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Summary

The detection of the first electromagnetic counterpart to a gravitational-wave signal in
August 2017 marked the start of a new era of multi-messenger astrophysics. An unpre-
cedented number of telescopes around the world were involved in hunting for the source
of the signal, and although more gravitational-wave signals have been since detected, no
further electromagnetic counterparts have been found.

In this thesis, I present my work to help build a telescope dedicated to the hunt
for these elusive sources: the Gravitational-wave Optical Transient Observer (GOTO).
I detail the creation of the GOTO Telescope Control System, G-TeCS, which includes
the software required to control multiple wide-field telescopes on a single robotic mount.
G-TeCS also includes software that enables the telescope to complete a sky survey and
transient alert follow-up observations completely autonomously, whilst monitoring the
weather conditions and automatically fixing any hardware issues that arise. I go on
to describe the routines used to determine target priorities, as well as how the all-sky
survey grid is defined, how gravitational-wave and other transient alerts are received and
processed, and how the optimum follow-up strategies for these events were determined.

The first GOTO telescope, situated on La Palma in the Canary Islands, saw first
light in June 2017. I detail the work I carried out on the site to help commission the
prototype, and how the control software was developed during the commissioning phase.
I also analyse the GOTO CCD cameras and optics, building a complete theoretical model
of the system to confirm the performance of the prototype. Finally, I describe the results
of simulations I carried out predicting the future of the GOTO project, with multiple
robotic telescopes on La Palma and in Australia, and how the G-TeCS software might
be modified to operate these telescopes as a single, global observatory.
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1.1 Gravitational Waves

Einstein’s theory of General Relativity describes gravity as the curvature of spacetime

(Einstein 1914), and he went on to describe the propagation of distortions within the

spacetime ‘fabric’ (Einstein 1916). These gravitational waves (GWs) are produced by

the acceleration of matter within the field of spacetime and propagate at the speed of

light (Baker et al. 2017), analogous to electromagnetic (EM) waves being produced by an

accelerating charge. The existence of gravitational waves is a consequence of the finite

propagation time of gravity in general relativity; there is no analogue to gravitational

waves in Newtonian gravity as Newton described a force propagating instantaneously.

The result of Einstein’s theory is the quadrupole formula (Einstein 1916), which

describes gravity propagating as a transverse wave, which alternately stretches and com-

presses spacetime in two orthogonal axes (Sathyaprakash and Schutz 2009). A single

object will never ‘observe’ a gravitational wave, as it is embedded in the fabric, and the

only way to detect the passing of gravitational waves is to look for changes in the relative

positions of two or more objects as the wave passes through. A thought experiment con-

sidering the effects of gravitational waves on free-floating masses is shown in Figure 1.1,

for the two wave polarisation states. These perturbations are quantified by the strain,

the fractional change in distance, which even for astronomical-scale events will be incred-

ibly small — the first direct detection of gravitational waves involved measuring strains

of the order of 10−21 (see Figure 1.4). It is the goal of gravitational-wave detectors to

observe these minute spatial perturbations as the wave passes through.

A detailed discussion of general relativity and gravitational-wave science is beyond

the scope of this thesis, so this section gives only a brief introduction to the topic in

order to explain the core purpose of the GOTO project.
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Figure 1.1: Consider a 2-dimensional ring of free-floating particles in the x-y-plane.
A gravitational-wave which passes through the ring in the z-direction (out of the page)
will alternately stretch and compress the ring in two orthogonal axes out of phase. The
upper image shows the effect of a plus-polarised wave, the lower image shows the effect
of a cross-polarised wave. Adapted from Ju et al. (2000).

1.1.1 Detecting gravitational waves

As described above, gravitational waves manifest as alternately stretching and compress-

ing spacetime along perpendicular axes. Several methods of directly detecting gravita-

tional waves have been proposed, but the most successful design uses a Michelson inter-

ferometer to observe how two test masses move relative to each other as a wave passes

through (Bond et al. 2016). As shown in Figure 1.2, an input laser is split into two by a

beam splitter, and each beam is sent into one of two long perpendicular arms. In order

to detect the tiny strains from gravitational waves these arms needs to be kilometres in

length, and each arm acts as a laser cavity, reflecting the beam multiple times between

two mirrored test masses, to further increase the effective distance. When they exit the

arms, the beams are recombined to form a single output. Should the lengths of the

arms change relative to each other, e.g. due to a gravitational wave passing through, the

distance the beams travel will be different, which will produce a change in the resulting

interference pattern produced when they recombine. The test masses are suspended by

a complex vibration isolation system in order to reduce any outside interference, such as
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Figure 1.2: A Michelson interferometer used as a gravitational-wave detector. As
a wave passes through, the relative lengths of the arms will change, as shown (highly
exaggerated) in the inset. This will reduce or increase the distance the laser light travels
through each arm, and therefore alter the output interference signal. Adapted from
Abbott et al. (2016b).

from man-made vibrations or seismic events.

Several of these gravitational-wave detectors have been built around the world, as

shown in Figure 1.3. Having multiple detectors acting together provides redundancy,

and allows the source of the signal to be localised (see Section 1.1.4). There are cur-

rently three active detectors: the two Advanced Laser Interferometer Gravitational-Wave

Observatory (LIGO) detectors in the United States, at Hanford, Washington and Living-

ston, Louisiana (Aasi et al. 2015), and the European Gravitational Observatory (EGO)

Advanced Virgo detector near Pisa, Italy (Acernese et al. 2015). These three detect-

ors form a global network known as the LIGO-Virgo Collaboration (LVC, Abbott et al.

2016d). In addition, the older German-British GEO600 detector in Germany is still act-

ive, primarily as a technology test system (Lück et al. 2006). The Kamioka Gravitational
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Figure 1.3: Locations of current and proposed gravitational-wave detectors.

Wave Detector (KAGRA) is currently under construction in Japan (Somiya 2012), and

is expected to join the global network before the end of 2019 (Abbott et al. 2018b). In

the next decade, work should also begin on building a third LIGO detector, LIGO-India

(Unnikrishnan 2013), relocating what was previously a second interferometer at Hanford.

In the longer term, the next generation of larger and more sensitive gravitational-

wave detectors is already being designed, including the Einstein Telescope (Punturo et al.

2010) and the Cosmic Explorer (Abbott et al. 2017b). Space-based gravitational-wave

detectors are also being planned, such as the Laser Interferometer Space Antenna (LISA,

Amaro-Seoane et al. 2017). Detectors in space would be free from the seismic noise

that limits ground-based detectors at low frequencies, and could therefore detect lower-

frequency gravitational waves. This could potentially include signals from supermassive

black hole mergers, lower-mass white dwarf binaries within our own galaxy, and early

detections of neutron star or black hole mergers that are subsequently observed by larger

detectors on Earth.
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1.1.2 Sources of gravitational waves

Any accelerating mass will generate gravitational waves as it moves through spacetime,

as long as the motion is not spherically symmetric (such as a rotating disk or a uniformly

expanding sphere; Sathyaprakash and Schutz 2009; Blanchet 2014). However, in practice

it is only possible to detect gravitational waves from astronomical sources, as only they

will produce large enough strains to be picked up by the detectors.

A continuous source of gravitational waves will be generated by two massive objects

orbiting one another (Cutler and Thorne 2002), and the loss of energy from the system in

the form of gravitational waves will slowly cause the orbiting distance of the two objects

to shrink. The first binary pulsar was discovered in 1974 (Hulse and Taylor 1975), and

after repeated observations it was apparent that the orbital period of the two stars was

decreasing in perfect agreement with the predictions given by general relativity. This

was the first real evidence, albeit indirect, of the existence of gravitational waves, and

the discovery of the Hulse-Taylor pulsar was deemed so significant that its discoverers

were awarded the Nobel Prize in 1993 (Weisberg and Taylor 2005).

The loss of energy in the form of gravitational radiation will cause binary orbits to

slowly decay (unless counteracted by another process, such as mass transfer; Rappaport

et al. 1982). As the orbital distance decreases so will the period, resulting in the ob-

jects orbiting faster and the system emitting gravitational waves at higher frequencies.

This will produce a characteristic ‘chirp’ signal until the two objects collide (Cutler and

Thorne 2002; Blanchet 2014). At the point of coalescence the system will release a huge

burst of gravitational energy; at its peak the GW150914 signal reached a luminosity of

3.6× 1049W (greater than the combined luminosity of all stars in the observable uni-

verse; Abbott et al. 2016c). After the inspiral and merger gravitational waves are still

detectable in the “ring-down” phase, as the resulting object gradually settles to form a

stable sphere (Buonanno et al. 2007). More massive objects produce stronger signals,
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and so the ideal binary systems for gravitational-wave detections are from compact bin-

ary coalescence (CBC) events, which include binary neutron stars (BNS), binary black

holes (BBH) and neutron star-black hole (NSBH) binaries.

Coalescing binaries are not the only predicted sources of gravitational-wave signals.

Sources of gravitational waves are typically classed into three categories: bursts, con-

tinuous emission and the stochastic background. Along with coalescing binaries, core-

collapse supernovae are predicted to produce bursts of gravitational radiation (Kotake

et al. 2006), as long as the explosions are not entirely symmetrical. Asymmetric, rapidly-

spinning neutron stars (pulsars) should produce continuous, periodic emission of grav-

itational waves (Brady et al. 1998). A stochastic background of gravitational radiation

from events throughout the history of the universe is also predicted, which, if meas-

ured, could provide insights into the physics of the early universe (Allen and Romano

1999; Maggiore 2000). In this thesis, I will focus on gravitational-wave signals from

compact binaries, as at the time of writing they are the only confirmed detections by

the LIGO-Virgo interferometers.

1.1.3 Gravitational-wave detection history

The LIGO detectors became operational in 2002 and observed on-and-off until 2010

without detecting any gravitational-wave signals, after which they were taken offline in

order to upgrade into the second-generation Advanced LIGO detectors (Abadie et al.

2010; Harry 2010). The upgrade to the optics and lasers increased the strain sensitivity

by a factor of 10, which corresponded to an increase in the search volume of space from

which a signal could be detected by a factor of 1000 (Aasi et al. 2015).

The detectors were recommissioned in 2015, and first direct detection of gravitational

waves occurred on the 14th of September 2015, while the two LIGO detectors were still

in engineering mode. The signal, GW150914[1], was produced by the merger of a binary
[1]Confirmed gravitational-wave detections are named in the form GWYYMMDD.
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Figure 1.4: The first detection of gravitational waves, recorded in the LIGO Hanford
detector (left) and then approximately 7ms later in the LIGO Livingston detector (right).
Adapted from Abbott et al. (2016c).

black hole system approximately 440Mpc away with component masses of 35M⊙ and

30M⊙ (Abbott et al. 2016c). The ‘chirp’ signals recorded in the LIGO detectors are

shown in Figure 1.4. Note the strain on the y-axis is of the order 10−21, meaning that,

as the wave passed through, the 4 km-long LIGO detector arms changed in length by

approximately 4× 10−18m, a fraction of the size of a proton (≈ 10−15m).

The first LIGO observing run (O1) continued from September 2015 to January 2016,

and during that time two further gravitational-wave signals were detected (Abbott et

al. 2016a). All three detections were identified as being produced by coalescing black

hole binaries, and although at the time one (LVT151012) was below the 5σ significance

level, it has since been upgraded to a significant detection and reclassified as GW151012

(Abbott et al. 2019).

The second observing run (O2) took place from November 2016 to August 2017.

This run saw the first observation of gravitational waves from a binary neutron star,

GW170817 (Abbott et al. 2017d), as well as the addition of the Virgo detector to the
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Figure 1.5: Masses of the sources and remnant objects from the 11 signals detected
during O1 and O2, compared to previous electromagnetic detections. Note the “mass
gap” between 2–5M⊙. Image credit: LIGO/Virgo/Northwestern/Frank Elavsky.

network in the final month. In total eleven gravitational-wave events were detected

during O1 and O2, ten from binary black holes and one (GW170817) from a binary

neutron star. Together these eleven events form the first Gravitational-Wave Transient

Catalogue (GWTC-1; Abbott et al. 2019). The source and remnant masses for each

event are shown in Figure 1.5, compared to previous direct detections of neutron stars

and stellar-mass black holes.

After a few short engineering runs the third observing run (O3) began on 1 April

2019. At the time of writing, O3 is still ongoing, and after a short break in October 2019

is expected to run until May 2020. This is the first run to include the three LIGO-Virgo

detectors from the beginning, and KAGRA is expected to join before the end of 2019

(Abbott et al. 2018b). O3 also marked the start of public alert releases[2]; during O1

and O2 immediate alerts were only released to groups who had signed memoranda of

understanding with the LVC (the GOTO Collaboration was one of these groups).
[2]Public alerts are available at https://gracedb.ligo.org/superevents/public/O3.

https://gracedb.ligo.org/superevents/public/O3
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In the first 5 months of O3, from the start of April to the end of August 2019, the

LVC released 32 alerts; 7 were ultimately retracted as false alarms, leaving 25 due to real

astronomical signals. As O3 is currently ongoing the LVC has not yet published final

values or mass estimates for any of these events. As such they are still treated as candid-

ates, with provisional signal designations and preliminary classification probabilities. Of

the 25 non-retracted events, 20 are currently classified as originating from binary black

hole systems (PBBH > 90%). Only one is likely from a binary neutron star (S190425z;

LIGO Scientific Collaboration and Virgo Collaboration 2019a), one is classed as a likely

neutron star-black hole binary (S190814bv; LIGO Scientific Collaboration and Virgo

Collaboration 2019d), and one (S190426c; LIGO Scientific Collaboration and Virgo Col-

laboration 2019b) has an uncertain classification: a 49% probability as coming from a

binary neutron star, 24% coming from a binary including a ‘MassGap’ object (a theor-

ised object with a mass between a neutron star and a black hole; Littenberg et al. 2015),

and 13% from a neutron star-black hole binary (the remaining 14% is the chance the

signal is from a non-astrophysical source, i.e. detector noise). The remaining two events

both have over 50% non-astrophysical probability but have not been formally retracted

by the LVC.

1.1.4 On-sky localisation

One limitation with using interferometers to detect gravitational-wave signals is that

alone they are very poor at localising the direction a signal originates from. It is possible

to estimate a rough direction from the polarisation of the signal, and the distance to the

origin can be estimated from the signal strength, but multiple detectors are needed to

obtain more accurate sky localisations (Fairhurst 2011; Grover et al. 2014). With two

detectors, the difference between the arrival time of a signal at each allows the direction

to the source to be narrowed down, based on the distance between the two detectors and
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Figure 1.6: Localising signals using gravitational-wave detectors. With just two de-
tectors sources can only be localised to a ring on the sky (shown on the left, for three
different sources). The addition of a third detector means sources can be triangulated
to where the rings intercept (shown on the right).

knowing that gravitational waves propagate at the speed of light. However, this will only

constrain the source to within an annulus on the celestial sphere, perpendicular to the

line between the detectors. As shown in Figure 1.6, at least three detectors are needed

to triangulate the source location, and even then only to two positions on opposite sides

of the sky (in practice the polarisation will suggest which of these two points is the more

likely origin). The localisation skymaps for the GW170817 event, showing regions on the

sky that the source is predicted to be within, are shown in Figure 1.7. They show how

the contributions from multiple detectors dramatically improved the on-sky localisation.

Even with the three current detectors, sources that are detected by all three can

typically only be localised to areas of tens to hundreds of square degrees. This also

requires all three detectors to be observing at the same time, with no redundancy for

down time due to maintenance or hardware problems. This is why the full network is

anticipated to include five detectors across the globe, as described in Section 1.1.1.
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Figure 1.7: Skymaps for GW170817, produced from the single Hanford detector (in
blue), both Hanford and Livingston (orange) and all three detectors (green). The
final Fermi GBM skymap is also shown in purple, and the location of the counterpart
source is marked by a red star. Solid lines show 50% confidence regions, dashed lines
90% regions.



Chapter 1: Introduction 13

1.2 Multi-Messenger Astronomy

Multi-messenger astronomy refers to detecting multiple signals from the same astro-

physical source using two or more different ‘messengers’. Such messengers can include

electromagnetic waves/photons, gravitational waves, neutrinos or cosmic rays. An ex-

ample of a multi-messenger event is supernova SN 1987A, which was detected by neutrino

detectors several hours before becoming visible in the electromagnetic spectrum (Bionta

et al. 1987). This thesis concentrates on the search for electromagnetic counterparts to

gravitational-wave detections, of which at the time of writing only one has been found

(GW170817; Abbott et al. 2017d).

Prior to the GW170817 detection, it had long been theorised that some gravitational-

wave detections might have electromagnetic counterparts. Binary mergers involving

neutrons stars (either neutron star binaries or neutron star-black hole mergers) were

suggested as possible sources of short-duration gamma-ray bursts (Berger 2014). Such

events were expected to produce kilonovae, transient bursts of electromagnetic radiation

that could also be visible in the optical (these events were named “kilo”-novae as they

were predicted to reach luminosities approximately 1000 times that of a classical nova;

Metzger et al. 2010). Electromagnetic counterparts to binary black hole mergers were

less expected; binary stellar-mass black holes may not be surrounded by much orbiting

matter with which to interact, although certain systems with an orbiting disk might

produce enough material for accretion and subsequent emission (Murase et al. 2016).

1.2.1 The benefits of multi-messenger observations

As explained in Section 1.1.4, gravitational-wave detectors have only a limited ability to

localise the source of each detection. Wide-field electromagnetic monitors, such as the

Fermi Gamma-ray Burst Monitor (GBM), can provide independent localisation skymaps

to help reduce the search area (Abbott et al. 2017c; note also the Fermi skymap included
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in Figure 1.7). Ideally, the direct detection of a kilonova would allow precise localisation

to a host galaxy, as well as a measure of redshift and therefore the distance to the source.

Electromagnetic observations of a counterpart to a gravitational-wave detection can

give additional insights into the nature of the source and its environment, as well as

further scientific breakthroughs. For example, observations of the kilonova associated

with GW170817 (Abbott et al. 2017d; Abbott et al. 2017e) allowed analysis of the

equation of state of neutron star material (Abbott et al. 2018a), an insight into the

origin of heavy metals in the universe (Kasen et al. 2017), constraints on the nature of

gravity (Baker et al. 2017), and a new, independent measurement of the Hubble constant

(Abbott et al. 2017a).

At the time of writing, GW170817 remains the only gravitational-wave signal with

an confirmed electromagnetic counterpart. As observations continue and new detectors

come online it is only a matter of time until similar objects are found, which will as-

suredly lead to further astrophysical and cosmological breakthroughs. However, future

counterparts may not be as easy to find.

1.2.2 Finding optical counterparts to GW detections

GW170817 was a remarkably lucky event in several ways. The gravitational-wave signal

was observed by both LIGO detectors, and although it was not observed by Virgo it

was active at the time so the non-detection still helped narrow down the localisation

area. This produced a fairly small skymap, covering just 31 deg2 (Abbott et al. 2017d,

see Figure 1.7), which was well positioned for telescopes in the southern hemisphere to

observe (although close to the sun, the area was visible for a few hours after sunset). The

gravitational-wave detection also produced a very low luminosity distance of 40±8Mpc,

close enough to make an electromagnetic observation of the counterpart feasible.
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Figure 1.8: Detection of the counterpart to GW170817 with the Swope telescope. On
the left is an archival image of NGC 4993 from HST, and on the right the position of the
kilonova is marked in the Swope discovery image. Adapted from Coulter et al. (2017).

The first of many observations of the counterpart transient, designated AT 2017gfo,

was taken by the One-Meter, Two-Hemisphere collaboration using the 1-metre Swope

telescope at Las Campanas Observatory in Chile. The discovery image is shown in

Figure 1.8, and the Swope team designated the transient SSS17a (Coulter et al. 2017).

The Swope telescope only has a field of view of 30 arcmin× 30 arcmin, but as the event

was localised to a small, near-by region a list of potential host galaxies could be selected

from the Gravitational Wave Galaxy Catalogue (GWGC; White et al. 2011). The Swope

observations were targeted to fields including these galaxies, as shown in Figure 1.9. The

host galaxy, NGC 4993, was observed in the ninth pointing approximately 10 hours after

the gravitational-wave detection, and as shown in Figure 1.8 the kilonova was clearly

visible at the outer edge of the galaxy.

Five other groups independently observed the same transient within an hour of the

Swope observation: the Dark Energy Camera (DECam, Soares-Santos et al. 2017), the

Distance Less Than 40Mpc survey (DLT40, Valenti et al. 2017), Las Cumbres Observat-

ory (LCO, Arcavi et al. 2017), the MASTER Global Robotic Net (Lipunov et al. 2017)

and the European Southern Observatory (ESO) Visible and Infrared Survey Telescope
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Figure 1.9: Follow-up observations of GW170817 with the Swope telescope (left,
adapted from Coulter et al. 2017) and the Dark Energy Camera (right, adapted from
Soares-Santos et al. 2017). The skymap contours are the same as in Figure 1.7; the
Hanford-Livingston skymap is in orange, the final Hanford-Livingston-Virgo skymap is
in green, and the location of the counterpart is marked by the red star. The Swope
telescope has a small, 0.25 deg2 field of view, and so targeted its follow-up observations on
concentrations of GWGC galaxies (grey circles). The squares on the left show the fields
observed by Swope, containing multiple galaxies (in blue) or single galaxies (purple).
Instead of targeting galaxies, DECam observed using a pre-defined grid of 18 pointings
(blue hexagons on the right), followed by a second set of offset observations (purple).
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for Astronomy (VISTA, Tanvir et al. 2017). The observing strategy differed between

groups depending on the field of view of the instruments. DLT40 was an existing su-

pernova survey so targeted already-known galaxies, and the LCO and VISTA surveys

both targeted their observations at possible host galaxies, just like Swope. On the other

hand, DECam and MASTER had larger fields of view, and so could therefore cover the

entire localisation region using a regular tiling pattern. The DECam tile pointings are

shown on the right-hand plot of Figure 1.9.

The relatively small GW170817 skymap allowed telescopes with small fields of view,

such as Swope, to efficiently cover the search area and locate the counterpart source.

However, there is no guarantee that this will always be the case, and indeed subsequent

events have not been as well localised. As previously mentioned in Section 1.1.2, the

second binary neutron star gravitational-wave detection, S190425z, occurred in April

2019, a few weeks into the O3 run (LIGO Scientific Collaboration and Virgo Collab-

oration 2019a). Unlike GW170817, this was only a single-detector detection, observed

only by LIGO-Livingston (again Virgo was also observing at the same time, but LIGO-

Hanford was shut down for maintenance). The initial skymap for this event covered an

area of approximately 10,000 square degrees, and the final skymap only reduced this to

7,500 sq deg; still 250 times the size of the final GW170817 skymap (see Figure 1.10).

For searching such large sky areas, containing thousands of galaxies, the method used

by smaller telescopes such as Swope is impractical, and so dedicated wide-field survey

telescopes are needed.

The Zwicky Transient Facility (ZTF) is one such telescope, with a field of view of

47 sq deg (Bellm et al. 2019b). Over the first two nights following the S190425z detection

ZTF covered approximately 8,000 sq deg of the initial skymap (Coughlin et al. 2019),

shown in Figure 1.10. This still only corresponded to 46% of the localisation probability,

reduced to 21% in the final skymap, as unfortunately a large fraction of the skymap was

located too close to the Sun to observe.
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Figure 1.10: Follow-up observations of S190425z with the Zwicky Transient Facility.
The ZTF tiled observations are shown in blue over the initial LVC skymap in orange.
Adapted from Coughlin et al. (2019). For a size comparison to Figure 1.9 the position
of the final GW170817 skymap is also shown in green.

If covering the large gravitational-wave skymap was not enough of a challenge, once

electromagnetic observations have been taken a robust analysis pipeline is also needed in

order to distinguish potential counterpart candidates from the large number of coincident

transient and variable-star detections. ZTF found 340,000 transients when following-up

S190425z, which were narrowed down to just 12 potential candidates (Coughlin et al.

2019). Ultimately, each was shown to be unconnected with the gravitational-wave signal,

and in the end no counterpart was identified for this event by ZTF or any other project.

As a single-detector event S190425z was something of an extreme example, and as

more gravitational-wave detectors come online the typical skymap size should decrease.

The time and effort required to follow up S190425z stands in contrast to the relative

ease with which the GW170817 counterpart was found. Small telescopes like Swope can

contribute with galaxy-focused observations when the skymap is small enough, but for

events like S190425z, where large searches are required, it is clear that dedicated, wide-

field survey telescopes are required to have the best chance of finding any counterpart.
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1.3 The Gravitational-wave Optical Transient Observer

The Gravitational-wave Optical Transient Observer (GOTO)[3] is a project dedicated to

detecting optical counterparts of gravitational-wave sources. The GOTO collaboration

was founded in 2014 and, as of 2019, contains 10 institutions from the UK, Australia,

Thailand, Spain and Finland[4]. The first prototype GOTO telescope was inaugurated

at the Observatorio del Roque de los Muchachos (ORM) on La Palma, Canary Islands

in July 2017, and is shown in Figure 1.11.

1.3.1 Motivation

Even before the first detection of gravitational waves in 2015 it was recognised that,

due to the issues described in the previous section, the best chance of reliably detecting

electromagnetic counterparts quickly was with a network of dedicated, robotic, wide-

field telescopes (White 2014). On most nights the telescopes would carry out an all-sky

survey on a fixed grid, but when a gravitational-wave alert was received they could

quickly change to covering the skymap. As robotic telescopes, they would be quicker to

respond than human-operated telescopes, meaning follow-up observations could begin

automatically just minutes after an alert was issued.

Rapidly covering large areas of the sky maximises the chance of finding any possible

counterpart before it fades from view. However, any such observations are going to be

contaminated by a huge number of unrelated transient and variable objects (recall the

hundreds of thousands of detections by ZTF when searching for the S190425z counterpart

as described in Section 1.2.2). Therefore, the difficulty in finding any counterpart is not

just in covering the large search area, but also in being able to distinguish the needle
[3]https://goto-observatory.org
[4]The GOTO collaboration includes the University of Warwick, Monash University, Armagh Observat-

ory and Planetarium, the University of Leicester, the University of Sheffield, the National Astro-
nomical Research Institute of Thailand, the Instituto de Astrofísica de Canarias, the University of
Manchester, the University of Turku and the University of Portsmouth.

https://goto-observatory.org
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Figure 1.11: The GOTO prototype on La Palma, with four unit telescopes.

Figure 1.12: A rendering of a complete GOTO node with two independent mounts,
each with eight unit telescopes.
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from the haystack of other astronomical transients and variables. The best way to reduce

the number of candidate detections is temporally: any sources with detections prior to

the gravitational-wave event time could not be the transient associated with it. In order

to perform this temporal filtering, the project needs an as-recent-as-possible image of

the same patch of sky, which necessitates the telescope carrying out an all-sky survey

with as low a cadence (the time between observing each point of the sky) as possible.

White (2014) outlined the original GOTO proposal, including the requirements for

each telescope. An instantaneous field of view of 50–100 square degrees and a limiting

magnitude of R ≃ 21 in 5 minutes was suggested to be able to have the best chance

of observing electromagnetic counterparts, with the field of view ideally split between

multiple independent mounts to allow for covering the irregularly-shaped gravitational-

wave skymaps. These telescopes would need to respond quickly to alerts, covering the

skymaps within a single night before any possible counterpart faded from view, neces-

sitating the use of fast-slewing, robotic mounts. Based on the sensitivity regions of the

LIGO-Virgo network, the best sites for these telescopes would be in the North Atlantic

(e.g. the Canary Islands) and Australia, at least until the detectors in Japan and India

come online (as described in Section 1.1.1).

GOTO is, of course, not the only project searching for gravitational-wave counter-

parts, and the optimal follow-up strategy has been an area of much analysis in recent

years (see, for example, Ghosh et al. 2016; Ghosh et al. 2017; Coughlin et al. 2018). Other

contemporary projects include the Zwicky Transient Facility at the Palomar Observatory

in California, previously mentioned in Section 1.2.2, which captures 47 square degrees

to a depth of r = 20.5 (Bellm et al. 2019b), and the BlackGEM project, currently under

construction at at La Silla Observatory in Chile, which aims to go deeper (q = 23 in five

minutes), albeit initially with a smaller footprint of ∼8 square degrees. Table 1.1 shows

a comparison of the planned GOTO network to other projects.
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First D FoV Limiting Cost Etendue
Name light (m) (deg2) magnitude (M$) (m2deg2)

ATLAS 2015 0.5×2 60 g = 19.3 (30 s) 2 12 [5]

Pan-STARRS1 2008 1.8 7 g = 22.0 (43 s) 25 18 [6]

ZTF 2017 1.2 47 g = 20.8 (30 s) 24 54 [7]

BlackGEM 2019 0.65×3 8.1 q = 23 (300 s) 3 2.7 [8]

LSST 2020 8.4 9.6 g = 25.6 (15 s) 500 532 [9]

GOTO-4 2017 (0.4×4) 18 g = 19.5 (60 s) 1.0 2.3
GOTO-8 2019 (0.4×8) 40 g = 19.5 (60 s) 1.5 5

2×GOTO-8 2020 (0.4×8)×2 80 g = 19.5 (60 s) 2.5 10
4×GOTO-8 2021 (0.4×8)×4 160 g = 19.5 (60 s) 4.0 20

Table 1.1: A comparison of selected projects involved in following-up gravitational-
wave detections. Given for each is the year it saw first light, the primary mirror dia-
meter(s) (note GOTO has 4 or 8 small telescopes per mount, and ATLAS, BlackGEM
and later GOTO stages include multiple mounts), the total instantaneous field of view,
the limiting magnitude for a single exposure, estimated total cost, and etendue (the
product of the primary mirror area(s) and the field of view). The projects in italics are
yet to be commissioned and so use predicted values.

1.3.2 Hardware design

The GOTO prototype, as shown in Figure 1.11, uses an array of four 40 cm Unit Tele-

scopes (UTs), attached to a boom-arm on a single robotic mount with a slew speed of 4°

per second. Using multiple smaller instruments on one mount is a design already used

by several survey and wide-field telescopes, such as the All-Sky Automated Survey for

Supernovae (ASAS-SN, Shappee et al. 2014) and SuperWASP (Wide Angle Search for

Planets, Pollacco et al. 2006). The array design provides a cost-effective way of reaching

the desired wide field of view with multiple small telescopes instead of one large one, and

the modular nature also allows more unit telescopes to be added to a mount as more

funding becomes available.

[5] Tonry et al. (2018)
[6] Chambers et al. (2016)
[7] Bellm et al. (2019b)
[8] Groot et al. (2018)
[9] Ivezić et al. (2019)
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The prototype unit telescopes and mount were constructed by APM Telescopes[10].

Each UT is a fast Wynne-Newtonian astrograph (see Section 2.3.1) with a focal ratio of

f/2.5, and each uses off-the-shelf camera hardware from Fingerlake Instruments (FLI)[11].

The FLI MicroLine cameras each use a 50 megapixel sensor (see Section 2.2.3), which

gives each UT a field of view of approximately 6 square degrees with a plate scale of

1.24 arcsec/pixel. Three 60 s GOTO images can reach a limiting magnitude of g ≈ 20

(see Section 2.4.4; Steeghs et al. 2019a). A full GOTO telescope will have eight UTs

on an GE-300 German equatorial (parallactic) mount, giving an overall field of view of

40 deg2 (accounting for some overlap between cameras). A sample frame taken with one

UT is shown in Figure 1.13, which also gives a comparison of the GOTO field of view to

some of the other projects from Table 1.1.

Each unit telescope is fitted with a filter wheel with several wide-band coloured

filters (see Section 2.3.2), which can be used for additional source identification. The

telescopes are housed in an Astrohaven clamshell dome[12], which when fully open allows

an unrestricted view of the sky. This means that the telescope does not need to waste

time waiting for the dome to move when slewing to a new position, and can instead

quickly move from observing one portion of the sky to another.

Each GOTO site is anticipated to host two domes, as shown in Figure 1.12, with a

total of 16 unit telescopes giving an instantaneous field of view of approximately 80 deg2.

Having two independent mounts will allow the sky to be surveyed at a higher cadence

(every 2–3 days, see Section 9.4), and also gives more options for survey and transient

follow-up strategies. For example, the two mounts could observe different patches of the

sky in order to cover the skymap as fast as possible, or they could combine to observe the

same field to a greater depth. Alternately, each mount could observe using a different

filter, to get immediate multi-colour information on any detected sources.

[10]https://www.professional-telescopes.com
[11]https://www.flicamera.com
[12]https://www.astrohaven.com

https://www.professional-telescopes.com
https://www.flicamera.com
https://www.astrohaven.com
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Figure 1.13: GOTO’s field of view compared to other projects. On the left is a
commissioning image of M31 taken with one of GOTO’s cameras, showing the wide field
of view of a single unit telescope. Four of these UTs form the initial 18 square degree
survey tile, to be increased to 40 square degrees in the full 8-UT system. On the right,
the GOTO FoV is compared to two similar projects: the Zwicky Transient Facility (ZTF,
Bellm et al. 2019b) and the Large Synoptic Survey Telescope (LSST, Ivezić et al. 2019).
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Figure 1.14: A flowchart showing the key components of the GOTO dataflow.

1.3.3 Image processing and candidate detection

The GOTO project produces a huge amount of data to be handled and processed. Each

image taken by the 50 megapixel cameras is approximately 100 MB; GOTO typically

takes three 60 s exposures per pointing and on average observes ∼130 targets each night.

Just the prototype 4-UT system hence produces approximately 150 GB of data each

night, and a full multi-site GOTO system would produce close to 400 TB per year. For

real-time transient detection, each set of images needs to be processed in the approx-

imately three minutes between each observation, and due to the wide field of view each

image will contain many thousands of sources. Processing the images is therefore not an

easy task. In order to do this, a real-time data flow system has been developed called

GOTOflow, which is used to run the GOTO pipeline GOTOphoto. The key components

of the pipeline are shown in Figure 1.14.



Chapter 1: Introduction 26

Figure 1.15: The detection of supernova SN 2019bpc by the GOTOphoto difference
imaging pipeline. The new exposure on the left (a) has the reference image (b) subtracted
to give the difference image on the right (c), where the new source is clearly visible.

GOTOphoto calibrates each image and then combines each set of three to increase

the effective depth. New or changed sources are detected using difference imaging, as

shown in Figure 1.15. This requires a master reference image at each position in the sky,

which is continuously built up from the all-sky survey. Any apparently new sources are

then added to a detection database, and are also checked against historic observations to

discount any sources which had been observed previously (for example, variable stars on

the edge of the detection depth might fade in and out of visibility). Candidate sources

are also checked against other catalogues such as Pan-STARRS (Chambers et al. 2016),

as well as against lists of known minor planets and other transients.

New candidates are presented for human vetting through a web interface called the

GOTO Marshal. Collaboration members can check each candidate and flag them either

as potential astrophysical sources or junk detections. Work is ongoing across the collab-

oration on machine-learning projects for automatic transient detection and identification,

which would use the human responses from the Marshal to train an automatic classifier.
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1.3.4 Deployment and future expansion

The 4-UT GOTO prototype shown in Figure 1.11 was inaugurated in July 2017. The

telescope is located at the Observatorio del Roque de los Muchachos (ORM) on La Palma

in the Canary Islands, at the site shown in Figure 1.16. After some hardware issues (see

Section 8.2), the telescope is now fully operational: since February 2019 GOTO has been

carrying out an all-sky survey, and since the start of the third LIGO-Virgo observing run

(O3, see Section 1.1.3) in April 2019 it has been following-up gravitational-wave events

when they occur.

The next stage in the GOTO project will be the addition of the second set of four unit

telescopes to the existing mount, due in late 2019. Funding for a second mount with an-

other set of four unit telescopes has already been secured, and a second dome has already

been constructed on La Palma. This second mount is expected to be commissioned in

2020.

La Palma is one of the best observing sites in the northern hemisphere, and is already

home to several telescopes operated by GOTO collaboration members. It was therefore

an obvious choice for the location of the first GOTO node. Ultimately, a second, compli-

mentary node is planned to be built in the southern hemisphere, most likely in Australia.

Having a site in both hemispheres allows the entire sky to be surveyed, and, as Aus-

tralia is on the opposite side of the Earth from La Palma, the two sites would provide

almost 24-hour coverage of gravitational-wave alerts. This second node would also host

two GOTO telescopes with 8 UTs each, and the two sites combined would be able to

survey the entire visible sky every 1–2 days (see Section 9.4). As GOTO grows, it is

anticipated that the telescopes at both sites will be operated as a single observatory,

meaning observation scheduling will be optimised for each site and the output data will

be unified into a single detection database.
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Figure 1.16: The location of GOTO and other telescopes at the Observatorio del Roque
de los Muchachos on La Palma, including the sites of proposed and under-construction
projects in yellow. GOTO, marked in blue, is located on the east side of the observatory,
close to the edge of the caldera. The lower image shows the eastern part of the ORM
and the telescopes surrounding GOTO, including the other Warwick-operated telescopes
(W1m and SuperWASP) and the Sheffield/Durham-operated pt5m (on the roof of the
WHT building) in green. Satellite images taken from Google Maps.
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1.4 Thesis outline

This thesis details my work on the GOTO project carried out between 2015 and 2019.

My primary role within the collaboration was to develop the software needed for

GOTO to operate as an autonomous telescope. The hardware design of GOTO — with

multiple unit telescopes attached to each mount — required custom software which could

operate all of the cameras synchronously. Each unit telescope is also equipped with a

filter wheel and a focuser, which also need to be controlled in parallel. Additional control

software was required to move the mount, open and close the dome, and control any other

pieces of on-site hardware.

The next stage of the control system development was writing the software that would

operate the telescope without human involvement. The routine nightly operations (move

to a target, take an exposure, repeat until sunrise) would need to be supported, and in

addition standard observational tasks, such as taking calibration frames and focusing

the telescopes, needed to be automated. Crucially, the control system required robust

and reliable systems for monitoring the weather and the hardware status, and in the

case of an emergency it had to be able to close the dome or recover from any problems

without immediate human intervention.

In order for a telescope to observe autonomously it needs to be able to know what

targets to observe and when. Therefore GOTO needed an automatic scheduling system,

which had to be able to handle two distinct operational modes: carrying out the all-sky

survey for the majority of the time, but quickly switching to follow up any gravitational-

wave alerts (or other transient events) when triggered. For the all-sky survey a series

of tiled pointings had to be to be defined, and alert observations are mapped onto the

same grid to enable the pipeline to carry out difference imaging. Reacting quickly to any

alerts is vital, so GOTO needed a robust alert monitoring system that could determine

the optimal follow-up strategy for each event.
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Finally, as described in Section 1.3.4, GOTO is envisioned as a modular project

with an increasing number of telescopes and sites, eventually operating as a multi-site

observatory. This future expansion had to be taken into account in the design of both

the hardware control and scheduling systems.

This thesis is arranged as follows:

• In Chapter 2 (Hardware Characterisation) I describe my work characterising the

GOTO hardware and optical systems prior to its deployment on La Palma.

• In Chapter 3 (The GOTO Telescope Control System) I introduce the software I

developed to control the GOTO hardware.

• In Chapter 4 (Autonomous Observing) I describe the additional autonomous level

of software I wrote to allow GOTO to operate as a robotic telescope.

• In Chapter 5 (Scheduling Observations) I examine in detail the functions used to

prioritise and schedule GOTO observations.

• In Chapter 6 (Tiling the Sky) I describe how GOTO observations are mapped onto

an all-sky grid, and how it is used to observe gravitational-wave skymaps.

• In Chapter 7 (Processing Transient Alerts) I describe the software systems used to

receive and process astronomical alerts, including gravitational-wave detections.

• In Chapter 8 (On-Site Commissioning) I detail my work during the deployment of

the GOTO prototype on La Palma and subsequent control system development.

• In Chapter 9 (A Multi-Telescope Observatory) I examine the future expansion

plans of GOTO, and detail simulations I carried out to quantify the benefits of

multiple telescopes and sites.

• Finally, in Chapter 10 (Conclusions and Future Work) I present concluding remarks

and some suggestions for future project development.



Chapter 2

Hardware Characterisation

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2 Detector properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2.1 Sources of CCD noise . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.2 In-lab tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2.3 CCD sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.2.4 Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.2.5 Gain, read-out noise and fixed-pattern noise . . . . . . . . . . 40
2.2.6 Dark current . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.2.7 Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.2.8 Defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.3 System throughput . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.3.1 Optical elements . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.3.2 Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.3.3 Quantum efficiency . . . . . . . . . . . . . . . . . . . . . . . . 60
2.3.4 Total throughput . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.3.5 Atmospheric extinction . . . . . . . . . . . . . . . . . . . . . . 62

2.4 Photometric modelling . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.4.1 Magnitude zeropoints . . . . . . . . . . . . . . . . . . . . . . . 64
2.4.2 Calculating theoretical zeropoints . . . . . . . . . . . . . . . . 66
2.4.3 Limiting magnitude . . . . . . . . . . . . . . . . . . . . . . . . 70
2.4.4 Comparison to on-sky observations . . . . . . . . . . . . . . . 74

2.5 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 79

s

31



Chapter 2: Hardware Characterisation 32

2.1 Introduction

In this chapter I detail my work characterising and modelling the GOTO hardware.

This work was carried out predominantly in the first year and a half of my PhD, prior

to GOTO’s commissioning in 2017.

• In Section 2.2 (Detector properties) I describe and give the results of the in-lab

detector characterisation tests I ran on the GOTO CCD cameras.

• In Section 2.3 (System throughput) I detail the throughput model of the GOTO

optical system that I created.

• In Section 2.4 (Photometric modelling) I apply the results of the previous two

sections to predict the photometric properties of GOTO images, before comparing

them to real observations taken once GOTO was fully operational.

All work described in this chapter is my own unless otherwise indicated, and has not

been published elsewhere.
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2.2 Detector properties

CCD cameras have a variety of characteristic parameters advertised by the manufac-

turers, including the amount of detector noise. As described in Section 1.3.2, GOTO

uses MicroLine ML50100 CCD cameras manufactured by Fingerlake Instruments (FLI),

which contain KAF-50100 CCD sensors manufactured by ON Semiconductor. Both man-

ufactures produce specification sheets advertising expected parameters[1],[2]. Confirming

these under laboratory conditions is important before the detectors are used to take sci-

entific images on the telescope. FLI carried out a limited series of tests on the cameras

before selling them, but carrying out our own tests ensures that our cameras meet the

specifications, and also allows independent measurements of the key parameters.

2.2.1 Sources of CCD noise

There are many sources of noise in images taken with CCD cameras. The most important

noise sources for astronomical images are (Janesick 2001):

• Shot noise derived from counting photo-electrons from the source and background.

• Dark current noise from thermally generated electrons within the sensor.

• Read-out noise from the detector and CCD controller electronics.

• Fixed-pattern noise from different sensitivities between pixels.

• Bias, an offset in counts added to each pixel which can vary with time and position

on the detector.

The shot noise (σN) arises as photons from the target object arrive at the sensor at

irregular intervals. The photon arrival time is a Poisson distribution, and, if the number
[1]ML50100 available at http://www.flicamera.com/spec_sheets/ML50100.pdf.
[2]KAF-50100 available at http://www.onsemi.com/pub/Collateral/KAF-50100-D.pdf.

http://www.flicamera.com/spec_sheets/ML50100.pdf
http://www.onsemi.com/pub/Collateral/KAF-50100-D.PDF
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of electrons counted is N , for large numbers it tends towards a Gaussian distribution

with mean N and standard deviation σN =
√
N . When taking on-sky astronomical

observations there are two sources of shot noise, from the target object (σobj) and the

background sky (σsky).

Dark current noise (σDC) is due to electrons produced by thermal excitations, which

are indistinguishable from photo-electrons and increase with exposure time. This is also

a photon counting measurement, so the noise σDC =
√
D where D is the dark current

per pixel. The dark current depends on temperature: cooling the cameras reduces the

thermal excitations and therefore reduces the dark current.

Read-out noise (σRO) depends on the quality of the CCD outputs and readout elec-

tronics, and on the speed data is read out from the CCD. The FLI MicroLine cameras

read out at a fixed frequency of 8MHz per pixel, but other astronomical cameras have

variable read-out speeds. Since read-out noise is a property of the output electronics, it

is independent of signal or the exposure time used, and therefore it can be represented

by a constant value for each frame, σRO = R, measured in electrons per pixel. The

MicroLine cameras have two channels with independent readouts, so each will have an

independent read-out noise (see Section 2.2.3).

Fixed-pattern noise (σFP, also called flat-field noise) is due to the small differences in

size and response between pixels. It increases linearly with the electron count, includ-

ing source (N), background (Nsky) and dark (D) electrons (the fixed-pattern noise can

be further broken down into the photo response non-uniformity and dark signal non-

uniformity, but we will consider it as a single noise source). It can be parametrised as

σFP = kFP(N + Nsky + D), where kFP is a dimensionless constant describing the fixed-

pattern noise as a fraction of the full-well capacity. Scientific CCD cameras typically

have very small non-uniformities between pixels, so kFP is usually < 1%, but this noise

source can dominate when the signal count is high. However, as it is linearly related to

the number of counts recorded fixed-pattern noise can easily be removed by flat fielding.
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Finally, the bias level is an offset in counts applied to each pixel independent of

the input signal. A large bias level is applied to each pixel by CCD manufacturers to

prevent negative counts from being recorded due to fluctuations in the read-out noise.

Across a frame the bias level will sometimes show structure, but it is simple to remove

by subtracting a master bias frame. The bias level can change by a few counts during

a night due to changes in the temperature, and it should be measured regularly, as any

large changes might indicate a problem with the detector. The MicroLine cameras also

include an overscan region (see Section 2.2.3), which gives an independent measurement

of the typical bias level for every image.

The noise sources described above (aside from the bias) are all independent Gaussian

random variables, and therefore are added in quadrature to get the total noise per pixel

σ2
Total = σ2

obj + σ2
sky + σ2

DC + σ2
RO + σ2

FP

= N +Nsky +D +R2 + k2
FP(N +Nsky +D)2.

(2.1)

2.2.2 In-lab tests

The initial deployment of GOTO was delayed for several months, due to delays on-site

and manufacturing the unit telescopes (see Section 8.2). The first set of four cameras,

however, had already been purchased from FLI, and the delay gave time to test them in

the lab in Sheffield in 2016. The second set of cameras were also purchased before the

second four unit telescopes; these were also brought to Sheffield in 2018 so the same tests

could be repeated. A list of the nine FLI cameras bought for GOTO is given in Table 2.1.

Each camera is given a name (Camera 1, Camera 2 etc.) based on the order of their

serial numbers. These names are used throughout this section but do not necessarily

match which GOTO unit telescope they were assigned to, and the cameras on La Palma

are sometimes swapped around to allow for repairs.
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Name Serial number Set Tested

Camera 1 ML0010316 1 May—June 2016
Camera 2 ML0330316 1 March—May 2016
Camera 3 ML0420516 1 May—June 2016
Camera 4 ML0430516 1 May—June 2016
Camera 5 ML5644917 2 May—June 2018
Camera 6 ML6054917 2 May—June 2018
Camera 7 ML6094917 2 May—June 2018
Camera 8 ML6304917 2 May—June 2018
Camera 9 ML6314917 2 not tested

Table 2.1: A list of the 9 GOTO cameras, with assigned names, serial numbers and
dates when the tests were carried out. The ninth camera (bought as a spare) was retained
by Warwick for their own use, and was not tested in Sheffield.

The characterisation tests consisted of taking a series of calibration frames with each

camera. Three types of images were needed:

• Zero-second dark exposures, to construct bias frames (see Section 2.2.4).

• Long (30 minute) dark exposures at different temperatures, to measure the dark

current (see Section 2.2.6).

• Flat illuminated frames at different exposure times, to construct photon transfer

curves (see Section 2.2.5) and measure linearity (see Section 2.2.7).

The cameras were tested using two different test setups. Figure 2.1 shows the setup

for taking dark frames: the cameras are face down and covered by a sheet. The long

dark exposures required were taken overnight to minimise the background light reaching

the detectors. For flat fields a computer monitor was used as a flat source, shown in

Figure 2.2. Sheets of paper were placed between the camera and the monitor to reduce

the illumination and diffuse the light. The LCD monitor will produce polarised light,

however this should not affect the resulting images as long as the angle of the camera

remains constant.
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Figure 2.1: A photo of the dark frame test setup in the lab in Sheffield. Dark frames
were taken at night with the cover down to minimise the ambient light.

Figure 2.2: A photo of the flat field test setup. A spare computer monitor was used
as a flat panel, with sheets of paper placed between it and the camera. The cover shown
in Figure 2.1 was also placed over the setup.
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2.2.3 CCD sensors

As mentioned previously, the MicroLine ML50100 cameras used by GOTO contain KAF-

50100 Charge-Coupled Device (CCD) sensors manufactured for FLI by ON Semicon-

ductor[3]. These are high-resolution, front-illuminated CCDs with two read-out chan-

nels. The Quantum Efficiency (QE) curve for the detector is shown in Figure 2.17 in

Section 2.3.3. The detector is covered in a multilayer anti-reflective coating, and includes

a microlens array to focus light onto each pixel and improve the quantum efficiency. The

microlenses limit the acceptance angle of the detector to approximately ±20°, for a

40 cm aperture this corresponds to a maximum focal ratio of 2.8 (the 40 cm GOTO unit

telescopes are f/2.5, see Section 2.3.1).

The KAF-50100 sensor consists of a 50-megapixel CCD with 6 µm × 6 µm square

pixels. The layout of the sensor is shown in Figure 2.3, adapted from the ON Semicon-

ductor sensor specification sheet. The sensor has 8282 × 6220 pixels with an imaging

area of 8176× 6132 pixels; when taking data in full-frame mode the camera outputs an

8304× 6220 array. Surrounding the image area on each edge are 16 active buffer pixels,

which are light-sensitive but not considered part of the primary active region (they are

not tested for deformities by the manufacturer). Around the edge of the active area is a

border of light-shielded dark reference pixels which do not respond to light and therefore

can be used as a dark current reference. At the beginning and end of each row there is

also a test column with 4 blank columns either side, as well as a test row at the end of

each frame; these are used to test charge transfer efficiency during the manufacturing

process. Finally, at the start of each row the register reads out a test pixel, used in the

readout process, followed by 10 dummy pixels which do not correspond to physical pixels

on the sensor. These form an overscan region which can be used to measure the bias

level. A sample flat frame highlighting these areas is shown in Figure 2.4.

[3]http://www.onsemi.com

http://www.onsemi.com
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Figure 2.3: The layout of the KAF-50100 CCD sensor. The central image area is not
shown to scale, but the surrounding rows and columns are all in proportion.

500

1000

1500

2000

Figure 2.4: A sample bright frame from one of the MicroLine cameras. The highlighted
corner shows some of the features described in Figure 2.3. This image was taken as shown
in Figure 2.2 with no optical elements between the camera and the screen. As no optical
elements were used the cause of the visible vignetting is unclear, but may come from the
camera aperture.
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Bias
(ADU)

L R

Camera 1 971± 3.6 969± 3.7
Camera 2 989± 3.3 983± 3.3
Camera 3 1004± 3.2 991± 3.1
Camera 4 974± 3.4 1008± 3.8

Bias
(ADU)

L R

Camera 5 994± 2.9 986± 3.0
Camera 6 984± 2.7 991± 3.0
Camera 7 992± 3.1 981± 3.0
Camera 8 1008± 3.3 1012± 2.9

Table 2.2: Bias values for each camera.

2.2.4 Bias

The bias level in each pixel can be measured by taking a dark, zero-second exposure

image. This image will not include any electrons from a source or background, so the

shot noise is zero, and as the dark current is proportional to the exposure time this will

also be minimised (there will still be a small component due to the time taken to read

out the sensor). To account for the read-out noise, multiple images are taken, 50 for each

of the eight cameras, and combined to form a master bias frame by taking the median

value in each pixel (to eliminate cosmic rays).

Table 2.2 gives the median bias level from each master bias, measured within a

2000×2000 pixel region in the centre of both channels, along with the standard deviation

in the same region. The measured bias levels are all around 1000 counts, which would

be typical for a bias level set by the manufacturer. Combining n frames should reduce

the noise by
√
n, and, as expected, the errors are equivalent to the read-out noise values

given in Table 2.3 when converted into counts and reduced by a factor of
√
50 (≈ 7).

2.2.5 Gain, read-out noise and fixed-pattern noise

The gain, read-out and fixed-pattern noise of a CCD camera can be measured using the

Photon Transfer Curve (PTC) method (Janesick 2001; Li et al. 2016). A photon transfer

curve is a log-log plot of a signal value against the noise in the signal. To construct a
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photon transfer curve a series of bright exposures of a flat light source were taken with

varying exposure times. For these images there is no background signal, the cameras

were cooled meaning dark current noise is negligible (see Section 2.2.6), and the master

bias frames described in Section 2.2.4 were subtracted from each frame. The total noise

per pixel in electrons is therefore given by Equation 2.1 as

σ2
Total = N +R2 + k2

FP(N)2. (2.2)

The signal and total noise in Equation 2.1 are all in electrons (e−), however the output

of the camera’s Analogue-to-Digital Converter (ADC) is a digital signal, S, measured in

counts or Analogue-to-Digital Units (ADU). This signal is linearly related to the actual

number of electrons detected, N , through the gain, g, in e−/ADU, as

N = gS. (2.3)

The gain is an important parameter of a CCD, and is set by the manufacturer based on

the properties of the detector. For example, if a CCD has the gain set to 3 e−/ADU

then pixels containing 0, 1 or 2 electrons would all have a measured value of 0 ADU; this

is a form of rounding error called quantisation error. If the same camera had a read-out

noise of 1 e− per pixel then the readout-noise would be under-sampled, and setting a

lower gain would be required. However, setting the gain too low results in the full-well

capacity of each pixel being under-utilised. The KAF-50100 detectors have a full well

capacity of 40,300 electrons, and the cameras have a 16-bit ADC (meaning the signal

from each pixel can vary from 0 to 65535 (216−1) ADU). If the gain is set to 0.5 e−/ADU

then the ADC would saturate after reading 32,768 electrons, which is much less than the

capacity of each pixel. Setting the gain therefore is a balance between these two effects.

As electrons and counts are proportional, the noise in both is also proportional (i.e.
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Figure 2.5: The key features of a photon transfer curve, adapted from Janesick (2001).

as N = gS from Equation 2.3, σTotal = gσS). Using these relationships Equation 2.2 can

be converted to give the noise in ADU,

σ2
S =

1

g
S +

R2

g2
+ k2

FPS
2. (2.4)

This is a quadratic equation which relates the measured total signal S to the variance in

the signal σ2
S, and can be fitted to a photon transfer curve to determine values for the gain

g (in e−/ADU), read-out noise R (still in e−) and fixed-pattern noise kFP (dimensionless).

The key features of a photon transfer curve are common for all CCDs, and are shown

in cartoon form in Figure 2.5. The first noise regime is when the signal is small: from

Equation 2.4 for small S the noise is constant and equal to R2/g2, or the read-out noise

in ADU. At higher signals the noise is dominated by the shot noise which is proportional

to
√
S, so this region has a gradient of 1⁄2 when plotted on the log-log axis. As the

signal increases further the fixed-pattern noise begins to dominate, and, as this noise is

proportional to the signal, this produces a gradient of 1 in the PTC. Finally, the pixel
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Gain RO noise FP noise Saturation level
(e−/ADU) (e−) (%) (ADU)

L R L R L R L R

Camera 1 0.53 0.53 12.4 12.0 0.46 0.45 64568 64585
Camera 2 0.53 0.53 11.9 11.7 0.44 0.46 64552 64555
Camera 3 0.57 0.57 12.6 11.8 0.45 0.42 64540 64552
Camera 4 0.57 0.58 13.4 14.0 0.41 0.43 64577 64536
Camera 5 0.62 0.63 12.3 12.8 0.40 0.40 64544 64550
Camera 6 0.63 0.62 11.8 12.6 0.40 0.40 64554 64545
Camera 7 0.62 0.62 13.1 12.5 0.41 0.39 64544 64552
Camera 8 0.62 0.62 14.3 12.2 0.41 0.39 64529 64522

Table 2.3: Gain, read-out noise, fixed-pattern noise and saturation values found by
fitting photon transfer curves for each camera.

reaches its full well capacity (assuming the gain has been set so this occurs before the

ADU saturates), so the noise drops to zero.

Photon transfer curves were constructed for all eight cameras by taking flat fields of

varying exposure times between 0.01 s and 90 s. Twelve 50×50 pixel regions were selected

across each image, and the mean and standard deviation of the pixel values within each

region were plotted to form the PTC for each camera, shown in Figure 2.6. Equation 2.4

was then fitted to the data, and the resulting values for the gain (g), read-out noise (R)

and fixed-pattern noise (kFP) parameters are given in Table 2.3. The saturation level

for each channel was also measured as the maximum signal (the point where the PTC

turns over and the noise drops), these values are also given in Table 2.3.

The gain values are all around 0.6 e−/ADU, and would have been set as such to max-

imise the dynamic range based on the full well capacity (65535× 0.6≈ 40,000 e−). The

saturation levels are all around 64550 ADU, but note these images were bias-subtracted

and Section 2.2.4 found the bias levels were around 980–1000 ADU. The read-out noise

values match the FLI specification of 12 e− for the MicroLine cameras, and also match

the errors found in the master biases. Finally, the fixed-pattern noise is a very small

fraction of the signal (< 0.5%) which suggests a low pixel non-uniformity.
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Figure 2.6: Photon transfer curve plots for each camera. The vertical dashed line
shows the measured saturation level.
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2.2.6 Dark current

Dark current noise is independent of the incoming signal but depends on the exposure

time of the image. It also increases as a function of temperature, T . The dark current

per second, D, increases at an exponential rate and is usually parametrised as doubling

after a fixed increase in temperature called the doubling temperature, Td, so that if the

dark current D(T0) = D0 then D(T0 + Td) = 2D0. The dark current as a function of

temperature is therefore defined as

D(T ) = D0e
ln 2
Td

(T−T0). (2.5)

The choice of T0 is arbitrary, and is usually decided as a reasonable operating temperature

by the CCD manufacturer. The FLI specifications give a value for the typical dark

current at −25 ◦C, so that is the value of T0 used in this test.

In order to find values for the dark current D0 and doubling temperature Td, a series

of long (30 minute) dark exposures were taken with each camera at varying temperatures.

The MicroLine cameras have an in-built air-cooled Peltier cooler which can reach 40 ◦C

below the ambient temperature. The laboratory the tests were carried out in was air-

conditioned, but only to a typical office level, and the cameras were unable to reach below

−26 ◦C even when taking images in the middle of the night. The median dark signal was

then measured in a 2000×2000 pixel region in the centre of each channel, and divided by

1800 (as each exposure was 30 minutes) to get the dark current in ADU/second. This

value was plotted against temperature, as shown in Figure 2.7. The points were fitted

by Equation 2.5, and the resulting values for the dark current and doubling temperature

are given in Table 2.4.

The FLI specification for dark current changed between the two test periods; initially

the company gave a typical per-pixel value of 0.002 e−/s at −25 ◦C, for the second set

of cameras this was increased to 0.008 e−/s. All the cameras were found to have a
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Dark current per pixel Doubling
at −25 ◦C temperature

(ADU/s) (e-/s) (◦C)
L R L R L R

Camera 1 0.0022 0.0017 0.0012 0.0009 7.9 6.7
Camera 2 0.0030 0.0027 0.0016 0.0014 8.9 8.2
Camera 3 0.0034 0.0036 0.0019 0.0020 10.7 10.9
Camera 4 0.0026 0.0030 0.0015 0.0017 9.5 10.2
Camera 5 0.0015 0.0017 0.0009 0.0011 6.6 7.2
Camera 6 0.0020 0.0017 0.0013 0.0011 7.5 6.8
Camera 7 0.0017 0.0014 0.0011 0.0008 7.6 6.5
Camera 8 0.0019 0.0015 0.0012 0.0009 7.5 6.5

Table 2.4: Dark current values for each camera. The conversion from ADU/s to e−/s
used the gain values given in Table 2.3.

dark current well within the revised specification value, and all except Camera 3 are

comfortably below the original 0.002 e−/s specification.

The KAF-50100 specification includes a value for the doubling temperature of 5.7 ◦C

but the measured values are all higher than this. In practice, the temperature dependence

of the dark current is not important; the GOTO cameras are cooled to −20 ◦C in the

evening and remain there through the night (−20 ◦C is used instead of −25 ◦C as during

the summer on La Palma the ambient nightly temperature can reach higher than 15 ◦C).

The dark current was also examined as a function of time since power on, as in some

cameras there are a noticeable amount of free electrons left trapped in the lattice which

take time to dissipate (Hardy 2016). No such trend was visible using the FLI cameras.

Since the MicroLine cameras have the detector and cooler integrated into the same body

there has to be some time spent waiting after power on for the camera to cool to the

target temperature before any images can be taken, thus negating the effect.
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Figure 2.7: Dark current plots for each camera.



Chapter 2: Hardware Characterisation 48

Non-linearity
(%)

L R

Camera 1 2.29 2.00
Camera 2 0.76 0.65
Camera 3 0.34 0.39
Camera 4 0.18 0.22

Non-linearity
(%)

L R

Camera 5 1.25 1.20
Camera 6 1.20 1.13
Camera 7 0.70 0.68
Camera 8 0.82 0.80

Table 2.5: Non-linearity values for each camera.

2.2.7 Linearity

Linearity is a measure of the response of the CCD over its dynamic range. The output

counts should ideally be linearly related to the input photons, i.e. if the target doubles

in brightness then double the counts should be recorded.

The non-linearity of each camera was measured using the same images taken for the

photon transfer curves in Section 2.2.5 — bright images of a flat field with increasing

exposure times. The images were bias-subtracted, and the median counts of a 2000×2000

pixel region in the centre of each channel was plotted against the exposure time, shown

in Figure 2.8. A linear relation was fitted to the central potion of the data, excluding

the upper and lower 10% of the dynamic range. Residuals from this fit are also plotted

in Figure 2.8, and the mean absolute deviation from the linear fit is given in Table 2.5.

The values for non-linearity measured vary greatly between each camera, and several

are over 1%. If these values were true this would be a major problem when making

accurate photometric measurements. However, the FLI specification advertises a non-

linearity of <1%, and FLI’s own tests of the cameras consistently report non-linearity of

0.2% or less. Accurately measuring the response of a CCD requires a stable, uniform light

source, which I had to approximate with an LCD screen as described in a Section 2.2.2.

A better test would be to vary the screen brightness instead of the exposure time, which

would prevent systematic effects such as the shutter closing time affecting the results.
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Figure 2.8: Linearity plots for each camera. The horizontal dashed line in the top
panel shows the saturation level from Table 2.3, and the dashed lines in the lower panels
show the target ±1% non-linearity range.
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Trap location Height
x y %

Camera 1 7751 4361 30
Camera 2 1658 172 97
Camera 3 1224 1844 70

5058 5185 17
Camera 4 5406 2607 58
Camera 5 6293 1416 77
Camera 6 5455 5036 19

Trap location Height
x y %

Camera 7 1344 3037 51
2326 2495 60
2610 5688 9
7491 5120 18

Camera 8 1184 3043 51
5659 2778 55

Table 2.6: Locations and extent (as a percentage of the total column height) of bad
columns for each camera.

2.2.8 Defects

There are several possible defects in CCD sensors (Janesick 2001): hot pixels, which

have atypically high dark currents, dead pixels, which produce low or zero counts, and

trap pixels, which “trap” electrons and prevent read out from it and any pixels above

it in the column. It is important to identify any bad pixels so that the GOTOphoto

pipeline (see Section 1.3.3) can mask them when reducing the images from each camera.

Single hot or dead pixels can be removed to some extent by subtracting dark frames

and flat fielding. Trap pixels are more of an issue, as they can potentially take out a

large fraction of a column. For each camera, a defect mask was made by taking the ratio

of two flat field images with different exposure times, making any bad columns easy to

pick out by comparing to the surrounding pixels. An example of a bad column caused

by a trap pixel is shown in Figure 2.9. The positions of bad columns for each camera

are given in Table 2.6. The KAF-50100 chip specification gives an allowed limit of less

than 20 column defects per device, which the GOTO cameras are well within.
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Figure 2.9: A flat field for Camera 1 showing a bad column. The location of the
trap pixel is magnified, showing that the pixels in the column above the trap have been
prevented from being read out. The bad column is also also clearly visible in the plot
below, which shows the average counts in each column.
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2.3 System throughput

Unfortunately, not every photon emitted by a target object will be recorded by a tele-

scope: photons will be lost due to absorption and scattering within the telescope’s optics

and camera, as well as in the Earth’s atmosphere (for ground-based telescopes). Un-

derstanding each of these factors is required in order to produce a complete throughput

model, which can then be compared to the real system (in Section 2.4.4) to see if the

hardware is performing as expected.

2.3.1 Optical elements

As described in Section 1.3.2, the GOTO unit telescopes are Wynne-Newtonian astro-

graphs: fast (f/2.5) Newtonian telescopes with a 40 cm primary mirror, a flat elliptical

secondary (19 cm short axis) and a Wynne corrector between the secondary and the

camera. A drawing of the Optical Tube Assembly (OTA) is shown in Figure 2.10, and

the five elements the light must pass through (the three corrector lenses, the filter in the

filter wheel and the window in front of the detector) are shown in Figure 2.11. In order

to model the throughput each element needed to be considered in turn.

Mirrors

The GOTO mirrors are were manufactured by Orion Optics[4]. Orion used their own

“HiLux” high reflectivity aluminium coating, and while individual reflectance curves were

not available for the GOTO mirrors at the time this work was carried out, Orion does

have a representative curve on their website (shown in Figure 2.13). As there are two

mirrors this curve will be included twice in the final throughput model. The difference in

the angle of incidence of light on the two mirrors is accounted for in the coating applied

to each mirror, so the reflectivity curves of the two are assumed to be identical.

[4]https://www.orionoptics.co.uk

https://www.orionoptics.co.uk
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Figure 2.10: The Optical Tube Assembly (OTA) design for one of the GOTO unit
telescopes. Light enters from the left, and relevant elements have been highlighted: the
primary mirror in green, the secondary mirror in blue, the Wynne corrector in red and
the FLI camera hardware in purple.

Figure 2.11: A ray trace through the optical elements after the primary and secondary
mirrors. From left-to-right light passes through the three Wynne corrector lenses, the
filter, and the camera window before reaching the detector located in the focal plane.
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Radius of curvature On-axis Glass
Lens Shape Diameter Exterior Interior thickness type

1 Meniscus 120mm 89mm 86mm 12mm H-K9L
2 Meniscus 90mm 278mm 71mm 5mm H-K9L
3 Biconvex 90mm 77mm 378mm 20mm S-FPL53

Table 2.7: Properties of the three Wynne corrector lenses.

Lenses

Each Wynne corrector contains three lenses, as shown in Figure 2.11 — the details of

each lens are given in Table 2.7. No complete transmission data was available, so a

model throughput curve had to be created.

For each lens the reflectivity of the front and rear surfaces and the internal transmit-

tance of the glass needs to be considered. Each surface is coated with an anti-reflection

coating, the profile of which was included in the GOTO optical report. Transmittance

curves for each lens were not available, but the glass types were included in the report

and are given in Table 2.7. Transmittance data provided by the glass manufacturers

were retrieved from the online Refractive Index Database[5]. For simplicity, each lens

was modelled as having a constant thickness, using their on-axis thickness. As shown in

Figure 2.11, this is a good approximation for lens 1 but will underestimate the absorption

within lens 2 and overestimate the absorption within lens 3.

Throughput curves for the anti-reflection coatings and the glass for the three lenses

are shown in Figure 2.12 along with the total throughput of the corrector, found by mul-

tiplying the contributions from the glass transmission and the coating on both surfaces

of each lens:

Tcorrector = TLens1 × TLens2 × TLens3 × (Tcoating)
6. (2.6)

[5]https://refractiveindex.info

https://refractiveindex.info
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Figure 2.12: Transmission curve for the Wynne corrector (the orange solid line),
comprised of the glass throughput of each lens (red, green and purple dashed lines)
and an anti-reflection (AR) coating on all six surfaces (blue dotted line).

Filters

The filter transmittance is included in their bandpass profiles, described below in Sec-

tion 2.3.2. At this stage we will consider the OTA with no filter, so as to produce an

unfiltered OTA transmission curve which can then by multiplied by the chosen filter

bandpass in Section 2.3.4.

Camera window

Finally, before reaching the detector, light must pass through a glass window in the

camera which protects the CCD sensor. The window is made of F116 glass, and a

transmission profile was provided by FLI. This is shown in Figure 2.13.
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Figure 2.13: Transmission curve for the unfiltered OTA (the red solid line), which
includes the two mirrors (blue dashed line), the combination of all three corrector lenses
(orange dashed line, from Figure 2.12) and the camera window (green dashed line).

Combined OTA throughput

The combined throughput for the whole unfiltered OTA is shown in Figure 2.13. This

was constructed by multiplying through the transmission curves for the two mirrors, the

corrector (from Equation 2.6) and the camera window:

TOTA = (Tmirror)
2 × Tcorrector × Twindow. (2.7)

In the 4000–7000Å visible region used by GOTO the throughput is typically 60% or

above, although all the elements have a sharp cut-off towards the blue.
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Figure 2.14: Transmission curves for the Baader LRGBC filter set used by GOTO.

2.3.2 Filters

Each GOTO unit telescope has a five-slot filter wheel containing a set of 65mm square

filters from Baader Planetarium[6]: three coloured filters (R, G, B), one wide “luminance”

filter (L) covering the whole visible range, and a clear glass filter (C ). Transmission curves

for each filter are shown in Figure 2.14. Each filter has a high throughput and steep cut-

offs outside of the desired bandpasses. For the coloured filters the cut-offs were chosen

so the [Oiii] λ5007 emission line falls within the overlap of the B and G filters and the

region around 5800Å, which contains emission lines from Mercury and Sodium vapour

lamps, is excluded by the gap between the G and R filters.

Most GOTO observations are taken using the L filter, however the RGB filters have

been used for manual follow-up observations. The clear filter is never used for scientific

observations, so it is not considered as part of the throughput model going forward.
[6]https://www.baader-planetarium.com

https://www.baader-planetarium.com
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Effective wavelength Effective bandwidth
Filter (λeff, Å) (∆λ, Å)

Baader L 5355 2942
Baader R 6573 979
Baader G 5373 813
Baader B 4509 1188

Table 2.8: Properties of the Baader LRGB filters.

Properties of the LRGB filters are given in Table 2.8. The effective wavelength (λeff)

is the pivot wavelength as defined in Koornneef et al. (1986) for HST filters:

λ2
eff =

∫
Tλ dλ∫
T/λ dλ

, (2.8)

where T is the transmission integrated over all wavelengths λ. The effective bandwidth

(∆λ) is found by calculating the equivalent width, the width of a rectangle that has a

height equal to the maximum transmission (unity) and the same area as the area under

the filter transmission curve, i.e.

∆λ =

∫
T dλ. (2.9)

The Baader filters were designed for amateur astronomers and astro-photographers,

and are less commonly used by professional instruments than other sets, such as the

u’g’r’i’z’ set used by the Sloan Digital Sky Survey (Fukugita et al. 1996) or the traditional

Johnson-Cousins UBVRI set redefined by Bessell (1990). GOTO primarily uses Baader

filters to reduce costs, as each unit telescope requires a full set. A comparison of the

Baader LRGB transmission curves with Sloan are shown in Figure 2.15 and with Bessell

Figure 2.16. The Baader L filter approximately covers the Sloan g’ and r’ filters, the B

and G filters cover g’ and R roughly matches r’. Colour terms to compare GOTO RGB

observations with Sloan g’ and r’ observations were calculated by Borisov et al. (2018).
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Figure 2.15: A comparison of the Baader LRGB filters to the Sloan u’g’r’i’z’ set.

Figure 2.16: A comparison of the Baader LRGB filters to the Bessell UBVRI set.
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Figure 2.17: QE curve for the KAF-50100 CCDs, both with and without microlensing.

2.3.3 Quantum efficiency

After passing through the telescope photons are focused onto the CCD, where they

interact with the photosensitive layer and produce electrons which are recorded by the

detector (Janesick 2001). The conversion from photons to electrons is the Quantum

Efficiency (QE) of the CCD, and is dependent on wavelength: short-wavelength photons

will be absorbed before reaching the photosensitive layer, while long-wavelength photons

will not have enough energy to create free electrons in the silicon. CCDs that are back-

side illuminated have improved blue QE due to the photons not having to pass through

the electrode layer and therefore having less chance of being absorbed, however these are

more complicated and expensive to build. The QE can also change with temperature in

the near IR, but this is negligible in the optical. The QE curve for the KAF-50100 CCDs

is shown in Figure 2.17. As described in Section 2.2.3, these CCDs are front-illuminated,

and include a microlens array in front of the sensor to improve the QE.
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Figure 2.18: The complete GOTO throughput model. The model elements (dashed
lines) are the combined throughput of the OTA elements (from Figure 2.13) and the
quantum efficiency of the microlensed CCD (from Figure 2.17); and the Baader LRGB
filter bandpasses (from Figure 2.14) are shown by the coloured dotted lines. The filled
lines shown the total throughput in each filter when the model is applied.

2.3.4 Total throughput

The complete GOTO throughput is a combination of all of the elements discussed in the

previous sections. Each source profile was linearly interpolated to the same wavelength

range (3500–8500Å) and multiplied together to produce the total GOTO throughput

model, shown in Figure 2.18. Since the quantum efficiency has been included, the total

throughput describes the conversion between photons to electrons detected in the CCD,

and using the gain values given in Table 2.3 the full conversion between photons and

output counts can be made (this does not include photons lost to extinction in the

atmosphere, see Section 2.3.5). The mean throughput in each filter can be found by

dividing the filled areas in Figure 2.18 by the area of the filter bandpass, and are given

in electrons per photon in Table 2.9.
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Figure 2.19: Atmospheric extinction in the GOTO filters, in magnitude per airmass.
The measured extinction curve from King (1985) is shown by the black dashed line,
and the filled lines show the extinction curve multiplied by the filter bandpasses from
Figure 2.14 (shown by the coloured dotted lines).

2.3.5 Atmospheric extinction

In order to model the entire light path from an astronomical source through to the CCD

detector, the absorption of light by the Earth’s atmosphere must also be considered. The

atmosphere is close to transparent over most of the visible region, however losses due to

Rayleigh scattering begin to dominate closer to the UV (Hayes and Latham 1975).

The amount of light lost due to absorption and scattering in the atmosphere will

depend on the altitude of the source, as light from sources closer to the horizon will

pass through a thicker layer of atmosphere. The extinction of the atmosphere above La

Palma has been measured in terms of magnitude per source airmass by King (1985), and

is shown in Figure 2.19.
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Throughput Extinction
Filter (e−/photon) (mag/airmass)

Baader L 0.43 0.13
Baader R 0.46 0.07
Baader G 0.51 0.11
Baader B 0.36 0.20

Table 2.9: Theoretical throughputs and extinction coefficients for the GOTO filters.

Atmospheric extinction can be treated like the throughput elements considered in

Section 2.3.4, except it is not included in the throughput model as it is not a function

of the GOTO hardware. For the LRGB filters, the mean extinction can be found by

multiplying the extinction curve by the filter bandpasses, as shown in Figure 2.19, and

then dividing the filled areas under each curve by the area of the unmodified filter

bandpass. These extinction coefficients are given in magnitudes per airmass in Table 2.9.

Another atmospheric factor unique to observing from La Palma is the calima, large

quantities of dust from the Sahara Desert which can be carried over the site by easterly

winds. The calima occurs most often in the summer, and analysis of dust-affected images

has shown that the additional extinction is not wavelength dependent (García-Gil et al.

2010). The extinction curve measured by King (1985) was based on observations taken

on dust-free nights, and the values in Table 2.9 do not include any additional extinction

to model the effects of the calima. Based on analysing archival images over 20 years,

García-Gil et al. (2010) suggests heavy calima could increase the extinction by up to

0.04 mag/airmass.
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2.4 Photometric modelling

Using the throughput model created in Section 2.3 it was possible to simulate photo-

metric observations with GOTO before the telescope was commissioned. This section

applies the theoretical throughput model to two important photometric properties: the

magnitude zeropoint (the correction required to convert between instrumental and cal-

ibrated magnitude values) and the limiting magnitude (the faintest magnitude a source

can be to still produce a detectable signal above a given noise threshold). These theor-

etical values are then compared to values calculated from real GOTO observations, in

order to check that the hardware is performing to specification.

2.4.1 Magnitude zeropoints

The flux of a source, F , is related to its magnitude, m, by

m = −2.5 log10(F ). (2.10)

In practice, magnitudes are usually measured relative to a reference star using

m−mref = −2.5 log10

(
F

Fref

)
, (2.11)

which requires a reference star of known magnitude mref and flux Fref. Traditionally

Vega is used as a reference star as it has a magnitude of very close to 0.

The instrumental magnitude measured from an image is related to the number of

photo-electrons recorded, N , using the same magnitude definition

mins = −2.5 log10(N/t), (2.12)

where t is the exposure time. The number of photo-electrons recorded per second N/t
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from a given source should be proportional to the source flux F (assuming the cam-

era has a low non-linearity, see Section 2.2.7). Relating the two through a constant κ

Equation 2.12 becomes

mins = −2.5 log10 (κF )

= −2.5 log10 (F )−mZP

= m−mZP,

(2.13)

where the constant mZP is defined as the instrumental zeropoint.

The zeropoint is so called because observing an object with a true magnitude equal

to the zeropoint (m = mZP) will produce an instrumental magnitude of 0, which cor-

responds to one electron per second on the detector. The zeropoint is usually defined

based on the electron rate that would be measured above the atmosphere, which allows

zeropoints to be compared between telescopes (i.e. not including an atmospheric profile

as discussed in Section 2.3.5). Each telescope and filter combination will have a unique

zeropoint, and once determined it can be used to convert instrumental magnitudes meas-

ured using that telescope to a calibrated magnitude using

m = mins +mZP. (2.14)

Therefore, were it possible to observe a star with m = 0 (without saturating the detector)

the zeropoint can be calculated as

mZP = 0−mins

= 2.5 log10(N/t).

(2.15)
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2.4.2 Calculating theoretical zeropoints

Consider taking an observation of a zero magnitude star, such as Vega. From Equa-

tion 2.14, the instrumental magnitude will be equal to the negative zeropoint. In the AB

magnitude system a zero magnitude star has a fixed flux density Fν = 3631 Jy (Fukugita

et al. 1996). Therefore, passing this flux through the throughput model for each filter

created in Section 2.3 will produce a predicted signal in photo-electrons, which can be

used to calculate a theoretical zeropoint.

Estimating predicted counts from a 0 mag star

First, the zero-magnitude flux density needs to be converted into a flux in photons.

3631 Jy is equal to 3.631× 10−20 erg s−1 cm−2Hz−1. To convert from Fν to Fλ this needs

to be multiplied by a factor of c/λ2
eff, where c is the speed of light and λeff is the effective

wavelength of the photon, in this case the effective wavelength of the filter in question[7].

This will then give a flux in erg s−1 cm−2 Å−1, but to convert to a photon count it needs

to be divided by the energy of each photon given by

Eλ =
hc

λeff
, (2.16)

where h is Planck’s constant. Again, at this stage it is assumed that all of the photons

have the effective wavelength of the filter. Therefore, the expected flux in photons from

a 0 magnitude star is given by

Fλ = 5.5× 106/λeff photons s−1 cm−2 Å−1 (2.17)

where λeff is given in Angstroms.

[7]The c/λ2
eff conversion factor comes from differentiating the relationship ν = c/λ.
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Zero-magnitude star
Filter flux predicted signal Zeropoint

(photon/s) (e−/s) (mag)

Baader L 3.41× 109 1.26× 109 22.75
Baader R 9.24× 108 3.67× 108 21.41
Baader G 9.38× 108 4.14× 108 21.54
Baader B 1.63× 109 5.04× 108 21.76

Table 2.10: The flux from a zero-magnitude star in each of the GOTO filters, along with
the predicted signal and corresponding theoretical zeropoint found using the throughput
model from Section 2.3.

Multiplying the value in Equation 2.17 by the effective filter bandwidth (in Å) and

the collecting area of the telescope (in cm2) will give the predicted photon flux in the

detector. Each of GOTO’s unit telescopes has a 40 cm diameter primary mirror, with an

area of 1257 cm2. However not all of this is available to collect photons due to the shadow

cast by the secondary mirror. The secondary mirror measures 19 cm on its short axis

(see Section 2.3.1), modelling this as circular gives the GOTO unit telescopes an effective

collecting area of 973 cm2 — meaning approximately 23% of light is blocked. Using this

area and the filter bandwidths given in Table 2.8, the theoretical flux in photons per

second expected above the atmosphere from a zero-magnitude star can be calculated for

each filter. These values are given in Table 2.10.

Finally, multiplying these theoretical fluxes by the mean throughput values for each

filter from Table 2.9 gives the predicted signal on the detector in photo-electrons per

second (again still excluding atmospheric extinction), and using Equation 2.15 gives the

theoretical zeropoint. The predicted signals and zeropoints are also given in Table 2.10.
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AB system Vega system
Filter Signal Zeropoint Signal Zeropoint

(e−/s) (mag) (e−/s) (mag)

Baader L 1.25× 109 22.74 1.23× 109 22.72
Baader R 3.84× 108 21.46 3.25× 108 21.28
Baader G 4.19× 108 21.55 4.21× 108 21.56
Baader B 4.98× 108 21.74 5.47× 108 21.84

Table 2.11: Zeropoints in the AB and Vega systems calculated using pysynphot.

Modeling observations with pysynphot

The above method is the typical way to calculate a theoretical zeropoint, but it only

approximates the bandpasses of each filter by using the effective wavelength and band-

width, and only considers the mean throughput instead of over the whole bandwidth.

To account for the full bandpass a more robust model was created using the pysynphot

Python package (Python Synthetic Photometry, pysynphot[8]), which is based the IRAF

SYNPHOT package[9]. Each of the throughput elements described in Section 2.3 were im-

ported to create throughput profiles for each filter, and observations were simulated of

a flat spectrum of 3631 Jy (0 mag in the AB system) and the built-in Vega spectrum (0

mag in the Vega system) by multiplying the spectra with the bandpasses. The resulting

spectra are shown in Figure 2.20; the area under each curve gives the predicted number

of electrons produced by the zero-magnitude star in each system.

The predicted signals found using pysynphot, and the derived zeropoints, are given

in Table 2.11. The difference between the two photometric systems is visible, the AB

spectrum gives more electrons in the red filter while the Vega spectrum is brighter in

the blue (as shown in Figure 2.20).

[8]https://pysynphot.readthedocs.io
[9]http://www.stsci.edu/institute/software_hardware/stsdas/synphot

https://pysynphot.readthedocs.io
http://www.stsci.edu/institute/software_hardware/stsdas/synphot
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Figure 2.20: Simulating GOTO observations using pysynphot. The filled coloured
areas show the theoretical throughputs from Figure 2.18 for the RGB filters in the upper
plot and the L filter in the lower plot. The coloured dotted lines show the throughputs
multiplied by a flat 3631 Jy spectrum (dot-dashed black line), while the coloured dashed
lines show the throughputs multiplied with the model Vega spectrum (solid black line).
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2.4.3 Limiting magnitude

Using the CCD parameters determined in Section 2.2, the throughput model created in

Section 2.3 and the zeropoints calculated in Section 2.4.2, a complete photometric model

of the GOTO telescopes can be created. One use of this is to predict the system limiting

magnitude for a target signal-to-noise ratio.

Signal-to-noise

The common sources of noise in CCDs are discussed in Section 2.2.1. Discounting the

bias level and fixed-pattern noise, both properties of the detector that are easy to remove

by subtracting a master bias and dividing by a flat field respectively, the major sources

of noise in an astronomical image will be the dark current and read-out noise, as well as

the shot noise from the target and the sky background. Accounting for these, the total

noise in the image is given by

σTotal =
√
N +Nsky +D +R2, (2.18)

where N is the electron signal from the source object, Nsky is the background signal from

the sky, D is the dark current and R is the read-out noise. Noise is usually quantified

as a fraction of the target signal N , known as the signal-to-noise ratio :

SNR =
N

σTotal
=

N√
N +Nsky +D +R2

. (2.19)

To be confident of the detection of an astronomical source a signal-to-noise ratio of 5 or

more is required, also known as a 5σ detection (as the signal will be more than 5 times

the noise).
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Figure 2.21: Simulating sky background observations using pysynphot.

Sky background noise

The one value in Equation 2.19 that has not yet been considered is the sky background

noise, Nsky. The brightness of the sky will change most noticeably as a function of the

Moon phase, with a full Moon creating a background noise several magnitudes brighter

than during a new Moon or when the Moon is below the horizon. In order to model

the background, sky spectra were taken from Patat (2008), which were obtained from

6 years of VLT observations on using the FORS1 instrument[10] (no equivalent spectra

taken from La Palma were available). Three sample spectra were selected to give a range

of background signals: a “Dark” spectrum taken when the Moon was new and below the

horizon, a “Grey” spectrum taken when the Moon was 60% illuminated, and a “Bright”

spectrum taken when the Moon was full. These spectra are shown in Figure 2.21.

In order to determine the sky background noise in the GOTO filters the same method

using pysynphot can be used as in Section 2.4.2. The spectra were again multiplied
[10]Spectra available at http://www.eso.org/~fpatat/science/skybright.

http://www.eso.org/~fpatat/science/skybright
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Thoretical sky signal
Filter (e−/s/arcsec2) (mag/s/arcsec2)

Dark Grey Bright Dark Grey Bright

Baader L 3.34 18.38 34.98 21.43 19.58 18.88
Baader R 1.52 5.64 10.58 21.00 19.58 18.90
Baader G 1.11 6.17 12.14 21.45 19.58 18.84
Baader B 0.68 7.24 13.50 22.16 19.59 18.92

Table 2.12: Sky background signals calculated using pysynphot for different Moon
phases, in AB magnitudes.

by the throughput curve for each filter from Section 2.3.4, the area under the curve

was measured and multiplied by the collecting area of the telescope in order to get an

predicted signal in photo-electrons. These were converted into instrumental magnitudes

using Equation 2.12 and then into calibrated magnitudes using Equation 2.14 and the

AB zeropoints given in Table 2.11. The resulting signals are given in Table 2.12. Note

that the values are given per square arcsecond; when calculating the sky background

flux the signal must be multiplied by the squared plate scale of the camera to get the

signal per pixel (the plate scale of the GOTO CCDs is 1.24 arcsec/pixel).

Calculating limiting magnitudes

The limiting magnitude of a telescope is defined as the signal which would be required to

obtain a particular SNR, typically 5σ. Equation 2.19 can be rearranged into a quadratic

formula

N2
lim − SNR2Nlim − SNR2(Nsky +D +R2) = 0, (2.20)

and this can be solved to find Nlim for a given SNR (e.g. setting SNR = 5).

It is important to remember that Nlim, Nsky, D and R are usually given as a value

per pixel. Each therefore needs to be multiplied by the number of pixels the source is

spread across, which will be determined by the size of the seeing disk. A given seeing

s in arcseconds is defined as the Full-width at Half Maximum (FWHM) of the seeing
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Figure 2.22: 5σ limiting magnitudes for GOTO plotted as a function of exposure time,
assuming an airmass of 1 and seeing of 1.5′′. Solid lines give the limiting magnitude
during dark time, dotted lines during bright time. The purple vertical line marks 60 s,
the typical GOTO exposure time.

disk in the image, which using a Gaussian profile is given by 2
√
2 ln 2 σ. Taking the 3σ

radius, the number of pixels the source will be spread across is

n = π

(
3σ

p

)2

= π

(
3s

2
√
2 ln 2 p

)2

, (2.21)

where p is the plate scale in arcseconds/pixel.

Finally, the limiting magnitude in each filter can be calculated for a range of exposure

times. These are plotted in Figure 2.22 for dark and bright skies, for each GOTO filter

and camera and using a seeing of 1.5′′. Note that it is almost impossible to distinguish

between the curves for each camera, as the differences between their dark and read

out noise values are very small. The limiting magnitudes for a 60 s image, the typical

exposure time for GOTO observations, are given in Table 2.13.
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Limiting magnitude
Filter (mag)

Dark Grey Bright

Baader L 19.88 19.61 19.41
Baader R 18.71 18.61 18.51
Baader G 18.77 18.65 18.63
Baader B 18.88 18.63 18.61

Table 2.13: 5σ limiting magnitudes for a 60 s exposure.

2.4.4 Comparison to on-sky observations

The GOTO prototype finally reached a stable 4-UT configuration in February 2019 (see

Section 8.2.1). In order to determine if it was performing to expectations, the theoretical

zeropoints calculated in Section 2.4.2 and limiting magnitudes calculated in Section 2.4.3

can be compared to those found from on-sky observations. Since GOTO is a wide-field

survey instrument there was no need to observe a particular standard star or field — each

frame contains thousands of sources that can be matched to a photometric catalogue. A

set of sample observations were used: three 60 s exposures in each of the four filters (so

12 in total) of the Virgo Cluster, taken on the 16th of March 2019. These observations

were taken during dark time when the field was at a high altitude (airmass 1.08).

Each image was processed using the standard GOTOphoto pipeline described in

Section 1.3.3, which corrected the frames for bias, dark and flat frames and extracted

sky-subtracted source counts using Source Extractor (Bertin and Arnouts 1996). These

counts were converted into instrumental magnitudes using Equation 2.12, with t = 60 s,

and using the gain values for each camera calculated in Section 2.2.5. As GOTO uses

the non-standard Baader filters (see Section 2.3.2) there are no catalogue magnitudes to

compare to. The GOTO pipeline instead makes do with the best available catalogues:

the Pan-STARRS PS1 catalogue (Chambers et al. 2016) and APASS, the AAVSO Pho-

tometric All-Sky Survey (Henden and Munari 2014). The L and G Baader filters are

matched to Pan-STARRS g, R to Pan-STARRS r and B to APASS B.
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Figure 2.23: Finding the observed zeropoint from a GOTO image. This particular
frame was taken with UT1, the first of a set of three in the L filter. It contains 6,117
matched sources, of which 6,126 have a signal-to-noise ratio (SNR) of 5 or better. Note
the accuracy of the linear fit is much better than measured in Section 2.2.7.

In order to find the zeropoint for each image a linear function was fitted to the meas-

ured instrumental magnitudes of each source as a function of the catalogue magnitude

of the star it was matched against, with the y-intercept being equal to the zeropoint for

that image. This is shown in Figure 2.23 for one of the L-band images. To exclude faint

sources with large errors, only sources with a signal-to-noise ratio of 5σ or above were

included in the fit. This was repeated for every image, and the zeropoints for each are

given in Table 2.14.

The theoretical zeropoints found in Section 2.4.2 were calculated for zero-magnitude

stars above the atmosphere, i.e. not including the effects of atmospheric extinction de-

scribed in Section 2.3.5. Obviously the real zeropoints measured from GOTO images

will include this effect, and so in order to compare to the observed zeropoints the extinc-

tion coefficients from Table 2.9 were subtracted (multiplied by 1.08, the airmass of the
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Figure 2.24: Finding the limiting magnitude from a GOTO image.

source at the time it was observed) from the theoretical values. This was done for each

filter using the AB magnitude zeropoints from Table 2.11, as both the PS1 and APASS

catalogues use AB magnitudes. The new theoretical zeropoints are given in Table 2.15,

along with the best observed zeropoint from each set of three images.

To measure the limiting magnitude from each image, the catalogue magnitude of each

source was compared to the magnitude error measured by Source Extractor, plotted in

Figure 2.24. A signal-to-noise ratio of 5 corresponds to a magnitude error of 0.198[11],

and the limiting magnitude was taken as the lowest magnitude source with a magnitude

error greater than 0.198. The best limiting magnitudes from each set of three are given

in Table 2.16, along with the theoretical dark-time limiting magnitudes again accounting

for the target airmass.

[11]An SNR of 5 means an error of ±20%, and 2.5 log(1.2) = 0.198. A common approximation is that
the magnitude error ≈ 1/SNR.
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UT1 UT2 UT3 UT4
(ML6094917) (ML0010316) (ML0420516) (ML5644917)

Filter ZP LM ZP LM ZP LM ZP LM

L 1 22.32 19.7 22.31 19.7 22.40 19.8 22.32 19.6
2 22.26 19.6 22.27 19.7 22.44 19.7 22.37 19.7
3 22.39 19.6 22.42 19.6 22.45 19.7 22.40 19.7

R 1 20.83 18.3 21.05 18.3 21.10 18.4 21.05 18.2
2 20.84 18.4 21.11 18.4 21.13 18.5 21.06 18.2
3 20.91 18.4 21.01 18.4 21.04 18.5 20.94 18.2

G 1 21.20 18.7 21.39 18.8 21.40 18.8 21.27 18.7
2 21.16 18.7 21.43 18.8 21.46 18.7 21.36 18.6
3 21.26 18.6 21.44 18.8 21.45 18.8 21.32 18.6

B 1 21.22 19.0 21.35 18.9 21.43 19.1 21.27 19.1
2 21.22 19.0 21.32 19.2 21.44 19.1 21.22 19.0
3 21.20 18.9 21.35 19.0 21.44 19.1 21.26 19.0

Table 2.14: Observed zeropoints (ZP) and limiting magnitudes (LM) from three 60 s
exposures taken in each filter. The camera serial numbers can be matched to Table 2.1.

Theoretical Best observed zeropoint Difference (obs-theory)
Filter zeropoint UT1 UT2 UT3 UT4 UT1 UT2 UT3 UT4

L 22.60 22.39 22.42 22.45 22.40 -0.21 -0.18 -0.15 -0.20
R 21.38 20.91 21.11 21.13 21.06 -0.47 -0.27 -0.25 -0.32
G 21.43 21.20 21.44 21.46 21.36 -0.23 +0.01 +0.03 -0.07
B 21.52 21.22 21.35 21.44 21.27 -0.30 -0.12 -0.08 -0.25

Table 2.15: Comparison between the theoretical zeropoints (accounting for extinction)
and the best observed zeropoints.

Theoretical Best observed limiting magnitude
Filter limiting magnitude UT1 UT2 UT3 UT4

L 19.87 19.7 19.7 19.8 19.7
R 18.70 18.4 18.4 18.5 18.2
G 18.76 18.7 18.8 18.8 18.7
B 18.87 19.0 19.2 19.1 19.1

Table 2.16: Comparison between the theoretical limiting magnitudes (for dark time)
and the best observed limiting magnitudes.
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From Table 2.15 in most cases the theoretical zeropoints are 0.2–0.3 magnitudes

higher than those measured from the sample images, which might suggest that the

theoretical model is overestimating the throughput of the system. There is a clear

difference between the four unit telescopes, with UT3 consistently performing better

than the others. This might be because its mirrors were re-aluminised and returned to

La Palma only a month before the images were taken (see Section 8.2.1), and therefore

the difference in the observed and theoretical zeropoints may be due to a lower mirror

reflectivity than assumed in the throughput model in Section 2.3.1 (e.g. due to dust build

up on the mirrors).

There is also a noticeable difference between filters, with all the unit telescopes

performing worse in the R filter but surpassing the predicted limiting magnitudes in B.

One limitation in the method used was having to match sources to existing catalogues

taken in other filters, without correcting for colour terms i.e. the differences in the filter

bandpasses (see Section 2.3.2). This is something that should be integrated into the

GOTOphoto pipeline. Further images taken over more nights would be needed to make

any firm conclusions on the performance of the hardware.
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2.5 Summary and Conclusions

In this chapter I have presented a description and analysis of the GOTO optical hardware.

I first detailed a series of in-lab tests I carried out on the GOTO cameras to determine

their key characteristics. I confirmed that the camera properties met the manufacturer’s

specifications, and was able to independently calculate many of the key properties includ-

ing the gain and noise levels. I then created a full throughput model of the GOTO unit

telescopes, including the contribution of the optics, filters and atmospheric extinction.

I then used the throughput model and camera characteristics to predict values show-

ing the performance of the GOTO telescopes, and then compared them to real on-sky ob-

servations. I confirmed that the model does a reasonable job at predicting the zeropoints

and limiting magnitudes of real images, and it appears that the GOTO hardware is per-

forming as expected. Future enhancements to the model would include a more detailed

comparison of the Baader filters to other sets and calculation of colour terms, to better

compare GOTO observations to existing catalogues.
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3.1 Introduction

Over the next three chapters I detail my work creating a software control system for

GOTO. This chapter includes the initial requirements and outline of the control system,

and then focuses on the core programs to control the telescope hardware.

• In Section 3.2 (The telescope control system) I go through the requirements for

the GOTO control system and describe the different options considered.

• In Section 3.3 (Overview of G-TeCS) I give an overview of the software that makes

up the GOTO Telescope Control System and how it was implemented.

• In Section 3.4 (Hardware Control) I go through each category of hardware and

describe how the G-TeCS programs were written to control them.

All work described in this chapter is my own unless otherwise indicated. This and the

following two chapters have been expanded from my SPIE conference paper on G-TeCS,

Dyer et al. (2018). G-TeCS is based on the pt5m control system (Hardy et al. 2015),

written primarily by Tim Butterly at Durham, and Stu Littlefair and Vik Dhillon at

Sheffield.
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3.2 The telescope control system

The term Telescope Control System (TCS) describes the various software packages and

scripts required to operate a telescope. As described in Section 1.3.2, GOTO was de-

signed to use standard, off-the-shelf hardware, the type used by high-end amateur as-

tronomers. The control software for this hardware has increasingly been standardised,

and there are many TCS software packages available on the market that can be used to

operate all aspects of an observatory. However, GOTO has an unusual multi-telescope

design and strict requirements for target scheduling, meaning a more customised control

system was required. In this section I detail the requirements of the GOTO project and

how the choice of TCS was made.

3.2.1 Requirements

My first task as part of the GOTO collaboration, in the summer of 2015 before I started

my PhD in Sheffield, was to decide on what control system software to use. There were

several requirements to consider.

First, the chosen system had to allow for remote and, most importantly, robotic

operation of GOTO. There are many telescope control software packages available, but

the majority are designed for a human observer to operate. GOTO, however, was to be a

fully autonomous telescope, which meant operating nightly with no human intervention.

This meant the control system had to contain routines for observing targets and standard

tasks like taking calibration frames. On top of that it was desirable for the system to

be able to monitor itself to detect and fix any errors as much as possible without the

need for human intervention. Finally it had to be able to monitor and react to external

conditions, for example closing the dome if rain was detected.

Second, the system had to include an observation scheduler, which could decide what

the telescope should observe during the night. A basic scheduler might be run in the
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evening to create a night plan, as observers typically do when operating a telescope.

However that function alone would not meet the expected operations required from

GOTO: normally carrying out an all-sky survey but with a robust interrupt protocol for

gravitational-wave follow-up. The system therefore had to be able to recalculate what to

observe on-the-fly, and be able to react immediately to transient Target of Opportunity

(ToO) events.

Furthermore, although the project was still at an early stage the idea of linking

together multiple telescopes into a global network was also considered, and the chosen

control system would ideally be expandable to facilitate this in the future.

There were also several physical considerations when it came to choosing between

software systems. The telescope hardware described in Section 1.3.2 had already been

decided on: a clamshell dome from AstroHaven Enterprises, a custom mount with a

Sidereal Technology (SiTech) servo controller and multiple unit telescopes all equipped

with Fingerlake Instruments (FLI) cameras, focusers and filter wheels. Any control

system would need to communicate with all of this hardware, so any software package

with existing drivers would be desirable.

Two particular hardware-related challenges faced the control system project. The first

was that the SiTech controller software, SiTechEXE, only ran on Microsoft Windows.

The software did have an accessible Application Programming Interface (API) through

the ASCOM standard[1], but that still required some form of the mount control system

to be running on Windows. As most professional scientific software in astronomy runs

on Linux systems, this led to two options: either have just a small interface running on

the Windows machine and the rest of the system on Linux, or have the entire system

run on Windows.

The second hardware-related challenge was to deal with the multiple-unit telescope

design of GOTO. A full array of eight unit telescopes (UTs) would require eight cameras,
[1]www.ascom-standards.org

www.ascom-standards.org
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focusers and filter wheels. These would all need to be run in parallel, most importantly

there needed to be no delay between the exposures starting and finishing on each camera.

The physical construction of the telescope also came into play. The FLI units all require

a USB connection to the control computer. A single computer situated in the dome

would therefore require 24 extra-long USB cables to run up the mount. The suggested

solution was to have small computers attached to the mount boom arms next to the

unit telescopes, to act as intermediate interfaces to the hardware. The control system

therefore needed to be able to run in a distributed manner across multiple computers,

potentially even running different operating systems.

There were also practical details to consider when choosing the control software.

GOTO was designed as a relatively inexpensive project that could be built quickly

and copied across multiple sites, therefore any costly software licenses should ideally

be avoided. Experience and support requirements should also be considered, and re-

using a software system that members of the collaboration had experience with would

provide benefits compared to a completely new system.

3.2.2 Existing software options

Four possible options for the GOTO control system were considered: the existing soft-

ware packages ACP Expert, Talon and RTS2, or a custom system based on the code

written at Durham and Sheffield for their point-five-metre telescope (pt5m). At the July

2015 GOTO meeting at Warwick University I gave a talk outlining the control system

requirements and presenting the four options, and the decision taken was to adapt the

pt5m system for use by GOTO. The three rejected systems are described below, while

the pt5m system is described in more detail in Section 3.2.3.
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ACP Expert

ACP Expert[2] is a commercial observatory control software system by DC3-Dreams.

It is used by some advanced amateur astronomers and a few scientific and university

telescopes, such as the Open University’s PIRATE telescope (Kolb 2014). As a complete

Windows software package with a web interface it is marketed as being straightforward

to use, in either remote or fully robotic modes. It uses the ASCOM standard library

and DC3-Dreams also provide professional support and updates. This however came

at a cost: $2495 for the base software, plus an additional $599 for Maxim DL camera

control and $650 per year for continued support. At the time, GOTO was anticipated

to be deployed in a matter of months, so the quick and simple pre-existing commercial

solution was tempting. However it was unclear if the ACP software would be able to

cope with GOTO’s unusual design, and its closed-source model would restrict our ability

to make modifications.

Talon

The Talon observatory control system[3] is a Linux-based, open-source system created by

Optical Mechanics Inc (OMI). It was included as an option primarily as at the time it was

the control system of choice for the other observatories operated by Warwick University,

such as SuperWASP (Pollacco et al. 2006). OMI had built the SuperWASP mount and

developed Talon alongside it, before later making it open source. However development

of Talon has been almost non-existent over the past decade, and when building the

Next Generation Transit Survey (NGTS) a large amount of custom software was needed

to allow Talon to work with its multiple telescopes (Wheatley et al. 2018). Warwick

were already looking at replacing Talon for their Warwick 1-metre telescope (W1m)

and when upgrading SuperWASP. Therefore adopting it for GOTO would be unlikely
[2]http://acp.dc3.com
[3]https://sourceforge.net/projects/observatory

http://acp.dc3.com
https://sourceforge.net/projects/observatory
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and even counter-productive, as whatever was chosen for GOTO was expected to (and

ultimately did) influence and benefit the concurrent development of a new control system

for W1m.

RTS2

The Remote Telescope System v2 (RTS2)[4] (Kubánek et al. 2008; Kubánek 2016) is

another free and open-source Linux software package. Unlike Talon, RTS2 is under

active development and is used by telescopes and observatories around the world (Hicks

et al. 2012; Tello et al. 2012; Zhang et al. 2016; Weiner et al. 2018). There is a small but

active user community and drivers for the hardware GOTO would use had already been

developed. The first version of RTS was written in Python, while the second version

was rewritten in C++ but with a Python interface available. RTS2 was an attractive

choice, however like the others it was unclear if it could be easily modified to meet the

requirements for GOTO’s multiple telescopes and Windows-controlled mount and no one

in the collaboration had prior experience of using or implementing it.

3.2.3 The pt5m control system

Built and operated by Sheffield and Durham Universities, pt5m is a 0.5m telescope

located on the roof of the 4.2m William Herschel Telescope (WHT) on La Palma (Hardy

et al. 2015). The telescope was originally developed as a SLOpe Detection And Ranging

(SLODAR) system for atmospheric turbulence profiling in support of the CANARY

laser guide star project on the WHT (Wilson et al. 2004; Myers et al. 2008). There

are several SLODAR telescopes around the world operated by Durham, including one

in Korea that had just been commissioned at the time I joined the GOTO project

(Lee et al. 2015). In order to make the most of the telescope when not being used for

SLODAR observations, a science camera was added to pt5m by Sheffield, and in-house
[4]https://rts2.org

https://rts2.org
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control software was written to enable robotic observations. It has successfully been

used for automatic observations of transient events since 2012, as well as being used for

undergraduate teaching at Sheffield and Durham. All of the SLODAR telescopes used

a custom telescope control system developed at Durham, and a similar system was used

by the teaching telescopes of the Durham Department of Physics that I worked with

during my undergraduate degree. The pt5m control system had been modified by the

team at Durham and Sheffield for robotic operation, which matched well with what we

needed for GOTO. For this reason, on top of the Sheffield group’s existing experience,

the pt5m software was chosen to be the base for the GOTO control system.

An overview of the pt5m control system architecture from Hardy et al. (2015) is

shown in Figure 3.1. The software is written in Python and was built around multiple

independent background programs called daemons. Each daemon controls one category

of hardware, for example the dome, mount or CCD controller. A script called the pilot

sends commands to the daemons when the system is operating in robotic mode, and

the decision of what to observe is taken by the scheduler which picks targets out of a

database and returns the highest priority to the pilot. Finally a separate script called

the conditions monitor checks the local weather conditions and tells the pilot to close

the dome in bad weather.

The basic framework of the pt5m control system was adopted for GOTO, but with

several changes. The major difference between pt5m and GOTO are the multiple unit

telescopes, but the same software control system could be adapted through the creation

of interface daemons which allow communication to the unit telescopes over the internal

dome network. In fact the independent, distributed nature of the daemon system made

it very easy to expand to have daemons running on physically separate machines but

still communicating over the same local network, including on both Linux and Windows

computers.
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Figure 3.1: The pt5m control system architecture, taken from Hardy et al. (2015).
The hardware daemons are shown on the right; they communicate with the pilot which
receives information from the observation scheduler and the conditions monitor. This
basic framework was adapted for the GOTO control system, c.f. Figure 3.2.
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3.3 Overview of G-TeCS

The GOTO Telescope Control System (G-TeCS) is the name given to the collection of

programs that have been developed to fulfil the requirements of the GOTO project given

in Section 3.2.1. The pt5m control system as described in the previous section formed the

basis for G-TeCS. Its structure of multiple independent daemons was developed into the

core system architecture of G-TeCS, shown in Figure 3.2. This section gives an overview

of the system and its implementation. There are two core branches of G-TeCS: the base

hardware control programs, described in Section 3.4, and the autonomous systems built

on top of them. The latter software is described in Chapter 4 and Chapter 5.

3.3.1 Implementation

The core G-TeCS code is contained in a Python package (gtecs[5]). This includes all

of the core daemons, scripts, associated modules and functions. One important mod-

ule, containing code and functions to interact with the observation database (see Sec-

tion 4.5.1), was split off into a separate Python package ObsDB; this was done to allow

other users to interact with the database without the need to install the entire G-TeCS

package. In addition, the code for alert processing within the sentinel (see Section 4.5.2)

is in a separate package, GOTO-alert. This is because it originated as a separate coding

project written by Alex Obradovic at Monash, that I then took over and integrated with

G-TeCS. GOTO-alert is described in detail in Chapter 7.

G-TeCS and the associated packages are written almost entirely in Python (Van

Rossum and Drake Jr 1995). Python is a versatile programming language that is in-

creasingly common in astronomy, helped by the popular open-source Astropy Project

(Astropy Collaboration et al. 2018). Python version 3.0 was released in 2008 and was

infamously not backwards-compatible with Python2. The code for pt5m was written in
[5]https://github.com/GOTO-OBS/g-tecs

https://github.com/GOTO-OBS/g-tecs
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Figure 3.2: The G-TeCS system architecture as deployed on La Palma, taken from
Dyer et al. (2018). The observation database as well as the sentinel, scheduler and
conditions daemons shown to the left run on a central observatory-wide server located
in the SuperWASP building next to the GOTO domes, while the pilot and hardware
daemons are located on the telescope control computer within the dome. Control for
the unit telescope hardware (focuser, filter wheel and camera) is sent via an interface
daemon for each pair of UTs, running on computers attached to the mount. Only the
system for the prototype instrument (one mount with four unit telescopes) is shown.
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Python2, and therefore initially so was G-TeCS. Over the subsequent years the G-TeCS

code was re-written to be compatible with both Python2 and Python3, which was pos-

sible due to the standard __future__ library in Python2 and the Six package (six[6]).

Eventually, the addition of new features added to Python3, such as the AsyncIO library

used heavily by the pilot (see Section 4.3.1) in version 3.5, and the imminent end-of-life

of Python2 in 2020, led to the dropping of Python2 support. This is in line with most

other scientific Python packages including Astropy, which is no longer developed for

Python2.

The core G-TeCS packages have multiple dependencies. Some of the most critical

external packages (not included in the Python standard library) are NumPy for math-

ematical and scientific structures (Walt et al. 2011), Astropy for astronomical functions

(Astropy Collaboration et al. 2018), Pyro for communicating between daemons (see Sec-

tion 3.3.2 below), SQLAlchemy for database management (see Section 4.5.1), Astroplan

for scheduling (Morris et al. 2018, see Section 4.5.3), VOEvent-parse for handling VO-

Events (Staley 2014, see Section 7.2.2) and GOTO-tile, a custom package written for

GOTO (described in Chapter 6).

3.3.2 Daemons

The core elements of the control system are the daemons. A daemon is a type of computer

program that runs as a background process, continually cycling and awaiting any input

from the user. This is in contrast to a script which is run once (either by the system or a

user), carries out a series of tasks in the foreground and then exits once it is completed.

Common examples of daemons on a Unix-based system are sshd, which listens for and

creates Secure Shell (SSH) connections, and cron, which runs commands at predefined

times. Incidentally both are used by G-TeCS: SSH is used to execute commands on

remote machines, and cron is used to run scripts like the pilot at a set time of day.
[6]https://six.readthedocs.io

https://six.readthedocs.io
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Daemons are an ideal model for hardware control software. Once started, each dae-

mon runs continually as a background process, with a main control loop that repeats on

a regular timescale (for the G-TeCS hardware daemons this is usually every 0.1 s). There

are two primary tasks that are carried out within the loop by every daemon: monitoring

the status of the hardware, and listening for and carrying out commands. The former

is typically not carried out every time the loop runs, because attempting to request and

process the hardware status every 0.1 s would overwhelm the daemon and delay the loop.

Instead the status checks are typically carried out every 2 s, or sooner if requested. By

continually requesting the status of the hardware the daemon will detect very quickly if

there are any problems, and should it be unable to reach its hardware it will enter an

error state. However the daemons themselves will not attempt to self-diagnose and fix

any problems that are detected, with the notable exception of the dome daemon (see

Section 3.4.6). Instead, that is the job of the hardware monitors (see Section 4.3.3);

the daemons themselves will just report any problems to the pilot or user. The second

reason for a control loop within the daemons is to listen for and carry out any commands

issued to them. As these commands are dealt with within the loop it ensures only one

command is carried out at a time; the alternative of user input going directly to the

hardware could cause problems with overlapping commands. These commands can be

as simple as querying the cameras for how long left until an exposure finishes, or the

mount for the current position, to opening the dome, taking and saving an image, or

calculating the current highest priority pointing to observe.

Within G-TeCS each category of hardware has a dedicated control daemon that acts

as an interface to the hardware. For example, the mount daemon communicates with

the SiTech mount controller, sending commands and reading the current status, while

the camera daemon does the same for every camera attached to the telescope. Therefore

there is not necessarily a one-to-one correspondence between daemons and pieces of

hardware. Having separate daemons for each hardware type allows them to operate
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independently and allows the pilot, or a human operator, to send commands to each

in turn without needing the other one to complete. It also means that a failure in one

daemon or its hardware is isolated from the others, should the mount develop a fault, for

example, the dome daemon will still be able to communicate with, and close, the dome.

Not every daemon within G-TeCS interacts with external hardware: there is the sentinel

daemon which monitors alert channels and adds pointings to the observation database,

and the scheduler daemon which selects which pointing should be observed at a given

time.

Functionally, each daemon is built around a Python class which contains hardware

control functions and a main loop. When the daemon starts, the loop is set running in

its own thread, and when a control function is called it sets a flag within this loop to

carry out the requested commands. The daemons are created using the Pyro Python

package (Python Remote Objects, Pyro4[7]). Each daemon is run as a Pyro server, so

any client script can then access its functions and methods across the network using

the associated server ID. This system allows complicated interactions across the network

between daemons and scripts with very simple code, and was one of the major benefits

of adopting the pt5m system.

3.3.3 Scripts

As well as the daemons, the G-TeCS package includes multiple Python scripts. These

scripts can be run on the control computer from the command line by a human user,

called from within other scripts like the pilot, or started through utilities like cron.

In order to send commands to the daemons, each has an associated control script that

can be called by a user from a terminal, or by the pilot in robotic mode (see Section 4.3).

The commands follow a simple format which was inherited from pt5m, first the short

name of the daemon, then the command, and finally any arguments. There are several
[7]https://pythonhosted.org/Pyro4

https://pythonhosted.org/Pyro4
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commands that are common to all daemons: start, shutdown and restart to control

if the daemon is running; ping to see the current status of the daemon; info to see the

current status of the hardware; log to print the daemon output log. Examples of daemon-

specific commands include “dome close” to close the dome, “mnt slew 30.54 +62” to

slew the mount to the given coordinates, “cam image 60” to take a 60 s exposure with

all connected cameras and “cam image 2 60” to take a 60 s exposure with camera 2

only.

Every daemon can also be controlled in “interactive mode”, which is a user-friendly

way to save time sending multiple commands to the same daemon. Interactive mode is

entered with i and exited with q.

There is also a utility script, lilith.py, which can send the same command to all

the daemons. For example, to shutdown every daemon it is possible to call each directly

(cam shutdown, foc shutdown, mnt shutdown etc. . . ) but it is instead much easier to

run lilith shutdown. The name “Lilith” comes from the biblical “mother of demons”.

The most important script to the robotic operation of the telescope is the pilot,

detailed in Section 4.3. The pilot is started every night using cron at 5pm, but can

also be started manually with the command “pilot start” (note although this uses

the same syntax as a daemon it simply runs the pilot script in the current terminal

instead of starting a background process). There is also a daytime counterpart to the

pilot, called the day marshal, which is run in the same way (see Section 4.3.5). Finally,

several of the more common observing tasks are separated off into “observation scripts”.

These contain lists of commands to send to the daemons to carry out tasks such as

focusing the telescope, taking flat fields or starting/shutting down the hardware in the

evening/morning respectively. These are run at specific times each night by the pilot

night marshal routine (see Section 4.3.4), but they can also be run by human observ-

ers through the command line (for example “obs_script startup” to run the startup

script, or “obs_script autofocus” to start the autofocus routine).
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3.4 Hardware Control

The core programs of G-TeCS are the hardware daemons. There are seven primary

daemons, as shown in the centre of Figure 3.2. This section provides a summary of

each of the hardware categories, describing how the daemons interact with them and the

particular challenges and features unique to each.

3.4.1 FLI interfaces

As described previously, GOTO uses off-the-shelf camera, focuser and filter-wheel hard-

ware from Fingerlake Instruments (FLI). Each GOTO unit telescope has a MicroLine

ML50100 camera, an Atlas focuser and a CFW9–5 filter wheel, these are connected to a

small Intel Next Unit of Computing (NUC) attached to the boom arm (one per pair of

UTs, shown in Figure 3.3). These NUCs run very basic daemons called the FLI inter-

faces, shown in Figure 3.2. Barely daemons by the definition given in Section 3.3.2, these

interfaces have no control loop and exist only as a way to expose the serial connection of

the hardware to the wider Pyro network. By using these interface daemons, the primary

control daemons for the FLI hardware can run on the main control computer without

being physically connected to the hardware (aside from via ethernet).

Communicating with the hardware has to be done using the Software Development

Kit (SDK) provided by FLI, which is written in C. In order to use this SDK with the

control system written in Python, a separate wrapper package FLI-API (fliapi[8]) was

written by Stu Littlefair in Cython, a programming language that provides a way for C

code to be imported and run in Python.

The interfaces and the Pyro network allow a single daemon to interact with multiple

pieces of hardware across multiple computers. This means that the single camera daemon

running on the primary control computer can interface with all of the cameras attached
[8]https://github.com/GOTO-OBS/fli-api

https://github.com/GOTO-OBS/fli-api
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Figure 3.3: A photo of GOTO observing at night, with key hardware elements labelled.
The back of the four unit telescopes is visible, attached to the central boom arm. Each
pair of UTs is connected to a NUC interface computer and a Power Distribution Unit
(PDU). The mount declination drive is also visible with the cover removed, the right
ascension drive is on the other side of the mount.

to the mount, and instead of sending commands to each camera individually the user

can speak to all of them together through the daemon. As an example, the command

“cam image 60” will take a 60 second exposure on every attached camera simultaneously.

Including a specific number (“cam image 2 60”) will only start the exposure on the

camera attached to UT2. Multiple selections can also be made using a simple comma-

separated syntax, such as “cam image 1,2,4 60”. This notation and functionality is

one of the major differences between G-TeCS and the pt5m control system, and in fact

all of the other control systems considered in Section 3.2.2, which typically can only

communicate with a single telescope at a time.
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There are three control daemons that interact with the FLI interfaces: the camera,

filter wheel and focuser daemons. There is also a fourth, the exposure queue daemon,

which coordinates sets of exposures and communicates with both the cameras and filter

wheels through their daemons, not the interfaces directly. Each of these four daemons

are described in the following sections.

3.4.2 Camera control

The camera daemon interacts with all of the FLI cameras on the GOTO mount, making

it the most complicated daemon to design. The commands to the camera daemon,

however, are fairly straightforward. There are four types of exposures that can be taken:

• Normal images, with the shutter opening and closing for the given exposure time.

• “Glance” images, which are the same as normal images but are saved to a separate

file that is overwritten each time a glance is taken.

• Dark images, where the shutter remains closed during the exposure time.

• Bias images, where the shutter remains closed and a zero-second exposure is taken.

The FLI-API interface also gives other options for exposures aside from just the

exposure time, including different binning factors and windowing the active area of the

chip to read out. Although the camera daemon does offer commands to set these they

are never used during normal operations, and the GOTOphoto image processing pipeline

is set up to only expect full-frame, unbinned images.

Once an exposure is completed, the image data needs to be downloaded from the

cameras and sent through the interfaces to the camera daemon, before the frames can

be saved as Flexible Image Transport System (FITS) files. This is a disadvantage of

the interface system, and consideration was given to instead having the interfaces write
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out the files to their local NUCs. Although this would have been faster to save the raw

images, they would still need to be copied down from the NUCs to the primary archive

on the control computer. Having the interfaces send the raw count arrays to the camera

daemon for processing proved to save more time in the long run. The camera daemon

also queries all the other hardware daemons at the start of the exposure, to get their

current statuses to add to the FITS headers (for example, getting the current pointing

position from the mount daemon).

The time taken by each exposure, from the command being received to the FITS

images being written to disk, has been optimised to minimise the amount of “dead time”

between exposures. One of the primary ways to save time was to have the two most time-

dependent processes, downloading the images from the interfaces and writing them to

disk, run as separate threads for each camera independently of the main daemon control

loop. Other time-saving improvements included only fetching the status information

from the other daemons once, just after starting the exposures (so it does not take any

extra time in addition to the exposure time).

Images are written to FITS files by the camera daemon and are archived in different

directories by date (e.g. 2019–09–30). Each camera output is saved as a separate file,

named by the current run number and the name of the unit telescope it originated from

(e.g. r000033_UT2.fits is the image from camera 2 for run 33). The run number is

increased whenever a non-glance exposure is taken, even if the exposure is subsequently

aborted. After being saved the images are copied at regular intervals from La Palma

to Warwick University via a dedicated fibre link, where the GOTOphoto photometry

pipeline is run (as described in Section 1.3.3). GOTOphoto has been developed at

Warwick and Monash separately from the control system, which means image calibration,

astrometry and photometry are all out of the scope of this thesis.
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3.4.3 Filter wheel control

The filter wheel daemon (sometimes shortened to just the filter daemon) controls the

filter wheels on the GOTO unit telescopes. The FLI CFW9–5 filter wheels are fairly

standard pieces of hardware, with 5 slots that contain the 65mm square Baader R, G,

B, L and C filters (see Section 2.3.2). Moving the filter wheel is usually done via the

exposure queue daemon (see Section 3.4.5) but can be done individually. When powered-

on the filter wheels must be homed to position 0 before moving. The L filter was placed

in the home position as the vast majority of GOTO observations are taken in this filter.

3.4.4 Focuser control

The focuser daemon is the third of the three FLI hardware daemons. Each connected

focuser can be set to a specific position or moved by a given offset by the daemon. The

focuser daemon is usually only used when the pilot runs the autofocus routine at the

start of the night (see Section 4.3.4 and Section 8.3.2).

3.4.5 Exposure queue control

The exposure queue daemon (often abbreviated to ‘ExQ’ or ‘exq’) does not directly talk

to hardware; instead it is the only daemon with the primary purpose of communicating

with other daemons, specifically the camera and filter wheel daemons. The exposure

queue daemon coordinates taking frames in sequence and setting the correct filters before

each exposure starts. For example, consider needing a series of three 30 s exposures, one

each in the R, G and B filters. Through the camera and filter wheel daemons this

would require six commands: filt set R, cam image 30, filt set G, cam image 30,

filt set B, cam image 30. The exposure queue daemon gives shorter method to carry

out the same commands, and these same exposures can be requested with a single

command: “exq mimage 30 R,G,B” (mimage is short for multiple-image).
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1111;30;R;1;normal;M101;SCIENCE;0;1;3;545
1111;30;G;1;normal;M101;SCIENCE;0;2;3;545
1111;30;B;1;normal;M101;SCIENCE;0;3;3;545

Figure 3.4: A sample of an exposure queue file. Each line is a new exposure, and
details of the exposure are separated by semicolons. In order, these are: the binary UT
mask, exposure time in seconds, filter, binning factor, frame type, object name, image
type, glance flag, set position, set total and database set ID number.

When a set of exposures is defined and passed to the exposure queue daemon they

are added to the queue, which is stored in a text file written to and read by the daemon.

An example of the contents of the file is given in Figure 3.4. The details of each exposure

are saved in this file, and adding more using the exq command adds more exposures to

the end of the queue. When the queue is running (it can be paused and resumed, for

example to allow slews between exposures) the daemon will select the first exposure in

the queue, tell the filter wheel daemon to change filter if necessary and then tell the

camera daemon to start the exposure.

As shown in Figure 3.4, extra meta-data can be written for each exposure. The UT

mask is simply a binary representation of the unit telescopes to use for this exposure,

so 0101 would be exposing on UTs 1 and 3 only (counting from the right starting with

UT1), while 1111 will be on all four. The frame type is a variable used within the FLI

API, it is either normal or dark depending on if the shutter will open or not. Exposures

taken through the exposure queue can also have a target name (e.g. the galaxy M101

in Figure 3.4) and an image type (used to define the type of image, either SCIENCE,

FOCUS, FLAT, DARK or BIAS). The glance flag is a boolean value, set to 1 (True) if

the exposure is a glance or 0 (False) otherwise.

When multiple exposures are defined using the exq commands, as in the previous

mimage example, they are grouped into a “set”. The set position and set total values

shown in Figure 3.4 denote those exposures as 1 of (a set of) 3, 2 of 3, and 3 of 3.
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Including this information in the exposure metadata is necessary so the photometry

pipeline knows if an exposure is part of a set and, if they are all in the same filter,

whether they should be co-added to produce reference frames. Exposure sets are defined

in the observation database (see Section 4.5.1), with each pointing having at least one or

more sets to be added to the exposure queue by the pilot when that pointing is observed.

Similar to the camera daemon, the timing of code and functions within the expos-

ure queue daemon has been optimised to minimise the “dead time” between exposures.

However, the commands also need to be timed correctly to ensure that, for example, the

exposure does not start while the filter wheel is still moving. This was one of the major

reasons for having a separate exposure queue daemon to handle these timing concerns,

while the camera and filter wheel daemons dealt only with individual commands. Incid-

entally, pt5m uses a QSI camera with an integrated filter wheel (Hardy et al. 2015), so

what in G-TeCS are separate camera, filter wheel and exposure queue daemons are all

combined into a single “CCD” daemon in Figure 3.1.

3.4.6 Dome control

The dome daemon is the primary interface to the dome. It is in effect the most critical

of all of the hardware control systems, because a failure in the software resulting in the

dome opening in bad weather could be catastrophic to the hardware inside. As such,

the dome daemon includes multiple levels of internal checks and backup systems. It is

also the only daemon with a small amount of autonomy built in, and therefore blurs the

line between a pure hardware control daemon and the more complicated autonomous

systems described in Chapter 4.

GOTO uses an Astrohaven clamshell dome, shown in Figure 3.5. The dome daemon

communicates with the Programmable Logic Controller (PLC) that comes with the dome

through a simple serial (RS-232) connection. Moving the dome is achieved by sending
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Figure 3.5: A webcam image of the GOTO site taken in June 2018. The two GOTO
clamshell domes are on the right; the northern, empty dome is closed while the other is
open for observing. Note the SuperWASP shed roof on the left is also open.

a single character to the PLC: a to open the south side, A to close it; b/B for the north

side. The PLC will respond with another character: either returning the input while

the dome is moving, x/X when the south side is fully open/closed and y/Y for the north

side. This is a simplistic and quite limited interface. For example, while one side is

moving there is no way to know the status of the other. Therefore, when commissioning

it was decided to add additional independent limit switches, described in Section 8.2.2.

The Arduino system detailed in that section adds four additional inputs: one at the

intersection of the two inner-most shutters to confirm the dome is fully closed, two on

either side to confirm if either side is fully open, and one on the dome entrance hatch.

Using all of these sensors, and the feedback from the dome PLC, it is possible to build

up a complete picture of the current dome status. Inside the dome daemon each side

has five possible statuses: closed, part_open, full_open, opening and closing. The

dome as a whole is only considered confirmed closed if both sides report closed.

As the interface functions of the Astrohaven PLC are very limited, any more advanced
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functionality had to be coded from scratch. The commands to the dome are contained

within a custom Python class Astrohaven, which also returns the status of the dome

and the additional sensors. The class has functions to open and close the dome, which

include being able to move a specific side or both. Due to the five-shutter design of the

GOTO dome (shown in Figure 3.5) the overlapping side (south) is always opened before

the north and closed after it, as it is easier for the shutter casters to roll over the lower

shutter than for the lower shutter to force itself under the casters. When opening the

south side the motion is deliberately stepped (i.e. moving in short bursts) rather than

in one smooth motion. This was added due to the design of the top overlapping shutter:

if the move command is sent too quickly slack will appear in the drive belts and the

upper shutter will end up “jerking” the lower one, putting more stress on the belts. This

sort of functionality is not included in the default Astrohaven software but is easy to do

within the Python code by increasing the time between sending command characters.

As described in Section 8.2.2, along with the extra dome sensors a small siren was

attached to the Arduino to give an audible warning before the dome starts moving.

This siren can be activated for a given number of seconds through a HTML request

to the Arduino, and this is called by the dome daemon whenever the dome is moved

automatically. The siren can be disabled in manual mode and is automatically off in

engineering mode (see Section 4.2.2). One slight complexity is if the system is in manual

mode with the alarm disabled but the autoclose feature still enabled. In this case the

dome alarm will not sound when manually sending move commands to the daemon,

however if the dome is due to close automatically in bad conditions it will re-enable

the alarm and make sure it sounds before moving. Forcing the siren to sound whenever

the dome moves autonomously is an important safety feature when operating a robotic

telescope such as GOTO, and pt5m also has a similar alarm.

As mentioned above, the dome daemon has an “autoclose” feature that is unlike any

feature of the other daemons. The normal design philosophy of the daemons is that
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they should not take any action without explicit instructions, which could come from

a user or a script like the pilot. The dome, however, is an exception since in the case

of bad weather the survival of the hardware is considered to be of higher importance.

Therefore, in addition to checking for input commands, the dome daemon control loop

also monitors the output of the conditions daemon (see Section 4.4). If any conditions

flag is set to bad, and the dome autoclose option is enabled, then the dome daemon will

automatically enter a “lockdown” state. In this state if the dome is currently open it will

immediately send itself a close command. Once it is closed the lockdown will prevent any

open commands, until either the lockdown is cleared or autoclose is disabled. Another

of the hardware additions during commissioning (see Section 8.2.2) was a “quick-close”

button directly attached to the serial port of the control computer in the dome. The

dome daemon automatically sends a signal through the serial connection every time the

control loop runs, and if the signal is broken (i.e. the button has been pressed, breaking

the circuit) then it will immediately trigger a lockdown.

The other custom hardware device added to the GOTO dome was a small backup

“heartbeat” system, developed by Paul Chote at Warwick. A recognised flaw of the

G-TeCS dome control architecture was that it was entirely reliant on the dome daemon,

and by extension the master control computer, to close the dome in an emergency.

Should the dome daemon or the control computer crash for any reason the dome would

be completely disabled. This therefore presented a single point of failure, and a system

was designed at Warwick to mitigate against this. An extra circuit, also powered by an

Arduino, is connected over the serial port to the dome PLC, and the dome daemon has

a separate thread which continuously sends a ping byte to this port. Should the Arduino

not receive a signal from the dome daemon after a given timeout period (the default is

5 s) it will automatically start sending the close characters (A/B) to the dome PLC. This

system therefore provides a secure secondary backup to the other dome software, and

although it has so far not been needed it is an important insurance policy.
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The dome daemon is also the hardware interface to the dehumidifier located within

the dome. Like the dome, the dehumidifier requires automated control, as the unit uses

a lot of power and can get clogged with dust if used excessively. The dome daemon

will turn the dehumidifier on if the internal humidity gets too high or temperature gets

too low, and will turn it off when they reach normal levels or if the dome is opened.

This behaviour can also be overridden and, like all the automated G-TeCS systems, is

disabled in engineering mode.

3.4.7 Mount control

The mount daemon sends commands to the GOTO mount through the Sidereal Techno-

logy (SiTech) servo controller. As discussed in Section 3.2.1, the software for the servo

controller is a Windows program called SiTechEXE. Therefore, enabling communication

between SiTechEXE and the rest of the control system was a key requirement of G-TeCS.

Initially the only way to communicate with SiTechEXE was via the ASCOM software

interface. It was possible to communicate directly with the servo controller through a

serial interface, however this was a very low-level interface and would have required a

lot of work to re-implement the array of commands and functions within SiTechEXE. In

particular, the PointXP pointing model software was essential to make a pointing model

for the mount (see Section 8.3.3), and it would have been very difficult to implement

using serial commands. ASCOM is so called because it uses the Microsoft Component

Object Model (COM) interface standard to provide a unified Application Programming

Interface (API) for astronomical hardware. SiTEch provides their own ASCOM driver

for their servo controller, and through the Python for Windows package (pywin32[9])

Python code could interact with ASCOM and therefore SiTechEXE. The ASCOM API

gave access to a wide variety of commands and status functions, including being able to

slew the telescope, start and stop tracking, parking and setting and clearing targets.
[9]https://github.com/mhammond/pywin32

https://github.com/mhammond/pywin32
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The ASCOM method did however require the Python daemon to be running on

the Windows computer. The solution to this was to write a sitech interface in the

same manner that the FLI hardware connected to the boom arm computers use an

interface daemon running on the NUCs. The sitech interface acted purely as a way of

routing commands sent through the Pyro network to the ASCOM equivalent. However,

as it had to run on the Windows machine, it differed slightly in implementation to the

FLI interfaces and other daemons, as Windows and Linux have different ways of defining

“daemon” processes (Windows generally does not call them daemons, instead using terms

like “background processes”). Furthermore, the interface had to be able to be started,

stopped and killed from the remote control computer using a sitech control script,

which meant G-TeCS needed to include functions specifically to interact with Windows

processes. This meant the G-TeCS package needed to be installable on Windows and

deal with configuration file paths and parameters (compare Windows C:\Users\goto\

to Linux /home/goto/). This was simplified by the use of the Cygwin package[10], which

provides Unix-like commands and behaviour on Windows including mapping directories

into Unix format. Once this was developed the system was reliable enough to correctly

control the mount during commissioning.

In July 2017 the author of SiTechEXE, Dan Gray of Sidereal Technology, released

an update to the software that enabled communication over a network using Transmis-

sion Control Protocol/Internet Protocol (TCP/IP) commands. This meant the mount

daemon running on the control computer could communicate directly with SiTech-

EXE without the need for the sitech interface, ASCOM, Cygwin or maintaining any

Windows-compatible code. Although the existing code was functioning reliably, remov-

ing the need for compatibility with ASCOM enabled the addition of several new features,

such as more error feedback, whether the limit switches have been triggered, and turning

on and off “blinky mode” (the error state the mount automatically enters when drawing
[10]https://www.cygwin.com

https://www.cygwin.com
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too much current or one of the inbuilt limit switches is triggered). As such it was seen

as a worthwhile update, and therefore the sitech interface and any Windows code were

removed from G-TeCS when the La Palma system was updated in August 2017. The

TCP/IP interface provides a much simpler way to communicate with the mount than

the previous ASCOM commands. Commands are sent as binary strings of characters;

for example to get the current mount status information you send ‘ReadScopeStatus’,

and to slew to given coordinates the command is ‘GoTo <ra> <dec>’.

One catch is that the SiTech software expects coordinates in the JNow epoch, where

the right ascension and declination coordinate system is defined for the current time

rather than a fixed date in the past such as used for the J2000 equinox. Conversion from

J2000 coordinates, which most professional astronomers use and is used everywhere

else in G-TeCS, to the JNow epoch required by SiTechEXE is done using Astropy’s

coordinates module.

3.4.8 Power control

Similar to the camera, focuser and filter wheel daemons, the power daemon acts as an

interface to multiple pieces of hardware. In this case, the daemon is connected to three

types of power unit in two locations within the GOTO dome:

• Two Power Distribution Units (PDUs) are located in the main computer rack

within the dome. These are used to control and distribute power to a variety of

sources, including the primary control computer and ethernet switches in the rack,

the mount controller and Windows control NUC on the mount, the rack monitor,

Wi-Fi router and LED lights within the dome.

• Two additional power relay boxes are attached to the mount boom arms. In the

same way that the boom-arm NUCs are used to provide control interfaces instead
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of running multiple USB cables down the mount, these relays are used to provide

and control power to the NUC and hardware (cameras, focusers and filter wheels).

• Two Uninterruptible Power Supplies (UPSs) are also located in the rack. These

are battery devices that provide backup power in the event of mains supply failure.

The first of these is connected directly to the dome, so in case of a power failure

the dome has its own supply to enable it to close. The second is connected to the

other power units described above.

Each power outlet in any of the above units can be turned on, off or rebooted

(switched off and then back on again after a short delay). Each outlet has a unique

name assigned, and multiple outlets can be grouped together to be controlled using a

single command similar to the commands for the exposure queue daemon (for example

power off cam1,cam2,cam3). The FLI hardware (cameras, focusers and filter wheels)

are usually powered down during the day, all other hardware including the dome and

mount is left on. Power to the dehumidifier unit is controlled by the dome daemon as

described in Section 3.4.6.

The rack PDUs and UPSs used by GOTO are manufactured by Schneider Electric

(previously APC)[11], and are communicated with using Simple Network Management

Protocol (SNMP) commands over the network using the Linux snmpget and snmpset util-

ities. The relay boxes were manufactured for GOTO using Devantech ETH8020 ethernet

boards[12], controlled through simple TCP/IP commands. All of these are surrounded

by Python wrappers within the power daemon.

[11]https://www.apc.com
[12]https://www.robot-electronics.co.uk

https://www.apc.com
https://www.robot-electronics.co.uk
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3.5 Summary and Conclusions

In this chapter I have described the key elements of the GOTO Telescope Control System

(G-TeCS).

Several options were considered for the GOTO control system, and based on the

unique requirements of GOTO a custom system based on the pt5m software was ulti-

mately decided on. I described the fundamental features of this new system, G-TeCS, in

particular how the control system is built around standalone daemon programs. Adopt-

ing this system proved to be a successful decision, as it provided the flexibility required for

GOTO’s multi-telescope design. In the future the daemon-based system will provide the

basis to expand the control system to multiple independent mounts (see Section 10.2.1).

I went on to describe the hardware control functionality of G-TeCS, and how each

type of hardware (cameras, mount, dome etc) is controlled through the associated soft-

ware daemons. This provides the foundations of the control system, but on its own it

still requires an observer to operate the telescope. In the following chapter (Chapter 4)

I describe the higher-level software within G-TeCS that replaces the human operator,

and allows GOTO to function as a fully-robotic telescope.
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4.1 Introduction

Continuing the description of the GOTO Telescope Control System from Chapter 3, in

this chapter I describe the higher level programs written to enable GOTO to operate as

a robotic observatory.

• In Section 4.2 (Automating telescope operations) I outline the additional function-

ality added to G-TeCS in order to allow the telescope to operate autonomously.

• In Section 4.3 (The pilot) I describe the master control program that operates the

telescope when in robotic mode.

• In Section 4.4 (Conditions monitoring) I detail how G-TeCS monitors the local

conditions, and list the different flags used to judge if it is safe to observe.

• In Section 4.5 (Observing targets) I give an outline of how targets are observed by

the robotic system, and introduce the scheduling system that is expanded further

in Chapter 5.

All work described in this chapter is my own unless otherwise indicated. As noted before,

a description of the G-TeCS control system has previously been published as Dyer et al.

(2018).
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4.2 Automating telescope operations

The hardware control systems described in Section 3.4 provide the basic functions to

control and operate GOTO. A human observer could run through a series of simple

commands to open the dome, slew the mount to a given target, take exposures once

there, and then repeat with other targets for the rest of the night. There is a limited

level of autonomy provided by the dome daemon, so the dome will close in bad weather

without the delay from a human sending the command, but even that can be disabled if

desired. Fundamentally, the software described in Chapter 3 provides a perfectly usable

human-operated telescope control system.

GOTO, however, was always designed as a fully robotic installation, as described in

Section 1.3.1. Therefore an additional level of software was required, to take the place

of the observer as the source of commands to the daemons.

4.2.1 Robotic telescopes

One of the first robotic telescopes was the Wisconsin Automatic Photoelectric Telescope

(Code 1992). Built in 1965, it could take routine observations unattended for several

days. Today a huge number and variety of automated telescopes now regularly take ob-

servations of the night sky with limited or no human involvement, ranging from wide-field

survey projects like the All-Sky Automated Survey for Supernovae (ASAS-SN, Shappee

et al. 2014), large robotic telescopes like the 2m Liverpool Telescope (Steele et al. 2004),

to countless small automated observatories around the world[1]. While larger facilities

still tend to be manually operated, they often have multiple instances of automation in

their hardware control or scheduling system; the planned conversion of the 50-year-old

Isaac Newton Telescope for the automated HARPS3 survey (Thompson et al. 2016) is

a recent example of large, established telescopes exploiting the benefits of automation.
[1]A list of over 130 active robotic telescopes is available at http://www.astro.physik.uni-

goettingen.de/~hessman/MONET/links.html.

http://www.astro.physik.uni-goettingen.de/~hessman/MONET/links.html
http://www.astro.physik.uni-goettingen.de/~hessman/MONET/links.html


Chapter 4: Autonomous Observing 113

Larger purely robotic telescopes are also being developed, such as the proposed 4m

successor to the Liverpool telescope (Copperwheat et al. 2015). The opportunity for

multiple robotic telescopes to be networked together into global observatories has also

been exploited by projects like the Las Cumbres Observatory Global Telescope Network

(Brown et al. 2013) and the MASTER network (Gorbovskoy et al. 2013).

In G-TeCS, as in the pt5m system before it, the role of the observer is filled by a

master control program called the pilot. The pilot sends commands to the daemons,

monitors the hardware and attempts to fix any problems that arise. The intention is

that the pilot will fully replicate anything a trained on-site observer would be required

to do. In order to manage this there are several auxiliary systems and additional support

daemons that the pilot confers with: the conditions daemon monitors weather and other

system conditions, the sentinel daemon listens for alerts and enters new targets into the

observation database and the scheduler daemon reads the database and calculates which

target the pilot should observe. Each of these systems are described in this chapter.

4.2.2 System modes

Although GOTO is a robotic telescope, sometimes it is necessary for a human operator to

take control if one of the automated scripts fails or a situation arises that is easier to deal

with manually. One example was taking observations of the asteroid Phaethon (Borisov

et al. 2018): G-TeCS was not designed to observe solar system objects, and although

the mount allows non-sidereal tracking there was no way to add a pointing into the

database without fixed coordinates. Therefore, it was necessary for a human observer to

determine and slew to the coordinates of the asteroid as it moved past the Earth. There

are also cases when it is important that the automated systems are disabled: if work

is being done to the hardware on-site it could be dangerous if the system still tried to

move the mount or dome autonomously.
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mode pilot day marshal dome autoclose dome alarm hatch flag

robotic active active enabled enabled active
manual paused active adjustable adjustable ignored

engineering disabled disabled disabled disabled ignored

Table 4.1: A comparison of the three G-TeCS system modes. In robotic mode all
automated systems are enabled, in engineering mode they are all disabled, and in
manual mode the pilot is paused and the observer can disable other systems if desired.

G-TeCS deals with manual operation by having an overall system mode flag stored

in a datafile, which is checked by the automated systems before activating. There are

three possible modes, outlined below and summarised in Table 4.1.

• robotic mode is the default. In this case it is assumed that the system is com-

pletely automated and therefore could move at any time. In this mode during the

night the pilot will be in complete control of the telescope, and the dome will auto-

matically close in bad weather. The dome entry hatch being open is also treated

as a critical conditions flag (see Section 4.4.2).

• manual mode is designed for manual observing, either on-site or remotely. In this

mode the pilot will be paused and so will not interrupt commands sent by the

observer. The dome will still sound the alarm when moving and autoclose in bad

weather by default, but both can be disabled. It is intended that they should only

be disabled if there is an observer physically present in the dome, otherwise the

dome should still be able to close automatically when observing remotely.

• engineering mode is designed to be used if there are workers on site, when the

hardware moving automatically could be dangerous. All of the dome systems are

automatically disabled, and the pilot and day marshal will refuse to start. Leaving

the system in this state for long periods of time is undesirable, and so it should

only be used while work is ongoing or the telescope is completely deactivated.
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4.2.3 Slack alerts

Although when in robotic mode GOTO is a completely autonomous system, it is still

important that it does not operate completely unsupervised. As the GOTO collaboration

has adopted the Slack messaging client[2] for instant messaging and collaboration it

was decided that the telescope control system should send reports automatically to a

dedicated Slack channel. This was implemented through the Python Slack API package

(slackclient[3]), and has been widely adopted throughout G-TeCS.

The two most detailed Slack messages are the startup report, sent by the night

marshal within the pilot (see Section 4.3.4), and the morning report sent by the day

marshal (see Section 4.3.5). Examples of both are shown in Figure 4.1. The startup

report includes a summary of the current condition flags (see Section 4.4.2), links to

the site weather pages, the external webcam view and the latest IR satellite image over

La Palma. The morning report includes the internal webcam view and automatically-

generated plots showing what the pilot observed last night and the current status of the

all-sky survey.

Several other functions within the pilot send short messages to Slack when called.

For example, as shown in Figure 4.1, the pilot sends a message when the script starts

and completes and when the dome opens or closes. A message will also be sent if the

conditions turn bad, if the system mode changes, or if a hardware error is being fixed (see

Section 4.3.3). The pilot sends the majority of messages to Slack, but other daemons can

also send their own alerts if nessesary. For example, the dome daemon sends a message

when it enters lockdown (see Section 3.4.6), and the sentinel sends a series of messages

whenever it processes an interesting alert through GOTO-alert (see Section 4.5.2 and

Section 7.3.3).

[2]https://slack.com
[3]https://python-slackclient.readthedocs.io

https://slack.com
https://python-slackclient.readthedocs.io
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Figure 4.1: Slack messages sent by the pilot and day marshal on a typical night. The
pilot reports when it starts automatically at 5pm, then the night marshal sends out
the startup report when the STARTUP task has completed. The pilot also sends out
messages when it is opening and closing the dome, and when it finishes in the morning.
The day marshal later independently confirms the dome is closed and sends out its own
morning report.
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4.3 The pilot

The pilot is a Python script, pilot.py, not a daemon. It is run once each night; started

automatically at 5pm by the Linux cron utility, it runs through to the morning, quits,

and then is started again in the afternoon. This happens every day, unless the system

is in engineering mode.

4.3.1 Asynchronous programming

The pilot is written as an asynchronous program, using the AsyncIO package from the

Python standard library (asyncio). An asynchronous program is one where its code

runs in separate parallel routines, which are switched between as required, and should

not be confused with programs that are written utilising multiple processes or threads

that run in parallel. See Figure 4.2 for a graphical comparison between the two methods.

An example of a simple task might be monitoring a particular source of data, like a

weather station. It would contain a function to download the current weather information

from the external mast, and then a sleep command to wait for 10 seconds, which when

put inside a loop will ensure that the weather information is queried and updated every

10 seconds. If this loop was called in a multi-threaded program then the thread will

be held up for a majority of the time not doing anything between checks. If there

were multiple threads, for example checking different masts, then there could be no

coordination between them and the whole program would end up being very inefficient.

There are also other issues with multi-threaded programs, including input/output and

sharing data between threads.

Asynchronous code contains multiple parallel coroutines. The program itself runs an

event loop, which is a function with the job of choosing between the different coroutines

to execute in the main thread. In an asynchronous version of the weather-monitoring

program instead of a sleep function each coroutine would include an await function.
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Figure 4.2: A comparison of multi-threaded verses asynchronous programming. This
example uses a blue task that takes 0.5 s to execute and then waits for 1.5 s, a green
task that takes 0.75 s and waits for 1.5 s and a red task that takes 0.5 s and waits for 2.5 s.
These times are exaggerated, typically pilot tasks wait for between 10–60 s. The upper
plot shows three tasks with different execution periods (solid blocks) and wait times
(blank) running in a multi-threaded program. Each task is being run in an independent
parallel thread on its own core, even though they rarely overlap and it is uncommon
for multiple cores to be in use at the same time. The lower plot shows the same three
tasks running as coroutines in an asynchronous program. The event loop decides which
coroutine to run on the single core, represented by the black arrows. This does lead to
some coroutines being left waiting (lighter blocks) until the current one finishes, and,
as routines can be delayed, it is not suitable for checks that need to happen at exact
frequencies. However, the overall core usage is much more efficient.



Chapter 4: Autonomous Observing 119

When a routine reaches an await command it is suspended for the given time period and

control is passed back to the event loop, which then chooses which of the other suspended

routines should be run. Importantly, when the coroutine resumes it remembers where it

stopped and continues from that point. The asynchronous style of writing code is ideally

used with multiple coroutines that contain short functions with wait periods between

when they need to be called again, and the pilot is a good example of this. The pilot

runs a single-threaded event loop with multiple coroutines, which execute commands

and then pause using the await command to allow other routines to be run.

One complication with the asynchronous model is handling errors within a coroutine.

Should one coroutine block the thread control will never be returned to the event loop,

meaning tasks in other coroutines will never be carried out. Within the G-TeCS pilot

each task has a set timeout which will trigger an error should it take too long to complete,

and a failure in any of the coroutines will raise an error within the pilot.

4.3.2 Check routines

The coroutines within the pilot can be separated into two types: the check routines and

the night marshal. Most of the coroutines are designed as monitors to regularly check

different parts of the system, which fits well into the asynchronous model. These check

routines are as follows:

• check_flags is a routine that monitors the system flags, most notably those cre-

ated by the conditions daemon (see Section 4.4). If any of the conditions flags are

bad then the dome daemon will enter lockdown and close the dome on its own (see

Section 3.4.6), but the check_flags routine will abort exposures, pause the pilot

and ensure it is not resumed until the flag is cleared. When the pilot is paused the

dome will close, the mount will park, and the night marshal (see below) will not

trigger any more tasks. When conditions are clear again the pilot will reopen the
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dome and allow normal operations to be restored. The check_flags routine also

monitors the system mode and will pause the pilot if it is set to manual mode or

exit if set to engineering mode (see Section 4.2.2).

• check_scheduler is a routine that queries the scheduler daemon (see Section 4.5.3)

every 10 seconds to find the best job to observe. If the pilot is currently observing

the scheduler will either return the database ID of the current pointing, in which

case the pilot will continue with the current job, or a new ID which will lead to the

pilot interrupting the current job and moving to observe the new one. If the pilot

is not currently observing (either it is the start of the night, resuming from being

paused or the previous pointing has just completed) then it will begin observing

whatever the scheduler returns. The details of how the scheduler decides which

target to observe are given in Chapter 5. The ID returned is then passed to the

observe (OBS) task run by the night marshal.

• check_hardware monitors the hardware daemons (see Section 3.4), checking every

60 seconds that they are all reporting their expected statuses. It does this using

the hardware monitor functions, which are described in Section 4.3.3. If an abnor-

mal status is returned then the pilot will pause, and a series of pre-set recovery

commands generated by the monitor are executed in turn. While in recovery mode

the pilot will check the monitors more frequently. If the commands work and the

status returns to normal the pilot is resumed, but if the commands are exhausted

without the problem being fixed then a Slack alert is issued reporting that the sys-

tem requires human intervention, and the pilot triggers an emergency shutdown.

• check_dome is a backup to the primary hardware check routine. check_hardware

does monitor the dome along with the other hardware daemons, but check_dome

provides a simple, dedicated backup to ensure the dome is closed when it should

be and to raise the alarm if it is not.
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4.3.3 Monitoring the hardware

One of the important tasks that the pilot is required to do is monitoring the status of

the various system daemons, and therefore the hardware units they are connected to. If

any problems are detected (e.g. hardware not responding) the easiest automated response

would be to shut down everything and send a message for a human to intervene. However

this would be unnecessary in the case of small problems that could be easily fixed with

one command, and it would be much better if the pilot could identify the problem

and issue the command itself. The other benefit of this is a much faster reaction time

than potentially needing to wake a human operator in the middle of the night, this is

important both to minimise observing time lost and also potentially save the hardware

by, for example, making sure the dome is closed in bad weather.

Therefore, a system was created to enable the pilot to attempt to respond and

fix any errors that occur itself. This is done within the check_hardware coroutine

though a series of hardware monitor Python classes, one for each of the daemons (i.e.

DomeMonitor, CamMonitor etc.). Each daemon has a set of recognised statuses, repres-

enting the current hardware state, and a set of valid modes which represent the expected

state. The current status is fetched from the hardware daemon, the mode is set by the

pilot, and the hardware checks consist of comparing the two to discover if there are

any inconsistencies. For example, the dome daemon can have current statuses of OPEN,

CLOSED or MOVING (or UNKNOWN), and its valid modes are just OPEN and CLOSED. At the

start of the night when the pilot starts the dome should be in CLOSED mode, and the

pilot only switches it to OPEN mode when it is ready to open the dome. If when a check

is carried out the dome is in CLOSED mode but the current status is reported as not

CLOSED then that is a problem, and the hardware check function returns that it has

detected an error with the dome. These checks can have timeouts associated with each

status. For example, if the dome is in CLOSED mode and is reported as MOVING that is
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not necessarily an error, as it might be currently closing. The hardware monitor stores

the time since the hardware status last changed, so if the dome reports that it has been

in the MOVING state for longer than it should normally take to close (∼90 s) then that

raises an error. This example used states specific to that hardware, but every daemon

also has various other possible states and errors — for example if the daemon is not

running, or is running and not responding.

When one of the monitor checks returns an error then the pilot will take action as

described within the check_hardware routine: pause night marshal (see below), stop

any current tasks and send a Slack alert to record the error. But instead of stopping

there, the monitor goes on to attempt to recover from the error and fix the problem.

In the same way that a human observer would run though a series of commands in

order to solve the problem, each monitor has a defined set of recovery steps to be run

through depending on the error reported. Continuing with the previous example, if the

dome reports OPEN when in CLOSED mode then the first recovery step is simple: execute

the command dome close. Each step then has a timeout value and an expected state

if the recovery command worked. If after 10 seconds the status of the dome has not

changed from OPEN to MOVING, then the error is persisting and more actions need to be

taken. If however the dome daemon reports that the dome is moving then the error

is not cleared immediately, only when the status finally reaches CLOSED. As mentioned

previously, should a monitor run out of recovery steps then the pilot will send out an

alert that there is nothing more that it can do and will attempt an emergency shutdown.

Using the above method, the vast majority of minor hardware issues can be solved

by the pilot without the need for human intervention. Every time the recovery steps are

triggered a message is sent to Slack (see Section 4.2.3) containing the error code and the

steps required to fix it, so it is easy to then go back and examine why the error occurred

and how to prevent it in the future.
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4.3.4 The night marshal

The check routines described in Section 4.3.2 are support tasks for the primary routine,

which is called the night_marshal. Unlike the check routines, the night marshal does

not contain a loop, instead it runs through a list of tasks as the night progresses, based on

the altitude of the Sun. Each task is contained in a separate Python observation script,

which contains the commands to send to the hardware daemons (see Section 3.3.3).

Each is run by spawning a new coroutine, meaning that while they are running the other

routines — such as the check tasks — can continue. In the order they are performed

during the night, the night marshal tasks are:

1. STARTUP, run immediately when the pilot starts. The startup.py script powers

on the camera hardware, unparks the mount, homes the filter wheels and cools the

CCDs down to their operating temperature of −20 ◦C. Once startup has finished

the pilot will send a report of the current conditions to Slack (see Figure 4.1).

2. DARKS, run after the system start up is complete before opening the dome. This

executes the take_biases_and_darks.py script to take bias and dark frames at

the start of the night.

3. OPEN, run once the Sun reaches 0° altitude. It simply executes the dome open

command. If the pilot is paused due to bad weather or a hardware fault then the

night marshal will wait and not open until the weather improves or the fault is

fixed. If it is never resolved then the night marshal will remain at this point until

the end of the night and the shutdown timer runs out (see below).

4. FLATS, run once the dome is open and the Sun reaches −1°. This executes the

take_flats.py script, which moves the telescope into a position pointing away

from the Sun and then takes flat fields in each filter, stepping in position between



Chapter 4: Autonomous Observing 124

each exposure and automatically increasing the exposure time as the sky darkens.

See Section 8.3.1 for details of the flat field routine.

5. FOCUS, run once the Sun reaches −11°. This executes the autofocus.py script,

which finds the best focus position for each of the unit telescopes. See Section 8.3.2

for details of the autofocus routine. If the routine fails for any reason the previous

nights’ focus positions are restored.

6. OBS (short for “observing”), begun once autofocusing is finished and continuing

for the majority of the night until the Sun reaches −12° in the morning. When

a database ID is received from the scheduler via the check_schedule routine the

observe.py script is executed. The script queries the observation database (see

Section 4.5.1) to get the coordinates and exposure settings for that pointing and

then sends the commands to the mount and exposure queue daemons. Once a job

is finished, either through completing all of its exposures or being interrupted, the

entry in the database is updated and the routine starts observing the next job from

the scheduler, starting the observe.py script again with the new pointing ID.

7. FLATS is repeated once the Sun reaches −10° in the morning, using the same

script but this time decreasing the exposure times as the sky brightens.

Once the night marshal has completed all of its tasks it exits and triggers the

shutdown.py script, which powers off the cameras, parks the mount and ensures the

dome is closed. Once this is finished the pilot quits. In addition there is a separate

night countdown timer within the pilot, which will trigger the shutdown once the Sun

reaches 0° in the morning. Normally the night marshal will have finished and triggered

the shutdown long before that point, but the countdown acts as a backup ensuring that

if there is a problem with the night marshal the pilot will still trigger a shutdown.
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It is also possible for the pilot to trigger an emergency shutdown during the night.

This triggers the same shutdown.py script observing script, with the only difference

being that it ensures the dome is closed first. An emergency shutdown will be triggered

by the pilot only in situations that it could not recover from without human intervention.

Notably, this occurs if the hardware monitors called by the check_hardware routine

reach the end of a daemon’s recovery steps without fixing the problem.

4.3.5 The day marshal

The day marshal is a completely separate script (day_marshal.py) which provides a

counterpart and backup to the pilot (the name is the mirror of the night marshal). The

script is run as a cron job like the pilot, but starts in the early morning rather than the

late afternoon. The day marshal is a much simpler script, with only one key task — to

wait until dawn and then check that the dome is closed. In this sense it is specifically a

backup for the pilot’s inbuilt night countdown timer, and as it is completely independent

of the pilot it will run even if the pilot script has frozen or crashed during the night.

If the day marshal finds that the dome is still open when it runs it will send out

Slack alerts that the system has failed, and then try closing the dome itself by sending

commands to the dome daemon. So far this has not occurred, aside from deliberately

during on-site tests. If all is well the day marshal will send out a Slack report as shown

in Figure 4.1, again as a mirror of the report that the night marshal sends after startup.

This report will confirm that the dome is closed, and also contains some simple plots

showing the targets the pilot observed last night.
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4.4 Conditions monitoring

Perhaps the most important role of the autonomous systems is monitoring the on-

site conditions. The weather at the site on La Palma is typically very good, however

storms can affect the mountain-top observatory, especially in the winter months (see

Section 8.3.4). It is vital that the dome is closed whenever the weather turns bad, or

in any other abnormal circumstances. For example, if the site loses power or internet

connection it is better to stop observing and close the dome in case they are not restored

quickly. The system had to be trusted to close in an emergency before it was allowed to

run completely without human supervision.

4.4.1 The conditions daemon

The conditions daemon is a support daemon that runs on the central observatory server

in the SuperWASP building on La Palma alongside the observation database (see Fig-

ure 3.2). The daemon is run on the central server because it deals with site-wide values,

so when the second GOTO telescope on La Palma is built it is envisioned that they will

both share the same conditions daemon (see Section 10.2.1).

The daemon takes in readings from the three local weather stations next to the GOTO

dome on La Palma (shown in Figure 4.3) every 10 seconds, as well as other sources such

as internal sensors. The daemon processes these inputs into a series of output flags,

which have a value of 0 (good), 1 (bad) or 2 (error). If any of the flags are marked as

not good (i.e. the sum of all flags is > 0) then the overall conditions are bad. The output

flags are monitored by the dome daemon and the pilot, if the conditions are bad the

dome will enter lockdown and automatically close if it is open (see Section 3.4.6) and the

pilot check_flags routine will trigger the pilot to pause observations (see Section 4.3).
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Figure 4.3: On the left the locations of the three local weather masts on La Palma are
marked by the red stars (see Figure 1.16 for the context of the site). There are three
masts around GOTO: one next to the GOTO platform (shown on the right), one on the
SuperWASP shed and a third on the liquid nitrogen plant next to W1m.

4.4.2 Conditions flags

Each conditions flag has a limit below or above which the flag will turn from good to

bad. For categories with multiple sources (for example the three local weather stations

each give an independent external temperature reading) then the limit will be applied to

each, and if any are found to be bad then the flag is set. It follows therefore that all the

conditions sources must be good for the flag to be set to good. Each category also has

two parameters: the bad delay and the good delay. These are the time the conditions

daemon waits between an input going bad/good and setting the flag accordingly, which

has the effect of smoothing out any sudden spikes in a value and ensures the dome will

not be opening and closing too often.

The conditions flags can be grouped into three categories, divided according to sever-

ity. The latest version of G-TeCS contains 13 flags, listed in Table 4.2. An explanation

of the different categories, and the flags within each, is given below.
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Flag name Criteria measured Bad criteria Good criteria Category

dark Sun altitude > 0° < 0° info

clouds IR opacity > 40% < 40% info

rain Rain detectors True
for 30 s

False
for 60min

normal

windspeed Wind speed > 35 km/h
for 2min

< 35 km/h
for 10min

normal

humidity Humidity > 75%
for 2min

< 75%
for 10min

normal

dew_point
Dew point

above ambient
temperature

< +4°
for 2min

> +4°
for 10min

normal

temperature Temperature < −2°
for 2min

> −2°
for 10min

normal

ice Temperature < 0°
for 12 h

> 0°
for 12 h

critical

internal
Internal

temperature
& humidity

< −2° or > 75%
for 1min

> −2° and < 75%
for 10min

critical

link
Network

connection
ping fail

for 10min
ping okay
for 1min

critical

diskspace
Free space
remaining < 5% > 5% critical

ups
Battery power

remaining < 99% > 99% critical

hatch Hatch sensor open
for 30min

closed
for 30min

critical

Table 4.2: A list of all the conditions flags, and the criteria for them to switch from
good to bad and bad to good.
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Information flags

The first category are the ‘information’ flags. These are assigned values like the other

flags, however they are purely for information purposes and do not contribute to the

overall decision of whether the conditions are bad or not. In other words, an information

flag can be bad, but the overall system conditions still considered good because the flag

is not included in the final calculation. The information flag being being bad is not a

reason to send the dome into lockdown, however it is still useful information to record.

The two current information flags are described below:

• dark: A simple information flag that is bad when the Sun is above the 0° horizon

and good when it is below. This has no effect on the robotic system, but is useful

for human observers.

• clouds: This information flag uses free IR satellite images downloaded from the

sat24.com website[4] to measure a rough cloud coverage value, based on the methods

of Smith et al. (2018). Although initially trialled as a normal flag, meaning the

dome would close when high cloud was detected, the results were not consistent

enough and the presence of clouds was more reliably calculated by the zero point

measured by the data processing pipeline. The flag remains a useful information

source however, and the satellite cloud opacity is added to the image headers to

assist in later data quality control checks.

Other information flags that have been proposed include seeing (from the ING or

TNG seeing monitors on La Palma) and dust (from the TNG aerosols monitor). Both

would be useful information to gather and store in image headers, but as they pose little

threat to the hardware they are not valid reasons to close the dome unlike the other

conditions flags described below.

[4]https://en.sat24.com

https://en.sat24.com
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Normal flags

The second category contains the ‘normal’ flags, and makes up the conditions flags

relating to the external weather conditions. These flags going bad are valid grounds to

close the dome, however as they relate to natural events they are not in any way unusual

and the pilot can happily remain paused and wait for the flags to clear. The normal

flags are described below:

• rain: This flag is set to bad if any of the weather stations report rain, and will

only be cleared after 60 minutes of no more rain being reported. In practice rain

usually coincides with high humidity, meaning the rain and humidity flags often

overlap.

• windspeed: This flag gets set if the windspeed is above 35 km/h, with a bad delay

of two minutes and a good delay of ten minutes.

• humidity: The humidity limit is 75%, with a bad delay of two minutes and a good

delay of ten minutes.

• dew_point: The dew point is related to the humidity, and has a limit of 4 ◦C above

the ambient external temperature (so if the external temperature is 2 ◦C then the

flag is set to bad if the dew point is 6 ◦C or below).

• temperature: The temperature flag is set if the temperature drops below −2 ◦C

for two minutes, and also has a good delay of ten minutes. The telescope can

operate in below-freezing temperatures for short amounts of time, but for longer

cold periods when ice build-up is a concern see the critical ice flag below.

The limits for some of these flags and how they were determined is discussed further

in Section 4.4.3 below.
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Critical flags

The final category are the ‘critical’ flags, for more serious situations that might arise.

In early versions of G-TeCS any of these flags turning bad was enough to trigger an

emergency shutdown and stop the pilot for the night. However this proved to be an over-

reaction, and there were no issues with having the pilot continue, although remaining

paused while the flag was bad. The only difference now between ‘normal’ and ‘critical’

flags is that when a critical flag changes a Slack alert is sent out to ensure it is brought

to the attention of the human monitors. The critical flags are described below:

• ice: A critical flag which uses the same input as the temperature flag, but is

set to bad if the temperature is below 0 ◦C for 12 hours and will only clear if it

is constantly above freezing for another 12 hours. These longer timers mean this

flag prevents the dome opening after a serious cold period until the temperature

is regularly back above freezing, and also gives time for a manual inspection to be

carried out to ensure the dome is free of ice.

• internal: A combination flag for the two internal temperature and humidity

sensors within the dome. These have very extreme limits, a humidity above 75%

or a temperature below −2 ◦C, which should never be reached inside under normal

circumstances due to the internal dehumidifier. This flag therefore is a backup for

an emergency case, when either the dehumidifier is not working or the dome has

somehow opened in bad conditions (see Section 8.3.4).

• link: The conditions daemon also monitors the external internet link to the site,

by pinging the Warwick server and other public internet sites. After 10 minutes of

unsuccessful pings the flag is set to bad. It is technically possible for the system to

observe without an internet link, and there is a backdoor into the system through

the separate SuperWASP network, but it is an unnecessary risk: in an emergency

alerts could not be sent out and external users would not be able to log in.
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• diskspace: The amount of free disk space on the image data drive is also mon-

itored, with the flag being set to bad if there is less than 5% of free space available.

As images are immediately sent to Warwick and then regularly cleared from the

local disk this should never be an issue, but this is a critical conditions flag as if

the local disk was full it would prevent any more data being taken.

• ups: The conditions daemon will set the ups flag if the observatory has lost power

and the system UPSs are discharging (see Section 3.4.8). Brief power cuts do occur

on La Palma, but rarely for more than a few minutes as there are on-site backup

generators that take over.

• hatch: A critical flag to detect if the access hatch into the dome has been left open.

This flag is unique in that it is only valid in robotic mode (see Section 4.2.2); when

in manual or engineering mode it is assumed that the hatch being opened is a result

of someone operating the telescope. But when the system is observing robotically

the hatch being open is a problem, as there is no way to close it remotely and in

bad weather damage could be caused to the telescope.

Age flag

There is a 13th pseudo-flag that is not set by the conditions monitor: the age flag. The

output of the conditions daemon is saved in a datafile with a timestamp, and the dome

daemon and the pilot monitors this file for changes, instead of querying the conditions

daemon directly, to prevent any errors if the conditions daemon freezes or crashes. If

the timestamp is out of date compared to the current time (2 minutes by default) then

something must have happened to the conditions daemon and the flags are not reliable.

The age flag is then created and set to bad, and it is then treated identically to the

other 11 non-info flags when checking the conditions. Note that the age flag is included

in the startup report sent to Slack in Figure 4.1 alongside the others given in Table 4.2.
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Figure 4.4: Histogram of temperature readings recorded for all nights in 2018. The
temperature was recorded as below the −2 ◦C limit 1.1% of this period (the orange
bars) and below 0 ◦C (the orange and cyan bars) 5.7% of the time.

4.4.3 Determining conditions limits

Setting the conditions flags based on the external weather is a balance between the loss

of sky time and the potential risk to the hardware.

Temperature

Originally the temperature limit was set to 0 ◦C, meaning the dome would close if any

of the conditions masts recorded the temperature as below freezing for more than two

minutes (the standard ‘bad delay’ for the normal flags). However the temperature on

its own is not a risk to the hardware unless coupled with high humidity, meaning that

the limit was later lowered to −2 ◦C. As shown in Figure 4.4 this gained up to an extra

4.6% of observing time that was previously lost, although note that is an upper limit as

other flags might be bad during that period.
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Figure 4.5: Histogram of humidity readings recorded for all nights in 2018. The
humidity was recorded as above the 75% limit 16.8% of this period (orange bars).

Humidity

High humidity at the GOTO site on La Palma is associated with clouds forming in the

caldera and spilling over the edge to cover the telescopes. There is a clear bimodal

distribution in the site humidity readings shown in Figure 4.5, a result of fairly distinct

high-humidity periods (mainly in the winter) and a range of lower humidities that pose

no threat to the hardware. The humidity limit of 75% is semi-arbitrary, in that if it is

surpassed that acts as a forewarning of a high humidity period. Changing the limit to

80% would not in practice gain much on-sky time as the humidity tends to rise rapidly

when clouds are forming, and it would come at a risk of condensation on the hardware

(the related dew point measurement is also an important measurement of this).
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Figure 4.6: Histogram of windspeed readings recorded for all nights in 2018. The
windspeed was recorded as above the 35 km/h limit 2.3% of this period (orange bars).

Windspeed

The windspeed flag is set to bad if the wind speed from any of the local masts is recorded

as above 35 km/h for more than two minutes. This limit is well below the winds needed

to damage the GOTO hardware, but is more a factor of the effect of wind shake on

image quality. This is rarely the case, as shown in Figure 4.6, and only tends to occur

when storms are passing over the island; otherwise the conditions are fairly stable.

The wind limit was previously 40 km/h, but when the full four unit telescope array

was installed, with the addition of the light shields, the wind sensitivity of the mount

was increased and the high wind limit had to be lowered. It is possible the wind limit

will also need to be revisited when the next four unit telescopes are added to the mount.
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4.5 Observing targets

In order for the pilot to function during the night it needs to know what targets to

observe. This section describes the architecture within G-TeCS to allow targets to be

defined, selected and passed to the pilot, while the details of the scheduling algorithms

are discussed in more detail in Chapter 5.

4.5.1 The observation database

The scheduling system for G-TeCS is based around a database known as the observation

database or “ObsDB”. This database is located on the central observatory server hosted

by SuperWASP, which not only is a faster machine than the control computer in the

dome but in the future will allow a single database to be shared between mounts (see Sec-

tion 9.2 and Section 10.2.1). The database is implemented using the MariaDB database

management system[5], and is queried and modified using Structured Query Language

(SQL) commands. In order to interact easily with the database within G-TeCS code a

separate Python package, ObsDB (obsdb[6]), was written as an Object-Relational Map-

ping (ORM) package utilising the SQLAlchemy package (sqlalchemy[7]). An entity

relationship diagram for the database schema is shown in Figure 4.7.

The primary table in the database is for individual pointings. These each represent

a single visit of the telescope, with defined RA and Dec coordinates and a valid time

range for it to be observed within, as well as other observing constraints. Each pointing

has a status value which is either pending, running, completed or some other terminal

status (aborted, interrupted, expired or deleted). Ideally a pointing passes through

three stages: it is created as pending, the scheduler selects it and the pilot marks it as

running, then if all is well when it is finished it is marked as completed. If it stays in the
[5]https://mariadb.com
[6]https://github.com/GOTO-OBS/goto-obsdb
[7]https://sqlalchemy.org

https://mariadb.com
https://github.com/GOTO-OBS/goto-obsdb
https://sqlalchemy.org
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database and never gets observed it will eventually pass its defined stop time (if it has

one) and will be marked as expired. If the pointing is in the middle of being observed

but is then cancelled before being completed it will be marked either interrupted (if

the scheduler decided to observe another pointing of a higher priority) or aborted (in

the case of a problem such as having to close for bad weather). The deleted status

is reserved for pointings being removed from the queue before being observed, such as

updated pointings being inserted by the sentinel and overwriting the previous ones (see

Section 7.4.2). A representation of the relationship between the pointing statuses and

how they progress is shown in Figure 4.8.

As well as the target information (RA, Dec, name) a pointing entry contains con-

straints on when they can be observed. Each pointing can have set start and stop times;

the scheduler will only select pointings where the current time is within their valid range

(and once the stop time has passed they will be marked as expired). Limits can also

be set on minimum target altitude, minimum distance from the Moon, maximum Moon

brightness (in terms of Bright/Grey/Dark time) and maximum Sun altitude. These

constraints are applied by the scheduler to each pointing when deciding which to ob-

serve (see Section 5.2.1), and unless they all pass the pointing is deemed invalid. When

created, a pointing is also assigned a rank, usually from 0–9, as well as a True/False

flag marking it as a time-critical Target of Opportunity (ToO). These are used when

calculating the priority of the pointing, to compare with others in order to determine

which is the highest priority to observe (see Section 5.2).

The commands to be executed once the telescope is in position are stored in a separate

exposure_sets table. The table contains the number of exposures to take, the exposure

time and the filter to use; so an observation requiring three 60 s exposures in the L filter

only requires one entry in the table. When the pointing is observed the pilot will read

the set information and issue the appropriate commands to the exposure queue daemon

(see Section 3.4.5), where each exposure is added to the queue and observed in turn.
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Figure 4.8: A flowchart showing how the status of an entry in the pointings table can
change.
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Each entry in the pointings table can only be observed once, after which it is

marked as completed and is therefore excluded from future scheduler checks (which only

consider pending pointings). For observing a target more than once there also exists

the mpointings table, which contains information to dynamically re-generate pointings

for a given target. An mpointing entry is defined with three key values: the requested

number of observations, the time each should be valid in the queue and the minimum

time to wait between each observation. Each time the database caretaker script is run

it looks for any entries in the mpointings table that still have observations to do and it

creates another entry in the pointings table for that target (this is tracked in a separate

time_blocks table). Setting the time values allows a lot of control over when pointings

can be valid; for example, scheduling follow-up observations a set number of hours or

days after an initial pointing is observed (see Section 7.4.1).

The three tables described above (pointings, exposure_sets and mpointings) are

the core tables required for observation scheduling. However, there are several other

tables defined in the database which are used to group pointings together and relate to

GOTO’s purpose as a survey instrument. As described in more detail in Section 6.2,

GOTO observes the sky divided into a fixed grid of individual tiles. The database

therefore also contains a grids table and a grid_tiles table, which define the current

grid based on the field of view of the telescope. Mapping pointings to the grid is achieved

through two more tables, surveys and survey_tiles. A survey in this context is a group

of tiles that are being observed for a specific reason, one example are the pointings

comprising the all-sky survey that GOTO carries out every night. Events that are

processed by the alert sentinel might have a skymap that covers multiple tiles, and

therefore the set of pointings required to cover it forms a survey within the database

(the details of adding event pointings to the database are described in Section 7.4.2).

Each pointing within the survey is linked to a survey tile, and each survey tile is linked

to a grid tile of the current grid. The additional field added by the survey tile is a
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‘weighting’ column, which allows tiles within a survey to be weighted relative to each

other. In the all-sky survey each tile is weighted equally, but in a survey coming from

an event skymap the tiles will be weighted by the contained probability within that tile.

The scheduler takes this weighting into account when deciding which pointing to observe

(see Section 5.3).

There are two additional tables in the database that are used to contain supporting

information: the events and users tables. The events table contains fields such as

the event type and source, and is filled by the sentinel when events are processed (see

Section 7.4.2). The users table connects each pointing to the user who added it to

the database. At the moment this is unused, and every pointing is linked to the single

generic “GOTO” user, but in the future individuals might wish to insert and keep track

of their own targets. Finally there is an image_logs table that is populated by the

camera daemon whenever an image is taken, this builds a record and allows individual

images to be traced back to other database entries if required (all connected database

IDs are also stored in the image FITS header).

4.5.2 The sentinel

In order for targets to be observed by the pilot they must have entries defined in the

pointings table in the observation database. These can be added manually, but for

automated follow-up observations they have to be inserted whenever an alert is received.

As shown in Figure 3.2 this is the job of the sentinel daemon.

In addition the normal control loop, the sentinel daemon includes an independent

alert listener loop that is continuously monitoring the transient alert stream output by

the 4 Pi Sky event broker (Staley and Fender 2016), using functions from the PyGCN

Python package (pygcn[8]). Should the link to the server fail the daemon will automatic-

ally attempt to re-establish the connection every few seconds until it is restored. Alerts
[8]https://pypi.org/project/pygcn

https://pypi.org/project/pygcn
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come in to the listener and are are appended to an internal queue, and the sentinel also

has an additional ingest command which can be used to manually insert test events

or bypass the alert listener. Alerts are then removed from the queue and processed

using the handler from the GOTO-alert Python package. The details of how alerts are

processed are described in Chapter 7, which includes how events are defined, processed,

mapped onto the all-sky grid and ultimately added to the database.

The alert listener is a key part of the automated system but was not initially planned

to be assigned to its own independent daemon. The pt5m system uses the Comet software

(Swinbank 2014) in a separate script independent of any daemons. The advantages to

including a dedicated alert listener daemon in G-TeCS, which became known as the

sentinel, come from it being integrated into the pilot monitoring systems like the other

daemons (described in Section 4.3.3). Should the sentinel daemon crash or not respond

to checks the pilot will notice and restart it like any other daemon.

4.5.3 The scheduler

All entries in the observation database pointings table with status “pending” form

the current queue, and the task of selecting which of these pointings the system should

observe is the role of the scheduler. Within G-TeCS the scheduler can refer to two

linked concepts: the scheduling functions or the scheduler daemon itself. This section

describes how the scheduler daemon operates; for how the scheduling functions chose

which pointing to observe see Chapter 5.

The pt5m control system has no independent scheduler daemon; when the pilot needs

to know what to observe it simply calls the scheduling functions to read the current queue,

rank the pointings and find the one with the highest priority. When expanding the system

for GOTO it was decided to farm these calculations off to a separate daemon, which the

pilot queries just like the other hardware daemons. There are several advantages to this
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method. Firstly, just like with the sentinel alert monitor, having a dedicated daemon

means it can be monitored by the pilot using the functions described in Section 4.3.3.

Furthermore, the scheduling commands can take a significant amount of time to run

(several seconds), so splitting them out to a separate program saves time and frees

up the pilot thread for other routines (recall the pilot is asynchronous but not multi-

threaded). Also, having an independent scheduler daemon allows it to be run on the

faster central server in SuperWASP that hosts the observation database, as shown in

Figure 3.2. Having the database queries run on the same, machine as the database,

instead of over the network, improves the speed of the scheduling functions. Finally,

when GOTO moves to a multi-telescope system it is anticipated that the scheduler will

be one of the common systems shared between telescopes (see Section 9.2.1), so it makes

sense to have the daemon on the central server alongside the other shared systems.

The scheduler daemon contains the usual control loop, which runs the scheduling

functions described in Chapter 5 and internally stores the returned highest-priority point-

ing. The daemon exposes a single command, check_queue, which returns the ID of that

pointing. The pilot check_schedule coroutine queries the daemon every 10 seconds

using this command, and the scheduler returns one of three results: carry on with the

current observation, switch to a new observation, or park the telescope (in the case that

there are no valid targets). Most of the time the pilot will be observing a pointing pre-

viously given by the scheduler, and on the next check the scheduler will return the same

pointing as it is still the highest priority — in which case pilot will continue observing

it. Even if the scheduler finds that a different pointing now has a higher priority it will

not tell the pilot to change targets whilst observing the current target, unless the new

pointing has the Target of Opportunity (ToO) flag set. Otherwise the pilot will wait

until it has finished the current job, mark it as complete in the database and ask the

scheduler for the next target to observe. The different possible cases are summarised in

Table 4.3.
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4.6 Summary and Conclusions

In this chapter I have described the autonomous systems that allow GOTO to function

as a robotic telescope.

The purpose of the programs described in this chapter is to add onto the core G-

TeCS software as described in Chapter 3, and to replicate and replace every role of a

human telescope operator. The core of the robotic control system is the pilot master

control program, and I described how the pilot operates as an asynchronous program with

multiple coroutines dedicated to monitoring or carrying out specific tasks throughout the

observatory.

There are also several additional daemons added to support the pilot. The condi-

tions daemon performs a vital role in the control system, and I described the different

conditions flags and weather limits used for the telescope on La Palma. I then gave

an outline of how targets are observed by the robotic system, with the sentinel daemon

adding pointings to the observation database and the scheduler daemon selecting which

ones to observe. How the scheduling functions determine which target is the highest

priority is examined in the following chapter (Chapter 5), and how the sentinel daemon

processes alerts is described in Chapter 7.
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5.1 Introduction

Completing the chapters describing the core functions of the GOTO Telescope Control

System, in this chapter I detail how the robotic system decides which targets to observe.

• In Section 5.2 (Determining target priorities) I describe the functions used by the

G-TeCS scheduler to chose between targets and decide which is the highest priority.

• In Section 5.3 (Calculating the tiebreaker) I examine how the “tiebreak” value is

calculated to sort between equally-ranked targets.

• In Section 5.4 (Scheduler simulations) I describe how optimal tiebreak weighting

parameters were determined, by running simulations of the G-TeCS system ob-

serving gravitational-wave events.

All work described in this chapter is my own unless otherwise indicated. The first two

sections are based on the description of the scheduling functions in Dyer et al. (2018).
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5.2 Determining target priorities

GOTO operates under a “just-in-time” scheduling model (see, for example, Saunders et

al. 2014), rather than creating a plan at the beginning of the night of what to observe (see,

for example, Bellm et al. 2019a). Each time the pilot queries the scheduler the current

queue of pointings is imported and the priority of each is calculated, with no explicit

consideration for the past or future (aside from the “mintime” constraints, as described

below). The highest priority pointing is then returned, as described in Section 4.5.3.

This system is very reactive to any incoming alerts, as the new pointings will imme-

diately be included in the queue at the next check. This method also naturally works

around any delay in observations due to poor conditions, unlike a fixed night plan. The

just-in-time method can be less efficient than a night plan when observing predefined

targets which can be deliberately optimised before the night starts. However the just-in-

time system is perfectly reasonable for the all-sky survey GOTO is normally observing,

and any other observations will be alerts entered by the sentinel daemon which could

not be planned for, so it was determined to be the best option for GOTO.

Each time the scheduler functions are called several steps need to be carried out.

The first of these is to fetch the current queue from the observation database (see Sec-

tion 4.5.1). This is done by querying the database pointings table for any entries that

have the pending status. Additional filters are also applied in order to reduce the num-

ber of invalid pointings imported: restricting the query to pointings within the visible

region of the sky (based on the time and observatory location) and within the pointing’s

valid period (the start time has passed and stop time has not yet been reached). Any

entries in the table that pass these filters make up the pointings queue.

In order to find which pointing is the highest priority, the queue is sorted using a

variety of parameters, with the pointing sorted at the top being returned by the scheduler.

The sorting criteria are outlined in the following sections.
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5.2.1 Applying target constraints

The first consideration is determining which pointings are currently valid. As described

in Section 4.5.1, pointings have limits defined for physical constraints (minimum target

altitude, minimum Moon separation, maximum Moon illumination, maximum Sun alti-

tude). These constraints are calculated and applied to the pointings using the Astroplan

Python package (astroplan[1], Morris et al. 2018). The target altitude and Moon sep-

aration constraints depend on the position of the target, both the altitude constraints

depend on the site the observations are being taken from, and all four constraints de-

pend on the current time. Each constant is applied both at the current time and after

the minimum observing time defined for each pointing. This ensures that, for example,

targets that are setting are visible throughout their observing period by checking the

altitude is above the minimum both at the beginning and end of the observation. The

minimum time constraints are not applied to the pointing currently being observed (if

any), as the pointing will already be part way through and will have already been passed

as valid. The validity of the pointings is a simple boolean flag (True or False), and invalid

pointings are naturally sorted below valid ones.

5.2.2 Effective rank

The next order pointings are sorted by is the effective rank of the pointing, which is a

combination of the integer starting rank the pointing was inserted with and the number

of times it has since been observed.

The starting rank is fixed when the pointing is created in the observation database:

every pointing is given an integer rank between 0 and 999. The highest and lowest

ranks are reserved for particular classes of targets. Rank 0 is not intended to be used

under normal circumstances: it is reserved for exceptional events, such as a local galactic
[1]https://astroplan.readthedocs.io

https://astroplan.readthedocs.io
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supernova, as a pointing with rank 0 would outrank all other pointings including even

gravitational-wave events. At the other end of the scale, rank 999 is reserved for the

all-sky survey tiles, so that they are sorted below all other pointings. These pointings

act as “queue fillers” in the system, ensuring there is always something for the telescope

to observe. All other ranks are otherwise available, although by convention ranks ending

in 1–5 are used for gravitational-wave events, 6–8 for other transient events (e.g. GRBs)

and 9 for other fixed targets. See Section 7.4.1 for the details of determining the rank

for different transient events.

Added to the starting rank is a count of the number of times that a target has been

observed, based on the number of pointings previously associated with a given mpointing

(see Section 4.5.1). This count only includes successful observations, so pointings that

were interrupted or aborted are not included. The starting rank (Rs) and observation

count (nobs) are added to create the effective rank R given by

R = Rs + 10× nobs. (5.1)

This formula means a pointing with a starting rank of 2 that has been observed five

times will have an effective rank of 52. Effective ranks are sorted in reverse order, so a

rank-5 pointing that has been observed once (an effective rank of 15) will be a higher

priority target than a rank-4 pointing that has been observed twice (an effective rank

of 24). This system allows for a natural filtering of targets, as targets will move down

the queue as they are observed. For example, pointings from a gravitational-wave event

might be inserted into the database at rank 2, so will first appear in the queue with

effective rank of R = 2 (nobs = 0). The first pointing that is observed will reappear with

R = 12, and therefore be sorted below those tiles that have not yet been observed. Once

all the pointings have been observed once they will all have effective rank 12 and the

process repeats, with each pointing falling to effective rank 22, 32 etc. As the increase
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is by 10 each time pointings from other events, or which were manually inserted, might

also be in the queue and interweave between the event follow-up pointings. For example,

a manual observation might be inserted at rank 9, meaning it will fall below the first

observation of the gravitational-wave tiles at R = 2 but will take priority over subsequent

observations. To prevent this, the manual observation could be inserted at rank 19 to

come after two gravitational-wave observations, or even 509 to completely ensure it does

not interfere with the gravitational-wave follow-up targets.

5.2.3 Targets of Opportunity

For pointings with the same effective rank the next sorting parameter is the Target of

Opportunity (ToO) flag assigned to the pointing when it was inserted into the database.

The flag is simply a boolean value that is true if the target is a ToO and false if it is

not, and pointings that have the flag as true are sorted higher than those of the same

rank that are not ToOs. This ensures that time-sensitive targets are prioritised ahead of

other targets at the same rank, although it is important to remember that the effective

rank does still take priority (this means a ToO at rank 4 will be sorted above any other

rank 4 pointings, but will still be a lower priority than a non-ToO at rank 3).

5.2.4 Breaking ties

Finally, if there are multiple pointings with the same values for the above parameters

then a single tiebreak value is calculated for each. This value is based on the current

airmass of the pointing and the weighting of the survey tile the pointing is linked to, if

any; pointings at lower airmass (closer to the zenith) and higher tile weightings are the

higher priority. For example, if two new gravitational-wave pointings with equal ranks

both contain the same skymap probability (see Section 6.3), then the one at the lower

airmass at the time of the check will be prioritised.
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To calculate the tiebreak value, both the tile weighting (W ) and airmass (X) values

need to be scaled between 0 and 1. This is true by definition for the tile weights, while

the airmass is scaled so airmasses 1 and 2 are set to 1 and 0 respectively (airmasses

greater than 2 are set to zero). The parameters are then combined to form the tiebreak

value V in a ratio 10:1 using

V =
10

11
W +

1

11
(2−X). (5.2)

This ensures the tiebreak value is also between 0 and 1, with higher values being pre-

ferred. The best possible scenario is a tile which contains 100% of the skymap localisation

probability (W = 1) and is exactly at zenith (X = 1) which gives a tiebreak value V = 1.

How this tiebreak formula was determined is described in Section 5.3. Note that Equa-

tion 5.2 is just Equation 5.4 using a ratio of 10:1, which was determined based on the

scheduling simulations described in Section 5.4.

In the unlikely event that two pointings are still tied, all other parameters (rank,

ToO flag) being otherwise equal, and they have exactly the same tiebreak value, then

whichever was inserted into the database first (and therefore has a lower database ID)

by default comes first in the queue.

5.2.5 Queue sorting example

In order to show how the above sorting methods are applied in practice, an example

queue of pointings is shown in Table 5.1. The current highest-priority pointing is one of

four pointings from a fictional gravitational-wave event, GW191202. At the top of the

queue are two of these pointings, marked as P3 and P4. Both are valid, both have the

same starting rank (2) and neither have been observed yet (nobs = 0). They are also

both at the same airmass (1.1), but as P3 has a higher tile weighting (containing 10%

of the skymap probability compared to 5% for P4) it has a higher tiebreak value and is
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Name Valid Rs nobs Eff. rank ToO W X Tiebreaker

1 GW191202 P3 Y 2 0 2 Y 0.10 1.1 0.173
2 GW191202 P4 Y 2 0 2 Y 0.05 1.1 0.127
3 M101 Y 9 0 9 N 1 1.5 0.955
4 GW191202 P2 Y 2 1 12 Y 0.30 1.1 0.355
5 AT 2019xyz Y 6 2 26 Y 1 1.4 0.964
6 M31 Y 16 1 26 N 1 1.2 0.982
7 All-sky T0042 Y 999 0 999 N 1 1.0 1.000
...

GW191202 P1 N 2 0 2 Y 0.55 1.1 0.582
All-sky T0123 N 999 0 999 N 1 2.0 0.909

Table 5.1: Some examples of a queue of pointings sorted by priority. Pointings are
first sorted by validity, with invalid pointings shown at the bottom of the queue. Then
pointings are sorted by effective rank, which is comprised of the starting rank (Rs) and
the observation count (nobs). Pointings with the same effective rank are sorted based
on if they are targets of opportunity or not, with ToOs being ranked higher. Finally
pointings with all other factors being equal are ranked by the tiebreaker value, combining
tile weighting (W ) and the current airmass (X) using Equation 5.2.

therefore sorted higher. Therefore P3 would be returned by the scheduler.

As a demonstration, the rest of the queue is also shown. The gravitational-wave

pointing containing the highest probability, P1, is unfortunately not valid and is therefore

at the bottom of the queue (but still above other invalid pointings). The second highest,

P2, has already been observed once and therefore has an effective rank of 12. This puts

it below a non-ToO pointing of M101 which has a lower starting rank, 9 compared to

2, but has not yet been observed and is therefore sorted higher. The other non-survey

pointings in the queue are a pointing of a transient event, AT 2019xyz, and one of M31.

Both are valid and have the same effective rank of 26, but the transient is a target of

opportunity and therefore is sorted higher. This is true even though it is at a worse

airmass, as the ToO sorting takes priority over the tiebreak; had they both (or neither)

been ToOs then the M31 pointing would have been higher. Finally below those pointings

is the first of the all-sky survey pointings. These will only be the highest priority if there

are no other valid pointings above them, which for GOTO is actually most of the time.
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5.3 Calculating the tiebreaker

The scheduler weights pointings in the current queue by several parameters, as described

in the previous section: the assigned rank, the number of times it was previously ob-

served, if it is a target of opportunity or not. But in practice most of the time the queue

will contain a large number of pointings where these values are all the same. For ex-

ample, when a new gravitational-wave event is processed by the sentinel the GOTO-alert

event handler adds in a large number of pointings based on tiles from the skymap (see

Section 7.4.2). On the next scheduler check the queue will be populated by a large num-

ber of pointings each with the same rank and ToO flag which have never been observed.

Likewise, when observing the all-sky survey the queue will be filled with tiles that have

all been observed the same number of times. This is why the scheduler then needs a

further way to distinguish between pointings, which is known as the tiebreaker.

The older pt5m scheduling code that G-TeCS is based on (see Section 3.2.3) used

only a single tiebreak parameter to decide between equally-ranked pointings: the airmass

each target would be at at the midpoint of the observation. This works well to prioritise

getting the best data quality, assuming the two targets are otherwise identical. However

when adapting the pt5m system for GOTO it was clear there was the need for an

additional parameter in the scheduling functions, to encode the relative weights of a set

of pointings.

5.3.1 Tile weighting

All the pointings added from a gravitational-wave skymap (or similar event such as a

gamma-ray burst) will have the same rank, but they will have different weights from the

amount of skymap probability they each contain (how event skymaps are mapped onto

the tile grid is described in Chapter 6). It makes sense that, of all the tiles from a given

event, the ones with higher probability should be the ones to prioritise and observe first.
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However, unlike an integer parameter such as the rank or the True/False ToO flag, the

tile weights cover a wide range and often there will only be a small amount of difference

between the values for neighbouring tiles. Prioritising a tile that contains 2.71% of the

skymap over another that contains 2.70% in all cases is not the best strategy, especially if

the latter is close to zenith while the former is low down close to the horizon. Observing

a high-airmass tile over a low-airmass one for a gain of only 0.01% probability is a poor

choice, especially if the former tile is currently rising and will be at a better altitude in a

few hours. For these reasons it was decided that the skymap probability weighting should

be considered at the same level as the airmass tiebreaker, meaning a lower-airmass tile

with only a slightly lower probability will be prioritised over one further from zenith.

This should only be true up to a reasonable limit, however, as in the case of two tiles

where one contains a probability of 95% and the other 3% it should always be true that

observing the former is the better choice, even if it has a slightly worse airmass.

It should be noted that skymap probability is not necessarily the only way for a

group of tiles to be weighted. In the past GOTO has carried out more focused surveys:

when carrying out a galaxy-focused survey, for example, tiles were weighted by the sum

of the magnitudes of all galaxies within them. The only requirement is that each tile

has a weighting of between 0 and 1, relative to the other tiles added in that survey. For

non-survey pointings, such as a single observation of a particular target, the weight is set

to 1 (this can be considered as that tile having a 100% chance of containing the target).

This is also true for survey pointings where all tiles are weighted equally, such as the

all-sky survey. This can be seen in the example Table 5.1 in the previous section, as all

the non-gravitational-wave pointings have W = 1.
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5.3.2 Combining tile weight and airmass

As mentioned previously, the pt5m system uses airmass as the sole tiebreak parameter.

For the G-TeCS scheduler it was instead decided to create a new tiebreak value, which

would combine both the tile weight, as described above, and the airmass of the target

at the time the scheduler check was carried out. This allows the scheduler to take into

account both parameters when deciding between otherwise-equal pointings.

Airmass is usually modelled using a plane-parallel atmosphere, which gives

X = sec z, (5.3)

where X is airmass and z is the zenith distance (z = 90 − h where h is the altitude of

the target). Targets are best to observe at low airmasses to get the best data quality.

In order to combine both weight and airmass into a single tiebreak value it was

decided to scale both between 0 and 1, and then combine them such that the final

tiebreak value V was also between 0 and 1. This would then be sorted so that higher

values are prioritised, as described previously in Section 5.2. Helpfully, the tile weights

are already defined as being between 0 and 1. In order to scale the airmasses it was

decided that the airmass of a target that is at or below the horizon limit should be set

to 0, and any target that was at the zenith (h = 90, so X = 1) should be set to 1. For

GOTO the horizon limit is 30°, which corresponds to an airmass limit of 2. The final

tiebreak value is defined using

V =
w

w + a
W +

a

w + a
(2−X), (5.4)

where the balance of tile weight W to airmass X is described by the ratio w:a. Using a

ratio of 10:1, i.e. prioritising the tile weight 10 times more than the airmass, produces

Equation 5.2.
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5.3.3 Time-to-set

The definition of airmass given in Equation 5.3 is, as would be expected, symmetric

around the zenith. Scheduling using this parameter is therefore a problem for the fol-

lowing reason: consider two targets with equal or similar contained skymap probabilities,

but one is 5° above the horizon in the west and the other is 5° above the horizon in the

east. They have the same airmass value, but due to the rotation of the Earth the one

in the west will be setting while the one in the east is rising. A good scheduling system

could prioritise observing the target in the west, as unless it is observed quickly it will

pass below the horizon and no longer be visible for the remainder of the night (assuming

it is not circumpolar, see below).

In order to address this problem, a new parameter was required that prioritises targets

that are about to set. This new parameter is called ‘time-to-set’, and is simply the time

until the target sets below the defined horizon. The units are arbitrary, but as it will

repeat with a period of 24 hours the time-to-set value is normalised between 0 and 1 so

that it is 0 when the target is at the horizon, 0.5 when it is 12 hours from setting and 1

when it is 24 hours from setting (there is therefore a degeneracy at 0 and 1). Figure 5.1

shows how the airmass and time-to-set values change between 0 and 1 over the course

of a day for any non-circumpolar target. Circumpolar targets are ones that never set

below the horizon, and therefore for these targets the time-to-set is an illogical value.

However, the North Celestial Pole is just below the 30° horizon limit of GOTO from La

Palma, so this is not a concern at present. This may need to be reconsidered depending

on which site is picked for GOTO’s future southern node, see Section 9.2.2.

Just replacing airmass in the tiebreaker calculation with the time-to-set would not

produce good results, as the telescope would be prioritised to observe the western horizon

continuously (as by design targets that are just about to set have the highest scaled

time-to-set values). As when including the skymap probability, a weighted combination
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Figure 5.1: Plotting scaled airmass and time-to-set values for a target over 24 hours.
The altitude of the target is shown by the blue dashed line, and the grey regions show
the times when the target is below the 30° horizon altitude limit (the black dotted line).
The two tiebreak values are also plotted, scaled between 0 and 1: airmass (in orange) is
set to 0 when the target is at airmass 2 or below, and the time-to-set (in green) linearly
increases to 1 until the target passes below the horizon and it is reset to 0.

of both airmass and time-to-set would be best in order to take both parameters into

account. This new parameter, Z, can be considered using the equation

Z =
a

a+ t
(2−X) +

t

a+ t
T, (5.5)

where again the weighting factors a and t describe the relative ratio between the airmass

(X) and time-to-set (T ) in the ratio a:t. Figure 5.2 shows how different ratios produces

different distributions: a ratio of 1:0 only considers the airmass, a ratio of 1:1 has to

two equally weighted and a ratio of 0:1 only considers the time-to-set. As the ratio is

increased in favour of time-to-set (i.e. t is larger than a) the peak of the distribution

shifts to the right, which will favour targets that are setting over those at the zenith. By

using both airmass and time-to-set values in the tiebreaker formula the scheduler should

prioritise observing targets that are about to set but are still at a reasonable airmass.
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Figure 5.2: Combining airmass and time-to-set values in different ratios using Equa-
tion 5.5 to create a new distribution. This plot uses the same target as Figure 5.1, but
focusing the x-axis on the time when the target is above the horizon.

Previously, the scheduler tiebreak value V was calculated using equation Equation 5.4

with just the tile weight (W ) and the airmass (X). In order to determine how including

the time-to-set (T ) would affect the scheduler this equation can be rewritten as

V =
w

w + a+ t
W +

a

w + a+ t
(2−X) +

t

w + a+ t
T, (5.6)

where w, a and t are the relative weightings factors for the tile weight, airmass and

time-to-set respectively (usually written in the form w:a:t). Using this equation a series

of simulations were carried out using the GOTO scheduling code to determine optimal

values for w, a and t, as described in the Section 5.4. Ultimately a ratio of 10:1:0 was

selected; by setting t = 0 the time-to-set value is ignored, as it was found to only hinder

the scheduler performance. This is why Equation 5.2 in Section 5.2.4 only includes the

tile weight and airmass values.
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5.4 Scheduler simulations

When the scheduling functions described in the previous sections were written, it was

not clear how best to combine the selected parameters (tile weight, airmass and time-

to-set) to create a single tiebreak value. In order to examine how different weightings

of the three parameters affected the scheduler performance, a series of simulations were

carried out. These simulations, and their results, are described in this section.

5.4.1 Simulating GOTO

The G-TeCS control system described in Chapter 3 and Chapter 4 contains all of the

code used to operate the GOTO telescope, as well as test code down to the level of the

individual daemons and hardware units. This makes it possible to simulate, for example,

the camera daemon taking exposures using fake hardware code that waits in real time

until the exposure time is completed (plus some readout time) and then creates a blank

FITS image file with all of the expected header information. On top of this the real pilot

can run without knowing these daemons are fake, and the real sentinel daemon can add

real or simulated events into a copy of the observation database for the real scheduler to

choose between. In this way the entire control system can be run without connecting it

to any real hardware.

However, the fully-featured test suite described above is not necessary for the simula-

tions described in this section: ideally they would run faster than real time, and it is not

necessary to simulate the full hardware system down to fake images being created, but

the intention is still to model the response of the real control system as much as possible.

For these simulations anything below the pilot (i.e. the hardware daemons, as shown in

Figure 3.2) is abstracted away, and the pilot itself is replaced by a new specialised script

simply called the fake pilot. This mirrors the real code described in Section 4.3 in most

ways, however there are several important simplifications:
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• The fake pilot does not call the scheduler daemon in order to find what pointing to

observe, but instead imports and runs the scheduling functions itself. This was the

original way the pilot ran before the scheduler was split into a separate daemon,

as described in Section 4.5.3.

• The fake pilot does not include the full conditions monitoring system described in

Section 4.4. The check_conditions routine still exists in order to stop observa-

tions when the Sun has risen, but is just a single function check. Code was written

to simulate weather closing the dome using random Gaussian processes, however

for the scheduling simulations described here only a single night of observations is

considered, and including random weather effects in the simulations only distracted

from their purpose to model the scheduler response.

• The night marshal and any observing tasks other than actually observing the

scheduler target (e.g. autofocusing) have been removed from the fake pilot. Ob-

servations start immediately after sunset and continue to sunrise, and then when

the dome is closed the pilot loop continues until the simulation has completed.

• While the real pilot works using loops that sleep until a given time has passed, the

fake pilot contains an internal time which is increased for each ‘step’ in the simu-

lation. At each step the script checks the scheduler using the normal commands.

One important factor in speeding the simulations up is to increase this step size,

up to the point that each observation takes a single step. This means that at each

step the pilot will observe a new target, and increase the internal simulation time

by the appropriate amount. If, for example, the target pointing asks for three 60 s

exposures the simulations would increase by 3 minutes, plus extra time for readout

and slewing to the target before the exposures start.
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5.4.2 Simulation results

A series of simulations using the fake pilot code described above were carried out in

order to find optimal values for the weights (w, a and t) given in Equation 5.6, and to

see how the telescope response changes depending on the values used.

It should be noted that these simulations were carried out in 2016, early in the

development of G-TeCS and before the first GOTO telescope had been commissioned on

La Palma. They therefore included assumptions for values such as the field of view of

the telescope (affecting the tile size), mount slew speed and readout time. In addition,

most of the code to handle gravitational-wave skymaps detailed in Chapter 7 had not

yet been written and the event follow-up strategy had not been fully defined.

In order to run the simulations, a selection of model skymaps from the LIGO First

Two Years project (Singer et al. 2014) were manually processed to generate a series of

tiled pointings, which were then added to the observation database. The fake pilot script

was then run to simulate one night of observations using set values for the w:a:t ratio.

Once completed the tiles observed were recorded, and then the database was reset, the

ratio changed and the simulations repeated.

Two metrics were used to judge the effectiveness of the scheduler response: the mean

airmass of each tile when observed, and the fraction of the skymap probability covered

(i.e. the total contained probability within all observed tiles). As simulated skymaps

were being used the location of the source of the gravitational-wave signal was known,

so it was possible to record if the tile containing the source was observed or not. However,

for these simulations the overall response, in terms of skymap coverage, was deemed a

better indicator of the scheduler performance than just if the source was observed or not

(for example, the source might not have even been visible from La Palma). The later,

more advanced simulations described in Chapter 9 go into more detail about the source

location and the probability that the source position is observed.



Chapter 5: Scheduling Observations 163

Figure 5.3: The fraction of the event skymap covered verses the mean observation
airmass for three different w:a:t ratios: 1:0:0 (purple), 0:1:0 (orange) and 0:0:1 (green).
Each point represents a simulation using one of the First 2 Year skymaps. The stars show
the average position for each ratio, with the error bars showing the standard deviation.
The shaded region shows the area of Figure 5.4.

5.4.3 Analysis of simulation results

The simulation results for three different ratios are plotted in Figure 5.3. Each coloured

point represents a single simulation of a night observing a single skymap. There is a

large range of results: some simulations covered close to 100% of the skymap while others

covered almost none. Only simulations that included observing at least one skymap tile

are included, otherwise the mean observed airmass would be undefined. The stars show

the average position for each w:a:t ratio. Although the errors are clearly large, some

distributors are clear. For example, the 0:1:0 ratio (only including the airmass weighting)

on average produces a better mean airmass than the others, which would be expected.

Likewise the 1:0:0 case (only including the tile weight) on average results in a slightly

higher fraction of the skymap being observed.

Simulations were repeated for multiple different w:a:t ratios, and the averages for
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Figure 5.4: The fraction of the event skymap covered verses airmass for multiple
different w:a:t ratios. Each point here shows the average over multiple simulations of
different skymaps, and the ratios shown by stars are the same as plotted in Figure 5.3.
The dashed coloured lines join results with the same a:t ratio; 1:0 in orange, 1:1 in
blue, and 0:1 in green; and the grey dashed line joins ratios with w = 0.

each are plotted in in Figure 5.4. This plot shows that, while there is a lot of underlying

scatter between different skymaps as shown in Figure 5.3, the mean positions for each

ratio follow remarkably smooth trends (error bars are omitted from Figure 5.4 as they

would spread off the page in both axes). For example, the higher the tile weight value

w relative to the other two parameters consistently increases the mean fraction of the

skymap covered, however this is at a cost to the mean airmass of the observations.

Changing the relative ratios of airmass to time-to-set (from 1:0 through 1:1 to 0:1)

shows an unexpected result. It is true the observed airmasses would be lower as less

weight is put on the airmass parameter, however it was intended that introducing the

time-to-set parameter would compensate by catching more setting tiles that would be

missed by purely looking around the zenith, and therefore the skymap fraction covered

would be higher. This is true if the tile weight is not included as a factor, as seen by the
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grey 0:0:1–1:0:0 line at the bottom of Figure 5.4: when only airmass is considered (in the

0:1:0 case) the results produce the best average airmass per observation but the worse

skymap coverage, and on the other hand only considering time-to-set (0:0:1) results in

worse airmasses but better coverage. However, when the tile weight value w is included

this trend is counteracted, to the extent that the 50:0:1 point has both a higher mean

airmass and a lower fraction of the skymap covered than the 50:1:0 point. In fact, based

on the results which do not include the airmass parameter (the green line on the left of

Figure 5.4) the time-to-set value just suppresses the fraction of the skymap observed,

while making almost no difference to the mean airmass.

The optimal scheduler result would, on average, produce the highest possible skymap

coverage for the lowest average airmass. This would fall in the top-right region of Fig-

ure 5.4. Based on these simulation results the best solution is to ignore the time-to-set

value, and as described previously in Section 5.2.4 the G-TeCS scheduler has been oper-

ating with a ratio of 10:1:0.

5.4.4 Further simulations

The conclusions from these scheduler simulations are not unreasonable if all that is

needed is a one-size-fits-all set of weights that are hard-coded into the scheduler, as used

by the current G-TeCS system. However, future work on these simulations should look

in detail at other trends that might be hidden in the averages. For example, different

w:a:t ratios might be better suited for large skymaps versus smaller ones, or in cases

where the whole skymap is visible at once compared to it slowly rising above the horizon

during the night.

Although the time-to-set value seemed to only hinder the scheduler, other possible

parameters could be considered. One idea is to convert time-to-set to time-visible, by

including not only the time when the target sets below the horizon but also the time
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that the Sun rises. The existing time-to-set ratio prioritises observing targets later in

the night when they are about to set, whereas airmass prioritises tiles near the zenith.

Neither however considers the time remaining in the night, and while this is the same for

every target including it as a factor in the scheduler could be a relatively-straightforward

way to attempt to prioritise observations in the limited time available.

As mentioned previously, the simulations presented in this section were carried out

before a lot of the G-TeCS code was finalised. Therefore it would also make sense

to revisit the scheduler simulations with the newer simulation code, as used by the

simulations in Chapter 9, in order to confirm if the 10:1:0 ratio is still found to be the

best case. This would also allow the real parameters from the commissioned telescope

to be included. When the next four unit telescopes are added to GOTO the effective

field of view will be doubled, and the results in this section based on the 4-UT telescope

might not necessarily be the same in the 8-UT case.

Finally, GOTO is ultimately planned to expand to multiple telescopes at several sites,

as described in Section 1.3.4. Adapting the scheduling system described into this chapter

to deal with multiple telescopes will be a major future project, which is considered in

more detail in Chapter 9.
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5.5 Summary and Conclusions

In this chapter I described how the G-TeCS automated scheduling system decides which

pointings to observe.

The scheduler daemon is one of the autonomous support daemons as defined in

Chapter 4. It has the task of taking the queue of possible targets from the observation

database and sorting them based on several parameters to determine which is the highest

priority. First each pointing is tested using a series of physical constraints to remove any

which are invalid. The queue sorting then depends on the properties of each pointing:

its rank, the number of times it has already been observed, whether it is defined as a

target of opportunity or not. If there are still multiple pointings in the same position

in the queue then a final tiebreaker value is calculated to chose between them, based on

the skymap tile weighting (defined in Chapter 6) and target airmass.

Determining how to calculate the tiebreaker and which parameters to base it on

required a series of simulations of GOTO observations, to see how the choice of parameter

weightings affected which pointings were observed. These simulations showed that a 10:1

ratio of tile weight to scaled airmass was closest to the preferred outcome, and that the

introduction of a third parameter, time-to-set, could not improve on this. GOTO has

been observing successfully using this ratio ever since. However, since those simulations

were carried out further development of the control system and simulation code means

that it would be worth revisiting them to see if the conclusions still hold.
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6.1 Introduction

In this chapter I describe the software used by GOTO to create an all-sky survey grid,

which gravitational-wave events are then mapped onto.

• In Section 6.2 (Defining the sky grid) I describe the GOTO-tile Python package,

and the algorithms it uses to define the GOTO all-sky survey grid.

• In Section 6.3 (Probability skymaps) I describe how transient alert localisations

are defined using skymaps and how they are mapped onto the GOTO-tile grid.

• In Section 6.4 (Creating and modifying skymaps) I give some examples of how

other skymaps can be used to direct GOTO observations.

All work described in this chapter is my own unless otherwise indicated, and has not been

published elsewhere. The original GOTO-tile package was written by Darren White at

Sheffield and Evert Rol at Monash, before I took over development and made substantial

changes as described in this chapter.
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6.2 Defining the sky grid

GOTO-tile is a Python package (gototile[1]) created for the GOTO project to contain

all of the functions related to tiling the sky and processing skymaps. It was originally

developed by Darren White as a way to process gravitational-wave skymaps for GOTO,

and then maintained by Evert Rol who rearranged it into a package usable for some

other telescopes, including SuperWASP on La Palma and a proposed southern GOTO

node. My contributions to the package have been extensive: reworking the foundations

to improve how the sky grid is defined and how skymaps are applied, as well as adding

additional code to create new skymaps (described in Section 6.4).

6.2.1 Creating sky grids

The core of GOTO-tile as it now exists is the SkyGrid Python class, which is used to

define a sky grid: a collection of regularly-spaced points on the celestial sphere. These

points are used as the centre of rectangular ‘tiles’ aligned to the equatorial right ascen-

sion/declination coordinate system, which create a framework for survey observations to

be mapped on to.

The most important parameter required when defining a sky grid is the field of view

of the telescope, which is taken as the size of the tiles that make up the grid. The

field of view is defined within GOTO-tile by giving a width and height value in degrees,

meaning the tiles can only be square or rectangular. This is typically fine for the GOTO

array, which has a total field of view comprising of overlapping rectangles from each unit

telescope (see Figure 1.13). There was a period when having three unit telescopes in an

‘L’-shape was considered, but this was abandoned due mainly to the complexity of tiling

the grid based on abstract shapes. For the prototype 4-UT GOTO system currently

on La Palma a rectangular 18 square degree tile (3.7° × 4.9°) was defined during the
[1]https://github.com/GOTO-OBS/goto-tile

https://github.com/GOTO-OBS/goto-tile
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commissioning period (see Section 8.2.1).

The second parameter required to define a sky grid is the desired overlap between

the tiles. This is given as a value between zero and one in both the right ascension

and declination axes, with zero meaning no overlap and one meaning all the tiles are

completely overlapping (in practice the overlap is restricted to no more than 0.9). The

overlap is used to define the spacing between the tile centres, depending on the algorithm

used. The current 4-UT grid uses an overlap of 0.1 (10%) in both axes.

As GOTO-tile has developed, the algorithm used to define the grid has changed (see

Section 6.2.2), but the basic method remained the same:

1. On the celestial sphere (Figure 6.1) equally spaced lines of constant declination

are defined, separated by the value ∆δ (Figure 6.2). These “declination strips” are

the basis for the grid points, which the tiles are centred on.

2. Each declination strip is then filled with equally spaced points, separated by the

value ∆α (Figure 6.3). This value is constant within each strip but is (in most

algorithms) a function of declination, ∆α(δ), meaning that as one moves away from

the equator towards the poles each strip will contain a fewer number of points.

3. These points are then defined as the centres of the tiles, the size of which is given

by the field of view (Figure 6.4).

Once the grid has been created it is encapsulated within the GOTO-tile SkyGrid

class. Each tile is defined by a coordinate at its centre, and each is also given a unique

name of the form T0001. The grid itself is also given a name formed using the input field

of view and overlap parameters, so the current grid (with a field of view of 3.7°×4.9° and

overlap factor of 0.1 in both axes) is given the name allsky-3.7x4.9–0.1–0.1. In this

way a given tile in a given grid can be recreated just from the grid and tile name, which

is used when storing the details in the grids and grid_tiles tables in the observation

database (see Section 4.5.1).
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Figure 6.1: The celestial sphere. The northern and southern celestial poles are marked
as NCP and SCP respectively, and the celestial equator is marked in red. The ecliptic
(the path of the Sun) is marked in green, the point where the ecliptic rises above the
celestial equator (the vernal equinox) is marked with the symbol à, and the meridian
that intercepts the poles and the vernal equinox is marked in blue. Traditionally the
equatorial coordinate system is defined as shown: declination (Dec, δ) is the angle from
the equator (between −90° at the SCP to 90° at the NCP) and right ascension (RA, α)
is the angle east of the vernal equinox (between 0° and 360°). The modern International
Celestial Reference System (ICRS) defines coordinates based on radio sources which
approximately match the ones described here (Ma et al. 2009).
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Figure 6.2: Defining the declination strips (shown in orange). The full declination
range (−90° to 90°) is divided equally by a constant spacing value ∆δ (in blue). In this
example ∆δ = 10°, and so the centre of each strip is set at δ = 0°, ±10°, ±20° etc. This
gives 19 strips, 9 in each hemisphere and one on the equator. There is always a strip
centred on δ = 0, and using the “minverlap” algorithm (see Section 6.2.2) there is always
a ‘strip’ of tiles at the poles which will include a single point.
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Figure 6.3: Defining the grid points, based on the declination strips from Figure 6.2.
Using the “minverlap” algorithm (see Section 6.2.2) points are uniformly distributed on
each declination strip with a spacing ∆α(δ). Unlike ∆δ, which is fixed across the sphere,
∆α varies as a function of declination, meaning strips closer to the poles will contain
fewer points (and therefore fewer tiles). Two examples of defining grid points are shown,
one at declination δ1 = +50° (in purple) in the northern hemisphere and another at
δ2 = −10° (in cyan) in the southern hemisphere. The survey tiles are then centred on
the grid points, as shown for these two strips.
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Figure 6.4: A fully tiled celestial sphere. The same two strips of tiles are coloured in
purple and cyan as in Figure 6.3. As each strip starts with a tile at RA= 0 there is a
fully aligned column of tiles along the meridian through the vernal equinox, coloured in
yellow, and there is always a tile centred on the vernal equinox and each pole. This grid
was defined using the “minverlap” algorithm (see Section 6.2.2), with each tile having a
field of view of 10° × 10° and a overlap of zero for clarity. Note zero overlap can lead
to gaps between tiles towards the poles, shown by the red patches. In this case the
complete grid contains 424 tiles.
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6.2.2 Different gridding algorithms

There have been three different algorithms used by GOTO-tile to define the grid.

The product algorithm

The first has since retroactively been called the “product” algorithm, and was used

when Darren White first wrote GOTO-tile. It first defines the declination step size as

∆δ = fdec(1− vdec), (6.1)

where fdec and vdec are respectively the field of view in degrees and the fractional overlap

parameters in the declination direction. The declination strips are then defined by

taking steps of this size from the equator towards the poles, stopping when |δ| > 90. An

equivalent formula is used to calculate the steps in right ascension

∆α = fRA(1− vRA). (6.2)

The clear downside of this method is that ∆α does not vary with declination. In

effect this algorithm attempts to define the grid as if it was on a flat plane, where the

tiles could be arranged in orthogonal rows and columns. In practice when applied to a

sphere this leads to a vast number of redundant tiles at the poles, as shown in Figure 6.5.

The cosine algorithm

Due to the obvious problems with the product algorithm, a replacement was written by

Evert Rol, which I have since called the “cosine” algorithm. It is a more refined version

of the product algorithm, and the declination strips are calculated in the same manner
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using Equation 6.1. However Equation 6.2 is modified to depend on declination:

∆α(δ) =
fRA(1− vRA)

cos δ
. (6.3)

This produces a more sensible grid with fewer redundant tiles at the poles, as shown

in Figure 6.6. However, there remained an issue of asymmetry: the strips are arranged

increasing and decreasing from δ = 0 and the tiles are then arranged within the strips

starting from α = 0. This leads to varying levels of overlap when the tiles within the

strips meet as α approaches 360°, as visible in Figure 6.6. Although more subtle, there

are similar issues at the north and south celestial poles. It is also common for there to

be small gaps between the tiles at high and low declinations.

The minverlap algorithm

Due to these problems I created a new method to create the grid, called the “minverlap”

(minimum overlap) algorithm. A grid created with this algorithm is shown in Figure 6.7.

The intention of the new algorithm was to solve the issues with the product and cosine

algorithms by dynamically adjusting the spacing between tiles. The previous two al-

gorithms both treated the user-specified overlap parameter as fixed, and if the resulting

spacings did not give an integer number of tiles within the ranges available then they

produced uneven gaps at the edges. This is shown more clearly in Figure 6.8, where a

particular spacing results in gaps at the celestial poles and variable overlaps across the

RA= 0 meridian.

The minverlap algorithm solves these problems by treating the overlap parameter

not as fixed but as the minimum required overlap between tiles. For example, if a grid is

requested with an overlap of 0.2 (20%) but the field of view of the tiles does not neatly

divide by 90° then the overlap can be increased until an integer number of tiles fit, as

shown in Figure 6.9.
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Figure 6.5: A sky grid of tiles defined us-
ing the “product” gridding algorithm. The
inputs were a field of view of 13° × 13° and
an overlap factor of 0.2 in both axes. The
colours show overlapping coverage: yellow
areas are within only one tile, green two,
cyan three, blue four and pink five or more.
This grid contains 595 tiles. Note the con-
stant spacing of tiles in RA and the huge
number of redundant tiles at the pole.

Figure 6.6: A sky grid of tiles defined us-
ing the “product” gridding algorithm. The
input parameters and colours are the same
as in Figure 6.5. This grid contains 393
tiles. Note the asymmetric “seam” along the
α = 0 meridian, and the red areas near the
pole that are not within the area of any tiles.

Figure 6.7: A sky grid of tiles defined us-
ing the “minverlap” gridding algorithm. The
input parameters and colours are the same
as in Figure 6.5. This grid contains 407 tiles.
Note the even spacing of tiles even over the
α = 0 meridian, and the better coverage at
the pole.
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Figure 6.8: Grid spacing with the cosine algorithm. Using a 13°×13° field of view
and an overlap of 0.2 Equation 6.1 gives ∆δ = 10.4°. 17 declination strips are defined
moving away from δ = 0, as shown in the equatorial view on the left. The final strips
are 6.8° from the poles, as this is more than half of the field of view (6.5°) the poles
themselves will not by within the area of any tile. Equation 6.3 gives ∆α = 10.4° on the
equator (δ = 0). This results in 35 points arranged as shown in the polar view on the
right, and a reduced spacing of 6.4° to the west of the α = 0 meridian. This remainder
will be different for each strip, as shown in Figure 6.6.

Figure 6.9: Grid spacing with the minverlap algorithm. Using the same parameters
as Figure 6.8, Equation 6.5 gives ∆δ = 10°, therefore neatly arranging 19 declination
strips between −90° and 90°. Equation 6.7 also gives ∆α = 10° on the equator (δ = 0),
so 36 points are uniformly arranged around the circumference.
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To define the grid points using the minverlap algorithm, it is first necessary to find

the number of tiles n that would fit into the available range using the cosine algorithm

spacing; if this is not an integer number of tiles then round it up to the next whole

number. In declination this is calculated as

ndec =

⌈
90

fdec(1− vdec)

⌉
, (6.4)

where ⌈x⌉ is the mathematical ceiling function. This is a modification of Equation 6.1,

but one that will always find an integer number of tiles. For example, for a tile with

a declination field of view fdec = 13° and overlap vdec = 0.2 Equation 6.1 gives ∆δ =

13× (1− 0.2) = 10.4°. This clearly does not divide into 90° without a remainder, 6.8°,

as shown in Figure 6.8. The problem is that 90° / 10.4° = 8.65, so the product and

cosine algorithms will fit in 8 declination strips and then have over half the height of a

tile remaining at the poles. Instead, the minverlap algorithm rounds this up to ndec = 9

and then calculates the spacing using

∆δ =
90

ndec
. (6.5)

In this case the new ∆δ = 10°, which gives an even arrangement of tiles from the

equator to the poles, as shown in Figure 6.9. The other benefit of this method is that, in

addition to there always being a declination strip at δ = 0, there will always be “strips”

at 90° and −90°, which results in a single tile being located over the celestial poles and

ensuring there are no major gaps in coverage.

In the minverlap algorithm the spacing in right ascension is treated in a similar way.

The integer number of tiles that can fit into a given declination strip is given by

nRA(δ) =

⌈
360

fRA(1− vRA)/ cos δ

⌉
+ 1, (6.6)
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where the +1 is to account for tiles being located both at α =0° and α =360°. The logic

is exactly the same as with declination, and the revised spacing is given by

∆α(δ) =
360

nRA(δ)
. (6.7)

This spacing is also shown in Figure 6.9, with the grid points uniformly spaced around

the celestial equator. Note that the ceiling function means that, in some cases, strips at

different declinations can have the same number of tiles. For example, using the same

parameters as previously ∆δ =10°, so declination strips start at 0° and continue to ±10°,

±20° . . . (mirrored in both hemispheres). From Equation 6.6 the number of tiles on the

equator is nRA(δ = 0°) = ⌈360/(10.4/ cos 0°)⌉ + 1 = ⌈34.6⌉ + 1 = 36. But on the next

strip up (or down) nRA(δ = ±10°) = ⌈360/(10.4/ cos(±10°))⌉ + 1 = ⌈34.1⌉ + 1 = 36

as well. This occurs because there are only a limited number of ways to fit an integer

number of fixed tiles into a given declination strip, and so, as shown in Figure 6.7, the

three strips around the equator align perfectly with the same number of tiles.

Limitations of the minverlap algorithm

The new minverlap algorithm is a significant improvement on the previous gridding

algorithms. In particular it reduces the occurrences of gaps in coverage close to the

poles which occur when using the cosine algorithm. However, gaps can still occur when

using the minverlap with a particularly low overlap parameter. For example, Figure 6.4

shows a sphere tiled using the minverlap algorithm with an overlap parameter of 0 and

in this case gaps are visible just below the northern celestial pole.

A proposed solution to this problem would be to force tiles to meet at their lower

corners (in the northern hemisphere; upper corners in the south), therefore overlapping

further and removing the possibility of gaps forming due to the angle between the tiles.

An attempt to make this change and create an “enhanced minverlap” algorithm was
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tested, however ultimately it proved unnecessary. Although the current minverlap al-

gorithm is deficient at low overlap values, this is only an issue when used with large tiles.

The 10° × 10° tiles and 0 overlap used for Figure 6.4 are extreme values, and even for

the roughly 8° × 5° full field of view of GOTO with 8 unit telescopes the overlap has to

be less than 0.1 before noticeable gaps start appearing.

A further possible improvement to the minverlap algorithm has also been identified

since it was implemented. Instead of locating two grid points precisely at the celestial

poles (i.e. using declination strips at ±90°) as shown in Figure 6.9, it would instead be

enough to have the highest/lowest declination strips exactly half of the field of view away

from the poles (e.g. at ±85° if the tile was 10° tall). This would ensure the poles were

still included within the tiled area, at the top/bottom of the highest/lowest strip, but

could reduce the number of strips needed to cover the entire sphere.

As it happens, when viewed from La Palma, the northern celestial pole is below the

GOTO altitude limit of 30°. This means that tiles closest to the pole are not visible,

and so the issues described above are irrelevant. Should GOTO-tile be applied in the

future to other telescopes at other sites then this issue would need to be revisited, but

it was not a priority to fix within the context of this work.
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6.3 Probability skymaps

When identifying a particular target in the sky its coordinates can be given in right

ascension and declination, and if there is some uncertainty in the position, then errors

can be given on the coordinate values. For example, a Gamma-Ray Burst (GRB) event

detected by the Fermi Gamma-ray Burst Monitor (GBM) might have a central posi-

tion and an error radius ranging from arcseconds to tens of degrees. However, multiple

gravitational-wave detectors produce large and distinctly asymmetric localisation areas

(see Section 1.1.4). For these cases, the LIGO-Virgo Collaboration (LVC) produce prob-

ability skymaps which map the localisation area onto the celestial sphere. This section

describes how these skymaps are defined and how they are mapped onto the GOTO

all-sky grid as described in Section 6.2.

6.3.1 Defining skymaps with HEALPix

Hierarchical Equal Area isoLatitude Pixelisation (HEALPix) is a system used to define

pixelised data on the surface of a sphere (Górski et al. 2005). Developed at NASA JPL

for microwave background data, it is now widely used for other applications including

for gravitational-wave skymaps produced by the LVC. HEALPix divides the sphere into

a series of nested (hierarchical), equal-area (although not equal-shape) pixels arranged

in declination strips (“isoLatitude”). The first four orders of spheres are shown in Fig-

ure 6.10, starting from a base resolution with 12 pixels and increasing as each pixel is

split into four.

The resolution of the HEALPix grid is defined using the Nside parameter, which for

the given resolution is the number of pixels along each side of one of the 12 base pixels.

At every resolution each first-order pixel contains N2
side pixels, so the total number of

pixels in a sphere is given by

Npix = 12N2
side. (6.8)
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Figure 6.10: The first four orders of the HEALPix partition of a sphere, with increasing
Nside resolution parameter. Note that as the resolution doubles each pixel on the previous
sphere is split into four, and Nside is the number of pixels along the side of a first-order
pixel (two of which are highlighted). Adapted from Górski et al. (2005).

Each pixel therefore has an equal area of

Ωpix =
4π

12N2
side

=
π

3N2
side

, (6.9)

on a unit sphere where the radius r = 1. Taking the celestial sphere, the circumference

in degrees is 360° = 2πr meaning the area of the whole sky is given by

Asky = 4πr2 = 4π

(
360°
2π

)2

=
129600

π
sq deg ≈ 41252 sq deg, (6.10)

and therefore the area of each HEALPix pixel is

Apix =
129600

12πN2
side

sq deg ≈ 3438

N2
side

sq deg. (6.11)
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Figure 6.10 shows only the first four orders of HEALPix pixelisation, up to Nside = 8

where the sphere is split into 768 pixels each with an area of 53.7 sq deg. An initial, low-

resolution LVC skymap might use a grid with Nside = 64 (approximately 49 thousand

pixels, each with an area of 0.84 sq deg), whereas a final output skymap will have

Nside = 1024 (12.5 million pixels, and a pixel size resolution of 3.27 × 10−3 sq deg or

11.7 square arcminutes).

In addition to being a way to divide the sphere, each HEALPix pixel has a unique

index from one of two different numbering schemes: either the ring (counting around

each ring from the north to the south) or nested (based on the sub-pixel tree) system.

HEALPix is used to provide localisation of sky probabilities for transient astronom-

ical events, in the form of “skymaps”. Each point on the HEALPix grid is assigned a

probability between 0 and 1 that the counterpart object is located within that pixel, and

the whole sphere should sum to unity. Figure 6.11 shows a typical LVC skymap, for the

gravitational-wave event S190521r (LIGO Scientific Collaboration and Virgo Collabora-

tion 2019c), at various HEALPix Nside parameters.

As well as the individual probabilities assigned to each pixel, it is also useful to

consider the overall spread of the probability. This is done by considering the probability

contour areas, typically at the 50% and 90% levels. The 50% contour area of a skymap is

defined by encircling the smallest number of pixels so that the total probability within the

area is 50% of the overall skymap probability. When a skymap is processed using GOTO-

tile each pixel is assigned a contour value as well as its individual probability value. This

is calculated by sorting all of the pixels by probability from highest to lowest, and the

contour value for each pixel is then the cumulative sum of the probability within the

pixels above it. This contour value can be considered as the lowest contour area that each

pixel is within, meaning the pixels that are contained within the 50% contour area are

those with contour values of less than 50%. Figure 6.12 shows a cartoon 2-dimensional

skymap, and Figure 6.13 illustrates how the 50% and 90% contours are calculated.
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Nside = 1 Nside = 2

Nside = 4 Nside = 8

Nside = 16 Nside = 32

Nside = 64 Nside = 128

Figure 6.11: Changing the HEALPix resolution of a gravitational-wave skymap (also
known as regrading). At every stage each pixel is assigned a probability value which
indicates the probability the source is located within that pixel; here, darker colours
denote higher probabilities. At lower Nside values individual pixels are visible, but as the
resolution increases the HEALPix structure is less visible.
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Figure 6.12: A cartoon 2-dimensional skymap. Each pixel (represented by one of the 81
squares) has an assigned probability, and together they all sum to 100%. The blue inner
contour contains 50% of the probability, while the green outer contour contains 90% of
the probability. These contours are created based on the values shown in Figure 6.13.
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Figure 6.13: The same cartoon skymap as in Figure 6.12, but now each pixel contains
its contour value calculated by sorting the pixels by probability and assigning each pixel
the value of the cumulative sum. The pixel with the highest probability (E5) has the
same contour value as its probability value in Figure 6.12, the second highest (F5) has
the sum of the probability values of both E5 and F5, and this continues to the pixel with
the lowest probability value (A9) which has a contour value of 100%. The blue area is
the 50% probability contour, which encloses all pixels with a contour value of less than
50%. The green area likewise encloses all pixels with a contour value of less than 90%.
Note in this example the contours are continuous, but it is possible to have multiple
‘islands’ of probability within a single skymap.
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Figure 6.14: On the left, the cartoon skymap from Figure 6.12 has been divided into
nine survey grid tiles (outlined in red). On the right, the total contained probability for
each tile is found by summing the probability of nine pixels within them.

6.3.2 Mapping skymaps onto the grid

When a gravitational-wave signal is detected the LVC analysis pipelines create HEALPix

skymaps to describe the sky localisation, and these are then distributed with the public

alert (see Section 7.2.2). GOTO-tile is used to map the skymaps onto the grid used for the

all-sky survey (defined in Section 6.2). This requires finding which HEALPix pixels fall

within each tile, which is done by defining polygons that match the projected tile areas

and using the query_polygon function from the healpy Python package (healpy[2]).

For each tile it is then simple to sum the probability of all the HEALPix pixels within

it, which gives the total contained probability. This is shown for a cartoon skymap in

Figure 6.14. In cases where grid tiles overlap a given HEALPix pixel could fall within the

area of multiple tiles, and therefore that pixel would contribute to the total probability

of more than one tile. This means the total contained probability within all tiles can

add to more than 100%.

[2]https://healpy.readthedocs.io

https://healpy.readthedocs.io
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6.3.3 Selecting tiles

When a gravitational-wave event is processed, event pointings are added into the observa-

tion database as described in Section 7.4.2. However, only a certain number of pointings

should be added to prevent GOTO wasting too much time observing low-probability

areas. Each pointing is mapped to a grid tile, and only tiles with a reasonably high

contained probability are worth observing. The GOTO-alert event handling code de-

scribed in Chapter 7 selects tiles based on their contour level, meaning GOTO could, for

example, chose to observe the 90% contour of each skymap. However, determining which

contour level each tile is within is not as simple as calculating the contained probability,

as there are multiple ways to define the contour value for each tile.

For example, a tile could be defined as being within a given contour area if every

pixel contained within that tile is within that contour. However this is unreasonable for

large tiles, such as GOTO’s, as the tile areas are often wider than the long, stretched

out probability areas seen in typical gravitational-wave typical skymaps. An alternative

then would be say that a tile is within a contour if any of its contained pixels are within

the contour. However, this will find every tile covering the contour area even if only

the smallest fraction of the tile’s area is within that region, which leads to over-selecting

tiles. Several alternative methods were considered, including taking the median or mean

of the contained pixel contour levels within each tile. Some different selection methods

applied to the S190521r skymap are shown in Figure 6.15.

The method used within the GOTO-alert event handler is to select all tiles which

have a mean contour value within 90%. However, more quantitative simulations of

different skymaps could be used to determine if this is the optimal choice for all cases.

For example, the selection level could be modified depending on the size of the skymap,

and the event strategy might need to be modified as more GOTO telescopes are built.

These possibilities are discussed in Section 7.4.2.
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Figure 6.15: Selecting tiles for the S190521r skymap (LIGO Scientific Collaboration
and Virgo Collaboration 2019c, also shown in Figure 6.11). In the upper left the skymap
is plotted on the celestial sphere, forming the “banana” shape typical of gravitational-
wave localisations, and the 50% and 90% probability contours are shown. The other three
plots show grid tiles selected using one of three methods: selecting tiles to cover the entire
90% contour (blue), selecting tiles with a median contour value of 90% (orange) and
selecting tiles with a mean contour value of 90% (green). The number of tiles selected
(n) and total probability within them (P ) is given. The mean contour method provides
a good compromise, selecting fewer than half of the tiles needed to cover the whole 90%
contour (31 compared to 63), but together they still contain nearly 87% of the total
probability.
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Figure 6.16: GOTO tiling applied to the final GW170817 skymap (Abbott et al.
2017d). The grid shown is for the 4-UT GOTO field of view, with tiles of 3.7°×4.9° and
an overlap of 0.1. The inset shows the 10 tiles within the total 90% contour (containing
97.4% of the total probability) in blue and the 2 selected by the 90% mean contour
(containing 79.5%) in green. Compare to Figure 1.9, which shows follow-up observations
of GW170817 by the Swope and DECam projects.

Figure 6.16 shows the GOTO-tile selection code applied to the skymap for GW170817

(Abbott et al. 2017d). As described in Section 1.2.2 this is the only gravitational-wave

detection so far with an identified counterpart, AT 2017gfo (Abbott et al. 2017e). In

this case the mean contour selection method is perhaps too restrictive, only adding two

tiles to the database, and for similarly well-localised events adding more tiles would be

better. Still, based on the performance during O3 (see Section 10.1.2), had GOTO been

able to observe this event then the counterpart could have been observed in tile T0932

within minutes of the alert notice being received.
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6.4 Creating and modifying skymaps

The GOTO-tile skymap processing system described in Section 6.3 provides a framework

which allows any gravitational-wave skymap to be mapped onto the GOTO survey grid,

from which pointings can be generated for the pilot to observe. However, there is no

particular reason that the system has to be restricted to just the gravitational-wave

skymaps produced by the LVC. This section describes three further projects based on

the GOTO-tile skymap code, from when I was working with Yik Lun Mong at Monash.

6.4.1 Creating Gaussian skymaps for GRB events

As part of the GOTO commissioning observations when the LIGO-Virgo detectors were

not operating (see Section 8.2.1), GOTO followed up Gamma-Ray Burst (GRB) events

from the Fermi satellite Gamma-ray Burst Monitor (GBM; Meegan et al. 2009). At the

time, the alert notices for GBM events did not include probability skymaps, only right

ascension, declination and an error radius, and so code was developed in order to create a

skymap from these details based on a 2D Gaussian profile; therefore allowing them to be

processed by GOTO-tile using the same methods already created for gravitational-wave

events.

Taking the radius r as half the full-width at half-maximum, the standard deviation

of a 2D Gaussian distribution σ is given by

σ =
r√
2 ln 2

. (6.12)

The distance d between a given point on the sphere (α, δ) and the central coordinates of

the distribution (αc, δc) is given by

sin2

(
1

2
d

)
= sin2

(
δ − δc
2

)
+ cos δ cos δc sin

2

(
α− αc

2

)
, (6.13)
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and the probability at each point for a 2D Gaussian is given by

P (α, δ) =
1

2πσ
exp

(
d2

2σ2

)
. (6.14)

This probability is calculated for the location of every HEALPix pixel on a sphere, which

produces a skymap array that can then be processed using GOTO-tile.

Using the above method, skymaps can be created for any single-target alert that has

a given error radius. Several sources of transient events, such as Gaia and Swift, produce

well-localised events with error circles much smaller than the GOTO tiles, so creating

skymaps is less important. Fermi GRB skymaps however cover much larger areas.

For example, the GBM detection of GRB 170817A that helped localise the GW170817

gravitational-wave detection produced an initial alert with an error radius of 17.45°, later

reduced to 11.58° in the final alert[3], which corresponded to a 50% confidence region of

∼500 square degrees (Goldstein et al. 2017).

The error values given in GBM notices only account for statistical errors for that

event, not systematic errors. The GBM systematic errors are described in Connaughton

et al. (2015) to be well modelled by a core Gaussian with a radius (FWHM) of 3.71° and a

non-Gaussian tail extending to 14°. For the purposes of GOTO tiling only the Gaussian

portion is considered, with a radius obtained by combining the statistical radius (rnotice)

and the systematic error in quadrature as

r =

√
r2notice + (3.71°)2. (6.15)

This is then used with the previous method to create a Gaussian skymap, which can be

processed by GOTO-tile as described in Section 6.3.2. The skymap generated using this

method for GRB 170817A is shown in Figure 6.17. Note that the location of AT 2017gfo

falls quite far from the reported peak of the GRB skymap, and had there not been the
[3]GCN Notices available at https://gcn.gsfc.nasa.gov/other/524666471.fermi.

https://gcn.gsfc.nasa.gov/other/524666471.fermi
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Figure 6.17: A Gaussian skymap generated from the initial GBM alert for GRB
170817A, shown on the GOTO tile grid. The red star shows the location of the coun-
terpart AT 2017gfo. The final GRB skymap for this event is shown in Figure 1.7.

coincident gravitational-wave detection it would have been unlikely that the source of

the gamma-ray burst would have been observed.

It should be noted that the GBM localisation areas are actually not perfectly sym-

metric, but the above procedure works as a reasonable approximation. Since May 2019

Fermi has started including HEALPix skymaps with alert notices (Wilson 2019), how-

ever, unlike the LVC, the GBM team do not guarantee that the skymap will have been

generated by the time the alert notice is issued. Therefore the above procedure is still

used when processing alerts if the official skymap is not yet available.
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6.4.2 Weighting GW skymaps using galaxy positions

As described in Section 1.2.2, telescopes with small fields of view can focus on observing

possible host galaxies instead of covering an entire GW probability region (Fan et al.

2014). The most recent catalogue of potential host galaxies is the Galaxy List for the

Advanced Detector Era (GLADE) catalogue (Dálya et al. 2018), which combines multiple

prior catalogues including the Gravitational Wave Galaxy Catalogue (GWGC, White et

al. 2011) used by Swope to successfully find the GW170817 counterpart.

GOTO does not use a galaxy-focused strategy; due to its large field of view each

GOTO pointing will contain tens of possible host galaxies. However, for skymaps that

cover large numbers of tiles, the order in which GOTO observes could potentially be

optimised by focusing on the tiles that contain the most potential host galaxies. One way

of doing this using the existing G-TeCS scheduling framework (described in Chapter 5)

is to adjust the weighting factor assigned to each tile, which can be done by multiplying

the LVC localisation skymap with another skymap, containing the position of possible

host galaxies, before applying the result to the tile grid as described in Section 6.3.2.

Constructing weighted skymaps like this is a strategy used by several smaller field-of-view

instruments, such as Swift (Evans et al. 2016).

In order to create such a weighted skymap the GLADE catalogue can be queried

for the position of each galaxy within the event distance limits (each LVC event notice

contains an estimate for the distance to the source, see Section 7.4.1 for how this is

used to determine the follow-up strategy for each event). This is only possible for events

within a few 100Mpc, beyond which the GLADE catalogue is increasingly incomplete

(Dálya et al. 2018). Once found, a HEALPix skymap can be constructed by weighting

each pixel by the number of possible host galaxies located within it. As galaxies are not

being point sources, the resulting skymap is then passed through a Gaussian smoothing

function with a default standard deviation of 15 arcseconds. This new skymap can then
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be normalised and multiplied with the gravitational-wave position skymap, to produce

a new skymap which contains the information from both.

Figure 6.18 shows this method applied to the large skymap for event S190425z (LIGO

Scientific Collaboration and Virgo Collaboration 2019a), which included a reported lu-

minosity distance of 155±45Mpc. The underlying pattern of the gravitational-wave loc-

alisation regions is still clearly visible in the final skymap, but by including the galaxy

information the resulting tile pointings will be weighted towards regions with larger

numbers of possible host galaxies. This method still needs more work before being

implemented, in particular the relative weighting to apply to each skymap needs to be

considered. However, it could prove beneficial by further prioritising GOTO observations

towards regions more likely to include a counterpart source.

6.4.3 Prioritising observations using dust extinction skymaps

In very crowded fields a single GOTO image can contain tens of thousands of sources,

which makes it difficult for the GOTOphoto photometry pipeline (see Section 1.3.3) to

identify potential counterpart candidates. Observing high-interstellar-extinction areas,

i.e. through the galactic plane, also makes it harder to observe extra-galactic sources

such as counterparts to gravitational-wave events. Therefore another possible reason to

modify localisation skymaps is to de-prioritise observations of the galactic plane.

One method to do this is shown in Figure 6.19 — multiplying the gravitational-

wave skymap by an inverted thermal dust emission skymap from the Planck observatory

(Planck Collaboration et al. 2014). The effect is intended to be subtle, not enough to

completely wipe out the skymap probability in the high-extinction regions, but instead

to just reduce the weighting of those tiles so that GOTO first prioritises other areas.

Again, this is not currently implemented in the scheduling system, but it is presented as

another example of using skymaps to optimise observation priorities.
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Figure 6.18: Weighting a GW skymap (for event S190425z) using galaxy positions.
The top plot shows the skymap distributed by the LVC, the central plot shows a skymap
using GLADE galaxies within the estimated distance to the source (155± 45Mpc), and
the lower plot shows the result of multiplying the two together.
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Figure 6.19: Weighting a GW skymap (for event S190521r) using galactic extinction.
The top plot shows the skymap distributed by the LVC, the central plot shows an
inverted thermal dust emission skymap from Planck, and the lower plot shows the result
of multiplying the two together.
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6.5 Summary and Conclusions

In this chapter I described how the GOTO all-sky survey grid is defined, and how it is

used for targeting gravitational-wave follow-up observations.

As a survey-based project all GOTO observations are taken aligned to a fixed grid.

This all-sky grid is defined using the “minverlap” algorithm I developed for the GOTO-

tile Python module, which produces a much more even grid compared to the previ-

ous algorithms used. Gravitational-wave localisation areas are produced in the form of

HEALPix skymaps, which need to be mapped onto the grid used by GOTO before ob-

servations can be carried out. This is carried out by the sentinel alert-listening daemon

described in Chapter 4, and the resulting pointings are sorted and prioritised by the

scheduler as described previously in Chapter 5.

The functions used by the sentinel to process transient alerts are described in the

following chapter (Chapter 7). It is at this stage that the relative weighting of each tile

is determined based on the transient skymap, for both LVC gravitational-wave detec-

tions and other alerts such as gamma-ray bursts. In this chapter I also outlined some

further possible additions to this weighting by including skymaps based on host galaxy

catalogues or galactic extinction. By including these extra weightings it may be possible

to further optimise the GOTO follow-up observations and increase the chance of taking

a quick observation of a gravitational-wave counterpart.
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7.1 Introduction

In this chapter I describe the software used by GOTO to process alerts generated from

transient astronomical events, including gravitational-wave detections.

• In Section 7.2 (Transient event alerts) I give an overview of the established systems

through which the LVC, NASA and other organisations publish and distribute

astronomical alerts.

• In Section 7.3 (Processing alerts) I describe the GOTO-alert Python package, and

how transient alerts are received and processed.

• In Section 7.4 (Strategies for follow-up observations) I describe how the optimal

follow-up strategy is determined for different types of alert, and how the targets

are defined for GOTO to observe.

All work described in this chapter is my own unless otherwise indicated, and has not

been published elsewhere.
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7.2 Transient event alerts

For the last few decades the number of detections of transient astronomical sources has

been rapidly increasing. From space-based gamma-ray burst monitors such as Fermi

and Swift to wide-field survey telescopes such as the Palomar Transient Factory (PTF)

and All-Sky Automated Survey for Supernovae (ASAS-SN), increasing numbers of time-

critical events have been detected and rapidly sent to other observing partners for follow-

up campaigns. Historically this was done, at a much slower pace, through physical post

and telegrams — hence the names of some of the current services offering modern, email-

based alternatives: the Astronomer’s Telegram (Rutledge 1998) and the Gamma-ray

burst Coordinates Network (GCN) Circulars and Notices (Barthelmy et al. 1998).

Today the global system has evolved to remove the human factor entirely, in order to

reduce the delay between events being detected and follow-up observations being taken.

Robotic telescopes are now common and can be triggered automatically by machine

processing of alerts, which are themselves generated automatically by the detection in-

struments. The International Virtual Observatory Alliance (IVOA) VOEvent protocol

(Seaman et al. 2011) has become the standard language for such robotic communications,

allowing telescopes around the world to respond within seconds to transient detections.

New projects such as the Zwicky Transient Facility (ZTF), itself paving the way for the

forthcoming Large Synoptic Survey Telescope (LSST), will produce millions of events

per night requiring even faster and more efficient alert systems (Patterson et al. 2019).

GOTO’s priority is, of course, detecting optical counterparts to gravitational-wave

events. Such events are published by the LIGO-Virgo Collaboration as VOEvents

through the GCN Notice system.
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7.2.1 GCN alerts

The Gamma-ray burst Coordinates Network, also known as the Transient Astronomy

Network or together GCN/TAN, is a system hosted by NASA originally to publish alerts

relating to gamma-ray burst detections (Barthelmy et al. 1998). It publishes events from

a variety of telescopes including INTEGRAL, Fermi and Swift, and more recently has

expanded to neutrino and gravitational-wave alerts — including publishing alerts from

the LIGO-Virgo Collaboration.

Alerts are produced by the various facilities in the form of GCN Notices, standard

machine-readable text messages that are distributed by the network. Notices are de-

signed to be written and sent out automatically by the facility without the need for

human intervention, and likewise can be received and acted on by automated systems

run by follow-up projects such as GOTO’s sentinel (see Section 4.5.2). Transmitting

notices is only done by the projects that are part of the network.

There is a second form of alerts distributed by the network called GCN Circulars.

Unlike notices, circulars are intended to be written by humans and sent out by email to

anyone subscribed to the distribution list. They act as a formal, citable way to share

information about events, both the initial detection by the facility any any follow-up

activity by other groups.

7.2.2 VOEvents

The GCN/TAN system broadcasts notices in multiple ways over many different channels,

but the most useful for automated telescopes such as GOTO uses the IVOA VOEvent

standard (Seaman et al. 2011). VOEvents are a standard way to transmit information

about transient astronomical events, in a structured format to make the reports easily

machine-readable. Each event is assigned an International Virtual Observatory Resource

Name (IVORN) and follows a defined schema. By defining a standard template to follow,
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diverse events can be automatically processed and robotic telescopes triggered without

the need for human interpretation or vetting.

The structure to transmit these events is fairly flexible, but there are certain common

roles. The names below are taken from Seaman et al. (2011):

• Authors are the projects, facilities or institutions that create the original data

worthy of reporting in the VOEvent.

• Publishers take the information about the astronomical event, put it into the

VOEvent format and broadcast it from their servers.

• Brokers act as nodes in the communication web that can take in events from

multiple publishers and rebroadcast them in a single stream.

• Subscribers are the end users that listen to VOEvent servers, either directly to

the publishers or to a broker.

In some cases the above roles can be combined, but for the case of GOTO receiving

gravitational-wave events there are distinct actors: the LIGO-Virgo Collaboration is the

event’s author, NASA and the GCN/TAN system are the publishers and the GOTO

sentinel is the subscriber.

It is possible to listen directly to the GCN/TAN servers, in which case the sentinel

would receive VOEvents from the NASA missions and other projects like LIGO. However,

there are other groups publishing their own VOEvents, separate to the GCN system,

which we might want to receive. It would be possible to run multiple event listeners

within the sentinel, each listening to a different server, but it is much easier to listen to

a broker that already does that and provides a single point of access to these pipelines.

The broker listened to by the G-TeCS sentinel is the 4 Pi Sky VOEvents Hub (Staley

and Fender 2016). 4 Pi Sky combines alerts from the GCN system[1] as well as from the
[1]https://gcn.gsfc.nasa.gov/burst_info.html

https://gcn.gsfc.nasa.gov/burst_info.html
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Gaia[2] and ASAS-SN[3] projects. At the time of writing GOTO only follows up LVC

gravitational-wave events and Fermi and Swift gamma-ray burst detections, all of which

are published through GCNs, meaning there is technically no benefit of listening to 4 Pi

Sky over listening directly to NASA. However pt5m uses the 4 Pi Sky broker to receive

and automatically follow up Gaia transient detections, and it has been suggested GOTO

could do the same in the future.

In order to receive VOEvents from any source it is necessary to set up a VOEvent

client. The most common way to do this is using the Comet software (Swinbank 2014),

which allows both sending and receiving of events. For the G-TeCS sentinel (see Sec-

tion 4.5.2) all that was required was a simple way to listen to and download alerts, which

is why it instead uses code based on the PyGCN Python package (pygcn[4]). Despite the

name, PyGCN can receive any VOEvents, not just those from the GCN servers. The

sentinel uses PyGCN to open a socket to the 4 Pi Sky server and ingest binary packets,

as well as sending the required receipt and “iamalive” responses to the server to ensure

it keeps receiving events.

VOEvents take the form of a structured Extensible Markup Language (XML) doc-

ument. XML is a “markup” language similar to HTML, JSON or LATEX, meaning it

is understandable by humans but follows a set schema and so can be easily read and

processed by computers. A sample of a VOEvent is given in Figure 7.1.

[2]http://gsaweb.ast.cam.ac.uk/alerts/alertsindex
[3]http://www.astronomy.ohio-state.edu/~assassin/transients
[4]https://github.com/lpsinger/pygcn

http://gsaweb.ast.cam.ac.uk/alerts/alertsindex
http://www.astronomy.ohio-state.edu/~assassin/transients
https://github.com/lpsinger/pygcn
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<?xml version="1.0" encoding="UTF-8"?>
<voe:VOEvent
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:voe="http://www.ivoa.net/xml/VOEvent/v2.0"
xsi:schemaLocation="http://www.ivoa.net/xml/VOEvent/VOEvent-v2.0.xsd"

role="observation"
ivorn="ivo://gwnet/LVC#S190408an-2-Initial">

<Who>
<Date>2019-04-08T20:21:42</Date>
<Author>
<contactName>LIGO Scientific Collaboration and Virgo Collaboration</contactName>

</Author>
</Who>
<What>
<Param name="Packet_Type" dataType="int" value="151"></Param>
<Param name="internal" dataType="int" value="0"></Param>
<Param name="Pkt_Ser_Num" dataType="string" value="2"></Param>
<Param name="GraceID" dataType="string" value="S190408an" ucd="meta.id"></Param>
<Param name="AlertType" dataType="string" value="Initial" ucd="meta.version"></Param>
<Param name="HardwareInj" dataType="int" value="0" ucd="meta.number"></Param>
<Param name="OpenAlert" dataType="int" value="1" ucd="meta.number"></Param>
<Param name="EventPage" dataType="string" value="https://gracedb.ligo.org/superevents/S190408an/view/"

ucd="meta.ref.url"></Param>
<Param name="Instruments" dataType="string" value="H1,L1,V1" ucd="meta.code"> </Param>
<Param name="FAR" dataType="float" value="2.81096164616e-18" ucd="arith.rate;stat.falsealarm" unit="Hz">

</Param>
<Param name="Group" dataType="string" value="CBC" ucd="meta.code"></Param>
<Param name="Pipeline" dataType="string" value="gstlal" ucd="meta.code"></Param>
<Param name="Search" dataType="string" value="AllSky" ucd="meta.code"></Param>
<Group type="GW_SKYMAP" name="bayestar">
<Param name="skymap_fits" dataType="string" value="https://gracedb.ligo.org/api/superevents/S190408an/

files/bayestar.fits.gz" ucd="meta.ref.url"></Param>
</Group>
<Group type="Classification">
<Param name="BNS" dataType="float" value="0.0" ucd="stat.probability"></Param>
<Param name="NSBH" dataType="float" value="0.0" ucd="stat.probability"></Param>
<Param name="BBH" dataType="float" value="0.99999999999" ucd="stat.probability"></Param>
<Param name="MassGap" dataType="float" value="0.0" ucd="stat.probability"></Param>
<Param name="Terrestrial" dataType="float" value="9.82357724531e-12" ucd="stat.probability"></Param>

</Group>
<Group type="Properties">
<Param name="HasNS" dataType="float" value="0.0" ucd="stat.probability"></Param>
<Param name="HasRemnant" dataType="float" value="0.12" ucd="stat.probability"></Param>

</Group>
</What>
<WhereWhen>
<ObsDataLocation>
<ObservatoryLocation id="LIGO Virgo"/>
<ObservationLocation>
<AstroCoordSystem id="UTC-FK5-GEO"/>
<AstroCoords coord_system_id="UTC-FK5-GEO">
<Time><TimeInstant><ISOTime>2019-04-08T18:18:02.288180</ISOTime></TimeInstant></Time>
</AstroCoords>

</ObservationLocation>
</ObsDataLocation>

</WhereWhen>
...

Figure 7.1: A sample of VOEvent text from an LVC event, formatted so the core
XML structure is visible. Some of the key pieces of information are the role and IVORN
defined in the header, the skymap URL, and the event classification probabilities.



Chapter 7: Processing Transient Alerts 208

7.3 Processing alerts

Once a VOEvent is received by the G-TeCS sentinel, the task of parsing and processing

the event uses another Python package, GOTO-alert (gotoalert[5]), which contains

functions related to processing transient alerts. GOTO-alert was originally written by

Alex Obradovic at Monash to listen for GRB alerts, when I took the code over I rewrote

it to integrate it into G-TeCS, as well as adding the capability to process gravitational-

wave alerts.

7.3.1 Event classes

At the core of the GOTO-alert code is the Event object class. Events are Python classes

created from the raw VOEvent XML payload received by the PyGCN listener, containing

the basic event information (IVORN, type, source etc). Once the basic Event is created

it is checked against an internal list of so-called “interesting” event packet types — the

ones we care about processing for GOTO. At the time of writing these are SWIFT_BAT,

FERMI_GBM and LVC events, as listed in Table 7.1. If the event matches any of the

recognised packet types then the Event is subclassed into a new object, which allows

more specific properties and methods. The current subclasses are as follows:

GRB Events

The GRBEvent class is used for events relating to gamma-ray burst detections, specifically

from Fermi and Swift. The VOEvents for these events contain a sky position in right

ascension and declination as well as an error radius, so a HEALPix skymap is produced

using the Gaussian method described in Section 6.4.1. For Fermi events the class also

has an additional attribute extracted from the VOEvent: the duration of the burst (Long

or Short).
[5]https://github.com/GOTO-OBS/goto-alert

https://github.com/GOTO-OBS/goto-alert
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Packet type Source Notice type Event subclass

61 NASA/Swift SWIFT_BAT_GRB_POS GRBEvent
115 NASA/Fermi FERMI_GBM_FIN_POS GRBEvent
150 LVC LVC_PRELIMINARY GWEvent
151 LVC LVC_INITIAL GWEvent
152 LVC LVC_UPDATE GWEvent
164 LVC LVC_RETRACTION GWRetractionEvent

Table 7.1: GCN notices and corresponding classes recognised by the GOTO-alert event
handler. The packet type is used by the GCN system to identify the class of event.

GW Events

The GWEvent class is used for LVC gravitational-wave events. LVC events have several

stages: a “Preliminary” alert is released as soon as the signal is detected, then an “Initial”

alert is issued once it has been human-vetted. From then on future versions are marked

as “Update” alerts, unless the event itself is found to be non-physical or below certain

thresholds in which case a “Retraction” alert is issued. As these are events produced

by LIGO-Virgo they should contain a skymap_fits parameter (as shown in Figure 7.1),

which gives a URL pointing to where the skymap can be downloaded from GraceDB,

the LIGO event database[6]. The gravitational-wave VOEvents also contain a variety of

properties that are stored in the event class and which can be used to determine the

observing strategy (see Section 7.4.1) to use. These include:

• False Alarm Rate (FAR): an estimate of the probability that this event is a false

alarm, i.e. not from a real astronomical source. Given in the form of an expected

frequency or rate, so an event with a false alarm rate of 1 per year is much less

significant than one with a FAR of 1 per 10,000 years.

• Instruments: which of the active gravitational-wave detectors (currently LIGO-

Livingston, LIGO-Hanford and Virgo) detected the signal. A non-detection in one

or more instruments is also accounted for in the false alarm rate.
[6]https://gracedb.ligo.org

https://gracedb.ligo.org
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• Group: which type of GW pipeline detected the event signal, either “CBC” (Com-

pact Binary Coalescence) or “Burst” (other, unmodelled detections, see Klimenko

et al. 2016). The following parameters only apply to CBC events.

• Classification: the VOEvents for CBC events include probabilities that the source

falls into one of five categories: Binary Neutron Star (BNS) mergers, Neutron

Star-Black Hole (NSBH) mergers, Binary Black Hole (BBH) mergers, “MassGap”

mergers (one or other of the components is in the hypothetical “mass gap” between

neutron stars and black holes, defined as 3–5M⊙; Littenberg et al. 2015), or “Ter-

restrial” (a non-astronomical source).

• Properties: CBC events also contain two important properties: “HasNS”, the

probability that the mass of one or both of the components is consistent with a

neutron star (<3M⊙); and “HasRemnant”, the probability that a non-zero amount

of material was ejected during coalescence and therefore an electromagnetic signal

might be expected (LIGO Scientific Collaboration and Virgo Collaboration 2018).

• Distance: The skymaps produced by the LVC contain three-dimensional local-

isation information (Singer et al. 2016). For deciding on event strategy the mean

distance, in megaparsec, is read from the skymap FITS header, along with the

standard deviation.

GW Retraction Events

GWRetractionEvent is a special event subclass used to handle LVC notices that are re-

tractions of earlier events. They are effectively just a more limited version of the GWEvent

class, as the retraction VOEvents do not contain a skymap or any of the additional para-

meters listed above. Having retraction events occupy their own subclass makes it easier

to identify and process them when sent through the event handler.
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7.3.2 The event handler

Once the correct Event class has been created the sentinel passes it to the GOTO-

alert event_handler function. Before processing the event, the handler first filters out

any unwanted events which do not come under any of the above subclasses. These are

primarily alerts from other facilities (INTEGRAL, Gaia etc) or other event classes that

are not “interesting” to GOTO (Fermi releases several types of alerts, but only the final

GBM positions are processed). If the event passed to the event handler is not marked as

“interesting” then it is rejected at this stage and the handler exits. The handler will also

intentionally reject an event that is “interesting” if it has an incorrect role. LVC sends

out test VOEvents to allow full testing of any follow-up systems; these are identical to

real events (even including simulated skymaps) but are explicitly marked with the role of

test rather than observation. These can be optionally processed by the event handler,

but in the live sentinel system they are rejected at this point.

If the event passes the above filter the next step is to download the event’s skymap

(for GW events, see Section 6.3) or create a corresponding Gaussian skymap (for GRB

events, see Section 6.4.1). Doing this after filtering-out uninteresting events saves time

and space when downloading or creating skymaps that are not used, for example for

LVC test events.

Once the event has a skymap the observing strategy for the event can be generated.

This can only happen after the skymap is downloaded as some parameters, notably the

distance for GW events, are only stored within the skymap headers instead of in the

VOEvent XML. The details of the different event strategies and how they are defined

are given in Section 7.4.1.

Finally, the event handler inserts pointings and other information into the observation

database, with parameters depending on the strategy determined in the previous stage.

This is detailed in Section 7.4.2.
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7.3.3 Event reports

Throughout the event handling process, GOTO-alert has the option of sending confirm-

ation messages to Slack in a similar way to the G-TeCS pilot (see Section 4.2.3). This

allows human observers to be informed of any new alerts processed by the sentinel, as

well as the expected outcome of upcoming observations. Alerts are deliberately spaced

out at different stages within the event handler, rather than all sent at the end, to make

it obvious if a problem occurs and one or more alerts are missing.

Four alerts are sent out in total:

1. An initial alert is sent out by the sentinel as soon as an interesting event is received,

and contains only one line reporting the IVORN of the event to be processed.

Sending this first means there is a record should an error subsequently occur.

2. Next, the event alert is sent out by GOTO-alert once the event has been created

and the skymap downloaded. It contains the key information and properties of

the event, as well as a plot of the skymap produced by GOTO-tile.

3. The strategy alert is sent out after the event observing strategy has been retrieved,

and reports the contents of the strategy dictionaries (see Section 7.4.1).

4. Finally, the visibility alert is sent out after the event tiles have been added to

the observation database (see Section 7.4.2). As well as showing the number of

tiles selected and their combined skymap coverage, this alert also predicts which

tiles will be visible from the GOTO site on La Palma over the valid observing

period. This is only based on tile altitudes during the night, and excludes other

factors (weather conditions, the position of the Moon, any higher-priority pointings

that would take precedence) considered by the G-TeCS just-in-time scheduler (see

Section 5.2).

An example of alerts generated for a gravitational-wave event are shown in Figure 7.2.
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7.4 Strategies for follow-up observations

An important function of the GOTO-alert event handler is to determine the specific

strategy to be used for follow-up observations of each interesting event. Through the

G-TeCS observation database (see Section 4.5.1), observations can be tailored to the

properties of the triggering event, either by altering the validity, priority and cadence of

the pointings inserted into the scheduler queue (see Section 5.2) or by customising the

commands issued by the pilot when each pointing is selected (see Section 4.3).

The term strategy is used deliberately to differentiate from the actions carried out

by the on-site pilot, which are better called tactics. Properly defined, strategy considers

long-term aims and objectives (consider generals directing a war far from the front lines,

or the coach of a sports team), whereas tactics are the on-the-ground implementation

details used to move towards those objectives (determined by the captain in the trenches

or on the pitch). The sentinel decides the observing strategy for a particular event, using

the structures and functions within GOTO-alert. These decisions are then communicated

to the pilot through the observation database, which decides what to do independently

using the scheduler and the local conditions. Only then are commands sent to the

hardware daemons to put the plan into action: like the soldiers on the battlefield or

players on the pitch, theirs is not to reason why but to carry out their orders as issued.

The importance of such a distinction is that the strategies and objectives decided

by the sentinel can only ever be aspirational, for the best-case scenario. It can decide

a follow-up plan for an event, but if the location is not visible from La Palma, or it is

currently raining, then the pilot will be unable to implement it. The sentinel is designed

to be aspirational and not consider smaller details such as these in order to make it

independent of physical hardware. Ultimately GOTO is envisioned to occupy multiple

sites across the world, as described in Section 1.3.4, but the intention is that they will

all still be taking orders from a single central sentinel and database (see Section 10.2.1).
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Figure 7.3: Decision tree for determining event strategy.

7.4.1 Determining observation strategies for events

In order to decide the observation strategy for a given event, the GOTO-alert event

handler uses the decision tree shown in Figure 7.3. The codes at the end of the branches

(GW_CLOSE_NS, GRB_FERMI, etc) are the individual strategies, and they correspond to

keys in the strategy dictionary defined within GOTO-alert as shown in Table 7.2. Each

strategy corresponds to an integer rank as well as further keys relating to cadence,

constraints and exposure sets which are keys in three additional dictionaries shown in

Table 7.3, Table 7.4 and Table 7.5. Through this structure all the values required for

inserting an event into the database are defined, and it is also simple to modify strategies

or add in new ones. The reasoning behind each strategy is outlined below.
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Strategy Rank Cadence Constraints ExposureSets

GW_CLOSE_NS 2 NO_DELAY LENIENT 3x60L
GW_FAR_NS 13 NO_DELAY LENIENT 3x60L
GW_CLOSE_BH 24 TWO_NIGHTS LENIENT 3x60L
GW_FAR_BH 105 TWO_NIGHTS LENIENT 3x60L
GW_BURST 52 NO_DELAY LENIENT 3x60L
GRB_SWIFT 207 TWO_FIRST_ONE_SECOND NORMAL 3x60L
GRB_FERMI 218 TWO_FIRST_ONE_SECOND NORMAL 3x60L

Table 7.2: Event strategy dictionary keys. The ranks are used by the scheduler to sort
pointings (see Section 5.2.2). The cadence values are matched to Table 7.3, constraints
values to Table 7.4 and ExposureSets to Table 7.5.

Cadence Max visits Visit delay (hours) Valid days

NO_DELAY 99 0 3
TWO_NIGHTS 2 12 3
TWO_FIRST_ONE_SECOND 3 4, 12 3

Table 7.3: Cadence strategy dictionary keys, used to define pointings in the observation
database (see Section 4.5.1).

Constraints Min Alt Max Sun Alt Min Moon Separation Max Moon Phase

NORMAL 30° −15° 30° Bright
LENIENT 30° −12° 30° Bright

Table 7.4: Constraints strategy dictionary keys, used to define the constraints applied
by the scheduler to determine if a pointing is valid (see Section 5.2.1).

ExposureSets Set position Number of exposures Exposure time Filter

3x60L 1/1 3 60 s L
3x60RGB 1/3 1 60 s R

2/3 1 60 s G
3/3 1 60 s B

Table 7.5: ExposureSets strategy dictionary keys, used by the pilot when adding
exposure sets to the exposure queue (see Section 3.4.5).
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Event sources

The first distinction to make is between gravitational-wave and gamma-ray burst events.

GOTO’s primary aim is searching for GW counterparts, with any GRB follow-up being

a useful but decidedly lower-priority use of GOTO’s time. Therefore all GW events have

ranks considerably higher than GRB events and, due to their importance to the project,

GW events also use more lenient observing constraints (defined in Table 7.4) than the

normal ones used by GRB events and the all-sky survey.

Gravitational-wave sources

The highest priority for GOTO should always be GW events that are predicted to contain

a neutron star component, as they are the ones that are expected to produce an electro-

magnetic counterpart that GOTO could detect (see Section 1.1.2, and the definitions of

“HasNS” and “HasRemnant” in Section 7.3.1).

Neutron star events (which can include neutron star-black hole binaries and MassGap

binaries) have no delay between visits (see Table 7.3), meaning once a pointing is com-

pleted it will be immediately re-inserted into the queue (for each observation the effective

rank will be increased by 10, as described in Section 5.2.2). For these events, once GOTO

has observed all of the visible tiles once it will immediately start covering the skymap

again, and by default this will continue until it reaches the stop time three days after the

event (or until it reaches 99 observations of each tile, which is just inserted as a nominal

maximum and is not expected to be reached within three nights).

Binary black hole (BBH) events, on the other hand, have a more limited TWO_NIGHTS

strategy, which only requires two observations of each tile with at least 12 hours between

them. The 12 hour delay in practice means observing on two subsequent nights; as the

GOTO site on La Palma can not see the northern celestial pole circumpolar targets do

not need to be considered, and even in winter the longest nights are less than 12 hours.
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For both classes of events it is expected that GOTO will want to respond immediately

and attempt to image the localisation area as quickly as possible. The sole current

detection of an electromagnetic counterpart to a gravitational-wave event, AT 2017gfo

associated with GW170817 (see Section 1.2.2), was first observed by Swope 10.9 hours

after the event, and there remains a lot of uncertainty in how kilonova appear in their

early stages (Arcavi 2018). Therefore even an early non-detection by GOTO would

provide valuable information to constrain the lightcurve.

Gravitational-wave distances

For both neutron star and black hole events a distinction is also made between “close”

and “far” events based on their reported source distance: a close neutron star event is

defined to be within 400Mpc while a close binary black hole event is within 100Mpc.

Swope observed AT 2017gfo at i= 17.057±0.018 mag (Coulter et al. 2017), which at

a distance of 40Mpc corresponds to an absolute magnitude of -16. Using the equation

for apparent magnitude

m−M = −5 + 5 log10(d), (7.1)

AT 2017gfo would have peaked above 19th magnitude out to a distance of 100Mpc

and above 22nd magnitude out to a distance of 400Mpc. Binary-black hole mergers

are not expected to produce the same amounts of ejected matter that would produce a

kilonova, but some predictions suggest there may be material ejected from disks around

one or more of the black holes which might reach 22nd magnitude if closer than 100Mpc

(Murase et al. 2016). As a first approximation, therefore, the 22nd magnitude limits were

adopted for the close/far distinction. Note this is a arbitrary division, not particularly

based on GOTO’s capability but a more general division into sources that could have

a counterpart discoverable by existing wide-field follow-up projects (see the limiting

magnitudes in Table 1.1 in Section 1.3.1).
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The only difference in strategy between “close” and “far” events is that they are

assigned different initial ranks when inserted into the database (shown in Table 7.2).

The rest of the strategy values, including cadence and constraints, are identical, and

therefore the division is completely academic except in the case where multiple events

exist in the observing queue at the same time. Should this happen, and tiles for both

events are visible at the same time, then the ranking system provides a quick method to

prioritise events for observations. Using the ranks given in Table 7.2, events from close

neutron star mergers would be inserted at rank 2, while far mergers of the same type

would be inserted at rank 13. As the rank of a pointing is increased by 10 every time

it is observed (see Section 5.2.2), this would prioritise two passes of the “close” skymap

before the “far” skymap. The first observation would be at rank 2, the second at rank

12, and by the third it would be in the queue at rank 22. This is lower than the initial

rank of 13 for the “far” event, so the latter would then be higher in the queue. Any

following observations would alternate between the two events: “close” observation 3 at

rank 22, “far” observation 2 at rank 23, “close” observation 4 at rank 32 etc. The ranks

for the other events are likewise carefully chosen: close BBH events would be inserted at

rank 24 and therefore fall behind the first three passes of a close NS or two passes of a

far NS. Far BBH events are very unlikely to produce any visible optical counterparts, so

although GOTO will still follow-up the alerts they are inserted at rank 105, well below

several passes of any more promising GW events.

What is currently not considered by the strategy outlined above is a maximum valid

distance, beyond which GOTO would not respond to the alert. LVC detections have

already reached out to the gigaparsec scale, and at those distances the chance of there

being any optical counterpart visible from Earth is very low. At the time of writing GW

events are rare enough that there is little reason for GOTO not to follow up every alert,

but in the future if necessary it would be easy to limit which events GOTO follows up

based on distance (or another parameter, such as the false-alarm rate).
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Gravitational-wave burst alerts

Gravitational-wave events from the LVC burst pipelines (Klimenko et al. 2016) are hard

to categorise, as there is very little information to base any observation strategy on (as

noted in Section 7.3.1, alerts from unmodelled burst detections do not contain source

classifications or predicted distances). As a compromise they use the same cadence

strategy as neutron star events, but are inserted at rank 52, below any more promising

GW events but above binary-black hole events. As described in Section 1.1.2, to date no

burst alerts, e.g. from supernovae, have been released by the LVC. The only detections

from the burst pipelines (that have been made public) have corresponded to compact

binary coalescence events detected by the other pipelines.

Gamma-ray burst alerts

Gamma-ray burst alerts from Fermi and Swift are also processed by the sentinel and in-

serted into the observation database. As shown in Table 7.2, pointings from GRB events

are inserted at ranks above 200, ensuring that GOTO will always prioritise gravitational-

wave follow-up. GRB events use a different cadence strategy of TWO_FIRST_ONE_SECOND,

which, as detailed in Table 7.3, consists of three observations: two in the first night sep-

arated by at least 4 hours and another on the second night. This cadence was recently

implemented to attempt to account for the fast-fading nature of GRB afterglows, and is

an example of more complex cadences allowed by the G-TeCS scheduler.

For gamma-ray burst events the only distinction is made between events originating

from Swift and Fermi. Typically Swift’s Burst Alert Telescope (BAT) detections are

much better localised than those from Fermi’s Gamma-ray Burst Monitor (GBM), and

so, in cases where a source is detected by both, the Swift detection should be prioritised.

Further division could be made based on the burst being classified by Fermi as Long or

Short, but this is not currently implemented.
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Exposure sets

Each strategy currently defined in Table 7.2 uses the same exposure set definition: 3x60L.

From Table 7.5 this comprises of three sequential 60 s exposures in the L filter, the same

as the all-sky survey. A different set of exposures using the coloured filters instead is

shown in Table 7.5 as 3x60RGB, this a possible example of what could be defined using

the G-TeCS system but is not used as part of any current strategy.

Subsiquent strategy alterations

The strategies detailed in the above sections are designed to inform the default, automatic

reaction of GOTO to any incoming alert. They are not alone intended to be a perfect

reaction for every case, and later, human-guided input is to be expected. For example,

the default strategy for a gravitational-wave alert from a close neutron star source is to

observe the tiles inserted over and over until the three day limit has passed. In practice,

it should be clear after the first few passes if there is any counterpart candidate, in which

case a human could intervene and direct GOTO to go take observations of particular

tiles with promising candidates. Likewise, if after the first pass of a distant binary black

hole event skymap no candidates are detected, and nothing has been reported from other

facilities, the decision could be made not to bother with the second pass the day after

and just return to the all-sky survey.

Another possible modification to a follow-up campaign could be the inclusion of

feedback from the GOTOphoto detection pipeline (described in Section 1.3.3). In the

same way as a human could take over observations described above, should the pipeline

detect a promising source it could be allowed to trigger GOTO to re-observe that tile,

either automatically or after human vetting. This would require significant development

to the pipeline and sentinel which is not a current priority, and is given as an example

of possible future work in Section 10.2.2.
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7.4.2 Inserting events into the observation database

Once the strategy has been determined for an event, based on the details described in

Section 7.4.1, then the sentinel needs to insert pointings into the observation database

so they are visible to the scheduler (see Section 4.5.1 and Section 4.5.3). This involves

mapping the event skymap on to the all-sky grid, as well as accounting for any previous

detections of the same event.

Previous records

Before inserting any new pointings, the sentinel event handler first checks for any existing

records of the new event in the observation database events table. This is done to update

event pointings as revised VOEvent alerts are received, or in order to process retraction

events. As described in Section 7.3.1 there are several types of LVC alerts: “Preliminary”

alerts are released first, followed by “Initial” alerts when the detections are confirmed,

updated notices are released as “Update” alerts, and “Retraction” alerts are issued if

the detection is later retracted. At any of these stages the event skymap might be

modified, shifting the area to observe, and the pointings in the observation database will

therefore need to updated. This is most common for gravitational-wave events as the

initial skymaps are typically created using the rapid BAYESTAR pipeline (Singer and

Price 2016), while later updated skymaps are made using using the slower LALInference

code (Veitch et al. 2015). If a previous entry for a new event is detected then all of the

old pointings that are still pending in the queue are deleted, before the new ones are

added as described below. Should the event be of type GWRetractionEvent then this is

where the event handler exits, as once the previous pointings are deleted then there are

no more to replace them.
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Mapping onto the all-sky grid

Once any existing pointings have been removed, new entries in the database need to

be created. All GOTO pointings from the sentinel are defined on-grid, meaning that

they need to be mapped onto the current GOTO-tile sky grid (see Section 6.2). The

database grids table contains the field of view and overlap parameters of the current

grid as well as the algorithm used (see Section 6.2.2), allowing it to be reconstructed

using GOTO-tile within the event handler. Once a GOTO-tile SkyGrid class has been

created, then a corresponding SkyMap class is made based on the information in the

event. If the event was from a gravitational-wave alert then it should have a URL

to download the LVC-created skymap (shown in Figure 7.1). If instead it just has a

coordinate and error radius, i.e. it is a GRB alert, then a new Gaussian skymap is

constructed as described in Section 6.4.1. Once both grid and map are ready then the

skymap is mapped onto the grid as described in Section 6.3.2, using the class method

SkyGrid.apply_skymap(SkyMap). This returns a table of tiles and associated contained

probabilities, which are used to create the database pointings.

Selecting tiles

The tile probability table created by GOTO-tile contains entries for every one of the

thousands of tiles in the all-sky grid, of which the vast majority will contain only a very

small amount of the overall probability for any reasonably-well located skymap. Adding

an entry to the database for every tile would therefore be unnecessary, and even harmful

to the follow-up observations. The scheduling system is designed to complete a full pass

of the visible tiles before going on to re-observe those already completed, a consequence

of the effective rank increasing by 10 each time a tile is observed (see Section 5.2.2), and

so adding excess tiles would delay subsequent observations. On the other hand, it is still

important to add in enough tiles covering enough of the probability area to maximise
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the chance of detecting the source. Therefore there is a balance required between adding

too many or too few tiles into the database.

There are multiple ways to chose which tiles to select. Initially GOTO-alert used a

simple cut-off in terms of each tile’s contained probability, selecting tiles that contain

greater than, for example, 1% of the total probability. This hard limit however quickly

proved to be unsuitable, as large, spread-out skymaps might have few if any tiles which

reach the limit, while for well-localised events adding tiles down to the 1% level is re-

dundant and would waste time observing them compared to revisiting higher probability

tiles. An attempt to correct this was to modify the probability cut-off for each skymap,

making it a function of the highest tile probability. For example, a well-localised event

(such as GW170817, see Figure 6.16) might result in the highest-probability tile contain-

ing 40% of the probability; with a P = 0.1Pmax cut-off all tiles containing 4% or above

would therefore be added to the database. On the other, hand a spread-out skymap

might have a highest tile containing only 2% of the probability, so then all tiles with

0.2% or above would be added. Ultimately, a hard probability cut-off proved to be un-

responsive to the spread of the skymap, and determining the relative limit (e.g. 0.1 in

the above example) was hard to balance between large and small maps. The preferred

method to select tiles is instead based on the 90% probability contour, this method was

discussed previously in Section 6.3.2.

Adding database entries

Once the tiles to add have been selected then entries can be inserted into the appropriate

tables in the observation database (see Section 4.5.1).

First a new entry in the events table is added for the event, containing the unique

VOEvent IVORN, the event source (LVC, Fermi etc), type (GW or GRB), and an event

ID (for example S190425z for an LVC event, Fermi and Swift have their own trigger

IDs). Then an entry in the surveys table is also created, in order to group together all
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of the pointings from this particular event. The database does allow multiple surveys

per event; for example, there could be a quick initial survey in a wide-passband filter

that prioritises possible host galaxies, followed by a slower survey using the colour filters

and longer exposure times that focuses on covering the skymap. However, at the time

of writing each event only has a single survey defined.

Finally, the individual tiles are inserted as entries in the mpointings table. The most

important entries for the mpointings are determined by the event strategy as described

in Section 7.4.1: the rank (taken from Table 7.2), cadence parameters (from Table 7.3),

the target constraint values (minimum altitude, moon phase etc; from Table 7.4), and

the exposure settings (exposure time, filter and number in each set; from Table 7.5).

Each mpointing is connected to an entry in the grid_tiles table for this particular

grid, and the tile probabilities are stored as corresponding weights in the survey_tiles

table. Once the mpointings are defined, the first pointings are also created and added

to the pointings table with the status pending, to insure they are immediately valid

in the queue (see Section 4.5.3).

Once all of the entries described above have been added to the observation database

the event has been successfully handled. At this point the GOTO-alert event handler

sends the final visibility report to Slack (see Section 7.3.3) and exits. In total the entire

event handling process, from the alert being received to the pointings being added to

the database, takes under 10 seconds. The majority of this time for a gravitational-wave

event is downloading the often quite large skymap files from GraceDB, and actually

processing the event only takes a few seconds. Once the event pointings are added to

the database they should be ready to observe the next time the scheduler fetches the

queue, and if they are valid the highest priority pointing will be sent to the pilot to

immediately begin follow-up observations.
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7.5 Summary and Conclusions

In this chapter I described how the functions within the GOTO-alert process astronom-

ical transient event alerts.

The GOTO sentinel alert listener receives gravitational-wave alerts from the LIGO-

Virgo Collaboration in the form of GCN Circulars, which are formatted XML documents

following the VOEvent schema. These VOEvents contain the key properties of the

detection and a link to a skymap localisation file, which is then mapped onto the GOTO

all-sky grid (see Chapter 6).

One of the important features of the GOTO-alert event handler is the ability to

automatically select the observation strategy for different alerts based on the contents

of the VOEvent. Gravitational-wave detections predicted to come from near-by binary

neutron star or neutron star-black hole binaries are the highest priority to follow up,

followed by other classes of events. Gamma-ray burst events are also processed and

added to the observations database by the G-TeCS sentinel (see Chapter 4), but always

at a lower priority than the gravitational-wave alerts.

At the time of writing GOTO has been following-up gravitational-wave events for

several months since the start of the third LIGO-Virgo observing run. The results of the

observing run so far are detailed as part of the overall conclusions in Chapter 10.
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8.1 Introduction

In this chapter I describe commissioning the GOTO hardware and parallel software

developments.

• In Section 8.2 (Deploying the hardware) I give an outline of the commissioning

period, focusing on my own involvement with trips to La Palma and building

additional hardware for the dome.

• In Section 8.3 (Developing the software) I describe how the control software was

developed alongside the hardware, including creating nightly observing routines to

take flat fields and focus the telescopes, and how challenges arising from hardware

issues were overcome.

All work described in this chapter is my own unless otherwise indicated, and has not been

published elsewhere. Commissioning the GOTO hardware on La Palma was carried out

along with several members of the GOTO collaboration; in particular Vik Dhillon and

Stu Littlefair from Sheffield; Danny Steeghs, Krzysztof Ulaczyk and Paul Chote from

Warwick; Kendall Ackley from Monash; and several undergraduate and postgraduate

students from the GOTO member institutions.
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8.2 Deploying the hardware

GOTO commissioning began with the installation of the prototype telescope on La

Palma in the spring of 2017. Over 2017 and 2018 I spent a total of nine weeks on-

site, helping deploy the hardware as well as commissioning and developing the G-TeCS

software described in previous chapters.

8.2.1 Deployment timeline

GOTO was envisioned as a quick, simple and cheap project that could provide a large

field of view to cover the early gravitational-wave skymaps produced by LIGO. When I

first interviewed to join the project in February 2015 it was anticipated that GOTO would

be up and running imminently, perhaps before the end of that year. Ultimately that

did not happen, as can be seen in the project timeline given in Figure 8.1, and GOTO

did not see first light until June 2017. In hindsight the delay was irrelevant, as the first

(and, at the time of writing, only) gravitational-wave event to have an electromagnetic

counterpart occurred two months later in August 2017 — and was only visible from the

southern hemisphere (Abbott et al. 2017d; Abbott et al. 2017e).

GOTO’s deployment date was repeatedly set back for a variety of reasons, including

planning permission being held up by local tax disputes and delays in manufacturing the

mount and optics. The site was ready months before the telescope was, with the first

dome being built in November 2016. My first visit to La Palma took place in March

2017, while the telescopes and mount were still in the factory. Vik Dhillon and I went out

to the site to develop the dome control and conditions monitoring systems as described

in Section 3.4.6 and Section 4.4. During this trip we also installed the additional dome

hardware systems I had built, which are described in Section 8.2.2.
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2015 July • Collaboration meeting in Warwick (29 Jul)
• Site planning application submitted

September • Research collaboration agreement signed
• LIGO’s first observing run (O1) begins
• First observation of gravitational waves (GW150914)

2016 January • O1 ends
August • Planning permission granted
September • Site construction begins
November • First dome assembled

• LIGO’s second observing run (O2) begins

2017 March • Trip 1 (23–31 Mar) — install dome systems
May • Telescope hardware shipped
June • GOTO first light (10 Jun)

• Collaboration meeting in Warwick (19–20 Jun)
• Trip 2 (22 Jun–7 Jul) — install control software

July • Inauguration ceremony (3 July)
• Dec axis encoder fails
• Trip 3 (20–28 Jul) — pilot commissioning
• Robotic operations begin

August • UT3 mirrors sent back to manufactures
• Virgo joins O2
• First gravitational-wave counterpart detected (GW170817)
• O2 ends

November • Drive motors upgraded, arm extensions installed
• Trip 4 (9–16 Nov) — on-site monitoring

December • Second dome assembled

2018 January • Trip 5 (14 Jan–5 Feb) — on-site monitoring
April • Collaboration meeting in Warwick (11–13 Apr)
May • On-site monitoring program ends
June • Refurbished mirrors installed into UT4, old mirrors sent back
July • Trip 6 (5–13 Jul) — software development

• New UT mounting brackets installed
December • LIGO-Virgo Engineering Run 13 (14–18 Dec)

2019 February • Refurbished mirrors reinstalled into UT3
• Current 4-UT all-sky survey begins

April • LIGO-Virgo’s third observing run (O3) begins

Figure 8.1: A timeline of the GOTO project from when I joined up until the time of
writing, including the six trips I made to La Palma during commissioning (in blue) and
concurrent developments in the field of gravitational waves (in italics).
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Figure 8.2: Working in the GOTO dome prior to the inauguration in June 2017.
Photo taken looking west towards W1m and the WHT (with the orange CANARY laser
visible). The second dome was installed on empty platform to the right later in the year.

Ultimately, the mount and first four unit telescopes were shipped to La Palma in late

May 2017, and GOTO officially saw first light on the 10th of June 2017. I went out to

the site a few weeks later, in order to install the G-TeCS software (an image of the site

at the time is shown in Figure 8.2). By the time of the inauguration ceremony on the

3rd of July the hardware control system was in place and working well, and I was able

to demonstrate the telescope that evening to the assembled dignitaries.

I returned to the site less than two weeks later with Stu Littlefair, in order to

do further work on the control software. We commissioned the pilot and developed

the observing routines described in Section 8.3, and oversaw the telescope’s first fully-

autonomous night on the 27th of July.

Unfortunately, in the months after the inauguration problems began to surface with

the hardware. The first problem was the failure of the declination motor encoder shortly

after the inauguration (prior to my second visit). We were able to operate GOTO in a

limited RA survey mode (described in Section 8.3.4), however this greatly limited the
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capability of the telescope. There were also other problems with the mounting brackets

that hold the unit telescopes to the boom arm becoming loose, as well as the boom arms

being short enough that the unit telescopes could hit the mount pier. These issues meant

that for the first few months of commissioning someone always needed to be present in

the dome to stop the mount moving if it was in danger of damaging itself. Once the

second LIGO observing run (O2) finished at the end of August there was less of a reason

to be observing in this limited mode, so GOTO was shut down during the autumn of

2017 until hardware upgrades could be installed at the start of November.

At the same time, problems with the optical performance of the unit telescopes had

become apparent, which were blamed on the mirror quality and issues with collimation.

A program of sending each set of mirrors back to the manufacturer one at a time was de-

cided on, allowing GOTO to continue operating with the remaining three unit telescopes.

The worst performing telescope, UT3, had its mirrors taken out and returned in August

2017. Once the telescope was reactivated in November, the remaining three unit tele-

scopes were aligned to form a single 3×1 footprint, shown in Figure 8.3. Counterweights

were placed in the empty UT3 tube to allow the mount to maintain balance.

GOTO operated in this mode for over a year. The gap between LIGO runs gave time

to fully test the control software, as well as develop the GOTOphoto image pipeline (see

Section 1.3.3). The first set of mirrors were returned to the site in June 2018 and

were placed into UT4, which was the second-worst performing telescope. The old UT4

mirrors were then sent back to the manufacturer, and GOTO continued to operate with

three unit telescopes until February 2019. At this point, based on the imminent start

of the third LIGO-Virgo observing run (O3), it was decided to leave the UT1 and UT2

mirrors in place, and operate from then on in the 4-UT configuration. The resulting 2×2

footprint is shown Figure 8.4. Note the unit telescopes are arranged with overlapping

fields of view, to counteract for the poor image quality off-axis. With future optical

improvements this overlap could be reduced, increasing the overall field of view.
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Figure 8.3: The 3-UT GOTO footprint, used from August 2017 to February 2019.
The initial 5.5° × 2.6° tile area used by GOTO-tile (see Chapter 6) is shown in green.
Note that a reasonable amount of space is left around the edge of the tile.

Figure 8.4: The current 4-UT GOTO footprint, in use from February 2019 onwards.
The revised 3.7° × 4.9° tile area is shown in green. The future four unit telescopes
are expected to be arranged in two more columns on the left and right as shown in
Figure 1.13, creating an approximately 7.8°–wide footprint.
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Figure 8.5: Photos from GOTO commissioning: monitoring the telescope from inside
the dome in November 2017 on the left, and fitting the mirror counterweights in UT3 in
January 2018 on the right.

Another problem found during commissioning was excessive scattered light entering

the system, in particular light from the Moon entering the corrector lens (see the optical

design in Figure 2.10). This was solved by adding covers around the telescope tubes,

which prevented light from entering the corrector but made the system more susceptible

to wind-shake (the reason that the tubes were open in the first place). Ultimately the

covers were found to provide enough benefits, including protecting the mirrors from dust,

that it has been decided that future unit telescopes will have closed tubes.

The second commissioning period ran from the telescope being reactivated in Novem-

ber 2017 through to May 2018. During this time the telescope was typically running

robotically each night, however there was always a member of the collaboration on site

monitoring it in case of problems. Over that period the monitor moved from physic-

ally sitting in the dome (shown in Figure 8.5), to sitting in the relative comfort of the

neighbouring SuperWASP server room, until finally in the last few months being able to
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monitor from the observatory residencia or one of the other large telescopes on site.

I visited La Palma twice during this period, with the first trip in November 2017

covering the first week of the monitoring period immediately following the telescope

being reactivated. Other volunteers monitored the system on-site until Christmas, then

commissioning halted over the holiday period before I returned to the site in January

for a three week visit. Kendall Ackley from Monash was also on site during the first

week, and the first and third weeks overlapped with a team from Sheffield including Vik

Dhillon and Stu Littlefair. During this period we replaced the counterweights (also shown

in Figure 8.5), rebalanced the mount and realigned the unit telescopes, and I continued

the software work with a major update to the observation database. During the second

week I monitored the telescope alone from SuperWASP, and continued developing the

pilot so it was able to run automatically with no human supervision. In the third week

I was due to remain on site and continue to monitor the telescope, however a severe

snowstorm stopped all observing.

Due to the cold weather and ice build up GOTO was unable to open throughout

all of February 2018. It was during this period that issues arose from the weight of

the ice on the dome shutters, described in Section 8.3.4. On-site monitoring resumed in

the spring, once the snow had melted, and monitors continued to be on site for several

more months, in between hardware upgrade trips lead by the Warwick team. Eventually

in May the software was deemed robust enough to allow GOTO to run unsupervised.

The pilot output is still regularly monitored remotely, especially from Australia by the

Monash team, who have the benefit of a more convenient timezone.

By the time the 4-UT system was recommissioned, in February 2019, the G-TeCS

pilot and hardware control systems had been fully tested and were operating reliably.

By then my focus had shifted to the alert follow-up systems detailed in Chapter 7, in

advance of the start of O3 in April 2019. Since then GOTO has been reliably running

and responding to gravitational-wave alerts, as detailed in Section 10.1.
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8.2.2 Additional dome systems

GOTO uses a clamshell dome manufactured by Astrohaven, the same company that

made the pt5m dome (Hardy et al. 2015). Based on experience with p5tm, there were

several hardware systems which we decided to add to the GOTO dome. In fact, the

entire pt5m dome control unit was replaced by a custom one designed and manufactured

in Durham, but we wanted to avoid taking such a drastic step. Several limitations of

the stock Astrohaven dome are outlined below.

• First, there was no easily-accessible emergency stop button to cut power to the

dome in an emergency (e.g. something gets caught in the motors). This is a serious

concern for pt5m, as when the dome is open the shutters completely cover the

access hatch, making it dangerous for anyone to be passing through the hatch when

the dome is moving. Therefore, one of the additions to pt5m was an emergency

stop button within arms reach of the hatch entrance. As the GOTO dome is taller

the hatch is mostly uncovered when the dome is open, but installing an emergency

stop button was still a priority for safety reasons.

• The dome does not come with a siren to sound when it opens or closes. This is an

important safety feature when operating a robotic observatory, as the dome will

be operated entirely through software and it is important to warn anyone on site

several seconds before it is about to move. When members of the GOTO team

are on-site the robotic systems can be disabled entirely by going into engineering

mode (see Section 4.2.2), however it is still important to make sure that there is

no chance of the dome moving without prior warning. In addition, the GOTO site

on La Palma is publicly accessible, and it is not unknown for tourists or hikers, or

other astronomers, to be around the dome when it is unsupervised.

• By default, the dome Programmable Logic Controller (PLC) only provides limited

information about the status of the dome shutters. As described in Section 3.4.6,
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the PLC only returns a single status byte in response to a query. This is not enough

to distinguish whether the dome is fully or only partially open, and if one side is

moving the status of the other side is unknown. Adding our own sensors would

allow the complete status of the dome to be determined. The dome comes with two

in-built magnetic sensors on each side, which should detect when the shutters are

either fully closed or fully open. However these have been known to be unreliable

and tricky to align. In some cases the switches failed to trigger when the shutter

reached its open limit, leading to the dome continuing to drive the belts and the

shutter embedding itself into the ground. Therefore having secondary, independent

sensors was a priority to ensure this did not happen.

• The dome does not include a sensor on the hatch door to detect if it is open, and

there is no way to close the hatch remotely in case of bad weather. As GOTO will

be operating without anyone on site, the hatch should normally remain closed at

all times, and by adding a sensor to the hatch this could be confirmed and an alert

issued if the hatch is detected as open (see Section 4.4.2).

• One final proposed addition was a quick-close button, which acts as a simple and

direct way to communicate with the dome daemon. The motivation is a practical

one: in the case that the weather turns bad and the telescope is exposed, assuming

the automatic monitoring systems fail and we can not connect to close it remotely,

it is a lot easier and quicker to direct someone on site to access the dome and

press the prominent “close” button than direct them to log on to the in-dome

computer, open a terminal and type dome close. This was also true during the

commissioning phase, when the software was still being tested and someone has

to be on-site all night. One requirement was that this button could not be easily

confused with the emergency stop button (i.e. it should not be coloured red), as

instead of stopping the dome this button will prompt it to move.
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Figure 8.6: Building the quick-close button in the lab. The transmit (brown) and
receive (red) wires from the serial cable are attached to the button NC pins.

Creating a quick-close button involved attaching a “normally closed” (NC) push

button in series between the transmit and receive wires of an RS 232 serial cable, as

shown in Figure 8.6. By doing this a simple feedback loop can be set up within the

dome daemon, by sending a test signal out through the serial connection and listening

for it to be returned to the same port. If after three tries the signal does not return then

the button is assumed to have been pressed, and the dome daemon triggers a lockdown

(see Section 3.4.6). By using a locking push button the loop will remain broken, and

the dome closed, until the button is released. The bright yellow button was was labelled

and attached to the wall of the dome near the computer rack (shown in Figure 8.11).

Adding an emergency stop button to the dome was fairly simple. There was enough

slack on the PLC power cable to install a prominent red button on the wall of the dome,

as shown in Figure 8.7. When the button is pressed the power to the PLC and the dome

motors is cut, which stops the dome moving.
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Figure 8.7: The dome Programmable Logic Controller (PLC) and emergency stop
button. The green cable comes directly from the dome power supply at the top, passes
through the button unit and into the PLC at the bottom.
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Figure 8.8: Circuit design for the Arduino box.

Adding a siren and additional sensors to the dome required an additional system to

power, monitor and (for the siren) activate them. This was done using a small Arduino

Uno microcontroller[1] running a simple HTML server, which reports the status of the

switches and can be queried in order to activate the siren. The circuit design for this

system is shown in Figure 8.8. In order to power the siren from the Arduino a bipolar

MOSFET (metal-oxide-semiconductor field-effect transistor) was used to connect to one

of the board input/output pins, with a large enough resistor to prevent the voltage

from destroying the board. The Arduino and siren were mounted within a weatherproof

case, with output connectors for the dome switches as well as for power and an ethernet

connection. Photos of the box during construction are shown in Figure 8.9, and its

installation in the dome is shown in Figure 8.10 and Figure 8.11.

[1]https://www.arduino.cc

https://www.arduino.cc
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Figure 8.9: Building the dome Arduino box in the lab in Sheffield. The top image
shows the circuit design being tested, with the Arduino (circuit board in the back) and
two of the dome switches: a magnetic proximity switch (grey blocks on the left) and a
Honeywell limit switch (cyan unit in the centre, with the cover and arm detached). The
lower image shows the completed weatherproof box with the siren, power and ethernet
cables and one of the Honeywell switches attached.
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Figure 8.10: The Arduino box installed in the GOTO dome during my first trip to La
Palma in March 2017. This photo was taken before the cover and cables were attached.

Figure 8.11: The Arduino box and yellow quick-close button in the GOTO dome,
attached to the southern pillar under the dome drive. The cables run to the computer
rack which is just off to the left of the photo.
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Four additional sensors were added to the dome, each connected to a port on the

Arduino through the connectors on the bottom of the weatherproof box. Two Honeywell

limit switches were attached to the rim of the dome wall, set to be triggered when

the dome was fully open; additional magnetic proximity switches were added to the

two inner-most shutters, which trigger when the dome is fully closed; and a magnetic

proximity switch was added to the dome hatch. Each of these are shown in Figure 8.12.

Using a combination of these new switches and the PLC output it is possible for the

dome daemon to build a complete picture of the status of the dome, as described in

Section 3.4.6. Having a sensor on the hatch also allowed it to be added as a conditions

flag, as described in Section 4.4.2, meaning the pilot will stop and report if the hatch is

open when in robotic mode. As of yet, the hatch flag or in-dome buttons have not been

needed in an emergency, however they are important as an insurance policy just in case.

It is anticipated that the same work will need to be done in the second GOTO dome

when it is commissioned. Comments have also been passed on to the dome manufacturer

to suggest that they could include some of the features described in this section in their

own stock hardware.

One further addition to the GOTO dome should be mentioned: the “heartbeat”

monitor designed and installed by Paul Chote at Warwick. As described in Section 3.4.6,

in the event that the dome daemon crashes, or the control NUC itself fails for whatever

reason, the dome would be left vulnerable — especially if it is already open. As a

backup, Paul created his own Arduino system that connects to the dome PLC and sends

it commands to close in the event that it does not receive a regular signal from the dome

daemon. This system was installed into the GOTO dome in April 2018, along with the

other Warwick domes on the site, and was one of the final stages required before GOTO

could safely leave the commissioning phase and not require an on-site monitor. The two

Arduino systems may be merged when the second GOTO dome is commissioned.
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Figure 8.12: Additional sensors added to the dome. The top photo shows one of the
two Honeywell limit switches added to the rim of the dome wall to detect when the dome
is fully open, the middle photo shows magnetic switch added to the inner-most shutters
to detect when the dome is fully closed, and the bottom photo shows the magnetic switch
added to the dome hatch to detect when it is open.
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8.3 Developing the software

While the GOTO hardware was being commissioned the G-TeCS control software was

also being developed. There were several important parts of the software that could

not reasonably be developed without access to the actual telescope, for example the

observing routines for taking flat fields and autofocusing.

This section focuses on the software side of commissioning, and does not include

pure hardware issues such as with the mount drive, mirrors or UT brackets outlined in

Section 8.2.1. These were dealt with by the core GOTO hardware team at Warwick,

and although I spent many hours on La Palma balancing the mount, adjusting mirror

positions and aligning unit telescopes, it had limited impact on the control software

development.

8.3.1 Taking flat fields

GOTO uses the twilight sky for taking flat fields. Some care has to be taken to design a

reasonable flat-field routine, as taking sky flats is not simple for a wide-field instrument

such as GOTO (Tyson and Gal 1993; Chromey and Hasselbacher 1996). As described

in Section 4.3.4, the night marshal runs the take_flats.py observing script at twilight

twice a day, once in the evening and again in the morning. In the evening the script begins

after the dome is opened, when the Sun has set below 0° altitude, and in the morning

the routine is run in reverse, starting after observations have finished and running until

the Sun rises above 0°.

First, the telescope needs to slew to a chosen position. Based on the analysis of

the twilight sky gradient in Wei et al. (2014), GOTO slews to the “anti-sun” position,

which is at an azimuth of 180° opposite the position of the Sun and at an altitude of

75°. This should be the position where the sky gradient is minimised and therefore the

field is flattest. In the pt5m version of the script, the telescope would slew to one of a
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predefined set of empty sky regions, however with GOTO’s large field of view there are

no large enough regions devoid of bright stars (to counter this, the mount moves slightly

between images so that median stacking the frames will remove any stars).

Once the telescope is in position, glance exposures (see Section 3.4.2) are taken until

the sky brightness has reached an appropriate level. In the evening, exposures start at

E0 = 3 s soon after sunset, and the first images will almost always be saturated. Images

are taken until the mean count level has fallen below the target level of 25,000 counts

per pixel. In the morning, exposures start at E0 = 40 s while the sky is still dark, and

exposures are taken until the mean count level is above the same target level.

Once the sky has reached the target level of brightness, exposures are taken at in-

creasing exposure times in the evening, or decreasing in the morning. The exposure time

sequence is determined using the method of Tyson and Gal (1993), which defines the

delay between exposures iteratively from t0 = 0 using

ti+1 =
ln (ati+∆t + aEi − 1)

ln a
, (8.1)

where ∆t is the time between exposures (including readout time and any offset slew

time) and a is a scaling factor which depends on the twilight duration τ in minutes as

a = 10±0.125/τ . (8.2)

The twilight duration can be calculated easily using Astropy, and a is taken as less

than 1 in the evening (the delay between exposures decreases) or greater than 1 in the

morning (the delay increases). Note that t is the time delay between exposures, the

actual exposure time of each exposure is given by

Ei+1 = ti+1 − (ti +∆t). (8.3)
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Using this method a sequence of exposure times is determined iteratively either until

a target number of flat fields have been taken (by default 5 in each filter) or the exposure

times pass a given limit (greater than 60 s in the evening, less than 1 s in the morning).

Between each exposure the telescope is stepped 10 arcminutes in both RA and declina-

tion, enough to ensure that any objects in the field do not fall on the same CCD pixels.

This means any stars in the field can be removed by median combining the individual

flat field images.

Every time the script is run, flat fields are taken in each of the Baader LRGB filters

used by GOTO (see Section 2.3.2). In the evening flats start in the B filter (as the sky

progressively reddens as the Sun sets), progresses through G and R, and finishes on L

(as the L filter has the widest bandpass). In the morning the sequence is reversed. Once

the first set of flats is taken in the starting filter (B in the evening, L in the morning)

a new starting exposure time (E0) is calculated based on the relative difference in the

filter bandpasses (see Section 2.3.2).

This method allows a reasonable set of flat fields to be taken in each filter most

nights. The GOTOphoto pipeline (Section 1.3.3) creates new master flat frames each

month (the same is true of bias and dark frames); this means that taking new flats

each night is important but not critical. If, for example, the Moon is too close to the

anti-Sun point then flats can be skipped without causing any disruption. The routine

also assumes a clear night and does not account for the presence of clouds in the field,

however any poor-quality images are rejected by the pipeline when creating the master

frames, and by taking new flats twice each night there should always be enough to create

a valid master frame each month.
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8.3.2 Focusing the telescopes

The GOTO unit telescopes are designed to keep a stable focus through the night, and use

carbon-fibre trusses to minimise any changes due to temperature fluctuations. Based on

images taken during commissioning this is generally true, and the pilot only has to refocus

the telescope once at the start of each night. Once the flats routine has finished the night

marshal within in the pilot runs the autofocus.py observing script (see Section 4.3.4).

To save time, all of the unit telescopes are focused at the same time, although completely

independently.

The autofocus routine is based on the V-curve method of Weber and Brady (2001),

which measures the focus using the Half Flux Diameter (HFD). The HFD is defined as

the diameter of a circle centred on a star in which half of the total flux lies inside the circle

and half is outside. As this parameter is based only on the total spread of the flux and

not on the maximum peak it is not disrupted due to seeing effects. Importantly, the HFD

should vary linearly with focus position, forming a V-shaped curve with a fixed gradient

either side of the best focus (unlike the FWHM, which forms a U-shaped, non-linear

curve). The gradient of this V-curve (shown in Figure 8.13) is a function of the telescope

hardware: changes in seeing move the curve up and down while changes in temperature

will move the curve side-to-side, but the shape should remain the same. Therefore, if

the V-curve has been defined for the given telescope and you can find which part of the

curve you are on, you can use the known gradient and intercept to move directly to the

minimum point, which will give the best focus.

As GOTO is a wide-field instrument no particular focus star needs to be picked, and

instead focusing takes place at zenith assuming that there are always enough stars to

focus on within the field. Images are windowed to just a central 2000×2000 pixel area, to

avoid any distortions around the edge of the field. Sources are extracted and the half flux

diameter measured using the SEP Python package (Source Extraction and Photometry,



Chapter 8: On-Site Commissioning 249

Figure 8.13: Steps to find the best focus position using the HFD V-curve.

sep[2]) which implements the Source Extractor algorithms in Python (Bertin and Arnouts

1996). This is done for all objects in the frame with a signal of more than 5σ above the

background sky, excluding any sources that do not match a Gaussian shape i.e. are not

point sources. This typically results in several hundred sources in each unit telescope,

and the mean of all of the points is taken as the representative HFD for that image.

At the start of the focus routine an initial image is taken and starting HFD values are

measured. The starting focus position is also recorded at this point, so that if the script

fails for any reason the initial focus can be restored. It is assumed that the initial value

should be fairly close to the ideal focus position, but it is not known which side of the

ideal position it is (i.e. if it is on the positive or negative gradient side of the V-curve).

This starting point is shown by the ? marker in Figure 8.13.

The first step of the routine is to move the focuser by a large positive quantity, to

point A in Figure 8.13, and measure the HFD. This is done to make sure that the image

is completely de-focused, and we are on a known side of the best focus position. At this
[2]https://sep.readthedocs.io

https://sep.readthedocs.io
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point the V-curve might not even be linear, but as long as the measured HFDs have

increased compared to the starting value then we can proceed.

The second step is a small step back in the opposite direction, towards the best focus

position (point B). The HFD is measured again, and it should now be smaller than when

measured at point A but still larger than the starting value. If this is not true then the

script returns an error, as it is not possible to determine if we are on the correct side of

the V-curve.

The next stage is to continue taking small steps in the same (negative) direction,

until the measured HFD is less than double the near-focus value (NFV) . The NFV is

chosen for each telescope to be a HFD value in pixels that is approximately equal to

the expected best-focus value, based on previous measurements (for GOTO the NFV is

7 pixels). Once at this point (point C) we should be well within the linear portion of

the V-curve. At this stage the exact HFD values are important, so three consecutive

images are taken at this focus position and the smallest of the HFD values is taken as the

first point on the V-curve. The HFD values between images will change due to external

factors, such as seeing or windshake, but these will only ever make the HFD worse than

the “true” value, never better. Therefore taking the minimum reduces the effect of these

external factors on the measured HFD values.

Once the HFD value has been well measured at point C then the near-focus position

(point D), the position that should produce a HFD equal to the near-focus value, can

be found with

FNF = F +
NFV −D(F )

mR
(8.4)

where F is the current focus position, D(F ) is the current HFD and mR is the known

negative gradient of the right-hand side of the V-curve — this is just applying the

equation of a straight line between two points.

Once the near-focus position has been found the focuser is moved to that position
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(point D) and the HFD is measured three times again. Now that we have a known FNF

and D(FNF) on the right-hand side of the V-curve the best focus position (FBF) is given

by the meeting point of the two lines shown in Figure 8.13, which can be calculated

using

c1 = D(FNF)−mRFNF,

c2 = mL(
c1
mR

− δ),

FBF =
c2 − c1

mR −mL
,

(8.5)

where mL and mR are the gradients of the lines and δ is the difference between their

intercepts. The focuser is then moved to the best focus position, the HFD values are

recorded and the script is complete. This method has proven reliable to focus the GOTO

telescopes on a nightly basis, although the optical aberrations produce badly-focused

regions in the corners of the frames (described in Section 8.2.1).

Figure 8.14 shows the focus values (half-flux diameter) measured from every image

taken over a single night of observing. The HFD values vary between 3–5 pixels, and

although there are some fluctuations there is no clear focus drift over the course of the

night. Figure 8.15 shows the same values plotted instead as a function of temperature,

again no trends are visible. This is just a single sample from one night, and over a longer

term there will be shifts in the best focus position. However, refocusing just once in the

evening appears to produce a stable-enough position to last through the night.

It has been suggested that future GOTO unit telescopes might use an enclosed,

prime-focus tube instead of the current Newtonian design with carbon fibre trusses (see

Section 2.3.1). Solid metal tubes are much more sensitive to temperature variations

and therefore need to continually be refocused during the night. To account for this a

refocus step could be added into the exposure queue daemon (see Section 3.4.5) at the

same stage that the filters are changed.
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Figure 8.14: Measured focus values (mean half flux diameter) over a night of obser-
vations. For clarity error bars are only plotted on every 10th point.

Figure 8.15: Measured focus values against temperature inside the dome.
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Figure 8.16: Creating a pointing model using PointXP.

8.3.3 Mount pointing and stability

As described in Section 3.4.7, using the SiTech-provided mount software (SiTechEXE)

required a Windows computer for it to run on, as well as additional development effort

to allow the rest of the software to interact with it. However once this was implemented

it allowed us to use the various utilities built into SiTechEXE, including the pointing

modelling software PointXP. Using this software meant it was not necessary to create our

own pointing model within the mount daemon, as once a model is created with PointXP

any commands sent to SiTechEXE have the model applied before slewing.

In order to create a pointing model using PointXP the camera output from one of the

telescopes needs to be connected to the Windows NUC running the software, and the

rest of the G-TeCS software must be disabled to ensure PointXP has full control. The

software creates a grid of equally spaced pointings at a range of altitudes and azimuths, as

shown on the sky chart in Figure 8.16, then takes CCD images at each position, extracts

the position of sources in each frame, and calculates the pointing model transformations

to best convert requested coordinates to mount axis positions.
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Figure 8.17: Pointing errors (the difference between the target and actual image
positions) taken from a single night of observations, 489 exposures in total. The error
bars for each UT show the standard deviation of points in each axis.

One of the complications when creating a pointing model for GOTO is that the

model can only be based on the output of a single unit telescope (as PointXP only

expects a single camera input). When aligned into the 3-UT configuration, as shown

in Figure 8.3, it was simple to create the model using the central telescope (UT4), but

in the 4-UT configuration (Figure 8.4) this is not an option. The chosen camera needs

to physically be disconnected from the interface NUC and connected to the Windows

mount NUC PointXP is running on, which prevents creating a pointing model unless

there is someone on-site. One suggestion has been to add a small guide telescope in

the centre of the array which could be permanently connected to the Windows NUC

PointXP is on, this could then be used to base the pointing model on.

Figure 8.17 shows the pointing error for each unit telescope from all images taken in

a single night of normal observations after creating a new pointing model with PointXP,
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Figure 8.18: Position drift of sources in a series of images taken over 30 minutes. The
darker solid lines show the average of all the sources detected in each UT.

at various different altitudes and azimuths. The error is found as the difference between

the target position reported by the mount and the actual image centre found by the

GOTOphoto pipeline. As each UT has a unique offset each subplot is centred on the

mean offset for that UT. The pointing errors vary between 8–10 arcmin in right ascension

and 1–3 arcmin in declination, with clear variations between the unit telescopes. The

pattern of points for each unit telescope also appears to be unconnected. This illustrates

one of the major complications due to the GOTO mount design: each unit telescope will

flex and shift slightly on their own mounts attaching them to the boom arm, in addition

to the pointing of the overall mount. The original brackets mounting the unit telescopes

to the boom arm were much worse and occasionally allowed unit telescopes to drift

several degrees from their original position. These were replaced in July 2018, and since

then the models created using PointXP have been perfectly good for use with GOTO.

In practice even being a few arcminutes off the desired pointing is minor compared
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to GOTO’s large field of view, and can easily be accounted for when the images are

processed by the GOTOphoto pipeline.

GOTO does not include an autoguiding system, although the proposed guide scope

mentioned above could be used as one. In the absence of this the telescope must be

able to track accurately. The initial mount drives suffered from tracking problems,

and were very sensitive to any imbalances in the weight distribution. The motors were

replaced in November 2017, and since then have been much more reliable, although it

is still important to ensure that the mount is balanced. Figure 8.18 shows the drift of

sources taken from a series of exposures of the same target over 30 minutes, revealing

a maximum drift of approximately 80 pixels/hour, or 1.65 arcmin (using the plate scale

of 1.24 arcsec/pixel). Again each unit telescope has a slightly different drift in different

directions (for example UT1 is very stable in the x direction (right ascension) but has

the biggest drift in y (declination)). In practice GOTO usually switches targets every

few minutes, so the long-term tracking performance over several hours is not a major

concern. GOTO also typically only takes 60 s exposures, and no significant trailing is

seen in these images.

8.3.4 Other commissioning challenges

In this section I outline a few of the changes that had to be made to the software based

on experience with the hardware. This is not an exhaustive list, but gives some examples

of the challenges that are typical when commissioning a facility such as GOTO.

Filter wheel serial numbers

One of the hardware issues that was identified early on concerned identifying the filter

wheels when they were connected to the interface NUCs. The usual way to connect

to specific hardware units through the FLI-API code is to search the connected USB

devices for their unique FLI serial numbers (for example the serial numbers of the GOTO
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cameras given in Table 2.1). However, the initial set of CFW9–5 filter wheels delivered

to us by FLI did not have serial numbers defined in their firmware. Two filter wheels are

connected to each interface NUC, and this problem made it impossible to tell between

them or send a command to a particular filter wheel.

A solution was eventually found using the pyudev Python package (pyudev[3]), which

uses the Linux udev device manager to identify devices using the /dev/ name, and

therefore create a pseudo-serial number based on which port each device is connected

to. Using this method it is possible to tell filter wheels apart as long as which physical

USB port each is plugged into is known. This is not an ideal solution, but as long as the

USB cables remain connected it is not an issue even if the NUCs are rebooted.

Downloading images from the cameras

One of the more complicated parts of the camera control software is reading images

from the FLI cameras. Once an exposure has finished, photo-electrons from the CCD

are read out and stored as counts in a memory buffer on the camera, where they can

be downloaded by USB. A last-minute change led to the GOTO cameras using new,

larger detectors than originally designed for the cameras, which led to there not being

enough space in the camera buffer to store a full-frame image. This was discovered when

corrupted images such as the one shown in Figure 8.19 were being produced; the regions

in the lower third of the image are just duplicates of the data in the upper third, meaning

the original data in this section was lost.

The cameras return a DataReady status once the exposure has finished and the

data is reading out. However, when installing G-TeCS on site it was clear that the

camera daemon was not able to reliably start downloading the data from the cameras

quickly enough to clear space in the internal buffer before it starts being overwritten.

The solution was to add an internal image queue within the camera class, which would
[3]https://pyudev.readthedocs.io

https://pyudev.readthedocs.io


Chapter 8: On-Site Commissioning 258

Figure 8.19: An example of a corrupted image from one of the FLI MicroLine cameras
which was not read out fast enough.

immediately begin downloading from the cameras as soon as they reported the exposure

was finished. This means the camera data is stored within the memory on the interface

NUCs, and then the camera daemon queries the interface (see Section 3.4.1) to download

the image across the network and write it to disk.

This solution did run into a few problems with a feature of the Python programming

language called the Global Interpreter Lock (GIL), which prevents multiple threads ac-

cessing the same Python object at once (the exact workings of the GIL are outside of

the scope of this thesis). In short, this prevented reading out the cameras to the in-

ternal queue in parallel, which added an extra delay. Luckily, the FLI-API package was

not written in standard Python (technically CPython) but in Cython, which interfaces

between the FLI SDK written in C and the rest of the control system written in Python.

Cython contains a GIL to maintain compatibility with CPython, however it is not re-

quired and can be disabled. Doing this allowed the cameras to be read out in parallel as

intended.
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Declination axis encoder failure

Just a few weeks after the inauguration the mount declination axis encoder failed, pre-

venting any automated slewing in the declination axis (the telescope could still be moved

manually with the hand-pad). Of the two axes this was by far the better one to fail, had

the RA axis failed instead then the telescope would not have been able to track and so

no observations could have been taken. Instead, the telescope could at least still take

on-sky images, and commissioning the optics and the camera control software was able

to continue by manually moving the mount.

However, the SiTech control software was not able to cope with the disabled declina-

tion axis, which meant that the telescope could not be operated in robotic mode. When

sent a command to slew to a position, the mount would move to the correct RA but

would never reach the target (as it could not move in declination) and therefore would

not start tracking. Even sending commands to move only in RA (i.e. keeping the same

declination position) did not work. The mount would reach the correct position but

the declination encoder would never register reaching the target, so the slew was never

registered as ‘complete’ and the mount would not start tracking.

A workaround was therefore coded into the mount daemon: a separate thread which

monitored the RA position and stopped the mount moving when the target RA co-

ordinates were reached, regardless of the declination coordinates. This forced the SiTech

slew command to reset, meaning it could start tracking. When this modification was

in place GOTO was able to observe ‘normally’, and was able to carry out a survey in

a limited declination band of the sky. Had an important gravitational-wave alert come

through during this period, the person on-site would have had to move the telescope to

the correct declination and then manually carry out observations. Thankfully this was

not needed, and, as described in Section 8.2.1, once O2 ended GOTO was shut down

until the motors could be replaced.
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Dome movement

The Astrohaven clamshell dome is driven by internal belts attached to the dome shutters.

It is important when moving the dome not to put undue stress on these belts, as should

one of them dislodge or snap there is nothing preventing the dome from falling open.

As described in Section 3.4.6, the dome motors are deliberately moved in short bursts

rather than continually when opening. This prevents the shutters being pulled down too

fast, which can cause the upper shutter to fall and put excess stress on the belts.

As mentioned in Section 8.2.2, the dome has also occasionally opened past its limits

when the in-built switches fail to trigger, meaning the motors drive the shutters into

the ground. The extra limit switches we installed provide a backup in order to cut the

motors when they are triggered, and also give a method to detect when the shutters

overshoot and let the dome daemon move the shutters back up.

One of the more serious hardware problems occurred a few days after I left La Palma

in February 2018. During freezing conditions, ice had built up on the upper dome

shutter, and eventually was heavy enough to partially pull the shutter open past its

limits, exposing the telescope to the elements (see Figure 8.20). I was able to remotely

move the dome and drag the shutter closed, but a large amount of ice fell into the dome.

Luckily, Vik Dhillon and Stu Littlefair were still at the observatory, along with Tom

Marsh, from Warwick, and my replacement GOTO monitor, Tom Watts from Armagh.

As shown in Figure 8.21, they were able to get up the mountain to clear ice from inside

and outside the dome, as well as place a tarpaulin over the telescope.

Once informed about the event, Astrohaven manufactured brackets to fit inside the

dome to prevent the upper shutter from being forced open in this way. The dome

falling open was accompanied by a sharp drop in the internal temperature, which was

the motivation to add the internal and ice flags into the conditions monitor (see

Section 4.4), to alert us should similar conditions occur in the future.
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Figure 8.20: Internal webcam images showing the dome open during the 2018
snowstorm. The image on the left was taken when opening was discovered, with the
upper shutter (which normally closes on the south side, to the left of the image) having
been open by the weight of ice built up on the north side. The image on the right was
taken after closing the shutter remotely. Moving the dome caused a large amount of ice
to dislodge and fall into the dome, thankfully missing the mirrors and camera hardware.

Figure 8.21: External webcam image showing the ice rescue team. Note the build up
of ice visible on the northern side of the upper shutter of the (empty) left-hand dome.
A similar build up caused the upper shutter on the right-hand dome containing GOTO
to be pulled open.
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Errors processing GW alerts

Ensuring the stability of the GOTO-alert event handling system described in Chapter 7

was a high priority when commissioning the GOTO software in the run-up to the third

LIGO-Virgo observing run (O3). The LVC began producing test GCN notices in Decem-

ber 2018 prior to the beginning of the run, which included mock skymaps similar to the

ones used for the simulations in Section 5.4 and Section 9.3. These events allowed a full

system test of the GOTO-alert code, from the VOEvent being received to the pointings

being added to the observation database.

Since the start of O3 in April 2019 until the end of August there were 32 gravitational-

wave alerts, of which seven were ultimately retracted, and the G-TeCS sentinel (see

Section 4.5.2) received each event and processed it using the GOTO-alert event handler

code. A full run-down of the response to each event is given in Section 10.1.2. A few

complications did arise during O3 which required changes to the software, mostly due

to problems at the LVC’s end. These are outlined below.

• Initially each notice sent out by the LVC had to be approved manually by a LIGO-

Virgo member, which lead to some delays to follow-up observations being triggered.

The initial alert for S190421ar was delayed until several hours after the event, even

though the skymap had already been uploaded by the LVC to the GraceDB service.

A possible addition to the G-TeCS sentinel was proposed, a separate thread that

could query GraceDB to check for new skymaps. If it detected on the skymap

could quickly be processed to start GOTO observing, even before the “official”

notice was sent out. However, since the first few events the delay between the

gravitational-wave detection and the notice being sent out has been much shorter,

and this modification was never implemented.

• An updated skymap for the S190426c event was uploaded to GraceDB by the LVC

with the wrong permissions, causing the sentinel to raise an error when it could
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not download it from the URL in the notice. Unfortunately the event handler

(see Section 7.3.2) had already deleted the existing pointings from the observation

database before crashing, preventing GOTO from observing the previous tiles.

After this event the order of functions in the event handler was changed, so that

existing pointings were only removed once the new skymap had been downloaded

and processed.

• The second skymap for the S190521g event was initially uploaded in an uncommon

HEALPix format (see Section 6.3.1) used internally in the LVC, which could not

be read by GOTO-tile. Due to the above changes made following the S190426c

event this did not interrupt GOTO observations, and the LVC have since clarified

their filetypes.

• Finally, the updated skymap for the S190814bv event was incorrectly uploaded by

the LVC to GraceDB with the same filename (bayestar.fits.gz) as the initial

skymap (typically updates are called bayestar1.fits.gz, etc). By default, the

Astropy FITS download function used within the sentinel caches each file, and if

asked to download a file from the same URL will instead use the cached version.

This lead to GOTO continuing to observe the large initial skymap instead of fo-

cusing on the smaller region given in the updated map. Again, the LVC have said

that this will be prevented in the future, but just in case the sentinel was patched

to disable the caching feature.
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8.4 Summary and Conclusions

In this chapter I described work carried out during the GOTO commissioning period on

La Palma.

The GOTO prototype suffered several delays before finally being deployed in the

summer of 2017. After that a series of hardware issues and failures lead to several

elements being replaced, in particular two of the sets of mirrors. The final full prototype

with four unit telescopes started reliable operations in February 2019, in time for the

start of the third LIGO-Virgo observing run.

Amongst the hardware problems I installed, commissioned and developed the control

software as described in the previous chapters. The primary G-TeCS hardware control

systems (Chapter 3) were primarily developed before and during the delay in deployment,

in particular I built and integrated several hardware units in the dome to ensure the

safety of the telescope and any operators on site. The rest of the commissioning period

was focused on developing the autonomous systems (Chapter 4), until in May 2018 the

telescope was trusted to operate entirely robotically without full-time supervision. The

G-TeCS software has proven itself to be reliable, and should provide a framework to

build upon as GOTO expands.
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9.1 Introduction

In this chapter I describe the potential future expansion of the GOTO project, with

additional telescopes at the current site on La Palma and a future second site in Australia.

• In Section 9.2 (Scheduling for multiple telescopes) I give an outline of the addi-

tional work required to create a multi-site scheduling system, and how the existing

simulation code can be modified to approximate the required functionality.

• In Section 9.3 (Gravitational-wave follow-up simulations) I describe simulations

showing the benefits of additional telescopes observing gravitational-wave alerts in

order to locate the counterpart source.

• In Section 9.4 (All-sky survey simulations) I describe further simulations detailing

the effects of additional telescopes on the all-sky survey.

All work described in this chapter is my own unless otherwise indicated, and has not

been published elsewhere.
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9.2 Scheduling for multiple telescopes

As described in Section 1.3.4, the ultimate aim of the GOTO project is to have multiple

nodes around the world. Specifically, the plan calls for two full GOTO-8 systems on La

Palma and another two at a second site in Australia (either at Siding Spring Observatory

in New South Wales or Mt Kent Observatory in Queensland). It is anticipated that the

G-TeCS scheduling system described in Section 4.5 will be extended to cover all these

telescopes, so that they each query a single observation database and a master scheduler

decides what target each telescope should be observing at a given time. This will require a

large amount of work to modify both the database structure and the scheduling functions

and, as this is not currently implemented into the existing scheduler, several workarounds

are needed in order to create realistic multi-telescope simulations.

9.2.1 Multiple observing telescopes

One of the current restrictions in the scheduling functions (as described in Chapter 5) is

that they only ever expect a single pointing in the observation database to be marked as

running at any one time. It is explicitly coded into the scheduler that detecting multiple

running pointings should raise a critical error, as certain bugs early in development could

lead to this undesired state to occur. Obviously once the system is to be expanded to

multiple telescopes this restriction will have to be lifted, but for running simulations a

simplification was required to work around it.

It is currently planned that each telescope will have its own pilot and hardware

daemons completely independent of each other, with the only point of overlap being

the shared scheduler (and, for each site, the conditions daemon). This makes the master

scheduler even more complicated, as each pilot will be querying it completely out-of-sync.

If telescope 1 has just finished observing and makes a scheduler check, the scheduler will

need to know what telescope 2 is observing, so as not to return the same pointing to
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telescope 1 (although in some cases having both telescopes observe the same target

might be desired, adding yet another level of complexity). But should both telescopes

finish observing at the same time then the scheduler will need some way to decide which

telescope is assigned which target, perhaps based on the slew time to each target from

the telescope’s current position.

As none of the above has yet been implemented into the existing code, a simplified

system was required in order to simulate multiple telescopes. The existing fake pilot

code (described in Section 5.4.1) already contains calls to the real scheduling functions,

which return the highest priority pointing at given time. The first simplification was to

make the function instead return the top N highest pointings, where N is the number of

currently observing telescopes. In lieu of any better algorithm to decide which telescope

observes which target, the code simply gives the highest priority pointing to telescope

1, the second highest to telescope 2, and so on. Should there only be one valid pointing

returned then only telescope 1 will observe, while telescope 2 will remain “parked” until

it is needed (in reality the second telescope would default to observing the all-sky survey

until it also has something to do).

The second simplification was to ensure the telescopes always stay in sync when

observing. This was achievable for the simulations described in this chapter because

every pointing uses the same exposure set (three 60 s exposures), and therefore they

take the same amount of time to observe. However, in reality each telescope would take

a different amount of time to slew to its target, and so they would quickly get out of

sync. Slew time is included in the fake pilot code for each telescope to acquire its new

target, and so in order to remain synchronised with multiple telescopes the simulations

simply wait the required amount of time for the telescope with the furthest distance to

slew. This ensures both telescopes start and finish their observations at the same time,

although it does mean a small amount of observing time is “wasted” while one telescope

is waiting for the other to be in position.
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9.2.2 Multiple observing sites

The modifications to the scheduler described in the previous section provide a good

approximation of the response of an arbitrary number of telescopes observing at one

site. However, expanding the code further to simulate observations from multiple sites

adds further complexity.

The scheduler functions (see Section 5.2) need to know which site observations are

being made from in order to correctly sort pointings. The visibility constraints (see

Section 5.2.1) check if each target is above the local horizon, as well as the local Sun

altitude, and the tiebreak parameter (see Section 5.2.4) takes into account the airmass

of each target. These are simple parameters to calculate if you are only observing from

one site, but once there are telescopes at multiple sites querying the scheduler at the

same time then the responses will need to take the position of each into account.

This could lead to problems when returning the highest priority pointings. For

example, with two telescopes observing from different sites the scheduler could return

the highest priority pointing visible from each. If they are different then each telescope

can then observe the best target for its site; however if both telescopes were observing

at the same time, and the visible portions of the sky from both sites overlapped, then

it is very possible that the same pointing would be the highest priority from both sites.

Assuming they should not both observe the same target at the same time, the scheduler

would need to choose which telescope to assign that pointing to and then recalculate a

different target for the other telescope. What would be better is to use the same method

described in Section 9.2.1, and have the scheduler always return the top X pointings,

where X = Nsite1 + Nsite2 + · · · is the total number of telescopes across the globe. In

reality targets would need to be assigned to telescopes based on their airmass at each

site, or the slew time from the current target, but as in Section 9.2.1 for the simulations

they can just be assigned to each telescope in order.
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Figure 9.1: Night times throughout the year for GOTO sites. Night here is defined as
when the Sun is 12° below the local horizon.

However, saying that the scheduler needs to find the top X pointings, where X is

the total number of telescopes at all sites, is not strictly true — it actually only needs to

return enough pointings to satisfy the telescopes at the sites that are currently observing.

In other words, if there are two sites but one is shut down, due to weather or because

it is daytime there, the scheduler only needs to consider the single site. Conveniently,

for simulating the proposed GOTO network this is always true: by defining night as

when the Sun is below −12° altitude, the periods of darkness between La Palma and

either of the two proposed Australian sites never overlap. This is shown in Figure 9.1,

where there is a constant “buffer zone” between night ending at one site and beginning

at the other. This case only applies for a very limited number of combinations of sites.

As shown in Figure 9.2 there is a tear-drop-shaped area on the Earth’s surface which

contain the locations where the local night will never overlap with night on La Palma,

comprising only of eastern Australia, New Zealand and Melanesia. For a Sun altitude

limit of −12° this area contains just 6.6% of the Earth’s surface.
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Figure 9.2: Finding locations on the Earth with non-overlapping night times. In
the upper plot the filled areas show the locations on the Earth where local night never
overlaps with night on La Palma, at any time of the year. The different colours denote
different night time definitions, with the −12° definition also being surrounded by a
white dashed line. The location of the GOTO sites considered (La Palma, Siding Spring
and Mt Kent) are marked with stars and their antipodes are marked with hollow circles.
The equivalent areas for Siding Spring and Mt Kent are also shown by the coloured
dashed lines surrounding their antipodes, for the −12° night definition only. The lower
plots show how the region varies over the course of a year, from the solstices via the
equinox (the plot is identical for the two equinoxes and therefore is only shown once).
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The fortuitous location of the proposed Australian sites means implementing tele-

scopes at multiple sites into the simulation code was fairly simple. Each simulation would

consider either only La Palma, or La Palma and one of the Australian sites, as these

are the only anticipated scenarios for GOTO. In the two-site cases only the telescopes

at one of the sites would ever be observing at any one time, and so the simulation only

requires the multi-telescope implementation as described in Section 9.2.1.

Should simulations be desired for other sites on the Earth that are not within the

small area with non-overlapping nights shown in Figure 9.2, for example other potential

GOTO-South sites in South Africa or Chile, then the simulation code would need to be

modified to take this into account. This has not yet been done as it was not required for

the scenarios described here. In principle, the fact the sites overlap could be ignored, and

the simulations can be run for each site as a stand-alone observatory and then combined

afterwards with the results from other, stand-alone simulations. This, however, removes

the benefit of the sites acting together and using a common observation database, and

would lead to multiple observations of the same targets from each site.

9.2.3 Simulating different survey grids

One fundamental feature of the existing G-TeCS code is that observations are carried out

on a fixed all-sky grid, as defined in Chapter 6. When considering multiple telescopes this

is both useful in some ways and limiting in others. Having a fixed grid that is common

to all telescopes is vital for the GOTO image subtraction pipeline GOTOphoto, as it

requires observations of the same part of the sky to create reference frames for difference

imaging (see Section 1.3.3). This is why a common grid is anticipated to form the base of

the global system. By sharing the same tiles each telescope can contribute to the same

all-sky survey grid, as well as efficiently coordinate mapping out a gravitational-wave

skymap.
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However, sharing the grid requires all of the telescopes to have essentially the same

field of view. There is some leeway in the exact field of view of each telescope array; the

grid tiles are defined to leave a slight overlap around the edge (see Figure 8.4). But if

the field of view of the telescope array is much larger than the tile size then the pointings

will be too close together and therefore inefficient. Even worse, if the field of view of the

telescope array is much smaller than the defined tile size it would lead to gaps in the sky

coverage.

For the proposed GOTO system with near-identical GOTO-8 units around the world

this is not an issue, but it should be recognised as a limitation of not just the simulations

but the whole G-TeCS control system. One potential case where this may be an issue

is when commissioning GOTO-South. If it spends time as a GOTO-4 system similar

to La Palma before getting the second set of unit telescopes to bring it up to a full set

of eight, then it will be observing concurrently with one or two GOTO-8 systems on

La Palma. This is a likely enough situation that it was considered in the gravitational-

wave simulations as described in Section 9.3, using the workaround of two independent

simulations mentioned previously. How this scenario would be dealt with within a real

implementation of G-TeCS is a problem that needs development in the future, should it

prove to be necessary.
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9.3 Gravitational-wave follow-up simulations

As the primary mission of the GOTO project is to follow up gravitational-wave detec-

tions, it is important to consider what benefit additional telescopes will bring to the

project. In order to do this, simulations were run on the LIGO First Two Years mock

skymaps (Singer et al. 2014), a small selection of which were previously used for the

scheduler simulations described in Section 5.4. The full sample contained 1105 events,

each based on simulating a binary neutron star coalescence at a particular sky posi-

tion and distance. Each event had two skymaps generated: the first using the rapid

BAYESTAR pipeline (Singer and Price 2016), which is typically available minutes after

the event, and the second using the LALInference code (Veitch et al. 2015), which can

take hours or days to complete. For these simulations, therefore, only the BAYESTAR

skymaps were considered in order to focus on GOTO’s initial follow-up, although an ex-

tension to the simulations could include the effects of the second updated skymap being

processed and added to the database some hours after the event.

9.3.1 Event visibility

The simulations were designed to begin at the time the event was detected, and then sim-

ulate the next 24 hours of observations. This guaranteed one night’s worth of observing

at each site, although split into two halves if the event occurred during the night. The

time each event occurred was taken from the simulated skymaps, and does not account

for the delay between the event being detected and the alert being issued and processed

by the G-TeCS sentinel. Events were uniformly distributed in time of occurrence dur-

ing the day, and they all occurred over a two month period spanning either side of the

2010 September equinox as shown in Figure 9.3. It is not clear why this range of dates

was selected, although surrounding one of the equinoxes might have been an attempt

to reduce bias towards observers from either hemisphere. However, the events are not
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Figure 9.3: Date and time distribution of the “First Two Years” events. The night
periods are shown in blue for La Palma and green for Siding Spring, and the date of
the equinox is marked by the red dashed line.

entirely equally distributed either side of the equinox (03:09 UTC on 2010–09–23): the

first event occurs 33 days before the equinox and the last 27 days after. Overall 64%

of events occurred before the September equinox and 36% after, which leads to a slight

bias in visibility towards southern telescopes as they experience longer nights before the

equinox (in the southern winter).

Events were uniformly distributed across the sky, and are uniform in distance cubed

(Singer et al. 2014). Although each source included distance information this was not

taken into account in the simulations, aside from determining the event strategy to use

(all were well within the 400Mpc definition for close neutron star events defined for

GOTO-alert in Section 7.4.1). Future simulations could use the distance to the event

to estimate a light curve based on the observed kilonova for GW170817 (Abbott et al.

2017e) and use it to predict how long each event would be visible for GOTO for (the

GW170817 transient AT 2017gfo faded below GOTO’s 20 mag limit after 2.5 days).
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The first stage of simulating observations of each event was to determine if the source

location was visible from the chosen site(s) in the 24 hours after the event occurred. In

the cases where this was not true there was no point running the full simulation, as it the

source would never be observed. Each event was classified into one of four categories:

• Not visible — too close to the Sun. These events had sources that were too

close to the Sun to observe within the 24 hour period after the event, regardless

of the site considered. This was defined as the source location being within 42° of

the Sun (−12° from the definition of night time plus 30° from the altitude limit).

It is a fixed fraction of the sky: 5280 sq deg, or 13% of the celestial sphere[1].

• Not visible — below declination limit. The sources for these events fell

within the region of the sky that is never visible due to the limited declination

range visible from a given site. For example, using the GOTO 30° altitude limit

a telescope on La Palma (latitude 28° N) can see a band of sky between 88° and

−32° declination. Sources outside of this region (that are not already excluded due

to being too close to the Sun) would therefore never be observable from the site,

but could be observed from other locations. At the equator this band covers 87%

of the sky over the course of a year, at latitudes of ±30° 75% of the sky is visible,

falling to just 25% at the poles[2].

• Not visible — daytime. These event sources are within the visible declination

range, but are not observable from a given site during the 24 hour period after the

event as they are only above the horizon during the day. Unlike the fraction of

the sky within the circular 42° region around the Sun, these positions could still

be observable from other sites at different latitudes.
[1]The area of a circle with radius r on the surface of a sphere with radius R is 2πR2(1− cos(r)). The

radius of the celestial sphere R = 360°/2π ≈ 57.3°.
[2]The area of a segment on a sphere between angles θ and ϕ is 2πR2(cos(θ)− cos(ϕ)).
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Night
Site

La Palma Siding Spring Mt Kent
(28° N) (31° S) (27° S)

March 57.1% visible 56.3% visible 59.6% visible
equinox (12.9% · 23.4% · 6.7%) (12.9% · 24.6% · 6.2%) (12.9% · 22.5% · 5.0%)

June 50.4% visible 61.9% visible 62.7% visible
solstice (12.9% · 24.2% · 12.4%) (12.9% · 20.9% · 4.3%) (12.9% · 19.0% · 5.4%)

September 57.0% visible 56.4% visible 57.7% visible
equinox (12.9% · 23.4% · 6.7%) (12.9% · 24.5% · 6.2%) (12.9% · 22.4% · 7.0%)

December 62.5% visible 48.9% visible 51.0% visible
solstice (12.9% · 19.7% · 4.8%) (12.9% · 25.8% · 12.4%) (12.9% · 23.2% · 12.9%)

Table 9.1: Sky visibility over a year from the three different GOTO sites. The upper
value in green shows the fraction of the sky that is visible during the night. The lower
values break down the remaining fraction of the sky into the three non-visible categories:
too close to the Sun in orange, below the declination limit in light blue and only visible
during the day in dark blue.

• Visible. The source for this event falls outside of either of the above three areas,

and therefore is nominally above the 30° altitude limit at some point during night

time within 24 hours after the event. The portion of the sky that is visible in one

night from a given site depends on the latitude of the site and the time of year.

The region of the sky visible during the night for a given site changes over the course

of the year. Table 9.1 shows the fractions of the sky in each of the four categories above

at the solstices and equinoxes. Figure 9.4 plots the regions on the celestial sphere, in

order to better visualise how they change depending on observing site and time of year.
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Figure 9.4: Changing sky visibility regions over a year, plotted on the celestial sphere.
Visibility is shown at the equinoxes and the solstices for two different sites: the left
column shows visibility for an observer located on the Earth’s equator, the right column
shows visibility from La Palma. The green regions are visible during the night. The
area above the 30° altitude limit at sunset is shown by a white dashed line, with the local
zenith marked with a white point, and the arrows show how the visible region moves in
RA during the night until sunrise. The position of the Sun on the ecliptic is shown by
the black star, the orange region is within 42° of the Sun and is therefore not visible
from anywhere on Earth. The light blue regions are permanently out of the visible
declination range of the site, and the regions in dark blue would only be visible on that
day when the Sun is above the horizon (but are visible from other sites).



Chapter 9: A Multi-Telescope Observatory 279

9.3.2 Selecting event tiles

Even if the source of a gravitational-wave event is visible within 24 hours from a given

site, or combination of sites, there is one further criterion that would prevent the source

being observed — whether or not the source is located within any of the tile pointings

added to the database. The issue of determining which tiles to add to the database is

detailed in Section 6.3.3, but is ultimately a matter of probability: if a telescope covers

the 90% confidence region for every gravitational-wave event then it would be expected

to observe 90% of the sources.

GOTO-alert uses the mean contour level method to select tiles, as described in Sec-

tion 7.4.2. For simulations described in this chapter a mean contour selection value of

0.9 was used for the GOTO-4 grid and 0.95 for the GOTO-8 grid. Using these values,

92% of GW events had sources within at least one of the selected tiles for the GOTO-4

grid, and 95% for the GOTO-8 grid. Two events where the source location lay outside

the selected tiles are shown in Figure 9.5. In the following simulation results the tile

selection was only considered after the visibility restrictions in the previous section had

been applied, as the visibility would be true for any telescopes at the relevant sites while

the tiles are specific to GOTO. In other words, if the source location was visible but

was not within the tiles selected by GOTO, this is only GOTO’s problem, and other

telescopes might still have observed it.

In order to find the optimal selection levels, further simulations could be run using the

same sample of skymaps but altering the selection level. As discussed in Section 7.4.2,

there is a trade-off between adding too few tiles and missing the source, and adding too

many and increasing the time to cover them all. Additional telescopes in the GOTO

network would lead to the skymap being covered faster, which could make adding less

probable tiles worthwhile.
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Figure 9.5: Two examples of mock GW event sources (marked by the red star) falling
outside the selected tiles (the tiles highlighted in blue). In the upper case (trigger ID
13630) the source fell just outside of the selected tiles, while in the lower case (trigger
ID 930001) the source was on completely the other side of the sky.
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9.3.3 Multi-telescope simulation results

In order to simulate the response of different GOTO systems, each of the 1105 First Two

Years skymaps (Singer et al. 2014) were simulated using a script sim_skymaps.py. The

object of the simulations was to find how quickly the event source would be observed. For

events that fell into one of the exceptions described previously, either the source was not

visible within 24 hours or the source tile was not selected to be added to the database,

the simulation was aborted early, and the result recorded. The remaining events were

classified as “observable”, and for these the full fake pilot simulation was run for up to 24

hours after the time the event occurred. The fake pilot knew which tiles the event source

fell within, and once any of those tiles were recorded as being observed the simulation

ended. The time of the observation and the alt/az position the tile was observed at

were recorded. Any events which were simulated for the full 24 hours without the source

being observed were counted as failures, and were classed as “not observed”.

Simulations were carried out for a variety of possible GOTO systems. Each simulation

was assigned a code based on how many telescopes of each type were located at each

site. Two possible GOTO “models” were considered: the GOTO-4 prototype with four

unit telescopes and the intended GOTO-8 design with eight (see Section 1.3.2). In the

following section the code 1N4 refers to one GOTO-4 mount on La Palma (the current

system at the time of writing), 2N8+1S4 is two GOTO-8 telescopes on La Palma and

one GOTO-4 in Siding Spring, 2N8+1K4 would be the same but the southern telescope

is at Mt Kent.

The results of the simulations for six key scenarios are given in the following plots:

Figure 9.6, Figure 9.7 and Figure 9.8 show results for the evolving site on La Palma,

while Figure 9.9, Figure 9.10 and Figure 9.11 shows the effect of adding three different

southern facilities. A summary of the key results from all of the simulations that were

carried out is given in Table 9.2.
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Simulation results
Observed 532 48.1%
Not observed 16 1.4%
Not selected 45 4.1%
Never above dec limit 265 24.0%
Not visible at night 118 10.7%
Too close to Sun 129 11.7%

Visible events 593 53.7%

System: 1N4
Observing efficiency 89.7%

Mean delay after 9.96 hevent time
Mean delay after 1.58 hbecoming visible

Mean airmass 1.64

Figure 9.6: Simulation results for a 1N4 system. The pie chart and the table on the
left shows which category each of the 1105 events fell into. “Visible events” include only
the top three categories, and the “observing efficiency” is the fraction of these events
which were subsequently observed. The table on the right gives the mean delay and
airmass of the source observation, for events where the source was observed.

Simulation results
Observed 553 50.0%
Not observed 12 1.1%
Not selected 29 2.6%
Never above dec limit 285 25.8%
Not visible at night 85 7.7%
Too close to Sun 141 12.8%

Visible events 594 53.8%

System: 1N8
Observing efficiency 93.1%

Mean delay after 10.06 hevent time
Mean delay after 1.60 hbecoming visible

Mean airmass 1.66

Figure 9.7: Simulation results for a 1N8 system. Note the distribution of events
changes due to the different grid used, and the biggest gain in events observed is from
the decreased number of events with sources not included in the selected tiles.

Simulation results
Observed 557 50.4%
Not observed 8 0.7%
Not selected 29 2.6%
Never above dec limit 285 25.8%
Not visible at night 85 7.7%
Too close to Sun 141 12.8%

Visible events 594 53.8%

System: 2N8
Observing efficiency 93.8%

Mean delay after 9.89 hevent time
Mean delay after 1.53 hbecoming visible

Mean airmass 1.67

Figure 9.8: Simulation results for a 2N8 system. The improvements over the 1N8
system are a small gain in observing efficiency and a decrease in the mean delay time.
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Simulation results
Observed 822 74.4%
Not observed 17 1.5%
Not selected 71 6.4%
Never above dec limit 0 0.0%
Not visible at night 70 6.3%
Too close to Sun 125 11.3%

Visible events 910 82.4%

System: 2N8+1S4
Observing efficiency 90.3%

Mean delay after 8.16 hevent time
Mean delay after 1.66 hbecoming visible

Mean airmass 1.63

Figure 9.9: Simulation results for a 2N8+1S4 system. As these sites use different grids
they were simulated independently and the results combined.

Simulation results
Observed 839 75.9%
Not observed 8 0.7%
Not selected 47 4.3%
Never above dec limit 0 0.0%
Not visible at night 70 6.3%
Too close to Sun 141 12.8%

Visible events 894 80.9%

System: 2N8+2S8
Observing efficiency 93.8%

Mean delay after 7.69 hevent time
Mean delay after 1.57 hbecoming visible

Mean airmass 1.64

Figure 9.10: Simulation results for a 2N8+2S8 system. The obvious improvement over
the northern hemisphere-only 2N8 system (Figure 9.8) is the removal of the declination-
limited events, meaning more event sources are visible. The observing efficiency remains
the same, but there is a notable improvement in the post-event delay times.

Simulation results
Observed 828 74.9%
Not observed 11 1.0%
Not selected 48 4.3%
Never above dec limit 0 0.0%
Not visible at night 77 7.0%
Too close to Sun 141 12.8%

Visible events 887 80.3%

System: 2N8+2K8
Observing efficiency 93.3%

Mean delay after 7.69 hevent time
Mean delay after 1.55 hbecoming visible

Mean airmass 1.64

Figure 9.11: Simulation results for a 2N8+2K8 system. Comparing to Figure 9.10 it
makes very little difference to the results if the southern site is at Siding Spring or Mt
Kent, when compared to the huge gain from having either available instead of just La
Palma (Figure 9.8).
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System Source observed within . . . Observing Mean delay after . . .
1h 6h 12h 24h efficiency the event becoming visible

1N4 5.9% 16.5% 26.2% 48.1% 89.7% 9.96 h 1.58 h
1N8 6.8% 16.9% 27.1% 50.0% 93.1% 10.06 h 1.60 h
2N8 7.2% 17.3% 27.9% 50.4% 93.8% 9.89 h 1.53 h

1S4 8.8% 18.8% 27.9% 47.1% 87.7% 9.39 h 1.64 h
1S8 10.3% 20.6% 31.1% 49.2% 91.0% 8.81 h 1.52 h
2S8 11.1% 21.2% 31.8% 49.9% 92.1% 8.67 h 1.47 h

2K8 10.8% 20.9% 31.3% 50.9% 92.3% 9.02 h 1.46 h

1N4+1S4 14.7% 34.9% 48.9% 71.5% 89.6% 7.99 h 1.64 h
1N8+1S8 17.1% 36.8% 52.5% 74.8% 92.5% 7.82 h 1.63 h
2N8+1S8 17.6% 37.2% 52.9% 75.2% 93.0% 7.75 h 1.59 h
2N8+2S8 18.4% 37.7% 53.8% 75.9% 93.8% 7.69 h 1.57 h

2N8+2K8 18.2% 38.0% 52.8% 74.9% 93.3% 7.69 h 1.55 h

2N8+1S4* 16.0% 35.7% 50.3% 74.4% 90.3% 8.16 h 1.66 h
2N8+1S8* 17.6% 37.2% 53.0% 75.2% 93.0% 7.76 h 1.60 h
2N8+2S8* 18.4% 37.7% 53.7% 75.9% 93.8% 7.70 h 1.58 h

Table 9.2: Summary of simulation results. The fraction of events where the source
was observed is given for different time delays after the event, along with the overall
observing efficiency after 24 hours. The mean delay between the event and the source
being observed is given, along with the mean time it took to observe the source tile after
it became visible. Systems marked with an asterisk (*) were not simulated together, but
were instead combined from the individual simulations for each site.
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Figure 9.12: Post-event delay in observing gravitational-wave event sources for six
possible deployment stages of the GOTO system.

9.3.4 Analysis of simulation results

The results of the gravitational-wave follow-up simulations support two conclusions: the

addition of the southern site provides a huge benefit to the number of sources that can be

observed, while adding further telescopes at a single site provides a much more modest

benefit. Figure 9.12 summarises the simulated post-event delay times for the different

possible stages of GOTO deployment.

The reason for the first conclusion is obvious: adding a site in the southern hemisphere

opens up a large number of sources that are physically incapable of being observed from

La Palma. The second comes about essentially because the efficiency of a single GOTO

system is already very high. Figure 9.7 shows that the 1N8 system already observes

93.1% of all sources visible from La Palma, and the majority of those not observed were

outside of the selected tiles (29 events) compared to just not being observed (12 events).
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The addition of the second GOTO-8 system, as shown in Figure 9.8, moves just 4 events

from “not observed” to “observed”; adding a second telescope can not make any changes

to any of the other categories. The mean delay time does decrease, but again only by a

small amount.

The above conclusions are perhaps most visible by comparing the results in Table 9.2

for the 2N8 system to the 1N8+1S8 system, where there is a clear increase in the number

of sources observed within 24 hours (from 50.4% to 74.8%). Therefore, based on these

metrics alone, it would be far better to prioritise deploying a second mount in Australia

before adding another on La Palma. There are numerous practical reasons why this is

not the priority of the collaboration, and Section 9.4 illustrates that multiple telescopes

at a single site are much more important to the all-sky survey cadence (which in practice

would benefit the counterpart search by producing more recent reference images).

Regarding the choice of southern site, there is very little difference between results

for Siding Spring and for Mt Kent. Comparing the 2S8 and 2K8 simulation results in

Table 9.2 shows that Mt Kent has a small advantage in terms of the number of events

observed, but Siding Spring has a lower mean delay time. Overall, there is no real

difference between the two sites, and in most cases the “S” simulations are considered

as representative of either site.

Another factor to emerge from these simulations is the difference between two inde-

pendent systems in each hemisphere verses one combined system that uses a common

database. This emerged as important as it was desired to simulate the 2N8+1S4 system,

as a plausible future stage of GOTO’s deployment. As considered in Section 9.2.3, the

simulations require all telescopes to be observing using the same grid, as otherwise it

is impossible at this time to share the common tiles between them. However, it was

possible to consider the two cases, 2N8 and 1S4, separately as independent simulations,

and then combine the results. For the event counts the logic is fairly straightforward: if

an event is observed by either site (or both) it counts as being observed. In cases where
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the event source was observed by both sites independently, only the earlier observation

is considered. Using this method the results shown in Figure 9.9 were derived. The same

method could also be used in situations where the two sites could be simulated together;

for example, comparing the 2N8+2S8 simulation to the combined results of the 2N8 and

2S8 simulations, given as 2N8+2S8* in Table 9.2. The same events fell into the same

categories as shown in Figure 9.10, and the only difference is a small increase in the delay

time when the sites are not simulated together. For large skymaps with tiles within the

shared area of the sky visible from both sites (roughly ±30° declination) one site can

complete observations of the region even if it can not see the source, meaning that once

the other telescope opens and starts observing, a large area of the skymap that does not

contain the source has already been excluded. This is only the case when both sites are

observing using a shared database, as the second site needs to know what the first site

has already observed.
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9.4 All-sky survey simulations

As described in Section 1.3.1, carrying out the all-sky survey is just as critical to the

GOTO project as the gravitational-wave follow-up operations, as up-to-date reference

images will always be required to detect any counterpart sources. Therefore, in parallel

to the gravitational-wave simulations, further simulations were carried out in order to

quantify what benefit additional telescopes and sites will have on carrying out the all-

sky survey. It was also an opportunity to consider different sky survey methods before

implementing them in the real scheduling system. Unlike the gravitational-wave simu-

lations, it is also possible to compare the simulated results for a single GOTO-4 system

on La Palma to the actual observations the live GOTO system has taken since it began

observing the current survey in February 2019.

9.4.1 Simulating sky survey observations

Simulating the all-sky survey is more straightforward than the gravitational-wave simu-

lations, as there is no added complication of processing the LVC skymap or checking the

visibility of the source coordinates. Instead, all that is needed is to fill the observation

database with the sky survey pointings (see Section 4.5.1) and run the fake pilot (see

Section 5.4.1).

The only drawback to this method is the time taken to perform the simulations.

Unlike the gravitational-wave simulations, the sky survey simulation can not be finished

early if the source is not visible, or stopped once the source has been observed. Instead,

the fake pilot needs to simulate the full 24 hours of observations, for however many days

the simulation is run for. The same simplifications detailed previously still apply, so each

loop still skips approximately 4 minutes of simulation time until the observation of each

tile has been completed. A full simulation of a year of observations including both sites

(therefore observing for approximately 20 hours each day) requires 1.1 million steps, and
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with each simulation loop taking approximately 2 seconds of CPU time (the scheduler

check takes the majority of this time), the full simulation takes approximately 60 hours.

This compares to at most 16 hours for the multi-site gravitational-wave simulations.

Due to the full sky-survey simulations requiring a large time investment, only a few

of them could be carried out in the time available. A simplified version of the simulation

code was therefore developed, which could produce the same results much faster. This

‘lite’ script did away with the scheduler and database code, and instead at each step

just finds the highest altitude tiles that have been observed the fewest times. This is a

major simplification of the scheduling functions described in Chapter 5, but the results

are effectively the same, and can be obtained 15–20 times faster. Therefore, a majority

of the simulations discussed in this section use this much faster ‘lite’ script. The other

benefit of this method was making it much easier to modify the scheduling function

to test different surveying methods, as discussed in Section 9.4.5, without needing to

rewrite the actual G-TeCS scheduler.

9.4.2 Multi-telescope simulation results

Sky-survey simulations were carried out for different combinations of GOTO telescopes

and sites, similar to the gravitational-wave event simulations detailed in Section 9.3.

Simulations were run for 365 days starting semi-arbitrarily on the 21st of February 2019,

which was the date that the current ongoing GOTO all-sky survey started on La Palma.

Fewer simulations were carried out when compared to the gravitational-wave simu-

lations. This is partially as they take longer to run, but there were also fewer possible

cases to simulate. It is not possible to combine the results of telescopes observing the sky

survey on different grids, as the results depend explicitly on the grid used. Therefore,

unlike the gravitational-wave simulations, it was not possible to combine a GOTO-8

telescope in the north and a GOTO-4 telescope in the south.
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System Fraction of sky observed No. of times Mean cadence Mean airmass
each night over 1y tiles observed (days) observed

1N4* 4.3%–6.5% 76.5% 26 (13–28) 10.0± 1.8 1.6± 0.4

1N4 4.3%–6.4% 76.5% 26 (13–28) 10.1± 1.8 1.6± 0.3
1N8 9.5%–14.0% 74.2% 58 (34–62) 4.6± 0.7 1.6± 0.4
2N8 19.0%–28.1% 74.2% 117 (68–123) 2.3± 0.4 1.6± 0.4

1N4+1S4 10.5%–11.0% 99.9% 39 (30–42) 7.3± 0.7 1.5± 0.4
1N8+1S8 23.2%–24.1% 99.9% 87 (67–91) 3.4± 0.3 1.5± 0.4
2N8+1S8 33.0%–37.3% 99.9% 130 (98–138) 2.3± 0.2 1.6± 0.4
2N8+2S8 46.3%–48.1% 99.9% 173 (134–180) 1.7± 0.1 1.5± 0.4

2N8+2K8 46.8%–48.3% 99.8% 174 (134–181) 1.7± 0.1 1.6± 0.4

Table 9.3: Summary of all-sky survey simulation results. The first 1N4 simulation,
marked with an asterisk (*), was the only one carried out using the full scheduler and
database system; all the other simulations used the ‘lite’ script. The fraction of the sky
observed each night is given as a range over the course of a year, as well as the total
fraction of the sky observed over the whole year. The number of times each tile was
observed is given as an average over all tiles observed and, in parenthesis, the minimum
and maximum. The mean cadence between observations of each tile is also given, along
with the mean airmass of each observation, over the whole year.

The results of the sky-survey simulations are given in Table 9.3. Figure 9.13 shows

the final tile-coverage map for the 1N4 system, in which each tile in the GOTO-4 grid is

coloured by the number of times it was observed. Figure 9.14 shows the same information

for the final 2N8+2S8 system.

9.4.3 Analysis of simulation results

The results of the all-sky survey simulations show, as expected, that the greatest benefit

to the survey cadence comes from increasing the number of telescopes at each site.

Figure 9.15 plots the change in mean cadence and fraction of the sky observed each

night for the planned stages of GOTO deployment.

The improvement in tile observation cadence roughly follows the expected trend
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Figure 9.13: All-sky survey simulation coverage map for a 1N4 system, as currently
deployed on La Palma. Tiles are coloured by the number of times they were observed
over the 365 simulated nights. Tiles in white are those not visible from the northern
site.

Figure 9.14: All-sky survey simulation coverage map for a 2N8+2S8 system, the
ultimate design goal of the GOTO collaboration. Note the colour scale has changed
from Figure 9.13, the grid has changed to the GOTO-8 tiles and the region which was
previously not visible from just the north has been filled in.
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Figure 9.15: Mean tile cadence (blue) and fraction of the sky observed each night
(red) for five deployment stages of the GOTO system. Error bars on the cadence show
the standard deviation for all of the tiles observed across the sky, while the error bars on
the observed fraction show the minimum and maximum nightly observed fraction arising
from differing night lengths throughout the year.

that doubling the instantaneous field of view would double the number of observations

carried out in one night, and therefore halve the time between observations of a given

tile. With the current GOTO-4 system (1N4) the simulations predict approximately 10

days between tile observations, reducing to approximately 5 days with the upgrade to

the full GOTO-8 system (1N8) and then halving again to 2.5 days with the addition of

the second GOTO-8 telescope on La Palma (2N8). Adding a single GOTO-8 telescope

in Australia (2N8+1S8) leaves the tile cadence effectively unchanged. Adding a site in

Australia increases the total amount of the sky that is visible over the year from roughly

75% to almost 100%, an increase of one third, and adding one more GOTO-8 telescope

in the south corresponds to a one third increase in observing capability. Therefore the

overall efficiency remains the same as in the 2N8 case. Adding the second telescope

in Australia correspondingly decreases the cadence further; as this increases the overall

instantaneous field of view by one third, the cadence is reduced by a third, from 2.5 to

1.66 days.
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As also shown in Figure 9.15, the increase in the fraction of the sky observed each

night as more telescopes are added is fairly linear. The variation over the course of the

year, shown by the error bars, comes from seasonal variation in the length of the night;

the variation increases as more telescopes are added in the north but is then reduced to

effectively zero with equal numbers of telescopes in both hemispheres.

Together, the sky-survey simulations confirm that having more telescopes decreases

the survey cadence, as would be expected. Having a fast all-sky survey is critical for

rapidly detecting candidate sources to gravitational-wave events, so it is necessary to

consider the results of both sets of simulations together. Counter to the conclusions

from Section 9.3, the simulations in this section suggest it would not necessarily be best

to prioritise adding a telescope in the south compared to adding a second telescope in

the north. While going from the 1N8 case to the 2N8 case makes very little difference to

the number of gravitational-wave events that can be observed, it would halve the survey

cadence from 4.6 days to 2.3, thereby making it far easier to identify candidates for the

events which are visible. The decision of what order to deploy the GOTO telescopes

therefore will come down to more practical considerations. Having any telescopes in the

southern hemisphere will increase the number of possible gravitational-wave sources that

could be observed, but without a high-cadence sky survey identifying the counterpart

will be much more difficult.

Overall, the two sets of simulations together suggest that the proposed full GOTO

network, the “2N8+2S8” system, should expect to observe the position of over 75% of

gravitational-wave sources within 24 hours, and over 50% within 12 hours. On aver-

age there should be a reference image taken of the same position within the past 1.7

days, which will greatly help in narrowing down potential candidates. When fully de-

ployed, GOTO would therefore be a powerful system for rapidly finding counterparts to

gravitational-wave detections.
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9.4.4 Comparison of simulations to real observations

The results of the 1N4 simulation can be compared to the real observations carried out

by the existing telescope on La Palma, in order to confirm how good a model it is of the

real system. The current phase of the GOTO project began on the night of the 21st of

February 2019 (see Section 8.2.1); this was the first night of fully robotic observations

with the set of four unit telescopes, and marks the start of the ongoing all-sky survey.

The first 5 months of observations span 150 days up to the night ending on the 21st of

July, and this provides the benchmark to compare with simulations of the same period.

Figure 9.16 shows the number of tiles observed each night by the real GOTO on La

Palma and the corresponding 1N4 simulation, restricted to the first 150 days. Over the 5-

month period, 16,146 on-grid observations were carried out by the telescope on La Palma,

of which 85% were survey pointings, and over the same period the simulation produced

21,300 observations. The simulated observations can be considered the idealised case,

and the real observations carried out differ from simulation in three ways.

First, the real system on La Palma is affected by bad conditions which prevent

observations from being taken, shown in Figure 9.16 by the red and purple bars below

the main plot. There was one particularly bad period in late March and early April when

the dome could not open for over a week. The simulations do not currently include the

effects of bad weather, although the code exists to simulate periods of bad conditions,

and future simulations could include the real weather conditions over the same period.

There were also other reasons for observations to be stopped on some nights, for example

switching to manual mode to carry out calibration tests or on-site work.

Secondly, the real system had to deal with multiple distractions from observing the

all-sky survey. The orange bars in Figure 9.16 show non-survey observations, which

take up a significant amount of time (15% of all observations). Some nights are al-

most entirely orange, corresponding to LVC gravitational-wave triggers with particu-
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Figure 9.16: Observations carried out in the first 150 days of the current all-sky
survey. The number of observations each night is shown in the upper plot, with the
number of all-sky survey tiles observed shown in blue, and any extra observations (of
gravitational-wave events, GRB triggers or manually-inserted pointings) shown in or-
ange. The background grey bars show the number of tiles observed on the same nights
by the 1N4 survey simulation. The lower “barcode” plot shows the periods when the
conditions flags were recorded as bad, either due to weather (red) or hardware errors
(purple).
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larly large skymaps visible from La Palma (see Section 10.1.2). These include S190425z

and S190426c in late April, multiple events during May and S190720a just before the

end of the period in mid-July. Other orange patches represent observations of smal-

ler gravitational-wave skymaps, gamma-ray burst triggers, or other manually-inserted

targets; these were also not considered in the sky-survey simulations.

Finally, there is still a regular offset in Figure 9.16 between the number of real

observations taken in nights with clear conditions and the number predicted by the

simulations. This discrepancy is due to the values used within the simulation for camera

readout and slew time not matching up precisely with the actual times; future simulations

will need to be calibrated more accurately against real data.

Figure 9.17 shows the sky coverage map for the real observations in the first 150

days, while Figure 9.18 shows the same for the 1N4 simulation. The real sky coverage

is very similar in extent to the simulations: the real observations cover 2135 of the 2913

GOTO-4 grid tiles at least once while the simulation covers 2187. The reason for the

small discrepancy is that initially the real system used an altitude limit of 35° for the

all-sky survey, which was lowered to 30° in May. This change is visible in the bottom

row of tiles in Figure 9.17. The simulations all assume a constant 30° limit.

The major difference in the coverage between the real and simulated results is in

the number of times each tile was observed. Figure 9.17 shows the most a real tile was

observed was nine times, while Figure 9.18 shows that the simulated results included

up to 13 observations of a single tile. The mean tile cadence of the real observations is

14± 4, compared to 10± 2 from the 1N4 simulation. It is clear that future simulations

need to take into account the time lost to weather and other non-survey observations in

order to accurately predict the output of the real system. Overall though, aside from the

constant offset visible in Figure 9.16, the simulations do seem to provide a reasonable

approximation of what GOTO could observe in this idealised case.
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Figure 9.17: Real all-sky survey map of observations over the first 150 days, from
21st February to 21st July 2019. Tiles are coloured by the number of times they were
observed during this period (the most a single tile was observed was 9 times), and white
tiles were never observed.

Figure 9.18: Simulated 1N4 all-sky survey map of observations over the first 150 days,
using the same scale as Figure 9.17 above. Compare to Figure 9.13 for the coverage over
the entire 1-year simulation.
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9.4.5 An alternative, meridian-limited sky survey method

One of the problems with the current scheduling system for the all-sky survey is that

it leads to observations being carried out at high airmasses. Due to how the scheduler

ranks tiles (see Section 5.2), when all of the visible survey tiles have been observed the

same number of times the scheduler will then choose between them based on the airmass

tiebreak parameter (unlike tiles linked to skymaps, all survey tiles have equal weights,

so the tiebreaking algorithm developed in Section 5.3 is simplified). This results in the

scheduler always selecting tiles as soon as they rise if they have been observed fewer

times than any others currently visible, and this means survey tiles are often observed

at low altitudes and therefore high airmasses — leading to poor data quality.

One possible method to fix this problem, and improve the data quality, is to imple-

ment stricter limits when observing survey tiles. This should not be based on altitude

or airmass, because that would exclude tiles close to the site declination limits (such

as near the north celestial pole from La Palma) which could never rise above the limit.

Instead, observations should be limited based on distance from the observer’s meridian,

which in practice limits the target’s hour angle. Limiting observations by hour angle

defines a strip surrounding the observer’s meridian within which survey tiles are valid

and outside of which they are not.

In order to see the consequences of this method several simulations were carried out

using the 1N4 system, but modified to limit the hour angle of each target. The results of

the simulations are given in Table 9.4, for different hour angle limits and the unlimited

case for comparison. Figure 9.19 shows the change in distribution of airmasses between

the existing unlimited method and when restricting observations to a 20° wide strip

(±10°) around the observer’s meridian. Figure 9.20 shows the mean airmass each tile

is observed in the first month of a survey using the existing method, while Figure 9.21

shows the same thing but for a simulation using the hour angle limit.
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Survey Fraction of sky observed Mean cadence Mean observed
method 1st month whole year (days) airmass

Meridian ±5° 39.4% 76.5% 6.2± 0.5 1.2± 0.2
Meridian ±10° 41.3% 76.5% 6.6± 0.7 1.2± 0.3
Meridian ±30° 48.5% 76.5% 7.9± 0.8 1.3± 0.3
Meridian ±45° 53.3% 76.5% 8.8± 0.9 1.3± 0.3

No limit 57.0% 76.5% 10.1± 1.8 1.6± 0.3

Table 9.4: Comparison of 1N4 survey simulations using different meridian limits.

By restricting observations to be closer to the observer’s meridian the mean airmass

of the observations is decreased, as expected. This is shown by the mean airmasses in

Table 9.4 but is even clearer in the distributions shown in Figure 9.19. The optimal

value of the hour angle limit will depend on several factors, including the number of

telescopes being used (as the instantaneous field of view increases, the tiles within the

meridian strip will be observed faster, and so the hour angle limit should be increased).

A side effect of this method is that, as the width of the meridian strip is decreased

and the effective visible sky is reduced, each tile within the strip is observed more often,

and therefore the mean cadence decreases. However, this also restricts the overage

area and leads to fewer unique tiles being observed, as shown in Figure 9.21. From

Table 9.4 the fraction of sky observed within a single month reduces from almost 60%

using the unlimited method to below 40% with the strictest hour angle limit. This would

have a knock-on effect on the effectiveness of the sky survey, as although lower-airmass

observations are desirable, so are more recent observations of the tiles for difference

imaging. In practice it might be necessary to have two concurrent surveys, one optimised

for minimum airmass and the other optimised for cadence.
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Figure 9.19: Airmass distribution over a year of observations with the 1N4 system,
for the normal unlimited case (left) and limited to the observer’s meridian ±10° (right).

Figure 9.20: Mean observation airmasses for the first month of the 1N4 survey simu-
lation, with no hour angle limit.

Figure 9.21: Mean observation airmasses for the first month of a survey using the
meridian scanning method, restricting observations to tiles within ±10° of the observer’s
meridian. Using the hour angle limit it possible to optimise the airmass of observations,
but at the cost of sky coverage.
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9.5 Summary and Conclusions

In this chapter I exampled different possible expansion options for the GOTO project,

and their effect on the core science.

The intention of the GOTO project has always been to include two complimentary

sites in the northern and southern hemispheres, La Palma was he natural choice for the

north and a second site in Australia would provide an ideal counterpart. The intention

is to have four telescopes in total, two at each site, and all four will operate together as a

single global observatory. The core G-TeCS control software outlined in Chapter 3 and

Chapter 4 can be fairly easily duplicated for each system, but in order to achieve optimal

coordination between the sites the G-TeCS scheduling system detailed in Chapter 5 will

need to be expanded to schedule all the active telescopes at once. This is given as a

major area of future work in Chapter 10.

In order to examine different possible GOTO configurations, and to make the case for

the full deployment described above, I carried out two major series of simulations. The

first focused on the combined system’s ability to follow-up gravitational-wave alerts, and

determined that expanding to the southern hemisphere provides a large improvement to

the ability to observe counterparts — purely by allowing more of the sky to be surveyed.

The second set of simulations made the case for hosting two telescopes at each site, as

only then will the fast cadences required to reject candidates be achieved. Together the

full proposed GOTO system, four 40 square degree field of view mounts located across

the two sites, will be a world-leading facility, able to observe the entire visible sky every

1–2 days and provide the best chance to locate and identify optical counterparts to future

gravitational-wave detections.
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10.1 Summary and Conclusions

In this thesis I have described my work as part of the GOTO project, primarily working

on the control software in order to create a fully-autonomous robotic telescope. After

several years of development and commissioning the prototype GOTO telescope is fully

operational, and observing from La Palma most nights with no human interaction.

10.1.1 Telescope control

The core of my work has been the GOTO Telescope Control System (G-TeCS), a Python

software package that controls every aspect of the telescope. The hardware control

daemons interface with the dome, mount and cameras (see Chapter 3) while the “pilot”

master control program and its associated systems allow the telescope to function with

no human involvement (see Chapter 4). GOTO has now been operating successfully

for years with the pilot in full control. The conditions monitoring systems have proven

robust enough to trust the dome to close in bad weather, and when the occasional

unexpected hardware issues do occur the pilot recovery systems can fix the problem and

resume observing in the majority of cases, often before a human even has time to log in.

Of course, commissioning was not entirely without incident, as described in Chapter 8.

However all of the software challenges were overcome, and the majority of the delays to

GOTO were due to hardware faults which were out of my purview.

Each set of exposures taken with the G-TeCS camera daemon are assigned an in-

cremental run number. From the initial installation in the summer of 2017 up until

September 2019, GOTO had taken over 185,000 such exposure sets, and produced many

tens of terabytes of data. The current all-sky survey that began in February 2019 has

almost completely covered the northern sky, and at the time of writing the GOTO

photometry database contains approximately 642 million sources from almost 500,000

individual frames taken since the start of the survey.
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10.1.2 Scheduling and alert follow-up

As outlined in Section 3.2.1, GOTO needed an observation scheduling system that could

deal with both the survey and gravitational-wave follow-up modes. The scheduler used

by G-TeCS is a just-in-time system (see Chapter 5), where the highest priority target is

recalculated every time the scheduler is called. This makes it very reactive to transient

alerts, which was a requirement of the project.

As previously detailed in Section 1.1.3, in the first 5 months of the third LIGO-Virgo

observing run (O3) 32 gravitational-wave events were detected, all predicted to come

from compact binary mergers. These events are listed in Table 10.1. Of the 32 alerts

7 were ultimately retracted by the LVC, leaving 25 real events, and only three of these

(S190425z, S190426c and S190814bv) are thought to have originated from sources that

could produce visible optical counterparts (binary neutron stars or neutron star-black

hole binaries). However, events are currently infrequent enough for GOTO to react to

all of them, even if there was a very low chance of there being a visible counterpart.

The G-TeCS sentinel received and reacted to every one of these alerts. In a few cases

the event handler initially failed to process the VOEvent or the skymap, as described

in Section 8.3.4; this was usually due to a problem on the LVC end, and, after each

time, changes were made to the GOTO-alert code to work around the problem should

it happen again. For every alert the sentinel received the VOEvent packet and passed

it to the event handler code as described in Chapter 7, which added pointings to the

observation database which could then be observed by the pilot (see Chapter 4). Details

of GOTO’s reaction to every event are given in Table 10.2. Observations were taken for

25 of the 32 events; of the remaining seven events four were received during the day on

La Palma and were then retracted before sunset, meaning the pointings were deleted

from the database, and the last three events had no part of the skymap visible from La

Palma.



Chapter 10: Conclusions and Future Work 305

GW signal Source Dist. 90% area False Alarm
Event detection time Classification (Mpc) (sq deg) Rate

S190405ar 2019–04–05 16:01:30 Terrestrial 268 2677 1 per 0.00015 yrs
S190408an 2019–04–08 18:18:02 BBH 1473 386 1 per 1.1× 1010 yrs
S190412m 2019–04–12 05:30:44 BBH 812 157 1 per 1.9× 1019 yrs
S190421ar 2019–04–21 21:38:56 BBH 1628 1443 1 per 2.1 yrs
S190425z 2019–04–25 08:18:05 BNS 156 7461 1 per 69882 yrs
S190426c 2019–04–26 15:21:55 BNS/NSBH/MG 377 1131 1 per 1.6 yrs
S190503bf 2019–05–03 18:54:04 BBH 421 448 1 per 19.4 yrs
S190510g 2019–05–10 02:59:39 BNS 227 1166 1 per 3.6 yrs
S190512at 2019–05–12 18:07:14 BBH 1388 252 1 per 16.7 yrs
S190513bm 2019–05–13 20:54:28 BBH 1987 691 1 per 84922 yrs
S190517h 2019–05–17 05:51:01 BBH 2950 939 1 per 13.4 yrs
S190518bb 2019–05–18 19:19:19 BNS 28 136 1 per 3.2 yrs
S190519bj 2019–05–19 15:35:44 BBH 3154 967 1 per 5.6 yrs
S190521g 2019–05–21 03:02:29 BBH 3931 765 1 per 8.3 yrs
S190521r 2019–05–21 07:43:59 BBH 1136 488 1 per 100 yrs
S190524q 2019–05–24 04:52:06 BNS 192 5685 1 per 4.5 yrs
S190602aq 2019–06–02 17:59:27 BBH 797 1172 1 per 16.7 yrs
S190630ag 2019–06–30 18:52:05 BBH 926 1483 1 per 220922 yrs
S190701ah 2019–07–01 20:33:06 BBH 1849 49 1 per 1.7 yrs
S190706ai 2019–07–06 22:26:41 BBH 5263 825 1 per 16.7 yrs
S190707q 2019–07–07 09:33:26 BBH 781 921 1 per 6023 yrs
S190718y 2019–07–18 14:35:12 Terrestrial 227 7246 1 per 0.9 yrs
S190720a 2019–07–20 00:08:36 BBH 869 443 1 per 8.3 yrs
S190727h 2019–07–27 06:03:33 BBH 2839 152 1 per 230 yrs
S190728q 2019–07–28 06:45:10 BBH 874 105 1 per 1.3× 1015 yrs
S190808ae 2019–08–08 22:21:21 BNS 208 5365 1 per 0.9 yrs
S190814bv 2019–08–14 21:10:39 NSBH 267 24 1 per 1.6× 1025 yrs
S190816i 2019–08–16 13:04:31 NSBH 261 1467 1 per 2.2 yrs
S190822c 2019–08–22 01:29:59 BNS 35 2767 1 per 5.2× 109 yrs
S190828j 2019–08–28 06:34:05 BBH 1946 228 1 per 3.7× 1013 yrs
S190828l 2019–08–28 06:55:09 BBH 1528 358 1 per 685.0 yrs
S190829u 2019–08–29 21:05:56 MG 157 8972 1 per 6.2 yrs

Table 10.1: All 32 detections of gravitational-wave signals made during O3, up to the
end of August 2019. Events in red were ultimately retracted by the LVC. All the given
values are from the latest issued alert and final skymaps. The distance is the peak of
the distribution included in the alert, and the area given is the area contained within
the 90% skymap contour level (see Section 6.3.1).
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Time alert Time of first Time
Event received observation delay Nobs Ntiles Pobs

S190405ar 2019–04–12 15:07:26 (Not observed — Event retracted before becoming visible)
S190408an 2019–04–08 19:02:50 2019–04–09 05:40:39 10.63 h 17 9 22.5%
S190412m 2019–04–12 06:31:39 2019–04–12 20:28:35 13.95 h 36 18 96.1%
S190421ar 2019–04–22 16:26:24 2019–04–23 21:54:59 29.48 h 49 7 10.2%
S190425z 2019–04–25 09:00:56 2019–04–25 20:38:22 11.62 h 306 173 22.6%
S190426c 2019–04–26 15:47:11 2019–04–26 20:38:45 4.86 h 96 49 55.6%
S190503bf 2019–05–03 19:30:15 (Not observed — Skymap not visible from La Palma)
S190510g 2019–05–10 04:21:59 2019–05–10 04:22:55 56 s 7 7 0.2%
S190512at 2019–05–12 18:59:01 2019–05–12 20:53:20 1.91 h 201 19 89.1%
S190513bm 2019–05–13 21:21:51 2019–05–13 21:26:19 4 min 38 7 30.2%
S190517h 2019–05–17 06:26:48 2019–05–17 21:42:06 15.26 h 9 7 15.4%
S190518bb 2019–05–18 19:25:49 (Not observed — Event retracted before becoming visible)
S190519bj 2019–05–19 17:01:40 2019–05–19 20:55:19 3.89 h 139 42 78.7%
S190521g 2019–05–21 03:08:49 2019–05–21 03:09:17 28 s 58 24 44.5%
S190521r 2019–05–21 07:50:27 2019–05–21 22:54:03 15.06 h 90 45 94.0%
S190524q 2019–05–24 04:58:40 2019–05–24 04:59:33 53 s 2 2 14.2%
S190602aq 2019–06–02 18:06:01 (Not observed — Skymap not visible from La Palma)
S190630ag 2019–06–30 18:55:47 2019–06–30 21:14:49 2.32 h 149 75 62.9%
S190701ah 2019–07–01 20:38:06 (Not observed — Skymap not visible from La Palma)
S190706ai 2019–07–06 22:44:31 2019–07–06 22:45:09 38 s 70 35 27.0%
S190707q 2019–07–07 10:13:24 2019–07–07 21:54:47 11.69 h 116 58 41.0%
S190718y 2019–07–18 15:03:13 2019–07–18 21:08:53 6.09 h 135 15 61.5%
S190720a 2019–07–20 00:11:26 2019–07–20 00:11:57 31 s 175 87 83.9%
S190727h 2019–07–27 06:12:02 2019–07–27 21:03:40 14.86 h 94 47 42.4%
S190728q 2019–07–28 06:59:32 2019–07–28 21:29:58 14.51 h 36 9 90.5%
S190808ae 2019–08–08 22:28:00 2019–08–08 22:28:31 31 s 75 31 17.3%
S190814bv 2019–08–14 21:31:44 2019–08–14 22:59:27 1.46 h 141 45 95.4%
S190816i 2019–08–16 13:11:35 (Not observed — Event retracted before becoming visible)
S190822c 2019–08–22 01:37:00 2019–08–22 01:37:30 30 s 17 8 2.9%
S190828j 2019–08–28 06:50:14 2019–08–28 22:38:25 15.80 h 54 27 9.3%
S190828l 2019–08–28 07:17:46 2019–08–28 23:48:38 16.51 h 56 28 2.0%
S190829u 2019–08–29 21:17:14 (Not observed — Event retracted before becoming visible)

Table 10.2: GOTO observation log for O3 events (from Table 10.1). Seven events were
not observed by GOTO (in pink); four were retracted before observations could begin
and three had skymaps never visible from La Palma. The time delay is the delay between
the sentinel receiving the alert and observations beginning (including event processing
and slew time), events with a delay in blue were received during night on La Palma and
had tiles immediately visible. Nobs is the total number of pointings observed by GOTO
for each event, Ntiles is the number of tiles observed within those pointings and Ppbs is
the total contained skymap probability within the observed tiles.
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Figure 10.1: Histogram of the skymap probability covered by GOTO for O3 events.
7 of the 32 events were never observed (see Table 10.2).

Figure 10.2: Histogram of the delay between the GW signal being detected by the
LVC and GOTO commencing observations for O3 events. Events that GOTO did not
observe are excluded. The outlier is S190421ar (due to a delay sending out the alert).
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Figure 10.1 shows the percentage of each event skymap covered by GOTO. These

value will depend on a variety of factors: for a particular event if only a small fraction

of the skymap is covered that might be because of the position of the skymap in the

sky, or a period of bad conditions forcing the dome to close. The coverage level is

relatively even across all the events, once the seven events that GOTO did not observe

are removed. Figure 10.2 shows the delay between the event being detected by the

gravitational-wave detectors (from Table 10.1) and GOTO starting observations (from

Table 10.2). For seven events GOTO was able to start observing less than an hour after

the event was detected. This value includes factors such as the delay between the event

being detected and the LVC releasing their alert, which was the cause for observations

of S190421ar being delayed so long (see Section 8.3.4). For this reason the time delay

between the alert being received by the G-TeCS sentinel and the start of observations

(given in Table 10.2) is a better indicator of the performance of the G-TeCS software.

Eight alerts were received while it was night time on La Palma, and the GOTO-alert

event handling system allowed the pilot to immediately begin observations of the visible

skymap. As shown in Table 10.2, in all but one of the eight cases the first exposure

was started less than 60 s after the sentinel received the alert. The time delay varies

between 28 and 56 seconds, primarily depending on how far the mount had to slew from

its previous target. Of the remaining ∼25 s delay, a significant amount is due to having

to download the LVC skymaps, with the rest due to various small delays in the event

handler, sentinel and pilot, such as the pilot needing to wait up to 10 s for the next

scheduler check (see Section 4.3.2). Future optimisation could potentially reduce these

delays further. The one exception was event S190513bm, which was immediately visible

but observations were delayed by 4 minutes. At the time the alert was received the pilot

was already observing a pointing from the S190512at event received the previous day;

as both events were black hole binaries they were inserted at the same rank, and, as

detailed in Section 5.2.3, equal-rank ToO pointings will not interrupt each other, so the
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Post-detection Probability Area covered 5σ limiting GOTO
Event time delay covered (sq deg) magnitude GCN

S190425z 12.3 h 22.6% 2857 g = 20.1 24224 [1]

S190426c 5.3 h 55.6% 841 g = 19.9 24291 [2]

S190814bv 1.8 h 95.4% 811 g = 18.9 25337 [3]

Table 10.3: GOTO follow-up results for three key O3 events.

new pointing had to wait until the previous one was completed. In all other cases the

pilot was observing a lower-rank target, usually a survey tile, which was immediately

aborted when the scheduler check returned the ToO gravitational-wave pointing.

The three events that were the most likely to have a potential electromagnetic coun-

terpart (originating from either a binary neutron star or neutron star-black hole binary)

were S190425z, S190426c and S190814bv. The GOTO response to each was reported in

a public GCN Notice, and the key values are given in Table 10.3.

S190425z was the second detection of gravitational waves from a binary neutron star

after GW170817 (LIGO Scientific Collaboration and Virgo Collaboration 2019a). Unlike

GW170817 however, the signal was only detected by a single detector, LIGO-Livingston

(LIGO-Hanford was offline at the time, and while Virgo did detect a signal it was below

the valid signal-to-noise threshold). This resulted in a very large initial skymap, shown

in Figure 10.3, with a 90% contour area of 10,183 square degrees. Many other projects

aside from GOTO followed-up this event, and the Zwicky Transient Facility (ZTF) efforts

were described in Section 1.2.2. Unfortunately a large portion of the skymap was located

behind the Sun at the time and was therefore unobservable (on the right of Figure 10.3).

The alert was received at 09:00 UTC, a few hours after GOTO had closed in the morning,

meaning observations from La Palma could not begin for just over 12 hours until sunset

that evening. The final skymap reduced the search area to 7,416 square degrees but
[1] Steeghs et al. (2019a)
[2] Steeghs et al. (2019b)
[3] Steeghs et al. (2019c)
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Figure 10.3: GOTO follow-up observations of GW event S190425z (Steeghs et al.
2019a). The tiled observations are shown in blue over the initial skymap. Compare to
Figure 1.10, which shows ZTF’s coverage of the same event.

shifted the probability even further into the unobservable region of the sky, meaning in

the end GOTO only covered 22.6% of the final probability.

190426c was detected just 31 hours after S190425z (LIGO Scientific Collaboration

and Virgo Collaboration 2019a). This meant that on the night of the 26th GOTO was

completing both the first pass of the 190426c tiles and the second pass of the S190425z

tiles which had been first observed the previous night. The initial 190426c skymap and

the tiles observed are shown in Figure 10.4. This time event was detected by all three

detectors; the initial skymap had an area of 1,932 square degrees, and changed very little

in the final skymap. The skymaps from the two events also did not overlap. Following-up

two events at once had been considered in the design of the G-TeCS scheduling system

(described Chapter 5), and as planned GOTO alternated between the two as tiles were

observed (therefore lowering the effective rank as described in Section 5.2.2).

The latest event with a high chance of an optical counterpart was S190814bv (LIGO

Scientific Collaboration and Virgo Collaboration 2019d), the first confirmed detection of

gravitational waves from a neutron star-black hole binary. As shown in Table 10.1 several
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Figure 10.4: GOTO follow-up observations of GW event S190426c (Steeghs et al.
2019b). The tiled observations are shown in blue over the initial skymap.

other binary neutron star and neutron star-black hole binary events have been detected

but have since been retracted. The initial skymap only included the contribution from

the LIGO-Livingston and Virgo detectors, it covered 772 square degrees and is shown

in Figure 10.5. A few hours later a revised skymap including LIGO-Hanford data was

released, which reduced the 90% contour region to just 38 square degrees. Unfortunately

due to an error in how the LVC uploaded the skymap this was not immediately processed

by GOTO (see Section 8.3.4). The lower plot of Figure 10.5 shows the GOTO tiles over

the final skymap, and although a portion was below the observable horizon from La

Palma GOTO still covered 95.4% of the probability in just 5 pointings. The Moon was

full at the time, hence the worse limiting magnitude in Table 10.3.

No electromagnetic counterparts were found for any of the three events, either by

GOTO or other projects. But the G-TeCS follow-up code has proven to be fast and

reliable, and GOTO will continue to follow-up LIGO-Virgo alerts. Based on the time

from previous alerts, if, or when, another GW170817-like event is detected GOTO could

potentially be observing the counterpart within seconds of the alert being received.



Chapter 10: Conclusions and Future Work 312

Right ascension 

D
e
cl

in
a
ti

o
n

Figure 10.5: GOTO follow-up observations of GW event S190814bv (Steeghs et al.
2019c). In the upper plot the tiled observations are shown in blue over the initial
skymap. The final skymap for this event is shown in the lower plot, with the seven
GOTO tiles needed to cover the 90% probability region. The two tiles in red were
below the local horizon and so were not observed.



Chapter 10: Conclusions and Future Work 313

10.2 Future work

This thesis only details the beginning of the GOTO project, and the work described will

need to be continued and built upon as the project expands in the future.

10.2.1 The global control system

Stage 1 of the GOTO project, the first mount and four unit telescopes, is currently

observing from La Palma. The obvious direction of future work will be adapting and ex-

panding G-TeCS in order to match the expansion of GOTO, as described in Section 1.3.4.

Stage 2

Adding the second set of four unit telescopes to the existing mount on La Palma should

require nothing more than a few configuration changes to handle the new interface dae-

mons. On the scheduling side, the observation database will need to be reset with a

new all-sky grid, based on the GOTO-8 field of view instead of the existing GOTO-4

tiles (see Figure 1.13). As each tile will cover a larger area, the tile selection algorithm

described in Section 6.3.2 might need to be adjusted, and some of the observing strategy

detailed in Chapter 7 could be revisited. Otherwise, no major changes are anticipated

to be required, and the pilot should be able to resume observations immediately.

Stage 3

The addition of the second mount in the second dome on La Palma will require more

control system development. With two telescopes of the same design it should be simple

to copy the hardware control daemons, and some systems could be shared between the

two domes (for example, there is no need to have two conditions daemons both monitor-

ing the same weather masts). A proposed system diagram is shown in Figure 10.6. But,

as described in Section 9.2.1, the great benefit of having two telescopes is having them
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Figure 10.6: Proposed future G-TeCS system architecture for controlling two tele-
scopes at the same site (“Stage 3”). Note that the two pilots share the same scheduler
and conditions daemons but are otherwise independent.

share a common scheduling system. This could be as simple as the system adopted for

the multi-telescope simulations in Chapter 9, marking one telescope as the primary that

always observes the highest-priority pointing and having the other always observe the

second-highest. But in reality the telescopes will never be perfectly in sync, and there

are more benefits to be gained from a more advanced scheduling system.

Just as the current scheduler described in Chapter 5 has to decide what to observe

based on various constraints, the next-generation scheduler will need to optimise which

target is being observed by each telescope. Although several of the constraints will be

the same for both mounts (e.g. the Moon phase or Sun altitude) it is possible that

the two telescopes could have different artificial horizons and therefore altitude limits.

The scheduler tie-breaking system will need to be revised, to account for distributing

pointings to either telescope. One possible parameter to add to decide which telescope

to send a pointing to would be the distance each mount would need to slew from the

current target, and the scheduler could also account for the time left on the current

observations (e.g. telescope 1 might be ready to observe while telescope 2 has 10 seconds

left on the current target; if the difference in slew times to the new pointing is greater
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than 10 s then it would be better to wait for telescope 2 to finish).

The move from one 8-UT mount to two 8-UT mounts should mean the same all-sky

grid can be used, as long as both have the same field of view (see Section 9.2.3 for the

problems inherent in observing with different grids). However, having multiple mounts

opens up opportunities for more advanced observing strategies. They could both observe

different parts of the sky to cover the survey or gravitational-wave skymaps more quickly,

or they could observe the same tiles to achieve a greater depth when the images are

stacked. The simulations in Chapter 9 assumed coverage was the priority, but the future

scheduling system should be designed to allow concurrent observations of the same tiles

if required. The presence of the coloured filters adds even more possibilities. It should

be possible to have the two telescopes observe the same target simultaneously but using

different filters, to get immediate colour information on any sources. It might also be

desirable to accept the impact on survey cadence and have each telescope carry out an

independent survey in different filters, or perhaps have one taking rapid 60 s exposures

while the other surveys the sky more slowly using the meridian scanning method detailed

in Section 9.4.5. The possibilities are endless, and although the ultimate decision will

be made depending on the science requirements of the GOTO collaboration, ideally the

future G-TeCS scheduling system should be able to handle whatever strategy is desired.

Stage 4

The final form of the GOTO project is intended to include multiple telescopes at different

sites across the globe. This is unlikely to happen before the second mount is built on

La Palma, so by the time an Australian site is added the advanced systems described

under Stage 3 above should already be in place, and ideally the next-generation scheduler

should be able to delegate observations to multiple telescopes wherever they are in the

world. There are several existing projects that operate in this manner which GOTO can

emulate, such as the Las Cumbres Observatory (LCO) network (Saunders et al. 2014).
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10.2.2 Continued development

The work described in Section 10.2.1 will be important to carry out as GOTO expands,

but the timescales on which it will be needed will be dictated by the hardware status

of the project. There is still plenty of software development work to do that is less

dependent on the GOTO funding situation.

Pipeline integration

One particular area of importance is better integration between the control system and

the analysis pipeline and candidate marshal described in Section 1.3.3. To achieve a

fully autonomous system, the pipeline should be able to reschedule observations in-

dependently, for example if an image is affected by clouds. More excitingly, a future

transient detection algorithm might be permitted to automatically schedule follow-up

observations of promising candidates.

Unifying scheduler targets

The scheduler system described in Chapter 5 works well for both the all-sky survey

and gravitational-wave follow-up events, as discussed in Section 10.1. However, one

aspect that could be improved is the integration of both roles. For example, observing a

particular tile as part of a gravitational-wave follow-up survey should be counted within

the observation database as an observation of that tile for the all-sky survey as well,

assuming they use the same filter. The GOTOphoto difference imaging pipeline already

looks for reference images for difference imaging in all prior observations of that tile,

regardless of what purpose it was taken for. In other words, observing tiles as part of

a gravitational-wave skymap should also count towards the all-sky survey cadence: the

same tiles are being observed, just in a different order.
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Another proposed addition in the same vein is linking tile observations between

events. It is not uncommon for the same gamma-ray burst event to be detected by

both Fermi and Swift; as described in Section 7.4.1, both alerts are processed by the

GOTO-alert event handler, and the only difference is that Swift events are inserted into

the observation database at a higher rank. This is intentional, as Swift events typically

are very well-localised, easily within a single GOTO tile, while the large skymaps for

Fermi events cover many tiles (see Section 6.4.1). Because of this, if the sentinel detects

an alert from both facilities within a few minutes, and the two skymaps overlap, then

covering the large Fermi skymap should be unnecessary, as the event source should be

given by the much better localised Swift position.

Independent detections of gamma-ray bursts are a common-enough example to test

this behaviour, but where it could be very useful to GOTO is for coincident GRB and

gravitational-wave events. The GW170817 event was notable as being also detected by

Fermi as GRB 170817A (Goldstein et al. 2017), and the LVC is investigating putting

out automated alerts for future coincident GW-GRB events using the RAVEN pipeline

(Urban 2016; LIGO Scientific Collaboration and Virgo Collaboration 2018). Were the

G-TeCS sentinel able to achieve a similar result, simply prioritising GW skymap tiles

that overlap with the GRB skymap, it could reduce the delay before observing the all-

important tile that contains the counterpart kilonova.

Further simulations

The test code written to simulate GOTO observations was a vital tool for optimising the

G-TeCS scheduler (see Section 5.4), and in Chapter 9 it was used to model the benefits

of GOTO’s plans for future expansion. As described in Section 5.4.4, it would be good

to revisit the scheduler simulations with the benefit of subsequent code development and

more-realistic simulation parameters based on the live GOTO system. Other scheduler

simulations have also been proposed, for example to find optimal tile-selection limits for
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gravitational-wave skymaps (see Section 6.3.3). A majority of the future work proposed

in this chapter will also require further simulations, and making the simulation code as

realistic as possible is a priority.

Code generalisation and availability

Another potential future project that is being considered is the generalisation of some

or all of the G-TeCS code, removing the GOTO-specific parts and making it usable by

other projects. For example, the GOTO-tile code for creating survey grids and mapping

skymaps to them described in Chapter 6 is not at all GOTO-specific, and would only

require a small amount to work to rewrite into a separate Astropy-compatible Python

package (probably along with a new name). On a wider scale, the G-TeCS control system

could be adapted for other telescopes. A parallel version is already being used by the

other Warwick telescopes on La Palma, and using G-TeCS is also being considered for

other robotic telescope projects, such as the SAMNET solar telescope network (Erdelyi

2019). Currently all GOTO code is private, restricted only to GOTO collaboration

members. However, if my code was reconfigured to be usable by other projects I would

hope to make it publicly available and open-source.

Overall the GOTO Telescope Control System is still under active development, and

this will continue as the GOTO project evolves. Based on the initial results from O3

the system has been working well and fulfilling its requirements, and it is therefore most

likely only a matter of time until GOTO observes its first gravitational-wave counterpart.
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