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ABSTRACT

I
n this thesis we study three problems on stochastic geometric wave equations. First, we prove
the existence of a unique local maximal solution to an energy critical stochastic wave equation
with multiplicative noise on a smooth bounded domain D⊂R2 with exponential nonlinearity.

The main ingredients in the proof are appropriate deterministic and stochastic Strichartz inequalities
which are derived in suitable spaces.

In the second part, we verify a large deviation principle for the small noise asymptotic of strong
solutions to stochastic geometric wave equations. The method of proof relies on applying the weak
convergence approach of Budhiraja and Dupuis to SPDEs where solutions are local Sobolev spaces
valued stochastic processes.

The final result contained in this thesis concerns the local well-posedness theory for geometric
wave equations, perturbed by a fractional Gaussian noise, on one dimensional Minkowski space R1+1

when the target manifold M is a compact Riemannian manifold and the initial data is rough. Here,
to achieve the existence and the uniqueness of a local solution we extend the theory of pathwise
stochastic integrals in Besov spaces to two dimensional case.
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1
INTRODUCTION

T
his thesis consists of three parts about different problems on stochastic wave equations whose

solutions take values in Euclidean space or in any compact Riemannian manifold. Since the

motivation to study the stochastic non-linear wave equation and the geometric wave equation

with random perturbation is different, we introduce, motivate, and state the main results, that we

prove in this thesis, in the following two sections.

1.1 Stochastic non-linear wave equation

The nonlinear wave equations subject to random forcing, called the stochastic nonlinear wave

equations (SNLWEs), have been thoroughly studied under the various sets of assumptions due to

their numerous applications to physics, relativistic quantum mechanics and oceanography, see for

example [22, 23, 36, 40, 41, 45, 51, 52, 59, 60, 62, 91, 102, 109, 112–114, 116, 119, 121–124, 127, 130]

and references therein. The case that has attracted the most attention so far seems to be of the

stochastic wave equation with initial data belonging to the energy space H 1(Rd )×L2(Rd ). For such

equations, the nonlinearities can be of polynomial type, for instance the following SNLWE

(1.1.1) ∂t t u −∆u =−u|u|p−1 +u|u|q−1Ẇ , s.t u(0) = u0, ∂t u(0) = u1,

with the suitable exponents p, q ∈ [1,∞); see a series of papers by Ondreját [119, 121–124].

Another extensively studied important case is when the initial data is in L2(Rd )×H−1(Rd ) (possibly

with weights), see [127, 130] for more details. Similar problems on a bounded domain have been

investigated in [27, 52, 119].

In the case of deterministic nonlinear wave equations, see for instance [151], the question of

solvability of

(1.1.2) ∂t t u −∆u =−u|u|p−1, s.t u(0) = u0, ∂t u(0) = u1,
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CHAPTER 1. INTRODUCTION

when the initial data belongs to H 1(Rd )×L2(Rd ), has been investigated in the following three cases:

(i) subcritical, i.e. p < pc ; (ii) critical, i.e. p = pc ; (iii) supercritical, i.e. p > pc ,

where

(1.1.3) pc = d +2

d −2
.

In the subcritical and the critical cases, the existence and uniqueness of a global solution has been

obtained, see for e.g. [74] and [142, 143], respectively. Notice that the proofs in the latter work are

based on the so-called “Strichartz inequalities” for the solution of the linear inhomogeneous wave

equation, see [75, 150]. Finally, in the supercritical case, the local and global well-posedness of

solutions remains an important open problem except for some partial results, see for e.g. [32, 93, 94,

100] and references therein.

Let us note that for d = 2 any polynomial nonlinearity is subcritical. Thus, an exponential

nonlinearity is a legitimate choice of a critical one. Nonlinearities of exponential type have been

considered in many physical models, e.g. a model of self-trapped beams in plasma, see [102], and

mathematically in [7, 45, 87, 88, 116]. With the help of suitable Strichartz estimates, the global well-

posedness of the Cauchy problem in the energy space H 1(D)× L2(D), with Dirichlet boundary

condition on a smooth bounded domain D ⊂ R2, has been proved in [88], in the cases when the

initial energy is strictly below or at the threshold given by the sharp Moser-Trudinger inequality.

Moreover, an instability result has been shown when the energy of initial data is strictly above the

threshold. The critical case on a 3-D smooth bounded domain has been considered in [34, 35] where

the authors have proved the existence of a unique global solution to the problem (1.1.2) with Dirichlet

and Neumann boundary conditions when the initial data is in the energy space. It is important to

highlight that in all the works mentioned above regarding the semi-linear wave equation in domain,

the most difficult part in the proof of the local existence result is to establish the required Strichartz

type estimates for the solutions to the wave equation in a smooth bounded domain.

In Chapter 2 we extend the existing studies to the wave equation with exponential nonlinearity

subject to randomness. In this way, we generalise the above mentioned results of Ondreját for two

dimensional domain, by allowing the exponential nonlinearites, as well as the results of Ibrahim,

Majdoub, and Masmoudi, see [87, 88], and others to allow randomness. To be precise, we prove the

existence of a unique local maximal solution to the following stochastic nonlinear wave equation on

a smooth bounded domain D⊂R2,

(1.1.4)

{
∂t t u + Au +F (u) =G(u)Ẇ in [0,∞)×D

u(0) = u0, ut (0) = u1 on D,

where A is either −∆D or −∆N , i.e. −A is the Laplace-Beltrami operator with Dirichlet or Neumann

boundary conditions, respectively; (u0,u1) ∈ D(A1/2)× L2(D); W = {W (t) : t ≥ 0} is a cylindrical

Wiener process on some real separable Hilbert space K such that some orthonormal basis { f j } j∈N of

16



1.1. STOCHASTIC NON-LINEAR WAVE EQUATION

K satisfies

(1.1.5)
∑
j∈N

‖ f j‖2
L∞(D) <∞.

Let H , HA and E be Hilbert and Banach spaces defined as

H := L2(D); HA :=D
(

A1/2) ; E :=D
(

A(1−r )/2
B ,q

)
,

where q ∈ (1,∞); r ∈ [0,1]; B = D, N ; AD,q and AN ,q , respectively, stand for the Dirichlet or the

Neumann−Laplacian on Banach space Lq (D). In (1.1.4), for the nonlinearity F and the diffusion

coefficient G we assume the following hypotheses.

H.1 Assume that

F : HA ∩E → H ,

is a map such that for every M ∈ (0,1) there exist a constant CF > 0 and γ ∈ (0,∞) such that the

following inequality holds

‖F (u)−F (v)‖H ≤CF

[
1+ ‖u‖E

M
+ ‖v‖E

M

]γ
‖u − v‖HA ,

provided

(1.1.6) u, v ∈ HA ∩E and ‖u‖HA ≤ M ,‖v‖HA ≤ M .

H.2 Assume that

G : HA ∩E → γ(K , H),

is a map such that for every M ∈ (0,1) there exist γ ∈ (0,∞) and a constant CG > 0 such that

‖G(u)−G(v)‖γ(K ,H) ≤CG

[
1+ ‖u‖E

M
+ ‖v‖E

M

]γ
‖u − v‖HA ,

provided u, v satisfy (1.1.6).

In particular, F (u) and G(u) are allowed to be of the form u
(
e4πu2 −1

)
, see Lemma 2.4.5, and hence

our results cover the recent results obtained in [88].

The strategy to prove the existence of a unique local solution is first to derive the appropriate

deterministic and stochastic Strichartz inequalities in suitable spaces and, then, apply the Banach

Fixed Point Theorem to obtain the local well-posedness. To construct a maximal solution, by using

the obtained local solutions, we rely on the standard methods, see e.g. [22, Theorem 5.4]. In particular,

we prove the following result, refer Theorem 2.4.10 for the proof,

Theorem 1.1.1. Let us assume that (γ, p, q,r ) is a quadruple such that 0 < 2γ< p and (p, q,r ) satisfy

2 ≤ q ≤ p ≤∞, and r =


5

6
− 1

p
− 2

3q
, if 2 ≤ q ≤ 8,

1− 1

p
− 2

q
, if 8 ≤ q ≤∞.
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CHAPTER 1. INTRODUCTION

Then for every (u0,u1) ∈D(A1/2)×L2(D) satisfying

‖u0‖D(A1/2) < 1,

there exists a unique local maximal mild solution u = {u(t) : t ∈ [0,τ)}, to the Problem (1.1.4), in the

sense of Definition 2.4.8 for some accessible bounded stopping time τ> 0.

We would like to stress that, to the best of our knowledge, the present work is the first one to

study the wave equations in two dimensional domain with an exponential nonlinearity and an

additive or multiplicative noise. We emphasize that result on the stochastic Strichartz estimates

for the wave equations generalises the corresponding results for the Schrödinger equation given

in [22] and [82]. To underline the significance of the stochastic Strichartz estimates let us mention

results by Brzeźniak, Hornung and Weis [17, 18], where such estimates were applied to the nonlinear

Schrödinger equation (NLSE). Moreover, our fixed point argument is also similar to Hornung’s paper

[83] which on the one hand was also inspired by [22] but on the other hand was an improvement to

several older NLSE results.

1.2 Geometric wave equation with random perturbation

Many problems in mathematical physics, for example a simplified model for the Einstein equation

of general relativity [50], and the non-linear σ-models in particle systems [73], require the target

space of the solutions to be a Riemannian manifold. Wave equations whose solutions take values

in a Riemannian manifold are known as geometric wave equation (GWE) and the solutions to GWE

are called wave maps. We ask the reader to refer [144] for a brilliant introduction of geometric wave

equation with comprehensive references.

In brief, given an m-dimensional Riemannian manifold (M , g ), a wave map z : R1+n → M is

critical points of the Lagrangian

L(z) :=
n∑
µ=0

∫
R1+n

〈∂µz(t , x),∂µz(t , x)〉g (z) d t d x,

where 〈·, ·〉g (u) is the inner product on tangent space Tu M induced by metric g , the domain R1+n is

the Minkowski space equipped with the flat metric h = diag[−1,1,1, · · · ,1], and

(∂0,∂1, · · · ,∂n) := (
∂t ,∂x1 , · · · ,∂xn

)
and

(
∂0,∂1, · · · ,∂n)

:= (−∂t ,∂x1 , · · · ,∂xn

)
.

An alternative description of the wave map is a function z :R1+n → M which satisfies the equation

(1.2.1) Dt∂t z(t , x) = Dx∂x z(t , x),

where Dt and Dx are the covariant pull-back derivatives, induced by the Riemannian connection

on M , in the bundle z−1T M . To understand the operators Dt∂t and Dx∂x , called also “acceleration”

operators, in a friendly manner we ask a reader to see [25]. Since by the Nash Theorem, see [115],
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1.2. GEOMETRIC WAVE EQUATION WITH RANDOM PERTURBATION

every Riemannian manifold can be embedded by an isometric embedding into some Euclidean

space Rd , one can identify M with its image in Rd , i.e. we can assume that M is a submanifold of Rd

with the Riemannian metric induced by the flat metric on Rd . Consequently, it is now well known

that the equation (1.2.1) is equivalent to the following classical second order PDE

∂t t z =∆x z − Az (∂x z,∂x z)+ Az (∂t z,∂t z),

where A is the second fundamental form of the submanifold M ⊆Rd . If we choose a local coordinate

chart (U ,φ) on M , then a smooth wave map satisfies the following system of equations, see Chapter 3

for a complete derivation, with k = 1, . . . ,m,

(1.2.2) 2Z k (t , x)+
m∑

a,b=1

n∑
µ=0

Γk
ab (Z (t , x))∂µZ a(t , x)∂µZ b(t , x) = 0,

where Z = φ◦ z, 2 := ∂t t −∆x is the D’Alembertian operator, and Γk
ab : φ(U ) → R, a,b,k = 1, . . . ,m,

are the Christoffel symbols on M in the chosen local coordinate (U ,φ). It is important to observe

that, for the purpose of well-posedness theory, the expression (1.2.2) can only be of use if we seek for

continuous solution z but we will see later that it is in fact the case for us, see Sections 4.3 and 4.4.1

in Chapter 4, and Section 5.5 in Chapter 5.

The most natural problem to consider for GWEs (1.2.2) is the Cauchy problem with the initial

data

Z (0, x) = Z0(x), and ∂t Z (0, x) = Z1(x).

The question that has attracted the most attention of researchers so far is to find the minimum value

of s such that if the initial data (Z0, Z1) ∈ H s(Rn ;Rm)×H s−1(Rn ;Rm), then there exist a number T > 0

and a unique Z such that

Z ∈C(
[0,T ]; H s(Rn ;Rm)

)
and ∂t Z ∈C(

[0,T ]; H s−1(Rn ;Rm)
)

.

The following theorem, which we will use for comparison purposes, summarizes the available local

well-posedness results in the theory of deterministic geometric wave equations, see [92, 96, 98] for

more details.

Theorem 1.2.1 (Local theory for GWE). If n ≥ 2 and s > n
2 , then the GWE (1.2.2) is locally well-posed

for the initial data in H s(Rn ;Rm)× H s−1(Rn ;Rm). For n = 1 case the result has only been proven if

s > 3
4 .

Except for some very special cases the ill-posedness of (1.2.2) has been shown for s < n
2 in [56]

and [153]. We do not comment on the critical case s = n
2 here because it is much more complicated

and not related to the problems considered in the thesis.

It also turns out that a solution to (1.2.2) can exhibit a very complex behaviour including blow ups,

shrinking and expanding bubbles, see for e.g. [8, 101, 136]. In some cases it has also been proven that

the global solutions to GWE eventually decouples into a solution to the associated linear equation
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CHAPTER 1. INTRODUCTION

and a part which does not disperse i.e. behaves like a soliton, see for e.g. [53, 54, 89]. This phenomena

is known as “Soliton Resolution Conjecture” and it is one of the major open problems in the field

of wave equation/map. Various concepts of stability of these phenomena, including the stability of

soliton solutions, have also been intensely studied. It seems natural to investigate the stability of

solutions to the wave maps by investigating the impact of random perturbations and this idea leads

to the following stochastic geometric wave equation (SGWE)

(1.2.3) ∂t t z =∆x z + Az (∂t z,∂t z)− Az (∂x z,∂x z)+Yz (∂t z,∂x z)Ẇ ,

where Y is assumed to be of the following form, for any p ∈ M ,

(1.2.4) Yp (·, ·) : Tp M ×Tp M 3 (v0, v1) 7→ Yp (v0, v1) ∈ Tp M .

The precise definition of the considered noise and the assumptions on Y are provided in Chapters 4

and 5. Note that the equation (1.2.3) is a particular example of the so-called class “stochastic PDEs

for manifold-valued processes” which has attracted a great deal of attention due to its wide range of

applications in the kinetic theory of phase transitions and the theory of stochastic quantization, see

e.g. [12, 15, 16, 23–26, 42, 71] and references therein.

Another motivation for studying equation (1.2.3) comes from the Hamiltonian structure of

deterministic wave equation. Deterministic Hamiltonian systems may have infinite number of

invariant measures and are not ergodic, see the discussion of this problem in [65]. Characterisation of

such systems is a long standing problem. The main idea, which goes back to Kolmogorov-Eckmann-

Ruelle, is to choose a suitable small random perturbation such that the solution to stochastic system

is a Markov process with the unique invariant measure and then one can select a “physical” invariant

measure of the deterministic system by taking the limit of vanishing noise, see for example [55],

where this idea is applied to wave maps. A finite dimensional toy example was studied in [6].

To compare Theorem 1.2.1 with the existing results in the theory of stochastic wave equations

with values in Riemannian manifolds, let us briefly outline the available results from the literature in

the stochastic setting. To the best of our knowledge, SGWEs Cauchy problem have only been studied

in a series of three papers by Z. Brzeźniak and M. Ondreját, see [23, 24, 26]. The first attempt to

study a manifold valued wave equation with stochastic perturbation was made in [23] where authors

proposed two rigorous formulations of the SGWE and proved the equivalence between them. They

were also able to establish, under some technical assumptions on the coefficients, the existence and

the uniqueness of global strong solutions for SGWEs on the one dimensional Minkowski space R1+1

for the initial data (z0, z1) ∈ H 2
loc ×H 1

loc(R;T M), when the target manifold M is an arbitrary compact

Riemannian manifold and the random forcing was modelled by a spatially homogeneous Wiener

process whose spectral measure has finite moment up to order 2.

In the subsequent paper [24] the above mentioned results from [23] were improved in the case

when domain of considered SGWE is restricted toR1+1 but the target manifold is free of any restriction.

Improvement was in the sense that assumptions on the spectral measure of the considered spatially
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homogeneous Wiener process were weaker than in [23] and the regularity of the initial data was

lowered to H 1
loc ×L2

loc(R;T M).

In the final paper [26] the authors proved the existence of a global weak solution of SGWEs, when

the domain Minkowski space is of arbitrary dimension and the target manifold M is a compact

Riemannian homogeneous space. From the stochastic point of view their method was not standard

since it did not rely on any martingale representation theorem. Compared to [23], the assumptions

on the spectral measure and on the space regularity of initial data were weakened but at the cost of

the solution being only H 1
loc ×L2

loc(R1+n ;T M)-valued weakly continuous process.

Hence, by comparing the above paragraph and Theorem 1.2.1, it is quite visible that there is a

huge gap between the optimal results with respect to well-posedness theory for the deterministic

GWE and the results available for SGWE. In Chapter 5 we take a first modest step to fill this gap, in

one dimensional case, to generalize the pioneering work of Keel and Tao [92] to the stochastic setting.

With respect to [23, 24, 26] we extend the study to the GWEs with low regularity initial data and

fractional (both in time and space) Gaussian noise. To be precise, we consider the Cauchy problem in

the following form

(1.2.5)

∂t t z = ∂xx z − Az (∂x z,∂x z)+ Az (∂t z,∂t z)+κ(z)ξ̇,

z(0, x) = z0(x), and ∂t z(0, x) = z1(x),

where (z0, z1) ∈ H s
loc ×H s−1

loc (R;T M), κ : M → T M is any sufficiently smooth vector field, and ξ is a

suitable stochastic perturbation. In a given local coordinate chart (U ,φ) on M , the SGWE Cauchy

problem (1.2.5) takes the following form

(1.2.6)


2Z (t , x) =−

m∑
a,b=1

1∑
µ=0

Γab(Z )∂µZ a∂µZ b +σ(Z )ξ̇,

Z (0, x) = Z0(x) ∈Rm , and ∂t Z (0, x) = Z1(x) ∈ TRm ,

where, σ(φ) is defined by

σ(φ(p)) := (dpφ)(κ(p)) ∈ Tφ(p)R
m 'Rm , p ∈U .

Before delving into more details about the stochastic generalization of [92] that we have achieved,

we would like to highlight that, to the best of our knowledge, there is no literature available on the

stability of wave maps under random excitations. In particular, the effect of a noise on the decoupling

of global solutions to GWE is completely unknown. Hence, in Chapter 4, we take the opportunity to

carry out the first step in this direction and establish the validity of a large deviation principle for the

small noise asymptotic of solutions to SGWEs.

To introduce the model in a precise manner, that we consider in Chapter 4, let M be a m-

dimensional compact Riemannain manifold and T M be the tangent bundle over M whose fibre at

p ∈ M is equal to the tangent space Tp M . Let us recall that, due to the celebrated Nash isometric

embedding theorem [115], there exists n ∈N such that M is a submanifold of Rn . We are concerned
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with large deviations principles (LDP) of the solutions to the following one-dimensional stochastic

wave equation, taking values in M ,

(1.2.7) ∂t t uε = ∂xx uε+ Auε(∂t uε,∂t uε)− Auε(∂x uε,∂x uε)+p
εY (uε)Ẇ ,

with the parameter ε ∈ (0,1] approaching zero. Here W is a spatially homogeneous Wiener process

on Rwith a spectral measure µ satisfying∫
R

(1+|x|2)2µ(d x) <∞.

The diffusion coefficient Y in the equation (1.2.7) is a smooth vector field such that it has an smooth

extension on Rn , denote again by Y , which is defined by using [23, Propositon 3.9], and satisfies

D.1 there exists a compact set KY ⊂Rn such that Y (p) = 0 if p ∉ KY .

D.2 for q ∈O, Y (Υ(q)) =Υ′(q)Y (q), where Υ is a smooth compactly supported function Υ :Rn →Rn

which satisfies certain properties, see Lemma 4.2.5 for details.

D.3 for some CY > 0

|Y (p)| ≤CY (1+|p|),
∣∣∣ ∂Y

∂pi
(p)

∣∣∣≤CY , and
∣∣∣ ∂2Y

∂pi∂p j
(p)

∣∣∣≤CY ,

for p ∈ KY , i , j = 1, . . . ,n.

Let (Ω,F ,P) be a probability space with an increasing family F := {Ft ,0 ≤ t ≤ T } of the sub-σ-fields

of F satisfying the usual conditions. Let us set notation XT for the following Polish space

XT :=C
(
[0,T ]; H 2

loc(R;Rn)
)×C

(
[0,T ]; H 1

loc(R;Rn)
)

.

The main result of Chapter 4 is as follows.

Theorem 1.2.2. Let (u0, v0) be F0-measurable random variable with values in H 2
loc×H 1

loc(R,T M). The

family of laws {L (zε) : ε ∈ (0,1]} on XT , where zε := (uε,∂t uε) is the unique solution to (1.2.7), with

initial data (u0, v0), satisfies the large deviation principle with rate function I defined in (4.4.1).

Our proof of verifying the LDP relies on the weak convergence method introduced in [30], which

is mainly based on a variational representation formula for certain functionals of the driving infinite

dimensional Brownian motion, and have appeared in [16, 48, 63]. With respect to the available

literature, Zhang’s paper [163], on the LDP for stochastic beam equation, is the nearest to our

work but instead of the weak convergence method he follows the classical approach based on the

fundamental ideas from [2] and [131]. The main technical difficulty that arises here is to follow the

local Sobolev spaces setup, which are only Fréchet spaces but are required given the model and to

prove the conditions required to apply the result of [30].

It is relevant to emphasize that the method we follow here can be used to general beam equations,

as in [21], and nonlinear wave equation with polynomial nonlinearity respectively, with spatially

22



1.2. GEOMETRIC WAVE EQUATION WITH RANDOM PERTURBATION

homogeneous noise in local Sobolev spaces which will generalize the result of [124, 163]. Moreover,

such a generalization should lead to extend the work of Martirosyan [111], which is on bounded

domain, to include the study of large deviations principle for the family of stationary measures

generated by the flow of stochastic wave equation, with multiplicative white noise, in non-local

Sobolev spaces over whole domain Rn . It is important to mention that recently in [140] the authors

have established a LDP for a general class of Banach space valued stochastic differential equations

by a different approach but still based on Laplace principle. However, they do not cover our case

because the wave operator does not imply the existence of a compact C0-semigroup.

Coming back to the well-posedness theory for (1.2.6), in Chapter 5 we strive to study the existence

and uniqueness of local (in time and space) solution to (1.2.6) with the initial data in

(Z0, Z1) ∈ H s
loc(R;Rm)×H s−1

loc (R;Rm), s ∈
(

3

4
,1

)
.

What concerns the method of proving the existence of a solution to (1.2.6), as mentioned by Walsh in

[159], an efficient way to simplify the computations of required estimates, in the use of the Banach

Fixed Point Theorem, is to switch the coordinate-axes of (t , x)-variables to the null coordinates, see

also [92] and [108] for the deterministic counterpart. However, it is not clear at all to us how to use

the Walsh approach to stochastic PDEs (SPDEs), see also [59], in our setting with rough initial data

(i.e. s < 1). On the other hand, from the theory of fractional integrals, see [160, 161], and rough paths,

refer [107], it seems plausible to work with the pathwise approach to achieve our aim. In recent

years, the pathwise approach has become extremely popular in SPDEs community as well due to

the spectacular results of Gubinelli et al. and Hairer, see [70, 77, 78] for more details and recent

advancements.

Moreover, in a few cases for the linear and non-linear wave equation driven by fractional Brownian

motion, the pathwise appraoch has led to optimal results, see [4, 37, 133]. Hence in Chapter 5,

motivated by the above discussion, we consider the fractional (both in time and space) Gaussian

noise as a random perturbation and extend the recently developed theory of pathwise stochastic

integrals in Besov spaces, refer [132], to two dimensional case which allows us to achieve the local

well-posedness (in the sense of Definition 5.5.2) of (1.2.6).

To state assumptions and the main result of Chapter 5, we set the new coordinates to (α,β) and

avoid writing φ for simplicity. We consider the following Cauchy problem, written in (α,β) is the

following,

(1.2.8)


3u =N(u)+σ(u)ζ̇,

u(α,−α) = u0(α) and
∂u

∂α
(α,−α)+ ∂u

∂β
(α,−α) = u1(α).

Here 3u(α,β) := 4
∂2u

∂α∂β
and

N(u) := 4
m∑

a,b=1
Γab(u)

∂ua

∂α

∂ub

∂β
.
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The noise ζ is a fractional Brownian sheet (fBs), with Hurst indices greater than 1
2 , on R2, and

σ ∈C3
b(R2). We prove the equivalence between (1.2.6) and (1.2.8) in Section 5.3.

As usual in the SPDE theory, the stochastic geometric wave equation (1.2.8) is understood in the

following integral form

u = S(u0,u1)+3−1N(u)+3−1σ(u)ζ̇,(1.2.9)

where, for (α,β) ∈R2,

(1.2.10) [S(u0,u1)](α,β) := 1

2

[
u0(α)+u0(−β)

]+ 1

2

∫ α

−β
u1(r )dr,

(1.2.11)
[
3−1N(u)

]
(α,β) := 1

4

∫ α

−β

∫ β

−a
N(u(a,b))db d a,

and [
3−1σ(u)ζ̇

]
(α,β) := 1

4

∫ α

−β

∫ β

−a
σ(u(a,b))ζ̇(a,b)db d a.(1.2.12)

In Section 5.4, we give a precise meaning (at least locally in some suitable space) to the above

expressions in (1.2.10) - (1.2.12) which are merely some formal notation here. The proof of a local

well-posedness result for a closely related problem to (1.2.9) is given in Section 5.5. Let η ∈C∞
comp(R)

be a cut-off function which satisfy

(1.2.13) η(−x) = η(x), 0 ≤ η(x) ≤ 1, η(x) =
1, if |x| ≤ 2,

0, if |x| ≥ 4.

Similarly, we define χ. Let us set

Hs,δ := H s
αHδ

β(R2)∩H s
βHδ

α(R2),

where the product Sobolev space H s
αHδ

β
(R2) is defined in Section 5.1. The following theorem is the

main result of Chapter 5 whose proof is based on the Banach Fixed Point Theorem, see the proof of

Theorem 5.5.3 for details.

Theorem 1.2.3. Let η,χ as defined in (1.2.13) and ψ be a bump function which is non zero on the

support of χ,η and
∫
Rψ(x)d x = 1. Assume s,δ ∈ (3

4 ,1
)

such that δ≤ s and (u0,u1) ∈ H s(R)×H s−1(R).

There exist a R0 ∈ (0,1) and a λ0 :=λ0(‖u0‖H s ,‖u1‖H s−1 ,R0) À 1 such that for every λ≥λ0 there exists

a unique u := u(λ,R0) ∈BR0 , where BR := {
u ∈Hs,δ : ‖u‖Hs,δ ≤ R

}
, which satisfies the following integral

equation

u(α,β) = η(λα)η(λβ)
(
[S(χ(λ)(u0 − ūλ

0 ),χ(λ)u1)](α,β)+ [3−1N(u)](α,β)

+[3−1σ(u)ζ̇](α,β)
)

, (α,β) ∈R2.

Here ūλ
0 is defined as

ūλ
0 :=

∫
R

u0

( y

λ

)
ψ(y)d y.
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2
ENERGY CRITICAL 2-D STOCHASTIC WAVE EQUATION WITH EXPONENTIAL

NONLINEARITY IN A BOUNDED DOMAIN

W
e prove the existence and uniqueness of a local maximal solution to an energy critical

stochastic wave equation with multiplicative noise on a smooth bounded domain D⊂R2

with exponential nonlinearity. First, we derive the appropriate deterministic and stochastic

Strichartz inequalities in suitable spaces and, then, we show the local well-posedness result for small

initial data.

The organization of the present chapter is as follows. In Section 2.1, we introduce our notation

and provide the required definitions. In Sections 2.2 and 2.3, we derive the required inhomogeneous

and stochastic Strichartz estimates, respectively, by the methods introduced in [34, 35] and [22].

Section 2.4 is devoted to the estimates which are sufficient to apply the Banach Fixed Point Theorem

in a suitable space and the proof of the existence and uniqueness of a local maximal solution is

given. In Subsection 2.5.1, we provide a rigorous justification of our adopted definition of a local mild

solution. We conclude the chapter with a brief Subsection 2.5.2, in which we state a relation, without

proof, of two natural definitions of a mild solution for the considered SPDE (2.4.4).

2.1 Notation and conventions

In this section we introduce the notation and some basic estimates that we use throughout the

chapter. For any two non-negative quantities a and b, we write a . b if there exists a universal

constant c > 0 such that a ≤ cb, and we write a ' b when a . b and b . a. In case we want to

emphasize the dependence of c on some parameters a1, . . . , ak , then we write, respectively,.a1,...,ak

and 'a1,...,ak . For any two Banach spaces X ,Y , we denote by L(X ,Y ) the space of linear bounded

operators L : X → Y .
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To state the definitions of required spaces here, we denote by E and H a separable Banach and

Hilbert space, respectively. Let T > 0 be a positive real number.

2.1.1 Function spaces and interpolation theory

For the next few basic definitions and remarks, which are included here for the reader’s convenience,

from function spaces and interpolation theory we are borrowing the notation from [155]. We denote

the set of natural numbers {1,2, . . .} byN and byN0 we meanN∪ {0}.

By Lq (D), for q ∈ [1,∞) and a bounded smooth domain D of R2, we denote the classical real

Banach space of all (equivalence classes of) R-valued q-integrable functions on D. The norm in

Lq (D) is given by

‖u‖Lq (D) :=
(∫

D
|u(x)|q d x

) 1
q

, u ∈ Lq (D).

By L∞(D) we denote the real Banach space of all (equivalence classes of) Lebesgue measurable

essentially bounded R-valued functions defined on D with the norm

‖u‖L∞(D) := ess sup {|u(x)| : x ∈D}, u ∈ L∞(D).

We set, by C ([0,T ]; H), the real Banach space of all H-valued continuous functions u : [0,T ] → H

endowed with the norm

‖u‖C([0,T ];H) := sup
t∈[0,T ]

‖u(t )‖H , u ∈C ([0,T ]; H) .

We also define, for any p ∈ [1,∞), Lp (0,T ;E) as the real Banach space of all (equivalence classes

of) E-valued measurable functions u : [0,T ] → E with the norm

‖u‖Lp (0,T ;E) :=
(∫ T

0
‖u(t )‖p

E d t

) 1
p

, u ∈ Lp (0,T ;E).

For any s ∈R and q ∈ (1,∞), the Sobolev space H s,q (R2) is defined as

H s,q (R2) :=
{

f ∈ S′(R2) : ‖ f ‖H s,q (R2) :=
∥∥∥F−1 (

1+|x|2) s
2 F f

∥∥∥
Lq (R2)

<∞
}

,

where F stands for the Fourier transform and S′(R2) denotes the space of tempered distributions,

which is dual to S(R2) (set of all real-valued rapidly decreasing infinitely differentiable functions

defined on R2). The restriction, in the distributional sense, of H s,q (R2) to D, is denoted by H s,q (D).

With the following norm

‖ f ‖H s,q (D) := inf
g
∣∣∣
D
= f

g∈H s,q (R2)

‖g‖H s,q (R2), f ∈ H s,q (D),

H s,q (D) is a Banach space. We denote the completion of C∞
0 (D) (set of smooth functions defined

over D with compact support) in H s,q (D) by H̊ s,q (D).
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Throughout the whole chapter, we denote by A the Dirichlet or the Neumann−Laplacian on

Hilbert space L2(D) with domains, respectively, defined by

D(−∆D ) = H 2,2(D)∩ H̊ 1,2(D),

D(−∆N ) = {
f ∈ H 2,2(D) : ∂ν f

∣∣
∂D = 0

}
.

Here ν denotes the outward normal unit vector to ∂D. It is well known, see for example [154],

that the Dirichlet Laplacian (−∆D ,D(−∆D )) is a positive self-adjoint operator on L2(D) and there

exists an orthonormal basis {e j } j∈N of L2(D) which consist of eigenvectors of −∆D . If we denote the

corresponding eigenvalues by {λ2
j } j∈N, then we have

−∆D e j =λ2
j e j ; e j ∈D(−∆D ),∀ j ≥ 1; 0 <λ2

1 ≤λ2
2 ≤ . . . and λ2

n −−−−→
n→∞ ∞.

In the case of the Neumann Laplacian, (−∆N ,D(−∆N )) is a non-negative self-adjoint operator on

L2(D) and there exists an orthonormal basis {e j } j∈N of L2(D) which consist of eigenvectors of −∆N .

Moreover, if we denote the corresponding eigenvalues by {λ2
j } j∈N, then we have

−∆N e j =λ2
j e j ; e j ∈D(−∆N ),∀ j ≥ 1; λ2

n −−−−→
n→∞ ∞,

and 0 =λ2
1 =λ2

2 = . . . =λ2
m0

<λ2
m0+1 ≤λ2

m0+2 ≤ . . . ,

for some m0 ∈ N. Since we work with both the operators simultaneously, we denote the pair of

operator and its domain by (A,D(A)) and make the distinction wherever required.

From the functional calculus of self-adjoint operators, see for instance [162], it is known that, the

power As of operator A, for every s ∈R, is well-defined and self-adjoint. It is also known that, for any

s ∈R, D(As/2), where A =−∆D or A =−∆N , with the following norm

‖u‖D(As/2) :=
(∑

j∈N
(1+λ2

j )s |〈u,e j 〉L2(D)|2
)1/2

,

is a Hilbert space. For s ∈ (0,2) the space D(As/2) is equal to the following complex interpolating

space, refer [155, 2.5.3/(13)],

D(As/2) = [
L2(D),D(A)

]
s/2 .

To derive the Strichartz estimate in a suitable space, we also need to consider the Dirichlet or

the Neumann−Laplacian on Banach space Lq (D), q ∈ (1,∞), denoted by AD,q and respectively AN ,q ,

with domains, respectively,

D(AD,q ) = H 2,q (D)∩ H̊ 1,q (D),(2.1.1)

D(AN ,q ) = {
f ∈ H 2,q (D) : ∂ν f

∣∣
∂D = 0

}
.(2.1.2)

Note that AD,2 =−∆D and AN ,2 =−∆N .

Under some reasonable assumptions on the regularity of the domainD, one can show that both of

these operators have very nice analytic properties. In particular both have bounded imaginary powers
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with exponent strictly less than π
2 (and thus both −AD,q and −AN ,q generate analytic semigroups on

the space Lq (D)). As in [155], one can define the fractional powers (AB ,q )r /2, where as below B = D

or B = N . For q ∈ [2,∞) and θ ≥ 0, we define domain D((AB ,q )θ) by

D((AB ,q )θ) =
{

u ∈ Lq (D) : (id+ AB ,q )
θ
2 u ∈ Lq (D)

}
,

which is a Banach space with the norm ‖u‖D((AB ,q )θ) = ‖(id+ AB ,q )
θ
2 u‖Lq (D).

Next, we fix the notation for the subspaces of H s,q (D) which are determined by differential

operators. Fix k ∈N and let

B j f (x) = ∑
|α|≤m j

b j ,α(x)Dα f (x), b j ,α ∈C∞(∂D),

for j = 1, . . . ,k, be differential operators on ∂D. Then {B j }k
j=1 is said to be a normal system iff

0 ≤ m1 < m2 < ·· · < mk ,

and for every vector νx which is normal to ∂D at x the following holds∑
|α|=m j

b j ,α(x)ναx 6= 0, j = 1, . . . ,k,

where for α ∈N2
0 and y ∈R2, yα =Πi yαi

i .

Definition 2.1.1. Let {B j }k
j=1 be a normal system as defined above for some k ∈N. For s > 0, q ∈ (1,∞),

we set

H s,q
{B j }(D) :=

{
f ∈ H s,q (D) : B j f

∣∣
∂D

= 0 whenever m j < s − 1

q

}
.

By taking the suitable choice of normal system {B j } in the Definition 2.1.1, for s > 0 and q ∈ (1,∞),

we define

H s,q
D (D) :=

{
f ∈ H s,q (D) : f

∣∣
∂D = 0 if s > 1

q

}
,

and

H s,q
N (D) :=

{
f ∈ H s,q (D) : νx ·∇ f

∣∣
∂D = 0 if s > 1+ 1

q

}
.

Since the H̊ 1,q (D) spaces can also be defined by using f
∣∣
∂D = 0 condition which appears in (2.1.1)

and the Neumann boundary condition appearing in (2.1.2) can be written as νx ·∇ f
∣∣
∂D = 0, we expect

to have some relation between the spaces H s,q
B (D) and D((AB ,q )s/2) where A =−∆B with B = D or

B = N . The next stated result from the theory of functions spaces, see [155, Theorem 4.3.3], provides

a suitable range of s for which the function spaces H s,q
B (D) and D((AB ,q )s/2) are equivalent.

Lemma 2.1.2. With our notation from this section, we have the following

1. For s ∈ (0,2) \
{

1+ 1
q

}
,

H s,q
N (D) =D((AN ,q )s/2).

28



2.1. NOTATION AND CONVENTIONS

2. For s ∈ (0,2) \
{

1
q

}
,

H s,q
D (D) =D((AD,q )s/2).

We close this subsection with the following well known identity

D(
√
−∆D ) = H̊ 1,2(D) and D(

√
−∆N ) = H 1,2(D).

2.1.2 Stochastic analysis

Now we state a few required definitions from the theory of stochastic analysis, refer [11] and [29] for

more details. Let (Ω,F ,F,P), where F := {Ft : t ≥ 0}, be a filtered probability space which satisfies

the usual assumptions, that is, the filtration F is right continuous and the σ-field F0 contains all

P-null sets of F . As the noise we consider a cylindrical F-Wiener process on a real separable Hilbert

space K , see [29, Definition 4.1]. We denote by Lp (Ω,F ,P;E), for p ∈ [1,∞), the Banach space of all

(equivalence classes of) E-valued random variables equipped with the norm

‖X ‖Lp (Ω) =
(
E
[‖X ‖p

E

]) 1
p , X ∈ Lp (Ω,F ,P;E),

where E is the expectation operator w.r.t P.

Definition 2.1.3. For any K , a separable Hilbert space, the set of γ-radonifying operators, denoted by

γ(K ,E), consists of all bounded operators Λ : K → E such that the series
∑∞

j=1β jΛ( f j ) converges in

L2(Ω,F ,P;E) for some (and then for every) orthonormal basis { f j } j∈N of K and some (and then for

every) sequence {β j } j∈N of i.i.d. N (0,1) real random variables on probability space (Ω,F ,P). We set

‖Λ‖γ(K ,E) :=
(
E
∥∥∥ ∑

j∈N
β jΛ( f j )

∥∥∥2

E

) 1
2

.

One may prove that ‖ · ‖γ(K ,E) is a norm, and (γ(K ,E),‖ · ‖γ(K ,E)) is a separable Banach space. Note

that if K =R, then γ(R,E) can be identified with E . Furthermore, it is known that, see for e.g. [117],

Λ ∈ γ(K ,E) iff the cylindrical measure Λ(γK ) is σ-additive, where γK is the canonical cylindrical

Gaussian measure on K .

Let I = [0,T ], for some T > 0, or R+. A stochastic process ξ : I ×Ω→ E is called progressively

measurable (with respect to the filtration F) if for every t ∈ I the mapping

[0, t ]×Ω 3 (s,ω) 7→ ξ(s,ω) ∈ E ,

is B([0, t ])×Ft -measurable, where B([0, t ]) is the σ-algebra of Borel subsets of [0, t ].

A subset Γ of I ×Ω is progressive if the process ξ= 1Γ is progressively measurable. The family

of progressive sets is a σ-algebra on I ×Ω which we will denote by BF. To introduce the notion of

progressively measurable local process, it is useful to remember that ξ is progressive if and only if the

map

I ×Ω 3 (s,ω) 7→ ξ(s,ω) ∈ E ,
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is measurable with respect to BF, see [135, Definition I.4.7].

An F-stopping time τ is a map on Ω with values in [0,∞] such that for every t , {τ≤ t } ∈Ft . For

any given F-stopping time τ, we set

Ωt (τ) := {ω ∈Ω : t < τ(ω)} and [0,τ)×Ω := {(t ,ω) ∈ [0,∞)×Ω : 0 ≤ t < τ(ω)}.

Assume that τ :Ω→ [0,∞) is a random variable. Let us consider the process ξ=1[0,τ) defined by

ξ(t ,ω) :=
 1, if t < τ(ω),

0, otherwise.

Then it is easy to see that the process ξ is F-adapted iff τ is a F-stopping time. Hence, since for a given

stopping time τ, every sample path of ξ=1[0,τ) is left continuous, ξ is progressively measurable with

respect to the filtration F. Motivated from above, a local stochastic process ξ : [0,τ)×Ω→ E is called

F-progressively measurable iff the process ξ1[0,τ) defined by

[ξ1[0,τ)](t ,ω) :=
ξ(t ,ω), if t < τ(ω),

0, otherwise,

is F-progressively measurable.

Stopping time τ (with respect to filtration F) is called accessible iff there exists a sequence of

F-stopping times {τn}n∈N with the following properties:

1. lim
n→∞τn = τ, P-a.s.,

2. for every n, τn < τn+1, P-a.s..

For such sequence we write τn ↗ τ. Such a sequence {τn}n∈N is called an approximating sequence

for τ.

To prove the uniqueness of a local solution we need the following criteria of equivalent processes.

Definition 2.1.4. Let τi , i = 1,2 are stopping times. Two processes ξi : [0,τi )×Ω→ E , i = 1,2 are

called equivalent iff τ1 = τ2, P-a.s. and for any t > 0 the following holds

ξ1(·,ω) = ξ2(·,ω) on [0, t ],

for almost all ω ∈Ωt (τ1)∩Ωt (τ2).

For an interval I ⊆ R, we say that, an E-valued process {Mt }t∈I is an E-valued martingale iff

Mt ∈ L1(Ω,F ,P;E) for t ∈ I and

E (Mt |Fs) = Ms , P−a.s., for all s ≤ t ∈ I .

To define the Itô type integrals for a Banach space valued stochastic process, we restrict ourselves

to, so called, M-type 2 Banach spaces which are defined as follows.
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Definition 2.1.5. A Banach space E is of M-type 2 iff there exists a constant L := L(E) > 0 such that

for every E-valued martingale {Mn}N
n=0 the following holds:

sup
n
E(‖Mn‖2

E ) ≤ L
N∑

n=0
E
(‖Mn −Mn−1‖2

E

)
,

where M−1 = 0 as usual.

Assume that p ∈ [1,∞). If T > 0, then by Mp ([0,T ],E), we denote the space of all F-progressively

measurable E-valued processes ξ : [0,T ]×Ω→ E such that

E

[∫ T

0
‖ξ(t )‖p

E d t

]
<∞.

As usual, see e.g. [135, Definition IV.2.1], by M p ([0,T ],E) we denote the space of equivalence

classes of elements ofMp ([0,T ],E ), which of course is a Banach space. Let us observe that M p ([0,T ],E )

is the usual Lp space of E-valued BF-measurable functions defined on [0,T ]×Ω with respect to the

measure Leb⊗P, where Leb is the Lebesgue measure on R.

We also need the following spaces in the remaining of the chapter. Assume that p ∈ [1,∞) and

T > 0. If q ∈ [1,∞), by Mq,p ([0,T ],E ), we denote the space of all F-progressively measurable E-valued

processes ξ : [0,T ]×Ω→ E such that

E

[(∫ T

0
‖ξ(t )‖q

E d t

)p/q
]
<∞.

If q = ∞, then by Mq,p ([0,T ],E), we mean the space of all F-progressively measurable E-valued

continuous processes ξ : [0,T ]×Ω→ E such that

E

[
sup

t∈[0,T ]
‖ξ(t )‖p

E

]
<∞.

By M q,p ([0,T ],E) we denote the Banach space of equivalence classes of elements of Mq,p ([0,T ],E).

We close our discussion of the conventions here by observing that, for p ∈ [1,∞),

Mp,p ([0,T ],E) =Mp ([0,T ],E) and M p,p ([0,T ],E) = M p ([0,T ],E).

2.2 Inhomogeneous Strichartz estimates

In this section we prove the deterministic Strichartz type estimate, see Theorem 2.2.2 below, which is

a generalization of [88, Theorem 1.2] and sufficient to tackle, both, the Dirichlet and the Neumann

boundary case.

Recall that in our setting, the operator (A,D(A)) possesses a complete orthonormal system

of eigenvectors {e j } j∈N in L2(D). We have denoted the corresponding eigenvalues by λ2
j . From

the functional calculus of self-adjoint operators, it is known that {(e j ,λ j )} j∈N is a sequence of the
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associated eigenvector and eigenvalue pair for
p

A . For any integer λ≥ 0,Πλ is defined as the spectral

projection of L2(D) onto the subspace spanned by {e j } j∈N for which λ j ∈ [λ,λ+1), i.e.

Πλu =
∞∑

j=1
1[λ,λ+1)(λ j )〈u,e j 〉L2(D)e j , u ∈ L2(D).

At this juncture, it is relevant to note that the proof of the Strichartz estimate in deterministic

setting, see e.g. [34] and [35], is based on the following estimate in Lebesgue spaces of the spectral

projector Πλ, refer [147] for the proof.

Theorem 2.2.1. For any smooth bounded domain D⊂R2, the following holds, for all u ∈ L2(D),

‖Πλu‖Lq (D) ≤Cλρ‖u‖L2(D),

where

ρ :=


2

3

(
1

2
− 1

q

)
, if 2 ≤ q ≤ 8,

2

(
1

2
− 1

q

)
− 1

2
, if 8 ≤ q ≤∞.

Since the below derived Strichartz estimate, for the inhomogeneous wave equation, holds for

both the Dirichlet and the Neumann case, from now onwards, to shorten the notation, we denote

AB ,q and AB ,2, respectively, by Aq and A.

Theorem 2.2.2 (Inhomogeneous Strichartz Estimates). Fix any T > 0. Then there exists a positive

constant CT , which may also depend on p, q,r , such that the following holds: if u satisfy the following

linear inhomogeneous wave equation{
ut t −∆u = F, on (0,T )×D

u(0, ·) = u0(·), ut (0, ·) = u1(·),

with either boundary condition

Dirichlet : u|(0,T )×∂D = 0,

Neumann : ∂νu|(0,T )×∂D = 0,

where ν is the outward normal unit vector to ∂D and F ∈ L1(0,T ;L2(D)), then

(2.2.1) ‖u‖Lp (0,T ;D(A(1−r )/2
q )) ≤CT

[‖u0‖D(A1/2) +‖u1‖L2(D) +‖F‖L1(0,T ;L2(D))
]

,

for all (p, q,r ) which satisfy

(2.2.2) 2 ≤ q ≤ p ≤∞, and r =


5

6
− 1

p
− 2

3q
, if 2 ≤ q ≤ 8,

1− 1

p
− 2

q
, if 8 ≤ q ≤∞.
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Remark 2.2.3. Let us observe that if for T > 0, CT denotes the smallest constant for which the

inequality (2.2.1) holds for all data u0,u1 and F from appropriate spaces, then the function

(0,∞) 3 T 7→CT ∈ (0,∞),

is non-decreasing (or weakly increasing as some people call).

Proof of Theorem 2.2.2 Without loss of generality we assume that T = 2π. The proof is divided into

two cases. In the first case, we derive the Strichartz estimate for the homogeneous problem (i.e. F = 0)

and then, in second case, we prove the inhomogeneous one (i.e. F 6= 0) by using the homogeneous

estimate from first case.

First case : Estimate for the homogeneous problem. In this case, the Duhamel’s formula gives

(2.2.3) u(t ) = cos(t
p

A )u0 + sin(t
p

A )p
A

u1

where, from the functional calculus for self-adjoint operators, for each t , cos(t
p

A ) and sin(t
p

A )p
A

are

well-defined bounded operators on L2(D). Moreover, we have

cos(t
p

A ) =
(

e i t
p

A +e−i t
p

A

2

)
.

Let L±(t)u0 := e±i t
p

A u0 be the solution u of ∂t u = ±i
p

A u such that u(0) = u0. In other words,

L± = (
L±(t ))t≥0 is C0-group with the generator ±i

p
A . Using the Minkowski’s inequality we get

‖u‖Lp (0,T ;D(A(1−r )/2
q )). ‖e i t

p
A u0‖Lp (0,T ;D(A(1−r )/2

q ))(2.2.4)

+‖e−i t
p

A u0‖Lp (0,T ;D(A(1−r )/2
q )) +

∥∥∥sin(t
p

A )p
A

u1

∥∥∥
Lp (0,T ;D(A(1−r )/2

q ))
.

Therefore, it is enough to estimate, as is done in the following Steps 1-4, the Lp (0,T ;D(A(1−r )/2
q ))-

norm of e i t
p

A u0 and sin(t
p

A )p
A

u1. We will write the variables in subscript, wherever required, to avoid

any confusion.

Step 1 : Here we show that

(2.2.5) ‖e i tB u0‖Lp
t (0,2π;Lq

x (D)) ≤C‖u0‖D(Ar /2),

where B is the following “modification” of
p

A operator by considering only the integer eigenvalues

i.e.

B(e j ) = [λ j ]e j , j ∈N.

The notation [·] stands for the integer part and e j is an eigenfunction of A associated to the eigenvalue

λ2
j . Before moving further we prove the boundedness property of the operator B −p

A .

Lemma 2.2.4. The operator B −p
A is bounded on D(A1/2).
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Proof of Lemma 2.2.4 Indeed, observe that by definition of B we have for every u ∈D(A1/2),

(B −
p

A )u = ∑
j∈N

{λ j }〈u,e j 〉L2(D)e j ,

where {λ j } :=λ j −
[
λ j

]
is the fractional part of λ j . Then

‖(B −
p

A )u‖2
L2(D) ≤

∑
j∈N

{λ j }2 |〈u,e j 〉L2(D)|2 ≤
∑
j∈N

|〈u,e j 〉L2(D)|2 = ‖u‖2
L2(D).

Moreover,

‖
p

A (B −
p

A )u‖2
L2(D) =

∑
j∈N

λ2
j {λ j }2 |〈u,e j 〉L2(D)|2 ≤

∑
j∈N

λ2
j |〈u,e j 〉L2(D)|2 = ‖

p
A u‖2

L2(D).

Hence, by the definition of norm in D(A1/2) we have

‖(B −
p

A )u‖2
D(A1/2) = ‖(B −

p
A )u‖2

L2(D) +‖
p

A (B −
p

A )u‖2
L2(D). ‖u‖2

D(A1/2).

�

In continuation of the proof of (2.2.5), since u0 ∈ L2(D), we can write

u0 =
∑
j∈N

〈u0,e j 〉L2(D)e j =:
∑
j∈N

u0, j e j .

By functional calculus for self-adjoint operators,

e i tB u0(x) = ∑
j∈N

e i t [λ j ]u0, j e j (x) =:
∑

k∈N
uk (t , x),

where,

uk (t , x) = ∑
j∈N

1[k,k+1)(λ j ) e i tk u0, j e j (x) = e i tkΠk u0(x).

Thanks to the 1-D Sobolev embedding and Lemma 2.1.2, we have

H
1
2− 1

p ,2(0,2π) ,→ Lp (0,2π) for all p ≥ 2,

and consequently we argue as follows:

‖e i tB u0‖2
Lq

x (D;Lp
t (0,2π))

=
(∫

D
‖e i tB u0(x)‖q

Lp
t (0,2π)

d x

) 2
p

.

(∫
D
‖e i tB u0(x)‖q

H
1
2 − 1

p ,2

t (0,2π)

d x

) 2
p

=
∥∥∥∥∥ ‖e i tB u0(x)‖2

H
1
2 − 1

p ,2

t (0,2π)

∥∥∥∥∥
L

q
2 (D)

.(2.2.6)

Note that since the sequence {e i tk }k∈N is an orthogonal system in H
1
2− 1

p ,2(0,2π) and∥∥∥e i tk
∥∥∥

H
1
2 − 1

p ,2

t (0,2π)
. (1+k2)

1
2− 1

p ,
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due to the Parseval formula we get, for fixed x,

‖[e i tB u0](x)‖2

H
1
2 − 1

p ,2

t (0,2π)
.

∑
k∈N

(1+k)1− 2
p ‖uk (t , x)‖2

L2(0,2π).(2.2.7)

Combining the estimate (2.2.7) and (2.2.6) followed by Minkowski’s inequality and Theorem 2.2.1 we

obtain

‖e i tB u0‖2
Lq

x (D;Lp
t (0,2π))

.

∥∥∥∥∥ ∑
k∈N

(1+k)1− 2
p ‖uk (t , x)‖2

L2(0,2π)

∥∥∥∥∥
L

q
2 (D)

≤ ∑
k∈N

(1+k)1− 2
p ‖uk (t , x)‖2

L2
t (0,2π;Lq

x (D))

.
∑

k∈N
(1+k)1− 2

p ‖[Πk u0](x)‖2
Lq

x (D)
.

∑
k∈N

(1+k)1− 2
p k2ρ‖Πk u0‖2

L2
x (D)

= ∑
k∈N

(1+k)1− 2
p +2ρ ∑

j∈N
1[k,k+1)(λ j )|〈u0,e j 〉L2(D)|2

= ∑
j∈N

(1+ [λ j ])1− 2
p +2ρ|〈u0,e j 〉L2(D)|2 = ‖u0‖2

H r
B (D) ' ‖u0‖2

D(Ar /2),(2.2.8)

where, from ρ in Theorem 2.2.1, we have1,

r := 1

2
− 1

p
+ρ =


5

6
− 1

p
− 2

3q
, if 2 ≤ q ≤ 8,

1− 1

p
− 2

q
, if 8 ≤ q ≤∞.

Here it is important to highlight that, the equivalence ‖u0‖H r
B (D) ' ‖u0‖D(Ar /2) holds in the last

step of (2.2.8), because D(A) =D(B 2) and the function spaces H r
B for r ∈ [0,1] and D(Ar /2), are equal

to the complex interpolation spaces, between L2(D) and, respectively, D(B 2) and D(A), see for e.g.

[155, Theorem 4.3.3].

Next, since p ≥ q , by the Minkowski inequality we obtain the following desired result

‖e i tB u0‖Lp
t (0,2π;Lq

x (D)). ‖u0‖D(Ar /2),

which also implies that the operator e i tB is continuous from D(Ar /2) to Lp
t (0,2π;Lq

x (D)).

Step 2 : In this step we extend the inequality (2.2.5) to operator L+, i.e. we show that

(2.2.9) ‖L+(·)u0‖Lp
t (0,2π;Lq

x (D)) ≤C‖u0‖D(Ar /2).

Let v(t ) = e i t
p

A u0. It is clear that v satisfies{
(∂t − i B)v = (−i B + i

p
A )v,

v |t=0 = u0,

and, therefore, according to the Duhamel’s formula

(2.2.10) v(t ) = e i tB u0 +
∫ t

0
e i (t−s)B (−i B + i

p
A )v(s)d s.

1Note that r < 3
4 in the case 2 ≤ q ≤ 8 and r < 1 in the complimentary case 8 ≤ q ≤∞.
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If we denote e i (t−s)B (−i B + i
p

A )v(s, x) by z(s, x) and (−i B + i
p

A )v(s, x) by w(s, x), then using the

Minkowski inequality, followed by estimate (2.2.5) and Lemma 2.2.4, we argue as follows:∥∥∥∥∥
(∫ 2π

0

[∫ t

0
|z(s, x)|d s

]p

d t

) 1
p

∥∥∥∥∥
Lq

x (D)

≤
∥∥∥∥∥
∫ 2π

0

[∫ 2π

0
|z(s, x)|p d t

] 1
p

d s

∥∥∥∥∥
Lq

x (D)

≤
(∫

D

(∫ 2π

0
‖z(s, x)‖Lp

t (0,2π) d s

)q

d x

) 1
q

≤
∫ 2π

0

(∫
D
‖z(s, x)‖q

Lp
t (0,2π)

d x

) 1
q

d s

≤
∫ 2π

0
‖w(s, x)‖D(Ar /2) d s ≤

∫ 2π

0
‖v(s, x)‖D(Ar /2) d s.(2.2.11)

By putting together (2.2.10) and (2.2.11) we obtain

‖v(t , x)‖Lq
x (D;Lp

t (0,2π)) ≤ ‖e i tB u0(x)‖Lq
x (D;Lp

t (0,2π)) +
∫ 2π

0
‖v(s, x)‖D(Ar /2) d s

≤ ‖u0‖D(Ar /2) +
∫ 2π

0
‖v(s, x)‖D(Ar /2) d s.(2.2.12)

Now, from the boundedness of e i t
p

A on D(Ar /2), we infer that

sup
t∈[0,2π]

∥∥∥e i t
p

A u0

∥∥∥
D(Ar /2)

≤C‖u0‖D(Ar /2).(2.2.13)

Combining (2.2.13) and (2.2.12) we get

‖v(t , x)‖Lq
x (D;Lp

t (0,2π)) ≤ ‖u0‖D(Ar /2) +
∫ 2π

0
‖u0‖D(Ar /2) d s

. ‖u0‖D(Ar /2).

Hence, again, as an application of the Minkowski inequality we get (2.2.9) and finish with the proof

of Step 2.

Step 3: Here, by using the well known consequence of Agmon-Douglis-Nirenberg regularity results for

the elliptic operators, refer [1], we prove the required estimate of the first term in (2.2.4), in particular,

we show that

(2.2.14) ‖L+(·)u0‖Lp
t (0,2π;D(A(1−r )/2

q )). ‖u0‖D(A1/2).

We start the proof by recalling the following consequence of the Agmon-Douglis-Nirenberg

regularity results for the elliptic operators. The operators

−∆D + I : H 2,q (D)∩H 1,q
D (D) = H 2,q (D)∩ H̊ 1,q (D) → Lq (D),

and

−∆N + I : H 2,q (D)∩H 1,q
N (D) → Lq (D),
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are isomorphisms. These operators will, respectively, be denoted by AD,q + I and AN ,q + I , or simply

by Aq + I . Suppose that u0 ∈ D(Ak ) for sufficiently large k ∈N so that Au0 ∈D(Ar /2). Then, since the

operators A and L+ commute, we infer that for all t ∈ [0,T ],

‖L+(t )u0‖H 2,q (D) ' ‖(A+ I )L+(t )u0‖Lq (D) = ‖L+(t )((A+ I )u0)‖Lq (D).

Consequently by (2.2.9) we get

‖L+(·)u0‖Lp
t (0,2π;H 2,q (D)). ‖(A+ I )u0‖D(Ar /2) ∼ ‖u0‖D(A(r+2)/2).(2.2.15)

Thus, complex interpolation between (2.2.9) and (2.2.15) with θ = 1−r
2 gives the desired following

estimate

‖L+(·)u0‖Lp (0,2π;D(A(1−r )/2
q )). ‖u0‖D(A1/2).

Hence we have completed the proof of Step 3.

Step 4: Here we incorporate the term with u1, in (2.2.3), and complete the proof of the homogeneous

Strichartz estimate.

Recall that λ1 = 0 for the Neumann condition and λ1 > 0 in the Dirichlet case. As mentioned

before, we denote by m0 the dimension of eigenspace corresponding to zero eigenvalue. It is known

that m0 = 0 for A =−∆D and a positive finite integer when A =∆N . To proceed with the proof of this

step, as in [35], we single out the contribution of zero eigenvalue and decompose L2(D) into the

direct sum of a finite dimensional space ker A and the space orthogonal to ker A, which we denote by

L2,+(D). Let us observe that if D is connected, then ker A is a one dimensional vector space consisting

of constant functions. Mathematically, it means, for all u1 ∈ L2(D),

u1 =
m0∑
j=1

〈u1,e j 〉L2(D)e j +
∑

k>m0

〈u1,ek〉L2(D)ek ,=:Πu1 + (1−Π)u1.

Note that the term Πu1 does not exist in the Dirichlet condition. Then we argue as follows:

sin(t
p

A )p
A

u1 = sin(t
p

A )p
A

Πu1 + sin(t
p

A )p
A

(1−Π)u1

= tΠu1 + sin(t
p

A )p
A

(1−Π)u1,(2.2.16)

where the last step holds due to the following argument

sin(t
p

A )p
A

u1 =
∑
j∈N

sin(tλ j )

λ j
〈u,e j 〉L2(D)e j

= ∑
j∈N

t1{0}(λ j )
sin(tλ j )

tλ j
〈u,e j 〉L2(D)e j +

∑
j∈N

1(0,∞)(λ j )
sin(tλ j )

λ j
〈u,e j 〉L2(D)e j

= t
∑
j∈N

1{0}(λ j )〈u,e j 〉L2(D)e j +
∑
j∈N

1(0,∞)(λ j )
sin(tλ j )

λ j
〈u,e j 〉L2(D)e j
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= tΠu1 + sin(t
p

A )p
A

(1−Π)u1.(2.2.17)

Now, since
(p

A
)−1

is bounded from L2,+(D) into D(A1/2), we invoke (2.2.14) on
(p

A
)−1

((1−Π)u1)

and get

‖L+(·)
(p

A
)−1

((1−Π)u1))‖Lp (0,2π;D(A(1−r )/2
q )) . ‖

(p
A

)−1
((1−Π)u1)‖D(A1/2)

. ‖(1−Π)u1‖L2(D).(2.2.18)

We mention that all the computations we have done so far in Steps 1-4 would work if we replace L+
by L−. Combining (2.2.16) and (2.2.18) we obtain∥∥∥∥∥sin(t

p
A )p

A
u1

∥∥∥∥∥
Lp (0,2π;D(A(1−r )/2

q ))

. ‖tΠu1‖Lp (0,2π;D(A(1−r )/2
q )

+
∥∥∥∥L+(·)

(p
A

)−1
((1−Π)u1)

∥∥∥∥
Lp (0,2π;D(A(1−r )/2

q )

. ‖tΠu1‖Lp (0,2π;D(A(1−r )/2
q )) +‖(1−Π)u1‖L2(D)

. ‖Πu1‖D(A(1−r )/2
q ) +‖u1‖L2(D). ‖u1‖L2(D) .

This finishes the proof of Step 4 and, in particular, the first case.

Second case: when L1(0,2π;L2(D)) 3 F 6= 0: Due to the Duhamel’s formula

u(t ) = cos(t
p

A )u0 + sin(t
p

A )p
A

u1 +
∫ t

0

sin((t − s)
p

A )p
A

F (s)d s.

Applying the case first and using the calculation of (2.2.12) and (2.2.17) we get

‖u‖Lp (0,2π;D(A(1−r )/2
q )). ‖u0‖D(A1/2) +‖u1‖L2(D)

+
∫ 2π

0

∥∥∥∥∥sin((t − s)
p

A )p
A

F (s)

∥∥∥∥∥
Lp (0,2π;D(A(1−r )/2

q ))

d s

. ‖u0‖D(A1/2) +‖u1‖L2(D) +
∫ 2π

0
‖F (s)‖L2(D) d s

= ‖u0‖D(A1/2) +‖u1‖L2(D) +‖F‖L1(0,2π;L2(D)).

Hence we have proved the Theorem 2.2.2. �

2.3 Stochastic Strichartz estimates

This section is devoted to prove a stochastic Strichartz inequality, which is sufficient to apply the

Banach Fixed Point Theorem in the proof of a local well-posedness result, see Theorem 2.4.10 in

Section 2.4.
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Let us set

H := L2(D); HA :=D(A1/2); E :=D(A(1−r )/2
q ),

where (p, q,r ) is any suitable triple which satisfy (2.2.2) and K is any separable Hilbert space. Let us

define the following two Banach spaces. For fix T > 0, we put

YT :=C
(
[0,T ];D(A1/2)

)∩Lp
(
0,T ;D(A(1−r )/2

q )
)

,

with norm, which makes it a Banach space,

‖u‖p
YT

:= sup
t∈[0,T ]

‖u(t )‖p
D(A1/2)

+‖u‖p

Lp (0,T ;D(A(1−r )/2
q ))

.

To prove the main result of this section we need the following consequence of the Kahane-Khintchin

inequality and the Itô-Nisio Theorem, see [86]. For any Λ ∈ γ(K ,E), by the Itô-Nisio Theorem, the

series
∑∞

j=1β jΛ( f j ) is P-a.s. convergent in E , where { f j } j∈N and {β j }N are as in Definition 2.1.3, and

then, by the Kahane-Khintchin inequality, for any p ∈ [1,∞), there exists a positive constant C (p,E)

such that

(2.3.1) (C (p,E))−1 ‖Λ‖γ(K ,E) ≤
(
E
∥∥∥ ∑

j∈N
β jΛ( f j )

∥∥∥p

E

) 1
p

≤C (p,E) ‖Λ‖γ(K ,E).

This inequality tells that the convergence in L2(Ω,F ,P;E) can be replaced by a condition of conver-

gence in Lp (Ω,F ,P;E) for some (or any) p ∈ [1,∞). Furthermore, we need the following version of

Burkholder inequality which holds in our setting, refer [120] for the proof.

Theorem 2.3.1 (Burkholder inequality). Let E be a M-type 2 Banach space. Then for every p ∈ (0,∞)

there exists a constant Bp (E) > 0 such that for each accessible stopping time τ> 0 and γ(K ,E)-valued

progressively measurable processes ξ the following holds:

(2.3.2) E

(
sup

t∈[0,τ]

∥∥∥∫ t

0
ξ(s)dW (s)

∥∥∥p

E

)
≤ Bp (E) E

(∫ τ

0
‖ξ(t )‖2

γ(K ,E) d t

) p
2

.

Moreover, the E-valued process
∫ t

0 ξ(s)dW (s), t ∈ [0,τ], has a continuous modification.

Corollary 2.3.2. Let E be a M-type 2 Banach space and p ∈ (1,∞). Then there exists a constant B̂p (E)

depending on E such that for every T ∈ (0,∞] and every Lp (0,T ;E)-valued progressively measurable

process {ζ(s), s ∈ [0,T )},

(2.3.3) E

(∥∥∥∫ T

0
ζ(s)dW (s)

∥∥∥p

Lp (0,T ;E)

)
≤ B̂p (E) E

(∫ T

0
‖ζ(s)‖2

γ(K ,Lp (0,T ;E)) d s

) p
2

.

For a γ(K , H)-valued process ξ, let us define a γ(K ,Lp (0,T ;E ))-valued process Ξ= {Ξr : r ∈ [0,T ]}

as follows:

(2.3.4) Ξr :=
{

[0,T ] 3 t 7→1[r,T ](t )
sin((t − r )

p
A )p

A
ξ(r )

}
∈ γ(K ,Lp (0,T ;E)), r ∈ [0,T ].

Before proving the main result of this section, we prove the following auxiliary lemma.
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Lemma 2.3.3. Assume that T > 0. Let ξ ∈ M 2,p ([0,T ],γ(K , H)). Then the γ(K ,Lp (0,T ;E))-valued

process {Ξr : r ∈ [0,T ]} defined by formula (2.3.4), is progressively measurable, i.e.

(2.3.5) Ξ ∈ M 2,p ([0,T ],γ(K ,Lp (0,T ;E))),

and, for each r ∈ [0,T ],

(2.3.6) ‖Ξr ‖γ(K ,Lp (0,T ;E)) ≤C (p,T,E , H) ‖ξ(r )‖γ(K ,H),

where C (p,T,E , H) :=CT C (p, H) C (p,E).

Proof of Lemma 2.3.3 Let us consider {β j } j∈N of i.i.d. N (0,1) random variables on probability space

(Ω,F ,P), and a sequence of orthonormal basis { f j } j∈N of the separable Hilbert space K . In the proof

first observe that the random variableΞr is well-defined because by Theorem 2.2.2, for each r ∈ [0,T ]

and x ∈ H , the solution of the following homogeneous wave equation{
ut t −∆u = 0, on [r,r +T ],

u(r ) = 0, ut (r ) = x,

belongs to Lp (r,r +T ;E). In particular,

1[r,T ](·) sin((·− r )
p

A )p
A

x ∈ Lp (0,T ;E),

and the map

Λr : H 3 x 7→1[r,T ](·) sin((·− r )
p

A )p
A

x ∈ Lp (0,T ;E),

is linear and continuous. Moreover, supr∈[0,T ] ‖Λr ‖ <∞.

By the above argument and (2.3.4), we infer that

Ξr (ω) =Λr ◦ [ξ(r,ω)], (r,ω) ∈ [0,T ]×Ω.

Consequently, we deduce that the process Ξ is progressively measurable by [86, Proposition 1.1.28].

It only remains to prove inequality (2.3.6). For this aim let us fix any r ∈ [0,T ]. Invoking the Strichartz

estimates from Theorem 2.2.2 and (2.3.4) gives

Ξr (ω) =Λr ◦ξ(r,ω) : K → Lp (0,T ;E),(2.3.7)

where Λr ∈L(H ,Lp (0,T ;E)) and ξ(r ) ∈ γ(K , H). Then, by using (2.3.1) we get

‖Λr ◦ξ‖γ(K ,Lp (0,T ;E)) ≤C (p,E)

(
E

[∥∥∥ ∑
j∈N

β j Λr (ξ(r )(e j ))
∥∥∥p

Lp (0,T ;E)

]) 1
p

=C (p,E)

(
E

[∥∥∥Λr

(∑
j∈N

β j ξ(r )(e j )

)∥∥∥p

Lp (0,T ;E)

]) 1
p
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≤C (p,E) ‖Λr ‖L(H ,Lp (0,T ;E))

(
E

[∥∥∥ ∑
j∈N

β j ξ(r )(e j )
∥∥∥p

H

]) 1
p

≤C (p,E) C (p, H) ‖Λr ‖L(H ,Lp (0,T ;E)) ‖ξ(r )‖γ(K ,H),

where, by using the inhomogeneous Strichartz inequality (2.2.1), we have

‖Λr ‖L(H ,Lp (0,T ;E)) = sup
h∈H

‖h‖H≤1

‖Λr h‖Lp (0,T ;E) = sup
h∈H

‖h‖H≤1

(∫ T

r

∥∥∥∥∥sin((t − r )
p

A )p
A

h

∥∥∥∥∥
p

E

d t

) 1
p

≤ sup
h∈H

‖h‖H≤1

CT ‖h‖H =CT .

Consequently, since ξ ∈ M 2,p ([0,T ],γ(K , H)), we have Ξ ∈ M 2,p ([0,T ],γ(K ,Lp (0,T,E))) because

E

[∫ T

0
‖Ξr ‖2

γ(K ,Lp (0,T ;E)) dr

] p
2

=
∫
Ω

[∫ T

0
‖Ξr (ω)‖2

γ(K ,Lp (0,T ;E)) dr

] p
2

P(dω)

≤ (C (p,E))p (C (p, H))p C p
T

∫
Ω

[∫ T

0
‖ξ(r,ω)‖2

γ(K ,H) dr

] p
2

P(dω) <∞.

Hence the Lemma 2.3.3. �

Remark 2.3.4. Results related to the previous lemma and the next theorem in the case of the

Schrödinger group have been discussed in detail in the PhD thesis of Fabian Hornung [82], see

Theorem 2.21 and Corollary 2.22.

The following main result of this section is one of the most important ingredient in the proof of

the local existence theorem in Section 2.4. They are called the “stochastic Strichartz estimates”.

Theorem 2.3.5 (Stochastic Strichartz Estimates). Let us assume that T > 0 and p ∈ (1,∞). Then there

exist constants1 K (p,T, H ) > 0 and C̃ (p,T,E , H ) > 0 such that if ξ is a progressively measurable process

from the space M 2,p ([0,T ],γ(K , H)), then the following assertions hold.

(I) There exists a separable and HA-valued2 continuous and adapted modification ũ of the process

u = {u(t ) : t ∈ [0,T ]}, defined by the following formula

(2.3.8) u(t ) :=
∫ t

0

sin((t − s)
p

A )p
A

ξ(s) dW (s), t ∈ [0,T ].

Moreover,

(2.3.9) E

[
sup

t∈[0,T ]
‖ũ(t )‖p

HA

]
≤ K (p,T, H) E

[∫ T

0
‖ξ(t )‖2

γ(K ,H) d t

] p
2

,

where K (p,T, H) ≤ M1emT Bp (H) for some constants m ≥ 0 and M1 ≥ 1.

1The constant K depends on T only in the Neumann boundary conditions case.
2Let us recall that HA =D(A1/2).
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(II) There exists an E-valued progressively measurable process ˜̃u such that

(2.3.10) j ( ˜̃u) = i (ũ) for Leb⊗P-almost all (t ,ω) ∈ [0,T ]×Ω,

where i : HA ,→ H and j : E ,→ H are the natural embeddings. Moreover,

(2.3.11) E

[∫ T

0
‖ ˜̃u(t )‖p

E d t

]
≤ C̃ (p,T,E , H) E

[∫ T

0
‖ξ(t )‖2

γ(K ,H) d t

] p
2

,

where C̃ (p,T,E , H) :=CT C (p, H) C (p,E) B̂p (E). In particular, the map

J : M 2,p ([0,T ],γ(K , H)) → Lp (0,T ;E),

is linear and bounded where Jξ is a process defined by

(2.3.12) Jξ := ˜̃u.

Proof of Theorem 2.3.5 In what follows we fix the Dirichlet or the Neumann boundary conditions.

To prove the first assertion, let us consider the following stochastic wave problem{
ut t + Au = ξẆ in [0,T ]×D

(u,ut )(0) = (0,0).

Then, see Subsection 2.5.2, by writing it as a first order system in space H := HA ×H , endowed with

Hilbertian norm, we get

(2.3.13)

{
du(t ) =Au(t )d t + ξ̃(t )dW (t )

u(0) = (0,0),

where

u= (u,ut ), A=
(

0 I

−A 0

)
and ξ̃(t ) =

(
0

ξ(t )

)
.

Since A is non-negative and self adjoint in L2(D), one may prove that A generate a C0-group (of

contraction in the Dirichlet case) on H, which we denote by {S(t )}t≥0 in the sequel. Moreover, one

can write the concrete structure of S(t ) as

S(t ) =
(

cos(t
p

A ) sin(t
p

A )/
p

A

−pA sin(t
p

A ) cos(t
p

A )

)
.

It is known that the solution of (2.3.13) exists, see e.g. [119], and has the following form

u(t ) =
∫ t

0
S(t − s) ξ̃(s) dW (s), t ∈ [0,T ].

Next, we define the process ũ, by

ũ(t ) := S(t )
∫ t

0
S(−s) ξ̃(s) dW (s), t ∈ [0,T ],
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where by
∫ t

0 S(−s) ξ̃(s) dW (s), t ∈ [0,T ], we denote the separable, H-valued continuous and adapted

modification of the process denoted by the same symbol. Hence, since {S(t)}t≥0 is a C0-group, the

process ũ is separable, H-valued continuous and adapted modification of the process u.

By defining a process ũ by

(2.3.14) ũ(t ) :=π1(ũ(t )), t ∈ [0,T ],

where π1 :H→ HA is the natural projection, it follows that ũ is separable HA-valued continuous and

adapted modification of u.

Moreover, using the Burkholder inequality (2.3.2) and the bound property of C0-group, we argue as

follows:

E

[
sup

t∈[0,T ]
‖ũ(t )‖p

D(A1/2)

]
≤ E

[
sup

t∈[0,T ]
‖ũ(t )‖p

H

]

= E
[

sup
t∈[0,T ]

∥∥∥S(t )
∫ t

0
S(−s)ξ̃(s) dW (s)

∥∥∥p

H

]

≤ K ′
T Bp (H) E

[∫ T

0
‖S(−s)ξ̃(s)‖2

γ(K ,H)d s

] p
2

≤ KT Bp (H) E

[∫ T

0
‖ξ̃(s)‖2

γ(K ,H)d s

] p
2

= KT Bp (H) E

[∫ T

0
‖ξ(s)‖2

γ(K ,H)d s

] p
2

,

where KT ≤ M1emT for some constants m ≥ 0 and M1 ≥ 1. By substituting K (p,T, H) := KT Bp (H)

yields the inequality (2.3.9) and in particular, the assertion I.

We split the proof of assertion II in the following two steps. First we prove the theorem for a

more regular process and then transfer the results to the concerned process by an argument of

approximation.

Step 1: In this step we assume that ξ is a progressively measurable process from the space

M 2,p ([0,T ],γ(K ,D(Ak ))),

where k is a chosen temporary auxiliary natural number such that the Hilbert space D(Ak+1/2) is

continuously embedded into the Banach space E =D(A(1−r )/2
q ). By the classical Sobolev embedding,

such a number exists. Thus, by assertion I, we infer that there exists a separable, D(Ak+1/2)-valued

continuous and adapted modification ũ of the process u = {u(t ), t ∈ [0,T ]}, defined by the formula

(2.3.8). Moreover,

E
[

sup
t∈[0,T ]

‖ũ(t )‖p
D(Ak+1/2)

]
≤ K (p,T, H) E

[∫ T

0
‖ξ(t )‖2

γ(K ,D(Ak )) d t

] p
2

<∞.

Also, note that, because of our additional assumption in this step, the process ũ is an E-valued

continuous and adapted. Hence ũ is an E-valued progressively measurable process. Furthermore,

E
[‖ũ‖p

L∞(0,T ;E)

]<∞.
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Next, we define for each r ∈ [0,T ] an Lp (0,T ;E)-valued random variable

Ξr (t ,ω) =1[r,T ](t )
sin((t − r )

p
A )p

A
ξ(r,ω).

Then by the Burkholder inequality (2.3.3) with (2.3.6) we get

E

[∫ T

0

∥∥∥∥(∫ T

0
Ξr dW (r )

)
(t )

∥∥∥∥p

E
d t

]
= E

[∥∥∥∥∫ T

0
Ξr dW (r )

∥∥∥∥p

Lp (0,T ;E)

]

≤ B̂p (E) E

[∫ T

0
‖Ξr ‖2

γ(K ,Lp (0,T ;E)) dr

] p
2

≤CT C (p, H) C (p,E) B̂p (E) E

[∫ T

0
‖ξ(r )‖2

γ(K ,H) dr

] p
2

.

Let us define ˜̃u to be a representative of the Lp (0,T ;E)-valued random variable
∫ T

0 Ξr dW (r ).

Then we have (2.3.11) and j ˜̃u is an L2(0,T ; H)-valued random variable which is representative of

an L2(0,T ; H)-valued Itô integral
∫ T

0 j (Ξr )dW (r ). Since the process ũ has continuous HA-valued

trajectories, the process i (ũ(t )), t ∈ [0,T ] determines an L2(0,T ; H)-valued random variable denoted

by i (ũ) which is a representative of the L2(0,T ; H)-valued Itô integral
∫ T

0 j (Ξr )dW (r ). Hence, the

H-valued random variables i (ũ(t)) and j ( ˜̃u(t)), t ∈ [0,T ], are Leb⊗P equal. Since, the former is

H-valued progressively measurable, by the Kuratowski Theorem, see e.g. [126, Corollary I.3.3], we

infer that process ˜̃u(t ), t ∈ [0,T ], is E-valued progressively measurable. This concludes the proof of

Step 1.

Step 2: Here we transfer the result of Step 1 to the concerned process. Let ξ be a progressively

measurable process from the space M 2,p ([0,T ],γ(K , H)), where k is a temporary auxiliary natural

number as in Step 1. We choose a sequence {ξn}n∈N of processes from M 2,p ([0,T ],γ(K ,D(Ak ))) such

that

(2.3.15) ‖ξn −ξ‖M 2,p ([0,T ],γ(K ,H)) → 0 sufficiently fast as n →∞.

We denote the corresponding processes for ξn , which are valid from previous step, as ũn and ˜̃un . By

Step 1, for each n, the processes ũn and ˜̃un satisfy the condition (2.3.10), the process ũn satisfies

inequality (2.3.9) and the process ˜̃un satisfies inequality (2.3.11). Thus, both sequences are Cauchy in

the appropriate Banach spaces M∞,p ([0,T ], HA) and M p ([0,T ],E), respectively. Hence, there exist

unique elements in those spaces, whose representatives, respectively, we denote by ũ and ˜̃u. Because

the convergence (2.3.15) is sufficiently fast, we deduce that P-a.s., ˜̃un → ˜̃u in Lp (0,T ;E) and ũn → ũ

in C([0,T ]; HA). Hence, we infer that ũ is HA-valued adapted and continuous process and ˜̃u is an

E-valued progressively measurable process. Moreover, the processes ũ and ˜̃u satisfy the condition

(2.3.10). Hence we are done with the proof of Theorem 2.3.5. �
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2.4 Local well-posedness

The aim of this section is to formulate a theorem about the existence and uniqueness of solutions to

the stochastic wave equation (1.1.4). Let us recall the notation

(2.4.1) H = L2(D); HA =D(A1/2); E =D(A(1−r )/2
q ),

where q ∈ (1,∞) and r ∈ [0,1]. Let us also recall the definition of the spaces YT . For any T > 0, we put

YT =C
(
[0,T ];D(A1/2)

)∩Lp
(
0,T ;D(A(1−r )/2

q )
)

,

with norm

‖u‖p
YT

= sup
t∈[0,T ]

‖u(t )‖p
D(A1/2)

+‖u‖p

Lp (0,T ;D(A(1−r )/2
q ))

.

ByMp (YT ) we denote the Banach space of F-progressively measurable processes {u(t ) : t ∈ [0,T ]}

which are E-valued and have a continuous D(A1/2)-valued modification which satisfies

(2.4.2) ‖ξ‖p
Mp (YT ) := E

[
‖ξ‖p

C([0,T ];D(A1/2))
+‖ξ‖p

Lp (0,T ;D(A(1−r )/2
q ))

]
<∞.

We also put

(2.4.3) XT := Lp (0,T ;D(A(1−r )/2
q )) and ZT :=C

(
[0,T ];D(A1/2)

)
,

to shorten the notation during computation.

If T is a bounded F-stopping time, we writeMp (YT ) to denote the Banach space of all E-valued

F-progressively measurable processes

ξ : {(t ,ω) :ω ∈Ω,0 ≤ t ≤ T (ω)} → HA ∩E ,

which have a continuous D(A1/2)-valued modification such that for each ω ∈Ω, ξ(·,ω) ∈ YT (ω) and

E

[
‖ξ‖p

C([0,T (ω)];D(A1/2))
+‖ξ‖p

Lp (0,T (ω);D(A(1−r )/2
q ))

]
<∞.

2.4.1 Considered SNLWE model with assumptions

Here we recall the considered SNLWE and state the assumptions on the nonlinear and diffusion terms.

To be precise, we consider the following Cauchy problem of stochastic nonlinear wave equation with

Dirichlet or Neumann boundary condition

(2.4.4)

{
ut t + Au +F (u) =G(u)Ẇ in [0,∞)×D

u(0) = u0, ut (0) = u1 on D,

where A is either −∆D or −∆N ; (u0,u1) ∈ D(A1/2)×L2(D) and W = {W (t) : t ≥ 0} is a cylindrical

Wiener process on some real separable Hilbert space K such that some orthonormal basis { f j } j∈N of

K satisfies

(2.4.5)
∑
j∈N

‖ f j‖2
L∞(D) <∞.

In (2.4.4), for the nonlinearity F and the diffusion coefficient G we assume the following hypotheses.
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A.1 Let H , HA and E are Banach spaces. Assume that

F : HA ∩E → H ,

is a map such that for every M ∈ (0,1) there exist a constant CF > 0 and γ ∈ (0,∞) such that the

following inequality holds

‖F (u)−F (v)‖H ≤CF

[
1+ ‖u‖E

M
+ ‖v‖E

M

]γ
‖u − v‖HA ,

provided

(2.4.6) u, v ∈ HA ∩E and ‖u‖HA ≤ M ,‖v‖HA ≤ M .

A.2 Let HA and E are Banach spaces, and K and H are Hilbert spaces, moreover, K is separable.

Assume that

G : HA ∩E → γ(K , H),

is a map such that for every M ∈ (0,1) there exist γ ∈ (0,∞) and a constant CG > 0 such that

‖G(u)−G(v)‖γ(K ,H) ≤CG

[
1+ ‖u‖E

M
+ ‖v‖E

M

]γ
‖u − v‖HA ,

provided u, v satisfy (2.4.6).

Next two lemmata are straightforward but necessary consequences of Assumptions A.1 and A.2.

Lemma 2.4.1. Let us assume that T > 0 and let F : HA ∩E → H be a map satisfying Assumption A.1

for Banach spaces H , HA and E. If M ∈ (0,1) and γ ∈ (0,∞) and CF are as in Assumption A.1, then for

p > γ, the following inequality holds

‖F (u1)−F (u2)‖L1(0,T ;H) ≤CF

[
T + T 1− γ

p

Mγ
‖u1‖γXT

+ T 1− γ

p

Mγ
‖u2‖γXT

]
‖u1 −u2‖ZT ,

provided

u1,u2 ∈C ([0,T ]; HA)∩Lp (0,T ;E),

and

sup
t∈[0,T ]

‖ui (t )‖HA ≤ M , i = 1,2.

Proof of Lemma 2.4.1 Let us choose and fix u1,u2 ∈ XT ∩ ZT . Then, by using Assumption A.1, fol-

lowed by the Hölder inequality, we get

‖F (u1)−F (u2)‖L1(0,T ;H) ≤CF

∫ T

0

[
1+ ‖u1(t )‖E

M
+ ‖u2(t )‖E

M

]γ
‖u1(t )−u2(t )‖HA d t

≤CF‖u1 −u2‖C([0,T ];HA)

[
T + T 1− γ

p

Mγ

(∫ T

0
‖u1(t )‖p

E d t

) γ

p

+ T 1− γ

p

Mγ

(∫ T

0
‖u2(t )‖p

E d t

) γ

p
]

≤CF

[
T + T 1− γ

p

Mγ
‖u1‖γXT

+ T 1− γ

p

Mγ
‖u2‖γXT

]
‖u1 −u2‖ZT .

Hence Lemma 2.4.1 follows. �
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Lemma 2.4.2. Assume that T > 0. Let G : HA ∩E → γ(K , H) be a map satisfying Assumption A.2 for

Banach spaces HA ,E and Hilbert spaces K , H. If M ∈ (0,1), γ ∈ (0,∞) and CG are as in Assumption A.2,

then for p > 2γ, the following inequality holds

‖G(u1)−G(u2)‖2
L2(0,T ;γ(K ,H)) ≤C 2

G

T + T 1− 2γ
p

M 2γ ‖u1‖2γ
XT

+ T 1− 2γ
p

M 2γ ‖u2‖2γ
XT

‖u1 −u2‖2
ZT

,

provided

u1,u2 ∈C ([0,T ]; HA)∩Lp (0,T ;E),

and

sup
t∈[0,T ]

‖ui (t )‖HA ≤ M , i = 1,2.

Proof of Lemma 2.4.2 Let us use the notation XT and ZT introduced the previous proof. Let us

choose and fix u1,u2 ∈ XT ∩ZT . Then, invoking Assumption A.2 and the Hölder inequality, we obtain

‖G(u1)−G(u2)‖2
L2(0,T ;γ(K ,H)) =

∫ T

0
‖G(u1(t ))−G(u2(t ))‖2

γ(K ,H) d t

≤C 2
G

∫ T

0

[
1+ ‖u1(t )‖E

M
+ ‖u2(t )‖E

M

]2γ

‖u1(t )−u2(t )‖2
HA

d t

≤C 2
G‖u1 −u2‖2

C([0,T ];HA)

T + T 1− 2γ
p

M 2γ

(∫ T

0
‖u1(t )‖p

E d t

) 2γ
p

+ T 1− 2γ
p

M 2γ

(∫ T

0
‖u2(t )‖p

E d t

) 2γ
p


≤C 2

G

T + T 1− 2γ
p

M 2γ ‖u1‖2γ
XT

+ T 1− 2γ
p

M 2γ ‖u2‖2γ
XT

‖u1 −u2‖2
ZT

.

Hence the proof of Lemma 2.4.2 is complete. �

To prove the main result of this section we need the following known results. The first one is from

[139].

Theorem 2.4.3. [Moser-Trudinger Inequality]

Let D⊆R2 be a domain (bounded or unbounded), and α≤ 4π. Then

(2.4.7) C (α) =C (α,D) := sup
u∈H 1,2(D),
‖u‖H1,2(D)≤1

∫
D

(
eα(u(x))2 −1

)
d x <+∞.

Moreover, this result is sharp in the sense that for any α> 4π, the supremum in (2.4.7) is infinite.

The next required result is a well known Logarithmic inequality from [125].

Theorem 2.4.4. Let p, q,m ∈R satisfy 1 < p <∞,1 ≤ q <∞, and m > n/q. Then there exists a constant

C such that for all u ∈ H
n
p ,p (D)∩H m,q (D), where D is any domain in Rn , the following holds,

(2.4.8) ‖u‖L∞(D) ≤C‖u‖
H

n
p ,p (D)

[
1+ log

(
1+ ‖u‖H m,q (D)

‖u‖
H

n
p ,p (D)

)]1− 1
p

.
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In the next result we provide an example of functions f and g such that the corresponding maps

F and G , respectively, satisfy the Assumptions A.1 and A.2. The example below has been considered,

in deterministic setting, by [87] and [88], but for the case when E is a suitable Hölder space. We prove

the next result in detail because we need a slightly general version of the Moser-Trudinger inequality

and the Logarithmic estimate, respectively, see Theorem 2.4.3 and 2.4.4, than used by [87] and [88].

Lemma 2.4.5. Let h : R→ R be a function defined by h(x) = x
(
e4πx2 −1

)
for x ∈ R. Then for every

M ∈ (0,1), there exist a number γ ∈ (0,∞), a pair (q,r ) satisfying

(2.4.9) q > 2, 0 < r < min

{
1,

q −2

2

}
and r 6= 1− 1

q
,

and a positive constant Ch,γ such that

‖h ◦u −h ◦ v‖H ≤Ch,γ

[
1+ ‖u‖E

M
+ ‖v‖E

M

]γ
‖u − v‖HA ,

provided u, v satisfy (2.4.6) where the spaces H, HA and E are defined in (2.4.1).

Next result is about the Nemytskii operator G .

Lemma 2.4.6. Assume that condition (2.4.5) holds. Assume that g (x) = x
(
e4πx2 −1

)
, x ∈R. Let G be

the corresponding generalized Nemytskii operator defined by

G(u) := {K 3 k 7→ (g ◦u) ·k ∈ H }, u ∈ HA ∩E .

Then G satisfies the following inequality

‖G(u)−G(v)‖γ(K ,H) ≤CG

[
1+ ‖u‖E

M
+ ‖v‖E

M

]γ
‖u − v‖HA ,

for all u, v ∈ HA ∩E such that u, v satisfy (2.4.6), where the spaces H, HA and E are defined in (2.4.1)

and

CG :=Ch,γ

[∑
j∈N

‖ f j‖2
L∞(D)

]
.

Proof of Lemma 2.4.6 By (2.4.5) and Lemma 2.4.5 (applied to h = g ) we infer that

‖G(u)−G(v)‖2
γ(K ,L2(D)) =

∑
j∈N

‖G(u) f j −G(v) f j‖2
L2(D)

= ∑
j∈N

‖(g ◦u) f j − (g ◦ v) f j‖2
L2(D) ≤ ‖g ◦u − g ◦ v‖2

L2(D)

∑
j∈N

‖ f j‖2
L∞(D)

≤
[∑

j∈N
‖ f j‖2

L∞(D)

]
Ch,γ

[
1+ ‖u‖E

M
+ ‖v‖E

M

]γ
‖u − v‖HA ,

as desired. �
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Proof of Lemma 2.4.5 Let u, v ∈ HA ∩E . Then, by the Mean value theorem, for every x, there exists

θ = θ(x) ∈ (0,1) such that

(2.4.10) u
(
e4πu2 −1

)
− v

(
e4πv2 −1

)
= (u − v)

[(
1+8πu2

θ

)
e4πu2

θ −1
]

,

with uθ(x) = (1−θ(x))u(x)+θ(x)v(x). Thus, the triangle inequality and (2.4.6) gives

(2.4.11) ‖uθ‖HA ≤ M .

Also, by (2.4.10) we get

(2.4.12) ‖h ◦u −h ◦ v‖L2(D) ≤
∥∥∥(u − v)

[(
1+8πu2

θ

)
e4πu2

θ −1
]∥∥∥

L2(D)
.

Applying the basic inequality,

(1+2a)ea −1 ≤ 2

(
1+ 1

ε

)(
e(1+ε)a −1

)
, ∀a,ε> 0,

followed by the Hölder inequality with Sobolev embedding, for any ζ ∈ (0,1) and ε> 0, we argue as

follows:∥∥∥(u − v)
[(

1+8πu2
θ

)
e4πu2

θ −1
]∥∥∥2

L2(D)
.

∥∥∥(u − v)
(
e4π(1+ε)u2

θ −1
)∥∥∥2

L2(D)

. ‖u − v‖2

L
2+ 2

ζ (D)

∥∥∥(
e4π(1+ε)u2

θ −1
)2 ∥∥∥

L1+ζ(D)

. ‖u − v‖2
D(A1/2)

∥∥∥(
e4π(1+ε)u2

θ −1
)2∥∥∥

L1+ζ(D)

. ‖u − v‖2
D(A1/2) e4π(1+ε)‖u2

θ
‖L∞(D)

∥∥∥e4π(1+ε)u2
θ −1

∥∥∥
L1+ζ(D)

.(2.4.13)

Moreover, since uθ satisfy (2.4.11), the Moser-Trudinger inequality from Theorem 2.4.3 gives

‖e4π(1+ε)u2
θ −1‖1+ζ

L1+ζ(D)
≤ ‖e4π(1+ε)(1+ζ)u2

θ −1‖L1(D) ≤C :=C (4π,D),(2.4.14)

provided that ε> 0 and ζ> 0 are chosen such that

(1+ε)(1+ζ)M 2 ≤ 1.

Invoking the log estimate from Theorem 2.4.4, which is possible due to (2.4.9) and Lemma 2.1.2, we

obtain

e4π(1+ε)‖uθ‖2
L∞(D) ≤ exp

[
4πC 2(1+ε)‖uθ‖2

H 1,2(D)

{
1+ log

(
1+

‖uθ‖D(A(1−r )/2
q )

‖uθ‖H 1,2(D)

)}]
.

Using the fact that for any b > 0, the function x 7→ x2
(
1+ log

(
1+ b

x

))
is non-decreasing, we deduce

that,

e4π(1+ε)‖uθ‖2
L∞(D) ≤

[
e

(
1+

‖uθ‖D(A(1−r )/2
q )

M

)]4πC 2(1+ε)M 2

.(2.4.15)
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By setting

γ := 2πC 2(1+ε)M 2,

from (2.4.12), (2.4.13), (2.4.14) and (2.4.15), we get

‖h ◦u −h ◦ v‖L2(D) ≤
∥∥∥(u − v)

[(
1+8πu2

θ

)
e4πu2

θ −1
]∥∥∥

L2(D)

≤ eγ C
1

(1+ζ) ‖u − v‖D(A1/2)

(
1+

‖uθ‖D(A(1−r )/2
q )

M

)γ

≤ eγ C
1

(1+ζ) ‖u − v‖D(A1/2)

(
1+

‖u‖D(A(1−r )/2
q )

M
+
‖v‖D(A(1−r )/2

q )

M

)γ
.

Hence the Lemma 2.4.5 follows. �

Remark 2.4.7. It is obvious, see e.g. [22], that the previous two lemmata hold for all polynomial

functions.

2.4.2 Definition of a local mild solution

In this subsection we introduce the definitions of local and maximal local solutions that we adopt in

this chapter; they are modifications of definitions used earlier, such as in [21].

Definition 2.4.8. A local mild solution to Problem (2.4.4) is a D(A1/2)-valued continuous and adapted

process u = {u(t ) : t ∈ [0,τ)}, where

1. τ is an accessible F-stopping time,

2. there exists an approximating sequence {τn}n≥1 of F-stopping times for τ, such that

u belongs toMp (Yt∧τn ) for all t and every n,

and,

u(t ∧τn) = cos((t ∧τn)
p

A )u0 + sin((t ∧τn)
p

A )p
A

u1

+
∫ t∧τn

0

sin((t ∧τn − s)
p

A )p
A

F (u(s))d s + Iτn (G(u))(t ∧τn),P-a.s.,

for all t ≥ 0 and n ∈N, where we define

(2.4.16) Iτn (G(u))(t ) :=
∫ t

0

sin((t − s)
p

A )p
A

(
1[0,τn )(s)G(u(s))

)
dW (s).

A local mild solution u = {u(t ) : t ∈ [0,τ)} to Problem (2.4.4) is called a local maximal mild solution to

Problem (2.4.4) iff for any other local mild solution û = {û(t ), t ∈ [0, τ̂)} to Problem (2.4.4) such that

P(τ̂> τ) > 0,
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there exists a measurable set Ω̂⊂ {τ̂> τ} such that P(Ω̂) > 0 and u(τ) 6= û(τ) on Ω̂.

In other words, a local mild solution u = {u(t ), t ∈ [0,τ)} to Problem (2.4.4) is not a maximal local

mild solution, iff there exists another local mild solution û = {û(t ), t ∈ [0, τ̂)} to Problem (2.4.4) such

that

P (τ̂> τ,u(τ) = û(τ)) > 0.

If u = {u(t ), t ∈ [0,τ)} is a local maximal solution to Problem (2.4.4), the stopping time τ is called the

explosion time of u.

A local mild solution u = {u(t) : t ∈ [0,τ)} to problem (2.4.4) is unique iff for any other local

solution û = {û(t ) : t ∈ [0, τ̂)} to problem (2.4.4) the restricted processes u|[0,τ∧τ̂)×Ω and û|[0,τ∧τ̂)×Ω are

equivalent.

Remark 2.4.9. The definition of the process Iτn is explained in Lemma 2.5.1 of Subsection 2.5.1. The

use of processes Iτn was first introduced for the SPDEs of parabolic type in [14] and [42] and in [21]

for the hyperbolic SPDEs. The definition we use above is only in terms of the process u and thus it is

different from the one used in [21] which is in terms of pair processes (u,ut ). In Subsection 2.5.2 we

discuss an equivalence between these two approaches.

2.4.3 Existence and uniqueness result

The main result of the present chapter, i.e. the existence of an unique local maximal solution to the

Problem (2.4.4), will be proved in this subsection.

Theorem 2.4.10. Let us assume that (γ, p, q,r ) is a quadruple such that

0 < 2γ< p and (p, q,r ) satisfy (2.2.2).

Let H , HA and E be Hilbert and Banach spaces defined in (2.4.1). Let us assume that the maps

F : E ∩HA → H and G : E ∩HA → γ(K , H),

where K is a separable Hilbert space, satisfy Assumptions A.1 and A.2. Then for every

(2.4.17) (u0,u1) ∈D(A1/2)×L2(D) satisfying ‖u0‖D(A1/2) < 1,

there exists a unique local maximal mild solution u = {u(t) : t ∈ [0,τ)}, to the Problem (2.4.4), in the

sense of Definition 2.4.8 for some accessible bounded stopping time τ> 0.

Remark 2.4.11. It is relevant to note that the solution u = {u(t ) : t ∈ [0,τ)} we construct later on will

satisfy the following,

‖u(t )‖D(A1/2) < 1, for t ∈ [0,τ), P-a.s..
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Proof of Theorem 2.4.10 We start the proof by remarking that it is enough to prove the existence

of an unique local mild solution. Indeed, once we get such a result, the existence of a unique local

maximal mild solution follows by methods which are standard now, see e.g. [22, Theorem 5.4] and

references therein.

The proof is divided in four steps. First two steps are devoted to prove the existence and unique-

ness of the solution of the truncated evolution equation. In Step III we prove the existence of a local

mild solution, in the sense of Definition 2.4.8, to Problem (2.4.4). We complete the proof in Step IV by

proving a local uniqueness result.

Step I: Here we define the truncated evolution equation, related to Problem (2.4.4), and prove a few

required estimates which allow us to show local well-posedness of truncated equation in Step II.

Since the initial position u0 is given and the norm ‖u0‖D(A1/2) is less than 1, there exist M , M ′ in

(0,1) such that

‖u0‖D(A1/2) < M ′ < M < 1.

To derive the truncated equation we introduce the following two auxiliary functions. Let θ :R+ → [0,1]

be a smooth function with compact support such that

θ(x) =
1, if x ∈ [0,1],

0, if x ∈ [2,∞),

and, for n ≥ 1, set θn(·) = θ ( ·
n

)
. As another cut off function, we take θ̂ :R+ → [0,1], a smooth function

with compact support such that

θ̂(x) =
1, if x ∈ [0, M ′],

0, if x ∈ [M ,∞).

We have the following lemmata about θ′n s and θ̂ as a consequence of their description.

Lemma 2.4.12. The maps θ̂ and

θθ̂ :R+ 3 x → θ(x)θ̂(x) ∈ [0,1],

are Lipschitz and bounded.

Lemma 2.4.13. If h :R+ →R+ is a non decreasing function, then for every x, y ∈R,

θn(x)h(x) ≤ h(2n), |θn(x)−θn(y)| ≤ 1

n
|x − y |.

To achieve the aim of Step I, for each n ∈N and T > 0, with the use of auxiliary functions θ, θ̂ we

define the map Ψn
T by

(2.4.18) Ψn
T :Mp (YT ) 3 v 7→ u ∈Mp (YT ),
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if and only if u satisfies the following equation, for all t ∈ [0,T ],

u(t ) = cos(t
p

A )u0 + sin(t
p

A )p
A

u1

+
∫ t

0
θn(‖v‖Ys )θ̂(‖v‖Zs )

sin((t − s)
p

A )p
A

(F (v(s)))d s

+
∫ t

0
θn(‖v‖Yr ) θ̂(‖v‖Zr )

sin((t − r )
p

A )p
A

(G(v(r )))dW (r ), P-a.s..(2.4.19)

Now we show that, for each n ∈N, there exists Tn > 0 such that the right hand side of (2.4.19) is a

strict contraction. We divide our argument in a couple of lemmata.

Lemma 2.4.14. For any T > 0, the map

I n
1 : D(A1/2)×L2(D) 3 (u0,u1) 7→

{
[0,T ] 3 t 7→ cos(t

p
A )u0 + sin(t

p
A )p

A
u1

}
∈Mp (YT ),

is well-defined.

Proof of Lemma 2.4.14 It is known that, see e.g. [5], w := I n
1 (u0,u1) is the unique solution of the

following homogeneous wave equation with the Dirichlet or the Neumann boundary condition{
∂t t w −∆w = 0

w(0, ·) = u0(·), ∂t w(0, ·) = u1(·),

and w belongs to C ([0,T ]; HA) = ZT . Moreover, due to Theorem 2.2.2, w belongs to XT and satisfy

‖w‖XT ≤CT
[‖u0‖D(A1/2) +‖u1‖L2(D)

]
.

So, for every ω ∈ Ω, w ∈ XT ∩ ZT and (2.4.2) is satisfied. Furthermore, since w is an adapted and

continuous process, it is progressively measurable and, hence, we have proved Lemma 2.4.14. �

Lemma 2.4.15. For any T > 0, the following map

I n
2 :Mp (YT ) 3 v 7→

{
[0,T ] 3 t 7→

∫ t

0
θn(‖v‖Ys )θ̂(‖v‖Zs )

sin((t − s)
p

A )p
A

(F (v(s)))d s
}
∈Mp (YT )

is well-defined.

Proof of Lemma 2.4.15 Take any v ∈Mp (YT ) and ṽ :=I n
2 (v). Then, for fix t ∈ [0,T ], we have

‖ṽ‖ZT ≤ sup
t∈[0,T ]

‖ṽ(t )‖HA ≤ sup
t∈[0,T ]

∥∥∥∥∥
∫ t

0

sin((t − s)
p

A )p
A

θn(‖v‖Ys )θ̂(‖v‖Zs )F (v(s))d s

∥∥∥∥∥
HA

≤ KT

∫ T

0
θn(‖v‖Ys )θ̂(‖v‖Zs )‖F (v(s))‖H d s.(2.4.20)
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Note that, in the last step above we have used the following consequence of the bound property of

C0-group {S(t )}t≥0,

(2.4.21)

∥∥∥∥∥sin(t
p

A )p
A

∥∥∥∥∥≤ KT , t ∈ [0,T ],

where KT := M1emT for some constants m ≥ 0 and M1 ≥ 1. Let T ∗
1 and T ∗

2 be the stopping times

defined by

(2.4.22) T ∗
1 := inf{t ∈ [0,T ] : ‖v‖Zt ≥ M },

and

(2.4.23) T ∗
2 := inf{t ∈ [0,T ] : ‖v‖YT ≥ 2n}.

If the set in the definition of T ∗
i is empty, then we set T ∗

i = T . Now, we define the following F-stopping

time

T ∗ := min{T ∗
1 ,T ∗

2 }.

Returning back to (2.4.20) and by applying (2.4.23) we get∫ T

0
θn(‖v‖Ys ) θ̂(‖v‖Zs ) ‖F (v(s))‖L2(D) d s ≤

∫ T ∗

0
‖F (v(s))‖L2(D) d s = ‖F (v)‖L1(0,T ∗;L2(D)).(2.4.24)

In view of (2.4.22) and (2.4.23), we infer that P-a.s. ‖v‖ZT∗ ≤ M and ‖v‖YT∗ ≤ 2n. Thus, since F (0) = 0,

by Lemma 2.4.1 the following argument holds,

‖F (v)‖L1(0,T ∗,L2(D)) ≤CF

(
T + T 1− γ

p

Mγ
‖v‖γYT∗

)
‖v‖YT∗ ≤ 2n CF

(
T + T 1− γ

p

Mγ
(2n)γ

)
.(2.4.25)

Combining (2.4.20), (2.4.24) and (2.4.25) we have

(2.4.26) E
[
‖ṽ‖p

ZT

]
≤ (2n)p C p

F K p
T

(
T + T 1− γ

p

Mγ
(2n)γ

)p

.

Invoking, the inhomogeneous Strichartz estimates from Theorem 2.2.2 followed by (2.4.25) we get

‖ṽ‖XT ≤CT

∫ T ∗

0
θn(‖v‖Ys )θ̂(‖v‖Zs ) ‖F (v(s))‖L2(D) d s

≤CT ‖F (v)‖L1(0,T ∗;L2(D)) ≤ 2n CF CT

(
T + T 1− γ

p

Mγ
(2n)γ

)
,

which consequently gives,

E
[
‖ṽ‖p

XT

]
≤ (2n)p C p

F C p
T

(
T + T 1− γ

p

Mγ
(2n)γ

)p

.(2.4.27)

Finally by estimates (2.4.26) and (2.4.27) we have

E
[
‖ṽ‖p

YT

]
. (2n)p C p

F (C p
T +K p

T )

(
T + T 1− γ

p

Mγ
(2n)γ

)p

,

and hence we have Lemma 2.4.15. �
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The next result establishes the Lipschitz properties of I n
2 as a map acting onMp (YT ).

Lemma 2.4.16. Fix any T > 0. There exists a constant Ln
2 (T ) > 0 such that the following assertions are

true:

• Ln
2 (·) is non decreasing;

• for every n ∈N, lim
T→0

Ln
2 (T ) = 0;

• for every v1, v2 ∈Mp (YT ), I n
2 satisfy

‖I n
2 (v1)−I n

2 (v2)‖Mp (YT ) .p Ln
2 (T ) ‖v1 − v2‖Mp (YT ).

Proof of Lemma 2.4.16 Let v1, v2 ∈Mp (YT ). Since I n
2 is well defined, we denote ṽ1 := I n

2 (v1) and

ṽ2 :=I n
2 (v2) ∈Mp (YT ). As in Lemma 2.4.15, we define the following F-stopping times

T i
1 := inf{t ∈ [0,T ] : ‖vi‖Zt ≥ M }, i = 1,2,

T i
2 := inf{t ∈ [0,T ] : ‖vi‖Yt ≥ 2n} i = 1,2,

T ∗
1 := min{T 1

1 ,T 1
2 } and T ∗

2 := min{T 2
1 ,T 2

2 }.

Invoking the inhomogeneous Strichartz estimates from Theorem 2.2.2, followed by Lemma 2.4.1 and

Lemma 2.4.13 with the above defined stopping times, we argue as follows:

E
[
‖ṽ1 − ṽ2‖p

XT

]
≤C p

T E

[∫ T

0

∥∥∥[
θn(‖v1‖Ys )θ̂(‖v1‖Zs ) F (v1(s))−θn(‖v2‖Ys )θ̂(‖v2‖Zs ) F (v2(s))

]∥∥∥
H

d s

]p

.p C p
T E

[∫ T

0
1T ∗

1 ≤T ∗
2

(s)
∥∥∥θn(‖v1‖Ys )θ̂(‖v1‖Zs ) F (v1(s))−θn(‖v2‖Ys )θ̂(‖v2‖Zs ) F (v2(s))

∥∥∥
H

d s

]p

+C p
T E

[∫ T

0
1T ∗

2 ≤T ∗
1

(s)
∥∥∥θn(‖v1‖Ys )θ̂(‖v1‖Zs ) F (v1(s))−θn(‖v2‖Ys )θ̂(‖v2‖Zs ) F (v2(s))

∥∥∥
H

d s

]p

.p C p
T E

[∫ T

0
1{T ∗

1 ≤T ∗
2 }(t )θn(‖v1‖Yt )θ̂(‖v1‖Zt )‖F (v1(t ))−F (v2(t ))‖H d t

]p

+C p
T E

[∫ T

0
1{T ∗

1 ≤T ∗
2 }(t )|θn(‖v1‖Yt )θ̂(‖v1‖Zt )−θn(‖v2‖Yt )θ̂(‖v2‖Zt )|‖F (v2(t ))‖H d t

]p

+C p
T E

[∫ T

0
1{T ∗

2 ≤T ∗
1 }(t )θn(‖v2‖Yt )θ̂(‖v2‖Zt )‖F (v1(t ))−F (v2(t ))‖H d t

]p

+C p
T E

[∫ T

0
1{T ∗

2 ≤T ∗
1 }(t )|θn(‖v1‖Yt )θ̂(‖v1‖Zt )−θn(‖v2‖Yt )θ̂(‖v2‖Zt )|‖F (v1(t ))‖H d t

]p

≤C p
T E

[∫ T ∗
1 ∧T ∗

2

0
θn(‖v1‖Yt )θ̂(‖v1‖Zt )‖F (v1(t ))−F (v2(t ))‖H d t

]p

+C p
T E

[∫ T ∗
1 ∧T ∗

2

0
|θn(‖v1‖Yt )θ̂(‖v1‖Zt )−θn(‖v2‖Yt )θ̂(‖v2‖Zt )|‖F (v2(t ))‖H d t

]p

+C p
T E

[∫ T ∗
1 ∧T ∗

2

0
θn(‖v2‖Yt )θ̂(‖v2‖Zt )‖F (v1(t ))−F (v2(t ))‖H d t

]p

+C p
T E

[∫ T ∗
1 ∧T ∗

2

0
|θn(‖v1‖Yt )θ̂(‖v1‖Zt )−θn(‖v2‖Yt )θ̂(‖v2‖Zt )|‖F (v1(t ))‖H d t

]p
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.p C p
F C p

T E

[
sup

t∈[0,T ]
‖v1 − v2‖Yt

(
T + T 1− γ

p

Mγ
‖v1‖γYT∗

1 ∧T∗
2

+ T 1− γ

p

Mγ
‖v2‖γYT∗

1 ∧T∗
2

)]p

+C p
F C p

T E

[
‖v1 − v2‖ZT

∫ T ∗
1 ∧T ∗

2

0
‖F (v1(t ))‖H d t

]p

+ 1

n
E

[
‖v1 − v2‖YT

∫ T ∗
1 ∧T ∗

2

0
‖F (v1(t ))‖H d t

]p

+C p
F C p

T E

[
‖v1 − v2‖ZT

∫ T ∗
1 ∧T ∗

2

0
‖F (v2(t ))‖H d t

]p

+ 1

n
E

[
‖v1 − v2‖YT

∫ T ∗
1 ∧T ∗

2

0
‖F (v2(t ))‖H d t

]p

. np C p
F C p

T ‖v1 − v2‖p
Mp (YT )

(
T + T 1− γ

p

Mγ
(2n)γ

)p

.

Next, using the bound property (2.4.21), followed by repeating the calculations as above, we obtain

E
[
‖ṽ1 − ṽ2‖p

ZT

]
. E

[∫ T

0

∥∥∥[
θn(‖v1‖Ys )θ̂(‖v1‖Zs ) F (v1(s))−θn(‖v2‖Ys )θ̂(‖v2‖Zs ) F (v2(s))

]∥∥∥
H

d s

]p

. np C p
F K p

T ‖v1 − v2‖p
Mp (YT )

(
T + T 1− γ

p

Mγ
(2n)γ

)p

.

Consequently, we get

‖ṽ1 − ṽ2‖p
Mp (YT ) .p np C p

F (C p
T +K p

T )

(
T + T 1− γ

p

Mγ
(2n)γ

)p

‖v1 − v2‖p
Mp (YT )

=: (Ln
2 (T ))p ‖v1 − v2‖p

Mp (YT ).

Since γ< p, by definition of Ln
2 (T ), it is clear that, for each n ∈N, lim

T→0
Ln

2 (T ) = 0. Thus we have proved

the Lemma 2.4.16. �

In continuation of the proof of Theorem 2.4.10, we set

ξn(t ) := θn(‖v‖Yt )θ̂(‖v‖Zt )G(v(t )), t ∈ [0,T ],

then by (2.3.12), we write

∫ t

0
θn(‖v‖Yr ) θ̂(‖v‖Zr )

sin((t − r )
p

A )p
A

(G(v(r )))dW (r )

=:
∫ t

0

sin((t − r )
p

A )p
A

ξn(r )dW (r ) =: [Jξn](t ), t ∈ [0,T ].(2.4.28)

In the next result, we show that I n
3 mapsMp (YT ) into itself.

Lemma 2.4.17. For any T > 0, the map

(2.4.29) I n
3 :Mp (YT ) 3 v 7→ Jξn ∈Mp (YT ),

where Jξn is as (2.4.28), is well-defined.
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Proof of Lemma 2.4.17 First observe that from (2.3.11), we have

E
[
‖[Jξn]‖p

Lp (0,T ;E)

]
= E

[∫ T

0
‖[Jξn](t )‖p

E d t

]

≤ C̃ (p,T,E , H) E

[∫ T

0
‖ξn(t )‖2

γ(K ,H) d t

] p
2

.(2.4.30)

As in Lemma 2.4.16, define the F-stopping times as

T ∗
1 := inf{t ∈ [0,T ] : ‖v‖Zt ≥ M }, T ∗

2 := inf{t ∈ [0,T ] : ‖v‖Yt ≥ 2n}

and set

T ∗ := min{T ∗
1 ,T ∗

2 }.

In view of the above definition of stopping times θn(‖v‖Yt ) = 0, θ̂(‖v‖Zt ) = 0 for all t ∈ [T ∗,T ], and

‖v‖YT∗ ≤ 2n, and ‖v‖ZT∗ ≤ M , P-a.s..

Invoking Lemma 2.4.2, followed by the Hölder inequality, we get∫ T

0
‖ξn(t )‖2

γ(K ,H) d t =
∫ T

0
θn(‖v‖Yt )θ̂(‖v‖Zt ) ‖G(v(t ))‖2

γ(K ,H) d t

≤
∫ T ∗

0
‖G(v(t ))‖2

γ(K ,H) d t ≤ C 2
G sup

t∈[0,T ∗]
‖v(t )‖2

HA

T + T 1− 2γ
p

M 2γ ‖v‖2γ
XT∗


≤ (2n)2 C 2

G

T + T 1− 2γ
p

M 2γ (2n)2γ

 .(2.4.31)

Consequently, by putting (2.4.31) in (2.4.30) we obtain

(2.4.32) E

[∫ T

0
‖[Jξn](t )‖p

E d t

]
≤ (2n)p C p

G C̃ (p,T,E , H)

T + T 1− 2γ
p

M 2γ (2n)2γ


p
2

.

Next, to estimate E
[
‖Jξn‖p

C(0,T ;HA)

]
, using the stochastic Strichartz estimate from Theorem 2.3.5,

followed by (2.4.31), we get

E

[
sup

t∈[0,T ]
‖[Jξn](t )‖p

HA

]
≤ K (p,T, H) E

[∫ T

0
‖ξn(t )‖2

γ(K ,H) d t

] p
2

≤ (2n)p C p
G K (p,T, H)

T + T 1− 2γ
p

M 2γ (2n)2γ


p
2

.(2.4.33)

Combining (2.4.32) and (2.4.33) we have

E
[
‖Jξn‖p

C(0,T ;HA) +‖Jξn‖p
Lp (0,T ;E)

]
≤ (2n)p C p

G (K (p,T, H)+ C̃ (p,T,E , H))

T + T 1− 2γ
p

M 2γ (2n)2γ


p
2

,

and hence the Lemma 2.4.17. �
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The next result establishes the Lipschitz properties of I n
3 as a map acting onMp (YT ).

Lemma 2.4.18. Fix any T > 0. There exists a constant Ln
3 (T ) > 0 such that the following assertions are

true:

• Ln
3 (·) is non decreasing;

• for every n ∈N, lim
T→0

Ln
3 (T ) = 0;

• for v1, v2 ∈Mp (YT ), I n
3 satisfy,

(2.4.34) ‖I n
3 (v1)−I n

3 (v2)‖Mp (YT ) .p Ln
3 (T ) ‖v1 − v2‖Mp (YT ).

Proof of Lemma 2.4.18 To prove the contraction property (2.4.18), for i = 1,2, we set

ξn
i (t ) = θn(‖vi‖Yt )θ̂(‖vi‖Zt )G(vi (t )).

Then, applying (2.3.11) from Theorem 2.3.5 we get

E
[
‖Jξn

1 − Jξn
2 ‖p

Lp (0,T ;E)

]
= E

[∫ T

0
‖[Jξn

1 ](t )− [Jξn
2 ](t )‖p

E d t

]

≤ C̃ (p,T,E , H) E

[∫ T

0
‖ξn

1 (t )−ξn
2 (t )‖2

γ(K ,H) d t

] p
2

.(2.4.35)

Next, we define the following F-stopping times by

T i
1 := inf{t ∈ [0,T ] : ‖vi‖Zt ≥ M }, T i

2 := inf{t ∈ [0,T ] : ‖vi‖Yt ≥ 2n}, i = 1,2

and set

T ∗
1 := min{T 1

1 ,T 1
2 } and T ∗

2 := min{T 2
1 ,T 2

2 }.

Applying the stochastic Strichartz estimate from Theorem 2.3.5, we get

E

[
sup

t∈[0,T ]
‖[Jξn

1 ](t )− [Jξn
2 ](t )‖p

HA

]
≤ K (p,T, H) E

[∫ T

0
‖ξn

1 (t )−ξn
2 (t )‖2

γ(K ,H) d t

] p
2

.(2.4.36)

Using Lemmata 2.4.2 and 2.4.13 with the above defined stopping times, we argue as follows:

E

[∫ T

0
‖ξn

1 (t )−ξn
2 (t )‖2

γ(K ,H) d t

] p
2

(2.4.37)

.p E

[∫ T

0
1{T ∗

1 ≤T ∗
2 }(t ) ‖ξn

1 (t )−ξn
2 (t )‖2

γ(K ,H) d t

] p
2

+E
[∫ T

0
1{T ∗

2 ≤T ∗
1 }(t ) ‖ξn

1 (t )−ξn
2 (t )‖2

γ(K ,H) d t

] p
2

.p E

[∫ T

0
1{T ∗

1 ≤T ∗
2 }(t )θn(‖v1‖Yt )θ̂(‖v1‖Zt )‖G(v1(t ))−G(v2(t ))‖2

γ(K ,H) d t

] p
2
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+E
[∫ T

0
1{T ∗

1 ≤T ∗
2 }(t )|θn(‖v1‖Yt )θ̂(‖v1‖Zt )−θn(‖v2‖Yt )θ̂(‖v2‖Zt )|2‖G(v2(t ))‖2

γ(K ,H) d t

] p
2

+E
[∫ T

0
1{T ∗

2 ≤T ∗
1 }(t )θn(‖v2‖Yt )θ̂(‖v2‖Zt )‖G(v1(t ))−G(v2(t ))‖2

γ(K ,H) d t

] p
2

+E
[∫ T

0
1{T ∗

2 ≤T ∗
1 }(t )|θn(‖v1‖Yt )θ̂(‖v1‖Zt )−θn(‖v2‖Yt )θ̂(‖v2‖Zt )|2‖G(v1(t ))‖2

γ(K ,H) d t

] p
2

.C p
G E

‖v1 − v2‖2
ZT

T + T 1− 2γ
p

M 2γ ‖v1‖2γ
XT∗

1 ∧T∗
2

+ T 1− 2γ
p

M 2γ ‖v2‖2γ
XT∗

1 ∧T∗
2


p
2

+C p
G E

[
‖v1 − v2‖2

ZT

∫ T ∗
2

0
1{T ∗

1 ≤T ∗
2 }(t )‖G(v2(t ))‖2

γ(K ,H) d t

] p
2

+ C p
G

np E

[
‖v1 − v2‖2

YT

∫ T ∗
2

0
1{T ∗

1 ≤T ∗
2 }(t )‖G(v2(t ))‖2

γ(K ,H) d t

] p
2

+C p
G E

[
‖v1 − v2‖2

ZT

∫ T ∗
1

0
1{T ∗

2 ≤T ∗
1 }(t )‖G(v1(t ))‖2

γ(K ,H) d t

] p
2

+ C p
G

np E

[
‖v1 − v2‖2

YT

∫ T ∗
1

0
1{T ∗

2 ≤T ∗
1 }(t )‖G(v1(t ))‖2

γ(K ,H) d t

] p
2

.C p
G

T + 2T 1− 2γ
p

M 2γ (2n)2γ


p
2

‖v1 − v2‖p
Mp (YT )

+np C p
G

T + T 1− 2γ
p

M 2γ (2n)2γ


p
2

‖v1 − v2‖p
Mp (YT )

. np C p
G

T + T 1− 2γ
p

M 2γ (2n)2γ


p
2

‖v1 − v2‖p
Mp (YT ).

By substituting (2.4.37) into (2.4.35) and (2.4.36) we get,

‖Jξn
1 − Jξn

2 ‖p
Mp (YT ).p np C p

G (K (p,T, H)+ C̃ (p,T,E , H))

T + T 1− 2γ
p

M 2γ (2n)2γ


p
2

‖v1 − v2‖p
Mp (YT )

=: (Ln
3 (T ))p ‖v1 − v2‖p

Mp (YT ).

Since 2γ< p, by definition of Ln
3 (T ), it is clear that lim

T→0
Ln

3 (T ) = 0 for every n. Thus we have finished

the proof for (2.4.34) and, in particular, for Lemma 2.4.18. �

Step II: In this step, we prove that, for each n ∈N, there exists Tn > 0 such that the map Ψn
Tn

defined

by (2.4.18)-(2.4.19) has a unique fixed point in the spaceMp (YTn ).

Let us fix an n ∈N. From Lemmata 2.4.14 - 2.4.18, we infer that, for any T > 0, the map Ψn
T is well

defined onMp (YT ) and for every v1, v2 ∈Mp (YT ), we have

‖Ψn
T (v1)−Ψn

T (v2)‖Mp (YT )
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.p Ln
2 (T ) ‖v1 − v2‖Mp (YT ) +Ln

3 (T ) ‖v1 − v2‖Mp (YT ) =: Ln(T )‖v1 − v2‖Mp (YT ),

where Ln(·) is non decreasing and lim
T→0

Ln(T ) = 0. Hence, we can choose Tn > 0 such that Ψn
Tn

is a

strict contraction onMp (YTn ). Thus, by the Banach Fixed Point Theorem there exists a unique fixed

point un ∈Mp (YTn ) of the map Ψn
Tn

.

Step III: Here we prove the existence of a local mild solution, in the sense of Definition 2.4.8, to

Problem (2.4.4).

Fix any n ∈N. Then, from Step II, there exists a Tn > 0 and a unique fixed point un of map Ψn
Tn

in

the spaceMp (YTn ). Using the process un , we define the following F-stopping time,

(2.4.38) τn := inf{t ∈ [0,Tn] : ‖un‖Zt ≥ M ′}∧ inf{t ∈ [0,Tn] : ‖un‖Yt ≥ n}.

At this juncture it is important to mention that, since ‖un(0)‖HA < M ′ and the maps t 7→ ‖un‖Yt and

t 7→ ‖un‖Zt are continuous, the stopping time τn is strictly positive P-a.s.. Let {τnk }k∈N denote a

sequence of F-stopping times defined by

τnk := inf{t ∈ [0,Tn] : ‖un‖Zt ≥ M ′}∧ inf

{
t ∈ [0,Tn] : ‖un‖Yt ≥ n − 1

k

}
.

Then we deduce that τn is actually an accessible F-stopping time with the approximating sequence

{τnk }k∈N.

Next, to simplify the notation, we denote u := un ; τ := τn and τk := τnk in the remaining proof of

Theorem 2.4.10. Since u is the fixed point of map Ψn
Tn

, u satisfies the following,

u(t )−cos(t
p

A )u0 − sin(t
p

A )p
A

u1 −
∫ t

0

sin((t − s)
p

A )p
A

θn(‖u‖Ys )θ̂(‖u‖Zs ) F (u(s))d s

=
∫ t

0

sin((t − s)
p

A )p
A

θn(‖u‖Ys )θ̂(‖u‖Zs ) G(u(s))dW (s), P-a.s.,(2.4.39)

for t ≥ 0. In moving further we set

I (t ) :=
∫ t

0

sin((t − s)
p

A )p
A

θn(‖u‖Ys )θ̂(‖u‖Zs ) G(u(s))dW (s).

Observe that, from the definition of Mp (YTn ), the processes on both sides of equality (2.4.39) are

continuous and hence, the equality even holds when the fixed deterministic time is replaced by

the random one, in particular, (2.4.39) holds for t ∧τk . Since by the definition of θn , θ̂, and τk the

following holds

θn(‖u‖Yt∧τk
) = 1, θ̂(‖u‖Zt∧τk

) = 1, ∀n,k ∈N,

we have ∫ t∧τk

0

sin((t ∧τk − s)
p

A )p
A

θn(‖u‖Ys )θ̂(‖u‖Zs ) F (u(s))d s
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=
∫ t∧τk

0

sin((t ∧τk − s)
p

A )p
A

F (u(s))d s, P-a.s..

Invoke Lemma 2.5.1 from Section 2.5.1, which is a generalization of [21, Lemma A.1], we obtain

I (t ∧τk ) =
∫ t

0

sin((t − s)
p

A )p
A

(
θn(‖u‖Ys∧τk

)θ̂(‖u‖Zs∧τk
) 1[0,τk )(s)G(u(s))

)
dW (s)

= Iτk (G(u))(t ∧τk ), P-a.s.,

where Iτk (G(u))(t ) is defined in (2.4.16). This concludes the existence part.

Step IV: In this step we complete the proof of Theorem 2.4.10, by showing the equivalence, in the

sense of Definition 2.1.4, of un |[0,τn )×Ω and uk |[0,τn )×Ω for all k,n ∈N such that n ≤ k.

Let us fix any k,n ∈N such that n ≤ k. Then obviously, by (2.4.38), τn ≤ τk , P-a.s.. Moreover, due

to Step III, corresponding to n and k, respectively, {un(t) : t ∈ [0,τn)} and {uk (t) : t ∈ [0,τk )} denote

the local mild solutions to (2.4.4), in the sense of Definition (2.4.8).

Applying the uniqueness part of Step III, for every (t ,ω) ∈ [0,τn)×Ω, we argue as follows:

un(t ,ω) = cos((t ∧τn)
p

A )u0 + sin((t ∧τn)
p

A )p
A

u1

+
∫ t∧τn

0

sin((t ∧τn − s)
p

A )p
A

F (un(s))d s + Iτn (G)(t ∧τn)

= cos(t
p

A )u0 + sin(t
p

A )p
A

u1 +
∫ t

0

sin((t − s)
p

A )p
A

F (un(s))d s + Iτn (G)(t )

= cos(t
p

A )u0 + sin(t
p

A )p
A

u1 +
∫ t

0

sin((t − s)
p

A )p
A

F (un(s))d s

+
∫ t

0
1[0,τn )(s)

sin((t − s)
p

A )p
A

G(un(s))dW (s)

= cos(t
p

A )u0 + sin(t
p

A )p
A

u1 +
∫ t

0

sin((t − s)
p

A )p
A

F (uk (s))d s

=
∫ t

0

sin((t − s)
p

A )p
A

G(uk (s))dW (s) = uk (t ,ω).

This implies un |[0,τn )×Ω and uk |[0,τn )×Ω are equivalent in the sense of Definition 2.1.4. Hence we have

completed Step IV, in particular, the proof of Theorem 2.4.10. �

Remark 2.4.19. The method of proof using the cutoff function is indeed standard nowadays and

in addition to [22] it has been used for the deterministic and stochastic NLS by Burq, Gerard and

Tzvetkov [33], de Bouard and Debussche [58] as well as for parabolic SPDE, see L Hornung [84] and J

Hussain [85].
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2.5 Auxiliary results

2.5.1 Stopped processes

In this subsection, we present a detailed justification for the choice of Iτ process we made in the

Definition 2.4.8. The result below generalises [21, Lemma A.1].

Lemma 2.5.1. Let ξ ∈ M 2,p ([0,T ],γ(K , H)). Set

(2.5.1) I (t ) :=
∫ t

0

sin((t − s)
p

A )p
A

ξ(s)dW (s),

and

(2.5.2) Iτ(t ) :=
∫ t

0

sin((t − s)
p

A )p
A

(
1[0,τ)(s)ξ(s)

)
dW (s).

For any stopping time τ and for all t ≥ 0, the following holds

(2.5.3) I (t ∧τ) = Iτ(t ∧τ), P-a.s..

Proof of Lemma 2.5.1 By the choice of process ξ, both the stochastic convolutions are well defined.

Let us start with a deterministic (stopping) time τ= t0. There are two cases, (1) If t < t0, then

I (t ∧τ) = I (t ) =
∫ t0

0
1[0,t )(s)

sin((t − s)
p

A )p
A

ξ(s)dW (s)

=
∫ t0

0

sin((t − s)
p

A )p
A

(
1[0,t )(s)1[0,t0)(s)ξ(s)

)
dW (s)

=
∫ t0

0
1[0,t )(s)

sin((t − s)
p

A )p
A

(
1[0,t0)(s)ξ(s)

)
dW (s)

= It0 (t ) = Iτ(t ∧τ).

(2) If t ≥ t0, then

I (t ∧τ) = I (t ∧ t0) =
∫ t

0
1[0,t0)(s)

sin((t0 − s)
p

A )p
A

(ξ(s)) dW (s)

=
∫ t

0
1[0,t0)(s)

sin((t0 − s)
p

A )p
A

(ξ(s)) dW (s)

+
∫ t

0
1[0,t0)(s)1[t0,t )(s)

sin((t0 − s)
p

A )p
A

(ξ(s)) dW (s)

=
∫ t0

0
1[0,t0)(s)

sin((t0 − s)
p

A )p
A

(ξ(s)) dW (s)

+
∫ t

t0

1[0,t0)(s)
sin((t0 − s)

p
A )p

A
(ξ(s)) dW (s)

=
∫ t

0

sin((t0 − s)
p

A )p
A

(
1[0,t0)(s)ξ(s)

)
dW (s)

62



2.5. AUXILIARY RESULTS

=
∫ t0

0

sin((t0 − s)
p

A )p
A

(
1[0,t0)(s)ξ(s)

)
dW (s)

= It0 (t0) = Iτ(t ∧τ).

Thus the equality (2.5.3) holds for any deterministic time. Now let τ be any arbitrary stopping time.

Define

τn := [2nτ]+1

2n , for each n ∈N.

That is, τn = k+1
2 if k

2n ≤ τ < k+1
2n . Then by straightforward calculation we get that for each ω ∈ Ω,

τn ↘ τ as n →∞. Since equality (2.5.3) holds for deterministic time k
2n , we have

I (t ∧τn) =
∞∑

k=0
1k2−n≤τ<(k+1)2−n I

(
t ∧ (k +1)2−n)

=
∞∑

k=0
1k2−n≤τ<(k+1)2−n I(k+1)2−n

(
t ∧ (k +1)2−n)

= Iτn (t ∧τn) .(2.5.4)

Since τn ↘ τ, we infer that, by continuity of trajectories of the process I , for all t ≥ 0,

(2.5.5) I (t ∧τn) → I (t ∧τ), P-a.s. as n →∞.

Furthermore observe that,

E
∥∥∥Iτn (t )− Iτ(t )

∥∥∥2

HA

= E
[∥∥∥∫ t

0

sin((t − s)
p

A )p
A

(
1[0,τn )(s)ξ(s)−1[0,τ)(s)ξ(s)

)
dW (s)

∥∥∥2

HA

]

= E
[∫ t

0

∥∥∥sin((t − s)
p

A )p
A

(
1[0,τn )(s)−1[0,τ)(s)

)
ξ(s)

∥∥∥2

γ(K ,H)
d s

]
.(2.5.6)

Since τn ↘ τ, P-a.s., as n →∞, 1[0,τn ) → 1[0,τ), P-a.s., as n →∞. Also, note that since the C0-group

{S(t )}t≥0 on HA ×H is of contraction type, the integrand is bounded by some constant (depending

upon t ) multiply with 2‖ξ(s)‖2
γ(K ,H). Moreover, by the choice of ξ, we have

E

[∫ t

0
‖ξ(s)‖2

γ(K ,H) d s

]
<∞.

Thus, by using the Lebesgue dominated convergence theorem in (2.5.6), we get

lim
n→∞E

∥∥∥Iτn (t )− Iτ(t )
∥∥∥2

HA

= 0.

Hence, there exists a subsequence of {Iτn (t )}n∈N, say {Iτnk
(t )}k∈N, which converges to Iτ(t ), P-a.s. as

n →∞. So for any fix t ≥ 0, by (2.5.4) and (2.5.5) we have, P-a.s.,

‖I (t ∧τ)− Iτ(t ∧τ)‖HA
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= ‖I (t ∧τ)− I (t ∧τnk )+ Iτnk
(t ∧τnk )− Iτ(t ∧τ)‖HA

≤ ‖I (t ∧τ)− I (t ∧τnk )‖H +‖Iτnk
(t ∧τnk )− Iτ(t ∧τ)‖HA

→ 0 as k →∞.

Thus, we get (2.5.3) and this completes the proof of Lemma 2.5.1. �

In particular, it follows that if ξ= 0 on [0,τ), then I (t ∧τ) = 0 for all t ≥ 0, P-a.s.. It is relevant to

mention that the importance of such results goes back to [11], [14], and [42].

2.5.2 About the definition of a solution

Here we state a relation, without proof, between two natural definitions of a mild solution for SPDE

(2.4.4). We begin by recalling the framework from Section 2.4. In particular, we set

H = L2(D); HA =D(A1/2); E =D(A(1−r )/2
q ) ,

where (p, q,r ) is any suitable triple which satisfy (2.2.2).

We assume that the maps F and G satisfy Assumptions A.1 and A.2, respectively. Let us also recall

that the spaceMp (YT ) has been defined in (2.4.2).

Proposition 2.5.2. Suppose that u0 ∈D(A1/2), u1 ∈ H, and T > 0. If an D(A1/2)×H-valued process

u(t ) = (u(t ), v(t )), t ∈ [0,T ],

such that u ∈Mp (YT ), is a solution to

u(t ) = eA(t )u(0)+
∫ t

0
eA(t−s)F̃ [u(s)]d s +

∫ t

0
eA(t−s)G̃[u(s)]dW (s),(2.5.7)

where

A=
(

0 I

−A 0

)
, G̃[u] =

(
0

G(u)

)
, F̃ [u] =

(
0

F (u)

)
,(2.5.8)

then the process u, is a mild solution to Problem (2.4.4), i.e. for all t ∈ [0,T ], P-a.s.,

u(t ) = cos(t
p

A )u0 + sin(t
p

A )p
A

u1 +
∫ t

0

sin((t − s)
p

A )p
A

F (u(s))d s

+
∫ t

0

sin((t − s)
p

A )p
A

G(u(s))dW (s).(2.5.9)

The following is a convenient reformulation of the previous result.

Proposition 2.5.3. Suppose that u0 ∈ D(A1/2), u1 ∈ H, T > 0. Let f be a progressively measurable

process from the space M 1,p ([0,T ],L2(D)), and ξ be a progressively measurable process from the space

M 2,p ([0,T ],γ(K , H)). If an D(A1/2)×H-valued process

u(t ) = (u(t ), v(t )), t ∈ [0,T ],
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such that u ∈Mp (YT ), solves the following equation:

u(t ) = eA(t )u(0)+
∫ t

0
eA(t−s)F (s)d s +

∫ t

0
eA(t−s)Ξ[s]dW (s),(2.5.10)

where for u(0) = (u0,u1) ∈D(A1/2)×H, we put

A=
(

0 I

−A 0

)
, Ξ[s] =

(
0

ξ(s)

)
, F (s) =

(
0

f (s)

)
,(2.5.11)

then u = {u(t ), t ∈ [0,T ]} is a mild solution to Problem (2.4.4), i.e. for all t ∈ [0,T ], P-a.s.,

u(t ) = cos(t
p

A )u0 + sin(t
p

A )p
A

u1 +
∫ t

0

sin((t − s)
p

A )p
A

f (s)d s

+
∫ t

0

sin((t − s)
p

A )p
A

ξ(s)dW (s).(2.5.12)
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GEOMETRIC WAVE EQUATION

I
n this chapter we collect some basic notions from differential geometry required to derive the

wave map equation. We assume that reader is familiar with definitions of a smooth manifold,

tangent space and vector field. We mostly follow [103] and [118] here.

Unless otherwise stated, let M and N be smooth manifolds of dimensions m and n, respectively.

The set of all smooth functions F : M → N is denoted by F(M , N ). In case N =R, we just write F(M).

For any nonnegative integer j , by C j (Rm ;Rn) we denote the space of Rn-valued continuous functions

whose derivatives up to order j are continuous on Rm . Let

C∞(Rm ;Rn) := ⋂
j∈N

C j (Rm ;Rn),

and by C∞
comp(Rm ;Rn) we denote the space of C∞(Rm ;Rn) functions with compact support.

3.1 Basic definitions

Given a (U ,φ) coordinate chart of M and i -th coordinate function on Rm , which is defined as

r i :Rm 3 (a1, a2, . . . , am) 7→ ai ∈R,

we set

xi := r i ◦φ : U →R, i = 1, . . . ,m,

as coordinate functions of (U ,φ).
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3.1.1 Tangent space and differential

By Tp M , p ∈ M , we denote the tangent space to M at point p. It turns out that Tp M is a R-linear

space of dimension m and, for given coordinate chart (U ,φ), such that p ∈U , the set(
∂

∂x1

∣∣∣∣
p

, . . . ,
∂

∂xm

∣∣∣∣
p

)
,

forms a basis of Tp (M). Here

(3.1.1)
∂

∂xi

∣∣∣∣
p

:F(M) 3 f 7→ ∂( f ◦φ−1)

∂r i
(φ(p)) := ∂

∂xi

∣∣∣∣
p

f ∈R, i = 1,2, . . . ,m.

Thus a tangent vector ϑ ∈ Tp M can be written uniquely as

(3.1.2) ϑ=
m∑

i=1
ϑi ∂

∂xi

∣∣∣∣
p

, where ϑi =ϑ(xi ).

We call the m-tuple (ϑ1, . . . ,ϑm) as the coordinate representation on ϑ under φ = (x1, . . . xm).

Given F ∈F(M , N ) and p ∈ M we define a map dp F : Tp (M) → TF (p)(N ), called the differential of F at

p, by

(3.1.3) dp F : Tp M 3ϑ 7→ (dp F )(ϑ) = {F(N ) 3 f 7→ϑ( f ◦F ) ∈R} ∈ TF (p)N .

In our calculation we need the following local expression for the differential dp F .

Lemma 3.1.1. [103, Chapter 3] Let F ∈F(M , N ) and p ∈ M. Let us assume that (U ,φ= (x1, . . . , xm)) and

(V ,ψ= (y1, . . . , yn)) be coordinate charts about p in M and F (p) in N , respectively. Then relative to bases{
∂
∂x i

∣∣∣
p

}m

i=1
and

{
∂
∂y j

∣∣∣
F (p)

}n

j=1
for Tp M and TF (p)N , respectively, the differential dp F : Tp M → TF (p)N

is represented by the matrix
[
∂F j

∂x i (p)
]

n×m
, where F j := y j ◦F and

∂F j

∂xi
(p) = ∂(F j ◦φ−1)

∂r i
(φ(p)).

In particular,

(dp F )

(
∂

∂xi

∣∣∣∣
p

)
=

n∑
j=1

∂F j

∂xi
(p)

∂

∂y j

∣∣∣∣
F (p)

.

3.1.2 Tangent bundle

The tangent bundle of M , denoted by T M , is defined as the disjoint union of the tangent spaces

at all points of M , i.e. T M := ∪p∈M {p}×Tp M . We write an element of this disjoint union as an

ordered pair (p,ϑ) with ϑ ∈ Tp M . The tangent bundle is equipped with a natural projection map

π : T M 3 (p,ϑ) 7→ p ∈ M . Observe that given a coordinate chart (U ,ψ= (x1, . . . , xm)) of M , the image

set of the map

π−1(U ) 3
(

p,ϑ=
m∑

i=1
ϑi ∂

∂xi

∣∣∣∣
p

)
7→ (x1(p), . . . , xm(p),ϑ1, . . . ,ϑm)) ∈R2m ,

is open in φ(U )×R2m . This leads to the fact that T M is a 2m-dimensional smooth manifold.
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3.1.3 Vector field

A vector field on M is a section of π : T M → M . That is, a vector field X on M is a map M 7→ T M that

associates, to each point p ∈ M , a vector denoted by Xp ∈ Tp (M) with the property that π◦X = I dM .

The set of smooth (as map between two manifolds) vector fields on M is denoted by X(M). It is

easy to see that, given any coordinate chart (U ,φ= (x1, . . . , xm)) for M , the assignment p 7→ ∂
∂x i

∣∣∣
p

is a

vector field on U . This special vector field is known as the i -th coordinate vector field. Moreover, we

write the value of X at any point p ∈U in terms of the coordinate basis vectors as

Xp =
m∑

i=1
X i (p)

∂

∂xi

∣∣∣∣
p

,

where X i : U →R is called i -th component function of X in the given chart.

For F ∈F(M , N ), by putting together the differentials of dp F at all points p of M , we define a map

dF : T M → T N , called the global differential. In other words, dF is a map whose restriction to each

tangent space Tp M is dp F .

3.1.4 Cotangent bundle

Given the tangent space Tp M at p ∈ M , we denote its dual space by T ∗
p M and call it the cotangent

space at p. Elements of T ∗
p M are called cotangent or covector at p. The union T ∗M :=∪p∈M {p}×T ∗

p M

is called the cotangent bundle of M and it has a natural projection λ : T ∗M 3 (p,ϕ) 7→ p ∈ M .

Mimicking the construction of the tangent bundle, we can show that T ∗M is also a 2m-dimensional

smooth manifold.

Similar to vector field, we define a covector field ξ or 1-form on M as a map that assigns to each

p ∈ M an element of T ∗
p M such thatλ◦ξ= I dM . Now observe that, since xi = r i ◦φ : U →R, i = 1. . . m,

where (U ,φ= (x1 . . . xm)) is any given coordinate chart on M , belongs to F(U ) and one can identify

TpU with Tp M , at each point p, the differential dp xi is an element of T ∗
p M and the set {dp xi }m

i=1

forms a basis for cotangent space T ∗
p M dual to the basis

{
∂
∂x i

∣∣∣
p

}m

i=1
for the tangent space Tp M . To

give the visibility to basis of contangent space we write (d xi )p instead of dp xi .

3.1.5 Riemannian manifold

A metric g on M is a mapping which assigns to each point p ∈ M a scalar product (i.e. symmetric,

bilinear and non-degenerate) gp on each tangent space Tp M , such that for every X ,Y ∈ X(M),

g : M 3 p 7→ gp (Xp ,Yp ) ∈ R belongs to F(M). If the metric g is positive (indefinite) definite, then it

is called a (semi-)Riemannian metric on M . A (semi-)Riemannian manifold is a smooth manifold,

equipped with a (semi-)Riemannian metric.

Thus for a given coordinate map φ = (x1, . . . , xm) : M ⊃ U → Rm , a Riemannian metric g is

represented by a positive definite and symmetric m×m-matrix [gi j (p)], i , j = 1, . . . ,m. Hence, for any

given two tangent vectors ϑ1,ϑ2 ∈ Tp M , respectively, with coordinate representation (ϑ1
1, . . . ,ϑm

1 ) and
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(ϑ1
2, . . . ,ϑm

2 ), the action of gp is

gp (ϑ1,ϑ2) =
m∑

i , j=1
gi j (p)ϑi

1ϑ
j
2.

In particular, gi j (p) = gp

(
∂
∂x i

∣∣∣
p

, ∂
∂x j

∣∣∣
p

)
. In coordinate map φ= (x1, . . . , xm), a Riemannian metric can

be written as

gp =
m∑

i , j=1
gi j (p)(d xi )p ⊗ (d x j )p ,

where (d xi )p ⊗ (d x j )p : Tp M ×Tp M 3 (ϑ1,ϑ2) 7→ (d xi )p (ϑ1)(d x j )p (ϑ2) ∈R is a tensor product in the

sense of functions. Moreover, due to the symmetry property of g we have

gp =
m∑

i , j=1

1

2

[
gi j (p)(d xi )p ⊗ (d x j )p + g j i (p)(d x j )p ⊗ (d xi )p

]
=:

m∑
i , j=1

gi j (p)(d xi )p (d x j )p ,

and in short g =∑m
i , j=1 gi j d xi d x j .

One important feature of a (semi-)Riemannian metric is that it provides a natural isomorphism

between the tangent and cotangent bundles.

Lemma 3.1.2. [103, Chapter 13] Let (M , g ) a (semi-)Riemannian manifold. If we define ĝ : T M → T ∗M

by

ĝ : T M 3 (p,ϑ) 7→ ĝp (ϑ) = {Tp M 3 υ 7→ gp (ϑ,υ) ∈R} ∈ T ∗
p M ,

then ĝp : Tp M → T ∗
p M is linear and bijective.

Therefore, in any coordinate chart (U ,φ= (x1, . . . , xm)), for X ,Y ∈X(M) with coordinate functions

(X 1, . . . , X m) and (Y 1, . . . ,Y m), respectively, we can write the action of ĝp , p ∈U as

ĝp (X )(Y ) =
m∑

i , j=1
gi j (p)X i (p)Y j (p).

So the covector field ĝ (X ) : M 3 p 7→ ĝp (Xp , ·) ∈ T ∗
p M has the form ĝ (X ) =∑m

i , j=1 gi j X i d x j . Thus, the

matrix of ĝ : T M → T ∗M at point p, in coordinate chart U ,φ, is same as [gi j (p)]. Hence, the matrix

corresponds to map ǧp := (ĝp )−1 : T ∗
p M → Tp M is [gi j (p)]−1. It is customary to denote [gi j (p)]−1 by

[g i j (p)] and thus we have, in local coordinates,

m∑
j=1

g i j (p)g j k (p) =
m∑

j=1
gk j (p)g j i (p) = δi

k ,

where δi
k = 1 if k = i and δi

k = 0 elsewhere.
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3.2. DERIVATION OF GEOMETRIC WAVE EQUATION

3.1.6 Pullback metric

Suppose (M ,h) be a semi-Riemannian manifold. Let (N , g ) be a Riemannian manifold, which we call

target manifold, and F : M → N is smooth. The pullback metric F∗g on M is defined by

(F∗g )p (Xp ,Yp ) := gF (p)((dp F )(Xp ), (dp F )(Yp )), p ∈ M , X ,Y ∈X(M).

Let us denote the isomorphism between T ∗M and T M by ȟ, i.e. for each p ∈ M ,

ȟp : T ∗
p M → Tp M ,

is a linear bijection. Thus, for each p ∈ M ,

ȟp ◦ (F∗g )p : Tp M 3ϑ 7→ ȟp
(
gp ((dp F )(ϑ), ·)) ∈ Tp M ,

is a linear operator. We denote the trace of ȟp ◦ (F∗g )p by (trhF∗g )(p). By its definition (trhF∗g )(p) is

a smooth R-valued function on M .

3.2 Derivation of geometric wave equation

Here we derive the geometric wave equation (GWE) and define a wave map in terms of local coordi-

nates. Since we are dealing with two dimensional domain in this thesis, we are only deriving GWE for

this setup.

Let (N , g ) be a Riemannian manifold of m-dimension. Consider the Euclidean space M :=R1+n .

We know that (M , id) is a n +1-dimensional smooth manifold with identity map as a global chart and

tangent space Tp M at point p ∈ M is isomorphic to M itself. If we define the metric h on M such that

hp (v, w) :=−v0w0 +
n∑

i=1
v i w i ,

for v = (v0, . . . , vn), w = (w0, . . . , wn) ∈ Rm . Equipped with such metric h, R1+n is called Minkowski

(1+n)-space.

We define a functional L on the set F(M , N ) by

L (z) := 1

2

∫
M

trh z∗g = 1

2

∫
Rm

trh(z∗g )(x)d x,

and we are interested in critical points of L ., i.e. we mean to study compactly supported variations.

For that we need to find a smooth compactly supported map from M → N , say ξ such that

d

dε
L (zε)|ε=0 = 0 where zε := z +εξ.

But z+εϕmakes no sense as a map from M → N . To overcome this difficulty we work with coordinate

charts and this is sufficient for our work in this thesis because we seek for the solutions which are

continuous.
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Let (U ,φ) as a coordinate chart in N . By definition of a local chart, φ is smooth and φ(U ) is an

open subset of Rm . Thus, (φ(U ), id) is a smooth manifold of m-dimension. Since U has a metric

induced from g andφ−1 :φ(U ) →U is smooth, by [103, Proposition 13.9] the pull back of g
∣∣
U toφ(U ),

which we denote by φ−1∗g , is a Riemannian metric on φ(U ).

Now suppose we consider a smooth function Z : V → φ(U ) where V is domain of coordinate

chart in M such that Z (V ) ⊂φ(U ). Such functions are possible to find because for any f ∈F(M , N ),

f −1(U ) is an open subset of M and, then by choosing a coordinate chart domain V ⊂ M in such a way

that f (V ) ⊂U , we can take Z :=φ◦ f
∣∣
V . If we let ϕ : M →Rm be a smooth function having compact

support in V , then we can talk about Z +εϕ because for small ε it takes values in φ(U ), since Z ,ϕ are

continuous. Note that since M =R1+n , V and M are isomorphic and we can consider the functions

Z ∈C∞(R1+n ;φ(U )) for a given local chart (U ,φ) on N .

With above reasoning in mind we define the wave maps as follows. First, we define the required

notion of functional.

Definition 3.2.1. LetR1+n endowed with a Minkowski metric h, and (N , g ) be a Riemannian manifold

with a given local chart (U ,φ). Define a functional L on C∞(R1+n ;φ(U )) by

LU (Z ) := 1

2

∫
R1+n

trh(Z∗g )(x)d x, Z ∈C∞(R1+n ;φ(U )).

A function Z ∈C∞(R1+n ;φ(U )) is said to be critical point of LU iff, for every ϕ ∈C∞
comp(R1+n ;Rm),

(3.2.1)
d

dε
LU (Z +εϕ)

∣∣
ε=0 = 0.

Definition 3.2.2 (Wave Map). Let R1+n endowed with a Minkowski metric h, and (N , g ) be a Rieman-

nian manifold . We define wave map as a mapping z : (R1+n ,h) → (N , g ) such that, for every coordinate

chart (U ,φ), the function

φ◦ z|z−1(U ) : z−1(U ) 3 p 7→φ(z(p)) ∈φ(U ),

is a critical point of LU .

Now we move to write the Lagrangian density trh(z∗g ) in local coordinates and derive the system

of partial differential equations for z. To avoid the notation complexity, in the remaining chapter we

will write M instead of R1+n . Fix any chart (U ,φ) on N and we write

Z :=φ◦ z|z−1(U ) : M → Z (U ) ⊂Rm ,

and its k-th component by Z k ,k = 1, . . . ,m.

Let p ∈ z−1(U ) ⊂ R1+n and

{
∂
∂r i

∣∣∣
p

}n

i=0
for a basis of Tp M . Since Tp M ' M and we only have

identity map as coordinate map on M , we can consider

{
∂
∂x i

∣∣∣
p

}n

i=0
as standard coordinates for R1+n

as well but to avoid the confusion we do not take this and write

{
∂
∂r i

∣∣∣
p

}n

i=0
for standard coordinate.
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Moreover, we set,

{
∂
∂y i

∣∣∣
Z (p)

}m

j=1
, where Z (p) =φ(z(p)), as a basis of TZ (p)φ(U ) ' TZ (p)R

m 'Rm . Again

to avoid confusion we write y j = q j ◦ idφ(U ), for some standard coordinate of Rm . This implies for

any smooth map f :φ(U ) →R,

∂

∂y i

∣∣∣∣
Z (p)

f :=
∂
(

f ◦ id−1
φ(U )

)
∂q i

∣∣∣∣∣∣
idφ(U )(Z (p))

,

but to simplify the notation we set the right hand side to ∂ f
∂q i

∣∣∣
Z (p)

.

Recall that, since Z : M →φ(U ), by Lemma 3.1.1,

(dp Z )

(
∂

∂xi

∣∣∣∣
p

)
=

n∑
k=0

∂Z k

∂xi
(p)

∂

∂yk

∣∣∣∣
Z (p)

.

Consequently, because φ−1∗g is a metric on φ(U ), we pullback it on M and have

[
Z∗ (

φ−1∗g
)]

p

(
∂

∂xi

∣∣∣∣
p

,
∂

∂x j

∣∣∣∣
p

)
= (

φ−1∗g
)

Z (p)

(
(dp Z )

(
∂

∂xi

∣∣∣∣
p

)
, (dp Z )

(
∂

∂x j

∣∣∣∣
p

))

=
m∑

k=1

m∑
l=1

∂Z k

∂xi
(p)

∂Z l

∂x j
(p)

(
φ−1∗g

)
Z (p)

(
∂

∂yk

∣∣∣∣
Z (p)

,
∂

∂y l

∣∣∣∣
Z (p)

)
=: zi j (p), i , j = 0, . . . ,n.

Here, since
[

Z∗ (
φ−1∗g

)]
p (·, ·) : Tp M 3ϑ 7→ [

Z∗ (
φ−1∗g

)]
p (ϑ, ·) ∈ T ∗

p M , we denote its matrix form by

[zi j (p)](n+1)×(n+1).

Next, since h is a semi-Riemannian metric on M , by Lemma 3.1.2, ȟp : T ∗
p M → Tp M is an

isomorphism and we write its matrix form as [hi j (p)](n+1)×(n+1). Thus,

ȟp ◦ [
Z∗ (

φ−1∗g
)]

p : Tp M → Tp M ,

is well defined and in the matrix form it is given by the following multiplication
h00(p) h01(p) . . . h0n(p)

h10(p) h11(p) . . . h1n(p)
...

...
...

...

hn0(p) hn1(p) . . . hnn(p)




z00(p) z01(p) . . . z0n(p)

z10(p) z11(p) . . . z1n(p)
...

...
...

...

zn0(p) zn1(p) . . . znn(p)



=



∑n
j=0 h0 j (p)z j 0(p)

∑n
j=0 h0 j (p)z j 1(p) . . .

∑n
j=0 h0 j (p)z j n(p)∑n

j=0 h1 j (p)z j 0(p)
∑n

j=0 h1 j (p)z j 1(p) . . .
∑n

j=0 h1 j (p)z j n(p)
...

... . . .
...∑n

j=0 hn j (p)z j 0(p)
∑n

j=0 hn j (p)z j 1(p) . . .
∑n

j=0 hn j (p)z j n(p)

 .

Hence the trace of ȟp ◦ [
Z∗ (

φ−1∗g
)]

p is
∑n

i=0

∑n
j=0 hi j (p)z j i (p). That is,

trh
[

Z∗ (
φ−1∗g

)]
(p) =

n∑
i , j=0

m∑
k,l=1

hi j (p)
∂Z k

∂xi
(p)

∂Z l

∂x j
(p)

(
φ−1∗g

)
Z (p)

(
∂

∂yk

∣∣∣∣
Z (p)

,
∂

∂y l

∣∣∣∣
Z (p)

)
,
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where we denote trh
[

Z∗ (
φ−1∗g

)]
(p) by ȟp ◦ [

Z∗ (
φ−1∗g

)]
p . Therefore the actional functional LU is

LU (Z ) = 1

2

∫
Rm

n∑
i , j=0

m∑
k,l=1

hi j (p)
∂Z k

∂xi
(p)

∂Z l

∂x j
(p)(g∗

kl ◦φ)(p)d p.

Here we set (g∗
kl ◦φ)(p) := (

φ−1∗g
)

Z (p)

(
∂
∂yk

∣∣∣
Z (p)

, ∂
∂y l

∣∣∣
Z (p)

)
. In other words we write the matrix of(

φ−1∗g
)

Z (p) as [(g∗
kl ◦φ)(p)]m×m . Then, for ϕ ∈C∞

comp(R1+n ;Rm),

LU (Z +εϕ) = 1

2

∫
R1+n

n∑
i , j=0

m∑
k,l=1

hi j (p)
∂(Z +εϕ)k

∂xi
(p)

∂(Z +εϕ)l

∂x j
(p)(g∗

kl ◦ (Z +εϕ))(p)d p.

Consequently, by differentiating w.r.t. to ε, we get

d

dε
LU (Z +εϕ) = 1

2

∫
R1+n

n∑
i , j=0

m∑
k,l=1

hi j (p)
∂ϕk

∂xi
(p)

∂(Z +εϕ)l

∂x j
(p)(g∗

kl ◦ (Z +εϕ))(p)d p

+ 1

2

∫
R1+n

n∑
i , j=0

m∑
k,l=1

hi j (p)
∂(Z +εϕ)k

∂xi
(p)

∂ϕl

∂x j
(p)(g∗

kl ◦ (Z +εϕ))(p)d p

+ 1

2

∫
R1+n

n∑
i , j=0

m∑
k,l=1

hi j (p)
∂(Z +εϕ)k

∂xi
(p)

∂(Z +εϕ)l

∂x j
(p)

m∑
r=1

∂g∗
kl

∂y r (Z +εϕ)(p)ϕr (p)d p.

Since the metric h on R1+n is constant w.r.t. p and g∗
kl = g∗

lk , by evaluating above at ε= 0 followed by

the integration by parts we obtain

d

dε
LU (Z +εϕ)

∣∣
ε=0 =

1

2

∫
R1+n

n∑
i , j=0

m∑
k,l=1

hi j (p)
∂ϕk

∂xi
(p)

∂Z l

∂x j
(p)(g∗

kl ◦Z )(p)d p

+ 1

2

∫
R1+n

n∑
i , j=0

m∑
k,l=1

hi j (p)
∂Z k

∂xi
(p)

∂ϕl

∂x j
(p)(g∗

kl ◦Z )(p)d p

+ 1

2

∫
R1+n

n∑
i , j=0

m∑
k,l=1

hi j (p)
∂Z k

∂xi
(p)

∂Z l

∂x j
(p)

m∑
r=1

∂g∗
kl

∂y r (Z (p))ϕr (p)d p

=
∫
R1+n

n∑
i , j=0

m∑
k,l=1

hi j (p)
∂Z k

∂xi
(p)

∂ϕl

∂x j
(p)(g∗

kl ◦Z )(p)d p

+ 1

2

∫
R1+n

n∑
i , j=0

m∑
k,l=1

hi j (p)
∂Z k

∂xi
(p)

∂Z l

∂x j
(p)

m∑
r=1

∂g∗
kl

∂y r (Z (p))ϕr (p)d p

=−
∫
R1+n

n∑
i , j=0

m∑
k,l=1

hi j (p)
∂

∂x j

[
∂Z k

∂xi
(p)(g∗

kl ◦Z )(p)

]
ϕl (p)d p

+ 1

2

∫
R1+n

n∑
i , j=0

m∑
k,l=1

hi j (p)
∂Z k

∂xi
(p)

∂Z l

∂x j
(p)

m∑
r=1

∂g∗
kl

∂y r (Z (p))ϕr (p)d p

=−
∫
R1+n

n∑
i , j=0

m∑
k,l=1

hi j (p)
∂2Z k

∂x j∂xi
(p)(g∗

kl ◦Z )(p)Z l (p)d p

−
∫
R1+n

n∑
i , j=0

m∑
k,l=1

hi j (p)
∂Z k

∂xi
(p)ϕl (p)

m∑
r=1

∂g∗
kl

∂y r (Z (p))
∂Z r

∂x j
(p)d p
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+ 1

2

∫
R1+n

n∑
i , j=0

m∑
k,l=1

hi j (p)
∂Z k

∂xi
(p)

∂Z l

∂x j
(p)

m∑
r=1

∂g∗
kl

∂y r (Z (p))ϕr (p)d p

=: L1 +L2 +L3.

By setting ηk (p) :=∑m
l=1(g∗

kl ◦Z )(p)ϕl (p), we write L1 as

L1 =−
∫
R1+n

n∑
i , j=0

m∑
k=1

hi j (p)
∂2Z k

∂x j∂xi
(p)ηk (p)d p.

To deal with L3, first note that since (φ−1∗g ) is a Riemannian metric on φ(U ), the map (φ−1∗g )Z (p) is

invertible and we denote the matrix of inverse by [(g∗lk ◦φ)(p)]m×m . Thus from above notation we

have ϕl (p) =∑m
s=1(g∗l s ◦Z )(p)ηs(p) and, with notation g∗

kl ,r =:
∂g∗

kl
∂y r ,

L3 = 1

2

∫
R1+n

n∑
i , j=0

m∑
k,l=1

hi j (p)
∂Z k

∂xi
(p)

∂Z l

∂x j
(p)

[ m∑
r=1

g∗
kl ,r (Z (p))

][
m∑

q=1
(g∗r q ◦Z )(p)ηq (p)

]
d p

= 1

2

∫
R1+n

m∑
q=1

[
n∑

i , j=0

m∑
k,l ,r=1

hi j (p)
∂Z k

∂xi
(p)

∂Z r

∂x j
(p)g∗

kr,l (Z (p))(g∗l q ◦Z )(p)

]
ηq (p)d p.

Now to deal with L2 we use the symmetricity of g∗kl and get

L2 =−1

2

∫
R1+n

n∑
i , j=0

m∑
k,l ,r=1

hi j (p)
∂Z k

∂xi
(p)

∂Z r

∂x j
(p)g∗

kl ,r (Z (p))

[
m∑

q=1
(g∗l q ◦Z )(p)ηq (p)

]
d p

− 1

2

∫
R1+n

n∑
i , j=0

m∑
k,l ,r=1

hi j (p)
∂Z k

∂xi
(p)

∂Z r

∂x j
(p)g∗

kl ,r (Z (p))

[
m∑

q=1
(g∗l q ◦Z )(p)ηq (p)

]
d p

=−1

2

∫
R1+n

m∑
q=1

[
n∑

i , j=0

m∑
k,l ,r=1

hi j (p)
∂Z k

∂xi
(p)

∂Z r

∂x j
(p)g∗

kl ,r (Z (p))(g∗ql ◦Z )(p)

]
ηq (p)d p

− 1

2

∫
R1+n

m∑
q=1

[
n∑

i , j=0

m∑
k,l ,r=1

hi j (p)
∂Z r

∂xi
(p)

∂Z k

∂x j
(p)g∗

r l ,k (Z (p))(g∗ql ◦Z )(p)

]
ηq (p)d p.

Hence we get

d

dε
LU (Z +εϕ)

∣∣
ε=0 =−

∫
R1+n

n∑
i , j=0

m∑
k=1

hi j (p)
∂2Z k

∂x j∂xi
(p)ηk (p)d p − 1

2

∫
Rm

m∑
q=1

[
n∑

i , j=0

m∑
k,l ,r=1

hi j (p)
∂Z k

∂xi
(p)

∂Z r

∂x j
(p)(g∗ql ◦Z )(p)

{
g∗

kl ,r (Z (p))+ g∗
r l ,k (Z (p))− g∗

kr,l (Z (p))
}]
ηq (p)d p.

Therefore, since d
dεLU (Z +εϕ)

∣∣
ε=0 = 0, by the Du Bois-Reymond Lemma, see [157, Chapter 4] we get

the wave maps system as, for every q = 1, . . . ,m,

n∑
i , j=0

hi j (p)
∂2Z q

∂x j∂xi
(p)−

n∑
i , j=0

m∑
k,r=1

hi j (p)Γq
kr (Z (p))

∂Z k

∂xi
(p)

∂Z r

∂x j
(p) = 0.(3.2.2)

Here

Γ
q
kr := 1

2

m∑
l=1

g∗ql
{

g∗
kl ,r + g∗

r l ,k − g∗
kr,l

}
,
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is a Christoffel symbol (of the second kind) associated to the metric g .

We finish this chapter by observing that since (x0, x1, . . . , xn) = (t , x) ∈R1+n and

h0,0 =−1; hi , j = 0 for i 6= j ∈ {0, . . . ,n}; and h j , j = 1 for j = 1, . . .n,

the system (3.2.2) gives (1.2.2) which a smooth wave map satisfies when consider in terms of local

charts.

76



C
H

A
P

T
E

R

4
LARGE DEVIATIONS FOR STOCHASTIC GEOMETRIC WAVE EQUATION

W
e establish here the validity of a large deviation principle for the small noise asymptotic

of strong solutions to stochastic geometric wave equations with values in a compact

Riemannian manifold. The main novelty of this chapter lies in to be the first ever result

on large deviations for stochastic geometric wave equations. Our proof relies on applying the weak

convergence approach of Budhiraja and Dupuis [30] to SPDEs where solutions are local Sobolev

spaces valued stochastic processes. This is a new approach with respect to the existing literature

on the second order in time stochastic PDEs, see e.g. Zhang’s work [163] on the stochastic beam

equation.

The chapter is organized as follows. In Section 4.1, we introduce our notation and state the

required definitions. In Section 4.2 we write all the preliminaries about the nonlinearity and the

diffusion coefficient which we need to use later in the current chapter. Section 4.3 is to prove the

existence of a unique global strong solution, in PDE sense, to the skeleton equation associated to

(1.2.7). The proof of a large deviations principle (LDP), based on weak convergence approach, is in

Section 4.4. We conclude the chapter with two Auxiliary Subsections 4.5.1 and 4.5.2, respectively,

where we state the slightly modified version of the existing results on global well-posedness of (1.2.7)

and an energy inequality from [23] which we use frequently in the sequel.

4.1 Notation

For any two non-negative quantities a and b, we write a . b if there exists a universal constant

c > 0 such that a ≤ cb, and we write a ' b when a. b and b. a. In case we want to emphasize the

dependence of c on some parameters a1, . . . , ak , then we write, respectively,.a1,...,ak and 'a1,...,ak . We

will denote by BR (a), for a ∈R and R > 0, the open ball in Rwith center at a and we put BR = BR (0).

Now we list the notation that we are going to use throughout the whole chapter.
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• N= {0,1, · · · } denotes the set of natural numbers, R+ = [0,∞), Leb denotes the Lebesgue measure.

• Let I ⊆R be an open interval. By Lp (I ;Rn), p ∈ [1,∞), we denote the classical real Banach space of

all (equivalence classes of) Rn-valued p-integrable maps on I . The norm on Lp (I ;Rn) is given by

‖u‖Lp (I ;Rn ) :=
(∫

I
|u(x)|p d x

) 1
p

, u ∈ Lp (I ;Rn),

where | · | is the Euclidean norm on Rn . For p =∞, we consider the usual modification to essential

supremum.

• For any p ∈ [1,∞], Lp
loc(R;Rn) stands for a metrizable topological vector space equipped with a

natural countable family of seminorms {p j } j∈N defined by

p j (u) := ‖u‖Lp (B j ;Rn ), u ∈ L2
loc(R;Rn), j ∈N.

• By H k,p (I ;Rn), for p ∈ [1,∞] and k ∈N, we denote the Banach space of all u ∈ Lp (I ;Rn) for which

D j u ∈ Lp (I ;Rn), j = 0,1, . . . ,k, where D j is the weak derivative of order j . The norm here is given by

‖u‖H k,p (I ;Rn ) :=
(

k∑
j=0

‖D j u‖p
Lp (I ;Rn )

) 1
p

, u ∈ H k,p (I ;Rn).

• We write H k,p
loc (R;Rn), for p ∈ [1,∞] and k ∈ N, to denote the space of all elements u ∈ Lp

loc(R;Rn)

whose weak derivatives up to order k belong to Lp
loc(R;Rn). It is relevant to note that H k,p

loc (R;Rn)

is a metrizable topological vector space equipped with the following natural countable family of

seminorms {q j } j∈N,

q j (u) := ‖u‖H k,p (B j ;Rn ), u ∈ H k,p
loc (R;Rn), j ∈N.

The spaces H k,2(I ;Rn) and H k,2
loc (R;Rn) are usually denoted by H k (I ;Rn) and H k

loc(R;Rn) respectively.

• We set H := H 2(R;Rn)×H 1(R;Rn) and Hloc := H 2
loc(R;Rn)×H 1

loc(R;Rn).

• To shorten the notation in calculation we set the following rules:

• if the space where function is taking value, for example Rn , is clear then to save the space we

will omit Rn , for example H k (I ) instead H k (I ;Rn);

• if I = (0,T ) or (−R,R) or B(x,R), for some T,R > 0 and x ∈R, then instead of Lp (I ;Rn) we write,

respectively, Lp (0,T ;Rn), Lp (BR ;Rn), Lp (B(x,R);Rn). Similarly for H k and H k
loc spaces.

• write H(BR ) or HR for H 2((−R,R);Rn)×H 1((−R,R);Rn).

• For any nonnegative integer j , let C j (R) be the space of real valued continuous functions whose

derivatives up to order j are continuous on R. We also need the family of spaces C j
b(R) defined by

C
j
b(R) :=

{
u ∈C j (R);∀α ∈N,α≤ j ,∃Kα,‖D j u‖L∞(R) < Kα

}
.
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• Given T > 0 and Banach space E , we denote by C([0,T ];E) the real Banach space of all E-valued

continuous functions u : [0,T ] → E endowed with the norm

‖u‖C([0,T ];E) := sup
t∈[0,T ]

‖u(t )‖E , u ∈C([0,T ];E).

By 0C([0,T ],E) we mean the set of elements of C([0,T ];E) vanishes at origin, that is,

0C([0,T ],E) := {
u ∈C([0,T ],E) : u(0) = 0

}
.

• For given metric space (X ,ρ), by C(R; X ) we mean the space of continuous functions from R to X

which is equipped with the metric

( f , g ) 7→
∞∑

j=1

1

2 j
min{1, sup

t∈[− j , j ]
ρ( f (t ), g (t ))}.

• We denote the tangent and the normal bundle of a smooth manifold M by T M and N M , respectively.

Let F(M) be the set of all smooth R-valued functions on M .

• A map u :R→ M belongs to H k
loc(R; M) provided that θ ◦u ∈ H k

loc(R;R) for every θ ∈F(M). We equip

H k
loc(R; M) with the topology induced by the mappings

H k
loc(R; M) 3 u 7→ θ ◦u ∈ H k

loc(R;R), θ ∈F(M).

Since the tangent bundle T M of a manifold M is also a manifold, this definition covers Sobolev

spaces of T M-valued functions too.

• By L2(H1, H2) we denote the class of Hilbert-Schmidt operators from a separable Hilbert space H1

to another H2. By L(X ,Y ) we denote the space of all linear continuous operators from a topological

vector space X to Y .

• We denote by S(R) the space of Schwartz functions on R and write S′(R) for its dual, which is the

space of tempered distributions on R. By L2
w we denote the weighted space L2(R, w,d x), where

w(x) := e−x2
, x ∈R, is an element of S(R). Let H s

w (R), s ≥ 0, be the completion of S(R) with respect to

the norm

‖u‖H s
w (R) :=

(∫
R

(1+|x|2)s |F(w1/2u)(x)|2 d x

) 1
2

,

where F denotes the Fourier transform.

4.2 Preliminaries

In this section we discuss all the required preliminaries about the nonlinearity and the diffusion

coefficient that we need in Section 4.3. We are following Sections 3 to 5 of [23] very closely here.
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4.2.1 The Wiener process

The random forcing we consider is in the form of a spatially homogeneous Wiener process on Rwith

a spectral measure µ satisfying

(4.2.1)
∫
R

(1+|x|2)2µ(d x) <∞.

Let µ be a finite and symmetric measure on R. A S′(R)-valued process W = {W (t), t ≥ 0}, on

a given stochastic basis (Ω,F , (Ft )t≥0,P), is called a spatially homogeneous Wiener process with

spectral measure µ provided that

1. for every ϕ ∈ S(R), {W (t )(ϕ), t ≥ 0} is a real-valued Ft -Wiener process,

2. E {W (t )(ϕ)W (t )(ψ)} = t〈ϕ̂,ψ̂〉L2(µ) holds for every t ≥ 0 and ϕ,ψ ∈ S(R).

It is shown in [129] that the Reproducing Kernel Hilbert Space (RKHS) Hµ of the Gaussian measure

W (1) is described as the subspace of tempered distributions

Hµ :=
{
ψ̂µ :ψ ∈ L2(Rn ,µ,C),ψ(x) =ψ(−x), x ∈R

}
where L2(Rn ,µ,C) is the classical Banach space of equivalence classes of complex-valued and square

integrable functions with respect to measure µ. Note that Hµ endowed with inner-product

〈
ψ̂1µ,ψ̂2µ

〉
Hµ

:=
∫
R
ψ1(x)ψ2(x)µ(d x),

is a Hilbert space.

Recall from [129, 130] that W can be regarded as a cylindrical Wiener process on Hµ and it takes

values in any Hilbert space E such that the embedding Hµ ,→ E is Hilbert-Schmidt. Since we explicitly

know the structure of Hµ, in the next result, whose proof is based on [127, Lemma 2.2] and discussion

with Szymon Peszat [128], we provide an example of E such that the paths of W can be considered in

C([0,T ];E). Below we also use the notation F(·), along with ·̂ , to denote the Fourier transform.

Lemma 4.2.1. Let us assume that the measure µ satisfies (4.2.1). Then the identity map from Hµ into

H 2
w (R) is a Hilbert-Schmidt operator.

Proof of Lemma 4.2.1 To simplify the notation we set L2
(s)(R,µ) to be the space of all f ∈ L2(R,µ;C)

such that f (x) = f (−x), x ∈R. Let {ek }k∈N ⊂ S(R) be an orthonormal basis of L2
(s)(R,µ). Then, by the

definition of Hµ, {F(ekµ)}k∈N is an orthonormal basis of Hµ. Invoking the convolution theorem of

Fourier transform and followed by the Bessel inequality, see [9], we obtain,

∞∑
k=1

‖êkµ‖2
H 2

w
=

∞∑
k=1

∫
R

(1+|x|2)|F (
w1/2F(ekµ)

)
(x)|2 d x

=
∫
R

(1+|x|2)2

( ∞∑
k=1

|F (
w1/2F(ekµ)

)
(x)|2

)
d x
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=
∫
R

(1+|x|2)2

( ∞∑
k=1

∣∣∣∫
R
F

(
w1/2) (x − z)ek (z)µ(d z)

∣∣∣2
)

d x

≤
∫
R2

(1+|x|2)2|F (
w1/2) (x − z)|2µ(d z)d x

=
∫
R2

(1+|x + z|2)2|F (
w1/2) (x)|2µ(d z)d x

. ‖w1/2‖2
H 1

w (R)

∫
R

(1+|z|2)2µ(d z).

Hence the Lemma 4.2.1. �

It is relevant to note here that H 2
w (R) is a subset if H 2

loc(R). The next result, whose detailed proof can

be found in [119, Lemma 1], plays very important role in deriving the required estimates for the terms

involving diffusion coefficient.

Lemma 4.2.2. If the measure µ satisfies (4.2.1) then Hµ is continuously embedded in C2
b(R). Moreover,

for given any g ∈ H j (B(x,R);Rn), where x ∈ R,R > 0 and j ∈ {0,1,2}, the multiplication operator

Hµ 3 ξ 7→ g ·ξ ∈ H j (B(x,R);Rn) is Hilbert-Schmidt and ∃ c > 0, independent of R, x, g , ξ and j , such

that

‖ξ 7→ g ·ξ‖L2(Hµ,H j (B(x,R);Rn )) ≤ c‖g‖H j (B(x,R);Rn ).

Remark 4.2.3. Note that the constant of inequality c in Lemma 4.2.2 does not depend on the size

and position of the ball. However, if we consider a cylindrical Wiener process, then c will also depend

on the centre x but will be bounded on bounded sets with respect to x.

4.2.2 Extensions of non-linearity

By definition Ap : Tp M ×Tp M → Np M , p ∈ M , where Tp M ⊆ Rn and Np M ⊆ Rn are the tangent

and the normal vector space at p ∈ M respectively. It is well known, see e.g. [81], that Ap , p ∈ M , is

symmetric bilinear.

Since we are following the approach of [12], [23], and [80], one of the main step in proof of the

existence theorem is to consider the problem (1.2.7) in the ambient space Rn with an appropriate

extension of A from their domain (product of tangent bundles) to Rn . In this section we discuss two

extensions of A which work fine in the context of stochastic wave map as displayed in [23].

Let us denote by E the exponential function

TRn 3 (p,ξ) 7→ p +ξ ∈Rn ,

relative to the Riemannian manifold Rn equipped with the standard Euclidean metric. The proof

of the following proposition about the existence of an open set O containing M , which is called a

tubular neighbourhood of M , can be found in [118, Proposition 7.26, p. 200].

Proposition 4.2.4. There exists an Rn-open neighbourhood O around M and an N M-open neigh-

bourhood V around the set {(p,0) ∈ N M : p ∈ N M } such that the restriction of the exponential map
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E|V : V →O is a diffeomorphism. Moreover, V can be chosen in such a way that (p, tξ) ∈V whenever

−1 ≤ t ≤ 1 and (p,ξ) ∈V .

In case of no ambiguity, we will denote the diffeomorphism E|V : V → O by E. By using the

Proposition 4.2.4, diffeomorphism i : N M 3 (p,ξ) 7→ (p,−ξ) ∈ N M and the standard argument of

partition of unity, one can obtain a function Υ :Rn →Rn which identifies the manifold M as its fixed

point set. In precise we have the following result.

Lemma 4.2.5. [23, Corollary 3.4 and Remark 3.5] There exists a smooth compactly supported function

Υ :Rn →Rn which has the following properties:

1. restriction of Υ on O is a diffeomorpshim,

2. Υ|O =E◦ i ◦E−1 : O →O is an involution on the tubular neighborhood O of M,

3. Υ(Υ(q)) = q for every q ∈O,

4. if q ∈O, then Υ(q) = q if and only if q ∈ M,

5. if p ∈ M, then

Υ′(p)ξ=
ξ, provided ξ ∈ Tp M ,

−ξ provided ξ ∈ Np M .

The following result is the first extension of the second fundamental form that we use in this

chapter.

Proposition 4.2.6. [23, Proposition 3.6] If we define

(4.2.2) Bq (a,b) =
n∑

i , j=1

∂2Υ

∂qi∂q j
(q)ai b j =Υ′′

q (a,b), q ∈Rn , a,b ∈Rn

and

(4.2.3) Aq (a,b) = 1

2
BΥ(q)(Υ

′(q)a,Υ′(q)b), q ∈Rn , a,b ∈Rn ,

then, for every p ∈ M,

Ap (ξ,η) = Ap (ξ,η), ξ,η ∈ Tp M ,

and

(4.2.4) AΥ(q)(Υ
′(q)a,Υ′(q)b) =Υ′(q)Aq (a,b)+Bq (a,b), q ∈O, a,b ∈Rn .

Along with the extension A, defined by formula (4.2.3), we also need the extension A , defined by

formula (4.2.5), of the second fundamental form tensor A which will be perpendicular to the tangent

space.
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Proposition 4.2.7. [23, Proposition 3.7] Consider the function

A :Rn ×Rn ×Rn 3 (q, a,b) 7→Aq (a,b) ∈Rn ,

defined by formula

(4.2.5) Aq (a,b) =
n∑

i , j=1
ai vi j (q)b j = Aq (πq (a),πq (b)), q ∈Rn , a ∈Rn , b ∈Rn ,

where πp , p ∈ M is the orthogonal projection of Rn to Tp M, and vi j , for i , j ∈ {1, . . . ,n}, are smooth and

symmetric (i.e. vi j = v j i ) extensions of vi j (p) := Ap (πp ei ,πp e j ) to ambient space Rn . Then A satisfies

the following:

1. A is smooth in (q, a,b) and symmetric in (a,b) for every q,

2. Ap (ξ,η) = Ap (ξ,η) for every p ∈ M, ξ,η ∈ Tp M,

3. Ap (a,b) is perpendicular to Tp M for every p ∈ M, a,b ∈Rn .

4.2.3 The C0-group and the extension operators

Here we recall some facts on infinitesimal generators of the linear wave equation and on the extension

operators in various Sobolev spaces. Refer [23, Section 5] for details.

Proposition 4.2.8. Assume that k,n ∈N. The one parameter family of operators defined by

St

(
u

v

)
=



cos[t (−∆)1/2]u1 + (−∆)−1/2 sin[t (−∆)1/2]v1

...

cos[t (−∆)1/2]un + (−∆)−1/2 sin[t (−∆)1/2]vn

−(−∆)1/2 sin[t (−∆)1/2]u1 + cos[t (−∆)1/2]v1

...

−(−∆)1/2 sin[t (−∆)1/2]un + cos[t (−∆)1/2]vn


is a C0-group on

Hk := H k+1(R;Rn)×H k (R;Rn),

and its infinitesimal generator is an operator Gk =G defined by

D(Gk ) = H k+2(R;Rn)×H k+1(R;Rn),

G

(
u

v

)
=

(
v

∆u

)
.

The following theorem is well known, see for example [104] and [66, Section II.5.4].
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Proposition 4.2.9. Let k ∈N. There exists a linear bounded operator

E k : H k ((−1,1);Rn) → H k (R;Rn),

such that

(i) E k f = f almost everywhere on (−1,1) whenever f ∈ H k ((−1,1);Rn),

(ii) E k f vanishes outside of (−2,2) whenever f ∈ H k ((−1,1);Rn),

(iii) E k f ∈Ck (R;Rn)), if f ∈Ck ([−1,1];Rn)),

(iv) if j ∈N and j < k, then there exists a unique extension of E k to a bounded linear operator from

H j ((−1,1);Rn) to H j (R;Rn).

Definition 4.2.10. For k ∈ N, r > 0 we define the operators E k
r : H j ((−r,r );Rn) → H j (R;Rn), j ∈ N,

j ≤ k, called as r -scaled E k operators, by the following formula

(4.2.6) (E k
r f )(x) = {E k [y 7→ f (yr )]}

( x

r

)
, x ∈R,

for r > 0 and f ∈ H k ((−r,r );Rn).

The following remark will be useful in Lemma 4.3.4.

Remark 4.2.11. We can rewrite (4.2.6) as (E k
r f )(x) = (E k fr )( x

r ), f ∈ H k ((−r,r );Rn) where

fr : (−1,1) 3 y 7→ f (yr ) ∈Rn .

Also, observe that for f ∈ H 1((−r,r );Rn)

‖ fr ‖2
H 1((−1,1);Rn ) ≤ (r−1 + r )‖ f ‖2

H 1((−r,r );Rn ).

4.2.4 Diffusion coefficient

In this subsection we discuss the assumptions on diffusion coefficient Y which we only need in

Section 4.3. It is relevant to note that due to a technical issue, which is explained in Section 4.4, we

need to consider stricter conditions on Y in establishing the large deviation principle for (1.2.7). Here

Yp : Tp M ×Tp M → Tp M , for p ∈ M , is a mapping satisfying,

|Yp (ξ,η)|Tp M ≤CY (1+|ξ|Tp M +|η|Tp M ), p ∈ M , ξ,η ∈ Tp M ,

for some constant CY > 0 which is independent of p. Due to Lemma 4.2.5 and [23, Proposition 3.10],

we can extend the noise coefficient to map Y :Rn ×Rn ×Rn 3 (p, a,b) 7→ Yp (a,b) ∈Rn which satisfies

the following:

Y.1 for q ∈O and a,b ∈Rn ,

(4.2.7) YΥ(q)
(
Υ′(q)a,Υ′(q)b

)=Υ′(q)Yq (a,b),
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Y.2 there exists an compact set KY ⊂ Rn containing M such that Yp (a,b) = 0, for all a,b ∈ Rn ,

whenever p ∉ KY ,

Y.3 Y is of C2-class and there exist positive constants CYi , i ∈ {1,2,3} such that, with notation

Y (p, a,b) := Yp (a,b), for every p, a,b ∈Rn ,

|Yp (a,b)| ≤CY0 (1+|a|+ |b|),(4.2.8) ∣∣∣ ∂Y

∂pi
(p, a,b)

∣∣∣≤CY1 (1+|a|+ |b|), i = 1, . . . ,n,(4.2.9) ∣∣∣ ∂Y

∂ai
(p, a,b)

∣∣∣+ ∣∣∣ ∂Y

∂bi
(p, a,b)

∣∣∣≤CY2 , i = 1, . . . ,n,(4.2.10) ∣∣∣ ∂2Y

∂x j∂yi
(p, a,b)

∣∣∣≤CY3 , x, y ∈ {p, a,b} and i , j ∈ {1, . . . ,n}.(4.2.11)

4.3 The skeleton equation

The purpose of this section is to introduce and study the deterministic equation associated to (1.2.7).

Define

0H 1,2(0,T ; Hµ) := {
h ∈ 0C([0,T ],E) : ḣ ∈ L2(0,T ; Hµ)

}
.

Note that 0H 1,2(0,T ; Hµ) is a Hilbert space with norm
∫ T

0 ‖ḣ(t )‖2
Hµ

d t and the map

L2(0,T ; Hµ) 3 ḣ 7→ h =
{

t 7→
∫ t

0
ḣ(s)d s

}
∈ 0H 1,2(0,T ; Hµ),

is an isometric isomorphism. For h ∈ 0H 1,2(0,T ; Hµ), let us consider the so called “skeleton equation”

associated to problem (1.2.7).

(4.3.1)

∂t t u = ∂xx u + Au(∂t u,∂t u)− Au(∂x u,∂x u)+Yu(∂t u,∂x u) ḣ,

u(0, ·) = u0,∂t u(0, ·) = v0.

Recall that M is a compact Riemannian manifold which is embedded by an isometric embedding

into some Euclidean space Rn , and hence, we can assume that M is a submanifold of Rn . The

following main result of this section is the deterministic version of [23, Theorem 11.1].

Theorem 4.3.1. Let T > 0, h ∈ 0H 1,2(0,T ; Hµ) and (u0, v0) ∈ H 2
loc × H 1

loc(R;T M) are given. Then for

every R > T , there exists a u : [0,T )×R→ M ⊂Rn such that the following hold:

1. [0,T ) 3 t 7→ u(t , ·) ∈ H 2((−R,R);Rn) is continuous,

2. [0,T ) 3 t 7→ u(t , ·) ∈ H 1((−R,R);Rn) is continuously differentiable,

3. u(t , x) ∈ M for every t ∈ [0,T ), x ∈R,

4. u(0, x) = u0(x) and ∂t u(0, x) = v0(x) holds for every x ∈R,
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5. for every t ∈ [0,T ) the following will hold in L2((−R,R);Rn),

∂t u(t ) = v0 +
∫ t

0

[
∂xx u(s)− Au(s)(∂x u(s),∂x u(s))+ Au(s)(∂t u(s),∂t u(s))

]
d s

+
∫ t

0
Yu(s)(∂t u(s),∂x u(s))ḣ(s)d s.(4.3.2)

Moreover, if there exists another map U : [0,T )×R→ M which also satisfy the above properties then

U (t , x) = u(t , x) for every |x| ≤ R − t and t ∈ [0,T ).

Proof of Theorem 4.3.1 The proof here is motivated from Sections 7-11 of [23] but presenting with

more details. Since we expect that the solutions of the equation (4.3.1) take values on a compact

Riemannian manifold M , we cannot expect them to belong to the Hilbert space H 2(R;Rn)×H 1(R;Rn).

Indeed, suppose M :=S2 and u(t , x) ∈S2, then

‖u(t , ·)‖2
H 2(R;Rn ) ≥ ‖u(t , ·)‖2

L2(R;Rn ) =
∫
R
|u(t , x)|2,d x =

∫
R

1d x =∞.

Hence, in line with the PDE theory, we seek those solutions which will take values in the Fréchet

space H 2
loc(R;Rn)×H 1

loc(R;Rn) but the theory of Bochner integration for integrand in such spaces

is not available. To overcome this problem we localize the problem by a series of non-linear wave

equations.

Let us fix r > R +T , and k ∈N. Let ϕ : R→ R be a smooth compactly supported function such

that ϕ(x) = 1 for x ∈ (−r,r ) and ϕ(x) = 0 for x ∉ (−2r,2r ). Next, with the convention z = (u, v) ∈H, we

define the following maps

Fr : [0,T ]×H 3 (t , z) 7→
(

0

E 1
r−t [Au(v, v)−Au(ux ,ux )]

)
∈H,

Fr,k : [0,T ]×H 3 (t , z) 7→


Fr (t , z), if |z|Hr−t

≤ k(
2− 1

k |z|Hr−t

)
Fr (t , z), if k ≤ |z|Hr−t

≤ 2k

0, if 2k ≤ |z|Hr−t

∈H,

Gr : [0,T ]×H 3 (t , z) 7→
(

0

(E 1
r−t Yu(v,ux ))·

)
∈L2(Hµ,H),

Gr,k : [0,T ]×H 3 (t , z) 7→


Gr (t , z), if |z|Hr−t

≤ k(
2− 1

k |z|Hr−t

)
Gr (t , z), if k ≤ |z|Hr−t

≤ 2k

0, if 2k ≤ |z|Hr−t

∈L2(Hµ,H),

Qr : H 3 z 7→
(

ϕ ·Υ(u)

ϕ ·Υ′(u)v

)
∈H,

where (E 1
r−t Yu(v,ux ))· means that, for every (u, v) ∈H, E 1

r−t Yu(v,ux ) ∈ H 1
loc(R;Rn), and the multipli-

cation operator defined by

(E 1
r−t Yu(v,ux ))· : Hµ 3 ξ 7→ (E 1

r−t Yu(v,ux )) ·ξ ∈ H 1
loc(R;Rn),
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satisfies Lemma 4.2.2.

The following two properties, which we state without proof, of Qr are taken from [23, Section 7].

Lemma 4.3.2. If z = (u, v) ∈H is such that u(x) ∈ M and v(x) ∈ Tu(x)M for |x| < r , then Qr (z) = z on

(−r,r ).

Lemma 4.3.3. The mapping Qr is of C1-class and its derivative, with z = (u, v) ∈H, satisfy

Q′
r (z)w =

(
ϕ ·Υ′(u)w1

ϕ · [Υ′′(u)(v, w1)+Υ′(u)w2]

)
, w = (w1, w2) ∈H.

The next lemma is about the locally Lipschitz properties of the localized maps defined above.

Lemma 4.3.4. For each k ∈N the functions Fr , Fr,k , Gr , Gr,k are continuous and there exists a constant

Cr,k such that

‖Fr,k (t , z)−Fr,k (t , w)‖H+‖Gr,k (t , z)−Gr,k (t , w)‖L2(Hµ,H) ≤Cr,k‖z −w‖Hr−t
,(4.3.3)

holds for every t ∈ [0,T ] and every z, w ∈H.

Proof of Lemma 4.3.4 Let us fix t ∈ [0,T ] and z = (u, v), w = (ũ, ṽ) ∈H. First, note that due to the

definitions of Fr,k and Gr,k , it is sufficient to prove (4.3.3) in the case ‖z‖Hr−t
,‖w‖Hr−t

≤ k.

Let us set Ir t := (t − r,r − t ). Since in the chosen case Fr,k (t , z) = Fr (t , z) and Fr,k (t , w) = Fr (t , w),

by Proposition 4.2.9 and Remark 4.2.11, there exists CE (r, t ) > 0 such that

‖Fr,k (t , z)−Fr,k (t , w)‖H ≤CE (r, t )
[‖Au(v, v)−Aũ(ṽ , ṽ)‖H 1(Ir t )

+‖Au(ux ,ux )−Aũ(ũx , ũx )‖H 1(Ir t )
]

.(4.3.4)

Since Υ is smooth and has compact support, see Lemma 4.2.5, from (4.2.3) observe that

A :Rn 3 q 7→Aq ∈L(Rn ×Rn ;Rn),

is smooth, compactly supported (in particular bounded) and globally Lipschitz. Recall the following

well-known interpolation inequality, refer [16, (2.12)],

(4.3.5) ‖u‖2
L∞(I ) ≤ k2

e ‖u‖L2(I )‖u‖H 1(I ), u ∈ H 1(I ),

where I is any open interval in R and ke = 2max
{

1, 1p|I |
}

. Note that since r > R +T and t ∈ [0,T ],

|Ir t | = 2(r − t) > 2R and we can choose ke = 2max
{

1, 1p|R|
}

. Then by using the above mentioned

properties of A and the interpolation inequality (4.3.5) we get

‖Au(v, v)−Aũ(ṽ , ṽ)‖L2(Ir t ) ≤ ‖Au(v, v)−Aũ(v, v)‖L2(Ir t )

+‖Aũ(v, v)−Aũ(ṽ , v)‖L2(Ir t ) +‖Aũ(ṽ , v)−Aũ(ṽ , ṽ)‖L2(Ir t )

≤ LA‖v‖2
L∞(Ir t )‖u − ũ‖L2(Ir t ) +BA

[‖v‖L∞(Ir t ) +‖ṽ‖L∞(Ir t )
]‖v − ṽ‖L2(Ir t )
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≤C (LA,BA,R,k,ke )‖z −w‖Hr−t
,(4.3.6)

where LA and BA are the Lipschitz constants and bound of A, respectively. Next, since A is smooth

and have compact support, if we set LA′ and BA′ are the Lipschitz constants and bound of

A′ :Rn 3 q 7→ dqA ∈L(Rn ×Rn ×Rn ;Rn),

then by adding and subtracting the terms as we did to get (4.3.6) followed by the properties of A′ and

the interpolation inequality (4.3.5) we have

‖dx [Au(v, v)−Aũ(ṽ , ṽ)]‖L2(Ir t )

≤ ‖duA(v, v)(ux )−dũA(ṽ , ṽ)(ũx )‖L2(Ir t ) +2‖Au(vx , v)−Aũ(ṽx , ṽ)‖L2(Ir t )

≤ LA′‖ux‖L∞(Ir t )‖v‖2
L∞(Ir t )‖u − ũ‖L2(Ir t ) +BA′‖v‖2

L∞(Ir t )‖ux − ũx‖L2(Ir t )

+BA′
[‖v‖L∞(Ir t ) +‖ṽ‖L∞(Ir t )

]‖v − ṽ‖L2(Ir t )‖ũx‖L∞(Ir t )

+2
[
LA‖u − ũ‖L∞(Ir t )‖v‖L∞(Ir t )‖vx‖L2(Ir t ) +BA‖vx − ṽx‖L2(Ir t )‖v‖L∞(Ir t )

+BA‖v − ṽ‖L∞(Ir t )‖ṽx‖L2(Ir t )
]

.LA,BA,LA′ ,BA′ ,ke

[
‖u − ũ‖H 2(Ir t )‖u‖H 2(Ir t )‖v‖2

H 1(Ir t ) +‖u − ũ‖H 2(Ir t )‖v‖2
H 1(Ir t )

+‖v − ṽ‖H 1(Ir t )
[‖v‖H 1(Ir t ) +‖ṽ‖H 1(Ir t )

]‖ũ‖H 2(Ir t ) +‖u − ũ‖H 2(Ir t )‖v‖2
H 1(Ir t )

+‖v − ṽ‖H 1(Ir t )
(‖v‖H 1(Ir t ) +‖ṽ‖H 1(Ir t )

)]
.k ‖z −w‖Hr−t

,(4.3.7)

where the last step is due to the case ‖z‖Hr−t
,‖w‖Hr−t

≤ k. By following similar procedure of (4.3.6)

and (4.3.7) we also get

‖Au(ux ,ux )−Aũ(ũx , ũx )‖H 1(Ir t ).LA,BA,LA′ ,BA′ ,ke ,k ‖z −w‖Hr−t
.

Hence by substituting the estimates back in (4.3.4) we are done with (4.3.3) for Fr,k -term.

Next, we move to the terms of Gr,k . As for Fr,k , it is sufficient to perform the calculations for the

case ‖z‖Hr−t
,‖w‖Hr−t

≤ k. By invoking Lemma 4.2.2 followed by Remark 4.2.11 we have

‖Gr,k (t , z)−Gr,k (t , w)‖2
L2(Hµ,H) ≤ ‖(E 1

r−t Yu(v,ux )) ·−(E 1
r−t Yũ(ṽ , ũx )) · ‖2

L2(Hµ,H 1(R))

≤ cr,t CE (r, t ) ‖Yu(v,ux )−Yũ(ṽ , ũx )‖2
H 1(Ir t ).

Recall that the 1-D Sobolev embedding gives H 1(R) ,→ L∞(R). Consequently, by the Taylor formula

[43, Theorem 5.6.1] and inequalities (4.2.9)-(4.2.10) we have

‖Yu(v,∂x u)−Yũ(ṽ , ũx )‖2
L2(Ir t ) ≤

∫
Ir t

|Yu(x)(v(x),ux (x))−Yũ(x)(v(x),ux (x))|2 d x

+
∫

Ir t

|Yũ(x)(v(x),ux (x))−Yũ(x)(v(x), ũx (x))|2 d x

+
∫

Ir t

|Yũ(x)(v(x), ũx (x))−Yũ(x)(ṽ(x), ũx (x))|2 d x
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≤C 2
Y

[
1+‖v‖2

H 1(Ir t ) +‖u‖2
H 1(Ir t )

]
‖u − ũ‖2

H 2(Ir t )

+C 2
Y2

[
‖ux − ũx‖2

H 1(Ir t ) +‖v − ṽ‖2
H 1(Ir t )

]
.k,CY ,CY2

‖z −w‖2
Hr−t

.(4.3.8)

For homogeneous part of norm, that is L2-norm of the derivative, we have

‖dx [Yu(v,ux )−Yũ(ṽ , ũx )]‖2
L2(Ir t )

.
∫

Ir t

n∑
i=1

{∣∣∣ ∂Y

∂pi
(u(x), v(x),ux (x))

dui

d x
(x)− ∂Y

∂pi
(ũ(x), ṽ(x), ũx (x))

dũi

d x
(x)

∣∣∣2

+
∣∣∣ ∂Y

∂ai
(u(x), v(x),ux (x))

d v i

d x
(x)− ∂Y

∂ai
(ũ(x), ṽ(x), ũx (x))

d ṽ i

d x
(x)

∣∣∣2

+
∣∣∣ ∂Y

∂bi
(u(x), v(x),ux (x))

dui
x

d x
(x)− ∂Y

∂bi
(ũ(x), ṽ(x), ũx (x))

d∂x ũi

d x
(x)

∣∣∣2
}

d x

=: Y1 +Y2 +Y3.(4.3.9)

We will estimate each term separately by using the 1-D Sobolev embedding, the Taylor formula and

inequalities (4.2.9)-(4.2.11) as follows:

Y1.
∫

Ir t

n∑
i=1

∣∣∣ ∂Y

∂pi
(u(x), v(x),ux (x))

dui

d x
(x)− ∂Y

∂pi
(ũ(x), ṽ(x), ũx (x))

dũi

d x
(x)

∣∣∣2
d x

.
∫

Ir t

n∑
i=1

{∣∣∣ ∂Y

∂pi
(u(x), v(x), ux (x))

dui

d x
(x)− ∂Y

∂pi
(ũ(x), v(x),ux (x))

dui

d x
(x)

∣∣∣2

+
∣∣∣ ∂Y

∂pi
(ũ(x), v(x),ux (x))

dui

d x
(x)− ∂Y

∂pi
(ũ(x), v(x),ux (x))

dũi

d x
(x)

∣∣∣2

+
∣∣∣ ∂Y

∂pi
(ũ(x), v(x),ux (x))

dũi

d x
(x)− ∂Y

∂pi
(ũ(x), ṽ(x),ux (x))

dũi

d x
(x)

∣∣∣2

+
∣∣∣ ∂Y

∂pi
(ũ(x), ṽ(x),ux (x))

dũi

d x
(x)− ∂Y

∂pi
(ũ(x), ṽ(x), ũx (x))

dũi

d x
(x)

∣∣∣2
}

d x

.C 2
Y3
‖u − ũ‖2

L2(Ir t )‖ux‖2
H 1(Ir t ) +C 2

Y1

[
1+‖v‖2

H 1(Ir t ) +‖ux‖2
H 1(Ir t )

]
‖ux − ũx‖2

L2(Ir t )

+C 2
Y3
‖v − ṽ‖2

L2(Ir t )‖ũx‖2
H 1(Ir t ) +C 2

Y3
‖ux − ũx‖2

L2(Ir t )‖ũx‖2
H 1(Ir t )

.k,CY2 ,CY3 ,CY1
‖z −w‖2

Hr−t
.(4.3.10)

Terms Y2 and Y3 are quite similar so it is enough to estimate only one. For Y2 we have the following

calculation

Y2 =
∫

Ir t

n∑
i=1

∣∣∣ ∂Y

∂ai
(u(x), v(x),ux (x))

d v i

d x
(x)− ∂Y

∂ai
(ũ(x), ṽ(x), ũx (x))

d ṽ i

d x
(x)

∣∣∣2
d x

.
∫

Ir t

n∑
i=1

{∣∣∣ ∂Y

∂ai
(u(x), v(x),ux (x))

d v i

d x
(x)− ∂Y

∂ai
(ũ(x), v(x),ux (x))

d v i

d x
(x)

∣∣∣2
d x

+
∣∣∣ ∂Y

∂ai
(ũ(x), v(x),ux (x))

d v i

d x
(x)− ∂Y

∂ai
(ũ(x), ṽ(x),ux (x))

d v i

d x
(x)

∣∣∣2
d x
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+
∣∣∣ ∂Y

∂ai
(ũ(x), ṽ(x),ux (x))

d v i

d x
(x)− ∂Y

∂ai
(ũ(x), ṽ(x), ũx (x))

d v i

d x
(x)

∣∣∣2
d x

+
∣∣∣ ∂Y

∂ai
(ũ(x), ṽ(x), ũx (x))

d v i

d x
(x)− ∂Y

∂ai
(ũ(x), ṽ(x), ũx (x))

d ṽ i

d x
(x)

∣∣∣2
d x

}
.C 2

Y3
‖u − ũ‖2

H 1(Ir t )‖vx‖2
L2(Ir t ) +C 2

Y3
‖v − ṽ‖2

H 1(Ir t )‖vx‖2
L2(Ir t )

+C 2
Y3
‖ux − ũx‖2

H 1(Ir t )‖vx‖2
L2(Ir t ) +C 2

Y3
Cr,t‖vx − ṽx‖2

L2(Ir t )

.k,Cr,t CY3
‖z −w‖2

Hr−t
.(4.3.11)

Hence by substituting (4.3.10)-(4.3.11) into (4.3.9) we get

‖dx [Yu(v,ux )−Yũ(ṽ , ũx )]‖2
L2(Ir t ).k,Cr,t ,CY2 ,CY3 ,CY1

‖z −w‖2
Hr−t

,

which together with (4.3.8) gives Gr,k part of (4.3.3). Hence the Lipschitz property Lemma 4.3.4. �

The following result follows directly from Lemma 4.3.4 and the standard theory of PDE via

semigroup approach, refer [5] and [99] for detailed proof.

Corollary 4.3.5. Given any ξ ∈H and h ∈ 0H 1,2(0,T ; Hµ), there exists a unique z in C([0,T ];H) such

that for all t ∈ [0,T ]

z(t ) = Stξ+
∫ t

0
St−s Fr,k (s, z(s))d s +

∫ t

0
St−s(Gr,k (s, z(s))ḣ(s))d s.

Remark 4.3.6. Here by Gr,k (s, z(s))ḣ(s) we understand that both components of Gr,k (s, z(s)) are

acting on ḣ(s).

From now on, for each r > R +T and k ∈N, the solution from Corollary 4.3.5 will be denoted by

zr,k and called the approximate solution. To proceed further we define the following two auxiliary

functions

F̃r,k : [0,T ]×H 3 (t , z) 7→
(

0

ϕ ·Υ′(u)F2
r,k (t , z)+ϕBu(v, v)−ϕBu(ux ,ux )

)

−
(

0

∆ϕ ·h(u)+2ϕx ·h′(u)ux

)
∈H,

and

G̃r,k : [0,T ]×H 3 (t , z) 7→
(

0

ϕ ·Υ′(u)G2
r,k (t , z)

)
∈H.

Here F2
r,k (s, zr,k (s)) and G2

r,k (s, zr,k (s)) denote the second components of the vectors Fr,k (s, zr,k (s)) and

Gr,k (s, zr,k (s)), respectively. The following corollary relates the solution zr,k with its transformation

under the map Qr and allow to understand the need of the functions F̃r,k and G̃r,k .

Corollary 4.3.7. Let us assume that ξ := (E 2
r u0,E 1

r v0) and that zr,k ∈C([0,T ];H) satisfies

(4.3.12) zr,k (t ) = Stξ+
∫ t

0
St−s Fr,k (s, zr,k (s))d s +

∫ t

0
St−s(Gr,k (s, zr,k (s))ḣ(s))d s, t ∈ [0,T ].
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Then z̃r,k = Qr (zr,k ) satisfies, for each t ∈ [0,T ],

z̃r,k (t ) = St Qr (ξ)+
∫ t

0
St−s F̃r,k (s, zr,k (s))d s +

∫ t

0
St−s(G̃r,k (s, zr,k (s))ḣ(s))d s.

Proof of Corollary 4.3.7 First observe that by the action of Q′
r and G on the elements of H from

Lemma 4.3.3 and (4.2.8), respectively, we get

Q′
r (zr,k (s))

(
Fr,k (s, zr,k (s))+Gr,k (s, zr,k (s))ḣ(s)

)
=

(
0

ϕ ·
{

[Υ′(ur,k (s))](F2
r,k (s, zr,k (s)))+ [Υ′(ur,k (s))](G2

r,k (s, zr,k (s))ḣ(s))
} )

.(4.3.13)

Moreover, since by applying Lemma 4.3.3 and (4.2.8) to z = (u, v) ∈H we have

F (z) := Q′
rGz −GQr z =

(
ϕ · [Υ′(u)](v)

ϕ ·{[Υ′′(u)](v, v)+ [Υ′(u)](u′′)
} )

−
(

ϕ · [Υ′(u)](v)

ϕ′′ ·Υ(u)+2ϕ′ · [Υ′(u)](u′)+ϕ · [Υ′(u)](u′′)+ϕ · [Υ′′(u)](u′,u′)

)
,(4.3.14)

substitution of z = zr,k (s) = (ur,k (s), vr,k (s)) ∈H in (4.3.14) with (4.3.13) followed by (4.2.2) gives, for

s ∈ [0,T ],

Q′
r (zr,k (s))

(
Fr,k (s, zr,k (s))+Gr,k (s, zr,k (s))

)+F (zr,k (s))

=


0

ϕ · [Υ′(ur,k (s))](F2
r,k (s, zr,k (s)))+ϕ · [Υ′′(ur,k (s))](vr,k (s), vr,k (s))

−ϕ · [Υ′′(ur,k (s))](∂x ur,k (s),∂x ur,k (s))


−

(
0

−ϕ′′ ·Υ(ur,k (s))+2ϕ′ · [Υ′(ur,k (s))](∂x ur,k (s))+ϕ · [Υ′(ur,k (s))](G2
r,k (s, zr,k (s)))

)
= F̃r,k (s, zr,k (s))+G̃r,k (s, zr,k (s)).

Hence, if we have

(4.3.15)
∫ T

0

[‖Fr,k (s, zr,k (s))‖H+‖Gr,k (s, zr,k (s))ḣ(s)‖H
]

d s <∞,

then by invoking [23, Lemma 6.3] with

L = Qr , K =U =H, A = B =G, g (s) = 0, f (s) = Fr,k (s, zr,k (s))+Gr,k (s, zr,k (s))ḣ(s),

we are done with the proof here. But (4.3.15) follows by Lemma 4.3.4, because h ∈ 0H 1,2(0,T ; Hµ) and

the following holds, due to the Hölder inequality with the abuse of notation as mentioned in Remark

4.3.6,∫ T

0
‖Gr,k (s, zr,k (s))ḣ(s)‖H d s =

∫ T

0
‖G2

r,k (s, zr,k (s))ḣ(s)‖H 1(R) d s

≤
(∫ T

0
‖(G2

r,k (s, zr,k (s))) · ‖2
L2(Hµ,H 1(R)) d s

) 1
2
(∫ T

0
‖ḣ(s)‖2

Hµ
d s

) 1
2

.

�
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Next we prove that the approximate solution zr,k stays on the manifold. Define the following three

positive reals: for each r > R +T and k ∈N,

(4.3.16)



τ1
k := inf{t ∈ [0,T ] : ‖zr,k (t )‖Hr−t

≥ k},

τ2
k := inf{t ∈ [0,T ] : ‖z̃r,k (t )‖Hr−t

≥ k},

τ3
k := inf{t ∈ [0,T ] : ∃x, |x| ≤ r − t , ur,k (t , x) ∉O},

τk := τ1
k ∧τ2

k ∧τ3
k .

Also, define the following H-valued functions of time t ∈ [0,T ]

ak (t ) = Stξ+
∫ t

0
St−s1[0,τk )(s)Fr,k (s, zr,k (s))d s +

∫ t

0
St−s(1[0,τk )(s)Gr,k (s, zr,k (s))ḣ(s))d s,

ãk (t ) = St Qr (ξ)+
∫ t

0
St−s1[0,τk )(s)F̃r,k (s, zr,k (s))d s +

∫ t

0
St−s(1[0,τk )(s)G̃r,k (s, zr,k (s))ḣ(s))d s.

Proposition 4.3.8. For each k ∈N and ξ := (E 2
r u0,E 1

r v0), the functions ak , ãk , zr,k and z̃r,k coincide

on [0,τk ). In particular, ur,k (t , x) ∈ M for |x| ≤ r − t and t ≤ τk . Consequently, τk = τ1
k = τ2

k ≤ τ3
k .

Proof of Proposition 4.3.8 Let us fix k. First note that, due to indicator function,

(4.3.17) ak = zr,k and ãk = z̃r,k on [0,τk ).

Next, since E 1
r−s f = f on |x| ≤ r − s, see Proposition 4.2.9, and ϕ = 1 on (−r,r ), by Lemma 4.3.2

followed by (4.2.4) we infer that

(4.3.18)

1[0,τk )(s)[F̃r,k (s, zr,k (s))](x) =1[0,τk )(s)[Fr,k (s, z̃r,k (s))](x),

1[0,τk )(s)[G̃r,k (s, zr,k (s))e](x) =1[0,τk )(s)[Gr,k (s, z̃r,k (s))e](x), e ∈ K ,

holds for every |x| ≤ r − s, 0 ≤ s ≤ T . Now we claim that if we denote

p(t ) := 1

2
‖ak (t )− ãk (t )‖2

Hr−t
,

then the map s 7→ p(s∧τk ) is continuous and uniformly bounded. Indeed, since, by Proposition 4.2.9,

ξ(x) = (u0(x), v0(x)) ∈ T M for |x| ≤ r , the uniform boundedness is an easy consequence of bound

property of C0-group, Lemmata 4.3.2 and 4.3.4. Continuity of s 7→ p(s∧τk ) follows from the following:

1. for every z ∈H, the map t 7→ ‖z‖2
Hr−t

is continuous;

2. for each t , the map L2(R) 3 u 7→ ∫ t
0 |u(s)|2 d s ∈R is locally Lipschitz.

Now observe that by applying Proposition 4.5.2 for

k = 1, L = I , T = r, x = 0 and z(t ) = (u(t ), v(t )) := ak (t )− ãk (t ),

we get e(t , z(t )) = p(t ), and the following

e(t , z(t )) ≤ e(0, z0)+
∫ t

0
V (r, z(r ))dr.(4.3.19)
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Here

V (t , z(t )) := 〈u(t ), v(t )〉L2(Br−t ) +〈v(t ), f (t )〉L2(Br−t ) +〈∂x v(t ),∂x f (t )〉L2(Br−t )

+〈v(t ), g (t )〉L2(Br−t ) +〈∂x v(t ),∂x g (t )〉L2(Br−t ),

and (
0

f (t )

)
:=1[0,τk )(t )[Fr,k (s, zr,k (t ))− F̃r,k (s, zr,k (t ))],

(
0

g (t )

)
:=1[0,τk )(t )[Gr,k (s, zr,k (t ))ḣ(t )−G̃r,k (s, zr,k (t ))ḣ(t )].

Since due to operators E 2
r and E 1

r the initial data ξ satisfies the assumption of Lemma 4.3.2,

St Qr (ξ) = Stξ,

and so e(0, z(0)) = p(0) = 0. Next observe that by the Cauchy-Schwarz inequality we have

V (t , z(t )) ≤ 1

2
‖u(t )‖2

L2(Br−t ) +
3

2
‖v(t )‖2

L2(Br−t ) +
1

2
‖ f (t )‖2

L2(Br−t )

+‖∂x v(t )‖2
L2(Br−t ) +

1

2
‖∂x f (t )‖2

L2(Br−t ) +
1

2
‖g (t )‖2

L2(Br−t ) +
1

2
‖∂x g (t )‖2

L2(Br−t )

≤ 3p(t )+ 1

2
‖ f (t )‖2

H 1(Br−t ) +
1

2
‖g (t )‖2

H 1(Br−t ).

By using above into (4.3.19) and, then, by invoking equalities (4.3.18) and (4.3.17), definition (4.3.16),

Lemma 4.2.2 and Lemma 4.3.4 we have the following calculation, for every t ∈ [0,T ],

p(t ) ≤
∫ t

0
3p(s)d s + 1

2

∫ t

0
1[0,τk )(s)‖F2

r,k (s, zr,k (s))−F2
r,k (s, z̃r,k (s))‖2

H 1(Br−s ) d s

+ 1

2

∫ t

0
1[0,τk )(s)‖G2

r,k (s, zr,k (s))−G2
r,k (s, z̃r,k (s))‖2

L2(Hµ,H 1(Br−s ))‖ḣ(s)‖2
Hµ

d s

≤ 3
∫ t

0
p(s)d s + 1

2
C 2

r,k

∫ t

0
1[0,τk )(s)‖zr,k (s)− z̃r,k (s)‖2

Hr−s
d s

+ 1

2
C 2

r,k

∫ t

0
1[0,τk )(s)‖zr,k (s)− z̃r,k (s)‖2

Hr−s
‖ḣ(s)‖2

Hµ
d s

≤ (3+C 2
r,k )

∫ t

0
p(s)(1+‖ḣ(s)‖2

Hµ
)d s.(4.3.20)

Consequently by the Gronwall Lemma, for t ∈ [0,τk ],

(4.3.21) p(t ).Cr,k p(0)exp

[∫ t

0
(1+‖ḣ(s)‖2

Hµ
)d s

]
.

Note that the right hand side in (4.3.21) is finite because h ∈ 0H 1,2(0,T ; Hµ). Since we know that

p(0) = 0 we arrive to p(t) = 0 on t ∈ [0,τk ] . This further implies that ak (t , x) = ãk (t , x) hold for

|x| ≤ r − t and t ≤ τk . Consequently, zr,k (t , x) = z̃r,k (t , x) hold for |x| ≤ r − t and t ≤ τk . So, because

z̃r,k (t , x) = Qr (zr,k (t )) and ϕ= 1 on (−r,r ),

(4.3.22) ur,k (t , x) =Υ(ur,k (t , x)), for |x| ≤ r − t , t ≤ τk .
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Since, by definition (4.3.16) of τk , ur,k (t , x) ∈O, equality (4.3.22) and Lemma 4.2.5, gives ur,k (t , x) ∈ M

for |x| ≤ r − t and t ≤ τk . This suggests that τk ≤ τ3
k and hence τk = τ1

k ∧τ2
k . It remains to show that

τ1
k = τ2

k . But suppose it does not hold and without loss of generality we assume that τ1
k > τ2

k . Then by

definition (4.3.16) and the continuity of zr,k and z̃r,k in time we have

‖zr,k (τ2
k , ·)‖Hr−τ2

k

< k but ‖z̃r,k (τ2
k , ·)‖Hr−τ2

k

≥ k,

which contradicts the above mentioned consequence of p = 0 on [0,τk ]. Hence we conclude that

τ1
k = τ2

k and this finishes the proof of Proposition 4.3.8. �

Next in the ongoing proof of Theorem 4.3.1 we show that the approximate solutions extend each

other. Recall that r > R +T is fixed for given T > 0.

Lemma 4.3.9. Let k ∈N and ξ= (E 2
r u0,E 1

r v0). Then zr,k+1(t , x) = zr,k (t , x) on |x| ≤ r − t , t ≤ τk , and

τk ≤ τk+1.

Proof of Lemma 4.3.9 Define

p(t ) := 1

2
‖ak+1(t )−ak (t )‖2

H 1(Br−t )×L2(Br−t ).

As an application of Proposition 4.5.2, by performing the computation based on (4.3.19) - (4.3.20),

with k = 0 and rest variables the same, we obtain

p(t ) ≤ 2
∫ t

0
p(s)d s + 1

2

∫ t

0
‖1[0,τk+1)(s)F2

r (s, zr,k+1(s))−1[0,τk )(s)F2
r (s, zr,k (s))‖2

L2(Br−s ) d s

+ 1

2

∫ t

0
‖1[0,τk+1)(s)G2

r (s, zr,k+1(s))ḣ(s)−1[0,τk )(s)G2
r (s, zr,k (s))ḣ(s)‖2

L2(Br−s ) d s.(4.3.23)

Then, since Fr and Gr depends on ur,k (s), ur,k+1(s) and their first partial derivatives, with respect to

time t and space x, which are actually bounded on the interval (−(r − s),r − s) by some constant Cr

for every s < τk+1 ∧τk , by evaluating (4.3.23) on t ∧τk+1 ∧τk following the use of Lemmata 4.3.4 and

4.2.2 we get

p(t ∧τk+1 ∧τk ) ≤ 2
∫ t

0
p(s ∧τk+1 ∧τk )d s

+ 1

2

∫ t∧τk+1∧τk

0
‖F2

r (s, zr,k+1(s))−F2
r (s, zr,k (s))‖2

L2(Br−s ) d s

+ 1

2

∫ t∧τk+1∧τk

0
‖G2

r (s, zr,k+1(s))ζ(s)−G2
r (s, zr,k (s))ḣ(s)‖2

L2(Br−s ) d s

.k

∫ t

0
p(s ∧τk+1 ∧τk )(1+‖ḣ(s)‖2

Hµ
)d s.

Hence by the Gronwall Lemma we infer that p = 0 on [0,τk+1 ∧τk ].

Consequently, we claim that τk ≤ τk+1. We divide the proof of our claim in the following three

exhaustive subcases. Due to (4.3.16), the subcases when ‖ξ‖Hr
> k+1 and k < ‖ξ‖Hr

≤ k+1 are trivial.

In the last subcase when ‖ξ‖Hr
≤ k we prove the claim τk ≤ τk+1 by the method of contradiction, and
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so assume that τk > τk+1 is true. Then, because of continuity in time of zr,k and zr,k+1, by (4.3.16) we

have

(4.3.24) ‖zr,k (τk+1)‖Hr−τk+1
< k and ‖zr,k+1(τk+1)‖Hr−τk+1

≥ k.

However, since p(t ) = 0 for t ∈ [0,τk+1∧τk ] and (u0(x), v0(x)) ∈ T M for |x| < r , by argument based on

the one made after (4.3.21), in the Proposition 4.3.8, we get zr,k (t , x) = zr,k+1(t , x) for every t ∈ [0,τk+1]

and |x| ≤ r − t . But this contradicts (4.3.24) and we finish the proof of our claim and, in result, the

proof of Lemma 4.3.9. �

Since by definition (4.3.16) and Lemma 4.3.9 the sequence of stopping times {τk }k≥1 is bounded and

non-decreasing, it makes sense to denote by τ the limit of {τk }k≥1. Now by using [23, Lemma 10.1] we

prove that the approximate solutions do not explode which is same as the following in terms of τ.

Proposition 4.3.10. For τk defined in (4.3.16), τ := lim
k→∞

τk = T .

Proof of Proposition 4.3.10 We first notice that by a particular case of the Chojnowska-Michalik

Theorem [49], when the diffusion coefficient is absent, we have that for each k the approximate

solution zr,k , as a function of time t , is H 1(R;Rn)×L2(R;Rn)-valued and satisfies

(4.3.25) zr,k (t ) = ξ+
∫ t

0
Gzr,k (s)d s +

∫ t

0
Fr,k (s, zr,k (s))d s +

∫ t

0
Gr,k (s, zr,k (s))ḣ(s)d s,

for t ≤ T . In particular,

ur,k (t ) = ξ1 +
∫ t

0
vr,k (s)d s,

for t ≤ T , where ξ1 = E 2
r u0 and the integral converges in H 1(R;Rn). Hence

∂t ur,k (s, x) = vr,k (s, x), for all s ∈ [0,T ], x ∈R.

Next, by keeping in mind the Proposition 4.3.8, we set

l (t ) := ‖ak (t )‖2
H 1(Br−t )×L2(Br−t ) and q(t ) := log

(
1+‖ak (t )‖2

Hr−t

)
.

By applying Proposition 4.5.2, respectively, with k = 0,1 and L(x) = x, log(1+x), followed by the use

of Lemma 4.3.4 we get

l (t ) ≤ l (0)+
∫ t

0
l (s)d s +

∫ t

0
1[0,τk ](s)〈vr,k (s),ϕ(s)〉L2(Br−s ) d s(4.3.26)

+
∫ t

0
1[0,τk ](s)〈vr,k (s),ψ(s)〉L2(Br−s ) d s,

and

q(t ) ≤ q(0)+
∫ t

0

‖ak (s)‖2
Hr−s

1+‖ak (s)‖2
Hr−s

d s(4.3.27)
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+
∫ t

0
1[0,τk ](s)

〈vr,k (s),ϕ(s)〉L2(Br−s )

1+‖ak (s)‖2
Hr−s

d s +
∫ t

0
1[0,τk ](s)

〈∂x vr,k (s),∂x [ϕ(s)]〉L2(Br−s )

1+‖ak (s)‖2
Hr−s

d s

+
∫ t

0
1[0,τk ](s)

〈vr,k (s),ψ(s)〉L2(Br−s )

1+‖ak (s)‖2
Hr−s

d s +
∫ t

0
1[0,τk ](s)

〈∂x vr,k (s),∂x [ψ(s)]〉L2(Br−s )

1+‖ak (s)‖2
Hr−s

d s.

Here

ϕ(s) :=Aur,k (s)(vr,k (s), vr,k (s))−Aur,k (s)(∂x ur,k (s),∂x ur,k (s)),

ψ(s) := Yur,k (s)(∂t ur,k (s),∂x ur,k (s))ḣ(s).

Since by Proposition 4.3.8 ur,k (s, x) ∈ M for |x| ≤ r − s and s ≤ τk , we have

ur,k (s, x) ∈ M and ∂t ur,k (s, x) = vr,k (s, x) ∈ Tur,k (s,x)M ,

on the mentioned domains of s and x. Consequently, by Proposition 4.2.6, we get

Aur,k (s,x)(vr,k (s, x), vr,k (s, x)) = Aur,k (s,x)(vr,k (s, x), vr,k (s, x)),(4.3.28)

Aur,k (s,x)(∂x ur,k (s, x),∂x ur,k (s, x)) = Aur,k (s,x)(∂x ur,k (s, x),∂x ur,k (s, x)),

on |x| ≤ r − s and s ≤ τk . Hence, since vr,k (s, x) ∈ Tur,k (s,x)M , and by definition, Aur,k (s,x) ∈ Nur,k (s,x)M ,

the L2-inner product on domain Br−s vanishes and, in result, the second integrals in (4.3.26) and

(4.3.27) are equal to zero.

Next, to deal with the integral containing terms ψ, we follow Lemma 4.3.4, we invoke Lemma

4.2.2, estimate (4.2.8), and Proposition 4.3.8 to get

〈vr,k (s),Yur,k (s)(∂t ur,k (s),∂x ur,k (s))ḣ(s)〉L2(Br−s )

. ‖vr,k (s)‖2
L2(Br−s ) +‖Yur,k (s)(∂t ur,k (s),∂x ur,k (s))ḣ(s)‖2

L2(Br−s )

≤ ‖vr,k (s)‖2
L2(Br−s ) +C 2

Y0
C 2

r

(
1+‖vr,k (s)‖2

L2(Br−s ) +‖∂x ur,k (s)‖2
L2(Br−s )

)
‖ḣ(s)‖2

Hµ

. (1+ l (s))(1+‖ḣ(s)‖2
Hµ

),(4.3.29)

for some Cr > 0, and estimates (4.2.9)-(4.2.10) yields

〈vr,k (s),Yur,k (s)(∂t ur,k (s),∂x ur,k (s))ḣ(s)〉L2(Br−s )

+〈∂x vr,k (s),∂x [Yur,k (s)(∂t ur,k (s),∂x ur,k (s))ḣ(s)]〉L2(Br−s )

. ‖vr,k (s)‖2
H 1(Br−s ) +‖Yur,k (s)(∂t ur,k (s),∂x ur,k (s))ḣ(s)‖2

H 1(Br−s )

≤ ‖vr,k (s)‖2
H 1(Br−s ) +‖ḣ(s)‖2

Hµ

[
C 2

Y0
C 2

r

(
1+‖vr,k (s)‖2

L2(Br−s ) +‖∂x ur,k (s)‖2
L2(Br−s )

)
+C 2

Y1

(
1+‖vr,k (s)‖2

H 1(Br−s ) +‖∂x ur,k (s)‖2
H 1(Br−s )

)
‖ur,k (s)‖2

H 1(Br−s )

+C 2
Y2

(
‖vr,k (s)‖2

L2(Br−s ) +‖∂x ur,k (s)‖2
L2(Br−s )

)]
.Cr ,CYi

(1+ l (s)) (1+‖ak (s)‖2
Hr−s

)(1+‖ḣ(s)‖2
Hµ

), i = 0,1,2.(4.3.30)
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By substituting the estimates (4.3.28) and (4.3.29) in the inequality (4.3.26) we get

(4.3.31) l (t ). l (0)+
∫ t

0
1[0,τk ](s)(1+ l (s)) (1+‖ḣ(s)‖2

Hµ
)d s.

Now we define S j as the set of initial data whose norm under extension is bounded by j , in precise,

S j := {(u0, v0) ∈Hloc : ‖ξ‖Hr
≤ j where ξ := (E 2

r u0,E 1
r v0)}.

Then, for the initial data belonging to S j , the Gronwall Lemma on (4.3.31) yields

(4.3.32) 1+ l j (t ∧τk ) ≤ Kr, j , t ≤ T, j ∈N,

where the constant Kr, j also depends on ‖ḣ‖L2(0,T ;Hµ) and l j stands to show that (4.3.32) holds under

S j only.

Next to deal with the third integral in (4.3.27), denote by O its integrand, we recall the following

celebrated Gagliardo-Nirenberg inequalities, see e.g. [69],

(4.3.33) |ψ|2L∞(r−s) ≤ |ψ|2L2(Br−s ) +2|ψ|L2(Br−s )|ψ̇|L2(Br−s ), ψ ∈ H 1(Br−s).

Thus by applying [23, Lemma 10.1] followed by the generalized Hölder inequality and (4.3.33) we

infer

|O(s)|.1[0,τk )(s)

∫
Br−s

{|∂x vr,k ||∂x ur,k ||vr,k |2 +|∂xx ur,k ||∂x ur,k |2|vr,k |+ |∂x vr,k ||∂x ur,k |3}d x

1+‖ak (s)‖2
Hr−s

.1[0,τk )(s)
l (s)‖ak (s)‖2

Hr−s

1+‖ak (s)‖2
Hr−s

≤1[0,τk )(s)(1+ l (s)).(4.3.34)

So, by substituting (4.3.28), (4.3.29) and (4.3.34) in (4.3.27) we get

q(t ). 1+q(0)+
∫ t

0
1[0,τk )(s)(1+ l (s)) (1+‖ḣ(s)‖2

Hµ
)d s.

Consequently, by applying (4.3.32), we obtain on S j ,

q j (t ∧τk ). 1+q j (0)+
∫ t

0
[1+ l j (s ∧τk )] (1+‖ḣ(s)‖2

Hµ
)d s

≤Cr, j ‖ḣ‖L2(0,T ;Hµ), j ∈N, t ∈ [0,T ],(4.3.35)

for some Cr, j > 0, where in the last step we have used that r > T and on set S j the quantity q j (0) is

bounded by log(1+ j ).

To complete the proof let us fix t < T . Then, by Proposition 4.3.8,

|ak (τk )|Hr−τk
= |zr,k (τk )|Hr−τk

≥ k whenever τk ≤ t .

So for every k such that τk ≤ t we have

log(1+k2) ≤ q(τk ) = q(t ∧τk ).
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Thus by restricting us to S j and using inequality (4.3.35), we obtain

(4.3.36) log(1+k2) ≤ q j (t ∧τk ).Cr, j‖ḣ‖L2(0,T ;Hµ).

In this way, if lim
k→∞

τk = t0 for any t0 < T , then by taking k →∞ in (4.3.36) we get Cr, j‖ḣ‖L2(0,T ;Hµ) ≥∞
which is absurd. Since this holds for every j ∈N and t0 < T , we infer that τ= T . Hence, we are done

with the proof of Proposition 4.3.10. �

Now we have all the machinery required to finish the proof of Theorem 4.3.1 which is for the skeleton

Cauchy problem (4.3.1). Define

wr,k (t ) :=
(

E 2
r−t ur,k (t )

E 1
r−t vr,k (t )

)
,

and observe that wr,k : [0,T ) →H is continuous. If we set

(4.3.37) zr (t ) := lim
k→∞

wr,k (t ), t < T,

then by Lemma 4.3.9 and Proposition 4.3.10 it is straightforward to verify that, for every t < T , the

sequence {wr,k (t)}k∈N is Cauchy in H. But, since H is complete, the limit in (4.3.37) converges in

H. Moreover, since by Proposition 4.3.10 zr,k (t) = zr,k1 (t) for every k1 ≥ k and t ≤ τk , we have that

zr (t ) = wr,k (t ) for t ≤ τk . In particular, [0,T ) 3 t 7→ zr (t ) ∈H is continuous and zr (t , x) = zr,k (t , x) for

|x| ≤ r − t if t ≤ τk .

Hence, if we write zr (t ) = (ur (t ), vr (t )), then we have shown that ur satisfy the first conclusion of

the Theorem 4.5.1. In the remaining proof of the existence part we will show that the zr , defined in

(4.3.37), will satisfy all the remaining conclusions. Evaluation of (4.3.25) at t ∧τk together applying

the result from previous paragraph gives

(4.3.38) zr,k (t ∧τk ) = ξ+
∫ t∧τk

0
Gzr,k (s)d s +

∫ t∧τk

0
Fr (s, zr,k (s))d s +

∫ t∧τk

0
Gr (s, zr,k (s))ḣ(s)d s,

and this equality holds in H 1(R;Rn)×L2(R;Rn). Restricting to the interval (−R,R), (4.3.38) becomes

zr (t ∧τk ) = ξ+
∫ t∧τk

0
Gzr (s)d s +

∫ t∧τk

0
Fr (s, zr (s))d s +

∫ t∧τk

0
Gr (s, zr (s))ḣ(s)d s,

under the action of natural projection from H 1(R;Rn)×L2(R;Rn) to H 1((−R,R);Rn)×L2((−R,R);Rn).

Here the integrals converge in H 1((−R,R);Rn)×L2((−R,R);Rn). Taking the limit k →∞ on both the

sides, the dominated convergence theorem yields

zr (t ) = ξ+
∫ t

0
Gzr (s)d s +

∫ t

0
Fr (s, zr (s))d s +

∫ t

0
Gr (s, zr (s))ḣ(s)d s, t < T

in H 1((−R,R);Rn)×L2((−R,R);Rn). In particular, by looking to each component separately we have,

for every t < T ,

(4.3.39) ur (t ) = u0 +
∫ t

0
vr (s)d s,
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in H 1((−R,R);Rn), and

vr (t ) = v0 +
∫ t

0

[
∂xx ur (s)+ Aur (s)(vr (s), vr (s))− Aur (s)(∂x ur (s),∂x ur (s))

]
d s

+
∫ t

0
Yur (s)(vr (s),∂x ur (s))ḣ(s)d s,(4.3.40)

holds in L2((−R,R);Rn). It is relevant to note that in the formula above, we have replaced A by A

which makes sense because due to Proposition 4.3.8 and Proposition 4.3.10, ur (t , x) = ur,k (t , x) ∈ M

for |x| ≤ r − t and t < T . Hence we are done with the proof of existence part.

Concerning the uniqueness, define

Z (t ) :=
(

E 2
RU (t )

E 1
R∂tU (t )

)
, t < T,

and observe that it is a H-valued continuous function of t ∈ [0,T ). Define also

σk := τk ∧ inf{t < T : ‖Z (t )‖Hr−t
≥ k},

and the H-valued function, for t < T ,

β(t ) := Stξ+
∫ t

0
St−s1[0,σk )(s)Fr,k (s, Z (s))d s +

∫ t

0
St−s1[0,σk )(s)Gr,k (s, Z (s))ḣ(s)d s.

In the same vein as in the existence part of the proof, as an application of the Chojnowska-Michalik

Theorem and projection operator, the restriction of β on HR , which we denote by b, satisfies

b(t ) = ξ+
∫ t

0
Gb(s)d s +

∫ t

0

(
0

AU (s)(∂tU (s),∂tU (s))−AU (s)(∂xU (s),∂xU (s))

)
d s

+
∫ t

0

(
0

YU (s)(∂tU (s),∂xU (s))ḣ(s)

)
d s, t ≤σk ,

where the integrals converge in H 1((−R,R);Rn)×L2((−R,R);Rn). Then since U (t) and ∂tU (t) have

similar form, respectively to (4.3.39) and (4.3.40), by direct computation we deduce that function p

defined by

p(t ) := b(t )−
(

U (t )

∂tU (t )

)
,

satisfies

p(t ) =
∫ t

0
Gp(s)d s, t ≤σk .

Since above implies that p satisfies the linear homogeneous wave equation with null initial data, by

[23, Remark 6.2], p(t , x) = 0 for |x| ≤ R − t , t ≤σk .

Next, we set

q(t ) := ‖β(t )−ak (t )‖2
HR−t

,
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and apply Proposition 4.5.2, with k = 1,T = r,L = I , to obtain

q(t ∧σk ) ≤ 2
∫ t∧σk

0
q(s)d s +

∫ t∧σk

0
‖Fr,k (s, Z (s))−Fr,k (s, ak (s))‖2

H d s

+
∫ t∧σk

0
‖Gr,k (s, Z (s))ḣ(s)−Gr,k (s, ak (s))ḣ(s)‖2

H d s.(4.3.41)

But we know that r − t > R − t , and by definition σk ≤ τk which implies

Fr,k (t , z) = FR,k (t , z), Gr,k (t , z) =GR,k (t , z) on (t −R,R − t ),

whenever ‖z‖Hr−t
≤ k. Consequently, the estimate (4.3.41) becomes

q(t ∧σk ) ≤ 2
∫ t∧σk

0
q(s)d s +

∫ t∧σk

0
‖FR,k (s, Z (s))−FR,k (s, ak (s))‖2

H]d s

+
∫ t∧σk

0
‖GR,k (s, Z (s))ḣ(s)−GR,k (s, ak (s))ḣ(s)‖2

H d s.

Invoking Lemmata 4.3.4 and 4.2.2 yields

q(t ∧σk ) ≤CR

∫ t∧σk

0
q(s)(1+‖ḣ(s)‖2

Hµ
)d s.

Therefore, we get q = 0 on [0,σk ) by the Gronwall Lemma. Since in the limit k →∞, σk goes to T as

τk , by taking k to infinity, by Proposition 4.3.8 we obtain that ur (t , x) =U (t , x) for each t < T and

|x| ≤ R − t . The proof of Theorem 4.3.1 completes here. �

4.4 Large deviation principle

In this section we establish a large deviation principle (LDP) for system (1.2.7) via a weak con-

vergence approach developed in [30] and [31] which is based on variational representations of

infinite-dimensional Wiener processes.

First, let us recall the general criteria of LDP obtained in [30]. Let (Ω,F ,P) be a probability space

with an increasing family F := {Ft ,0 ≤ t ≤ T } of the sub-σ-fields of F satisfying the usual conditions.

Let B(E) denotes the Borel σ-field of the Polish space E (i.e. complete separable metric space).

Since we are interested in the large deviations of continuous stochastic processes, we follow [48] and

consider the following definition of large deviations principle which is in terms of random variables.

Definition 4.4.1. The (E ,B(E ))-valued random family
{

X ε
}
ε>0, defined on (Ω,F ,P), is said to satisfy

a large deviation principle on E with the good rate function I if the following conditions hold:

1. I is a good rate function: The function I : E → [0,∞] is such that for each M ∈ [0,∞) the level

set {φ ∈ E : I(φ) ≤M} is a compact subset of E .

2. Large deviation upper bound: For each closed subset F of E

limsup
ε→0

ε logP
[

X ε ∈ F
]≤− inf

u∈F
I(u).
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3. Large deviation lower bound: For each open subset G of E

liminf
ε→0

ε logP
[

X ε ∈G
]≥− inf

u∈G
I(u),

where by convention the infimum over an empty set is +∞.

Assume that K , H are separable Hilbert spaces and the embedding K ,→ H is Hilbert-Schmidt.

Let W := {W (t ), t ∈ [0,T ]} be a cylindrical Wiener process on K . Hence the paths of W take values in

C([0,T ]; H ). Note that the RKHS linked to W precisely is 0H 1,2(0,T ;K ). Let S be the class of K -valued

Ft -predictable processes φ belonging to 0H 1,2(0,T ;K ), P-almost surely. For M> 0, we set

SM :=
{

h ∈ 0H 1,2(0,T ;K ) :
∫ T

0
‖ḣ(s)‖2

K d s ≤M

}
.

The set SM endowed with the weak topology obtained from the following metric

d1(h,k) :=
∞∑

i=1

1

2i

∣∣∣∫ T

0
〈ḣ(s)− k̇(s),ei 〉K d s

∣∣∣,
where {ei }i∈N is a complete orthonormal basis for L2(0,T ;K ), is a Polish space, see [31]. Define SM

as the set of bounded stochastic controls by

SM := {φ ∈S :φ(ω) ∈ SM,P-a.s.}.

Note that ∪M>0SM is a proper subset of S . Next, consider a family indexed by ε ∈ (0,1] of Borel

measurable maps

Jε : 0C([0,T ], H) → E .

We denote by µε the “image” measure on E of P by Jε, that is,

µε = Jε(P), i .e. µε(A) =P(
(Jε)−1(A)

)
, A ∈B(E).

We have the following result.

Theorem 4.4.2. [30, Theorem 4.4] Suppose that there exists a measurable map J 0 : 0C([0,T ], H) → E

such that

BD1 : if M> 0 and a family {hε} ⊂SM converges in law as SM-valued random elements to h ∈SM as

ε→ 0, then the processes

0C([0,T ], H) 3ω 7→ Jε
(
ω+ 1p

ε

∫ ·

0
ḣε(s)d s

)
∈ E ,

converges in law, as ε↘ 0, to the process J 0
(∫ ·

0 ḣε(s)d s
)
,

BD2 : for every M>, the set {
J 0

(∫ ·

0
ḣ(s)d s

)
: h ∈ SM

}
,

is a compact subset of E.

101



CHAPTER 4. LARGE DEVIATIONS FOR STOCHASTIC GEOMETRIC WAVE EQUATION

Then the family of measures µε satisfies the large deviation principle (LDP) with the rate function

defined by

(4.4.1) I(u) := inf

{
1

2

∫ T

0
‖ḣ(s)‖2

K d s : 0H 1,2(0,T ;K ) and u = J 0
(∫ ·

0
ḣ(s)d s

)}
,

with the convention inf{;} =+∞.

4.4.1 Main result

It is important to note that in transferring the general theory argument from Theorem 4.4.2 in our

setting we require some information about the difference of solutions at two different times, hence

we need to strengthen the assumptions on diffusion coefficient. In the remaining part of this chapter,

we assume that Y : M 3 p 7→ Y (p) ∈ Tp M is a smooth vector field on compact Riemannian manifold

M , which can be considered as a submanifold of Rn , such that its extension, denote again by Y , on

the ambient space Rn is smooth and satisfies

Y.4 there exists a compact set KY ⊂Rn such that Y (p) = 0 if p ∉ KY ,

Y.5 for q ∈O, Y (Υ(q)) =Υ′(q)Y (q),

Y.6 for some CY > 0

|Y (p)| ≤CY (1+|p|),
∣∣∣ ∂Y

∂pi
(p)

∣∣∣≤CY , and
∣∣∣ ∂2Y

∂pi∂p j
(p)

∣∣∣≤CY ,

for p ∈ KY , i , j = 1, . . . ,n.

Remark 4.4.3. 1. Since KY is compact, there exists a CK such that |Y (p)| ≤CK for p ∈Rn .

2. For M =S2 case, Y (p) = p ×e, p ∈ M , for some fixed vector e ∈R3 satisfies above assumptions.

Since, due to the above assumptions, Y and its first order partial derivatives are Lipschitz, by 1-D

Sobolev embedding we easily get the next result.

Lemma 4.4.4. There exists CY ,R > 0 such that the extension Y defined above satisfy

(1) ‖Y (u)‖H j (BR ) ≤CY ,R (1+‖u‖H j (BR )), j = 0,1,2,

(2) ‖Y (u)−Y (v)‖L2(BR ) ≤CY ,R‖u − v‖L2(BR ),

(3) ‖Y (u)−Y (v)‖H 1(BR ) ≤CY ,R‖u − v‖H 1(BR )
(
1+‖u‖H 1(BR ) +‖v‖H 1(BR )

)
.

Now we state the main result of this section for the following small noise Cauchy problem

(4.4.2)

∂t t uε = ∂xx uε+ Auε(∂t uε,∂t uε)− Auε(∂x uε,∂x uε)+p
εY (uε)Ẇ ,(

uε(0),∂t uε(0)
)= (u0, v0) ,
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with the hypothesis that (u0, v0) is F0-measurable H 2
loc ×H 1

loc(R,T M)-valued random variable, such

that u0(x,ω) ∈ M and v0(x,ω) ∈ Tu0(x,ω)M hold for every ω ∈ Ω and x ∈ R. Since the small noise

problem (4.4.2), with initial data (u0, v0) ∈ Hloc(R; M), is a particular case of Theorem 4.5.1, for

given ε > 0 and T > 0, there exists a unique global strong solution to (4.4.2), which we denote by

zε := (uε,∂t uε), with values in the Polish space

XT :=C
(
[0,T ]; H 2

loc(R;Rn)
)×C

(
[0,T ]; H 1

loc(R;Rn)
)

,

and satisfy the properties mentioned in Section 4.5.1. Thus, there exists a Borel measurable function,

see for example [30] and [120, Theorems 12.1 and 13.2],

(4.4.3) Jε : 0C([0,T ],E) →XT ,

where space E can be taken as in Lemma 4.2.1, such that zε(·) = Jε(W (·)), P-almost surely.

Recall from Section 4.2 that the random perturbation W we consider is a cylindrical Wiener

process on Hµ and there exists a separable Hilbert space H such that the embedding of Hµ in H is

Hilbert-Schmidt. Hence we can apply the general theory from previous section with the notations

defined by taking Hµ instead of K .

Let us define a Borel map

J 0 : 0C([0,T ],E) →XT .

If h ∈ 0C([0,T ],E) \ 0H 1,2(0,T ; Hµ), then we set J 0(h) = 0. If h ∈ 0H 1,2(0,T ; Hµ) then by Theorem 4.3.1

there exists a function in XT , say zh , that solves

(4.4.4)

∂t t u = ∂xx u + Au(∂t u,∂t u)− Au(∂x u,∂x u)+Y (u) ḣ,

u(0) = u0,∂t u(0) = v0,

uniquely and we set J 0(h) = zh .

Remark 4.4.5. At some places in the chapter we denote J 0(h) by J 0
(∫ ·

0 ḣ(s)d s
)

to make it clear that

in the differential equation we have control ḣ not h.

The main result of this section is as follows.

Theorem 4.4.6. The family of laws {L (zε) : ε ∈ (0,1]} on XT , where zε := (uε,∂t uε) is the unique

solution to (4.4.2) satisfies the large deviation principle with rate function I defined in (4.4.1).

Note that, in light of Theorem 4.4.2, in order to prove the Theorem 4.4.6 it is sufficient to show

the following two statements:

Statement 1 : For each M> 0, the set

KM := {J 0(h) : h ∈ SM},

is a compact subset of XT , where SM ⊂ 0H 1,2(0,T ; Hµ) is the centred closed ball of radius M

endowed with the weak topology.
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Statement 2 : Assume that M > 0, that {εn}n∈N is an (0,1]-valued sequence convergent to 0,

that {hn}n∈N ⊂SM converges in law to h ∈SM as ε→ 0. Then the processes

(4.4.5) 0C([0,T ],E) 3ω 7→ Jεn

(
W (·)+ 1p

εn

∫ ·

0
ḣn(s)d s

)
∈XT ,

converges in law on XT to J 0
(∫ ·

0 ḣ(s)d s
)
.

Remark 4.4.7. By combining the proofs of Theorems 4.5.1 and 4.3.1 we infer that the map (4.4.5) is

well-defined and Jεn

(
W (·)+ 1p

εn

∫ ·
0 ḣn(s)d s

)
is the unique solution to the following stochastic control

Cauchy problem

(4.4.6)

∂t t uεn = ∂xx uεn + Auεn (∂t uεn ,∂t uεn )− Auεn (∂x uεn ,∂x uεn )+Y (uεn )ḣn +p
εn Y (uεn )Ẇ ,(

uεn (0),∂t uεn (0)
)= (u0, v0) ,

where the initial data (u0, v0) ∈ H 2
loc ×H 1

loc(R;T M).

Remark 4.4.8. It is clear by now that verification of an LDP comes down to proving two convergence

results, see [19, 20, 28, 48, 149]. As it was shown first in [16] the second convergence result follows

from the first one via the Jakubowski version of the Skorokhod representation theorem. Therefore,

establishing LDP, de facto, reduces to proving one convergence result for deterministic controlled

problem called also the skeleton equation. This convergence result is specific to the stochastic

PDE in question and require techniques related to the considered equation. Thus, for instance, the

proof in [16, Lemma 6.3] for the stochastic Landau-Lifshitz-Gilbert equation, is different from the

proof, for stochastic Navier-Stokes equation, of [48, Proposition 3.5]. On technical level, the proof of

corresponding result, i.e. Statement 1, is the main contribution of our work.

4.4.2 Proof of Statement 1

Let {zn = (un , vn) := J 0(hn)}n∈N be a sequence in the set KM corresponding to the sequence of controls

{hn}n∈N ⊂ SM. Since SM is a bounded and closed subset of Hilbert space 0H 1,2(0,T ; Hµ), SM is weakly

compact. Consequently, see [9], there exists a subsequence of {hn}n∈N, still denoted this by {hn}n∈N,

which converges weakly to a limit h ∈ 0H 1,2(0,T ; Hµ). But, since SM is weakly closed, h ∈ SM. Hence

to complete the proof of Statement 1 we need to show that the subsequence of solutions {zn}n∈N
to (4.4.4), corresponding to the subsequence of controls {hn}n∈N, converges to zh = (uh , vh) which

solves the skeleton Cauchy problem (4.4.4) for control h. Before delving into the proof of this we

establish the following a priori estimate which is a preliminary step required to prove, Proposition

4.4.14, the main result of this section.

Lemma 4.4.9. Fix any T > 0, x ∈R. There exists a constant B :=B
(‖(u0, v0)‖H(B(x,T )),M,T

)> 0, such

that

(4.4.7) sup
h∈SM

sup
t∈[0,T /2]

e(t , zh(t )) ≤B.
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Here zh is the unique global strong solution to problem (4.4.4) and

e(t , z) := 1

2
‖z‖2

HB(x,T−t )
= 1

2

{
‖u‖2

L2(B(x,T−t )) +‖∂x u‖2
L2(B(x,T−t )) +‖v‖2

L2(B(x,T−t ))

+‖∂xx u‖2
L2(B(x,T−t )) +‖∂x v‖2

L2(B(x,T−t ))

}
, z = (u, v) ∈Hloc.

Moreover, if we restrict x on an interval [−a, a] ⊂ R, then the constant B :=B(M,T, a), which also

depends on ‘a’ now, can be chosen such that

sup
x∈[−a,a]

sup
h∈SM

sup
t∈[0,T /2]

e(t , zh(t )) ≤B.

Proof of Lemma 4.4.9 First note that the last part follows from the first one because by assumptions,

(u0, v0) ∈Hloc, in particular, ‖(u0, v0)‖H(−a−T,a+T ) <∞ and therefore,

sup
x∈[−a,a]

‖(u0, v0)‖H(B(x,T )) ≤ ‖(u0, v0)‖H(−a−T,a+T ) <∞.

The procedure to prove (4.4.7) is based on the proof of Proposition 4.3.10. Let us fix h in SM and

denote the corresponding solution zh := (uh , vh) which exists due to Theorem 4.3.1. Since x is fixed

we will avoid writing it explicitly in the norm. Define

l (t ) := 1

2
‖(uh(t ), vh(t )‖2

H 1(BT−t )×L2(BT−t ), t ∈ [0,T ].

Thus, invoking Proposition 4.5.2, with k = 0 and L = I , implies, for t ∈ [0,T ],

l (t ) ≤ l (0)+
∫ t

0
〈uh(r ), vh(s)〉L2(BT−s ) d s +

∫ t

0
〈vh(s), fh(s)〉L2(BT−s ) d s

+
∫ t

0
〈vh(s),Y (uh(s))ḣ(s)〉L2(BT−s ) d s,(4.4.8)

where

fh(r ) := Auh (r )(vh(r ), vh(r )− Auh (r )(∂x uh(r ),∂x uh(r ).

Since vh(r ) ∈ Tuh (r )M and by definition Auh (r )(·, ·) ∈ Nuh (r )M , the second integral in (4.4.8) vanishes.

Because uh(r ) ∈ M , invoking Cauchy-Schwartz inequality, Lemmata 4.2.2 and 4.4.4 implies

l (t ) ≤ l (0)+
(

C 2
Y C 2

T

2
+2

)∫ t

0
(1+ l (s))(1+‖ḣ(s)‖2

Hµ
)d s.

Consequently, by appying the Gronwall Lemma and using h ∈ SM we get

l (t ).CY ,CT (1+ l (0))
[

T +‖ḣ‖2
L2(0,T ;Hµ)

]
≤ (T +M)(1+ l (0)).(4.4.9)

Next we define

q(t ) := log
(
1+‖zh(t )‖2

HT−t

)
.

Then Proposition 4.5.2, with k = 1 and L(x) = log(1+x), gives, for t ∈ [0,T /2],

q(t ) ≤ q(0)+
∫ t

0

‖zh(s)‖2
HT−s

1+‖zh(s)‖2
HT−s

d s
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+
∫ t

0

〈vh(s), fh(s)〉L2(BT−s )

1+‖zh(s)‖2
HT−s

d s +
∫ t

0

〈∂x vh(s),∂x [ fh(s)]〉L2(BT−s )

1+‖zh(s)‖2
HT−s

d s

+
∫ t

0

〈vh(s),Y (uh(s))ḣ(s)〉L2(BT−s )

1+‖zk (s)‖2
HT−s

d s +
∫ t

0

〈∂x vh(s),∂x [Y (uh(s))ḣ(s)]〉L2(BT−s )

1+‖zh(s)‖2
HT−s

d s.

Since by perpendicularity the second integral in above vanishes, by doing the calculation based on

(4.3.30) and (4.3.34) we deduce

q(t ).T 1+q(0)+
∫ t

0

l (s)‖zh(s)‖2
HT−s

1+‖zh(s)‖2
HT−s

d s

+
∫ t

0

(1+ l (s)) (1+‖zh(s)‖2
HT−s

)(1+‖ḣ(s)‖2
Hµ

)

1+‖zk (s)‖2
HT−s

d s

≤ 1+q(0)+
∫ t

0
(1+ l (s))(1+‖ḣ(s)‖2

Hµ
)d s,

which further implies, due to (4.4.9) and h ∈ SM,

q(t ). 1+q(0)+ (T +M)2(1+ l (0)).

In terms of zh , that is, for each x ∈R and t ∈ [0,T /2],

‖zh(t )‖2
HT−t
. exp

[
‖(u0, v0)‖2

HT−t
(T +M)2

]
.

Since above holds for every t ∈ [0,T /2],h ∈ SM, by taking supremum on t and h we get (4.4.7), and

hence the proof of Lemma 4.4.9. �

Remark 4.4.10. Since B(x,T /2) ⊆ B(x,T − t ) for every t ∈ [0,T /2], Lemma 4.4.9 also implies

sup
x∈[−a,a]

sup
h∈SM

sup
t∈[0,T /2]

1

2

{
‖uh(t )‖2

H 2(B(x,R)) +‖vh(t )‖2
H 1(B(x,R))

}
≤B(M,T, a),

for R = T /2.

Now we prove the main result of this subsection which will allow to complete the proof of

Statement 1.

Proposition 4.4.11. Fix T > 0. The sequence of solutions {zn}n∈N to the skeleton problem (4.4.4)

converges to zh in the XT-norm (strong topology). In particular, for every T,M> 0, the mapping

SM ∈ h 7→ J 0(h) ∈XT ,

is Borel.

Proof of Proposition 4.4.11 First note that the second conclusion follows from first immediately

because continuous maps are Borel. Towards proving the first conclusion, let us fix any n ∈N. Recall
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that in our notation, by Theorem 4.3.1, zh = (uh , vh) and zn = (un , vn), respectively, are the unique

global strong solutions to

(4.4.10)

∂t t uh = ∂xx uh + Auh (∂t uh ,∂t uh)− Auh (∂x uh ,∂x uh)+Y (uh)ḣ,

(uh(0), vh(0)) = (u0, v0) , where vnh := ∂t uh ,

and

(4.4.11)

∂t t un = ∂xx un + Aun (∂t un ,∂t un)− Aun (∂x un ,∂x un)+Y (un)ḣn ,

(un(0), vn(0)) = (u0, v0) , where vn := ∂t un .

Hence zn := (un ,vn) = zh − zn is the unique global strong solution to, with null initial data,

∂t tun = ∂xxun − Auh (∂x uh ,∂x uh)+ Aun (∂x un ,∂x un)+ Auh (∂t uh ,∂t uh)

− Aun (∂t un ,∂t un)+Y (uh)ḣ −Y (un)ḣn ,(4.4.12)

where vn := ∂tun . This implies that

zn(t ) =
∫ t

0
St−s

(
0

fn(s)

)
d s +

∫ t

0
St−s

(
0

gn(s)

)
d s, t ∈ [0,T].

Here

fn(s) :=−Auh (s)(∂x uh(s),∂x uh(s))+ Aun (s)(∂x un(s),∂x un(s))+ Auh (s)(∂t uh(s),∂t uh(s))

− Aun (s)(∂t un(s),∂t un(s)),

and

gn(s) := Y (uh(s))ḣ(s)−Y (un(s))ḣn(s).

We aim to show that

zn −−−→
n→0

0 in C
(
[0,T], H 2

loc(R;Rn)
)×C

(
[0,T], H 1

loc(R;Rn)
)

,

that is, for every R > 0 and x ∈R,

(4.4.13) sup
t∈[0,T]

[
‖un(t )‖2

H 2(B(x,R)) +‖vn(t )‖2
H 1(B(x,R))

]
→ 0 as n →∞.

Without loss of generality we assume x = 0. Since a compact set in R can be convered by a finite

number of any given closed intervals of any non-zero length, it is sufficient to prove above for a fixed

R > 0 whose value will be set later. Let ϕ be a bump function which takes value 1 on BR and vanishes

outside B2R . Define ūn(t , x) := un(t , x)ϕ(x) and ūh(t , x) := uh(t , x)ϕ(x), so

v̄n(t , x) =ϕ(x)vn(t , x), v̄h(t , x) =ϕ(x)vh(t , x),

and with notation ūn := ūn − ūh ,

∂t t ūn −∂xx ūn = [
Aun (∂t un ,∂t un)− Aun (∂x un ,∂x un)− Auh (∂t uh ,∂t uh)+ Auh (∂x uh ,∂x uh)

]
ϕ
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− (un −uh)∂xxϕ−2(∂x un −∂x uh)∂xϕ+ [
Y (un)ḣn −Y (uh)ḣ

]
ϕ

=: f̄n + ḡn .

Here

f̄n(s) := [
Aun (s)(∂t un(s),∂t un(s))− Aun (s)(∂x un(s),∂x un(s))− Auh (s)(∂t uh(s),∂t uh(s))

+Auh (s)(∂x uh(s),∂x uh(s))
]
ϕ− (un(s)−uh(s))∂xxϕ−2(∂x un(s)−∂x uh(s))∂xϕ,

and

ḡn(s) := [
Y (un(s))ḣn(s)−Y (uh(s))ḣ(s)

]
ϕ, s ∈ [0,T].

Next, by direct computation we can find constants Cϕ,C̄ϕ > 0, depend upon ϕ,ϕ′,ϕ′′, such that, for

t ∈ [0,T],

‖ūn(t )‖2
H 2(−R,R) +‖v̄n(t )‖2

H 1(−R,R) ≤Cϕ

[
‖un(t )‖2

H 2(−R,R) +‖vn(t )‖2
H 1(−R,R)

]
≤ C̄ϕ

[
‖ūn(t )‖2

H 2(−R,R) +‖v̄n(t )‖2
H 1(−R,R)

]
.(4.4.14)

Hence, instead of (4.4.13) it is enough to prove the following, for a fixed R,

(4.4.15) sup
t∈[0,T]

[
‖ūn(t )‖2

H 2(−R,R) +‖v̄n(t )‖2
H 1(−R,R)

]
→ 0 as n →∞.

Let us set

T := 4T and R := T

4
=T.

The reason of such choice is due to the fact that (4.4.15) follows from

(4.4.16) sup
t∈[0,R]

[
‖ūn(t )‖2

H 2(BT−t ) +‖v̄n(t )‖2
H 1(BT−t )

]
→ 0 as n →∞.

Indeed, because for every t ∈ [0,R], T − t > 2R, and we have

‖ūn(t )‖2
H 2(BR ) +‖v̄n(t )‖2

H 1(BR ) ≤ ‖ūn(t )‖2
H 2(B2R ) +‖v̄n(t )‖2

H 1(B2R )

≤ sup
t∈[0,R]

[
‖ūn(t )‖2

H 2(BT−t ) +‖v̄n(t )‖2
H 1(BT−t )

]
.

Next, we set l (t , z) := 1
2‖z‖2

HT−t
, for z = (u, v) ∈Hloc and t ∈ [0,R]. Invoking Proposition 4.5.2, with

null diffusion part and k = 1,L = I , x = 0, gives, for every t ∈ [0,R],

l (t , z̄n(t )) ≤
∫ t

0
V(r, z̄n(r ))dr,(4.4.17)

where z̄n(t ) = (ūn(t ), v̄n(t )) and

V(t , z̄n(t )) = 〈ūn(t ), v̄n(t )〉L2(BT−t ) +〈v̄n(t ), f̄n(t )〉L2(BT−t )

+〈∂x v̄n(t ),∂x f̄n(t )〉L2(BT−t ) +〈v̄n(t ), ḡn(t )〉L2(BT−t )

+〈∂x v̄n(t ),∂x ḡn(t )〉L2(BT−t )
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=:V f (t , z̄n(t ))+Vg (t , z̄n(t )).

We estimateV f (t , z̄n(t )) andVg (t , z̄n(t )) separately as follows. Since T − t > 2R for every t ∈ [0,R] and

ϕ(y),ϕ′(y) = 0 for y ∉ B2R , we have∫ t

0
V f (r, z̄(r ))dr =

∫ t

0

[∫
B2R

{
ϕ(y)un(r, y)ϕ(y)vn(r, y)+ϕ(y)vn(r, y) f̄n(r, y)

+ϕ′(y)vn(r, y)∂x f̄n(r, y)+ϕ(y)∂xvn(r, y)∂x f̄n(r, y)
}

d y
]

dr

.ϕ,ϕ′

∫ t

0
l (r, z̄n(r ))dr +

∫ t

0
‖ f̄n(r )‖2

H 1(B2R ) dr,

and ∫ t

0

(〈v̄n(r ), ḡn(r )〉L2(BT−r ) +〈∂x v̄n(r ),∂x ḡn(r )〉L2(BT−r )
)

dr

=
∫ t

0

(〈v̄n(r ), ḡn(r )〉L2(B2R ) +〈∂x v̄n(r ),∂x ḡn(r )〉L2(B2R )
)

dr.

Let us estimate the terms involving f̄n first. Since un ,uh takes values on manifold M , by using the

properties of ϕ and invoking interpolation inequality (4.3.5), as pursued in Lemma 4.3.4, followed by

Lemma 4.4.9 we deduce that

‖ f̄n(r )‖2
L2(B2R ).ϕ,ϕ′,ϕ′′ ‖Aun (r )(vn(r ), vn(r ))− Auh (r )(vn(r ), vn(r ))‖2

L2(B2R )

+‖Auh (r )(vn(r ), vn(r ))− Auh (r )(vn(r ), vh(r ))‖2
L2(B2R )

+‖Auh (r )(vn(r ), vh(r ))− Auh (r )(vh(r ), vh(r ))‖2
L2(B2R )

+‖Aun (r )(∂x un(r ),∂x un(r ))− Auh (r )(∂x un(r ),∂x un(r ))‖2
L2(B2R )

+‖Auh (r )(∂x un(r ),∂x un(r ))− Auh (r )(∂x un(r ),∂x uh(r ))‖2
L2(B2R )

+‖Auh (r )(∂x un(r ),∂x uh(r ))− Auh (r )(∂x uh(r ),∂x uh(r ))‖2
L2(B2R )

+‖un(r )−uh(r )‖2
L2(B2R ) +2‖∂x un(r )−∂x uh(r )‖2

L2(B2R )

.L A ,B A ,R ‖un(r )−uh(r )‖L2(B2R )‖vn(r )‖2
L∞(B2R )

+‖vn(r )− vh(r )‖2
L2(B2R )

(‖vn(r )‖L∞(B2R ) +‖vh(r )‖L∞(B2R )
)

+‖un(r )−uh(r )‖L2(B2R )‖∂x un(r )‖2
L∞(B2R )

+‖∂x un(r )−∂x uh(r )‖2
L2(B2R )

(‖∂x un(r )‖L∞(B2R ) +‖∂x uh(r )‖L∞(B2R )
)

+‖un(r )−uh(r )‖2
L2(B2R ) +2‖∂x un(r )−∂x uh(r )‖2

L2(B2R )

.L A ,B A ,R,ke ,B ‖zn(r )‖2
H(B2R ). l (r,zn(r )).(4.4.18)

Similarly by using the interpolation inequality (4.3.5) and Lemma 4.4.9, based on the computation of

(4.3.7), we get

‖∂x f̄n(r )‖2
L2(B2R ).L A ,B A ,R,ke ,B l (r,zn(r )),
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where constant of inequality is independent of n but depends on the properties of ϕ and its first two

derivatives, consequently, we have, for some C f̄ > 0,∫ t

0
‖ f̄n(r )‖2

H 1(B2R ) dr ≤C f̄

∫ t

0
l (r,zn(r ))dr.(4.4.19)

Now we move to the crucial estimate of integral involving ḡn . It is the part where we follow the

idea of [48, Proposition 3.4] and [63, Proposition 4.4]. Let m be a natural number, whose value will be

set later. Define the following partition of [0,R],{
0,

1 ·R

2m ,
2 ·R

2m , · · · ,
2m ·R

2m

}
,

and set

rm := (k +1) ·R

2m and tk+1 := (k +1) ·R

2m if r ∈
[

k ·R

2m ,
(k +1) ·R

2m

)
.

Now observe that∫ t

0
〈v̄n(r ), ḡn(r )〉H 1(B2R ) dr =

∫ t

0
〈v̄n(r ),ϕ(Y (un(r ))−Y (uh(r )))ḣn(r )〉H 1(B2R ) dr

+
∫ t

0
〈v̄n(r )− v̄n(rm),ϕY (uh(r ))(ḣn(r )− ḣ(r ))〉H 1(B2R ) dr

+
∫ t

0
〈v̄n(rm),ϕ(Y (uh(r ))−Y (uh(rm)))(ḣn(r )− ḣ(r ))〉H 1(B2R ) dr

+
∫ t

0
〈v̄n(rm),ϕY (uh(rm))(ḣn(r )− ḣ(r ))〉H 1(B2R ) dr

=: G1(t )+G2(t )+G3(t )+G4(t ).(4.4.20)

For G1, since T − r > 2R , Lemmata 4.2.2, 4.4.4 and 4.4.9 followed by (4.4.14) implies

|G1(t )|.ϕ
∫ t

0
‖v̄n(r )‖2

H 1(B2R ) dr +
∫ t

0
‖Y (un(r ))−Y (uh(r ))‖2

H 1(B2R )‖ḣn(r )‖2
Hµ

dr

.R

∫ t

0
‖v̄n(r )‖2

H 1(B2R ) dr

+
∫ t

0
‖un(r )−uh(r )‖2

H 1(B2R )

(
1+‖un(r )‖2

H 1(B2R ) +‖uh(r )‖2
H 1(B2R )

)
‖ḣn(r )‖2

Hµ
dr

.B

∫ t

0
(1+ l (r,zn(r )))

(
1+‖ḣn(r )‖2

Hµ

)
dr.(4.4.21)

To estimate G2(t ) we invoke 〈h,k〉H 1(B2R ) ≤ ‖h‖L2(B2R )‖k‖H 2(2R)) followed by the Hölder inequality and

Lemmata 4.2.2, 4.4.4, 4.4.9 and 4.4.13 to get

|G2(t )|.R,ϕ

∫ t

0
‖vn(r )−vn(rm)‖L2(B2R )‖Y (uh(r ))‖H 2(B2R )‖ḣn(r )− ḣ(r )‖Hµ

dr

.R

(∫ t

0
‖vn(r )−vn(rm)‖2

L2(B2R ) dr

) 1
2

×
(∫ t

0
‖uh(r )‖2

H 2(B2R )

[
1+‖uh(r )‖2

H 2(B2R )

]
‖ḣn(r )− ḣ(r )‖2

Hµ
dr

) 1
2
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.
√

Mµ

(∫ t

0
|r − rm |dr

) 1
2

sup
r∈[0,T /2]

‖uh(r )‖2
H 2(BT−r )

[
1+‖uh(r )‖2

H 2(BT−r )

]
.

R
√

Mµ

2m/2
sup

r∈[0,T /2]
l (r, zh(r )) [1+ l (r, zh(r ))] ≤ R

√
Mµ

2m/2
B(1+B),(4.4.22)

where in the second last step we have used

(∫ t

0
|r − rm |dr

) 1
2

≤
(∫ R

0
|r − rm |dr

) 1
2

=
(

2m∑
k=1

∫ tk

tk−1

∣∣∣r − kR

2m

∣∣∣dr

) 1
2

≤ R

2m/2
.

Moreover, in the third last step we have also applied the following: since ḣn → ḣ weakly in L2(0,T ; Hµ),

the sequence ḣn − ḣ is bounded in L2(0,T ; Hµ) i.e. ∃Mµ > 0 such that

(4.4.23)
∫ t

0
‖ḣn(r )− ḣ(r )‖2

Hµ
dr ≤ Mµ, ∀n.

Before moving to G3(t ) note that, since 2R = T /2, due to Remark 4.4.10, for every s, t ∈ [0,T /2],

‖uh(t )−uh(s)‖H 1(B2R ) ≤
∫ t

s
‖vh(r )‖H 1(B2R ) dr .

p
B |t − s|.

Consequently, by the Hölder inequality followed by Lemmata 4.2.2, 4.4.13 and 4.4.4 we obtain

|G3(t )|.ϕ
(∫ t

0

[
‖vn(rm)‖2

H 1(B2R ) +‖vh(rm)‖2
H 1(B2R )

]
dr

) 1
2

×
(∫ t

0
‖Y (uh(r ))−Y (uh(rm))‖2

H 1(B2R )‖ḣn(r )− ḣ(r ))‖2
Hµ

dr

) 1
2

.T,B

(∫ t

0
‖uh(r )−uh(rm)‖2

H 1(B2R )

[
1+‖uh(r )‖2

H 1(B2R ) +‖uh(rm)‖2
H 1(B2R )

]
‖ḣn(r )− ḣ(r )‖2

Hµ
dr

) 1
2

.T,B

(∫ t

0
|r − rm | ‖ḣn(r )− ḣ(r )‖2

Hµ
dr

) 1
2

(
2m∑

k=1

∫ tk

tk−1

∣∣∣r − kR

2m

∣∣∣ ‖ḣn(r )− ḣ(r )‖2
Hµ

dr

) 1
2

≤
√

R

2m

(∫ t

0
‖ḣn(r )− ḣ(r )‖2

Hµ
dr

) 1
2

≤
√

T
Mµ

2m , t ∈ [0,T ].

Finally, we start estimating G4(t ) by noting that for every t ∈ [0,R],

there exists kt ≤ 2m such that t ∈
[

(kt −1) ·R

2m ,
kt ·R

2m

)
.

Note that on such interval rm = kt ·R
2m . Then by Lemma 4.4.9 we have

|G4(t )| ≤
∣∣∣kt−1∑

k=1

∫ tk

tk−1

〈
v̄n

(
k ·R

2m

)
,ϕY

(
uh

(
k ·R

2m

))
(ḣn(r )− ḣ(r ))

〉
H 1(B2R )

dr

+
∫ t

tkt −1

〈
v̄n

(
(kt −1) ·R

2m

)
,ϕY

(
uh

(
(kt −1) ·R

2m

))
(ḣn(r )− ḣ(r ))

〉
H 1(B2R )

dr
∣∣∣

≤
2m∑

k=1

∣∣∣〈v̄n

(
k ·R

2m

)
,ϕY

(
uh

(
k ·R

2m

))∫ tk

tk−1

(ḣn(r )− ḣ(r ))dr

〉
H 1(B2R )

∣∣∣
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+ sup
1≤k≤2m

sup
tk≤t≤tk−1

∣∣∣〈v̄n

(
(k −1) ·R

2m

)
,ϕY

(
uh

(
(k −1) ·R

2m

))∫ t

tk−1

(ḣn(r )− ḣ(r ))dr

〉
H 1(B2R )

∣∣∣
≤

2m∑
k=1

∥∥∥v̄n

(
k ·R

2m

)∥∥∥
H 1(B2R )

∥∥∥ϕY

(
uh

(
k ·R

2m

))∫ tk

tk−1

(ḣn(r )− ḣ(r ))dr
∥∥∥

H 1(B2R )

+ sup
1≤k≤2m

sup
tk≤t≤tk−1

∥∥∥v̄n

(
(k −1) ·R

2m

)∥∥∥
H 1(B2R )

∥∥∥ϕY

(
uh

(
(k −1) ·R

2m

))∫ t

tk−1

(ḣn(r )− ḣ(r ))dr
∥∥∥

H 1(B2R )

.ϕ,B

2m∑
k=1

∥∥∥Y

(
uh

(
k ·R

2m

))∫ tk

tk−1

(ḣn(r )− ḣ(r ))dr
∥∥∥

H 1(B2R )

+ sup
1≤k≤2m

sup
tk≤t≤tk−1

∥∥∥Y

(
uh

(
(k −1) ·R

2m

))∫ t

tk−1

(ḣn(r )− ḣ(r ))dr
∥∥∥

H 1(B2R )

=: G1
4 +G2

4,

where the right hand side does not depend on t . By invoking Lemmata 4.2.2, 4.4.4, the Hölder

inequality, and Lemma 4.4.9 we estimate G1
4 as

G1
4 .R,T sup

1≤k≤2m
sup

tk≤t≤tk−1

∥∥∥Y

(
uh

(
(k −1) ·R

2m

))∥∥∥
H 1(B2R )

(∫ t

tk−1

‖ḣn(r )− ḣ(r )‖2
Hµ

dr

) 1
2

.R,T sup
1≤k≤2m

sup
tk≤t≤tk−1

[
1+

∥∥∥uh

(
(k −1) ·R

2m

)∥∥∥
H 1(B2R )

](∫ t

tk−1

‖ḣn(r )− ḣ(r )‖2
Hµ

dr

) 1
2

.R,T,B sup
1≤k≤2m

sup
tk≤t≤tk−1

(∫ t

tk−1

‖ḣn(r )− ḣ(r )‖2
Hµ

dr

) 1
2

≤ sup
1≤k≤2m

(∫ tk

tk−1

‖ḣn(r )− ḣ(r )‖2
Hµ

dr

) 1
2

.(4.4.24)

For G2
4 recall that, by Lemma 4.2.2, for every φ ∈ H 1(B(x,r )) the multiplication operator

Y (φ)· : K 3 k 7→ Y (φ) ·k ∈ H 1(B(x,r )),

is γ-radonifying and hence compact. So Lemma 4.4.12 implies the following, for every k,

∥∥∥Y

(
uh

(
k ·R

2m

))∫ tk

tk−1

(ḣn(r )− ḣ(r ))dr
∥∥∥

H 1(B2R )
→ 0 as n → 0.(4.4.25)

Hence, for fix m, each term of the sum in G2
4 goes to 0 as n →∞. Consequently, by substituting the

computation between (4.4.21) and (4.4.24) into (4.4.20) we obtain∫ t

0
〈v̄n(r ), ḡn(r )〉H 1(B2R ) dr .R,L A ,B A ,ϕ,B

∫ t

0
(1+ l (r,zn(r )))

(
1+‖ḣn(r )‖2

Hµ

)
dr

+
√

T
Mµ

2m + sup
1≤k≤2m

(∫ tk

tk−1

‖ḣn(r )− ḣ(r )‖2
Hµ

dr

) 1
2

+
2m∑

k=1

∥∥∥Y

(
uh

(
k ·R

2m

))∫ tk

tk−1

(ḣn(r )− ḣ(r ))dr
∥∥∥

H 1(B2R )
, t ∈ [0,T ].
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Therefore, with (4.4.19) and (4.4.14), from (4.4.17) we have

l (t ,zn(t )).
∫ t

0
(1+ l (r,zn(r )))

(
1+‖ḣn(r )‖2

Hµ

)
dr

+
√

T
Mµ

2m + sup
1≤k≤2m

(∫ tk

tk−1

‖ḣn(r )− ḣ(r )‖2
Hµ

dr

) 1
2

+
2m∑

k=1

∥∥∥Y

(
uh

(
k ·R

2m

))∫ tk

tk−1

(ḣn(r )− ḣ(r ))dr
∥∥∥

H 1(B2R )
, t ∈ [0,T ],

and by the Gronwall Lemma, with the observation that all the terms in right hand side except the

first are independent of t , and hn ∈ SM further we get

sup
t∈[0,R]

l (t ,zn(t )). eT+M


√
T

Mµ

2m + sup
1≤k≤2m

(∫ tk

tk−1

‖ḣn(r )− ḣ(r )‖2
K dr

) 1
2

+
2m∑

k=1

∥∥∥Y

(
uh

(
k ·R

2m

))∫ tk

tk−1

(ḣn(r )− ḣ(r ))dr
∥∥∥

H 1(B2R )

}
.(4.4.26)

Now by [137, Theorem 6.11], for every α> 0 we can choose m such that

sup
1≤k≤2m

(∫ tk

tk−1

‖ḣn(r )− ḣ(r )‖2
Hµ

dr

) 1
2

+
√

T
Mµ

2m <α

and for such chosen m, due to (4.4.25) by taking n →∞ in (4.4.26) we conclude that, for every α> 0,

0 ≤ lim
n→∞ sup

t∈[0,R]
l (t ,zn(t )) <α.

Therefore, due to (4.4.14) we get (4.4.16) and hence the Proposition 4.4.11. �

Now we come back to the proof of Statement 1. Previous proposition shows, for fix T > 0, that every

sequence in KM has a convergent subsequence. Hence KM is sequentially relatively compact subset

of XT . Let {zn}n∈N ⊂ KM which converges to z ∈XT . But Proposition 4.4.11 shows that there exists

a subsequence {znk }k∈N which converges to some element zh of KM in the strong topology of XT .

Hence z = zh and KM is a closed subset of XT . This completes the proof of Statement 1.

Below is a basic result that we have used in the proof of previous proposition.

Lemma 4.4.12. Let X ,Y be separable Hilbert spaces such that the embedding i : X → Y is compact. If

gn → g weakly in L2(0,T ; X ), then

i
∫ ·

0
gn(s)d s − i

∫ ·

0
g (s)d s → 0 as n →∞ in C([0,T ];Y ).

Proof of Lemma 4.4.12 Define Gn : [0,T ] 3 t 7→ ∫ t
0 gn(s)d s ∈ X . Then the sequence of functions

{Gn}n∈N ⊂C([0,T ]; X ). Next, since weakly convergence sequence is bounded, the Hölder inequality

gives

‖Gn(t2)−Gn(t1)‖X ≤
∫ t2

t1

‖gn(s)‖X d s ≤ |t2 − t1|
1
2

(∫ T

0
‖gn(s)‖2

X d s

)
≤Cg |t2 − t1|

1
2 ,
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for some Cg > 0. So the sequence {Gn}n∈N is equicontinuous and uniformly bounded on [0,T ]. Hence,

{Gn}n∈N is a bounded subset of L2(0,T ; X ) because C([0,T ]; X ) ⊂ L2(0,T ; X ). Consequently, since

the embedding X
i
,−→ Y is compact, due to Dubinsky Theorem [158, Theorem 4.1, p. 132], {iGn}n∈N

is relatively compact in C([0,T ];Y ), where iGn : [0,T ] 3 t 7→ i (Gn(t)) ∈ Y . Therefore, there exists a

subsequence, which we again indexed by n ∈N, {iGn}n∈N and F ∈C([0,T ];Y ) such that iGn → F , as

n →∞, in C([0,T ];Y ). This implies, for each t ∈ [0,T ], Gn(t ) → F (t ) in Y .

On the other hand, by weak convergence of gn to g , we have, for every x ∈ X and t ∈ [0,T ],

〈Gn(t ), x〉X =
∫ T

0
〈gn(s), x1[0,t ](s)〉X d s = 〈gn , x1[0,t ]〉L2(0,T ;X )

−−−−→
n→∞ 〈g , x1[0,t ]〉L2(0,T ;X ) = 〈G(t ), x〉X .

Hence, for each t ∈ [0,T ], {Gn(t)}n∈N is weakly convergent to G(t) in X . Since X
i
,−→ Y is compact,

{i (Gn(t ))}n∈N strongly converges to i (G(t )) in Y . So by the uniqueness of limit in Y , i (G(t )) = F (t ) for

t ∈ [0,T ] and we have proved that every weakly convergent sequence {gn}n∈N has a subsequence,

indexed again by n ∈N, such that i
∫ ·

0 gn(s)d s converges to i
∫ ·

0 g (s)d s in C([0,T ];Y ).

Since the same argument proves that from every weakly convergent subsequence in L2(0,T ; X )

we can extract a subsubsequence such that the last statement about convergence holds, we have

proved the Lemma 4.4.12. �

The following Lemma is about the Lipschitz property of the difference of solutions that we have

used in proving Proposition 4.4.11.

Lemma 4.4.13. Let hn ,h ∈ SM and I = [−a, a]. There exists a positive constant C :=C (R,B,M, a) such

that for t , s ∈ [0,T /2] the following holds

(4.4.27) sup
x∈I

‖vn(t )−vn(s)‖L2(B(x,R)).C |t − s| 1
2 ,

for R = T /2, where vn is defined just after (4.4.11).

Proof of Lemma 4.4.13 Due to triangle inequality it is sufficient to show

sup
x∈I

‖vh(t )− vh(s)‖L2(B(x,R)).C |t − s| 1
2 , t , s ∈ [0,T /2].

From the proof of existence part in Theorem 4.3.1 we have, for t , s ∈ [0,T /2],

‖vh(t )− vh(s)‖L2(B(x,R)) ≤
∫ t

s
‖∂xx uh(r )‖L2(B(x,R)) dr

+
∫ t

s

[‖ fh(r )‖L2B(x,R)) +‖gh(r )‖L2(B(x,R))
]

dr,(4.4.28)

where

fh(r ) := Auh (r )(vh(r ), vh(r ))− Auh (r )(∂x uh(r ),∂x uh(r )), and gh(r ) := Y (uh(r ))ḣ(r ).
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But, since h ∈ SM, the Hölder inequality followed by Lemmata 4.2.2, 4.4.4 and 4.4.9 yields

sup
x∈I

∫ t

s
‖gh(r )‖L2(B(x,R)) dr ≤ |t − s| 1

2

(∫ t

s
sup
x∈I

‖Y (uh(r ))‖2
L2(B(x,R))‖ḣ(s)‖2

Hµ
d s

) 1
2

.R,B,M |t − s| 1
2 , for t , s ∈ [0,T /2],

and, based on (4.4.18), we also have

sup
x∈I

∫ t

s
‖ fh(r )‖L2(B(x,R)) dr ≤ |t − s| 1

2

(∫ t

s
sup
x∈I

‖Auh (r )(vh(r ), vh(r ))‖2
L2(B(x,R)) dr

) 1
2

+|t − s| 1
2

(∫ t

s
sup
x∈I

‖Auh (s)(∂x uh(r ),∂x uh(r ))‖2
L2(B(x,R)) dr

) 1
2

. |t − s| 1
2

(∫ t

s
sup
x∈I

‖uh(r )‖2
L2(B(x,R)){‖vh(s)‖4

L2(B(x,R)) +‖∂x uh(s)‖4
L2(B(x,R))}d s

) 1
2

. |t − s| 1
2 B

3
2 , for t , s ∈ [0,T /2].

Finally, by the Hölder inequality and Lemma 4.4.9, we obtain, for t , s ∈ [0,T /2],

sup
x∈I

∫ t

s
‖∂xx uh(r )‖L2(B(x,R)) dr ≤

(∫ t

s
1dr

) 1
2
(∫ t

s
sup
x∈I

‖uh(r )‖2
H 2(B(x,R)) dr

) 1
2

.
p
B |t − s| 1

2 .

Therefore, by collecting the estimates in (4.4.28) we get the required inequality (4.4.27) and we are

done with the proof of Lemma 4.4.13. �

4.4.3 Proof of Statement 2

It will be useful to introduce the following notation for the processes

Zn := (Un ,Vn) = Jεn

(
W + 1p

εn
hn

)
, zn := (un , vn) = J 0(hn).

Let us fix any a > 0 and T > 0. Then set N a natural number such that

N > ‖(u0, v0)‖H(B(0,a+T )).

For each n ∈Nwe define an Ft -stopping time

(4.4.29) τn(ω) := inf{t > 0 : sup
x∈[−a,a]

‖Zn(t ,ω)‖H(B(x,T−t )) ≥ N }∧T, ω ∈Ω.

Define, for z = (u, v) ∈Hloc,

e(t , x, z) : = 1

2

{
‖u‖2

H 2(B(x,T−t )) +‖v‖2
H 1(B(x,T−t ))

}
= 1

2
‖z‖2

H(B(x,T−t )), x ∈R, t ∈ [0,T ].(4.4.30)

In this framework we prove the following key result.
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Proposition 4.4.14. Let us define Zn := Zn − zn . For τn defined in (4.4.29) we have

lim
n→∞ sup

x∈[−a,a]
E

[
sup

t∈[0,T /2]
e(t ∧τn , x,Zn(t ∧τn))

]
= 0.

Proof of Proposition 4.4.14 Let us fix any n ∈N. To avoid complexity of notation we use an abuse of

notation and write all the norms without reference of the centre of the ball x. First note that under

our notation Zn = (Un ,Vn) and zn = (un , vn), respectively, are the unique global strong solutions to

the Cauchy problem
∂t tUn = ∂xxUn + AUn (∂tUn ,∂tUn)− AUn (∂xUn ,∂xUn)+Y (Un)ḣn ,

+p
εn Y (Un)Ẇ ,

(Un(0),∂tUn(0)) = (u0, v0) , where Vn := ∂tUn ,

and ∂t t un = ∂xx un + Aun (∂t un ,∂t un)− Aun (∂x un ,∂x un)+Y (un)ḣn ,

(un(0),∂t un(0)) = (u0, v0) , where vn := ∂t un .

Hence Zn solves uniquely the Cauchy problem, with null initial data,

∂t tUn = ∂xxUn − AUn (∂xUn ,∂xUn)+ Aun (∂x un ,∂x un)+ AUn (∂tUn ,∂tUn)

− Aun (∂t un ,∂t un)+Y (Un)ḣn −Y (un)ḣn +p
εn Y (Un)Ẇ ,

where Vn := ∂tUn . This is equivalent to say, for all t ∈ [0,T /2],

Zn(t ) =
∫ t

0
St−s

(
0

fn(s)

)
d s +

∫ t

0
St−s

(
0

gn(s)

)
dW (s).(4.4.31)

Here

fn(s) :=−AUn (s)(∂xUn(s),∂xUn(s))+ Aun (s)(∂x un(s),∂x un(s))+ AUn (s)(Vn(s),Vn(s))

− Aun (s)(vn(s), vn(s))+Y (Un(s))ḣn(s)−Y (un(s))ḣn(s),

and

gn(s) :=p
εn Y (Un(s)).

Invoking Proposition 4.5.2, with k = 1,L = I , implies for every t ∈ [0,T /2] and x ∈ [−a, a],

e(t , x,Zn(t )) ≤
∫ t

0
V(r,Zn(r ))dr +

∫ t

0
〈Vn(r ), gn(r )dW (r )〉L2(BT−r )

+
∫ t

0
〈∂xVn(r ),∂x [gn(r )dW (r )]〉L2(BT−r ),(4.4.32)

with

V(t ,Zn(t )) = 〈Un(t ),Vn(t )〉L2(BT−t ) +〈Vn(t ), fn(t )〉L2(BT−t )
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+〈∂xVn(t ),∂x fn(t )〉L2(BT−t ) +
1

2

∞∑
j=1

‖gn(t )e j‖2
L2(BT−t ) +

1

2

∞∑
j=1

‖∂x [gn(t )e j ]‖2
L2(BT−t ),

for a given sequence {e j } j∈N of orthonormal basis of Hµ. Observe that, for any τ ∈ [0,T /2], by the

Cauchy-Schwartz inequality

sup
0≤t≤τ

∫ t∧τn

0
V(r,Zn(r ))dr ≤ 2

∫ τ∧τn

0
e(r, x,Zn(r ))dr

+ 1

2

∫ τ∧τn

0

(
‖ fn(r )‖2

H 1(BT−r ) +‖gn(r ) · ‖2
L2(Hµ,H 1(BT−r ))

)
dr,(4.4.33)

where gn(r )· denotes the multiplication operator in the space L2(Hµ, H 1(B(x,R))), see Lemma 4.2.2.

Next, we define the process

(4.4.34) Y(t ) :=
∫ t

0
〈Vn(r ), gn(r )dW (r )〉H 1(BT−r ).

By taking
∫ t

0 ξ(r )dW (r ) with

ξ(r ) : Hµ 3 k 7→ 〈Vn(r ), gn(r )(k)〉H 1(BT−r ) ∈R,

a Hilbert-Schmidt operator, note that

Q(t ) :=
∫ t

0
ξ(r )◦ξ(r )?dr,

is quadratic variation of R-valued martingale Y. Thus

Q(t ) ≤
∫ t

0
‖ξ(r )‖L2(Hµ,R)‖ξ(r )?‖L2(R,Hµ) dr =

∫ t

0
‖ξ(r )‖2

L2(Hµ,R) dr

=
∫ t

0

∞∑
j=1

|ξ(r )(e j )|2 dr =
∫ t

0

∞∑
j=1

|〈Vn(r ), gn(r )(e j )〉H 1(BT−r )|2 dr, t ∈ [0,T /2].(4.4.35)

On the other hand by the Cauchy-Schwartz inequality

∞∑
j=1

|〈Vn(r ), gn(r )(e j )〉H 1(BT−r )|2 ≤ ‖Vn(r )‖2
H 1(BT−r )‖gn(r ) · ‖2

L2(Hµ,H 1(BT−r )).

Therefore,

(4.4.36) Q(t ) ≤
∫ t

0
‖Vn(r )‖2

H 1(BT−r )‖gn(r ) · ‖2
L2(Hµ,H 1(BT−r )) dr, t ∈ [0,T /2].

Invoking the Davis inequality with (4.4.36) followed by the Young inequality gives

E

[
sup

0≤t≤τ
|Y(t ∧τn)|

]
≤ 3E

[√
Q(τ∧τn)

]
≤ 3E

[
sup

0≤t≤τ∧τn

‖Vn(t ∧τn)‖H 1(T−t )

{∫ τ∧τn

0
‖gn(r ) · ‖2

L2(Hµ,H 1(BT−r )) dr

} 1
2

]

≤ 3E

[
ε sup

0≤t≤τ∧τn

‖Vn(t )‖2
H 1(T−t ) +

1

4ε

∫ τ∧τn

0
‖gn(r ) · ‖2

L2(Hµ,H 1(BT−r )) dr

]
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≤ 6ε E

[
sup

0≤t≤τ∧τn

e(t , x,Zn(t ))

]
+ 3

4ε
E

[∫ τ∧τn

0
‖gn(r ) · ‖2

L2(Hµ,H 1(BT−r )) dr

]
.(4.4.37)

By choosing ε such that 6ε= 1
2 and taking sup0≤s≤t followed by expectation E on the both sides of

(4.4.32) after evaluating it at τ∧τn we obtain

E

[
sup

0≤s≤t∧τn

e(s, x,Zn(s))

]
≤ E

[
sup

0≤s≤t

∫ s∧τn

0
V(r,Zn(r ))dr

]
+E

[
sup

0≤s≤t
Y(s ∧τn)

]
.

Consequently, using (4.4.33) and (4.4.37) we infer that

E

[
sup

0≤s≤t∧τn

e(s, x,Zn(s))

]
≤ 4E

[∫ t∧τn

0
e(r, x,Zn(r ))dr

]
+E

[∫ t∧τn

0
‖ fn(r )‖2

H 1(BT−r ) dr

]
+19E

[∫ t∧τn

0
‖gn(r ) · ‖2

L2(Hµ,H 1(BT−r )) dr

]
.(4.4.38)

Now since the Hilbert-Schmidt operator gn(r )· is defined as

Hµ 3 k 7→ gn(r ) ·k ∈ H 1(BT−r ),

Lemmata 4.2.2 and 4.4.4 gives,

sup
x∈[−a,a]

E

[∫ t∧τn

0
‖gn(r ) · ‖2

L2(Hµ,H 1(BT−r )) dr

]
.T E

[∫ t∧τn

0
‖pεn Y (Un(r ))‖2

H 1(BT−r ) dr

]
.T εn E

[∫ t∧τn

0

(
1+‖Un(r )‖2

H 1(BT−r )

)
dr

]
≤ εn E

[∫ t∧τn

0

(
1+‖Zn(r )‖2

HT−r

)
dr

]
.T εn (1+N 2).(4.4.39)

Here we observe that the constant in inequality (4.4.39) does not depend on a due to Lemma 4.2.2.

To estimate the terms involving fn we have

‖ fn(r )‖2
H 1(BT−r ). ‖AUn (r )(∂xUn(r ),∂xUn(r ))− Aun (r )(∂x un(r ),∂x un(r ))‖2

H 1(BT−r )

+‖AUn (r )(Vn(r ),Vn(r ))− Aun (r )(vn(r ), vn(r ))‖2
H 1(BT−r )

+‖Y (Un(r ))ḣn(r )−Y (un(r ))ḣn(r )‖2
H 1(BT−r )

=: f 1
n + f 2

n + f 3
n .(4.4.40)

By doing the computation based on Lemmata 4.3.4 and 4.4.4 we obtain,

f 1
n . ‖AUn (r )(∂xUn(r ),∂xUn(r ))− Aun (r )(∂xUn(r ),∂xUn(r ))‖2

H 1(BT−r )

+‖Aun (r )(∂xUn(r ),∂xUn(r ))− Aun (r )(∂x un(r ),∂xUn(r ))‖2
H 1(BT−r )

+‖Aun (r )(∂x un(r ),∂xUn(r ))− Aun (r )(∂x un(r ),∂x un(r ))‖2
H 1(BT−r )

.T,x ‖Un(r )−un(r )‖2
H 2(BT−r )

(
1+‖∂xUn(r )‖2

H 1(BT−r ) +‖∂xUn(r )‖2
H 1(BT−r )

)
×
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×
(
1+‖un(r )‖2

H 2(BT−r )

)
+‖un(r )‖2

H 2(BT−r )‖∂x [Un(r )−un(r )]‖2
H 1(BT−r )‖∂x [un(r )]‖2

H 1(BT−r )

. ‖Zn(r )‖2
HT−r

[(
1+‖Zn(r )‖2

HT−r

)(
1+‖zn(r )‖2

HT−r

)
+‖zn(r )‖4

HT−r

]
,(4.4.41)

and, by similar calculations,

f 2
n .T,x ‖Zn(r )‖2

HT−r

[(
1+‖Zn(r )‖2

HT−r

)(
1+‖zn(r )‖2

HT−r

)
+‖zn(r )‖4

HT−r

]
.(4.4.42)

Furthermore, Lemmata 4.4.4 and 4.2.2 implies

f 3
n .T,x ‖Un(r )−un(r )‖2

H 1(BT−r )

[
1+‖Un(r )|2H 1(BT−r ) +‖un(r )|2H 1(BT−r )

]
‖ḣn(r )‖2

Hµ

. ‖Zn(r )‖2
HT−r

(
1+‖Zn(r )‖2

HT−r
+‖zn(r )‖2

HT−r

)
‖ḣn(r )‖2

Hµ
.(4.4.43)

Hence by substituting (4.4.41)-(4.4.43) in (4.4.40) we get

‖ fn(r )‖2
H 1(BT−r ).T,x ‖Zn(r )‖2

HT−r

[(
1+‖Zn(r )‖2

HT−r

)(
1+‖zn(r )‖2

HT−r

)
+‖zn(r )‖4

HT−r

]
+‖Zn(r )‖2

HT−r

(
1+‖Zn(r )‖2

HT−r
+‖zn(r )‖2

HT−r

)
‖ḣn(r )‖2

Hµ
,

consequently, the definition of τn and Lemma 4.4.9 suggest

E

[∫ t∧τn

0
‖ fn(r )‖2

H 1(BT−r ) dr

]
. E

[∫ t∧τn

0

{
‖Zn(r )‖2

HT−r

[(
1+N 2)(1+B2)+B4]

+‖Zn(r )‖2
HT−r

(
1+N 2 +B2) (

1+B2)‖ḣn(r )‖2
Hµ

}
dr

]
. E

[∫ t∧τn

0
e(r, x,Zn(r )) CN ,B

(
1+‖ḣn(r )‖2

Hµ

)
dr

]
,(4.4.44)

for some constant CN ,B > 0 depending on N ,B, where B is a function of x which is bounded on

compact sets. Thus substitution of (4.4.39) and (4.4.44) in (4.4.38) implies

E

[
sup

0≤s≤t∧τn

e(s, x,Zn(s))

]
.T,x εn (1+N 2)+CN ,BE

[∫ t∧τn

0
[ sup
0≤s≤r∧τn

e(s, x,Zn(s))]
(
1+‖ḣn(r )‖2

Hµ

)
dr

]
.

Therefore, invoking the stochastic Gronwall Lemma, see [63, Lemma 3.9], gives,

sup
x∈[−a,a]

E

[
sup

0≤s≤t∧τn

e(s, x,Zn(s))

]
.T,a εn (1+N 2)exp

[
CN ,B(T +M)

]
.(4.4.45)

Since εn → 0 as n →∞ and

E

[
sup

0≤s≤t∧τn

e(s, x,Zn(s))

]
= E

[
sup

0≤s≤t
e(s ∧τn , x,Zn(s ∧τn))

]
,

inequality (4.4.45) give lim
n→∞supx∈[−a,a]E

[
sup0≤t≤T /2 e(t ∧τn , x,Zn(t ∧τn))

]= 0. Hence, we are done

with the proof of Proposition 4.4.14. �

To proceed further we also need the following stochastic analogue of Lemma 4.4.9.
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Lemma 4.4.15. There exists a constant B :=B(N ,T,M) > 0 such that

limsup
n→∞

sup
x∈[−a,a]

E

[
sup

t∈[0,T /2]
e(t ∧τn , x, Zn(t ∧τn))

]
≤B.

Proof of Lemma 4.4.15 Let us fix sequence {e j } j∈N of orthonormal basis of Hµ. Let us also fix any

n ∈ N. With the notation of this subsection, Proposition 4.5.2, with k = 1,L = I , implies, for every

t ∈ [0,T /2] and x ∈ [−a, a],

e(t , x, Zn(t )) ≤
∫ t

0
V(r, Zn(r ))dr +

∫ t

0
〈Vn(r ), gn(r )dW (r )〉H 1(BT−r ),

with

V(r, Zn(r )) = 〈Un(r ),Vn(r )〉L2(BT−r ) +〈Vn(r ), fn(r )〉H 1(BT−r ) +
1

2

∞∑
j=1

‖gn(r )e j‖2
H 1(BT−r ),

and

fn(r ) := AUn (r )(Vn(r ),Vn(r ))− AUn (r )(∂xUn(r ),∂xUn(r ))+Y (Un(r ))ḣn(r ),

gn(r ) :=p
εn Y (Un(r )).

Next, we intent to follow the procedure of Proposition 4.4.14. By the Cauchy-Schwartz inequality, for

τ ∈ [0,T /2] and x ∈ [−a, a], we have

sup
0≤t≤τ

∫ t∧τn

0
V(r, Zn(r ))dr ≤ 2

∫ τ∧τn

0
e(r, Zn(r ))dr

+ 1

2

∫ τ∧τn

0

(
‖ fn(r )‖2

H 1(BT−r ) +‖gn(r ) · ‖2
L2(Hµ,H 1(BT−r ))

)
dr.

Since the gn here is same as in Proposition 4.4.14, the computation of (4.4.34)-(4.4.39) fits here too

and we have

E

[
sup

0≤s≤t∧τn

e(s, x, Zn(s))

]
.T E

[∫ t∧τn

0
e(r, x, Zn(r ))dr

]
+E

[∫ t∧τn

0
‖ fn(r )‖2

H 1(BT−r ) dr

]
+εn(1+N 2).(4.4.46)

Invoking Lemmata 4.2.2 and 4.4.4 implies

‖ fn(r )‖2
H 1(BT−r ). ‖AUn (r )(∂xUn(r ),∂xUn(r ))‖2

H 1(BT−r ) +‖AUn (r )(Vn(r ),Vn(r ))‖2
H 1(BT−r )

+‖Y (Un(r ))ḣn(r )‖2
H 1(BT−r )

.T,x

(
1+‖Un(r )‖2

H 1(BT−r )

)[
1+‖∂xUn(r )‖2

H 1(BT−r ) +‖Vn(r )‖2
H 1(BT−r ) +‖ḣn(r )‖2

Hµ

]
.

(
1+‖Zn(r )‖2

HT−r

)[
1+‖Zn(r )‖2

HT−r
+‖ḣn(r )‖2

Hµ

]
.

So from (4.4.46) and the definition (4.4.29) we get

sup
x∈[−a,a]

E

[
sup

0≤s≤t∧τn

e(s, x, Zn(s))

]
.T,a N 2E [t ∧τn]+εn(1+N 2)
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+ (1+N 2)E

[∫ t∧τn

0

(
1+N 2 + ḣn(r )‖2

Hµ

)
dr

]
.T N 2T + (1+N 2)T +M+εn(1+N 2).

Since lim
n→∞εn = 0, taking limsupn→∞ on both the sides we get the required bound, and hence, the

Lemma 4.4.15. �

Lemma 4.4.16. Given T > 0, the sequence of XT-valued process {Zn}n∈N converges in probability to 0.

Proof of Lemma 4.4.16 Let us fix T > 0 such that T = T /2. We aim to show that for every x ∈R and

R,δ,α> 0 there exists a natural number n0 such that

(4.4.47) P

[
ω ∈Ω : sup

t∈[0,T]
‖Zn(t ,ω)‖HB(x,R)

> δ
]
<α for all n ≥ n0.

Let us set R = T and x,δ,α be any arbitrary. As a first step we show that, there exists n0 ∈ N (may

depend on x,T,δ,α) such that

(4.4.48) P

[
ω ∈Ω : sup

t∈[0,T /2]
‖Zn(t ,ω)‖HB(x,R)

> δ
]
<α for all n ≥ n0.

Before moving further observe that, since ‖ · ‖HB(x,r )
is increasing in r and for t ∈ [0,T /2] we have

T − t ≤ T = R,

(4.4.49) {ω ∈Ω : sup
t∈[0,T /2]

‖Zn(t ,ω)‖HB(x,R)
> δ} ⊆ {ω ∈Ω : sup

t∈[0,T /2]
‖Zn(t ,ω)‖HB(x,T−t )

> δ}.

Consequently

(4.4.50) P

[
ω ∈Ω : sup

t∈[0,T /2]
‖Zn(t ,ω)‖HB(x,R)

> δ
]
≤P

[
ω ∈Ω : sup

t∈[0,T /2]
‖Zn(t ,ω)‖HB(x,T−t )

> δ
]

.

Since x is fix in the argument now, there exists a > 0 such that x ∈ [−a, a]. Further note that since

0 ≤ e(t ,Zn(t ,ω)) = 1
2‖Zn(t ,ω)‖2

HB(x,T−t )
, due to (4.4.50) instead of showing (4.4.48) it is enough to show

that there exists n0 ∈N such that

(4.4.51) P

[
ω ∈Ω : sup

t∈[0,T /2]
e(t , x,Zn(t ,ω)) > δ2/2

]
<α for all n ≥ n0.

But since x ∈ [−a, a],

P

[
ω ∈Ω : sup

t∈[0,T /2]
e(t , x,Zn(t ,ω)) > δ2/2

]
≤ sup

x∈[−a,a]
P

[
ω ∈Ω : sup

t∈[0,T /2]
e(t , x,Zn(t ,ω)) > δ2/2

]
.

Consequently instead of (4.4.51) it is sufficient to show that

(4.4.52) sup
x∈[−a,a]

P

[
ω ∈Ω : sup

t∈[0,T /2]
e(t , x,Zn(t ,ω)) > δ2/2

]
<α for all n ≥ n0.
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Now choose N > ‖(u0, v0)‖Ha+T
such that, based on Lemma 4.4.15,

(4.4.53)
1

N
sup
n∈N

sup
x∈[−a,a]

E

[
sup

t∈[0,T /2]
e(t ∧τn , x, Zn(t ∧τn))

]
< α

2
,

and n0 ∈N , due to Proposition 4.4.14,

(4.4.54) sup
x∈[−a,a]

E

[
sup

t∈[0,T /2]
e(t ∧τn , x,Zn(t ∧τn))

]
< δ2α

4
for all n ≥ n0.

Then the Markov inequality followed by using of (4.4.53) and (4.4.54), for n ≥ n0, gives

sup
x∈[−a,a]

P

[
sup

t∈[0,T /2]
e(t , x,Zn(t )) > δ2/2

]

= sup
x∈[−a,a]

P

[
sup

t∈[0,T /2]
e(t , x,Zn(t )) > δ2/2 and τn = T

]

+ sup
x∈[−a,a]

P

[
sup

t∈[0,T /2]
e(t , x,Zn(t )) > δ2/2 and τn 6= T

]

= sup
x∈[−a,a]

P

[
sup

t∈[0,T /2]
e(t , x,Zn(t )) > δ2/2 and τn = T

]

+ sup
x∈[−a,a]

P

[
sup

t∈[0,T /2]
e(t , x,Zn(t )) > δ2/2 and e(t , Zn(t )) ≥ N

]

≤ sup
x∈[−a,a]

P

[
sup

t∈[0,T /2]
e(t , x,Zn(t )) > δ2/2 and τn = T

]

+ sup
x∈[−a,a]

P

[
sup

t∈[0,T /2]
e(t , x, Zn(t )) ≥ N

]

≤ 2

δ2 sup
x∈[−a,a]

E

[
sup

t∈[0,T /2]
e(t , x,Zn(t ,ω))

]

+ 1

N
sup

x∈[−a,a]
E

[
sup

t∈[0,T /2]
e(t , x, Zn(t ,ω))

]
<α.(4.4.55)

Now we move to prove (4.4.47) when R is not set to T . Since the closure of B(x,R) is compact and

B(x,R) ⊂∪y∈B(x,R)B(y,T ), we can find finitely many centre {xi }m
i=1 such that B(x,R) ⊂∪m

i=1B(xi ,T ).

Moreover, since B(x,R) is bounded, there exists a > 0 such that B(x,R) ∈ [−a, a]. In particular,

xi ∈ [−a, a] for all i = 1, . . . ,m. Then since ‖Zn(t ,ω)‖HB(x,R)
≤∑m

i=1 ‖Zn(t ,ω)‖HB(xi ,T )
, we have

(4.4.56) {ω ∈Ω : sup
t∈[0,T /2]

‖Zn(t ,ω)‖HB(x,R)
≥ δ} ⊂ {ω ∈Ω : sup

t∈[0,T /2]

m∑
i=1

‖Zn(t ,ω)‖HB(xi ,T )
≥ δ}

Hence,

sup
x∈[−a,a]

P

[
ω ∈Ω : sup

t∈[0,T /2]
‖Zn(t ,ω)‖HB(x,R)

> δ
]
≤ sup

x∈[−a,a]
P

[
ω ∈Ω : sup

t∈[0,T /2]

m∑
i=1

‖Zn(t ,ω)‖HB(xi ,T )
> δ

]
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≤
m∑

i=1
sup

x∈[−a,a]
P

[
ω ∈Ω : sup

t∈[0,T /2]
‖Zn(t ,ω)‖HB(x,T )

> δ
]

= m sup
x∈[−a,a]

P

[
ω ∈Ω : sup

t∈[0,T /2]
‖Zn(t ,ω)‖HB(x,T )

> δ
]

≤ m sup
x∈[−a,a]

P

[
ω ∈Ω : sup

t∈[0,T /2]
e(t , x,Zn(t )) > δ2/2

]
.(4.4.57)

Now by taking α as α/m in (4.4.55), of course with new a, we get that there exists an n0 ∈N such that,

for all n ≥ n0,

sup
x∈[−a,a]

P

[
ω ∈Ω : sup

t∈[0,T /2]
‖Zn(t ,ω)‖HB(x,R)

> δ
]
<α.(4.4.58)

Hence the Lemma 4.4.16. �

Now we come back to the proof of Statement 2. Recall that SM is a separable metric space. Since,

by the assumptions, the sequence {L (hn)}n∈N of laws on SM converge weakly to the law L (h), due to

the Skorokhod representation theorem, see for example [90, Theorem 3.30], there exists a probability

space (Ω̃,F̃ , P̃), and on this probability space, one can construct processes (h̃n , h̃,W̃ ) such that the

joint distribution of (h̃n ,W̃ ) is same as that of (hn ,W ), the distribution of h̃ coincide with that of h,

and h̃n −−−−→
n→∞ h̃, P̃-a.s. pointwise on Ω̃, in the weak topology of SM . By Proposition 4.4.11 this implies

that

J 0 ◦ h̃n → J 0 ◦ h̃ in XT P̃-a.s. pointwise on Ω̃.

Next, we claim that

L (zn) =L (z̃n), for all n,

where

zn := J 0 ◦h :Ω→XT and z̃n := J 0 ◦ h̃n : Ω̃→XT .

To avoid complexity, we will write J 0(h) for J 0 ◦h. Let B be an arbitrary Borel subset of XT . Thus,

since from Proposition 4.4.11, J 0 : SM →XT is Borel, (J 0)−1(B) is Borel in SM . So, we have

L (zn)(B) =P[
J 0(hn)(ω) ∈ B

]=P[
h−1

n

(
(J 0)−1(B)

)]=L (hn)
(
(J 0)−1(B)

)
.

But, since L (hn) = L (h̃n) on XT , this implies L (zn)(B) = L (z̃n)(B). Hence the claim and by a

similar argument we also have L (zh) =L (zh̃).

Before moving forward, note that from Lemma 4.4.16, the sequence of XT -valued random

variables, defined from Ω, Jεn (hn)− J 0(hn) converges in measure P to 0. Consequently, because

L (hn) =L (h̃n) and Jεn − J 0 is measurable, we infer that Jεn (h̃n)− J 0(h̃n)
P̃−→ 0 as n →∞. Hence we

can choose a subsequence {Jεn (h̃n)− J 0(h̃n)}n∈N, denoting by same, of XT -valued random variables

converges to 0, P̃-almost surely.
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Now we claim to have the proof of Statement 2. Indeed, for any globally Lipschitz continuous

and bounded function ψ :XT →R, see [64, Theorem 11.3.3], we have∣∣∣∣∫
XT

ψ(x)dL (Jεn (hn))−
∫
XT

ψ(x)dL (J 0(h))

∣∣∣∣
=

∣∣∣∣∫
XT

ψ(x)dL (Jεn (h̃n))−
∫
XT

ψ(x)dL (J 0(h̃))

∣∣∣∣
=

∣∣∣∣∫
Ω̃
ψ

(
Jεn (h̃n)

)
d P̃−

∫
Ω̃
ψ

(
J 0(h̃)

)
d P̃

∣∣∣∣
≤

∣∣∣∣∫
Ω̃

{
ψ

(
Jεn (h̃n)

)−ψ(
J 0(h̃n)

)}
d P̃

∣∣∣∣
+

∣∣∣∣∫
Ω̃
ψ

(
J 0(h̃n)

)
d P̃−

∫
Ω̃
ψ

(
J 0(h̃)

)
d P̃

∣∣∣∣ .

Since J 0(h̃n) −−−−→
n→∞ J 0(h̃), P-a.s. and ψ is bounded and continuous, we deduce that the 2nd term in

right hand side above converges to 0 as n →∞. Moreover we claim that the 1st term also goes to 0.

Indeed, it follows from the dominated convergence theorem because the term is bounded by

Lψ

∫
Ω̃
|Jεn (h̃n)− J 0(h̃n)|d P̃,

where Lψ is Lipschitz constant of ψ, and the sequence {Jεn (h̃n)− J 0(h̃n)}n∈N converges to 0, P̃-a.s.

Therefore, Statement 2 holds true and we complete the proof of Theorem 4.4.6.

4.5 Auxiliary results

4.5.1 Existence and uniqueness result

In this part we recall a result about the existence of a uniqueness global solution, in strong sense, to

problem

(4.5.1)

∂t t u = ∂xx u + Au(∂t u,∂t u)− Au(∂x u,∂x u)+Yu (∂t u,∂x u) Ẇ ,

u(0) = u0, ∂t u(0) = v0.

In this framework, [23, Theorem 11.1] gives the following.

Theorem 4.5.1. Fix T > 0 and R > T . For every F0-measurable random variable (u0, v0) with values

in H 2
loc×H 1

loc(R,T M), there exists a process u : [0,T )×R×Ω→ M, which we denote by u = {u(t ), t < T },

such that the following hold:

1. u(t , x, ·) :Ω→ M is Ft -measurable for every t < T and x ∈R,

2. [0,T ) 3 t 7→ u(t , ·,ω) ∈ H 2((−R,R);Rn) is continuous for almost every ω ∈Ω,

3. [0,T ) 3 t 7→ u(t , ·,ω) ∈ H 1((−R,R);Rn) is continuously differentiable for almost every ω ∈Ω,

4. u(t , x,ω) ∈ M, for every t < T, x ∈R, P-almost surely,
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5. u(0, x,ω) = u0(x,ω) and ∂t u(0, x,ω) = v0(x,ω) holds, for every x ∈R, P-almost surely,

6. for every t ≥ 0 and R > 0,

∂t u(t ) = v0 +
∫ t

0

[
∂xx u(s)− Au(s)(∂x u(s),∂x u(s))+ Au(s)(∂t u(s),∂t u(s))

]
d s

+
∫ t

0
Yu(s)(∂t u(s),∂x u(s))dW (s),

holds in L2((−R,R);Rn), P-almost surely.

Moreover, if there exists another process U = {U (t ); t ≥ 0} satisfing the above properties, then, for every

|x| < R − t and t ∈ [0,T ), U (t , x,ω) = u(t , x,ω), P-almost surely.

4.5.2 Energy inequality for stochastic wave equation

Recall the following slightly modified version of [23, Proposition 6.1] for a one (spatial) dimensional

linear inhomogeneous stochastic wave equation. For l ∈N, we use the symbol D l h to denote the

Rn×1-vector
(

d l h1

d x l , d l h2

d x l , · · · , d l hn

d x l

)
.

Proposition 4.5.2. Assume that T > 0 and k ∈N. Let W be a cylindrical Wiener process on a Hilbert

space K . Let f and g be progressively measurable processes with values, respectively, in H k
loc(R;Rn) and

L2(K , H k
loc(R;Rn)) such that, for every R > 0,

∫ T

0

{
‖ f (s)‖H k ((−R,R);Rn ) +‖g (s)‖2

L2(K ,H k ((−R,R);Rn ))

}
d s <∞,

P-almost surely. Let z0 be an F0-measurable random variable with values in

Hk
loc := H k+1

loc (R;Rn)×H k
loc(R;Rn).

Assume that an Hk
loc-valued process z = z(t ), t ∈ [0,T ], satisfies

z(t ) = St z0 +
∫ t

0
St−s

(
0

f (s)

)
d s +

∫ t

0
St−s

(
0

g (s)

)
dW (s), 0 ≤ t ≤ T.

Given x ∈R, we define the energy function e : [0,T ]×Hk
loc →R+ by, for z = (u, v) ∈Hk

loc,

e(t , z) = 1

2

{
‖u‖2

L2(B(x,T−t )) +
k∑

l=0

[
‖D l+1u‖2

L2(B(x,T−t )) +‖D l v‖2
L2(B(x,T−t ))

]}
.

Assume that L : [0,∞) → R is a non-decreasing C2-smooth function and define the second energy

function E : [0,T ]×Hk
loc →R, by

E(t , z) = L(e(t , z)), z = (u, v) ∈Hk
loc.
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Let {e j } be an orthonormal basis of K . We define a function V : [0,T ]×Hk
loc →R, by

V (t , z) = L′(e(t , z))

[
〈u, v〉L2(B(x,T−t )) +

k∑
l=0

〈D l v,D l f (t )〉L2(B(x,T−t ))

]

+ 1

2
L′(e(t , z))

∑
j

k∑
l=0

|D l [g (t )e j ]|2L2(B(x,T−t )) +

+ 1

2
L′′(e(t , z))

∑
j

[
k∑

l=0
〈D l v,D l [g (t )e j ]〉L2(B(x,T−t ))

]2

, (t , z) ∈ [0,T ]×Hk
loc.

Then E is continuous on [0,T ]×Hk
loc, and for every 0 ≤ t ≤ T ,

E(t , z(t )) ≤ E(0, z0)+
∫ t

0
V (r, z(r )dr

+
k∑

l=0

∫ t

0
L′(e(r, z(r )))〈D l v(r ),D l [g (r )dW (r )]〉L2(B(x,T−r )), P-a.s..
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5
STOCHASTIC GEOMETRIC WAVE EQUATION ON R1+1 WITH ROUGH DATA

I
n this chapter we establish the existence of a unique local (both time and space) solution to

geometric wave equation, perturbed by a fractional (both in time and space) Gaussian noise,

on one dimensional Minkowski space R1+1 when the target manifold M is an arbitrary compact

Riemannian manifold and the initial data is rough in the sense that it belongs to a larger space than

so-called the energy space H 1
loc ×L2

loc(R,T M).

The chapter is structured as follows. In Section 5.1, we introduce our notation and provide the

required definitions used later on. In Section 5.2 we rigorously justify that in order to prove the

existence of a unique local solution to Cauchy problem (1.2.5) it is sensible to consider the problem

(1.2.6). Section 5.3 is devoted to formulate the stochastic wave map Cauchy problem (1.2.6) in the null

coordinates and to state all the necessary assumptions in detail. In Section 5.4 we derive the estimates

needed in order to apply the Banach Fixed Point Theorem (in a suitable space). The complete proof of

the existence and uniqueness of a local solution is given in Section 5.5. We conclude the chapter with

two auxiliary results. First one is a useful result on the tensor product of Hilbert-Schmidt operators

whose proof is in Subsection 5.6.1. In the second one, which is in Subsection 5.6.2, we show that the

perturbed wave maps of sufficient regularity are invariant with respect to local charts.

5.1 Notation and function spaces setting

In this section we set the notation and define the function spaces that we use throughout the

chapter. By symbolNwe denote the set {0,1,2, . . .} of natural numbers. If x and y are two quantities

(typically non-negative), we use x . y or y & x to denote the statement that x ≤ C y for some

constant C ≥ 1. More generally, given some parameters a1, . . . , ak , we use x .a1,...,ak y or y &a1,...,ak x

to denote the statement that x ≤Ca1,...,ak y for some constant Ca1,...,ak ≥ 1 which can depend on the
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parameters a1, . . . , ak . We use x ' y to denote the statement x . y . x, and similarly x 'a1,...,ak y

denotes x .a1,...,ak y .a1,...,ak x.

Definition 5.1.1. For r ∈Nwe define Cr (Rd ) as the completion of S(Rd ) (class of Schwartz functions)

in the norm

‖ f ‖Cr (Rd ) := ∑
|α|≤r

sup
x∈Rd

|Dα f (x)|,

where Dα = ∂|α|

∂x
α1
1 ···∂x

αd
d

, α= (α1, . . . ,αd ) ∈Nd is a multi-index, and |α| =∑d
j=1α j . We define

Cr
comp(Rd ) :=

{
u : u ∈Cr (Rd ),∃ a compact subset K of Rd s.t supp u ⊆ K

}
.

If r is a positive real number with integer part [r ] and fractional part {r } ∈ (0,1), then we set Cr (Rd ) as

the completion of S(Rd ) w.r.t the norm

‖ f ‖Cr (Rd ) := ‖ f ‖C[r ](Rd ) +
∑

|α|=[r ]
sup
x 6=y

|Dα f (x)−Dα f (y)|
|x − y |{r }

.

It is straightforward to check that the set Cr (Rd ), for every r ≥ 0, is a separable Banach space.

For simplicity we write C(Rd ) for C0(Rd ). From now on, by a test function we mean an element of

C∞
comp(R).

Definition 5.1.2. By Lp (Rd ) for p ∈ [1,∞) we denote the classical real Banach space of all (equivalence

classes of) R-valued p-integrable functions on Rd . The norm in Lp (Rd ) is given by

‖u‖Lp (Rd ) :=
(∫
Rd

|u(x)|p d x

) 1
p

, u ∈ Lp (Rd ).

By L∞(Rd ) we denote the real Banach space of all (equivalence classes of) Lebesgue measurable

essentially bounded R-valued functions defined on Rd with the norm

‖u‖L∞(Rd ) := ess sup {|u(x)| : x ∈Rd }, u ∈ L∞(Rd ).

Definition 5.1.3. For s ∈R, we define the Bessel-potential space H s(Rd ) by

H s(Rd ) :=
{

u ∈ S′(Rd ) : ‖u‖H s (Rd ) :=
(∫
Rd
〈ξ〉2s |û(ξ)|2 dξ

) 1
2 <∞

}
,

where 〈ξ〉 := (1+|ξ|2)
1
2 , S′(Rd ) is the set of all tempered distributions on Rd , and û denotes the Fourier

transform of u. Moreover, for any u ∈ S′(Rd ), we write u ∈ H s
loc(Rd ) if and only if ϕu ∈ H s(Rd ) for all

ϕ ∈C∞
comp(Rd ).

Definition 5.1.4. For m ∈N and p ∈ (1,∞), the Sobolev space, denoted by W m,p (Rd ), is defined by,

W m,p (Rd ) := { f ∈ Lp (Rd ) : ‖ f ‖W m,p (Rd ) := ∑
|α|≤m

‖Dα f ‖Lp (Rd ) <∞},

where the partial derivatives are understood in the sense of distributions.
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Definition 5.1.5. For 0 < s 6= integer and p ∈ [1,∞), we define the Slobodetski space W s,p (Rd ) by

W s,p (Rd ) =
{

f ∈W [s],p (Rd ) : ‖ f ‖W s,p (Rd ) := ‖ f ‖W [s],p (Rd )

+ ∑
|α|=[s]

(∫
Rd×Rd

|Dα f (x)−Dα f (y)|p
|x − y |d+p{s}

d x d y

) 1
p <∞

}
,

where [s] and {s} are the integral and fractional parts of s, respectively.

Next result is a well known equivalence in the theory of function spaces, see [155].

Lemma 5.1.6. If s ≥ 0, then W s,2(Rd ) = H s(Rd ) with equivalent norms.

In the next section we need the following Bessel-potential space of order s ∈R on domain O⊂Rd

where we justify the consideration of SGWE Cauchy problem in terms of local coordinate charts on

M .

Definition 5.1.7. For any arbitrary bounded or unbounded domain O⊂Rd we set

H s(O) :=
{

f ∈D′(O) : f = g �O for some g ∈ H s(Rd )
}

,

where D′(O) is the set of all distributions on O and g �O denotes the restriction of g ∈D′(O) in the

sense of the theory of distributions.

Since H s(O) is a factor space, it is a Banach space (actually a separable Hilbert space) w.r.t. the

following norm

‖ f ‖H s (O) := inf
g∈H s (Rd )

g�O= f

‖g‖H s (Rd ).

Moreover, for any closed set F ⊆Rd , the Sobolev space H s
F is defined as

H s
F :=

{
u ∈ H s(Rd ) : supp u ⊆ F

}
.

Note that H s
F is a closed subspace of H s(Rd ), and is therefore a Hilbert space when equipped with

the restriction of the inner product of H s(Rd ).

For any class of functions F defined on Rd , by Fcomp we denote the set

{ f ∈F : supp f is a compact subset of Rd }.

To capture the dispersive smoothing effect of the nonlinear wave equation we need the following

hyperbolic Sobolev spaces.

Definition 5.1.8. The hyperbolic Sobolev space H s,δ(R2) for s,δ ∈R is defined as the closure of S(R2)

w.r.t. the norm :

‖u‖H s,δ(R2) :=
(∫
R2
〈|τ|+ |ξ|〉2s〈|τ|− |ξ|〉2δ |[Fu](τ,ξ)|2 dξdτ

) 1
2

,
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where τ,ξ are the dual variables to t , x, respectively, and

(5.1.1) [Fu](τ,ξ) :=
∫
R2

e−i (tτ+xξ) u(t , x) d t d x,

is the space-time Fourier transform for u = u(t , x) ∈ S(R2).

To avoid many notations, from now on we will use the same notation F to denote the Fourier

transform in the space variable, or in the time variable or in the space-time variables unless it is

not clear from the expression. The next result concerns about the continuous embedding of the

space H s,δ(R2) into C (R; H s(R))∩C1
(
R; H s−1(R)

)
, which in result provides a motivation to consider

the H s,δ(R2) space in the analysis of wave equation via an iteration procedure.

Theorem 5.1.9 (Trace Theorem). For every s,δ ∈ (3
4 ,1

)
, the following holds

‖u(t )‖H s
x (R) +‖∂t u(t )‖H s−1

x (R). ‖u‖H s,δ(R2), for every t ∈R.

Proof of Theorem 5.1.9 Let us fix u ∈ S(R2). For any t ∈R, as an application of the Cauchy-Schwartz

inequality, we get

‖u(t )‖2
H s

x (R)+‖(∂t u)(t )‖2
H s−1

x (R)

.
∫
R

[∫
R

〈ξ〉2s +|τ|2〈ξ〉2(s−1)

〈|τ|+ |ξ|〉2s〈|τ|− |ξ|〉2δ
dτ

][∫
R
〈|τ1|+ |ξ|〉2s〈|τ1|− |ξ|〉2δ|(Fu)(τ1,ξ)|2 dτ1

]
dξ.(5.1.2)

To move forward we consider the integral

∫
R

〈ξ〉2s +|τ|2〈ξ〉2(s−1)

〈|τ|+ |ξ|〉2s〈|τ|− |ξ|〉2δ
dτ and find a suitable estimate

for this which holds uniformly w.r.t. ξ. On this path we divide the real line in two regions: |ξ| < 1
2 and

|ξ| ≥ 1
2 on which we estimate the integral separately. Due to the conditions s ∈ (0,1) and s +δ> 3

2 , for

any ξ ∈R: 0 ≤ |ξ| < 1
2 , we deduce that∫

R

〈ξ〉2s +|τ|2〈ξ〉2(s−1)

〈|τ|+ |ξ|〉2s〈|τ|− |ξ|〉2δ
dτ.

∫
{τ≥0}

〈τ〉2(1−s)

〈|τ|− |ξ|〉2δ
dτ.

∫
R

(1+τ2)−
2s+2δ−2

2 dτ' 1.(5.1.3)

Next, we fix ξ in the other complement region such that |ξ| ≥ 1
2 . We separate the estimate in the

following two sub cases: (1) when the domain of τ is such that |τ| ≤ 2|ξ|. Here, by using 2δ> 1, we get∫
{|τ|≤2|ξ|}

〈ξ〉2s +|τ|2〈ξ〉2(s−1)

〈|τ|+ |ξ|〉2s〈|τ|− |ξ|〉2δ
dτ.

∫
{0≤τ≤2|ξ|}

(1+|τ−|ξ||2)−δdτ

.
∫
R

(1+|τ|2)−2δ/2 dτ' 1.(5.1.4)

In the subcase (2), where the domain of τ is {τ ∈R : |τ| > 2|ξ|}, by invoking the relations s < 1, s +δ> 3
2

we obtain ∫
{|τ|>2|ξ|}

〈ξ〉2s +|τ|2〈ξ〉2(s−1)

〈|τ|+ |ξ|〉2s〈|τ|− |ξ|〉2δ
dτ.

∫
{|τ|>2|ξ|}

〈ξ〉2(s−1)|τ|2
(1+|τ|2s)〈|τ|− |ξ|〉2δ

dτ

.
∫
R

(1+|τ|)−2(s+δ−1) dτ' 1.(5.1.5)
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Then by (5.1.3) - (5.1.5) we have ∫
R

〈ξ〉2s +|τ|2〈ξ〉2(s−1)

〈|τ|+ |ξ|〉2s〈|τ|− |ξ|〉2δ
dτ. 1,

which consequently finishes the proof of Theorem 5.1.9 because by using above in (5.1.2) we get

‖u(t )‖2
H s

x (R) +‖(∂t u)(t )‖2
H s−1

x (R)
.

∫
R2
〈|τ1|+ |ξ|〉2s〈|τ1|− |ξ|〉2δ|(Fu)(τ1,ξ)|2 dτ1 dξ.

�

To define the integration with respect to paths of the fractional Brownian sheet we need to use

the Besov spaces as well. Let us choose {ϕ j }∞j=0 ⊂ S(R) an arbitrary dyadic partition of unity on R, that

is, a sequence {ϕ j }∞j=0 which has the following properties

1. Support property:

supp ϕ0 ⊂ {x : |x| ≤ 2},

supp ϕ j ⊂ {x : 2 j−1 ≤ |x| ≤ 2 j+1}, if j ∈N\ {0}.

2. Bound property: for every n ∈N there exists a number Cn > 0 such that

2 j nϕ(n)
j (x) ≤Cn for all j ∈N and all x ∈R,

where ϕ(n)
j denotes the n-th derivative of ϕ j .

3. Unity sum property:

∞∑
j=0

ϕ j (x) = 1 for every x ∈R.

We refer [156, Remark 2.3.1/1] and [3, Proposition 2.10] for the existence of such partitions. It is

relevant to note that the Besov norms, in Definition 5.1.10, corresponds to any two dyadic partitions

of unity are equivalent. Hence, without loss of generality, we fix the dyadic partition of unity, in the

rest of the chapter, as the following system: let φ ∈ S(R) be a non-negative function with

supp φ⊂
{

x ∈R :
1

2
≤ |x| ≤ 2

}
and φ(x) > 0 if

1p
2
≤ |x| ≤p

2 .

Let

φ̄(x) :=
∞∑

k=−∞
φ(2−k x).

Due to support property of φ, the series in right hand side above is locally finite on the set R\{0}. Now

with the function

(5.1.6) ψ(x) :=φ(x)(φ̄(x))−1,
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we set

ϕ j (x) :=ψ(2− j x), for j = 1,2, . . . , and ϕ0(x) := 1−
∞∑

j=1
ϕ j (x).

Given h ∈ S′(R), and f ∈ S′(R2), the 1-index and the 2-index, respectively, the Littlewood-Paley

blocks are defined as

∆ j h :=
0, if j ≤−1,

F−1 [
ϕ j (ξ)(Fh(ξ))

]
, if j ≥ 0,

and

∆ j ,k f :=
0, if j ≤−1 or k ≤−1,

F−1 [
ϕ j (τ)ϕk (ξ)(F f )(τ,ξ)

]
, if j ,k ≥ 0.

By the Paley-Wiener-Schwartz Theorem, see for example [68, Chapter 10], ∆ j h and ∆ j ,k f are well-

defined entire analytic functions. Based on such Littlewood-Paley blocks we define the Besov spaces

as follows.

Definition 5.1.10. Let {ϕ j }∞j=0 be a dyadic partition of unity. For s ∈ R, (s1, s2) ∈ R2, q ∈ (0,∞] and

p ∈ (0,∞], we define the Besov spaces, denoted by B s
p,q (R), as,

B s
p,q (R) :=

{
f ∈ S′(R) : ‖ f ‖B s

p,q (R) :=
(∑

j∈Z
2s j q ‖∆ j f ‖q

Lp (R)

)1/q

<∞
}

,

and the Besov spaces of mixed smoothness, denoted by S(s1,s2)
p,q B(R2), as,

S(s1,s2)
p,q B(R2) =

{
f ∈ S′(R2) : ‖ f ‖

S
(s1,s2)
p,q B(R2)

<∞
}

,

where

‖ f ‖
S

(s1,s2)
p,q B(R2)

:=
( ∑

j ,k∈Z
2q( j s1+ks2)‖∆ j ,k f ‖q

Lp (R2)

)1/q

.

It is well known that
(
B s

p,q (R),‖ ·‖B s
p,q (R)

)
and

(
S(s1,s2)

p,q B(R2),‖ ·‖
S

(s1,s2)
p,q B(R2)

)
are Banach spaces if we

restrict to indices p, q ∈ [1,∞], see for example [141] and [156].

Next, we define the required Sobolev spaces of mixed smoothness which we will denote by

S(s1,s2)
2,2 H(R2).

Definition 5.1.11. Let (s1, s2) ∈R2. Then, the Sobolev space of mixed smoothness S(s1,s2)
2,2 H(R2) is the

set of all tempered distributions S′(R2) such that

‖ f ‖
S

(s1,s2)
2,2 H(R2)

:=
( ∫

R

∫
R
〈τ〉2s1〈ξ〉2s2 |[F f ](τ,ξ)|2 dτdξ

) 1
2

,

is finite.
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Note that by definition the spaces S(s1,s2)
2,2 H(R2) are nothing else but the product Sobolev space

H s1
t H s2

x (R2) defined, used in [92, 108], as{
f ∈ S′(R2) : ‖ f ‖H

s1
t H

s2
x (R2) :=

( ∫
R

∫
R
〈τ〉2s1〈ξ〉2s2 |[F f ](τ,ξ)|2 dτ dξ

) 1
2 <∞

}
,

where F is the space-time Fourier transform defined in (5.1.1). Moreover, for any f ∈ S′(R2), we write

f ∈ H s1

locH s2

loc(R2) if and only if ϕ(t )ψ(x) f ∈ H s1
t H s2

x (R2) for all ϕ,ψ ∈C∞
comp(R).

To do the required analysis we also need the vector-valued Lebesgue and Sobolev spaces. Let E

be a separable Banach space.

Definition 5.1.12. Let I be an either bounded or unbounded interval of R, and p ∈ [1,∞], we define

Lp (I ;E) as the set of all (equivalence classes of) strongly measurable E-valued functions such that

‖u‖Lp (I ;E) :=
(∫

I
‖u(x)‖p

E d x

) 1
p <∞,

if p <∞, and

‖u‖L∞(I ;E) := ess sup {‖u(x)‖E : x ∈ I } <∞,

if p =∞.

For k ∈N and p ∈ [1,∞], the Sobolev space W k,p (I ;E ) is the space of all u ∈ Lp (I ;E ) whose all weak

derivatives of orders |α| ≤ k exist and belong to Lp (I ;E). We set

‖u‖W k,p (I ;E) := ∑
|α|≤K

‖Dαu‖Lp (I ;E).

Moreover, for s ∈ (0,1), we define the E-valued Slobodetski space W s,p (I ;E) as

W s,p (I ;E) := {
u ∈ Lp (I ;E) : ‖u‖Ẇ s,p (I ;E) <∞}

,

where

‖u‖Ẇ s,p (I ;E) :=
(∫

I×I

‖u(x)−u(y)‖p
E

|x − y |1+ps d x d y

) 1
p

, if p <∞,

and ‖u‖Ẇ s,p (I ;E) := ess sup

{‖u(x)−u(y)‖E

|x − y |s : x, y ∈ I

}
, if p =∞.

It is well known, in the theory of analysis of vector-valued functions, that the spaces Lp (I ;E),

W k,p (I ;E ), and W s,p (I ;E ) are Banach spaces, respectively, with the norms ‖·‖Lp (I ;E), ‖·‖W k,p (I ;E), and

‖ ·‖Lp (I ;E) +‖·‖Ẇ s,p (I ;E).

Definition 5.1.13. Let p ∈ (1,∞) and s ∈R. For a Hilbert space E, we define the vector-valued Bessel-

potential space H s,p (R;E) by

H s,p (R;E) :=
{

u ∈ S′(R;E) :F−1
(
(1+|ξ|2)

s
2 (Fu)(ξ)

)
∈ Lp (R;E)

}
,

where S′(R;E) is the space of E-valued tempered distributions, and put

‖u‖H s,p (R;E) :=
∥∥∥F−1

(
(1+|ξ|2)

s
2 (Fu)(ξ)

)∥∥∥
Lp (R;E)

.
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If p = 2 and E a Hilbert space, we denote H s,2(R;E) by H s(R;E). Moreover, in this case, the

vector-valued Plancherel Theorem holds and the norm defined above becomes

‖u‖H s,2(R;E) =
(∫
R

(1+|ξ|2)s ‖(Fu)(ξ)‖2
E dξ

) 1
2

.

Furthermore, for any s ≥ 0, W s,2(R;E) = H s(R;E) with equivalent norms. For an arbitrary domain O,

we define H s(O) in the spirit of Definition 5.1.7.

To do the computation we also use the various embeddings and the equivalences between the

defined functions spaces. Our next theorem provides the equivalence between spaces which are not

included in the literature directly. We will use these equivalences without specifying it explicitly.

Theorem 5.1.14. For s,δ ∈ (1
2 ,1

]
, the following hold in the sense of equivalent norms

1. W s,2
t (R;W δ,2

x (R)) =W δ,2
x (R;W s,2

t (R)).

2. W s,2
t (R;W δ,2

x (R)) = H s
t (R; Hδ

x (R)).

3. H s
t (R; Hδ

x (R)) = Hδ
x (R; H s

t (R)).

4. H s
t (R; Hδ

x (R)) = Ss,δ
2,2H(R2).

5. Ss,δ
2,2B(R2) = Ss,δ

2,2H(R2).

Proof of Theorem 5.1.14 Note that the Claim (5) of the theorem is Remark (ii) in Appendix A.2 of

[145] and the Claim (3) is a direct consequence of points (1) and (2). Hence we only need to prove

assertions (1), (2), and (4).

Before proving (1), recall from [86, Proposition 1.2.24] that the spaces L2
t (R;L2

x (R)) and L2
x (R;L2

t (R))

are isometrically isomorphic to L2(R2;R). Let us denote the corresponding isomorphisms as

(5.1.7)

 it : L2
t (R;L2

x (R)) → L2(R2;R),

ix : L2
x (R;L2

t (R)) → L2(R2;R).

Let us fix s,δ ∈ (0,1) and take f ∈ C∞
comp(Rt ;C∞

comp(Rx )), where we write Rt and Rx to show the

variable explicitly. So, f belongs to W s,2
t (R;W δ,2

x (R)) and Ls,2
t (R;Lδ,2

x (R)). By Definition 5.1.12 and

isomorphisms (5.1.7) followed by the Fubini Theorem we obtain

‖(i−1
x ◦ it )( f )‖2

L2
x (R;W s,2

t (R))
= ‖(i−1

x ◦ it )( f )‖2
L2

x (R;L2
t (R))

+
∫
R

∣∣∣∣∣
∫
R2

|([(i−1
x ◦ it )( f )](x)

)
(t1)− (

[(i−1
x ◦ it )( f )](x)

)
(t2)|2

|t1 − t2|1+2s d t1 d t2

∣∣∣∣∣ d x

= ‖ f ‖2
L2

t (R;L2
x (R))

+
∫
R2

∫
R

|[it f ](t1, x)− [it f ](t2, x)|2
|t1 − t2|1+2s d x d t1 d t2

= ‖ f ‖2
L2

t (R;L2
x (R))

+
∫
R2

‖ f (t1)− f (t2)‖2
L2

x (R)

|t1 − t2|1+2s d t1 d t2 ≤ ‖ f ‖2
W s,2

t (R;W δ,2
x (R))

.(5.1.8)
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By similar calculations

‖(i−1
x ◦ it )( f )‖2

Ẇ δ,2
x (R;W s,2

t (R))

=
∫
R2

‖[(i−1
x ◦ it )( f )](x1)− [(i−1

x ◦ it )( f )](x2)‖2
L2

t (R)

|x1 −x2|1+2δ
d x1 d x2

+
∫
R2

‖[(i−1
x ◦ it )( f )](x1)− [(i−1

x ◦ it )( f )](x2)‖2
Ẇ s,2

t (R)

|x1 −x2|1+2δ
d x1 d x2

=
∫
R

∫
R2

|[it f ](t , x1)− [it f ](t , x2)|2
|x1 −x2|1+2δ

d x1 d x2 d t

+
∫
R4

|[it f ](t1, x1)− [it f ](t2, x1)− [it f ](t1, x2)+ [it f ](t2, x2)|2
|t1 − t2|1+2s |x1 −x2|1+2δ

d x1 d x2 d t1 d t2

=
∫
R
‖ f (t )‖2

Ẇ δ,2
x (R)

d t +
∫
R2

‖ f (t1)− f (t2)‖2
Ẇ δ,2

x (R)

|t1 − t2|1+2s d t1 d t2

= ‖ f ‖2
W s,2

t (R;Ẇ δ,2
x (R))

≤ ‖ f ‖2
W s,2

t (R;W δ,2
x (R))

.(5.1.9)

Hence by (5.1.8) and (5.1.9) we proved that the map

It x :C∞
comp(Rt ;C∞

comp(Rx )) 3 f 7→ (i−1
x ◦ it ) f ∈W δ,2

x (R;W s,2
t (R)),

is continuous. The injectivity and linearity of It x is obvious. Since C∞
comp(Rt ;C∞

comp(Rx )) is a dense

subspace of W s,2
t (R;W δ,2

x (R)), there exists a unique continuous extension of this map, which we will

also denote by It x , from W s,2
t (R;W δ,2

x (R)) into W δ,2
x (R;W s,2

t (R)).

Similarly, we can prove that the map Ixt := i−1
t ◦ ix defined by

C∞
comp(Rx ;C∞

comp(Rt )) 3 f 7→ (i−1
t ◦ ix ) f ∈W s,2

t (R;W δ,2
x (R)),

is continuous, linear and injective. Consequently, there exists a unique continuous extension of Ixt ,

which we will also denote by Ixt , from W δ,2
x (R;W s,2

t (R)) into W s,2
t (R;W δ,2

x (R)). Since

(i−1
x ◦ it )◦ (i−1

t ◦ ix ) = idC∞
comp(Rx ;C∞

comp(Rt )) and (i−1
t ◦ ix )◦ (i−1

x ◦ it ) = idC∞
comp(Rt ;C∞

comp(Rx )),

we deduce that

It x ◦Ixt = idW δ,2
x (R;W s,2

t (R)) and Ixt ◦It x = idW s,2
t (R;W δ,2

x (R)).

Hence, we are done with the proof of assertion (1) of the Theorem 5.1.14.

To prove the claim (2), let jx : W δ,2
x (R) → Hδ

x (R) be an isomorphism, thanks to Lemma 5.1.6. So

for any f ∈ C∞
comp(Rt ;W δ,2

x (R)) ⊂ W s,2
t (R;W δ,2

x (R)) and t ∈ R, jx ( f (t)) ∈ Hδ
x (R). Since for t outside a

compact set f (t ) = 0 and the isomorphism jx is linear, the following map

J :C∞
comp(Rt ;W δ,2

x (R)) 3 f 7→ jx f ∈C∞
comp(Rt ; Hδ

x (R)) ⊂ H s
t (R; Hδ

x (R)),

is well-defined, where jx f :R 3 t 7→ jx ( f (t )) ∈ Hδ
x (R). Observe that the injectivity and linearity of J is

easy to see because jx has both the properties. Invoking Lemma 5.1.6 followed by Sobolev embedding,
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since s > 1
2 , gives

‖J f ‖H s
t (R;Hδ

x (R)). sup
t∈R

‖ f (t )‖W δ,2
x (R) = ‖ f ‖L∞(R;W δ,2

x (R)) ≤ ‖ f ‖W s,2
t (R;W δ,2

x (R)).(5.1.10)

Since C∞
comp(Rt ;W δ,2

x (R)) ,→ W s,2
t (R;W δ,2

x (R)) densely, there exists a unique continuous extension

of the map J , which we again denote by J , from W s,2
t (R;W δ,2

x (R)) into H s
t (R; Hδ

x (R)). This unique

extension satisfies the bound (5.1.10) with the same constant of inequality. By following the similar

steps we can prove that there exists a linear and continuous operator which maps H s
t (R; Hδ

x (R)) into

W s,2
t (R;W δ,2

x (R)). Then we finish the proof of second claim of Theorem 5.1.14 by a similar argument

we made in the last for Assertion (1).

Assertion (3) follows from [145, Theorem 2.1] once we show that H s
t (R; Hδ

x (R)) is isomorphic to

H s
t (R)⊗Hδ

x (R) because all tensor products on Hilbert spaces are equivalent. It is well known that the

Fourier transform F : L2(R) → L2(R) is a linear isomorphism. Let IH : H → H be identity map for any

separable Hilbert space H . Then [145, Lemma B.1] gives

F⊗ IH : L2(R)⊗H → L2(R)⊗H ,

a linear isomorphism. But since L2(R)⊗H is isomorphic to L2(R; H ), the mapF⊗IH gives the following

isomorphism

FH : L2(R; H) → L2(R; H).

Now define, for s > 0, a closed subspace of L2(R; H) by

L2
s (R; H) :=

{
[ f ] : f :R→ H and

∫
R

(1+|ξ|2)s | f (ξ)|2H dξ<∞
}

.

By taking (R, (1+|ξ|2)
s
2 dξ) measure space in [152, Example E.12] we get that L2

s (R)⊗H is isomorphic

to L2
s (R; H). Next, let us set E := Hδ

x (R) and define

H̃ s
t (R;E) :=F−1

E (L2
s (R;E)) with inner product

〈 f , g 〉H̃ s (R;E) = 〈(1+|ξ|2)
s
2 f , (1+|ξ|2)

s
2 g 〉L2(R;E) =

∫
R

(1+|ξ|2)s〈 f , g 〉E dξ.(5.1.11)

It is easy to show that there exists a linear bijection between H̃ s
t (R;E) and H s

t (R;E). But by the proof

of [145, Lemma B.1] we have

H̃ s
t (R;E) ' (F⊗ IE )−1(L2

s (R;E)) =F−1(L2
s (R))⊗ I−1

E (E) = H s(R)⊗E .

Hence we are done with Assertion (3). �

We also need the following embeddings, whose proof can be found in [146], in our calculation.

Theorem 5.1.15. For s,δ ∈ (1
2 ,1

)
and a separable Banach space E, we have the following continuous

embeddings

(1) W s,2(R;E) ,→ L∞(R;E),

(2) W s,2(R;W δ,2(R)) ,→W s,2(R;L∞(R)),

(3) W s,2(R;W δ,2(R)) ,→ L∞(R;L∞(R)).
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To make use of the H s,δ space in proving the required estimates which allows one to apply the

Banach fixed point theorem, authors in [92], [108] have taken advantage of the null coordinates.

So let us define these first. We denote the null coordinates and their duals (the Fourier variables),

respectively by,

(5.1.12) (α,β) := (t +x, t −x), (µ,ν) :=
(
τ+ξ

2
,
τ−ξ

2

)
,

where (τ,ξ) denotes the Fourier variable of (t , x). To switch the coordinates, we use the following

convention:

(5.1.13) f ∗(α,β) := f

(
α+β

2
,
α−β

2

)
= f (t , x) = f ∗(t +x, t −x).

Usage of null coordinates is helpful due to the following isomorphism, which is stated in [92]

without proof, between H s,δ space and the defined (see below) product Sobolev spaceHs,δ
α,β which

allows one to solve the problem in the null coordinates.

Proposition 5.1.16. If s,δ ∈Rwhich satisfy s ≥ δ, then the following map

H s,δ
t ,x 3 u(t , x) 7→ u∗(α,β) ∈ H s

αHδ
β∩H s

βHδ
α :=Hs,δ

α,β,

is an isomorphism, where we take the Hilbertian norm on H s
αHδ

β
∩H s

β
Hδ
α, that is,

‖u∗‖H s
αHδ

β
∩H s

β
Hδ
α

:=
√

‖u∗‖2
H s
αHδ

β

+‖u∗‖2
H s
β

Hδ
α

.

In particular,

‖u∗‖H s
αHδ

β
∩H s

β
Hδ
α
. ‖u‖H s,δ

t ,x
. ‖u∗‖H s

αHδ
β
∩H s

β
Hδ
α

.

Proof of Proposition 5.1.16 By invoking the change of variable formula for the following map, with

notation from (5.1.12) and (5.1.13),

(α,β) 7→
(
α+β

2
,
α−β

2

)
= (t , x),

we observe that, for u ∈ S(R2),

(Ft ,x u)(τ,ξ) = 1

2

∫
R2

e−i (α−β)ξ
2 −i (α+β)τ

2 u

(
α+β

2
,
α−β

2

)
dαdβ

= 1

2

∫
R2

e−i (α−β)(µ−ν)
2 −i (α+β)(µ+ν)

2 u∗(α,β)dαdβ= 1

2
(Fα,βu∗)(µ,ν),(5.1.14)

where (µ,ν) and (τ,ξ) are related by (5.1.12). Which consequently gives

‖u‖2
H s,δ

t ,x

.
∫

{(µ,ν):|µ|≥|ν|}
(
1+2(|µ|2 +|ν|2)+2(|µ|+ |ν|)(|µ|− |ν|))s ×(

1+2(|µ|2 +|ν|2)−2(|µ|+ |ν|)(|µ|− |ν|))δ |(Fα,βu∗)(µ,ν)|2 dµdν

+
∫

{(µ,ν):|µ|≤|ν|}
(
1+2(|µ|2 +|ν|2)+2(|µ|+ |ν|)(|ν|− |µ|))s ×
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(
1+2(|µ|2 +|ν|2)−2(|µ|+ |ν|)(|ν|− |µ|))δ |(Fα,βu∗)(µ,ν)|2 dµdν

.
∫
R2

(
1+|µ|2)s (

1+|ν|2)δ |(Fα,βu∗)(µ,ν)|2 dµdν

+
∫
R2

(
1+|ν|2)s (

1+|µ|2)δ |(Fα,βu∗)(µ,ν)|2 dµdν

= ‖u∗‖2
H s
αHδ

β
∩H s

β
Hδ
α

.

To complete the proof we still need to show that ‖u∗‖H s
αHδ

β
∩H s

β
Hδ
α
. ‖u‖H s,δ

t ,x
. To prove this note that by

the relation (5.1.14) and by setting, to shorten the notation,

|ûτ,ξ|2 := (
1+ (|ξ|+ |τ|)2)s (

1+ (|τ|− |ξ|)2)δ |(Ft ,x u)(τ,ξ)|2,

we have

‖u∗‖2
H s
αHδ

β
∩H s

β
Hδ
α
.

∫
R2

(
1+|ξ+τ|2)s (

1+|τ−ξ|2)δ |(Ft ,x u)(τ,ξ)|2 dτdξ

+
∫
R2

(
1+|τ−ξ|2)s (

1+|ξ+τ|2)δ |(Ft ,x u)(τ,ξ)|2 dτdξ

=
∫
R2

(
1+|ξ+τ|2)s (

1+|τ−ξ|2)δ(
1+ (|ξ|+ |τ|)2

)s (
1+ (|τ|− |ξ|)2

)δ |ûτ,ξ|2 dτdξ

+
∫
R2

(
1+|ξ−τ|2)s (

1+|τ+ξ|2)δ(
1+ (|ξ|+ |τ|)2

)s (
1+ (|τ|− |ξ|)2

)δ |ûτ,ξ|2 dτdξ

. ‖u‖2
H s,δ

t ,x

.

Here the last step is due to the following uniform estimates which are based on the relation s ≥ δ,(
1+|ξ+τ|2)s (

1+|τ−ξ|2)δ(
1+ (|ξ|+ |τ|)2

)s (
1+ (|τ|− |ξ|)2

)δ . 1,

and (
1+|ξ−τ|2)s (

1+|τ+ξ|2)δ(
1+ (|ξ|+ |τ|)2

)s (
1+ (|τ|− |ξ|)2

)δ . 1,

in each of the regions (1) {τ,ξ≥ 0}; (2) {τ,ξ< 0}; (3) {τ< 0,ξ≥ 0}, and (4) {τ≥ 0,ξ< 0}. �

It is relevant to note here that the isomorphism proven in the above Proposition 5.1.16 preserves

itself if we restrict ourselves to the Schwartz class in both the considered spaces.

To understand the construction of solution rigorously, we also need the following definitions of

spaces as a subset of manifold valued functions. Let Rn be the Euclidean space such that M
eM
,−→Rn

and we can always find such n ∈N due to the celebrated Nash isometric embedding theorem [115].

Definition 5.1.17. For given s ≥ 0, by H s(R; M) we mean the set of u ∈ H s(R;Rn) such that u(x) ∈ M

almost surely. Similarly we define H s(I ; M) for any open interval I .

Remark 5.1.18. Let M be a m-dimensional smooth manifold. Then, the following two are equivalent:
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1. u ∈ H s(R; M) as per the above definition,

2. for every local chart (U ,φ) on M , (φ◦u)
∣∣
V ∈ H s(V ;Rm), where V := u−1(U ).

5.2 Justification of computation in local charts

Here we try to justify in a rigorous way that to prove the existence and uniqueness of a local solution to

Cauchy problem (1.2.5) it is sensible to consider problem (1.2.6). Recall that M is an m-dimensional

smooth manifold. First, let us observe that since we seek a solution of problem (1.2.5) that lives on

the manifold M , we cannot expect it to belong to the Hilbert space H s(R;Rn), but, instead according

to PDE theory, they will take values rather in the Fréchet space H s
loc(R;Rn). Hence it is reasonable to

see our problem in local manner as below.

Before we see the explicit local formulation of problem, we understand the meaning of the initial

data (z0, z1) ∈ H s
loc×H s−1

loc (R;T M) for s ∈ [1
2 ,1

)
. For the case s ≥ 1, by (z0, z1) ∈ H s

loc×H s−1
loc (R;T M), the

meaning is clear, see for e.g. [23]-[26], we mean that for every local chart (U ,φ) on M if I ⊂R is an

open and bounded interval such that z0(I ) ⊂U , then

(5.2.1)
{

I 3 x 7→φ(z0(x)) ∈Rm} ∈ H s(I ;Rm),

and

(5.2.2)
{

I 3 x 7→ (
dz0(x)φ

)
(z1(x)) ∈Rm} ∈ H s−1(I ;Rm).

Definition 5.2.1. For s ∈ [1
2 ,1

)
, we say (z0, z1) ∈ H s

loc ×H s−1
loc (R;T M) if and only if (5.2.1) holds and

whenever I ⊂R is an open and bounded interval such that z0(I ) ⊂U1 ∩U2, where (Ui ,φi , i = 1,2) are

local charts on M, there exist v1, v2 ∈ H s−1(I ;Rm) such that

(5.2.3) H−s 〈v2, f 〉H s = H−s 〈v1,
(
dφ1(z0)(φ2 ◦φ−1

1 )
)∗

f 〉H s , f ∈ H s(I ;Rm),

where, for each x ∈ I ,
(
dφ1(z0(x))(φ2 ◦φ−1

1 )
)∗

is the adjoint of dφ1(z0(x))(φ2 ◦φ−1
1 ) :Rm →Rm .

Here note that by following the procedure from [13], we deduce that, for every f ∈ H s
loc(R;Rm),

the map {
x 7→ (

dφ1(z0(x))(φ2 ◦φ−1
1 )

)∗
f
}
∈ H s

loc(R :Rm).

Now to move further we consider the following countable set {[n,n + 2] : n ∈ Z} of compact

intervals which covers R. Since z0 ∈ H s
loc(R; M) and s > 1

2 , z0 ∈ C(R; M). Then for given n and any

element x ∈ [n,n +2] such that z0(x) ∈ M , there exist ax ,bx ∈ R such that ax < bx , x = ax+bx
2 and

z0([ax ,bx ]) lies in a single coordinate chart (Ux ,φx ) of M . Let

Ix := x +
[
−bx −ax

2
,

bx −ax

2

]
=: x + I 1

x , and Jx := x + 1

2
I̊ 1

x =: x + J̊ 1
x ,

where I̊ denotes the interior of the interval I . The collection {Jx : x ∈R} forms an open cover of the

compact interval [n,n +2]. Thus, we can find finitely many points {xni }kn

i=1 in [n,n +2] such that
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[n,n +2] ⊂∪i Jxni
. To make our method precise we choose the centres/points from {xni }nk

i=1 in such a

way that

1. at most two of the open intervals Jxni
have non-empty overlap;

2. none of the open interval (i.e. an element of a cover) lies inside other completely;

3. image of z0 on the closure of each Jxni
is in one chart.

Since for every n ∈ Z we have a finite collection of open intervals which cover [n,n + 2] and the

countable union of countable sets is countable, we have a countable open cover ofR, which we denote

by J := {Jxi }i∈N of R (after renumbering), such that the cover satisfies the above three conditions. In

the remaining part of the justification we only need to know that a countable cover of open intervals

exists, without knowledge of their midpoint, which satisfy the above mentioned assumptions, hence

we set J := {Ji }i∈N.

Next, note that for every i ∈N, z0 ∈ H s(Ji ; M) because z0 ∈ H s
loc(R; M). Thus, based on J, there

exists a sequence of coordinate charts (Ui ,φi ), i ∈N on M such that z0( J̄i ) ⊂Ui and

φi z0 :=φi ◦ z0 ∈ H s(Ji ;Rm).

Moreover, since z1 ∈ H s−1
loc (R;T M), there exists an φi z1 ∈ H s−1(Ji ;Rm) which satisfy the condition of

Definition 5.2.1. Hence in order to talk about the solution, which are continuous in time and space,

of SGWE (1.2.5) it is reasonable to work with the following sequence of local Cauchy problems, for

i ∈N,

(5.2.4)


2φi z =−

m∑
a,b=1

1∑
µ=0

φiΓab(φi z)∂µ
φi za∂µ φi zb +φiσ(φi z)ξ̇,

(
φi z(0),∂t

φi z(0)
)= (

φi z0,φi z1
) ∈ H s(Ji ;Rm)×H s−1(Ji ;Rm).

Here φi z := φi ◦ z, φiΓab : φi (Ui ) → R, φiσ : φi (Ui ) → Rm . Thus, by Definition 5.1.7, for each i ∈ N,

there exist
φi Z 0 ∈ H s

comp(R;Rm) and φi Z 1 ∈ H s−1
comp(R;Rm),

such that φi Z k
∣∣

Ji
= φi Z k ,k = 0,1, in the sense of distributions. Therefore, instead of sequence of

problems (5.2.4), in the current chapter we consider the following sequence of Cauchy problems,

(5.2.5)


2φi Z =−

m∑
a,b=1

1∑
µ=0

φiΓab(φi Z )∂µ
φi Z a∂µ φi Z b +φiσ(φi Z )ξ̇,

(
φi Z (0),∂t

φi Z (0)
)= (

φi Z 0,φi Z 1
) ∈ H s(R;Rm)×H s−1(R;Rm),

with some appropriate extensions, which we denote by the same, φiΓab :Rm →R and φiσ :Rm →Rm .

To simplify the exposition follow [92] and assume that the Christoffel symbols Γab depends

polynomially on u, that is,

(5.2.6) Γab(u(·)) =
r∑

|l |=0
Al

ab

[
u1(·)]l1

[
u2(·)]l2 ,
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for some r ∈N where l = (l1, l2, . . . , lm) ∈Nm is multi index variable; Al
ab ∈ Rm ; and uk (·) ∈ R is the

kth component of u. This is not a significant constraint on the target manifold M because it covers

the most interesting cases, for example a unit sphere Sm , the Euclidean space Rm , or any compact

analytic manifold. Moreover, we assume that, which surely holds in the case of compact manifolds,

the value of r is fixed i.e. the degree of polynomial in (5.2.6) does not vary with the choice of local

charts on M . To avoid much more notation complexity, just for the convenience, from now on

we assume that the target manifold M is 2-dimensional. However, the calculation can be directly

extended to an arbitrary m ∈N.

5.3 SGWE problem in rotated coordinates

In this section we formulate the stochastic wave map Cauchy problem (1.2.6) under the rotation of

the (t , x)-coordinate axes by −π
4 . Recall that, from (5.1.13),

u∗(α,β) := u

(
α+β

2
,
α−β

2

)
= u(t , x) and u(t , x) = u∗(t +x, t −x).

Since (α,β) = (t +x, t −x), for each k = 1, . . . ,n, at a formal level we have

∂u

∂x
= ∂u∗

∂α
− ∂u∗

∂β
,

∂2u

∂x2 = ∂2u∗

∂α2 −2
∂2u∗

∂α∂β
+ ∂2u∗

∂β2 ,

∂u

∂t
= ∂u∗

∂α
+ ∂u∗

∂β
,

∂2u

∂t 2 = ∂2u∗

∂α2 +2
∂2u∗

∂α∂β
+ ∂2u∗

∂β2 ,

where to simplify the notation we do not write the superscript k. In particular,

2u = 4
∂2u∗

∂α∂β
=:3u∗ and

m∑
a,b=1

n∑
µ=0

Γab(u)∂µua∂µub =−4
m∑

a,b=1
Γ∗ab(u∗)

∂ua∗

∂α

∂ub∗

∂β
=: −N∗(u∗),(5.3.1)

for some Γ∗ab having the same regularity of Γab . So by following [133] and [159] with notation

ζ(α,β,ω) := ξ(t , x,ω),ω ∈Ω a.e., the stochastic wave map Cauchy problem (1.2.6) in (α,β)-coordinate

that we consider is the following

(5.3.2)

3u∗ =N∗(u∗)+σ(u∗)ζ̇,

u∗(α,−α) = u0(α) and ∂αu∗(α,−α)+∂βu∗(α,−α) = u1(α),

where σ ∈C3
b(R2), that is, σ is bounded and belongs to the space C3(R2) and has bounded derivatives

up to order 3. The noise ζ is a fractional Brownian sheet (fBs), with Hurst indices greater than 1
2 , on R2,

i.e. for H1, H2 ∈
(1

2 ,1
)
. That is, refer [159, Chapter 1], ζ is a centred Gaussian process defined on a given

complete probability spaces (Ω,F,P), whose covariance function is given by, for (α1,β1), (α2,β2) ∈R2,

E
[
ζ(α1,β1) ζ(α2,β2)

]= RH1 (|α1|, |α2|) RH2 (|β1|, |β2|),
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where RH (a,b), a,b ∈R, is the covariance function of a standard fractional Brownian motion (fBm)

with Hurst parameter H :

RH (a,b) = 1

2

(
a2H +b2H −|a −b|2H )

, a,b ∈R.

Since we will mostly work with the wave map problem (5.3.2) which is in (α,β)-coordinates and

with asterisk (∗) notation it becomes very clumsy, we will write the problem (5.3.2) without asterisk

(∗) mark in remaining of the chapter unless there is any confusion.

As usual in the SPDE theory, we understand the stochastic geometric wave equation (5.3.2) in the

following integral (called often mild) form

u = S(u0,u1)+3−1N(u)+3−1σ(u)ζ̇,(5.3.3)

where, for (α,β) ∈R2,

(5.3.4) [S(u0,u1)](α,β) := 1

2

[
u0(α)+u0(−β)

]+ 1

2

∫ α

−β
u1(r )dr,

(5.3.5)
[
3−1N(u)

]
(α,β) := 1

4

∫ α

−β

∫ β

−a
N(u(a,b))db d a,

and

[
3−1σ(u)ζ̇

]
(α,β) := 1

4

∫ α

−β

∫ β

−a
σ(u(a,b))ζ̇(a,b)db d a

=:
1

4

∫ α

−β

∫ β

−a
σ(u(a,b))ζ(d a,db).(5.3.6)

Note that, at present, the expressions in (5.3.4) - (5.3.6) are nothing more than some formal notation

which we write in this manner because in the case of sufficient regular initial data it is of D’Alembert

form in (α,β)-coordinates, see [66, Section 2.4]. In the forthcoming sections we will show that, with

the assumptions we have made on the non-linearity and the noise, each term is well-defined locally

and belongs to a suitable space.

5.4 Estimates

We define the following relation between any three real numbers a,b,c. We say that

c ≺ {a,b}

if and only if

a +b ≥ 0, c ≤ a, c ≤ b, c ≤ a +b − 1

2
,

and

c = a +b − 1

2
⇒ a +b > 0, c < a, c < b.
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Let η ∈C∞
comp(R) be a cut-off function which satisfy

(5.4.1) η(−x) = η(x), 0 ≤ η(x) ≤ 1, η(x) =
1, if |x| ≤ 2,

0, if |x| ≥ 4.

We put ηT (x) := η( x
T

)
for any T > 0.

5.4.1 Some useful known facts

In this subsection we state a few important results from the point of view to our analysis but some of

the results are already proven in the literature. The first result is the following lemma to control the

localized norm of primitive of a function with respect to the function itself.

Lemma 5.4.1. [132, Lemma 2.2] For every s > 1
2 , there exists a continuous linear map

P : H s−1(R) 3 f 7→
∫ ·

0
f (y)d y ∈ H s

loc(R),

such that [P( f )](x) = ∫ x
0 f (y)d y is the Riemann integral for every f ∈ C∞

comp(R). Moreover, for any

smooth function χ with supp χ⊂ [−T,T ] for some T > 0, we have∥∥∥χ(x)
∫ x

0
f (y)d y

∥∥∥
H s
. (1∨T 2) ‖χ‖C1 ‖ f ‖H s−1 .

The next two results are standard ones regarding the multiplication of one-dimensional Sobolev

spaces and its extension to the product Sobolev spaces. We ask the reader to refer Lemma 3.2 and

Lemma 3.3 of [92], respectively, for the proof.

Lemma 5.4.2. If s, s̄ ∈R such that s > 1
2 and s̄ ∈ [−s, s], then

‖ f g‖H s̄ . ‖ f ‖H s‖g‖H s̄ .

Lemma 5.4.3. If s1, s2 > 1
2 and s̄i ∈ [−si , si ], i = 1,2, then

(5.4.2) ‖ f g‖
H

s̄1
α H

s̄2
β

. ‖ f ‖H
s1
α H

s2
β
‖g‖

H
s̄1
α H

s̄2
β

,

and

(5.4.3) ‖ f g‖
H

s̄1
α H

s̄2
β

. ‖ f ‖
H

s̄1
α H

s2
β

‖g‖
H

s1
α H

s̄2
β

.

One straightforward consequence of Lemmata 5.4.2 and 5.4.3 is that the one dimensional and

the product Sobolev spaces are stable under the multiplication by bump functions. We also need the

following estimate which can be easily derived from [108, Lemma 2.4].

Lemma 5.4.4. Let a,b,c ∈ R such that c ≺ {a,b} and a +b > 1
2 . Then the following linear estimate

holds

‖ f (α,−α)‖H c
α
. ‖ f (α,β)‖H a

αH b
β

.

143



CHAPTER 5. STOCHASTIC GEOMETRIC WAVE EQUATION ON R1+1 WITH ROUGH DATA

5.4.2 Scaling in inhomogeneous Sobolev and Besov spaces

The following lemma shows the action of P on a scaled function.

Lemma 5.4.5. Given λ≥ 1, let Xλ : S′(R) → S′(R) defined by duality as

〈Xλ f ,ϕ〉 :=
〈

f ,
1

λ
Y 1

λ
ϕ

〉
, ϕ ∈ S(R),

where [Yλϕ](x) := 1
λϕ

( x
λ

)
,ϕ ∈ S(R). Then for every f ∈ H s−1(R), the following holds

[P(Xλ f )](λx) = [P( f )](x), x ∈R.

Proof of Lemma 5.4.5 It is easy to see that if we restrict to f ∈C∞
comp(R), then Xλ f = Yλ f on R and,

consequently, the change of variable gives

P(Xλ f )(λx) =
∫ λx

0

1

λ
f
( y

λ

)
d y =

∫ x

0
f (z)d z =P( f )(x).(5.4.4)

But this concludes the proof because C∞
comp(R) is dense in H s−1(R) and both sides of (5.4.4) are

continuous w.r.t. f ∈ H s−1(R). However, we also provide a direct proof as follows.

Let us define

J : H s−1(R) 3 f 7→ [MλPXλ] f ∈ H s
loc(R),

where [Mλg ](·) := g (λ·). Observe that for f ∈C∞
comp(R),

[MλPXλ] f (x) =P( f )(x).(5.4.5)

By (5.4.12), Xλ : H s−1(R) → H s−1(R) is well-defined and satisfy

(5.4.6) ‖Xλg‖H s−1(R) ≤λ
1
2−s‖g‖H s−1(R).

Next we claim that Mλ : H s
loc(R) → H s

loc(R) is well-defined. Indeed, let ψ ∈ C∞
comp(R), then by using

Lemma 5.1.6, for every g ∈ H s
loc(R) we have

‖ψ(x)[Mλg ](x)‖2
H s (R) '

∫
R
|ψ(x)g (λx)|2 d x +

∫
R2

|ψ(x)g (λx)−ψ(y)g (λy)|2
|x − y |1+2s d x d y

= 1

λ

∫
R
|ψ(x/λ)g (x)|2 d x + λ1+2s

λ2

∫
R2

|ψ(x/λ)g (x)−ψ(y/λ)g (y)|2
|x − y |1+2s d x d y

= 1

λ
‖ψλ(x)g (x)‖2

L2(R) +
1

λ1−2s ‖ψλ(x)g (x)‖2
Ḣ s (R)

<∞.(5.4.7)

Sinceψ ∈C∞
comp(R) andλ is fixed, there exists an m ∈N such that suppψ⊂ [−mλ,mλ]. Then invoking

(5.4.7) followed by Lemma 5.4.1 and estimate (5.4.6) gives, for any f ∈C∞
comp(R),

‖ψ(x)[J f ](x)‖2
H s (R) =

1

λ
‖ψλ(x) [PXλ f ](x)‖2

L2(R) +
1

λ1−2s ‖ψλ(x) [PXλ f ](x)‖2
Ḣ s (R)

. (1∨m2)2 1

λ1−2s ‖ψλ‖2
C1 ‖Xλ f ‖2

H s−1(R) = (1∨m2)2‖ψλ‖2
C1 ‖ f ‖2

H s−1(R).
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So we have proved that the map J̄ : C∞
comp(R) 3 f 7→ MλPXλ f ∈ H s

loc(R) is well-defined and (5.4.5)

holds. In particular,

(5.4.8) [J̄ f ](x) = [P(Xλ f )](λx) = [P f ](x), f ∈C∞
comp(R).

Next, since C∞
comp(R) is dense in ,→ H s−1(R) and H s

loc(R) is a Fréchet space, there exists a unique

continuous linear extension J : H s−1(R) → H s
loc(R) and (5.4.8) holds as well. Hence we have proved

Lemma 5.4.5. �

In our well-posedness result Theorem 5.5.3 we need the following lemma which allows us to scale

the initial data in such a way that we can make their norm as small as we please. Let χ be defined

similar to (5.4.1). Let ψ be a bump function which is non zero on the support of χ and
∫
Rψ(x)d x = 1.

Then, for λ≥ 1 and f , g ∈ L1
loc(R), we define a scaling,Tλ : f 7→χ(·)[ f

( ·
λ

)− f̄ λ
]

,

Sλ : g 7→ 1
λχ(·)g

( ·
λ

)
,

(5.4.9)

where f̄ λ is defined as follows

f̄ λ :=
∫
R

f
( y

λ

)
ψ(y)d y.

Lemma 5.4.6 (Scaling Lemma). For every s ∈ (1
2 ,1

)
and λ≥ 1, the following inequality holds,

(5.4.10) ‖Sλg‖H s−1(R).χ λ
1
2−s‖g‖H s−1(R).

Moreover, there exists a constant ε(λ) > 0 such that

(5.4.11) ‖Tλ f ‖H s (R).χ,ψ λ
−ε‖ f ‖H s (R), 0 < ε≤ ε(λ).

Proof of Lemma 5.4.6 Fix any arbitrary s ∈ (1
2 ,1

)
and λ≥ 1. The estimate (5.4.10) is straightforward

due to the Lemma 5.4.2 and properties of Fourier transform. Indeed,

‖Sλg‖H s−1(R). ‖χ‖H s (R)

∥∥∥λ−1g
( ·
λ

)∥∥∥
H s−1(R)

= ‖χ‖H s (R)

(∫
R

(1+|ξ|2)s−1|[Fg ](λξ)|2 dξ

) 1
2

.χ λ
1
2−s ‖g‖H s−1(R).(5.4.12)

To prove (5.4.11) we need to work a bit as follows. First, for a fixed ε> 0 (value to be set later), define a

map

T : H
3
2+ε(R) 3 f 7→ Tλ f ∈ H s(R).

Clearly, T is linear. By using the algebra property of H 3/2+ε(R) it is easy to check that T is well-defined.

Next, since

F f =1{ξ:|ξ|>λ}F f +1{ξ:|ξ|≤λ}F f ,
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we can define

f1 :=F−1(1{ξ:|ξ|>λ}F f ) and f2 :=F−1(1{ξ:|ξ|≤λ}F f ).

Observe that f1, f2 ∈ H
3
2+ε(R), since f . Next, due to the linearity of Tλ ∈ H

3
2+s(R),

‖Tλ f ‖H s (R) ≤ ‖Tλ f1‖H s (R) +‖Tλ f2‖H s (R),(5.4.13)

it is enough to estimate ‖Tλ fi‖H s (R), i = 1,2.

To deal with the term involving f2, first note that by [155, Theorem 2.8.1], [155, Remark 2.8.1/3]

and the Definition 5.1.1,

H
3
2+ε(R) ,→C1(R).

Moreover, since χ has compact support, Tλ f ∈C1
comp(R) whenever f ∈C1(R). Now since the support

of Tλ f2 is subset of support of χ and C1
comp(R) ,→ H s(R), to estimate the H s(R)-norm of Tλ f2 it is

enough to bound the C1
comp(R)-norm of Tλ f2. In this line observe that, since C1

comp(R) function is

Lipschitz on compact sets with bounded derivative, if we denote the Lipschitz constant and the

L∞-norm of f ′
2 by L f2 and B f ′

2
, respectively, the embedding C1

comp(R) ,→ H s(R) and the product rule

gives

‖Tλ f2‖C1
comp(R) ≤ sup

x∈supp χ

∣∣∣χ(x)
[

f2

( x

λ

)
− f̄ λ2

]∣∣∣+ sup
x∈supp χ

∣∣∣χ′(x)
[

f2

( x

λ

)
− f̄ λ2

]∣∣∣
+ sup

x∈supp χ

∣∣∣χ(x)λ−1( f2)′
( x

λ

)∣∣∣
≤ (1+‖χ′‖L∞) sup

x∈supp χ
χ(x)

∫
R

∣∣∣ f2

( x

λ

)
− f2

( y

λ

)∣∣∣ψ(y)d y +λ−1B f ′
2

. L f2 sup
x∈supp χ

∫
supp ψ

∣∣∣ x

λ
− y

λ

∣∣∣ψ(y)d y +λ−1B f ′
2

.χ,ψ λ
−1

[
L f2 +B f ′

2

]
. λ−1‖ f2‖C 1(R) ≤ λ−1‖ f2‖H

3
2 +ε(R)

.λ
1+2ε−2s

2

(∫
{ξ:|ξ≤λ}

(1+|ξ|2)s |(F f )(ξ)|2 dξ

) 1
2 ≤λ 1+2ε−2s

2 ‖ f ‖H s (R).

This consequently gives

(5.4.14) ‖Tλ f2‖H s (R).χ,ψ λ
1
2+ε−s ‖ f ‖H s (R).

To complete the proof we still need to deal with the term involving f1. By invoking definition of

f1, Lemma 5.4.2 and the Plancherel Theorem followed by the Cauchy-Schwartz inequality we get

‖Tλ f1‖H s (R).χ
∥∥∥ f1

( ·
λ

)∥∥∥
H s (R)

+| f̄ λ1 | =λ
(∫
R

(1+|ξ|2)s |[F f1](λξ)|2 dξ

) 1
2

+
∣∣∣∫
R

[
F f1

( x

λ

)]
(ξ) [Fψ(x)](ξ)dξ

∣∣∣
.λ

1
2−s

(∫
{ξ:|ξ|&λ}

〈ξ〉2s |[F f ](ξ)|2 dξ

) 1
2 +

[∫
{ξ:|ξ|>λ}

〈ξ〉2s |(F f )(ξ)|2 dξ

] 1
2 ×

146



5.4. ESTIMATES

×
[∫

{ξ:|ξ|>λ}
〈ξ〉−2s

∣∣∣(Fψ)

(
ξ

λ

)∣∣∣2
dξ

] 1
2

.ψ λ
1
2−s ‖ f ‖H s (R).(5.4.15)

Finally by substituting the estimates of Tλ f2 and Tλ f1 from, respectively, (5.4.14) and (5.4.15) into

(5.4.13), we get, for every f ∈ H
3
2+ε,

(5.4.16) ‖Tλ f ‖H s (R).χ,ψ λ
1
2−s+ε‖ f ‖H s (R) +λ

1
2−s‖ f ‖H s (R).λ

1
2−s+ε‖ f ‖H s .

Since s > 1
2 ,λ≥ 1 are fixed, we can choose positive ε such that ε(λ) := s − 1

2 −ε is still positive and this

ε(λ) gives (5.4.11).

Lastly, since H
3
2+ε(R) ,→ H s(R) densely, there exists a unique continuous extension of T , denoting

again by T , such that (5.4.16) holds with the same constant and ε(λ) as in (5.4.16), for every f ∈ H s(R).

Hence we are done with proof of the Lemma 5.4.6. �

Next, to see the required scaling for Besov spaces on R2 we define the following scaling operator

Πλ : S′(R2) → S′(R2), for any λ≥ 1,

(5.4.17) 〈Πλ f ,ϕ〉 :=
〈

f ,
1

λ2Y 1
λ
ϕ

〉
, ϕ ∈ S(R2),

where [Yλϕ](x, y) := 1
λ2ϕ

( x
λ , y

λ

)
,ϕ ∈ S(R2). Our next result allows us to scale the considered noise, see

Theorem 5.5.3.

Lemma 5.4.7. For every r, s > 0, λ≥ 1 and f ∈ S−r,−s
2,2 H(R2) we have

‖Πλ f ‖S−r,−s
2,2 H ≤λr+s−1‖ f ‖S−r,−s

2,2 H .

Proof of Lemma 5.4.7 The proof is by replicating the steps of proof of the Lemma 5.4.5. Another

simple proof, which uses the properties of Fourier transform, is by substituting Πλ(F f ) =F(Πλ−1 f )

in the definition of ‖Πλ f ‖S−r,−s
2,2 H . �

5.4.3 The homogeneous solution term

Recall that, for given α,β ∈ R, by S(u0,u1) we denote the image of initial data (u0,u1) under the

following map

S : (u0,u1) 7→ 1

2

[
u0(α)+u0(−β)

]+ 1

2

∫ α

−β
u1(γ)dγ.

Next we show that the map S is locally well-defined and continuous from H s(R)×H s−1(R) intoHs,δ.

Lemma 5.4.8. For every s,δ> 1
2 which satisfy δ≤ s,

‖η(α)χ(β)S(u0,u1)‖Hs,δ .η,χ ‖u0‖H s +‖u1‖H s−1 .(5.4.18)

147



CHAPTER 5. STOCHASTIC GEOMETRIC WAVE EQUATION ON R1+1 WITH ROUGH DATA

Proof of Lemma 5.4.8 Since C∞
comp(R) is dense in H s(R) and H s−1(R), it is sufficient to prove (5.4.18)

for the following map,

S :C∞
comp(R)×C∞

comp(R) 3 (u0,u1) 7→ 1

2

[
u0(α)+u0(−β)

]+ 1

2

∫ α

−β
u1(γ)dγ ∈Hs,δ

loc.

First observe that, since we are in the one dimensional setting, the image of S(u0,u1) is the unique

solution to the following rotated version, i.e. in (α,β)-coordinate system, of the linear homogeneous

wave equation Cauchy problem
3u(α,β) = 0, (α,β) ∈R2

u(α,−α) = u0(α) and
∂u

∂α
(α,−α)+ ∂u

∂β
(α,−α) = u1(α), α ∈R.

By Lemma 5.4.2 and the embedding H s(R) ,→ Hδ(R), the terms involving u0 can be estimated locally

as

‖η(α)χ(β)u0(α)‖2
Hs,δ = ‖η(α)u0(α)‖2

H s
α
‖χ(β)‖2

Hδ
β

+‖η(α)u0(α)‖2
Hδ
α
‖χ(β)‖2

H s
β

.χ ‖η(α)u0(α)‖2
H s .η,χ ‖u0‖2

H s .

Similarly, we estimate the norm ‖η(α)χ(β)u0(−β)‖Hs,δ , up to a factor, by ‖u0‖H s . Next, since∫ α

−β
u1(s)d s =

∫ α

0
u1(s)d s +

∫ 0

−β
u1(s)d s,

and η,χ are symmetric functions, Lemma 5.4.1 followed by the continuous embedding of H s(R) into

Hδ(R) gives∥∥∥∥η(α)χ(β)
∫ α

−β
u1(s)d s

∥∥∥∥2

Hs,δ

= ‖χ(β)‖2
Hδ
β

∥∥∥∥η(α)
∫ α

0
u1(s)d s

∥∥∥∥2

H s
α

+‖χ(β)‖2
H s
β

∥∥∥∥η(α)
∫ α

0
u1(s)d s

∥∥∥∥2

Hδ
α

+‖η(α)‖2
H s
α

∥∥∥∥χ(β)
∫ 0

−β
u1(s)d s

∥∥∥∥2

Hδ
β

+‖η(α)‖2
Hδ
α

∥∥∥∥χ(β)
∫ 0

−β
u1(s)d s

∥∥∥∥2

H s
β

.η,χ ‖u1‖2
H s−1 .

Hence we are done with the proof of Lemma 5.4.8. �

5.4.4 The noise term

Recall that for a given f ∈ S′(R2) the 2-index Littlewood-Paley blocks are defined by

∆ j ,k f =
0, if j ≤−1 or k ≤−1,

F−1[ϕ j (τ)ϕk (ξ)(F f )(τ,ξ)], if j ,k ≥ 0.

Here {ϕ j }∞j=0 is the dyadic partition of unity on R constructed in Section 5.1. The first result of this

subsection is a generalization of [132, Lemma 2.2] but very close to [108, Lemma 2.5]. The proof
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presented here is based on the Littlewood-Paley theory which can be generalized to handle the

less regular noise case where one needs to deal with Besov spaces. It is also relevant to remark that

the method of proof below can be modified to include the noise of lower regularity than we are

considering here.

Proposition 5.4.9. Assume that s,δ ∈ (3
4 ,1

)
. For every f ∈Hs−1,δ−1, there exists a unique F ∈Hs,δ

loc such

that ∂2F
∂α∂β = f and which satisfies the following homogeneous boundary conditions

F (α,−α) = 0 and
∂F

∂α
(α,−α)+ ∂F

∂β
(α,−α) = 0, α ∈R.

Moreover, for every η,χ and T > 0, there exists a positive constant C (η,χ,T ), which is an increasing

function of T , such that

‖ηT (α)χT (β)F (α,β)‖Hs,δ ≤C (η,χ,T ) ‖ f ‖Hs−1,δ−1 .

Remark 5.4.10. To maintain the analogy with sufficient regularity cases, in the remaining part of the

chapter, we will denote F by 3−1 f or

F (α,β) :=
∫ α

−β

∫ β

−a
f (a,b)db d a, (α,β) ∈R2.

Proof of Proposition 5.4.9 Define

(5.4.19) H(α,β) :=
∫ α

−β

∫ β

−γ
(∆0,0 f )(γ,τ)dτdγ,

and

G(α,β) :=
∞∑

j ,k=1

[
F−1[

1

(iτ)(iξ)
ϕ j (τ)ϕk (ξ)(Fφ)(τ,ξ)]

]
(α,β)

− 1

2

∞∑
j ,k=1

[
F−1[

1

(iτ)(iξ)
ϕ j (τ)ϕk (ξ)(Fφ)(τ,ξ)]

]
(α,−α)

− 1

2

∞∑
j ,k=1

[
F−1[

1

(iτ)(iξ)
ϕ j (τ)ϕk (ξ)(Fφ)(τ,ξ)]

]
(−β,β)

− 1

2

∫ α

−β

∞∑
j ,k=1

[
F−1[

1

(iξ)
ϕ j (τ)ϕk (ξ)(Fφ)(τ,ξ)]

]
(γ,−γ)dγ

− 1

2

∫ α

−β

∞∑
j ,k=1

[
F−1[

1

(iτ)
ϕ j (τ)ϕk (ξ)(Fφ)(τ,ξ)]

]
(γ,−γ)dγ

=:
5∑

i=1
G i (α,β),(5.4.20)

and,

I (α,β) :=
∫ α

−β

∞∑
n=1

F−1
[

1

iξ
ϕ0(τ)ϕn(ξ)(F f )(τ,ξ)

]
(γ,β)dγ
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−
∫ α

−β

∞∑
n=1

F−1
[

1

iξ
ϕ0(τ)ϕn(ξ)(F f )(τ,ξ)

]
(γ,−γ)dγ,(5.4.21)

and,

J (α,β) :=
∫ β

−α

∞∑
m=1

F−1
[

1

iτ
ϕ0(ξ)ϕm(τ)(F f )(τ,ξ)

]
(α,γ)dγ

−
∫ β

−α

∞∑
m=1

F−1
[

1

iτ
ϕ0(ξ)ϕm(τ)(F f )(τ,ξ)

]
(−γ,γ)dγ.(5.4.22)

We will prove that

F := H + I + J +G ,

is the one which satisfy all the claims of the Proposition 5.4.9. We begin the proof with a few comments

on the term ∆0,0 f . By [138, Theorem 7.23], since

(τ,ξ) 7→ϕ0(τ)ϕ0(ξ)(F f )(τ,ξ)

is a distribution of compact support, ∆0,0 f := F−1
[
ϕ0(τ)ϕ0(ξ)(F f )(τ,ξ)

]
is an analytic function of

polynomial growth. Therefore, H is also an analytic function (also of polynomial growth) and the

integral to define H is in the Riemann sense. In particular, H is a tempered distribution.

Next step is to find the bound for H . Let us fix f ,η,χ,T . Then since H 1
αH 1

β
(R2) is continuously

embedded in H s
αHδ

β
(R2) for s,δ≤ 1, we have

‖ηT (α)χT (β)H(α,β)‖H s
αHδ

β
≤ ‖ηT (α)χT (β)H(α,β)‖H 1

αH 1
β

= ‖H̃‖L2
αL2

β
+

∥∥∥∂H̃

∂α

∥∥∥
L2
αL2

β

+
∥∥∥∂H̃

∂β

∥∥∥
L2
αL2

β

+
∥∥∥ ∂2H̃

∂α∂β

∥∥∥
L2
αL2

β

,(5.4.23)

where we write H̃(α,β) := ηT (α)χT (β)H(α,β). We estimate each term in r.h.s above separately as

follows: by the Hölder inequality and the support property of η,χ, the first term satisfies

‖H̃‖L2
αL2

β
≤

[∫
R2
|ηT (α)χT (β)|2(α+β)2

(∫ α

−β

∫ β

−γ
|(∆0,0 f )(γ,δ)|2 dδdγ

)
dαdβ

] 1
2

. T ‖∆0,0 f ‖L2
αL2

β

(∫
R

∣∣∣η(α
T

)∣∣∣2
dα

) 1
2
(∫
R

∣∣∣∣χ(
β

T

)∣∣∣∣2

dβ

) 1
2

= T 2‖η‖L2
α
‖χ‖L2

β
‖∆0,0 f ‖L2

αL2
β

.(5.4.24)

For the second term we apply (5.4.24) and the Hölder inequality to obtain∥∥∥∥∂H̃

∂α

∥∥∥∥
L2
αL2

β

= 1

T

∥∥∥(η′)T (α)
(α

T

)
χT (β)H(α,β)

∥∥∥
L2
αL2

β

+
∥∥∥∥ηT (α)χT (β)

∫ β

−α
(∆0,0 f )(α,δ)dδ

∥∥∥∥
L2
αL2

β

. T ‖η′‖L2
α
‖χ‖L2

β
‖∆0,0 f ‖L2

αL2
β
+T

1
2

[∫
R2
|ηT (α)χT (β)|2‖(∆0,0 f )(α, ·)‖2

L2
β

dαdβ

] 1
2

≤ T ‖η′‖L2
α
‖χ‖L2

β
‖∆0,0 f ‖L2

αL2
β
+T ‖η‖L∞

α
‖χ‖L2

β
‖∆0,0 f ‖L2

αL2
β

.(5.4.25)
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Here in the last step we also use ‖ηT ‖L∞
α
= ‖η‖L∞

α
. Similarly by using∫ α

−β

∫ β

−γ
(∆0,0 f )(γ,δ)dδdγ=

∫ β

−α

∫ α

−δ
(∆0,0 f )(γ,δ)dγdδ,

we have ∥∥∥∥∂H̃

∂β

∥∥∥∥
L2
αL2

β

. T ‖∆0,0 f ‖L2
αL2

β

(
‖χ′‖L2

β
+‖χ‖L∞

β

)
‖η‖L2

α
.(5.4.26)

For the final term by using (5.4.25) we get∥∥∥∥ ∂2H̃

∂α∂β

∥∥∥∥
L2
αL2

β

≤ 1

T 2

∥∥(η′)T (α)(χ′)T (β)H(α,β)
∥∥

L2
αL2

β
+ 1

T

∥∥∥∥(η′)T (α)χT (β)
∫ α

−β
(∆0,0 f )(γ,β)dγ

∥∥∥∥
L2
αL2

β

+ 1

T

∥∥∥∥ηT (α)(χ′)T (β)
∫ β

−α
(∆0,0 f )(α,δ)dδ

∥∥∥∥
L2
αL2

β

+∥∥ηT (α)χT (β)(∆0,0 f )(α,β)
∥∥

L2
αL2

β

. ‖η′‖L2
α
‖χ′‖L2

β
‖∆0,0 f ‖L2

αL2
β
+‖χ‖L∞

β
‖η′‖L2

α
‖∆0,0 f ‖L2

αL2
β

+‖η‖L∞
α
‖χ′‖L2

β
‖∆0,0 f ‖L2

αL2
β
+T 2‖η‖L2

α
‖χ‖L2

β
‖∆0,0 f ‖L2

αL2
β

.(5.4.27)

Hence, substitution of the estimates (5.4.24), (5.4.25), (5.4.26) and (5.4.27) into (5.4.23) gives

‖ηT (α)χT (β)H‖H 1
αH 1

β
. (1∨T 2)‖∆0,0 f ‖L2

αL2
β

[
‖η‖L2

α
‖χ‖L2

β

+
(
‖η′‖L2

α
+‖η‖L∞

α

)
‖χ‖L2

β
+

(
‖χ′‖L2

β
+‖χ‖L∞

β

)
‖η‖L2

α

+
(
‖η′‖L2

α
‖χ′‖L2

β
+‖η‖L∞

α
‖χ′‖L2

β
+‖χ‖L∞

β
‖η′‖L2

α
+‖η‖L2

α
‖χ‖L2

β

)]
.(5.4.28)

But, due to the Theorem 5.1.14, we have

‖ f ‖2
H s−1
α Hδ−1

β

' ‖F−1(ϕ0ϕ0F f )‖2
L2(R2) +

∑
( j ,k)∈N2

0

22((s−1) j+(δ−1)k)‖F−1(ϕ jϕkF f )‖2
L2(R2)

≥ ‖F−1(ϕ0ϕ0F f )‖2
L2(R2) = ‖∆0,0 f ‖2

L2
αL2

β

,

whereN2
0 = {( j ,k) ∈N2 : ( j ,k) 6= (0,0)}. Consequently from (5.4.23) and (5.4.28) we proved that there

exists C (η,χ,T ) > 0 such that

(5.4.29) ‖ηT (α)χT (β)H(α,β)‖H s
αHδ

β
≤C (η,χ,T )‖ f ‖H s−1

α Hδ−1
β

.

Similarly we can prove that

‖ηT (α)χT (β)H(α,β)‖H s
β

Hδ
α
≤C (η,χ,T )‖ f ‖H s−1

β
Hδ−1
α

,

and hence, jointly with (5.4.29) we obtain,

(5.4.30) ‖ηT (α)χT (β)H‖Hs,δ ≤CH (η,χ,T )‖ f ‖Hs−1,δ−1 ,

for some CH (η,χ,T ) > 0.

151



CHAPTER 5. STOCHASTIC GEOMETRIC WAVE EQUATION ON R1+1 WITH ROUGH DATA

Next, we see how the other terms G , I , J are well-defined and satisfy the suitable estimates. We

divide the proof in a sequence of Lemmata and to eliminate the frequent reference of Theorem 5.1.14

we will use it without specifying unless there is any confusion. For each j ,k ≥ 1, we observe that,

G1
j ,k :=F−1

[
ϕ j (τ)ϕk (ξ)

( ∑
m,n≥1

1

(iτ)(iξ)
ϕm(τ)ϕn(ξ)(F f )(τ,ξ)

)]

=F−1

[(
k+1∑

n=(k−1)∨1

j+1∑
m=( j−1)∨1

1

(iτ)(iξ)
ϕ j (τ)ϕm(τ)ϕk (ξ)ϕn(ξ)(F f )(τ,ξ)

)]
.(5.4.31)

Lemma 5.4.11. For all j ,k ≥ 1 and f ∈Hs−1,δ−1, G1
j ,k belongs to L2(R2).

Proof of Lemma 5.4.11 Let us choose and fix f ∈Hs−1,δ−1. Due to finite sum in (5.4.31), it is sufficient

to prove the following. For any fix j ,k ≥ 0 and m,n ≥ 1 in such a way that n ∈ {(k −1)∨1,k,k +1} and

m ∈ {( j −1)∨1, j , j +1},

F−1
[

1

(iτ)(iξ)
ϕ j (τ)ϕm(τ)ϕk (ξ)ϕn(ξ)(F f )(τ,ξ)

]
∈ S′(R2)∩L2(R2).

Since f ∈Hs−1,δ−1, F f ∈ L2
loc(R2). Indeed, since s −1,δ−1 < 0, for every R > 0 we getÏ

|ξ|,|τ|<R
|[F f ](τ,ξ)|2 dτdξ≤ 1

(1+R2)s+δ−2

Ï
|ξ|,|τ|<R

(1+|τ|2)s−1(1+|ξ|2)δ−1|[F f ](τ,ξ)|2 dτdξ

≤ 1

(1+R2)s+δ−2
‖ f ‖2

H s−1
α Hδ−1

β

<∞.

So f ∈Hs−1,δ−1 implies that ϕ j (τ)ϕk (ξ)F f ∈ L2
comp(R2). Since ϕ j and ϕk vanish at the origin,

1

(iτ)(iξ)
ϕ j (τ)ϕk (ξ)(F f )(τ,ξ) ∈ L2

comp(R2),

and consequently,

F−1
[

1

(iτ)(iξ)
ϕ j (τ)ϕk (ξ)(F f )(τ,ξ)

]
∈ L2(R2) ⊂ S′(R2).

By a similar argument for ϕm ,ϕn with m,n ≥ 1, we get

F−1
[

1

(iτ)(iξ)
ϕ j (τ)ϕk (ξ)ϕm(τ)ϕn(ξ)(F f )(τ,ξ)

]
∈ L2(R2),

and we finish the proof of Lemma 5.4.11. Note that by [138, Theorem 7.19] we can write

G1
j ,k =

k+1∑
n=(k−1)∨1

j+1∑
m=( j−1)∨1

F−1
[

1

(iτ)(iξ)
ϕm(τ)ϕn(ξ)

]
∗∆ j ,k f .

�

Next we show that
∑∞

j ,k=1 G1
j ,k is a well-defined element of L2(R2).

Lemma 5.4.12.
∞∑

j ,k=1
G1

j ,k converges in L2(R2).
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Proof of Lemma 5.4.12 Observe that by invoking the Cauchy-Schwartz and the Young inequalities

we have

∞∑
j ,k=1

‖G1
j ,k‖L2(R2) =

∞∑
j ,k=1

1

2s j+δk
‖2s j+δkG1

j ,k‖L2(R2)

.

( ∞∑
j ,k=1

22(s j+δk)‖∆ j ,k f ‖2
L2(R2)

k+1∑
n=(k−1)∨1

j+1∑
m=( j−1)∨1

∥∥∥F−1
[

1

(iτ)(iξ)
ϕm(τ)ϕn(ξ)

]∥∥∥2

L1(R2)

) 1
2

.(5.4.32)

Consequently, since∥∥∥F−1
[

1

(iτ)(iξ)
ϕm(τ)ϕn(ξ)

]∥∥∥2

L1
= 2−2m−2n

∥∥∥F−1
[

1

(iτ)(iξ)
ψ(τ)ψ(ξ)

]∥∥∥2

L1(R2)
,

where ψ is defined in (5.1.6), we have

∞∑
j ,k=1

‖G1
j ,k‖L2(R2) ≤

( ∞∑
j ,k=1

22(s−1) j+2(δ−1)k‖∆ j ,k f ‖2
L2(R2)

∥∥∥F−1
[

1

(iτ)(iξ)
ψ(τ)ψ(ξ)

]∥∥∥2

L1(R2)

×
k+1∑

n=(k−1)∨1

j+1∑
m=( j−1)∨1

2−2m+2 j+2k−2n

) 1
2

.

( ∞∑
j ,k=1

22(s−1) j+2(δ−1)k‖∆ j ,k f ‖2
L2(R2)

∥∥∥F−1
[

1

(iτ)(iξ)
ψ(τ)ψ(ξ)

]∥∥∥2

L1(R2)

) 1
2

.ψ ‖ f ‖Ss−1,δ−1
2,2 B = ‖ f ‖H s−1

α Hδ−1
β

.(5.4.33)

So
∞∑

j ,k=1
G1

j ,k converges absolutely in L2(R2). Hence, since L2(R2) is a Banach space, G1 :=
∞∑

j ,k=1
G1

j ,k is

a well-defined element of L2(R2) and we are done with the proof of Lemma 5.4.12. �

Next we will prove that G1 belongs toHs,δ and satisfy the following estimate,

‖ηT (α)χT (β)G1(α,β)‖Hs,δ .η,χ,T ‖G1‖Hs,δ .ψ ‖ f ‖Hs−1,δ−1 .(5.4.34)

Proof of the estimate 5.4.34 Note that the first inequality in (5.4.34) follows from Lemma 5.4.3. To

prove the second inequality, first observe that since G1 is in L2(R2), the terms∆ j ,kG1 for j ,k ≥ 0 makes

sense and by using the properties of dyadic partition, see Section 5.1, a straightforward calculation

gives

ϕ j (τ)ϕk (ξ)

( ∞∑
m,n=1

1

(iτ)(iξ)
ϕm(τ)ϕn(ξ)(F f )(τ,ξ)

)

= ϕ j (τ)ϕk (ξ)

(iτ)(iξ)
(1−ϕ0(τ))(1−ϕ0(ξ))(F f )(τ,ξ) = 0,

in the cases (1) j = k = 0; (2) j = 1,k = 0; and (3) j = 0,k = 1. Consequently,

∞∑
j ,k=1

ϕ j (τ)ϕk (ξ)

( ∞∑
m,n=1

1

(iτ)(iξ)
ϕm(τ)ϕn(ξ)(F f )(τ,ξ)

)
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=
∞∑

j ,k=0
ϕ j (τ)ϕk (ξ)

( ∞∑
m,n=1

1

(iτ)(iξ)
ϕm(τ)ϕn(ξ)(F f )(τ,ξ)

)
.(5.4.35)

Next, since by Lemma 5.4.12 we know G1 ∈ L2(R2), invoking the Fourier-Plancherel Theorem gives,

for all j ,k ≥ 1, (
∆ j ,kG1) (α,β) =G j ,k (α,β).

Hence, using (5.4.35) followed by the calculation of (5.4.32) and (5.4.33) we get

‖G1‖H s
αHδ

β
=

(
22(0s+0δ)‖∆0,0G1‖2

L2 +22(1s+0δ)‖∆1,0G1‖2
L2 +22(0s+1δ)‖∆0,1G1‖2

L2

+
∞∑

j ,k=1
22(s j+δk)‖∆ j ,kG1‖2

L2

)1/2

=
( ∞∑

j ,k=1
22(s j+δk)‖G1

j ,k‖2
L2

)1/2

.ψ ‖ f ‖H s−1
α Hδ−1

β
.(5.4.36)

By interchanging the roles of α,β in the computation of (5.4.36) we get

‖G1‖Hδ
αH s

β
.ψ ‖ f ‖Hδ−1

α H s−1
β

,

and hence, the estimate (5.4.34). �

Now note that since G1 ∈Hs,δ, G2(α) =G1(α,−α) is a well-defined function of α. Thus, since η is

an even bump function, invoking Theorem 5.1.14 and Lemma 5.4.4 gives

‖ηT (α)χT (β)G2(α)‖H s
αHδ

β
.χ,T ‖ηT (α)ηT (−α)G1(α,−α)‖H s

α

. ‖ηT (α)ηT (β)G1(α,β)‖H s
αHδ

β
.

But this has been estimated in (5.4.34) and consequently, G2 satisfies

‖ηT (α)χT (β)G2(α,β)‖Hs,δ .η,χ,T,ψ ‖ f ‖Hs−1,δ−1 .(5.4.37)

Similarly we can bound the term G3 locally which only depends on β. Now we find the bound of

terms G4 and G5. Since they have similar structures we only work with G4. First note that

G4(αβ) =
∫ α

−β

∞∑
j ,k=1

[
F−1[

1

(iξ)
ϕ j (τ)ϕk (ξ)(Fφ)(τ,ξ)]

]
(γ,−γ)dγ

=
∫ α

−β

[
F−1[

1

(iξ)
(1−ϕ0(τ))(1−ϕ0(ξ))(Fφ)(τ,ξ)]

]
(γ,−γ)dγ,

and since 1
(iξ) (1−ϕ0(ξ)) has removable singularity at the origin,

1

(iξ)
(1−ϕ0(τ))(1−ϕ0(ξ))(Fφ)(τ,ξ) is a tempered distribution.
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Thus, we use Lemmata 5.4.1 and 5.4.4 to obtain∥∥∥ηT (α)χT (β)
∫ α

−β

∞∑
j ,k=1

[
F−1[

1

(iξ)
ϕ j (τ)ϕk (ξ)(Fφ)(τ,ξ)]

]
(γ,−γ)dγ

∥∥∥
H s
αHδ

β

.η,χ,T

∥∥∥ ∞∑
j ,k=1

[
F−1[

1

(iξ)
ϕ j (τ)ϕk (ξ)(Fφ)(τ,ξ)]

]
(α,−α)

∥∥∥
H s−1
α

+
∥∥∥ ∞∑

j ,k=1

[
F−1[

1

(iξ)
ϕ j (τ)ϕk (ξ)(Fφ)(τ,ξ)]

]
(−β,β)

∥∥∥
Hδ−1
β

.η,χ,T

∥∥∥ ∞∑
j ,k=1

[
F−1[

1

(iξ)
ϕ j (τ)ϕk (ξ)(Fφ)(τ,ξ)]

]
(α,β)

∥∥∥
H s−1
α Hδ

β

+
∥∥∥ ∞∑

j ,k=1

[
F−1[

1

(iξ)
ϕ j (τ)ϕk (ξ)(Fφ)(τ,ξ)]

]
(α,β)

∥∥∥
H s
αHδ−1

β

.

So we conclude that to find the local estimate of G4,G5, it is sufficient to estimate

∞∑
j ,k=1

[
F−1[

1

(iξ)
ϕ j (τ)ϕk (ξ)(Fφ)(τ,ξ)]

]
(α,β),

which is as follows: for fix j ,k ≥ 0, the support property of the dyadic partition we fixed, by replicating

the calculation based on the proof of (5.4.34), we deduce∥∥∥ ∞∑
j ,k=1

[
F−1[

1

(iξ)
ϕ j (τ)ϕk (ξ)(Fφ)(τ,ξ)]

]
(α,β)

∥∥∥
H s−1
α Hδ

β

.

( ∞∑
j ,k=1

22(s−2) j+2(δ−1)k‖∆ j ,k f ‖2
L2(R2)

∥∥∥F−1
[

1

(iτ)(iξ)
ψ(τ)ψ(ξ)

]∥∥∥2

L1(R2)

×
k+1∑

n=(k−1)∨1

j+1∑
m=( j−1)∨1

2−2m+2 j+2k−2n

) 1
2

.

( ∞∑
j ,k=1

22(s−2) j+2(δ−1)k‖∆ j ,k f ‖2
L2(R2)

∥∥∥F−1
[

1

(iτ)(iξ)
ψ(τ)ψ(ξ)

]∥∥∥2

L1(R2)

) 1
2

.ψ ‖ f ‖Ss−2,δ−1
2,2 B ≤ ‖ f ‖Ss−1,δ−1

2,2 B .(5.4.38)

Hence by combining the estimates (5.4.34), (5.4.37) and (5.4.38) in the definition of G we have∥∥∥ηT (α)χT (β)G(α,β)
∥∥∥
Hs,δ
.η,χ,T,ψ ‖ f ‖Hs−1,δ−1 .(5.4.39)

Recall that

I (α,β) :=
∫ α

−β

∞∑
n=1

F−1
[

1

iξ
ϕ0(τ)ϕn(ξ)(F f )(τ,ξ)

]
(γ,β)dγ

−
∫ α

−β

∞∑
n=1

F−1
[

1

iξ
ϕ0(τ)ϕn(ξ)(F f )(τ,ξ)

]
(γ,−γ)dγ.

First we see that due to the choice of dyadic partition

∞∑
n=1

1

(iξ)
ϕ0(τ)ϕn(ξ)(F f )(τ,ξ) = 1

(iξ)
ϕ0(τ)(1−ϕ0(ξ))(F f )(τ,ξ).

155



CHAPTER 5. STOCHASTIC GEOMETRIC WAVE EQUATION ON R1+1 WITH ROUGH DATA

Thus, since ϕ0 is a smooth function and F f ∈ S′(R2), we get

∞∑
n=1

1

(iξ)
ϕ0(τ)ϕn(ξ)(F f )(τ,ξ) is a well-defined tempered distribution.

Similarly, we can conclude for the corresponding part coming in the definition of J . Our next result

provides the estimate for I and J .

Lemma 5.4.13. The terms I and J satisfy, respectively, the following estimate

(5.4.40) ‖ηT (α)χT (β)I‖Hs,δ .η,χ,T,ψ ‖ f ‖Hs−1,δ−1 ,

and

(5.4.41) ‖ηT (α)χT (β)J‖Hs,δ .η,χ,T,ψ ‖ f ‖Hs−1,δ−1 .

Proof of Lemma 5.4.13 Due to the similarity in the definition of I and J , it is enough to show the

estimate of I only. Observe that by invoking Lemma 5.4.1 we obtain

‖ηT (α)χT (β)I‖H s
αHδ

β
.η,χ,T

∥∥∥χT (β)
∞∑

n=1
F−1

[
1

(iξ)
ϕ0(τ)ϕn(ξ)(F f )(τ,ξ)

]
(α,β)

∥∥∥
H s−1
α Hδ

β

+
∥∥∥ηT (α)

∞∑
n=1

F−1
[

1

(iξ)
ϕ0(τ)ϕn(ξ)(F f )(τ,ξ)

]
(−β,β)

∥∥∥
H s
αHδ−1

β

+
∥∥∥χT (β)

∞∑
n=1

F−1
[

1

(iξ)
ϕ0(τ)ϕn(ξ)(F f )(τ,ξ)

]
(α,−α)

∥∥∥
H s−1
α Hδ

β

+
∥∥∥ηT (α)

∞∑
n=1

F−1
[

1

(iξ)
ϕ0(τ)ϕn(ξ)(F f )(τ,ξ)

]
(−β,β)

∥∥∥
H s
αHδ−1

β

.(5.4.42)

To handle the first term in the right hand side of (5.4.42), for fix j ,k ≥ 0, the choice of dyadic partition,

continuity of F : S′(R2) → S′(R2) and convolution theorem for Fourier transform implies

F−1
[
ϕ j (τ)ϕk (ξ)F

( ∞∑
n=1

F−1
[

1

(iξ)
ϕ0(τ)ϕn(ξ)(F f )(τ,ξ)

])]

=
k+1∑

n=(k−1)∨1
F−1

[
1

(iξ)
ϕ0(τ)ϕn(ξ)

]
∗∆ j ,k f .

Consequently, by invoking Lemmata 5.1.14, 5.4.2 and the Young inequality we get∥∥∥χT (β)
∞∑

n=1
F−1

[
1

(iξ)
ϕ0(τ)ϕn(ξ)(F f )(τ,ξ)

]
(α,β)

∥∥∥
H s−1
α Hδ

β

.χ,T

( ∞∑
j ,k=0

22(s−1) j+2δk
∥∥∥ k+1∑

n=(k−1)∨1
F−1

[
1

(iξ)
ϕ0(τ)ϕn(ξ)

]
∗∆ j ,k f

∥∥∥2

L2

)1/2

.

( ∞∑
j ,k=0

‖∆ j ,k f ‖2
L2 22(s−1) j+2(δ−1)k

∥∥∥F−1
[

1

(iξ)
ϕ0(τ)ψ(ξ)

]∥∥∥2

L1(R2)

k+1∑
n=(k−1)∨1

22k−2n

)1/2

.ψ ‖ f ‖Ss−1,δ−1
2,2 B .(5.4.43)
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Now for trace terms in (5.4.42), the tensor product argument used in Theorem 5.1.14 followed by

Lemma 5.4.4 and the computation based on (5.4.43) gives∥∥∥ηT (α)
∞∑

n=1
F−1

[
1

(iξ)
ϕ0(τ)ϕn(ξ)(F f )(τ,ξ)

]
(−β,β)

∥∥∥2

H s
αHδ−1

β

.η,T

∥∥∥ ∞∑
n=1

F−1
[

1

(iξ)
ϕ0(τ)ϕn(ξ)(F f )(τ,ξ)

]
(−β,β)

∥∥∥2

Hδ−1
β

.
∥∥∥ ∞∑

n=1
F−1

[
1

(iξ)
ϕ0(τ)ϕn(ξ)(F f )(τ,ξ)

]
(α,β)

∥∥∥2

H s
αHδ−1

β

.ψ ‖ f ‖Ss−1,δ−1
2,2 B .(5.4.44)

Due to the similarity of Terms 3 and 4 with Term 2 in the right hand side of (5.4.42), it is easy to see

that they also follow above estimate. Hence, by using (5.4.43)-(5.4.44) into (5.4.42) we get

‖ηT (α)χT (β)I‖H s
αHδ

β
.ψ ‖ f ‖Sδ−1,s−1

2,2 B .

By interchange of the roles of α and β we get the estimate as the same local estimate for H s
β

Hδ
α-norm

of I . Hence we finish the proof of this Lemma 5.4.13. �

Now, since s,δ > 1
2 , Ss,δ

2,2B ,→ Cbu(R2), where Cbu(R2) is the space of uniformly continuous and

bounded functions from R2 to R. So by (5.4.30), estimate (5.4.39), and Lemma 5.4.13, locally G , H , I

and J belongs to Cbu(R2). Since F = H +G + I + J ,

ηT (α)χT (β)F ∈Ccomp(R2).

Consequently, by [141, Proposition 2.2.3/4] we have

ηT (α)χT (β)F ∈Cu(R2) ⊂ L∞(R2) ⊂ S0,0
∞,∞B(R2).

Hence ηT (α)χT (β)F ∈ S′(R2) and we can calculate the Ss,δ
2,2B(R2) norm. By Lemma 5.4.30, estimate

(5.4.39), and Lemma 5.4.13 we have

‖ηT (α)χT (β)F‖Hs,δ .η,χ,T,ψ ‖ f ‖Hs−1,δ−1 .(5.4.45)

Finally by the properties of Fourier transform, for e.g. [138, Theorem 7.15], and since f ∈ S′(R2),

we obtain

∂2F

∂α∂β
=F−1(ϕ0(τ)ϕ0(ξ)(F f )(τ,ξ))+

∞∑
j ,k=1

F−1(ϕ j (τ)ϕk (ξ)(F f )(τ,ξ))

+
∞∑

n=1
F−1(ϕ0(τ)ϕn(ξ)(F f )(τ,ξ))+

∞∑
m=1

F−1(ϕm(τ)ϕ0(ξ)(F f )(τ,ξ))

=
∞∑

j ,k=0
∆ j ,k f = f .

Hence we finish the proof of Proposition 5.4.9 since the uniqueness follows from the expression of F .

Indeed, because the constructed F solves the inhomogeneous wave equation with null initial data in

(α,β)-coordinates. �
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The following lemma shows the behaviour of 3−1, see Proposition 5.4.9 for its definition, with

two parameter scaled operator Πλ.

Lemma 5.4.14. For every λ≥ 1 the following holds

(5.4.46)
(
3−1[Πλ( f )]

)
(λα,λβ) = (3−1 f )(α,β), f ∈Hs−1,δ−1, (α,β) ∈R2,

where the action of Πλ on f is defined in (5.4.17).

Proof of Lemma 5.4.14 First notice that In this proof we use Theorem 5.1.14 recursively without

specifying it. Suppose we take f ∈ C∞
comp(R2), then an easy computation based on the change of

variable, as done in (5.4.4), gives (5.4.46). For any fix λ≥ 1, let us define

J̃λ :Hs−1,δ−1 3 f 7→ [M̃λ3
−1Πλ] f ∈Hs,δ

loc,

where [M̃λg ](·, ·) := g (λ·,λ·). Observe that for f ∈C∞
comp(R2),

[M̃λ3
−1Πλ] f (α,β) = (3−1 f )(α,β).(5.4.47)

By Lemma 5.4.7, Πλ :Hs−1,δ−1 →Hs−1,δ−1 is well-defined and satisfies

(5.4.48) ‖Πλg‖Hs−1,δ−1 ≤λ1−s−δ‖g‖Hs−1,δ−1 .

Next we claim that M̃λ : Hs,δ
loc → H

s,δ
loc is well-defined. Indeed, let ϕ,ψ ∈ C∞

comp(R), then for every

g ∈ H s
locHδ

loc(R2) we have

‖ϕ(α)ψ(β)[M̃λg ](α,β)‖2
H s
αHδ

β
(R2)

'
∫
R2
|ϕ(α)ψ(β)g (λα,λβ)|2 dαdβ

+
∫
R4

|ϕ(α)ψ(β)g (λα,λβ)−ϕ(α)ψ(β)g (λa,λb)|2
|α−a|1+2s |β−b|1+2δ

dαd a dβdb

= 1

λ2

∫
R2
|ϕ(α/λ)ψ(β/λ)g (α,β)|2 dαdβ

+ λ2+2s+2δ

λ4

∫
R4

|ϕ(α/λ)ψ(β/λ)g (α,β)−ϕ(α/λ)ψ(β/λ)g (a,b)|2
|α−a|1+2s |β−b|1+2δ

dαd a dβdb

= 1

λ2 ‖ϕλ(α)ψλ(β)g (α,β)‖2
L2(R2) +

1

λ2−2s−2δ
‖ϕλ(α)ψλ(β)g (α,β)‖2

Ḣ s
αḢδ

β
(R2)

<∞.(5.4.49)

Similarly we can show the finiteness of Hδ
αH s

β
(R2)-norm. Since ϕ,ψ ∈C∞

comp(R) and λ is fixed, there

exists an m ∈N such that supp ϕ× supp ψ⊂ [−mλ,mλ]2. Thus (5.4.49) with Proposition 5.4.9 and

estimate (5.4.48) gives, for any f ∈C∞
comp(R2),

‖ϕ(α)ψ(β)[J̃λ f ](α,β)‖2
Hs,δ =

1

λ2 ‖ϕλ(α)ψλ(β)[3−1Πλ](α,β)‖2
L2(R2)

+ 1

λ2−2s−2δ
‖ϕλ(α)ψλ(β)[3−1Πλ](α,β)‖2

Ḣs,δ

≤C (ϕ,ψ,m,λ)
1

λ2−2s−2δ
‖Πλ f ‖2

Hs−1,δ−1 =C (ϕ,ψ,m,λ) ‖ f ‖2
Hs−1,δ−1(R).
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So we have proved that the map J̃λ : C∞
comp(R) 3 f 7→ MλPΛλ f ∈Hs,δ

loc(R) is well defined and (5.4.47)

holds. In particular,

(5.4.50) [J̃λ f ](α,β) = [3−1 f ](x), f ∈C∞
comp(R2).

Next, since C∞
comp(R) ,→ Hs−1,δ−1(R) densely and Hs,δ

loc(R) is a Fréchet space, there exists a unique

continuous linear extension J̃λ :Hs−1,δ−1 →H
s,δ
loc and (5.4.50) holds as well. Hence we have proved

Lemma 5.4.14. �

5.4.5 The non-linearity

Now we move to find the estimate for the non-linear term. Recall that, from (5.3.1),

N(u) =−
2∑

a,b=1
Γab(u)

∂ua

∂α

∂ub

∂β
,

we avoid writing asterisk (∗) mark for simplicity. Note that the above implies N(0) = 0. Our next

result gives the required growth and the Lipschitz property for (5.3.5) which involves N(u) with the

assumption (5.2.6) we have made on the structure of Γ.

Lemma 5.4.15. For s,δ ∈ (3
4 ,1

)
such that δ≤ s, there exists a natural number γ≥ 2 such that

(5.4.51) ‖η(α)χ(β)3−1(N(φ)‖Hs,δ .η,χ ‖φ‖γ+1
Hs,δ ,

and

(5.4.52) ‖η(α)χ(β)3−1(N(φ)−N(ψ))‖Hs,δ .η,χ ‖φ−ψ‖Hs,δ

[‖φ‖Hs,δ +‖ψ‖Hs,δ

]γ .

Proof of Lemma 5.4.15 Observe that in our notation, for some r ∈Nwith the index of summation

l = (l1, l2), we have

N(φ)−N(ψ) =
2∑

a,b=1

r∑
|l |=0

Al
ab

([
ψ1(·)]l1

[
ψ2(·)]l2

∂αψ
a∂βψ

b − [
φ1(·)]l1

[
φ2(·)]l2

∂αφ
a∂βφ

b
)

.

For fix a,b and (l1, l2), by adding and subtracting the mixed term we get

[
ψ1(·)]l1

[
ψ2(·)]l2

∂αψ
a∂βψ

b − [
φ1(·)]l1

[
φ2(·)]l2

∂αφ
a∂βφ

b

=
([
ψ1(·)]l1 − [

φ1(·)]l1
)[
ψ2(·)]l2

∂αψ
a∂βψ

b + [
φ1(·)]l1

{
∂αψ

a∂βψ
b −∂αφa∂βφ

b
}[
ψ2(·)]l2

+ [
φ1(·)]l1

{[
ψ2(·)]l2 − [

φ2(·)]l2
}
∂αφ

a∂βφ
b .(5.4.53)

So for fixed a,b and l = (l1, l2), we get three terms inside summation and due to the linearity of 3−1

it is enough to estimate each separately. Note that to avoid the complexity in notation we use the

symbol ‖ · ‖H s−1
β

Hδ−1
α

for both R2 and R valued functions in the remaining calculations of this proof.
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Invoking Proposition 5.4.9 followed by inequalities (5.4.2) and (5.4.3) with appropriate exponents

yields

‖η(α)χ(β)3−1
(([
ψ1(·)]l1 − [

φ1(·)]l1
)[
ψ2(·)]l2

∂αψ
a∂βψ

b
)
‖2
Hs,δ

.η,χ ‖
([
ψ1(·)]l1 − [

φ1(·)]l1
)[
ψ2(·)]l2

∂αψ
a∂βψ

b‖2
H s−1
α Hδ−1

β

+‖
([
ψ1(·)]l1 − [

φ1(·)]l1
)[
ψ2(·)]l2

∂αψ
a∂βψ

b‖2
H s−1
β

Hδ−1
α

. ‖[
ψ1(·)]l1 − [

φ1(·)]l1 ‖2
H s
αHδ

β

‖[
ψ2(·)]l2 ‖2

H s
αHδ

β

‖∂αψa‖2
H s−1
α Hδ

β

‖∂βψb‖2
H s
αHδ−1

β

+‖[
ψ1(·)]l1 − [

φ1(·)]l1 ‖2
Hδ
αH s

β

‖[
ψ2(·)]l2 ‖2

Hδ
αH s

β

‖∂αψa‖2
Hδ−1
α H s

β

‖∂βψb‖2
Hδ
αH s−1

β

. ‖ψ−φ‖2
H s
αHδ

β

(
‖ψ‖H s

αHδ
β
+‖φ‖H s

αHδ
β

)2γ̄ ‖ψ‖2γ̄+4

H s
αHδ

β

+‖ψ−φ‖2
Hδ
αH s

β

(
‖ψ‖Hδ

αH s
β
+‖φ‖Hδ

αH s
β

)2γ̄ ‖ψ‖2γ̄+4

Hδ
αH s

β

. ‖ψ−φ‖2
Hs,δ

(‖ψ‖Hs,δ +‖φ‖Hs,δ

)2γ1 ,(5.4.54)

for some suitable γ1 ≥ 2. Note that the existence of γ̄,γ1 is possible because

‖ψb‖H s
αHδ

β
,‖ψb‖H s

αHδ
β
≤ ‖ψ‖H s

αHδ
β

and li ≤ |l | ≤ r, i = 1,2.

The third term in (5.4.53) can be estimated similarly for some suitable γ2. By writing the expression

∂αψ
a∂βψ

b −∂αφa∂βφ
b equivalently as

∂αψ
a∂βψ

b −∂αψa∂βφ
b +∂αψa∂βφ

b −∂αφa∂βφ
b ,

followed by the calculations similar to (5.4.54), the second term of (5.4.53) can be estimated similarly

for some γ3. Hence we get (5.4.52) since a,b and (l1, l2) take only finitely many values. Moreover, we

get (5.4.51) by substituting 0 instead of ψ in (5.4.52), since N(0) = 0. Hence the Lemma 5.4.15. �

Remark 5.4.16. By repeating the steps of the proof of Lemma 5.4.15 we infer that the map N defined

by

N :Hs,δ 3 u 7→
2∑

a,b=1
Γab(u)∂αua∂βub ∈Hs−1,δ−1,

is well-defined.

Before going into the local well-posedness theory part, let us prove the following generalization

of [133, Lemma 3.1] which specify the property we have on diffusion coefficient. Recall that we are

dealing in the range s,δ ∈ (3
4 ,1

)
and s ≤ δ.

Proposition 5.4.17. Assume that σ ∈ C3
b(R2). Then σ ◦u ∈ Hs,δ for every u ∈ Hs,δ and there exist

constants Ci (σ) :=Ci (‖σ‖Ci+1
b

), i = 1,2 such that for u,u1,u2 ∈Hs,δ,

(5.4.55) ‖σ◦u‖2
Hs,δ ≤C1(σ)‖u‖2

Hs,δ

[
1+‖u‖2

Hs,δ

]
,
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‖σ◦u1 −σ◦u2‖2
Hs,δ ≤C2(σ)‖u2 −u1‖2

Hs,δ

[
1+

2∑
i ,k=1

‖ui‖2k
Hs,δ

]
.(5.4.56)

Proof of Proposition 5.4.17 To shorten the notation we avoid writing explicitly that the Euclidean

norms separately for R2 and R valued functions, unless any confusion. Recall that by Definition 5.1.12

(5.4.57) ‖σ◦u‖H s
α(R;Hδ

β
(R;R2)) ' ‖σ◦u‖L2

α(R;W δ
β

(R;R2)) +‖σ◦u‖Ẇ s
α(R;W δ

β
(R;R2)),

where for any separable Banach space E ,

‖u‖Ẇ s (R;E) =
(∫
R2

‖u(x)−u(y)‖2
E

|x − y |1+2s d x d y

) 1
2

.

By expanding each term of right hand side of (5.4.57) we get

‖σ◦u‖2
H s
α(R;Hδ

β
(R))
.

∫
R2
|[σ◦u](α,β)|2 dβdα+

∫
R3

|[σ◦u](α,β1)− [σ◦u](α,β2)|2
|β1 −β2|1+2δ

dβ1 dβ2 dα

+
∫
R3

|[σ◦u](α1,β)− [σ◦u](α2,β)|2
|α1 −α2|1+2s dβdα1 dα2

+
∫
R4

|[σ◦u](α1,β1)− [σ◦u](α2,β1)− {[σ◦u](α1,β2)− [σ◦u](α2,β2)}|2
|α1 −α2|1+2s |β1 −β2|1+2δ

dβ1 dβ2 dα1 dα2

=: A1 + A2 + A3 + A4.(5.4.58)

Since σ :R2 →R2 is continuous and bounded, we estimate the term A1 as

A1 ≤ ‖σ‖2
L∞(R2) ‖u‖2

L2
αL2

β
(R2)
. ‖σ‖2

L∞(R2) ‖u‖2
W s

α(R;W δ
β

(R))
.(5.4.59)

Since σ ∈C3
b(R2) ⊂C1

b(R2), it is Lipschitz and by denoting the Lipschitz constant as Lσ we have the

following estimate for A2

A2 ≤ L2
σ

∫
R3

|u(α,β1)−u(α,β2)|2
|β1 −β2|1+2δ

dβ1 dβ2 dα. L2
σ ‖u‖2

W s
α(R;W δ

β
(R))

.(5.4.60)

By interchanging the roles of variables we see that the term A3 satisfies the same estimate as A2. Now

we move to estimate the term A4. For fix α1,α2,β1,β2 ∈R, let us denote the rectangle by

Q := [α1,α2]× [β1,β2] ⊂R2.

Our first two claims are elementary which we write without proof.

Lemma 5.4.18. With our notation if we define

∆Q [σ◦u] := [σ◦u](α1,β1)+ [σ◦u](α2,β2)− [σ◦u](α2,β1)− [σ◦u](α1,β2),

then

∆Q [σ◦u] =
∫ 1

0

∫ 1

0

∂2[σ◦a]

∂τ∂ξ
(τ,ξ)dτdξ,
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where a : [0,1]2 →R2 is defined by, for (τ,ξ) ∈ [0,1]2,

(5.4.61) a(τ,ξ) := u(α1,β1)+τ[u(α2,β1)−u(α1,β1)]+ξ[u(α1,β2)−u(α1,β1)]+τξ∆Q u,

and

∆Q u := u(α1,β1)+u(α2,β2)−u(α1,β2)−u(α2,β1).

Next result is about writing ∂2[σ◦a]
∂ξ∂τ in terms of partial derivatives of σ.

Lemma 5.4.19. In our notation for all τ,ξ ∈R, we have

∂2[σ◦a]

∂ξ∂τ
(τ,ξ) =

2∑
i=1

∂σ

∂xi
(a(τ,ξ))

∂2ai

∂ξ∂τ
(τ,ξ)+

2∑
i , j=1

∂2σ

∂x j∂xi
(a(τ,ξ))

∂a j

∂ξ
(τ,ξ)

∂ai

∂τ
(τ,ξ).

Thus by invoking Lemmata 5.4.18 and 5.4.19 in the expression of A4 we get

A4.
2∑

i=1

∫
R4

∣∣∣∫ 1
0

∫ 1
0

[
∂σ
∂xi

(a(τ,ξ)) ∂2ai

∂ξ∂τ (τ,ξ)
]

dτdξ
∣∣∣2

|α1 −α2|1+2s |β1 −β2|1+2δ
dβ1 dβ2 dα1 dα2

+
2∑

i , j=1

∫
R4

∣∣∣∫ 1
0

∫ 1
0

[
∂2σ

∂x j∂xi
(a(τ,ξ)) ∂a j

∂ξ (τ,ξ) ∂ai

∂τ (τ,ξ)
]

dτdξ
∣∣∣2

|α1 −α2|1+2s |β1 −β2|1+2δ
dβ1 dβ2 dα1 dα2

=:
2∑

i=1
Ai

4 +
2∑

i , j=1
Ai j

4 .(5.4.62)

We will estimate each term in the right hand side of (5.4.62) separately but first note that for fixed

rectangle Q = [α1,α2]× [β1,β2] by using (5.4.61), we have ∂2ai

∂ξ∂τ =∆Q ui and consequently we obtain

∣∣∣∣∫ 1

0

∫ 1

0

[
∂σ

∂xi
(a(τ,ξ))

∂2ai

∂ξ∂τ
(τ,ξ)

]
dτdξ

∣∣∣∣
≤

∥∥∥∥ ∂σ∂xi

∥∥∥∥
L∞(R2)

|ui (α1,β1)−ui (α1,β2)−ui (α2,β1)+ui (α2,β2)|.

Using above Ai
4 can be estimated as

Ai
4 ≤

∥∥∥∥ ∂σ∂xi

∥∥∥∥2

L∞(R2)

∫
R4

|ui (α1,β1)−ui (α1,β2)−ui (α2,β1)+ui (α2,β2)|2
|α1 −α2|1+2s |β1 −β2|1+2δ

dβ1 dβ2 dα1 dα2

≤
∥∥∥∥ ∂σ∂xi

∥∥∥∥2

L∞(R2)
‖u‖2

W s
α(R;W δ

β
(R))

.(5.4.63)

Next, since for fixed Q = [α1,α2]× [β1,β2] by (5.4.61) we have

∂ai

∂τ
(τ,ξ) = ui (α2,β1)−ui (α1,β1)+ξ∆Q ui ,

∂a j

∂ξ
(τ,ξ) = u j (α1,β2)−u j (α1,β1)+τ∆Q u j ,

162



5.4. ESTIMATES

the double integral term in Ai j
4 satisfy the following,∣∣∣∣∫ 1

0

∫ 1

0

[
∂2σ

∂x j∂xi
(a(τ,ξ))

∂a j

∂ξ
(τ,ξ)

∂ai

∂τ
(τ,ξ)

]
dτdξ

∣∣∣∣
≤

∥∥∥∥ ∂2σ

∂x j∂xi

∥∥∥∥
L∞(R2)

∫ 1

0

∫ 1

0

[
|ui (α2,β1)−ui (α1,β1)|× |u j (α1,β2)−u j (α1,β1)|

+ξ|∆Q ui |× |u j (α1,β2)−u j (α1,β1)|+τ|∆Q u j |× |ui (α2,β1)−ui (α1,β1)|
+τξ|∆Q ui |× |∆Q u j |

]
dτdξ

=:

∥∥∥∥ ∂2σ

∂x j∂xi

∥∥∥∥
L∞(R2)

{B1 +B2 +B3 +B4} .(5.4.64)

By substituting (5.4.64) in terms Ai j
4 from (5.4.62) we obtain

Ai j
4 .

∥∥∥∥ ∂2σ

∂x j∂xi

∥∥∥∥2

L∞(R2)

[∫
R4

B 2
1

|α1 −α2|1+2s |β1 −β2|1+2δ
dβ1 dβ2 dα1 dα2

+
∫
R4

B 2
2

|α1 −α2|1+2s |β1 −β2|1+2δ
dβ1 dβ2 dα1 dα2

+
∫
R4

B 2
3

|α1 −α2|1+2s |β1 −β2|1+2δ
dβ1 dβ2 dα1 dα2

+
∫
R4

B 2
4

|α1 −α2|1+2s |β1 −β2|1+2δ
dβ1 dβ2 dα1 dα2

]

=:

∥∥∥∥ ∂2σ

∂x j∂xi

∥∥∥∥2

L∞(R2)

[
B i j

1 +B i j
2 +B i j

3 +B i j
4

]
.(5.4.65)

By substituting B1 from (5.4.64) and using Theorem 5.1.15, since s,δ> 1
2 , term B i j

1 satisfies

B i j
1 ≤

∫
R4

[
ess supβ1∈R

|ui (α2,β1)−ui (α1,β1)|2
|α1 −α2|1+2s

]
×

[
ess supα1∈R

|u j (α1,β2)−u j (α1,β1)|2
|β1 −β2|1+2δ

]
dβ1 dβ2 dα1 dα2

. ‖ui‖2
W δ

β
(R;W s

α(R))
‖u j‖2

W s
α(R;W δ

β
(R))

.(5.4.66)

Similarly, we estimate B i j
2 as follows,

B i j
2 . ess supα,β∈R |u j (α,β)|2

∫
R4

[
|∆Q ui |2

|α1 −α2|1+2s |β1 −β2|1+2δ

]
dβ1 dβ2 dα1 dα2

. ‖ui‖2
W s

α(R;W δ
β

(R))
‖u j‖2

W s
α(R;W δ

β
(R))

.(5.4.67)

Interchanging the roles of ui with u j and ξ by τ, we deduce that the term B i j
3 is bounded by the right

hand side of (5.4.67). Similar computation gives

B i j
4 . ess supα,β∈R |u j (α,β)|2

∫
R4

[
|∆Q ui |2

|α1 −α2|1+2s |β1 −β2|1+2δ

]
dβ1 dβ2 dα1 dα2
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. ‖ui‖2
W s

α(R;W δ
β

(R))
‖u j‖2

W s
α(R;W δ

β
(R))

.(5.4.68)

By substituting the estimates of B i j
k ,k = 1, . . . ,4 from (5.4.66)-(5.4.68) into (5.4.65) we get

Ai j
4 .

∥∥∥∥ ∂2σ

∂x j∂xi

∥∥∥∥2

L∞(R2)

‖ui‖2
W s

α(R;W δ
β

(R))
‖u j‖2

W s
α(R;W δ

β
(R))

,

and consequently with estimates of Ai
4, i = 1, . . . ,4 from (5.4.63) into (5.4.62) we have

A4.

[
2∑

i=1

∥∥∥∥ ∂σ∂xi

∥∥∥∥2

L∞(R2)
+

2∑
i , j=1

∥∥∥∥ ∂2σ

∂x j∂xi

∥∥∥∥2

L∞(R2)

][
‖u‖2

W s
α(R;W δ

β
(R))

+‖u‖4
W s

α(R;W δ
β

(R))

]
.(5.4.69)

Hence by substituting estimates from (5.4.59), (5.4.60), and (5.4.69) into (5.4.58) we obtain

‖σ◦u‖2
H s
α(R;Hδ

β
(R))
.

[
‖u‖2

W s
α(R;W δ

β
(R))

+‖u‖4
W s

α(R;W δ
β

(R))

]
×

[
‖σ‖2

L∞(R2) +L2
σ+

2∑
i=1

∥∥∥∥ ∂σ∂xi

∥∥∥∥2

L∞(R2)
+

2∑
i , j=1

∥∥∥∥ ∂2σ

∂x j∂xi

∥∥∥∥2

L∞(R2)

]

=: C1(‖σ‖C2
b (R2)) ‖u‖2

W s
α(R;W δ

β
(R))

[
1+‖u‖2

W s
α(R;W δ

β
(R))

]
.(5.4.70)

Since we have not used any relationship between s and δ, by repeating the procedure of (5.4.70), we

also get

‖σ◦u‖2
H s
β

(R;Hδ
α(R))
.C1(‖σ‖C2

b (R2)) ‖u‖2
W s

β
(R;W δ

α (R))

[
1+‖u‖2

W s
β

(R;W δ
α (R))

]
,

which consequently allows us to conclude that σ◦u ∈Hs,δ and the result (5.4.55) follows.

Now we move to a proof of (5.4.56). As in the first part of the proof it is enough to prove the local

Lipschitz property w.r.t. the ‖ ·‖H s
α(R;Hδ

β
(R))-norm. Fix u1,u2 ∈Hs,δ. Equivalence of H s and W s spaces,

as (5.4.58), implies

‖σ◦u1 −σ◦u2‖2
H s
α(R;Hδ

β
(R))
.

∫
R2
|[σ◦u1](α,β)− [σ◦u2](α,β)|2 dβdα

+
∫
R3

|[σ◦u1](α,β1)− [σ◦u2](α,β1)− {[σ◦u1](α,β2)− [σ◦u2](α,β2)}|2
|β1 −β2|1+2δ

dβ1 dβ2 dα

+
∫
R3

|[σ◦u1](α1,β)− [σ◦u2](α1,β)− {[σ◦u1](α2,β)− [σ◦u2](α2,β)}|2
|α1 −α2|1+2s dβdα1 dα2

+
∫
R4

∣∣∣ [σ◦u1](α1,β1)−[σ◦u2](α1,β1)−{[σ◦u1](α2,β1)−[σ◦u2](α2,β1)}
−([σ◦u1](α1,β2)−[σ◦u2](α1,β2)−{[σ◦u1](α2,β2)−[σ◦u2](α2,β2)})

∣∣∣2

|α1 −α2|1+2s |β1 −β2|1+2δ
dβ1 dβ2 dα1 dα2

=: D1 +D2 +D3 +D4.(5.4.71)

Using the Lipschitz property of σ, term D1, on the similar lines of (5.4.60), is estimated as

D1 ≤ L2
σ

∫
R2
|u1(α,β)−u2(α,β)|2 dβdα≤ L2

σ ‖u1 −u2‖2
W s

α(R;W δ
β

(R))
.(5.4.72)

To estimate D2 term we need the following two elementary results whose proofs are straightforward.
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Lemma 5.4.20. For fix α,β1,β2 ∈R and u1,u2 ∈Hs,δ we have

[σ◦u1](α,β1)− [σ◦u2](α,β1)− {[σ◦u1](α1,β2)− [σ◦u2](α,β2)} =
∫ 1

0

∫ 1

0

∂2[σ◦b]

∂r∂ξ
(r,ξ)dξdr,

where

b : [0,1]× [0,1] 3 (r,ξ) 7→ b1(ξ)+ r (b2(ξ)−b1(ξ)) ∈R2,

and for i = 1,2

bi (ξ) := ui (α,β1)+ξ[ui (α,β2)−ui (α,β1)].

Lemma 5.4.21. In our notation, we have

∂2[σ◦b]

∂r∂ξ
(r,ξ) =

2∑
i=1

∂σ

∂xi
(b(r,ξ))

∂2bi

∂ξ∂r
(r,ξ)+

2∑
i , j=1

∂2σ

∂x j∂xi
(b(r,ξ))

∂b j

∂ξ
(r,ξ)

∂bi

∂r
(r,ξ),

where 
∂b j

∂ξ (r,ξ) = (1− r )[u j
1(α,β2)−u j

1(α,β1)]+ r [u j
2(α,β2)−u j

2(α,β1)];

∂bi

∂r (r,ξ) = ui
2(α,β1)−ui

1(α,β1)+ξ[ui
2(α,β2)−ui

1(α,β2)+ui
1(α,β1)−ui

2(α,β1)];

∂2bi

∂ξ∂r (r,ξ) = ui
2(α,β2)−ui

1(α,β2)+ui
1(α,β1)−ui

2(α,β1).

Invoking Lemmata 5.4.20 and 5.4.21, gives

D2.
2∑

i=1

∫
R3

∣∣∣∫ 1
0

∫ 1
0 [ui

2(α,β2)−ui
1(α,β2)+ui

1(α,β1)−ui
2(α,β1)] ∂σ

∂xi
(b(r,ξ))dξdr

∣∣∣2

|β1 −β2|1+2δ
dβ1 dβ2 dα

+
2∑

i , j=1

∫
R3

∣∣∣∣∫ 1
0

∫ 1
0

[
{(1−r )[u j

1 (α,β2)−u j
1 (α,β1)]+r [u j

2 (α,β2)−u j
2 (α,β1)]}×

{ui
2(α,β1)−ui

1(α,β1)+ξ[ui
2(α,β2)−ui

1(α,β2)+ui
1(α,β1)−ui

2(α,β1)]}

]
∂2σ

∂x j∂xi
(b(r,ξ))dξdr

∣∣∣∣2

|β1 −β2|1+2δ
dβ1 dβ2 dα

=:
2∑

i=1
D i

2 +
2∑

i , j=1
D i j

2 .

The term D i
2 satisfies

D i
2 ≤

∥∥∥∥ ∂σ∂xi

∥∥∥∥2

L∞(R2)

∫
R3

∣∣ui
2(α,β2)−ui

1(α,β2)+ui
1(α,β1)−ui

2(α,β1)
∣∣2

|β1 −β2|1+2δ
dβ1 dβ2 dα

≤
∥∥∥∥ ∂σ∂xi

∥∥∥∥2

L∞(R2)
‖ui

2 −ui
1‖2

W s
α(R;W δ

β
(R))

.(5.4.73)

To estimate D i j
2 we need to work as follows. First note that by fixing the notation

∆Q1 ui := ui
2(α,β2)−ui

1(α,β2)+ui
1(α,β1)−ui

2(α,β1),

we have

{(1− r )[u j
1(α,β2)−u j

1(α,β1)]+ r [u j
2(α,β2)−u j

2(α,β1)]}×
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× {ui
2(α,β1)−ui

1(α,β1)+ξ[ui
2(α,β2)−ui

1(α,β2)+ui
1(α,β1)−ui

2(α,β1)]}

= {u j
1(α,β2)−u j

1(α,β1)}× {ui
2(α,β1)−ui

1(α,β1)}+ rξ{∆Q1 ui }× {∆Q1 u j }

+ξ{u j
1(α,β2)−u j

1(α,β1)}× {∆Q1 ui }+ r {∆Q1 u j }× {ui
2(α,β1)−ui

1(α,β1)},

consequently from the expression of D i j
2 we get

D i j
2 .

∥∥∥∥ ∂2σ

∂x j∂xi

∥∥∥∥2

L∞(R2)

∫
R3

∣∣∣{u j
1(α,β2)−u j

1(α,β1)}× {ui
2(α,β1)−ui

1(α,β1)}
∣∣∣2

|β1 −β2|1+2δ
dβ1 dβ2 dα

+
∫
R3

∣∣∣{u j
1(α,β2)−u j

1(α,β1)}× {∆Q1 ui }
∣∣∣2

|β1 −β2|1+2δ
dβ1 dβ2 dα

+
∫
R3

∣∣{∆Q1 u j }× {ui
2(α,β1)−ui

1(α,β1)}
∣∣2

|β1 −β2|1+2δ
dβ1 dβ2 dα

+
∫
R3

∣∣{∆Q1 ui }× {∆Q1 u j }
∣∣2

|β1 −β2|1+2δ
dβ1 dβ2 dα

]

.
∥∥∥∥ ∂2σ

∂x j∂xi

∥∥∥∥2

L∞(R2)

[
‖ui

2 −ui
1‖2

W s
α(R;W δ

β
(R))

‖u j
1‖2

W s
α(R;W δ

β
(R))

+‖ui
2 −ui

1‖2
W s

α(R;W δ
β

(R))
‖u j

2 −u j
1‖2

W s
α(R;W δ

β
(R))

]
.(5.4.74)

By substituting D i
2 and D i j

2 from (5.4.73) and (5.4.74), respectively, back into the expression for D2

we obtain

D2.

[
2∑

i=1

∥∥∥∥ ∂σ∂xi

∥∥∥∥2

L∞(R2)
+

2∑
i , j=1

∥∥∥∥ ∂2σ

∂x j∂xi

∥∥∥∥2

L∞(R2)

]
‖u2 −u1‖2

W s
α(R;W δ

β
(R))

×
[

1+‖u1‖2
W s

α(R;W δ
β

(R))
+‖u2‖2

W s
α(R;W δ

β
(R))

]
.(5.4.75)

Interchanging the roles of α, ξ, s by β, τ, and δ, respectively, we bound D3 by the right hand side of

(5.4.75). Hence, the only term remaining to estimate is D4. Recall that

D4 =
∫
R4

∣∣∣ [σ◦u1](α1,β1)−[σ◦u2](α1,β1)−{[σ◦u1](α2,β1)−[σ◦u2](α2,β1)}
−([σ◦u1](α1,β2)−[σ◦u2](α1,β2)−{[σ◦u1](α2,β2)−[σ◦u2](α2,β2)})

∣∣∣2

|α1 −α2|1+2s |β1 −β2|1+2δ
dβ1 dβ2 dα1 dα2.

Before proceeding further, by direct computation we infer the following two results.

Lemma 5.4.22. In our notation with Q = [α1,α2]× [β1,β2] ⊂R2, and u1,u2 ∈Hs,δ we have

∆Q [σ◦u2 −σ◦u1] := [σ◦u2](α1,β1)− [σ◦u1](α1,β1)− [σ◦u2](α2,β1)

+ [σ◦u1](α2,β1)− [σ◦u2](α1,β2)+ [σ◦u1](α1,β2)

+ [σ◦u2](α2,β2)− [σ◦u1](α2,β2)

=
∫ 1

0

∫ 1

0

∫ 1

0

(
∂r∂τ∂ξ[σ◦a]

)
(r,τ,ξ)dξdτdr,
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where
(
∂r∂τ∂ξ[σ◦a]

)
:= ∂3[σ◦a]

∂r∂τ∂ξ ,

a(r, ·, ·) = a1(·, ·)+ r (a2(·, ·)−a1(·, ·)) ∈R2

and, for i = 1,2,

ai (τ,ξ) := ui (α1,β1)+τ[ui (α2,β1)−ui (α1,β1)]+ξ[ui (α1,β2)−ui (α1,β1)]+τξ∆Q ui .

Moreover, in our notation the following holds

∂3[σ◦a]

∂τ∂ξ∂r
(r,τ,ξ) =

2∑
i=1

∂σ

∂xi
(a(r,τ,ξ))

∂3ai

∂τ∂ξ∂r
(r,τ,ξ)

+
2∑

i ,k=1

∂2σ

∂xk∂xi
(a(r,τ,ξ))

∂ak

∂r
(r,τ,ξ)

∂2ai

∂τ∂ξ
(r,τ,ξ)

+
2∑

i , j=1

∂2σ

∂x j∂xi
(a(r,τ,ξ))

∂2a j

∂τ∂r
(r,τ,ξ)

∂ai

∂ξ
(r,τ,ξ)

+
2∑

i , j=1

∂2σ

∂x j∂xi
(a(r,τ,ξ))

∂a j

∂τ
(r,τ,ξ)

∂2ai

∂ξ∂r
(r,τ,ξ)

+
2∑

i , j ,k=1

∂3σ

∂xk∂x j∂xi
(a(r,τ,ξ))

∂ak

∂r
(r,τ,ξ)

∂a j

∂τ
(r,τ,ξ)

∂ai

∂ξ
(r,τ,ξ).(5.4.76)

Using Lemma 5.4.22 and substituting (5.4.76) in the expression of D4 we obtain

D4.
2∑

i=1

∫
R4

|∫ 1
0

∫ 1
0

∫ 1
0

[
∂σ
∂xi

(a(r,τ,ξ)) ∂3ai

∂τ∂ξ∂r (r,τ,ξ)
]

dξdτdr |2

|α1 −α2|1+2s |β1 −β2|1+2δ
dβ1 dβ2 dα1 dα2

+
2∑

i ,k=1

∫
R4

|∫ 1
0

∫ 1
0

∫ 1
0

[
∂2σ

∂xk∂xi
(a(r,τ,ξ)) ∂ak

∂r (r,τ,ξ) ∂2ai

∂τ∂ξ (r,τ,ξ)
]

dξdτdr |2

|α1 −α2|1+2s |β1 −β2|1+2δ
dβ1 dβ2 dα1 dα2

+
2∑

i , j=1

∫
R4

|∫ 1
0

∫ 1
0

∫ 1
0

[
∂2σ

∂x j∂xi
(a(r,τ,ξ)) ∂2a j

∂τ∂r (r,τ,ξ) ∂ai

∂ξ (r,τ,ξ)
]

dξdτdr |2

|α1 −α2|1+2s |β1 −β2|1+2δ
dβ1 dβ2 dα1 dα2

+
2∑

i , j=1

∫
R4

|∫ 1
0

∫ 1
0

∫ 1
0

[
∂2σ

∂x j∂xi
(a(r,τ,ξ)) ∂a j

∂τ (r,τ,ξ) ∂2ai

∂ξ∂r (r,τ,ξ)
]

dξdτdr |2

|α1 −α2|1+2s |β1 −β2|1+2δ
dβ1 dβ2 dα1 dα2

+
2∑

i , j ,k=1

∫
R4

|∫ 1
0

∫ 1
0

∫ 1
0

[
∂3σ

∂xk∂x j∂xi
(a(r,τ,ξ)) ∂ak

∂r (r,τ,ξ) ∂a j

∂τ (r,τ,ξ) ∂ai

∂ξ (r,τ,ξ)
]

dξdτdr |2

|α1 −α2|1+2s |β1 −β2|1+2δ
dβ1 dβ2 dα1 dα2

=:
2∑

i=1
D I

i +
2∑

i ,k=1
D I I

i k +
2∑

i , j=1
D I I I

i j +
2∑

i , j=1
D IV

i j +
2∑

i , j ,k=1
DV

i j k .

To estimate the right hand side terms in above, we observe that the partial derivative terms, by
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using the short notation as in Lemma 5.4.22, satisfy

[∂ξ∂τ∂r a](r,τ,ξ) =∆Q (u2 −u1);

[∂ξa](r,τ,ξ) = [u1(α1,β2)−u1(α1,β1)]+ r [[u2 −u1](α1,β2)− [u2 −u1](α1,β1)]

+τ∆Q u1 + rτ∆Q (u2 −u1);

[∂τa](r,τ,ξ) = u1(α2,β1)−u1(α1,β1)+ r [[u2 −u1](α2,β1)− [u2 −u1](α1,β1)]

+ξ∆Q u1 + rξ∆Q (u2 −u1);

[∂r a](r,τ,ξ) = [u2 −u1](α1,β1)+τ[[u2 −u1](α2,β1)− [u2 −u1](α1,β1)]

+ξ[[u2 −u1](α1,β2)− [u2 −u1](α1,β1)]+τξ∆Q (u2 −u1);

[∂τ∂r a](r,τ,ξ) = [u2 −u1](α2,β1)− [u2 −u1](α1,β1)+ξ∆Q (u2 −u1);

[∂ξ∂r a](r,τ,ξ) = [u2(α1,β2)−u2(α1,β1)− {u1(α1,β2)−u1(α1,β1)}]+τ∆Q (u2 −u1);

[∂τ∂ξa](r,τ,ξ) =∆Q u1 + r∆Q (u2 −u1).

(5.4.77)

Next, by working on similar lines to (5.4.58), as an application of (5.4.77), we have

D I
i ≤

∥∥∥∥ ∂σ∂xi

∥∥∥∥2

L∞(R2;R2)

∫
R4

|∫ 1
0

∫ 1
0

∫ 1
0

[
∆Q (ui

2 −ui
1)

]
dξdτdr |2

|α1 −α2|1+2s |β1 −β2|1+2δ
dβ1 dβ2 dα1 dα2

≤
∥∥∥∥ ∂σ∂xi

∥∥∥∥2

L∞(R2;R2)
‖u2 −u1‖2

W s
α(R;W δ

β
(R))

.(5.4.78)

Invoking the Theorem 5.1.15 and Definition 5.1.5 with (5.4.77) and following the last few steps of

(5.4.75), we estimate D I I
i k as

D I I
i k .

∥∥∥∥ ∂2σ

∂xk∂xi

∥∥∥∥2

L∞(R2)

[∫
R4

|[uk
2 −uk

1 ](α1,β1)×∆Q ui
1|2

|α1 −α2|1+2s |β1 −β2|1+2δ
dβ1 dβ2 dα1 dα2

+
∫
R4

|[[uk
2 −uk

1 ](α2,β1)− [uk
2 −uk

1 ](α1,β1)]×∆Q ui
1|2

|α1 −α2|1+2s |β1 −β2|1+2δ
dβ1 dβ2 dα1 dα2

+
∫
R4

|[[uk
2 −uk

1 ](α1,β2)− [uk
2 −uk

1 ](α1,β1)]×∆Q ui
1|2

|α1 −α2|1+2s |β1 −β2|1+2δ
dβ1 dβ2 dα1 dα2

+
∫
R4

|∆Q (uk
2 −uk

1 )×∆Q ui
1|2

|α1 −α2|1+2s |β1 −β2|1+2δ
dβ1 dβ2 dα1 dα2

+
∫
R4

|[uk
2 −uk

1 ](α1,β1)× (
∆Q (ui

2 −ui
1)

)|2
|α1 −α2|1+2s |β1 −β2|1+2δ

dβ1 dβ2 dα1 dα2

+
∫
R4

|[[uk
2 −uk

1 ](α2,β1)− [uk
2 −uk

1 ](α1,β1)]× (
∆Q (ui

2 −ui
1)

)|2
|α1 −α2|1+2s |β1 −β2|1+2δ

dβ1 dβ2 dα1 dα2

+
∫
R4

|[[uk
2 −uk

1 ](α1,β2)− [uk
2 −uk

1 ](α1,β1)]× (
∆Q (ui

2 −ui
1)

)|2
|α1 −α2|1+2s |β1 −β2|1+2δ

dβ1 dβ2 dα1 dα2

+
∫
R4

|∆Q (uk
2 −uk

1 )× (
∆Q (ui

2 −ui
1)

)|2
|α1 −α2|1+2s |β1 −β2|1+2δ

dβ1 dβ2 dα1 dα2

]
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.
∥∥∥∥ ∂2σ

∂xk∂xi

∥∥∥∥2

L∞(R2;R2)
‖u2 −u1‖2

W s
α(R;W δ

β
(R))

[
‖u1‖2

W s
α(R;W δ

β
(R))

+‖u2‖2
W s

α(R;W δ
β

(R))

]
,(5.4.79)

and D I I I
i j as

D I I I
i j .

∥∥∥∥ ∂2σ

∂x j∂xi

∥∥∥∥2

L∞(R2)


∫
R4

∣∣∣∣{[u j
2−u j

1 ](α2,β1)−[u j
2−u j

1 ](α1,β1)}
×{ui

1(α1,β2)−ui
1(α1,β1)}

∣∣∣∣2

|α1 −α2|1+2s |β1 −β2|1+2δ
dβ1 dβ2 dα1 dα2

+
∫
R4

∣∣∣{[u j
2 −u j

1](α2,β1)− [u j
2 −u j

1](α1,β1)}× {∆Q ui
1}

∣∣∣2

|α1 −α2|1+2s |β1 −β2|1+2δ
dβ1 dβ2 dα1 dα2

+
∫
R4

∣∣∣∣ {[u j
2−u j

1 ](α2,β1)−[u j
2−u j

1 ](α1,β1)}
×{[[ui

2−ui
1](α1,β2)−[ui

2−ui
1](α1,β1)]}

∣∣∣∣2

|α1 −α2|1+2s |β1 −β2|1+2δ
dβ1 dβ2 dα1 dα2

+
∫
R4

∣∣∣{[u j
2 −u j

1](α2,β1)− [u j
2 −u j

1](α1,β1)}× {∆Q (ui
2 −ui

1)}
∣∣∣2

|α1 −α2|1+2s |β1 −β2|1+2δ
dβ1 dβ2 dα1 dα2

+
∫
R4

∣∣∣{∆Q (u j
2 −u j

1)}× {ui
1(α1,β2)−ui

1(α1,β1)}
∣∣∣2

|α1 −α2|1+2s |β1 −β2|1+2δ
dβ1 dβ2 dα1 dα2

+
∫
R4

∣∣∣{∆Q (u j
2 −u j

1)}× {∆Q ui
1}

∣∣∣2

|α1 −α2|1+2s |β1 −β2|1+2δ
dβ1 dβ2 dα1 dα2

+
∫
R4

∣∣∣{∆Q (u j
2 −u j

1)}× {[[ui
2 −ui

1](α1,β2)− [ui
2 −ui

1](α1,β1)]}
∣∣∣2

|α1 −α2|1+2s |β1 −β2|1+2δ
dβ1 dβ2 dα1 dα2

+
∫
R4

∣∣∣{∆Q (u j
2 −u j

1)}× {∆Q (ui
2 −ui

1)}
∣∣∣2

|α1 −α2|1+2s |β1 −β2|1+2δ
dβ1 dβ2 dα1 dα2


.

∥∥∥∥ ∂2σ

∂x j∂xi

∥∥∥∥2

L∞(R2)

‖u2 −u1‖2
W s

α(R;W δ
β

(R))

[
‖u2‖2

W s
α(R;W δ

β
(R))

+‖u1‖2
W s

α(R;W δ
β

(R))

]
.(5.4.80)

By interchanging the role of variables, we deduce that D IV
i j is bounded as above. Now we proceed to

estimate the final term DV
i j k which by using the notation from (5.4.77) satisfy

DV
i j k .

∥∥∥∥ ∂3σ

∂xk∂x j∂xi

∥∥∥∥2

L∞(R2)

∫
R4

∣∣∣Π3
l=1DV ,l

i j k

∣∣∣2

|α1 −α2|1+2s |β1 −β2|1+2δ
dβ1 dβ2 dα1 dα2,(5.4.81)

where

DV ,1
i j k := [uk

2 −uk
1 ](α1,β1)+ [[uk

2 −uk
1 ](α2,β1)− [uk

2 −uk
1 ](α1,β1)]

+ [[uk
2 −uk

1 ](α1,β2)− [uk
2 −uk

1 ](α1,β1)]+∆Q (uk
2 −uk

1 ),

DV ,2
i j k := u j

1(α2,β1)−u j
1(α1,β1)+∆Q u j

1
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+ [[u j
2 −u j

1](α2,β1)− [u j
2 −u j

1](α1,β1)]+∆Q (u j
2 −u j

1),

DV ,3
i j k := [ui

1(α1,β2)−ui
1(α1,β1)]+∆Q ui

1

+ [[ui
2 −ui

1](α1,β2)− [ui
2 −ui

1](α1,β1)]+∆Q (ui
2 −ui

1).

So the integrand consist of 64 terms because it is a mutiplication of 3 brackets and each bracket of

has 4 terms which comes from (5.4.77). To be precise, these 64 terms consist of the terms which can

be estimated as follows in a similar fashion to (5.4.80):

1. first 16 terms which will be bounded from above by some constant multiply with

(5.4.82)

∥∥∥∥ ∂3σ

∂xk∂x j∂xi

∥∥∥∥2

L∞(R2)

‖uk
2 −uk

1‖2
W s

α(R;W δ
β

(R))
‖u j

2 −u j
1‖2

W s
α(R;W δ

β
(R))

‖ui
2 −ui

1‖2
W s

α(R;W δ
β

(R))
.

2. other 16 terms which will be bounded from above by some constant multiply with

(5.4.83)

∥∥∥∥ ∂3σ

∂xk∂x j∂xi

∥∥∥∥2

L∞(R2)

‖uk
2 −uk

1‖2
W s

α(R;W δ
β

(R))
‖u j

2 −u j
1‖2

W s
α(R;W δ

β
(R))

‖ui
1‖2

W s
α(R;W δ

β
(R))

.

3. next 16 terms which will be bounded from above by some constant multiply with

(5.4.84)

∥∥∥∥ ∂3σ

∂xk∂x j∂xi

∥∥∥∥2

L∞(R2)

‖uk
2 −uk

1‖2
W s

α(R;W δ
β

(R))
‖u j

1‖2
W s

α(R;W δ
β

(R))
‖ui

2 −ui
1‖2

W s
α(R;W δ

β
(R))

.

4. last 16 terms which will be bounded from above by some constant multiply with

(5.4.85)

∥∥∥∥ ∂3σ

∂xk∂x j∂xi

∥∥∥∥2

L∞(R2)

‖uk
2 −uk

1‖2
W s

α(R;W δ
β

(R))
‖u j

1‖2
W s

α(R;W δ
β

(R))
‖ui

1‖2
W s

α(R;W δ
β

(R))
.

By using the estimates from (5.4.82) to (5.4.85) into (5.4.81), with the last few steps followed in (5.4.75),

we get

DV
i j k .

∥∥∥∥ ∂3σ

∂xk∂x j∂xi

∥∥∥∥2

L∞(R2)

‖uk
2 −uk

1‖2
W s

α(R;W δ
β

(R))
×

[
‖u j

2 −u j
1‖2

W s
α(R;W δ

β
(R))

×‖ui
2 −ui

1‖2
W s

α(R;W δ
β

(R))

+‖u j
2 −u j

1‖2
W s

α(R;W δ
β

(R))
×‖ui

1‖2
W s

α(R;W δ
β

(R))
+‖ui

2 −ui
1‖2

W s
α(R;W δ

β
(R))

×‖u j
1‖2

W s
α(R;W δ

β
(R))

+‖ui
1‖2

W s
α(R;W δ

β
(R))

×‖u j
1‖2

W s
α(R;W δ

β
(R))

]
.

∥∥∥∥ ∂3σ

∂xk∂x j∂xi

∥∥∥∥2

L∞(R2)

‖u2 −u1‖2
W s

α(R;W δ
β

(R))
×

[
‖u2‖4

W s
α(R;W δ

β
(R))

+‖u1‖4
W s

α(R;W δ
β

(R))

]
.(5.4.86)

Hence by combining the estimates from (5.4.78), (5.4.79), (5.4.80), and (5.4.86) we see that D4 satisfies

the following bound

D4.

[
2∑

i=1

∥∥∥∥ ∂σ∂xi

∥∥∥∥2

L∞(R2)
+

2∑
i , j=1

∥∥∥∥ ∂2σ

∂x j∂xi

∥∥∥∥2

L∞(R2)

+
2∑

i , j ,k=1

∥∥∥∥ ∂3σ

∂xk∂x j∂xi

∥∥∥∥2

L∞(R2)

]
×
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‖u2 −u1‖2
W s

α(R;W δ
β

(R))

[
1+‖u2‖2

W s
α(R;W δ

β
(R))

+‖u1‖2
W s

α(R;W δ
β

(R))
+‖u2‖4

W s
α(R;W δ

β
(R))

+‖u1‖4
W s

α(R;W δ
β

(R))

]
.

(5.4.87)

So by putting the estimates of D1 from (5.4.72), D2 and D3 from (5.4.75), and D4 from (5.4.87) into

(5.4.71) we have

‖σ◦u1 −σ◦u2‖2
H s
α(R;Hδ

β
(R))

.

[
L2
σ+

2∑
i=1

∥∥∥∥ ∂σ∂xi

∥∥∥∥2

L∞(R2)
+

2∑
i , j=1

∥∥∥∥ ∂2σ

∂x j∂xi

∥∥∥∥2

L∞(R2)

+
2∑

i , j ,k=1

∥∥∥∥ ∂3σ

∂xk∂x j∂xi

∥∥∥∥2

L∞(R2)

]
‖u2 −u1‖2

W s
α(R;W δ

β
(R))

×
[

1+‖u2‖2
W s

α(R;W δ
β

(R))
+‖u1‖2

W s
α(R;W δ

β
(R))

+‖u2‖4
W s

α(R;W δ
β

(R))
+‖u1‖4

W s
α(R;W δ

β
(R))

]
=: C2(‖σ‖C3

b (R2)) ‖u2 −u1‖2
W s

α(R;W δ
β

(R))
×

×
[

1+‖u2‖2
W s

α(R;W δ
β

(R))
+‖u1‖2

W s
α(R;W δ

β
(R))

+‖u2‖4
W s

α(R;W δ
β

(R))
+‖u1‖4

W s
α(R;W δ

β
(R))

]
.

By interchange the roles of s,δ, similar to above, we get

‖σ◦u1 −σ◦u2‖2
Hδ
α(R;H s

β
(R))

.C2(‖σ‖C3
b (R2)) ‖u2 −u1‖2

W δ
α (R;W s

β
(R))

×

×
[

1+‖u2‖2
W δ

α (R;W s
β

(R))
+‖u1‖2

W δ
α (R;W s

β
(R))

+‖u2‖4
W δ

α (R;W s
β

(R))
+‖u1‖4

W δ
α (R;W s

β
(R))

]
.

Hence, we obtain (5.4.56) and we finish the proof of Proposition 5.4.17. �

5.5 Local well-posedness theory

In this section we present the main result related to local theory. Before stating the main theorem we

will prove the following result which allows us to prove later that the localized version of 3−1σ(u)ζ̇

belongs toHs,δ.

Lemma 5.5.1. Assume that H1, H2 ∈
(
0,1

)
and H ′

i ∈ (0, H1 ∧H2), i = 1,2. Then there exists a complete

filtered probability space (Ω,F,P) and a map,

ζ :R2
+×Ω→R,

such that P-a.s. ζ(·, ·,ω) ∈HH ′
1,H ′

2 locally, i.e. for every bump function η,

η(α)η(β)ζ(α,β,ω) ∈HH ′
1,H ′

2 .

Moreover, for (α1,β1), (α2,β2) ∈R2,

(5.5.1) E
[
ζ(α1,β1) ζ(α2,β2)

]= RH1 (|α1|, |α2|) RH2 (|β1|, |β2|).

Here E is the Expectation operator w.r.t. P and

RH (α,β) = 1

2

(
α2H +β2H −|α−β|2H )

, α,β ∈R.
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Proof of Lemma 5.5.1 Let us choose and fix H1, H2 ∈ (
0,1

)
and H ′

i ∈ (0, H1 ∧ H2), i = 1,2. We will

prove the result only in the more difficult case H1, H2 ∈
(
0, 1

2

)
as the other case H1, H2 ∈

(1
2 ,1

)
can be

proved analogously but in a simpler manner.

For the time being let us also fix bump function η. To move forward define, for a,b ∈ (1
2 ,1

)
,

I a
η f (x) := η(x)

Γ(a)

∫ x

0
t a−1 f (x − t )d t ,

and I b
η similarly. It is known that, see e.g. [10] or [67, Section 2], the image of L2(R) by I a

η is a subset of

H a(R). Moreover, by [10] or [67, Theorem 11], if

0 < a′ < a − 1

2
and 0 < b′ < b − 1

2
,

then the map

I a
η : L2(R) → H a′

(R) and I b
η : L2(R) → H b′

(R),

are Hilbert-Schmidt operators. Therefore, the tensor product of these maps is also a Hilbert-Schmidt

operator, see Lemma 5.6.1 and for a more general result refer [39]. In other words, the map

I a
η ⊗ I b

η : L2(R)⊗L2(R) → H a′
(R)⊗H a′

(R),

is Hilbert-Schmidt whenever the relationship 0 < a′ < a − 1
2 and 0 < b′ < b − 1

2 hold.

Recall that, by a classical result, see e.g. [134], L2(R)⊗L2(R) is isometrically isomorphic to L2(R2).

Since by [145, Theorem 2.1], the space H a′
(R)⊗H b′

(R) is isometrically isomorphic to Sa′,b′
2,2 (R2), and

I a
η ⊗ I b

η is equivalent to I a,b
η and by the ideal properties of the space of all Hilbert-Schmidt operators,

we infer that the map

I a,b
η : L2(R2) → Sa′,b′

2,2 (R2),

defined as,

I a,b
η f (x, y) = η(x)η(y)

Γ(a)Γ(b)

∫ x

0

∫ y

0
t a−1sb−1 f (x − t , y − s)d s d t ,

is Hilbert-Schmidt. Analogously, if 0 < a′ < b − 1
2 and 0 < b′ < a − 1

2 , then

I a,b
η : L2(R2) → Sb′,a′

2,2 (R2),

is Hilbert-Schmidt. Hence,

I a,b
η : L2(R2) → Sa′,b′

2,2 (R2)∩Sb′,a′
2,2 (R2) =Ha′,b′

,

is Hilbert-Schmidt whenever

a′,b′ ∈
(
0, a − 1

2

)
∧

(
0,b − 1

2

)
.

In particular, by taking a = H1 + 1
2 ,b = H2 + 1

2 and a′ = H ′
1,b′ = H ′

2, we have that the map

I
H1+ 1

2 ,H2+ 1
2

η : L2(R2) →HH ′
1,H ′

2 (R2),
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is Hilbert-Schmidt.

Let {en}∞n=1 be an orthonormal basis (ONB) of L2(R2) and let {βn}∞n=1 be an i.i.d sequence of N (0,1)

random variables defined on some probability space (Ω,F,P). In fact we consider an ONB of L2(R2)

of the form ẽi ⊗ ẽ j , where {ẽi }∞i=1 is an ONB of L2(R) and we consider i.i.d sequence {βi , j }i , j∈N2 of

N (0,1) random variables but we use the simple index notation.

Consider the random series

(5.5.2) S(ω) :=
∞∑

n=1
βn(ω)I

H1+ 1
2 ,H2+ 1

2
η (en).

Because the map I
H1+ 1

2 ,H2+ 1
2

η is Hilbert-Schmidt, the above series is convergent P-a.s.

Next we choose a sequence of real numbers {Ri }∞i=1 such that Ri ↗∞ and a countable family of

bump functions ηk . We put

ηi k = ηk
( ·

Ri

)
; (i ,k) ∈N2

0.

Because the family ηi k is countable, we infer that the series

(5.5.3) S(ω) :=
∞∑

n=1
βn(ω)I

H1+ 1
2 ,H2+ 1

2
ηi k

(en).

is P-a.s. convergent for every (i ,k). Hence the series

(5.5.4) S(ω) :=
∞∑

n=1
βn(ω)I H1+ 1

2 ,H2+ 1
2 (en),

where

I H1+ 1
2 ,H2+ 1

2 f = 1

Γ
(
H1 + 1

2

)
Γ

(
H2 + 1

2

) ∫ x

0

∫ y

0
t H1− 1

2 sH2− 1
2 f (x − t , y − s)d s d t ,

is P-a.s. convergent inH
H ′

1,H ′
2

loc . Indeed, since un → u inH
H ′

1,H ′
2

loc if and only if for all (i ,k)

ηi k (x)ηi k (y)un → ηi k (x)ηi k (y)u in HH ′
1,H ′

2 ,

we have, P-a.s.

ηi k (x)ηi k (y)
∞∑

n=1
βn(ω)[I H1+ 1

2 ,H2+ 1
2 (en)](x, y) =

∞∑
n=1

ηi k (x)ηi k (y)βn(ω)[I H1+ 1
2 ,H2+ 1

2 (en)](x, y)

=
∞∑

n=1
βn(ω)[I

H1+ 1
2 ,H2+ 1

2
ηi k

(en)](x, y).

But, by (5.5.3), for ω ∈Ω, P-a.s. the r.h.s of above converges inHH ′
1,H ′

2 . Hence

ζ(ω) :=
∞∑

n=1
βn(ω)I H1+ 1

2 ,H2+ 1
2 (en) ∈HH ′

1,H ′
2

loc ,

will give the Lemma 5.5.1.

Finally, we can prove that the condition (5.5.1) is satisfied by repeating the argument from [67]

and using the special form of the ONB of L2(R2). �
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Let us define the (pathwise) local solution that we consider.

Definition 5.5.2. Assume that (u0,u1) ∈ H s
loc(R;Rm)×H s−1

loc (R;Rm) for some s ∈ (3
4 ,1

)
. Letσ ∈C3

b(R2;R2)

and ζ be a fractional Brownian sheet of Hurst indices H1, H2 ∈
(1

2 ,1
)

defined on a probability space

(Ω,F,P). A process u, whose paths are almost surely inHs,δ
loc, is said to be a unique local solution to the

stochastic wave map Cauchy problem3u =N(u)+σ(u)ζ̇,

u(α,−α) = u0(α) and ∂αu(α,−α)+∂βu(α,−α) = u1(α),

if and only if, for ω ∈Ω, P-a.s., there exist an open set O(ω), containing the diagonal

D := {(α,−α) :α ∈R},

and a function u(·, ·,ω) :O→R2 such that u(·, ·,ω) satisfies the integral equation (5.3.3) uniquely in O,

and for every (α0,−α0) ∈D, there exists r (ω) > 0, depending on the point (α0,−α0), such that

(α0 −2r (ω),α0 +2r (ω))× (−α0 −2r (ω),−α0 +2r (ω)) ⊂O(ω),

and, for every bump function χ which satisfy 1[−r (ω),r (ω)] ≤χ≤1[−2r (ω),2r (ω)], the following holds

χ(α−α0)χ(β+α0)u(α,β) ∈Hs,δ.

Next result is the main theorem of the current chapter.

Theorem 5.5.3. Let η,χ as defined in (5.4.1) and ψ be a bump function which is non zero on the

support of χ,η and
∫
Rψ(x)d x = 1. Assume s,δ ∈ (3

4 ,1
)

such that δ≤ s and (u0,u1) ∈ H s(R)×H s−1(R).

There exist a R0 ∈ (0,1) and a λ0 :=λ0(‖u0‖H s ,‖u1‖H s−1 ,R0) À 1 such that for every λ≥λ0 there exists

a unique u := u(λ,R0) ∈BR0 , where BR := {
u ∈Hs,δ : ‖u‖Hs,δ ≤ R

}
, which satisfies the following integral

equation

u(α,β) = η(λα)η(λβ)
(
[S(χ(λ)(u0 − ūλ

0 ),χ(λ)u1)](α,β)+ [3−1N(u)](α,β)

+[3−1σ(u)ζ̇](α,β)
)

, (α,β) ∈R2.(5.5.5)

Here the right hand side terms are, respectively, defined in (5.3.4)-(5.3.6) and ūλ
0 is

ūλ
0 :=

∫
R

u0

( y

λ

)
ψ(y)d y.

Proof of Theorem 5.5.3 Let us fix s,δ satisfying the assumption of the theorem. Since the dependency

of constants on the variables in the estimates below plays an important role in proving the contraction

property, (which in result allows us to apply the Banach Fixed Point Theorem), we write the proven

estimates precisely as follows:

1. from Lemma 5.4.18 there exists CS :=CS(η) > 0 such that, for every u0 ∈ H s(R,u1 ∈ H s−1(R)),

‖η(α)η(β)S(u0,u1)‖Hs,δ ≤CS
(‖u0‖H s +‖u1‖H s−1

)
,(5.5.6)
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2. for the integral term involving the non-linearity of wave map equation in (5.5.5), by Lemma

5.4.15 we know that there exist a natural number γ ≥ 2 and a positive constant CN := CN(η)

such that

‖η(α)η(β)3−1[N(u)]‖Hs,δ ≤CN ‖u‖γ+1
Hs,δ ,(5.5.7)

and

‖η(α)η(β)3−1[N(u1)−N(u2)]‖Hs,δ ≤CN‖u1 −u2‖Hs,δ

[
2∑

i=1
‖ui‖Hs,δ

]γ
,(5.5.8)

for every u,u1,u2 ∈Hs,δ;

3. to estimate the integral w.r.t. the noise term in (5.5.5), note that due to Proposition 5.4.17,σ(u) ∈
Hs,δ for any u ∈ Hs,δ. Next, since by Lemma 5.4.3 Hs,δ ·Hs−1,δ−1 ⊂ Hs−1,δ−1 and ζ̇ ∈ Hs−1,δ−1

loc ,

Proposition 5.4.9 (with T = 1) tells that locally 3−1[σ(u)ζ̇] belongs toHs,δ. In particular,

‖η(α)η(β)3−1[σ(u)ζ̇]‖Hs,δ ≤Cζ ‖σ(u)‖Hs,δ ‖ζ̇‖Hs−1,δ−1

≤Cζ C1(σ) ‖u‖Hs,δ

[
1+‖u‖Hs,δ

] ‖ζ̇‖Hs−1,δ−1 ,(5.5.9)

and

‖η(α)η(β)3−1[(σ(u1)−σ(u2))ζ̇]‖2
Hs,δ ≤Cζ ‖σ(u1)−σ(u2)‖Hs,δ ‖ζ̇‖Hs−1,δ−1 ,

≤Cζ C2(σ) ‖u2 −u1‖Hs,δ

[
1+

2∑
i ,k=1

‖ui‖k
Hs,δ

]
‖ζ̇‖Hs−1,δ−1 ,(5.5.10)

for some positive constants Cζ :=Cζ(η,χ) and Ci (σ) :=Ci (‖σ‖Ci+1
b

).

To move ahead in the proof we consider a map Θλ :Hs,δ 3 u 7→ uΘλ ∈Hs,δ defined by

uΘλ = η(α)η(β)
(
S(uλ

0 ,uλ
1 )+3−1[N(u)]+3−1[σ(u)ζ̇λ]

)
,(5.5.11)

where

uλ
0 (α) :=χ(α)

[
u0

(α
λ

)
− ūλ

0

]
, uλ

1 (α) :=χ(α)λ−1u1

(α
λ

)
, and ζ̇λ :=λ−2Πλζ̇.(5.5.12)

From (5.5.6) to (5.5.9), we infer that the map Θλ is well-defined. In order to prove that Θλ is a strict

contraction we will use the concept of scaling together with the restriction map method. Let us take

R ∈ (0,1) (to be set later). By invoking Lemma 5.4.1 followed by the scaling Lemma 5.4.6, since δ≤ s

we get

‖η(α)η(β)S
(
uλ

0 ,uλ
1

)
‖Hs,δ ≤CS(η,χ)

(
λ−ε‖u0‖H s +λ 1

2−s‖u1‖H s−1

)
,(5.5.13)

for some ε> 0. Hence, by Lemma 5.4.7 we have

(5.5.14) ‖ζ̇λ‖Hs−1,δ−1 ≤λ1−(s+δ)‖ζ̇‖Hs−1,δ−1 .
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Next, observe that since Rγ+1 < R for R ∈ (0,1), ε> 0 and for the considered range of s,δ, the exponents
1
2 − s,−2+3− (s +δ) < 0, we can find R ∈ (0,1) and λ :=λ(‖u0‖H s ,‖u1‖H s−1 ,R) such that

R ≥ CS(η,χ)
(
λ−ε‖u0‖H s +λ 1

2−s‖u1‖H s−1

)
+CNRγ+1

+λ−1−(s+δ)CζC1(σ)R(1+R)‖ζ̇‖Hs−1,δ−1 .(5.5.15)

Consequently, for every pair (λ,R) such that (5.5.15) holds, the map Θλ : BR → BR is well-defined

because for any u ∈BR , by triangle inequality in (5.5.11) followed by estimates (5.5.7), (5.5.9), (5.5.13),

and (5.5.14) give

‖uΘλ‖Hs,δ ≤CS(η,χ)
(
λ−ε‖u0‖H s +λ 1

2−s‖u1‖H s−1

)
+CNRγ+1

+λ1−(s+δ)CζC1(σ)R(1+R)‖ζ̇‖Hs−1,δ−1 .(5.5.16)

To have the contraction, observe that by using the estimates (5.5.8), (5.5.10), and (5.5.14) in (5.5.11),

for any u, v ∈BR , we obtain

‖uΘλ − vΘλ‖Hs,δ .CN‖u − v‖Hs,δRγ+Cζ C2(σ) ‖u − v‖Hs,δ

(
1+R +R2) ‖ζ̇‖Hs−1,δ−1

≤
[
CNR +λ1−(s+δ)Cζ C2(σ) (1+R) ‖ζ̇‖Hs−1,δ−1

]
‖u − v‖Hs,δ .(5.5.17)

Hence we can choose R0 ∈ (0,1),λ0 :=λ0(‖u0‖H s ,‖u1‖H s−1 ,R0) in such a way that (5.5.15) is satisfied

and the right hand side of (5.5.17) is bounded by 1
2‖u − v‖Hs,δ , i.e. Θλ is 1

2 -contraction as a map from

BR0 into itself. Thus, since BR0 is a closed subset of Hs,δ, by the Banach Fixed Point Theorem there

exists a unique uλ ∈BR0 such that uλ =Θλ(uλ).

It is relevant to note that because λ in the r.h.s. of (5.5.15) and (5.5.17) appear with negative

exponents we infer that (5.5.15) - (5.5.17) holds for the chosen R0 and every λ≥λ0.

To complete the proof we do the inverse-scaling as below and reach back to the map Θ. In this

direction, first we see that for any given suitable λ,R and the corresponding fixed point uλ of the

map Θλ, by defining

(5.5.18) u(α,β) := 1

λ2Πλ−1 uλ(α,β) = uλ(λα,λβ),

due to the special structure of the null form N we have

N(uλ(α,β)) = 1

λ2N

(
u

(
α

λ
,
β

λ

))
.

Consequently due to the choice of exponent −2 to scale the noise in (5.5.12) and since uλ is fixed

point of Θλ, from (5.5.11), (5.5.18) followed by Lemmata 5.4.1 and 5.4.7 we deduce

u(α,β) =Θλ
(
uλ

)
(λα,λβ)

(5.5.19)

= η(λα)η(λβ)

[
1

2

(
uλ

0 (λα)+uλ
0 (−λβ)

)
+ 1

2

∫ λα

−λβ
uλ

1 (r )dr
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+1

4

∫ λα

−λβ

∫ λβ

−a
N(uλ(a,b))db d a + 1

4

∫ λα

−λβ

∫ λβ

−a
σ(uλ(a,b)) ζ̇λ(d a,db)

]
= η(λα)η(λβ)

[
1

2

{
χ(λα)u0(α)−χ(λα)u0

λ+χ(−λβ)u0(−β)−χ(−λβ)u0
λ
}

+1

2

∫ α

−β
χ(λr )u1(r )dr + 1

4

∫ α

−β

∫ β

−a
N(u(a,b))db d a + 1

4

∫ α

−β

∫ β

−a
σ(u(a,b))ζ̇(a,b)db d a

]
= η(λα)η(λβ)

(
[S(χ(λ)(u0 −u0

λ),χ(λ)u1)](α,β)+ [3−1N(u)](α,β)+ [3−1σ(u)ζ̇](α,β)
)

.

Hence the Theorem 5.5.3. �

To remove the dependence on u0
λ we consider the stochastic wave map system work with

another coordinate chart which is the translation of original one by the value u0
λ. In precise manner,

since the wave map (in the integral form) is well-defined and λ is already fixed now due to the

Theorem 5.5.3, by choosing the local chart (U ,φ′) where φ′ differs from φ by the constant u0
λ

precisely, φ′(p) :=φ(p)−u0
λ, ∀p ∈U , the obtained localized solution u from Theorem 5.5.3 satisfies

the following integral equation

u(α,β) = η(λα)η(λβ)
(
[S(χ(λ)u0,χ(λ)u1)](α,β)+ [3−1N(u)](α,β)+ [3−1σ(u)ζ̇](α,β)

)
.(5.5.20)

Now to obtain the pathwise local solution in the sense of Definition 5.5.2, let (α0,−α0) on the

negative diagonal Dαβ := {(r,−r ) : r ∈R}. Next, by setting

u0α0
(α) := u0(α−α0) and 0 u1α0

(α) := u1(α−α0),

we get, by change of variable

2[S(u0,u1)](α−α0,β+α0) = u0α0
(α)+u0α0

(−β)+
∫ α

−β
u1α0

(s)d s.

Similarly by defining

uα0 (α,β) := u(α−α0,β+α0),

we obtain [
3−1N(u)

]
(α−α0,β+α0) = [

3−1N(uα0 )
]

(α,β),

and [
3−1σ(u)ζ̇

]
(α−α0,β+α0) = [

3−1σ(uα0 )ζ̇α0

]
(α,β),

where ζα0 (α,β) := ζ(α−α0,β+α0).

Consider the following integral equation

u(α−α0,β+α0) = η(λα)η(λβ)
[
S(χ(λ)u0,χ(λ)u1)(α−α0,β+α0)+ (

3−1N(u)
)

(α−α0,β+α0)

+(
3−1σ(u)ζ̇

)
(α−α0,β+α0)

]
(5.5.21)
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Since the Sobolev spaces H s(Rd ) are translation invariant and the constants of inequalities in the

estimates (5.5.6) to (5.5.10) depend only on η and χ, we infer that by repeating the procedure followed

in the proof of Theorem 5.5.3, with the same constants of estimates, and we get a unique uα0 ∈Hs,δ

which satisfies (5.5.21) in some neighbourhood of (α0,−α0). Hence, by using the uniqueness of

localized solution we can glue “local” solutions to get a unique pathwise solution u as required in the

sense of Definition 5.5.2.

5.6 Auxiliary results

5.6.1 Tensor product of Hilbert-Schmidt operators

The following lemma is a special case of [39].

Lemma 5.6.1. Let Ei ,Fi , i = 1,2, are given separable Hilbert spaces. Assume that A ∈L2(E1,E2) and

B ∈L2(F1,F2), i.e. they are Hilbert-Schmidt operators. Then the tensor product A⊗B, which is defined

by,

A⊗B : E1 ⊗F1 3 M 7→ B ◦M ◦ A∗ ∈ E2 ⊗F2,

is a Hilbert-Schmidt operator from E1 ⊗F1 into E2 ⊗F2.

Proof of Lemma 5.6.1 Recall that by definition Ei ⊗Fi = L2(E∗
i ,Fi ) for i = 1,2. Let {e1

j } j∈N, {e2
i }i∈N

and { f 1
k }N, respectively, are orthonormal basis (ONB) of E1, E2, and F1. It is known that

e1
j ⊗ f 1

k : E∗
1 3φ 7→ E∗

1
〈φ,e1

j 〉E1 f 1
k ∈ F1,

and the sequence {e1
j ⊗ f 1

k } j ,k∈N forms an ONB of L2(E∗
1 ,F1). Thus, since {e2∗

i } are ONB of E∗
2 ,

‖(A⊗B)(e1
j ⊗ f 1

k )‖2
L2(E∗

2 ,F2) =
∞∑

i=1
‖E∗

1
〈A∗e2∗

i ,e1
j 〉E1 B( f 1

k )‖2
F2

=
∞∑

i=1
|E∗

2
〈e2∗

i , Ae1
j 〉E2 |2 ‖B( f 1

k )‖2
F2

= ‖B( f 1
k )‖2

F2
‖Ae1

j ‖2
E2

.

Hence

∞∑
j ,k=1

‖(A⊗B)(e1
j ⊗ f 1

k )‖2
L2(E∗

2 ,F2) = ‖A‖2
L2(E1,E2)‖B‖2

L2(F1,F2),

and we are done with the proof of Lemma 5.6.1. �

5.6.2 Invariance of wave map under local charts

In this section we show that the wave maps, under perturbation, of sufficient regularity are invariant

with respect to local charts. Here again, for simplicity, we restrict the computation to the case when

M is 2-dimensional manifold. Let (U ,φ= (x1, x2)) and (U ,ψ= (y1, y2)) be two local coordinate charts

on M with a common domain U . We will also denote the standard coordinates of R2 by the same
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notation in the corresponding cases. Recall that the SGWE (1.2.6) has the following form in local

coordinate (U ,φ), for each k = 1, . . . ,n, we write φ to show the dependency explicitly,

(5.6.1)


2φZ k (t , x) =

2∑
a,b=1

1∑
µ=0

φΓk
ab(φZ )∂µ

φZ a∂µ φZ b +φσk (φZ )ξ̇,

φZ (0, x) = φZ 0(x) ∈R2, and ∂t
φZ (0, x) = φZ 1(x) ∈R2,

where φZ =φ◦ z :R2 →R2, φΓk
ab denote the Christoffel symbols on M in the chosen local coordinate

(U ,φ) and
φσ(φ(p)) := (dpφ)(κ(p)) ∈R2, p ∈U .

We also assume that ξ is sufficiently smooth so that the equation (5.6.1) makes sense in the differential

form.

Theorem 5.6.2. Suppose that (U ,φ) and (U ,ψ) are two coordinate charts on M. Let V be an open

subset of R2 and z : V →U is of class C2. Define

φZ =φ◦ z and ψZ = (ψ◦φ−1)(φZ ) on V.

Then

(5.6.2) φZ 0(x) = [ψ◦φ−1]
(
ψu0(x)

)
,

and φZ (t , x) satisfies

∂2φZ k

∂t 2 (t , x)− ∂2φZ k

∂x2 (t , x)−φσk (φZ (t , x))ξ̇

+
m∑

a,b=1

φ1
Γk

ab(Φ1(t , x))

[
∂φZ a

∂t
(t , x)

∂φZ b

∂t
(t , x)− ∂φZ a

∂x
(t , x)

∂φZ b

∂x
(t , x)

]
= 0,(5.6.3)

if and only if ψZ (t , x) satisfies

∂2ψZ k

∂t 2 (t , x)− ∂2ψZ k

∂x2 (t , x)−ψσk (ψZ (t , x))ξ̇

+
m∑

α,β=1

ψ
Γk
αβ(Φ2(t , x))

[
∂ψZα

∂t
(t , x)

∂ψZβ

∂t
(t , x)− ∂ψZα

∂x
(t , x)

∂ψZβ

∂x
(t , x)

]
= 0,(5.6.4)

for k = 1, . . . ,n.

Proof of Theorem 5.6.2 Sinceψ◦φ−1 :R2 3φ(p) 7→ψ(p) ∈R2 and φ◦ψ−1 :R2 3ψ(p) 7→φ(p) ∈R2 are

diffeomorphisms, the equality (5.6.2) holds true because

φZ 0(x) =φ(z0(x)) = (φ◦ψ−1)(ψ(z0(x))) = [ψ◦φ−1]
(
ψz0(x)

)
.

Now we move to the proof of the second claim in the theorem. Suppose φZ satisfies (5.6.3). Observe

that by the chain rule for Jacobi matrices we have

∂φZ a

∂t
(t , x) =

2∑
λ=1

∂(φa ◦ψ−1)

∂yλ
(ψ(z(t , x)))

∂(ψλ ◦ z)

∂t
(t , x),(5.6.5)
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and

∂φZ b

∂x
(t , x) =

2∑
δ=1

∂(φb ◦ψ−1)

∂yδ
(ψ(u(t , x)))

∂(ψδ ◦ z)

∂x
(t , x).(5.6.6)

For second derivative terms by similar calculations we get

∂2φZ a

∂t 2 (t , x) =
2∑

λ,δ=1

∂2(φa ◦ψ−1)

∂yδ∂yλ
(ψ(z(t , x)))

∂(ψδ ◦ z)

∂t
(t , x)

∂(ψλ ◦ z)

∂t
(t , x)

+
2∑

λ=1

∂(φa ◦ψ−1)

∂yλ
(ψ(z(t , x)))

∂2(ψλ ◦ z)

∂t 2 (t , x),

and

∂2φZ b

∂x2 (t , x) =
2∑

λ,δ=1

∂2(φb ◦ψ−1)

∂yδ∂yλ
(ψ(z(t , x)))

∂(ψδ ◦ z)

∂x
(t , x)

∂(ψλ ◦ z)

∂x
(t , x)

+
2∑

λ=1

∂(φb ◦ψ−1)

∂yλ
(ψ(z(t , x)))

∂2(ψλ ◦ z)

∂x2 (t , x).(5.6.7)

It is well known, see [118, Chapter 3], that the Christoffel symbols transform under the change of

coordinate chart as, for each µ= 1,2,

2∑
κ=1

ψ
Γκαβ(ψZ (t , x))

∂(φµ ◦ψ−1)

∂yκ
(ψZ (t , x)) =

2∑
λ,δ=1

[
∂2(φµ ◦ψ)

∂yλ∂yδ
(ψZ (t , x))

+∂(φλ ◦ψ)

∂yλ
(ψZ (t , x))

∂(φδ ◦ψ)

∂yδ
(ψZ (t , x))

φ
Γ
µ

ab(φZ (t , x))

]
.(5.6.8)

Since φσ(φZ (t , x)) = (dz(t ,x)φ)(κ(z(t , x))), we infer that, for each k = 1,2,

(5.6.9) φσk (φZ (t , x)) =
2∑

γ=1

∂(φk ◦ψ−1)

∂yγ
(ψZ (t , x))ψσk (ψZ (t , x)).

Then, since φZ (t , x) satisfy (5.6.3), by substituting partial derivatives from (5.6.5)-(5.6.7) followed by

combining the terms to apply the transformation laws (5.6.8) and (5.6.9) we get, for each k = 1,2,

0 =
2∑

λ,δ=1

∂2(φk ◦ψ−1)

∂yδ∂yλ
(ψ(z(t , x)))

∂(ψδ ◦ z)

∂t
(t , x)

∂(ψλ ◦ z)

∂t
(t , x)

+
2∑

λ=1

∂(φk ◦ψ−1)

∂yλ
(ψ(z(t , x)))

∂2(ψλ ◦ z)

∂t 2 (t , x)

−
2∑

λ,δ=1

∂2(φk ◦ψ−1)

∂yδ∂yλ
(ψ(z(t , x)))

∂(ψδ ◦ z)

∂x
(t , x)

∂(ψλ ◦ z)

∂x
(t , x)

−
2∑

λ=1

∂(φk ◦ψ−1)

∂yλ
(ψ(z(t , x)))

∂2(ψλ ◦ z)

∂x2 (t , x)−φσk (φ(z(t , x)))ξ̇

+
m∑

a,b=1

φ
Γk

ab(φZ (t , x))

[(
2∑

λ=1

∂(φa ◦ψ−1)

∂yλ
(ψ(z(t , x)))

∂(ψλ ◦ z)

∂t
(t , x)

)
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×
(

m∑
δ=1

∂(φb ◦ψ−1)

∂yδ
(ψ(z(t , x)))

∂(ψδ ◦ z)

∂t
(t , x)

)

−
(

m∑
µ=1

∂(φa ◦ψ−1)

∂yµ
(ψ(z(t , x)))

∂(ψµ ◦u)

∂x
(t , x)

)

×
(

m∑
ν=1

∂(φb ◦ψ−1)

∂yν
(ψ(z(t , x)))

∂(ψν ◦u)

∂x
(t , x)

)]

=
2∑

λ=1

∂(φk ◦ψ−1)

∂yλ
(ψ(z(t , x)))

[
∂2(ψλ ◦ z)

∂t 2 (t , x)− ∂2(ψλ ◦ z)

∂x2 (t , x)

]

+
2∑

λ,δ=1

∂(ψδ ◦ z)

∂t
(t , x)

∂(ψλ ◦ z)

∂t
(t , x)

[
∂2(φk ◦ψ−1)

∂yδ∂yλ
(ψ(z(t , x)))

+
m∑

a,b=1

φ
Γk

ab(φZ (t , x))

(
∂(φa ◦ψ−1)

∂yλ
(ψ(z(t , x)))

∂(φb ◦ψ−1)

∂yδ
(ψ(z(t , x)))

)]

−
2∑

λ,δ=1

∂(ψδ ◦ z)

∂x
(t , x)

∂(ψλ ◦ z)

∂x
(t , x)

[
∂2(φk ◦ψ−1)

∂yδ∂yλ
(ψ(z(t , x)))

+
m∑

a,b=1

φ
Γk

ab(φZ (t , x))

(
∂(φa ◦ψ−1)

∂yλ
(ψ(z(t , x)))

∂(φb ◦ψ−1)

∂yδ
(ψ(z(t , x)))

)]

−
2∑

γ=1

∂(φk ◦ψ−1)

∂yγ
(ψ(z(t , x)))ψσk (ψ(z(t , x)))ξ̇

=
2∑

λ=1

∂(φk ◦ψ−1)

∂yλ
(ψ(z(t , x)))

[
∂2(ψλ ◦ z)

∂t 2 (t , x)− ∂2(ψλ ◦ z)

∂x2 (t , x)

]

+
2∑

λ,δ=1

[(
∂(ψδ ◦ z)

∂t
(t , x)

∂(ψλ ◦ z)

∂t
(t , x)− ∂(ψδ ◦ z)

∂x
(t , x)

∂(ψλ ◦ z)

∂x
(t , x)

)

×
(

2∑
κ=1

ψ
Γκλδ(ψZ (t , x))

∂(φk ◦ψ−1)

∂yκ
(ψ(z(t , x)))

)]

−
2∑

γ=1

∂(φk ◦ψ−1)

∂yγ
(ψ(z(t , x)))ψσk (ψ(z(t , x)))ξ̇

=
2∑

γ=1

∂(φk ◦ψ−1)

∂yγ
(ψ(z(t , x)))

[
∂2ψZ γ

∂t 2 (t , x)− ∂2ψZ γ

∂x2 (t , x)−ψσk (ψZ (t , x))ξ̇

+
2∑

λ,δ=1

ψ
Γ
γ

λδ
(ψZ (t , x))

(
∂ψZ δ

∂t
(t , x)

∂ψZλ

∂t
(t , x)− ∂ψZ δ

∂x
(t , x)

∂ψZλ

∂x
(t , x)

)]

=:
2∑

γ=1

∂(φk ◦ψ−1)

∂yγ
(ψ(z(t , x))) A(γ).

This implies in matrix form(
0

0

)
2×1

=
∂(φ1◦ψ−1)

∂y1 (ψ(z(t , x))) ∂(φ1◦ψ−1)
∂y2 (ψ(z(t , x)))

∂(φ2◦ψ−1)
∂y1 (ψ(z(t , x))) ∂(φ2◦ψ−1)

∂y2 (ψ(z(t , x)))


2×2

(
A(1)

A(2)

)
2×1

.(5.6.10)

Since 2×2 matrix in (5.6.10) is invertible, we infer that A(γ) = 0 for each γ= 1,2. Hence proof of the
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Theorem 5.6.2 is complete.

�
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[16] Brzeźniak, Z., Goldys, B. and Jegaraj, T., Large deviations and transitions between equilibria

for stochastic Landau-Lifshitz-Gilbert equation, Arch. Ration. Mech. Anal. 226 (2017), no. 2,

497-558.
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[22] Brzeźniak, Z. and Millet, A., On the stochastic Strichartz estimates and the stochastic nonlinear

Schrödinger equation on a compact Riemannian manifold, Potential Anal., 41 (2014), no. 2,

269-315.
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