

The Diet and Management of Ancient Sheep and Goats: The Potential of Dental Microwear

by Lucy Lawrence

March 2019

The University of Sheffield, Faculty of Arts and Humanities Department of Archaeology

A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy

Volume 2

Supervisor: Paul Halstead Second supervisor: Glynis Jones Advisor: Ingrid Mainland

Student registration number: 130215671

CHAPTER 2 FIGURES AND TABLES	12
FIGURE 2.1: MAP SHOWING THE LOCATION OF TOUMBA KREMASTIS-KOILADAS	12
FIGURE 2.2: PLAN OF 1998-1999 EXCAVATION OF TKK	13
FIGURE 2.3: MAP SHOWING THE LOCATION OF THE SITE, MAKRIYALOS	14
FIGURE 2.4: PLAN OF MKI (PHASE I)	15
FIGURE 2.5: MAP SHOWING THE LOCATION OF THE SITE, KNOSSOS	16
FIGURE 2.6: CONTOUR PLAN OF KNOSSOS SHOWING LOCATION OF SOUNDINGS	17
TABLE 2.1: TABLE OF THE SAMPLE GROUP SELECTED FOR ANALYSIS FROM TKK	18
TABLE 2.2: TABLE OF THE SAMPLE GROUP SELECTED FOR ANALYSIS FROM MK	18
TABLE 2.3: TABLE OF THE SAMPLE GROUP SELECTED FOR ANALYSIS FROM KNOSSOS, BEFORE	
BEING GROUPED	18
TABLE 2.4: TABLE OF THE SAMPLE GROUP SELECTED FOR ANALYSIS FROM KNOSSOS, AFTER BEIN	١G
GROUPED	19
CHAPTER 3 FIGURES AND TABLES	20
FIGURE 3.1: BIVARIATE GRAPH FROM RIVALS ET AL (2011 FIGURE 3, 534)	20
FIGURE 3.2: DIAGRAM OF THE OCCLUSAL SURFACE OF A SHEEP/GOAT DP4	21
FIGURE 3.3: PHOTOGRAPH DEMONSTRATING THE METHOD FOR CREATING NEGATIVE IMPRESSION	IS
OF TEETH	22
FIGURE 3.4: DETAIL ENHANCEMENT INFORMATION FOR HDR TONEMAPPED IMAGES A – D	23
FIGURE 3.5: A: JPEG IMAGE OF HIGH ABRASIVE GRAZER, NO HDRI PROCESSING. B: HDRI OF SA	ME
ENAMEL BAND, TONEMAPPED USING PHOTOMATIX PRO 64-BIT WITH NO ADDITIONAL SHARPENIN	IG.
C: HDRI TONEMAPPED WITH ADDITIONAL 'STRONG' SHARPENING ENHANCEMENT CAUSING A	
'GRAINY' APPEARANCE.	24
FIGURE 3.6: BIVARIATE GRAPH SHOWING THE TOTAL PIT AND SCRATCH COUNTS FOR THREE	
DIETARY GROUPS RESULTS HAVE BEEN OBTAINED USING HDR IMAGING AND DETAIL	
ENHANCEMENTS.	25
FIGURE 3.7: DLM IMAGE OF PITTED ENAMEL SURFACE FROM A SHEEP FED FRESH BROWSE	26
FIGURE 3.8: DLM IMAGE OF HEAVILY SCRATCHED AND PITTED ENAMEL SURFACE FROM A SHEEP	,
FED FRESH GRAZE	26
FIGURE 3.7: BIVARIATE GRAPH TO SHOW THE PIT AND SCRATCH COUNTS FROM THREE DIETS USIN	١G
UNPROCESSED IMAGES.	27
TABLE 3.1: THE DIET AND AGE AT DEATH (MONTHS) OF THE PLIKATI SHEEP AND GOATS	28
TABLE 3.2: TABLE TO SHOW MODERN SAMPLE DETAILS AND SAMPLE NUMBERS.	29
TABLE 3.3: SAMPLE DETAILS FOR BIVARIATE GRAPH OF HDRI ANALYSIS (FIGURE 3.6) AND THE	
COUNTS FOR PITS, SCRATCHES AND TOTAL FEATURE TALLY.	31

TABLE 3.4: SAMPLE DETAILS FOR BIVARIATE GRAPH OF MICROWEAR ANALYSIS OF UNPROCESSED	
IMAGES (FIGURE 3.7)	3
TABLE 3.5: TABLE TO SHOW QUANTITATIVE VARIABLES RECORDED	4
TABLE 3.6: TABLE SHOWING QUALITATIVE VARIABLES RECORDED 3	4
CHAPTER 4 FIGURES AND TABLES	5
DISTINGUISHING BETWEEN GRAZERS, BROWSERS, LEAFY HAY, GRASSY HAY AN	D
CEREAL FODDERING	5
FIGURE 4.1: A PLOT OF THE FIRST TWO DISCRIMINANT FUNCTIONS FOR THE DISCRIMINANT	
ANALYSIS OF FIVE DIETARY GROUPS: GRAZERS (N=63), BROWSERS (N=8), LEAFY HAY (N=13),	
CEREAL (N=22) AND GRASSY HAY (N=20)	5
DISTINGUISHING BETWEEN DRIED FODDER AND FRESH GRAZE/BROWSE	6
FIGURE 4.2: A PLOT OF THE DISCRIMINANT FUNCTION FOR THE DISCRIMINANT ANALYSIS OF TWO	
DIETARY GROUPS: FRESH (GRAZE AND BROWSE) (N=71) AND FODDERED (CEREAL FODDER, GRASS	Y
HAY AND LEAFY HAY) (N=55)	6
DISTINGUISHING BETWEEN DRIED LEAFY HAY AND FRESH BROWSE	57
FIGURE 4.3: A PLOT OF THE DISCRIMINANT FUNCTION FOR THE DISCRIMINANT ANALYSIS OF TWO	
DIETARY GROUPS: LEAFY HAY (N=13) AND FRESH BROWSE (N=8)	7
DISTINGUISHING BETWEEN DRIED GRASSY HAY AND FRESH GRAZE	8
FIGURE 4.4: A PLOT OF THE DISCRIMINANT FUNCTION FOR THE DISCRIMINANT ANALYSIS OF TWO	
DIETARY GROUPS: GRASSY HAY (N=20) AND FRESH GRAZE (N=63)	8
DISTINGUISHING BETWEEN FRESH BROWSE AND FRESH GRAZE	9
FIGURE 4.5: A PLOT OF THE DISCRIMINANT FUNCTION FOR THE DISCRIMINANT ANALYSIS OF TWO	
DIETARY GROUPS: GRASSY HAY (N=20) AND FRESH GRAZE (N=63)	9
DISTINGUISHING BETWEEN SUMMER AND WINTER GRAZE (BOTH FRESH	
GROUPS)	0
FIGURE 4.6: A PLOT OF THE DISCRIMINANT FUNCTION FOR THE DISCRIMINANT ANALYSIS OF TWO	
DIETARY GROUPS: SUMMER GRAZE (N=28) AND WINTER GRAZE (N=35)4	0
DISTINGUISHING LOW QUALITY GRAZE AND HIGH QUALITY GRAZE	1
FIGURE 4.7: A PLOT OF THE DISCRIMINANT FUNCTION FOR THE DISCRIMINANT ANALYSIS OF TWO	
DIETARY GROUPS: HIGH QUALITY GRAZE (N=54) AND LOW QUALITY GRAZE (N=9)4	-1
DISTINGUISHING BETWEEN GRASSY HAY, LEAFY HAY AND CEREAL FODDER 4	2
FIGURE 4.8: A PLOT OF THE TWO DISCRIMINANT FUNCTIONS FOR THE DISCRIMINANT ANALYSIS OF	1
THREE DIETARY GROUPS: GRASSY HAY (N=20), LEAFY HAY (N=13) AND CEREAL (N=22)4	2

DISTINGUISHING BETWEEN GRASSY HAY AND LEAFY HAY4	3
FIGURE 4.9: A PLOT OF THE DISCRIMINANT FUNCTION FOR THE DISCRIMINANT ANALYSIS OF TWO	
DIETARY GROUPS: GRASSY HAY (N=20) AND LEAFY HAY (N=13)	3
DISTINGUISHING BETWEEN GRASSY HAY AND CEREAL FODDER 4	4
FIGURE 4.10: A PLOT OF THE DISCRIMINANT FUNCTION FOR THE DISCRIMINANT ANALYSIS OF TWO	
DIETARY GROUPS: GRASSY HAY (N=20) AND CEREAL (N=)	4
TABLE 4.1: TABLE SHOWING THE CORRELATIONS BETWEEN DISCRIMINATING VARIABLES AND THE	,
FOUR DISCRIMINANT FUNCTIONS EXTRACTED IN THE DISCRIMINANT ANALYSIS USING FIVE	
DIETARY GROUPS	5
TABLE 4.2: RECLASSIFICATION OF SAMPLES INTO THEIR ORIGINAL DIETARY GROUPS, BEFORE AND	
AFTER CROSS-VALIDATION, FOR THE DISCRIMINANT ANALYSIS USING FIVE DIETARY GROUPS 4	5
TABLE 4.3: TABLE SHOWING THE CORRELATIONS BETWEEN DISCRIMINATING VARIABLES AND THE	,
DISCRIMINANT FUNCTION EXTRACTED IN THE DISCRIMINANT ANALYSIS USING TWO DIETARY	
GROUPS: DRIED FODDER AND FRESH GRAZE/BROWSE	6
TABLE 4.4: RECLASSIFICATION OF SAMPLES INTO THEIR ORIGINAL DIETARY GROUPS, BEFORE AND	
AFTER CROSS-VALIDATION, FOR THE DISCRIMINANT ANALYSIS USING TWO DIETARY GROUPS:	
DRIED FODDER AND FRESH GRAZE/BROWSE	6
TABLE 4.5: TABLE SHOWING THE CORRELATIONS BETWEEN DISCRIMINATING VARIABLES AND THE	,
DISCRIMINANT FUNCTION EXTRACTED IN THE DISCRIMINANT ANALYSIS USING TWO DIETARY	
GROUPS: FRESH BROWSE AND DRIED LEAFY HAY	7
TABLE 4.6: RECLASSIFICATION OF SAMPLES INTO THEIR ORIGINAL DIETARY GROUPS, BEFORE AND	
AFTER CROSS-VALIDATION, FOR THE DISCRIMINANT ANALYSIS USING TWO DIETARY GROUPS:	
FRESH BROWSE AND DRIED LEAFY HAY	7
TABLE 4.7: TABLE SHOWING THE CORRELATIONS BETWEEN DISCRIMINATING VARIABLES AND THE	,
DISCRIMINANT FUNCTION EXTRACTED IN THE DISCRIMINANT ANALYSIS USING TWO DIETARY	
GROUPS: DRIED GRASSY HAY AND FRESH GRAZE4	7
TABLE 4.8: RECLASSIFICATION OF SAMPLES INTO THEIR ORIGINAL DIETARY GROUPS, BEFORE AND	
AFTER CROSS-VALIDATION, FOR THE DISCRIMINANT ANALYSIS USING TWO DIETARY GROUPS:	
DRIED GRASSY HAY AND FRESH GRAZE4	8
TABLE 4.9: TABLE SHOWING THE CORRELATIONS BETWEEN DISCRIMINATING VARIABLES AND THE	,
DISCRIMINANT FUNCTION EXTRACTED IN THE DISCRIMINANT ANALYSIS USING TWO DIETARY	
GROUPS: FRESH GRAZE AND FRESH BROWSE4	8
TABLE 4.10: RECLASSIFICATION OF SAMPLES INTO THEIR ORIGINAL DIETARY GROUPS, BEFORE AN	D
AFTER CROSS-VALIDATION, FOR THE DISCRIMINANT ANALYSIS USING TWO DIETARY GROUPS:	
FRESH GRAZE AND FRESH BROWSE4	9

TABLE 4.11: TABLE SHOWING THE CORRELATIONS BETWEEN DISCRIMINATING VARIABLES AND	
THE DISCRIMINANT FUNCTION EXTRACTED IN THE DISCRIMINANT ANALYSIS USING TWO DIETARY	
GROUPS: SUMMER GRAZE AND WINTER GRAZE 4	9
TABLE 4.12: RECLASSIFICATION OF SAMPLES INTO THEIR ORIGINAL DIETARY GROUPS, BEFORE AN	D
AFTER CROSS-VALIDATION, FOR THE DISCRIMINANT ANALYSIS USING TWO DIETARY GROUPS:	
SUMMER GRAZE AND WINTER GRAZE5	0
TABLE 4.13: TABLE SHOWING THE CORRELATIONS BETWEEN DISCRIMINATING VARIABLES AND	
THE DISCRIMINANT FUNCTION EXTRACTED IN THE DISCRIMINANT ANALYSIS USING TWO DIETARY	
GROUPS: HIGH QUALITY GRAZE AND LOW QUALITY GRAZE5	0
TABLE 4.14: RECLASSIFICATION OF SAMPLES INTO THEIR ORIGINAL DIETARY GROUPS, BEFORE AN	D
AFTER CROSS-VALIDATION, FOR THE DISCRIMINANT ANALYSIS USING TWO DIETARY GROUPS: HIGH	I
QUALITY GRAZE AND LOW QUALITY GRAZE	1
TABLE 4.15: TABLE SHOWING THE CORRELATIONS BETWEEN DISCRIMINATING VARIABLES AND	
THE TWO DISCRIMINANT FUNCTIONS EXTRACTED IN THE DISCRIMINANT ANALYSIS USING THREE	
DIETARY GROUPS: DRIED GRASSY HAY, DRIED LEAFY HAY AND CEREAL FODDER	2
TABLE 4.16: RECLASSIFICATION OF SAMPLES INTO THEIR ORIGINAL DIETARY GROUPS, BEFORE AN	D
AFTER CROSS-VALIDATION, FOR THE DISCRIMINANT ANALYSIS USING THREE DIETARY GROUPS:	
DRIED GRASSY HAY, DRIED LEAFY HAY AND CEREAL FODDER	3
TABLE 4.17: TABLE SHOWING THE CORRELATIONS BETWEEN DISCRIMINATING VARIABLES AND	
THE TWO DISCRIMINANT FUNCTIONS EXTRACTED IN THE DISCRIMINANT ANALYSIS USING TWO	
DIETARY GROUPS: DRIED GRASSY HAY AND DRIED LEAFY HAY	3
TABLE 4.18: RECLASSIFICATION OF SAMPLES INTO THEIR ORIGINAL DIETARY GROUPS, BEFORE AN	D
AFTER CROSS-VALIDATION, FOR THE DISCRIMINANT ANALYSIS USING TWO DIETARY GROUPS:	
DRIED GRASSY HAY AND DRIED LEAFY HAY	4
TABLE 4.19: TABLE SHOWING THE CORRELATIONS BETWEEN DISCRIMINATING VARIABLES AND	
THE TWO DISCRIMINANT FUNCTIONS EXTRACTED IN THE DISCRIMINANT ANALYSIS USING TWO	
DIETARY GROUPS: DRIED GRASSY HAY AND CEREAL FODDER	4
TABLE 4.20: RECLASSIFICATION OF SAMPLES INTO THEIR ORIGINAL DIETARY GROUPS, BEFORE AN	D
AFTER CROSS-VALIDATION, FOR THE DISCRIMINANT ANALYSIS USING TWO DIETARY GROUPS:	
DRIED GRASSY HAY AND CEREAL FODDER	5
CHAPTER 5 FIGURES AND TABLES	6
FIGURE 5.1: A PLOT OF SAMPLES FROM TKK (RED DIAMONDS), MK (YELLOW CIRCLES), AND KN	
(GREEN SQUARES) WHEN COMPARED TO THE DISCRIMINANT ANALYSIS OF TWO ETHNOGRAPHIC	
DIETARY GROUPS; DRIED FODDER (CLEAR CIRCLES INCLUDING: CEREAL, GRASSY HAY AND LEAFY	
HAY GROUPS) AND FRESH DIETS (BLACK TRIANGLES INCLUDING: FRESH BROWSE AND FRESH GRAZ	Е

GROUPS) (LARGE CIRCLE AND TRIANGLE = CENTRAL POINT OF ETHNOGRAPHIC GROUPS (MEANS OF FIGURE 5.2: A PLOT OF SAMPLES FROM TKK (RED DIAMONDS), MK (YELLOW CIRCLES), AND KN (GREEN SQUARES), PREVIOUSLY CLASSIFIED AS FODDER (TABLE 5.2), WHEN COMPARED TO THE DISCRIMINANT ANALYSIS OF THREE ETHNOGRAPHIC DIETARY GROUPS: GRASSY HAY, LEAFY HAY, AND CEREAL (X = CENTRAL POINT OF ETHNOGRAPHIC GROUPS (MEANS OF DISCRIMINANT FIGURE 5.3: A PLOT OF SAMPLES FROM TKK (RED DIAMONDS), MK (YELLOW CIRCLES), AND KN (GREEN SQUARES) WHEN COMPARED TO THE DISCRIMINANT ANALYSIS OF TWO ETHNOGRAPHIC DIETARY GROUPS: FRESH GRAZE (CLEAR CIRCLES) AND FRESH BROWSE (BLACK TRIANGLES) (LARGE CIRCLE AND TRIANGLE = CENTRAL POINT OF ETHNOGRAPHIC GROUPS (MEANS OF FIGURE 5.4: A PLOT OF ALL TKK SAMPLES FROM PIT AND DITCH CONTEXTS WHEN COMPARED TO THE DISCRIMINANT ANALYSIS OF TWO ETHNOGRAPHIC DIETARY GROUPS: DRIED FODDER (CLEAR CIRCLES INCLUDING: CEREAL, GRASSY HAY AND LEAFY HAY GROUPS) AND FRESH DIETS (BLACK TRIANGLES INCLUDING: FRESH BROWSE AND FRESH GRAZE GROUPS) (LARGE CIRCLE AND TRIANGLE = CENTRAL POINT OF ETHNOGRAPHIC GROUPS (MEANS OF DISCRIMINANT SCORES)...... 59 FIGURE 5.5: A PLOT OF TKK SAMPLES FROM TWO CONTEXTS: PITS (BLUE DIAMONDS) AND DITCH (RED DIAMONDS) THAT WERE CLASSIFIED AS FODDER (TABLE 5.2), COMPARED TO THE DISCRIMINANT ANALYSIS OF THREE ETHNOGRAPHIC DIETARY GROUPS: GRASSY HAY, LEAFY HAY FIGURE 5.6: A PLOT OF TKK SAMPLES FROM PIT AND DITCH CONTEXTS THAT WERE CLASSIFIED AS 'GRAZE' (TABLE 5.4) COMPARED TO THE DISCRIMINANT ANALYSIS OF TWO ETHNOGRAPHIC DIETARY GROUPS: WINTER GRAZE AND SUMMER GRAZE (LARGE CIRCLE AND TRIANGLE = CENTRAL FIGURE 5.7: A PLOT OF TKK SAMPLES FROM PIT AND DITCH CONTEXTS THAT WERE CLASSIFIED AS 'GRAZE' (TABLE 5.4) COMPARED TO THE DISCRIMINANT ANALYSIS OF TWO ETHNOGRAPHIC DIETARY GROUPS: HIGH QUALITY GRAZE AND LOW QUALITY GRAZE (LARGE CIRCLE AND TRIANGLE FIGURE 5.8: A PLOT OF ALL MK SAMPLES FROM PIT, HABITATION AND DITCH CONTEXTS WHEN COMPARED TO THE DISCRIMINANT ANALYSIS OF TWO ETHNOGRAPHIC DIETARY GROUPS: FODDER (INCLUDING: LEAFY HAY, GRASSY HAY AND CEREAL) AND FRESH (INCLUDING: BROWSE AND GRAZE) (LARGE CIRCLE AND TRIANGLE = CENTRAL POINT OF ETHNOGRAPHIC GROUPS)......63 FIGURE 5.9: A PLOT OF MK SAMPLES FROM THREE CONTEXTS; PITS (BLUE DIAMONDS), DITCH (RED

DIAMONDS), AND HABITATION (YELLOW DIAMONDS) THAT WERE CLASSIFIED AS FODDER (TABLE

5.2), COMPARED TO THE DISCRIMINANT ANALYSIS OF THREE ETHNOGRAPHIC DIETARY GROUPS: GRASSY HAY, LEAFY HAY AND CEREAL FODDER (X = CENTRAL POINTS OF ETHNOGRAPHIC FIGURE 5.10: A PLOT OF TKK SAMPLES FROM PIT, DITCH AND HABITATION CONTEXTS THAT WERE CLASSIFIED AS 'FRESH' (TABLE 5.2) COMPARED TO THE DISCRIMINANT ANALYSIS OF TWO ETHNOGRAPHIC DIETARY GROUPS: BROWSE AND GRAZE (LARGE CIRCLE AND TRIANGLE = CENTRAL POINT OF ETHNOGRAPHIC GROUPS).65 FIGURE 5.11: A PLOT OF MK SAMPLES FROM PIT AND DITCH CONTEXTS THAT WERE CLASSIFIED AS GRAZE (TABLE 5.18) COMPARED TO THE DISCRIMINANT ANALYSIS OF TWO ETHNOGRAPHIC DIETARY GROUPS: WINTER GRAZE AND SUMMER GRAZE (LARGE CIRCLE AND TRIANGLE = CENTRAL FIGURE 5.12: A PLOT OF MK SAMPLES FROM PIT AND DITCH CONTEXTS THAT WERE CLASSIFIED AS 'GRAZE' (TABLE 5.19) COMPARED TO THE DISCRIMINANT ANALYSIS OF TWO ETHNOGRAPHIC DIETARY GROUPS: HIGH QUALITY GRAZE AND LOW QUALITY GRAZE (LARGE CIRCLE AND TRIANGLE FIGURE 5.13: A PLOT OF ALL KN SAMPLES FOUR TIME PERIODS; LNI-II, FNIA, FNIB AND FNII-III WHEN COMPARED TO THE DISCRIMINANT ANALYSIS OF TWO ETHNOGRAPHIC DIETARY GROUPS: FODDER (INCLUDING LEAFY HAY, GRASSY HAY AND CEREAL) AND FRESH (INCLUDING BROWSE FIGURE 5.14: A PLOT OF ALL KN SAMPLES FROM FOUR TIME PERIODS; LNI-II (RED CIRCLES), FNIA (BLUE DIAMONDS), FNIB (ORANGE SQUARES), AND FNII-III (PURPLE ASTERISKS), PREVIOUSLY CLASSIFIED AS FODDER (TABLE 5.22), WHEN COMPARED TO THE DISCRIMINANT ANALYSIS OF THREE ETHNOGRAPHIC DIETARY GROUPS: GRASSY HAY, LEAFY HAY, AND CEREAL GRAZE (X =FIGURE 5.15: A PLOT OF ALL KN SAMPLES FOUR TIME PERIODS; LNI-II, FNIA, FNIB AND FNII-III THAT WERE CLASSIFIED AS 'FRESH' (TABLE 5.22) COMPARED TO THE DISCRIMINANT ANALYSIS OF TWO ETHNOGRAPHIC DIETARY GROUPS: BROWSE AND GRAZE (LARGE CIRCLE AND TRIANGLE = FIGURE 5.16: A PLOT OF KN SAMPLES FROM FOUR TIME PERIODS; LNI-II, FNIA, FNIB AND FNII-III, THAT WERE CLASSIFIED AS 'GRAZE' (TABLE 5.24) COMPARED TO THE DISCRIMINANT ANALYSIS OF TWO ETHNOGRAPHIC DIETARY GROUPS: FRESH SUMMER GRAZE AND FRESH WINTER GRAZE (LARGE CIRCLE AND TRIANGLE = CENTRAL POINT OF ETHNOGRAPHIC GROUPS)......71 FIGURE 5.17: A PLOT OF ALL KN SAMPLES FOUR TIME PERIODS: LNI-II, FNIA, FNIB AND FNII-III THAT WERE CLASSIFIED AS 'GRAZE' (TABLE 5.24) COMPARED TO THE DISCRIMINANT ANALYSIS OF TWO ETHNOGRAPHIC DIETARY GROUPS: HIGH QUALITY FRESH GRAZE AND LOW QUALITY FRESH GRAZE (LARGE CIRCLE AND TRIANGLE = CENTRAL POINT OF ETHNOGRAPHIC GROUPS)......72

FIGURE 5.18: PHOTOGRAPH OF A MIXED HERD OF SHEEP AND GOATS GRAZING ON STUBBLE FIELDS, TO NOTE THE SHEEP FEEDING ON WEEDS AND FALLEN EARS AMONG THE STUBBLE (TAKEN BY							
FIGURE 5.20: PHOTOGRAPH OF THE SAME HERD OF SHEEP AND GOATS AS SHOWN IN FIGURE 5.19,							
TO NOTE THE GOATS STRAYING TO FEED AMONG THE HEDGES AND RUDERAL PLANTS (TAKEN BY							
AUTHOR, MAKRIYALOS, 2019)	4						
TABLE 5.1: TABLE SHOWING THE CLASSIFICATION RESULTS OF SAMPLES FROM THREE							
ARCHAEOLOGICAL SITES TKK (N=48), MK (N=56) AND KN (N=76) FROM THE DISCRIMINANT							
ANALYSIS PRESENTED IN FIGURE 1. THE CROSS-VALIDATED PERCENTAGE OF ETHNOGRAPHIC							
SAMPLES CORRECTLY RE-CLASSIFIED IS 77% (FOR FULL ETHNOGRAPHIC RESULTS SEE TABLE 4.4).	5						
TABLE 5.2: TABLE SHOWING THE CLASSIFICATION RESULTS OF SAMPLES FROM THREE							
ARCHAEOLOGICAL SITES TKK (N=42), MK (N=30) AND KN (N=38) FROM THE DISCRIMINANT							
ANALYSIS PRESENTED IN FIGURE 5.2. THE CROSS-VALIDATED PERCENTAGE OF ETHNOGRAPHIC							
SAMPLES CORRECTLY RE-CLASSIFIED IS 71% (FOR FULL ETHNOGRAPHIC RESULTS SEE TABLE 4.16)	5						
TABLE 5.3: TABLE SHOWING THE CLASSIFICATION RESULTS OF SAMPLES FROM THREE							
ARCHAEOLOGICAL SITES TKK (N=6), MK (N=26) AND KN (N=38) FROM THE DISCRIMINANT							
ANALYSIS PRESENTED IN FIGURE 5.3. THE CROSS-VALIDATED PERCENTAGE OF ETHNOGRAPHIC							
SAMPLES CORRECTLY RE-CLASSIFIED IS 82% (for full ethnographic results see Table 4.10) 7	5						
TABLE 5.4: TABLE SHOWING THE CLASSIFICATION RESULTS OF TKK SAMPLES FROM TWO	2						
CONTEXTS; PIT (N=36) AND DITCH (N=12), FROM THE DISCRIMINANT ANALYSIS PRESENTED IN							
FIGURE 5.4. THE CROSS-VALIDATED PERCENTAGE OF ETHNOGRAPHIC SAMPLES CORRECTLY RE-							
CLASSIFIED IS 77% (FOR FULL ETHNOGRAPHIC RESULTS SEE TABLE 4.4)	6						
TABLE 5.5: TABLE SHOWING THE NUMBER OF SHEEP AND GOAT SAMPLES FROM PIT AND DITCH							
CONTEXTS CLASSIFIED AS FRESH OR FODDER FROM THE RESULTS IN TABLE 5.4	6						
TABLE 5.6: TABLE SHOWING THE CLASSIFICATION RESULTS OF TKK SAMPLES (CLASSIFIED AS							
'FODDER' IN A PREVIOUS ANALYSIS (TABLE 5.5)) FROM TWO CONTEXTS; PIT (N=35) AND DITCH							
(N=7), FROM THE DISCRIMINANT ANALYSIS PRESENTED IN FIGURE 5.5. THE CROSS-VALIDATED							
PERCENTAGE OF ETHNOGRAPHIC SAMPLES CORRECTLY RE-CLASSIFIED IS 71% (FOR FULL							
ETHNOGRAPHIC RESULTS SEE TABLE 4.16)	6						
TABLE 5.7: TABLE SHOWING THE NUMBER OF SHEEP AND GOAT SAMPLES FROM PIT AND DITCH							
CONTEXTS CLASSIFIED AS GRASSY HAY, LEAFY HAY OR CEREAL FODDER FROM THE RESULTS IN							
TABLE 5.6	7						

TABLE 5.8: TABLE SHOWING THE CLASSIFICATION RESULTS OF TKK SHEEP* (CLASSIFIED AS 'GRAZE' IN A PREVIOUS ANALYSIS (TABLE 5.3)) FROM TWO CONTEXTS; PIT (N=1) AND DITCH (N=4), FROM THE DISCRIMINANT ANALYSIS PRESENTED IN FIGURE 5.6.....77 TABLE 5.9: TABLE SHOWING THE NUMBER OF TKK SHEEP* SAMPLES (CLASSIFIED AS 'GRAZE' IN A PREVIOUS ANALYSIS (TABLE 5.3)) FROM TWO CONTEXTS; PIT AND DITCH, FROM THE DISCRIMINANT TABLE 5.11: TABLE SHOWING THE NUMBER OF SHEEP AND GOAT SAMPLES FROM PIT, HABITATION AND DITCH CONTEXTS CLASSIFIED AS FRESH OR FODDER FROM THE RESULTS IN TABLE 5.10.......78 TABLE 5.12: TABLE SHOWING THE CLASSIFICATION RESULTS OF TKK SAMPLES (CLASSIFIED AS FODDER IN A PREVIOUS ANALYSIS (TABLE 5.10)) FROM THREE CONTEXTS; PIT (N=13), DITCH (N=10), AND HABITATION (N=7) FROM THE DISCRIMINANT ANALYSIS PRESENTED IN FIGURE 5.9.78 TABLE 5.13: TABLE SHOWING THE CLASSIFICATION RESULTS OF MK SAMPLES (CLASSIFIED AS FRESH IN A PREVIOUS ANALYSIS (TABLE 5.10)) FROM THREE CONTEXTS; PIT (N=16), DITCH (N=3), AND HABITATION (N=7) FROM THE DISCRIMINANT ANALYSIS PRESENTED IN FIGURE 5.10......79 TABLE 5.14: TABLE SHOWING THE CLASSIFICATION RESULTS OF MK SAMPLES (CLASSIFIED AS FRESH GRAZE IN A PREVIOUS ANALYSIS (TABLE 5.13)) FROM THREE CONTEXTS; PIT (N=16), DITCH (N=5), AND HABITATION (N=3) FROM THE DISCRIMINANT ANALYSIS PRESENTED IN FIGURE 5.11.79 TABLE 5.15: TABLE SHOWING THE CLASSIFICATION RESULTS OF MK SAMPLES (CLASSIFIED AS FRESH GRAZE IN A PREVIOUS ANALYSIS (TABLE 5.13)) FROM THREE CONTEXTS; PIT (N=16), DITCH (N=3), AND HABITATION (N=5) FROM THE DISCRIMINANT ANALYSIS PRESENTED IN FIGURE 5.12. 79 TABLE 5.16: TABLE SHOWING THE CLASSIFICATION RESULTS OF KN SAMPLES FROM FOUR TIME PERIODS; LNI-II (N=15), FNIA (N=15), FNIB (N=22) AND FNII-III (N=18) FROM THE TABLE 5.17: TABLE SHOWING THE CLASSIFICATION RESULTS OF KN SAMPLES FROM FOUR TIME PERIODS; LNI-II (N=15), FNIA (N=15), FNIB (N=22) AND FNII-III (N=18) (CLASSIFIED AS FODDER IN A PREVIOUS ANALYSIS (TABLE 5.16)) FROM THE DISCRIMINANT ANALYSIS PRESENTED IN TABLE 5.18: TABLE SHOWING THE CLASSIFICATION RESULTS OF KN SAMPLES (CLASSIFIED AS 'FRESH' IN A PREVIOUS ANALYSIS (TABLE 5.16)) FROM FOUR TIME PERIODS; LNI-II (N=6), FNIA (N=13), FNIB (N=10) AND FNII-III (N=6) FROM THE DISCRIMINANT ANALYSIS PRESENTED IN TABLE 5.19: TABLE SHOWING THE CLASSIFICATION RESULTS OF KN SAMPLES (CLASSIFIED AS 'GRAZE' (TABLE 5.18) IN A PREVIOUS ANALYSIS FROM FOUR TIME PERIODS; LNI-II (N=4), FNIA (N=9), FNIB (N=7) AND FNII-III (N=5) FROM THE DISCRIMINANT ANALYSIS PRESENTED IN FIGURE

TABLE 5.20: TABLE SHOWING THE CLASSIFICATION RESULTS OF KN SAMPLES (CLASSIFIED AS
'GRAZE' (TABLE 5.18) IN A PREVIOUS ANALYSIS FROM FOUR TIME PERIODS; LNI-II (N=4), FNIA
(N=9), FNIB (N=7) AND FNII-III (N=5) FROM THE DISCRIMINANT ANALYSIS PRESENTED IN FIGURE
5.17

CHAPTER 2 FIGURES AND TABLES

Figure 2.2: Plan of 1998-1999 excavation of TKK (after Hondrogianni-Metoki 2009). Key: -= excavation boundary, round circles = pits, black dots = cremations, linear feature made up of hachures = ditches.

Figure 2.3: Map showing the location of the site, Makriyalos (Google map data 2019).

Figure 2.4: Plan of MKI (Phase I) (after Pappa et al. 2004 Figure 2.1) (scale: each square = 100mx100m).

Figure 2.5: Map showing the location of the site, Knossos (Google Map data 2019).

	Sheep	Goats	Total number of		
			samples		
Pits	26	10	36		
Ditches	9	3	12		

Table 2.1: Table of the sample group selected for analysis from TKK (total sample size = 48).

	Sheep	Goat	Total number of
			samples
Pit	25	4	29
Ditch	8	2	10
Habitation	15	2	17

Table 2.2: Table of the sample group selected for analysis from MK (total sample size = 56).

Time period	Total sample number
LNI	1
LNII	14
LNII/FNIA	6
FNIA	15
FNIB	22
FNII	14
FNII/III	1
FNIII	3

Table 2.3: Table of the sample group selected for analysis from Knossos, before being grouped (total sample size = 76).

Time period	Total sample number
LNI-LNII	15
FNIA	15
FNIB	22
FNII-III	18

Table 2.4: Table of the sample group selected for analysis from Knossos, after being grouped, note LNII/FNIA samples (Table 2.3) have been removed for diachronic comparisons (total sample size = 70).

Figure 3.1: Bivariate graph from Rivals et al (2011 Figure 3, 534), displaying the average number of pits and scratches from Kouphovouno archaeological samples (white ellipses), compared to results from Solounias and Semprebon's (2002) database of extant ungulates grazers and browsers (grey ellipses, B = browsers, G = grazers).

Figure 3.2: Diagram of the occlusal surface of a sheep/goat dP4. The 'm' on the anteriorfacing enamel band of the bucco-posterior cusp indicates the area where microphotographs were and will be taken. (after Mainland's 1994 Figure 9.1).

Figure 3.3: Photograph demonstrating the method for creating negative impressions of teeth using silicone material (Lawrence 2013).

Figure 3.4: Detail enhancement information for HDR Tonemapped images A – D (Left to right). A) Enamel band from grazer displaying high abrasion: 9 Frames; Monochrome enhance setting; Tone Compression 6.2; Detail Contrast 10; Gamma 0.7; Microsmoothing 0; Medium lighting adjustments; medium sharpening. B) Same enamel band from high abrasive grazer with the same detail enhancements but created from 5 frames.

А

В

С

Figure 3.5: A: JPEG image of high abrasive grazer, no HDRI processing. B: HDRI of same enamel band, tonemapped using Photomatix Pro 64bit with no additional sharpening. C: HDRI tonemapped with additional 'strong' sharpening enhancement causing a 'grainy' appearance.

- low quality graze samples from Lejre Denmark
- browsers from Lejre, Denmark

▲ summer and winter grazed sheep from Greenland previously exhibiting low abrasion (See Table 3.3 for further details).

Figure 3.6: Bivariate graph showing the total pit and scratch counts for three dietary groups Results have been obtained using HDR imaging and detail enhancements.

Figure 3.7: DLM image of pitted enamel surface from a sheep fed fresh browse (40x magnification) (taken by author).

Figure 3.8: DLM image of heavily scratched and pitted enamel surface from a sheep fed fresh graze (40x magnification) (taken by author).

- low quality graze samples from Lejre Denmark
- browsers from Lejre, Denmark

▲ summer and winter grazed sheep from Greenland previously exhibiting low abrasion (See Table 3.3 for further details).

Figure 3.7: Bivariate graph to show the pit and scratch counts from three diets using unprocessed images. These results have been taken from a pilot study in 2013 (Lawrence 2013).

Sample		٨٥٩		Fodder					
no	Species	(mtha)	Suckling	Leafy	Grassy	Sown	Draw	Crain	Outdoors
110.		(muis)		Hay	Hay	Hay	Bran Grain		
1	Sheep	4		~	\checkmark	✓	✓	✓	×
2	Sheep	4		~	\checkmark	~	~	✓	×
3	Sheep	3		×		\checkmark	✓	✓ G	×
4	Goat	4		\checkmark	\checkmark	\checkmark	✓	✓ W	×
5	Sheep	3		✓	✓	✓	✓	✓ W	×
6	Sheep	7		✓	✓		✓	✓	✓
7	Sheen	7		~	1		✓	✓	
/	Sheep	/		•				W+G	
8	Goat	7	✓	✓	✓		✓	✓	×
9	Goat	2	✓	✓	✓		✓	✓	×
10	Goat	4	\checkmark	✓	✓	✓	✓	✓	×
11	Goat	7	✓	✓	✓	✓	✓	✓	×
12	Sheep	6	×	✓	✓	✓	✓	✓ W	×
13	Sheep	7		✓	✓	✓	✓	✓ W	×
14	Goat	6	×	✓		✓	✓	×	×
15	Shoon	12	×	1		1	1	1 G	✓ (Nov.
13	Sheep	12	~	•		•		• 0	1991)
16	Goat	1.5		×		✓	✓	✓ G	×
									✓
									(Autumn
17	Sheep	16	×	\checkmark	\checkmark			✓ W	1991,
									April
									1992)
18	Goat	4		✓	~	√	✓	✓	×

Table 3.1: The diet and age at death (months) of the Plikati sheep and goats (after Mainland 1994 Figure 5.5).

Key: \checkmark = yes, \varkappa = no, blank = no information provided, W = whole grain, G = milled grain).

Diet	Sample origin	Sample number
High Abrasive Grazers	Gotland sheep Lejre,	N = 9
	Denmark	
Low Abrasive Grazers	Greenland (winter and	Total N = 55, (summer n = 29 ,
	summer)	winter $n = 26$)
	MLURI, Scotland	Total N = 8,
		rough indigenous pasture $n = 3$ (2)
		from winter + 1 from summer
		pasture), cultivated grasses $n = 5$
		(3 from winter + 2 from summer)
Cereal	Assiros, N. Greece -	N = 20
	transhumant	
	Assiros, N Greece -	N = 9
	sedentary	
Leafy Hay	Plikati, NW Greece	N = 16
Browsers	Lejre, Denmark	N = 10
	Gonies Crete	N = 3
Grassy Hay	Greenland	N = 29

Table 3.2: Table to show modern sample details and sample numbers.

Sample	Diet	Total feature tally	Pit Count	Scratch Count	Notes
LJ44	Poor quality grazer -Lejre	57	61	20	Increased
LJ56	Poor quality grazer -Lejre	86	62	24	
LJG6	Poor quality grazer -Lejre	80	61	19	
LJG4	Poor quality grazer -Lejre	115	126	12	Increased
LJ42	Poor quality grazer -Lejre	82	57	25	
LJ46	Poor quality grazer -Lejre	131	102	29	
LJG2	Poor quality grazer -Lejre	66	72	33	Increased
LJ47	Browser - Lejre	76	72	4	
LJ52	Browser - Lejre	88	79	9	
LJ54	Browser - Lejre	73	46	27	
LJW2	Browser - Lejre	64	77	8	Increased
LJW3	Browser - Lejre	71	64	7	
LJW5	Browser - Lejre	69	90	6	Increased
UP16	Summer Grazer- Greenland	88	63	25	Increased
UP18	Summer Grazer- Greenland	82	68	14	Increased
UP27	Summer Grazer- Greenland	125	109	16	
UP21	Summer Grazer- Greenland	71	59	12	
UP9	Summer Grazer- Greenland	113	97	16	

UP3	Summer Grazer- Greenland	130	110	20	Increased
UP46	Winter Grazer- Greenland	36	26	10	Blurred imaged

Table 3.3: Sample details for bivariate graph of HDRI analysis (Figure 3.6) and the counts for pits, scratches and total feature tally. 'Increased' indicates the samples whose pit and scratch counts were increased due to out of focus areas and enamel bands with a width smaller than 0.4mm.

Sample	Diet	Total feature	Pit Count	Scratch Count
	Uigh abragiya			
LJ44		146	132	14
	grazer -Lejre			
LJ56	High abrasive	60	49	11
	grazer -Lejre			
LIG6	High abrasive	56	47	9
	grazer -Lejre		.,	-
LICA	High abrasive	67	57	10
LJO4	grazer -Lejre	07		
1.142	High abrasive	120	112	16
LJ42	grazer -Lejre	129	113	16
1.146	High abrasive	50	56	2
LJ40	grazer -Lejre	50		
LIG2	High abrasive	51	50	1
LJ02	grazer -Lejre	51		
LJ47	Browser - Lejre	71	70	1
LJ52	Browser - Lejre	29	28	1
LJ54	Browser - Lejre	48	37	11
LJW2	Browser - Lejre	30	30	0
LJW3	Browser - Lejre	59	59	0
LJW5	Browser - Lejre	40	39	1
	Summer			
UP16	Grazer-	52	42	10
	Greenland			
	Summer			
UP18	Grazer-	67	64	3
	Greenland			
	Summer			
UP27	Grazer-	n/a	n/a	n/a
	Greenland			

UP21	Summer Grazer- Greenland	40	40	0
UP9	Summer Grazer- Greenland	n/a	n/a	n/a
UP3	Summer Grazer- Greenland	n/a	n/a	n/a
UP46	Winter Grazer- Greenland	57	56	1

Table 3.4: Sample details for bivariate graph of microwear analysis of unprocessed images (Figure 3.7) and the counts for pits, scratches and total feature tally.

Feature Type	Average Feature	Proportion of	Feature Orientation
	Size/Shape	Feature Types	
Total count of all	Average width of all	Percentage of pits	Average orientation
features	features	out of total features	of all features
Total count of pits	Average width of	Percentage of	Average orientation
	pits	scratches out of total	of scratches
		features	
Total count of	Average width of		
scratches	scratches		
	Average length of all		
	features		
	Average length of		
	pits		
	Average length of		
	scratches		
	Average ratio of		
	length to width		

(thickness/thinness	
of features)	

Table 3.5: Table to show quantitative variables recorded.

		Recording System
Feature Types	Pits	Presence (1) Absence (0)
	Pit lines	Presence (1) Absence (0)
	Parallel striations	Presence (1) Absence (0)
	Non-parallel striations	Presence (1) Absence (0)
Description of	Features with sharp or rounded	Round (1) Sharp (0)
Features	edges	
	Deep or shallow features	Deep (1) Shallow (0)
	Features with anterior-posterior	Presence (1) Absence (0)
	orientation	
	Features with bucco-lingual	Presence (1) Absence (0)
	orientation	
	Features with a definite shape	Yes (1) No (0)
	Features with edges joining up	Yes (1) No (0)
Description of	Porosity	Presence (1) Absence (0)
Features	Smooth surface	Presence (1) Absence (0)
	Abraded surface	Presence (1) Absence (0)
	Polished surface	Presence (1) Absence (0)
	Uneven surface	Presence (1) Absence (0)
	Areas of enamel with no features	Presence (1) Absence (0)
	Underlying enamel structure	Fully visible (1)
	visible	Partially visible (0.5)
		Absent (0)

Table 3.6: Table showing qualitative variables recorded.

CHAPTER 4 FIGURES AND TABLES

Distinguishing between grazers, browsers, leafy hay, grassy hay and cereal foddering

Figure 4.1: A plot of the first two discriminant functions for the discriminant analysis of five dietary groups: grazers (n=63), browsers (n=8), leafy hay (n=13), cereal (n=22) and grassy hay (n=20). Variables used in the analysis: number of pits, presence of surface porosity, presence of surface polish, presence of deep features, presence of uneven surfaces, presence of areas of empty enamel, and the square roots of scratch counts.

Distinguishing between dried fodder and fresh graze/browse

Figure 4.2: A plot of the discriminant function for the discriminant analysis of two dietary groups: fresh (graze and browse) (n=71) and foddered (cereal fodder, grassy hay and leafy hay) (n=55). Variables used in the analysis: feature count, presence of surface porosity, presence of smooth surfaces, and presence of deep features.
Distinguishing between dried leafy hay and fresh browse

Figure 4.3: A plot of the discriminant function for the discriminant analysis of two dietary groups: leafy hay (n=13) and fresh browse (n=8). Variables used in the analysis: Log10 of feature orientation, square roots of scratch count, mean scratch length inversed.

Distinguishing between dried grassy hay and fresh graze

Figure 4.4: A plot of the discriminant function for the discriminant analysis of two dietary groups: grassy hay (n=20) and fresh graze (n=63). Variables used in the analysis: feature count, presence of surface porosity, presence of deep features, presence of features with rounded edges, Presence of areas of enamel with no features, and presence of parallel striations.

Distinguishing between fresh browse and fresh graze

Figure 4.5: A plot of the discriminant function for the discriminant analysis of two dietary groups: grassy hay (n=20) and fresh graze (n=63). Variables used in the analysis: presence of surface polish, and mean feature length inversed.

Distinguishing between summer and winter graze (both fresh groups)

Figure 4.6: A plot of the discriminant function for the discriminant analysis of two dietary groups: summer graze (n=28) and winter graze (n=35). Variables used in the analysis: feature length:width ratio inversed, log10 of scratch percentage, presence of uneven surfaces, presence of features with anterior-posterior orientation.

Distinguishing low quality graze and high quality graze

Figure 4.7: A plot of the discriminant function for the discriminant analysis of two dietary groups: high quality graze (n=54) and low quality graze (n=9). Variables used in the analysis: square roots of scratch counts, presence of uneven surfaces, mean feature length inversed, presence of smooth surfaces, and length:width ratio inversed.

Figure 4.8: A plot of the two discriminant functions for the discriminant analysis of three dietary groups: grassy hay (n=20), leafy hay (n=13) and cereal (n=22). Variables used in the analysis: pit count, log10 of scratch percentage, mean length:width ratio inversed, presence of surface porosity, mean feature length inversed, mean width of scratches inversed, areas of enamel with no features, presence of deep features, presence of non-parallel scratches, and presence of uneven surfaces.

Distinguishing between grassy hay and leafy hay

Figure 4.9: A plot of the discriminant function for the discriminant analysis of two dietary groups: grassy hay (n=20) and leafy hay (n=13). Variables used in the analysis: presences of areas of enamel with no features, presence of parallel scratches, presence of non-parallel scratches, and mean length:width ratio inversed.

Distinguishing between grassy hay and cereal fodder

Figure 4.10: A plot of the discriminant function for the discriminant analysis of two dietary groups: grassy hay (n=20) and cereal (n=). Variables used in the analysis: presence of deep features, presence of areas of enamel with no features, square roots of scratch count, mean pit width inversed, mean scratch width inversed, mean length:width ratio inversed and presence of smooth surfaces.

	Function				
	1	2	3	4	
Pit count	.85	237	.073	374	
Porosity	.706	011	.180	.101	
Presence of polish	052	646	292	.529	
Presence of deep features	.303	.486	408	.080	
Presence of uneven surface	.025	.289	186	097	
Presence of areas of enamel with no	291	026	.775	.363	
features					
Scratch count	.264	.337	289	.605	

Table 4.1: Table showing the correlations between discriminating variables and the four discriminant functions extracted in the discriminant analysis using five dietary groups.

		Predicted Group Membership						
		Actual Dietary	Grassy	Leafy				
		Groups	Нау	Hay	Cereal	Browse	Graze	Total
Pre-validation	Count	Grassy Hay	9	1	5	4	1	20
		Leafy Hay	0	6	2	4	1	13
		Cereal	2	0	16	2	2	22
		Browse	0	1	0	6	1	8
		Graze	5	6	6	5	41	63
Cross-	Count	Grassy Hay	8	1	6	4	1	20
validated		Leafy Hay	0	3	3	5	2	13
		Cereal	3	0	14	2	3	22
		Browse	1	1	0	5	1	8
		Graze	6	6	6	5	40	63

Overall, 61.9% of samples correctly reclassified into their original dietary groups; 55.6% of samples correctly reclassified into their original dietary groups after cross-validation.

Table 4.2: Reclassification of samples into their original dietary groups, before and after cross-validation, for the discriminant analysis using five dietary groups.

	Function
Total feature count	.815
Presence of surface porosity	.758
Presence of smooth surface	500
Presence of deep features	.414

Table 4.3: Table showing the correlations between discriminating variables and the discriminant function extracted in the discriminant analysis using two dietary groups: dried fodder and fresh graze/browse.

	Actual Dietary	Predicted Group Membership		
	Groups	Foddered	Fresh	Total
Count	Foddered	40	15	55
	Fresh	13	58	71
%	Foddered	72.7	27.3	
	Fresh	18.3	81.7	-
Count	Foddered	39	16	55
	Fresh	13	58	71
%	Foddered	70.9	29.1	
	Fresh	18.3	81.7	-
	Count % Count %	Actual DietaryGroupsCountFodderedFresh%FodderedFreshCountFodderedFresh%Foddered%Foddered%Foddered%Foddered%Foddered%Foddered	Actual Dietary GroupsPredicted GrCountFodderedFodderedFresh13%Foddered72.7Fresh18.3CountFoddered39Fresh13%Foddered70.9Fresh18.3	Actual Dietary GroupsPredicted Group MembershipCountFodderedFreshFoddered4015Fresh1358%Foddered72.727.3Fresh18.381.7CountFoddered3916Fresh1358%Foddered70.929.1Fresh18.381.7

Overall, 77.8% of samples correctly reclassified into their original dietary groups; 77% of samples correctly reclassified into their original dietary groups after cross-validation.

Table 4.4: Reclassification of samples into their original dietary groups, before and after cross-validation, for the discriminant analysis using two dietary groups: dried fodder and fresh graze/browse.

	Function
Feature orientation	666
Scratch count	.586
Scratch length	.292

Table 4.5: Table showing the correlations between discriminating variables and the discriminant function extracted in the discriminant analysis using two dietary groups: fresh browse and dried leafy hay.

		Actual Dietary	Predicted G	Predicted Group Membership		
		Groups	Browse	Leafy Hay	Total	
Pre-validation	Count	Browse	8	0	8	
		Leafy Hay	3	10	13	
Cross-validated	Count	Browse	7	1	8	
		Leafy Hay	3	10	13	
Overall, 85.7% of	samples of	correctly reclassifi	ied into their orig	inal dietary groups;	81% of	
samples correctly	reclassifie	ed into their origin	al dietary groups	after cross-validati	on.	

Table 4.6: Reclassification of samples into their original dietary groups, before and after cross-validation, for the discriminant analysis using two dietary groups: fresh browse and dried leafy hay.

	Function
Total feature count	.749
Presence of surface porosity	.612
Presence of deep features	.562
Presence of features with rounded edges	401
Presence of areas of enamel with no features	401
Presence of parallel striations	.274

Table 4.7: Table showing the correlations between discriminating variables and the discriminant function extracted in the discriminant analysis using two dietary groups: dried grassy hay and fresh graze.

		Actual Dietary	Predicted Gro	Predicted Group Membership	
		Groups	Grassy Hay	Graze	Total
Pre-validation	Count	Grassy Hay	16	4	20
		Graze	9	54	63
	%	Grassy Hay	80.0	20.0	
		Graze	14.3	85.7	1
Cross-validated	Count	Grassy Hay	14	6	20
		Graze	10	53	63
	%	Grassy Hay	70.0	30.0	
		Graze	15.9	84.1	-
Overall, 84.3% of	samples (correctly reclassifie	d into their origin	nal dietary groups	s; 80.7% of
samples correctly	reclassifie	ed into their origina	al dietary groups	after cross-valida	tion.

Table 4.8: Reclassification of samples into their original dietary groups, before and after cross-validation, for the discriminant analysis using two dietary groups: dried grassy hay and fresh graze.

	Function
Presence of polished surface	.957
Feature length	.234

Table 4.9: Table showing the correlations between discriminating variables and the discriminant function extracted in the discriminant analysis using two dietary groups: fresh graze and fresh browse.

		Actual Dietary	Predicted Group Membership		Total	
		Groups	Grazer	Browser		
Pre-validation	Count	Grazer	51	12	63	
		Browser	1	7	8	
Cross-validated	Count	Grazer	51	12	63	
		Browser	1	7	8	
Overall, 81.7% of samples correctly reclassified into their original dietary groups; 81.7%						
of samples correctly reclassified into their original dietary groups after cross-validation.						

Table 4.10: Reclassification of samples into their original dietary groups, before and after cross-validation, for the discriminant analysis using two dietary groups: fresh graze and fresh browse.

	Function
Feature length:width ratio	.780
Percentage of scratches	615
Presence of uneven surfaces	503
Presence of features with anterior-posterior orientation	483

Table 4.11: Table showing the correlations between discriminating variables and the discriminant function extracted in the discriminant analysis using two dietary groups: summer graze and winter graze.

		Actual Dietary	Predicted Group Membership		Total
		Group	Summer graze	Winter graze	-
Pre-validation	Count	Summer graze	22	6	28
		Winter graze	11	24	35
	%	Summer graze	78.6	21.4	
		Winter graze	31.4	68.6	
Cross-validated	Count	Summer graze	20	8	28
		Winter graze	11	24	35
	%	Summer graze	71.4	28.6	
		Winter graze	31.4	68.6	-
Overall, 73% of s	amples cor	rectly reclassified	into their original di	etary groups; 69	.8% of
samples correctly	reclassifie	d into their origina	l dietary groups afte	er cross-validatio	n.

Table 4.12: Reclassification of samples into their original dietary groups, before and after cross-validation, for the discriminant analysis using two dietary groups: summer graze and winter graze.

	Function
Scratch count	.614
Presence of uneven surface	.562
Feature length	405
Presence of smooth surface	361
Feature length:width ratio	325

Table 4.13: Table showing the correlations between discriminating variables and the discriminant function extracted in the discriminant analysis using two dietary groups: high quality graze and low quality graze.

		Actual Dietary	ry Predicted Group Membership		
		Group	High Quality	Low Quality	Total
Pre-validation	Count	High Quality	42	12	54
		Low Quality	2	7	9
	%	High Quality	77.8	22.2	
		Low Quality	22.2	77.8	
Cross-validated	Count	High Quality	40	14	54
		Low Quality	3	6	9
	%	High Quality	74.1	25.9	
		Low Quality	33.3	66.7	-
Overall, 77.8% of s	amples co	prrectly reclassifie	d into their origi	nal dietary grou	ps; 73% of
samples correctly reclassified into their original dietary groups after cross-validation.					

Table 4.14: Reclassification of samples into their original dietary groups, before and after cross-validation, for the discriminant analysis using two dietary groups: high quality graze and low quality graze.

	Function	
	1	2
Pit count	577	348
Scratch percentage	.508	.069
Feature length:width ratio	367	030
Presence of porous surfaces	308	155
Feature length	296	.085
Scratch width	.199	072
Presence of areas of enamel with no features	.048	.661
Presence of deep features	.223	396
Presence of non-parallel scratches	.003	.283
Presence of uneven surfaces	.200	210

Table 4.15: Table showing the correlations between discriminating variables and the two discriminant functions extracted in the discriminant analysis using three dietary groups: dried grassy hay, dried leafy hay and cereal fodder.

			Predicted Group Membership			
		Dietary Groups	Grassy Hay	Leafy Hay	Cereal	Total
Pre-validation	Count	Grassy Hay	13	4	3	20
		Leafy Hay	0	12	1	13
		Cereal	1	1	20	22
	%	Grassy Hay	65.0	20.0	15.0	
		Leafy Hay	.0	92.3	7.7	
		Cereal	4.5	4.5	90.9	
Cross-validated	Count	Grassy Hay	13	4	3	20
		Leafy Hay	4	8	1	13
		Cereal	2	2	18	22
	%	Grassy Hay	65.0	20.0	15.0	
		Leafy Hay	30.8	61.5	7.7	-
		Cereal	9.1	9.1	81.8	1
Overall, 81.8% of	samples co	rrectly reclassifie	d into their orig	ginal dietary g	roups; 70.	.9% of

samples correctly reclassified into their original dietary groups after cross-validation.

Table 4.16: Reclassification of samples into their original dietary groups, before and after cross-validation, for the discriminant analysis using three dietary groups: dried grassy hay, dried leafy hay and cereal fodder.

	Function
Presence of areas of enamel with no features	.410
Feature length:width ratio	302
Presence of non-parallel scratches	.200
Presence of parallel scratches	169

Table 4.17: Table showing the correlations between discriminating variables and the two discriminant functions extracted in the discriminant analysis using two dietary groups: dried grassy hay and dried leafy hay.

		Actual Dietary	Predicted Group Membership		
		Groups	Grassy Hay	Leafy Hay	Total
Pre-validation	Count	Grassy Hay	18	2	20
		Leafy Hay	1	12	13
	%	Grassy Hay	90.0	10.0	
		Leafy Hay	7.7	92.3	1
Cross-validated	Count	Grassy Hay	18	2	20
		Leafy Hay	1	12	13
	%	Grassy Hay	90.0	10.0	
		Leafy Hay	7.7	92.3	1
Overall, 90.9% of	samples	correctly reclassifie	d into their origin	nal dietary groups	s; 90.9% of
samples correctly	reclassifie	ed into their origina	al dietary groups	after cross-valida	tion.

Table 4.18: Reclassification of samples into their original dietary groups, before and after cross-validation, for the discriminant analysis using two dietary groups: dried grassy hay and dried leafy hay.

	Function
Presence of deep features	.462
Presence of areas of enamel with no features	454
Scratch count	.336
Pit width	216
Scratch width	.164
Feature length:width ratio	160
Presence of smooth surfaces	.091

Table 4.19: Table showing the correlations between discriminating variables and the two discriminant functions extracted in the discriminant analysis using two dietary groups: dried grassy hay and cereal fodder.

		Actual Dietary Predicted Group Membership			
		Groups	Grassy Hay	Cereal	Total
Pre-validation	Count	Grassy Hay	16	4	20
		Cereal	2	20	22
	%	Grassy Hay	80.0	20.0	
		Cereal	9.1	90.9	
Cross-validated	Count	Grassy Hay	16	4	20
		Cereal	3	19	22
	%	Grassy Hay	80.0	20.0	
		Cereal	13.6	86.4	1

Overall, 85.7% of samples correctly reclassified into their original dietary groups; 83.3% of samples correctly reclassified into their original dietary groups after cross-validation.

Table 4.20: Reclassification of samples into their original dietary groups, before and after cross-validation, for the discriminant analysis using two dietary groups: dried grassy hay and cereal fodder.

CHAPTER 5 FIGURES AND TABLES

Figure 5.1: A plot of samples from TKK (red diamonds), MK (yellow circles), and KN (green squares) when compared to the discriminant analysis of two ethnographic dietary groups; dried fodder (clear circles including: cereal, grassy hay and leafy hay groups) and fresh diets (black triangles including: fresh browse and fresh graze groups) (large circle and triangle = central point of ethnographic groups (means of discriminant scores). *Outliers from the ethnographic fodder group (samples beyond the ethnographic fresh centroid) are from the ethnographic leafy hay group along with 1 grassy hay and 1 cereal sample.

Figure 5.2: A plot of samples from TKK (red diamonds), MK (yellow circles), and KN (green squares), previously classified as fodder (Table 5.2), when compared to the discriminant analysis of three ethnographic dietary groups: grassy hay, leafy hay, and cereal (X = central point of ethnographic groups (means of discriminant scores)). (To see plots from ethnographic samples refer to Figure 4.8).

Figure 5.3: A plot of samples from TKK (red diamonds), MK (yellow circles), and KN (green squares) when compared to the discriminant analysis of two ethnographic dietary groups: fresh graze (clear circles) and fresh browse (black triangles) (large circle and triangle = central point of ethnographic groups (means of discriminant scores).

Figure 5.4: A plot of all TKK samples from pit and ditch contexts when compared to the discriminant analysis of two ethnographic dietary groups: dried fodder (clear circles including: cereal, grassy hay and leafy hay groups) and fresh diets (black triangles including: fresh browse and fresh graze groups) (large circle and triangle = central point of ethnographic groups (means of discriminant scores).

Figure 5.5: A plot of TKK samples from two contexts: pits (blue diamonds) and ditch (red diamonds) that were classified as fodder (Table 5.2), compared to the discriminant analysis of three ethnographic dietary groups: grassy hay, leafy hay and cereal fodder (\mathbf{X} = central points of ethnographic groups).

Figure 5.6: A plot of TKK samples from pit and ditch contexts that were classified as 'graze' (Table 5.4) compared to the discriminant analysis of two ethnographic dietary groups: winter graze and summer graze (large circle and triangle = central point of ethnographic groups).

Figure 5.7: A plot of TKK samples from pit and ditch contexts that were classified as 'graze' (Table 5.4) compared to the discriminant analysis of two ethnographic dietary groups: high quality graze and low quality graze (large circle and triangle = central point of ethnographic groups).

Figure 5.8: A plot of all MK samples from pit, habitation and ditch contexts when compared to the discriminant analysis of two ethnographic dietary groups: fodder (including: leafy hay, grassy hay and cereal) and fresh (including: browse and graze) (large circle and triangle = central point of ethnographic groups).

MK: exploring samples classified as "fodder"

Canonical Discriminant Functions

Figure 5.9: A plot of MK samples from three contexts; pits (blue diamonds), ditch (red diamonds), and habitation (yellow diamonds) that were classified as fodder (Table 5.2), compared to the discriminant analysis of three ethnographic dietary groups: grassy hay, leafy hay and cereal fodder (\mathbf{X} = central points of ethnographic groups).

Figure 5.10: A plot of TKK samples from pit, ditch and habitation contexts that were classified as 'fresh' (Table 5.2) compared to the discriminant analysis of two ethnographic dietary groups: browse and graze (large circle and triangle = central point of ethnographic groups).

Figure 5.11: A plot of MK samples from pit and ditch contexts that were classified as graze (Table 5.18) compared to the discriminant analysis of two ethnographic dietary groups: winter graze and summer graze (large circle and triangle = central point of ethnographic groups).

Figure 5.12: A plot of MK samples from pit and ditch contexts that were classified as 'graze' (Table 5.19) compared to the discriminant analysis of two ethnographic dietary groups: high quality graze and low quality graze (large circle and triangle = central point of ethnographic groups).

Figure 5.13: A plot of all KN samples four time periods; LNI-II, FNIA, FNIB and FNII-III when compared to the discriminant analysis of two ethnographic dietary groups: fodder (including leafy hay, grassy hay and cereal) and fresh (including browse and graze) (large circle and triangle = central point of ethnographic groups).

Figure 5.14: A plot of all KN samples from four time periods; LNI-II (red circles), FNIA (blue diamonds), FNIB (orange squares), and FNII-III (purple asterisks), previously classified as fodder (Table 5.22), when compared to the discriminant analysis of three ethnographic dietary groups: grassy hay, leafy hay, and cereal graze (\mathbf{X} = central point of ethnographic groups (means of discriminant scores)).

Figure 5.15: A plot of all KN samples four time periods; LNI-II, FNIA, FNIB and FNII-III that were classified as 'fresh' (Table 5.22) compared to the discriminant analysis of two ethnographic dietary groups: browse and graze (large circle and triangle = central point of ethnographic groups).

Figure 5.16: A plot of KN samples from four time periods; LNI-II, FNIA, FNIB and FNII-III, that were classified as 'graze' (Table 5.24) compared to the discriminant analysis of two ethnographic dietary groups: fresh summer graze and fresh winter graze (large circle and triangle = central point of ethnographic groups).

Figure 5.17: A plot of all KN samples four time periods: LNI-II, FNIA, FNIB and FNII-III that were classified as 'graze' (Table 5.24) compared to the discriminant analysis of two ethnographic dietary groups: high quality fresh graze and low quality fresh graze (large circle and triangle = central point of ethnographic groups).

Figure 5.18: Photograph of a mixed herd of sheep and goats grazing on stubble fields, to note the sheep feeding on weeds and fallen ears among the stubble (taken by author, Makriyalos, 2019).

Figure 5.20: photograph of the same herd of sheep and goats as shown in Figure 5.19, to note the goats straying to feed among the hedges and ruderal plants (taken by author, Makriyalos, 2019).

	Fresh Browse/Graze	Dried Fodder
ТКК	6 (12.5%)	42 (87.5%)
MK	26 (46%)	30 (54%)
KN	38 (50%)	38 (50%)

Table 5.1: Table showing the classification results of samples from three archaeological sites TKK (n=48), MK (n=56) and KN (n=76) from the discriminant analysis presented in Figure 1. The cross-validated percentage of ethnographic samples correctly re-classified is 77% (for full ethnographic results see Table 4.4).

	Grassy Hay	Leafy Hay	Cereal
ТКК	18 (43%)	5 (12%)	19 (45%)
МК	13 (43.3%)	1 (3.3%)	16 (53.3%)
KN	20 (53%)	4 (10.5%)	14 (37%)

Table 5.2: Table showing the classification results of samples from three archaeological sites TKK (n=42), MK (n=30) and KN (n=38) from the discriminant analysis presented in Figure 5.2. The cross-validated percentage of ethnographic samples correctly re-classified is 71% (for full ethnographic results see Table 4.16).

	Fresh Browse	Fresh Graze
ТКК	1	5
МК	2 (8%)	24 (92%)
KN	11 (29%)	27 (71%)

Table 5.3: Table showing the classification results of samples from three archaeological sites TKK (n=6), MK (n=26) and KN (n=38) from the discriminant analysis presented in Figure 5.3. The cross-validated percentage of ethnographic samples correctly re-classified is 82% (for full ethnographic results see Table 4.10).

	Fresh	Fodder
Pit	1	35
Ditch	5	7

Table 5.4: Table showing the classification results of TKK samples from two contexts; pit (n=36) and ditch (n=12), from the discriminant analysis presented in Figure 5.4. The cross-validated percentage of ethnographic samples correctly re-classified is 77% (for full ethnographic results see Table 4.4).

		Fresh	Fodder
Pit	Sheep	1	25
	Goat	0	10

Table 5.5: Table showing the number of sheep and goat samples from pit and ditch contexts classified as fresh or fodder from the results in Table 5.4.

	Grassy Hay	Leafy Hay	Cereal
Pit	15	3	17
Ditch	3	2	2

Table 5.6: Table showing the classification results of TKK samples (classified as 'fodder' in a previous analysis (Table 5.5)) from two contexts; pit (n=35) and ditch (n=7), from the discriminant analysis presented in Figure 5.5. The cross-validated percentage of ethnographic samples correctly re-classified is 71% (for full ethnographic results see Table 4.16).

		Grassy Hay	Leafy Hay	Cereal
Pit	Sheep	9	3	13
	Goat	6	0	4

Table 5.7: Table showing the number of sheep and goat samples from pit and ditch contexts classified as grassy hay, leafy hay or cereal fodder from the results in Table 5.6.

	Summer	Winter
Pits	0	1
Ditch	0	4

Table 5.8: Table showing the classification results of TKK sheep* (classified as 'graze' in a previous analysis (Table 5.3)) from two contexts; pit (n=1) and ditch (n=4), from the discriminant analysis presented in Figure 5.6. The cross-validated percentage of ethnographic samples correctly re-classified is 70% (for full ethnographic results see Table 4.12).

	High Quality	Low Quality
Pit	0	1
Ditch	4	0

Table 5.9: Table showing the number of TKK sheep* samples (classified as 'graze' in a previous analysis (Table 5.3)) from two contexts; pit and ditch, from the discriminant analysis presented in Figure 5.7. The cross-validated percentage of ethnographic samples correctly re-classified is 73% (for full ethnographic results see Table 4.12).

sh	Fodder
	13
	7
	10
-	3h

Table 5.10: Table showing the classification results of MK samples from three contexts; pit (n=29), ditch (n=10), and habitation (n=17) from the discriminant analysis presented in Figure 5.8. The cross-validated percentage of ethnographic samples correctly re-classified is 82% (for full ethnographic results see Table 4.4).

		Fresh	Fodder
Pit	Sheep	14	11
	Goat	2	2

Table 5.11: Table showing the number of sheep and goat samples from pit, habitation and ditch contexts classified as fresh or fodder from the results in Table 5.10.

	Grassy hay	Leafy hay	Cereal
Pits	6	1	6
Ditch	3	0	4
Habitation	4	0	6

Table 5.12: Table showing the classification results of TKK samples (classified as fodder in a previous analysis (Table 5.10)) from three contexts; pit (n=13), ditch (n=10), and habitation (n=7) from the discriminant analysis presented in Figure 5.9 (the cross-validated percentage of ethnographic samples correctly re-classified is 71%, for full ethnographic results see Table 4.16).

	Browse	Graze
Pit	0	16
Ditch	0	3
Habitation	2	5

Table 5.13: Table showing the classification results of MK samples (classified as fresh in a previous analysis (Table 5.10)) from three contexts; pit (n=16), ditch (n=3), and habitation (n=7) from the discriminant analysis presented in Figure 5.10. The cross-validated percentage of ethnographic samples correctly re-classified is 82% (for full ethnographic results see Table 4.10).

	Summer	Winter
Pit	1	15
Ditch	0	3
Habitation	2	3

Table 5.14: Table showing the classification results of MK samples (classified as fresh graze in a previous analysis (Table 5.13)) from three contexts; pit (n=16), ditch (n=5), and habitation (n=3) from the discriminant analysis presented in Figure 5.11. The cross-validated percentage of ethnographic samples correctly re-classified is 70% (for full ethnographic results see Table 4.12).

	High Quality	Low Quality
Pit	1	15
Ditch	1	2
Habitation	2	3

Table 5.15: Table showing the classification results of MK samples (classified as fresh graze in a previous analysis (Table 5.13)) from three contexts; pit (n=16), ditch (n=3), and habitation (n=5) from the discriminant analysis presented in Figure 5.12. The cross-validated percentage of ethnographic samples correctly re-classified is 73% (for full ethnographic results see Table 4.12).

	Fresh	Fodder
LNI-II	6 (40%)	9 (60%)
FNIA	13 (87%)	2 (13%)
FNIB	10 (45%)	12 (55%)
FNII-III	6 (33%)	12 (67%)

Table 5.16: Table showing the classification results of KN samples from four time periods; LNI-II (n=15), FNIA (n=15), FNIB (n=22) and FNII-III (n=18) from the discriminant analysis presented in Figure 5.13. The cross-validated percentage of ethnographic samples correctly re-classified is 82% (for full ethnographic results see Table 4.4).

	Grassy hay	Leafy hay	Cereal
LNI-II	4	1	4
FNIA	0	1	1
FNIB	5	1	6
FNII-III	8	1	3

Table 5.17: Table showing the classification results of KN samples from four time periods; LNI-II (n=15), FNIA (n=15), FNIB (n=22) and FNII-III (n=18) (classified as fodder in a previous analysis (Table 5.16)) from the discriminant analysis presented in Figure 5.14. The cross-validated percentage of ethnographic samples correctly re-classified is 71% (for full ethnographic results see Table 4.16).

	Browse	Graze
LNI-II	2	4
FNIA	4	9
FNIB	3	7
FNII-III	1	5

Table 5.18: Table showing the classification results of KN samples (classified as 'fresh' in a previous analysis (Table 5.16)) from four time periods; LNI-II (n=6), FNIA (n=13), FNIB (n=10) and FNII-III (n=6) from the discriminant analysis presented in Figure 5.15. The cross-validated percentage of ethnographic samples correctly re-classified is 82% (for full ethnographic results see Table 4.10).

	Summer	Winter
LNI-II	1	3
FNIA	0	9
FNIB	0	7
FNII-III	0	5

Table 5.19: Table showing the classification results of KN samples (classified as 'graze' (Table 5.18) in a previous analysis from four time periods; LNI-II (n=4), FNIA (n=9), FNIB (n=7) and FNII-III (n=5) from the discriminant analysis presented in Figure 5.16. The cross-validated percentage of ethnographic samples correctly re-classified is 70% (for full ethnographic results see Table 4.12).

	High Quality	Low Quality
LNI-II	1	3
FNIA	0	9
FNIB	1	6
FNII-III	1	4

Table 5.20: Table showing the classification results of KN samples (classified as 'graze' (Table 5.18) in a previous analysis from four time periods; LNI-II (n=4), FNIA (n=9), FNIB (n=7) and FNII-III (n=5) from the discriminant analysis presented in Figure 5.17. The cross-validated percentage of ethnographic samples correctly re-classified is 73% (for full ethnographic results see Table 4.12).