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Abstract 
 

Municipal solid waste (MSW) is any non-industrial waste produced in households 

and public or commercial institutions. 3.4 billion tonnes of MSW will be produced annually 

by 2050, but unsustainable practices like landfilling and incineration currently dominate 

MSW management. The organic fraction of MSW (OMSW) typically comprises ~50% 

lignocellulose-rich material but is underexplored as a biomanufacturing feedstock.  

 

This thesis investigated OMSW as a feedstock for producing renewable biofuels and 

chemicals. Uniquely, the OMSW-derived fibre used in this project was produced via a 

commercial autoclave pre-treatment from a realistic and reproducible MSW mixture. The 

OMSW fibre was subjected to comprehensive compositional analysis and hydrolysis, and 

OMSW hydrolysate was analysed for sugars, metals and marker inhibitors to evaluate 

fermentability. Waste residues were investigated as a feedstock for biogas production. 

Next, the growth and productivity of eight diverse and biotechnologically useful microbial 

species was characterised on OMSW fibre hydrolysate supplemented with 1% yeast extract 

and the best candidate was further characterised and improved for industrial applications. 

 

The OMSW fibre contained a large polysaccharide fraction, comprising 38% 

cellulose and 4% hemicellulose. Hydrolysate of OMSW fibre was high in D-glucose and D-

xylose, low in inhibitors, deficient in nitrogen and phosphate and abundant in potentially 

toxic metals. Hydrolysis residues contained a six-fold greater metal concentration but 

generated 33.4% more biomethane in anaerobic digestion compared to unhydrolysed 

fibre. Microbial screening identified three species that robustly and efficiently fermented 

OMSW fibre hydrolysate: Saccharomyces cerevisiae, Zymomonas mobilis and Rhodococcus 

opacus. These species could theoretically produce 139 Kg and 136 Kg of ethanol and 91 Kg 

of triacylglycerol (TAG) per tonne of OMSW, respectively. R. opacus had the highest 

fermentation productivity, concurrently using D-glucose and D-xylose and producing TAG 

to 72% of maximum theoretical yield. Expression of a heterologous thioesterase in R. 

opacus to augment lauric acid production proved unsuccessful and requires further work. 

 

Overall, this study showed that OMSW is a promising renewable feedstock for 

biomanufacturing. The microorganisms identified through this work grew robustly and 

efficiently on OMSW fibre hydrolysate and are promising candidates for developing an 

OMSW biorefining platform. 
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Chapter 1: General Introduction 

1.1 Anthropogenic Climate Change: A Brief History  

Humans have been converting raw organic materials into useful and more valuable 

products for thousands of years – wine, beer, vegetable oil, textiles and paper are all 

traditionally made by refining biomass through stages of pre-treatment, processing, 

separation and/or conversion. Until approximately 200 years ago, renewable sources of 

energy were used to power these processes where necessary, including wood burning and 

wind or water-driven mills (Edinger & Kaul, 2000). Technological innovations during the 

industrial revolution enabled the manufacture of desirable products in a mechanised way 

on a larger scale than ever before. Consequently, craft and manual labour was rapidly 

replaced by automated, power driven machines fuelled with fossil fuels, including coal, 

petroleum and natural gas. As the human population grew and socioeconomic structures 

shifted, the demand for products escalated and these industries expanded and diversified 

(Pandey et al, 2015). Simultaneously, reliance upon fossil fuels became consolidated into 

the foundation of our industries, economies and societies (Mitchell, 2009).  

Today fossil fuels supply 80% of the world’s energy (IEA, 2016). Globally 84 million 

barrels of oil are used per day, with the majority supplying the transport sector. Byproducts 

of fossil fuel refining such as naphtha are also used to produce chemicals and plastics 

(Cherubini, 2010). Many projections suggest that fossil fuel reserves will be depleted by the 

end of the century (Abas et al, 2015; Aleklett & Campbell, 2003; Höök & Tang, 2013). This 

inevitability greatly threatens global socioeconomic and political stability as the world is 

now almost exclusively reliant upon energy and products derived from fossil fuels (Mitchell, 

2009). A secondary but pivotal consequence of our fossil fuel dependence is the major 

effect it is having on global climate.  Fossil fuels are formed over millions of years from 

degrading organic material and when they are excavated and combusted the carbon is 

released back into the atmosphere, primarily as CO2 and CH4. We have been liberating this 

carbon within a miniscule fraction of the time that was necessary to sequester it, thereby 

disrupting the global carbon cycle (Figure 1.1) and enhancing the greenhouse effect (Figure 

1.2) (Cassia et al, 2018; Cavicchioli et al, 2019).  
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Figure 1.1: Overview of the carbon cycle, including natural and anthropogenic carbon 
sources and sinks (Figure taken from Cavicchioli et al, (2019)) 
 

Boxes shown in red, orange and pink are major sources of carbon emissions.  
Boxes in green are major carbon sinks. 

 

The carbon cycle involves the balanced interconversion of carbon compounds in the 

environment. Carbon is sequestered in carbon sinks such as forests, peatlands, wetlands, 

permafrost and oceans. Carbon is also incorporated into living things. To balance this cycle, 

carbon is naturally released, primarily through microbial decomposition of living things and 

respiration.  When plants, animals and microorganisms die and become buried under anoxic 

conditions, their carbon-based organic matter is converted to fossil fuels over millions of years. 

Fossil fuels represent an important global carbon sink. Extracting and burning fossil fuels to 

power industry, agriculture and human activities rapidly releases fixed carbon sources into the 

atmosphere, thereby disrupting the balance of the carbon cycle. Other human activities also 

contribute to the disruption of natural carbon sinks, for example by deforestation and 

destruction of wetlands.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Since the industrial revolution began, emissions from burning fossil fuels in 

concomitance with intensified agriculture and deforestation have significantly increased 

the concentration of greenhouse gasses in the atmosphere - CO2 levels have risen by 40%, 

CH4 by ~150% and NO2 by ~20%. All in all this has led to a global atmospheric temperature 

rise of 0.8°C above pre-industrial levels which has already triggered accelerated changes in 

global weather and climate. The most noticeable consequences thus far include a 
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significant reduction in arctic sea ice, a rise in sea levels and elevated ocean temperatures 

(Pethica & Ostriker, 2014) as well as wide-ranging negative impacts on biodiversity and 

ecosystem function (Abrahms et al, 2017). In fact, it is projected that over a third of species 

will be on an irreversible trajectory toward extinction by 2050, predominantly as a 

consequence of anthropogenic climate change (Thomas et al, 2004).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: Overview of the greenhouse effect (Figure adapted from Cassia et al, (2018)) 

The greenhouse effect is a natural phenomenon by which solar radiation is trapped 

within the Earth’s troposphere (lower atmosphere). When solar radiation hits the planet’s 

surface it is reflected back into the atmosphere as thermal infrared radiation. This radiation is 

absorbed and subsequently emitted by greenhouse gasses (GHGs), including water vapour, 

ozone (O3), CO2, CH4, N2O and NO. The greenhouse effect is critical for keeping the Earth 

habitable for life, as without this trapped heat the Earth’s surface would have a temperature of 

-19°C. However, human activities have led to a rapid accumulation of GHGs in the atmosphere, 

primarily through the burning of fossil fuels and agricultural activities. This is leading to 

accelerated changes in climate globally and an increase in the frequency of extreme weather 

events (Cassia et al, 2018).    
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It has been estimated that the Earth will continue to warm at a rate of 0.3 - 0.7°C 

every 30 years unless greenhouse gas emissions are curbed substantially (Folland et al, 

2018).  The consequences of a much warmer planet are unpredictable, but there is general 

consensus that a global temperature increase of >1.5°C above pre-industrial levels will pose 

a dangerous threat to humanity, while uncontrolled warming is likely to have far reaching, 

catastrophic effects for all life on Earth (Xu & Ramanathan, 2017). The Paris Agreement, 

put forward in 2015 by the United Nations Framework Convention on Climate Change, has 

been ratified by 183 nations and the EU. These nations have committed to reducing net 

GHG emissions to zero by the year 2300 and taking immediate actions to ensure 

greenhouse gas emissions do not exceed 2.7°C above the pre-industrial baseline by 2050 

(UNFCCC, 2015). Although these commitments are encouraging, meeting these goals will 

require an unprecedented degree of societal, industrial and political transformation as well 

as technological innovation (de Coninck et al, 2018; Xu & Ramanathan, 2017).   

 

1.2 Biorefining 

Developing renewable alternatives to fossil fuels is crucial if we are to mitigate the 

impacts of anthropogenic climate change. While carbon-neutral, renewable energy sources 

such as wind, solar and hydroelectric power are increasingly being adopted to meet 

domestic energy needs (de Coninck et al, 2018), the demand for sustainable liquid 

transport fuels and renewable raw materials for industrial manufacturing remains largely 

unmet (Berntsson et al, 2014). Efforts in this area have led to the conception of biorefining, 

comprehensively defined as “the sustainable processing of biomass into a spectrum of 

marketable biobased products (food, feed, chemicals and materials) and bioenergy 

(biofuels, power and/or heat)” (IEA, 2008). Unlike fossil fuel refineries, biorefineries run on 

renewable sources of biomass (feedstocks) that are replenishable over the course of a 

human lifetime, thereby ensuring that any carbon released into the atmosphere can be 

sequestered back into raw materials at a comparable rate (Kircher, 2015). Biorefineries also 

aim to integrate the recovery, valorisation and recycling of waste streams into their process 

flow, thereby ensuring more sustainable, circular manufacturing processes in which 

materials and energy are not wasted (Cherubini, 2010).  
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A basic biorefining process (Figure 1.3) involves taking a renewable source of 

biomass and subjecting it to successive stages of physical and/or chemical processing, 

followed by conversion of these pre-processed components into products such as fuels, 

chemicals or materials by fermentation with specialised microorganisms (Yamakawa et al, 

2018). Biotechnology, the technological application of biological systems, living things or 

their derivatives for industry, is central to achieving sustainable biorefining. Compared to 

traditional chemical manufacturing, bio-based processes can operate at lower 

temperatures, produce fewer byproducts and toxic wastes, are highly selective and can 

even be re-usable and self-replicating (Gavrilescu & Chisti, 2005). Furthermore, through 

modern genetic engineering techniques, bioprocesses can be designed that produce novel 

products or products that are challenging to synthesise by chemical processes (Lee & Kim, 

2015). Biorefinery processes can potentially be made even more sustainable through heat 

integration and energy generation from waste streams. For example, waste residues from 

fermentation and product purification can be incinerated or, along with waste water, 

converted to biogas (Pandey et al, 2015). Heat recaptured from fermentation processes 

can also be harnessed. Furthermore, any excess heat and energy produced in this way can 

be sold back to the national grid (IEA, 2018). 

The advent of biorefining has impelled initiatives to replace the linear economic 

model that has been central to industrialisation (in short, take-make-dispose) with a 

circular economic model. In a circular economy waste is a resource, to be recycled through 

closed materials loops or revalorised in further manufacturing processes and industrial 

symbioses (Venkata et al, 2016). Biorenergy Task 42, of which the United Kingdom is one 

of eleven members, was set up in 2007 by the International Energy Agency (IEA) to promote 

the global bioeconomy by developing and implementing highly efficient biorefineries with 

zero-waste value chains (IEA, 2016). However, in order to achieve fully sustainable, circular 

systems across all industries and to meet the energy demands of the future, we must not 

only improve the sustainability of well-established biorefinery value chains but also identify 

new feedstocks and develop methods for their valorisation. 
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1.2.1 Renewable Feedstocks 

Renewable sources of biomass are vital for sustainable bio-manufacturing. 

Lignocellulose, the major component of the inedible parts of plants, is the most abundant 

source of renewable carbon on the planet and is widely considered the best feedstock for 

sustainable biorefining (Ghatak, 2011). Lignocellulose contains up to 75% polysaccharides 

in the form of cellulose and hemicellulose (Figure 1.4) which can be broken down into their 

constituent sugars and used as a carbon source for fermentation. Cellulose and 

hemicellulose typically make up between 25-55% and 23-40% of lignocellulose composition 

in higher plants, with the remaining 7-35% comprising lignin, an amorphous aromatic 

heteropolymer (Marriott et al, 2016).  

Figure 1.3: General overview of an integrated biorefining process chain  
(Figure by author)  
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Figure 1.4: Structural configuration of lignocellulose within the plant cell wall  
(Adapted from Rubin, 2008). 

 

The non-edible, woody parts of plants and plant-derived materials such as paper are 

primarily composed of lignocellulose, the major structural component of plant secondary cell 

walls. Lignocellulose consists of up to 75% polysaccharides in the form of cellulose and 

hemicellulose (Marriot et al, 2006). Cellulose is composed of D-glucose molecules linked by ß-

1,4-glycosidic bonds and bundled into crystalline microfibrils. The microfibrils are linked 

together through hydrogen bonding with long-chain polysaccharides of hemicellulose, which 

contains backbones composed of a range of hexose sugars (D-glucose, D-mannose and D- 

galactose) and pentose sugars (D-xylose and L-arabinose) that are linked by ß-1,4 and ß-1,3-

glycosidic bonds usually and also exhibit branching and substitution with oligosaccharides,  

sugar acids (glucuronic acid and galacturonic acid), acetic acid and phenolic acids. The 

polysaccharide network is embedded in a matrix of lignin, an amorphously polymerised 

polyphenol composed of monolignol monomers p-coumaryl (H), coniferyl (G) and sinapyl (S). 

Lignin permeates the macrofibril structure and reinforces the cell wall, contributing significantly 

to its durability (Rubin, 2008). 

 

Cellulose 

Hemicellulose 

Lignin 
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A wide array of plant biomass sources are being investigated for their utility as 

feedstocks – these are primarily agricultural by-products such as wheat straw and corn 

stover which do not compete with food production, as well as forestry by-products such as 

woodchips and grasses like Miscanthus spp. that can be grown on marginal land (Saini et 

al, 2015). Biorefineries that run on these non-edible, lignocellulosic feedstocks are called 

‘advanced’ or ‘second generation’ biorefineries. ‘First generation’ biorefineries use 

feedstocks that directly compete with food production, such as starch from grains (maize 

or wheat), sugar (beetroot and sugar cane) or oil crops (rapeseed and palm) and are 

considered unsustainable (Yamakawa et al, 2018). 

First generation feedstocks are currently used at a commercial scale to produce 

bioethanol or biodiesel. About 150 billion litres of biofuels were produced globally in 2018, 

with the majority produced in the United States and Brazil from maize and sugar cane, 

respectively (IEA). Second generation biorefineries have been successfully demonstrated 

on a pilot-scale for the production of biofuels, bio-based chemicals and materials but on 

the whole commercial-scale facilities still face an array of bottlenecks (Mossberg et al, 

2018). The scalability of second generation bioprocesses is greatly limited by lignocellulose 

recalcitrance (Marriott et al, 2016). Due to its complex macromolecular structure, the 

crystallinity of the cellulose and the highly inert, amorphous nature of the surrounding 

lignin matrix, lignocellulose is extremely difficult to break down. A great deal of research is 

therefore being done to find economical and efficient ways of pre-processing 

lignocellulosic biomass in order to achieve viable sugar yields for use in biorefining (Jönsson 

& Martin, 2016).  

Apart from lignocellulose recalcitrance, other process inefficiencies that limit the 

commercial viability of lignocellulosic biorefineries include inhibitor formation and 

fermentation (Yamakawa et al, 2018), as well as overhead costs for enzymes (Klein-

Marcuschamer et al, 2012), pre-treatments and purification. These will require further 

research to overcome (Marriott et al, 2016; Pandey et al, 2015). Furthermore, the volatility 

of oil prices greatly influences the commercial viability of bio-based products as they deter 

investment into biorefineries, infrastructure and vehicles that run on biofuels (Uría-

Martínez et al, 2018). Despite these limitations, companies around the world have started 

ventures in second generation biorefining. For example  Dupont, Beta Renewables, Raizen, 

Poet/DSM, Abengoa and GranBio have invested heavily in cellulosic ethanol and are well 
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positioned to overcome major technological and technical challenges that currently 

constrain profitable commercial production at industrial scales (Yamakawa et al, 2018). 

 

1.2.2 Pre-treatment   

In order to liberate sugars from lignocellulosic biomass it must be subjected to harsh 

physical and/or chemical pre-treatments that make the lignocellulose more amenable to 

enzymatic degradation. Pre-processing increases the accessibility of lignocellulose for 

enzymes by reducing cellulose crystallinity, depolymerising hemicellulose and/or 

degrading lignin (Modenbach & Nokes, 2012). The type of pre-treatment used depends 

greatly on the feedstock. In general, the biomass is first subjected to physical disruption, 

such as milling, followed by a chemical or physicochemical treatment (Modenbach & 

Nokes, 2012). Chemical pre-treatments can include application of acids, bases, hot water 

or steam, ionic liquids (IL) or organic solvents (termed organosolv). Physicochemical pre-

treatments include ammonia fibre explosion (AFEX), where biomass is exposed to liquid 

anhydrous ammonia at high temperature and pressure, hydrothermal processes such as 

liquid hot water pre-treatment, in which biomass is brought to high pressure and 

temperature, and steam explosion, which involves sudden depressurisation of liquid hot 

water pre-treated biomass. Treatment with microwaves, ultrasound or supercritical CO2 

can also be applied (Alvira et al, 2010).  

Pre-treatments are generally costly and involve harsh conditions that can lead to 

the degradation and transformation of a wide range of compounds (Figure 1.5). If present 

at high concentrations many of these compounds can be inhibitory to enzymes and 

microorganisms employed later in the process. The most common and toxic degradation 

products include furan aldehydes, particularly 5-hydroxymethylfurfural (5-HMF) and 

furfural, which are formed under high temperatures from the degradation of hexoses and 

pentoses, respectively. These compounds inhibit microbial growth and can cause DNA 

damage. Some microorganisms, such as Saccharomyces cerevisiae (Brewer’s yeast) can 

convert furfural and 5-HMF to less reactive alcohol derivatives, but growth and 

fermentation cease until this conversion process is complete, thereby reducing overall 

bioprocess productivity (Almeida et al, 2008; Almeida et al, 2009).    

Other inhibitors include aliphatic organic acids, which can form from hydrolysis of 

acetyl groups derived from hemicellulose. Formic acid and levulinic acid can also form when 



  Chapter 1: General Introduction 
 

 
 

26 
 

furfural and 5-HMF are hydrochemically degraded under very harsh conditions or extended 

pre-treatments (Jönsson & Martin, 2016).  Aliphatic acids disrupt the pH gradient across 

microbial membranes, thereby inhibiting or killing the microorganism. For fermentative 

species like S. cerevisiae these acids are generally inhibitory at concentrations above 100 

mM, with a toxicity hierarchy of acetic acid < levulinic acid < formic acid (Jönsson et al, 

2013). Lignin degradation can lead to the formation of a diverse array of aromatic and 

phenolic compounds. These vary greatly between feedstocks and are difficult to identify 

and quantify, although common marker compounds include vanillin and cinnamaldehyde. 

The mechanism of toxicity is poorly understood, but it is postulated that phenols interfere 

with cell membrane integrity. Different phenols have also been shown to have a variety of 

cellular targets and mechanisms of inhibition (Adeboye et al, 2014). At µM to mM 

concentrations phenolics can also inhibit hydrolysis by inducing precipitation in enzymes 

(Ximenes et al, 2010).    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5: Common byproducts derived from lignocellulosic biomass during 
physicochemical pre-treatment  

(Taken from Jönsson & Martin, 2016). 
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The types of inhibitors formed vary greatly between pre-treatments, with some 

methods producing fewer or lower concentrations of toxic compounds than others. 

Generally less harsh methods such as hydrothermal pre-treatments produce fewer 

inhibitors but are not effective for pre-treating all types of biomass. Approaches that are 

being taken to improve pre-treatment efficiency and reducing inhibitor formation include 

breeding and engineering less recalcitrant feedstocks, detoxifying feedstocks after pre-

treatment using additives (reducing agents, alkali, polymers), extraction or enzymes, 

treatment with inhibitor degrading microorganisms (bioabatement), and also evolutionary 

or genetic engineering of fermentative microorganisms for superior inhibitor tolerance 

(Jönsson & Martin, 2016).  

 

1.2.3 Enzymatic Hydrolysis 

Pre-treatment is typically followed by hydrolysis, also termed saccharification, in 

which specialised enzymes, usually derived from fungi, are used to liberate sugars from the 

lignocellulose. To fully degrade cellulose and hemicellulose a wide range of enzymes (i.e. 

cellulases and hemicellulases) are required. Cellulose hydrolysis generally involves four 

major enzyme classes – lytic polysaccharide monooxygenases (LPMOs) which oxidise 

crystalline cellulose, introducing breaks into glucan chains and increasing accessibility for 

other cellulases; endoglucanases, which randomly hydrolyse internal covalent bonds 

between microfibrils, thereby creating free ends for other cellulases to act upon; 

exoglucanases (i.e. cellobiohydrolases) which produce free glucose and cellobiose 

molecules by cleaving glycosidic bonds from free reducing and non-reducing ends of 

cellulose chains; and ß-glucosidases (i.e. cellobiases) which hydrolyse cellobiose and 

cellulooligosaccharides to liberate glucose molecules (Figure 1.6) (Andlar et al, 2018; 

Jorgensen et al, 2007; Van Dyk & Pletschke, 2012).  

As described above (Figure 1.4), hemicellulose consists of a matrix of branched 

polysaccharides that are highly structurally and chemically diverse and closely associated 

with other cell wall components. A wide range of highly specific hemicellulolytic enzymes 

must therefore act synergistically to effectively hydrolyse all the distinct structural 

components of hemicellulose (Broeker et al, 2018; Van Dyk & Pletschke, 2012). Along with 

hemicellulases that degrade poly- and oligosaccharides, effective hemicellulose 

degradation requires the action of various esterases and furanosidases (Andlar et al, 2018). 
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Unlike cellulose and hemicellulose, lignin has a highly amorphous and non-repetitive 

structure, making it a difficult target for enzymes. However, to maximise polysaccharide 

accessibility, lignin must be degraded or modified. This can be achieved through the activity 

of free radicals, mediated by enzymes such as laccases and peroxidases (Have & Teunissen, 

2001).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Figure 1.6: The enzymatic degradation of cellulose by endoglucanases, 
exoglucanases, ß-glucosidases and LPMOs  

(Adapted from Andlar et al, 2018). 
 

NR = non-reducing end; R = reducing end; 

Cellulose 
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Plant cell walls evolved to resist degradation, therefore these enzymes must all act 

synergistically to successfully break down the complex macromolecular structure of 

lignocellulose. Achieving effective hydrolysis on an industrial scale necessitates enzymes 

that have a high catalytic efficiency, thermal stability and are not prone to end-product 

inhibition. Specially formulated mixed enzyme cocktails have been developed specifically 

for biorefinery applications. These cocktails typically contain an assortment of cellulolytic 

and hemicelluloytic enzymes derived from crude cell lysate of filamentous fungi and can be 

attained in bulk quantities form specialist companies (Lopes et al, 2018).  Enzymes have 

also been engineered to have superior properties that improve lignocellulose degradation, 

for example the cocktail Cellic® Ctec3 recently developed by Novozymes contains 

proprietary engineered enzymes with improved performance (Novozymes, 2019).  

Enzyme efficiency is considered a major factor in facilitating viable industrial 

biorefining (Lopes et al, 2018). Large volumes of water are necessary to achieve efficient 

conversion to sugars as most pre-treatments and enzymatic processes rely on water to 

facilitate degradation (Zhao et al, 2012). However, to ensure that sugar levels in the final 

hydrolysate are concentrated enough for viable fermentation, biomass loadings must be as 

high as possible - ideally >15% w/v total solids (TS) (Modenbach & Nokes, 2012). This 

reduces the amount of available water and limits process efficiencies. Based on conversion 

yields and fermentation efficiencies reported in the scientific literature for ethanol 

production from corn stover, the cost contribution from enzymes would be $1.47 per 

gallon. Assuming conversion at maximum theoretical yields, the cost of enzymes would 

contribute only $0.68 to the price per gallon. Overall, the compounded cost of enzyme 

cocktails and inefficiencies of hydrolysis and other processing stages limit the potential for 

biorefineries to competitively produce bio-based products from lignocellulose (Klein-

Marcuschamer et al, 2012).  

 

1.2.4 Fermentation 

The term fermentation has several meanings in different contexts. In the field of 

biochemistry fermentation refers specifically to metabolic processes in which an organic 

compound is broken down (catabolised) to generate energy under oxygen-free (anaerobic) 

conditions.  Fermentation is believed to be an ancient method of energy production as it 

can occur without the tricarboxylic acid (TCA) cycle. Unlike other forms of metabolism, such 
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as aerobic or anaerobic respiration, fermentation produces the universal energy molecule 

adenosine triphosphate (ATP) through substrate-level phosphorylation without involving 

external electron acceptors, electron transport systems or membrane potential. At its most 

basic, fermentation can be described as the oxidation of a substrate to an oxidised 

intermediate, with some of the energy from oxidation contributing to the production of 

ATP (Figure 1.7). To restore the cellular redox balance, the oxidised intermediate is reduced 

to an end product, thereby regenerating nicotinamide adenine dinucleotide (NAD), the 

cofactor that was used in the initial oxidation (Todar, 2012).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.7: A model fermentation pathway 
(Taken from Todar (2012))  

 

A. A basic fermentation involving the oxidation of a substrate by the oxidising agent 

nicotinamide adenine dinucleotide (NAD+). Energy from this oxidation enables the 

generation of a molecule of adenosine triphosphate (ATP) from adenosine di-phosphate 

(ADP) and phosphate (Pi). To restore the cellular redox balance, the oxidised 

intermediate is reduced to an end product, thereby regenerating the oxidising agent 

NAD+ from the reduced form, NADH2.  
 

B. A lactate fermentation, in which the substrate D-glucose is oxidised to two molecules of 

pyruvate, thereby generating two molecules of ATP. The two pyruvate molecules are 

then reduced to two molecules of the fermentation end product lactate.  

 

A B 
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In the context of industrial biotechnology, the definition of fermentation is broader, 

encompassing any microbial biomanufacturing process, independent of aerobicity 

(Salmond & Whittenbury, 1985). Modern industrial fermentation processes employ first 

generation feedstocks and are generally carried out in bioreactors via batch or fed-batch 

processes with a single species (monoculture) of bacteria or fungi that produce a product 

of commercial interest (Paulová & Brányik, 2013). A wide range of important and valuable 

commodity and specialty chemicals are produced by fermentation, such as antibiotics, 

bioethanol and citric acid (Salmond & Whittenbury, 1985). Other microbially derived 

products include enzymes, for example proteases used in laundry detergents, and 

biopharmaceuticals, such as human insulin, which is produced with a genetically 

engineered strain of the bacterium Escherichia coli (Jozala et al, 2016).   

In biorefining, sugar-rich hydrolysates liberated from lignocellulosic biomass 

through saccharification can be used as carbon sources for microbial fermentations. 

Fermentations are generally carried out as an independent processing stage after 

hydrolysis, but fermentation and saccharification can also be combined in a process called 

simultaneous saccharification and fermentation (SSF). SSF enables sugars to be fermented 

as they are released by enzymes, relieving the product inhibition that limits enzyme 

efficiency. Furthermore, because SSF can be carried out in a single vessel the process uses 

less energy and saves processing time (Takkellapati et al, 2018). However, separate 

hydrolysis and fermentation (SHF) is more traditionally used as it allows for optimisation of 

each step independently to increase overall product yield. The method used is largely 

dependent upon the type of biomass and properties of the fermentative microorganism 

(Srivastava et al, 2015).  

Along with the basic traits of a good industrial strain, such as rapid product synthesis 

and tolerance to the stressful conditions of an industrial bioreactor, a biorefining strain 

must also be able to grow efficiently and robustly on the lignocellulosic feedstock and 

utilise the full spectrum of available hexose and pentose sugars without suffering from 

product inhibition or inhibitor toxicity. In reality no strain naturally exhibits all the 

properties necessary for industrial production. Industrially viable strains are developed for 

a dedicated bioprocess by targeted selection and improvement through directed evolution 

and genetic engineering (Chen & Dou, 2015). Strains can be selected, evolved and 

engineered for a variety of desirable characteristics. For example, inhibitor and product 
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tolerance  can be enhanced by improving stress response, increasing membrane integrity 

or raising efflux pump activity (Dunlop, 2011).  

Productivity can also be increased by expanding the repertoire of sugars used by 

the microbe. Most microorganisms preferentially ferment D-glucose, but D-xylose, the 

second most common sugar in lignocellulosic hydrolysates, often cannot be fermented by 

industrially useful species. Species that do ferment D-xylose typically exhibit carbon 

catabolite repression (CCR), wherein one sugar (usually D-glucose) is used preferentially 

over other sugars, leading to sequential rather than simultaneous carbon source 

fermentation. Simultaneous mixed-sugar fermentation is crucial for an effective 

lignocellulosic bioprocess (Zhang et al, 2015). Introducing D-xylose fermentation is 

therefore a major engineering target and has been successfully achieved with numerous 

industrially useful microorganisms (Agrawal et al, 2010; Dien et al, 2003; Kim et al, 2013; 

Kurosawa et al, 2013; Lee et al, 2012; Smith et al, 2014).  

The most well-established and robust species for industrial biorefining are the S. 

cerevisiae and Zymomonas mobilis. These two ethanol fermenting species (ethanologens) 

have been widely studied, adapted and engineered to produce bioethanol and other 

products. S. cerevisiae produces ethanol via the Embden-Meyerhof (EM) pathway (Figure 

1.8), wherein D-glucose is sequentially oxidised to produce two molecules of pyruvic acid. 

Pyruvic acid is then reduced further to the end product ethanol and CO2 (net reaction: 

Glucose + 2 ADP + 2 Pi → 2 Ethanol + 2 CO2 + 2 ATP + 2 H2O). The EM pathway is present in 

almost all living things and its end-product, pyruvic acid, is the precursor for the 

biosynthesis of many fermentation products, including alcohols, organic acids, fatty acids, 

and gasses (Todar, 2012). 
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The bacterium Z. mobilis on the other hand produces ethanol via an alternative 

route called the Entner-Doudoroff (ED) pathway (Figure 1.8). Like the EM pathway, the ED 

pathway yields two pyruvate molecules, but via an asymmetrical sequence of oxidations 

that result in the production of only one molecule of glyceraldehyde-3-phosphate and the 

first pyruvic acid. Glyceraldehyde-3-phosphate is oxidised further via EM pathway reactions 

to form the second pyruvate. The two pyruvate molecules are then reduced to produce a 

net yield of two molecules of ethanol (Todar, 2012). Using the ED pathway for ethanol 

fermentation is unusual as this pathway is typically found in aerobic microorganisms. 

Figure 1.7: The Embden-Meyerhof Pathway 
(Taken from Todar (2012)). 

 

The Embden-Meyerhof (EM) pathway is the major pathway used for the dissimilation of 

D-glucose to pyruvic acid, a precursor that can be further converted to fermentation products 

such as alcohols, fatty acids, organic acids and gasses.   
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However, by adapting the pathway for anaerobic fermentation Z. mobilis is able to produce 

ethanol with exceptional efficiency (Bucholz et al, 1987). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Another important product that can be produced from renewable biomass is 

biodiesel, which is produced by oil-producing (oleaginous) microorganisms such as 

microalgae, some bacteria, yeasts and fungi (Meng et al, 2009). Microbial oils are stored 

intracellularly in the form of triacylglycerol (TAG) (Figure 1.9-A). TAG can be extracted from 

cell biomass and chemically transformed into biodiesel by transesterification (Figure 1.9-B) 

(Alvarez & Steinbüchel, 2002).  

Figure 1.8: The Entner-Doudoroff Pathway  
(Taken from Todar (2012)). 

 

The Entner-Doudoroff (ED) pathway used by Zymomonas mobilis for ethanol 
fermentation. Net reaction: Glucose + ADP + Pi→ 2 Ethanol + CO2 + 1 ATP + 2 H2O 



  Chapter 1: General Introduction 
 

 
 

35 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TAG is produced by similar pathways in both eukaryotes and prokaryotes but is 

rarer in bacteria – so far only heterotrophic aerobes (primarily in the order 

Actinomycetales) and cyanobacteria have been shown to synthesise TAG (Alvarez & 

Steinbüchel, 2002). TAG metabolism involves a series of complex anabolic and catabolic 

Figure 1.9: Triacylglycerol structure and mechanism of transesterification to Biodiesel 
(Figure by author, with A. taken from Wikimedia commons (public domain) and B. adapted 

from Lestari et al, (2009)). 
 

A: Structure of a triacylglycerol (TAG) molecule. TAG is made up of a glycerol molecule with 

three fatty acid (FA) chains attached. The FAs can be of varying length and functionality, but 

typically range between 14-20 carbons in nature.  

FAs are named based on the number of carbon atoms and degree of saturation. Carbons are 

numbered from the first carbon of the carboxyl group (preceding the α-carbon) to indicate 

regions of unsaturation (double-bonds). The final carbon is always designated as the ω (omega) 

carbon. For example, the fatty acids in the TAG molecule shown above are (top to bottom): 

C:16:0 (Palmitic acid); C18:1(9) (Oleic acid); and C18:3(9,12,15) (α-linoleic acid).  
 

B: Transesterification of triacylglycerol (TAG) in the presence of methanol to produce fatty acid 

methyl esters (FAMES) which can be used as biodiesel, and glycerol.  R n = various FAs  

Triacylglycerol (TAG) 

A 

B 
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pathways that occur under aerobic conditions (Figure 1.10 and Appendix IX). Cells produce 

TAG as a means of storing carbon under conditions of nutrient limitation. TAG has a higher 

calorific value than proteins or carbohydrates, meaning it yields more energy when 

oxidised, enabling cells to live off their stores until environmental nutrients become 

available once more (Amara et al, 2016).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TAG can be synthesised from any carbon source that can be broken down by the 

microorganism to the key precursors acetyl-CoA, propionyl-CoA, malonyl-CoA and glycerol-

3-phosphate. These precursors are sequentially condensed by dedicated fatty acid 

Figure 1.10: Triacylglycerol Metabolism 
(Adapted from Amara et al, (2016)). 

 

Biosynthesises reactions are shown in green. Biodegradation reactions are shown in red. 

Metabolism is shown for D-glucose but can be substituted with any carbon source that the 

oleaginous organism can catabolise to the key precursors acetyl-CoA, propionyl-CoA, malonyl-

CoA and glycerol-3-Phosphate. 
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synthases to varying carbon chain lengths and bond-saturation (Figure 1.10-5). At the same 

time, diacylglycerol is derived from glycerol-3-phosphate (Figure 1.10-7). To produce a 

molecule of TAG, diacylglycerol is condensed with three FA chains by diacylglycerol 

acyltransferase (DGAT). When the cell enters a state of starvation, TAG is broken down via 

a series of degradation pathways that involve splitting the TAG molecule into its constituent 

FAs and a glycerol (Figure 1.10-8). Glycerol is regenerated to glycerol-3-phosphate and the 

FAs are degraded via the ß-oxidation pathway, thereby regenerating acetyl-CoA and 

cofactors which are fed back into the tricarboxylic acid (TCA) cycle and electron transport 

chain to produce energy (Figure 1.10-6) (Alvarez & Steinbüchel, 2002; Amara et al, 2016; 

Lestari  et al, 2009).  

TAG production is a slow process relative to secreted fermentation products such 

as ethanol due to the complexity of the physiology involved in transitioning between TAG 

synthesis and vegetative growth. TAG synthesis typically does not begin until late 

exponential phase when nutrients become limiting (Alvarez & Steinbüchel, 2002). It is 

therefore critical that the fermentation medium contains a balance of carbon and nitrogen 

that ensures optimal levels of biomass production before TAG synthesis begins. Cells must 

also be harvested at the point where TAG has reached peak concentrations to avoid cells 

catabolising their stores (Dong et al, 2016).  

Another class of important bio-based products are platform chemicals, which are 

molecules that can be transformed into wide range of industrially valuable products via 

chemical conversion. An example is lactic acid (Figure 1.11). Lactic acid is produced at an 

annual rate of ~320,000 tonnes by industrial microbial fermentations and can be used as a 

building block to produce several useful chemicals. Lactic acid can be reduced and then 

dehydrated to produce propylene oxide, directly dehydrated to acrylic acid or 

hydrogenated to propanoic acid. Alternately it can be polymerised to polylactic acid, a 

biodegradable polymer with excellent properties for replacing plastics in packaging and 

textiles, or esterified to lactate esters, which are valuable solvents. Similarly, ethanol, 

although primarily used as a fuel, can be converted to acetaldehyde, acetic acid and other 

molecules used for polymer synthesis, including propylene, ethylene and butadiene 

(Takkellapati et al, 2018).  
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Other platform chemicals that can be produced biologically, are of industrial 

relevance and have been identified as being of high market attractiveness include 5-HMF, 

levulinic acid, methanol, 1,3-butanediol, 1,3-propanediol, 2,5-furandicarboxylic acid, 3-

hydroxypropionic acid, acrylic acid, adipic acid, butadiene, D-mannitol, epichlorohydrin, L-

lysine, levoglucosenone, glycerol, glucaric acid, fumaric acid, fatty alcohols, malic acid, 

methyl methacrylate, muconic acid, n-butanol, polyhydroxyalkanoates, propylene glycol, 

paraxylene, terpenoids, itaconic acid, succinic acid, furfural, xylitol, sorbitol and isoprene 

(LBNet, 2017).  

Biorefining promises to transform the fuel and chemical sector and direct industry 

toward a more sustainable circular economic model. Although biorefining is a relatively 

recent development that still suffers from a range of technical challenges, many bio-based 

technologies and processes are coming of age. An increasing number of companies have 

begun to invest in the biorenewables sector and sales from bio-based products are growing 

at an annual rate of 8%. Overall the production of renewable bio-based chemicals is set to 

rise significantly in the coming decades, with predicted sales reaching between $375 – 441 

billion by 2020 (Takkellapati et al, 2018).  

Figure 1.11: Value-added products synthesised from lactic acid 
(Taken from Takkellapati et al, (2018)). 
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1.2.5 Other Outputs 

Biorefineries are highly capital-intensive. Plants based around a single conversion 

technology are more sensitive to market volatility and have higher overheads, which raises 

product costs and lowers capacity for competing with petroleum-derived equivalents 

(Fernando et al, 2006). To develop a truly sustainable and circular biorefinery requires the 

integration and maximal valorisation of all waste streams resulting from a bioprocess, 

generally referred to as integrated biorefining (Cherubini et al, 2009). A biorefinery with 

several outputs can flexibly produce products to match market demands and supplement 

overhead costs by internally generating power. Major waste streams in biorefineries that 

can be used to produce energy and power include waste water from pre-treatment, lignin 

and other waste residues produced through hydrolysis, fermentation residues (spent cells 

and medium) as well as waste heat generated during fermentation or from cooling reactors 

after heat-based pre-treatments (Fernando et al, 2006).  

A major avenue of investigation has been lignin valorisation. Lignin is the major 

residue left over after cellulose and hemicellulose have been saccharified and although it 

is a highly recalcitrant heteropolymer, a wide range of value-added products can be 

produced from it (Figure 1.12). The simplest method of valorising lignin is by producing 

syngas via gasification, however a variety of other pathways have also been demonstrated, 

such as conversion to hydrocarbons, oxidised products, phenols and macromolecules (IEA, 

2013).   

 

 

 

 

 

 

 

 

 

 

 Figure 1.12: Value-added products synthesised from lignin 
(Figure by author, based on IEA (2013)) 
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Another major avenue for valorising biorefinery waste streams is anaerobic 

digestion (AD). AD is an established industrial process used around the world for treating 

waste water and solid waste. Although AD employs relatively simple technology, it is a 

highly multifunctional solution for treating a wide range of wastes, with over 30,000 

industrial plants in operation worldwide, permanently producing 10,000 MW of power 

(Calusinska et al, 2018). Furthermore, AD outputs have numerous useful applications - 

biogas can be used for electricity, heat and fuel while the digestate, which contains spent 

cells and nutrient-rich organic matter, can be used as organic fertilizer (IEA, 2018). In a 

standard AD process (Figure 1.13-A) organic waste is fed to an anaerobic microbial 

community consisting of hundreds of diverse microorganisms that synergistically degrade 

biomass to biogas rich in methane (CH4) (Figure 1.13-B).  

Efficient methane production is largely dependent upon complex interactions 

between all species in the microbial community. The critical step of methane synthesis 

(methanogenesis) is carried out exclusively by archaea, but their productivity is dependent 

upon the availability of acetic acid, H2 and CO2. These precursors can only be produced by 

other species specialised in carbon source degradation (hydrolysis), acidogenesis and 

acetogensis, which generally belonging to the major phyla Firmicutes, Bacteroidetes, 

Proteobacteria, and Chloroflexi (Nelson et al, 2011). Bacteroidetes primarily carry out 

hydrolysis and fermentation of organic material to produce volatile fatty acids (VFAs), H2 

and CO2 that can be utilised by other members of the community. Proteobacteria 

(particularly of the class Deltaproteobacteria) are vital due to their ability to degrade 

compounds like glucose, butyrate, propionate and acetate to H2 and CO2. Firmicutes also 

play an important role as degraders of volatile fatty acids (VFAs) and producers of acetic 

acid used by archaea for methane production, whilst Chloroflexi are important for nutrient 

cycling as degraders of carbohydrates and cell material (Narihiro & Sekiguchi, 2007; Nelson 

et al, 2011).  

Finally, the recapture of heat and integration of power is critical for biorefining as it 

provides an auxiliary source of energy to lower operational costs. Waste heat-to-power 

technologies are already implemented in other industries to collect and re-use heat lost 

during processing. Recovery is usually achieved with heat exchangers and heat recovery 

steam generators (Jouhara et al, 2018). In the context of a biorefinery, heat and CO2 

produced by fermenting microorganisms can be captured and used to power pre-
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treatment and purification processes. Additional power can be generated by combusting 

waste residues (Nizami et al, 2017). Overall, valorising waste residues such as lignin, 

diverting waste water and residues to AD and recapturing heat for power recovery should 

be an integral part of any truly sustainable and circular biorefining platform (Cherubini et 

al, 2009).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A 

B 

Figure 1.13: Overview of Anaerobic Digestion 
(Figure by author, based on IEA (2018)) 

 

A: Anaerobic digestion plant inputs and outputs;  
 

B: Biosynthetic pathways of biogas production. The major metabolic activities carried out by 

microbial communities inside an anaerobic digester include hydrolysis of the feedstock to organic 

molecules, which in turn are converted by acidogenesis to volatile fatty acids (VFAs). VFAs are 

converted by acetogenesis to acetic acid, H2 and CO2, which are metabolised by methanogenic 

Archaea to CH4 and CO2.  
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1.3 Municipal Solid Waste 

The effective management of waste is a significant logistical and economic challenge 

that will become increasingly difficult to achieve as our planet becomes more urbanised 

and overpopulated. Municipal solid waste (MSW), which encompasses any non-industrial 

waste, including refuse from households, small businesses and public institutions, is of 

particular concern (DEFRA, 2015b). Just over 2 billion tonnes of MSW are currently 

generated by human beings yearly and volumes are projected to rise to 3.4 billion tonnes 

per year by 2050 (Kaza et al, 2018). This escalation is primarily attributed to increasing 

urbanisation and growing economic prosperity, particularly in lower and middle-income 

countries where waste generation is anticipated to increase 165-185%. Holistic and 

economical solutions are needed, not only to cope with the significant volumes of waste 

that will be generated, but also to mitigate the environmental burden of poor waste 

management and recover and recycle finite resources (Hoornweg, 2012).  

 

1.3.1 Global Impact  

The waste we generate has a considerable impact on the environment: the primary fate 

of MSW is to end up in landfills, where anoxic decomposition of the organic fraction leads 

to the release of methane, a potent greenhouse gas. Landfills are the third largest sources 

of anthropogenic methane emissions after animal husbandry and the energy sector, are 

projected to contribute substantially to the net global temperature rise over the next 

decade and will continue to be the leading cause of warming in 100 years (Figure 1.14) 

(Myhre, 2013).   

Landfills are the most economical means for disposal of MSW and the most common 

method used globally, with over 90% of all MSW landfilled in many developing countries 

(Lamb et al, 2014). Another common disposal method is incineration, which can be used to 

generate energy in the form of heat, but at the cost of releasing greenhouse gasses (Lamb 

et al, 2014; UNEP, 2015). Less developed nations often lack the infrastructure necessary for 

effective MSW management, leading to MSW accumulating on roadsides, polluting air and 

water and creating unsanitary conditions that can spread disease (Hoornweg, 2012). Poorly 

managed MSW also clogs up waterways and makes its way out into the ocean. 80% of 

plastic polluting the marine environment originates from countries with large coastal 
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populations and poor waste management infrastructure, including China, Indonesia, the 

Philippines and Vietnam (Li et al, 2016).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Even amongst the worlds most developed nations, landfilling and incineration are 

still the fate of at least half of all MSW. In the United States of America 52.5% of all MSW 

is landfilled, 12.8% is incinerated and only approximately 25% is recycled. Less than 10% is 

composted. In the European Union (EU) a few member states have attained recycling rates 

of 50%, but landfilling and incineration are still widely implemented (Eurostat, 2017). Figure 

1.15 displays the trends of MSW treatment in the EU since 1995. Although landfilling has 

become less common overall, the amount of waste that is incinerated has risen by 100% 

since 1995, totalling 64 million tonnes in 2014 (Eurostat, 2016). Overall, it appears that 

countries that have successfully curbed landfilling over the last few decades, such as 

Germany, Sweden, Switzerland and Belgium, now have some of the highest rates of waste 

incineration (Figure 1.16). However, more sustainable practices such as recycling and 

composting have also seen some increase (Eurostat, 2017). 

Figure 1.14: Contribution of different greenhouse gas emissions sectors to the net 
mean global temperature changes projected for the next 20 years  

(Figure taken from Myhre, (2013)).  
The major greenhouse gasses, methane (CH4) and CO2 are shown in brown and red, 

respectively; VOC = volatile organic compounds; CIC = contrail induced clouds.  
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Figure 1.16: Prevalence of landfilling (left) and incineration (right) across European 
Union member states in 2015.  

(Maps generated by author using data from Eurostat (2017)). 
Legend shows kilograms of municipal solid waste disposed by each method per capita. 

  
Incineration for energy capture has become widespread in the EU and is now used to 

dispose of 26% of all MSW, a 100% increase from 1995 levels (Eurostat, 2017b). Concurrently, 

landfilling has fallen by 58% since 1995 and is now the fate of 25% of MSW.  

Figure 1.15: Management of municipal solid waste produced in European Union 
countries from 1995 to 2014. Taken from Eurostat (Eurostat, 2016). 

M
S

W
 (

m
il
li
o

n
 t

o
n

n
e
s
) 



  Chapter 1: General Introduction 
 

 
 

45 
 

Incineration is more widespread than landfilling across Europe because it can be coupled 

to energy recapture for domestic heating. Despite this benefit however, incineration only 

represents the lesser of two evils as this process still generates significant CO2 and NO 

emissions. It also requires more sophisticated infrastructure compared to landfilling, which 

hampers its implementation in less developed nations (Lamb et al, 2014). Overall, effective 

management of MSW is imperative if we are to ensure sustainable development on a global 

scale. There is a pressing need for economical and environmentally friendly methods to 

manage MSW that are logistically feasible for large urban populations and lower income 

nations (Hoornweg, 2013).  

 

1.3.2 MSW Management in the United Kingdom 

The total greenhouse gas emissions from wasted materials and waste management 

processes in the UK is over 200 million tonnes of CO2, with a further 15 million tonnes of 

CO2 equivalents annually emitted by landfills in the form of methane. Although these 

emission levels are significant, they are about 77% lower than 1995 levels due to reductions 

in the amount of biodegradable waste sent to landfill, enacted in compliance with 

European Commission Directive 99/31/EC (DEFRA, 2018). This directive dictates that the 

United Kingdom (UK) must reduce the volume of landfilled biodegradable material to 35% 

of 1995 levels by 2020 in order to reduce landfill-derived methane emissions, which it is 

reportedly on track to do (DEFRA, 2015b). Currently however about 15.7 million tonnes of 

MSW are still landfilled annually in (~23% of all MSW produced) of which ~7.7 million 

tonnes (49%) are biodegradable. A further 10 million tonnes are incinerated and the 

remainder is recycled, composted or subjected to anaerobic digestion (DEFRA, 2018).  

Historically the UK has relied more heavily on landfills for waste disposal than other 

European nations. A key strategy for landfill mitigation was the introduction of a landfill tax 

in 2009 to disincentivise local authorities from landfilling biological MSW, the major cause 

of methane emissions (Gregson et al, 2015). Local councils subsequently outsourced waste 

management to integrated materials recovery facilities (MRFs), which are commercial 

facilities that mechanically and/or biologically process MSW using a variety of established 

technologies (Figure 1.17). There are over a hundred MRFs operational across the UK and 

they have become integral to the country’s waste management (DEFRA, 2013). Anaerobic 

digestion facilities are also widespread, with 486 plants currently  operating around the 
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country, 84 of which provide biomethane directly to the national grid (NNFCC, 2019). AD is 

primarily used for the treatment of domestic food and green waste, but also agricultural 

waste, manure and liquid waste (DEFRA, 2015a). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

On average MSW produced in the UK is highly heterogeneous, consisting primarily 

of plastic (20%), food waste (15%) paper (11%) and card (8%). Minor components include 

garden waste, textiles, shoes, carpets, furniture, metal, glass, hazardous waste and waste 

electrical and electronic equipment (W.E.E.E) (Figure 1.18). Organic components such as 

card, paper, garden waste and discarded food make up approximately 40-50% of MSW 

(DEFRA, 2015b). These materials are primarily of plant origin are therefore rich in 

lignocellulose. Globally most MSW contains about 10-60% lignocellulose, although the 

Figure 1.17: Overview of mechanical and biological processing stages operating 
within an integrated materials recovery facility (MRF)  

(Taken from DEFRA (2013)).  
 

AD = anaerobic digestion. CLO = compost-like output.  
Fuel = energy recovered from incineration.  
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Figure 1.18: Major constituents of British MSW by percentage. 
(Figure by author, using national estimates for 2011 from the Department for Environment, 

Fisheries and Rural Affairs (DEFRA) (DEFRA, 2015b)).  
 

W.E.E.E = Waste Electrical and Electronic Equipment 

levels are highly dependent upon consumption patterns, geography and socioeconomics 

(Barampouti et al, 2019). 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.3.3 Municipal Solid Waste as a Feedstock 

Effective MSW management is central to developing a circular economy. The EC 

highlights key areas in this sector as follows: “Ensure energy recovery of non-recyclable 

waste; Reduce energy intensity of waste treatment; [and] increase use of biodegradable 

waste for bioenergy and bio-products,” (EC, 2011). Over half of the MSW generated in 

Europe is considered ‘non-recyclable’ but contains up to 60% lignocellulose-rich organic 

material. This organic fraction of MSW (OMSW) is estimated to have a similar energy 

potential to that which could be attained from available agricultural residues (Aracil et al, 
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2017). However, OMSW is considered a waste material and therefore has a limited number 

of permissible uses.  

The application of any MSW-derived organic material onto agricultural land is 

currently not permitted within the EU because it is typically contaminated with heavy 

metals  and organic pollutants that persist in the environment and are of ecotoxicological 

concern, such as polynuclear aromatic hydrocarbons (PAHs), polychlorinated biphenyls 

(PCBs), polychlorinated dibenzo-P-dioxins and furans (PCDD/Fs) and phthalates (Amlinger 

et al, 2004). Thus OMSW is typically incinerated for electricity production or subjected to 

anaerobic digestion. It can also be stabilised by drying and composting and then used as 

landfill capping material or applied onto marginal land, but these applications require 

special permits and are greatly dependent upon the degree of contamination (DEFRA, 

2013). OMSW is generally considered an underutilised feedstock and is frequently 

highlighted as having good potential for biorefining applications (Aracil et al, 2017; 

Barampouti et al, 2019).  

Several features make OMSW an attractive feedstock for biorefining – it is high in 

lignocellulose, abundant, continuously produced and does not compete with agriculture. 

Furthermore, the landfill taxes and gate fees that are legislated to disincentivise landfilling 

of OMSW can make it highly economical to source. For example, the gate fee and landfill 

tax rate in England for landfilling non-hazardous waste is between £88-169 per tonne 

(WRAP, 2018). Another benefit is that components such as paper and card have already 

been processed in a previous industrial manufacturing step, making them more amenable 

to enzymatic degradation than raw plant material (Jensen et al, 2011). However, there are 

also several inimitable challenges associated with valorising OMSW. Unlike other sources 

of lignocellulose, OMSW composition is extremely heterogeneous and inconsistent. It 

varies greatly across both temporal and geographical scales and components can originate 

from innumerable sources. The organic fraction also comes into close contact with a wide 

array of inorganic materials, many of which could introduce toxic compounds or metals 

into the biomass that may be inhibitory to enzymes and/or fermentative microorganisms 

(Aracil et al, 2017; Barampouti et al, 2019). Furthermore, there is a need for commercially 

viable separation technologies that can effectively segregate the organic fraction from 

inorganic materials to produce a useable feedstock.  
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So far OMSW has been widely studied in the literature as a feedstock for AD 

processes, composting and incineration (Adhikari et al, 2013; Clarke, 2018; Dang et al, 

2017; Di Maria & Micale, 2015; Hartmann & Ahring, 2005; Lavagnolo et al, 2018; 

O’Callaghan, 2016; Razavi et al, 2019; Smith, 2009; Zhang et al, 2012). However, 

investigations into the amenability of OMSW for biorefining have been limited compared 

to other feedstocks (Barampouti et al, 2019; Matsakas et al, 2017). Progress made so far in 

the field of OMSW biorefining will be reviewed in detail in the forthcoming chapters.  

 

1.3.4 Wilson Bio-Chemical and the Wilson System® 

Wilson Bio-Chemical (http://wilsonbio-chemical.co.uk/) is a company based in 

Yorkshire, United Kingdom, that has developed a commercial autoclave-based process 

known as the Wilson System® for pre-treating mixed MSW (Figure 1.19). Autoclave 

treatment converts the organic fraction of MSW to a homogenous organic fibre known as 

Wilson Fibre®. Inorganic materials and plastics are sent for incineration while other 

valuable materials such as ferrous/non-ferrous metals, glass and textiles are recycled 

(WilsonBio-Chemical, 2018). The commercial autoclave vessels (Figure 1.20) are large, 

rotary, baffled vessels that can be loaded with up to 20 tonnes of MSW per 45 minute run.  

Each vessel can process up to 150,000 tonnes of MSW per annum, diverting 90% of waste 

from landfill (WilsonBio-Chemical, 2018).  

Processing of inorganic material through the Wilson System® is a commercially 

viable process. However, the organic fraction makes up 40-60% of MSW and represents a 

large waste stream with few commercial-scale applications. In recent years Wilson Bio-

Chemical have invested in research on potential commercial applications of Wilson Fibre® 

and have successfully attained ‘end-of-waste’ status for this biomass – end-of-waste status 

is granted by the EC to wastes that have undergone sufficient recovery to qualify as a 

product (i.e. secondary raw material) (EC, 2019). Having end-of-waste status eliminates the 

need for a waste plant operating licence, thereby lowering the cost of planning permissions 

and enabling any biorefinery developed around Wilson Fibre® to be classified as a bespoke 

production plant.  

 

 

http://wilsonbio-chemical.co.uk/
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Figure 1.19: Overview of the Wilson System® 

(Figure by author) 
 

Mixed MSW is loaded into the autoclave vessel which is sealed and then treated at 160°C 

and 87 psi with dry steam. The vessel slowly rotates during treatment to agitate the MSW. As a 

result of the treatment the waste is sterile, homogenised and compacted, allowing the organic 

and inorganic fractions to be more easily separated. Materials are separated both manually and 

using automated vibrating screens of varying sizes. Inorganic materials such as metal and glass 

are recycled. Plastics are sent for incineration with heat recapture. The organic material that 

remains is called Wilson Fibre® and is high in lignocellulose (Wilson Bio-Chemical, 2018). 
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Figure 1.20: The Wilson System Autoclave 

(Images printed with permission from Wilson Bio-Chemical Ltd.) 
 

A. Image of an industrial scale Wilson System Autoclave with capacity for 20 tonnes of mixed 

MSW per run.  

B. Interior of the Wilson system autoclave filled with MSW, before autoclaving. 

C. Interior of the Wilson System autoclave filled with MSW, post autoclaving. Compared to 

the image in B, it is evident that plastic and other organic materials have collapsed while 

organic material has become more homogenised.  
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1.4 Aims and Objectives  

This PhD project is a BBSRC Industrial Cooperative Award in Science and Engineering 

(iCASE) studentship carried out in partnership with Wilson Bio-Chemical. The primary aim 

of this study is to evaluate OMSW fibre as a feedstock for producing renewable biofuels or 

chemicals. To characterise this complex feedstock the OMSW fibre will be subjected to a 

comprehensive compositional analysis. This will be followed by enzymatic hydrolysis at 

high solids loading to produce an industrially relevant hydrolysate. The fermentability of 

the OMSW fibre hydrolysate will be evaluated by compositional analysis of nutrient levels, 

fermentation inhibitors and toxic metals. Additionally, the hydrolysis waste stream will be 

investigated as a feedstock for anaerobic digestion. Finally, eight microorganisms of 

biotechnological interest will be screened for the ability to robustly and efficiently ferment 

OMSW fibre hydrolysate. The most promising candidate species will be improved further 

for industrial applications through genetic engineering.  

A critical challenge faced by researchers interested in studying OMSW is finding realistic 

and reproducible material for experiments. Using OMSW sampled from a single site in 

relatively small volumes does not fully capture the variability and heterogeneity of this 

feedstock at industrial scales and over time. Through collaboration with Wilson Bio-

chemical we have developed a method for producing an industrially relevant and 

reproducible source of OMSW. A predetermined mixture of organic and inorganic materials 

was constructed according to the national statistics reported by DEFRA (2015b) (Figure 

1.18) and subjected to autoclave pre-treatment in a pilot-scale Wilson System®. The 

resulting Wilson fibre® (henceforth termed OMSW fibre) is both reproducible and 

representative of OMSW produced across the UK. 

Although the constructed OMSW fibre produced for this project is made up of a known 

and reproducible mixture of materials the feedstock itself is still highly heterogeneous, 

complex and uncharacterised. A comprehensive compositional analysis is therefore 

required in order to support further studies. Chapter 2 provides a detailed summary of the 

structural and non-structural components of the constructed OMSW fibre, with the aim of 

determining the percentage abundance of lignocellulose and evaluating whether the 

cellulose and hemicellulose fractions are large enough to be practicable for bioprocessing. 

Other important components, including oils, proteins, metals and ash are also investigated 

and assessed in the context of developing a viable OMSW biorefinery.  
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Chapter 3 is concerned with the hydrolysis of OMSW fibre, with particular focus on the 

fate of metal species during the hydrolysis process. The fermentability of OMSW fibre 

hydrolysate is indirectly assessed based on the abundance and concentration of sugars and 

the presence of inhibitors, toxic metals and microbially accessible nutrients. Furthermore, 

the utility of a major waste stream, the residual material left over after hydrolysis, is 

investigated as a feedstock for biogas production through AD. 

Chapter 4 aims to identify microorganisms of biotechnological utility that demonstrate 

robust and efficient growth on OMSW fibre hydrolysate.  First the hydrolysate is evaluated 

for microbial toxicity and nutrient limitation using the model fermentative species 

Escherichia coli. Results are then presented for fermentation screens with eight different 

microbial species of biotechnological interest on nutrient-supplemented OMSW fibre 

hydrolysate. Each species’ growth, productivity and robustness are evaluated and 

compared based on quantitative fermentation parameters.  The most productive species, 

the oleaginous strain Rhodococcus opacus MITXM-61, is characterised in greater detail on 

OMSW fibre hydrolysate. Finally, with the aim of manipulating the FA profile of R. opacus 

to improve its industrial utility, results are presented from the heterologous expression of 

a plant-derived acyl-acyl carrier protein thioesterase in R. opacus grown on OMSW fibre 

hydrolysate.  
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Chapter 2: Compositional Analysis of Organic Municipal Solid 
Waste Fibre 

2.1 Introduction  

The organic fraction of MSW is an abundant, cheap and renewable source of 

lignocellulose but has been largely unexplored for biorefinery applications compared to 

other feedstocks. Harnessing OMSW for industrial bioprocessing involves a number of 

unique challenges, including (1) heterogeneous and inconsistent feedstock composition; 

(2) the need for efficient and industrially scalable methods of separating the organic 

fraction; and (3) the presence of residual metals and other pollutants in the feedstock that 

could have inhibitory effects on enzymes and/or fermentative microorganisms.  

OMSW used for research purposes is typically acquired by manually sampling and 

sorting organic waste from local establishments such as restaurants (Adhikari et al, 2013; 

Aiello-Mazzarri et al, 2006; Lay et al, 1999). The compositional profiles of OMSW from these 

sources vary significantly depending on the type of establishment or the processing stage 

when it is intercepted, making them irreproducible and limiting comparability between 

studies. Some groups have tried to improve reproducibility by using materials  such as 

newspaper (McCaskey et al, 1994), food waste (Ma et al, 2009) and even dog food (Dang 

et al, 2017) to represent OMSW. However, these substrates arguably fail to fully capture 

the heterogeneous nature of MSW-derived organic materials.  

OMSW composition is largely dependent upon socioeconomic factors and the 

prevailing waste management practices. It also varies significantly over geographic and 

temporal scales (Kaza et al, 2018). The abundance of organic material in MSW ranges from 

30-60% (Kaza et al, 2018) and reports of the lignocellulose fraction range between ~10-60% 

(Barampouti et al, 2019). Barampouti et al (2019) averaged the lignocellulose composition 

reported for OMSW across a wide range of published sources, encompassing data from 

countries all over the world, and found that the average lignocellulose composition in 

OMSW is 15.2 ±14.6 % cellulose, 7.4 ±4.6 % hemicellulose and 9.1 ±6.6 % lignin. OMSW also 

has a tendency to accumulate contaminants, especially metals, from contact with inorganic 

wastes which can further contribute to their complex composition. These metals are likely 

derived from MSW components such as batteries and have a tendency to be retained in 

the paper fraction of OMSW (Abdullah & Greetham, 2016). On average, the most common 

metals reported in analyses of OMSW, in order of abundance, are Ca, Na, K, As, Mg, Fe, Al, 
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Zn, Ba, Pd, Ti, Mn, Sn, Cr, Bo, Ni, Br, Mo, W, Co, Se, V, Ag and Cd, many of which can be 

highly toxic to life (Barampouti et al, 2019).  

The complexity of OMSW contrasts starkly with agricultural and forestry by-

products which generally exhibit relatively consistent compositional profiles (Marriott et 

al, 2016) and do not typically contain toxic metals. However, the fact that OMSW is widely 

available, rich in lignocellulose, does not compete with agriculture and currently has few 

high-value applications make it an appealing feedstock to investigate for sustainable 

biorefining (Barampouti et al, 2019; Haddadi et al, 2018; Meng et al, 2019). That said, the 

various pitfalls outlined above highlight the critical importance of using an industrially 

relevant source of OMSW to ensure the results of empirical studies are transferable. 

Industrially relevant sources of OMSW that have been used in published studies include 

OMSW collected directly from local MRFs or waste treatment plants (Farmanbordar et al, 

2018b; Ghanavati et al, 2015; Hartmann & Ahring, 2005; Jensen et al, 2011; Lavagnolo et 

al, 2018) and autoclave pre-treated OMSW (Abdhulla, 2016; Ballesteros et al, 2010; Li et al, 

2012b; Meng et al, 2019; Puri et al, 2013).  

Autoclaving is an established industrial-scale process that is already employed in 

the waste industry to recover resources from MSW and enables rapid, hygienic and 

effective separation of organic and inorganic components (Quiros et al, 2015). Three 

studies that have reported compositional profiles for autoclave pre-treated OMSW: An 

MSW-derived paper pulp isolated by autoclaving contained 55% cellulose, 18% 

hemicellulose, 24% lignin and 3% ash (Puri et al, 2013). OMSW fibre produced on an 

industrial Wilson System® autoclave analysed by Abdel-Rahman et al (2013) contained 

27.8% cellulose, 15.45% hemicellulose, 17.7% lignin, 11.2% lipids and 5.9% protein. 

Similarly, OMSW produced by autoclaving at 160°C for varying durations between 5 – 50 

minutes was composed of between 37.5 – 43.9% cellulose, 5.0 – 5.8% xylose, 21.9 – 29.1% 

acid insoluble residue, 13.9 – 18.0% ash and 10.4 – 16.4% uncharacterised material 

(Ballesteros et al, 2002).  All three studies report about 50% greater levels of 

polysaccharides than the averages calculated by Barampouti et al (2019) in their review, 

indicating that autoclaving is a relatively efficient strategy for isolating and concentrating 

organic materials in OMSW.  

The presence of uncharacterisable material is a common feature in MSW-derived 

feedstocks, due to the fact that most compositional analyses for lignocellulose are designed 

for plant tissues and OMSW is incredibly heterogeneous. Puri et al (2013) also observed 
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that approximately 50% of material measured as lignin was actually unidentified organic 

matter of non-plant origin. A critical review of methods for compositional analysis of 

lignocellulosic materials concluded that routine analytical methods fail to accurately 

analyse MSW due to the high amounts of interfering extractives, lipids, protein and other 

contaminants. This continues to be a challenging limitation in this field and must be kept in 

mind when evaluating feedstock composition (Karimi & Taherzadeh, 2016). 

  

2.1.1 Aims of this Chapter 

The aim of this chapter was to undertake a comprehensive compositional analysis of 

the major structural and chemical components of OMSW fibre, to gain a better 

understanding of this heterogeneous feedstock and inform subsequent experimental work. 

 

Key questions explored in this chapter: 

• What percentage of the fibre is composed of lignocellulose?  

 

• Are the cellulose and hemicellulose fractions high enough to be practicable for 

application in a bioprocess? 

 

• Are any proteins or oils present that could provide nutrients to microorganisms in the 

fermentation step? 

 

• What metal species are present in the fibre, what are their concentrations and are the 

levels of toxic species high enough to be inhibitory to microbial fermentation?   

 

• How does the constructed OMSW fibre compare to industrial OMSW fibre and other 

sources of OMSW reported in the literature? 
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2.2 Materials & Methods 

2.2.1 Production of the OMSW Fibre  

The OMSW fibre used in this study was produced by Wilson Bio-Chemical on their 

pilot autoclave rig (Figure 2.1). The pilot rig is a scaled-down version of the commercial 

Wilson System® (WilsonBio-Chemical, 2018). An overview of the pilot rig process is given 

in Figure 2.2. The OMSW fibre was produced by combining a mixture of organic and 

inorganic materials that reflected the composition of MSW produced in an average British 

household, based on statistics reported by the Department of Environment, Food and Rural 

Affairs (DEFRA, 2015). The composition of the constructed MSW mixture is given in Table 

2.1 alongside the percentage composition reported by DEFRA.  

 
 
 
 
 
 
 
 

 
Type of waste 

DEFRA reported 
composition (%) 

Adjusted to 
100% 

Per 20 Kg batch 
(Kg)* 

Food 15.0 20.80 4.16 

Plastic film 8.9 12.34 2.47 

Dense plastic 11.3 15.67 3.13 

Paper 10.5 14.56 2.91 

Card 8.4 11.65 2.33 

Wood 7.6 10.54 2.11 

Metal 3.5 4.85 0.97 

Garden 2.7 3.74 0.75 

Other organic 1.7 2.36 0.47 

W.E.E.E. 1.5 2.08 0.42 

Hazardous/batteries 1.0 1.39 0.28 

Carpet/underlay/furniture 6.0 - - 

Brick/plaster/soil 5.9 - - 

Textiles/shoes 5.7 - - 

Fines 2.5 - - 

Glass 2.2 - - 

Sanitary 2.0 - - 

Other non-combustible 1.6 - - 

 Total 100 100.00 20.00 

Estimated Biodegradability 51.4 63.65 12.73 

 

 

 

Table 2.1: Composition of waste materials used for production of OMSW fibre on the 
Wilson Bio-Chemical Pilot Rig. 

*Masses are based on the percentage composition of the major MSW components 
reported by DEFRA and adjusted to 100%. 

W.E.E.E. = Waste Electrical and Electronic Equipment. 
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Figure 2.1: The Wilson Bio-Chemical Pilot Rig 
Image courtesy of Wilson Bio-Chemical Ltd. 

 

A: (1) Boiler; (2) Steam accumulator; (3) autoclave; (4) vent vessel & condenser; (5) air filter; (6) 

condenser outlet. B: Autoclave vessel before loading; C: Autoclave vessel loaded with 

constructed MSW mixture; D: Autoclave vessel after treatment; E: Constructed MSW before 

manual sorting; F: A 2.27 litre (4 pint) plastic milk bottle after autoclaving illustrates the effect 

of the treatment on plastics.   
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2.2.2 Compositional Analysis 

Compositional analysis of the OMSW fibre was carried out according to a range of standard 

protocols for analysis of lignocellulosic biomass. Unless otherwise specified, all analyses were 

performed in triplicate at minimum with fibre dried at 45°C and ball milled to a fine powder in a 

Retsch TissueLyser II (Qiagen). 

 

2.2.3  Total Solids, Moisture & Ash content 

Percentage moisture, total solids, pH and ash content were determined according to 

protocols established by the National Renewable Energy Laboratories (NREL) (Hames et al, 2008; 

Sluiter et al, 2008a; Sluiter et al, 2008b). Briefly, moisture content and total solids was determined 

by weighing out 10 g of OMSW fibre (as received) into pre-weighed crucibles and drying at 45°C 

until mass loss stabilised. Final dry masses were subtracted from the initial masses and the 

difference was used to calculate the percentage moisture and dry solids content of the feedstock. 

Ash (defined as any inorganic residue left after dry oxidation at 575°C by Sluiter et al (2008a)) was 

quantified by weighing out 1 g of dry fibre into pre-weighed ceramic crucibles and then heating 

these in a furnace (Carbolite, Type 301) at 600°C for 24 hours. The remaining material (ash) was 

weighed and percentage ash content calculated based on initial sample masses.  

 

2.2.4 Lignin 

Lignin content was analysed according to methods adapted from Fukushima & 

Hatfield (2001). 4.0 ±0.1 mg of biomass was digested with 250 µl freshly prepared acetyl 

bromide solution (25% v/v acetyl bromide, 75% v/v glacial acetic acid) in order to break the 

phenol bonds in the lignin. Samples were heated at 50°C for 3 hours and vortexed every 15 

minutes for the final hour. Samples were cooled to room temperature (RT), then, working 

under a fume hood, the digested sample was transferred to a 5 ml volumetric flask. To 

ensure all sample liquid was transferred, tubes were rinsed with 1 ml 2 M NaOH.  Next 175 

µl of 0.5 M hydroxylamine HCl was added, the flasks were stoppered and vortexed. Working 

quickly to avoid sample precipitation, the flasks were filled to final volume of 5 ml with 

glacial acetic acid, mixed several times by inversion, and 100 µl transferred to an Eppendorf 

tube with 900 µl glacial acetic acid. This diluted sample was transferred to a 1 ml quartz 

cuvette and the A280 was measured in a CaryWinUV spectrophotometer (blanked against 

glacial acetic acid).  Absorbance values were converted to concentration of lignin using the 

Beer-Lambert law (Equation 2.1).  
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Equation 2.1: The Beer-Lambert Law 

 

𝑐 =
𝐴

𝜀𝑏
 

 
Where:  

c = lignin concentration in 5 ml sample (mol dm-3) 

A = Absorbance at 280 nm 

ε = the wavelength-dependent molar absorptivity coefficient (M-1 cm-1)  

b = the path length (1 cm). 

 

The molar absorptivity coefficient of poplar (ε = 18.21) was used to calculate the 

concentration of the MSW fibre-derived lignin.  Concentration was converted from mol dm-

3 to a percentage as described by Equation 2.2. 

 

Equation 2.2: Calculating Percentage Lignin   

 

% 𝐿𝑖𝑔𝑛𝑖𝑛 = 𝑐 ( 
𝑣 ∙  100%

𝑚
 ) 

 

Where:  

c = lignin concentration in 5 ml sample (mol dm-3) 

v = volume of sample (5 ml)  

m = initial mass of biomass sample (g) 

 

2.2.5 Hemicellulose & Cellulose 

Hemicellulose and cellulose were quantified by two consecutive methods, adapted 

from Foster et al (2010). First 4.0 ±0.1 mg of biomass was weighed out into 2 ml screw-cap 

tubes and mixed with 0.5 ml trifluoroacetic acid (TFA). TFA digestion isolates all 

hemicellulosic sugars as monosaccharides but leaves behind crystalline cellulose and lignin. 

The tubes were flushed with argon gas to displace oxygen in the vial headspace as this 

interferes with hydrolysis. Samples were incubated in a 100°C heating block for 4 hours 

with mixing every 30 minutes, cooled to RT and then dried overnight in a centrifugal 
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evaporator with fume extraction. Pellets were re-suspended in 0.5 ml propan-2-ol and 

evaporated, twice, to ensure all TFA was removed.  

Monosaccharides were solubilised from the dried pellet by adding 200 µl dH2O. The 

liquid fraction was carefully transferred to 1 ml syringes and filtered through 0.45 um PTFE 

filters into tapered HPAEC vials. Hemicellulosic sugars in the sample were analysed by high-

performance anion exchange chromatography (HPAEC) on an ICS-3000 PAD system with an 

electrochemical gold electrode using a CarboPac PA20 analytical column (3x150 mm, 

Dionex) and guard column (3 x 30 mm, Dionex). Identification and quantification of 

monosaccharides was carried out by comparing retention times and integrated peak areas 

of the samples to an equimolar standard mixture of L-fucose, L-arabinose, L-rhamnose, D-

galactose, D-glucose, D-xylose, D-mannose, D-galacturonic acid and D-glucuronic acid. 

Standards were analysed during the same run under the same conditions.  

The pellet retained after the hemicellulose assay contains crystalline cellulose and 

lignin. The pellet was washed once in 1.5 ml water and twice with 1.5 ml acetone and then 

air-dried overnight.  Cellulose was isolated using a modified Saeman hydrolysis  (Saeman 

et al, 1945) involving a room temperature incubation for 4 hours with 90 µl 72% sulphuric 

acid, followed by dilution to 3.2% sulphuric acid with 1890 µl dH2O and incubation for 4 

hours at 120°C. Samples were cooled to RT and then centrifuged at top speed for 10 

minutes. Lignin remains in the resulting pellet, while the crystalline cellulose has been 

solubilised to glucose and can be measured in the supernatant. Glucose concentration was 

quantification by colorimetric Anthrone assay (Viles & Silverman, 1949) alongside glucose 

standards ranging from 0-6.6 µg of D-glucose. 40-60 µl of sample supernatant or standard 

was diluted with water to give a final volume of 400 µl. 800 µl of freshly made Anthrone 

reagent (2 mg/ml Anthrone in concentrated sulphuric acid) was then added. Samples and 

standards were incubated at 80°C for 30 min. in a heating block. Glucose containing 

samples changed from yellow to blue-green. Samples and standards were cooled to RT and 

then 200 µl was transferred to a 96-well flat bottom optical plate (NUNC) and absorbance 

at 620 nm was measured in a plate reader. The glucose concentrations were derived from 

the standard curve generated from the standards and converted to percentage cellulose 

based on the mass of the original biomass sample.   
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2.2.6 Oil 

Oil (refers to any non-polar, hydrophobic and lipophilic substance) was extracted 

from dried OMSW fibre using a two-stage continuous extraction with ether.  First the fibre 

was extracted continuously with ether and all extracted oil was dried and weighed. The 

residual solid material was collected and boiled with hydrochloric acid to release any 

remaining fats bound to the biomass. The solution was filtered through filter paper and 

then washed several times with water until a neutral pH was reached. The filter paper was 

dried and then extracted a second time with ether. Any liberated fats were again dried and 

weighed. The masses of oil collected from each extraction were summed and reported as 

percentage oil by dry mass. This analysis is a routine protocol carried out by Sciantec 

Analytical Ltd.   

2.2.7 Protein 

The Dumas method (also known as nitrogen combustion method) was used to 

determine the concentration of proteins in the OMSW fibre. Both organic and inorganic 

nitrogenous compounds in the sample were oxidised by combustion at 800-1000°C then 

reduced to gaseous form (N2) and analysed by a thermal conductivity detector (Leco FP285 

Nitrogen Analyser). This total nitrogen value was then converted to proteinaceous nitrogen 

(crude protein) using the conversion constant 6.25, the standard conversion factor used for 

compound feedstuffs and associated raw materials (Horwitz & Latimer, 2011; Jung et al, 

2003). This analysis is a routine protocol carried out by Sciantec Analytical Ltd.   

 

2.2.8 Metals  

Metals present in the Wilson Fibre® were analysed as follows: Samples were 

digested with nitric and sulphuric acid (trace metal grade, 1:1 mixture) in a PTFE digestion 

vessel, treated in a microwave digestion system (Ethos Up) at 200°C for 15 minutes, cooled 

to ~25°C, transferred to a volumetric flasks (100 ml) and diluted to 100 ml with dH2O. 

Samples were then diluted 100-fold with dH2O and analysed on an Agilent 7700x 

inductively coupled plasma-mass spectrometer (ICP-MS). Results were quantified against 

calibration curves (R2 = ≥0.998) prepared from seven calibration standards of Agilent 

certified multi-element environmental reference standard no. 5183-4688. Metals in this 

standard include: Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, Pb, Sb, Se, 

Tl, V, Zn, Th, U. 
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2.2.9 OMSW Washing 

The OMSW fibre was subjected to washing with water in order to quantify the total 

soluble material and the solubility of metals. 25 g of dried fibre was placed in a pre-weighed 

centrifuge pot (600 ml) and washed with 500 ml of 95°C water. The pot was manually 

shaken for 1 minute and then incubated in a 95°C incubator for 4 minutes. Shaking and 

incubation were repeated for a total of 20 minutes. The sample was centrifuged (3000 xg 

for 15 minutes) and the wash water poured off through pre-weighed Miracloth (Merck) to 

catch any insoluble particulates. The washing was repeated a total of three times to ensure 

thorough removal of soluble material. The final fibre pellet was dried along with the 

Miracloth and the percentage mass loss was calculated. The dried washed fibre was 

subjected to metal analysis by ICP-MS as described in 2.2.2.6 in parallel with unwashed 

OMSW fibre in order to determine the degree of metal solubilisation. The calculated mass 

loss percentage was used to normalise calculations of the metal concentrations in the 

washed OMSW fibre to allow for more accurate comparison of washed and unwashed 

biomass. 

 

2.2.10 Soxhlet Extraction & Extractives 

Non-chemically bound components of biomass are defined as any non-chemically 

bound components of lignocellulose. To quantify non-structural components of the OMSW 

fibre, a Soxhlet extraction (described in Figure 2.3) was carried out according to methods 

established by Sluiter et al (2008b). This experiment was repeated twice. Briefly: 10 g MSW 

fibre (dried and milled) was washed under reflux (2-3 siphons/hour) with 250 ml water for 

16 hours (note the apparatus was covered in cotton wool and wrapped in aluminium foil 

to aid in heat retention). The water in the distillation pot was then replaced with 250 ml 

ethanol and the same material was washed under reflux (5-6 siphons/hour) for a further 

24 hours. The water and ethanol were collected after each run and stored in pre-weighed 

glass bottles (250 ml) at 4°C. To calculate the percentage of extractives per gram of fibre 

the water and ethanol samples from the Soxhlet extraction were dried down in a 45°C oven 

and the retained solids (extractives) were weighed. The cellulose, hemicellulose, lignin and 

ash content of the Soxhlet extracted fibre were quantified in parallel with non-extracted 

fibre as described in 2.2.2.1 - 2.2.2.3.  
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Figure 2.3: Anatomy of a Soxhlet extractor 
(image by author). 
A = Electric heater 
B = Distillation pot with boiling solvent 
C = Distillation arm 
D = Cellulose thimble containing biomass sample 
E = Siphon 
F = Condenser 
G = Cooling water inlet 
H = Cooling water outlet 
 
 The solvent (B) is boiled to the point of reflux by 

the electric heater (A). As the solvent enters the vapour 

phase it travels up through the distillation arm (C) into 

the upper half of the apparatus where the constant flow 

of cooling water (G & H) through the condenser (F) 

keeps conditions cool relative to the lower half of the 

apparatus. The solvent vapour condenses and runs 

down the sides of the apparatus into the central 

chamber where the sample is held in a thimble (D).  

As the solvent accumulates in the central 

chamber the sample becomes immersed in solvent and 

any solvent-soluble components are extracted. Once 

the chamber is almost filled with solvent the siphon (E) 

drains the contents back down into the distillation pot. 

This cycle repeats several times an hour until all soluble, 

non-structural components are extracted from the 

biomass. All the extractables accumulate in the 

distillation pot and can be collected at the end of the 

experiment. The thimble can be dried and weighed to 

calculate the amount of biomass remaining after 

extraction.  
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Figure 2.4: Appearance of the OMSW fibre 
A: OMSW fibre with a 15 ml Falcon tube for scale. B: Representative sample of OMSW fibre  

(~10 grams) in a weighing boat.  
Scale bar = 1.5 cm. The yellow arrow highlights a piece of residual plastic. 

2.3 Results 

2.3.1 Composition of the Constructed OMSW Fibre   

A pre-determined mixture of materials was used to produce OMSW fibre for this work 

(for a full list see 2.2.1 - Table 2.1), however, a wide range of complex and diverse materials 

had to be incorporated into the mixture to allow for a realistic feedstock to be generated. 

The constructed OMSW fibre was therefore still highly heterogeneous. Furthermore, the 

relatively harsh conditions produced by autoclave pre-treatment may have led to transfer 

or leaching of components from the inorganic fraction into the OMSW fibre fraction, adding 

further to the feedstock’s compositional complexity. To gain a better understanding the 

composition of the OMSW fibre used throughout this project a range of relevant organic, 

inorganic, structural and non-structural components were characterised using a variety of 

well-established methods for the characterisation of lignocellulosic biomass.  

2.3.2     Appearance and Moisture content  

The OMSW fibre was dark brown in appearance and consisted largely of fibrous, 

spherical particles between 2 - 50 mm in size. Figure 2.4-A shows an image of the OMSW 

fibre taken immediately upon receipt (15 ml Falcon tube for scale). Some small plastic 

particles remained scattered throughout, as exemplified by the arrow in Figure 2.4-B.  
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The OMSW fibre was immediately subjected to moisture and solids content analysis 

to accurately determine the amount of moisture retained from autoclaving. The fibre 

contained 70 ±1 % moisture, however, the liquid did not drip unless forcefully squeezed, 

indicating a high absorption capacity.  

2.3.3 Structural Components: Lignocellulose and Ash 

Knowing the composition of the lignocellulose fraction and accurately quantifying 

the amount of cellulose and hemicellulose in a second-generation feedstock is critical for 

evaluating its valorisation potential and for informing subsequent experimental work. The 

lignocellulosic fraction of OMSW fibre was characterised using standard methods 

developed for compositional analysis of agricultural residues (for details see 2.1.5.3). The 

OMSW fibre contained 57.7 ±2.7 % (w/w) lignocellulose. The lignocellulose fraction was 

rich in cellulose, which comprised 65.2 ±3.9 %. This equates to 37.6 ±2.7 % of the total fibre 

dry mass. Lignin and hemicellulose made up 27.4 ±2.8 % and 7.4 ±2.9 % of the lignocellulose 

fraction, respectively (Table 2.2). Hemicellulose only made up a small portion of the total 

OMSW fibre (4.3 ±0.1 %), but consisted of a wide range of monosaccharides, including D-

fucose, L-arabinose, L-rhamnose, D-galactose, D-glucose, D-xylose, D-mannose, and D-

galacturonic acid. A detailed breakdown of the monosaccharides present in the 

hemicellulose fraction is given in Table 2.3. D-xylose, D-glucose, D-mannose and D-

galactose were the most abundant, comprising ~89% of the total hemicellulosic sugars.  

Overall the cellulose and hemicellulose fractions together made up 41.9 ±2.7 % of the 

OMSW fibre. This is considered a reasonably large fraction of polysaccharides and 

compares favourably with previously published compositional analyses of OMSW which 

report anywhere between 7-50% lignocellulose (Barampouti et al, 2019; Mahmoodi et al, 

2018b). 

Inorganic structural components in lignocellulosic feedstocks are typically 

quantified as ash, which encompasses all mineral and inorganic structural materials that 

remain after biomass is oxidised above 575°C (Sluiter et al, 2008a). Ash content was 

measured as 14.74 ±1.47 % w/w of the total OMSW fibre after dry oxidation at 600°C for 

24 hours (for details see 2.2.2.1). This is a considerably large fraction of ash compared to 

agricultural residues, which generally contain around 1-7% (Sorek et al, 2014). Due to the 

large paper fraction of OMSW, the majority of the ash fraction is likely to be composed of 

material from the inorganic filler and bulking agents used in paper manufacture. For 

example titanium oxide (TiO2) and talc (Mg3Si4O10(OH)2) are major components of paper 
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Table 2.3: Monosaccharide composition of the hemicellulose fraction of OMSW fibre. 
Monosaccharides were isolated and analysed as described in 2.2.2.3.  

±SD = Standard deviation of triplicate measurements.  

Table 2.2: Composition of lignocellulose (cellulose, hemicellulose and lignin)  
in OMSW fibre 

 

Results shown as percentage of total biomass and percentage of total 

lignocellulose. Hemicellulose and cellulose analysed by successive assays. Lignin analysed in a 

separate assay. For methods see 2.2.2.2 and 2.2.2.3.  

±SD = Standard deviation of minimum triplicate measurements. 

 

and are used as whiteners and/or fillers (Hubbe & Gill, 2016). Overall, structural materials 

in the form of lignocellulose and ash made up 62.44% of the total biomass.  

 
 
 
 
 
 
 
 
 

Component 
% w/w 

Total Biomass 
±SD 

% w/w  
Total Lignocellulose  

±SD 

Cellulose 37.6 ±2.7 65.2 ±3.9 

Lignin 15.8 ±0.4 27.4 ±2.8 

Hemicellulose 4.3 ±0.1 7.4 ±2.9 

Total 57.7 ±2.7 - - 

 
 
 
 
 
 

Matrix 
Polysaccharide 

 % w/w 
Biomass 

±SD 
% w/w 

Hemicellulose 
±SD 

L-Fucose 0.016 ±0.002 0.372 ±0.049 

L-Arabinose 0.272 ±0.016 6.401 ±3.862 

L-Rhamnose 0.060 ±0.002 1.411 ±0.574 

D-Galactose 0.405 ±0.023 9.533 ±5.406 

D-Glucose 1.106 ±0.083 26.014 ±19.409 

D-Xylose 1.336 ±0.032 31.419 ±7.473 

D-Mannose 0.953 ±0.102 22.411 ±24.002 

D-Galacturonic Acid 0.104 ±0.019 2.439 ±4.520 

Total 4.251 ±0.139 100 ±32.765 

 
 

In order to evaluate the reproducibility of the lignocellulosic fraction of OMSW fibre 

produced on the Wilson Bio-Chemical Pilot Rig, two further batches of OMSW fibre were 

produced using the same MSW mixture (for details see 2.2.1 – Table 1). The lignocellulose 

composition of these batches (hereafter called Batch 2 and Batch 3) was determined and 

is shown alongside the original batch of OMSW fibre (Batch 1) in Figure 2.5. Batch 1 and 2 

were produced under the same conditions and were remarkably similar in composition, 

although hemicellulose levels were slightly lower in Batch 1. Batch 3 on the other hand was 
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treated under shorter, harsher conditions and contained a slightly larger cellulose fraction. 

These results may be skewed slightly however as there was large standard error between 

replicates. Overall the composition between batches is highly similar, demonstrating that 

the Wilson Bio-Chemical Pilot Rig can be used to reproducibly produce MSW fibre with a 

consistent lignocellulose fraction for use in empirical studies of OMSW valorisation. 
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Figure 2.5: Composition of lignocellulose (cellulose, hemicellulose and lignin) in three 

batches of OMSW fibre 
 

All three batches of OMSW fibre were produced on the Wilson Bio-Chemical pilot rig as 

described in 2.2.1. Batch 1 and Batch 2 were pre-treated at 6 bar and 160°C for 45 min. Batch 3 

was pre-treated at 9 bar and 180°C for 20 min. Note that Batch 1 was used in all subsequent 

work throughout this project. Results are shown as percentage of the total sample dry weight 

(%w/w). Hemicellulose and cellulose analysed by successive assays. Lignin analysed in a separate 

assay. For methods see 2.2.2.2 and 2.2.2.3. Error bars show standard deviation of minimum 

triplicate measurements. 
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2.3.4   Non-Structural Components: Metals 

After analysis of the structural materials in the OMSW fibre it was calculated that 

37.56% of mass remained unaccounted. To characterise the outstanding components of 

the OMSW fibre, non-structural materials were analysed. Firstly, the levels of metals were 

measured as OMSW typically contains a wide range of metal contaminants that are leached 

from inorganic materials in MSW. To isolate the metals OMSW fibre was digested with 

concentrated nitric and sulphuric acid and treated in a microwave digestion system (for 

details see 2.2.2.6). Metals were then measured by ionisation-coupled plasma mass 

spectrometry (ICP-MS). ICP-MS is a highly sensitive technique that can detect a wide array 

of metal species. A multi-element environmental reference standard was selected to 

analyse a broad range of environmentally relevant metal species including Silver (Ag), 

Aluminium (Al), Arsenic (As), Barium (Ba), Beryllium (Be), Calcium (Ca), Cadmium (Cd), 

Cobalt (Co), Chromium (Cr), Copper (Cu), Iron (Fe), Potassium (K), Magnesium (Mg), 

Manganese (Mn), Molybdenum (Mo), Sodium (Na), Nickel (Ni), Lead (Pb), Antimony (Sb), 

Selenium (Se), Tellurium (Tl), Vanadium (V), Zinc (Zn), Thorium (Th), and Uranium (U). 

Metals comprised 1.33 ±0.26 % of the total dry weight and all metals except Th, Mo and Ag 

were detected in the OMSW fibre. 

Metals can be toxic to microorganisms and may pose a major limitation in 

bioprocesses development. The type of damage inflicted is highly dependent on the metal 

species and environmental conditions. Some general examples of metal-dependent 

inhibition include electron transport chain inhibition, induction of free-radical chain 

reactions in the cytoplasm, competitive inhibition of transporters and mismetallation of 

enzymes (Lemire et al, 2013). A washing experiment was carried out to assess the solubility 

of the metals in OMSW fibre and evaluate the potential of using a washing step to eliminate 

metals prior to bioprocessing. OMSW fibre was washed three times with 95°C Milli-Q water 

to remove soluble material. The remaining solids were dried and subjected to metal 

analysis by ICP-MS (for details see 2.2.2.7). The results of these analyses are given in Table 

2.4, which lists the levels of each metal measured in the OMSW fibre (unwashed) and in 

washed OMSW fibre. Concentrations are presented in millimoles of metal per kilogram of 

OMSW fibre (mmol/Kg) and the percentage change in concentration after washing is given 

for each species (note that the mass loss to washing was accounted for when calculating 

percentage change).  
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Metal 

 Concentration (mmol/Kg)  Change (%) 
 

Unwashed ±SD Washed ±SD 

Increase  

Decrease  

Not Significant  
  

Ca 2,091.93 ±184.75 2,066.03 ±102.92 -0.94  

Al    166.90   ±27.50    179.44   ±30.98 +5.70  

K      66.53     ±6.44      14.82     ±2.83 -58.96  

Fe      62.44   ±28.48      44.02     ±5.45 -22.38  

Na      57.48     ±5.43        3.36     ±1.64 -71.42  

Mg      44.44     ±6.00      40.00     ±7.47 -7.58  

Zn        2.47     ±1.65        1.60     ±0.26 -26.59  

Mn        0.76     ±0.06        0.69     ±0.064 -6.85  

Cu        0.33     ±0.06        0.30     ±0.073 -7.30  

Ni        0.33     ±0.25        0.12     ±0.10 -48.25  

Ba        0.16     ±0.02        0.18     ±0.063 +7.17  

Cr        0.11     ±0.01        0.15     ±0.10 +25.16  

V        0.04     ±0.01        0.035     ±0.010 -9.43  

Pb        0.0138     ±0.0031        0.016     ±0.0055 +13.78  

Sb        0.0104     ±0.0006        0.0061     ±0.001 -31.50  

Co        0.0093     ±0.0009        0.0090     ±0.002 -2.40  

As        0.0012     ±0.0007        0.0025     ±0.0023 +83.93  

Cd        0.0003     ±0.0001        0.00062     ±0.00040 +82.05  

U        0.0005     ±0.0001        0.00045    ±0.000081 -1.01  

Tl        0.00003     ±0.00002        0.000051    ±0.000027 +41.59  

Ag - -        0.0047    ±0.0066 +100.00  

Mo - - - - -  

Th - - - - -  

 

 
 

 

Table 2.4: Metal levels in washed and unwashed OMSW fibre 

OMSW fibre was washed three times with 95°C MilliQ water to remove all soluble 

material. The remaining solids were dried and subjected to metal analysis by Ionisation-Coupled 

Plasma Mass Spectrometry (ICP-MS) in parallel with samples of unwashed OMSW fibre. Mass 

loss to washing was accounted for when calculating the percentage change in metal 

concentration. For details see 2.2.2.7.  Metals listed in order of abundance in unwashed OMSW 

fibre. ±SD = Standard deviation of minimum triplicate measurements.  

Metals shown in order of abundance in unwashed fibre. Ca= Calcium, Al = Aluminium, K 

= Potassium, Fe = Iron, Na = Sodium, Mg = Magnesium, Zn = Zinc, Mn = Manganese, Cu = Copper, 

Ni = Nickel, Ba = Barium, Cr = Chromium, V = Vanadium, Pb = Lead, Sb = Antimony, Co = Cobalt, 

As = Arsenic, Cd = Cadmium, U = Uranium, Tl = Tellurium, Ag = Silver, Mo = Molybdenum, Th = 

Thorium.  
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Calcium was by far the most abundant element detected. Present at just over 2 

moles per Kg of fibre, Calcium was highly insoluble, showing no significant reduction after 

washing. As calcium carbonate (CaCO3) is a major component of paper (Hubbe & Gill, 2016), 

the waste paper fraction of OMSW is the most likely source of the high calcium levels. Ca 

is often reported as the most abundant metal in OMSW (Barampouti et al, 2019). The other 

metal species were present at significantly lower levels, in the millimole to micromole per 

Kg range, and varied greatly in solubility. The most soluble species, in descending order, 

were Na (-71.42%), K (-58.96%), Ni (-48.35%), Sb (-31.50%), Zn (-26.59%), Fe (-22.38%), 

while the concentrations of V, Mg, Cu, Mn, As, Co, U, Ba and Al varied by less than ±10% 

and can be considered as remaining unchanged by washing.  

A number of metal species increased in concentration, including As (+83.93%), Cd 

(+82.05%), Tl (+41.59%), Cr (+25.16%) and Pb (+13.78%). 24 ±4 % of the OMSW fibre was 

lost after the three successive washes. This soluble fraction was accounted for when 

calculating the percentage change and should have corrected for any resultant enrichment 

in metals. Furthermore, Ag was not detected at all in the original fibre, but trace amounts 

were found in the washed fibre samples. Overall this indicates that the metals are unevenly 

distributed throughout the fibre. 

 

2.3.5  Non-Structural Components: Extractives 

The metal washing experiment demonstrated that OMSW fibre contained a large 

fraction of soluble material (24%). Soxhlet extraction is a standard technique used for the 

removal of materials that are not chemically bound to the lignocellulose (i.e. non-structural 

components), including a variety of inorganic and organic materials such as phenols, 

aromatics, terpenes, waxes, oils and non-structural carbohydrates (Sluiter et al, 2008b). 

Soxhlet extraction involves rinsing biomass with water or ethanol under reflux in a Soxhlet 

apparatus. A Soxhlet apparatus consists of a distillation arm, a central chamber in which 

the biomass sample is held, and a condenser. The apparatus is attached on top of a 

distillation pot holding a solvent. When the solvent enters the vapour phase, it travels 

upwards through the distillation arm into the central chamber where the cooler conditions 

generated by the condenser cause the liquid to condense. Over time the sample becomes 

immersed in solvent and any soluble material is dissolved. Once the chamber is filled the 

solvent automatically drains back down into the distillation pot. Consequently only soluble 

components of the biomass are extracted and concentrated in the distillation pot while any 
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insoluble material remains in the chamber. The extraction cycle repeats several times an 

hour until all extractable material has been solubilised. The Soxhlet apparatus is described 

in greater detail in Figure 2.3 (section 2.2.2.8). 

Solubles in the OMSW fibre were extracted, first with water and subsequently with 

ethanol. Soxhlet extraction with water leads to solubilisation of components such as non-

structural sugars, nitrogenous/proteinaceous material and inorganic compounds. 

Extraction with ethanol solubilises components such as waxes, oils or chlorophyll (Sluiter 

et al, 2008). In total 17.10 ±2.78 % of OMSW fibre was solubilised by Soxhlet extraction, 

with the water soluble and ethanol soluble fractions accounting for 9.15 ±2.62 % and 7.95 

±0.92 % of the total, respectively. Soxhlet extraction has also been demonstrated to 

improve the accuracy of methods used for lignocellulose compositional analysis as it 

removes interfering compounds (Sluiter et al, 2008b). Lignocellulose compositional analysis 

was therefore also carried out on the Soxhlet extracted OMSW fibre to evaluate any 

influence of non-structural components on compositional methods. Oil and protein were 

also measured in the OMSW fibre (for details see 2.2.2.4 and 2.2.2.5) because these are 

non-structural components that can be used as a source of nutrients by microorganisms 

during fermentations. The results of all analyses of OMSW fibre composition are shown in 

Table 2.5 alongside the composition of Soxhlet extracted OMSW fibre. The concentration 

of protein and oil are shown as a fraction of the ethanol and water extractable material, 

respectively, as they would have been solubilised in these steps.  

The compositional profiles of the Soxhlet extracted and non-extracted MSW fibre 

were very similar. The levels of cellulose were closely comparable, with extracted fibre 

containing 36.85 ±6.15% cellulose on average compared to 37.61 ±2.73 % measured in the 

original fibre. Lignin content decreased slightly after extraction, from 15.80 ±0.37 % to 

11.28 ±0.33 %, indicating that soluble phenolic compounds such as tannins could have been 

contributing to the lignin concentrations measured in the original fibre. Ash content was 

also slightly lower, which may reflect the solubilisation of some organic compounds, but 

this variability is not significant when accounting for the standard deviation (14.74 ±1.47 % 

ash in the original fibre versus 13.23 ±0.44 % in extracted fibre). A 29.4% decrease in 

hemicellulose content was observed after Soxhlet extraction (Figure 2.6). The largest 

reduction was in D-glucose abundance, which decreased by 57%. This glucose is likely 

derived from starches as these are easily solubilised. Minor decreases were also observed 
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in the other sugars, which may have been hemicellulose-derived mono or disaccharides 

which are more readily washed out than polysaccharides.   

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Component 

 Composition (% w/w)  
 

OMSW fibre 
Soxhlet extracted 

OMSW fibre* 
 

Cellulose  37.61 ±2.73 36.85 ±6.15  

Hemicellulose  4.25 ±0.14 3.00 ±0.01  

Lignin  15.80 ±0.37 11.28 ±0.33  

Ash  14.74 ±1.47 13.23 ±0.44  

Metals  1.33 ±0.26 -  

Total extractives (water)   9.15 ±2.62 -  

Protein   3.23 ±0.40 -  

Other   5.92 n/a -  

Total Extractives (ethanol)  7.95 ±0.92 -  

            Oil   1.72 ±0.92 -  

Other   6.23 n/a -  

Total unaccounted mass:  9.17 n/a 35.64 n/a  

Table 2.5: Composition of OMSW fibre and Soxhlet extracted OMSW fibre 
Values reported as a percentage of the dry weight of OMSW fibre (%w/w).  

 
 

Figure 2.6: Concentration of hemicellulose-derived monosaccharides in OMSW fibre 
and Soxhlet extracted OMSW fibre 

Fuc = Fucose; Ara = Arabinose; Rha = Rhamnose; Gal = Galactose; Glu = Glucose;  
Xyl = Xylose; Man = Mannose; GalA = Galacturonic acid. 
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2.3.6 Summative Composition 

To give a clear overview of the total composition of OMSW fibre, a pie chart showing 

the collated percentage composition data is provided in Figure 2.7. Hemicellulose 

composition is shown separately to provide a summary of monosaccharide abundance. 

Mass closure was achieved to 90.83% when all compositional analyses were combined. 

Only 9.17% of total dry weight could not be accounted for.  

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.7: Percentage composition of OMSW fibre 
All data are averages of at least triplicate measurements.  

 

Appendix I provides all compositional data inclusive of standard deviations. 

Appendix II provides a list of all metals and their respective concentrations and standard 

deviations.  
 

Glu = Glucose; Xyl = Xylose; Man = Mannose; Fuc = Fucose; Ara = Arabinose; 

Rha = Rhamnose; Gal = Galactose; GalA = Galacturonic acid. 

 
Values are given as a percentage of the dry weight of OMSW fibre (%w/w).  

Extractives (water) = % w/w of non-structural material extractable by Soxhlet extraction with 

water; Extractives (ethanol) = % w/w of non-structural material extractable by Soxhlet extraction 

with ethanol; Protein and oil were measured by separate analyses but are water and ethanol 

soluble, respectively, and are therefore reported as part of the extractable fractions. The 

monosaccharide composition of the hemicellulose fraction is shown in the adjacent pie chart.  
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2.4 Discussion 

OMSW is significantly heterogeneous and variable in composition compared to other 

lignocellulosic waste feedstocks. Agricultural and forestry by-products are generally highly 

homogeneous, compositionally consistent and inert, while the make-up of MSW differs 

considerably on both geographical and temporal scales. The abundance and composition 

of the organic fraction in particular are greatly influenced by prevailing socio-economic 

conditions and waste management systems (Kaza et al, 2018). Furthermore, OMSW comes 

into close contact with various inorganic wastes that may introduce toxic or inhibitory 

elements and compounds, adding further unpredictability to its composition. Collectively 

these factors make OMSW a challenging feedstock for empirical study and one that has 

consequently been underexplored for bio-manufacturing (Matsakas et al, 2017).  

With the aim of tackling some of the challenges outlined above, the OMSW fibre used 

in this project was produced on a commercially proven autoclave pre-treatment system 

with a predetermined mixture of MSW, constructed according to national statistics on 

MSW composition in the UK. This novel approach enabled production of material that was 

representative of real-world OMSW as it would arise when homogenised at industrial 

volumes. OMSW fibre produced in this way also has a reproducible lignocellulose 

composition, as demonstrated by the consistent cellulose, hemicellulose and lignin 

fractions measured in three separately produced batches of OMSW fibre (Figure 2.5). 

Despite the benefits in reproducibility gained from this approach, the constructed fibre was 

still highly complex: ~41% was made up of non-structural components, ash and other 

material for which the composition is mostly indeterminable (Table 2.5). Such a large 

fraction of unknown material may make it challenging to disentangle the precise cause if 

growth inhibition arises when fermentation experiments are carried out. 

Nevertheless, the compositional analysis revealed that the OMSW fibre contained a 

large polysaccharide fraction of approximately 42% (37.6 ±2.7 % cellulose, 4.3 ±0.1 % 

hemicellulose) (Table 2.2). Forestry and agricultural wastes generally contain 24–54% 

cellulose, 11–38% hemicellulose and 6–31% Lignin (Garrote et al, 1999; Klinke et al, 2001). 

The cellulose fraction in the OMSW fibre used in this study falls within the upper range of 

this, making it a potentially practicable fermentation feedstock. The fibre also contained 

small proportions of oil (1.7%) and protein (3.2%) which could be used as nutrients by 

microorganisms in the fermentation step. However, the hemicellulose fraction is far below 
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average of typical agricultural residues (Adhikari et al, 2018; Singh & Bihari Satapathy, 

2018).  

Compared to other reports of OMSW composition in the literature (Figure 2.8) the 

OMSW fibre used in this project had over twice the reported cellulose content, but 

hemicellulose levels were still in the lower range. Lignin levels were also above average, 

while the oil and protein levels measured in OMSW fibre were the lowest of any study 

(Barampouti et al, 2019). Interestingly, the cellulose content was similar to levels reported 

for other cities in the UK: 39.7% and 49% for Lester (Zhang et al, 2012) and Nottingham (Li 

et al, 2012a), respectively. That said, OMSW from Newtown, UK, contained only 5.5% 

cellulose, while the protein levels reported for this city were 25.8% - almost double those 

of the other UK regions (Barampouti et al, 2019). Significant regional differences in MSW 

composition can exist even within the same country because of local variation in socio-

economic conditions and waste management practices (Barampouti et al, 2019; Kaza et al, 

2018). Compositional variability is also evident across cities in Italy (Figure 2.8, Padova, 

Treviso & Milan). This has important ramifications for the development of an integrated 

MSW biorefinery as not all sources of OMSW will be viable for bioprocessing because the 

polysaccharide fraction may be impracticable.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8: Percentage composition of OMSW reported  
for a range of cities and in this study 

Figure by author, using data from Barampouti et al, (2019).  
*Component not measured.  
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Another critical feature of OMSW is its metal content, due to the potential of various 

metal species for inhibiting or enhancing enzymatic hydrolysis and microbial fermentation 

processes. Pd, Ti, Sn, Bo, Br, and W were not tested for in the OMSW fibre, but the other 

metals reported to be most abundant OMSW by Barampouti et al (2019) were all detected 

with similar relative abundance (Table 2.4). The most toxic metals for microorganisms are 

non-essential metals (i.e. metals with no established function in biological systems, 

generally found at <1 μg/g in the environment). These species are highly inhibitory to 

biological systems even at extremely low levels (Lemire et al, 2013; Tchounwou et al, 2012; 

Wood & Wang, 1983). Worryingly, a wide range of non-essential metals were found in the 

OMSW fibre, including Al, Sb, As, Cd, Cr, Co, Ni, As, Pb and V. However, the chemistry of 

microbial metal toxicity is highly complex and dependent upon the metal species, its 

ionisation state, synergistic interactions with other metals, the environment al conditions 

(e.g. pH, redox potential) and the physiology of the fermentative microorganism (Bird et al, 

2013; Chandrangsu et al, 2017). Thus, the abundance of toxic metals in OMSW does not 

immediately rule out the possibility of developing a working bioprocess. Furthermore, 

metals with the greatest toxicity potential were not solubilised significantly after fibre was 

subjected to extensive washing and may therefore not cause a problem during 

fermentation. That said, metals could become mobilised under the conditions of enzymatic 

hydrolysis (between 50-55°C and pH 4-6, depending on the enzyme cocktail used). The 

behaviour of metals during hydrolysis is still unknown and will require further investigation.  

A further consideration is that the maximum solid loading achievable for large scale 

hydrolysis of lignocellulosic biomass is generally ≤20% (Kristensen et al, 2009a; Modenbach 

& Nokes, 2012), therefore the final metal concentration in OMSW fibre hydrolysate will be 

at least five-fold more dilute. The theoretical concentration of each metal that would be 

released from OMSW fibre in a 20% total solids (TS) hydrolysis was calculated (Table 2.6). 

This shows that after hydrolysis the majority of metals would fall below the minimum 

inhibitory concentration (M.I.C.) of the model fermentative microorganism Escherichia coli, 

even when the highest values reported by Wilson Bio-Chemical for industrially produced 

OMSW fibre are applied. However, the calculated concentrations for Aluminium (Al) and 

Iron (Fe) in hydrolysate of the constructed OMSW fibre used in this project would be up to 

15-fold over the M.I.C. for E. coli and could therefore potentially have a negative effect on 

microbial fitness in fermentation.  
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Table 2.6: Theoretical concentration of metals in hydrolysate of OMSW fibre after a 
20% total solids hydrolysis.  

(Data used with permission from Wilson Bio-Chemical Ltd.) 
 

M.I.C = Minimum inhibitory concentration for Escherichia coli. Concentrations of each 

metal were calculated assuming that 100% of the metals measured in the dry OMSW fibre would 

be solubilised in a 20% w/v total solids loading hydrolysis. Values for industrial OMSW fibre were 

calculated using the highest recorded measurement of each metal in a 32-month period. 

*Calculated using data for the highest recorded measurements of each metal.  

 

 

 

 

 

 

 

 

 

Metal 

 Theoretical concentration in 
OMSW fibre hydrolysate (mM) 

 M.I.C (E. coli) 
[mM] 

Reference 

Industrial (max.)* 
 

This project 
 

  

Calcium -  213.08  n/a - 

Aluminium -  33.38  2.0 (Nies, 1999) 

Iron -  12.49  1.0 (Kalantari, 2008) 

Magnesium -  8.89  n/a - 

Potassium -  13.31  n/a - 

Sodium -  11.50  n/a - 

Zinc 1.54  0.49  2.0 (Beard et al, 1997) 

Manganese -  0.15  1.0 (Nies, 1999) 

Copper 2.46  0.066  1.0 (Nies, 1999) 

Nickel 0.25  0.066  20.0 (Nies, 1999) 

Chromium 0.33  0.022  1.0 (Nies, 1999) 

Lead 0.15  0.0028  5.0 (Nies, 1999) 

Vanadium -  0.0080  1.0 (Nies, 1999) 

Antimony -  0.0021  5.0 (Nies, 1999) 

Cobalt -  0.0019  1.0 (Majtan et al, 2011) 

Arsenic 0.018  0.00024  3.0 (Silver et al, 1981) 

Cadmium 0.004  0.000060  0.6 (Hossain et al, 2012) 

  

 

A major limitation of the OMSW fibre used for this project is that it cannot capture the 

variability in metal levels observed on an industrial scale, which can fluctuate drastically, 

even within the same region. Figure 2.9 below shows metal levels in OMSW fibre measured 

by Wilson Bio-Chemical Ltd. over 32 months on an industrial Wilson System® at a single site 

in the UK. While some elements such as Zn are consistent in abundance, others like Cu, F, 

As and Mo show occasional spikes and seasonal variability. Metal concentrations in the 

constructed fibre were also at least 50% below the average concentration measured in the 

industrial fibre. This is illustrated in Table 2.7 below which compares the average and 

maximum levels of metals measured in the industrially produced Wilson Fibre® to the fibre 

used in this project. This highlights the fact that any bioprocess developed around OMSW 
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fibre will require a robust fermentative microorganism capable of tolerating fluctuations in 

a wide range of potentially toxic metal species. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Overall the compositional analysis revealed that OMSW fibre has the potential to be a 

practicable feedstock for bioprocessing. It contains a large cellulose fraction and some 

nutrients such as oil and protein which may be beneficial to microorganisms during 

fermentation. The metal fraction poses a potential limitation as this could induce stress or 

inhibition of fermentative microorganisms. However, many of the metals that have the 

highest potential for microbial toxicity were also shown to be the least soluble, including 

Al, Ag, As, Pb and Cr. Further work is needed to test how metals will behave after hydrolysis 

and evaluate the extent to which they may affect microbial fermentation of OMSW fibre 

hydrolysate. 

 

 

Figure 2.9: Abundance of metals in Wilson Fibre® produced on an  
industrial Wilson System® over 32 months 

Data used with permission from Wilson Bio-Chemical Ltd. Concentration of metals shown as 
log10 mg/Kg. 



Chapter 2: Compositional Analysis of Organic Municipal Solid Waste Fibre 
 

 
 

81 

 
 
 
 
 
 
 

  

  Concentration of OMSW fibre (mmol/Kg)  

Metal  Industrial*  This Project  

  Average ±SD  Maximum  Average ±SD  

Zinc  4.810  ±1.117  7.709  2.470 ±1.647  

Copper  1.707 ±2.119  12.275  0.331 ±0.063  

Chromium  1.273 ±0.382  1.646  0.112 ±0.012  

Nickel  0.629 ±0.231  1.235  0.332 ±0.246  

Lead  0.404 ±0.145  0.767  0.014 ±0.003  

Arsenic  0.044 ±0.022  0.088  0.001 ±0.001  

Cadmium  0.008 ±0.005  0.020  0.0030 ±0.0001  

*Data used with permission from Wilson Bio-Chemical Ltd.  
 

 

 

Table 2.7: Metal levels measured in industrial OMSW compared to metal 
levels in OMSW used in this project. 

Note –Selenium and Molybdenum were measured in the industrial OMSW but not 
found in the constructed OMSW. Fluoride and Mercury were measured in the 

industrial OMSW but not in the constructed OMSW. For detailed methods see 2.2.2.6. 
±SD = Standard deviation of minimum triplicate measurements.  
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Chapter 3: Evaluating Hydrolysis, Fermentability and Biogas 
Production from OMSW Fibre 
 

3.1 Introduction 
 

Saccharification can be a significant barrier to the commercial viability of a 

bioprocess, requiring high titres of costly enzymes and large volumes of water to achieve 

efficient conversion of feedstock to sugars (Zhao et al, 2012). OMSW is largely composed 

of pre-processed lignocellulosic materials such as paper and card which are easier to 

hydrolyse than raw plant material, but typically also contains compounds that may be 

inhibitory to enzyme activity such as metals, calcium carbonate (CaCO3), lignin and plastics. 

Optimising hydrolysis methods is therefore critical to developing a viable biorefining 

process around OMSW.  

Several publications have investigated industrially relevant methods for enzymatic 

hydrolysis of OMSW. Jensen et al. (2010) demonstrated that organic material in mixed 

MSW could be solubilised using cellulases and the inorganic components isolated by 

sieving. This technique is economical, rapid and effective, resulting in solubilisation of 90% 

of the organic fraction and is currently used to isolate and saccharify OMSW for biogas 

production at the REnescience power plant in Norwich, England (Novozymes, 2016). As part 

of her PhD thesis Puri (2014) investigated methods for hydrolysing paper pulp isolated from 

MSW using a more traditional SSF approach. The OMSW paper pulp was produced by 

Fiberight Ltd. on an industrial autoclave and washed to remove contaminants such as 

plastic, metals or minerals. The most effective hydrolysis yields were achieved using the 

industrial enzyme cocktail Cellic CTec3 in a two-stage hydrolysis involving an intermediary 

fermentation step with S. cerevisiae to alleviate product inhibition. Over four days 68% of 

available sugars were hydrolysed despite a relatively high solids content of ≥18.5%. The 

final D-glucose concentration was 8% (w/w), which is just within the industrially viable 

range (Puri et al, 2013).  

Li et al. (2012a) also investigated saccharification of an OMSW fibre generated on 

an industrial autoclave for 45 minutes at 165°C and 100 psi. The fibre was dried, milled to 

varying particle sizes and hydrolysed. A 53% conversion of the cellulose and hemicellulose 

to sugars was achieved using 60 g/L fibre with 90 mg/g Trichoderma reesei cellulase. Based 

on their saccharification yields the authors calculated that industrial titres of ethanol (152 
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L per tonne of fibre) could potentially be produced, assuming efficient fermentation with 

S. cerevisiae. 

Farmanbordar et al (2018b) tried to improve hydrolysis yields from OMSW by 

investigating different pre-treatment methods. OMSW was collected from an urban waste 

compost plant and subjected to pre-treatment with water or 0.5% w/w sulphuric acid at 

140°C for 1 hour. Pre-treatment was carried out in a 500 ml high-pressure reactor with a 

total solids (TS) loading of 10% w/w using the commercial enzyme cocktail Cellic Ctec2. The 

highest sugar yields were attained with dilute acid pre-treated OMSW, which produced 

21.33 g/L D-glucose and 1.85 g/L D-xylose. By comparison, liquid hot water pre-treated 

OMSW only yielded 14.07 g/L and 3.04 g/L D-glycose and D-xylose, respectively. Untreated 

OMSW had the poorest D-glucose yield, at 10 g/L, but a higher D-xylose yield (1.98 g/L) 

than the dilute acid treated samples because dilute acid treatments tend to solubilises 

hemicellulose (Farmanbordar et al, 2018b). Pre-treatment is a critical factor in improving 

biomass accessibility for enzymes so that efficient sugar yields can be attained, however, 

there is always a balance to be struck between the potential gains in hydrolysis efficiency 

and the cost of the pre-treatment. Pre-treatments often require expensive chemicals and 

significant energy for heating and cooling (Jönsson & Martin, 2016). In the context of MSW 

valorisation, autoclaving is a promising technology because it acts both to help separate 

and pre-treat OMSW in a single step (Li et al, 2012a; Meng et al, 2019).    

Industrially relevant saccharification must be carried out at relatively high 

concentrations (≥15% total solids (TS)) as this is required to achieve sufficient sugar yields 

for viable fermentation (Larsen et al, 2008). However, higher TS concentrations have an 

inhibiting effect on substrate conversion. Increasing TS is not only technically challenging 

due to limitations in rheology, but also produces a drop in conversion efficiency, known as 

the solids effect (Kristensen et al, 2009a). The precise cause of this effect is still poorly 

understood. Although increasing the enzyme concentration reduces enzyme inhibition and 

can alleviate the effect to an extent, there is evidence that enzyme efficiency is also 

influenced by the associated increase in viscosity which slows enzyme diffusion. 

Furthermore, increasing diffusion by mechanical agitation only marginally improves yield 

(Wang et al, 2011a). Other factors contributing to enzyme inhibition include non-specific 

binding to lignin, which sequesters enzymes and causes them to loose functionality, and 

inhibition by metals (Berlin et al, 2006).  
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Non-ionic surfactants such as polyethylene glycol (PEG) can improve enzyme 

efficiencies by reducing unproductive enzyme adsorption to lignin or plastics (Borjesson et 

al, 2007). Although PEG did not improve saccharification in terms of viscosity or particle 

size distribution in the study by Jensen et al, (2011), work by Puri et al (2014) found that 

addition of PEG improved enzyme activity on OMSW. At the same time, tween, a surfactant 

which has been shown to potentiate enzymes in other studies, did not have a noticeable 

effect. Due to the highly heterogeneous composition of OMSW and the irreproducibility of 

material used in studies comparing effective hydrolysis methods across publications is 

challenging.   

In a follow-up to their cellulase liquefaction study, Jensen et al. (2011) sought to 

increase hydrolysis yields by investigating how metals in waste water from MSW affect 

enzyme activity. The wastewater from this process contained several known inhibitors of 

cellulases (copper, mercury, lead, zinc, iron, chromium) and stimulators (calcium, 

magnesium, manganese), which could influence sugar yields. However, cellulase activity on 

filter paper was not significantly affected upon addition of MSW wastewater, indicating 

cellulases are relatively robust in the presence of MSW-derived metals (Jensen et al, 2011).  

That said, metals can be greatly inhibitory to fermentative microorganisms. Given the 

significant number of publications that have already investigated saccharification methods 

for OMSW, the development of hydrolysis methods for OMSW fibre is not a major objective 

of this thesis. Instead, this chapter focuses on producing an industrially relevant 

hydrolysate that contains realistic levels of inhibitors and metals and will examine the fate 

of metals during the hydrolysis process.  
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3.1.1 Aims of this Chapter 

This chapter aims to investigate the saccharification potential of autoclave pre-

treated OMSW fibre, evaluate OMSW fibre hydrolysate composition, assess its 

fermentability and investigate the possibility of biogas production from hydrolysis waste 

streams. Successful hydrolysis methods will be scaled-up to produce a large volume of high-

sugar OMSW fibre hydrolysate, which will be used to screen a collection of fermentative 

microorganisms as part of Chapter 4. A methodological overview for this chapter is 

provided in Figure 3.1. 

 

Key questions explored in this chapter include:  

• Can OMSW fibre produced through commercial autoclave pre-treatment be 

converted to a viable hydrolysate using the commercial cellulase cocktail Cellic 

Ctec3? 

 

• How do enzymatic hydrolysis conditions influence the solubility of metals in the 

OMSW fibre? 

 

• Does the OMSW fibre hydrolysate contain any inhibitory compounds typically 

associated with lignocellulosic feedstocks?  

 

• Does the OMSW fibre hydrolysate contain sufficient nutrients to support microbial 

growth? 

 

• Can the residual solid material left over after OMSW fibre hydrolysis be valorised 

further by anaerobic digestion? 
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Figure 3.1: Methodological overview of experimental aims and approaches 

investigated in Chapter 3 

 

A: Enzymatic hydrolysis of OMSW fibre with commercial enzyme cocktail Cellic Ctec3 will be 

evaluated and methods developed for production of a large, homogeneous batch of high-sugar 

hydrolysate for application in further experiments. 

 

B: The hydrolysis liquid (hydrolysate) will be subjected to a compositional analysis. Key nutrients 

including sulphate, nitrogen and phosphate will be measured using standard spectrophotometry-

based assays. Sugars will be analysed by high-pressure anion exchange chromatography (HPAEC) 

so that the hydrolysis yield can be calculated and sugar availability for fermentation determined. 

A range of common inhibitors will be tested by ultra-performance liquid chromatography with 

mass spectrometry (UPLC-MS) and gas chromatography (GC-FID).  

  

C: Any un-hydrolysed material left over after hydrolysis (residual solids) will be evaluated for 

biogas production in a lab-scale anaerobic digestion set-up (anaerobic digestion assay). 

 

D: Metals will be measured in both the residuals and hydrolysate to quantify how toxic species 

are solubilised through enzymatic hydrolysis and evaluate the potential effects on fermentation.     
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3.2 Materials and Methods 

 
3.2.1 Determining Cellulase Activity as Filter Paper Units 

Filter paper units (FPUs) are defined as the amount of enzyme capable of releasing 

2 mg of sugar from 50 mg of cellulose filter paper within one hour. FPUs are a standard unit 

for quantifying cellulase activity and are used to determine enzyme loadings in 

lignocellulosic hydrolysis experiments (Adney & Baker, 2008). The amount of FPUs per 

millilitre of undiluted Cellic Ctec3 enzyme cocktail was determined using a standardised 

assay performed on an automated robotic platform (Tecan 200 Liquid Handling Robot). The 

assay was carried out by the robot as follows: 50 mg paper discs (Whatman No 1, Cole-

Parmer Instrument Company) were loaded into 96 well plates (one disc per well). A 

standard curve was generated by adding enzyme cocktail (unfiltered) at 0, 25, 50, 75 and 

100%, diluted with 25 mM sodium acetate buffer (pH 4.5) to a final volume of 550 μl. The 

plate was incubated at 50°C for 2 hours and the sugar released from each reaction was 

quantified by an automated reducing sugar assay, as described in 3.2.7.1 (below). The 

standard curve was used to calculate the FPUs/g that release 2 mg of sugar within one hour. 

This value was used to calculate the volume of enzyme cocktail to be added to hydrolysis 

experiments described below.  

 
3.2.2 Small-scale hydrolysis 

Preliminary trials of OMSW fibre hydrolysis were carried in 100 ml conical flasks at 

10% total solids loading. A range of enzyme loadings were trialled, including 0, 20, 30, 40, 

50, 60 and 80 FPU/g solids. The hydrolysis slurry was prepared by mixing 10 g of OMSW 

fibre (equivalent to 3 g by dry mass or 10% total solids) with the required volume of Cellic 

Ctec3 enzyme cocktail (Novozymes) to achieve the required FPU/g concentration and then 

made up to 30 ml with sodium acetate buffer (200 mM, pH 4.5). Flasks were incubated in 

an orbital shaker at 52.5°C and 250 rpm. Samples were taken at regular intervals over 72 

hours and analysed for total reducing sugar content by reducing sugar assay as described 

in 3.2.7.1. 

 

3.2.3 Large-scale hydrolysis 

A single batch of hydrolysate was produced from 6 kg of OMSW fibre. To reduce 

contamination during hydrolysis, the fibre was re-sterilised by autoclaving at 120°C for 15 

minutes in a laboratory grade autoclave. This was followed by incubation at room 
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temperature for 16 hours and then another autoclave step under the same conditions. This 

was done to eliminate any germinated microbial spores that could have contaminated the 

hydrolysis. The moisture content of the fibre was then reduced by manually squeezing 

through a synthetic cloth. The final moisture content of the dewatered fibre was 

determined as described in 2.2.2.1. The fibre was then acidified to pH 5.0 by manually 

massaging concentrated H2SO4 into the biomass.  

Hydrolysis reactions were set up in 2 Litre conical flasks. The fibre was mixed with 

water that was acidified to pH 5.0 with H2SO4 to give a final dry solid loading of 20% w/v. 

The lignocellulosic enzyme cocktail Cellic Ctec3 (Novozymes) was added to a concentration 

of 10% w/w of total available polysaccharides. Flasks were incubated for 48 hours at 52.5°C 

at 250 rpm and then the resulting slurry was centrifuged (3500 x g, 5 min.) in centrifuge 

pots (600 ml) to separate the hydrolysate liquid from the residual un-hydrolysed solids. All 

components were weighed throughout the experiment to ensure mass balance. Hydrolysis 

yields were calculated as described in 3.2.3.  

The supernatants were pooled and homogenised, adjusted to pH 6.5 with 

concentrated KOH and then the specific gravity of the liquid was measured with a Brannan 

Specific Gravity Hydrometer (S50, 190mm, Range: 1.000-1.050 SG) (Figure 3.1). The liquid 

hydrolysate was subjected to analysis for monosaccharides, metals and nutrients (sulphate, 

nitrogen and phosphate) as outlined in 3.2.5. The remaining un-hydrolysed solid material 

was subjected to percentage moisture analysis, compositional analysis (lignocellulose and 

ash) and metal analysis as described in 2.2.2.1, 2.2.2.2 and 2.2.2.3. Hydrolysis liquid and 

residual solids were frozen in separate 1 L freezer bags and stored at -20°C.  

3.2.4 Hydrolysate sterilisation 

A sterile hydrolysate was produced as follows: hydrolysate was defrosted and 

centrifuged (27,000 x   g, 30 min.) in a Sorval Evolution RC centrifuge with SLC-1500 (Sorvall) 

rotor to remove small insoluble particulates. The supernatant was filtered by vacuum 

through glass microfiber filter paper (Watman GF/C) in a Buchner funnel and then passed 

through a SteriCap Bottletop Filter Unit (0.22 µm PES membrane, 40cm2 filtration area, 5-

10L capacity, Merck-Millipore) under aseptic laminar flow. The sterile hydrolysate was then 

aliquoted into sterile tubes (50 ml) (Falcon) and stored at -20°C.   
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3.2.5 Calculating hydrolysis efficiency  

Hydrolysis efficiency was calculated using the equation developed by Kristensen et 

al (2009b) for hydrolysis reactions with total solids loadings above 5% (Equation 3.1). To 

solve the equation the mass of the total reaction, total biomass and the insoluble solids left 

over after hydrolysis were accurately determined. This is done by pre-weighing all vessels 

and substrates throughout the hydrolysis. Other variables that need to be known include 

the concentration of monosaccharides and oligosaccharides (determined as described in 

3.2.7.2) and the specific gravity (determined as described in 3.2.6) of the hydrolysate liquid. 

 

Equation 3.1: Percentage yield for a high-solids hydrolysis (Kristensen et al, 2009b) 

 

% 𝑯𝒚𝒅𝒓𝒐𝒍𝒚𝒔𝒊𝒔 =  

𝑚𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 − 𝑚𝑖𝑛𝑠𝑜𝑙𝑢𝑏𝑙𝑒
𝑆𝐺𝑎𝑞.𝑝ℎ𝑎𝑠𝑒

× ([𝐺𝑙𝑐] + 1.0526 × [𝐶𝑒𝑙])

1.111 × 𝑚𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 ×  𝐹𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒 × 𝐷𝑀
 × 100 

 

mreaction  mass of whole reaction (g) 

minsoluble  mass of insoluble solids after hydrolysis (g) 

SGaq.phase specific gravity of aqueous phase (g/L) 

msubstrate total mass of substrate (g) 

Fcellulose  fraction of cellulose in the substrate   

DM  initial dry solids content (w/w) 

[Glc]  monosaccharide concentration in hydrolysate (g/L) 

[Cel]  oligosaccharide concentration in hydrolysate (g/L) 

 
 

3.2.6 Determining Specific Gravity 

The ratio between the densities of two substances or fluids in a constant volume is 

called the specific gravity (SG), as described in Equation 3.2.  SG is determined using a 

hydrometer (Figure 3.2-A). The hydrometer’s functionality is based on Archimedes 

Principle, which states that "Any solid lighter than a fluid will, if placed in the fluid, be so far 

immersed that the weight of the solid will be equal to the weight of the fluid displaced" 

(Archimedes & Heath, 1897). When the hydrometer is placed into a fluid that has a specific 

gravity greater or lower than the fluid which it is calibrated against, its buoyancy will 

change. This difference can be read off the graduated scale of the hydrometer and thereby 

the relative SG is measured.  
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A 
A 

Figure 3.2: Measuring Specific Gravity (Schematics by author). 

A: Schematic of a hydrometer. 

The hydrometer consists of a hollow glass tube that is sealed so as to produce an air-

filled chamber. The chamber acts as a float to enable buoyancy when immersed in a fluid. The 

float is weighted with a counterweight to ensure the hydrometer stays upright. The graduated 

stem is fitted with a scale that is calibrated to the density of a reference fluid. 

 

B: Schematic of how specific gravity measurement in OMSW fibre hydrolysate 

Liquid hydrolysate is poured into a graduated cylinder and allowed to equilibrate to the 

standard temperature to which the hydrometer is calibrated. The hydrometer is then carefully 

lowered into the hydrolysate and allowed to float freely. The specific gravity is read off the 

graduated stem by aligning the scale with the meniscus at eye level. 

B 
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Equation 3.2:  Definition of Specific Gravity (SG) 

 

 

 

 

 

 

 

The SG of the OMSW fibre hydrolysate was measured using a Specific Gravity 

Hydrometer (Brannan S50, 190mm), with a range of 1.000-1.050, calibrated to the density 

of distilled water at the standard temperature of 15.6°C (60°F). To measure the specific 

gravity of the OMSW fibre hydrolysate, 250 ml of hydrolysate liquid was defrosted, poured 

into a 250 ml graduated cylinder and allowed to warm up to ~15.6°C (~10 minutes, also 

sufficient time to remove any air bubbles).  The hydrometer was carefully dropped into the 

hydrolysate and the specific gravity reading was taken based on the level of the bottom of 

the meniscus, as illustrated in the diagram in Figure 3.2-B. The specific gravity reading was 

used to calculate the percentage hydrolysis yield using the equation described in 3.2.5.  

 

3.2.7 Hydrolysate analysis  

3.2.7.1 Reducing sugars 

Reducing sugars were measured using an automated robotic platform (Tecan 200 

Liquid Handling Robot) using the high-throughput 3-methyl-2-benzothiazolinonehydrazone 

(MBTH) assay developed by Gomez et al., (2010). Briefly, a 96 well plate (1.2 ml, VWR) was 

set up with liquid samples (diluted in 25 mM sodium acetate buffer (pH 4.5)) alongside a 

series of standards containing 0-200 nmol D-glucose in 75 μl MilliQ water. Into a 96 well 

PCR plate the autosampler pipetted 75 μl of each sample and standard, 25 μl of NaOH (1 

N), 50 μl MBTH reagent (0.21 mg/ml MBTH, 0.7 mg/ml DTT, freshly prepared), 100 μl 

oxidising reagent (0.5% FeNH4(SO4)2, 0.5% Sulfamic acid and 0.25 N HCl) and 500 μl MilliQ 

water. Plates were incubated at 60°C for 20 minutes in a PCR machine and then left to cool 

and develop at RT for 24 hours. Samples were quantified by measuring absorbance at 620 

nm. Absorbance readings were plotted for the standards and sugar concentrations of the 

samples were then calculated based on the line of best fit equation.  Two replicate plates 

were prepared for each iteration of the assay.  

𝑺𝑮 =  
𝛒𝒔𝒖𝒃𝒔𝒕𝒂𝒏𝒄𝒆

𝛒𝒘𝒂𝒕𝒆𝒓
  

 
 

SG  Specific Gravity of the fluid or substance 

ρ
substance

  density of the fluid or substance, [kg/m
3
] 

ρ
water

  density of water at a standard temperature ( 
o
C), [kg/m

3
] 
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3.2.7.2 Monosaccharides and oligosaccharides  

The concentrations of monosaccharides and oligosaccharides in the hydrolysate 

were quantified by high-performance anion exchange chromatography (HPAEC) as follows: 

The sterile filtered hydrolysate described in 3.2.2 was serially diluted (1:1500 for 

monosaccharide analysis and 1:200 for oligosaccharide analysis) in Milli-Q H2O and then 

200 µl was filtered through a 0.45 µm filter into tapered HPAEC vials (Dionex). Samples 

were analysed by HPAEC on an ICS-3000 PAD system with an electrochemical gold 

electrode using a CarboPac PA20 analytical column (3x150 mm, Dionex) and guard column 

(3x30 mm, Dionex). Identification and quantification of monosaccharides and 

oligosaccharides was carried out by comparing retention times and integrated peak areas 

of the samples to equimolar standard mixtures analysed during the same run under the 

same conditions. The monosaccharide standard mixture contained: L-fucose, L-arabinose, 

L-rhamnose, D-galactose, D-glucose, D-xylose, D-mannose, D-galacturonic acid and D-

glucuronic acid. The oligosaccharide standard mixture contained: glucose, cellobiose, 

cellotriose, cellotetraose, cellopentaose and cellohexaose.    

3.2.7.3 Metals  

Metal levels in the hydrolysate and the residual solids left over after hydrolysis were 

analysed in triplicate by ICP-MS as described in 2.2.2.6. Note that the residual solids were 

dried and ground to powder with a mortar and pestle before digestion. The digestion step 

was not required for the aqueous hydrolysate samples as the metals were already soluble. 

3.2.7.4 Marker inhibitors 

Inhibitory compounds commonly found in lignocellulosic hydrolysates were analysed 

in the OMSW fibre hydrolysate. Furfural, 5-hydroxymethylfurfural (5-HMF), vanillin and 

levulinic acid were measured by ultra-performance liquid chromatography (UPLC) with 

mass spectrometric detection (MS). Samples were chromatographically separated on a 

Waters Acquity I-Class System with VanGuard pre-column with C18 frit (Waters) and a BEH 

C18 column (100x2.1 mm, 1.7 μm, Waters). All runs were carried out with a gradient 

(min/%B = 0/16, 2.5/16, 2.8/100, 2.9/100, 3.3/16, 4/16) of solvent A (5% MeOH, 0.1% acetic 

acid) and solvent B (0.1% acetic acid in MeOH). Injection volume was 2 μl with a flow rate 

of 0.5 ml/min at 45°C. MS was carried out on a Thermo Endura Triple Quad with HESI 

positive ion source and single reaction monitoring (SRM) with one transition for each 

compound (compound, precursor m/z/productm/z: levulinic acid, 99.12/71.22; HMF, 



Chapter 3: Evaluating Hydrolysis, Fermentability and Biogas Production from OMSW Fibre 
 

 
 

93 

109.09/81.15; furfural, 97.12/69.22; vanillin, 153.05/93.11).  Data was analysed with 

Thermo Xcalibur 4.0.27.10 software.   

A range of organic acids, including acetic, butyric, formic, heptanoic, hexanoic, 

isobutyric isovaleric, 4-methylvaleric, propionic and valeric acid were measured in the 

OMSW fibre hydrolysate by gas chromatography (GC) with flame-ionization detection (FID). 

OMSW fibre hydrolysate was prepared for analysis in triplicate by acidifying 1 ml with 7.5 

µl concentrated orthophosphoric acid (Sigma-Aldrich) and run on the GC-FID in parallel 

alongside a volatile free acid standard (CRM46975, Sigma-Aldrich). The GC-FID set up 

consisted of a Nukol column (30 m x 0.25 mm, I.D 0.25 µm (24107)) with a helium carrier 

(30 psi) and liquid injection. Detectors and injectors were operated at 200°C. Temperature 

was increased from 75-150°C (10°C/min), 150-200°C (20°C/min) and held for 10 minutes.  

3.2.7.5 Nutrients 

Essential nutrients (nitrogen, phosphate and sulphate) were analysed using 

commercial testing kits that rely on enzymatic or chemical reactions followed by 

quantification by spectrophotometry.  

Phosphate and sulphate were quantified using standard Hach-Lange Kits designed 

for water quality testing, in conjunction with a Hach-Lange HT200S High Temperature 

Thermostat (used to heat samples according to manufacturer’s instructions) and a Hach-

Lange DR3900 Spectrophotometer (for automatic test quantification). Total Phosphate and 

orthophosphate were measured by Hach-Lange LCK350 Phosphate Kit (detection range: 

60-60 mg/L PO4
3- and 2-20 mg/L PO4-P), based on the phosphomolybdenum blue assay in 

which phosphate reacts with Mo6+ under acidic conditions to produce a blue product that 

is colorimetrically quantified.  Sulphate was measured by Hach-Lange LCK153 Sulphate Kit 

(detection range: 40-150 mg/L SO4
2-), based on the reaction of barium chloride ions with 

sulphate to produce insoluble barium sulphate which can be quantified as a change in 

turbidity. 

Nitrogenous compounds were quantified using enzymatic assay kits by Megazyme. 

First Ammonia, Urea and L-Arginine (L-Arg) were measured according to manufacturer’s 

instructions by L-Arginine/Urea/Ammonia Kit (K-LARGE), then primary amino nitrogen 

(PAN) was measured by Primary Amino Nitrogen Kit (K-PANOPA) according to 

manufacturer’s instructions. Results from both kits were used to calculate the total Yeast 

Available Nitrogen (YAN), defined as the total concentration of nitrogen in a fermentation 
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that is accessible to the Brewer’s Yeast Saccharomyces cerevisiae. YAN is calculated from 

total ammonia, urea, L-arginine and PAN, as shown in Equation 3.3.  

 

Equation 3.3: Calculating Yeast Available Nitrogen (YAN) 

 

𝑌𝐴𝑁𝑡𝑜𝑡𝑎𝑙 = 1000 × [
𝐴𝑚𝑚𝑜𝑛𝑖𝑎 × 14.01

17.03
+

𝑈𝑟𝑒𝑎 × 28.02

60.06
+

𝐿−𝐴𝑟𝑔 × 28.02

174.21
] + 𝑃𝐴𝑁   

 
 
 

Total YAN (YANtotal) is calculated as mg of nitrogen per Litre (mg/L) and the values 

of each nitrogenous compound (ammonia, urea, L-Arg) are given in g/L. PAN is given in 

mg/L. Note that each ammonium ion contributes one nitrogen atom (14.01 g/mol), each 

urea ion contributes two, and each L-arginine contributes three. However, only two 

nitrogen atoms are counted for L-arginine because its primary amino group is already 

accounted for as part of the PAN (measured separately). 

 

3.2.8 Anaerobic Digestion Assays 

3.2.8.1 Small-scale Anaerobic Digestion Assay 

To investigate the biogas production potential of residual material from OMSW 

fibre hydrolysis a small-scale anaerobic digestion assay was set up as shown in Figure 3.3. 

Glass serum bottles (100 ml) were set up in triplicate with either low (20 g) or high (40 g) 

loadings of residual material from OMSW fibre hydrolysis. As a positive control three 

bottles were set up with 15 g of OMSW fibre. As a negative control three bottles were set 

up without any biomass added. Each sample was inoculated with 40 g of sludge (digestate) 

from an active industrial anaerobic digester operated by Yorkshire Water Ltd. All samples 

were sealed with rubber bungs and vortexed thoroughly before being connected to the 

small-scale anaerobic digestion apparatus (Figure 3.3). Samples were allowed to degas over 

the first 5 days to eliminate intrinsic gasses. Methane levels were then recorded over the 

next 41 days, with measurements taken every day for 20 days then every 2-3 days.  
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Biomass is combined with sludge from an anaerobic digester in a glass serum bottle. The 

bottle is sealed with a rubber bung to prevent gas exchange and secured on an orbital shaker 

that agitates the sample. The rubber bung of the serum bottle is pierced with a needle attached 

to a silicon tube. Any gas produced by the anaerobic digestion culture can only escape through 

the needle. Biogas first passes through the liquid trap (catches moisture & particulates), then 

through the CO2 scrubber (2M NaOH, eliminates CO2 & H2) so that only methane (CH4) remains. 

The CH4 bubbles up through an inverted 25 ml serological pipette that is sealed at the tip and 

placed in a tube of water. Water in the pipette is displaced by biogas and the volume of gas in 

the headspace can be read off the scale. Once 20 cm3 of headspace had been displaced the 

serological pipette is reset by refilling with water.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.3: Schematic of the small-scale anaerobic digestion apparatus  

(Schematic by author, experimental design developed by James F. Robson  

(University of York) as part of his PhD thesis). 
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3.2.9 Automated Biomethane Potential Assay 

A custom automated anaerobic digestion system was used to determine the 

biomethane potential of OMSW fibre and residual solids from OMSW fibre hydrolysis. The 

system consisted of eleven glass mini-bioreactors (Figure 3.4-A). Each mini-reactor was 

fitted with impellers attached to powered stirring rods anchored to a gas tight reactor lid 

with two sampling ports - gas-out and feed-in/sample-out (Figure 3.4-B). The full mini-

bioreactor set-up is shown and described in Figure 3.5-Left. Total gas and percentage 

methane were measured continuously in real time as described in Figure 3.5-Right.   
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Figure 3.4: Anaerobic Digestion Mini-bioreactor Assembly 
(Images courtesy of James F. Robson, University of York) 

 
A: Mini-bioreactor:  

(1) Gas outlet port; (2a) Sampling port (feed-in, sample-out); (2b) Sampling/feeding tube; (3) 

Impeller (detail in B); (3) Glass vessel (1 L);  

 

B: Mini-bioreactor stirring mechanism:  

(1) Bioreactor lid (gas sealed); (2) Powered stirring rod; (3) Impeller. 
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3.2.9.1   Set-up, Sampling and Feeding  

OMSW fibre and residual material from MSW fibre hydrolysis were defrosted and 

dewatered by manual squeezing through synthetic cloth. Moisture content was analysed 

as described previously (2.2.2.1.). OMSW fibre and hydrolysis residuals were prepared as 

suspensions of 1.25% w/v, respectively. Each suspension was blended in a food blender for 

10 minutes to homogenise the biomass and make the material small enough to pass 

through the 3 mm diameter tube (C-flex) used to feed the mini-bioreactors. Suspensions 

were stored in 1 litre Duran bottles at 4°C for the duration of the experiment. 

Figure 3.5: Automated Lab-Scale Anaerobic Digestion System 
(Image courtesy of James F. Robson (University of York) who developed this system as part of 

his PhD thesis). 
 

Left: Bottom - Temperature controlled water bath containing 11 mini-bioreactors (as depicted in 

Figure 3.4). Set to 35°C. Top - The bioreactor tops are attached to a powered pulley system which 

is connected to a single motor. Gas outlets from each mini-bioreactor are attached to gas 

impermeable silicon-based tubes that lead to gas the detection apparatuses (Right).  
 

Right: Top - Gas outlets from the bioreactor system are connected to an array of infrared (IR) 

methane sensors (Dynament, certified mining grade, 0-100% detection range). The IR sensors 

emit an analogue signal recorded by an Arduino computing platform running custom software 

that converts this signal to a methane percentage. Bottom - A tipping bucket mechanism with 

temperature and pressure compensation enables total gas yield to be recorded continuously in 

real time at standard temperature and pressure.  

- A tipping bucket mechanism with temperature and pressure compensation enables total gas 

yield to be recorded continuously in real time at standard temperature and pressure.  
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At regular intervals 50 ml of digestate was non-invasively sampled from each 

digester with a 60 ml capacity syringe (BD Plastipak) with attached tube. Each sample was 

transferred to Falcon tubes and the pH was measured with pH strips (Fisher Brand). After 

each sampling the reactors were fed with 50 ml of either the OMSW fibre or residuals 

suspension. The two negative control reactors were also sampled and fed with 50 ml water. 

Sampling was carried out over 43 days at the same time of day. Sampling intervals were 

every 7 days (days 0, 7, 14, 21 and 28), then every 3 days (days 31, 34 and 37) and finally 

every 2 days (days 39, 41 and 42).  

A 1 ml aliquot of each sample was transferred to a dried, pre-weighed Eppendorf 

tube (1.5 ml) and spun down. The supernatant was discarded, and the pellet was weighed 

to calculate total dry solids. Remaining sample material was frozen at -20°C for use in 

further analyses as described in 3.2.9.2.3 and 3.2.9.2.4.  

3.2.9.2   Chemical Oxygen Demand 

A 15 ml aliquot of each digestate sample was centrifuged at 3,500 xg for 20 minutes 

and the supernatants separated from the pellets. Chemical oxygen demand (COD) of the 

supernatants was measured using a Hach Lange COD Kit (LCK514) with a detection range 

of 100-2000 mg/L O2 according to manufacturer’s instructions. Samples were analysed by 

adding 2 ml of supernatant to the test vials provided in the kit. Vials were mixed and 

transferred to a Hach-Lange HT200S High Temperature Thermostat (used to heat samples 

according to manufacturer’s instructions) and the colour change was then quantified with 

a Hach-Lange DR3900 Spectrophotometer to quantify the COD.  

3.2.9.3   Microbial Community Characterisation 

The microbial communities in AD reactors fed with fibre or residuals were 

characterised using phylogenetic 16S rRNA amplicon sequencing. Digestate from the final 

sample point of two reactors was analysed from each condition (fed with OMSW fibre or 

fed with residuals). DNA was extracted from each sample and the v3-v4 region of 16s rRNA 

was amplified with commonly used v3v4 primers (Klindworth et al, 2013) with a Quick-16s 

NGS Library Prep Kit (Zymo Research) according to manufacturer’s instructions. Sequencing 

was carried out via Illumina MiSeq 2 x 300 bp by the genomics facility at Leeds University. 

The bioinformatics pipeline was performed according to the Quantitative Insights Into 

Microbial Ecology (QIIIME) bioinformatics platform (Caporaso et al, 2010) default 

parameters and primers were trimmed using a DADA2 software package (Callahan et al, 
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2016) using a cut length of 25 bp. Reads were clustered into operational taxanomic units 

(OTUs) using the UCLUST algorithm based on a 97% sequence identity threshold. 

Taxanomic annotation of OTUs was performed using the GreenGenes (DeSantis et al, 2006) 

rRNA database.  
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3.3 Results  

3.3.1 Hydrolysis of OMSW fibre  

Small-scale hydrolysis experiments were initially used to assess the amenability of 

autoclave pre-treated OMSW fibre to hydrolysis with Cellic Ctec3. Optimal conditions for 

Cellic Ctec3 are 50 – 55°C and a pH between 4.5 - 5.5, therefore the mean conditions (pH 

5.0 and 52.5°C) were chosen. OMSW fibre was added at a medium solids loading (10% w/v 

TS) with enzyme concentrations ranging from medium to high (20-80 FPUs/g). These 

conditions led to a polysaccharide conversion of between 40-80%, with higher enzyme 

loadings releasing more sugars (Figure 3.6). The most rapid hydrolysis occurred within in 

the first 12 hours for all enzyme loadings, followed by a more gradual rate of sugar release 

up to 72 hours when the reaction was stopped.  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

It is typical for enzymatic hydrolysis of lignocellulose to initially progress at a rapid 

rate and then slow into a plateau phase, often ending with incomplete hydrolysis of the 

substrate (Arantes & Saddler, 2011). This phenomenon can be overcome by dosing more 

enzyme, but the relationship between enzyme loading and sugar release efficiency is 

generally non-linear, especially at higher enzyme loadings. For example, in Figure 3.6 the 

60 and 80 FPUs/g enzyme loadings had similar sugar yields for the first 30 hours and the 

final polysaccharide conversion for the 80 FPUs/g reactions was only about 10% greater 

compared to the 60 FPU/g reactions. Similarly, the sugar release was very similar for the 

Figure 3.6: Preliminary trial of OMSW fibre hydrolysis using a range of 
enzyme loadings 
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30 and 40 FPU/g loadings. The large error bars between replicates and inconsistent sugar 

release observed between the enzyme loadings may also be due to mixing limitations that 

are inherent to small-scale laboratory hydrolysis set-ups (Neubauer et al, 2013). It was 

concluded that autoclave pre-treatment was sufficiently harsh to make the lignocellulose 

in the OMSW fibre accessible to hydrolysis by Cellic Ctec3 and consequently no further pre-

treatments would be necessary to produce a hydrolysate with enough sugar for 

fermentation experiments.  

Next, a large-scale hydrolysis process was developed for OMSW fibre at the 

industrially relevant solids loading of 20%. An excess concentration of the commercial 

enzyme cocktail Cellic Ctec3 (10% enzyme by weight of total available polysaccharide) was 

used to ensure the enzymes would liberate enough sugars to sustain microbial 

fermentations and the final hydrolysate would contain industrially realistic concentrations 

of inhibitors and metals. The hydrolysis methodology used for preliminary experiments 

involved acidifying the biomass with glacial acetic acid and then buffering the slurry with 

200 mM sodium acetate buffer (see 3.2.2). Acetate is very inhibitory to facultative 

anaerobes (Koh et al, 1992). For example,  E. coli is completely inhibited by 425 mM acetate 

(Zaldivar & Ingram, 1999).  To produce a hydrolysate more suitable for fermentation 

applications glacial acetic acid was exchanged for concentrated H2SO4. H2SO4 was manually 

massaged into the fibre until the pH dropped to 5.0 and then a slurry was prepared using 

distilled water adjusted to pH 5.0 with H2SO4 (for full method see 3.2.3). Although no buffer 

was employed, the combination of the acidified fibre and water maintained the pH 

effectively until the end of hydrolysis without adding compounds inhibitory to fermentative 

microbes.  

The hydrolysis slurry was distributed across eight 2 litre conical flasks as shown in 

Figure 3.7-A. To facilitate mixing in the absence of an impeller, shake flasks were only filled 

to ~25% of capacity and agitated nonstop throughout hydrolysis at 250 rpm in an orbital 

shaker. Due to the high viscosity of the 20% TS slurry, the set-up did not produce any 

agitation at first. However, after 3-6 hours as the enzymes began to break down some of 

the polysaccharides, adequate agitation was achieved. Within 48 hours a liquefied 

hydrolysate was produced (Figure 3.7-B). After hydrolysis all un-hydrolysable solids were 

separated by centrifugation from the liquid fraction. The two fractions are shown in the 

image in Figure 3.7-C. 
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Figure 3.7: Images of the key stages in the large-scale hydrolysis of OMSW fibre 

(Images by author) 
 

A. Image of the large-scale hydrolysis set up: Eight 2L conical flasks were set up with 

MSW fibre (20% dry weight by volume), Cellic Ctec3 (10% weight by weight of available 

polysaccharides) and 400 ml liquid.  
 

B. Appearance of the hydrolysate slurry after 48 hours of hydrolysis.  
 

C. Hydrolysis liquid and residual solids after centrifugal separation.  
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The final concentration of monosaccharides in the liquid fraction was 78.13 ±1.93 

g/L (7.8% w/v). D-glucose, D-xylose and D-mannose were the most abundant sugars overall, 

present at concentrations of 54.69 ±1.31, 17.54 ±1.10 and 4.25 ±0.61 g/L, respectively, and 

making up 98% of the total sugars in the OMSW fibre hydrolysate. L-fucose, L-arabinose, L-

rhamnose and D-galactose were also detected in small quantities (Figure 3.8). The total 

hydrolysis yield was calculated as 75.29%, equivalent to 61.19% of available cellulose and 

about 59% of available hemicellulose. The final sugar concentration attained in the OMSW 

fibre hydrolysate was 7.8% w/v, which is just below the minimum sugar concentration 

needed for a hydrolysate to be economically viable for bioethanol production (≥8% w/w  

(Chen & Liu, 2017)). No doubt hydrolysis yields could be improved by using a dedicated 

hydrolysis vessel with powered mixing capabilities. Nevertheless, the hydrolysate was 

deemed to contain enough sugars to be practicable for assessing the suitability of OMSW 

fibre for fermentation.  

 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8: Concentration and abundance of monosaccharides  

measured in hydrolysate of OMSW fibre  

±SD= standard deviation of triplicate measurements. 

Colours in A correspond to the colours marked for each sugar in B. 

Glu = D-Glucose; Xyl = D-Xylose; Man = D-Mannose; Fuc = L-Fucose;  

Ara = L-Arabinose; Rha = L-Rhamnose; Gal = L-Galactose. 

 

A: Total percentage abundance of monosaccharides in OMSW fibre hydrolysate. 

B: Concentration of monosaccharides in OMSW fibre hydrolysate in g/L. 
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It should also be noted that there are some caveats involved in calculating hydrolysis 

yields for solids loadings above 5% that must be considered when developing scalable 

hydrolysis methods. Hydrolysis is carried out using water as the primary solvent, but as 

sugars are solubilised from the insoluble lignocellulosic fraction the density of the liquid 

increases. This change in density can be accounted for in calculations by measuring the 

specific gravity (SG) of the final hydrolysate. SG is defined as the ratio between the densities 

of two substances, where one substance is used as a reference substance (in this case the 

density of distilled water at 15.6°C) and the volume of the two substances is equivalent.  

For hydrolysis reactions with low solids loadings (≤5%) usually employed in laboratory 

scale experiments, the differences in specific gravity of the different components are so 

minor that they can be considered equal and are disregarded when calculating hydrolysis 

yields. However, as Kristensen et al (2009b) have demonstrated, as the solids loadings 

increase over 5% this no longer holds true and knowing the specific gravity of the final 

hydrolysate becomes critical for accurate calculation of hydrolysis yield. If a standard 

method for calculating hydrolysis yield is used, for example the standard equation used by 

the National Renewable Energy Laboratories (NREL), the hydrolysis yields are up to 36% 

greater (Kristensen et al, 2009b). Due to the industrial nature of this project and the high 

solids loading employed, I chose to apply the more comprehensive hydrolysis yield 

equation put forward by Kristensen et al (Equation 3.1) for calculating hydrolysis yields. 

 

3.3.1.1 Inhibitor and metal content 

The OMSW fibre hydrolysate was analysed for potential fermentation inhibitors, 

including metals and common inhibitory compounds, to assess any potential toxicity to 

fermentative microbes and evaluate the degree of metal solubilisation caused by hydrolysis 

(Table 3.3). A wide range of organic acids were detected in the hydrolysate, including 

levulinic, acetic, propionic, butyric and hexanoic acid. The most abundant acids were 

levulinic and acetic acid at 29.64 ±0.37 mM and 5.77 ±0.09 mM, respectively. The other 

organic acids were present at <0.3 mM. The inhibitory aldehydes vanillin, 5-

hydroxymethylfurfural (5-HMF) and furfural were also measured, but only vanillin was 

detected at 2.10 ±0.10 mM.  

All metals originally detected in the OMSW fibre (Chapter 2, Table 2.4) were also 

found in the hydrolysate, except cadmium which was absent in the hydrolysate. Again, 

calcium was the most abundant element at 119.20 mM. Other metals present in the mM 
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range were highly soluble species including potassium, sodium and magnesium. All other 

metal species were present at relatively low levels, in the μM to nM range. To better 

understand how inhibitory compounds and metals might affect microbial fermentation, the 

levels measured in the OMSW fibre hydrolysate were compared to the minimum inhibitory 

concentrations (M.I.C) reported in the literature for the model fermentative microorganism 

Escherichia coli. These are given in Table 3.1 alongside their respective references.  

The concentration of all inhibitory compounds and potentially toxic metals were 

below the M.I.C reported for E. coli. No studies reporting magnesium or calcium inhibition 

in E. coli were found in the literature, although evidence suggests that high cation levels 

can disrupt intracellular pH, thereby increasing sensitivity to organic acids (Warnecke & 

Gill, 2005). Sodium and potassium are physiologically important cations present at μM 

levels in the hydrolysate, but evidence suggests growth inhibition requires concentrations 

around 1 M (Wu et al, 2014).  The inhibitory effects of many metals are highly dependent 

on pH, redox and microbial physiology, therefore the potential effects on fermentative 

microorganisms are difficult to predict.  Based on the M.I.C values presented in Table 3.1, 

the most potentially problematic species are iron and aluminium, as their concentrations 

are closest to the M.I.C. and therefore could potentially affect microbial fitness.  

To gain a better understanding of how metals are solubilised during enzymatic 

hydrolysis, the metal levels in the residual solids were analysed and compared to the 

concentrations in the hydrolysate (Figure 3.9). For comparison, the metal levels originally 

measured in the OMSW fibre (described in Chapter 2, Table 2.7) were used to calculate the 

concentration of metals that would theoretically be released in a 20% TS hydrolysis, 

assuming 100% solubilisation (Figure 3.9, ‘fibre’). Interestingly, except for highly water-

soluble species (potassium and sodium), most metals in the system were retained in the 

residual solids fraction (Figure 3.9, ‘residuals’). Metals in the liquid fraction (Figure 3.9, 

‘hydrolysate’) made up ≤30% of the total metal concentration.  

Overall, the theoretically calculated metal levels were lower than the total metal 

levels measured in the hydrolysate liquid and residual solids combined. This is possibly 

because a much greater volume of OMSW fibre was homogenised to make the hydrolysate 

compared to the 5-10 g used for ICP-MS analysis, highlighting the limitations of 

representative sample taking in compositional analysis. It also indicates that metals are 

heterogeneously distributed within the OMSW fibre. Some metals were absent in the 

hydrolysate and the OMSW fibre but were detected in the residual material, including 
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selenium, arsenic and thallium. However, these were present at very low levels (<3.0 μM). 

The hydrolysate contained approximately 6-fold more metals by dry weight than the 

OMSW fibre, thus less abundant metal species were probably more easily detected by ICP-

MS. 

 

 

 

 

 

 

 
 
 
 
 
 

Analyte 
 Concentration  M.I.C (E. coli) 

[mM] 
Reference 

  [mM]   ±SD  
Acids 

Levulinic   29.64  ±0.37 345 (Zaldivar & Ingram, 1999) 
Acetic     5.77  ±0.09 416 (Zaldivar & Ingram, 1999) 

Propionic     0.24  ±0.08 570 (Chun et al, 2014) 
Butyric     0.11  ±0.0027 460 (Chun et al, 2014) 

Hexanoic     0.11  ±0.02 12 (Hou et al, 2017) 

Aldehydes 

Vanillin     2.10  ±0.10 10 (Zaldivar et al, 1999) 

5-HMF n/d  32 (Zaldivar et al, 1999) 

Furfural n/d  36 (Zaldivar et al, 1999) 

Metals 

Calcium 119.20 ±0.000032 n/a - 

Sodium   15.26 ±0.00014 910 (Wu et al, 2014) 
Potassium     7.67 ±0.000030 1,100 (Wu et al, 2014) 

Magnesium     3.65 ±0.00099 n/a - 

Iron     0.70 ±0.000028 1 (Kalantari, 2008) 
Aluminium     0.58 ±0.00014 2 (Nies, 1999) 

Zinc     0.12 ±0.000020 2 (Beard et al, 1997) 
Manganese     0.050 ±0.000056 1 (Nies, 1999) 

Nickel     0.0061 ±0.000090 20 (Nies, 1999) 

Chromium     0.0011 ±0.00013 1 (Nies, 1999) 
Copper     0.00082 ±0.00031 1 (Nies, 1999) 

Antimony     0.00078 ±0.000053 5 (Nies, 1999) 

Vanadium     0.00072 ±0.00015 1 (Nies, 1999) 
Cobalt     0.00055 ±0.00019 1 (Majtan et al, 2011) 

Molybdenum     0.00019 ±0.00035 >10 (Stewart & Macgregor, 1982) 
Lead     0.000049 ±0.000031 5 (Nies, 1999) 

Table 3.1: Organic acids, aldehydes and metals measured in OMSW fibre hydrolysate 
and the minimum inhibitory concentration (M.I.C) of each analyte for the model 

fermentative microorganism Escherichia coli 
±SD = standard deviation of triplicate analyses; n/d = not detected; n/a = not applicable. 
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3.3.1.2 Nutrient analysis 

To get a full picture of the nutrient profile of OMSW fibre hydrolysate key nutrients 

required for microbial growth were measured, including phosphate, sulphate and various 

nitrogen sources (Table 3.2). Phosphate was measured as orthophosphate (a measure of 

free PO4
3- in the sample) and total phosphorus (also called orthophosphate as phosphorus 

(PO4-P) because all phosphorus must be converted to PO4 before it can be quantified).  The 

hydrolysate contained 0.44 ±0.003 mM of phosphorus, of which only 0.11 ±0.001 mM was 

orthophosphate. Sulphate was present in the highest abundance overall, at 15.24 ±1.21 

mM. A typical method for measuring availability of microbially accessible nitrogen in 

industrial fermentations is to calculate Yeast Available Nitrogen (YAN) (see 3.2.7.5) 

(Boudreau et al, 2018). YAN combines measures of ammonia, urea, L-arginine and primary 

amino nitrogen (nitrogen derived from peptides and amino acids) to calculate the total 

concentration of nitrogen sources that can be accessed by Brewer’s Yeast (Saccharomyces 

cerevisiae) in a typical fermentation. Total YAN in the hydrolysate was 4.85 ±0.14 mM, 

primarily comprising ammonia (2.27 ±0.09 mM), with some primary amino nitrogen (PAN) 

(0.32 ±0.01 mM) and low levels of L-Arginine (0.03 ±0.01 mM). Urea levels were 

insignificant. Overall, the level of microbially accessible nitrogen and phosphate measured 

in the OMSW fibre hydrolysate was at least 50% below the levels that would be used in a 

typical defined medium for E. coli. For example, MOPS minimal medium contains 10 mM 

ammonia and 0.4 mM Phosphate (Neidhardt et al, 1974). The hydrolysate may therefore 

require supplementation with nutrients to be viable for fermentation.  

 

 

 

Nutrients 
 Concentration  

mM ±SD 

Yeast Available Nitrogen (YAN)* 4.85 ±0.14 

         Of which:  Ammonia (NH3)       2.27 ±0.09 
                                     L-Arginine 0.03 ±0.01 
  Primary Amino Nitrogen (PAN) 0.32 ±0.01 

Total Phosphorus (PO4-P) 0.440 ±0.003 

Orthophosphate (PO4
3-) 0.11 ±0.001 

Sulphate (SO4
2-) 15.24 ±1.21 

   

Table 3.2: Levels phosphorus, orthophosphate, sulphate, nitrogenous compounds  
and calculated yeast available nitrogen (YAN) in OMSW fibre hydrolysate  

*For details on methods and calculating YAN see 3.2.7.5. 
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3.3.2 Methane production from residual solids of OMSW fibre hydrolysis 

A total of 2.25 kg (by dry weight) of OMSW fibre was used for large scale hydrolysis, 

of which 1.63 kg or 72.5% (by dry weight) was recovered. This residual material had a 

moisture content of 58.9 ±0.3%, which constituted the ~2.3 Litres of liquid hydrolysate that 

could not be recovered after centrifugal separation. Furthermore, based on the hydrolysis 

yields calculated in section 3.3.1, it was estimated that 14.7% cellulose and 1.6% 

hemicellulose remained in the residual solids fraction. The relatively large fraction of 

polysaccharides and soluble sugars retained in this waste stream indicated it could 

potentially be used as a feedstock for anaerobic digestion (AD). The biomethane potential 

(BMP) of the residual solids was therefore assessed through two lab-scale AD experiments.  

3.3.2.1   Small-scale anaerobic digestion assay 

Using a small lab-scale AD apparatus (detailed in 3.2.8.1), methane production was 

measured over 46 days with a high (20% TS) and low (13% TS) loading of residuals and an 

8% TS loading of OMSW fibre (Figure 3.10). OMSW fibre was used as a positive control 

because it has been widely demonstrated to be a good AD feedstock (Tyagi et al, 2018). To 

control for any lingering activity of the microbial community, the methane production of 

the inoculum (sludge from an industrial AD plant) was also measured.  

For the first five days the samples equilibrated, rapidly releasing inherent gasses. The 

methane levels were therefore scaled to zero from day 5. Once the reactors equilibrated, 

very little gas production was observed from the samples for two weeks. However, the 

negative control steadily released methane throughout the duration of the experiment as 

the sludge still contained 2.5% solids for the microbial community to degrade. After a total 

of ~20 days the samples began producing methane in bursts with high variability between 

replicates.  This is likely due to gasses becoming trapped because of the high solids content 

of the samples. However, the averaged data indicates that overall the residual material had 

a greater biomethane yield than the OMSW fibre. The samples containing residual material 

produced a total of 131.3 ±79.3 biomethane for the high solids loading (Figure 3.10, 

‘residuals (high)’) and 121.5 ±93.5 ml of biomethane for the low solids loading (Figure 3.10, 

‘residuals (low)’), or 2.5 and 2.2 times more than the negative control, respectively. The 

samples containing OMSW fibre produced the least methane overall, 45.7 ±28.9 ml total, 

or 9.6% less than the control.  
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AD of OMSW at high solids (>10% TS) has been demonstrated to be more efficient 

and economical than at low solids, but powered mixing is necessary to achieve sufficient 

agitation (Rivard et al, 1993). It was not possible to get consistent methane yield data over 

the short duration of this AD experiment, probably due to the inadequate agitation 

achieved by the small-scale anaerobic digestion apparatus with the high solids loadings. 

Nevertheless, the residual material showed good methane production potential and was 

therefore trialled at much lower (1.25%) solids loading using an automated lab-scale AD 

apparatus. 

 

Figure 3.10: Cumulative biomethane yield from anaerobic digestion of OMSW fibre 

hydrolysis residual material over 46 days. 

CH4 = methane (ml); Residuals (low) = 20 g residual material (13% TS); Residuals (high) = 40 g 

residual material (20% TS); Fibre (positive control) = 15 g OMSW fibre (8% TS); Control = 40 g 

digestate only (2.5% TS); 

Three assays were set up per feedstock. 40 g of digestate sludge was added to each 

sample. Measurement of methane production was started at day 5 to account for initial sample 

degassing. Error bars show standard deviation of triplicates. For details see 3.2.8.1.   
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3.3.2.2   Automated lab-scale anaerobic digestion assay 

To more accurately assess the BMP of OMSW fibre hydrolysis residuals an AD 

reactor feeding experiment was carried out with an automated lab-scale AD apparatus that 

measured biogas and methane yield in real time (outlined in 3.2.8.1). The AD reactors were 

fed at regular intervals over 43 days with 50 ml of a 1.25% w/v suspension containing 

residuals or OMSW fibre. Volumetrically equivalent samples were removed before each 

feeding and analysed for total solids and COD.  

The total solids content was similar for all reactors (~15 ±5 g/L) and relatively stable 

over the course of the experiment, with a slight decreasing trend for the fibre (R2 = 0.49) 

and residuals samples (R2 = 0.34), while the negative control stayed relatively stable 

throughout (R2 = 0.05) (Figure 3.11). This indicated that the microbial communities were 

efficiently utilising the carbon source after each feeding and the feedstock was not 

accumulating over time.  

 

 

 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.11: Total solids content of digestate from anaerobic digestion of OMSW fibre 

and residuals 

Total dry solids were measured at regular intervals over 43 days in digestate samples 

from AD reactors fed with OMSW fibre (Fibre), residuals solids from OMSW fibre hydrolysis 

(Residuals) or water (Neg. control). Error bars show standard deviation of triplicates for Fibre 

and Residuals and duplicates for Neg. control. 
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This is supported further by the COD data (Figure 3.12). The COD of the feedstock 

suspensions was 46,733 ±416 mg/L O2 for the residuals and 1,199 ±58 mg/L O2 for the fibre, 

therefore the COD of the digestate would have increased over time if the AD community 

was not active. However, COD levels fluctuated in the range of 250-350 mg/L O2 but did not 

increase, demonstrating that the AD community was efficiently utilising the carbon 

introduced at each feeding and the feedstock was not causing dysbiosis. There was no 

significant change in COD for residuals and fibre samples over the course of the experiment 

(R2 = 0.19 and 0.09, respectively) whereas COD decreased in the negative control samples 

(R2 = 0.72), which were being starved of carbon over the course of the experiment.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The total biogas yield and proportion of methane produced by each reactor was 

measured in real time over 43 days as detailed in 3.2.8.2. Note that three reactors were 

trialled with each feedstock, but one fibre-fed reactor became faulty over the course of the 

experiment making biogas measurements inaccurate. Biogas and methane data from this 

reactor were therefore disregarded in all analyses presented in Figure 3.13. 

 

Figure 3.12: Chemical oxygen demand of digestate from anaerobic digestion of 

OMSW fibre and residuals 

Chemical oxygen demand (COD, mg/L O2) was measured at regular intervals over 43 

days in digestate samples from AD reactors fed with OMSW fibre (Fibre), residuals solids from 

OMSW fibre hydrolysis (Residuals) or water (Neg. control). Error bars show standard deviation 

of triplicates for Fibre and Residuals and duplicates for Neg. control. 
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Figure 3.13: Cumulative biogas and methane production from anaerobic digestion of 

OMSW fibre and residuals 

(A) Total gas (ml), (B) total methane (ml) and (C) percentage methane (%) produced over 1600 

hours by AD reactors fed with OMSW fibre (green), residuals from OMSW fibre hydrolysis 

(orange) or water (red). Feeding days demarcated by vertical grey lines. First feeding at ~350 h 

and final feeding at ~1350 h (43 days).  Residuals = averages of three AD reactors. Fibre = 

averages of two AD rectors. Control = averages of two AD reactors fed with water only. 
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There was no significant difference in the total biogas yield produced from the 

residuals compared to the fibre (Figure 3.13-A). Reactors fed with fibre and residuals 

produced a total of 1,532 ml and 1,753 ml of biogas, respectively. Although total biogas 

production was nearly identical for most of the experiment, the proportion of methane was 

significantly greater throughout for reactors fed with residuals, which produced 831 ml of 

methane (47.4% of total biogas), while fibre-fed reactors only produced 593 ml of methane 

(38.7% of total biogas) (Figure 3.13-B).  

The rate of methane production rapidly increased after each feeding (demarcated 

by grey lines), but in reactors fed with residuals the high methane production was sustained 

for about 100 hours before dropping off (Figure 3.13-C, ‘Residuals’), while in fibre-fed 

reactors there was a small spike in methane production after feeding followed by a second, 

larger peak that rapidly declined (Figure 3.13-C, ‘Fibre’). Importantly, biogas production 

remained relatively stable once feedings increased in frequency (after 1000 h), indicating 

that the microbial communities could cope with more frequent nutrient and carbon source 

influx and still maintain efficient methane production. After feeding was stopped (after 

1350 h) the methane levels declined in all reactors, although biogas production continued 

(Figure 3.13-A and C, 1400 - 1600 h). 

The 33.4% greater methane yield attained from residuals could indicate that the 

microbial community present in these reactors was more efficient at methane production 

or that the feedstock was more easily converted to methane. To get a better understanding 

of the microbial community composition DNA was extracted from the final digestate 

samples and subjected to 16s rRNA sequencing. Between 197,697 and 250,036 reads were 

matched to 308 OTUs. Sequencing depth was sufficient to draw conclusions of taxonomic 

abundance as a stable measure of the Shannon Index, which quantifies species richness 

and evenness, was observed above 2,500 reads (Appendix III).  

Species identified by phylogenetic amplicon analysis were grouped by their 

taxonomic affiliations at the phylum level to get an overview of the microbial community 

structure (Figure 3.14).  Surprisingly, community composition was highly similar in reactors 

fed with residuals and reactors fed with OMSW fibre. The most abundant taxonomic groups 

were Bacteria of the phyla Bacteroidetes, Firmicutes and Chloroflexi. The Spirochaetae, 

Proteobacteria and Archaea in the phylum Euryarchaeota (for a comprehensive taxonomic 

table with all annotations see Appendix IV). These results are consistent with previous 

studies, which showed that Firmicutes, Bacteroidetes, Proteobacteria, Chloroflexi, 
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Spirochaetes and Actinobacteria are the dominant phyla found in industrial biogas reactors 

digesting municipal solid and liquid wastes and are generally associated with a healthy 

methanogenic community (Guo et al, 2015; Sundberg et al, 2013).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.14: Taxonomic abundance of microbial communities after 43 days of 

anaerobic digestion with OMSW fibre or residuals, based on groupings of 16s rRNA 

sequences 

The 16s rRNA amplicon profiles were assigned taxonomy in Greengenes (DeSantis et al, 

(2006)) and then grouped by Phylum to provide an overview of the taxonomic abundance within 

the digestate. A comprehensive table of all taxonomic annotations is provided in Appendix IV.  
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3.4 Discussion 

A primary objective of this project was to produce a large, consistent volume of 

OMSW fibre hydrolysate for substrate-oriented screening of microbial species in 

subsequent work. Method development was therefore focused on producing a hydrolysate 

with enough sugars for fermentation and industrially realistic levels of inhibitors and 

metals. Although hydrolysis optimisation was outside the scope of this project, some 

observations were made while developing the hydrolysis methodology that would be 

pertinent to future bioprocess development for OMSW fibre.  

Maintaining the pH of the slurry was a major challenge in preliminary experiments - 

the OMSW fibre demonstrated a strong buffering capacity which caused the pH to rise to 

~6.5 over the course of hydrolysis, leading to inefficient and inconsistent saccharification 

between samples and thus significant variability between replicates. Calcium originating 

from CaCO3 paper filler was present at high levels in the feedstock (~2 mol per Kg) and its 

alkalising qualities probably greatly contributed to the high buffering capacity. CaCO3 

dissolution not only elevates pH beyond the optimal range for cellulases, but cellulases 

have also been shown to preferentially bind to  CaCO3 in the presence of hardwood pulp 

(Chen et al, 2012).  

Previous studies with waste paper showed that removal of CaCO3  by acid washing 

significantly improved hydrolysis efficiency (Wang et al, 2011b). However, the cost of 

adding large volumes of acid and water to solubilise CaCO3 could be expensive at industrial 

scales. It is also important to consider that unlike waste paper, OMSW fibre contains high 

levels of toxic metals that could become solubilised into the wash water and would require 

specialised disposal, incurring additional costs. Furthermore, work by (Puri, 2014) on MSW-

derived paper pulp found that washing out CaCO3 with neutral detergent or H2SO4 had no 

effect on hydrolysis yields, whereas the addition of polyethylene glycol (PEG 6000) 

improved enzyme activity and availability, affording a 40% reduction in Cellic Ctec3 loading. 

The hydrolysis protocol developed for this project involved manual massaging of 

concentrated H2SO4 into the biomass until the optimal pH was reached, thereby avoiding 

the need for a washing step. This method was very labour-intensive on a lab scale but could 

have potential on an industrial scale as bioreactors can maintain pH by in-line monitoring 

and automatic dosing of acid while the biomass is agitated. Further work will be needed to 

evaluate the viability of this approach in conjunction with hydrolysis enhancers such as PEG 

6000.   



Chapter 3: Evaluating Hydrolysis, Fermentability and Biogas Production from OMSW Fibre 
 

 
 

117 

This chapter was largely focused on characterising the lignocellulosic hydrolysate 

produced from OMSW fibre and evaluating its potential for fermentation. Lignocellulosic 

hydrolysates are known to contain close to one hundred compounds, many of which inhibit 

microbial growth (Fenske et al, 1998; Heer & Sauer, 2008; Klinke et al, 2001). Due to its 

heterogeneous nature, OMSW is likely to contain even more diverse chemicals that would 

not be found in agricultural feedstocks. There are currently no published studies that report 

concentrations of common lignocellulose-derived inhibitors in OMSW hydrolysate. Two 

studies by Farmbordar et al (2018a; 2018b) reported total phenolics and tannins in dilute 

acid and organosolv pre-treated OMSW but did not provide details of specific compounds, 

while Ghanavati et al (2015) reported levels of 5-HMF and furfural in sulphuric acid pre-

treated OMSW hydrolysate that had undergone detoxification by over-liming. This is the 

first time a comprehensive analysis of key fermentation inhibitors has been carried out on 

an enzymatic hydrolysate of OMSW. 

The absence of furfural and 5-HMF in the OMSW fibre hydrolysate (3.3.1.1, Table 3.1) 

is promising as these inhibitors are the most prevalent source of toxicity-dependent growth 

inhibition in lignocellulosic hydrolysates, especially when present in combination (Almeida 

et al, 2009; Feldman et al, 2015; Heer & Sauer, 2008). Although unusual, an absence of 

furfural and 5-HMF has been reported for a range of feedstocks and pre-treatments, for 

example wet oxidised wheat straw  (Klinke et al, 2003) acid steam pre-treated willow 

(Jönsson et al, 1998), and dilute acid pre-treated poplar, switchgrass and corn stover 

(Fenske et al, 1998). However, as levulinate is a breakdown product of 5-HMF the presence 

of 29.64 mM levulinate in the hydrolysate indicates that some 5-HMF was present but was 

degraded. Typically some residual 5-HMF would be expected in the sample, and its absence 

is peculiar. Unfortunately, it was not possible to measure formic acid to determine if 

furfural degradation also occurred, but very little would be expected as there is very little 

hemicellulose in the OMSW fibre. Similarly, the low level of organic acids in the hydrolysate 

is unsurprising as these are also derived from hemicellulose (Kim, 2018).  

A notable finding from the hydrolysate analysis was that most metals from the OMSW 

fibre were retained in the residual solids fraction and only about a third of the total 

concentration of each metal was solubilised (Figure 3.9). On an industrial scale this 

phenomenon could buffer the fluctuation of metals and reduce some of the risk of metal 

toxicity in fermentations. The fact that the final concentrations of metals and inhibitors 

measured in the hydrolysate were all below the MICs reported for E. coli is also promising 
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(Table 3.2). That said, comparing M.I.C.s is only useful as a general assessment of OMSW 

fibre fermentability as these values are highly dependent upon the strains and conditions 

used and can vary greatly between studies. As discussed in Chapter 2, predicting how toxic 

different metal species will be to microorganism under fermentation conditions is 

challenging because metal toxicity is so dependent on environmental conditions and 

microbial physiology. Furthermore, although a wide range of marker inhibitors was 

measured, it is possible that other, less common inhibitory compounds could be present. 

The hydrolysate may also require nutrient supplementation to enable effective growth as 

YAN and phosphate levels were suboptimal (Table 3.2). Overall, to holistically evaluate the 

fermentability of OMSW fibre hydrolysate further assessment with growth and 

fermentation assays is necessary. 

It was calculated that the metal concentration in the residual solids fraction was six 

times greater (by dry weight) than in the OMSW fibre. Disposing of this hazardous waste 

would require off-site transportation which incurs further operational costs. The fact that 

methane production from hydrolysis residuals was greater than from OMSW fibre (Figure 

3.13) demonstrates that AD may be a viable option for further on-site valorisation of 

hydrolysis waste and potentially also metal immobilisation. The metal levels in the residual 

solids fraction did not inhibit the development of a robust methanogenic community 

(Figure 3.14), however in an industrial reactor toxicity could occur over time as metals 

accumulate in the digestate.  Other studies have shown that anaerobic digestion can 

reduce the bioavailability of metals (Dong et al, 2013) and that metals can be immobilised 

further if necessary by subjecting the digestate to composting (Smith, 2009). These 

possibilities should be investigated for OMSW fibre biorefinery waste streams.   

Both AD reactors fed with OMSW fibre and residuals produced almost identical 

microbial communities containing phyla closely associated with methanogenesis (Figure 

3.14). The reactors fed with residual material produced more methane than those fed with 

OMSW fibre as the carbon in the residuals was probably more easily and rapidly accessible 

to the microbial community. As a by-product of saccharification, the residuals contained 

hydrolysed monosaccharides, cellobiose, partially degraded cellulose and also spent 

enzymes which could have provided nitrogen. The un-hydrolysed OMSW fibre on the other 

hand contained more recalcitrant polysaccharides that would require degradation before 

they could be used for methanogenesis and, based on the compositional analysis, only 

minor amounts of protein. This would explain why the reactors fed with residuals produced 
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more methane yields for a longer duration while a slower methanogenesis rate was 

observed from fibre-fed communities (Figure 3.13-C). The sudden spike in methane 

production observed in fibre-fed reactors after each feeding indicates a small amount of 

easily accessible carbon was present in the fibre but was quickly used up before the 

cellulose could be hydrolysed. A recent study by Mahmoodi et al, (2018a) also trialled 

anaerobic digestion of residual solids from hydrolysis of dilute acid pre-treated OMSW but 

found that the un-hydrolysed OMSW produced greater methane yields than the residuals. 

This is likely because 96% saccharification was achieved from the OMSW after dilute acid 

pre-treatment, so almost no sugars were left in the residuals. On an industrial scale the 

residuals waste stream may need to be combined with the spent cells and fermentation 

residues to ensure adequate carbon and nutrients for effective AD.  
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Chapter 4: Identifying Microorganisms for Optimal OMSW Fibre 
Hydrolysate Fermentation 
 

4.1 Introduction 

The compositional profile of OMSW fibre hydrolysate presented in Chapter 4 showed 

that a wide range of toxic metals and inhibitors are present in OMSW fibre that may 

negatively impact fermentation efficiency and productivity. Past studies have primarily 

dealt with the inherent complexity and toxicity of OMSW by relying on the intrinsic 

robustness of mixed microbial communities or co-cultures. This approach has been 

successfully used to produce biogas (Anyaoku & Baroutian, 2018; Lavagnolo et al, 2018; 

Razavi et al, 2019; Yuan et al, 2014; Zhang et al, 2012), hydrogen (Lay et al, 1999; Shah et 

al, 2016; Sharma & Melkania, 2018; Zhen et al, 2016) and acids (Aiello-Mazzarri et al, 2006; 

McCaskey et al, 1994) from a variety of OMSW sources. The few bioproducts that have 

been produced from OMSW through monoculture fermentations include ethanol, 

cellulases and TAG, as well as solventogenic fermentation products (acetone, butanol, 

ethanol, butyric acid and acetic acid).  

A few studies have demonstrated ethanol fermentation from OMSW produced by 

autoclave pre-treatment using S. cerevisiae (Ballesteros et al, 2010; Puri et al, 2013). 

Ballesteros et al (2010) used autoclave pre-treated OMSW in a fed batch SSF process with 

S. cerevisiae at 20% TS and attained yields of 30 g/L ethanol (3% w/v) over 96 hours, 

equivalent to 60% of maximum theoretical yield. The authors calculated that 160 L of 

ethanol could be produced per tonne of OMSW via this process. Similarly, Puri et al (2013) 

carried out a two-stage fermentation of OMSW pulp in with an intermediate fermentation 

step using S. cerevisiae. This approach increased glucan conversion by 9% and produced a 

total ethanol yield of 5.5% w/v over the entire 6-day (144 h) SSF process. Overall these 

studies suggest that SSF is a promising route for converting autoclave pre-treated OMSW 

to ethanol.  

Efficient ethanol production by SHF has also been demonstrated with OMSW 

obtained from a landfill site. Mucor indicus, a highly inhibitor tolerant fungus, produced 

~0.8% ethanol from OMSW hydrothermally pre-treated at 160°C for up to 60 minutes in a 

lab-scale, autoclave-like process (Mahmoodi et al, 2018b). In a related study (Mahmoodi et 

al, 2018a), dilute acid pre-treated OMSW was fermented with the same fungus and ~1.9% 

ethanol was attained after 72 h. These yields are significantly lower than those achieved by 

Ballasteros et al, (2010) and Puri et al, (2013) with S. cereviaise, likely because M. indicus is 
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not an established industrial strain. However, its high inhibitor tolerance makes it an 

intriguing species for OMSW biorefining and it could be improved further by selection and 

adaptive evolution for industrial applications.  

Butanol has also been produced from OMSW sampled from an MSW composting 

plant with Clostridium acetobutylicum. Although C. acetobutylicum was initially inhibited 

by tannins in the OMSW hydrolysate, tannin extraction with ethanol alleviated inhibition 

and enabled production of 83.9 g butanol (71 g gasoline equivalents) and 20.8 g ethanol 

(13 g gasoline equivalents) per kg OMSW. The platform chemicals acetone (36.6 g/kg), 

acetic acid (14.6 g/kg) and butyric acid (41.8 g/kg) were also produced (Farmanbordar et 

al, 2018b). In a follow-up study, butanol was produced to even higher levels after the 

OMSW was detoxified with organosolv pre-treatment, yielding 102.4 g/kg butanol (85.3 g 

gasoline equivalents), 13.14 g/kg ethanol (8.2 g gasoline equivalents) and also 40.16 g/kg 

acetone, 19.72 g/kg acetic acid, and 47.21 g/kg butyric acid (Farmanbordar et al, 2018a). 

These results are promising as butanol and other ABE fermentation products are valuable 

fuels and platform chemicals, however, the economics of an additional detoxification step 

must be assessed by life cycle and technoeconomic analysis.  

Abdhulla et al, (2016) explored the production of cellulases from MSW fibre isolated 

through industrial-scale autoclaving by solid-state fermentation with the filamentous fungi 

Aspergillus niger and Trichoderma reesii. Crude enzymes isolated from T. reesei produced 

the best results, with a cellulase activity of 26.10 FPU/g at 30°C. The enzymes were 

evaluated for their ability to hydrolyse MSW and released 24.7% of available glucose. By 

comparison the commercial enzyme control, Cellic Ctec2, released 32.8% of available 

glucose over the same timeframe.  This study showed that OMSW could potentially be used 

as a renewable, low-cost feedstock for producing cellulolytic enzymes that could be used 

in other biorefinery processes. 

 Finally, TAG was produced with the oleaginous yeast Cryptococcus aerius using 

OMSW from a commercial compost plant pre-treated with sulphuric acid. The yeast initially 

grew poorly on the hydrolysate due to the presence of metals and the inhibitors 5-HMF 

and furfural, therefore the feedstock was detoxified by over-liming. This process also 

reduce the nitrogen content, which was beneficial for improving TAG yields. The highest 

yields attained were 8.19 g/L FAs, primarily between C:14 – C:18, equivalent to 39.6 g of 

TAG per Kg of OMSW (Ghanavati et al, 2015). This study is the only example of microbial 

lipid production from OMSW.  
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The heterogeneous nature of OMSW is the main feature that may preclude its viability as 

a biorefining feedstock. As demonstrated in many of the studies outlined above, there are 

a number of unknown components present in OMSW that can be inhibitory to 

microorganisms, such as tannins, metals and chemical inhibitors. Furthermore, the 

diversity of sources from which OMSW is acquired for empirical studies, along with the 

inherent heterogeneity and variability of the feedstock, preclude the possibility of drawing 

conclusions about which species would be the best choice for developing an OMSW fibre 

biorefining platform. As such, this chapter examines the fermentation potential of eight 

different biotechnologically useful microorganisms using a substrate-oriented screening 

approach and presents several robust species with desirable characteristics for producing 

renewable fuels and chemicals from OMSW.  
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4.1.1 Aims of the Chapter 

The primary aim of this chapter is to identify industrially useful microorganisms that 

are intrinsically well suited to growth on OMSW fibre hydrolysate and then optimise the 

best performing species for biomanufacturing. First, OMSW fibre hydrolysate 

fermentability will be holistically assessed through growth assays with the model 

fermentative microorganism Escherichia coli to evaluate hydrolysate toxicity and nutrient 

limitation. Next, a collection of eight biotechnologically useful microorganisms are assessed 

for their ability to grow on OMSW fibre hydrolysate and produce bioproducts. The most 

promising species will be further characterised and developed for industrial fermentation 

applications.   

 

Key questions explored in this chapter include:  

• Can OMSW fibre hydrolysate support the growth of the model fermentative 

microorganism Escherichia coli?  

 

• Do nutrient deficiencies or substrate inhibition limit the growth of E. coli on 

OMSW fibre hydrolysate?  

 

• Can OMSW fibre hydrolysate support the growth of other industrially valuable 

microorganisms? 

 

• Can the most promising fermentative species be improved further for OMSW fibre 

bioprocessing?  
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4.2 Materials and Methods 

4.2.1 Microorganisms, Chemicals and Media 

All microorganisms used in this study, their respective culture conditions, routine 

culture media and fermentation products of interest are listed in Table 4.1. Note that 

facultative anaerobes were always pre-cultured aerobically but grown microaerobically in 

fermentations assays.  

 

Table 4.1: Microorganisms, media and culture conditions used in this study. 

*Rich medium used for routine culture maintenance, see details in text below;  

T= Optimum growth temperature (°C); TAG = Triacylglycerol;  

 

 

Reinforced Clostridial Medium (RCM), Luria-Bertani (LB) medium and Tryptic Soy 

broth (TSB) were purchased from Thermo Scientific (Oxoid). Rich Medium (RM) contained 

(per Litre) D-glucose (20 g), Yeast extract (10 g) and K2HPO4 (2 g). Yeast extract Peptone 

Dextrose (YPD) contained (per Litre) D-glucose (20 g), Yeast extract (5 g) and Bacto peptone 

(10 g). Yeast extract with supplements (YES) contained (per Litre) Yeast extract (5 g), 

D-glucose (30 g) and supplements (225 mg adenine, histidine, leucine, uracil and lysine 

hydrochloride). All components were purchased from Sigma-Aldrich.  

Species Strain T (°C) Conditions 
Maintenance 

Medium* 
Product of 

interest 

Clostridium 
saccharoperbutylacetonicum 

DSM14923 30 Anaerobic RCM Butanol 

Escherichia coli LW06 37 
Aerobic/ 

Microaerobic 
LB Ethanol 

Geobacillus 
thermoglucosidasius 

DSM2542 55 
Aerobic/ 

Microaerobic 
TSB Ethanol 

Pseudomonas putida NCIMB8249 30 Aerobic LB n/a 

Rhodococcus opacus MITXM-61 30 Aerobic LB TAG 

Saccharomyces cerevisiae ATCC200062 30 
Aerobic/ 

Microaerobic 
YPD Ethanol 

Schizosaccharomyces pombe JB953 32 
Aerobic/ 

Microaerobic 
YES Ethanol 

Zymomonas mobilis DSM424 30 
Aerobic/ 

Anaerobic  
RM Ethanol 
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Microorganisms were stored in their respective maintenance medium with glycerol 

(25%) at -80°C. Stock cultures were streaked onto 15% agar plates of their respective media 

to produce colonies. Plates were stored at 4°C for no more than 2 weeks. Note that E. coli 

LW06 was always grown with 100 μg/ml Ampicillin. In some experiments E. coli LW06 was 

grown on MOPS minimal medium, a defined medium developed by Niedhardt et al, (1974). 

The medium was prepared using the concentrations listed in Table 4.2. D-glucose was 

added as a carbon source at 5% w/v.  

 
Table 4.2: Composition of MOPS minimal medium 

Based on recipe by Neidhardt et al (1974).  
Supplemented with carbon source as needed.  

 

Component 
Concentration 

(mM) 
K2HPO4 0.50 
NH4Cl 10.0 
MgCl2 0.523 
K2SO4 0.276 
FeSO4 0.010 
CaCl2 5 x 10-4 
NaCl 50.0 

MOPS 40.0 
Tricine 4.0 

(NH4)6(MO7)24 3 x 10-6 
H3BO3 4 x 10-4 
CoCl2 3 x 10-6 
CuSO4 10-5 
MnCl2 8 x 10-5 
ZnSO4 10-5 

 

 

4.2.2 Seed Cultures 

Seed cultures of each species were always prepared in triplicate on their respective 

maintenance media and grown up under the conditions listed in Table 4.1. Each replicate 

was grown up from a single colony taken from a fresh agar plate. To aerobically culture E. 

coli, G. thermoglucosidasius, P. putida, R. opacus and S. cerevisiae a loop of cells from a 

single colony was inoculated to 20 ml of rich medium in sterile tubes (50 ml, Falcon) and 

incubated with shaking at 200 rpm. Cultures of C. saccharoperbutylacetonicum, Z. mobilis 

and (where specified) E. coli were prepared in an anaerobic chamber and cultured 

according to the Hungate Method (Hungate, 1969). A loop of cells from a single colony 

grown on agar plates was suspended in sterile, anaerobic Milli-Q H2O and transferred by 
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syringe to 100 ml serum bottles containing 20 ml of anaerobic maintenance medium 

supplemented with Resazurin indicator (1 mg/L) (Sigma-Aldrich). Note that for C. 

saccharoperbutylacetonicum 100 µl of defrosted glycerol stock was used as inoculum 

instead of plated colonies. Serum bottles were incubated with agitation at 100 rpm.  

4.2.3 Nutrient Growth Assays with E. coli 

4.2.3.1 Assays with Chemical Nutrients  

Sterile OMSW fibre hydrolysate (described in Chapter 3, 3.2.2) was supplemented 

with essential nutrients (phosphorus (K2HPO4), sulphur (H2SO4) and nitrogen (NH4Cl2)) to 

determine which nutrients, if any, were limiting microbial growth. In all experiments 9 ml 

of OMSW fibre hydrolysate was buffered with MOPS (40 mM) and supplemented with 

different nutrient sources to a final volume of 10 ml. Nutrients were always supplemented 

at the following concentrations, either individually or in combination: 0.5 mM K2HPO4, 0.3 

mM H2SO4, 10 mM NH4Cl2. Control cultures were set up in parallel and are described in the 

relevant figure legends.  

Nutrient-supplemented hydrolysates were transferred to sterile conical flasks (100 

ml) with foam bungs and inoculated with E. coli LW06 from seed cultures. Seed cultures 

(set up as described in 4.2.2) were harvested in mid-exponential phase, washed twice in 

Milli-Q H2O and re-suspended in 1ml of Milli-Q H2O to give a final optical density at 600 nm 

(OD600) of 0.4. 250 µl of this suspension was transferred to a culture flask with 10 ml culture 

medium to give a starting OD600 of 0.01. Cultures were grown aerobically over 48 hours 

with aeration at 160 rpm. In some instances, MOPS minimal medium (recipe Table 4.2) was 

used as a control medium. 100 µl of culture medium was sampled at regular intervals for 

spectrophotometric measurement of optical density at 600 nm (OD600). All experiments 

were carried out in biological triplicate with a single negative control flask for each 

condition. Media from negative control flasks was used to blank the spectrophotometer. 

All samples contained 100 µg/ml Ampicillin.  

4.2.3.2 Assays with Nutritional Adjuncts 

Hydrolysate growth assays were carried out as described above in 4.2.3.2 but, instead 

of supplementing the OMSW fibre hydrolysate with chemical nutrients, the hydrolysate 

was mixed with complex nutrients in the form vitamin-enriched yeast extract (VYE) (Sigma-

Aldrich) or Corn Steep Liquor (CSL) (British Aqua Feeds). CSL and VYE were respectively 

prepared as 25% w/v stock solutions in Milli-Q H2O and dissolved with heating in a 60°C 
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water bath before sterile filtration through a 0.22 µm syringe filter (Millex®). 9 ml of OMSW 

fibre hydrolysate was buffered with 40 mM MOPS and then supplemented with CSL or VYE 

to a final concentration of 1% v/v and made up a final volume of 10 ml with Milli-Q H2O.   

4.2.4 Fermentations 

4.2.4.1 Fermentation Medium 

Fermentation medium was prepared the same way for each fermentation: 9.4 ml 

of sterile OMSW fibre hydrolysate (prepared as described in Chapter 3, 3.2.4) was 

supplemented with 1% v/v sterile VYE and 40 mM MOPS buffer to give a final volume of 10 

ml. For aerobic and microaerobic fermentations the medium was transferred to sterile 

conical flasks (100 ml). For anaerobic fermentations the medium was prepared in sterile 

wide-mouth conical flasks (250 ml) with foam bungs and allowed to deoxygenate in an 

anaerobic chamber for four days. Cysteine-HCl was then added to scavenge any residual 

oxygen. Serum bottles (100 ml) were deoxygenated in the anaerobic chambers for one 

week, sealed with rubber stoppers and crimp-tops and autoclaved. 10 ml of fermentation 

medium was aliquoted into the sterile anaerobic serum bottles by syringe. Fermentation 

medium was pre-heated to each species’ optimal temperature before inoculation. 

4.2.4.2 Fermentation Assays 

Fermentations were set up with each species in triplicate using 10 ml fermentation 

medium (described in 4.2.4.1). Two negative controls (fermentation medium only, no 

inoculum) were also prepared for each incubation temperature. For microaerobic 

fermentations with S. cerevisiae, G. thermoglucosidasius and E. coli cultures were grown in 

conical flasks (100 ml) sealed with one-way airlocks, depicted in Figure 4.1. Airlocks were 

cleaned with 70% propan-2-ol and filled with sterile water before insertion under sterile 

laminar flow. For aerobic fermentations with R. opacus and P. putida conical flasks with 

sterile foam bungs were used to promote aeration. For strictly anaerobic fermentations 

with Z. mobilis and C. saccharoperbutylacetonicum cultures were grown in serum bottles 

(100 ml) prepared under anaerobic conditions as described in 4.2.4.1.  
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Seed cultures of each species were set up as described in 4.2.2. Cells from seed 

cultures were harvested in mid-exponential phase and washed twice in Milli-Q H2O before 

re-suspending in 1 ml of fermentation medium. The re-suspended cells were added back 

to each flask to give a starting OD600 of 0.05. Cultures were incubated at each species’ 

optimal temperature (see Table 4.1) with shaking at 160 rpm. 300 µl was sampled from 

fermentations and negative controls at regular intervals over 48 hours, or 72 hours for R. 

opacus and P. putida. A maximum of 100 µl of sample was diluted in Milli-Q H2O and used 

for OD600 measurement. The remaining 200 µl was stored in Safe-Lock Microtubes (0.5 ml, 

Eppendorf) at -20°C for use in further analyses. The final pH of each sample was also 

recorded at the end of each fermentation using pH strips (Fisherbrand) and the final cell 

dry weight (CDW) was determined with the remaining culture as described in 4.2.6.3  

The dry cell material from R. opacus cultures was used to analyse fatty acid content 

and total TAG levels as described in 4.2.6.6. Fermentation samples were later defrosted, 

spun down (3,500 x g, 5 min) and 10 μl was used to analyse the levels of D-glucose and D-

xylose (as described in 4.2.6.1). A further 10 μl of samples from C. 

saccharoperbutylacetonicum, E. coli (IPTG-induced), S. cerevisiae, S. pombe and Z. mobilis 

fermentations were subjected to acetone, ethanol and butanol analysis as described in 

4.2.6.2. 

Figure 4.1:  
Microaerobic fermentation set-up 

(Image by Author). 
 

A 100 ml conical flask containing 10 

ml fermentation medium is fitted with a 

plastic airlock to simulate the microaerobic 

conditions of a batch fermentation. The 

airlock is inserted through a rubber bung and 

then sterilised with 70% propan-2-ol under 

sterile laminar flow. The rubber bung is used 

to tightly seal the flask, so any gasses 

produced during fermentation can only 

escape through the airlock. The airlock is 

filled with sterile water to prevent incursion 

of oxygen and contaminants from the 

environment.  
Flask 

Bung 

Airlock 
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4.2.4.3. TAG Production Time Courses 

Fermentation time courses were carried out with R. opacus to better characterise 

TAG production over time. Aerobic fermentations were set up in triplicate as described in 

4.2.4.2 but this time with 40 ml fermentation medium in 250 ml conical flasks. Seed 

cultures were prepared as described in 4.2.2, grown to mid-exponential phase and 

inoculated to the fermentation medium at an OD600 of 0.05. Samples were incubated at 

30°C with shaking at 250 rpm instead of 160 rpm to ensure enough aeration in the greater 

culture volume.  Fermentations samples were taken over 6 days and stored in dry, pre-

weighed 2 ml tubes (Eppendorf). 2 ml of medium was taken for time points at 0, 24, 48 

hours, and 1 ml of medium taken for time points at 72, 96, 120 and 144 hours. Samples 

were defrosted and spun down (3,400 x g, 10 min) and then supernatants were taken into 

separate tubes. Pellets were dried and used to measure CDW at each time point as 

described in 4.2.6.3. Supernatants were used to measure D-glucose and D-xylose as 

described in 4.2.6.1 and YAN levels as previously described in Chapter 3, 3.2.7.5. Dry cell 

material from CDW measurement was used for fatty acid analysis as outlined in 4.2.6.6 

below.  

4.2.5 Light Microscopy 

Rhodococcus opacus cells sampled over the course of fermentation (methods 

outlined in 4.2.4.2) were imaged using a light microscope. Cells from time points 24, 48 and 

72 were defrosted and gently resuspended by pipetting. 5 μl of each sample was 

transferred to a glass microscope slide and mixed with 10 ul of Milli-Q H2O. The suspension 

was mixed, spread evenly across the bottom two-thirds of the glass slide using the side of 

a pipette tip, and then fixed with a Bunsen Burner flame. Fixed cells were stained using a 

Gram staining kit (Remel) and left to dry at room temperature. Slides were examined under 

the light microscope at 100x magnification with oil immersion (no cover slip). At least three 

images were taken of each sample. Images were cropped and edited in Microsoft Office 

Power Point. Scale bars were calculated for each image based on the standard dimensions 

of 4164 x 3120 pixels per image and 0.0211 μm per pixel.  
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4.2.6 Biochemical Analytical Methods and Calculations 

4.2.6.1 Glucose and Xylose  

Frozen fermentation time course samples were thawed and centrifuged (4000 x g, 

5 minutes). 10 µl of supernatant was serially diluted with dH2O (1:1500 dilution for 

hydrolysates and fermentation time points 0, 12, 24, and 48; 1:1000 dilution for samples 

from all subsequent time points). Diluted samples were analysed by high-performance 

anion exchange chromatography (HPAEC) on an ICS-3000 PAD system with an 

electrochemical gold electrode using a Dionex CarboPac PA20 analytical column (3x150 

mm) and guard column (3x30 mm). Identification and quantification of the major sugars in 

the hydrolysate (D-glucose and D-xylose) was carried out by comparing retention times and 

integrated peak areas of the samples to an equimolar standard mixture of D-glucose and 

D-xylose during the same run under the same conditions. 

4.2.6.2 Ethanol, Butanol and Acetone 

Ethanol, acetone and butanol were measured over as follows: 10 µl of each 

fermentation time-course sample was transferred to 2ml crimp-top flat-bottom GC vials 

and mixed with 500 µl of 1M NaCl containing 0.0004% propan-1-ol as an internal standard. 

Standards of ethanol, acetone and butanol were prepared at concentrations between 0.1-

4.0% v/v, respectively. All samples were analysed on an Agilent 6890 Gas Chromatograph 

(GC) fitted with a Gerstel Multi-purpose 2 (MPS2) autosampler with SPME pink fibre (23-

Gauge, 65µm, PDMS/DVB, SUPELCO) linked to a LECO Pegasus IV Time of Flight (TOF) Mass 

Spectrometer (MS). The GC was fitted with a glass injector liner (Ultra Intert, Straight 0.75 

mm ID 5pk, Restek) Rxi5Sil Column with Integra guard (Restek) and was operated with an 

initial temperature of 70°C (2.5 min. hold) then ramped at 65°C/min. to 200°C and held for 

1 minute before cooling at 70°C/min. to 70°C (1 min. hold). The MS mass range was 10-300 

with an electron energy of -70V. The autosampler was run for 10 minutes, including cooling 

time (1-minute extraction, 0.1 minute desorb and 7 minutes fibre bakeout). Results were 

quantified against the propanol internal standard and standard curves. Results were 

converted from %v/v to g/L using the density of ethanol (0.789 g/cm3), butanol (0.810 

g/cm3) or acetone (0.784 g/cm3) as described in Equation 4.1. 
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Equation 4.1: Converting from %v/v to g/L 
 

𝐴𝑔/𝐿  =
(𝐴%/100)

𝐷 
× 1000 

 
Where:  

Ag/L  =  concentration of the analyte in g/L  

A%  =  percentage of analyte measured by GC-MS (acetone, butanol or ethanol) 

D  =  density of analyte (g/cm3) 

 
 

4.2.6.3 Final Cell Dry Weight 

At the end of fermentation 1 ml of each fermentation culture and negative control 

fermentation was transferred to dry, pre-weighed Microtubes (1.5 ml, Eppendorf). Samples 

were centrifuged (4,000 x g, 5 minutes) and washed twice in dH2O to remove any soluble 

material. The pellets were frozen at -20°C and then lyophilised in a freeze dryer (Heto 

PowerDry LL3000). The final weight of the samples was subtracted from the initial tube 

weight to calculate the final mass of cell dry weight (CDW) per ml of fermentation broth. 

The final masses of the negative control fermentations were used to calculate the mass of 

insoluble solids (precipitate) formed in the fermentation medium after 1% VYE addition. 

The weight of precipitate was averaged for each pair of negative controls and subtracted 

from the final CDW of each associated fermentation to correct for the mass added by the 

precipitate. Note that for R. opacus MITXM-61 the entire remaining culture volume was 

transferred to dry, pre-weighed 15 ml conical tubes (Falcon), recorded and then subjected 

to centrifugation, washing, drying and weighing as described above. The dry R. opacus cells 

were also used for fatty acid profiling as described in 4.2.6.6.  

4.2.6.4 Calculating Fermentation Yield Parameters  

To quantitatively evaluate the fermentation efficiency of each species key yield 

parameters were calculated for each fermentation, including the percentage of total 

fermentable sugars consumed over the course of fermentation (Equation 4.2), the product 

to substrate ratio (i.e. specific yield) (Equation 4.3), the total product yield expressed as a 

percentage of the theoretical maximum (Equation 4.4) and the overall productivity in g/L.h-

1 (i.e. process productivity) (Equation 4.5).  

 

 

 



Chapter 4: Identifying Microorganisms for Optimal OMSW Fibre Hydrolysate Fermentation 
 

 
 

132 

Equation 4.2: Percentage of total fermentable sugars catabolised 

 

∆ 𝑺𝒖𝒈𝒂𝒓𝒔𝒕𝒐𝒕𝒂𝒍 (%) =
(𝐺𝑙𝑢𝑖+ 𝑋𝑦𝑙𝑖) − (𝐺𝑙𝑢𝑓 + 𝑋𝑦𝑙𝑓)

(𝐺𝑙𝑢𝑖 + 𝑋𝑦𝑙𝑖)
 × 100 

 

Where: 

ΔSugarstotal = Change in sugar concentration after fermentation as a percentage of the total  

available D-glucose and D-xylose (equivalent to the percentage of total fermentable  

sugars used). Sugars not fermented by the microorganism are disregarded. 

Glui  = Concentration of D-glucose at the start of the fermentation (g/L).  

Xyli  = Concentration of D-xylose at the start of the fermentation (g/L).  

Gluf  = Concentration of D-glucose at the time of maximum product concentration (g/L) 

Xylf  = Concentration of D-xylose at the time of maximum product concentration (g/L) 

 

 

Equation 4.3: The product to substrate ratio 

 

𝑷/𝑺 =  
𝑃𝑚𝑎𝑥  

(𝐺𝑙𝑢𝑖+ 𝑋𝑦𝑙𝑖) − (𝐺𝑙𝑢𝑓 + 𝑋𝑦𝑙𝑓)
 

 

Where: 

P/S  = The Product to Substrate ratio, also known as specific yield  

Pmax = The maximum concentration of product (g/L) 

Glui = Concentration of D-glucose at the start of the fermentation (g/L)  

Xyli = Concentration of D-xylose at the start of the fermentation (g/L) 

Gluf = Concentration of D-glucose at the time of maximum product concentration (g/L) 

Xylf = Concentration of D-xylose at the time of maximum product concentration (g/L) 

  

 

Equation 4.4: Percentage yield (product yield attained by fermentation, given as a 
percentage of the theoretical maximum yield from sugars) 
 

𝒀𝒊𝒆𝒍𝒅 (%) =
𝑃/𝑆

𝑌𝑚𝑎𝑥
 × 100 

 

Where:  

% Theoretical Yield = The product yield as a percentage of the theoretically calculated  

maximum yield for that fermentation product.    

P/S     = The Product to Substrate ratio (determined from Equation 4.3) 

Ymax    = The maximum theoretical yield, determined from the literature.  

(Ymax ethanol = 0.511; Ymax Triacylglycerol = 0.316)  
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Equation 4.5: Fermentation productivity 

 

𝑷𝒓𝒐𝒅𝒖𝒄𝒕𝒊𝒗𝒊𝒕𝒚 (𝒈/𝑳. 𝒉−𝟏)  =  
𝑃𝑚𝑎𝑥

𝑇𝑚𝑎𝑥
 

 
Where: 
Productivity  = The amount of product produced per litre of fermentation medium per hour, also  

known as process productivity, (g/L.h-1) 

Pmax   = The maximum concentration of product (g/L) 

Tmax  = Time taken to produce the maximum concentration of product (Pmax) in h 

 

 
Equation 4.6: Yield per tonne 

 
𝑌𝑖𝑒𝑙𝑑 (𝐾𝑔/𝑡) =  𝑺 × (𝑷/𝑺) 

 
Where: 

Yield  = The amount of product that could be produced from one tonne of OMSW fibre, 

based on observed sugar conversion efficiencies, (Kg/t).  

S  = Total substrate (i.e. sugars) available in the feedstock (g/Kg) 

P/S    = The Product to Substrate ratio (g/g) (determined from Equation 4.3) 

 
 
 

4.2.6.5 Calculating the Carbon to Nitrogen Ratio 

The carbon to nitrogen ratio of the fermentation medium (OMSW fibre hydrolysate 

supplemented with 1% VYE) was determined using the Equation 4.6. The equation assumes 

that the major sugars in the hydrolysate (D-glucose and D-xylose) contain 40.001 % carbon 

atoms in the total mass and that all nitrogen in YAN (determined as described in Chapter 

3, 3.2.7.5) is accessible to the fermentative microorganism.  

   
Equation 4.6: Calculating the carbon to nitrogen ratio of fermentation media 

  
 
 
 
 

Where: 
C/N   = Carbon to Nitrogen Ratio 
Sugarstotal  = Total concentration of microbially accessible sugars (g/L) 
YAN  =  Total concentration of yeast available nitrogen (M)  
%C   =  Percentage of carbon atoms in the sugar molecules 
Mnitrogen  = Molar mass of nitrogen (14.00643 g/mol)  

𝑪
𝑵⁄ =  

𝑆𝑢𝑔𝑎𝑟𝑠𝑡𝑜𝑡𝑎𝑙  ×  %𝐶

𝑌𝐴𝑁 × 𝑀𝑛𝑖𝑡𝑟𝑜𝑔𝑒𝑛
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4.2.6.6 Fatty Acid Profiling and Triacylglycerol Quantification 

Fatty acid (FA) composition of triacylglycerols extracted from R. opacus MITXM-61 

was determined by taking 5-10 mg of lyophilised (i.e. freeze-dried) cells into 2 ml screw cap 

GC vials and adding 10 µl of 25 mg/ml Heneicosanoic acid (21:0) internal standard (part no. 

H5149, Sigma). The samples were then transmethylated to fatty acid methyl esters 

(FAMES) by adding 500 µl 1N Methanolic HCl and 200 µl Hexane and heating at 85°C for 24 

hours. The samples were cooled to RT, mixed with 250 µl 0.9% KCl and 600 µl Hexane, 

vortexed and left to rest for 5 minutes to allow for phase separation. Next, 100 µl of the 

upper (hexane) layer was transferred to a tapered GC vial with crimp-cap lid. 100 µl of 

hexane was prepared as a negative control and two vials with 50 µl external standard (37 

Component FAMES mix, Certified Reference Material, Supelco). All samples were analysed 

on a Thermo Trace GC Ultra GC-FID (Gas Chromatograph with Flame Ionisation Detector) 

with an SGE BPX70 column (10M x 0.1 mm, part no. 054600). The FA levels measured in 

each sample were converted to mg of FA per mg of sample described in Equation 4.7. The 

mg/mg FA levels were summed for each time point and the grams of TAG per litre of 

fermentation broth were calculated as described in Equation 4.8.  

 

 

Equation 4.7: Converting GC-FAMES peak areas to milligrams of fatty acid per sample 
 
 

𝑭𝑨𝒔𝒂𝒎𝒑𝒍𝒆  (𝐦𝐠/𝐦𝐠) =  
(

𝐴𝑠𝑎𝑚𝑝𝑙𝑒

𝐴𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
× 250,000) × 10−6

𝑆𝑎𝑚𝑝𝑙𝑒
 

 
 
Where: 

FAsample = mg of fatty acid per mg of sample used in GC-FAMES analysis 

Asample = Peak area of the fatty acid methyl ester (mV.s-1) 

Astandard = Peak are of the C21:00 internal standard (mV.s-1) 

250,000 = The nanograms (ng) of internal standard added to each sample 

Sample = Mass of lyophilised cells used for analysis (mg) 

 
 
 
 
 
 
 
 



Chapter 4: Identifying Microorganisms for Optimal OMSW Fibre Hydrolysate Fermentation 
 

 
 

135 

Equation 4.8: Concentration of TAG per litre of fermentation medium 
 

𝑻𝑨𝑮 (𝒈/𝑳)  =  (∑ 𝐹𝐴𝑖

𝑖

) × 𝐶𝐷𝑊 

 
Where: 

TAG = mass of triacylglycerol (TAG) per litre of fermentation medium, g/L 

∑ 𝐹𝐴𝑖  = summation of each fatty acid in the sample, calculated in Equation 4.7 

CDW = concentration of cells per litre of fermentation medium (cell dry weight), in mg/ml 

 
 
 

4.2.6.7 Calculating the Cetane Number  

To evaluate the ignition and combustibility potential TAG-derived FAs the cetane 

number (CN) was calculated using equations developed by Klopfenstein (1982) for a 

mixture of neat FAMES. The CN is a dimensionless number used to measure the quality of 

a fuel in terms of ignition and combustibility. The CN is scaled relative to cetane (n-

hexadecane, C16H34) which is a completely straight (saturated) hydrocarbon (i.e. ignites 

easily under compression) and has thus been assigned a CN of 100.  The CN of biodiesel 

usually falls between 35 and 65. A cetane index (CNi) was calculated for each individual 

FAME using Equation 4.9 and then the CN for the total FAME mixture extracted from R. 

opacus was calculated using Equation 4.10. 

 

Equation 4.9: Calculating the cetane index for each FAME 

 

𝑪𝑵𝒊 = 58.1 + 2.8 × ( 
𝑛𝑖 − 8

2
) − 15.9 × 𝑑𝑏𝑖  

 

Where: 

CNi  = The cetane number index of the FAME, dimensionless.  

ni = The number of carbon bonds in the FAME molecule (between 8 – 24) 

dbi = The number of double bonds in the FAME molecule, dependent upon saturation 

58.1  = The cetane index for the shortest FAME within the scope of the equation (C8:00)  

2.8  = Cetane index increment when the FAME chain is increased by two carbon atoms 

15.9  = Cetane index increment when a double bond is present within the FAME molecule    
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Equation 4.10: Calculating the cetane number for a FAME mixture 

 

𝑪𝑵 =  ∑ 𝑤𝑖𝐶𝑁𝑖

𝑖

 

 

Where: 

CN  = The cetane number for the total mixture of FAMEs, dimensionless. 

CNi = The cetane index of an individual FAME, calculated with Equation 4.9 

Wi  = The mass percentage of an individual FAME within the FAME mixture, %w/w 

 

 

4.2.7 Molecular Biology 

4.2.7.1 Plasmids 

Plasmid pTip-QC1, used throughout this work, was developed by Nakashima and 

Tamura (2004a) as an inducible shuttle vector for cloning and protein expression in E. coli 

and Rhodococcus species (Figure 4.2).  pTip-QC1 is 8,384 base pairs (bp) in length and 

contains ampicillin and chloramphenicol resistance genes for selection in E. coli and 

Rhodococcus spp., respectively.  To ensure maintenance and replication in Rhodococcus the 

RepAB region is required. RepAB contains a putative origin of replication and codes for two 

replication initiation proteins. The exact replication mechanism is unknown, but Ꝋ-type is 

suspected based on homology to Rep proteins of ColE2 plasmids (Nakashima and Tamura, 

2004b).    

Expression at the multiple cloning site (MCS) is induced in the presence of 1 μg/ml 

of thiostrepton, a cyclic oligopeptide antibiotic. Transcription is regulated by the formation 

of a complex between thiostrepton and the constitutively expressed regulator TipAL. This 

complex greatly increasing the affinity of RNA polymerase for the tipA promoter (PtipA). 

Thiostrepton resistance is conferred by the tsr gene (ThioR) from Streptomyces azureus 

(Nakashima & Tamura, 2004b). The MCS contains an N-formylmethionine start codon 

(ATG), two hexa-histidine sequences for C- and/or N-terminal protein tagging and a range 

of unique cut sites for restriction cloning (NdeI, EcoRI, SnaBI, NotI, BamHI, HindIII, BglII and 

XhoI); Upstream of the MCS is the ribosome binding site (RBS) LG10, derived from gene 10 

of T7 bacteriophage (Nakashima & Tamura, 2004a) (Figure 4.2-MCS detail).  
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Figure 4.2: Map of plasmid pTip-QC1 with close-up of MCS 
(Image generated by author using Benchling Informatics Platform)  

 

Plasmid pTip-QC1 is an 8,384 bp Rhodococcus – E. coli shuttle vector designed for 
thiostrepton-inducible protein expression by Nakashima and Tamura (2004b). 

  
P-tipA: Thiostrepton-inducible promoter tipA; RBS: Ribosome Binding Site; MCS: Multiple 
Cloning Site; T-thcA: Terminator thcA; ColE1: Replication origin for E. coli; AmpR: Bla for 
ampicillin resistance; tipAL: Transcriptional regulator of thiostrepton inducible transcription 
from PtipA; P-thCA: Constitutive promoter of the aldehyde dehydrogenase gene in Rhodococcus 
erythropolis, used for constitutive expression of tipAL; ChlR: Chloramphenicol resistance gene, 
from R. erythropolis; ThioR: Thiostrepton resistance gene; RepA & RepB: Region required for 
autonomous replication in Rhodococcus spp. MCS detail (top): -35 & -10: Shine-Dalgarno 
sequence; Start: Transcription Start codon; HexaHis Tag: Hexa-histidine sequence; HR-F & HR-
R: Homologous regions selected for In-Fusion cloning, as detailed in 4.2.7.5 below.  
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4.2.7.2 Primers, PCR and Sequencing 

Primers used for DNA sequence amplification by PCR and/or sequencing throughout 

this project are listed, along with their specific application, in Table 4.3. PCR was always 

carried out in a SimpliAmp Thermal Cycler using Phusion High Fidelity PCR Kit (Thermo 

Fisher Scientific). PCR reaction components are given in Table 4.4 and the PCR protocol, 

based on manufacturer’s instructions, is given in Table 4.5.  

Sequencing of PCR products and plasmids was always carried out using a custom 

sequencing service provided by Eurofins Genomics (https://www.eurofinsgenomics.eu) 

using the Light Run Tube Barcode service. This service uses dideoxychain sequencing, a 

modified version of Sanger sequencing that generates high quality reads of ~500-2000 bp.   

 
 

Table 4.3: PCR primers used throughout this project and their respective applications. 
Tm = primer pair melting temperature (optimised for PCR conditions listed in Table 4.5 and 4.6. 

F/R = Forward or Reverse strand primer.  

 

Primer 
name 

F/R 
Sequence 

(5’-3’) 
Tm Application 

MCS-f F CATGGTATATCTCCTTCTTAAAGTTAAAC 
60 

Linearisation of vector 
pTip-QC1 from target 

MCS MCS-r R GAGCATCACCATCACCATC 

6097-6118_f F TCCGTGTTTGTGCAGGTTTC 
62 

PCR amplification and 
linearization of  

construct ACP-BTE 6604-6625_r R GTTGTTCACTCTTCTGCTGGC 

Seq-FWD F GCGTGGACGGCGTCTAGAAATAATTTT 
60 

Sequencing across 
pTip-QC1 MCS Seq-RVS R TAAAAGGAGATATACCATGGCCACCACCT 

 
 
 
 
 

Component 
Volume per 50 μl reaction 

(μl) 
Nuclease free H2O 37.5 
5x Phusion HF Buffer 10.0 
10 mM dNTPs 1.0 
10 µM Forward Primer stock 0.5 
10 µM Reverse Primer stock 0.5 
Phusion Polymerase 0.5 
Template DNA At least 20 ng per reaction* 

 
 
 
 

Table 4.4: PCR reaction components  
*Adjust volume of H2O to account for volume of template added. 

 

https://www.eurofinsgenomics.eu/
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Step Temperature (°C) Duration (min:sec) Cycles 
Initial denaturation 98 10:00 X1 

Denaturation 98 00:30 

X35-42 Annealing Primer pair dependent* 00:10 

Extension 72 Template dependent** 

Final extension 72 00:10 X1 

Hold 4 ∞ ∞ 

 
 

4.2.7.3 Agarose Gel Electrophoresis 

Agarose gel electrophoresis was carried out to visualise DNA products from PCR 

reactions. Agarose gels were prepared by dissolving 1% agarose in 0.5 x Tris-Borate-EDTA 

(TBE) buffer (recipe detailed in Table 4.6) by microwaving. Ethidium bromide was then 

added to a final concentration of 0.5 μg/ml. The gel mixture was poured into an 

electrophoresis gel cast (Bio-Rad) fitted with a 12-well comb and allowed to set at room 

temperature. The gel was submerged into a horizontal electrophoresis cell (MiniSub Cell 

CT, Bio-Rad) filled with 0.5 x TBE. PCR samples were mixed with 6 x purple gel loading dye 

(New England Biolabs) and loaded into the wells by pipetting. At least one well was always 

loaded with 10 μl of DNA Ladder (either: 1 Kb DNA Ladder (New England Biolabs) or 1 Kb 

Plus GeneRuler (Thermo Scientific)). Gels were run at 80-100 V until the lowest marker 

band progressed ~80% of the way down the gel.  Gels were visualised and photographed 

on a UV gel doc (UVITEC Essential). Sizes of DNA bands were quantified against the standard 

bands of the DNA ladder.  

 

 

 

Component Quantity Concentration (M) 

Tris 121.1 g 1.00 
Boric Acid 61.8 g 1.00 
EDTA (disodium salt) 7.4 g 0.02 
Distilled H2O to 1 L - 

 

 

 

Table 4.6: 10x Tris-Borate-EDTA Buffer Recipe 
Working concentration = 0.5x 

Table 4.5: PCR protocol 
*See Table 4.4 for details. 

**At least 30 seconds per 1 kbp of DNA to be amplified. 
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4.2.7.4 Synthetic DNA Design and Synthesis 

The protein sequence of Acyl-acyl Carrier Protein Thioesterase BTE (referred to 

throughout this work as ACP-BTE) (NCBI accession no. Q41635.1, shown in Figure 4.3) was 

codon optimised for Rhodococcus opacus using JCat (Java Codon Adaptation Tool), an 

online codon adaptation tool developed by Grote et al, (2005). The DNA sequence was 

adapted to the codon usage of Rhodococcus jostii RHA1 (GC content = 66.98%) which was 

the closest related species available for codon optimisation in the JCat database.  

 
 
MATTSLASAFCSMKAVMLARDGRGMKPRSSDLQLRAGNAPTSLKMINGTK     50 

FSYTESLKRLPDWSMLFAVITTIFSAAEKQWTNLEWKPKPKLPQLLDDHF     100 

GLHGLVFRRTFAIRSYEVGPDRSTSILAVMNHMQEATLNHAKSVGILGDG     150 

FGTTLEMSKRDLMWVVRRTHVAVERYPTWGDTVEVECWIGASGNNGMRRD 200 

FLVRDCKTGEILTRCTSLSVLMNTRTRRLSTIPDEVRGEIGPAFIDNVAV     250 

KDDEIKKLQKLNDSTADYIQGGLTPRWNDLDVNQHVNNLKYVAWVFETVP     300 

DSIFESHHISSFTLEYRRECTRDSVLRSLTTVSGGSSEAGLVCDHLLQLE      350 

GGSEVLRARTEWRPKLTDSFRGISVIPAEPRV     382 

 

 

 

 

 

 

 

To enable fusion cloning of ACP-BTE into expression plasmid pTip-QC1, the codon 

optimised sequence was modified to contain two sequences flanking the target insertion 

site in the MCS. The homologous sequences were placed at the start and end of the gene 

as shown in in Figure 4.4 and then synthesised using the Fisher Scientific GeneArt Gene 

Synthesis service. Fisher Scientific assembled the sequence from synthetic oligonucleotides 

and/or PCR products and inserted it into a pMK-RQ plasmid with Kanamycin resistance. The 

final construct was verified by sequencing and certified with 100% sequence identity by 

Fisher Scientific.  

To isolate and amplify the construct DNA the plasmid was handled according to 

manufacturer’s instructions as follows: the 5 μg of plasmid DNA provided was resuspended 

in the appropriate volume of Milli-Q H2O and incubated for 1 hour at RT. The liquid was 

gently pipetted up and down to resuspend the DNA and then the sample was stored at -

20°C). The construct was isolated from the pMK-RQ plasmid by PCR using primers 6097-

6118_f and 6604-6625_r, as detailed in 4.2.7.2. The amplified construct was confirmed by 

Figure 4.3: Published protein sequence of Acyl-acyl Carrier Protein Thioesterase BTE 
from Umbellularia californica 

Length: 382 amino acids; Molecular mass: 42.92 kDa 
GenBank accession number: Q41635.1 
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DNA gel electrophoresis as described in 4.2.7.3 and then cloned into the target vector 

(pTip-QC1) as outlined in 4.2.7.5 below.   

 

 
GTTTAACTTTAAGAAGGAGATATACCATGGCCACCACCTCCCTCGCCTCC 50 
GCCTTCTGCTCCATGAAGGCCGTCATGCTCGCCCGCGACGGCCGCGGCAT 100 
GAAGCCCCGCTCCTCCGACCTCCAGCTCCGCGCCGGCAACGCCCCCACCT 150 
CCCTCAAGATGATCAACGGCACCAAGTTCTCCTACACCGAGTCCCTCAAG 200 
CGCCTCCCCGACTGGTCCATGCTCTTCGCCGTCATCACCACCATCTTCTC 250 
CGCCGCCGAGAAGCAGTGGACCAACCTCGAGTGGAAGCCCAAGCCCAAGC 300 
TCCCCCAGCTCCTCGACGACCACTTCGGCCTCCACGGCCTCGTCTTCCGC 350 
CGCACCTTCGCCATCCGCTCCTACGAGGTCGGCCCCGACCGCTCCACCTC 400 
CATCCTCGCCGTCATGAACCACATGCAGGAGGCCACCCTCAACCACGCCA 450 
AGTCCGTCGGCATCCTCGGCGACGGCTTCGGCACCACCCTCGAGATGTCC 500 
AAGCGCGACCTCATGTGGGTCGTCCGCCGCACCCACGTCGCCGTCGAGCG 550 
CTACCCCACCTGGGGCGACACCGTCGAGGTCGAGTGCTGGATCGGCGCCT 600 
CCGGCAACAACGGCATGCGCCGCGACTTCCTCGTCCGCGACTGCAAGACC 650 
GGCGAGATCCTCACCCGCTGCACCTCCCTCTCCGTCCTCATGAACACCCG 700 
CACCCGCCGCCTCTCCACCATCCCCGACGAGGTCCGCGGCGAGATCGGCC 750 
CCGCCTTCATCGACAACGTCGCCGTCAAGGACGACGAGATCAAGAAGCTC 800 
CAGAAGCTCAACGACTCCACCGCCGACTACATCCAGGGCGGCCTCACCCC 850 
CCGCTGGAACGACCTCGACGTCAACCAGCACGTCAACAACCTCAAGTACG 900 
TCGCCTGGGTCTTCGAGACCGTCCCCGACTCCATCTTCGAGTCCCACCAC 950 
ATCTCCTCCTTCACCCTCGAGTACCGCCGCGAGTGCACCCGCGACTCCGT 1000 
CCTCCGCTCCCTCACCACCGTCTCCGGCGGCTCCTCCGAGGCCGGCCTCG 1050 
TCTGCGACCACCTCCTCCAGCTCGAGGGCGGCTCCGAGGTCCTCCGCGCC 1100 
CGCACCGAGTGGCGCCCCAAGCTCACCGACTCCTTCCGCGGCATCTCCGT 1150 
CATCCCCGCCGAGCCCCGCGTCGAGCATCACCATCACCATC   1191 
 

 

 

 

 
 
 

4.2.7.5 In-Fusion Cloning 

In-Fusion cloning is a rapid, efficient and directional cloning method in which a PCR 

fragment containing the gene of interest is enzymatically fused with a target site in a DNA 

vector. Unlike traditional restriction enzyme-mediate cloning, In-Fusion cloning does not 

require restriction or ligation enzymes. Although the precise mechanism of action is 

proprietary, the basic methodology and principle is described in Figure 4.5. Fusion cloning 

works rapidly and seamlessly so long as there is a 15-20 bp homology between the ends of 

the PCR product and the target site.  

Figure 4.4: DNA sequence synthesised using GeneArt Synthesis Service 
Total sequence length = 1,191 bp. 

Grey = Codon optimised DNA sequence of acyl-acyl carrier protein Thioesterase BTE (ACP-BTE) 
from Umbellularia californica.  
Blue = Homologous sequences of target cloning site in the pTip-QC1 MCS, to enable fusion 
cloning as described in 4.2.7.5 below. 
ATG = start codon 
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In-Fusion cloning was carried out using a One-Step Quick-Fusion Cloning Kit 

(BioTool), according to manufacturer’s instructions. Because the target gene was 

synthesised (detailed in 4.2.7.4), the construct was designed to already contain ends with 

homology to the target cloning site. This eliminated the need for PCR amplification with 

overhang primers as described in Figure 4.5-A. Instead the insert was prepared from the 

synthesised construct. Vector pTip-QC1 (described in 4.2.7.1) was linearised by PCR using 

Figure 4.5: Overview of Quick-Fusion Cloning Protocol 
(Schematic by author based on BioTool One-Step Cloning Kit Manual) 

 

A: The gene of interest is amplified by PCR using gene-specific primers with a ~15 bp overhang 

homologous to the target cloning site of the vector. This produces a linear insert with ~15 bp of 

directional homology to the target cloning site on either end.  
 

B: The vector is linearised by PCR or restriction enzyme digestion at the target cloning site. 
 

C: Linearised vector and insert are mixed at a 2:1 (insert:vector) molar ratio in a tube and 

combined with the components of the Quick-Fusion Cloning Kit. The mixture is then incubated at 

37°C for 30 mins so the components can react.  
 

D: High efficiency competent cells are transformed directly with the Quick-Fusion reaction 

mixture.  
 

E: Clones are screened by plasmid purification followed by sequencing or PCR amplification of 

the target cloning site to confirm successful integration of the insert.   
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primers MCS_f and MCS_r (detailed in 4.2.7.2). The Quick-Fusion reaction was set up in a 

total volume of 10 μl with a 2:1 molar ratio of insert:vector, 1 μl Fusion Enzyme and 2 μl 5x 

Fusion Buffer and then made up to volume with nuclease free H2O. A negative control 

reaction was also set up without the addition of Fusion Enzyme. After 30 minutes 

incubation at 37°C 2 μl of reaction mixture was directly used to transform E. coli as 

described in 4.2.7.6 below. At least three successful clones were grown up in 5 ml LB with 

ampicillin (100 ug/ml) and plasmids were purified as described in 4.2.7.7 below. Presence 

of the insert was confirmed by sequencing as outlined in 4.2.7.2.   

 

4.2.7.6 Transformation by Heat Shock 

Transformation of plasmids into E. coli SoloPack® Gold Competent Cells 

(Stratagene) were carried out according to manufacturer’s instructions. Briefly: Competent 

cells stored at -80°C were defrosted on ice.  1 μl of plasmid (~25-50 ng) was added to the 

cells and incubated on ice for a further 30 mins. As a negative control, 1 μl of nuclease free 

water was added to one tube of competent cells. As a positive control, 1 μl of manufacturer 

provided plasmid (pUC18 with ampicillin resistance) was added to one tube of competent 

cells. The competent cells were heat shocked for 60 seconds exactly in a water bath pre-

heated to exactly 42°C. Immediately after heat shock, 175 μl of LB pre-heated to 37°C was 

added and tubes were incubated horizontally at 37°C with shaking at 200 rpm for 1 hour. 

The entire contents of each tube (200 μl) were plated directly onto LB agar selection plates 

with 100 μg/ml ampicillin, respectively. Plates were incubated overnight at 37°C and 

colonies were checked the following day.  

 

4.2.7.7 Purifying Plasmids from E. coli 

Cultures of E. coli carrying the plasmid of interest were grown up overnight in 5-10 

ml of LB with Ampicillin (100 μg/ml). Plasmids were purified using a Wizard® Plus SV 

Miniprep Kit (Promega) according to manufacturer’s instructions. The concentration of 

purified plasmids was quantified using a NanoDrop Microvolume Spectrophotometer 

(ThermoFisher). To produce plasmid at ≥1 μg/μl concentration necessary for transforming  

R. opacus (detailed in 4.2.7.8 below), cultures of E. coli carrying the plasmid of interest were 

grown up over 24 hours in ~200 ml LB with Ampicillin (100 μg/ml). Plasmids were then 

purified from the full culture volume using a Plasmid Maxi Kit (QUIAGEN) according to the 

low-copy number plasmid purification protocol provided by the manufacturer. When the 
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concentration of purified plasmid was too low samples were concentrated using a Savant 

DNA120 Speed-Vac Concentrator. Plasmids were verified by sequencing as described in 

and/or by PCR amplification of the MCS as described in 4.2.7.2. 

4.2.7.8 Rhodococcus opacus Competent Cell Production 

Competent Rhodococcus opacus MITXM-61 cells were produced using the protocol 

reported by Kurosawa et al, (2013). R. opacus was grown overnight on 10 ml LB. 0.5 ml of 

the overnight culture was transferred to a 250 ml conical flask with 100 ml MB + 1.5% 

glycine (recipe Table 4.7). The culture was grown up at 30°C with shaking at 250 rpm for 

~16 hours (to an OD600 of ~0.25). The culture was transferred to two 50 ml Falcon tubes 

and centrifuged (3,500 xg, 10 min). Cell pellets were washed twice in 15 ml of EPB1 (20 mM 

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) with 5% glycerol, adjusted pH 

to 7.2 with KOH and filter sterilised) and EPB2 (5 mM HEPES with 15% glycerol, adjust to 

pH 7.2 with KOH and filter sterilised). The final cell pellet was resuspended in 0.5 ml of EPB2 

and 100 μl aliquots were transferred to sterile Eppendorf tubes (1.5 ml). Tubes were flash 

frozen in liquid nitrogen and stored at -80°C. 

 

Table 4.7: Recipe for MB + 1.5% glycine 
 
 
 
 

 

 

 

4.2.7.9 Transformation by Electroporation 

Plasmids were transformed to Rhodococcus opacus MITXM-61 by electroporation 

according to the protocol reported by Shao et al, (1995). Competent R. opacus MITXM-61 

cells (prepared as described in 4.2.7.8) were slowly defrosted on ice and then mixed with 

2-3 μl of highly concentrated plasmid DNA (for efficient transformation at least 1 μg/μl is 

needed). As a negative control 2 μl of nuclease free water was added to one tube of 

competent cells. All cells, including the negative control, were transferred to 2 mm 

electroporation cuvettes (Molecular BioProducts, cat. #5520) and electroporated in an 

electroporator (BioRad Gene Pulser). Electroporation conditions were 2.5 kV, 25 μF and 

400 Ω.  

Component Concentration (g/L) 

Yeast extract 5.0 

Bacto Tryptone 15.0 

Bacto Soytone 5.0 

NaCl 5.0 

Glycine 15.0 
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Immediately after electroporation cells were gently mixed with 600 μl of pre-

warmed LB (30°C) and transferred to 2 ml Eppendorf tubes. Cells were recovered for 3 

hours by horizontal incubation in a 30°C incubator with shaking at 400 rpm. After 

incubation cells were gently spun down (3,000 x g, 10 mins), resuspended in 200 μl LB, and 

the entire volume was plated onto LB agar selection plates with 34 μg/ml chloramphenicol. 

Note that due to the lack of a suitable positive control plasmid 100 μl of the negative 

control cells were plated onto a LB plate without selection antibiotic (to check competent 

cell viability) and the remaining 100 μl were plated onto a normal selection plate. All plates 

were incubated at 30°C for a maximum of 5 days. Where electroporation was successful 

colonies appeared within 3-5 days. 

4.2.7.10    Purifying Plasmids from R. opacus  

To confirm plasmid identity in R. opacus at least three transformants were 

respectively grown up over ~48 hours in a 500 ml shake flask containing 200 ml LB with 

chloramphenicol (34 μg/ml) for selection. Two hours before harvest 50 μg/ml ampicillin 

was added to reduce membrane integrity and facilitate cell disruption during plasmid 

purification. Plasmids were purified from the full culture volume using a Plasmid Maxi Kit 

(QUIAGEN) according to the low-copy number plasmid purification protocol provided by 

the manufacturer. If the concentration of purified plasmid was below the requirement for 

sequencing samples were concentrated using a Savant DNA120 Speed-Vac Concentrator. 

Plasmids were verified by sequencing and/or by PCR amplification of the MCS as described 

in 4.2.7.2. 

4.2.8 Recombinant Gene Expression 

4.2.8.1 SDS-PAGE 

R. opacus carrying pTip-QC1_ACP-BTE was grown up in triplicate on 10 ml LB with 

20 µg/ml chloramphenicol at 30°C with shaking at 250 rpm. After 16 hours cultures were 

induced with 1 μg/ml thiostrepton and incubated for a further 24 hours. As a negative 

control a culture of R. opacus carrying pTip-QC1 (empty vector) was grown in parallel, 

induced with thiostrepton and treated like samples as described below. For the final 2 

hours of growth 50 μg/ml ampicillin was added to reduce membrane integrity and facilitate 

cell lysis. Cells were spun down (3,000 x g, 10 min), washed once in phosphate-buffered 

saline (PBS) (Sigma-Aldrich) re-suspended in 5 ml PBS and sonicated for a total of 15 min (3 

seconds on, 7 seconds off, output 3.5).  
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Sonicated cultures were centrifuged (5,000 x g, 5 min) and 40 μl of the supernatant 

was taken into an Eppendorf tube. The pellet was washed once and resuspended in 5 ml 

PBS and then 40 μl was taken into an Eppendorf tube. Both supernatant (soluble protein) 

and pellet (insoluble protein) samples were mixed with 10 μl 4x loading dye (3 μl β-

mercaptoethanol + 100 μl bromophenol blue) and boiled for 10 minutes in a heating block. 

Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) was then carried 

out as follows: SDS-PAGE gels were prepared according to Table 4.8 and set up in a Mini 

PROTEAN Tetra Vertical Electrophoresis cell (Bio-Rad). 20 μl of each sample was loaded 

onto the gel along with 5 μl of PageRule 10-180 kDa protein ladder (Thermo Fisher) and run 

for approximately 1 hour. The gel was stained for 6 hours in Coomassie blue and then de-

stained overnight in a mixture of 10% acetic acid, 50% methanol and 40% H2O.  

 

 

 

Component 
12% resolving gel 

(ml)  
4% stacking gel  

(ml) 

30% w/v acrylamide 4.00 0.65 
1.5M Tris pH 6.8 2.50 - 
0.5 M Tris pH 6.8 - 1.25 
10% SDS 0.10 0.05 
Milli-Q H2O 3.40 3.05 
10% APS 0.10 0.05 
TEMED 0.01 0.005 

 

4.2.8.2 Expression Time-Course 

R. opacuspTip-QC1_ACP-BTE and R. opacuspTip-QC1 were grown in a TAG time-course growth 

assay as described in 4.2.4.3. This time however cultures were induced with 1 μg/ml 

thiostrepton after 48 hours in order to evaluate any changes in CDW, TAG production or 

FA profile in response to plasmid expression. Samples were taken every 24 hours for 6 days. 

Pellets were used to measure CDW at each time point as described in 4.2.6.3 and for total 

TAG quantification and fatty acid profile analysis as outlined in 4.2.6.6. 

 

 

Table 4.8: Recipe for preparation of SDS-PAGE resolving and stacking gel 
Note: 10% APS to be prepared fresh every time. TEMED induces polymerisation and 

should be added last. 
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4.3 Result 

4.3.1 Evaluation of OMSW Fibre Hydrolysate Fermentability 

Initial experiments demonstrated that E. coli could not be cultured under aerobic 

conditions on pure OMSW fibre hydrolysate. Growth limitation could have been caused by 

a variety of factors, including insufficient nutrients, nutrient inaccessibility, metal toxicity 

and/or the presence of unknown organic compounds. To assess the degree to which these 

factors were affecting growth a series of growth assays were carried out. OMSW fibre 

hydrolysate was supplemented with a source of nitrogen, sulphate or phosphate, either 

individually or in combination, and inoculated with E. coli LW06. OD600 was measured over 

48 hours as a proxy for growth. Positive control cultures included cells grown on MOPS 

minimal medium with 5% w/v D-glucose and cells grown on OMSW fibre hydrolysate 

supplemented with all components of MOPS minimal medium (except a carbon source) to 

the same final concentration (for detailed methods see 4.2.3.2). 

The first series of assays (Figure 4.6-A) showed that OMSW hydrolysate 

supplemented with all chemical components necessary for growth (i.e. MOPS minimal 

medium) enabled E. coli to reach an OD600 of ~5.5 (Figure 4.6-A, ‘Hydrolysate + Min. med.’). 

Cells grown on the positive control medium (MOPS minimal medium + 5% D-glucose) 

produced ~40% less biomass (Figure 4.6-A, ‘Min. med. + 5% glucose’) and no growth 

occurred on neat hydrolysate (Figure 4.6-A, ‘Hydrolysate (neat)’). This indicated that 

growth on neat hydrolysate was primarily constrained by nutrient limitation rather than 

substrate inhibition.  

Growth of E. coli on the OMSW fibre hydrolysate was investigated further by 

supplementing with a source of sulphate (K2SO4), ammonium (NH4Cl) and phosphate 

(K2HPO4) at the same concentrations used in MOPS defined medium (Figure 4.6-B). In this 

series of assays cells grew to a slightly lower OD600 overall, likely due to variations in seed 

cultures or a difference in the shaker model used. However, when compared to the positive 

control, the results showed that growth was not significantly increased by the addition of 

phosphate or sulphate (Figure 4.6-B, ‘Hydrolysate + S’, ‘Hydrolysate + P’). In contrast, 

ammonium supplementation led to growth comparable with the MOPS minimal medium 

positive control (Figure 4.6-B, ‘Hydrolysate + N’), although it did not restore growth to the 

level of hydrolysate supplemented with all components of MOPS minimal medium (Figure 

4.6-B, ‘Hydrolysate + Min. med.’). It was concluded that one or more nutrients were 

limiting growth, therefore another series of assays were carried out in which the 
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hydrolysate was supplemented with sulphate, ammonium and phosphate combinatorically 

(Figure 4.6-C).  

Supplementation with both ammonium and phosphate (Figure 4.6-C, ‘Hydrolysate 

N & P’) led to growth equivalent to the hydrolysate with minimal medium and hydrolysate 

supplemented with all three nutrients (sulphate, ammonium and phosphate). Overall this 

demonstrated that the OMSW fibre hydrolysate was primarily limited in nitrogen, with a 

secondary deficiency in phosphate but no significant limitation in sulphate. Nutritional 

supplements employed in industrial fermentations are typically derived from waste 

products from other industries, such as corn steep liquor, yeast autolysate or casein 

hydrolysate, because they are abundant and low cost (Kampen, 2014). Two industrially 

relevant nutrient supplements were therefore trialled with OMSW fibre hydrolysate: Corn 

steep liquor (CSL) (a by-product of corn wet-milling) (Liggett & Koffler, 1948) and vitamin-

enriched yeast extract (VYE) (a substitute for yeast autolysate, a by-product of the brewing 

industry)(Kerby & Vriesekoop, 2017).  Unfortunately, addition of 1% CSL led to immediate 

and irreversible precipitation of the hydrolysate which made OD600 measurements 

impossible. Addition of 1% VYE only produced minimal precipitate formation, therefore this 

was trialled as an industrial nutrient adjunct.  

Nutrients were measured in hydrolysate supplemented with 1% VYE as described 

in Chapter 3 (3.2.7.5) and are shown in Table 4.9 alongside the nutrient levels measured in 

neat OMSW fibre (originally presented in Chapter 3, Table 3.4). Addition of 1% VYE 

increased the microbially available nitrogen (shown as YAN) and total phosphorus 

approximately 10-fold, while sulphate levels stayed similar, with a slight decrease due to 

the dilution effect from VYE addition. When E. coli was grown on OMSW fibre hydrolysate 

supplemented with 1% VYE cells entered exponential phase more rapidly (Figure 4.6-D, 

‘Hydrolysate + 1% VYE) and produced almost twice as much biomass as cells cultured on 

hydrolysate supplemented with phosphate and ammonium (Figure 4.6-D, ‘Hydrolysate + 

N & P’). 
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Figure 4.6: Growth of Escherichia coli LW06 on OMSW fibre hydrolysate  

supplemented with nutrients 

All growth curves are averages of three biological replicates. Each plot represents a separate 

experiment. Error bars show standard deviation from the mean for triplicate fermentations. 
 
 

A: OMSW fibre hydrolysate supplemented with MOPS minimal medium components 

(‘Hydrolysate + Min. med.’) or 40 mM MOPS buffer (‘Hydrolysate (neat)’). Positive control 

fermentation: MOPS defined medium with 5% D-glucose (‘Min. med. + 5% glucose’). 
 

B: OMSW fibre hydrolysate supplemented with 0.3 mM K
2
SO

4
 (‘Hydrolysate + S’), 10 mM NH

4
Cl 

(‘Hydrolysate + N’) or 0.5 mM K
2
HPO

4
 (‘Hydrolysate + P’). ‘Hydrolysate + Min. med.’ and ‘Min. 

med. + 5% glucose’ as in A.  
 

C: OMSW fibre hydrolysate supplemented with 10 mM NH
4
Cl and 0.5 mM K

2
HPO

4
 (‘Hydrolysate 

+ N & P), 0.5 mM K
2
HPO

4
 and 0.3 mM K

2
SO

4
 (‘Hydrolysate + P & S), or 0.5 mM K

2
HPO

4, 10 mM 

NH
4
Cl and 0.3 mM K

2
SO

4
 (‘Hydrolysate + P, N & S’). ‘Hydrolysate + Min. med.’ as in A. 

  

D: OMSW fibre hydrolysate supplemented with 1% vitamin-enriched yeast extract (‘Hydrolysate 

+ 1% VYE’) or excess ammonium and phosphate (20 mM NH
4
Cl and 1 mM K

2
HPO

4
) (‘Hydrolysate 

+ N & P (excess)’). ‘Hydrolysate + N & P’ as in C and ‘Hydrolysate (neat)’ as in A. 
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E. coli attained a final OD600 of ~8.0 on hydrolysate with 1% VYE, which contains 

approximately 7% w/v D-glucose and D-xylose (the major metabolically accessible sugars 

for E. coli). This level of biomass production is proportional to cultures grown on MOPS 

minimal medium containing 5% D-glucose, which entered stationary phase at an OD600 of 

~5.5 (Figure 4.5-A, ‘Min. med. + 5% glucose’). It is also greater than the average growth of 

E. coli on the standard rich medium LB, which usually culminates at an OD600 of ~7.0 

(Sezonov et al, 2007). In fact, the high level of growth observed with VYE could only be 

recapitulated by culturing E. coli on hydrolysate supplemented with an excess of 

ammonium and phosphate (20 mM NH4Cl2 and 1 mM K2HPO4, respectively) (Figure 4.5-D, 

‘Hydrolysate + N & P (excess)’). However, these cells exhibited a longer lag phase 

compared to cells grown with VYE. This was surprising as ammonia is the preferred nitrogen 

source of E. coli and amino acids (the primary nitrogen source in VYE) are used less 

efficiently so slower growth would be expected (Wang et al, 2016).  

Overall, the model fermentative microorganism E. coli demonstrated efficient and 

unrestricted growth on nutrient-supplemented OMSW fibre hydrolysate. The biomass 

levels attained were commensurate with the available sugars and no notable substrate 

inhibition from metals or inhibitors was evident. Furthermore, VYE was shown to have 

potential as an industrially relevant adjunct for supplementing microbially accessible 

nitrogen and phosphate in OMSW fibre hydrolysate fermentations.  

Nutrient 

 
 

 Concentration (mM)  

 Neat Hydrolysate  Hydrolysate +1% VYE  

 mM ±SD mM ±SD 

Yeast Available Nitrogen (YAN)*  4.85 ±0.14 46.63 ±4.06 

Of which:  Ammonia (NH3)        2.27 ±0.09 3.48 ±0.10 
L-Arginine  0.03 ±0.01 0.82 ±0.03 
Primary Amino Nitrogen (PAN)  0.32 ±0.01 5.28 ±0.51 

Phosphate (PO4 as phosphorus)  0.44 ±0.003 3.83 ±0.17 

Orthophosphate (PO4
3-)  0.11 ±0.001 0.63 ±0.01 

Sulphate (SO4
2-)  15.24 ±1.21 14.85 ±0.52 

Table 4.9: Levels of phosphorus, orthophosphate, sulphate, nitrogenous compounds 

and calculated yeast available nitrogen (YAN) in OMSW fibre hydrolysate and OMSW 

fibre hydrolysate supplemented with 1% vitamin-enriched yeast extract (VYE).  

*For details on methods and calculating YAN see Chapter 3, 3.2.7.5. 
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4.3.2 Time-Course Kinetics of Eight Species Grown on OMSW Fibre Hydrolysate 

Eight biotechnologically useful microorganisms were screened in a series of 

fermentation assays with OMSW fibre hydrolysate to identify species that are intrinsically 

well suited for biofuel or chemical production from this complex feedstock. Growth of each 

species was characterised on 10 ml of OMSW fibre hydrolysate supplemented with 1% VYE 

under optimal growth conditions (for strains and conditions see Table 4.1).  Samples were 

taken at regular intervals over the course of the fermentation for a maximum of 72 hours 

and used to determine OD600, sugar consumption and product accumulation. This data was 

plotted for each species, providing an overview of the fermentation dynamics with respect 

to growth, product synthesis and carbon utilisation. Fermentation kinetics are presented 

below for each species in alphabetical order. 

 

4.3.2.1 Clostridium saccharoperbutylacetonicum 

Clostridium saccharoperbutylacetonicum DSM14923 (also N1-4) is a Gram-positive, 

spore forming, strictly anaerobic solventogenic bacterium that produces n-butanol, an 

industrially valuable fuel and chemical, through the acetone, butanol and ethanol (ABE) 

fermentation pathway (Noguchi et al, 2013). The ABE fermentation process is biphasic, 

involving an initial acidogenic phase wherein acetate and butyrate are synthesised from 

sugars until the pH drops to around 4.5, at which point metabolism shifts more toward 

solventogenesis where organic acids are re-assimilated and fermented to butanol and 

ethanol (Buehler & Mesbah, 2016). C. saccharoperbutylacetonicum is closely related to the 

well-studied solventogen Clostridium acetobutylicum (Jang et al, 2012) and is of industrial 

interest because, unlike C. acetobutylicum, it can ferment both D-glucose and D-xylose 

simultaneously without carbon catabolite repression (CCR) (Noguchi et al, 2013).  

C. saccharoperbutylacetonicum grew very poorly on OMSW fibre hydrolysate 

(Figure 4.7). Only 4% of available D-glucose was used and no significant change in D-xylose 

levels were detected.  The cells had a ~12 hour lag phase and only reached a maximum 

OD600 of 1.72 ±0.65. Furthermore, no ethanol, acetone or butanol were detected in the 

fermentation medium at any time point analysed. The final pH of the cultures was around 

5.0-5.5, indicating that acidogenesis was interrupted. Overall, it appears that some 

component of the OMSW fibre hydrolysate was significantly inhibitory to C. 

saccharoperbutylacetonicum.  
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4.3.2.1 Escherichia coli 

E. coli, the model organism of bacteriology, is of interest for biorefining applications 

because it is an established industrial microorganism, highly amenable to genetic 

manipulation and capable of using a wide range of lignocellulose-derived sugars, including 

D-glucose, L-arabinose and D-xylose (Huffer et al, 2012). E. coli is a Gram-negative 

facultative anaerobe that can produce ethanol in small quantities along with acetate, 

lactate and formate via mixed-acid fermentation (Valle et al, 2015). The strain used 

throughout this project, E. coli LW06,  was engineered to more efficiently produce ethanol 

via an IPTG-inducible Entner-Dourdoroff (ED) pathway (detailed in 1.2.4, Figure 1.8) 

derived from Zymomonas mobilis (Woodruff et al, 2013).  

Figure 4.7: Fermentation kinetics of Clostridium saccharoperbutylacetonicum grown 
on OMSW fibre hydrolysate  

C. saccharoperbutylacetonicum was grown anaerobically in 100 ml serum bottles on 10 

ml OMSW fibre hydrolysate supplemented with 1% VYE and 40 mM MOPS buffer. Starting OD600 

was 0.05. Samples were taken over 48 hours. For details see 4.2.4.2. Accumulation of products 

(ethanol, butanol, and acetone) and consumption of D-glucose (Δ Glu) and D-xylose (□ Xyl) are 

plotted on the primary Y-axis in g/L.  Optical density at 600 nm (secondary Y axis) was used as a 

proxy for biomass production. 
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In preliminary nutrient supplementation assays with OMSW fibre hydrolysate (see 

4.3.1) LW06 grew to a high OD600 of ~8.0. However, these experiments were conducted 

under aerobic conditions without induction of the heterologous ethanol pathway. In the 

fermentation shown in Figure 4.8, E. coli was grown micro-aerobically to simulate batch 

conditions and ethanol production was induced with IPTG. Surprisingly, LW06 attained 

even higher biomass levels than in previous assays, reaching an OD600 of 18.1 ±1.6. D-

glucose was depleted within 24 hours and used preferentially over D-xylose, as is typical of 

the sugar utilisation hierarchy in E. coli and most other hexose and pentose sugar 

fermenters (Aidelberg et al, 2014). The highest ethanol yield was attained after 24 hours, 

at 10.9 ±0.5 g/L of ethanol (34 ±2 % of maximum theoretical yield), coinciding with glucose 

depletion and entry into stationary phase. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.8: Fermentation kinetics of Escherichia coli grown on OMSW fibre 
hydrolysate  

E. coli was grown micro-aerobically in 100 ml shake flasks with airlocks on 10 ml OMSW 

fibre hydrolysate supplemented with 1% VYE, 40 mM MOPS buffer and 1 mM IPTG to induce 

ethanol production. Starting OD600 was 0.05. Samples were taken over 48 hours. For details see 

4.2.4.2. Accumulation of products (ethanol, butanol, and acetone) and consumption of D-glucose 

(Δ Glu) and D-xylose (□ Xyl) are plotted on the primary Y-axis in g/L.  Optical density at 600 nm 

(secondary Y axis) was used as a proxy for biomass production. 
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4.3.2.2 Geobacillus thermoglucosidasius 

Geobacillus thermoglucosidasius is a thermophilic, endospore-forming, Gram-

positive facultative anaerobe that produces ethanol as part of a mixed-acid fermentation 

(Zeigler, 2014). Thermophilic bacteria are useful for bioprocessing as fermentations at high 

temperatures reduce cooling costs, increase biomass conversion efficiency and ethanol 

recovery and reduce the potential of contamination (Turner et al, 2007).  Previous studies 

have shown that G. thermoglucosidasius can be engineered (Cripps et al, 2009) and evolved 

(Zhou et al, 2016) to produce greater ethanol yields, however, the strain used in this project 

is the type strain DSM2542 which has not been genetically modified.  

 

 

 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.9: Fermentation kinetics of Geobacillus thermoglucosidasius grown on 
OMSW fibre hydrolysate  

 
G. thermoglucosidasius was grown micro-aerobically in 100 ml shake flasks with airlocks 

on 10 ml OMSW fibre hydrolysate supplemented with 1% VYE and 40 mM MOPS buffer. Starting 

OD600 was 0.05. Samples were taken over 48 hours. For details see 4.2.4.2. Accumulation of 

products (ethanol, butanol, and acetone) and consumption of D-glucose (Δ Glu) and D-xylose (□ 

Xyl) are plotted on the primary Y-axis in g/L.  Optical density at 600 nm (secondary Y axis) was 

used as a proxy for biomass production. 
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Within the first 15 hours of fermentation on OMSW fibre hydrolysate G. 

thermoglucosidasius rapidly grew to an OD600 of 4.55 ±0.38 while metabolising D-glucose 

and D-xylose simultaneously (Figure 4.9). Growth then stopped abruptly despite 61% of 

sugars remaining in the medium.  Furthermore, no ethanol was detected in the medium at 

any time point analysed. During mixed-acid fermentation ethanol is produced along with 

acetate, lactate and formate (Zhou et al, 2016), therefore high ethanol yields were not 

expected. However, the complete absence of ethanol in conjunction with the premature 

growth cessation indicates that inhibition was caused by some component of the 

hydrolysate. 

 

4.3.2.3 Pseudomonas putida 

Pseudomonas putida is a Gram-negative aerobe known for its versatile metabolism 

and extensive resistance to xenobiotics and lignocellulosic inhibitors (Belda et al, 2016; 

Loeschcke & Thies, 2015). This species was chosen for this project as the extent of the 

toxicity of OMSW fibre was initially unknown. Although the strain used in this project, 

NCIMB 8249, does not produce an industrially useful product, previous work (Nikel & de 

Lorenzo, 2014) has shown that P. putida can be metabolically engineered to produce 

ethanol and has a greater ethanol tolerance than E. coli. P. putida has also been engineered 

to co-utilise cellobiose, D-glucose and D-xylose (Dvořák & de Lorenzo, 2018).  

P. putida attained a final OD600 of 13.6 ±0.1 on OMSW fibre hydrolysate but only 

managed to use 68.8% of the available D-glucose (Figure 4.10). Growth was somewhat 

biphasic, slowing after 12 hours to what could be a brief lag or possibly a detoxification 

phase and then increasing again after 36 hours. Stationary phase was reached at 48 hours, 

around the same time glucose metabolism stopped. Premature growth cessation indicates 

that something in the hydrolysate was inhibitory to the cells. One of the major limitations 

for P. putida as a biomanufacturing chassis is that it is very neutrophilic and does not 

possess all acid stress response pathways present in other Enterobacteria (Belda et al, 

2016).The final pH of the fermentation medium was measured at around 3.0 for all three 

replicate cultures, indicating that growth may have been inhibited by autoacidification.  
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4.3.2.4 Rhodococcus opacus 

Rhodococcus opacus is an aerobic, Gram-positive, soil-dwelling Actinomycete. 

Uniquely for a bacterium, R. opacus can produce and intracellularly accumulate 

triacylglycerol (TAG) from a wide range of carbon sources (Alvarez et al, 1996). A detailed 

overview of TAG biosynthesis is given in Appendix IX. TAG can be used as a precursor for 

the production of biodiesel, aviation fuel, plastics, surfactants and polymers. The highest 

reported volume of TAG accumulation by an R. opacus strain is 76% of CDW after growth 

on gluconate (Wältermann et al, 2000). R. opacus MITXM-61, used throughout this project, 

was evolutionarily engineered by Anthony J. Sinskey’s group at the Massachusetts Institute 

of Technology (MIT) to co-utilise D-xylose with D-glucose (Kurosawa et al, 2014). The 

industrial potential of R. opacus for biorefining is well established and it has been grown 

with high productivity on numerous industrially useful substrates, including glycerol 

Figure 4.10: Fermentation kinetics of Pseudomonas putida grown on OMSW fibre 
hydrolysate  

 
P. putida was grown aerobically in 100 ml shake flasks on 10 ml OMSW fibre hydrolysate 

supplemented with 1% VYE and 40 mM MOPS buffer. Starting OD600 was 0.05. Samples were 

taken over 72 hours. For details see 4.2.4.2. Consumption of D-glucose (Δ Glu) and D-xylose (□ 

Xyl) are plotted on the primary Y-axis in g/L.  Optical density at 600 nm (OD600, secondary Y axis) 

was used as a proxy for biomass production. Note this strain does not metabolise D-xylose. 
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(Kurosawa et al, 2015c) and hydrolysates of corn stover, wheat straw and hardwood  pulp 

(Kurosawa et al, 2015a; Kurosawa et al, 2013; Kurosawa et al, 2014).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

R. opacus MITXM-61 grew exceptionally well on OMSW fibre hydrolysate, attaining 

a high OD600 of 110.91 ±3.58 (Figure 4.11). Growth started after a ~12-hour lag phase and 

D-glucose and D-xylose were concurrently depleted over 60 hours. Biomass production 

stopped after 54 hours although sugars were not yet depleted. This was not due to 

substrate inhibition however, because the stationary phase cells continued to use the 

remaining D-glucose and D-xylose. In R.  opacus TAG synthesis typically occurs at the end 

of exponential phase and in early stationary phase when nutrients are limiting but carbon 

source is still abundant.  Attaining high TAG yield therefore requires a carefully balanced 

carbon to nitrogen (C/N) ratio to ensure there is a high cell density at stationary phase but 

also sufficient residual carbon to store as TAG (Alvarez et al, 2013; Kurosawa et al, 2010). 

The addition of 1% VYE to OMSW fibre hydrolysate provided an C/N ratio of 44 (for 

Figure 4.11: Fermentation kinetics of Rhodococcus opacus grown on OMSW fibre 
hydrolysate  

 
R. opacus was grown aerobically in 100 ml shake flasks on 10 ml OMSW fibre hydrolysate 

supplemented with 1% VYE and 40 mM MOPS buffer. Starting OD600 was 0.05. Samples were 

taken over 72 hours. For details see 4.2.4.2. Accumulation of triacylglycerol (TAG) and 

consumption of D-glucose (Δ Glu) and D-xylose (□ Xyl) are plotted on the primary Y-axis in g/L.  

Optical density at 600 nm (OD600, secondary Y axis) was used as a proxy for biomass production.  
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calculations see 4.2.5.3), enabling a TAG yield of 15.2 ±1.1 g/L after 72 hours, equivalent to 

48.91 ±1.42 % of CDW or 72 ±5 % of theoretical yield (note that TAG could only be 

quantified at the end of fermentation as at least 5 mg of cells were required for GC-FAMES, 

see 4.2.5.4.). It was concluded from these results that R. opacus is well adapted for efficient 

and robust growth on OMSW fibre hydrolysate. 

 

4.3.2.5 Saccharomyces cerevisiae 

Saccharomyces cerevisiae is the model organism for industrial biotechnology and 

has been studied extensively for lignocellulosic biorefining applications (Petrovič, 2015). S. 

cerevisiae is also one of the few microorganisms that has been used to ferment 

hydrolysates of OMSW (Ballesteros et al, 2010; Puri et al, 2013). Strain ATCC 200062 (also 

NREL D5A) is genetically derived from Red Star® baker’s yeast and was used for this project 

because it has repeatedly been shown to robustly ferment lignocellulosic feedstocks 

(Nguyen et al, 2017; Spindler et al, 1989).  

 

  

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.12: Fermentation kinetics of Saccharomyces cerevisiae grown on OMSW 
fibre hydrolysate  

S. cerevisiae was grown micro-aerobically in 100 ml shake flasks with airlocks on 10 ml 

OMSW fibre hydrolysate supplemented with 1% VYE and 40 mM MOPS buffer. Starting OD600 

was 0.05. Samples were taken over 48 hours. For details see 4.2.4.2. Accumulation of ethanol 

and consumption of D-glucose (Δ Glu) and D-xylose (□ Xyl) are plotted on the primary Y-axis in 

g/L.  Optical density at 600 nm (OD600, secondary Y axis) was used as a proxy for biomass 

production. Note this strain does not metabolise D-xylose. 
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S. cerevisiae ATCC 20062 grew efficiently on OMSW fibre hydrolysate, depleting 

most of the D-glucose within 12 hours (Figure 4.12). Maximum biomass and ethanol yields 

were attained after 24 hours upon D-glucose depletion. Ethanol yield was 18.0 ±1.3 g/L, 

equating to 70 ±2 % of maximum theoretical yield. S. cerevisiae had the highest productivity 

of any organism trialled in this project, producing ethanol at 0.36 ±0.03 g/L.h-1 over 24 

hours without any notable product or substrate inhibition. This strain could therefore have 

very good potential for OMSW fibre bioprocessing, although its efficiency was limited by 

the inability to ferment D-xylose.  

 

4.3.2.6 Schizosaccharomyces pombe 

The fission yeast Schizosaccharomyces pombe is a model organism used extensively 

in molecular genetic studies, but is understudied as a bioethanol producer despite the fact 

that it was originally isolated from palm wine (Hayles & Nurse, 1992).  This yeast shares 

many industrially useful characteristics with S. cerevisiae, including tolerance to osmotic 

stress and ethanol, flocculability, generally regarded as safe (GRAS) status and genetic 

tractability. S. pombe JB953 is a wild strain isolated in Australia (Jeffares, 2018; Jeffares et 

al, 2015) that produced the highest ethanol titre in a preliminary plate reader screen of 

eight S. pombe isolates grown with OMSW fibre hydrolysate for 24 hours (See Appendix V 

for details).  

Figure 4.13 shows that in the shake flask fermentation assay S. pombe JB953 grew 

on OMSW fibre hydrolysate relatively efficiently, using all available D-glucose within 24 

hours and producing 14.9 ±1.9 g/L of ethanol, or 51 ±7 % of the theoretical maximum with 

a productivity over 24 hours of 0.31 ±0.04 g/L.h-1. A decrease in D-xylose levels was also 

measured although S. pombe is not reported to ferment D-xylose. This strain may however 

be capable of D-xylose uptake for xylitol production, as has been reported for some yeasts 

(Jeffries & Kurtzman, 1994). Overall, S. pombe grew well on OMSW fibre hydrolysate, 

without showing any obvious signs of substrate or product inhibition. However, only half 

the theoretically possible ethanol titre was produced because most carbon was allocated 

to biomass production. This could potentially be improved through further optimisation of 

the fermentation conditions.     
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4.3.2.7 Zymomonas mobilis 

Zymomonas mobilis is a Gram-negative, facultatively aerobic species that is 

extensively studied for bioethanol production due to its high ethanol tolerance, volumetric 

productivity and rapid glucose uptake rate (Yang et al, 2016). Z. mobilis is one of few 

anaerobes that can catabolise glucose via the Entner-Dourdoroff (ED) pathway (detailed in 

1.2.4, Figure 1.8), which is typically found in strict aerobes (Swings & De Lay, 1977). The ED 

pathway forms the core of Z. mobilis metabolism and is its only available route for carbon 

catabolism. Anaerobic fermentation via the ED pathway produces just 1 mol of ATP per mol 

of glucose, consequently, Z. mobilis has the lowest molar growth yield of any known 

microorganism and must maintain a high level of metabolic flux to guarantee enough 

energy for survival. To achieve this, ethanologenic enzymes are expressed to 50% of soluble 

cell protein and sugars are imported via high-velocity facilitated diffusion, resulting in 

highly direct and efficient ethanol production (Conway, 1992). Despite its overall 

Figure 4.13: Fermentation kinetics of Schizosaccharomyces pombe grown on OMSW 
fibre hydrolysate  

 
S. pombe was grown micro-aerobically in 100 ml shake flasks with airlocks on 10 ml 

OMSW fibre hydrolysate supplemented with 1% VYE and 40 mM MOPS buffer. Starting OD600 

was 0.05. Samples were taken over 48 hours. For details see 4.2.4.2. Accumulation of ethanol 

and consumption of D-glucose (Δ Glu) and D-xylose (□ Xyl) are plotted on the primary Y-axis in 

g/L.  Optical density at 600 nm (OD600, secondary Y axis) was used as a proxy for biomass 

production. Note this strain can metabolise but not ferment D-xylose. 
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effectiveness, Z. mobilis is limited for bioprocessing applications because it exclusively 

ferments D-glucose, D-fructose and sucrose (Yang et al, 2016).   

Z. mobilis subsp. mobilis DSM424 (also ZM1) is a well-studied strain originally 

isolated from a fermentation of Pulque, a traditional Mexican alcoholic beverage made 

from sap of the Agave plant (Agave americana) (Pappas et al, 2011). During growth on 

OMSW fibre hydrolysate, Z. mobilis DSM 424 rapidly used all available D-glucose within 24 

hours and produced 17.5 ±0.03 g/L ethanol, equivalent to a productivity of 0.73 ±0.01 

g/L.h-1 (Figure 4.14). On the whole Z. mobilis appears to be a promising species for 

bioethanol production from OMSW fibre hydrolysate, but as with S. cerevisiae, the inability 

to utilise D-xylose limits the efficacy of this strain for fermentation of lignocellulosic 

biomass.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.14: Fermentation kinetics of Zymomonas mobilis grown on OMSW fibre 
hydrolysate  

 
Z. mobilis was grown anaerobically in 100 ml serum bottles on 10 ml OMSW fibre 

hydrolysate supplemented with 1% VYE and 40 mM MOPS buffer. Starting OD600 was 0.05. 

Samples were taken over 48 hours. For details see 4.2.4.2. Accumulation of products (ethanol, 

butanol, and acetone) and consumption of D-glucose (Δ Glu) and D-xylose (□ Xyl) are plotted on 

the primary Y-axis in g/L.  Optical density at 600 nm (secondary Y axis) was used as a proxy for 

biomass production. Note this strain does not metabolise D-xylose. 
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4.3.3 Evaluating Relative Fermentation Efficiency between Species 

All eight species trialled on OMSW fibre hydrolysate varied greatly in their 

fermentation kinetics and relative efficiencies. Each species exhibited unique carbon 

consumption, growth and product synthesis dynamics. To provide an overview of the 

fermentation dynamics and compare each species relative performance, the time course 

fermentations are presented side by side in Figure 4.15. Furthermore, to compare the 

species more quantitatively, key yield parameters were calculated for each fermentation. 

These values are summarised in Table 4.10, including the total percentage of fermentable 

sugars consumed by each species over the course of fermentation, the final dry weight of 

cell biomass recovered per litre of fermentation broth, the gram per gram ratio of product 

to sugar consumed, the maximum product yield (in g/L and as a percentage of the 

theoretical maximum yield) and the overall productivity in g/L.h-1. Additionally, the amount 

of product that could be produced from one tonne of OMSW fibre (kg/t) was calculated 

and a maximum theoretical yield per tonne was estimated assuming complete sugar 

conversion during hydrolysis.  

To evaluate the performance of the species relative to one another the 

fermentation kinetics were compared in conjunction with the calculated yield parameters, 

thereby enabling the most promising candidates to be identified. The poorest performing 

strains utilised less than 50% of the sugars metabolically available to them and did not 

produce the product of interest. This included C. saccharoperbutylacetonicum (Figure 4.15-

F) and G. thermoglucosidasius (Figure 4.15-C). Both these microorganisms were sensitive 

to some component of the hydrolysate that did not significantly affect the other species, 

making them less desirable candidates for application in an OMSW fibre bioprocess.  

Species that performed moderately well include P. putida (Figure 4.15-G), E. coli 

(Figure 4.15-D) and S. pombe (Figure 4.15-B). These species used most or all the sugars 

metabolically available to them but primarily allocated carbon to biomass production. S. 

pombe and E. coli only produced ethanol to 51 ±7 % and 34 ±2 % of the theoretical 

maximum, respectively, therefore most of the catabolised carbon was directed toward 

growth (Table 4.10). Their performance could likely be improved by further optimising 

culture conditions to promote fermentative metabolism. In the case of P. putida 

autoacidification could be prevented by using a stronger buffer or pH control system, 

however, significant genetic engineering would be necessary to develop this species into a 

platform for OMSW fibre bioprocessing. 
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Figure 4.15: Fermentation kinetics of eight different microorganisms  
grown on OMSW fibre hydrolysate. 

 

(A) Saccharomyces cerevisiae*; (B) Schizosaccharomyces pombe*; 

(C) Geobacillus thermoglucosidasius*; (D) Escherichia coli*; (E) Zymomonas mobilis+; 

(F) Clostridium saccharoperbutylacetonicum+; (G) Pseudomonas putida° and 

(H) Rhodococcus opacus°; 

 
Culture conditions: *Micro-aerobic (shake flasks with airlocks); 

+Anaerobic (serum bottles); °Aerobic (shake flasks with foam bungs). 

 

Accumulation of products (ethanol, butanol, acetone or triacylglycerol (TAG)) and 

consumption of D-glucose (Δ) and D-xylose (□) are plotted on the primary Y-axis.  Optical density 

at 600 nm (secondary Y axis) was used as a proxy for biomass production. All species were 

inoculated to a starting OD600 of 0.05. Each species was grown on 10 ml OMSW fibre hydrolysate 

supplemented with 1% VYE and 40 mM MOPS buffer. Starting OD600 was always 0.05. Note that 

TAG yield could only be measured at the end of fermentation (see 4.2.4.2 for details).   
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The species that showed the most promise for production of biofuels and chemicals 

from OMSW fibre were S. cerevisiae (Figure 4.15-A), Z. mobilis (Figure 4.15-E) and R. opacus 

(Figure 4.15-H). S. cerevisiae and Z. mobilis achieved comparable ethanol yields (69 ±1 % 

vs. 79 ±5 % of theoretical yield, respectively), productivities (0.73 ±0.01 and 0.74 ±0.06 

g/L.h-1) and product to substrate (P/S) ratios (0.35 ±0.01 and 0.36 ±0.03 g/g) when 

accounting for the standard deviation. Interestingly, despite this parity, the final CDW of Z. 

mobilis was 46% lower than S. cerevisiae (Table 4.10). The high volumetric productivity of 

this bacterium relative to S. cerevisiae is well established (Bucholz et al, 1987) and is further 

supported by these results. It was calculated that per tonne of OMSW fibre processed 

under the conditions trialled in this work, about 90 Kg of ethanol could be produced with 

S. cerevisiae and 87 Kg of ethanol with Z. mobilis. If all available cellulose could be isolated 

from OMSW fibre through hydrolysis, these yields could rise to 139 and 136 Kg/t, 

respectively (Table 4.10).     

Although both ethanologens attained very high yields, neither could ferment D-

xylose, thus limiting their overall productivity. By comparison, R. opacus accessed both the 

D-glucose and D-xylose in the hydrolysate and produced 15.2 ±1.1 g/L TAG, the highest 

yield of product relative to the theoretical maximum attained by any species trialled in this 

study. At the same time however, R. opacus only had a productivity of 0.21 ±0.02 g/L.h-1, 

the lowest overall (Table 4.10). This was due to a lag phase of about 12 hours bringing the 

total fermentation time to 72 hours (Figure 4.15-H). Despite its high product yield, R. 

opacus would only produce 76 Kg of TAG per tonne of OMSW fibre, significantly less than 

the amount of ethanol produced by Z. mobilis and S. cerevisiae. Even under perfect 

hydrolysis conditions TAG yield would only increase to 91 Kg/t. However, as discussed in 

the introduction, TAG biosynthesis is metabolically and physiologically very different from 

ethanol fermentation. TAG also has a different market value as it competes primarily with 

palm oil for biodiesel production.  It is therefore difficult to make direct comparisons 

between ethanologenic and oleaginous species. 

It should also be noted that the calculations presented in Table 4.10 are only broad 

estimates of fermentation performance. They exclusively accounted for the major carbon 

sources D-glucose and D-xylose and discount the contributions to product yield from other 

less abundant sugars or carbon sources not measured in the compositional analysis. For 

example, D-mannose, the third most abundant sugar in OMSW fibre hydrolysate (5.46% 

w/v) can also be fermented by R. opacus (Holder et al, 2011) and S. cerevisiae (Li et al, 
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2015), but not Z. mobilis. These yield calculations should therefore be treated with caution 

as they do not account for all carbon available in the system and may therefore be 

overestimates. Overall however, robust growth and near theoretical yields were core 

features of E. coli, Z. mobilis and R. opacus, making all three excellent candidate strains for 

further development in an OMSW fibre-based bioprocess. 

4.3.4 Characterising OMSW Fibre Hydrolysate Fermentation by R. opacus 

R. opacus MITXM-61 was chosen as the primary candidate strain to be developed 

further for application in an OMSW fibre biorefinery because of its ability to efficiently and 

concurrently use D-glucose and D-xylose and produce near-theoretical yields of TAG from 

OMSW fibre hydrolysate. The fact that there are no prior publications investigating the 

usefulness of R. opacus for OMSW bioprocessing also make it an interesting microorganism 

to study. As such, the physiology and TAG production kinetics of R. opacus grown on OMSW 

fibre hydrolysate were investigated in greater detail.  

GC-FID can be used to measure the total yield of TAG but also enables the individual 

fatty acids (FAs) that make up the TAG molecules to be identified and quantified. This is 

important because fatty acid length has a significant impact on their application. Long-

chain fatty acids (LCFAs, between 13-21 carbon atoms in length) are optimal for biodiesel 

production, while medium-chain fatty acids (MCSAs, between 6-12 carbons in length) are 

more useful for producing aviation fuel (i.e. kerosene) and for deriving ingredients used in 

cosmetics (Jimenez-Diaz et al, 2017; Lestari  et al, 2009). A list of all FAs detected in R. 

opacus cells grown on OMSW fibre hydrolysate for 72 hours is given in Table 4.11. The most 

abundant FAs were Palmitic (C16:0), Heptadecanoic (C17:0), Cis-10-Heptadecenoic 

(C17:1n-7) and Cis-9-Octadecenoic (C18:1n-7c), which is consistent with previous analyses 

of FA composition in R. opacus (Alvarez & Steinbüchel, 2002).  

To evaluate the viability of FAs derived from R. opacus for biodiesel production the 

cetane number (CN) was calculated as described in 4.2.6.7. The CN is used as a measure of 

the combustion and ignition potential of a biodiesel relative to cetane (n-hexadecane), a 

straight chain hydrocarbon with very high ignitability (Giakoumis, 2013). To determine the 

CN of a mixture of FAMEs a cetane index (CNi) is calculated for each individual FAME. 

According to EU specifications, a biodiesel must have a minimum CN of 51 with a minimum 

CNi of 46  (CEN, 2009). The CNi for each individual FAME extracted from R. opacus is listed 

in Table 4.11.  
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FA C:D % ±SD CNi 

Capric C10:0 0.04 ±0.02 60.9 

Undecyclic  C11:0 0.12 ±0.00 62.3 

Lauric  C12:0 0.14 ±0.02 63.7 

Tridecyclic C13:0 0.03 ±0.00 65.1 

Myristic  C14:0 2.17 ±0.16 66.5 

Myristoleic C14:1(9) 0.03 ±0.00 50.6 

Pentadecanoic  C15:0 5.96 ±0.41 67.9 

Cis-10-pentadecenoic  C15:1(5) 0.45 ±0.03 52.0 

Palmitic  C16:0 28.84 ±1.96 69.3 

Hypogeic  C16:1(7) 9.06 ±0.72 53.4 

Heptadecanoic  C17:0 10.88 ±0.78 70.7 

Cis-10-Heptadecenoic  C17:1(10) 13.65 ±0.96 54.8 

Stearic  C18:0 5.28 ±0.36 72.1 

Trans-9-Octadecenoic C18:1(9) 1.93 ±0.18 56.2 

Cis-9-Octadecenoic  C18:1(9) 18.65 ±1.49 56.2 

Cis-11-Octadecenoic  C18:1(11) 0.45 ±0.09 56.2 

9-trans, 12-trans-Octadecadienoic C18:2(9,12) 0.02 ±0.02 40.3 

9-cis, 12-cis-octadecadienoic C18:2(9,12) 0.07 ±0.01 40.3 

y-Linoleic C18:3(6,9,12) 1.18 ±0.09 24.4 

Stearidonic C18:4(6,9,12,15) 0.03 ±0.00 8.5 

Arachidic C20:0 0.23 ±0.02 74.9 

Gondoic C20:1(11) 0.06 ±0.00 59.0 

Cis-13-Eicosenoic  C20:1(13) 0.04 ±0.04 59.0 

Homo-y-Linolenic C20:3(8,11,14) 0.06 ±0.03 27.2 

Arachidonic C20:4(5,8,11,14) 0.04 ±0.02 11.3 

Eicosapentanoic  C20:5(5,8,11,14,17) 0.07 ±0.01 -4.6 

Behenic  C22:0 0.14 ±0.03 77.7 

Erucic  C22:1(13) 0.10 ±0.02 61.8 

Docosadienoic C22:2(13,16) 0.21 ±0.02 45.9 

Nervonic C24:1(15) 0.07 ±0.01 64.6 

           FA (total):                                                                                 
           FA (as a percentage of cell dry weight): 
           CN (total):                             

100.00   ±2.91 
48.91   ±1.42 

 

 
 

62.5 

Table 4.11: Fatty acid composition profile of Rhodococcus opacus MITXM-61  
growth on OMSW fibre hydrolysate for 72 hours and the calculated  

cetane index of each fatty acid 
Yields are given as the percentage (w/w) of total fatty acids (FA) with standard deviation 

(±SD) of triplicate measurements. Common names are given where available. 
 

C:D = Lipid number, expressed as the number of Carbon atoms to Double bonds. 
CNi = Cetane index, measures the combustibility and ignitability of individual FAMEs. 
CN = Cetane number, measures the combustibility and ignitability of biodiesel mixture. 
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Only eight of the thirty FAs detected had a CN below 46 and these made up just 

1.67% of the total FA profile. It was calculated that the total mixture of TAG-derived FAMEs 

isolated from R. opacus had a CN of 62.5. This indicates that TAGs from R. opacus grown on 

OMSW fibre could be converted directly to high-quality biodiesel, on par with oil-crop 

derived biodiesels currently produced from jatropha and palm (Jiménez-Díaz et al, 2016).  

These results are also consistent with work by Fei et al, (2015) who calculated a CN value 

of ~60 for R. opacus MITXM-61 grown on a mixture of D-glucose and D-xylose. 

To gain further insight into TAG production during growth on OMSW fibre 

hydrolysate, light microscopy was used to visualise R. opacus cells sampled at 24, 48 and 

72 hours (Figure 4.16).  The microscopy revealed that there was a noticeable change in 

cellular morphology between the early and later stages of fermentation. 24 hours into 

fermentation R. opacus cells had a long, rod shape (Figure 4.16-A & B) but as the 

fermentation progressed morphology shifted toward shorter, rounder rods and clear 

regions began to appear within the cell interior (Figure 4.16-C & D). It is known from 

electron microscopy studies of R. opacus PD630 that TAG accumulates within the cell in 

lipid inclusions that are visible within the cytoplasm (Alvarez et al, 1996). These lipid 

inclusions were just visible under the light microscope as clear regions surrounded by the 

more electron-dense, stained membrane and compacted intracellular material (Figure 

4.16-E & F). 
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Figure 4.16: Light microscopy images of Rhodococcus opacus cells after 24, 48 and 72 
hours of growth on OMSW fibre hydrolysate 

(Images taken by author with help from University of York Imaging and Cytometry Laboratory). 
 

Cells from the experiment shown in Figure 4.11 were fixed and stained with crystal violet 

and imaged using a light microscope at 100x magnification with oil immersion (for details see 

4.2.5). Scale bars for A, C and E represent 20 μm; Scale bars for B, D and F represent 10 μm. 

Images A, C and E show R. opacus after 24, 48 and 72 hours of growth on OMSW fibre 

hydrolysate, respectively. Images B, D and F show regions of interest within images A, C and E, 

enhanced with 50% digital zoom. Red arrow in F highlights and example of lipid inclusions (clear 

regions) within the cell where triacylglycerol has accumulated.   
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The light microscopy studies indicated that TAG accumulation was at or near the 

maximum yield after 72 hours. To gain a more quantitative understanding of the time 

course kinetics of TAG production from OMSW fibre hydrolysate a fermentation assay was 

carried out in a larger volume (40 ml) and TAG levels were measured at regular intervals 

over six days along with the levels of sugars, YAN and CDW (Figure 4.17). Unfortunately, 

the larger culture volume used in this assay had a negative effect on the growth and 

productivity of R. opacus. Although the dynamics corresponded to those originally 

presented in Figure 4.12, the lag phase lasted 12 hours longer and growth rate was slower 

overall, leading to a 14% lower CDW upon entry into stationary phase. Cells were still in 

mid exponential phase at 72 hours whereas stationary phase was reached after 54 hours 

in the initial fermentation trial. Furthermore, the peak TAG yield was lower, reaching only 

64 ±4 % of the theoretical maximum, compared to 72 ±5 % attained previously.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 

Figure 4.17:  Comprehensive TAG production kinetics of R. opacus grown on OMSW 
fibre hydrolysate 

 

R. opacus was grown aerobically in 250 ml shake flasks on 40 ml OMSW fibre hydrolysate 

supplemented with 1% VYE and 40 mM MOPS buffer. Starting OD600 was 0.05. Samples were 

taken over 144 hours and used to analyse the levels of TAG, YAN, sugars and CDW (for detailed 

methods see 4.2.4.3). Accumulation of TAG, consumption of D-glucose (Δ Glu) and D-xylose (□ 

Xyl) and CDW are plotted on the primary Y-axis in g/L.  YAN is plotted on the secondary Y axis in 

mg/L. 
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The productivity of R. opacus in this assay was 0.11 ±0.01 g/L.h-1 over 96 hours, 50% 

lower than before (Table 4.10). Growth was likely slowed due to under-aeration as this 

species has a very high oxygen demand, requiring at least 60% dissolved oxygen for optimal 

growth in stirred tank bioreactors (Kurosawa et al, 2014) . The shaking rate was increased 

to 250 rpm for this assay to accommodate for the greater culture volume but determining 

effective oxygen transfer rates in shake flasks is challenging without in-line monitoring  

(Büchs, 2001).  

Despite exhibiting more delayed growth overall, the results presented in Figure 4.16 

still provide an overview of the relationship between sugar uptake, nitrogen catabolism 

and biomass production in R. opacus grown on OMSW fibre hydrolysate. TAG levels 

reached a maximum of 10.09 ±0.65 g/L at 96 hours, just when nitrogen uptake stopped. 

Approximately 26 mg/L or 4% of YAN remained in the hydrolysate between 96-144 hours, 

indicating that some of the nitrogenous compounds in the VYE were inaccessible to R. 

opacus. D-glucose was co-utilised with D-xylose, although D-glucose was taken up more 

rapidly. 3.77 ±2.32 g/L D-glucose and 7.69 ±0.60 g/L D-xylose remained in the medium at 

96 hours when TAG levels reached their peak, but both sugars were fully depleted after 

120 hours.  

R. opacus PD630, the parent strain of MITXM-61, has the most diverse repertoire of 

nitrogenous compound catabolism genes of any TAG producing bacterium (Holder et al, 

2011) but generally prefers using ammonium over amino acids or urea (Fei et al, 2015). It 

grows poorly L-glutamic acid, N-acetyl-L-glutamic acid, L-proline, hydroxy-L-proline, 

glycine, N-glycyl-L-proline, L-alaninamide, L-phenylalanine and L-threonine and not at all 

on L-histidine (Holder et al, 2011). These peptides and amino acids may have made up the 

residual 4% of nitrogenous compounds remaining in the medium at the end of the OMSW 

fibre fermentation. Overall the fermentation dynamics coincide well with studies published 

by other groups on the kinetics of R. opacus grown on sugars (Kurosawa et al, 2015c; 

Kurosawa et al, 2013; Kurosawa et al, 2014) and the FA profile (presented in Appendix VI) 

coincided closely with the profile from the initial fermentation trial (Table 4.11).    

 

4.3.5 Engineering Lauric Acid Production in Rhodococcus opacus 

R. opacus can produce a wide range of FAs but, as mentioned above, the most 

abundant molecules are 16-18 carbons long. Previous work by Voelker and Davies (1994) 

showed that E. coli could be engineered to produce higher yields of MCFAs (primarily lauric 
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acid (C12:00)) by expressing the plant enzyme acyl-acyl carrier protein (ACP) thioesterase 

BTE (ACP-BTE). ACP-BTE is predominantly expressed in the seeds of the California Bay 

(Umbellularia californica), which are rich in laurate. Its role in FA biosynthesis is to 

terminate elongation of the fatty acid chain once it is 12 carbons long by hydrolysing the 

terminal acyl-ACP thioester, leading to release of the FA from the FA synthase machinery 

(Voelker et al, 1992). However, to significantly increasing lauric acid production and 

attenuate LCFA synthesis, ACP-BTE had to be expressed in an E. coli strain deficient in the 

β-oxidation pathway responsible for FA degradation, thereby preventing premature 

degradation of lauric acid (Voelker & Davies, 1994).  

We set out to investigate whether FA biosynthesis could be manipulated in R. 

opacus by expressing ACP-BTE during growth on OMSW fibre hydrolysate. A transcriptomic 

analysis of R. opacus RHA1 under nitrogen-limiting conditions showed that genes involved 

in TAG degradation such as lipases were ten- to sixteen-fold less abundant during 

transition-phase, when most TAG synthesis occurs (Amara et al, 2016). It is possible that 

this down-regulation of the β-oxidation pathway during TAG storage conditions would 

enable MCFAs produced by ACP-BTE to accumulate in R. opacus. 

First the ACP-BTE gene was codon optimised for Rhodococcus and synthesised as 

described in 4.2.7.4. The synthetic ACP-BTE gene was successfully cloned into pTip-QC1, an 

inducible E. coli – Rhodococcus shuttle vector, downstream of the thiostrepton inducible 

promoter TipA (for details see 4.2.7.1 and 4.2.7.5). pTip-QC1_ACP-BTE was then 

transformed to R. opacus as described in 4.2.7.9. The presence of the insert was confirmed 

by sequencing, both in E. coli after cloning and in successful transformants of R. opacus. 

Results from each of these steps are presented in Appendix VIII. Expression of ACP-BTE 

was assayed by SDS-PAGE of crude cell lysate from R. opacus cells carrying the ACP-BTE 

gene (R. opacuspTip-QC1_ACP-BTE) that were induced with thiostrepton during growth on LB. An 

enriched band was present at the expected mass (43.74 kDa) in both the soluble and 

insoluble protein fractions but was absent in the empty vector control (R. opacuspTip-QC1) 

(Figure 4.18). The enriched band was more intense in the insoluble fraction of the induced 

cultures, indicating that a large fraction of the protein may be misfolded due to 

overexpression. However, the same band was present in the soluble fraction (Figure 4.18, 

arrow), indicating that some of the protein may have been in a soluble form.     
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To evaluate whether some ACP-BTE activity was occurring an expression assay was 

carried to investigate whether cells induced to express pTip-QC1_ACP-BTE showed 

increased lauric acid production. R. opacuspTip-QC1_ACP-BTE was grown on OMSW fibre 

hydrolysate and induced with thiostrepton after 48 hours. As a negative control R. 

opacuspTip-QC1 was grown in parallel and induced. The total levels of TAG were measured 

alongside biomass production over the course of the fermentation (Figure 4.19). R. 

opacuspTip-QC1_ACP-BTE and R. opacuspTip-QC1 exhibited similar growth and TAG production rates 

for the first 48 hours. However, after induction R. opacuspTip-QC1_ACP-BTE accumulated less 

TAG and grew more slowly overall. The control strain reached a maximum TAG yield of 8.16 

±1.18 g/L after 96 hours, while R. opacuspTip-QC1_ACP-BTE took 120 hours to attain a similar 

level of TAG (8.42 ±0.62 g/L). Both strains had a final CDW of ~29 g/L but R. opacuspTip-

QC1_ACP-BTE produced between 5-18% less biomass than the control between 48 and 120 

hours. This indicated that expression of the heterologous protein incurred a minor fitness 

cost.  

 

Figure 4.18: SDS-PAGE of induced and non-induced R. opacuspTip-QC1_ACP-BTE  
I = insoluble fraction; S= soluble fraction; C = negative control (empty vector);  

1, 2 & 3 = replicate induced cultures; L = Protein ladder, in kDa; 

Expected band size (yellow arrow) = 43.74 kDa (42.92 kDa protein + 0.84 kDa hexahis tag). 

For details see 4.2.8.1. 
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The abundance of lauric acid produced by R. opacuspTip-QC1_ACP-BTE over the course of 

the fermentation was quantified as a percentage of the CDW and in terms of total 

concentration in the medium (Figure 4.20). The concentration of laurate within the cells 

remained relatively stable throughout the fermentation at around 0.02-0.04% of CDW, 

while the total concentration of laurate continued to increase proportionately with 

biomass production (Figure 4.20, ‘%CDW (ACP-BTE)’ & ‘g/L (ACP-BTE)’). Although there 

was 43% more laurate measured at 48 hours in cells carrying pTip-QC1_ACP-BTE than in 

the controls, there was a slightly greater abundance of all FAs in this strain at 24 and 48 

hours compared to the control (Figure 4.21, ‘24 h’ & '48 h’). Overall the amount of fatty 

acids produced by R. opacuspTip-QC1_ACP-BTE were comparable with the control throughout 

the fermentation and no noticeable attenuation in LCFAs or increase in lauric acid levels 

was observed after induction (Figure 4.21). Based on these results it was concluded that 

that ACP-BTE was being expressed non-functionally.   

 

 

 

Figure 4.19: Cell dry weight and TAG production over 144 hours by thiostrepton 
induced R. opacuspTip-QC1_ACP-BTE and R. opacuspTip-QC1 

 

Total cell dry weight (CDW) and TAG levels measured in R. opacuspTip-QC1_ACP-BTE (ACP-BTE) and R. 

opacuspTip-QC1 (Empty vector) grown on OMSW fibre hydrolysate supplemented with 1% VYE over 

six days. Plasmid expression was induced after 48 hours (dashed grey line). 
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Figure 4.20: Laurate (C12:0) production over time by thiostrepton induced R. 
opacuspTip-QC1_ACP-BTE and R. opacuspTip-QC1 

 

Laurate production by R. opacuspTip-QC1_ACP-BTE (ACP-BTE) and R. opacuspTip-QC1 (Empty vector) 

grown on OMSW fibre hydrolysate supplemented with 1% VYE over six days. Plasmid expression 

was induced after 48 hours (dashed grey line). Primary Y-axis: laurate as a percentage of cell dry 

weight (% CDW); Secondary Y-axis: total laurate produced (g/L).  

Figure 4.21: Time-course profile of the major long-chain fatty acids produced by R. 
opacuspTip-QC1_ACP-BTE and R. opacuspTip-QC1 

 

Percentage abundance of the major long chain fatty acids (LCFAs) in R. opacuspTip-QC1_ACP-BTE (P+) 

and R. opacuspTip-QC1 (P-) grown on OMSW fibre hydrolysate supplemented with 1% VYE over six 

days. Plasmid expression was induced after 48 hours (dashed grey line).  
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4.4 Discussion 

Growth assays with the model fermentative species E. coli were used to gain a more 

holistic understanding of OMSW fibre hydrolysate fermentability by disentangling the 

effects of nutrient limitation from substrate inhibition. Lignocellulose is typically low in 

nitrogen and phosphorus compared to first generation feedstocks and lignocellulosic 

hydrolysates often require supplementation  with nutrients to enable viable fermentation 

(Jørgensen, 2009). Identifying specifically which nutrients are limiting in the hydrolysate 

enables more cost effective and commercially viable nutrient supplements to be identified. 

The nutrient growth assays demonstrated that growth inhibition of E. coli on OMSW fibre 

hydrolysate was primarily due to a limitation in nitrogen and, to a lesser extent, phosphate 

(Figure 4.6) despite the presence of a range of inhibitory chemicals and metals (Chapter 3, 

Table 3.3). These findings suggested that growth of other fermentative microorganisms 

might also be supported by OMSW fibre hydrolysate so long as an accessible source of 

nitrogen and phosphate was supplemented.   

As was detailed in the introduction, only a limited number of species have been 

grown in monoculture on OMSW-derived sugars. Of the eight species screened in this work, 

only S. cerevisiae has previously been grown on hydrolysates of OMSW (Ballesteros et al, 

2010; Puri et al, 2013). The other seven species were selected based on their reported 

biotechnological utility. All eight species grew on OMSW fibre hydrolysate supplemented 

with 1% VYE to some degree, but there was significant variability between their relative 

productivities (Table 4.10). The poorest performing species, C. 

saccharoperbutylacetonicum (Figure 4.7) and G. thermoglucosidasius (Figure 4.9), 

exhibited strong substrate inhibition that resulted in premature entry into stationary 

phase, utilisation of less than 50% of metabolically available sugars and no product 

synthesis.  

Although further studies are needed to identify the precise cause of inhibition,  previous 

work has shown that growth of solventogenic Clostridia on lignocellulosic hydrolysates is 

primarily inhibited by formic acid, phenol and furfural (Liu et al, 2019). Formic acid could 

not be measured in the OMSW fibre hydrolysate and furfural was absent, however, 21 mM 

of vanillin, the marker inhibitor for the presence of phenolic compounds, was detected 

(Chapter 3, Table 3.3). Furthermore, the dark brown colour of the hydrolysis liquid 

indicated an abundance of tannins, which are polyphenolic compounds that can 

incapacitate enzymes by forming hydrogen crosslinks with carbonyl groups (Field & 
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Lettinga, 1992). Previous work with closely related C. acetobutylicum has shown that 

extracting phenolics and tannins from OMSW fibre hydrolysate with ethanol 

(Farmanbordar et al, 2018b) or organosolv pre-treatment (Farmanbordar et al, 2018a) 

alleviated growth inhibition. It is possible therefore that C. saccharoperbutylacetonicum is 

more sensitive to phenolic compounds than C. acetobutylicum.  

It has also been observed that Gram-positive microbes are generally more susceptible 

to tannin inhibition, possibly because the outer membrane of Gram-negatives affords 

greater protection against hydrogen bonding by polyphenols (Field & Lettinga, 1992). There 

are no publications specifically investigating the effects of lignocellulosic inhibitors on G. 

thermoglucosidasius, but as a Gram-positive it could have been affected by phenolics. R. 

opacus on the other hand is also Gram-positive but did not show signs of substrate 

inhibition. This may be because R. opacus has an unusually complex outer envelope 

composed of mycolic acids which are associated with phenol tolerance and enable it to 

grow on phenol as a sole carbon source (Henson et al, 2018). P. putida exhibited growth 

inhibition after utilising only ~63% of metabolically available sugars (Figure 4.10). However, 

P. putida strains are known for having high tolerance to aromatic compounds and phenol 

degradation capabilities (El-Naas et al, 2009; Pini et al, 2009; Wong et al, 1978). P. putida 

was therefore more likely inhibited by autoacidification on OMSW fibre hydrolysate, as 

discussed in 4.1.1.3.  

Due to significant physiological variation between the eight candidate species the 

fermentation screening conditions were kept consistent for as many variables as possible 

– the starting inoculum OD600, medium volume, nutrient levels and sampling times were 

identical and only temperature and aeration were changed to suit each microorganism. 

Growth conditions were primarily based on the optimal conditions reported for each strain 

and little species-specific optimisation was carried out beforehand. Thus, strains that grew 

relatively well but did not produce high levels of product, such as S. pombe, E. coli and P. 

putida still merit further study as their performance could likely be improved by optimising 

culture conditions.  

So far there is only a single published study in which S. pombe was grown on 

lignocellulosic hydrolysates. Tura et al, (2018) compared the growth of S. pombe to S. 

cerevisiae on sugarcane bagasse pre-treated with ionic liquids and found that S. pombe 

produced ethanol to 78% of theoretical maximum yield while S. cerevisiae produced only 

56%. Although the performance of S. pombe on OMSW fibre hydrolysate was poorer than 
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S. cerevisiae (Figure 4.13), S. pombe clearly has potential as an industrial ethanol producer. 

Further exploration of S. pombe strains could help identify superior phenotypes for 

fermenting lignocellulosic feedstocks. This has already been done using biochemical 

screening and selection to identify S. pombe strains with beneficial characteristics for 

winemaking (Benito et al, 2016).  

Similarly, E. coli LW06 exhibited very robust growth on OMSW fibre hydrolysate. 

Although the ethanol yield attained via the heterologous ethanol pathway in this strain was 

relatively poor (34% of maximum theoretical yield), E. coli is an established industrial 

microorganism with an extensive repertoire of genetic engineering tools, opening up the 

potential for advanced strain manipulation to produce a wide range of natural products 

from OMSW fibre (Jung et al, 2010; Park et al, 2018; Wang et al, 2017).  

The species that emerged as the most promising candidates for fermentation of OMSW 

fibre were R. opacus, S. cerevisiae and Z. mobilis. S. cerevisiae and Z. mobilis are the most 

widely studied and developed species for cellulosic ethanol production (Panesar et al, 2006; 

Petrovič, 2015). Their intrinsic aptitude for fermenting a wide variety of lignocellulosic 

feedstocks was further confirmed by their excellent performance on OMSW fibre 

hydrolysate: S. cerevisiae and Z. mobilis were closely tied in terms of fermentation 

efficiency, producing ethanol to about 70% of theoretical maximum with a productivity of 

~0.74 g/L.h-1 and final yield of ~18 g/L (Table 4.10).  Although promising, to ensure 

commercial viability microorganisms must be capable of producing ethanol to >90% of 

theoretical yield with a productivity of >1 g/L.h-1 and have tolerance to ethanol 

concentrations above 40 g/L (Dien et al, 2003). Attaining these yields on OMSW fibre 

hydrolysate is difficult without utilising a wider repertoire of sugars, particularly D-xylose. 

Genetic and adaptive engineering approaches have already been used to generate D-xylose 

utilising strains of Z. mobilis (Agrawal et al, 2010; De Graaf et al, 1999; Mohagheghi et al, 

2014; Zhang et al, 1995) and to enable D-xylose fermentation in S. cerevisiae  ATCC 200026, 

the strain used in this project (Smith et al, 2014). An important next step toward developing 

a bioprocess for bioethanol production from OMSW fibre would be to trial some of these 

D-xylose fermenting strains.  

R. opacus MITXM-61 was the most productive strain identified through this project, 

primarily due to its ability to efficiently and simultaneously catabolise D-glucose and D-

xylose. Kurosawa et al (2014) generated MITXM-61 through adaptive evolution of an R. 

opacus strain suspected of carrying potential D-xylose utilisation genes based on previous 
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work (Kurosawa et al, 2013). The same group were able to engineer R. opacus to metabolise 

L-arabinose (Kurosawa et al, 2015b), demonstrating that the sugar utilisation repertoire of 

MITXM-61 could be expanded even further to improve fermentation productivity. Overall 

R. opacus exhibited robust growth on OMSW fibre hydrolysate, reaching exceptionally high 

biomass density (final CDW 32.7%) and producing TAG to 72% of theoretical yield, 

equivalent to nearly half of CDW (Table 4.10). Growth on OMSW fibre hydrolysate 

produced an FA profile typical of R. opacus strains, containing an abundance of straight-

chain FAs between 16-18 carbons long (Table 4.11) (Alvarez & Steinbüchel, 2002). Different 

carbon sources and the presence of inhibitors have been shown to affect FA branching and 

abundance in R. opacus (Tsitko et al, 1999). However, the identity and abundance of major 

FAs was highly consistent with those reported in previous studies of MITXM-61 (Figure 

4.22), demonstrating that although OMSW fibre hydrolysate is a highly heterogeneous 

feedstock FA biosynthesis was not perturbed.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.22: Percentage abundance of the major fatty acids produced by R. opacus 
MITXM-61 reported in the literature compared to this project 

(Figure by author using data published by Kurosawa et al, (2014) and Fei et al, (2015)) 
 

A. Fatty acid profile of R. opacus MITXM-61 grown on OMSW fibre hydrolysate for 72 hours 

(data presented in Table 4.11). 

B. FA profile reported by Fei et al, (2015) for R. opacus MITXM-61 grown on a mixture of D-

glucose and D-xylose in 500 ml conical flasks via a two-stage batch culture (nitrogen rich 

conditions followed by nitrogen limiting conditions).  

C. FA profile reported by Kurosawa et al (2014) for R. opacus MITXM-61 grown on alkali-pre-

treated corn stover hydrolysate by batch fermentation in a 2 L fermentor.  
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Furthermore, the total TAG yield attained on OMSW fibre (15.2 ±1.1 g/L) 

corresponds well with work by Kurosawa et al, (2014) wherein MITXM-61 grown on corn 

stover hydrolysate produced a 15.9 g/L TAG. However, the overall productivity of MITXM-

61 was significantly greater on OMSW fibre (0.21 ±0.02 g/L.h-1) compared to corn stover 

(0.13 g/L.h-1) (Kurosawa et al, 2014) due to a shorter lag phase. There was a 48 hour lag 

phase before growth commenced on corn stover, (Kurosawa et al, 2014) whereas in the 

two fermentation trials carried out with R. opacus on OMSW fibre the lag phase only lasted 

~12 to 24 hours (Figure 4.11 and 4.17). Similarly, there was a ~96 hour lag phase during 

growth of R. opacus on hardwood pulp (Kurosawa et al, 2013). This demonstrates that 

OMSW fibre hydrolysate is a significantly more favourable feedstock for R. opacus 

compared to other lignocellulosic hydrolysates. 

Unlike ethanol fermentation where a high volumetric productivity is desirable, TAG 

accumulates intracellularly and attaining efficient productivity therefore requires a delicate 

balance between biomass and product synthesis.  The critical parameter for achieving this 

in oleaginous species is the C/N ratio (Alvarez & Steinbüchel, 2002). The C/N ratio for 

OMSW fibre hydrolysate supplemented with 1% VYE was calculated as 44.2, although it 

may have been slightly higher because about 4% of total YAN was inaccessible to R. opacus 

(Figure 4.17). In several studies of R. opacus Kurosawa et al (2015c; 2013; 2014) optimised 

the C/N ratio using response surface methodology (RSM), a statistical technique for 

optimising experimental methods when there are several dependent variables. The 

optimal C/N ratio determined for MITXM-61 grown on a mixture of D-glucose and D-xylose 

with (NH4)2SO4 as the sole nitrogen source was 62.3 (Kurosawa et al, 2014). TAG production 

from OMSW fibre hydrolysate could therefore be improved further by adding about 29% 

less VYE to the hydrolysate to give a C/N ratio of ~62.3. On a side note, in all relevant 

publications by the Sinskey group the C/N ratio is calculated by dividing the carbon source 

concentration in g/L by the nitrogen source concentration in g/L (Fei et al, 2015; Kurosawa 

et al, 2010; Kurosawa et al, 2015c; Kurosawa et al, 2013; Kurosawa et al, 2014). (NH4)H2SO4 

was usually used to supplement nitrogen in these studies, but this method produces 

inaccurate results when different nitrogen sources are used because the amount of 

nitrogen present varies between compounds. To compare the results from these 

publications to this study the results were converted to the true ratio of carbon to nitrogen 

using Equation 4.6 (4.2.6.5).  
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FAs produced by R. opacus have the optimal length for biodiesel production (Fei et 

al, 2015) and can also be converted to aviation fuel via a series of chemical processing steps 

(Jiménez-Díaz et al, 2016). That said, directly producing MCFAs in R. opacus would eliminate 

the need for hydrocracking and reduce the number of steps for aviation fuel production. In 

general, the possibility of developing an R. opacus strain capable of producing custom FAs 

is an intriguing concept as the ability to produce a diverse range of products within an 

integrated biorefinery provides commercial flexibility and greater overall economic 

stability. Unfortunately, our attempt to manipulate the FA profile of R. opacus toward lauric 

acid production by expressing the thioesterase ACP-BTE has so far been unsuccessful. No 

increase in lauric acid was measured (Figure 4.21) and no obvious changes in the 

abundance of other fatty acids was observed (Figure 4.20), indicating that the protein is 

likely misfolded. Further work is needed to confirm the hypothesis that overexpression of 

ACP-BTE can promote an increase in MCFA accumulation during transition-phase. The 

identity and functionality of the enriched bands observed in crude cell lysate of induced R. 

opacuspTip-QC1_ACP-BTE (Figure 4.18) need to be established. This could be done either by 

western blotting against the hexahistidine tag or by histidine tag purification of the protein 

followed by matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass 

spectrometry (MS). In-vitro acyl-COA thioesterase activity assays are also available to 

measure catalytic activity of ACP-BTE and determine if the purified enzyme is functional 

(Hunt et al, 2002; McMahon & Prather, 2014).  

Troubleshooting of ACP-BTE misfolding is also required. Heterologous protein 

expression in bacterial systems at high expression levels often leads to misfolding and 

aggregation in inclusion bodies (Kunze et al, 1995). pTip-QC1 was designed for 

overexpressing proteins for biochemical studies because Rhodooccus species can grow 

over a broad temperature range (4-35°C), which can improve expression of more complex 

protein targets (Nakashima & Tamura, 2004b). As our aim was to produce cytoplasmically 

active protein, not material for biochemical studies, it is possible that switching to a less 

efficient promoter or using a different vector will be necessary to enable functional 

expression of ACP-BTE. Furthermore, eukaryotic proteins expressed in the bacterial 

cytoplasm cannot form disulphide bridges, potentially disrupting protein integrity (de 

Marco, 2009). Analysis of putative disulphide bridges in the ACP-BTE protein sequence was 

carried out using the DiANNA web server (Ferrè & Clote, 2005) and showed three predicted 

disulphide bonds between cysteines at positions 11 – 187, 206 – 215 and 320 – 343. 
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Although this did not influence functionality when ACP-BTE was expressed in E. coli 

(Voelker & Davies, 1994) it could have contributed to misfolding in R. opacus. In general, 

expressing plant proteins in bacteria is challenging and it may be more effective to express 

a bacterial MCFA thioesterase or an autologous C12-active thioesterase. However, when 

Huang et al, (Huang et al, 2016) overexpressed four putative thioesterases from R. opacus 

PD630 in R. opacus and E. coli they found that all four increased C16:1 and C18:1 FA yields 

in E. coli but only two were effective in R. opacus, indicating that there may be greater 

regulatory complexity in its FA biosynthesis pathway.  

Over 261 genes have been implicated in TAG metabolism through transcriptomics, 

bioinformatic analyses and metabolic reconstruction (Amara et al, 2016; Holder et al, 2011) 

and recent functional genomic analyses have revealed that at least ten putative copies exist 

for many major TAG biosynthesis and β-oxidation pathway genes (Holder et al, 2011). 

Therefore even if ACP-BTE is functionally expressed, it is possible that the extensive 

redundancy and complexity of FA metabolism in this species may obfuscate any 

heterologous thioesterase activity. Previous work has shown that knocking out the major 

diacylglycerol acyltransferases (DGATs) atf1 and atf2 reduced TAG yields by 30 and 50% 

respectively, but did not eliminate TAG production entirely (Hernandez et al, 2013). Overall, 

this indicates that different isozymes are likely to be differentially regulated and contribute 

to TAG biosynthesis via highly coordinated metabolic circuits (Alvarez et al, 2019). 

Furthermore, acyl-COA synthase, the major β-oxidation pathway enzyme that was knocked 

out in E. coli expressing ACP-BTE to enable greater lauric acid production, exists as 15 

isozymes in R. opacus (Holder et al, 2011; Voelker & Davies, 1994). Disabling the β-oxidation 

pathway to increase MCFA yields is therefore probably not a viable approach in R. opacus. 

In general, manipulating the FA profile in R. opacus could pose a significant genetic 

engineering challenge, but also presents an exciting opportunity to develop this robust and 

highly productive species into a unique and valuable industrial platform.  
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Chapter 5: General Discussion  

OMSW has considerable potential as a renewable feedstock for sustainably 

producing fuels and bio-based chemicals - it is abundant, high in lignocellulose, produced 

continuously and does not directly compete with agriculture. Furthermore, integrated 

MSW biorefineries could augment operational costs with gate fees and by recycling 

inorganic MSW components. Thus far however, research into the amenability of OMSW for 

biorefining has been limited in comparison to other lignocellulosic feedstocks (Matsakas et 

al, 2017). The work presented in this thesis aimed to evaluate OMSW as a feedstock for 

bio-manufacturing and identify candidate species with promising characteristics for OMSW 

fermentation. 

The OMSW used for research purposes is typically acquired by manually sampling 

and sorting mixed MSW from local establishments (Adhikari et al, 2013; Aiello-Mazzarri et 

al, 2006; Lay et al, 1999), acquired from nearby waste treatment plants (Farmanbordar et 

al, 2018b; Ghanavati et al, 2015; Hartmann & Ahring, 2005; Jensen et al, 2011; Lavagnolo 

et al, 2018) or simply replaced with an OMSW-like material (McCaskey et al, 1994)Ma et al, 

2009(Dang et al, 2017). By contrast, the OMSW fibre used in this project was produced on 

an industrial autoclave system using a predetermined mixture of MSW, constructed 

according to national averages for the composition of MSW across the UK. Very recently, 

Althuri & Venkata (2019) used a custom mixture of organic materials, including food waste, 

yard trimmings, newspaper, cardboard, textiles and wood chips, to generate a reproducible 

and heterogeneous source of OMSW, but did not report the basis for the quantities used 

in their mixture. The approach used in this thesis enabled OMSW fibre to be produced 

reproducibly with a realistic composition that, by extension, also reflects OMSW from other 

high-income nations with similar consumption patterns. On the whole, the constructed 

OMSW fibre used throughout this PhD is more representative and of greater industrial 

relevance compared to the OMSW sources described in the literature so far for 

bioprocessing applications. 

Autoclaving is an established industrial method for MSW management that is 

implemented around the world (Wojnowska-Baryła et al, 2019). There is a general 

consensus in the literature that hydrothermal pre-treatments like autoclaving produce 

fewer inhibitors than other processes but can effectively increase cellulose accessibility in 

a variety of feedstocks (Jönsson & Martin, 2016). Work from this PhD showed that 

autoclave pre-treated OMSW was low in most major inhibitors associated with 
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lignocellulosic hydrolysates, while the major problem inhibitors furfural and 5-HMF were 

absent. Additionally, autoclaving made the cellulose in OMSW more accessible, enabling a 

relatively high hydrolysis efficiency to be achieved (75%) at an industrially relevant solids 

loading of 20%, despite the poor rheology of the lab scale hydrolysis set-up.  

Although the hydrolysis results were promising, the enzyme loading used for this 

work were highly impracticable. Cellulolytic enzymes are the most prohibitive overhead 

cost in lignocellulosic bioprocesses (Klein-Marcuschamer et al, 2012) and must be used as 

economically as possible while still ensuring efficient saccharification. Furthermore, in the 

context of a fully functioning MSW biorefinery based around the Wilson System®, 

autoclaving and hydrolysis are predicted to be the most energy intensive processes, 

respectively accounting for 42% and 32% of total heat and 41% and 0.4% of total electricity 

(Meng et al, 2019). Optimising autoclave conditions and hydrolysis methods are therefore 

vital for developing a viable bioprocess around OMSW. This will also ensure efficient 

process flow for the MSW biorefinery as whole so that margins are maximised. Any future 

research endeavours in this area should draw on the large body of work that has already 

been published on OMSW hydrolysis methodology (Jensen et al, 2011; Jensen et al, 2010; 

Li et al, 2012a; Mahmoodi et al, 2018a; Puri et al, 2013) and aim to make full use of the 

Wilson Bio-Chemical pilot rig which offers a unique opportunity for optimising OMSW 

production and pre-treatment conditions rapidly and in a scalable manner.  

 

Finding applications for waste streams is a critical but often neglected aspect of 

bioprocess development. My work showed that AD of the residual material from OMSW 

fibre hydrolysis produced greater methane yields than AD of the un-hydrolysed OMSW 

fibre. This suggests that rather than sending OMSW fibre directly to AD it is potentially 

more valuable to produce higher-value bio-products from OMSW fibre hydrolysate and use 

waste streams such as hydrolysis residuals to power biorefinery processes.  

This reasoning is further supported by a life cycle analysis for an MSW biorefinery 

based around the Wilson System® carried out by Meng et al, (2019). Their model showed 

that the energetic requirements of the entire processing plant (29.03 kWh electricity and 

660 MJ of heat) could be fully sustained from biogas produced by AD of process waste 

water and by heat recovery from incineration of hydrolysis residues, waste water sludge 

and fermentation residues (266 kWh electricity and 1,108 MJ heat) (Meng et al, 2019). 

Although the results of this LCA are encouraging, several life cycle analyses comparing AD 



Chapter 5: General Discussion 
 

 
 

185 

and incineration for energy production from OMSW draw varying conclusions about the 

efficiency and sustainability of one over the other (Di Maria & Micale, 2015; Fernández-

González et al, 2017; Tan et al, 2015). Further work is therefore required to determine 

whether AD or incineration are the best options for dealing with the various waste streams 

from OMSW bioprocessing in the context of developing a viable and sustainable MSW 

biorefinery.  

Moreover, Meng et al, (2019) did not consider the potential impacts of metal 

accumulation from various waste streams over time, such as in incineration fly ash which 

is considered a hazardous waste with limited disposal options (Margallo et al, 2015). Work 

from this PhD showed that toxic metals become concentrated in the residuals fraction and 

are relatively abundant in the liquid hydrolysate, indicating that they could also become 

concentrated in fermentation residues. Although these metals could be immobilised 

through AD and composting (Dong et al, 2013; Smith, 2009), diminishing metal supplies are 

of global concern and some metals from these waste streams have significant commercial 

value (Chojnacka, 2010). Furthermore, as discussed in Chapter 2, fluctuations in metal 

levels on an industrial scale could potentially affect fermentative microorganisms. A 

possible approach could be to detoxify and recycle metals from OMSW fibre hydrolysate 

and other bioprocess waste streams using materials designed for selective metal 

adsorption. For example, up to 70% of Ni, 40% of Zn and 25% of Cd present in residual 

material from hydrolysis of maize processing waste could be removed by circulation over a 

macroporous polyacrylamide column for 6 days (Selling et al, 2008). Alternately, a 

carbonaceous mesoporous material called Starbon®, produced using waste 

polysaccharides, can selectively and reversibly bind precious metals form a mixture of 

abundant earth metals and could be used to remove metals from OMSW hydrolysate 

before fermentation (García et al, 2015). These and other metal reclamation technologies 

should be investigated in the interest of developing a truly circular economy around MSW.  

 

Although the initial compositional analysis of the OMSW fibre identified some protein 

(3%) and oil (2%), the concentration of microbially accessible nitrogen and phosphate 

measured in the hydrolysate were suboptimal. Other studies of OMSW composition report 

highly variable protein and lipid levels, averaging 14% and 9% respectively, with the highest 

levels found in regions with high food waste production (Barampouti et al, 2019). In some 

countries the lipid fraction of OMSW is even large enough to be extracted for biodiesel 
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production (Barik et al, 2018). Because OMSW is such a heterogeneous and variable 

feedstock, an affordable and abundant nutrient source is crucial to allow fermentation 

conditions to be optimised, particularly for strains like R. opacus where the C/N ratio is 

critical for optimal performance.  

My work demonstrated that supplementing OMSW fibre hydrolysate with 1% VYE 

abolished nitrogen and phosphate limitation and promoted efficient growth of most 

microorganisms trialled in this study. On an industrial scale VYE could be substituted with 

autolysed spent yeast, a waste product that is generated in substantial volumes in the 

brewing industry. An average medium sized brewery in the UK has a batch capacity of 

1,000-2,000 L and generates thousands of Kg of spent yeast per week. Alternative 

applications of waste yeast are limited to animal feed, anaerobic digestion or fertiliser and 

offsite transport is expensive, therefore 40-70% is usually disposed directly into sewage 

systems (Kerby & Vriesekoop, 2017). Combining these two waste streams could effectively 

meet the needs of both industries and presents an appealing opportunity for circular 

economy. 

 

It was postulated that a highly robust and physiologically well-adapted species would 

be required to develop a bioprocess around OMSW fibre due to the heterogeneous, 

variable and complex nature of the feedstock. As such, a substrate-oriented screening 

approach was chosen to identify candidate species for this project. In general, the use of a 

product-oriented screening approach, in which a microorganism is selected based on its 

ability to efficiently produce a product of commercial interest, has been favoured in 

academic and industrial settings (Rumbold et al, 2010). Only a handful of publications 

report the use of a substrate-oriented approach for second-generation feedstock 

fermentation: Rumbold et al (2009; 2010) published two studies in which yeasts (S. 

cerevisiae, Pichi stipites), bacteria (Corynebacterium glutamicum, E. coli) and fungi 

(Aspergillus niger, Trichoderma reesei) were screened for the ability to ferment a range of 

lignocellulosic hydrolysates or glycerol and Lau et al, (2010) compared the fermentation 

performance of three ethanologens (Z. mobilis, S. cerevisiae and E. coli) on AFEX-pretreated 

corn stover.  

The species used in these three publications are all extensively studied for 

lignocellulosic feedstock fermentation and industrial biotechnology applications. However, 

the disparate pre-treatment chemistries and inhibitor profiles of second-generation 
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feedstocks, along with the variations in published experimental conditions like the 

concentration of sugars, nutrients, inoculum size and the type of bioreactor used, limit the 

possibility of confidently comparing the performance of a species across publications. The 

same is true of OMSW-derived feedstocks, which, as discussed above, are highly 

heterogeneous and frequently irreproducible in composition, leading to greatly varied 

fermentation profiles even when the same microorganism is used (Ballesteros et al, 2010; 

Puri et al, 2013). In general, substrate-oriented screening entails more work in the early 

stages of process development but ultimately enables each species’ intrinsic fermentation 

abilities and robustness to be more systematically and rigorously evaluated with the 

feedstock of interest, thereby also increasing the likelihood of successfully developing a 

microbial production platform (Lau & Dale, 2009; Rumbold et al, 2009; Rumbold et al, 

2010).  

 

The robustness of each microorganism trialled in this project was quantitatively 

evaluated and compared, enabling species of biotechnological significance to be selected 

based on their intrinsic ability to thrive on OMSW fibre hydrolysate. R. opacus, S. cerevisiae 

and Z. mobilis demonstrated excellent growth and produced near theoretical yields (>69%) 

of product. However, the fermentation assay developed in this project was exclusively 

carried out in conical flasks, which do not enable monitoring of critical variables (i.e. oxygen 

transfer rate (OTR) and oxygen uptake rate (OUR), CO2 production, temperature, pH) that 

are necessary to facilitate bioprocess scale-up (Neubauer et al, 2013). Scale-up is the most 

challenging step in bioprocess development and many species that do well in shake flasks 

become inviable under bioreactor conditions due sheer forces, heat transfer and mixing 

inefficiencies, temperature and pH variability and oxygen transfer limitation (Humphrey, 

1998).  

Physiology also has a significant influence on a species’ scalability and viability for 

fermenting a feedstock. For example, scaling-up aerobic bioprocesses is more challenging 

than fermentations with anaerobes or facultative anaerobes like Z. mobilis and S. 

cerevisiae. Shake flasks have a well-defined gas/liquid mass transfer area that mostly 

enables oxygen transfer independently of changes in medium composition, making them 

excellent for preliminary high-throughput fermentation screens (Büchs, 2001). However, 

fermentation broth viscosity limits oxygen solubility and under bioreactor conditions any 

changes in hydrodynamics will reduce oxygen transfer into the system (Garcia-Ochoa et al, 
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2010). Such changes are influenced by operational conditions, physicochemical properties 

of the culture (i.e. density, viscosity, surface tension), bioreactor geometry and cell density 

(Paulová & Brányik, 2013). R. opacus has a highly aerobic metabolism and growth in stirred 

tank bioreactors requires at least 60% dissolved oxygen to ensure efficient growth 

(Kurosawa et al, 2014). The sensitivity of TAG biosynthesis to aeration was observed when 

R. opacus cultures grown in shake flask assays with 40 ml instead of 10 ml OMSW fibre 

hydrolysate exhibited slower rates of growth and TAG accumulation. High culture densities 

are required for viable TAG production in R. opacus, therefore it is critical that dissolved 

oxygen levels can be efficiently sustained throughout fermentation.  

Aerobic fermentations are not impossible to engineer (the antibiotic fermentations 

developed in the 1940’s were all highly aerobic processes (Humphrey, 1998)), however 

aerobic bioreactors such as airlift fermentors and bubble columns require significant power 

consumption which contributes to operating costs (Garcia-Ochoa & Gomez, 2009). 

Therefore in general, anaerobic or microaerobic processes can be more reliably scaled-up 

and economically operated. Although all three candidate species demonstrated 

considerable promise for biofuel and chemical production from OMSW fibre, bioprocess 

scalability must be validated at higher volumes with online monitored bioreactors in order 

to fully assess their industrial viability (Büchs, 2001; Neubauer et al, 2013). Furthermore, 

technoeconomic and life cycle analyses are valuable tools for comparing different microbial 

platforms and should be used to comprehensively evaluate the practicability of each 

species in the context of an integrated MSW biorefinery (Julio et al, 2017).  

 

Finally, efficient downstream processing is of particular importance for ensuring 

bioprocess viability. Ethanol is secreted into the medium and can be isolated relatively 

rapidly and economically by distillation so long as concentrations of at least 4% w/w are 

obtained (Huang & Zhang, 2011). Conversely, extracting TAG from intracellular lipid 

inclusions requires extensive purification for which industrial scale technologies are 

currently underdeveloped and uneconomical. Industrial methods for TAG purification from 

microbial biomass have been extensively reviewed by Dong et al, (2016) who highlight the 

critical importance of efficient cell disruption. Viable disruption technologies should release 

lipids effectively while avoiding the formation of stable emulsions that impede phase 

separation and eliminating cellular debris which reduces extraction efficiency at high cell 

densities. Effective lipid extraction is also a limiting step, requiring nonpolar solvents that 
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are water-immiscible but also volatile enough to be economically recovered by low-energy 

phase-separation and evaporation (Dong et al, 2016).  

On the whole methods for extracting lipids from wet microbial biomass require 

further development to be practical for industry. Any potential technologies must also be 

evaluated in conjunction with other downstream processing necessary for transforming 

extracted triglycerides into biodiesel and other products (Lestari  et al, 2009). Engineering 

the TAG pathway to produce more valuable fatty acids could offer a way balance out the 

higher costs of product purification. However, our current understanding of how TAG 

metabolism is regulated in R. opacus is incomplete and the biochemistry of key processes, 

such as how sugar metabolism is coupled to lipid synthesis, are still unclear (Alvarez et al, 

2019). Additionally, the high level of functional redundancy among proteins in this pathway 

limits the options for systematic studies (Holder et al, 2011).  

To our knowledge this is the first time an attempt has been made to manipulate FA 

chain length in R. opacus. However, as discussed in Chapter 4, further work is needed to 

resolve the non-functional expression of ACP-BTE. Alternative engineering targets and 

approaches should also be explored. Although R. opacus is a non-model organism, an 

expanded repertoire of genetic engineering tools has become available in recent years, 

including a library of promoters, reporters, selection markers and plasmids, as well as 

genomic integration cassettes. Neutral target integration sites to enable stable genomic 

integration of heterologous genes have also been identified (DeLorenzo et al, 2018). 

Interestingly, CRISPR interference (CRISPRi) (Larson et al, 2013) has recently been 

developed for targeted gene repression in Rhodococcus (DeLorenzo et al, 2018) opening 

up the possibility of disabling functionally redundant enzymes in the TAG metabolic 

network.  

 

There is an urgent need for innovative and holistic waste management systems to cope 

with increasing volumes of MSW, mitigate the environmental impacts of poor waste 

disposal and enable our finite resources to be recycled. At the same time, a pressing search 

is underway to find viable renewable alternatives to petroleum that will ensure the long-

term sustainability of our industries. Developing an integrated biorefinery around MSW has 

the potential to significantly alleviate the social, economic and environmental burdens of 

inadequate waste management. This thesis has demonstrated that autoclave pre-treated 

OMSW fibre can be used as a feedstock for producing renewable fuels and chemicals. 
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Several biotechnologically useful microorganisms were identified that are intrinsically well 

suited for fermenting OMSW. These species are promising candidates for the development 

of OMSW-based biorefining processes and provide a foundation for further studies that 

aim to valorise this underexplored feedstock. Future work should focus on evaluating the 

performance of candidate species in bioreactors under scalable conditions and at greater 

volumes. Furthermore, bioprocess viability should be investigated through LCAs and TEAs 

to determine which microbial platform would be most viable in an OMSW biorefinery. 
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Appendices 

Appendix I: Percentage composition of constructed OMSW fibre 

Table AI-1: Components of OMSW fibre were measured by a range of established 

methods. For details see materials and methods in Chapter 2. Oil and protein were 

measured separately but are ethanol and water soluble, respectively, and are thus shown 

as a fraction of non-structural components extracted by water or ethanol. A breakdown of 

the monosaccharides measured in the hemicellulose fraction are given as percentages of 

the total dry weight of fibre. All data are averages of at least triplicate analyses. ±SD = 

Standard deviation of minimum triplicate measurements.  

Glu = Glucose; Xyl = Xylose; Man = Mannose; Fuc = Fucose; Ara = Arabinose; Rha = 

Rhamnose; Gal = Galactose; GalA = Galacturonic acid. n/a = not applicable. 

 

Component 
Percentage of 
total dry mass 

(%) 
±SD 

Cellulose 37.61 2.73 

Hemicellulose   

Fuc 0.02 0.002 

Ara 0.27 0.02 

Rha 0.06 0.002 

Gal 0.41 0.02 

Glu 1.10 0.08 

Xyl 1.34 0.03 

Man 0.95 0.10 

GalA 0.10 0.02 

Total: 4.25 0.14 

Lignin 15.78 0.37 

Ash 14.74 1.47 

Metals 1.33 0.26 

Extractives (water)   

Protein 3.23 0.40 

Extractives (other) 5.92 n/a 

Total: 9.15 2.62 

Extractives 
(ethanol) 

  

Oil 1.72 0.25 

Extractives (other) 6.23 n/a 

Total: 7.95 0.92 

SUM: 90.83 4.21 

Other (remaining): 9.17 n/a 
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Appendix II: Concentration of metals measured in constructed OMSW fibre 

Table AII-1: Metals were measured by ionisation coupled plasma mass 

spectrometry (ICPMS) against Agilent certified multi-element environmental calibration 

standard No. 5183-4688. Note that units change as concentrations range from mol/Kg to 

µmol/Kg.  

±SD = Standard deviation of triplicates. n/d = Not detected. 

 

Metal Concentration ±SD Units 

Ca43 1.03 0.12 mol/Kg 

Ca44 1.06 0.14 mol/Kg 

Al 166.90 27.50 mmol/Kg 

K 66.53 6.44 mmol/Kg 

Fe 62.44 28.48 mmol/Kg 

Na 57.48 5.43 mmol/Kg 

Mg 44.44 6.00 mmol/Kg 

Zn 2.47 1.65 mmol/Kg 

Mn 0.76 0.06 mmol/Kg 

Ni 0.33 0.25 mmol/Kg 

Cu 0.33 0.06 mmol/Kg 

Ba 0.16 0.02 mmol/Kg 

Cr 0.11 0.01 mmol/Kg 

V 0.04 0.01 mmol/Kg 

Pb 0.01 0.00 mmol/Kg 

Sb 0.01 0.00 mmol/Kg 

V 39.98 5.08 µmol/Kg 

Pb 13.77 3.10 µmol/Kg 

Sb 10.39 0.63 µmol/Kg 

Co 9.29 0.87 µmol/Kg 

As 1.20 0.66 µmol/Kg 

U 0.46 0.09 µmol/Kg 

Cd 0.30 0.09 µmol/Kg 

Tl 0.03 0.02 µmol/Kg 

Th n/d  n/d   -  

Mo n/d  n/d   -  

Ag n/d  n/d   -  

    
    

    

  

 
 
 
 
 
  

 



Appendices 
 

 
 

193 

Appendix III: Shannon Index 

 
 

 
Figure AIII-1: Shannon index plot (measure of sequencing depth) for reads from 

microbial community sequencing (for details see Chapter 3, 3.2.8.2) 
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Appendix IV: Taxonomic Tables of AD Community Analysis 

 
Table AIV-1: Taxonomic abundance to the phylum level for microbial communities 

fed with OMSW fibre (MFW.1, MFW.2) and residuals from OMSW fibre hydrolysis (MFW.3, 
MFW.4) after 43 days of anaerobic digestion with OMSW fibre or residuals, based on 
groupings of 16s rRNA sequences. For details see Methods in Chapter 3 (3.2.8.2).  
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Appendix V: Screening of Schizosaccharomyces pombe strains 

 
Schizosaccharomyces pombe strains were grown overnight in YES medium at 32°C 

with shaking at 200 rpm. Cells were washed and resuspended in water to give a final 
OD600 of 0.4. 5 µl of this suspension was transferred to a well in an optical plate well 
containing 195 µl of MSW fibre hydrolysate supplemented with 1% vitamin-enriched yeast 
extract and 40 mM MOPS buffer. Plates were wrapped in Parafilm and then incubated 
with shaking at 200 rpm for 24 hours.  
  

Negative control (-) :  MSW fibre hydrolysate supplemented with 1% vitamin-enriched 
yeast extract and MOPS buffer. 5µl water instead of cells.  
 
After 24 hours 10 ul of broth was collected and analysed for ethanol content by GC-MS as 
described in Chapter 4 (4.2.6.2). Strain JB953 produced the highest ethanol titre and was 
selected as the strain for this project.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

JB758
(DJ32)

JB760
(DJ34)

JB841
(DJ42)

JB858
(DJ59)

JB864
(DJ62)

JB873
(DJ68)

JB953
(DJ125)

JB50
(DJ215)

CONTROL

Et
h

an
o

l (
%

v/
v)

Strain

Table AV-1: Ethanol production by eight Shizosaccharomyces 
pombe strains grown on MSW fibre hydrolysate over 24 hours



Appendices 
 

 
 

199 

Appendix VI: Sugar fermentation data for each species 
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Appendix VII: Fatty acid profile of Rhodococcus opacus MITXM-61 grown in 40 ml 

OMSW fibre hydrolysate supplemented with 1% vitamin-enriched yeast extract   

 
Table AVII-1: Fatty acid percentages are shown by dry weight (%CDW). ±SD = 

Standard deviation of triplicate measurements. Samples analysed by GC-MS as described 
in Chapter 4, 4.2.6.6. Note C:21 was used as an internal standard. For details see Chapter 
4, 4.2.4.3. 
 

  C10:0 C11:0 C12:0 C13:0 C14:0 

Time  mg/mg ±SD mg/mg ±SD mg/mg ±SD mg/mg ±SD mg/mg ±SD 

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

12 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

24 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

48 0.0000 0.0000 0.0000 0.0000 0.0553 0.0537 0.1406 0.1148 1.5268 1.1185 

72 0.0000 0.0000 0.0000 0.0000 0.1239 0.1854 0.0712 0.0267 0.6346 0.2291 

96 0.0000 0.0000 0.0000 0.0000 0.0156 0.0271 0.1095 0.0306 0.9582 0.2228 

120 0.0000 0.0000 0.0000 0.0000 0.0264 0.0236 0.0909 0.0113 0.8172 0.0808 

144 0.0000 0.0000 0.0000 0.0000 0.0421 0.0308 0.1137 0.0129 1.0084 0.1498 

  C14:1 C15:0 C15:1 C16:0 C16:1 

Time  mg/mg ±SD mg/mg ±SD mg/mg ±SD mg/mg ±SD mg/mg ±SD 

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.5953 0.2960 0.0000 0.0000 

12 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.7578 0.1741 0.0000 0.0000 

24 0.0000 0.0000 -0.0506 0.0876 0.0000 0.0000 -0.4624 0.2295 -0.0835 0.1446 

48 0.0835 0.1147 2.7138 1.7041 0.3998 0.3050 12.5696 5.7802 5.5867 3.6005 

72 0.0354 0.0363 1.4581 0.5824 0.1948 0.0518 6.4728 2.7202 2.4316 1.0668 

96 0.0857 0.0178 2.9188 0.7256 0.3815 0.0945 10.8334 2.4540 4.1823 0.9744 

120 0.0778 0.0238 2.3915 0.2318 0.3348 0.0488 9.3328 0.8606 3.5431 0.3776 

144 0.1075 0.0144 2.8352 0.4694 0.4121 0.0764 11.0421 1.5939 4.2563 0.6324 

  C17:0 C17:1 C18:0 C18:1 C18:2 

Time  mg/mg ±SD mg/mg ±SD mg/mg ±SD mg/mg ±SD mg/mg ±SD 

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

12 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2423 0.4196 0.0000 0.0000 

24 -0.1290 0.1336 -0.1942 0.1795 -0.1057 0.0923 -0.3936 0.2847 0.0000 0.0000 

48 3.3730 1.2254 3.7856 1.8083 1.7739 0.4948 6.7310 2.4881 0.0080 0.0092 

72 2.5798 1.0960 1.8915 1.1609 1.4522 0.5750 3.5225 1.6631 0.0035 0.0061 

96 4.6734 0.9404 5.8771 1.4805 1.7125 0.2841 6.7788 1.2236 0.0000 0.0000 

120 3.8125 0.1817 5.1326 0.5151 1.4462 0.0469 6.1025 0.5956 0.0000 0.0000 

144 4.4275 0.6672 6.1853 1.0521 1.6430 0.2666 7.3095 0.8141 0.0035 0.0071 

  C18:3n6 C18:3n3 C20:0 C20:1 C20:2 

Time  mg/mg ±SD mg/mg ±SD mg/mg ±SD mg/mg ±SD mg/mg ±SD 

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

12 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

24 0.0000 0.0000 -0.0340 0.0589 0.0000 0.0000 -0.0196 0.0339 0.0000 0.0000 

48 0.2935 0.0486 0.3340 0.1620 0.3913 0.1488 0.0515 0.0506 0.0495 0.0714 

72 0.2940 0.0946 0.2259 0.1058 0.3437 0.1666 0.0753 0.0664 0.0090 0.0155 

96 0.2940 0.0484 0.5985 0.1967 0.1738 0.0613 0.1813 0.0946 0.0392 0.0679 

120 0.2260 0.0470 0.5373 0.1311 0.1300 0.0107 0.1533 0.0589 0.0068 0.0118 

144 0.2579 0.0436 0.5787 0.0963 0.1609 0.0552 0.1848 0.0515 0.0225 0.0261 
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  C21:0 C20:4 C20:5 C20:3 C22:0 

Time  mg/mg ±SD mg/mg ±SD mg/mg ±SD mg/mg ±SD mg/mg ±SD 

0 -71.8279 21.1205 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

12 163.0790 17.5048 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

24 -44.0357 4.9847 0.0000 0.0000 0.0000 0.0000 -0.5388 0.9333 -0.2535 0.4391 

48 6.6620 0.6528 0.0168 0.0290 0.0112 0.0194 0.0038 0.0065 0.2917 0.1160 

72 3.4187 0.3890 0.0000 0.0000 0.0105 0.0182 0.1182 0.2047 0.1684 0.1545 

96 5.3591 0.1950 0.0790 0.1369 0.0000 0.0000 0.0000 0.0000 0.1458 0.0349 

120 5.2295 0.0951 0.0854 0.1479 0.0000 0.0000 0.0393 0.0681 0.1020 0.1054 

144 5.4938 0.5262 0.0000 0.0000 0.0161 0.0321 0.0000 0.0000 0.1091 0.0851 

  C22:1 C22:2 C22:6 C23:0 C24:0 

Time  mg/mg ±SD mg/mg ±SD mg/mg ±SD mg/mg ±SD mg/mg ±SD 

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

12 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

24 -0.4477 0.7755 -0.9977 1.7281 0.0000 0.0000 -0.3177 0.5503 -0.1384 0.2398 

48 0.0133 0.0230 0.0113 0.0196 0.1225 0.1101 0.0615 0.1065 0.0048 0.0083 

72 0.0000 0.0000 0.0356 0.0617 0.2248 0.1357 0.0804 0.0705 0.0000 0.0000 

96 0.0000 0.0000 0.0565 0.0625 0.1285 0.0372 0.0599 0.1038 0.0000 0.0000 

120 0.0000 0.0000 0.0475 0.0823 0.1016 0.1196 0.0524 0.0908 0.0000 0.0000 

144 0.0313 0.0625 0.0361 0.0431 0.0768 0.0611 0.0000 0.0000 0.0000 0.0000 
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Appendix VIII: Cloning of ACP-BTE into pTip-QC1 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure AVIII-1: PCR linearization of pTip-QC1 and ACP-BTE 

PCR was carried out as described in Chapter 4, 4.2.7.2.  

A: Linearised vector pTip-QC1. Expected size = 8,384 bp; 

B:  Negative control – pTip-QC1 without addition of Phusion polymerase; 

C: Linearised construct ACP-BTE, isolated by PCR from pMK-RQ. Expected size = 1,191 bp; 

D: Negative control – pMK-RQ without addition of Phusion polymerase; 
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Figure AVIII-2: Sequence alignment of the MCS region of pTip-QC1_ACP-BTE purified 

from E. colipTip-QC1_ACP-BTE  

Sequencing was carried out as described in Chapter 4, 4.2.7.2. Sequence alignment 

against the expected vector backbone was carried out using Clustal Omega Multiple 

Sequence Alignment.  

Row 1: Expected sequence (sequence starts 3,753 bp upstream and ends 4,246 bp 

downstream of insert ACP-BTE).  

Row 2: Sequencing results, forward primer. 

Row 3: Sequencing results, reverse primer.  
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Figure AVIII-3: Sequence alignment of the MCS region of pTip-QC1_ACP-BTE purified 

from R. opacuspTip-QC1_ACP-BTE  

Sequencing was carried out as described in Chapter 4, 4.2.7.2. Sequence alignment 

against the expected vector backbone was carried out using Clustal Omega Multiple 

Sequence Alignment.  

Row 1: Expected sequence (sequence starts 3,753 bp upstream and ends 4,246 bp 

downstream of insert ACP-BTE).  

Row 2: Sequencing results, forward primer. 

Row 3: Sequencing results, reverse primer. 
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Figure AVIII-4: PCR amplification of the MCS of pTip-QC1_ACP-BTE purified from of R. 
opacuspTip-QC1_ACP-BTE  

Bands in lanes 1, 2 and 3 are PCR products amplified from plasmids purified from R. 
opacus pTip-QC1_ACP-BTE. Expected size for plasmids with insert = 1,587 bp; Expected size 

for empty vector = 529 bp; As controls plasmids pTip-QC1_ACP-BTE and pTip-QC1 
originally purified from E. coli were run in parallel.  
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Appendix IX: Biochemical steps in the TAG biosynthesis pathway of oleaginous 

Rhodococcus species 

The biosynthesis of triacylglycerol (TAG) is shown below (adapted from Holder et al, 2011). 

Synthesis starts with the precursor acetyl-COA (initiation) which is condensed with malonyl-COA 

and propionyl-COA by dedicated fatty acid (FA) synthases that produce fatty acids of varying carbon 

chain lengths (elongation). To produce a molecule of triacylglycerol (TAG), diacylglycerol is 

condensed with three FA chains. When the cell enters a state of starvation, TAG is broken down via 

the ß-oxidation pathway, in which the TAG molecule is split into its constituent FAs and a glycerol. 

Some FAs are elongated further and transferred to the fatty acid synthase II (FAS II) system and 

polyketide synthesis (PKS). Alternately, they can be phosphorylated to produce phospholipids that 

make up the cell membrane.   
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Index of Abbreviations 

 
ACP Acyl Carrier Protein 

ACP-BTE Acyl-acyl Carrier Protein Thioesterase BTE 

AD Anaerobic Digestion 

BMP Biomethane Potential 

C/N Carbon to Nitrogen ratio 

C:D Lipid number (Carbon atoms to Double bonds) 

CCR Carbon Catabolite Repression 

CDW Cell Dry Weight 

CN Cetane Number 

CoA Coenzyme A 

COD Chemical Oxygen Demand 

CSL Corn Steep Liquor 

DGAT Diacylglyerol Acyltransferase 

ED Entner-Dourdoroff pathway 

EDTA Ethylenediaminetetraacetic acid 

FA Fatty Acid 

FAMES Fatty acid methyl esters 

FPU Filter Paper Units 

GC-FID Gas Chromatography with Flame Ionisation Detection 

Glu D-glucose 

h Hours 

HPAEC High-Performance Anion Exchange Chromatography 

ICP-MS Ionisation-coupled Plasma Mass Spectrometry 

IPTG Isopropyl-β-D-thiogalactoside 

JCat Java Codon Adaptation Tool 
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L-Arg L-Arginine 

LB Luria-Bertani Medium 

LCFAs Long-Chain Fatty Acids 

M.I.C. Minimum Inhibitory Concentration 

MBTH 3-methyl-2-benzothiazolinonehydrazone 

MCFAs Medium-Chain Fatty Acids 

MCS Multiple Cloning Site 

Min. Minutes 

MOPS 3-(N-morpholino)propanesulfonic acid 

MSW Municipal Solid Waste 

OD600 Optical Density at 600 nm 

OMSW Organic fraction of Municipal Solid Waste 

PAN Primary Amino Nitrogen 

PCR Polymerase Chain Reaction 

RCM Reinforced Clostridial Medium 

RM Rich Medium 

RT Room Temperature 

SCFAs Short-Chain Fatty Acids 

SHF Separate Hydrolysis and Fermentation 

SSF Simultaneous Saccharification and Fermentation 

TAG Triacylglycerol 

TS Total Solids 

TSB Tryptic Soy Broth 

UPLC-MS 
Ultra-Performance Liquid Chromatography (UPLC) with Mass 
Spectrometry (MS). 

VYE Vitamin-enriched Yeast Extract 

x g Times gravity, equivalent to Relative Centrifugal Force (RCF) 



Index of Abbreviations 
 

 
 

210 

Xyl D-xylose 

YAN Yeast Available Nitrogen 

YES Yeast Extract with Supplements 

YPD Yeast Peptone Dextrose medium 

5-HMF 5-Hydroxymethylfurfural 

% v/v Percentage Volume by Volume 

% w/v Percentage Weight by Volume 

±SD Standard Deviation (positive or negative relative to the mean) 
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