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Abstract

Full knowledge of the entanglement properties of quantum systems

can be used to identify different phases in condensed matter. Quan-

tum correlations serve as a fingerprint for universal behaviours, lead-

ing to the discovery of new phases and new tools for probing them.

In this thesis we use quantum correlations, as witnessed by the entan-

glement spectrum of a bipartitioned state, to probe the phases and

behaviours of various one-dimensional quantum systems. In an era

when novel quantum technologies are at the forefront of research it

is important to find new models and new methods that may be ap-

plicable to the field. This thesis is a composition of two main works.

The first is a study of a topological phase with non-local couplings,

where we find that protected midgap states are split from zero en-

ergy whilst retaining their topological properties. The second aims to

quantify the applicability of a known approximate method through

the optimality of its entanglement spectrum. We determine bounds

that confirm regions of applicability and suggest a new model that is

by construction always optimal.
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Chapter 1

Introduction

1.1 Motivation

The landscape of quantum technologies is currently a very active, exciting area

of physics. It brings together scientists from theoretical and experimental back-

grounds in attempt to design and harness technologies that are unattainable with

classical physics alone. This is not an entirely novel idea, for example semicon-

ductors are quantum devices that have been used in electrical devices for around a

century. However, modern quantum technologies rely on the direct manipulation

of quantum states for some overriding purpose. There are two key technologies

that are in mind throughout this thesis: quantum computation and quantum

simulation.

A quantum computer differs from a conventional computer due to the ma-

nipulation of quantum bits rather than classical bits. Where a classical bit takes

values {0, 1}, qubits are stored in entangled quantum states and takes superpo-

sition’s of 0’s and 1’s, i.e. for a qubit built from a two-level system it can take

any point between 0 and 1 that lie on the surface of a sphere extending into the

complex plane. Exploiting this freedom, the quantum computer performs better

than a classical computer for a certain set of specified tasks [5, 6, 7].

At the heart of this search is finding physical systems that can support the

existence and manipulation of qubits. Due to the diversity of the field, there

are many different flavours of quantum computer that may prove successful. A

challenge for all flavours of quantum computation is finding quantum states that

1



1. INTRODUCTION

are robust to small perturbations with long coherence times [8] – without this,

the state would collapse onto a classical state and we lose the computational

advantage of quantum mechanics. One contender uses ideas from topology, and

has been the focus of intense research for the past couple of decades. This is with

good reason, when a state is in a topological phase it receives a level of protection

and robustness not afforded to other states. Fundamental to the existence of

a topological phase is the special patterns of entanglement that they are built

from [9, 10, 11]. By exposing its topological phase, it was suggested in [12] that

protected qubits could be engineered in 1D. These systems are inherently simpler

than those in higher dimensions and there has been success in their engineering

through trapped ion systems [13, 14]. The work in this thesis is motivated in part

by this search.

The aim of quantum simulation is to efficiently model complex quantum sys-

tems using other controllable quantum systems [15]. It was suggested by Feyn-

man [16] that to do so computationally one would require a quantum computer.

Though there has been an effort in simulating quantum systems both classi-

cally [17] and using quantum devices [18], it is important to develop new ideas for

simplifying the complexity of known problems. One feature of interacting quan-

tum systems is an exponentially growing Hilbert space required to completely

describe them. Non-interacting systems have the advantage that the complexity

in describing the Hilbert space grows linearly with the number of particles in the

system. By determining when an interacting system can be accurately described

by a free one opens up the possibility of a more efficient modelling of complex

quantum states [19], whilst compressing the amount of information required for

a full description.

The overall approach of the thesis uses the underlying quantum correlations

of systems to probe characteristics that are desirable – the correlations are a

result of entangled modes, the structure of these modes contains universal infor-

mation about the state. By focussing on one-dimension, numerical analysis can

often be supported by analytical calculations that would not be feasible in higher

dimensional systems.

2



1.2 Structure of thesis

1.2 Structure of thesis

We begin in Chapter 2 by reviewing the different orders (or phases) and the struc-

ture of correlations in quantum systems. Quantum correlations are fundamental

to expose such a variety of exotic phases that we know exist. Systems with inher-

ent topological order are an example of this, for which the quantum Hall effect

is a paradigmatic model. The entanglement spectrum is a set of energy levels

that describe the entanglement between parts of a system, where the low-lying

levels contain a ‘signature’ of the phase. This spectrum is used to probe the

properties of different models in the later Chapters. Of particular importance is

the distinction between single-particle entanglement spectra and the full many-

body spectra. When there exists a single-particle description then the properties

of a quantum state can be efficiently calculated. We then introduce the Kitaev

chain as a topological free-fermionic model that can be used in the application

to quantum technologies. We review its topological properties and the presence

of Majorana zero modes in order to motivate further study in the field.

In Chapter 3 we introduce a generalisation to the Kitaev chain, the extended

Kitaev chain, where long-range couplings are added. The choice in model is mo-

tivated through the development of engineered quantum systems that have been

shown to have this property [20]. In order to probe the model directly we seek

analytical solutions through a generating function method. From this method it

is possible to extract information about edge mode energy, its localisation, and

conditions for the existence of the topological phase. Following this, we study its

entanglement spectrum in comparison to the local Kitaev chain to determine the

signature of long-range couplings on a non-local model.

In Chapter 4 we move away from topology and include interactions between

particles to find when free fermions offer a good approximation to an interacting

model. A well-known method for approximating complex systems as free can

be found in density functional theory. This theory has received much success,

however, it is an approximate method and often fails to faithfully reproduce the

correlations of a quantum state. To make this quantitative, we introduce the

interaction distance as a diagnostic tool to probe its applicability. This tool di-

agnoses the entanglement spectrum as its primary objective and, as a byproduct,

3



1. INTRODUCTION

it gives the optimal entanglement model with quantum correlations as close as

possible to the interacting one.

Finally, in Chapter 5 the thesis is concluded, drawing on important findings

from all studies in support of the overall motivation that is in the advancement

of quantum technologies.

4



Chapter 2

Background

2.1 Introduction

It is the aim of this Chapter to introduce some of the key ideas that will be

discussed in the remainder of the thesis. We begin by briefly introducing the

different types of phases that we may explore when studying quantum matter.

This begins with phases with orders described by Landau symmetry breaking and

extends to those with a new kind of order: topological order. We then review what

is known about correlations in free-fermionic and many-body systems, in order

to motivate the entanglement spectrum as a tool for probing different phases.

The entanglement spectrum is built from the weights of entangled modes in a

bipartitioned state and contributes universal information about the state. It has

been used as a fingerprint to characterise different phases of matter and will be

an invaluable tool throughout this thesis. There is an emphasis on the spectra of

both free and interacting models, as the distinction is important in the definition

of the interaction distance that is defined and used in Chapter 4.

We then introduce an example free fermion model – the Kitaev chain – that

displays a topological phase for some choice of parameter values. Interestingly,

this model can derived by transformation from an interacting model. However,

by modelling it as a non-interacting model we are able to uncover features that

would be otherwise elusive. Topological systems are currently receiving a lot of

attention due to their possible application in quantum technologies. We review
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what makes the system topological, the existence of midgap Majoranas and a non-

trivial invariant, as motivation for the work in Chapter 3 where we generalise the

Kitaev chain and probe its topological features.

2.2 Quantum phase transitions, topological or-

der, and symmetry protected phases

2.2.1 Landau symmetry breaking

At its core, condensed matter physics relies on the principle of emergence. Differ-

ent orderings and configurations of particles are necessary to explain and engineer

the large number of different phases that are already known. Consider a simple

example: a collection of particles that form a liquid. When above a critical tem-

perature T > TC (and with weak interactions between particles) the particles are

organised with a random distribution. The system and state possess a continuous

translational symmetry as any particle displacement will leave the overall system

unchanged. At the critical temperature T = TC the particles undergo a transition

and form a crystal structure for T < TC . Now, only when particle displacement is

by an integer number of lattice spacings does the system remain unchanged, so the

system has a discrete translational symmetry. This is an example of spontaneous

symmetry breaking, described by Landau’s symmetry breaking theory [21, 22].

Importantly, the change in symmetry indicates a phase transition from a liquid

to a crystal order. The transition is characterised by a local observable, or local

order parameter, m, that has an expectation value of 1 in an ordered phase and 0

in an unordered phase [23]. In response to the change in the order parameter the

state reduces its symmetry to minimise the overall energy, whilst the equations

governing the system (the Hamiltonian) retain the full continuous translational

symmetry. The type of transition depends on how the free energy changes at the

critical temperature. For example, in a first order transition the free energy is dis-

continuous at the critical temperature, whereas for a second order (or continuous)

phase transition the derivative of the free energy is discontinuous at TC .

When explicitly describing a quantum phase transition we assume that the

transition is driven by quantum fluctuations only, at T = 0. In this case only

6



2.2 Quantum phase transitions, topological order, and symmetry
protected phases

the ground state of the Hamiltonian is of interest. Landau’s symmetry break-

ing describe the phase transition, for example a superfluid is described by U(1)

symmetry breaking [24]. Of particular importance are second order quantum

phase transitions where correlations become infinite ranged. This is interesting

as microscopic details of the system can be ignored at the transition and Landau

theory predicts universal behaviour that can be precisely calculated [24]. The uni-

versal behaviours depend on the symmetries present and models with the same

symmetries fall into the same universality classes.

For decades it was believed that Landau’s symmetry breaking captured all

orders in materials and all continuous phase transitions. However, experimental

and theoretical efforts in the late 1980’s evidenced phases of matter that are not

characterised by a local order parameter and symmetry breaking. Further, there

exist universal properties of these new phases that are beyond Landau theory.

2.2.2 Topological Order

In this section we will introduce topological order, using an example from the

beginning to help motivate the importance of it and its relevance to experiments.

States with topological order are defined as gapped states, where there exists a

finite gap between the ground state and first excited state, with long-range en-

tanglement, i.e. they cannot be deformed into a trivial state by local unitary

transformations [25]. The low energy physics is described by topological quan-

tum field theories [26] and phases are identified by ground state degeneracy on

any manifold, factionalised statistics (e.g. non-integer charge), and robustness to

deformations of the Hamiltonian that do not result in the energy gap between

the ground state and first excited state closing. On the other hand, there exist

states with short-range entanglement and phases that are not described by Lan-

dau symmetry breaking. In these cases the topological groundstate is protected

by a symmetry and is unique on any closed manifold. They are characterised by

a topological invariant that is robust to deformations of the Hamiltonian, pro-

viding they do not close the energy gap or break the symmetry protecting the

phase. These are symmetry protected topological phases and will be discussed
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with another example later. Note that topologically ordered states may also have

a topological invariant, though not in all cases.

In 1987, Kalmeyer and Laughlin [27] introduced the chiral spin state in an

attempt to understand high temperature superconductivity. It was found that

the state had broken time reversal and parity symmetries, whilst retaining spin

rotation symmetry [28]. However, in contrast to what is predicted by Landau

theory, there exist many different chiral spin states with the same symmetry [29].

Thus, there must be some other underlying order not accounted for by symmetry

alone. Though they do not provide a complete understanding of high tempera-

ture superconductors, chiral spin states are closely related to the experimentally

observed quantum Hall state [30] that has topological order [31]. To introduce

topological order we now study the quantum Hall effect in more detail, beginning

with the classical Hall effect [32].

The classical Hall effect

Consider electrons on an infinite conducting strip of width Ly in the x− y plane,

with a magnetic field B applied in the ẑ direction. If a current I is allowed to

flow in the x̂ direction then the magnetic field will have the effect of inducing

a voltage VH in the ŷ direction, where VH is the Hall voltage. In order for an

electron to travel through the strip when the current is flowing in equilibrium,

the Lorentz force due to the magnetic field should equal the force due to the Hall

voltage VH , i.e.

e

c
veB =

VHe

Ly
, (2.1)

where ve is the electron velocity, e is electron charge, and c the speed of light.

The current applied in the x̂ direction is I = ρeveLy, with ρ the electron density.

Then, the ratio of Hall voltage over current gives the Hall resistance:

RH =
VH
I

=
B

ρec
. (2.2)

In addition, one may define the longitudinal resistance Rxx as the resulting ratio

of the voltage in the direction parallel to the current with current itself. When

the flow of current is at equilibrium, intuitively Rxx will be independent of the
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Figure 2.1: Quantum Hall data from an experimental study in close agreement

with Eq. (2.3) [4]. The quantum number ν is labelled at each plateau and both

longitudinal resistance and transverse resistance are shown as the magnetic field

is varied.

magnetic field as the Lorentz force acts perpendicular to the current. However,

so far this analysis does not take into account the quantum nature of electrons:

we see that the resistance is a continuous function of magnetic field Bẑ.

Landau levels

In 1980, experimental results found that at low temperatures (∼ mK) and with

a strong magnetic field (∼ 10T), where quantum effects become dominant, the

Hall resistance was not a continuous function of the magnetic field and Rxx was

zero for specific values of magnetic field [33]. Instead, the authors found plateaus

at values close to

RH =
h

e2

1

ν
, (2.3)

where ν is an integer (or a fraction ν = p/q [30], with p and q integers) and the

ratio h
e2

is the quantum of resistivity, see Fig. 2.1.

In order to explain the origin of this phenomenon we must first consider a

single electron moving under a magnetic field ∇ ×AAA = Bẑ in the x − y plane.
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The Hamiltonian describing its motion is

H =
1

2mb

[
ppp+

eAAA

c

]2

, (2.4)

where mb is the electron band mass with charge −e. To find solutions, Hamilto-

nian (2.4) is simplified by making a gauge choice for the vector potential AAA. One

choice is the symmetric gauge: AAA = BBB×rrr
2

= B
2

(−y, x, 0), that preserves rotational

symmetry about the origin so that angular momentum is a good quantum num-

ber [34]. Fixing the unit of length to be the magnetic length l =
√

~c/eB = 1,

the Hamiltonian becomes

H =
~eB
mbc

(a†a+
1

2
), (2.5)

where the ladder operators are a† = 1√
2

(
z̄
2
− 2 ∂

∂z

)
and a = 1√

2

(
z
2

+ 2 ∂
∂z̄

)
, with

z = x− iy = reiθ, satisfying [a†, a] = 1 [35]. The factor ωb = eB
mbc

is the cyclotron

frequency of an electron orbiting in the x − y plane, with the eigenvalue of a†a

giving the index n of the level, named a Landau level. The Landau levels are

discretised and each level is separated by an energy gap ~ωb. The set of eigenvalues

of Eq. (2.5) are given by En = (n+ 1
2
)~ωb with n = 0, 1, 2, . . . and E0 named the

lowest Landau level.

It is possible to define a second set of operators, b† = 1√
2

(
z
2
− 2 ∂

∂z̄

)
and b =

1√
2

(
z̄
2

+ 2 ∂
∂z

)
, that satisfy [b†, b] = 1 [35]. The z-component of angular momentum

can therefore be defined by the operator −i~(b†b − a†a) = −i~ ∂
∂θ

= −~m with

m = 0, 1, 2, . . . in the nth Landau level. The full space of single-particle states is

given by the set {|n,m〉} labelled by quantum numbers n,m, with the state |0, 0〉
destroyed by a and b:

|n,m〉 =
(a†)n(b†)m√

n!m!
|0, 0〉 . (2.6)

The state with n = m = 0 is the Gaussian 〈r|0, 0〉 = ψ0,0(r) = 1
2π
e−

1
4
zz̄. By

repeated application of b† onto |0, 0〉 one can find all states in the lowest Landau

level:

ψ0,m(r) =
zme−

1
4
zz̄

√
2πm!2m

. (2.7)
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States in the lowest level are radially symmetric (due to the gauge choice)

with a peak at r =
√

2ml. We also know that all states with the same n quantum

number are degenerate. Therefore, the degeneracy of the lowest level is found by

calculating the maximum number of states that can fit into a circular region of

radius R. The largest m that fits into this region is given by M = R2/2l2. The

value M is also the total number of single-particle states that fit into the lowest

level. The degeneracy per unit area is therefore d = M/πR2 = (2πl2)−1. The

magnetic length was previously defined to be l =
√
~c/eB, leading to d = B

Φ0

with Φ0 = hc/e the flux quantum. The filling fraction ν is then defined as the

number of electrons per flux quanta:

ν =
ρB

Φ0

, (2.8)

with ρ the electron density. The main result here is that the number of available

states in each Landau level increases linearly with an increasing magnetic field.

At integer values (and specific fractions) of ν are the centre of the plateaus in the

Hall resistivity found in Fig. 2.1.

In order to construct a many-body state we take an antisymmetric product

of ψn,m’s, filling the lowest levels first. Up to normalisation, the resulting state

for the completely filled Landau level with n = 0 is [35]

Ψ0 =
∏
k<j

(zk − zj) exp

[
−1

4

∑
j

|zj|2
]
. (2.9)

Integer quantum Hall effect

We are now in a position to discuss the integer quantum Hall effect and the role of

topology. First, consider the effect of increasing the magnetic field for an electron

gas confined to a two-dimensional plane. With fixed B, the electrons will fill

d = B
Φ0

levels in the n = 0 Landau level, with any left over electrons filling the

n = 1 level. As the magnetic field is increased the number of available orbitals

d in the lowest level increases. This has the effect of reducing the number of

occupied states in the higher landau levels. In order to see broad plateaus for a

range of B values it is required that there is some disorder in the system so that

excess electrons that spill over from the fully filled Landau levels are restricted to
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filling only certain localised orbitals and do not contribute to the conductance.

Put simply, the combination of disorder and filling discrete Landau levels result

in the plateaus in the Hall resistance at RH = h
e2
ν−1 and Rxx = 0, as observed in

Fig. 2.1. The Hall resistance can be seen as an average over all of the flux quanta

threading the system. This is, of course, not the entire story.

So far we have avoided mentioning the effect of boundaries on the system, con-

sidering only bulk effects. Let us make this more concrete by explicitly considering

a torus, i.e. periodicity in the x̂ and ŷ directions, and seeing what happens to

the ground state wavefunction |ψ〉 as it is perturbed by magnetic flux. Thread

a flux through both x̂ and ŷ directions of the torus, given by Φx and Φy. We

now want to see how the wavefunction evolves as a result of those fluxes. The

idea is as follows: as a charge completes a closed orbit around a flux it picks up a

non-trivial phase factor that depends only on the area of the path taken and not

the path itself, this is the Aharanov-Bohm effect [36].

To see the topological nature of the model we need only explore the local U(1)

gauge symmetry of the vector potential given by [37]

AAA→ AAA+ dχ (2.10)

−i~∂α → −i~∂α − e∂αχ, (2.11)

for which the Hamiltonian in Eq. (2.4) is invariant. Now, define a translation

operator T (aaa) that translates the state by position vector aaa

T (a) = e−
i
~aaa·ppp. (2.12)

Translating the state about a closed curve C results in phase factor dependent

on the area enclosed by the curve AC only

P exp

[
i

~

∮
C

dxαpα

]
= exp [−iAC ] (2.13)

where P is a path ordering [37]. This non-trivial phase picked up by the wave-

function is the topological origin of the quantized Hall levels.

Alternatively, the non-trivial phase picked up by the wavefunction can be

interpreted through the Berry curvature – a non-observable quantity that tracks

changes in the phase of a wavefunction due to infinitesimal changes in parameter
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space [38]. For the state |ψ〉 under the influence of the flux Φα the Berry curvature

can be defined as

F = −i
[
∂

∂Φy

〈ψ| ∂ψ
∂Φx

〉 − ∂

∂Φx

〈ψ| ∂ψ
∂Φy

〉
]
. (2.14)

Note that it also possible to define a Berry curvature over the space of states

rather than over parameter space. For this discussion we only need to focus on

one representation of the curvature. The integral of the Berry curvature over all

of parameter space results in the Chern number

C =
1

2π

∫
d2Φ F. (2.15)

Remarkably, the Chern number is an integer and is related to the Hall conduc-

tance σH = R−1
H by

σH = −e
2

h
C. (2.16)

This shows that the Hall conductance is an example of a topological invariant,

measured in units of e2/h; for the integer quantum Hall effect it is also called the

TKNN integer, named after the authors that realised the connection between the

Hall plateaus and the topological invariant in 1982 [39]. This invariant is robust

to deformation of the Hamiltonian that do not close the energy gap; as C is not

continuous and only takes integer values small perturbations on the system do

not change its value.

Finally, we can expose edge excitations in the quantum Hall effect. To do so,

consider a geometry that is periodic in one direction and open in another, e.g. an

open ended cylinder, with a magnetic field threading the sample. Now, the edges

must host gapless states for the following reason: in the bulk of the sample there

exists a non-trivial Chern number that is protected unless the gap closes; outside

of the sample the Chern number is trivially zero; therefore, the energy gap must

close at the interface between the two regions resulting in gapless edge modes.

In Fig. 2.2 we sketch this setup. Electron orbitals in the bulk form cyclotron

orbit, filling the lowest Landau level first. At the edge, due to the fixed clockwise

motion of the orbitals, currents flow in only one direction, i.e. they are chiral.

The current flowing at the edge of sample Iy is related to the topological invariant
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Figure 2.2: Sketch of the quantum Hall effect, with the magnetic field of strength

B perpendicular to the plane coming out of the page. Bulk orbitals (depicted

by full circles) localise due to disorder and form an insulator, where there exists

a gap separating the occupied from unoccupied orbitals. With open boundaries

along the ŷ direction, there exist gapless edge currents formed by conducting

electrons (depicted by semi-circles) at the boundary. The current at the edges

is a global property, independent of microscopic details, making it a signature of

topological order.

by σH = Iy/VH . This is an example of bulk-boundary correspondence, where a

bulk topological invariant implies the existence of gapless boundary excitations.

The chiral edge modes are robust in the same way as the conductance plateaus

characterised by the bulk topological invariant.

The fractional quantum Hall effect

From Fig. 2.1 it can be observed that plateaus also occur for non-integer val-

ues of the filling factor ν. In particular, the most prominent fractions are at

ν = 1/m with m an odd integer [30, 34]. However, to move from the integer to

the fractional quantum Hall effect requires electron-electron interactions; without

interactions it is not possible to expose fractionalised excitations. It is justified to

neglect Coulomb interactions when there are an integer number of Landau levels

filled and the energy splitting between the Landau levels ~ωb is much greater than

the Coulomb interaction ∼ e2/l [10]. For a partially filled Landau level, interac-

tions become relevant when disorder is reduced so that overflow orbitals above the

highest filled Landau level are no longer fixed to localise in the bulk. The under-
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2.2 Quantum phase transitions, topological order, and symmetry
protected phases

lying reason for the fractionalised filling factor is that interacting electrons form

‘composite fermions’ [35], or quasiparticle excitations, that have fractionalised

exchange statistics [40]. The fractional quantum Hall state cannot be probed by

a topological invariant in the same way as the integer quantum Hall effect, as the

Chern number is restricted to integer values. Instead, they are exposed by their

exchange statistics and edge excitations.

The wavefunction for the ν = 1/m quantum Hall state is given by the Laughlin

state [34]

Ψ1/m =
∏
k<j

(zk − zj)m exp

[
−1

4

∑
j

|zj|2
]
. (2.17)

For m odd the state is anti-symmetric and is described by composite fermions.

For m even the state is symmetric and represents a bosonic quantum Hall state.

Take for example the ν = 1/3 fractional quantum Hall state: this state is re-

quired to move around another fermion three times to return to its original state

(fractionalised statistics) and has charge −e/3 (fractionalised charge) [31].

In both integer and fractional quantum Hall states there is long-range entan-

glement, i.e. states cannot be deformed to a trivial product state. However, it

should be noted that under Kitaev’s definition of topological order [41]: a gapped

quantum systems with long-range entanglement and non-trivial excitations above

the ground state; the integer quantum Hall state does not have topological or-

der as it does not exhibit factionalised statistics. Thus, one could argue that

topological orders also require interactions. For the purpose of this thesis, it is

enough to note that topological orders arise from long-range entanglements and

present themselves in a variety of ways, as evidenced by the different quantum

Hall effects. Some other example systems with topological order include chiral

spin liquids [42], Z3 parafermion states[43], and the Toric code [9].

2.2.3 Symmetry protected topological phases

Further to those states defined as having topologically order, there exist gapped

ground states of quantum Hamiltonians without long-range entanglement where

there are distinct phases not captured by Landau symmetry breaking arguments
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(or any other non-topological orders, e.g. crystalline or spin orders). In these

cases the phase is characterised by a topological invariant, for e.g. the Chern

number introduced previously for the integer quantum Hall effect, that is ro-

bust to deformations of the Hamiltonian. When a non-local symmetry protects

the non-trivial phase against perturbations the state is in a symmetry protected

topological phase [44]. Further, and of particular importance to this thesis, all

non-interacting gapped symmetry protected phases have been classified in the

‘10-fold way’ [45]. We now look at this classification scheme in more detail.

Symmetry transformations on a non-interacting Hamiltonian

For free fermionic Hamiltonians with a gapped ground state there are three sym-

metries that dictate the classification: time reversal symmetry (TRS) given by

the operator T, particle-hole symmetry (PHS) by C, and sublattice symmetry

by S, that result in 10 possible classifications [45]. The symmetries are defined

by their action on creation/annihilation operators and on the Hamiltonian itself.

For the following, consider the set of creation and annihilation operators
{
ψ̂†j , ψ̂j

}
that act on a lattice with sites labelled j = 1, 2, .., L, satisfying the fermionic an-

ticommutation relations {ψ̂j, ψ̂k} = δj,k. Let ψ̂†, ψ̂ be vectors containing the

respective lattice site operators. Then, the second quantised Hamiltonian of a

non-superconducting system can be expressed as Ĥ = ψ̂†Hψ̂, where H is an

L × L matrix representation of the single-particle Hamiltonian. If the Hamilto-

nian is superconducting then we use the Bogliubov de Gennes Hamiltonian that

contains Nambu spinors and not complex fermion operators [46], this will be

touched on in later chapters.

Due to Wigner’s theorem [47], symmetry operations on a Hilbert space can

be represented by either a unitary, linear operator or an antiunitary, antilinear

operator. Both a linear and antilinear transformation is a mapping f : V → W

from a complex vector space to another, the former given by f(ax+by) = af(x)+

bf(y) and the latter by f(ax + by) = a∗f(x) + b∗f(y), where ∗ denotes complex

conjugation. We are now ready to look at each of the symmetries in turn.
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2.2 Quantum phase transitions, topological order, and symmetry
protected phases

Time reversal symmetry

The time reversal operator is defined by the action of the antiunitary operator T

on the fermionic creation and annihilation operators

Tψ̂jT
−1 = (UT )kj ψ̂k TiT−1 = −i (2.18)

where UT = {(UT )kj} ∈ CL×L is a unitary [46].

The system is invariant under the action of this operator if both the sec-

ond quantised Hamiltonian is invariant under its action TĤT−1 = Ĥ, and the

canonical commutation relations are preserved T
{
ψ̂†j , ψ̂k

}
T−1 =

{
ψ̂†j , ψ̂k

}
. From

invariance of the Hamiltonian, we can derive a constraint on H:

TĤT−1 = Tψ̂†iH
j
i ψ̂jT

−1

= Tψ̂†iT
−1THj

i T
−1Tψ̂jT

−1

= Tψ̂†iT
−1(Hj

i )
∗Tψ̂jT

−1

= ψ̂†i [(UT )ki ]
∗(H l

k)
∗(UT )jl ψ̂j

= ψ̂†iU
†
TH

∗UT ψ̂j

= Ĥ. (2.19)

Comparing the second to final and final lines we see that U †TH
∗UT = U †TKHK−1UT =

H, so that the operator T = UTK acts on H as THT † = H where K is complex

conjugation.

Finally, consider the action of applying the time reversal operator twice. We

obtain [(UT )∗UT ]†H(UT )∗UT = H. Due to Schur’s Lemma this fixes (UT )∗UT to a

multiple of the identity matrix [46], i.e. (UT )∗UT = eiθ1. However, UT is unitary

so (UT )∗ = eiθU †T . Taking the complex conjugate of this gives UT e
iθ = UT

T ,

leading to e2iθ = 1. This gives two choices: T2 = (UT )∗UT = ±1. For an

operator Ô composed of n fermionic operators the action of time reversal twice

will be T2ÔT−2 = (±1)nÔ. The final constraint on the time reversal operator is

therefore

T2 = (±1)N̂ , (2.20)

where N̂ =
∑

j ψ̂
†
j ψ̂j is the total fermion number operator. This constraint tells

us that for systems that are time reversal invariant and have T2 = 1 then they are
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composed of particles zero or integer spin, if it has T2 = −1 then the particles have

half-integer spin. We now apply the same analysis to the other two symmetries,

but leave out the algebraic steps.

Particle-hole symmetry

Like with time reversal symemtry, we can define particle-hole symmetry (or

charge-conjugation) C by its action on second quantised operators. The transfor-

mation acts on fermion operators as

Cψ̂jC
−1 = (UC)kj ψ̂

†
k (2.21)

where UC = {(UC)kj} ∈ CL×L is a unitary. The system is invariant under the ac-

tion of C if both the anticommutation relation and the second quantised Hamil-

tonian are invariant under it. Again, invariance of Ĥ leads to a constraint on

H. In this case it is found that CHC−1 = −H where C = UCK. This has the

implication that for every single particle state p̂sij with energy En, there exists

a conjugate single-particle eigenstate Cψ̂j with energy −En. Similarly to the

previous case the final constraint on the operator is

C2 = (±1)N̂ . (2.22)

If particle-hole symmetry is an invariant in a superconducting system and C2 = 1

then the system supports spin-triplet pairing whereas for C2 = −1 it supports

spin-singlet pairing [46].

Sub-lattice symmetry

The combination of both time reversal and particle-hole symmetries gives a sub-

lattice (or chiral) symmetry S = TC. It is defined by its action on the fermionic

operators, inferred from Eqs. (2.18) and (2.21), as

Sψ̂jS
−1 = (UTUC)kj ψ̂

†
k. (2.23)

The action on H is found to be USHU
†
S = −H where US = UTUC , and the

operator is constrained by

S2 = (±1)N̂ . (2.24)

Interestingly, there exist systems where neither T or C are invariant, but S is.
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2.2 Quantum phase transitions, topological order, and symmetry
protected phases

Classification of non-interacting SPT phases: the 10-fold way

A complete classification of all possible non-interacting gapped fermionic phases

was completed in [45] and is summarised in Table 2.2.3 – the table also extends to

higher dimensions that have been omitted here. There are ten distinct categories

found by different combinations of the symmetries T, C, and S.

Class T C S 0 1 2 3

A 0 0 0 Z 0 Z 0

AI + 0 0 Z 0 0 0

AII - 0 0 2Z 0 Z2 Z2

AIII 0 0 1 0 Z 0 Z

BDI + + 1 Z2 Z 0 0

CII - - 1 0 2Z 0 Z2

D 0 + 0 Z2 Z2 Z 0

C 0 - 0 0 0 2Z 0

DIII - + 1 0 Z2 Z2 Z

CI + - 1 0 0 0 2Z

Table 2.1: Table of symmetry classes for free-fermionic Hamiltonians. The class

name is in the first column, followed by the action of each of the symmetries T,

C and S on the single-particle Hamiltonian. The final columns give the resulting

classification in dimensions d = 0, . . . , 3. A result of 0 means that there is only

a single (trivial) phase in that dimension, Z gives distinct topological phases, Z2

gives only two distinct topological phases.

The first column of Table 2.2.3 gives the name of the symmetry class; the

next three are headed by a symmetry operator for e.g. T , the corresponding

value indicates if the symmetry is not an invariant 0, or if the symmetry is an

invariant then the value shows the square of the operator, e.g. T2 = ±1. The

final four columns are headed by the dimension of the system, with value of the

corresponding to the possible number of distinct topological phases. For example,

if a system only has particle-hole symmetry and the operator squares to +1, then

it belongs in the symmetry class D. If the system is one dimensional then it has a

Z2 topological invariant, meaning that there are two distinct topological phases.
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The phases are robust as it is required to break the protecting symmetry or close

the energy gap to move from one phase to another.

Having a complete classification scheme means that for a given Hamiltonian,

by inspecting its symmetries alone, we know how many distinct topological phases

that may exist. We will study an example of an SPT phase in more detail later

in this chapter.

2.3 Correlations and entanglement measures

2.3.1 Free fermion correlations

Ground state of a non-interacting Hamiltonian

Consider a non-interacting Hamiltonian consisting of spinless fermions hopping

between L lattice sites, for which we wish to study bipartite correlations in its

groundstate. Let c†j(cj) be the creation(annihilation) operators that act on a local

Hilbert space of occupations cj |0〉 = 0 and c†j |0〉 = |1〉, satisfying {c†j, ck} = δj,k

and {cj, ck} = {c†j, c†k} = 0. The local Hilbert space builds a Fock space that

consists of all products of local occupations, e.g. for two occupations, an element

of Fock space is |10〉 = |1〉 ⊗ |0〉. The full Fock space is 2L dimensional for L

occupations.

The Hamiltonian is

H = −
L∑
j,k

tj,kc
†
jck, (2.25)

where tj,k = t∗j,k = tk,j is the amplitude for hopping between sites j and k. The tj,k

form an L×L Hamiltonian T that may be diagonalised by a unitary transforma-

tion U , i.e. UTU−1 = {Ej}Lj=1. For now we choose to neglect any supeconducting

terms, though the arguments that follow also hold with their inclusion providing

terms are at most quadratic, e.g. c†jc
†
k + ckcj. Being explicitly free, H has eigen-

states that are Slater determinants, Eq. (4.2). An appropriate linear combination

of the original fermionic modes leaves H in its diagonal representation. Let the

transformation be dk =
∑L

j=1 uj,kcj, where {uj,k} build the unitary matrix U .
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2.3 Correlations and entanglement measures

The Hamiltonian may be expressed as

H =
L∑
j

Λjd
†
jdj, (2.26)

where the ground state is |ψ0〉 =
∏

Λj<0

d†j |0〉, with |0〉 the vacuum state and we set

E = 0 as the Fermi energy.

Correlations of a single-particle state

To study correlations of the ground state we construct the single-particle corre-

lation matrix C that contains all two-point correlation functions

Cj,k = 〈ψ0| c†jck |ψ0〉 . (2.27)

As |ψ0〉 is a free fermion state, through Wick’s theorem all higher order cor-

relations can be found as products of (particle number conserving) two-point

correlation functions, e.g. 〈c†jc†kclcm〉 = Cj,mCk,l − Cj,lCk,m.

Often when studying topological states with an energy gap it is convenient to

use a topologically equivalent ’flatband’ Hamiltonian that is given by [48]

Q =
1
2
− C, (2.28)

with eigenvalues ±1
2
. This will be used later in Chapter 3 when studying corre-

lations in the groundstate of a Majorana chain.

Bipartite correlations of a single-particle state

Now, we wish to study correlations between a subsystem A, consisting of M sites,

and its complement B, with L−M sites. The correlation matrix for subsystem

A is found by simply using Eq. (2.27) and restricting the indices to j, k ∈ A,

likewise for subsystem B. We shall see that the restricted correlation matrix is

an important tool for probing bipartite correlations.

The reduced density matrix contains entanglement information between sub-

systems A and B. For the subsystem A, the reduced density matrix is found by

tracing out the degrees of freedom in B of the full density matrix,

σ = TrB |ψ0〉〈ψ0| . (2.29)
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It has the property that the non-zero eigenvalues of σ are the same regardless of

whether we choose to trace out A or B. This is good as we expect the bipar-

tite entanglement to be a property of both subsystems (or more specifically the

partition).

From a density matrix it is possible to extract the expectation value of a

general operator O through the property 〈O〉 = Tr [σO]. Therefore, we may also

obtain elements of C through the relation

Cj,k = Tr
[
σc†jck

]
, (2.30)

with the sites j and k in the subsystem A. Using Wick’s theorem again, Eq. (2.30)

is only true if the reduced density matrix σ is an exponential of free fermion

Hamiltonian, i.e.

σ =
e−H

f
E

Z
, (2.31)

with Z = Tr [σ] a normalisation constant and Hf
E the free fermion entanglement

Hamiltonian. This Hamiltonian can be built from the same fermionic operators

as the original Hamiltonian in Eq. (2.25) [49]. Therefore, it can be expressed

explicitly as HE =
∑M

j,k hj,kc
†
jck.

The entanglement Hamiltonian is diagonalised using the transformation d̃j =∑
k ũj,kck, where {Ũ}j,k = ũj,k build the M ×M unitary matrix Ũ . Then, we are

able to extract the free fermion entanglement spectrum {εj} as the eigenvalues

of Hf
E,

Hf
E =

M∑
j

εj d̃
†
j d̃j. (2.32)

Following this analysis of correlations, it is clear that the eigenvalues εj of Hf
E

are related to the eigenvalues λj of σ by εj = − lnλj. As σ is a density matrix it

has non-zero eigenvalues in the range λj ∈ (0, 1], so that εj ∈ [0,∞).

One may also relate εj to the eigenvalues ζj of C. The form of (2.32) dictates

that the reduced density matrix is

σ =
1

Z
exp

(
−

M∑
j

εj d̃
†
j d̃j

)
. (2.33)
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2.3 Correlations and entanglement measures

Using this together with Eq. (2.30) gives an expression for Cj,k in terms of the

energies εj and the fermionic operators, i.e.

Cj,k = Tr

[
1

Z
exp

(
−

M∑
j

εj d̃
†
j d̃j

)
c†jck

]
. (2.34)

Remembering that the two sets of operators are related by a unitary transforma-

tion c̃j =
∑

k ũ
∗
j,kdk, this simplifies the expression to

Cj,k = Tr

[
1

Z

M∑
m

e−εm d̃†md̃m

(∑
m,n

ũj,mũ
∗
k,nd

†
mdn

)]
. (2.35)

where in the exponential term we have used the fact that eX =
∑

k
1
k!
Xk and

that the d̃†md̃m are occupations of eigenstates of Hf
E. These conditions result

in the identity exp
(
−∑M

j εj d̃
†
j d̃j

)
=
∑M

j e−εj d̃†j d̃j. Finally, by tracing over all

eigenstates and remembering that Z = Trσ = 1 the expression simplifies further

Cj,k =
M∑
l

1

eεm + 1
ũj,lũ

∗
k,l. (2.36)

Comparing this expression with the Hamiltonian in the same representation:

(Hf
E)j,k =

M∑
l

εmũj,lũ
∗
k,l, (2.37)

we find that the eigenvalues are related by

ζj = (1 + eεj)−1, (2.38)

with ζj ∈ (0, 1
2
]. These relations show that the entanglement spectrum is a repa-

rameterisation of the set of probabilities of entangled modes. A low-energy entan-

glement energy corresponds to an entangled mode existing between subsystems

A and B with high probability.

As a final note before continuing, it was remarked at the beginning of this

analysis that all arguments given hold with the inclusion of quadratic pairing

terms. To see this, one must simply make a transformation to Majorana fermions,

cj = γ2j−1 + iγ2j. This transforms the Hamiltonian to an imaginary Hamiltonian

of hopping Majoranas, that is of a similar form to Eq. (2.25) with the upper limit

of the summations extended to 2L and cj → γj.
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2.3.2 Many-body correlations

Many-body spectra from single-particle spectra

It is now the aim to find the entanglement spectrum of a fully interacting many-

body system. Before doing so, let us consider what it means to build a many-

body eigenstate from single-particle eigenstates. It was shown in Chapter 2 that

it is possible to build such an eigenstate using a Slater determinant. In second

quantised notation, this is equivalent to

|Ψj〉 =
L∏
k=1

(d†k)
nk(j) |0〉 (2.39)

where nk(j) ∈ {0, 1} is the occupation of the single-particle level d†kdk for the

jth many-body state. The restriction of occupations to 0 and 1 is due to Pauli’s

exclusion principle, it can take any natural number for bosonic modes.

The corresponding energy of the determinant |Ψj〉 is simply the sum of the

single-particle energies used to construct it. In order to build the full set of

2L many-body eigenvalues from L single-particle values it is required to take

all possible combinations of single-particle states. A many-body energy level is

therefore built in the following way

Ej = E0 +
L∑
k

nk(j)Λk, (2.40)

where Λk is a single-particle energy level (see Eq. (2.26)) and E0 is a constant shift

in energy that is the result of additive terms, like a chemical potential
∑

j µc
†
jcj,

being added to Hamiltonian (2.25). Likewise, a full many-body entanglement

spectrum {Ef
j } (for a free-fermion entanglement Hamiltonian of the form (2.25))

is built by taking all possible combinations of single-particle entanglement levels,

Ef
j = Ef

0 +
M∑
k

nk(j)εk. (2.41)

The additive constant is a result of normalisation EE
0 = − ln

[∑
j e
−Efj
]
.
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Many-body entanglement spectrum from an interacting state

We now consider the a state that is built from a Hamiltonian with explicitly

interacting terms, for e.g. density-density interactions
∑

j njnj+1, such that the

Hamiltonian cannot be brought into a single-particle form and eigenstates are

no longer Slater determinants. A general state for a system with L sites can be

expressed in terms of the orthonormal basis states {|φ〉}

|Ψ〉 =
∑
φ

αφ |φ〉 , (2.42)

where αφ is a normalised amplitude satisfying
∑

φ |αφ|2 = 1. As with the single-

particle state, the procedure for finding the entanglement spectrum requires cal-

culating eigenvalues of the reduced density matrix ρ = TrB |Ψ〉〈Ψ|.
The basis states have support over the entire system and can be decomposed

into a tensor product of orthonormal basis states {|φA〉}, {|φB〉} in subsystems

A and B, i.e. |φ〉 = |φA〉 ⊗ |φB〉. Eq. (2.42) is then

|Ψ〉 =
∑
φA,φB

ΠφA,φB |φA〉 ⊗ |φB〉 , (2.43)

where the summation runs over all basis states in the each subsystem Hilbert

space. The matrix Π is rectangular, as the size of each subsystem is not fixed,

and has dimension dim{|φA〉} × dim{|φB〉}. It can be brought into a diagonal

form by use of a Singular Value Decomposition. Any rectangular matrix may

be expressed as UDV †, where U is a dim{|φA〉} × dim{|φA〉} matrix satisfy-

ing U †U = 1, V is a dim{|φB〉} × dim{|φB〉} matrix satisfying V V † = 1, and

D is dim{|φA〉} × dim{|φB〉} with min
[
dim{|φA〉}, dim{|φB〉}

]
non-zero values

{e−EEj /2} on the diagonal.

The operators U and V † act on |φA〉 and |φB〉, that transform |Ψ〉 into its

Schmidt representation

|Ψ〉 =
∑
j

e−E
E
j /2 |ΨA

j 〉 ⊗ |ΨB
j 〉 , (2.44)

where |ΨA
j 〉 and |ΨB

j 〉 form an entangled mode with weight e−E
E
j /2. For a state in

Schmidt form, the eigenvalues of the reduced density matrix {ρj} can be easily
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calculated ρj = e−E
E
j [50]. Therefore, the SVD provides an elegant way to extract

the entanglement spectrum {EE
j } of a quantum state. From this form we can

see that if the number of non-zero ρj (the Schmidt rank) is one, then the state

|Ψ〉 is a product state. If the Schmidt rank is greater than one then we have an

entangled state. It is also clear that the eigenvalues of ρ do not change whether

we trace out subsystem A or B. They are a property of the entire system, that

depends only on how (or where) one chooses to partition.

Diagnostics with the entanglement spectrum

Li and Haldane showed that the low-lying energies of the entanglement spectrum

contain universal features of a topological phase [50]. When comparing the en-

tanglement spectrum of a fractional quantum Hall state with its corresponding

conformal field theory (CFT), they found that the spectrum is separated by an

entanglement gap and the low-lying energies coincide with the spectrum of the

CFT. The CFT characterises the phase, giving information about universal prop-

erties of the system. The high energy levels above the gap are ‘generic’ many-body

levels that remain distinct for large system sizes. So the low-lying levels, that are

the spectra of correlated quasiparticles between the two subsystems, contain the

most relevant information for characterising the phase.

Also, in a topological state where there exist gapless edge modes in a non-

trivial phase, the full entanglement spectrum has the signature of being degener-

ate at all levels [51]. This follows from the existence of a zero energy edge mode

in the single-particle spectrum of the reduced state.

Finally, the entanglement spectrum is an important object in the density

matrix renormalisation group (DMRG) technique [52, 53]. The technique is used

to find accurate groundstates of 1D quantum systems. It works by variationally

minimising the energy of a trial state, whilst growing the number of degrees of

freedom and throwing away entanglement levels above a cutoff. By retaining the

low energy levels it is possible to find groundstates for large system sizes to a

very good accuracy.
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2.3 Correlations and entanglement measures

2.3.3 Entanglement entropy

Definition of entanglement entropy

That the entanglement between two subsystems can be characterised through a

set of levels corresponding to the probability of the entangled mode is very useful.

However, as the number of levels may grow exponentially (though the number

of physically relevant levels is likely to be a lot smaller) it would also be useful

to have a single number that characterises how much entanglement a quantum

system has. Define the entanglement entropy (von Neumann entropy) for the

reduced density matrix ρ with eigenvalues {ρk} as

S(ρ) = −
∑
k

ρk ln ρk. (2.45)

If the input state is a product state with a single level ρ1 = 1 then S(ρ) = 0, that

signals no entanglement between subsystems A and B. If a set of N entangled

modes exist with equal probability 1/N (so that ρ is maximally mixed) then the

entropy is S(ρ) = lnN , signalling a maximally entangled input state.

Applications of entanglement entropy

The entanglement entropy has applications in condensed matter physics, in quan-

tum information, and likely in other areas of physics. In this thesis it is used

primarily in the study of condensed matter systems where it displays universal

behaviour of the system [54]. In particular, the scaling of S(ρ) in critical systems

matches results from CFT, where entropy scales with a multiplicative ‘central

charge’ c. Thus, at critical points the large scale behaviour of the model is uni-

versal and the phase transition falls into a universality class [55]. This behaviour

manifests due to the algebraic decay of correlations in a critical phase and can

be summarised by the relation [54],

S(ρ) =
c

3
lnLA + O(1), (2.46)

where LA is the size of subsystem A and c is the central charge.

On the other hand, non-critical gapped systems have an ‘area law’ scaling

behaviour where entropy scales with size of the boundary between the two sub-

systems [56]. This follows from correlations decaying exponentially in gapped
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systems, so entanglement builds up around the partition. The exponential decay

defines a characteristic length scale, the correlation length ξ. Entropy in a non-

critical gapped system in 1D will increase for partitions up to the scale of ξ, but

beyond the extent of the correlation length the entropy saturates, i.e.

S(ρ) = S∗ (2.47)

where S∗ is the saturation entropy and LA � ξ. The cutoff S∗ means that whilst

the rank of ρ grows exponentially, the effective rank is actually much smaller

and only finitely many entangled modes contribute to the entanglement. This

is useful for numerical techniques such as the DMRG technique, where accurate

groundstates can be found efficiently in 1D gapped systems by rejecting low

weight states that do not contribute towards entanglement of the model [52, 53].

Conversely, Eq. (2.46) dictates that critical models will be less successful through

a DMRG analysis as there will be many states contributing to S(ρ).

2.4 From interacting spins to free fermions

The work in this thesis works mostly with free-fermions. This includes explicitly

non-interacting models, like those introduced in the previous section, but also

interacting models that have a free description (alternatively free fermions with

an interacting description). A good example of a this is the Heisenberg XY spin

chain with a transverse magnetic field. It is a 1-dimensional model of hardcore

spin-1
2

bosons, with a Hamiltonian that has competing interactions seeking align-

ment of spins in both x and y spin directions. The anisotropy of these terms

is characterised by a parameter γ, that moves the ground state between a spin

ordered and a spin disordered phase. The model was solved analytically in 1961

by Lieb, Shulz and Mattis, and is an example of a quantum integrable (or exactly

solvable) model [57].

Through a Jordan-Wigner transformation it is possible to map the Hamil-

tonian from local spins to a Hamiltonian of non-local spinless fermions. This

transformation preserves the energy spectrum, whilst changing the underlying

basis states that build the Hilbert space. Dirac fermions can be represented as

Majorana fermions, completely real which new representation it was shown by
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2.4 From interacting spins to free fermions

Kitaev [12] that the spin ordered phase is equivalent to a topologically ordered

one. To do so, Kitaev introduces Majorana fermions that, when present as zero

energy edge modes, indicate a topological phase.

2.4.1 Heisenberg XY spin chain

In its most general form, the Heisenberg model is one of spin-n hardcore bosons,

each with spin components Sj labelled with lattice index j, that couple through

an exchange interaction Sj · Sk with an exchange coupling Jj,k. This model has

Hamiltonian

H =
∑
j 6=k

Jj,kSj · Sk. (2.48)

where each term seeks to align spins j and k in the same direction, with the

energy cost for alignment given by Jj,k. These spins are vectors in Euclidean

space, so label the three orthogonal components as α ∈ {x, y, z}.
The model can be defined on any lattice in any dimension, d, for a spin-n

particle, with the complexity of the problem increasing (in general) with increas-

ing d and n. Here, we restrict to d = 1 and n = 1
2

giving two orthogonal spin

polarizations. Then, the spin operators take the form of the Pauli spin matrices,

defined by

Sx =
~
2

(
0 1
1 0

)
Sy =

~
2

(
0 −i
i 0

)
Sz =

~
2

(
1 0
0 −1

)
(2.49)

and Sα = ~
2
σα, that act on a local Hilbert space of up spins |↑〉 =

(
1
0

)
and down

spins |↓〉 =

(
0
1

)
. The operators σα along with the identity I2 are generators

of SU(2) that describe all rotations about a sphere in Euclidean space. They

therefore provide a suitable (irreducible) representation of spin-1
2

particles, where

the local Hilbert space consists of two states that can be represented on a Bloch

sphere.

In making certain restrictions to the choice of exchange coupling in Hamil-

tonian (2.48), it is possible to expose different intriguing aspects of many-body
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physics. The most general form is found upon setting all components of the cou-

pling non-equal, i.e. Jx 6= Jy 6= Jz 6= 0. This describes an XYZ spin chain –

an integrable model with a rich phase diagram. It is by no means a trivial task

to find the ground state of an XYZ model for arbitrary system size. However,

by restricting one of the exchange components to be zero, choose Jz = 0, it is

possible to find all solutions, as it can be mapped to a free fermionic Hamiltonian

– one that is quadratic in its second quantised fermionic operators.

In terms of the Pauli operators, the XY Hamiltonian is

HXY =
∑
j

(1 + γ)σxj σ
x
j+1 + (1− γ)σyjσ

y
j+1 + hσzj (2.50)

where the anisotropy of the x and y exchange couplings is dictated by the pa-

rameter γ and h is a transverse magnetic field that shifts the energy level of all

states (by an equal amount in the same magnetisation sector). This Hamiltonian

has a Z2 symmetry given by the non-local operator P̂ =
∏

j σ
z
j , where j runs

across all sites and [HXY, P̂ ] = 0. The operator has eigenvalues P = ±1 return-

ing −1 for an odd number of down spins and +1 for an even number, providing

a way to distinguish different configurations of spins. We will see now that this

symmetry manifests as particle number conservation modulo 2, in the fermionic

representation.

2.4.2 Kitaev’s Majorana chain

In 1961, Lieb, Shulz, and Mattis, showed that the Heisenberg XY spin chain was

exactly solvable, through a Jordan-Wigner transformation from bosonic spins

fixed at lattice sites to spinless (non-local) non-interacting fermions. The au-

thors also show that it is possible to find a complete set of solutions for any

free fermionic Hamiltonian, and exploit this hidden simplicity of the many-body

problem. In that work, it was found that there exists a degeneracy in the ground

state when the number of spins is taken to infinity Taking a combination of these

ground states reveals end-to-end order, i.e. that spins at sites 1 and N align, a

quasi -long range order in 1D.

It was nearly 30 years before Kitaev exploited the model further and realised

that one can decompose these spinless fermions into Majorana fermions. It is the
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2.4 From interacting spins to free fermions

presence of unpaired Majorana fermions localising at the boundary of a chain with

open ends that results in the end-to-end order Lieb, Shulz, and Mattis witnessed

many years before. It was shown that these energy modes are topological and are

protected from small perturbations due to the presence of an energy gap between

them and the bulk energy states.

Local Hamiltonian in fermionic representation

By a Jordan-Wigner transformation we can represent Hamiltonian (2.50) in terms

of fermions. To do so, first rewrite the Pauli operators as spin raising and lowering

operators σ± = σx ± iσy. Then, the Jordan-Wigner transformation takes a spin

excitation to a fermionic excitation with non-local string, i.e. c†j =
∏

k<j σ
z
kσ

+
j ,

and the hermitian conjugate gives the relation for the reverse. The c†j(cj) opera-

tors are spinless fermionic operators acting on a Fock space, satisfying {c†j, ck} =

δj,k and {cj, ck} = {c†j, c†k} = 0.

In the form given by Kitaev, Hamiltonian (2.50) with L sites and open ends

is

HKit =
L−1∑
j=1

(−Jc†jcj+1 + ∆cjcj+1) + h.c. +
L∑
j=1

µc†jcj (2.51)

where J ∈ R is the energy contribution for fermions tunnelling between sites,

∆ = |∆|eiθ is the cost for creating superconducting Cooper pairs, and µ ≥ 0 is

a chemical potential that acts locally at all sites. Hamiltonian (2.51) contains

terms that are quadratic in the fermionic operators and is therefore explicitly

non-interacting.. Conversely, an interacting Hamiltonian would contain terms

with order greater than two in the fermionic operators, for example c†jcjc
†
kck

that describes an interaction between fermionic populations at sites j and k.

Interactions akin to this are discussed in later chapters, for now we restrict to

formally non-interacting systems.

Solution for the closed chain

It is possible to find solutions to Hamiltonian (2.51) for both open and closed

boundary conditions. The latter requires an additional boundary term Hbound. =
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β[−Jc†Nc1+∆cNc1+h.c.] that ensures translational symmetry, where β = +1(−1)

gives periodic (antiperiodic) boundary conditions PBC(APBC). Preservation of

translational symmetry corresponds to conversation of momentum and so the

Hamiltonian may be diagonalised in a momentum representation. For the anni-

hilation operator the transformation is given by

cj =
1√
L

∑
k∈BZ

e−ijkck (2.52)

where the sum is over all wave numbers in the Brillouin zone, that are fixed by

the choice of boundary condition. With PBC Eq. (2.52) gives

cJ+L =
1√
L

∑
k∈BZ

e−i(j+L)kck (2.53)

=
1√
L

∑
k∈BZ

e−ijkck = cj, (2.54)

that identifies the equality e−ikL = 1 = e2πn with n ∈ Z. Thus the allowed wave

numbers are restricted to k = 2πn
L

for any integer n. Via a similar argument

for APBC one finds k = (2n+1)π
L

. This set of k values is restricted further by

recognising that the system is periodic by translation of k by 2π, thus the first

Brillouin zone is the set of allowed wave numbers in a 2π interval, i.e. k ∈ [−π, π).

There exist exactly L numbers in this interval separated by 2π
L

.

The Hamiltonian can be conveniently in written as a sum over points in the

Brillouin zone (in BdG form) H =
∑

k ψ
†
kH(k)ψk,

H =
∑
k

(
c†k c−k

)(J cos(k) + µ
2

−i∆ sin(k)
i∆ sin(k) −J cos(k)− µ

2

)(
ck
c†−k

)
(2.55)

where the delta function δp,q = 1
N

∑
j e
−i(p−q)j has been used. The Bloch Hamil-

tonian is given by H(k). Each wave number corresponds to a single-particle

energy given by the determinant of the Hamiltonian H(k). This results in a bulk

spectrum given by

E±bulk(k) = ±
√∣∣∣µ

2
+ J cos(k)

∣∣∣2 + |∆ sin(k)|2. (2.56)
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2.4 From interacting spins to free fermions

The presence of the superconducting term is to induce a gap in the spectrum

defined by Egap = 2 mink E
+
bulk(k). Including the energy, the form of H(k) al-

lows other useful quantities to be extracted, such as relevant symmetries and a

topological invariant.

Winding number topological invariant

We have already discussed the existence a Z2 symmetry in the XY model – we

now aim to probe the phases through an invariant. When a Hamiltonian has a gap

in its single-particle spectrum it is the case in some systems that midgap states

can exist, protected against perturbations by the presence of the gap separating

them from all other levels. This is an example of a topological phase, where the

Hamiltonian cannot be continuously deformed into one without midgap states

without the spectral gap closing. Of course, if one breaks the symmetry defining

the phase of the Hamiltonian then the spectrum could change drastically – thus

we call these states symmetry protected states. Another kind of topological

protection arises in topologically ordered states [58]; however, there is no long-

range order in 1D [59] so the phase must be protected by some symmetry for all

systems studied in this thesis.

A well-used invariant to probe topological phases is the winding number, ν.

From the Bloch Hamiltonian in Eq. (2.55) we may study the winding θk of the

Hamiltonian as it varies in k-space. Define the normalised vector ĥ(k) = h(k)
|h(k)| =

(hx, hy, hz) where H(k) = h(k) · σ and σ = (σx, σy, σz)
T is the vector of Pauli

matrices. The winding number ν = 1
2π

∫
BZ

dθk counts how many times the vector

ĥ(k) winds about the origin as k is varied. As there is no σx component in (2.55),

we define the angle the vector ĥ(k) makes with the σz axis as tan θk = hy/hz so

that the winding number can be expressed as

ν =
1

2π

∫
BZ

dk
hzh

′
y − hyh′z
h2
y + h2

z

, (2.57)

that is amenable to both analytical and numerical calculation. The prime nota-

tion, e.g. h′x, represents the partial derivative with respect to the wave vector

k. A non-zero winding corresponds to a topological phase with zero winding a
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Figure 2.3: Winding number analysis of the local Kitaev chain with PBC, J = 1

and varying ∆ and µ couplings. There are four distinct regions in phase space.

The grey regions with ν = 0 are in a topologically trivial phase for all |µ| > 2J .

There is a non-zero winding number in the region |µ| < 2J providing ∆ 6= 0.

The lines |µ| = 2J and ∆ = 0 are points where Egap = 0, in agreement with

Eq. (2.56).

trivial phase – due to a bulk-boundary correspondence, the winding of a peri-

odic chain counts the number of gapless boundary modes in the bulk gap of an

open chain [12]. Let us first analyse the winding of the Bloch Hamiltonian before

moving to the open chain.

In Fig. 2.3 we plot the winding number of the Bloch Hamiltonian, Eq. (2.55),

calculated numerically using Eq. (2.57). The plot shows four distinct regions in

parameter space, two grey regions with ν = 0, a red region with ν = 1 and a blue

region with ν = −1. The critical lines separating the regions are |µ| = 2J and

∆ = 0, that agree with the gap closing points of E±bulk, in Eq. (2.56).

The regions with ν = 0 characterise the trivial phase, where we do not expect

to see midgap states on the open chain. Both regions with |ν| = 1 describe a

topological phase as the winding vector makes a full clockwise or anticlockwise

revolution about the origin. The only difference between the two phases is the
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2.4 From interacting spins to free fermions

sign of ∆ that results in the vector winding in the opposite direction. However,

these two values of ν describe the same topological phase. A better topological

invariant would therefore be the absolute value of the winding number, νK = |ν|,
so that there is no distinction between ν = ±1.

Whether we choose ν or νK , we now get an idea of what is meant by ’topologi-

cal protection’ – we see that for the winding number to change the bulk gap must

close. Therefore, if a system is in a topological phase, providing the bulk gap

does not close we may deform the Hamiltonian however we see fit and the system

will remain in the same topological phase. Before moving to the open chain and

exposing other signatures of a topological phase, we complete our analysis of the

BdG Hamiltonian by looking at its symmetries.

Symmetries

With the Hamiltonian in BdG form in Eq. (2.55), the time reversal operator

is of the form T = Kσz, the particle-hole operator is C = Kσx, and the chiral

operator is S = TC. When acting on h(k) the operators must satisfy the following

equations

Th(k)T † = h(−k) Ch(k)C† = −h(−k). (2.58)

Indeed, for the Kitaev model all three symmetries are present and it can be easily

shown that T 2 = C2 = S2 = +1 using their explicit expressions given above.

Following the 10-fold way symmetry classification presented in Section 2.2.3, this

model belongs to the BDI symmetry class and can be described by a Z topological

invariant. However, we know that the XY model has a Z2 symmetry. We also saw

in Fig. 2.3 through a winding number analysis that there are only two distinct

phases. Therefore the Z classification can be reduced to a Z2 classification that

fully captures the phases of the model. To see this further we transform to the

Majorana representation.

Majorana representation

To fully expose what makes the topological phase of the Kitaev chain we must

first transform to a Majorana representation. They are real operators satisfying
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Figure 2.4: Pictorial representation of the couplings in Hamiltonian (2.60), with L

fermionic sites. Majoranas connected by µ (purple, short dashed) are of the same

fermionic site. The solid green and dashed orange lines are Majorana hopping

amplitudes. Majoranas from different fermionic sites pair up when J = |∆| or

J = −|∆|, leaving unpaired Majoranas at the ends that are the zero energy edge

modes.

γ2 = 1, i.e. their action on a state can be either to create a Majorana excitation

or to annihilate an excitation, and are related to the fermionic operators by

cj =
γ2j−1 + iγ2j

2
c†j =

γ2j−1 − iγ2j

2
. (2.59)

This process is analogous to splitting a complex number into its real and imagi-

nary parts. So that the fermionic anticommutation relation to holds, {c†j, ck} =

δj,k, the Majorana operators must satisfy {γj, γk} = 2δj,k that gives back the

condition γ2
j = 1 when j = k. We call the Majoranas ’fermions’ as they satisfy

an anticommutation relation, however they are altogether quite a different kind

of particle. In particular, as there is no well defined number operator for a single

Majorana (as γ2 = 1) they must exist in pairs. Expressed as Majoranas, the num-

ber operator for a fermion excitation is c†jcj =
1+iγ2j−1γ2j

2
, so that iγ2j−1γ2j = ±1

depending on whether a fermionic mode is occupied (+1) or not (−1).
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2.4 From interacting spins to free fermions

Majorana representation of Kitaev chain

Decomposing the fermions of Hamiltonian (2.51) into Majorana fermions results

in the following representation of HKit

HKit =
i

2

L−1∑
j=1

[(|∆|+ J) γ2j−1γ2j+2 + (|∆| − J) γ2jγ2j+1] +
i

2

L∑
j=1

µγ2j−1γ2j,

(2.60)

where the complex superconducting phase ∆ = eiθ|∆| has been hidden in the

Majorana operators c†j = eiθ/2
(
γ2j−1−iγ2j

2

)
and any constant shifts in energy have

been omitted. The Hamiltonian remains quadratic in the new operators. When

expressed as HKit = i
4
H we see that H is skew-symmetric satisfying HT = −H.

It can therefore be brought into a block-diagonal form using a unitary operator U ,

such that H = UΣUT with Σ = ⊕nΛn

[
0 1
−1 0

]
and Λn the set of single-particle

energies.

In Fig. 2.4 there is a pictorial representation of the couplings in a Majorana

basis. Particle and hole degrees of freedom are replaced with Majorana occu-

pations, extending the number of effective sites from L to 2L, with Majoranas

connected by µ occupying the same fermionic site. Such a figure becomes en-

lightening when one considers extremal cases: i) J = ∆ = 0 and µ > 0 or ii)

J = −|∆| > 0 and µ = 0. Beginning with case (i), there a Majorana only couples

with the other Majorana at the same fermionic site. Without tunnelling fluctua-

tions or pairing to open a gap the system remains uninteresting – this is a trivial

phase. For case (ii) Majoranas couple with a Majorana at a neighbouring site,

leaving γ1 and γ2L unpaired. These Majoranas form a non-local fermion and are

at zero-energy as they do not enter the Hamiltonian – this is a topological phase.

As the energy of the quasiparticle is zero the many-body groundstate has the

same energy whether it is occupied or not, thus we expect a two-fold degener-

ate groundstate. The two states differ by fermionic parity P =
∏

j(−1)nj =∏
j(−iγ2j−1γ2j). To see this, consider the limiting case in the topological phase

from above. The Hamiltonian is diagonal with Majoranas paired a different sites,

i.e. H =
∑

j Λj(d
†
jdj − 1

2
) with dj = γ2j + iγ2j+1. The groundstate |0〉 is therefore

annihilated by all dj, dj |0〉 = 0. Now, the parity operator can be expressed in
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terms of the new fermionic operators
∏

j(−iγ2j−1γ2j) = −iγ1γ2L

∏
j(1 − d†jdj).

As dj |0〉 = 0 for all j, the action of parity on the groundstate is reduced to

P |0〉 = −iγ1γ2L |0〉, where iγ1γ2L = ±1 represents an occupation (-1) or no

occupation (+1) of a non-local fermion f = γ1 + iγ2L. Thus, the degenerate

groundstate modes can be labelled by their parity |0±〉, obeying f †f |0+〉 = 0

f †f |0−〉 = 0.

For values away from the ideal values discussed above, edge modes remain

localised to the boundary and decay exponentially away from it. In the infinite

limit this treatment is exact and diagonalisation of the Hamiltonian would result

in a pair of zero energy modes in the middle of the gap. For finite system sizes

the modes are split from zero due to an overlap between the two edges. However,

the edge modes remain exponentially localised at the boundary, protected by the

presence of a gap, with a splitting ∼ e−L/l that depends on the distance between

the edges L and the localisation length l [12].

2.5 Summary

In this Chapter we have introduced some of the key ideas that are discussed in

the remainder of the thesis. In particular, there is a focus on the entanglement

spectrum of a bipartitioned state and on the topological phase of a Majorana

chain.

We showed that the single-particle entanglement spectrum can be found through

the eigenvalues of the single-particle correlation matrix restricted to a subsystem.

It contains the weight of a single-body entangled modes across a partition. The

many-body entanglement spectrum is built from the single particle levels by find-

ing all occupation patterns of single-particle modes. The entanglement spectrum

of an interacting state requires that the parent Hamiltonian cannot be brought

into a quadratic form, otherwise the entanglement Hamiltonian would also be

quadratic. An interacting entanglement Hamiltonian mixes the single-particle en-

tangled modes, that requires exponentially many many-body entanglement levels

to fully describe. Thus, if a quantum state has a free description it is computa-

tionally more convenient to find the the underlying single-particle modes rather

than the full many-body entanglement spectrum.
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2.5 Summary

We then gave an example of an interacting Hamiltonian – an XY model with

a transverse field – that can be transformed to a free-fermionic Hamiltonian by a

Jordan Wigner transformation – the Kitaev chain. In this case, it would be ad-

vantageous to find the entanglement spectrum from the single-particle correlation

matrix rather than the full reduced density matrix of the many-body state. The

free-fermionic representation is enlightening as it allows for exact solutions and

is computationally efficient to model. By a transformation to the Majorana basis

we showed that the model is topological: it has a non-trivial topological invariant

in the bulk and midgap zero energy Majorana edge modes at the boundary of

an open chain. This opens the question, can other systems host Majorana edge

modes? The answer is of course yes and the search is certainly on for finding

different systems capable of hosting edge states.
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Chapter 3

Probing the topological phase of

a non-local Majorana chain

3.1 Introduction

In this Chapter, we study the topological properties of a Majorana chain with

extended range hopping and pairing. In the previous Chapter we studied the

local Majorana chain, showing that it has single-particle energies of zero energy

exponentially localised at the boundary in a topological phase. This is comple-

mented by a non-trivial topological index that can be evaluated for open or closed

chains. The Majorana chain is a ’toy model’ proposed to expose edge Majoranas

that have applications in quantum computing and quantum technologies. The

interest in extending the range of couplings to include non-local couplings follows

experimental proposals, where cold atom setups may be engineered with an ef-

fective Hamiltonian like the Kitaev chain and including variable range hopping

and pairing terms [60, 20, 61, 62]. It was found in [20] that a consequence of

long-range couplings, in a setup of magnetic impurities placed in contact with a

superconductor, is that edge modes may persist at the critical point in absence

of the topological gap.

Following experimental studies, theoretical interest shifted towards character-

ising the topological phase of long-range models through a ’toy model’ approach

i.e. construct a model Hamiltonian with appropriate tunnelling and pairing terms,

in order to analyse the energy, localisation properties and a relevant topological
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invariant. In an attempt to model more physically realistic setups, in [63] the au-

thors include a three spin interaction to the XY model extending the nearest cou-

pling to next nearest neighbour. This interaction dramatically changes the phase

diagram of the XY model, introducing another distinct topological phase with

two Majorana edge modes. Further, in the following studies [64, 65, 66, 67, 68],

the pairing terms are extended to long-range whilst including a decay parameter.

They also found that phase diagram was modified, where now the strength of the

long-range couplings alters the properties of edge modes. In general, dependent

on whether hopping, pairing, or both are extended, the model exhibits a variety

of novel phenomena. This includes edge modes with non-zero energy and also

multiple edge modes that require a full Z classification [63, 69], contrary to the

sufficient Z2 classification of the local model [12].

The work presented in this Chapter is adding to the conversation about free

fermionic long-range topological phases, where we aim to find analytical solutions

to a long-range model and study the characteristics exposed in its entanglement

spectrum [1]. We first introduce the model in a more general form, where it is

has many tunable parameters that exposes a variety of different phases [69]. This

motivates the choice of model that we then focus on – one with open boundaries

and infinite range couplings.

3.2 The non-local generalisation of the Kitaev

chain

Following the notation introduced in the previous Chapter, define the Hamilto-

nian for an extended Majorana chain in one-dimension and with PBC aL+j = aj

to be

H =
L∑
j=1

r∑
l=1

(
eiφl

J

dαl
a†jaj+l +

∆

dβl
ajaj+l

)
+
µ

2
a†jaj + h.c., (3.1)

where we have extended the hopping and pairing terms to include up to r nearest

neighbours, with a strength that decays with distance dl = min(l, L − l). The

type of decay, e.g. power-law, exponential, or some other, is generic; however,
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power-law is chosen here in line with experimental setups [60, 20, 61]. A complex

phase has been introduced in the hopping term, φl, that can be chosen to break

time reversal symmetry; while the exponents α and β are chosen to expose either

long-range hopping, long-range pairing, or both.

In our work [1] we take α = β on a chain with OBC and r → L − j for the

entire study and allow its value to range from infinite range for α = 0 to the

local chain for α→∞; however, through the periodic chain we may motivate our

reasons why.

3.2.1 Extremal cases: recovering the local chain and ex-

tending to infinite range couplings

It is helpful to first consider some limiting cases of the different parameters that

are at our disposal. At one extreme, the short-range Majorana chain is found

by either letting r = 1 or taking the limit α, β → ∞1, with φ = 0, π to preserve

TRS. In this limit there exists a topological phase characterised by a non-trivial

integer winding number when µ < 2J and ∆ 6= 0, as discussed in the previous

Chapter.

At the other extreme is the infinite-range chain where there exist couplings of

equal strength between all sites, that is found by extending r and setting α, β = 0

removing any dl dependence from the Hamiltonian. On a periodic lattice, it is

not possible to simply set r = L − 1 as this results in cancellation’s of terms

in the Hamiltonian. To see this, consider an infinite-range chain with PBC and

r = L − 1 for some generic L. In the Hamiltonian there exists pairing terms

like ajak + a†ka
†
j, with k = j + l for some l, and also akaj + a†ja

†
k. Due to the

fermionic anti-commutation relations all terms here cancel. Equally, if one sets

APBC, aL+j = −aj, with r = L − 1 all hopping terms cancel. This is clearly

not capturing the physics that we are interested in, so instead restrict to r < L
2

and L odd. Only then is it possible to see equal couplings between all sites,

without cancellations or redundancies, see Fig. 3.1. Note that with even L it is

1Each of these cases give an identical chain with nearest neighbour hopping and pairing only;

however, by choosing different scaling parameters we may independently probe the different

contributions to the behaviour of the long-range chain.
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5
<latexit sha1_base64="N8f4lxeEEDz/qiLuXS+43TBm1YA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUuOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasIbP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBgK2MuQ==</latexit><latexit sha1_base64="N8f4lxeEEDz/qiLuXS+43TBm1YA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUuOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasIbP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBgK2MuQ==</latexit><latexit sha1_base64="N8f4lxeEEDz/qiLuXS+43TBm1YA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUuOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasIbP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBgK2MuQ==</latexit><latexit sha1_base64="N8f4lxeEEDz/qiLuXS+43TBm1YA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUuOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasIbP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBgK2MuQ==</latexit>

(a)

1
<latexit sha1_base64="l9eImvYcFOKpzEDji/n9jPDeWb8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q3KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1ryv12zyOIpzBOVyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8Aep2MtQ==</latexit><latexit sha1_base64="l9eImvYcFOKpzEDji/n9jPDeWb8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q3KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1ryv12zyOIpzBOVyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8Aep2MtQ==</latexit><latexit sha1_base64="l9eImvYcFOKpzEDji/n9jPDeWb8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q3KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1ryv12zyOIpzBOVyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8Aep2MtQ==</latexit><latexit sha1_base64="l9eImvYcFOKpzEDji/n9jPDeWb8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q3KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1ryv12zyOIpzBOVyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8Aep2MtQ==</latexit>

2
<latexit sha1_base64="bGronyvkxiOrftIdMcDlRYPusyM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipWRuUK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasIbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSrlU9t+o1ryr12zyOIpzBOVyCB9dQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AfCGMtg==</latexit><latexit sha1_base64="bGronyvkxiOrftIdMcDlRYPusyM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipWRuUK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasIbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSrlU9t+o1ryr12zyOIpzBOVyCB9dQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AfCGMtg==</latexit><latexit sha1_base64="bGronyvkxiOrftIdMcDlRYPusyM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipWRuUK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasIbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSrlU9t+o1ryr12zyOIpzBOVyCB9dQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AfCGMtg==</latexit><latexit sha1_base64="bGronyvkxiOrftIdMcDlRYPusyM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipWRuUK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasIbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSrlU9t+o1ryr12zyOIpzBOVyCB9dQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AfCGMtg==</latexit>

3
<latexit sha1_base64="JYBj3t+WTAQe8bLkJgi7MxOh5ms=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUuOyXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasIbP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFVqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBfaWMtw==</latexit><latexit sha1_base64="JYBj3t+WTAQe8bLkJgi7MxOh5ms=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUuOyXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasIbP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFVqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBfaWMtw==</latexit><latexit sha1_base64="JYBj3t+WTAQe8bLkJgi7MxOh5ms=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUuOyXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasIbP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFVqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBfaWMtw==</latexit><latexit sha1_base64="JYBj3t+WTAQe8bLkJgi7MxOh5ms=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUuOyXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasIbP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFVqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBfaWMtw==</latexit> 4

<latexit sha1_base64="bERoMPi7jsjoiO8mzWJ5ledolrw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipWRuUK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasIbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVr1ir12zyOIpzBOVyCB9dQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AfymMuA==</latexit><latexit sha1_base64="bERoMPi7jsjoiO8mzWJ5ledolrw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipWRuUK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasIbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVr1ir12zyOIpzBOVyCB9dQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AfymMuA==</latexit><latexit sha1_base64="bERoMPi7jsjoiO8mzWJ5ledolrw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipWRuUK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasIbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVr1ir12zyOIpzBOVyCB9dQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AfymMuA==</latexit><latexit sha1_base64="bERoMPi7jsjoiO8mzWJ5ledolrw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipWRuUK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasIbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVr1ir12zyOIpzBOVyCB9dQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AfymMuA==</latexit>

5
<latexit sha1_base64="N8f4lxeEEDz/qiLuXS+43TBm1YA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUuOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasIbP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBgK2MuQ==</latexit><latexit sha1_base64="N8f4lxeEEDz/qiLuXS+43TBm1YA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUuOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasIbP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBgK2MuQ==</latexit><latexit sha1_base64="N8f4lxeEEDz/qiLuXS+43TBm1YA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUuOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasIbP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBgK2MuQ==</latexit><latexit sha1_base64="N8f4lxeEEDz/qiLuXS+43TBm1YA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUuOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasIbP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBgK2MuQ==</latexit>

6
<latexit sha1_base64="c/V62lZH12dMcD11xE/mcz5cx5U=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUuOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasIbP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBgjGMug==</latexit><latexit sha1_base64="c/V62lZH12dMcD11xE/mcz5cx5U=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUuOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasIbP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBgjGMug==</latexit><latexit sha1_base64="c/V62lZH12dMcD11xE/mcz5cx5U=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUuOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasIbP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBgjGMug==</latexit><latexit sha1_base64="c/V62lZH12dMcD11xE/mcz5cx5U=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUuOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasIbP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBgjGMug==</latexit>

(b)

Figure 3.1: A sketch of the maximal extent of long-range couplings for an (a)

odd length and (b) an even length chain with closed boundaries. In (a) every

site is connected to every other site. In (b) sites j and j+L/2 are not connected

for any j as hermitian conjugate terms of the Hamiltonian result in cancellations

for both PBC and APBC. To remove this effect we choose to study odd length

chains only.

not possible to couple the j and j + L
2

sites. Though the effect of this missing

coupling is negligible, in this work whenever PBC are enforced we use odd length

chains.

3.2.2 Bloch Hamiltonian

To probe this model further it is worth making use of the translational invariance

of the model, i.e. invariance under translation of lattice indices, and use a Fourier

transformation to momentum space as we did with the local model. Using a

Fourier transformation, Hamiltonian (3.1) becomes

H =
∑
k

(
a†k a−k

)
µ
2

+ J
r∑
l

1
lα

cos(φll − kl) −i∆
r∑
l

1
lβ

sin(kl)

i∆
r∑
l

1
lβ

sin(kl) −µ
2
− J

r∑
l

1
lα

cos(φll − kl)

( ak
a†−k

)

=
∑
k

ψ†kH(k)ψk, (3.2)

where we have made use of the Dirac delta function δk,k′ = 1
L

∑
j e

i(k−k′)j and

H(k) is the BdG Hamiltonian. Taking into account PHS that gives a symmetric
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3.2 The non-local generalisation of the Kitaev chain

distribution of energies about zero, the analytical expression for the bulk energy

spectrum is

E±bulk(k) = ±

√√√√∣∣∣∣∣µ2 + J
∑
l

cos(φll − kl)
lα

∣∣∣∣∣
2

+

∣∣∣∣∣∆∑
l

sin(kl)

lβ

∣∣∣∣∣
2

, (3.3)

allowing one to define the energy gap as Egap = 2 mink E
+
bulk(k).

Making use of a trigonometric identity, we see that cos(φll±kl) = cos(φll) cos(kl)∓
sin(φll) sin(kl) and can conveniently rewrite the BdG Hamiltonian as

H(k) =

[
∆
∑
l

sin(kl)

lβ

]
σy −

[
µ

2
+ J

∑
l

cos(φll) cos(kl)

lα

]
σz

+

[
J
∑
l

sin(φll) sin(kl)

lα

]
12 (3.4)

where σj are the 2 × 2 Pauli matrices and 12 is the identity. The effect of the

complex hopping phase now becomes clear. TRS is conserved if H(−k)∗ = H(k).

In Hamiltonian (3.4), the term proportional to the identity breaks this symmetry

unless φl = 0, π. Breaking TRS changes the topological invariant from a Z to a

Z2 classification.

The physical relevance of breaking TRS can be interpreted in more than one

way. First, we can think of a real system that could be prepared in the lab. In

order to build a system of spinless fermions it is required that there is a strong

magnetic field fixing the spin orientation of spinful fermions. TRS has the effect

of flipping spins, but not the magnetic field. Therefore spins will not flip under

TRS and it is therefore not an invariant. By including φl 6= 0, π we simulate this

behaviour in Hamiltonian (3.1). Further, we can think about the effect TRS has

on the momentum space single particle spectrum. If TRS is an invariant then

the entire spectrum satisfies H(−k)∗ = H(k). The condition implies that at the

points in the BZ that map to themselves k = 0, π, there is a time reversal state

with the same energy. Thus TRS implies degeneracies in the energy spectrum,

this is confirmed by Kramer’s theorem [70] providing the system has half-integer

total spin or T2 = −1. Degeneracies at time reversal invariant points can only be

lifted by breaking the symmetry.
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Another relevant symmetry is particle-hole symmetry – an anti-unitary opera-

tion transforming the Bloch Hamiltonian as C−1H(k)C = −H(k), where C = σxK

and K is complex conjugation [71]. The existence of both TRS and PHS implies

a chiral symmetry, that is found upon the multiplication of TRS and PHS. This

very general model is thus open to a wide range of physics through the different

choices of parameter value. Let’s expose some of its features through a winding

number analysis.

3.2.3 Winding number analysis

For this study we use the winding number topological invariant introduced in

Eq. (2.57) of the previous Chapter, with the definitions ĥ(k) = h(k)
|h(k)| = (hx, hy, hz)

for H(k) = h(k)·σ and σ = (σx, σy, σz)
T . For now, it is sufficient to plot hz against

hy in order to identify when points in k-space populate the unit circle. In Fig. 3.2

we show the winding of ĥ(k) for different parameter values, with φl = 0, α = β = 0

and L = 2001 sites. In all figures the points only populate a semi-circle and not

the full unit circle, leading to an apparent half-integer winding number [67],

even as the system size increased. By definition a winding number measures full

rotations about the origin, so the applicability of the winding number here may

be brought into question.

Figs. 3.2(a) and 3.2(b) contain points densely populating the upper hemi-

sphere and also a single point at hz = −1 hy = 0. The existence of points at both

the north and south pole of the unit circle indicates a topological phase as the

winding vector is required to have made a full rotation about the origin. Though,

this is not enough to accept that the topological phase exists with half-integer

winding. Fig. 3.2(c) contains a single point in the lower hemisphere with all other

points having hz = 0; this can be identified as the phase transition, in agreement

with the energy gap closing. Fig. 3.2(d) has all points densely populating the

lower hemisphere with no points above the hy axis. This is a signature of a trivial

phase as the winding vector only covers half the unit circle, without the single

point at the opposite pole.

Instead, one could use the TRS symmetry of the model to define a better

topological invariant. As hy(k) is the sum of sin terms, when k is an integer value
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−1 1 hy

−1

0

1

hz
J = ∆ = 1
µ = 0

(a)

−1 1 hy

−1

0

1

hz
J = 2∆ = 1
µ = 0.1

(b)

−1 1 hy

−1

0

1

hzJ = ∆ = µ

(c)

−1 1 hy

−1

0

1

hzJ = ∆ = µ/2

(d)

Figure 3.2: Winding of the Bloch Hamiltonian in k-space for the infinite-range

model α = β = 0 with L = 2001 sites, PBC, and TRS φl = 0, for different points

in the phase diagram. The values of J , ∆ and µ are labelled on each figure. Such

a large system size is taken here to demonstrate where the density of points lie

about unit circle.

of π, then that component of the Bloch vector is zero. When TRS is present, so

that h(k)x = 0, the vector is parallel to the z-axis. There are two points in the

BZ with this property, i.e. k ∈ [0, π]. In order for the the path taken by the Bloch

vector to be deformable to a full circle about the origin, it must pass through

the north and south pole at the 0 and π points. Therefore define a topological

invariant to be

ν = sgn[hz(0)hz(π)]. (3.5)
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When ν = −1 there is a non-zero winding as the vector must pass through both

poles. When ν = 1 the vector draws out a path that passes over the same pole

at both k points and is therefore a trivial phase with zero winding. This Z2

invariant appropriately characterises the system also with broken TRS as shown

in [69] that results in the winding vector having three non-zero components.

To see why the winding number is not well behaved in the infinite limit, it is

useful to plot the winding vector away from α = β = 0 and with a reduced range

of r. In Fig. 3.3 the winding vector is shown for different choices of r, α and β.

In (a) the winding vector is plotted with power-law decaying couplings, with r

extending to its maximal value of L−1
2

and α = β = 0.5. The winding vector

now has points in the lower hemisphere, breaking the argument for a half-integer

winding. Though they still do not densely cover the entire circle, this result

suggests that the long-range couplings affect the distribution of points along hz.

In (b) the winder vector is plotted with a reduced range r and without decay,

r = L−1
2
− 1 and α = β = 0. Now, even with only a single r value less than what

is plotted in Fig. 3.5, the vector densely populates the entire unit circle making a

single revolution about the origin. If the L→∞ limit is taken, with also r →∞,

it is found that hz(k) is constant for all values of k. It is therefore necessary to

take the limit L → ∞ before r → ∞ (without the gap closing) to arrive at a

reliable result for the winding number.

As an alternative approach, one could investigate a different choice of bound-

ary condition that may probe different points in momentum space. For example,

with a twisted boundary condition the first and last sites of an open chain are

coupled up to an overall phase, e.g. if periodic boundaries has coupling J between

the ends, then twisted boundaries has coupling JeiΘ between ends with Θ ∈ R

and defined modulo 2π. Anti-periodic boundaries are found by setting Θ = π.

Including a twisted boundary condition has the effect of allowing for values of

lattice momenta k = 2nπ
L

with n /∈ Z, that may populate the unit circle in regions

where Θ = 0, π does not. This is an interesting point that would be insightful to

explore in future work.

In order to definitively prove the existence of topological phase, beyond the

arguments given above, we aim to find an analytical solution for the infinite range

model with OBC. In doing so, we hope to find exponentially localised Majorana
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−1 1 hy

−1

0

1

hzJ = ∆ = 2µ

(a)

−1 1 hy

−1

0

1

hzJ = ∆ = 2µ

(b)

Figure 3.3: Winding of the Bloch Hamiltonian in k-space with J = ∆ = 2µ = 1,

L = 2001, φl = 0 and (a) α = β = 0.5, r = L−1
2

(b) α = β = 0, r = L−1
2
−1. From

(a) it is clear that allowing for a power-law decay extends the density of points

from the upper hemisphere in the lower hemisphere. However, from (b), points

populate the entire circle if the range of interactions is reduced only slightly from

its maximum value.

edge modes that are gapped away from the lowest energy bulk modes, given by

Eq. (3.3). By probing directly the infinite range chain with open boundaries we

may expose Majoranas in the most extremal case of Eq. (3.1), whilst bypassing

the requirement for taking limits in a particular order to achieve a sensible result.

3.3 Analytical solution of the infinite range model

3.3.1 Forming a recursion relation for particle amplitudes

In order to show the existence of edge modes we obtain a full analytical solution

for the infinite range model, setting α = β = 0 with OBC and φl = 0. The

Hamiltonian becomes

H =
L−1∑
j=1

L−j∑
l=1

(
Ja†jaj+l + ∆ajaj+l + h.c.

)
+

L∑
j=1

µa†jaj (3.6)

Without translational invariance it is not possible to use the momentum space

representation as presented in the previous section that lends itself to winding
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Figure 3.4: (Top) Pictorial representation of the infinite range chain in the

fermionic representation with OBC and L = 4 sites. While tunnelling couplings

create a fully connected graph, the pairing couplings encode direction that pre-

serves the one-dimensional character of the model. (Bottom) Visualising the

Hamiltonian in a Majorana representation with operators, γ2j−1 (blue) and γ2j

(red), the one-dimensional (and not zero or many-dimensional) character becomes

clear. Lines represent terms in the Hamiltonian: J + |∆| (green, solid), J − |∆|
(orange, dashed) and µ (purple, dotted).

number calculations. However, we still want to show that the ground state is

topological, i.e. that there exist elementary excitations that are exponentially

localised to the boundary. By making a transformation to the Majorana repre-

sentation and viewing the Hamiltonian graphically, see Fig. 3.4, it is clear that

edge Majorana modes do exist, at least for some choice of the parameter val-

ues. Take for example J = |∆| along with µ = 0. The Hamiltonian reduces to

H = i
2

∑
j,k Jγ2j−1γ2k+2 that does not contain the operators γ2 and γ2L−1. Such a

situation presents zero energy edge modes in the same way as the local Majorana

chain. Likewise, choosing J = −|∆| leaves zero energy edge modes localised at

Majoranas γ1 and γ2L. It now remains to find the effect of tuning away from

these special points.

We return to the fermionic representation for the following calculation and

use a modified generating function method that has been used successfully for

finding edge mode localisation properties in local models [72, 73, 74, 75]. Choose

a general state |ψ〉 =
∑N

j=1 χ
†
jψj |0〉 to be an eigenstate of Hamiltonian (3.6) with
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energy E, where χ†j =
(
aj a†j

)
contains particle and hole creation operators with

amplitude ψj =

(
ψAj
ψBj

)
, that acts on the superconducting vacuum |0〉 (filled Fermi

sea). To show existence of edge modes we want to find amplitudes that satisfy

|ψj|2 ∼ exp
[
−j
ξ

]
, where ξ is the edge mode localisation length characterising the

exponential profile of the mode.

Using the Schrödinger equation and ensuring the boundary condition is sat-

isfied, ψL+m = ψ1−m = 0 for all m > 0, returns a recursion relation relating site

j to all other sites of the chain

L∑
l=1

[
Γ2ψj+l + Γ†2ψj−l

]
+ (Γ1 − 2E)ψj = 0, (3.7)

where Γ1 =

(
µ 0
0 −µ

)
and Γ2 =

(
J −∆
∆ −J

)
contain the coupling amplitudes.

This is not particularly simple to solve as can be seen by rearranging: extracting

information about any site j requires information from all other sites. This can

be simplified greatly by considering instead the sum of amplitudes

Ψj =
L∑

m=j

ψm. (3.8)

By taking differences of Eq. (3.8) it is simple to show that ψj = Ψj − Ψj+1 and

also
∑j

k ψk = Ψ1 −Ψj+1. Therefore, substituting Eq. (3.8) into Eq. (3.7) results

in

MΨj +KΨj+1 + Γ†2Ψ1 = 0 (3.9)

where M = Γ1 − Γ†2 − 2E and K = Γ2 − Γ1 + 2E. We now have a recursion

relation that at first glance looks significantly simpler: to find information about

term j + 1 we only need information about term j and the first term.

3.3.2 From a recursion relation to a generating function

From a set of amplitudes {Ψj} related by a recursion relation it is possible to

define a generating function

G(z) =
L∑
j=1

zj−1Ψj, (3.10)

51



3. PROBING THE TOPOLOGICAL PHASE OF A NON-LOCAL
MAJORANA CHAIN

that generates each term by repeated differentiation, i.e. Ψj = 1
(j−1)!

d(j−1)

dz(j−1)G(z)
∣∣∣
z=0

,

with z ∈ C. To find a function of this form, multiply Eq. (3.9) by zj and sum

over all j. Then, following some rearranging we find

0 =
L∑
j=1

[
zjKΨj+1 + zzj−1MΨj + zjΓ†2Ψ1

]
0 =

L∑
j=1

[
zj−1KΨj + zzj−1MΨj + zjΓ†2Ψ1

]
−KΨ1

0 = (K + zM)G(z) +

[
−K + Γ†2

z(1− zL)

1− z )

]
Ψ1, (3.11)

where in the second line we let j → j − 1 and in the final line we use
∑L

j z
j =

z(1−zL)
1−z that is the closed form solution for the first L terms of a geometric series,

providing |z| < 1 and with singular points at |z| = 1. We will see later that

restricting to the domain |z| < 1 is an acceptable restriction for this problem. Of

course, writing it in its unrestricted form
∑

j z
j only exposes that it is divergent

for all |z| ≥ 1. The generating function is therefore given by

G(z) = (K + zM)−1

[
K − Γ†2

z(1− zL)

1− z )

]
Ψ1. (3.12)

To expose the generating function in all of its detail, expand A = K + zM to

find its inverse and let Ψ1 =

(
φ1

φ2

)
. This results in

G(z) =
1

detA

[
Σ(1− z) ∆(1 + z)
−∆(1 + z) −Σ̄(1− z)

]
×
[(
−Σ̄φ1 −∆∗φ2

∆φ1 + Σφ2

)
− z(1− zL)

1− z

(
Jφ1 + ∆∗φ2

−∆φ1 − Jφ2

)]
, (3.13)

where detA = [4E2 − (J − µ)2](1 − z)2 + ∆2(1 + z)2, Σ = −J + µ + 2E and

Σ̄ = −J+µ−2E. From this generating function it is possible to analyse the case

where there is a boundary at both sites 1 and L, and also the case where there is

a single boundary at site 1 or L on a semi-infinite chain extending to ±∞. We

will see that both cases are important to completely describe this model.
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3.3 Analytical solution of the infinite range model

3.3.3 Ground state of a semi-infinite chain with a single

boundary

Generating function conditions for edge modes

Let us first explore what is required of the generating function of a non-local

chain in order to expose the topological nature of the ground state, i.e. the

existence of edge modes. For the non-local, semi-infinite, chain we have defined

the generating function in Eqs. (3.10) and (3.8). If it was defined more simply as

g(z) =
∑∞

j=1 z
j−1ψj (as is the case when solving the local chain) then the following

proposition would hold. It is presented in [72], also for completeness in [1], and

will be presented here. It relates poles zi of a rational generating function to the

localisation of its terms. The generating function can be expressed explicitly as

g(z) =
∑

i
fi(z)

(z−zi)ni with fi(z) a vector with entries containing polynomials in z

and ni the order of the pole zi,

Proposition: A rational generating function, g(z) =
∑∞

j=1 z
j−1ψj, corre-

sponds to an edge mode, |ψj|2 j→∞−−→ 0, if and only if all the poles, zi, of g(z) have

absolute values greater than one, |zi| > 1 ∀ i.
In order to understand this proposition, consider a generating function with

a first order pole only. If a, b ∈ C are constants that do not depend on index, it

follows that

g(z) =
z0

z0 − z

(
a
b

)
(3.14)

=
1

1− z
z0

(
a
b

)
(3.15)

=
∑
j

(
z

z0

)j (
a
b

)
. (3.16)

From the definition of the local generating function, i.e. g(z) =
∑∞

j=1 z
j−1ψj, we

have that ψj = 1

zj−1
0

(
a
b

)
. Thus poles of the closed form generating function give
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exactly the distribution of particle amplitudes across the chain. Therefore, either

|z1| < 1 =⇒ |ψj|2 j→∞−−→∞, (3.17)

|z1| = 1 =⇒ |ψj|2 = eikj, (3.18)

|z1| > 1 =⇒ |ψj|2 j→∞−−→ 0, (3.19)

corresponding to a diverging (or converging on the opposite boundary), a bulk

or an edge mode solution respectively. More complicated generating functions

can be reduced to this single pole problem. Of course, our generating function,

Eq. (3.13), is defined in terms of Ψj’s that correspond to sum’s of amplitudes ψj,

i.e. Ψj =
∑

k=j ψk, where ψj is a vector containing support for particles and holes.

Due to the use of Ψj, the condition found above in Eq. (3.19) is not enough to

probe the existence of edge modes. For that we must look a little deeper at G(z).

In the above, the spinor notation was introduced by simply including the vector(
a
b

)
in the ansätze and carrying it through the calculation. In the following, for

simplicity and without loss of generality, we drop the spinor notation.

To expose G(z) in more detail use Eq. (3.19) as an ansätze, i.e. that ψj =

z−j0 with |z0| > 1 (up to normalisation). We may therefore rewrite the inner

summation of G(z) =
∑∞

j=1

∑∞
k=j z

j−1ψk as

∞∑
k=j

ψk =
∞∑
k=j

1

zk0

=
1

zj0

∞∑
l=0

1

zl0
,

=
1

zj0

1

z0 − 1
, (3.20)

where on the second line we substitute l = k− j and then use the closed form for

the infinite geometric series
∑

l z
−l
0 = (z0 − 1)−1, that is analytic for |z0| > 1 and

is singular at z0 = 1. Substituting Eq. (3.20) back into the generating function
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3.3 Analytical solution of the infinite range model

and rearranging gives

G(z) =
∞∑
j=1

zj−1

zj0

1

z0 − 1

=
1

z0 − 1

∞∑
j=1

zj−1ψj

=
1

z0 − 1
g(z), (3.21)

where g(z) =
∑∞

j=1 z
j−1ψj must satisfy the condition found in Eq. (3.19). It is

clear that the z0 = 1 pole does not affect the localisation properties of ψj as these

are contained entirely in g(z). The z0 = 1 pole is an artefact of the infinite range

couplings.

Existence of edge modes

To continue, we now need to check the poles of Eq. (3.13) to find under which

conditions they satisfy Eq. (3.19), that result in an edge mode. We should also

be able to extract other properties of the edge mode, for example how fast it

decays into the bulk, as this is related to the specific poles of G(z). The poles

are the two solutions z1,2 of the quadratic detA = 0. Vieta’s formula states that

for a quadratic equation ax2 + bx+ c = 0 with x ∈ C, then its roots must satisfy

x1x2 = c/a and x1 + x2 = −b/a. Making use of the first of these relations and

realising that in our case c = a, we see that z1z2 = 1. This leaves three choices:

(i) |z1| = |z2| = 1, (ii) |z1| = 1
|z2| > 1 or (iii) |z1| = 1

|z2| < 1. For an edge mode

we require either (ii) or (iii) and need to ensure that the pole less than one is

cancelled with a zero in the numerator of G(z), to satisfy Eq. (3.19).

We can simplify G(z) by focusing on the region |z| < 1 (as this is where we

find the pole that we wish cancel) so that zL → 0. Then, exposing the generating

function in its full form gives

G(z) =
1

(1− z) detA
[(1− z)P (z)− zQ(z)] (3.22)

55



3. PROBING THE TOPOLOGICAL PHASE OF A NON-LOCAL
MAJORANA CHAIN

with P (z) and Q(z) both linear in z,

P (z) =

[
−Σ(Σ̄φ1 + ∆∗φ2)(1− z) + ∆∗(∆φ1 + Σφ2)(1 + z)

∆(Σ̄φ1 + ∆∗φ2)(1 + z)− Σ̄(∆φ1 + Σφ2)(1− z)

]
(3.23)

Q(z) =

[
Σ(Jφ1 + ∆∗φ2)(1− z)−∆∗(∆φ1 + Jφ2)(1 + z)
−∆(Jφ1 + ∆∗φ2)(1 + z) + Σ̄(∆φ1 + Jφ2)(1− z)

]
, (3.24)

so that the numerator of G(z) is at most quadratic in z. In order to cancel the

|zj| < 1 pole for the entire generating function the rows of (1 − z)P (z) + zQ(z)

must be proportional, to cancel with (z − zj). To do so, and to also find the

specific conditions for when the rows are or are not proportional, it is possible to

form proportionality relations between the coefficients of 1, z and z2. This results

in three equations that may be solved for energy.

To be more clear, take the general form of the generating function to be

G(z) = 1
(z−z1)(z−z2)(1−z)

(
az2 + bz + c
dz2 + ez + f

)
. Say |z1| < 1, then for an edge mode we

require the factorisation az2 + bz + c = f(z)(z − z1) where the function f(z) is

linear in z and likewise for the bottom row, with the factorisation dz2 + ez+ f =

g(z)(z − z1). Clearly multiplying the top row by g(z)/f(z) gives the bottom

row, so comparing coefficients of z2, z and 1 we can form relations a = g(z)
f(z)

d,

b = g(z)
f(z)

e, and c = g(z)
f(z)

f . Then, rearranging for g(z)
f(z)

results in the following

equalities requiring to be satisfied a
d

= b
e

= c
f
.

Using this procedure, reading the values a, b, . . . , f from Eq. (3.22) along with

Eqs. (3.23) and (3.24), it is found that the only valid solution satisfying the

proportionality relations is one of zero energy E = 0 along with the conditions

φ1 = ±e−iθφ2 and |∆| 6= 0, where θ is the complex phase of the superconducting

parameter ∆ = eiθ|∆|. To ensure that this corresponds to an edge mode localising

at site 1, fix the remaining singular point, z2, to have an absolute value greater

than 1. This gives the condition:

µ < J. (3.25)

Thus in the infinite range model we see a reduction by a factor of two in the

value of chemical potential for which the model becomes critical, compared with

the nearest neighbour model. The infinite-range model has a topological phase

that is less robust than the local model, though it may be closer to physical in
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small systems where decaying couplings may appear close to infinite range over

the size of system.

Form of zero energy edge modes

In addition to finding the condition for the existence of zero modes, we can use this

approach to find the form of the corresponding eigenstates. We have already seen

in Eq. (3.12) that the generating function is proportional to the constant vector

Ψ1. It follows that all Ψj are also proportional to Ψ1, as Ψj = d(j)G(z)

dz(j)

∣∣∣
z=0
∝ Ψ1.

It is therefore clear that each ψj is also proportional to Ψ1 as ψj is found as the

difference of two consecutive sums, i.e. ψj = Ψj − Ψj+1 ∝ Ψ1. From Eq. (3.19)

we know that the single-site amplitudes must decay with the remaining |z2| > 1

pole; hence, the ground state is constructed by terms like

ψj = Ψj −Ψj+1 ∼ |z2|−j
(
±e−iθ

1

)
, (3.26)

up to normalisation. For |z2| < 1 the mode will localise at a j = N boundary of

a semi-infinite chain that extends to −∞, as per the condition in Eq. (3.17).

From the explicit expression found in Eq. (3.26) it is possible to find the

localisation length, ξ, that quantifies the exponential profile of the edge mode. It

is defined by ψj ∼ e−j/ξ, that gives ξ = 1
ln |z2| . As one approaches a the phase

transition, i.e. J = µ, we expect the localisation length to diverge whilst the edge

mode loses its exponential profile. Explicitly, the remaining pole is given by

z2 =
−|∆|2 − (J − µ)2 + 2|∆|(J − µ)

|∆|2 − (J − µ)2
. (3.27)

As µ → J from below, it is clear that the absolute value of the singular point

approaches one from above, |z2| → 1, and ξ →∞ as expected.

Following this explicit treatment we have shown that Hamiltonian (3.6) does

indeed host a zero-energy edge mode, providing the system is constructed on a

semi-infinite geometry. It is a unique, spectrally isolated state, which is both an

eigenstate of the Hamiltonian and of the particle-hole operator P = Kσ2, where

K is complex conjugation and σ2 the second Pauli matrix. That it is spectrally

isolated follows from the existence of a bulk gap separating the remaining en-

ergy levels from it. Uniqueness follows from there being only a single boundary
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and therefore a single edge mode, compared with a chain with two boundaries

where there exist exactly two zero energy edge modes in the infinite system limit.

These properties ensure the Majorana edge state is fixed to E = 0. If the system

is deformed away from the exactly solvable point by a series of unitary opera-

tions (local or not) that commute with particle-hole symmetry, this property is

preserved as long as the energy gap does not close. Hence, the edge mode (3.26)

is topologically stable in the same way as the edge modes of the local Kitaev

chain [12]. It now remains to include a second boundary at j = L and to find

under what conditions the model is in a topological phase.

3.3.4 Ground state of a finite chain with two boundaries

We now want to determine if a finite chain with infinite range couplings can

support edge modes. We first make an intuitive analysis. Returning to the local

chain, we know that exact zero-energy edge modes exist when J = ±|∆| or when

L→∞. If L is allowed to be finite, and J 6= ∆, we find that an edge mode exists

at each boundary that weakly interact under some effective Hamiltonian, with an

interaction that is exponentially suppressed with system size [12]. This interaction

results in a small energy shift (such that there remains a finite gap separating

the two modes from any bulk modes) that preserves particle-hole symmetry –

one mode is shifted in the positive E direction, the other by the same amount in

the negative E direction. As the system size increases the interaction will reduce

and the edge modes approach zero energy. This shift in energy does not affect

the topological phase, as one could adiabatically tune the system size without

the energy gap closing. Further, fluctuations between edge modes localising at a

single boundary require that a physical non-zero energy mode will have support

over both boundaries. For the infinite range chain sites 1 and L are coupled for

all system size. Intuitively, we may therefore expect the edge modes to have a

non-zero energy for any system size and to have support at both edges.

Generating function conditions for edge modes

It is now the aim to determine whether the model remains topological when the

second boundary is introduced. We take the generating function in Eq. (3.13)
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with L finite. Like the previous analysis, we must first study the divergences of

G(z) =
∑L

j=1 z
j−1Ψj with Ψj =

∑L
k=j ψk in order to find what conditions are

required that result in edge modes. It would certainly be incorrect to assume

that the generating function for the finite chain obeys the same set of divergences

as the semi-infinite chain – as we see that the generating function has a slightly

different definition.

Unlike the previous analysis, for a finite size system there exist two transfor-

mations of the Hamiltonian that impose conditions on the ground state, and will

simplify the calculation. Upon reflecting the chain about its centre, j → L−j+1

with l → −l, and also letting aj → −aj, a†j → a†j the Hamiltonian transforms as

H → −H, that give ψAj = −ψAL−j+1 and ψBj = ψBL−j+1. This transformation im-

poses the condition φ1 =
∑L

j ψ
A
j = 0. A second possible transformation includes a

reflection, along with aj → aj and a†j → −a†j, that also transform the Hamiltonian

as H → −H, that give ψAj = ψAL−j+1 and ψBj = −ψBL−j+1. This transformation

imposes φ2 =
∑L

j ψ
B
j = 0. While these symmetries are not needed to determine

the edge modes in a local chain, they are necessary for the infinite range chain.

Armed with these transformations we turn to the form of the generating function

given in Eq. (3.10).

First we see that the sums of amplitudes can be broken up into parts, i.e.

Ψj =
L∑
k=1

ψk −
j∑

k=1

ψk + ψj. (3.28)

Thus, the generating function can be split up into terms

G(z) =
L∑
j=1

zj−1

L∑
k=1

ψk −
L∑
j

j∑
k=1

zj−1ψk +
L∑
j

zj−1ψj. (3.29)

Following our intuitive understanding of the non-local chain (and from the sym-

metry conditions found for the Hamiltonian above) we expect that a single mode

must localise at both boundaries, decay with equal amplitudes and be symmetric

about the centre. The mode must therefore be invariant under the transformation

j → L − j + 1. This motivates the choice of ansätze to be ψj = z−j1 + zj−L−1
1 ,

with |z1| > 1, so that the decay of ψj is the same as ψL−j+1. Any relative phase

between the terms in this ansätze destroys breaks the j → L − j + 1 invariance
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of ψj. Note that there also remains intrinsic particle and hole support in this

ansätze that has been dropped for simplicity. It is possible to make the spinor

dependence more explicit by including a vector in the calculation; however, as

with the similar calculation for an edge mode condition with a single boundary,

we do not learn anything new from its inclusion. The generating function becomes

G(z) =
1− zL
1− z

z−L1 − 1

1− z1

+
z−L1

1− z1

1− (zz1)L

1− zz1

+
1

z1 − 1

1− (zz−1
1 )L

1− zz−1
1

. (3.30)

For large system sizes lim
L→∞

z−L1 → 0, so G(z) becomes in the large system size

limit

G(z) ≈ 1− zL
1− z

1

z1 − 1
+

1

z1 − 1

1− (zz−1
1 )L

1− zz−1
1

. (3.31)

It is clear that poles exist for z = 1 and z1 > 1. Studying the divergences further

gives that as

z → 1 G→ L

z1 − 1
+

1

(z1 − 1)(1− z−1
1 )

, (3.32)

z → z1 G→ zL1 − 1

(1− z1)2
+

L

z1 − 1
. (3.33)

So, the z = z1 pole diverges exponentially with L compared with the z = 1 pole

that diverges polynomially with L. For z1 = 1 the generating function has poles

for all z and is a critical point.

Existence of hybridised edge modes

We may now apply the symmetry and divergence conditions described in the

previous section to the physically relevant generating function, Eq. (3.13). We

know that it is required to remove the |z| < 1 pole so, like we did previously,

focus on this region so that zL → 0 whilst the z = 1 pole remains present, as

necessary. Next, we impose either φ1 = 0 or φ2 = 0. Begin with φ1 = 0; then,

the generating function becomes

G1(z) = X

[
z2∆∗(J − Σ) + z∆∗(J + Σ)

z2Σ̄(J − Σ) + z(2ΣΣ̄− Σ̄J + |∆|2) + (|∆|2 − ΣΣ̄)

]
, (3.34)
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where X = φ2
(1−z) detA

. The top row has the factors z = 0 and z = J+Σ
J−Σ

. Choosing

z = 0 as a pole does not give the desired condition for an edge mode – there will

still exist poles greater than and less than one. Therefore, we choose z 6= 0 factor

to cancel the pole by setting it as a factor of the bottom row. Rearranging the

result gives immediately one energy solution. If we choose to impose the φ2 = 0

condition we arrive at the second energy solution. The two solutions are

E± = ±J − µ
2

J2 − |∆|2
J2 + |∆|2 . (3.35)

Of course, that the Hamiltonian is particle-hole symmetric means that we only

need to impose one of the conditions, φ1 = 0 or φ2 = 0, in order to deduce the

second solution; however, it is simple enough to perform this check to be complete.

Upon demanding that the remaining pole has an absolute value greater than one

gives the edge mode condition to be µ < J , giving the same condition as the

semi-infinite chain with a single boundary. This condition holds for both energy

solutions.

Form of hybridised edge modes

Finally, we are able to determine the localisation properties of the edge mode

using the ansätze fixed above, i.e. ψj = z−j1 + zj−L−1
1 . We know that the mode

must localise at both boundaries and decay into the bulk with the remaining pole

z1 that lies outside of the unit circle. We also know that either φ1 = 0 or φ2 = 0

depending on the mode of interest. Beginning with φ1 = 0 that corresponds to

E+, the condition fixes that at one end of the chain ψj ∼
(
a
1

)
whereas at the

other end ψL−j+1 ∼
(
−a
1

)
, where the free component has been set to 1 and a is

to be determined.

In order to find a we note that local amplitudes are extracted using ψj =

Ψj − Ψj+1 and each Ψj is proportional to Ψ1. The generating function is also

proportional to Ψ1 for any z. Properties of the edge mode are found by approach-

ing the divergences of the generating function. Considerable simplifications are

found by allowing z → 1, for which the dominant term is linearly diverging with
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system size:

lim
z→1

G(z) = CL

(
J

∆∗

)
(3.36)

where C is contains other terms of the generating function not relevant to Ψ1.

To be consistent with our ansätze, we may now immediately write down the

unnormalised edge mode amplitude as

ψ+
j ∝ z−j2

(
J

∆∗

1

)
+ zj−L−1

2

(−J
∆∗

1

)
, (3.37)

where z2 = 2E++2J−µ
2E+−µ is the inverse of the cancelled pole.

Similarly we could have taken the negative energy solution along with φ2 = 0

giving

ψ−j ∝ z−j2

(
1
J
∆

)
+ zj−L−1

2

(
1
−J
∆

)
, (3.38)

where the remaining pole is of a similar form but with the negative energy solution

z2 = 2E−+2J−µ
2E−−µ .

Following this analysis, it is clear that the localised edge modes have non-zero

energies due to a direct coupling between the edges that is present for all system

sizes of the infinite range chain. This direct coupling has the effect of hybridising

the edge modes, such that they have support at both edges as evidenced by

Eqs. (3.37) and (3.38) [67, 69]. Note that when the parameters take values

J = ±|∆| and µ = 0 the edge modes have zero energy, as given by Eq. (3.3.4),

and the amplitudes ψ± ultra-localise at sites 1 and L.

Further to an analytical treatment of the edge modes, it is possible to probe

numerically the topological nature of the non-local chain: through the eigenstates

themselves, the use of a topological invariant, and the entanglement spectrum.

3.4 Numerical analysis of the non-local chain

3.4.1 Topological Invariant

Symmetry classification

The non-local (and local) Majorana chain lives in symmetry class BDI of the

Altland-Zirnbauer classification table [45, 76], presented in Table 2.2.3, due to the
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presence of particle-hole and time-reversal symmetries that imply also sub-lattice

symmetry. To see this for the infinite range chain with OBC, we could calculate

explicitly the form of the symmetries T, C, and S through their action on the

second quantised operators in Eq. (3.6), to determine whether they are invariant

and to find the sign of the symmetries squared. Alternatively, if the system can

be deformed from infinite range couplings to the local chain without the energy

gap closing then it must be in the same phase. We saw in Chapter 2 that local

chain with PBC is in class BDI. This classification extends to the local chain with

OBC through bulk-boundary correspondence. Later in this chapter, in Fig. 3.6,

we plot the ground state and first excited state energies for a long-range system,

showing that the gap does not close as couplings are tuned with a power-law decay

1/rα from α = 0 to α → ∞. The system therefore hosts the same topological

phase as the local chain and lives in the BDI symmetry class with a Z topological

invariant. However, we have seen that a Z2 classification is sufficient for the

local chain. This corresponds to two distinct phases that are connected through

the closing of the excitation gap. The phases are distinguished by their fermion

parity: the trivial phase has an even number of fermions and the topological

has an odd number, where the difference follows from the reduction in fermion

number by one to create of a pair of edge modes [12]. Following the analytical

treatment in the previous section, that resulted in bi-localised Majorana edge

modes presented in Eqs. (3.37) and (3.38) together with the constraint found

below Eq. (3.3.4), it is clear that there exist topological and trivial phases in the

long range model that differ by fermionic parity. It would therefore be useful to

probe this phase with an invariant in a similar way to the local chain.

If it were possible to close the infinite range chain then we could define a

winding number topological invariant, where a non-trivial value directly implies

a topological phase and therefore the existence of edge Majoranas on the open

chain due to bulk-boundary correspondence. However, as we saw at the beginning

of this chapter, it is not possible to close the (truly) infinite range chain without

losing terms in the Hamiltonian, for finite system sizes. For this case, we require

an invariant that can be evaluated for an open chain. The Pfaffian invariant M

may be used for both open and closed chains and measures the fermion parity

(−1)NF = ±1, where NF is the total fermion number that is invariant modulo
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2 [12]. We now briefly review some properties of the Pfaffian to understand why

it is a useful tool for measuring parity and thus also the presence (or not) of a

topological phase.

The Pfaffian invariant

For a skew-symmetric matrix A, i.e. AT = −A, the Pfaffian of A is given by the

square root of its determinant Pf(A)2 = detA and is related to fermion parity

by its sign M(A) = sgn[Pf(A)]. An important property of 2n × 2n real skew-

symmetric matrices is that their eigenvalues appear in complex conjugate pairs

{±iλj}nj , where λj ∈ R. As the determinant of a matrix is just the product of

its eigenvalues and the product each conjugate pair ±iλj is non-negativeλ2
j ≥ 0,

then the determinant is also non-negative. Thus, the Pfaffian of A lies somewhere

on the real line Pf(A) ∈ R and in terms of the eigenvalues of A is given by

Pf(A) = ±∏n
j |λj|.

Consider the local Majorana chain with PBC. In that case, providing the su-

perconducting term of the Hamiltonian is non-zero, then all eigenvalues of the

single-particle Hamiltonian are non-zero with an energy gap separating the occu-

pied from unoccupied states. An exception to this occurs at the phase transition

when the gap closes, changing the topological phase. Therefore, at the phase

transition the determinant is zero. However, when the gap reopens the determi-

nant will not change sign as it is non-negative, so it does not distinguish between

phases the different phases. Assuming there exists a skew symmetric represen-

tation of the local Majorana chain, then its Pfaffian will differ in sign on either

side of a phase transition as it tracks the level crossing at the gap closing point.

Let’s look a little closer at its definition.

Formally, it is defined in terms of permutations πα of the elements of A =

{Ai,j}, with α ∈ Π the set of all different permutations. By partitioning the

indices 1, 2, . . . , 2N into unordered pairs α = {(i1, j1), (i2, j2), . . . , (iN , jN)}, where

in < jn ∀ n = 1, . . . , N and i1 < i2 < · · · < iN , then the permutation is given by

πα =

[
1 2 3 4 . . . 2N − 1 2N
i1 j1 i2 j2 . . . iN jN

]
. (3.39)
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3.4 Numerical analysis of the non-local chain

From this, the Pfaffian is

Pf(A) =
∑
α∈Π

Aα (3.40)

where Aα = sgn(πα)Ai1,j1Ai2,j2 . . . AiN ,jN .

For the case of Hamiltonian (3.6) written in terms of Majorana operators,

H = i
2

∑
Aj,kγjγk, the matrix A is skew-symmetric and can be brought into

block-diagonal form via a real orthogonal transformation W ,

WAW T = diagj

[
0 εj
−εj 0

]
. (3.41)

The ±εj are the single particle energies that appear as complex conjugate pair

eigenvalues of A. The rows of W are eigenvectors of A. Note that as a condition

for using the Pfaffian it is required that there are no exact zero modes. In our

case we find non-zero energy edge modes for all system sizes, so this condition is

satisfied. Continuing, when written in this tridiagonal form the Pfaffian is simply

Pf(WAW T ) =
∏

j εj > 0. Thus, the parity is M(A) = sgn(detW ) as Pf(A) and

det(W ) are required to be the same sign to satisfy the property Pf(WAW T ) =

Pf(A) det(W ) [77].

Evaluating Eq. (3.40) for the non-local chain gives exact agreement with the

analytically found result, see Fig. 3.5. For µ < J the parity returns a non-trivial

value, M = −1, whilst the edge modes are non-zero, in agreement with our

result from the generating function analysis, Eq. (3.3.4), and separated from bulk

modes by the presence of a finite gap. For µ > J the parity returns a trivial

value, M = +1, and there is no gap separating the lowest energy states from the

first excited states.

3.4.2 The entanglement spectrum of a long-range Majo-

rana chain away from infinite range couplings

Entanglement spectrum from a flatband Hamiltonian

The entanglement spectrum was introduced in section 2.3 as a fingerprint for

different phases of matter. The aim now is to find what characteristics the en-

tanglement spectrum of a long-range model have and whether we can probe the
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Figure 3.5: Varying chemical potential µ for J = 1, ∆ = 0.7 and N = 100, for the

infinite range chain with OBC. Both the lowest four energy states (edge modes

are blue, bulk modes are orange) and the parity (green) are plotted. For µ < J

the edge modes are gapped from the bulk modes and the parity has a non-trivial

value M = −1. For µ = J the bulk gap closes as the system undergoes a phase

transition. For µ > J the edge modes no longer exist and the parity reflects that

with a trivial value M = +1.

topological phase through their knowledge. The spectrum is found upon diago-

nalising the reduced density matrix ρ = TrB |ψ〉〈ψ| of a state bipartitioned into

regions A and B. The reduced density matrix has the form ρ = e−HE , where

HE is the entanglement Hamiltonian. Here we wish to probe the elementary

single-particle excitations, so it is appropriate also study the single-particle en-

tanglement spectrum {εj}, that are the eigenvalues of the quadratic Hf
E.

In this study we extract the single-particle entanglement spectrum through

the correlation matrix introduced in Chapter 2. It works for a system with a

gapped bulk and midgap states in the single particle spectrum [78]. First, rewrite

the single-particle correlation matrix as a the topologically equivalent flatband

matrix Q = 1
2
−C with eigenvalues ±1

2
. It is topologically equivalent as one could

continuously deform the gapped Hamiltonian to a flatband Hamiltonian without

closing the gap. Then restrict to subsystem A by restricting C → CA = 〈c†jck〉
with j, k ∈ A. The resulting matrix QA = 1

2
− CA has eigenvalues λj ∈ [−1

2
, 1

2
].
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3.4 Numerical analysis of the non-local chain

But CA = (1 + eH
f
E)−1 so the eigenvalues λj are related to the single-particle

entanglement spectrum εj by

λj =
1

2
tanh

(εj
2

)
, (3.42)

with j = 1, . . . , L. The values εj can be therefore be calculated directly from

the correlation matrix of the single-particle eigenstates. Due to the presence of

particle-hole symmetry and a gap in the full Hamiltonian (3.6), it is expected

that there is a gap in the spectrum of QA and the levels come in pairs ±λj [51].

Numerical results for entanglement spectra

There are two different bipartition’s that we may take for an open chain and both

prove illuminating. One bipartition is a single cut separating the chain into left

and right partitions, the other is two cuts where a middle partition is separated

from boundary regions. We now compare properties of the physical spectrum and

entanglement spectra against the local Majorana chain. It is most clear to plot

the values λj, where all occupied(unoccupied) single-particle states sit around

−1
2
(+1

2
), with topologically protected midgap states. If the midgap state has

vanishing energy, ε → 0, then there are double degeneracies through the entire

many-body entanglement spectrum.

Let’s focus first on the case of a single partition separating the left and right

sides of the chain, as in Figs. 3.6a and c. For the short range chain in (a),

the entanglement Hamiltonian has a single virtual boundary at the partition,

resulting in a single zero energy mode. This mode has its energy pinned to zero

by PHS as there is no other midgap state to lift it from zero energy. The physical

boundary does not couple with the virtual boundary as the system size is taken

to be large, LA � ξ and both the physical boundary and virtual boundary are

exponentially localised. For the long-range chain in (c), the spectrum has two

midgap states split from zero energy. This implies that there is another edge

state, the one at the physical boundary, overlapping with the virtual boundary

at the partition. In Fig. 3.9, it is clear that this is because the virtual boundary

has edge states that decay polynomially into the bulk, giving a non-zero overlap

with the physical edge. The overlap is small as the physical edge mode decays
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Figure 3.6: Entanglement spectra, parametrised as λj, of the (top) short range

and (bottom) infinite range Majorana chain with L = 100, ∆ = 0.7, µ = 0.2,

and OBC. On the left, (a) and (c), shows a single partition of the system with

subsystem A having 52 sites. On the right, (b) and (d), shows two partitions,

where A has 52 sites with 21 sites to the left and 27 sites to the right. In all cases

other than (c) the spectrum has a midgap state that corresponds to the virtual

edge created by the partition. In (c), for the long-range chain with a single cut,

there are two mid gap states due to a non-local coupling between the virtual edge

and the physical edge.

quickly into the bulk. Thus, for very large system sizes the full entanglement

spectrum should display degeneracies much like the local Majorana chain.

Next, turn to a partition such that region A is sandwiched by region B, as

in Figs. 3.6b and d. Now there are two midgap states for both the short range
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Figure 3.7: The lowest two positive energy single-particle levels for the physical

spectrum E0 (blue, tri-up) E1 (orange,tri-down) with L = 152 sites and the entan-

glement spectrum with a single cut ε10 (green,dots) and two cuts ε20 (red,squares)

with L = 300 and LA = 152, all plots have ∆ = 0.7, µ = 0.2, and OBC. The

energy is split from zero due to a non-local coupling between edges, even in the

case of a single-partition.

(b) and long-range (d) chain. For the short range chain, the midgap energies are

within ∼ e−LA/ξ of zero energy as exponentially localised edge modes form at the

virtual boundaries. In this case the entanglement Hamiltonian is of a similar form

to the physical short-range Hamiltonian. For the infinite range chain, the midgap

energies are is split significantly from zero energy, much like the unpartitioned

chain. We saw that the physical spectrum is split from zero due to a physical

coupling between the edges. This could be the case here, where the entanglement

Hamiltonian may have a similar form to the physical Hamiltonian with a long-

range coupling between all sites. Alternatively, and more likely as evidenced by

Fig. 3.9, the overlap between the virtual boundaries is now significant enough to

split the energies due to the polynomial decay into the bulk.

Comparing entanglement spectra with physical energies

Compare now the affect of α on the lowest positive single-particle entanglement

level with the equivalent physical energy, see Fig. 3.7. So that the entanglement
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Figure 3.8: Scaling analysis of the groundstate energy, scaled by the inverse of

the decay exponent α−1, against inverse system size 1/L on a log-log plot. All data

points have ∆ = 0.7 and µ = 0.2. The lines are fit to the function Ẽα
L = Ẽα

g · 1
L

,

where Ẽα
g is a variational parameter for the gradient and y-intercept is fixed to

zero. In all cases for α > 0 we see the energy decay to zero with increasing system

size.

Hamiltonian and the physical Hamiltonian can be compared directly, the system

size L for the physical spectrum is chosen to be same as the subsystem size LA of

the partitioned states. For the physical energy, there is a clear exponential decay

for all choices of α. At α = 0 the result agrees with the analytical result found in

Eq. (3.3.4). As α is tuned away from the infinite point and approaches the short

range limit α→∞, the energy reduces to a zero value (up to e−L/ξ due to finite

size). The first excited state E1 remains gapped away from E0 for all α so it is in

the same topological phase as the local model, protected by the non-trivial value

of M, and can be characterised by the same Z2 topological invariant.

As the decay in energy is a consequence of the decaying coupling between

the two ends of the chain, for all α > 0 we should find that the energy in the

L → ∞ limit is zero. This can be evidenced in Fig. 3.8 where a scaling analysis

of the physical edge mode energy has been carried out for different values of α.

We use a linear scaling ansätze Ẽα
L = Ẽα

g · 1
L

, with Ẽα
g a variational parameter

for the gradient. The y-intercept is fixed to zero. The energy is linearised by the
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exponent E1/α and plotted against inverse system size on a log-log plot. For all

values of α we find that the energy decays to zero energy with increasing system

size, hence the non-zero energy can be attributed to a finite size effect and the

infinite range model is a ‘special point’ that remains at non-zero energy for all

L. Note that if a log-log plot results in a straight line then the input data must

be of the form y = axb where log(a) is the y-intercept and b is the slope. That

the data points in Fig. 3.8 are straight lines justifies the linearisation E → E1/α

followed by the use of a linear ansätze. The result is that energy scale to zero as

E ∼ (1/L)α. In order to improve the fitted lines in Fig. 3.8 it is required to let

α also be a variational parameter and not be fixed exactly to the coupling decay

exponent.

The partitioned ground state energies in Fig. 3.7, ε10 and ε20, display a slightly

different behaviour to the physical energy E0, indicating that the form of the

entanglement Hamiltonian is not identical to the physical Hamiltonian. For α &

0.5, E0 and ε20 have the same slope; however, E0 is initially subject to a faster

decay. For these values of α the decay in ε20 is dominated by the overlap of the

two edges, whereas the decay in E0 is less affected by exponentially localised edge

modes and has a decay dominated by the non-local coupling. The single partition

has energy ε10 that is an order of magnitude less than all other energies. If this had

the properties of a long-range chain with a single boundary we would see that it

has zero energy, pinned in the same way as the local Majorana chain. Instead we

see two behaviours: there is an initial fast decay, followed by a slower decay. The

fast decay can be attributed to a sharp reduction in overlap between the physical

and virtual edge, that is steeper than ε20, as the physical edge is exponentially

localised. The slope that follows decays similarly to E0 and ε2, that must be a

feature of non-local couplings.

It would be interesting in future work to complete a scaling analysis of the

ground state entanglement energies ε10 and ε20, to support the discussion given

above. As a conjecture, one would expect that ε20 remains fixed when α = 0 for

any system size and decays as α increases, similarly to the behaviour of E0. On

the other hand, ε10 should, in the L→∞ limit, be zero for all choices of α. This is

akin to the physical energy of the ground state of the infinite range Hamiltonian

with a single boundary, that is pinned to zero energy.
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Figure 3.9: Local density 〈nj〉 for the ground state of the entanglement Hamilto-

nian measured in subsystem A both for a single partition (green up triangles) and

for two partitions (orange down triangles). The system is in a topological phase

with L = 500, ∆ = 0.7 and µ = 0.2; in both cases the region A has 252 sites.

Figs. a-d have decay exponent α = 0, 1, 3.5, 100 respectively. When α is small

there are both virtual and physical boundaries that are a result of Majoranas

pairing across all sites. (d) is an example of exponential localisation, where the

nearly perfect straight lines (down to the computer noise level) are a result of

local couplings simulated with very large α.

Entanglement eigenvectors for the groundstate

Following an analysis of the entanglement spectrum, it is also insightful to look

at the ground state |ΨE〉 of Hf
E to see where entanglement is localising in the
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region A. In Fig. 3.9 we plot the local density 〈nj〉 of the ground state |ΨE〉
of Hf

E with both a single partition and two partitions for different values of α.

(a) shows the infinite limit α = 0. For two cuts leaving two virtual boundaries,

the mode is localised to both edges with a power-law dependence. Contrast this

with the behaviour of the physical edge localising at j = 1 of the green curve.

Due to the effect of non-local couplings the physical edge mode is correlated with

the remainder of the chain, in particular it is with the edge mode formed at the

partition.

Moving to (d) shows the expected behaviour for a local chain. For a single

cut, the entanglement decays exponentially away from the partition to the level

of computer noise. With two cuts, the entanglement between regions A and B

localises at two places, but as with the single cut it decays exponentially in both

cases. This figure should be used as a example of the known behaviour expected in

local one-dimensional gapped ground states. (b) and (c) show two intermediate α

values between (a) and (d). Comparing with (d), in (b) and (c) the initial decay

from both the partition and the physical edge is exponential. However, non-

local couplings and finite size restrict this decay, forcing an algebraic profile that

allows entanglement to spread out across the chain. Notice that as α increases,

the smallest value on the y-axis reduces by orders of magnitude for both a single

cut and two cuts. This is a signature of the edge Majoranas becoming more

localised as it becomes less energetically favourable to couple with Majoranas at

other sites.

3.5 Summary

In this Chapter we aimed initially to focus on an infinite-range non-interacting

free-fermion chain to probe its topological properties. By fixing the chain to

have OBC in 1-dimension, we showed that a generating function method could

be used in order to arrive at closed form solutions for the groundstate of the

Schrödinger equation. In doing so, we also extracted the conditions for existence

of a topological phase and the specific localisation properties of the groundstate.

Through the approach of first studying a semi-infinite chain and then a finite

chain, it was found that non-zero energies arise specifically though the presence
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of a second boundary that is physically coupled to the first boundary. Without

the second, the parity dictates that there is a an edge mode localised at the

boundary; however, PHS pins it to zero energy. Finding a zero energy Majorana

mode at the end of a semi-infinite chain is sufficient evidence that the non-local

chain is in a topological phase. This was confirmed numerically using the Pfaffian

invariant that is a well-defined invariant for a Z2 topological phase.

We next questioned what signatures the extended range couplings would have

on the single-particle entanglement spectrum. For the local chain, it is is expected

that when a partition is made there forms a virtual edge mode at the boundary

of the partition. As correlations decay exponentially [79], when there are two

partitions the edges have an exponentially decaying overlap giving very close to

zero energy midgap states. When a single cut is made, there forms a single virtual

boundary that is far enough from the exponentially decaying physical boundary

to have no effect. The spectrum results in a single zero energy midgap state.

Compared with the non-local chain, we see that for a single cut or two cuts there

are two modes split from zero energy in the gap of the bulk.

Exposing the localisation properties of the midgap states of the entanglement

Hamiltonian for a single partition shows that the virtual edge modes have a

slower decay than the physical edge modes. Regardless of the asymmetry of the

boundary modes, there are fluctuations between the two edges that result in the

forming of hybridised boundary modes with non-zero energy. This is certainly a

feature of the non-local coupling, compared with the local chain with a single cut

that has a single zero energy mode and with an exponentially localised virtual

energy mode.

In future work it would be interesting to see if the generating function method

easily generalises to the to other parameter regimes, e.g. long range hopping with

short rang pairing, decaying couplings or 2-dimensional lattices. This would be

a good exercise in testing the robustness of the method and its success brings its

applicability to physically realistic models. It would also be good to complete a

more thorough analysis of correlations through correlation functions of the ground

state. It would be the aim to find accurate length scales that the non-local chain

can be compared against quantitatively.
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Chapter 4

Efficiency of the Kohn-Sham

model in describing interacting

fermions

4.1 Introduction

Finding the ground state of a quantum many-body system is a notoriously dif-

ficult problem. These interacting systems have a Hilbert space that grows ex-

ponentially with the number of particles being modelled, posing problems for

direct diagonalisation of the Hamiltonian on a computer. They are also often

intractable when attempting an analytical treatment due to the non-integrability

of the model. There are a variety of approximate analytic and numerical meth-

ods that may be employed, including: mean-field theory, perturbation theory,

density functional theory (DFT), and many others. However, when one uses an

approximate method it is often the case that some information may be lost and

the resulting state does not fully capture all properties of the interacting system.

In this Chapter, we study the applicability of the Kohn-Sham (KS) model,

where through DFT local densities are the basic variable, when approximating the

ground state of an interacting Hamiltonian. The KS model is a non-interacting

auxiliary system that, in principle, has the ability to predict all observable quan-

tities of an interacting system. This is possible through the Hohenberg-Kohn
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theorems that show first that there is a unique mapping from an external po-

tential to a quantum state. Then, by variationally minimising the energy with

respect to the local electron density, the lowest energy gives the correct distri-

bution of densities [80]. It is most effective when interactions are small and the

physics of the system does not change much from the non-interacting point. This

is because interactions may change the effective degrees of freedom of the system,

that are not well described by a single Slater determinant of orbitals in the free

manifold of the non-interacting model. An example of this is the ability of KS

to describe fractional charges or predicting phase transitions, such as the Mott

transition [81]. Further, known functionals used in the strongly correlated regime

are currently unsuccessful as a general tool to be used for any system. This is

certainly an open question in DFT.

We focus on the ability of the KS model to reproduce biparitite entanglement

of the interacting model [2]. To do so, we use the interaction distance DF – a tool

that measures how far a given entanglement spectrum is from the set of all free

fermionic entanglement spectra, the closest state is the optimal free state. Since it

was first introduced in [19], there have been a variety of works that have followed

highlighting the usefulness of DF in diagnosing properties of many-body quantum

systems [2, 3, 82, 83, 84, 85]. By applying this tool to DFT, we can determine how

optimal the KS model is over the space of all free states. This gives a quantitative

answer to how well the KS model reproduces entanglement, whilst as a byproduct

allows an optimal entanglement model to be defined. This optimal entanglement

model, with the optimal free state as its groundstate, is a standard for which

free auxiliary models may be compared against. The proposal of an optimal

entanglement model is important in the context of DFT/KS theory as it sets

a lower bound for how accurate the entanglement features of the corresponding

groundstate can be. It also highlights, in regions where DF ≈ 0, where a better

free approximation could be made than the KS model.

We first introduce DFT and KS theory as an approximation for many-body

systems, before introducing DF as a tool to probe them. We find that the interac-

tion distance bounds the applicability of the optimal entanglement model in all of

parameter space, whilst it only bounds the KS model in the perturbative regime.

The analysis is concluded with a study of the Hubbard dimer, a toy model for
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strongly correlated systems, highlighting that even for this simple system DFT

can produce unbounded errors on entanglement in the strongly correlated regime.

4.2 Density functional theory

The idea of DFT is simple: if the ground state electron density distribution n(r)

is known, then all other observable quantities may be deduced [80]. Therefore,

we may reduce the interacting many-body system to a problem of non-interacting

electrons, and providing they reproduce the correct n(r), we recover all observ-

ables of the interacting system, albeit approximately. One advantage of using

non-interacting fermions is that we may use a Slater determinant to produce the

required anti-symmetric ground state wavefunction from single-particle states,

thus making the calculation tractable. The non-interacting system is called the

KS system and, through DFT, there exists a unique mapping between a ground

state and its non-interacting KS counterpart [86]. Remarkably, the KS ground

state has been used beyond finding local densities, for e.g. to find average quan-

tum work [87] or even entanglement calculations [88], in some cases. Let us now

look at little closer at DFT and KS theory.

In DFT the density distribution n(r) is the basic variable of the system,

where r is a lattice vector. Consider an N -particle many-body wavefunction

|Ψ〉 = Ψ(r1, r2, . . . , rN) that we wish to approximate, spin degrees of freedom

have been dropped for now. Its density distribution n(r) at r is found by tracing

out all other degrees of freedom

n(r) = N

∫ N∏
j=2

drjΨ
∗(r, r2, . . . , rN)Ψ(r, r2, . . . , rN), (4.1)

where the factor N ensures that normalisation of the wavefunction gives the

correct number of particles in the system. As a first approximation we could

identify |Ψ〉 as a product of single-particle wavefunctions ψj(rj) at some general

point rj, this is the Hartree approximation. However, this does not take into

account the anti-symmetric nature of a fermionic wavefunction. Therefore, we
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use a Slater determinant [89]

Ψ(r1, r2, . . . , rN) =
1√
N !

∣∣∣∣∣∣∣∣∣
ψ1(r1) ψ2(r1) . . . ψN(r1)
ψ1(r2) ψ2(r2) . . . ψN(r2)

...
...

. . .
...

ψ1(rN) ψ2(rN) . . . ψN(rN)

∣∣∣∣∣∣∣∣∣ . (4.2)

If the many-body wavefunction is an eigenstate of a non-interacting Hamiltonian

then this single Slater determinant would give everything we need. One could

variationally optimise over the single particle states until the true ground state

is found, known as the Hartree-Fock approximation [90, 91]. However, in general

this is not the case as interactions cause mixing between single particle states –

they cannot be treated as independent orbitals. Note that in this introductory

section the discussion is consistent with the DFT literature with a specific set of

problems in mind: atomic systems consisting of electrons and nuclei. However,

the basic principles can be extended to more abstract models, like spin systems

or particles with different exchange statistics.

4.2.1 The Hohenberg-Kohn theorems

At the core of DFT are the Hohenberg-Kohn theorems [80]. The two theorems

state that:

(1) The external potential is a unique functional of the electron density in the

ground state, and therefore the total energy is also a functional of the ground

state electron density, up to an additive constant.

(2) The groundstate energy may be obtained variationally, i.e. the total en-

ergy of a system is minimised for the correct ground state density.

Take an explicitly interacting Hamiltonian H that satisfies the Schrödinger

equation 〈Ψ|H |Ψ〉 = Egs, where Egs is the ground state energy. A general H is

built from a kinetic operator, K̂, an interaction operator, Ŵ , and a local external

potential, νext =
∑

j ν(rj). The first theorem tells us that if νext is a functional

of electron density n(r) and so is the ground state energy, then the sum of K̂

and Ŵ must also be a functional of n(r). To show this, assume that there are

two Hamiltonians Ha and Hb that only differ in potentials by no more than an
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additive constant νaext and νbext, corresponding to ground states |Ψa〉 and |Ψb〉
respectively. Now suppose that they have the same ground state density n(r).

The variational principle returns the inequality

Ea < 〈ψb|Ha |ψb〉 = 〈ψb|Hb |ψb〉+ 〈ψb| (Ha −Hb) |ψb〉 (4.3)

= Eb + 〈ψb| (νaext − νbext) |ψb〉 (4.4)

= Eb +

∫
drn(r)(ν(r)a − ν(r)b). (4.5)

In the final line we have used that the total potential energy is the sum of all

point potential energy contributions in space 〈ψ| νext |ψ〉 =
∫
drn(r)(ν(r). Now,

interchange a and b and sum the result. The result Ea + Eb < Eb + Ea is a

contradiction. Therefore the first theorem holds. The physical idea behind this is

that two systems each with a fixed N electrons will interact and move around in

the same way, unless there is disorder or defects introduced into one of the sys-

tems. These disorders are represented by the external potential that determines

the resulting wavefunction. That all systems with the same number of electrons

and external potential behave the same is called N - and ν-representability.

Taking into account ν−representability, the energy expectation value of the

total Hamiltonian can be expressed as

〈Ψ|H |Ψ〉 = 〈Ψ| K̂ + Ŵ |Ψ〉+
N∑
j

〈Ψ| ν(rj) |Ψ〉 (4.6)

= F [n(r)] +

∫
drn(r)ν(r), (4.7)

where F̂ = K̂ + Ŵ is an operator with functional form F that is the combined

interaction and kinetic energy functionals. To show the second theorem we need

to apply the variational principle to a ν−representable system that obeys the first

theorem. Given an electron density distribution n(r) there is a corresponding

unique groundstate |Ψ〉 with energy E0 and external potential νext. If this state

is used as a trial state for the potential ν̃ then

〈Ψ|H |Ψ〉 = 〈Ψ| K̂ |Ψ〉+

∫
drn(r)ν̃(r) (4.8)

= Eν̃ > E0, (4.9)
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where the final inequality comes from the uniqueness of the groundstate and the

variational principle. This implies that the ground state is non-degenerate; how-

ever, it has been shown that DFT may be applied to degenerate ground states [92]

and also excited states [93]. The Hohenberg-Kohn theorems show that solutions

to the Schrödinger equation can be found by variationally minimising the func-

tional E[n(r)] with respect to ν-representable densities. Thus, the complexity

of the many-body problem is reduced from one that grows exponentially with

system size to one that grows linearly with system size.

4.2.2 The Kohn-Sham equations

Following the work by Hohenberg and Kohn [80], Kohn continued work on this

subject along with Le Jeu Sham in order to develop a systematic method for ap-

proximating the functional F [n(r)], defined in Eqs. (4.6) and (4.7). To do so, they

map the interacting Hamiltonian onto a fictitious Hamiltonian of non-interacting

electrons [86]. One result of Kohn and Sham is that the energy functional in

Eq. (4.7) may be rewritten as

E[n] = K[n] +

∫
dr ν(r)n(r) +

1

2

∫∫
drdr′

n(r)n(r′)

|r− r′| + Exc[n]. (4.10)

where the final term, the exchange-correlation energy Exc[n], has an unknown

form and contains all contributions to energy that are not accounted for in the

single-particle terms and Coulomb repulsion (or the Hartree energy). In order

to make the step from Eq. (4.7) to (4.10) the electron interaction operator Ŵ is

separated into a known density-density term and everything else Exc[n].

A commonly used approximation for Exc[n] when looking at electron systems

is the local density approximation [86]. It has the form

ELDA
xc [n] =

∫
drn(r)εheg

xc [n], (4.11)

where εheg
xc is the exchange-correlation energy density of an interacting homo-

geneous electron gas. It is a good approximation when the density is almost

constant or when kinetic energy is dominant, i.e. weakly interacting [94]. Of

course, εheg
xc [n] must also be known or approximated. There are numerous ways

80



4.2 Density functional theory

to do so, one method is to calculate exchange and correlation parts separately

εxc = εx + εc. The exchange part can be found exactly using a Hartree-Fock

method and has an exact form εx = −Cn1/3, where C is a constant fixed by the

system [95]. The exact functional form of εc is unknown, but can be found using

quantum Monte Carlo simulations with essentially exact results [96]. The local

density approximation in Eq. (4.11) is successful in its own right and it also forms

the basis for other more sophisticated approximations.

From this form it is possible to construct an auxiliary Hamiltonian, HKS, that

upon acting on single-particle orbitals ψj(r) gives contributions to the energy

εj that, in principle, sum to the total energy of the system. The Kohn-Sham

Hamiltonian is given by

HKS = K̂ + V̂KS (4.12)

where V̂KS = νext + νH + νxc, νH is the Hartree potential, and νxc is the exchange

correlation potential. To find solutions of the groundstate, one must variationally

solve the Schrödinger equation

HKSψj(r) = εjψj(r), (4.13)

until the correct density distribution n(r) =
∑

j |ψj(r)|2 is achieved. Here we

assume that the form of the exchange-correlation potential is unknown. There

are various approximations that can be made, with varying levels of success, but

here we choose to use an exact method.

4.2.3 Finding Kohn-Sham eigenstates by an exact DFT

method

In order to test the applicability of DFT and KS theory we choose to use an

exact method [87]. This is a numerical method and is effective only for very small

system sizes where it is possible to obtain eigenstates by exact diagonalisation.

The method works as follows:

1) Obtain the true groundstate (or an excited state) of an interacting Hamil-

tonian by exact diagonalisation.
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2) Build a free auxiliary Hamiltonian using the same kinetic operator and

external potential as the interacting Hamiltonian with a local potential operator

that may be varied at each site.

3) Vary the local potentials of the auxiliary Hamiltonian until, by direct com-

parison with the local electron densities of the interacting model, the Hamiltonian

adopts the correct HKS groundstate wavefunction.

The method is powerful because it allows for the true KS wavefunction to be

found for any choice of parameter value, up to some predetermined accuracy. Of

course, its success depends on the correct wavefunction being computable in a

finite amount of time. Hence, it is most successful for small system sizes. In [2]

the exact method reproduces electron densities within an accuracy of 10−6 of the

exact result. This was only achievable, consistently, in a system of two sites with

spin-1
2

fermions, i.e. a 4-dimensional local Hilbert space. For larger system sizes

(of even length) the computation time using the method outlined above became

unreasonable to find reliable results. This could be improved by using a faster

method to search the parameter space of the local potentials.

4.2.4 Limitations of DFT

The limitations of DFT follow mostly from choosing the correct functionals to

minimise the energy E[n] [81]. In particular, the functional form of the exchange-

correlation energy is unknown. This term contains interaction effects that are not

included in the other KS terms: the kinetic energy of non-interacting orbitals,

the Hartree energy, and local potentials. There are many known functionals with

varying levels of success: the simplest is a local density approximation, that is

known to overbind molecules; the generalised gradient approximation, that has

problems when gradients vary too quickly; and hybrid functionals, that combine

different functionals but lack simplicity [94]. For systems that are not amenable

to an exact KS treatment, choosing the appropriate functional can drastically

affect the success of the result.

Another limitation of DFT is in its ability to accurately detect phase tran-

sitions or other effects inherent to strongly correlated systems. In [97] it was

shown that DFT is successful, in principle, in probing first and second order
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phase transitions. However, a Mott transition has the signature of moving from a

conducting to an insulating phase through the opening of a Mott gap. This gap is

not detectable by KS methods, but is important in the study of condensed matter

systems. Further, DFT fails to provide a good approximation to a groundstate

when the underlying quasiparticles are non-longer built from the same orbitals

that describe the non-interacting limit. An example would be a groundstate built

from fractionalised charges or fractionalised spins.

It is desirable to find a general method that can help improve on these limi-

tations. To do so, the method would require knowledge (or optimisation of) the

underlying quantum correlations that give the resultant quasiparticle structure.

However, in DFT it is always possible to minimise the energy functional, i.e. to

find the correct groundstate, with the correct local densities. It is not always pos-

sible to match the many-body entanglement with a free system. The closest free

system, in terms of its biparitite entanglement, is found through the interaction

distance that is discussed next.

4.3 Interaction distance

In this Section we introduce the interaction distance that is a diagnostic tool

used to measure how far an entanglement spectrum is from the set of all free

entanglement spectra [19]. Often in the study of many interacting particles it is

first the aim to simplify the complexity of the problem by modelling the fully in-

teracting system as free, as is demonstrated in the previous subsection via DFT.

However, free (or close to free) approximations, such as DFT, mean field theory,

or perturbation theory, are successful only when correlations are weak and can

often fail to capture the full effect of correlations in a quantum system. Often,

interesting physics arises from strong correlations. The interaction distance is

the minimum distance between a given state and the manifold of all free states,

through its biparitite entanglement. By defining an interaction distance we may

directly probe an interacting model to find how close it is to free in all of pa-

rameter space and how optimal a given auxiliary free system is in the space of

all free models. In practice the interaction distance is a variational method, but

in contrast to usual variational methods it is basis independent. Through it, we
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find that away from the non-interacting point of a model the groundstate may

still have a free description, but in some other basis of free-fermions.

Next, we define the interaction distance and discuss how one would attempt

to calculate it through a minimisation over single-particle entanglement levels.

Then, we show that for a four-level entanglement spectrum there exists closed

form solutions for the interaction distance and the minimising state.

4.3.1 Definition and calculation of the interaction distance

We aim to determine how close a given state |Ψ〉 is from the set of all free states, in

terms of it bipartite entanglement. The entanglement spectrum, see section 2.3.2,

can be used to quantify the entanglement between subsystems A and B of the full

system A ∪ B. It defined through the reduced density matrix found by tracing

out one part of the full system ρ = TrB |Ψ〉〈Ψ|.
The interaction distance is defined as the minimum trace distance between a

given reduced density matrix ρ and the set of all free reduced density matrices,

σ ∈ F [19]

DF = min
σ∈F

Dtr(ρ, σ), (4.14)

where Dtr(ρ, σ) = 1
2
Tr |ρ− σ| is the trace distance metric for ρ and σ. The free

density matrix σ is the exponential of a free-fermion Hamiltonian, i.e. Eq. (2.31),

and therefore lies in F. Instead of using the trace distance as a measure we

are free to define the interaction distance in terms of some other entanglement

indistinguishability tool, for e.g. relative entropy [98] or 1
4
Tr(ρ−σ)2. The reason

for choosing the trace distance lies in its restatement in terms of projectors: it is

Dtr(ρ, σ) = 1
2

maxP TrP (ρ−σ), where the maximum is over all projectors P [98].

This is a useful interpretation of the trace distance. If ρ and σ are in a different

basis then we can allow P to project one onto the basis of the other before

measuring. It is also a metric distance, lending many other nice symmetries and

properties (for e.g. satisfying the triangle inequality or being bound from above)

that will be useful later in this chapter.

In its operator form in Eq. (4.14), the minimisation procedure will be a rather

difficult task. Instead, the minimum trace distance can be found from the spectra
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of ρ and σ, even if they do not share a common eigenbasis [85]. By diagonalising

both ρ and σ, resulting in diagonal matrices ρD and σD respectively, finding

the minima is reduced to finding a unitary transformation U that minimises the

distance Dtr(ρD, U
†σDU). It was proven in [99] that the minimum occurs when

the spectra are both sorted in the same order. Thus, U takes the form of a

permutation matrix that sorts the spectra σD into the same order as ρD, or the

identity U = 1 for ordered spectra.

In Eq. (2.41) we showed explicitly the structure of the many-body entangle-

ment spectrum for free fermions. We may therefore recast σ in terms of the

variational parameters, {εk},

σ = exp

[
−Ef

0 −
∑
k

nk(j)εk

]
, (4.15)

where now the upper limit of the summation has been deliberately omitted. The

nk(j) are free to represent any fermionic density operators and are no longer

necessarily the same as those that built the original Hamiltonian. Thus, the in-

teraction distance minimises over every possible free-fermion representation with

only linearly many parameters. It is a significantly more efficient minimisation

procedure than minimising over the full σ that grows exponentially with system

size. We may therefore represent the minimisation in terms of the free modes

{εk} as follows:

DF(ρ) =
1

2
min
{εk}

∑
j

∣∣∣e−EEj − e−Efj {εk})∣∣∣ , (4.16)

where Ef
j ({εk}) are the eigenvalues of − log σ that are ordered in the same way

as the eigenvalues EE
j of − log ρ.

4.3.2 Exact optimal free state for a four-level system

In this work we aim to use an exact KS scheme that removes errors due to

approximating an accurate exchange-correlation functional. To complement this

approach, we also use exact interaction distance calculations that remove errors

due to numerical accuracy of the variational code [82, 2].
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Reparametrisation of entanglement levels

By an exhaustive analysis of the interaction distance, we may obtain a full an-

alytical solution for the optimal free state entanglement spectrum, and for DF

itself, for a four level system, ρ. The corresponding free spectrum, with a fixed

number of four many-body levels, has two single-particle levels, ε1 and ε2, that

build the full spectrum, as dictated by Eq. (2.41). It is convenient to work with

eigenvalues of the reduced density matrix, σ, allowing the single-particle energies

to be reparametrised by probabilities: b1 and b2, such that 0 ≤ b1 ≤ b2 ≤ 1
2
.

Then, the free many-body spectrum is built in the following way:

σ1 =

(
1

2
+ b1

)(
1

2
+ b2

)
, σ2 =

(
1

2
− b1

)(
1

2
+ b2

)
,

σ3 =

(
1

2
+ b1

)(
1

2
− b2

)
, σ4 =

(
1

2
− b1

)(
1

2
− b2

)
, (4.17)

where the range of b1 and b2 ensures normalisation
∑

j σj = 1 and fixes the

ordering to 0 ≤ σ4 ≤ σ3 ≤ σ2 ≤ σ1 ≤ 1. This reparametrisation is intuitive

as it is simply all possible combinations of fermionic populations, expressed as

probability amplitudes. If we wished to study a 2N -level system, with for e.g.

N = 3 free fermions, to build the full spectrum we take the product of each

of the levels in Eq. (4.17) with each of (1
2

+ b3) and (1
2
− b3), that results in a

normalised 8-level spectrum as required.

Finding minima of DF by direct differentiation

We wish to minimise Eq. (4.14) with respect to the free parameters {bj}. So, first

attempt to do so by directly differentiating the trace distance Dtr = 1
2
Tr|ρ − σ|,

having substituted in Eq. (4.17), to find the stationary points as a function of the

free parameters. In doing so, we find that the derivatives are not defined in the

regions σj = ρj for any j. We also find that second derivatives are always zero

when σj 6= ρj, thus defining a saddle point and not a minimum. The minimum

trace distance must therefore live on one of the boundary curves σj = ρj or an

intersection of two or more curves.
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Figure 4.1: Free parameter values, b1, b2, that produce boundary curves σj = ρj

(solid lines) for {ρj} = {0.4, 0.3, 0.2, 0.1}. The triangle of dashed lines enclose

the normalised and ordered regions for the free spectra. There are a variety of

points of intersection within the normalised and ordered region for this choice of

ρ. The intersection that matches the low level entanglement spectrum will give

the smallest interaction distance. Thus, it is the b1, b2 pair at the intersection

between σ1 = ρ1 and σ2 = ρ2 that give the interaction distance, DF = 2
7
.

Finding minima of DF by matching low-lying levels

As it is the low-energy entanglement levels that dominate the behaviour of the

system, if it is possible to match these levels then the optimal free state will

more accurately represent the interacting system. In some cases, however, the

intersection between the low level curves does not fall within the normalised and

ordered region. In that case the most faithful representation lies on the curve

b1 = b2.

An exhaustive analysis results in the following set of solutions for the inter-

action distance:

DF =


2
√
ρ1 − 2ρ1 − ρ2 − ρ3, if ρ1 ≥ (ρ1 + ρ2)2 (4.18a)∣∣∣∣ρ1ρ4 − ρ2ρ3

ρ1 + ρ2

∣∣∣∣ , otherwise. (4.18b)
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and the corresponding set of free parameter solutions:

(b1, b2) =


(√

ρ1 −
1

2
,
√
ρ1 −

1

2

)
, if ρ1 ≥ (ρ1 + ρ2)2 (4.19a)(

ρ1 − ρ2

2(ρ1 + ρ2)
, ρ1 + ρ2 −

1

2

)
, otherwise. (4.19b)

These exact solutions allow for an accurate study of the interaction distance

without any error of numerical optimisation. The solutions (4.18a) and (4.18b)

correspond to the cases where it is not possible and possible to match the lowest

two levels of the entanglement spectrum, respectively.

In Fig. 4.1 we show an example of the boundary curves for the interacting

spectrum {ρj} = {0.4, 0.3, 0.2, 0.1}, that produces DF = 2
7
. We are able to

deduce this solution by first considering the condition: ρ1 ≥ (ρ1 + ρ2)2. For

our set {ρj}, this inequality is not satisfied so b1 6= b2 and the minimum trace

distance must therefore live at an intersection between the σ1 = ρ1 and σ2 = ρ2

curves. The pair b1, b2 at this intersection result in the free state σ that returns

the interaction distance. It remains an open question to generalise this method

to spectra with more than four levels.

4.4 Applicability of the Kohn-Sham model

We now aim to quantify the applicability of the Kohn-Sham model through an

interaction distance analysis of an exact KS ground state, as introduced in sec-

tion 4.2.3. By dealing with an exact KS model, both numerically and analyt-

ically, we remove the need to approximate the exchange-correlation functional

that would likely result in errors creeping into the analysis. Of course, that we

use an exact method limits our analysis to small system sizes when attempting

a numerical treatment. When an analytical analysis permits we simply require

that the ground state density distribution of the KS model is exactly the same

as the interacting model – making the results applicable to any system size.

We begin by forming an upper-bound on observable quantities between two

generic density matrices, before applying the bounding to local densities that are

relevant to DFT and KS theory. Through this analysis we propose an ’optimal
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entanglement model’ that is a free auxiliary model with the optimal free state as

its ground state. We find that, providing the interacting system is in the pertur-

bative limit, the KS model is a good approximation to the optimal entanglement

model. Thus, providing a constructive method for finding the optimal entangle-

ment model within that regime – a task that remains an open question for the

system in general.

4.4.1 Bounding observables with DF

The trace distance is a metric on the space of density matrices that is the max-

imum distance over all positive operator valued measures [98]. Therefore, we

expect the state that minimises it over all free states to approximate well all

observable quantities, as well as its bipartite entanglement. Of course, other

methods may reproduce a single observable optimally, but the optimal free state

best approximates all observables.

Consider the expectation value of an observable O for two density matrices ρ1

and ρ2 given by 〈O〉ρ1 = Tr [Oρ1] and 〈O〉ρ2 = Tr [Oρ2], respectively. To compare

these expectation values we define their difference by the metric

dO(ρ1, ρ2) =
∣∣∣〈O〉ρ1 − 〈O〉ρ2∣∣∣ , (4.20)

which, through the additivity property of the trace (as it is a linear map) Tr(A+

B) = Tr(A) + Tr(B), reduces to

dO = |Tr [O(ρ1 − ρ2)]| . (4.21)

We may express ρ1− ρ2 in its diagonal basis, ρ1− ρ2 =
∑

k ψk |ψk〉〈ψk|, where ψk

are the eigenvalues of ρ1− ρ2. Then, via direct substitution into dO, we find that

dO =

∣∣∣∣∣Tr

[
O
∑
k

ψk |ψk〉〈ψk|
]∣∣∣∣∣ (4.22)

=

∣∣∣∣∣∑
k

〈ψk|O |ψk〉ψk
∣∣∣∣∣ (4.23)

≤
∣∣∣∣∣max

k
〈ψk|O |ψk〉

∑
k

ψk

∣∣∣∣∣ = |Omax|
∣∣∣∣∣∑
k

ψk

∣∣∣∣∣ , (4.24)
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where Omax is the largest eigenvalue of the operator O in absolute value. It then

follows from the Cauchy-Schwarz inequality [100] that

dO ≤ |Omax|
∑
k

|ψk| = |Omax|Tr |ρ1 − ρ2| , (4.25)

where the final equality contains the definition of the interaction distance when

ρ2 is the optimal free state of ρ1. Therefore, upon setting ρ1 = ρ and ρ2 = σ the

difference in expectation values are bounded by the interaction distance,∣∣∣〈O〉ρ − 〈O〉σ∣∣∣ ≤ CODF, (4.26)

with CO = 1
2
|Omax| that depends only on the operator O. As a result, the

expectation value of any observable O with respect to the ground state ρ of the

interacting system can be reproduced by the optimal free state σ with an accuracy

that is controlled byDF. In contrast to Eq. (4.26), other methods aim to optimally

determine a single observable at the expense of introducing unbounded error on

the rest of the complementary observables. We will later see that this is the

case for DFT when we find the interaction distance for a example system – the

Hubbard dimer.

4.4.2 Bounding density with DF

We would like now to compare the applicability of the KS ground state and the

optimal free state. As it is the local density of fermions that DFT optimises over,

let us apply inequality (4.26) to the operator O = n̂j. Following the notation

introduced in the previous subsection, for a state with reduced density matrix ρ

we define n̂j,ρ = Tr(ρn̂j) as the local density at site j. The ‘natural’ metric [101],

between ρ and σ, on the metric space of local densities over all sites is given by

Dn(ρ, σ) =
∑
j

|n̂j,ρ − n̂j,σ| . (4.27)

To arrive at this definition from Eq. (4.26), we must sum over all sites. Then,

Eq. (4.26) becomes ∑
j

∣∣∣〈n̂j〉ρ − 〈n̂j〉σ∣∣∣ ≤∑
j

Cn̂jDF. (4.28)
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The left hand side of this equality is the definition of the natural metric and the

right hand side consists of a constant C =
∑

j Cn̂j multiplied by the interaction

distance. The bound reduces to

Dn(ρ, σ) ≤ CDF. (4.29)

Due to the key property of the (exact) Kohn-Sham model, that 〈n̂j〉ρ = 〈n̂j〉κ,
the bound in Eq. (4.29) may be cast in terms of the optimal, σ, and Kohn-Sham,

κ, ground states

Dn(κ, σ) ≤ CDF. (4.30)

Hence, the interaction distance bounds the density distance between the KS and

optimal free state. This bound implies that for DF ≈ 0, e.g. in the perturbative

regime, the optimal free state has local fermion densities that are very close to

the densities of the KS ground state, and are exact when DF = 0. Of course, this

does not give any information about how well κ reproduces other observables –

it only gives the applicability of σ compared with exact DFT.

4.4.3 Trace distance bounding in perturbative limit

We now investigate when the ground state found by the exact KS method is

a good approximation to the optimal free state by forming an upper bound on

Dtr(κ, σ) within the perurbative limit. Assume that the density matrices are a

continuous functional of the fermion densities, e.g. when the system is in the

perturbative regime with no phase transitions caused by the interactions. We

can write nF = n + δn, with nF the ground state density of the optimal free

state, n the ground state density of the interacting/KS model, and δn a small

linear response.

First consider the limit δn → 0. In this limit Dtr (κ, σ) → 0 and DF → 0, so

that the inequality above is satisfied by the equality 0 = C · 0. Next, consider δn

to be small, but non-zero. From Eq. (4.30), it can be seen that the density metric

is bound by the interaction distance. We showed in section 4.2 that, when DFT

Hohenberg-Kohn-type theorems apply, any property of a pure state interacting

system described by a Hamiltonian Ĥ = K̂+Ŵ+V̂ , can be written as a functional
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of the system ground state density. So, in particular, the (non-diagonal) density

matrix elements can also be written as a functional of the ground state density,

and thus as a functional of n and δn.

For small δn, we can approximate Dtr (σ, κ) through a Taylor expansion

around δn = 0. Up to O(δn2), the trace distance becomes

Dtr (κ, σ) [δn, n] ≈ δ2Dtr

δn2

∣∣∣∣
δn=0

(δn)2 > 0, (4.31)

which holds due to δn = 0 being a minimum (and the trace distance being a

metric). Similarly, we can approximate the density metric about the minimum:

Dn (κ, σ) = Dn (κ, σ) [δn, n] (4.32)

≈ δ2Dn

δn2

∣∣∣∣
δn=0

(δn)2 > 0 (4.33)

Using Eqs. (4.31) and (4.33), and up to higher orders than (δn)2 in δn, we can

then write

Dtr (κ, σ) [δn, n] ≈ f(n) ·Dn (κ, σ) , (4.34)

where f(n) = δ2Dtr

δn2

∣∣∣
δn=0

(
δ2Dn

δn2

∣∣∣
δn=0

)−1

is a functional of n, but for a given n it

will be a number greater than zero. Using Eq. (4.30) we then obtain

Dtr (κ, σ) ≤ f(n) · CDF. (4.35)

Therefore, when the interaction distance is small σ and κ are close and have very

similar entanglement properties.

This analysis is restricted to f(n) being a well-behaved function, which is

ensured from the beginning by fixing the density matrices to be a continuous

functional of the density with small interactions. With this restriction, it is

expected that both the numerator and denominator of f(n) will be small, as

the optimal model will not have varied much from the non-interacting point.

Providing they numerator and denominator result in a finite value for f(n), for

e.g. they scale similarly, then in the perturbative regime for DF ≈ 0 the KS

model offers a way to constructively obtain the optimal entanglement model and,

in turn, the optimal free state.
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4.4 Applicability of the Kohn-Sham model

⇢
<latexit sha1_base64="PjOC8f12GtePOBgdPx3dJet4XJk=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cKthbaUDbbTbN0P8LuRiihf8GLB0W8+oe8+W/ctDlo64OBx3szzMyLUs6M9f1vr7K2vrG5Vd2u7ezu7R/UD4+6RmWa0A5RXOlehA3lTNKOZZbTXqopFhGnj9HktvAfn6g2TMkHO01pKPBYspgRbAtpoBM1rDf8pj8HWiVBSRpQoj2sfw1GimSCSks4NqYf+KkNc6wtI5zOaoPM0BSTCR7TvqMSC2rCfH7rDJ05ZYRipV1Ji+bq74kcC2OmInKdAtvELHuF+J/Xz2x8HeZMppmlkiwWxRlHVqHicTRimhLLp45gopm7FZEEa0ysi6fmQgiWX14l3Ytm4DeD+8tG66aMowoncArnEMAVtOAO2tABAgk8wyu8ecJ78d69j0VrxStnjuEPvM8fH6yORw==</latexit><latexit sha1_base64="PjOC8f12GtePOBgdPx3dJet4XJk=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cKthbaUDbbTbN0P8LuRiihf8GLB0W8+oe8+W/ctDlo64OBx3szzMyLUs6M9f1vr7K2vrG5Vd2u7ezu7R/UD4+6RmWa0A5RXOlehA3lTNKOZZbTXqopFhGnj9HktvAfn6g2TMkHO01pKPBYspgRbAtpoBM1rDf8pj8HWiVBSRpQoj2sfw1GimSCSks4NqYf+KkNc6wtI5zOaoPM0BSTCR7TvqMSC2rCfH7rDJ05ZYRipV1Ji+bq74kcC2OmInKdAtvELHuF+J/Xz2x8HeZMppmlkiwWxRlHVqHicTRimhLLp45gopm7FZEEa0ysi6fmQgiWX14l3Ytm4DeD+8tG66aMowoncArnEMAVtOAO2tABAgk8wyu8ecJ78d69j0VrxStnjuEPvM8fH6yORw==</latexit><latexit sha1_base64="PjOC8f12GtePOBgdPx3dJet4XJk=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cKthbaUDbbTbN0P8LuRiihf8GLB0W8+oe8+W/ctDlo64OBx3szzMyLUs6M9f1vr7K2vrG5Vd2u7ezu7R/UD4+6RmWa0A5RXOlehA3lTNKOZZbTXqopFhGnj9HktvAfn6g2TMkHO01pKPBYspgRbAtpoBM1rDf8pj8HWiVBSRpQoj2sfw1GimSCSks4NqYf+KkNc6wtI5zOaoPM0BSTCR7TvqMSC2rCfH7rDJ05ZYRipV1Ji+bq74kcC2OmInKdAtvELHuF+J/Xz2x8HeZMppmlkiwWxRlHVqHicTRimhLLp45gopm7FZEEa0ysi6fmQgiWX14l3Ytm4DeD+8tG66aMowoncArnEMAVtOAO2tABAgk8wyu8ecJ78d69j0VrxStnjuEPvM8fH6yORw==</latexit><latexit sha1_base64="PjOC8f12GtePOBgdPx3dJet4XJk=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cKthbaUDbbTbN0P8LuRiihf8GLB0W8+oe8+W/ctDlo64OBx3szzMyLUs6M9f1vr7K2vrG5Vd2u7ezu7R/UD4+6RmWa0A5RXOlehA3lTNKOZZbTXqopFhGnj9HktvAfn6g2TMkHO01pKPBYspgRbAtpoBM1rDf8pj8HWiVBSRpQoj2sfw1GimSCSks4NqYf+KkNc6wtI5zOaoPM0BSTCR7TvqMSC2rCfH7rDJ05ZYRipV1Ji+bq74kcC2OmInKdAtvELHuF+J/Xz2x8HeZMppmlkiwWxRlHVqHicTRimhLLp45gopm7FZEEa0ysi6fmQgiWX14l3Ytm4DeD+8tG66aMowoncArnEMAVtOAO2tABAgk8wyu8ecJ78d69j0VrxStnjuEPvM8fH6yORw==</latexit>

⇢0
<latexit sha1_base64="ToF3pUSP8V0xcdhL2BLEAS5ZVgU=">AAAB7HicbVDLSgNBEOyNrxhfUY9eBoPoKeyKoMegF48R3CSQLGF2MpsMmccyMyuEJd/gxYMiXv0gb/6Nk2QPmljQUFR1090Vp5wZ6/vfXmltfWNzq7xd2dnd2z+oHh61jMo0oSFRXOlOjA3lTNLQMstpJ9UUi5jTdjy+m/ntJ6oNU/LRTlIaCTyULGEEWyeFPT1S5/1qza/7c6BVEhSkBgWa/epXb6BIJqi0hGNjuoGf2ijH2jLC6bTSywxNMRnjIe06KrGgJsrnx07RmVMGKFHalbRorv6eyLEwZiJi1ymwHZllbyb+53Uzm9xEOZNpZqkki0VJxpFVaPY5GjBNieUTRzDRzN2KyAhrTKzLp+JCCJZfXiWty3rg14OHq1rjtoijDCdwChcQwDU04B6aEAIBBs/wCm+e9F68d+9j0Vryiplj+APv8weBV454</latexit><latexit sha1_base64="ToF3pUSP8V0xcdhL2BLEAS5ZVgU=">AAAB7HicbVDLSgNBEOyNrxhfUY9eBoPoKeyKoMegF48R3CSQLGF2MpsMmccyMyuEJd/gxYMiXv0gb/6Nk2QPmljQUFR1090Vp5wZ6/vfXmltfWNzq7xd2dnd2z+oHh61jMo0oSFRXOlOjA3lTNLQMstpJ9UUi5jTdjy+m/ntJ6oNU/LRTlIaCTyULGEEWyeFPT1S5/1qza/7c6BVEhSkBgWa/epXb6BIJqi0hGNjuoGf2ijH2jLC6bTSywxNMRnjIe06KrGgJsrnx07RmVMGKFHalbRorv6eyLEwZiJi1ymwHZllbyb+53Uzm9xEOZNpZqkki0VJxpFVaPY5GjBNieUTRzDRzN2KyAhrTKzLp+JCCJZfXiWty3rg14OHq1rjtoijDCdwChcQwDU04B6aEAIBBs/wCm+e9F68d+9j0Vryiplj+APv8weBV454</latexit><latexit sha1_base64="ToF3pUSP8V0xcdhL2BLEAS5ZVgU=">AAAB7HicbVDLSgNBEOyNrxhfUY9eBoPoKeyKoMegF48R3CSQLGF2MpsMmccyMyuEJd/gxYMiXv0gb/6Nk2QPmljQUFR1090Vp5wZ6/vfXmltfWNzq7xd2dnd2z+oHh61jMo0oSFRXOlOjA3lTNLQMstpJ9UUi5jTdjy+m/ntJ6oNU/LRTlIaCTyULGEEWyeFPT1S5/1qza/7c6BVEhSkBgWa/epXb6BIJqi0hGNjuoGf2ijH2jLC6bTSywxNMRnjIe06KrGgJsrnx07RmVMGKFHalbRorv6eyLEwZiJi1ymwHZllbyb+53Uzm9xEOZNpZqkki0VJxpFVaPY5GjBNieUTRzDRzN2KyAhrTKzLp+JCCJZfXiWty3rg14OHq1rjtoijDCdwChcQwDU04B6aEAIBBs/wCm+e9F68d+9j0Vryiplj+APv8weBV454</latexit><latexit sha1_base64="ToF3pUSP8V0xcdhL2BLEAS5ZVgU=">AAAB7HicbVDLSgNBEOyNrxhfUY9eBoPoKeyKoMegF48R3CSQLGF2MpsMmccyMyuEJd/gxYMiXv0gb/6Nk2QPmljQUFR1090Vp5wZ6/vfXmltfWNzq7xd2dnd2z+oHh61jMo0oSFRXOlOjA3lTNLQMstpJ9UUi5jTdjy+m/ntJ6oNU/LRTlIaCTyULGEEWyeFPT1S5/1qza/7c6BVEhSkBgWa/epXb6BIJqi0hGNjuoGf2ijH2jLC6bTSywxNMRnjIe06KrGgJsrnx07RmVMGKFHalbRorv6eyLEwZiJi1ymwHZllbyb+53Uzm9xEOZNpZqkki0VJxpFVaPY5GjBNieUTRzDRzN2KyAhrTKzLp+JCCJZfXiWty3rg14OHq1rjtoijDCdwChcQwDU04B6aEAIBBs/wCm+e9F68d+9j0Vryiplj+APv8weBV454</latexit>

�
<latexit sha1_base64="WVBNru380J4XCjCR9Lt9t8h8e1I=">AAAB7XicbVDLSgNBEOyNrxhfqx69DAbBU9gVQY9BLx4jmAckS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHfFKWfGBsG3V1pb39jcKm9Xdnb39g/8w6OWUZkmtEkUV7oTY0M5k7RpmeW0k2qKRcxpOx7fzvz2E9WGKflgJymNBB5KljCCrZNaPcOGAvf9alAL5kCrJCxIFQo0+v5Xb6BIJqi0hGNjumGQ2ijH2jLC6bTSywxNMRnjIe06KrGgJsrn107RmVMGKFHalbRorv6eyLEwZiJi1ymwHZllbyb+53Uzm1xHOZNpZqkki0VJxpFVaPY6GjBNieUTRzDRzN2KyAhrTKwLqOJCCJdfXiWti1oY1ML7y2r9poijDCdwCucQwhXU4Q4a0AQCj/AMr/DmKe/Fe/c+Fq0lr5g5hj/wPn8AnF+PIw==</latexit><latexit sha1_base64="WVBNru380J4XCjCR9Lt9t8h8e1I=">AAAB7XicbVDLSgNBEOyNrxhfqx69DAbBU9gVQY9BLx4jmAckS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHfFKWfGBsG3V1pb39jcKm9Xdnb39g/8w6OWUZkmtEkUV7oTY0M5k7RpmeW0k2qKRcxpOx7fzvz2E9WGKflgJymNBB5KljCCrZNaPcOGAvf9alAL5kCrJCxIFQo0+v5Xb6BIJqi0hGNjumGQ2ijH2jLC6bTSywxNMRnjIe06KrGgJsrn107RmVMGKFHalbRorv6eyLEwZiJi1ymwHZllbyb+53Uzm1xHOZNpZqkki0VJxpFVaPY6GjBNieUTRzDRzN2KyAhrTKwLqOJCCJdfXiWti1oY1ML7y2r9poijDCdwCucQwhXU4Q4a0AQCj/AMr/DmKe/Fe/c+Fq0lr5g5hj/wPn8AnF+PIw==</latexit><latexit sha1_base64="WVBNru380J4XCjCR9Lt9t8h8e1I=">AAAB7XicbVDLSgNBEOyNrxhfqx69DAbBU9gVQY9BLx4jmAckS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHfFKWfGBsG3V1pb39jcKm9Xdnb39g/8w6OWUZkmtEkUV7oTY0M5k7RpmeW0k2qKRcxpOx7fzvz2E9WGKflgJymNBB5KljCCrZNaPcOGAvf9alAL5kCrJCxIFQo0+v5Xb6BIJqi0hGNjumGQ2ijH2jLC6bTSywxNMRnjIe06KrGgJsrn107RmVMGKFHalbRorv6eyLEwZiJi1ymwHZllbyb+53Uzm1xHOZNpZqkki0VJxpFVaPY6GjBNieUTRzDRzN2KyAhrTKwLqOJCCJdfXiWti1oY1ML7y2r9poijDCdwCucQwhXU4Q4a0AQCj/AMr/DmKe/Fe/c+Fq0lr5g5hj/wPn8AnF+PIw==</latexit><latexit sha1_base64="WVBNru380J4XCjCR9Lt9t8h8e1I=">AAAB7XicbVDLSgNBEOyNrxhfqx69DAbBU9gVQY9BLx4jmAckS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHfFKWfGBsG3V1pb39jcKm9Xdnb39g/8w6OWUZkmtEkUV7oTY0M5k7RpmeW0k2qKRcxpOx7fzvz2E9WGKflgJymNBB5KljCCrZNaPcOGAvf9alAL5kCrJCxIFQo0+v5Xb6BIJqi0hGNjumGQ2ijH2jLC6bTSywxNMRnjIe06KrGgJsrn107RmVMGKFHalbRorv6eyLEwZiJi1ymwHZllbyb+53Uzm1xHOZNpZqkki0VJxpFVaPY6GjBNieUTRzDRzN2KyAhrTKwLqOJCCJdfXiWti1oY1ML7y2r9poijDCdwCucQwhXU4Q4a0AQCj/AMr/DmKe/Fe/c+Fq0lr5g5hj/wPn8AnF+PIw==</latexit>

�0
<latexit sha1_base64="k6BnyCibFe/A6i3h/RrsDq5jKsg=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPoKeyKoMegF48RzAOSJcxOOsmQmdllZlYISz7CiwdFvPo93vwbJ8keNLGgoajqprsrSgQ31ve/vcLa+sbmVnG7tLO7t39QPjxqmjjVDBssFrFuR9Sg4AoblluB7UQjlZHAVjS+m/mtJ9SGx+rRThIMJR0qPuCMWie1uoYPJT3vlSt+1Z+DrJIgJxXIUe+Vv7r9mKUSlWWCGtMJ/MSGGdWWM4HTUjc1mFA2pkPsOKqoRBNm83On5MwpfTKItStlyVz9PZFRacxERq5TUjsyy95M/M/rpHZwE2ZcJalFxRaLBqkgNiaz30mfa2RWTByhTHN3K2EjqimzLqGSCyFYfnmVNC+rgV8NHq4qtds8jiKcwClcQADXUIN7qEMDGIzhGV7hzUu8F+/d+1i0Frx85hj+wPv8Af7Wj1Q=</latexit><latexit sha1_base64="k6BnyCibFe/A6i3h/RrsDq5jKsg=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPoKeyKoMegF48RzAOSJcxOOsmQmdllZlYISz7CiwdFvPo93vwbJ8keNLGgoajqprsrSgQ31ve/vcLa+sbmVnG7tLO7t39QPjxqmjjVDBssFrFuR9Sg4AoblluB7UQjlZHAVjS+m/mtJ9SGx+rRThIMJR0qPuCMWie1uoYPJT3vlSt+1Z+DrJIgJxXIUe+Vv7r9mKUSlWWCGtMJ/MSGGdWWM4HTUjc1mFA2pkPsOKqoRBNm83On5MwpfTKItStlyVz9PZFRacxERq5TUjsyy95M/M/rpHZwE2ZcJalFxRaLBqkgNiaz30mfa2RWTByhTHN3K2EjqimzLqGSCyFYfnmVNC+rgV8NHq4qtds8jiKcwClcQADXUIN7qEMDGIzhGV7hzUu8F+/d+1i0Frx85hj+wPv8Af7Wj1Q=</latexit><latexit sha1_base64="k6BnyCibFe/A6i3h/RrsDq5jKsg=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPoKeyKoMegF48RzAOSJcxOOsmQmdllZlYISz7CiwdFvPo93vwbJ8keNLGgoajqprsrSgQ31ve/vcLa+sbmVnG7tLO7t39QPjxqmjjVDBssFrFuR9Sg4AoblluB7UQjlZHAVjS+m/mtJ9SGx+rRThIMJR0qPuCMWie1uoYPJT3vlSt+1Z+DrJIgJxXIUe+Vv7r9mKUSlWWCGtMJ/MSGGdWWM4HTUjc1mFA2pkPsOKqoRBNm83On5MwpfTKItStlyVz9PZFRacxERq5TUjsyy95M/M/rpHZwE2ZcJalFxRaLBqkgNiaz30mfa2RWTByhTHN3K2EjqimzLqGSCyFYfnmVNC+rgV8NHq4qtds8jiKcwClcQADXUIN7qEMDGIzhGV7hzUu8F+/d+1i0Frx85hj+wPv8Af7Wj1Q=</latexit><latexit sha1_base64="k6BnyCibFe/A6i3h/RrsDq5jKsg=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPoKeyKoMegF48RzAOSJcxOOsmQmdllZlYISz7CiwdFvPo93vwbJ8keNLGgoajqprsrSgQ31ve/vcLa+sbmVnG7tLO7t39QPjxqmjjVDBssFrFuR9Sg4AoblluB7UQjlZHAVjS+m/mtJ9SGx+rRThIMJR0qPuCMWie1uoYPJT3vlSt+1Z+DrJIgJxXIUe+Vv7r9mKUSlWWCGtMJ/MSGGdWWM4HTUjc1mFA2pkPsOKqoRBNm83On5MwpfTKItStlyVz9PZFRacxERq5TUjsyy95M/M/rpHZwE2ZcJalFxRaLBqkgNiaz30mfa2RWTByhTHN3K2EjqimzLqGSCyFYfnmVNC+rgV8NHq4qtds8jiKcwClcQADXUIN7qEMDGIzhGV7hzUu8F+/d+1i0Frx85hj+wPv8Af7Wj1Q=</latexit>


<latexit sha1_base64="qAsUf/1IAlAQB3I2YF1C2veiXKU=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJfROJsmY2dlhZlYIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrUoIb6/vfXmFtfWNzq7hd2tnd2z8oHx41TZJqyho0EYluR2iY4JI1LLeCtZVmGEeCtaLx7cxvPTFteCIf7ESxMMah5ANO0Tqp2R2jUtgrV/yqPwdZJUFOKpCj3it/dfsJTWMmLRVoTCfwlQ0z1JZTwaalbmqYQjrGIes4KjFmJszm107JmVP6ZJBoV9KSufp7IsPYmEkcuc4Y7cgsezPxP6+T2sF1mHGpUsskXSwapILYhMxeJ32uGbVi4ghSzd2thI5QI7UuoJILIVh+eZU0L6qBXw3uLyu1mzyOIpzAKZxDAFdQgzuoQwMoPMIzvMKbl3gv3rv3sWgtePnMMfyB9/kDliyPHw==</latexit><latexit sha1_base64="qAsUf/1IAlAQB3I2YF1C2veiXKU=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJfROJsmY2dlhZlYIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrUoIb6/vfXmFtfWNzq7hd2tnd2z8oHx41TZJqyho0EYluR2iY4JI1LLeCtZVmGEeCtaLx7cxvPTFteCIf7ESxMMah5ANO0Tqp2R2jUtgrV/yqPwdZJUFOKpCj3it/dfsJTWMmLRVoTCfwlQ0z1JZTwaalbmqYQjrGIes4KjFmJszm107JmVP6ZJBoV9KSufp7IsPYmEkcuc4Y7cgsezPxP6+T2sF1mHGpUsskXSwapILYhMxeJ32uGbVi4ghSzd2thI5QI7UuoJILIVh+eZU0L6qBXw3uLyu1mzyOIpzAKZxDAFdQgzuoQwMoPMIzvMKbl3gv3rv3sWgtePnMMfyB9/kDliyPHw==</latexit><latexit sha1_base64="qAsUf/1IAlAQB3I2YF1C2veiXKU=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJfROJsmY2dlhZlYIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrUoIb6/vfXmFtfWNzq7hd2tnd2z8oHx41TZJqyho0EYluR2iY4JI1LLeCtZVmGEeCtaLx7cxvPTFteCIf7ESxMMah5ANO0Tqp2R2jUtgrV/yqPwdZJUFOKpCj3it/dfsJTWMmLRVoTCfwlQ0z1JZTwaalbmqYQjrGIes4KjFmJszm107JmVP6ZJBoV9KSufp7IsPYmEkcuc4Y7cgsezPxP6+T2sF1mHGpUsskXSwapILYhMxeJ32uGbVi4ghSzd2thI5QI7UuoJILIVh+eZU0L6qBXw3uLyu1mzyOIpzAKZxDAFdQgzuoQwMoPMIzvMKbl3gv3rv3sWgtePnMMfyB9/kDliyPHw==</latexit><latexit sha1_base64="qAsUf/1IAlAQB3I2YF1C2veiXKU=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJfROJsmY2dlhZlYIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrUoIb6/vfXmFtfWNzq7hd2tnd2z8oHx41TZJqyho0EYluR2iY4JI1LLeCtZVmGEeCtaLx7cxvPTFteCIf7ESxMMah5ANO0Tqp2R2jUtgrV/yqPwdZJUFOKpCj3it/dfsJTWMmLRVoTCfwlQ0z1JZTwaalbmqYQjrGIes4KjFmJszm107JmVP6ZJBoV9KSufp7IsPYmEkcuc4Y7cgsezPxP6+T2sF1mHGpUsskXSwapILYhMxeJ32uGbVi4ghSzd2thI5QI7UuoJILIVh+eZU0L6qBXw3uLyu1mzyOIpzAKZxDAFdQgzuoQwMoPMIzvMKbl3gv3rv3sWgtePnMMfyB9/kDliyPHw==</latexit>

0
<latexit sha1_base64="hCFLZTEgW04GxQsL872YuS+/wxU=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69BIvoqSQi6LHoxWMF+wFtKJPtpl2y2Sy7G6GE/ggvHhTx6u/x5r9x2+agrQ8GHu/NMDMvlJxp43nfTmltfWNzq7xd2dnd2z+oHh61dZopQlsk5anqhqgpZ4K2DDOcdqWimIScdsL4buZ3nqjSLBWPZiJpkOBIsIgRNFbq9GOUEs8H1ZpX9+ZwV4lfkBoUaA6qX/1hSrKECkM4at3zPWmCHJVhhNNppZ9pKpHEOKI9SwUmVAf5/Nype2aVoRulypYw7lz9PZFjovUkCW1ngmasl72Z+J/Xy0x0E+RMyMxQQRaLooy7JnVnv7tDpigxfGIJEsXsrS4Zo0JibEIVG4K//PIqaV/Wfa/uP1zVGrdFHGU4gVO4AB+uoQH30IQWEIjhGV7hzZHOi/PufCxaS04xcwx/4Hz+APifj1A=</latexit><latexit sha1_base64="hCFLZTEgW04GxQsL872YuS+/wxU=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69BIvoqSQi6LHoxWMF+wFtKJPtpl2y2Sy7G6GE/ggvHhTx6u/x5r9x2+agrQ8GHu/NMDMvlJxp43nfTmltfWNzq7xd2dnd2z+oHh61dZopQlsk5anqhqgpZ4K2DDOcdqWimIScdsL4buZ3nqjSLBWPZiJpkOBIsIgRNFbq9GOUEs8H1ZpX9+ZwV4lfkBoUaA6qX/1hSrKECkM4at3zPWmCHJVhhNNppZ9pKpHEOKI9SwUmVAf5/Nype2aVoRulypYw7lz9PZFjovUkCW1ngmasl72Z+J/Xy0x0E+RMyMxQQRaLooy7JnVnv7tDpigxfGIJEsXsrS4Zo0JibEIVG4K//PIqaV/Wfa/uP1zVGrdFHGU4gVO4AB+uoQH30IQWEIjhGV7hzZHOi/PufCxaS04xcwx/4Hz+APifj1A=</latexit><latexit sha1_base64="hCFLZTEgW04GxQsL872YuS+/wxU=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69BIvoqSQi6LHoxWMF+wFtKJPtpl2y2Sy7G6GE/ggvHhTx6u/x5r9x2+agrQ8GHu/NMDMvlJxp43nfTmltfWNzq7xd2dnd2z+oHh61dZopQlsk5anqhqgpZ4K2DDOcdqWimIScdsL4buZ3nqjSLBWPZiJpkOBIsIgRNFbq9GOUEs8H1ZpX9+ZwV4lfkBoUaA6qX/1hSrKECkM4at3zPWmCHJVhhNNppZ9pKpHEOKI9SwUmVAf5/Nype2aVoRulypYw7lz9PZFjovUkCW1ngmasl72Z+J/Xy0x0E+RMyMxQQRaLooy7JnVnv7tDpigxfGIJEsXsrS4Zo0JibEIVG4K//PIqaV/Wfa/uP1zVGrdFHGU4gVO4AB+uoQH30IQWEIjhGV7hzZHOi/PufCxaS04xcwx/4Hz+APifj1A=</latexit><latexit sha1_base64="hCFLZTEgW04GxQsL872YuS+/wxU=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69BIvoqSQi6LHoxWMF+wFtKJPtpl2y2Sy7G6GE/ggvHhTx6u/x5r9x2+agrQ8GHu/NMDMvlJxp43nfTmltfWNzq7xd2dnd2z+oHh61dZopQlsk5anqhqgpZ4K2DDOcdqWimIScdsL4buZ3nqjSLBWPZiJpkOBIsIgRNFbq9GOUEs8H1ZpX9+ZwV4lfkBoUaA6qX/1hSrKECkM4at3zPWmCHJVhhNNppZ9pKpHEOKI9SwUmVAf5/Nype2aVoRulypYw7lz9PZFjovUkCW1ngmasl72Z+J/Xy0x0E+RMyMxQQRaLooy7JnVnv7tDpigxfGIJEsXsrS4Zo0JibEIVG4K//PIqaV/Wfa/uP1zVGrdFHGU4gVO4AB+uoQH30IQWEIjhGV7hzZHOi/PufCxaS04xcwx/4Hz+APifj1A=</latexit>

Dtr(⇢, )
<latexit sha1_base64="ZZceerR/m9l7W1ZuPkcJgaGqjlg=">AAACAXicbVBNS8NAEN3Ur1q/ol4EL8EiVJCSiKDHoh48VrAf0ISw2W7bpZvNsjsRS6gX/4oXD4p49V9489+4bXPQ6oOBx3szzMyLJGcaXPfLKiwsLi2vFFdLa+sbm1v29k5TJ6kitEESnqh2hDXlTNAGMOC0LRXFccRpKxpeTvzWHVWaJeIWRpIGMe4L1mMEg5FCe+8q9IHeQwZqXPHVIDn2h1hKfBTaZbfqTuH8JV5OyihHPbQ//W5C0pgKIBxr3fFcCUGGFTDC6bjkp5pKTIa4TzuGChxTHWTTD8bOoVG6Ti9RpgQ4U/XnRIZjrUdxZDpjDAM9703E/7xOCr3zIGNCpkAFmS3qpdyBxJnE4XSZogT4yBBMFDO3OmSAFSZgQiuZELz5l/+S5knVc6vezWm5dpHHUUT76ABVkIfOUA1dozpqIIIe0BN6Qa/Wo/VsvVnvs9aClc/sol+wPr4BUWOWyA==</latexit><latexit sha1_base64="ZZceerR/m9l7W1ZuPkcJgaGqjlg=">AAACAXicbVBNS8NAEN3Ur1q/ol4EL8EiVJCSiKDHoh48VrAf0ISw2W7bpZvNsjsRS6gX/4oXD4p49V9489+4bXPQ6oOBx3szzMyLJGcaXPfLKiwsLi2vFFdLa+sbm1v29k5TJ6kitEESnqh2hDXlTNAGMOC0LRXFccRpKxpeTvzWHVWaJeIWRpIGMe4L1mMEg5FCe+8q9IHeQwZqXPHVIDn2h1hKfBTaZbfqTuH8JV5OyihHPbQ//W5C0pgKIBxr3fFcCUGGFTDC6bjkp5pKTIa4TzuGChxTHWTTD8bOoVG6Ti9RpgQ4U/XnRIZjrUdxZDpjDAM9703E/7xOCr3zIGNCpkAFmS3qpdyBxJnE4XSZogT4yBBMFDO3OmSAFSZgQiuZELz5l/+S5knVc6vezWm5dpHHUUT76ABVkIfOUA1dozpqIIIe0BN6Qa/Wo/VsvVnvs9aClc/sol+wPr4BUWOWyA==</latexit><latexit sha1_base64="ZZceerR/m9l7W1ZuPkcJgaGqjlg=">AAACAXicbVBNS8NAEN3Ur1q/ol4EL8EiVJCSiKDHoh48VrAf0ISw2W7bpZvNsjsRS6gX/4oXD4p49V9489+4bXPQ6oOBx3szzMyLJGcaXPfLKiwsLi2vFFdLa+sbm1v29k5TJ6kitEESnqh2hDXlTNAGMOC0LRXFccRpKxpeTvzWHVWaJeIWRpIGMe4L1mMEg5FCe+8q9IHeQwZqXPHVIDn2h1hKfBTaZbfqTuH8JV5OyihHPbQ//W5C0pgKIBxr3fFcCUGGFTDC6bjkp5pKTIa4TzuGChxTHWTTD8bOoVG6Ti9RpgQ4U/XnRIZjrUdxZDpjDAM9703E/7xOCr3zIGNCpkAFmS3qpdyBxJnE4XSZogT4yBBMFDO3OmSAFSZgQiuZELz5l/+S5knVc6vezWm5dpHHUUT76ABVkIfOUA1dozpqIIIe0BN6Qa/Wo/VsvVnvs9aClc/sol+wPr4BUWOWyA==</latexit><latexit sha1_base64="ZZceerR/m9l7W1ZuPkcJgaGqjlg=">AAACAXicbVBNS8NAEN3Ur1q/ol4EL8EiVJCSiKDHoh48VrAf0ISw2W7bpZvNsjsRS6gX/4oXD4p49V9489+4bXPQ6oOBx3szzMyLJGcaXPfLKiwsLi2vFFdLa+sbm1v29k5TJ6kitEESnqh2hDXlTNAGMOC0LRXFccRpKxpeTvzWHVWaJeIWRpIGMe4L1mMEg5FCe+8q9IHeQwZqXPHVIDn2h1hKfBTaZbfqTuH8JV5OyihHPbQ//W5C0pgKIBxr3fFcCUGGFTDC6bjkp5pKTIa4TzuGChxTHWTTD8bOoVG6Ti9RpgQ4U/XnRIZjrUdxZDpjDAM9703E/7xOCr3zIGNCpkAFmS3qpdyBxJnE4XSZogT4yBBMFDO3OmSAFSZgQiuZELz5l/+S5knVc6vezWm5dpHHUUT76ABVkIfOUA1dozpqIIIe0BN6Qa/Wo/VsvVnvs9aClc/sol+wPr4BUWOWyA==</latexit>

Dtr(⇢, �)
<latexit sha1_base64="bqQsh2O4jlNhyPUQJSWOV89nb0Q=">AAACAXicbVBNS8NAEN3Ur1q/ol4EL4tFqCAlEUGPRT14rGA/oAlhs922SzfZsDsRS6gX/4oXD4p49V9489+4bXPQ6oOBx3szzMwLE8E1OM6XVVhYXFpeKa6W1tY3Nrfs7Z2mlqmirEGlkKodEs0Ej1kDOAjWThQjUShYKxxeTvzWHVOay/gWRgnzI9KPeY9TAkYK7L2rwAN2DxmoccVTA3nsad6PyFFgl52qMwX+S9yclFGOemB/el1J04jFQAXRuuM6CfgZUcCpYOOSl2qWEDokfdYxNCYR0342/WCMD43SxT2pTMWAp+rPiYxEWo+i0HRGBAZ63puI/3mdFHrnfsbjJAUW09miXiowSDyJA3e5YhTEyBBCFTe3YjogilAwoZVMCO78y39J86TqOlX35rRcu8jjKKJ9dIAqyEVnqIauUR01EEUP6Am9oFfr0Xq23qz3WWvBymd20S9YH99XmpbM</latexit><latexit sha1_base64="bqQsh2O4jlNhyPUQJSWOV89nb0Q=">AAACAXicbVBNS8NAEN3Ur1q/ol4EL4tFqCAlEUGPRT14rGA/oAlhs922SzfZsDsRS6gX/4oXD4p49V9489+4bXPQ6oOBx3szzMwLE8E1OM6XVVhYXFpeKa6W1tY3Nrfs7Z2mlqmirEGlkKodEs0Ej1kDOAjWThQjUShYKxxeTvzWHVOay/gWRgnzI9KPeY9TAkYK7L2rwAN2DxmoccVTA3nsad6PyFFgl52qMwX+S9yclFGOemB/el1J04jFQAXRuuM6CfgZUcCpYOOSl2qWEDokfdYxNCYR0342/WCMD43SxT2pTMWAp+rPiYxEWo+i0HRGBAZ63puI/3mdFHrnfsbjJAUW09miXiowSDyJA3e5YhTEyBBCFTe3YjogilAwoZVMCO78y39J86TqOlX35rRcu8jjKKJ9dIAqyEVnqIauUR01EEUP6Am9oFfr0Xq23qz3WWvBymd20S9YH99XmpbM</latexit><latexit sha1_base64="bqQsh2O4jlNhyPUQJSWOV89nb0Q=">AAACAXicbVBNS8NAEN3Ur1q/ol4EL4tFqCAlEUGPRT14rGA/oAlhs922SzfZsDsRS6gX/4oXD4p49V9489+4bXPQ6oOBx3szzMwLE8E1OM6XVVhYXFpeKa6W1tY3Nrfs7Z2mlqmirEGlkKodEs0Ej1kDOAjWThQjUShYKxxeTvzWHVOay/gWRgnzI9KPeY9TAkYK7L2rwAN2DxmoccVTA3nsad6PyFFgl52qMwX+S9yclFGOemB/el1J04jFQAXRuuM6CfgZUcCpYOOSl2qWEDokfdYxNCYR0342/WCMD43SxT2pTMWAp+rPiYxEWo+i0HRGBAZ63puI/3mdFHrnfsbjJAUW09miXiowSDyJA3e5YhTEyBBCFTe3YjogilAwoZVMCO78y39J86TqOlX35rRcu8jjKKJ9dIAqyEVnqIauUR01EEUP6Am9oFfr0Xq23qz3WWvBymd20S9YH99XmpbM</latexit><latexit sha1_base64="bqQsh2O4jlNhyPUQJSWOV89nb0Q=">AAACAXicbVBNS8NAEN3Ur1q/ol4EL4tFqCAlEUGPRT14rGA/oAlhs922SzfZsDsRS6gX/4oXD4p49V9489+4bXPQ6oOBx3szzMwLE8E1OM6XVVhYXFpeKa6W1tY3Nrfs7Z2mlqmirEGlkKodEs0Ej1kDOAjWThQjUShYKxxeTvzWHVOay/gWRgnzI9KPeY9TAkYK7L2rwAN2DxmoccVTA3nsad6PyFFgl52qMwX+S9yclFGOemB/el1J04jFQAXRuuM6CfgZUcCpYOOSl2qWEDokfdYxNCYR0342/WCMD43SxT2pTMWAp+rPiYxEWo+i0HRGBAZ63puI/3mdFHrnfsbjJAUW09miXiowSDyJA3e5YhTEyBBCFTe3YjogilAwoZVMCO78y39J86TqOlX35rRcu8jjKKJ9dIAqyEVnqIauUR01EEUP6Am9oFfr0Xq23qz3WWvBymd20S9YH99XmpbM</latexit>

DF
<latexit sha1_base64="Myv0NsVEfi8ez4ejBergUr571wQ=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclRkRdFlUxGUF+4B2KJk0bUMzmTG5UyhDv8ONC0Xc+jHu/Bsz7Sy09UDgcM693JMTxFIYdN1vZ2V1bX1js7BV3N7Z3dsvHRw2TJRoxusskpFuBdRwKRSvo0DJW7HmNAwkbwajm8xvjrk2IlKPOIm5H9KBEn3BKFrJv+12QopDRmV6N+2Wym7FnYEsEy8nZchR65a+Or2IJSFXyCQ1pu25Mfop1SiY5NNiJzE8pmxEB7xtqaIhN346Cz0lp1bpkX6k7VNIZurvjZSGxkzCwE5mEc2il4n/ee0E+1d+KlScIFdsfqifSIIRyRogPaE5QzmxhDItbFbChlRThranoi3BW/zyMmmcVzy34j1clKvXeR0FOIYTOAMPLqEK91CDOjB4gmd4hTdn7Lw4787HfHTFyXeO4A+czx/AOZIT</latexit><latexit sha1_base64="Myv0NsVEfi8ez4ejBergUr571wQ=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclRkRdFlUxGUF+4B2KJk0bUMzmTG5UyhDv8ONC0Xc+jHu/Bsz7Sy09UDgcM693JMTxFIYdN1vZ2V1bX1js7BV3N7Z3dsvHRw2TJRoxusskpFuBdRwKRSvo0DJW7HmNAwkbwajm8xvjrk2IlKPOIm5H9KBEn3BKFrJv+12QopDRmV6N+2Wym7FnYEsEy8nZchR65a+Or2IJSFXyCQ1pu25Mfop1SiY5NNiJzE8pmxEB7xtqaIhN346Cz0lp1bpkX6k7VNIZurvjZSGxkzCwE5mEc2il4n/ee0E+1d+KlScIFdsfqifSIIRyRogPaE5QzmxhDItbFbChlRThranoi3BW/zyMmmcVzy34j1clKvXeR0FOIYTOAMPLqEK91CDOjB4gmd4hTdn7Lw4787HfHTFyXeO4A+czx/AOZIT</latexit><latexit sha1_base64="Myv0NsVEfi8ez4ejBergUr571wQ=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclRkRdFlUxGUF+4B2KJk0bUMzmTG5UyhDv8ONC0Xc+jHu/Bsz7Sy09UDgcM693JMTxFIYdN1vZ2V1bX1js7BV3N7Z3dsvHRw2TJRoxusskpFuBdRwKRSvo0DJW7HmNAwkbwajm8xvjrk2IlKPOIm5H9KBEn3BKFrJv+12QopDRmV6N+2Wym7FnYEsEy8nZchR65a+Or2IJSFXyCQ1pu25Mfop1SiY5NNiJzE8pmxEB7xtqaIhN346Cz0lp1bpkX6k7VNIZurvjZSGxkzCwE5mEc2il4n/ee0E+1d+KlScIFdsfqifSIIRyRogPaE5QzmxhDItbFbChlRThranoi3BW/zyMmmcVzy34j1clKvXeR0FOIYTOAMPLqEK91CDOjB4gmd4hTdn7Lw4787HfHTFyXeO4A+czx/AOZIT</latexit><latexit sha1_base64="Myv0NsVEfi8ez4ejBergUr571wQ=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclRkRdFlUxGUF+4B2KJk0bUMzmTG5UyhDv8ONC0Xc+jHu/Bsz7Sy09UDgcM693JMTxFIYdN1vZ2V1bX1js7BV3N7Z3dsvHRw2TJRoxusskpFuBdRwKRSvo0DJW7HmNAwkbwajm8xvjrk2IlKPOIm5H9KBEn3BKFrJv+12QopDRmV6N+2Wym7FnYEsEy8nZchR65a+Or2IJSFXyCQ1pu25Mfop1SiY5NNiJzE8pmxEB7xtqaIhN346Cz0lp1bpkX6k7VNIZurvjZSGxkzCwE5mEc2il4n/ee0E+1d+KlScIFdsfqifSIIRyRogPaE5QzmxhDItbFbChlRThranoi3BW/zyMmmcVzy34j1clKvXeR0FOIYTOAMPLqEK91CDOjB4gmd4hTdn7Lw4787HfHTFyXeO4A+czx/AOZIT</latexit>

F
<latexit sha1_base64="EMr2CMGEx4jaB+rjB417hZxm8Lw=">AAAB8nicbVDLSsNAFL2pr1pfVZdugkVwVRIRdFkUxGUF+4A2lMl00g6dzISZG6GEfoYbF4q49Wvc+TdO2iy09cDA4Zx7mXNPmAhu0PO+ndLa+sbmVnm7srO7t39QPTxqG5VqylpUCaW7ITFMcMlayFGwbqIZiUPBOuHkNvc7T0wbruQjThMWxGQkecQpQSv1+jHBMSUiu5sNqjWv7s3hrhK/IDUo0BxUv/pDRdOYSaSCGNPzvQSDjGjkVLBZpZ8alhA6ISPWs1SSmJkgm0eeuWdWGbqR0vZJdOfq742MxMZM49BO5hHNspeL/3m9FKPrIOMySZFJuvgoSoWLys3vd4dcM4piagmhmtusLh0TTSjaliq2BH/55FXSvqj7Xt1/uKw1boo6ynACp3AOPlxBA+6hCS2goOAZXuHNQefFeXc+FqMlp9g5hj9wPn8Ad+eRXA==</latexit><latexit sha1_base64="EMr2CMGEx4jaB+rjB417hZxm8Lw=">AAAB8nicbVDLSsNAFL2pr1pfVZdugkVwVRIRdFkUxGUF+4A2lMl00g6dzISZG6GEfoYbF4q49Wvc+TdO2iy09cDA4Zx7mXNPmAhu0PO+ndLa+sbmVnm7srO7t39QPTxqG5VqylpUCaW7ITFMcMlayFGwbqIZiUPBOuHkNvc7T0wbruQjThMWxGQkecQpQSv1+jHBMSUiu5sNqjWv7s3hrhK/IDUo0BxUv/pDRdOYSaSCGNPzvQSDjGjkVLBZpZ8alhA6ISPWs1SSmJkgm0eeuWdWGbqR0vZJdOfq742MxMZM49BO5hHNspeL/3m9FKPrIOMySZFJuvgoSoWLys3vd4dcM4piagmhmtusLh0TTSjaliq2BH/55FXSvqj7Xt1/uKw1boo6ynACp3AOPlxBA+6hCS2goOAZXuHNQefFeXc+FqMlp9g5hj9wPn8Ad+eRXA==</latexit><latexit sha1_base64="EMr2CMGEx4jaB+rjB417hZxm8Lw=">AAAB8nicbVDLSsNAFL2pr1pfVZdugkVwVRIRdFkUxGUF+4A2lMl00g6dzISZG6GEfoYbF4q49Wvc+TdO2iy09cDA4Zx7mXNPmAhu0PO+ndLa+sbmVnm7srO7t39QPTxqG5VqylpUCaW7ITFMcMlayFGwbqIZiUPBOuHkNvc7T0wbruQjThMWxGQkecQpQSv1+jHBMSUiu5sNqjWv7s3hrhK/IDUo0BxUv/pDRdOYSaSCGNPzvQSDjGjkVLBZpZ8alhA6ISPWs1SSmJkgm0eeuWdWGbqR0vZJdOfq742MxMZM49BO5hHNspeL/3m9FKPrIOMySZFJuvgoSoWLys3vd4dcM4piagmhmtusLh0TTSjaliq2BH/55FXSvqj7Xt1/uKw1boo6ynACp3AOPlxBA+6hCS2goOAZXuHNQefFeXc+FqMlp9g5hj9wPn8Ad+eRXA==</latexit><latexit sha1_base64="EMr2CMGEx4jaB+rjB417hZxm8Lw=">AAAB8nicbVDLSsNAFL2pr1pfVZdugkVwVRIRdFkUxGUF+4A2lMl00g6dzISZG6GEfoYbF4q49Wvc+TdO2iy09cDA4Zx7mXNPmAhu0PO+ndLa+sbmVnm7srO7t39QPTxqG5VqylpUCaW7ITFMcMlayFGwbqIZiUPBOuHkNvc7T0wbruQjThMWxGQkecQpQSv1+jHBMSUiu5sNqjWv7s3hrhK/IDUo0BxUv/pDRdOYSaSCGNPzvQSDjGjkVLBZpZ8alhA6ISPWs1SSmJkgm0eeuWdWGbqR0vZJdOfq742MxMZM49BO5hHNspeL/3m9FKPrIOMySZFJuvgoSoWLys3vd4dcM4piagmhmtusLh0TTSjaliq2BH/55FXSvqj7Xt1/uKw1boo6ynACp3AOPlxBA+6hCS2goOAZXuHNQefFeXc+FqMlp9g5hj9wPn8Ad+eRXA==</latexit>

F 0
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Strong interactions
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Figure 4.2: A sketch of the relative positions of interacting, ρ, optimal-free,

σ, and Kohn-Sham, κ, reduced density matrices on a manifold parametrised by

the entanglement spectrum. The spectra in the free regions, F and F′, have a

structure that is factorisable into free fermions, i.e. the same as Eq. (4.15). The

regions differ by the number of non-zero single-particle probabilities contribute to

σ. Interactions have the effect of changing the effective degrees of freedom from

one free manifold F to another F′. The KS model is always built from operators

living in the manifold F, giving unbound errors on its trace distance from the

interacting state Dtr(ρ, κ).

4.4.4 Triangle Inequality

We now investigate the bipartite entanglement of the model. We employ the

triangular inequality of the trace distance metric between the interacting, ρ, the

optimal free, σ, and the KS, κ, reduced density matrices. In the perturbative

regime the interaction distance provides an upper bound for Dtr(κ, σ); therefore,

we have Dtr(ρ, κ) ≤ (1 + c)DF, where the constant c = f(n) · C from Eq. (4.35).

Moreover, due to σ being optimal we have that DF provides a lower bound to

Dtr(ρ, κ), thus giving

DF ≤ Dtr(ρ, κ) ≤ (1 + c)DF. (4.36)

Hence, in the perturbative regime when DF ≈ 0 the KS model reproduces all

properties of the interacting system, while a non-zero DF bounds the errors in
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determining the entanglement properties of the interacting model. The KS model

within this regime provides a faithful construction of the optimal entanglement

model. Away from the perturbative regime it is possible that the upper bound

in (4.36) fails, by having κ far from ρ even if DF ≈ 0. This is due to strong

interactions, that may not only change the effective local fermion potential, V̂KS,

but also the effective kinetic term, K̂, that does not contain energy contributions

from interactions. In this limit a single Slater determinant of orbitals in F no

longer accurately captures the groundstate.

This change in degrees of freedom is sketched in Fig. 4.2 (taken from [2]),

where the relative positions of the reduced density matrices are shown on a mani-

fold parametrised by the entanglement spectrum, such that the distance between

points is given by their trace distance. There are two shaded (orange) regions F

and F′ that represent free regions with reduced density matrices of the same form

presented in Eq. (4.15) and spectra that can be factorised into single-particle lev-

els. The regions differ in the number of non-zero single-particle probabilities used

to build the spectrum. Thus, the regions are connected. To see this consider a

spectrum with a set of single-particle levels that live in F. If F and F′ differ by

only one single-particle level, then one could tune a single level continuously to

zero to move it from F to F′; however, this is not the effect that interactions have

on the entanglement spectra studied here so the regions can be considered effec-

tively disconnected. To move from one region to another it is therefore required

for interactions cause a transition (or crossover) into a new behaviour, changing

the number of required single-particle modes.

In Fig. 4.2, for weak interactions all three density matrices are close as the

interacting model is close to the non-interacting point and their trace distance

is small due to Eq. (4.36). The projection of equal fermion densities onto the

manifold F is along the Dtr(ρ, κ) diagonal dotted lines for which there is no

bound on the error away from the perturbative limit. Large interactions U can

have the effect of changing the effective degrees of freedom of the interacting state

ρ′, whilst emitting a free description, i.e. DF ≈ 0, making κ′ a bad approximation

to ρ′. Nevertheless, σ always provides the closest free description of ρ.

The parent Hamiltonian of the optimal free state can be used to define a

suitable auxiliary free model that identifies the effective degrees of freedom of
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the interacting model for all coupling regimes. When DF ≈ 0 such an auxiliary

model not only faithfully reproduces the entanglement properties of the interact-

ing model but, due to Eq. (4.26), it can also estimate all of its observables, such

as local fermion densities. This ‘optimal entanglement’ model generalises the KS

model that can fail to reproduce the entanglement properties even if DF ≈ 0.

To build this auxiliary model one first needs to identify the effective fermionic

degrees of freedom that correspond to the quantum correlations of the model. If

DF ≈ 0 for strong interactions then the number of fermionic degrees of freedom

of the emerging free theory can be either the same or smaller than the initial

theory without the interaction term: interactions may freeze some of the initial

fermionic degrees of freedom and do not increase their number.

4.5 Interaction distance and KS analysis of the

Hubbard dimer

We now apply the procedure of section 4.4 to a known model that is amenable

to both the exact KS method (see section 4.2.3), and exact DF calculations (see

section 4.3.2). The Hubbard dimer is a 1-dimensional chain of spin-1
2

fermions

restricted to L = 2 sites. It has already been studied using an exact KS method

in [87] and at half-filling, N↑ = N↓ = 1, it has a four-level entanglement spectrum

meaning that the result of section 4.3.2 may be applied. The interacting model

(in 1-dimension) is integrable, so it exhibits exact solutions, and is an example

of a strongly correlated system. It is therefore an excellent model to exemplify

the applicability of KS theory and the optimal entanglement model. We begin

by introducing the Hubbard model in general, before restricting to the dimer.

4.5.1 The Fermi-Hubbard model

The Fermi-Hubbard model is a simple model of hopping electrons, that includes

a Coulomb repulsion for electrons of different spin occupying the same lattice

site. It is an extension of the tight-binding model, that successfully describes a

metallic phase of electrons on a lattice, where now the interaction U gives rise to,

amongst other phenomena, an insulating phase [102].

95



4. EFFICIENCY OF THE KOHN-SHAM MODEL IN
DESCRIBING INTERACTING FERMIONS

In the extensive literature analysing the properties of the Hubbard model it

has been found to exhibit not only a metal-insulator transition, but also features

of antiferromagnetism, ferromagnetism, Luttinger liquid physics, and supercon-

ductivity [103, 104]. It has been studied under many different conditions, in-

cluding, but not limited to, infinite and finite [105] system sizes, periodic [106]

or twisted [107, 108] boundary conditions, attractive interactions [109], embed-

ding on a 2-dimensional lattice [110, 111], etc.. It has also been treated by

a number of analytical and numerical techniques. Analytical solutions rely on

the systems integrability in 1-dimension [112] and follow the Bethe-Ansatz ap-

proach [106, 107, 113]. Numerical techniques include DMRG calculations [114],

dynamical mean-field theory [115] and quantum Monte-Carlo simulations [116];

though it is often used as a test bed for new techniques [87], as is also the case

here [2]. For a thorough comparison of a variety of different approximate methods

see [117]. Both T = 0 and T > 0 properties of a two dimensional Hubbard model

on square lattice are benchmarked using 9 different techniques, including DMRG

and Monte Carlo, comparing energies and double occupancy patterns.

The Hubbard model has gained particular attention due to its simplicity, yet

its ability to predict the behaviour of more complicated physical systems. This

is a feature of universality – the Hubbard model ignores many of the complica-

tions present in real models; however, its universal, non-trivial, features remain

important in understanding them [104].

The model Hamiltonian

In this study we restrict to a 1-dimensional chain of spin-1
2

fermions, with creation

(annihilation) operator c†j,s (cj,s) for a fermion at site j and spin s ∈ {↑, ↓},
with a local repulsive interaction U ≥ 0 and open boundary conditions. The

Hamiltonian for L sites is

Ĥ =
∑
j,s

[
−J
(
c†j,scj+1,s + h.c.

)
+ νjn̂j,s

]
+ U

∑
j

n̂j,↑n̂j,↓, (4.37)

where n̂j,s = c†j,scj,s is the number operator for spin-s fermions at site j, νj is an

onsite potential, and J is the amplitude for hopping between lattice sites. From

here on, for simplicity, we work in units of J by setting J = 1.
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Important symmetries of the Hamiltonian

The total number of each spin species N↑ =
∑

j n̂j,↑ and N↓ =
∑

j n̂j,↓ commute

with the Hamiltonian [Ĥ,Ns] = 0, and so does their sum N = N↑ + N↓. The

magnetisation is given by Sz = 1
2
(N↑−N↓), which also commutes with the Hamil-

tonian. We may therefore choose the pair (N,Sz) as good quantum numbers for

the model. These operators both generate U(1) transformations of the Hamil-

tonian – N gives invariance under global gauge transformations and Sz gives

rotations about the Sz axis.

The total spin operator is Stot = (Sx, Sy, Sz), where Sα = 1
2

∑
j

∑
s,s′ c

†
j,s(σ

α)s,s′cj,s′

and (σα)s,s′ picks out elements of the 2×2 Pauli matrix σα. Eigenvalues of the to-

tal spin operator are given by S2 = S(S+1), where S is the spin of the eigenstate.

If S ∝ N the model is ferromagentic, whereas for S = 0 it is anti-ferromagnetic.

All operators Sα obey [H,Sα] = 0, so the Hamiltonian is invariant under global

spin rotations and thus has an SU(2) symmetry. The use of symmetries allow

eigenstates to be grouped in sectors that reduce the dimension of the Hilbert

space where desired solutions exist, for e.g. a gauge symmetry implies particle

number conservation so the Hilbert space can broken up into sectors of fixed N

and the SU(2) symmetry gives sectors of conserved S.

Another useful symmetry is a particle-hole symmetry P, given by Pc†j,sP
† =

(−1)jdj,s and Pcj,sP
† = (−1)jdj,s, where d†j,s(dj,s) are fermionic operators related

to the old operators by d†j,sdj,s = 1 − c†j,scj,s. When the chemical potential is set

to zero everywhere, i.e. νj = 0 for all j, the Hamiltonian transforms as H(U)→
H(U) − U(L − N) that gives a symmetric spectrum about half-filling. Thus,

reducing the number of states required to be determined. There are a variety

of symmetries that are important and utilised in the Bethe ansatz approach to

diagonalise the Hamiltonian [103]. In fact, as the model is integrable it has an

infinite set of commuting operators in the thermodynamic limit [112].

Phases of the half-filled Hamiltonian

At half-filling, with (N,Sz) = (L, 0), the model has two phases: a conducting

phase at U = 0 and a Mott-insulator phase for all U > 0 [106]. However, for

very small system sizes and with anisotropic local potentials the conducting phase
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extends by a small amount into the insulating phase. This results in a crossover

region, indicated in Fig. 4.2, that makes the Hubbard model (and specifically the

L = 2 dimer) a useful tool when exploring the effect of correlations on the KS

groundstate and the optimal free state. Evidence for the crossover region is given

in the next section.

For the dimer, in order to define an optimal entanglement model it is required

to identify the frozen degrees of freedom in the Mott-insulator phase that the KS

model fails to capture. It is then possible to build a Hamiltonian that has the

remaining degrees of freedom in the insulating phase and the optimal free state

as its ground state.

4.5.2 Entanglement properties of the Hubbard dimer

Restricting the Hamiltonian in Eq. (4.37) to L = 2 sites at half-filling N↑ = N↓ =

1 results in the Hamiltonian

Ĥ =
∑

s∈{↑,↓}

[
−(c†1,sc2,s + c†2,sc1,s) + ν1n1,s + ν2n2,s

]
+ U(n1,↑n1,↓ + n2,↑n2,↓).

(4.38)

The Hilbert space is spanned by basis vectors H ∈ {|↑↓, 0〉 , |↑, ↓〉 , |↓, ↑〉 , |0, ↑↓〉},
where the notation |α, β〉 = |α〉 ⊗ |β〉 corresponds to α fermions at site 1 and β

fermions at site 2. An eigenstate of this Hamiltonian |Ψ〉 = a1 |↑↓, 0〉+ a2 |↑, ↓〉+
a3 |↓, ↑〉+a4 |0, ↑↓〉, may be expressed in vector notation |Ψ〉 = (a1, a2, a3, a4)T . It

is possible to construct a matrix representation of the Hamiltonian that may be

diagonalised directly to find the eigenstate amplitudes {aj} and the corresponding

energy, E.

Full solution to interacting model

The Hamiltonian, whilst respecting the basis ordering given above and fermionic

anti-commutation, is

Ĥ =


U + ν −1 1 0
−1 0 0 −1
1 0 0 1
0 −1 1 U − ν

 , (4.39)
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Figure 4.3: Eigenvalues of the half-filled Hubbard dimer, given in Eq. (4.40),

with varying U and constant ν = 0.5.

where ν = ν1 − ν2. This includes a shift in the energy scale by −(ν1 + ν2) so

that the Hamiltonian depends only on the difference between potentials ν and

the interaction strength U , i.e. we reduce the number of variables from three to

two. Now, using the Schrödinger equation Ĥ |Ψ〉 = E |Ψ〉, the energies of Ĥ are

found to be [118]

E0 = r cos

(
θ + 2π

3

)
+

2U

3
; E1 = 0;

E2 = r cos

(
θ + 4π

3

)
+

2U

3
; E3 = r cos

(
θ

3

)
+

2U

3
; (4.40)

with r = 2
3
(U2 +3ν2 +12)

1
2 and θ = arccos

[
8U(9ν2−U2−18)

27r3

]
. The ordering of levels

was determined by plotting each energy as a function of U with fixed ν > 0, see

Fig 4.3.

The corresponding (unnormalised) eigenstates are

|Ψ〉E 6=0 =


2

U+ν−E
1
−1

2
U−ν−E

 and |Ψ〉E=0 =


0
1
1
0

 . (4.41)

It is clear that in the U →∞ limit the groundstate energy E0 approaches E1 = 0.

In this limit the double occupancy states have amplitudes ∼ 2
U
→ 0 that approach
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zero, as Coulomb repulsion becomes dominant. However, the eigenstates corre-

sponding to E0 and E1 remain orthogonal and form the lower Hubbard band.

The excited states E2 and E3 also approach each other as U increases, thus form-

ing the upper Hubbard band. The gap between the upper and lower bands is

called the Mott gap and it scales with U . The gap does not exist at U = 0 where

quantum fluctuations dominate. The dimer highlights the Mott gap quite clearly;

it persists for all system sizes up to the thermodynamic limit L→∞ for U > 0.

We would now like to study the entanglement properties of the groundstate |Ψ0〉
corresponding to E0.

Entanglement spectrum of the half-filled Hubbard dimer

Following the introduction to the entanglement spectrum in section 2.3.2 it is

clear that the eigenstates found above, in the fermion representation with basis

states {|↑↓, 0〉 , |↑, ↓〉 , |↓, ↑〉 , |0, ↑↓〉}, are already expressed in Schmidt form when

a partition is made between sites 1 (subsystem A) and 2 (subsystem B). This

is clear as each state in subsystem A is orthogonal, likewise for subsystem B.

Further, each state in A uniquely determines the state in B. Therefore, eigenval-

ues of the reduced density matrix ρ = TrB |Ψ〉〈Ψ| can be read directly from the

(normalised) eigenstate. They are ρj ∈ { 4
Z(U+ν−E0)2

, Z−1, Z−1, 4
Z(U−ν−E0)2

} with

E0 given in Eq. (4.40) and Z =
∑

j ρj. It is clear that there exists a degenerate

pair of ρj and two levels that differ by the sign of ν in the denominator. In the

large U limit we expect these non-degenerate levels to also become degenerate

as U becomes dominant. The purpose of the anisotropic local potentials is now

clear: without it the spectrum would have a pair of two-fold degenerate levels for

any parameter value, that always returns DF = 0 due to Eq. (4.18b).

From this set of levels we may proceed and calculate the interaction distance

DF using the analytical solution for the four-level spectrum given in section 4.3.2.

To do so, we first require to order the states from largest to smallest, with the

ordering ρj ≥ ρk for j < k. See Fig. 4.4 where the levels are plotted for varying U .

It is most illuminating in this figure to not label the levels by their sorted order,

but instead as {ρ̃+ν , ρ̃d, ρ̃d, ρ̃−ν} where the subscripts are clear from the discussion

above; only one of the degenerate levels ρ̃d has been plotted. The ordering makes
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Figure 4.4: Eigenvalues {ρ̃j} of the reduced density matrix ρ with varying U and

constant ν = 0.5. The levels are found using the groundstate given in Eq. (4.41).

The plot highlights the ordering of levels required to calculate DF. The level

ρ̃d (orange) is two-fold degenerate. Labels in the main text without tilde are

reserved for the ordered set of levels.

perfect sense: in the large U limit the dominant entanglement levels are those

corresponding to singly occupied states in each subsystem. We see that for U

beyond ∼ 1 this is the case. For U . 1 the level corresponding to the entangled

mode |0〉 ⊗ |↑↓〉 is the most probable as the presence of ν = ν1 − ν2 > 0 favours

occupations at site 2. The other levels can be explained by similar arguments.

As a final note before calculating DF, the entanglement spectrum only splits

into upper and lower Hubbard bands beyond the value of Uc ∼ 1. Therefore the

Mott gap does not exist for all U > 0, but is present only beyond the crossover

value Uc. It is not clear from the energy spectrum alone where the crossover

occurs, making the entanglement spectrum a useful tool for probing the phase of

this system. The crossover indicates when the dominant behaviour changes from

quantum fluctuations due to tunnelling to the formation of magnetic moments

due to Coulomb repulsion.
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Figure 4.5: The interaction distance of the groundstate, with fixed ν = 0.5 and

varying U , calculated using Eqs. (4.18b) and (4.41). In (a) the range of U is

reduced, showing the growth from the non-interacting point U = 0 with DF = 0

to the crossover at U = Uc. In (b) the range of U is extended, with logarithmic

scaling in both axes, showing the decay to DF = 0 beyond U = Uc.

Interaction distance of the groundstate

We are now in a position to calculate the interaction distance using the spectrum

of ρ. It is found (via a computer) that for all values of U the inequality ρ1 <

(ρ1 + ρ2)2 holds. Therefore, as discussed in section 4.3.2, the optimal free state

is found by matching the largest two eigenvalues of ρ and DF is always given by

Eq. (4.18b). In Fig. 4.5 the interaction distance is plotted against U .

At U = 0 the system consists of free fermions that may hop between sites,

without interaction, giving an expected DF = 0 (see Fig. 4.5a). As the interaction

is turned on the effect of Coulomb repulsion begins mixing the single-particle

states, moving the system away from its free description. Up to the crossover Uc,

charge fluctuations remain dominant. In agreement with Fig. 4.4, Uc is indicated

by a discontinuity in the derivative of DF. The crossover occurs at Uc = 0.8334

and DF(ρ)
∣∣
U=Uc

= 0.0806. As a reference, this value is approximately half the

maximum interaction distance Dmax
F = 1

6
≈ 0.1667 for a four-level spectrum,

that was calculated in [19]. Moving away from Uc and spin fluctuations begin to

dominate, quickly (as evidenced by the sharp slope in 4.5b) fixing spins to lattice

sites. This reduces DF as its peak occurs when there are maximal spin and charge
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fluctuations.

That DF → 0 as U →∞ is an artefact of the freezing of double occupancy (or

charge) degrees of freedom, resulting in the spins being effective free particles.

Without charge fluctuations, each site is occupied by an up or down spin and

is free to point in either direction. Of course, to preserve N↑ and N↓ the spins

must form an entangled pair. This describes the maximally entangled singlet

state |Ψ〉 = 1√
2

= [|↑, ↓〉 − |↓, ↑〉], that has zero energy. Moving slightly away

from the infinite limit and charge fluctuations will be present allowing for double

occupations. However, the energy cost for doing so is of the order of the Mott

gap ∼ U so the system still has a close to free description and DF reflects this by

being small.

Explicit expression for the interaction distance

By finding an explicit expression for the interaction distance it is possible to

determine exactly how fast DF decays from the crossover and into the insulating

phase. Using the results from the previous two sections, the interaction distance

is given by

DF

∣∣
U>Uc

=

∣∣∣∣ b− a
ab+ 2a+ 2b

∣∣∣∣ , (4.42)

where a = (U + ν − E0)2 and b = (U − ν − E0)2. With this expression it is

possible to us a Taylor expansion about 1/U = 0. However, the form of the en-

ergy, given in Eq. (4.40), does not lend itself to the calculation. By approximating

E ≈ −4/U the calculation becomes tractable. This is the known effective ground-

state energy in the strong coupling regime following a second-order perturbative

expansion [22]. With this approximation we obtain the following expansion for

the interaction distance in the strongly correlated limit U � 1

DF ≈
4ν

U3
+

8ν3 − 64ν

U5
+ O

(
U−7

)
, (4.43)

where subsequent terms continue in odd powers of 1/U . From this analysis we

see that the interaction distance decays very quickly in the insulating phase. The

dominant term in DF decays with U−3 whilst the dominant term in E0 decays

with U−1. Thus, the bipartite correlations approach the infinite interaction limit

quicker than the energy.
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4.5.3 Kohn-Sham and optimal entanglement models for

the Hubbard dimer

The calculations in the previous subsection show that the Hubbard dimer has

two competing behaviours arising from quantum tunnelling and from Coulomb

repulsion, where the dominant behaviour is separated by a crossover point. The

inequality in Eq. (4.36) predicts that the ground state of the corresponding KS

model will be close to optimal for atleast U � Uc. Its behaviour as U → Uc

from below is a little more uncertain; however, we have seen that within U < Uc

the degrees of freedom of the groundstate remain the same as at U = 0 so we

may also expect the KS model to be close to optimal up to this point. However,

beyond U = Uc the bound in (4.36) does not hold. The KS formalism has no

means of detecting the freezing of double occupancies so will undoubtedly result

in large errors in predicting bipartite correlations. Before making this analysis

complete, we build a Hamiltonian with the optimal free state as its groundstate

in the strongly correlated limit.

Requirements of the optimal entanglement model

The aim now is to build a non-interacting auxiliary Hamiltonian Haux that has the

optimal free state σ as its groundstate. We can do so with the ideas of KS theory

in mind: interaction effects are tuned by defining an appropriate potential term in

the Hamiltonian that reproduces a property of choice. Here we wish to reproduce

the bipartite correlations of σ, that by the inequality in Eq. (4.26) should produce

all observables within the bound of DF. This has an advantage over the KS

system, where in principle it is possible to produce all observables, as we saw in

the previous sections that correlations are important when characterising features

of many-body systems.

In order to define a Hamiltonian that reproduces the optimal free state it is

important to know exactly what spectrum we are aiming for. For all U we saw

that as ρ1 < (ρ1 + ρ2)2 then the interaction distance is found using Eq. (4.18b).

Consequently, the free parameter solutions in Eq. (4.19b) give the correct set

of {σj}. In the limit of U > Uc, that is currently our focus, ρ1 = ρ2 that

correspond to single occupancy modes. Therefore, the free parameter solutions
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are (b1, b2) = (0, 2ρ1− 1
2
). The existence of a zero solution means that the optimal

state will have two sets of degenerate levels, i.e. σ1 = σ2 and σ3 = σ4.

Defining an optimal entanglement model

The optimal free state can be found by defining a Hamiltonian consisting of two

non-interacting two site chains, each with a single spinless fermion, with creation

(annihilation) operator c†j(cj), see the inset of Fig. 4.6. Then, appropriately tuning

a local chemical potential at one of the sites freezes occupations away from that

site, mimicking the freezing of double occupations due to Coulomb repulsion. By

making a partition such that sites 1, 2 are subsystem A and 3, 4 are subsystem

B, the resulting entanglement spectrum is that of the optimal free state. The

Hamiltonian for this auxiliary model is

Ĥaux = −
(
c†1c3 + c†3c1

)
−
(
c†2c4 + c†4c2

)
+
µ

2
c†1c1 (4.44)

where µ = 2
[√

σ1
σ3
−
√

σ3
σ1

]
. For the four-level system these levels may be ex-

pressed in terms of the interacting levels ρj and therefore also the parameters of

the interacting Hamiltonian (4.37), however the form here is certainly more pre-

sentable. See Fig. 4.6 where the behaviour of µ is given, the linear growth beyond

Uc gives that µ ≈ U . Note that at present there is no constructive way to pro-

duce the potential µ without prior knowledge of the desired optimal entanglement

levels.

The specific form of the auxiliary Hamiltonian is motivated by the simplicity of

spinless free-fermionic models. They are always exactly solvable and have a finite

number of tunable parameters: a fermion can only hop between sites, give energy

to Cooper pairs, or be influenced by a local potential. The choice of hopping in

Haux is fixed to imitate that of spinful fermions in the non-interacting Hubbard

dimer. Pairing terms are omitted that may render the state topological (which is

not our aim), leaving local potential terms as free variables to imitate the effect

of interactions. This is not a unique construction and it would be interesting to

see what other constructions are capable of producing the optimal free state.

To see why the degeneracies of optimal spectrum are important consider the

full and reduced Hilbert space for this system. The full Hilbert space is H ∈
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Figure 4.6: The exact value of the chemical potential µ for varying U and fixed

ν = 0.5. The purpose of µ is to imitate the effect of interactions in the Hubbard

dimer. In the strongly correlated regime U > Uc, the linear growth suggests that

µ ≈ U . Inset: A sketch of the strongly correlated optimal entanglement model,

as defined in Eq. (4.44). The model consists of two non-interacting chains with

a single spinless fermion allowed to hop, across solid lines, on each chain. A

chemical potential is applied to site 1 to have the correct optimal free state as its

groundstate.

{|1100〉 , |1001〉 , |0110〉 , |0011〉}, where each local Hilbert space corresponds to an

empty |0〉 or filled |1〉 = c† |0〉 site, with an assumed tensor product structure. The

reduced Hilbert space for subsystem A is therefore HA ∈ {|11〉 , |10〉 , |01〉 , |00〉}.
These have a very similar structure to the dimer Hilbert space introduced in sec-

tion 4.5.2: they are of the same dimension and the states in A uniquely determine

the states in B. The effect of the chemical potential is to reduce occupation at

site 1, whilst favouring occupation at site 3. At the same time, sites 2 and 4 share

equally the probability for occupation. Therefore, µ (equally) reduces the proba-

bility of modes |11〉 and |10〉, whilst having the opposite effect on modes |01〉 and

|00〉. Recognising that there exists a double degeneracy in the spectrum is pivotal

to the success of this auxiliary model, though it would not be unreasonable to

propose an auxiliary model that has the effect of distributing levels in some other

way by use of different local potentials. Before discussing the results it is worth
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taking a moment to understand the procedure used for relating observables of

models in a different basis.

Determining local density (and other observables) from reduced spec-

tra

When calculating physical quantities, e.g. local electron density, of the auxiliary

model there is some interpretation required to accurately predict properties of

the interacting model. For example, for the auxiliary model defined in Eq. (4.44)

that models the strongly correlated limit of the Hubbard dimer, the effect of the

chemical potential is to reduce occupations at one of the four sites. If one was

to measure density at sites 1 and 2 (or region A) of the auxiliary model in the

basis that it is built in, then it would not give the same density as the two spin

occupations at site 1 (region A) of the interacting model – in the U � 1 limit the

auxiliary groundstate has an expectation value of total density in region A to be

〈n̂A〉aux ≈ 1
2

whereas the interacting model has 〈n̂A〉int ≈ 1.

The optimal entanglement model is an auxiliary model constructed to produce

the entanglement spectrum of the optimal free state. As such, the applicability of

the bound Dn ≤ CDF depends on the basis that the spectrum is measured in. In

order to extract the correct local electron density from the optimal entanglement

model requires measurement in the Schmidt basis of the interacting system, in

agreement with the result for 〈n̂j〉int = Tr [n̂jρ]. With the entanglement spec-

trum of the auxiliary model {αk}, the correct density is found by calculating the

following for different configurations of αk:

〈n̂j〉aux =
∑
k

〈ψk|n̂j|ψk〉αk, (4.45)

where |ψk〉 is a Schmidt vector in region A of the interacting model. One config-

uration of αk gives the correct density distribution within CDF of the interacting

model. For the Hubbard dimer example, it is the configuration ordered in the

same relative size order as the interacting levels that gives the correct density

distribution. Note that when an auxiliary model can be defined with the same

physical degrees of freedom as the interacting model, e.g. the KS model, then

there is no minimisation over configurations required.
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Figure 4.7: Density difference between the interacting state, ρ and each of the

optimal, σ, auxiliary, α and KS κ states, with varying U and fixed ν = 0.5.

The vertical dashed line shows the maximum density difference where there is a

crossover at Uc = 0.9 from one behaviour to another. We see that, for all values

of U , κ accurately predicts the groundstate density. On the other hand, σ and

α, that give identical results for U > Uc, approach zero when U is large due the

upper bound of Dn with DF found in Eq. (4.30).

Numerical analysis of auxiliary models

Having defined an optimal entanglement model we are now in a position to test

the applicability of it, compared with the KS model. We compare: the interacting,

ρ, the optimal free, σ, the KS, κ, and the auxiliary, α states, using a variety of

measures. In particular, we measure the density difference Dn in Fig. 4.7, the

trace distance Dtr in Fig. 4.8a, and the entanglement entropy S in Fig. 4.8b.

Beginning with Fig. 4.7 where the density difference metric is calculated, the

local densities corresponding to κ are within 10−6 of the interacting state density

for all values of U . This is an artefact of the exact method used and is an expected

result. For the optimal free state, at U = 0 it captures the density exactly as ρ is

explicitly free. Likewise as U is increased beyond the crossover, where we expect

the interaction distance to decrease rapidly as evidenced in Fig 4.5, the density

metric also decreases rapidly due to the bound in Eq. (4.30). The constant in the
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Figure 4.8: (a) Trace distance metric between the interacting state ρ and each of

the optimal σ, auxiliary α and KS κ states. (b) Entanglement entropy for ρ, σ,

α, and κ states. Both figures vary U with fixed ν = 0.5, and the black dashed

line shows where the crossover point Uc = 0.9. The value of Uc found in this

figure is consistent with Fig. 4.7. The insets of (a) and (b) show the same data

zoomed into the region of the crossover. Surprisingly, κ remains close to optimal

for a small range of U even beyond Uc and diverges after a kink in both (a) and

(b), though in (b) it is not so obvious even in the inset.

bound takes the value 4 for the dimer, as the maximum of the density operator

is 1 that is summed over all occupations. In the strongly correlated limit the

inequality is saturated, giving DF = 4Dn(ρ, σ), so that Dn(ρ, σ) ∼ U−3 consistent

with DF.

The optimal entanglement model, with groundstate α, fails to capture the

correct density even at U = 0. This is due to the definition of Haux, where the

local potential at site 1 does not have the same effect as turning off interactions

in the interacting Hamiltonian, where there is a local potential acting on both

spin-up and spin-down fermions. It is of no concern as the success of α lies beyond

the crossover. Beyond Uc the density of α matches σ, by construction. There

appears to be a discontinuity in both Dn(ρ, σ) and Dn(ρ, α). This is an artefact

of the optimal free state drastically changing behaviour at the crossover from one

free manifold to another, as depicted in Fig 4.2.
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We now move to Fig. 4.8, where both measures are of entanglement between

subsystems A and B. Of course, the entanglement entropy is built from the

entanglement spectrum so we expect the information in (a) and (b) to be com-

plementary, see section 2.3.3. In (a) the interaction distance is plotted for the

same parameter range as in Fig. 4.5 in the previous section, so that will not be dis-

cussed in any further detail here. In both (a) and (b) the auxiliary model agrees

exactly with the optimal free state beyond Uc, by its construction. We see that

its entropy reduces to S = ln 2 signalling the freezing of degrees of freedom and

a maximally mixed reduced density matrix. For U < Uc it does not capture the

entanglement features of ρ and, from (b), we see it has less entanglement. This

is because the effect of the potential at site 1 restricts the quantum fluctuations

in the upper chain.

On the other hand, the KS model shows agreement with the optimal free

state up to the crossover and even slightly beyond. Beyond this, the error in

approximating the correct entanglement is significant. This is due to the KS

model failing to capture the freezing of degrees of freedom, as in (b) the entropy

saturates at S = ln 4 signalling a maximally mixed reduced density matrix with

4 degrees of freedom. Nevertheless it captures the correct density due the density

being an average over all four states, 〈nj,s〉.

4.6 Summary

In this chapter we aimed to quantify the applicability of the KS model and DFT

through an interaction distance analysis. By defining an optimal entanglement

model, a parent Hamiltonian to the optimal free state, we can use it as a tool to

compare the success of the KS model against. The optimal free state has an en-

tanglement spectrum that is built from single-particle levels and is the closest free

spectrum to the interacting model, matching its low energy behaviour. Through

the bound (4.26), when measured in an appropriate basis, the groundstate of the

optimal entanglement model returns all observable quantities within the bound

of the interaction distance.

Expanding the trace distance Dtr(κ, σ) and density distance Dn(κ, σ) about

the non-interacting point for small deviations n + δn from the exact density n,
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4.6 Summary

we see that the KS model is not only accurate in local electron densities, but is

also a good approximation to the optimal entanglement model in the perturbative

regime. This is supported numerically, where the KS groundstate of the Hubbard

dimer is a good approximation beyond the crossover to the Mott phase. Well into

the strongly correlated regime the the KS model fails to reproduce the correct

entanglement features and is limited by a fixed kinetic operator that restricts its

ability to appropriately freeze degrees of freedom, due to the effect of interactions.

For the Hubbard dimer, we find that in the infinite interaction limit the in-

teraction distance approaches zero. Through the bound Dn(ρ, α) ≤ CDF, with

DF ≈ 0 means that the optimal entanglement model has the same density distri-

bution as the interacting model for large interactions, when measured appropri-

ately. KS methods are known to fail when probing beyond a Mott transition, so

the optimal entanglement model offers a constructive way to determine a ground-

state with the correct ground state density in the Mott-insulator phase.

In future work we aim to find a constructive method for determining the op-

timal entanglement model. We envisage a method similar to DFT, but where

one can tune the single-particle entanglement levels of the resulting groundstate

through an external potential or other free fermionic terms in the Hamiltonian.

Other works have aimed to combine DFT and strongly correlated systems, but

these still rely on finding an appropriate functional. For e.g. in [119] the au-

thors start with a Hamiltonian without a kinetic term and slowly turn it on to

capture strongly correlated effects, but the form of the energy functional relating

to the kinetic operator requires approximation. An open question is to test the

behaviour of an exact groundstate found using this method and determine its

applicability in a similar vain to the analysis of this chapter.

It would also be insightful to extend the Hubbard dimer analysis beyond the

two site chain. This includes determining the extent of applicability of the KS

model and also whether it is possible to define an optimal entanglement model

for any system size.
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Chapter 5

Conclusions and outlook

In Chapter 1, the work in this thesis was motivated through the application of

novel ideas to quantum technologies – a research area that is vast and ongoing.

There were two main aims focussed on in this work: to understand the topological

phase of models with potential applications to quantum computing and to find

new and efficient ways of modelling strongly correlated systems. These aims are

very broad and the results presented here are by no means exhaustive. However,

the contribution of these works opens up new questions for future study that will

be outlined in the remainder of this Chapter.

The extended Majorana chain

For the first of these aims we studied an extended Kitaev chain. This model

is a generalisation of the local Kitaev chain where the hopping and pairings

are extended over all sites with a variable power-law decaying exponent. The

exponent can be tuned between the local model and an infinite range model with

all sites coupled with equal amplitude. We definitively showed the existence of

edge Majorana modes in the extended chain, as is the case for the local chain.

By analysing a closed chain with periodic or antiperiodic boundary conditions,

it is not possible to correctly approach the infinite limit and a confirmation of

edge modes is limited to the study of an appropriate topological invariant. This

can be avoided by looking directly at an open chain to derive specific features of

the topological phase. We analysed the extreme case, infinite range couplings, by
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Figure 5.1: Pictorial representation of the Hamiltonian terms in a Majorana

representation of an extended Majorana chain with variable couplings parameters.

(top) All couplings for a chain that extends to next-nearest neighbour at most.

(bottom) A special case with J1 = ∆1 = µ = 0 and J2 = −|∆2| > 0, exposing two

Majoranas at each end. Thus, the Hamiltonian requires the full Z classification

of the BDI symmetry group.

using of a generating function method that was modified for a non-local model.

Using this method it was possible to expose exponentially localised edge modes

at zero energy on a semi-infinite chain and non-zero energy modes on a finite

chain, where a Z2 topological invariant is a sufficient classification of the model.

It would be interesting to see whether the generating function method can

be applied to other models, including chains requiring Z classification. A Z

classification implies that it is possible to have more than one Majorana at each

boundary. An example of this was given in [69], where hopping and pairing

couplings are indexed by their range, for e.g. nearest neighbour hopping would be

J1, next-nearest neighbour J2 and so on. Then, by switching off certain couplings

one can achieve multiple Majorana end modes. As an example, allow couplings

to extend over a maximum of two sites and switch off the nearest neighbour

couplings J1 = ∆1 = 0 with µ = 0. When J2 = −∆2 > 0 the resulting chain

has two zero energy Majoranas per end, see Fig. 5.1. This construction can be

manipulated to produce any desired number of Majoranas at each edge, providing

the couplings extend sufficiently along the chain and they are tuned appropriately.

114



At present, this construction is quite unphysical. However, application of an

analytical approach may expose novel features that deem the construction useful.

By probing the single-particle correlations we found that non-local couplings

change the known signature of a topological phase in its entanglement spectrum

and the localisation properties of the midgap single-particle entanglement modes.

Making a partition of a local chain has the effect of forming a virtual boundary

at the partition that is host to a virtual edge mode. When a single partition is

made, entanglement localises at the virtual edge and decays exponentially into

the subsystem forming a single zero energy midgap state. Extending to long-

range couplings and a single partition results in two midgap states with energies

split from zero. Thus, the entanglement Hamiltonian must contain long-range

terms to account for the non-zero energy. As the entangled mode shows where

entanglement is localising, it must be that the non-local coupling between all sites

allows for entanglement to extend more than exponentially close to the partition.

As an open question, it would be interesting to study the scaling of correlations in

the long-range model. For short range interactions it was proven by Hastings [79]

that the presence of a gap implies exponentially decaying correlations: does that

hold here? In [64], the authors found that extending only pairing terms resulted

in an algebraic decay of correlations. This may explain why the physical edge

couples with the virtual edge in our study.

Applicability of the Kohn-Sham model

For the second major aim of the thesis, we aimed to quantify the applicability of

the KS model through an interaction distance analysis. The KS model is a free

auxiliary with density functional theory at its core. It is successful in approximat-

ing local electron densities and other observables when an exchange-correlation

functional can be accurately defined. The interaction distance measures how far

a given quantum state is from the manifold of all free states, through a minimi-

sation over all free entanglement spectra. It is thus a useful tool for comparing

the KS model with all other possible free states. We found that in the weakly

interacting limit there exists a tight bound on how close the KS state is to the
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5. CONCLUSIONS AND OUTLOOK

optimal free state. Beyond this limit, the KS model provides accurate local den-

sities, but has unbound errors on correlations due to the fixed form of the kinetic

operator. To rectify this, we proposed an optimal entanglement model that has

the optimal free state as its ground state.

The optimal entanglement model can be considered both physically and con-

ceptually. In this work we aimed to approach from the ’physical’ side, by defining

a non-interacting model that reproduces the entanglement spectrum of the Hub-

bard dimer in the strongly correlated limit where the KS model fails. By its

construction, the auxiliary model defined produced the correct spectrum. How-

ever, this study was limited to a small system size where we could feed in the

desired solution. This leads to a (hard) open question: is it possible to pro-

duce the optimal free state without prior knowledge of the solution? This idea

is akin to DFT, where no prior knowledge of local density is needed to achieve

the desired result and a variational method is used to find the minimum. The

optimal entanglement model is certainly not unique as it is possible to make any

choice of Hilbert space to construct it from. It would be desirable to find a basis

that allows for a direct measurement of physical quantities without the need for

reordering entanglement levels with the same ordering as the interacting model.

From the conceptual side, the optimal entanglement model is a tool to compare

against. When attempting to approximate complex systems with free fermions

one may ask the question, is this a good approximation to the optimal entan-

glement model. If the answer is no, then the approximate method being used

is not optimally capturing the bipartite correlations, which may lead to errors

in its analysis. It would be interesting to quantify the applicability of other free

approximations, such as mean-field theory or other flavours of DFT, by building

a catalogue of bounds to compare each approximation against another.
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chos, Interaction distance in the extended XXZ model, Physical Review B

100, 235128 (2019). ii, 76

[4] Horst L. Stormer, Nobel Lecture: The fractional quantum Hall effect,

Reviews of Modern Physics 71, 875 (1999). xi, 9

[5] David Deutsch and Richard Jozsa, Rapid solution of problems by quan-

tum computation, Proceedings of the Royal Society of London. Series A:

Mathematical and Physical Sciences 439, 553 (1992). 1

[6] Peter W. Shor, Polynomial-time algorithms for prime factorization and

discrete logarithms on a quantum computer, SIAM review 41, 303 (1999).

1

[7] Lov K. Grover, A fast quantum mechanical algorithm for database search,

preprint quant-ph/9605043 (1996). 1

117



REFERENCES

[8] David P. DiVincenzo, The physical implementation of quantum computa-

tion, Fortschritte der Physik: Progress of Physics 48, 771 (2000). 2

[9] A. Yu Kitaev, Fault-tolerant quantum computation by anyons, Annals of

Physics 303, 2 (2003). 2, 15

[10] Chetan Nayak, Steven H. Simon, Ady Stern, Michael Freedman, and

Sankar Das Sarma, Non-Abelian anyons and topological quantum com-

putation, Reviews of Modern Physics 80, 1083 (2008). 2, 14

[11] Jiannis K. Pachos, Introduction to topological quantum computation, Cam-

bridge University Press (2012). 2

[12] A. Yu Kitaev, Unpaired Majorana fermions in quantum wires, Physics-

Uspekhi 44, 131 (2001). 2, 29, 34, 38, 42, 58, 63, 64

[13] Liang Jiang, Takuya Kitagawa, Jason Alicea, A. R. Akhmerov, David

Pekker, Gil Refael, J. Ignacio Cirac, Eugene Demler, Mikhail D. Lukin,

and Peter Zoller, Majorana fermions in equilibrium and in driven cold-

atom quantum wires, Physical Review Letters 106, 220402 (2011). 2

[14] Sebastian Diehl, Enrique Rico, Mikhail A. Baranov, and Peter Zoller,

Topology by dissipation in atomic quantum wires, Nature Physics 7, 971

(2011). 2
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