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Summary 

IL-36 is a pro-inflammatory cytokine that consists of three agonists IL-36, IL-

36 and IL-36 and one antagonist, IL-36Ra. In addition to their receptor (IL-36R), IL-

36 cytokines require IL-1RAcP as a co-receptor for their signalling. IL-36 cytokines 

and their receptor are members of the IL-1 family of proteins. IL-36 has been shown 

to play important roles in activation of NF-B and MAPK pathways. Activated IL-36 

induces expression of inflammatory mediators such as CXCL8 and recruits 

inflammatory cells such as neutrophils into the site of infection. Uncontrolled signalling 

of IL-36 cytokines can lead to excessive inflammation and potentially chronic 

inflammatory diseases such as psoriasis. Previous studies that were used to assess 

the biological activity of recombinant, fully active IL-36 cytokines have either used 

exogenous transfected IL-36R or endogenous IL-36R for 24 h. Here in this thesis I 

used HT-29 cells, which express endogenous IL-36R. They have been stably 

transfected with an NF-B reporter gene and cloned. I confirmed by gene editing, that 

IL1LR2 is the only gene that encodes IL-36R in HT-29 cells. Our results showed that 

the EC50 values of the active forms of n5-IL-36 and n18-IL-36, which I prepared, and 

previously prepared n6-IL-36 in our laboratory was considerably greater than 

previously had been reported. The duration of the response of the NF-B reporter 

gene to n6-IL-36 and n5-IL-36 is between 3 and 9 h. Our data also showed that 

replacing of n6 amino acid lysine of IL-36  with either glycine or serine leads to 

increase EC50 of the IL-36 protein. Finally, limited in vitro digestion of n1-IL-36 by 

chymotrypsin leads to cleavage of n1-IL-36 in four different sites. Reporter gene data 

showed that the mixed digested protein has similar activity to n6-IL-36. 

 

Proteolytic processing of endogenous IL-36 proteins is still largely unexplored, but an 

in vitro study showed that specific truncation of their N-termini activates them. Another 

study showed that serine proteases enzymes derived from neutrophils can cleave pro-

IL-36 proteins but not necessarily at the same sites suggested by the previous in vitro 

study. The last section of this thesis focuses on expression of endogenous IL-36 

cytokines at the level of mRNA and protein and my attempts to induce proteolytic 

processing of endogenous IL-36. RT-PCR and RT-qPCR data presented here 

showed that the expression of IL-36 and IL-36 mRNAs but not IL-36 is induced in 
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response to IL-1, TNF, PMA, flagellin, TNF and PMA or TNF and flagellin in both 

human epithelial cell lines (HaCaT and A-431). IL-36 is the most abundant IL-36 

mRNA that is regulated by these stimuli. Furthermore, IL-36 was not found to induce 

expression either of itself or other IL-36 agonists in HaCaT cells. Our research within 

this thesis shows that the synergistic action of PMA or flagellin with TNF in HaCaT and 

A-431 or Staphylococcus aureus in HaCAT induces endogenous IL-36 protein. 

However, processing of endogenous IL-36 protein was not induced in response to 

these stimuli. The apoptotic stimuli, cycloheximide and staurosporine but not calcium 

ionophore induced a mobility change of endogenous IL-36 suggesting a processing 

at a site before n18 of IL-36. The same effect was not seen in primary keratinocytes 

the significance of this processing has not yet been investigated.  
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ATP                       Adenosine triphosphate 

ACD                       Allergic contact dermatitis 

AP-1                      Activator protein 1 

BMDC                   Bone marrow derived dendritic cells 

BACF                    Bronchoalveolar lavage fluid 

CXCL                    Chemokine (C-X-C motif) ligand 

COPD                   Chronic obstructive pulmonary disease  

DC                         Dendritic cell 

DAMPs                  Danger-associated molecular patterns 

DNA                       Deoxyribonucleic acid 

DMSO                    Dimethyl sulfoxide 

DTT                        Dithiothreitol 

dDC                        Dermal dendritic cell 

ELISA                     Enzyme linked immunosorbent assay                      

EDTA                      Ethylenediaminetetraacetic acid 

EC                           Epithelial cell  

FPLC                       Fast Protein Liquid Chromatography 

FBS                         Foetal bovine serum 

GPP                        Generalised pustular psoriasis 

HSV                         Herpes simplex virus 

HS                           Hidradenitis suppurativa 

HSM                        High serum medium 

IL                             Interleukin 

IFN                          Interferon 

IBD                          Inflammatory bowel disease 

IRAK                        Interleukin-1 receptor associated kinase 

IKK                          IB kinase 

iNOS                       Inducible nitric oxide synthase 

IκB                          Inhibitory NF-B 

JNK                        c-Jun N-terminal kinase 



v 
 

KC                          Keratinocyte  

LC                          Langerhans cells 

LPS                        Lipopolysaccharide  

MAPK                    Mitogen activated protein kinase  

MYD                       Myeloid differentiation primary response 

MHC                       Major Histocompatibility complex 

NF-B                     Nuclear factor-B 

NEMO                     NF-B essential modulator 

NLR                         Nod-like receptor 

PCR/qPCR              Polymerase chain reaction/quantitative real time PCR 

PAMp                      Pathogen associated molecular pattern 

pDC                        Plasmacytoid DC 

PBS                        Phosphate-buffered saline 

PMA                        Phorbol ester 

PMSF                      Phenylmethylsulfonyl fluoride  

RNA/mRNA            Ribonucleic acid/messenger RNA 

RT                           Reverse transcription 

SEMF                      Subepithelial myofibroblasts  

SD                           Standard deviation 

SDS                         Sodium dodecyl sulphate 

SDS-PAGE             SDS-polyacrylamide-gel electrophoresis  

TLR                         Toll-like receptor 

TNF                         Tumour necrosis factor 

TRAF6                    TNF receptor-associated factor 6 

Treg cell                 Regulatory T cell 

UV                           Ultraviolet 

v/v                           Volume to volume ratio (%) 

v/w                          Volume to weight ratio (%) 
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Chapter 1 
 

Introduction
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1.1 IL-36 receptors and signals  
 

Interleukin-36 (IL-36) is a family of pro-inflammatory cytokine that includes three 

agonists and one signalling inhibitor. It plays an important role in the innate immunity 

through activation of NF-B and MAPK after binding to its receptor (IL-36R) and co-

receptor (IL-1RAcP). IL-36 cytokines are expressed mainly by epithelial cells. 

Keratinocytes are an example of these cells. Only one receptor has been reported and 

I will refer to it in this work as IL-36R, through the official gene name is IL1RL2, which 

predates the discovery of its function. IL-36 cytokines are members of family of 

proteins known as the IL-1 family. The enzymatic processing of IL-36 to produce 

mature active proteins has not been completely studied. Although signalling of IL-36 

can organise immune response to pathogens through activation of NF-B and MAPK 

to produce chemokines and cytokines thus recruiting of innate immune cells into the 

site of inflammation, IL-36 signalling is also connected negatively with pathogenic 

immune responses in the skin. For example, over-activity of IL-36 in mice causes a 

skin disease similar to pustular psoriasis. In humans, various mutations in the natural 

antagonist of IL-36, IL-36Ra lead to generalised pustular psoriasis disease. IL-36 also 

has been shown to regulate immunity in the airway system and the gut against both 

bacterial and viral infection. The presence of three agonists for IL-36 in humans 

potentially gives diversity to the immune system to control many of pathogens threats.  

The members of IL-36 system, IL‐36, IL‐36, IL‐36 and IL-36Ra are members of the 

IL-1 family that were principally identified from searching anonymous cDNA data 

(Dunn et al., 2001). The genes that encode IL‐36, IL‐36, IL‐36, and IL‐36Ra reside 

in a ~ 87-kb genomic segment on chromosome 2. The IL1A, IL1B, and IL1RN genes 

surround them as in shown in figure 1.1 and together constitute the IL-1 cluster that 

includes the IL-1 family members except IL-18 and IL-33 (Nicklin et al., 2002).  
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Figure 1.1 Chromosomal locations and orientation (arrows) of genes encoding 

the human IL-36 agonists. IL36 genes are located on chromosome 2 (Nicklin et al., 

2002), and they are surrounded by IL1 genes. IL1A encodes IL-1 IL1B encodes IL-

1 IL1RN encodes IL-1Ra, IL36A encodes IL-36 IL36B encodes IL-36 IL36G 

encodes IL-36, IL36RN encodes IL-36Ra, IL37 encodes IL-37 and IL38 encodes  IL-

38 (Kent et al., 2002).  
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The IL-1 family contains eleven different ligands, which are IL-1, IL-1, IL-1Ra (IL-1 

receptor antagonist), IL-18, IL-33, IL‐36, IL‐36, IL‐36, IL-36Ra, IL-37, and IL-38. IL-

1Ra, IL-36Ra, IL-37, and IL-38 are antagonists. All the agonists of the IL-1 family can 

activate NF-B and MAPK pathways. IL-1 was one of the first two interleukins that 

were recognized in 1979 and has consistently been recognised as an important 

immunomodulator. The observation that the other family members share the same 

signalling pathways suggests a role in the immune system for all members of the 

family. IL-1 receptor antagonist (IL-1Ra) and IL-36Ra are also members of IL-1 family 

but they act as competitive inhibitors of IL-1 and IL-36 by engaging unproductivitly with 

IL-1R and IL-36R respectively. In this way they prevent agonists from binding to the 

receptors and prevent IL-1RAcP from interacting with ligand receptor-complex as in 

figure 1.2 (Arend, 1993, Arend et al., 2008). 
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Figure 1.2 The Inhibitory role of IL-36Ra and IL-1Ra. Adapted from Nicklin, 2011. 

IL-36Ra and IL-1Ra act as natural inhibitors to the IL-36, IL-36 and IL-36 and IL- 

and IL-1 respectively by binding to their receptors (IL-36R and IL-1R1) to block their 

signalling pathways. 
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The signalling pathway of IL-1 cytokines (IL-1 and IL-1) includes a cascade of 

intracellular signals. The first step in the activation pathway of IL-1 cytokine is to bind 

to their cell surface receptor IL-1R1. The binary complex recruits the coreceptor IL-

1RAcP (Greenfeder et al., 1995, Wesche et al., 1997, Korherr et al., 1997). Data from 

EL-4 subline D6/76 cell line, which expresses IL-1R1 but lacks expression of 

constitutive IL-1RAcP, showed that these cells did not respond to IL-1. However, 

transfection of these cells with IL-1RAcP cDNA was enough to make cells respond to 

IL-1 and activate IL1R1 associated kinases (Wesche et al., 1997). This observation 

suggests that the IL-1RAcP has a role in signalling of IL-1. Equilibrium binding assay 

data showed that IL-1R1 engages with IL-1 with relatively low affinity, and IL-1RAcP 

does not engage with IL-1R1 but acts with IL-1R1/IL-1 complex, increasing affinity ~5 

fold (Greenfeder et al., 1995). This suggests that IL-1RAcP alone cannot bind directly 

to IL-1R. This heterotrimer complex recruits the adaptor protein MyD88 as well as IL1R 

associated kinases 1 and 2 (IRAK1 and IRAK2) and activates them (Huang et al., 

1997, Cao et al., 1996a, Croston et al., 1995, Volpe et al., 1997, Muzio et al., 1997, 

Suzuki et al., 2002). In antigen pull-down experiments, human embryonic kidney cell 

line (HEK293) transfected to stably express Myc-epitope–tagged IL-1RI and Flag-

epitope– tagged IL-1RAcP was used to identify the association of IRAK protein with 

IL-1R1/IL-1/IL-1RAcP complex. HEK293 cells IL-1R/IL-1RAcP were labelled with (35S) 

methionine and cysteine, then cells were treated for 3 min with IL-1. IRAK protein 

was detected in the cell lysate of treated cells by immunoprecipitation with anti-myc 

and anti-Flag but not in the untreated cells, while MyD88 association with IL-1R/IL-

1RAcP complex was detected after 5 min stimulation with IL-1 (Wesche et al., 1997). 

 

The recruitment of TRAF6 after complex formation between IRAKs and IL-1R1 (IL-

R1/IL-1 with IL-1RAcP) complex results in the disassociation of IRAKs to react with 

recruited TRAF6, which is essential for IL-1 activation of the NF-B pathway (Cao et 

al., 1996b). 

This suggests a signal transducer role of TRAF6 in IL-1R signalling. Firstly, the 

formation of a complex between IRAKs and TRAF6 leads to activation of TAK1. 

Activation of TAK1 results in phosphorylation and activation of IB kinases (IKK) in 

an IKK dependent manner as well as dissociation of nuclear factor-B inhibitor (IB) 

from NF-B which allows to NF-B (P50/P65 subunits) to be released and to relocate 
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into the nucleus (Carmody and Chen, 2007), where NF-B functions as a sequence 

specific transcriptional activator incubation of protein extract from a mouse pre-B 

lymphocyte cell line with recombinant TRAF6 in vitro in the presence and absence of 

IKK showed that endogenous IB is phosphorylated in the presence of IKK but not 

in its absence (Deng et al., 2000). This suggests that phosphorylation of IB to activate 

the NF-B pathway is IKK dependent. A purified IKK complex extracted from Hela 

cells was not activated by TRAF6, but activation of IKK was detected in the crude 293 

cells protein extract. This suggests that other factors are needed to activate the IKK 

by TRAF6. Two further factors purified from Hela cell extract TRIKA1 and TRIKA2, 

TRAF6-regulated factors are required to activate the IKK complex in a TRAF6 

dependent manner (Deng et al., 2000). TAK1, TAB1 and TAB2 protein kinases are 

forms of TRIKA2 (Ninomiya-Tsuji et al., 1999, Takaesu et al., 2000). The NF-B 

pathway is not alone in being activated by IL-1 signalling. MAPK is also activated 

through TAK1, which activates p38, c-Jun N-terminal kinase (JNKs) (Shirakabe et al., 

1997). and extracellular signal regulated kinase (ERKs) via MKK3/6, MKK4/7, 

MEK1/2, respectively, so activating the transcriptional factor AP-1 (Yao et al., 2007, 

Sanz et al., 2000, Ninomiya-Tsuji et al., 1999).  

 

To activate NF-B and MAPK, IL-36, IL-36 and IL-36 require to interact with IL-

36R. They also require IL-1RAcP as a co receptor for their signalling (Towne et al., 

2004). This suggests that IL-36 cytokines share the same signalling pathway of IL-1 

as shown in figure 1.3 which shows signalling pathways of IL-1 and IL-36. The 

activation of signalling by IL-36, IL-3, IL-36 through endogenous IL-36R was first 

reported in a human ovarian tumuor cell line (NCI/ADR-RES) (Towne et al., 2004). A 

response to IL-36 was shown later in a mouse macrophage cell line RAW264.7 

(Ramadas et al., 2011), and in primary human cells, including bronchial epithelial cells 

(Chustz et al., 2011) articular chondrocytes, synovial fibroblasts (Magne et al., 2006), 

and colonic sub-epithelial myofibroblasts (Kanda et al., 2015).  
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Figure 1.3 Comparison of the signalling pathway of IL-1 and IL-36. After binding 

of IL-1 and IL-1 or IL-36, IL-36 and IL-36 to their receptors, which are IL-1R1 

and IL-36R respectively, IL-1RAcP binds to the complex and increase binding affinity 

between agonists and their receptors. MyD88 and IRAKs (IRAK1 and IRAK2) proteins 

are recruited. IRAKs then dissociate from the receptor complex to react with TRAF6, 

which is necessary to activate NF-B (p50 dependent) and MAPK inflammatory 

pathways, which result in the production of chemokine and cytokine mRNAs and 

recruitment of inflammatory cells (Huang et al., 1997, Cao et al., 1996a, Croston et al., 

1995, Volpe et al., 1997, Muzio et al., 1997, Suzuki et al., 2002, Cao et al., 1996b, Yao 

et al., 2007, Sanz et al., 2000). 
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1.2 Evolution of IL-1 family   

Nine IL-1 family genes, in order, IL1A, IL1B, IL37, IL36A, IL36B, IL36G, 

IL36RN, IL38 and IL1RN are located on human chromosome 2q13 clustered within 

430 kb (Nicklin et al., 2002). They encode, respectively, IL-1, IL-1, IL-37, IL36, IL-

36, IL-36, IL-36Ra, IL-38 and IL-36Ra. The remaining two superfamily members, 

IL18 and IL33, are located on chromosome 11 and chromosome 9, respectively. The 

close proximity of IL-1 family genes in the IL-1 cluster on chromosome 2 suggests that 

they probably originated from a common ancestral gene that underwent multiple gene 

duplications (Dunn et al., 2001). 

Predicted IL-1 cluster genes thus appear to have arisen from a common IL-1-like 

ancestor (Rivers-Auty et al., 2018). The IL-1 cluster genes also show conservation of 

protein structure, which is a 12-strand beta-trefoil (12SBT), similar immunomodulatory 

activity and a similar mode of receptor binding (Rivers-Auty et al., 2018). Rivers-Auty 

et al. derived a phylogenetic tree of IL-1 superfamily ligand members from 155 

predicted protein-coding sequences from across the animal kingdom and showed that 

an IL-1 homologue gene exists in all vertebrate species. There is also functional 

evidence for IL-1 activity in cartilaginous fish, hence the function seems to have 

arisen in the ancestor of sharks and all vertebrates ~425 million years ago. In modern 

bony fish there has been parallel radiation of IL-1-like genes that do not appear to 

have direct orthologues in mammals (Zou and Secombes, 2016). IL1B consistently 

maps close to the unrelated gene SLC20A1 in vertebrate lineages and shares near-

neighbours PSD4 in mammals and reptiles and OGDH in birds and reptiles. This 

functionally irrelevant association between IL1B and specific genes supports the 

identification of the IL1B genes in all vertebrates as true homologues (Rivers-Auty et 

al., 2018). An early form of IL1B gene seems to have come to rest near SLC20A1 

before the divergence of all vertebrates.  

Rivers-Auty et al. identify an IL-1 family, which includes all nine genes of the IL-1 

cluster but suggest that IL-18 and IL-33 proteins are not true homologues of the IL-1 

family. These authors suggest that IL-18 and IL-33 may have arisen by convergent 

evolution that selected similarly folded proteins to fit similar receptors. Rivers-Auty et 

al. argue that this is not unlikely, on the basis of the simplicity of the 12-strand beta-

trefoil protein (12SBTP) structure. They argue that IL-18 and IL-33 lack sequence 
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similarity with the IL-1 family and point out that there is no evidence of ancestral gene 

clustering which would provide additional evidence for their diversification from a 

common IL-1-like gene. They note that there are other 12SBTPs that do not share 

function with IL-1 and that appear to have arisen independently from all the 12SBTPs. 

They also argue that IL-18 and IL-33 are no more similar to the IL-1 family than to the 

fibroblast growth factor (FGF) family, which are also cytokines and 12SBTPs. This 

would not exclude the possibility that there is a single ancestor for all such 12SBTP 

cytokines.  

12SBTPs have pseudo 3-fold symmetry, so might be expected to have a arisen from 

triplication of a repetitive three unit structure. To test this, Nicklin et al, 2002 aligned 

available IL-1-family protein structures with the  exon coding content of the IL-1-family 

genes and showed that almost the entire 12SBT fold of IL-1, I-1, IL-1Ra and IL-

36Ra is indeed encoded in three conserved exons (which they named CEI, CEII, 

CEIII), but the boundaries bear no relation to the structural repeat. The boundary 

between CEI and CEII is in reading frame 3 with respect to CEII and locates to the 

loop between beta-sheets 3 and 4, while the boundary between CEII and CEIII is in 

reading frame 1 and locates to within beta-sheet 7. There is no relationship between 

the pseudo 3-fold repeat within the structure and the position of the exon boundaries. 

All IL-1 family structures that have been obtained since publication of that paper have 

confirmed this relationship between protein structure and exon boundaries, suggesting 

that they have all diverged from a common ancestor, on the grounds that there is no 

plausible reason for exon structure to converge in this way. Nicklin et al., 2002 

predicted the same relationship between gene and protein structure for IL-18, which 

has been demonstrated experimentally (Tsutsumi et al., 2014). We conclude that this 

is evidence that IL-18 and the IL-1 family are homologous and that the 12-strand beta-

trefoil was not achieved by convergent evolution. However, inspection of the structure 

of FGF-1 (DiGabriele et al., 1999; Nicklin, unpublished) shows the same relationship 

in FGF-1 between exons CEI, CEII and CEIII and their phase and protein structure. 

We therefore agree with Rivers-Auty et al. that there are no grounds to discriminate 

between an IL-1-like or an FGF-like origin for IL-18, but we argue that all of these 

cytokines are homologues. Like IL-1, IL-18 has also been identified in sharks and all 

vertebrate lineages, so seems to have evolved before ~425 million years ago, before 

the divergence of modern sharks and bony fish.  
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The IL-33 gene also has intron boundaries between beta-sheets 3 and 4 at the 5’-end 

of an exon that starts in reading frame 3, and another within beta-sheet 7, in reading 

frame 1, at the start of the final coding exon. In the case of IL-33, though, the ancestral 

CEII appears to have been invaded by an extra intron (between beta-sheets 4 and 5). 

It therefore appears that IL-33 too is derived from a gene with the same structure as 

IL-1 or FGF. The divergence of IL-33 is difficult to explain. IL-33 seems to be specific 

to mammals (Rivers-Auty et al., 2018) but is encoded in all complete mammalian 

genomes. Hence, IL-33 seems to have arisen after ~325 million years ago when the 

sauropsid lineage (birds, turtles, reptiles), which lack IL-33, diverged from the synapsid 

lineage (now represented only by the mammals) and the subsequent radiation of 

mammals, ~160 million years ago. As mentioned before, IL-33 does not have an 

obvious ancestor because it is highly divergent yet seems to be derived from the same 

common ancestor as FGFs or the IL-1 family. One possibility that was not explicitly 

considered by Rivers-Auty et al. is that IL-33 may have been present in the common, 

extinct ancestor of the sauropsids and synapsids but may have been lost from the 

extant sauropsid lineage. This could account for its extreme divergence from all other 

12SBT cytokines.  

  IL-1 and the IL-36 agonists, IL-36, IL-36 and IL-36, and IL-37 and IL-38 also 

only appear to be present in mammals but presumably evolved during the period 

between the sauropsid-synapsid split and the radiation of modern mammals, that is, 

between ~325 and ~160 million years ago. IL-1 appears to be derived from the IL-1 

family; the adjacent positions of IL1A and IL1B in the genome suggest gene 

duplication, yet IL-1 seems to have diverged rapidly from IL-1, while retaining its 

core activity of activating the IL-1 receptor, IL-1R1.  Rivers-Auty et al. have reasoned 

that the divergence has been driven by additional known or suspected non-cytokine 

functions of IL-1, that are not shared with IL-1 (Rivers-Auty et al., 2018).   

Because IL-1 itself has diverged into various genes in the bony fish, it is not possible 

to place IL-1Ra with any certainty as distinct from any other IL-1, and it may be present 

in sharks. Functional IL-1Ra has been identified in bony fish (Zou and Secombes, 

2016) and chicken (Gibson et al., 2012). 

IL-36, IL-36, IL-36, IL-37 and IL-38 seem to be present only in the modern 

marsupial and placental mammals and are most related to IL-1Ra and IL-36Ra. It is 
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not yet clear what might have driven the evolution of this novel branch of the IL-1 

family.  Rivers-Auty have identified IL-36Ra orthologues in birds, which lack IL-36 

agonists, placing the evolution of IL-36Ra to between the divergence of the land 

vertebrates from the bony fish ~425 million years ago and the separation of the 

sauropsid and synapsid lineages ~325 million years ago. Because the IL-36 agonists 

are absent from modern sauropsids (such as birds), and by implication from the 

common ancestor of the land vertebrates, yet the IL-36Ra orthologue has been 

retained, IL-36Ra in birds must have a different function, which is currently unknown, 

from its role in mammals as an antagonist to IL-36, IL-36 and IL-36. It is worth 

noting in general that the genomic identification of homologues has only rarely been 

tested experimentally. Most genes in most sequenced eukaryote species have only 

been annotated by homology with known genomes. 

 

The apparently paradox of receptor antagonists existing in some species where there 

is no agonist is repeated in the family of IL-1 receptor-like molecules that seem to lack 

agonists. Six IL-1 receptors-related genes cluster together in the human genome (Dale 

& Nicklin, 1999). Rivers-Auty et al. identify physically linked homologues in all 

vertebrates and have identified orthologues of IL-1R1, IL-18R, IL-18RAcP, IL-36R and 

IL-33R in all species as well as the co-receptor IL-1RAcP, which seems to have 

derived from an IL18RAcP-like gene and is now separated from the cluster of 

receptors. Except in mammals, the orthologues of IL33R and IL-36R seem to exist in 

the absence of their expected ligand orthologues. It is tempting to speculate that the 

‘IL-1Ra’ and ‘IL-36Ra’ genes from non-mammals might be agonists, or that divergent 

IL-1-like proteins might be the missing agonists, or that the apparent orphan receptors 

have functions that do not involve IL-1-like ligands, as has been suggested by Rivers-

Auty et al.  

 
 

1.3 Processing of IL-36  
 

IL-36, IL-36 and IL-36 are produced in many cell types, including bronchial 

epithelium, keratinocytes (KCs), dendritic cells (DCs), macrophages and glial cells 

(Towne and Sims, 2012, Blumberg et al., 2007, van de Veerdonk and Netea, 2013). 
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This suggests a major role of IL-36 cytokines in homoeostasis and inflammation of 

related tissues. To be biologically active, IL-36 cytokines require proteolytic 

processing. The biological activity of IL‐36, IL‐36, and IL‐36 increases at least 

~3000, ~8000 and ~1500-fold respectively after deletion of a small number of residues 

from their N-termini (Towne et al., 2011). Recently, neutrophil granule-derived 

proteases enzymes (cathepsin G, elastase, and proteinase-3) have been shown to be 

capable of activating IL-36. Cathepsin G and elastase cleaved IL-36 cathepsin G 

and proteinase-3 cleaved IL-36 while elastase and proteinase-3 processed IL-36  in 

vitro. The biological activity of IL-36 and IL-36 agonists were increased  ~500 fold 

by these enzymes which are producing by infiltrating  neutrophils in tissues where IL-

36 is activated, the processed products of the digestion of pro-IL-36 by these enzymes 

were the active forms identified by deletion analysis of the N-termini of IL-36 agonists 

by Towne et al., (2011) (Henry et al., 2016). This is illustrated in figure 1.4. Incubation 

of full- length IL-36 or SUMO-tagged IL-36 full-length with recombinant caspase-1 

enzyme did not show any cleavage (Ainscough et al., 2017), although IL-1 which is 

in a same family of IL-36, can be activated by caspase-1 proteolytic enzyme 

(Thornberry et al., 1992). The sequence of the IL-36 protein that surrounds the 

cleavage sites do not resemble caspase 1 site. Recently, it was shown that IL-

36 produced by barrier tissues could be activated because of cleavage by 

endogenous cathepsin S, which is cysteine proteases, at the same site that was 

identified by Towne et al., (2011). Moreover, IL-36 and cathepsin S expression were 

actively upregulated in psoriatic inflammation (Ainscough et al., 2017). Expression of 

CXCL8 (IL-8) in a keratinocytes cell line (HaCaT) was significantly upregulated after 

incubation of full-length IL-36 and a cell lysate from adenocarcinoma human alveolar 

basal epithelial cells (A549 cells), compared with cells incubated only with full length 

IL-36. Expression of CXCL8 in the HaCaT cells, incubated with full length IL-36 and 

cell lysate from A549 cells, was reduced when a cysteine protease enzymes inhibitor 

but not serine proteases enzymes inhibitor was added (Ainscough et al., 2017). This 

suggests that IL-36 cleavage site is cysteine proteases dependent.   
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Figure 1.4 Extracted N-terminal of a manual sequence alignment of mouse (M) 

and human (H) pro-IL-1 proteins, IL-36Ra and the three IL-36 agonists from 

mouse and human. The aliphatic-X-aspartate motif is highlighted in grey (Towne et 

al., 2011). Purple highlighting shows the experimental validated N-terminus of the 

mature IL-1 protein. Cyan highlighting indicates the N-termini for the IL-36 precursors 

that lead to maximum activation compared with neighbouring processing sites, 

representing activity enhancement of >1000 over other cleaved products or the 

unprocessed precursor (Towne et al., 2011). Processing of IL-36 agonists by 

neutrophil proteases (Henry et al., 2016) created the new N-termini indicated in white 

characters which are counter-shaded with grey where they do not coincide with the 

cyan highlighting. Processing of human recombinant pro-IL-36 by cathepsin S, which 

is an endogenous enzyme, is indicated in red (Ainscough et al., 2017).  
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1.4 IL-36 secretion   
 

Because IL-36, IL-36 and IL-36 do not have signal sequences, they cannot 

be secreted directly into the endoplasmic reticulum by the conventional pathway of 

signal recognition. Another route is needed for their release from cells. The first 

investigation of the pathway for the release of IL-36 examined secretion from mouse 

bone marrow derived macrophages (BMDMs) that were transduced with retrovirus to 

overexpress IL-36. IL-36 was released from cells after stimulation by liposaccharide 

(LPS) followed by ATP-induced activation of the P2X7 receptor. IL-1 was also 

discharged. Although the release of IL-36 does not require caspase-1 activity, 

caspase-1 may have a role in the lysosome activation through destroying the integrity 

of the plasma membrane (Martin et al., 2009). This suggests that coupled stimuli 

required to release of IL-36 protein. Keratinocyte cells incubated with the Toll-like 

receptor-3 ligand polyinosinic-polycytidylic acid (poly I:C), which is a model of double 

strand RNA present in some viruses, for 24 h released IL-36 through activation of 

caspase-3/7 and death and lysis of the cells (Lian et al., 2012). Inhibition of caspases 

1 and 3/7 in KC treated with poly (I:C) led to the blocking of IL-36 release (Lian et al., 

2012). Depending on dose and time, TLR3 activator (poly I:C) has been reported to 

induce keratinocytes cells to produce and release IL-36 protein (Rana et al., 2015). 

These findings suggest that IL-36 protein may be released in response to viral 

infection.  

 

1.5 Structure of the skin  
 

Skin represents 1.8 m2 of the human body, so it can be considered as the 

largest organ and most exposed surface that is directly in contact with biological, 

physical and chemical factor (Di Meglio et al., 2011). The structure of the skin consists 

of three layers, which are epidermis (outer layer), composed mainly of impervious 

keratinocyte squamae, dermis (inner layer) composed of adipose tissue, coonective 

tissue, mast cells and vessels, and the basement membrane (separating the epidermis 

and dermis) (Kanitakis, 2002). Depending on the morphology of keratinocytes and 

their location, the epidermis can be subdivided into four layers, which are, from outer 

part inwards, the stratum corneum that is composed of corneocytes (dead 
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keratinocytes), the stratum granulosum, the stratum spinosum and the stratum basale 

(James, 2006, Murphy, 1997), as illustrated in the figure 1.5. Mitotically active cells 

that provide cells to the outer epidermal layers are in the stratum basale (Jones, 1996, 

Lavker and Sun, 1982). At the stratum basale/stratum spinosum layer, transcription, 

morphology and functional changes of keratinocytes take place while at the 

granular/stratum corneum, the nucleus is lost before being it is filled with cables of 

keratin filaments covered by a -glutamyl-ε-lysine cross-linked the cell cornified 

envelope of proteins (Fuchs, 2008). In the human, stratum basale cells require 30 days 

to migrate from basale layer to epidermis in order to renew themselves (Chu, 2008).  
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Figure 1.5 Structure of human skin. Human skin consists of three layers, which are 

the epidermis (upper layer), the basal lamina, the dermis (lower layer) (Kanitakis, 

2002). The epidermis can be divided into four layers, which are the stratum corneum 

that is composed of cornyocytes (dead keratinocytes), the stratum granulosum, the 

stratum spinosum and the stratum basale. Dividing stem cells reside in the stratum 

basale (Jones, 1996, Lavker and Sun, 1982). Dermis contains many specialist immune 

cells such as macrophages, dermal DC, CD8+ T cells, CD4+ T cells and Th17 cells 

(Nestle et al., 2009).  
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1.6 Activation of keratinocytes 
  

Keratinocytes can be considered as the first line of defence that protects the 

skin from external pathogens, and they are the main occupant of the outer layer of the 

skin (epidermis) (Matejuk, 2018). As in the epithelial cells of the gut, keratinocytes can 

recognise harmful microorganisms, and induce immune responses to eliminate non-

pathogenic and pathogenic organisms (Nestle et al., 2009). Immune cells in 

eukaryotes can recognise pathogens by using receptors that sense various 

constituents of pathogens known as pathogen-associated molecular patterns 

(PAMPs) (Janeway, 1989). Several PAMP receptors, termed Toll-like receptors (TLR) 

are expressed on keratinocyte cells. TLR1, TLR2, TLR4, TLR5 and TLR6 are 

expressed on the cell surface while TLR3 and TLR9 are expressed in the endosomes 

(Lebre et al., 2007). Expression of TLR7 is induced by double strand RNA after 36 h 

engaging with TLR3, which leads keratinocytes to respond to the TLR7 ligand 

gardiquimod, a member of the imidazoquinoline antiviral immune response modifier 

family (Kalali et al., 2008). Expression of TLRs by keratinocytes is expected to be 

important in triggering an immune response in the skin. When TLRs are activated on 

human keratinocytes cells, activation results in a predominantly Th1 type immune 

response, which leads to type 1 IFN production (Miller and Modlin, 2007). In addition 

to the role of TLRs in sensing external microbes and in inducing cell signalling 

cascades, a family of intracellular molecules that contain nucleotide-binding domains, 

and leucine-rich repeats, known as the NLR gene family, can sense PAMPs and 

endogenous danger-associated molecular patterns (DAMPs), such as, toxins or 

irritants (Martinon et al., 2009). When these receptors are activated, proinflammatory 

signalling pathways are activated by inflammasomes, which are large cytoplasmic 

multiprotein complexes formed by an NLR, the adaptor protein ASC (apoptosis-

associated speck-like protein containing a caspase recruitment domain) and pro-

caspase 1 (Martinon et al., 2009). Inflammasome assembly results in the processing 

and activation of pro-IL-1 and pro-IL-18 by caspase 1(Martinon et al., 2009). 

Inflammasomes in the human keratinocytes can also be activated by UV radiation 

induced damage (Feldmeyer et al., 2007, Keller et al., 2008). Moreover, proteolytic 

activation of IL-1 and IL-18 can be induced in keratinocytes by trinitro-chlorobenzene, 

which induces eczema or contact hypersensitivity (CHS) through activation of 
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inflammasome formation (Watanabe et al., 2007), as illustrates in the figure 1.6. These 

findings suggest that expression of all these receptors on the surface of keratinocytes 

allow these cells to have a role in the skin protection from different chemical or 

biological challenges.  
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Figure 1.6 The role of keratinocytes in the skin immune responses. Adapted from 

(Martinon et al., 2009).  Keratinocytes use different TLR that are either expressed on 

their surface (TLR1, TLR2, TLR4, TLR5 and TLR7) or in their endosomes (TLR3, 

TLR7 and TLR8) to recognise pathogens and activate signalling pathways (Lebre et 

al., 2007). Keratinocytes also express the NLR protein, which is sensitive to pathogens 

in the cytoplasm such as lipopolysaccharide (LPS) and flagellin, in addition to UV light, 

toxins or irritants (Martinon et al., 2009).  
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1.6.1 Immune mediators from keratinocytes.  

The main mechanism of innate defence of eukaryotic cells against pathogen 

threats is the production of antimicrobial peptides (AMP). AMP are produced on the 

surface of damaged epithelial cells and protect the host from colonisation by 

microorganisms through different mechanisms, for example, AMP kill some pathogens 

directly but also act as signalling molecules to immune cells (Gilliet and Lande, 2008, 

Lai and Gallo, 2009). In the skin, keratinocytes are the main source of cationic AMPs, 

which are the β-defensins and the cathelicidins. During infections, T helper 17 (Th-17) 

cells produce IL-17A and IL-22, which can induce keratinocytes to increase production 

of AMP (Liang et al., 2006). This suggests that AMP can be regulated indirectly. In the 

skin with psoriasis, AMPs are upregulated, so they may be responsible for reducing 

skin infections (Harder et al., 1997). After injury, keratinocytes increase expression of 

TLR2, LL37 and 25-hydroxyvitamin D31α hydroxylase. 25-hydroxyvitamin D31α 

hydroxylase converts inactive 25-hydroxyvitamin D3 to active form 1,25-

dihydroxyvitamin D3 (Schauber et al., 2007). The latter can synergistically act with IL-

17A to regulate LL37 positively (Peric et al., 2008). Keratinocytes also provide 

inflammatory cytokines, which have activities at a distance. For instance, keratinocytes 

can secrete IL-1, IL-6, IL-8, IL-10 and TNF (Albanesi et al., 2005). IL-1 and IL- 

mRNAs are produced by human keratinocytes in culture (Kupper et al., 1986). IL-1 

activation is negatively regulated by caspase 8 in apoptosis. The active form of IL-1 

is produced in epidermal caspase 8 deficient mice (Lee et al., 2009). The skin of 

genetically modified mice, which are induced to overexpress IL-1 by inserting vector 

carrying the IL-1 gene, showed inflammatory conditions (Groves et al., 1995). 

Keratinocytes can mediate activation of immune cells through production of 

chemokines and the expression of chemokine receptors, which results in the 

recruitment of various immune cells into skin. During diseases, for example, activated 

keratinocytes express chemokines CCL20, CXCL9, CXCL10 and CXCL11 and 

selectively recruit effector T cells. Moreover, by producing CXCL1 and CXCL8, 

neutrophils are recruited into the inflamed epidermis of patients with psoriasis 

(Albanesi et al., 2005). In atopic dermatitis, keratinocytes express high level of thymic 

stromal lymphopoietin (TSLP) (Soumelis al., 2002). TSLP can activate CD11c (+) 

dendritic cells (DC) and stimulate these cells to produce Th2 attracting chemokines 

(CCL17 and CCL20) (Soumelis et al., 2002). These findings illustrate that KCs can 
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regulate immunity of the skin indirectly through secretion of different inflammatory 

mediators that recruit various immune cells into site of inflammation, as well as directly 

through the production of AMP.  

 

1.6.2 Induction of inflammation by keratinocytes in vivo 

Analysis of the reaction of the skin with the topical sensitizer poison ivy showed 

the immunological role of keratinocytes before T cells enter the skin (Griffiths and 

Nickoloff, 1989). By using fluorescent dye and fluorescent microscopy, it has been 

shown that mice that are genetically modified to overexpress CD40 ligand in the basal 

keratinocytes, greater than 90% of Langerhans cells from the epidermis of ear of mice 

migrated from epidermis toward dermis on challenge with dermatitis. Moreover, 

spontaneous dermatitis on the face, ears, tail, and/or paws developed because of the 

overexpression of CD40L in these mice (Mehling et al., 2001). This suggests that LC 

in epidermis can migrate into lymph nodes.   

Specific deletion of IKK in the epidermis of mice led to the development of a severe 

inflammatory skin disease as a result of TNF mediated and  T cell independent 

inflammatory response that begins in the skin of mice soon after birth (Pasparakis et 

al., 2002). Skin samples from human psoriatic plaques show elevation of signal 

transducing molecule STAT3 in KC where it is mainly in nuclei. KC from transgenic 

mice with constitutive expression of STAT3 show human psoriatic plaque like disease 

in the mice after 2 weeks of birth. This suggests a role for STAT3 signals in human 

psoriatic plaques (Sano et al., 2005).  

 

1.7. Langerhans cells in the epidermis  
 

Dendritic cells (DC) in skin are classified according to their location as well as 

their phenotypes. For example, Langerhans cells occupy the epidermis while dermal 

DCs (dDC) are found in dermis (Nestle et al., 2009). A specific feature of LC is the 

Birbeck granule, which is formed around of langerin (CD207). Human LC express the 

lipid-antigen presenting MHC I-like molecule CD1a (Romani et al., 2006). In vitro 

studies showed that the non peptide antigen of M. leprae was presented to human 
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effector T cells by freshly isolated LCs in a CD1a-restricted and langerin-dependent 

manner (Hunger et al., 2004). Allogenic CD4+ and CD8+ were primed more efficiently 

by epidermal LCs than dermal CD14+ DCs (Klechevsky et al., 2008). This suggests 

that LCs have a role in the adaptive immune regulation. Additional types of LCs can 

be recognised in the epidermis of patients with inflammatory diseases. For example., 

inflammatory dendritic cells (CD1a(+)/CD206(++)) population, which can be 

recognised by expression of CD206 on their surface, and Langerhans cells 

(CD1a(+++)/CD206(-)) population were detected in the epidermal cell suspensions 

from psoriasis and atopic dermatitis (Wollenberg et al., 2002).  

 

1.7.1 Immune cells in the dermis  
 

Dermal DCs (dDC) emigrate rapidly to the lymph nodes and occupy 

microanatomical areas in the paracortex of lymph nodes (Kissenpfennig et al., 2005). 

Data from normal mice treated with 2,4-dinitrofluorobenzene (DNFB), which is hapten, 

showed that LC and dDC migrate to lymph node in a ratio of 1:10, but only dDC are 

responsible for the activation of T cells proliferation (Fukunaga et al., 2008). Again, 

suggests that DC are involved in adaptive immunity.  Data from mice that were infected 

with herpes simplex virus (HSV) showed that langerin positive (CD207+) CD 103 (+) 

dermal subset DC can process and present HSV to CD8+ T cells but LC and classical 

dDC cannot (Bedoui et al., 2009). Self-DNA coupled with LL-37 induces human 

plasmacytoid dendritic cells (pDC) in culture to produce IFN through TLR9 (Lande 

et al., 2007). Flow cytometry data showed that in healthy human skin CD14 (+) dDCs 

express TLR2, TLR4, CD206 and CD209 on their surface while CD1a+ dDCs express 

only TLR4. Moreover, CD83 which is a marker of maturation, is expressed at a high 

level on CD1a+ dDC surface and, and at low level on CD14 (+) dDCs (Angel et al., 

2007). In atopic dermatitis (AD), CCL17 and CCL18 protein were produced by CD11c1 

myeloid DCs while CCL22 seemed to be produced by plasmacytoid (pDC) (Guttman-

Yassky et al., 2007). CCL22 seemed to be produced by plasmacytoid (pDC) (Guttman-

Yassky et al., 2007). CD11c+ DCs, which are known as TIP DCs, are found to produce 

inducible nitric oxide synthase (iNOS) and TNF in psoriasis patient samples (Lowes et 

al., 2005). In systematic lupus erythematosus (SLE), which is an autoimmune disease, 

and psoriasis, pDC play a role through producing IFN (Blanco et al., 2001, Nestle et 
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al., 2005). Macrophages are mainly immobile immune cells in the dermis but under 

inflammation condition, macrophages can migrate to lymph node (van Furth et al., 

1985). A study that characterised immune cells in the dermis of normal human skin, 

using monoclonal antibodies showed that dDCs and poorly stimulatory macrophages 

are marked by CD163 (Zaba et al., 2007).  

 

1.7.2 IL-36 and dendritic cells  
 

Mouse bone marrow derived dendritic cells (BMDCs) carry IL-36R and IL-36 

triggers maturation of BMDCs and stimulates the release of pro-inflammatory 

cytokines including IL-1β, IL-6, IL-12, IL-23 and TNF. The effect is stronger than is 

seen with IL-1 cytokines (Vigne et al., 2011). Mouse myeloid dendritic cells and 

monocyte derived DC (MO-DC) also express IL-36R on their cell surface and they 

respond to IL-36 (Foster et al., 2014). MO-DC treated with IL-36 enhance the 

proliferation of CD4+ T cells, showing that IL-36 activates DC and controls proliferation 

of T cells (Foster et al., 2014). These are examples of regulation of both innate and 

adaptive immunity by IL-36.  

 

Quantitative reverse transcription PCR was used to measure IL-36 expression. IL-

36 mRNA was activated in GM-CSF–induced dendritic cells (GM-DCs) in response 

to the cytoplasmic PAMP Dectin-1/-2 and TLR2 activation by zymosan, TLR4 

activation by LPS and imiquimod activation of TLR7 or TLR8, but not in response to 

ODN D19, which is a TLR9 activator or Poly (I:C), a TLR3 activator. In mouse bone 

marrow derived Langerhans cells (BM-LC), the data showed that zymosan and 

imiquimod, but not LPS, ODN D19 and poly (I:C) induced the expression of IL-

36 (Hashiguchi et al., 2018). These suggest that different pathogen associated 

molecular patterns (PAMPs) can regulate expression of IL-36 in different types of DC.  
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1.8 Function of T cells in the skin 
 

The majority of T cells (2 x 1010) are present in normal human skin, which is 

more than double the number in the circulation (Clark et al., 2006). CD8+  T cells 

can be found in the normal human epidermis, and the basal suprabasal keratinocyte 

layer are shared by both epidermal T cells and Langerhans cells (Foster et al., 1990). 

Downregulation of TNF secretion by macrophages causes deterioration of dermal 

blood vessels in elderly people. Deterioration of dermal blood leads vessels to reduce 

a number of infiltrating CD3+ T cells and CD4+ T cells into the skin after secondary 

challenge with Candin from Candida albicans (Agius et al., 2009). Th17 cells play an 

important role in skin diseases, such as atopic dermatitis and psoriasis (Di Cesare et 

al., 2008, Di Cesare et al., 2009). Data from the skin of mice infected with yeast and 

filamentous C. albicans showed that Th17 responses are induced by the yeast form. 

This is dependent on Dectin-1 mediated expression of IL-6 by LC, while the 

filamentous form induces a Th1 response but not a Th17 response because of the 

absence of Dectin-1 mediated expression of IL-6 by LC. Moreover, data for C. albicans 

showed that Th1 cells are responsible for protection against systematic infection, while 

Th17 cells are responsible for protection against cutaneous infection (Kashem et al., 

2015). Regulatory T cells (Treg) that comprise 5-10% of all skin resident cells control 

immune responses in the skin (Clark et al., 2006). The number of memory T cells 

(CD4+Foxp3–) and putative nTreg (CD4+Foxp3+) T cells are increased by tuberculin 

purified protein derivative (PPD) in the human skin (Vukmanovic-Stejic et al., 2008). 

When mice were genetically modified to express Kaede protein, which is a 

photoconvertible fluorescent protein that changes from green to red under UV light 

conditions, it was seen that both CD4+Foxp3+ Tregs cells and memory CD4+Foxp3- 

(non Treg) T cells continually migrated from the skin to draining lymph node in the 

uninfected condition (Tomura et al., 2010). Moreover, CD4+Foxp3+ Treg cells can 

regulate not only T cells responses, but also regulate antigen presenting cell functions. 

For instance, DC co-incubated with Tregs changed their activity from stimulatory into 

a regulatory function through downregulation of MHCII and B7-2 molecules and 

inducing or increasing negative the regulatory molecules B7-H3 (CD276) and B7-H4 

on the DC surface (Schwarz and Schwarz, 2010). Co-incubation of CD4+Foxp3+ Treg 

cells with monocytes results in differentiation of monocytes to alternatively activated 
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macrophages (AAM), which have strong anti-inflammatory potential involved in 

immune regulation, tissue remodelling, parasite killing, and tumour promotion, as well 

as enhanced phagocytic capacity (Tiemessen et al., 2007). Treg cells also reduced 

the accumulation of neutrophils in a Fas ligand (B16FasL) expressing mouse 

melanoma cell line, which produces an inflammatory response following 

subcutaneous injection of mice, through downregulation of neutrophil CXCL1 and 

CXCL2 (Richards et al., 2010). Treg cells are also found in primary and metastatic 

human melanoma (Ahmadzadeh et al., 2008). The number of FOXP3+ (Treg) T cells 

is 50% in the human squamous cell carcinoma of the skin (Clark et al., 2008).  

 

Topical treatment of the human squamous cell carcinoma with imiquimod (TLR7 

agonist) leads to reduced function and plethora of Treg and upregulated expression 

of E-selectin (Clark et al., 2008). Both splenocyte and T cell (CD4+) can produce IL-

17, IL-4 and IFN- after stimulation with IL-36 (Vigne et al., 2011). The expression level 

of IL-36R mRNA in naïve T cells is higher than Th1, Th2 or Th17 (Vigne et al., 2012). 

Naïve T cells in mice predominantly express IL-36R. Proliferation and IL-2 production 

naïve by activated CD4+ T cell are stimulated by IL-36. Moreover, polarisation of naïve 

CD4+ T cells into activated Th1 cells is stimulated by synergistic action of IL-36 with 

IL-12. IL-36β can induce IFN in CD4+ T cells (Vigne et al., 2012). Mice with a deletion 

of Myd88 in T cells show decreased the skin inflammation after epicutaneous infection 

of their skin with S. aureus compared with wild type (Liu et al., 2017). Mice with 

knocked out IL-36R, but not mice with knocked out IL-1, IL-1, IL-18R1 or IL-33 show 

a decrease in skin inflammation after epicutaneous infection of their skin with S 

aureus, compared with wild type mice (Liu et al., 2017). This suggests that MYD88 in 

the T cells is responsible for inflammation, and activation of MYD88 in T cells is 

mediated by IL-36 signal.  

 

1.9 Expression and association arthritis disease association of IL-

36 
IL-36 mRNAs are expressed in the synovial tissue of patients with arthritis. 

Moreover, expression of proinflammatory cytokines and activation of NF-B and 

MAPK pathways are induced by IL-36 in human synovial fibroblasts (Derer et al., 

2014). This suggests either a direct or an indirect inflammatory role of IL-36. 
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Expression of IL-36 is notably upregulated in synovial infiltrating plasma cells from 

patients with psoriatic arthritis and rheumatoid arthritis but not in osteoarthritis 

synovium, increasing the connection of plasma cells to inflammatory cytokine 

production (Frey et al., 2013). IL-36 regulates expression of IL-6 and CXCL8 by 

synovial fibroblasts in vitro via p38 and NF-B activation (Frey et al., 2013).  

 

 

1.10 IL-36 and skin diseases   
 

Psoriasis is a type of skin lesion. It is seen in 2% of the North American and 

European population (Nestle et al., 2009). It was shown that all three IL-36 agonists 

are upregulated in psoriasis (Debets et al., 2001, Blumberg et al., 2007). IL-36 

cytokines are expressed in KC, and disorders of the skin have been shown to be 

connected with these cytokines. Expression of IL-36 and IL-36Ra is altered in 

psoriatic skin (Debets et al., 2001). This suggests that targeting of IL-36 signals could 

lead to therapy of inflammatory skin diseases. To understand the role of IL-36 in the 

skin inflammation, genetically modified mice that produce a large quantity of IL-3 in 

basal cells (basal keratinocytes) were used. The skin of genetically modified mice 

showed abnormalities distinguished by thickening of the stratum basale and stratum 

spinosum the skin (acanthosis) and thickening of the outer layer of the skin 

(hyperkeratosis). Human epidermis skin models treated with IL-36 that was 

processed at n18 by cathepsin S showed epidermal cornification and changes in 

stratum corneum (hyperkeratosis) (Ainscough et al., 2017).  

 

Moreover, maintenance of the inflammation characteristic of psoriasis in human skin 

transplanted into immunodeficient mice was dependent on the presence of the mouse 

IL-36R gene and could be blocked by an antibody to mouse IL-36R (Blumberg et al., 

2007). Again, this suggests an inflammatory role of IL-36R signalling in the skin. IL-

36 mRNA expression was synergistically induced by a combination of IL-17/TNF in 

primary keratinocytes (Chiricozzi et al., 2011). Psoriasis is connected with expression 

of Th17 cytokines IL-22, IL-17 and TNF through the upregulation expression of IL-36 

cytokines, and the interaction between these cytokines and IL-36 cytokines is 
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consistent with the role for IL-36 cytokines in skin psoriasis (Carrier et al., 2011). As in 

figure 1.7. In mouse experimental skin inflammation and human psoriasis, initiation 

and enhancement of inflammatory responses result from IL-36 stimulation (Debets et 

al., 2001, Carrier et al., 2011). 

The phenotype is similar to psoriasis, and its resolution is blocked by removing one or 

both copies of the IL-36Ra gene (Blumberg et al., 2010). Treated IL-36 transgenic 

mice with normal skin with phorbol ester led to develop an inflammatory condition. 

Inhibition of the IL-12/23p40, IL-23p19 and TNF pathways by giving antagonist to 

these pathways, which are related to inflammatory conditions, were positively effective 

in blocking skin lesions in IL-36 overexpressing mice (Blumberg et al., 2010). 

Absence of IL-36R also rescued mice from expansion of dermal IL-17–producing T 

cells and psoriasiform dermatitis that results from TLR7 agonist imiquimod treatment 

(Tortola et al., 2012). IL-17, IL-22 and IL-23 deficient mice were not protected as much 

as IL-36R-/- (Tortola et al., 2012). These results suggest that in this model, at least, IL-

36 indicates inflammation through multiple pathways. mRNAs expression of Th17 

associated cytokines and chemokines (IL-1, IL-1, IL-6, IL-17C, IL-17F, CXCL2 and 

S100A9) were downregulated in IL-36-/- mice after treatment their ears with 

imiquimod cream compared with wild type mice. (Hashiguchi et al., 2018). This 

experiment suggests that IL-36 has a specific role in the model that cannot be filled 

by IL-36, IL-36 or any other cytokines.  

 

Generalised pustular psoriasis (GPP) of humans is a severe form of psoriasis. 

Mutation of amino acid 27 from leucine to proline in IL-36Ra was seen in a Tunisian 

family with GPP. This leads to the production of a less potent or possibly inactive IL-

36Ra protein (Marrakchi et al., 2011). These data clearly show that IL-36 has a 

pathogenic role in GPP in this family. In cultured keratinocytes, expression of IL-36, 

IL-36 and IL-36 was positively regulated by TNF and IL-17A (Carrier et al., 2011). 

Blood derived CD14+ monocytes/ macrophages express IL-36R on their surface. IL-

23 and TNF were produced from psoriasis macrophages in response to IL-36 

stimulation (Bridgewood et al., 2018). IL-36 has been implicated in other skin diseases. 

In allergic contact dermatitis (ACD), the level of IL-36 cytokines transcripts but not IL-

36Ra was increased. Immunohistochemistry data showed that IL-36 cytokines were 

detectable in the epidermal layer (Mattii et al., 2013). In hidradenitis suppurativa (HS), 
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which is an inflammatory skin disease that causes tenderness, swelling and redness 

in parts of skin having apocrine sweat glands, increased expression of IL-36, IL-

36 and IL-36 at both mRNA and protein levels were observed compared with healthy 

control (Thomi et al., 2017). IL-36 agonists mRNAs were notably induced in the 

lesional HS skin in comparison with healthy controls, while in the perilesional HS only 

IL-36 but not IL-36 or IL-36 was induced, compared with healthy controls (Hessam 

et al., 2018). IL-36 and IL-36 mRNAs are highly expressed in human pustular 

psoriasis and plaque psoriasis. Moreover, the level of expression in pustular psoriasis 

is higher than plaque psoriasis (Johnston et al., 2017). IL-36 and IL-36 mRNAs and 

IL-36Ra mRNAs were expressed more strongly in psoriasis than compared with 

lesional atopic dermatitis (Suarez-Farinas et al., 2015). IL-36 protein is upregulated 

in the KC of mouse skin after 7 days of epicutaneous infection with S. aureus 

compared with wild type mouse. Immunofluorescent labelling showed that protein is 

localised in the cytoplasm of cells (Liu et al., 2017). The infection was only seen in 

epicutaneous infection. Deep intradermal cutaneous infection led to induction of IL-1 

rather than IL-36. 
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Figure 1.7  Role of IL-36 cytokine in psoriasis and inflammatory skin diseases. 

Adapted from (Gabay and Towne, 2015). Biological or chemical factors can induce IL-

36 in KC and/ or DC or LC. KC and DC/LC in an autocrine or paracrine manner is 

stimulated by IL-6. Secretion of IL-1, IL-6 and IL-23 by activated DC/LC leads to 

stimulation of Th17 activity.  Activated Th17 can react with KC through secretion of IL-

17, IL-22, TNF, IL-6 or INF. Psoriasis involves recruitment of DC, T cells and 

neutrophils, in addition to KC proliferation caused by chemokine and abundant 

cytokine production.  
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1.11 Antimicrobial peptide production  
 

             IL-36 promotes production of many antimicrobial peptides such as LL-37, 

lipocalin 2, peptidase inhibitor 3, B-defensin 4, B-defensin103 and S100 calcium 

binding protein A7 in cultured keratinocytes (Nguyen et al., 2012, Johnston et al., 

2011) while, B-defensin DEFB4A (human B-defensin-2 and DEFB104 ) were secreted 

in vaginal and endocervical epithelial cells IL-36 stimulation (Winkle et al., 2016). 

These suggest a regulatory role of IL-36 in immune defence.  

 

1.12 Induction of IL-36 by microorganisms  
 

IL-36 mRNA and protein are up-regulated in proliferating keratinocytes of 

mouse skin after infection with herpes simplex virus (HSV-1) (Kumar et al., 2000). This 

suggests a role of IL-36 in response to HSV-1. Activation of human monocytes with 

LPS led to increased expression of IL-36 mRNA (Smith et al., 2000). This suggests 

a role of IL-36 against bacterial infection. The level of mRNAs and proteins of IL-36 

agonists were increased in immune and epithelial cells because of pathogen 

associated molecular patterns, microbial agents, and inflammatory mediators. IL-36 

activating agents, such as flagellin, zymosan, LPS and Mycoplasma fermentans 

synthetic lipopeptide (FSL-1), induced expression of IL-36 agonists in either skin KC, 

bronchial epithelial cells or female reproductive tract epithelial cells (a human 

endocervical and a human vaginal epithelial cells) (Chustz et al., 2011, Winkle et al., 

2016). This suggests that IL-36 is involved in the response to many pathogens.   

 

TIGK cells, which are a transformed cell line derived from oral epithelial cells, express 

an antimicrobial protein peptidoglycan amidase 2 in response to IL-36 or IL-36 

(Scholz et al., 2018a). In the same cells, IL-23p19 and Epstein-Barr Virus-Induced 

gene 3 (EBI3), which is a viral mimic of the IL-12 family, were expressed in response 

to IL-36 (Scholz et al., 2018b). This suggests a regulatory role of IL-36 in the immune 

response.  During oropharyngeal candidiasis in the tongue tissue of wild type mice, IL-

36 IL-36 and IL-36 mRNAs were induced. Moreover, candidalysin, which is a toxin 

secreted by hypha of C. albicans, is responsible for inducing IL-36 and IL-36 mRNAs 
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in the human buccal epithelial cell lines (TR146) through p38-MAPK/c-Fos, NF-kB, 

and PI3K signalling pathways (Verma et al., 2018). This suggests a role of IL-36 

cytokines against fungal infections. 

 

Heat inactivated Aspergillus fumigatus hyphae and heat-killed conidia significantly 

induce expression of IL-36 and IL-36 mRNAs, respectively in human peripheral 

blood derived monocytes, while expression level of IL-36 mRNA is significantly 

induced after 8 h incubation with heat inactivated Aspergillus fumigatus hyphae or 24 

h incubation with live conidia (Gresnigt et al., 2013). Again, this suggests a role of IL-

36 cytokines against fungi. A recent study showed that IL-36 production is increased 

in mouse macrophage cell lines by Burkholderia species (Chiang et al., 2015). A high 

level of IL-36 has been noticed in the peritoneal cavity, lungs, and blood as a result 

of caecal ligation and puncture in mice, but responsible cells were not indicated (Tao 

et al., 2017). However, the source of IL-36 could be macrophages and monocytes 

because mRNA expression of IL-36 is increased in these cells when they are treated 

with bacteria or LPS (Smith et al., 2000, Chiang et al., 2015, Nerlich et al., 2015). This 

suggests that bacteria or bacterial products can induce IL-36 during infection. 

 

Inflammatory mediators also activate expression of IL-36 cytokines (Jensen, 2017). 

Tumour necrosis factor (TNF), IL-1, IL-17, IL-18 and IL-22, as well as IL-36 cytokines 

themselves can induce expression of IL-36 mRNAs in synovial fibroblasts, skin 

keratinocytes, bronchial epithelial cells, colonic myofibroblasts, articular chondrocytes 

and myeloid cells (Magne et al., 2006, Takahashi et al., 2015, Bachmann et al., 2012). 

IL-36 is the only IL-36 that can be induced in normal human keratinocytes (NHK) by 

interferon-gamma (IFN-) in vitro (Carrier et al., 2011, Chustz et al., 2011). TNF and 

IL-1 stimulate expression of IL-36 (,  and ) as well as IL-36Ra mRNAs in primary 

human keratinocytes (Johnston et al., 2011).  
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1.13 Role of IL-36 in the recruitment of immune cells 
 

             Expression of CXCL1 and CXCL2, which are neutrophil chemokines, but not 

CCL11 and CCL24 (eosinophil chemokines) is regulated positively in the lung of 

mouse after intratracheal administration of IL-36 (Ramadas et al., 2011). IL-36 

cytokines upregulate the expression of neutrophil chemokines (CXCL8, CCL20 and 

CXCL1) T lymphocytes attractant chemokines (CCL20, CCL5, CCL2, CCL17, and 

CCL22), as well as macrophages attractant chemokines (CCL3, CCL4, CCL5, CCL2, 

CCL17, and CCL22) in human KC (Foster et al., 2014). Intradermal administration of 

IL-36 in the mouse skin leads to expression of chemokine infiltration of leukocytes 

and acanthosis of mouse skin (Foster et al., 2014). In primary human synovial 

fibroblasts (hSFs) and human articular chondrocytes (hACs), expression of CXCL8 

and IL-6 is induced in response to IL-36 (Magne et al., 2006). The expression of TNF 

mRNA and protein is induced in KC after incubation with IL-36 or IL-36 (Carrier et 

al., 2011). Expression level of IL-6, CXCL1, CXCL2 and CXCL8 mRNAs is significantly 

increased in primary colonic human colonic subepithelial myofibroblasts in response 

to IL-36 or IL-36 (Kanda et al., 2015).  

 

1.14 Function of IL-36 in immune cell activation  
 

             CD4+ and CD8+ T cells and CD19+ B lymphocytes in the human blood, as well 

as CD4+ T lymphocytes in the intestinal lamina express IL-36R on their surface. 

Moreover, the proliferation of circulating CD4+ T cells is induced significantly and 

rapidly after incubation with IL-36 compared with untreated cells (Penha et al., 2016). 

This suggests a role of IL-36 in regulation of T cells. Normal mice treated with antiviral 

drug imiquimod to induce inflammation showed Th1 related skin disease activation 

because of in vivo cross communication between DCs and KCs (Tortola et al., 2012). 

The numbers of T helper 1 and T cytotoxic cell and their activation and IFN production 

can be promoted by IL-36 cytokines. The IFN level in the cells isolated from Il36r-/- 

knocked out mice was less than wild type mice after infection with vaccine strain 

Mycobacterium bovis Bacillus Calmette Guerin (BCG)  (Vigne et al., 2012). The 

phagocytic activity of mouse peritoneal macrophages against E. coli was enhanced by 

pre-treatment with IL-36 (Tao et al., 2017).  
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1.15 Role of IL-36 in the airway system  
 

During inhalation of about 10,000 litres of air in the day, the lungs of humans 

are exposed to many potential and toxic environmental pollutants transported by air 

(Bals and Hiemstra, 2004). The mucosa protects the airways from dangerous factors 

that enter the lungs by inhalation Bals (Bals and Hiemstra, 2004). Bronchial epithelial 

cells produce IL-36 in the lungs as a result of several stimuli. Epithelial cells and 

fibroblasts express IL-36R on their surface and respond to IL-36. Moreover, NF-B 

and MAPK pathways can be activated by IL-36 in primary normal human lung 

fibroblasts and the neutrophil chemokines CXCL3 and CXCL8 and Th17 chemokine 

CCL20 (Chustz et al., 2011). CD11c+ alveolar macrophages, which are principle 

macrophages (95%) in the naïve mouse lung, also express IL-36R on their surface 

(Ramadas et al., 2012). IL-1, IL-1, IL-36 and TNF expression, as well as neutrophil 

chemokines (CXCL1 and CXCL2), are upregulated in CD11c+ macrophages from the 

spleen in response to IL-36 in vitro (Ramadas et al., 2012). 

 

IL-1, IL-17 and TNF significantly enhanced mRNA expression of IL-36 and IL-36, 

but not IL-36 in primary human bronchial epithelial cells (Chustz et al., 2011). IL-36 

protein was detected immunologically by ELISA in the cell supernatant after 

stimulation with poly I:C or a combination of poly I:C and IL-17 while IL-36 protein 

was detected only in the cell lysate (Chustz et al., 2011). Infectious agents, for 

instance, Pseudomonas aeruginosa and rhinovirus induce human primary bronchial 

epithelial cells (PBECs) to produce IL-36. Moreover, IL-36 induction level was 

stronger in PBECs from asthmatic donors in response to rhinovirus than normal 

controls (Bochkov et al., 2010, Vos et al., 2005). Expression of IL-36 and IL-36  was 

increased in the lungs of mice that infected with flagellated Pseudomonas aeruginosa 

via intratracheal administration (Aoyagi et al., 2017b). Pulmonary macrophages and 

alveolar epithelial cells expressed IL-36 and IL-36  in vitro following Pseudomonas 

aeruginosa challenge. The death rate in mice following bacterial infection in IL36r -/-

mice and Il36g-/- mice but not Il36a-/- mice was notably lower than wild type mice. 

Furthermore, expression of prostaglandin E2 (PGE2) was enhanced by IL-36 both in 

vitro and in vivo (Aoyagi et al., 2017b). IL-36 mRNA was induced in the lungs of mice 
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challenged with intranasally administrated, purified bacterial flagellin (Kovach et al., 

2017). LPS and flagellin but not poly I:C induced IL-36 mRNA in pulmonary 

macrophages (Kovach et al., 2017). IL-36 mRNA was induced in mouse pulmonary 

macrophages after 6 hr in stimulation with live S. pneumoniae or 18 h with killed S. 

pneumoniae bacteria (Kovach et al., 2017). IL-36 induction was detected in the lungs 

of mice challenged with Streptococcus pneumonia infection, and an active IL-36 

protein was detected mainly in micro particles by flow cytometry. Administration of S. 

pneumoniae to Il36g-/- mice led to increasing mortality compared with wild type 

because reduced clearance of bacteria in the lungs and increased dissemination of 

bacteria as well as reduction of the Th1 response and increased polarization of lung 

macrophages (Kovach et al., 2017).  

 

Administration of Legionella pneumophila intratracheally in wild type mice led 

upregulation of mRNA and protein of both IL-36 and IL-36 in the lungs of mice 

compared with untreated animals. The survival rate of mice for 3 weeks in response 

to challenging with L. pneumophila was assessed in Il36a-/-, Il36g-/- and Il36r-/- 

compared with treated wild type. Data showed that the survival rate of Il36r-/- was 

decreased but not in Il36a-/- or Il36g-/- mice in contrast with wild type. That suggests 

that IL-36R signalling is important in the airway system (Nanjo et al., 2019). Data from 

the lungs of IL-36R-/- mice treated with L. pneumophila were collected in different time 

points (2, 4 and 6 days) showed that numbers of bacteria in the lungs of IL-36R-/- mice 

are higher than controls. Furthermore, the accumulation rate of alveolar leukocytes 

was decreased in the lung of Il36r-/- mice but not polymorph nuclear leukocytes (PMN), 

monocytes/macrophages Broncho alveolar fluid (BAL) cells in contrast with wild type 

treated mice. (Nanjo et al., 2019).  

Expression of IL-36 mRNA positively was increased in mice challenged with influenza 

H1N1 and H5N1 virus. Morbidity and mortality were increased in the Il36g-/- mice after 

challenge them with influenza virus compared with wild type mice (Wein et al., 2018). 

The expression level of IL-36 was increased in biopsy samples in recurrent 

respiratory papilloma’s (DeVoti et al., 2008). This suggests the role of IL-36 in the 

lungs against viruses. Figure 1.8 illustrates the role of IL-36 in the airway system. The 

level of IL-36 and IL-36 mRNAs, but not IL-36 was increased in the lungs of mice 

following a pro-inflammatory administration of influenza virus after 2 and 6 days 
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respectively. The level of IL-36 protein but not IL-36 protein was elevated in BAL 

compared with untreated controls (Aoyagi et al., 2017a). In vitro data showed that 

influenza virus induces alveolar epithelial cells (AECs) to produce IL-36 but not IL-

36 via activation of both caspase-1 and caspase 3/7. Inhibition of caspase-1 

suppresses level of IL-36 mRNA and protein while inhibition of caspase 3/7 does not 

change the level of IL-36 mRNA, but the secretion level is dropped in AECs treated 

with influenza virus (Aoyagi et al., 2017a). These findings suggest that IL-36 is the 

important IL-36 product of alveolar epithelial cells. 

 

In healthy mouse lungs, expression of IL-36 was increased in response to a house 

dust mite challenge, and in A/J mice challenged with ovalbumin (OVA) (Ramadas et 

al., 2011, Ramadas et al., 2006). These suggest the role of IL-36 in allergy. Normal 

mouse lungs became significantly infiltrated. Mucus production and epithelial cell 

hypertrophy were seen after a challenge with IL-36 (Ramadas et al., 2011).  

 

The induction of IL-36 in macrophages was regulated in two stages during infection 

with Mycobacterium tuberculosis. In the early stage, the expression of IL-36 results 

from the triggering of MyD88 dependent pathway. A knockdown of MYD88 in the 

human monocytes cell line (THP-1) by siRNA reduced expression and secretion of IL-

36 compared with control. Moreover, IL-36 mRNA failed to be induced in BMDMs 

derived from MyD88-/- mice compared with wild type mice. This suggests that 

regulation of IL-36 is under control MYD88 pathway. TLR2 ligands (FSL1, 

Pam3CSK4 and HKLM) and TLR4 (LPS derived from E. coli) regulate expression of 

IL-36 in THP-1 cells. In the later stage, production of IL-36 is further amplified by 

endogenous IL-1 and IL-18. Knockdown and blocking of IL-1R and IL-18R in THP-1 

challenged with M. tuberculosis show reduction in the level of IL-36 mRNA expression 

(Ahsan et al., 2016). That suggests that IL-1R and IL-18R signals can induce 

expression of IL-36.  

Uracil uptake and a colony-forming unit (CFU) numbers show elevation of M. 

tuberculosis number in 2 days and 5 days after infection in 

both IL36R and IL1R1 knockdown macrophages (Ahsan et al., 2016). This suggests 

that IL-36 as well as IL-1, are required to control M. tuberculosis.  
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Figure 1.8 The role of IL-36 in the lungs. Adapted from (Gabay and Towne, 2015). 

In response to cytokines, smoking or viruses, IL-36 cytokines are produced by 

epithelial cells. IL-36 cytokines stimulate chemokines and production other cytokines, 

mucus production and immune cells recruitment via acting on the bronchial epithelia 

cells and adjoining fibroblast and alveolar microphages. 
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Quantitative-RT-PCR data demonstrated that human lung fibroblasts and bronchial 

epithelial cells have IL-36R on their surface. Moreover, IL-36, IL-36 or IL-

36 positively stimulate expression of IL-6 cytokine and CXCL8 chemokine in human 

lung fibroblasts and bronchial epithelial cells (Zhang et al., 2017). The intratracheal 

administration of IL-36 or IL-36 stimulates large number of neutrophils to migrate 

into bronchoalveolar lavage fluid (BACF) in mice (Ramadas et al., 2011, Ramadas et 

al., 2012). Accumulation of neutrophil in the airway system has a role in the 

pathogeneses of pulmonary diseases as well as asthma. These diseases include 

chronic obstructive pulmonary disease (COPD), cystic fibrosis and acute respiratory 

distress. Smoking causes COPD, challenging healthy human epithelial cells 

with cigarette smoke condensate (CSC) increases expression of IL-36 agonists in 

bronchial epithelial cells (Parsanejad et al., 2008).  

 

1.16 Role of IL-36 in intestine  
 

IL-36 and IL-36 mRNAs but not IL-36 are increased in colonic biopsies from 

patient with inflammatory bowel disease (IBD). Immunohistochemical data analysis 

indicate that the sources of IL-36 and IL-36 in the colonic mucosa are T cells, 

monocytes, and plasma cells (Nishida et al., 2016). This suggests the proinflammatory 

roles of IL-36 and IL-36 in bowel inflammatory disease. CXCL1, CXCL2, CXCL3, 

CXCL6 and CXCL8 chemokines are upregulated by IL-36 and IL-36 in the human 

colon carcinoma cell lines (HT-29 and Widr) in vitro (Nishida et al., 2016). The 

expression of IL-36 and IL-36 was raised in mucosal biopsies from the colon of 

patients with IBD with active inflammation in comparison with healthy individual. Also, 

IL-36 was not detected in the human colon (Scheibe et al., 2017). Again, this 

suggests that IL-36 and IL-36 but not IL-36 have pro-inflammatory roles in bowel 

inflammatory disease. Moreover, secretion of CXCL1, CXCL2, and CXCL8 

chemokines was enhanced by IL-36 and IL-36 in the cultured human colonic 

subepithelial myofibroblasts (SEMFs). The stimulation of IL-6 and CXC chemokines 

was affected by a synergistic effect of either IL-36 or IL-36 and IL-17A or IL-36 or 

IL-36 and TNF (Kanda et al., 2015).   
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At low levels and in combination with IL-1 and IL-17A, IL-36, IL-36 was stimulated 

in the colon of mice that gave dextran sulphate sodium-induced colitis (DSS) (Boutet 

et al., 2016) Germ free mice treated with DSS failed to express IL-36 while Il36r-/- 

mice that treated with DSS failed to recover from colitis because of reduction in IL-22 

expression specially by colonic neutrophils. Moreover, weakened wound repairing in 

Il36r-/- mice resulted from a deficiency in neutrophil migration into the wound bed. 

(Medina-Contreras et al., 2016). This suggests the role of IL-36 signal during intestine 

repair. Moreover, IL-36 activation related to DSS concentration (Scheibe et al., 2017). 

Increased colonisation of bacteria and reduced inflammation in the colon of IL-36R-/- 

mice was seen during infection with Citrobacter rodentium. Moreover, IL-36R-/- mice 

also displayed elevated Th17 but decreased responses of Th1 (Russell et al., 2016). 

This suggests that signalling through IL-36R also controls intestinal mucosal T cells 

responses.  

IL-22, IL-23 and AMPs levels are reduced in the Il36r-/- and Il36g-/- mice after treatment 

with DSS compared with wild type mice, in addition to failing to repair acute intestinal 

damage (Ngo et al., 2018). This suggests that IL-36R/IL-36 signals have a role in 

immune defence and repairing of intestine.  
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1.17 Summary  
 

To summarise, interleukin-36 belongs to the IL-1 family. IL-36 cytokines comprise of 

three agonists IL-36 IL36, IL-36. IL-36 agonists are specific to mammals and 

present in all mammals, but it is not clear what specific function they have evolved to 

fill. IL-36Ra is a natural antagonist for these agonists. IL-36 cytokines employ a 

receptor (IL-36R), and IL-1RAcP for their signaling. IL-36 plays an important role in 

innate and adaptive immunity through the activation of NF-B and MAPK pathways.  

 

Keratinocytes play a crucial role in the immune system of skin through expression of 

various Toll like receptors. Different cytokines can be secreted by KCs in response to 

biological, chemical or physical threats to skin, but LCs are no less important than KCs 

in epidermis. LCs with different CD markers are presented in epidermis, and these 

cells can initiate adaptive immunity through migration into lymph nodes to activate T 

lymphocytes cells. LCs are absent in dermis. Epithelial cells and particularly KC are 

the known principle source of IL-36. Expression of IL-36 is connected with skin 

diseases such as psoriasis, atopic dermatitis and allergic contact dermatitis. After 

binding to its receptor, IL-36 has a role in regulation of innate immunity through 

activation chemokines, cytokines and recruitment of immune cells into the site of 

infection and adaptive immunity through induction of proliferation and differentiation of 

CD4+ T cells. Th17 cells in skin are usually connected with skin diseases such as 

psoriasis, atopic dermatitis through the secretion of pro-inflammatory cytokines and 

the recruitment of immune cells into the site of infection, after being activated by 

dendritic cells. IL-36, dendritic cells and Th17 orchestrate psoriasis disease in skin. IL-

36 agonists are produced as pro-proteins that require proteolytic processing to 

become active, but this processing is not fully understood, and it is not known how the 

IL-36 receptor distinguishes so strongly between slightly different molecules. One 

study showed that truncation of a small number of amino acids from their N-termini 

can lead to activation of IL-36 agonists. Recently, in vitro studies have shown that IL-

36, IL-36 and IL-36 can be cleaved by cathepsin G, elastase and proteinase 3, 

which are derived from neutrophils, but the cleavage sites are not the same as these 

suggested in the truncation experiments. Another study showed that IL-36 could be 

cleaved by cathepsin S at the expected site. We do not yet understand fully the 
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secretion the processing and site of processing of different IL-36 species in the tissue. 

These processes are likely to be closely related to the function of IL-36 in health and 

disease. Controlling the processing of IL-36 has been suggested as a target for 

therapeutic interaction (Ainscough et al., 2017). Previous studies have shown that 

inflammatory cytokines and pathogen associated molecular patterns such as LPS, 

flagellin or poly I:C induce the expression of IL-36 cytokines at the level of mRNAs and 

proteins. N-terminal clipping is required to generate active IL-36 proteins. I 

hypothesized that transcription and translation of IL-36 cytokines are activated in 

response to pro-inflammatory stimuli. To generate active cytokines, the translation 

products must be proteolytically cleaved. I have investigated ways to optimize the 

detection and expression of IL-36 mRNAs and their protein products in established 

cell lines and I have tested a number of different stimuli that might be expected to 

trigger processing.  
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2. Materials  
 

2.1. Sources of material  
 

Tissue culture plasticware was from Costar. Microfuge tubes were from Starlabs. 384-

well plates for qPCR were from Thermo Fisher. Pipette tips were from Starlabs or 

Thermo Fisher.  

All laboratory chemicals were from Thermo Fisher except where noted. High melting 

agarose was from Thistle. Trizol reagent was from Life Technologies. SYBR green 

qPCR kits were from Qiagen. Recombinant human (rh) TNF and full length rhIL-36 

R&D systems antibodies (primary & secondary). rhIL-1 was from Glaxo and all 

IL36 derivates (rh-n6-IL-36, rh-n6-K6S- IL-36, rh-n6-K6G- IL-36, rh-n1-IL-36 and 

rh-n2-IL-36Ra) were produced in the laboratory in an E. coli host and were finally 

purified by ion-exchange chromatography before verification by mass spectrometry 

(M.Nicklin, unpublished). poly I:C and staurosporine were a gift from Dr Liza Parker 

(Department of Infections, Immunity and Cardiovascular Disease).  

 

Molecular biology reagents (AMV reverse transcriptase, RT buffer, deoxynucleotides, 

RNase inhibitor, random hexamer and oligo-dT primers) were from Promega. All 

primer oligonucleotides were from Sigma. Primary human keratinocytes, HaCaT and 

A-431 cell lines were obtained Professors Sheila McNeil (Department of Materials 

Science and Engineering) and Peter Monk (Department of Infections, Immunity and 

Cardiovascular Disease). HT-29, HaCaT and A-431 cell lines were verified by 

microsatellite analysis in the Genetics Facility of the Medical School. THP-1 cells were 

from Mr Jon Kilby and were originally from ATCC. A-431, HaCaT, HT-29 and 3T3L1 

cell lines were cultured in Dulbecco's modified Eagle medium (DMEM Lonza) which 

contains of 4 g/l glucose, 2 mM glutamine and was supplemented with 10% fetal 

bovine serum and 100 u/ml penicillin and streptomycin. THP-1 were grown in 

RPMI1640. Fetal bovine serum was from Bio sera and Lonza.  
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2.1.1 General Buffers  
 

DNA Loading Buffer (1X): was 12 mM EDTA (pH 8)/ 10% glycerol/ 0.1% 

bromophenol blue and was prepared at various concentrations depending on its final 

use.  

2.1.2 Culture media  
 

All bacterial growth media were sterilised by autoclave and were supplemented 

with sodium ampicillin (100 g/ml) to sterile media when needed.  

2.1.2.1 LB media  
 

LB medium contained 10 g/l bacto tryptone, 5 g/l yeast extract 10 g/l sodium 

chloride. LB agar contained 15 g bacto agar and was aliquoted at 25 ml per 10 cm 

petri dish.  

2.1.2.2 MDG media  
 

MDG media contained 2 mM MgSO4/, 0.2x trace metals/, 0.5%glucose/, 0.25% 

sodium aspartate/ 25 mM Na2HPO4/ 25 mM KH2PO4/ 50 mM NH4Cl/ 5 mM Na2SO4 

(Studier, 2005). MDAG-11 medium contained, 2 mM MgSO4, 2.8 mM glucose, 7.5 mM 

sodium aspartate, 25 mM Na2HPO4/ 25 mM KH2PO4/ 50 mM NH4Cl/ 5 mM Na2SO4/ 2 

mM MgSO4/ 0.5% glycerol/0.05% glucose/ 0.2% lactose/ 10 M FeCl3/ 4 M CaCl2/ 2 

M ZnSO4/ 0.4 M CoCl2/ , 0.4 M NiCl2/ 0.4 M Na2SeO3/ 0.4 M boric acid, 1% 18 

amino acids, 100 mg sodium ampicillin.  

 

2.1.2.3 ZYM-5052 media 
  

ZYM-5052 contained 1% N-Z-amine, 0.5% yeast extract, 25 mM Na2HPO4/ 25 

mM KH2PO4/ 50 mM NH4Cl/ 5 mM Na2SO4/ 2 mM MgSO4/ 0.5% glycerol/0.05% 

glucose/ 0.2% lactose/ 10 M FeCl3/ 4 M CaCl2/ 2 M ZnSO4/ 0.4 M CoCl2/ , 0.4 

M NiCl2/ 0.4 M Na2SeO3/ 0.4 M boric acid/  ampicillin (Studier, 2005). 
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2.1.3 General buffers  

2.1.3.1 Protein loading buffer (1x) 
 

The final concentration of protein loading buffer was 1% SDS/ 6% glycerol/ 10 

mM dithiothreitol (DTT)/ 31 mM Tris/HCl pH 6.8. 

All buffers used in Ni-chelate chromatography contained 0.5 M Cl- and 0.5 M total 

cation, which include 42 mM TrisH+, various concentrations of imidazole H+ and the 

balance was Na+. The pH of buffers was set with 8 mM Tris base at pH 7.5. 1 M 

imidazole was adjusted with 0.3 M HCl also give pH 7.5 when diluted. Buffers were 

named ‘B’ to indicate the 50 mM Tris/HCl 0.5 M Cl- composition.  

The numeral in the name of buffers indicates the concentration of Imidazole/HCl in pH 

7.5 and ‘G+’ when included the presence of 10 % glycerol to allow freezing of the 

solutions without damage to the protein. 

For denaturation Ni-chelate chromatography and renaturation of IL-36 while bound to 

the column, bound protein was first applied in B20 supplemented with 3 M guanidine 

hydrochloride. For IL-36 renaturation, buffers were based on 0.2 M ammonium 

acetate/ 0.5 M NaCl/ 20 mM imidazole /HCl/ 1 mM DTT which were supplemented 

with zero, 2 M, 4 M, 6 M or 8 M urea. Elution buffers for IL-36 contained 0.2 M NH4 

acetate/0.5 M NaCl/ 200 mM imidazole/HCl pH7.5. 1 mM DTT. This was finally 

supplemented with 8 M urea to elute residual denatured protein.  

 

2.1.3.2 Dialysis buffer  
 

10 mM Tris/ 10 mM Tris HCl/ 10 % glycerol/ 1mM DTT/ pH8.2 

 

2.2.1 Thawing of human cell line stocks  
 

           For long-term storage, cells lines used in this study (Table 2.1) were stored in 

liquid nitrogen in DMEM/25% FBS/ 10% DMSO in 1 ml aliquots of ~ 5 million cells. To 

begin a culture, the frozen cells were thawed by placing the vial in 15 ml of water at 

room temperature in a closed tube. The cell suspension was quickly thawed by rocking 

with gentle mixing. The suspension was pipetted into a new 15 ml conical tube and 9 
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ml of high serum medium (HSM) was added at first dropwise, to limit the rate of change 

of osmotic pressure. Cells were recovered by centrifugation at 1000 rpm (80 x g) and 

resuspended in the growth medium. Adherent cells (HaCAT, A-431, HT-29 and 3T3L1) 

were usually cultivated in a T75 tissue culture flask in 15 ml medium.  

 

Table 2.1. Cell lines used in this study. The cell lines that used in this study are 
shown. Their origin is described by American type culture collection (ATCC).  

Cell line  
 

Information  Passaging  

A-431 Human epidermoid carcinoma 

adherent   

1/3 every 3.5 days  

HaCaT Human keratinocyte adherent   1/3 every 5 days 

HT-29 Human colon cancer adherent   1/3 every 3.5 days 

THP-1  Human monocytic non-

adherent   

1/3 every 3.5 days 

3T3L1 Fibroblast Mouse adherent   1/3 every 3.5 days 

 

2.3.1 Maintenance of cell lines 
    

                The adherent cell lines that were used in this study were routinely cultured in 

T75 bottles in 15 ml DMEM supplemented with 10% foetal bovine serum (FBS) except 

THP-1, which was grown in RPMI 1640 with 10% FBS. All cells were maintained in a 

humidified incubator at 37 °C in a 5% CO2 atmosphere. I refer to DMEM + 10% FBS 

as high serum medium (HSM). Cells were passaged need from T75 flasks. Adherent 

cells were washed with 10 ml phosphate buffered saline (PBS) or PBS supplemented 

with 1 mM EDTA for adherent HaCaT cells (to leach calcium from their strong 

intercellular contacts) and were incubated for 2-3 minutes at room temperature and 

drained. After that 1.5 ml of trypsin/ EDTA was used to digest the extracellular matrix 

during incubation at 37 °C for 15 min for HaCaT and A-431, or 8 min for HT-29 and 

3T3L1.  For HaCaT, HT-29 and A-431, a 5-ml pipette was used to pull cells quickly up 

and down to produce a single cell suspension, and this was confirmed on an inverted 

microscope. HSM 7.5 ml was added with resuspension. HSM, 12 ml was added to 
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each of three new T75 flasks and 3 ml of the cell suspension was added to each. Cells 

were thus split 1:3 (area/area) into the appropriate medium.  

 

Primary human keratinocytes were provided for this study through a collaboration with 

Prof Sheila MacNeil. Keratinocytes were cultured from skin removed for elective 

surgery procedures and not required for patient’s treatment and obtained through a 

collaboration with the NHS department burns plastics and reconstructive surgery, 

Sheffield Teaching Hospitals. All patients signed written consent forms for skin not 

required for the treatment to be used for research purposes.  All work related to wound 

healing in trauma using donated skin is covered by ethical procedure 

number 15/YH/0177 approved by the regional ethics committee of Sheffield and 

Humberside. 

 

2.4 Cell stimulation  
 

2.4.1 Stimulation of HaCaT for mRNA analysis  
 

           To induce expression of IL-36 mRNAs, confluent HaCaT cells were removed 

from two T75 flasks as described in section 2.3.1. In stimulation experiments, 16 T25 

flasks were used, each was populated with 1 ml (1/9 of a confluent T75 flask, as 

described) added to 4 ml HSM. Cells were cultured for four days. To turn off growth 

dependent and serum-stimulated transcription after 4 days, HSM was replaced with 

low serum media (LSM) (supplemented DMEM containing 0.5% serum). After 18-24 

h, cells were treated with inflammatory cytokines or control medium (LSM) in 2.5 ml. 

Cells were incubated at 37 °C between 

4 and 7 h respectively. After stimulation, the cells were washed briefly with 5 ml 

PBS/EDTA and drained with a pipette. Cells were then lysed in 2 ml of Trizol reagent 

per flask. The Trizol is proprietary mixtures containing buffer, phenol and guanidine 

thiocyanate. Cells were gathered by using sterile disposable scrapers. The suspension 

was divided into two and transferred to 1.5 ml microfuge tubes. Samples were stored 

at -20 °C for later analysis.  
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2.4.2. RNA extraction and precipitation from human cell lines  
 

              To extract RNA from the samples, RNA was purified from the Trizol extracts 

by phase separation, achieved by adding 0.2 ml of chloroform per 1 ml of Trizol 

suspension. Samples were incubated for 3 min at room temperature before 

centrifugation at 12,000 x g for 15 minutes at 4 °C. The aqueous (upper) phase was 

transferred to another 1.5 ml tube and glycogen (10 g) (Sigma), as a carrier, was 

added to aid recovery of RNA pellets. RNA was precipitated by adding 0.5 ml of cold 

isopropyl alcohol per 1 ml of Trizol suspension. The mixture was then incubated at 

room temperature for 10 min and then centrifuged at 12,000 x g for 10 minutes at 4 

°C. The supernatant was discarded, and the pellet containing RNA was washed with 

at least 1 ml of 75% v/v ethanol per 1 ml of Trizol suspension. Samples were mixed 

on a vortex mixer and centrifuged 7,500 x g for 5 minutes. Finally, ethanol was 

removed by brief air drying. The RNA/glycogen pellet was resuspended with 50 l 

RNAase free water. A NanoDrop spectrophotometer (Thermo Scientific) was used to 

determine the final A260 and A280 of the RNA solutions, to assess concentration and 

purity; the absorbance of 1 g/ml RNA was assumed to be 0.025 and an A260/A280 ratio 

>1.8 was accepted as sufficiently pure.   

 

2.4.3 Synthesis of cDNA and PCR (RT-PCR) 
 

          To make cDNA to be used for RT-PCR after extraction and purification of RNA 

from HaCaT as described in section 2.3.1. cDNA was synthesised. Reverse 

transcription to prepare cDNA was primed with a mixture of oligo-dT and random 

primers. Reactions were mixed in 0.6 ml microfuge tubes on wet ice. A 72 l of aliquot  

5X RT buffer and 36 l of 10 mM dNTP were mixed with 9 l of (400 units) RNasin 

and 14.4 l of (300 units) of AMV reverse transcriptase before being added quickly to 

20 l oligo-dT (5 g) and 20 l random primers (5 g) which was mixed thoroughly 

and a 22 l of aliquot of the mixture was added to 2 g RNA (20 l) before being 

incubated at room temperature for 15 minutes, then 42 °C for 30 minutes. The reaction 

was stopped by heating at 95 °C for 5 minutes, briefly centrifuged and then placed on 

wet ice. At this stage, first-strand reverse transcription could be stored at -20 °C. For 
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non-quantitative polymerase chain reactions (PCR), for detection of mRNA, reactions 

were prepared by mixing on ice in 1.5 ml microfuge tube, 990 l water then 275 l 5x 

GoTaq Green buffer. Next, 27.5 l 10mM (50X) dNTPs and 5.5 l GoTaq (5 u/l) were 

added. Six (0.6 ml) tubes were labeled according to the target pairs of primers. Then, 

1 l of each primer pairs (5 M) (as described below) were added before aliquoting 

274 l of master mix into each primer mix tube. 0.5 l of the relevant cDNA was added 

to each tube then 24.5 l of master mix/primer mixtures was pipetted to each relevant 

tube. Amplification consisted of 35 cycles as following: initial PCR activation step: 5 m 

96 °C, denaturation: 30 s 94 °C, annealing 30s 56°C, extension: 30 s 72 °C, and data 

acquisition 5 m 72 °C.  

 

2.4.4. RT-PCR primers  
 

  Five primers pairs were used successfully to detect mRNA expression of IL-36 

agonists, antagonist and receptor in HaCaT and THP-1. They are shown in Table 2.2 

 

Table 2.2. Primer pairs and conditions. RT-PCR primer pairs in this study are 
indicated along with oligonucleotide sequences, size of the PCR product and 

conditions of PCR. −Actin was used a positive control.  

 

 

 

−Actin= control  

 

 

Gene  Oligonucleotide Sequences Size of 
product 
(bp) 

cDNA  
Ref-sequence 

 
Exon 
number  

−Actin AGCACTGTGTTGGCGTACAG 
AGAGCTACGAGCTGCCTGAC 

184  
NM_001101.4 

 

4 to 5 

IL-36 CGGTTAAACTGTGGCTTGGG 
AGAACCCACACCCGATGATT 

175 
NM_014440.2 1 to 2 

IL-36 GGCAGCACCCAAATCCTATG 
TGCCCTGAATTTCTGCACAG 

224 
NM_173178.2. 3 to 4 

IL-36 ATCAGCAAGTGTGGACCCTT 
TTTAGCTGCAATGTGGGCTG 

208 
NM_019618.3 3 to 4 

IL-36R CATGTCATCTGCACTTCCCG 
GTATGGCTTGACACGCGTAG 

166 
NM_003854.2. 4 to 5 

IL36Ra AAGGACTCGGCATTGAAGGT 
GGCACCAAGATAGAGCTCCA 

243 
NM_012275.2 3 to 4 
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2.4.5 Gel Electrophoresis 
 

Gel electrophoresis was used to assess the RT-PCR products. Gels were 8 mm 

thick x 100 x 100 and contained 2% w/v agarose in 0.2 g/ml ethidium bromide in 1x 

TAE (50 mM Tris base) 20 mM acetic acid/ 0.1 EDTANa3) buffer. PCR samples (12.5 

l) were loaded directly. A 100 bp interval ladder was used as a marker. Samples were 

run at 200 V and visualised by UV-induced fluorescence. DNA bands were visualised 

by UV-induced fluorescence recorded in a Bio-Rad gel Doc system.  

 

2.4.6 Sequence analysis  
 

               Sequence analysis was used to confirm that PCR products represented 

specific mRNA. Amplified cDNA IL-36, IL-36, IL-36, IL-36R and IL-36Ra as 

described in section (2.4.3) was run on low melting point agarose gels. Gel slices 

containing the DNA of interests were cut from gel with a scalpel blade. Gel slices were 

melted at 99 °C for 5 minutes in a heat block. DNA solutions were diluted by adding 5 

l of sample to 95 l distilled water. Samples were re-amplified as follows by preparing 

a master mix which consists of 243 l of water, 66 l of 5x Go Taq colourless buffer, 

6.6 l of 10x dNTPs and 1.5 ml of Go Taq. Relevant primer pairs (1 l of 100 M) were 

added to 0.6 l tube before 48 l of master mix being added. Relevant diluted PCR 

product (1 l) was added to 0.6 ml tube, then 48 l of master mix/ primer pairs was 

added. PCR reaction processed for 20 cycles.  

 

2.4.7. Quantification of CXCL8 (IL-8) secretion by HaCaT  
 

To assess CXCL8 secretion in response to inflammatory stimuli, HaCaT cells 

were seeded onto two 24 well plates. Each well was assumed to be 1.9 cm2 and cells 

were plated in 1.0 ml of HSM and were grown to confluence over 4 days. Cells were 

deprived of serum in 0.5 ml LSM for 18-24 h then treated with NF-B activator for 7 h. 

Experiments were done in 5-fold replicates. Supernatants were tested for CXCL8 

secretion by ELISA (Peprotech) as described in figure 2.1. Samples were diluted 1/5 
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and 1/15 and measured in triplicate to get a mean and standard deviation, and a 96-

well plate was used to carry out ELISA. Absorbance from each sample was measured 

and compared to the mean of triplicates of CXCL8 standard curve. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 CXCL8 ELISA procedure. Plates was washed 4 times with washing buffer 

between each step to remove unbound protein. (a) A 96- well plate ELISA plate was 

coated with capture antibody 100 l at 1 g/ml in 1x PBS overnight. (b) To block the 

well from binding proteins, the plate surface was blocked with a 1% solution of bovine 

serum albumin (BSA). (c) Samples and standards containing IL-8 were loaded to allow 

the IL-8 to bind to the capture antibody. (d) Detection antibody (biotinylated antibody) 

was added. (e) Avidin-horse radish peroxidase (HRP) conjugate was bound to the 

biotin complex. (f) ABTS reagent mix (Sigma) was converted into visible coloured by 

HRP, whose A405 was measured with 5 min intervals for 35 min. 
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2.4.8 Quantitative PCR (qPCR) of mRNA from cultured cells  
 

To assess the induction level of mRNAs in response to inflammatory stimuli, 

RT-qPCR was used, RNA was extracted as described in section (2.4.2). The first 

strand cDNA was synthesized by mixing on the ice 288 l of 5X RT buffer then 144 l 

of 10 mM dNTP mixture. After that 40 l of (400 units) RNasin and 48 l of (300 units) 

of AMV reverse transcriptase were added and 80 l of oligo-dT primers and 80 l 

random primers were added and mixed thoroughly. The mixture (42.5 l) was added 

to 5 g RNA (47.5 l) and incubated at room temperature for 15 minutes, then 42°C 

for 30 minutes in a thermocycler block. The reaction was stopped by heating at 95°C 

for 5 minutes, centrifuging. The samples were held on wet ice. cDNA was stored at -

80°C. Real-time PCR was performed with an SYBR Green (Qiagen) method. 

Amplification was monitored in real time in an Applied Biosystems 7900 Detection 

System (Applied Biosystems). The amplification consisted of 45 cycles as follows. 

PCR initial activation step: 15 m 95 °C, denaturation: 15 s 94 °C, annealing: 30 s 58 

°C, extension: 30 s 72 °C and Data acquisition: 15 s 64 °C in 10 l reactions, 100 nM 

each primer, 1 l of cDNA. Primers were used as table below. 
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Table 2. 3 RT-qPCR primer pairs. RT-qPCR primer pairs that were used through the 
whole of study are illustrated, along with oligonucleotide sequences, size of the PCR 
product. 

Primers 
name 
 

Oligonucleotide Sequences Size of 
product 
(bp) 

RefSeq cDNA Exon 
number  

IL-36 TCTACCTGGGCCTGAATGGA 
AAAGGACTTCACAGGCTCGG 

128 NM_014440.2 3 to 4 

IL-36 TGTGCAGAAATTCAGGGCAAG 
GCCAGGGTAAGAGACTGAC 

150 NM_173178.2 4 to 5 

IL-36 TGGAGGAAGGGCCGTCTATC 
GTGACTGGGGTCACACTGTC 

135 NM_019618.3 2 to 3 

IL-36R CATGTCATCTGCACTTCCCG 
GTATGGCTTGACACGCGTAG 

162 NM_003854.2 4 to5 

M2 AGATGAGTATGCCTGCCGTG 
TCATCCAATCCAAATGCGGC 

120 NM_004048.2 3 to 4 

H1 AATGACCAGTCAACAGGGGAC 
GCCTGACCAAGGAAAGCAAAG 

136 NM_000194.2 4 to 6 

P1 ATACGGGTCCTGGCATCTTG 
GCCTCCACAATATTCATGCCT 

148 NM_021130.4 4 to 5 

L1 AATCCAAGAAGGGGCTGTCC 
GGGTCCAGCGAGAAGGTTTT 

140 NM_005157.5 1 to 2  

M2= 2 microglobulin, H1= hypoxanthine phosphoribosyltransferase, P1= peptidyl 

proline isomerase (PPIA), L= ABL kinase (ABL1). 

 

2.4.9. Standard of qPCR2.4.10 A-431 or HaCaT cells stimulation for 
mRNA analysis  
 

              To induce expression of IL-36 mRNAs in HaCAT or A-431 cells, A-431 or 

HaCaT cells were routinely cultured as described in 2.3.1. Confluent A431 or HaCat 

cells were resuspended from T75 (75 cm2) flasks. In stimulation experiments, T25 (25 

cm2) flasks were used. Each was populated with 5 ml from the suspension of A-431 or 

HaCaT cells and were incubated at 37 °C for four days. To repress growth dependent 

and serum-stimulated transcription after 4 days, HSM was replaced with LSM. After 

18-24 h, inflammatory stimuli were added in 2.5 ml LSM (in addition to the 2.5 ml of 

LSM that was used as control during comparison with the stimulant. After stimulation, 

T25 flasks were washed with 5 ml PBS and drained. After draining, cells were scraped 

off in the 2 ml of Trizol and RNA prepared as described in section 2.4.2. 
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2.5 Creation of expression constructs for IL-36 and IL-36  

2.5.1 Preparation of inserts  
 

          To prepare insert, the IL-36 (pEXA2-AXn5F8) and the IL-36 (pEXA2-

ATn18F9) were designed by Dr Martin Nicklin and prepared by gene synthesis 

(Eurofins). Plasmids were digested with XhoI and Acc65I restriction endonucleases to 

excise the inserts. Digestion of 5 g of plasmids with 20 units XhoI and 30 units of 

Acc65I was performed at 37 °C for 2 h in 50 l of their recommended buffer. Gel 

electrophoresis was used to check digestion progress of 10% of the samples. Digested 

inserts were recovered from high melting agarose after electrophoresis.  

The analytical gel: The gel contained 1% agarose/ 40 mM Tris acetic acid pH 8.3/ 0.1 

mM EDTANa3 /0.2 g/ml ethidium bromide. The samples were supplemented with 

DNA loading buffer and electrophoresed alongside a DNA ladder at 100 V. The 

remaining digested samples were loaded into 4 cm x 10 cm 1% high melting agarose 

gel containing 40 mM Tris acetic acid pH 8.3/0.1 mM EDTANa3/0.2 g/ml ethidium 

bromide.  

 

2.5.2 Digestion of pET3a plasmid with restriction enzymes  
 

Plasmids were created by removing a pre-existing insert from a pET-3 derived 

plasmid that contained convenient restriction sites (Martin Nicklin unpublished). Sticky 

ends were generated by digesting pET-H3.2 plasmid with XhoI and Acc65I. This was 

carried out by digesting pET3 with 20 units of XhoI and 30 units of Acc65I for 2 h at 37 

°C in 50 l of their recommended buffer. 10% of digested sample was checked by a 

1% agarose gel, while nuclease in the remaining digested sample was inactivated with 

an excess of 0.5 M EDTAHNa3. Proteins were extracted by adding 30 l of 3 M sodium 

acetate, 70 l water and 200 l phenol/chloroform buffer, vortexing for 20 s. The 

aqueous phase containing the DNA was transferred into 1.5 ml tube that contained 

400 l 100% ethanol and was incubated at -80 °C for 5 min before centrifuging at 

17,000 x g for 5 min. The vector was washed with 1 ml of 70% ethanol, dried on heated 

block at 37 °C for 15 min and dissolved in 10 l TE. 
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2.5.3. Ligation  
 

To ligate inserts with pET3a plasmid, DNA fragments were excised from 

agarose gels and transferred to a 1.5 ml tube. Agarose were dissolved to recover DNA 

bands by using 4 volume of gel dissolving buffer (Monarch) and incubated samples at 

50 °C until the gel slice completely dissolve. Then samples were loaded onto columns 

before spinning for 1 min. Columns were reinserted into the collection tube and 200 l 

of DNA wash buffer was added and spin for 1 min this step were repeated twice. Next, 

to elute DNA, columns were transferred into a clean 1.5 ml tube and 6 l of DNA elution 

buffer were added to the centre of mixture. Each insert DNA was ligated with the vector 

in a 10 l ligation reaction in the buffer supplied (Promega) with 0.5 units T4 ligase 

(Promega) and was incubated overnight at 15 °C. 

 

2.5.4 Transformation of E. coli DH5  
 

pET vectors were constructed to place the open reading frame of the precursors 

of IL-36 and IL-36 under control of T7 promoter. The completed pET3 vector 

plasmids were transferred first into competent E. coli DH5 (a non-expressing bacteria 

strain) by using heat shock. To so this, frozen competent DH5 cells were thawed by 

using wet ice. Cells were gently mixed and widened pipette tip was used to transfer 

100 l of cells suspension to 1.5 ml tube that contains 10 l of ligation mixtures and 

gently mixed. Then, they were incubated on wet ice for 1 h before being shocked by 

heating at 42 °C for 20 s, and then tubes were quickly returned into wet ice. To recover 

cells, 200 l Soc media were added and incubated at 37 °C in a shaker at 225 rpm for 

40 min, before being spread cells on LB plate containing 100 g/ml ampicillin. pET3 

(10 ng) was also transformed as a positive control, as well as two negative controls of 

ligation containing no inserts and no ligase. For each tube, a sample of recovered 

bacteria (50 l) was spread on plate. The plates were incubated overnight at 37 °C 

and checked for colonies the next day.  
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2.5.5. Screening transformants 
 

To identify pET-IL-36 and pET-IL-36 transformed clones, sterile pipet tips 

were used to pick labelled transformed colonies. Colonies were grown in 3 ml of LB 

media and re-cultured on LB agar plates both containing 10 g/ml ampicillin. Cultures 

were incubated overnight at 37 °C with stirring. Gel Elute plasmid miniprep kit (Sigma-

Adrich) was used to isolate plasmid DNA. Xhol (20 units) and Acc65I (30 units) 

restriction endonucleases were used to screen for the presence of pET-IL-36 or pET-

IL-36 DNA fractions by overnight incubation at 37 °C. 

 

2.5.6. Transformation into E. coli BL21 (DE3) cells  

               E. coli BL21 (DE3) was used to express target proteins because these cells 

carry a T7 RNA polymerase transgene controlled by a lacUV5 promoter (Studier, 

2005). pET3-IL-36 or PET3-IL-36 plasmids (10 ng) were extracted from DH5 and 

transformed into BL21 (DE3) as in section 2.5.4.  Empty pET3 plasmid was used as a 

negative control. As with E. coli (DH5), BL21 (DE3) transformation was carried out 

as in section 2.5.4 except the repression medium (MDG) supplemented with 200 g/ 

ml 18 amino acids mixture was used as recovery medium and transformed bacteria 

were plated on MDAG-11/ amp. MDAG-11 is a super repressive medium that helps to 

stabilise the pET plasmid within BL21 (DE3) (Studier, 2005). 

 

2.5.7 Growth of transformants in repression media and generation 
of stock cultures 

Colonies of AmpR BL21 (DE3) containing pET expression plasmids were picked 

with a sterile loop and cultured in 2 ml MDG + 0.1 mg/ml ampicillin repression medium 

in capped 10 ml polypropylene tubes, before being incubated at 37 °C on the shaker 

at 320 rpm. Good oxygenation is needed for repression. To store transformed bacteria 

at -80 °C, glycerol was added to yield 8% w/v.  
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2.5.8 Proteins expression by auto-induction 
 

      To induce expression of targeted proteins in E. coli bacteria BL21 (DE3), a 

buffered rich medium ZYM-5052 media was used (Studier, 2005). This medium is 

buffered with phosphate and contains aspartate, glucose, lactose, and glycerol.  

Expression of T7 RNA polymerase, which is located under control of lacUV5 is 

repressed efficiently until the glucose is exhausted or oxygen becomes deficient. 

When glucose is used up in the medium, bacteria activate on lactose metabolism, but 

they mainly metabolise glycerol and sodium aspartate as a nutrient and that activates 

expression of transgene lacUV5-T7 RNA polymerase in DE3 (BL21). Activation of 

lacUV5-T7 RNA polymerase leads to subsequent expression of target protein from the 

T7 promoter in the pET3 expression vector.  

 

2.5.9 Large scale protein expression by auto-induction 
 

              For the large-scale expression of targeted proteins, 400 ml of ZYM-5052/amp 

medium was inoculated with 100 l of transformed BL21 (DE3) culture stock. Sterile 

baffled flasks were used. Cultures were incubated at 25 °C in a shaker at 320 rpm 

after the addition of 100 l of Anti-Foam 240 (Sigma). After 18 h, growth was monitored 

continuously by measuring A600 every 2 hours to determine the time needed to 

approach the stationary phase. For A600 reading, samples of cultures were diluted to 

give readings in the range 0.100-0.300. To harvest, the cultures were rapidly chilled 

by swirling the flasks surrounded by wet ice. Bacteria were harvested by centrifuging 

at 4 °C in a Beckman J26 centrifuge at (5000 x g) for 10 min and were washed by re-

suspending in the 400 ml of 42 mM Tris-HCl/8 mM Tris/0.1 M NaCl pH 7.5 (L7.5) which 

had been chilled to 0 °C, followed by centrifugation for 10 min at 4 °C. The pellet was 

re-suspended to 20 ml in L7.5 supplemented with 10 % w/v glycerol in a polypropylene 

tube for storage at -80 °C. 
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2.5.10 Small scale expression test for target proteins 
 

             To test expression of targeted proteins, 1 ml of the 400 ml culture of auto- 

induced BL21 (DE3) was thawed, and the bacteria were collected by centrifugation for 

1 min at 4°C and resuspended in 1 ml cold water to remove glycerol. The suspension 

was centrifuged again and resuspended in 50 l of water. Protein loading buffer (50 l 

of 2X) was added to each sample immediately before being transferred into a boiling 

water bath for 5 min. Then samples were ultra-centrifuged at 560,000 x g for 5 min 

and the supernatant was collected, which contained solubilised total cell proteins. 1 l 

of Bromophenol blue (BPB) stain (0.02%) was added into each sample. SDS-PAGE 

gel electrophoresis was used for analysis. 

 

2.5.11. SDS- PAGE analysis  
 

To analyse protein samples, SDS PAGE gel was used. SDS electrophoresis 

was performed in a 14% (29:1) polyacrylamide gels, which contained in 375 mM Tris 

HCl/ 0.1% SDS pH 8.8 buffer. The gel was 0.7 mm x10 cm x 7 cm with 1.5 cm 5% 

acrylamide/0.12% methylene bisacrylamide. The stacking gel contained 0.1% SDS 

/125 mM Tris/HCl pH 6.8. The electrophoresis tank buffer was 25mM Tris/192mM 

glycine/0.1% SDS pH 8.8. Ammonium persulphate and N,N,N',N'-tetramethyl-

diaminoethane (TEMED) were used to polymerise gels. Samples were heated to 100 

°C in 1X loading buffer containing 20 mM DTT for 5 min. The gel was run at 20 mA 

until the bromophenol dye left the running gel, then the gel was stained with staining 

solution (0.1% Brilliant Blue R/30% methanol/20% acetic acid) at 55 °C for 20 min. 

Excess stain was removed in de-staining solution (30% methanol/1% formic acid). 

Gels were washed with formic acid (1%), then water, and were stored in re-sealable 

bags. 
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2.5.12. Large scale protein extraction 
 

To extract expressed targeted proteins from E. coli BL21 (DE3), half of the 

concentrated stock of bacteria (12.5 ml) for each 400 ml culture were washed to 

remove glycerol by mixing after being thawed with 200 ml of 50 mM Tris/HCl/0.1 NaCl 

buffer. Bacteria were centrifuged at 5000 rpm at 2 °C, and the pellet was resuspended 

to 12 ml with the same buffer. The suspension was collected in a universal tube and 

supplemented with 120 l of 100 mM PMSF and 12 l of 1 M dithiothreitol (DTT). 

Sonication was carried out with 15 s bursts at 45 s intervals with 20% amplitude using 

a medium sized probe. Samples were taken before and after sonication to measure 

A600. The sonicated suspension was ultra-centrifuged at 560,000 g for 20 min at 2 °C. 

The supernatant that contained the soluble protein fraction was transferred to a 

universal vial and held on wet ice.  

 

2.5.13. Protein purification by Ni-chelate chromatography  
 

            To purify proteins after their extraction from bacteria, Ni-chelate 

chromatography was used. The precursor of IL-36 as it was expressed from E. coli 

was substantially soluble under these conditions. Nickel chelate chromatography was 

used to purify the cleavable N-terminal His6-tagged n5-IL-36 protein. A column tube 

16 mm was packed with 5 ml of NTA nickel II Sepharose. A flow rate of ~ 2.2 ml/min 

was created.  Before starting, the column was washed with 10 ml of BA buffer to elute 

weakly bound nickel from the matrix before re-equilibrating with 30 ml of B20G. The 

protein sample was supplemented with 1 M Imidazole/ HCl/pH 7.5 and NaCl to yield 

a final concentration of 0.45 M NaCl and 20 mM imidazole and loaded in ~10 ml. 

Weakly associated proteins were eluted in a mixture in buffer B20G. Buffer B35G was 

used to elute low affinity protein. To elute target protein, B200G was used. A NanoDrop 

spectrophotometer was used to quantify protein in these fractions by A280 by reference 

to the extinction coefficients. 
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2.5.14 IL-36 purification 
 

IL-36 was found to be an insoluble protein as expressed in BL21 (DE3) (12.5 

ml) containing the auto-induced ET-IL-36 plasmid. After they were thawed bacteria 

were washed to remove glycerol by mixing with 200 ml of 50 mM Tris/HCl/0.1 NaCl 

buffer. Bacteria were centrifuged at 5000 x rpm at 2 °C, and the pellet was 

resuspended to 12 ml with the same buffer. The suspension was collected in a 

universal tube and supplemented with 120 l of 100 mM PMSF and 12 l of 1 M 

dithiothreitol (DTT). Sonication was carried out in 15 s bursts at 45 s intervals with 

20% amplitude using a medium sized probe. Samples were taken before and after 

sonication to measure A600. A mixture of 1.5 ml of 5 M NaCl and 1.5 ml of 10% w/v 

Triton X-100 in water was mixed with lysate into lysate to remove lipids from the pellet, 

which contained insoluble IL-36 protein. The supernatant was mixed for 30 s in a 

vortex mixer before being transferred into 50 ml centrifuge tube and centrifuged at 

20,000 x g in the J-26 centrifuge for 10 min at 4 °C to collect the washed pellet for 

further processing.  

 

2.5.15. Dialysis  
 

           To remove low molecular weight contaminants including imidazole and NaCl, 

present in the elution buffer through protein purification chromatography. Fraction 

containing pooled IL-36 protein dialysed in dialysis tubing (SpectraPor). Pooled 

protein was loaded into the dialysis tube, sealed and dialysed against two changes of 

500 ml of low salt buffer (10 mM Tris/ 10 mM Tris-HCl/ 10% glycerol/1 mM DTT) at 4 

°C with continue stirring overnight. 

 

2.5.16. Concentration of IL-36 protein  
 

A 2-ml tangential concentrator (Sartorius) with polyethersulfone (PES) 

membrane and a molecular size cut-off (MWCO) 5 kDa was used. Pooled protein was 

transferred into the concentrator tube and centrifuged at 4000 x g for 15-20 min until 
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the volume was reduced to 500 l. Then, low salt buffer (1.5 ml) was added into 

concentrated protein and centrifuged until the volume was reduced to 500 l. This 

process was repeated three times. Finally, the concentrated protein was recovered 

and washed out from concentrate pocket with 1.5 ml of low salt buffer. The protein 

concentration was measured spectrophotometrically.  

 

2.5.17 Preparation of active IL-36 and IL-36   
 

To remove His6-tagged, purified proteins were digested with chymotrypsin and 

thrombin (Sigma). To test the procedure, a range of enzyme concentrations were 

tested. To terminate chymotrypsin and thrombin digestion, 1 mM PMSF was added by 

adding 1% volume of 100 mM PMSF in dry ethanol.  

 

2.5.18 Capturing His-tagged contaminants 
 

To remove the His6-tag peptide and undigested precursor from the protein 

mixture, a 2 ml glass chromatography column tube was washed out thoroughly with 

deionised water. The tube was washed with 10 ml 1 M NaOH, and the whole 

apparatus, including caps, was soaked for 1 hr in 1 M NaOH. All parts were rinsed 

thoroughly with four changes of ultrapure water. The column tube was clamped into a 

stand and 1 ml of resin added. The column was washed with 10 ml of buffer D (10 mM 

Tris base/ 10 mM Tris-HCl/ 10% glycerol) by filling the reservoir. The protein samples 

were added, and the eluate drained into a universal tube. The collected samples were 

reloaded twice to ensure that all His6-tagged peptide was bound, and protein was 

eluted twice with 1 ml of Buffer D and collected. A small sample (~20 µl) was taken for 

SDS-PAGE gel analysis from each elution. To visualise the rejected bound material, 

it was removed. Buffer D (2.4 ml) was mixed with 0.6 ml of 1 M imidazole (pH7.5) to 

yield a 0.2 M imidazole solution. Bound protein was eluted with this mixture and a 

sample was taken.  
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2.5.18 Fast Protein Liquid Chromatography  

2.5.18.1 FPLC of n5-IL-36 
 

To produce highly purified n5-IL-36 protein, Fast Protein Liquid 

Chromatography (FPLC, GE technology) was used. IL-36 has a predicted isoelectric 

point of pH 9.14 and was therefore purified on Mono S, a cation exchanger. Before 

loading the sample of n5-IL-36 S column HR5/5 was washed, connected to a 

Pharmacia/LKB (now GE-Healthcare) Äkta system. The column volume is 1 ml. IL-

36 is expected to have a strong positive charge at neutral pH. The Mono S column 

consists of monodisperse beds that have diameters of 10 m, carrying sulphonic acid 

groups (RSO3
–) as a strong cation exchanger. The pH of the protein pool was adjusted 

to 6.2 with 0.5 M morpholino ethane sulphonic acid (MES). The sample was purified 

in 1.5-2 ml loadings (2 mg). IL-36 was retained on the column and eluted with a linear 

gradient (20 mM MES/10 mM NaOH/0-0.5 M NaCl). The gradient was 25 ml, and the 

flow rate was 1 ml/min. The size of fractions was adjusted at 0.6 ml, which corresponds 

to the dead-volume between UV monitor and fraction collector. Depending on A280 and 

SDS PAGE analysis, fractions that contain a substantial amount of IL-36 were 

pooled. 

 

2.5.18.2 FPLC of n18-IL-36  

 

A column of Resource Q material (1 ml) was used and was pumped by an Äkta 

system (as above). The column material is made from 15 m 

polystyrene/divinylbenzene beads substituted with quaternary ammonium as a strong 

anion exchanger. The pH of the protein pool was adjusted to 8.8 with 40 mM Tris base. 

The sample was loaded into the system in 1.5-2 ml doses. The protein has an 

isoelectric point of 4.99 and so possesses a substantial negative charge at pH 8.8. It 

was retained on the column and eluted with a linear gradient (40 mM Tris base/10 mM 

Tris/HCl) of increasing Cl- concentration 0-0.25 M over 10 min then 0.25-0.5 M over 5 

min. Fractions of 0.6 ml fractions were collected, which corresponds to the dead-

volume between UV monitor and fraction collector. Protein concentration was 

determined spectrophotometrically from A280 (NanoDrop/Thermo Scientific) and SDS 
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PAGE was used to characterise fractions that contained a substantial amount of IL-

36. 

 

2.6. High sensitivity detection of endogenous IL-36 in western 
blots  

2.6.1 Protein extraction from adherent cells  
 

To extract protein from cells lysates, cells were washed twice with cold 10 ml 

1X PBS (Lonza) and gathered by scraping cells in cold 7 ml for T75 (75 cm2) flasks or 

3 ml for T25 (25 cm2) of TBS (45 mM Tris-HCl, 5 mM Tris base and 150 mM NaCl).  

Cells were scraped up and pipetted into a 15 ml conical tube and collected by 

centrifugation at 4°C for 2 min at 100 x g (1000 rpm). Supernatants were removed, 

and cells were resuspended in 1 ml of TBS/ 25 mM DTT and immediately lysed by 

adding 1 ml of 2% SDS/20% glycerol and immediately heating to 95-100 °C for 5 min 

to denature the protein and endogenous proteases. The extracts were put into a clean 

ultracentrifuge tube and ultracentrifuged at 22 °C (for 30 min). The supernatants were 

collected. Spectrophotometry was used to estimate protein concentration and 

TBS/DTT was used as a blank. 

 

2.6.2 Western Blotting 
 

To detect specific protein in the samples, western blot was used. Proteins were 

transferred from the gel onto a nitrocellulose membrane after being separated by SDS-

PAGE as in section 2.5.11. To allow detection of IL-36 as sensitively as possible and 

to reduce background, I used nonmetal tools to handle the blots. The western blotting 

procedure was used as follows. Gels were soaked without fixing for 30 min in the 

CAPS transfer buffer in clean containers (cleaned by using 1% SDS and boiled in a 

microwave oven for 2 min). The transfer sandwich cassette contained: a mesh, 2 

pieces of Whatman 3 MM blotting paper, the nitrocellulose membrane (Bio-Rad), the 

SDS PAGE gel, 2 pieces Whatman blotting 3 MM paper and a mesh. All the equipment 

were pre-immersed in transfer buffer containing 200 mM CAPS/NaOH/pH11, 10% v/v 

methanol. The transfer cassette sandwich was then placed in a transfer tank and 
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proteins were transferred electrophoretically for 1 h at 100 mA. After transferring 

protein, the nitrocellulose membrane was soaked in a clean container for 1 min in a 4 

% w/v solution of trichloroacetic acid, to fix the transferred proteins, then the 

membrane was moved to a clean container that contained 20 ml of neutralising buffer 

(50 mM Tris/HCl/1 mM EDTA/ 150 mM NaCl/pH7.5). Further, direct binding by proteins 

was blocked by shaking the membranes in a solution of 5% dried skimmed milk 

(Marvel) dissolved in 1 x PBS, which had been filtered through Whatman No 1 filter 

paper to remove particles. The membrane was rocked overnight at 4 °C in the primary 

antibody solution in 5% dried milk solution in PBS. The primary antibody used at 0.9 

g/ml and was an antigen purified goat anti-human IL-36 (AF2320 R&D systems). 

Following incubation with primary antibodies, the membrane was washed in PBS + 

0.02% Tween-20 (PBST) 3 times for 5 minutes each time. The membrane was then 

incubated with the secondary, which is goat IgG HRP-conjugated Antibody (HAF017 

R&D systems), diluted in PBS + 0.02% Tween-20 (PBST) for 1 h (1 g/1 ml) at 4 °C. 

The membrane was again washed in PBST 3 times for 5 min. The membrane was 

drained, and proteins were then visualised by washing the membrane in Enhanced 

Chemiluminescence (Bio-Rad) reagent (Bio-Rad) for 5 min. The membranes arrayed 

on a washed, folded sheet of polythene. Luminescence was quantified in a Bio-Rad 

imager.  

 

2.6.3 A-431 or HaCaT cells protein extraction  
 

To induce expression of IL-36 protein, confluent A-431 or HaCaT cells were 

resuspended from T75 flask (75 cm2) as in section 2.3.1. In stimulation experiments, 

T25 flask (25 cm2) was used, each was populated with 5 ml from the suspension, and 

were incubated at 37 °C for four days. To turn off growth dependent and serum-

stimulated transcription after 4 days, HSM was replaced with LSM. After 18-24 h 

inflammatory stimuli were added in 2.5 ml LSM (in addition to the 2.5 ml of LSM that 

was used as control during comparison with the stimuli. Protein was extracted as in 

section 2.6.1. 
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2.6.4 TLR7, TLR8 and necroptosis activation to induce IL-

36 protein expression   
 

To induce processing of IL-36 protein, confluent A-431 cells were resuspended 

from two T75 flasks (75 cm2) as in section 2.3.1. As usual, cells were grown for four 

days in HSM before being turned off growth with LSM. After 18-24 h, cells were treated 

with PMA and TNF for 6 h followed by TLR7 agonist, TLR8 agonist or Leu-Leu methyl 

ester hydrobromide (Leu-Leu-OMe) for 2 h. Protein was extracted from samples as in 

section 2.6.1. 

2.6.5 Attempted induction of IL-36 protein processing in A-431 cells 
after treatment with cycloheximide, staurosporine or A23187 
(calcium ionophore) drugs.  
 

To induce apoptosis in A-431 cells, A-431 cells were grown in 6-well plate as in 

section 2.3.1. HSM was replaced with LSM for 18 h. Cells were treated with PMA and 

TNF for 6 h then cells were washed with serum free medium and drained before 

treating with cycloheximide, staurosporine, A23187 or  mixture of cycloheximide, 

staurosporine and A23187 in serum free medium for 24 h in total volume 0.2 ml , in 

addition to cycloheximide, staurosporine or A23187 only in serum free medium for 24 

has a negative control.  Plates were covered with parafilm to prevent drying. 

Supernatants and cell lysate were harvested and prepared in sample buffer containing 

2% SDS, 20% glycerol and 2.5 mM DTT. Samples were prepared as in section 2.6.1. 

 

2.6.6 Time course of processing of IL-36 after treatment with 
staurosporine 
 

To assess duration of IL-36 protein processing by staurosporine, A-431 cells 

were grown on 6-well plate as in section 2.3.1. HSM was replaced with LSM for 18 h. 

Cells were treated with PMA and TNF for 6 h then cells were washed with serum free 

medium and drained before treatment with staurosporine (0, 6, 12 and 24 h) in total 

volume of 0.2 ml. Plates were covered with parafilm to prevent drying. Supernatants 

and cell lysate were harvested and prepared in sample buffer containing 2% SDS, 

20% glycerol and 2.5 mM DTT. Samples were prepared as in section 2.6.1. 



65 
 

2.6.7 Expression of IL-36 protein in primary human keratinocytes 
cells by PMA and TNF and attempted induction of endogenous 
processing.  
 

To induce expression and processing of IL-36 protein in primary human 

keratinocytes, primary human keratinocytes cells were grown on 6-well plate. High 

serum Green’s medium was replaced with LSM for 18 h. Cells were treated with PMA 

and TNF for 6 h, then cells were washed with serum free Green’s medium and drained 

before treating with staurosporine or were left untreated for 24 h in a total volume 0.2 

ml. Plates were covered with parafilm to prevent drying. Supernatants and cell lysate 

were harvested and prepared in sample buffer containing 2% SDS, 20% glycerol and 

10 mM DTT. Samples were prepared as in section 2.6.1. 

 

2.6.8 Infection of HaCaT cells with bacteria 
 

To attempt to induce expression of IL-36 protein in response to bacterial 

infection, HaCaT cells were grown on 6-well plate for 3 days. HSM was replaced with 

LSM for 18 h. Cells were infected with Staphylococcus aureus or untreated for 6 h in 

total volume 1 ml. Supernatants and cell lysate were harvested by using scraper and 

prepared in sample buffer containing 2% SDS and 2.5 mM DTT and immediately 

heating to 95-100 °C for 5 min to denature the protein and endogenous proteases. 

Samples were concentrated into 200 l by a 2-ml tangential concentrator (Sartorius) 

with polyethersulfone (PES) membrane and a molecular size cut-off (MWCO) 5 kDa. 

Then extracts were put into a clean ultra-centrifuge tube and ultra-centrifuged at 22 °C 

(for 30 min). The supernatants were collected. Spectrophotometry was used to 

estimate protein concentration and serum free medium/DTT was used as a blank. 20% 

of glycerol was added into each sample before being loaded into the SDS-PAGE. 
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2.7. Isolation of clonal B reporter HT-29 cell line  

2.7.1 Cloning of HT-29 cell lines  
 

HT-29 had been stably transfected with plasmid pGL 4.32 B-luc2p-Hygro 

(Promega). The population ms5 showed strongly inducible luciferase expression. To 

clone HT-29 cells, a confluent monolayer of HT-29 B-luc (ms5) were removed from 

a T75 flask. Cells were counted in a heamocytometer.   

Cells were adjusted at 106/ml by dilution with HSM. Then 10 l, containing 104 

cells, was added to 10 ml of HSM to achieve 103 cells/ml. After that, 100 l of the last 

dilution was added into 30 ml of HSM on a petri dish to yield 3.3 cells/ml and cells 

were continuously mixed. By using a multichannel pipette, 100 l (predicted 0.33 cells) 

were added to each well of plate, and 100 l of HSM was added into each well. Cells 

were incubated at 37 °C.  After 19 days of incubation, colonies were examined with an 

inverting microscope to check which wells contained cells. I obtained 21 colonies. 

Medium was removed from wells that contained colonies, and wells were rinsed with 

200 l of PBS for 2 minutes and drained, then 50 l of trypsin/EDTA was added. The 

cells were incubated at 37 °C for 15 minutes. Then, 100 l of HSM were added to 

resuspend colonies from the wells. Colonies were transferred into a 24-well plate, and 

1 ml of HSM was added to each well. Plate was incubated at 37 °C to allow clonal 

cells to replicate. To check the ability of clonal cells to express luciferase, confluent 

HT-29 clonal cells from 24-well plate were used. In the experiment, 2 plates 24-well 

plates were used. Clonal cells (21 clones) were washed with 1 ml PBS for 2 minutes 

and drained. Then 100 µl of trypsin/EDTA were added and cells incubated at 37 °C for 

10 minutes. After that 800 l of HSM were added and resuspended. Cells suspension 

(300 l) were added into a single well on a 24-well plate with 700 l of HSM. Plates 

were incubated at 37 °C for 3 days. After 3 days, medium was changed with serum in 

0.5 ml of LSM for 18-24 h, then cells were treated with a pro-inflammatory cytokine 

LSM for 6 h. After 6 h, the medium and treatment were removed by inverting and 

stapping to remove any excess medium. 1 x lysis buffer (0.25 ml) was added per well. 

The plate was swirled and frozen at -80 °C. The luciferase output was measured as in 

section 2.5.19.1. 
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2.7.2 Determination of Puromycin sensitivity of HT-29  
 

To determine the effective concentration of puromycin that can kill cells, a killing 

curve was made. HT-29 cells were treated with different concentrations of puromycin 

to determine the lowest concentration of antibiotic that can kill all cells within 7 days. 

HT29-B-luc (D7) were grown to near confluence on a T75 flask and were removed 

and converted into a single cell suspension. 

Approximately, 60 x 105 cells in 200 l were plated in each well of two six-well plates 

(9.5 cm2). Cells were washed and split, as in section 2.3.1. Duplicated wells were used 

for each concentration. Cells were treated with (1, 1.8, 3.5, 6.5 and 10 g/ml) of 

puromycin in the total volume 2.5 ml in each well and were incubated at 37 °C for 7 

days. Medium containing floating cells and debris was removed by washing with PBS. 

The viability of cells was assessed qualitatively by examining the base of the well for 

adherent cells. 

 

2.7.3 IL1RL2 gene disruption sublines in HT29-B-luc cells  
 

To distrust the IL1RL2 gene, a CRISPR plasmid was used. HT-29 clone--luc 

D7 were transiently transfected with derivatives of pSpcas9n (BB)-2A-Puro (also 

known as pX 489) (Ran et al., 2013) that were designed to express RNA guides that 

targeted exon 5 of IL-1RL2. The plasmid also carries a puromycin resistance marker, 

and transient expression of puromycin resistance was used for selection of transfected 

clones. In this experiment, I transfected both knockout vectors (CRISPR1 and 

CRISPR2) and I co-transfected with a plasmid that drives strong expression of eGFP 

as a positive control for transfection. A liposome-based transfection reagent (Mirus 

reagent, Mirus Bio) was used over a range (6, 7.5 and 9.4 g) of concentrations with 

cells in suspension and 2.5 g of DNA per well of two six-well plates. One million cells 

were transfected in each well. The first plate received only eGFP expression plasmid.  

These served as a 24 h transfection control and then a puromycin toxicity control. In 

two separate 1.5 ml tubes, 10 g of pX-eGFP was added to the first tube as control, 

and 5 g of pX-eGFP, 2.5 g of pX489-36R-CRISPR1 and 2.5 g of pX489-36R-

CRISPR2 were added to the second tube. To each tube, 1 x TE to 200 µl and 50 l 3 
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M sodium acetate were added and mixed before being added 500 µl of 100% ethanol. 

Tubes were frozen on solid CO2 twice then thawed before being centrifuged at 17,000 

x g for 5 minutes at 4°C. The supernatant was discarded, and the pellet was washed 

with at least 1 ml of 70% v/v ethanol. Samples were then mixed on a vortex mixer and 

centrifuged 17,000 x g for 5 minutes. Finally, ethanol was removed by brief air drying. 

The DNA samples were dissolved in 20 l water at 37 °C. A Nanodrop 

spectrophotometer was used to determine the final A260 and A280 of the DNA solutions.  

 

The cell line HT29-B-luc (D7) was grown to near confluence. Cells were resuspended 

and counted with a hemocytometer.  A volume that contains 12 million cells was diluted 

with medium to a final volume of 30 ml. An aliquot of 2.5 ml of the cell suspension was 

plated per well in two six-well plates. The first six-well plate contained only the control 

eGFP expression plasmid, the second contained the eGFP and both Cas9/CRISPR 

plasmids. Mirus Reagent was warmed to room temperature before being used.  0.25 

ml of RPMI medium (without foetal bovine serum and antibiotic) was added into twelve 

tubes. Then 2.5 g (2.5 l of a 1 g/l stock) of the plasmid DNA mixtures were added 

to each tube and mixed each gently with a 1 ml plugged tip. Transfection reagent was 

added (6 l, 7.5 l or 9.4 l) in duplicate to each diluted DNA and mixed completely. 

Each six-well plate had a pair of similarly treated wells. Tubes were incubated at room 

temperature for 20 min to allow the DNA –reagent complexes to form. The mixtures 

were added dropwise to cells across the well. After each addition, the plate was gently 

rocked back-and-forth and from side-to-side to distribute the complexes evenly. Cells 

were allowed to adhere to the plate for 24 h in the absence of puromycin. After 24 h, 

to break intercellular contacts that would allow expressed puromycin acetyltransferase 

to rescue non-transfected cells, cells from each well were re-suspended in 1.0 ml 

complete medium, to which 1.5 ml of 3 g/ml puromycin was added (final 1.8 g/ml).  

Cells were observed again at 24 and 48 h. At 72 h, cells were washed twice with PBS 

to remove puromycin and as many non-adherent, dead cells as possible. The adherent 

cells were treated with 0.1 ml trypsin/EDTA. Cells from each well were re-suspended 

in 7.5 ml of full medium (without puromycin) and plated in 3 wells (2.5 ml each) of six-

well plates. After a further 48 hours, the density of the surviving cells was estimated in 

each well. The cells were allowed to divide until each of the groups of three wells that 
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were transfected with pX489 derivatives reached confluence. The adherent cells were 

washed with PBS to remove puromycin and cells were removed with 0.1 ml 

trypsin/EDTA per well and resuspended with a further 1.4 ml medium in a universal 

vial. The three wells from each transfection treatment were pooled and the cell 

suspension was placed on wet ice to inhibit membrane remodelling and thus to prevent 

adhesion. Samples of resuspended cells were counted in a haemocytometer. A 

sample of this suspension was diluted to yield 10-20 ml of suspension at 1000 cells/ml 

(1 cell/l). The cells were resuspended thoroughly and 150 l of the suspension was 

pipetted (~150 cells) in a 50 ml conical tube in 50 ml medium (333-fold, yielding 

expected three cells/ ml). An eight-channel pipette was used to dispense 100 l (0.3 

cells) into each well of three 96 well plates. Extra medium (100 l) was added to each 

well.  96-well plates (three plates) were placed in a clean open box in an incubator for 

19 days. Plates were examined on an inverting microscope to check which wells 

contained colonies. Eight clones were recovered. To pick up colonies into a 24 well 

plate, medium was removed from wells that contained colonies, and wells were rinsed 

with 200 l of PBS for 2 minutes and drained, then 50 l of trypsin/EDTA was added. 

The plate was incubated at 37 °C for 15 minutes and then 100 l of HSM were added 

and cells re-suspended. Cells were transferred into a well of a 24-well plate, and 1 ml 

of HSM was added to each well. The plate was incubated at 37 °C to allow clonal cells 

to be grown up. Once cell lines were confluent, they were tested for IL-36 response 

by using luciferase assay to check whether IL1RL2 gene had lost its function out or 

not. In the experiment, two plates of a 24-well were used. Clonal cells (8 clones) were 

re-plated after trypsin/EDTA into three wells on separate plates in 1 ml (final) HSM. 

Plates were incubated at 37 °C for 3 days. After 3 days, cells were serum starved in 

0.5 ml of LSM for 18-24 h, and then cells were treated with inflammatory stimuli as a 

positive control, in addition to LSM as a negative control for 6 h. Four replicates were 

used for each treatment. Luciferase activity was determined as described in section 

2.5.19.  
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2.7.4 Genomic DNA preparation from IL-1RL2 deficient cells  
 

To identify the distribution in the IL-1RL2 gene, DNA was extracted from 

transfected cells that failed to respond to IL-36. Genomic DNA was extracted from a 

sample of three IL-36 non-responsive lines (A6, E3 and G4), and IL-36 responsive 

parent D7 clone as a positive control. A6, E3, G4 and D7 were grown on a T75 (75 

cm2) bottles until they were confluent. Cells were washed with 10 ml PBS for 2 minutes 

and drained. Cells were trypsinised and were washed in 5 ml cold PBS and collected 

by centrifugation at 2,000 x rpm for 5 min, 4 °C in benchtop centrifuge each time. The 

supernatant was discarded, and cells were digested with 0.3 ml of digestion buffer 

(100 mM NaCl, 6 mM Tris-HCl, 4 mM Tris base, 25 mM Na3ETDA, 5% SDS and 0.1 

mg/ml proteinase K) before being transferred into a microfuge tubes and mixed 

vigorously. The samples were gently shaken in an oven at 55 °C overnight. To extract 

residual protein and to fragment very long DNA, 0.3 ml of phenol/chloroform/isopentyl 

alcohol buffer (0.3 ml) was added to each tube and the tube was vortexed vigorously 

for 30 s. The tubes were centrifuged at 17,000 x g for 2 min and the aqueous phase 

of each tube was collected into a fresh microfuge tube and the volume of aqueous 

phase was estimated. To each tube was added 0.15 ml of 7.5 M ammonium acetate 

per 0.3 ml of aqueous phase and 2 x the combined volume (0.9 ml) of 100 % ethanol. 

Tubes were centrifuged at 17,000 x g for 2 minutes at room temperature. The 

supernatants were discarded, and samples were vortexed and centrifuged at 17,000 

x g for 5 minutes. Finally, traces of ethanol were removed by brief air drying in a 

desiccator. The genomic DNA was dissolved in 50 l of TE (6 mM Tris-HCl, 4 mM Tris 

base, and 1 mM EDTA) with rocking for two hours at 65 °C. A NanoDrop 

spectrophotometer (Thermo Scientific) was used to measure the A260 and A280 in 

triplicate of each sample.  

 

2.7.5 Amplification of exon 5 of IL-1RL2 for sequencing  
 

To optimise RT-PCR, different concentrations of standard HT-29 D7 DNA (500, 

150, 50, 15 and 5ng) and ranges of annealing temperature (52 °C, 56 °C and 58 °C) 

were used. The master mix was made by mixing on ice in 1.5 ml microfuge tube 666 

l water, 200 l 5x GoTaq Green buffer. Next, 20 l 10 mM (50X) dNTPs, 60 l MgCl2 
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and 5 l GoTaq (5 u/ l) were added. The primer pair to amplify exon 5 was 

AGCTATCTGTTGTCTTCCAG (e5IL-36R/forward) GTCTGAGAGCCTACTAGCCT 

(e5IL-36Rr1/reverse). A 2 l (100 M) of each primer was added into mixture. The 

relevant DNA dilutions (1 l) were added to each tube then 24 l of master mix/primer 

mixtures was pipetted to each relevant tube. PCR products were visualized by agarose 

gel electrophoresis in TAE buffer in 0.02% ethidium bromide.  

 

2.7.6 Test of all IL-36 and IL-36 mutant forms on the standard HT29-

B-luc (D7) and IL-36R knocked out cells (A6)  
 

To determine the effective dose for IL-36R, HT-29/B-luc2P (clone D7) and the 

(IL1RL2-/-) subline A6 were grown as described in section 2.7. As usual, the cells were 

grown for three days and then medium was drained and replaced with 0.5 ml of LSM 

for 18 h. The cytokine dilution in 0.6 ml as in Table 2.4 was added for 6 h. Replicates 

were loaded on the plates along diagonals to prevent clustering at the plate edges. 

Five replicates were used for each concentration. The luciferase output was measured 

as in section 2.5.19.1. 
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 Table 2.4 Tested proteins and their dilutions.  

 

 

 

 

 

 

 

 

 

 

 

Agent  start 1st  
dilution 

2nd  
dilution 

3rd  
dilution 

4th 
dilution 

5th 
dilution 

6th 
dilution 

n1-IL-36 300 nM  100 nM 30 nM 10 nM 3 nM   

n4-IL-36 300 nM  100 nM 30 nM 10 nM 3 nM   

n6(Lys)-IL-36 10 nM 3 nM 1 nM 0.3 nM 0.1 nM   

n6-K6S-IL-36 100 nM 30 nM 10 nM 3 nM 1 nM   

n6-K6G-IL-36 
 

100nM 30 nM 10 nM 3 nM 1 nM 0.3 nM   

n5-(Arg)- IL36 10 nM 3nM 1nM 0.3 nM 0.1nM 0.3 nM  0.01 nM  

n18-IL-36 30 nM  60 nM 18 nM 6.0 nM 1.8 nM   

IL-1  3 nM  1 nM 0.3 nM 0.1 nM 0.03nM   

TNF 10 ng/ml  3 ng/ml 1 ng/ml 0.03 
ng/ml 

0.1 ng/ml   

IL-36Ra 100 nM  
 

  

IL-36  

 
100 nM  
IL-36Ra + 
0.3 nM  

IL-36  

 

 

 

 

 

 

Control LSM  
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2.7.7 HT29-B-luc time course stimulation with IL-36 IL-36 and 
TNF 

To determine induction time of NF-B in response to cytokines confluent HT29-

B-luc cells were used and trypsinised as in section 2.3.1. Treatments were performed 

in quadruplicates in 0.6 ml. Cells were treated with inflammatory cytokines for 3, 6, 9, 

12, 18, and 24 h. Luciferase assay was performed as usual by using 5 l of lysate as 

in section 2.5.19.1. 

 

2.7.8 Downregulation of TNF and IL-36 responses and to test for the 
expected specificity 
 

To check if luciferase expression can be re-activated by cytokines after it had 

been down regulated, confluent HT29-B-luc cells were used and trypsinised as in 

section 2.3.1. Treatments were performed in 16 wells for each stimulus in 0.6 ml for 6 

h. Luciferase assay was proceeded as usual by suing 5 l of lysate as in section 

2.5.19.1. 

 

2.7.9 Digestion of n1-IL-36 with chymotrypsin and test the biological 
activity of the digested protein 
 

To confirm that n1-IL-36 precursor can be activated, n1-IL-36 protein that 

prepared in our lab was digested with chymotrypsin at different time points. PMSF in 

a final concentration 1 mM was used to terminate chymotrypsin digestion. To test the 

biological activity, as usual, the cells were grown for three days and then medium was 

drained and replaced with 0.5 ml of LSM for 18 h. Digested protein at different time 

points was added to cells for 6 h. Three replicates were used for each concentration. 

The luciferase output was measured as in section 2.5.19.1. 
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2.7.10 Data analysis  

Statistical significance of ELISA data was determined using one-way ANOVA.            

The luciferase data were normalised to the response to 100 ng/ml TNF in each set of 

experiments and were analysed to fit a non-linear regression curve (four parameters) 

in which the Hill coefficient was fixed at 1.5 and the background luminescence was 

fixed at zero. The 95% confidence limits of the EC50 were used to judge the statistical 

significance of the differences between the different dose-response curves. 

Statistical significance of RT-qPCR data differences between groups was determined 

using Wilcoxon test. All statistical analyses were performed using GraphPad Prism 8. 

Significant differences are illustrated by * =P≤0.05, ** =P≤0.01 *** =P≤0.001, **** 

=P≤0.0001. 
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Chapter 3  

Results  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



76 
 

3.1 Introduction  

Understanding the proteolytic processing of IL-36, IL-36 and IL-36 has been 

the subject of several papers. An in vitro study showed that N-terminal truncation of 

pro-IL-36, pro-IL-36, pro-IL-36 and pro-IL-36Ra proteins at specific sites, which are 

n6, n5, n18 and n2 respectively, elevated their biological activity compared with full-

length IL-36 proteins (Towne et al., 2011). Endogenous proteolytic enzymes that can 

clip IL-36, IL-36, IL-36 proteins to provide fully active proteins have not yet been 

identified, but an in vitro study by Henry et al., 2016 showed that cathepsin G, elastase 

and proteinase-3, which are neutrophil derived enzymes, can cleave IL-36, IL-36 

and IL-36 proteins. These serine proteases can cleave IL-36 proteins but not at the 

same truncation sites that were suggested by Towne et al. Moreover, the biological 

activity of cleaved IL-36, IL-36, IL-36 proteins by these neutrophil derived enzymes 

is less than has been reported by Towne et al. Another in vitro study by Ainscough et 

al., 2017 showed that cathepsin S, which is a cysteine protease, can cleave IL-36 

protein at the same site that was identified by Towne et al., and the cleaved protein is 

fully active. Most of the research that assessed the biological activity of truncated IL-

36 proteins either used cells that were transfected with exogenous IL-36R or that 

contained endogenous IL-36R but were treated for 24 h. For example., Towne et al., 

used Jurkat cells with transfected IL-36R to measure the biological activity of truncated 

IL-36, IL-36, IL-36 and IL-36Ra proteins while Foster et al., 2014 and Zhou et al., 

2018 used cells that have endogenous IL-36R, but they treated their cells for 24 h with 

IL-36 proteins. In this study, HT-29 cells that have endogenous IL-36R and stably 

transfected with a luciferase reporter gene were used. I used these cells to measure 

the dose response to IL-36 species and to determine its time course. I will present 

evidence that confirms that IL1RL2 is the only gene that encodes an IL-36R in HT-29 

cells. I compare the kinetics of n6-IL-36, n5-IL-36 and n18-IL-36. I will investigate 

the relationship between N-terminal structure of IL-36 and its activity. Given that, I 

found that EC50 values of our recombinant proteins were all higher than reported by 

others I have assessed the duration of response of cell line to n6-IL-36 and n5-IL-36 

proteins. Finally, I have tested whether the almost inactive n1-IL-36 can be activated 

by chymotrypsin thus showing its activity is latent rather than missing. 
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3.2 Construction of plasmids for expression IL-36 and IL-36 in E. 

coli 
Active IL-36, IL-36 precursors and variants have been produced over several 

years in our laboratory, but I had not previously attempted to express IL-36 or IL-36  

Moreover, sequences were cloned to create IL-36 and IL-36 proteins that could be 

used in the purification of polyclonal antibodies and as standard proteins for 

electrophoresis. These proteins and the derivatives of IL-36 were used in studying 

their interactions with endogenous IL-36R. Coding regions of IL-36 and IL-36 were 

transformed into E. coli to produce these proteins.    

 

pET-IL-36 and pET-IL-36 plasmids were designed to encode proteins that contain 

cleavage sites for recombinant chymotrypsin and thrombin, which are serine 

proteolytic enzymes, which were used to process chimeric recombinant precursors of 

IL-36 and IL-36 respectively. The coding sequences of the processing sites and the 

final IL-36 and IL-36 encoding sequence in these plasmids are located between 

restriction sites, Acc65I and XhoI. As shown in figure 3.1 and 3.2. The coding 

sequences of both plasmids (between the green “ATG” and the red “TAA”) were read 

at least once in both directions, except for the three bases of pET-IL-36 and one from 

pET-IL-36. 
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Figure 3.1 DNA sequence alignment of raw base calls from an ABI capillary sequencer 

of the pET-IL36 plasmid used in this work (clone 3). The alignment was prepared from 

the output of the MUSCLE server on the EBI bioinformatics website (www.ebi.ac.uk). Line 

pETIL36B contains the designed sequence, including the T7 promoter (yellow) and the entire 

open reading frame (bright green ATG until red TAA). The magenta and dark green 

hexanucleotides correspond to the Acc65I and XhoI sites, respectively. Raw sequence from 

the pETL1 primer and pETL2 primers are shown in lines sL1beta3 and sL2beta3. The implied 

complementary sequence from the pETR1 primer and pETR2 primers are shown in lines 

cR1beta3 and cR2beta3. When lines of sequence are absent, there is no valid sequence from 

that primer. In the bottom line * indicate bases confirmed by all four sequence runs. + indicates 

bases that have been sequenced at least once in both directions. 

pETIL36B   TGCCGGCCACGATGCGTCCGGCGTAGAGGATCGAGATCTCGATCCCGCGAAATTAATACGACTCACTATAGGGAGACCACAACGGTTTCC 
sL1beta3                                                                                              
sL2beta3                                                               ACTNNCTATAGGGAGNCCNCNACGGTTTCC 
cR1beta3   TGCCGGCCACGATGCGTCCGGCGTAGAGGATCGAGATCTCGATCCCGCGAAATTAATACGACTCACTATAGGGAGACCACAACGGTTTCC 
cR2beta3   TGCCGGCCACGATGCGTCCGGCGTAGAGGATCGAGATCTCGATCCCGCGAAATTAATACGACTCACTATAGGGAGACCACAACGGTTTCC 
                                                                       +++  ++++++++++ ++ + +++++++++ 
 
pETIL36B   CTCTAGAAATAATTTTGTTTAACTTTAAGAAGGAGATATACATATGGCTAGCATGACTGGTGGTCACCATCACCATCACCATTCTGGTAC 
sL1beta3                                 NNNAGNNATACNTATGGCTAGCATGACTGGTGGTCACCATCACCATCACCATTCTGGTAC 
sL2beta3   CTCTAGAAATAATTTTGTTTAACTTTAAGAAGGAGATATACATATGGCTAGCATGACTGGTGGTCACCATCACCATCACCATTCTGGTAC 
cR1beta3   CTCTAGAAATAATTTTGTTTAACTTTAAGAAGGAGATATACATATGGCTAGCATGACTGGTGGTCACCATCACCATCACCATTCTGGTAC 
cR2beta3   CTCTAGAAATAATTTTGTTTAACTTTAAGAAGGAGATATACATATGGCTAGCATGACTGGTGGTCACCATCACCATCACCATTCTGGTAC 
           +++++++++++++++++++++++++++++++++**++****+************************************************ 
 
pETIL36B   CGGTGCCGGCTATCGTGAAGCTGCTCCGAAATCGTACGCTATCCGTGACTCTCGTCAGATGGTTTGGGTTCTGTCTGGTAACTCTCTGAT 
sL1beta3   CGGTGCCGGCTATCGTGAAGCTGCTCCGAAATCGTACGCTATCCGTGACTCTCGTCAGATGGTTTGGGTTCTGTCTGGTAACTCTCTGAT 
sL2beta3   CGGTGCCGGCTATCGTGAAGCTGCTCCGAAATCGTACGCTATCCGTGACTCTCGTCAGATGGTTTGGGTTCTGTCTGGTAACTCTCTGAT 
cR1beta3   CGGTGCCGGCTATCGTGAAGCTGCTCCGAAATCGTACGCTATCCGTGACTCTCGTCAGATGGTTTGGGTTCTGTCTGGTAACTCTCTGAT 
cR2beta3   CGGTGCCGGCTATCGTGAAGCTGCTCCGAAATCGTACGCTATCCGTGACTCTCGTCAGATGGTTTGGGTTCTGTCTGGTAACTCTCTGAT 
           ****************************************************************************************** 
 
pETIL36B   CGCTGCTCCGCTGTCTCGTTCTATCAAACCGGTTACGCTGCACCTGATCGCTTGCCGTGACACCGAATTCTCTGACAAAGAAAAAGGTAA 
sL1beta3   CGCTGCTCCGCTGTCTCGTTCTATCAAACCGGTTACGCTGCACCTGATCGCTTGCCGTGACACCGAATTCTCTGACAAAGAAAAAGGTAA 
sL2beta3   CGCTGCTCCGCTGTCTCGTTCTATCAAACCGGTTACGCTGCACCTGATCGCTTGCCGTGACACCGAATTCTCTGACAAAGAAAAAGGTAA 
cR1beta3   CGCTGCTCCGCTGTCTCGTTCTATCAAACCGGTTACGCTGCACCTGATCGCTTGCCGTGACACCGAATTCTCTGACAAAGAAAAAGGTAA 
cR2beta3   CGCTGCTCCGCTGTCTCGTTCTATCAAACCGGTTACGCTGCACCTGATCGCTTGCCGTGACACCGAATTCTCTGACAAAGAAAAAGGTAA 
           ****************************************************************************************** 
 
pETIL36B   CATGGTTTACCTGGGTATCAAAGGTAAAGACCTGTGCCTGTTCTGCGCTGAAATCCAGGGTAAACCGACCCTGCAGCTGAAAGAAAAAAA 
sL1beta3   CATGGTTTACCTGGGTATCAAAGGTAAAGACCTGTGCCTGTTCTGCGCTGAAATCCAGGGTAAACCGACCCTGCAGCTGAAAGAAAAAAA 
sL2beta3   CATGGTTTACCTGGGTATCAAAGGTAAAGACCTGTGCCTGTTCTGCGCTGAAATCCAGGGTAAACCGACCCTGCAGCTGAAAGAAAAAAA 
cR1beta3   CATGGTTTACCTGGGTATCAAAGGTAAAGACCTGTGCCTGTTCTGCGCTGAAATCCAGGGTAAACCGACCCTGCAGCTGAAAGAAAAAAA 
cR2beta3   CATGGTTTACCTGGGTATCAAAGGTAAAGACCTGTGCCTGTTCTGCGCTGAAATCCAGGGTAAACCGACCCTGCAGCTGAAAGAAAAAAA 
           ****************************************************************************************** 
 
pETIL36B   CATCATGGACCTGTACGTTGAAAAAAAAGCTCAGAAACCGTTCCTGTTCTTCCACAACAAAGAAGGTTCTACCTCTGTTTTCCAGTCTGT 
sL1beta3   CATCATGGACCTGTACGTTGAAAAAAAAGCTCAGAAACCGTTCCTGTTCTTCCACAACAAAGAAGGTTCTACCTCTGTTTTCCAGTCTGT 
sL2beta3   CATCATGGACCTGTACGTTGAAAAAAAAGCTCAGAAACCGTTCCTGTTCTTCCACAACAAAGAAGGTTCTACCTCTGTTTTCCAGTCTGT 
cR1beta3   CATCATGGACCTGTACGTTGAAAAAAAAGCTCAGAAACCGTTCCTGTTCTTCCACAACAAAGAAGGTTCTACCTCTGTTTTCCAGTCTGT 
cR2beta3   CATCATGGACCTGTACGTTGAAAAAAAAGCTCAGAAACCGTTCCTGTTCTTCCACAACAAAGAAGGTTCTACCTCTGTTTTCCAGTCTGT 
           ****************************************************************************************** 
 
pETIL36B   TTCATACCCGGGTTGGTTCATCGCTACCTCTACCACTAGTGGTCAGCCGATCTTCCTGACCAAAGAACGTGGTATCACCAACAACACCAA 
sL1beta3   TTCATACCCGGGTTGGTTCATCGCTACCTCTACCACTAGTGGTCAGCCGATCTTCCTGACCAAAGAACGTGGTATCACCAACAACACCAA 
sL2beta3   TTCATACCCGGGTTGGTTCATCGCTACCTCTACCACTAGTGGTCAGCCGATCTTCCTGACCAAAGAACGTGGTATCACCAACAACACCAA 
cR1beta3   TTCATACCCGGGTTGGTTCATCGCTACCTCTACCACTAGTGGTCAGCCGATCTTCCTGACCAAAGAACGTGGTATCACCAACAACACCAA 
cR2beta3   TTCATACCCGGGTTGGTTCATCGCTACCTCTACCACTAGTGGTCAGCCGATCTTCCTGACCAAAGAACGTGGTATCACCAACAACACCAA 
           ****************************************************************************************** 
 
pETIL36B   CTTCTACCTGGACTCTGTTGAATAATGACTCGAGATCCGGCTGCTAACAAAGCCCGAAAGGAAGCTGAGTTGGCTGCTGCCACCGCTGAG 
sL1beta3   CTTCTACCTGGACTCTGTTGAATAATGACTCGAGATCCGGCTGCTAACAAAGCCCGAAAGGAAGCTGAGTTGGCTGCTGCCACCGCTGAN 
sL2beta3   CTTCTACCTGGACTCTGTTGAATAATGACTCGAGATCCGGCTGCTAACAAAGCCCGAAAGGAAGCTGAGTTGGCTGCTGCCACCGCTGAG 
cR1beta3   CTTCTACCTGGACTCTGTTGAATAATGACTCGAGATCCGGCTGCTAACAAAGCCCGAAAGGAAGCTGAGTTGGCTGCTGCCACCGCNNAG 
cR2beta3   CTTCTACCTGGACTCNNTNGAATAANNNNN                                                             
           ***************++*+******+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++  +  
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Figure 3.2 DNA sequence alignment of raw base calls from an ABI capillary 

sequencer of the pET-IL36 plasmid used in this work (clone 1). The alignment 

was prepared from the output of the MUSCLE server on the EBI bioinformatics website 

(www.ebi.ac.uk). Line pETIL36G contains the designed sequence., including the T7 

promoter (yellow) and the entire open reading frame (bright green ATG until red TAA). 

The magenta and dark green hexanucleotides correspond to the Acc65I and XhoI 

sites, respectively. Raw sequence from the pETL1 primer and pETL2 primers are 

shown in lines sL1gamma and sL2gamma. The implied complementary sequence 

from the pETR1 primer and pETR2 primers are shown in lines cR1gamma and 

cR2gamma. In the bottom line * indicate bases confirmed by all four sequence runs. 

+ indicates bases that have been sequenced at least once in both directions. 

 

 
pETIL36G        AAATTAATACGACTCACTATAGGGAGACCACAACGGTTTCCCTCTAGAAATAATTTTGTTTAACTTTAAGAAGGAGATATACATATGGCT 
sL1gamma        -----------------------------------------------------------NNNNNNNNNNNNNNGANNNATACNTATGGCT 
sL2gamma        NNNNNNNNACNACTNNCTATAGGGAGACCACAACGGTTTCCCTCTAGAAATAATTTTGTTTAACTTTAAGAAGGAGATATACATATGGCT 
cR1gamma        AAATTAATACGACTCACTATAGGGAGACCACAACGGTTTCCCTCTAGAAATAATTTTGTTTAACTTTAAGAAGGAGATATACATATGGCT 
cR2gamma        AAATTAATACGACTCACTATAGGGAGACCACAACGGTTTCCCTCTAGAAATAATTTTGTTTAACTTTAAGAAGGAGATATACATATGGCT 
                        ++ +++  +++++++++++++++++++++++++++++++++++++++++++++++++++++++++**+++****+******* 
 
pETIL36G        AGCATGACTGGTGGTCACCATCACCATCACCATTCTGGTACCGGCCTGCCGCGTTCTATGTGCAAACCGATCACCGGTACTATCAACGAC 
sL1gamma        AGCATGACTGGTGGTCACCATCACCATCACCATTCTGGTACCGGCCTGCCGCGTTCTATGTGCAAACCGATCACCGGTACTATCAACGAC 
sL2gamma        AGCATGACTGGTGGTCACCATCACCATCACCATTCTGGTACCGGCCTGCCGCGTTCTATGTGCAAACCGATCACCGGTACTATCAACGAC 
cR1gamma        AGCATGACTGGTGGTCACCATCACCATCACCATTCTGGTACCGGCCTGCCGCGTTCTATGTGCAAACCGATCACCGGTACTATCAACGAC 
cR2gamma        AGCATGACTGGTGGTCACCATCACCATCACCATTCTGGTACCGGCCTGCCGCGTTCTATGTGCAAACCGATCACCGGTACTATCAACGAC 
                ****************************************************************************************** 
 
pETIL36G        CTCAACCAGCAGGTGTGGACGCTGCAGGGTCAGAACCTGGTTGCTGTTCCGCGTTCTGACTCTGTTACCCCGGTTACGGTTGCTGTTATC 
sL1gamma        CTCAACCAGCAGGTGTGGACGCTGCAGGGTCAGAACCTGGTTGCTGTTCCGCGTTCTGACTCTGTTACCCCGGTTACGGTTGCTGTTATC 
sL2gamma        CTCAACCAGCAGGTGTGGACGCTGCAGGGTCAGAACCTGGTTGCTGTTCCGCGTTCTGACTCTGTTACCCCGGTTACGGTTGCTGTTATC 
cR1gamma        CTCAACCAGCAGGTGTGGACGCTGCAGGGTCAGAACCTGGTTGCTGTTCCGCGTTCTGACTCTGTTACCCCGGTTACGGTTGCTGTTATC 
cR2gamma        CTCAACCAGCAGGTGTGGACGCTGCAGGGTCAGAACCTGGTTGCTGTTCCGCGTTCTGACTCTGTTACCCCGGTTACGGTTGCTGTTATC 
                ****************************************************************************************** 
 
pETIL36G        ACCTGCAAATACCCGGAAGCTCTGGAACAGGGTCGTGGCGACCCGATCTACCTGGGTATCCAGAACCCGGAAATGTGCCTGTACTGCGAA 
sL1gamma        ACCTGCAAATACCCGGAAGCTCTGGAACAGGGTCGTGGCGACCCGATCTACCTGGGTATCCAGAACCCGGAAATGTGCCTGTACTGCGAA 
sL2gamma        ACCTGCAAATACCCGGAAGCTCTGGAACAGGGTCGTGGCGACCCGATCTACCTGGGTATCCAGAACCCGGAAATGTGCCTGTACTGCGAA 
cR1gamma        ACCTGCAAATACCCGGAAGCTCTGGAACAGGGTCGTGGCGACCCGATCTACCTGGGTATCCAGAACCCGGAAATGTGCCTGTACTGCGAA 
cR2gamma        ACCTGCAAATACCCGGAAGCTCTGGAACAGGGTCGTGGCGACCCGATCTACCTGGGTATCCAGAACCCGGAAATGTGCCTGTACTGCGAA 
                ****************************************************************************************** 
 
pETIL36G        AAAGTTGGTGAACAGCCGACCCTGCAGCTGAAAGAACAGAAAATCATGGACCTGTACGGTCAGCCGGAACCAGTTAAACCGTTCCTGTTC 
sL1gamma        AAAGTTGGTGAACAGCCGACCCTGCAGCTGAAAGAACAGAAAATCATGGACCTGTACGGTCAGCCGGAACCAGTTAAACCGTTCCTGTTC 
sL2gamma        AAAGTTGGTGAACAGCCGACCCTGCAGCTGAAAGAACAGAAAATCATGGACCTGTACGGTCAGCCGGAACCAGTTAAACCGTTCCTGTTC 
cR1gamma        AAAGTTGGTGAACAGCCGACCCTGCAGCTGAAAGAACAGAAAATCATGGACCTGTACGGTCAGCCGGAACCAGTTAAACCGTTCCTGTTC 
cR2gamma        AAAGTTGGTGAACAGCCGACCCTGCAGCTGAAAGAACAGAAAATCATGGACCTGTACGGTCAGCCGGAACCAGTTAAACCGTTCCTGTTC 
                ****************************************************************************************** 
 
pETIL36G        TACCGTGCTAAAACCGGCCGTACCTCTACCCTGGAATCTGTTGCTTTCCCGGACTGGTTCATCGCTTCATCTAAACGTGACCAGCCGATC 
sL1gamma        TACCGTGCTAAAACCGGCCGTACCTCTACCCTGGAATCTGTTGCTTTCCCGGACTGGTTCATCGCTTCATCTAAACGTGACCAGCCGATC 
sL2gamma        TACCGTGCTAAAACCGGCCGTACCTCTACCCTGGAATCTGTTGCTTTCCCGGACTGGTTCATCGCTTCATCTAAACGTGACCAGCCGATC 
cR1gamma        TACCGTGCTAAAACCGGCCGTACCTCTACCCTGGAATCTGTTGCTTTCCCGGACTGGTTCATCGCTTCATCTAAACGTGACCAGCCGATC 
cR2gamma        TACCGTGCTAAAACCGGCCGTACCTCTACCCTGGAATCTGTTGCTTTCCCGGACTGGTTCATCGCTTCATCTAAACGTGACCAGCCGATC 
                ****************************************************************************************** 
 
pETIL36G        ATCCTGACCTCTGAACTGGGTAAATCATACAACACCGCTTTCGAGCTCAACATCAACGACTAATGACTCGAGATCCGGCTGCTAACAAAG 
sL1gamma        ATCCTGACCTCTGAACTGGGTAAATCATACAACACCGCTTTCGAGCTCAACATCAACGACTAATGACTCGAGATCCGGCTGCTAACAAAG 
sL2gamma        ATCCTGACCTCTGAACTGGGTAAATCATACAACACCGCTTTCGAGCTCAACATCAACGACTAATGACTCGAGATCCGGCTGCTAACAAAG 
cR1gamma        ATCCTGACCTCTGAACTGGGTAAATCATACAACACCGCTTTCGAGCTCAACATCAACGACTAATGACTCGAGATCCGGCTGCTAACAAAG 
cR2gamma        ATCCTGACCTCTGAACTGGGTAAATCATACAACACCGCTTTCGAGCTCAACNTCAACGACTAANANNNNNNNNNNNNNN----------- 
                ***************************************************+***********+++++++++++++++++++++++++++ 
 
pETIL36G        CCCGAAAGGAAGCTGAGTTGGCTGCTGCCA 
sL1gamma        CCCGAAAGGAAGCTGAGTTGGCTGCTGCCA 
sL2gamma        CCCGAAAGGAAGCTGAGTTGGCTGCTGCCA 
cR1gamma        CCCGAAAGGAAGCTGAGTTGGCTGCTGCCA 
cR2gamma        ------------------------------ 
                ++++++++++++++++++++++++++++++ 

http://www.ebi.ac.uk/
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The complete sequence of pET-IL1RN plasmid is shown in figure (A.1) in the 

appendix. 

pET-IL1RN was designed by Dr. Martin Nicklin to express a His6-tagged IL-1 family 

member IL-1Ra. It was chosen as basis for these constructions because it had suitable 

restrictions sites for Acc65I and XhoI restriction enzymes as in figure (A.1) in the 

appendix. The Acc65I is located on the His6-encoding sequence and XhoI is located 

after the stop codon before T7 transcriptional termination. The plasmid carries the 

ampicillin resistance marker (AMPR). 

 

 

Synthetic recombinant human IL-36 and IL-36 protein sequences were designed to 

be located between Acc65I and XhoI to replace the analogous fragments of pET-

IL1RN and were synthesised by Eurofins. The DNA fragments were provided in pEX2. 

The sequences were optimised by Dr Martin Nicklin for expression in E coli, except 

where the placing of convenient restriction sites demanded changes.  

 

pEXA2-IL36, pEXA2-IL36 as well as the pET-IL1RN vector were digested with 

Acc65I and XhoI as described in section 2.5.2. Bands of vector (pET-IL1RN), pEXA2-

IL36, pEXA2-IL36, which are 4650, 483 and 483 bp respectively, were isolated by 

gel electrophoresis and as described in 2.5.3.  

 

Fragments were ligated and the ligation mixtures were transformed into E. coli 

DH5 as described in 2.5.4. Ampicillin resistant colonies were screened for the 

presence of inserts, and positive clones were sequenced with the primers shown in 

Table 3.1. 

 

Table 3.1 Primer sequence of pETIL1RN vector  

Primer  sequence  

pETL1 CCACAACGGTTTCCCTCTAG 

pETL2 CGGCGTAGAGGATCGAGAT 

pETR1 ACCCCTCAAGACCCGTTTAG 

pETR2 CAACTCAGCTTCCTTTCGGG 
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Both the open reading frames of IL-36 and IL-36 were constructed to be under 

control of T7 promoter. Competent E. coli BL21 (DE3) were used because BL21 (DE3) 

carry T7 polymerase transgene under control of a lac promoter. The autoinduction 

method was used as described by (Studier, 2005) to produce proteins on a ten 

milligram scale.  

 

The protein product as a result of pET-IL36 expression is a His6-tagged mature 

soluble n5-IL-36  protein that can be released from its His6-tag by digestion with 

chymotrypsin, as will be described in this chapter. The protein product as a result of 

pET-IL-36 expression is a His6-tagged mature n18 -IL-36 protein. n18-IL-36 protein 

product proved to be insoluble and was re-solubilised by guanidine hydrochloride and 

urea denaturation followed by renaturation. The activated protein was then produced 

by removing the His6-tag through digestion with thrombin.  

 

pET IL-36 or pET IL-36 transformed BL21 (DE3) were grown on MDG medium 

supplemented with ampicillin as described in section 2.5.6. MDG strongly represses 

the lac promoter. MDG/Amp was inoculated with colonies grown to low density and 

stocked with 8% glycerol at -80 °C. Autoinduction medium (ZYM-5052/amp) section 

2.5.9 was inoculated with these cultures. Recombinant His6-tagged-n5IL-36 and His6-

tagged-n18IL-36 precursor proteins were expressed in E.coli BL21 (DE3) (Studier, 

2005) as described in section 2.5.9. High levels of precursor proteins were expressed 

by auto-induction according to the protocol of Studier (2005). Cultures were grown at 

25 °C for 30 h at 320 rpm. The growth rate of pET-IL-36 and pET-IL-36 cultures 

were followed with time at 25 °C by measuring culture density at A600 every ~2 has 

shown in figure 3.3. To check the expression of proteins, cell lysates were tested as 

described in section 2.5.10. Analysis was based on the SDS-PAGE electrophoresis 

as in figure 3.4. 
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Figure 3.3 Growth curves of n5-IL-36 and n18-IL-36 bacterial culture. The Log 

(mean A600) was calculated from the mean A600 values of the in triplicate 

measurements. Consistent with the findings of Studier (2005), extremely high 

densities were observed (A600>30). Time is calculated from the time of inoculation of 

the culture.  
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Figure 3.4 Coomassie Brilliant Blue stained SDS-PAGE analysis expression of 

recombinant human His6-tagged n5-IL-36 and n18-IL-36 proteins in large scale 

cultures BL21 (DE3). Total cell lysate of BL21 (DE3) carrying plasmids (Lane 1) pET- 

IL-36 or (Lane 2) pET- IL-36. M shows the molecular weight standards.   
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3.3 Purification of the IL-36 protein   
 

After expression and solubility were tested, the culture of bacteria was 

harvested and stored at -80 °C. To prepare IL-36, the frozen bacterial suspension 

(10 ml) was thawed and lysed to extract the soluble protein section 2.5.12.  

A nickel-chelate Sepharose Fast Flow column was used to purify soluble His6-tagged 

IL-36 recombinant protein by affinity chromatography for N-terminal His6-tags. 

Cleared lysate was loaded onto a 2.5 cm x 2 cm column and washed with B20 

imidazole 1 mM DTT to elute unbound and weakly associated protein, whereas a B-

35G buffer was used in intermediate washing step to elute low affinity protein. His6-

tagged IL-36 protein was finally eluted in the B200G buffer figure 3.5. Protein content 

was quantified in these fractions by spectrophotometry at 280 nM, with a NanoDrop 

spectrophotometer (Thermo Scientific). A yield of 58 mg of His6-tagged IL-36 

precursor was obtained, based on the predicted A280 for a protein of this molecular 

mass and content of tyrosine and tryptophan. 
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Figure 3.5 The elution profiles of His6-tagged recombinant n5-IL-36 from nickel 

chelate Sepharose. (a) Protein concentration (mg/ml) per fraction on the Y-axis is 

presented against the eluted fractions on the X-axis. (*) labelled samples represent 

the pooled eluted fractions. B-200G buffer was used to elute the His6-tagged n5-IL-

36 and 1 ml fractions were collected. The protein concentration was calculated from 

NanoDrop spectrophotometer measurements of A280. (b) SDS-PAGE analysis of 

recombinant His6-tagged-n5-IL-36 Lanes 1-10 be composed from B-200G buffer 

elution fractions (E6-E15). 
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3.3 Affinity chromatography, purification and refolding IL-

36 protein 

                I first tried to purify recombinant IL-36 protein from cleared bacterial lysate. 

I used the same series of imidazole containing buffers that were used to purify IL-36. 

A280 readings showed that B200G buffer eluted fractions contained very little protein. 

Eluted fractions were prepared for SDS-PAGE electrophoresis. SDS-PAGE 

electrophoresis assessment showed that IL-36  was not consistently or abundantly 

present in these fractions as shown in figure 3.6, presumably, because the protein was 

not in the soluble fraction of the cell lysate.  Recombinant proteins sometimes are 

expressed in insoluble inclusion bodies in E coli, so urea and guanidine hydrochloride, 

which are solubilisation agents, are used to denature and solubilise proteins (Tsumoto 

et al., 2003). 

I, therefore, resolubilised the insoluble cell fraction with guanidine hydrochloride and 

reformed chromatography of the denatured protein in urea. I chose the most robust 

nickel-chelate resin that I had available, as I needed to be sure it would withstand high 

ionic strength and strongly chaotropic conditions. 

 

A (16 mm) Pharmacia column tube was packed to 5 ml with Amocol His-Buster resin, 

which is a nitrilotriacetic acid (NTA)-coupled microgranular cellulose. The NTA groups 

were charged with Ni2+.  

 

To denature and resolubilise protein, the supernatant was removed, insoluble pellet 

was resuspended in 10 ml BGdn20 (containing 3 M guanidine hydrochloride (Sigma)/ 

42 mM Tris-HCl/ 8 mM Tris base/ 20 mM imidazole/HCl pH7.5/) as well as 1 mM DTT 

to dissolve protein. After mixing, the mixture was ultra-centrifuged at 560,000 x g for 

20 min at 2 °C. The supernatant, which contained the solubilised target protein was 

collected and maintained on wet ice. The cleared solution was loaded onto the Ni-

chelate column. To remove material that is not His6-tagged, the column was first 

washed with 100 ml of A8U20 (8 M urea/20 mM imidazole) buffered with 0.5 M 

ammonium acetate to replace the ionic denaturant guanidine with non-ionic denaturant 

urea. The column was then washed state with 20 ml of A6U20, A4U20, A2U20 and 

A0U20 buffers containing (6 M, 4 M, 2 M and no urea/ 20 mM imidazole) respectively 
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to allow the protein to refold. After each wash, effluents were collected, and the flow 

was stopped for 30 min to allow slow refolding, except after the last wash when the 

flow was stopped for 1 h.  His6-tagged IL-36 was then eluted with A0U200 buffer 

which contained (no urea/ 200 mM imidazole) (50 ml). Non-refolded protein was then 

eluted with a buffer containing 8 M urea and 200 mM imidazole (A8U200) buffer. A280 

was measured by NanoDrop spectrophotometer. A yield of 27.6 mg of His6-tagged-IL-

36 was obtained figure 3.7, as was determined, based on the predicted A280 for a 

protein of this molecular mass and content of tyrosine and tryptophan. 
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Figure 3.6 An elution pattern of His6-tagged recombinant insoluble n18-IL-

36 from nickel chelate Sepharose. (a) Protein concentration (mg/ml) per fraction on 

the Y-axis is presented against the eluted fractions on the X-axis. (*) labelled samples 

represent the pooled eluted fractions. Imidazole buffer (B-200G) was used in an 

attempt to elute the His6-tagged n18-IL-36. Fractions (1 ml) were collected. The protein 

concentration was calculated from Nanodrop spectrophotometer measurements of 

A280. (b) SDS-PAGE Analysis of eluted fractions. Lanes 1-9 be composed from B-

200G buffer elution fractions (E6-E14). 
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Figure 3.7 An elution pattern of His6-tagged recombinant n18-IL-36. (a) Protein 

concentration (mg/ml) per fraction on the Y-axis is presented against the eluted 

fractions on the X-axis. (*) labelled samples represent the pooled fractions. No urea/ 

200 mM imidazole buffer (A0U200) was used to elute the His6-tagged n18-IL-36 and 

1 ml fractions for the first 15 ml (E1-E15), then 5 ml for the remainder were collected 

(E16-E22). To elute failed non-refolded protein, 8 M urea/ 200 mM imidazole buffer 

(A8U200) was used and 5 ml fractions were collected (E23-E31). (b) SDS-PAGE 

analysis of recombinant re-folded 6xHis-tagged recombinant n18-IL-36. Lanes (1-8) 

be composed from A0U200 buffer elution fractions (E9 – E16). I2: BGdn20 buffer 

elution fraction (of the starting material).  
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3.4 In vitro processing of precursor proteins 
 

The sequence of recombinant IL-36 and IL-36 proteins was designed to 

contain a His6-tagged N-terminal that could be removed by chymotrypsin and thrombin 

respectively. High concentration fractions of His-tagged proteins were identified and 

pooled as in figures 3.5 and 3.7 and dialysed against digestion buffer.  

For IL-36 precursor, the pooled fractions contained ~ 38 mg protein in 7.5 ml after 

being dialysed. Similarly, IL-36 precursor, the pooled fraction contained ~ 19.2 mg 

protein in 4 ml after being concentrated and dialysed in a tangential concentrator.  

3.4.1 Processing of His6-tagged n5-IL-36 by chymotrypsin 
 

The experiment was carried out to optimise the effective chymotrypsin 

concentration required for IL-36 digestion. IL-36 (50 g in 10 l) of was digested 

with different masses of chymotrypsin 200, 100, 50, 25 12.5 ng and 0 for 1 hr at 30 

C. For protein processing analysis, 5 l of the inhibitor (PMSF) was added into the 

protein samples before they were immersed in a boiling water bath for 5 min and 1/15th 

of processed denatured samples were run on the SDS page gel. Undigested protein 

was also run as a negative control.   

 

 

SDS-PAGE electrophoresis revealed that digestion of n5-IL-36 with 1/500 of 

chymotrypsin mass ratio was the most effective ratio leading figure 3.8, panel (a) Lane 

2). n5-IL-36 protein pool was digested with 1/500 of chymotrypsin mass ratio at 30 C 

for 1 h. The enzyme was inhibited with 1 mM PMSF. Samples were taken before and 

after digestion for SDS-PAGE (see figure 3.8 b).  
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Figure 3.8 The SDS-PAGE analysis of small scale and large-scale digestion of 

His6-tagged n5-IL-36 by chymotrypsin to remove His6-tag at 30 °C for 1 h. (a) 

Optimization of chymotrypsin mass ratio for His6-tagged IL-36 digestion for 1 hr. 

Processing of IL-36 (50 g in 10 l) by a logarithmic range of chymotrypsin doses. 

Protein was incubated at 30 °C for 1 hr with following chymotrypsin. Lane 1: 200 ng, 

Lane 2: 100 ng, Lane 3: 50 ng, Lane 4: 25 ng, Lane 5: 12.5 ng and Lane 6: buffer D 

only. (b) Digestion of 5 mg/ml of His6-tagged IL-36 with 10 g/ml chymotrypsin. Lane 

1: undigested sample of His6-tagged IL-36, Lane 2: Sample of the chymotrypsin 

digested IL-36 M shows the molecular weight standards.  
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3.4.2 Processing of His6-tagged n18-IL-36 protein by thrombin  
 

             To optimise the concentration of thrombin to achieve complete digestion of IL-

36 protein, a small volume of His6-tagged n18-IL-36 protein fraction (5 g in 10 l) 

was tested with various concentrations ranges between 0.625 and 1 unit per 50 g 

substance of the thrombin for 24 h.   

SDS PAGE was used to analyse a small sample of the product (figure 3.9, a). For 

protein processing analysis, 1 mM PMSF was added into the protein samples before 

they were immersed in boiling water bath for 5 min and 1/15th of processed denatured 

samples were run on the SDS page gel. Undigested protein was also run as a negative 

control.   

 

SDS-PAGE electrophoresis revealed that all concentrations tested were effective in 

converting almost all of precursor to n18-IL-36. The identity of the product was 

confirmed by mass spectrometry. Because 0.0625 U thrombin/50g precursor led to 

>90% processed protein, so the n18-IL-36 protein pool was digested with 0.0625 U 

thrombin ratio at 30 C for 24 h, and the enzyme was inhibited with 1 mM PMSF. 

Samples were taken before and after digestion for SDS-PAGE (figure 3.9, b). 
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(a)  

 

 

 

 

 

 

 

 

(b)  

 

 

 

 

 

 

Figure 3.9 Digestion of His6-tagged-IL-36 digestion with thrombin. (a) 

Optimization of thrombin concentration for His6-tagged-IL-36 digestion for 24 hr at 30 

°C. Processing of His6- tagged-IL-36 (50 g in 10 l) by a logarithmic range of 

thrombin doses. The protein was incubated for 30 °C for 24 hr with 1 U thrombin (Lane 

1), 0.5 U (Lane 2), 0.25 U (Lane 3), 0.125 U (Lane 4), 0.0625 U (Lane 5), with buffer 

only (Lane 6). [1 U ~ 0.35 g thrombin]. (b) Digestion of 4.8 mg/ml His6-tagged IL-

36 with 2 g/ml thrombin for 24 h at 30 °C. Lane 1: Standard marker, Lane 2: Digested 

His6-tagged-IL-36 and Lane 3: Undigested His6-tagged-IL-36  

 

 

 

Dimer 

 His6-n18-IL-36 

 n18-IL-36 
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3.5 Removal of the residual His6-tagged proteins by Ni-chelate 

affinity chromatography 
 

To remove both the free tagged peptide and any residue of undigested protein 

from protein pools, a small Ni-NTA agarose resin column was used. IL-36 or IL-36 

proteins pools were loaded three times through a 2 ml Qiagen Ni-chelate agarose 

column, which has much lower ion-exchange capacity compared to the Ni-NTA 

cellulose resin matrix, and the column was washed with buffer D to elute unbound 

protein which was not tagged (see figure 3.10, a). SDS-PAGE electrophoresis showed 

that the band corresponding to the His6-tagged protein from the elution fractions had 

been removed compared to the wash fractions (see figure 3.10, b).  
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(a)  

 

 

 

 

 

 

 

 

                  (b)  

 

 

 

 

 

Figure 3. 10 Removal of the remaining His-tagged proteins and any residue of 

undigested protein from digested of His6-tagged n5-IL-36 and n18-IL-36 pools. 

(A) To remove of His-tagged material from chymotrypsin digested n5-IL-36 protein  

n5-IL-36 protein pool was reloaded three times through nickel chelate agarose. SDS-

PAGE of the effluent is shown in Lanes 1-3 for the removal of the remaining His-tagged 

proteins. SDS-PAGE of the pooled protein was loaded in lane 4. Eluted His-tagged 

molecule (E.M) is residual eluted material that binds to the matrix and are eluted by 

buffer D and 200 mM imidazole was performed in Lane 5. (B) Removal of His-tagged 

material from thrombin digested n18-IL-36 protein n18-IL-36 protein pool was 

reloaded three times through the column (Lanes 1-3) for the removal of the remaining 

His6-tagged proteins. Pooled fractions are shown in lane 4. Eluted His-tagged 

molecule (E.M) is residual eluted material that binds to the matrix and are eluted by 

buffer D and 200 mM imidazole was performed in Lane 5. Lane 6 shows the 

components of digested His6-tagged-n18-IL-36 protein pool with thrombin.  

 

    1           2           3             4           5            6 

Dimer 

Dimer 



96 
 

3.6 Subsequent purification of processed IL-36 and IL-36  proteins 

purification by FPLC  

3.6.1 Testing further purification of n5-IL-36 and n18-IL-36 
 

 n5-IL-36 and n18-IL-36 were required to be highly purified and endotoxin free 

for cell biology experiments.  

Processed proteins were purified entirely by repeat loading of 1 ml Resource S or Q 

columns which were fitted to an FPLC system for IL-36 and IL-36 respectively. n5-

IL-36 was purified in pH 6.2 MES/NaOH buffer with NaCl on Mono-S. n18-IL-36 was 

purified in a pH 8.8 Tris/HCl buffer with 0-0.5 NaCl buffer on Resource Q. reloaded (2 

mg per loading) into the system and eluted with a gradient of 0-0.5 M NaCl buffer. The 

flow rate was maintained at 1 ml/min and fraction size at 0.6 ml. NanoDrop 

spectrophotometer measurements (A280) showed that the total protein yield in the peak 

fractions appeared to be <25% than the amount of protein that was initially loaded as 

in figure 3.11 and 3.12. 
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(a)  

 

 

 

 

 

(b) 

 

 

  

 

 

 

Figure 3.11 Two elution curves of 2 mg of n5-IL-36 from a 1 ml mono S column. 

On Y-axis, the blue curve shows the A280 (mAU). The green curve shows the mixing 

ratio of the content of pump B with pump A and the brown curves show the conductivity 

recording. Pump A contained 20 mM MES, pH 6.2/ 1 mM DTT/ 10 % glycerol. Pump 

B contained 10 mM NaOH, pH 6.2/ 0.5 M NaCl/ 1 mM DTT/ 10 % glycerol. 

Chromatograph was performed at ~ 22 C. The X-axis indicates the elution volume 

(ml) while the red signals show the tube numbering in which the purified protein is 

collected. The dead volume from the UV monitor to the fraction collector was 

measured in 0.6 ml, therefore the indicator for a fraction change (such as “A8” on the 

graph) falls at the end of the 0.6 ml of material. The black box B thus represent 

fractions A8, A9, and A10. Dimers are shown (red arrow). Mass spectrometry was 

used to determine molecular weight (See appendix figure A.2). 
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          (a) 

 

 

 

 

 

        (b) 

 

 

 

 

 

 

Figure 3.12 Two elution curves of 2 mg of n18-IL-36 using Resource Q column. 

On Y-axis, the blue curves show the A280 (mAU) and the brown curves show the 

conductivity levels. The green curve indicates the mixing ratio of the content of pump 

B with pump A. Pump A contained 50 mM Tris HCl, pH 8.8/ 1 mM DTT/ 10 % glycerol. 

Pump B contained 50 mM Tris HCl, pH 8.8/ 0.5 M NaCl/ 1 mM DTT/ 10 % glycerol. 

Chromatography was performed at ~ 22 C. The x-axis indicates the elution volume 

(ml) while the red signals show the tube numbering in which the purified protein is 

collected. The black border shows absorbance of displayed fractions corresponding 

to the elution of IL-36 protein taking into account the 0.6 ml delay from the UV monitor 

to the fraction collector. Mass spectrometry was used to determine molecular weight 

(See appendix figure A.3) 
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3.7 HT-29 cells cloning to test mutant IL-36 proteins  
 

To test the biological activity of the n5-IL-36 and n18-IL-36 that I prepared, in 

addition to IL-36 forms that are prepared in our lab, HT-29 cells were used. These 

cells are carrying a stable pGL4.32 luc2p-NFB-Hygro plasmid. I cloned these cells 

before being used. Twenty-one clones of cells were obtained as described in section 

2.7.1. All obtained clones were tested for luciferase output after being treated with 5 

nM IL-36 or being left unstimulated for 6 hr. The D7 clone showed high expression 

and ~ 500-fold increase in luciferase gene expression compared to unstimulated cells 

as shown in figure 3.20.  
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3.8 IL1RL2 gene disruption in the HT-29 cells  
 

              To confirm that IL-36 proteins are not contaminated with other NF-B 

activators, a negative control was required. Because HT-29 cells express endogenous 

IL-36R and they respond strongly to both IL-1 and IL-36, I disrupted the IL1RL2 

gene, the only known IL-36R gene in the luciferase-reporter line D7 (section 3.7) by 

transient transfection of the cell line with two CRISPR guide plasmids. The CRISPR 

plasmids carried a puromycin resistant gene that was used for transient selection of 

plasmid transfected cells. Cells were co-transfected to allow us to confirm that DNA 

had been taken up. figure 3.13. I targeted used to attack exon 5 of IL1RL2 (IL-36R) as 

described in section 2.7.3. Cells were selected and cloned as described in section 

2.7.3. Eight Clonal lines were tested for luciferase expression in response to 5 nM IL-

36 or 5 nM IL-1 compared with no cytokine for 6 h. Three selected clones that gave 

a strong response to IL-1 but not IL-36 were retested again with 5 nM n6-IL-36, 5 

nM n5-IL-36 and 10 ng /ml or 5 nM IL-1 compared with no cytokine for 6 h genomic 

DNA was extracted from three IL-36 non-responsive lines and exon5 of IL1RL2 was 

sequenced and exon 5 of IL1RL2 was sequenced. One of these clones that showed 

no response to the added IL-36 or IL-36 but did respond to TNF compared with D7 

clone figure 3.14 was arbitrarily selected to be a negative control.  
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Figure 3.13 Confocal microscopical analysis after 24 hr of CRISPR1 and 

CRISPR2 transfected HT-29 cells. HT-29 cells were transfected with CRISPR 

plasmids that carry puromycin resistance marker and co-transfected with PMX-GFP 

plasmid which leads to green fluorescence as a positive control for transfection. 

Transfection was with Mirus reagent (6 g) for 24 hr. Transfected clones were 

transiently selected for 48 h on a puromycin-containing medium.  
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Figure 3.14 Response of cloned A6 HT-29 subline (IL1RL2-disrupted) and parent 

D7 to TNF and IL-36 for 6 hr. A6 and D7 were treated with 5 nM n6-IL-36, 2 nM n5-

IL-36 or 50 pM TNF (positive control) as well no treatment (negative control) for 6 h. 

(*) labelled represents the relative luminescence is standardised to the output from 

TNF stimulated D7. A luciferase assay was used to measure luciferase output in 

response to stimuli. Data (n= 5) are the mean and 95% confidence limit of the mean 

of each normalised dataset from one representative experiment of at least 2 

independent experiments with similar outcomes. 
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3.9 DNA extraction from IL-36R (IL1RL2)-disrupted clone and 

amplification of exon 5  
                   To identify the genetic defect of the IL-36R in the clones transfected with 

CRISPR plasmids, DNA was extracted from IL-36R disrupted out clones (A6, E3 and 

G4), in addition to standard HT-29-B-luc D7, as a positive control as described in the 

section 2.7.4. The targeted sequence was amplified from extracted DNA samples by 

PCR. To optimise the PCR products, different concentrations of standard HT-29 cell 

(D7) DNA sample 500, 150, 50, 15 and 5 ng were tested as well as different annealing 

temperature 52 °C, 56 °C, and 58 °C (Figure 3.15). After determining the optimum 

concentration and annealing temperature, exon 5 of IL1RL2 of the IL-36 unresponsive 

clones were amplified using e5IL-36R primer pairs. The optimum condition of 150 ng 

of genomic DNA per reaction was used. Pre-measure annealed at 58 °C, as shown in 

figures 3.16. PCR products were sequenced with the same PCR primers. Sequences 

showed a deletion 36 nucleotides and 1 nucleotide in one detectable allele of the exon 

5 of IL-36R (IL-1RL2) in G4 and E3 clone respectively. Cell line A6 showed two 

mutations, a 36 and 12 nucleotide deletion in two alleles as shown in figure 3.17. 
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Figure 3.15 Optimisation of DNA concentration and annealing temperature of 

genomic PCR by using D7 clone DNA sample. HT-29 genomic DNA was extracted. 

Genomic PCR was performed with appropriate primers and visualised on 0.7% 

agarose gel.  Line 1: (500 ng, 52 °C), lane 2: (150 ng ,52 °C), lane 3: (50 ng, 52 °C), 

lane 4: (15 ng, 52 °C), lane 5: (5 ng, 52 °C), lane 6: (1 kb ladder), lane 7: (500 ng ,56 

°C), lane 8: (150 ng ,56 °C), lane 9: (50 ng, 56 °C), lane 10: (15 ng, 56 °C), lane 11: 

(5 ng, 56 °C), lane 12: (500 ng,58 °C), lane 13: (150 ng, 58 °C), lane 14: (50 ng, 58 

°C), lane 15: (15 ng, 58 °C), lane 16: (5 ng, 58 °C). 
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Figure 3.16 Gel electrophoresis of the genomic PCR product from exon 5 of IL-

36 unresponsive cell lines and knocked out clones A6, G4 and E3 and the parent 

line D7. Lane 1:  A6 Clone (150 ng, 58 °C). Lane 2: G4 Clone (150 ng, 58 °C). Lane 

3: E3 clone (150 ng, 58 °C). Lane 4: DNA molecular weight standards. Lane 5: 

standard D7 clone (150 ng, 58 °C). Lane 6: Standard D7 clone (150 ng, 58 °C). Lane 

7: Blank (water). 
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Figure 3.17 Predicted open reading frame (ORF) disruption of IL-36R gene 

(IL1RL2) in HT-29/B-lucP2 (D7) derived (a) G4 cell lines (b) A6 cell line. The 

disruption of the open reading frame, as determined by genomic sequencing, is shown 

here in the context of the cDNA sequence of IL-36R. The A6 clone carried two different 

disrupted IL1RL2 alleles. The plasmid encoded CRISPR guide sequences are shown 

in red script within exon 5 (shaded green) of IL1RL2. The identified deletions are 

shown in black. Mutations were created by separate Cas9/CRISPR events that 

targeted exon 5. The PAM motif that is required by Cas9, is highlighted with cyan. The 

predicted primary double strand break sites are indicated with ’^’. The deleted segment 

of each allele is shaded with black. See appendix VIII for pSpCas9(BB)-2A-Puro 

(PX459) V2.0 structure and the guide oligonucleotides sequence.  

 

(a) 

(b) 
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3.10 Efficacy test of IL-36 mutants on standard D7 HT-29 clone (IL-

1RL2+/+) and the IL-36R deficient A6 cell line 
 

Towne et al., 2004 reported that HT-29 cells express IL-36R. Nishida et al., 

2016 showed that HT-29 cells respond to stimulation with IL-36. To determine the 

effective dose of IL-36 receptor, A6 and D7 clones were plated at 253 x 103 cells per 

well in 1 ml of HSM/ well of 24 well plate. A total of 13 24-well plates were used for 

HT-29 D7 (IL1RL2+/+) while 8 plates of 24-well plate were used with HT-29  A6 (IL1RL2-

/-) as described in section 2.7.6, IL-1RL2+/+ and IL-1RL2-/- HT-29 cells were treated 

with doses of  n1-IL-36 and n4-IL-36, n6-IL-36 and the two N-terminal mutations 

n6-K6S-IL-36 and n6-K6G-IL-36, which had been purified by ion exchange 

chromatography by my colleagues, in addition to preparation of n5-IL-36 or n18-IL-

36 as described in this thesis. IL-1 and TNF were used as positive controls as in 

Table (2.4). Cells were incubated for 6 hr with these inflammatory stimuli. Five or six 

replicates were used for each dose. After cell lysis in 250 l of (1x) lysis buffer, 5 l of 

each sample was transferred into a 96-well plate and supplemented with D-luciferin 

and ATP. Data showed that the expression of the luciferase reporter gene was induced 

at a similar level in response to n6-IL-36, n5-IL-36 and n18-IL-36 compared with 

TNF. n6-IL-36, n5-IL-36 and n18-IL-36 seemed to reach half-saturation at 3.37 nM, 

0.12 nM and 19.5 nM, respectively, and their maximum response was 6-fold higher 

than with IL-1. Graphpad (Prism) was used to analysis these data (figure 3.18). 

Data also showed that n6-K6S-IL-36 and n6-K6G-IL-36 induce NF-B to the same 

level as n6-IL-36, but their effective concentration biological activity is less than n6-

IL-36 (figure 3.19). 

Moreover, the absence of any significant signal from our IL-36 proteins in cell line A6 

compatible with there being only one IL-36 receptor. These findings confirm that the 

active component in all IL-36 preparations is IL-36 and that there is no significant 

contamination with bacterial activators of NF-B, (figure 3.20). 
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Figure 3.18 The efficacy of active IL-36 and IL-36 proteins in activated HT-29 

cells. A luciferase reporter assay was used to measure the activity of NF-B in HT-29 

cells. (*) labelled represents the relative luminescence is standardised to the output 

from TNF stimulated D7. Active n6-IL-36 forms, TNF and IL-1 were used as a 

positive control. Data were fitted to a 4-parameter dose response curve but with a Hill 

coefficient fixed at 1.5. Protein concentration of IL-36 forms were determined 

spectrophotometry. Each set of data (n= 5-10) represents the mean and 95% 

confidence limit of the mean of each normalised dataset of at least 3 independent 

experiments with similar outcomes. Central estimates and 95% confidence limits of 

EC50 for the three IL-36 proteins were calculated by non-linear regression with 

GraphPad-Prism software. Values were: IL-36, 3.33 nM (2.68-3.99 nM); IL-36, 

0.121 nM (0.097-0.147 nM); IL-36, 18.2 nM (15.6-19.9 nM) and were therefore 

significantly different from one another. 

 

 

 

 

 

0

20

40

60

80

100

120

140

0.001 0.003 0.01 0.03 0.1 0.3 1 3 10 30 100 300 1000

[cytokine]/nM

re
la

ti
v
e
 l
u

m
in

e
s
c
e
n

c
e
 (

%
 T

N
F
*) n

6
-IL-36

n
5
-IL-36

n
18

-IL-36

TNF

IL-1



109 
 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 3.19 The efficacy of N-terminal-modified forms of IL-36 in stimulating 

the kB-dependent luciferase expression in HT29-kB-luc2P. Results are derived 

from a series of experiments and have been normalised to the mean response to 50 

pM recombinant human TNF in each data set. TNF and n6-IL-36 datasets are 

repeated from Figure 4.21. Data (n= ≥5) are the mean and 95% confidence limit of the 

mean of each normalised dataset from one representative experiment of at least 2 

independent experiments with similar outcomes. Central estimates and 95% 

confidence limits of EC50 for the three n6-IL-36 derivatives were calculated by non-

linear regression with GraphPad-Prism software. Values were: n6-IL-36, 3.33 nM 

(2.68-3.99 nM); n6-(K6S) IL-36, 29.8 nM (26.5-33.4 nM); n6-(K6G) IL-36, 489 nM 

(lower limit uncertain, upper limit 542 nM) and were therefore significantly different 

from one another. 
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Figure 3.20 The validation of receptor specificity of our cytokine preparations in 

HT29 cells. Comparison of luciferase activity in parallel activations of the IL1RL2-/-A6 

line (“∆”, red symbols) and parent D7 HT-29/B-lucP2 (“+”, black symbols) on a 

logarithmic scale. Data (n= 5) are the mean and 95% confidence limit of the mean of 

each normalised dataset from one representative experiment of at least 2 independent 

experiments with similar outcomes. 
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3.11 Time course stimulation of HT29-kB-luc with n6-IL-36 n5-IL-

36 and TNF 

To determine duration of NF-B activation in response to IL-36 cytokines, HT-

29 (D7 clone)/ 2.35 x 105 cells were grown on the 24-well plates in total volume 1 ml. 

As usual, the cells were grown for three days and then medium was drained and 

replaced with 0.5 ml of LSM for 18 hr. Cells were treated with 5 nM IL-36, 0.2 nM IL-

36 or 10 ng/ml TNF in total volume 0.6 ml for (3, 6, 9, 12, 18, and 24 hr).  

 

Our results show that IL-36 and IL-36 gave comparable time courses to TNF. A 

broad peak of activity between 3 h and 9 h was shown by all three stimuli. Thereafter 

activity declined with a half-life of ~ 2 hr reaching a low plateau at ~ 18 h when ~ 10% 

of luciferase activity was present compared to the maximum figure 3.21. 

Later experiments have demonstrated that the cells have become non-responsive are 

still viable. I, therefore, tested whether non-responsive cells could be re-stimulated.  
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Figure 3.21 The time course of the response of the destabilised luciferase 

reporter of NF-B in HT-29 derivative D7. D7 cells were incubated with n6-IL-36, 

n5-IL-36 or TNF at different time points. The cytokine was continuously present during 

the stimulation period. Data (n= 5) are the mean and 95% confidence limit of the mean 

of each normalised dataset from one representative experiment of at least 2 

independent experiments with similar outcomes. 
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3.12 Re-stimulation of non-responsive HT-29 cells with n6-IL-36, n5-

IL-36 or TNF  
I tested whether cells could respond to a cytokine after having been treated with 

the dame different cytokine for 18 h, which is long enough for the response to be 

gradually reduced (Figure 3.22). HT-29 (D7 clone)/ 2.20 x 105 were grown as before 

in 24 well plates and serum starved, as before. Sixteen wells were used for each initial 

treatment, which were (a) with 10 ng/ml TNF, (b) with 10 nM n6-IL-36, (c) with 0.2 nM 

n5-IL-36 or (d) without cytokine. The initial treatment was for 18 h. After this, 

supplementary medium was added so that four wells of each initial treatment then 

received the same set of four treatments for 6 h. Cells that had not received cytokine 

for the first 18 h responded very strongly to all cytokine treatments. Cells had been 

treated with IL-36 or TNF became poorly response to IL-36 or TNF. This result 

indicated that there is a general exhaustion of NF-B signalling system. I note in these 

results, that cells that treated with TNF initially, show a stronger subsequent response 

to IL-36 than to TNF, while cells that were treated with IL-36 initially respond better to 

TNF as in figure 3.22.   
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Figure 3.22 Changes in the NF-B activation (luciferase output) in HT-29 D7 on 

re-stimulating after 18 h of initial treatment with the same or a different cytokine. 

1st> 2nd in the labelling of the left axis represents the treatment order, where treatment 

A was 18 hr followed by treatment B for 6 hr. Cells were harvested after B treatment. 

IL-36, IL-36 or TNF were used at 10 nM, 0.2 nM and 50 pM (10 ng/ml) respectively. 

Data (n= 4) are the mean and 95% confidence limit of the mean of each normalised 

dataset from one representative experiment of at least 2 independent experiments 

with similar outcomes. 
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3.13 Activation of n1-IL-36 protein through digestion with 

chymotrypsin.  
The initial translation product of IL-36, n1-IL-36 is very weakly active. I 

digested inactive 416 g of n1-IL-36 protein that was prepared in our laboratory with 

chymotrypsin in vitro to confirm that this protein can be activated. 104 g n1-IL-36 

protein was digested with chymotrypsin at different time points (zero, 0.5,1 and 2 h). 

The mass spectrometry showed that n1-IL-36 protein is cleaved at three different 

sites by chymotrypsin (see appendix, A.4), so the digestion process yields a mixture 

of protein. 

The biological activity of the product was measured by stimulation of luciferase activity 

in HT-29. D7 and A6 cell lines were adjusted to 2.25 x 105 cells per well and grown on 

the 24-well plates in total volume of 1 ml. As usual, the cells were grown for three days 

and then the medium was drained and replaced with 0.5 ml of LSM for 18 h. after n1-

IL-36 had been treated with chymotrypsin, it was diluted to a concentration that 

corresponded to 10 nM before digestion For comparison, cells were also treated with 

10 nM of n6-IL-36 or 10 ng/ml TNF. LSM was used as a negative control. Luciferase 

reporter output showed that n1-IL-36  is activated after being digested with 

chymotrypsin. n1- IL-36 had been digested for 0.5 and 1 h induces luciferase at the 

same level as n6-IL-36 protein. Further digestion reduced the biological activity of the 

mixture. Application of the same preparation to the IL-36R deficient subline, A6, 

showed no significant response to the chymotrypsin treated IL-36 preparations hence 

chymotrypsin by itself at this concentration did not defectively active an NF-B 

response the results are shown in figure 3.23.   
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Figure 3.23 Measurement of IL-36 activity in n1-IL-36 after digestion with 

chymotrypsin for different periods. 2 mg/ml of n1-IL-36 was digested at 30 °C with 

20 g of chymotrypsin in different time points (0, 0.5, 1 or 2 h). The biological activity 

of the digested protein was assessed by luciferase assay.  A 10 nM of digested protein 

after each time point, 10 nM of n6-IL-36 or 10 ng/ml of TNF were used to assess NF-

B activation on D cell lines. A6 cell lines were used as a negative control to show that 

digested protein is not contaminated. Data (n= 3- 5) are the mean and 95% confidence 

limit of the mean of each normalised dataset from one representative experiment of at 

least 2 independent experiments with similar outcomes. 
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3.14 Discussion:  

The first aim of this study was to assess the biological activity of active form of IL-36, 

IL36 and IL-36 on their receptors. Pro-IL-36 proteins are biologically inactive, and 

proteolytic processing is required to generate active forms. The proteolytic processing 

of IL-36 cytokines is not well understood, although it has been investigated. Previous 

studies showed that in vitro truncation of pro-proteins or clipping by neutrophil serine 

proteases increase the biological activity of pro-IL-36, pro-IL-36 and pro-IL-36 

(Towne et al., 2011 and Henry et al., 2016). Towne et al (2004) reported that HT-29 

cells express endogenous IL-36R. In this thesis, I used transfected HT-29 cells that 

contain a reporter NF-B activity. These cells were cloned, and a subline was selected 

for its high signal output and low background. I used this subline to test the biological 

activity of active forms of IL-36. I used gene editing to create a subline of HT-29 cells 

with a knocked out IL1RL2 gene.  

 

 

3.14.1 Assessing biological activity of IL-36 proteins on their receptor   

I conducted experiments to measure the EC50 values of the active forms of n5-IL-36 

and n18-IL-36 that I prepared, and the active form of n6-IL-36 that was prepared in 

our laboratory. I also measured activation in response to n6-IL-36 and n5-IL-36 at 

different time points. Previous studies measured the EC50 values of truncated IL-36 

proteins (n6-IL-36, n5-IL-36 and n18-IL-36) either used reporter cells with 

transfected exogenous IL-1RL2 (Towne et al., 2001) or that contained endogenous IL-

36R, but where cells were treated for 24 h (Foster et al., 2014, Zhou et al., 2018). My 

NF-B responsive assay data showed that the EC50 values of n6-IL-36, n5-IL-36 and 

n18-IL-36 are 3.3 nM, 0.12nM and 18 nM respectively which are higher than has been 

measured by Towne et al., (2011) (0.06 nM, 0.015 nM and 1.22 nM),  Foster et al., 

(2014) (0.8 nM, 0.46 nM and 1.6 nM) or Zhou et al., (2018), (2 nM for n6-IL-36 and 

1.16 nM for n18-IL-36) The findings of the current study further indicated that n6-IL-

36, n5-IL-36, n18-IL-36 have similar maximum activity in our assay to TNF. 

Moreover, a time course experiment showed that the peak of activity of NF-B in 
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response to n6-IL-36, n5-IL-36 and TNF is between 3-6 h. In contrast, there was no 

observed response to n6-IL-36, n5-IL-36 and n18-IL-36 in IL1RL2 knocked out cell 

line though these cells respond to TNF and IL-1. I therefore confirm that IL1RL2 is 

the only gene that encodes an IL-36R receptor in HT-29 cells, and our n6-IL-36, n5-

IL-36 and n18-IL-36 preparations are free of other stimuli that might activate the NF-

B reporter such as endotoxin for example.  

I tested the EC of n4-IL-36 and n6-IL-36 that contained a modified N-terminus, 

substituting lysine for n6-glycine or n6-serine. Neutrophil serine proteases can clip pro-

IL-36 at n4, pro-IL-36 at n5 and n53 and pro-IL-36 at n15. These sites suggest that 

IL-36 could be activated at sites other than that reported by Towne et al (2011). My 

NF-B reporter assay data showed that the  n4-IL-36 is completely inactive, and the 

EC50 values of Ser6-IL-36 (30 nM) and Gly6-IL-36 (435 nM) are very high compared 

with Lys6-IL-36 (3.3 nM). The His-tagged pro- IL-36 precursor that was prepared 

was stable in solution and was used to generate pro-IL-36a and n4- IL-36, which was 

inactive. On the other hand, the pro- IL-36 was converted by chymotrypsin to a highly 

active mixture that contained n6-IL-36 according to mass spectrometry. I conclude 

therefore that n4-IL-36 is an inactive and is likely to be an active product of neutrophil 

proteases product. Mass spectrometry data showed that n1-IL-36 was cleaved at four 

different sites. Reporter gene data however showed that the mixed digested protein 

has similar activity to a purified n6-IL-36. 
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3.15 Conclusion 

To sum up, manipulation of the IL1RL2 gene with Cas9-CRISPR data showed 

that this is the only gene that encodes an IL-36 receptor in HT-29. An NF-B 

responsive luciferase reporter gene data showed that n6-IL-36, n5-IL-36 and n18-

IL36 can activate an NF-B reporter gene to a similar extent and time range to TNF 

and that IL-36 is more potent than IL-1. Moreover, n4-IL-36 that was made in our 

laboratory was not biologically active. For full activity, the N-terminal lysine of mature 

IL-36 is required. n1-precursor of IL-36  (inactive precursor) can be fully activated 

by chymotrypsin, and the cleavage site of chymotrypsin before n6-Lys.  
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Chapter 4  

Results  
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4.1 Introduction  

IL-36, IL-36 and IL-36 proteins have been related to many diseases 

particularly in skin. These cytokines are expressed by epithelial cells (most 

predominately keratinocytes). At genetic level, individuals who are inactivating IL-36 

natural antagonist of IL-36, develop generalised pustular psoriasis, which is skin 

disease (Marrakchi et al., 2011). An in vivo study showed that mice that 

(experimentally) lack expression of IL-36Ra and overexpress IL-36 develop a severe 

psoriasis-like disease (Blumberg et al., 2007). IL-36, IL-36, IL-36 proteins do not 

contain an N-terminal signal, which is required for conventional secretion of newly 

synthesised proteins.  Hence the pathway for the release of IL-36 is still unknown. 

Previous studies have shown that different inflammatory stimuli can regulate 

expression of IL-36, IL-36, IL-36 at the level of mRNA and protein. For example, 

expression of IL-36 mRNA in primary human keratinocytes is elevated after priming 

cells with TNF or PMA (Busfield et al., 2000). TNF, IL-1, IL-17A, IL-22, a combination 

of TNF and IL-22 or IL-17A and IL-22 all induce expression of IL-36 mRNAs in primary 

human keratinocytes (Carrier et al., 2011). Primary human keratinocytes can express 

IL-36, IL-36, IL-36 and IL-36Ra mRNAs in response to TNF or IL-1 (Johnston et 

al., 2011). Epicutaneous infection of mice skin with S. aureus induces expression of 

IL-36 protein (Liu et al., 2017). These studies showed that expression of IL-36 

cytokines is induced in response to different inflammatory inducers. We hypothesized 

that the processing of mRNA induction and protein expression and even processing 

might be observed more conveniently in established cells lines. In this chapter, I 

present experiment to investigate these stages in the expression of functional IL-36 in 

cell lines HaCaT and A-431. My PhD studies have been directed at answering four 

main questions. I have tested whether can IL-36α, IL36β and IL-36, IL-36Ra and IL-

36R mRNAs are expressed in two keratinocyte cell lines. I have tested whether natural 

physiological agents that can stimulate the expression of IL-36, IL36β and IL-36γ, IL-

36R and IL-36Ra?  I have tested whether these effects are differential. I have tested 

whether cell lines produce IL-36 protein, and whether the protein products can be 

found in whole cell lysates or whether they are released. I have investigated whether 

endogenously produced IL-36 can be processed in cell culture.  
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4.2 RT-PCR of HaCaT cells   
 

           The first aim of my project is to investigate whether IL-36, IL36β, IL-36, IL-

36R and IL-36Ra mRNAs are expressed in HaCaT cell line as a model for human KC 

and whether the genes can be induced by cytokines. mRNA was extracted from 

HaCaT cells after being stimulated with 1 nM IL-1, 1 nM IL-36 10 ng/ml TNF 

compare with cells grown in low serum medium (LSM) as a control. As will be 

explained later, all these doses are expected to be approaching maximum stimulation. 

though I understand now that the IL-36 dose is ~1/3 x EC50. 

First strand cDNA, 2 g, was generated for each sample to be used in RT-PCR before 

it was amplified. Samples were run by using gel electrophoresis as in figure (4.1), (4.2) 

and (4.3). These gels were also used to evaluate the product of loaded samples by 

visual comparison with DNA ladder.  

The results of the RT-PCR show that IL36 and IL-36, IL-36R and IL-36Ra are 

expressed in HaCaT cells. IL-36 was not detected. The product of the RT-PCR 

amplification of HaCaT cDNA was not the expected 175 bp (Table 2.2). The size of 

PCR product is compatible with the inclusion of the 92 nucleotides of intron 1 in the 

sequence, yielding a product of 267 bp. The obvious cause of this would be detection 

of contaminating IL36A genomic DNA in the absence of sufficient IL-36 cDNA. 

Therefore, it seems that HaCaT cells have a low copy number of IL-36 mRNA.   
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Figure 4.1 Qualitative RT-PCR of IL36 agonist and receptor cDNAs from HaCaT 

cells, in the absence of and after TNF treatment. The gel image shows DNA bands 

obtained from PCR of cDNA prepared from total mRNA. Lanes 1 to 5: PCR of water 

blank. Lanes 6 to 10: Control treatment (7 hr, low serum medium). Lanes 11 to 15: 

Stimulation with 10 ng/ml TNF (7 hr). Lanes 16: DNA size marker Lanes 17 to 21: 

Stimulation with 10 ng/ml TNF (4 hr). Lane 22:  DNA size marker. PCR reactions with 

specific primers as follows. Lanes 1, 6, 11, 17: -actin (control). Lanes 2, 7, 12, 18: IL-

36. Lanes 3, 8, 13, 19: IL-36. Lane 4, 9, 14, 20: IL-36. Lane 5, 10, 15, 21: IL-36R.   
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Figure 4.2 Qualitative RT-PCR of IL36 agonist and receptor cDNAs from HaCaT 

cells, after treatment with IL-36 or IL-1. The gel images show DNA bands 

obtained from PCR of cDNA prepared from HaCaT total mRNA. Lanes 1 to 5: 

simulation with 1 nM IL-36  (7 hr). Lane 6: DNA size standards. Lanes 7 to 11: 

stimulation with 1 nM IL-1 (7 hr). Lanes 12 to 16: water blank PCR. Lanes 17 DNA 

size standards. Lanes 18 to 22: simulation with 1 nM IL-36  (4 hr). Lanes 23 to 27 

stimulation with 1 nM IL-1 (4 hr). PCR reactions with specific primers as follows. 

Lanes 1, 7, 12, 18, 23: -actin. Lanes 2, 8, 13, 19, 24: IL-36. Lanes 3, 9, 14, 20, 25: 

IL-36. Lanes 4, 10, 15, 21, 26: IL-36. Lanes 5, 11, 16, 22, 27: IL-36R.   
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Figure 4.3  Testing primers for qualitative RT-PCR of IL-36Ra cDNA from HaCaT 

and THP-1, without or after treatment with TNF. The gel image shows DNA bands 

obtained from PCR of cDNA prepared from total mRNA.  Lanes 1 to 3, water blank 

PCR. Lanes 4 to 6: HaCaT; 7 hr of treatment with LSM (control). Lanes 7 to 9: HaCaT; 

7 hr treatment with 10 ng/ml TNF. Lanes 10 to 12: HaCaT; replicate of treatment with 

TNF. Lanes 13 to 15: HaCaT; 4 hr treatment with 10 ng/ml TNF. Lanes 17 to 19: 

continuously growing THP-1. Lanes 20 to 22: HaCaT; 4 hr treatment with LSM 

(control). Lanes 1, 4, 7, 10, 13, 17, 20: PCR for -actin as internal control. Lanes 2, 5, 

8, 11, 14, 18, 21 : IL-36Ra primer pair N1. Lanes 3, 6, 9, 12, 15, 19, 22 : IL-36Ra 

primer pair N2. Lane 16, DNA size standards. 

 

 

 

 
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4.2.1 RT-PCR of THP-1  
 

        The first strand cDNA that was prepared from mRNA from continuously growing 

THP-1 cells (a human monocytic cell line) were used as a positive control to confirm 

that the conditions for amplifying IL-36 from HaCaT cells were appropriate. Smith et 

al., 2000 has already reported that IL-36 mRNA is detectable in THP-1. mRNA was 

extracted from THP-1 without any stimulation. cDNA was prepared from 2 µg total 

RNA to be used in the RT-PCR. RT-PCR shows that IL-36α IL-36 and IL-36R are 

expressed in THP-1 cells line but not IL-36 and IL-36Ra (Figures 4.3 and 4.4). 
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Figure 4.4 Qualitative RT PCR of THP-1 cells. The gel image shows the bands 

obtained from RT-PCR for mRNA extracted from THP-1 cells without any stimulation 

and continuously growing Lane 1 to 3: water blank. Lane 4: IL-36R. Lane 5: DNA size 

standards. Lane 6: IL-36R. Lane 6: -actin. Lane 7:  IL-36. Lane 8: IL-36. Lane 9: 

IL-36.  
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4.2.2 Sequencing of RT-PCR products from IL-36, IL-36, IL-36, 

IL-36R and IL-36Ra.  
 

               To confirm the identity of the products of PCR amplification, the PCR 

products were further amplified and sequenced, using the PCR primers in the 

sequencing reactions. The sequence of IL-36 that was expressed in THP-1 cells, and 

IL-36, IL-36, IL-36R and IL-Ra that were expressed in HaCaT cells were determined.  

DNA bands of RT PCR product were extracted from a low melting agarose gel and re-

amplified with 20 cycles of re-amplification. After re-amplification, RT PCR products 

were analyzed by direct Sanger-sequencing from the PCR primers.  

Sequences from samples were aligned with NCBI reference cDNA sequences for each 

gene as in table 2.2. Results confirm that the PCR products are from the correct, 

spliced templates figure 4.5. 
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1    GGGTTAAACTGTGGCTTG>>                                         

2    gggttaaactgtggcttgggactgactcaggtcctctcttggggtcggtctgcacataaa 

3          AACTGTGGCTTGGGACTGANTCAGGTCCTNTNTTGGGGTCGGTCTGCACATAAA 

                                                                  

1     GGANTCCTATCCTTGGCAGTTCTGAAACAACACCACCACAATGGAAAAAGCATTGAAAA 

2    aggactcctatccttggcagttctgaaacaacaccaccacaatggaaaaagcattgaaaa 

3    AGGACTCCTATCCTTGGCAGTTCNGAAACAACACCACCACAANNGAAAAAGCATTGAAAA 

 

1    TTGACACACCTCANCGGGGGANCATTCAGGATATCAATCATCGGGTGTGGGT         

2    ttgacacacctcagcaggggagcattcaggatatcaatcatcgggtgtgggttct      

3    NNGACA                             ||||||||||||||||||||      

4                                     <<TTAGTAGCCCACACCCAAGA      

 
 

 

1    GGCAGCACCCAAATCCTATG>>                       GTGGGTCCTGAGTGG 

2    ggcagcacccaaatcctatgctattcgtgattctcgacagatggtgtgggtcctgagtgg 

3     GCAGCACCCAAATCCTATGCTATTCGTGATTCTCGACAGATGGTGTGGGTCCTGANTGG 

                                                                  

1    AAATTCTTTAATAGCAGCTCCTCTTAGCCGCAGCATTAAGCCTGTCACTCTTCATTTAAT 

2    aaattctttaatagcagctcctcttagccgcagcattaagcctgtcactcttcatttaat 

3    AAATTCTTTAATAGCAGCTCCTCTTAGCCGCAGCATTAAGCCTGTCACTCTTCATTTAAT 

 

1    AGCCTGTAGAGACACAGAATTCAGTGACAAGGAAAAGGGTAATATGNTTTACCNNGGAAT 

2    agcctgtagagacacagaattcagtgacaaggaaaagggtaatatggtttacctgggaat 

3    AGCCTGTAGAGACACAGAATTCAGTGACAAGGAAAAGGGTAATATGGTTTACCTG      

      

1    CAAGGGAAAAGATCTCTGTCTCTTCTGTGCAGAAATTCAGG                    

2    caagggaaaagatctctgtctcttctgtgcagaaattcagggca                 

                             ||||||||||||||||||||                 

4                          <<GACACGTCTTTAAGTCCCGT                 

 

Figure 4.5 Alignment of IL-36 system sequences from qualitative PCR products 

(part 1) (A) IL-36 from THP-1 cells with NM_014440.2. (B( IL-36 from HaCaT with 

NM_173178.2. Lines 1: The forward primer is shaded grey. Sequence highlighted in 

yellow is derived directly from readable Sanger sequence from the forward primer. 

Lines 2 show part of the reference cDNA sequence; a red-highlight indicates the end 

of an exon and green-highlight indicates the start of the next exon. Lines 3: Sequence 

highlighted in azure is complementary to readable Sanger sequence from the reverse 

primer.  Lines 1 and 3: N indicates an unassigned base. Sequence runs are not 

included before or after runs of N occurred. Lines 4: The reverse primer is shown (3’ 

to 5’) hybridised to the reference sequence. 

  

(A) 

(B) 
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1    ATCAGCAAGTGTGGACCCTT>>                                  AGTG 

2    atcagcaagtgtggacccttcagggtcagaaccttgtggcagttccacgaagtgacagtg 

3      CAGCAAGTGTGGACCCTTCAGGGTCAGAACCTTGTGGCAGTNTNNNGNNGTGNCAGTG 

                                                                  

1    TGACCCCAGTCACTGTTGCTGTTATCACATGCAAGTATCCAGAGGCTCTTGAGCAAGGCA 

2    tgaccccagtcactgttgctgttatcacatgcaagtatccagaggctcttgagcaaggca 

3    NGNNNCCAGTNANTGTTNNTGTTNTNACATGCAAGTAT                       

                                                                  

1    GAGGGGATCCCATTTATTTGGGAATCCAGAATCCAGAAATGTGTTTGTATTGTGAGAAGG 

2    gaggggatcccatttatttgggaatccagaatccagaaatgtgtttgtattgtgagaagg 

3                                                                 

                                                                  

1    TTGGAGAACAGCCCACATTGCAGCTAAA                                 

2    ttggagaacagcccacattgcagctaaa                                 

             ||||||||||||||||||||                                 

4          <<GTCGGGTGTAACGTCGATTT                                 

                                                                  

                                                                  

                                                                  

1    CATGTCATCTGCACTTCCCG>> 

2    catgtcatctgcacttcccgaagagttgtgttttgggtccaataaagtggtataaggact 

3        TCATCTGCACTTCCCGAAGAGTTGTGTTTTGGGTCCAATAAAGTGGTATAAGGACT 

                                                                  

1    GTAACGAGNNTAAAGGGGAGCGGTTCACTGTTTTGGAAACCAGGCTTTTGGTGAGCAATG 

2    gtaacgagattaaaggggagcggttcactgttttggaaaccaggcttttggtgagcaatg 

3    GTAACGAGATTAAAGGGGAGCGGTTCACNGTTTNNGAAACCNGGC                

 
1    TCTCGGCAGAGGACAGAGGGACTACGCGTGTCAAGCCANA                     

2    tctcggcagaggacagagggactacgcgtgtcaagccatac                    

                          ||||||||||||||||||||                    

4                       <<GATGCGCACAGTTCGGTATG                    

 
Figure 4.5 Alignment of IL-36 system sequences from qualitative PCR products (part 

2) (C) IL-36 from HaCaT with NM_019618.3 (D( IL-36R from HaCaT with 

NM_003854.2. Lines 1: The forward primer is shaded grey. Sequence highlighted in 

yellow is derived directly from readable Sanger sequence from the forward primer. 

Lines 2 part of the reference cDNA sequence; a red-highlight indicates the end of an 

exon and green-highlight indicates the start of the next exon. Lines 3: Sequence 

highlighted in azure is complemetary to readable Sanger sequence from the reverse 

primer.  Lines 1 and 3: N indicates an unassigned base. Sequence runs are not 

included before or after runs of N occurred. Line 4: The reverse primer is shown (3’ to 

5’) hybridised to the reference sequence. 

 
  

(C) 

(D) 
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1     AAGGACTCGGCATTGAAGGTG>>                       CTGGANGGCTGCATG 

2     aaggactcggcattgaaggtgctttatctgcataataaccagcttctagctggagggctg 

3       GGACTCGGCATTGAAGGTGCTTTATCTGCATAATAACCAGCTTCTAGCTGGAGGGCTG 

 

1         CAGGGAAGGTCATTAAAGNNNANGANNTNNNNGNNGNNCNMN           gat 

2     catgcagggaaggtcattaaaggtgaagagatcagcgtggtccccaatcggtggctggat 

3     CATGCAGGGAAGGTCATTAAAGGTGAAGAGATCAGCGTGGTCCCCAATCGGTGGCTGGAT 

 

1     GCCAGCCTGTCCCCCGTCATCCTGGGTGTCCAGGGTGGAAGCCAGTGCCTGTCATGTGGG 

2     gccagcctgtcccccgtcatcctgggtgtccagggtggaagccagtgcctgtcatgtggg 

3   

    

1     GTGGGGCAGGAGCCGACTCTAACACTAGAGCCAGTGAACATCATGGAGCTCTATCTTGGT 

2     gtggggcaggagccgactctaacactagagccagtgaacatcatggagctctatcttggt 

3                                                |||||||||||||||||||           

4                                              <<tggagctctatcttggt 

                                  

1     gcc 

      ||| 
3     gcc 

 

 

                                      

Figure 4.5 Alignment of IL-36 system sequences from qualitative PCR products (part 

3) (E) IL-36Ra from HaCaT with NM_012275.2. Line 1: The forward primer is shaded 

grey. Sequence highlighted in yellow is derived directly from readable Sanger 

sequence from the forward primer. Line 2 part of the reference cDNA sequence; a red-

highlight indicates the end of an exon and green-highlight indicates the start of the 

next exon. Line 3: Sequence highlighted in azure is complemetary to readable Sanger 

sequence from the reverse primer.  Lines 1 and 3: N indicates an unassigned base. 

Sequence runs are not included before or after runs of N occurred. Line 4: The reverse 

primer is shown (3’ to 5’) hybridised to the reference sequence. 

 

 

 

 

 

 

 

(E) 
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4.3 Measuring the response of the IL36 genes and IL36R in HaCaT 

and A-431 to inflammatory stimuli. 
 

It was because I saw data that A-431 can express a detectable amount of IL-

36 when stimulated with TNF and IFN. The expression of each gene under each 

condition was determined for at least three separate replica tissue culture plates and 

each value was determined three times per replica. Data for each biological replica 

was then processed as the mean value. In some cases, for unstimulated cells, where 

the expression level of the target genes is likely to be at its lowest, amplification of a 

particular transcript failed entirely for a particular sample. In other cases, one or more 

measurements in a replicate set failed. This kind of result tended to be coupled with 

large Cq values. (Cq is the cycle at which the product reached its detection threshold). 

Amplifications were judged to have failed and results were edited when the software 

declared a failure or where the estimated melting temperature of the product departed 

from the modal value by more than 1°C. Low copy number of cDNA is likely to cause 

both high variability between measurements and complete failure in some cases. In 

the raw data for unstimulated A-431 and HaCaT cells, for example, the mean Cq for 

IL-36 was ~31 cycles and for A-431, Cq IL-36 was 29 cycles.  

It was logical and simple to express induced RNA levels for all four genes of interest 

as compared with uninduced, which corresponds to the conventional ∆∆Cq analysis. 

The final estimates of the degree of induction for the wealthier expressed IL-36 and 

IL-36 are therefore more approximate than for the more strongly expressed genes. 

 
 

To calculate the expected amplification of a particular cDNA in a sample it is necessary 

to measure the efficiency of the reaction. I tested the efficiency of amplification for 

each cDNA at an annealing temperature of 58 °C. The cDNA sample was selected 

because it was from A-431 cells that had been treated with 67 ng/ml PMA and 20 

ng/ml TNF, which was found to cause the strongest induction of IL-36. A dilution 

series was produced of the cDNA with water. Initial experiments showed that the 

undiluted cDNA preparation was not amplified significantly more efficiently than a 

sample diluted to 0.2 with water. All cDNA analysis by qRT-PCR was therefore done 

with a 0.2 dilution. To construct a regression line, further dilutions of 0.04, 0.008 and 
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0.0016 were prepared. Each dilution was tested in triplicate. In the following, X is the 

relative concentration of two cDNA samples. The data for this analysis is shown in 

figure 4.6. 

 
The best fit value for the slope from the data in figure 4.6 of the linear regression of 

the threshold cycle value, Cq on log10[X] was determined and this was used to calculate 

efficiency. The efficiency per cycle of a PCR reaction can be calculated as  

 

𝐸 = 10∆𝐶𝑞/∆𝑙𝑜𝑔10[𝑋] − 1 

 

The values I  obtained for efficiency were, for the test genes, 0.979 for IL-36, 1.231 

for IL-36, 0.782 for IL-36, 1.070 for IL-36R, and for the control genes, 0.833 for 2-

microglobulin, 0.853 for hypoxanthine phosphoribosyltransferase (HPRT), 1.023 for 

protein proline isomerase A (PPIA) and 1.100 for the ABL1 protein kinase. The control 

genes were selected for covering a range of mRNA abundances. 

 
The derived value of E is an average value during the entire PCR reaction and there 

have been criticisms of this approach because efficiency does vary with cycle. 

However, this approach is commonly used for estimating efficiency. Though according 

to convention, the values of E lying outside the range 0.95-1.05 would not be used, I 

found that they could not be improved for these primers for these sample types. I used 

the efficiency estimate for the ith cDNA, Ei, to estimate the amplification of each cDNA 

in each sample in the qPCR measurements. For constant cycle efficiency, the total 

amplification was calculated for all valid readings thus,  

 

𝐴𝑖 =  
𝑋𝑞,𝑖

𝑋0,𝑖
= (1 + 𝐸𝑖)𝐶𝑞,𝑖, 

 
where Xq,i is the detectable concentration of the test cDNA, i, and X0,i is its original 

concentration. I then calculated log10(
𝑋𝑞

𝑋0
) for all readings.  

Assuming that cDNA concentrations for the four control genes would be independent 

of the treatment regime, I calculated a mean of log10(
𝑋𝑞,𝑐

𝑋0,𝑐
) for the set of control genes 

for each biological replicate for each treatment. To correct for variations in the initial 

concentration of total mRNA, by analogy with a ∆Cq calculation, ∆log10(
𝑋𝑞,𝑖

𝑋0,𝑖
) was 
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calculated for each target cDNA by subtraction of the corresponding control mean for 

the specific biological replicate (3 for each treatment). To calculate ∆∆log10(
𝑋𝑞,𝑖

𝑋0,𝑖
) for 

each the target genes for each biological replicate, which is analogous to ∆∆Cq, I 

subtracted the mean ∆log10(
𝑋𝑞,𝑖

𝑋0,𝑖
) for each target gene. These triplicate data are 

presented in figures 4.8, 4.9, 4.10 and 4.11. 

 

 

4.4 Validation of qPCR reaction by sequence analysis  
 

The qPCR products are short. To validate that qPCR reactions are yielding the 

correct products, I sequenced them directly, using The PCR primers as sequencing 

primers. The objective was to validate the length of the product and the product 

contained the expected exon junctions, thus eliminating the possibility that products 

are from genomic DNA. The alignment of predicted cDNA fragment and sequence 

data are shown in Figure B. in all cases, some sequence was obtained that bridged 

exon boundaries, this validate the reactions.   
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Figure 4.6 Test the amplification efficiency of the cDNAs in this study. Where is 

A1= IL-36, B2= IL-36, G2= IL-36, R3= IL-36R M2= 2 microglobulin, H1= 

hypoxanthine phosphoribosyltransferase, P1= peptidyl proline isomerase (PPIA), L= 

ABL kinase (ABL1). Data (n=3) represent 95% confidence units of the mean of at least 

2 independent experiments with similar outcomes. 
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4.5 Evidence of cell signaling: Quantification of IL-8 (CXCL8) 

secretion by HaCaT 
 

Inflammatory cytokines that signal through the NF-B pathway activate the 

expression and secretion of the chemokine CXCL8, commonly called IL-8. I used 

activation of CXCL8 secretion as a positive control for inflammatory cytokine signalling 

in HaCaT. I tested for responses to the established activators, TNF and IL-1 and to IL-

36. CXCL8 secretion from cells was measured by the enzyme-linked immunosorbent 

assay (ELISA). HaCaT cells were seeded in 24 well plates at 2.5 x 105. HaCaT cells 

were stimulated with 5 nM IL-1 different concentrations of IL-36 (0.5 nM IL-36, 

1.5 nM IL-36, 5 nM IL-36 and 15 nM IL-36). As a positive control, I tested 10 ng/ml 

TNF. LSM served as a negative control. Six-fold replicates were used for each 

stimulus. Cells were incubated at 37 °C for 7 h. To test for activation by cytokines, 

supernatants from 7 h stimulated HaCaT cells were analysed for IL-8 secretion with 

an ELISA kit as described in section 2.4.7. Paired one-way ANOVA was performed 

and p-values were shown. The results show that CXCL8 release in response to IL-

36 is weaker than IL-1 and TNF figure 4.7. The highest concentration of n6-IL-36 

used here is ~ 3x EC50 that I report later for n6-IL-36 on HT-29 cells and would be 

expected to nearly saturate the receptor.  
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Figure 4.7 Comparative effect of IL-1, IL-36 and TNF on NF-B pathway 

activation in HaCaT cells by looking at expression of CXCL8.  HaCAT cells were 

treated with different doses of IL-36 (0.5, 1.5, 5 or 15 nM), 5 nM of IL-1  or 10 ng/ 

ml TNF (0.6 nM). Moreover, HaCaT cells were treated with 150 nM of IL-36Ra and 0.5 

nM of IL-36 to demonstrate that the activity of the preparation of n6-IL-36 is 

mediated through the IL-36R. The stimulant conditions are indicated on X-axis with 

the mean CXCL8 values (pg/ml). Data (n=5) represent 95% confidence units of the 

mean of at least 2 independent experiments with similar outcomes. 

 

ns 

**** 
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4.6 Time course and dose response of TNF to induce expression of 

IL-36 mRNAs in the A-431 cells  
 

To select optimal conditions of IL-36 mRNA expression in A-431 cells, a time 

course was performed. A-431 cells were treated for 6, 9 and 12 h with 20 ng/ml TNF, 

in serum free medium. A negative control remained in LSM  RNA was extracted from 

samples as in section 2.4.2. First strand cDNA, 5 g, was synthesized as described in 

section 2.4.3. In a preliminary experiment, I found that the undiluted cDNA product 

was not efficiently amplified by any RT-qPCR reaction and Ichose a dilution of 5-fold 

as the standard condition. cDNA samples were diluted 5-fold with water before being 

used. RT-qPCR was performed with SYBR Green (Qiagen). Primer pairs were used 

as in Table 2.3. The annealing temperature was 58 °C. q-RT-PCR data showed that 

IL-36 induced similarly at all three times 6, 9 and 12 has showed in Figure 4.8. A dose 

response was also performed for TNF stimulation. A-431 cells were treated with 

different concentrations of TNF (10, 20, 40 ng/ml) for 6 h. qPCR data showed that all 

three doses induce expression of IL-36 in a similar manner maximal ~ 20- 30-fold 

compared with untreated cells as shown in figure 4.9. Thus 10 ng/ml was sufficient to 

saturate the response of A-431. TNF alone did not strongly induce the other IL-36 

genes in A-431. The expression of the receptor was not significantly changed in 

response to TNF.  
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Figure 4.8 Time course expression of IL-36 and IL-36 receptor (IL-1RL2) mRNAs 

in A-431 cells. A-431 cells were treated with 20 ng/ml TNF for (6, 9 and 12 hr), in 

addition to no treatment (control). Three biological replicate culture were used for each 

time point, and each Cq was determined in triplicates. Each replicate as analysed 

three times. The data (n=3) shown as mean and 95% confidence intervals and they 

are derived from the analysis shown in section 4.2. 
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Figure 4.9  Induction of IL-36 and IL-36R gene expression in response to a range 

of doses of TNF dose in A-431. A-431 cells were serum deprived and then treated 

with (10, 20 or 40 ng/ml TNF) or not treated for 6 hr. Triplicates of Cq were made for 

at least three biological replicates in case 10 ng/ml and 40 ng/ml TNF. Pooled data 

from all experiments were combined for the control (9 replicates) and 20 ng/ml TNF 

treatments (11 replicates) Cq determinations were made in triplicates (see appendix 

VI, table 2) for the number of Cq determinations used for each treatment. The data 

(n=3) shown as mean and 95% confidence intervals and they are derived from the 

analysis shown in section 4.2.  
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4.7 Effect of PMA and TNF or flagellin and TNF on expression of IL-

36, IL-36 and IL-36 mRNAs in A-431 cells.   
 

To investigate expression of endogenous IL-36 mRNAs in A-431 in response 

to various  inflammatory stimuli or combinations of two stimuli, A-431 cells were treated 

with 67 ng/ml PMA, 20 ng/ml TNF, 67 ng/ml PMA and 20 ng/ml TNF, 1 g/ml flagellin 

or 1 g/ml flagellin and 20 ng/ml TNF for 6 hr, or were not treated for 6 h. Three 

replicates (25 cm2) were used for each treatment. RNA was extracted from A-431 as 

in section 2.4.2. First strand cDNA, 5 g, was synthesized as described in section 

2.4.3. cDNA samples were diluted 5-fold before being used.  

Results are shown in figure 4.10. I found that IL-36 mRNA in A-431 cells is activated 

less than 2- fold by TNF, and the difference is not statistically significant. There was a 

strong and significant induction by PMA of ~20 -fold. Treatment with TNF does not 

enhance the effect of PMA. Flagellin produced a smaller but significant stimulation of 

~5-fold and combination of TNF and flagellin showed some cooperativity. Flagellin or 

flagellin and TNF induced IL-36 mRNA ~ 7-fold and 10-fold respectively.  

IL-36 mRNA was not significantly induced in response to TNF or flagellin, but with 

flagellin and TNF IL-36 was induced ~ 3-fold but that was not a significant increase 

compared with ~ 25- fold in response to PMA or PMA and TNF.  

For IL-36 mRNA, the expression was increased ~ 20-fold in response to TNF and a 

~100-fold in response to PMA alone and ~ 300-fold with TNF. Flagellin or flagellin and 

TNF induce IL-36 mRNA ~30 and 100-fold respectively. By contrast, there is little 

change in the expression of IL-36R mRNA in response to any of these stimuli.  
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Figure 4.10 Induction of IL-36, IL-36, IL-36 mRNAs. A-431 cells were serum 

deprived then left untreated (control) or treated with 67 ng/ml PMA, 20 ng/ml TNF, 67 

ng/ml PMA and 20 ng/ml TNF, 1 g/ml flagellin or 1 g/ml flagellin and 20 ng/ml TNF. 

Triplicates measurements of Cq were made for at least three biological replicates. The 

analysis is described in section 4.2. The data (n=3) shown as mean and 95% 

confidence intervals for they are derived from the analysis shown in section 4.2. See 

appendix V, table A.1 for the number of Cq determinations used for each treatment.   
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4.8 qPCR quantification of IL-36  , IL-36 and IL-36 mRNAs 

expression in HaCaT cells after co-stimulation with PMA and TNF  
 

Our data indicate that the induction of IL-36 in A-431 cells by TNF and PMA is 

synergistic. I tested whether this is true in a different cell line HaCaT. I also investigated 

whether IL-36 is strongly autoregulated, or it is regulated by the related cytokine IL-1 

in HaCaT. HaCaT cells were treated with 5 nM IL-1, 5 nM IL-36, 20 ng/ml TNF, 67 

ng/ml PMA or 20 ng/ml TNF and 67 ng/ml PMA, or cells were left untreated in LSM for 

6 h  Three biological replicates were used for each treatment. RNA was extracted 

from HaCaT as in section 2.4.2. First strand cDNA, 5 g, was synthesized as in section 

2.4.3. cDNA samples were diluted 5-fold before being used. Results were illustrated 

in figure 4.11. 

 

RT-qPCR data showed that added IL-36 does not significantly alter the expression 

of IL-36 or IL-36, but it induces IL-36  3-fold IL-1 induces IL-36, IL-36 and IL-

36 mRNAs strongly and significantly ~20, 40 and 60-fold respectively. PMA and TNF 

synergistically induce the expression of IL-36 by ~200-fold and IL-36 mRNA ~ 400-

fold respectively. Expression of IL-36 mRNA seemed to respond to treatment of cells 

with IL-36, but the effect (3-fold) was small. TNF alone similarly induced expression of 

IL-36 or IL-36 mRNAs ~ 60-fold. PMA alone induced expression of IL-36 ~ 70-fold, 

which is an order magnitude stronger than IL-36. Again, on both IL-36 and IL-36, 

the combination of TNF and PMA is synergistic. As in the A-431 cells, there is little 

change in the expression level of IL-36 receptor in response to any of these agents.  
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Figure 4.11 Induction of IL-36, IL-36, IL-36 mRNAs. HaCaT cells were serum 

deprived then left untreated (control) or treated with 5 nM IL-36, 5 nM IL-1, 67 ng/ml 

PMA, 20 ng/ml TNF or 67 ng/ml PMA and 20 ng/ml TNF. Triplicates measurements of 

Cq were made for at least three biological replicates. The analysis is described in 

section 4.2. The data (n=3) shown as mean and 95% confidence intervals for they are 

derived from the analysis shown in section 4.2. See appendix VI, table A.1 for the 

number of Cq determinations used for each treatment. See Appendix VII, figure A.5 

for RT-qPCR products run on gel electrophoresis.  
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(A)    
                                                             
 1 TCTACCTGGGCCTGAATGGA>> 

2  tctacctgggcctgaatggactcaatctctgcctgatgtgtgctaaagtcggggaccagc 

3    TACCTGGGCCTGAATGGACTCAATCTCTGCCTGATGTGTGCTAAAGTCGGGGACCAGC 

 

2  ccacactgcagctgaaggaaaaggatataatggatttgtacaaccaacccgagcctgtga 

3  CCACACTGCAGN-GAAGGAAAAGG                        |||||||||||| 

4                                                <<GGCTCGGACACT 

 

2  agtccttt 

   |||||||| 

4  TCAGGAAA 

 

 

 

(B) 
 

 
1  TGTGCAGAAATTCAGGGCAAG>> 

2  tgtgcagaaattcagggcaagcctactttg 

3      CAGAAATTCAGGGCAAGCCTACTTTG 

 

1  AAANATCATGGACCTGTATGTGGAGAAGAAAGCACAGAAGCCCTTT 

2  cagcttaaggaaaaaaatatcatggacctgtatgtggagaagaaagcacagaagcccttt                                         

3  CAGCTTAAGGAAAAAAATATCATGGACCTGTATGTGGAGAAGAAAGCACAGAAGCCCTTN 

 

1  CTCTTTTTCCACAATAAAGAAGGCTCCACTTCTGTCTTTCAGTCAGTCTCTTACCCTGGC 

2  ctctttttccacaataaagaaggctccacttctgtctttcagtcagtctcttaccctggc 

3  CTCTTTCCACAATAAAGAAG                   ||||||||||||||||||||| 

4                                       <<GTCAGTCAGGAATGGGACCG 

 

 

Figure 4.12 Alignment of IL-36 system sequences from quantitative PCR 

products (part 1) (A) Exon 3 and 4 of IL-36 from HaCaT with NM_014440.2. (B) 

Exon 4 and 5IL-36 from HaCaT with NM_173178.2.  

 Line 1: The forward primer is shaded grey. Line 2 Sequence highlighted in yellow is 

derived directly from readable Sanger sequence from the forward primer. Line 3 part 

of the reference cDNA sequence; a red-highlight indicates the end of an exon and 

green-highlight indicates the start of the next exon. Line 3: Sequence highlighted in 

azure is complementary to readable Sanger sequence from the reverse primer.  Lines 

1 and 3: N indicates an unassigned base. Sequence runs are not included before or 

after runs of N occurred. Line 4: The reverse primer is shown (3’ to 5’) hybridised to 

the reference sequence. 
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(C) 
 

1  TGGAGGAAGGGC 

2  tggaggaagggc 

3  TGGAGGAAGGGC 

 

1  cgtctatc>>         NNNNNNNNTTACTGGGANTATTAATGATTTGAATCAGCAAGT 
2  cgtctatcaatcaatgtgtaaacctattactgggactattaatgatttgaatcagcaagt 

3  CGTCTATCAATCAATGTGTAAACCTATTACTGGGACTATTAATGATTNGAATCAGCAAGT 

 

1  GTGGACCCTTCAGGGTCAGAACCTTGTGGCAGTTCCACGAAGTGACAGTGTGACCCCAGT 

2  gtggacccttcagggtcagaaccttgtggcagttccacgaagtgacagtgtgaccccagt 

3  GTGGACNCNTCAGGGTCAGAACNT                    ||||||||||||||||| 
                                              CTGTCACACTGGGGTCA 

1  CAC 
2  cactgttgctgttatcacatgcaagtatccagaggctcttgagcaaggcagaggggatcc 
   ||| 
3  GTG 
 
 

(D) 
 
1  CATGTCATCTGCACTTCCCG>> 

2  catgtcatctgcacttcccgaagagttgtgt 

3  CATGTCATCTGCACTTCCCGAAGAGTTGTGT 

 

1  AGTGGTATAAGGACTGTAACGAGATTAAAGGGGAGCGGTTCACTGT 

2  tttgggtccaataaagtggtataaggactgtaacgagattaaaggggagcggttcactgt 

3  TTTGGGTCCAATAAAGTGGTATAAGGACTGTAACGAGATTAAAGGGGAGCGGTTCACTGT 

 

1  TTTGGAAACCNGGNTTTTGGTGAGCAATGTCTCGGCAGAGGACAGAGGGAACTACGCGTG 

2  tttggaaaccaggcttttggtgagcaatgtctcggcagaggacagagggaactacgcgtg 

3  TTTGGAAACCaggcttttggtgagcaatgtctcggcagaggacagagggaactacgcgtg  

                                                           ||||||||| 
4                                                        <<GATGCGCAC 
 
1  TCAAGCCATA 

2  tcaagccata 

3  tcaagccatN   

   ||||||||| 

4  AGTTCGGTAT 

                                 

Figure 4.12 Alignment of IL-36 system sequences from quantitative PCR 

products. (part 2) (C) Exon 2 and 3 of IL-36 from HaCaT cells with NM_019618.4 
(D) Exon 4 &5 of IL-36R from HaCaT cells with NM_003854.2.  Line 1: The forward 
primer is shaded grey. Line 2 Sequence highlighted in yellow is derived directly from 
readable Sanger sequence from the forward primer. Line 3 part of the reference cDNA 
sequence; a red-highlight indicates the end of an exon and green-highlight indicates 
the start of the next exon. Line 3: Sequence highlighted in azure is complementary to 
readable Sanger sequence from the reverse primer.  Lines 1 and 3: N indicates an 
unassigned base. Sequence runs are not included before or after runs of N occurred. 
Line 4 and 5: The reverse primer is shown (3’ to 5’) hybridised to the reference 
sequence.  
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(E) 
 

1  AGATGAGTATGCCTGC 

2  agatgagtatgcctgc 

 

 

1  CGTG>>                    GCCCNNGATAGTTAAGTGGGATCGAGACATGTAA                

2  cgtgtgaaccatgtgactttgtcacagcccaagatagttaagtgggatcgagacatgtaa 

 

1  GCAGCATCATGGAGGTTTGAAGANGCCNCATTTGGATTGG 

2  gcagcatcatggaggtttgaagatgccgcatttggattggatgaattccaaattctgctt 

                           |||||||||||||||||||| 

                         <<CGGCGTAAACCTAACCTACT 

 

 

 

(F) 
 
1          AATCCAAGAAGGGG                                                            
2    aatccaagaagggg                                                        

3    AATCCAAGAAGGGG 

1    CTGTCC>>                          AGCCCTTCNGCGGCCAGTAGCATCTGAC             
2    ctgtcctcgtcctccagctgttatctggaagaagcccttcagcggccagtagcatctgac 

3    CTGTCCTCGTCCTCCAGCTGTTATCTGGAAGAAGCCCTTCAGCGGCCAGTAGCATCTGAC 

                                                                               
1    TTTGAGCCTCAGGGTCTGAGTGAAGCCGCTCGTTGGAACTCCAAGGAAAACCTTCTCGCT             

2    tttgagcctcagggtctgagtgaagccgctcgttggaactccaaggaaaaccttctcgct 

3    NTTGAGCCTCAGGGTCNGAGNAAGCCGC                  ||||||||||||||   

4                                                <<TTTTGGAAGAGCGA 

1    ggaccc                                                                    

2    ||||||                                                                 

3    CCTGGG 

 

Figure 4.12 Alignment of IL-36 system sequences from quantitative PCR 

products (part 3) (E) Exon 3 and 4 of 2 microglobulin from HaCaT with 

NM_004048.2. (F) Exon 1 and 2 of 1ABL kinase (ABL1) from HaCaT with 

NM_005157.5. Line 1: The forward primer is shaded grey. Sequence highlighted in 

yellow is derived directly from readable Sanger sequence from the forward primer. 

Line 2 part of the reference cDNA sequence; a red-highlight indicates the end of an 

exon and green-highlight indicates the start of the next exon. Line 3: Sequence 

highlighted in azure is complementary to readable Sanger sequence from the reverse 

primer.  Lines 1 and 3: N indicates an unassigned base. Sequence runs are not 

included before or after runs of N occurred. Line 4: The reverse primer is shown (3’ to 

5’) hybridised to the reference sequence. 
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(G) 

 
1     ATACGGGTCCTGGCATCTTG>>                       CNAATGGTTCCC                  

2  agcatacgggtcctggcatcttgtccatggcaaatgctggacccaacacaaatggttccc                            

3     ATANGGGTCCTGGCATCTTGTCCATGGCAAATGCTGGACCCAACACAAATGGTTCCC   

  

1  AGTTTTTCATCTGCACTGCCAAGACTGAGTGGTTGGATGGCAAGCATGTGGTGTTTGGCA 

2  agtttttcatctgcactgccaagactgagtggttggatggcaagcatgtggtgtttggca 

3  AGTTTTTCATCTGCACTGCCNAGACTGAGTGGTTGGATGGCAA    

 

1  AAGTGAAAGAAGGCATGAATATTGTGGAGGCNA 

2  aagtgaaagaaggcatgaatattgtggaggccatggagcgctttgggtccaggaatggca 

             |||||||||||||||||||||                                                          

3          <<TCCGTACTTATAACACCTCCG 

 

 

Figure 4.12 Alignment of IL-36 system sequences from quantitative PCR 

products (part 4) (G) Exon 1 and 2 Peptidyl proline isomerase (PPIA) from HaCaT 

with NM_021130.4 Line 1: The forward primer is shaded grey. Sequence highlighted 

in yellow is derived directly from readable Sanger sequence from the forward primer. 

Line 2 part of the reference cDNA sequence; a red-highlight indicates the end of an 

exon and green-highlight indicates the start of the next exon. Line 3: Sequence 

highlighted in azure is complementary to readable Sanger sequence from the reverse 

primer.  Lines 1 and 3: N indicates an unassigned base. Sequence runs are not 

included before or after runs of N occurred. Line 4: The reverse primer is shown (3’ to 

5’) hybridised to the reference sequence. 
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4.9 Time course of induction of expression of the IL-36 protein in A-

431  
Because IL-36 mRNA is expressed in A-431 in response to 20 ng/ml TNF, I 

investigated the expression of the IL-36 protein in response to 20 ng/ml TNF at 

different time points. A-431 cells were treated with 20 ng/ml TNF in serum free medium 

over a time course (6, 9, 12 and 24 h) or left with serum free medium only as a negative 

control. Three biological replicates were used for each time point.  Protein samples 

were extracted as described in section 2.6.3. SDS-PAGE gel was used to separate 

cell lysate proteins 10 g/lane. n18-1IL-36 and n1-IL-36 (R&D systems) (0.25 ng) 

were used as positive controls. Mouse protein extracted from 3T3L1 was used as a 

negative control. The antibody (MAB2320, R&D systems) is specific to human IL-

36 because mouse and human IL-36 are only 58%- 67% amino acids identical, I 

would not expect mouse cells to produce any specifically immunoreactive protein. In 

some assays, I applied a standard mixture of 5 g of total mouse protein and 0.25 ng 

of each from of IL-36. The -actin antibody, however, is fully cross relative between 

mouse and human. This enable us to approximately standardise for protein loading as 

measured from -actin and IL-36  between different immunoblots.  

Inducing expression of IL-36 protein was measured by western blotting which showed 

that maximum IL-36 protein induction level in response to 20 ng/ml TNF was 

observed after 24 h. As shown in figure 4.13 and 4.14. 
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Figure 4.13 Time course of IL-36 protein expression in A-431 cells. Lane (1-2):  

Control (no treatment), Lane (3-4): 6 h, Lane (5-6): 9 h, Lane 7: 12 h, Lane 8: Mouse 

protein (negative control), Lane 9: 0.25 ng processed and unprocessed IL-36 protein 

(positive control).  This experiment was performed three times and demonstrated 

similar results both times. 
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Figure 4.14 Time course of IL-36 protein expression in A-431 cells. Lane1, 12 hr, 

lane 2: 6 hr, Lane 3: 9 h, lane 4: 12 h, lane 5: 24 h, Lane 6: 24 h, Lane 7: 24 h, Lane 

8: Mouse protein (negative control), Lane 10:  0.25 ng processed and unprocessed IL-

36 protein (positive control). This experiment was performed three times and 

demonstrated similar results both times. 
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4.10 A first attempt to activate processing of endogenous IL-36 in 

A-431 cells  

   I attempted to identify a signal that might cause processing of IL-36 protein.  

Because I already had shown that TNF could induce IL-36 protein in A-431 cells, I 

examined whether treating A-431 cells with TNF for 24 h.  

After inducing expression of IL-36 protein, I then re-stimulated with different 

inflammatory activators. A-431 cells were stimulated for 24 h with 20 ng/ml TNF to 

induce IL-36 protein expression, then cells were re-treated with different inflammatory 

stimuli for 6 h. In case they might trigger the processing of the enzyme, I used 1 g/ml 

flagellin, 67 ng/ml PMA, 5 g/ml LPS, 5 nM IL-36, 5 nM IL-, 3.2 g/ml LL-37, 25 

g/ml poly I:C or  ATP (19.5 mM). Protein samples were loaded at 10 g in each lane. 

Recombinant processed and unprocessed IL-36 protein (0.25 ng) were used as 

markers and as a positive control in a western blot. An extract of mouse 3T3L1 cells 

was also used as a negative control. Western blot data showed that processing of IL-

36 protein was not induced, but the combination of flagellin and TNF (see figure 4.15, 

lanes 1 and 2) or PMA and TNF (see figure 4.16, lanes 1 and 2) induced greater 

expression of IL-36 protein than did TNF alone (see figure 4.15 and figure 4.16, lanes 

6 and 7). This finding led us to use PMA and TNF treatment as our standard method 

for inducing IL-36 expression. The outcomes of the experiment therefore although I 

did not discover a signal that would cause IL-36 to be processed, I did find a treatment 

that could cause stronger expression of IL-36 protein than has seen with TNF alone. 

Both flagellin and TNF or PMA and TNF produced a stronger response than TNF 

alone.  

 

  

 

 

 

 



153 
 

 

 

 

 

 

 

 

  

 

 

Figure 4.15 Combination of TNF and flagellin induce expression of IL-36 protein 

in A-431 cells. Cells were pre-treated with 20 ng/ml TNF for 24 hto induce expression 

of IL-36 then 6 hr incubated with different activators. Lane (1-2): 1 g flagellin, Lane 

(3-4): 5 µg/ml LPS, Lane (5):  19.5 mM ATP, Lane (6-7): 20 ng/ml TNF for 24 h 

(control), Lane 8: Mouse protein (negative control), Lane 9: 0.25 ng processed and 

unprocessed IL-36 protein (positive controls). This experiment was performed three 

times and demonstrated similar results each time. 

.   
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Figure 4.16 Combination of TNF and PMA induces IL-36 protein in A-431 cells 

were treated with 20 ng/ml TNF for 24 h then with followed reagents for 6 h. Lane 

(1-2): 67 ng/ml PMA, Lane (3-4): 25 g /ml Poly I:C, Lane 5: 95 g/ml ATP. Lane (6-

7): 20 ng/ml TNF for 24 h (control), Lane 8: Mouse protein (negative control), Lane 9: 

0.25ng of processed and unprocessed IL-36 protein (positive controls). This 

experiment was performed three times and demonstrated similar results each time. 
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Figure 4.17 Effect of TNF with different co activators on the IL-36 protein 

expression in A-431 cells. A-431 cells were treated with 20 ng/ml TNF for 24 hr then 

6 hr incubated with different activators. Lane (1-2): 5 nM IL-36, Lane (3-4): 5 nM IL-

1 Lane (5-6): 3.2 g/ml LL37, Lane (7-8): 20 ng/ml TNF for 24 h (control), Lane 9: 

blank (negative control), Lane 10: 0.25 ng of processed and unprocessed IL-36 

protein (positive controls). IL-36 was incubated with primary antibody (MAB2320 

R&D). This experiment was performed three times and demonstrated similar results 

each time. 
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4.11 Induction of IL-36 protein in A-431 cells by TNF and PMA or 

TNF and flagellin combination.  
          

 It appeared that both PMA and flagellin activate expression of IL-36 and 

possibly synergistic. I, therefore, returned to the similar protocol of 6 h of cell treatment, 

this time with TNF PMA and flagellin separately or PMA or flagellin in combination with 

TNF. To discover if PMA or flagellin could synergise with the induction of IL-36 protein 

TNF, I treated A-431 cells with 20 ng/ml TNF, 67 ng/ml PMA, 20 ng/ml TNF and 67 

ng/ml PMA, 1 g/ml flagellin or 1 g/ml flagellin and 20 ng/ml TNF  for 6 hr, compared 

with untreated controls. 3T3L1 (mouse cell) protein extract was also used as a 

negative control. Protein samples were loaded at approximately 10 g in each well. A 

0.25 ng of processed and unprocessed IL-36 protein were used as positive controls. 

The control was combined with the IL-36 standards, which were added at 0.25 pg per 

lane. This enabled us to use the -actin content of the mouse cells to standardise 

between gels. I assume that the anti--actin antibody cross reacts completely between 

mouse and human proteins and that the -actin content in all cell types.  Any 

differences between -actin content are expected to be a constant for the particular 

cell type and therefore are not expected to affect our conclusions concerning the 

induction of IL-36 protein. The quantity of the IL-36 proteins and -actin were 

estimated, based on the luminescence recorded as a function of time. Calculations 

were done for a portion of the curves of the light recorded as a function of time when 

growth of the signal appeared to be linear and where analysis of the image showed 

the pixels were not saturated. Protein concentrations were assumed to be proportional 

to the rate of light emission.   

Western blotting data showed that the combination of PMA and TNF (figure 4.18 lanes 

5 and 6) or flagellin and TNF (figure 4.19, lanes 6, 7 and 8) positively upregulated 

expression of IL-36 protein after 6 h compared with PMA, TNF or flagellin alone.  
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Figure 4.18 Combination of TNF and PMA for 6 hr induces IL-36 protein 

activation. A-431 cells were treated with Lane (1-2): 67 ng/ml PMA, lane (3-4): 20 

ng/ml TNF, Lane (5-6):  67 ng/ml PMA and 20 ng/ml TNF, Lane 7): Control (no 

treatment), Lane 9: Mouse protein (negative control), lane 10: 0.25 ng of processed 

and unprocessed IL-36 protein (positive controls). This experiment was performed 

three times and demonstrated similar results each time. 
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Figure 4.19 Combination of TNF and flagellin upregulated IL-36 protein in A-431 

for 6 hr. Lane 1: Control (no treatment), Lane (2-3): 20 ng/ml TNF, Lane (4-5): 1 g/ml 

Flagellin, Lane (6-8): 1 g/ml flagellin and 20 ng/ml TNF, Line 9: 0.25 ng of processed 

and unprocessed IL-36 protein (positive controls).  This experiment was performed 

three times and demonstrated similar results each time. 
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Figure 4.20 Quantity of IL-36 protein in A-431 cells after being treated with 

different inflammatory stimuli. Individual data are derived as described in methods. 

the linear phase of growth of total luminescence output was identified for each band 

and a rate of luminescence was calculated. This was then related to the luminescence 

yield of the two 250 pg standard bands. This allows us to estimate the amount of IL-

36 on the blot. Assuming full cross reactivity for -actin between the mouse extract 

control and the human cell extract, I also calibrated the relative proportion of -actin in 

each lane. Given that control lane contained a known quantity of protein, it was then 

possible to estimate the amount of protein loaded in each lane by comparison of the 

quantity of -actin. They finally allowed us to estimate the quantity of IL-36 as a 

proportion (in part per million) of the total protein.  
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4.12 Induction of IL-36 protein in HaCaT cells by TNF and PMA or 

TNF and flagellin.  
                  

Because a combination of TNF and PMA or TNF and flagellin synergistically 

induced expression of IL-36 protein in A-431, I examined whether these combinations 

would also work on the HaCaT cells.  HaCaT cells were treated with 20 ng/ml TNF, 67 

ng/ml PMA, 1 g/ml flagellin, 20 ng/ml TNF and 67 ng/ml PMA or 20 ng/ml TNF and 1 

g/ml flagellin for 6 hr. Low serum medium (no treatment) was used as a control. 

Mouse L3T3 extract was combined with the IL-36 standards, which were added at 

0.25 pg per lane. This enabled us to use its -actin content to standardise between 

gels. I assume that the anti-b-actin antibody cross reacts completely between mouse 

and human proteins and that the -actin content in all cell types is the same. Any 

differences between -actin content are expected to be a constant for the particular 

cell type and therefore are not expected to affect our conclusions concerning the 

induction of IL-36. The quantity of the IL-36 proteins and -actin were estimated 

based on the luminescence recorded as a function of time. Calculations were done for 

a portion of the curves of the light recorded as a function of time when growth of the 

signal appeared to be linear and where analysis of the image showed the pixels were 

not saturated. Protein concentrations were assumed to be proportional to the rate of 

light emission.   

Protein samples were loaded at approximately 10 g in each well. A 0.25 ng processed 

and unprocessed IL-36 protein was used as positive controls. Mouse protein was 

used as a negative control. Western blotting data showed again that combination of 

TNF and PMA (figure 4.20, lanes 5, 6 and 7) or TNF and flagellin (figure 4.21, lanes 

6, 7 and 8) induced IL-36 expression in HaCaT cells. TNF (figure 4.20, lanes 2 and 

3) or flagellin (figure 4.21, lanes 4 and 5) slightly induced expression of IL-36, but IL-

36 protein was not detectably induced by PMA alone (figure 4.21, lanes 3 and 4).  
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Figure 4.21 Combination of PMA and TNF upregulated IL-36 protein expression 

in HaCaT cells. Lane (1-2): Control (no treatment), Lane (3-4):  67 ng/ml PMA, Lane 

(5-7): 20 ng/ml TNF and 67 ng/ml PMA for 6 hr, Lane 8: Mouse protein (negative 

control), Lane 9: 0.25 ng of processed and unprocessed IL-36 protein (positive 

controls). This experiment was performed three times and demonstrated similar 

results each time. 
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Figure 4.22 Combination of TNF and flagellin induces IL-36 protein in HaCAT 

cells. Lane 1: Control (no treatment), Lane (2-3) 20 ng/ml TNF, lane (4-5): 1 g/ml 

flagellin, Lane (6-8): 1 g/ml flagellin and 20 ng/ml TNF, Lane 9: 0.25 ng of processed 

and unprocessed IL-36 (positive controls). This experiment was performed three 

times and demonstrated similar results each time. 
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Figure 4.23 Quantity of IL-36 protein in HaCaT cells after being treated with 

different inflammatory stimuli. Individual data are derived as described in methods. 

the linear phase of growth of total luminescence output was identified for each band 

and a rate of luminescence was calculated. This was then related to the luminescence 

yield of the two 250 pg standard bands. This allows us to estimate the amount of IL-

36 on the blot. Assuming full cross reactivity for -actin between the mouse extract 

control and the human cell extract, I also calibrated the relative proportion of -actin in 

each lane. Given that, control lane contained a known quantity of protein, it was then 

possible to estimate the amount of protein loaded in each lane by comparison of the 

quantity of -actin. They finally allowed us to estimate the quantity of IL-36 as a 

proportion (in part per million) of the total protein. 
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4.13 Attempted activation of cell autonomous processing of IL-

36 through activation of Toll-like receptors 
 

First, I tested whether TLR7, TLR8 or activation of necroptosis could activate 

IL-36 protein expression and processing in A-431. A-431 cells were treated with 20 

ng/ml TNF and 67 ng/ml PMA for 8 hr or 20 ng/ml TNF and 67 ng/ml PMA for 6 hr to 

induce expression of endogenous IL-36 then were further treated for 2 h with 0.1 

g/ml of CL-097, which is TLR7 activator or 1 g/ml CL-075, which TLR8 activator as 

described in section 2.6.10. A western blot showed that A-431 did not respond to TLR7 

or TLR8 activators and IL-36 protein is not processed. The data are shown in the 

figure 4.24a and 4.24b. 

The hydrotropic dipeptide ester Leu-Leu-OMe has been reported to trigger necroptosis 

as a result of its polymerisation by proteases inside endosomes (Odaka et al., 1995).  

With the necroptosis inducer, A-431 cells were treated for 6 hr with 20 ng/ml TNF to 

induce IL-36 protein expression then treated with 0.25 mM Leu-Leu methyl ester 

hydrobromide (Leu-Leu-OMe) for 2 h to test whether it could induce processing of the 

protein or 8 hr with 0.25 mM Leu-Leu-OMe drug as a control as in section 2.6.12. 

Three biological replicates culture were used for each treatment. Protein samples were 

extracted as described in section 2.6.3. SDS-PAGE gel was used to separate cells 

lysate proteins (10 g/lane). IL-36 protein was visualised and measured by western 

blotting. There was no detectable induction of IL-36  protein by CL-075 or CL097 and 

no processing was caused by either CL-075, CL097 or Leu-Leu-OMe as shown in 

figure 4.25. 
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Figure 4.24 Visualisation of IL-36 protein after toll like receptor activators 

treatment of TNF/PMA treated cells. (A) TLR7 activator Lane (1-3): 20 ng/ml TNF 

and 67 ng/ml PMA for 8 hr, lane (4-6) 20 ng/ml TNF and 67 ng/ml PMA for 6 hr TNF 

then 0.1 g/ml CL-097 for 2 hr, lane 7:  0.25 ng processed and unprocessed IL-36 

protein (positive controls). (B). TLR8 activator. Lane (1-2): LSM for 6 hr then 1 g CL-

075 for 2 hr, Lane (3-4): 1 g CL-075 for 8 hr,  Lane (5-7): 20 ng/ml TNF and 67 ng/ml  

PMA for 6 hr then 1 g CL-075 for 2 hr,  Lane 8: blank  (negative control), Lane 9: 0.25 

ng of processed or unprocessed IL-36 protein (positive controls). This experiment 

was performed twice and demonstrated similar results both times. 
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Figure 4.25 Visualisation of IL-36 protein after treatment of A-431 cells with Leu-

Leu-OMe. Lane (1-3): 67 ng/ml PMA + 20 ng/ml TNF for 8 hr, Lane (4-6): 67 ng/ml 

PMA + 20 ng/ml TNF for 6 hr then 2 hr with 0.25 g Leu-Leu-Meo, Lane 7: Control (no 

treatment), Lane 8: Mouse protein (negative control), Lane 9: 0.25 ng of processed 

and unprocessed IL-36 protein (positive controls). This experiment was performed 

twice and demonstrated similar results both times. 
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4.14 Inducing death program in A-431 through using apoptosis 

agents 

 
I examined possible processing of IL-36 in A-431 cells by apoptosis inducers 

cycloheximide, staurosporine and A23187 calcium ionophore. A-431 cells were 

treated with 20 ng/ml TNF and 67 ng/ml PMA for 6 hr to induce expression of 

endogenous IL-36 before the medium was exchanged for serum free medium 

containing the protein synthesis inhibitor cycloheximide (100 M/ml), protein kinase 

inhibitor staurosporine (0.5 mM/ml), the calcium ionophore A23187 (5 M) or a 

combination of cycloheximide (100 M), staurosporine (0.5 mM) and A23187 (5 M) 

for 24 h in a total volume 200 l on 9.5 cm2 tissue culture well, as described in 2.6.11. 

SDS-PAGE gel was used to separate cell lysate proteins 20 g/lane. Mature and 

immature IL-36 protein (0.25 ng) were used as positive controls. Induction of 

expression endogenous IL-36 protein was measured by western blotting. I found that 

a fraction of the IL-36 protein changes to a mobile form when cells were treated with 

cycloheximide or staurosporine. The C+2-ionophore A23187 triggers no such defect. 

The new band is visible in figures 4.26 and 4.27. It is less mobile than n18-IL-36 

standard, so is possible cleaved at a different site. Treating A-431 cells with 

cycloheximide, staurosporine or A23187 alone for 24 hr did not induce IL-36 protein 

synthesis as shown in figure 4.28.  
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Figure 4.26 Change in mobility of IL-36 protein in A-431 cells in response to 

toxic pro-apoptotic agents. A-431 cells were treated with 20 ng/ml TNF and 67 ng/ml 

PMA for 6 hr then re-stimulated with different apoptosis inducers for 24 hr. Lane (1-2) 

100 M cycloheximide, Lane (3-4): 5 M A23187 (calcium ionophore), Lane (5-6): 0.5 

mM staurosporine, Lane 7: mouse protein (negative controls), Lane 8: 0.25 ng 

processed and unprocessed IL-36 protein (a positive controls). IL-36 protein 

appeared to be processed in A-431 cells after cycloheximide or staurosporine re-

stimulation (yellow arrow). This experiment was performed twice and demonstrated 

similar results both times. 
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Figure 4.27 Change in mobility of IL-36 protein in A-431 cells in response to 

toxic pro-apoptotic agents. A-431 cells were treated with 20 ng/ml TNF and 67 ng/ml 

PMA for 6 hr then re-stimulated with different apoptosis inducers for 24 hr. Lane 1: 

100 M cycloheximide, Lane 2: 5 M A23187 (calcium ionophore), Lane 3: 0.5 mM 

staurosporine, Lane (4-6): 100 M cycloheximide, 5 M A23187 and  0.5 mM 

staurosporine, Lane (7-8): Mouse protein (negative controls), Lane 9: 0.25 ng 

processed and unprocessed IL-36 protein (positive controls). IL-36 protein appeared 

to be processed in A-431 cells after cycloheximide and staurosporine treatment 

(yellow arrow). This experiment was performed twice and demonstrated similar results 

both times. 

 

 

 

  

 1            2              3             4           5            6             7           8        9 

-actin 

 1            2              3             4           5            6             7           8        9 



170 
 

 

 

 

 

                                             

 

Figure 4.28 Cycloheximide, staurosporine and calcium ionophore alone do not 

induce IL-36 protein synthesis in A-431 cells. A-431 cells were treated with 

apoptosis inducers for 24 hr (negative controls). Lane (1-2): 100 M cycloheximide, 

Lane (3-4): 5 M A23187 (calcium ionophore), Lane (5-6): 0.5 mM staurosporine, Lane 

(7-8): 100 M cycloheximide, 5 M A23187 and 0.5 mM staurosporine, Lane 9: 0.25 

ng processed and unprocessed IL-36 protein (positive controls). This experiment was 

performed twice and demonstrated similar results both times. 
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4.15 Inducing IL-36 protein processing in A-431 cells with different 

time points  

 
I sought to determine how rapidly the mobility shift in IL-36  in response to 

staurosporine in A-431. A-431 cells were treated with 20 ng/ml TNF and 67 ng/ml PMA 

for 6 h to induce IL-36. The medium was changed into serum free medium and cells 

were incubated with 0.5 mM/ml staurosporine for 0, 6, 12 and 24 h. After each time 

point, cells lysate and supernatant were collected in total volume 0.2 ml as in described 

in section 2.6.14. SDS-PAGE gel was used to separate cells lysate proteins (20 g) 

per Lane. Mature and immature IL-36 protein (0.25 ng) were used as positive 

controls. Inducing expression of IL-36 protein was visualised by western blotting. 

Treatment with staurosporine resulted in a change in mobility of IL-36 in response to 

staurosporine in a time dependent manner as showed in figure 4.29.  
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Figure 4.29 Time course of the change in mobility of theIL-36 protein in A-431 

cells in response to staurosporine. A-431 cells were treated with 20 ng /ml TNF and 

67 ng/ml PMA for 6 hr then re stimulated with 0.5 mM staurosporine in different time 

points. Lane (1-3): 0 h, Lane (4-6) 6 h, Lane 7: Mouse protein (negative control), Lane 

8: 0.25 ng processed IL-36 protein (positive control), Lane 9: unprocessed IL-36 

protein (positive control), Lane (10-12): 12 h, Lane (13-15): 24 h, Lane 16: Mouse 

protein (negative control), Lane 17: 0.25 ng processed IL-36 protein (positive control), 

Lane 18: unprocessed IL-36 protein (positive control). The faster mobility from IL-

36  is indicated by the yellow arrow. This experiment was performed twice and 

demonstrated similar results both times. 
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4.16 Stimulation human primary keratinocytes with PMA and TNF 

then re-incubated with staurosporine  
 

In the light of our finding, that staurosporine induced a change in mobility of IL-

36 in A-431 cells, I attempted to repeat experiment in primary human keratinocytes. 

Cells were cultured as described in the section 2.6.13. Human primary keratinocytes 

were treated with 67 ng/ml PMA and 20 ng/ml TNF for 6 hr followed by 0.5 mM 

staurosporine for 24 h in total volume 200 l as in section 2.6.13. SDS-PAGE gel was 

used to separate cells lysate proteins (20 g) per lane. Mature and immature IL-36 

protein (0.25 ng) were used as positive controls. The induction of expression of IL-36 

protein was demonstrated by western blotting. IL-36 protein was induced compared 

with control (untreated primary cells), and I found no evidence that IL-36 protein is 

truncated after treatment with staurosporine figure 4.30. 
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Figure 4.30 Treatment of primary human keratinocytes with PMA and TNF for 6 

hr followed by staurosporine for 24 h. Lane (1-3): primary human keratinocytes 

were treated with 20 ng /ml TNF and 67 ng/ml PMA for 6 h then re-stimulated with 0.5 

mM staurosporine for 24 h. Lane (4-6): untreated primary human keratinocytes. Lane 

7: Mouse protein (negative control) Lane 8: 0.25 ng unprocessed IL-36 protein 

(positive control). Lane 9: processed IL-36 protein (positive control). This experiment 

was performed twice and demonstrated similar results both times. 

 

 

 

 

 

 

 

 

-actin 



175 
 

4.17 Infection HaCaT cells with pathogenic S. aureus to induce IL-

36 protein.  
 

I tested whether treatment of HaCaT cells with pathogenic S. aureus activates 

protein expression and processing in HaCaT cells I exposed 5 x 106 HaCaT cells to 

3.6 x 106 S. aureus (SH1000) in serum free medium compared with uninfected cells. 

Cells were lysed a 6 h and both supernatants and cell lysate were pooled as describe 

in 2.6.7. Protein samples were loaded at 20 g per lane in each well. Mouse protein 

was used as a negative control. Processed and unprocessed IL-36 proteins (0.25 ng) 

were used as positives controls.   

Western blotting data showed that IL-36 protein is slightly induced in HaCaT cells 

after infection with S. aureus compared with uninfected cells, but induced IL-36 

protein is not processed as shown in figure 4.31.  
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Figure 4.31 Infection HaCaT cells with S. aureus for 6 h. Lane (1-3): uninfected 

HaCaT cells. Lane (4-6): Infected HaCaT cells with S. aureus for 6 h. Lane 7: Mouse 

protein (negative control) Lane 8: 0.25 ng unprocessed IL-36 protein (positive 

control). Lane 9: 0.25 ng processed IL-36 protein (positive control). This experiment 

was performed three times and demonstrated similar results both times. 
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4.18 Discussion  

In this chapter, I focused on the activation of IL-36 cytokines at the level of the 

mRNA and protein, so HaCaT and A-431 cells were used because I expect that these 

cells would produce IL-36 in the same way as the keratinocytes from which they are 

derived.       The role of IL-36 signalling in host-defence and inflammation responses 

to injury and infection is documented. IL-36 plays an important role to protect host 

against infection. Epithelial cells express IL-36 particularly keratinocytes (Johnston et 

al., 2011). It has been demonstrated that IL-36 signalling plays an indirect role in the 

polarisation of Th1 cells from naive T cells (Vigne et a., 2012). Signalling of IL-36 

cytokines relates to skin diseases such as psoriasis (Debets et al., 2001). Release of 

IL-36 that is expressed by KCs leads to binding to its receptor on DCs surface. This 

binding leads to the secretion of IL-23, which is needed to activate Th17 cells.  

 

4.18.1 Inducing expression of IL-36 mRNAs 

The first aim in this study was to investigate in vitro stimuli that can regulate 

expression of IL-36 mRNAs. HaCaT cells were treated with IL-1, IL-36 and TNF to 

activate IL-36 production. In agreement with (Carrier et al., 2011) and (Johnston et al., 

2011) RT-PCR results show that IL-1  and TNF induce mRNAs (checked by 

sequencing of cDNA) that correspond to spliced mRNAs of IL-36 and IL-36. In 

contrast, added IL-36 was not a significant activator for expression IL-36 cytokines 

in HaCaT. Because IL-36 mRNA was not reliably detected in HaCaT cells, THP-1 

cells were used to check IL-36 to validate the RT-PCR product.  

It was necessary to test whether n6-IL-36 (prepared in the laboratory) had activity on 

HaCaT. CXCL8 ELISA data showed that IL-36 was less potent than IL-1 and much 

less potent than TNF in the stimulation of CXCL8 expression. This finding was shown 

by  Carrier et al., (2011) and Foster et al., (2014), who found that IL-36 is less potent 

than IL-1 and much less potent than TNF in activation of NF-B through assessment 

of CXCL8 secretion. 

RT-quantitative PCR was used to assess the induction level of IL-36 mRNAs in HaCaT 

cells and A-431 cells. The RT-qPCR results showed that IL-36 and IL-36 mRNAs 

were very substantially and similarly induced in response to IL-1, TNF or PMA, but 
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were not significantly induced by IL-36 treatment. This is particularly obvious for IL-

36  In A-431 cells, RT-qPCR data also showed that the combination of TNF and PMA 

or TNF and flagellin synergistically induce expression of IL-36 and IL-36 but not IL-

36 compared with flagellin, TNF or PMA alone in A-431 cells. These results are 

supported by (Busfield et al., 2000), who showed that PMA or TNF can regulate the 

expression of IL-36 mRNA in the human primary keratinocytes. Moreover, the role of 

synergistic action of two inflammatory stimuli in the regulation of IL-36 gene expression 

was shown before. For instance, Carrier et al., 2011 showed that IL-36 genes are 

significantly induced in primary keratinocytes in response to a combination of IL-17A 

with IL-36, IL-36 or IL-36 proteins.  Furthermore, IL-36, IL-36 and IL-36 mRNAs 

in the primary human keratinocytes were positively regulated in response to the 

combination of IL-22 with IL-17A or TNF (Carrier et al., 2011 and Johnston et al., 

2011).  

 

4.18.2 Induction of expression of IL-36 protein  

I investigated the role of TNF in regulation expression of IL-36 protein at 

different time points in A-431 cells and to check whether TNF can regulate proteolytic 

processing of IL-36. Western blot data showed that IL-36 protein was induced in 

response to TNF in a time dependent manner. However, the proteolytic processing 

was not observed. To induce proteolytic pressing, A-431 cells were treated for 24 h 

within TNF then re-incubated for 6 h with different inflammatory stimuli. Western blot 

data showed that the combination of TNF with PMA or flagellin induced IL-36 protein, 

but again proteolytic processing was not observed. These data were confirmed in 

HaCaT and A-431cells after incubation with TNF and PMA or TNF and flagellin for 6 

h compared with TNF, PMA or flagellin alone.   

I sought to investigate whether the activation of TLR7, TLR8 or necroptosis can induce 

the proteolytic processing of endogenous IL-36 protein that is induced by TNF and 

PMA. Western blot data showed that A-431 did not respond to the TLR7 or TLR8 

activator. necroptosis stimulus did not induce processing of endogenous IL-36. This 

finding seems to be explained by Kollisch et al., 2005, who showed that HaCaT cells 

do not express TLR7 and TLR8. This suggests that A-431 also cells do not respond 
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to TLR7 or TLR8 agonist because these cells, being a keratinocytes cell line also lack 

these receptors. Furthermore, a necroptosis stimulus did not induce processing of 

endogenous IL-36. S. aureus bacteria was also tested to induce expression of 

endogenous IL-36 protein in A-431 cells. A western blot showed that S. aureus does 

induce expression of endogenous IL-36 protein compared with uninfected cells, but 

proteolytic processing was not apparent. 

 

4.18.3 Using apoptotic stimuli to attempt to induce proteolytic 

processing of endogenous IL-36 protein.  

Cell damage was induced to see whether proteolytic processing of endogenous 

IL-36 protein can be induced. A western blot showed that cycloheximide or 

staurosporine does induce some proteolytic processing of endogenous IL-36 protein 

in A-431 cells, but I could not reproduce this in the primary human keratinocytes. 

Staurosporine induced proteolytic processing in (A-431) in a time dependent manner. 

However, the clipped protein appeared to be intermediate in molecular weight between 

the unprocessed and recombinant n18-IL-36 which could suggest cleavage other than 

at n17 site. England et al., 2014 showed that proteolytic processing of pro-IL-1 was 

induced by cycloheximide or staurosporine in bone marrow derived macrophages 

culture that have been induced by LPS. Although Hayakawa et al., 2009 showed that 

the IL-33 precursor, which is in the same family of IL-36, is processed into an active 

form in PMA stimulated human gastric carcinoma cell line culture, when followed by 

calcium ionophore, our western blot data showed that calcium ionophore did not 

induce proteolytic processing of pro-IL-36. However, calcium ionophore increased 

induction of endogenous pro-IL-36 protein in A-431 cells after induction of expression 

by TNF and PMA.  
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4.19 Conclusion  

To summaries, RT-PCR and qPCR data showed that IL-36 mRNA is the 

principle IL-36 that is induced in HaCaT and A-431 cells. Expression of endogenous 

IL-36 protein is regulated in these cells in response to TNF and PMA, TNF and 

flagellin or PMA. The TLR7, TLR8 or necroptotic inducers cannot induce processing 

of the IL-36 protein. Cycloheximide and staurosporine, which are toxic inducers of cell 

death both seem to cause a small proteolytic change in the pro IL-36 protein but the 

mobility if the product in SDS-PAGE is not the same n18-IL-36. control. Staurosporine 

also did not cause processing of IL-36 protein in the primary human keratinocytes, 

although IL-36 protein is induced in response to PMA and TNF. IL-36 protein is 

induced in HaCaT cells after being challenged with S. aureus, but it is not processed. 
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Chapter 6 

General Discussion  
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5. 1 The biological activity of IL-36 on its endogenous receptor  
 

As the first step in exploring the specificity of IL-36 receptor and the specificity 

of its signalling pathway, I compared the activity of known and new N-terminal 

variations of IL-36.  

To test the biological activity of all IL-36 mutants by an inexpensive and rapid 

technique, I first cloned single cells to produce a clonal line of HT-29 cells that had 

been transfected with luciferase reporter gene to achieve high expression of luciferase 

output. HT-29 cells are one of a minority of cell lines that express IL-36R mRNA 

(Towne et al., 2004). I selected a single cell from a population of stable reporter gene 

transfectants, which I named D7 that showed strong expression of luciferase and a 

500-fold (see figure 3.20) signal to background ratio in response to IL-36 compared 

with unstimulated cells. HT-29 and their daughter cell lines also have endogenous 

receptors for IL-1 and TNF. D7 was used to compare the biological activity of the 

recombinant proteins that I prepared. Furthermore, if I specifically inactivated the 

IL1RL2 gene, which encodes the only known IL-36R, and if that mutation completely 

inactivates of the response to IL-36, I can conclude that IL-1LR2 is the only receptor 

for the IL-36, at least on HT-29 cells. A specific mutation in the IL1RL2 gene should 

serve to inactivate all the response to IL-36, without inhibiting any other NF-B 

activated pathways. The HT-29 clone--luc D7 showed strong responsiveness to the 

TNF, IL-1 and IL-36. It was arbitrarily chosen for kinetic work and disruption of 

IL1RL2.  

A further practical reason was to create a control cell line that was specifically 

insensitive to IL-36. Hypothetical components of our recombinant protein preparations, 

such as endotoxin, that activate NF-B by some other route than through IL-36R would 

be expected to be unaffected by inactivating IL-36R, and thus the IL-36R deficient cell 

line could reveal the presence of contaminants. 

The signalling pathway of the active form of IL-36, IL-36 or IL-36 proteins has an 

important role in inflammatory diseases through activation of the NF-B and MAPK 

pathway. IL-36 proteins expressed by cells are biologically inactive and they require 

truncation to be activated (Towne et al., 2011). It is assumed that natural truncation 

results from proteolytic processing of these precursors of inflammatory cytokines, but 
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the mechanism has not been completely investigated. An in vitro study by (Towne et 

al., 2011) showed that truncation of five amino acids from IL-36, four amino acids 

from IL-36 or 17 amino acids from full length IL-36 from N terminus raises their 

biological activity between 1,000-10,000-fold. (Henry et al., 2016) studied the 

activation of recombinant IL-36 precursors by proteolysis in vitro and reported that 

neutrophil derived elastase, proteinase 3 and cathepsin G can cleave the N-termini 

from IL-36 precursors and activate them. The cleavage sites of these enzymes that 

Henry et al. reported are different from optimal truncation site that observed by Towne 

et al. For example, Henry et al show that full length IL-36 can be cleaved by cathepsin 

G and elastase enzymes to activate IL-36. The recombinant products had Lys3 and 

Ala4 as their N-termini specifically rather than Lys6, as suggested by Towne et al. The 

IL-36 precursor can be processed by cathepsin G before Arg5 or non-exclusively at  

Phe53 while IL-36 precursor can be cleaved by both elastase and proteinase-3 before 

Val15 instead of Ser18, which is the activation site suggested by Towne et al. Henry et 

al,  showed that the biological activity of mixtures of proteins derived from pro-IL-

36 contained product whose N-terminal were Ala4, IL-36 at Arg5 and IL-36 at Val15 

is increased 500-fold compared with unprocessed protein. On the other hand, Towne 

et al data that showed that N terminus truncation of n6 (Lys) IL-36, n5 (Arg) IL-36 

and n18 (Ser) IL-36 increased biological activity 3000, 8000 and 1500- fold 

respectively. If cathepsin G, elastase and proteinase3, which are specifically derived 

from neutrophils, are required for the processing of pro-IL-36 proteins then IL-36 

activation cannot precede neutrophil recruitment. However, IL-36 is reported to have 

a major role in the recruitment of neutrophils (Foster et al., 2014) because activated 

IL-36 is recruited the neutrophils into the site of inflammation. This suggests that IL-36 

must already be activated before the neutrophil enzymes become available. It could 

be possible that another signal rather than activated IL-36 can recruit neutrophils, then 

pro-IL-36 that is released from dead KC as result of apoptosis or another cells death 

signals can be activated by these enzymes. Neutrophil enzymes then sustain the 

recruitment of more neutrophils through their activation of IL-36.  

(Ainscough et al., 2017) have reported that cathepsin S, which is endogenously 

activated in human keratinocytes during inflammation, processes IL-36 precursors in 
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vitro to yield the same at n18(Ser) IL-36 that Towne et al showed to be active, and this 

process, which does not involve neutrophils, has the potential to recruit neutrophils.  

 

I have used our own assays to determine the dose response of endogenous IL-36 

receptor into endogenous N-terminal forms of human n6-IL-36, n5-IL-36  and n18-IL-

36. Firstly, I have shown that n5-IL-36 and n18-IL-36 proteins as well as n6-IL-36 

induced luciferase reporter gene expression to the same level that I have seen with 

TNF (see figure 3.18). The level of induction is consistently at least 5-fold higher 

compared with induction by IL-1 recent data from our laboratory has shown the same 

level of stimulation by IL-1 Analysis of dose response curves fit well to a curve with 

the Hill coefficient of 1.5, which implies some cooperativity between receptor for 

binding IL-36. The EC50 of n6-IL-36, n5-IL-36  and n18-IL-36 were found to be 3.3 

nM, 0.12 nM and 18 nM respectively.  

 

The EC50 that I found are higher than have been reported before by (Towne et al., 

2011). EC50 values of IL-36, n5-IL-36 and  n18-IL-36 that were published by these 

authors were 50, 8 and 147-fold lower than have found, were 0.06 nM, 0.015 nM and 

0.122 respectively, but they are in the same effective order (IL-36< IL-36<IL-36). 

However, the reporter cells that were used by Towne et al were human Jurkat cells, a 

lymphocyte tumour derived line lacking IL-36R that had been transfected with IL-36R 

expression vector. I used cells that express endogenous IL-36R, so it might be 

possible that these differences in EC50 result from binding of IL-36, IL-36 and IL-36 

and recycling of the transfected IL-36R in the Jurkat cells much more slowly than 

endogenous IL-36R. The differences in response between cells with transfected IL-

36R and cells with endogenous IL-36R was previously shown by Foster et al., 2014, 

who used primary human keratinocytes to assess CCL20 chemokine production 

protein in response to truncated n6-IL-36 and n5-IL-36 or n18-IL-36 The EC50 that 

these authors found were much higher than the data reported by Towne et al., 2011 

but their EC50 are still generally lower than our data except n5-IL-36 which is higher 

than our values but again in the same order (IL-36 (0.465 nM)<IL-36 (0.801)<IL-

36 (1.16 nM) (Foster et al., 2014). The biological activity of n6-IL-36 or n18-IL-36 
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has been assessed by a third group. (Zhou et al., 2018) that measured secretion of 

CXCL1 chemokine in HaCaT cells culture after stimulation with these proteins for 24 

h. ELISA data showed that the EC50 of n6-IL-36 and n18-IL-36 are 2 nM and 0.6 nM 

respectively which are different again from Towne et al., and Foster et al., data. In both 

experiments, cells were incubated for 24 h (see Table 4.1). In the summary (Table 

4.1), the estimated EC50 for the three IL-36 ligands differs between all studies. Various 

factors are different between them which could result in measured differences in the 

activity of IL-36 cytokines themselves. These factors could include the following. The 

duration of assay could be a factor since I show that the response to IL-36 is shorter 

than 24 h of some incubation’s periods used by others. The mature of the output 

measured is another factor. I have used short lived Luc-2p reporter (Leclerc et al., 

2000) whereas other groups have measured the accumulation of stable proteins. 

Different groups have analysed different cell types, and it is possible that other cells 

specific proteins that modulate the activity of IL-36 signalling and the rate of turnover 

the receptors may differ between the cells. Finally, there is the differences between 

using transfected, overexpressed exogenous IL-36R and the endogenously 

expressed protein, as I have done.  

 

I have examined the duration of the activation of NF-B in response to IL-36 or IL-

36 compared with TNF. I expected that the duration of NF-B activation in response 

to n18-IL-36 protein will not be different from n6-IL-36 or n5-IL-36. I showed that the 

reporter gene activity shown in response to these cytokines was and to TNF very 

similar (figure 3.18). I have shown that IL-36 requires 3 hr to reach its maximum 

response (figure 3.21). The difference in activity is small between 3 h and 6 h while 

n6-IL-36 or TNF reach their maximum response in 6 h. The time course data showed 

that cells largely lost their responsiveness to the n6-IL-36, n5-IL-36 or TNF after 12 

h. Towne et al., 2011 incubated their reported cells for 5 h but Foster et al., 2014 

incubated primary keratinocytes for 24 h with the n6-IL-36 and n5-IL-36 or n18-IL-

36. It is likely that the response to IL-36 is virtually complete within 18 h.  

The response of cells to IL-36 seems to be dependent on the exact structure of N-

terminus of the protein. This suggests that the IL-36 receptor can discriminate small 
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differences. Towne et al. have already shown the importance of the position of N-

terminus. I have begun to investigate the effect of changing the N-terminal residue 

itself. To come to a firm conclusion, I needed to generate the assay by cloning HT-

29/luciferase reporter cell line. To start, I cloned single HT-29 cells that had been stably 

transfected with destabilised luciferase reporter plasmids (pGL4.2, Promega), having 

made a clonal line (D7), and I created from an IL-36R deficient line (A6) which I have 

used to test my protein preparations for contamination with NF-B activators other 

than IL-36. Figure 3. 21 shows this test and shows that there is no detectable 

contamination.  

The biological activity of the modified IL-36 proteins were then assessed compared 

with (Lys) n6-IL-36. In our lab the Lys6 N terminus of the biologically active IL-36 

that was identified by Towne et al., was replaced with either serine (n6-K6S-IL-36) or 

glycine (n6-(K6G-IL-36). I also repeated the biological activity of the pro-protein, n1-

IL-36 or n4-IL-36 that Henry et al., suggested to be activated. My data showed that 

n6-K6S-IL-36 and n6-K6G-IL-36 induced the NF-B reporter to the same maximum 

extent as n6-IL-36, but the biological activity of n6-IL-36 was reduced ~ 9 and ~ 130-

fold when lysine residue was replaced with serine or glycine respectively. The 

molecular masses of these soluble proteins have been determined by mass 

spectrometry and they corresponded very closely to predicted masses. The only 

differences between the proteins was the structure of N terminus. These changes in 

the biological activity, therefore, seem to be related to side chain differences between 

amino acids. Lysine has an extended side chain containing a positively charged an 

−amino group, while serine is short and has no charge. Glycine, unlike the other two 

amino acids is conformationally completely free because it has only a hydrogen group 

side chain consequently its alpha-amino group is not spatially constrained. These 

differences in the side chain might have a negative way on the binding affinity for 

endogenous IL-36R. In summary, the data of Towne et al (2011) have suggested to 

us that the receptor can measure the exact position of the amino terminus of IL-36. 

My data suggest that the receptor is even sensitive to the structure of the amino 

terminal residue. In the future, this may further investigate by making mutations in IL-

36 and complementary mutation in the IL-36R, which I can now re-introduced into our 

IL-36R deficient cell line, be explained when a deletion experimental structure is for 

the IL-36R complex with IL-36.    
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Henry et al have shown that a tagged pro IL-36 (n1-IL-36) can be activated in vitro 

by neutrophil enzymes and have identified major products in the partially active 

mixture which inactive, which Towne et al would predict to be inactive. Henry et al., 

2016 shows that neutrophils derived enzymes cathepsin G can cleave precursor of IL-

36 to produce n4-IL-36. We generated n4-IL-36 by trypsin digestion of His6-tagged-

n1-IL-36 and I have found it to be inactive although it is stable and soluble. It’s 

identified that was confirmed by mass spectroscopy. I, therefore, conclude that it is not 

an active product of neutrophil enzymes. I have also shown that the biological activity 

of n4-IL-36 is undetectable at the concentration made by (Henry et al., 2016). Since 

the overall activation of the IL-36 precursor in Henry et al., experiments were small, 

it seems possible that traces of the n6-IL-36 that were not detected might account for 

the activity of the digestion product. In our hands, this n4-IL-36 is not active and so 

cannot be the active component in the mixture. It could be argued that our n4-IL-36 

is misfolded even though it is stable. It could be possible to test whether it can be 

made active by a dipeptidyl peptidase such as cathepsin C this could demonstrate the 

protein is potentially active in the same way that I have shown that n1-IL-36 can be 

fully activated concentration made by chymotrypsin.  

I confirmed that n6-IL-36 is at least 1000-fold more active than n1-IL-36, though I 

cannot measure EC50. By limited chymotrypsin digestions, I have completely activated 

the n1-IL-36 precursor, demonstrating that the protein product is activatable though 

inactive. Mass spectrometry data showed that n1-IL-36 protein is cleaved by 

chymotrypsin at three different sites with a major extra cleavage at Iso31 (see appendix 

A.4). Reporter gene showed that digested n1-IL-36 protein is biologically active as 

n6-IL-36 and the product did not induce NF-B in IL-36R deficient cells, so the activity 

did not result from contaminant or chymotrypsin. Though these are preliminary 

findings, it seems that active IL-36 was processed at n6 but could also be digested 

at n31 without loss the activity.  

To see whether NF-B can be re-activated after declining in the cells after 12 h. I 

attempted to reactivate the response with IL-36 or TNF. The reporter gene could be 

reactivated in cells that had been exposed to n6-IL-36, n5-IL-36 After IL-36 

treatment the response to TNF is higher than n6-IL-36 or n5-IL-36. The same is true 
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to the luciferase expression in the TNF fatigued cells that were reactivated with n6-IL-

36 or n5-IL-36  (see figure 3.22). The failure of supplemented n6-IL-36 and n5-IL-

36  to show a major difference indicates that the downregulation of responsiveness 

to either IL-36 is through the same mechanism. 

Table 5.1 Comparison of estimates of EC50 of the n6-IL-36 n5-IL-36 or n18-IL-

36  

Legends   EC50 (nM)  

Towne et al., 2011 

EC50 (nM)             

Foster et al., 2014 

EC50 (nM)             

Zhou et al., 2018 

EC50 (nM)  

Our proteins  

n6-IL-36 0.066 0.8 2 3.3 

n5-IL-36 0.015 0.46  0.12 

n18-IL-36 0.122 1.16 0.6  18 

n6-K6S-

IL-36 

   30 

n6-K6G-

IL-36 

   435 

  

To summarise, I have confirmed that there is the only one receptor regulating IL-36 

cytokine signalling pathway in HT-29 cells. NF-B reporter gene data showed that n6-

IL-36, n5-IL-36 and n18-IL36 activate a NF-B reporter gene to a similar extent and 

time range to TNF and that IL-36 is more potent than IL-1. In our laboratory we have 

shown that n4-IL-36 is not biologically active contrary to what has been previously 

reported. Moreover, the N-terminal lysine of mature IL-36 is also required for full 

activity. I also show that the biologically irrelevant proteases chymotrypsin can fully 

activate the inactive n1-precursor of IL-36 and that chymotrypsin cleaves before n6-

Lys. To our knowledge, this is the first time that this has been done on a protein of 

natural sequence. 

 

 

 

 



189 
 

5.2 Regulation expression of IL-36 mRNA and protein  
 

I have investigated the expression of endogenous IL-36 cytokines for several 

reasons. Firstly, IL-36 cytokines mRNAs regulation and protein processing are not yet 

well understood. Secondly, several lines of evidence suggest that these cytokines 

have important roles in the immune system of epithelia and specifically the skin, gut 

and airway system. Thirdly, though the IL-36 system is not seen outside the mammals, 

it is present in every mammalian genome that has been studied so far. In addition to 

their functional roles in the skin, these cytokines can also regulate the immune system 

of the skin to mediate inflammatory disorders. Genetic disruption of the system causes 

disease in mice and natural mutation of IL-36RA is one cause of generalised pustular 

psoriasis in human. Although IL-36 has a role in the regulation of the inflammatory 

response, the mechanism of releasing these cytokines is not yet known. 

 

To study the regulation of the expression of IL-36 cytokines at the level of mRNA and 

protein, I simulated KC, which are currently considered an important source of these 

cytokines, stimulated with either a single stimulus or a combination of two stimuli. The 

synergy between TNF and PMA or TNF and flagellin was discovered by chance while 

I was searching for agents that could induce processing of IL-36. I have also sought 

to discover ways to activated endogenous processing of IL-36. 

Because the mechanism of processing of IL-36 cytokines has not been clearly 

identified, different stimulation routes were tried, such as activation of Toll like 

receptors, necroptosis, apoptosis inducers or bacterial infection, to induce processing 

of IL-36. IL-36 was specifically chosen because I showed that can be detected 

reliably by western blotting and because processing causes a relatively large change 

in mobility. I note that the endogenous IL-36 from A-431 and HaCaT appears to 

migrate identically with recombinant pro-L-3. I investigated whether TNF and IL-1, 

which are the main inflammatory cytokines expressed in the skin during inflammation, 

can induce expression of IL-36 cytokines. Recombinant IL-36 was also used to 

assess whether it can activate its own gene and the other IL-36 genes. It has been 

suggested that IL-36 might activate and regulate itself through an autocrine signalling 

during inflammation (Carrier et al., 2011). Quantitative assessment of mRNA data 
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showed that TNF and IL-1 induced expression of IL-36 cytokines but IL-36 in 

HaCaT cells, had little compared with untreated cells.   

It seems that IL-36 weakly regulates expression of its own gene and IL36B and IL36G 

genes in HaCaT cells. One explanation may be that the level of expression of IL-36R 

in HaCaT cells is lower than the level of TNF and IL-1 receptors. ELISA assays of NF-

B responsive chemokine CXCL8 were state used to examine whether IL-36 is less 

effective than IL-1 or TNF in regulation expression of NF-B activation in HaCaT 

cells. In agreement with (Carrier et al., 2011) and (Foster et al., 2014), I found that IL-

36 is less potent than IL-1 and much less potent than TNF in activation of NF-B 

through assessment of CXCL8 secretion. On the other hand, in the luciferase 

expressing HT-29 line, D7, IL-36 is much more effective than IL-1 in inducing the B 

responsive luciferase reporter gene, and it is as effective as TNF (see figure 3.23).  

Although Towne et al reported that the EC50 of IL36 is 0.066 nM, our own data 

indicated that the EC50 is ~75-fold higher (see Figure 3.18). In this study, different 

concentrations were used to identify a best dose of IL36 that can induce CXCL8 

secretion. I found that IL-36 on HaCaT induces expression of CXCL8 (see figure 4.7), 

but even at saturation, the activation of CXCL8 expression is relatively weak compared 

with IL-1 or especially TNF.  

My data show that TNF is stronger than IL-1 and much more effective than IL-36 in 

activation of CXCL8 and that probably NF-B. I have therefore investigated the optimal 

condition of IL-36 mRNAs expression in response to TNF. It found that IL-36 mRNA 

expression is activated by TNF in a dose dependent manner over the range of 

concentrations used, but IL-36 and IL-36 mRNAs were not, but the response of IL-

36 or IL-36 were saturated in A-431 cells by 10 ng/ml TNF (figure 4.9). The 

expression level of IL-36 mRNA in the A-431 was significantly more strongly induced 

compared with IL36 and IL-36 in response to TNF. I also demonstrated that 

expression of IL-36 mRNA in response to TNF is sustained and is close to maximal 

at the first time point, 6 h that I investigated. Our experiments on HT-29 D7 also 

indicate that in the cell lines 6 h is the peak of NF-B activity in response to TNF (figure 

3.21). 
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RT-qPCR was used in this study to quantify the induction level of IL-36 mRNAs in both 

HaCaT and A-431 cell lines. TNF and IL-1 strongly induced of IL-36 mRNAs, and the 

effective dose of IL-36 that was shown by ELISA was also used. I also investigated 

the effect on IL-36 genes expression of other inflammatory stimuli such as phorbol 

esters (PMA) and flagellin and combinations of PMA or flagellin with TNF. 

 

PMA induced IL-36 and IL-36 but not IL-36 mRNAs in a similar manner to TNF and 

IL-1. PMA and TNF also showed synergistic induction of IL-36, IL-36 and IL-36 

mRNAs compared with PMA or TNF alone in HaCaT cells. This is particularly obvious 

for IL-36 (see Figure 4.11). In A-431 cells, RT-qPCR data also showed that flagellin 

and TNF or PMA and TNF synergistically induce expression of IL-36 and IL-36 but 

not IL-36 compared with flagellin, TNF or PMA alone (see figure 4.10).  

Several studies have observed that IL-36 cytokines are mainly connected with 

inflammatory skin diseases. (Debets et al., 2001) reported that keratinocytes express 

IL-36 cytokines and these cytokines are connected with skin diseases. The  

expression of IL-36, IL-36 and IL-36 is increased in the psoriasis (Debets et al., 

2001, Blumberg et al., 2007). In allergic contact dermatitis, IL-36, IL-36 and IL-

36 mRNAs expression is elevated and IL-36, IL-36 and IL-36  can be detected in 

the epidermis (Mattii et al., 2013). I note that my findings suggest that a second signal 

may be required in vivo to enhance the effect of TNF in the way that I have observed 

that PMA or flagellin do in vitro. A previous study by Carrier et al showed that IL-36, 

IL-36 and IL-36 are induced in vitro in primary human keratinocytes in response to 

TNF. (Johnston et al., 2011) also showed that TNF and IL-1 are strong inducers of 

IL-36, IL-36, IL-36 and IL-36Ra mRNAs in primary human keratinocytes. A study 

by (Busfield et al., 2000) showed that expression of IL-36 mRNA is rapidly stimulated 

in the human primary keratinocytes after stimulation with PMA or TNF. This suggest 

that regulation of IL-36 genes expression in the skin might be controlled by TNF and 

IL-1 cytokines, especially as it has been shown that inflammatory responses in the 

skin are initiated and maintained by TNF through its ability to induce NF-B pathway 

that regulates inflammatory genes expression (Aggarwal, 2003, Banno et al., 2004).  
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Inducing expression of IL-36 mRNAs in response to the synergistic action of stimuli 

has been shown before. For example, Carrier et al showed that a combination of IL-

36, IL-36 or IL-36 proteins synergise with IL-17A during regulation of expression of 

the IL-36 genes themselves in human primary keratinocytes. Furthermore, IL-22 and 

IL-17A or IL-22 and TNF synergistically induce expression of IL-36, IL-36 and IL-

36 mRNAs in the primary human keratinocytes in vitro (Carrier et al and Johnston et 

al).  

These data indicate that the expression of IL-36 is under control of NF-B pathway, 

and differences between inflammatory stimuli in regulation of IL-36 genes are related 

to variation between these stimuli in their activation of the NF-B pathway. This was 

confirmed by using combination of two NF-B activators, which leads to enhanced 

expression of IL-36 genes.  

Goel et al., 2007 showed that activation of protein kinase C (PKC) by phorbol esters 

such as PMA results in an effect on cell differentiation processes, protein synthesis, 

activities of enzymes, DNA synthesis and gene expression. In keratinocytes, several 

reports showed that cutaneous inflammation, epidermal tumour stimulation and 

differentiation are controlled by PKC (Hansen et al., 1990, Dlugosz et al., 1994, Lee 

et al., 1997, Wang and Smart, 1999, Mills et al., 1992). PKC Signalling regulates 

expression of transcription activator protein-1 (AP-1) in the skin (Angel et al., 2001). 

Chemical carcinogens, cytokines, growth factors and tumours activators can regulate 

expression of AP-1 (Angel and Karin, 1991, Karin et al., 1997). Epidermal tumour 

development and progression are induced by PMA through activation of AP-1 (Dekker 

and Parker 1994). Moreover, TNF receptor signalling can activate AP-1 to regulate 

expression of genes some of which may have a role in tumour promotion (Baud and 

Karin, 2001, Balkwill and Mantovani, 2001). My suggest that the expression IL-36 

genes are not only NF-B dependent but also PKC dependent. In particular, there are 

AP-1 binding sites in the hypersensitivity regions of the IL-36  promoters. My own 

findings suggest significant differences in the response of IL-36, IL-36 and IL-36 

genes to PMA or combination of PMA and TNF in HaCaT and A-431 cells that open 

up the question, whether all IL-36 agonists have the same level of regulation by NF-

B and AP-1 factors. Secondly, I might ask if PKC is also involved in regulatory IL-36 
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cytokine expression in airway system and gut in addition to NF-B signal as in skin or 

is the NF-B signal sufficient there.  

 

According to own data, which showed significant expression of IL-36 mRNA in 

response to PMA and TNF or flagellin and TNF, I have also shown that IL-36 protein 

is clearly expressed in response to these stimuli in HaCaT and A-431 cells. The protein 

product co-migrates with recombinant n1-IL-36 (the pro form of the cytokine so far).  I 

have not observed processing of endogenous IL-36 to produce n18-IL-36, which is 

the form that was identified as active by Towne et al., 2011. In my study, different 

methods were used to attempt to induce expression and processing of IL-36. 

I have assessed the induction level of IL-36 protein in A-431 after stimulation with 

TNF in different time points. Data showed that IL-36 protein is induced in a time 

dependent manner, but the time of induction was reduced when TNF combined with 

PMA or flagellin in both HaCaT or A-431 cells compared with TNF, PMA or flagellin 

alone. This generally reflects the effect of TNF and PMA on IL36 mRNA.  

  

I tested whether a lysosomotropic compound or TLR7 or TLR8 agonists could induce 

processing of pro-IL-36 protein after stimulation with PMA and TNF in A-431. I found 

showed that IL-36 protein was induced in response to a combination of PMA and TNF 

but that is not processed even after treating cells with lysosomotropic compound or 

TLR7 or TLR8 agonists. (Kollisch et al., 2005) have reported that TLR7 and TLR8 

mRNAs are not expressed in the HaCaT It is likely that the failure of TLR7 or TLR8 

agonists even to induce expression of IL-36 protein because keratinocytes cell lines 

do not express TLR7 or TLR8. I showed that when A-431cells were treated with TLR8 

agonist by itself, they did not respond to TLR8 agonist. Because A-431 cells are also 

an immortalised keratinocyte cell line, I would expect that A-431 cells also do not 

express TLR7 or TLR8.  

 

Since it had become clear that inducers of cell signalling through either the PKC or 

NF-B pathways do not induce the expected processing of the IL-36 protein, I also 

tried to induce a major damage in the cells to see if pro-IL-36 could be processed 
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through using stimuli that cause forms of programmed cell death. To see whether 

processing of pro-IL-36 protein processing is might be triggered by activating 

cytoplasmic calpains, calcium ionophore was used. Though cells clearly died, IL-36 

was not change.  

 

Incubation of A-431 cells with PMA and TNF followed by cycloheximide or 

staurosporine led to an increase in mobility of a fraction of the IL-36 presumably 

because of proteolytic processing of pro-IL-36. The processed protein, however, is 

not as mobile on electrophoresis as recombinant of n18-IL-36 (see figure 4.26 and 

4.27) and would therefore appear to be cleaved close to the N terminus. Staurosporine 

induced processing of IL-36 in a time dependent manner (see figure 4.29). (England 

et al., 2014) showed that cycloheximide or staurosporine induces processing of full-

length IL-1  precursor into it’s an active form in bone marrow derived macrophages 

culture that have been induced by LPS. Moreover, pro-IL-36 protein is not processed 

after using calcium ionophore, so this means that processing of pro-IL-36 is not 

calpain proteases dependent. (Hayakawa et al., 2009) showed that the IL-33 precursor 

is processed into an active form in PMA stimulated a human gastric carcinoma cell 

lines culture when followed by calcium ionophore. To see whether processing can be 

observed or not in primary human keratinocytes, primary human keratinocytes were 

treated with PMA and TNF followed by staurosporine. Western blot data showed that 

IL-36 protein is notably induced in treated cells compared with untreated cells, but 

induced IL-36 protein is not processed (see figure 4.30). A study by (Henseleit et al., 

1996) reported that calcium ionophore induces morphological changes in the HaCaT 

cells but these changes are not similar to apoptotic programmed cells death. An 

apoptotic pattern can be induced in keratinocytes, but it has been reported that it might 

not be complete as other types of cells Henseleit et al., 1996. Moreover, I infected 

HaCaT cells with living Staphylococcus aureus strain (SH1000) to examine whether 

pathogen infection could induce processing of IL-36 protein. I observed that precursor 

IL-36 protein is induced compared with uninfected cells, but bacterial infection does 

not induce proteolytic processing of IL-36 precursor. Therefore, I would only 

hypothesise that other signals from skin resident cells, such as T cells or Langerhans 

cells might have a role either directly through inducing apoptosis in the keratinocytes 

cells to allow release pro-IL-36 proteins and then proteolytically processing pro-IL-36 
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proteins by these other cells. Henseleit et al reported that IFN and UV light are much 

more effective than cycloheximide, staurosporine, calcium ionophore, TNF or PMA in 

inducing apoptosis in HaCaT cells. Alternatively, LCs or T cells might regulate 

expression of proteolytic enzymes that are required by KCs to process pro-IL-36 

proteins within KCs themselves. In this connection, (Ainscough et al., 2017) have 

shown that the cysteine proteases cathepsin S is induced in KC in response to 

inflammatory stimuli and it can process a recombinant IL-36  precursor to produce 

n18-IL-36. These authors have proposed that cathepsin S functions outside the cell. 

However, it seems possible that it could also process pro IL-36 inside the cell that 

and mature protein could be released during cell death.  

 

 

(Schonefuss et al., 2010) reported that cathepsin S proteolytic enzyme is detected in 

Langerhans but not keratinocytes in normal skin. However, in skin psoriasis, KCs 

express cathepsin S and its expression is activated in KCs by T cells. Another in vitro 

study by (Schwarz et al., 2002), showed that IFN upregulates expression of cathepsin  

S in both primary human keratinocytes and HaCaT cells. (Schonefuss et al., 2010) 

showed that incubation of HaCAT cells with T cells upregulated expression of 

cathepsin S in HaCaT cells through secretion of TNF or IFN, and the source of these 

cytokines is T cells. However, it is clear from my experiments that even 24 h treatment 

of HaCaT cells with TNF, on its own, is not sufficient to activate IL-36 processing, 

thus other extracellular signal must also be needed, and these might come from T 

cells.  

 

In conclusion, my results have shown that different stimuli can regulate expression of 

IL-36 cytokines in keratinocytes, and expression of IL-36 cytokines is not only under 

control of the NF-B pathway because activators of the NF-B pathway alone do not 

maximally induce IL-36. Synergy with PMA suggests the involvement of PKC and 

other factors that could naturally induce PKC. Although my data have shown 

significant induction of pro-IL-36 protein in the HaCaT and A-431 cells in response to 

PMA and TNF, TNF and flagellin or bacterial infection, this pro-IL-36  protein is not 

processed. Staurosporine and cycloheximide can induce processing of pro-IL-36 but 
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the product is not at the same molecular weight and it will be necessary to test the 

product for possible activity.  

 

5.3 Limitation of these studies  

Primary keratinocytes (KC) can be difficult to work with because of long 

isolation procedure and extremely sensitive cells. Their short life span makes in vitro 

manipulation difficult and genetic manipulation is not practical. Moreover, there are 

suitable keratinocyte cell line that resembles primary keratinocyte  which are available. 

In this study, a human keratinocyte cell line (HaCaT) and a skin carcinoma cell line (A-

431) were used as models because I expected that these cells could produce IL-36 

cytokines in a similar way to the keratinocytes from which they are derived. Human 

cell lines are more affordable and easier to manipulate than primary cells. However, 

other signalling pathways are provided by immune cells that surround keratinocytes in 

vivo and these signals might be required to regulate proteolytic processing of IL-36 

proteins while these signalling pathways might be provided to cell lines.  

The activation and expression of endogenous IL-36 protein by either TNF and PMA 

or TNF and flagellin was induced in HaCaT and A-431 cell lines and was only 

assessed in cell lysates. However, detection of IL-36 protein would need to be 

assessed in the supernatants by ELISA or by western blot in response to these stimuli 

to identify rapid transportation of the cytokine. Ainscough et al showed that IL-36 can 

be activated in vitro by cathepsin S. Cathepsin S was shown in another study to be 

activated in keratinocytes in response to TNF or IFN from T cells. Although TNF was 

used as an inflammatory stimulus to induce expression of IL-36 protein at different 

time points and concentrations, no proteolysis was detected in the induced pro-IL-36. 

For this to be conclusive, I would need evidence that cathepsin S is expressed required 

to be assessed in A-431 cells.  

The proteolytic processing of endogenous IL-36 protein was observed in A-431 cells, 

when cells were treated with either cycloheximide or staurosporine after induction of 

expression by TNF and PMA. The same proteolytic processing was shown in HaCat 

cells (data not shown). However, the clipped protein appeared to be intermediate in 

molecular weight between the unprocessed and recombinant n18-IL-36, which is 
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known to be an active form. However, the biological activity of processed IL-36 protein 

would need to be assessed.  

 

 

 

5.4 Future work  

Data from chapter 3 showed that there are differences between my own EC50 

data for IL-36 proteins which were derived from cells that express the endogenous IL-

36 reporter and the work of Towne et al (2011), who used   transfected, overexpressed 

exogenous IL-36R. Future work, comparing transfected and endogenous IL-36R in the 

same cell line could resolve this issue. It would be interesting to employ the IL-36R 

deficient cell line (A6).  

In addition, future work should focus on the role of NF-B and PKC in the regulation 

of IL-36 genes. Targeting of the NF-B pathway might be an attractive approach. It 

would be interesting to investigate role of AP-1 transcription factor in IL-36 genes in 

response to TNF and PMA or other inflammatory stimuli that can regulate expression 

of IL-36 genes this could be by using an AP-1 responsive reporter gene. Moreover, 

investigation which isoform of PKC is involved in regulation of IL-36 cytokines would 

be important. 

Ainscough et al showed that cathepsin S can cleave IL-36 at the same site (n18) that 

suggested by Towne et al (2011). Moreover, Schonefuss et al 2010 showed that 

cathepsin S is expressed in psoriasis associated keratinocytes but not in normal skin. 

However, in vitro, incubation of primary human keratinocytes and HaCaT cells with 

TNF or IFN, which are produced by T cells, induce expression of cathepsin S. It would 

be interesting to investigate the role of resident skin cells and the role of resident cells 

in lungs and the gut system in proteolytic processing of IL-36 precursors through using 

an animal model and targeting signals of these resident cells. 
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Appendix I- Predicted details of pET-IL1RN plasmid   

T7 promoter                           XbaI 

taatacgactcactatagggagaccacaacggtttccctctagaaataattttgtttaac 

                  NdeI                     His6 Tag 

tttaagaaggagatatacatatggctagcatgactggtggtcaccatcaccatcaccatt 

  Acc65I             M  A  S  M  T  G  G  H  H  H  H  H  H 

ctggtacc 

S  G  T… 
 

XhoI 
ctcgagatccggctgctaacaaagcccgaaaggaagctgagttggctgctgccaccgctgagcaataactagcataaccccttggggcctctaaacgggtct

tgaggggttttttgctgaaaggaggaactatatccggatatccacaggacgggtgtggtcgccatgatcgcgtagtcgatagtggctccaagtagcgaagcg

agcaggactgggcggcggccaaagcggtcggacagtgctccgagaacgggtgcgcatagaaattgcatcaacgcatatagcgctagcagcacgccatagtga

ctggcgatgctgtcggaatggacgatatcccgcaagaggcccggcagtaccggcataaccaagcctatgcctacagcatccagggtgacggtgccgaggatg

acgatgagcgcattgttagatttcatacacggtgcctgactgcgttagcaatttaactgtgataaactaccgcattaaagcttatcgatgataagctgtcaa

acatgagaattcttgaagacgaaagggcctcgtgatacgcctatttttataggttaatgtcatgataataatggtttcttagacgtcaggtggcacttttcg

gggaaatgtgcgcggaacccctatttgtttatttttctaaatacattcaaatatgtatccgctcatgagacaataaccctgataaatgcttcaataatattg

aaaaaggaagagtatgagtattcaacatttccgtgtcgcccttattcccttttttgcggcattttgccttcctgtttttgctcacccagaaacgctggtgaa

agtaaaagatgctgaagatcagttgggtgcacgagtgggttacatcgaactggatctcaacagcggtaagatccttgagagttttcgccccgaagaacgttt

tccaatgatgagcacttttaaagttctgctatgtggcgcggtattatcccgtgttgacgccgggcaagagcaactcggtcgccgcatacactattctcagaa

tgacttggttgagtactcaccagtcacagaaaagcatcttacggatggcatgacagtaagagaattatgcagtgctgccataaccatgagtgataacactgc

ggccaacttacttctgacaacgatcggaggaccgaaggagctaaccgcttttttgcacaacatgggggatcatgtaactcgccttgatcgttgggaaccgga

gctgaatgaagccataccaaacgacgagcgtgacaccacgatgcctgcagcaatggcaacaacgttgcgcaaactattaactggcgaactacttactctagc

ttcccggcaacaattaatagactggatggaggcggataaagttgcaggaccacttctgcgctcggcccttccggctggctggtttattgctgataaatctgg

agccggtgagcgtgggtctcgcggtatcattgcagcactggggccagatggtaagccctcccgtatcgtagttatctacacgacggggagtcaggcaactat

ggatgaacgaaatagacagatcgctgagataggtgcctcactgattaagcattggtaactgtcagaccaagtttactcatatatactttagattgatttaaa

acttcatttttaatttaaaaggatctaggtgaagatcctttttgataatctcatgaccaaaatcccttaacgtgagttttcgttccactgagcgtcagaccc

cgtagaaaagatcaaaggatcttcttgagatcctttttttctgcgcgtaatctgctgcttgcaaacaaaaaaaccaccgctaccagcggtggtttgtttgcc

ggatcaagagctaccaactctttttccgaaggtaactggcttcagcagagcgcagataccaaatactgtccttctagtgtagccgtagttaggccaccactt

caagaactctgtagcaccgcctacatacctcgctctgctaatcctgttaccagtggctgctgccagtggcgataagtcgtgtcttaccgggttggactcaag

acgatagttaccggataaggcgcagcggtcgggctgaacggggggttcgtgcacacagcccagcttggagcgaacgacctacaccgaactgagatacctaca

gcgtgagctatgagaaagcgccacgcttcccgaagggagaaaggcggacaggtatccggtaagcggcagggtcggaacaggagagcgcacgagggagcttcc

agggggaaacgcctggtatctttatagtcctgtcgggtttcgccacctctgacttgagcgtcgatttttgtgatgctcgtcaggggggcggagcctatggaa

aaacgccagcaacgcggcctttttacggttcctggccttttgctggccttttgctcacatgttctttcctgcgttatcccctgattctgtggataaccgtat

taccgcctttgagtgagctgataccgctcgccgcagccgaacgacgagcgcagcgagtcagtgagcgaggaagcggaagagcgcctgatgcggtattttctc

cttacgcatctgtgcggtatttcacaccgcatatatggtgcactctcagtacaatctgctctgatgccgcatagttaagccagtatacactccgctatcgct

acgtgactgggtcatggctgcgccccgacacccgccaacacccgctgacgcgccctgacgggcttgtctgctcccggcatccgcttacagacaagctgtgac

cgtctccgggagctgcatgtgtcagaggttttcaccgtcatcaccgaaacgcgaggcagctgcggtaaagctcatcagcgtggtcgtgaagcgattcacaga

tgtctgcctgttcatccgcgtccagctcgttgagtttctccagaagcgttaatgtctggcttctgataaagcgggccatgttaagggcggttttttcctgtt

tggtcactgatgcctccgtgtaagggggatttctgttcatgggggtaatgataccgatgaaacgagagaggatgctcacgatacgggttactgatgatgaac

atgcccggttactggaacgttgtgagggtaaacaactggcggtatggatgcggcgggaccagagaaaaatcactcagggtcaatgccagcgcttcgttaata

cagatgtaggtgttccacagggtagccagcagcatcctgcgatgcagatccggaacataatggtgcagggcgctgacttccgcgtttccagactttacgaaa

cacggaaaccgaagaccattcatgttgttgctcaggtcgcagacgttttgcagcagcagtcgcttcacgttcgctcgcgtatcggtgattcattctgctaac

cagtaaggcaaccccgccagcctagccgggtcctcaacgacaggagcacgatcatgcgcacccgtggccaggacccaacgctgcccgagatgcgccgcgtgc

ggctgctggagatggcggacgcgatggatatgttctgccaagggttggtttgcgcattcacagttctccgcaagaattgattggctccaattcttggagtgg

tgaatccgttagcgaggtgccgccggcttccattcaggtcgaggtggcccggctccatgcaccgcgacgcaacgcggggaggcagacaaggtatagggcggc

gcctacaatccatgccaacccgttccatgtgctcgccgaggcggcataaatcgccgtgacgatcagcggtccagtgatcgaagttaggctggtaagagccgc

gagcgatccttgaagctgtccctgatggtcgtcatctacctgcctggacagcatggcctgcaacgcgggcatcccgatgccgccggaagcgagaagaatcat

aatggggaaggccatccagcctcgcgtcgcgaacgccagcaagacgtagcccagcgcgtcggccgccatgccggcgataatggcctgcttctcgccgaaacg

tttggtggcgggaccagtgacgaaggcttgagcgagggcgtgcaagattccgaataccgcaagcgacaggccgatcatcgtcgcgctccagcgaaagcggtc

ctcgccgaaaatgacccagagcgctgccggcacctgtcctacgagttgcatgataaagaagacagtcataagtgcggcgacgatagtcatgccccgcgccca

ccggaaggagctgactgggttgaaggctctcaagggcatcggtcgacgctctcccttatgcgactcctgcattaggaagcagcccagtagtaggttgaggcc

gttgagcaccgccgccgcaaggaatggtgcatgcaaggagatggcgcccaacagtcccccggccacggggcctgccaccatacccacgccgaaacaagcgct

catgagcccgaagtggcgagcccgatcttccccatcggtgatgtcggcgatataggcgccagcaaccgcacctgtggcgccggtgatgccggccacgatgcg

tccggcgtagaggatcgagatctcgatcccgcgaaat 

 

Figure A.1 Sequence of pET-IL1RN plasmid. pET-IL1RN is the designed 

sequence including the T7 promoter (grey) and the entire open reading frame (bright 

green ATG). The yellow and red hexanucleotides correspond to the Acc65I and XhoI 

sites, respectively. 
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Appendix II Mass spectroscopy of digested and purified IL-36 protein 

 

Figure A.2. Mass spectrometry of n5-IL-36 protein that digested by 

chymotrypsin and purified by FPLC. Red circle indicates the expected molecular 

weight of n5-IL-36 protein.  
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Appendix III- Mass spectrometry of digested and purified n18-IL-36 protein  

 

Figure A.3. Mass spectrometry of n18-IL-36 protein that digested by thrombin 

and purified by FPLC. Red circle indicates the expected molecular weight of n18-IL-

36 protein.  
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Appendix IV Mass spectroscopy of digested n1-IL-36. 

Figure A.4 Mass spectroscopy data of n1-IL-36 that digested by chymotrypsin. 

n1-IL-36 is shown to be cleaved at three different sites from N-terminus. Protein 

appears to be modified, most probably through the addition of two oxygen atoms.  
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Appendix V- Table A.2 Successful qPCR determination of IL36, IL36R and 

controls cDNAs in A-431 

 

Each biological replicate (RNA sample derived from a well in tissue culture) was 

analysed three times for each cDNA target. N0 is the total number of biological 

replicates that were analysed, N is the total number of biological replicated where the 

Cq estimate was successful [m] is the total number of successful Cq measurement.  

 

 

 

 

 

 

 

 

 

 

 

 

Treatment  N0 IL36A IL36B IL36G IL36R B2M  HPRT PPIA ABL 

Control  11 [33] 8 [20] 5 [12] 11 [32] 11 [33] 11 [33] 11 [33] 11 [32] 11 [32] 

10 ng/ml TNF 3 [9] 3 [6] 3 [9] 3 [9] 3 [9] 3 [9] 3 [9] 3 [9] 3 [9] 

20 ng/ml TNF 8 [24] 8 [24] 8 [20] 8 [24] 8 [24] 8 [24] 8 [24] 8 [24] 8 [24] 

40 ng/ml TNF 3 [9] 3 [8] 3 [9] 3 [9] 3 [9] 3 [9] 3 [9] 3 [9] 3 [9] 

Time control 3 [9] ND 2 [3] 3 [9] 3 [9] 3 [9] 3 [9] 3 [9] 3 [9] 

6 h TNF 3 [9] ND  3 [9] 3 [9] 3 [9] 3 [9] 3 [9] 3 [9] 3 [9] 

9 h TNF 3 [9] ND 3 [9] 3 [9] 3 [9] 3 [9] 3 [9] 3 [9] 3 [9] 

12 h TNF 3 [9] ND 3 [9] 3 [9] 3 [9] 3 [9] 3 [9] 3 [9] 3 [9] 

PMA 3 [9] 3 [9] 3 [9] 3 [9] 3 [8] 3 [9] 3 [9] 3 [9] 3 [9] 

Flagellin 3 [9] 3 [9] 3 [9] 3 [9] 3 [9] 3 [9] 3 [8] 3 [9] 3 [9] 

TNF+ 
Flagellin 

3 [9] 3 [9] 3 [9] 3 [9] 3 [9] 3 [9] 3 [9] 3 [9] 3 [9] 

TNF+ PMA 3 [9] 3 [9] 3 [9] 3 [9] 3 [9] 3 [9] 3 [9] 3 [9] 3 [9] 
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Appendix VI- Table A.1 Successful qPCR determination of IL36, IL36R and 

controls cDNAs in HaCaT cells.  

Treatment  N0 IL36A IL36B IL36G IL36R B2M  HPRT PPIA ABL 

Control  6 4 [5] 6 [18] 6 [18] 6 [18] 6 [18] 6 [18] 6 [18] 6 [18] 

IL-1 3 3 [9] 3 [9] 3 [9] 3 [9] 3 [9] 3 [9] 3 [9] 3 [9] 

IL-36 3 3 [9] 3 [9] 3 [9] 3 [9] 3 [9] 3 [9] 3 [9] 3 [9] 

PMA 3 3 [5] 3 [9] 3 [9] 3 [9] 3 [9] 3 [9] 3 [9] 3 [9] 

TNF 3 3 [9] 3 [9] 3 [9] 3 [9] 3 [9] 3 [9] 3 [9] 3 [9] 

TNF+PMA 6 6 [18] 6 [18] 6 [18] 6 [18] 6 [18] 6 [18] 6 [18] 6 [18] 

Each biological replicate (RNA samples derived from a well in tissue culture) was 

analysed three times for each cDNA target. N0 is the total number of biological 

replicates that were analysed, N is the total number of biological replicated where the 

Cq estimate was successful [m] is the total number of successful Cq measurement.  
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Appendix VII- Gel electrophoresis of RT-qPCR products  

 

 

 

 

 

 

 

 

 

 

 

Figure A.5 Gel electrophoresis of RT-qPCR products of HaCAT cells: Lane 1: IL-

36 (128 bp),  Lane 2: IL-36 (150 bp), Lane 3: IL-36 (135 bp), Lane 4: IL-36R (162 

bp), Lane 5: 2 microglobulin (120 bp), Lane 6: Hypoxanthine 

phosphoribosyltransferase (136 bp),  Lane 7: Peptidyl proline isomerase (PPIA) (148 

bp),   Lane 8:  Abelson murine leukemia viral oncogene homolog (ABL1) (140 bp).  
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Appendix VIII- pSpCas9(BB)-2A-Puro (PX459) V2.0 plasmid structure (9175bps)  

 

Figure A.6 The puromycin resistance plasmid pX459. Two oligonucleotides 

(GGTGAGCAATGTCTCGGCAG) or (AGGGGAGCGGTTCACTGTTT) were 

synthesised. Synthesised oligonucleotides were hybridised and ligated into the open 

(double) Bbs I site. 

 


