 Pa. After 150 Pa, the

gradient of its increase gets steeper. A possible explanation for this change of gradient,

is a combination of increasing gas density and decreasing gas temperature, which can

explain a decrease in the diffusion coefficient of O atoms (equation 6.3), in combination

with the decreasing value of α and increasing pressure [4]. The wall loss rate (kwall) has

been plotted as a function of pressure and temperature to indicate the regions where wall

losses are dominant across the 20 - 250 Pa pressure range at 200 W, it can be seen that

the gradient between 100 - 150 Pa reduces, resulting in less recombination at the walls for

the higher pressures.

For the 1000 W case, the increase in O atom density with pressure has the same gradient

over the pressure range of the measurements. In this case, the higher gas temperatures at

1000 W mean that the diffusion of O atoms to the surface is higher when compared to the

200 W case because the gas temperature is lower. Even though the diffusion coefficient
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and α decrease with increasing pressure, the value of the diffusion coefficient is higher than

for the 200 W case, resulting in a transition between the two different gradients in the

O density as a function of pressure which does not occur in the pressure range of these

measurements.

Figure 6.3 is a plot of the dissociation degree, which is defined as the density of atomic

oxygen divided by the density of molecular oxygen (nO/nO2). The contour plot describes

areas of higher dissociation degree that may be of interest for industrial applications, as

the O to O2 ratio changes due to the plasma conditions. A decreasing dissociation degree

at higher pressures and lower powers is due to the decrease in electron temperature and

therefore lower electron impact dissociation rates.
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Figure 6.3: Contour plot of the dissociation degree as a function of system pressure and
power. Increasing dissociation is observed at higher plasma powers as the electron density
increases and influences the electron impact dissociation rates. Gas mixture is O2/Ar
(98%/2%).

Having discussed the general trends in O density, we can now look at some specific

trends in more detail. Figure 6.4f shows the O atom density for pressure of 150 Pa at

five power increments. A jump in O atom density is observed between 600 and 800 W.

This jump corresponds to the E-H mode transition, which is demonstrated in the PROES



CHAPTER 6. O DENSITY AND GAS TEMPERATURE MEASUREMENTS 96

images at increasing plasma powers as shown in figures 6.4a - 6.4e. Figure 6.4a shows the

plasma operating in E-mode, which typically has low plasma density. E-mode is indicated

by one excitation structure in the RF cycle as a result of the motion of the plasma sheath.

As the power is increased a critical electron density is reached, causing the plasma to

transition into H-mode. This can happen gradually or in a step like manner. At lower

pressures a more gradual transition is observed, while at higher pressures it exhibits a more

step like transition, as shown in figure 6.5a. This is indicated in the PROES images by a

second excitation structure becoming stronger between 400 and 600 W until at 800 W the

plasma has fully transitioned into H-mode, indicated by two mirrored excitation structures

close to the coil. This is a product of the azimuthal movements of electrons due to the

inductive heating. The emission intensity also increases significantly between 600 and 800

W. The point of transition between E and H mode agrees well with the sharp increase in O

atom density between ∼ 550 and 800 W. The PROES images of the E-H mode transition

agree well with those measured previously by Wegner et al [22] and Zaka-ul-Islam [137].

The mode transition in figure 6.4 exhibits an O atom density increase of factor 2 across

the E-H mode transition at 150 Pa, this transition occurs between∼ 550 W to 800 W. In the

work of Zaplotnik et al, the E-H mode transition at 160 Pa occurs between powers of 600 W

and 800 W with a factor 2 increase in O atom density from 1.0×1021m−3 to 2.0×1021m−3.

The plasma is operated at 13.56 MHz, however the experimental configuration is slightly

different as the coil surrounds a glass discharge tube [138]. It is noted by the author that

O atom density does not depend on the discharge mode when operating below 10 Pa,

where the first increase in O atom density across the E-H transition mode is observed at

20 Pa. Zeng et al has investigated the E-H transition region for oxygen gas pressure of

10 - 100 Pa and powers of 0 - 2 kW; at 20 Pa the transition is measured between 600

and 700 W, for 50 Pa it is slightly higher at 900 and 1000 W and finally for 100 Pa the

E-H transition region is measured between 1500 and 1600 W. In comparison, the values

measured in this work are 200 - 300 W for 20 Pa, 300 - 400 W for 50 Pa and 550 - 750

W for 150 Pa as measured on the GEC system using TALIF. The difference is a factor 2

which is fairly significant, however, Zeng was operating in a much larger system with an

inner diameter of 300 mm and height of 463 mm. The measurements carried out in this

chapter also follow similar trends to the E-H mode and O atom density measurements and
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Figure 6.4: PROES images and plots indicating an E-H mode transition in an oxygen
plasma with small argon admixture. The mode transition can be observed in both the
PROES images and clearly in the plot of atomic oxygen densities. It is marked by the addi-
tion of a second sheath structure (plot (c)) and the jump in oxygen density as shown in the
final plot (f). The plasma pressure is 150 Pa and incremental plasma power measurements
of 200 - 1000 W. Gas mixture is O2/Ar (98%/2%).
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simulations performed by Corr et al, these were taken on a GEC reference cell at 6.66 Pa

in an oxygen plasma and produced atomic oxygen densities of 1019m−3 to 1020m−3, where

the E-H mode is observed between 27 and 220 W [27].

Figure 6.5a shows the O atom density as a function of power from 200 - 1000 W,

increasing in 200 W increments as shown in figure 6.2a. The figure includes a 20 and 250

Pa set of measurements. The 20 Pa results show an increase in O density from 200 - 400

W before dropping off and slowly increasing again between 600 - 1000 W, the slow drop

off could be due to thermal effects which would initially impact the recombination rate, a

jump in gas temperature is observed in figure 6.7a where a higher gas temperature could

increase the O atom recombination and therefore a drop in O atom density. In the 250

Pa power variation, a mode transition occurs between 800 and 1000 W, with the O atom

density increasing by more than a factor of two in this range.

For the 200 and 1000 W O density measurements in 6.5b. The approximately linear

upward trend of the O atom density with pressure is observed. This is largely determined

by the increase in total gas density as the pressure increases. Overall, the observed trends

are caused by a number of factors, such as mode transitions between E- and H-mode,

which cause sharp changes in densities as well as the impact of surface loss processes at

different pressures and powers. The error included here is the quantum efficiency of the

system as well the two photon excitation cross section ratio totalling 20 %, not to be

confused with the 20 % for the gas temperature measurements that which was due to the

quenching coefficients for both O and O2.

6.1.2 Gas temperature

Figure 6.2b is the TALIF effective lifetime as a function of power and pressure. At powers

of 800 and 1000 W in a 20 Pa system the results illustrate a region where the neutral gas

density was low enough for the effective lifetime to be approximately equal to the natural

lifetime, as indicated by the hatched region in figure 6.2b The effective lifetime decreases

with increasing pressure as the background gas density also increases, this leads to an

increase in the collisional quenching rate. The effective lifetime increases with increasing

power as the gas temperature increases, leading to a decrease in the background gas

density at a constant pressure, resulting in a decrease to the collisional quenching rate
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Figure 6.5: TALIF measurements of absolute O density as a function of plasma power (a)
and pressure variation (b) are plotted, laser energy was 800µJ as previously calibrated.
Trends vary significantly depending on pressure and power with possible thermal effects
which would impact recombination rate, the consideration of surface loss processes at
different conditions is also a factor. Gas mixture is O2/Ar (98%/2%).

which increases the lifetime.

These results include a transition from E-H mode for each power, where the E-mode

is characterised by a higher electron temperatures which switches as it transitions into an

H-mode. A lower electron temperature but higher electron density is observed in a fully

transitioned H mode [22,26]. The gas temperature is also of interest as it directly impacts

the ion energies close to the plasma-surface interface, the plasma density and electron

temperature significantly influence the charged particle collision processes [139].

The gas temperatures in this work are calculated using the ideal gas law and radiative

lifetime results from the PROES measurements. The quenching coefficient of excited O

atoms interacting with ground state O atoms (kq0) were taken from the work of Dilecce

et al [140] and the coefficient for excited O atoms interacting with O2 molecules (kq02 )

from Niemi et al [2]. Niemi et al included an associated error of 20 % with the quenching

coefficient kq02 , whereas the coefficient from Dilecce et al kq0 is considered an upper limit

and an inefficient quencher therefore a total 20 % error will be estimated for both values.

Equation 6.4 is the rearranged form of the equation for the lifetime of excited atomic

oxygen. Since all the other terms are known from the TALIF measurements, nO2 can be

calculated. When combined with the ideal gas law, the gas temperature, Tgas, can be
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Figure 6.6: Gas temperature contour plot for a power (200 - 1000 W) and pressure (20 - 250
Pa) variation. Gas temperature peaks at an increased plasma power while higher system
pressures suppress the temperature due to an overall lower average gain per molecule. Gas
mixture is O2/Ar (98%/2%).

deduced.

nO2 =
1

τkqO2

− A23

kqO2

− nOkqO
kqO2

(6.4)

Tgas =
p

kB (nO2 + nO)
(6.5)

Figure 6.6 illustrates the gas temperature scaling with an increasing RF power, however

it is suppressed by the higher gas pressure which is illustrated in the contour plot. Figure

6.7a illustrates the calculated gas temperature increase for the individual pressures over

the power range 200 — 1000 W. The gas temperature increases with power, as more

power is available to heat the gas. In O2 plasmas at low pressures one of the main gas

heating mechanisms is via the Frank-Condon principle, which occurs when an O2 molecule

is dissociated [70]. This scales with the electron density and therefore with power.

The gas temperature tends to decrease with increasing pressure at constant power

as the same amount of gas heating is dissipated in a larger number of background gas

molecules and therefore the average energy gain per molecule is lower. High gas tempera-

tures were measured in a low pressure ICP (1 - 10 Pa) by Foucher et al, where vibrationally
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Figure 6.7: Line plot of pressure (20 - 250 Pa) (a) as a function of plasma power and
gas temperature, and plot (b) showing the highest (1000 W) and lowest (200 W) plasma
power measurements as a function of gas pressure and temperature. Gas mixture is O2/Ar
(98%/2%).

excited O2 molecules were measured and analysed to obtain the rotational O2 tempera-

ture, this showed a temperature increase with both pressure and power up to 900 ± 20

K in an O2 gas chemistry at a plasma power of 500 W and a system pressure of 10 Pa.

In comparison, temperatures measured in the GEC system at 20 Pa were 1380 ± 270 K,

which show similar trends with an increase in gas temperature due to plasma power and

pressure.

Figure 6.7b illustrates the gas temperature variation of the 200 and 1000 W mea-

surements, the 200 W set for 20 - 250 Pa are similar with temperatures ranging between

300 - 400 K, while the 1000 W measurement has a much larger variation of 2800 k to

1100 K. These results highlight a significant gas temperature variation with increasing

plasma power and pressure. The calculated gas temperatures are indicative of a system

temperature trend which increases with less of a focus on the final numbers. Additional

calculations which account for the temperature variations across the reactor would provide

a more accurate result, with special focus on the plasma-surface interface to monitor the

change in radical densities.

The work of Gibson et al, highlights the dependence of the plasma bulk properties

and fluxes on the plasma-surface interface, these impact the atomic oxygen surface re-

combination coefficient and thermal energy coefficient in a low pressure ICP. The thermal
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recombination coefficient plays a key role in determining the neutral gas temperature and

therefore the neutral gas density. By varying both of the coefficients it was found that

plasma properties were most sensitive to small values of each coefficient as they caused

losses of atomic oxygen and thermal energy to be surface interaction limited [70].

6.2 Modelling atomic oxygen density and gas temperature

The experimental measurements have been simulated using a two-dimensional, modular,

fluid-kinetic simulation code. The geometry as shown in figure 4.2 models a planar in-

ductively coupled plasma which has been configured to match the exact dimensions of the

GEC reference cell. The full list of oxygen and argon reactions are given in table 4.1.

The reaction set from Gibson et al [70] has been configured to include all key reactions

important at these pressures.

Figure 6.8: Atomic oxygen density simulation using the oxygen/argon chemistry set in
chapter 4, modelled in a 200 W plasma with a pressure of 150 Pa, the high atomic density
value at the electrode is a consequence of the edge effects between the electrode edge and
ground ring and is only observed in the capacitive mode due to the strong electric fields
generated in that axis. Gas mixture is O2/Ar (98%/2%).
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Figure 6.8 illustrates the O atom density for a 150 Pa and 200 W plasma. It is contoured

to highlight the areas of highest O atom density which are in the centre of the plasma

and also at the electrode-guard ring interface, this agrees with the dissociation degree

measurements in figure 6.13. The atomic oxygen density peak at the edge of the electrode

and guard ring is a consequence of edge effects, which have previously been modelled

and observed experimentally in the GEC reference cell [38, 141]. Strong electric fields are

generated in the capacitive mode as a result of these edge effects, which occur between

the edge of the lower electrode and guard ring and produce higher electron temperatures

which in turn generate more O atom density (5.8×1019m−3). This is not observed once

the plasma is in a full inductive mode.

In order to observe the E-H mode transition, the electron density for a specific plasma

power (200 - 1000 W) is taken from an averaged section over the same spatial region above

the lower electrode ∼1 mm as the TALIF measurements, this is done for all the different

powers at 150 Pa. The electron density illustrates a sharp increase between 400 and 600

W, corresponding to the E-H mode transition. The mode transition obtained from the

experimental data shows a second structure at 600 W (figure 6.4) which implies the plasma

is in a hybrid or mixed mode, however the emission intensity confirms it is close to the

start of the mode transition.

The simulated atomic oxygen density is plotted as a function of power (200 - 1000 W)

and pressure (150 Pa) with the TALIF densities in figure 6.10. A step like increase in

the O atom density is observed over the 400 - 600 W region as modelled in the electron

density plot in figure 6.9. The main production of atomic oxygen is through the transfer

of electron energy into gas heating via the dissociation process as mentioned previously,

this also generates thermal energy. Due to the low pressure of the system, mean free path

between the gas phase collision is long, therefore the diffusion of O atoms to the GEC

reactor walls happens quickly and results in wall losses being the dominant destruction

pathway of the O atoms. Figure 6.11 compares the simulated gas temperature as a function

of pressure at 150 Pa and an increasing plasma power. As the plasma power increases, the

gas temperature initially remains constant for the 200 - 400 W simulations, whereas the

TALIF measurements increase immediately with higher plasma power which is mirrored

in the higher atomic oxygen density as plotted in figure 6.10. This could account for
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Figure 6.9: HPEM simulation of electron density as a function of pressure (150 Pa) and
plasma power (200 - 1000 W) highlighting the step like increase in electron density due
to increased plasma power and mode transition from capacitive to inductive plasma. Gas
mixture is O2/Ar (98%/2%).

additional heating processes that haven’t been modelled in the HPEM simulations as all

but one data point have lower gas temperatures. The electron density as measured ∼ 4

mm above the lower electrode in the simulated environment confirms the 200 and 400 W

simulations are in a capacitive coupling mode where the atomic oxygen density peaks at

the centre of the plasma. The plasma begins to transition between operating modes > 400

W the gas temperature in both cases increases allowing electrons to gain enough energy

to dissociate more O2.

In general the simulations have fairly good agreement with the TALIF measurements,

however the E-H mode transition occurs slightly before the GEC measured case, where

the simulated gas temperature rises quicker between 400 — 600 W but then drops below

the 800 W TALIF measurement.

6.3 PiOES-ERA + TALIF comparison

In this section, the focus is on using PiOES in combination with ERA to derive values for

the dissociation degree/atomic oxygen density and the mean electron energy. These values
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a slightly earlier transition start period. Gas mixture is O2/Ar (98%/2%).
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Figure 6.11: Comparison of the TALIF calculated gas temperatures and HPEM simulated
results, as a function of plasma power (200 - 1000 W) and constant pressure (150 Pa).
Gas mixture is O2/Ar (98%/2%). These results have fairly good agreement with similar
trends.
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are obtained by comparing excitation ratios of oxygen and argon emission lines measured

experimentally using PiOES with calculated values, as described in section 3.2.7. The

atomic oxygen density is calculated from the dissociation degree derived from ERA using

the ideal gas law. These atomic oxygen densities are then compared with those obtained

in the previous sections using TALIF in order to validate the PiOES-ERA technique.

The plasma and pulse conditions have remained consistent throughout this section

with only the plasma power, i.e. the power delivered to the inductive coil, and system

pressure varying. The pulse has a negative polarity and consists of eight harmonics,

measurements in chapter 5 showed less influence on the ion properties with an intermediate

pulse frequency, the repetition rate is fixed at 226 kHz. The plasma is operated at 13.56

MHz with an 98%/2% oxygen/argon gas mixture, the applied pulse voltages were varied

between 100 - 350 VPP , this was to accommodate the reduced pulse emission measured in

an H mode plasma. For the plasma conditions operating in E-mode the pulse voltages were

300 ± 20 VPP across the pressure range, while in H mode an input voltage of 350 VPP

only measured 100 VPP at the electrode due to an increased background plasma voltage.

Results from chapter 5 confirmed a 100 VPP would be adequate, so the decision to carry

the same tailored pulse design and voltage to the lower plasma powers was made with the

caveat that slightly more disruption would occur in the plasma however the signal-to-noise

ratio would make the ERA analysis more effective.

6.3.1 Pulse induced optical emission spectroscopy

PiOES data for the O(3p 5P) state over two RF cycles with the pulse applied to the

lower electrode, as shown in figure 6.12 for two different pressures. At these relatively

high pressures the emission from the plasma without the pulse applied is confined close to

the inductive coil. This means that using ERA can only be effective when measuring the

dissociation degree or mean electron energy in this region. This has been studied previously

by Tsutsumi et al [38] for a capacitively coupled plasma. However, by applying a negative

pulse and using PiOES the pulse-induced emission can cause emission close to the bottom

electrode and in some cases across the whole electrode gap. At the 50 Pa pressure the

influence of the pulse can be seen to extend from bottom to top electrode, which allows

for the axial profile of the discharge region to be analysed using ERA and the dissociation



CHAPTER 6. O DENSITY AND GAS TEMPERATURE MEASUREMENTS 107

0 20 40 60 80 100 120 140
0

1

2

3

4
200 W, 50 Pa O(3p 5P) excitation

Time [ns]

D
is

ta
nc

e 
fro

m
 b

ot
to

m
 e

le
ct

ro
de

 [c
m

]

0.0

0.2

0.4

0.6

0.8

1.0

Ex
ci

ta
tio

n 
[a

rb
. u

ni
ts

]
(a)

0 20 40 60 80 100 120 140
0

1

2

3

4
200 W, 250 Pa O(3p 5P) excitation

Time [ns]

D
is

ta
nc

e 
fro

m
 b

ot
to

m
 e

le
ct

ro
de

 [c
m

]

0.0

0.2

0.4

0.6

0.8

1.0

Ex
ci

ta
tio

n 
[a

rb
. u

ni
ts

]

(b)

Figure 6.12: Comparison of PiOES images at 50 Pa (a) and 250 Pa (b) The dashed white
lines mark the regions where ERA results have been extracted. The opposing pressures
highlight the PiOES impact across the spatial region of the image with the higher pres-
sure confining the stimulated emission to the lower electrode and the plasma clearly in a
capacitive mode (plot (b)). Gas mixture is O2/Ar (98%/2%) and the plasma is operated
at 200 W.

degree and mean electron energy to be obtained across the entire axial dimension. This

is significant as such measurements cannot easily be made using OES without the use of

the pulse because of the low emission across most of the plasma. Such measurements are

also difficult using TALIF as the laser must be scanned axially. In the higher pressure

(250 Pa) case, shown in figure 6.12b, electron collisions in the bulk plasma mean that the

influence of the pulse does not extend across the whole plasma, and so full profiles cannot

be extracted. In such cases, PiOES-ERA is limited to smaller regions of time and space,

but can still be used to extract the dissociation degree close to the bottom electrode. A

consideration when applying the pulse is to factor the influence it may have on the sheath

at the top of the electrode, both cases in figure 6.12 additional excitation features are

visible as a result of the pulse at the top electrode. These could be minimised further

by using a lower pulse peak-to-peak voltage, however, strong pulse-induced emission was

favoured for these measurements in order to generate a good signal-to-noise ratio for the

ERA measurements.
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6.3.2 Axial profiles of dissociation degree and mean electron energy

The dissociation degree is defined as the density of an atomic species divided by the total

gas density, and is directly inferred from the ERA measurements as described in section

3.2.7. For the results presented in this section a gas temperature of 400 K has been used

to calculate the quenching rates in the excitation calculations. This is approximately

consistent with the gas temperature calculated from the TALIF atomic oxygen lifetimes

in the previous section for plasma powers of 200 W.

ERA has the capacity to measure dissociation degrees in any area that exhibits suffi-

cient plasma emission. At all pressures studied, the pulse induced emission close to the

electrode has sufficiently large emission to allow ERA to be used close to the electrode.

However, at 50 and 100 Pa the pulse induced emission is large enough across the whole

axial distance for ERA to extract the dissociation degree and mean electron energy across

the whole gap. The dissociation degree for these pressures is shown in figure 6.13. For

both cases the dissociation degree has a dome structure, peaking close to the centre of the

gap. These results are consistent with the axial atomic oxygen density measurements of

Gomez et al using TALIF in the same reactor [4].

The profiles look as expected; with the dissociation degree peaking at the centre and

then decaying towards the surfaces as this is where the dominant loss of atomic oxygen

happens through surface recombination. As the pressure is increased from 50 to 100 Pa

the axial profile becomes slightly flatter, as a result of the decrease in surface losses the

diffusion coefficient of O and the surface recombination coefficient decreases. This is also

consistent with the measurements of Gomez et al [4]. An error estimation of 30 % has

been applied, this corresponds to the systematic error introduced by the electron impact

cross sections.

The mean electron energies derived from the ERA analysis across the electrode gap

are shown in figure 6.14. As described in section 3.2.7, these are calculated assuming

a Maxwellian EEDF. Assuming different EEDF shapes changes the value of the mean

electron energy, but does not affect the observed trends. The mean electron energies for

both pressures are highest in the sheath regions as these are the regions where electrons

are being heated most efficiently by the movement of the plasma sheath. As the pressure
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Figure 6.13: Dissociation degree profile for 50 and 100 Pa measurements within the region
between the two electrodes. The highest dissociation degree occurs at the centre of the
plasma where losses through surface recombination are lowest. Gas mixture is O2/Ar
(98%/2%) and the plasma is operated at 200 W.

is increased from 50 to 100 Pa the mean electron energy decreases as a result of higher

electron collision frequencies with the background gas, resulting in a loss in energy. These

trends are consistent with the previous experimental work of Tsutsumi et al [38], Kechkar et

al [142], Stapelmann et al [143] and the Particle in Cell simulation results of Gudmundsson

and Ventejou [144]. Where Gudmundsson’s results of a 1D PIC simulation operated in an

oxygen chemistry and CCP configuration illustrate a decrease in mean electron energy as

the system pressure is increased between 1 and 66 Pa and a plasma voltage of 222 V.

As discussed, the edges of figure 6.14 correspond to the floating (0 cm) and powered

electrode (4.2 cm) surfaces. The mean electron energy calculations in the low pressure (50

Pa) results exhibit larger errors with a number of points that do not follow the overall

trend. These discrepancies in the 50 Pa case could be due to cascade processes which are

currently not accounted for, or as previously mentioned, the EEDFs change as a function

of pressure which the current ERA analysis technique also doesn’t account for. However,

the observed trends provide a representation of the system behaviour, in which a level of
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Figure 6.14: Mean electron energy plot of the inter-electrode gap for 50 and 100 Pa
pressure plasmas, calculated assuming a Maxwellian EEDF. The highest electron energies
are present in the sheath region due to heating from the plasma sheath and TVW. Gas
mixture is O2/Ar (98%/2%) and the plasma is operated at 200 W.

uncertainty in the absolute values is assumed.

6.4 Comparison of PiOES and TALIF

Figure 6.15 illustrates the ERA and TALIF comparative measurements at system pres-

sures of 20 - 250 Pa and 200 W plasma power with a 350 V peak-to-peak amplitude pulse.

For these measurements the ERA analysis has been carried out at a specific time and

axial location, indicated by the crossing points of the dashed white lines on the PROES

images shown in figure 6.12. The dissociation degree inferred from ERA is converted into

a density of atomic oxygen using the ideal gas law at a temperature of 400 K, which is

approximately consistent with the gas temperatures inferred from the TALIF measure-

ments discussed earlier. This illustrates the effectiveness of the PiOES-ERA technique

when directly compared with TALIF. Both measurements show increasing trends which

deviate as the pressure increases starting around the 150 Pa mark.

In general, the agreement between the absolute densities and the trends of the two
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Figure 6.15: Comparison of atomic oxygen densities calculated using ERA and measured
with TALIF in a 200 W O2/Ar plasma (98%/2%) plasma, with an additional literature
measurement (blue triangle) by Gomez et al at 50 Pa and 250 W in a GEC operating in
an oxygen chemistry [4], showing good agreement in the capacitive plasma regime.

techniques is very good, particularly at the lower pressures. When compared with a

measurement from the work of Gomez et al, an atomic density measured at 50 Pa and 250

W in a GEC reactor at the same distance from lower electrode, the atomic oxygen density

(∼1.1×1020m−3) has very good agreement with the ERA and TALIF measurements.

Figure 6.16 shows the mean electron energies inferred from ERA for the same space and

time point as the atomic oxygen densities shown in figure 6.15. Here, a clear decrease in

mean electron energy with increasing pressure is observed, again consistent with the work

of Tsutsumi et al [38] and Gudmundsson and Ventejou [144]. The drop in mean electron

energy between 50 and 100 Pa may indicate the EEDF in the experiment is very different

from the Maxwellian EEDF assumed in the simulation. The work of Gudmundsson et

al discusses the evolution of the electron energy probability function (EEPF). At low

pressures the population of low energy electrons is relatively small, however as the pressure

is increased as per figure 6.14 the number of low energy electrons increases. The collisional

heating of low energy electrons in an oxygen capacitive discharge is poor, despite the

collision cross section of momentum transfer collisions being larger. As the pressure is
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Figure 6.16: Mean electron energies calculated using ERA as a function of pressure, a de-
creasing trend in mean electron energy is observed over the pressure increase with possible
discrepancies in the EEDF used to calculate the 20 and 50 Pa results. Gas mixture is
O2/Ar (98%/2%) and the plasma is operated at 200 W.

increased the shape of the EEDF changes and various sources demonstrate the EEPF

becoming more bi-Maxwellian due to the pressure increase [144] or Kechkar et al who

experimentally demonstrated the power evolution of an EEPF in pure O2 from 30 - 600

W, in which it appears Druyvesteyn between 30 - 60 W and but develops into a bi-

Maxwellian distribution. These transitions in dominant electron heating mechanisms are

observed for the pressure increase in the mean electron energy but will also impact the

electron density and effective lifetime [142,145]. This could also have implications for the

ERA analysis at lower pressures as cascade effects from higher energy levels are not yet

considered in this analysis.

6.4.1 ERA in H-mode analysis

For all the conditions included in figure 6.15 and 6.16 the plasma was operated in E-mode.

When the ERA analysis was applied to plasmas operating in H-mode the experimentally

measured excitation ratios could not be matched to the calculated excitation ratios. As a

result, dissociation degrees and mean electron energies could not be measured in H-mode
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plasmas. The fact that no match could be found between the calculated and measured

ratios indicates that one or more excitation or de-excitation processes occur in H-mode

that are not included in the ERA model, which accounts for only direct and dissociative

electron impact excitation, radiative emission and collisional quenching. Understanding

which processes are important in H-mode, but not included in the ERA model, this is an

area for future work.

6.5 Effectiveness of PiOES-ERA in Oxygen

The presented PiOES-ERA technique has been used to measure oxygen dissociation degree

and mean electron energy at the plasma-surface interface in a technologically relevant

oxygen CCP/ICP plasma. These measurements have resulted in the calculation of atomic

oxygen density and gas temperature in a region of the plasma that isn’t easily assessable

or permitting of external probes. The technique allows for the sensitive measurement of

the dissociation degree and mean electron energy with high resolution 0 - 4 mm above the

lower electrode, where measuring both quantities simultaneously in this location tracks

the fundamental processes that change in an oxygen plasma due to pressure and power

variations. The measured dissociation degree in figure 6.13 illustrates a dome shaped

profile between the two electrodes, with a peak at both 50 and 100 Pa at the centre point

(∼ 2.0 cm) between the electrodes, whereas the local mean electron energy peaks at both

electrodes, with a reduction in the electron energy due to a pressure increase and lower

electron mobility as a result of collisions. The largest mean electron energy is observed at

the lower electrode in the 50 Pa case, which could be a result of the edge effects known

to occur in the GEC cell design and outlined in the HPEM model in figure 6.8. This

work confirms the importance of surface recombination probabilities due to pressure and

power control variations, especially with regard to the dissociation fraction at the electrode

surface, with an important next step in roadmap of this technique is the automation of

the in situ measurements to allow real-time measurement of the complex spatial profiles

of electron heating and reactive species densities in larger scale industrial plasma reactors.

This includes developing the ERA analysis to include pure inductive mode plasmas

which requires further analysis of the excitation and de-excitation schemes. The author
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acknowledges that this is a major factor to ERA/actinometry being an effective analysis

technique across all operating modes of the plasma. The motivation for industrial part-

ners using the PiOES-ERA diagnostic is the benefit to developing and understanding the

process control for plasma enhanced ALE and ALD processes.

In conclusion, this chapter has investigated the effectiveness of the PiOES-ERA tech-

nique in measuring the dissociation degree and mean electron energy in an oxygen plasma

over a wide pressure and plasma power range. It has compared the PiOES-ERA technique

with HPEM simulations and experimental TALIF measurements to verify the calculated

atomic oxygen density at a region of the plasma with classically low emission. By apply-

ing a tailored voltage waveform and stimulating emission it is possible to collect enough

plasma emission to calculate key atomic species densities in a novel non-invasive manner.

Results from the oxygen dissociation degree and mean electron energy measured at the

plasma-surface interface in a 50 Pa oxygen plasma operated at 200 W have been measured

and analysed, atomic oxygen densities of 1.97×1020m−3 were calculated using the PiOES-

ERA technique, TALIF under the same system and operating conditions measured a

density of 2.23×1020m−3 and work by Gomez et al on a similar GEC reference cell measured

1.20×1020m−3. These values show good agreement with scope to extend the diagnostic

further and into different systems.

The results presented in this chapter show good agreement for low power or capacitative

plasmas but at high power the experimentally measured excitation ratios could not be

matched to the calculated values, resulting in no H-mode dissociation degree or mean

electron energy. The lack of matching values indicates that there are additional excitation

or de-excitation processes that are not considered in this iteration of the ERA model.



Chapter 7

Scaling of H density with pressure

and power

Applications of low pressure, high density hydrogen plasmas are widely used in materials

processing, this includes plasma etching, deposition and passivation applications. More

specifically; ion implantation and hydrogenation of polysilicon thin-film transistors to in-

crease the transistor performance. The dissociation energy of molecular hydrogen is 4.52

eV and hydrogen atoms are generated via electron impact dissociation [146]. The use

of high density hydrogen plasma discharges have been developed for specific passivation

processes where the processing time has been reduced from hours to minutes [147].

Alternative areas of research are investigating the possibility of replacing existing wet

etching of copper (Cu) that currently uses nitric acid, sulphuric acid or hydrogen peroxide.

These wet etching technologies are typically used for the fabrication of printed circuit

boards (PCB) with an etching rate on the order of tens of micrometers per minute. Current

dry etching processes use chlorine gases as they achieve highly anisotropic etch patterns,

However Wu et al has investigated the use of low temperature hydrogen plasmas to mitigate

the use of hazardous gases and wet etching products with Cu [148]. Etching rates of 500

nm/min were achieved which isn’t on the same scale as wet etching however for small batch

or high aspect ratio structures it could add value. After discussion with industry partners,

investigations on the GEC reference cell were undertaken in a range of low pressure and

high power scenarios to understand the etching products left behind on a carbon wafer

115
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post treatment. These products would be detrimental to the cleaning life cycle of the

reactor. It was found that over shorter, high power (1 kW) measurements no change or

deposits were observed to the quartz microscope slide placed next to the carbon wafer.

This chapter uses TALIF to look at the density of atomic hydrogen over the same

power and pressure range as investigated in chapter 6 for oxygen plasmas, covering the

plasma operation in both E and H mode and providing data for future development of H

PiOES and model verification. The author acknowledges the preliminary nature of this

chapter however feels it is relevant to the developing the roadmap of the PiOES-ERA

technique. The TALIF data is an excellent benchmark for future studies.

7.1 Hydrogen atom TALIF

The laser was operated at 700 µJ due to the saturation threshold measured at 780 µJ and

a laser wavelength of λ= 203.53 nm. The plasma was operated at the same parametric

values as the oxygen TALIF, Pressure range from 20 to 250 Pa and power from 200 —

1000 W. The system gas mixture is set to a hydrogen/helium mix of 98%/2% with flow

rates of 24.5 and 0.5 sccm.

Figure 7.1a shows the H atom density as a function of pressure and power. The excited

H atom lifetime for identical system conditions is shown in figure 7.1b. The H atom density

follows a similar trend to that of the atomic oxygen density, discussed in chapter 6, showing

an increase with both power and pressure. The increase in H atom density is once again

caused by increasing electron densities, leading to more electron impact dissociation. The

increase with pressure results from having greater numbers of H2 molecules to dissociate.

The general trends for the H atom lifetime are also similar to those for O atoms. The

lifetime tends to increase with increasing power, which is likely a result of higher gas

temperatures and lower gas densities, and decreases with pressure as a result of higher gas

densities and increased quenching.

In the case of H atom TALIF the same method of calculating the gas temperature was

attempted as in the O atom TALIF case. These calculations produced gas temperatures

of lower than 300 K in many cases, and are not shown here. This issue may be caused

by weaknesses in the quenching coefficient data for excited H atoms, or from state mixing
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Figure 7.1: Hydrogen density plot as a function of plasma power and pressure (a) and
effective lifetime (b) illustrating similar trends to the oxygen experimentation. Increasing
H atom density with pressure and power as a result of increased electron impact dissoci-
ation. Effective lifetime is also increasing with power due to the higher gas temperatures
and lower gas densities.

between excited H atoms. Improvement of these calculations is a topic for future work.

As the gas temperature was not calculated in this work, this could not be used to

calculate the dissociation degree. To estimate the dissociation degree a gas temperature of

400 K was assumed over the entire pressure and power range, the results are shown in figure

7.2. In general, the dissociation degree increases with power, and decreases with pressure,

but does not vary as much as the dissociation degree shown for atomic oxygen, except

for at 20 and 50 Pa between 800 and 1000 W. These points appear to show the plasma

transition between E and H mode. Compared to oxygen plasmas, the E-H transition

appears to occur at higher powers in hydrogen plasmas for any given pressure.

The H density for power variation at 20 Pa in figure 7.3a the mode transition between

E and H mode can be seen as a large increase in the H density between 800 and 1000 W,

with a gradual density increase between 200 and 800 W. For the constant 200 W power

measurement in figure 7.3b no transition is observed, an increase in the gas pressure and

therefore an increase in the H density.

A number of studies examining the plasma-surface interface in low pressure hydrogen

plasmas include; deposition processing of hydrogenated silicon thin films, diamond-like

hydrocarbon and self-assembled carbon nanostructures [149–151]. These studies generally

implement reduced pressure of power ranges due to limitations in the associated hardware
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Figure 7.2: Dissociation degree at a Tgas value of 400 K as a function of plasma power
and pressure. The higher pressure (100 - 250 Pa) results stay fairly linear while 20 and 50
Pa demonstrate much larger dissociation degree increases.
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Figure 7.3: Atomic hydrogen density plots of pressure (20 Pa) plot (a) and plasma power
(200 W) plot (b) highlighting a much later E-H mode transition between 800 - 1000 W
at low pressures. While the constant power case only increases gradually with no steps or
jumps.
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or specific plasma surface interaction conditions, with typical plasma powers between 0 -

500 W and pressures up to 100 Pa [152]. This chapter is intended to provide results for

a significant power and pressure range study in order to meet different plasma conditions

for current and future applications using low pressure hydrogen plasmas.

In conclusion, an increasing trend of atomic hydrogen density is seen in both pres-

sure and power measurements, these can be tailored to etching or deposition processes

depending on the flux or energy of the radical produced. Different H atom density values

are observed for the E-H mode transitions, these can only be seen in the lower pressure

cases i.e. 20 and 50 Pa. This warrants further investigation to assess where the transition

modes occur and how this impacts the plasma density. These results provide a baseline

for future HPEM simulations and further material testing to produce a non-invasive tech-

nique for monitoring hydrogen containing low pressure plasmas. It also highlights the

need for further work in measuring hydrogen quenching coefficients, in order to obtain

accurate gas temperature measurements and calculate dissociation degrees. By utilising

a platform such as the GEC reference cell it is possible to continue this work under the

same operational conditions at any location using the TALIF data as a benchmark.



Chapter 8

Conclusion

In conclusion, the work presented in this research validates a new method for producing and

analysing plasma emission by tailoring a voltage waveform and creating sufficient optical

emission spectroscopy to extract dissociation degrees and mean electron energies. The

focus being to generate enough emission in a region of the ICP plasma doesn’t ordinarily

benefit from high levels of emission. In order to achieve this, both the experimental method

and analytical technique required additional tailoring.

Chapters 1 - 4 introduces theory, computational and experimental techniques as well

as expanding on the actinometry theory, it outlines the TALIF and HPEM configuration

used in the results chapters. The focus of this research is using an advanced actinometry

technique as the analysis platform and generating plasma emission in a region of interest

inside the GEC reference cell, therefore allowing atomic species densities to be calculated

in an otherwise unachievable region of the plasma, this required a tailored approach to

creating a non-invasive voltage waveform to induce sufficient plasma emission.

Chapter 5 introduces the initial and developed methods for producing and tailoring a

voltage waveform at the lower electrode and in a region of interest for a number of man-

ufacturing processes, this is due to high radical densities, high selectivity and anisotropic

etch profiles at low temperatures and mild voltages. Understanding this interface helps

to prevent unwanted degradation of materials due to factors surrounding heat and lattice

damage from ion bombardment. By designing and tailoring the voltage waveform around

the implementation of harmonics, it has been possible to reduce the rise time and full
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width half maximum of the pulse to a degree where its impact on the electron and ion

plasma properties is minimal. The initial tailored voltage waveform was generated using a

40 MHz TTi arbitrary waveform generator where the shortest FWHM value of 50 ns was

achieved, this was deemed unacceptable due to its highly variable impact on ion energies

20 - 32 eV and lack of resolution when configuring the phase over a single RF cycle (74

ns). The developed voltage was generated using a 120 MHz Keysight 33622A waveform

generator capable of ≥ 3 ns pulse rise times and pulse widths of ≥ 8 ns, here the ion

energies varied less than 5 eV per measurement block, in comparison to 12 eV previously.

Between the initial and developed TVW design, the ion energy variation is reduced from

0 - 12 eV (initial TVW design) across a single RF phase measurement down to 0 - 5 eV

for the developed tailored waveform. The variation in phase and polarity was reduced for

the developed TVW design with only minor ion energy changes 17 (± 3) eV between the

phases and polarity which suggests the modified design is less impactful on the ion energies

and therefore more applicable to plasma assisted ALD processes, none of the ion energy

measurements using the modified approach exceeded 35 eV. Where plasma assisted ALDs

that have upper and lower ion energy limits e.g (19 - 27 eV), the developed design will

conform to much tighter ion energy constraints.

Furthermore, measurements in chapter 5 looking at the ion energy distribution function

at the plasma-surface interface, highlighted the impact of varying the TVW’s voltage,

polarity and repetition, by reducing the pulse width it reduced the impact on the ion

properties due to the fast change in applied voltage. The negative polarity pulse was

found to accelerate the electrons away from the lower electrode and influenced the sheath

expansion during operation, this is beneficial and a novel approach to achieving emission

across the axial region of the plasma, while a positive pulse attracted electrons to the

electrode surface and focussed the analysis at the electrode surface.

Chapter 6 implemented the negative polarity TVW design in an oxygen plasma, the

PiOES-ERA experimentation and analysis procedure was formalised and compared with

HPEM simulations and TALIF measurements under the same plasma conditions. The

PiOES measurements at 50 and 100 Pa allow sufficient pulse emission to span the whole

axial distance of the discharge region. Allowing ERA to extract the dissociation degree and

mean electron energy. The profiles exhibit higher dissociation degrees at the centre which
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decay towards the surfaces, this is due to the dominant loss mechanisms of atomic oxygen

occurring due to surface recombination. Whereas, the mean electron energies are highest at

the sheath regions due to heating of the electrons from the movement of the plasma sheath.

An increase in gas pressure also increases the collision frequency with the background gas

resulting in lower mean electron energies. Surface losses under these conditions play an

important role in the density of atomic O, at higher gas temperatures the diffusion of O to

the surface is faster, leading to increased surface losses. Gas temperature measurements

in chapter 6 spanned 300 - 2800K, with upward trends that followed increased pressure

and power input, these showed good agreement with the work of Foucher at low system

pressures. The PiOES-ERA technique has been used to measure oxygen dissociation

degree and mean electron energy at the plasma surface interface in a 50 Pa oxygen plasma

operated at 200 W, this has resulted in atomic oxygen densities of 1.97×1020m−3 from the

PiOES-ERA technique, TALIF in the same system with identical operating conditions at

2.23×1020m−3 and work by Gomez et al on a similar GEC reference cell of 1.20×1020m−3.

These values show good agreement with scope to extend the diagnostic further and into

different systems. For the H-mode measurements the experimentally measured excitation

ratios could not be matched to the calculated values, resulting in no H-mode dissociation

degree or mean electron energy. The lack of matching values indicates that there are

additional excitation or de-excitation processes that are not considered in the ERA model.

By further analysing extreme cases in the H-mode it may be possible to quantify the

impact of cascade and metastable processes contributing to the direct and dissociative

electron impact processes.

A positive polarity pulse accelerates the electrons towards the surface of the electrode,

creating a more defined emission structure at the substrate. This could overcome one

of the limitations of plasma assisted ALD which affects the conformity or step coverage

achieved in non-planar substrates. To overcome this and achieve conformal deposition,

plasma conditions need to be surface recombination limited, so by taking PiOES data and

examining the local mean electron energy and dissociation degree from the plasma bulk

to the wafer surface it would be possible to find a regime where the plasma assisted ALD

either reduces its power or increases the pressure to find the optimal species density and

flux range.
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Figure 8.1: Plot (a) TVW design that focuses excitation and emission at the plasma-
surface interface, while (b) tailors a waveform that allows axial measurements between the
electrodes.

In chapter 7 general the hydrogen atom density and lifetime are similar to those for

O atoms in chpater 6. For the H atom density an increase in power causes an increase

in electron density which leads to more electron impact dissociation. The lifetime also

increases with higher plasma power, which is a result of higher gas temperatures and

lower gas densities as previously observed for the O effective lifetime. This chapter is

the start of the roadmap into evaluation of other gases and systems using the PiOES-

ERA technique. These results highlight the need for further work in measuring hydrogen

quenching coefficients in order to obtain accurate gas temperature measurements and

calculate dissociation degrees.

The next phase of testing for future applications would include attaching the PiOES-

ERA technique to a larger scale processing plasma, to confirm the process resolution and

integration into a manufacturing life-cycle. This would require a TVW calibration phase,

however the process for testing voltage, phase and polarity are set out in this document.
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Appendix B

Industrial relevance

The plasma processing industry takes advantage of the unique properties of high density

plasmas for etching and deposition applications within integrated circuit (IC) fabrication.

By utilising the charged particles to a high precision the industry aims to scale down

these dimensions, however an important condition for wafer to wafer repeatability is an

understanding of any changes to the wall conditions [153]. This has been identified as

a large and uncontrolled cause of process drift, and can influence the etching rates and

sensitively greatly [154]. Changes in the reactor wall conditions often occur after multiple

etch cycles, and consist of any etch product generated during production. As the inner

reactor surface is modified this changes the surface loss or production probability of species

in the plasma.

This chapter investigates the processed carbon products that leave a wafer surface

during treatment and end up on the quartz glass cylinder. By applying SEM and EDX

techniques to better understand how these products behave and react with the plasma.

B.1 Experimental setup

The ICP plasma discharge chamber was modified slightly by incorporating a glass cylin-

der to enclose the main plasma producing region and reduce the accumulation of carbon

products on the outer reactor walls. A microscope glass slide was attached to the inner

side of the glass cylinder with Kapton tape to analyse any debris left behind by the sample

during treatment.
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Figure B.1: Plasma discharge region with quartz glass cylinder placed on the lower elec-
trode, operated at 1000 W and 250 Pa

The plasma configuration was identical to previous measurements, except the intro-

duction of the carbon wafer and quartz glass cylinder. The GEC was operated in a

helium/hydrogen gas mixture at 6/1 ratio. An issue with high gas heating at 1000 W and

250 Pa resulted in the Kapton tape drying out and no longer holding the glass slide in

place. Small carbon wafers (25 × 25 mm) were placed on the lower electrode and posi-

tioned next to the microscope slides so that the etching product from the carbon wafer

would settle on it.

The carbon wafer was plasma treated 6 times, each treatment lasted 180 seconds, the

system was allowed to cool for a further 180 seconds between each of the runs.

B.2 PiOES analysis

For the measurement and treatment of the carbon, PROES images of the system were

taken at the Hα (3-2) transition which has a fluorescence wavelength of 656 nm. The aim

was to monitor and observe any potential changes to the plasma during the process, while

also understanding how PiOES can be used under industrially relevant conditions, where

the lower electrode is covered by a wafer.

Figure B.2 focuses in the PROES across the whole plasma (a), and just above the

electrode (b). The scale is saturated in part (a) due to the strong emission from the

H-mode plasma close to the coil. Despite the strong emission form the plasma, pulse
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Figure B.2: 1000 W 6/1 He/H2 plasma at 250 Pa with 400 Vpp, negative polarity pulse
applied.

induced emission is visible at around 70 ns at the bottom electrode. In this case, the

pulse used is a negative polarity pulse with 400 Vpp. Part (b) shows the pulse induced

emission more clearly. This preliminary result follows on from those obtained in an E-

mode oxygen plasma in chapter 5, to show that PiOES may be applicable in high power

hydrogen plasmas as well. However, this will require more development to fully assess the

compatibility of PiOES under these conditions.

B.3 Surface anlysis

To better understand the carbon wafer and glass microscope slide composition before and

after treatment with a helium/hydrogen/argon plasma. The samples will be placed in a

Scanning Electron Microscope (SEM) and Energy Dispersive X-ray spectroscopy (EDX)

both techniques provide information on the samples morphology and surface composition.

B.3.1 SEM

The Scanning Electron Microscope (SEM) is used as a diagnostic technique in which to

study the topology and composition of a sample by focussing a beam of electrons on to

it and monitoring the back scattered and secondary electrons produced via the surface

interaction. The SEM device (JEOL JSM7800F) uses a series of lenses and an electron

source to control a path of electrons. As the incident electron beam enters the sample,

it typically produces either secondary electron emission from the valence electrons of the
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(a) (b)

Figure B.3: far field amplification figure (a) is a 1 kw 250 Pa ICP plasma treated carbon
sample, whereas (b) is an untreated sample

(a) (b)

Figure B.4: Mid range magnification figure (a) is a 1 kw 250 Pa ICP plasma treated carbon
sample, whereas (b) is an untreated sample.

atoms in the specimen. These are limited to 50 eV while and accounts for a large proportion

of the detected signal. Or backscattered electrons which range in energy from the upper

limit of secondary electron emission to the incident electron energy. These are sensitive

to the composition of the sample, while secondary electrons provide information of the

topology of the sample.

Figure B.3 is the carbon wafer post (a) and pre (b) treatment. The sample was treated

for a total of 1080 seconds, what can be observed is that the surface has been significantly

altered, producing a less uniform and more pitted appearance. A combination of heat

from the plasma and reactive chemistry has fundamentally changed its appearance.
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With a higher magnification the SEM images in figure B.4 show a clearer image of the

surface modification and apparent etching, as it has changed in appearance and structure.

The glass samples could not be analysed using SEM due to their lack of conductivity

and subsequent surface charging, which meant very little secondary electron emission was

detected. However the energy dispersive x-ray spectroscopy was able to resolve the samples

and produce elemental surface composition.

B.3.2 EDX

Energy Dispersive X-ray spectroscopy is a technique that sits alongside the SEM config-

uration but uses increased electron beam energy (5-15 kV) to penetrate further into the

sample, where the x-ray fluorescence is resolved in photon energy. Creating unique ele-

mental peaks on the electromagnetic emission spectrum. This allows you to identify the

contributing elements through their characteristic radiation.

These results represent a short treatment time of 1080 s in a 250 Pa helium/hydrogen

plasma, with one set of measurements also including argon. The main carrier gas is Helium,

but to consider using argon as an actinometer gas for ERA there needs to be confirmation

it isn’t affecting the plasma chemistry and potential etch rate.

Table B.1 is the EDX structure ratio of an untreated quartz microscope slide. The

main elemental peaks observed in this analysis were O, Si and C.

Untreated Quartz

Percentage (%) Error (%)

O 68.0 3.5
Si 22.9 1.5
C 8.0 0.5

Table B.1: Untreated quartz surface composition

Table B.2 is a comparison of plasma with and without argon admixture, the error

was calculated on the mean of three measurements taken in a similar area of the quartz

microscope slide. This data represents a small variation between a plasma with argon at

0.5 sccm or a ratio of 6/1/0.167 He/H2/Ar and one without.

The post treatment analysis shows a surface which is closer to SiO2 as there is a factor of

two more O than Si, which suggests a normal composition of quartz. One conclusion is that
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Helium/Hydrogen Helium/Hydrogen/Argon

Percentage (%) Error (%) Percentage (%) Error (%)

O 62.7 2.5 62.8 3.9
Si 30.7 0.6 29.5 0.9
C 5.2 0.1 7.1 0.2

Table B.2: Quartz surface composition, post plasma treatment with either an He/H2 or
He/H2/Ar plasma

the oxygen plasma has cleaned a previously dirty quartz microscope slide. Further analysis

of table B.2 shows a reduction in the amount of C on the surface when compared with the

untreated data in table B.1. For these treatment time scales and plasma conditions no

additional carbon from the wafer is deposited on the microscope slide. Which was one of

the initial tasks for these plasma conditions and revised internal GEC cell configuration.
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