
Simulating the lattice thermal
conductivity of iron-bearing

bridgmanite with implications on
core-mantle boundary heat flux

Benjamin John Todd

Submitted in accordance with the requirements for the degree of
Doctor of Philosophy

The University of Leeds
School of Earth and Environment

December 2019



 



Declaration i

This candidate confirms that the work submitted is his own and that appropriate

credit has been given where reference has been made to the work of others.

This copy has been supplied on the understanding that it is copyright material

and that no quotation from the thesis may be published without proper

acknowledgement.

Copyright c©2019 The University of Leeds and Benjamin Todd

The right of Benjamin Todd to be identified as Author of this work has been

asserted by him in accordance with the Copyright, Designs and Patent Act 1988.





Acknowledgements

First and foremost, I must thank my team of supervisors for their guidance and

willingness to meet with me every week. I would not have completed this thesis

in absence of their generosity with time and patience. Stephen and Andrew kept

me on track when my ambition and motivation waned, and I doubt I would be

writing these acknowledgements were my mentors anyone else. I am very grateful

to Jon also, whose insight we called into meetings when the path (or paperwork)

was unclear. I hope the experience of putting this thesis together was as valuable

for you all as it was for me, and at the very least we can add a fancy green book

to our shelves!

I would like to thank my examiners Chris Davies and Lidunka Vočadlo for
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Abstract

In this thesis, I calculate the thermal conductivity of bridgmanite across a range

of lower mantle conditions, with particular focus on the core-mantle boundary

(CMB). Thermal conductivity of the lowermost mantle has direct implications on

the heat flux from the core. Heat flux, and its lateral variations, control dynamic

processes on both sides of the CMB, affecting the core geodynamo, the mantle

convective cycle, and plate tectonics at the surface.

Thermal conductivity is difficult to determine at the high pressures and

temperatures of the CMB using experimental methods, but computational

approaches are able to reproduce these physical conditions. The thermal

conductivity of bridgmanite has previously been modelled under limited

conditions, but here, I model the full range of CMB conditions including

temperatures from 1000–5000 K, and the effects of adding Fe2+ impurities (i.e.,

the full suite of MgSiO3 to FeSiO3-endmember composition).

I compare two different molecular dynamic approaches to determine thermal

conductivity: the direct method and the Green-Kubo method, previously not

compared in application to bridgmanite at CMB conditions. In atomic-scale

simulations, finite system sizes can misrepresent the properties of the bulk

material, leading to inaccurate estimates of thermal conductivity in the case of

this study. Finite-size effects in the Green-Kubo method are easily addressed, and

the Green-Kubo results can then be used to evaluate finite-size effects in direct

method simulations. I present a comprehensive analysis of finite-size effects at

1000 K and 4000 K, and 136 GPa, identifying where simulations from existing

literature may be incorrect. I also suggest minimum direct method system

sizes (2×2 at 4000 K, lengths of 8–24 unit cells) for computing the thermal

conductivity of bridgmanite at the CMB, which could be implemented in density

functional theory calculations. It is possible to use the direct method to calculate

thermal conductivity at lower mantle conditions, but care must be taken to avoid

finite-size effects. I conclude that accurate results are more easily obtained using

the Green-Kubo method.

Using the Green-Kubo method, I investigate the effects of iron impurities

across a wide range of temperatures (1000–5000 K) at a CMB pressure of

136 GPa. At a CMB pressure and temperature (4000 K), I calculate lattice

thermal conductivity to be 7.07 ± 0.06 Wm−1K−1 for bridgmanite, 5.30 ±
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0.05 Wm−1K−1 for the FeSiO3 endmember, and 5.46 ± 0.05 Wm−1K−1 for the

50% (Mg,Fe)SiO3 solid solution. I find that adding impurities (introducing

phonon-defect scattering) causes conductivity to decrease, but the rate of

the decrease decays with impurity concentration. The conductivity reduction

due to temperature (increased phonon-phonon scattering) is more significant

than the conductivity reduction due to impurities. I identify saturation in

thermal conductivity as phonon-phonon and defect scattering increase, where

the relative significance of these scattering mechanisms determines the reduction

in conductivity as a function of temperature and composition.

I combine the temperature and compositional-dependence of thermal

conductivity to create a new combined model. I use this model with a simple

representation of the large-scale structure of the lower mantle to investigate CMB

heat flux. The results from thermochemical LLSVP models show that in order

to reproduce LLSVP shear velocity anomaly and heat flux across the CMB,

the values of lateral thermal boundary layer temperature range and LLSVP Fe

content range from 100 K and 10% Fe, to 1000 K and 4% Fe. For simplified models

of large low shear velocity provinces (LLSVPs), where the seismic anomaly is

caused by lateral variation in mantle temperature, I find larger lateral variation in

CMB heat flux than for models where the equivalent seismic anomaly is caused by

lateral variations in the Fe2+ content. However, absolute values of the integrated

CMB heat flux and its variability depend on the temperature at the CMB as

well as the origin of LLSVPs, and will be sensitive to other phases and impurities

found in the lower mantle.

It is only by investigating the effect of finite system size on atomic-scale

modelling that it is possible to obtain reliable conductivity estimates. By

determining a comprehensive suite of thermal conductivity values across a range

of temperature and composition, I produce a new combined model and show how

this can be used to inform on dynamic processes both sides of the CMB.
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Chapter 1

Thermal conductivity and the

Earth’s interior

Heat flux across the core-mantle boundary is a crucial component of the Earth’s

energy budget and affects many aspects of the planet’s dynamic processes. On the

mantle side, the ratio of internal heating to heating from the core controls how

mantle dynamics are driven (e.g., Lay et al., 2008), the significance of plume

upwellings compared with slab downwellings (e.g., Garnero and McNamara,

2008), and the effect this has on plate tectonics. The amount of heat that leaves

the core through the mantle controls the vigour of core convection, and thus the

power available to the geodynamo and the behaviour of the Earth’s magnetic

field (e.g., Gubbins et al., 2007).

Core-mantle boundary heat flux is directly proportional to lower mantle

thermal conductivity, a parameter with complex dependence on temperature

and composition. Despite this, we know little about the thermal properties of

lower mantle materials. Experiments can measure the conductivity of material,

but not at the high pressure/temperature conditions found in the deep Earth.

Computer simulations allow materials and their conductivities to be modelled on

an atomic-scale, but appropriate simulation parameters must be determined in

1
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order to obtain realistic results.

In this thesis, I investigate the sensitivity of different methods of atomic-scale

simulation to: (1) determine the thermal conductivity of bridgmanite, the

dominant mineral in the lower mantle; (2) investigate the effect of iron content

on bridgmanite conductivity; and (3) explore the ways in which core-mantle

boundary heat flux is influenced by conductivity and large low shear velocity

province (LLSVP) structures. In Chapter 1, I provide the context for this

work by introducing the structure of the Earth and outlining the key heat

transfer processes that will be discussed throughout this thesis. I also review the

existing state of knowledge around the conductivity of bridgmanite, considering

computational and experimental studies.

1.1 Structure of the Earth

The Earth is comprised of several layers across its radius of 6371 km. Moving

from the surface toward the centre of the Earth, the properties of these layers

change dramatically. Through seismic studies, we know that the Earth has a

solid inner core, a liquid outer core, and a solid mantle (e.g., Fowler , 1990). The

crust is enriched in silicon, whilst the mantle is Si-depleted. Within the mantle,

it is expected that there is both 4-fold coordinated Si in the upper mantle and

this transitions to a high-pressure, high density 6-fold coordinated Si in the lower

mantle (Knittle and Jeanloz , 1989; Hu et al., 2017).

In this thesis, I focus on the lower mantle, particularly the region close to

the core (the core-mantle boundary, CMB). Events in the lower mantle influence

(and are influenced by) the upper mantle and lithosphere above, and the core

below (Fig. 1.1). Heat transport throughout the Earth is influenced by thermal

conductivity, which in turn affects the dynamics of the system, the surface

expression of this being plate tectonics. Heat flow also affects the core geodynamo,
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which produces the Earth’s magnetic field.

Figure 1.1: Schematic equatorial Earth section, reproduced with permission from
Trønnes (2009). Not drawn to scale, and some thicknesses are exaggerated.

1.1.1 Lithosphere and mantle transition zone

The crust and upper mantle lie above the transition zone (down to 660 km depth),

the bottom of which marks the top of the lower mantle. Although the chemical

composition of these regions is similar to that of the lower mantle, the physical

conditions and mineral phases are different. Eruptive and subductive behaviour
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associated with plate tectonics is perhaps the most obvious consequence of mantle

dynamics at the Earth’s surface, and generally to humanity.

The “rocky” portion of the Earth (from the surface down to CMB) is largely

composed of magnesium silicates and oxides, with a significant amount of iron,

aluminium and calcium.

The two main chemical changes from the Earth’s surface to the top of the lower

mantle are pyroxene to garnet (40% composition), and olivine through wadsleyite

to ringwoodite (60%, see Fig. 1.2 Trønnes , 2009). The olivine to wadsleyite

phase change occurs at 410 km, marking the top of the mantle transition zone.

Wadsleyite transitions to ringwoodite through this zone until 660 km, at which

point it breaks down into lower mantle bridgmanite and ferropericlase.

Figure 1.2: Approximate mineral proportions in peridotite (pyrolite)
compositions as a function of mantle depth, where peridotite compositions contain
∼70% bridgmanite, ∼20% periclase, and ∼10% Ca-perovskite. Modified with
permission from Trønnes (2009).

1.1.2 Lower mantle

The lower mantle encompasses the region below the mantle transition zone

(660 km deep, ∼1900 K, ∼25 GPa) to the CMB (2900 km deep, ∼4000 K,



§1.1 Structure of the Earth 5

136 GPa). The mineral proportion of this region is thought to be ∼70%

bridgmanite (MgSiO3, perovskite structured magnesium silicate), ∼20% periclase

(MgO, magnesium oxide), and ∼10% calcium silicate (CaSiO3) perovskite

(Lee et al., 2004; Trønnes , 2009, see Fig. 1.2). Bridgmanite undergoes a

pressure-driven phase transition in the lowermost mantle to post-perovskite

(Oganov and Ono, 2004).

The bridgmanite crystal structure is MgSiO3 perovskite (Fig. 1.3). The

crystal lattice can be thought of a regular, repeating pattern of an atomic

arrangement with translational symmetry. Bridgmanite and periclase are

insulators with the potential for the inclusion of iron impurities (and aluminium

in the case of bridgmanite). Ferrous (2+) and ferric (3+) iron enter the

bridgmanite structure by replacing magnesium atoms (Fig. 1.3), which have

varying electron spin states depending on pressure. The concentration of iron

is not partitioned evenly between silicates and oxides, with periclase taking a

larger proportion than bridgmanite (Muir and Brodholt , 2016). The nature of

partitioning changes with composition, where aluminium can enrich Fe3+ content

in bridgmanite (McCammon, 1997), and post-perovskite (the high-pressure phase

of bridgmanite; Fig. 1.3) may behave differently to bridgmanite.

Moving from the average 1D structure of the earth, to considering the 3D

structure, there are two large-scale features on the CMB. Two large low shear

velocity provinces (LLSVPs, see Garnero and McNamara, 2008) can be found

roughly underneath Africa and the Pacific. They are identified seismically

by a ∼3% reduction in shear wave velocity. An associated feature is the

ultra-low velocity zones (ULVZs, see Rost et al., 2005), identified around the

edges of LLSVPs. These can be observed seismically by a 25% reduction

in shear wave velocity, but the reason they exist is unclear. It is suggested

they are “thermo-chemical features”, hotter and denser than the regular lower

mantle (Garnero and McNamara, 2008). Increasing temperature and density
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Figure 1.3: Crystal structure of (a) perovskite (bridgmanite) and (b)
post-perovskite, where yellow shows magnesium atoms, red shows oxygen atoms,
and the blue shows silicon atoms in the centre of the silicon-oxygen tetrahedra.
Reproduced with permission from Cai et al. (2016).

tend to reduce seismic velocity, with increased density to offset the additional

buoyancy from raised temperature. “Thermo” intuitively refers to the change in

temperatures, while “chemical” changes are required to explain density increase.

As a result, thermal conductivity will vary within these regions. Adding

impurities such as iron would be a possible cause for density increase, such that

the conductivity change should be quantified.

It is widely believed that bridgmanite is stable in the lower mantle until

the bottom few 100 km, where it undergoes a pressure-driven phase change

to post-perovskite (Murakami et al., 2004; Oganov and Ono, 2004). In places,

close proximity to the CMB might transform post-perovskite back to perovskite

structure due to the increased temperature. This “double crossing” of the

bridgmanite stability range can be imaged seismically, where lens-like bands of

post-perovskite are shown to pinch out laterally (Lay et al., 2006).

Imaging the post-perovskite double crossing and its lateral pinching from
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seismic velocity anomalies can be used to make inferences on the mantle

temperature structure (Fig. 1.4). At a given depth/pressure, crossing the

post-perovskite to bridgmanite transition means an increase in temperature. The

centre of a cool downwelling may have the seismic signature of post-perovskite,

transitioning to that of bridgmanite as it warms next to the surrounding mantle.

The pinching-out of post-perovskite lenses towards the edges of LLSVPs shows

a temperature increase, which could be associated with the thermochemical

composition of an ULVZ and/or the buoyancy of a mantle plume root.

Figure 1.4: Cartoon showing a cross section of the lower mantle with LLSVP
region, where the dashed line marks the bridgmanite/post-perovskite phase
transition. Colour refers to relative temperature, where red is warmest and blue
is coolest. Reproduced with permission from Lay et al. (2006).

1.1.3 Inner and outer core

The region below the CMB (starting at 2900 km depth) is the core, comprised

of its outer and inner sections. The liquid outer core extends to 5100 km depth,

where the pressure-driven transition to solid inner core occurs. The composition

of the core is dominated by iron, with various light elements suggested as possible

alloying components (e.g., Allègre et al., 1995; Alfè et al., 2007).
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Relative to the lower mantle, the outer core is a vigorously convecting system,

and the core side of the CMB can be considered to be an isothermal boundary.

Heat transfer across the CMB depends on mantle conductivity and temperature.

A second issue is possible chemical transfer between core and mantle, where iron

from the core would be exchanged with various light mantle elements. Fe-content

may increase in the lower mantle with CMB proximity, which in turn could affect

conductivity and the temperature profile for CMB heat flux (Knittle et al., 1991).

1.2 Heat transport in the Earth

Within the lower mantle, thermal conductivity influences the rate at which heat

is transferred from core cooling towards the surface, and more importantly the

mechanisms by which it does so (Lay et al., 2008). High thermal conductivity

systems will preferentially transport heat by conduction. Systems will convect

where there is too much heat to be transported by conduction alone (i.e., low

conductivity conditions).

Observations of plume structures and spatial correlations of high P- and

S-wave velocities (see Garnero and McNamara, 2008) suggest convective

behaviour in the lower mantle. Thermal conductivity is poorly constrained in this

region and obtaining a comprehensive depth profile of the conductivity is not a

trivial task. Additional difficulties are pressure, temperature, and compositional

dependences, including isotopic variation (Tang and Dong , 2010; Dalton et al.,

2013; Tang et al., 2014) and inclusion of impurities (Manthilake et al., 2011;

Ammann et al., 2014; Ohta et al., 2014). Thermal conductivity in the deep

Earth influences dynamic processes such as mantle convection and heat loss from

the core (Lay et al., 2008). In this section I discuss the prominent thermal

conductivity-dependent processes.
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1.2.1 Mantle dynamics

Convection in the mantle is dependent on thermal conductivity, and will occur

if heat cannot be sufficiently transported by conductive processes. The value of

the Rayleigh number (Ra) describes the behaviour of heat flow in a fluid, relative

to a critical value for the system (RaC). The Rayleigh number for the mantle

is estimated to be at least 3 × 106 (bottom heated, Davies , 2001). Schubert

et al. (2001) give a range of realistic values for the mantle Rayleigh number of

1− 3× 107, although indicate that the Rayleigh number could be as high as 109.

These estimates are much higher than the critical value for the mantle, which

is expected to be on the order of 1000 (Davies , 2001). Schubert et al. (2001)

give critical values in a range of 384–1707, depending on the specific boundary

conditions and mode of heating. When the Rayleigh number is lower than the

critical value, conduction is the dominant process. When the Rayleigh number

is greater, the ratio between it and the critical value describes the vigour and

style of convection. The Rayleigh number is inversely proportional to thermal

conductivity. If thermal conductivity is high, Ra decreases and thus so does

Ra/RaC .

The Rayleigh number related to bottom heating (RaT ) of the mantle from the

core can be expressed as

RaT =
gρ20β∆TSAD

3CP
ηκ

, (1.1)

where g is the acceleration due to gravity, ρ0 is the reference density, β is the

thermal expansion coefficient, ∆TSA is the superadiabatic temperature across the

mantle, D is the depth in the mantle, CP is the specific heat capacity at constant

pressure, η is dynamic viscosity, and finally κ is thermal conductivity.

A Rayleigh number can also be calculated considering internal heating (RaH)
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of the mantle

RaH =
gρ0

2βHD5

ηακ
, (1.2)

where H is radiogenic heat production per unit mass, and α is the thermal

diffusivity. In the mantle, there is a combination of bottom heating (i.e., heat

loss from the core) and internal heating (i.e., radiogenic heating). By assuming

the existence of a thermal boundary layer, I explicitly consider bottom heating of

the mantle later when considering a model of heat flux in the Earth (Chapter 5).

The Rayleigh number is used as a numerical expression of the conditions in

the lower mantle, but we also know about the realistic changes in this region

of the Earth. In the lower mantle thermal conductivity changes with pressure,

temperature, and composition, influencing features on a large scale. For example,

Naliboff and Kellogg (2006) used numerical models of mantle convection to show

size and stability of convective plumes are sensitive to thermal conductivity above

the CMB. They showed that increasing the thermal conductivity at depths below

2000 km increased the size and stability of thermal upwellings, whereas decreasing

the conductivity in this region has a comparatively small effect on such upwellings.

Dubuffet and Yuen (2000) investigated the effects of temperature

(κlat ∝ T−0.3, κrad ∝ T ) and pressure-dependent (κlat ∝ P ) thermal

conductivity (scaling relations originally from Hofmeister , 1999) on mantle

convection, finding that this reasonable depth-dependent thermal conductivity

encouraged heat transport via convective plumes. Compared to a constant

conductivity model, vertical heat transfer was concentrated to these “pipe-like”

structures, despite the horizontally-averaged heat flow for both systems being

around the same value. Variable conductivity, even in one dimension, increased

the spatial and temporal stability of convection. Plumes were thicker, had heads

of larger surface area, and were hotter, compared to the uniform conductivity

mantle model.
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Tosi et al. (2013) perform two-dimensional numerical simulations of

mantle convection with varying composition, thermal expansivity, and thermal

conductivity. The reasonable depth (κ ∝ z) and temperature-dependent

(κ ∝ T−d, where d = 0.3 − 0.6) conductivity implemented in models leads

to a higher bulk mantle temperature, which then inhibits plume buoyancy and

their effect on mantle dynamics.

When variable thermal conductivity and expansion are considered together,

slabs can be observed to stagnate and move laterally at the transition zone.

Changes in mantle behaviour affect the presence of post-perovskite above the

CMB, which itself affects the mantle by having a different thermal conductivity

to bridgmanite. These outcomes show thermal conductivity is an important

property for mantle dynamics simulations to consider, in order to produce

Earth-like behaviour.

1.2.2 Heat flow

The most accessible estimate of the Earth’s energy is the total heat flow at the

surface, with total heat flow estimated at 46 ± 3 TW by Lay et al. (2008), and

more recently at 47± 2 TW by Davies et al. (2015). Contributions to the energy

budget include: radiogenic heating (20 ± 3 TW); mantle cooling (8–28 TW);

and the conduction of heat across the CMB from core cooling (Lay et al., 2008).

Conductive heat flow is constrained by thermal conductivity, a model of which is

not well constrained for realistic mantle compositions.

Better constraints on thermal conductivity are required to estimate CMB

heat flow. This in turn would tell us more about the temperatures either side

of the CMB, as well as the presence and nature of the lower mantle thermal

boundary layer (TBL). Employing the most commonly used value for lower

mantle conductivity, 10 Wm−1K−1, heat flow across the CMB is expected to be
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5–13 TW (Lay et al., 2008). Both higher and lower values have been proposed,

as discussed in Section 1.6. The wide range of values for CMB heat flux is due

to the significant uncertainty in the temperature gradient above the CMB. Even

if thermal conductivity was known for all conditions, uncertainty in heat flow

values would still arise from constraining the temperature gradient at the CMB.

1.2.3 Geomagnetism

It is possible to use shear wave velocity as a proxy for CMB heat flow

(e.g., Bloxham, 2000; Olson and Christensen, 2002; Christensen and Olson,

2003). Considering this, Gubbins et al. (2007) showed that variations in mantle

temperature gradients above the CMB can influence Earth’s geodynamo. The

present day magnetic flux patches align with regions of fast shear wave velocity on

the CMB. Specifically these patches are found in the east of Canada and Russia,

and southwest of South America and Australia. Grouping these patches by

lines of longitude, they fall inbetween the African and Pacific LLSVPs. Ignoring

compositional effects in the mantle, seismically-fast regions can be assumed to

be cold. Colder regions facilitate larger heat flows through steeper temperature

gradients from the isothermal CMB (see Equation 1.3).

Gubbins and Bloxham (1985) and Bloxham and Gubbins (1985) were some

of the first studies to present the idea that regions of downwelling in the core

correspond to high shear wave velocities in the lower mantle (i.e., higher than

LLSVP regions, see also Gubbins et al., 2003). The mantle surrounding LLSVPs

therefore also has higher heat flux than LLSVP regions. Core material flows

towards regions of downwelling, which concentrates the magnetic field under

regions of high CMB heat flux (i.e., non-LLSVP regions). Alfvén’s theorem

states how magnetic flux is imagined to be frozen into fluid in the absence of

diffusion. Convergence of downwelling core fluid means a similar convergence
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and concentration of magnetic flux under regions of high CMB flux.

Gubbins et al. (2007) showed that core dynamics models with heterogeneous

(i.e., laterally varying) heat flux conditions at the CMB allow magnetic flux lobe

structures to form. These lobe structures can be observed at the surface, and

they have been relatively stationary throughout recorded history. This infers

that lateral variations in heat flux on the CMB are also relatively stationary, and

thus long-lived. Recorded history in this context unfortunately refers to around

400 years of human observations (Jackson et al., 2000). This timescale is about

the same as that of core convection overturn, and inferences beyond this become

ambiguous (e.g., Korte et al., 2009). While assumptions about the longevity of

magnetic flux patches and high heat flow regions seem reasonable, certainty of

coupling between the two requires a much longer sample period (i.e., on the order

of mantle convection, see Gubbins , 2003).

Gubbins et al. (2007) recreated the geomagnetic observation of the

aforementioned lobes using a core geodynamo simulation, where the upper

boundary (CMB) condition was a laterally varying heat flux. Knowing the

thermal conductivity, especially as it changes with temperature, would better

constrain mantle boundary conditions used in this and similar core dynamics

models (Ammann et al., 2014).

1.3 Defining thermal conductivity

The transfer of thermal energy can occur between an object and its surroundings,

two bodies brought into contact, or along a temperature gradient within an object.

The possible mechanisms by which this can occur are conduction, convection, and

radiation. Conduction is the transfer of heat by atomic vibrations and electron

transport in metallic substances (such as in the outer core, e.g., Pozzo et al., 2012).

Convection is the transfer of thermal energy via a moving medium, generally in
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liquids and gases (but expected in the mantle). Density differences are the driving

force for convection, due to the volume change associated with thermal expansion.

Radiation refers to the transport of heat by electromagnetic radiation in the form

of photons.

Thermal conductivity is a material property, indicative of the ease with which

heat is transferred through conduction. Fourier’s law relates heat flux (q) through

a material to its thermal conductivity (κ), and the temperature gradient (∇T )

across the body

q = −κ∇T . (1.3)

In this thesis, I focus on lattice conduction through the lower mantle, and

secondly the convective behaviour therein. The radiative component of thermal

conductivity in the mantle is thought to be small (0.54 Wm−1K−1, Goncharov

et al., 2008). In the event that radiation contributes significantly to the effective

thermal conductivity (10 Wm−1K−1, Keppler et al., 2008), it can simply be added

to the lattice component. Although I do not determine the radiative component

of thermal conductivity, I discuss results from previous studies that include the

radiative component (Section 1.6).

1.3.1 Technical applications considering thermal

conductivity

Knowledge of the thermal conductivity of solids is key for a wide range of

technological applications, in addition to developing our understanding of natural

systems. I suggest that the methods developed in thesis could also be applied

to nano-scale engineering problems and material science. While everyday

technological applications may not approach CMB conditions of 136 GPa and

4000 K, the atomic-scale behaviour and the effect of impurities remain key

questions in thermal conductivity studies.
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For known substances thermal conductivity spans about six orders of

magnitude, from silica aerogels with 0.005 Wm−1K−1 (Lee et al., 1995) to

graphene with 5000 Wm−1K−1 (Balandin et al., 2008). Conductivity determines

whether a material is a conductor or insulator of heat, both of which have

many uses, technological or otherwise. Oven gloves introduce an insulating, low

conductivity layer between our hands and a hot object which would otherwise

cause injury. Vacuum flasks are designed to have a low conductivity construction

to keep liquids hot, houses have wall insulation to keep the heat in. While a

saucepan may have an insulating rubber handle, it may also have a conductive

copper base, allowing it to heat up quickly with an even temperature distribution.

Heat exchangers are found in many systems, where one substance is used

to cool or heat another. While the heat transfer is affected by the thermal

conductivity of the media in question, the material that separates the two must

have high conductivity for the system to be efficient. Domestic examples include

central heating system, fridges, and cars. Industrial examples include solar water

heating, and power plants, from geothermal to nuclear.

Thermoelectric materials convert waste heat into electricity, thereby

improving the efficiency of domestic, automotive, and industrial processes. They

are proposed to increase the sustainability of our current electricity base, but

suitable materials must have a low thermal conductivity (Snyder and Toberer ,

2008).

1.4 Mechanisms of thermal conductivity

The transport of heat, rather than the transport of hot material, can be split

into three mechanisms which contribute to the overall thermal conductivity of a

material. These transport mechanisms can be explained on an atomic level, and

in the case of this study within a crystal lattice.
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1.4.1 Conductivity by electron motion

Electrical thermal conductivity refers to the transport of heat via free electrons

in an atomic structure. Close parallels exist between thermal and electrical

conduction. The conduction of thermal energy in metals is predominantly due

to the motion and interaction of free electrons. Heat is transferred as electrons

move and collide in the lattice. There is no net transport of electrons in order

to maintain charge neutrality within the lattice. Lower mantle minerals are

insulators, and thus electrical thermal conductivity is of little significance unless

very high concentrations of iron minerals exist.

1.4.2 Conductivity by photon emission

Radiative thermal conductivity is the transport of heat via photons, or packets

of electromagnetic energy. Any body with a non-absolute zero temperature

emits thermal radiation as light, or photons. Radiative thermal conductivity

is determined by a material’s optical absorptivity, which describes how heat is

transferred by electromagnetic radiation. On the atomic scale, electrons in an

excited state emit photons when the electron drops back to its ground state.

Energy is transferred from one particle to another when this light is scattered

or absorbed. The transfer of heat by radiation is limited similarly to the

transfer of visible light, with difficulty passing through opaque media. Unlike

lattice conductivity at mantle conditions, radiative conductivity increases with

temperature (Hofmeister , 1999). This relation has been used to assume thermal

conductivity could be constant through the lower mantle if radiative processes are

significant, where the lattice component decreases at the same rate the radiative

component increases (Tang et al., 2014).
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1.4.3 Conductivity by lattice vibrations: phonons

Phonons are quantised packets of vibrational energy (Kittel , 2005). They are

quasiparticles used to describe atomic motions which contribute to lattice thermal

conductivity (often referred to as just “conductivity” elsewhere in this thesis)

and hence are studied in an area of solid state physics called “lattice dynamics”

(Dove, 1993). Considering a crystalline arrangement of atoms, there is long-range

structure and well-defined bonds between atoms. Much like standing waves on

a string, atoms can vibrate in-phase. Phonons can be thought of as patterns of

vibration and can be differentiated by wavelength and the relative motions of

atoms.

There are two types of phonon, acoustic and optic (Kittel , 2005, Fig. 1.5).

Both types can be longitudinal or transverse, referring to the motion of atoms

relative to the direction of energy propagation. Longitudinal means atoms

move only in the direction of motion with no perpendicular displacement.

Transverse refers to perpendicular displacement of atoms away from the

direction of propagation, with no lateral motion along it. The former is like

extention/compression of a spring, the latter a standing wave on a string.

Acoustic phonons are propagated by atoms displaced in-phase from their

equilibrium positions, generating forces on their neighbours and thus subsequent

displacement. Optic phonons are propagated by out of phase motion of adjacent

positive and negatively-charged ions (conserving momentum, the lighter atom

moves further). This motion is generated from the electric fields of external

electromagnetic radiation, and is typically of a higher energy than its acoustic

counterpart.

Similar to photons, phonons also have wave particle duality (i.e., properties

of energy and matter). This is useful for explaining how phonon waveforms (as in

Fig. 1.5) interact with structural discontinuities and in phonon-phonon collisions,
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Figure 1.5: Schematic sketches of transverse (a) optic and (b) acoustic phonons
in a diatomic linear lattice, where plus and minus symbols refer to ion polarity.
Adapted with permission from Kittel (2005).

as particles they are able to scatter off of structure and one another (Kittel , 2005).

A phonon particle is a quantised packet of vibrational energy moving from hot

to cold regions, but there is no net motion of atoms within the lattice.

The mean free path (MFP) of a phonon is the average distance it travels

before scattering (Kittel , 2005). The longer the MFP, the more efficient the

heat transport and thus higher the thermal conductivity. There are several

different phonon scattering mechanisms, collisions with (1) other phonons in the

lattice, (2) boundaries in the material, and (3) defects in atomic structure. In a

phonon-phonon scattering event, the wave vector is conserved over the collision.

This can sometimes lead to scenarios where two wave vectors pointing in a similar

direction create a resultant wave vector in the opposite direction (due to the

periodic nature of crystalline materials).
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The MFP can be determined via Matthiessen’s rule (see Klemens , 1959),

which states the total thermal resistivity (inverse of conductivity, the lattice

component in this case) is equal to the sum of individual resistivities,

1

κlat
=

1

κph
+

1

κb
+

1

κd
, (1.4)

where κph, κb, and κd represent phonon, boundary, and defect scattering

effects, respectively. The MFP is proportional to conductivity, thus inversely

proportional to resistivity. The shorter the phonon path of a scattering

mechanism, the more it influences and contributes to, or detracts from, the

MFP. This is apparent in Equation 1.4, where the inverse of the smallest number

contributes the most to the sum.

Boundary scattering effects are negligible in this study, as the spacing of

boundaries in this context depends on the grain size. Crystal grains are

significantly larger than any MFPs in the lower mantle, so phonons scatter off

each other many times before ever approaching a boundary (i.e., 1/κph > 1/κb).

The effect of defect scattering will be discussed extensively in Chapter 4.

1.5 Factors influencing thermal conductivity

Lattice thermal conductivity can be expressed (e.g., Schelling et al., 2002;

Stackhouse et al., 2010) as a simplification of kinetic theory in the form

κlat =
1

3
Cvvl , (1.5)

where Cv is the volumetric heat capacity, v is the average phonon velocity, and l

is the phonon mean free path.

Previous studies have shown that there are many factors that influence lattice
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thermal conductivity (κlat), and these are explored further in Section 1.6. These

factors are further complicated by the range of numerical and experimental

methods that are used to study thermal conductivity. Despite these complexities,

there are three key factors that influence conductivity: temperature, pressure, and

composition. In this study, I directly address temperature and composition.

1.5.1 Temperature-dependence

Conductivity increases with the volumetric heat capacity, until the heat capacity

saturates at a material’s Debye temperature (Fig. 1.6). Lattice conductivity

is proportional to the MFP (Equation 1.5), so also increases with temperature

up to the Debye limit. Assuming heat capacity (Cv) and phonon velocity (v)

remain constant above the Debye temperature, conductivity is dependent on the

phonon mean free path (l). The MFP decreases above the Debye temperature,

corresponding to a decrease in conductivity.

The effect of phonon-phonon scattering increases with temperature past the

Debye temperature. Conductivity change is inversely proportional to temperature

at this point, decreasing, and eventually saturating (Fig. 1.7), to a minimum

value as the MFP reaches its minimum (on the order of atomic spacing). While

I observe this saturation effect, there is debate within the community whether

phonons actually reach a minimum MFP and therefore a minimum conductivity.

Other studies (e.g., Ghaderi et al., 2017; Zhang et al., 2017) suggest that rather

than reaching a minimum MFP and therefore saturating, the conductivity instead

continues decreasing with increasing temperature (i.e., past those expected in the

mantle), but at a much slower rate of decrease than at lower temperatures.
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Figure 1.6: Heat capacity as a function of temperature, where heat capacity
uses functions from Su et al. (2018). The Debye temperature is indicated by the
dashed line (Robie et al., 1982).

1.5.2 Pressure-dependence

The volume of material decreases with increasing pressure and thus with

increasing depth into the Earth. Higher pressure increases the harmonicity in

atomic oscillations, thus causing the phonon velocity to increase (Kittel , 2005).

As phonon-phonon scattering is the main scattering mechanism in bridgmanite

(Okuda et al., 2017), increased phonon velocity leads to a higher conductivity (as

in Equation 1.5).

The temperature-dependence of thermal conductivity may itself be

pressure-dependent. While the magnitude of conductivity and thus its rate

of change will increase with pressure, the general behaviour is expected to be

the same at different pressures, assuming thermal conductivity saturates with
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Figure 1.7: Thermal conductivity as a function of temperature, using functions
from Xu et al. (2004) and Su et al. (2018).

temperature. Pressure-dependence is not considered in this study, and would

require a full analysis of how finite-size effects vary with pressure in order to be

included in thermal conductivity calculations.

1.5.3 Composition

Considering an end member of a solid solution, like MgSiO3 bridgmanite, the

main source of scattering is phonon-phonon (phonon-boundary scattering exists,

but is of small significance). Addition of impurities, such as in (Mg,Fe)SiO3

perovskite, introduces phonon-impurity scattering and can reduce conductivity

(Equation 1.5). The effect of impurities is less significant at high temperatures,

when conductivity is already reduced by phonon-phonon sacttering. When the

phonon-impurity path is much shorter than those of other scattering sources

however, impurities can greatly reduce conductivity (via Matthiessen rule, above).
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Because of these relations, impurities will affect conductivity more higher in the

mantle, with the effect reducing towards the CMB. The effect of impurities on

thermal conductivity will be discussed extensively in Chapter 4.

1.6 Existing estimates of the thermal

conductivity of the lower mantle

A range of experimental and atomic-scale simulation methods are available to

determine the lattice thermal conductivity of materials. Many studies assume

lowermost mantle thermal conductivity to be 10 Wm−1K−1 (e.g., Lay et al., 2008),

but as discussed later, uncertainty in the extrapolation of experimental results

made at low pressures and temperatures gives a range of 4–16 Wm−1K−1 (Brown,

1986; Osako and Ito, 1991; Hofmeister , 1999; Goncharov et al., 2009; Manthilake

et al., 2011). Computational methods are invaluable for calculating thermal

conductivity at conditions which are inaccessible to experiments, i.e., the extreme

conditions found in the Earth’s lower mantle.

The significance of radiative thermal conductivity, the transport of heat by

photonic processes, is an ongoing discussion in terms of the lower mantle (see

Section 1.6.3). The components can simply be added to determine the total

conductivity (ignoring electrical conductivity), a correction that could be applied

to my results at a later date.

Next, I review experimental and computational determinations of the thermal

conductivity of Earth materials at relevant conditions (the Green-Kubo and direct

methods are elaborated on in Chapter 2). I focus on determining the conductivity

of bridgmanite, as this makes up a more significant proportion of the lower mantle

(∼70%) compared to ferropericlase (∼20%) or Ca-perovskite (∼10%).
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1.6.1 Experimental estimates of thermal conductivity

There have been several experimental studies to measure the lattice thermal

conductivity of bridgmanite at CMB conditions. Osako and Ito (1991)

obtained the lattice thermal conductivity of MgSiO3 perovskite from observing

temperature variations across a periodically heated sample. They investigated a

temperature range of 160–340 K at ambient pressure. At 300 K, a conductivity

of 5.1 Wm−1K−1 was obtained. This value is reported to be consistent with

chemical and structural analogues, MgSiO3 enstatite (5.0 Wm−1K−1, Horai ,

1971) and CaTiO3 perovskite (4 Wm−1K−1, Touloukian et al., 1970). Osako and

Ito (1991) extrapolated the value to lower mantle conditions via a semi-empirical

relation, neglecting the radiative component of thermal conductivity. Based on

their extrapolation, they predicted a value of 3.0 Wm−1K−1 just beneath the

mantle transition zone at 1900 K, and 12.0 Wm−1K−1 at the top of the D′′ layer

at 2500 K, a four-fold increase.

Manthilake et al. (2011) measured the thermal conductivity of MgSiO3

perovskite at 26 GPa and 473–1073 K, and periclase at 8 and 14 GPa between

373–1273 K. They showed that adding 3% of FeSiO3 to MgSiO3 decreased

measured thermal diffusivity from 2.90 ± 0.09 mm2/s to 1.29 ± 0.28 mm2/s

(at 26 GPa and 573 K). In order to estimate values of thermal conductivity

at the top and bottom of D′′ for a lower mantle compositional model of

4 perovskite : 1 periclase, the authors extrapolated their measurements to high

temperature and pressure. For an iron-free mantle, thermal conductivities of

18.9 ± 1.6 Wm−1K−1 and 15.4 ± 1.4 Wm−1K−1 were estimated for the top of

D′′ and CMB respectively. Similarly, for a mantle composition with Fe, thermal

conductivities of 9.1 ± 1.2 Wm−1K−1 and 8.4 ± 1.2 Wm−1K−1 were calculated

for the same regions (lower than the 12.0 Wm−1K−1 estimated by Osako and

Ito (1991) for a Fe-free mantle). This highlights the importance of impurities in
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controlling thermal conductivity in the lower mantle. The authors mention the

inhibiting factor that iron is likely to have on the radiative component of heat

transport, and perform their experiments in a manner to reduce the radiative

effect.

Ohta et al. (2012) measured the lattice thermal diffusivity of MgSiO3

perovskite and post-perovskite at room temperature and temperatures up to

436 K, and pressures up to 144 GPa (using a diamond-anvil cell and light

heating thermoreflectance). Using the temperature effect of thermal conductivity

proposed by Manthilake et al. (2011), they extrapolated their results to give

conductivity at higher P-T conditions. These results suggest a majority

perovskite lowermost mantle would have conductivity of ∼11 Wm−1K−1, and

that parts of the lowermost mantle where post-perovskite is stable will have

a conductivity approximately 60% higher. The authors suggest that these

differences in conductivity between phases will not have a large effect on CMB

heat flux, assuming the double-crossing perovskite phase model. The lattice

conductivity of MgSiO3 perovskite is shown to increase with pressure and decrease

with temperature as expected. The inclusion of impurities is expected to decrease

lattice thermal conductivity.

Hsieh et al. (2017) measured the lattice thermal diffusivity of Fe-bearing

bridgmanite up to 120 GPa with time-domain thermoreflectance in a

diamond-anvil cell. They find conductivity to increase with pressure but drop

around 45 GPa due to a pressure-induced lattice distortion on the iron sites. They

extrapolate their experimental conditions along a mantle geotherm to show that

iron causes a significant conductivity decrease. The conductivity of bridgmanite

(the Mg endmember) at 120 GPa is 9 Wm−1K−1, and Fe-bearing bridgmanite with

9% iron has half the conductivity. The study concludes that while variations in

CMB heat flux are dominated by lateral temperature variations, the conductivity

and variation thereof is also a controlling factor on heat flux.
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The main benefit of experiments is that they allow direct measurement of

thermal conductivity, however from reviewing the literature, I suggest that the

main problem with experimental results is the replication of CMB conditions,

or the assumptions in extrapolation of low pressure/temperature results.

Particularly, it is not currently possible to simultaneously replicate the CMB

conditions and measure thermal conductivity. Impurities are observed to have a

significant effect, but different compositions require individual experimental runs

and synthesis of new samples. For considering a wide range of temperatures and

compositions, computational approaches will allow me to be flexible in choosing

conditions of interest.

1.6.2 Numerical estimates of thermal conductivity

Haigis et al. (2012) used the Green-Kubo method (Section 2.8) with advanced

ionic interaction potential (parameterised from density functional theory) to

calculate the lattice thermal conductivity of bridgmanite, post-perovskite,

and periclase at lower mantle conditions (ignoring effects of radiative heat

transport). Assuming an isotopically corrected iron-free composition with four

parts bridgmanite to one part periclase, they constructed a model of density

and temperature-dependent thermal conductivity along a geotherm. This model

suggests great variation over the lower mantle, with a value of 9.5 Wm−1K−1

at the top and 20.5 Wm−1K−1 above D′′. Based on the results of Manthilake

et al. (2011), Haigis et al. (2012) suggest the inclusion of iron will lower thermal

conductivity by up to half, bringing their result in line with the accepted value

of 10 Wm−1K−1(Lay et al., 2006).

Dekura et al. (2013) used ab initio anharmonic lattice dynamics with

density functional theory (DFT) to calculate the lattice thermal conductivity

of bridgmanite. At temperature of 300 K, they found conductivity increases
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from 9.8 Wm−1K−1 at 23.5 GPa to 43.6 Wm−1K−1 at 136 GPa. At 100 GPa

conductivity decreases from 28.1 Wm−1K−1 at 300 K to 2.3 Wm−1K−1 at

4000 K. They approximate the effect of radiative conductivity as a function of

temperature, and show that total conductivity increases along a typical geotherm,

the radiative component being proportional to the increasing temperature and

offsetting the decrease in lattice component. From their results they calculated

a Rayleigh number (Ra) of 105–107 for the mantle, in agreement with previous

estimates (3 × 106, see Section 1.2.1). These results suggest that a CMB region

at 136 GPa and 3200 K will have a conductivity of 5.3 Wm−1K−1.

Ammann et al. (2014) used the direct method, a non-equilibrium molecular

dynamics technique for different interatomic potentials, to calculate the lattice

thermal conductivity of bridgmanite and post-perovskite under D′′ conditions.

They found the conductivity of post-perovskite to be around 50% larger than

bridgmanite for the same conditions (12 Wm−1K−1 compared to 8.5 Wm−1K−1).

This relation is true even in the TBL, where increases in temperature reduce

lattice conductivity for all MgSiO3 phases.

Ammann et al. (2014) also investigated the effects of impurities on

conductivity, substituting magnesium with iron. The lower mantle distribution of

iron is not yet well-understood, specifically the partitioning between bridgmanite,

post-perovskite, and periclase. Interestingly, the authors observed saturation

in the conductivity reduction associated with atomic impurities for any Fe

concentrations (Fig. 1.8). Extrapolations of variable-composition experimental

results must be applied carefully, increasing iron content past a certain point will

not reduce conductivity any further.

Tang et al. (2014) performed first-principles calculations to assess the thermal

conductivity of MgSiO3 and the effect of Fe inclusions therein, using the

Peierls-Boltzmann kinetic phonon transport equation. These results feed into a

model of conductivity (including radiative, see Section 1.6.3) along a lower mantle
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Figure 1.8: Thermal conductivity decrease due to inclusion of impurities is shown
to saturate with increasing Fe-content, for MgSiO3 post-perovskite and perovskite
phases. a and b refer to crystallographic directions along which conductivity was
calculated. Figure from Ammann et al. (2014) with permission.

geotherm, of aggregate composition 4 bridgmanite : 1 periclase with 12.5% Fe

impurities. Their calculations model (Mg,Fe)SiO3 by increasing atomic mass, but

not changing the force constants, in a manner similar to Ammann et al. (2014).

The inclusion of impurities has little effect at 136 GPa–4000 K, on the order

of a few percent, but they note MgO should be affected more considering its

higher conductivity. The observation that conductivity is reduced less when it is

already small due to the effect of temperature, matches the saturation described

in Ammann et al. (2014). Haigis et al. (2012) report conductivity of their

aggregate approximately halving however, showing the large uncertainty when

extrapolating data especially when considering the (temperature-dependent)

effect of impurities.

Stackhouse et al. (2015) did ab initio molecular dynamics using the direct

method to determine lattice thermal conductivity of bridgmanite. They found

6.9 ± 0.9 Wm−1K−1 at core-mantle boundary conditions. They also identified

saturation effects in thermal conductivity with temperature, attributed to the

phonon mean free path approaching the atomic spacing. In this study, they also

used seismic tomography to be indicative of heat distribution within the lower
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mantle. Using this, they show that the temperature-dependence of conductivity

creates lateral variations in heat flux across the CMB, an idea that will be explored

further in Chapter 5 of this thesis.

Ghaderi et al. (2017) investigate the lattice conductivity of bridgmanite

using ab initio lattice dynamics calculations, considering a range of pressures

at room temperature (mirroring previous experimental measurements). MgSiO3

conductivity is found to increase from 10.7 Wm−1K−1 at 0 GPa, to 59.2 Wm−1K−1

at 100 GPa. Conductivity is extrapolated to lower mantle conditions and

determined for a sample geotherm. The value initially increases with depth

as the effect of increasing pressure dominates, until around 400 km above the

CMB where temperature effects take over and conductivity reduces. A value of

∼5.2 Wm−1K−1 is given for bridgmanite at CMB conditions of 136 GPa and

4000 K.

The concept of a minimum phonon mean free path is discussed by Ghaderi

et al. (2017), the idea that a minimum MFP causes conductivity to saturate at

high temperatures, showing a dependence different to the expected 1/T . The

authors suggest an explanation for this phenomena, which is radiative heat

transport. The cause of low MFP is called into question, whether it be small

group velocities, or short phonon lifetimes. In any case, the authors assume the

minimum MFP to not be correct, and extrapolate to high temperatures with a

1/T relation.

Zhang et al. (2017) characterize phonon quasiparticles numerically through

a hybrid approach combining first-principles molecular dynamics and lattice

dynamics. They find no lower-bound limits on the MFP in bridgmanite,

contradicting the idea it reaches a minimum value on the order of the lattice

constant. While they calculate path lengths and MFPs below the lattice

parameters, they also show that conductivity decreases sharply with temperature

(with a 1/T dependence) up to 4000 K across a range of lower mantle pressure
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conditions. Regardless of the dependence used, conductivity does tend towards

a minimum value with increasing high temperature, even if the temperature

required increases with pressure. They also determine the pressure-dependence of

lattice conductivity for a range of temperatures from 300 K to 4000 K. They find

the dependence to be linear for all temperatures, but the value of conductivity

and the rate of increase with pressure decreases sharply with temperature. This

appears to be an effect of saturation, the effect of phonon-phonon scattering

at high temperatures severely dampens the conductivity increase with pressure.

Their computed conductivity for bridgmanite at CMB conditions of 4000 K and

136 GPa is around 2 Wm−1K−1.

Numerical results for thermal conductivity of bridgmanite at CMB conditions

(including those extrapolated to these conditions) range from 2 to 8.5 Wm−1K−1

(Table 1.1; Ammann et al., 2014; Stackhouse et al., 2015; Ghaderi et al.,

2017; Zhang et al., 2017). The most similar results (6.8 ± 0.9 Wm−1K−1 and

8.5 Wm−1K−1) come from two direct method calculations, which are comparable

when considering the error. Conductivity results for bridgmanite across a full

range of lower mantle conditions are plotted in Figure 1.9.

Results calculated using the direct method (see Table 1.1) are similar to the

experimental values from Ohta et al. (2012) for bridgmanite at CMB conditions,

who obtain a value of 9±1.6 Wm−1K−1. Thermal conductivity at CMB conditions

has also been calculated for bridgmanite and periclase aggregates, including iron.

The results of these are also on the same order of magnitude, e.g., 8.2 Wm−1K−1

(Green-Kubo method; Haigis et al., 2012) compared with 5.5 Wm−1K−1 (Peierls

Boltzmann method; Tang et al., 2014).

From reviewing the literature, it is clear that multiple methods have been

used to estimate thermal conductivity. The Green-Kubo method is advantageous

in that it gives the full conductivity tensor and allows investigation of anisotropy.

The Green-Kubo method, however, requires long simulation times for the auto
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Figure 1.9: A comparison of bridgmanite thermal conductivity results across a
range of lower mantle conditions from existing literature, including experiments
and calculations as shown in Table 1.1. Calculations are differentiated into
classical methods (shaded circles) and ab initio methods (hollow circles).
Uncircled points show experiments.

correlation function to decay, and so results are only reliable once a sufficient

simulation time has been identified. The Green-Kubo method is also difficult to

calculate from first principles. The direct method has more experimentation in

parameters than the Green-Kubo method, and thus requires a more detailed

setup, for example through a more robust determination of finite-size effects

and suitability of temperature gradients across a system. If finite-size effects

are resolved and appropriate simulation parameters identified, the direct method

provides robust estimations of thermal conductivity. Lattice dynamics has also

been used to estimate thermal conductivity, and can be used to calculation

phonon properties (such as frequencies and lifetimes). This means that it can
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offer a better breadth of results than other methods, including calculation of

the full conductivity tensor. Lattice dynamics, however, can be problematic at

high temperatures (such as CMB conditions), when the harmonic approximation

breaks down. In this thesis, I will be using both the Green-Kubo method and

the direct method further, as reviewing the literature presents these as the most

reliable methods for estimating thermal conductivity.

The full extent of the effects of finite system size are not always considered

however, due to the computational cost associated with density functional theory

calculations, or incomplete results for partial investigations (i.e., not considering

the really long cells or large cross-sectional areas). Calculated results suffer from

the same uncertainties as experimental results when extrapolated, particularly

considering the effects of composition, where conductivity may not be affected in

the same manner for all compositions. In this thesis, I investigate large system

sizes and constrain finite-size effects for bridgmanite at core-mantle boundary

conditions. I also investigate the full range of Fe2+ inclusions into bridgmanite,

up to the Fe-endmember, seeing how conductivity varies with the amount of

impurities across multiple temperatures, ultimately combining the two into a

conductivity model as a function of temperature and composition at the CMB.

1.6.3 Existing estimates of radiative conductivity

Hofmeister (1999) produced a model of thermal conductivity for the entire mantle

using data from infrared reflectivity methods. The radiative component at

maximum was found to be small compared to the lattice conductivity, between

10–15% depending on the geotherm model used. This corresponds to radiative

conductivity values of 0.67–0.82 Wm−1K−1 compared to 5.8–6.7 Wm−1K−1 for

the total conductivity at the top of D′′.

Keppler et al. (2008) studied the near-infrared and optical absorption spectra
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of silicate perovskite up to pressures of 125 GPa at room temperature. From

both their tests and visual inspection, it was shown that their synthesised

perovskite remains transparent at high pressures. Extrapolating their results

to high temperatures (4500 K) they suggest that the maximum radiative thermal

conductivity above the CMB is around 10 Wm−1K−1, implying that radiative

conductivity is likely to be an important component of the total conductivity

at lower mantle conditions. The study does not measure the variation of

absorption spectra with temperature and pressure, which is currently unfeasible

for experiments.

Goncharov et al. (2008) performed a similar optical absorption spectra

analysis up to 133 GPa, but reached the opposite conclusion to Keppler et al.

(2008). They agreed the radiative conductivity was dependent on the amount,

redox state, and spin state of iron, but disagreed with its significance. Goncharov

et al. (2008) estimated radiative conductivity would not exceed 0.54 Wm−1K−1

at the top of the D′′ layer, a value in line with Hofmeister (1999) but at odds

with Keppler et al. (2008).

Tang et al. (2014) re-evaluated the works of Keppler et al. (2008) and

Goncharov et al. (2008) to create a profile of radiative conductivity in the lower

mantle. Tang et al.’s profile suggests that the previous works have a more

reasonable agreement than they show, reducing the order of magnitude difference

to a factor of 2 or 3, and a value around 4 Wm−1K−1 at CMB conditions.

Radiative heat transfer is inhibited in the same way as conductive, by impurities

and grain boundaries which are not considered when calculating this upper

bound. Unlike lattice thermal conductivity, radiative conductivity increases with

temperature, strongly in the mantle thermal boundary layer. When the opposing

temperature dependencies of lattice and radiative conductivity are considered

together, they suggest that the thermal conductivity of the lower mantle is

largely temperature-independent above the D′′ region at around 3 Wm−1K−1.
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Thermal conductivity is found to increase to 5.5 Wm−1K−1 in the TBL, due to

the increased significance of the radiative component.

More recently, Lobanov et al. (2017) determine the radiative conductivity of

post-perovskite (1.2±0.2 Wm−1K−1, 10% Fe), bridgmanite (2.2±0.4 Wm−1K−1,

10% Fe), and ferropericlase (0.2 ± 0.1 Wm−1K−1, 15% Fe) at 130 GPa and

∼3000 K. They measure optical absorption from diamond anvil cell experiments,

extrapolating radiative conductivity from absorption coefficients to lower mantle

conditions (∼130 GPa, 4000 K). While the model shows radiative conductivity

generally increasing towards the CMB, it decreases from bridgmanite to

post-perovskite. Ferropericlase is found to have a lower radiative conductivity

than either of the (Mg,Fe)SiO3 phases, with all of the considered minerals having

higher lattice conductivities compared to radiative. The authors conclude that

the lattice conductivity will decrease faster than radiative with the inclusion of

Fe-impurities, changing the relative significance from low to high Fe content.

The results from this study agree with the previous works, that although lattice

conductivity is the dominant mechanism of heat transport, radiative conductivity

is also important and affects the overall thermal conductivity in the lower mantle.
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1.7 Aims, objectives, and thesis outline

The aim of the work presented in this thesis is to model thermal conductivity in

the lower mantle, a key parameter in determining heat flux across the core-mantle

boundary and the nature of planetary dynamics. I perform atomic-scale

simulations of bridgmanite at high pressure and varying temperatures, in order

to consider the effect of composition between the bridgmanite and its iron

endmember. To do this, I have several goals within the project, which have

associated objectives as presented below.

While other studies may have accomplished individual goals, none have

consolidated the effects of finite simulation size at lower mantle conditions, to

the effect conductivity has on CMB heat flux. I compare the Green-Kubo

and direct method at lower mantle conditions for the first time, I conduct

one of the most comprehensive fifnite size effect analyses, and I incorporate

composition-dependent thermal conductivity results into a model of core-mantle

boundary heat flux for the first time.

1. Establish method of simulating bridgmanite at lower mantle

conditions

(a) Validate the Oganov et al. (2000) potential for bridgmanite.

(b) Establish computational tools and respective limitations for

calculations of thermal conductivity.

2. Determine the accuracy of various atomic-scale modelling

approaches.

(a) Determine the simulation parameters required to calculate thermal

conductivity at lower mantle conditions, i.e., ensuring simulations are

converged for given timescales.
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(b) Quantitatively determine thermal conductivity at core-mantle

boundary conditions.

(c) Compare the direct method with the Green-Kubo method for

calculating thermal conductivity of bridgmanite.

(d) Consider fully the effects of finite system size on computed

conductivity results.

(e) Evaluate existing observations of finite-size effects.

(f) Analyse conductivity results to calculate phonon mean free paths.

3. Investigate how impurities affect conductivity at lower mantle

conditions

(a) Determine how iron can be incorporated into Green-Kubo calculations

of thermal conductivity.

(b) Perform Green-Kubo calculations of thermal conductivity across the

full range of lower mantle temperatures and a range of composition

(i.e., MgSiO3 to FeSiO3 endmembers).

(c) Create model to fit compositional- and temperature-dependence of

conductivity to allow thermal conductivity to be estimated at any

temperature and composition at the core-mantle boundary.

(d) Quantify the mean free path of phonon-defect scattering.

4. Incorporate the thermal conductivity results into a model of

core-mantle boundary heat flux to investigate LLSVP conditions.

(a) Investigate appropriate numerical representations of LLSVP

distribution in the lower mantle.

(b) Investigate the sensitivity of core-mantle boundary heat flux to lateral

variations to temperature gradient and composition, and therefore
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thermal conductivity.

(c) Evaluate thermal, chemical, and thermochemical LLSVP models to

determine likely LLSVP parameters.





Chapter 2

Computing thermal conductivity

In Chapter 1, I introduced the key concept of thermal conductivity and

showed how this is determined, both experimentally and numerically. One of

the project objectives is to investigate the magnitude of thermal conductivity

throughout the deep Earth, considering the effect of physical conditions and Fe

impurities. In this chapter, I introduce how numerical simulations can be used to

calculate conductivity and I show the fundamental system setup and parameter

convergence.

The theory presented in Chapter 2 is then applied in later chapters to

investigate how conductivity is affected by system shape and size (Chapter 3),

and by adding impurities to an otherwise regular crystal structure (Chapter 4).

2.1 Atomic-scale modelling

Knowledge of thermal conductivity is important for modelling the deep earth,

but there are significant challenges associated with experimentally determining

thermal conductivity at core-mantle boundary conditions. Atomic-scale

simulations sidestep experimental limitations, but system size must be chosen

carefully in order to determine accurate conductivity values.

41
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Atomic-scale simulation begin with a box of atoms. The box has size and

shape, and atoms of known positions within it (i.e., atomic structure). By

representing the atomic interactions using the Buckingham potential (see Section

2.4), the energy between two atoms at a given separation can be found, and thus

the energy of the box by considering all atomic interactions. The force acting on

an atom is equal to the change in energy that would be observed if an atom was

displaced over a given distance. Once the forces are determined, Newtons laws

of motion are applied to the system to perform molecular dynamics calculations.

A range of atomic-scale simulation methods are available to determine the

lattice thermal conductivity of materials. These are invaluable for calculating

thermal conductivity at conditions of which experiments are difficult, e.g., the

extreme conditions found in the Earth’s lower mantle (pressures and temperatures

up to 136 GPa and 4000 K at the core-mantle boundary).

Before the material properties of interest can be calculated, the specific

theoretical approach of atomic-scale modelling needs to be chosen. This refers

to how the atoms are set up to interact with one another, before considering the

magnitude of interactions or parameters used to replicate a material. There are

multiple regimes for doing so, several of which are described below.

2.2 Molecular dynamics

In a molecular dynamics (MD) calculation, atoms in a simulation cell have masses,

velocities, and forces acting between them. At each computational timestep the

net force on each atom is calculated from all the other atoms. Accelerations are

then calculated from Newton’s second law of motion, which are used to update

the velocities and positions of the atoms. The process is repeated, iteratively

updating parameters every timestep (Fig. 2.1).

As I am utilising molecular dynamics approaches, I use the Verlet algorithm
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Figure 2.1: Flowchart of process in molecular dynamics simulations

(Verlet , 1967; Leach, 2001) to integrate the equations of motion. Considering a

timestep δt, the Verlet algorithm uses the positions (r) and acceleration (a) of

atoms at the current time (t), the positions from the previous timestep (t− δt),

to calculate the positions at the next timestep (t+ δt). The positions of the next

and previous timesteps can be written in terms of the current timestep, and the

parameters defined above along with the velocity (v)

r(t+ δt) = r(t) + δtv(t) +
1

2
δt2a(t) + · · · , (2.1)

r(t− δt) = r(t)− δtv(t) +
1

2
δt2a(t)− · · · . (2.2)

These are combined into one equation for the position of the next timestep

r(t+ δt) = 2r(t)− r(t− δt) + δt2a(t) . (2.3)

The atomic velocities do not appear explicitly, but can be calculated by dividing

the change in position by the timestep. The Verlet algorithm has a modest

computational cost, but is not without limitation. Drift in the converged values of
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parameters can be observed when using molecular dynamics if the simulation time

is very long (Fig. 3.11). This is due to inaccuracies in integrating the equations

of motion. The first is in the choice of timestep, where too coarse a temporal

sampling can lead to inaccurate estimations of the simulated behaviour. While

I employ a fine timestep (1 fs) throughout all molecular dynamics calculations

in this body of work, even small errors can compound over time. The second

inaccuracy is in the truncation of Taylor series that describe the atomic motions,

for example the position is given by

r(t+ δt) = r(t) + δtv(t) +
1

2
δt2a(t) +

1

6
δt3b(t) +

1

24
δt4c(t) + · · · , (2.4)

where b is the rate of change of the acceleration, and so on. Again, the fine

timestep used means these higher-order coefficients are likely to be of minor

significance, but may become relevant for long simulations.

From the atomic velocities in MD simulations, the temperature of a system

with N atoms can be calculated. To do this, the summed kinetic energy (K.E.)

of all atoms in the system is calculated by

K.E. =
1

2

N∑
i

miv
2
i , (2.5)

where m is mass and v is velocity and the sum is overall all i atoms in the section.

Kinetic energy can also be given by the equipartition theorem by

K.E. =
3

2
NkBT , (2.6)

where kB is the Boltzmann constant, and T is the average temperature of the

section. Equating these equations and rearranging for T gives

T =

∑N
i miv

2
i

3NkB
. (2.7)
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At zero temperature, a parameter such as unit cell volume will converge, but

this is not true when finite temperatures are considered. Temperature fluctuations

due to the transfer of potential energy to kinetic, and vice versa, mean cell volume

will constantly change, regardless of simulation length. The solution is to take

the cumulative average of a parameter over many timesteps, which eventually

converges.

The pressure in a molecular dynamics situation is given by

P =
1

V

[
NkBT −

1

3

N∑
i=1

N∑
j=i+1

rijfij

]
, (2.8)

where V is system volume, N is the number of atoms, kB is the Boltzmann

constant, T is temperature, rij is the separation between two atoms, and fij is

the force acting between them, where fij is calculated by

fij =
dv(rij)

drij
, (2.9)

where v is the contribution to the virial. The virial is defined in Equation 2.8 as

the summation of the products of the particle coordinates and the forces acting

on them.

There are three thermodynamic ensembles that I will use over the course of

this project to perform different kinds of calculations. These are NPT, NVT, and

NVE, where N refers to the number of atoms, P to pressure, T to temperature,

V to volume, and E to energy. The number of atoms is kept constant in all cases

presented here.

In NPT and NVT simulations, a thermostat is used to bring the system to

a specified temperature. In NPT a barostat is also set, and the cell volume is

allowed to equilibrate with the pressure and temperature conditions. This kind of

simulation is performed before calculating parameters like thermal conductivity,
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in order to recreate physical conditions (like the CMB, i.e., 136 GPa, 4000 K). One

cannot simply equilibrate the system at high pressure and then run temperature

initialisation, this adds the effect of thermal pressure. If this equilibration is

performed incorrectly, it is possible to end up with a CMB at 145 GPa for

example, ultimately causing conductivity results to be overestimated (as they

increase with pressure). When considering temperature while barostatting,

thermal pressure will increase system volume accordingly whilst achieving the

target pressure.

Once the cell is of a suitable volume for the conditions of interest, the

temperature of the system (via the velocities of the atoms) can be initialised

through computation in the NVT regime. Freedom to control the initial

temperature condition is great for studies where repeatability or gathering

a sample of data is important. The structure, conditions, and subsequent

computation workflow do not change, but the result will varying in a given

distribution from the random nature of atomic velocities and motion. While

pressure is free to change, it will remain constant assuming the aforementioned

NPT equilibration is performed to obtain a suitable cell volume. Volume and

temperature are fixed parameters, so there are no fluctuations in thermal pressure.

A Nosé-Hoover thermostat (Nosé, 1984; Hoover , 1985) is used throughout this

study to equilibrate the system to a target temperature. In simple terms, a “heat

bath” is simulated alongside the system. The total energy of the system and the

bath is conserved, but energy can move between the two. This is facilitated by

altering the atomic velocities, to add energy to the system from the bath (or to

remove energy to the bath). This changes the temperature of the system, and

over a long enough equilibration time causes temperature to fluctuate around a

specified average value.

The next step is to establish how the atoms will interact with one another in

the simulation cell. This means the forces that act between them, how things like
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atomic separation and charge are considered. There are varying forms of varying

complexity available, with multiple parameterisations to describe the interaction.

Once a reasonable distribution, a steady average temperature, and atomic

interactions are constrained, a system can be computed in the NVE ensemble.

Conductivity results are determined in this regime for both the direct and

Green-Kubo methods. The kinetic and potential energies of the atoms are held

constant, allowing local temperature variations. The same point about variable

pressure applies here as well as with NVT, but an overall consistent average

temperature means a similarly average pressure. NVE is used over the similar

NVT when calculating parameters, as thermostatting can artificially influence

the dynamics of the system.

MD functions below the Debye temperature, but stops working as the

temperature approaches zero Kelvin. In MD, zero Kelvin means zero kinetic

energy, and so the atoms stop moving. This is not realistic, because there is

always a minimum energy, called zero-point motion.

2.3 Lattice dynamics

An alternative approach to MD is lattice dynamics (LD), where the response of

all atoms to the motion of one is considered (e.g., Dove, 1993; Gale, 1997).

LD is a useful methodology for describing how atoms move in a crystalline

structure. Where there are N atoms in a system, a 3N × 3N matrix holds the

force constants for each atom, in each direction, due to the effect of moving

each other atom in each other direction. This matrix is then multiplied by the

reduced masses of the atoms, which effectively controls what effect the force

constant have on an atom (where light atoms move more readily, they require a

smaller force than a heavier atom to move a given distance). The product of these

matrices is the dynamical matrix, which fully describes the motion of the atoms.
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The dynamical matrix can then be diagonalized to obtain eigenvalues (which

describe the vibration frequencies) and eigenvectors (which give the direction of

displacement for an atom). As the eigenvalues cannot be zero, the atoms have

quantised frequencies, even at zero kelvin. The energy cannot drop to zero, which

means LD avoids the zero point motion associated with MD.

The force constant matrix takes significant time to compute compared to a

single MD timestep, but can be used to calculate various material properties once

obtained. The focus of this study will be on MD approaches, but LD results from

the literature will be reviewed for comparison.

LD do not have the same limitations as MD when approaching temperatures

of zero Kelvin. There are, however, other limitations to LD, for example, the

harmonic approximation of atomic oscillations breaks down at high temperatures

as the behaviour becomes inharmonic.

2.3.1 Density functional theory

Density functional theory (DFT) is a way of determining accurate interatomic

forces. The properties of the electrons are considered along with the nuclei, which

increases the computational cost and simulation run time. This additionally

limits the size of systems, or number of atoms (on the order of thousands),

that can be considered. Calculating from first principles in this manner should

only be considered if the system parameters required to obtain converged results

are known, and the simulations can be completed on a suitable timescale. I

will be opting for a different approach, as I wish to investigate bigger systems

(>16×2×2), potentially for multiple compositional variations.
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2.3.2 Classical interatomic potentials

The alternative to DFT is to use empirically-derived potentials to calculate

the interatomic forces. Whereas calculating from first principles considers the

interactions of atoms and their outer shell electrons, interatomic potentials use

an approximation of the electronic potential component (i.e., a classical atomic

model).

The potential energy of the system (E) is split into components for each atom,

and groups of atoms

E =
∑
i

e1(ri) +
∑
i

∑
j>i

e2(ri, rj) +
∑
i

∑
j>i

∑
k>j

e3(ri, rj, rk) + · · · , (2.10)

where
∑
i
∑
j > i notation indicates summation over the pairs i and j without

counting any pair twice, with the same consideration for the triple terms, and i, j,

and k denote unique atoms. e1 refers to the self-energy, e2 refers to the pair-wise

energy, and e3 refers to the energy of a triplet of atoms, and so on (Allen and

Tildesley , 2017).

Systems on the order of millions of atoms can be considered with atomic

potentials, due to significantly reduced computational cost compared to DFT.

The trade-off is accuracy however, which is controlled by the characteristics of the

employed potential. These potentials are set up to reproduce a set of experimental

results, but the is no certainty they reflect true values outside their calibrated

range of conditions. A realistic model reproduces the structural, elastic, and

thermal properties of a material. A common feature of classical potentials is to

underestimate the diagonal terms of the elastic constant tensor, and overestimate

the off-diagonal, where the discrepancy increases with pressure (Chen et al.,

2012).

The interatomic potential function includes ionic, covalent, and van der Waals
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components. The dominant long-range term is the Coulomb interaction, and

the short-range interactions are described using a Buckingham potential with

the Born-Mayer potential, and a C/r6 van der Waals term. The equation for

pair-wise potential (summed for potential energy of the system) takes the form

EBuck
ij =

1

4πε0

qiqj
rij

+ bij exp

(
−rij
ρij

)
− cij
rij6

, (2.11)

where qi and qj are the charges of atoms i and j, rij is the distance between them,

bij is the pre-exponential repulsive parameter for the pair, ρij is the repulsion

exponent, and cij is the van der Waals parameter. This potential is illustrated in

Figure 2.2 as a function of atomic separation.

Figure 2.2: Illustration showing energy between two atoms as a function of their
separation.

2.4 Oganov’s bridgmanite potential

The interatomic potential used in this project was developed by Oganov et al.

(2000). Many potentials exist for MgSiO3 perovskite (e.g., Chen et al., 2012), but

the aforementioned is robust up to lower mantle pressures and temperatures. In

addition to calculating thermal conductivity, the Oganov et al. potential has also

been used for modelling melting under lower mantle conditions (Di Paola and

Brodholt , 2016), dislocation glide at high P-T conditions (Kraych et al., 2016),

prediction of mechanical twinning in post-perovskite (Carrez et al., 2017), and
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defect modelling (Goryaeva et al., 2017). The use of this potential in such varied

studies shows both the versatility and robustness of the functional form.

There are three sets of these parameter, for each of the interacting atomic pairs

(shown in Table 2.1). The charges for Mg, Si, and O atoms are 1.9104, 2.9043,

and −1.6049, respectively. To obtain these parameters, Oganov et al. (2000) first

calculate the ionisation potentials (ρ; see Section 4.2.1 for calculation within this

study). The O-O short range potential is taken from Gavezzotti (1994). Using

lattice dynamics, they then fit four independent parameters: the atomic charges

for the magnesium and silicon atoms (where the charge of the oxygen is calculated

from these terms), and the pre-exponential repulsive parameters (b), which are for

the Mg-O and Si-O interactions. They fit to experimental data of crystal structure

(Ross and Hazen, 1989) and the elastic constants tensor (Yeganeh-Haeri , 1994).

Table 2.1: Parameters used to define Oganov et al. (2000)’s MgSiO3 perovskite
potential.

Bond ij bij (eV) ρij (Å) cij (eV.Å6)
Mg-O 1041.435 0.2866 0
Si-O 1137.028 0.2827 0
O-O 2023.800 0.2674 13.83

2.4.1 Cutoff calibration

Part of applying classical potentials is setting up the distance over which they act,

the maximum separation between two atoms before they are not paired for force

calculation. Too small a cut-off distance, and the material is not being replicated

faithfully. Too large a cut-off means more calculations are being performed than

are required, thereby increasing computation time. The potential between two

atoms is inversely proportional to their separation (see Equation 2.11), “cutting

off” in this manner is acceptable when the potential is tending towards zero with
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increasingly large interatomic distance. I consider two cut-off distances, for both

the Coulombic and the Buckingham interactions.

I choose to use Buckingham and Coulombic cutoffs of 14 Å and 8 Å

respectively. This choice was influenced by other works, and size of the

bridgmanite unit cell. As shown in Figure 2.3a & b, the choice of Coulombic

cutoff is of low significance. Figure 2.3c & d show the convergence of both energy

and a with increasing Buckingham cutoff. The difference between a cutoff of 14 Å

and higher values is on the picometer scale, we use the former in the interests

of computational efficiency. The Coulombic terms are calculated using an Ewald

summation (Ewald , 1921) to speed up computation.

Figure 2.3: For a given Buckingham cutoff of 14 Å (a) Relationship between
energy and Coulomb cutoff and (b) Relationship between a lattice parameter
and Coulomb cutoff. For a given Coulomb cutoff of 8 Å, (c) relationship between
energy and Buckingham cutoff and (d) relationship between a lattice parameter
and Buckingham cutoff. Geometry optimisation was performed at a pressure of
136 GPa.
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2.4.2 Comparison of results

For my calculations to be valid, I have to be able to reproduce other results

calculated using the Oganov et al. (2000) potential in LAMMPS. Oganov et al.

provide lattice parameters for a unit cell, along with elastic constants and the

bulk and shear moduli. I reproduced their results to acceptable accuracy (see

Table 2.2), using LAMMPS and the lattice dynamics code GULP (Gale, 1997).

Of particular note in this table is the agreement (within 0.0001 Å) of the

static LAMMPS and GULP results, showing the potential has been implemented

identically for both codes. The agreement between the LAMMPS and GULP

results are always within 1%, although the exact variation of the percentage

error changes as a function of pressure and temperature. The standard error on

the LAMMPS values is smaller than the difference with the GULP values, this

disparity is caused by the use of lattice dynamics (LD) opposed to molecular

dynamics (MD). The GULP (LD) values are believed to be more accurate in this

case, as lattice dynamics performs better at temperatures closer to zero.

Ammann et al. (2014) used GULP and the Oganov et al. (2000) potential,

and provide unit cell lattice parameters for sample lower mantle pressures and

temperatures. I reproduced their data to within 0.15% (Table 2.3), and I observe

the discussed difference between LD and MD reducing at increased temperatures.

2.5 Computational tools

LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) is a

classical molecular dynamics code (Plimpton, 1995). I use it to look at large

systems (up to the order of 105 atoms) and assess how size and shape of the

simulation cell affects results. While calculations using interatomic potentials

are not as accurate as those using DFT, a main focus of this work will be on
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the observations of conductivity change between systems of varying size. The

Wm−1K−1 result is less important as confirming phonon behaviour is not being

artificially influenced.

GULP (General Utility Lattice Program) is an alternative programme to

LAMMPS for performing molecular dynamics simulations (Gale, 1997). It can

also be used for lattice dynamics on a wide range of materials and different styles

of atomic interaction. In this project, I use GULP to perform the parameter

fitting required to ensure that my addition of iron to the Oganov et al. (2000)

potential is representative of bridgmanite behaviour in LAMMPS.

I use Advanced Research Computing (ARC) services, which are part of

the High Performance Computing facilities at the University of Leeds. I run

LAMMPS on these supercomputers to enable consideration of very large systems

in this project. I run parallelised code which uses multiple nodes to speed up

calculations.

Finally, ARCHER is a national supercomputer, again used to decrease the

time needed to produce results. Having access to both ARCHER and ARC allows

simultaneous model runs on each supercomputer facility.

2.6 Computing thermal conductivity

I will be using two approaches, both utilising classical interatomic potentials, to

calculate thermal conductivity throughout this thesis. They will be explained

later in this section, and are as follows,

(1) The non-equilbrium molecular dynamics-based “direct method”, where

thermal conductivity is calculated from an imposed heat flux and corresponding

temperature gradient via Fourier’s Law (Müller-Plathe, 1997; Nieto-Draghi and

Avalos , 2013). The specific method adopted here is outlined further in Section 3.1.

(2) Equilibrium molecular dynamics based on the Green-Kubo relations
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to determine the thermal conductivity from heat flux fluctuations and their

time-dependence (Green, 1954; Kubo, 1957, 1966; Schelling et al., 2002). The

specific approach adopted in this thesis is outlined further in Section 3.2.

Stackhouse and Stixrude (2010) review other methods to compute thermal

conductivity, including the above, but also

(3) Anharmonic lattice dynamics (Tang and Dong , 2009).

(4) Combined quasiharmonic lattice dynamics and molecular dynamics

method (de Koker , 2009).

The Green-Kubo and direct method use the same underlying atomic model,

but calculate thermal conductivity differently. They have their own unique system

setup procedures, data processing work flows, and they both produce results that

can depend on their respective system size. These methods were chosen for

comparison over the lattice dynamics approaches as they have previously yielded

similar results (see Section 2.9), and can both be performed within LAMMPS.

Computational techniques are not hindered by the reproduction of physical

conditions like experiments, this does not mean they are without limitations

however. Finite-size effects refer to when the number of atoms, or system shape

and size, affects the computed result, compared to that of an infinite system. In

the case of thermal conductivity, the problem arises when phonons are truncated

by boundaries in the simulation cell. As discussed in Chapter 1.4.3, phonons have

wave-like properties, including wavelength.

When a simulation cell is shorter than a phonon’s wavelength, that phonon

cannot be represented in the system. This will mean a calculation is tending to

underestimate conductivity, the phonon population is not being fully represented.

Another scenario is if the phonon mean free path is longer than the distance

between boundaries in a system, in this case phonon scattering behaviour is not

being reproduced accurately. This leads to overestimations, where phonons are

able to transport heat unimpeded, and conductivity is strongly dependent on
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system size (Tadano et al., 2014).

The finite-size effects (FSE) observed for a material change with thermal

conductivity/phonon MFP, and thus are sensitive to pressure, temperature, and

composition. Requiring a minimum simulation cell size to recreate phonon

behaviour accurately can be a problem when employing DFT calculations, where

large system sizes (generally >16×2×2) are highly computationally expensive.

Testing system size is also a problem, as calculations of large systems must be

performed to check convergence of small system results.

In the following sections, I consider both the direct method and the

Green-Kubo method, before a review of literature comparing the two, and how I

will use them to analyse their FSE.

2.7 Direct method

The direct method is the computational implementation of a typical experiment

to measure thermal conductivity using Fourier’s law, where the heat flux (q) is

controlled, and the temperature gradient (∇T ) is observed, to determine thermal

conductivity (κ)

q = −κ∇T . (2.12)

2.7.1 System setup

In the direct method energy is transferred from one group of atoms to another

at regular time intervals, creating hot and cold regions between which heat flows

(Fig. 2.4.a). This heat transfer process is implemented by taking the velocity of

the lowest energy atom in the hot section, and swapping it with the highest energy

atom in the cold section (the approach from Müller-Plathe, 1997). The resultant

temperature gradient is measured by calculating the temperature of atoms within

a section along the direction of the heat flux (Fig. 2.4.a). Thermal conductivity
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is equal to the ratio of imposed heat flux to the resulting temperature gradient.

This can be shown in a rearranged version of Fourier’s law

κ = − 〈J〉
〈dT/dx〉

, (2.13)

where κ is thermal conductivity, 〈J〉 is time-averaged heat flux through a unit

cross-sectional area, and 〈dT/dx〉 is the time-averaged temperature gradient

between hot and cold regions. 〈J〉 is obtained by summing the energy transferred

by swapping the atomic velocities between the hot and cold regions.

Simulation cells tend to be long relative to their cross-sectional area, defined

as height by width (Fig. 2.5). Cell boundaries are periodic and the hot and cold

sections are half the cell length apart, meaning heat flows in both directions from

hot to cold (one of which is across the length-end periodic boundary). This results

in two similar temperature gradients which can be averaged.

2.7.2 Data processing

In the immediate vicinity of hot and cold regions, the temperature gradient

exhibits non-linear behaviour (Fig. 2.4b) due to the non-Newtonian nature of

the heat exchange. Care must be taken to measure the linear portion, which is

located roughly in the middle third of the temperature gradient.

The finite size of the simulation cell truncates the mean free path,

underestimating conductivity compared to that of the bulk material (κ∞). Using

results from simulations of varying cell length (L), conductivity is extrapolated

to a length-independent value (where b is a material-dependent parameter),

κL
−1 = bL−1 + κ∞

−1 . (2.14)

Inverse conductivities from direct method simulations are plotted against
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Figure 2.4: (a) Movement and distribution of heat in the direct method.
Orange to white scale represents temperature; (b) Temperature profile along
DM simulation cell. Modified with permission from Stackhouse et al. (2015)

corresponding inverse cell lengths. A straight line is fit to the data and

extrapolated to the y-axis (at which the inverse cell length equals zero and real

length equals infinity), where the intercept gives the inverse of the bulk material

conductivity (Schelling et al., 2002).
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Figure 2.5: Schematic of a unit cell and supercell. The unit cell represents the
smallest box of atoms that can be replicated to produce a crystal structure. A
supercell is an arrangement of unit cells.

2.7.3 Finite-size effects

From kinetic theory, conductivities computed by the direct method (κL) are

dependent on length of simulation cell

κL =
1

3
CV vlL , (2.15)

where Cv is the volumetric heat capacity, v is the average phonon drift velocity,

and lL is the phonon mean free path.

Problems arise when the data do not support the aforementioned linear trend.
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Figure 2.6: Inverse conductivity as a function of inverse simulation cell length,
showing an idealised linear extrapolation procedure, where extrapolation to y-axis
gives conductivity of an infinite system length, i.e., the bulk material.

There are two effects of finite system size that can cause an individual direct

method simulation to diverge away from an inferred/expected linear trend, both

of which result in overestimation of the length-dependent conductivity data point.

First, when the distance between hot and cold sections (controlled by cell length)

is shorter than the MFP, phonons travel ballistically (i.e., without any scattering

events) from heat source to sink (Sellan et al., 2010). Conductivities in shorter

length cells are overestimated when this occurs, reducing the gradient of the linear

fit and thus underestimating the extrapolated conductivity.

For a given length, conductivity is dependent on the CSA, or aspect ratio

of the simulation cell. Conductivity is overestimated due to an underestimation

of phonon-phonon scattering, from sparse phonon phase sampling in cells where

cross section is small compared to length. Phonons that aren’t resolved cannot

contribute to phonon-phonon scattering effects. Reduced scattering means heat

transport is artificially more efficient than expected from the bulk material.
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2.8 Green-Kubo

Equilibrium molecular dynamic (EMD) simulations consider systems with

constant average temperatures, and a net heat flux of zero. The Green-Kubo

method is a way of using EMD to compute thermal conductivity, looking at heat

flux caused by temperature fluctuations. The lattice thermal conductivity of

the system is related to the duration of these variations. I use the Green-Kubo

method to both compute and validate the workflow and results of the direct

method. While the direct method has complex finite-size effects based on length

and cross-sectional area, Green-Kubo is simpler in that number of atoms is the

main factor. As long as the system is of sufficient size, which will be explored

in Chapter 3, there is no need to care about arranging the cells or extrapolation

procedures.

2.8.1 Methodology

The Green-Kubo method uses auto-correlation functions (ACFs) to quantify

time-dependence of heat fluxes (shown in Fig. 2.7, and Equation 2.16).

Instantaneous heat fluxes can be used to determine how energy is dissipated

within a system.

The heat flux data required to generate the ACF is obtained from MD

simulation in the NVE regime. As always, it is necessary to perform the NPT

cell size convergence, and preliminary NVT to populate the atomic velocities.

For a timescale up to a chosen correlation length, the auto-correlation function

is obtained over the series of net heat flux in each crystallographic direction

ACFi = 〈Ji(0) · Ji(t)〉 , (2.16)

where i specifies direction, J is heat flux, and t is the correlation length. Heat
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Figure 2.7: Normalised ACF. Correlation is taken over a longer length than shown
on this plot (100 ps), however the function decays to less than 1% of its initial
value at 2 ps. It continues to oscillate about zero, with a positive average value.

flux is calculated using

J =
1

V

[∑
m

emvm +
1

2

∑
m<n

(fmn · (vm + vn))xmn

]
, (2.17)

where e is the energy of the mth atom, v is the velocity of the mth atom, f is the

force acting on the mth atom, and x is the separation between the mth and nth

atoms.

This acts as a cut-off, the significance of correlating points far apart in time

decreases with the separation. The correlation length could be as long as the

simulation length, but for large time differences there would be fewer and fewer

heat flux pairs. This means there would be increased uncertainty on points of

decreasing relevance. The correlation lengths I use are much shorter than the

simulation length.

The integral of heat flux ACF is proportional to thermal conductivity via the

Green-Kubo equation (see Fig. 2.8 and Equation 2.18),

κi =
V

kBT 2

∫ ∞
0

〈Ji(0) · Ji(t)〉 dt , (2.18)
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where V is the simulation cell volume, kB is the Boltzmann constant, and

T is the average temperature of the system. The Green-Kubo equation is

obtained from the fluctuation-dissipation theorem (Kubo, 1966), and relates the

time-dependence of heat flux events to material properties, in order to obtain

thermal conductivity. This means that the length of time over which the heat

flux events autocorrelate represents the conductivity of the material, i.e., a short

correlation length represents a rapid dissipation of heat, meaning the material

efficiently transports heat and therefore has a high lattice thermal conductivity.

In this study I use Green-Kubo results as an independent check on the direct

method, as they do not have the same finite-size effects. Obtaining a converged

conductivity result simply depends on using a large enough cell volume/number

of atoms.

Figure 2.8: Integrated ACF, multiplied by constants to get thermal conductivity.
Large variation in the first 1 ps corresponds to the correlation time where the
ACF is unconverged (still decaying/large oscillations). Thermal conductivity is
averaged from correlation time of 5 – 10 ps (region in red box).

2.8.2 Data processing

The individual integrals obtained from the Green-Kubo show variation from the

average combined integral on the order of the mean. Many simulations from
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different initial temperature conditions are required in order to ensure good

sampling of conductivity, as well as ensuring the computation time for each is long

enough for convergence. This makes Green-Kubo a computationally expensive

method, especially for large systems.

From a large sample of integrals, the mean integral is examined to find a

time window of convergence. This region exists after the initial large variations,

and before any drift behaviour. This correlation window is then applied to all

integrals separately, yielding a population of conductivities and uncertainties. I

then applied a weighted average to this information, obtaining a conductivity for

the entire population.

The ACF should decay to zero as correlation time tends to infinity, however

noise in the ACF prevents this. This will ultimately cause the integral to

diverge/drift on long timescales. Howell (2012) fits a series of exponential

decays to their ACF, forcing the expected decay to zero and subsequent

(constant) integral convergence. This represents a significant improvement on

the conductivity estimate at long correlation lengths, but is mostly similar with

the un-fit integrals early in the correlation.

2.9 Previous comparisons of Green-Kubo and

direct method

A wealth of data comparing the conductivities yielded by non-equilibrium and

equilibrium molecular dynamics is available for silicon, at temperatures around

1000 K. Schelling et al. (2002) consider Sillinger-Weber silicon, and find good

agreement in conductivity results, once FSE are addressed. Sellan et al. (2010)

consider the same material and find the two methods do not agree at a lower

temperature of 500 K, although it is argued by Howell (2012) that their direct
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method finite-size scaling was inappropriate. Howell (2012) performs their

own calculations and review of literature, finding consistent results between the

methods and the suite of studies considered. Wang and Ruan (2017) contribute

further results consistent with Howell for Sillinger-Weber Si at 1000 K, as well

showing agreement between methods for graphene and silicene (a two-dimensional

allotrope of silicon) at 300 K.

Dong et al. (2018) show consistency between NEMD and EMD for silicene

and Si nanowires. Turney et al. (2009) show very coherent agreements for

Lennard-Jones argon across a range of simulation methods, including NEMD,

EMD Green-Kubo, along with Boltzmann transport equation and lattice

dynamics approaches.

Although the existing literature suggests good agreement between calculations

run using the direct method and the Green-Kubo method, none of the existing

studies consider a material as complicated as bridgmanite. Therefore in the next

chapter, I computed conductivities using the direct and Green-Kubo methods,

and investigate the agreement between the two.

2.10 Conclusion

In this chapter I introduced atomic-scale modelling, how it can be performed,

and how atoms can be made to behave like realistic materials. I outlined

molecular dynamics methodologies for computing thermal conductivity, and

potential problems associated with them.

In this chapter, I have shown how the Oganov et al. (2000) potential can

be used in LAMMPS to reproduce the behaviour of bridgmanite. I did this by

calibrating the cutoff distances associated with the Buckingham and Coulomb

cutoffs. I calculated structural parameters (e.g., lattice parameters, unit cell

volume, elastic constants, and the bulk and shear moduli). Using LAMMPS, I
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compared the structural parameters from calculations using my implementation

of the potential with other calculations using the same potential. The main

conclusion from this chapter is that bridgmanite is well replicated at the atomic

scale using the Oganov et al. (2000) potential in LAMMPS.

In Chapter 3 I use the validated potential to calculate thermal conductivity

and study the effects of finite simulation size on computed bridgmanite

conductivity results. I first determine the finite-size effects for the Green-Kubo

method, and then I use the Green-Kubo result to investigate finite-size effects in

the direct method.

2.11 Summary

1. In this Chapter, I introduced atomic-scale modelling concepts and methods

of computing thermal conductivity.

2. I implemented the Oganov et al. (2000) potential for bridgmanite and

reproduced structural parameters at CMB conditions, finding good

agreement (within 1%) with the results from previous implementations.

3. I gave a review of comparisons between the Green-Kubo and direct method,

which have only previously been compared for simpler systems than

bridgmanite at CMB conditions.
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Examining finite-size effects in

thermal conductivity

computations

A range of atomic-scale simulation methods are available to determine the lattice

thermal conductivity of materials. These are invaluable for calculating thermal

conductivity at conditions of which experiments are difficult, e.g., the extreme

conditions found in the Earth’s lower mantle (pressures and temperatures up to

136 GPa and 4000 K at the core-mantle boundary), however there are limitations

to these methods, which will be investigated further in this chapter.

In this chapter, I explore how finite-size effects (FSE) influence the results

of calculations performed using both the Green-Kubo method and the direct

methods. I find that the finite-size effects in the Green-Kubo method are easily

addressed, and so I then use the Green-Kubo result to independently verify the

direct method calculations. By comparing these methods, I will reduce the

current uncertainty around the temperature-dependence of FSEs. Quantifying

the FSEs for the direct method is challenging, but the direct method is one

of the ways in which conductivity is computed using ab initio methods. Ab

69
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initio methods using the Green-Kubo method, on the other hand, are not readily

available. Therefore the quantification of FSEs presented here, using interatomic

potentials, could be used to inform the appropriate application of ab initio

methods, e.g., quantifying FSEs in the direct method using interatomic potentials

to inform appropriate cell geometries for DFT calculations, such as Stackhouse

and Stixrude (2010); Stackhouse et al. (2015).

As previously discussed, it is important to ensure simulations represent

material properties and physical properties as accurately as possible. Perhaps

most obvious is ensuring the chemistry is correct, and that the atoms have

correct charges, masses, and interactions with neighbours. Even if this chemical

information is accurate, simulations can produce inaccurate results if the shape

and size of the modelled cells do not reproduce the bulk material behaviour. In

the case of thermal conductivity, this means ensuring the phonon population and

interactions between phonons are both accurately reproduced.

Previous studies report that the finite-size effects can influence calculated

thermal conductivity values (e.g., Sellan et al., 2010; Stackhouse et al., 2015;

Hu et al., 2011). Thermal conductivity is underestimated if the length of

the system is comparable with or smaller than the dominant heat-transporting

phonon wavelengths (Sellan et al., 2010). This is because phonons with longer

wavelengths than the size of the simulation box cannot be represented in a

molecular dynamics simulation. Such phonons cannot then contribute to heat

flow. Another way the effect of finite system size can be observed is in the

reproduction, or failure, of thermal resistance. During phonon-phonon scattering,

heat flow is impeded.

If simulation cells of sufficient length to support phonon mean free paths are

used, phonon-phonon scattering in the direction of heat flow will be accurate.

What will not necessarily be correct is the phonon-phonon scattering in the

directions perpendicular to this. The above principal applies, if the system has
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too small a cross-sectional area (compared to its length), the phonons involved

in lateral scattering cannot be resolved. This reduces thermal resistance within

the system, thereby overestimating conductivity. A longer cell length inherently

has more phonons within the cell; this means the cell requires a proportionally

larger cross-sectional area in order to reproduce phonon behaviour.

The FSE discussed in this chapter are therefore those that are observed

considering the cell size in terms of the phonon mean free path and also the

scattering effects. I find that when using the direct method (Section 3.2.7),

FSE are observed when the cell length is of comparable magnitude to the

phonon mean free path or when the CSA is too small to accurately reproduce

phonon-phonon scattering. The same effects are apparent but more easily

addressed in calculations using the Green-Kubo method (Sections 3.1.4).

I not only investigate thermal conductivity at CMB conditions, but also at

conditions at which conductivity will be largest, i.e., low temperatures, high

pressures, and no impurities. I am primarily interested in the conductivity at

the CMB, 136 GPa and 4000 K, and I also investigate the FSE at 136 GPa and

1000 K, both considering chemically and isotopically pure MgSiO3 bridgmanite.

I assume that Green-Kubo finite-size effects have been removed, and then

compare the results to those from direct method calculations to inform on the

FSE in the direct method. These results present one of the most in-depth analyses

of FSE, and the conclusions of this could be further applicable within the field of

material science.

3.1 Green-Kubo procedure

Here I outline my approach for applying the Green-Kubo method for computing

conductivity to bridgmanite at lower mantle conditions (Fig. 3.1). First I show

accurate results can be obtained within the chosen correlation length. I then



72 Chapter 3: Examining finite-size effects

show how results represent a large sample of possible conditions, and a way

of minimising error by combining multiple heat flux autocorrelation functions

(ACFs). Finally I show that all these components are valid with respect to total

simulation time, before presenting how finite simulation size affects conductivity

results.

3.1.1 Correlation length convergence

As described in Section 2.8.1, I compute ACFs up to correlation lengths of 100 ps

for all calculations, with (100,000) 1 fs timesteps. This length is longer than

required but selected to show convergence in the conductivity result, and check

for drift in the integrals for long correlation times. Figure 2.7 shows that the

magnitude of the ACF decays to less than 1% of its initial value at a correlation

time of about 2 ps, inferring the start of convergence for the integral and thus

conductivity.

Considering bridgmanite at lower mantle pressures, I find correlation time

windows of 2–30 ps to be suitable. This allows the initial high variability in

integral value to be ignored and is long enough for good sampling of the integral,

but short enough to ignore the drift-effects. The magnitude and range of the

window typically increases with conductivity (or with decreasing temperature at

constant pressure), the correlation window is 2–8 ps at 3000 K (Fig. 3.2b), and

10–30 ps at 1000 K (Fig. 3.3b). These correlation lengths are on the same order

of magnitude as used by Haigis et al. (2012), who used the Green-Kubo method

and observed convergence in MgO conductivity results after 30 ps, albeit at a

temperature of 3000 K.

As shown in Figures 3.2c & 3.3c, the integral drifts considerably outside of

the chosen correlation window. This effect needs to be resolved before accurate

conductivity results can be determined, and is caused by an increase in the ACF
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Figure 3.1: Flowchart showing the Green-Kubo procedure. The total run time
of a simulation for each initial temperature condition (given for each supercell
geometry in Tables 3.1 and 3.2) is split into ten, to produce that many ACFs.
Simulation time is split in this manner to guarantee computational feasibility,
where restarting calculations bypasses maximum job run times in addition to
improving subsequent sample averaging of integrals.

signal to noise ratio at long correlation lengths. Theoretically, the ACF tends

to zero as correlation length tends to infinity. In practice this doesn’t happen

because of noise, but it can be thought of as the signal tending to zero and the
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Figure 3.2: Integral populations (blue) from GK calculation at 3000 K, with
mean integral and plus/minus standard deviation (red). a. shows the range of
conductivity series over the full correlation length. Dashed box shows position
of data series shown in (c). b. shows the series up to the end of the correlation
window (8 ps, the window starts at 2 ps). c. focuses on the mean integral over
all the correlation length, past the correlation window where it begins to drift
away from a converged value.
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Figure 3.3: Integral populations (blue) from GK calculation at 1000 K, with
mean integral and plus/minus standard deviation (red). a. shows the range of
conductivity series over the full correlation length. Dashed box shows position
of data series shown in (c). b. shows the series up to the end of the correlation
window (30 ps, the window starts at 10 ps). c. focuses on the mean integral over
all the correlation length, past the correlation window where it begins to drift
away from a converged value.
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noise remaining finite.

3.1.2 Integral sample convergence

ACFs produced by each simulation are integrated separately, and averaged

into a single series. From this combined integral I pick by eye a window of

correlation lengths to capture a flat, converged region (or the section just after

the ‘bottleneck’ if convergence is not obvious, and before the integral drift). The

sections of the individual integrals within the correlation window are averaged,

to give a population of windowed averages (with uncertainty relating to the

spread of the integral within each window). Based on these uncertainties, a

weighted average is taken of this population (i.e., the greater the uncertainty, the

less the value contributes to the average). This weighted average gives a single

value with standard deviation, and this value is directly proportional to thermal

conductivity, as given by Equation 2.18.

3.1.3 Simulation length convergence

In this section, I calculate the auto-correlation functions at different points

throughout a simulation, to determine the effect of simulation length on

the conductivity result (and the convergence of these values with increasing

simulation time). To investigate this, I process the auto-correlation function

every 1 ns up to a simulation length of 10 ns (Fig. 3.4). There is little variability

in conductivity result average with increasing simulation length. The variation is

±0.02 on an average of 6.80 Wm−1K−1.

While the results in Figure 3.4 suggest that the conductivity is converged

with respect to simulation length, it does not mean the constituent integrals have

converged to a single value. Figure 3.5a corresponds to an individual simulation

length of 1 ns, and 3.5b shows a simulation length of 10 ns. This shows that
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Figure 3.4: Thermal conductivity as a function of effective simulation time for
Green-Kubo simulations. Error bars show one standard deviation and are smaller
than symbol size.

although the conductivity value is similar, the individual integrals converge on the

mean, reducing the spread and standard deviation. Negative conductivities can

be seen on 3.5a, which is obviously unphysical, reinforcing the idea that averaging

a large enough sample of integrals is more important than the simulation time

that went into producing a single series.

In the simulation lengths I tested, the conductivity result already appeared

converged to a stable value. To explore this further, I showed that as simulation

length increased, the range of integral values decreased. Therefore conductivity

values obtained for simulation lengths of 10 ns have a smaller error than those

obtained at 1 ns (Fig. 3.4). It is possible that simulation lengths below those

tested here (1 ns) could show incorrect (i.e., non-converged) values for the

conductivity of bridgmanite at lower mantle conditions. The simulation length
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Figure 3.5: Conductivity as a function of correlation length. Integral populations
(blue) from GK calculation at 4000 K, with mean integral and plus/minus
standard deviation (red). Both show series over full correlation length, where
the simulation length is (a) 1 ns and (b) 10 ns.

is therefore less important than the number of integrals and their correlation

length, assuming that the simulation length is exceeds the required correlation

length window.
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3.1.4 Finite-size effect convergence

The bridgmanite unit cell is orthorhombic (i.e., a:b:c = 1:1:1.4), so I assemble

supercell structures of 3×3×2, 4×4×3, 5×5×4, and 6×6×4 to make a supercell

arrangement approximating a cube (Tables 3.1 and 3.2). These supercells contain

360, 960, 2000, and 2880 atoms respectively (20 atoms in the unit cell). The goal

here was to minimise the height to area ratio in each direction, while increasing

the atom count.

The supercell arrangement of 3×3×2 fails to reproduce the conductivities of

the larger cells for both temperatures (Figs 3.6a & 3.6b). Although there is

no clear convergence shown in Figure 3.6a, the variation in thermal conductivity

between the simulation cells≥4×4×3 is on the order of 0.1 Wm−1K−1. At 1000 K,

the agreement between simulation cells≥4×4×3 is more obvious (Fig. 3.6b). I use

the 4×4×3 supercell as the conductivity obtained is in good agreement (within

0.5 Wm−1K−1) with the larger cells.

This a useful result in terms of computation efficiency, as 6×6×4 supercells

are 3 times as large as 4×4×3. I investigate the finite-size effects at conditions

of both 4000 K (Fig. 3.6a, Table 3.1) and 1000 K (Fig. 3.6b and Table 3.2).

Table 3.1: A summary of the simulations performed at 4000 K, corresponding to
the data shown in Figure 3.6a.

Supercell Simulation length # initial conditions Total run time
3×3×2 10 ns 20 2 µs
4×4×3 10 ns 30 3 µs

5×5×4
5 ns 20 1 µs

1.7 µs
1 ns 70 0.7 µs

6×6×4 1 ns 80 0.8 µs
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Table 3.2: A summary of the simulations performed at 1000 K, corresponding to
the data shown in Figure 3.6b

Supercell Simulation length # initial conditions Total run time
3×3×2 1 ns 20 0.2 µs
4×4×3 1 ns 50 0.5 µs
5×5×4 1 ns 50 0.5 µs
6×6×4 1 ns 50 0.5 µs

Figure 3.6: Finite-size effects at (a) 4000 K and (b) 1000 K. Thermal conductivity
as a function of the number of atoms in the simulation. Error bars show one
standard deviation. Full data given in Table 3.1.

3.2 Direct method

In this section I outline how I apply the direct method to compute the thermal

conductivity of bridgmanite (Fig. 3.7). I outline the initial system setup, the

supercell geometry and how the system is divided into sections to determine

the temperature gradient. I then discuss properties which must be controlled to

ensure accurate results, namely the magnitude of the temperature gradient, and

the convergence of computed conductivity with respect to total simulation time.

I briefly introduce the data processing methodology, before explaining how the

effects of finite system size are considered and mitigated.

Finally I discuss my results with respect to theoretical predictions (i.e., Hu

et al., 2011), and discuss the required system size to compute the conductivity of

bridgmanite at lower mantle conditions.
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Figure 3.7: Flowchart showing the direct method procedure.

3.2.1 Constructing supercells

In order to investigate how FSE can affect the results of DM calculations, I use

very large cells, both in length and cross-sectional area. I use supercells of 6, 8,

10, 12, 16, 24, 48, and 96 unit cells long and with corresponding cross sections of

1×1, 2×1, 2×2, 4×4, 8×8, and 12×12 (see Tables 3.3 and 3.4).

In the direct method, the simulation supercell is split into sections along its

length (Fig. 3.8). The temperature of each section is calculated using the kinetic

energy, as described in Section 2.2. The symmetry of the bridgmanite crystal

system allows unit cells to divided into two, such that the width of sections is

half a unit cell along the length of the supercell (the direction of heat flow).

Two of these sections, half the supercell length apart, are designated as the
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Table 3.3: Simulation run times (ns) for each simulation cell cross-sectional area,
and each simulation length, at 4000 K

Length
6 8 10 12 16 24 48 96

1×1 5 5 5 5 5 5 5 5
2×1 5 5 5 5 5 5 5 5
2×2 50 50 50 50 50 50 50 10
4×4 10 10 10 10 10 10 10 n/a
8×8 1 1 1 1 1 1.5 1.5 n/a

12×12 1 1 1 1 1 1 0.6 0.6

Table 3.4: Simulation run times (ns) for each simulation cell cross-sectional area,
and each simulation length, at 1000 K

Simulation length
6 8 10 12 16 24 48 96

1×1 10 10 10 10 10 10 10 10
2×1 10 10 10 10 10 10 10 10
2×2 10 10 10 10 10 10 10 10
4×4 10 10 10 8 5 3 2.5 1.4
8×8 1 1 1 1 1 0.8 0.4 0.18

heat source and heat sink. It is within these sections that the kinetic energy of the

atoms is swapped. Heat flows in both directions from the hot section because of

cell periodicity (see Section 2.7.1), meaning there are two temperature gradients

and the average temperature can be determined for equivalent sections.

Where L is the supercell length in unit cells and S (= 2L) gives the number of

sections, there are S/2 + 1 temperature points to fit the gradient to. The width

of a section, SW, is half that of a single unit cell. As the temperature gradient

is non-linear around the heat source and sink, I ignore S/12 sections (rounded

to the nearest integer) from both ends of the temperature gradient. For a given

simulation cell, S/3 + 1 points are used to fit the temperature gradient with a

linear least squares fit. The minimum supercell length considered is 6 unit cells

(12 sections, 5 data points for fitting), in order for an accurate sampling of the

temperature gradient.
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Figure 3.8: Temperature profile and geometry schematic for a cell 6 unit cells long.
The temperature profile is non-linear, steeper gradient than the surrounding,
immediately around the heated sections. In longer cells, the non-linear region
will be wider than one section, requiring more sections to be ignored. The
temperature profile is folded over onto itself to average one temperature gradient.
The equations discussed hold as long as a unit cell is divided into two sections,
and a twelfth of the total sections are removed from each end of the combined
gradient.

3.2.2 Influence of section width

I investigated changing the width of the heated sections and found that the section

width has no effect on the resultant conductivity value, assuming there are enough

temperature points to fit the linear gradient. Furthermore, changing the width

(and thus number) of temperature bins has no effect on the sampled gradient,

assuming resolution is large enough to capture the non-linear region around the

heat source/sink (Fig. 3.9).
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Figure 3.9: Conductivity results from direct method when temperature is
calculated from sections half a unit cell wide, and also a twelfth of the total
length. The amount of points in the temperature gradient changes when the
section width depends on the unit cell, but not on the length (i.e., there are
always twelve sections, the gradient is fit to five data points).

3.2.3 Temperature gradient

In the direct method, it is important to control the magnitude of the temperature

gradient, such that Fourier’s law (Equation 2.12) remains valid, i.e., conductivity

is constant along the length of the cell. Thermal conductivity is strongly

temperature-dependent at upper lower mantle conditions (1000 K), it is therefore

undesirable to have a large temperature gradient across the cell, because this

results in varying thermal conductivity. The opposite case is also true, the

difference in temperature between hot and cold sections must be larger than

the uncertainty in the average system temperature.

In all of my simulations, I keep the temperature difference between the ends
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Table 3.5: Intervals used for swapping atomic velocities in the hot and cold
sections, for each simulation cell cross-sectional area at 4000 K.

Cell length (UC)
6 8 10 12 16 24 48 96

1×1 40 50 100 100 125 125 250 250
2×1 40 50 100 100 125 125 250 250
2×2 40 50 100 100 125 125 250 250
4×4 20 20 25 25 40 50 100 n/a
8×8 5 5 8 8 10 20 25 n/a

12×12 1 1 2 2 4 5 8 10

Table 3.6: Intervals used for swapping atomic velocities in the hot and cold
sections, for each simulation cell cross-sectional area at 1000 K.

Cell length (UC)
6 8 10 12 16 24 48 96

1×1 40 40 40 100 100 125 250 500
2×1 40 40 40 100 100 125 250 500
2×2 10 10 20 20 25 40 50 100
4×4 1 2 4 5 8 10 20 25
8×8 1 1 1 1 1 2 4 5

of the gradient to 20% the mean temperature. I control the magnitude of the

gradient by altering the interval at which heat is exchanged (at the intervals shown

in Tables 3.5 and 3.6), via swapping atomic velocities in the hot and cold sections

(see Section 2.7.1). To produce the desired gradient magnitude as outlined

above, shorter intervals are required as cell length decreases, cross-sectional area

increases, and the mean cell temperature decreases. The easier it is for heat to

flow from hot to cold (smaller distance between, more area for heat transport,

lower temperature/less thermal resistance), the more heat must be transported

(in the form of shorter intervals between heat swaps) to maintain a temperature

gradient.

3.2.4 Simulation time convergence

A plot of thermal conductivity versus time shows large variability in conductivity

as the temperature gradient evolves and approaches steady-state (Fig. 3.10). This
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is related to the setup of the temperature gradient and its transition to steady

behaviour. For this reason, the timesteps containing this behaviour are ignored

when determining conductivity. This simply means removing the temperature

gradient and heat flow data from the rest of the series. How this is applied varies

in practice, but on a 1 ns simulation, I typically ignore the first 100 ps (10%

simulation time).

The cumulative average of conductivity tends towards a constant value while

the uncertainty decreases (Fig. 3.10). This is a simple check to ensure accurate

results, where the simulation can be extended if more data is required.

Figure 3.10: Thermal conductivity as a function of simulation time, showing
convergence with increasing time. Cell size = 48×2×2. Conditions = 4000 K.
Black shows cumulative average, red shows upper and lower bounds of error (1σ).

It is also possible for a simulation to be too long however, where the

conductivity result will drift from its converged position (Fig. 3.11). This is

due to inaccuracies in the molecular dynamics integrator (Section 2.2). It is
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difficult to spot by just looking at the conductivity result and uncertainty, but

easy to observe in the time series and/or graphically. The conductivity value

obviously begins to change erratically, and the uncertainty begins to increase.

The uncertainty would never increase if the result was still converging, making

this a useful marker to look for in the series.

Figure 3.11: Thermal conductivity as a function of simulation time, showing
drift with increasing time. Cell size = 8×2×2. Conditions = 4000 K. Black
shows cumulative average, red shows upper and lower bounds of error (1σ).

3.2.5 Data processing

Thermal conductivity is calculated from Fourier’s law (Equation 1.3). The

cumulative average of conductivity is calculated, along with the errors, which

are calculated as one standard deviation of the mean (e.g., Fig. 3.10).
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3.2.6 Inverse extrapolation procedure

As discussed in Section 2.7.2, the results from simulations of varying cell lengths

are used to determine the conductivity of the bulk material (Fig. 3.12). The lack

of a linear relationship indicates finite-size effects (Fig. 3.12a).

3.2.7 Finite-size effects and convergence issues

To explore the FSE and convergence issues for calculations using the direct

method, I first show results at 4000 K and then at 1000 K. In each case,

I determine conductivities for varied cell cross-sectional areas. I conclude by

showing that the nature of FSE on conductivity results varies for different

conditions.

FSE at 4000 K

It is clear in Figure 3.12a that supercell CSAs of 1×1 and 2×1 overestimate

conductivity (underestimate inverse conductivity) with respect to the larger

CSAs. As discussed earlier (Section 2.6), this can be attributed to unrealistic

biasing of phonon scattering within a narrow simulation cell. For the supercells

with shorter lengths (larger inverse length), increasing CSA (to 2×2) brings the

results into alignment. Although the variation between the larger (>2×2) CSAs

appears significant, this is due to the inverse axis and the absolute difference in

conductivity estimates is on the order of 0.5 Wm−1K−1.

Another problem is apparent when looking closely at the shortest cells in the

series (highest inverse length). They appear to overestimate conductivity with

respect to the expected linear fit through the other short cells (see the linear trend

on Fig. 3.12a). This can be explained by the cell being on the order of the phonon

MFP, as discussed later in Section 3.2.9, allowing for phonons to travel from hot

to cold without any scattering events (Ballistic Phonon Transport). This means
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Figure 3.12: Inverse conductivity plotted against (a) all inverse simulation cell
lengths and (b) for cell lengths between 8 and 24 UC, both for direct method
simulations performed at 4000 K. Dotted line shows linear least squares fit. Error
bars for results from this study showing one standard deviation are smaller than
symbol size. Also shown are extrapolated direct method results from Ammann
et al. (2014) and Stackhouse et al. (2015).
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the simulation does not have thermal resistance representative of the material.

No correction can be applied here, the 6 UC length supercells must be excluded

from the extrapolation.

The effect of removing the shortest cell length is subtle, but it improves the

fit to the remaining series and the agreement with the Green-Kubo estimate of

thermal conductivity. Although the 8×8 supercell with length 8 (inverse length

of 0.125) also shows a slightly anomalous conductivity result, it is still considered

in the fit, as the results for all other CSAs at length 8 fit with their respective

trends. The argument of removing short cells is further discussed with respect to

the results at 1000 K, where the effect is much more significant (e.g., Fig. 3.15).

While the shorter cells across all cross-sectional areas produce similar

conductivity results (Fig. 3.12), they diverge from the expected linear trend with

length. The magnitude of this divergence appears to decrease with increasing

CSA. This suggests that there is an aspect ratio finite-size effect, as reported

by Hu et al. (2011). This is similar to the CSA effect mentioned above,

whereby phonon-phonon scattering behaviour is not being modelled correctly.

This explains why the effect is larger the smaller the CSA, where there are fewer

phonons to participate in scattering events.

The divergence is not observed for 12×12 CSA (Fig. 3.12a). Such a large

cross-sectional area has a high computational cost, however, and is not really a

viable option for employing the direct method to calculate conductivity at many

P-T conditions. The largest CSA (i.e., 12×12) show the greatest scatter about

the trendline. This is likely due to convergence issues and could be improved by

averaging repeated simulations, however this is computationally intensive.

The 12×12 simulations give the only results that do not show divergent

behaviour with increasing length. The results in Figure 3.12b show that smaller

CSAs (>2×2) can provide equally robust results, if the divergent behaviour is

identified and removed from the extrapolation to infinite system size. In order
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to avoid divergence of thermal conductivity results with respect to increasing

cell length, I recommend ignoring cells with lengths longer than 24 Unit Cells

(UC). Cells that are 24 UC or shorter in length are converged with respect to

CSA and GK (Fig. 3.12b). Computational cost increases with length, as does the

divergence from linear behaviour. I can still produce accurate results using the

cell lengths where 2×2 CSA cells produce the same results as those from 12×12

(Fig. 3.12b), with significantly reduced computational cost. These key dimensions

are somewhat arbitrary, only inferred from observations of the finite-size effects.

Different materials require their own FSE analysis, despite any similarities in

chemistry to bridgmanite or conditions to the lower mantle.

Comparison with the equivalent Green-Kubo point shows good agreement for

the extrapolations from CSAs 2×2 and above. The 12×12 series extrapolates to

6.7 Wm−1K−1, the spread of the other extrapolations is± 0.3 Wm−1K−1, with the

GK point at around 7.0 Wm−1K−1(Fig. 3.12b). Therefore using a cross-sectional

area of 12×12 produces a result that is converged with respect to Green-Kubo.

Using this result, I determine that cells with a cross-sectional area of 2×2 are

also converged when the cell length is less than 24 UC. Using a CSA of 2×2 is

therefore a good compromise between computational cost and result accuracy.

In summary, accurate bridgmanite conductivity results can be produced with

the direct method when the cell CSA is greater than 2×2, and the length between

8–24 UC. This will be the most efficient use of computational resources. Different

lower mantle minerals may require different simulation geometries, making them

easier or more difficult to compute.

FSE at 1000 K

Everything is different with the FSE analysis at 1000 K (Fig. 3.14a). It still

appears that the 1×1 and 2×1 CSAs overestimate conductivity, and that the

smallest, 6 unit cell length data point overestimates conductivity compared to a
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Figure 3.13: Extrapolated thermal conductivity, calculated using the direct
method, as a function of CSA at 4000 K. Error bars show one standard deviation
and are in most cases smaller than symbol size. Dotted line shows Green-Kubo
result.

hypothetical linear fit through the other points. Using cells between 8–24 UC

for extrapolation does not produce conductivity results which agree with GK

however (Fig. 3.14b).

The discrepancy is around 5 Wm−1K−1, 12.5 Wm−1K−1 from direct method

and 17.5 Wm−1K−1 from Green-Kubo. The best CSA series to fit appears to

be the 2×1. To get agreement between the two methods at these conditions for

CSAs of 2×2 or greater, cells with lengths of 48 UC or larger should be considered

(Fig. 3.15). Using these cell parameters, the conductivity result produced is

approximately the same as the Green-Kubo results, suggesting convergence of

the minimum CSA to the GK result.

Unlike the results at 4000 K, the longest simulation cells provide similar
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Figure 3.14: Inverse conductivity plotted against a all inverse simulation cell
lengths and b for only 48 and 96 UC. All direct method simulations performed
at 1000 K. Error bars showing one standard deviation are smaller than symbol
size.
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Figure 3.15: Inverse conductivity plotted against inverse simulation cell length,
for direct method simulations performed at 1000 K, for lengths of 48 and 96 UC.
Dotted lines show linear least squares fit for each cross-sectional area data series
> 2×2. Green-Kubo result is shown in green. Error bars showing one standard
deviation are smaller than symbol size. Largest converged cells agree with
Green-Kubo result.

conductivity estimates to the Green-Kubo result at 1000 K. At 4000 K, the only

cell length that was ignored for being too short was 6 UC. This was because

the phonon MFP exceeded the cell length, and therefore phonon scattering

was misrepresented. However, at 1000 K, the conductivity is higher, and thus

the MFP is longer. This means that the MFP exceeds the length of more of

the simulation cells, requiring a higher minimum cell length, and thus more

simulations must be ignored to obtain a result similar to Green-Kubo. At 1000 K,

longer cells are used for extrapolation, as they exceed the length of the MFP, and

therefore appropriately capture phonon scattering events. From the data series

here, only two points appear to have sufficient cell lengths to exceed the MFP.
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The fit, therefore, should not be considered robust, but is more similar to the

Green-Kubo result than the fit that includes the shorter cell lengths.

3.2.8 Explaining CSA effect

Hu et al. (2011) presented a numerical model of thermal conductivity using the

direct method, where they demonstrated that increasing simulation cell length

and keeping the cell cross-sectional area constant leads to diverging thermal

conductivity at very long cell lengths (Fig. 3.16). They suggest that this is because

of discrete phonon phase space sampling, leading to behaviour characteristic of

one-dimensional systems. The thermal conductivity (κ) model presented by Hu

et al. (2011) is an approximation for one acoustic phonon, summed over the

phonon wave vectors

κ =
C1kB
3Aπ

∑
kx

∑
ky

tan−1(kz/(k
2
x + k2y)

1/2)/(k2x + k2y)
1/2|π/aπ/Lz

, (3.1)

where C1 is a scaling factor between relaxation time and phonon frequency,

kB is the Boltzmann constant, A is the cross-sectional area, kx, ky and kz are

the Cartesian components of the phonon wave vectors, Lz is the length of the

simulation cell in the z-direction, and a is the lattice parameter.

When the phonon wave vectors in the x- and y-directions tend toward

zero, and the cell length is significantly longer than the lattice parameter, the

conductivity from Equation 3.1 becomes directly proportional to Lz by

κ(kx = ky = 0) =
C1kB
3Aπ2

Lz , (3.2)

where κ represents the contribution of the divergent term (Fig. 3.16). As kx and ky

tend toward zero, the divergent term contributes more to the total conductivity.

When phonons perpendicular (x and y) to the direction of heat transport (z)
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become insignificant, phonon-phonon scattering is diminished and the system

tends towards length-dependent conductivity characteristic of one-dimensional

systems.

Figure 3.16: Analytical model from Hu et al. (2011) showing how thermal
conductivity increases with structure length. Total conductivity is calculated
by Equation 3.1. Contribution from the divergent terms is calculated in
Equation 3.2. The contribution from non-divergent terms is obtained from the
difference between Equation 3.1 and Equation 3.2. Divergent conductivity results
are observed when the total conductivity deviates from the non-divergent portion,
i.e., when the cell length is too long with respect its CSA and the divergent terms
become significant.

Here, I compare the forms (considering the shape of the data rather than

the absolute magnitudes) of the thermal conductivity results obtained via the

direct method in this study with the form of the analytical model presented by

Hu et al. (2011). I use the results obtained using a 2×2 cross-sectional area

at 1000 K (Fig. 3.17b) and 4000 K (Fig. 3.17c), as shown in Figures 3.14 and

3.12, respectively. The analytical model from Hu et al. (2011) diverges with
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length, i.e., the longest simulation cell lengths diverge away from the linear trend

seen at shorter cell lengths (see Fig. 3.17a, at around x=0.05). This point of

divergence is considered here to be the “turning point” in the model. I suggest

that when data points calculated using the direct method fall within the linear

portion of the inverse-space Hu et al. model (Fig. 3.17a), these points can be

extrapolated to give a conductivity result at infinite system size that agrees with

the corresponding Green-Kubo result.

Figure 3.17: (a) Inverse conductivity as a function of inverse sample length,
according to the analytical model from Hu et al. (2011), with annotations showing
where the direct method conductivity results from this study plot; (b) the direct
method results for 1000 K using a 2×2 CSA, with red-dashed line illustrating how
the data would map onto the Hu et al. model; (c) the direct method results for
4000 K using a 2×2 CSA, with red-dashed line illustrating how the data would
map onto the Hu et al. model.

I show illustratively that from the 1000 K data (Fig. 3.17b), the largest cells fit

with the linear portion of the Hu et al. trend, whilst the shortest cells (<48 UC)

diverge from the analytical model (shown by the red dashed line in Figure 3.17b).

This divergence occurs because the cell lengths are too short relative to the

phonon mean free paths at those conditions, which leads to ballistic phonon



98 Chapter 3: Examining finite-size effects

transport and over-estimations of conductivity (as described by Sellan et al.,

2010). This concept gives further justification for my use of only 2 data points

in the calculation of conductivity at 1000 K shown in Figure 3.15.

The 4000 K data (Fig. 3.17c) matches the Hu et al. model, for all simulation

cell lengths. The exception to this is the smallest cell length from this study, as

the data at 6 UC diverges from the Hu et al. model.

Although the 4000 K data from this study maps well to the Hu et al. model,

this is not to say that if extrapolated, it will produce a reliable conductivity result

that matches the Green-Kubo result. This is because only data corresponding

to the linear (i.e., non-divergent) portion of the Hu et al. model (plotted

on inverse conductivity against inverse length axes, as in Figure 3.17a) can

be extrapolated to appropriate conductivity values, as the non-linear portion

exemplifies the impact of FSE, i.e., when cell lengths are too long compared to

their cross-sectional area.

Considering Figure 3.16, when the “Total conductivity” runs parallel to

the “Contributions from the divergent term”, the conductivity has diverged

due to excessive length and started behaving in the one-dimensional regime.

The conductivity from cell lengths where “Total conductivity” follows the

“Contribution from non-divergence terms” will produce accurate extrapolated

conductivity results. In Figure 3.17a, Figure 3.16 is converted into inverse space.

The linear portion in inverse space corresponds to when “Total conductivity”

follows the “Contribution from non-divergence terms”, and can be extrapolated

accurately. The nonlinear in inverse space (3.17a) relates to when “Total

conductivity” runs parallel to the “Contributions from the divergent term”,

i.e., conductivity is diverging with length and the system is behaving in the

one-dimensional regime.

Length-dependent conductivity due to excessive length relative to

cross-sectional area, i.e., one-dimensional behaviour, is always undesirable when
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simulating materials that are not one dimensional (in the case of this study).

This is an unwanted side effect of trying to maintain the minimum simulation

size in the interest of computational efficiency. As discussed in Section 3.2.7,

using the minimum CSA is not always problematic, as long as cells of reasonable

length are used. The finite-size effects that can be observed in the direct method

depend on the physical conditions and the material being simulated, and must

be investigated on a case by case basis.

3.2.9 Back-calculating mean free path

The size of the simulation cell is important in relationship to the length of the

phonon mean free path, because as discussed in this chapter, the cell length must

be larger than the mean free path length. An important parameter therefore,

is the length of the mean free path, however this information is not directly

accessible while performing simulations. It is however possible to infer the phonon

mean free path from direct method conductivity results.

The conductivities from supercells (κL) of varying length (L) obtained via

direct method calculations fit the form

1

κL
=

[
12

Cvv

]
1

L
+

[
3

Cvv

1

Λph−ph

]
, (3.3)

where Cv is the volumetric isochoric heat capacity, v is the phonon group

velocity, and Λph−ph is the mean free path associated with phonon–phonon

scattering (modified from Schelling et al. (2002), via Stackhouse and Stixrude

(2010)). When the inverse conductivities are plotted against the inverse

cell lengths, extrapolation to the y-axis (1/L = 0) gives the bulk material

(L → ∞) conductivity, and its associated phonon mean free path. The two

square-bracketed terms in the above equation represent the gradient and intercept

respectively, of such a line fit to data and extrapolated (as in Fig. 2.6).
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I can rewrite Equation 3.3 with the following simplifications

M =

[
12

Cvv

]
, and

M

4
=

3

Cvv
,

giving

1

κL
= M

1

L
+

[
M

4

1

Λph−ph

]
. (3.4)

When 1/L = 0 (i.e., a cell of infinite size), the extrapolated conductivity can be

equated to the gradient and effective mean free path

1

κ
=
M

4

1

Λ
,

and thus

Λ =
M

4
κ . (3.5)

Using the gradient and conductivity from direct method calculations at

136 GPa, 4000 K, and a supercell cross-sectional area of 12×12, the mean free

path is equal to 0.23± 0.03 nm. This value is roughly half the width of the unit

cell in the direction of heat flux, or the width of a direct method temperature

section. The mean free path length estimate is on the same order of magnitude

as that by Stackhouse et al. (2015), who estimated MFP at 145 GPa and 4000 K

as 0.8±0.4 nm. Although there is a slight discrepancy between these values,

the estimate by Stackhouse et al. (2015) is at a higher pressure. Decreasing the

pressure would decrease the mean free path length, bringing it more in line with

the estimate reported here.

Calculating the MFP can help to understand which cell lengths are likely to

yield appropriate thermal conductivity results. The smallest cell length explored

in this study (6 UC) gave anomalous results and was excluded (see Fig. 3.12a and

3.12b), despite having five sections across the length (Section 3.2.1 and Fig. 3.8)
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of temperature gradient. The length over which the temperature gradient is

considered is approximately five times the phonon mean free path, and yet the

conductivity result is deemed invalid. I therefore suggest that the relationship

between minimum cell length and phonon mean free path is more complicated. I

show that the minimum cell length yielding appropriate conductivity values for

bridgmanite at lower mantle conditions is 8 UC.

The mean free path length can also be calculated at 136 GPa and 1000 K,

and is equal to 2.13 nm. The conductivity result at L=0 (i.e., infinite cell size)

is extrapolated from only two direct method conductivity results (Fig. 3.15b)

in order to be comparable with the Green-Kubo estimate of conductivity

(Section 3.2.7), and due to the number of data points, the mean free path length

error cannot be calculated. In this case, the mean free path length is longer

than at 4000 K, and it therefore makes sense that smaller cell lengths <48 UC

(i.e., inverse cell length values >0.03) do not correctly simulate longer mean free

path lengths. The MFP at 1000 K is on the same order of magnitude as the MFP

calculated by Stackhouse et al. (2015) for a pressure of 110 GPa and a temperature

of 1000 K. As mentioned previously with reference to the Stackhouse et al. (2015)

study, the pressures used are slightly different to those in this study, giving reason

to the difference in MFP estimates.

3.3 Discussion

In this Chapter I have presented conductivity results for bridgmanite at

temperatures of 1000 K and 4000 K, both at 136 GPa, using firstly the

Green-Kubo method and secondly the direct method in order to constrain FSE.

The quantitative results are shown in Table 3.7.

The conductivity estimates at 4000 K are similar to those reported for

the same conditions by Ghaderi et al. (2017), who found conductivities of
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Table 3.7: Table of thermal conductivities using the Green-Kubo and direct
methods, at 136 GPa, and for temperatures of 1000 K and 4000 K. Direct method
results given for CSA of 2×2.1 no errors are available for the direct method at
1000 K, because only 2 points were used for the extrapolation (see Fig. 3.15).

1000 K 4000 K
Green-Kubo 17.51±0.27 7.07±0.06
Direct method 16.811 6.39±0.11

5.2 Wm−1K−1. Ammann et al. (2014) also estimated a conductivity value of

8.5 Wm−1K−1 for bridgmanite at 3739 K and 136 GPa. Both studies used

simulations in their estimates, where Ammann et al. (2014) used the direct

method with interatomic potentials, and Ghaderi et al. (2017) used ab initio

lattice dynamics. Stackhouse et al. (2015) also used the direct method with DFT

to estimate bridgmanite conductivity at 145 GPa and 4000 K, with a value of

9±2 Wm−1K−1. An extrapolation of an experimental study from Ohta et al.

(2012) suggest bridgmanite conductivity of 9±1.6 Wm−1K−1 at 3700 K and

136 GPa, again similar to the values found in my study.

Conductivity estimates at 1000 K and 136 GPa are less available in the

literature, because these are unrealistic conditions. Stackhouse et al. (2015) use

the direct method with DFT to estimate thermal conductivity of bridgmanite at

110 GPa and 1000 K. They obtained a value of 16±5 Wm−1K−1.



§3.3 Discussion 103

The similarity of these results (and Ammann et al.’s) to estimates found in

this study might be expected based on use of the direct method, with differences

arising from how finite-size effects are identified and managed. Removing the

influence that the direct method might have on any results, comparison of

Stackhouse et al. (2015) with the Green-Kubo results still show agreement within

error.

The results of my calculations using the Green-Kubo method show that this

method is an efficient way of calculating thermal conductivity for bridgmanite

at lower mantle conditions. This is because the thermal conductivity results are

converged for a low number of atoms (<1000), and are thus computationally

efficient. This is significantly more efficient than the direct method simulations,

where multiple simulations are required with atom counts up to 2000. The

main strength of Green-Kubo as a theoretical method is statistical averaging

which allows multiple datasets to be obtained simultaneously, whereas the direct

method requires a series of calculations where each result is dependent on the

complete calculation of the previous result (i.e., as shown in Fig. 3.7). There is

also more processing of calculations required when using the direct method, and

this leads to increased subjectivity when evaluating temperature gradients and

the extrapolation of results.

In this Chapter, I have shown that cross-sectional area affects thermal

conductivity estimates of bridgmanite at CMB conditions when the simulation

cell is smaller than 2×2 UC. The influence of FSE was also discussed by

Stackhouse et al. (2015). They calculated thermal conductivity estimates using

varied simulation cell cross-sectional areas (1×1 and 2×1) and they concluded

that their results were identical within uncertainty. I suggest that their results

are an overestimate of thermal conductivity, as I obtain a value of ∼7 Wm−1K−1

compared to their value of 9 Wm−1K−1. The difference between the results

is expected due to the cross-sectional areas considered by Stackhouse et al.
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(2015). As I showed by considering much larger cross-sectional areas (up to

12×12, Fig. 3.13), the CSAs used by Stackhouse et al. (2015) result in a

conductivity overestimate. The results in this chapter show that simulation

cells with area 2×2 produced converged estimates of conductivity with respect

to larger cross-sectional areas, which was not possible to investigate using the

computationally expensive ab initio approach of Stackhouse et al. (2015).

We observe non-linearity in the thermal conductivity results using the direct

method (Fig. 3.12a), as previously described by Sellan et al. (2010). The

non-linearity can be observed around the inverse length corresponding to the

simulation with a unit length of 6 UC, which has higher conductivity than

expected from the linear fit through the data from longer simulation cells

(>6 UC). When this shortest cell length (i.e., highest inverse value) is included

in the extrapolation, this reduces the gradient of the fit, raising the intercept and

thus causing conductivity to be underestimated.

Considering again the study from Stackhouse et al. (2015), they considered

a limited range of simulation cell lengths (6–12 UC). Using the results from my

study, I suggest that the longer simulation cells (≥8 UC) produced a valid thermal

conductivity result. However, I speculate that the inclusion of the result at 6 UC

could have influenced the overall linear fit to the data in the same way observed

in this study. This would lead to an underestimate of thermal conductivity and

gives just one example of a study where FSE may not have fully been explored

and quantified.

I therefore have identified a possible overestimation due to small

cross-sectional areas (<2×2), and possible underestimation due to shorter

simulation cell length (<8 UC at 4000 K). In the case of Stackhouse et al. (2015),

using a small cross-sectional area has a more significant effect than a short cell

length. I suggest that these parameters (simulation cell length and cross-sectional

area) should be more fully considered in the design of future studies using the
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direct method.

I investigated the impact of the cell length on conductivity measurements

further in this chapter by comparing the form of the conductivity results with

that from Hu et al. (2011), where they showed that conductivity diverges with

cell length for a fixed cross-sectional area. I showed, using the 1000 K data, that

the cell length can be too short. I suggest this is an additional complexity to the

conductivity divergence which is not incorporated into the Hu et al. model, but

would improve the use of the analytical model to understand finite-size effects in

the direct method.

In this study, by increasing the simulation cell cross-sectional area to 12×12 at

4000 K, I was able to observe the aspect ratio-dependent divergence as reported

by Hu et al. (2011). This is to say that for a given simulation cell length, there

is an ideal cross-sectional area which reproduces the phonon-phonon scattering

found in the bulk material. Using a cross-sectional area smaller than this ideal

size causes conductivity values to be overestimated (i.e., the difference between

Figures 3.12a and 3.12b). This can be observed in the longest simulation cell

lengths (i.e., lowest inverse length values), where the conductivity values are

higher than expected from the linear fit through the data from shorter simulation

cell lengths (≤24 UC). When these longer cell lengths (i.e., lowest inverse values)

are included in the extrapolation, this increases the gradient of the fit, lowering

the intercept and thus causing conductivity to be overestimated. Using this

conclusion that cells can be too long to produce accurate conductivities for a given

cross-sectional area. Discarding simulations with cell lengths that are considered

too long also provides the additional benefit of reducing computational costs, and

so should be considered in the design of direct method studies.

I suggest this effect can also be observed in the data presented by Ammann

et al. (2014), who studied the variation in conductivity and heat flux at

the CMB. They plot the conductivity of post-perovskite as a function of
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inverse simulation-cell length (Fig. 3.18). Looking at the thermal conductivities

calculated from interatomic potentials (blue data points), I suggest the value

of thermal conductivity extrapolated to infinite system size (the filled diamond)

could be over-estimated due to the influence of the longest cell sizes. At inverse

simulation cell lengths less than 0.05, I suggest the conductivity results are

over-estimated due to FSE, thus steepening the gradient of extrapolation. I have

shown in this chapter that previous estimates of FSE were incomplete, and this

is just one example of how FSE can influence a thermal conductivity estimate.

Figure 3.18: Comparison of results from interatomic potentials (empty diamonds)
with those from DFT (filled squares) as a function of simulation cell length. Red
shows thermal conductivity along crystal direction b, and blue along a. Values
at x = 0 show extrapolations to infinite cell size. Reproduced with permission
from Ammann et al. (2014).

These conclusions are specific to the conditions of 4000 K and 136 GPa,

which are representative of the CMB, the area of interest in this study. I

have also investigated FSE at 1000 K and at the same pressure. The results

for these conditions suggest that the nature of FSE is affected by physical

conditions. Agreement with Green-Kubo is only observed with the longest

simulation cell lengths (≥48 UC), however this fit uses only two calculated values
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which limits the reliability of a linear fit (Fig. 3.15b). I do not investigate the

cause of this difference within this study, but suggest it would be an important

point of investigation for studies examining thermal conductivity at a range of

temperature conditions. This would require the simulation of longer cell lengths

(i.e., >96 UC), which would be of significant computational expense. Because the

constraint of direct method FSE at 1000 K is inconclusive, I choose not to use the

direct method to investigate the effect of impurities in Chapter 4 because a range

of temperatures is required to create the composition-dependent conductivity

model.

More broadly, I have showed the importance of performing finite-size analysis

when performing direct method calculations. Direct method cells spanning a

range of lengths must be considered to find the linear regime for extrapolation.

Cross-sectional area must be increased until the conductivity result converges.

The same can be said about the Green-Kubo method, where the result converges

with increasing cell size. These effects vary with phonon mean-free path, and are

sensitive to temperature, and compositional variations such as impurities. In the

remainder of this thesis, I will use the Green-Kubo method to calculate thermal

conductivity results. I suggest classical molecular dynamics with interatomic

potentials could be an excellent way of quantifying FSE to then employ ab initio

methods accurately, if the uncertainty in temperature-dependence of FSEs is

understood.

3.4 Summary

1. In this Chapter, I presented the first comparison of Green-Kubo and direct

methods for bridgmanite at lower mantle conditions.

2. I used the Green-Kubo method to calculate lattice thermal conductivity
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at 136 GPa, and obtained results of 17.51 ± 0.27 Wm−1K−1 at 1000 K,

and 7.07 ± 0.06 Wm−1K−1 at 4000 K. Finite-size effects associated with

simulating bridgmanite at these conditions in the Green-Kubo method are

mitigated by using a supercell geometry ≥ 4×4×3 UC.

3. I also used the direct method to compute conductivity at the same

conditions, obtaining results of 16.81 Wm−1K−1 and 6.39± 0.11 Wm−1K−1

respectively. Finite-size effects are much more prevalent in the direct

method, where I use supercells with CSA ≥ 2×2 UC, and lengths of

≥ 48 UC at 1000 K and 8–24 UC at 4000 K, to compute conductivity

results that are converged with respect to simulation size.

4. I backcalculated the MFP from results obtained from the direct method,

finding values of 2.13 nm and 0.23 ± 0.03 nm, at 1000 K and 4000 K,

respectively. MFPs have not previously been compared with finite-size

effects in this way, and the magnitude of these values reinforces the choice

of cell sizes to mitigate FSEs at each temperature.
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Modelling the thermal

conductivity of Fe-bearing

bridgmanite

As stated previously, there are significant experimental challenges in measuring

thermal conductivity at the high pressures and temperatures necessary to

replicate the conditions of the lower mantle. Constraining the thermal

conductivity of bridgmanite at lower mantle conditions is further complicated

by the addition of mineral impurities. Therefore in addition to pressure- and

temperature-dependence, compositional-dependence must be considered for full

evaluation of lower mantle conductivity.

The bulk of the lower mantle comprises bridgmanite (∼70%, and its

high-pressure polymorph, post-perovskite), periclase (∼20%), along with other

minor minerals (∼10%) such as calcium silicate perovskite (CaSiO3, Trønnes ,

2009). In bridgmanite (MgSiO3, magnesium silicate perovskite), the magnesium

can be replaced with Fe. Most of the lower mantle will have Fe content< 15% (Lee

et al., 2004), partitioned into bridgmanite as concentrations of (Mg0.95Fe0.05)SiO3,

however in this study I investigate the full solid solution range between MgSiO3

109
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and FeSiO3 endmembers. Knowledge of conductivity up to the Fe endmember is

interesting if ultra low velocity zones have high Fe content (e.g., Mao et al., 2004;

Dobson and Brodholt , 2005). At the high Fe contents expected, electrical thermal

conductivity could become important, although for simplicity this is ignored in

the calculations presented here.

Additionally in bridgmanite, the aluminium can be substituted (Zhang et al.,

2016) for magnesium and silicon (as in Brodholt , 2000) where,

(Mg3Al) (Si3Al) O12 + 2MgO = Mg2Al2O5 + 3MgSiO3 . (4.1)

The introduction of impurities into lower mantle minerals reduces the thermal

conductivity by introducing an extra scattering mechanism, phonon-defect

scattering. A defect in crystal structure, interrupts the periodicity of the

structure, much like a speed bump to a car. They have different properties to the

atoms the phonon would encounter in a material with crystal periodicity, namely

mass and their bonds with neighbouring atoms. For this reason the thermal

conductivity of a solid solution is lower at intermediate compositions than at

the endmembers. In this chapter, I investigate the effect of Fe impurities on

the thermal conductivity of bridgmanite because as the most abundant mineral

in the lower mantle, the conductivity of bridgmanite has the greatest effect on

the overall dynamics of the lower mantle. In this study, I consider only Fe2+

impurities and do not consider the effect of Fe3+ or Al.

In Chapter 3, I showed that the Green-Kubo method produced more reliable

thermal conductivity results than the direct method when considering the

effects of finite simulation size. As a result of this finding, in this chapter I

compute thermal conductivity results using the Green-Kubo method at pressure

conditions corresponding to the core-mantle boundary (CMB), and a wide range

of temperature for the full solid solution. In addition to investigating how Fe
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content affects conductivity, I also investigate whether the method by which

Fe atoms are modelled affects the conductivity result. These results speak to

broader questions of firstly, the role of crystal defects and chemical impurities

in solid solutions, and secondly, the accuracy of approaches to modelling atomic

interactions.

As discussed in Section 2.4, a set of interatomic potentials exist for

bridgmanite (Oganov et al., 2000), i.e., the Mg endmember of the (Mg,Fe)SiO3

solid solution. In this chapter I modify the existing potential to also model Fe

defects. I do this using two methods: (1) by considering the change in atomic

mass that occurs when a Mg atom is replaced by a Fe atom, and (2) by changing

the atomic mass and also changing the interatomic potential to consider the

effect of Fe interactions. The aim is to explore how well thermal conductivity is

estimated by a model which only alters the atomic mass (i.e., an isotopic model,

Fe represented by a heavy Mg isotope) compared with one that additionally

updates the interatomic potential.

For example, Ammann et al. (2014) used an isotopic model to simulate Fe

in bridgmanite and post-perovskite, when determining the thermal conductivity

at the CMB. In this study, however, the validity of using an isotopic model to

approximate thermal conductivity was not explored. In this chapter, I show

that using an isotopic model is a good approximation. I also explore a wider

composition range than Ammann et al. (2014).

Comparing the new Fe potential and isotopic models for Fe is particularly

interesting due to the mass contrast between Fe and Mg. This is a more significant

mass contrast than that arising when aluminium replaces either magnesium or

silicon in bridgmanite (Equation 4.1). Previous studies (e.g., Stackhouse et al.,

2015) have predicted that isotopic variations will have little effect on conductivity

(see Equation 4.5), where the mass differences are small (e.g., 24Mg to 25/26Mg)

and abundances are low (Mg standard atomic weight is 24.3, the ratio of 24Mg to
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heavier isotopes is roughly 4:1).

Manthilake et al. (2011) performed experiments to investigate the effect of Fe

and Al on the thermal conductivity of bridgmanite and ferropericlase between 8

and 14 GPa and at 500–1200 K. The authors then extrapolated their experimental

results to lower mantle conditions, calculating the conductivity for a 4 parts

bridgmanite : 1 part ferropericlase composition. At lower temperatures for any

pressure or composition, adding impurities up to 20 mol% reduces conductivity by

a factor of around 3. The magnitude of this reduction decreases with temperature

(as impurity-free conductivity decreases anyway), but impurities can have a

huge effect. Conductivity decreases with temperature at a slower rate for the

compositions with impurities, suggesting that reductions from impurities affect

the reductions from other effects (such as temperature increase), and that there

might be a minimum conductivity at which no further decrease is observed.

Using the methodologies presented in Chapter 3, in this chapter I introduce

Fe impurities into my existing bridgmanite model and establish the effects on

lattice thermal conductivity around the core-mantle boundary. This is in order to

quantify conductivity as a function of temperature and composition. I also show

that mass difference is the main factor in phonon-defect scattering. Finally, using

the method presented in Section 3.2.9, I am able to determine the phonon-phonon

mean free path and the phonon-defect mean free path, and how it varies with

conductivity, parameter space which has not been explored before.

4.1 Adding atomic impurities

There are numerous mechanisms by which phonons scatter, and this scattering

reduces the efficiency of heat transport, therefore decreasing the thermal

conductivity of a material . In a chemically pure material, scattering occurs due

to phonon-phonon collisions, whereas in a material with impurities, phonons can
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also scatter off of defects. The effective scattering is dependent on the balance of

phonon-phonon and phonon-defect scattering that occurs within the material.

The phonon-defect scattering is constant with a constant composition, but

the effects of phonon-phonon scattering change with pressure and temperature,

therefore the relative significance of each scattering component changes with

physical conditions.

4.1.1 Effect of impurities on conductivity

The effect of impurities on lattice thermal conductivity is discussed by Klemens

(1960) and Padture and Klemens (1997), a review of which can be found in the

Supplementary Material of Stackhouse et al. (2015). I outline this in this section.

The lattice thermal conductivity of a binary solid solution is given as

κSS = κV

(
ω0

ωD

)
arctan

(
ωD

ω0

)
, (4.2)

where ω0 is the phonon frequency at which phonon-phonon scattering and

phonon-defect scattering contributions to the mean free path are equal, and ωD

is the phonon frequency corresponding to the maximum of the acoustic branch in

the phonon spectrum (the Debye frequency). κV is the compositionally-weighted

(Voigt) average of endmember conductivities,

κV = (1− C)κ1 + C κ2 , (4.3)

where κ1 and κ2 are the solid solution endmember conductivities, and C is the

fractional concentration of the second endmember.

When ω0 � ωD, arctan(ωD/ω0) → (ωD/ω0), so κSS → κV , the conductivity

including the effect of impurities tends toward the endmember linear average.

This is the case when other scattering mechanisms, such as phonon-phonon
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scattering, have caused conductivity to decrease significantly. Under such

conditions, phonon-defect scattering has little effect, as the conductivity is already

close to its saturated minimum.

On the other hand, when ωD � ω0, arctan(ωD/ω0) → π/2, but (ω0/ωD) �

2/π, so κSS < κV, and impurity scattering has a noticeable effect on the

resultant conductivity. This is the case when phonon-phonon collisions are not the

dominant resistive process, like at low temperatures compared to the conditions

mentioned in the above case.

4.1.2 Magnitude of impurity scattering

The factors that affect the magnitude of impurity scattering are temperature,

the mass difference between the impurity and what it replaced, and the impurity

concentration. The ratio of the phonon frequencies in Equation 4.2 can be

expressed (Equation 4.4) as

(
ω0

ωD

)2

=
1

(6π2)1/3
T

3εT0
, (4.4)

where T is temperature, T0 is the temperature associated with ω0, and ε is related

to the mass difference and proportion of endmembers by

ε =
(M2 −M1)

2

M
2 C (1− C) , (4.5)

where Mi is the atomic mass of the i-th endmember, M is the mean atomic

mass of the solid solution, and C is the proportion of the impurity endmember

(Equation 4.5). These equations describe how phonon processes are affected by

temperature and a variable composition (Leibfried and Schlömann, 1954), which

can subsequently be used to show how lattice conductivity varies with these

parameters (in Equation 4.2).



§4.1 Adding atomic impurities 115

As the temperature increases, so too does the left-hand side of Equation 4.4.

As discussed earlier, this reduces the effect of scattering caused by impurities,

which will be relevant at CMB conditions where temperature is large (∼4000 K).

ε increases with the mass difference of the endmembers, and the impurity

concentration. Increasing ε reduces the phonon frequency ratio, meaning impurity

scattering will affect the resultant conductivity more. The atomic masses of Mg

and Fe are 24 and 56, so FeSiO3 is 1.32 times heavier than MgSiO3.

The composition control term in Equation 4.5, C(1 − C), increases from 0

to 0.25, when C = 0.5. ε increases with composition up to 50%, the furthest

point away from both endmembers, therefore the condition of most disorder in

the model.

4.1.3 Phonon frequency and relaxation time

The compositional model presented by Klemens (1960) considers the ratio of

phonon frequencies, and the contribution of these frequencies to the effective

relaxation time of the system. ω0 is defined (by Klemens , 1960, Equation 11) as

the frequency at which

τph−d (ω0) = τph−ph (ω0) , (4.6)

where τph−d and τph−ph are the contributions of phonon-defect scattering and

phonon-phonon scattering to the effective phonon relaxation time (Klemens ,

1960, Equations 2 & 3), where the authors assume

1/τph−d = Aω4, (4.7)

and

1/τph−ph = Bω2. (4.8)
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Equation 4.7 was first defined by Klemens (1955), and considers the effects

on phonon relaxation time from: mass difference of the defect, differences in

the binding between the defect and its neighbours, and anharmonic effects of

the distortion about the defect. The exponent in Equation 4.8 indicates that

two phonons have collided and their frequencies multiplied (Klemens , 1951).

The effective phonon relaxation time of the system, using the Matthiesen Rule

(modified from Klemens , 1960, Equation 7), is

1

τ (ω)
=

1

τph−ph
+

1

τph−d
. (4.9)

When Equation 4.6 is satisfied, the effective relaxation time is equal to half of

either its constituents,

1

τ (ω0)
=

1

τph−ph
+

1

τph−d
=

1

τω0

+
1

τω0

=
2

τω0

, (4.10)

When τph−d 6= τph−ph , the effective relaxation time will tend toward the

smaller of the two as the difference increases. I illustrate in Figure 4.1 that a

process’ relaxation time will dominate the other when it is around 1,000 times

smaller. At the point where the contribution is equal (i.e., 0.5), the ω0 criterion

is satisfied (Equation 4.6). The contribution varies linearly when the magnitudes

of the relaxation times are comparable, adopting an arctan-like form when they

vary greatly.

For a CMB-like condition of high temperature, the phonon-phonon scattering

relaxation time is short (left hand side of Fig. 4.1). Adding impurities (reducing

τph−d) doesn’t contribute much to an already large scattering effect. Where the

phonon-phonon scattering relaxation time is longer (temperatures decreasing

towards Debye temperature), even adding a small amount (2%) of atomic

impurity can influence the thermal conductivity. Considering the average phonon
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Figure 4.1: For a series of τph−d, their contribution to the effective phonon
relaxation time is plotted against τph−ph. The quantity on the y-axis is
the normalised difference in effective phonon relaxation time, comparing
phonon-phonon scattering to phonon-phonon and phonon-defect scattering (as
in Equation 4.9).

velocity, a longer relaxation time means a greater distance travelled, or phonon

mean free path.

In Equations 4.7 & 4.8 , A and B are constants. The constant A is related

to phonon-defect scattering and is constant with temperature (varying with

composition). The constant B, however, is temperature-dependent, because it

relates to phonon-phonon scattering, which increases with temperature. It is

the relative magnitude of phonon-phonon scattering to phonon-defect scattering,

and therefore τph−ph to τph−d, that influences the effect of impurities on thermal

conductivity (see Equation 4.9). As τph−ph is temperature-dependent, via B, the

effect of impurities on thermal conductivity is similarly temperature-dependent.

The two relaxation time terms above can be equated via Equation 4.6, showing
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ω0 is similarly temperature-dependent

Aω0
4 = B (T )ω0

2,

ω0
2 = B (T ) /A ,

ω0 ∝ T . (4.11)

The Debye frequency is a constant, so

(
ω0

ωD

)
∝ T . (4.12)

As temperature increases (above the Debye temperature), conductivity decreases

as phonon-phonon scattering increases. The significance of phonon-defect

scattering (but not the magnitude of its relaxation time) decreases as the effect of

phonon-phonon scattering increases. Therefore the relative conductivity decrease

due to impurities is inversely proportional with temperature, and less important

as conductivity tends towards its saturated minimum.

4.2 Methodology

In this section, I present the parameterisation of a Buckingham potential for Fe in

bridgmanite. I also discuss how I construct my models of Fe-bearing bridgmanite.

4.2.1 Behaviour of iron

As described earlier, I will model the inclusion of Fe2+ in bridgmanite in two

ways. The first approach is to fit a new interatomic potential. An in-depth

review of these approaches can be found in Section 4.5.1. I adapted the Oganov
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et al. (2000) MgSiO3 Buckingham interatomic potential (U , as introduced in

Section 2.3.2) to include the Fe-O interaction (see Table 4.1). I determined two

short-range potential parameters, b and ρ, shown in Equation 11 from Oganov

et al. (2000),

Uij (Rij) =
zizj
Rij

+ bij exp

(
−Rij

ρij

)
− cij

Rij
6 , (4.13)

where ij refers to an atom pair, R is interatomic distance, z is atomic charge, and

c relates to the Van der Waals force (zero for non O-O interactions). I determine

ρ in the same fashion as Oganov et al. (2000), calculated from the atomic first

ionisation potentials,

ρij =
1.85√
Ii +

√
Ij
. (4.14)

b is constrained using the GULP code (Gale, 1997), using the calculated ρ

value for Fe-O. Within GULP, I use a constant volume optimisation method, i.e.,

adjusting the interatomic potential to minimise the energy. I fit b to structural

information (lattice parameters) obtained by Parise and Wang (1990), who

carried out an experimental study of (Mg0.9,Fe0.1)SiO3 bridgmanite at ambient

conditions. This study was chosen as it matches the conditions at which Oganov

et al. (2000) fit their potential.

Table 4.1: Parameters used to define Oganov et al. (2000)’s bridgmanite potential,
including fit Fe-O values from this study.

Bond ij bij (eV) ρij (Å) cij (eV.Å6) Source
Mg-O 1041.435 0.2866 0 Oganov et al. (2000)
Si-O 1137.028 0.2827 0 Oganov et al. (2000)
O-O 2023.800 0.2674 13.83 Oganov et al. (2000)
Fe-O 1440.437 0.2846 0 This study

Table 4.2 shows how well the new Fe potential predicts the lattice parameters

of (Mg0.9Fe0.1)SiO3 used to constrain the fit. Lattice parameters from Parise and

Wang (1990) were measured from samples synthesised at 26 GPa and 1973 K. I

determined the lattice parameters for this study from an NPT simulation run at
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the same conditions. Comparison of the lattice parameters shows good agreement,

with all differences between the data from Parise and Wang (1990) and this study

falling below 4%, suggesting that the parameters representing the interatomic

potential are accurate.

Table 4.2: Table showing how well the Fe-model fits the data used to constrain
fit, where a, b, c are the lattice parameters (Å), and V is the unit cell volume
(Å3).

Values from
Parise and

Wang (1990)

Values from this
study

Percentage
difference (%)

a 4.7918 4.7506 0.86
b 4.9312 4.8429 1.79
c 6.9050 6.8272 1.13
V 163.1605 157.0712 3.73

The second approach to add Fe2+ into bridgmanite is to simply create a Mg

atom with the mass of an Fe atom, without changing any coefficients of the

interatomic potentials from Oganov et al. (2000). I will show in Section 4.5.1

this ‘isotopic model’ is a reasonable first-order approximation. As the variation

in mass number from Mg to Fe is large (24 to 56, a 133% increase), it is likely

to change the behaviour of the system more than a subtle change in the atomic

interactions.

Approximating Fe with heavier Mg atoms is used by Ammann et al. (2014)

to investigate the effect of impurity content at conditions of 20 GPa and 2000 K.

They found the effect of impurities varied according to a number of factors

(crystallographic direction, interatomic potential), and they observed saturation

in the conductivity decreased with concentration.

4.2.2 Simulated impurity distribution

Iron is substituted with magnesium into the bridgmanite structure. The unit

cell contains 4 Mg atoms, and the smallest direct method cell I employ is a
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6×2×2 supercell. Therefore the smallest amount of iron that can be added is

1/96 atoms, a concentration just over 1%. I use a simple MATLAB script to

produce LAMMPS input files, randomly selecting a specified proportion of Mg

atoms to be replaced with Fe.

To avoid clumping of iron within the model, I group Mg atoms by position

within the supercell, so that Fe atoms are added with a homogeneous distribution

on the scale of the supercell. At a smaller scale, changing 1/4 atoms is different

to changing 24/96. The latter has a higher variance in Fe distribution, and the

former replaces one Mg atom in every group of four.

4.3 Results

Lattice thermal conductivities obtained from Green-Kubo calculations are plotted

against temperature in Figure 4.2, for Mg and Fe endmembers and the 50/50 solid

solution mix. Each Green-Kubo data point is obtained from 8 initial temperature

conditions, each producing 10 ACFs/integrals, totalling 80 ns of simulation time.

Conductivity decreases with temperature, approximately following κ ∝ 1/T 0.9

at the pressure of 136 GPa considered here. This is in contrast to the typically

expected κ ∝ 1/T relation, indicating some kind of saturation in conductivity

decrease with temperature.

FeSiO3 has a consistently lower conductivity than MgSiO3, although both

endmembers may converge given a high enough, albeit unphysical, lower mantle

temperature. This suggests there is a minimum conductivity associated with the

crystal structure, reached first by FeSiO3 with its inherently lower conductivity.

The decrease in conductivity from Mg to Fe-endmember can be attributed

to the increased atomic mass, which tends to reduce phonon velocities (i.e.,

Equation 1.5). The effect of electron conductivity is not included here, but it

may reduce the conductivity difference between endmembers by increasing the
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conductivity at high Fe% compositions.

The intermediate composition (i.e., Mg0.5Fe0.5) has lower thermal conductivity

than either endmember at 1000 K, and a similar thermal conductivity to

the Fe endmember at higher temperatures. This is to be expected because

conductivity decreases from endmember to intermediate compositions as impurity

concentration increases. The conductivities become more similar at temperatures

at and above 3000 K. The conductivity differences become similar (Fig. 4.2) at

high temperatures for FeSiO3 and the solid solution. If FeSiO3 has already reached

its theoretical minimum, adding Mg impurities will do little to decrease it further.

Figure 4.2: Thermal conductivity as a function of temperature for the
MgSiO3(blue squares), FeSiO3 (red squares) and (Mg0.5,Fe0.5)SiO3 (grey squares).
Results are obtained using Green-Kubo at 136 GPa (Table 4.6). The dotted lines
show fits to data using Equation 4.24, and constants from Table 4.4.

An alternative perspective to Figure 4.2 is presented in Figure 4.3, where

Green-Kubo conductivity results are plotted as a function of Fe impurity

content for several temperature series. Conductivity generally decreases with

increasing temperature at all compositions, though the change becomes minimal

at temperatures above 3000 K (Fig. 4.4).
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The MgSiO3 endmember has a consistently higher conductivity than the

FeSiO3. This can be explained by the increase in atomic mass as Mg is replaced

with Fe, as this lowers the phonon velocities and thus decreases the conductivity.

Figure 4.3: Computed thermal conductivities plotted as a function of Fe
concentration for 1000 K (turquoise pentagons), 2000 K (green triangles), 3000 K
(red circles), 4000 K (blue crosses) and 5000 K (pink squares). Dotted line
represents the model fit for each series.

A simple interpolation between endmember conductivities is insufficient

(Fig. 4.3), the presence of a compositional mix has an effect. This effect

is itself temperature-dependent, the trough-like trend flattens with increasing

temperature. These temperature and compositional dependences can be

combined, allowing conductivity to be determined for a range of possible CMB

conditions.
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Figure 4.4: Enlarged scale version of Figure 4.3, showing computed thermal
conductivities plotted as a function of Fe concentration for 3000 K (red circles),
4000 K (blue crosses) and 5000 K (pink squares). Dotted line represents the
model fit for each series.

4.4 Parameterising composition and

temperature effects on conductivity

In this section I develop a model for the lattice thermal conductivity of

(Mg,Fe)SiO3 perovskite at CMB conditions. Whilst the CMB is a small section

of the lower mantle, it marks the heat flow boundary from core to mantle.

Mantle-side thermal conductivity controls the nature of this heat flow, making it

an important parameter in studies of both sides of the CMB interface.

Equations and functional forms exist for the temperature- and

compositional-dependence of thermal conductivity, and it is possible to

combine the two. They are based on the conductivity of MgSiO3 and FeSiO3

endmembers.

Padture and Klemens (1997) proposed a model for how impurities affect
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lattice thermal conductivity of a solid solution, which Ohta et al. (2017)

used to fit experimental ferropericlase data. Following a similar methodology,

I fit the functional form to my (Mg,Fe)SiO3 perovskite results at various

temperatures (1000 K, 2000 K, 3000 K, 4000 K, and 5000 K). In an additional

step, I establish how the functional forms change with temperature, i.e., the

temperature-dependence of the compositional-dependence.

Okuda et al. (2017) present a temperature scaling relation for lattice

conductivity (originally from Manthilake et al., 2011), fit to their experimental

results of bridgmanite. I apply this temperature scaling to computational results

of MgSiO3 and FeSiO3 at 136 GPa. Through use of an exponent on the

temperature term, the model is allowed to deviate from the theoretically-expected

T−1 relation. With the temperature-dependence of these endmembers and of the

compositional effect, I am able to determine the conductivity of any composition,

interpolating to temperatures in the range 1000 K to 5000 K, at 136 GPa pressure

representative of the CMB.

The aforementioned temperature-dependence from Manthilake et al. (2011)

considers density, allowing conductivity to be determined as a function of

temperature and pressure. In the examples I will present, I am only concerned

with systems at 136 GPa. All density changes will result from thermal expansion,

and the equations will be altered to accommodate this. Again through the use

of an exponent, conductivity is allowed to deviate from its theoretically-expected

linear relation with density. This flexibility allows correction for the fact that

conductivities computed here are at constant pressure, not constant volume

(Manthilake et al., 2011).
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4.4.1 Compositional-dependence of thermal conductivity

As described in Section 4.1.1, the lattice thermal conductivity of a solid-solution

can be approximated as a function of temperature and composition (Equation

4.2). κV is the conductivity of the solid solution in the absence of impurity

scattering (previously as Equation 4.3, modified here for the specific (Mg,Fe)SiO3

endmembers),

κV = (1− C)κMg + C κFe , (4.15)

where C is the fraction of Fe inclusions, and κMg and κFe are the

temperature-dependent conductivities of the MgSiO3 and FeSiO3-endmembers

respectively. The ratio of the phonon frequencies can be approximated (Padture

and Klemens , 1997) using

(
ω0

ωD

)2

=
χT

C (1− C)
, (4.16)

where χ is a temperature-dependent constant, and T is the temperature of

interest. χ can be thought of as a measure of resistance to the effects of

impurity scattering. Although χ has not been explicitly calculated in this study,

future work could determine χ by obtaining values for ω0 and ωD, e.g., by using

a lattice dynamics approach to access phonon frequencies. The κ against C

relationship (Fig. 4.3) shows a larger effect of impurity scattering in the form of

greater curvature when T and χ are lower (see Table 4.3). For a given T and

C, increasing χ causes the phonon frequency ratio
(
ω0

ωD

)
to increase which, as

discussed in Section 4.1.1, means κSS tends towards κV. χ is fit to the data at

each temperature, but for the model it needs to be a function of temperature. I

fit χT against T with either a exponential or power law relationship (Fig. 4.5),

as this term is used directly in Equation 4.16.

To describe the temperature-dependence of χT , I choose use the following
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Figure 4.5: χT as a function of temperature, shown with exponential fit (blue)
and power law fit (red).

Table 4.3: Variation with temperature of parameters used to fit the chemical and
temperature-dependences. Reference volume from 1000 K for both endmembers.

Temperature (K)
1000 2000 3000 4000 5000

Conductivity
(Wm−1K−1)

Mg 17.51 10.36 8.11 7.07 6.28
Fe 11.26 6.79 5.84 5.30 4.95

Volume (Å3)
Mg 5960 6017 6075 6136 6199
Fe 6253 6310 6369 6431 6500

Vref/V (T )
Mg 1 0.9906 0.9811 0.9714 0.9616
Fe 1 0.9909 0.9817 0.9723 0.9619

χ 6.49E-5 1.02E-4 9.16E-4 1.07E-4 1.50E-4
χT 0.0649 0.2035 0.2748 0.4277 0.7494

power law-relationship,

χT = ATB, (4.17)

where A is the coefficient and B is an exponent to be determined. Fitting of

my data constrains these parameters to be 3.468 × 10−6 and 1.426 respectively.
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This fit represents the temperature-dependence better, both statistically and

sensitivity-wise compared to an exponential relationship
(
χT = AeBT

)
. The

value of χT at high T has a lesser effect on the conductivity-composition

relationship than at low T , where the power law fit matches the data better

(Fig. 4.5).

At this point, I can qualitatively describe how the equation for modelling a

solid solution’s thermal conductivity (Equation 4.2) works and why. The first

step is to calculate the conductivity for the composition of interest by linear

interpolation of the endmembers. This (κV, Equation 4.15) is an overestimate of

the true value.

Increasing mass difference and concentration (towards ∼50%) increase the

importance of phonon-defect scattering. Mass difference is constant in this study.

Concentration varies, but as discrete values across the various temperatures. For

a given concentration, the mass difference and thus magnitude of point defect

scattering is constant. Despite this, this decrease in conductivity due to adding

impurities is not constant with temperature.

As temperature increases (through the range of conditions considered here) the

degree of phonon-phonon scattering increases, decreasing conductivity (Fig. 4.2).

The key thing in determining the effect of impurities is to consider the relative

magnitudes of thermal scattering and defect scattering. As this ratio increases,

with temperature, the importance of the defect scattering diminishes. An increase

in thermal scattering reduces conductivity directly, but also reduces the change

in conductivity associated with adding impurities.

This can be seen in Figure. 4.3, where the conductivity and

compositional-dependence decrease with temperature. The model becomes

more similar to the straight line through the endmember values as temperature

increases, as the effect of thermal scattering increases relative to defect scattering.

Figure 4.6 shows how the relative magnitudes of defect and thermal scattering
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affect conductivity.

In the context of the model, the effect of this ratio is related to the arctan

segment of Equation 4.2. The (ω0/ωD) term (Equation 4.16) contains the

temperature and chemical (χ), and concentration (C) variables to control the

scaling effect on κV.

Figure 4.6: A graph showing how the relative magnitudes of phonon-phonon
and defect scattering affect the resultant conductivity. Conductivity values are
normalised to the maximum, the MgSiO3 value in this case. This figure does
not show how the magnitude of conductivity varies with temperature, but the
magnitude of conductivity changes from adding impurities.
a. shows the compositionally-weighted average of endmember conductivities. It
represents the conductivity due to phonon-phonon scattering in absence of defect
scattering, where the reduction in conductivity comes with the addition of heavier
Fe atoms over Mg.
b. & c. represent a solid solution at hot and cold conditions respectively.
b. would be found at a higher temperature, where increased phonon-phonon
scattering reduces the significance of defect scattering. c. represents a colder
condition with phonon-phonon scattering, where impurities are more relevant
and there is a larger decrease relative to a., compared to the hot case (b.).
d. represents conductivity if impurity scattering were to dominate over
phonon-phonon scattering. As with a., this series is hypothetical, and the physical
result lies somewhere between the two.
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4.4.2 Temperature-dependence of thermal conductivity

Previous studies (Stackhouse and Stixrude, 2010; Manthilake et al., 2011; Okuda

et al., 2017) have shown that the thermal conductivity of lower mantle minerals

can be modelled by the following relation:

κ = κref

(
ρ

ρref

)g (
Tref
T

)a
, (4.18)

where κ is the thermal conductivity at density ρ and temperature T , κref is the

thermal conductivity at reference density ρref and reference temperature Tref ,

and g and a are exponents. This equation is fit to the data, anchored around the

values of the reference data point (the fit is shown in Fig. 4.2). I used the value

at 1000 K as the reference value, as the conductivities at higher temperatures

become more similar, converging towards a minimum point. Using this data

point reduces the error in the fit, on account of the relatively larger conductivity

at this temperature.

For a given composition, the mass of the simulated system does not change

with temperature. The number and type of atoms remains constant, while

thermal effects cause density variations. The density relation in Equation 4.18

can be reformulated as

ρ

ρref
≡ Vref

V
, (4.19)

because ρ ∝ V −1, where V is the volume of the system in question. This leads

to a modified version of Equation 4.18

κ = κref

(
Vref
V

)g (
Tref
T

)a
. (4.20)

κ represents the conductivity value adjusted for temperature, and is determined

for both the MgSiO3 and FeSiO3-endmembers (by adjusting the reference values
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and exponents). The temperature-dependent conductivities for both endmembers

are then inserted into Equation 4.15 (as κMg and κFe), to determine the effect of

composition. The exponent g (Manthilake et al., 2011) represents the rate of

change of lattice thermal conductivity with density, at a constant temperature,

g = (∂ lnκ/∂ ln ρ)T . (4.21)

The density changes that I observe result from thermal effects, i.e., not at a

constant temperature and not pressure-driven. The rate of change in conductivity

with density in my data are better represented as

h ∼ (∂ lnκ/∂ ln ρ)P , (4.22)

where pressure (P ) is the condition kept constant. The significance here is that

pressure-driven and temperature-driven density changes affect the conductivity

differently. At constant temperature, conductivity and density increase with

pressure. The opposite is true at constant pressure for the temperatures

considered here, conductivity and density decrease with increasing temperature.

The result is g and h having opposite signs based on the scenarios they describe.

Volume does not need to be an input variable for the model, as all the data

are obtained from constant pressure (136 GPa) calculations and any volume

variations relate to thermal expansion. I express the volume ratio in Equation 4.20

as

Vref
V (T )

≈ mT + c , (4.23)

a simple linear function of temperature (Fig. 4.7), where m is the gradient and c

the intercept.
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Figure 4.7: Vref/V , expressed as a simple linear function of T .

With Equation 4.23, I rewrite Equations 4.18 and 4.20,

κj = κrefj (mjT + cj)
hj

(
T ref
j

T

)aj

, (4.24)

where subscript j refers either to the MgSiO3 or FeSiO3-endmember. Using

this equation, I predict a conductivity value at any temperature within the fit

range, from a reference conductivity and constants (m, c, h, & a, unique to each

endmember, see Table 4.4). The constants are obtained by fitting data across all

temperatures, for both endmembers.

4.4.3 Review of equations and constants in κ(T,C) model

In this section, I present a review of the equations used to construct the κ(T,C)

model in this work. Subsequent equations explain terms in the first equation,
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Table 4.4: Constants obtained by fitting Equation 4.24 to all data at 136 GPa.
Mg and Fe refer to MgSiO3 and FeSiO3 endmembers, SS the solid solution with a
50% mix. κref obtained at Tref = 1000 K. κ(T ) is plotted for these compositions
in Figure 4.2.

Composition
Mg SS Fe

κref 17.51 8.26 11.26
m -9.60×10-6 -9.47×10-6 -9.48×10-6

c 1.00975 1.00965 1.00983
h -10.93 -5.52 -17.32
a 0.896 0.428 0.913

with a full expanded equation at the end. Also provided is a table with

necessary constants to apply this model to calculate conductivity of (Mg,Fe)SiO3

at 136 GPa. The conductivity of a given solid solution is given by

κSS = κV

(
ω0

ωD

)
arctan

(
ωD

ω0

)
, (4.25)

which depends on the linear average of endmember conductivities in the

absence of phonon-phonon scattering and the ratio of phonon frequencies. The

compositionally weighted conductivity is given by

κV = (1− C)κMg + C κFe , (4.26)

where the conductivity of each endmember is given by

κMg = κrefMg (mMgT + cMg)
hMg

(
T ref
Mg

T

)aMg

(4.27)

and

κFe = κrefFe (mFeT + cFe)
hFe

(
T ref
Fe

T

)aFe
, (4.28)
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respectively. The ratio of phonon frequencies is expressed as

(
ω0

ωD

)2

=
χT

C (1− C)
, (4.29)

where I model χT as a function of temperature

χT = ATB, (4.30)

which leads to (
ω0

ωD

)
=

√
ATB

C (1− C)
(4.31)

and (
ωD

ω0

)
=

√
C (1− C)

ATB
. (4.32)

Referring back to Equation 4.25, fully expanded it takes the form

(4.33)κSS(T,C) =

((
(1− C)κrefMg (mMgT + cMg)

hMg

(
T ref
Mg

T

)aMg
)

+

(
C κrefFe (mFeT+cFe)

hFe

(
T ref
Fe

T

)aFe))(√ ATB

C (1− C)

)
arctan

(√
C (1− C)

ATB

)
.

All of the constants used in this equation to calculate κ(T,C) are given in

Table 4.5.

Table 4.5: All the constants from Table 4.4 and Equation 4.17 used to calculate
κ(T,C) in Equation 4.33.

Composition
Mg Fe

κref 17.51 11.26
m -9.60×10-6 -9.48×10-6

c 1.00975 1.00983
h -10.93 -17.32
Tref 1000
] a 0.896 0.913
A 3.468×10-6

B 1.426
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4.5 Discussion

Before I can apply this model to the Earth, I look at the implications of these

results for the simulation of thermal conductivity of solid solutions, and estimate

the MFP of phonons within the solid solution.

4.5.1 Significance of mass and atomic interactions

To determine the importance of mass difference in phonon-defect scattering, I

run calculations where the mass of the impurities are kept the same as Mg,

only changing their potential to match my fitted Mg-Fe interaction. I predict

conductivity will be largely unchanged with varying composition.

Figure 4.8: Green-Kubo conductivity results and model fits for 1000 K and
4000 K. The Fe in these series have the correct atomic mass, and the calibrated
interatomic potential. The partial series show how conductivity changes when
the atomic interactions are altered.

Figure 4.8 shows the Green-Kubo results of this study as a function of

composition for 1000 and 4000 K, with the model fit to data. The other partial

series represent the results of additional calculations, where the iron impurities

only have the correct mass (the isotopic model, akin to Ammann et al., 2014),
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or with my calibrated Fe-O pair potential but the Mg mass. The isotopic atomic

model is much closer to the results of the full model than the potential for Fe

with the mass of Mg. Both atomic masses and chemical bonding play a roll in

determining the interaction, albeit mass is more significant.

Intuitively, the potential and the mass is more representative than only

changing the atomic mass, however I do not vary atomic charge from Mg to Fe.

Predicting the thermal conductivity of bridgmanite at lower mantle conditions

is additionally complicated by the Fe-partitioning between MgSiO3 and MgO,

the effect of ferrous vs. ferric iron, and how spin state affects properties such

as conductivity as it varies along the geotherm (e.g., Ohta et al., 2017). These

additional complexities are beyond the scope of this project, where only ferrous

iron is considered.

4.5.2 Comparison of simulated and modelled

conductivities

Figure 4.9a shows the absolute percentage errors between the simulated

conductivity data and the model fit and it shows good agreement between the

two. Percentage errors are consistently less than 1.5%.

As mentioned in Section 4.4.2, I fit the temperature data using a reference

point of 1000 K. In Table 4.6 , the modelled and computed data for 1000 K are

different, as I have also incorporated the approximation for Vref
V

.

Table 4.7 and Figure 4.9 show the simulated and model values for the

composition-dependence of conductivity. I show that the model is most closely

fitted to the data at the endmembers, but there is overall good agreement with

errors consistently below 3.1%.
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Table 4.6: Simulated conductivity values, and values determined using the
conductivity model fit, for temperature-dependent conductivity at a range of
compositions.

Temperature
(K)

Simulated
conductivity
(Wm−1K−1)

Conductivity
from model fit
(Wm−1K−1)

Mg

1000 17.51± 0.27 17.44
2000 10.36± 0.13 10.45
3000 8.11± 0.06 8.10
4000 7.07± 0.06 6.96
5000 6.28± 0.05 6.33

Fe

1000 11.26± 0.27 11.15
2000 6.79± 0.12 7.02
3000 5.84± 0.07 5.74
4000 5.30± 0.05 5.21
5000 4.95± 0.04 5.01

(Mg0.5Fe0.5)SiO3

1000 8.26± 0.22 8.24
2000 6.53± 0.11 6.47
3000 5.58± 0.07 5.74
4000 5.46± 0.05 5.35
5000 5.10± 0.04 5.12

4.5.3 Scaling MFP to quantify phonon-defect scattering

MFP is directly proportional to conductivity (Equation 2.15) assuming that

heat capacity and phonon velocity are constant with composition. Therefore I

propose scaling the 4000 K GK conductivity results to quantify the phonon-defect

scattering associated with adding iron. When considering the effect of impurities

on conductivity, the effective MFP depends on phonon-phonon and phonon-defect

interactions

1

Λ
=

1

Λph−ph
+

1

Λph−d
. (4.34)

The MFP for MgSiO3 determined from the direct method extrapolation can

be matched with the equivalent 0% Fe, 4000 K Green-Kubo result on Figure 4.3.

If 7.07 Wm−1K−1 is proportional to an effective MFP of 0.23 nm, I can scale this

MFP value by the MgSiO3 endmember-normalised conductivities (Fig. 4.10).

I make the assumption that the data points/curve of Figure 4.10 represent
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Figure 4.9: Absolute percentage errors between the computed thermal
conductivity values and the model fit, for (a) temperature-dependent
conductivity, and b composition-dependent conductivity.

the effective MFP, and that the linear interpolation between endmembers the

phonon-phonon scattering MFP. The interpolated conductivities do not capture

the non-linear effects of defect scattering, at constant temperature the change in

conductivity is proportional to the change in mass associated with changing Mg

to Fe.

The deficit between computed and interpolated conductivity can be imagined

as phonon-defect contribution to Λ, the bigger the gap at a given composition, the

greater significance of Λph−d. I will obtain the phonon-defect MFP by subtracting

the inverse of the two, as in

1

Λph−d
=

1

Λ
− 1

Λph−ph
. (4.35)
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Figure 4.10: Green-Kubo conductivity results from 4000 K, scaled to the MFP
determined from analysis of direct method results. The linear interpolation
between endmembers gives the MFP of phonon-phonon scattering, which
decreases as Fe is introduced and the mass of the system increases.

Table 4.8 shows how properties change across the range of compositions

studied. The results are the computed conductivity, the interpolated conductivity

as a function of composition, this difference between this two value, and the

conductivity result normalised. This conductivity is then converted to a mean-free

path value as discussed earlier, as is the interpolated conductivity to obtain my

proxy for phonon-phonon scattering MFP. I then calculate the phonon-defect

scattering MFP as in Equation 4.34. This value is then inverted and normalised,

showing relative significance of scattering as conductivity varies.

If the mean free path is the distance between scattering events, then the

inverse (as presented in Equation 4.35) is the amount of scattering events per

unit distance. The total number of scattering events combines the number of
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phonon-phonon and phonon-defect collisions, as shown for 4000 K and 1000 K

respectively in Figures 4.11 & 4.12. Where phonon-phonon scattering is high

because of 4000 K temperature, impurity scattering influences, but is not the

dominant control on the magnitude of scattering. This behaviour is different at

1000 K, where the effect of phonon-defect scattering is of comparable magnitude

to the decreased phonon-phonon scattering for high impurity contents (i.e.,

around 50%). The largest phonon-defect scattering coincides with the largest

difference between computed and interpolated conductivity, as might be expected.

Figure 4.11: Scattering events per distance, or inverse of MFP, plotted against
composition at 4000 K. The total scattering behaves like the inverse of the
conductivity. Phonon-phonon scattering increases with composition, as the
mass of the system increases. Phonon-defect scattering increases from each
endmember, to a maximum point at an intermediate composition. The ph-ph
scattering is high compared to ph-d, the 4000 K temperature dominates the MFP
behaviour.
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Figure 4.12: An illustrative measure of scattering significance, plotted against
composition at 1000 K. The total scattering behaves like the inverse of the
conductivity. Phonon-phonon scattering increases with composition, as the
mass of the system increases. Phonon-defect scattering increases from each
endmember, to a maximum point at an intermediate composition. While the
magnitude of phonon-defect scattering is similar to that at 4000 K, ph-ph
scattering is smaller due to the lower temperature. The relative significance of
ph-d increases, meaning impurities have a greater effect on the conductivity.

4.5.4 C (1− C) model limitations

Despite the good agreement between the simulated and modelled data, there are

still limitations to following this methodology to determine conductivity at all

temperatures and compositions.

Using the method discussed in Section 3.2.9 to determine Λph−d, I am able

to observe how the mean free path of phonon defect scattering changes with

composition. Table 4.8 presents both calculated values and those predicted using

my model. When the data is used to determine Λph−d, the greatest effect is at a
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composition between 25% and 50% (albeit closer to 25%).

Taking the 4000 K conductivity model however, the largest effect of

phonon-defect scattering (smallest MFP) is at a composition around 50% (see

Fig. 4.13). This is to be expected, and is set by the C (1− C) term in

Equation 4.16. The C (1− C) model is assuming that an equal proportion

of each type of atom (i.e., 50/50 composition) creates the most phonon-defect

scattering, but my results indicate that it is weighted by the masses of the atoms

in question. This requires further investigation. The composition at which the

mass contribution is equal can be calculated by

Cmass =
AMg

AMg + AFe

, (4.36)

where A is atomic mass, Mg corresponds to C = 0 and Fe to C = 1. For Mg

and Fe, Cmass = 0.3, or 30% Fe to 70% Mg (Fig. 4.14), which appears here to be

the turning point in phonon-defect scattering. Defect scattering increases from

zero up to its maximum at this composition, and decreases to zero as Fe content

tends towards 100%. Even if conductivity decreases overall due to phonon-phonon

scattering effects with increasing temperature, this composition will be the point

of minimum Λph−d.

4.6 Conclusion

In this chapter I have considered how the conductivity of bridgmanite varies

with temperature and iron content at 136 GPa, using a dense sampling of data

points. I first showed that conductivity decreases with increasing temperature,

for varying compositions (Fig. 4.2). I showed that the MgSiO3 end member has a

higher thermal conductivity across all temperatures, compared to the FeSiO3 end

member. When I considered the conductivity of (Mg0.5Fe0.5)SiO3 across a range of
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Figure 4.13: An illustration of how the significance of ph-d scattering changes
with composition depending on the data. Determining the ph-d MFP from the
model gives a result similar to C (1− C), as might be expected (not exactly
though, error is introduced by the model not being fixed to the endmembers).
However the data shows that the largest effect of defects is between 25% and
50%, presumably closer to 25%.

temperatures, the conductivity did not fall between the Mg and Fe endmembers,

but rather is approximately equal to or lower than the Fe endmember.

Next, I investigated the relationship between thermal conductivity of

bridgmanite and composition. The intermediate solid solution compositions have

lower conductivity values than the respective Mg and Fe endmembers (Fig. 4.3)

and I showed that the conductivity values cannot be linearly interpolated between

the endmember compositions. The effect of impurities on conductivity changes

with temperature, because impurity scattering has a larger effect at higher initial

conductivities. When conductivity decreases with temperature, the addition of

impurities still further decreases conductivity, but the effect is smaller at higher
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Figure 4.14: An illustration of contributions to the average mass of all Mg and
Fe in the system. They contribute equally when 30% of Mg is replaced with Fe.

temperatures.

Impurities have a less significant effect on thermal conductivity at higher

temperatures. This suggests that the thermal conductivity does not reduce

further because it has already approached its minimum; this effect is referred to

as saturation, a concept which has been debated in the literature (e.g., Ammann

et al., 2014; Ghaderi et al., 2017). I show that the initial inclusion of small

amounts (∼5%) of iron impurities into bridgmanite causes a significant drop

in conductivity, but the effect plateaus with further iron addition, as found by

Tang et al. (2014). This is because the phonon-phonon scattering is dominant

at higher temperatures (i.e., the relative differences between phonon-phonon and

phonon-defect scattering between Fig. 4.11 and 4.12).

More broadly, my investigation has implications for how impurities affect solid
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solutions above the Debye temperature. I suggest that the concept of saturation

is likely to be present with impurities other than iron. The magnitude of the

effect may be smaller or larger than that observed in iron within bridgmanite, if

the the atomic mass change or initial conductivity differ.

I combined the composition-dependent conductivity model of Padture and

Klemens (1997) and the temperature-dependent model of Okuda et al. (2017).

This produced a complete model of thermal conductivity across all possible lower

mantle temperatures and iron concentrations, at CMB pressure.

I investigated the difference between methods of modelling iron - a simple

isotopic model, and updated potential. I show that for simulating the

conductivity of bridgmanite at lower mantle conditions, the isotopic model better

approximates the full model than using only the potential model, both at 1000 K

and 4000 K. I suggest therefore that if a potential is not available for a given

impurity, using only an isotopic model could be a suitable approximation. This

supports the results of the isotopic model used by Ammann et al. (2014).

In Chapter 3, I obtained the phonon mean free path. In this chapter, I expand

on this method and show that it is also possible to determine the phonon-phonon

mean free path and the phonon-defect mean free path. By assuming that

the Green-Kubo calculations in this chapter produce thermal conductivities

corresponding to the same MFPs calculated in Section 3.2.9, and that

conductivity is directly proportional to MFP, I scale the compositional-dependent

Green-Kubo results into MFPs. I calculate the phonon-phonon scattering

by linearly interpolating between endmember compositions, and subtracting

the phonon-phonon scattering from the effective scattering determines the

phonon-defect scattering. This shows that the phonon-defect mean free path

is smaller at low temperatures, and that it varies with composition.

The composition model from Padture and Klemens (1997) assumes that the

effect of impurities on conductivity increases up to a 50% solid solution, and
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then decreases towards the other endmember. By quantifying the phonon-defect

mean free path, I show that this turning point does not occur when the number

of Fe-replacements is equal to number of Mg atoms (as assumed by Padture

and Klemens (1997) in the C (1− C) term), but rather when Mg atoms and Fe

atoms contribute equally to the mass of the system. I therefore suggest that a

more complex model would allow better estimation of conductivity for a given

impurity content.

The conclusions from this chapter have broader implications for the study of

impurities across a range of temperatures. I suggest that to obtain a full picture

of the lower mantle, similar studies to this would need to be undertaken for other

impurities and/or minerals. For example, the combined composition-temperature

conductivity model that I produced in this chapter could also be used to model

how iron content affects the conductivity of ferropericlase. Following the analysis

of isotopic and potential models, this could be done using purely an isotopic

model.

The main aim of developing a model of the temperature- and

compositional-dependence of the thermal conductivity of bridgmanite is to

include it in a numerical study of core-mantle boundary heat flux. Therefore,

the combined model from this chapter will be taken forward into Chapter 5

to investigate the effects of temperature, composition and conductivity on

core-mantle boundary heat flux, thus drawing conclusions in terms of whole

mantle dynamics.

4.7 Summary

1. I investigated the ways in which impurities can be added to, and affect, a

crystalline structure. I showed that changing atomic mass to represent

impurities is a reasonable method for Fe in bridgmanite, and may be
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considered for other systems if a full interatomic potential model is

unavailable.

2. By considering the full range of impurity inclusion (i.e., from 0 to 100%)

I showed that the effect of adding an impurity depends on the ratio of its

mass with the atom it is replacing, a potential shortcoming unidentified in

previous models.

3. Using the Green-Kubo method, I computed lattice thermal conductivity

at 136 GPa and a range of lower mantle temperatures, from bridgmanite

to its FeSiO3-endmember. I obtain results of 7.07 ± 0.06 Wm−1K−1 for

bridgmanite, 5.30± 0.05 Wm−1K−1 for the FeSiO3 endmember, and 5.46±

0.05 Wm−1K−1 for the 50% (Mg,Fe)SiO3 solid solution, at CMB conditions

of 136 GPa and 4000 K.

4. I fit a model to the data obtained, allowing determination of thermal

conductivity for temperatures between 1000–5000 K at 136 GPa. This

is the first time such an extensive model has been developed across the full

range of (Mg,Fe)SiO3 composition.

5. Computation of this series of results reveals that lattice thermal

conductivity tends to saturate towards a minimum value at CMB

conditions. If conductivity is reduced (e.g., increasing temperature, adding

Fe) to a certain point, then changing conditions to increase it (e.g.,

increasing pressure) have minimal effect. This effect is significant when

considering temperature in the lowermost mantle, lateral variations only

have a small effect on conductivity if all temperatures are > 3000 K.
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Table 4.7: Simulated conductivity values, and values determined by model fit,
for compositional-dependent conductivity at a range of temperature values.

Composition
(Mg-to-Fe

replacement %)

Simulated
conductivity
(Wm−1K−1)

Conductivity
from model fit
(Wm−1K−1)

1000 K

0.00 17.51± 0.27 17.51
2.08 15.86± 0.26 15.84
6.25 13.37± 0.25 13.69
25.00 9.36± 0.22 9.75
50.00 8.26± 0.22 8.06
75.00 8.34± 0.24 7.84
93.75 9.21± 0.25 9.32
97.92 10.44± 0.26 10.38
100.00 11.26± 0.27 11.26

2000 K

0.00 10.36± 0.13 10.36
2.08 9.80± 0.12 9.96
6.25 8.76± 0.11 9.30
25.00 7.47± 0.11 7.54
50.00 6.53± 0.11 6.47
75.00 6.43± 0.11 6.12
93.75 6.61± 0.11 6.44
97.92 6.68± 0.12 6.65
100.00 6.79± 0.12 6.79

3000 K

0.00 8.11± 0.06 8.11
2.08 7.62± 0.07 7.87
6.25 7.30± 0.07 7.46
25.00 6.27± 0.06 6.30
50.00 5.58± 0.07 5.57
75.00 5.56± 0.06 5.36
93.75 5.54± 0.06 5.60
97.92 5.62± 0.07 5.75
100.00 5.84± 0.07 5.84

4000 K

0.00 7.07± 0.06 7.07
2.08 6.72± 0.06 6.92
6.25 6.44± 0.06 6.67
25.00 5.70± 0.06 5.85
50.00 5.46± 0.06 5.28
75.00 5.14± 0.06 5.07
93.75 5.23± 0.06 5.18
97.92 5.27± 0.06 5.25
100.00 5.30± 0.06 5.30

5000 K

0.00 6.28± 0.05 6.28
2.08 6.16± 0.05 6.20
6.25 5.93± 0.05 6.04
25.00 5.37± 0.04 5.51
50.00 5.10± 0.04 5.09
75.00 5.11± 0.04 4.90
93.75 4.90± 0.04 4.91
97.92 4.88± 0.04 4.93
100.00 4.95± 0.04 4.95
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Chapter 5

Simulating core-mantle boundary

heat flux

Many variables affect heat flux across the core-mantle boundary (CMB). As

explained in Chapter 4, thermal conductivity is dependent on the temperature

and composition of a mineral. Heat is transferred between the convective core

and the convecting mantle by conduction across the CMB. This leads to the

formation of a thermal boundary layer (TBL) on both sides (Fig. 5.1), but as

the mantle layer limits the cooling of the core, it is conduction at the base of the

mantle that controls the heat flux from the core. On the other hand, it is the

core that sets the temperature at the base of the mantle.

The temperature difference across the TBL is controlled by thermal

conduction, and follows the form

∆T = TCMB − TLM , (5.1)

where TCMB is the core-mantle boundary temperature, and TLM is the

temperature of the lower mantle. We expect the temperature distribution in

151
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Figure 5.1: (a) An illustration of how temperature varies with depth (z)
in LEMA, showing the transition to an isothermal CMB temperature. TLM

shows average lower mantle temperature, with ∆TLM giving the range in lateral
variation.

the TBL to follow an error function (Wu et al., 2011) by

Tz = TCMB −∆Terf
z

δ(t)
, (5.2)

where Tz is depth-dependent temperature, z is height above the CMB, and t is

time.

In Chapter 4, I derived model fits to simulated data, which provided

me with thermal conductivity as a continuous function of composition and

temperature. This has a significant advantage over the derivation of discrete

conductivity-temperature or conductivity-composition data points. In this

chapter, I pair this data with a model built using the Leeds Earth Modelling

Apparatus (LEMA) (Walker et al., In prep). I am able to simulate variations in

temperature and composition within the lower mantle, because the continuous

functions from Chapter 4 allow calculation of thermal conductivity for any
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combination of temperature-composition conditions. This means that within a

mantle model, I am able to calculate conductivity changes due to minor variations

in temperature or composition. This provides a more comprehensive view of the

lower mantle than would be available using discrete data points, and limits the

need for interpolation between discrete mantle states.

For example, the thickness of the thermal boundary layer determines the

temperature gradient directly above the CMB (Fig. 5.1). A profile of conductivity

for a continuous range of temperatures means that any changes to the TBL

thickness can be appropriately simulated, i.e., thermal conductivity can be

recalculated on the fly.

Figure 5.2: 3D thermochemical piles shown in gold, with a whole-mantle
temperature cross section (red and blue denote hot and cold, respectively), based
on geodynamical modelling. Reproduced with permission from Garnero and
McNamara (2008).

In the lower mantle, there are complex three-dimensional features that render

simple one-dimensional Earth models insufficient. For example, hot upwellings

and cold subducted slabs (e.g., Garnero and McNamara, 2008, Fig. 5.2) would

not be appropriately captured using only a one-dimensional model. There are two

large low shear velocity provinces (LLSVPs; Section 1.1.2) that sit approximately

on opposite sides of the core, and require 3D modelling to understand further.

A two-dimensional model, around the equator perhaps, would better describe

the lower mantle, but the CMB is spherical and thus exceeds the complexity
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provided by 2D simulations. A more sophisticated model with varying latitudes

and longitudes is required to replicate changes in CMB structure.

As discussed in Section 1.2.1, Tosi et al. (2013) modelled two-dimensional

lower mantle dynamics with depth-dependent conductivity, recreating lower

mantle features observed using the seismic record. In this chapter, I take the

first step towards a comprehensive three-dimensional mantle model. My primary

aim is to determine the heat flux at the CMB, as a function of temperature and

composition, using the thermal conductivity profiles calculated in Chapter 4.

Specifically, I do this by considering simplified representations of LLSVPs

with different characteristics. LLSVPs were initially thought to be hot thermal

upwellings in an isochemical mantle (Thompson and Tackley , 1998). They have

more recently been considered as thermochemical features, which are driven by a

denser mantle material (McNamara and Zhong , 2005; Bull et al., 2009). However,

this thermochemical explanation is not universally accepted, and a solely thermal

explanation may be sufficient (Davies et al., 2012; Schuberth and Bunge, 2009).

In this chapter, I test various thermal and thermochemical scenarios, alongside

a hypothetical purely chemical scenario. My aim is to inform on the range of

parameters needed to produce a model that matches observations, and infer what

such a model might tell us about how LLSVPs differ from the surrounding mantle.

5.1 Methodology

LEMA is a collection of software and tools designed to model the lower mantle

and allow comparison with observations from a wide range of discipline. It models

the mantle as spherical layers, such that properties can vary both laterally and

radially. A flowchart of the steps undertaken in a typical LEMA calculation from

this study can be found in Figure 5.3.

The magnitude of the heat flux changes with position on the CMB, as the
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Figure 5.3: Flowchart showing the processes involved in a typical LEMA
calculation, as performed in this study.

TBL characteristics change. Local heat flux (qi) is given by solving Fourier’s law

at a point i by

qi = −κ(TCMB, Ci)

(
dT

dr

)
i

. (5.3)

The heat flux is found directly from the radial temperature gradient (dT
dr

) at point

i on the CMB and the mantle thermal conductivity, which as discussed in Chapter

4, is a function of composition (Ci) and temperature (TCMB).

Once the heat flux is calculated for over all points, the number of which is

given by (np), I integrate over the CMB surface area (4πr2CMB) to find the total
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heat flux across the CMB (QCMB) by

QCMB =

np∑
i=0

4πr2CMB

np
qi, (5.4)

and to determine a measure of heat flux variability via lateral variations.

Lateral variations in heat flux can show how heat flux is sensitive to the

lower mantle conditions, and what condition or combination of conditions has

the greatest effect on heat flux. The calculated heat flux and its lateral variations

can then be compared to observables (e.g., expected CMB heat flux from global

heat budget estimates, and lateral variation in shear wave velocities as a proxy),

dismissing scenarios which are unfeasible or unstable.

The lateral variations in temperature considered in this study cannot be

explicitly compared with observations of temperature variations, because there

is a trade off between the temperature and the thickness of the TBL. The

temperature at the top of the TBL only serves to influence temperature gradient.

The shear wave velocity (VS) is also calculated in LEMA by

VS =

√
G

ρ
, (5.5)

where G is the shear modulus and ρ is mantle density. The shear wave velocity

is calculated in a laterally and radially varying mantle given parameters for

finite strain from the Mie-Grüneisen-Debye equations of state (Stixrude and

Lithgow-Bertelloni , 2005). The laterally and radially varying shear modulus and

mantle density of Stixrude and Lithgow-Bertelloni (2005) are used, as modified

by Zhang et al. (2013). The velocity calculation is done using BurnMan, a lower

mantle mineral physics toolkit from Cottaar et al. (2014), and the velocities

are available on the same parameterisation as used for the temperature. It

is important to note that thermodynamic equilibrium is not forced between
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phases (for element partitioning) within LEMA. Instead phase boundaries in the

(MgFe)(SiAl)O3 and (AlSi)O3 systems can be included and do account for the

composition, but this feature (i.e., the post-perovskite phase transition) is turned

off in this study. Therefore, the model used here considers bridgmanite only.

Using LEMA, I specify the temperatures at the CMB and at the top of the

lower mantle (TLM). The temperature gradient in the TBL is determined by

specifying the thickness of the TBL and calculating the temperature difference

between the bottom of the TBL (i.e., the CMB) and the top of the TBL (i.e., the

lower mantle temperature).

In all models, I consider the CMB to be isothermal. This is a reasonable

assumption because the convection within the core occurs on a much faster

timescale than in the mantle (e.g., Gibbons and Gubbins , 2000). Although the

temperature profile above the thermal boundary layer is constant with depth,

there are lateral temperature variations, determined by ∆TLM within LEMA.

The parameter ∆TLM controls the range in variations of mean temperature.

I consider the lower mantle in LEMA as bridgmanite with an average

Fe content, that does not undergo the pressure-driven phase transition to

post-perovskite. Variation in Fe is controlled by the ∆Fe parameter, which gives

the range of Fe concentration when compared with a mean value. This allows

consideration of LLSVPs in the model, which are enriched in iron compared with

the depleted surrounding lower mantle. Implementation of laterally-varying Fe

content into the model will be explained in Section 5.2.2.

5.1.1 Modelling heat flux in the lower mantle

I use LEMA to explore how different assumptions about the origin of LLSVPs

affect CMB heat flux. I present three methods by which LLSVPs can be

considered in a model, and compared to the surrounding mantle material, in
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order to calculate heat flux variations around the CMB. These methods consider

1. Temperature (i.e., a thermal model)

2. Composition (i.e., a chemical model)

3. Temperature and composition (i.e., a thermochemical model)

If no lateral variations in temperature exist in the lower mantle (i.e., a constant

radial temperature), the heat flux is controlled solely by variations in composition,

leading to a varying conductivity. If no lateral variations in composition exist,

heat flux is controlled by lateral variations in temperature gradient.

Either scenario is, however, a vast oversimplification of conditions in the

lower mantle. In reality, both temperature and compositional factors affect

heat flux. Additionally, thermal conductivity has temperature-dependence and

compositional-dependence, as shown in Chapter 4, thus further complicating

modelling of the lower mantle.

One of the ways of modelling LLSVPs is to assume they are thermochemical

piles (i.e., like Fig. 5.2), meaning that they are hotter and have higher Fe content

than the surrounding lower mantle. Increasing temperature reduces conductivity,

as does adding impurities up to the compositions expected in the lower mantle

(∼15%; Lee et al. (2004)). By altering temperature and composition in tandem, I

generate heat flux estimates for varied lower mantle conditions, and then compare

these with observations.

5.1.2 Lateral variations in heat flux

While there are limitations to the use of this model in calculating CMB heat flux,

inferences can be made on the relative lateral variations in heat flux. By creating

an LLSVP model and comparing the heat flux to independent estimates, I infer

how the distribution of heat flow is affected by temperature and composition
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variations. I determine the lateral variation in heat flux (q∗) as

q∗ =
qmax − qmin

qmean

, (5.6)

where qmax and qmin refer to the calculated extremes of heat flux (qi, Equation 5.3).

The maximum q value refers to the heat flux in the lower mantle, whilst the

minimum q refers specifically to LLSVP heat flux. Higher values of q∗ give

lower heat fluxes through the LLSVPs, which are hotter, thus reducing thermal

conductivity. By determining q∗, I comment on the significance of thermal

conductivity in the Earth’s heat engine for a wide range of possible lower mantle

conditions.

5.1.3 Using spherical harmonics to replicate CMB

features

One way in which LEMA can describe the variation in temperature and

composition in the mantle is to use spherical harmonics. I use this method to

generate structures that resemble LLSVPs.

The centres of LLSVPs are approximately located on the equator, antipodal

at 0◦ and 180◦ longitude (the African and Pacific LLSVPs respectively). A

first order approximation for this geometry is the spherical harmonic Y 2
2 , four

quadrants of varying polarity around the polar axis (Fig. 5.4a). This is a

good first approximation, but the circular projection is misleading, and the

spherical harmonics extend to the poles, which would misrepresent LLSVPs. The

approximation can be improved by stacking Y 0
2 on top of it (Fig. 5.4), enhancing

regions on the equator and reducing everything towards the poles. When two

spherical harmonics are stacked in this way, both values at every coordinate are

averaged (mean) to produce a new stacked harmonic. The result is two circular
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patterns, each located at opposite sides of the equator (Fig. 5.5).

Figure 5.4: Spherical harmonic patterns corresponding to (a) Y 2
2 and (b) Y 0

2 .
Blue and red regions show positive and negative amplitudes, respectively.

For the Y 2
2 pattern, the areas of positive and negative amplitude regions

are equal. For the Y 0
2 -combined model (Fig. 5.5), the areas of positive and

negative polarity are unequal. The temperature distribution in the model is

weighted by the areas given by the stacked spherical harmonic. If the areas of

positive and negative amplitude are equal, the ∆TLM (i.e., the lateral variation in

temperature) parameter is evenly distributed (i.e., Tmax = TLM + 1
2
∆TLM and

Tmin = TLM − 1
2
∆TLM ; Fig. 5.1). However, the uneven distribution of areas

with positive and negative amplitudes from the stacked harmonic means that

∆TLM can also be distributed according to the areas of high or low amplitude

(i.e., Tmax > TLM + 1
2
∆TLM and Tmin > TLM − 1

2
∆TLM). Qualitatively, this

leads to hotter hots, and warmer colds.

The parameters (TCMB, TLM, TBL thickness) and the lateral variation allow

generation of a set of temperatures. A function f can be written as

f =

NMAX∑
n=0

LMAX∑
l=1

l∑
m=0

cmnlTn(r)Y m
l (θ, φ), (5.7)

where Y m
l (θ, φ) are the real spherical harmonics of degree l and order m, Tn(r)

are the Chebyshev polynomials of the first kind, and the cmnl are coefficients.

The radial temperature gradient is obtained by analytical differentiation of

the Chebyshev polynomials (Fig. 5.6). This radial parameterisation can then
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Figure 5.5: Combined spherical harmonics (the sum of Y 2
2 and Y 0

2 ), showing how
LLSVPs are represented in LEMA for this study. Blue and red regions show
positive and negative amplitudes, respectively.

be checked against an analytical solution for the heat flux (QCMB) in a

one-dimensional model (i.e., no lateral variation in temperature or Fe content)

calculated by determining the heat flow (qCMB) by

qCMB = 4πR2
CMB QCMB =

8
√
πκ∆TR2

CMB

δ
, (5.8)

where RCMB is CMB radius, ∆T is the temperature difference between the lower

mantle and the CMB, and δ is TBL thickness (Wu et al., 2011).

The effect of the lateral parameterisation is likely to be minor. The calculation

is done on a HEALPix grid (Gorski et al., 2005) and this gets finer as the spherical

harmonic degree increases. Model resolution is therefore determined by the LMAX

and NMAX , the maximum degrees of the spherical harmonic and the Chebyshev

polynomial, respectively. Table 5.1 gives a full list of LEMA input parameters,

with the symbols used and default values where necessary.
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Figure 5.6: Convergence of calculated heat flux with degree of Chebyshev
polynomial, where blue line indicates the heat flux calculated in LEMA, and
the red dotted line represents the analytical solution using Equation 5.8.

5.2 Results

In the initial set-up of LEMA, I set the CMB temperature at 4000 K and the

temperature at the top of the thermal boundary layer at 2600 K. The thickness of

the TBL is set at 150 km. In each simulation, I obtain results for the core-mantle

boundary heat flux (QCMB), lateral variation in heat flux (q∗), mean shear wave

velocity (VS) and the variation in mean shear wave velocity, i.e., the LLSVP

seismic anomaly (∆VS).

Of these, I compare the QCMB and ∆VS with observational data. The

core-mantle boundary heat flux is compared with estimates from Jaupart et al.

(2015) of 11 ± 6 TW. The mean shear wave velocity anomaly is compared with

common estimates for the LLSVP, which are generally around 3% (e.g., Lay and

Garnero, 2011; Ni et al., 2005). The estimated velocity anomalies output from



§5.2 Results 163

Table 5.1: A list of LEMA input parameters with symbols and default values.
Spherical harmonic degree refers to sampling of the model, not the representation
of LLSVP temperature and compositional anomalies. Variations in the values
cover the range used in this study.

Symbol Parameter Value
TCMB CMB temperature 4000 K
TLM Lower mantle temperature 2600 K
δ TBL thickness 150 km
RCMB Model CMB radius 3480 km
RLM Model lower mantle radius 4480 km
LMAX Spherical harmonic degree and order 8
NMAX Chebyshev polynomial degree 22
κ Thermal conductivity varies as per model (Eq. 4.33)
∆TLM Lateral temperature variation varies from 0–2000 K
Femean Mean iron content varies from 0–0.2 (decimal)
∆Fe Lateral iron content variation 2×Femean, 0 for thermal model

LEMA are not the same as those obtained using seismic tomography, but rather

they are values calculated from the maximum and minimum velocities at a height

of 80 km above the CMB, roughly in the middle of the TBL. The velocity is a

function of an arbitrary depth at which it was calculated, so absolute values from

LEMA should not be compared with tomography at the same depths.

5.2.1 Thermal model

I first examine a purely thermal model. In this model, there is 0% iron, and thus

no compositional variation. I increase the lateral variation in temperature at the

top of the TBL, ∆TLM, and observe the effect of this on the output parameters.

QCMB remains within the estimates from Jaupart et al. (2015), increasing from

12.42 TW to 12.86 TW (see Table 5.2, and Figure 5.7) as ∆TLM increases from

0 K up to 2000 K (i.e., TLM = 2600 ± 1000 K). The variation in QCMB is likely

due to the uneven distribution of LLSVP area compared to the lower mantle, as

discussed in Section 5.1.3. Because there is a larger relative area of lower mantle

to LLSVP, there is a larger area in which the temperature gradient increases,

meaning that as the increase in temperature gradient become more significant,
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so QCMB increases. As shown in Figure 5.7, the q∗ value increases linearly with

increasing ∆TLM. In order to obtain a seismic anomaly (∆VS) of 3%, lateral

temperature variations on the order of ∼1700 K are required (Fig. 5.8).

Table 5.2: Thermal model LEMA outputs (QCMB: heat flux across the CMB;
q∗: variations in heat flux; Vmean: mean shear wave velocity; ∆VS: shear wave
velocity variation), based on simulations with iron content of Femean and lateral
variations in temperature of ∆TLM.

Femean ∆TLM(K) QCMB(TW) q* Vmean(m/s) ∆VS(%)

10% Fe

0 11.17 0.00 7053.7 0.0
200 11.17 0.19 7053.7 0.4
500 11.19 0.46 7053.6 0.9
1000 11.24 0.91 7053.3 1.8
1500 11.34 1.35 7052.9 2.7
1667 11.38 1.50 7052.8 3.0
2000 11.47 1.78 7052.4 3.6

0% Fe

0 12.42 0.00 7231.8 0.0
200 12.42 0.19 7231.8 0.3
1714 12.73 1.56 7230.8 3.0
2000 12.85 1.80 7230.5 3.5

Figure 5.7: a. Variation in CMB heat flux (QCMB) and b. its lateral variation
(q∗) as a function of the lateral variations in lower mantle temperature (∆TLM)
for simulations with constant 0% iron content (red circles) and constant 10% iron
content (black squares).

Next, I examine a thermal model, given a constant Fe content of 10%

across the lower mantle. Adding iron reduces conductivity, leading to the
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observed reduction in QCMB compared with an 0% Fe case. However, adding a

homogeneous distribution of iron does not significantly affect q∗, due to the lack

of lateral variations. The QCMB and q∗ values exhibit a similar pattern to the

purely thermal model of increasing with increasing ∆TLM. The increase in QCMB

occurs due to the uneven area distribution from the spherical harmonics, and is

likely a result of the method, rather than a physical representation. Increasing

the iron content from 0% to 10% lowers the ∆TLM required to produce a 3%

seismic anomaly, from 1714 K to 1667 K (Fig. 5.8).

Figure 5.8: Variation in mean shear wave velocity (∆VS) as a function of the
lateral variations in lower mantle temperature (∆TLM) for simulations with
constant 10% iron content (black squares) and constant 0% iron content (blue
triangles). Observed seismic anomaly from LLSVPs also indicated at 3% (red
dotted line).



166 Chapter 5: Simulating core-mantle boundary heat flux

Table 5.3: Chemical model LEMA outputs (QCMB: heat flux across the CMB;
q∗: variations in heat flux; Vmean: mean shear wave velocity; ∆VS: shear wave
velocity variation), based on simulations with iron content of Femean and lateral
variations in temperature (∆TLM) of 0 K. The actual Fe contents of the LLSVP
(LLSVPFe-av) and lower mantle (LMFe-av) are calculated using Equations 5.9 and
5.10, respectively.

∆TLM Femean ∆Fe LLSVPFe-av LMFe-av QCMB q∗ Vmean ∆VS

0

0.02 0.04 3.43 0.94 12.13 0.05 7195.4 1.2
0.05 0.1 8.58 2.35 11.76 0.12 7141.8 2.9
0.1 0.2 17.17 4.71 11.25 0.20 7055.4 5.7
0.2 0.4 34.33 9.41 10.51 0.32 6892.2 11.0

5.2.2 Chemical model

I then examine a purely chemical model, with no lateral temperature variations

(Table 5.3). I assume a ∆TLM value of 0 K and increase the average iron content

(Femean) up to 20%. In this model, the ∆Fe is set to be twice the Femean value. For

example, if Femean is 10% and the ∆Fe value is 20%, this means the model should

represent an iron content in the lower mantle of 0% and an iron content in the

LLSVPs of 20%. Due to the uneven area distribution created by the spherical

harmonics (see Section 5.1.3), there is a discrepancy between this idealised Fe

distribution and the actual average mean LLSVP iron content (LLSVPFe-av) as

LLSV PFe-av =
Femax − Femean

2
+ Femean, (5.9)

where Femax is the maxmium iron content in the LLSVP and Femean is the mean

iron content in the LLSVP. The actual average iron content in the lower mantle

(LMFe-av) can be determined by

LMFe-av =
Femean − Femin

2
. (5.10)

Table 5.3 and Figure 5.9 show that with a mean iron concentration of 5%,
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the QCMB decreases, as expected with increasing iron content causing a decrease

in conductivity. The lateral variation in heat flux (q∗) increases as the lateral

variation in iron increases. The ∆VS increases from 1.2% at 2% average iron to

11.0% at 20% iron (Fig. 5.10). From this, I suggest that lateral variations in

composition have a far greater effect on ∆VS than lateral temperature variations.

For this model with 0 K lateral temperature variation, the expected seismic

anomaly of 3% is reproduced with an average iron content of 5%, and therefore

a ∆Fe of 10%.

Figure 5.9: a. Variation in CMB heat flux (QCMB) and b. its lateral variation (q∗)
as a function of lower mantle Fe content (Femean) for simulations with constant
lower mantle temperature.

5.2.3 Thermochemical model

Now that the independent thermal and chemical models have been evaluated, I

can investigate the combined thermochemical model.

First, I create constant temperature scenarios, with varying average iron

content (Femean), and no lateral variations in iron content (∆Fe = 0). I do

this for temperature differences of 200 K, 500 K, and 1500 K, and iron contents

across a range of 0–40% (Table 5.4). As illustrated in the purely thermal models
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Figure 5.10: Mean shear wave velocity (∆VS) as a function of the lateral
variations in lower mantle iron content (Fav) for simulations with constant lateral
temperature variations of 0 K. Observed seismic anomaly from LLSVPs also
indicated at 3% (red dotted line).

(Section 5.2.1), increasing the temperatures leads to an increase in q∗. Increasing

the mean iron content at a fixed temperature has no impact on q∗, because q∗is

dependent upon lateral variations. Lateral variations in temperature do not affect

the mean shear wave velocity (Vmean), but increasing Femean leads to a reduction

in Vmean. In the same way that q∗ remains constant with increasing Femean but

no lateral variations in Femean, the values of ∆VS behave in the same way and

stay constant across the range of iron content.

The second suite of thermochemical models are designed to investigate the

effect of simultaneous lateral variations in iron content (i.e., changing Femean) and

lateral variations in temperature (i.e., changing ∆TLM). I do this for temperatures

in the range of 100–1000 K and for iron contents up to 10% (Table 5.5).
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Table 5.4: LEMA outputs for the thermochemical model with no lateral
chemical variation. ∆TLM: lateral variations in temperature; Femean average
iron content; ∆Fe: lateral variation in iron content; QCMB: heat flux across the
CMB; LLSVPFe-av: average iron content in the LLSVP regions; LMFe-av: average
iron content in lower mantle; q∗: variations in heat flux; Vmean: mean shear wave
velocity; ∆VS: shear wave velocity variation.

∆TLM Femean ∆Fe LLSVPFe-av LMFe-av QCMB q∗ Vmean ∆VS
200 0 0 0 0 12.42 0.19 7231.8 0.3
200 0.1 0 0.1 0.1 11.17 0.19 7053.7 0.4
200 0.2 0 0.2 0.2 10.31 0.18 6885.1 0.4
200 0.4 0 0.4 0.4 9.21 0.18 6573.5 0.4
500 0 0 0 0 12.44 0.47 7231.7 0.9
500 0.1 0 0.1 0.1 11.19 0.46 7053.6 0.9
500 0.2 0 0.2 0.2 10.32 0.46 6885.0 0.9
500 0.4 0 0.4 0.4 9.21 0.45 6573.4 0.9
1500 0.1 0 0.1 0.1 11.34 1.35 7052.9 2.7
1500 0.4 0 0.4 0.4 9.29 1.32 6572.8 2.7

Table 5.5: LEMA outputs for the thermochemical model with added lateral
chemical variation. ∆TLM: lateral variations in temperature; Femean average iron
content; ∆Fe: lateral variation in iron content; QCMB: heat flux across the CMB;
LLSVPFe-av: average iron content in the LLSVP regions; LMFe-av: average iron
content in lower mantle; q∗: variations in heat flux; Vmean: mean shear wave
velocity; ∆VS: shear wave velocity variation.

∆TLM Femean ∆Fe LLSVPFe-av LMFe-av QCMB q∗ Vmean ∆VS
100 0.04 0.08 6.87 1.88 11.89 0.19 7159.5 2.5
100 0.05 0.1 8.58 2.35 11.77 0.21 7141.8 3.1
200 0.01 0.02 1.72 0.47 12.28 0.22 7213.5 0.9
200 0.03 0.06 5.15 1.41 12.02 0.26 7177.4 2.1
200 0.04 0.08 6.87 1.88 11.90 0.28 7159.5 2.7
200 0.05 0.1 8.58 2.35 11.79 0.30 7141.8 3.3
200 0.1 0.2 17.17 4.71 11.30 0.38 7055.4 6.1
500 0.03 0.06 5.15 1.41 12.06 0.54 7177.3 2.7
500 0.04 0.08 6.87 1.88 11.95 0.56 7159.5 3.2
1000 0.01 0.02 1.72 0.47 12.40 0.95 7213.1 2.4
1000 0.02 0.04 3.43 0.94 12.28 0.97 7195.0 2.9
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Table 5.6: LEMA outputs for the thermochemical model, where the seismic
anomaly is 3%. ∆TLM: lateral variations in temperature; Femean: average iron
content; ∆Fe: lateral variation in iron content; QCMB: heat flux across the CMB;
LLSVPFe-av: average iron content in the LLSVP regions; LMFe-av: average iron
content in lower mantle; q∗: variations in heat flux; Vmean: mean shear wave
velocity; ∆VS: shear wave velocity variation.

∆TLM Femean ∆Fe LLSVPFe-av LMFe-av QCMB q∗ Vmean ∆VS
100 0.05 0.1 8.58 2.35 11.77 0.21 7141.8 3.1
200 0.045 0.09 7.725 2.115 11.84 0.29 7150.65 3
500 0.035 0.07 6.01 1.645 12.01 0.55 7168.4 2.95
1000 0.02 0.04 3.43 0.94 12.28 0.97 7195 2.9

As temperature increases, the amount of iron required to reproduce the

observed shear wave seismic anomaly decreases. For example at ∆TLM of 100 K,

an iron content (Femean) of 5% is required to reproduce the observed seismic

anomaly of 3%, however when the ∆TLM is increased to 1000 K, iron content of

only 2% reproduces the seismic anomaly. It is clear here that there is a trade

off between lateral temperature and compositional variations required to produce

seismic anomalies.

I calculate the conditions required to produce seismic anomalies of 3% in the

thermochemical model (Table 5.6). For simultaneously increasing temperature

and decreasing iron, the value of q∗ systematically increases. This is because

the temperature-dependence of q∗ dominates the trend, effectively eliminating

the compositional-dependence. In the purely chemical model, increasing the iron

content increases q∗. Here we observe the opposite: as iron content increases, the

value of q∗ decreases. This is not a function of the iron, but rather because the

temperature-dependence of q∗ dominates and the decrease in iron is insufficient

to counteract the increase in temperature.

Finally, I investigate the effect of temperature-dependent conductivity on the

model of heat flux considered in LEMA. To do this, I vary the temperature of

the isothermal CMB by 500 K, with a final suite of temperatures of 3500 K,

4000 K, and 4500 K (Table 5.7 and Figure 5.11). I choose these values to show
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the extreme possibilities of the CMB temperature both past and present (Hilst

et al., 2007; Kawai and Tsuchiya, 2009; Andrault et al., 2016). In each case, I

also vary the temperature of the lower mantle by 500 K. By keeping a constant

∆T between the lower mantle and LLSVPs, and maintaining a TBL thickness

of 150 km, I keep the temperature gradient equal in all simulations. This means

that I can isolate the effect of absolute temperature on heat flux by using the

temperature-dependence of conductivity calculated in Chapter 4. Although not

explored in this study, varying the TBL thickness would change the temperature

gradient across the lower mantle, for example increasing thickness would decrease

the temperature gradient. This would cause a decrease in QCMB, similar to the

effect of changing TLM (which changes the temperature difference between the

lower mantle and the core-mantle boundary).

I find that as TCMB and TLM increase, the heat flux calculated in LEMA

decreases. A decrease in QCMB is expected because as temperature increases,

conductivity decreases, as previously shown in Figure 4.2. For example, for

a lateral temperature range of 1000 K and a laterally varying iron content of

2%, QCMB ranges from 13.52 TW at 3500 K to 11.41 TW at 4500 K. q∗ also

decreases with increasing CMB temperature, indicative of the range of heat flux

decreasing relative to the mean heat flux value. This means that there is a smaller

overall range in heat flux. This can be attributed to the temperature-dependence

of conductivity, because the effect of temperature on conductivity is smaller

at higher temperatures, i.e., the difference between 5000 K and 4000 K is

0.23 Wm−1K−1, whereas the conductivity difference between 4000 K and 3000 K

is 0.39 Wm−1K−1 (model fit for solid solution, Table 4.6).
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Figure 5.11: a. Variation in CMB heat flux (QCMB) and b. its lateral variation
(q∗) as a function of CMB temperature for a variety of thermochemical LLSVP
models.

5.2.4 Ultra-low velocity zones

While the LEMA model considered here is explicitly set up to consider the heat

flux through LLSVPs, it can be used to inform on ultra-low velocity zone (ULVZ)

properties. To do this, I consider different input parameters until the shear wave

velocity anomaly of the ULVZs is reproduced. Heat flux, however, cannot be

calculated in this way, because the model is effectively set up to have ULVZs

with the area of LLSVPs, which is an overestimation of what is expected in

reality.

ULVZs are observed around the edges of LLSVPs, as regions with a 25%

reduction in shear velocity (Rost et al., 2005, as discussed in Section 1.1.2). By

trying to reproduce this 25% anomaly instead of the 3% expected from LLSVPs, I

can inform on ULVZ temperature and composition. Considering a thermal model,

a ∆TLM of 14000 K is required, i.e., 2600±7000 K at the top of the TBL. The

chemical model requires a ULVZ Fe-content of around 92%. A thermochemical

model with ∆TLM of 1000 K requires a ULVZ Fe-content of 78% to reproduce a

shear velocity anomaly of 25%.
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From these models, I show that thermal models are unable to represent

ULVZs, because a feasible model requires a large Fe-content. While this

utilisation of the LLSVP model is unable to quantify the heat flux through

the ULVZ, the magnitude will be lower than the flux through the LLSVP.

The increase in temperature variation and Fe-content required to reproduce the

expected seismic velocity anomaly in the region reduces the heat flux. Thermal

conductivity in an ULVZ is unlikely to significantly differ from the rest of the lower

mantle, due to the saturation effects at high temperature and high Fe-content,

unless the non-LLSVP lower mantle is Fe-free and on the order of 1000 K cooler

than the ULVZs.

5.3 Discussion

In this chapter, I have explored the difference between using a thermal model, a

chemical model, and a thermochemical model to replicate LLSVP-like features.

There are, however, many oversimplifications in the methodologies presented here

that must be considered before drawing conclusions from the results.

The thermal boundary layer is given a constant thickness in this model,

which may not be accurate as temperature perturbations are likely to affect the

TBL layer thickness, and therefore the temperature gradient. An additional

simplification here is within the compositional model I use to represent the

lower mantle. I only incorporate bridgmanite, without periclase and/or calcium

perovskite (Fig. 1.2). In addition, I do not incorporate the phase transition

from bridgmanite to post-perovskite, which is expected to occur in the lowermost

mantle (Oganov and Ono, 2004). The model only considers Fe2+, and does

not consider Fe3+ or Al, as discussed in Chapter 4 and shown in Equation 4.1.

Although the model simplifies composition, it allows a first investigative look at

the effect of impurities on various lower mantle properties.
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The spherical harmonics approach used here oversimplifies the shape and

structure of the LLSVP features. The amplitude of the spherical harmonics is

continuous from maximum to minimum, but changes in the lower mantle could

be more abrupt. For example, LLSVPs have been suggested to have “sharp

boundaries” (Davies et al., 2015). As previously discussed, the stacking of two

spherical harmonics leads to an uneven distribution of positive and negative

amplitude. Although stacking two spherical harmonics gives a more appropriate

LLSVP shape, a disadvantage is that there is less area representative of LLSVPs

than if only one spherical harmonic pattern were used. While this is not a problem

in reproducing LLSVP geometry, it affects the distribution of temperature and

iron in the model. When an average variation is given to the model, this is

not uniformly distributed across the model space, but rather is weighted by the

uneven spherical harmonic areas, e.g., an increase in temperature is focussed in

a smaller area and thus has a greater magnitude of temperature increase.

Despite the assumed simplifications incorporated into LEMA, the main

advantage of the model is the qualitative comparisons that can be made for

different hypothetical scenarios. Although the absolute values for QCMB and q∗

depend upon the input values (e.g., TCMB, ∆TLM), the way in which these outputs

are affected by different parameters can be well explored using LEMA. I focus

here on the effect of average lower mantle temperature (and its lateral variation)

and average iron content (and its lateral variation) on the output values for QCMB

and q∗.

In a thermal model, large lateral variations (range on the order of 1700 K) in

thermal boundary layer temperature are required to produce seismic anomalies

which match tomography. The results of the chemical model in this study show

that only a 5% average iron content with a 10% range in lateral variation is

required in order to produce a 3% seismic anomaly. This would mean a largely

Fe-free lower mantle, and an Fe-enriched LLSVP.
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Lateral temperature variations and lateral iron variations both tend to create

shear wave anomalies between lower mantle material and the material in LLSVPs.

In this chapter, I showed that even a small amount of iron (5%) reduces the

temperature needed to produce a shear wave anomaly of 3% (Table 5.3) LLSVPs

likely have a thermal component, due to their association with mantle plumes

(e.g., Garnero et al., 2007), but I show here that the addition of iron allows

LLSVPs to exist at lower temperature variations than in an iron-free thermal

model, and still match the observed changes in S-wave velocity.

By comparing the thermal and chemical models, I observe that variations

in iron content affect the seismic anomaly (∆VS) more than they affect lateral

variations in heat flux (q∗). Conversely, variations in temperature affect lateral

variations in heat flux more than they affect the seismic anomaly. This

exploration of parameter space exemplifies where LEMA can newly inform on

the physical and chemical conditions that affect LLSVPs. The purely chemical

model which produces a seismic anomaly of 3% has a q∗ value of 0.12, whereas

the thermal model producing the same seismic anomaly has a q∗ of 1.56, thus

demonstrating the sensitivity of q∗ to lateral variations in temperature gradient.

Considering a thermal model which gives a q∗ of 0.19, the ∆VS is 0.3%. For

a chemical model with q∗ of 0.2, the ∆VS is 5.7%. This shows that for the

same value of q∗ , the chemical model has a much larger seismic anomaly than

the thermal model, showing the sensitivity of ∆VS to lateral variations in iron

content. This is because seismic velocities are more sensitive to iron content than

conductivity; this is supported by the data shown in Chapter 4 indicating that

the effect of adding iron saturates with increasing temperature. An important

conclusion here is that the relative importance of variations in temperature and

iron content are different on ∆VS and q∗, and this can only be observed using a

combined thermochemical model.

I then used LEMA to investigate the different parameters that are able to
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produce a seismic anomaly of 3%. Again, this exploits the advantages of LEMA,

as the comparison between unique scenarios is more important than the absolute

output values. By performing a suite of fully combined thermochemical scenarios

(Table 5.6), I show that several scenarios reproduce the observed seismic anomaly,

suggesting that there is a non-unique solution for the temperature/composition

profile of the lower mantle. LEMA can be used with observations to investigate

the full parameter range, for example, if ∆VS and ∆TLM are assumed as known

values, LEMA can be used to explore the feasible mean iron content and its

distribution in the lower mantle. Equally, if ∆VS and Femean are known, the full

range of ∆TLM can be explored. The results from the thermochemical models

show that in order to get a shear velocity anomaly of 3% and a reasonable QCMB

value, the values of ∆TLM and LLSVP Fe content range from 100 K and 10% Fe,

to 1000 K and 4% Fe (Table 5.6).

Lastly in this chapter, I showed the effect of temperature-dependent

conductivity on heat flux and its lateral variation. Heat flux decreases with

increasing CMB temperature, but q∗ also decreases with increasing temperature.

This shows the importance of understanding thermal conductivity as both a

function of temperature and composition, because the decrease in q∗ means the

range of CMB heat flux decreases relative to its mean value as CMB temperature

increases. This means that if the CMB temperature is higher, the variations

in heat flux resulting from lateral variations in temperature are smaller, due to

the saturation effect that is observed in the temperature-dependence of thermal

conductivity of bridgmanite. From this, I can say that if the value of thermal

conductivity was fully saturated and did not change with temperature, the CMB

heat flux would be a constant value assuming a constant temperature gradient.

Calculating a heterogeneous heat flux at the CMB has been shown to have

implications for the outer core (Mound et al., 2019). Lateral variations in heat

flux have been shown, through outer core dynamics simulation, to lead to regional
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stratification in the top of the Earth’s core. The presence of such a stratified

layer would influence thermal and chemical features of the core, thus informing

on core dynamics and evolution. Heat flux variation has also been shown to

alter the pattern of the magnetic field (Gubbins et al., 2007; Aubert et al., 2008;

Sarson et al., 1997; Olson and Christensen, 2002). Ultimately the calculation of

CMB heat flux depends on a thorough understanding of the lateral variations in

conductivity in the lower mantle, and this relies on knowledge of the temperature

and compositional-dependence of conductivity determined in this thesis.

5.4 Summary

1. Using LEMA, I show the sensitivity of lower mantle heat flux and shear wave

velocity to a variety of LLSVP models, considering thermal, chemical, and

thermochemical origin. Thermal models require large lateral variations in

temperature (around 1700 K) to reproduce observations of seismic velocity

anomaly, whereas a thermochemical model is more reasonable in terms

temperature and composition variation (from 100 K and 10% Fe, to 1000 K

and 4% Fe) between LLSVPs and the surrounding bulk lower mantle.

2. The heat flux computed here depends on the temperature- and

composition-dependent thermal conductivity, as obtained from the model in

Chapter 4. Heat flux across the CMB and its lateral variation are strongly

dependent on temperature and its lateral variation. Shear velocity and

the anomaly between lower mantle and LLSVP are much more sensitive to

Fe-content. I suggest ULVZs are predominantly a chemical feature (78% Fe

with 1000 K lateral temperature variation), in order to reconcile the large

shear velocity anomaly.



Chapter 6

Summary and Conclusions

6.1 Summary

My overall aim in this thesis was to model thermal conductivity at the

core-mantle boundary. In order to calculate the thermal conductivity, I use the

Green-Kubo method and the direct method, and compare results to thoroughly

investigate the effects of finite system size to validate my results. Here, I

summarise the results of my thesis, by commenting on how I met each objective

set out in Chapter 1.

Establish method of simulating bridgmanite at lower mantle conditions

The Oganov et al. (2000) potential describes the atomic interactions within

bridgmanite. In Chapter 2, I incorporated the potential into LAMMPS and

I calculated structural parameters (e.g., lattice parameters, unit cell volume,

elastic constants, and the bulk and shear moduli). I compared my structural

data from LAMMPS with other calculations using the same potential (which

had been previously compared with experimental data) and found very good

agreement (within 0.0001 Å). I also compared my unit cell parameters at lower

mantle conditions with those of Ammann et al. (2014), and found percentage

179
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differences consistently below 0.2%. I therefore concluded that bridgmanite was

well replicated at the atomic scale using the Oganov et al. (2000) potential in

LAMMPS.

Determine the accuracy of various atomic-scale modelling approaches.

I determined that for using the Green-Kubo method to calculate bridgmanite

thermal conductivity, auto-correlation functions and their integrals were

converged on the order of 10 ps. Using the Green-Kubo method, I calculated

thermal conductivity values of 17.51±0.27 Wm−1K−1 at 1000 K and 136 GPa, and

7.07±0.06 Wm−1K−1 at 4000 K and 136 GPa. For both temperature conditions,

Green-Kubo conductivity results are converged with respect to simulation size

when a system is used with volume of 4×4×3 UC.

Next I used the direct method and I observed that the simulation time required

to obtain a converged conductivity result increased with increasing cell length. I

observed that a simulation length must be long enough to produce a conductivity

result that is converged, but also that it must be short enough that it is not

subjected to drift due to an error in the numerical integrator.

To obtain a conductivity result using the direct method, different cell lengths

must be simulated, but for each length, I also considered various simulation cell

cross-sectional areas. I found that large enough cross-sectional area is required,

or the result is an unrealistic overestimate of conductivity. This is because narrow

simulation cells do not reproduce the thermal resistivity of the bulk material. In

direct method calculations, I also observe that simulation cells can be too short.

When cells are too short, conductivity is also overestimated. To extrapolate the

conductivity results to the bulk material, I ignore the cells that are too small or

too short (<2×2 UC and <8 UC, respectively at 4000 K).

There is an additional effect of cross-sectional area size observed at long system

lengths, which have not previously been described. The conductivity results
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diverge away from the expected behaviour as cell length increases (e.g., > 24 UC

at 4000 K). This is a re-emergence of the cross-sectional area effect, where thermal

resistivity is not being replicated for high aspect ratio systems. This study is

the first time that such finite-size effects have been identified for materials and

conditions representative of the deep Earth.

I evaluated the thermal conductivity results of bridgmanite from Ammann

et al. (2014) and showed how their results also display the same divergence as

identified in my study. I also compared the observed finite-size effects to those

observed by Hu et al. (2011). I was able to add to their analysis by identifying that

cells which are too short produce unrealistic conductivity values. I showed how

this has an effect for conductivity estimates in existing literature (e.g., Stackhouse

et al., 2015).

At 4000 K and 136 GPa, using the direct method with cross-sectional areas

of 2×2 or larger, and cell lengths in the range of 8–24 UC reproduce the

thermal conductivity results calculated using the Green-Kubo method (κ =

6.39±0.11 Wm−1K−1). At 1000 K and 136 GPa, I show that cell lengths >48 UC

produce conductivity results that agree with Green-Kubo (κ = 16.81 Wm−1K−1).

In the process of calculating direct method results, I showed how the phonon

mean free path can be calculated. I calculated mean free paths of 0.23± 0.03 nm

at 4000 K and 2.13 nm at 1000 K. These mean free paths were on the same order

of magnitude as those from Stackhouse et al. (2015), and corresponded well with

the cell lengths that I ignored for being too short at both temperatures.

Investigate how impurities affect conductivity at lower mantle

conditions

Iron can be added into the bridgmanite structure by increasing the mass of

some magnesium atoms to that of iron in a heavy magnesium isotope model. It

is also possible to determine the iron-oxygen potential parameters. In Chapter
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4, I used both methods and showed that the heavy isotope model is a good

approximation for a full potential model.

After calculating conductivity at temperatures in the range of 1000–5000 K,

I observe saturation in conductivity with increasing temperature. Conductivity

results for bridgmanite and FeSiO3 are shown in Figure 6.1, with bridgmanite

conductivity from previous studies for comparison. My results fall within the

expected range at high pressures, with FeSiO3 conductivities consistently lower

for the same pressure/temperature conditions as expected.

I also calculated conductivity across the MgSiO3 to FeSiO3 solid solution.

Initially increasing iron content in bridgmanite decreases conductivity until

iron contributes the same mass to the system as magnesium, at which point

conductivity saturates. Once iron contributes more mass, the conductivity

increases again towards the value of the iron endmember. The effect of saturation

with composition decreases with temperature, because conductivity is already

saturated due to temperature effects, and thus cannot decrease further.

I combined the compositional model from Padture and Klemens (1997) and

the temperature model of Okuda et al. (2017) to produce a more comprehensive

numerical form, that allows conductivity to be calculated for any lower mantle

temperature and iron content.

Finally in Chapter 4, using the mean free paths determined from the direct

method, I scaled the conductivity values computed as a function of composition

to corresponding mean free path values. This allowed me to distinguish

the phonon-phonon scattering and the phonon-defect scattering, the latter a

parameter that has not been explored in previous literature.

Incorporate the thermal conductivity results into a model of

core-mantle boundary heat flux to investigate LLSVP conditions.

Using LEMA, I used the continuous forms from Chapter 4 and a simple
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Figure 6.1: A comparison of bridgmanite thermal conductivity results across a
range of lower mantle conditions from existing literature, including my results for
bridgmanite and FeSiO3 conductivity (see Table 4.6 alongside experiments and
calculations as shown in Table 1.1.

spherical harmonic model, to represent LLSVPs and the lower mantle. I modelled

LLSVPs with variations in iron content and temperature, where enrichments in

iron content affects the thermal conductivity as described in Chapter 4, thus

influencing the heat flux at the core-mantle boundary. I found that lateral

variations in heat flux are more sensitive to thermal effects within LLSVPs,

whereas seismic velocity anomalies are more sensitive to variations in iron

content between LLSVPs and the lower mantle. I find that purely thermal

LLSVPs require large lateral variations in temperature gradient to reproduce

seismic anomalies (>1650 K), whereas in a thermochemical LLSVP model, the

addition of iron reduces the lateral temperature variations required to reproduce

observed seismic anomalies of 3%. I also used LEMA to show the effect of

temperature-dependent conductivity, and I showed that as temperature increases,
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conductivity decreases, and thus so does QCMB. However, the lateral variation

in heat flux also decreases with temperature, which means that the range of

QCMB decreases relative to its mean value. This is because of the saturation in

conductivity at higher temperatures.

6.2 Future work

A major simplification in the work presented in this thesis is that I have only

considered bridgmanite. If behaviour of the full lower mantle is to be considered,

it would also be necessary to simulate ferropericlase, calcium perovskite, and the

phase transition of bridgmanite to post-perovskite. Similar methods could be used

as those presented here, but modifications would be required. For example, the

potentials for ferropericlase and calcium perovskite would need to be validated.

Once the potentials for different minerals have been validated, it would also be

necessary to repeat the finite-size effect analysis for each different mineral before

computing the conductivity. The consideration of more minerals would allow a

more detailed analysis in LEMA, as the full composition of the lower mantle could

be considered.

The thermal conductivity of ferropericlase has been estimated by Stackhouse

et al. (2010) as 20± 5 Wm−1K−1 at CMB conditions. Trønnes (2009) estimated

that the lower mantle composition constitutes 20% ferropericlase (Fig. 1.2). By

combining these estimates with my estimate of bridgmanite conductivity at CMB

conditions (7.07 ± 0.06 Wm−1K−1), I can calculate a compositionally-weighted

average to estimate thermal conductivity considering both bridgmanite and

ferropericlase. This provides a new estimate for thermal conductivity at CMB

conditions of 9.6 ± 1.0 Wm−1K−1. A higher conductivity estimate would cause

an increase in QCMB.

Stackhouse et al. (2015) estimate the lattice thermal conductivity of calcium
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silicate perovskite (CaSiO3), using scaling from the Liebfreid-Schlmann relation

(Stackhouse et al., 2015, Supplementary material Eq. 5). They find CaSiO3 has a

very similar conductivity to bridgmanite, where the former is approximately 2%

higher. Such an increase is negligible when considering compositionally-weighted

averages, as CaSiO3 only comprises around 10% of the lower mantle (Trønnes ,

2009, Fig. 1.2). While CaSiO3 does not significantly affect lattice thermal

conductivity, it may affect other properties, and should be considered for a fully

comprehensive lower mantle model.

Bridgmanite is expected to undergo a pressure-driven phase change to

post-perovskite towards the CMB. Ammann et al. (2014) estimated that the

thermal conductivity of post-perovskite is approximately 50% higher than that

of bridgmanite, increasing from 8.5 Wm−1K−1 to 12 Wm−1K−1. Applying the

same relationship to the conductivity calculated here, I estimate the conductivity

of post-perovskite to be approximately 10.5 Wm−1K−1 at CMB conditions. The

phase transition to post-perovskite does not occur in the hottest regions of the

mantle (due to the double crossing effect, as discussed in Section 1.1.2). Therefore,

the estimate of 10.5 Wm−1K−1 can be considered as a minimum conductivity

value where post-perovskite is present, because the presence of post-perovskite

suggests a cooler mantle. Therefore, including post-perovskite in the model would

further increase the lateral variation in heat flux (q∗) between the colder mantle

regions and the hotter LLSVPs.

I have also only considered Fe2+ as an impurity. Other impurities would

also need to be simulated, such as Fe3+ and Al. I suggest that Fe3+ would

have a similar effect, because the mass is the same as Fe2+ and I showed in

Chapter 3 that mass is a significant determining factor. By the same logic,

aluminium would likely have a lesser effect than iron because it is of similar

mass to magnesium (Al mass of 27 compared to 24 for Mg). Additionally, iron

undergoes a spin transition with depth through the lower mantle. This is not
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considered in the models presented here, and I suggest that consideration of

the spin transition would alter the properties of iron and lead to a decrease in

conductivity (Ohta et al., 2017). In this thesis, the finite-size effects were only

determined for pressures of 136 GPa (i.e., core-mantle boundary pressure). It is

possible that the finite-size effects vary with pressure and this would therefore

need to be investigated further. In this study, I was primarily focussed on the

heat flux at the core-mantle boundary, so assuming a constant pressure was a

reasonable assumption. For a mantle model that examines the effect of thermal

conductivity at various depths, a comprehensive review of finite size effects across

pressure would be important.

The effect of anisotropic thermal conductivity was not included in this study,

where all conductivity values correspond to the a crystallographic direction.

Ammann et al. (2014) explored the anisotropy of thermal conductivity in

bridgmanite along a lower mantle geotherm and found that the difference in

conductivity between the a and c crystallographic directions was on the order of

1 Wm−1K−1 at shallow depths within the lower mantle. Ammann et al. (2014)

found that the difference in conductivity between crystallographic directions

decreases toward the CMB, to the point of becoming negligible, possibly

due to the effect of saturation with increasing temperature. Post-perovskite,

however, was found to be strongly anisotropic, so if considering a more complex

composition for the lower mantle, anisotropy would need to be included.

In addition, I have considered only the effects of lattice thermal conductivity.

As discussed in Section 1.6, lattice conductivity must be summed with radiative

conductivity to gain a full understanding of the thermal conductivity of the lower

mantle. The radiative component is estimated to be between 0.54 Wm−1K−1

(Goncharov et al., 2008) and 10 Wm−1K−1 (Keppler et al., 2008). Lobanov et al.

(2017) recently estimated radiative conductivity at 2.2± 0.4 Wm−1K−1 for CMB

conditions with 10% Fe. Compared to the lattice conductivity calculated here
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(7.07± 0.06 Wm−1K−1), this range of radiative conductivity estimates is on the

same order of magnitude as the lattice conductivity, and would affect the resultant

QCMB. If LLSVPs have significant Fe content, as suggested by the thermochemical

models presented in Chapter 5, radiative thermal conductivity could be inhibited

by impurities in the same way as lattice conductivity, leading to the radiative

conductivity becoming negligible. However, heat flux associated with radiative

thermal conductivity would still be high in the bulk lower mantle outside of

Fe-enriched regions (i.e., outside of the LLSVPs), leading to an increase in q∗.

The contribution of the electronic component to thermal conductivity is

very poorly constrained for CMB conditions. High Fe contents (up to the

Fe-endmembers) are not often considered, as they are not expected to be present

in the lower mantle. Some studies consider electrical conductivity, and its

contribution to thermal conductivity, but only for ferropericlase. Ohta et al.

(2017) measure electrical conductivity in a diamond anvil cell up to 140 GPa

and 2730 K, finding that ferropericlase with 19% Fe remained an insulator and

thus its electronic thermal conduction is negligible. Holmström et al. (2018) used

density functional theory to calculate electronic conductivity, and found that

contributions to the thermal conductivity were negligible for ferropericlase again

with 19% Fe at conditions up to and beyond those expected at the CMB.

These two studies suggest the contribution of the electrical component to

thermal conductivity is unimportant, but this is only considering conservative

amounts of Fe in one mineral. If the electrical component from high Fe content

regions were to contribute significantly to thermal conductivity, it would tend

to increase heat flux through these regions. This would be within LLSVPs,

following a thermochemical model as discussed in Section 5.2.3. This is interesting

as adding Fe tends to reduce lattice thermal conductivity, but increasing the

electrical component would reverse this reduction. This could serve to reduce

q* by increasing conductivity and heat flux through regions of very high Fe
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content (i.e., tending towards 100%), which is opposite to the effect observed

in regions with low Fe content (>5%, where conductivity is markedly decreased,

as in Figure 4.3). Therefore, the potential role of electron-electron interactions

would need to be considered for a full understanding of thermal conductivity in

iron-rich regions of the mantle.

Density Functional Theory, or ab initio methods, are a more accurate way

of calculating the atomic interactions than the classical interatomic potential

methods used in this study. Computations using DFT, however, are significantly

more computationally expensive. As a consequence, smaller system sizes are

typically used in DFT studies to obtain results on a feasible timescale. The

results in this thesis show the importance of considering finite-size effects within

the direct method when undertaking DFT calculations. For example, I have

shown in this thesis that at 1000 K, using cell lengths of <48 UC gives thermal

conductivity values that do not agree with the Green-Kubo calculations. This

conclusion can be used in DFT studies to constrain the minimum appropriate

cell length for given conditions.
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Alfè, D., M. J. Gillan, and G. D. Price (2007), Temperature and
composition of the Earth’s core, Contemp. Phys., 48 (2), 63–80, doi:10.1080/
00107510701529653.
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